1986_Intersil_Component_Data_Catalog 1986 Intersil Component Data Catalog

User Manual: 1986_Intersil_Component_Data_Catalog

Open the PDF directly: View PDF PDF.
Page Count: 1098

Download1986_Intersil_Component_Data_Catalog 1986 Intersil Component Data Catalog
Open PDF In BrowserView PDF
-UU:I
Component Data
Catalog

1986

CAUTION: Intersil's products are not intended for use as components in any life support or other medical
devices intended for surgical implant into the human body,
Intersil cannot assume responsibility for use of any circuitry described other than circuitry entirely embodied in an Intersil product. No circuit patent
licenses are implied. Intersil reserves the right to change the circuitry and specifications without notice at any time.
Printed in U.S.A. © Copyright !985, Intersil, Inc., All Rights Reserved

@isaregisteredtrademarkOfGeneral Electric Company, U.S.A.

Table of Contents
Description

Page

Section 1

Selector Guides .................................................................... 1-1

Section 2 -

Discretes

2N2607 P-Charinel JFET General Purpose Amplifier ....................................................... 2-1
2N2608 P-Channel JFET General Purpose Amplifier ....................................................... 2-1
2N2609 P-Channel JFET General Purpose Amplifier ........................................................ 2-1
2N2609JAN P-Channel JFET General Purpose Amplifier .................................................. 2-1
2N3684 N-Channel JFET Low Noise Amplifier ........................ , ...................................... 2--2
2N3685 N-Channel JFET Low Noise Amplifier ......................... ~ ..................................... 2-2
2N3686 N-Channel JFET Low Noise Amplifier ............................................................... 2-2
2N3687 N-Channel JFET Low Noise Amplifier ............................................................... 2-2
2N3810/A Dual Matched PNP General Purpose Amplifier ................................. ~ ............... 2-3
2N3811/ A Dual Matched PNP General Purpose Amplifier ................................ ; ................. 2--3
.2N3821 N-Channel JFET High Frequency Amplifier ........................................................ 2-5
2N3821JAN N-Channel JFET High Frequency Amplifier .................... ~ ............................... 2-5
2N3821JTX N-Channel JFET High Frequency Amplifier .................................................... 2-5
2N3821JTXV N-Channel JFET High Frequency Amplifier .................................................. 2-5
2N3822 N-Channel JFET High Frequency Amplifier ........................................................ 2-5
2N3822JAN N-Channel JFET High Frequency Amplifier ............... : ............ : ...................... 2-5
2N3822JTX N-Channel JFET High Frequency Amplifier .................................................... 2-5
2N3822JTXV N-Channel JFET High Frequency Amplifier ........•.................. , ...................... 2--5
2N3823 N-Channel JFET High Frequency Amplifier ........................................................ 2-7
2N3823JAN N-Channel JFET High Frequency Amplifier ................................................... 2-7
2N3823JTX N-Chan.nel JFET High Frequency Amplifier .................................................... 2-7
2N3823JTXV N-Channel JFET High Frequency Amplifier ......... , ..... , .......•.......................... 2-7
2N3824 N-Channel JFET Switch ........................................... , ..................................... 2-8
2N3921 Dual N-Channel JFET (3eneral Purpose Amplifier ................................................ 2-9
2N3922 Dual N-Channel JFET General Purpose Amplifier ................................................ 2-9
2N3954 Dual N-Channel JFET General Purpose Amplifier ............................... , ............... 2 -11
2N3954A Dual N-Channel JFET General Purpose Amplifier ............................................. 2-11
2N3955 Dual N-Channel JFET General Purpose Amplifier ............................................... 2-11
2N3955A Dual N-Channel JFET General Purpose Amplifier., ........................................... 2-11
2N3956 Dual N-Channel JFET General Purpose Amplifier ............................................... 2-11
2N3957 Dual N-Channel JFET General Purpose Amplifier ., .......................... , .................. 2-11
2N3958 Dual N-Channel JFET General Purpose Amplifier ............................................... 2-11
2N3970 N-Channel JFET Switch ...........................................................'..................... 2-13
2N3971 N-Channel JFET Switch ................................................................................ 2-13
2N3972 N-Channel JFET Switch ................................................................................ 2"': 13
2N3993 P-Channel JFET General Purpose Amplifier/Switch ..................... , ...... : ................ 2-15
2N3994 P-Channel JFET General Purpose Amplifier/Switch ............................................. 2-15
2N4044 Dielectrically Isolated Dual NPN General Purpose Amplifier ................................... 2-17
2N4045 Dielectrically Isolated Dual NPN General Purpose Amplifier ................................... 2-17
2N4100 Dielectrically Isolated Dual NPN General Purpose Amplifier ................................... 2-17
2N4878 Dielectrically Isolated Dual NPN General Purpose Amplifier ................................... 2-17
2N4879 Dielectrically Isolated Dual NPN General Purpose Amplifier .................................... 2-17
2N4880 Dielectrically Isolated Dual NPN General Purpose Amplifier ................................... 2 -17
ITE4091 N-Channel JFET Switch ............................................................................... 2-19
2N4091 N-Channel JFET Switch ................................................................................ 2-19
2N4091 JANTX N-Channel JFET Switch ...................................... , .............................. 2-19

Table
. of Contents
,

Page

Description

Section 2

Discretes (Cont.)

ITE4092 N-Channel JFET Switch ........................ '....................................................... 2-19,
2N4092 N-Channel JFET Switch ............................................................... " ............... 2-19
2N4092 JANTX N-Channel JFET Switch ..................................................................... 2-19
ITE4093 N-Channel JFET Switch ....................................................... , ....................... 2-19
2N4093 N-Channel JFET Switch ................................................................................ 2-19
2N4093 JANTX N-Channel JFET Switch .................. : .................................................. 2-19
2N4117 N-Channel JFET General Purpose Amplifier ...................................................... 2-21
2N4117A N-Channel JFET General Purpose Amplifier .................................................... 2-21
2N4118 N-Channel JFET General Purpose Amplifier ...................................................... 2;...21
2N4118A N-Channel JFET General Purpose Amplifier .................................................... 2-21
2N4119 N-Channel JFET General Purpose Amplifier ...................................................... 2-21
2N4119A N-Channel JFET General Purpose Amplifier .................................................... 2-21
2N4220 N-Channel JFET General Purpose Amplifier/Switch ............................................ 2-22
2N4221 N-Channel JFET General Purpose Amplifier/Switch ............................................ 2~22
2N4222 N-,Channel JFET General Purpose Amplifier/Switch ............................................ 2-22
2N4223 N-Channel JFET High Frequency Amplifier ....................................................... 2-23
2N4224 N-Channel JFET High Frequency Amplifier ....................................................... 2-23
2N4338 N-Channel JFET Low Noise Amplifier .............................................................. 2-24
2N4339 N-Channel JFET Low Noise Amplifier ...... ~ ....................................................... 2-24
2N4340 N-Channel JFET Low Noise Amplifier ..•......... ; ................................................. 2-24
2N4341 N-Channel JFET Low Noise Amplifier .............................................................. 2-24
.2N4351 N-Channel Enhancement Mode MOSFET General Purpose Amplifier/Switch ............. 2-25
ITE4391 N-Channel JFET Switch ............................................................................... 2-26
2N4391 N-Channel JFET Switch ................................................................................ 2-26
ITE4392 N-Channel JFET Switch ............................................................................... 2-26
2N4392 N-Channel JFET Switch ............................................................... ; ................ 2-26
ITE4393 N-Channel JFET Switch ............................................................................... 2:"26
2N4393 N-Channel JFET Switch .............................................•.................................. 2-26
ITE4416 N-Channel JFET High Frequency Amplifier ....................................................... 2-28
2N4416/A N-Channel JFET High Frequency Amplifier .................................................... 2-28
2N4856N-Channel JFET Switch ................................................................................ 2-30
2N4856JAN,JTX,JTXV N-Channel JFET Switch ....................................... ; ...................... 2..:30
2N4857 N-Channel JFET Switch ................................................................................ 2-30
2N4857JAN,JTX,JTXV N-Channel JFET Switch ............................................................. 2-30
2N4858 N-Channel JFET Switch ............................... '................................................. 2-30
2N4858JAN,JTX,JTXV N-Channel JFET Switch .................. , ................................ , ......... 2-30
2N4859 N-Channel JFET Switch ................................................................................ 2-30
2N4860 N-Channel JFET Switch ................................................ : ............................... 2 -30
2N4861 N-Channel JFET Switch.: .............................................................................. 2-30
2N4867/ AN-Channel JFET Low Noise Amplifier ........................................................... 2-32
2N4868/ A N-Channel JFET Low Noise Amplifier ........................................................... 2-32
2N4869! A N-Channel JFET Low Noise Amplifier ........................................................... 2-32
2N5018 P-Channel JFET Switch .: .............................................................................. 2-34
2N5019 P-Channel JFET Switch .......................................................................... ; ..... 2-34.
2N5114 P-Channel JFET Switch ................................................................................ 2-'36
2N5114JAN,JTX,JTXV P-Channel JFET Switch .............. ~ ............................................... 2-36
2N5115 P-ChannelJFET Switch .......................................................... : ..................... 2-36
2N5115JAN,JTX,JTXV P-Channel JFET Switch .................. ; .................................. ; ........ 2-36
2N5116 P-Channel JFET Switch ................................................................................ 2-36

2

Table of Contents
Description

Section 2 -

Page

Discretes (Cont.)

2N5116JAN,JTX,JTXV P-Channel JFET Switch .............................................................. 2-36
2N5117 Dielectrically Isolated Dual PNP General Purpose Amplifier ................................... 2-38
2N5118 Dielectrically Isolated Dual PNP General Purpose Amplifier ................................... 2-38
2N5119 Dielectrically Isolated Dual PNP General Purpose Amplifier ................................... 2-38
2N5196 DualN-Channel JFET General Purpose Amplifier ............................................... 2~40
2N5197 Dual N-Channel JFET General Purpose Amplifier ............................................... 2-40
2N5198 Dual N-Channel JFET General Purpose Amplifier ............................................... 2-40
2N5199 Dual N-Channel JFET General Purpose Amplifier ............................................... 2-40
2N5397 N-Channel JFET High Frequency Amplifier ....................................................... 2-42
2N5398 N-Channel JFET High Frequency Amplifier ....................................................... 2-42
2N5432 N-Channel JFET Switch ................................................................................ 2 -44
2N5433 N-Channel JFET Switch ................................................................................ 2-44
2N5434 N-Channel JFET Switch ........................................................ ; ....................... 2-44
2N5452 Dual N-Channel JFET General Purpose Amplifier ............................................... 2-46
2N5453 Dual N-Channel JFET General Purpose Amplifier ............................................... 2-46
2N5454 Dual N-Channel JFET General Purpose Amplifier ............................................... 2-46
2N5457 N-Channel JFET General Purpose Amplifier/Switch ............................................ 2-48
2N5458 N-Channel JFET General Purpose Amplifier/Switch ............................................ 2-48
2N5459 N-Channel JFET General Purpose Amplifier/Switch ............................................ 2-48
2N5460 P-Channel JFET Low Noise Amplifier ........................................................... ; .. 2-49
2N5461 P-Channel JFET Low Noise Amplifier .............................................................. 2-49
2N5462 P:...Channel JFET Low Noise Amplifier .............................................................. 2-49
2N5463 P-Channel JFET Low Noise Amplifier .............................................................. 2-49
2N5464 P-Channel JFET Low Noise Amplifier .............................................................. 2-49
2N5465 P-Channel JFET Low Noise Amplifier ............................................................... 2-49
2N5484 N-Channel JFET High Frequency Amplifier ....................................................... 2-50
2N5485 N-Channel JFET High Frequency Amplifier ....................................................... 2-50
2N5486 N-Channel JFET High Frequency Amplifier ........................................................ 2-50
2N5515 Dual N-Channel JFET Low Noise Amplifier ....................................................... 2-52
2N5516 Dual N-Channel JFET Low Noise Amplifier ....................................................... 2-52
2N5517 Dual N-Channel JFET Low Noise Amplifier ....................................................... 2-52
2N5518 Dual N-Channel JFET Low Noise Amplifier ....................................................... 2-52
2N5519 Dual N-Channel JFET Low Noise Amplifier ....................................................... 2-52
2N5520 Dual N-Channel JFET Low Noise Amplifier ....................................................... 2-52
2N5521 Dual N-Channel JFET Low Noise Amplifier ....................................................... 2-52
2N5522 Dual N-Channel JFET Low Noise Amplifier ....................................................... 2-52
2N5523 Dual N-Channel JFET Low Noise Amplifier ....................................................... 2-52
2N5524 Dual N-Channel JFET Low Noise Amplifier ....................................................... 2-52
2N5638 N-Channel JFET Switch ................................................................................ 2-54
2N5639 N-Channel JFET Switch ................................................................................ 2-54
2N5640 N-Channel JFET Switch ................................................................................ 2-54
2N5902 Dual N-Channel JFET General Purpose Amplifier ............................................... 2-56
2N5903 Dual N-Channel JFET General Purpose Amplifier ............................................... 2-56
2N5904 Dual N-Channel JFET General Purpose Amplifier ............................................... 2-56
2N5905 Dual N-Channel JFET General Purpose Amplifier ............................................... 2-56
2N5906 Dual N-Channel JFET General Purpose Amplifier .......................................... ; .... 2-56
2N5907 Dual N-Channel JFET General Purpose Amplifier ............................................... 2-56
2N5908 Dual N-Channel JFET General Purpose Amplifier ............................................... 2-56
2N5909 Dual N-Channel JFET General Purpose Amplifier ............................................... 2-56

3

Table of Contents
'Oescription

Section 2 -

Page

Discretes (Cont.)

2N5911 Dual N-Channel JFET High Frequency Amplifier ............•.............•..................... 2-58
IT5911 Dual N-Channel JFET High Frequency Amplifier: .............'..•...•...............'....... , ....... 2-58
2N5912 Dual N-Channel JFET High Frequency Amplifier ................................................ 2-58
IT5912 Dual N-Channel JFET High Frequency Amplifier ............................................... , .. 2-58
2N6483 Dual N-Channel JFET Low Noise Amplifier ................•...................................... 2:...60
2N6484 Dual N-Channel JFET Low Noise Amplifier ...........•........................................... 2-60
2N6485 Dual N-Channel JFET Low Noise Amplifier ....... : ............................. , ................. 2-60
IMF6485 Dual N-Channel JFET Low Noise Amplifier ....... ; .. , ........................................... 2-62
3N161 Diode Protected P-Channel Enhancement Mode MOSFETGeneral Purpose Amplifier/
Switch ............................................................................................................. 2-64
3N163 P-Channel Enhancement Mode MOSFET General Purpose Amplifier/Switch .............. 2-65
3N164 P-Channel Enhancement Mode MOSFET General Purpose/Switch ........................... 2-65
3N165 Dual P-Channel Enhancement Mode MOSFET General Purpose Amplifier ................. 2-67
3N166 Dual P-Channel Enhancement Mode MOSFET General Purpose Amplifier ................. 2-67
3N170 N-Channel Enhancement Mode MOSFET Switch ................................................. 2-69
3N171 N-Channel Enhancement Mode MOSFET Switch ...... , .......................................... 2-69
3N 172 Diode Protected P-Channel Enhancement Mode MOSFET General Purpose Amplifier /
'
.Switch .............................................................. , ............................................. 2-7.1
3N173 Diode Protected P-Channel Enhancement Mode MOSFET General Purpose Amplifier/
Switch ............................................................................................................ 2-71
3N 188 Dual P-Channel Enhancement Mode MOSFET General Purpose Amplifier ................. 2 - 72
3N189 Dual P-Channel Enhancement Mode MOSFET General Purpose Amplifier ................. 2-72
3N 190 Dual P-Channel Enhancement Mode MOSFET General Purpose Amplifier ................. 2 - 72
3N191 Dual P--Channel Enhancement Mode MOSFETGeneral Purpose Amplifier ................. 2-72
ID100 Dual Low Leakage Diode ................................................................................ 2-74
ID101 Dual Low Leakage Diode ................................................................................ 2-74
IT100 P-Channel JFET Switch ............................................ : ...................................... 2-76
IT101 P-Channel JFET Switch ................. '.................................................................. 2-76
IT120 Dual NPN General Purpose Amplifier .................................................................. 2-77
IT120A Dual NPN General Purpose Amplifier ................................................................ 2:... 77
IT121 Dual NPN General Purpose Amplifier .................................................................. 2- 77
IT122 Dual NPN General Purpose Amplifier .................................................................. 2-77
IT124 Dual Super-Seta NPN General Purpose Amplifier ................................... : .............. 2 -79
IT126 Dual NPN General Purpose Amplifier .................................................................. 2-81
IT127 Dual NPN General Purpose Amplifier .................................................................. 2-81
IT128 Dual NPN General Purpose Amplifier .................................................................. 2-81
IT129 Dual NPN General Purpose Amplifier .................................................................. 2-81
IT130 Dual PNP General Purpose Amplifier ................................................................... 2-83
IT130A Dual PNP General Purpose Amplifier ........................................ , ....................... 2-83
IT131 Dual PNP General Purpose Amplifier .................................. , ................................. 2-83
IT132 DualPNP General Purpose Amplifier .................................'..........................•...... 2-83
IT136 Dual PNP General Purpose Amplifier ................................................................... 2-85
IT137 Dual PNP General Purpose Amplifier .................................................................. 2-85
IT138 Dual PNP General Purpose Amplifier ........................................................ , .......... 2-85
IT139 Dual PNP General Purpose Amplifier .................................................................. 2-85
IT500 Dual Cascoded N-Channel JFET General Purpose Amplifier .................. : ................. 2-87
·IT501 Dual Cascoded N-Channel JFET General Purpose Amplifier ..........................•......... 2 .... 87
1T502 Dual Cascoded N-Channel JFET General Purpose Amplifier .................................... 2-87
IT503 Dual Cascoded N-Channel JFET General Purpose Amplifier .................................... 2-87

4

Table of Contents
Description

Section 2 -

Page

Discretes (Cont.)

IT504 Dual Cascoded N-Channel JFET General Purpose Amplifier .................................... 2-87
IT505 Dual Cascoded N-Channel JFET General Purpose Amplifier .................................... 2-87
IT550 Dual N-Channel JFET Switch ........................................................................... 2-90
IT1700 P-Channel Enhancement Mode MOSFET General Purpose Amplifier ........................ 2-92
IT1750 N-Channel Enhancement Mode MOSFET General Purpose Amplifier/Switch .............. 2-93
J105 N-Channel JFET Switch ................................................................................... 2-94
J106 N-Channel JFET Switch ................................................................................... 2-94
J107 N-Channel JFET Switch ................................................................................... 2-94
J111 N-Channel JFET Switch ................................................................................... 2-95
J112 N-Channel JFET Switch ................................... '........................................... : .... 2-95
J113 N-Channel JFET Switch ................................................................................... 2-95
J 174 P-Channel J FET Switch .................................................................................... 2 -97
J175 P-Channel JFET Switch ......................................................................... .' ..... : .... 2-97
J176 P-Channel JFET Switch .................................................................................... 2-97
J177 P-Channel JFET Switch .................................................................................... 2-97
J201 N-Channel JFET General Purpose Amplifier .......................................................... 2-99
J202 N-Channel JFET General Purpose Amplifier ......................................................... ;2-99
J203 N-Channel JFET General Purpose Amplifier ...................................... , ................... 2-99
J204 N-Channel JFET General Purpose Amplifier .......................................................... 2-99
J308 N-Channel JFET High Frequency Amplifier ... , ..................................................... 2-100
J309 N-Channel JFET High Frequency Amplifier ..... : ........................................ : .......... 2-100
J310 N-Channel JFET High Frequency Amplifier ....................................... ; ............ : .... 2-100
LM114/H Dual NPN General Purpose Amplifier ........................................................... 2-102
LM114A1AH Dual NPN General Purpose Amplifier ....................................................... 2-102
M116 Diode Protected N-Channel Enhancement Mode MOSFET General Purpose Amplifier. 2 -104
U200 N-Channel JFET Switch ................................................................................. 2-105
U201 N-Channel JFET Switch ................................................................................. 2-105
U202 N-Channel JFET Switch ................................................................................. 2-105
U231 Dual N-Channel JFET General Purpose Amplifier ................................................ 2-106
U232 Dual N-Channel JFET General Purpose Amplifier ................................................ 2-106
U233 Dual N-Channel JFET General Purpose Amplifier ................................................ 2-106
U234 Dual N-Channel JFET General Purpose Amplifier ................................................ 2-106
U235 Dual N-Channel JFET General Purpose Amplifier ................................................ 2-106
U257 Dual N-Channel JFET High Frequency Amplifier ......................... , ................... : .... 2-108
U304 P-Channel JFET Switch ................................................................................. 2-109
U305 P-Channel JFET Switch ................................................................................. 2-109
U306 P-Channel JFET Switch ................................................................................. 2-109
U308 N-Channel JFET High Frequency Amplifier ......................................................... 2-111
U309 N-Channel JFET High Frequency Amplifier ......................................................... 2-111
U310 N-Channel JFET High Frequency Amplifier ...................... : .................................. 2-111
U401 Dual N-Channel JFET Switch ............................... , ............................. , ............ 2 -113
U402 Dual N-Channel JFET Switch .......................................................................... 2-113
U403 Dual N-Channel JFET Switch .......................................................................... 2-113
U404 Dual N-Channel JFET Switch .......................................................................... 2-113
U405 Dual N-Channel JFET Switch .......................................................................... 2-113
U406 Dual N-Channel JFET Switch .......................................................................... 2-113
U1897 N-Channel JFET Switch ............................................................................... 2-115
U1898 N-Channel JFET Switch ............................................................................... 2-115
U1899 N-Channel JFET Switch ..................................... ;;'....................................,.... 2-115

5

Table of Contents
Page

Description

Section 2 -

Discretes (Cont.)

VCR2N Voltage Controlled Resistors ..........................................•.............................. 2-117
VCR3P Voltage Controlled Resistors ......................................................................... 2-117
VCR4N Voltage Controlled Resistors ............................... , ............... ~ •........................ 2-117
VCR7N Voltage Controlled Resistors ........................ ; ................................................ 2-117
VCR11N Voltage Controlled Resistors ....................................................................... 2-120

Section 3 -

Analog Switches and Multiplexers

D123 SPST 6-Channel JFET Switch Driver ......................................... , ......................... 3-1
D125 SPST 6-Channel JFET Switch Driver ................................................................... 3-1
D129 4-Channel Decoded JFET Switch Driver ............................................................... 3-6
DG118 SPST 4-Channel Driver With Switch ................................... ; .............................. 3-8
DG123 SPST 5-Channel Driver With Switch .................................................................. 3-8
DG125 SPST 5-Channel Driver With Switch .................................................................. 3-8
DG126 Dual DPST 80 Ohm JFET Analog Switch .......................................................... 3-12
DG129 Dual DPST 30 Ohm JFET Analog Switch .......................................................... 3:...12
DG133 Dual SPST 30/35 Ohm JFET Analog Switch ...................................................... 3-12
DG134 Dual SPST 80 Ohm JFET Analog Switch .......................................................... 3-12
DG140 Dual DPST 10/15 Ohm JFETAnalog Switch ...................................................... 3-12
DG141 Dual ~PST 10 Ohm JFET Analog Switch .......................................................... 3-12
DG151 Dual SPST 15 Ohm JFET Analog Switch .......................................................... 3-12
DG152 Dual SPST 50 Ohm JFET Analog Switch .......................................................... 3-12
DG153 Dual DPST 15 Ohm JFET Analog Switch .. , ....................................................... 3-12
DG154 Dual DPST 50 Ohm JFET Analog Switch .......................................................... 3'-12
DG139 DPDT 30 Ohm Differentially Driven JFET Switch ................................................. 3-17
DG142. DPDT 80 Ohm Differentially Driven JFET Switch ................................................. 3-17
DG143 SPDT 80 Ohm Differentially Driven JFET Switch ................................................. 3-17
DG144 SPDT 30 Ohm Differentially Driven JFET Switch ................................................. 3-17
DG145 DPDT 10 Ohm Differentially Driven JFET Switch ................................................. 3-17
DG146 SPDT 10 Ohm Differentially Driven JFET Switch ................................................. 3-17
DG161 SPDT 15 Ohm Differentially Driven JFET Switch ................................................. 3-17
DG162 SPDT 50 Ohm Differentially Driven JFET Switch ................................................. 3-17
DG163 DPDT 15 Ohm Differentially Driven JFET Switch ................................................. 3-17
DG164 DPDT 50 Ohm Differentially Driven JFET Switch ................................................. 3-17
DG180 Dual SPST 10 Ohm High-Speed Driver With JFET Switch ..................................... 3-22
DG181 Dual SPST 30 Ohm High-Speed Driver With JFET Switch ..................................... 3-22
DG 182 Dual SPST 75 Ohm High-Speed Driver With JFET Switch ..................................... 3 -22
DG183 Dual DPST 10 Ohm High-Speed Driver With JFET Switch ..................................... 3-22
DG184 Dual DPST 30 Ohm High-Speed Driver With JFET Switch ..................................... 3-22
DG185 Dual DPST 75 Ohm High-Speed Driver With JFET Switch ...................................... 3-22
DG186 SPDT10 Ohm High-Speed Driver With JFET Switch ............................................ 3-22
OG187 SPDT 30 Ohm High-Speed Driver With JFET Switch ............................................ 3-22
DG188 SPDT 75 Ohm High-Speed Driver With JFET Switch ............................................ 3-22
DG189 Dual SPDT10 Ohm High-Speed Driver With JFET Switch ..................................... 3:"'22
DG190 Dual SPDT 30 Ohm High-Speed Driver With JFETSwitch ..................................... 3-22
DG191 Dual SPOT 75 Ohm High-Speed Driver With JFET Switch ..................................... 3-22
DG200 Dual SPST CMOS Analog Switch ..• ; ................................................................. 3-27
IH5200 Dual SPST CMOS Analog Switch ..................................................................... 3-27
DG201 Quad SPST CMOS Analog Switch .................................................................... 3-32

6

Table of Contents
Description

Section 3 -

Page

Analog Switches and Multiplexers (Cont.)

IH5201 Quad SPST CMOS Analog Switch ................................................................... 3-32
DG211 SPST 4-Channel Analog Switch ....................................................................... 3-36
DG212 SPST 4-Channel Analog Switch ....................................................................... 3-36
DGM181 Dual SPST 50 Ohm High-Speed CMOS Analog Switch ...................................... 3-39
DGM182 Dual SPST 50/75 Ohm High-Speed CMOS Analog Switch .................................. 3-39
DGM184 Dual DPST 50 Ohm High-Speed CMOS Analog Switch ...................................... 3-39
DGM185 Dual DPST 50/75 Ohm High-Speed CMOS Analog Switch .................................. 3-39
DGM187 SPOT 50 Ohm High-Speed CMOS Analog Switch ............................................. 3-39
DGM188 SPOT 50/75 Ohm High-Speed CMOS Analog Switch ......................................... 3-39
DGM190 Dual SPOT 50 Ohm High-Speed CMOS Analog Swi.tch ...................................... 3-39
DGM191 Dual SPOT 50/75 Ohm High-Speed CMOS Analog Switch .................................. 3-39
G115 6-Channel MOSFET Switch .............................................................................. 3-45
G123 4-Channel MOSFET Switch .............................................................................. 3-45
G116 5 Channel MOSFET Switch .............................................................................. 3-48
G118 6 Channel MOSFET Switch ..................................... " ....................................... 3-48
G119 6 Channel MOSFET Switch .............................................................................. 3-48
IH311 High Speed SPST 4-Channel Analog Switch ....................................................... 3-52
IH312 High Speed SPST 4-Channel Analog Switch ....................................................... 3-52
IH401 QUAD Varafet Analog Switch ........................................................................... 3-59
IH401A QUAD Varafet Analog Switch ............................................................ , ............ 3-59
IH5009 Quad 100 Ohm Virtual Ground Analog Switch ................................................ : .... 3-65
IH5010 Quad 150 Ohm Virtual Ground Analog Switch .............................................•...... 3-65
IH5011 Quad 100 Ohm Virtual Ground Analog Switch .................................................. ~. 3-65
IH5012 Quad 150 Ohm Virtual Ground Analog Switch .................................................... 3-65
IH5013 Triple 100 Ohm Virtual Ground Analog Switch ....... " ........................................... 3-65
IH5014 Triple 150 Ohm Virtual Ground Analog Switch .................................................... 3-65
IH5015 Triple 100 Ohm Virtual Groung Analog .Switch .................................................... 3-65
IH5016 Triple 150 Ohm Virtual Ground Analog Switch ..................................................... 3-65
IH5017 Dual 100 Ohm Virtual Ground Analog Switch , .................................................... 3-65
lH5018 Dual 150 Ohm Virtual Ground Analog Switch ..................................................... 3-65
IH5019 Dual 100 Ohm Virtual Ground Analog Switch ..................................................... 3-65
IH5020 Dual 150 Ohm Virtual Ground Analog Switch ..................................................... 3-65
IH5021 Single 100 Ohm Virtual Ground Analog Switch ................................................... 3-65
IH5022 Single 150 Ohm Virtual Ground Analog Switch ................................................... 3-65
IH5023 Single 100 Ohm Virtual Ground Analog Switch ................................................... 3-65
IH5024 Single 150 Ohm Virtual Ground Analog Switch ................................................... 3-65
IH5025 Quad 100 Ohm Positive Signal Analog Switch ........... , ........................................ 3-71
IH5026 Quad 150 Ohm Positive Signal Analog Switch .................................................... 3-71
IH5027 Quad 100 Ohm Positive Signal Analog Switch .................................................... 3 - 71
IH5028 Quad 150 Ohm Positive Signal Analog Switch .................................................... 3 - 71
IH5029 Triple 100 Ohm Positive Signal Analog Switch .................................................... 3-71
IH5030 Triple 150 Ohm Positive Signal Analog Switch .................................................... 3-71
IH5031 Triple 100 Ohm Positive Signal Analog Switch .................................................... 3-71
IH5032 Triple 150 Ohm Positive Signal Analog Switch .......................,............................. 3-71
IH5033 Dual 100 Ohm Positive Signal Analog Switch ..................................................... 3-71
IH5034 Dual 150 Ohm Positive Signal Analog Switch ..................................................... 3-71
IH5035 Dual 100 Ohm Positive Signal Analog Switch ..................................................... 3-71
IH5036 Dual 150 Ohm Positive Signal Analog Switch ..................................................... 3-71
IH5037 Single 100 Ohm Positive Signal Analog Switch .......... : ........................................ 3-71

7

Table of Contents
Description

Page

Section 3 -Analog Switches and Multiplexers (Cont.)
IH5038 Single 1'50 Ohm Positive Signal Analog Switch ..................................................... 3-71
IH5040 SPST 75 Ohm High-Level CMOS Analog Switch ....... , .........................................,3-.79
IH5041 Dual SPST 75 Ohm High-Level CMOS Analog Switch .......................................... 3-79
IH5042 SPOT 75 Ohm High-Level CMOS Analog Switch ............. ; ......................... , ....... ,. 3-79
IH5043 Dual SPOT 75 Ohm High-Level CMOS Analog Switch ............................... , ......... , 3-79
IH5044 DPST 75 Ohm High-Level CMOS Analog Switch .............................. ; ....... , .......... 3-]9
IH5045 Dual DPST 75 Ohm High-Level CMOS Analog Switch .......................................... 3-79
IH5046 DPDT 75 Ohm High-Level CMOS Analog Switch ........................................' .......... 3-79
IH5047 4PST 75 Ohm High-Level CMOS Analog Switch ....... ; ..... : .................................... 3-79
IH5048 Dual SPST 35 Ohm High-Level CMOS Analog Switch ........................................... 3-88
IH5049 Dual DPST 35 Ohm High-Level CMOS Analog Switch .......................................... 3-88
IH5050 SPOT 35 Ohm High-Level CMOS Analog Switch ................................................. 3-88
IH5051 Dual SPOT 35 Ohm High-Level CMOS Analog Switch ......................" ................... 3-88
IH5052 QUAD CMOS Analog Switch ........................................................................... 3-93
IH5053 QUAD CMOS Analog Switch ........................................................................... 3-93
IH5108 8-Ch~nnel Fault Protected Analog Multiplexer ............................................. , ....... 3-99
IH5116 16-Channel Fault Protected Analog Multiplexer .............. 01 . . . . . . . . . . . . . , " . . . . . . . . . . . . . . . . . . . 3 -1 07
IH5140 SPST High-Level CMOS Analog Switch ..................................... ; ................ ; .... 3-110
IH5141 Dual SPST High-Level CMOS Analog Switch ..................................................... 3 -110
IH5142 SPOT Hig~-Level CMOS Analqg Switch ................................................ ; .... , ..... 3-110
IH5f43 Dual SPOT High-Level CMOS Analog Switch .................................................... 3-110
IH5144 DPST High-Level CMOS Analog Switch ................................ ; .......................... 3-110
IH5145 Dual DPST High-Level CMOS Analog Switch ............................... , ..................... 3-110
IH5148 Dual SPST High-Level CMOS Analog Switch ...................... : ..... ; ....................... 3-119
IH5149 Dual DPST High-Level CMOS Analog Switch ........................ , .. , ...... , .................. 3-119
IH5150 SPOT High-Level CMOS Analog Switch .......................,.................................... 3-119
IH5151 Dual SPOT High-Level CMOS Analog Switch ........ , ........................................... 3-119
IH5208 4-Channel Differential Fault Protectbu Analog Multiplexer .................................... 3-127
IH52168-Channel Differential Fault Protected Analog Multiplexer •........• ~ ......................... 3-135
IH5341 Dual SPST CMOS RFlVideo Switch ............... : ................................................ 3-1.38
IH5352 QUAD SPST CMOS RFlVideo Switch ............................................................. 3-144
IH6108 8-Channel CMOS Analog Multiplexer ................................... , .......................... 3-149
IH6116 16-Channel CMOS Analog Multiplexer ................................ ; ............. ; ............. 3-155
IH6201 Dual CMOS DriverlVoltage Translator ........................... ; ................................. 3-162
IH6208 4-Channel Differential CMOS Analog Multiplexer ............................................... 3-166
IH6216 8-Channel Differential CMOS Analog Multiplexer ............. ; ................................. 3-172
MM450 Dual Differential High Voltage Analog Switch .................................................... 3-178
MM550 Dual Differential High Voltage Analog Switch ................................................... 3-178
MM451 Four Channel High Voltage Multiplexer ............................................................3.-178
MM551 Four Channel High Voltage Multiplexer ........................................................... 3-178
MM452 Quad SPST High Voltage Analog Switch ............ "................... : ........................ 3-178
MM552 Quad SPST High Voltage Analog Switch .......................................................... 3-178
MM455 Three SPST High Voltage Analog Switch ..,...................................................... 3-178
MM555 Three SPST High Voltage Analog Switch ........................................................ :)-178

Section 4 -

Amplifiers -

Operational and Special Purpose

ICH8500/ A Ultra Low Input-Bias Operational Amplifier ..................................................... 4-1
ICH8510 Power Operational Amplifier ........................................................................... 4-7

8

Table of Contents
Description

Section 4 (Cont.)

Page

Amplifiers -

Operational and Special Purpose

rCH8520 Power Operational Amplifier ........................................................................... 4-7
ICH8530 Power Operational Amplifier ........................................................................... 4-7
ICH8515 Power Operational Amplifier ......................................................................... .4-16
,ICL7605 Commutating Auto-Zero (CAZ) Instrumentation Amplifier ...................................... 4-23
ICL7606 Commutating Auto-Zero (CAD) Instrumentation Amplifier ...................................... 4-23
ICL76XX Series Low Power CMOS Operational Amplifiers .............................................. .4-34
ICL7650 Chopper-Stabilized Operational Amplifier .......................................................... 4-50
ICL7652 Chopper-Stabilized Low-Noise Operational Amplifier ........................................... 4-57
ICL8007 JFET Input Operational Amplifier .................................................................... 4-65
ICL8021 Low Power Bipolar Operational Amplifier .......................................................... 4-69
ICL8022 Dual Low Power Bipolar Operational Amplifier ....................................... : .......... .4-69
ICL8023 Triple Low Power Bipolar Operational Amplifier .................................................. 4-69
. ICL8043 Dual JFET Input Operational Amplifier ............................................................ .4-74
ICL8048 Logarithmic Amplifier .................................................................................... 4-82
ICL8049 Antilog Amplifier ......................................................................................... 4-82
ICL8063 Power Transistor Driver/Amplifier ................................................................... .4-90
LH2108 Dual Super-Beta Operational Amplifier ............................................................ .4-99
LH2308 Dual Super-Beta Operational Amplifier ............................................................ .4-99
LM108/A Super-Beta Operational Amplifier ................................................................ 4-102
LM308/A Super-Beta Operational Amplifier ................................................................ 4-102
NE/SE592 Video Amplifier ................................................................................ ; ..... 4-106

Section 5 -

Special Analog Functions

AD590 2-Wire Current Output Temperature Transducer .................................................... 5-1
ICL7660 CMOS Voltage Converter ............................................................................... 5.,.12
ICL7662 CMOS Voltage Converter .............................................................................. 5-20
ICL7663 CMOS Programmable Micropower Positive Voltage Regulator ............................... 5-27
ICL7664 CMOS Programmable Micropower Negative Voltage Regulator .............................. 5-27
ICL7665 Micropower Under/Over Voltage Detector ......................................................... 5-39
ICL7667 Dual Power MOSFET Driver .......................................................................... 5-47
ICL7673 Automatic Battery Back-up Switch .................................................................. 5-55
ICL8013 Four Quadrant Analog Multiplier ..................................................................... 5-63
ICL8038 Precision Waveform Generator/Voltage Controlled Oscillator ................................. 5-72
ICL8069 Low Voltage Reference ................................................................................ 5-81
ICL8211 Programmable Voltage Detector ..................................................................... 5-83
ICL8212 Programmable Voltage Detector ..................................................................... 5-83
IH5110 General Purpose Sample & Hold ..................................................................... 5-94
IH5111 General Purpose Sample & Hold ..................................................................... 5-94
IH5112 General Purpose Sample & Hold ..................................................................... 5-94
IH5113 General Purpose Sample & Hold ..................................................................... 5-94
IH5114 General Purpose Sample & Hold ..................................................................... 5-94
IH5115 General Purpose Sample & Hold ..................................................................... 5-94

Section 6 -

Data Acquisition

AD7520 10/ 12-Bit Multiplying D/ A Converter ................................................................. 6-1
AD7521 10/12-Bit Multiplying D/ A Converter ........................................................ ; ........ 6-1

9

Table of Contents
Page

Description

Section 6 -

Data Acquisition (Cont.)

AD7530 10/12-Bit Multiplying D/A Converter ................................................................. 6-1
AD7531 10/12-Bit Multiplying D/ A Converter ............................ ; .................................•.. 6-1
AD7523 8-Bit Multiplying D/ A Converter ....................................................................... 6-7
AD7533 10-Bit Multiplying D/ A Converter ................. , .........................................', ........ 6-11
AD7541 12-Bit Multiplying D/A Converter .................................................................... 6-16
ADC0802 8-Bjt J,LP-Compatible AID Converter ............................................................... 6-22
ADC0803 8-Bit J,LP-Compatible AID Converter .. ; ............................................................ 6-22
ADC0804 8-Bit J,LP-Compatible AID Converter ................................................................6-22
ICL7106 3 Y2-Digit LCD Single-Chip AID Converter ....................................................... 6-37
ICL7107 3 Y2-Digit LED Single-Chip AID Converter ....................................................... 6-37
ICL7109 12-Bit J,LP-Compatible AID Converter ............................................................... 6-48
ICL7115 14-Bit High-Speed CMOS J,LP-Compatible AID Converter .................................... 6-66
ICL7116 3 Y2-Digit with Display Hold Single-Chip AID Converter ........................................ 6-78
ICL7117 3 Y2-Digit with Display Hold Single-Chip AID Converter ...................................... 6-78
ICL7126 3 Y2-Digit Low-Power Single-Chip AID Converter .............................................. 6-88
ICL7129 4 Y2 Digit I.CD Single-Chip AID Converter ....................................................... 6-98
ICL7134 14-Bit Multiplying J,LP-Gompatible D/A Converter .............................................. 6-109
ICL7135 4 Y2-Digit BCD Output AID Converter ............................................................ 6-121
ICL7136 3 Y2-Digit LCD Low Power AID Converter ...................................................... 6-132
ICL71373 Y2-Digit LED Low Power Single-Chip AID Converter ...................................... 6-142
ICL8018A 4-Bit Expandable Current Switch ................................................................ 6-151
ICL8019A 4-Bit Expandable Current Switch ................................................................ 6-151
ICL8020A 4-Bit Expandable ~urrent Switch ................................................................ 6-151
ICL7104/ICL8052 12/14/16-Bit J,LP-Compatible 2-Chip AID Converter ................... " ......... 6-157
ICL7104/1CL8068 12/14/16-Bit J,LP-Gompatible 2-Chip AID Converter ............................. 6-157
.

Section 7 -

(

Timer/Counter Circuits

ICM7206 CMOS Touch-Tone Encoder .......................................................................... 7-1
ICM7207/A CMOS Timebase Generator ....................................................................... 7 -10
ICM7208 7-Digit LED Display Counter ......................................................................... 7 -15
ICM7209 Timebase Generator ................................................................................... 7 -22
ICM7213 One Second/One Minute Timebase Generator ................................................. 7 -25
ICM72Hi 6-Digit LED Display 4-Function Stopwatch ...................................................... 7 -30
ICM7216A 8-Digit Multi-Function Frequency Counter/Timer .............................................. 7-36
ICM7216B 8-Digit Multi-Function Frequency Counter/Timer .............................................. 7-36
ICM7216C 8-Digit Multi-Function Frequency Counter/Timer .............................................. 7 -36
ICM7216D 8-Digit Multi-Function Frequency Counter/Timer ............................................. 7-36
ICM7217 4-Digit LED Display Programmable Up/Down Counter ........................................ 7 -52
ICM7227 4-Digit LED Display Programmable Up/Down. Counter ........................................ 7 -52
ICM7224 4 Y2-Digit LCD/LED Display Counter .......................... ; ................................... 7 -67
ICM7225 4 Y2-Digit LCD/LED Display Counter .............................................................. 7 -67
ICM7226A1B 8-Digit Multi-Function Frequency Counter/Timer .......................................... 7-75
ICM7236 4 Y2-Digit CounterlVacuum Fluorescent Display Driver ........................................ 7-88
ICM7240 Programmable Timer ................................................................................... 7 -93
ICM7250 Programmable Timer ...................................... , .......................................... ;. 7-93
ICM7260 Programmable Timer ................................................................................... 7-93
ICM7241 Timebase Generator ............................ , .................... : ............................... 7-103
ICM7242 Long-Range Fixed Timer ........................................................................... 7-105

10

Table of Contents
Page

Description

Section 7 ICM7245
IGM7249
ICM7555
ICM7556

Stepper Motor Quartz Clock ....................................................................... 7 -111
S-Y2 Digit LCD J..!-Power Event/Hour Meter .................................................... 7-115
General Purpose Timer .............................................................................. 7 -123
Dual General Purpose Timer ..................................... ,.................................. 7-123

Section 8 ICM7211
ICM7212
ICM7218
ICM7231
ICM7232
ICM7233
ICM7234
ICM7235
ICM7243
ICM7280
ICM7281
ICM7283

Timer/Counter Circuits (Cont.)

Display Drivers

4-Digit LCD/LED Display Driver ..................................................................... 8-1
4-Digit LCD/LED Display Driver ........................ ; ............................................ 8-1
8-Digit LED Multiplexed Display Driver ............................................................ 8-1 0
Numeric Triplexed LCD Display Driver ............................................................ 8-20
Numeric Triplexed LCD Display Driver ............................................................ 8-20
Alphanumeric Triplexed LCD Display Driver ...................................................... 8-20
Alphanumeric Triplexed LCD Display Driver ...................................................... 8-20
4-Digit Vacuum Fluorescent Display Driver ...................................................... 8-40
8'-Character LED J..!P-Compatible Display Driver ................................................ 8-45
Dot Matrix LCD Controller/Row Driver ............................................................ 8-54
40-Column LCD Dot Matrix Display Driver ....................................................... 8-69
LCD Dot Matrix Controller/Row Driver ............................................................ 8-79

Section 9 -

Microcontrollers, Microperipherals, Memory

ICM7170 J..!P'-Compatible Real-Time Clock ..................................................................... 9-1
IM4702/4712 Baud Rate Generator ............................................................................. 9-9
IM6402 Universal Asynchronous Receiver Transmitter (UART) .......................................... 9-16
IM6403 Universal Asynchronous Receiver Transmitter (UART) .......................................... 9-16
IM6653 4096-Bit CMOS UV EPROM .......................................................................... 9-25
IM6654 4096-Bit CMOS UV EPROM .......................................................................... 9-25
IM80C35 B-Bit CMOS Microcontroller .......................................................................... 9-33
IM80C39 B-Bit CMOS Microcontroller .......................................................................... 9-33
IM80C48 B-Bit CMOS Microcontroller .......................................................................... 9-33
IM80C49 B-Bit CMOS Microcontroller .......................................................................... 9-33
IM82C43 CMOS I/O Expander ..........................•....................................................... 9-45

Section 10 - High Reliability/Military Products and Ordering
Information .................................................................................................... 10:"1

11

Alphanumeric Index
2N2607 P-Channel JFET General Purpose Amplifier ....................................................... 2-1
2N2608 P-Channel JFET General Purpose Amplifier .............................................• , ... ; .... 2-1
2N2609 P-Channel JFET General Purpose .Amplifier ....................................................... 2-1
2N2609JAN P-Channel JFET Gen.eral Purpose Amplifier ............................................ , ...".2-'1
2N3684 N-Channel JFET Low Noise Amplifier ............................................................... 2-2
2N3685 N-Channel JFET Low Noise Amplifier ............................................................... 2-2'
2N3686 N-Channel JFET Low Noise Amplifier ............................................................... 2-2
2N3687 N-Channel JFET Low Noise Amplifier ............................................................... 2-2
2N3810/A Dual Matched PNP General Purpose Amplifier ................................................. 2-3
2N3811 / A Dual Matched PNP General Purpose Amplifier ................................................. 2-3
2N3821 N-Channel JFET High Frequency Amplifier ............................................... ; ....../.2-5
2N3821JAN N-Channel JFET High Frequency Amplifier ................................................... 2-5
2N3821 JTX N-Channel JFET High Frequency Amplifier ...... : ............................................. 2-5
2N3821JTXV N-Channel JFET High Frequency Amplifier ........ ~ ......................................... 2-5
2N3822 N-Channel JFET High Frequency Amplifier .................... : ................................... 2-5
2N3822JAN N-Channel JFET High Frequency Amplifier ................................................... 2-5
2N3822JTX N-Channel JFET High Frequency Amplifier .................................................... 2-$
2N3822JTXV N-Channel JFET High Frequency Amplifier .................................................. 2-5
2N3823 N-Channel JFET High Frequency Amplifier ........................................................ 2-7
2N3823JAN N-Channel JFET High Frequency Amplifier ................................................... 2-7
2N3823JTX N-Channel JFET High Frequency Amplifier .................................................... 2..., 7
2N3823JTXV N-Channel JFET High Frequency Amplifier .................................................. 2-7
2N3824 N-Channel JFET Switch .................... ~ ............................................................ 2-8
2N3921 Dual N-Channel JFET General Purpose Amplifier ................................................ 2-9
2N3922 Dual N-Channel.JFET General Purpose Amplifier ..................................... , .......... 2-9
2N3954 Dual N-Channel JFET General Purpose Amplifier ............................................... 2 -11
2N3954A Dual N-Channel JFET General Purpose Amplifier ..... ; ....................................... 2-11
2N3955 Dual N-Channel JFET General Purpose Amplifier ............................................... 2-11
2N3955A Dual N-Channel.JFET General Purpose Amplifier ............................................. 2-11
2N3956 Dual N-Channel JFET General Purpose Amplifier ............................................... 2-11
2N3957 Dual N-Channel JFET General Purpose Amplifier ............................................... 2-11
2N3958 Dual N-Channel JFET General Purpose Amplifier ...................... , ....................;.... 2-11
2N3970 N-Channel JFET Switch ................................................................................. 2-13
2N3971 N-Channel JFET Switch ................................................................................ 2-13
2N3972 N-Channel JFET Switch ................................................................................ 2-13
2N3993 P-Channel JFET General Purpose Amplifier/Switch ............................................. 2-15
2N3994 P-Channel JFET General Purpose Amplifier/Switch ............................................. 2-15
2N4044 Dielectrically Isolated Dual NPN General Purpose Amplifier ................................... 2-17
2N4045 Dielectrically Isolated Dual NPN General, Purpose Amplifier ................................... 2-17
2N4091 JANTX N-Channel JFET Switch ..................................................................... 2-19
2N4091 N-Channel JFET Switch ................................................................................ 2-19
2N4092 JANTX N-Channel JFET Switch .......................... : .......................................... 2-19
2N4092 N-Channel JFET Switch ........................................................... '..................... 2-19
2N4093 JANTX N-Channel JFET Switch ..................................................................... 2-19
2N4093 N-Channel JFET Switch ................................................................................ 2-19
2N4100 Dielectrically Isolated Dual NPN General Purpose Amplifier ................................... 2-17
2N4117 N-Channel JFET General Purpose Amplifier ...................................................... 2-21
2N4117A N-Channel JFET General Purpose Amplifier .................................................... 2-21
2N4118 N-Channel JFET General Purpose Amplifier ...................................................... 2-21
2N4118A N-Channel JFET General Purpose Amplifier .................................................... 2-21
2N4119 N-Channel JFET General Purpose Amplifier ...................................................... 2-21
2N4119A N-Charinel JFET General Purpose Amplifier .................................................... 2-21
2N4220 N-Channel JFET General Purpose Amplifier/Switch ............................................ 2-22
2N4221 N-Channel JFET General Purpose Amplifier/Switch ............................................ 2-22

12

Alphanumeric Index

(Continued)

2N4222 N-Channel JFET General Purpose Amplifier/Switch ............................................ 2-22
2N4223 N-Channel JFET High Frequency Amplifier ....................................................... 2-23
2N4224 N-Channel JFET High Frequency Amplifier .................................................... : .. 2-23
2N4338 N-Channel JFET Low Noise Amplifier .............................................................. 2-24
2N4339 N-Channel JFET Low Noise Amplifier .............................................................. 2-24
2N4340 N-Channel JFET Low Noise Amplifier .............................................................. 2-24
2N4341 N-Channel JFET Low Noise Amplifier .............................................................. 2-24
2N4351 N-Channel Enhancement Mode MOSFET General Purpose Amplifier/Switch ............. 2-25
2N4391 N-Channel JFET Switch ................................................................................ 2-26
2N4392 N-Channel JFET Switch ................................................................................ 2-26
2N4393 N-Channel JFET Switch ................................................................. , .............. 2-26
2N4416/A N-Channel JFET High Frequency Amplifier .................................................... 2-28
2N4856 N-Channel JFET Switch ................................................................................ 2-30
2N4856JAN,JTX,JTXV N-Channel JFET Switch ............................................................. 2-30
2N4857 N-Channel JFET Switch ................................................................................ 2-30
2N4857 JAN,JTX,JTXV N-Channel JFET Switch ............................................................. 2-30
2N4858 N-Channel JFET Switch ................................................................................ 2-30
2N4858JAN,JTX,JTXV N-Channel JFET Switch ............................................................. 2-30
2N4859 N-Channel JFET Switch ................................................................................ 2-30
2N4860 N-Channel JFET Switch ................................................................................ 2-30
2N4861 N-Channel JFET Switch ................................................................................ 2-30
2N4867/ A N-Channel JFET Low Noise Amplifier ........................................................... 2-32
2N4868/ A N-Channel JFET Low Noise Amplifier ........................................................... 2-32
2N4869/ A N-Channel JFET Low Noise Amplifier ........................................................... 2-32
2N4878 Dielectrically Isolated Dual NPN General Purpose Amplifier ......................... ; ......... 2-17
2N4879 Dielectrically Isolated Dual NPN General Purpose Amplifier ................................... 2-17
2N4880 Dielectrically Isolated Dual NPN General Purpose Amplifier ................................... 2-17
2N5018 P-Channel JFET Switch ................................................................................ 2-34
2N5019 P-Channel JFET Switch ................................................................................ 2-34
2N5114 P-Channel JFET Switch ...................................................................... :·, ........ 2-36
2N5114JAN,JTX,JTXV P-Channel JFET Switch ........................ ; ..................................... 2-36
2N5115 P-Channel JFET Switch ................................................................................ 2-36
2N5115JAN,JTX,JTXV P-Channel JFET Switch .............................................................. 2-36
2N5116 P-Channel JFET Switch ................................................................................ 2-36
2N5116JAN,JTX,JTXV P-Channel JFET Switch .............................................................. 2-36
2N5117 Dielectrically Isolated Dual PNP General Purpose Amplifier ................................... 2-38
2N5118 Dielectrically Isolated Dual PNP General Purpose Amplifier ................................... 2-38
2N5119 Dielectrically Isolated Dual PNP General Purpose Amplifier ................................... 2-38
2N5196 Dual N-Channel JFET General Purpose Amplifier ............................................... 2-40
2N5197 Dual N-Channel JFET General Purpose Amplifier ............................................... 2-40
2N5198 Dual N-Channel JFET General Purpose Amplifier ............................................... 2-40
2N5199 Dual N-Channel JFET General Purpose Amplifier ........................................... : ... 2-40
2N5397 N-Channel JFET High Frequency Amplifier ....................................................... 2-42
2N5398 N-Channel JFET High Frequency Amplifier ....................................................... 2-42
2N5432 N-Channel JFET Switch ................................................................................ 2 -44
2N5433 N-Channel JFET Switch ................................................................................ 2 -44
2N5434 N-Channel JFET Switch ................................................................................ 2-44
2N5452 Dual N-Channel JFET General Purpose Amplifier ............................................... 2-46
2N5453 Dual N-Channel JFET General Purpose Amplifier .............. : ................................ 2-46
2N5454 Dual N-Channel JFET General Purpose Amplifier ............................................... 2-46
2N5457 N-Channel JFET General Purpose Amplifier/Switch ............................................ 2-48
2N5458 N-Channel JFET General Purpose Amplifier/Switch ............................................ 2-48
2N5459 N-Channel JFET General Purpose Amplifier/Switch ............................................ 2-48
2N5460 P-Channel JFET Low Noise Amplifier .............................................................. 2-49

13

Alphanumeric Index

(Continued) -

2N5461 P-Channel JFETLow Noise Amplifier ...................•. ; ................... :., .•...•............ 2 ...,49
2N5462 P-Channel JFET Low Noise Amplifier ....... ~.~, .," .•............................................... 2-:49
2N5463 P-Channel JFET Low Noise Amplifier ........................... : .................................. 2 ...049
2N5464 P-ChanneIJFET Low Noise Amplifier ............... : .............................................. 2;,..49
2N5465 P-Channel JFET Low Noise Amplifier ............... : ............ : ................................. 2-49
.2N5484 N-Channel JFET High Frequency Amplifier ..... : .............. '.........................,........... 2-50
2N5485 N,..channel JFET High Frequency Amplifier ..... ; ... ~ ........... ,.: ................. , ............. 2:..,50
2N5486 N-Channel JFET High Frequency Amplifier ... '..............•........................ : ............. 2-.50
2N5515 Dual N-Channel JFET Low Noise Amplifier ........................................-............... 2-,52
2N5516 Dual N-Channel JFET Low Noise Amplifier ....................................................... 2-52
2N5517 Dual N-Channel JFET Low Noise Amplifier ....................................................... 2-52
2N5518 Dual N-Channel JFET Low Noise Amplifier .... ~ ........................... : ... : .................. 2-52
2N5519 Dual N-Channel JFET Low Noise Amplifier ....................................................... 2-52
2N5520 Dual N-Channel JFET Low Noise Amplifier ........................................................ 2 .... 52
2N5521 Dual N-Channel JFET Low Noise Amplifier ........................................................ 2-52
2N5522 Dual N-Channel JFET Low Noise Amplifier ....................................................... 2-52
2N5523 Dual N-Channel JFET Low Noise Amplifier ........................................................ 2-52
2N5524 Dual N-Channel JFET Low Noise Amplifier ................................................... : ... 2-52
2N5638 N-Channel JFET Switch ................................................................................ 2-54
2N5639 N-Channel JFET Switch ....,............................................................................ 2..,.54
2N5640 N-Channel JFET Switch ............. : .....................................................••........... 2-54
2N5902 Dual N-Channel JFET General Purpose Amplifier .. , ....... : .................................... 2-56
. 2N5903 Dual N-Channel JFET G~neral Purpose Amplifier. .............................................. 2-56
2N5904 Dual N-Channel JFET General Purpose Amplifier ............................................... 2-56
2N5905 Dual N-Channel JFET General Purpose Amplifier .. , ............................................ 2-56
2N5906 Dual N-Channel JFET General Purpose Amplifier ......... , ..................................... 2-56
2N5907 Dual N-Channel JFET General Purpose Amplifier ............................................... 2-56
2N5908 Dual N-Channel JFET General Purpose Arnplifier .................. : ............................ 2-56
2N5909 Dual N-Channel JFET General Purpose Amplifier ............................................... 2-56
2N5911 Dual N-Channel JFET High Frequency Amplifier .................. : .............................. 2-58
2N5912 Dual. N-Channel JFET High Frequency Amplifier ........................... : ..................... 2-58
2N6483 Dual N-Channel JFET Low Noise Amplifier ....................................................... 2-60
2N6484 Dual N-Channel JFET Low Noise Amplifier ....................................................... 2-60
2N6485 Dual N-Channel JFET Low ,N9ise Amplifier ....................................................... 2-60
3N161 Diode Protected P-ChannelEnhancement Mode MOSFET General Purpose Amplifierl
.
Switch ..................................... ::.....•....•....•..,........................................................... 2-64
3N163 P-Channel Enhancement Mode MOSFET General Purpose AmplifierlSwitch .............. 2-65
3N164 P-Channel Enhancement Mode MOSFET General Purpose/Switch ........................... 2,..65
3N165 Dual P-Channel Enhancement Mode MOSFET General Purpose Amplifie~ ................. 2-.67
3N166 Dual P-Channel Enhancement Mode MOSFET General Purpose Amplifier ................. 2-67
3N170 N-Channel Enhancement Mode MOSFET Switch ................. : ......... , ..................... 2-69
3N171 N-Channel Enhancement Mode MOSFET Switch .................................................. 2-69
3N172 Diode Protected P-Channel Enhancement Mode MOSFET General Purpose Amplifierl
Switch ..................................• : ......................................................_.................... 2-71
3N173 Diode Protected P-Channel ~nhancement Mode MOSFET General Purpose Amplifierl
Switch .......................................................................... : ................................... 2-71
3N188 Dual P-Channel Enhancement Mode MOSFET General Purpose Amplifier .................. 2,.. 72
3N189 Dual P-Channel Enhancement Mode MOSFET General Purpose Amplifier ................. 2-72
3N190 Dual P-Channel Enhancement Mbde MOSFET General Purpose Amplifier ................. 2-72
3N1.91 Dual P-Channel Enhancemel1tMo.d.EI: MPSFET General Purpose Amplifier ................. 2-72
AD590 2-:Wire Current Output Temperature TransdUcer .................... : ............................... 5-1
AD7520 10/12-8it Multiplying D/A·Cqhyerter .....• : .......... : .............. ~ ................................ 6-1
AD7521 10/12-8it Multiplying D/A C6nverter: ................................................................ 6-1
AD7523 8-8it Multiplying 01 A Converter ............................................,........................... 6-7

14

Alphanumeric Index

(Continued)

AD7530 10/12-Bit Multiplying DI A Converter .. , .............................................................. 6-1
AD7531 10/12-Bit Multiplying DI A Converter .......................................................... : ...... 6-1
AD7533 10-Bit Multiplying DI A Converter .................................................................... 6-11
AD7541 12-Bit Multiplying DI A Converter .................................................................... 6-16
ADC0802 8-Bit /lP-Compatible AID Converter ............................................................... 6-22
ADC0803 8-Bit /lP-Compatible AID Converter ............................................................... 6-22
ADC0804 8-Bit /lP-Compatible AID Converter ............................................................... 6-22
D123 SPST 6-Channel JFET Switch Driver ................................................................... 3-1
D125 SPST 6-Channel JFET Switch Driver ................................................................... 3-1
D129 4-Channel Decoded JFET Switch Driver ............................................................... 3-6
DG118 SPST 4-Channel Driver With Switch .................................................................. 3-8
DG123 SPST 5-Channel Driver With Switch .................................................................. 3-8
DG125 SPST 5-Channel Driver With Switch .................................................................. 3-8
DG126 Dual DPST 80 Ohm JFET Analog Switch .......................................................... 3-12
DG129 Dual DPST 30 Ohm JFET Analog Switch .......................................................... 3-12
DG133 Dual SPST 30/35 Ohm JFET Analog Switch ...................................................... 3-12
DG134 Dual SPST 80 Ohm JFET Analog Switch .......................................................... 3-12
DG139 DPDT 30 Ohm Differentially Driven JFET Switch ................................................. 3-17
DG140 Dual DPST 10/15 Ohm JFET Analog Switch ...................................................... 3-12
DG141 Dual SPST 10 Ohm JFET Analog Switch ........................ ; ................................. 3-12
DG142 DPDT 80 Ohm Differentially Driven JFET Switch ................................................. 3-17
DG143 SPDT 80 Ohm Differentially Driven JFET Switch ................................................. 3-17
DG144 SPDT 30 Ohm Differentially Driven JFET Switch ................................................. 3-17
DG145 DPDT 10 Ohm Differentially Driven JFET Switch ................................................. 3-17
DG146 SPDT 10 Ohm Differentially Driven JFET Switch ................................................. 3-17
DG151 Dual SPST 15 Ohm JFET Analog Switch .......................................................... 3-12
DG152 Dual SPST 50 Ohm JFET Analog Switch .......................................................... 3-12
DG153 Dual DPST 15 Ohm JFET Analog Switch .......................................................... 3-12
DG154 Dual DPST 50 Ohm JFET Analog Switch .......................................................... 3-12
DG161 SPDT 15 Ohm Differentially Driven JFET Switch ................................................. 3-17
DG162 SPDT 50 Ohm Differentially Driven JFET Switch ................................................. 3-17
DG163 DPDT 15 Ohm Differentially Driven JFET Switch ................................................. 3-17
DG164 DPDT 50 Ohm Differentially Driven JFET Switch ................................................. 3-17
DG180 Dual SPST 10 Ohm High-Speed Driver With JFET Switch ..................................... 3-22
DG181 Dual SPST 30 Ohm High-Speed Driver With JFET Switch ..................................... 3-22
DG182 Dual SPST 75 Ohm High-Speed Driver With JFET Switch ..................................... 3....,22
DG183 Dual DPST 10 Ohm High-Speed Driver With JFET Switch ..................................... 3,...22
DG184 Dual DPST 30 Ohm High-Speed Driver With JFET Switch ..................................... 3-22
DG185 Dual DPST 75 Ohm High-Speed Driver With JFET Switch ..................................... 3-22
DG186 SPDT 10 Ohm High-Spee~ Driver With JFET Switch ............................................ 3-:22
DG187 SPDT 30 Ohm High-Speed Driver With JFET Switch ............................................ 3-22
DG188 SPDT 75 Ohm High-Speed Driver With JFET Switch ................................ ; ........... 3-22
DG189 Dual SPDT 10 Ohm High-Speed Driver With JFET Switch ....... ; ............................. 3-22
DG190 Dual SPDT 30 Ohm High-Speed Driver With JFET Switch ..................................... 3-22
DG191 Dual SPDT 75 Ohm High-Speed Driver With JFET Switch ..................................... 3-22
DG200 Dual SPST CMOS Analog Switch ..................................................................... 3-27
DG201 Quad SPST CMOS Analog Switch .................................................................... 3-32
DG211 SPST 4-Channel Analog Switch ....................................................................... 3-36
DG212 SPST 4-Channel Analog Switch ....................................................................... 3-36
DGM181 Dual SPST 50 Ohm High-Speed CMOS Analog Switch ...................................... 3-39
DGM182 Dual SPST 50175 Ohm High-Speed CMOS Analog Switch .................................. 3-39
DGM184 Dual DPST 50 Ohm High-Speed CMOS Analog Switch ...................................... 3-39
DGM185 Dual DPST 50175 Ohm High-Speed CMOS Analog Switch .................................. 3-39
DGM187 SPDT 50 Ohm High-Speed CMOS Analog Switch ............................................. 3-39

15

Alphanumeric Ind.x

(Continued)

OGM188 SPOT 50/75 Ohm High-Speed CMOS AnalogSwitch ........ i ....... , ..........•........... ; .. 3-"'39
DGM190 Dual SPOT 50 Ohm High-Speed .CMOS Analog Switch .......... ,; .......................... 3-'39
DGM191 Dual SPOT 50/75 Ohm High-Speed CMOS Analog Switch ......... ;." ...................... 3..;39
G115 6-Channel MOSFET Switch ........................................... ; ..... : ..:.•.... ; .................... :.3-45
G.116 5 Channel,MOSFET Switch .................................... :· ........... '...... ; ....................... 3-48
G118 6 Channel MOSFET Switch ............................................................................... 3-48
G119 6 Channel. MOSFET. Switch ........................... ; ...'............................., ................... 3-48
G123 4-Channel MOSFET. Switch ..................................................................... , ........ 3-45
lCH85001 A Ultra Low Input-Bias Operational Amplifier .... ; ............. : .............'..................... 4-1
ICH8510 Power Operational Amplifier ............................................................................ 4-7
ICH8515 Power Operational Amplifier ................................... ; ........................... , ......... , 4~ 16
ICH8520 Power Operational Amplifier ............................ ; .......................... , .. : .... , ...... , .... 4-'7
ICH8530 .Power Operational Amplifier ........................................................................... 4-7
ICL76XXSeries Low Power CMOS Operational Amplifiers .............................................. .4-34
ICL7104/1CL8052 12/14/16-Bit j.LP-Compatible 2-Chip AID Converter .... .'........................ 6-157
ICL7104/1CL8068 12/14/16-Bit /o1P-Compatible 2-Chip AID Converter ............................. 6-157
IGL7106 .3 }'2-Digit .LCD Single-Chip AID Converter ....................................................... 6-37
ICL7107 3 }'2-Digit LED Single-Chip AID Converter ....................................................... 6-37
ICL7109 12-Bit /o1P-Compatible AID Converter .............................................................. 6-48
ICL7115 14-Bit High..cSpeed CMOS /o1P-Compatible AID Converter .................................... 6-66
ICL71163 }'2-Digit with Display Hold Single-Chip AID Converter ........................................ 6-78
ICL7117. 3}'2-Digit with Display Hold Single-Chip AID Converter ...................................... 6-78
ICL7126 3 Y.2-Digit Low-Power Single-Chip AID Converter ............................................... 6-88
ICL7129 4 Y2 Digit LCD Single-Chip AID. Converter ....................................................... 6-98
ICL7134 14-Bit Multiplying /o1P-Compatible D/A Converter .............................................. 6-109
ICL7135 4 }'2-Digit BCD Output AID Converter ........................................................... 6-121
ICL7136 3 }'2-Digit LCD Low Power AID Converter .................... : ......................... '........ 6-132
ICL71373 }'2-Digit LED Low Power Singl9-'-Chip AID Converter ...................................... 6-142
ICL7605 Commutating Auto-Zero (CAZ) Instrumentation Amplifier ................. : .. : ................ .4-23
ICL7606 CommutatingAuto-Zero (CAD) Instrumenta:tion Amplifier .': .... ; .............................. .4-23
ICL7650 Chopper..cStabilized Operational Amplifier ............. ; ........................................... .4-50
ICL7652 Chopper..cStabilized Low-Noise Opera:tiona:IAmplifier .......................................... .4-57
ICL7660 CMOS Voltage Converter ................•..... ; ....................................................... 5-12
ICL7662 CMOS Voltage Converter ....•......................................................................... 5-20
ICL7663 CMOS Programmable Micropower Positive Voltage Regulator ..................... , ........... 5-27
ICL7664 CMOS Programmable MicrOpower Negative Voltage Regulator ......... : ..... ; .............. 5-27
ICL7665 Micropower Under/Over Voltage Detector .......................................................... 5-39
ICL7667 Dual Power MOSFET .Driver ............................................................................5-47
ICL7673 Automatic Battery Back-up Switch .................................................................... 5-55
ICL8007 JFET Input Operational Amplifier! .................... ; .... :.\ ........................... , ............ 4-65
ICL8013 Four Quadrant Analog Multiplier ..................................................................... 5-63
ICL8018A 4-Bit Expandable Current Switch ........ : .......................................... , ............ 6-151
ICL8019A 4-Bit Expandable Current Switch ................................................................ 6-151
ICL8020A 4-Bit Expandable Current Switch ...... '.; ........ : ........................... ; .... ; .............. 6-151
ICL8021 Low Power Bipolar Operational Amplifier ... , .................. " .................................. 4-69
ICL8022 Dual Low Power Bipolar Operational Amplifier ................................................... .4-69
ICL8023 Triple Low Power Bipolar Operational Amplifier ................ , ........... , .................... .4-69
ICL8038 Precision Waveform GeneratorlVoltage Controlled Osc;iIIat9r ........................•........ 5-72
ICL8043 Dual JFET Input Operational Amplifier ................................ ; ............................. 4-74
ICL8048 Logarithmic Amplifier ............................... ~ ....................... ; ............................ .4:-82
ICL8049 Antilog Amplifier ........................................................................................ .4-82
ICL8063 Power Transistor Driver I Amplifier ............ ",'" ................ ~ .... ,; .... "...................... .4-90
ICL8069 Low Voltage Reference ............•• ; ...... ;......•.................... :; .. ; ............................. 5-81
.ICL8211 Programmable Voltage Detector ..................................................................... 5-,83

16

Alphanumeric Index

(Continued)

ICL8212 Programmable Voltage Detector ..................................................................... 5-83
ICM7170 I.LP-Compatible Real-Time Clock ..................................................................... 9-1
ICM7206 CMOS Touch-Tone Encoder .......................................................................... 7-1
ICM7207 / A CMOS Timebase Generator ....................................................................... 7 -10
ICM7208 7-Digit LED Display Counter ......................................................................... 7 -15
ICM7209 Timebase Generator ................................................................................... 7 -22
ICM7211 4-Digit LCD/LED Display Driver ..................................................................... 8-1
ICM7212 4-Digit LCD/LED Display Driver ..................................................................... 8-1
ICM7213 One Second/One Minute Timebase Generator ................................................. 7 -25
ICM7215 6-Digit LED Display 4-Function Stopwatch ...................................................... 7 -30
ICM7216A 8-Digit Multi-Function Frequency Counter/Timer .............................................. 7-36
ICM7216B 8-Digit Multi-Function Frequency Counter/Timer •............................................. 7 -36
ICM7216C 8-Digit Multi-Function Frequency Counter/Timer .............................................. 7 -36
ICM7216D 8-Digit Multi-Function Frequency Counter/Timer ............................................. 7-36
ICM7217 4-Digit LED Display Programmable Up/Down Counter ........................................ 7 -52
ICM7218 8-Digit LED Multiplexed Display Driver ............................................................ 8-1 0
ICM7224 4 1'2-Digit LCD/LED Display Counter .............................................................. 7 -67
ICM7225 4 1'2-Digit LCD/LED Display Counter .~ ............................................................. 7 -67
ICM7226A1B 8-Digit Multi-Function Frequency Counter/Timer .......................................... 7 -75
ICM7227 4-Digit LED Display Programmable Up/Down Counter ........................................ 7 -52
ICM7231 Numeric Triplexeq LCD Display Driver ............................................................ 8-20
ICM7232 Numeric Triplexed LCD Display Driver ............................................................ 8-20
ICM7233 Alphanumeric Triplexed LCD Display Driver ...................................................... 8-20
ICM7234 Alphanumeric Triplexed LCD Display Driver .........•.............................. ; ............• 8-20
ICM7235 4-Digit Vacuum Fluorescent Display Driver ...................................................... 8-40
ICM7236 4 1'2-DigitCounterlVacuum Fluorescent Display Driver. ....................................... 7-88
ICM7240 Programmable Timer ................................................................................... 7 -93
ICM7241 Timebase Generator ................................................................................. 7 -103
ICM7242 Long-Range Fixed Timer ........................................................................... 7 -105
ICM7243 8-Character LED I.LP-Compatible Display Driver ................................................ 8-45
ICM7245 Stepper Motor Quartz Clock ... ; ................................................ ~ ........... , ...... 7 -111
ICM7249 5-1'2 Digit LCD I.L-Power Event/Hour Meter .................................................... 7-115
ICM7250 Programmable Timer ................................................................................... 7 -93
ICM7260 Programmable Timer ................................................................................... 7-93
ICM7280 Dot Matrix LCD Controller/Row Driver ............................................................ 8-54
ICM7281 40-Column LCD Dot Matrix Display Driver ....................................................... 8-69
ICM7283 LCD Dot Matrix Controller/Row Driver ............................................................ 8-79
ICM7555 General Purpose Timer ..............................•............................................... 7 -123
ICM7556 Dual General Purpose Timer ....................................................................... 7 -123
10100 Dual Low Leakage Diode ................................................................................ 2-74
10101 Dual Low Leakage Diode ................................................................................ 2-74
IH311 High Speed SPST 4-Channel Analog Switch ....................................................... 3-52
IH312 High Speed SPST 4-Channel Analog Switch ....................................................... 3-52
IH401 QUAD Varafet Analog Switch ........................................................................... 3-59
IH401A QUAD Varafet Analog Switch ......................................................................... 3-59
IH5009 Quad 100 Ohm Virtual Ground Analog Switch .................................................... 3-65
IH5010 Quad 150 Ohm Virtual Ground Analog Switch .................................................... 3-65
IH5011 Quad 100 Ohm Virtual Ground Analog Switch .................................................... 3-65
IH5012 Quad 150 Ohm Virtual Ground Analog Switch .................................................... 3-65
IH5013 Triple 100 Ohm Virtual Ground Analog Switch .................................................... 3-65
IH5014 Triple 150 Ohm Virtual Ground Analog Switch .................................................... 3-65
IH5015 Triple 100 Ohm Virtual Groung Analog Switch ........... ; ........................................ 3-65
IH5016 Triple 150 Ohm Virtual Ground Analog Switch .................................................... 3-65
IH5017 Dual 100 Ohm Virtual Ground Analog Switch ..................................................... 3-65

17

Alphanumeric Index
IH5018
IH5019
IH5020
IH5021
IH5022
IH5023
IH5024
IH5025
IH5026
IH5027
IH5028
IH5029
IH5030
IH5031
IH5032
IH5033
IH5034
IH5035
IH5036
IH5037
IH5038
IH5040
IH5041
IH5042
IH5043
IH5044
IH5045
IH5046
IH5047
IH5048
IH5049
IH5050
IH5051
IH5052
IH5053
IH5108
IH5110
.IH5111
IH5112
IH5113
IH5114
IH5115
IH5116
IH5140
IH5141
IH5142
IH5143
IH5144
IH5145
IH5148
IH5149
IH5150
IH5151
IH5200

(Continued)

Dual 150 Ohm Virtual Ground Analog Switch ....... : .................. ; .................. ; ...... ,30-65
f"'ual 100 Ohm Virtual Ground Analog Switch ..................................................... 3-65
Dual 150 Ohm Virtual Ground Analog Switch ................ : ......................•............. 3-65
Single 100 Ohm Virtual Ground Analog Switch , ............. ; .................................... 3-65
Single 150 Ohm Virtual Ground Analog Switch ................. ; ................................. 3-65
Single 100 Ohm Virtual Ground Analog Switch .................................. ; .... , .......... ;.3-65
Single 150 Ohm Virtual Ground Analog Switch ................................................... 3-65
Quad 100 Ohm Positive Signal Analog Switch .........................................,............ 3-71
Quad 150 Ohm Positive Signal Analog Switch ..................................................... 3-71
Quad 100 Ohm Positive Signal Analog Switch .................................................... 3-71
Quad 150 Ohm Positive Signal Analog Switch ..................................................... 3-71
Triple 100 Ohm Positive Signal Analog Switch ............ ; ....................................... 3-71
Triple 150 Ohm Positive Signal Analog Switch .................................................... 3-71
Triple 100 Ohm Positive Signal Analog .Switch .................................................... 3-71
Triple 150 Ohm Positive Signal Analog Switch .................................................... 3- 71
Dual 100 Ohm Positive Signal Analog Switch ........... : ......................................... 3-71
Dual 150 Ohm Positive Signal Analog Switch ..................................................... 3-71
Dual 100 Ohm Positive Signal Analog Switch ..................................................... 3-71
Dual 150 Ohm Positive Signal Analog Switch ..................................................... 3-71
Single 100 Ohm Positive Signal Analog Switch ................................................... 3-71
Single 150 Ohm Positive Signal Analog Switch ................................................... 3-71
SPST 75 Ohm High-Level CMOS Analog Switch ................................................. 3-79
Dual SPST 75 Ohm High-Level CMOS Analog Switch .......................................... 3-79
SPOT 75 Ohm High-Level CMOS Analog Switch ................................................. 3-79
Dual SPOT 75 Ohm High-Level CMOS Analog Switch .......................................... 3-79
DPST 75 Ohm High-Level CMOS Analog Switch ................................................. 3-79
Dual DPST 75 Ohm High-Level CMOS Analog Switch .......................................... 3-79
DPDT 75 Ohm High-Level CMOS Analog Switch ............................................ , .... 3-79
4PST 75 Ohm High-Level CMOS Analog Switch ...............•................................. 3-79
Dual SPST 35 Ohm High-Level CMOS Analog SWitch .......................................... 3-88
Dual DPST 35 Ohm High-Level CMOS Analog Switch .......................................... 3-88
SPOT 35 Ohm High-Level CMOS Analog Switch ................................................. 3-88
Dual SPOT 35 Ohm High-Level CMOS Analog Switch .......................................... 3-88
QUAD CMOS Analog Switch ........................................................................... 3 .... 93
QUAD CMOS Analog Switch ........................................................................... 3-93
8-Channel Fault Protected Analog Multiplexer ..................................................... 3-99
General Purpose Sample & Hold ..................................................................... 5-94
General Purpose Sample & Hold ..................................................................... 5-94
General Purpose Sample & Hold ..................................................................... 5-94
General Purpose Sample & Hold .................................. ; .................................. 5-94
General Purpose Sample & Hold ..................................................................... 5-94
General Purpose Sample & Hold ..................................................................... 5-94
16-Channel Fault Protected Analog Multiplexer ........... "..................................... 3-107
SPST High-Level CMOS Analog Switch ........................................................... 3-110
Dual SPST High-Level CMOS Analog Switch .................................................... 3-110
SPOT High-Level CMOS Analog Switch ........................................................... 3'-110
Dual SPOT High-Level CMOS Analog Switch .................................................... 3-110
DPST High-Level CMOS Analog Switch ........................................................... 3-110
Dual ,DPST High-Level CMOS Analog Switch .................................................... 3-110
Dual SPST High-Level CMOS Analog Switch .................................................... 3-119
Dual DPST High-Level CMOS Analog Switch .................................................... 3-119
SPOT High-Level CMOS Analog Switch ... ; ............ : .......................................... 3-119
Dual SPOT High-Level CMOS Analog Switch .................................................... 3-119
Dual SPST CMOS Analog Switch ................. ,' .................................................. 3-27

18

Alphanumeric Index

(Continued)

IH5201 Quad SPST CMOS Analog Switch ................................................................... 3-32
IH5208 4-Channel Differential Fault Protected Analog Multiplexer .................................... 3-127
IH5216 8-Channel Differential Fault Protected Analog Multiplexer .................................... 3-135
IH5341 Dual SPST CMOS RFlVideo Switch ............................................................... 3-138
IH5352 QUAD SPST CMOS RFlVideo Switch ............................................................. 3-144
IH6108 8-Channel CMOS Analog Multiplexer .............................................................. 3-149
IH6116 16-Channel CMOS Analog Multiplexer ............................................................ 3-155
IH6201 Dual CMOS DriverlVoltage Translator ............................................................. 3-162
IH6208 4-Channel Differential CMOS Analog Multiplexer ............................................... 3-166
IH6216 8-Channel Differential CMOS Analog Multiplexer ............................................... 3-172
IM80C35 8-8it CMOS Microcontroller .......................................................................... 9-33
IM80C39 8-8it CMOS Microcontroller .......................................................................... 9-33
IM80C48 8-8it CMOS Microcontroller .......................................................................... 9-33
IM80C49 8-8it CMOS Microcontroller .......................................................................... 9-33
IM82C43 CMOS I/O Expander .................................................................................. 9-45
IM4702/4712 8aud Rate Generator ............................................................................. 9-9
IM6402 Universal Asynchronous Receiver Transmitter (UART) .......................................... 9-16
IM6403 Universal Asynchronous Receiver Transmitter (UART) .......................................... 9-16
IM6653 4096-8it CMOS UV EPROM .......................................................................... 9-25
IM6654 4096-8it CMOS UV EPROM .......................................................................... 9-25
IMF6485 Dual N-Channel JFET Low Noise Amplifier ...................................................... 2-62
IT100 P-Channel JFET Switch ................................................................................... 2-76
In01 P-Channel JFET Switch ................................................................................... 2-76
IT120 Dual NPN General Purpose Amplifier .................................................................. 2-77
IT120A Dual NPN General Purpose Amplifier ................................................................ 2 - 77
IT121 Dual NPN General Purpose Amplifier .................................................................. 2-77
IT122 Dual NPN General Purpose Amplifier .................................................................. 2-77
IT124 Dual Super.,..8eta NPN General Purpose Amplifier .................................................. 2-79
IT126 Dual NPN General Purpose Amplifier .................................................................. 2-81
IT127 Dual NPN General Purpose Amplifier .................................................................. 2-81
IT128 Dual NPN General Purpose Amplifier. ................................................................. 2-81
IT129 Dual NPN General Purpose Amplifier .................................................................. 2..,81
IT130 Dual PNP General Purpose Amplifier ......., .......................................................... 2-83
IT130A Dual PNP General Purpose Amplifier ................................................................ 2-83
.IT131 Dual PNP General Purpose Amplifier .................................................................. 2-83
IT132 Dual PNP General Purpose Amplifier ... ; .............................................................. 2-83
IT136 Dual PNP General Purpose Amplifier .................................................................. 2-85
IT137 Dual PNP General Purpose Amplifier .................................................................. 2-85
IT138 Dual PNP General Purpose Amplifier ............................................................ , ..... 2-85
IT139 Dual PNP General Purpose Amplifier .................................................................. 2-85
IT500 Dual Cascoded N-Channel JFET General Purpose Amplifier .................................... 2-87
IT501 Dual Cascoded N-Channel JFET General Purpose Amplifier .................................... 2-87
IT502 Dual Cascoded N-Channel JFET ~eneral Purpose Amplifier .................................... 2-87
IT503 Dual Cascoded N-Channel JFET General Purpose Amplifier .................................... 2-87
IT504 Dual Cascoded N-Channel JFET General Purpose Amplifier ....... : ............................ 2-87
IT505 Dual Cascoded N-Channel JFET General Purpose Amplifier .................................... 2-87
IT550 Dual N-Channel JFET Switch ........................................................................... 2-90
IT1700 P-Channel Enhancement Mode MOSFET General Purpose Amplifier ........................ 2-92
IT1750 N-Channel Enhancement Mode MOSFET General Purpose Amplifier/Switch .............. 2-93
IT5911 Dual N-Channel JFET High Frequency Amplifier .................................................. 2-58
IT5912 Dual N-Channel JFET High Frequency Amplifier .................................................. 2-58
ITE4091 N-Channel JFET Switch ............................................................................... 2..,.19
ITE4092 N-Channel JFET Switch ............................................................................... 2-19
ITE4093 N-Channel JFET Switch ............................................................................... 2-19

19

Alphanumeric Index

(Continued)

ITE4391 N-Channel JFET Switch .................................... ; ... :; ..... : ................ : ............. 2....:26
ITE4392 N-Channel JFET Switch ............. : .. ;;' ............. : . .'. .' .......•.... , ..... : ....................... 2-26
ITE4393 N-Channel JFET Switch .............................................................................. 2-26
ITE4416 N-Channel JFET High Frequency Amplifier ............................ ~, ......................... 2-28
J105 N-Channel JFET Switch .................................... : ................... : ......... ,................. 2-94
J106 N-Channel JFET Switch ................................................................................... 2-94
J107 N-Channel JFET Switch ............................................................ : ...................... 2-94
J 111 'N-Channel JFET Switch ................................................................................... 2 - 95
J112 N-Channel JFET Switch ................................................................... : ............... 2-95
J113 N-Channel JFET Switch .................................................................................. :2-95
J174 P-Channel JFET Switch ................................................................................ ; ... 2-97
J175 P-Channel JFET Switch ................................................................................... :2-97
J176 P-Channel JFET Switch .........................................................·............................ 2-97
J177 P-Channel JFET Switch .................................................................................... 2-97
J201 N-Channel JFET General Purpose Amplifier ...................................... , ................... 2-99
J202 N-Channel JFET General Purpose Amplifier .......................................................... 2-99
J203 N-Channel JFET General Purpose Amplifier ........................................................... 2-99
J204 N-Channel JFET General Purpose Amplifier .......................................................... 2-99
J308 N-Channel JFET High Frequency Amplifier ......................................................... 2-100
J309 N-Channel JFET High Frequency Amplifier ....................................... ; ................. 2-100
J310 N-Channel JFET High Frequency Amplifier ........ ! ................................................ 2-100
LH2108 Dual Super-Beta Operational Amplifier ................................. ; ........................... 4-99
LH2308 Dual Super-Beta Operational Amplifier ............................................................. 4-99
LM1 081 A Super-Beta Operational Amplifier ................................................................ 4-102
LM114/H Dual NPN General Purpose Amplifier ........................................................... 2-102
LM 114A1 AH Dual NPN General Purpose Amplifier ............... ; ................ : ...................... 2 -102
LM308/A Super-Beta Operational Amplifier ................................................................ 4-102
M116 Diode Protected N-Channel Enhancement Mode MOSFET General Purpose Amplifier. 2-104
MM450 Dual Differential High Voltage Analog Switch ................................................... 3-178
MM451 Four Channel High Voltage Multiplexer ........................................................... 3-178
MM452 Quad SPST High Voltage Analog Switch ......................................................... 3-178
MM455 Three SPST High Voltage Analog Switch ....................... ~ ................................. 3-178
MM550 Dual Differential High Voltage Analog Switch ................................................... 3-178
MM551 Four Channel High Voltage Multiplexer ...................... ; ........... : ........................ 3-178
MM552 Quad SPST High Voltage Analog Switch ......................................................... 3 -178
MM555 Three SPST High Voltage Analog Switch ........................................................ 3-178
NE/SE592 Video Amplifier ................................................................................. , .... 4-106
U200 N-Channel JFET Switch ..................................................................... : ........... 2-105
U201 N-Channel JFET Switch ..........................................'....................................... 2-105
U202 N-Channel JFET Switch ................................................................................. 2-105
U23.1 Dual N-Channel JFET General Purpose Amplifier ................................................ 2-106
U232 Dual N-Channel JFET General Purpose Amplifier ................................................ 2-106
U233 Dual N-Channel JFET General Purpose Amplifier ................................................ 2-106
U234 Dual N-Channel JFET General Purpose Amplifier ................................................ 2-106
U235 Dual N-Channel JFET General Purpose Amplifier ........... : .................................... 2-106
U257 Dual N-Channel JFET High Frequency Amplifier .................................................. 2-108
U304 P-Channel JFET Switch ................................................................................. 2-109
U305 P-Channel JFET Switch .......................................................... ; ....... ~ .............. 2-109
U306 P-Channel JFET Switch ............................................................................ : .... 2-109
U308 N-Channel JFET High Frequency Amplifier ......................................................... 2-111
U309 N-Channel JFET High Frequency Amplifier ......................................................... 2-111
U310 N-Channel JFET High Frequency Amplifier ......................................................... 2-111
U401 Dual N-Channel JFET Switch .......................................................................... 2-113
U402 Dual N-Channel JFET Switch ........................................................................... 2-113

20

Alphanumeric Index

(Continued)

U4o.3 Dual N-Channel JFET Switch .......................................................................... 2-113
U404 Dual N-Channel JFET Switch .......................................................... ; ................ 2-113
U4o.5 Dual N-Channel JFET Switch .......................................................................... 2-113
U4o.6 Dual N-Channel JFET Switch ...................................... ; ................................... 2-113
U1897 N-Channel JFET Switch ............................................................................... 2-115
. U1898 N-Channel JFET Switch ........................................................................ ~ ...... 2-115
U1899 N-Channel JFET Switch ............................................................................... 2-115
VCR2N Voltage Controlled Resistors ......................................................................... 2-117
VCR3P Voltage Controlled Resistors ......................................................................... 2-117
VCR4N Voltage Controlled Resistors ......................................................................... 2-117
VCR7N Voltage Controlled Resistors ......................................................................... 2-117
VCR 11 N Voltage Controlled Resistors ....................................................................... 2 -120.

21

IIO~OIl.

,408-996-5000
TWl<;" 91'0-338-2014

10600'Ridgeview Court, Cupertino, CA 95014

ALPHANUMERIC CROSS REFERENCE
ALTERNATE
SOURCE PRODUCT

INTERSIL
EQUIVALENT

-ALTERNATE
SOURCE PRODUCT

INTERSIL
EQUIVALENT

ALTERNATE
SOURCE PRODUCT

INTERSIL
EQUIVALENT

103M

2N5458
2N3684
2N5686
2N5457
2N5457

2N2606
2N2607
2N2608
2N2609
2N2609JAN

2N2607
2N2607
2N2608
2N2609
2N2609JAN

2N3331
2N3332
2N3333
2N3334
2N3335

2N5270
2N5268
1T132
1T132
ITr32

1035
104M
105M
105U
106M

2N5459
2N5458
2N5459
2N434O
2N5485

2N2639

1T120
ITI22

1Tl22
1T120
1Tl22

2N3336
2N3347
2N3348
2N3349
2N3350

1T132

2N2640

2N2641
2N2642
2N2643

107M

2N5485
2N3685
2N3686
'2N4339
2N3822

2N2644
2N2652
2N2652A
2N2720
2N2721

IT122
1Tl20
1T120
1Tl20
ITI22

2N3351
2N3352
2N3365
2N3366
2N3367

1T138
1Tl39
2N434O
2N4338
2N4338

2N3821
2N3822
2N4341

2N2722
2N2802
2N2803
2N2804
2N2805

1Tl20
\ln39
'Tl39
1Tl39
1T139

2N3368
2N3369
2N3370
2N3376
2N3378

1284A
1285A
1286A
130U

2N4340
2N4222
2N3821
2N4220
2N3687

2N2806
2N2807
2N2841
2N2842
2N2843

1T139
1Tl39
2N2607
2N2607
2N2607

1325A
135U
14T
155u
1714A

2N4222
2N4339
2N4224
2N4416
2N434O

2N2844
2N2903
2N2903A
2N2910
2N2913

1825
1835
1975
1985
1995

2N4391
2N3823
2N4338
2N434O
2N4341

2N2914
2N2915

2oo0M
2001M
2005
200U
2015

2N3823
2N3823
2N4392
2N3824
2N4391

2025
2035
2045
2078A
2079A

1005
100U
102M
1025

IIDU
120U
125U
1277A
1278A
1279A
1280A
1281A
1282A
1283A

SD:~:,=~;~'i,CT

INTERSIL
EQU,IVALENT,

2N3814
2N381,5
2N3816
2N3816A
2N3817

ITI32
1T132
1T130'
ITI30A
1T130

2N3817A
2N3819
' 2N3820
2N3821
2N3822

lT1aOA
2N5484
2N2608
2N3821
2N3822

2N3823
2N3824
2N3907
2N3908
2N3909

2N3823
2N3824
1T120
1T120
2N2609

2N4341
2N4339
2N4338
2N2608
2N2608

2N3909A
2N3921
2N3922
2N3949
2N3950

2N2609
2N3921
2N3922
1T132
1Tl32

2N3380
2N3382
2N3384
2N3386
2N3409

2N2609
2N3994
2N3993
2N5114
1Tl22

2N3954
2N3954A
2N3955
2N3955A
2N3956

2N395'
2N3954A
2N3955
2N3955A
2N3956

2N2607
ITI22
1Tl20
1T122
1Tl22

2N3410
2N3423
2N3424
2N3425

1Tl22
1Tl22
1Tl22
1T122
1T122

2N3957
2N3966
2N3967
2N3967A
2N3968

2N3957
2N4416
2N4221
2N4221
2N3685

1Tl20
1Tl20
1Tl20
1Tl20
ITI20

2N3436
2N3437
2N3438
2N3452
2N3453

2N4341
2N434O
2N4338
2N4220
2N4338

2N3968A
2N3969
2N3969A
2N3970
2N3971

2N3685
2N3686
2N3686
2N3970
2N3971

2N2917
2N2918
2N2919
2N2919A
2N2920

1Tl22
1Tl20
1T120
2N2920

2N3454
2N3455
2N3456
2N3457
2N3458

2N4338
2N4340
2N4338
2N4338
2N4341

2N3972
2N3993
2N3993A
2N3994
2N3994A

2N3972
2N3993
2N3993
2N3994
2N3994

2N4392
2N3821
2N3821
2N3955
2N3955

2N2920A
2N2936
2N2937
2N2972
2N2973

2N2920
1Tl20
1T120
1T122
1T122

2N3459
2N3460
2N3513
2N3514
2N3515

2N4339
2N4338
ITl22
1T122
1T122

2N4009
2N4010
2N4011
2N4015
2N4016

ITI32
1T132
1T132
1T139
1T137

2N3821
2N4224

2N2915A

2N2916
2N2916A

2N3411

ITI22

ITl37

1T138
1T139
1T137

I

2080A
2081A

2N3955A

2093M
2094M
2095M

2N3687
2N3686
2N3686

2N2974
2N2975
2N2976
2N2977
2N2978

1T120
1T120
ITl20
1T120
1T120

2N3516
2N3517
2N3521
2N3522
2N3574

ITi22
1T122
1T122
1T122
2N2607

2N4017
2N4018
2N4019
2N4020
2N4021

1T139
1T139
1T139
ITl39

2098A
2099A
210U
2130U
Z132U

2N3954
2N3955A
2N4416
2N5452
2N3955

2N2979
2N2980
2N2981
2N2982
2N3043

1T120
1T121
1T122
1T122
1T121

2N3575
2N3578
2N3587
2N3608
2N3680

2N2607
2N2608
1T122
3N172
1Tl20

2N4022
2N4023
2N4024
2N4025
2N4026

ITl39
1T137
ITl37 '
ITI37
3N163

2134U

2N3956

2N3955A

11139

2136U

2N3957

2138U
2139U
2147U

2N3958
2N3958
2N3958

2N3044
2N3045
2N3046
2N3047
2N3048

ITI22
1T122
1T121
1T122
1T122

2N3684
2N3684A
2N3685
2N3685A
2N3686

2N3684
2N3684
2N3685
2N3685
2N3686

2N4038
2N4039
2N4065
2N4066
2N4067

2N4351
2N4351
3N163
3N166
3N166

2148U
2149U
2315
2325
2335

2N3958
2N3958
2N3954
2N3955
2N3956

2N3049
2N3050
2N3051
2N3052
2N3059

1T139
1Tl39
1Tl39
1T129
1Tl39

2N3686A
2N3687
2N3687A
2N3726
2N3727

2N3686
2N3687
2N3687
1T131
1T130

2N4082
2N4083
2N4084
2N4085
2N4091

2N3954
2N3955
2N3954
2N3955
2N4091

2345
2355

2N3957
2N3958
2N4869
2N4091
2N4392

2N3066
2N3067
2N3068
2N3069
2N3070

2N4340
2N4338
2N4338
2N4341
2N4339

2N3728
2N3729
2N3800
2N3801
2N3802

ITI22
1T121
1T132
1T132
1T132

2N4091A

2N409IJAN,
2N409IJANTX
2N409IJANTXV
2N4092

2N4091
2N409IJAN
2N409IJANTX
2N409lJANTXV
2N4092

2N2060
2N2060A
2N20608
2N2223
2N2223A

1T120
1T121
ITl22
ITl21

2N3071
2N3084
2N3085
2N3086
2N3087

2N4338
2N4339
2N4339
2N4339
2N4339

2N3803
2N3804
2N3804A
2N3805
2N3805A

1Tl32
1T13O
1T130A
ITl30
1T130A

2N4092A
2N4092JAN
2N4092JANTX
2N4092JANTXV
2N4093

2N4092
2N4092JAN
2N4092JANTX
2N4092JANTXV
2N4093

2N2386
2N2386A
2N2453
2N2453A
2N2480

2N2608
2N2608
1Tl22
1Tl21
1T122

2N3088
2N3088A
2N3089
2N3089A
2N3113

2N4339
2N4339
2N4339
2N4339
2N2607

2N3806
2N3807
2N3808
2N3809
2N3810

ITI22

2N4093A

1T122
1T122
1Tl22
2N3810

2N4093JAN
2N4093JANTX
2N4093JANTXV
2N41oo

2N4093
2N4093JAN
2N4093JANTX
2N4093JANTXV
2N4100

2N2480A
2N2497
2N2498
2N2499
2N2500

ITl21
2N2608
2N2608
2N2609
2N2608

2N3277
2N3278
2N3328
2N3,329
2N3330

2N2606
2N2607
2N5265
2N5267
2N5268

2N3812
2N3813

2N381OA
2N3811
2N3811A
1T132
1T132

2N4117
2N4117A
2N4118
2N4118A
2N4119

2N4117
2N4117A
2N4118
2N4118A
2N4119

241U

250U
251U

1T12l

"CONSULT FACTORY

2N3810A

~~~mA

22

ALTERNATE
SOURCE PRODUCT

INTERSIL
EQUIVALENT

ALTERNATE
SOURCE PRO~UCT

ALTERNATE
SOURCE PRODUCT

INTERSIL
EQUIVALENT

INTERSIL
EQUIVALENT

ALTERNATE
SOURCE PRODUCT

INTERSIL
EQUIVALENT

2N4119A
2N4120
2N4139
2N4Z20
2N4220A

2N4119A
3N163
2N3822
2N4220
2N4220

2N5045
2N5046
2N5047
2N5078
2N5090

2N5453
2N54S4
2N5454
2N5397
1T122

2N5484
2N5485
2N5486
2N5515
2N5516

2N5484
2N548S
2N5486
2N5515
2N5516

2N6484
2N6485
2N6502
2N6503
2N6550

2N6484
2N648S
ITl22
ITl22
2N4868A

2N4221
2N4221A
2N4222
2N4222A
2N4223

2N4221
2N4221
2N4222
2N4222
2N4223

2N5103
2N5104
2N5105
2N5114
2N5114JAN

2N4416
2N4416
2N4416
2NSl14
2NSl14JAN

2N5517
2N5518
2NS519
2N5520
2N5521

2N5517
2N5518
2N5519
2N5520
2N5521

2N6568
25C294
25Jll
25J12
25J13

2N5432
1T122
2N2607
2N2607
2N5270

2N4224
2N4267
2N4268
2N4302
2N4303

2N4224
3N163
3N161
2N4302
2N5459

2N5114JANTX
2N5114JANTXV
2N5115
2N5115JAN
2N5115JANTX

2N5114JANTX
2N5114JANTXV
2N5115
2N5115JAN
2N5115JANTX

2N5522
2N5523
2N5524
2N5545
2N5546

2N5522
2N5523
2N5524
2N3954
2N3955A

25J15
25J16
25J47
25J48
25J49

2N2607
~~2607

2N4304
2N4338
2N4339
2N4340
2N4341

2N5458
2N4338
2N4339
2N4340
2N4341

2N5115JANTXV
2N5116
2N5116JAN
2N5116JANTX
2N5116JANTXV

2N5115JANTXV
2N5116
2N5116JAN
2N5116JANTX
2N5116JANTXV

2N5547
2N5549
2N5555
2N5556
2N5557

2N3955
2N4093
J310
2N3685
2N3684

25J50
25J78
25J79
25J80
25Kll

2N4342
2N4343
2N4351
2N4352
2N4353

2N5461
2N5462
2N4351
3N163
3Nl72

2NSl17
2NSllB
2N5119
2N5120
2N5121

2NS117
2N5118
2N5119
1Tl31
1T132

2N5558
2N5561
2N5562
2N5563
2N5564

2N3684
U401
U402
U404
IT550

25K12
2SK13
25K132
25K133
25K134

2N4360
2N4381
2N4382
2N4391
2N4392

2N5460
2N2609
2N5115
2N4391
2N4392

2N5!22
2NS123
2N5124
2N5125
2N5158

1Tl32
1T131
1Tl32
1Tl32
2N5434

2N5565
2N5566
2N5592
2N5593
2N5594

IT550
IT550
2N3822
2N3822
2N3822

2SK135
25KI5
2SK17
25K178
2$K179

2N4393
2N4416
2N4416A
2N4417
2N4445

2N4393
2N4416
2N4416A
2N4416
2N5432

2NS159
2N5163
2N5196
2N5197
2N5198

2N5433
2N3822
2N5196
2N5197
2N5198

2N5638
2N5639
2N5640
2N5647
2N5648

2N5638
2N5639
2N564O
2N4117A
2N4117A

25K18
25K180
2SK19
25K23
25K30

ITE4416
2N5459
2N5458

2N4446
2N4447
2N4448
2N4856
2N4856A

2N5434
2N5432
2NS434
2N4856
2N4856

2N5199
2N5245
2N5246
2N5247
2N5248

2N5199
ITE4416
2N5484
2N5486
2N5486

2N5649
2N5653
2N5654
2N5668
2N5669

2N4117A
,2N5638
2N5639
2N5484
2N5485

25K32
25K33
25K34
25K37
2SK41

2N3822
2N5397
2N3822
2N5484
2N5459

2N4856JAN
2N4856JANTX
2N4856JANTXV
2N4857
2N4857A

2N4856JAN
2N4856JANTX
2N4856JANTXV
2N4857
2N4857

2N5254
2N52S5
2N5256
2N5257
2N5258

ITI32
1Tl32
1Tl30
2N5457
2N5458

2NS670
2N5793
2N5794
2N5795
2N5796

2N5486
1T129
1Tl29
ITl39
1Tl39

2SK42
25K43
25K44
25K46
25K48

2N3822
ITE4092
ITE4416
2N5459
2N3821

2N4857JAN
2N4857 JANTX
2N4857JANTXV
2N4858
2N4858A

2N4857JAN
2N4857JANTX
2N4857 JANTXV
2N4858
2N4858

2N5259
2N5265
2N5266
2N5267
2N5268

2N5459
2N2607
2N2607
2N2608
2N2608

2N5797
2N5798
2N5799
2N5800
2N5801

2N2608
2N2608
2N2608
2N2608
2N4393

25K49
25K50
25K54
25K55
25K56

2N5484
ITE4416
2N3822
2N3822
2N5459

2N4B58JAN
2N4858JANTX
2N4858JANTXV
2N4859
2N4859A

2N485BJAN
2N4858JANTX
2N4858JANTXV
2N4859
2N4859

2N5269
2N5270
2N5277
2N5278
2N5358

2N2609
2N2609
2N4341
2N4341
2N4220

2N5802
2N5803
2N5843
2N5844
2N5902

2N4393
2N4392
1Tl30
ITl30
2N5902

2SK61
25K65
25K66
25K68
2SK72

2N5397
J201
2N3821
2N3822
2N5196

2N4859JAN
2N4859JANTX
2N4860
2N4860A
2N4860JAN

2N4856JAN
2N4856JANTX
2N4860
2N4860
2N4857JAN

2N5359
2N5360
2N5361
2N5362
2N5363

2N4220
2N4221
2N4221
2N4222
2N4222

2N5903
2N5904
2N5905
2N5906
2N5907

2N5903
2N5904
2N5905
2N5906
2N5907

3G5
3N145
3N146
3N147
3N148

2N3821
3N163
3N163
3N189
3N189

2N4860JANTX
2N4861
2N4861A
2N486IJAN
2N4861JANTX

2N4B57 JANTX
2N4861
2N4861
2N4858JAN
2N4858JANTX

2N5364
2N5391
2N5392
2N5393
2N5394

2N4222
2N4867A
2N4B68A
2N4869A
2N4869A

2N5908
2N5909
2N5911
2N5912
2N5949

2N5908
2N5909
2N5911
2N5912
2N5486

3N149
3N15O
3N151
3N155
3N155A

3Nl61
3N163
3N190
3N163
3N163

2N4867
2N4867A
2N4868
2N4868A
2N4869

2N4867
2N4867A
2N4868
2N4868A
2N4869

2N5395
2N5396
2N5397
2N5398
2N5432

2N4869A
2N4869A
2N5397
2N5398
2N5432

2N5950
2N5951
2N5952
2N5953
2N6085

2N5486
2N5486
2N5484
2N54B4
1Tl22

3N156
3N156A
3N157
3N157A
3N158

3N163
3N163
3N163
3N163
3N163

2N4869A
2N4878
2N4879
2N4880
2N4937

2N4869A
2N4878
2N4879
2N4880
1n31

2N5433
2N5434
2N5452
2N5453
2N5454

2N5433
2N5434
2N5452
2N5453
2N5454

2N60B6
2N6087
2N6088
2N6089
2N6090

ITI22
1T121
ITI21
ITI22
1Tl21

3N158A
3N160
3N161
3N163
3N164

3N163
3N161
3N161
3Nl63
3N164

2N4938
2N4939
2N494O
2N4941
2N4942

ITI32
IT132
IT132
1T131
1Tl32

2N5457
2NS458
2N5459
2N5460
2N5461

2N5457
2N5458
2N5459
2N5460
2N5461

2N6091
2N6092
2N6441
2N6442
2N6443

1T121
1T121
ITl22
1Tl22
ITl22

3N165
3N166
3N167
3N168
3N169

3N165
3N166
3N161
3N161
3N170

2N4955
2N4956
2N4977
2N4978
2N4979

1Tl22
1Tl22
2N5433
2N5433
2N4859

2N5462
2N5463
2N5464
2N5465
2N5471

2N5462
2N5463
2N5464
2N5465
2N5265

2N6444
2N6445
2N6446
2N6447
2N6448

IT122
ITl21
ITl21
1Tl21
1T121

3N170
3N171
3NI72
3N173
3N174

3N170
3N171
3N172
3NI73
3N163

2N5018
2N5019
2N502O
2N5021
2N5033

2N5018
2N5019
2N2843
2N2607
2N5460

2N5472
2N5473
2N5474
2N5475
2N5476

2N5265
2N5265
2N5265
2N5265
2N5266

2N6451
2N6452
2N6453
2N6454
2N6483

U310
U310
U310
U310
2N6483

3N175
3N176
3N1n
3N178
3N179

3N170
3N170
3N171
3NI72
3N172

"CONSULT FACTORY

I
23

....
..

......

2N5457
2NS457
~~5457

....
..
..

2N4868
2.~5484

2.~3821

ALTERNATE
SOURCE PRODUCT

INTERSIL
EQUIVALENT

ALTERNATE

SOURCE PRODUCT

INTERSIL
EQUIVALENT

ALT£RNATE
SOURCE PRODUCT

INTEIISIL
EQUIVALENT

ALT.ERNATE
SOURCE PRODUCT '

, INTERSIL
EQUIVALENT

3NI80 '
3NI81
3NI82
3NI83
3NI88

3NI72
3NI61
3NI61
3NI61
3NI88

AD7520KD
AD7520KN
AD7520LD
AD7520LN
AD7520SD

AD7520KD
AD7520KN
AD7520LD
AD7520LN
AD7520SD

AH0139D/883
AHOI4OCD
AHOl4OD
AH0140D/883
AHOl41CD

DG I 39AK/883B
DGl40BK
DGI40AK
DG 140AKl883B
DGI41BK

BF801
BF802
BF804
BF805
BF806

2N4867
2N4338
2N4338
2N4869
2N4869

3NI89
3NI90
3NI91
3N207
3N208

3NI89
3NI9O
3NI91
3NI90
3NI88

AD7520TD
AD7520UD
AD752lJD
AD752lJN
AD7521KD

AD7520TD
AD7520UD
AD7521JD
AD752lJN
AD7521KD

AHOl41D
AH0141D/883
AHOl42CD
AHOl42D
AH0142D/883

DGI41AK
DGI41AKl883B
DGI42BK
DGI42AK
DG142AK/883B

BF808
BF810
BF811
BF815
BF816

2N4868
2N4858
2N4858
2N4858
2N4858

3SK22
3SK23
3SK28
42T
4360TP

2N5486
2N5397
2N5397
2N4392
2N5462

AD7521KN

BF817

AD7521lD

DG143AK

BF818

AD7521LN
AD7521SD
AD752lTD

AD7521LN
AD7521SD
AD752ITO

AHOl43CD
AH01430
AH0143D/883
AHOl44CD
AHOl44D

DGI43BK

A07521LD

DG143AK/883B
DGI44BK
DGI44AK

BFSIO
BF II
BF 12

2N4858
2N4858
U401
U401
U402

5033TP
588U
58T
59T
703U

2N5460
2N4416
2N5457
2N4416
2N4220

AD7521UD
AD7523AD
AD7523BD
AD7523CD
AD7523JN

AD7521UD
AD7523AD
AD7523BD
AD7523CD
AD7523JN

AHOI44D/883
AHOl45CD
AHOl45D
AH0145D/883
AHOI46CD

DG144AK/883B
DGI45BK
DGI45AK
DG I 45AK/883B
DGI45BK

BFQI3
BFQI4
BF l5
BFS 16
BF 23

U406
IT5912

704U
705U
707U
714U
734EU

2N4220
2N4224
2N4860
2N3822
2N4416

AD7523KN
AD7523SD
AD7523TD
AD7523UD

AD7523KN
AD7523LN
AD7523SD
AD7523TD
AD7523UD

AHOl46D
AHOI46D/883
AHOl51CD
AH0151D/883
AHOl52CD

DGI46AK
DG146AK/8838
DGI5IBK
DGl5IAK/883B
DGI52BK

BF 44
BFr
BF 45
BF 49A
BF 49B

IT5912
2N3055
2N3958

734U
751U
752U
753U
754U

2N5516
2N434O
2N434O
2N4341
2N434O

AD7530JD
AD7530JN
AD7530KD
AD7530KN
AD7530LD

AD7530JD
AD7530JN
AD7530KD
AD7530KN
AD7530LD

AHOl52D
AH0152D/883
AHOl53CD
AHOl53D
AH0153D/883

DGI52AK
DG I 52AK/883B
DGI53BK
DGI53AK,
DG I 53AKlS83B

BFQ49C
BFS21
BFS21A
BFS67
BFS67P

2N3958
2N5199
2N5199
2N3821
2N5459

755U

2N4341
2N434O
ITE4416
ITE4416
2N4416

AD7530LN

DGI54BK

AD753lJN
AD7531KD
AD7531KN

AD7530LN
AD753lJD
AD753lJN
AD7531KD
AD7531KN

AHOl54CD

AI90
AI91
AI92
AI93
AI94
AI95
AI96
AI97

2N5484
2N5484
2N5484
ITE4416
ITE4391

AD7531LD
AD7531LN
AD7533AD
AD7533BD
AD7533CD

AD7531LD
AD7531LN
AD7533AD
AD7533BD
AD7533CD

AI98
AI99
A5T382I
A5T3822
A5T3823

ITE4392
ITE4393
2N5484
2N5484
2N4416

AD7533JN
AD7533KN
AD7533LN
AD7533SD
AD7533TD

AD7533JN
AD7533KN
AD7533LN
AD7533SD
AD7533TD

A5T3824
A5T5460
A5T5461
A5T5462
ADI08

2N4341
2N5460
2N5461
2N5462
LMI08

AD7533UD
' AD754IAD,
AD7541BD
AD754lJN
AD754IKN

AD30B
AD3954A
AD3955
AD3956

LM308
2N3954
2N3954A
2N3955
2N3956

AD3958
AD503
AD589
AD590
AD5905

AD7521KN

A07523LN

U403
U404
U405

U403
lT5912

AH0154D

DG154AK

AHOI54D/883
AHOl55D
AHOl61CD

DGI43AK/883B
DGI5IAK
DGI61BK

BFS68
BFS68P
BFS70
BFS71
BFS72

2N3823
2N4416
2N3821
2N3822
2N3823

AHOl61D
AHOl61D/883
AHOl62CD
AHOl62D
AHOI62D/883B

DGI61AK
DGI61AKl883B
DGI62BK
DGI62AK
DG 162AK/883B

BFS73
BFS74
BFS75
BFS76
BFS77

2N3821
2N4856
2N4858
2N4859

AHOl63CD
AHOl63D/883
AHOl64CD
AHOl64D

DGI63BK
DGI63AK
DG I 63AK/883B
DGI64BK
DGI64AK

BFS78
BFS79
BFS80
BFTIO
BFTlI

2N4860
2N4861
2N4416A
2N5397
2N5019

AD7533UD
AD754IAD
AD7541BD
AD754lJN
AD7541KN

AHO 1640/883
AH5009CN
AH50IOCN
AH5012CN
AH5013CN

DG I 64AK/883B
IH5009CPD
IH50lOCPD
IH5012CPE
IH5013CPD

BFWIO
BFWII
BFWI2
BFWI3
BFW39

2N3823
2N3822
2N4416
2N4867
1Tl29

AD7541SD
AD754lTD
AD810
AD811
AD812

AD7541SD
AD754lTD
2N4878
2N4878
2N4878

AH5014CN
AH5015CN
AH5016CN
AM50llCN
BC264

IH5014CPD
IH5015CPE
IH5016CPE
IH50llCPE
2N5458

BFW39A
BFW54
BFW55
BFW56
BFW61

ITi20
2N3822
2N3822
2N4860
2N4224

2N3958
AD503
ICL8069
AD590
2N5905

AD813
AD814
AD815
AD816
AD818

2N4878
1T124
1Tl24
1Tl20A
1Tl4O

BC264A
BC264B
BC264C
BC264D
BCY87

2N5457
2N5458
2N5458
2N4416
1Tl21

BFXII
BFX.15
BFX36
BFX70

ITl32
1Tl22
1Tl31
ITi22
ITl22

AD5906

2N5906

AD5907

2N5907

2N5908
AD5908
2N5909
AD5909
AD7506/COM/CHIPS IH6116C/D

AD820
AD821
AD822
AD830
AD831

ITl32
1Tl30A
1Tl30A
2N552O
2N5521

BCY88
BCY89
BF244
BF244A
BF244B

1Tl22
1Tl22
2N5486
2N5484
2N5485

BFX78
BFX82
BFX83
BFX99

AD7506/MIUCHIPS
AD7506JD
AD7506JD/883B
AD7506JN
AD7506KD

IH6116M/D
IH6116CJI
IH6116CJI/883B
IH6116CPI
IH6116CJI

AD832
AD833
AD833A
AD835
AD836

2N5522
2N5523
2N5524
2N3954
2N3955

BF244C

BF245
BF245A
BF245B
BF245C

2N5486
2N5486
2N4416
2N4416
2N4416

AD7506KD/883B
AD7506KN
AD7506SD
AD 7506SD/883B
AD7506TD

IH6116CJI/883B
IH6116CPI
IH6116MJI
IH6116MJI/883B
IH6116MJI

AD837
AD838
AD839
AD840
AD841

2N3955
2N3956
2N3957
2N5520
2N5521

BF246
BF246A
BF246B
BF246C
BF247

2N5485
2N5639
2N5638
2N5638
2N4091

BFV85

ITI22

BFY86
BFY91
BFY92
BN209

1T122
ITI22
1Tl22
1Tl22

AD7506TD/883B
AD7507/COM/CHIPS
AD7507/MIUCHIPS
AD7507JD
AD7507JD/8838

IH6116MJI/883B
IH6216C/D
IH6216M/D
IH6216CJI
IH6216CJI/883B

AD842
AHOl26CD
AHOl26D
AHOl26D/883
AHOl29CD

2N5523
DGI26BK
DGI26AK
DG I 26AK/883B
DGI29BK

BF247A
BF247B
BF247C
BF256
BF256A

2N4091
2N4091
2N4091
2N5484
2N5484

BSV22
BSV78
BSV79
BSV80
BSX82

2N4416
2N4856A
2N4857A
2N4858A
2N3822

AD7507JN
AD7507KD
AD7507KD/883B
AD7507KN '
AD7507SD

IH6216CPI
IH6216CJI
IH6216CJI/883B
IH6216CPI
IH6216M/D

AH0129D

DG129AK

AHOI29D/883
AHOl33CD
AHOl33D
AHOl33D/883

DGI29AK/883B
DGI33BK
DGI33AK
DG 133AKl883B

BF256B
BF256C
BF320
BF320A
BF320B

2N4416
2N4416
2N5461
2N5460
2N5461

C21
C2306
C38
C413N
C610

2N5196
2N4338
2N5434
2N4392

AD7507SD/8838
AD7507TD
AD7507TD/883B
AD7520JD

IH6216MJI/8838
IH6216MJI
IH6216MJI/883B
AD7520JD
AD7520JN

AHOl34CD
AHOl34D
AH0134D/883,
AHOl39CD
AHOl39D

DGI34BK
DGI34AK
DG I 34AKl883B
DGI39BK
DGI39AK

BF320C
BF346
BF347
BF348
BF800

2N5462
ITE4392
J201
J310
2N4867

C611
C612
C613
C614 '
C615

2N4221
2N4221
2N4221
2N4220
2N4221

756U

AD3954

A07520JN

··CONSULT FACTORY

AD7531JO

AH0163D

24

BFX71
BFX12

BFY20
BFY81
BFY82
BFY83

BFY84

2N4857

ITl22
2N5397
2N5019
2N5019
1T120A
1T122
1T122
ITI22
1T122
1T122

2N3821

INTERSIL
EQUIVALENT

ALTERNATE
SOURCE PRODUCT

ALTERNATE
SOURCE PRODUCT

INTERSIL
EQUIVALENT

ALTERNATE
SOURCE PRODUCT

INTERSIL
EQUIVALENT

ALTERNATE
SOURCE PRODUCT

INTERSIL
EQUIVALENT

C620
C621
C622
C623
C624

2N4220
2N4220
2N4220
2N4220
2N4220

01202
01203
0123AL
D123AP
DI23BP

2N3821
2N4220
0123AL
0123AK
01238K

DG151BP
OGI52AL
DG152AP
OGI52BP
OGI53AL

DG1518K
OGI52AL
DG152AK
OG152BK
DG153Al

OGI88BP
DG189Al
OGI89AP
OGI89BP
OGI90AL

OGI88BK
DG189Al
OGI89AK
OG189BK
OGMI90AL

C625
C650
C651
C652
C653

2N4220
2N4220
2N4220
2N4220
2N4220

DI23SP
0125AL
0125AP
OI25BP
0129Al

0123BJ
0125AL
0125AP
D125BK
O129Al

DG153AP
DG153BP
OGI54AL
OGI54AP
OGI54BP

OGI53AK
OGI53BK
OGI54AL
OG154AK
OGI54BK

OGI90AL
OGI90AP
OGI90AP
DG190BP
OGI90BP

OGI90AL
OGMI90AK
OGI90AK
OGMI9DCJ
OGM190BK

C6690
C6691
C6692
C673
C674

2N4341
2N4341
2N4339
2N4341
2N4341

0129AP
0129BP
01301
01302
01303

D129AK
0129BK
2N4222
2N4220
2N4220

DG161Al
DG161AP
OGI6lBP
DG162Al
OGI62AP

OG161AL
OG161AK
OG161BK
OG162Al
OG162AK

OG190BP
OG191AL
0G191AL
OGI91AP
0G191AP

OG190BK
OGM191Al
OGI91AL
OGM191AK
OGI91AK

C680
C680A
C681
C681A
C682

2N4338
2N4338
2N4338
2N4338
2N4339

01420
01421
01422
02T2218
02T2218A

2N4868
2N3822
2N4869
ITl29
ITI29

OG162BP
DGI63Al
OGI63AP
OGI63BP
OGI64AL

OG162BK
OGI63AL
OGl63AK
OG163BK
OGI64AL

OGI91BP
DG191BP
0G191BP ,
OG200AA
OG200AK

OGMI91CJ
OGM191BK
OG191BK
OG200AA
OG2ooAK

C682A
C683
C683A
C684
C684A

2N4339
2N4339
2N4339
2N4220
2N4220

D2T2219
02T2219A
D2T2904
02T2904A
02T2905

ITl29
ITl29
IT139
ITl39
ITl39

DG164AP
DG164BP
DGl80AA
DG180Al
OGI80AP

DG164AK
OG164BK
OG180AA
OGI80AL
OGl80AK

DG200Al
OG200AP
OG200BA
OG2ooBK
OG200BP

OG200AL
OG200AK
OG200BA
OG200BK
OG200BK

C685
C685A
COO
C81
C84

2N4220
2N4220
2N4338
2N4338
2N4338

02T2905A
02T918
OA102
DA402
DAClO20lCD

1T139
ITI29
2N5196
2N5196
A07520lD

OGI80BA
OGI80BP
OGI81AA
DG181AA
DG181Al

OGl80BA
OGl80BK
DGM181AA
OG181AA
OGM181AL

OG200CJ
OG201AK
OG201AP
OG201BK
OG20lCJ

OG200CJ
OG20lAK
OG20lAK
OG20lBK
OG201CJ

C85
C91
C92
C93
C94

2N4338
2N4858
2N4091
2N4393
2N5457

OAC1020lD
OAC1021lCO
OACI021LD
OAC1022LCO
DAC1022lD

AD7520UD
A07520KO
A07520TD
AD7520JD
A07520SD

DG181Al
OG181AP
OGI81AP
OG181BA
OGI81BA

OG181AL
OGMI81AK
OGI81AK
OGMI81BA
OGI81BA

DG210BP
OG281AA
OG281AP
OG281BA
OG281BP

OG201BK

IHI82CTW
IH182CJO

C94E
C95
C95E
C96E
C97E

2N5457
2N5457
2N5459
2N5484
2N3822

OACI218LCO
OAC1218LCN
OACI218LCN
OAC1219LCO
OACI219LCN

A07541BD
A07541LN
A07541KN
AD7541AD
AD754lJN

OG181BP
OGI81BP
OG181BP
OGI82AA
OGI82AA

OGMI81CJ
OGMI81BK
OG181BK
OGMI82AA
OGI82AA

OG284AP
OG284BP
OG287AA
OG287AP
OG287BA

IHI85MJE
IHI85CJE
IHI88MTW
IHI88MJO
IHl88CTW

C98E
CA308
CC4445
CC4446
CC697

2N3822
LM308
2N5432
2N5434
2N4856

OAC1220LCO
OACI220LD
OACI221LCO
OAC1221LO
OAC1222LCO

AD7521LD
A07521U0
A07521KO
A0752\T0
A0752lJD

DG182Al
OG182AL
OGI82AP
OGI82AP
OGI82BA

DGM182AL
OGI82AL
OGM182AK
OGI82AK
OGMI82BA

OG287BP
OG290AP
OG290BP
OG381AA
OG381AK

IHl88CJO
IH191MJE
IHI9ICJE.
OGM182AA
OGMI82AK

COnoolH
C022015E
CF2386
CF24
CFM 13026

ICMI424C
ICM7051A
2N5458
2N3824
2N4858

OACI222LO
OGI23AL
OGI23AP
OGI23BP
0G125AL

A0752150
OG123AL
OG123AK
OG1238K
OG125AL

OGI82BA
OGI82BP
OGI82BP
OGI82BP
OGI83AL

OGI82BA
OGMI82CJ
OGMI82BK
OGI82BK
OGI83AL

OG381AP
OG381BA
OG381BK
OG381BP
OG381CJ

OGMI82AK
OGM181BA
OGM181BK
OGMI81BK
OGM181CJ

CM600
CM601
CM602
CM603
CM640

2N4092
2N4091
2N4091
2N4091
2N4093

OG125AP
OGI25BP
OGI26AK
OGI26AL
OG126BP

DG12SAK
OGI258K
OGI26AK
OG126AL
OGI26BK

OGI83AP
OGI83BP
OGI84AL
OGI84AL
OGI84AP

DG183AK
OGI83BK
OGM184AL
OGI84AL
OGM184AK

OG384AK
OG384AP
OG384BK
OG384BP
OG384CJ

DGM185AK
OGMI85AK
DGM184BK
OGMI84BK
OGMI84CJ

CM641
CM642
CM643
CM644
CM645

2N4093
2N4093
2N4092
2N4092
2N4092

OGI29AL
OGI29AP
OGI29BP
OG133AL
OG133AP

OG129AL
DG129AK
OGI29BK
OG133AL
OGI33AK

OG I84AP
OGI84BP
OGI84BP
OGI84BP
OGI85AL

OGl84AK
OGM184CJ
OGM184BK
OGl84BK
OGMI85AL

DG387AA
OG387AK
OG387AP
OG387BA
OG387BK

OGMI88AA
OGMI88AK
OGMI88AK
OGMI87BA
OGMI87BK

CM646
CM647
CM650
CM651
CM652

2N4092
2N4091
2N5432
2N5433
2N5432

OGI33BP
OG134AL
OGI34AP
OGI34BP
OGI39AL

OGI33BK
DG134AL
DG134AK
OG134BK
OG139AL

OGI85AL
OGI85AP
0G185AP
OGI85BP
OGI85BP

OGI85AL
OGM185AK
OG185AK
OGM185CJ
OGM185BK

DG387BP
OG390AK
OG390AP
OG390BK
OG390BP

DGM187BK
OGMI91AK
OGMI91AK
OGM190BK
OGMI90BK

CM653
CM697
CM8DO
CM856
CM860

2N5433
2N5433
2N5433
2N5433
2N4868A

OG139AP
OGI39BP
OGI40AL
OGI40AP
OGl40BP

OG139AK
OGI39BK
OGI40AL.
OGI40AK
OGI40BK

OGl858P
OGI86AA
OGI86AL
OGI86AP
OGI86BA

OG185BK
OG186AA
OG186AL
OGI86AK
OGl86BA

OG390CJ
OG503
OG5040AK
OG5040AL
OG5040CJ

OGMI9DCJ
A0503
IH5040MJE
IH5040MFD
IH5040CPE

CMX740
CP640
CP643
CP650
CP651

2N5432
2N4091
2N5434
2N5432
2N5433

OG141AL
OGI41AP
OG141BP
OGI42AL
OG142AP

OG141AL
OG141AK
OG141BK
OG142AL
OGI42AK

OGI86BP
OGI87AA
OGI87AA
OGI87AL
OGI87AL

OGI86BK
OGM187AA
OGI87AA
OGMI87AL
OGI87AL

OG5040CK
OG5041AA
OG5041AK
OG504IAL
OG5041CJ

IH5040CJE
IH5041MTW
IH504IMJE
IH504IMFO
IH5041CPE

CP652
CP653
01101
01102
01103

2N5433
2N5433
2N3821
2N3821
2N4338

OGI42BP
OG143AL
OGI43AP
OG143BP
OGI44AL

OG142BK
OG143AL
OGI43AK
OG143BK
OG144AL

OGl87AP
OGI87AP
OGI87BA
OGI87BA
OGI87BP

OGMI87AK
OGI87AK
OGM187BA
OGI87BA
OGMI87BK

OG5041CK
OG5042AA
OG5042AK
OG5042AL
OG5042CJ

IH5041CJE
IH5042MTW
IH5042MJE
IH5042MFO
IH5Q42CPE

01177
01178
01179
01180
01181

2N3821
2N3821
2N4338
2N3822
2N4338

OGI44AP
DG144BP
OG145AL
OG145AP
OG145BP

OGl44AK
DG144BK
OGI45AL
OGI45AK
OGI45BK

OGI87BP
OGI88AA
OGI88AA
OGI88AL
OG188AL

OGI87BK
OGMI88AA
OGI88AA
OGMI88AL
OGI88AL

OG5042CK
OG5043AK
OG5043AL
OG5043CJ
OG5043CK

IH5042CJE
IH5043MJE
IH5043MFO
IH5043CPE
IH5043CJE

01182
01183
01184
01185
01201

2N4338
2N4341
2N4340
2N4339
2N4224

OGl46AL
DG146AP
OGl46BP
OG151AL
OGI51AP

OGI46AL
OGl46AK
OGI46BK
DG15lAl
OGI51AK

OGl88AP
OGI88AP
OG188AP
OG188BA
OGI88BA

OGMI88BK
OGMI88AK
OGI88AK
OGMI88BA
OGI88BA

OG5044AA
OG5044AK
OG5044AL
OG5044CJ
OG5044CK

IH5044MTW
IH5044MJE
IH5044MFO
IH5044CPE
IH5044CJE

"CONSULT FACTORY

25

:m~~~j~

,' .. ".'
ALTERNATE
SOURCE P,!ODUC.T

'..

..........

""

INTERSIL
EoUIVALE"lT

DG5045AK
OG5045AL

IH5045MJE
IH5045MFD

DG504SCJ
DG5045CK

IH5045CPE
IH5045CJE

DG506J\~

IH6116MJI

DG506BR

IH6116CJI

DG506CJ
OG507AR.
DGS07BR

IH6116CPI
IH6216MJI
IH6216CJI
IH6216CPI

ALTERNATE
SO""I:E. PIIO!)UCT

:

INTERSIL
EQUIVAL:ENT

E212
E230
E231
E232

2N5397
2N5397
2N4867
2N4868
2N4869

E270
E271
£300
E304
E30S

J270
J27\
2NS397
2NS486
2NS464

E308
E309
E310
E311
E312

J308
J309
J310
J310
2NS397

IH6208CPE
DGlllAL
DGlllAK
DGlllBK
2N3821

E400
E401
E402
E410

DN3067A
DN3068A

2N4338

DN3069A

2N3822
2N3821

£412
E413
E414

DG507CJ

DG508AP
DGSOBBP
DG508CJ

DGS09AP
DGS09BP
DGS09CJ

DGMlllAL
DGMlllAP
DGMUlBP
DNJa66A

DN3070A
DN3071A

ON336SA
ON336SB
DN3366A'
DN3366B
DN3367A
DN3367B

IH610BMJE

IH6108CJE
IH6108CPE
lHS20BMJE

IH6208CJE

2N4338

E211

E411

HIl-0506A-2
HII-OS06A-5
HII-0506A-8

IH5116MJI
lHS116UI
IHS116MJI/883B

ESM4445
ESM4446

2NS432
2N5434
2N5432
2NS434

G116AL
G116AP
G116BP

HII-OS09-2
HIl-OS09-S

GII6AK

2N4386
2NS4B5

Gl17Al
GllBAL
G118AP

2N4341

-H1OOA

2N3821
2N3821

2~4222

FEI02

2N4119

2N4339
2N4220

FE102A

2N4119
2N4118
2N4118
2N4092

FEI04
FEI04A

G1l68P

G119AL
GI23AL
Gl23AP
GET54S7

GETS458
GETS4S9
HA2720

2N3821

IH6216MJI

HII-0507A-2
HIl-0507A-5

IH6216MJII883B
IH5216MJI
IH5216UI

2N5460

HIl-OS07A-8
HIl-OS08-2

IHS216MJI/883B
IH6108MJE

HIl-OS08-5

IH6!08CJE
IH6108MJE/883B
tH5108MJ£
IH5108UE
IHSI08MJE/883B

G116AL

IH6208CJE
IH6208MJE/8838
IHS208MJE

HII-OS09A-S

IHS208IJE

G1l7Al
GllBAL

Hll-OS09A-8

HIl-5040-2

IHS208MJE/883B
IHS040MJE

Gl18AK
Gll9AL

HIl-5040-5

IHS040CJE

HII-5040-8

IHS040MJEI883B

G123Al

HIl-504l-2

GI23AK

HIl-5041-5
" HIl-S041-8

IHS041CJE
IHS041MJEI883B

HI 1-5042-2

IH5042MJE
IH5042CJE
IHS142MJE/8838

2NS4S7
2N5458

2N54S9
ICL8021

2N3821

HA7807
HA7809

ITI32
tTI32

HD43871

ICM70S0H
ICM70S0G
3NI63

FE3819
FE4302

2NS484
2NS4S7
2NS4S9
2NS4S8
2N4416

HEP801
HEP802

2N3822

HEP803
HEPFOO21
HEPFlO35

2NSOl9
2NS484
JI76

2N4416

2N4416
2N4339

2NS398
2N5458

J204
2NS4S7
2NS459

FE4303
FE4304

FES245
FES246
FES247

FES4S7
FE5458
FES4S9

2NS486
2N54S7

FE5484

2N5484

FES48S

J107

FE5486

2NS48S
2N5486

JlOS
JI06

FMllOO

El12A

JI12
JI13
JI13

JIll
ICMl115A
J11l

JI12

J204

ICMI1l5B

FF400

2N5457
2N39S4A

HI0-OS07-6

2N5906
2NS906

HIO-OS07 A-6
HI0-OS08-6

2N3954

FMIl02A
FMl103

2NS906
2N39SS

HIO-OS08A-6
HI0-0509-6
HI0-0509A-6

FMllOM
FMll04
FMll04A
FMll05
FMll05A

2NS908

HIO-S040-6

2N39S7

2N5909
2N3954A
ITSOO

HI0-5041-6
HI0-S042·6
HI0-S043-6 .
HI0-S044-6

FMll06
FMII06A

2N3954A
1T500

HIO-S04S-6
H10-5046-6

2N3954
ITSOO
2N39S5

HI0-5047-6
HI0-5049-6
HI0-SOSO-6

IT502
2N3957
ITS03
2N39SS
2NS908

HI0-SOSI-6
HII-0200-2
HII-020D-4
HIl-0200-S
HIl-0200-6

ICM7050U

EI7S
EI76

J175
J176
JI77

FMl107
FMll07A

J201
J202
J203
J204
2NS397

FMll08A

"CONSULT FACTORY

HI0-0387-6
HI0-0390-6
HI0-OS06-6
HI0-OS06A'6

FMllOOA
FMllOIA
FMll02

EI426
El74

Jl74

HI0-0201-6
"10-0381'6
HI0-0384-6

2NS4S8
2NS4S9

JIOS
J106

JI07

HEPF2004
HEPF200S

2NS484

FMll08
FMl109

FMll09A
FMIIIO
FMIIIOA

26

IH6208MJE

G116BK
G116BJ

2N3822
2N3821
2N3821

ICl7667
2NS397

IH6216CJI

HIl-OS09-8
HII-0509A-2

FE204

HDIGl030

DGM190BK

HII-OS07-8

FE300
FE302
FE304

HD43871

DGM188AK

HIl-OS07-2
HIl-OS07-5

2N5486

2N4338

2N3821

DGMI8SAK/883B
OGMI87BK
DGMI88AK/883B
DGMI91AK

2NS486
2N4221
2N4221

2N4869
2N4868

EllO
[Ill
Ell15
ElllA
E112

E204
E210

2N4339
2N4340

HIl-OS08A-8

FE202

E20l

FP4339

Gl1S8J

2N4338

E202
E203

2N3956
2N39S7

GllSBK

DNX2

El77

IT5911

G1l58P

FEI600
FE200

EII3A
E114
EllSI

2N39S7

FM39S8

FM39S6

GlISBP

2N4338

E1l3

FM39S7

2N5454

2N5458

2N4338
2N4220

E109

ITS911

ESM4304

DN3460A
DN34608
ONXI

E"IOS

HII-OS06-8

DGM191AK/8838
IH6116MJI
IH6116CJI
IH6116MJI/883B

HIl-0506-5

HIl-0508-8
HIl-0508A-2
Hll·0508A-S

FEiOO

EI06
El07
El08

HIl-0390-S
HI 1-0390-8
HIl-OS06-2

3NI63
GllSAK

FE0654B

DU4340
ElOO
EI0l

2N3954
2N39S4A
2N39SS
2N39S5A'
2N39S6

FM3954A
FM3955
FM3955A

HI 1-0390-2

FT703
FT704
GllSAP

FE06S4A

El02
El03

FM3954

HIl-0387-8

2N4093
2NS457
2NS4S9

2N4338

DGM182AK/883B
DGM185AK

'DGM184BK

2N39SS
2N39SS
2N39S7
2N39SS
IT5911

2N3955A

ESM4093
ESM4302
ESM4303

2N4220

DGMI82AK
DGMI81BK

2N3954

2N5019

2N4339

DG201AK
DG201BK

DG20lBK
DG20lAK/883B

2N39S5
2N39S5A
ITS911

2N5019
3N161

DN34378
ON3'438A
DN3438B
DN34S8A
DN3458B

DG200AKI.883B

FM1207
FM12Q8

FT3820

ESM4447
ESM4448

INTERSIL
EQUIVALENT

FMI209
FMl210
FM12I1

FT3909

2N4340

2N4338

HIl-0384-S

2N4091
2N4092

DN3437A

DNXl

HIl-0384-S
HIl-0387-2
HIl-0387-S

HIl-0384-2

ESM4091
ESM4092

2N4341
2N4222

DNXB

HIl-0381-2
HIl-0381-5
HIl-0381-8

E431
ESM2S
ESM2SA

2N3686
2N4Q91

DN3436A
DN3436B

DNX9
DS0026
DU4339

2N3954
2N3955A
2N39SS
2N3954
2N3954

FT0654C
FT0654D
H3820

2N4338
2N4338

DNXS
DNX6

HI1~0201-8

J309(X2)
J310(X2)
U401
U401

2N4339
2N4220

ONX3
ONX4

FM1206

HIl-0200-8
HIl-0201·2
HIl-0201-4
HIl·0201-5

FT06S4B

DN3370A
DN3370B

DN34S9B

FM1202
FMI203
FMI204
FMI20S

2N3957
2N5909
2N5196
2N3954
2N3954

ALTERNATE
SOURCE PRODUCT

IT5912

E421
E430

DN3368A
ON3368B
DN3369A'
DN3369B

DN34S9A

FMllll

FMIlllA
FMII12
FM1200
FM1201

INTERSIL
EQUIVALENT

1T5911

E41S
E420

2N4220
2N4091

2N4091
2N4341
2N4221

ALTERNATE
SOURCE PRODUCT

FP4340
FT0654A

2N4338

2N3687

,".

2NS484

HIl-5042-5
HII-5042-8
HIl-S043-2

IHS041MJE

IHS143MJE
IH5143CJE

HIl-S043-S
HII-5043-8

IHS143MJEl883B

HIl-S044-2
HIl-S044-S

IH5144MJE
IHSJ44CJE

HII-5044-8
HII-S045-2
HIl-504S-S

IH5144MJE/883B
IHSI4SMJE

HIl-5045-S

IH514SCJE
IHS14SMJE/8838

HIl~5046-2

IHS046MJE

HIl-5046·S
HIl-S046-8
HIl-5047-S

IHS046CJE
IHS046MJEl8838
IHS047MJE
IHS047CJE

DGM184C/O

Hll·5047~8

IHS047MJEl883B

OGM187C/D

HIl-5049-2
HIl-S049-S
HIl-5049-8
HIl-5050-2

IHS149MJE
tHS149CJE
IH5149MJEt,8838

2NS484

2NS4S9
OG20lCID
OGMI81C/O

DGMI90C/D
IH6116C/O
IH5116C/O
IH6216C/O

HII-S047-2

Hil-SOSO-S

IH51S0MJE
IH51S0CJE

IH5216C/D

HIl-SOSO-8

IH5150MJEJ8838

IH6108C/D
IHSI08CID
IH6208C/D

HIl-SOSI-2
Hil-SOSI-S

IHSISIMJE

HU-5051-8

IHSI51MJE/883B

IHS20BC/D

HI2-0200-2

OG200AA

IH5140C/D
IHS141C/O
IH5142C/O

HI2-0200-4

DG200BA
OG200BA
OG200AAI883B

IHSlS1CJE

IHSI43C/D

HI2-0200-S
HI2-0200-8
HI2-0381-2

IHS144C/D

HI2-0381-S

DGMI81BA

IHS145C/O

OGM18lAA/883B

IHS046C/D

HI2-0381-8
H12-0387-2

IH5047C/D
IH5149CI.D
IH5150C/O

HI2-0387-S
H12-0387-8
HI3-0200-S

OGMI88AAl883B
DG200CJ

IHSOSICID
DG200AK
DG200BK
DG200BK
OG200C/D

HI3-0201-S
HI3-0381-5
H13-0384-S
HI3-0390-S
HI3-0506-5

DG20lCJ
OGMI81CJ
DGMI84CJ
DGMI90CJ
IH6116CPI

OGM182AA

DGMI88AA
DGM1878A

ALTERNATE
SOURCE PROOUCT

INTERalL
EQUIVALENT

ALTERNATE
SOURCE PRODUCT

INTERSIL
EQUIVALENT

ALTERNATE

SOURCE PRODUCT

INTERSIL
EQUIVALENT

ALTERNATE
SOURCE PRODUCT

INTERSIL
EQUIVALENT

HI3-0506A-5
HI3-0507-5
HI3-0507A-5
HI3-0508-5
HI3-0508A-5

IH5116CPI
IH6216CPI
IH5216CPI
IH6108CPE
IH5I0SCPE

ITC4023
ITC4024
ITC4025
1TE2453
11E2639

ITI37
ITI37
ITI37
ITI20
ITl20

J109
JI09-18
J110
J110-18
J111

JI06
JI06
JI07
JI07
Jill

J4393
J4416
J4856
J4857
J4858

ITE4393
ITE4416
ITE4856
ITE4857
ITE4858

HI3-0509-5
HI3-0509A-5
10100
10101
IMF3954

IH620BCPE
IH5208CPE
10100
10101
2N3954

ITE2640
ITE2641
11E2642
11£2643
ITE2644

ITI22
11122
ITl20
ITl22
ITl22

Jill-IS
JlllA
Jll1A-18
J112
Jl12-18

Jll1
Jill
Jll1
J112
J112

J4859
J4860
J4861
J4867
J4867A

ITE4859
ITE4860
ITE4861
2N4867
2N4867A

IMF3954A
IMF3955
IMF3955A
IMF3956
IMF3957

2N3954A
2N3955
2N3955A
2N3956
2N39S7

ITE2720
11£2721
ITE2722
11£2903
ITE2913

1T120
ITl22
1Tl20
ITI22
ITI22

JI12A
J112A-18
J113
J113-18
J113A

J112
J112
J113
J113
J113

J4867RR
J4868
J4868A
J4868RR
J4869

2N4867
2N4868
2N4868A
2N4868
2N4869

IMF3958
IMF5911
IMF5912
IMF6485
IT 100

2N3958
IMF5911
IMF5912
IMF6485
1Tl00

ITE2914
11£2915
ITE2916
ITE2917
ITE2918

ITI22
IT120
ITI20
1Tl22
1Tl22

Jl13A-IS
J114
J1401
JI402
JI403

Jl13
2N5555
IT501
IT502
IT503

J4869A
J4869RR
J5103
J5104
J5105

2N4869A
2N4869
2N5484
2N5485
2N5486

ITIOI
ITlO8
ITI09
ITI20
ITI20A

ITIOI
ITE4416
ITE4416
IT120
ITl20A

ITE2919
ITE2920
ITE2936
ITE2937
ITE2972

1Tl20
1Tl20
1Tl20
ITI20
ITl22

J1404
JI405
JI406
JI74
J174-18

IT503
IT504
IT505
JI74
JI74

J5163
K114-18
K210-18
K211-18
K212-18

2N5486
2N5555
2N5397
2N5397
2N5397

ITI21
ITI22
!TI24
ITI26
ITI27

ITl21
\T122
ITI24
1T126
ITI27

ITE2973
11£2974
ITE2975
ITE2976
ITE2977

ITl22
ITI20
ITl20
1Tl20
1Tl20

JI75
J175-18
JI76
J176-18 '
JI77

JI75
JI75
J176
J176
JI77

K300-18
K304-18
K305-18
K308-18
K309-18

2N5397
2N5486
2N5484
J308
J309

ITI28
1Tl29
ITI30
ITI30A
ITI31

IT128
ITl29
!TI30
1Tl30A
ITI31

ITE2978
ITE2979
ITE3066
ITE3067
ITEJ068

1Tl20
1Tl20
2NJ685
2N3686
2N3687

JI77-18
J201
J201-18
J202
J202-18

JI77
J201
J201
J202
J202

K310-18
KE3684
KE3685
KE3686
KEJ687

J310
2NJ684
2N3685
2NJ686
2N3687

IT132
ITl36
ITI37
11138
1T139

1T132
1T136
ITI37
1T13S
ITI39

ITE3347
11E3348
ITE3349
ITE3350
ITE3351

1Tl37
1Tl38
ITl39
1T137
1Tl38

J203
J203-18
J204
J204-18
J210

J203
J203
J204
J204
2N5397

KE3823
KE3970
KE3971
KE3972
KE4091

2N3823
ITE4391
ITE4392
ITE4393
ITE4091

ITl40
1T1700
1T1701
1T1702
ITl750

1T140
1Tl7oo
3NI72
3NI63
IT1750

ITE3680
ITE3800
ITE3802
ITE3804
ITE3806

1Tl20
ITI32
ITI32
1T130
1T132

J211
J212
J230
J231
J232

2N5397
2N5397
2N4867
2N4868
2N4869

KE4092
KE4093
KE4220
KE4221
KE4222

ITE4092
ITE4093
2N5457
2N5459
2N5459

IT2700
IT2701
IT400
IT500
IT500P

3NI65
3NI65
2N4392
IT500
IT500

ITE3807
ITE3808
ITE3809
ITE3810
ITE381\

ITI32
1T132
ITI32
1T130
1Tl30

J270
J270-18
J271
J271-18
J300

J270
J270
J271
J271
2N5397

KE4223
KE4391
KE4392
KE4393
KE4416

J204
ITE4391
ITE4392
ITE4393
ITE4416

IT501
1T501P
lT502
IT502P
IT503

IT501
1T501
IT502
IT502
IT503

ITE3907
ITE3908
ITE4017
ITE4018
ITE4019

1T120
1T120
1T139
1T139
1Tl39

J304
J305
J308
J309
J310

2N5486
2N5484
J308
J309
J310

KE4856
KE4857
KE4858
KE4859
KE4860

ITE4391
ITE4392
ITE4393
ITE4391
ITE4392

IT503P
IT504
IT505
IT550
IT5911

IT503
IT504
IT505
IT550
IT5911

ITE4020
ITE4021
IT£4022
ITE4023
11£4024

1T139
1Tl39
ITI39
1T137
1T137

J315
J316
J317
J3970
J3971

2N5397
U309
U310
ITE4391
ITE4392

KE4861
KE510
KE5103
KE5104
KE5105

ITE4393
ITE4393
J204
ITE4416
ITE4416

IT5912
ITC2972
ITC2973
ITC2974
ITC2975

IT5912
IT122
1T122
ITI20
1T120

ITE4025
ITE4091
ITE4092
ITE4093
IT£41\7

1Tl37
ITE4091
ITE4092
ITE4093
2N41\7

J3972
J401
J402
J403
J404

ITE4393
IT501
IT502
IT503
IT503

KE511
KH5196
KH5197
KH5198
KH5199

ITE4392
2N5196
2N5197
2N5198
2N5199

ITC2976
ITC2977
ITC2978
ITC2979
ITC3347

1T120
1T120
1T120
ITI20
ITl37

ITE41\8
ITE4119
ITE4338
ITE4339
ITE4340

2N4118
2N41\9
2N4338
2N4339
2N4340

J405
J406
J4091
J4092
J4093

IT504
IT505
ITE4091
ITE4092
ITE4093

KS5183
KS5240BOIH
KS5240BOIJ
KS5240BIOH
KS5240BI2H

ICM7269
ICM7245B
ICM7245A
ICM7245D
ICM7245E

ITC3348
ITC3349
ITC3350
ITC3351
ITC3352

ITl38
ITI39
1Tl37
1T138
ITI39

ITE4341
IT£439I
ITE4392
ITE4393
ITE4416

2N4341
ITE4391
ITE4392
ITE4393
11£4416

J410
J41\
J412
J420
J421

IT502
IT503
IT503
IT591\
IT5912

KS5240B20H
KS5240UOIE
LDF603
LDF604
LDF605

ICM724SF
ICM7245U
2N4221
2N4221
2N4221

ITC3800
ITC3802
ITC3804
ITC3806
ITe3807

ITI32
ITI32
1T130
1T132
1T132

ITE4867
ITE4868
ITE4869
JlOO
JIOI

2N4867
2N4868
2N4869
2N5458
2N4338

J4220
J4221
J4222
J4223
J4224

J204
J202
J203
J202
J202

LFl I 201D
LFI\ 201 0/883
LF1\202D
LF 1\ 2020/883
LFl,IS080

IH202MJE
IH202MJE/883B
IH6108MJE

ITC3808
ITC3809
ITC3810
ITC3811
ITC4017

ITl32
1T132
ITI30
1T130
1T139

JI02
JI03
JI05
JI05-18
JI06

2N5457
2N5459
JI05
JI05
JI06

J430
J4302
J4303
J4304
J431

J309(X2)
2N4302
2N5459
2N5458
J310(X2)

LFI\ 5080/883
LF1\5090
LFI\509D/883
LFl320lD
LFl320lN

IH6108MJE/883B
IH6208MJE
IH6208MJE/883B
DG20lBK
DG20lCJ

ITC4018
ITC4019
ITC4020
ITC4021
ITC4022

1T139
ITI39
1T139
ITl39
In39

JI06-18
JI07
J107-18
Jl08
JI08-18

JI06
JI07
J107
J105
JI05

J433
J4338
J4339
J4391
J4392

2N5457
2N5457
2N5457
IT£439I
ITE4392

LF\3202D
LFI3508D
LF13508N
LFl3509D
LF13509N

IH202CJE
IH6108CJE
IH6108CPE
IH6208CJE
IH6208CPE

"CONSULT FACTORY

27

~~gl~~883B

."0,-

•

. A!LTEIINATE
SOURCE PRODUCT·

_.

!.INTERS.L
EQUIVALENT

. .ALTERNjl.TE
.
SOURCE PRODUCT

·"iTER.IL
EQUIVALENT

ALtEIlNATE
SOURCE PRODUCT

INTERSIL
EQUIVALENT

ALTERNATE
SOURCE PRODUCT

INTEIISIL
EQUIVALENT

LH0042
LH210B
LH230B
LM105
LMlOB

LH0042
lH2108
LH2308
LM105
LM.l08

LTCI044
LTC1052
LTC7652
M103
MlO4

ICLl660
ICL7650
ICL7652
3N161
3N161

MDlOO3A
M07003B
M07004
M07007
M07007A

ITI32
1Tl32
1Tl29
1Tl29
ITI29

MEM807A
MEM814
MEM816
MEM817
MEM823

3Nl72
3N161
3Nl72
3N172
MFE823

LMl13
LM114
lM114AH
LM114H

ICL8069
!TI20
1Tl20A
ITI20A
1Tl20.

MlO6
M107
M108
Ml13
Ml14

3N166
3N189
3N191
3N161
3N161

M07007B
M0708
M0708A
M0708B
.M08001

1Tl29
1Tl29
1Tl29
IT129
ITI20

MEM954
MEM954A
MEM954B
MEM955
MEM955A

3N188
3N188
3N188
3N190
3N190

lM115
LMIlSA
LM115AH
LM1l5H
LM194

1T120
1Tl20A
1Tl20A
1Tl20
ITI20A

MIl6
Ml17
M119
M163
M164

MIl6
2N4351
3N161
3N163
3N164

MD8002
M08003
M0918
M0918A
MD918B

!TI20
1Tl22
1T122
ITI22
1Tl22

MEM95.5B
MF510
MFB03
MF818
MFE2000

3N190
2N4092
2N4338
2N4858
2N4416

LM305
LM308
LM394
LM4250
LS3069

LM305
LM308
1Tl20A
LM4250
2N5458

M5001
M511
M511A
M517
M58434P

ICM7269
3Nl72
3N172
3N163
ICM70380

M0982
M0984
MEFl03
MEFlO4
MEF3069

1Tl39
1Tl39
2N5457
2N5459
2N4341

MFE2001
MFE2004
MFE2005
MFE2006
MFE2007

2N4416
2N4093
2N4092
2N4091
2N4860

LS3070
LS3071
LS3458
LS3459
LS3460

2NS4S8
2N5458
J204
J204
J204

M58435P
M58436-001P
M58437-001P
MAl807
MA7809

!CMll15B
ICM7050G
ICM7070L
1Tl32
1Tl32

MEF3070
MEF3458
MEF3459
MEF3460
MEF3684

2N4339
2N4341
2N4339
2N4338
2N3684

MFE2008
MFE2009
MFE2010
MFE2011
MFE2012

2N4859
2N4859
2N4859
2N5433
2NS434

LS3684
LS3685
LS3686
LS3687
LS3819

2N3684
2N3685
2N3686
2N3687
2N5484

MAT-QIAH
MAT-01FH
MAT-01GH
MAT-QIH
MB101

ITI40·
1Tl40
1Tl40
1T140
ICM7245B

MEF3685
MEF3686
MEF3687
MEF3821
MEF3822

2N3685
2N3686
2N3687
2N3821
2N3822

MFE2012
MFE2093
MFE2094
MFE2095
MFE2133

2N5433
2N4338
2N4339
2N4340
2N4860

lS382 I
LS3822
LS3823
LS3921
LS3922

2N54S7
2NS458
2N5458
2N3921
2N3922

MBI03
MBlO5
MBlO7
MB108
MB143

ICM7245E
ICM7245U
ICM72450
ICM7245E
ICM7245A

MEF3823
MEF3954
MEF3955
MEF3956
MEF3957

2N3B23
2N3954
2N3955
2N3956
2N3957

MFE2912
MFE3002
MFE3003
MFE3020
MFE3021

2N5433
3N170
3N164
3N166
3N166

LS3966
LS3967
LS3968
LS3969
LS4220

ITE4416
ITE4416
ITE4416
ITE4416
J204

MB144
MB510
MB511
MB512
MB513

ICM7245F
ICMll15B
ICM7050H
ICM7050H
ICM7050G

MEF3958
MEF4223
MEF4224
MEF4391
MEF4392

2N3958
2N4223
2N4224
ITE4391
ITE4392

MFE4007
MFE4008
MFE4009
MFE4010
MFE4011

2N3686
2N3686
2N3685
2N2608
2N2608

LS4221
LS4222
LS4223
LS4224
LS4338

J202
J203
J202
J202
2N5457

MB521
MB522
MB531
MB533
M8541

ITS9068
ITS9068
ICM7050H
ICM7050H
ICM7052

MEF4393
MEF4416
MEF4856
MEF4857
MEF4858

ITE4393
ITE4416
2N4856
2N4857
2N4858

MFE4012
MFE823
MHW590
MJ41
MJ6

2N2609
ITI700
AD590
ICM1424C
ICM7220

LS4339
LS4340
LS434f
LS4391
LS4392

2NS457
2N5457
2N5458
ITE4391
ITE4392

MB542
M8le
MCC14440
MCC14483
M01l20

ICM7052
ICM7245U
ICM1424C
ICM72lO
1Tl22

MEF4859
MEF4860
MEF4861
MEF5103
MEF5104

2N4859
2N4860
2N4861
ITE4416
ITE4416

MKlO
MM450H
MM451H
MM4520
MM452F

2N4416
MM450H
MM451H
MM452J
MM452F

LS4393
LS4416
LS4856
LS4857
LS4858

ITE4393
ITE4416
ITE4091
ITE4092
1TE4093

M01l21
MOl122
MOl123
MOl129
M01l3Q

1Tl22
ITI22
1Tl39
1Tl29
1Tl39

MEF5105
MEF5245
MEF5246
MEF5247
MEF5248

ITE4416
ITE4416
2N5484
2N5486
2N5486

MM455H
MM550H
MM551H
MM5520
MM552F

MM455H
MM550H
MM5S1H
MM552J
MM552F

LS4859
LS4860
LS4861
LS5103
LS5104

ITE4091
ITE4092
ITE4093
2N5484
2N5485

M02218
M02218A
M02219
M02219A
M02369

1Tl29
1Tl29
tTI29
1Tl29
1Tl29

MEF5284
MEF5285
MEF5286
MEF5561
MEF5S62

2N5484
2N5485
2N5486
U401
U402

MM555H
MMFl
MMF2
MMF3
MMF4

MM555H
2N5197
2N3921
2N5198
2N3922

LS5105
LS5245
LS5246
LS5247
LS5248

2N5486
ITE4416
2N5484
2N5486
2N5486

M02369A
M02369B
M02904
M02904A
M02905

1T129
ITI22
1Tl39
In39
1Tl39

MEF5563
MEM511
MEM511A
MEM511C
MEM517

U403
3N172
3Nl72
3Nl72
3Nl72

MMF5
MMF6
MMT3823
MN6091
MN6092A

2N5199
2N3955A
2N3823
ICM7038B
ICM7038E

LS5358
LS5359
LS5360
LS5361
LS5362

J204
J204
J202
J202
J203

M02905A
M02974
M02975
M02978
M02979

1Tl39
1Tl20
1Tl20
1T120
1Tl20

MEM517A
MEM517B
MEM517C
MEM550
MEM550C

3Nl72
3Nl72
3N172
3N189
3N189

MN6093
MN6252
MP301
MP302
MP303

ICM70S1A
ICM7050G
ITl24
ITl24
ITI24

LS5363
LS5364
LS5391
LS5392
LS5393

J203
J203
2N4867A
2N4868A
2N4869A

M03008
M03250
M03250A
M03251
M03251A

1Tl20
1Tl32
1Tl31
1Tl32
ITl31

MEM550F
MEM551
MEM551C
MEM556
MEM556C

3N189
3N190
3N189
3Nl72
3Nl72

MP310
MP311
MP312
MP313
MP318

2N4045
2N4045
2N4044
1Tl24
ITI20A

LS5394
LS5395

LS5458

2N4869A
2N4869A
2N4)!6.9A
2NS457 .
2N5458

MD3409
M03410
M03467
M03725
M03762

1Tl29
1Tl29
ITl39
1Tl29
ITl39

MEM560
MEM560C
MEM561
MEM561C
MEM562

3N161
3Nl61
3N163
3N163
2N4351

MP350
MP351
MP352
MP358
MP360

ITI32
ITI30
1Tl30
1Tl30A
ITI32

LS5459
LS5484
LS5485
LS5486
LS5556

2N5459
2N5484.
2N5485
2N5486
2N3685

MD4957
MD5DOO
MD5DOOA
MD5DOOB
M07000

1Tl32
1Tl32
1Tl32
1Tl32
1Tl29

MEM562C
MEM563
MEM563C
MEM711
MEM712

2N43S1
2N4351
2N4351
M1l6
M1l6

MP361
MP362
MP3954
MP3954A
MP3955

ITl30A
1Tl30A
2N3954
2N3954A
2N3955

LS5557
LS5558
LS5638
LS5639
LS5640

2N3684
2N3684
2N5638
2N5639
2N5640

M07001
MD7002
M07002A
MD7002B
MD7003

1Tl39
1Tl22
1Tl22
1Tl22
ITl32

MEM712A
MEM713
MEM806
MEM806A
MEM807

M1l6
3N170
3N163
3N163
3Nl72

MP3956
MP3957
MP3958
MP5905
MP5906

2N3956
2N3957
2N3958
2N5905
2N5906

LM114~

tm~~.

"CONSULT FACTORY

..

,

28

INTEASIL
EQUIVALENT

ALTERNATE
SOURCE PRODUCT

ALTERNATE
SOURCE PRODUCT

INTERSIL
EQUIVALENT

ALTERNATE
SOURCE PRODUCT

INTERSIL
EQUIVALENT

ALTERNATE
SOURCE PRODUCT

INTERSIL
EQUIVALENT

MPS907
MP5908
MPS909
MP5911
MP5912

2N5907
2N5908
2N59a9
2N5911
2N5912

NF4303
NF43a4
NF4445
NF4446
NF4447

2N5459
2N5458
2N5432
2N5433
2N5433

PF511
PF5301
PF5301-1
PF5301-2
PF5301-3

2N5114
2N4118A
2N4117A
2N4118A
2N4118A

SG3D5

5G308
5G4250
SG733
SI7135CPI

LM305
LM308
LM4250
UA733
ICl7135CPI

MP7520JD
MP7520JN
MP7520KD
MP7520KN
MP7520lD

AD7520JD
AD7520JN
AD7520KD
AD7520KN
AD7520lD

NF4448
NF500
NF501
NF506
NF5101

2N5433
2N4224
2N4224
2N4416
2N4867

PU091
PlI092
PlI093
Pl1094
PM308

2N3823
2N3823
2N3823
2N3823
LM308

517660
517661
5JM181BCC
SJMIBIBIC
5JM182BCC

ICL7660
ICL7662
JM38510/11101BCC
JM38510/11101BIC
JM38510/11102BCC

MP7520lN
MP7520SD
MP7520TD
MP7520UO
MP7521JO

AD7520lN
A0752050
AD7520TD
AD7520UD
AD752IJD

NF5102
NF5103
NF511
NF5163
NF520

2N4867
2N4867
2N4860
2N4341
2N3684

PN3684
PN3685
PN3686
PN3687
PN4091

2N3684
2N3685
2N3686
2N3687
ITE4091

5JM182BIC
SJM184B£C
5JM185BEC
5JM187BCC
SJM18781C

JM385101l1I02BIC
JM3851O/ll103BEC
JM38510/11104BEC
JM38510/11105BCC
JM38510/11105BIC

MP752lJN
MP7521KD
MP7521KN
MP75211D
MP7521LN

AD752lJN
AD7521KD
AD7521KN
AD7521LD
AD75211.N

NF521
NF522
NF523
NF530
NF5301

2N3685
2N3686
2N3865
2N4341
2N4118A

PN4092
PN4093
PN4220
PN4221
PN4222

ITE4092
ITE4093
J204
J202
J203

5JM188BCC
5JM188BIC
5JM190BEC
SJM191BEC
SL301AT

JM38510/11106BCC
JM38510/11106BIC
JM38510/11107BEC
JM3851O/ll108BEC
1Tl29

MP7521SD
MP752lTD
MP7521UO
MP7523JN
MP7523KN

AD7521SD
AD7521TD
A07521U0
A07523JN
AD7523KN

NF5301-1
NF5301-2
NFS301-3
NF531
NF532

2N4117A
2N4118A
2N4118A
2N4339
2N4341

PN4223
PN4224
PN4342
PN4360
PN4391

J204
J202
2N5461
2N5460
ITE4391

SL30IBT
5L301CT
5L301ET
SL360C
5L362C

1T129
1Tl29
ITl29
1T129
ITl29

MP7523LN
MP7621AD
MP7621BO
MP762lJN
MP762J KN

AD7523LN
AD7541AD
AD7541BD
AD754IJN
AD7541KN

NF533
NF5457
NF5458
NF5459
NFS484

2N4339
2N5457
2N:;458
2N5459
2N5484

PN4392
PN4416
PN4856
PN4857
PN4858

ITE4392
ITE4416
2N48S6
2N4857
2N4858

5M5011
5M5510
SM5530B
5U2000
5U2020

ICM7050G
ICMll15B
ICM7070P
2N4340
2N3954

MP7621S0
MP7621TD
MP804
MP830
MP831

AD7541SD
AD7541TO
2N5520
2N5520
2N5521

NF5485
NF5486
NF5555
NF5638
NF5639

2N5485
2N5486
2N5484
2N5638
2N5639

PN4859
PN4860
PN4861
PN5033
PTC151

2N4859
2N4860
2N4861
2N5460
2N5484

5U2021
5U2022
SU2023
SU2024
5U2025

2N3954
2N3954
2N3954
2N3954
2N3954

MP832
MP833
MPS35
MP836
MPS37

2N5522
2N5523
2N3954
2N3955
2N3955

NF5640
NF5653
NF5654
NF580
NF581

2N5640
2N4860
2N4861
2N5432
2N5432

PTC152
51424
SA2253
SA2254
SA2255

2N5485
ICM1424C
ITl22
ITl22
1T122

5U2026
5U2027
SU2028
5U2029
5U2029

2N3954
2N3954
2N3954
2NSI97
2N3954

MP838
MP839
MP840
MP841
MP842

2N3956
2N3957
2N5520
2N5521
2N5523

NF582
NF583
NF584
NF585
NF6451

2N5433
2N5434
2N5433
2N4859
U310

SA2644
SA2648
SA2710
SA271!
SA2712

1Tl20
ITI20
1T120
ITI20
1Tl21

5U2030
5U2030
SU2031
5U2031
5U2032

2N3955
2N3954
2N5198
2N3954
2N3954

MPFl02
MPFI03
MPFI04
MPF105
MPFl06

2N5486
2N5457
2N5458
2N5459
2N5485

NF6452
NF6453
NF6454
NKT80111
NKT80112

U310
U310
U310
2N4220
2N4220

SA2713
SA2714
SA271S
5A2716
SA2717

IT121
ITl22
1Tl20
ITl20
ITl21

SU2033
5U2034
5U2034
5U2035
5U2035

2N3954
2N3955
2N3954
2N3955
2N3954

MPFl07
MPFI08
MPFI09
MPFlll
MPF112

2N5486
2N5486
2N5484
2N5458
2N5458

NKT80113
NKT80211
NKT80212
NKT80213
NKT80214

2N3821
2N4339
2N4339
2N4339
2N4339

SA2718
SA2719
SA2720
5A2721
SA2722

ITl22
11120
11121
IT122
IT120

SU2074
5U2075
5U2076
SU20n
5U2077

2N3954
2N3954
2N3954
2N395S
2N3954

MPFl61
MPF208
MPF209
MPF256
MPF4391

2N5398
2N3821
2N3821
ITE4416
ITE4391

NKT80215
NKTS0216
NKTB0421
NKT80422
NKTB0423

2N4339
2N4339
2N4220
2N4220
2N4220

SA2723
SA2724
SA2726
SA2727
SA2738

1T121
ITI22
11122
11122
11120A

5U2078
SU2079
SU2080
5U2081
SU2098

2N3955
2N3955
U404
U404
2N5197

MPF4392
MPF4393
MPF820
MPF970
MPF971

ITE4392
ITE4393
J310
J175
J175

NKT80424
NPCI08
NPC211N
NPC212N
NPC213N

2N4220
2N5484
2N4338
2N4338
2N4338

SA2739
5CL54301
SClS478
50Flool
SDFlD02

1Tl20
ICM1424C
ICM7269
2N5432
2N5433

5U2098A
5U20988
SU2099
5U2099A
5U2365

2N5197
2N5196
2N5197
2N5197
2N3954

MPS5010
M5M5OOl
MSM5011
MSMS977
MTF}Ol

ICLB069
ICM7269
ICM1424C
ICM1424C
2NS484

NPC214N
NPC215N
NPC216N
NPD5564
NPD5565

2N4339
2N4339
2N4339
IT550
IT550

SOFlOD3
SOF500
SDF501
50F502
SOF503

2N5434
2N5520
2N5520
2N5520
2N5520

SU2365A
5U2366
5U2366A
5U2367
5U2367A

2N3954
2N3955
2N3955
2N3955
2N3955

MTFI02
MTFI03
MTFlO4
N05700
ND5701

2N5484
2NS4S7
2N5459
ITl20A
11120.!\

NP05566
NP08301
NP08302
NPD8303
OT3

IT550
2N3954
2N3955
2N3956
2N4338

SDFSQ4
SOF50S
50F506
SDF507
50F508

2N5520
2N5520
2N5520
2N5520
2N5520

5U2368
5U2368A
5U2369
5U2369A
5U2410

2N3956
2N3956
2N3957
2N3957
2N5907

ND5702
NDF9401
NDF9402
NDF9403
NDF9404

1Tl20
IT500
IT501
1T502
IT503

PlOO4
PlOO5
P1027
PI028
P1"029

2N5116
2N5115
2N5267
2N5270
2N5270

50F509
SOF51O
SDF512
SOF513
SDF514

2N5520
2N3954
2N3954
2N3954
2N3954

SU2411
5U2412
5U2652
5U2652M
5U2653

2N5908
2N5909
U401
U401
U401

NOF9405
NDF9406
NDF9407
NDF9408
NDF9409

IT504
IT500
IT501
1T502
IT503

PI069E
Pl086E
PI087E
P1117E
P1118E

2N2609
2N5115
2N5516
2N5640
2N5641

SDF661
50F662
SOF663
SES3819
SFT601

1Tl22
ITl22
11122
2N5484
2N4338

5U2653M
5U2654
SU26S4M
5U2655
5U2655M

U401
U401
U401
U402
U402

NDF9410
NE590
NE592
NF3819
NF4302

IT504
AD590
NE592
2N5484
2N5457

Pll19E
PF510
PF5101
PF5102
PF5103

2N5640
2N5115
2N4867
2N4867
2N4867

SFT602
SFT603
SFT604
5G105
5Gl08

2N4338
2N4339
2N4339
LM105
LMI08

5U2656
5U2656M
5X3819
5X3820
TC803lP

U404
U404
2N5484
2N260B
ICM7038A

"CONSULT FACTORY

29

':LTERNATE
SOURCE PRODUCT

IriTERSIL
EQUIVALENT

ALTERNATE
80URCE PRODUCT

'INTI!R8IL
EQUIVALENT

ALTERNATE
80URCE PRODUCT

INTER81L
I;QUIVALENT

ALTERNATE
80URCE PRODUCT

INTf;RSIL
EQUIVALENT

TC8032P

ICM7038F

T0710

1T122

U112

TC8051P
TC8052P
TC8056PA
TC8057P

ICM7038B
ICM7038E
ICMI115B
ICM70380

T0711
T07l3
TIS14
TlS25

1Tl22
ITl22
2N434O
2N3954

~m

Ul177
U1178

2N2608
2N2608
2N2608
2N4220
2N3821

U285
U290
U291
U295
U296

2N5454
2N5432
2N5434
2N5432
2N5434

TOl00
TOI0l
TOI02
T02CO
T0201

1Tl29
1Tl29
ITl29
1T129
1T129

TIS26
TIS27
TI534
TIS41
TlS42

2N3954
2N3955
2N5486
2N4859
2N4393

U1179
U1180
U1181
U1182
U1277

2N3821
2N4221
2N4220
2N3821
2N3684

U300
U3000
U3001
U3002
U301

2N5114
2N4341
2N4339
2N4338
2N5115

TD202
T02219
T0224
T0225
T0226

ITl29
1T129
ITl22
1Tl22
1T122

TI558
TIS59
TIS68
TlS69
TIS70

2N5484
2N5486
2N3955A
2N3955A
2N3956

U1278
U1279
U1280
U1281
U1282

2N3685
2N3686
2N3684
2N3822
2N4341

U3010
U3011
U3012
U304
U305

2N4341
2N4340
2N4338
U304
U305

T0227
T0228
T0229
T0230
T0231

ITl22
ITI22
ITl22
ITl21
1T121

TIS73
TIS74
TI575
TIS88
TIS88A

ITE4391 '
ITE4392
ITE4393
2N4416
2N4416

U1283
U1284
UI285
U1286
U1287

2N434O
2N4341
2N4220
2N4341
2N4092

U306
U308
U309
U310
U311

U306
U308
U309
U310
U310

T0232
T0233
T0234

TIXS33

T0236

ITl22
1T122
ITl22
ITl22
1T122

TIXS42

2N4392
2N4857
2N4391
2N4859
2N5639

Ul321
U1322
U1323
U1324
U1325

2N4860
2N3822
2N3822
2N3687
2N3686

U312
U314
U315
U316
U317

2N5397
2N5555
2N5397
U309
U310

T0237
T0238
T0239
T0240
T0241

1T122
1Tl22
1T122
1T121
1Tl21

TIXS59
TIXS78
TIXS79
TU82CL
TU82CN

2N5459
2N4341
2N4341
OGM182BA
OGM182CJ

U133
U1420
U1421
U1422
U146

2N2608
2N3821
2N3822
2N3822
2N2608

U320
U321
U322
U328
U329

2N5433
2N5434

T0242
T0243
T0244
T0245
T0246

ITl20A
1Tl20A
1Tl29
1Tl29
1Tl29

TL1821L
TU821N
TU82ML
TU85CJ
TU85CN

DGM182BA

OGM182CJ
OGM182AA
IH5045CJE
IH5045CPE

U147
U148
U149
U168
U1714

2N2608
2N2608
2N2609
2N2609
2N4340

U330
U331
U350
U401
U402

U401
U402

T0247
T0248
TD250
T02905
T0400

1Tl29
1T129
IH20A
In39
11139

TU851J
TU851N
TU85MJ
TUBSCL
TU88CN

IH5045CJE
IH5045CPE
IH5045MJE
IH5042CTW
IH5042CPE

U1715
U182
U183
U1837E
UI84

2N4340
2N4857
2N3824
2N5486
2N5397

U403
U404
U405
U406
U410

U403
U404
U405
U406
2N3955

T0401

TD402
TOSOO
T0501
T0502

ITl39
1Tl39
1Tl39
1T139
1Tl39

TU881L
TUBSIN
TU88ML
TLl91CJ
TU91CN

IH5042CTW
IH5042CPE
IH5042MTW
IH5043CJE
IH5043CPE

U1897E
U1898E
UI899E
UI97
UI98

U1897
U1898
U1899
2N4338
2N4340

U411
U412
U421
U422
U423

2N3956
2N3958
2N5908
2N5908
2N5909

T0509
T0510
T05l!
T0512
T0513

1Tl32
1T132
1T132
1Tl32
1Tl32

TU911J
TU911N
TU91MJ
Tl503
TL592

IH5043CJE
IH5043CPE
IH5043MJE
A0503
NE592

UI99
UI994E
U200
U20\
U202

2N4341
2N4416
2N4861
2N4860
2N4859

U424
U425
U426
U430
U431

2N5908
2N5908
2N5909
J309(X2)
J310(X2)

T0514
T0517
T0518
T0519
T0520

1T132
1T132
1Tl32
1T132
1T139

TlC555
TN4117
TN4117A
TN4118
TN4118A

ICM7555
2N4117
2N4117A
2N4118
2N4118A

U2047E
U221
U222
U231
U232

2N4416
2N4391
2N4391
U231
U232

U440
U441
UA105
UAI08
UA305

IT5911
IT5912
LMI05
LM108
LM305

T0521
T0522
T0523
T0524
T0525

1Tl39
1T139
ITl39
1T139
1T132

TN4119
TN4119A
TN4338
TN4339
TN4340

2N4119
2N4119A
2N4338
2N4339
2N4340

U233
U234
U235
U240
U241

U233
U234
U235
2N5432
2N5433

UA308
UA733
UCl00
UCIIO
UC115

LM308
UA733
2N3684
2N3685
2N434O

T0526
T0527
T0528
T05432
T05433

ITl32
1T131
ITl31
2N5432
2N5433

TN4341
TN5277
TN5278
TP5114
TP5115

2N4341
2N4341
2N4341
2N5114
2N5115

U242
U243
U244
U248
U248A

2N5432
2N5433
2N5433
2N5902
2N5906 '

UCI20
UCI30
UC155
UCI700
UC1764

2N3686
2N3687
2N4416
3N163
3N163

T05434
T0550
T05902
T05902A
T05903

2N5434
1T129
2N5902
2N5902
2N5903

TP5116
TSC426
TSC7106CJL
TSC7106CPl
TSC7106RCPL

2N5116
ICL7667
ICl7l06CJL
ICl7l06CPL
ICL7106RCPL

U249
U249A
U250
U250A
U251

2N5903
2N5907
2N5904
2N5908
2N5905

UC20
UC200
UC201
UC21
UC210

2N3686
2N3824
2N3824
2N3687
2N4416

T05903A
T05904
T05904A
T05905
T05905A

2N5903
2N5904
2N5904
2N5905
2N5905

TSC7107CJL
TSC7107CPL
TSC7107RCPL
TSC7109CPL
TSC7109IJL

ICL7107CJL
ICL7107CPL
,ICL7107RCPL
ICL7109CPL
ICL7109IJL

U251A
U252
U253
,U254
U255

2N5909
IT5911
IT5912
2N4859
2N4860

UC2130 '
UC2132
UC2134
UC2136
UC2138

2N5452
2N5453
2N5454
2N5454
2N5454

T05906
T05906A
T05907
T05907A
T05908

2N5906
2N5906
2N5907
2N5907
2N5908

TSC7109MJL
TSC7116CJL
TSC7116CPL
TSC7117CJL
TSC7117CPL

ICL7109MJL
ICL7116CJL
ICL7116CPL
ICL7117CJL
ICL7117CPL

U256
U257
U257/T0·71
U266
U273

2N4861
U257
U257/TO·71
2N4856
2N4118A

UC2139
UC2147
UC2148
UC2149
UC220

2N3958
2N3958
2N3958
2N3958
2N3822

T0590BA
T05909
T05909A
T05911
T059\1A

2N5908
2N5909
2N5909
IT5911
IT59\1

TSC7126CJL
TSC7126RCPL
TSC7135CJI
TSC7135CPI
TSC7650

ICL7126CJL
ICL7126RCPL
ICL7135CJI
ICL7135CPI
ICL7650

U273A
U274
U274A
U275
U275A

2N4118A
2N4119A
2N4119A
2N4119A
2N4119A

UC240
UC241
UC250
UC251
UC2766

2N4869
2N4869
2N4091
2N4392
3N166

T05912
TD5912A
T0700
T0701
T0709

IT5912
IT5912
1T122
ITl22
ITI22

TSC7660
TSC9491
TI·590
U110
U\lI

ICL7660
ICL8069
A0590
2N2608
2N2608

U280
U281
U282
U283
U284

2N5452
2N5453
2N5453
2N5453
2N5454

UC300
UC310
UC320
UC330
UC340

2N2608
2N2607
2N2607
2N2607
2N2607

TD235

"CONSULT FACTORY

TlXS35
TIXS36
TIXS41

30

2~5433

..
....
..

ALTERNATE
SOURCE PRODUCT

INTERSIL
EQUIVALENT

UC40
UC400
UC401
UC41
UC410

2N2608
2""5270
2N5116
2N2608
2N5268

UC420
UC450
UC451
UC588
UC703

2N5267
2N5114
2N5116
2N4416
2N4220

UC704
UC705
UC707
UC714
LJC714E

2"'14220
2N4224
2N4860
2N3822
2N4341

UC734
UC734E
UC751
UC752
UC753

2N4416
2N4416
2N4340
2N4340
2N4341

UC754
UC755
UC756
UC805
UC807

2N4340
2N4341
2N4340
2N5270
2N5115

UC814
UC851
UC853
UC854
UC855

2N5270
2N2608
2N2608
2N2608
2N2609

UCN-4111M
UCN-4112M
UCN-4113M
UHP-503
UPDl952P

lCM7038C
ICM7051A
ICM70388
AD503
ICM7220MFA

UPD1962C
UPD1963C
UPD815C
UPD816C
UPD820C

ICM7050G
ICM7050
ICM7038E
ICM70388
ICMl115B

UPD833G
UTlOO

ICM7223

unOI

ALTERNATE
SOURCE PRODUCT

INTERSIL
.EQUIVALENT

ALTERNATE
SOURCE PRODUCT

2N5397

UXC2910
VCRION

2N5397
1T126
2N4869

VCRllN
VCR12N
VCR13N
VCR20N
VCR2N

VNRllN
2N3958
2N3958
2N4341
VCR2N

VCR3P
VCR4N
VCR5P
VCR6P
VCR7N

VCR2P
VCR4N
VCR5P
VCR6P
VCR7N

VF28
VF811
YF8l5
VFW40
VFW40A

2N4392
2N4858
2N4858
lT122
1T120

YR-8069
W245A
W2458
W245C
W300

ICl8069
ITE4416
IT£4416
ITE4416
2N5398

W300A
W300B
W300C
W300D
WG-8038

2N5397
2N5397
2N5397
2N5398
ICl8038

WK5457
WK5458
WK5459
XR8038
ZD140

2N5457
2N5458
2N5459
ICl8038
1Tl29

ZDT41
ZDT42
ZOT44
ZDT45

IT129
1Tl29
1Tl29
1Tl29

"CONSULT FACTORY

31

INTERSIL
EQUIVALENT

ALTERNATE
SOURCE PRODUCT

INTERSIL
EQUIVALENT

Section 1 - Selector Guides

2.DISCRETES
Switches-Junction FET
N Channel
PART
NUMBER PACKAGE

rOS(ON)
n
Max

Vp
v
Min

IGSS

BVGSS

ID(OFF)

loSS

tap

Crss

ClsS

Max

pA
Max

V
Min

pA
Max

rnA
Min

ns
Max

pF
Max

pF
Max

-4.0
-2.0

8.0
-10.0
-5.0

-100
-250
-250

-50
-40
-40

250
250

50
25

150
75

6
25
25

High Isolation
High Isolation
High Isolation

-0.5

-3.0

-250

-40

250

5

30

50
90
180

3
6
6
6

25

High Isolation

-10.0
-10.0
-7.0
-7.0
-5.0
-5.0

-200
-40
-200
40
-200
40

-40
-50
-40
-50
-40
-50

200
200
200
200
200
200

30
30
15
15
8
8

65
65
95
95
140
140

5
5
5

5

16
16
16
16
16
16

High
High
High
High
High
High

55
75
100

3.5
3.5
3.5

14
14
14

High Isolation
High Isolation
High Isolation

34
60
120
34
60
120

8
8
8
8
8
8

18
18
18
18
18
18

High
High
High
High
High
High

Max

COMMENTS

2N3824
2N3970
2N3971
2N3972

TO-72
TO-18
TO-18
TO-18

250
30
60
100

" 2N4091
2N4091A
" 2N4092
2N4092A
" 2N4093
2N4093A

TO-18
TO-18
TO-18
TO-18
TO-18
TO-18

30
30
50
50
80
80

-5.0
-5.0
-2.0
-2.0
-1.0
-1.0

2N4391
2N4392
2N4393

TO-18
TO-18
TO-18

30
60
100

-4.0
-2.0
-0.5

-10.0
-5.0
-3.0

-100
-100
-100

-40
-40
-40

100
100
100

50
25
5

2N4856
2N4857
2N4858
2N4859
2N4880
2N4861

TO-18
TO-18
TO-18
TO-18
TO-18
TO-18

25
40
60
25
40
60

-4.0
-2.0
-0.8
-4.0
-2.0
-0.8

-10.0
-6.0
-4.0
-10.0
-6.0
-4.0

-250
-250
-250
-250
-250
-250

-40
-40
-40
-30
-30
-30

250
250
250
250
250
250

50
20.
8
50
20

2N4978

TO-18

20

-2.0

-8.0

-500

-30

500

15

55

8

35

Low rOS(ON)

2N5432
2N5433
2N5434

TO-52
TO-52
TO-52

5
7
10

-4.0
-3.0
-1.0

-10.0
-9.0
-4.0

-200
-200
-200

-25
-25
-25

200
200
200

150
100
30

41
41
41

15
15
15

30
30
30

Low rOS(ON)
Low rOS(ON)
Low rOS(ON)

2N5555

T0-92

150

-10.0

-lnA

-25

10nA

15

35

1.2

5

Low Cost

2N5638
2N5639
2N5640
2N5653
2N5654

T0-92
TO-92
T0-92
TO-92
TO-92

30
60
100
50
100

-12.0
-8.0
-6.0
-12.0
-8.0

-lnA
-lnA
-lnA
-lnA
-lnA

-30
-30
-30
-30
-30

lnA
50
lnA25
lnA
5
lnA
40
lnA
15

24
44
63
24
44

4
4
4
3.5
3.5

10
10
10
10
10

Low
Low
Low
Low
Low

ITE4091
ITE4092
iTE4093

TO-92
TO-92
TO-92

30
50
80

-5.0
-2.0
-1.0

-10.0
-7.0
-5.0

-200
-200
-200

-40
-40
-40

200
200
200

30
15
8

65
95
140

5
5
5

16
16
16

Low Cost
Low Cost
Low Cost

ITE4391
ITE4392
ITE4393

TO-92
TO-92
TO-92

30
60
100

-4.0
-2.0
-0.5

-10.0
-5.0
-3.0

-100
-100
-100

-40
-40
-40

100
100
100

50
25
5

55
75
100

3.5
3.5
3.5

14
14
14

Low Cost
Low Cost
Low Cost

Jl05
Jl06
Jl07
Jl08
Jl09
Jll0
Jlll
Jl12
Jl13
Jl14

TO-92
TO-92
TO-92
TO-92
TO-92
TO-92
TO-92
TO-92
TO-92
TO-92

3
6
8
8
12
18
30
50
100
150

-4.5
-2.0
-0.5
-3.0
-2.0
-0.5
-3.0
-1.0
-0.5

-10.0
-6.0
-4.5
-10.0
-6.0
-4.0
-10.0
-5.0
-3.0
-10.0

-3nA
-3nA
-3nA
-3nA
-3nA
-3nA
-lnA
-lnA
-lnA
-lnA

-25
-25
-25
-25
-25
-25
-35
-35
-35
-25

3nA
3nA
3nA
3nA
3nA
3nA
lnA
lnA
lnA
lnA

500
200
100
80
40
10
20
5
2
15

"
"
"
"
"
"

"Also available as JAN/JANTX & JANTXV
""Most TO-92's afe available lead formed to a TO-18 or TO-5 configuration

1-1

8

150
75
30
100
80
100
80

150
75
30

20
20
20
41
41
41
48
48
48
26

5
5

Isolation
Isolation
Isolation
Isolation
Isolation
Isolation

Isolation
Isolation
Isolation
Isolation
Isolation
Isolation

Cost
Cost
Cost
Cost
Cost

Lowest rOS(ON)
Lowest rOS(ON)
Lowest rOS(ON)
Low Cost
Low Cost
Low Cost
Lowest Cost
Lowest Cost
Lowest Cost
Low Cost

2. DISCRETES
Switches .... Junction FET
N Channel
rDS(ON)
PART
NUMBER

PACKAGE

Il
Max

vp.

IGSS'

V

pA

BVGSS

V

ID(017Fl

loss
rnA
Min

tap.
ns
Max

Cras

Clss

pF
Max

pF
Max

15
8

65
95
140

5
5
5

16
16
16

Low Cost
Low Cost
Low Cost

41
41
41

15
15
15

30

Lowest rOS(ON)
Lowest rOS(ON)
Lowest rOS(ON)

8
8

30
30

8

30

Low Cost
Low Cost
Low Cost

5
5
5

16
16
16

Low Cost
Low Cost
Low Cost

Min

Max

Max.

Min

pA
Max

-10.0
-7.0
-5.0

-200
-200
-200

-40
-40
-40

200
200
200

30

PN4091
PN4092
PN4093

10-92
TO-92
TO-92

50
80

-5.0
-2.0
-1.0

PN5432
PN5433
PN5434

TO-92
TO-92
TO-92

5
7
10

-4.0
-3.0
-1.0

-10.0
-9.0
-4.0

-200
-200
-200

-25
-25
-25

200
200
200

150
100
30

U200
U201
U202

TO-18
TO-18
TO-18

150
75
50

-0.5
-1.5
-3.5

-3.0
-5.0
-10.0

-InA
-1nA
-1nA

-30
-30
-30

InA
InA
1nA

3
15

U1897
UI898
UI899

TO-92
TO-92
TO-92

30

-5.0
-2.0
-1.0

-10.0
-7.0
-5.0

-400
-400

-40
-40
-40

200
200
200

30

50
80

-400

'Also available as JAN/JANTX & JANTXV
"Most TO-92's are available lead formed to a TO'18 or TO-5 configuration

1-2

30
30
15

8

Max

25
75
150
65
95
140

30

30

COMMENTS

DlL

2. DISCRETES
Switches-Junction FET
P Channel
PART
NUMBER

PACKAGE

rDS(ON)
fI
Max

Vp

IGSS

BVGSS

'D(OFF)

V
Min

Max

pA
Max

V
Min

pA
Max

loss
mA
Min Max

5.0
5.0
9.5

15nA
15nA
15nA

30
30
30

-2nA
-2nA
-2.5nA

-3-30
-15-30
-15-SO

9.5
5.5

1.2nA
1.2nA

25
25

-1.2nA
-1.2nA

-10
-2

12.0
7.0

2nA
2nA

30
30

-10nA
-10nA

-10

2N3382
2N3384
2N3386

TO·72
TO·72
TO·72

300
lSO

1.0
4.0
4.0

2N3993
2N3994

TO·72
TO·72

lSO
300

4.0
1.0

2NS018
2NS019

TO·18
TO·18

75
150

• 2N5114
• 2N5115
• 2N5116

TO·18
TO·18
TO·18

75
100
150

5.0
3.0
1.0

10.0
6.0
4.0

500
500
500

30
30
30

IT100
IT10l

TO-18
TO-18

75

60

2.0
4.0

4.5
10.0

200
200

J174
J175
J176
Jl77

TO-92
TO-92
TO-92
TO-92

125
2SO
300

5.0
3.0
1.0
0.8

10.0
6.0
4.0
2.25

PN5114
PN5115
PN5116

TO-92
TO-92
TO-92

75
100
lSO

5.0
3.0
1.0

U304
U305
U306

TO-18
TO-18
TO-18

85

5.0
3.0
1.0

180

85

110
175

tap
ns
Max

Crs•
pF
Max

C,••
Max

COMMENTS

16 typ Low rOS(ON)
16 typ Low rOS(ON)
16 typ Low rOS(ON)
4.5
4.5

16
16

-5

100
215

10
10

45
45

Low rOS(ON)
Low rOS(ON)

-500
-500

-30 -90
-15 -60
-5 -25

37
66
102

7
7
7

25
25
25

Low rOS(ON)
Low rDS(ON)
Low rOS(ON)

35
35

-100
-100

-20

12
12

35
35

TIL Compatible
TIL Compatible

lnA
lnA
lnA
lnA

30
30
30
30

-lnA
-lnA
-lnA
-lnA

-20 -100
-7 -60

45

-2 -25
-1.5 -20

90

10.0
6.0
4.0

500

30
30
30

-500
-500
-500

-30 -90
-15 -60
-5 -25

37
68
102

7
7
7

25
25
25

Low Cost
Low Cost
Low Cost

10.0
6.0
4.0

500

30
30
30

-500
-500
-500

-30 -90
-15 -60
-5 -25

70

105

7
7
7

27
27
27

High Off Isolation
High Off Isolation
High Offlsoiation

500

500
500
500

-500

• Also available as JAN/JANTX & JANTXV
"Most TO-92's are available lead formed to a TO-18 or TO-5 configuration

1-3

-10

22

Low Cost
Low Cost
Low Cost
TIL Compatible

70

140

·.·.B··~.·.<.··
.. ··>·.·."'.~.··.··.·:n.';0.,;;;;:"
;. :.:..·."·.·.......
; Stnb

'•
.
~.

2. DISCRETES
Switches and Amplifiers MOSFET
N·Channel
BVoss loss

9,.

loss

rO~ON)

PACKAGE

VGS(TH)
V
Min'

Max

ID(ON)
mA
Min

2N4351

TO-72

1.0

5.0

25

10nA

10

1000

300

3

High Input Z

3N170
3N171

TO·72
TO-72

1.0
1.5

2.0
3.0

25
25

10nA
10nA

10
10

1000
1000

200
200

10
10

. High Input Z
High Input Z

1T1750

TO-72

0.5

3.0

25

10nA

10

3000

50

10

M116
M117

TO-72
TO-72

1.0
1.0

5.0
5.0

30
30

lanA
10nA

100

PARJ
NUMBER

'Max

V
Min

pA
Max

pA
Max

"mho
Min'

ID(ON)
mA.·.
Max

COMMENTS

Low rOS(ON)
Diode Protected
High Input Z

lOQ
100

P·Channel
Generally used where max. isolation between signal.source and logic drive is required: switch "On" resistance varies with signal amplitude.

PART
NUMBER' PACKAGE

9,.

VGS(TH)
V
Min

BVoss
V
Min

loss

MIIIX

pA
Max

IGSS
pA
Max

I'mho
Min

rDS(ON)
0
Max

IIl(ON)
mA
Min

IIl(ON)
mA
Max

COMMENTS

2N4352·

TO-72

-1.0

-5.0

-25

-10nA

10

1000

600

":3

High Input Z

3N155
3N15SA
3N157
3N157A

TO-72
T0-72
TO-72
TO·72

-1.5
-l.S
-1.5
-1.5

-3.2
-3.2

-lnA
-250
-lnA
-250

10
10
10
10

1000
1000
1000
1000

600
300

-5

-5

-3.2

-35
-35
-35
-50

High
High
High
High

3N161
3Nl63
3N164

TO-72
TO-72
TO-72

-1.5
-2.0
-2.0

-5.0
-5.0
-5.0

-25
-40
-30

-10nA
-200
400

-100
-10
10

3500
2000
1000

3N172
3N173

TO-72
TO-72

-2.0
-2.0

-5.0
-5.0

-40
-30

-400

-200

-10nA

-500

IT1700
IT1701

T0-72
T0-72 .

-2.0
-2.0

-5.0
-5.0

-40
-40

200
200

100

-3.2

2000
2000

'-5
-5
-40

Input Z
Input Z
Input Z
Input Z

-3

-120
-30
-30

Diode Protected
High Input Z
High Input Z

250
350

-5
-S

-30
-30

Diode Protected
Diode Protected

400

-2
-2

250
300

-5

400

High Input Z
Diode Protected

Low Leakage Diodes
PART
NUMBER
10100
10101

PACKAGE

'R@ 1V
(PA)
Typ

IR@ 10 V, 125°C
(nA)
Max

BVR@ 1~
(V)
Min

TO-7S
TO-71

0.1
0.1

10
10

30
30

Note 1_ Used to protect the inputs of MOSFETs such as 3NI63, while maintaining input leakage < LM108

ISlAS
(pA Max)

SLEW
RATE
~/,..)

-

GBW
(MHz)

COMPEN·
SATION

VSUPPLY

EXT
INT

:20
:1:18
:1:9

~Mlx)

TEMPERATURE
RANGE
(OC)

Bipolar, Super·Beta
Bipolar, Super·Beta
CMOS, Selectable la

2.0
7.5
2,5,15

2000
50

1.6

1.0
1.0
1.4

•. ICL8007M
• ICL8007C

JFET Input Op-Amp
JFET Inpul Op-Amp

20
50

20
50

6
6

1.0
1.0

INT
INT

:18
:1:18

LH2108
LH2308
ICL7621

Bipolar, Super·Beta
Bipolar, Super·Beta
CMOS, Fixed la

2.0
7.5
2,5,15

2000
7000
50

--

EXT
EXT

0.16

1.0
1.0
0.48

INT

:1:20
:1:18
:1:9

ICL8043M
ICL8043C

JFET Input Op-Amp
JFET Input Op-Amp

20
50

20
50

6
6

1.0
1.0

INT
INT

:18
:1:18

ICL7631

CMOS, Selectable la

5,10,20

50

1.6

1.4

INT

:1:9

1

ICL7641

CMOS, Fixed la

5,10,20

50

1.6

1.4

INT

:1:9

~

VOUT

VSUPPLY

~Min)

~Max)

Vos
(mVMax)

ISlAS
(nA Max)

AVOL
(dB Typ)

TEMPRATURE
RANGE
(OC)

:26
:26

:32
:32

:12
:12

:18
:18

250
250
250

:26
:26

:32
:32
:32
:32

3.0
6.0
3.0
6.0
3.0
6.0
3.0
6.0

100
100
100
100
100
100
100
100

-55 to +125
-25 to +85
-55 to +125
-2510 +85
-55 to +125
-2510 +85
-55 to +125
-25 to +85

..

.!l
·c

g

T
j

Iq

VOS·
(mV MIX)

LM308
ICL7611

..~

AI
.;.fJil

DESCRIPTION

7000

EXT

-55 10 +125

~ to +70
to +70
-55 to +125
-55 10 +125
o to +70

1

-55 to +125
a to +70

1

Oto +70
-55 to +125
-55 to +125
Oto +70
Oto +70
-55 to +125

010 +70
-55 10 +125

Operational Amplifiers: High Output Current

TYPE

!

~

%

(i)

ICH8510M
iCH85101
ICH8515M
ICH85151
ICHB520M
ICHB5021
ICHB530M
ICHB5301

DESCRIPTION

Hybrid Amplifier
Hybrid Amplifier
Hybrid Amplifier
Hybrid Amplifier
Hybrid Amplifier
Hybrid Amplifier
Hybrid Amplifier
Hybrid Amplifier

lOUT
(A Min)
1.0
1.0
1.5
1.25
2.0
2.0
2.7
2.7

:25
:25
1-15

50

250
500
250

500

4. AMPLIFIERS

Operational Amplifiers: Low/Ultra.lowlnputOff$et Voltage

TYPE

e\":i

ICL7650C
ICL76501
ICL7850M

·.·1m

......

."

".

",'

I

DESCRIPTION

Vos
",VMilx)

AVos/AT
"'Vl°C)
(Max)

AVos/At
(ilVlmoiIIh)

(TyP)

(pA Max)

IBIAS

Gaw
(MHz)

VSUPPLY
(V Max)

TEMPERATURE
RANGE
(0C)

::t5
::t5
:1:5

::to.05
::to.05
::to.05

100
100
100

10
10
10

2.0
2.0
2.0

::t9
::t9
::t9

o to +70
-25 to +85
-55 to +125

:1:5
::t5

100
100

30
30
7000

2.0
2.0
1.0
1.0

::t9
::t9
:1:20
::t18

o to +70
-25 to +85
-55 to +125
o to +70

2000
7000

1.0
1.0

::t2O
::t2O

-55 to +125
010 +70

ICL7652C
ICL78521
LM108A
LM308A

CMOS, Chopper·
stabilized
CMOS, Chopperstabilized
Low-noise 7850C
Low-noise 76501
Bipolar, Super·Beta
Bipolar, Super·Beta

500
500

::to.05
::to.05
5.0
5.0

LH2108A
LH2308A

Bipolar, Super·Beta
Bipolar, Super·Beta

500
500

5.0
5.0

-

2000

Operational Amplifiers: Low Input Bias Current
TYPE

DESCRIPTION

IBIAS
(PA Max)

los

GaW
(MHz)

COM PEN·
SATION

VSUPPLY
(V Max)

TEMPERATURE
RANGE
(0C)

(PA Typ)

Vos '
(mV Max)

0.5

2,5,15

0.5
0.5

2,5,15

1.4
1.4

INT
INT

:1:9
::t9

2,5,15

1.4

INT

::t9

0.5

2,5,15

0.48

0.5

2,5,15

0.48

EXT
EXT

::t9

CMOS, Input Protected

50
50
50
,50
50

ICL8007M

JFET Input Op-Amp

20

0.5

20

1.0

INT

:1:18

-55 to +125

ICL8007AM

JFET Inpul, Low Bias

4.0

0.2

1.0

INT

::t18

-55 to +125

ICL8007C

JFET Input Op-Amp

50

0.5

1.0

INT

:l:1j!

010 +70

ICL.8007AC

JFET Input, Low Bias

4.0

0.2

1.0

INT

:1:18

Oto +70

ICH8500
ICH8500A

PMOS Input

0.1

0.7

INT

:1:18

-25 to +85

PMOS Input, Low Bias

0.01

30
50
30
50
50

0.7

INT

:1:18

-25 to +85

'I

ICL7621

CMOS, Fixed Ie

INT

:1:9

0.5

2,5,15
2',5,15

0.48

CMOS, Offset Null Pins

50
50

0.5

ICl7622

0.48

INT

:1:9

Oto +70
-55 to +125

ICL8043M

JFET Inpul Op-Amp

20

0.5

20

1.0

INT

:1:18

-55 to +125

ICL8043C

,JFET Input Op-Amp

50

0.5

50

1.0

INT

:1:18

"a!

ICl7631

CMOS, 'Selectable Ie

5,10,20

1.4

INT

:1:9

CMOS, Selectable Ie

50
50

0.5

ICl7632

0.5

5,10,20

1.4

NONE

:1:9

ICl7641

CMOS, Fixed Ie

5,10,20

1.4

INT

:1:9

CMOS, Fixed Ie

50
50

0.5

ICl7642

0.5

5,10,20

0.044

INT

:1:9

"

ID

fij

,

,

IC,L7611

CMOS, Selectable Ie

ICL7612

CMOS, Extended CMVR

ICL.7613

CMOS, Input Protected

ICL7614

CMOS, Fixed Ie

ICL7615

-

}

.» +~
,-55 to :125

:1:9

','

. "'.",

.".'
III

g

I'

1-16

}

o to +70
}

010 +70
-55 to !125

}

010 +70
-55 to !125

4. AMPLIFrERS

Commutating Auto-Zero (CAl) Instrumentation Amplifiers

TYPE

DESCRIPnON

Vos
{j.V MaX)

'Nos/aT
{j.V/"C)
(Max)

aVos/at
(nV/month)
(Typ)

IBIAS
(pA Max)

SIGNAL
BANDWIDTH
(Hz Max)

TEMPERATURE
RANGE

AVOL
(dB Typ)

(0C)

o

ICL7605C
ICL76051
ICL7605M

CMOS, Compensated
CMOS, Compensated
CMOS, Compensated

5.0
5.0
5.0

0.2
0.2
0.2

40
40
40

1500
1500
1500

10
10
10

105
105
105

to +70
-25 to +85
-55 to +125

ICL7606C
ICL7!l(l61
ICL7606M

CMOS, Uncomp911sated
CMOS, Uncompensated
CMOS, Uncompensated

5.0
5.0
5.0

0.2
0.2
0.2

40
40
40

1500
1500
1500

10
10
10

105
105
105

Oto +70
-25 to +85
-55 to +125

Logl Antilog Amplifiers

TYPE

DESCRIPnON

ICL8048BC
ICl.8048CC

Logarithmic Amplifier,
1V/Decade Output

ICL8049BC
ICL8049CC

. Antilog Ar:npllfler
1V/Decade Input

Vos
(mVMax)

aVOAJtlaT
(mV/"C)
(Typ)

DYNAMIC
RANGE
(dB)

30
60

25
50

0.8
0.8

120
120

±14
±14

±18
±18

10
25

25
50

0.38
0.55

60
60

±14
±14

±18
±18

ABSOLUTE
ERROR
(mVMax)

OUTPUT
SWING
(V Typ)

TEMPERATURE
VSUPPLY
(V Max)

RANGE
(OC)
Oto.+70

o to +70
o to +70
o to +70

Power Transistot Drive Amplifiers

TYPE

ICLB063M
ICL8063C

DESCRIPTION

Bipolar Monolithic
Driver Amplifier

lOUT
(mAMin)

VOUT
(V Min)

Vos
(mVMax)

AYOL
(VN)

+50/-25
+40/-20

±27V

50
75

6
6

IBIAS
Il

Differential
Inputs
~P-Compatlble,

ADC0804

t:

;

ICL711!>J/K

Differential
Inputs

DIGITAL
OUTPUT
FORMAT
8-Blt
Binary
8-Blt
Binary
8-Blt
Binary

~P-Compatlble,

816 Bits

High Speed
Converter

Ao Byte
Enable

INPUT
CONVERSION VOLTAGE OVERALL
SPEED (PS)
RANGE ACCURACY

-

114
(Max)

Oto +5.0V

114
(Max)

Oto +5.0V

-

114
(Max)

Oto +5.0V

-

40
(Max)

0.01% (J)
Oto +5.0V 0.006%(1<)
Oto -5.0V

1-21

TOTAL
. ERROR

GAIN
TEMP.
COEFF.

±'!J LSB

-

(Unadjusted) .
±Y. LSB
(Adjusted)

-

±H.SB
(Unadjusted)

-

+1 LSB

SUPPLY
VSUPPLY/
ISUPPLY

TEMP
RANGE
(0e)

+5V (Typ)
2.5mA(Max)

Oto +70
-40 to +85
-55 to +125

+5V (Typ)
2.5mA(Max)

o to +70
-40 to +85
-55 to +125

+5V (Typ)
2.5mA(Max)

o to +70
-40 to +85
-55 to +125

4 ppml"C +5V (Typ)
5 mA(Typ)

o to

+70

6. DATA ACQUISITION
Dlgltal·ta-Analog Converters (CMOS)
TYPE

I

AD7523

SPECIAL
FEATURES

Blnaryl
pp-Compatlble,
Offset
Low Power
Multiplying CAC Binary
~P-Compatlble,

SUPPLY

GAIN

VSUPPLY

LlNERITY

ISUPPLY

1.5% (Max)

10 ppm/oC
2 ppm/°C

+1SV (Typ)
'1oopA (Max)

o to +70
-25 to +85
-55 to +125

0.2% (J,A,S)
0.1% (I<,B,1)
0.05% (L,C,U)

0.3% (Typ)

10 ppm/°C
2 ppm/°C

+15V(Typ)
2mA(Max)

Oto +70
-25 10 +85
-55 to +125

:l:VREF A
10Kn
(Max)

0.2% (J,A,S)
0.1% (K,B,1)
0.05% (L,C,U)

0.3% (Typ)

10ppm/°C
2 ppm/oC

+15V (Typ)
2 mA(Max)

010 +70
-2510 +85
-55 to +125

:l:VREF A
10Kn
(Max)

0.2% (J,A,S)
0.1% (I<,B,1)
0.05% (L,C,U)

1.4% (Max)

10 ppm/°C
2 ppm/°C

+15V (Typ)
2mA(Max)

Oto +70
-25 to +85
-55 to +125

:l:VREF A
10Kn
(Max)

0.2% (J,A,S)
0.1% (I<,B,1)
0.05% (L,C,U)

0.3% (Typ)

10 ppm/"C
+15V (Typ)
2 ppm/°C , 2mA(Ma~)

010 +70
-25 to +85
-55 10 +125

0.2% (JA,S)
0.1% (K,B,1)
0.05% (L,C,U)

0.3% (Typ)

(Typ)

:l:VREF A
10Kn
(Max)

10 ppm/°C
2 ppm/°C

+15V (Typ)
2mA(Max)

010 +70
-2510 +85
-55 to +125

1,.s
(Max)

:l:VREF A
10Kn
(Max)

0.02% (J,A,S)
O.OW. (K,B,1)
0.01 % (L,C,U)

0.3% (Max)

'2 ppm/°C

+15V (Typ)
2mA(Max)

Oto'+70
-25 to +85
-55 to +125

3,.s
(Max)

:l:VREF A
7KO
(Max)

0.1 % (J,A,S) '0.02% (J)
0.006% (I<,B,1) 0.012% (K)
0.003% (l.,C,U) 0.006% (L)'

5 ppm/°C
1 ppm/°C

+5V (Typ)
0.5 mA (Max)

010 +70
-25 to +85
-55 to +125

200 ns
(Max)

500 ns

AD7530

Blnaryl
Same as '7520
But no leakage Offset
/leed thru specs Binary

500 ns

AD7533

"P-Compatlble,
Lowesl c;osl
1O-blt DAC

Binaryl
Offset
Binary

600 ns

~P-Compatlble,

500 ns

500 ns

8, 9, 10 Bit Lin.
Mulliplylng CAC

Ii

SfABILITY

SETTLING
nME
(TO
0.050/0 FS)

Binaryl
Offset
Binary

i AD7520

~.

DIGITAL
INPUT
FORMAT

i
•••••

Multiplying CAC

Blnaryl
Offsel
Binary

I

AD7531

Same as '7521
But nO leakage
/feed Ihru specs

Binaryl
Offsel
Binary

AD7541

pp-Compatlble,
High performanee CAC

Blnaryl
Offsel
Binary

AD7521

,~,

if AD7134

•••

:~:::

8, 9, 10 BII Lin.

Binaryl
"P-Compatlble,
Low power
2's
Multiplying CAC Complement

(Typ)

(Typ)

(Typ)

(Typ)

OUTPUT
VOLTAGE
CURRENT

NON LIN·
EARITY

GAIN
ERROR

:l:VREF A
10KO
(Max)

0.2% (J,A,S)
0.1% (I<,B,1)
0.05% (L,C,U)

:l:VREF A
10Kn
(Max}

Quad Current Switches For D/A Conversion (Singles or Matched Pairs)
TYPE

DESCRIPTION

ICL8018A

High precision current

ICL8019A

switches for use In
summing D/A converters

ICL8020A

ABSOLUTE
ERROR
(% Max)

ERROR
TEMPCO.
(pPM/"C Max)

:1:0.01
:1:0.10

:1:5
:1:25
:1:50

:1:1.00

1-22

VSUPPLY
(V Max)

ISUPPLY
(rnA Max)

:1:20-

10

:1:25

:1:20
10

:1:20

TEMPERATURE
RANGE
(0C)

~

010 +70

-55 to +125

TEMP
RANGE
(0C)

7. TIMER/COUNTER CIRCUITS
Timer/Counters With Display Drivers
DISPLAY
LED

FUNCTIONS
UNIT
COUNT

LCD VF

UNIVERSAL
COUNTERS

NUMBER
OF
DIGITS

TYPICAL APPLICATIONS
AND COMMENTS

TYPE

ICM7217
ICM7217A

•

ICM72178

•

• • •

•

•

• • •

•••

• •••
•••

2

•••

• • ••

2

•••

•

•

Industrial control: preset/predetermin·
ing counters, sequencers, on/off delay
timers, batch counters. Presets and
loads compare register from
thumbwheel switches

2

!i!
ICM7217C.
••
• ••
••••
2
Q.~---+~~~rr++++++~~~~~~~-------------i
=i
ICM7227
•
••
• •. •
••••
2
Microprocessor compatible interface.
ICM7227A
ICM7227B

I'.

ICM7~7C

•
•
•

ICM7224
ICM7224A

• •

•
•

•
•

•

•

• •••

•••••••
• ••••••

•
•••
•

••

•

2
2

•• ••

15

•

15

••

Industrial control: presel/predetermin.
ing counters, sequencers, onloff delay
timers, batch counters. Presets and
loads compare register from a
microprocessor

2

•

i..~•.t-'C_M_7_225
_ _-+_.+++_t-+-+-'-.+.:...r-t.++-+-++.+.+.+.++-+-+-_15_+.-I
•
!i ICM7225A.
•
•
• • • •
15
ICM7236

•

• ••

•

ICM7236A

•

•

•

•

• •

••••

15.

t------t-t-+-+-+-+-t-t-t-l-l-ll-+-+-+++-+--+-t-t-ll---t-l
!~.

•

ICM7249



CRYSTAL
FREQUENCY

PULSE
WIDTH

OTHER OUTPUTS/COMMENTS

ICM7213

t Pulse/Min

2-4

100

125,1000

4.19 MHz

1 PulseJSec, 2048, 1024, 34.133, 16 Hz

ICM7207A

0.5 Hz

4-5.5

260

1000,
0.391

5.24288 MHz

5 Hz, 1600 Hz (Note 1)

ICM7213

1 Hz

2-4

100

7.B

4.19 MHz

1 Pulse/Min, 2048, 1024, 34.133, 16 Hz

ICM7207A

5 Hz

4-5.5

260

100,0.391

5.24288 MHz

0.5,1600 Hz

ICM7207

5 Hz

4-5.5

260

100,0.312

6.5536 MHz

50 Hz, 1260 Hz

ICM7213

16 Hz

2-4

100

Sq. Wave

4.19 MHz

1 Pulse/Min, 2048, 1024, 34.133, 1 Hz

ICM7207

50Hz

4-5.5 '

260

20,0.312

6.5536 MHz

.5 Hz, 1260 Hz

ICM7213
ICM7213
ICM7207A
ICM7207

1000 Hz
1024 Hz
1260 Hz
1600 Hz

2-4
2-4
4-5.5
4-5.5

100
100
260
260

Sq. Wave
Sq. Wave
Sq. Wave
Sq. Wave

4.096 MHz
4.19 MHz
5.24288 MHz
6.5536 Mhz

2000, 2000 Pulses/Min

1 Pulse/Min, 2048, 34.133, 16, 1 Hz
0.5,5 Hz
5,50 Hz

ICM7213

204s Hz.

2-4

100

Sq. Wave

4.19 MHz

1 Pulse/Min, 1024,34.133,16, 1 Hz

ICM7209

25OkHz- '
10 MHZ

4.s.5.5

11,000

Sq. Wave

1-10 MHz

Note.:
1. Oscillator/controller for frequency counter.
2. Two buffered outputs"":Crystal Frequency and

+

B output. Drives up to 5 TTL loads.

1-24

(Note 2)

8. DISPLAY DRIVER
.

.OF
CHARACTERS
OR DIGITS

'

DISPLAY
TYPE

.

FEATURES AND
COMMENTS

INTERFACE

FONT

.D~D[6

TYPE

ICM7211
ICM7211A
ICM7211M
IGM7211AM

4
4
4
4

ICM7212
ICM7212A
ICM7212M
ICM7212AM

4
4
4
4

ICM7218A
ICM7218B
ICM7218C
ICM721BD
ICM7218E

8 8
8 8
8 8

ICM7231A
ICM7231B
ICM7231C

8 16
8 i6
8 16
10 20
10 20
10 20

ICM7232A
ICM7232B
ICM7232C
ICM7233A
ICM7233B

••
••

B 8
B 8

• ••
•
•

4
4

3
3
3
3
3
3
3
3
3

5
5
4
4
4
4

••

8

ICM7243A
ICM72438

8

•
••
•
•
••
•

•
• ••
••
•
•
••
•• ••
••
••

3

ICM7234A
ICM7234B
ICM7235
ICM7235A
ICM7235M
ICM7235AM

•
••
•

14

SO

7&
10

14

SO

16

200
200

1000
1000
200
200

•
•• •
•
•
•
•

••

•

1000

1000

•
•

•• •
•

•

•
•• • • ••
•• • • ••
• •
• •

550
550
500
500
500
500

Drives Conventional LCD Displays. Includes RC
Oscillator, Divider Chain, latches, Interface and LCD
Drivers. Evaluation Kit Available
Drives Common Anode LED Displays. 28 Current
Controlled Outputs. Includes latches, Interface and
Brightness 'Control. Evaluation Kit Available.
3 Decode Formats Drives UP to 64 Independent LED's .
Includes 8x8 Memory, Multiplexed LED Drivers,
Decoders, Interface and control. Applications Include
Bar Graphs.
'
B Digits, 16 Annunciators on COM 3, Hexadecimal

500
500
.350

B Digits, 16 Annunciators on COM 3, Code B

.350
.350

10 Digits, 20 AnnunCiators on COM 3, Code B

500
500
.350
.350

1000
1000
200
200

• •
• •

-

B Digits, 16 Annunicators on COM 1 + 3, Code B
10 Digits, 20 Annunciators on COM 3, Hexadecimal
10 Digits, 20 Annunciators on COM 1 + 3, Code B
4 Alphanumeric Characters. Evaluation Kit Available
4 Alphanumeric Characters. Full·Width Numbers
5 Alphanumeric Characters. Half·Width Numbers
5 Alphanumeric Characters. Full·Width Numbers
Drives 30 Volt Vacuum Fluorescent Displays Directly.
Includes Latch/Decoder ~P Interface or 4·Bit Inpul.
Hexadecimal or Code B Format Available.

250

8 Alphanumeric Characters + Decimal PI. can be Daisy
Chained or Cascaded. Evaluation Kit Available.

400

lxSO Ch. Dot Matrix LCD Controller' and Row Driver.
Use with ICM7281.

400

2x40 Ch. Dot Matrix LCD Controller and Row Driver.
Use with ICM7281.
Column Driver for use with ICM7280 or ICM7283.

'New Product

1-25

U~UI6

9. MICROCONTROLLERS, MICROPERIPHERALS, MEMORY

Microcontrollers, Microperipherals, Memory
Microcontrollers

8048/80C48 Family Compatible

6
6
6
6

2X the memory of IM80C48
Same as IM80C48 without ROM
Same as IM80C49 without ROM

Microprocessor Peripherals -

INTERNAL
MEMORY

fe ".
MHz

DESCRIPTION

(0C)

ROM

RAM

lK x 8
2Kx8
None
None

64x8
128 x 8
64 x 8
128 x8

PL,
PL,
PI.;
PL,

JL
JL
JL
JL

!

DESCRIPTION

(MHz)
Max

PACKAGE

loMj!Wo~·.".

I'P·Compatible Real·Time Clock, Binary Time
Format, Micropower Standby Operation (2,.A @ 2.8V)

4.19

PG,JG

IM6402
IM6402·1
IM6402A

CMOS' Industry Standard Compatible UART
High·Speed Version of IM6402
10VOperating Version of IM6402

1.0
2.0
4.0

PL
PL, JL
PL,JL'

2.46
3.58
6.0

PL
PL, JL
PL,JL

IM6403
IM6403·1
IM6403A

Like Corresponding IM6402
Device but with On·board Crystal
, Oscillator and Baud Rate Generator

1< 1_C43~"·'

0 - +70
-40 -

+85

CMOS I/O Expander for BOC4B/49 Microcompu.ters

TEMPERATURE
RANGE (OC)
-40 -

PG,JG

.......

IM4702/12

}

See also Display Drivers, Counters, AID, and D/A Converters.

fC

TYPE

TEMPERATURE
' RANGE

PACKAGE

Baud Rale Generator'

3.58

+85

}

-40,... +85

}

-40- +85

}

0- +70

PE,JE

-55 -

-55 -

+125

+125

-40- +85
-40- +85

CMOS EPROMs
ORGANIZATlONI
TYPE

MAX ACCESS
TIME(ns)

Vcc
(VI

IgcMAX(mA)
PERATING

Icc MAX (,.AI
STANDBY

PACKAGE

1024 x 4
IM66531
IM6653M
1M6853-11
IM6853A1
IM6853AM

550
600
450
300
350

5
5
5
10
10

6
6
6
12
12

140
140
140
140
140

JG
JG
JG
JG
JG

-40 -

512x 8
1M68541
IM6854M
IM66M-l I
IM6854AI
IM6854AM

550
600
450
300
350

5
5
5
10
10

6
6
6
12
12

140
140
140
140
140

JG
JG
JG
JG
JG

-40 -

* New Product

1-26

TEMPERATURE
RANGE (OC)

+85
+125
-40 - +85
,..40 - +85
-55 ~ +125

-55 -

-55 -40 -40 -

-55 -

+85
+125
+85
+85
+125

Section 2 -

Discretes

2N2607-2N2609
2N2609JAN
P-Channel JFET
General Purpose Amplifier
APPLICATIONS
•
•
•

CHIP

TOPOGR~PHY

Low-Level Choppers
Data Switches
Commutators

~

Z

(lcr2N2807,8)

5510

~

!

D(2)

l ~FUUR
,-_+-:II
.0017

~1)~~~T

PIN CONFIGURATION
TO·18

.0025 x'OO25

.0035

.0035

1-<0'"

:=

~~~

z

~

NOTE: SUBSTRATE
IS GATE

.013

5503

o

liE':}:,:

S

G,C

PC000111

f----, .016--1

NOTE: ~~i~ATE
CT005811

ABSOLUTE MAXIMUM RATINGS

ORDERING INFORMATION*
TO-18

WAFER

DICE

2N2607/W

2N2607/D

2N2608

2N2608/W

2N2608/D

2N2609

2N2609/W

2N2609/D

2N2607

2N2609JAN

-

(TA = 25°C unless otherwise noted)
Gate-Source Voltage ........... ,.,. , ..... , ................... 30V
Gate-Drain Voltage ............. , ... , .... , .. , ... ,............. 30V
Gate Current ......................... ,." ....... , ......... ", 50mA
Storage Temperature Range ............ -65°C to +200°C
Operating Temperature Range ... "",. -55°C to + 175°C
Lead Temperature (Soldering. 10sec) ..... , .. , ..... +30QoC
Power Dissipation ............. ,."" .. ", ... , ...... " ..... 300mW
Derate above 25°C.""."."""."".""". 2mW/oC

-

'When ordering waler/dice reler to Section 10, page 10-1,

ELECTRICAL CHARACTERISTICS

(@ 25°C unless otherwise noted)
2N2607

SYMBOL

PARAMETER

2N2609
UNIT

MIN

MAX

MIN

MAX

MIN

MAX

vGS - 30V, vos = 0

3

10

30

nA

VGS= 5V, VOS=O, TA=l50°C

3

10

30

p.A

IGSSR

Gate Reverse Current

BVGSS
Vp

Gate·Orain Breakdown Voltage

IG = 1p.A, VOS - 0

Gate·Source Pinch·Off Voltage

VOS=-5V, 10= -1p.A

30

lOSS

Drain Current at Zero Gate
Voltage

VOs= -5V, VGS=O

gl.

Small·Signal Common·SourCe
Forward Transconductance

VOS = -5V, VGS = 0, I = 1kHz

CiS&'

Common·Source Input
CapaCitance

VOS = -5V, VGS = lV, 1= lMHz
(Note I)

Noise Figure (Note 1)

VOS· -5V,
VGS=O,
I = 1kHz

NF

2N2608

TEST CONDITIONS

I RG= 10MU
I RG=lMU

NOTE 1: For design relerence only, not 100% tested.

2-1
Note: All typical values have been guaranteed by characteriZation and are not tested:

30

iJ

30

1

4

1

4

1

4

V

-0.30

-1.50

-0.90

-4.50

-2

-10

rnA

330

1000
10

2500

JJS

17

30

3

3

pF

3
dB

... 2N'3884.,2N3687 .

iz

i
zft

N~Char1nel

"JPET ,,' ,"
Low Noise Amplifier

FEATURES

APPLICATIONS

•
•
•

•
•
•
•

Low Noise
High Input Impedance
Low Capacitance

PIN CONFIGURATION

Low Level Choppers
Data Switches
Multiplexers
Low Noise Amplifiers

CHIP TOPOGRAPHY
5010

TO-72

0(2)

.0013 FULLR
.0017

~1) ~T
•

.0025 x .0025
.0035

~

,0035

:=~

-.l.NOTE: SUBSTRATE
IS GATE

.013

PC000211

CTOOO321

ORDERING INFORM'ATION*
TO-72

,WAFER

DICE

2N3684

2N3684/W

2N3684/D

2N3685

2N3685/W

2N3685/D

2N3686

2N3686/W

2N3686/D

2N3687

2N3687/W

2N36871D

ABSOLUTE MAXIMUM RATINGS
(TA = 25°C unless otherwise noted)
Gate-Source or Gate-Drain Voltage .................... -sOV
Gate Current , ................................................ 50mA
Storage Temperature Range ............ -65°C to +200°C
Operating Temperature Range ......... -55°C to + 175°C
Lead Temperature (Soidering, 10sec) .............. + 300°C
Power Dissipation .......................................... 300mW
Derate above 25°C .............. ; ........... 2.0mW I"C

'When ordering wafer/dice refer to Section 10, page 10-1.

ELECTRICAL CHARACTERISTICS (2S0C unless otherwise noted)
2N3684
SYMBOL

PARAMETER

BVGSS

Gate to Source Breakdown Voltage

Vos = 0, IG = 1.0pA

-50

Vp

Pinch-Off Voltage

VOS = 20V, 10 = O.OOlpA

-2.0

IGSS

Total,'Gate Leakage Current

IVlsl

Forward Transadmitlance

Gos

Common Source Output
Conductance

Ciss

Common

Source Input
CapaCitance

MAX

MIN

-5.0

-1.0

Vos =20V, VGS = 0
f= 1kHz

MIN

_3.5

-0.6

2N3687

MAX

MIN

-2.0

-0.3

-50
-0.1

-0,5
YGS = 0, VOS = 20V

MAX

-50
-0.1

' VGS = -30V, VOS = 0

I,TA = 150'C
Saturation CuO'ent, Drain·te-Source

2N3686

UNIT
MIN

"loss

2N3685

TEST CONDITIONS
-50
-0.1

-0,5

MAX
V

-1.2
-0.1

-0.5

nA

-0.5

pA

2:5

7.5

1.0

3.0

0.4

1.2

0.1

0.5

mA

2000

3000

1500

2500

1000

,2000

500

1500

iJS

50

25

10

5

iJS

4.0

4.0'

4.0

4.0

pF

VOS = 20V, VGS = 0
f=IMHz (Note 1)

1.2

1.2

1.2

1.2

pF
ohms

Crss

Common Source Short Circuit
Reverse Transfer Capacitance

rOS(on)

On Resistance

VOS = 0, VGS = 0

600

800

1200

2400

NF

Noise Figure (Note 1)

f = 100Hz, RG = 10M(/.
NBW = 6Hz, VOS = 10V,
VGS=OV

0.5

0.5

0.5

0.5

NOTE 1: For design reference only, not 100% tested.

2-2
Note: All typical values have been guaranteed by characterization, and are not tested.

dB

,

2N3810/A, 2N3811/A
Dual Matched PNP
General Purpose Amplifier
PIN CONFIGURATION

~

Z

CHIP TOPOGRAPHY

Co»
CD

......

4501
T0-78

~

f-033-1

~
.023

I

......L
EMITIEA
BASE

c,

B,

BASE .0030 )(

.0040

COLLECTOR

.0044
CTOOO4tl

ORDERING INFORMATION*
2N3810

WAFER

ABSOLUTE MAXIMUM RATINGS
(TA = 25°C unless otherwise noted)
Emitter-Base Voltage (Note 1) ............................. ~5V
Collector-Base or Collector-Emitter Voltage
(Note 1) .................................. , ................. -60V
Collector Current (Note 1) ................................ 50mA
Storage Temperature Range ....... , .... -'65°C to + 175°C
Operating Temperature Range ......... -55°C to + 175°C
Lead Temperature (Soldering, 10sec) .............. + 300°C
ONE SIDE
BOTH SIDES

DICE

2N3810/W

2N3810/D

2N3811/W

2N3811/D

2N3810A
2N3811

.0040

TYP 2 PLACES

PCOOO31 I

TO-78

.0030

TYP 2 PLACES

.0035 x .0034

.0045

E,

E"'TTER .0029 ,.JlO~
.0039
.0039
TVP 2 PLACES

2N3811A
'When ordering waferI dice refer to Section 10, page 10-1.

Power Dissipation .................... .
Derate above 25°C .............. ..

500mW
3.3mW/oC

600mW
4.0mW/oC

ELECTRICAL CHARACTERISTICS
TEST CONDITIONS: 25°C Ambient Temperature unless otherwise noted

SYMBOL

PARAMETER

2N3810/A

2N3811/A

MIN

MIN

UNIT

TEST CONDITIONS
MAX

BVceo

Collector-Base Breakdown Voltage

Ic = -10pA, IE = 0

-60

-60

BVCEO

Collector-Emitter Breakdown Voltage
(Note 2)

IC = -10mA, 18 = 0

-60

-60

BVEeO

Emitter-Base Breakdown Voltage

IE = -10pA, IC = 0

-5

-5

lC(off)

Collector Cutoff Current
ITA=+l50'C

IE(off)

hFE

Emitter Cutoff Current

Vce = -50V, IE = 0

Static Forward Current

VCE= -5V

Transfer Ratio
ITA = -55'C
VeE(sa!)

Base-Emitter Saturation Voltage

VCE(sa!)

Collector-Emitter Saturation Voltage

IC = -10pA

100

IC= -l00pA to -lmA

150

Ic = 10mA (Note 2)

125

IC = 100pA

75

V

-10

-10

nA

-10

-10

pA

-20

nA

-20

VeE = 4V, Ic = 0

MAX

225
450

300

900

250
150

VCE = -5V

le= -10pA

-0.7

IC= -100pA

Ie = -100pA

-O.B

-O.B

-0.2

-0.2

Ie = -10pA, Ic = -100pA

(Note 2)

le= -100pA, IC= -lmA

hie

Input Impedance (Note 4)

VCE = -10V

tit.

Forward Current Transfer Ratio (Note 4)

Ic= -lmA

hre

Reverse Voltage Transfer Ratio (Note 4)

f= 1kHz

hoe

Output Admittance (Note 4)

-0.7

-0.25

-0.25

3

30

10

40

150

600

300

900

0.25
5

2-3
Note: All typical values have been guaranteed by characterization and are not tested.

60

V

kn

0.25

5

60

,",S

2

:~

aN3,81o/A,:2N38111A'

=ELECTRICAL
I

,-..
C

o

=
I

CHARACTERISTICS (CONT.)
2N3810/A
,"A~AMETER

SYMBOL

2N3811/A
UNIT

TEST CONDITIONS
MIN MAX MIN MAX

Ihlel

Magnitude 01 small signal

Ilc= -lmA, f= looMHz

VCE= -5V

current gain (Note 4)

I

Ie = - SOOM,

Cobo

Output Capacitance (Note 4)

VCS = -SV, IE * 0, f= lMHz

Cibo

Input Capacitance (Note 4)

VCS

hFE1/hFE2

DC Current Gain Ratio

IVSE1-VSE2 I

Base-Emitter Voltage
Differential

IA devices

= -O.SV,

f = 30MHz

VCE = '-SV, IC - loollA

NF

Base-Emitter Voltage
Differential Gradienl

I A devices

Spot Noise Figure

5

1

4

4

8

0.9

1.0

0.9

8
1.0

0.95

1.0

0.95

1.0
-S

-2.5

-2.5

-3

-3

,-1.5

-l.S

10
5

10
5

VCE - -10V, Ic = -loollA, RG = 3ka,
f - 100Hz, Noise Bandwidth - 20Hz

7

4

VCE - -10V, Ic = -1001lA, RG = 3Ka,
f = 1kHz, Noise Bandwidth = 200kHz

3

1.5

VCE - -10V, Ic = -1001lA, RG - 3ka

2,5

1.5

3.5

2.5

VCE = -SV

I A devices

,n

1

-S

IC= loollA

.6.VSE1- VSE2

5

1

Ie = 0, f = 1MHz

IC = 10pA to, lOrnA

I A devices

1

VeE = -5, Ic

= 100""

f = 10kHz, Noise Bandwidth - 2kHz

(Note 4)

VCE = -10V, Ic = -1001lA, RG = 3ka,
Noise Bandwidth = 15.7kHz (Note 3)

NOTES: 1. Per transIstor.
2. Pulse,width" 3OOjAS, duty cycle" 2.0%.
3.. 3dB down at 10Hz and 10kHz:
4, For design reference only, not 100% tested.

2-4
Note: All typical values have ~n guaranteed by characterization and are not tested. '

pF

mV

pNrc

dB

2N3821, 2N3822,

JAN, JTX, JTXV

N-Channel JFET
High Frequency Amplifier
FEATURES

•
•

CHIP TOPOGRAPHY

Low Capacitance
Up to 6500l-ls Transconductance

2N3821

5010

j

PIN CONFIGURATION

.0013 FULL R
.0011

~1),,~~T

T0-72

.0025 x .0025
00350035

1--

~~~
:::

~

NOTE: SUBSTRATE
IS GATE

.013

5003
2N3822

o

T~._._
1
_

G,C
CTOO6501

.0025

ORDERING INFORMATION*
TO·72

WAFER

1--.016 4

.0025

NOTE: SUBSTRATE
IS GATE
CTOOO521

DICE

2N3821

2N3821/W

2N3821/0

ABSOLUTE MAXIMUM RATINGS

2N3822

2N3822/W

2N3822/0

(TA = 25'C unless otherwise noted)
Gate-Source Voltage ....................................... -50V
Gate-Drain Voltage ......................................... -50V
Gate Current ................................................ , 10mA
Storage Temperature Range ............ -65'C to + 200'C
Operating Temperature Range ......... -55'C to + 175'C
Lead Temperature (Soldering. 10sec) .............. + 300'C
Power Dissipation .. , ............... , .. , ...... ", ... " ..... 300mW
Derate above 25·C .......................... 2,OmW /"C

'When ordering waferI dice refer to Section 10, page 10-1.
tadd JAN, JTX, JTXV to basic part number to specify these devices.

ELECTRICAL CHARACTERISTICS

(25'C unless otherwise noted)
2N3821

SYMBOL

PARAMETER

UNIT
MIN

Gate Reverse Current

VGS = -30V, vos = 0

BVGSS

ITA=150·C
Gate-Source Breakdown Voltage
Gate-Source Cutoff Voltage

IG=-IjJ.A, VOs-O
VOS = 15V, 10 = 0.5nA

-50

VGS(off)

VOS = 15V, 10 = 50jJ.A

-0.5

IGSS

VGS

Gate-Source Voltage

losS

Saturation Drain Current (Note I)

2N3822

TEST CONDITIONS
MAX

2-5
Note: All typical values have been guaranteed by characterization. and are not tested.

0.5

MAX

-0.1

-0.1

-O.t

-0.1

nA
jJ.A

-50

-4
-2

Vos = 15V, 10 = 200jJ.A
Vos = 15V, VGS = 0

MIN

2.5

-6
V
-I

-4

2

10

mA

2Na821,'2N;t8~2, ~AN,

JTX, JTXV

,',

2N3821
SYMBOL

PARAMETER

MIN

MAX

4500

3000

6500

I-1kHz

1500

IYlsl

Common-Source Forward
Transadmittance (Note 2)

1= 100MHz

1500

gos

Common-Source Output
Conductance (Note 1)

C;•• '

Common-Source Input
Capacitance (Note 2)

Crss

Common-Source Reverse Transler
Capacitance (Note 2)

NF

Noise Figure (Note 2)

NOTES:

Vos

s

15V, VGS = 0

1= 1kHz

3000
10

20

6

,'6

3

3

5

5

dB

200

200

nV
-y11z

1. These parameters are measured dunng a 2ms Interval lOOms after DC power IS applied.
2. For design reference only, not 100% tested.

2-6

pF

1= 10Hz

VOS = 15V, VGS = 0,
BW= 5Hz

Note: All typical values have been guaranteed by characterization and 'are not tested.

"

/.IS

1-1MHz
VOS - f5V, VGS = 0,
Rgen - 1meg, BW = 5Hz

"

UNIT,
MAX

Common-Source Forward
Transconductance (Note 1)

Equivalent Input Noise Voltage
(Npte 2)

"

MIN
~

en

2M3822

TEST CONDITIONS

2N3823,JAN, JTX, JTXV

N-Channel JFET
High Frequency Amplifier
FEATURES
•
•
•

CHIP TOPOGRAPHY

Low Noise
Low Capacitance
Transductance Up to 6500MS

.0035 FUlLR

5000

.0025

~- r

T \,

PIN CONFIGURATION

~~~~ T

.017

~

TO-72

,0035 x .0035

:0025 -:oo2s

.0066
NOTE: SUBSTRATE
~0062~
IS GATE

.017

CT00061I

ABSOLUTE MAXIMUM RATINGS
(TA = 25°C unless otherwise noted)
Gate-Source or Gate-Drain Voltage .................... -30V
. Gate Current ................................................. 10mA
Storage Temperature Range ............ -65°C to +200°C
Operating Temperature Range ......... -55°C to + 175°C
Lead Temperature (Soldering, 10sec) .............. + 300°C
Power Dissipation ......................................... 300mW
Derate above 25°C .......................... 2.0mW 1°C

PCOOO201

ORDERING INFORMATION*

'When ordering wafer/dice refer to Section 10, page 10-1.
tadd JAN,JTX,JTXV to basic part number to specify these devices

ELECTRICAL CHARACTERISTICS
SYMBOL

(25°C unless otherwise noted)

PARAMETER

TEST CONDITIONS

IGSS

Gate Reverse Current

BVGSS

Gate-Source Breakdown Voltage

IG

VGS(off)

Gate-Source Cutoff Voltage

VOS = 15V, 10 = 0.5nA

VGS

Gate,Source Voltage

VOS = 15V, 10 = 400pA
VOS

I

TA=150·C

MIN

VGS = -20V, Vos = 0

= lpA,

UNIT

-0.5

nA

-0.5

pA

-8

V

-30

VOS = 0

= 15V,

MAX

-t.O

=0

-7.5

loSS

Saturation Drain .Current

4

20

Sts

Common-Source Forward
Transconductance (Note 1)

f= 1kHz

3,500

6,500

IVlsl

Common-Source Forward
Transadmittance (Note 2)

f = 100MHz

3,200

gos

Common-Source Output
Transconductance (Note 1)

f= 1kHz

gis.

Common-Source Input
Conductance (Note 2)

goss

Common-Source Output
Conductance (Note 2)

C;ss

Common-Source Input
CapaCitance (Note 2)

Crss

Common-Source Reverse
Transfer Capacitance (Note 2)

NF

Noise Figure (Note 2)

NOTES:

VGS

35

rnA

p.s

800

VOS = 15V, VGS = 0
f

= 200MHz
200
6
pF

f=IMHz
2
VOS = 15V, VGS
RG= lk!1

=0

f= 100MHz

1. These parameters are measured dunng a 2ms ,nterval lOOms after DC power ,s applied.
2. For design reference only, not 100% tested.

2-7
Note: All typical values have been guaranteed by characterization and are not tested.

2.5

dB

!

2,N3824,

N

Switch

"

-; N~hannel JFET
FEATURES
•

rds < 250 Ohms

•

10(Off)

CHIP TOPOGRAPHY
5003

< 0.1nA

PIN CONFIGURATION

ABSOLUTE MAXIMUM RATINGS
(TA = 25°C unless otherwise noted)
Gate-Source or Gate-Drain Voltage .................... - 50V
Gate Current ................................................. 10mA
Storage Temperature Range ............ -65°C to +200°C
Operating Temperature Range ......... -55°C to + 175°C
Load Temperature (Soldering. 10sec) .............. + 300°C
Power Dissipation ......................................... 300mW
Derate above 25°C ...................... ; ... 2.0mW 1°C

PC000201

ORDERING INFORMATION*

'When ordering waferI dice refer, to Section 10. page 10-1.

ELECTRICAL CHARACTERISTICS
TEST CONDITIONS' 25°C unless otherwise noted
LIMITS
SYMBOL

PARAMETER "

TEST CONDITIONS

,.

I

IGSS

Gate Reverse, Current,

BVGSS

Gate-Source Breakdown Voltage

10(af!)

Drain Cutoff Current

TA = 150·C

VGS

= -30V.

VOS = 0

TA=150·C

VOS = 1.5V. VGS = ,-BV

rds(on)

Drain-Source ON Resistance

VGS=OV.lo=O

CiSS

Common-Source Input Capacitance
(Note 1)

VOS = 15V. VGS = 0

Crss

Commol)-Source Reverse
(Note 1)

f= 1kHz

VGS = -BV. VOS = 0

NOTE 1: For design reference only, not 100% tested.

2~

Note: All typical values have been guaranteed by characterization and are nol tested.

-0.1

nA

-0.1

IJ.A
V

"

0.1

nA

0.1

IJ.A

250

S1

6
f=lMfo!,z

Capacitance

MAX

-50

IG= llJ.A. VOs=O

I
Tran~9r

UNIT
MIN

pF

"

3

2N3921, 2N3922
Dual N-Channel JFET
General Purpose Amplifier
FEATURES
•
•
•

CHIP TOPOGRAPHY

Low Drain Current
High Output Impedance
Matched VGS. AVGS. and gfs

6037

1+--.025--1

PIN CONFIGURATION
TO-71
s,-

.!~itll;; t

D'.~S.
,COPR

__

..

G,

ALL BONO PADS ARE 4 x '" MIL.
CTOOO71!

ABSOLUTE MAXIMUM RATINGS
(TA = 2S0C unless otherwise noted)
Gate-Source or Gate-Drain Voltage (Note 1) ........ -SOV
Gate Current (Note 1) ..................................... SOmA
Storage Temperature Range ............ -6SoC to +200°C
Operating Temperature Range ......... -SSoC to +200°C
Load Temperature (Soldering, 10see) .............. + 300°C
Total Power Dissipation ................................. 300mW
Derate above 2SoC .......................... 1.7mW/oC

PC00051I

ORDERING INFORMATION*
TO·71

WAFER

DICE

2N3921

2N3921/W

2N3921/D

2N3922

2N3922/W

2N3922/D

'When ordering wafer/dice refer to Section 10, page 10--1.

ELECTRICAL CHARACTERISTICS
TEST CONDITIONS: (2S0C unless otherwise noted)
PARAMETER

SYMBOL

TEST CONDITIONS

I

IGSS

Gate Reverse Current

BVOGO

Drain-Gate Breakdown Voltage

10=lpA,ls=0

TA -100·C

MIN

VGS = -30V, VOS = 0

VGS(olf)

Gate·Source Cutoff Voltage

VOS = 10V, 10 = InA

VGS

Gate·Source Voltage

VOS = 10V, 10 = 100pA

IG

Gate Operating Current

10S$

Saturation Drain Current (Note 1)

gfs

Common·Source Forward
Transconductance (Note 2)

90S

Common-Source Output Conductance

Ciss

Common·Source Input CapaCitance (Note 3)

Crss

Common·Source Reverse Transfer CapaCitance
(Note 3)

9fs

Common-Source Forward Transconductance

gas.

Common·Source Output Conductance

NF

Spot Noise Figure
(Note 3)

MAX

UNIT

-1

nA

-1

pA

-3

V

50
-0.2

-2.7
-250

I

TA = 100·C

VOG = 10V, 10 = 700pA
Vos -10V, VGS - 0

nA

1

10

rnA

1500

7500

f=lkHz
VOS

= 10V,

pA

-25

35

VGS = 0

!,S

18
pF
f-1MHz

6
1500

VOG = 10V, 10 = 700pA

f= 1kHz

VOS = 10V, VGS = 0

f= 1kHz,
RG = lmeg

2-9
Note: All typical values have been guaranteed by characterization 'and are not tested.

20

!,S

2

dB

·'i

2,N;J921 •.. 2N392~

;

MATCHING CHARACTERISTICS'

tt

;:=z
tt

. .D~DIL
.

2N3921
SYMBOL

PARAMETER

UNIT
MIN

IVGS1- VGS21

Differential Gate-Source Voltage

AlvGS1- VGS2 1

Gate~Source

AT
91.1/9182

Differential Voltage
Change with Temperature

2N3922

TEST CONDITIONS
MAX

MIN

5
VOG= 10V.
10 = 700p.A

TA=O'C
Ts = 100'C
f-lkHz

Transconductance Ratio

NOTES: 1. Per transistor.
2. Pulse test duration =,.2 ms.
3. For design reference ~nly, not 100% tested.

2-10
Note: All typical values have been guaranteed by characterization and are not tested.

10
0.95

1.0

0.95

MAX
5

mV

25

/lVrC

1.0

2N3954-2N3958
2N3954A/2N3955A
Dual N-Channel JFET
G.eneral Purpose Amplifier
FEATURES
•
•
•
•
•

CHIP TOPOGRAPHY

Low Offset and Drift
Low Capacitance
Low Noise
Superior Tracking Ability
Low Output Conductance

N

Z

6037

W
G

!

1·- -.025,,---1

PIN CONFIGURATION

ii
zW

:_'F.l

TO-71

.....

_

G
UI

I:

t

G.

'ALL BOND PADS ARE"

II: "

MIl.

CTOO0811

ABSOLUTE MAXIMUM RATINGS
(TA = 25°C unless otherwise noted)
Gate-Drain or Gate-Source Voltage .................... -50V
Gate-to-Gate Voltage ................... : .................... ±50V
Gate Current ..................................,' .............. 50mA
Total Device Dissipation 85°C (Each Side) ........ 250mW
Case Temperature
(Both Sides) ........ 500mW
Power Derating (Each Side) ...................... 2.8SmWI"C
(Both Sides) ....................... 4.3mW I"C
Storage Temperature Range ............ -S5°C to +200°C
Lead Temperature (1/1S" from case
for 10 seconds) .......................................... 300°C

PC000501

ORDERING INFORMATION*
TO-71
2N3954

2N3954/W

2N3954A

2N3954A/W

2N3954A1D

2N3955

2N3955/W

2N3955/D

2N3955A

2N3955A/W

2N3955A1D

2N3956

2N3956/W

2N3956/D

WAFER

DICE
2N3954/D

2N3957

2N3957/W

2N39571D

2N3958

2N3958/W

2N3958/D

'When ordering wafer/dice refer to Section 10, page 10-1.

ELECTRICAL CHARACTERISTICS
SYMBOL

PARAMETER

(25°C unless otherwise noted)

TEST CONDITIONS

2N3954

2N3954A

2N3955

2N3955A

2N3956

2N3957

2N3958

UNIT

MIN MAX MIN MAX MIN MAX MIN MAX MIN MAX MIN MAX MIN MAX
Gate Reverse Current
IGSS

BVGSS

VGS = -30V,
I TA = 125°C Vos=O
Gate-Source
Vos-O
Breakdown Voltage
IG = -lIlA

-10

-10

-lOi

-IOi

-10e

-10

-10

pA

-50

-50

-SOi

-50

-5OC

-50

-50

nA

-50

-50

-50

-50

-50

-50

-50

VGS(Off)

Gate-Source Cutoff
Voltage

Vos = 20V,
10= lnA

VGS{o

Gate-Source Forward
Voltage

Vos=O
IG=lrnA

VGS

Gate-Source Voltage

Vos = 20V

Gate Operating Current

Vos = 20V,

-50

-50

-50

-50

-50

-50

-50

ITA = 125°C 10 = 2001lA

-25

-25C

-25C

-25

-25

-25

-25C

nA

5.0

rnA

IG

loss

Saturation Drain
Current

-1.0 -4.5 -1.0 -4.5 -1.0 -4.5 -1.0 -4.5 -1.0 -4.5 -1.0 -4.5 -1.0 -4.5
V
110 = 501lA

Vos = 20V,
VGs=O

110 = 2001lA

2.0

2.0

2.0

2.0

2.0

2.0

2.0

_4.2

-4.2

-4.2

-4.2

-4.2

-4.2

-4.2

-0.5 -4.0 -0.5 -4.0 -0.5 -4.0 -0.4 -4.0 -0.5 -4.0 -0.5 -4.0 -0.5 -4.0

0.5

5.0

0.5

2-11
Note: All typical values have been guaranteed by characterization and are not tested.

5.0

0.5

5.0

0.5

5.0

0.5

5.0

0.5

5.0

0.5

pA

2

j

2Na'5"'2",a9'~ ~":I954A/2N3955A .

'f')

ELECTRICAL .CHARACTERISTICS (CONT.)

:.....

I
C
J

•

I

:IG»

;

i
f')

z
C\I

SYMBOL

' . '

PARAMETER

TEST CONDITIONS

Common-Source Forward

~

Tranaconductance

g""

Coinmon-Source' OutPut
Conductance

q.

Common-Source Input
Capacitance (Note 2)

C...

Common Source Reverse
Transfer Capscitance
(Note 2)

Cdgo

Drain-Gate Capscitance
. (Note 2)

NF

Common-Source Spot .'
Noise Figure .
(Note 2)

lim -la2 1

Differential Gate C~rreni

loss,IIoss2

Drain Saturation
Current Ratio

(Note 2)
Vos = 2OV,
Vas=O

20V,
10 - 200pA
Vos=20V
VGS.=O

Gate-Source Differe.ntial

aT
g';',Ig.",

Voltage Change With
Temperature
Transconductance Ratio

Vas - 20V,
10= 200pA

2N3955A· 2N.395&

2N3957

2N3958

1000

1000

1000

1000

1000

1000

UNIT

1000

I'S
35

35

35

35

35

35

35.

4.0

4.0

4.0

4.0

4.0

4.0

4.0

1.2

1.2

1.2

1.2

1.2

1.2

1.2

1.5

1.5

1.5

1.5

1.5·

1.5

1.5

I = 100Hz

0.5

0.5

0.5

0.5

0.5

0.5

0.5

dB

T -125'C

10

10

10

10

10

10

10

nA

pF

0.95 1.0 0.95 1.0 0.95 1.0 0.95 1.0 0.95 1.0 0.90 1.0 0.85 1.0

IVaS,-vGS2 1 Differential Gate-Source
Voltage

alvGS,-v... 1

2N3955

1-200MHz
1= 1kHz

VDG= 10V,
1.-0

Vos -

2N3954A

I-1kHz

l=lMHz

Vos-20V
V... -O
. Ra=lOMf!

2N3954

MIN MAX MIN MAX MIN MAX MIN MAX MIN MAX MIN MAX MIN MAX
1000 3000 1000 3000 1000 3000 1000 3000 1000 3000 1000 3000 tOOO 3000

5.0

5.0

10.0

5.0

15

20

25

T=2S'C to
-55'C

0.8

0.4

2.0

1.2

4.0

6.0

8.0

T-25'Cto
125'C
I-1kHz

1.0

0.5

2.5

1.5

5.0

7.5

10.0

0.97 1.0 0.97 1.0 0.97

NOTES: 1. Per Transistor.

.
2. For design reference only, not 100% tested,

2-12
Note: All typiCal values have been guaranteed by characterization and !!fe not tested.

1.0

0.95 1.0 0.95 1.0 0.90 1.0 0.85 1.0

mV

2N3970-2N3972

N-Channel JFET Switch
FEATURES

CHIP TOPOGRAPHY

•
•

Low rDS(on)
ID(OFF) < 250pA

•

Fast Switching

SOOl
.00135 FULL RADIUS
.00l75 (DRAIN)

PIN CONFIGURATION
TO·18

x

I--- --I
.016

.OO3~

.0026

(SOURCE)
CT000911

ABSOLUTE MAXIMUM RATINGS
(TA = 25°C unless otherwise noted)
Gate-Source or Gate-Drain Voltage .................... -40V
Gate Current ................................................. 50mA
Storage Temperature Range ............ -65°C to +200°C
Operating Temperature Range ......... -55°C to +200°C
Lead Temperature (Soldering. 10sec) .............. + 300°C
Power Dissipation ............................................ 1.SW
Derate above 25°C ........................... 10mW/oC

o
PC000611

ORDERING INFORMATION*
TQ-18

WAFER

DICE

2N3970

2N3970/W

2N3970/D

2N3971

2N3971/W

2N3971 10

2N3972

2N3972/W

2N3972/D

·When ordering wafer I dice refer to Section 10·, page 10-1.

ELECTRICAL CHARACTERISTICS
TEST CONDITIONS: 25°C unless otherwise noted
2N3970
SYMBOL

PARAMETER

2N3971

2N3972

TEST CONDITIONS

UNIT
MIN MAX MIN MAX MIN MAX

BVGSS

Gate Reverse Breakdown Voltage

1000

Drain Reverse Current

10(0f!)

Drain Cutoff Current

ITA ~ 150·C
iTA

= 150·C

VOG = 20V, IS = 0
VOG = 20V, VGS = -12V

VGS(Of!)

Gate·Source Cutoff Voltage

Vos = 20V, 10 = lnA

loSS

Saturation Drain Current
(Pulse width 300l'S, duty cycle::; 3%)

VOS = 2OV, VGS = 0

VOS(on)

Drain·Source ON Voltage

VGS=O

-40

-40

IG = -lIlA, VOS = 0

-40
250

2SO

pA

500

500

SOO

nA

250

250

2SO

pA

500

500

nA

-4

-10

-2

-5

-0.5

500
-3

50

150

25

75

5

30

10= 5mA
1.5
30

60

100

30

60

100

25

25

25

6

6

6

RL

10

15

40

450.11

10

15

40

30

60

100

Static Drain·Source ON Resistance

VGS=O, 10= lmA

rels(on)

Drain·Source ON Resistance

VGS=O, 10=0

Ciss

Common·Source Input Capacitance

VOS = 20V, VGS = 0 (Note 1)

Cr••

Common·Source Reverse Transfer
Capacitance

VOS=O, VGS= -12V
(Note 1)

Id

Tum-On Delay Time (Note 1)

1r
loft

Rise Time (Note 1)

Voo = 10V, VGS(on) = 0
10(on) VGS(ofI)
2N3970
20mA -10V
2N3971
2N3972

8SOn
1.6Kn

f= 1kHz

f=lMHz

- 5V
- 3V

NOTE 1: For design reference only, not 100% tested.

2-13
Note: All typical values have been guaranteed by characterization and are not tested.

V

1

rOS(on)

10mA
5mA

V

rnA

2

10= 10mA
lo=20mA

Turn-Off Time (Note 1)

V

250

.11

pF

ns

·..0)~ 2N3.97Q;'2N3972 . ". "
..CO)

.Z .' EL.:ECTRICAL tHARACTERISTICS(CONT.)

,: &\I

~

...

VDD

=

• R _ VDD-VDSlONI

Z

l'

.&\1

D

VIN 0 - -......-

Ra

L -

IDlON)

~VOUT

1_-,

....

;

500

TCO0551I

2-14
Note: All typical '(alues have been guaranteed by characterization and are. not testeP..

.U~UIl.I

2N3993, 2N3994
P-Channel JFET
General Purpose AmplifierISwitch

.~
~

z

FEATURES

APPLICATIONS

•
•

Used in high-speed commutator and chopper applications. Also ideal for "Virtual Gnd" switching; needs no ext.
translator circuit to switch ±10 VAC. Can be driven direct
from TTL or CMOS logic.

Low rOS(on)
High Yfs/Ciss Ratio (High-Frequency Figure-ofMerit)

PIN CONFIGURATION

=

:

CHIP TOPOGRAPHY
5508

TO-72

~Jliil~'-'
.0025

.0027

.016

.0037 x .0035 0

.0027

.0025

=

NOTE: SUBSTRATE IS GATE

CTOO1011

PCO0071I

ABSOLUTE MAXIMUM RATINGS
ORDERING INFORMATION*
TO-72

WAFER

2N3993

2N3993/W

2N3993/D

2N3994

2N3994/W

2N3994/D

'When ordering wafer/dice refer to Section 10, page 10-1.

ELECTRICAL CHARACTERISTICS
SYMBOL
BVGSS
lOGO
loSS

10(of!)

@

25°C free-air temperature (unless otherwise noted)

TEST CONDITIONS

PARAMETER
Gate-Source Breakdown Voltage
Drain Reverse Current
Zero-Gate-Voltage Drain Current

Drain Cutoff Current

n

6r~i~-~!:~ ~:::::e ~~~~~i.~~ ~.~~~.~~

..
.................... -25V
Drain-Source Voltage ....................................... -25V ~
Continuous Forward Gate Current .................... -1 OmA
Storage Temperature Range ............ -65°C to + 200°C
Operating Temperature Range ......... -55°C to + 175°C
Lead Temperature (Soldering. 10sec) .............. + 300°C
Power Dissipation ......................................... 300mW
Derate above 25°C .......................... 2.0mWI"C

DICE

(Note 3)

2N3993

2N3994
UNIT

MIN

MAX

MIN

MAX

IG = lIlA.

VOS=O

VOG = -15V,

10=0

-1.2

-1.2

nA

Voo = -15V,

1.-0,
TA = 150'C

-1.2

-1.2

IlA

VOS= -10V,

VGS= 0,
(See Note 1)

Vos= -10V,

VGs=6V

VOS= -10V,

VGS= 6V,
TA = 150'C

VOS= -10V.

VGS -10V

-1.2

VOS= -10V,

VGs=10V,
TA = 150'C

-1

VGS(of!)

Gate-Source Voltage

VOS= -IOV,

10 = -lIlA

rdo(on)

Small-Signal Drain-Source
On-State Resistance

VGS-O,
f= 1kHz

10- 0•

iYf. i

Small-Signal Common-Source
Forward Transfer Admittance

Vos= -IOV,
f= 1kHz,

VGS=O,
(See Note 1)

Ciss

Common-Source Short-Circuit
Input Capacitance (Note 4)

VOS= -10V,
f= IMHz,

VGS=O,
(See Note 2)

2-15
Note: All typical values have been guaranteed by characterization and are not tested.

25

25

-10

4

-2

9.5

12
16

mA
-1.2

nA

-1

IlA
nA

IlA
1

150
6

V

4

5.5

V

300

n

10

/.IS

16

pF

: 2"3,993,·2N3994

iN

:o

ELECTRICAL CHARACTERISTICS (CONT.)
SYMBOL

..

'"

Z
N

TEST CONDITIONS
(Note 3)

PARAMETER

Cr••

Common-Source Short-Circuit
.Reve(VSE1- VSE2)IIL>T

Base Emitter
Voltage Differential
Change with
Temperature

3

S

10

IlVI"C

1L>(lel- ls2)I/L>T

Base Current
Differential
Change with
Temperature

0.3

0.5

1

nAI"C

0.9

le= lallA.
VeE =SV
TA = -S5°C to + 12SoC

1

0.85

1

0.8

1

SMALL SIGNAL CHARACTERISTICS
SYMBOL

PARAMETER

hlb

Input Resistance

hrb

Voltage Feedback Ratio

hie

Small Signal Current Gain

hob

Output Conductance

hie

Input Resistance'

hre

Voltage Feedback .Ratio

hoe

Output Conductance

NOTES:

1.
2.
3.
4.

TYPICAL
VALUE

TEST CONDITIONS

28
Ie ~1 mAo Ves = 5V (Note 4)

43

UNIT
n
x 10- 3

250
Ie = lmA. VeE = SV (Note 4)

.,

60

/lS

9.6

kn

42
12

x

10-~

IlS

Per transistor.
The reverse base-emitter voltage must never exceed 7.0 volts and the reverse base-emitter current must never exceed 101lA.
The lowest 01 two hFE readings is taken as hFEl lor purposes 01 this ratio.
For design relerence only. not 100% tested.

2-18
Note: All typical values have been guaranteed by characterization and are not tested.

ITE4091-ITE4093
2N4091-2N4093
JAN, JTXV, JANTX·
N-Channel JFET
Switch
FEATURES
•
•
•

CHIP TOPOGRAPHY

Low rDS(on)
ID(OFF) < 100pA (JAN TX Types)
Fast Switching

5001

PIN CONFIGURATIONS
TO-18

TO·92

x .0036
.0028
(SOURCE)
CTO05511

ABSOLUTE MAXIMUM RATINGS
G,C

s

o

0

(TA = 25°C unless otherwise noted)
Gate-Source or Gate-Drain Voltage .. , .... , ........... , -40V
Gate Current, ............ ,"',." ........... ,", .. , ..... , ... , 10mA
Storage Temperature Range ............ -65°C to +200°C
Operating Temperature Range ......... -55°C to +200°C
Lead Temperature (Soldering, 10sec) .............. + 300°C
TO-18
T0-92

G

PCOO3711

ORDERING INFORMATION*
TO-92

TO-1St

WAFER

DICE

ITE 4091

2N4091

2N4091/W 2N4091/0

ITE 4092

2N4092

2N4092/W 2N4092/0

ITE 4093

2N4093

2N4093/W 2N4093/0

Power Dissipation".""""""".".
Derate above 25°C"."""""."

Plastic
Storage .............................. " .... -55°C to + 150°C
Operating ............................ " .... - 55°C to + 135°C

tadd JANTX to these part numbers if JANTX processing is desired,
'When ordering wafer/dice refer to Section 10, page 10-1,

ELECTRICAL CHARACTERISTICS

SYMBOL

(25°C unless otherwise noted)

PARAMETER

TEST CONDITIONS

2NIITE
4091

2NIITE
4092

MIN MAX MIN
BVGSS

Gate·Source Breakdown Voltage

IG

= -ljJA,

VOS = 0

(Not JANTX Specified)

200
ITA = 150'C

Voo = 20V, IS = 0

Gate Reverse Current
IGSS
10(OFF)

I(JANTX,

ITE devices only) TA = 150'C

JAN, JTXV; TA = 25'C
Drain Cutoff Current
JAN, JTXV, TA = 150'C

Vp
loSS

VGS = -20V, VOS = 0

~ VOS= 20V

VGS - -12V(4091)
VGS = -8V(4092)
VGS = -6V(4093)

~

Gate·Source Pinch·Off Voltage

VOS - 20V, 10 - lnA

Drain Current at Zero Gate Voltage

VOS - 20V, VGS - 0,
Pulse Test Duraton = 2ms

-5

-40
200

Drain·Source ON Voltage

VGS=O

2-19
Note: All typical values have been guaranteed by characterization and are not tested.

V
200

pA

400

400

400

nA

-100

-100

pA

-200

-200

-200

nA

100

100

100

200

200

200

200

200

200

400

400

400

-10

30

-2

-7

15

-1

-5

pA

nA
V
mA

8
0.2

10 = 4mA
10 = 6.6mA

UNIT

-100

10 = 2.5mA
VOS(ON)

2NIITE
4093

MAX MIN MAX

-40

-40

Drain Reverse Current
1000

360mW
3,3mWrC

1,8W
10mWrC

0.2
0.2

V

2

.O~Dll

ITE4091-ITE4093 .
2N.4091-2N4093 JAN, JTXV, JANTX*
ELECTRICAL CHARACTERISTICS (CONT.)
SYMBOL

PARAMETER

TEST CONDITIONS

2N/ITE

.2NIITE

2""TE

40111

4092

4093

MIN

UNIT

MAX MIN MAX MIN MAX

rOS(on)

Static Drain-Source ON Resislance

VGS=O,10-1mA

30

50

80

rds(on)

Sialic Drain Source
ON Resistance

Vas - 0, 10 = 0, f= 1kHz

30

50

80

Ciss

Common-Source Inpul Capacitance

Vos-20V, VGS-O, f-1MHz

16 .

16

16

IJANTX Only

(Nole 1)

5

5

5

Crss

Common-Source
Reverse Transfer. Capacitance

VOs=O, Vas = -20V, f=1MHz
(Nole 1)

5

5

5

Id(ON)

Turn-ON D.elay TilTle (Nole 1)

Ir

Rise ·Time (Nol", 1)

loft

Turn-OFF Time (Note 1)

VOO =
4091
4092
4093

3~(O~ao(o~~;!
"8lrmA

~

 RL

90%

V'N

V".(ON)

RG

100n

220n

390n

IO(ON)

-15mA

-7mA

-3mA

:

~.~~

_ 6V 10%

t,

90%

10%

510

t--

-12V

-7V

-5V

WF00011I

7.5K.

v

>

t.2K

L-...,.. SAMPLING

~

~-SCOPE-

:

RISE TIME 0.4 ns
INPUT RESISTANCE 10 MHz
INPUT CAPACITANCE 1.5 pF

\ __

~

Ro
v

;.
>
;>

1

SAMPLING SCOPE

12K

~

V'N~

OUTPUT

VIN

?

510

.
510

":"
TCOO171 I

TYPICAL PERFORMANCE CHARACTERISTICS
Vp vs loss

Vp VB rOS(ON)

...
7.0
U
'.0

7.G

4.0

~
>

'.0
2.0

...t.o

7.0

4.0

'\

\.

!

'los = 0.1'1
'los = 0

1\

-'vVas
Ol ""= 020V

2.0

...
...,

4.0

-

3.0

II

1.0

0.&
0..

0..

t.OOO

'0

30

2-37

iPUlood)

...
,.0

.

,
OPOO1211

Note: All typical values have been guaranteed by characterization and are not tested.

Vos "" 20V
Vos'" 0

2.0

_mAl
OPOO1111

I

>

0.&
0.7

OA
0.7

to

'0.0

...
...s.o

U

Vp vs 9fS

......
...s.o
...
~

to.O
1.0

10.0

!...

jJJ

2N5114 = -18V
2N5115= -15V
2N5116 = -15V

Drain Current at Zero Gate Voltage
(Note 1)

tz

OA
0. 7
0.
O.
1,000

••

3,000

10,000

30,000

100,000

• .....Yl
OPOO1311

>

! 2N5117-2N5119

I Dielectrically Isolated Dual PNP
~ General Purpose Amplifier
'P'
'P'

10

I

,FEATURES
•
•
•
•
•

CHIP TOPOGRAPHY

High Gain at Low Current
Low Output Capacitance
Good hFE Match
Tight VBE Tracking
Dlelectrlcally Isolated Matched Pairs for
Differential Amplifiers

4501

1-,033-j

~
.

EMITTER ,1lO29

.0039

.023

L

PIN CONFIGURATION'

EMITTER

x ,1lO29
.0039

TYP 2 PLACES
BASE

COLLECTOR

.ob3o x

.0030

.0040

.0040

TYP 2 PLACES

.0035 x .0034

BASE

..0045

.0044

TYP2PLACES
CT001711

TO-78

ABSOLUTE MAXIMUM RATINGS
(TA = 25°C unless otherwise noted)
Collector-Base or Collector-Emitter
Voltage (Note 1) ........................................... -45V
Emitter-Base Voltage (Notes 1 and 2) .................. - 7V
Collector-Collector Voltage ................................. 100V
Collector Current (Note 1) ................................ 10mA
Storage Temperature Range ............ -65°C to +200°C
Operating Temperature Range ......... -55°C to +200°C
Lead Temperature (Soldering, 10sec) .............. + 300·C
ONE SIDE
BOTH SIDES

PCOO1101

ORDERING INFORMATION*
TO-78

WAFER

DICE

2N5117

2N5117/W

2N5117/D

2N5118

2N5118/W

2N5118/D

2N5119"

2N5119/W

2N5119/D

400mW
2.3m'l"'oC

Power Dissipation.....................
Derate above 25°C................

750rilW
4.3mW'oC

·When ordering waler/dice reler to Section 10, page la-I,

ELECTRICAL CHARACTERISTICS
SYMBOL

(25°C unless otherwise noted)

PARAMETER

2N5117
2N5118

TEST CONDITIONS

2N5119

UNIT

MIN MAX MIN MAX
hFE

DC Cumint 'Gain
ITA = -55°C

ICBO

Collector Cutoff·Current

IC = lallA. VCE = 5.0V

100

Ic = 500PA. VCE = 5.0V

100

Ic = lallA. VCE

= 5.0V

300

50

30

IE-a. Vce-3OV
,ITA-1S0°C

50
20

0.1

0.1

nA

0.1

0.1

IIA
nA

lEBO

Emitter Cutoff Current

IC = O. VEB = 5.0V

0.1

0.1

IC1,C2
GBW

Coliector·Coliector Leakage

Vcc-l00V

5.0

5.0

Current Gain Bandwith Product (Note 4)

Ie = 5001lA.

100

VCE = 10V

100

COb

Output Capacitance (Note 4)

IE'" 0, Vee = 5.0V. 1= lMHz

Gte

Emiller Transition CapaCitance (Note 4)

IC - 0, VEe

CC1,C2

Coliector·Colleqlor Capacitance (Note 4)

Vee - 0, I = 1MHz

VCEO(sust)

Coliector·Emitter Sustalni,ng Voltage

Ic = 1'.OmA. Ie = 0

NF

Narrow Band Noise Figure (Note 4)

IC = lallA. VCE = 5.0V
BW= 200Hz

BVCBO

Collector Base Breakdown Voltage

Ic = lallA. IE = a

45

45

V

BVEeO

Emitter Base Breakdown Voltage

IE = lallA. Ic = a

7.0

7.0

V

= 0.5V,

0.8

pA
MHz

1= lMHz

I'

2-38
Note: All typical values have been guaranteed by characterization and are not tested.

1.0

0.8

0.8

45
= 1kHz. RG

= 10kO

O.B

1.0
45
4.0

pF
V

4.0

dB

MATCHING CHARACTERISTICS

I
(25°C unless otherwise noted)
2N5117

SYMBOL

PARAMETER

2N5118

~

2N5119

TEST CONDITIONS

UNIT
MIN MAX MIN MAX MIN MAX

DC Current Gain Ratio
hFE1/hFE2

(Note 3)
Base-Emitter Voltage

VSE,-VSE2
Is 1-IS2

Base Current Differential
Base Voltage Differential
Change with Temperature

"(ls 1-ls2)/"T

Base-Current Differential
Change with Temperature

NOTES:

1.
2.
3.
4.

Ie - 10iJA to SOOIlA, VeE

= SV

= 10iJA, VeE = S.OV
Ie = 10iJA to SOOIlA, VeE = SV

0.9

Ie - 10iJA, VeE

= S.OV

0.85

1.0

0.8

1.0
mV

3.0
5.0

5.0

10.0

15

40

nA

TA= -55'Cto + 125'C

3.0

5.0

10

IlV/'C

TA= -55'Cto + 125'C

0.3

0.5

1.0

nAI'C

Per transistor.
The reverse base-la-emitter voltage must never exceed 7.0 volts and the reverse base-to-emitter current must never exceed 101lA.
Lower of two hFE readings is defined as hF E1'
For design reference only, not 100% tested..

2--'l9

Note: All typical values have been guaranteed by characterization and are not tested.

Z

ca

I&)

1.0

Ie

Differential

"(VSE1-VSE2)1 "T

.......
..
N

2N5117-2N5119

i!

2N51'96-2N5199

~
o

Gene·ral· Purpose Amplifier

.!II Dual N-Channel JFET
;;z

PIN CONFIGURATION

"

CHIP TOPOGRAPHY
6037

TO-7,l

0,

ALL80ND PADS ARE 4x 4MIL.
CT000701
PC002501

ABSOLUTE MAXIMUM RATINGS
(TA = 25°C unless otherwise noted)
Gate-Source or Gate-Drain Voltage (Note 1) ........ -50V
Gate Current (Note 1) ..................................... 50mA
Storage Temperature Range ............ -65°C to +200°(;
Operating Temperature Range ......... ~55°C to + 150°C
Lead Temperature (Soldering, 10sec) .............. + 300°C
ONE SIDE' BOTH SIDES

ORDERING INFORMATION*
T0-71

WAFER

DICE

2N5196

2N5196/W

2N5196/D

2N5197

2N5197/W

2N5197/D

2N5198

2N5198/W

2N5198/D

2N5199

2N5199/W

2N5199/D

Power Dissipation (TA = 85°C) ... .
Derate above 25°C ............... .

250mW
2.6mW/"C

500mW
4.3mW/oC

·When ordering wafer/dice refer to Section 10, page 10-1,

ELECTRICAL CHARACTERISTICS
SYMBOL
IGSS

(25°C unless otherwise noted)
TEST' CONDITIONS

PARAMETER
Gate Reverse Current

MIN

VGS = -30V, Vos = 0
ITA = 150·C

MAX

UNIT

-25

pA

-50

nA
V

BVGSS

Gate-Source' Breakdown )/oltage

IG=-lj.iA, VOS=O

-50

VGS(off)

Gate-Source Cutoff Voltage

VOS = 20V, 10 = lnA

-0.7

-4

VGS

Gate-Source Voltage

-0.2

-3,8

IG

Gate Operating Current

-15

VOG = 20V,Io = 200j.iA
ITA -125·C

lOSS

Saturation Drain Current (Note 2)

VOS = 20V, VGS = 0

Qfs

Common-Source Forward Transconductance (Note 2)

VOS - 20V, VGS

Qfs

Common-Source Forward Transconductance (Note 2)

YOG - 20V, 10 = 200j.iA

gas

Common-Source Output Conductance (Note 2)

VOS = 20V, VGS = 0
VOG = 20V, 10 = 200j.iA

gas

Common-Source Output Conductance (Note 2)

Ciss

Common-Source Input Capacitance (Note 4)

Crss

Common-Source Reverse Transfer Capacitance
(Note 4)

NF

Spot Noise Figure (Note 4)

en

Equivalent Input Noise Voltage (Note 4)

=0
f= 1kHz

pA

-15

nA

0.7

7

rnA

1000

4000

700

1600
50

/J.s

4

6
f=lMHz

pF
2

VOS = 20V, VGS = 0

f = 100Hz,
RG = 10Mn

0.5

dB

f= 1kHz

20

/J.nV

JFIz

2-40
Note: All typical values have been guaranteed by characterization and, are not tested,

Z

VI
CD

ELECTRICAL CHARACTERISTICS (CONT.)
2N5196
SYMBOL

PARAMETER

2N5197

2N5198

2N5199

TEST CONDITIONS

UNIT
MIN MAX MIN MAX MIN MAX MIN MAX

IIG1-IG2 1

Differential Gate Current

VOG =20V,
10 = 2001'ft,

IOSSI/10SS2

Saturation Drain Current Ratio
(Note 2)

VOS = 20V, VGS = OV

9101 / g'02

Transconductance Ratio
(Note 2)

IVGS1-VGS2 1

Differential Gate-Source Voltage

LllvGS1=VGS2 1 Gate-Source Differential Vo~age
Change with Temperature
LIT
(Note 3)
1gOOI-go021

NOTES:

1.
2.
3.
4.

..
~
..
I
N

2N5196-2N5199

125"C

f= 1kHz

Voo = 20V,
10 = 2001'ft,

0.95
0.97

TA - 25"C
TS = 12S"C
TA= -55"C
TR = 2SoC
f= 1kHz

Differential Output Conductance
Per transistor.
Pulse test required, pulsewidth = 300"s, duty cycle
Measured at endpOints TA and T B.
For design reference only, not 100% tested.

5

< 3%.

2-41
Note: All typical values have been guaranteed by characterization and are not' tested.

5

5

1

0.95

1

0.97

1

0.95

1

0.95

5

1

0.95

1

0.9S

nA

1
1

5

5

10

15

5

10

20

40

5

10

20

40

1

1

1

1

mV

",I"C
is

Z

VI

.U~UI6

2N5397, 2N5398

iz

II)

C\I

N~¢hannel JFET
High F~equency Amplifier
FEATURES
G,s = 15dB Minimum (Common Gate) at 450MHz

•
•

,

,

.,

CHIP TOPOGRAPHY
5011

Uw Noise
Low Capacitance

•

" ' " ,

I--- .015---1
I
I

PIN CONFIGURATION

NOTE: SUBSTRATE
IS GATE.

T~.

.012

TO-72

0.0035
.0042
.0025 x -:0032

1

S .0035 x .00405
.0025
.00305 '
CTOO191t

ABSOLUTE MAXIMUM RATINGS
(TA = 25°C unless otherwise noted)
Drain-Gate Voltage ........................................... 25V
Drain-Source Voltage ............................. : ........... 25V
Continuous Forward Gate Current.. .................... 10mA
Storage Temperature Range ............ -65·C to +200°C
Operating Temperature Range ......... -55°C to + 150°C
Lead Temperature (Soldering, 10sec) .............. + 300°C
Power Dissipation ......................................... 300mW
Derate above 25°C .......................•.. 2.4mW fOC

PCOOO201

ORDERING INFORMATION*
TC>-72

WAFER

DICE

2N5397

2N5397/W

2N5397/D

2N5398

2N5398/W

2N5398/D

'When ordering waferI dice refer to Section 10, page 10-1.

ELECTRICAL CHARACTERISTICS

(25°C unless otherwise noted)
2N5397

SYMBOL

PARAMETER

UNIT
MIN

IGSS

2N5398

TEST CONDITIONS

Gate Reverse Current

VGS= -15V, VOS=O
ITA = + 150·C

150·C

MAX

MIN

MAX

-0.1

0.1

nA

-0.1

-0.1

IIA

BVGSS

Gate-Source Breakdown Voltage

VOS=O, IG =

-IlIA

-25

VGS(off)

Gate-Source Cutoff Voltage

VOS = 10V, 10 = InA

-1.0

-6.0

-1.0

-6.0

loSS

Saturation Drain Current (Note I)

VOS = 10V, VOS = 0

10.

30

5

40

rnA

VGS(f}

Gate-Source Forward Voltage

VOS-O,IG-lmA

1

V

Common..source JForward

'-:OS = 10V, 10 = lOrnA

6000

10,000

Transconductance (Note I)

VOS = 10V, VGS = 0

Common..source Output

VOS

Conductance

VOS = 10V, VGS = 0

Common-Source Reverse Transfer

Vos = 10V, 10 = lOrnA

Capacitance (Note 2)

VOS = 10V, VGS = 0

gls
goss
Crs•

= 10V,

10 = lOrnA

VOG = 10V, 10 = lOrnA
Cis.

Common-Source Input CapaCitance
(Note 2)

VOS = 10V, VGS = 0

2-42
Note: All typical values have been guaranteed by characterization and are not tested.

-25

1

f= 1kHz

,

5500

V

10,000

ps

200
400
1.2
1.3

f=IMHz

pF

5.0
5.5

2N5397, 2N5398
ELECTRICAL CHARACTERISTICS (CONT.)
2N5397
SYMBOL

PARAMETER

UNIT
MIN

9iss

9055

Common-Source Input

VOG = 10V, 10 = 10mA

Conductance (Note 2)

VOG = 10V, VGS = 0

Common-Source Output

VOG = 10V, 10 = 10mA

Conductance (Note 2)

VOS = 10V, VGS = 0

Common-Source FOlWard

VOG = 10V, 10 = 10mA
VOS = 10V, VGS

9fs

Transconductance (Note 1, 2)

Gps

Common-Source Power Gain (neutralized)

NF

Common-Source, Spot Noise
Figure (neutralized)

NOTES:

2N5398

TEST CONDITIONS
MAX

MIN

MAX

2000
3000
400
500
f = 450MHz

5500

IlS

9000

=0

5000

10,000

15
dB

VOG = 10V, 10 = 10mA
3.5

(Note 2)

1. Pulse test duration = 2ms
2. For design reference only, not 100% tested.

2-43
Note: All typical values have been guaranteed by characterization and are not tested.

2N5432-2N5434
N-Channel JFET Switch
CHIP TOPOGRA~HY

FEATURES
•

Low rds(on)

.•

Excellent SWitching

•

Low Cutoff Current'

5018

o
.0035 . x .0036

.. if-------::;,,.....,.OO25

PIN CONFIGURATION

.0026

TO-52
NOTE: SUBSTRATE
is GATE

CT0Q2011

PCOO12U

ORDERING INFORMATION·
TO-52

WAFER

2N5432

2N5432/W

2N5432/0

2N5433

2N5433/W

2N5433/0

2N5434

2N5434/W

2N5434/0

ABSOLUTE MAXIMUM RATINGS
(TA = 25·C unless otherwise noted)

DICE

Gate-Source Voltage ....................................... -25V
Gate-Drain Voltage ......................................... -25V
Gate Current .................................. _............. 100mA
Drain Current ............................................... .400mA
Storage Temperature Range ............ -65·C to + 200·C
Operating Temperature Range ......... - 55·C to + 150·C
Lead Temperature (Soldering, 10sec) .............. + 300·C
Power Dissipation ......................................... 300mW
Derate above 25·C ........................ ;. 2.3mW JOC

'When ordering waferI dice refer to Section 10, page 10-1.

ELECTRICAL CHARACTERISTICS

(25·C unless otherwise noted)
2N5432

SYMBOL

PARAMETER

2N5433

2N5434

TEST CONDITIONS

UNIT
MIN MAX MIN MAX MIN MAX

IGSS

Gate Reverse Current

BVGSS

Gate Source Breakdown Voltage

ITA = 150·C

VGs= -15V, Vos=O

-200

-200

-200

pA

-200

-200

-200

nA

200

pA

200

nA

-25

IG=-IIlA, Vos=O

-25
200

IO(off)

Drain Cutoff Current

VGS(off)

Gate-Source Cutoff Voltage

VoS = 5V, 10 = 3nA

-4

lOSS

Saturation Drain Current
(Note I)

VOS = 15V, VGS = 0

150

rOS(On)

Static Drain-Source ON Resistance

VoS(on)

Drain-Source ON Voltage

rds(on)

Drain-Source ON Resistance

CiSS

Common-Source Input Capacitance
(Note 2)

Crss

Common-Source Reverse Transfer
CapaCitance (No.te 2)

ITA = 150·C

VoS= 5V, VGS= -IOV

200

2
VGS = 0, 10 = lOrnA
VGS=O, 10=0

f= 1kHz

Vos=O, VGS= -tOY

f=IMHz

2-44
Note: All typical values have been guaranteed by characterization and are not tested..

-10

-25
200.
200

-3

-9

100

-I

V

-4

30

V
rnA

5

7

10

50

70

100

mV

5

.7

10

ohm

30

30

30

15

15

15

Ohm

pF

2N5432~2N5434

ELECTRICAL CHARACTERISTICS (CONT.)
2N5432
SYMBOL

PARAMETER

2N5433

2N5434

TEST CONDITIONS

UNIT
MIN

MAX MIN MAX. MIN MAX

IcJ

Turn-ON Delay Time (Note 2)

VOO= 1.5V,

4

4

tr

Rise Time (Note 2)

VGS(on) = 0,

1

1

1

toff

Turn-OFF Delay Time (Note 2)

VGS(off)= -12V

6

6

6

tf

Fall Time (Note 2)

10(on) = 10mA

30

30

30

NOTES:

1. Pulse test required, pulsewidth 300"s, duty cycle:S 3%.
2. For design reference only, not 100% tested.

Voo

R _ VOo-Vos(ON)
L -

o
VIN

lo(ONI

~VOUT

o---.._-...j-RG

!-

5O1l

TCOO1811

2-45
Note: All typical values have been guaranteed by characterization and are not tested.

4
ns

;Z·2N5452-2N5454

I

Dual N-Channel JFET
, General· Purpose Amplifier
&'4'

!GENERAL DESCRIPTION

I

FEATURES

\ Matched FET pairs for differential amplifiers. This family
of general purpose FETs iscnaracterized for low and
medium frequency differential amplifier applications requiring low drift and low offset voltage.

•
•
•
•

Low
Low
Low
Low

Offset Voltage
Drift
Capacitance
Qutput Conductance

CHIP TOPOGRAPHY

PIN CONFIGURATION

6037
TO-71

0,

ALL BONO PADS ARE 4 x 4 MIL.
CTOOQ701
PC002501

ABSOLUTE MAXIMUM RATINGS
(TA = 25°C unless otherwise noted)
Gate-Source or Gate Drain Voltage
(Note 1) .................................................... -50V
Gate Current (Note 1).................................... 50mA
Storage Temperature Range ........... -65°C to +200°C
Operating Temperature Range ........ -55°C to + 150°C
Lead Temperature (Soldering, 10sec) ............. +300°C

ORDERING INFORMATION*
TO-71

WAFER

DICE

2N5452

2N5452/W

2N5452/D

2N5453

2N5453/W

2N5453/D

2N5454

2N5454/W

2N5454/D

·When ordering walerI dice reler to Section 10, page 10-1.

ELECTRICAL CHARACTERISTICS

Power Dissipation (TC = 85°C) ....
Derate above 25°C................

BOTH SIDES

250mW
2.9mWrC

500mW
4.3mW/oC

(TA = 25°C unless otherwise noted)
2N5452

SYMBOL

ONE SIDE

2N5453

2N5454

TEST CONDITIONS

PARAMETER

UNIT
MIN MAX MIN MAX MIN MAX

VGS = -30V, VOS = 0

-100

-100

~100

pA

-200

-200

-200

nA

-1

-4.5

V

-0.2

-4.2

IGSS

Gate Reverse Current ITA = 150.C

BVGSS

Gate-Source Breakdown
Voltage

Vos=O, IG= -1/'A

-50

VGS(off)

Gate-Source CutoWVoltage

VOS= 20V, 10=lnA

-1

-4.5

-1

-4.5

VGS

Gate-Source Voltage

Vos = 20V, 10 = 50/'A

-0.2

-4.2

-0.2

-4.2

VGS(f)

'Gate-Source Forward Voltage

VOS =0, IG = lmA

lOSS

·Ssturation Drain Current

VOS = 20V, VGS = 0

0.5

5.0

0.5

5.0

0.5

5.0

1000

3000

1000

3000

1000

3000

2

Common-Source Forward
Qt.

Transconductance

I(Note 2)

I
VOS = 20V, VGS = 0

= 1kHz

f= 100MHz

Common-Source Output

gos

Conductance

Ciss

Common-Source Input
CapaCitance (Note 2)

VOS = 20V, 10 = 200p.A

= 20V,

Crss

Common-Source Reverse
Transler Capacitance (Note 2)

VOS

Cdgo

Drain-Gate CapaCitance (Note 2)

VOG=10V, 15=0

-50

1= 1kHz

1000

-50

2

1000

2
rnA

1000

3.0

3.0

3.0

1.0

1.0

1.0

4.0

4.0

4.0

1.2

1.2

1.2

1.5

1.5

1.5

p.s

VGS = 0
1= lMHz

2-46
Note: All typical values have been .guaranteed by characterization and are not tested.

pF

.U~UIL

2N5452-2N5454
ELECTRICAL CHARACTERISTICS (CO NT.)
2N5452
SYMBOL

PARAMETER

UNIT

en

Equivalent Short Circuit
Input NOise Voltage

VOS = 20V. VGS

NF

Common-Source Spot
Noise Figure (Note 2)

VOS = 20V. VGS = 0
RG= 10MS'!

_"-'-'1

=. 0

f= 1kHz
f = 100Hz

wc

1.0

MAX

MIN

20

0.5
0.95

T' 2S"C to -

MIN

20

Vos = 20V. VGS = 0

Gate-Source Voltage

MAX

0.5
0.95

1.0

0.95

MAX
20

-L!L

0.5

d3

5.0

10.0

15.0

0.8

2.0

0.5

1.0

2.5

Differential Change with
"IVGS1-VGS21 Temperature

mV
Vos = 20V. 10 = 200j.tA

9'91/9'92
19091-9092 1
NOTES:

y'1IZ

1.0

0.4

T =2S'C to
+ 125'C

Transconductance Ratio

0.97

Differential Output Conductance

f= 1kHz

1. Per transistor.
2. For desi9n reference only. not 100% tested.

2-47
Note: All typical values have been 9uaranteed by characterization' and are not tested.

1.0
0.25

0.97

1.0
0.25

0.95

1.0
0.25

Z

!
N
I
N

2N5454

TEST CONDITIONS
MIN

IOSSl/IOSS2 Drain Saturation Current Ratio
IVGS1-VGS2 1

2N5453

N

IJS

Z

:

CII
~

! i~N5457.2N5459

IN-Channel JFET
,.... General Purpose Amplifier/Switch
~

10

Z

PJN CONFIGURATION

CHIP TOPOGRAPHY

ft

5010

T0-92

D(2)
.0013 FULLR
.0017

~1) ~T
• .

o

S

.0025

x~

.0036

.0036

:=

~ ~

~
NOTE: SUBSTRATE
IS GATE

.013

G

PCO01311

CT0Q0321

ABSOLUTE MAXIMUM RATINGS

ORDERING INFORMATION*
TO-92

WAFER

DICE

2N5467

2N5457/W

2N5457/D

2N545B

2N5458/W

2N5458/D

2N5459

2N5459/W

2N5459/D

'When

~rda"ing

(TA = 25°C unless otherwise noted)
Drain-Gate Voltage ........................................... 25V
Drain-Source Voltage ......................................... 25V
Continuous Forward Gate Current.. .................... 10mA
Storage Temperature Range ............ -65°C to + 150°C
Operating Temperature Range ......... -55°C to + 135°C
Lead Temperature (Soldering, 10sec) .............. + 300°C
Power Dissipation ......................................... 310mW
Derate above 25°C ........................ 2.82mWrC

waler / dice reler 10 Section 10, page 10-1.

ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted)
SYMBOL
BVGSS

PARAMETER

TEST CONDITIONS

Gale-Source Breakdown Voltage

IG - -IOpA, Vos - 0

MIN

TYP

-25

-60

Gale Reverse Currenl

VGS(off)

Gale-Source Cutoff Voltage

2N5458

-0.5
VOS=15V,IO=IOnA

2N5459
VGS

Gale-Source Vollage

-8.0
-2.5

VOS = 15V, 10 = 200pA

-3.5

2N5459

VOS = 15V, 10 = 400pA

-4.5

(Nole I)

2N5459

Forward Transler Admittance

2N5458

VOS = 15V, VGS = 0

2N5457
IYlsl

-7.0

-2.0
VOS -15V, 10 = 100pA

2N5458

VOS -15V, VGS = 0, I = 1kHz

2N5459

-200

-1.0

2N5458

Zero-Gale-Voltage Drain Currenl

V
nA

-6.0

2N5457

2N5457
lOSS

.05

VGS = -15V, VOS- 0, TA -IOO'C
2N5457

UNIT

-1.0

VGS - -15V, VOS = 0
IGSS

MAX

V

V

1.0

3.0

5.0

2.0

6.0

9.0

4.0

9.0

16

1000

3000

5000

1500

4000

5500

2000

4500

6000

mA

,,"S

IYosl

Oulpul Admittance

VOSs 15V, VGS-O, I-1kHz

10

50

Ciss

Inpul Capacitance (Nole 2)

VOS=15V, VGS=O, 1=IMHz

4.5

7.0

""

Crss

Aeverse Transler CapaCitance (Nole 2)

VOS = 15V, VGS = 0, 1= IMHz

1.5

3.0

pF

NF

Noise Figure (Nole 2)

VOS -15V, VGS = 0, RG = IMHz
BW -1Hz, I -1kHz

3.0

dB

NOTES:

I. Pulse lest required. PW S 630ms. duty cycle S 10%
2. For deSign relerence only, nol 100% lesled.

2-48
Nole: All typical values have been guaranleed by characterization and are nol lested.

pF

2N5460-2N5465
P-Channel JFET

Low Noise Amplifier
PIN CONFIGURATION

CHIP TOPOGRAPHY
5503

TO·92

q

II'~;}'='=

H

r-

s

0

.016

---i

NOTE: i1U:~i:ATE
CTOO2111

G

PC003111

ABSOLUTE MAXIMUM RATINGS
(TA = 25°C unless otherwise noted)
Drain-Gate or Source-Gate Voltage
2N5460 - 2N5462 ................................. -40V
2N5463 - 2N5465 ................................. -60V
Gate Current ................................................. 10mA
Storage Temperature Range ............ -65°C to + 150°C
Operating Temperature Range ......... -55°C to + 135°C
Lead Temperature (Soldering, 10sec) .............. +300°C
Power Dissipation ........................................ :310mW
Derate above 25°C ........................ 2.82mWI"C

ORDERING INFORMATION*
TO-92

WAFER

DICE

2N5460

2N5460/W

2N5460/0

2N5461

2N54611W

2N5461/0

2N5462

2N5462/W· 2N5462/0

2N5463

2N5463/W

2N5463/0

2N5464

2N5464/W

2N5464/0

2N5465

2N5465/W

2N5465/0

'When ordering waler/dice refer to Section to, page to-to

ELECTRICAL CHARACTERISTICS
SYMBOL

(25°C unless otherwise noted)

PARAMETER

TEST CONDITIONS

2N5460, 2N5461 , 2N5462
BVGSS

Gate·Source Breakdown Voltage

2N5463, 2N5464, 2N5465

IG = 101lA, VOS = 0

2N5460, 2N5463
VGS(off)

Gate·Source Cutoff Voltage

2N5461, 2N5464

VOS= -15V, 10= 1.011A

2N5462, 2N5465
2N5460, 2N5461, 2N5462
Gate Reverse Current
IGSS
ITA = 100°C

VOs=O

2N5463, 2N5464, 2N5465
2N5460, 2N5461 , 2N5462
2N5463, 2N5464, 2N5465

Zero·Gate Voltage Drain Current

gts

Gate-Source Voltage

Forward Transadmittance

V

0.75

6.0

1.0

7.5

1.8

9.0

IIA

-1.0

rnA

-2.0

-9.0

-4.0

-16

2N5460, 2N5463
2N5461, 2N5464

0.5

4.0

0.8

4.5

2N5462, 2N5465

10 = -O.4mA

1.5

6.0

2N5460, 2N5463

1000

4000

2N5461, 2N5464

1500

5000

2N5462, 2N5465

2000

6000

VOS= -15V

1= 1.0kHz

Output Admittance
Input Capacitance (Note 1)

Crss
NF

Reverse Transler Capacitance (Note 1)

1= lMHz

Common·Source Noise Figure (Note 1)

en

Equivalent Short·Circuit Input
Noise Voltage (Note 1)

I -100Hz
BW= 1.0Hz
RG=I.0MU

VGS= OV

NOTE 1: For deSIgn reference only, not 100% tested.

2-49
Note: All typi"al values have been guaranteed by characterization and are not tested.

V

5.0
1.0
1.0
_5.0

VGS=O
10=0.lmA
10= -0.2mA

VOS = -15V

UNIT

5.0

Ciss

gos

MAX

VGS= 30V
VGS-20V
VGS= 30V

2N5461, 2N5464
2N5462, 2N5465

VGS

TYP

40
60

VGs=20V

2N5460, 2N5463
loss

MIN

75
5.0
1.0

7
2.0

1.0

2.5

60

115

nA

V

IlS
IlS
pF
pF
DB
nV/

.!Hz

II

CD

....CD
10

Z

i
z

(II

2N5484-2N5486

N-Channel ,JFET
'
High Frequency Amplifier
FEATURES

CHIP TOPOGRAPHY

Up. to 400MHz Operation
Economy Packaging
eras < 1.0pF

.0035
.0025 FULL~

PIN CONFIGURATION

.017

•

•

•

5000

T ~. ~:0035

.0025 x .0035
.0025

•_

~ 0(2)1

TO-92

.

I~;[r

~=
~ NOTE: SUBSTRATE
.
IS GATE

q

.017
CTOO221 I

rl

ABSOLUTE MAXIMUM RATINGS
o

S

(TA = 25°C unless otherwise specified)
Drain-Gate Voltage ........................................... 25V
Source Gate Voltage ......................................... 25V
Drain Current ................................................. 30mA
Forward Gate Current ...................................... 10mA
Storage Temperature Range ............ -65°C to + 150°C
Operating Temperature Range ......... -·55°C to + 135°C
Lead Temperature (Soldering. 10sec) .............. + 300°C
Power Dissipation ......................................... 310mW
Derate above 25°C ........................ 2.82mW fOC

Q

PCO0340t

ORDERING INFORMATION*
TO·92

WAFER

DICE

2N5484

2N5484/W

2N5484/D

2N5485

2N5485/W

2N5485/D

2N5486

2N5486/W

2N5486/D

'When ordering waler/dice reler to Section 10. page 10-1.

ELECTRICAL CHARACTERISTICS

(25°C unless otherwise noted)
2N5484

SYMBOL

PARAMETER

2N5485

2N5486

TEST CONDITIONS

UNIT
MIN MAX MIN MAX MIN MAX
-1.0

-1.0

-1.0

-200

-200

-200

IGSS

Gate Reverse Current ITA = l00.C

VGS = -20V. Vos = 0

BVGSS

Gate-Source Breakdown Voltage

IG = -lIlA. VOS - 0

-25

VGS(off)

Gate-Source Cutoff Voltage

VOS - 15V. 10 - 10nA

-0.3 -3.0 -0.5 -4.0 -2.0 -6.0

VOS = 15V. VGS = 0 (Note 1)

loSS

Satliration Drain Current

gts

COmmon-Source Forward
Transconductance

gos

Common-Source Output
Conductance

Re(yta)

Common-Source Forward
Transconductance (Note 2)

Re(yos)

Common-Source Output
Conductance (Note 2)

Re(yis)

Common-Source Input
Conductance (Note 2)

Ciss

Common-Source Input
CapaCitance (Note 2)

1:0

5.0

4.0

nA

-25

-25
10

8.0

20

V
rnA

3000 6000 3500 7000 4000 8000
1= 1kHz
50

VoS=15V. VGS=O

1= 100MHz
1=400MHz
1=,100MHz
I -400MHz
l-l00MHz
1=400MHz

75

60

2500
3000

3500

fJS

75
100

100

100
1000

1000

5.0

5.0

5.0

1.0

1.0

1.0

2.0

2.0

2.0

Common-Source Reverse
Crss

Transler Capacitance (Note 2).

Coss

Common-Source Output
Capacitance (Note 2)

1= lMHz

2-50
Note: All typical velues have been guaranteed by characterization and are not tested.

pF

2N5484-2N5486
ELECTRICAL CHARACTERISTICS (CO NT.)
2N5484
SYMBOL

PARAMETER

2N5485

2N5486
UNIT

TEST CONDITIONS
MIN MAX MIN MAX MIN MAX
vos = 15V, vGS = 0, RG = lM.f!

f= 1kHz

2.5

VOS = 15V, Vo = lmA,
RG= lk.f!
NF

Noise Figure
(Note 2)

f = 100MHz
VOS = 15V, 10 = 4mA,
RG= lk.f!

f = 400MHz

VOS = 15V, 10 = lmA
Gps

NOTES:

Common-Source Power Gain
(Note 2)

16
f = 100MHz

VOS = 15V, 10 = 4mA

1. Pulse test required. Pulse width = 300;. 30V
Crss 0.75pF (Typical)

=

CHIP TOPOGRAPHY

TO·71
TO·78

4000

1-- --1
023

l

CATHODE"

T~
~:~~~~~~~s .0040 x.0040
.017
---.l
~~~~~~!CES ~qQ~DIA
.0030

.0030

.0040

j

ANODEM1

.
CT00331I

ABSOLUTE MAXIMUM RATINGS
(TA = 25°C unless otherwise noted)
Diode Reverse Voltage ...................................... 30V
Diode to Diode Voltage ....................•............... ±50V
Forward Current ............................................. 20mA
Reverse Current ............................................ 100!-IA
Storage Temperature Range ............ -65°C to + 200°C
Operating Temperature Range ......... -55°C to + 150°C
Lead Temperature (Soldering, 10sec) .............. + 300°C
Power Dissipation ........................ ; ................ 300mW
Derate above 25°C .......................... 2.4mWfOC

PCQ0211 I

ORDERING INFORMATION*

'When ordering wafer/dice refer to Section 10, page 10-1.

ELECTRICAL CHARACTERISTICS

(@ 25°C unless otherwise noted)

10100, 10101
SYMBOL

TEST CONDITIONS

PARAMETER

UNIT
MIN TYP MAX

VF

Forward Voltage Drop

IF = lOrnA

0.8

BVR

Reverse Breakdown Voltage

IR=lpA

30

IR

Reverse Leakage Current

VR= 1V

1.1

V
0.1
2.0

I
IiR,-IR2 1
Crss

TA = 125°C

VR = 10V

Differential Leakage Current
Total Reverse Capacitance

VR=10V, f=lMHz (Note 1)

NOTE 1: For design reference only. not 100% tested.

2-74
Note: All typical values have been guaranteed by characterization and are not tested;

V

0.75

pA
10
10

nA

3

pA

1

pF

ID100, ID101
TYPICAL PERFORMANCE CHARACTERISTICS
REVERSE CURRENT vs. VOLTAGE
1.0

11

0.9

."

10

.

_

CAPACITANCE

12

9

.!: •
~

0.8
0.7
0.6

L

--

FORWARD CURRENT

.!'-lmA~

lDO"A
lOjJA •

r-- r-- -- r--

0.3
0.2

/"

hA

0.1

~~

o

10

15

20

25

VOLTAGE

10mA~1I

-

i -t-

VS.

0.4

/1-'"

,/

o

VOLTAGE

0.5

./

t---

f-- f--

"-

VS.

30

00

10

15

VRIVI

25

20

VR (VI

OPOO1811

OP001911

2-75
Note: All typical values have been guaranteed by characterization and are not tested.

30

100 nA

r--r-- - .

"

•

H

o~--'-1.......L..-'.:Jol';-.5-'--'---'-~1';;-.0-'--'--"'-:".4
V F {VI
OPOO201 I

....a
o

2_'
'

1'1100, IT101

P-Channel JFET Switch

8
t GENERAL DESCRIPTION

FEATURES

This P-channel JFET has been designed to directly
interface with TTL logic, thus eliminating the need for costly
drivers, in analog gate circllitry. Bipolar inputs of ±15V can
be switched. The FET is OFF for hi level inputs (+ 5V or
+ 15V) and ON for low level inputs « 0.5 V for
IT100, < 1.5V for 1T101).
'

PIN CONFIGURATION

•
•

Interfaces Directly w/TTL Logic Elements
rOS(on) < 7Sq for SV Logic Drive

•

IO(Ciff)

< 100pA

CHIP TOPOGRAPHY
5514

T()'18

o

G,C

*~---,028 - - - - - I

s

1....

I

PCO0011I

NOTE: SUBSTRATE IS GATE.

CT003411

ORDERING INFORMATION*
TO-18

WAFER

DICE

1T100

IT100/W

1T100/D

1T101

IT10l/W

IT10l/D

ABSOLUTE MAXIMUM RATINGS
(TA = 25°C unless otherwise noted)
Gate-Source Voltage ......................................... 35V
Gate-Drain Voltage ........................................... 35V
Gate Current ................................................. 50mA
Storage Temperature Range ............ -65°C to +200°C
Operating Temperature Range ......... -55°C to + 150°C
Lead Temperature (Soldering, 10sec) .............. + 300°C
Power Dissipation ......................................... 300mW
Derate above 25°C ......... ; ................ 2.4mW 1°C

'When ordering wafer/dice refer to Section 10, page 10-1,

ELECTRICAL CHARACTERISTICS

(25°C unless otherwise noted)
IT100

SYMBOL

PARAMETER

UNIT
MIN

loss
Vp
BVGSS
IGSS
g15
gos
10(011)

rOS(on)
Ciss
Crss

Drain Current
Pinch Off Voltage
Gate-Source Breakdown Voltage
Gate Reverse Current
Transconductance
Output Conductance
Drain (OFF) Leakage
Drain·Source "ON" Resistance
Input CapaCitance
Reverse Transfer CapaCitance

IT101

TEST CONDITIONS
VGS=O, VDS=-15V
10 = InA, VOS = -15V
IG=lpA, VOs=O
VGS = 20V, VOS = 0

-10
2
35

MAX MIN
-20
4.5

VOS = -10V, VGS = 15V
VGS - 0, VOS - -0, tV
VOG - -20V, VGS - 0 (Note 1)
VOG- -10V, IS-O (Note 1)

NOTE 1: For design reference only, not 100% tested.

2-76
Note: All typical values have been guaranteed by characterization and are not tested.

4

mA
10
V

35
200

8

VGS = 0, VOS'" -15V

MAX

200

pA

1
-100
60
35
12

mS

8

1
-100
75
35
12

pA

n
pF

IT120, IT122
Dual NPN
General Purpose Amplifier
FEATURES
•
•
•
•

CHIP TOPOGRAPHY

High hFE at Low Current
Low Output Capacitance
Good Matching
Tight VBE Tracking

4003
.0045 x .0045
.0035

.0035

·j:---C-O-LL-EC-T-O-RII-,-b. . .=tii;i....,...,,..,..,,=c--ISOLATION
COLLECTOR

PIN CONFIGURATION

/12 TYP 2 PLACES
.0045 x .0045
.0035
.0035
BASE,2 TVP 2 PLACES

.025

I

TO-71
TO-78

~---.,.c..,<--"<-"""
BAse,,1

:~~~ DIAMETER
EMITTER.2
.0040
TYP 2 PLACES .0030

EMITTERlf1

DIAMETER
CTOO3511

ABSOLUTE MAXIMUM RATINGS
(TA = 25°C unless otherwise noted)
Collector-Base Voltage (Note 1) .......................... 45V
Collector-Emitter Voltage (Note 1) ........................ 45V
Emitter Base Voltage (Notes 1 and 2) .................... 7V
Collector Current (Note 1) ................................ 50mA
Collector-Collector Voltage .................................. 60V
,Storage Temperature Range ............ -65°C to +200°C
Operating Temperatur.e Range ......... -55°C to + 150°C
Lead Temperature (Soldering. 10sec) .............. + 300°C

PCQOO81 I

ORDERING INFORMATION*
TO-78

TO-71

WAFER

DICE

IT120

IT120-T071

IT120/W

IT120/0

TO-78

IT121

IT121-T071

IT121/W

IT121/0

IT122

IT122-T071

IT122/W

IT122/0

ONE
SIDE

PARAMETER

BOTH
SIDES

(25°C unless otherwise noted)
1T120A

SYMBOL

ONE
SIDE

Power Dissipation ........ 250mW
500mW
200mW
400mW
Derate Above
25°C ...................... 1.7mWfOC 3.3mW/oC 1.3mW/oC 2.7mW/oC

'When ordering wafer/dice reler to Section 10, page 10-1.

ELECTRICAL CHARACTERISTICS

TO-71

BOTH
SIDES

1T120

IT121

IT122

TEST CONDITIONS

UNIT
MIN MAX MIN MAX MIN MAX MIN MAX

Ie = 101lA, VCE = 5.0V

200

200

80

80

IC = 1.0mA, VCE

225

225

100

100

hFE

DC Current Gain

VSE(ON)

Emitter-Base On Voltage

IC = 101lA, VCE = 5.0V

0.7

0.7

0.7

0.7

VCE(SAT)

Collector Saturation Voltage

IC = 0.5mA, IS = 0.05mA

0.5

0.5

0.5

0.5

1.0

1.0

1.0

1.0

nA

=

5.0V

75

ITA = -55·C

,ICSO

COllector Cutoff Current
ITA = + 150·C

IE=O, VCB= 45V

75

30

30
V

10

10

10

10

/lA

lEBO

Emitter Cutoff Current

IC = 0, VEB = 5.0V

1.0

1.0

1.0

1.0

nA

Cobo

Output Capacitance

IE =0,
VCB =5.0V

2.0

2.0

2.0

2.0

Cte

Emitter Transition
Capacitance

IC=O,
VEB =0.5V

2.5

2.5

2.5

2.5

CC1,C2

Collector to Collector
Capacitance

Vee=O

4.0

4.0

4.0

4.0

IC"C2

COllector to Collector
Leakage Current

Vee = ±60V (Note 3)

10

10

10

10

1=IMHz
(Note 3)

2-77
Note: All typical values have been guaranteed by characterization and are not tested.

pF

nA

2

's

IT120,lr1,22

!: ELECTRICAL cHARACTERISTICS (CONT.)

i

E

1T120A
SYMBOL

PARAMETER

1T120

IT121

IT122
UNIT

TEST CONDITIONS
MIN MAX MIN MAX MIN MAX MIN MAX

VCEO(SUSn

Collector to Emitter
Sustaining Voltage

IC ~ 1,OmA, IB = 0

GBW

Current Gain Bandwidth
Product (Note 3)

Ic
Ic

IVBE1-VBE2 i

Base Emitter Voltage
Differential, .

IIB1-IB21

Base Current Differential

A(VBE1- VBE2)
Ll.T

Base-Emitter

vOltage

Differential

Change with Temperature

=10llA, VCE = 5V
=lmA, VCE = 5V

45

45

45

45

10

10
220

7
180

7

220

V
MHz

180

1

2

3

5

mV

2,5

5

25

25

nA

3

5

10

20

p'vrc

Ic = 10llA, VCE - 5,OV

(Note,3)
TA - -55·C to + 125·C
IC - 10llA, VCE - 5,OV

NOTES: 1, Per transistor.
2. The reverse base-to-emitter voltage must never exceed 7.0 volts and the reverse base-to-emitter current must never exceed 101lA.
3. For deSign reference only, not 100% tested.

2-78
Note: All typical values have been guaranteed by characterization and are not tested.

IT124
Dual Super-Beta NPN
General Purpose Amplifier
FEATURES
•
•
•
•

CHIP TOPOGRAPHY
4003

Very High Gain
Low Output Capacitance
Tight VBE Matching
High GBW

.0045 x .0045
.0035
.0035

-,

COLLECTOR '.1

i:iiiilii=;1i-:::::-:-=:::=-'SOLATION
COLLECTOR
1#2 TYP 2 PLACES
_~ x .0045
.0035
.0035

'l

025

PIN CONFIGURATION

BASE"2 TYP 2 PLACES

~~-

TO-78

DIAMETER

'--- EMITTER'2

.0040

TYP 2 PLACES .0030
DIAMETER
CT003611

ABSOLUTE MAXIMUM RATINGS

ORDERING INFORMATION*

(TA = 25°C unless otherwise noted)
Collector-Base Voltage (Note 1) ............................ 2V
Collector-Emitter Voltage (Note 1) .......................... 2V
Emitter-Base Voltage (Notes 1 and 2) ..................... 7V
Collector-Current (Note 1) ................................ 10mA
Collector-Collector Voltage ................................. 100V
Storage Temperature Range ............ -65°C to + 200°C
Operating Temperature Range ......... -55°C to + 150°C
Lead Temperature (Soldering, 10sec) .............. + 300°C

'When ordering wafer/dice refer to Section 10, page 10-1.

Power Dissipation ...•.................
Derate above 25°C ............... .

E,

e,

c,
PCOOO31 I

TQ.78

ELECTRICAL CHARACTERISTICS

@

ONE SIDE

BOTH SIDES

300mW
2.4mW/oC

500mW
4.0mW/oC

25°C (unless otherwise noted)
LIMITS

SYMBOL

PARAMETER

UNIT

TEST CONDITIONS
MIN MAX
ISOO

Ic = liJA, VCE = IV
hFE

DC Current Gain

IS00

VSE(ON)

Emitter-Base "ON" Voltage

VCE(SAT)

Collector Saturation Voltage

ICBO

Collector Cutoff Current

I
I

TA= -SS·C

600

IC = 10iJA, VCE = IV

0.7
IC = lmA, IB = O.lmA
TA =

+ ISO·C

O.S
100

IE=O, VCB=IV

lEBO

Emitter Cutoff Current

IC = 0, VEB = SV

Cabo

Output Capacitance (Note '3)

IE-O, VCB-IV

Cte'

Emitter Transition Capacitance (Note 3)

IC = 0, VEB = O.SV

CC1 C2

Coilector to Collector Capacitance (Note 3)

VCC=O

IC1C2

Collector to Collector Leakage Current

VCC - ±SOV

Current Gain Bandwidth Product (Note 3)

tv
Ic = 100iJA, VCE = tv

NF

Narrow Band Noise Figure (Note 3)

Ic = IOiJA, VCE = 3V,
f= 1kHz. RG = 10kf!
BW = 200Hz

BVCBO

Collector-Base Breakdown Voltage

BVEBO (Note 2)
VCEO(SUST)

Emitter-Base Breakdown Voltage

IC - 10iJA. IE - 0
IE = 10iJA, IC = 0

7

Collector-Emitter Sustaining Voltage

Ic=lrnA.IB=O

2

IC = 10iJA, VCE =

GBW

'2-79
Note: All typical values have been guaranteed by characterization and are not tested.

I

I

V
pA

100

nA

100

pA

O.B
f= IMHz

1.0

pF

O.B
2S0

pA

10
MHz

100
3

dB

2
V

:

11:124

e MATCHING CHARACTERISTICS

@'

25°C (unless otherwise noted)
LIMITS

SYMBOL

PARAMETER
'.

TEST CONDITIONS
.'

UNIT
TYP MAX

;

IVBE1-VBE2 1

Base Emitter Voltage Differential

IC - 101lA. VCE = 1V

2

5

mV

al(VBE1-VBE?!lt aT

Base Emitter Voltage Differential Change with
Temperature (Note 3)
,

Ic = lallA. VCE = tV
T - -55°C to + 125°C

5

15

p.VI'C

IIB1-IB2 11

Base Current Oifferential

Tc-l01lA. VCE -lV

.6

nA

NOTES:

1. Per transistor..
.
2. The reverse base-to-emitle( voltage must never exceed 7.0 volts and the reverse base-to-emitter current must never exceed lallA.
3. For design releren~e only. not 100% tested.

2,.80

Note: All typical values have 1!een guaranteed by eharacteri:zation and are not tested,

IT126-IT129
Dual NPN
General Purpose Amplifier
FEATURES
•
•
•
•
•

CHIP TOPOGRAPHY
4001

High Gain at Low Current
Low Output Capacitance
Tight Ie Match
Tight VBE Tracking
Dielectrically Isolated Matched Pairs for
Differential Amplifiers

EMln.eR
.0029 )( _.0029_
.0039
.0039
TYP 2 PLACES

PIN CONFIGURATION

BASE
.0030 x -:0030
.0040
.0040
TYP 2 PLACES

EMITTER
BASE

TO·71
TO·78

CTOO371 I

ABSOLUTE MAXIMUM RATINGS
(TA = 25'C unless otherwise specified)
Collector-Base Voltage (Note 1)
IT126, IT127 ........................................... 60V
IT128 .................................................... 55V
IT129 .........................................•.......... 45V

COllect~+;~~:tt~l ~~~~~~~.. ~~~.t~ ..1.~ ........................ 60V
IT128 ..................................................... 55V
IT129 .................................................... 45V
Emitter-Base Voltage (Notes 1 and 2) ................... 7.0V
Collector Current (Note 1) ............................... 1OOmA
Collector-Collector Voltage .................................. 70V
Storage Temperature Range ............ -65'C to + 175'C
Operating Temperature Range ......... -55'C to + 175'C
Lead Temperature (Soldering. 10sec) .............. +300'C

ORDERING INFORMATION*
T078

1°-71

WAFER

DICE

IT126

IT126-T071

IT126/W

IT126/0

IT127

IT127-T071

IT127/W

IT127/0

IT128

IT128-T071

IT128/W

1T128/0

IT129

IT129-T071

IT129/W

1T129/0

T071

PARAMETER

BOTH
SIDES

250mW
1.7
mW/'C

500mW
3.3
mW/'C

IT127

IT128

IT129

TEST CONDITIONS
Ic = 10/'A, VCE = 5V
Ic = LOrnA, VCE = 5V
Ic = lOrnA, VCE = SV
IC = SOmA, VCE = SV
Ic = lmA. VCE = SV
IC = lOrnA, Vce = SV
Ic - SOmA. VCE - SV
IC = lOrnA, Ie = lmA
IC - SOmA, Ie - SmA
Ie = 0, Vce - 4SV, 30V'

hFE

DC Current Gain

VeE(on)

ITA = -SS'C
Emitter·Base On Voltage

VCE(sat)

Collector Saturation Voltage

Iceo

Collector Cutoff Current
ITA - + lS0·C
Emitter Cutoff Current
Ic = 0, VEe = SV

IEeo

ONE
SIDE

(25'C unless otherwise noted)
IT126

SYMBOL

BOTH
SIDES

Total Dissipation at 25'C...... 200mW' 400mW
1.3
2.7
Derating Factor ................... mW/'C mW/'C

'When ordering waferldice refer to Section 10, page 10-1.

ELECTRICAL CHARACTERISTICS

ONE
SIDE

Power Dissipation

T078

2-Bt
Note: All typical values have been guaranteed by characterization and are not tested.

UNIT
MIN MAX MIN MAX MIN MAX MIN MAX
150
150
100
70
200 800 200 800 ISO 800 100
170
lIS
230
230
100
100
7S
SO
7S
7S
60
40
0.9
0.9
0.9
0.9
1.0
1.0
1.0
1.0
0.3
0.3
0.3
0.3
1.0
1.0
1.0
1.0
0.1
0.1
0.1
0.1'
0.1
0.1
0.1
0.1'
0.1
0.1
0.1
0.1

V

nA
/'A
nA

r:.
r.-

...~ IT12S-IT129·

.

...t:

···.D~OlL

I,i

.&'<1

'f",1'

ELECTRICAL· CHARACTERISTICS (CONT.)·
IT126
PARAM~T~R

SYMBOL

IT127

IT128

IT129
UNIT

TEST CONDITIONS
MIN MAX MIN MAX MIN MAX MIN MAX

Cobo

output Capacitance (Note 3)

Ie = 0, vcs = 20V

BVC1 C2

Collector to Collector Breakdown
Voltage

IC - ±lpA

Collector to Emitter Sustaining
. Voltage

3

3

3

3

±100

±100

±IQO

?;1?0

Ic=lmA,ls=O

60

60

55

45

BVCBO

Collector Base Breakdown
Voltage

IC = 10pA, Ie = 0

60

60

55

45

BVESO

Emitter Base Breakdown Voltage

IE = 10pA, Ic = 0

7

7

7

7

VceO(sust)

pF

V

MATCHING CHARACTERISTICS
IT126
SYM.BOL

PARAMETER

IT127

IT128

IT129
UNIT

TEST CONDITIONS
MIN MAX MIN MAX MIN MAX MIN MAX

IVSE1-VSE21

Base Emitter Voltage Differential

.1(IVsel·VSE21)

Base Emitter Voltage Differential
Change with Temperature (Note 3)

AT
Ils1-1621

Base Current Differential

IC -lmA, VCE = 5V

1

2

3

5

mV

IC = lmA, VCE = 5V
TA - _55°C to + 125°C

3

5

10

20

,.VfOC

= 5V

2.5

5

10

20

nA

Ic = lmA, VCE - 5V

0.25

0.5

1.0

2.0

pA

Ic = 10pA, VCE

NOTES: 1. Per tnsnsistor.
2. The reverse base-to-emitter voltage must never exceed 7.0 volts and the reverse base-to-emitter current must never exceed 10pA.

3. For design reference only, not 100% tested.

2-132
Note: AU typical values have been guaranteed by characterization and are not tested.

IT130-IT132
Dual PNP
General Purpose Amplifier
FEATURES
•
•
•
•

CHIP TOPOGRAPHY

High hFE at Low Current
Low Output Capacitance
Tight IB Match
Tight VBE Tracking

4503

.0045

x

.0035

.0045

.0035

'!:--------i-_.=iitl--=:c;-;:="""'SOLATION
CgLlECTOR'l f..1
COLLECTOR

PIN CONFIGURATIONS

.2 TYP 2 PLACES

::~

.Of5

TO·71
TO·78

•

x

:~~~

BASE '2 TVP 2 PLACES

~~~

BASE 11

DIAMETER

EMITTER 112
.0040
TVP 2 PLACES .0030'

EMITTER.1

DIAMETER
CTO03811

ABSOLUTE MAXIMUM RATINGS
E,

B,

(TA = 25°C unless otherwise specified)
Collector-Base Voltage (Note 1) .......................... 45V
Collector-Emitter Voltage (Note 1) ........................ 45V
Emitter Base Voltage (Notes 1 and 2) .................... 7V
Collector Current (Note 1) ................................ 50mA
Collector-Collector Voltage .................................. 60V
Storage Temperature Range ............ -65°C to + 175°C
Operating Temperature Range ......... -55°C to + 175°C
lead Temperature (Soldering. 10sec) .............. + 300°C
To-71
T0-78

c,
PC00241 I

ORDERING INFORMATION*
TO-78

TO-71

IT130A

1T130A-T071

WAFER

DICE

IT130AlW

IT130A/D

IT130

IT130-T071

IT130/W

IT130/D

IT131

IT131-T071

IT131/W

IT131/D

IT132

IT132-T071

IT132/W

IT132/D

PARAMETER

BOTH

ONE
SIDE

SIDES

(25°C unless otherwise noted)
IT130A

SYMBOL

SIDES

200mW
400mW
250mW
500mW
Power Dissipation ........ 1.3mW/oC 2.7mWrC 1.7mW/oC 3.3mW/oC

·When ordering wafer/dice refer to Section 10, page 10-1.

ELECTRICAL CHARACTERISTICS

BOTH

ONE
SIDE

IT130

1T131

IT132

TEST CONDITIONS

UNIT
MIN MAX MIN MAX MIN MAX MIN MAX

Ic= 10llA, VCE = 5.0V

200

200

80

80

IC = 1.0mA, VCE = 5.0V

225

225

100

100

= 5.0V
= 5.0V

75

hFE

DC Current Gain

VBE(ON)

Emitter·Base On Voltage

IC - 10llA, VCE

VCE(SAT)

Collector Saturation Voltage

IC - 0.5mA, IB = 0.05mA

ICBO

Collector Cutoff Current

ITA = -55·C

ITA =
lEBO
Cob (Note 3)

+ 150·C

IC -101lA, VCE

75

30

30

0.7

0.7

0.7

0.7

0.5

0.5

0.5

0.5

-1.0

-1.0

-1.0

-1.0

nA

-10

-10

-10

-10

IlA

-1.0

-1.0

-1.0

-1.0

nA

= 5.0V

2.0

2.0

2.0

2.0

IE = 0, VCB = 45V

Emitter Cutoff Current

IC - 0, VEB = 5.0V

Output CapacHance

IE = 0, VeB

Gte (Note 3)

Emitter Transition Capacitance

Ic = 0, VEB = 0.5V

2.5

2.5

2.5

2.5

CC1-C2 (Note 3)

Collector to Collector
Capacitance

Vee=O

4.0

4.0

4.0

4.0

IC1-C2

Collector to Collector Leakage
Current

Vee - ±60V

10

10

10

10

VCEO(SUST)

Collector to Emitter Sustaining
Voltage

IC = 1.0mA, IB = 0

GBW

Current Gain
Bandwidth Product (Note 3)

IVBE1-VBE2'

Base Emitter Voltage
Differential

-45

-45

-45

-45

IC = 10llA, VCE = 5V

5

5

4

4

IC = 1mA, VCE = 5V

110

110

90

90

Ic = 10llA, VCE = 5.0V

2-83
Note: All typical values have been guaranteed by characterization arfd' are not tested.

1

2

3

V

pF

nA
V
MHz

5

mV

II

IT130A
PARAMETER

SYMBOL

1T130

IT131

IT132

TEST CONDITIONS

UNIT
MIN MAX MIN MAX MIN MAX MIN MAX

IIB1-IB21

Base Current Differential

IC = 101lA. VCE ~ 5.0V

a(VBE,-VBE2)1 aT

Base-Emitter Voltage Differential
Change with Temperature
(Note 3)

TA = _55°C to + 125°C
Ic = 101lA. VCE = 5.0V

.

NOTES: 1. Per transistor.

2.5

5

25

25

nA

3

5

1Ct

20

,.VloC

,
2. The reverse base-to-emitter voltage must never exceed 7.0V. and the reverse base-to-emitter current must never exceed 101lA.
3. For design reference only. not 100% tested.

2~

Note: All

typic81

values have been guaranteed by characterization and are not tested.

IT136-IT139
Dual PNP
General Purpose Amplifier
FEATURES
•
•
•
•
•

CHIP TOPOGRAPHY

High Gain at Low Current
Low Output Capacitance
Tight Is Match
Tight VSE Tracking
Dielectrically Isolated Matched Pairs for
Differential Amplifiers

4501

R

1- -1
033

EMITTER .0029 ,

PIN CONFIGURATION

EMITTER

.0039

TVP 2 PLACES

.9!l~

I
-L

TO·71
TO·78

.0029

.0039

.023

BASE .

.0040

COLLECTOR

x

-:.9_0~

.0040

TVP 2 PLACES

.09~.~)( _:.~q~

BASE

.0045
.0044
TYP 2 PLACES
CTQ03911

ABSOLUTE MAXIMUM RATINGS
(TA = 25°C unless otherwise noted)
Coliector·Base Voltage (Note 1)
IT136, IT137 ........................................... 60V
IT138 __ ........ .- ____ ............. __ ... ______ .... __ ... ____ 55V
E.

COllect~~.~~itt~'r' 'v~it~g~" iN~t~' '1'j -- .... -- -- -- --. -- .. -- --. 45V

c,

B.

1T136, IT137.. ________________________________________ . 60V
IT 138 .... ____ . ____ ...... __ ... ______________ ........... __ 55V
IT139 __ ... __ ...... ____ ....... ______ . ________ .......... __ . 45V
Emitter Base Voltage (Notes 1 and 2). ____ .. __ . ______ . __ .7V
Collector Current (Note 1). __ . __ . ____ . ______________ . ____ 100mA
Coliector·Coliector Voltage .. __ . __ ... __ .... ______ .......... __ 70V
Storage Temperature Range __ . ______ ' __ -65°C to + 175°C
Operating Temperature Range ______ . __ -55°C to +175°C
Lead Temperature (Soldering, 10sec) ____ ..... ____ . + 300°C

PC0024U

ORDERING INFORMATION*
TO-78

TO-71

WAFER

DICE

IT136

IT136·T071

IT136/W

IT136/0

IT137

IT137·T071

IT137/W

IT137/0

IT138

IT138·T071

IT138/W

IT138/0

IT139

IT139·T071

IT139/W

IT139/0

TO-71

ONE
SIDE

'When ordering wafer I dice refer to Section 10, page 10-1.

TO·78

ONE

BOTH
SIDES

BOTH
SIDES

SIDE

Power Dissipation ...... __ 200mW
400mW
250mW
500mW
Derate above 25'C ... 1.3mWrC 2.7mW/'C 1.7mW/'C 3.3mWI'C

ELECTRICAL CHARACTERISTICS

(@ 25°C unless otherwise noted)
1T136

SYMSOL

PARAMETER

1T137

IT138

IT139

TEST CONDITIONS

UNIT
MIN MAX MIN MAX MIN MAX MIN MAX

hFE

DC Current Gain
ITA = 55'C

VSE(on)
VCE(sat)

Emitter·Base On Voltage
Collector Saturation Voltage

Ic = 10"A, VCE = 5V

150

Ic = 1.0mA, VCE = 5V

150

= lOrnA,

VCE = 5V

125

Ie = 50mA, VCE = 5V

65

Ic = lmA, VCE = 5V

75

Ic

100

150

800

150

BOO

125

100

70
BOO

70

BO

50

60

40

25

75

60

BOO

40

IC = lOrnA, VCE = 5V

.9

.9

.9

.9

IC = SOmA, VCE = SV

1.0

1.0

1.0

1.0

IC=lmA,IS=·lmA

.3
.6

.3
.6

.3

.3
.6

IC = lOrnA, Is = lmA

2-85
Note: All typical values have been guaranteed by characterization and are. not tested.

.6

V

r:.
r.-

IT136·IT139 ,:
ELECTRICAL CHARACTERISTICS (CO NT.)
IT136
SYMBOL

PARAMETER

IT137

IT138

IT139

TEST CONDITIONS

UNIT
MIN MAX MIN MAX MIN MAX MIN MAX

ICBO

Collector Cutoff Current

lEBO

ITA -' + 150°C
Emitter Cutoff Current

IC = 0, VEB = 5V ,

Cobo

Output Capacitance (Note 3)

IE - 0, VCB - 20V, f -1MHz

BVc,C2

Collector to Collector
Breakdown Voltage

le=±1p.A

VeEO(sust)

Collector to Emit,ter
Sustaining Voltage

BVeBO

Collector Base Breakdown
Voltage

BVEBO
1VBE,-VBE21

0.1

0.1

0.1

0.1"

nA

0.1

0.1

0.1

0.1"

p.A

0.1

0.1

0.1

0.1

nA

3

3

3

3

pF

±100

±100

±100

±100

le=1mA,IB=0

60

60

55

45

Ie = 10p.A, IE = 0

60

60

55

45

Emitter' Base Breakdown
Voltage

IE = 10p.A, Ie = 0

7

7

7

7

Base Emitter Voltage
Differential

Ie = 1mA, VeE = 5V

1

2

3

5

mV

Ic = 1mA, VeE = 5V
TA = _55°C to + 125°C

3

5

10

20

IlV/oC

Base Emitter Voltage Differential
~1(VBE,-VBE2~/~T Change with Temperature
(Note 3) .
,
1IB,-1821

IE'= 0, VCB = 45V, 30V"

Base Current Differential

V

Ie = 10p.A, VeE = 5V

2.5

5

10

20

nA

Ie = 1mA, VeE = 5V

.25

.5

1.0

2.0

p.A

NOTES: 1. Per transistor.
2. The reverse base-to-emitter voltage must never exceed 7.0 volts and the reverse base-to-emitter current must never exceed 10p.A.
3. For design reference only, not 100% tested.

2-86
Note: All typical values have been guaranteed by characterization and' are not tested.

IT500-IT505
Dual Cascoded N-Channel JFET
General Purpose Amplifier
GENERAL DESCRIPTION

FEATURES

A low noise, low leakage FET that employs a cascode
structure to accomplish very low IG at high voltage levels,
while giving high transconductance and very ,high common,
mode rejection ratio.

•

CMRR

•
•
•

IG < 5pA @ 50VDG
Crss < O.5pF
gos > .025/lB

PIN CONFIGURATION

> 120dB

CHIP TOPOGRAPHY
6028

TO·71
low profile
BODY
.00301A

DRAIN 1

-T' ~.I~J·003X'003
ii~I

~~~SOURCE1

~~ '003 ~2~~'iiJ1Ij

003

DRAIN 2
003 x

G,

0,

/11

111111'

033 003
x

~.-r--.J ~~; ~

~

'\

SOURCE 2
.003)( .003

s,

CT00411i

PCOO261 I

ABSOLUTE MAXIMUM RATINGS
(TA ':' 25·C unless otherwise specified)
Drain-Source and Drain-Gate
Voltag~s (Note 1) .................... ; ........................ 60V
Drain Current (Note 1) .................................... 50mA
Gate-Gate Voltage ........................................... ±60V
Storage Temperature .... , ................. -65·C to +200·C
Operating Temperature ................... - 55·C to + 150·C
Lead Temperature (Soldering, 10sec) .............. + 300·C
ONE SIDE
BOTH SIDES

SCHEMATIC DIAGRAM

~~-----+--i-CASE
08000311

Power Dissipation (Note 3) ........
Derate above 25·C................

ORDERING INFORMATION*
To-71
IT500

WAFER
IT500/W

DICE
IT500/D

IT501

IT501/W

IT501/D

IT502

IT502/W

IT502/D

IT503

IT503/W

IT503/D

IT504

IT504/W

IT504/D

IT505

IT505/W

IT505/D

250mW
3.8mWI"C

500mW
7.7mW/oC

NOTE 1. Per transistor.
NOTE 2. Due to the non·symmetrical structure of these devices, the

drain and source ARE NOT interchangeable.
NOTE 3. @ 85°C free air temp.

'When ordering wafer/dice refer to Section 10, page 10-1.

2-87
Note: All typical values have been guaranteed by characterization and are not tested:

·D~Dlb

','

',f

ELECTAICAL CHA'RACTEFUSTIcS (@

25°C

unle~s' otherwise

',.

'.;.

specified)

.,

",

",

.,

,

LIMITS
SYMBOL

CHARACTERISTICS

1EST CONDITIONS

UNIT
MIN MAl!-

=125°C

IGSS

Gate Reverse Current

BVGSS

Gate-Source Breakdown Voltage

VGS(off)

Gate-Source Cutoff Voltage

VGS

Gate-Source Voltage.

IG

Gate Operating Cun:ent

. ITA

YGS = -20V, "DS

.'

=: 0

IG = -l/lA, VOS= 0

-60

VOS = 20V, 10 = lnA

-0.7

-100

pA

-5

nA

-4

V

-0.2. -3.8.

'.

-5

VOG = 50V, 10 = 200/lA
ITA = 125°C
loss

Saturation Drain Cun:ent. (Note 1)

VOS = 20V, VGS = 0

0.7

9fs

Common-Source Forward Tr!\nsconductance
(Note 1) .

VOS = 20V, VGS = 0

1000

9fs

Common-Source Forward Transconductance
(Note 1)

VOG = 20V, 10 = 200/lA

700

pA

-5

nA

7

rnA

4000

-

1600

1= 1kHz
gas

Common-Source 'Out)'rut Conductance

VOS = 20V, VGS" 0

gas

Common-Source' ,Output Conductance

Vos .. 20V, 10 ~ 200/lA

Cg lg2

Gate to Gate Capacitanca (Note 4)

VGI = VG2 = 10V

Cis.

Common-Source Inpul

Crss

Common-Source Reverse Transler Capacitance
(Note 3, 4)

NF

Spot Noise Figure (Not~ 4)

Capactt~nce

/lS
1
0.025
3.5

(Note 4)

1= lMHz

pF

7
pF

0.5
VOS = 2OV; VGS = 0

en

I = 100Hz,
RG = 10Mn

.Equivalent Input Noise. Voltage (Note 4)

IT500
SYMBOL

CHARACTERISTICS

IT501

0.5

dB

1= 10Hz

0.Q35

1= 1kHz

0.010

IT502

IT503

IT504

/lV

.1Hz

IT505

TEST CONDITIONS

UNIT
MIN MAX MIN MAX MIN MAX MIN MAX MIN MAX MIN MAX

IG1-IG2

Differential Gale
Cun:ent

VOG= 20V,
10 = 200/lA

10SSl
-I05S2

Saturation' Drain Cun:ent
Ralio. (Note 1)

VOS = 20V, VGS = OV

9fsl / gis2

Transconductance Ratio
(Note 1)

VGS1-VGS2

Differential Gate-Source
Voltage

AVGS1-VGS2

Gate-Source Differential
Voltage

+ 125°C

f= 1kHz

VOG= 20V
10" 200/lA

5

5

5

5

10

15

0.95

1

0.95

1

0.95

1

0.95

1

0.9

1

0.85

1

0.97

1

0.97

1

0.95

1

0.95

1

0.90

1

0.85

1

5

5

10

15

25.

50

TA = 25"C
Te" 125"C

5

10

20

40

100

200

TA = -55"C
Te=25"C

5

10

20

40

100

200

/mV

/lVrC

AT
Change with Temp.
(Note 2, 4)
Common Mode Rejection
Ratio (Note 4)

CMRR··

A Voo = 10V, 10 = 200/lA

120

120

120

•• CMRR = 20 log10AV001 A [Vgsl-Vgs21, AVOO = 10/-20V

NOTES:

nA

1.
2.
3.
4.

Pulse lest required, pulsewidth = 300j.lS, duty cycle", 3%.
Measured at end points, TA and Te.
With case guarded Crss is typically < 0.15pF.
For design relerence only, not 100% tested.

2-88
Note: All typical values have been guaranteed by characterization and are not tested-

120

120

120

dB

IT500-IT!$05
TYPICAL PERFORMANCE CHARACTERISTICS
OUTPUT CHARACTERISTICS

GATE LEAKAGE

.."
r
i yt
~

IO·~A I--

u

7

_v

r

20"·30

40

SO

-a.tv
vOS·-O.1V
vos·-O.IV
VOS·-UN
VOl- -1.2V

Yos. -ttY
vos' -!.IV

0

o

10

VDII-DRAIN-GATE VOLTAGE - VOLTS

10

0P002211

TYPICAL CAPACITANCE VS. GATEoSOURCE
VOLTAGE

OUTPUT CHARACTERISTICS

10

~ Z.O

1

...

I

1,\

B 1.5
w
:il
~

~

c

~

~

0

1"-.
a

I I I I

.

VD~:~_ l-

f~ •

\

0."

I

~

~

z

r\

~ '0

-0.& -1.0

-1.5

-2.0

=
--

DRAIN TO SOURCE VOLTAGE

0P002111

2.0

I

VOS.

,

1,·0
I 0.0

I

VOS. -D.N

,

1.5

~

10

vo.Jov

~ 2.0

TA· 25~C

o

-2.1

to.

...~
o

-2

-t

...

...

-10

Yos-GATE SOURCE YOLTAGE-VOLTS

Vos-GATE-8OURCE VOLTAGE-VOLTS

OP~1I

OPOO2311

2-89
Note: All typical values have been guaranteed by characterization and are not tested.

PI

JlltS.c);,'
t: Dual N-Channel JFET Switch

~

FEATURES
•
•
•

D~nll:l
.

','

'

.

.

,,

CHIP TOPOGRAPHY

Specified Matching Ch,aracterlstics
High Gain
Low "ON" Resistance,

6033

PIN CONFIGURATION
1'0-71

30

CTOO4011

ABSOLUTE MAXIMUM RATINGS
G.

(25°C Unless otherwise noted)
Gate-Drain crGate-Source Voltage .................... -40V
Gate Current .............. , ............ , ..................... 50mA
Gate-Gate Voltage ................... ;·....................... ±80V
Storage Temperature Range ............. -65°C to +200°C
Operating Temperature Range ......... -55°C to +175°C
Lead Temperature (Soldering; 10sec) .............. +300°C
ONE SIDE
BOTH SIDES

0.
PCOO0511

ORDERING INFORMATION*

Power Dissipation .................... .
Derate above 25°C .............. ..

325mW
2.2mW'oC

650mW
4.3mW'oC

·When ordering wafer/dice refer to Section 10, page 10-1.

ELECTRICAL CHARACTERISTICS
TEST CONDITIONS (25°C unless otherwise noted)
LIMITS
SYMBOL

PARAMETER

TEST CONDITIONS

UNIT
MIN

IGSSR

Gate·Reverse Current

VGS = -20V, Vos = 0
ITA = 150·C

MAX
-100

pA

-200

rnA

-3

V

lOSS

Saturation Drain Current (Note 1)

= -lIlA, VOS = 0
= 15V, 10 = InA
VOS = OV, IG = 2mA
VOS = 15V, VGS = 0

rOS(on)

Static Drain Source ON Resistance

10= 1rnA, VGS=O

gts

Common-Source Forward

gos
Crss

Common-Source Reverse Transfer CapaCitance

f=IMHz

3

Ciss

Common-Source Input CapaCitance

(Note 4)

12

NF

Spot Noise Figure (Note 4)

f=10Hz, Rg =IM

1.0

en

Equivalent Short Circuit Input Noise Voltage
(Note 4)

f= 10Hz

50

BVGSS

Gate-Source Breakdown Voltage

VGS(off)

Gate-Source Cutoff Voltage

VGS(I)

Gate-Source Voltage

IOSS1

-IOSS2

IG

'-40

VOS

-0.5

1.0
5
f= 1kHz

7500

Transconductance (Note 1)

f = 100MHz (Note 4)

7000

Common-Source Output Conductance

f= 1kHz

Saturation Drain Current Ratio (Notes I, 2)

VOG = 15V, 10 = 2mA

VOS

= 15V,

VGS = 0

2-90
Note: All typical values have been guaranteed by characterization, and are' not tested;' ;'

30

rnA

100

n

12,500
I'S

45

0.95

I

pF
dB
nV

-

v'Hz

-

IT550
ELECTRICAL CHARACTERISTICS (CO NT.)
LIMITS
SYMBOL

UNIT'

TEST CONDITIONS

PARAMETER

MIN
IVGS1-VGS2 1
 100dB

CHIP TOPOGRAPHY
4003

TO-71

TO·78

:=x::: . ',

llc---;;CO;;L~LE~C;:;;To;R~'~1:J:i.;:;:I-:o=-""";==-"SOLATION
COLLECTOR
t2 TYP 2 PLACES
.0045 x .0045

.025

.0035

J

.0035

BASE '2 TYP 2 PLACES

: : : OIAMETER
BASEj1
EMITTER It2
.0040
TYP 2 PLACES .0030

EMITTER"1

DIAMETER
CT003511
PCOO081f

ABSOLUTE MAXIMUM RATINGS
(TA = 25·C unless otherwise noted)
Collector-Base Voltage (1) .................................. 45V
Collector-Emitter Voltage (1) ............................... 45V
Collector-Collector Voltage .................................. 45V
Emitter-Base Voltage (1) ...................................... 6V
Collector Current (1) ....................................... 20mA
Storage Temperature Range ............ -65·C to +200·C
Operating Temperature Range ......... -55·C to + 150·C
Lead Temperature (Soldering, 10sec) .............. + 300·C
Power Dissipation (Tc = 25·C) ......................... 800mW
Derate above 25·C ........................... 14mW I"C

ORDERING INFORMATION*
TO-71

T0-78

WAFER

DICE

LM114

LM114H

LM114/W

LM114/D

LM114A

LM114AH

'When ordering wafer/dice refer to Section 10, page lCJ.:-1.

ELECTRICAL CHARACTERISTICS

(NOTE 2)
MAXIMUM LIMITS

PARAMETER

SYMBOL

TEST CONDITIONS

LM114A,
AH

LM114,
H

UNIT

VSEl-2

Offset Voltage

ll1A:$ Ic:$ l0011A

0.5

2.0

mV

IS·2

Offset Current

IC - 1011A

2.0

10

nA

Ie = lIlA

0.5

40

nA

Bias Current
IlVSEIV

Offset Voltage Change

IlVSEIV

Offset Current Change

Ie ~ 1011A

20

Ie -lIlA

3.0

OV:$ VCS :$ VMAX, IC = 1011A

0.2

1.5

mV

1.0

4.0

nA

2-102
Note: All typical values have been guaranteed by characterization and are not tested.

LM114/H, LM114A/ AM
ELECTRICAL CHARACTERISTICS (CONT.)
MAXIMUM LIMITS
SYMBOL

PARAMETER

AVBE/AT

Offset Voltage Drift

AIBl_2/ AT

Offset Current

TEST CONDITIONS

-55·C S TA S + 125·C, Ic = 101lA

AlB/AT

Bias Current

ICBO

Collector-Base Leakage Current

VCB=VMAX

ITA = 125·C (Note 3)
ICEO

Collector-Emitter Leakage Current

VCE = VMAX. VEB = OV

Collector-Collector Leakage Current

Vcc= VMAX

ITA = 125·C (Note 3)
NOTES:

LM114,
10

12

50

60

150

nA

10

nA

50

50
50'
200

50

200

nA

100

300

pA

100

300

nA

1: Per transistor.
2: These specifications apply for TA = + 25·C andOV S VCB S VMAX. unless otherwise specified. For the LM114 and LMI14A.
VMAX = 30V.
3. For desi!!n reference only. not 100% tested.

2-103
Note: All typical values have been guaranteed by characterization and are not tested.

UNIT

H

2.0

10

ITA = 125·C (Note 3)
IC1-C2

LM114A,
AH

,NrC

pA
pA

..... '., '10.'
-.·.S,·'
.'. ····O·.ru
• . .,o~'·.····

, M118
i Diode Protected N-Channel

i.'
.

,.

" .

,

! .,

•

Enhancement· Mode MOSFET
General' "purpose Amplifier
FEATURES

CHIP- TOPOGRAPHY

•

Log IGSS .

•

Integrated Zener

Clamp

1003

for Gate Protection

PIN CONFIGURATION
T0-72

m

G .0025

x .0029

.0035

.0039

.J...L+-'----'\,-'O .0030 , .()()28
IS BODY

.0040

.()()38
CTOO451t

ABSOLUTE MAXIMUM RATINGS

eGo

(TA = 2S0C unless otherwise noted)

PGOO2711

Drain to Source Voltage .................................... 30V
Gate to Drain Voltage ....................................... 30V
Drain Current ................................................. SOmA
Gate Zener Current ..................................... ±0.1 mA
Storage Temperature Range ............ -6SoC to + 200°C
Operating Temperature Range ......... -SsoC to + 150°C
Lead Temperature (Soldering, 10seo) .............. + 300°C
Power Dissipation ......•.................................. 22SmW
Derate above 2SoC .......................... 2.2mWrC

ORDERING INFORMATION*

'When ordering wafer/dice refer to Section 10, page 10-1.

DEVICE SCHEMATIC

tp::
4

0SD00411

ELECTRICAL CHARACTERISTICS

(25°C unless otherwise noted, Vas = 0)
M116

SYMBOL

PARAMETER

TEST CONDITIONS

UNIT
MIN MAX

vGS = 2OV, 10 = 100llA, ves = 0

100
I 200

n

rOS(on)

Drain Source ON Resistance

VGS(lh)

Gate .Threshold Voltage

VGS = VOS, 10 = 10llA, VBS = 0

BVOSS.

Drain-Source Breakdown Voltage

10 = lIlA, VGS = VBS· 0

30

BVsos

Source-Drain Breakdown Voltage

IS=lllA, VGO=VBO=O

30

BVGBS

Gate-Body Breakdown Voltage

IG - 10llA, VSB = VOB = 0

30

10(OFF)

Drain Cutoff Current

VOS = 20V, VGS = VBS = 0

10

IS(OFF)

Source Cutoff Current

VSO - 20V, VGO = VBO = 0

10

IGSS
Cgs

Gate-Body Leakage

VGS

=0

100

pA

Gate-Source (Nole 1)

VGe = Voe = Vse = 0, f = 1MHz

Cgd

Gate-Drain Capacitance. (Note 1)

Body Guarded

Cdb

Drain-Body Capacitance (Note 1)

VGe = 0, Voe

2.5
2.5
7

pF

Ciss

Input Capacitance (Note 1)

VGB=O, Voe=10V, Ves-O, f-1MHz

VGS

= 10V,

= 20V,

NOTE 1: For design reference only, not 100% tested.

2-104
Note: All typical values have been guaranteed by characterization and are not tested.

10 = 100llA, Ves = 0

VOS = VBS

= 10V,

f= lMHz.

1

5
V
60

10

nA

U200-U202

N-Channel JFET Switch
FEATURES

APPLICATIONS

•
•

•
•
•

Low Insertion Loss
Good OFF Isolation

PIN CONFIGURATION

Analog Switches
Commutators
Choppers

CHIP TOPOGRAPHY
5001

TO-18
.00135 FULL RADIUS

.00175 (DRAIN)

)(

.oo~

.0026

(SOURCE)
CT000911

o
PC000611

ABSOLUTE MAXIMUM RATINGS
ORDERING INFORMATION*
TO-18
U200

U200/W

DICE
U200/0

U201

U201/W

U201/0

U202

U202/W

U202/0

WAFER

(TA = 25°C unless otherwise noted)
Gate-Drain or Gate-Source Voltage ................. ,,' -30V
Gate Current ......... "., .................................... 50mA ~
Storage Temperature Range ......... , .. -65°C to + 200°C ~
Operating Temperature Range ......... -55°C to + 150°C
Lead Temperature (Soldering. 10sec) "."" ....... + 300°C
Total Device Dissipation (TC = 25°C) " ........ ",,: .... 1.8W
Derate above 25°C ... " ...................... 10mWrC

'When ordering waler I dice rlller to Section 10, page 10-1.

ELECTRICAL CHARACTERISTICS

(25°C unless otherwise noted)
U201

U200
SYMBOL

PARAMETER

UNIT
MIN

IGSS

Gate Reverse Current

VGSS = 20V, Vos = 0

ITA = 150'C
BVGSS

Gate-Source Breakdown Voltage

IG = -1jJ.A, VOs=O

-30

VGS(off)

Gate·Source Cutoff Voltage

VOS = 20V, 10 = 10riA

-0.5

10(011)

Drain Cutoff Current

VOS = 10V, VGS = -12V

lOSS

ITA = 150'C
Saturation Drain Current (Note 1)

VOS = 20V, VGS = 0

rds(on)

Drain-Source ON Resistance

VGS = 0, 10 = 0

Ciss

Common-Source Input
Capacitance (Note 2)

VOS = 20V, VGS = 0,

erss

Common-Source Reverse
Transfer Capacitance (Note 2)

VOS=O:
VGS= -12V

NOTES:

U202

TEST CONDITIONS
MAX

MIN

-1

-1

nA

-1

-1

-1

"A

-30
-3

-1.5

25

-30
-5

-3.5

1
15

75

-10

1

1

1
f= 1kHz

MIN .MAX

-1

1

3

MAX

30

1

jJ.A

lPO

rnA
ohm

150

7$

50

30

30

30

8

8

8

f=IMHz

1: Pulse test required, pulsewidth = 300"., duty cycle S 3%.
2. For design reference only, not 100% tested.

2-105
Note: All typical values have been guaranteed by characterization and are not tested.

V
nA

pF

U231-U235,
!=: General
Dual ·N..;ehannel JFET
Purpose Amplifier
fJ

9

FEATURES

APP.LICATIONS

•

•
•

Good Matching Characteristics

PIN CONFIGURATION

Differential Amplifiers
Low and Medium Frequency Amplifiers

CHIP TOPOGRAPHY
6037

·10-71

ALL BOND ~AOS ARE 4)( 4 MIL.
CT004811

ABSOLUTE MAXIMUM RATINGS

ORDERING INFORMATION*

(TA = 25·C unless otherwise noted)
Gate-Source or Gate-Drain Voltage (Note 1) •....... -50V
Gate Current (Note 1) .... ; ........................... : .... 50mA
Storage Temperature Range ............ -65·C to + 200·C
Operating Temperature Range ......... -55·C to + 200·C
Lead Temperature (Soldering, 10sec) .............. +300·C
Power Dissipation ......................................... 300mW
Derate above 25·C .......................... 1.7mWI"C

·When ordering wafer/dice refer to Section 10, page 10-1.

ELECTRICAL CHARACTERISTICS
TEST CONDITIONS: 25·C unless otherwise noted.
LIMITS
SYMBOL

PARAMETER

TEST CONDITIONS

UNIT
MIN

-100

pA

-500

nA

-0.5

-4.5

V

-0.3

-4.0

IGSS

Gate Reverse Current

BVGSS

Gale-S()urce Breakdown Vollege

IG -IlIA, VOS = 0

-50

VGS(ofI)

Gate-Source Cutoff Voltege

VOS = 20V, 10 - InA

VGS

Gate-SoUrce Voltage

IG

Gate Operating Current '

loSS

Saturation Drain Current (Note 2)

Vos - 20V, VGS - 0

9fs

Common-Source Forward Transconductance
(Note 1)

Vos = 2OV, VGS - 0

Sf.

Common-Source Forward Transconductance
(Note 1)

Voo = 20V, 10 = 2oo11A

90s
90s

Common-Source Output Capacitance

Vos=20V, VGS = 0

CommOn-SourClil Output Conductance

Voo - 20V, 10 - 2001iA

Q..

Common-Source Input CapaCitance

Crss

Common-Source Reverse Transfer Capacitance

I

TA = 150·C

MAX

VGS =-30V, Vos ··0

-50

en

I

pA

VOG = 20V, 10 - 20011A
-250

nA

0.5

5.0

rnA

f= 1kHz

1000

3000

f-looMHz
(Note 4)

1000

TA = 125·C

/.IS
. 600
f= 1kHz

1600

35
10
6

f-1MHz

2

Vos = 2OV, VGS - 0
Equivalent Short CircuH Input Noise Voltage

(Note 4)

2-106
Note: All typical values have been guaranteed by characterization and are not tested.

f= 100Hz

80

pF
nV

-VHz

.D~OIL

U231-U23S
ELECTRICAL' CHARACTERISTICS:tCONT.)
SYMBOL

MATCHING CHARACTERISTICS

= 20V,

IIGI -IG21

Differential Gate Current (Note 4)

VOG

(10551- 10552)

Saturation Drain Current
Match (Note 2, 4)

V05 = 20V, VG5 = 0

10551
IVG51-VG52 1
6.IVGS1- VG52 1
6.T

-glsl
-1gosl-gos21
NOTES:

1.
2.
3.
4.

10 = 2001lA

Differential Gat&-Source Voltage

125°C

TA = 25°C

1.0

10

10

10

10

nA

5

5

5

10

15

%

5

10

15

20

25

mV

10

25

50

75

100

TA = 25°C
Gate-Source Voltage
Differential Diift (Note 3)

TB-125°C

jJvrc
VOG

(glsl-91s2)

U231 U232 U233 U234 U235
UNIT
MAX MAX MAX MAX MAX

TEST CONDITIONS

= 20V,

10 = 2001lA

f~

Transconductance Match (Note 2)
Differential OUtput Conductance
Per transistor.
Pulse test required, pulse width - 3OOjJs, duty cycle
Measured at end pOints, TA and TB
Eor design reference only, not 100% tested.

TA = -55°C
TB = 25°C

~

3%.

2-107
Note: All typical values have been guaranteed by characterization and are not tested.

1kHz

10

25

50

75

100

3'

5

5

10

15

%

5

5

5

5

5

jJS

'too

I

0287
Dual N-Channel JFET
High Frequency Amplifier

.

FEATURES

.U~UI6
;".;"

•

'...

c','

.

CHIP TOPOGRAPHY

-9'.). 5OO0psFrom DC to 100MHz
-

Matched

Vas.

91. and 90s

'

PIN CONFIGURATION\
T0-99

ABSOLUTE MAXIMUM .RATINGS
(TA .: 2S·C unless otherwise noted)
G,

0,

Gate-Drain or Gate-Source Voltage ·(Note 1) ........ -25V
Gate Current (Note 1) .................•................... 50mA
Storage Temperature Range ............ -65·C to + 200·C
Operating Tempe;ature Range ......... -55·C to + 150·C
Lead Temperature (Soldering, 10sec) .. , ........... +300·C

S,
PC00151i

'ORDERING INFORMATION*

ONE SIDE

Power Dissipation
(TA =85·C) .•.......•............ ,...
Derate above 25·C ...••.•......

·When ordering wafer/dice refer to Section 10, page 10-1.

ELECTRICAL CHARACTERISTICS
SYMBOL

250mW
3.8mW

500mW
7.7mWrC

rc

(25·C unless otherwise noted)

PARAMETER

TEST CONDITIONS

Gate Reverse Current

IGSSR

BOTH SIDES

MIN MAX UNIT.

VGS -15V, Vos = 0
jTA = 150°C

;...100

pA

-250

nA

BVGSS

Gate-Source Breakdown Voltage

IG - -lpA, Vos- 0

-25

VGS(off)

Gate-Source Cutoff Voltage

Vos-l0V, io-lnA

-1

-5

5

40

V
loss

Saturation Drain Current (Note 2)

Vos -10V, VGS - 0

91.
91s

Common-Source Forward Transconductance

Vos = 10V, 10 - 5mA

I-1kHz

5000 10,()O(

Coinmon.&>urce Forward Transconductance

Voo - 10V, 10" 5mA

1= 100MHz (Note 3)

5000 10,oo!

gas

Common-Source Output Conductance

Vos = 10V, 10 = 5mA

I-1kHz

150

gOBS

Common-Source Output Conductance

1= 100MHz

150

C;s.

Common-Source Input Capacitance

c,i.

Common.&>urce Reverse Transfer Capacitance

Voo -10V, .10 - 5mA

f-1MHz

e;;

Equivalent Input Noise Voltage

(Note 3)

f-l0kHz

-IO$S2

Drain currerit Retio at Zero Gate Voltage
(Note 2)

VOS" 10V, VGS - 0

IVGS1-VGS2 1

Differllntlal Gate-Source Voltage

9181
9102

T~nsconductance Ratio

1900 1-90021

Differential Output Conductance

IOSS1

mA

jill

5
1,2

nV

30

0.85

0.85
f-lkHz

NOTES: 1. Per transIstor.

2. Pulse test nsquired, pulse width = 300jlll, duty cycle $ 3%.
3. For design reference only, not 100% tested.

2-108
Note: All typical values have been guaranteed by characterization and are not tested.

-

~

1
100

Voo -10V, 10 = 5mA

pF

mV

1

20

jill

.D~DIL

U304-U306

P-Channel JFET Switch
FEATURES

APPLICATIONS

•
•
•

•
•
•

Low ON Resistance
ID(off) < 500pA
Switches directly from TTL Logic (U306)

PIN CONFIGURATION

cCot
o

t

c

I

Analog Switches
Commutators
Choppers

CHIP TOPOGRAPHY

_--.021--_

TO·18

- lJ~111!11~'l=
.0027 (0685)

'~~!':~l 0
x
0037 (.0939)
.0027 (.0685)

I

NOTE: SUBSTRATE IS GATE
CT00491!

o

ABSOLUTE MAXIMUM RATINGS

G.C

(TA = 25·C unless otherwise noted)
Gate-Drain or Gate-Source Voltage (Note 1) .......... 30V
Gate Current ................................................. 50mA
Storage Temperature Range ............ -65·C to + 200·C
Operating Temperature Range ......... -55·C to + 150·C
Lead Temperature (Soldering, 10sec) ................. 300·C
Power Dissipation ......................................... 350mW
Derate above 25·C .......................... 2.8mW

PCOO0111

ORDERING INFORMATION*
To-18

WAFER

DICE

U304

U304/W

U304/D

U305

U30S/W

U305/D

U30S

U30S/W

U30S/D

rc

'When ordering wafer/dice refer to Section 10. page 10-1.

ELECTRICAL CHARACTERISTICS
TEST CONDITIONS: 25°C unless otherwise noted.
U304
SYMBOL

PARAMETER

U305

U306

TEST CONDITIONS

UNIT
MIN MAX MIN MAX MIN MAX

laSSR

Gate Reverse Current

Vas = 20V, Vos = 0
ITA = 150·C

Gate·Source Breakdown Voltage

la = lIlA. VOS - 0

VaS(off)

Gate·Source Cutoff Voltage

VOS(on)

Drain·Source ON Voltage

VOS= -15V. 10= -11lA
vas 0, 10
15n:A.. \~~04J,
10 = - 7mA (U30S),
10 = -3mA (U306)

lOSS

Saturation Drain Current (Note 1)

VOS=-15V, Vas=O

Drain Cutoff Current

VOS = -15V, VGS = 12V (U304)
VGS - 7V (U305)
VGS = 5V (U306)

ITA = 150·C
r05(on)

Static Drain·Source ON Resistance

VGS=OV, 10= -1mA

rds(on)

Drain·Source ON Resistance

VGS=OV, 10=0

Ciss

Common·Source Input CapaCitance
(Note 2)

VOS= -15V,
VGS=O

Crss

Common·Source Reverse Transfer
Capacitance (Note 2)

VOS = 0, VGS = 12V
(U304)
Vas = 7V
(U305),
VGS= 5V
(U30S)

500

500

pA

1.0

1.0

1.0

IlA

30

BVass

10(0ff)

500

5

f=1MHz

2-109
Note: All typical values have been guaranteed by characterization and are not testE!(!.

10

3

-1.3
-30

f= 1kHz

30

30
6

1

-0.8
-15

-60

4

V

-0.6
-25

rnA

-500

-500

-500

pA

-1.0

-1.0

-1.0

IlA

85

110

175

85

110

175

n
n

27

27

27

7

7

7

-90

-5

pF

PI

8
'"

.j

:11. D~DlL.

U304--U306
.
.

..

..

.

ELECTRiCAL CHARACTERiStiCS (CONT.)

,'"

=

U304·
SYMBOL

PARAMETER

U304
Turn-ON pelay Time (Nole 2)

Ir

Rise Time (Note 2)

lct(oIf)

Turn-OFF Delay Time (Nole 2)

If

Fall Time (Nole 2)

U306
UNIT

MIN
Id(on)

U305

TEST CONDITIONS
U305

MAX MIN MAX MIN MAX

U306

-6V

-6V

20

25

25

7V

5V

15

25

35

743n

laOOn

10

15

20

0
0
VGS(on) 0
-15mA -7mA -3mA
10(on)

25

,40

60

Voo

-10V

VGS(off) 12V
560n
RL

NOTES: 1. Pulse· tesl pulsewidlh ~ 300jtS, duty cycle S 3%.
2. For design reference only, nol 100% lested.

2-flo
Nole: All typical values have been guaranleed by characterizalion and are nol lested.

ns

.U~UIL!

U308-U310
N-Channel JFET
High Frequency Amplifier

..
Co)

o

FEATURES
•
•
•
•

CHIP TOPOGRAPHY

High Power Gain
Low Noise
Dynamic Range Greater Than 100dB
Easily Matched to 7SU Input

~-1 x .0068 G

.0021

.0058

PIN CONFIGURATIONS
TO-52
NOTE: SUBSTRATE
IS GATE

TYP
0035 x 0035
2 PLACES .00,35
.0025
CT00501I

ABSOLUTE MAXIMUM RATINGS
(TA = 25·C unless otherwise noted)
Gate-Drain or Gate-Source Voltage _______________ •.•.. -25V

o

Gate Current ...............................••......••........ 20mA
Storage Temperature ...................... -65·C to +200·C
Operating Temperature Range ......... - 55·C to + 150·C
lead Temperature (Soldering. 10sec) .............. +300·C
Power Dissipation .....•.•..•.•.•......•....•.•.•.••.•.•.•. 500mW
Derate above 25·C .••••.•••..•.•.•......•.•..• 4mW

S
PC001211

rc

ORDERING INFORMATION*
TO-52

WAFER

DICE

U30S

U30S/W

U30S/0

U309

U309/W

U309/0

U310

U310/W

U310/0

·When ordering wafer/dice refer to Section 10, page 10-1.

ELECTRICAL CHARACTERISTICS

(25·C unless otherwise noted)

U30a
SYMBOL

PARAMETER

U310

U309

TEST CONDITIONS
MIN TYP MAX MIN TYP MAX MIN

IGSS
BVGSS
VGS(off)
loSS
VGS(f)
9tg

Gate Reverse Current
trA = 125°C
Gate-Source Breakdown
Voltage
Gate-Source Cutoff Voltage
Saturation Drain Current
(Note 1)
Gat....Source Forward
Voltage
Common-Gate Forward
Transconductance (Note 1)

VGs= -15V
VGS=O

-150

pA

-150

-150

nA

-25

-25

Vos=10V,lo¥lnA

-1.0

-6.0 -1.0

-4.0 -2.5

VOS = 10V, VGS = 0

12

60

10

30

17

-6.0

24

1.0
10

17

10

V

60

rnA

1.0

V

17

iJS

1= 1kHz

Cgd
Cgo

Gate-Source Capacitance

VOS= 10V

1= lMHz
(Note 2)

en

Equivalent Short Circuit
Input Noise Voltage

VOS-l0V,
10-10mA

I-100Hz
(Note 2)

VGS - -10V,

12

1.0

Common Gate Output
Conductance
Drain-Gate. Capacitance

gogo

-150

-150
-25

. VOS=10V,
10= lOrnA

UNIT
MAX

-150

IG = -lILA, Vos =0

IG = lOrnA, VOS = 0

TYP

2-111
Note: All typical values have been guaranteed by characterization and are not tested.

250

250

250

2.5

2.5

2.5

5.0

5.0

5.0

iJS

pF

10

10

10

-nV

v'Hz

IIO~OI6
ELECTRICAL CHARACTERISTICS (CO NT.)
U3d9

U308
SYMBOL

PARAMETER

U310
UNIT

TEST CONDITIONS
MIN TYP MAX MIN TYP MAX MIN T,(P MAX

Common-Gate Forward
Transconductance
91g

Ie 100MHz

15

15

15

1- 450MHz

14

14

14

1= 100MHz

0.18

O.Hi

0.18

,/.IS

Common-Gate Output
Conductance

gog.
Gpg

Common-Gate Power Gain

Vos'= 10V,

1=450MHz

10= lOrnA

I -100MHz

14

16

14

16

14

1=450MHz

10

11

10

11

10

(Note 2)
NF

Noise Figure

0.32

0.32

0.32
16
11

f= 100MHz

1.5

2.0

1.5

2.0

1.5

2.0

f=450MHz

2.7

3.5

2.7

3.5

2.7

3.5

NOTES: 1. Pulse test duration = 2ms.
2. For design reference only, not 100% tested.

2-112
Note: All typical values have been guaranteed by characterization and are not tested.

dB

.U~UI6I

U401-U406
Dual N-Channel JFET Switch
FEATURES
•
•
•
•

CHIP TOPOGRAPHY,

Minimum System Error and Calibration
Low Drift With Temperature
Operates From Low Power Supply Voltages
High Output Impedance

Cb

6037

PIN CONFIGURATION
TO-71

"LL BONO PADS ARE' x • MIL.
CTOOO711

ABSOLUTE MAXIMUM RATINGS
(TA = 25·C unless otherwise noted)
S,

Gate-Drain or Gate-Source Voltage ...................... 50V
Gate Current (Note 1) ..................................... 10mA
Storage Temperature Range ............ -65·C to + 200·C
Operating Temperature Range ......... -55·C to + 150·C
Lead Temperature (Soldering, 10see) .............. + 300·C

PC000511

ORDERING INFORMATION*

ONE SIDE

BOTH SIDES

300mW
2.6mWI"C

SOOmW
SmW/·C

Power Dissipation (TA = 8S·C) ... .
Derate above 2S·C ............... .

'When ordering waler/dice reler to Section 10, page 10-1.

ELECTRICAL CHARACTERISTICS
TEST CONDITIONS: 25·C unless otherwise noted.
U401
SYMBOL

PARAMETER

U402

U403

U404

U40S

U406

TEST CONDITIONS

UNIT
MIN MAX MIN MAX MIN MAX MIN MAX MIN MAX MIN MAX

BVGSS

Gate-Source Breakdown
Voltage

Vos - 0, IG = -lIlA

IGSS

Gate Reverse Current
(Note 2)

VOS = 0, VGS = -30V

VGS(off)

Gate-Source Cutoff Voltage

VOS -15V, 10 -InA

VGS(on)

Gata-Source Voltage (on)

VOG

loSS

Saturation Drain Current
(Note 3)

VOS = 10V, VGS = 0

IG

Operating Gate Current

VOG - 15V, 10 = 200jiA

(Note 2)

.1

= 15V,

-50

-50
-25

-50
-25

-50
-25

-50

-50
-25

-25

V
-25

pA

-.5 -2.5 -.5 -2.5 -.5 -2.5 -.5 -2.5 -.5 -2.5 -.5 -2.5
V
-2.3

10 = 200jiA

-2.3

-2.3

-2.3

-2.3

-2.3

0.5 10.0 0.5 10.0 0.5 10.0 0.5 10.0 0.5 10.0 0.5 10.0

TA-125°C

rnA

-15

-15

-15

-15

-15

-15

pA

-10

-10

-10

-10

-10

-10

nA

BVG1-G2

Gate-Gate Breakdown
Voltage

VOS - 0, VGS - 0,
IG - ±ljiA

±50

gfs

Common-Source Forward
Transconductance (Note 3)

VOS· 10V,

2000 7000 2000 7000 2000 7000 2000 7000 2000 7000 2000 7000

gos

Common-Source Output
Conductance

VGS=O

91s

Common-Source Forward
Transconductance

90s

Common-Source Output
Conductance

Voo-15V,

Cis.

Common-Source Input
Capacitance (Note 6)

10 = 2001lA

±50

±50

±50

±50

±50

V

1= 1kHz
20

20

20

20

20

20
I'S

1000 1600 1000 1600 1000 1600 1000 1600 1000 1600 1000 1600
1= 1kHz
2.0

2.0

2.0

2.0

2.0

2.0

B.O

B.O

B.O

8.0

B.O

B.O

I=IMHz
Crss

Common-Source Reverse
Transler capaCitance
(Note 6)

pF
3.0

2-113
Note: All typical values have been 9uaranteed by characterization and are not tested.

3.0

3.0

3.0

3.0

3.0

I U40'.U,~~~

,,' ,'" ;

'4- ELECTRICAL CHARACT':FlISTICS (CONT.)

,i::»

'.
SYMBOL

U401
PARAMETER

U402

'U403

U404

U405

TEST CONDITIONS
MIN MAX MIN MAX MIN MAX ,.IN MAX. MIN

U~

MAX MIN MAX

UNIT

en

Equivalent Short-Circuit
Input Noise Voltage

VOS·15V.
VGS=O

CMRR

Common-Mode Rejection
Ratio

Voo - 10 \0 20V,
10 - 200"" (Note 5, 6)

IVGS1- VGS21

Differential c Gate~$ource
Voltage

Voo = 10V. 10 = 200""

5

10

10

15

20

40

mV

Gate-Sour"". Voltage
Dlfferenti!ll Drift (Not!i 4)

ITA = '-55'C
Voo = 10V. T = +25'c'
10 = 200"" Tg = + 125'(;

10

10

25

25

40

80

pV/'C

""'GS1-VGS21

Ll.T

I

f-10Hz
(Note 6)

20

95

95

NOTES: 1. Per transistor.

2. Approximately doubles for every 10'C increase in TA.
3. Pulse test duration = 300"s; duty cycle :;; 3%.
4. Measured at end points. TA, TB. Tc.
5. CMRR=.20 log10 [

20

. AVoo , ] . AVoo = 10V.
AIVGS1"VG82'

6. For design reference only, not 100% ·tested.

2-114
Note: All typical values have been guaranteed by characterization and are not tested.

20

20

95

20

20

90

.1I5

nV
-VRi
dB

U1897~U1899

N-Channel JFET Switch
FEATURES

APPLICATIONS

•
•

•

Low Insertion Loss
No Error or Offset Voltage Generated By Closed
Switch

PIN CONFIGURATION

Analog Switches, Choppers

CHIP TOPOGRAPHY
5001

TO-92
.00135 FULL RADIUS

q

I
L

:00175 (DRAIN),

0072 NOTE

~

--1

~ .016

o

S

~i'~~:::~ATE

~~
---I

.0025 x .0029
.0035
.0026
(SOURCE)

Cro05,'1

G

PCO01311

ABSOLUTE MAXIMUM RATINGS
ORDERING INFORMATION*
TO-92
U1897

TO-92-18
U1897-18

WAFER
U1897/W

(TA = 25°C unless otherwise noted)
Gate-Drain or Gate-Source Voltage _................... -40V
Forward Gate Current ...................................... 10mA •
Storage Temperature Range ............ -55°C to + 150°C
Operating Temperature Range ......... -55°C to + 135°C
lead Temperature (Soldering, 10sec) .............. + 300°C
Power Dissipation ...................................... ; .. 350mW
Derate above 25°C .......................... 3.2mW fOC

DICE
U1897/D

U1898

U1898-18

U18,98/W

U1898/D

U1899

U1899-18

U1899/W

U1899/D

'When ordering wafer/dice refer to Section 10, page 10-1_

ELECTRICAL CHARACTERISTICS
TEST CONDITIONS: 25°C unless otherwise noted
U1897
SYMBOL'

PARAMETER

U1898

U1899
UNIT

TEST CONDITIONS
MIN MAX MIN

BVGSS

Gate-Source Breakdown Voltage

IG = -1 #-lA, VOS = 0

IGSS

Gate Reverse Current

VGS = -20V, VOS = 0

-400

-400

-400

1000

Drain-Gate Leakage Current

VOG = 20V, IS = 0

200

200

200

ISGO

Source-Gate Leakage Current

VSG= 20V, 10=0

200

200

200

10(011)

Drain Cutoff Current

VOS - 20V,
VGS= -12V (U1B97)

200

200

200

ITA = B5'C

-40

MAX MIN' MAX

VGS = -BV (U1B9B)
VGS = -6V (U1B99)

-40

10

10
-7.0-

10
-5.0

nA

VOS = 20V, 10 = lnA

-5.0

lOSS

Saturation Drain Current (Note 1)

VOS - 20V, VGS = 0

30

VOS(on)

Drain-Source ON Voltage

VGS = 0, 10 = 6.6mA (U1897)
10 = 4.0mA (U1898)
10 = 2.5mA (U1899)

0.2

0.2

0.2

V

rOS(on)

Static Drain-Source ON Resistance

10=lmA, VGS=O

30

50

BO

n

Cdg

Drain-Gate Capacitance

VOG

5

5

5

CSg

Source-Gate Capacitance

VSG =20V, 10 = 0

Ciss

Common-Source Input Capacitance

Crss

Common-Source Reverse Transfer
Capacitance

15

-1.0

pA

Gate-Source Cutoff Voltage

Is = 0

-2.0

V

VGS(oll)

= 20V,

-10

-40

B.O

5

5

5

f= lMHz

16

16

16

(Note 2)

3.5

3,5

3.5

VOS = 20V, VGS = 0

2-115
Note: All typical values have been guaranteed by characterization and

are~ot

tested.

V
mA

pF

,

I U1897-U1899
;

:::» ELECTRICAL CHARACTERISTICS (CONT.)

,!

::::»..

U1897
SYMBOL

PARAMETER

U1898

UNIT
MIN MAX MIN MAX

'Id(on)

Tum ON Delay Time (Note 2)

Ir

Rise Time (Note 2)

Ioff

NOTES:

Turn OFF Time (Note 2)

U1899

TEST CONDITIONS
MIN

MAX

Switching Time Test Conditions

15

15

20

U1897 U1898 U1899

10

20

40

40

60

80

3V
Voo
0
VGS(on)
VGS(off) -12V
425n
RL
6.6mA
1010nl

3V
0
-8V

3V
0
-BV
non 1120n
4mA 2.5mA

1. Pulse test pulsewidth - 3001-'s; duty cycle < 3%.
2. For design reference only. not 100% tested.

2-116
Note: All typical values have been guaranteed by characterization and are not tested.

ns

,

.O~OIl.I

VCR2N/3P/4N/7N

Voltage Controlled Resistors

-•
Col

APPLICATIONS
•
•
•
•

.'!
z

CHIP TOPOGRAPHY

-...

VCR2N
5001

Small Signal Attenuators
Filters
Amplifier Gain Control
Oscillator Amplitude Control

.00135 FULL RADIUS

.oom (DRAIN)

Z

PIN CONFIGURATIONS
TO·18

TO-71

r--

• .0036

-:0026

--I

.01.

(SOURCE)
CTOO6BOI

VCR7N
5007

-hD15~

::

G

(3) ,

o
PCOOO611

PC000511

.0025 )( .0025
.0035
.0035

-r

T0-72
(N-Ghannel)

TO·72
(P-Ghannel)

.0013 FULLR
.0017
CTOO69OI

VCR3P

5508

,Rrilm~'='.0025

o

.0027

.016

PC004801

PCOO4701

.0037 x .0035 0
.0025

.0027

ORDERING INFORMATION*

.
.

•

NOTE: SUBSTRATE
IS GATE
CT007001

To-18

TO·72

WAFER

DICE

VCR2N

-

VCR2N/W

VCR2N/O

VCR4N

-

VCR4N/W

VCR4N/O

-

VCR3P

VCR3P/W

VCR3P/O

VCR7N

VCR7N/W

VCR7N/O

VCR4N
5010 (4N)
D(2)

~{Irr~'

'When ordering wafer/dice refer to Section 10, page 10-1.

.0025 • .0025
.0035

.0035

.~:~~~

~

NOTE: SUBSTRATE
IS GATE

.013
CTOO71OJ

VCRllN
6019
0,

--i

G'lf'§§§§~tfeil ~2~~
, { - - .D39

s,
.025 [ll
G, ~. .0037
I _
,.1I
.0027
.0027
..L ____.....
"!-- 0, TYP. 2 PLACES
Sa

~x .0035

.0025

.0025

TYP.2 PLACES
CTOO1201

2-117
Note: All typical values have been guaranteed by characterization and are not tested.

VtR2N/3Pf,4NI7N
, :. ;'.' '0--1-"."0'"

.'OV---i\
TG002501

0,25

WFOOO601

TCOO2601

Circuit Diagrams

Figure 2: Switching Times

TYPICAL PERFORMANCE CHARACTERISTICS
SWITCHING TIMES
VS TEMPERATURE
0123 AND 0125
(SEE NOTES 4 AND 5)

toff(delay) VS IIN(PEAK)

0123
c

1.8

,

1.7

1

1.6

E

:t0

.

1.5

/

N

::; 1.4

c

:I

1.3

Z

1.2

"0

/
1
"
'
/
j

,000

1100

./

L

V

~900

..

VR-O
VEE --20V
V+- ,OV
CCUT-1OpF

:I 700

;:::

V"-O
VEE --20V
V+o < COUT < ,0000F
0< 10UT<4mA

,ov

"Zsoo
~

I-

~300

liN CPEAKI

(mA)

toft (1 mA.

L.-1"'"

."

- --

.......

>800

alOmA

~:;_0_2OV-

~t-...

!

I
-"
1o,,(4mA!/

10.

100

"N

I I

-0

lOUT

.......

i

......
~

~600

V

10" (dellyl

TA·25°C

1.0,

VIN(ON) VS TEMPERATURE
0123

-so

I I
400

75
o 25
TEMPERATURE (OCI

125

-25

25

75

,25

TEMPERATURE tOCI
OPOO2801

OPOO2801

-75

3-3
Note: All typical values have been guaranteed by characterization and are not tested.

OPOIl3OOI

!

1»12311)125';

Q

-TYPICAL' PERFORMANCE CHARACTERISTICS (CONT.)

=

is

liN VS VIN
0123

u
;(

...!

_v.

10'

1.4

!

Vu. • -20V

26'C ~';!- ~

:( 0.3

.;

.,55'C

0.6

V
o

r--+--+--+---I

./

0.21--+--

I

~ 0.2

Vee" 10V

~ 0.4 I--+--+--+-~

126'C i:-'~

U

V, •• 0.5V (0126)
V.·O
V,·4.5V

0.5

I

ffi

IOUT(OFF) VS TEMPERATURE
,0123 ANO 0125'

liN" 1 inA (0123)

-0

VIE .. -20V

II:
0::

....""

VSAT VS TEMPERATURE
0123 ANO 0125

/

r '"""1

10

......-....L.._...J

1

0.1 1=~=.!:IO~Ui!-T,:,·.!.1!mA

I

O'---......-75

0.2
0.4
0.6 0.8
V,. - INPUT VOLTAGE IV)

-25

26

75
TEMPERATURE I'C)

OPOO3101

26

126

45

65

APPLICATIONS
Using INTERSIL'S MOSFET SWITCH, G117, with either
the 0123 or 0125 drivers provides a convenient means of
designing a 5 channel analog multiplexer with a series on/
off switch.

0

f

117

-r

'..

..

I.

I

AFOO0501

Figure 3:

5-Chan~el

105

126

0P003301

QPO07001

r ~~~oo--~----------~
:L~!
-:0 c~o:;j

65

TEMPERATURE I'C)

Multiplexer

Note: All typical valUes have been guaranteed by characterization and are not tested.

D123/D125
APPLICATION TIPS
Interfacing the D123 and D125
In order to meet all the specifications on this data sheet,
certain requirements must be met by the drive circuitry.
The D125 can be turned ON easily, but care must be
exercised to insure turn-off. Keeping VL - VIN S DAV is a
must to insure turn-off. To accomplish this, a shunt resistor
must be added to supply the leakage current (ICES) for DTL
devices. Since ICES = 50pA, a OAV IO.05mA = 8kn or less
resistor should be used. For TTL devices using a 2kn
resistor will insure turn-off with up to 200pA of leakage
current.

Y" ••.•

...

..-

--

D'.

01'L"IIUL"'~

••

110

...... aa

--

~'"

fl'fLI"""'LUIIt

..

-

m._ .........

LD012301

Figure 5: 0125 Interface

Using the ENABLE Control

.

Device pins VR or VL, can be used to enable the D123 or
D125 drivers. For the D123, the enabling driver must sink
IR(ON) X no. of channels used. For the D125, IL(ON) X no. of
channels used must be sourced with a voltage at least + 4V
greater than VIN.

v.

LD012201

Figure 4: 0123 Interface

3-5
Note: All typical values have been guaranteed by characterization and are not tested.

!

8,12'9

" 4-Channel Decoded JFET
Switch Dri,ver
GENERAL DESCRIPTION

FEATURES

The 0129 is a 4-channel driver with binary decode input.
It was designed to provide the DC level-shifting required to
. interface low-level logic outputs' (0.7 to 2.2V) to field-effect
transistor inputs (up to 50V peak-to-peak). For a 5V input
logic supply, the V- terminal can be set at any voltage
between -5V and -30V. The output transistor is capable of
sinking 10mA and will stand-off up to 50V above V- in the
off-state.
The ON state of the driver is controlled by a logic "1"
(open) on all three input logic lines, while the OFF state of
the driver is achieved by pulling anyone of the three inputs
to a logie, "0" (ground).
The 4-channel driver is internally connected such that
each one can be controlled independently or decoded from
a binary counter.
..

•

·Quad Three;;lnputGates Decode Binary Counter
to. Four Lines
• Inputs .Compatible With Low Power TTL and
DTL, IF 200MA Max
• Output Curr.ent Sinking Capability 10mA
-- External Pull-Up Elements Required
• Compatible With G115 and G123 Series
Multichannel MOSFET Switches Which Include
Current-Umiter Pull-Up FETs

=

ORDERING INFORMATION
D129

A,--,--T
-:---'--- - - - - - . , . - - - - - - - - - - - - - 'Package

1

K - 14-pin CERDIP
L - 14-pin' Flat Pak
P - 14-pin Ceramic DIP
(Special Order Only)
Temperature Range
A - Military (- 55·C .to + 125·C)
B - Commercial (,.. 20·C to + 85·C)

~-------------------- Device Chip Type

v'

I.
IN,

13

IN2
12
IN3
IN.
INS

11

IN.

I.
IN,

OUT,

OUl 2

OUT3

OUT4

(eACH DRIVER)

LOOOO701

GNO

vLOOOO601

Flg~re

1: Functional Diagrams (Outline Dwgs DO, FD-2, JD)

Note: All typical values have been guaranteed by characterization and are not tested."

...D

D129

I\)

co

ABSOLUTE MAXIMUM RATINGS
Vo - V- ........................................................ 50V
GND - V- ...................................................... 33V
V+ - GND ....................................................... 8V
VIN - GND ..................................................... ±'6V
Current (any terminal) .....................................:. 30mA

Storage Temperature ...................... -65°C to + 150°C
Operating Temperature ................... -55°C to + 125°C
Power Dissipation (note) ................................ 750mW
Lead Temperature (Soldering, 10sec) ................. 300°C

Note: Dissipation rating assumes device mounted with ali leads welded or soldered to pc board in ambient temperature of 70·C. Derate 1OmW I·C for higher
ambient temperatures,
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional
operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure 10
absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

Test conditions unless otherwise specified V-

= -20V,

V+

= 5V

MAXIMUM LIMIT

SYM·

PARAMETER

D129M

01291

-5S·C

25°C

85°C

-19.3

-19

-19.8

Va = 10V, VIN = 0.7V

Input Current
Input Voltage High
Input Current
Input Voltage Low

BOL

TEST CONDITIONS

UNIT

12S·C

-20·C

2SoC

-19.3

-19

-19.25

-19.25

-19.8

-19.75

0.1

0.1

20

0.2

0.2

10

VIN = 5V Input Under Test,
VIN = 0 Ali Other Inputs

0.25

0.25

5

1

1

5

VIN = 0, V+ = 5.5V

-250

-200

-160

-250

-225

-200

OUT

VOL

Output Voltage, Low

10= 10mA

VOL

OUtput Voltage, Low

10=lmA

Output Current, High
10H
INPUT
IINH
IINL

.

.

I VIN = 2.2V. V + = 4.5V

V
"A

IlA

TIME

ton

Ioff

Tum-ON Time

I Turn-OFF

I See

Time

0.25
Switching Time Test Circuit

I

I

1.0

0.3

I

I

I

1.5

I

I

SUPPLY

lEE

Negative Supply Current

-2

""

-2.25

IL

LogiC Supply Current

V- = -20V

One Channel "ON"

3

3.3

lEE

Negative Supply Current

V+ = 5.5V

Ali VIN=O,

-10

-25

IlA

Ali Channels "OFF"

0.75

1

mA

Logic Supply Current
IL
• Per gate Input

IN:::::8

-.'OY

.5V

1

ri> I

I

I

-1

r

If''' lOOns
t f .. lOOns
OUT

IN

'Pw. ' ''''

.,~:~
OY

mA

=t-

f .. lOOK Hz

ton~

·'OY - - - - -

OUT

OV - - - - - - - - - -2OV
~90'4
WFOOO701

TCOO2701

Figure 2: Switching Time and Test Circuit

3-7

Note: Ali typical values have been guaranteed by characterization and· are not tested.

; DG11'8IDG123/DG125

Z4

& 5-Channel SPST Driver

c;With Switch
CIt
~

g-.
CD
~

~

g

GENERAL DESCRIPTION

FEATURES

This series includes devices with four and five channel
switching capability. Each channel is composed of a driver
and a MOSFET switch. Two driver versions are supplied for
inverting and noninverting applications. A MOSFET, used
as a current source provides an active pull-up. for faster
.
switching.
An external biasing connection is brought out for biasing,
the current source, for optimization of speed and power.

•

Available With and Without Programmable
Constant Current Pull-up
Zener Protection on All Gates
P-Channel Enhancement-Type MOSFET Switches
Each Switch Summed to One Common Point

•
•
•

ORDERING INFORMATION

TRUTH TABLE

DGl18 A L = K Package

DGl18, DG125

DG123

K - 14-ptn CERDIP
L - 14-pin Flat Package
P - 14-pin Ceramic DIP
(Special Order Only)
Temperature Range
A - Military (- 55°C to + 125°C)
B - Commercial (_20°C to +B5°C)
Device Chip Type

VIN

VR

VIN

VL

L
H
L
H

L
L
H
H

L
L
H
H

H
L
H

OG123

OG125

(One Channel)

(One Channel)

•

v·

"
;t::~:::;~::::::~~3D
,

1

~

I

I

,

:

v·

I•

IN

.,'..., '

.

.."

So"

"

1

1

v'

.

3•
I

I

I

I

I
I
I
I·
I
I

·

___ JI

I
I
I
I
I
I
I

iI

I

I
I
I
I
I
I

..'~2t-------~+-r-~-~

I

I

I1

: !

:

I
I
I

1

_____ JI

1
1

1

1
I.

1
1
1

1
I
I

_____ JI

"

s.~'t====:r;~==Sr3D
sak-

~~'t-------~~r---~
~~3t-------~+-~r_~

I

I
I
I
I
I
I

___ J

1

v-

v-

v.
v'

...

I

OFF
ON
.OFF
OFF

L=OV, H= +V

OGllS

v-

Condo

L

(One Channel)

IN

Switch

_______ JI

1
--_- .. - __ 1

lOOOO201

LDO00101

Figure 1: Schematic & Logic Diagrams (Outline Dwgs DD, FD-2, JD)

3-8
Note: All typical values have been guaranteed by characterization and· are not tested.

lOOO030t

.D~D[6

DG118/DG123/DG125

g

Collector to Emitter (V+ -V-) ............................. 33V
Collector to Pull-up (V + - Vp) .............................. 33V
Drain to Emitter (Vo-V-) .................................. 32V
Source to Emitter (Vs-V-) ................................ 32V
Drain to Source (VO-VS) ................................... 28V
Source to Drain (VS-Vo) ................................... 28V
Logic to Emitter (VL -V-) ................................... 33V
Reference to Emitter (VR-V-) ............................ 31V
Reference to Input (VR - V,N) ................................ 6V

Logic to Input (VL -V,N) ..................................... ±6V
",put to Emitter (V'N-V-) ..................................33V
Current (any terminal) ...................................... 30mA
Storage Temperature ...................... -65°C to +150°C
Operating Temperature ................... -55°C to + 125°C
Dissipation (Note) ......................................... 750mW
Lead Temperature (Soldering, 10sec) ................. 300°C
NOTE: Dissipation rating assumes device is mounted with all leads welded
or soldered to printed circuit board in ambient temperature of 70 o e.
Derate 1OmW I"C for higher ambient temperature.

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional
operation of the device at these or any other conditions above those indicated' in the operational sections of the specifications is not implied. Exposure to
absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS
Test conditions unless specified otherwise are as follows: VL = 4.5V, VR
test conditions used for output and power supply specifications.

= 0, V- = -20V, and P = -20V. Input ON and OFF

I

MAX LIMITS

PARAMETER
(NOTE)

TEST CONDITIONS

-55°C

+ 25°C

+ 125°C

UNIT

INPUT

pA

IIN(OFF)

Y,N - O.4V

1

1

100

VIN(ON)

IIN-1mA

1.3

1.0

0.8

V

DG118

IIN(OFF)

VIN - 4.1V

1

1

20

IlA

DG125

IIN(ON)

VIN =0.5V

-0.7

-0.7

-0.7

rnA

DG123

OUTPUT

800

n
n
n

IO(ON)

Vo - 10V. IS(all) - 0

4

4000

nA

IO(OFF)

VS(all)

= 10V.

-4

-4000

nA

-1

-1000

nA

rOS(ON)
All
circuits

IS(OFF)
POWER SUPPLY

All
circuits

100

100

125

Vo = O. Is = -100IlA

200

200

250

Vo - -10V. IS - -1001lA

450

450

Vo = -10V

Vo = 10V. Vs = -10V

ICG(ON)

3
3

rnA

-0.5

rnA

IEE(ON)

-6

rnA

ICC(OFF)

10

pA

IL(OFF)

10

pA

-15

IlA
pA

All
circuits

VO-10V.IS--1mA

IL(ON)
IR(ON)

IR(OFF)

One Channel (ON)

All Channels (OFF)

I t(ON)

circuits

JtlOFFL

rnA

-20

lEE OFF}
SWITCHING TIMES
All

...

CD
.....

ABSOLUTE MAXIMUM RATINGS

DEVICE
NO.

g...

I

See Switching Times

I

I
I

0.3
1

I
I

I
..

NOTE: (OFF) and (ON) subscnpt notation refers to the conduction state of the MOSFET switch for the given test condition .

3-9
Note: All typical values have been guaranteed by characterization and are not tested.

I

p.s
Ils

;;
W

a
I:)

;;
UI

OG'I23

v"

to
I,

01 ,JS
01 tIS

s.
+--,--o'OUT'U1
DG123
OUTPUr

"'p'
TC002301

OG118,125
DG118,125
OUTPUT

oJl..
WFOOO501
OUTPUT

"p'
TCOO2401

i=igure 2: Switching Times

TYPICAL PERFORMANCE CHARACTERISTICS
liN vs VIN
DG123
1.8

i

!

...

..
"

VR- 0
V-'-20V

I.'

,.~

~

,,

II II

1100

!900

...'"

'~:g:NL

~

...u

SWITCHING TIMES vs
TEMPERATURE

-ssoc' ~

II NIl

0.6
0.2

V
0.2

0.4

I
0.6

~

;:

rOS(ON) vs Vo or Vs
IK

VR"'O
v- .. -20V

v+ =

10V

;<;,:~;v3(lpF

--+_1-+--+-/---::1

700

C>

~

I

V
0.8

VIN - INPUT VOLTAGE (VI

z

i

IS'-lmA

Vr:::

~~ ~-55.
_t-t-

' ......

500

u

....
~

300

.......

V+- 10V
-20V
Vp = -20V

v- ..

~~E~

tONr--.....

100

-50

125·_
25·-

o

25

125

10
-10

-10

TEMPE'AATURE (OC)

OP002501

OPO02601

3-10
Note: All typical values have been guaranteed by characterization and are not tested.

OP002701

DG118/DG123/DG125
APPLICATION TIPS
The recommended resistor values for interfacing RTl,
DTl, and TTL logic are shown in Figures 3 and 4.

..

DTL911941

9oI9H'163

TTLS414
TTl9000SEAIES

SU"l

AFOOO21I

Figure 4: DG123 Interface
AFOOO11 I

Figure 3: DG118 and DG125 Interface

Enable Control
The VR and Vl terminals can be used as either a Strobe
or an Enable control. The requirements for sinking current
at VR or sourcing current at VL are: IL(ON) x No. of channels
used, for DG 118 and DG 125, and IR(ON) x No. of channels
used for the DG123 devices. The voltage at VL must be
greater than the voltage at VIN by at least +4V.

3-11

Note: All typical values have been guaranteed by characterization and are not tested.

i~

,DG126,':!,DG129, DG133,
g8 DG134, DG140, DG141,
DG151, DG152', DG153, DG154
DUAL ,JFET Analog Switch
,FEATURES

GENERAL DESCRIPTION
These switching circuits contain two channels in one
package, each, channel conSisting of a driver circuit controlling a SPST or DPST junction - FET switch. The driver
interfaces DTl, TTL or RTl logic signals for multiplexing,
commutating, and Df A converter applications, which permits logic design directly with the switch function. logic "1"
at the input turns the FET switch ON, and'iogic "0" turns it
off.

1

•

Each Channel Complete-:-Interfaces With Most
Integrated Logic
'
' . Low OFF Power DisSipation, 1mW
• Switches Analog Signals Up to 20 Volts Peak-toPeak
• Low rOS(ON). 10 Ohms Max on DG140/A and
DG1411A
• Switching Times Improved 100%-'A' Versions

ORDERING INFORMATION
0126

1A

~

L ___________________

DUAL SPST
00133 (rOS(ON) = 30!'!)
DG134 (rOS(ON) = 80!'!)
DG141 (rOS(ON) = 10!'!)
DG151 (rOS(ON) = 1S!'!)
DG152 (rOS(ON) = 50!'!)

Package
K - 14-pin CEROIP
L - 14-pin Flat Pack
P - 14-pin Ceramic 01 P
(Special Order Only)
Temperature-Range
A - Military (-55'C to +125'C)
B - Industrial (- 20°C to + 80°C)
Device Chip Type

DUAL DPST
DG126 (rOS(ON) = 80!'!)
DG129 (rOS(ON) = 30!'!)
DGI40 (rOS(ON) = 10!'!)
DG153 ('OS(ON) = IS!'!)
DG154 (roS(ON) = 50!'!)

~~_sw,

$W,
SW,
SW,

VIlIENABlE)

lD012101

'0

V.

(ENABLE)
08027401

"

<>:"11-------f.-I~sw,

o-"'j---"! ---+--+-<>sw,

12
VII (ENABLEl
lD012001

Figure 1: Functional Diagrams (Outline Dwgs DO, FD-2, JD)

3-12
Note; All typical values have been guaranteed by characterization and are not tested.

v05027501

DG126, DG129, DG133, DG134, DG140,
DG141, DG151, DG152, DG153,· DG154
ABSOLUTE MAXIMUM RATINGS
Analog Signal Voltage (VA-V- or V+ -VA) ......... 30V
Total Supply Voltage (V + - V-) .......................... 36V
Positive Supply Voltage to Ref. Voltage (V+ - VR) .. 25V
Ref. Voltage to Neg. Supply Voltage (VR - V-) ...... 22V
Power Dissipation (Note) ................................ 750mW

Current (any terminal) ...................................... 30mA
Storage Temperature ...................... -65°C to + 150°C
Operating Temperature ................... -55°C to + 125°C
Lead Temperature (Soldering, 10sec) ................. 300°C

NOTE: Dissipation rating assumes device is mounted with all leads welded or soldered to printed circuit board in ambient temperature below 70'C. For higher
temperature, derate at rate of 1OmW I'C.
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional
operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to
absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS (Per Channel)
Applied voltages for all test: DG126, DG129, DG133, DG134, DG140, DG141 (V+ = + 12V, V- = -1BV, VR = 0), and DG151,
DG152, DG153, DG154 (V + = + 15V, V- = -15V, VR = 0). Input test condition which guarantees FET switch ON or OFF as
specified is used for output and power supply specifications
ABSOLUTE MAX LIMIT

SYMBOL
(NOTE)

CHARACTERISTIC

TYPE

TEST CONDITIONS

UNIT

-55°C

25°C

125°C

INPUT
VIN(ON)

Input VOltage-On

V>;.=-12V

2.9 min

2.5 min

2.0 min·

Volts

VIN(OFFI

Input Voltage-Off

V2 = -12V

1.4

1.0

0.6

Volts

IIN(ON)

Input Current

VIN =2.5V

120

60

60

p.A

IIN(OFF)

Input leakage Current

VIN =0.8V

0.1

0.1

2

p.A

80

80

150

n

30

30

50

n

10

10

20

n

15

15

30

n

All .circuits

SWITCH OUTPUT
DG126
DG134
DG129
DG133
rOS(ON)

Drain-Source On Resistance

VIN = (See Note)
Vo = 10V. Is = lOrnA

DG140
DG141
DG151
DG153
DG152
DG154

Vo = 7.5V, IS = lOrnA
50

100

n

VO=VS= -10V

±2

100

nA

Vs = 10V. Vo = -10V

±1

100

nA

Vo=10V, VS=-10V

±1

100

nA

Vo=Vs= -10V

±2

100

nA

Vs = 10V, Vo = -10V

±10

1000

nA

Drain leakage Current

Vo= 10V, VS= -10V

±10

1000

nA

IO(ON) + IS(ON)

Drive leakage Current

Vo=Vs= -7.5V

±2

500

nA

IS(OFF)

Source leakage Current

= - 7.5V

±10

1000

nA

IO(OFF)

Drain Leakage Current

Vo = 7.5V,. Vs = - 7.5V

±10

1000

nA

IO(ON) + IS(ON)

Drive leakage Current

Vo=Vs= -7.5V

±2

500

nA

IS(OFF)

Source leakage Current

Vs = 7.5V, Vo = - 7.5V

±2

200

nA

IO(OFF)

Drain Leakage Current

Vo = 7.5V. Vs = - 7.5V

±2

200

nA

IO(ON) + IS(ON)

Drive leakage Current

IS(OFF)

Source leakage Current

IO(OFF)

Drain Leakage Curr.ent

IO(ON) + IS(ON)

Drive leakage Current

IS(OFF)

Source leakage Current

IO(OFF)

DG126
DG129
DG133
DG134
DG140
DG141

DG151
DG153

DG152
DG154

VIN = (See Note)

Vs = 7.5V, Vo

NOTE: VIN must be a step function with a minimum slew-rate of tV / jJS.

3-13
Note: All typical values have been guaranteed by characterization and are not tested.

50

DG128J DG129, DG133, DG134, DG140,
DG141, DG151, DG152,· DG153, DG154

.:f

.. "
go

ELECTRICAL CHARACTERISTICS (CONT.)

(I) . .

-N
(1)110

"
gg..

SYMBOL
(NOTE)

ABSOLUTE MAX LIMIT
CHARACTERISTIC

TYPE

TEST CONDITIONS

UNIT
25°C

-55"C

125°C

POWER SUPPLY
I, (ON)

Positive Power Supply Drain
Current

12(ON)

Negative Power Supply Drain
Current

IR(ON)

Reference Power Supply
Drain Current

11 (OFF)

Positive Power Supply
Leakage· Current

12(OFF)

Negative Power Supply
Leakage Current

IR(OFF)

Reference Power Supply
Leakage Current

One Driver ON. VIN

= 2.5V

All Circuits

Both Drivers OFF. VIN = O.BV

3

mA

-l.B

mA

-1.4

mA

25

!lA

-25

!lA

-25

!lA

SWITCHING
toN

Turn-On Time

See Below

DG126. DG129. DG133.
DG134. DG152. 00154

600

ns

toFF

Turn-Off Time

See Below

DG126. DG129. DG133.
DG134. DG152. DG154

1.6

p.s

toN

Turn-On Time

See Below

DG140. DG141. DG151. DG153

1.0

p.s

toFF

Turn-On Time

See Below

DG140. 00141. DG151. DG153

2.5

p.s

POWER
PON

ON Driver Power

POFF

OFf Driver Power

175

Both Inputs VIN = 2.5V

I

All Circuits

I Both

Inputs VIN

= 1V

I

NOTE: (OFF) and (ON) subscript notation refers to the conduction state of the FET switch for the given test.

3-14
Note: All typical values have been guaranteed by characterization and are not tested.

I

1

mW

I

I

mW

.O~OIb

DG126, DG129, DG133, DG134, DG140,
DG141, DG151, DG152, DG153, DG154
ELECTRICAL CHARACTERISTICS (CONT.)
DG126, 129, 133, 134, 140, 141

NY:'.

,<0.1"

,,<0.'"

\1 .... _

-

.

DG151, 152, 153, 154

1Wr-------,.
J.MII

.,

.,

""""'

V•• ·?IV

'11'.",.,1'1

WF0269GI

WF026801

.

v.",.O\'

"" •• I:N

'"

INPUI C>-'V1I'rf--""""--'

OUTPUT

TC035201

TC035301

OFF MODEL

OFF MODEL

~OUTPUT

IHPUT

~
A'

m

AI

=

OUTPUT

•

INPUT

TC03550t

TC035401

ON MODEL

ON MODEL

-1'::'

~.n. -c>--t>- -,;
~.::
hVOI,tT
'o,.F
TC035601

1 ='_0

TC035701

Figure 2: Switching Times (at 25°C)

3-15
Note: All typical values have been gualanteed by characterization and are not tested.

DG1'26,DCi29, .DCi33, DG1340,.DG140,
DG141, DGi51, DG152~ DG153,DG154
TYPICAL PERFORMANCE CHARACTERISTICS (per channel)
DG126, 129, 133, 134, 140, 141

DG151, 152, 153, 154

VIN THRESHOLD VII TEMPERATURE

VIN THRESHOLD vs TEMPERATURE

VR =0
V+ = +12V

~~

ON

V-

~

= -12V

VR -0
v+ = +1'5V

2

0
-'
0

~~

%

:

r-

OFF

II:

ON

V- = -12V

-

OFF

%

l-

..

1

I-

::>
~

z

z

:>

:>

o

-15

-26

\

o

126

75

26

-75

-25

TEMPERATURE C'C)

25

OP058101

OP05BOOI

rOS(ON) vsTEMPERATURE
(Normalized to 25'C Value)
2

rOS(ON) vs TEMPERATURE
100

VIN = 2.5V
-VR =0

DGI52.1~

f-V+ = +12V

f-V-

= -lBV

./

1

,

!

-75

..... i-"

10

"

~

iiji;i;;

i,..oo"

1

./

DG151. DGI53

~

."
o

125

75

TEMPE RATURE C'CI

~

1

-25

26

75

-75

125

-26

26

75

126

TEMPERATURE COC)

TEMPERATURE C'c)

QP056301

OP058201

ALL CIRCUITS
ON SUPPLY CURRENT vs
TEMPERATURE
2.6

I--

\000

I
- 1::::-

..

100

I-

z \.8

a:
a:
::>

1.4

OJ

....

> 1.0
-'

Ii!

0.6

0

0.2

-

-

10
;;(

C 2.2 f-- --'

!

~
~

12C~""

;;(
.!;

f-

IRIONI

.E

g

;t;;t;~G'40.
'4'.
151.153

W

w

>
-'
::>

'29.

DGI26.
133.13<4

z

~

0.1

......'"
0

/

om

0.1
TEMPERATURE lOCI

Z

'"'"::>

.

DG152.
1~

25 50 75 100 125

.3
I-

UTf>UT
00142
DG14~

D<3139
DG144
rOS(oNj

Drain-Source On Resistance

DG145
DG146
DG161
DGl63
00162
00164

10(ON) + IS(ON)

Drive 'Leakage Current

IS(OFF)

Source LeBkage Current

10tOFFI

Drain. Leakage Current

10tON) + IStON)'

Orive Leakage Current

00139
D.G142
00143
DG144
DG145
DG146

VO" 10V, IS'" -IOmA
. VIN (See Note)
Vo-l0V, Is= -lamA
VIN (See Note)
VD.= 7.5V,. Is = -HlmA

50

100

n

VO" Vs, -: -10V

2

lOG

nA

Vs';' 10V, VP.'" -10V

1

100

nA

VO=10V, vS.- -10V

1

100

nA

vo=vs= -10V

2

100

nA

VS.-l0V; Vo - -10V

10

1000

nA

lW, Vs = -10V

10

1000

nA

Vo = Vs =·:"7.5V

2·

500

nA

Vs - 7.5V, VD = -7.5V

·10

1000

nA

VIN (see Note)

IS(OFF)

. SOllrce Leakage Currerit

1010FF)

Drain Leakage Current

10(0,,!>-+ IS(ON)

Clm(e Leakage Currerit

IS(OFF)

SOUrce Leakage Current

IO(OFF)

Drain Leakag8 Current

Vo = 1.5V, Vs - -7.5V

10

1000

nA

IO(ON) + IS(ON)

Dilve Leakagli Current

Vp=lIs· -7.5V

2

500

nA

IS(OFF)

Source Leakage Current

Vs-7.5V, 110- -7.5V

2

200

nA

IDlOFFl

Drain Leakage. Current

Vo=7.5V, Vs= -7.5V

2

200

nA

. VO=
00161
00163

00162
00164

NOTE: (OFF) and (ON) subscript notation refers to the oondu.ction state 'of . the FET .switch for the given test.
VIN must be a step function with a minimum slew-rate bf 1VI p.s.
.

3-18
Note: All typicai values have been guaranteed by characterizatkin

and are' not

tested.

.D~[l

DGi3e, DGi42-DGi46, DGi6i-DGi64

UNIT

;
g...

4.0

mA

g

-2.0

mA

-2.0

mA

25

pA

-25

pA

-25

pA

ELECTRICAL CHARACTERISTICS (CONT.)
ABSOLUTE MAX LIMIT

SYMBOL
(NOTE)

PARAMETER

TYPE

TEST CONDITIONS
-55°C

25°C

125°C

11 (ON)
12(ON)

Negative Power Supply
Drain Current

IR(ON)

Reference Power
Supply
Drain Current

I1(OFF)

Positive Power Supply
Leakage Current

12(OFF)

Negative Power Supply
Leakage Current

IR(OFF)

Reference Power
Supply
Leakage Current

VINl =3V
or
VINl =2V
All Circuits

VIN1

= VINE, = O.BV

SWITCHING

toN

Turn-On Time

DG139, DQ142
DG143, OG144
OG162, OG164

See Switching Times

O.B

iJ.S

tOFF

Turn-Off Time

DG139, OG142
DG143,OGt44
DG162, DG164

See

Times

1.6

iJ.S

tON

Turn-On Time

OG145, DG146
OG161, OG163

See Switching Times

1.0

iJ.S

Turn-Off Time

OG145, OG146
DG161, OG163

See . Switching Times

2.5

iJ.S

tOFF

t
I

POWER SUPPLY

Positive Power Supply
Drain Current

;

Sw~ching

NOTE: (OFF) and (ON) subscript notation refers to the conduction state of the FET switch for the given test

3-19
Note: All typical values have been guaranteed by charecterizatiOA and ar& not testeel.·

J
;
!
b
o

...

:

;I)Q13~ 'DG142-DG14,6,.DG181,..DG164

~

i

8

DG139,142, 143, 144, 145, 146'

~."".~.."~~""'f

. •,,01,,$

•

C.' 01/~



--

I uG142. 143

i--"

'i;;;r:r+DG145.146

100

10
E

.!'

I-""

O~

-75

______

-so -25

-L~~~~

0

25

so

1

-75

75 100 125

-so -25

0

25

so

EXCEPT DG145.146

0.1
75 100 125

TEMPERATURE I"C,

TEMPERATURE COCI

~ §§

§~ DG145.146

!

OP003601

25

45

65

85

105

125

TEMPERATURE lOCI
QP003701

OP003801

DG161, 162, 163, 164
VIN1 THRESHOLD vs
TEMPERATURE

RDS(ON) vs TEMPERATURE
100

-

..;::

DG162.164

..,...

~

'"

.£
z

~

10

--

-75

______

-so -25

0

-L~

25

__

so

::

DG161.163

E

O~

looo·em_
IS(OFF) vs TEMPERATURE

~~

1

75 100 125

TEMPERATURE C·CI

-75 -50 -25 0

25

so

75 100 125

TEMPE RATURE I·CI

65

55

105

125

TEMPERATURE C'CI
0f'00400!

OPO03901

45

3-21
Note: All typical values have been guaranteed by characterization and are not tested.·

OPOO4101

iDG180-191

i

High-Speed Driver With

.c; JFET Switch
a

GENERAL DESCRIPTION

FEATURES

The DG180 thru DG191 series of analog gates consist of
2 or 4 N-channel junction-type field-effect transistors (JFED
designed to function as electronic switches. Level-shifting
drivers enable low-level inputs (0.8 to 2V) to control the ONOFF state of each switch. The driver is designed to provide
a turn-off speed which is faster than turn-on speed, so that
break-before-make action is achieved when switching from
one channel to another. In the ON state, each switch
conducts current equally well in both directions. In the OFF
condition, the switches will block voltages up to 20V peakto-peak. Switch-OFF input-output isolation is SOdB at
10MHz, due to the low output impedance of the FET-gate
driving circuit.

•
•

•
•
•
•
•

Constant ON-Resistance for Signals to ±10V
(DG182, 185, 188, 191), to ±7.5V (All Devices)
± 15V Power Supplies
< 2nA Leakage From Signal Channel In Both .ON
and OFF States
TTL, DTL, RTL Direct Drive Compatibility
ton, toff < 150ns, Break-Before-Make Action
Cross-talk and Open Switch Isolation> 50dB at
10MHz (75n Load)
JAN 38510 Approved

ORDERING INFORMATION
PART
NUMBER
DG180
DG181
DG182
DG183
DG184
DG185
DG186
DG187
DG188
DG189
DG190
DG·191

TYPE
Dual
Dual
Dual
Dual
Dual
Dual

SPST
SPST
SPST
DPST
DPST
DPST
SPDT
SPDT
SPDT
Dual SPDT
DuslSPDT
Dual SPDT

o

rOS..l0n)

L

1 1

(M Xl
10
30
75
10
30
75
10
30
75
10
30
75

~ PACKAGE

x

.

A - 10-PIN METAL CAN
L - l4-PIN FLAT PACK
P - CERAMIC DIP
(Special Order Only)
K - CERDIP
.
TEMPERATURE
A - MILITARY (- 55°C to
+ 125°C)
B - INDUSTRIAL (- 20°C to
+ 85°C)

' - - - - - - - DEVICE TYPE
' - - - - - - - - - DRIVER

ONE AND TWO CHANNEL SPDT AND SPST
CIRCUIT CONFIGURATION

TWO CHANNEL DPST CIRCUIT CONFIGURATION

v+

v'

VL

IN

IN

o

II
I I .........' - - - - 4 -........,....J
GNDV-

OG11111871188 SHOWN

ONO

v-

OG1831184/185 SHOWN

LOOO1201

LQOO1301

Figure 1: Functional Diagram (Typical Channel)

3-22
Note: All typical values have been guaranteed by characterization and are not tested.

.n~nll

DG180-191
ABSOLUTE MAXIMUM RATINGS
.
v + -v - ..........................................................
36V

GND-V- ......................................................... 27V
GND-VIN ........................................................ 20V
Current (S or D) See Note 3 ........................... 200mA
Storage Temperature ...................... -65·C to + 150·C
Operating Temperature ................... -55·C to + 125·C
Power Dissipation* ................... 450 (TW), 750 (FLAT),
825(DIP)mW
Lead Temperature (Soldering, 10sec) ................. 300·C

V+ -Vo ........................................................... 33V
Vo-V- ........................................................... 33V
Vo-VS ........................................................... ±22V
VL-V- ............................................................ 36V
VL-VIN ............................................................. 8V
VL-GND ........................................................... 8V
VIN-GND .......................................................... 8V

'Device mounted with all leads welded or soldered to PC board. Derate 6mW;oC (TW); 10mW;oC (FLAT); l1mW;oC (DIP) above 7S"C.
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only. and functional
operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to
absolute maximum rating conditions for extended periods may affect device reliability.

DUAL SPST (DG180, 181, 182)
Metal Can Package

Flat Package
5,

c:::=====;::;!

CERDIP*

"
r;:=====::I5,
- u - _.. D,

Ne

Ne

Ne

Ne
- - - . .____ IN,

IN'_........ . - - - y+

y,

y-

CDOQ0401

CDOOOSOI

(OUTLINE DWG TO-l00)

(OUTLINE DWG FD-2)

CD000601

(OUTLINE DWG JD)

DUAL DPST (DG183, 184, 185)
Flat Package
54

CERDIP*

C:==:::::::;:;J
D.

D·

INI

y+

"C:=====::J

OND

COOOO701

COOOO801

(OUTLINE DWG FD-2)

(OUTLINE DWG JE)

Figure 2: Pin Configurations and Switching State Diagram

3-23
Note: All typical values have been guaranteed by characterization and are not tested.

...g

?...
...
CD

...,. DG·1·80-191
i..
g

SPOT (OG186, 187, 188)

Metal Can Package

Flat Package

CERDIP'

D,
NC

NC

DtC:::::Jl---,..
5t r--.1. __ .__ --"

VL

IN

NC

v'

v-

COOOO901
cOaOtODI

COOO110J

(OOTLINE DWG FD·2)

(OUTLINE DWG TO·l00)

(OUTLINE DWG JD)

DUAL SPOT (OG189, 190, 191)

Flat Package

CERDIP'

,.
53
D.

NC

v,

Dt

(SUBSTAATE)

" NC

5t

It

INt

vTOP VIEW

OND

CDOO1901

CDOO1201

'Side braze ceramic package available as special order only. Consult factory.
(OUTLINE DWG JE)

(OUTLINE DWG FD·2)

Figure 2: Pin Configurations and Switching State Diagram (Cont.)

ELECTRICAL CHARACTERISTICS (v+
PARAMETER

DEVICE NO.

= + 15V, v-

= -15V, VL = 5V, Unless Noted)

TEST CONDITIONS
(NOTE 1)

A SERIES

B SERIES
UNIT

-SS'C

+2S'C

+ 12S'C

-20'C

+2S'C +8S'C

±1

100

±5

100

SWITCH

IS(off)

IO(olt)

Io(on) + IS(on)

OG181, 182, 184, 185
187, 188, 190, 191
(OG180, 183, 186. 189)

Vs=10V, Vo= -10V, v+ =10V
V- = -20V, VIN = "OFF"

±(10)

(1000)

(15)

(300)

OG181, 184, .187, 190
(OG 180, 183, 186, 189)

Vs = 7.5V, Vo = -7.5V
VIN = "OFF"

±1
±(10)

100
(1000)

±5
(15)

100
(300)

nA

OG182, 185, 188, 191

Vs - 10V, Vo - -10V
VIN="OFF"

.±1

100

±5

100

nA

OG181, 182, 184, 185
187, 188, 190, 191
(OG180, 183,186, 189)

Vs -10V, Vo - -10V, v+ -10V

±1

100

±5

100

±(10)

(1000)

(300)

OG181, 184, 187, 190
(OG180, 183, 186, 189)

Vs = 7.5V, Vo
VIN = "OFF"

±1
±(10)

100
(1000)

(15)
±5
(15)

100
(300)

nA

OG182, 185, 188, 191

Vs = 10V, Vo = -10V
VIN = "OFF"

±1

100

±5

100

nA

OG180, 181, 183, 184
186, 187, 189, 190

Vo = Vs = -7.5V, VIN = "ON"

±2

-200

-10

-200

nA

OG182, 185, 188, 191

Vo-Vs- -10V, VIN-"ON"

±2

-200

-10

-200

nA

nA

nA
V- = -20V, VIN = "OFF"

= -7.5V

3-24
Note: All typical values have been guaranteed by characterization and are not tested.

DG180-191
ELECTRICAL CHARACTERISTICS (CONT.)
PARAMETER

DEVICE NO,

B SERIES

A SERIES

TEST CONDITIONS
(NOTE 1)

-SS'C

UNIT

+12S'C

+2S'C

-20'C

+2S'C +8S'C

INPUT
IINL

I ALL

IINH

All

I

I VIN - OV
I VIN = SV

-2S0

I
I

-2S0

-2S0
10

I

20

I
I

-2S0

I
I

-2S0
10

I
I

-2S0
20

I
I

p.A
p.A

DYNAMIC
ton

Ion Switches

300

30n Switches

ISO

180

2S0

300

2S0

300

7Sn Switches

toff

See switching time test circuit

IOn Switches
30n and 7Sn Switches

CS(off)
CO(ofQ

DG181, 182, 184, 18S,
187, 188, 190, 191
(DG180, 183, 186 189)

CO(on) + CS(on
OFF Isolation

3S0

150

130
9 typical (21 typical)

Vs=-SV, 10=0, f=IMHz
VO- +SV, IS-O, 1-1MHz

6 typical (17 typical)

Vo - Vs - 0, I - 1MHz

14 typical (17 typical)

RL = 7Sn, CL = 3pF

ns

pF

Typically> SOdS at 10MHz (See Note 2)

SUPPLY

1+

1-

DG180, 181, 182, 189
190, 191

I,S

I.S

DG183, 184, 185

0.1

0,1

DG186, 187, 188

0.8

0.8

DG180, 181, 182, 189
190. 191

-S.O

-S.O

DG183, 184, 18S

IL
IGNO

1+

1-

-4.0

-4.0

DG186, 187, 188

-3.0

-3.0

DG180, 181, 182, 183
184, 18S, 189, 190, 191

4.S

4.S

DG186, 187, 188

3.2

3.2

VIN = SV

ALL

-2.0

-2.0

DG180, 181, 182, 189
190, 191

1.5

I.S

DG183, 184, 18S

3.0

3.0

DGI8S, 187, 188

0.8

0.8

DG180, 181, 182, 189
190, 191

-S.O

-S.O

-S.S

-S.S

-S.O

-S.O

DG18S, 184, 18S

VIN = OV

DG186, 187, 188

IL
IGNO

NOTES 1.
2.
S.
.

DG180, 181, 182, 183
184, 18S, 189, 190, 191

4.S

4.S

DG186, 187, 188

3.2

S.2

All

-2.0

-2.0

mA

See SWitching State Diagrams lor VIN " ON " and VIN " OFF " Test Conditions.
Off Isolation typically> SSdB at lMHz for DG180, 18S. 186, 189.
Saturation Drain Current lor DG180, 183, 186, 189 only, typically SOOmA (2ms Pulse Duration). Maximum Current on all other devices
(any terminal) 30mA.

3-2S
Note: All typical values have been guaranteed by characterization and are not tested.

;; D0180-'I91

..g~

a» ELECTRICAL CHARACTERISTICS (CONT.)
DEYICE
NUMBER

CONDITIONS (Note 1)
y+ 15Y, Y- ,.15Y, YL 5Y

=

=

=

vo· -7.5V
Vo- -7.5V

OG180
OG181
OG182
OG183
OGI84
OG185
OG186
OG187
OG188
OG189
OG190
OG191

Vo VoVoVO=
Vo=
Vo'"
Vo =
Vo =
Vo =
VO-

-10V
-7.5V
-7.5V
-10V
-7.5V
-7.5V
-10V
-7.5V
-7.5V
-10V

IS= -10mA
VIN-"ON"

MAXIMUM RESISTANCES (rOS(ON) MAX)
INDUSTRIAL
TEMPERATURE

MILITARY TEMPERATURE
-55°C

+ 25°C

+ 125°C

-20°C

10
30
75
10
30
75
10
30
75
10
30
75

10
30
75
10
30
75
10
30
75
10
30
75

20
60
100
20
60
150
20
60
150
20
60
150

15
50
100
15
50
100
15
50
100
15
50
100

UNIT

+ 25°C + 85°C
15
50
100
15
50
100
15
50
100
15
50
100

25
75
150
25
75
150
25
75
150
25
50
150

n
n
n
n
n
n
n
n
n
n
n
n

APPLICATION HINT (for design only): Normally the minimum Signal handling capability of the OG180 through OG191 family is 20V peak-to-peak
for the 75n switches and 15V peak-to-peak for the Ion and 30n (refer 10 and IS tests above). For other Analog Signals, the following
guidelines can be used: proper switch tum-off requires that V- SVANALOO(peak) -Vp where Vp =7.5V for the Ion and 30n switches and
Vp =5.0V for 75n switches e.g., -10V minimum (-peak) analog Signal and a 75n switch (Vp=5V), requires that V- S -10V -5V= -15V.

logic Input for "OFF" to "ON" Condition (DG180/181/182 Shown)
LOGIC 3V
INPUT
I, <1Ons
If <1Ons

1.SV
SWITCH
OUTPUT

0

A-t-~~---1----~Yo

SWITCH Vs
INPUT
SWITCH
OUTPUT

CL

I30pF

O.9Vo

(REPEAT TEST FOR

0

-15Y ALL CHANNELS)

~

Ion

RL

Yo = Ys RL + FDS(ON)

-=

v-v

Y-

o-

RL

S AL T roS(on)
TC035601

WF027011

Figure 3: Switching Time Test Circuits
output waveform shown for Vs = constant w~h logic input waveform as shown. Note that Vs may be + or.- as per switching time test circuit.
Vo Is the steady state output with switch on. Feedthrough via gate capac~nce may result in spikes at leading and trailing edge of output waveform.
Sw~ch

DUA~

DUAL SPST-DG180/181/182

DPST -DG183/184/185

TEST CONDITIONS

TEST CONDITIONS

00180/181/182
VIN "ON" = O.8V
VIN "OFF" = 2.0V

DG183/184/185

I

.AII Channels
All Channels

. VIN "ON" = 2.0V
VIN "OFF" = O.8V

SWITCH STATES ARE
FOR LOGIC "1" INPUT = 2.0V

DUAL SPOT -DG189/190/191
TEST CONDITIONS

TEST CONDITIONS

DG189/1901191

DG186/187/188
"ON" = 2.0V
"ON" = O.SV
"OFF" = 2.0V
"OFF" = O.SV

All Channels
All Channels

SWITCH STATES ARE
FOR LOGIC "1" INPUT = 2.0V

SPOT-DG186/1871188

VIN
VIN
VIN
VIN

I

Channel
Channel
Channel
Channel

VIN
VIN
VIN
VIN

1

2
2
1

"ON" = 2.0V
"ON" = O.SV
"OFF" = 2.0V
"OFF" = O.8V

Channels
Channels
Channels
Channels

SWITCH STATES ARE
FOR LOGIC "1" INPUT = 2.0V

SWITCH STATES ARE
FOR LOGIC "1" INPUT = 2.0V

3-26
Note: All typical values have been guarantaed by characterization and are not lested.

1
3
3
1

&
&
&
&

2
4
4

2

.U~Ulbi

DG200/lH5200
CMOS Dual SPST
A.nalog Switches

......

i

UI

N

GENERAL DESCRIPTION

FEATURES

The DG200llH5200 solid state analog gates are designed using an improved, high voltage CMOS monolithic
technology. They provide ease-of-use and performance
advantages not previously available from solid state
switches. Destructive latCh-Up of solid state analog gates
has been eliminated by INTERSIL's CMOS technology.
The DG200 is completely spec and pin-out compatible
with the industry standard device, while the IH5200 offers
significantly enhanced specifications with respect to ON
and OFF leakage currents, switching times, and supply
current.

•
•
•
•
•
•
•

8

Switches Greater Than 28Vpp Signals With ±15V
Supplies
Break-Before-Make Switching toff 250ns, ton
700ns Typical
TTL, DTL, CMOS, PMOS Compatible
Non-Latching With Supply Turn-Off
Complete Monolithic Construction
Industry Standard (DG200)
Improved Performance Version (IH5200)

ORDERING INFORMATION
INDUSTRY
STANDARD
PART

IMPROVED
SPEC
DEVICE

DG200AA

IH5200MTW

10-Pin Metal Can

-55°C to + 125°C

DG200AK

IH5200MJD

14-Pin CERDIP

_55°C to + 125°C

DG200AL

IH5200MFD

14-Pin Flat Pak

DG200BA

IH5200lTW

10-Pin Metal Can

TEMPERATURE
RANGE

PACKAGE

55°C to + 125°C
.- 25°C to + 85°C

DG200BK

IH5200lJD

14-Pin CERDIP

- 25°C to + 85°C

DG200BL

IH5200lFD

14-Pin Flat Pak

-25°C to + 85°C

DG200CJ

IH5200CPD

14-Pin Epoxy Dip

CERDIP & EPOXY DUAL-IN-LINE
PACKAGE (outline dwgs JD, PO)

O°C to +70°C

METAL CAN PACKAGE

FLAT PACKAGE

(outline dwg TO-l00)

(outline dwg FD-2)

v+ (SUasTRATI-ANO CASE)

"
I.., 5~~~iF~E'N'

NC

NC

y+

GND

(SUBSTAATE)

NC

Ne

NC

12

Ys~BSTRATE)
'HIe

'" ~~~-.......--~,-- ¥,

'"

y- =~=rr::""::;~E.= D,
V REF

s.

CDOQ1401

TOP VIEW

SWITCH STATES ARE FOR LOGIC
"'" INPUT (POSITIVE LOGIC)
CDOO1501

C0001301

Figure 1: Pin Configurations

3--27

Note: All typical values have been guaranteed by characterization and are not tested.

.•O~OIl

8 DG2001lH5200
(II

10

!

§

"
D

..

.

..

ABSOLUTE MAXIMUM RATINGS
V+-V'- ........................................................ <33V
v+ -Vo ........................................................ < 30V
Vo-V- .........................., .............................. < 30V
Vo-Vs ........................................................ < ±22V
VIN-GND ...................................................... < 20V
Current (Any Terminal) ................................. > 30mA

Storage Temperature ...................... -65'C to + 150'C
Operating Temperature ........•..•....... -55'C to + 125'C
Lead Temperature (Soldering, 10sec) ................. 300·C
Power Dissipation .. : ...................................... 450mW
(All Leads Soldered to a P.C. Board.) Derate 6mW I"C Above 75·C.

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only. and functional
operation of the device· at thaseor any other Conditions above those indicated in the operational sections of the specifications is not implied. Exposure to
absolute maximum rating conditions for extended periods may affect device reliability.

GATE
PROTECTION
RESISTOR
INPUT

LD001501

Figure 2: Functional Diagram (1/2 DG200/1H5200)

DG200 ELECTRICAL CHARACTERISTICS (TA = 25'C, v+ = +15V, v-

MINIMAX LIMITS

PER CHANNEL

SYMBOL

CHARACTERISTIC

= -15V)

TEST
CONDITIONS

MILITARY

COM'LIINDUSTRIAL

UNIT

-55'C

+2S'C

+ 12S'C

+2S'C

+70'C!
+8S'C

±I

±10

±.10

±10

p.A

±IO

±10

I'A

80

100

n

01
-2S'C

IIN(ON)

Input Logic Current

VIN = O.8V See Note I

±10

IIN(OFF)

Input Logic Current

VIN = 2.4V See Note 1

±10

±1

±10

rOS(ON)

Drain-Source On
Resistance

Is=10mA
VANALOG = ±10V

70

70

100

rOS(ON)

Channel-to-Channel
rOS(ON) Match

25
(typ)

30
(typ)

n

VANALOG

Min. Analog Signal
Handling Capability

±tS

±15

V

IO(OFF)

Switch OFF Leakage
Current

VANALOG = -14V to
+14V

±2

100

±5

100

nA

IS(OFF)

Switch OFF Leakage
Current

VANALOG = -14V to
+14V

±2

100

±5

100

nA

200

±10

200

nA

80

IOION)
+ S(ON)

Switch ON Leakage
Current

Vo=Vs= -14V to
+14V

±2

ton

Switch "ON" Time
See Note 1

RL = 1kn, VANALOG
= -10V to + 10V
See Fig. 3

1.0

1.0

I'S

toff

Switch "OFF" Time

RL = 1kn. VANALOG
=-10Vto +10V
See Fig. 3

0.5

0.5

I'S

Q(INJ.)

Charge Injection

See Fig. 4

15

20
(typ)

mV

(typ)

3-28
Note: All typical values have been guaranteed by characterization and are not tested.

DG2001lH5200
PER CHANNEL

SYMBOL

CHARACTERISTIC

MINIMAX LIMITS
MILITARY

TEST
CONDITIONS

-55°C
OIRR

Min. Off Isolation
Rejection Ratio

1= IMHz. RL = 100n.
CL::; 5pF
See Fig. 5 (Note I)

IVI

+ Power Supply
Quiescent Current

VIN =OV or
VIN = 5V

- Power Supply

IV2

COM'L/INDUSTRIAL

+ 125'C

+25°C

01
-2S'C

+2S'C

UNIT

+70'CI
+85'C

50
(typ)

54
(typ)

dB

1000

1000

2000

1000

1000

2000

IlA

1000

1000

2000

1000

1000

2000

IlA

Quiescent Current

CCRR

Min. Channel to
Channel Cross
Coupling Rejection
Ratio

One Channel 011

54
(typ)

dB

50
(typ)

NOTE 1. Pull Down ReSistor must be ::; 2kn
NOTE 2: Typical values are lor design aid only. not guaranteed and not subject to production testing.

IH5200 ELECTRICAL CHARACTERISTICS

(@ 25°C, V+ = +15V, V- = -15VREF open)

PER CHANNEL

SYMBOL

CHARACTERISTIC

MINIMAX LIMITS
TEST
CONDITIONS

MILITARY

COM'L/INDUSTRIAL

-SS'C

+2S'C

+ 125'C

01
-2S'C

+ 25'C

+70'CI
+85'C

UNIT

I'N(ON)

Input Logic Current

Y,N =0.8V

±10

±I

±IO

±10

'±10

p.A

I'N(OFF)

Input Logic Current.

Y,N = 2.4V

±IO

±1

10

±10

±10

p.A

rOS(ON)

Drain·Source On
Resistance

IS·,OmA
VANALOG = ±IOV

70

70

100

80

100

rOS(ON)

Channel·to·Channel
rOS(ON) Match
Min. Analog Signal
Handling Capability

VANALOG

80

"

n

25
(typ)

30
(typ)

n

±15
(typ)

±15
(typ)

V

IO(OFF)

Switch OFF Leakage
Current

VANALOG= -14V to
+14V

±I

50

I

±2

50

nA

IS(OFF)

Switch OFF Leakage
Current

VANALOG= -14V to
+14V

±I

50

I

±2

50

nA

IOION)
+ S(ON)

Switch ON Leakage
Current

Vo=Vs= -14V to
+14V

±1

100

I

±2

100

nA

Ion

Switch "ON" Time
See Note 3

RL = I kn, VANALOG
= -10V to + 10V
See Fig. 3

0.7

0.8

IlS

Ioff

Switch "OFF" Time

RL = Ikn, VANALOG
= -IOV to +IOV
See Fig. 3

0.25

0.4

p.s

Q(INJ.)

Charge Injection

See Fig. 4

5
(typ)

10
(typ)

mV

OIRR

Min. Off Isolation
Rejection' Ratio

1= lMHz. RL = loon.
CL::; 5pF
See Fig. 5

54
(typ)

50

dB

(typ)

IVI

+ Power Supply
Quiescent .Current

Y,N - OV or
Y,N = 5V

IV2

- Power Supply
Quiescent Current

CCRR

Min. Channel to
Channel Cross
Coupling Rejection
Ratio

250

200

150

300

250

200

p.A

10

10

100

10

10

100

p.A

One Channel Off

54
(typ)

3-29
Note: All typical values have bean guaranteed by characterization and are not tested.

50
(typ)

dB

I

gDG200/lH6200
(II

I
::.

8

I

.J

TEST CIRCUITS

WLOGINPUT

w-OINPU'

-:

F"r;;;..

Stu

11.
'
• := -D--\>-W

r~
':'.

m

_OGINNT

LOGIC INPUT

,

CNO~_

It-I

":'

':'

t-~'
'oou

':"

TC003601

TC003701

Figure 3

TC004111

Figure 4

Figure 5

NOTE 3: All channels are turned off by high" 1" logic inputs and all channels are turned on by low "0" inputs; however Q,8V to 2AV describes the min, range
for switching properly, Peak input current required for transition is typically -120/LA,

TYPICAL, PERFORMANCE CHARACTERISTICS
rOS(on) vs VD and Power
Supply Voltage

rDS(on) vs VD
and Temperature
H-+++'
lGO

+.;.
V + = + 15V
' ;' V- =-15V

A-

v· = • 15V. V - = - llV

• - .... :::. • 12Y. V - ::; - 12V
C-Y· ,.10\1.\;-=-1011

__Y_.___.~~,v__-_=_-_._v~

o~_O_-

o~~~~~~~~~

-15-10 -5

0

5

10

15

~

- IS -'0

Yo - DIWH VOLTAGE (VOLTS)

Vo -

5

0

10

OPOO7101

0P003201

IS(off) or lD(off)
vs Temperature·

ID(on)
vs Temperature·

10

15·

DIlAiN VOLTAGE /VOLTS)

aI_

1°~R
~~-+--. ''1

0.1

!':

:

I'

:

I

,...-

,~.~/.~.~'~!~~'~:~~
1,

~: :-: IT---.-++i I
;.

0.01
' i
25 45

I

.1

:

as

as

10S

125

T - TEMPERATURE C·e)
OPOO7201

OPOO7301

3-30
Note: All typical values have been guaranteed by characterization and are not

tested~

DG200/lH5200
APPLICATIONS

V+
Supply
(V)

Using the VREF Terminal
The DG200 has an internal voltage divider setting the
TTL threshold on the input control lines for V + equal to
+ 15V. The schematic shown here with nominal resistor
values, gives approximately 2.4V on the VREF pin. As the
TTL input signal goes from +O.8V to +2.4V, 01 and 02
switch states to turn the switch ON and OFF.

+ 15
+ 12
+ 10
+9
+8
+7

If the power supply voltage is less than + 15V, then a
resistor must be added between V + and the VREF pin, to
restore + 2.4V at VREF. The table shows the value of this
resistor for various supply voltages, to maintain TTL compatibility. If CMOS logic levels on a + 5V supply are being
used, the threshold shifts are less critical, but a separate
column of suitable values is given in the table. For logic
swings of -5V to +5V, no resistor is needed.

TTL
Resistor
(kU)

-

-

-

100
51

-

(34)

34

(27)
18

27
18

V· (+15V)

r-... t--t-::o:-

In general, the "low" logic level should be < O.8V to
prevent Q1 and 02 from both being ON together (this will
cause incorrect switch function). With open collector logic,
and a low value of pull-up resistor, the logic "low" level can
be above O.8V. In this case, INTERSIL can supply parts with
thresholds> 1.5V, allowing the user to define the "low"
as < 1.5V (consult factory). The VREF point should be set at
least 2.6V above this "low" state, or to > 4.1V. An external
resistor of 27kn between V + and VREF is required, for a
+ 15V supply.

}~

GATE
PROTECTION
INPUT RESISTOR

AFOOO6QI

Figure 6.

3-3.1

Note: All typical values have been guaranteed by characterization and are not tested.'

CMOS
Resistor
(kU)

o DO:201/IH5201

i

Quad SPST
~ CMOS Analo~ 'Swi~ch

'

..

g

GENERAL' DESCRIPTION

FEATURES

The DG20111H5201 solid-state analog switches are designed using an improved, high-voltage CMOS monolithic
technology. They provide performance' advantages not
previously available from solid-state switches. Destructive
latch-up .of solid-state analog gates has been eliminated by
INTERSIL's CMOS technology.
The DG201 is completely specification and pin-out com, patible with the industry standard device, while the IH5201
offers significantly enhanced specifications with respect to
ON and OFF leakage currents, switching times, and supply
current.

•
•
•
•
•
•
•

SlIIIltches Greater Than 28Vp_p Signals With ±15V
Supplies
'
.,
Break-Before-Make Switching toff 250ns,
ton Typically 500ns
'
TTL, OTt, CMOS, PMOS Compatible
Non-latching With Supply Turn-Qff
Complete Monolithic .Construction
Industry Standard (OG201)
Improv!td Performance Version IH5201

=

=

ORDERING INFORMATION
INDUSTRY
STANDARD
PART NUMBER

IMPROVED SPEC
PART NUMBER

TEMPERATURE
RANGE

PACKAGE

DG201AK

IHS201MJE

-SS·C to + 12S·C

,16-Pin CERDIP

DG201BK

IHS2011JE

-2S·C to +8S·C

16-Pin CERDIP

DG201CJ

IHS201CPE

O·C to +70·C

16·Pin PlastiC DIP

,

52

V + (SUBSTRATE)

VREF
D3
GATE
PROTECTION

RESISTOR

INPUT

CDOO1601

LOOO1601

Figure 1: Functional Diagram
(1/4 DG201/1H5201)

Figure 2: Pin Configuration
(Outline dwgs JE, PEl
DUAL-IN-LINE PACKAGE

Switch Open For Logic "1" Input

'3-32

Note: All typical values have been guaranteed by characterization and are not tested.

DG201/IH5201

g

ABSOLUTE MAXIMUM RATINGS

......

~
...

V+ to v- .................................................... < 33V
v+ to VD .................................................... < 30V
Vo to v- .................................................... < 30V
VD to Vs ................................................... < ±22V
VREF to v- ................................................. < 33V
VREF to VIN ................................................. < 30V
VREF to GND ............................................... < 20V

VIN to GND ................................................. < 20V
Current (Any Terminal) ................................. < 30mA
Storage Temperature ...................... -65°C to + 150°C
Operating Temperature ................... -55°C to + 125°C
Lead Temperature (Soldering, 10sec) ................. 300°C
Power Dissipation ......................................... 450mW
Derate 6mW rc Above 70°C

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only. and functional
operation of the device at these or any other conditions above those indicated in the operational sections of the specificatIons is not implied. Exposure to
absolute maximum rating conditions for extended periods may affect device reliability.

DG201 ELECTRICAL CHARACTERISTICS (TA = 25°C, V+ = + 15V, V- = -15V)
PER CHANNEL

SYMBOL

MINIMAX LIMITS
TEST
CONDITIONS

CHARACTERISTIC

= O.SV
= 2.4V

MILITARY

COMMERCIAL

UNIT

-55'C

+25'C

+ 12S'C

O'C

+2S'C

+70'CI
+85'C

See Note 1

10

±1

10

±t

±1

10

p.A

See Note 1

10

±1

10

±1

±1

10

#LA

80

80

125

100

100

125

51

I'N(ON)

Input Logic Current

Y,N

I'N(OFF)

Input Logic Current

Y,N

ROS(ON)

Drain·Source On
Resistance

IS= 10mA
VANAlOG = ±10V

ROS(ON)

Channel 10 Channel
ROS(ON) Match

25
(typ)

30
(typ)

VANAlOG

Analog Signal
Handling Capability

±15
(typ)

±15
(typ)

IO(OFF)

Switch OFF Leakage
Current

VANAlOG
+14V

= -14V

to

±1

100

±5

100

nA

IS(OFF)

Switch OFF Leakage
Current

VANAlOG
+14V

= -14V

to

±1

100

±5

100

nA

IO(ON)
+IS(ON)

Switch ON Leakage
Current

Vo = Vs = ±14V

±2

200

±S

200

nA

ton

Switch "ON" Time
See Note 2

Rl = 1kn. VANALOG
= -10V to + 10V
See Figure 3

1.0

1.0

p.s

toll

Switch "OFF" Time
See Note 2

Rl = 1kn. VANALOG
= -10V to +10V
See Figure 3

0.5

0.5

p.s

Q(INJ.)

Charge Injection

See Figure 4

15
(typ)

20
(typ)

mV

OIRR

Min. Off Isolation

f = 1 MHz. Rl = 10051.
CL" 5pF
See Figure 5

54
(typ)

50

dB

(typ)

Rejection Ratio

/0

+ Power Supply
Quiescent Current

10

-Power Supply
Quiescent Current

CCRR

Min. Channel to
Channel Cross
Coupling Rejection
Ratio

V,N =OV to 5V

51

"

V

2000

1000

2000

2000

1000

2000

p.A

2000

1000

2000

2000

1000

2000

p.A

One Channel Off

54
(typ)

NOTE 1: Typical values are for design aid only. not guaranteed and not subject to production testing.

3-33
Note: All typical values have been guaranteed by characterization and are not tested.

50
(typ)

dB

i

CII

~
...

o DG201/UtS201
~

110

Z
:::.

g

TEST CIRCUITS

r

m

ANALOG INPUT

g

AHAlOGIMPUT

....

,,-0....,
(Note 2)

J
r~h:

3.
0.I1.

5tU

_

r-'

LOQIC INPUT

(NO~_

= -D-I>-'0'-'1

":'

~-

.

1DOl!

TCOO391 I

TCOO411J

TC004001

Figure 3

-=-

Figure 4.

Figure 5

NOTE 2: All channels are turned off bihigh"1" logic inputs and all channels are turned on by low "0" inputs; however 0.8V to 2.4V describes the min. range
lor switching properly. Peak. input current required lor transition is typically -1201tA.

IH520t ELECTRICAL CHARACTERISTICS

(TA

= 25°C,

V+

PER CHANNEL

SYMBOL

CHARACTERISTIC

= +15V,

V- = -15V)

MINIMAX LIMITS
TEST
CONDITIONS

MILITARY

COMMERCIAL

-55'C

+25'C

+ 125'C

O'C

+25'C

UNIT

+70'CI

+85'C

IIN(ON)

Input Logic Current

VIN =0.8V

1

1

10

1

1

10

p.A

IIN(OFF)

Input Logic Cum;nt

VIN = 2.4V

1

1

10

1

1

10

ROS(ON)

Drain-Source On
Resistance

IS= 10mA
VANALOG = ± 10V

75

75

100

100

100

125

ItA
.11

ROS(ON)

Channel to Channel
ROS(ON) Match

25
(typ)

30
(typ)

.11

VANALOG

Analog Signal
Handling Capability

±15
(typ)

±15
(typ)

V

IO(OFF)'
IS(OFF)

Switch OFF Leakage
Current

VANALOG = -14V to
+14V·

±0.5

50

±2

50

nA

IO(ON)
+IS(ON)

Switch ON Leakage
Current

VO=VS=±14V

±0.5

100

£2

100

nA

ton

Switch "ON" Time
See Note 2

RL = 1kn., VANALOG
= -10V to +10V
See Figure 3

0.7

0.8

p.s

Ioff

Switch "OFF" Time
See Note 2

RL = 1k.l1, VANALOG
= -10V to +10V
See Figure 3

0.35

0.4

p.s

Q(INJ.)

Charge Injection

See Fig. 4

5
(typ)

10
(typ)

mV

OIRR

Min. Off Isolation
Rejection Ratio

1= 1MHz, RL = 100n.,
CL ~5pF
See Figure 5, (Note 1)

54
(typ)

50
(typ)

dB

10

+ Power Supply
Quiescent Current

VIN =OV to 5V

10

- Power Supply
Quiescent Current

CCRR

Min. Channel to
Channel Cross
Coupling Rejection
Ratio

One Channel Off
(Note 1)

1000

750

600

1500

1000

1000

ItA

10

10

100

20

20

200

ItA

54
(typ)

NOTE: Pull Down resistor must be ~ 2k.l1
NOTE: Typical values are lor design aid only, not guaranteed and not subject to production testing.

Note: All typical values have been guaranteed by characterization and are not tested.

50
. (typ)

dB

DG2011lH5201
TYPICAL PERFORMANCE CHARACTERISTICS
I
!

V+=+15V
V-, = -15V

D

100

,\.
C·"

125'C 1-=;;0;

SS'C

t;d...

B

.P

50

25' C 1;:;; ...

'"

A

= +15V. Y- = -15Y
Y+ = +12V. Y- = -12V
C - Y+ +IOY. Y- -lOY
D - Y + = +BV. Y - = -8Y

c-- A - Y+

r- B -

o r-

o

=

=

-15 -10 - 5 0
5 10 15
Vo - DRAIN VOLTAGE (VOLTS)

-15 -10 -5 0
5,10 15
Vo - DRAIN VOLTAGE (VOLTS)

OPOO7401
Temperature

OP007501

~

.s

iiI~

1°BflB

ZIII

~ ~~~~E3~~~~~

f""

I

~!
(,)(,)
Z

I~

-

g~0.111l1.
...

"

.§~

~

0.01

~......-'--'--'--'-"-'--.......

25

45

as

as

105

125
45

T - TEMPERATURE ('C)

as

as

105

125

T - TEMPERATURE ('e)

OPOO7601

0P00'7Ol

y+
Supply
(y)

APPLICATIONS

Using the VREF Terminal
The DG201 has an internal voltage divider that sets the
TTL threshold on the input control lines for V + = 15V. The
schematic is shown here, with nominal resistor values,
giving approximately 2.4V on the VREF pin. As the TTL input
Signal goes from + o.av to + 2.4V, 01 and 02 switch states
to turn the switch ON and OFF.

+15
+12
+ 10
+9
+8
+7

If the power supply voltage· is less than + 15V, then a
resistor needs to be added between V+ and VREF pin, to
restore + 2.4V at VREF. The table shows the value of this
resistor for various supply voltages, to maintain TTL compatibility. If CMOS logic levels with a + 5V supply are being
used, the threshold shifts are less critical, but a separate
column of suitable values is given in the table. For logic
swings of -5V to + 5V, no resistor is needed.

TTL

CMOS
Resistor
(kn)

Re$istor

fie!)

-

100
51
(34)

j

(27)
18

V'(+15VI

In general, the "low" logiC level should be < o.av to
prevent 01 and 02 from both being ON together (this will
cause incorrect switch function). With open collector logic,
and a low value of pull-up resistor, the logiC 'low' level can
be above o.av. In this case, INTERSIL can supply parts with
thresholds > 1.5V(consult factory). The VREF point should
be set at least 2.6V above this" low" state, or to > 4.1 V. An
external resistor of 27kn and VREF is required, for a .+. 15V
supply.

GATE
PROTECl'l011
'"PUT RESISTOR

AFOO070l

Figure 6

3-35
Note: All typical values have been guaranteed by characterization and are not tested,

-

34
27
18

;-1)02'1'1/1)0212
8 SPST 4-Channel Anal
.....

..

...
C\I

g

,. \)C!>,\'l'>

,'

.\.,V"""

,,0"" s·'

GENERAL DESCRIPTION

FEATURES

,.~.

The DG2ll and DG2l2 are low cost.\€~bs monolithic,
QUAD SPST analog switches. The,se can be used in
general purpose switching applications for communications,
instrumentation, process control arid compu~er peripheral
equipment. Both devices provide true bidirectional performance in the ON condition and will block signals to 30V
peak-lo-peak in the OFF condition. The DG2ll and DG212
differ only in that the digital control logic is inverted, as
shown in the truth table.
DG211 and DG2l2 are available in a l6-pin Dual-In-Line
plastic package and are rated for operation over D·C to
70·C.

•
•
•
•

Switches ± 15V Analog Signals
TTL Compatibility
Logic Inputs Accept Negative Voltages
RON. ~ 175 Ohm '

ORDERING INFORMATION
PART NUMBER

TEMPERATURE
RANGE

PACKAGE

DG2llCJ
DG2l2CJ

O·C to +70·C
O·C to +70·C

l6-Pin Plastic DIP
l6-Pin Plastic DIP

DG211

DG212

s,
IN,

S,

Dual·ln·LlRe Package

IN,
0,

0,

S2

S2
IN2

IN2
02

02

S3

S3

1N3

13

V+ (SUBSTRATE)

1N3'
03

'03

S4

S4
IN4

IN4

D4

04
80014301

TOP VIEW
CD032301

80014401

Figure 2. Pin Configuration

Four SPST Switches per Package

Switches Shown for Logic "1" Input
Truth Table

LOGIC

00211

DG212

0
1

ON
OFF

OFF
ON

. Logic "0" ::; 0.8V
Logic "1" 2: 2.4V

Figure 1: Functional Diagrams

:J,-36

Note: All typical values have been guaranteed by characterization and are not tested.

30702Q-<>01

s...

DG211/DG212

.......ICII

ABSOLUTE MAXIMUM RATINGS
V+ to v- ....................................................... 36V
VIN to Ground ............................................ V-, V+
VL to Ground ........................................ -0.3V, 25V
Vs or VD to V+ ......................................... 0, -36V
Vs or VD to V- ............................................ 0, 36V

Peak Current, S or D
(Pulsed at 1msec, 10% duty cycle max) ....... 70mA
Storage Temperature ...................... -65°C to + 125°C
Operating Temperature ........................ O°C to + 70°C
Lead Temperature (Soldering, 10sec) ................. 300°C
Power Dissipation (Package)'
16 Pin Plastic DIP" ................................. .470mW

V + to Ground ................................................. 25V
V- to Ground ................................................ -25V
Current, Any Terminal Except S or D ................. 30mA
Continuous Current, S or D .............................. 20mA

'Device mounted with all leads soldered or welded
to PC board.
"Derate 6.5mW/OC above 25°C

ELECTRICAL CHARACTERISTICS (TA = 25°C)
SYMBOL

TEST CONDITIONS
V1 = + 15V, V2 = -15V,
VL= +5V, GND

PARAMETER

LIMITS
UNIT
MIN1

Typ2

MAX

15

V

115

175

rI

O.ot

5.0

SWITCH
VANALOG

Analog Signal Range

V

ROS(ON)

Drain-Source On Resistance

Vo = ±10V. VIN = 2.4V - DG212
IS=lmA. VIN=0.8V - DG211

= -15V. VL = +5V

-15

IS(off)

Source OFF Leakage Current

10(oft)

Drain OFF Leakage Current

VIN = 2.4V
DG211
VIN =0.8V
DG212

10(ON)

Drain ON Leakage Current3

Vs = Vo = -14V. VIN = 0.8V. DG211
VIN = 2.4V. DG212

VS= 14V. VD= -14V
Vs - -14V. Vo -14V

-5.0

-0.02

-5.0

-0.02

-5.0

-0.15

-10

-0.0004

Vo = 14V. Vs = -14V
VO=-14V. VS=14V

0.01
0.1

5.0
5.0

nA

INPUT
IINH

Input Current With Input
Voltage High

IINL

Input Current With Input
Voltage Low

VIN
VIN

= 2.4V
= 15V

0.003
-1.0

VIN =OV

1.0

p.A

-0.0004

DYNAMIC
Ion

Turn-ON Time

Ioft1
toft2

Turn-OFF Time

CS(oft)

Source OFF Capacitance

Vs = OV. VIN = 5V. f

CO(oft)

Drain OFF Capacitance

Vo = OV. VIN = 5V. f = 1MHz 2

5

Co + S(on)
OIRR

Channel' ON Capacitance

Vo=Vs=OV. VIN=OV. f= lMHz2

16

See Switching Time Test Circuit5
Vs = 10V. RL = lkrl. CL = 35pF

460

1000

360

500

ns

450

OFF Isolation 4
Crosstalk
(Channel to Channel)

CCRR

= 1MHz

2

VIN = 5V. RL = lkrl.
CL = 15pF. Vs = tVRMS. f = 100kHz 2

5
pF

70
dB

90

SUPPLY
1+

Positive Supply Current

1-

Negative Supply Current

IL

Logic Supply Current

NOTES:

VIN

=0

and 2.4V

.1

10

.1

10

.1

10

p.A

1. The algebraic convention whereby the most negative value is a minimum. and the most positive is a maximum. is used in this data
sheet.
2. For design reference only. not 100% tested.
3. 10(on) is leakage from driver into "ON" switch.

~.

4. OFF Isolation = 2010g
Vs =
Vo
5. Switching times only sampled.

i~put to

OFF switch. VD

= oulput.

3-37
Note: All typical values have been guaranteed by characterization and are not tested.

e...
II)

"

DG211/DG212

;:....

Switch output waveform shown for Vs = constant with
logic input waveform as shown. Note the Vs may be + or as per switching time test circuit. Vo is the steady state
output with switch on. Feedthrough via gate capacitance
may result in spikes at leading and trailing edge of output
.
waveform.

I
I
"

+15V
SWITCH

INPUT

SWITCH

5,

OUTPUT

Vs = 'ov o - t - - - - i f

......1-<>_ _>--00 Vo

LOGIC
INPUT
(REPEAT TEST FOR IN2 IN3 ANO IN"

v-

Figure 4: Switching Time Test Circuit

WFQ27301

Figure 3: Switching Time Test Circuit
Logic shown for DG211. Invert for DG212.

+15V

TTL
INQ--'W.......H

-15V

+6V

LD012701

Figure 5: DG212 Schemat.ic (1/4 as shown)

3--38
Note: All typical values have been guaranteed by characterization and are not tested.

DGM181-191
High-Speed
CMOS Analog Switch
GENERAL DESCRIPTION

FEATURES

The OGM181 family of CMOS monolithic switches utilizes
intersil's latch-free junction isolated processing to combine
the speed of the hybrid OG 181 family with the reliability and
low power consumption of a monolithic CMOS construction.
These devices, therefore, are a cost effective replacement
for the OG181 family.
The OGM181 family has a high state threshold of 2.4V;
and a low state of + O.8V.
Very low quiescent power is dissipated in either the ON or
OFF state of the switch. Maximum power supply current is
10IlA from any supply, and typical quiescent currents are in
the 10nA range. OFF leakages are typically less than
200pA at 25°C.

•
•
•
•
•
•
•

Pin and Function Replacement for DG181 Family
Meets or Exceeds All DG181 Family
Specifications With Monolithic Reliability
Low Power Consumption
1nA Leakage From Signal Channel in Both ON
and OFF States
TTL. DTL, RTL Direct Drive Capability
ton. toff < 150ns. Break·Before·Make Action
Crosstalk and Open Load Switch Isolation
> 50dB at 10MHz (75U Load)

ORDERING INFORMATION
TYPE
Dual SPST
Dual DPST
SPOT
Dual SPOT

STANDARD
PART
NUMBER

STANDARD
PART
NUMBER

M X
AT 25°C

DGM161BX
DGM182AX
DGM182BX
DGM184BX
DGM185AX
DGM185BX
DGM187BX
DGM188AX
DGMl88BX
DGM190BX
DGM191AX
DGM191BX

DGMS181BX
DGMS182AX
DGMS182BX
DGMS181BX
DGMS185AX
DGMS185BX
DGMS187BX
DGMS188AX
DGMS188BX
DGMS190BX
DGMS191AX
DGMS191BX

50
50
75
50
50
75
50
50
75
50
50
75

o

ros!on)

M

181

L
A

LPACKAGE
A - lO-PIN METAL CAN
L - 14-PIN FLAT PACK
:
K - CERAMIC DIP
J - EPOXY DIP
TEMPERATURE RANGE
A - MILITARY,.-55°C to
+ 125°C
B - INDUSTRIAL -20°C to
+85°C

L -_ _ _ _ _

DEVICE TYPE

' - - - - - - - - - DRIVER
'------~---- CMOS ANALOG DRIVER

r--~---~--'----~v+

·ud. . t
s
lOO01401

NOTE: 1/2 of DGM182

Figure 1: Functional Diagram (Typical Channel)

3-39
Note: All Iypical values have been guaranteed by characterization and are not tested.

;;
.,.

,..

.

I

I

DUAL SPST (DGM181, 182)
Flat Package (FD-2)

Metal Can Package

C::::====::::;::;J
0,_..........-$,

Dual-In-Line Package

[ :;;::===';:4:3 5,

"'C

"'c

NC

Ne;
IN,

y+

VL

y-

c0000401
COOOOSOI

COOOO601

(OUTLINE DWGS DD, PD)

(OUTLINE DWG TOol00)

SWITCH STATES ARE FOR LOGIC "1" INPUT

DUAL DPST (DGM184, 185)
Flat Package
54

C:::==:::::::;:;;J

Dual-In-Line Package

"

53

D.
0,
5,
IN,

'',

y+

y-

v,

c:::====:J

OND
c0000701

CDOOO801

(OUTLINE DWG FD-2)

(OUTLINE DWGS DE, PEl

SWITCH STATES ARE FOR LOGIC "1" INPUT

Figure 2: Pin Configuration and Switching State Diagram

3-40
Note: All typical values have been guaranteed by characterization and are not tested.

aI:)

DGM181-191

...

I:
CD

SPDT (DGM187, 188)
Metal Can Package

Flat Package (FD-2)

Dual-In-Une Package

I.

NC
NC

NC

0,
52

.NC
VL

v-

V+

GND

COOOO901

COOO1001

c000110J

(OUTLINE DWG TO-100)

(OUTLINE DWGS DD, PD)

SWITCH STATES ARE FOR LOGIC "1" INPUT

DUAL SPDT (DGM190, 191)
Flat Package

Dual-In-line Package
IN,

Ne

v+
(SUBSTRA.TE)

11 Ne

s,

IN,

D,

v+
TOP VIEW
CDOO1201

COOO1301

(OUTLINE DWG FD-2)

(OUTLINE DWGS DE, PEl

SWITCH STATES ARE FOR LOGIC "1" INPUT

Figure 2: Pin Configuration and Switching State Diagram (Cont_)

3-41
Note: All typical values have been guaranteed by characterization and are not tested.

!

!

,......

·.D~

DGM181-f91

co ABSOLUTE MAXIMUM RATINGS
II

g

V+ -v- ............................................................ 36V
:V--VD ........................................................... 33V
VrrV- ............................................................ 33V
. VrrVs ............................................................. ±22V
VL-V- ............................................................ 36V
VL-VIN ............................ , .............................. 30V
VL-VGND ......................................................... 20V
VIN-VGND : ....................................................... 20V
GND-V- ......................................................... 27V

GND-VIN ......................................................... 20V
Current (Any Terminal) .................................... 30mA
Storage Temperature ...................... -65·C to +:150·C
Operating Temperature ................... -55·C to + 125·C
Lead Temperature (Soldering. 10sec) ................. 300·C
Power Dissipation' ................... 450 (TW). 750 (FLAT).
825(OIP)mW
'Device mounted with all leads welded or soldered to PC board. Derate
6mWI'C (TW); 10mWI'C (FLAT); l1mW/'C (DIP) above 7S'C.

. Stresses above those listed under Absolute Maximum Ratings may cause permanent damage·to the ·device. These are stress ratings only. and functional
operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to
absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS
PARAMETER

(v+ = + 15V. v- = -15V. VL = 5V. unless noted)

TEST CONDITIONS
(Note 1)

DEVICE NO.

A SERIES

-55'C

B SERIES

+25'C

+125'C

±1

UNIT

+25'C

+85'C

100

±2.0

200

nA

-20'C

SWITCH
IS(off)

10(011)

= -7.SV

DGMI81, 184. 187, 190

Vs = 7.SV, Vo
VIN-"OFF"

DGM182, 18S, 188, 191

Vs = 10V, VD - -10V
VIN "OFF"

±1

100

±2

200

nA

DGMI81, 184, 187, 190

VS" 7.5V, Vo - -7.5V
VIN-"OFF"

±1

100

±2

200

nA

DGMI82, 185, 188, 191

Vs = 10V, Vo
VIN = "OFF"

±1

100

±2

200

nA

VIN - "ON"

±2

±200

±S

500

nA

-10V, VIN - "ON"

±2

±200

±S

500

nA

20
20

10

20

10

20

IlA
IlA

=

= -10V

= -7.SV,

DGMI81, 184, 187, 190

VO" Vs

DGM182, 18S, 188, 191

Vo

IINL

ALL

VINcOV

±1.0

IINH
DYNAMIC

ALL

VIN-5V

±1.0

DGMI81, 184, 187, 190
DGMI82, 185, 188, 191

See switching time test circuit

10(on) + IS(on)

= VS"

INPUT

Ion

SOO

450

I

250

loll
CS(oll)

ALL
DGMI81, 182, 184, 185,

Vs - -SV, 10 =0, f- lMHz

CO(off)

187, 188, 190, 191

Vo - + SV, IS" 0, f .. 1MHz

6pF typical

Vo=Vs-O, f=IMHz

11 pF typical

COlon) + CS(on)
OFF Isolation

5pF typical

ALL

I

ALL

IL

pF

Typically> SOdS at 10MHz

RL .. 75n, CL = 3pF

SUPPLY
1+

ns

275

10

10

100

10

10

100

100

ALL

10

10

100

100

IGNO
1+

ALL

10

10

100

100

ALL

10

10

100

100

1-

ALL

10

10

100

100

IL

ALL

10

10

100

100

IGNO

ALL

10

10

100

100

VIN - 5V

VIN" OV

Note 1: See Switching State Diagrams for VIN and VIN "OFF" Test Conditions.

3-42
Note: All typical values have been guaranteed by characterization and are not tested.·

100

IlA

DGM181-191
ELECTRICAL CHARACTERISTICS
DEVICE
NUMBER
OGM181
OGM182
OGM184
OGM185
OGM187
OGM188
DGMI90
OGM191

MAXIMUM RESISTANCES rDS(ON)

=

Vo =
Vo=
VoVoVo=
Vo Vo'"
Vo =

=

-55°C

+ 25°C

-

-7.5V
-10V
-7.5V
-10V
-7.5V
-10V
-7.5V
-10V

INDUSTRIAL
TEMPERATURE

MILITARY TEMPERATURE

CONDITIONS (Note 1)
V+ 15V,V- -15V,VL= 5V

Is= -lOrnA
VIN = "ON"

-20°C

+ 25°C

+85°c

-

50
75
50
75
50
75
50
75

50
75
50
75
50
75
50
75

75
100
75
100
·75
100
75
100

-

50
30
50
30
50
30
50

UNIT

+ 125°C

50
30
50
30
50
30
50

75
60
75
60
75
60
75

n
n
n
n
n
n
n
n

APPLICATION COMMENT: The charge iniection in these switches is of opposite polarity to that of the standard OGI80 family, but considerably
smaller.

SWITCHING TIME TEST CIRCuiT
Switch output waveform shown for Vs = constant with
logic input waveform as shown. Note that Vs may be + or
- as per switching time test circuit. Vo is the steady state
output with switch on. Feedthrough via gate capacitance
may result in spikes at leading and trailing edge of output
waveform.
LOGIC
INPUT
tr< 10nl
tf< 10nl

3V--,

SWITCH
INPUT

Vs

SWITCH
OUTPUT

1/
~
J

1.5V~~

0

o.evo

~

..J

J

O.9Vo

O.1VO~
II

ton

toff
WFOO1111

Figure 3: Logic Input for "OFF" to "ON" Condition (DGM1811182 Shown)

SWITCH
INPUT

SWITCH
OUTPUT

SI
O-+--------~-------,

s,'''''+--t-""'; o-------~l-O
,,"o.+--+-~'i ...------+

s.'_'........_'" Oo-----~+~
$,'...'+--t-o"1 - - - -.....
"
"o>--1t--t--+-O"'j
o---t-t.....,

5.0-1---+--+---+--<,..-,
00----.
"
s,O'''+--+-f----t-~-''!

•.'...0+_--..,_+---+_'1

~'oo+--+-+-~-~~_o1
G.

G;

G,
05021001

0S021101

Figure 1: Functional Diagrams and Pin Configurations (Outline Dwgs DO, FD-2, JD, PO)
NOTE: G115 Built-in 16·Pin DIP Only.

3-45
Note: All typical values have been guaranteed by characterization and are not tested.

0115/G123
ABSOLUTE MAXIMUM RATINGS

(25°C)

Source Current (IS) ............... ~ ........................ 100mA
Drain Current (10) ..............•........................... 1OOmA
Gate Current (IG) ......................... : ................... 5mA
Pull-up Control Current (If).: ............................ 100pA
Body to Source (VB-VS .... , ................ -2V to +25V
Body to Drain (VB - Vo) ........................ -2V to + 25V

Body to Gate (VB - VG) ................................... +35V
Body to Pull-up (VB - Vp) ................................. + 35V
Power Dissipation
'
(derate 10mW/oCabove 70°C) .................... 750mW
Lead Temperature (Soldering, 10sec) ................. 300°C

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only. and functional
operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to
absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

(per channel unless noted)
LIMITS

DEVICE

PARAMETER

TEST CONDITIONS

ROS(ON)

-20°C

25°C

85°C

125

150

Vso = O. VGO = -30V

Ils=

125

VSO = + 10V. VGO = -20V

limA

250

250

300

500

500

600

VBO= +20V. VGO= -10V

n

Vos= -20V. Vss=VGS=Vps=O

-10

-500

Max

nA

VSO = -20V. VBO = VGO = VPO = 0

-5

-100

Max

nA

IGSS

VGS = -20V. Vos - VSB ~ VPB

=0

-5

-100

Max

nA

VGB = -30V. VPB = -30V. VOS = 0

-0.8

Min

-2.4

Max

mA

-1.5

-1.5

-1.5

Min

VBS= VpS = 0

-4

-4

Max

SVOSS

10 = -101lA. VGB = VSS = VPS = 0

-25

-:4
-25

-25

Min

V

BVsos

IS = -101lA. VGO = VBO = VPO = 0

-25

-25

-25

Min

V

-35

-35

-35

Min

V

-110

-110

-110

Max

V

-35

-35

-35

Min

V

-110

-110

-110

Max

V

Typ

pF

0.4

Typ

pF

18

Typ

pF

9

Typ

pF

3.5

Typ

pF

IS = -101lA. Voo = O.

IG = -101lA. Vos = Vss = VPB

BVGBS
BVpss

=0

Ip = -101lA. Vos = Vss = VGB = 0

GGS. GGO

VGB=O. Vss=O. VOB-O. VPB-O

GOS

f = 1MHz. Body Guarded

3

·

·

G115

.

Max

IS(OFF)

VGS(th)

G123

UNIT

10(OFF)

IG(ON)
G115
and

MINI
MAX

G123

GOB

VOB = -5V. VSB = VGB = VPB = 0
f=IMHz

Both

GSB

VSB = -5V. VOB = O. VGB = VPB = 0
f= lMHz

V

Typical values not garanteed or tested in production

TYPICAL PERFORMANCE CHARACTERISTICS
E

~

10'
VB~" OV

u

10

Z

<[

in

~

15

10'

,-f-'--

....

a:

u

10'

..

50

I

Is"

a:

100~A

Tp. '" 25 C
10



'"

w

>-

.-III p-

~

V SB " VGB,:-O

u

w

0

E

100

..

....
e;

1/

a:

u

::J

~
u
"'z

I-- -

f - ;----I{)
v!'!>

-5

o

V oo - DRAIN BODY VOL TAGE (VI

0P0372Ot

OP037301

3-46
Note: All typical values have been guaranteed by characterization and are not tested.

·
o

0
,3D

>

V(,S

25

20

15

lOO~A

0

-10

GATE SOURCE VOLTAGE (VJ
OP037401

G115/G123·
voltage to be switched (-10V). Therefore, VG should go to
-20V. To insure turn-off VG should not be less than the
most positive voltage to be switched, + 10V. For convenience the same potential as the body could be used.
B-Terminal- This terminal is connected to the body
(substrate) of the chip and must be maintained at a voltage
that is equal to or greater than the most positive voltage to
be switched. This is to ensure that the drain-to-body or the
source-to-body junctions do not become forward biased.
P-Terminal- The potential, with respect to the body, at
this terminal determines the gate-to-source voltage of 01
which determines the amount of drain current available for
driver-collector pull-up. Shorting terminal P to 8 prevents
01 and 03 from conducting, but still allows the body-todrain junction of 01 to act as a forward biased diode for
positive gate voltages, and to act as a Zener diode for
negative voltages which exceed BVOSS (-30 to -90V) for
protecting the gate of 02.
D-Terminal- The common point of the MOSFET
switches (summing point).
S-Terminal- This is the normally-open terminal of the
MOSFET switch and is normally used as the input.

APPLICATION TIPS

Description of Analog Switch
Single Channel

"''":
GATf

SC009201

Figure 3
G-Terminal- This is the control terminal of the switch.
The voltage at this terminal determines the conduction
state of 02. To insure conduction 01 02 when voltages
between ±10V are switched, the gate voltage (VG) should
be at least 10V more negative than the most negative

APPLICATIONS
Dual Current·to·Voltage Converter With Range
Programming

Channel Multiplexer

AF030901

Figure 4

3-47

Note: All typical values have been guaranteed by characterization and are not tested.

AF031001

S! G116,G118,
;; Monolithic
!MOSFET Switch

G119

C5

;. GENERAL DESCRIPTION

FEATURES

;

•
•
•

, These switches may be connected directly to the INTERSIL switch-driver D123 series without need of any interfacing components. These MOSFET switches are inh,~rnally
protected by a Zener diode integrated on the silicon chip. A
MOSFET used as a current source provides an active pullup for' faster switching. The active pull-up FET can be
disabled without sacrificing the Zener protection of the
gates.

r

P-Channel Enhancement-Type MOSFET Switches
Zener Protection on All Gates
With and Without Constant Current Source Pull-,
Up

ORDERING INFORMATION
G116

,~

Package
J - 14·pin Plastic DIP
K - 14-pin CERDIP
L - 14-pin Flat Package
P - 14·pin Hermetic DIP
(Special Order Only)
, L.,"-'- - -_ _ _ _ _ _ _ _ _ _ _
_ _ _ Temperature Range
A - Military (- 55°C to + 125°C)
B - Industrial (- 20°C to + 85°C)
L-_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _--,- Device Chip Type
.

~

G116

G118

LD011701

LD011801

G119

LD011901

Figure 1: Functional Diagrams (Outline DwgsPD, JD, FD-2, DO)

3-48
Note: All typical values have been guaranteed by characterization and are not tested,

......
!IJ

t;)

G116, G118, G119

......
~

t;)

ABSOLUTE MAXIMUM RATINGS (25°C)
Source Current (IS) ........................................ 1OOmA
Drain Current (I D) .......................................... 1OOmA
Control Gate Current IG ..................................... 5mA
Pull-Up Gate Current Ip .................................. 100J..lA
Body Voltage (Va) to Any Terminal .......... -2 to + 30V

Power Dissipation (Note) ................................ 750mW
Storage Temperature ...................... -55°C to + 150°C t;)
Operating Temperature ... , ............... -50°C to + 125°C :::
Lead Temperature (Soldering. 10sec) ................. 300°CCG

NOTE: Dissipation rating assumes device is mounted with all leads welded or soldered to printed circuit board in ambient temperature below + 70·C. For
higher temperatures, derate 1OmW I·C.
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional
operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to
absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS (Per Channel Unless Noted)
References to pull-up gate P do not apply to G 118.
LIMITS
PARAMETER

rOS(ON)
(Note 1)

TEST CONDITIONS

G116C Series

25°C

25°C

125°C

vso = 0, vGO = -30V, Vps = 0

IS=

100

125

125

VSO = + 10V, VGO = -20V, VPS = 0

-lmA

200

250

250

4S0

600

600

VSO- +20V. VGO= -10V. VPs-O

-O.S

-SOO

-1

G116

-2.S

-2S00

-S

VSO = -20V, VSO = VGO = VPO = 0

IS(OFF)

G116M Series

VOS= -20";
VSO - VGO - VPO = 0
10(OFF)
VG1S to VGSB - 0, VG6S - -30V,
VOS = -20V, VSS = VPS = 0

G116

-3.0

-3000

-6

Gl19

-1.S

-lS00

-3

Gl17

-O.S

-SOO

MINIMAX

UNIT

Max

n

Max

nA

Max

nA

nA

125°C

-1

Max

10 = -10pP., VGS = VSS = VPS = 0

-30

-30

Min

BVSOS

IS = -10pP., VGO = VSO = VpO = 0

-30

-30

Min

BVGSS

IG = -10pP., VPS = VSS = VOS = 0

-30

-30

Min

-110

-110

Max

-30

-30

Min

-110

-110

Max

-1.S

-1.S

Min

-4

-4

Max

-O.S

-0.3

Min

-2

-2.S

Max

BVOSS

Ip = -10pP., VGS = VSS = VOS = 0

BVpSS

/

Is. = -10pP., VOS = -10V, VSS = 0

VGO(th)
IGS(ON)

VGS = -30V, VPS = -30V, VSS = VOS = 0

(Note 2)
IGSS

VGS = -20V, Vos = VSS = VPS = 0

CGO or CGS

Vps = 0, VSS = 0, or VSO = 0

CSO (Note 3)

Body Guarded, f = 1MHz

CSS (Note 3)

VPS = VGS = VOS

= 0,

VpB = VGS = VSS = 0
COG (Note 3)

NOTES:

-1

Max

nA

3

Typ

pF

0.4

0.4

Typ

pF

-3.5

-3.S

Typ

pF

Gl16

18

16
Typ

pF

Typ

pF

VSB = -5V, f = lMHz
Gl18

18

18

G09

10

10

VG6S = -30V, VPB = VSB = 0, VG1S to Gl17
VGSB=O, VOS= -SV, f=lMHz

20

20

VOS = -SV, f = lMHz

rnA

3

-O.S

-500

V

1. For the G 117 this is the resistance from each of the source terminals (S terminals) and the one drain terminal to the internal
junction of the output MOSFETs.
2: Not applicable to G118.
3: Typical values not guaranteed or tested in production.

3-49
Note: All typical values have been guaranteed by characterization' and are not tested.

'G116, G118, G119

,;
;

.. TYPICAL PERFORMANCE CHARACTERISTICS
YD. - ORAIN·BODV VOLTAGE tvl

j

1e,;30 -25 -20

-15 -10

~ ~

~20
~

~~

i

0 100 ~

-5

.9

'-lMHz

w

10

~ ~

/20§

V,. -YG.-O

10

5
5

StNGLE SOURCE.
ALL TYPES

2

VOl· VG• -0

J

~z
~
I

I

1

-30

-25 -20

-15 -10

-5

0

V.. - SOURCE·BODY VOLTAGE (VI
QP057601

OP057701

I
;
i .,.
10'

i

fer'

a,r'
.

~

~::0

c III""

~<

~

~ 1Cf4

0

-10

I

-'0

:§

v•• -GATE-IOURCE VOLTAGE IV}

VG,-GATE·SOURCE VOLTAGE IV!

0P057801

OP0579ot

APPLICATiON TIPS

B-Terminal- This terminal is connected to the body (substrate) of the chip and must be maintained at
a voltage that is equal to or greater than the
most positive voltage to be switched. This is
to insure that the drain-to-body or the
source~to-body junctions do not become forward biased.

Description of Analog Switch

-~:~f[~
~
.

10'

c

.0"

GATE

.

P-Terminal- The potential, with respect to the body, at
this terminal determines the gate-to-source
voltage of Q1 which determines the amount
of drain current available for driver-collector
pull-up. Shorting terminal P to B prevents Q1
and Q3 from conducting, but still allows the
bOdy-to-drain junction of Q1 to act as a
forward biased diode for positive gate voltages, and to act as a Zener diode. for
negative voltages which exceed BVOSS (-30
to -110V) for protecting the gate of Q2.

OOIllAl"
AF037301

Figure 2: Single Channel
G-Terminal- This is the control terminal of the switch; the
voltage at this terminal determines the conduction state of Q2. To insure conduction of
Q2 when voltages between ± 1OV are
switched, the gate voltage (VG) should be at
least 10V more negative than the most
negative voltage to be switched (-1 OV).
Therefore, VG should go to -20V. To insure
turn-off VG should not be less than the most
pOSitive voltage to be switched, + 10V. For
convenience the same potential as the body
could be used.

D-Terminal- The common pOint of the MOSFET switches
(summing point).
S-Terminal - This is the normally-open terminal of the
MOSFET switch and is normally used as the
input.

3-50
Note: All typical values have been guaranteed by characterization and are not tested.

G116, G118, G119
APPLICATIONS

r

........ ~OG

o-:::.t-+---d'f - - - - +

-r::-....-i

O'~~!:\I":':'+-+--+--'f "---4i-*"r...

L

-+---t----~

"",+-+"

..

"'. 1i,_I\I,

AF037501

AF037401

Figure 3: S-Channel Multiplexer
With Series Switch

Figure 4: 3-Channel Differential Multiplexer

3-51
Note: All typical values have been guaranteed by characterization and are not tested.

~ IH3'11/IH312

~

High Speed SPST
; 4-ChannelAnalog S
z

-

"\(>\...

,;;.,v.\;.,/;("l.

GENERAL DESCRIPTION".>""·"

FEAtURES

The IH311 and IH312 are CMO'S;"'<~onolithic, QUAD,
SPST analog switches for use in high-speed switching
applications for communications, instrumentation, process
control and computer peripherals. Both devices provide true
bi-directional performance in the ON condition and will
block signals to 30V peak-to-peak in the OFF condition. The
IH311 and IH312 differ only in that the digital control logic is
inverted, as shown in the truth table.
IH311 and IH312 are available in 16-pin Dual-In-Line
packages and are offered in both military and commercial
temperature ranges.

IH311

•
•
•
•

Switches ± 15V Analog Signals
TTL Compatibility
Logic Inputs Accept Negative Voltages
RON ~ 175 Ohm

ORDERING INFORMATION
PART NUMBER

TEMPERATURE
RANGE

PACKAGE

IH311MJE

-55·C to + 125·C

16 Pin CERDIP

IH311CJE

D·C to +70·C

16 Pin CERDIP

IH311CPE

D·C to +70·C

16 Pin Plastic DIP

IH312MJE

-55·C to + 125·C

16 Pin CERDIP

IH312CJE

O·C to +70·C

16 Pin CERDIP

IH312CPE

O·C to +70OC

16 Pin Plastic DIP

IH312

S1

S1

DUAl·II·LlNE PACKAGE

IN1

IN1
01

01

S2

S2
IN2

IN2

02

02

S3

S3
IN3

IN3
D3

03

S4

S4
IN4

IN4

04

04

TOP VIEW

00035301

CD035401

COO35501

Figure 2: Pin Configuration
(Outline dwgs DE, PEl

Four SPST Switches per Package

Switches Shown for Logic "1" Input
Truth Table
LOGIC

IH311

IH312

0
1

ON
OFF

OFF
ON

Logic "0":0; O.SY
Logic "1" ~ 2.4Y

Figure 1: Functional Diagram

3-52
Note: All typical values have been guaranteed by characterization and are not'· tesled.

307040-001

ABSOLUTE MAXIMUM RATINGS
V+ to V- ............................................... ; ....... 36V
VIN to Ground ........................................... V+, V+
VL to Ground ........................................ -0.3V, 25V
Vs or VD to V + ......................................... 0, -36V
Vs or Vo to V- ............................................ 0, 40V

Peak Current, S or D
(Pulsed at 1msec, 10% duty cycle max) ....... 70mA
Storage Temperature ................... ; .. -65°C to + 125°C
Operating Temperature ................... -55°C to + 125°C
Power Dissipation (Package)"
.
16 Pin Plastic DIP"" ................................. .470mW

V + to Ground ................................................. 25V
V- to Ground ................................................ -25V
Current, Any Terminal Except S or D ................. 30mA
Continuous Current, S or D .............................. 20mA

ELECTRICAL CHARACTERISTICS SYMBOL

"Device mounted with all leads soldered or welded
to PC board.
"·Derate 6.5mWrC above 25°C

MILITARY TEMPERATURE RANGE
TEST CONDITIONS
V1 = + 15V, V2 = -15V
VL=5V, GND

PARAMETER

LIMITS
UNIT
-55°C

+ 25°C

+ 125°C

SWITCH
VANALOG
ROS(ON)

= +5V

Analog Signal Range

V- = -15V, VL

Drain-Source On Resistance

Vo = ±10V, VIN = 2.4V - IH312
IS = lmA, VIN = O.BV - IH311

Source OFF Leakage Current

±15
125

150

±1

100

VS- -14V, VO-14V

±1

100

Vo -14V, Vs - -14V

±1

100

= 14V

±1

100

±2

200

±2

200

IO(off)

Drain OFF Leakage Current

IO(ON)

Drain ON Leakage Current3

Vs = Vo = -14V, VIN
VIN = 2.4V, IH312

Vo - -14V, Vs

= O.BV,

125

V

Vs -14V, Vo = -14V

VIN = 2.4V
IH311
VIN = O.BV
IH312

IS(off)

IH311

n

nA

INPUT
IINH

Input Current With Input
Voltage High

IINL

Input Current With Input
Voltage Low

..-...

.O~Oll ifit

IH311/IH312

= 2.4V

10

±1

10

VIN = 15V

10

±1

10

VIN=OV

10

10

10

VIN

3-53
Note: All typical values have been guaranteed by characterization and are not tested.

p.A

ifit

...
N

.D~OIL
Ion

Tum·ON Time

IotIl

Tum-OFF T'"1e

200

see

Switching Time Test Circuit
Vs = 10V, RL = lkn, CL - 35pF

,1otI2

80

Cs(olf) ,

Source OFF Capacitance
Drain OFF Capacitance

Vs = OV, VIN - 5V, f-1MHz
Vo;'OV, VIN=5V, f= lMHz2

5

CO(oIf)
Co + S(on)
OIRR

Channel ON Capacitance

Vo-VS-OV, VIN-OV, f-1MHz

16

'OFF Isolation4

5

pF

70

VIN = 5V, RL - lkfl,
CL = 15pF" Vs - lVRMS, f = 100kHz 2

Crosstalk
(Channel to Channel)

CCRR

dB

90

"

SUPPLY
1+
1-

Negative Supply, Current

IL

logic Supply Current

NOTES:

ns

"

Positive Supply Current
VIN = 0 and 2.4V'
"

10

1

10

10

1

10

10

1

10

pA

1. The algebraic co,mientionwhereby the most negative value is a minimum, and the most positive is a m'aximum, is used in this data
sheet.
'
2. For design reference, only" not 100% tested.
3. 10(on) is leakage 'from driver into "ON" switch.

4. OFF Isolation - 2010g Vs , Vs = Input to OFF switch, Vo = output.
,VO

3-54
Nota: All typical values have been guaranteed by characterization and are not tested.

~

-......
C')

,IH311/IH312

:z:

...... ABSOLUTE MAXIMUM RATINGS

!

V+ to v- ....................................................... 36V
VIN to Ground ........................................... V+. V+
VL to Ground ........................................ -0.3V. 25V
Vs or VD to V+ ......................................... 0. -36V
Vs or VD to V- ............................................ 0. 40V

Peak Current. S or D
(Pulsed at 1msec. 10o/~ duty cycle max) ....... 70mA
+125°C
storage Temperature ...................... -65°C
Operating Temperature ........................ OOG to + 70°C
Power Dissipation (Package)'
16 Pin Plastic DIP" .................................. 470mW

'0

V + to Ground ................................................. 25V
V- to Ground ................................................ -25V
Current. Any Terminal Except S or D ................. 30mA
Continuous Current. S or D .............................. 20mA

ELECTRICAL CHARACTERISTICS SYMBOL

'Device mounted with all leads soldered or welded
to PC board.
"Derate 6.5mWrC above 25°C

COMMERCIAL TEMPERATURE RANGE
TEST CONDITIONS
V1 = + 15V, V2 = -15V,
VL=5V, GND

PARAMETER

LIMITS
UNIT

+ 25°C

+ 70°C

SWITCH
VANALOG

Analog Signal Range

V- = -15V, VL = +5V

±15

ROS(ON)

Drain-Source On Resistance

Vo = ±10V, VIN = 2.4V - IH212
IS" 1mA, VIN = O.BV - IH211

150

175

Source OFF Leakage Current

±5

100

Vs = -14V, Vo = 14V

±5

100

Drain OFF Leakage Current

Vo -14V, VS'- -14V

±5

100

IO(of!)

VIN = 2.4V
IH311
VIN -O.BV
IH312

Vs -14V, Vo = -14V

IS(oft)

Vo - -,14V, Vs = 14V

±5

100

Drain ON Leakage Currenfl

Vs = Vo = -14V, VIN = O.BV, IH211
VIN * 2.4V, IH212

±5

200

±5

200

VIN = 2.4V

±1

-10

VIN = 15V

±1

10

VIN =OV

±1

-10

IO(ON)

V
n

nA

INPUT
IINH

Input Current With Input
Voltage High

IINL

Input Current With Input
Voltage Low

p.A

DYNAMIC
Ion

Turn-ON Time

Ioft1
10112

Turn-OFF Time

See Switching Time Test Circuit 5
Vs = 10V, RL = 1kn, CL = 35pF

CS(of!)

Source OFF Capacitance

Vs = OV, VIN = 5V, f = 1MHz

5

CO(of!)

Drain OFF capacitance

Vo = OV, VIN = 5V, f = 1MHz2

5

CO+S(on)
OIRR

Channel ON Capacitance

Vo=Vs=OV, VIN-OV, f=1MHz

16

OFF Isolation4
Crosstalk
(Channel to Channel)

CCRR

VIN = 5V, RL = 1kn, CL = 15pF,
.
Vs = 1VRMS, f = 100kHz 2

300
150

ns

pF

70
dB

90

SUPPLY
1+

Positive Supply Current

1-

Negative Supply Current

IL

Logic Supply Current

NOTES:

VIN = 0 and 2.4V

±1

10

±1

-10

±1

10

p.A

1. The algebraic convention whereby the most negative value is a minimum, and the most positive is a maximum, is used in this data
sheet.
2. For design reference only, not 100% tested.
3. 10(on) is leakage from driver into "ON" switch.
4. OFF Isolation = 20log Vs , Vs = input to OFF switch, Vo = output.
Vo
5. Switching times only sampled.

3-55
Note: All typical values have been guaranteed by characterization and are not tested.

Switch output wav!lform shown for Vs = constant with
logic input waveform as shown. Note the Vs may be + or as per switching ~ilT1e test circuit. Vo istl)e 'steady state
output with sWitch on. Feedthroughvia gate bapacitance
may resulUri spikes at leading and trailing' edge of output
waveform. '
, ' , '.
.

f

LOGIC·
INPUT (IN 1) -::\.0

~"'o ~

t,< 20 n5
tf < 20 n5

_ - - - - - - ,~

SWITCH Vs
INPUT

I lof11
_---1~----_-.,.___---J-+--_+_-­
0,9 Vo

SWITCH

OUTPUT (VO) ____~--J
ton

J

'off2

Figure 3: Switching Time Test Circuit
LogiC shown for IH311. Invert for IH312.

Note: All typical values have been guaranteed by characterizatioo:and ·are· noLiested.,:.,." ". "

IID~OIb

IH311/IH312

!

:t

..

I

,(,a

N

+ 15V

+5V
SWITCH
INPUT

Vs

VL

V+
SWITCH
OUTPUT

S1

= 10V D - - t - - - - - - ( y

a-~cr-.--~--o

I

LOGIC
INPUT

Vo

CL
36pF

(REPEAT TEST FOR IN2 IN3 AND IN4)

V-15V
RL

VO=VS
RL

+

rDS(on)

Figure 4: Switching Time Test Circuit

3-57

Note: All typical values have been guaranteed by characterization and are ,not tested..

+16V

TTL
IN~-'W

__r l

+6V

LOO12701

Figure 5: IH311 Schematic (114 as shown)

3-58
Note: All typical values have been guaranteed by characterization and are not tested.

IH4011lH401A
QUAD Varafet Analog Switch
GENERAL DESCRIPTION

FEATURES

The IH401 is made up of 4 monolithically constructed
combinations of a varactor type diode and an N-channel
JFET. The JFET itself is very similar to the popular 2N4391,
and the driver diode is specially designed, such that its
capacitance is a strong function of the voltage across it.
The driver diode is electrically in series with the gate of the
N-channel FET and simulates a back-to-back diode structure. This structure is needed to prevent forward biasing the
source-to-gate or drain-to-gate junctions of the JFET when
used in switching applications.
Previous applications of JFETs required the addition of
diodes, in series with the gate, and then perhaps a gate-tosource referral resistor or a capacitor in parallel with the
diode; therefore, at least 3 components were required to
perform the switch function. The IH401 does this same job
in one component (with a great deal better performance
characteristics).
Like a standard JFET, to practically perform a solid state
switch function a translator should be added to drive the
diode. This translator takes the TTL levels and converts
them to voltages required to drive the diode/FET system
(typically a OV to -15V translation and a 3V to + 15V shift).
With ±15V power supplies, the IH401 will typically switch
18~_p at any frequency from DC to 20M Hz, with less than
30H RDS{on). The IH401A will typically switch 22Vp_p with
less than 50n RDS{on).
.

• . ROS{on) 25n Typical (IH401)
• ID{Off) of 10pA Typical
• Switching Times of 25ns for ton and 75ns for
toff (RL 1kn)
• Built-In Overvoltage Protection (±25V)
• Charge Injection Error of 3mV Typical Into
0.01 IlF Capacitor
• Ciss < tpF Typical
• Can Be Used for Hybrid Construction

=
=

ORDERING INFORMATION
PART NUMBER

PACKAGE

IH401

CERDIP

IH401A

CERDIP

IH401/D

DICE

CD030801

Figure 1: Pin Configuration
(Outline Dwg JE)

3-59
Note: All typical values have been guaranteed by characterization ana,'are.not tested.·

IH401IIH~01A "

Storage Temperature ......................., -65°C to + 150°C
Lead Temperature (Soldering: 10sec) ................. 300°C

Vs to VD .. · ..... ··· .......... · .......................... ,.........,35V
VG to VS, VD ................................................•. 35V
Operating Temperature ................... -55°C to + 125°C

Stresses abQve those listed under Absolute Maximum Ratings may cause permanent damage to the device. Th",se are stress ratings only. and functional
operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to
absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS AT 25°C/125°C
IH401
SYMBOL

CHARACTERISTIC

UNIT

TEST CONDITIONS
MIN
VORIVE = 15V.
VORAIN = - 7.5V 10 = 10mA

TYP

MAX

20

30

n

ROS(on)

Switch "on" Resistance

Vp

Pinch-Off Voltage

10 = 1nA. VOS = 10V

6

-7.5

V

10(011)

Switch "off" Current
or "off" Leakage

VORIVE = -15V,
VSOURCE = - 7.5V.
VORAIN = + 7.5V

10

±500

pA

10(011)

Switch "off" Leakage
at 125°C

VORIVE = -15V.
VSOURCE = -7.5V.
VORAIN = + 7.5V

0.25

50

nA

IS(oll)

Switch "off" Current

VORIVE = -15V.
VORAIN = -7.5V.
VSOURCE= +7.5V

. 10

±500

pA

IS(off)

Switch "off" Leakage
at 125°C

VORIVE = -15V,
VSOURCE = -7.5V.
VORAIN = + 7.5V

0.3

50

nA·

Vo= Vs = -7.5V.
VO~IVE = + 15V

0.02

±2

nA

Switch Leakage when
10(on) + IS(on) Turned "on"
Vanalog

AC Input Voltage Range
without Distortion

See Figure 3

Vinject

Charge Injection Error
Voltage

See Figure 4

BVdiode

Diode Reverse
Breakdown Voltage. This
Correlates to Overvoltage
Protection

Vo=VS= -V,
10RIVE = 1 jJA.
VORIVE =OV'

BVGSS

Gate to Source or Gate
to Drain Reverse
Breakdown Voltage

lOSS

3

18

Vp_p

3

mVp_p

-30

-45

V

VORIVE = -V.
Vo= Vs = OV.
10RIVE = 1iJA

30

41

V

Maximum Current Switch
can Deliver (Pulsed)

VORIVE = 15V.
VS=OV.
VO=+10V

45

70

mA

fen

Switch "on" time
(Note 1)

See Figure 2

50

,ns

loff

Switch "off" time
(Note 1)

See Figure 2

150

ns

15

NOTE 1: Driving waveform must be > 100ns rise and fall time.

3-60
Note: All typical values have been guaranteed by characterization and are not tested.

IIO~OIlI

IH401/IH401A

...
.....

·5V
+15V

-,s'vSL
STROBE:
INPUT

~

z

'0%

.,5V

SIGNAL

OV

\

-15V

"'"

Your

ton __

-.

",.
loff

-"'" -

-·5V

ton_

TC033601

•

STROBE INPUT

-5V

"'"

lkn

...~

/

OV
i5V SIGNAL

:C---

-5V SIGNAL

10%

(olf - - WF024401

Figure 2: Switching Time Test Circuit and Waveforms

.. 15V

OVLr
-15V

1

C~OOl.1'F

TC033701

TC033801

Figure 3: Analog Input· Voltage Range
Test Circuit

Figure 4: Charge Injection Test Circuit

ELECTRICAL CHARACTERISTICS AT 25°C/125°C
IH401A
SYMBOL

CHARACTERISTIC

TEST CONDITIONS
MIN
VORIVE = 15V.
VORAIN = -10V. 10 = 10mA

UNIT

TYP

MAX

35

50

n

ROS(on)

Switch "on" Resistance

Vp

Pinch-Off Voltage

10 = 1nA. VOS = 10V

4

5

V

10(011)

Switch "off" Current
or "off" Leakage

VORIVE.= -15V.
VSOURCE = -10V.
VDRAIN = + 10V

10

±500

pA

10(011)

Switch· "off" Leakage
at 125°C

VORIVE = ~15V.
VSOURCE = -10V.
VORAIN = + 10V

0.25

50

nA

IS(off)

Switch "off" Current

VORIVE = -15V.
VORAIN = -10V.
VSOURCE = +10V

10

±500

pA

IS(off)

Switch "off" Leakage
at 125°C

VORIVE = -15V.
VSOURCE = -10V.
VORAIN = + 10V

0.3

50

nA

Vo = Vs = -10V.
VORIVE = + 15V

0.02

±2

nA

Switch Leakage when
10(on) + IS(on) Turned "on"
Vanalog

AC Input Voltage Range
without Distortion

See Figure 3

Vinject

Charge Injection
Amplitude

See Figure 4

BVdiode·

Diode Reverse
Breakdown Voltage. This
Correlates to Overvoltage
Protection

VO=VS= -V.
10RIVE = 1/lA.
VORIVE = OV

2

20

-30

3-61
Note: All typical values have been guaranteed by characterization arid are not tested.

22

Vp_p

3

mV p_p

-45

V

',§ . lH4011IH401A
Z
::::.

ELECTRICAL CHARACTERISTICS 'AT 25"C/125°C (tONT.)

~

IH401A
SYMBOL

!

CHARACTERISTIC

UNIT

TEST CONDITIONS
MIN

TYP

MAX
i

BVGSS

Gate to Sowce or Gate
to Drain Reverse
Breakdown Voltage

VORIVE= -V,
Vo=Vs=OV,
,IPRIVE = lIlA

30

41

V

loss

Maximum Current Switch
can Deliver (Pulsed)

VORIVE = 15V,
Vs = OV,
VO=+10V

35

55

~A

ton

Switch "on" time
(Note 1)

See Figure 2

50

ns

toft

Switch "off" time
(Note 1)

See' Figure 2

150

ns

NOTE: Driving waveform must be,

> 1DOns

rise and fall time.

,APPLICATIONS
IH401 Family
In general, the IH401 family can be used in any application formally using a JFET /isolation diode combination
(2N4391 or similar). Like standard FET circuits, the IH401
requires a translator for normal analog switch function. The
translator is used to boost the TIL input signals to the ± 15V
analog supply levels which allow the IH401 to handle ±7.5V
analog signals (or IH401A to handle ±10V analog signalS);
A typical simple PNP translator is shown in Figure 5.
-l!iV

Although this simple PNP circuit represents a minimum of
components, it requires open collector TTL input and t(off)
is limited by the collector load resistor (approximately 1.5J.1s
for 10kn). Improved switching speed can be obtained by
,increasing, the complexity of the translatorl;ltage.
'
A translator which overcomes the problems of the simple
PNP stage is the Intersil IH6201. * This translator driving an
IH401varafet produces the following typical features:
, '. Ion' time of approx. 200ns
• toff time 0.1 approx." 80(1s

• TIL compatible Strobing levels of

IN

L..

,.....,

O.4V...J

L...

• ID(on) +IS(on) typically 20pA up to ±10V analog
signals
• ID(Off) or IS(off) typically 20pA
,. Quiescent current drain of approx. 100nA in either
".on" or "off" case

+15V

,....,

break before
make switch
+2 .• V

ANALOG
SIGNALS

ov...J

J

lQ4(O

FROM TTL
OPEN COLLECTOR

lOGIC

*Th,e IH6201 is a dual translator (two independent
,tran~lators per package) constructed from monolithic
CMOS technology. The schematic of one-half IH6201,
driving one-fourth of an IH401, is shown in Figure 6.

t15V
TC033901

Figure 5

3-62
Note: All typical values have been guaranteed by characterization and are not, tested.

.n~nlb

IH401/IH401A

I...

i

~
.~

r----'

I
I

UV

Uy..r-L.

I
I
I

I

I

IL_v~_J
• I

+I5V

B

+15,r' '.

-15Y~
..
.. I
I

- +15V

I
I

I
I

I

I

B."1..I'
.. -ISV

i

-15Y
05027801

NOTE: Each translator output has a 9 and

11

output.

11

is, just the .inverse of 8 i.e:.

(~ output·is

1sOo
"out of,

Figure 6: IH6201 Driving An IH401

Phas~ with

,.

CD030QOI

NOTE: Either switch is turned on when strobe input goes high.

Figure 7: Dual SPST Analog Switch

Note: AU typical values have been guaranteed by characterization and are not tested.'

respect to 8 output).

+3V

ovs-LT2L1

COO31001

Figure 8: DpDTAnalog :SWltCh

(i§)----<

T2L INPUT 1

'. d ~

liiil---< r2L INPUT 2

COO:J1101

Figure 9: Dual SPDT Analog Switch
A very useful feature of this system is that one-half of an
. IH6201 and one-half of an IH401· can combine to make a
SPOT switch, or an IH6201 plus an IH401 can make a dual
\ SPOT analog switch. (See Figure 9)

.!.j'

00031201

Figure 10: Dual DPST Analog Switch

Note: All typical values have been guaranteed by characterization and IlI"I\ not. tested.,

IH5'009-IH5024
Virtual Ground
Analog Switch
GENERAL DESCRIPTION

FEATURES

The IH5009 series of analog switches were designed to
fill the need for an easy-to-use, inexpensive switch for both
industrial and military applications. Although low cost is a
primary design objective, performance and versatility have
not been sacrificed.
Each package contains up to four channels of analog
gating and is designed to eliminate the need for an external
driver. The odd numbered devices are designed to be
driven directly from TTL open collector logic (15 volts) while
the even numbered devices are driven directly from low
level TIL logic (5 volts). Each channel simulates a SPOT
switch. SPOT switch action is obtained by leaving the diode
cathode,unconnected; for SPOT action, the cathode should
'be grounded (OV). The parts are intended for high performance multiplexing and commutating usage. A logic "0"
turns the channel ON and a logic "1" turns the channel
OFF.

•
•
•
•
•
•

Switches Analog Signals Up to 20 Volts Peak-toPeak
Each Channel Complete - Interfaces With Most
Integrated Logic
Switching Speeds Less Than O.S~
IO(OFF) Less Than SOOpA Typical at 70·C
Effective rds(ON)- sn to son
Commercial and Military Temperature Range
Operation

ORDERING INFORMATION
BASIC
PART NUMBER

CHANNELS

LOGIC
LEVEL

~ACKAGES

IH5009

4'

+15

JD,DD,PD

IH5010

4

+5

JD,DD,PD
JE,DE,PE

IH5011

4

+15

IH5012

4

+5

JE,DE,PE

IH5013

3

+15

JD,DD,PD

IH5014

3

+5

JD,DD,PD

IH5015

3

+15

JE,DE,PE

IH5016

3

+5

JE,DE,PE

IH5017

2

+15

JD,DD,PA

IH5018

2

+5

JD,DD,PA
JE,DE,PA

IH50XX

M

DE

L

Package
PA - 8-PIN PLASTIC DIP
PD - 14-PIN PLASTIC DIP
PE - 16-PIN PLASTIC DIP
DO - 14-PIN CERAMIC DIP
(Special Order Only)
DE - 16-PIN CERAMIC DIP
(Special Order Only)
JD - 14-PIN CERDIP
JE - 1.6-PIN 'CERDIP
' - - - - - - TEMPERATURE RANGE
M = MILITARY (-55°C to
+ 125°C)
C = COMMERCIAL (O°C to
+ 70°C)
L..._ _ _ _ _ _

IH5019

2

+15

IH5020

2

+5

JE,DE,PA

IH5021

1

+15

JD,DD,PA

IH5022

1

+5

JD,DD,PA

IH5023

1

+15

JE,DE,PA

IH5024

1

+5

JE,DE,PA

NOTE: Mil-Temperature range (-55°C to
packages only.

+ 125°C) available in ceramic.

3-65
Note: All typical values have been guaranteed by characterizaijon' and are not tested ..

BASIC PART NUMBER

.~.

·:s.. I H500Q-1tHS024,
. ~,' ... ,..... ,.. ".,': '. . "' ,

'

·.O~1lIL
,

, f i'

:.

.'

"

'. f.~',·

"

~~~';

'I' ABSOLUTE MAXIMUM RATINGS

i
I

Lead Temperature (Soldering, 1O~~~) .......... :: ..... 300·6
Operating Temperature
5009C Series ....... " ........ : ........ :. 0·0' to + 70·0
5009M Series ... :' .......... : ...... :. ":55·C Jo +125·C
Lead Temperature (Soldering/tOsee) ....... : ... , ..... 300·C

Positive Analog Signal Voltage ............................ 30V
Negative Analog Signal Voltage ......................... -15V
Diode Current ......................................... '" ..... 1OmA
Pow~r Dissipation (Note} ......................... ~~ ....• 500mW
Storage Temperature ....... :: ........'..... -65"C to + 150·C

NOTE: Dissipation rating assumes devies is mounted with all leads welded or soldered to printed circuit board in ambient temperature below 75'G. For higher
temperature. derate at rate of 5m/W'G,

.. . . . . . . .

..

Stresses above those listed under Absolute Mllxim~m Ratings may cause permanent damage to the device. These are stress ratings only. ana fu~ctiollal
operation of the device at. these or any other conditions above those indicated in the operational sections of the specificatiQns is not implied. Exposure to
absolute maximum rating conditions for extended periods may affect device reliability.
..,"
.

IH5009 (rOS(ON)::; 100n) IH5010
(rOS(ON)::; 150n) 14 PIN DIP
(OUTLINE DWGS DO, PO, JD)

IH5013 (rOS(ON) ~ 100n) IH5014
. (rOS(ON)::; 150n) 1.4 PIN DIP
(OUTLINE DWGS DO, PE; JE)

IH5011 (rOS(ON)::; 100n) IH5012
(rOS(ON) ::; 150n) 16 PIN DIP
(OUTLINE DWGS DE, PE, JE)

COOO~9Ol

CDOO1801

c0001701

IH5015 (rOS(ON)::; 100n) IH5016
(rDS(ON) ::; 150n) 16. PIN DIP
(OUTLINE DWGS DE, PE, JE)

IH5019 (rOS(ON)::; 100n) IH5020
(rOS(ON) ::; 150n) 8 PIN DIP'
(OUTLINE DWGS DE; PA, JE)

IH5017 (rOS(ON)::; 100n) .1""5018
(rOS(ON)::; 150n) 8 PIN DIP
(OUTLINE DWGS DO: PA, JD)

11 I ~ I;; :~t'-----t:~- r- -'" -:L.~I;~
-'
[1.J
:2

7

:2

10

CDO02101

,'.
7

CDOO2201

c0002001

. IH5023 (rOS(ON)::; 100n) IH5024 (rOS(ON)::; 150n)
8 PIN DIP (OUTLINE DWGS DE, PAl

IH5021 (rDS(ON) ::; 100n) IH5022 (rOS(ON)::; 150n)
8 PIN DIP (OUTLINE DWGS DO, PA, JD)

: I~ 1-~
I

--+-<0.

CDOO2401
CDOQ2301

(Note: Numbers in brackets refer to CERDIP packages.)

Figure 1: Pin Connections

3-66
Note: All typical values have been guaranteed by characterization and are not tested.

IH5009-IH5024
FOUR CHANNEL
IH5009 (rDS(ON):O: 100n) .
IH5010 (rOS(ON):O: 150n)
14 PIN DIP

THREE CHANNEL

IH5011 (rOS(ON):O: 100n)
IH5012 (rOS(ON):O: 150n)
16 PIN DIP

IH5013 (rOS(ON):O: 100n)
IH5014 (rOS(ON):O: 150n)
14 PIN DIP

. IH5015 (rOS(ON):O: 100n)
IH5016 (rOS(ON):O: 150n)
16 PIN DIP

IT
•

3~'

t. b,

8

T.T.

'~8

t. L

,IT.

"~.

t2 b'0

IT

08000801
05016901

05016801

05016701

TWO CHANNEL
IH5017 (rDS(ON):O: 100n)
IH5018 (rOS(ON):O: 150n)
8 PIN DIP

SINGLE CHANNEL

IH5019 (rOS(ON):O: 100n)
IH5020 (rOS(ON):O: 150n)
8 PIN DIP

IH5021 (rOS(ON):O: 100n)
IH5022 (rOS(ON) S 150n)
8 PIN DIP

3~'

"TT!Yr4 31T'

t . .b2
.~.

t.
DSOOO901

IH5023 (rOS(ON):O: 100n)
IH5024 (rOS(ON):O: 150n)
8 PIN DIP

3

,

•

•

2

b7

DSOO3701

08001001

Figure 2: Device Schematics and Pin Connections

ELECTRICAL CHARACTERISTICS

(per channel)
SPECIFICATION LIMIT

SYMBOL
(Note 1)

TEST
CONDITIONS
(Note 2)

TYPE
(Note 4)

-55'e (M)
o'e (e)
MINIMAX

TYP

MINIMAX

+ 125'C (M)
+70'C (C)
MINIMAX

VIN - OV, 10 - 2mA

0.Q1

±0.5

100

p.A

5V Logic Ckts

VIN = +4.5V, VA = ±10V

0.04

±0.5

20

nA

Input Current-OFF

15V Logic Ckts

VIN- +l1V, VA-±10V

0.04

±0.5

20

nA

VIN(ON)

Channel Control Voltage·ON

5V Logic Ckls

See Figure 7, Note 3

0.5

0.5

0.5

.V

1.5

CHARACTERISTIC

IIN(ON)

Input Current-ON

ALL

IIN(OFF)

Input Current-OFF

IIN(OFF)

25'C

UNIT

VIN(ON)

Channel Control Voltage·ON

15V Logic Ckts

See Figure 8, Note 3

1.5

1.5

V

VIN(OFF)

Channel Control Voltage·OFF

5V Logic Ckts

See Figure 6, Note 3

4.5

4.5

V

VIN(OFF)

Channel Control Voltage·OFF

15V Logic Ckts

See Figure 8, Note 3

11.0

11.0

V

10(OFF)

Leakage Current-OFF

5V Logic Ckts

VIN = +4.5V, VA - ±10V

0.02

±0.5

20

nA

10(OFF)

Leakage Current-OFF

15V Logic Ckts

VIN= +11V, VA=±10V

0.02

±O.S

20

nA

IO(ON)

Leakage Current·ON

5V Logic Ckts

VIN = OV, Is = lmA

0.30

±1.0

1000 (M)
200 (C)

nA

±0.5

500 (M)
100 (C)

nA

1.0

10

p.A

2.0

100

p.A

150

385 (M)
240 (C)

n

80

100

250(M)
160 (C)

150

500

= OV, IS = lmA
= OV, Is - 2mA
VIN = OV, IS = 2mA
10 =2mA, VIN = 0.5V

10(ON)

Leakage Current-ON

15V Logic Ckts

VIN

IO(ON)

Leakage Current·ON

5V Logic Ckts

VIN

1[)(ONt

Leakage Current·ON

15V Logic Ckts

rOS(ON)

Drain-Source ON·Resistance

5V Logic Ckts

roo(ON)

Drain-Source ON·Resistance

l(on)

Turn-ON Time

15V Logic Ckts
All

10 = 2mA, VIN = 1.5V

See Figures 5 & 6
3-67

Note: All typical values have been guaranteed by characterization and are not tested.

0.10

150
100

90

n
ns

r&n~Dn

,lflsO09~B5024

_UlNJUl$lJ'I@}UfD

ELECTRICAL CHARACTERISTICS (CONT.)
,

SPECIFICATION LIMIT
SYMBOL
(Note 1)

TEST
CONDITIONS
(Note 2)

TYPE
(Note' 4)

CHARACTERISTIC

-55'C (M)

2S'C

,O'C (C)
MINIMAX

t(off)

Turn-OFF Time
Cross Talk

CT

See Figures 5 & 6
f = 100Hz

All
All

TYP

MINIMAX

300
120

500

,

+12S'C (M)
+,70'e (e)
' MINIMAX

UNIT

ns
dB

NOTES 1: (OFF) and (ON) subscript notation refers to the conduction state of the FET switch for the given ,test.
2: Refer to Figure 2 for definition of terms.
3: V'N(ON) and V'NIOFF) are test conditions guaranteed by the tests of rOSION) and IO(OFF) respectively.
4: "5V Logic CKTS' applies to even-numbered devices. "15V Logic CKTS' ' applies to odd·numbered devices.

TYPICAL PERFORMANCE CHARACTERISTICS
ID(ON) VI. IS AT 25'e

1 1000

1 lOOk

...

....

~

~
I

z

/

Z

0:
0:

i... looo
...0
...
...Z

!='s"mA
f-VA -10V

I

~
c(

c(

I.S
2.0
2.5
. I, - SOURCE CURRENT (mAr

~

10

9

<.> 1.4

~ 1.2
w

-120
-110

25
7S
TEMPERATURE ( Cl

:;
~ 1.0

/'
V

0:

~

...~"
....
c(

I
1

rt ~

:"0.8 ! - ' f-

z

~

cf 0.6

r-o

25
50
75
TEMPERATURE ( CI

100

.

......
c(

/

100

25
50
7S
TEMPERATURE r Ci

"-

-90
-80
-70

10kU

'\.

"- I'\.

a: -60

"-

-so

I' . -

0

t.>

-40
-30
10

100

0P004201

CROSSTALK MEASUREMENT CIRCUIT

.r,

!-100

VI

N

~

'--

~

.'

CROSSTALK AS A
FUNCTION OF FREQUENCY
-130

I /'
Y

':"

1--

0P00e001

RD~ON) VI. TEMPERATURE
(NORMALIZED TO 25'C VALUE)

'"o

(11

':" +iV.'
.15V

...u

OP007911

.N

.

I

R

'.1,0

10D.!>

100

....

~.-

Is

V

I

."

-~~

E::
-~~
t- ;::::

:::> 100

lk

<.>

..."....

I.

.

0:.
0:

:::>

~
c(

g

10k

ID(OFF) VI. TEMPERATURE

0:
0:

a 100

~,

(per channel)

ID(ON) VI. TEMPERATURE

~

v,.

...

-5\1 (5010ETCI
'16VI6008HCI

100
lK
lQK lOOK
FREQUENCY 1Hz.)

OPOO4311

1M

TC004201

OPOO44Q1

DETAILE.D DESCRIPTION
The signals seen at the drain of 'a junction FET type
analog switch can be arbitrarily divided into two categories;
those which are less than ±200mV, and those which are
. greater than ±200mV. The former category iricludesall
those circuits where switching is performed at the virtual
ground point of an op-amp, and it is primarily towards these
applications that the IH5009 family of circuits is directed.

Those devices which feature common drains have another FET in addition to the channel switches. This FET, which
has gate' and source connected' such that VGS = 0, is
intended to compensate for the on-resistance of the switch.
When placed in series with the feedback resistor (Figure 3)
the gain is given by:

By limiting the analog signal at the switching point to
±200mV, no external driver is required and the need for
additional power supplies is eliminated.
Devices are available with both common drains and with
uncommitted drains.

Note: All typical values have been guaranteed by characterization and are nof tested •.

G~N=

10kn + rOS(ON)(compensator)

...

10kn + rOS(switch)

1145009-1115024
SWITCHING CHARACTERISTICS

A.OOO8OI

Figure 3: Use of Compensation FET

TC0G4301

"'"

Clearly, the gain error caused by the switch is dependent
on the match between the FETs rather than the absolute
value of the FET on-resistance. For the standard product,
all the FETs in a given package are guaranteed to match
within son. Selections down to sn are available however.
Contact factory for details. Since the absolute value of
rOS(ON) is guaranteed only to be les$ than 1oon or 1son, a
substantial improvement in gain accuracy can be obtained
by using the compensating FET.

10V

PW-5I,..
tr <0.1/001

.,<0.1".

?5V

7.5V

f1II

10"

OUTPUT

V... ·,OV
f1II
f1II
OUTPUT·~

VA--1OV

WFOO1301

DEFINITION OF TERMS

Figure 5: High Level Logic

Figure 4.
. 'if1N
PW • 5,l1

NOISE IMMUNITY

5 V r - - - -.......
2.5V
Z.5V
toFF

t.--.....-oVOUT

,

ANALOG

OUTNl

,,

,,

__ ...

&!i~T!.L!.A!E

_~

_ _'
lCOOO101

Figure, 7: Interfeclng .wIth

+ 5V Logic

,,',4-+-+-h

,

,

,,r-----'.:..--.,..---,
,,,
,

ANALOG
INPU1Nwtl

:

L ___________

'lSV

1

7

•

I

"

"'~ e~,A.w:TE.ISTtCS4AI" '"

-::.UT " Rn

14

~

-,~'
AF:001001

_LOG

Figure 9

, OUT1'UT

<·'1

,,,
,

,,,
,
:L!~!!~G~T! ____
":' ":'..J
-=-:

..))

,

LCOOO2Ol

Figure 8: Interfec.!ngwlth + 15V Open
Collector Logic

10Kn

,,
I

,
,
,,,
,
,,

I,;

:

ANALOG

INPUTS

,1Gttu

11

I
L -- --, 4

10kn

I

AFOOt1m

Figure, 10
NOTE: Additional applications information is given in Application Bulletins A003 "Understanding and Applying the
Analog Switch" and A004 "The 5009 Series of Low Cost
Analog Switches".

3-70
Note: All typical values have been guaranteed by characterizatiOn, and. are not tested.

, '.

IH5025-IH5038
Positive Signal
Analog Switch
GENERAL DESCRIPTION

FEATURES

The IH5025 series of analog switches was designed to fill
the need for an easy-to-use, inexpensive switch for both
industrial and military applications. Although low cost is a
primary design objective, performance and versatility have
not been sacrificed.
Each package contains up to four channels of analog
,gating and is designed to eliminate the need for an external
driver.
.
The entire family is designed to be driven from TTL open
collector logic (15V), but can be driven from 5V logic if
signal input is less than 1V. Alternatively, 20V switching is
readily obtainable if TTL supply voltage is +25V. Normally,
only positive signals can be switched; however, up to ±10V
can be handled by the addition of a PNP stage (Figure 14)
or by capacitor isolation (Figure 13). Each channel is a
SPST switch. A logic "0" turns the channel ON and a logic
"1" turns the channel OFF.

•
•
•
•
•
•

Switches Up to + 20V Into High Impedance
Loads (i.e. Non-Inverting Input of Operational
Amp.)
Driven From TTL Open Collector Logic
IO(OFF) < 50pA
rOS(ON) < 150n
rOS(ON) Match < 50n Channel to Channel
Switching Speeds < 100ns

ORDERING INFORMATION
BASIC
PART NUMBER

CHANNELS

LOGIC
LEVEL

PACKAGES

IH5025

4

+15

JD,DD,PD

IH5026

4

+5

IH5027
IH5028

4
4

+15
+5

JD,DD,PD
JE,DE,PE

IH5029

3

+15

JD,DD,PD

IH5030

3

+5

IH5031

3

+15

JD,DD,PD
JE,DE,PE

IH5032
IHS033

3
2

+5
+1S

JE,DE,PE
JD,DD,PA

IHSOXX

IHS034

2

+5

2

+15

JD,DD,PA
JE,DE,PA

IHS036

2

+5

JE,DE,PA

IHS037
IH5038

1
1

+15
+5

JD,DD,PA
JD,DD,PA

DE

L

PACKAGE
PA - a-PIN PLASTIC DIP
PD - 14-PIN PLASTIC DIP
PE - 16-PIN PLASTIC DIP
DD - 14-PIN CERAMIC DIP
(Special Order Only)
DE - 16-PIN CERAMIC DIP
(Special Order Only)
JD - 14-PIN CERDIP
JE - 16-PIN CERDIP
L -_ _ _ TEMPERATURE RANGE
M = MILITARY (-SSOC to
+ 12S°C)
C = COMMERCIAL (O°C to
+ 70°C)

JE,DE,PE

IHS03S

M

' - - - - - - - - BASIC PART NUMBER

NOTE: Mil-Temperature range (-5S0C to + 12S°C) available in
ceramic packages only.

IH5025 (rOS(ON) ::; 100n)
IH5026 (rOS(ON)::; 150n)
14 PIN DIP

IH5027 (rOS(ON)::; 100n)
IH5028 (rOS(ON)::; 150n)
16 PIN DIP

IH5029 (rOS(ON):S 100n)
IH5030 (rOS(ON):S 150n)
14 PIN DIP

IH5031 (rOS(ON):S 100n)
IH5032 (rOS(ON):S 150n)
16 PIN DIP

11

4
C0004201

CDOO2501

CDOO2601

Figure 1: Pin Connections

3-71

Note: All typical values have been guaranteed by characterization' and are not tested.

5

12
COOO2701

IH5025-IH5C)38
,
{;

~,

~

IH5033 (rOS(ON) ~ 100.12)
IH5034 (rOS(ON) ~ 150.12)
8 PIN OIP
(3)3

'

IH5037 (rciS(ON)~ 100.12)
IH5038 (rOS(ON) ~ 150.12)
8 PIN DIP

IH5035 (rOS(ON) ~ 100.12)
IH5036 (rOS(ON) ~ 150.12)
8 PIN OIP

6(12)

(3)3

7(15)

(2)2

I
3(3)

(2)2

O-+_4-<~------IHl6(·'4)

4(4)

('3)9-11---<>"1 "'---.--If-Q5(11)

6(14)

'(1)

4(4)

(212

o-j----4'i

5('3)

CDOO2801

CDOO4101

CDOO29()1

NUMBERS )N PARENTHESES INDICATE CERAMIC PACKAGE PIN-OUT

Figure 1: Pin Connections (Cont.)

FOUR CHANNEL
IH5025 (rOS(ON) ~ 100.12)
IH5026 (rOS(ON) ~ 150.12)
14 PIN DIP

THREE CHANNEL
IH5029 (rOS(ON) ~ 100.12)
IH5030 (rOS(ON) ~ 150.12)
14 PIN DIP

IH5027 (rOS(ON) ~ 100.12)
IH5028 (rOS(ON) ~ 150.12)
14PIN DIP

'rr'

'n'

'rr.
'rr"
2

•

,

"

IH5031 (rOS(ON) ~ 100.12)
IH5032 (rOS(ON) ~ 150.12)
~6 PIN DIP

"rr"
10

12

15

13

'rr'
'rr"

"

05001301

2

•

7

•

10

12

DSOQ1401

05001201

05001101

TWO CHANNEL

SINGLE CHANNEL

IH5033 (rDS(ON) ~ 100.12) IH5034
(rOS(ON) ~ 150.12)
8 PIN DIP

IH5035 (rOS(ON) ~ 100.12) IH5036
(rOS(ON) ~ 150.12)
8 PIN DIP

IH5037 (rOS(ON) ~ 100.12) IH5038 .
(rOS(ON) ~ 150.12)
8 PIN DIP

~rr~

5(11)

3(31

'(1)
05001701

6(12)

8(''')
05001501

09001601

Numbers in parentheses indicate CERAMIC PACKAGE LAYOUT

.

Figure 2: Device Schematics

3-72
Note: All typical values have been guaranteed by characterization and are not tested.

i

IH5025-IH5038

§

ABSOLUTE MAXIMUM RATINGS

t

Positive Analog Signal Voltage ............................ 25V
Negative Analog Signal Voltage ..................... -O.5VDC
Drain Current ................................................. 25mA
Power Dissipation (Note) ................................ 500mW
Storage Temperature ...................... -65'C to + 150'C

Operating Temperature
Z
5025C Series ............................ O'C to + 70'C
5025M Series ...................... -55'C to + 125'C to»
Lead Temperature (Soldering, 10sec) ................. 300·C. CD

g

NOTE: Dissipation rating assumes device is mounted with all leads welded
or soldered to printed circuit board in ambient temperature below 7S·C.
For higher temperature, derate at rate of 5m/W·C.

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional
operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to
absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS (per channel)
SPECIFICATION LIMIT
SYMBOL
(Note 1)

CHARACTERISTIC

TEST

TYPE

-55'C

CONDITIONS

O·C (C)
IIN(ON)

Input Current·ON

All

UNIT

25'C

(M)
TYP

MINIMAX

0.30

VIN = OV

IIN(OFF)

Input Current-OFF

All

VIN = 15V

VIN(ON)

Channel Control Voltage·ON

All

See Figure 3

1.5

VIN(OFF)

Channel Control Voltage·OFF

All

See Figure 3

14.0

ID(OFF)

Leakage Current·OFF

All

See Figure 5

0.20

+ 125'e (M)
+ 7O'e (e)

1.0

100 (M)
25 (C)

1.0

50 (M)
50 (C)

nA (max)

1.5

1.5

V (max)

nA (max)

14.0

V (min)

0.5

100 (M)
50 (C)

nA (max)
nA (max)

14.0
0.06

MINIMAX

ID(ON)

Leakage Current·ON

Odd Nos.

See Figure 6

1.00

10.0

5000 (M)
250 (C)

ID(ON)

Leakage Current·ON

Even Nos.

See Figure 6

0.10

1.0

500 (M)
25 (C)

nA (max)

100.0

250 (M)
150 (C)

n

(max)

150.0

385 (M)
240 (C)

n

(max)

n

(max)

n

(max)

rDS(ON)
rOS(ON)

Drain·Source ON·Resistance

Drain·Source ON-Resistance

Odd Nos.
Even Nos.

100

VIN = 0.5V, ID = 1rnA
VIN = 0.5V, ID = 1rnA

rDS(ON)

Drain-Source ON-Resistance

Odd Nos.

VIN = 1.0V, ID = lmA

rDS(ON)

Drain-Source ON-Resistance

Even Nos.

VIN-l.0V.ID=lmA

t(oo)

Turn·ON Time

I(off)
Q(INJ)

60.00

150

90.00
85.00

160.0

420 (M)
250 (C)

110.00

200.0

400 (M)
250 (C)

0.2

0.4
0.4

160

All

See Figure 4

0.10

Turn·OFF Time

All

See Figure 4

0.10

0.2

Charge Injection

All

See Figure 5

7.0

20.0

VA(OFF)

Cross Coupling Rejection

All

See Figure 6

0.10

1.0

AraS(ON)

Channel to Channel rDS(ONl Match

All

VIN

= 0.5V.

I1S (max)
mVp•p (max)
mVp. p (max)

n

25.00

ID = 1rnA

1'5 (max)

(max)

Note 1: (OFF) and (ON) subscript notati9n refers to the conduction state of the FET switch for the given test.

+10V~VOU~OSCOftEPA08E
!10XI

VAYl.
. 'vou,

f

10Mu

1'KO

FET "ON" FOR VIN

n

1 K!!

+1SY

OV~LOGtc·

--l
.. r-"
.~:
YOUT

II
II

II
II

tOFF

tON

1.5V

Fer "OFF" FOR VIN ;><.,.14.0V
TC004501

TCOO4601

Figure 3: Test Circuits

Figure 4: Test Circuits

3-=-73
Nole: All typical values have been guaranteed by characterization and are not tested.

OV

+5Y

.oon

~

: ~~y

·,5V

OyJL

.

TCOO4101

1 Ku

'0"",

..•
f.., 1 KC

Figure 5: Test Circuits

+lSV

TCOo4'BOI

t::1gure 6: Test Circuits

TYPICAL PERFORMANCE CHARACTERISTICS (per channel)
IO(OFF) VS. TEMPERATURE

~'"

+10V
lOOnA f-

...

+ , . _. f--

lOOnA

f--

1DnA

..

ii: 10nA r----1

'.

.E

.........,..

~

vP'

+15V

9

./

~

V

InA

.E lOOpA

V
/'

loopA
10pA

IO(ON) VS. TEMPERATURE

/

lDpA

1 pA /

~

/'

tl-

+IOV,::,'
-25

+25

+75

+25

~25

+125

+75

TEMPERATURE (OC)

TEMPERATURE (OC)

OPOO4601

, OPOO4501

CROSS COUPLING REJECTION VS. FREQUENCY
14

~I
I-

::>

~

ROS(ON) Vs. VIN
200

+5V

12

176

10

150

c:

8

6

S

a: 75
4

I

/

125

j'00

-

~io"'"

.,

V

50

25

o L.J::::::t=t=:l::::::L-.L.J
1 KH,

10 KH,

100 KH,

.

+125

OV

1 MH,

FREQUENCY

0.5V

1.0V

1.5V

VIN
OP00471 I

0P004801

3-74
Note: All typical values have been guaranteed by characterization' and are not tested.

LOGIC INTERFACE CIRCUITS

Channel FET has been sel4ilcted betw~en 2.0V and3.9V;
thus with + 15V at the logical.input, and a + 10V signal
input, 1.1 V of margin exists for turn-off. When the IH5025 is
used with 5V TIL logic, a maximum of + 1V can be
switched. The gate of each FET has been brought out so
thaI a "referral resistor" can be placed between gate and
source. This is used to minimize charge injection effects.
The connection, is shown below:

When operating with TIL logic it is necessary to use pUIIup resistors as shown in Figures 6 and 7. This ensures the
necessary positive voltages for proper gating action.

r---------...,...,

TC00400l

LCOOO3OI .

Figure 9

Figure 7: Interfacing with + 5V Logic

For switching levels> + 10V, the + 15V power supply
must be increased so that there is a minimum of 5V of
difference between supply and signal. For example, to
switch + 15V level, + 20V TIL supply is required. Up to
+ 20V levels can be gated.

r--- ---,+,5V
I
I

-

APPLICATIONS

•I
I

I
I

I
I•
I
1..:
_GATE""
_____
"5V_
TTL
."...1I
LC000411

Figure 8: InterfaCing with + 15V Open
Collector Logic
.

THEORY OF OPERATION
The IH5025 series differs from the IH5009 series in that
they may be driven by floating outputs. This family is
generally used when operating into thenon-invertil"lg inpl,rt
of an operational amplifier, while the IH5009series is used
in operations where the output feeds into the inverting
(virtual ground) input.
. The IH5025 model is a basi~ charge. area sViitching _
device, in that proper gating action .depends upon the
.capaoitance vs. voltage· relationship fort"'e diode junctions.
This C vs. V, when integrated, produces total charge Q. It is
Q total which is switched between the series diode and the
gate to source and gate to drain junctions. The charge area
(C vs. V) for the diode has been chosen to be a minimum of
four (4) times the area of the gate to source junction, thus
providing adequate safety margins to insure proper switching action.
If normal logical voltage levels of ground to + 15V (open
collector TIL) are used, only signals which are between OV
and + 10V can be switched. The pinch-off range of the p-

AFOOt2Of

Figure 10: Multiplexer from Positive Output
Transducers

+111,1

ov.fL.
AFOO1301

Figure 11: Sample and Hold Switch

3-75
Note: All typical values have been guaranteed by characterization ",d are not tested.

.~.

"

IIH502.~IiI'038

i
I

APPlJCATIONS:1~.)

!

r - .... - -,,- I

""'--,.211/

I

I

I

I

I

I
I
"lOI/nLGATE
"::"
'''::" J I
L:: ___ "' _____
AFOO1411

flgyre 12: Switching up to +20V $I9".alsYiith TTL

~ogic

r--;---:--':--:-'·"V
:

I"
l~;~

I

. I

TO

:

1'0K1!'
.-~:~~__________J

I

I

eSHIFT· l,O."1OMI
!

.

'";;oJi ~-'

.

~_I"

·

ONO

0,
0,

0,

o•

a~~,2 ~~4 •
SSOO'5Oi

~1401

SWITCH STATES ARE FOR
LOGIC "1" INPUT

I

".'~
.,

ss001201

DUAL DPST IH504S
(rOS(on) < 7SSl)

A

'0/

FLAT PACKAGE.FD-2)

DIP (DE) PACKAGE

OPOT IH5046
(roS(ON) < 7SSl)

,
"o, ",
o,
.. •
'N

v,

v'

Y,o

f·

v,

~

'",-

...,

-

" ......
.~'

GOO

0,

.,

0,

5,

3~DI
,

:.r-- !.o
•

D4

_J

5,

,

v'

f"
I

;-u

I

-v 0 '

"'-:.

II

·
,. · ......

.J..:

_t

b"
v'

o.

.~5

~:'
v'

y"

~J
.NO

88001801

0,

!..,., 03

r-o

D4

88001701

4PST IHS047
(ros (ON) < 7SSl)
v,

,
,
.." •

10 f.
~OI

5,

$,

IN

,4

u!'

5,

~O'l

4~D3,

......

.1

-v 0,

~-.

b"
GNO

,

y"

",

~.,

I

II

" •
o. •

'

1

5,

0,

:-u 0,

•

1

~D.

'foIo!! -Qi>-J

&"

!" !"

v'

ON.

85001801

V'

88001901

Figure 2: Switching. State Diagrams (Cont.),

:Hl2
Note: All typical values have been guaranteed by characterization .and ·are not tested.

TO-l00

i

IH5040~IH504 7
TYPICAL PERFORMANCE CHARACTERISTICS

40

160

I
I
,hv

100

I

'40
'20

+l~~C

10- ~

60

+25"C

+e

0
.,
-10 -5 -25' 0

~

.-1.·e i-= l.·'re

40

·20

S
R

L.-

+25~C

'00

I

25

!

r-- !--+-,12V

50

'15V

S

1? -75

t-+

-10-75

-5 -25

10

'"

0

lk

20

5

0
0

25

5

0
-10 -7.5 -5 -25

7510

I

I
I

',oon

,

L-=-

,

ov..JL ~_
~
SWITCHED
CHANNEL

VOUT

'- -

-

-

-

"

.~

2Vpp
@lMC

-l,oon

5H!'

10k lOOk 1M

OP005201
TCO05301

-12
01"

..
~

~

.

e
,.

-80

l'

1"-1-t--

-60

OFF STATE
~~_
OEPENOS ON PART~-

-40

-2 0

oTHz

~VOUT

l'Do!)

OIRR = 20LOG 2000mVpp
VOUT (mVpp)

TOHz 100Hz lk

2.5

5

7.S

10

OPOO5101

FREQUENCY (Hz)

-100

0

VANAlOG (V)

,

I

,

CCRR = 20LOG 2000mVpp
VOUT (mVpp)

100

~

." :

"'I--

0

10

25

z

~: ~-J¥
3V

1

30

~

>-

I

0

o

I-

g
>
.§.

OPQ05001

1"-",

100

I-""

VANALOG (V)

OPQQ4901

20

l...- ,...-

t5

20 ~ t -

VANALOG (V)

120

,

I

40

15V SUPPLIES

35

i

80

Is!1mA
•

CHARGE INJECTION vs VANALOG
(SEE FIG. B) CL = 10,OOOpF

rOS(on) vs POWER SUPPLY
VOLTAGE

rOS(on) vs VANALOG SIGNAL

80

(Per Channel)

10k lOOk 1M

FREQUENCY (Hz)
TCOO5401
QP005301

3-83
Note: All typical values have been guaranteed by characterization and are not tested.

~i

CIt

!

'*",

I!

~
.1

..

TYPICAL PERFORMANCE CHARACTERISTICS (CONT.)
POWER SlIPPLY QUIESCENT CURRENT
FREQlIENCY RATE

-

l/

/

,,- V
V

.,

V8

LOGIC

V

/

V

1/,

WFQ01601

...

,

LOGIC FREQUENCV@ tO"lo DUTV CYCLE IH~)

0P005401

TEST CIRCUITS

·Jj~-h1.,.

Vour

'tiff

·: rt . m
AlAUlllIIIPUT

AIA~IIPUT

'kO

iU)

OVn~_.
.

1IO.rQ-i>-_'

.

VOUT

'D.oao,F

TC035701

Figure 3

LOGIC IlPUT

~

.,. .,.

f.:~
1010

TC03580t

TC035901

Figure 4

Figure 5

NOTE 1: Some channels are turned on by high "1" logic inputs and other channels are turned on by low "0" inputs; however O.BV to 2.4V describes the min.
range for switching properly. Refer to logic diagrams to see absolute value of logic input required to produce "ON" or "OFF" state.

APPLICATIONS

ANALOG
INPUT

I.""

·3\1

~

> SAMPl E MOOE

ov • > HOLD MODE

AF005BOI

Figure 6: Improved Sample & Hold USing IH5043

3-84

Note: All typical values have been guaranteed by characterization and are' not tested.

IH5040-IH5047
APPLICATIONS (CO NT.)

lOGIC
STROI£

EXAMPLE: If -v ANALOG' -10VOCand +V ANALOG' +10VDC
then Ladder Legs are switched between, 1OVDC. depending upon lIal.
of lotIic Strobe.

JL
r'L
LOGIC
STROlE
2R

AFOO2101

Figure 7: Using the CMOS Switch to Drive an R/2R Ladder Network (2 Legs)

UIOldl

LOPASS
OUTPUT

Constant gain, constant Q. variat>te frequency filter which
provides simultaneous Lowpass. Bandpass, and H ighpass
outputs. With the component values shown, center frequency
will be 235Hz and 23.5Hz for high and low logic inputs
respecti.... ly. Q,. 100, and Gain'" 100.

fn .. Center Frequency'" _,_
21rRC
AFOO2201

Figure 8: Digitally Tuned Low Power Active Filter

3-85
Note: All typical values have been guaranteed by characterization and are not tested.

APPLICATION~

(CONT.)

T'L.r--t.
LOGIC

I
L~2:'~~T~

I
I
I
I
I

LOGIC'
INPUT

~-~6---k:"""--<> +15V

.". I

___ ...J

LCOo0501

Figure 9:. InterfaCing· with TTL Open Collector Logic
(Typ. Example for + 15V Case Shown)

y.
GND

IN

·~--O--4_-o 'VDD

15Y~ y . . . 6Y
IN .. Y- ...16V

LCOOO6OI

Figure 10: Interfacing with CMOS Logic

3-86
Note: All typical values have been guaranteed by characterization and are· hoi· tested. .

·IIIIIU~UI!.I

1H5040-1 H5047
APPLICATIONS (CONT.)
+5V

-..

IN

rrL~

I
I
I

LOGIC

J

~+

I

I

-

+5V

I
":"":" I

.

+ 15V OR + VCc(VI TERMINAL}

1

L~~L~~~ ___ ...J

100
lCOOO711

Figure 11: TTL Logic Interface

3-87
Note: All typical values have been guaranteed by characterization and are nOI tested.

Ii

IH5048~jH5051

I

GENERAL DESCRIPTION

FEATURES

The IH5048 family of analog switches is especiaUymade
,for low charge injection and low leakage. Construction
includes our CMOS high level driver circuitry combined wi~h
unique "VARAFEr' switches.

•
•
•
•
•.
•

I Low Charge Injection

I CMOS Analog Switches
Low· Charge Injection-6mV (Typ.)
Quiescent Current Less Than 1J.LA
TTL, DTL, CMOS, PMOS Compatible
Non-latching With Supply Turn-Off
Low rOS(on) - 3Sn (Typ.)
Pin-Out Compatible With IHS040 Family

.ORDERING INFORMATION
,!g

I

Package
DE -16-Pin Ceramic DIP
(Special Order Only)
FD·2 - l4-Pin Flatpak
JE - l6-Pin CERDIP
PE - l6-Pin Plastic DIP
TW - TO-l00 Metal can
(lHS048, IH5050 Only)
Temperature Range
.
M - Military (- SS"C to + l2S"C)
C - Commercial (O"C to + 70"C)
Basic Part Number

ORDERING INFORMATION
INTERSIL
PART NO.

IH5048 Dual
IHS049 Dual
IHS050
IHS051 Dual

TYPE

'OS(on)

SPST
DPST
SPOT
SPOT

3Sn
3Sn
3Sn
3Sn

NOTE 1. See Switching State diagrams for appHcable package equivalency.

SWITCH STATES ARE FOR
LOGIC '1" INPUT

FLAT PACKAGE (FD-2)

T0-1oo

DIP (DE) PACKAGE

DUAL SPST IH5048
(rDS (ON) < 3Sn)
v,

"

v,

v'
D,
I

'N, "

_J

"

v,

0,

",

-,

..

'N,

v'

'"
D,

0,

","

..

..

",

0,

GNO

.NO
ss00200/

SSOO2101

Figure 1: Switching State Diagrams

Note: All typical values have been guaranteed by characterizatiOri "and are! nortested.,·

v'

v'
$8002201

.D~OIl.

.IH5048-IH5051
SWITCH STATES ARE FOR
LOGIC '1" INPUT

FLAT PACKAGE (FD·2)

DIP (DE) PACKAGE

DUAL DPST IHS049
(rDS (ON) < 3SQ)

T00100

(DG184 EQUIVALENT)

"

v,

s,

D,
D,

S,

..... ,

D,
D,

D,

"
"

OJ

'"
'"

0,
0.

'."

GND

SSOO2301

SS002401

SPOT IHSOSO
(rDS (ON) < 3SQ)

'.

v,

v'

S,

D,

S,

D,
I

_J

v,

v'

"
"

·v·

D,

S,

D,

D,

S,

D,

"
GND

G'D

58002501

S8002601

DUAL SPOT IHSOS1
(rDS (ON) < 3SQ)

ss002701

(DG190 EQUIVALENT)

v.

v,

s,

S,
S,

D,
D,

S,

v'

D,
0,

'"

'N,

'"

D,
D,

D,
D,

GND
GND

ss002801

SS002901

Figure 1: Switching State Diagrams (Cont.)

3-89
Note: All typical values have been guaranteed by characterization and are not tested.

IH5048~IH5051
ABSOLUTE MAXIMUM RATINGS
Current (AnyTermi~al) ............... : .. , .............. < 30mA
Storage Temperature .. : ....... : ........... ..,S.5·C to 150·C
Operating Temperature ................•.. -55~C to + 125·C
Lead Temperature (Soldering. 10sec) ................. 300·C
Power. Dissipation ......................................... 450mW
(All Leads Soldered to a P.C. Board)
Derate SmW I·C Above 70·C

v+ -v- .. ; ....... '......................................... : ... .( 33V
vi' -vo ... :·.: ... : .............................................. < 30V
Vo-V- ........................................................ <30V
Vo-Vs ...................................................... < ±22V
VL-V- ........................................................ < 33V
VL -VIN ....................................................... < 30V
VL -GND ...................................................... < 20V
VIN-GND .................................................... < 20V

+

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional
operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to
. absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

(@ 25·C, V + =

+ 15V, V- = -15V, VL = + 5V)

PER OHANNEL

MINIMAX LIMITS
TEST CONDITIONS

SYMBOL

MILITARY

OHARACTERISTIC
-55·C

IIN(ON)
IIN(OFF}
r05(on)
Ar05(ON)
VANALOG
IO(OFF}'
IsioFFi
I~ON)
+ 5(00)

Ion

+ 125·C

±1

10
10
80

±t
±1

.±1
·40

IS· -10mA
VANALOG - -10V

0
±.1
±1

Vo-VS=-10Vto +tOV

+70·C

±1
±1

10
10
75

45

15
(Typ)
±10
VANALOG = -10V to + 10V

UNIT

+ 25·C

p.A
p.A

n

15
(Typ)
±10

n
V

. ±1

100

±5

100

nA

±2

200

±10

200

nA

'.

RL = lk!1, VANALOG - -.10V

500

1000

ns

to + 10V See Fig. 2

loft

Switch "OFF" Time

Q(lNJ.)
OIRR

Charge Injection
Min. Off Isolation
Rejection Ratio
V + Power Supply

1+ Q

IIIN ~ 2.4V Note t
VIN ~ O.SV Note 1

Input Logic Current
Input Logic Current
Drain·Source On
Resistance
Channel to Channel
rOS(ON) Match
Min. Analog Signal
Handling Capability
Switch OFF Leakage
Current
Switch On Leakage
Current
Switch "ON" Time

COMMERCIAL

+ 25·C

RL=lk!1, VANALOG= -10V
to + 10V See Fig. 2
Sea Fig. 3
f = 1MHz, RL = lOOn, CL S 5pF
Sea Fig. 4, (Note 1)

250

500

.ns

1 (Typ)

2 (Typ)

54
(Typ)

50
(Typ)

mV
dB

1

1

10

10

10

100

p.A

1

1

10

1

1

10

10

10.

100

p.A

10

10

100

p.A

1

10

10

10

100

I'A

Quiescent Current

1- Q
1- LQ

V+ = +'15V, V= -15V, VL= +5V
VL = +5V

V - Power Supply
Quiescent Current
+5V Supply
Quiescent Current

IGNO
CCRR

Gnd SUpply
Quiescent Current
Min. Channel to
Channel Cross
Coupling Rejection
Ratio

1
One Channel Off; Any Other
Channel Switchell as per
Periormance Characteristics (Note 1)

54
(Typ)

50
(Typ)

dB

Note 1: Not tested in production.

TEST CIRCUITS

r , rn
t--

ANALOG IfIIPUT

"'IOV

v1\~-J
~G"
h
INPuT

'

lOpF

J

VO\JT

"'NALOG INPUT

v..n. o---[)---t>--3K

COG'C
INPUT

1D--l>-_

LOGIC INPUT
( N0

1oooo .,F

loon

TC005111

TC005011

Figure 2

":"

~ VOUT

I

":,111,0

"='

5111

Figure 3

TC00411t

Figure 4

NOTE 1: Some channels are tumed on by high "1" logic inputs and other channels are turned on by low "0" inputs; however O.BV to 2.4V describes the min.
range for switching properly. Refer to logic diagrams to see absolute value of logic input required to produce "ON" or "OFF" state.

3-00
Note: All typical values have been guaranteed by characterization arid are not' jested.

.D~Dll

IH5048-IH5051
TYPICAL PERFORMANCE CHARACTERISTICS

(Per Channel)
CHARGE INJECTION vs VANALOG
(SEE FIG. 3) CL = 10,OOOpF

rOS(on) vs POWER SUPPLY
VOLTAGE

roS(on) vs VANALOG SIGNAL

160
100

140

3S

120

80

!

100

60

f

80
60

•

40

..,

0

+121"C

+2I·C

r- r-

.,.·c

0
-10 -5 -25'0

's·1mA
• 1 1SV SUPPLIES
2.5

5

~5

-75

0

T

0
-10 -7.5 -5 -25

10

0

0

25

"ANALOG IV)

100

CHANNEL

iii
<>
0:

~

I

o--f--D---t>--=I
r 1='
I
I
,
I

to-. to-.

I

60
3V

Ov...n..

40

20

o1

CCRR
10

= 2ULOG
100

2000mVpp
Your (mVpp)
lk 10k lOOk 1M

SWITCHED
CHANNEL

I

I
I

loon

L-=-

~.I

~--t~

.10

FREQUENCY (Hz)
TCOO5301

OP005201

-12

0"

-10o

!

-80

ii:"

e -6

0

-40

r-.
r"-"

""""''

0

2.5

5

7.5

10.

OPOO5101

VOU,

to-. "

80

c

>

-7.5· -5 -2.5

"ANALOG (VI

I

OFF

to-. to-.

..

-to

10

r-----7.h

120

;;;

7.5
OPO05021

0P004921

:!.

5

VANALOG IVI

OFF STATE
~
DEPENDS ON PART~-

~VOU'

1

-20

'00n

OIRR = 20LOS 2QOOmVpp
VourfmVDjii
0
1Hz 10Hz 100Hz lk 10k lOOk 1M

TC005401

FREQUENCY (Hz)
OPOO5301

3-91
Note: All typical values have been guarantliled by characterizalion and are not tested.

i

IH6048~IH5051

,

TYPICAL PERFORMANCE CHARACTERISTICS (CO~T;) .

I

. '.'

"IID~

POWER SUPPLY QUIESCENT CURRENTY81.0GIC
FREQUENCY RATE
,"
'000

1
i.-

Ii

i

!i:

j

V
v
/

'DO

/'

10

V'

/'

3V

V

V

V

10

100

1k

'OIl

WFOO1601

lOOk

LOGIC fREQUEN'tV@ 10"10 DUTY CYCLE 1Hz)

OPO05401

3-92
Note: All typical values have been guaranteed by characterization and are not'tested;

1"5052/IH5053

QUAD CMOS Analog Switch
GENERAL. DESCRIPTION

FEATURES

The IH5052/3 analog switches use an improved, high
voltage CMOS technology, which prbvides performance
advantages not previously available from solid state
switches. Early CMOS switches were destroyed when
power supplies were removed with an input signal present.
The INTERSIL CMOS technology has ·eliminated this serious systems problem. Key performance advantages are
TTL compatibility and ultra low-power operation - the quiescen.t current requirEjm~ntis less ,than 10pA. .
The IH5052/3 also guarantees Break-Before-Make
switching. This is accomplished by extending the tON time
(400ns TYP.) such that it exceeds tOFF time (200ns TYP.).
,This insures that an ON channel will be turned OFF before
an OFF channel can turn ON, and eliminates ,the need for
external logic required to avoid channel to channel shorting
during switching. With a logical "0" (0.8V or. less) at ,its
control inputs, the IH5052 switches are closed, while the
IH5053 switches are closed with -a logical "1" (2.4V or
. more) at its control inputs.

•
.•
•.
•
•
•
•
•

Switches Greater Than 20Vpp Signals With ± 15V
Supplies
Quiescent Current Less Than 101lA
Overvoltage Protection to f25V
Break-Before-Make Switching toff 100ns, ton
250ns Typical
TTL, CMOS Compatible
Non-~tchln.9, WIth Supply Turri-Off
.IH50524 Normally Clps,d Switches
IH5053 4 Normally Open Switches

ORDERING ,INFORMATION
IH505X , C

JE,

~

..
. .
~

.

Package

-'

.

JE c 16·Pin CERDIP
DE =·16-Pin 'Ceramic DIP
.
(Special Order Only)
Temperature Range
M - Military
C = Ccmmercial.

' - - - - - - - - Basic Part Number

OUTI,INE DWQS
. 'DE,JE
DUAL-IN-LlNE PACKAGE'
lOb

..
.

D.

D,

v'

ISU. .TIIATEI

II>

a.,TCH STATES AIIII
'0lIl LOQtC ..," tHlI!UT

...

D.

.
.

0;'

v'

VL

Dr

II>

lDOO1801
WF01060t

Figure 1: Functional Diagram

Figure 2: Pin Configurations

3-93
Note: All typical values have been guaranteed by characterization· and, are not tested.

.,,'

Current (Any Terminal) .................... : .• ~._.i.i..:.< 30mA
Storage Tell;lper/iJture ...................... -6S·Cto +1~0·C
Operating, Temperature ....•...........,... _5S·C to +.12S·C
Lead Temperature, (Soldering, 1Osec:) .......••... , ..•• 3!)0·C
Power DissiPation ........................................... 4S0mV'/
(All .Leads Soldered to ,a P.C.,Board)
DElrate 6mW I"C Above 10·C

V+ -V- ............................................ : .......... < 33V
V,+,-Vo •. "........ , •........•.. ,; ..•........•...... , ........... '< 30V
VrrV- •....................................................,... ,~' 30V
VrrVs ................ i ...... ';'; •. t ••••• :; ••• , . . . . . . . . . . . . . , •• ,., <: ±22V

~~=~~.::::::::::::::::::::::::'::::~::::::::,:::::::::::::::::::: ~'~~~

< 20V
,< 20V
Stres$8S above thos~ Iist9d und":' Absolute·M;b.irriuinFiatings 'iIl8Y cause perma~ent damage to the device. These are ~tress ratings"only, and functional
'operation of the device at these1lt'iany otherconditions"aboVethose illdicated in the operational 'sections of the speclficationS'lanet implied, Exposure to
VL-GND ...................................... ; ........ : ......
VIt~-GND ..........•............. ,',... 1 •• ' ......... " ...... '........

$

','

absolute maximum ratirig;,conliJllioA&'for exte'nded periods' may'affect device rellabi!ity.

ELECTRICAL CHARACTERISTICS

'

MINIMAX LIMITS

PER CHANNEL

MiLiTARY

TEST CONDITIONS
SYMBOL

,

(TA =2SoC, V + =+, 15V" V': - ":'1SV, VL -' +.5'.()

CHARACTEFilmC

-55°C

+ 25°C

IIN(ON)

Input Logic Current

VIN - 2.4V (IH5053) = 0.8V (IH5052)

,10

±1

IIN(OFF)

Input, Logic Current

VIN -P.8V (IH5053) - 2.4V (IH5052)

,10

'DS(ON)

Drain-Source On
ResistanCe

IS -lOrnA, Vanalog - -10V to + 10V

75

ArOS(ON)

Channel ,to Channel
'DS(ON) Match

+125°C

,.

,

,COMMERCIAL
0

+ 25°C ,,+70°C

lQ

±10

±1

10

flO

75

100

80

80

100

UNIT

fAA,
,iA'
ri

30
(typ)

.Il

(typ)

±11
(typ)

±10
(typ)

V

25

,

VANALOO

Min. Analog Signal
Handling Capability

IO(OFF) I
IS(OFF)

Switch OFF Leakage'
Current

'\lANALOG= -10V to +10V

±1

100

±5

100

nA

ID(ON)
+IS(ON)

Switch On Leakage
Current'
"

Vo-Vs· -10V to +10V

±2

200

±10,

100

nA

toN

Switch "ON" Time

"RL - lkn, Vanalcg - -10V to + 10V

500

jooo

ns

toFF

Switch "OFF"

250

500

ns

Q(INJ.)

Charge 'i'njection,

15

20
(typ)

mV

(typ)

54
(typ)

'50

dB

(typ)

, See, Fig. 3

TIme

Min, Off IsolatiOn
Rejection Ratio

OIRR
1+

+ Power Supply
Quiescent Current

1-

- Power Supply
Quiescent Current

RL.+lk.ll, VanaIcg- -10V to +10V

See~!"ig. 3

See/Fig. 4
I -lMHz; RL -lOOn, CL'; 5pF
See Fig, 5

V+ - + 15V, V- - -15V, VL= +5V

+5V Supply
Quiescent Current

CCRR

Min, Channel, to ,'Channel One Channel Off
Cross Coupling·· Rejection
RatiO

".

are

10

100

10

10

100

fAA

10

10

100

10

10

100

p.A

10

10

100

10

10,

100

fAA

with GND

IVL

NOTE 1: Typical values

10

54
(typ)

lor design aid only, not guaranteed and not subject to productiOn testing,

I

3-94
Note: All, typical values ha~ been guaranteed by characterization and are notlested,

50
(typ)

dB

IH5052/IH5053
TEST CIRCUITS

rhI ":'

ov.fl. -D-1>--

~
INPUT

VOUT

-D----D-1>--f
r
LOGIC
INPUT

.

.to

TTL
LOGIC INPUT

(NO~_

·

YOUT

"-I

,on

'Opf

m
1:-'

AJW.OG_T

ANALOQINPU'

'":'":"

,oon

TC006121

TCOO6011

TCOO5911

Figure 3

Figure 5

Figure 4

NOTE 1: The 5053 is turned on by high "1" logic inputs and the 5052 is turned on by low "0" inputs; however O.BV to 2.4V describes the min. range for
switching properly. Refer to logic diagrams to see absolute value of logic input required to produce "ON" or "OFF" state.

TYPICAL PERFORMANCE CHARACTERISTICS
ros(ON) vs VANALOG SIGNAL
'00

...

(Per Channel)

ros(ON) vs POWER SUPPLY
VOLTAGE

,.

,.

10

....

+'~·C

",10

·c

+

:::.

J!l

c ..

·Cf=

.

Is = 1111A
@:!:15VSUPP

•

-10 -7.5

-5 -2.5

0

2.5

5

-I.,

7.5

10

.,

I-- e -

....

.

1,..00

:ttl

•

-10 -7.5 -5

-2.5

a

2.5

CHARGE INJECTION vs VANALOG
(SEE Figure 8) CL = 10,OOOpF

4Sr-,..--r-....,..--,.--,-r-'T'""""

-

.. ~+-++-+-l-I-+-~
""r--+-+-+---1r--+-+-+---I

I-"""

5

....

1201-+-+-+-1I--+-+-+-l

1-0

J:t-+-+--+-t-+-+--+--i
,.t-+-+--+-t-+-+--+--i

7.5

': tt~t:t:f:ttj

t.

-'0 -7.5 -5 -2.5

OP005601

OPOO5501

r------.,
I

II

... ~

I

r-..i'o

..
•,

J

".....
TTLLEYELS
C R
,.

fTl

~NEL+D_t>_-I.!

!'or-..
'00

CHANNa.

=I*iOGlv=~':.1
100

tit

10k

,.

~
r.ITofiD

I

*

IiI ,_
I
L -

+cH>--

vour

-r'r-~-.

I

L-----=lJ

1000

111

2.5

I

7.5

to

0P005701

CROSS COUPLING REJECTION vs FREQUENCY

,..

0

VANALOG (II)

"ANALOG (V~

VANALOG (II)

'510

2V""

@1MHz

FREQUENCY (Hz)
OPO05BOI

TC00621 I

CrossCoupling Rejection
Test Circuit

3-95
Note: All typical values have been guaranteed by characterization and. a(Eil. not. tested.

I

1"5052/IH5053

I

TYPICAL PERFORMANCE CHARACTERISTICS (CONT.)

;:,

~

I
;

OFF ISOLATION vs FREQUENCY
-'10

""""
...
"
!
-'00

(

...

~

-40

IV",

@.IIC

'"

-10
OIRR '" 2OLOG

o
1Hz

.UI

.....

v:un::)

10Hz 100Ha tic

,.

,.

,.
TC006301

_auINCY (Hz)
0P005901

Off Isolation Test Circuit
POWER SUPPLY QUIESCENT CURRENT vs LOGIC
FREQUENCY RATE

i''''
,.:

/~

,.~

·
,

too

I~

3.

·
!
•

i!.

~

I

to

a
w

I"

/

§

.1

"

WF001711

101

tic

,.

100II

LOGIC FMOUiNCY @ . . . DUTY CYCLI (Hz)
OPO06001

Logic Input Waveform

r-------~-, ·t5V

I
I
I

....,

(11111 TO

_II)

I

I

IN

I

I
II

V"'"

__

+11V

L..;
__
__
_ _ _ ...... _'--',
'11V
TTL
GATE

LCOOO91 I

Figure 6: + 15V Open Collector TTL Interface to IH5052/5053

r

3-96

Note: All typical values have been guaranteed by characterization and are not tested.

.D~OI1. i

IH5052/IH5053

I

APPLICATIONS

N

PROGRAMMABLE GAIN NON-INVERTING AMPLIFIER WITH SELECTABLE INPUTS

i

!eft
W

.... o--.t---.......

.... -..t---....,""--H
CM,

.... -;;t---.....-r
C'"

.... ---.+---..,...,

u.

C...

.." "

101kU

'101,
'101'
.S!I
AFOO2301

Figure 7: Active Low Pass Filter with Digitally Selected Break Frequency

..

ANALOG IWITCM

OECODUI

VIN'

MUX

SEOUENCE
RATE

VIN2

Do

..

RESET

.~,

D,
VIN4

D,

DUAL

,,-K FLIP ,LOP

I INPUT NAND
Poe'Ia'LlTIEI
TTL - 1 11S IN5410

I'QU'BILlT...
TTL· SNI473
CIIOI - C04027
ENABLE

OUT

CMOS - 1 1/3 CD4023

0----------'
AF002401

TRUTH TABLE (IH5052)
ENABLE

MUX
SEQUENCE
RATE

0
1
1
1
1
1

0
0
1 pulse
2 pulses
3 pulses
4 pulses

SEQUENCER
OUTPUT

SWITCH STATES
(- DENOTES OFF)

2°

21

SW1

SW2

SW3

SW4

0
0
1
0
1
0

0
0
0
1
1
0

ON
-

ON
-

-

-ON

-

ON

Figure 8: 4-Channel Sequencing MUX

3-97
Note: All typical values have been guaranteed by characterization and are not tested.

-

-

,: IM'505211H5053

I

-

:::. A LATCHING DPDT SWITCH
~

I

The latch feature insures positiye switching action in
response to non-repetitive or erratic' commands. The A1
and A2 inputs are normally low. A HIGH input to A2 turns 81
. and $2 ON, a HIGH to A1 turns S3 al)d S4 ON. Desiral:!le for
use with limit detectors, peak detectors, or mechanicalcontact closures.
,

TRUTH TABLE (IHSOS2)
~15V

COMMAND

-sv
So
A,

A2

A1

53 & 54

51 & 52

0
0

0

same
on

same

1
1

A,

OUAO 2 INPUT
NAND GATES

TTL -01l74C1O

OR OM_

.r

STATE OF SWITCHES
AFTER COMMAND

cllas . CD4011

DM74COO

.
AFOO2501

Figure 9: A latching DPOT

3-98
Note: All typical values have been guaranteed by characterization and are not tested.

1
0
1

off
off
on
INDETERMINATE

IH5108
8-Channel Fault Protected
CMOS Analog Multiplexer
GENERAL DESCRIPTION

FEATURES

. The IHS108 is a dielectrically isolated CMOS monolithic
analog multiplexer, designed as a plug-in replacement for
the HIS08A and similar devices, but adds fault protection to
the standard performance. A unique serial MOSFET switch
ensures that an OFF channel will remain OFF when the
input exceeds the supply rails by up to ±2SV, even with the
supply voltage at zero. Further, an ON channel will be
limited to a· throughput of about 1.SV less than the supply
rails, thus affording protection to any following.circuitry such
as op amps, DI A converters, etc.
A binary 3-bit address code together with the ENable
input allows selection of anyone channel, or none at all.
These 4 inputs are all TTL compatible for easy logic
interface; the ENable input also facilitates MUX expansion
and cascading .

•
•
•
•
•
•
•
•

All Channels OFF When Power OFF, for Analog
Signals up to ±2SV
Power Supply Quiescent Current Less Than 1mA
± 13V Analog Signal Range
No SCR LatchliP
Break-Before-Make Switching
Pin Compatible With HI-SOBA
Any Channel Turns OFF If Input Exceeds Supply
Ralls by Up to ± 2SV
TTL and CMOS Compatible Binary Address and
ENable Inputs

.ORDERING INFORMATION
PART NUMBER
IH510BMJE
IH510BIJE,
IH510BCPE

TEMPERATURE RANGE
-55°C to + 125°C
-20°C to +B5°C
O°C to 70°C

PACKAGE
16 pin CERDIP
16 pin CERDIP
16 pin plastic DIP

DECODE TRUTH TABLE

YouT D

A2
X
0
0
0
0

A1
X
0
0

1

1

0
0

1
1

1
1

1
1

Ao
X
0
1
0
1

0
1
0
1

EN
0
1
1
1
1
1
1
1
1

ON SWITCH
NONE
1
2
3
4
5
6
7
B

AO, AI, A2. EN
Logic "1" = VAH::: 2.4V
Logic "0" = VAL ~ O.BV
(outline dwg JE. PEl

Ao

A;

A2

EN (ENABLE INPUT)

3 LINE BINARY ADDRESS INPUTS
(1 0 11 AND EN HI
.
ABOVE EXAMPLE SHOWS CHANNEL. TURNED ON

LOO01901

Figure 1: Functional Diagram

TOPVJEW
CDOO4401

Figure 2: Pin Configuration

3-99
Note: All typical values have been guaranteed by characterization and are not tested.

I .1'11108
,,';;
I A8~OuiTE 'MAXI'M'U~ RATINGS ,.

"

Current (Any Terminal) ....... :;': .................. ~ ....... 20mA
Operating Temperature ......................... -55 to 125·C
Storage Temperature .... ; i-r, ........ ; ......:.... -65 10, .150·C
Lead Temperature (Solderirig, 10sec) .....• ; ........:.• ~OO·C
...................
:'.........; ...
~ .• , .';" f200mW
. POwer Dissipation*
.
'
:::
. ',':

VIN(A, EN) ................................... V- to (V+ -0.05)
VIN(A, EN) to Ground ........................... -15V to 15V
Vs or Vo to V+ ................................ ,. +2SV, '-40V
Vs or Vo ~o V- ...•............. ; ................. -25V, +40V
V+ to Ground ....•................... ~ ....... : ......... : ........ 16V
V- to. Ground •...............•.........................•..... -16V

,

"

"

• All leads soldered or welded 10 PC board: Derale 10tnWI"C above.70·C:

Stresses above Ihoselisled under Absolute Maximum flatings may cause permanenl dama~e 10 Ihe device. These are streSs riltings' only: and l~nctiOnal
operation of Ihe device al lhese or any other conditiOris above Ihose iridicaled in Ihe operational sections· of the specificatioils is' nOI implied: Exposure 10
absolute maximum raling conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

(V of; ,= 15V, V- = -15V, VEN = 2.i4V. unless otherwise specified.)
MAX LIMITS

NO
CHARACTERISTIC

MEASURED
TERMINAL

TESTS

. TYP
2$'C

TEST CONDmONS

PER
TEMP

M SUFFIX

CSUFFIX

-55'C

25'C

125'C

~20'CI
G'C

UNIT

25'C

85'CI

-

7O'C

SWITCH
rOS(on)

StoD

8

VO-l0V,
IS--l.0mA

Sequence each
swnch on

700

1000

1000

1500

1200

1200

1800

8

Vo- -10V
IS· -1.0mA

VAL =0,8V,
VAH=2.4V'

500 .

1000

1000

1500

1200

1200

1800

~OS(on)~

'''05(On)

roS(on)max-i'D5(on)min

..,'S'!;.

S

%

rOS(on)avg.
VS-±10V

1S(0II) .

10(011)

S

P

,
10(on)

'0

a..

VS-l0V, VO- -lOY

0,02

iO.S

50

itO

8

VS· -10V, VO= 10V

0,02

iO.5

50

il.0

50

1

VO- 10V, Vs = -IOV

0,02

il.0

100

100

1

VO· -tOV, VS" 10V

O.OS

itO

100

i2.0
±2,0

8

VS(IIIQ = Vo = 10V

Sequence eaCh
switch on

0,1

±2,0

100

i5

100

8

VS(AIQ=VO= -10V

VAL -0.8V,
VAH=2,4V,
VEN=2.4V

0,1

i2,0

100

' i5

100

VEN=0.8V

50
nA

tOO

FAULT
IS with
Power OFF

S

6

VSUpp = OV, VIN - ±2SV,
VEN=VO=OV, Ag, AI, A2=OV

t.O

2.0

5,0

IIS(0ff) with
Ov9fV01lage

S

8

VIN = ±25V, VO· il0V

1.0

5.0

10

AO, At, A21
or,
EN

4

pA

INPUT
IEN(on) IA(on)
or
IEN(Off} IAIOff}
DYNAMIC

I

I

VA =2.4V or OV

0,01

I

I

itO

0.01

it,O
1

ttransition

0

See Figure 3

0.3

IoDen

0

See Figure 4

0.2

IonIEN)

0

See Figure 5

0.6

1,5

ioff(EN)
Ion'foff Break·
Before-Make
Delay Settling
TIme

0

0.4

'I

"OFF" IsolatiOn

D

Cs(oII)

S

VS·O

Coloff}
C05(off}

0

Vo-O

VEN= OV,
I-140kHz

VS-O, Vo=O

to 1 MHz

0

o.to S

I

I

-30

-10

I

-30

,

VA=I5VorOV

8

VEN -

+ SV, Ag, At, A2 Strobed
VIN - ± IOV, Figure 6

VEN-O, RL -200n, CL=3pF, VS-3 YAMS,
f= 500kHz

30

to

I

pA

30

/JS

to

60

dB

5
25
1

pF

3-100
Note: All typical values have been guaranteed by characterization· and are not tested.

,

IH5108
CHARACTERISTIC

MAX UMITS

NO
TESTS
PER
TEMP

MEASURED
TERMINAL

M SUFFIX

TYP
25'C

TEST CONDITIONS

- 55'C

J I
25'C

C SUFFIX

- 2Q'CI

125'C

D'C

I I
25'C

UNIT

85'CI
7O'C

SUPPLY
Supply

1+

Current

I-

1

I

VEN

I

1

~5V

I

All VADD =OV/5V

0.5

0.7

I

0.6

I

0.5

0.02

0.7

I

0.6

I

0.5

I

I

1.0

I

I

1.0

I

Note 1. Readings taken 400rns after the overvoltage occurs.

SWITCHING TIME TEST CIRCUITS
+11SY

V.
tr<100na

V+

"<

~1OV

lOOns

YOUT

Va1:;1; +10V

lISa = -10V
:a:10V
PROBE

-15V

~_""_..._:_:T':.:
..

-

-:t:o

Vour
VS1I= -10V

lISa = +10V

Cp
PROBE IMPEDANCE

~:=
WFOO1801

TC006701

Figure 3: ttransition Switching Test Circuit and Waveforms

+ISV

VOUT ---'¥"'s1'-=_--'fII::..:..._ _ _ _ _ _ _~_
II, ON

SoON

~%

V.

-I tape. 1-

-II... 1WFOO1901

TCOO6801

Figure 4: t open (Break-Before-Make) Switching Test Circuit and Waveforms

+15V

3V

VE.

A2r--'--}-'4>----1-Q VOUT
35pF

WFOO2001
TC006901

Figure 5: ton and toff Switching Test Circuit and Waveforms

3-101
Nole: All typical values have been guaranleed by characterizalion and are nol lesled.

rnA

"~

IMa.s:

It»

!

'SWITCHING TIME TEST CIRCUITS (CaNT.)

lao .ncl1oH OF LOGIC
INPUT s10fta

,

+3V

,

Ao.A,.A•
I-- 4oO-L.I _ _ _S:;EO=.UENCEO

.;;,OV;...._ _...

,I:'

,:

I I

BREAK.BEFORE
MAKEOELAV-V-

II

INPUT

~I '-+1OV

V

:

=-------T----~------

~

BREAK·BEFORE
MAKEOELAV-

IOKn

,
-

-

OV

W

INPUT
--IOV
WFOO2101

TCOO7001

Figure 6: Break-Before-Make Delay Test Circuit and Waveforms
Within the normal analog signal range, the inherent
variation of switch ON resistance will balance out almost as
well as the customary' parallel configuration, but as the
analog signal approaches either supply rail, even for an ON
channel, either the p- or the n-channel will become a source
follower, disconnecting the charmel (Figure 8). Thus protection is provided for any input or output channel against
overvoltage, even in the absence of multiplexer supply
voltages. This applies up to the breakdown voltage of the
respective switches. Figure 9 shows a more de~ailed
schematic of the channel switches, including the back-gate
driver devices which ensure, optimum channel ON resistances and breakdown voltage under the various conditions.

DETAILED DESCRIPTION
The IH5108, like allintersil's multiplexers, contains a set
of CMOS switches that form the channels, and driver and
decoder circuitry to control which channel turns ON, if any.
In addition, the IH5108 contains an internal regulator which
provides a fully TTL compatible ENable input that is
identical in operation to the Address inputs. This does away
with the special conditions that many multiplexer enable
, inputs require for proper'logic swings. The identical circuit
conditions of the ENable and Address lines also helps
ensure the extension of break-before-make switching to
wider multiplexer systems (see applications section).
Another, and more important difference lies in the
switching channel. Previous devices have used parallel nand p-channel MOSFET switches. While this scheme yields
reasonably good ON resistance characteristics and allows
the switching of rail-to-rail input signals; it also has a number
of drawbacks. The sources and drains of the switch
transistors will conduct to the substrate if the input goes
outside the supply rails, and ,even careful use of diodes
cannot avoid channel-to-output and channel-to-channel
coupling in ca!;es of input overrange. The IH5108 uses a
novel series arrangement of the p- and n-channel switches
(Figure 7) combined with a dielectrically isolated process to
eliminate these problems.
'
-15V

+15V

+25YFORCED

-av
OVERVOLTAGE

S

D

S

N-CHAHNELMOSFET-r/JD

ISTURNEDON
BECAUSE Va _ + 25Y

'.CHANNEL

":"

Q

ON.COMMON
OUTPI,IT
LlNEIY

03

Qa

S

Q

TD'"

..l.
':"

EXtE,RNAL

CIRCU1TRY

N-CHANNEL
M08FET IS OFF

MO$FET IS OFF

08001901

(a) OVERVOLTAGE WITH MUX POWER OFF

-l-ll1~
'I-: -~-: ~

-1IV

OVERVOLTl:V
/,

_INPUT~OUTPUT
l~ l~ l~ _
I I T

N-CHANNEL MOSFET
TURNED ON
BECAUSEVoa_ +1OY

as

+--__+-~---="'_.:I

~C~:C:~~AY

, M O S F E T IS OFF
-15VFAOM +15VFROM P.CHANNEL
DRIVERS
DRIVERS MOSFET IS OFF
08002001

(b) OVERVOLTAGE WITH MUX POWER ON

Figure 8: Overvoltage Protection

-15VFROM +15YfROM

DRIVER

DRIVER
08001801

Under some circumstances, if the logic inputs are present
but the multiplexer supplies are not, the circuit will use the
logic inputs as a sort of phantom supply; this could result in
an output up to that logic level. To prevent this from

Figure 7: Series Connection of Channel
Switches

3-102
Note: All typical values have been guaranteed by characterization and are not tested.

IH5108
DETAILED DESCRIPTION (CONT.)
occurring, simply ensure that the ENable pin is LOW any
time the multiplexer supply voltages are missing (Figure 10).
lOOpF

s

08002201

Figure 10: Protection Against Logic Input

MAXIMUM SIGNAL HANDLING
CAPABILITY
The IH510B is designed to handle signals in the ±10V
range, with a typical rOS(on) of 600n; it can successfully
handle signals up to ± 13V, however, rOS(on) will increase to
about 1.Bkn. Beyond ± 13V the device approaches an open
circuit, and thus ±12V is about the practical limit, see Figure
11 .

• '5V

Figure 12 shows the input/output characteristics of an
ON channel, illustrating the inherent limiting action of the
series switch connection (see Detailed Description), while
Figure 13 gives the ON resistance variation with temperature.

0500210)

Figure 9: Detailed Channel Switch Schematic

..

..

t

21<0
"OFf" BEYOND
TIllS VOLTAGE

1.51(0

lK1l

3-103
Note: All typical .values have been guaranteed by characterization and are not tested.

co
....010 IH5i08

is

+1IouT
1.
14
12
10

IIouT

•

VIN

-4

-I
-I
-10
-12
-14

-18
-VOUT
SCOOO201

Figure 12: MUX Output Voltage vs Input Voltage (Channel

Shown; All Channels Similar)

10000

8CIOII

300!1
2OO!l
100II

-SSOC

-25°C

7SOC

125°C

TEMPERATURE
sc000301

Figure 13: Typical rDS(on) Variation With Temperature

3-104
Note: All typical values have been guaranteed by characterization and are not tested.

IH5108
USING THE IH5108 WITH SUPPLIES
OTHER THAN ± 15V
The IH51 08 will operate successfully with supply voltages
from ±5V to ±15V, however rOS(on) increases as supply
voltage decreases, as shown in Figure 14. Leakage currents, on the other hand, decrease with a lowering of supply
voltage, and therefore the error term product of rOS(on) and
leakage current remains reasonably constant. r05(on) also
decreases as signal levels decrease. For high system
accuracy [acceptable levels of rOS(on)] the maximum input
signal should be 3V less than the supply voltages. The logic
levels remain TTL compatible.

FOR

~
s2VSlGNAL5

+lOVSlGNAL
-IOVSlGNAL

APPLICATION NOTES
Further information may be found in:
A003 "Understanding and Applying the Analog Switch,"
by Dave Fullagar
A006 "A New CMOS Analog Gate Technology," by Dave
Fullagar
A020 "A Cookbook Approach to High Speed Data
Acquisition and Microprocessor Interfacing," by Ed
Slieger

zSV

slOV

:t:1SV
SC0Q0401

Figure 14: Typical rDS(on) Variation With
Supply Voltages

IH5108 APPLICATIONS INFORMATION
DECODE TRUTH TABLE
+1&V

-1&V

EN

1-

":'

At
A,

So

5,

+1&V

-15V

At

\'ouT

At

mOR
CMOS
INVERTER

":'

IHI10I

EN

s,.

So

A3

A2

A1

Ao

ON SWITCH

0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1

0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1

0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1
0
1
0
1
0
1

51
52
53
S4
55
56
57

0
1

58
59
S10
511
512
513
514
515
516

AFOO2601

Figure 15: 1 of 16 Channel Multiplexer Using Two IH5108s. Overvoltage Protection Is Maintained
Between All Channels, As Is Break-Before-Make Switching.

3-105
Note: All typical values have been guaranteed by characterization and are not tested.

I
is

1..5108
IH5108 APPLICATIONS INFORMATION (CONT.)
~

T

TTUCMOS INVERTER

:::L>-

Ao

TTUCIIOS NOR GATE

......

IHllOI
10UTOFa
MUX

A.

I

.......

...

I!tI

I

-

I!
•

IH6108

.OUTOFa
MUX

1~

-

'I

•

ANALOG INPUTS

n
J.

'-1
1

IN.

rD-r>i

. . ANALOG INPUTS U

J"

A3

A2

A1

AO

0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1

0
0
0
0
1
1
1
1

0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1

(}

0
0
0
1
1
1
1

Jv

AF002701

DECODE TRUTH TABLE

DECODE TRUTH TABLE
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0,

S.

i

A4

O.

r--<

....0

.L

J.

>--OVaUT

s!..,.

• OUT OF a
I MUX

'-----ii"

02,

IH5053

IH5101

~

f-D-t>-l
S.

~

~

~

J>'

.~

EN

I

Ih

1

ANALOG INPUTS ..

~
~
I

s.

IN.

IHllOI
10000Fa
MUX

EN

1'17

n
!!!!

~

4...

I

1

j

1 ANALOG INPUTS •

I:

+r

VL

ON SWITCH
81
82
83
84
85
86
87
88
89
810
811
812
813
814
815
816

A4

A3

A2

A1

Ao

ON SWITCH

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

0
0
0
0
0
0
0
'0
1
1
1
1
1
1
1
1

0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1

0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1

817
818
819
820
821
5,22
823
824
825
826
827
828
829
830
831
832

Figure 16: 1 Of 32 Multiplexer Using 4 IH5108s and An IH5053 As A Submultlplexer. Note That The
IH5053 Is Protected AgalnstOvervoltages By The IH5108s. Submultiplexlng Reduces
Output Leakage arid Capacitance.

3-106
Note: All typical values have been guaranteed by characterization and are not tested.

IH5116
16-Channel Fault Protec• •
CMOS Analog Multi
GENERAL DESCRIPTION

FEATURES

The IHS116 is a dielectrically
monolithic
analog multiplexer, designed as a plug-in replacement for
the HIS06A and similar devices, but adding fault protection
to the standard performance. A unique serial MOSFET
switch ensures that an OFF channel will remain OFF when
the input exceeds the supply rails by up to ±2SV, even with
the supply voltage at zero. Further, an ON channel will be
limited to a throughput of about 1.SV less than the supply
rails, thus affording protection to any following circuitry such
as op amps, D/A converters, etc. Cross talk onto "good"
channels is also prevented.
A binary 2-bit address code together with the ENable
input allows selection of any channel pair or none at all.
These 3 inputs are all TTL compatible for easy logic
interface. The ENable input also facilitates MUX expansion
and cascading.

•

ORDERING INFORMATION

DECODE TRUTH TABLE

isolat~~r~MOS

PART
NUMBER

TEMPERATURE
RANGE

•
•
•
•
•
•
•
•

PACKAGE

IH5116MJI

-S5°C to + 125°C

28 pin CERDIP

IH5116CJI

O°C to + 70°C

28 pin CERDIP

IH5116CPI

O°C to + 70°C

28 pin Plastic
DIP

'Ceramic package available as special order only
(IHS116MDI/CDI)

All Channels OFF When Power OFF, for Analog
Signals Up to ±25V
Power Supply Quiescent Current Less Than 1mA
±13V Analog Signal Range
No SCR Latchup
Break-Before-Make Switching
TTL and CMOS Compatible Strobe Control
Pin Compatible With HI506A
Any Channel Turns OFF If Input Exceeds Supply
Rails By Up to ±25V
TTL and CMOS Compatible Binary Address and
ENable Inputs

A3

Az

A1

Ao

EN

ON SWITCH

X
0
0
0
0
0
0
0
0

X
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1

X
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1

X
0
1
0
1
0
1
0
1
0

0

NONE

1
1
1

1
1

1
1
1

CD031311

Figure 1: Pin Configuration
(Outline dwg JE, PEl

3-107
Note: All typical values have been guaranteed by characterization and are not tested.

1

1

2
3
4
5
6

1
1
1
1
1

1

1
1
1

0
1
0
1
0
1

1
1
1
1
1
1

Logic "1" = VAH 2: 2.4V VENH 2: 2.4V
Logic "0" =' VAL $ 0.8V

TOPYIEW
Y" COMMON TO SUBSTRATE

1

7
8
9

10
11
12
13
14
15
16

!

1ft

1"5110
.\ ,

Z
~
s,~

s.~

s. 0--:---;.
s.~
s.~
s.~
s,~
s,~

VOUT
D

S,C>---+-

S'O~
s,'~

$,,0----'<

s,. o-:----:"'i
s.. ~
s.. ~
S.. ~
TO OEtODE LOGIC
COIiTROlLlIG 10TH
TlElIS OF MUXIfIG

4 LIIIE IIIAR' AOOIIESS IlPUTS
(OGOI) AIIO II • 5V
ABOVE ElWIPlE SHOWS CHAIIIElS I TURNEO 01.
LD011311

Figure 2: Functional Diagram

+15V
+3.0V
VA+~

VOUT
.~~~,

VA

0

O.9~~

~........~~~---r~VO~
35pF

WK'· ;iL.'
open

-t-

-

open

I

Vs
WF00301t

TC038501

Figure 3: t open

(Bre~k·Before-Make)

3-108
Note: All typical values have been guaranteed by characterization and are not tested.

Switching Test

ien

IH5116

......
G»

ABSOLUTE MAXIMUM RATINGS
VIN (A, EN) to Ground ....................... -15V to + 15V
Vs or VD to V+ ............................... +25V to -40V
Vs or VD to V- ................................ -25V to + 40Y

Current (Any Terminal) .................................... 20mA
Operating Temperature ..... :................. -55 to +~25~C
Storage Temperature .......... : .............. -65 to + 150·C
Lead Temperature (Soldering, 10sec) ................. 300·C
Power Dissipation· ...................................... 1200mW

V+ to Ground ................................................. 16V
V- to Ground ................................................ -16V

'Allieads soldered or welded to PC board. Derate 10mW/·C above 70·C.

8tresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional
operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to
absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS (v+
CHARACTERISTIC

= 15V, v- = -15V, VEN = 2.4V, unless otherwise specified.)
MAX LIMITS

NO
MEASURED TESTS
TERMINAL
PER
TEMP

TYP
25·C

TEST CONDITIONS

M SUFFIX

C SUFFIX

UNIT

-55·C

25·C

125·C

G·C

25·C

7G·C

SWITCH
8 to D

ROS(on)

16

VO-l0V,
IS - -1.0mA

Sequence each
switch on

700

1000

1000

1500

1200

1200

lBOO

16

VO= -10V
IS = -1.0mA

VAL = O.BV,
VAH = 2.4V

500

1000

1000

1500

1200

1200

1BOO

LlROS(on)

LlROS(on) -

ROS(on)max""ROS(on)min

5

n

%

ROS(on)avg.
VS=±10V

8

IS(oft)

D

IO(oft)

D

10(on)

16

Vs -10V,
VO- -10V

0.02

±0.5

50

±1.0

50

16

Vs - -10V,
VO= 10V

0.02

±0.5

50

±1.0

50

1

Vo - 10V,
Vs = -10V

0.05

±1.0

100

±2.0

100

0.05

±1.0

100

±2.0

100

0.1

±2.0

100

±4.0

100

100

:1:4.0

100

VEN

= O.BV

1

Vo = -10V,VS = 10V

16

VS(AII) = Vo = 10V

16

VS(AII) = Vo = -10V VAL = O.BV,
VAH = 2.4V

0.1

±2.0

VSUPP = OV, Y,N - ±25V,
VEN = Vo = OV, Ao, A1, A2 = OV or 5V

1.0

2.0

5.0

1.0

2.0

5.0

0.01

-10

-30

-10

-30

O.ot

10

30

10

30

Sequence each
switch on

nA

FAULT
IS with
Power OFF

8

16

IS(off) with
Overvoltage

8

16

A1,
A2, A3
or
EN

4

Y,N = ±25V, Vo

= ±10V

IIA

INPUT
IEN(on) IA(on)
or
IEN(oft) IA(oft)
DYNAMIC

Ao,

VA

4

= 2.4V

or OV

VA = 15V

ttransition

D

0.3

Iopen

D

0.2

Ion(EN)

D

0.6

1.5

toff(EN)

D

0.4

1

Ion-loft BreakBefore-Make
Delay 8ettling
Time

D

"OFF"
Isolation

D

c,,(off)

8

Vs-O

D

Vo=O

CO(off)

16

D to S

COSLoff)
SUPPLY
Supply

I+ I

1+

Current

I- I

I-

Vs

I

IIA

1
ps

VEN - +5V, AD, A" A2 8trobed
Y,N = ±10V.

25

ns

VEN = 0, RL - 2oon, CL - 3pF,
Vs = 3VRM8, f = 500kHz

60

dB

= 0,

Vo = 0

VEN-OV,

5

f= 140kHz

25

to 1 MHz

1

1

I

All VA-OV/5V

0.5

I

I

VEN= 5V

0.02

pF

I

0.6

I

0.6

3-109
Note: All typical values have been guaranteed by characterization and are not tested.

I

I

1.0

I

I

1.0

I

rnA

!z High-Level
IM5140~I'H5145

Family

..

&
... CMOS Analog Switch
10

:!: GENERAL DESCRIPTION

FEATURES

ThelH5140Family of CMOS monolithic switches utilizes
Intersil's latch-free junction isolated processing to build the
fastest switches currently available. These switches can be
toggled at a rate of greater than 1MHz with super fast ton
times (80ns typical) and faster toft times (50ns typical),
guaranteeing break before make switching. This family of
switches combines the speed of the hybrid FET DG 180
family with the reliability and low power consumption of a
monolithic CMOS' construction.
OFF leakages are guaranteed to be less than 200pA at
25°C. Very low quiescent power is dissipated in either the
ON or the OFF state of the switch. Maximum power supply
current is 1pA from any supply and typical quiescent
currents are in the 10nA range which makes these devices
ideal for portable equipment and military applications.
The IH5140 Family is completely compatible with TTL
(5V) logic, TTL open collector logic and CMOS logic. It is pin
compatible with Intersil's IH5040 family and part of the
DG180/190 family as shown in the switching state diagrams.

• . Super Fast Break-Before-Make Switching
• ton 80ns Typ. toft SOns Typ (SPST SWitches)
• Power Supply Currents. Less Than l.pA
• OFF Leakages Less Than 100pA @ 25°C
Guaranteed
• Non-latching With Supply Turn-off
• Single Monolithic CMOS Chip
• Plug-in Replacements for IH5040 Family and Part
of the DG180 Family to Upgrade Speed and
Leakage
• Greater Than 1MHz Toggle Rate
• Switches Greater Than 20Vp-p Signals With ±15V
Supplies
• TTL. CMOS Direct Compatibility

ORDERING .INFORMATION
Order
Function
Part Number
IHSI40
IHSI40
IHS140
IHSI40

MJE
CJE
CPE
MFD

SPST
SPST
SPST
SPST

IHS141
IHS141
IHS141
IHS141
IHS141
IHS141

MJE
CJE
CPE
MFD
CTW
MTW

Dual
Dual
Dual
Dual
Dual
Dual

IHS142
IHS142
'IHSI42
IHS142
IHS142
IHS142

MJE
CJE
CPE
MFD
CTW
MTW

IHS143
IHS143
IHS143
IHS143

Package
CEADIP
CEADIP
Plastic DIP
Flat Pack

-SS'C
O'C to
O'C to
-SS'C

to 12S'C
70'C
70'C
to 12S'C

16 Pin CEADIP
16 Pin CEADIP
16 Pin Plastic DIP
14 Pin Flat Pack
TD·l00
TO·l00

- SS'C
O'C to
O'C to
-SS'C
O'C to
- SS'C

to 12S'C
70'C
70'C
to 12S'C
70'C
to 12S'C

SPOT
SPOT
SPOT
SPOT
SPOT
SPOT

16 Pin CEADIP
16 Pin CEADIP
16 Pin Plastic DIP
14 Pin Flat Pack
TO·l00
TO·l00

-SS'C
O'C to
O'C to
- SS'C
O'C to
- SS'C

to 12S'C
70'C
70'C
to 12S'C
70'C
to 12S'C

MJE
CJE
CPE
MFD

Dual SPOT
Dual SPOT
Dual SPOT
dual SPOT

16
16
16
14

-SS'C
O'C to
O'C to
- SS'C

to 12S'C
70'C
70'C
to 12S'C

IHSI44
IHSI44
IHSI44
IHSI44
IHS144
IHS144

MJE
CJE
CPE
MFD
CTW
MTW

DPST
DPST
DPST
DPST
DPST
DPST

16 Pin CEADIP
16 Pin CEADIP
16 Pin Plastic DIP
14 Pin Flat Pack
TO·l00
TO·l00

- SS'C to 12S'C
O'C to 70'C
O'C to 70'C
- SS'C to 12S'C
O'C to 70'C
- SS'C to 12S'C

IHS14S
IHS14S
IHS14S
IHS14S

MJE
CJE
CPE
MFD

Dual
Dual
Dual
Dual

16
16
16
14

- SS'C to 12S'C
O'C to 70'C
O'C to 70'C
- SS'C to 12S'C

Note:

16
16
16
14
SPST
SPST
SPST
SPST
SPST
SPST

DPST
DPST
DPST
DPST

Pin
Pin
Pin
Pin

Temperature
Range

Pin
Pin
Pin
Pin

Pin
Pin
Pin
Pin

CEADIP
CEADIP
Plastic DIP
Flat Pack

CERDIP
CERDIP
Plastic DIP
Flat Pack

'000

I~T O>-'\/IIIr......."Io--...,

lOOO2001

Figure 1: Functional Diagram Typical Driver!
Gate - IH5142

1. Ceramic (Side braze) d9V1C9S also available; consult factory. .
2. MIL temp range parts also available with MIL-STD-883 proCessing.

3-110
Note: All typical values have been guaranteed by characterization and are not tested ..

IH5140-IH5145
ABSOLUTE MAXIMUM RATINGS
V+ - v- ..................................................... <33V
V+ - Vo ..................................................... < 30V
Vo - V- ..................................................... < 30V
Vo - VS .................................................... < ±22V
VL - V- ...................................................... < 33V
VL - VIN ..................................................... < 30V
VL .............................................................. < 20V
VIN ............................................................. < 20V

Current (Any Terminal) ................................. < 30mA
Storage Temperature ...................... -65·C to + 150·C
Operating Temperature ................... -55·C to + 125·C
Lead Temperature (Soldering 1Osee) .................. 300·C
Power Dissipation ......................................... 450mW
(All Leads Soldered to a P.C. Board)
Derate 6 mWI"C Above 70·C

NOTE: Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and
functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied.
Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

(@ 25·C, v+ =

+15V, v-= -15V, VL= +5V)

PER CHANNEL

MINIMAX LIMITS
TEST CONDITIONS

SYMBOL

CHARACTERISTIC

MILITARY
-55·C

UNIT

COMMERCIAL

+ 25·C + 12S·C

0

+2S·C

+70·C

LOGIC INPUT
IINH

Input Logic Current

VIN = 2.4V Note 1

±1

±1

10

±10

10

IINL
SWITCH

Input Logic Current

VIN = O.BV Note 1

±1

±1

10

±10

10

iJA
iJA

rOS(on)

Drain-Source On
Resistance

IS= -10mA
VANALOG = -10V to +10V

50

50

75

75

100

n

ArOS(on)

Channel to Channel
rOS(on) Match
Min. Analog Signal
Handling Capability

VANALOG

75

30
(typ)

n

(typ)

±11
(typ)

±10
(typ)

V

25

10(011)+
IS(off)

Switch OFF Leakage
Current

Vo= +10V, Vs= -10V
Vo= -10V, Vs= +10V

±.5
±.5

100
100

±5
±5

100
100

nA

10(on)+
IS(on)
CCRR

Switch On Leakage
Current

VO=VS- -10V to +10V

±1

200

±2

200

nA

Min. Channel to
Channel Cross
Coupling Rejection
Ratio

One Channel Off; Any Other
Channel Switches
See Performance Characteristics

ton
toff

Switch "ON" Time
Switch "OFF" Time

See switching time specifications and timing diagrams.

Q(INJ.)

Charge Injection

See Performance Characteristics

OIRR

Min. Off Isolation
Rejection Ratio

f = lMHz, RL = toOn, CL S 5pF
See Performance Characteristics

SUPPLY
1+

+ Power Supply
Quiescent Current

1-

- Power Supply
Quiescent Current

IL

+5V Supply
Quiescent Current

IGNO

Gnd Supply
Quiescent Current

NOTES:

V+ = +15V, V - = -15V,
VL = +5V

54
(typ)

50
(typ)

dB

10
(typ)

15
(typ)

pC

54
(typ)

50
(typ)

dB

1.0

1.0

10.0

10

10

100

iJA

1.0

1.0

10.0

10

10

100

iJA

1.0

1.0

10.0

10

10

100

iJA

1.0

1.0

10.0

10

10

100

IJ.A

See Performance Characteristics

1. Some channels are turned on by high (1) logic inputs and other channels are turned on by low (0) inputs; however O.BV to 2.4V
describes the min. range for switching properly. Refer to logic diagrams to find logical value of logic input required to produce ON or
OFF state.
2. Typical values are for design aid only, not guaranteed and not subject to production testing.

3-111
Note: All typical values have been guaranteed by characterization and are not tested.

=
z
;;

...

.H5140~IMa145
TYPICAL PERFORMANCE CHARACTERISTICS

..• .

~

I

eo
0

S

-

30

+1D

+8

+fS

.'25"C

....

-u·e

20

.'.

I

-r-- t-- i---I'-- r-

40

IH61.'0ATA

I

I

50

-.2OF==:::f:::==:t--T--t-------1

I

! i

eo

1

,

.

I

-20

SOCKn ON CQ'HJt GAOUHDI'lANE JIQ

I
-2

+2

+4

c- ,,,F

~OO=-~~~.~K~~~~.~~-L~UU.OOK~-L~~.~M--~~~,~
...

-10

FREQUENCV (Hzt

ANALOG SIGNAL VOLTAGE (V)
OP006401

0P006201

"OFF" Isolation vs. Frequency

rDS(on) vs. Temp., @ ±15V,
+5V Supplies

ur-~~II~~--r-rT~nn--~,-rr~

... I--------I-----'----l--...:.-...:.~.;.:..~

2~r_----------4_-----------+----------~

.00

\

eo

ul-------I-

eo
§

I

i

--..r-- 1--'

80

"

!

5V, .SV SUPPLIES

r--...i

V

II

I

I

I

50
40

r-

I

30

_~lOV ••SV

TA. '"' +25"C
IH51., DATA

I I T

SUPPLIES--

1

t--...

1%15v. .sv

~IES
T

.'0 +.

20

+&

+4

1'2

OPOO6501

ANALOG SIGNAL, VOLTAGE fV'

Pow.er Supply Currents vs. Logic Strobe
Rate

OPOO6301

rDS(on) vs. Pow.er Supplies

-'20

+.00

I

"I--+-~~=--+--+---

-'00

j

~

~
1

8

.

-

•
-... -eo
>1

4'r_--~~~-+--4---+-

;:

J ....

.\1....(:,

>i _'Oll-;-~:'--+f'--+--+_-+-.::..,t-T:.:.;... ·\1"'11'"' ~

-'00

-VIfW'CT~

r--t--t--t--+--+-+-+-+' .". . .

.ov..
.FRIQuENCY
-V_lOG

-20

c:,
0
100

-'0

-.ERIOO Of 'ULIE REPETITION RATE (101"

-2

+.0

'K

'OK

,-

1M

10M

FREQUENCY ftb)

ANALOG SIGNAL VOLTAGE (V)
OP0111Of

Channel to Channel Cross Coupling
Rejection vs. Frequency

OPOO9601

Charge Injection vs. Analog Signal

3--112
Note: All typical values have .been guaranteed by characterizatioo and are not tested.

.D~DIL

IH5140-IH5145
SWITCHING TIME SPECIFICATIONS
(ton. toft are maximum specifications and ton-toft is minimum specifications)
PART NUMBER

SYMBOL

IH51405141

IH51425143

CHARACTERISTIC

Ion

Switch "ON" time

loff
ton-loff

Sw~ch

Break-belore-make

ton
loff
lon-loff

Switch "ON" time
Switch "OFF" time
Break-belore-make

Ion
toff
ton-loff

TEST
CONDITIONS

COMMERCIAL

MILITARY
-55'C

+ 25'C

+ 125'C

0

+ 25'C

UNIT

+70'C

100

150

75

125

10

5

Figure 3

150
125
'10 (typ)

175
150
5

ns

Switch "ON" time
Switch 'OFF" time
Break-belore-make

Figure 2'

175
125
10

250
150
5

ns

ton
loff
ton-10ft

Switch "ON" time
Switch "OFF" time
Break-belore-make

Figure 3

200
125
'10 (typ)

300
150
5

ns

175

250

125

150

10

5

200

300

125

150

10

5

175

250

125

150

10

5

200
125
'10

300
150
5

Figu;e 2

"OFF" time

ton

Switch "ON" time

10ft

Switch "OFF" time

lon-10ft

Break-belore-make

Ion

Switch "ON" time

10ft

Switch "OFF" time

lon-10ft

Break-belore-make

ton

Switch "ON" time

10ft

Switch "OFF" time

IH5144-

ton-10ft

Break-belore-make

5145

ton
10ft
ton-10ft

Switch "ON" time
Switch "OFF" time
Break-belore-make

Figu;e 4

Figu;e 5

Figu;e 2

Figure 3

ns

ns

ns

ns

ns

I"N_O_T_E_:_S_W_IT_C_H_I_N_G_T_IM_E_S_A_R_E_M_E_A_S_U_R_E_D_@_9_0_%_P_T_S_____'_T_Y.,PicalvaluesIOrdeSign aid only, not guaranteed nor subject to production testing_

fijd

~
"en : ~

NOTE: SWITCHING TIMES ARE MEASURED @ 9O%PT5.

VOUTA

lOpF

,

16

2

15

I~'K!!

ton

:£

lOY

=-i

T 15V

~INPUT l~

13

7

•

i

-=-

.. __

~ .• ~llnAl

1H914

12

~

... UV

~c

~

I I VOUTAORB.
"

I

10%

,I -ISV i" I
~'NPUT
I

9

i :

,

+15v

• ',-"r--'

""f

~'_'OV!~T

11

, ~10V

.lOV@0
-:~ -lOV@ ~

INPUT

IOH

tON

16'1OY

,Op'

..clJ!~

14 -lSY

8

t--

Cotf
-i I--

il

IOV
"

:~-uv

-11Ion

--1:-

TCO0731I

lolf

Figure 4.
TC007111

Figure 2.

I~
VOUTA

lOpF

'"iT" ~I
0.5 •
~

o

.3V

~

-10VL.@

.,v

~
11 ..-,5V

3

--. r0

15

14 -15V

2

lKn

16 :rlOV

1

TTL INPUT

6

TTL INPUT

10
9

z10V

TC00721 I

TC007411

Figure 3.

Figure 5.
3-113

Note: All typical values have been guaranteed by characterization and are not tested.

II

IH5140-IH5145
. FLATPACK (FD-2)

DIP (JE, PEl
VL

12

"

..

ON.

SS00350t

SSOO3601

SPST

IH5140 (rDS(on) < 75U)
FLATPACK (FD-2)

T0-100

DIP (JE, PEl

v'

"

",

o-'-+---<>,-;,,-~.!..o.,

'•• ...,ro.~.....-

_,

GNO
S8003701

ss000901

DUAL SPST
1!'f5141 (rDS(on) < 75U)
FLATPACK (FD-2)

DIP (JE, PEl

T0-100 (00188 EQUIVALENT)

V'

.. o-t---o-o"""'I-<>.'
"

" o-'-l----<>-1r.y8>.,

...

.. o-'--I--""""~""",ro.·,
.. 0::1---<>"---..,..,0.

...

GNO

88004001

SS004201

SSOO410\

SPOT
IH5142 (rDS(on) < 75 U)
FLATPACK (FD-2)

DIP (JE, PEl (D0191 EQUIVALENT)

"
S,
'"
'"

D,
D,

o,
D.

5500<30'

SSOO4401

DUAL. SPDT
IH5143 (ros(OI1) < 75U)

SWITCH STATES ARE FOR LOGIC "1" INPUT

Figure 6: Switching State Diagrams

'3-114
Note: All typical values have been guaranteed by characterization and. are not tested.

iUI

IH5140-IH5145

...

FLATPACK (FD-2)

f

T()..100

DIP (JE, PEl

...2:
UI

'"

"
" <>,-!,..---o'fLf.'-'o D,

UI

',o:.:,l--<>T'4-'<>D,

" o::.l--<>T'4-'-o D,

.. o-=-tl---o~t=<>D.

ON.
8S004501

v-

GND

SSOO46Of

55004601

DPST
IH5144 (ros(on)

< 75Q)

FLATPACK (FD-2)

DIP (JE, PEl (DG185 EQUIVALENT)

" <>"+--<>"""".:.0 .,
13

03

IN,

88004801
55004901

DUAL DPST
IH5145 (roS(on) < 75il)

Figure 6: Switching State Diagrams (Cont.)

TYPICAL SWITCHING WAVEFORMS

SCALE: VERT... 5V10IV. HORIZ.

= 100ns/0IV.

TTL OPEN COLLECTOR LOGfC DRIVE (Corresponds to Figure 8)

+125"C
WFOO4701

WF00220I.

WF002301

TTL OPEN COLLECTOR LOGIC DRIVE (Corresponds to Figure 9)

+25°C

-&SOc
WFOO2401

+12S·C
WF002501

3-115
Note: All typical values have been guaranteed by characterization and are not tested.

WF002601

TYPICAL SWITCHING WAVEFORMS (CONT.)
TTL OPEN COLLECTOR LOGIC DRIVE
(Corresponds to Figure 10)

TTL OPEN COLLECTOR LOGIC DRIVE
(Corresponds to Figure 11)

+25"1:

+25 0 C
WFOO2801

WFOO2701

APPLICATION NOTE

occur. Turning off the supplies would turn off the analog
signal at the same time.
This fault situation can also be eliminated by placing a
diode in series with the negative supply line (pin 14) as
shown in Figure 10. Now when the power supplies are off
and a negative input signal is present this dio(ie is reverse
biased and no current can flow.

To maximize switching speed on the IH5140 family, TTL
open collector logic (15V with a 1kil or less collector
resistor) should be used. This configuration will result in
(SPST) ton and Ioff times of 80ns and 50ns, for signals
between -10V and + 10V. The SPOT and OPST switches
are approximately 30ns slower in both ton and loft with the
same drive configuration. 15V CMOS logic levels can be
used (OV to + 15V), but propagation delays in the CMOS
logic will slow down the switching (typical 50ns -+' 100ns
delays).

I

ANALOG OUT

•

3

•

When driving the IH5140 Family from either +5V TTL or
CMOS logic, switching times run 20ns slower than if they
were driven from + 15V logic levels. Thus Ion is about
105ns, and toff 75ns for SPST switches, and 135ns and
105ns (ton, Iofl) for SPOT or OPST switches. The low level
drive can be made asfa~t as the high level drive if ±5V
strobe levels are I;ISed instead of the usual OV'.... + 3.0V
drive. Pin 13 is taken to -5V instead of the usualGNO and
strobe input is taken from +5V to -5V levels as shown in
Figure 7.

&

l ' ANALOG IN {CHANNEL AI

!

rrL

!iii

.:!!J '

• =
ANALOG, OUT

:

CMOS
LEVEL

IM'UT
STROBE

9

ANALOG IN {CHANNEL 81

AF002801

Figure 7,.

The typical channel of the IH5140 family conslsts of both
P and N-cllimn~1 MOSFETs. The N-channel MOSFET uses
a "Body, Puller" FET'todrive the body to -1SV(±'1Sv
supplies)t6 get good breakdown voltages when the switch
is in the off state (See Fig. 8). This "Body Puller" FET also
allows the N-channel body to electrically float when the
switch is in the on state producing a fair.ly constant
RoS(ON) with different signal voltages. While this "Body
Puller" FET improves switch performance, it can cause a
problem when analog input sigl1als are present (negative
signals only) arid 'power supplies are off. This fault condition
is shown, in Figure 9.

2:.15" FROM

DRIVERS

-16V

AFOO2901

Figure 8.

Current,will flow, from ':'10V analog voltage through the
drain to body junction of Q1, then through the drain ,to body
junction of OS to GNO. This means that there is 10Vacross:
two forward"biased silic,on diodes and current will go to
whatever value', the input signal Source is capable of
supplying. If the ~oalog input $ignal is derived from the
same supplies as the switch this fault condition cannot

AFOO3001

Figure 9.

3-116
Note: All typical values have been guaranteed by characterization: and are not

tes~ed,

IH5140-IH5145
APPLICATION NOTE (CONT.)
'i6

~r:~~UIVALENT

INA

~ PL.IN
... 1
(1.~or-----"f-- -'6V

(,1;)-----.
~
~

+15V

-;;<

IN.

~

,.1

-=1-

. .V

T2LBIN

AF00310l

Figure 10.

APPLICATIONS

+15V
+15V

2

r

3
ANALOG 0--+-"-4
INPUT

6 -+-OOUTPUT

510
-15V
10.000PF
POLY-=- STYRENE

I

LOGIC INPUT

+3V
OV =

IH5143

=> SAMPLE MODE
> HOLD MODE

AFOO3211

Figure 11: Improved Sample and Hold Using IH5143

16
15

+VANALOG

.s-L
TTL

12 "::"
+5V

11

+15V

10

9
2R

R
ETC.

R

LOGIC
STROBE

SL
+VANALOG

TTL

LOGIC
STROBE

R
ETC.
AF003311

EXAMPLE: If - VANALOG - -10VDC and + VANALOG = + 10VDC then Ladder Legs are switched between ± 10VDC, depending upon state of Logic
Strobe.

Figure 12: Using the CMOS Switch to Drive an R/2R Ladder Network (2 Legs)

3-117
Note: All typical values have been guaranteed by characterization and are not tested.

I

·IID~DI6

., I.H5140-IH5145

!z

.,.
j

APPL.ICATIONS (CONT.)
lOOk!)

!

LOGIC
STROBE
AF003401

CONSTANT GAIN, CONSTANT Q; VARIABLE FREQUENCY FILTER WHICH PROVIDES SIMULTANEOUS LOWPASS, BANDPASS, AND HIGHPASS
OUTPUTS. WITH THE COMPONENT VALUES SHOWN, CENTER FREQUENCY WILL BE 235Hz AND 23.5Hz FOR HIGH AND LOW LOGIC INPUTS
RESPECTIVELY, Q = 100, AND GAIN = 100.

fn

= CENTER

.

1

FREQUENCY = 21T RC

Figure 13: Digitally Tuned Low Power Active Filter

3-118

Note: All typical values have been guaranteed by characterization and are not tested.

IH5148-IH5151
High-Level CMOS
Analog Switches
GENERAL DESCRIPTION

FEATURES

The. IH5148 family of solid state analog switches are
designed using an improved, high voltage CMOS technology. Destructive latchup has been eliminated. Early CMOS
switches were destroyed when power supplies were removed with an input signal present; the IH5148 CMOS
technology has eliminated this problem.
Key performance advantages of the 5148 series are TTL
compatibility and ultra low-power operation. RDS(on) Switch
resistance is typically in the 14n To 18n Area, for Signals
in the -10V to + 10V range. Quiescent current is less than
10j.lA. The 5148 also guarantees Break-Before-Make
switching which is logically accomplished by extending the
tON time (200nsec typ.) such that it exceeds toFF time
120nsec typ.). This insures that an ON channel will be
turned OFF before an OFF channel can turn ON. The need
for external logic required to avoid channel to channel
shorting during switching is thus eliminated.
Many of the devices in the 5148 series are pin-for-pin
compatible with other analog switches, and offer improved
electrical characteristics.

•
•
•
•
•
•
•
•

Low RDS(ON) - 25n
Switches Greater Than 20Vpp Signals With ± 15V
Supplies
Quiescent Current Less Than 100j.tA
Break-Before-Make Switching tOFF 120nsec, Typ.
toN 200nsec Typical
TIL, CMOS Compatible
Non-Latching With Supply Turn-Off
Complete Monolithic Construction
±5V to ±15V Supply Range

CMOS ANALOG SWITCH PRODUCT
CONDITIONING
•
•
•
•
•
•
•

The Following Processes Are Performed 100% in
Accordance With MIL-STD-883
Precap Vlsual- Method 2010, Condo B
Stabilization Bake - Method 1008
Temperature Cycle-Method 1010
Centrifuge - Method 2001, Condo E
Hermeticity-Method 1014, Condo A, C
(Leak Rate < 5 x 10- 7 atm ccls)

ORDERING INFORMATION
ORDER PART
NUMBER

FUNCTION

PACKAGE

TEMPERATURE RANGE

HARRIS
EQUIVALENT

IH5148MJE
IHS148CJE
IH5148CPE
IH5148MFD
IH5148CTW
IH5148MTW

Dual
Dual
Dual
Dual
Dual
Dual

SPST
SPST
SPST
SPST
SPST
SPST

16 Pin CERDIP
16 Pin CERDIP
16 Pin Plastic DIP
14 Pin Flat Pack
TO-l00
TO-l00

-SS·C
O°C to
O°C to
- SO°C
O°C to
-SsoC

to 12SoC
lO°C
70°C
to 12S·C
70°C
to 12SoC

HI-5048
HI-S048
HI-S048
HI-5048
HI-S048

IHS149MJE
IHS149CJE
IH5149CPE
IH5149MFD

Dual
DuaL
Dual
Dual

DPST
DPST
DPST
DPST

16
16
16
14

-5S·C
O°C to
O°C to
-SO°C

to 125·C
70°C
70°C
to 12SoC

HI-S049
HI-5049
HI-S049
HI-S049

IHS1S0MJE
IHS1S0CJE
IH51S0CPE
IHS1S0MFD
IH51S0CTW
IHS150MTW

SPOT
SPOT
SPOT
SPOT
SPOT
SPOT

16 Pin CERDIP
16 Pin CERDIP
16 Pin Plastic DIP
14 Pin Flat Pack
TO-l00
TO-l00

-SS·C to 12SoC
O°C to 70°C
O°C to 70°C
-SO°C ,to 12S·C
O·C to 70°C
-SsoC to 12S·C

HI-S050
HI-SOSO
HI-5050
HI-S050
HI-SOSO
HI-5050

IHS1S1MJE
IH51S1CJE
IHS1S1CPE
IHS1S1MFD

Dual
Dual
Dual
Dual

16
16
16
14

-55°C
O°C to
O°C to
-50·C

HI-5051
HI-5051
HI-SOSl
HI-S051

SPOT
SPOT
SPOT
SPOT

Pin
Pin
Pin
Pin

Pin
Pin
Pin
Pin

CERDIP
CERDIP
Plastic DIP
Flat Pack

CERDIP
CEROIP
Plastic DIP
Flat Pack

to 125°C
70·C
lO°C
to 12SoC

HI~S048

NOTES: 1. Ceramic (side braze) devices also available; consult factory.
2. MIL temp range parts also available with MIL-STD-883 processing.

3-119
Note: All typical values have been guaranteed by characterization and are not tested.

304300-002

:.n~oll

i

IH5148.~IH5151·

!I

ABSOLUTE MAXIMuM RATINGS

I

V+, v- ...........................·............................ <3SV
v+, Vo ....................................................... <30V
VO, v- .................................................•...... <;: 30V
Vo, Vs ................................................. : ..... < .±22V
VL,. v- .................................................... :....... < 33V
VL, VIN ............ : .......................................... < 30V
VL ............................. ; ................................. < 20V
VIN................................................: ........... ,. < 20V

'10

Current (Any Terminal) .............................., .. < SOmA
Storage Temperature ...................... -SS·C to + 1S0·C
Operating Temperature ...... ; ..... , ...... -5S·C to . + 12S·C
Lead Temperature (Soldering, 1Qsec) ................. 300·C
Power Dissipation .......... ; .............................. .4S0mW
(All Leads Soldered to a P.C. Board)
Derate SmW I"C Above 70·C

NOTE: Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only. and
functional operation of the device at these or any other conditions above those indicated in the operational sections. of the spec"ications is not implied.
E~posure to absolute maximum rating conditions for extended periods may affect device reliability.

+15V (vtl

4KO

51(0

16

BD014011

Figure 1: Functional Diagram (Typical SwltchSchematic-IH5150 in 16 pin DIP PKG.)

3-120
Note: All typical values have been guaranteed by characterization and are not tested.

.O~OIL

IH5148-IH5151
ELECTRICAL CHARACTERISTICS

(TA @ 25°C, V+

= +15V,

V-

= -15V,

PER CHANNEL

= +5V)

MINIMAX LIMITS
TEST CONDITIONS

SYMBOL

VL

COMMERCIAL

MILITARY

CHARACTERISTIC

+ 25°C

+ 70°C

IIN(ON)

Input Logic Current

VIN = 2.4V (Note 1)

±1

±1

±10

±1

±10

p.A

IIN(OFF)

Input Logic Current

VIN = 0.8V (Note 1)

±1

±1

±10

±1

±10

p.A

ROS(ON)

Drain-Source On
Resistance

Vo=±10V, 15= -10mA

25

25

50

30

n

-55°C

+ 25°C + 125°C

UNIT

0

AROS(ON)

Channel to Channel
ROS(ON) Match

10
(Typ)

15
(Typ)

n

VANALOG

Min. Analog Signal
Handling Capability

±14
(Typ)

±14
(Typ)

V

Switch OFF Leakage
Current

VANALOG = -10V to + 10V

±0.5

50

±1.0

100

nA

Switch On Leakage
Current

Vo= Vs = -10V to + 10V

±1.0

100

±2.0

100

nA

Q(INJ)

Charge Injection

See Figure 4

(10)
(Typ)

(10)
(Typ)

mV

OIRR

Min. Off Isolation
Rejection Ratio

1= lMHz, RL ~ tOOn, CL:S 5pF
See Figure 5

54
(Typ)

50
(Typ)

dB

IO(OFF)
IS(OFF)
ID(ON) +
IS(ON)

SUPPLY
1+

+ Power Supply
Quiescent Current

1-

- Power Supply
Quiescent Current

IL

+ 5V Supply
Quiescent· Current

IGNO

Gnd Supply
Quiescent Current

CCRR

Min. Channel to
Channel Cross
Coupling Rejection
Ratio

10

10

100

10

p.A

10

10

100

10

p.A

10

10

100

10

p.A

10

10

100

10

p.A

50

dB

VI = + 15V, V2 = -15V.
VL= +5V, VR=O

One Channel Off; Any Other
Channel Swijches as per
Figure B

54
(Typ)

NOTE 1: Some channels are turned on by high "I" logiC inputs and other channels are turned on by low "0" inputs; however O.BV to 2.4V describes the min.
range lor switching properly. ReIer to logic diagrams to lind logical valus 01 logic input required to produce "ON" or "OFF" state.

SWITCHING TIME SPECIFICATION
IH5148 SPST SWITCH
SYMBOL

MAX

UNIT

Ion

Swijch "on" time

PARAMETER

RL=IKn, VANALOG= -IOV

TEST CONDITIONS

MIN

250

ns

loll

Switch "off" time

To + 10V; See Figures 3 and 6

200

ns

IH5149 OPST SWITCH
SYMBOL

MAX

UNIT

ton

Switch "on" time

PARAMETER

RL = 1Kn;· VANALOG = -10V

TEST CONDITIONS

MIN

350

ns

loll

Switch "off" time

To + 10V; See Figures 3 and 6

250

ns

IH5150 & IH5151 SPOT SWITCH
MAX

UNIT

ton

Switch "on" time

RL = lKn, VANALOG = -10V

500

ns

loll

Switch "off" time

To + 10V; See Figures 3 and 6

250

ns

SYMBOL

PARAMETER

TEST CONDITIONS

MIN

NOTE 2: For IH5150 & IH5151 devices, channels which are off lor logic input ~ 2.4V (Pins 3 & 4 on 5150, & Pins 3 & 4, 5 & 6 on 5151) have slower Ion time,
than channels on Pins I, 16, & 8, 9. This is done so switch will maintain break-balora-make action when connected in OT configuration, i.e. Pin 1
connected in Pin 3.

3--121
Note: All typical values have been guaranteed by characterization and are not tested.

...

".U~OIL

10
;; IH5148";I'H5151

;

I

......

' cD

"

SWITCH S1'ATESARE FOR
L()GIC "1" INPUT

DIP (DE) PACKAGE

FLAT PACKAGE

(TW) PACKAGE

10

;

DUAL.SPST IH5148
v,

"

v·

v·
,i

"

I,

.,
.,

0,

I,

0,

I,

.,

v,

II

"

II

I,

0,

.,

.,
lID

v·

..

II

v-

II'

SS007401

•

I,

0,

I,

...

v-

.

v88007601

S$007501

DUAL DPST IH5149
v,

v,

.
.,..
I,

0,
0,

I

_1

..
It

II
lID

.,

.,

.
I,

v·
n

"

..
t,

II
I

0,

,.

...

II

vS5007701

..

V-

55007801

SPDT IH5150

"

,.

"

,.

I,
I,

I,

..

•

,.
V,

n

II

,"

II

I,

..

t,

I,
I,

It

•

•

... .

II
lID

II

V88007901

SSOO8OOI

DUAL SPDTIH5151
v,

,.

.,....
I,

"

OJ

....

..'1
lID

.,

I,
I,

""

II

v·
n
0,

Is

.,

,

....

,.

II
OlD

SSOO82
  • - IOpf I m f:'" _oa ...... :: --D-i>- 1110 ",00000 5.0 LOGIC IUUT tlDro--t>-- ~ 1 '":'":" '000 ":'''':'' TC03681 I ~ TC037011 TC03691 I Figure 3 Figure 4 TYPICAL PERFORMANCE CHARACTERISTICS Figure 5 (Per Channel) ROS(ON) @ ±15V, ±5V SUPPLIES Ros(ON) o 100 90 80 70 60 50 40 30 20 10 ±5V SUPPLIES i@ .,...Er- 't!J A5V SUPPLIEs.. o -12V-l0-8-6 -4 -2 OV 2 +4V 6 8+10V+121 HDS (ON) vs ANALOG INPUT VOLTAGE 0P056911 CROSS COUPLING REJECTION vs FREQUENCY 120 .......... 100 =- ~ ... 80 ec 60 Vi C> II: :> . ~ '~-;¥ ~ ..... I" ..... .... ......... ~ ..... 40 3V INPu.!!"l.- 20 CCRR o 1 10 2oLOG 2000mVpp VOUT (mVpp) 100 1k 10k 100k 1M SWITCHED CHANNEL '" FREOUENCY (Hz) r I I I I I I I I I L"" VOUT 1000 ~I ~-I ~----1'" ~ 510 TC033521 OP056811 CROSS COUPLING REJECTION TEST CIRCUIT 3-123 Note: All typical values have been guaranteed by characterization and are not tested, ;; IIf5148-IH5151 ;; , ! TYPICAL PERFORMANCE CHARACTERISTICS (CONT.) OFF ISOLATION ,...120 ! i" -100 '- ~ ..... ii' -80 ~ ...ei&:" c :» VI FREQUENCY . 510 .... 1"'- ..... -60 -- OFF STATE ~_ OEPENDS ON. PART~ -40 -20 20LOG 2000mVpp VOur(mVpp) 1Hz 10Hz 100Hz lk 10k lOOk 1M = OIRR o l---o . 1 1000 Your .... FREQUENCY (Hz) TC033111 OFF ISOLATION TEST CIRCUIT POWER SUPPLY QUIESCENT CURRENT FREQUENCY RATE :!!i ~ + ffi z: 20 I ~ LOGIC / f = TI ~ ~ !i! ~ / ~ VI I 2 1 V 10 TC033411 100 lk 10k lOOk LOGIC FREQUENCY @ 10% DUTY CYCLE (Hz) OP056711 LOGIC INPUT WAVEFORM TC0367 2.4V VENH > 2.4V Logic "0" = VAL < O.8V v+ Db NC 3 S8b S7. S7b SIb" S8a S5a S4lI S3a S2a Ao A, A2 V+ COMMON TO SUBSTRATE CD035601 Figure 1: Pin Configuration (Outline dwgs JE, PEl 3-135 Note: All typical values have been guaranteed by characterization and are not tested. 1 1 1 1 1 1 1 1 1 2 3 4 5 6 7 8 IIH5216 ! 511 u.o---"'i S30o---"'i S40o---"'i S5ao---"'i ... 0-:--; 57. o---"'i ... 0---"1 Do till SI~ S2~0---"I S3IIo---"I Mo---"I S5IIo---"'i SIll 0---'"< S~O---:J S.o---'"< TO OlCOOl lOGIC COITROIUNG 80TH TIERS Of MUXI!IG 3 UIE "I'RY AOIHIfSS IIIPUTS 110 01 AID Ell • 5V AIOVE EXAMI'U SHOWS CHA.IElS I. 'NO ,_ ON. LD011211 Figure 2: Functional Diagram +15V WK' tIL +3.0V VA+~ .wrr~o~ VOUT 0 ~~~-r~~----~VO~ O.9VO Vo 35pF open - open Vs TC034611 TC038501 Figure 3: t open (Break-Before-Make) Switching Test 3-136 Nole: All typical values have been guaranteed by characterizalion and are nol l'1sled. iUI IH5216 ...N ~ ABSOLUTE MAXIMUM RATINGS VIN (A, EN) to Ground ....................... -15V to + 15V Vs or VD to V+ ............................... +25V to -40V Vs or VD to V- ................................ -25V to +40V Current (Any Terminal) .................................... 20mA Operating Temperature ...................... -55 to + 125·C Storage Temperature ......................... - 65 to + 150·C Lead Temperature (Soldering, 10sec) ................. 300·C Power Dissipation" ...................................... 1200mW V+ to Ground ............................. , ................... 16V V- to Ground ................................................ -16V "All leads soldered or welded to PC board. Derate 10mW/'C above 70'C. Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and lunctional operation 01 the device at these or any other conditions above those indicated in the operational sections 01 the specilications is not implied. Exposure to absolute maximum rating conditions lor extended periods may allect device reliability. ELECTRICAL CHARACTERISTICS (v+ CHARACTERISTIC = 15V, v- = -15V, VEN = 2.4V, unless otherwise specified.) MAX LIMITS NO MEASURED TESTS TERMINAL PER TEMP TYP 25'C TEST CONDITIONS M SUFFIX C SUFFIX UNIT -55'C 25'C 125'C G'C 25'C 70'C SWITCH S to D ROS(on) 16 Vo -10V. IS= -LOrnA Sequence each switch on 700 1000 1000 1500 1200 1200 1800 16 Vo - -10V IS= -1.0mA VAL - 0.8V, VAH - 2.4V 500 1000 1000 1500 1200 1200 1800 .:l.Ros(on) ROS(on)max-ROS(on)min .:l.ROS(on) = n % 5 ROS(on)avg. VS=±10V S IS(oll) D 10(otl) D 10(on) 16 Vs -10V, Vo = -10V 0.02 ±0.5 50 ±1.0 50 16 Vs - -10V, Vo = 10V 0.02 ±O.S SO ±1.0 SO 1 Vo -10V. VS= -10V O.OS ±1.0 100 ±2.0 100 0.05 ±1.0 100 ±2.0 100 0.1 ±2.0 100 ±4.0 100 0.1 ±2.0 100 ±4.0 100 VEN =O.8V 1 VO= -10V,VS-10V 16 VS(AIJ) = Vo 16 VS(AIJ) = 10V = Vo = Sequence each switch on -10V VAL - 0.8V, VAH = 2.4V nA FAULT IS with Power OFF S 16 Vsupp = OV, VIN = ±25V, VEN=VO=OV, A(:), AI, A2=OV or SV 1.0 2.0 S.O IS(oII) with OVervoltage S 16 VIN = ±25V, Vo - ± 10V 1.0 2.0 S.O A(j, AI, A2 or EN 4 VA = 2.4V, or OV om -10 -30 -10 -30 4 VA=ISV 0.01 10 30 10 30 p.A INPUT IEN(on) IA(on) or lEN (off} IA(off} DYNAMIC ttransition D 0.3 Iopen D 0.2 Ion(EN) D 0.6 I.S D 0.4 1 \on-loll BreakBelore-Make Delay Settling Time D "OFF" Isolation D VEN = S Vs-O CO(otl) D Vo=O Supply Current D to S 1+ I- 1+ I- At, A2 Strobed VIN = ±10V. VEN = 0, RL = 200n, CL = 3pF, Vs = 3VRMS, I = SOOkHz Cs(otl) CDStoffl SUPPLY +SV,' A(:), Vs = 0, Vo - 0 1 I 1 I 1VEN-OV, 1I = 140kHz 1to 1 MHz p.A 1 IoIl(EN) 16 1 I'S 25 ns 60 dB 5 25 pF 1 1 0.5 I 0.02 All VA = OV/SV VEN=SV 3--137 Note: All typical values have been guaranteed by characterization and are not tested. 0.6 0.6 1 I 1 I 1.0 1.0 1 I mA ; IH5341 ('I) ; Dual SPST CMOS RFIVideo Switch GENERAL DESCRIPTION FEATURES The IHS341 is a dual SPST, CMOS monolithic switch which uses a "Series/Shunt" ("T" switch) configuration to obtain high "OFF" isolation while maintaining good frequency response in the "ON" condition. Construction of remote and portable video equipment with extended battery life is facilitated by the extremely low current requirements. Switching speeds are typically ton = lS0ns and toti = 80ns, and "Break-Before-Make" switching is guaranteed. Switch "ON" resistance is typically 40n-SOU with ± 15V power supplies, increasing to typically 175U for ±5V supplies. The devices are available in TO-l00 and 14-pin epoxy DIP packages. • • • • • • • • • ROS(on) < 75U Switch Attenuation Varies Less Than 3dB From DC to 100MHz "OFF" Isolation> 60dS @ 10MHz Cross Coupling Isolation> 60dB @ 10MHz Compatible With TTL. CMOS Logic Wide Operating Power Supply Range Power Supply Current < 1~ "Break-Before-Make" Switching Fast Switching (80ns1150ns Typ) ORDERING INFORMATION PART NUMBER TEMPERATURE RANGE PACKAGE IH5341 CPO o to +70·C 14-pin PLASTIC DIP IH53411TW -20·C to +85·C 10-pin TO-l00 IH5341MTW -55·C to + 125°C 10-pin TO-l00 s, o--~------<~--------J I ON,D I , I INz TOPYIEW TOI'VIEW COOO3301 LS00781t Figure 1: Functional Diagram (Switches are open for a logical "0" control input, and closed for a logical "1" control input.) Outline dwg: PO Outline dwg: TW Figure 2: Pin Configurations 3-138 Note: All typical values have been guaranteed by characterization and are not tested. 30S528-002 i IH5341 en ...... Col ABSOLUTE MAXIMUM RATINGS v+ to Ground ............................................... + 17V V- to Ground ................................................ -17V VL to Gro.und .......................................... V+ to VLogic Control Voltage ................................ V + to VAnalog Input Voltage ................................. V + to VCurrent (any Terminal) ..................................... 50mA Operating Temperature: (M Version) ......................... -55°C to +125°C (I Version) ............................. -25°C to + 85°C (C Version) .............................. O°C to + 70 0 e Storage Temperature ...................... -65°e to + 150 0 e Lead Temperature (Soldering, 10sec) ................. 300 oe Power Dissipation ......................................... 250mW Derate above 25°C @ ........•............. 7.5mW/oe Stresses above those listed under" Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. +15V -15V .......~--+-=-o SWITCH 05002901 Figure 3: Equivalent Schematic Diagram IH53411TW (1/2 of actual circuit on chip shown) 3-139 Note: All typical values have been guaranteed by characterization and are not tested. ; IH5341· :3 ! DC ELECTRICAL CHARACTERISTICS = + 15V, VL = +5V, v- = -15V, ·TA = 25°C unless v+ otherwise specified. M GRADE DEVICE SYMBOL PARAMETER Supply Voltage Ranges Positive Supply Logic Supply Negative Supply V+ VL V- TEST CONDITIONS Switch "ON" Vo = ±5V Resistance (Note 4) IS = lOrnA, VIN Vo-±10V ROS(on) Switch "ON" Resistance On Resistance Match Between Channels dROS(on) -SS·C + 25·C + 12S·C IIC GRADE DEVICE -251 O·C +2S·C +851 , +70·C 4.5> 16 .4.5> V+ -4> -16 (Note 3) ROS(on) TYP V 75 ~ 75 100 75 75 100 2.4V V+ =VL= +5V, VIN = 3V V- = -5V, Vo = ±3V 15= lOrnA IS = lOrnA, Vo = ±5V 125 125 175 150 150 175 250 250 350 300 300 350 VIL 10(011) or 15(011) Switch "OFF" Leakage (Notes 2 and 4) VS/O - ±5V VIN" O.BV VS/O = ±14V ±0.5 50 ±1.0 100 ±0.5 50 ±1.0 100 10(on) + IS(on) Switch "ON" Leakage VS/O =±5V VIN ~ 2.4V VS/O = ±14V ±1 50 ±2 100 liN Input Logic Current VIN 1+ Positive Supply Quiescent Current 1IL NOTES: 1. 2. 3. 4. > 2.4 V < O.B ±1 100 ±2 100 0.1 .±1 ±1 10 ±1 ±1 10 VIN=OVOr +5V 0.1 1 1 10 1 1 10 Negative Supply Quiescent Current VIN =OV or +5V 0.1 1 1 10 1 1 10 Logic Supply Quiescent Current VIN -OV pr +5V 0.1 1 1 10 1 1 10 ~ 2.4V or < OV AC ELECTRICAL CHARACTERISTICS = + 15V, VL = + 5V, v- = OV, TA = 25°C unless SYMBOL p.A otherwise specified (Note 5). PARAMETER TEST CONDmONS MIN TYP MAX UNIT 150 BO 300 150 ns Ion Switch "ON" Time See Figure 4 toll OIRR Switch "OFF" Time "OFF" Isolation Rejection Ratio See Figure 4 See Figure 5 (Note 6) CCRR Cross Coupling Rejection 'Ratio See Figure 6 (Note 6) 60 Switch Attenuation 3dB Frequency See Figure 7 (Note 6) 100 f3dB nA Typical values are not tested in production. They are given as a design aid only.. Positive and negative voltages applied to opposite sides of switch, in both directions successively. These are the operating voltages at which the other parameters are tested, and are not directly tested. The logic inputs are either greater than or equal to 2.4V or less than or equal to O.BV, as required, for this test. V+ NOTES: n 5 Logical "I" Input Voltage Logical "0" Input Voltage VIH UNIT 5. All AC parameters are sample tested only. 6. Test circuit should be built on copper clad ground plane board, with correctly terminated coax leads, etc. 3-140 Note: All typical values have been guaranteed by characterizaiion and, are not tested. 60 dB iCII IH5341 ~ TEST CIRCUITS Tn INPUT +3V ov -""7'50%------'"""" .+1W-T---~~=-----~ YouT 10% VANALOG + SY +:: YouT ov ov----... =rI...!TL IN -+--''F't 10" YOUT RL = VANALOG 1Il00 =- SV __ 1W _____ ~~IO%~~___~ WFOO33(J1 TCOO791 I Note: Only one channel shown. Other acts identically. Figure 4: Switching Time Test Circuit and Waveforms TC008101 TGOOSOOI VIN = ±5V (10Vp_p) @ f = 10MHz VIN VIN OIRR = 20log - - Your = 225mVrms @ f = 10MHz VIN CCRR = 20109 - - vour Note: Only one channel shown. Other acts identically. Figure 5: OFF Isolation Test Circuit Figure 6: Cross-Coupling Rejection Test Circuit RL ATTN: =20 10910---"-ROS(on)+RL Nominally, at DC, this ratio is equal to -4dB. When the attenuatio reaches -1 dB, the frequency at which this occurs is f3dB. TCOO8201 Note: Only one channel shown. Other acts identically. Figure 7: Switch Attenuation Versus Frequency, Test Circuit 3-141 Note: All typical values have been guaranteed by characterization and are not tested. i·IH5341 I TYPICAL PERFORMANCES CHARACTERISTICS ROS(on) Versus Analog Input Level with ±SV POl/ier Supplies Ros(onl Versus Analog Input Voltage w th ± 1SV Power .Supplies 70 PIN 3= +ISIf, PIN 7= -15V PIN.l0= +SV . TA=25·C .: 60 7 'I g i 50 i 40 V V" " PIN 3=PIN 10= +5V PIN 7= -SV fo-160 TA=2S·C ~ ~120 V 80 if S 70 II: II: 80 6 / 50 , 90 80 30 0.1 0 +S ANALOG INPUT VOLTAGE LEVEL (V) 1 10 100 FREQUENCY (MHz) QP006701 CPOO6601 100 '\ 40 80 -s ·c TA= +25 90 / OPOOB801 Typical Switch Attenuation Versus Frequency (RL = 7S0, See Figure 7) CCRR (Cross Coupling Rejection) Versus Frequency (See Figure 6) -3.3 TA=ZSOC T,,-.+2S·C m-3.4 S " -3.5 .2 if 70 S II: II: .; 100 30 -15 -10 -5 0 5 10 15 ANALOG INPUT VOLTAGE LEVEL (V) u u 100 j g140 OIRR (OFF Isolation Rejection) Versus Frequency (See Figure 5) ~ -3.8 S " ~3.7 ' - - 50 ~ -3.8 40 UI ~ 60 :c ~- ~ • -3.9 -4.0 0.1 30 0.1 1 10 100 l}111111 1 10 OPO07801 0P006901 750 ~0--0 DRAIN SWITCH L_ _ _ J (OUT) I +15V SOURCE 0-----<)"'"'1/ ( SWITCH. (IN) CONTROL ~_ r-'\...~o­ IN~ DRIVER TRANSLATOR 100 FREQUENCY (MHz) FREQUENCY (MHz) --'11\'-.....- - . , Vour r------':r; ANALOG ~ INPUT LOOO2201 Figure 8: Internal Switch Configuration DETAILED DESCRIPTION As can be seen in Figure 8, the switch Circuitry is of the so-called "T" configuration, where a shunt switch is closed when the switch is open. This provides much better isolation between the input and the output than single series switch does, especially at high frequencies. The result is excellent performance in the Video and RF region compared to conventional Analog Switches. The input level shifting circuit is similar to that of the IH5140 Series of Analog Switches, giving very high speed and guaranteed "Break-belore-Make" action, with negligible static power consumption and TTL compatibility. 1000pFT CHOLD r--1-+ 3V ...J L-ov TTL. IN ISTROBE) TCO08301 • Adiust pot for OmYpop step @ YOUT with no analog (AC) signal· present Figure 9: Charge Injection Compensation 3-142 Note: All typical values have been guaranteed by characterization and are not tested. .U~OI1. en i IH5341 ! DETAILED DESCRIPTION (CONT.) +5V YoUT DC81AS VOLTAGE --sv o-.J\I..,.,....., ANALOG '--.l INPUT~ ...-......-=f:ll I.F 22I>i'-3SpF CHOto T.... 1000pF + 3V OV :rL TTL CONT~LII'I TC008401 Figure 10: Alternative Compensation Circuit APPLICATIONS Charge Compensation Techniques +,15V-IW-_----. Charge injection results from the signals out of the level translation circuit being coupled through the gate-channel and gate-source/drain capacitances to the switch inputs and outputs. This feedthrough is particularly troublesome in Sample-and-Hold or Track-and-Hold applications, as it causes a Sample (Track) to Hold offset. The IH5341 devices have a typical injected charge of 30pC-50pC (corresponding to 30mV-50mV in a 1000pF capacitor),at VS/O of about OV. This 'Sample (Track) to Hold offset can be compensated by bringing in a signal equal in magnitude but of the opposite polarity. The circuit of Figure 9 accomplishes this charge injection compensation by using one side of the device as a S & H (T & H) switch, and the other side as a generator of a compensating signal. The 1kn potentiometer allows the user to adjust the net injected charge to exactly zero for any analog voltage in the -5V to +5V range. Since individual parts are very consistent in their charge injection, it is possible to replace the potentiometer with a pair of fixed resistors, and achieve less than 5mV error for all devices without adjustment. An alternative arrangement, using a standard TTL inverter to generate the required inversion, is shown in Figure 10. The capacitor needs to be increased, and becomes the only method of adjustment. A fixed value of 22pF is good for analog values referred to ground, while 35pF is optimum for AC coupled signals referred to -5V as shown in the figure. The choice of - 5V is based on the virtual disappearance at this analog level of the transient component of switching charge injection. This combination will lead to a virtually "glitch-free" switch. TCOO8501 Figure 11: Overvoltage Protection Circuit Overvoltage Spike, Protection If sustained operation with no supplies but with analog signals applied is pOSSible, it is recommended that diodes (such as 1N914) be inserted in series with the supply lines to the IH5341. Such conditions can occur if these Signals come from a separate power supply or another location, for example. The diodes will be reverse biased under this type of operation, preventing heavy currents from flowing from the analog source through the IH5341. The same method of protection will provide over ±25V overvoltage protection on the analog inputs when the supplies are present. The schematic for this connection is shown in Figure 11. 3-143 Note: All typical values have been guaranteed by characterization and are not tested. :: .HS35l:·' i QUAD SPST CMOS - RFIVideo Switch ·GENERAL DESCRIPTION ~~ FEATURES cM'os The IH5352 is a QUAD SPST, monolithic vide9 'switch which uses a "Series/Shunt" ("T" switch) configuration to obtain high "OFF" isolation while maintaining good frequency response in the "ON" condition. Construction of remote and portable video equipment with extended battery life is facilitated by the extremely iow current requirements. Switching speeds are typically ton = 150ns and toft = 80ns, and "Break-Before-Make" switching is guaranteed. Switch "ON" resistance is typically 40n-50n with ±15V power supplies, increasing to typically 175n for ±5V supplies. IH5352CPE IH53521JE IH5352MJE TEMPERATURE RANGE Q'C to +70'C ROS(on) • Switch Attenuation Varies Less Than 3dB From DC to 100MHz "OFF" Isolation> SOdB @ 10MHz Cross Coupling I,solation > SOdB @ 10MHz Directly Compatible with TTL, CMOS Logic Wide Operating Power Supply Range Power Supply Current < 1~ "Break-Before-Make" Switching Fast SWitching (80ns/150ns Typ) • • • • • • • APPLICATIONS • • • • • ORDERING INFORMATION PART NUMBER < 7Sn • PACKAGE Video Switch Communications Equipment Disk Drives Instrumentation CATV l6-PIN PLASTIC DIP -25'C to +85°C l6-PIN CERDIP -55'C to + l25'C l6-PIN CERDIP IH5352 s., 0 a"'(o~-----J CD030701 lSOO780l, Figure 1: Functional Diagram (Switches are open for a, logic ",0" control Input, and closed for a logic "1" control input.) Figure 2: Pin C.onfigurations Package Outline Drawing: PE, JE 3-144 Note: All typical values have been guaranteed by characterization amI' are not tested. 305529-003 IH5352 ABSOLUTE MAXIMUM RATINGS (TA = 25'C Unless Otherwise Noted)' y+ to Ground ................................................ + 17Y Y- to Ground ................................................ -17V YL to Ground .......................................... V+ to YLogic Control Yoltage ................................ V+ to VAnalog Input Yoltage ................................. Y + to YCurrent (any terminal) ................................... < SOmA Operating Temperature: (M Version) ......•.................. -55'C to + 125'C (I Version) ............................. -20·C to +85'C (C Version) .............................. O'C to + 70'C Storage Temperature ...................... -65'C to + 160'C Lead Temperature (Soldering, 10sec) ..................................300·C Power Dissipation: CERDIP ............................................ .450mW derate 4mWrC above 25'C Plastic ............................................... 350mW derate 3mWrC above 25°C Stresses above those listed under" Absolute Maximum Ratings" may cause permanent. damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational Sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. DC ELECTRICAL CHARACTERISTICS y+ = + l5V, Y- = -15Y, YL = +5Y, TA = 25'C unless otherwise noted. MAXIMUM RATINGS SYMBOL PARAMETER TEST CONDITIONS TYP @2S'C M GRADE DEVICE IIC GRADE DEVICE -SS'C +2S'C + l2S'C -2S/0'C . + 25'C V+ Supply Voltage Ranges: Positive Supply VL Logic Supply V- Negetive Supply Sw~ch ROS(on) "ON" Resistance (Note 4) ROS(on) Switch "ON" Resistance AROS(on) On Resistance Match Between Channels VIH Logical "1" Input Voltage VIL 10(off) or 15(011) 10(on) + IS(on) Logical "0" Input VoIlI!ge Switch 'OFF' Leakage (Note 2 and 4) Sw~ch 'ON' Leakage UNIT +851 +70'C 5 to 15 (NoteS) 5 to 15 V -5 to .-15 Is-lOrnA IVo - ±5V 50 75 75 VIN2.4 V <0.6 VS/0-±5V VS/O" ±14V VIN $0.8V ±1.0 50 ±2.0 ±1.0 50 ±2.0 100 VS/0-±5V VS/O - ±14V VIN --~~<:r L__ _ MDEO I.pun DETAILED. DESCRIPTION Figure 3 shows the internal circuit of one channel of the IH5352. This is identical to the IH5341 "T-Switch" configuration. Here, a shunt switch is closed, and the two series switches are open when the video switch channel is open or off. This provides much better isolation between the input and output terminals than a simple series switch does, especially at high frequencies. The result is excellent offisolation in the Video and RF frequency ranges when compared to conventional analog switches. SWITCH O--ODRAlI (VIDEO OUTPun I LOGIC o - - - [ ) 4 - ; > o l COmOL .' - I.PUT .' DIUVER TRA.SLATOR TC032601 The control input level shifting Circuitry is very similar to 'that of the IH5140 series of Analog Switches, and gives very high speed, guaranteed "Break-BefOre-Make" action, low static power consumption and TTL 'compatibility. NOTE: 1 CHANNEL OF 4 SHOWN Figure 3: Internal Switch Configuration 1000 1000 TIL INPUT +3V OV +3.3V 1000 VOUT VANALOG = +5V riv OV 1000 Your VAl!IALOG= --SV -3.3V WF027401 ~S"L LOGIC CONTROL SIGNAl. TC037301 Figure 4: Switching Time Test Circuit and Waveforms 3-146 Note: All typical values heve been guaranteed by characterization and are not tested, 5! CI IH5352 W CI N 750 RG·59 COAX 750 TC037411 VIN OIRR = 20 LOG - VOUT VIN = 5V pn SINEWAVE @ 10MHz Figure 5: Off Isolation Test Circuit IH5352 +5V 2 15 3 14 4 13 +15V VOUT1 750 VOUT2 750 5 -= 750 16 6 750 7 8 -= -= Too37501 CCRR = 20 LOG ~ VOUT VIN = 225mV RMS SINEWAVE @ 10MHz Figure 6: Cross-Coupling Rejection Test Circuit 3-147 Note: All typical values have been guaranteed by characterizatiOn and are not tested. ! .O~OIl IH5352 '10 -z 750 IH53S2 +5V RQ.68COAX NC NC RG·59 COAX . 18 VOUT 2 15 3 14 4 13 5 12 8 11 +15V 750 750 750 ":" -15V 7 NC 8 +5V ":" '::" TC037601 f - 3dB ~ FREQUENCY WHERE DC SWITCH ATTENUATION IS DOWN 3dB VIN = 225mV RMS@ 10-100MHz Figure 7: Switch Attenuation -3dS Frequency Test Circuit 3-148 Note: All typical values have been guaranteed by characterization and are not lested. IH6108 S-Channel CMOS Analog Multiplexer GENERAL DESCRIPTION FEATURES The IH6108 is a CMOS monolithic, one of 8 multiplexer. The part is a plug-in replacement for the DG508. Three line decoding is used so that the 8 channels can be controlled by 3 Address inputs; additionally a fourth input is provided for use as a system enable. When the ENable input is high (5V), a channel is selected by the three Address inputs, and when low (OV) all channels are off. The 3 Address inputs are TTL and CMOS logic compatible, with a "1" corresponding to any voltage greater than 2.4V. • • • • • • • • • Ultra Low Leakage - IO(Off):::: 100pA rOS(on) < 400 Ohms Over Full Signal and Temperature Range Power Supply Quiescent Current Less Than 100jJA ±14V Analog Signal Range No SCR Latchup Break-Before-Make Switching Binary Address Control (3 Address Inputs Control 8 Channels) TTL and CMOS Compatible Strobe Control Pin Compatible With DG508, HI-508 & AD7508 ORDERING INFORMATION PART NUMBER TEMPERATURE RANGE PACKAGE IH6108MJE -SS·C to + 12S·C 16 pin CERDIP IH6108CJE O·C to 70·C 16 pin CERDIP IH6108CPE O·C to 70·C 16 pin plastic DIP Ceramic package available as special order only (IH6108MDE/CDE) DECODE TRUTH TABLE S. 0 CV""""" S. 0 CV""""" 0 CV""""" VOUT D A1 x 0 0 1 1 0 1 1 1 1 1 0 1 Ao x 0 1 0 1 0 1 0 1 EN 0 1 1 1 1 1 1 ON SWITCH NONE 1 2 3 4 S 6 7 8 1 1 AO, A1, A2 EN SWITCH S. ~ A2 x 0 0 0 0 Logic "1" = VAH::: 2.4V VENH::: 4.SV Logic "0" = VAL:::: 0.8V Sa S. ~ S. ~ AD A. A. EN (ENABLE INPUT) c0003411 3 LINE BINARY ADDRESS INPUTS (1 0 1) AND EN @ SV ABOVE EXAMPLE SHOWS CHANNEL 6 TURNED ON' Figure 2: Pin Configuration LDD0231 I Figure 1: Functional Diagram 3-149 Note: All typical values have been guaranteed by characterization and are not tested. 305530-002 IIU~UIl IH61("~ ABSOLUTE MAXIMUM RATINGS VIN (A, EN) to Ground .......................... -15V to 15V Vs or Vo to V+ ......................................... 0, -32V Vs or Vo to V- ..........•................................ 0, 32V V+ to Ground ................................................. 16V V- to Ground ....... ~ . .'...................................... -16V Current (Any Terminal) .................................. ~. 30mA Current (Analog Source or Drain) ...................... 20mA Operating Temperature ......................... -55 to 125°C Storage Temperature .......................... ;·. -65 to 150°C Lead Temp (SOldering, 10sec) .......................... 300°C Power Dissipation (Package)· ....................... 1200mW 'All leads soldered or welded to PC board. Derate 10mW/'C above 70'C. Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and lunctional operation 01 the device at these or any other conditions above those indicated in the operational sections 01 the specilications is not implied. Exposure to absolute maximum rating conditions lor extended peri()(js may allect device reliability. ELECTRICAL CHARACTERISTICS V+ = 15V, V - :, ...: 15V, VEN = + 5'1 MEASURED TERMINAL CHARACTERISTIC (Note 1), Ground = OV, unless otherwise specified. MAX LIMITS NO TES!5 TYP PER 25'C TEMP TEST CONDITIONS M SUFFIX C SUFFIX UNIT -SS'C 2S'C 12S'C O'C 2S'C 70'C SWITCH S to D rOS(ON) 8 180 Vo = 10V, Is = -1.0mA Sequence each switch on 8 150 Vo=-10V,IS=-1.0riJA VAL "rOS(on) = 20 arOS(ON) t.rOS(on)min rOS(on)avg. VAH = 2.4V 300 300 400 350 350 450 300 300 400 350 350 450 0.002 Vs = 10V, Vo = -10V ±.5 50 ±1 8 0.002 Vs = -10V, Vo -10V ±:5 50 ±1 50 1 0.03 ±2 100 ±5 100 1 0.03 Vo = -10V, Vs = 10V ±2 100 ±5 100 8 0.1 VS(ALL) - Vo - 10V Sequence each switch on ±2 100 ±5 100 8 0.1 VSIALLl = Vo = -10V VAL = 0.8V, VAH = 2.4V ±2 100 ±5 100 AI or A2 3 0.01 VA - 2.4V or OV -10 -30 -10 -30 Inputs 3 0.01 VA=15V or OV 10 30 10 30 -10 -30 -10 -30 -10 -30 -10 -30 10(OFF) D 1010N) . D Vo = 10V, Vs = -10V VEN =0.8V .11 % Vs = ± 10V 8 S IS(OFF) = 0.8V, 50 nA INPUT Ao, IAN(ON) or IA(on) IAN(OFF) IA(off) Ao, IA p.A AI A2 3 VEN = 5V EN 1 VEN=O All VA = 0 (Address pins) DYNAMIC ttransition D 0.3 See Fig. 1 Iopen D 0.2 See Fig. 2 Ion(EN) D 0.6 See Fig. 3 Ioff(EN) "OFF" Isolation 0 0.4 D 60 VEN = 0, RL = 200.11, CL = 3pF, Vs = 3VRMS, f = 500kHz S 5 Vs=O Cd(off) D 25 Vo=O D to S 1 Supply + v+ 1 40 Current - V- I 2 Standby + V+ 1 1 Current - V- I 1 1.5 p.s 1 Cs(oll) COSloff) SUPPLY 1 dB VEN = OV, I = 140kHz to lMHz pF Vs=O, Vo= 0 VEN = 5V All VA=O or 5V VEN=O NOTE 1: See Enable Input Strobing Levels, in Application Section. 3-150 Note: All typical values have been guaranteed by characterization and are not tested. 200 1000 100 1000 100 1000 100 1000 p.A IM6108 SWITCHING INFORMATION VA tr < l00ne •• < l00nl 3V O.aV----jt---5O'Io---\'-ltrans(8-1) - - -.... +10V Your VSl = +10Y Vs. = -10V ttrans(l-B) i-,..=;.;-9!lV!....._¥ -10V t--S8 ON...-j t--510N---l 1--580N-- l--J.~=T+i9itv;--11+10V trans (1-8) Your' Vs, = -10V Vsa = +10V _ _ _...I-l0V ttrans(8-1) TGOOSeOI WFOO3401 PROBE IMPEOANCE Rp ~ 1Mil Cp $ 30pF Figure 3: ttransltlon Switching Test 3V +15V r--~W!,-",,~--o-2V L-~ VA ____~__J=~=i::~:r~VOUT ~~'00n. ~ If < 100n, O.8V o; ;.a~V \ " '_ _ _ _ Your vs, = -2V 51 ON 35pF TC008701 WF003501 Figure 4: t open (Break-Before-Make) Swltchi!1g Test 3-151 Note: All typical values have been guaranteed by characterization and are not tested. ,,,< YEN 100... If < 100... '+1sv r----.-.j,o.",;l-~~--_o VSI IH6108 L.,....___r-<>-'-r-=-T~Your, O.IV Your OV 35pF VEN rCOO88Ot WFOO3601 Figure 5: ton and toff Switching Test IH6108 APPLICATION INFORMATION ENable Input Strobing Levels The ENable input on the IHp10S requires a minimum of + 4:5V to trigger to the" 1" state and a maximum of + O.SV ~o trigger to the "0" state. If the ENable input is being driven from TTL logic, a pull-up resistor of 1k to 3kn is required from the gate output to + 5V supply. (See Figure 6) +5V lKn DM7404N TTL LOG,IC +3V 11 .2l!I"1... VOUT AFo05101 Figure 6: ENable Input Strobing from TTL Logic When the EN input is driven. from CMOS logic, nopullup is necessary, see ,Fig. 7. 3-;.152 Note: All typical values have been guaranteed by characterization and are not tested. IH6108 IH6108 APPLICATION INFORMATION (CONT.) +5V AFOO520t Figure 7: ENable Input Driven from CMOS Logic supply voltages decrease, however, the multiplexer error term (the product of leakage times rOS(on» will remain approximately constant since leakage decreases as the supply voltages are reduced. The supply voltage of the CD4009 affects the switching speed of the IH6108; the same is true for TTL supply voltage levels. The following chart shows the effect, on ttrans for a supply varying from +4.5V to +5.5V. CMOS OR TTL SUPPLY VOLTAGE +4.5V +4.75V +5.00V +5.25V +5.50V Caution must be taken to ensure that the enable (EN) voltage is at least 0.7V below V + at all times. If this is not done, the Address input strobing levels will not function properly. This may be achieved quite simply by connecting EN (pin 2) to V + (pin 13) via a silicon diode as shown in Figure 8. When using this type of configuration, a further requirement must be met: the strobe levels of AO and A 1 must be within 2.5V of the EN voltage in order to define a binary "1" state. For the case shown in Figure 8 the EN voltage is 11.3V which. means that logic high at AO and A 1 is = +8.8V(logic low continues to be = 0.8V). In this configuration the IH6108 cannot be driven by TTL (+ 5V) or CMOS (+ 5V) logic. It can be driven by TTL open collector logic or CMOS logic with + 12V supplies. TYPICAL ttrans @ 25°C 400ns 300ns 250ns 200ns 175ns The throughput rate can therefore be maximized by using a + 5V to + 5.5V supply for the ENable Strobe Logic. The examples shown in Figures 6 and 7 deal with ENable strobing when expansion to more than eight channels is required. In these cases the EN terminal acts as a fourth address input. If eight channels or less are being multiplexed, the EN terminal can be directly connected to + 5V logic supply to enable the IH6108 at all times. If the logic and the IH6108 have common supplies, the EN pin should again be connected to the supply through a silicon diode. In this case, tying EN to the logic supply directly will not work since it violates the 0.7V differential voltage required between V + and EN, (See Figure 9). A 11lF capaCitor can be placed across the diode to minimize switching glitches. Using the IH6108 with supplies other than ±15V The IH6108 can be used with power supplies ranging from ±6V to ±16V. The switch rOS(on) will increase as the 3,-153 Note: All typical values have been guaranteed by characterization and are not tested. I.... IH610S I - IH&108 APPLICATION INFORMATION (CONT.) AFOO5301 Figure 8: IH6108 Connection Diagram for less than ± 15V Supply Operation 1N914 OR ANY SILICON DIODE CDOO3901 Figure 9: IH6108 C~nnection Diagram with ENable Input Strobing for less than ±15V Supply Operation Peak-to-PeakSignal Handling Capability The electrical specifications of the IH6.108 are guaranteed for ±1OV signals, but the specifications have very minor changes for ±14V signals. The notable changes are slightly lower rOS(on) and slightly higher leakages. The IH6108 can handle input signals up to ± 14V (actually -15V to + 14.3V because of the input protection diode) when using ± 15V .supplies. :r-154 Note: All typical values have been guaranteed by characterization and are not tested. IH6116 16-Channel CMOS Analog Multiplexer 'GENERAL DESCRIPTION FEATURES The IH6116 is a CMOS monolithic, one of 16 multiplexer, The part is a plug-in replacement for the DG506. Four line binary decoding is used so that the 16 channels can be controlled by 4 Address inputs; additionally a fifth input is provided to be used as.a system enable. When the ENable input is high (5V) the channels are sequenced by the 4 line Address inputs, and when low (OV), all channels are off. The 4 Address inputs are controlled by TTL logic or CMOS logic elements with a "0" corresponding to any voltage less than 0.8V and a "1" corresponding to any voltage greater than 2.4V. Note that the ENable input must be taken to 5V to enable the system and less than 0.8V to disable the system. • • • • • • • • • • Pin Compatible With DG506, HI-506 & AD7506 Ultra Low Leakage - 10(Off)::: 100pA ± 11 Analog Signal Range rOS(on) < 700 Ohms Over Full Signal and Temperature Range . Break-Before-lIIIake' Switching TTL and CMOS Compatible Address Control Binary Address Control (4 Address' ,,,,puts Control 16 Channels) Two Tier Submultiplexlng to Facilitate . Expaildability Power Supply Quiescent Current Less Than 1001lA No SCR Latchup ORDERING INFORMATION PART NUMBER IH6116MJI IH6116CJI IH6116CPI TEMPERATURE RANGE -55·C to + 125·C O·C to 70·C O·C to 70·C PACKAGE 28 pin CERDIP 28 pin CERDIP 28 pin Plastic DIP IH6116MDIICDI DECODE TRUTH TABLE EN ON SWITCH A1 Ao X X 0 NONE 1 1 0 0 0 0 1 1 2 0 0 1 0 1 3 0 1 1 1 4 0 0 0 0 1 5 0 1 1 1 0 1 0 6 0 1 0 1 7 1 0 1 1 1 1 8 1 0 0 9 1 0 0 1 1 10 1 0 1 1 0 1 11 0 1 1 1 12 1 0 0 1 13 1 1 0 1 1 1 1 0 14 1 1 1 0 1 15 1 1 1 1 1 16 LogiC "1" = VAH ~ 2.4V VENH ~ 4.5V Logic "0" = '(Al ::: O.SV . A3 X 0 .. h~=LI·· L~~~:fL~. 811~ .12~ . ~ ~. , 'VOU"OI . .,.~ 81$~ SI.~· A2 X 0 y+ He a TO DECODE LOGIC ' CONTROLUNG BOTH TIER,"OF MUXING' ~ ., H" " .. . . .. DeVOUl) 27 N.C 3 V- ... .."...,. .. " , "OS .. 1181 810 " ,. EN SO" , .... GNO 12 .. A, """ 1542 TOPYIEW 4 LINE BINARY ADDRESS INPUTS 0 0 1)ANDENQ.t5V ABOVE EXAMPLE SHOWS CHANNEL' TURNED ON yTCOMMON TO SUBSTRATE (0 C0OO3501 Figure 2: Pin Configuration LOOO2401 Figure 1: Functional Diagram 3-155 Note: All typical values have been guaranteed by characterization and are not t YOUT -15V +15V D2 82 TTL OR -: CMOS 1H6116 INVERTER -: EN V2 -15V VA S32 S" "" -TTL .... 'mu•• ha.,e pullup mlstor 10 + 5V to drive EN Inputs AFOO5601 DECODE TRUTH TABLE A4 A3 A2 A1 Ao 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 1 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 0 1 1 0 0 1 1 DECODE TRUTH TABLE ON SWITCH 81 82 83 54 85 86 87 88 89 810 811 812 813 814. 815 816 A4 A3 A2 A1 Ao ON SWITCH 1 1 1 1 1 1 1 1 1 1 1 1· 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 '1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 Figure 7: 1 Out of 32 Channel Multiplexer U~ing 2 IH6116s; Using 3-159 Note: All typical values have been guaranteed by characterization and are not tested. 0 0 0 0 1 1 1 1 An IH5041 for Submultiplexing C) i IH6116 IH6116 APPLICATIONS (CONT.) V, ~15V i J Ao A, A2 - IHl111 lOUT OF " A3 I I .... , 1 l I '~7 i I" n 41 1,1 1 1 I ~LJoIIIII~Jsl I I I Do ~ ~ 03 I I 11113 ~~ . I IH111. 1 OUT OF " MUX EIilABLE I IH5053 ~ <'2 A3 1 I I 331 I I 1 I ~~LJo IIN~U~sl I I I 1·1 ~ mUI' have ,..I.tor to ctrive EN InpPoIti ....'r..TLuplat. f--O-t>-l J., IH111. 1 OUT OF " MUX A3 j!NA8LE 1 ~ ~lLOGIIIIILU~11 Ao A, A2 I 1 .J IHe11e 1 OUT OF " MUX 111 I I I I 0, I 1111, ....!!! A3 INA... ... S.!-,.I I 11 I I I I JJL~IIN~U~I I I I 1" Ao A, A2 I ~ MUX INAILE I 1M ~" D. JV2 -l$V AFOO5701 Figure 8: 1 Out of 64 Multiplexer Using 4 1/16s and IH5053 As Submultiplexer ~eneral note on expandabillty of IH6116 The IH6116 is a two tier multiplexer, where sixteen input channels are routed to a common output in blocks of 4. Each block of 4 input channels is routed to one common output channel, and thus the submultiplexed system looks like 4 blocks of 4 inputs routed to 4 different outputs with the 4 outputs tied together; Thus 20 switches are needed to handle the 16 channels of information. The advantage of this is lower output capacitance and leakage than would be possible with a system using all 16 channels tied to one common output. Also the expandability into 32, 64, 128, channels etc. is facilitated. Figures 6,7, and 8 show how the IH6116 can be expanded. Figure 6 shows a 1 of 32 multiplexer, using 2 IH6116s. Since the 6116 is itself a 2 tier MUX, the system as shown is basically a 2 tier system. The four output channels of each 6116 are tied together so that 8 channels are tied to the VOUT common pOint. Since only one channel of information is on at a time, the common output will consist of 7 OFF channels and 1 ON channel. Thus the output leakage will correspond to 7 10(ofts) and 1 10(on), or about 1.0nA of typical leakage at room temperature. Throughput speed will be typically 0.81lS for. ton andO.3~s for toft. Throughput channel resistance will be in the 500n area. Figure 7 shows the 1 of 32 MUX of Figure 6, with a third tier of submultiplexing added to further reduce leakage and output capacitance. The IH5041 has typical ON resistances of 50n (max. is 75n) so it only increases thruput channel resistance from the 500 ohms of Figure 6 to about 550 ohms for Figure 7. Throughput channel speed is a little slower by about 0.5~s for both ON and OFF time, and output leakage is about 0.2nA. 3-t60 Note: All typical values have been guaranteed by characterization. and are not test~. .O~OlL IH6116 Figure B shows a 1 of 64 MUXusing 3 tier MUXing (similar to Figure 7). The Intersil IH5053 is used to get the third tier of MUXing. The VOUT point will see 3 OFF channels and 1 ON channel at anyone time, so that the typical leakages will be about 0.4 nA. Throughput channel resistance will be in the 550 ohm area with throughput switching speeds about 1.3J.1s for ON time and O.BJ.IS for OFF time. The IH5053 was chosen as the third tier of the MUX because it will switch the same AC signals as the IH6116 (typically plus and minus 15V) and uses break before make switching. Also power supply quiescent currents are on the order of 1-2/lA, so that no excessive system power is dissipated. Note that the logic of the 5053 is such that it can be tied directly to the ENable input (as shown in the figures) with no extra circuitry being required. the low state. When using TTL logic, a pull-up resistor of 1kn or less should be used to pull the output voltage up to 5V. When using CMOS logic, the high state goes to the power supply so no pull-up is required. If used on high voltage logic supplies, EN should be at least 0.7V below V + at all times. See IH610B data sheet for details. APPLICATION NOTES Further information may be found in: AOO3 "Understanding and Applying the Analog Switch," by Dave Fullagar A006 "A New CMOS Analog Gate Technology," by Dave Fullagar A020 "A Cookbook Approach to High Speed Data Acquisition and Microprocessor Interfacing," by Ed Slieger ROOe "Reduce CMOS Multiplexer Troubles Through Proper Device Selection," by Dick Wilenken Enable input strobing levels The enable input (EN) acts as an enabling or disablihg pin for the IH6116 when used as a 16 channel MUX. However, when expanding the MUX to more than 16 channels, the EN pin acts as another address input. Figures 6 and 7 show the EN pin used as the A4 input. For the system to function properly the EN input (pin 1B) must go to 5V ±5"1o for the high state and less than O.BV for NOTE: This multiplexer does not require external resistors and/or diode.s to eliminate what is commonly known as a latch up or SCR action. Because of this fact, the rOS(ON) of the switch is maintained at specified values. 3-161 Note: All typical values have been guaranteed by characterization and are not tested. i... a g 1'146201 ! Dual CMOS Driver Iyoltag~ .Translator GENERAL DESCRIPTlON FEATURES The IH6201 is a CMOS; Monolithic, Dual Voltage Trarislator; it takes low level TTL or CMOS logic signals and converts them to higher levels (i.e. to ±15V swings). This translator is typically used in making solid stilte switches, or analog gates. Wheli used in conjunction with the IntersillH401 family· of Varafets, the combination makes a complete solid state switch capable of switching signals up to 22Vpp and up to 20MHz in frequency. This switch is a "break·before,make" type (i.e. loft time < Ion time). Tile combination has typical loft "" 80ns and typo ton"" 20()ns fqr signals. up to 20Vpp in amplitude. A TTL "1" input strobe will force. the (J driver output up to V+ level; the lJ output will be driven down .to the V- level. When the TTL input goes to "0", the (J output goes to Valid 'lJ goes to V +; thus (J and lJ are 18Qo out of phase with each other. These complementary outputs can be used to create a wide variety of functions such asSPDT and DPDT switches, etc.; alternatively the complementary outputs can be used to drive Nand P channel MOSFETs, to make a complete CMOS analog gate. The driver typically uses + 5V and ± 15V power supplies, however a wide range of V + and V- is also possible. It is necessary that V + > 5V for the driver to wprk properly, however. • • • -5V DRIVER OUTPUT J---., '---_ii, Driven Direct From TTL or CMOS logic Translates _Logic Levels Up to 30V Levels Switches 20VACPP Signals When Used in Conjunction With Intersil IH401A Varafet (As An ,Analog Gate) • tON::S 300ns & tOFF::S 200ns for ~OV Level Shifts • Quiescent Supply Current::s 1001lA for Any State (D.C.) • Provides Both Normal & Inverted Outputs ORDERING INFORMATION PART NUMBER TEMPERATURE RANGE *IHe201CDE ooe to 70 0 e "IH6201MDE -55°e _ + 125"e IH6201CJE ooe to 70 0 e IH6201MJE -55°e to t25°e IH6201ePE ooe to 70 0 e "SpeCial Order Only ., . " 80000201 Figure 1: Functional Diagram ,. DRIVER OUTPUT • LOGIC STROBE TTL INPUT 1 y- OND +5V 1 rll E:-...J v+ DRIVER OUTPUT • TTL INPUT 2 82 • COOOO601 (Outline dwgs DE,JE,PEl V- Figure 2: Pin Configuration 05003001 Figure 3: Schematic Diagram (One Channel) 3-162 Note: All typical values have been guaranteed by characterization and are not tested: IH6201 ABSOLUTE MAXIMUM RATINGS y+ y+ Yy+ to Y- ....................................................... ................................................................ ................................................................ to YIN ...................................................... 35Y 35Y 35Y 40Y Operating Temperature ............... ,... -55°C to +125°C Storage Temperature ...................... -65°C to + 150°C Lead Temperature (Soldering, 10sec) ....•............ 300°C Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only. and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions lor extended periods may affect device reliability. ELECTRICAL SPECIFICATIONS y+ = +15Y, v- = -15V, VL= +5V IH6201CDE ITEM 8 or 71 driver output swing IH6201MDE TEST CONDITIONS VIN = OV .I1.. -2S'C +2S'C -SS'C 28 +2S'C UNIT +12S'C 28 Vpp VIN strobe level ("1")lor proper translation 8~ 14V Ii~ -14V 3.0 3.0 3.0 2.4 VO.C. VIN strobe level ("'O")for proper translation 8 ~ -14V 11~ 14V 0.4 0.4 0.4 0.8 Vo.C. liN input strobe current draw (for OV - 5V range) VIN ±1 ±1 10 ton time VIN = OV .I1.. CL = 30pF switching turn-on time lig. 58 400 300 ns toff time VIN = OV .I1.. CL = 30pF switching turn-off time fig. 58 300 200 ns I + (V +) power supply quiescent current.· VIN=OVor +5V 100 100 100 100 100 100 IlA 1- (V -) power supply quiescent current VIN = OV or + 5V 100 100 100 100 100 100 p.A IL (vLl power supply quiescent current VIN=OVor +5V 100 100 100 100 100 100 p.A = OV + 3V Fig. 58 +8S'C or +5V ±1 ±1 10 IlA APPLICATIONS ral" resistor is normally in the 1OOkSl to 1Mil range and is not too critical. Input Drive Capability The strobe input lines are designed to be driven from TTL logic levels; this means O.BV to 2.4V levels max. and min. respectively. For those users who require O.BY to 2.0Y operation, a pull-up resistor is recommended from the TTL . output to + 5V line. This resistor is not critical and can be in the 1kil to 10kil range. , . . - - - - , SIGNAL INPUT +3V ~ When using 4000 series CMOS logic, the input strobe 'is connected direct to the 4000 series gate output and no pull up resistors, or any other interface, is necessary. REFERRAL RESISTOR TTL INPUT ---~ SWITCH OUTPUT RL When the input strobe voltage level goes below Gnd (i.e. to -15Y) the circuit is unaffected as long as y+ to YIN does not exceed absolute maximum rating. TC009201 Figure 4 Output Drive Capability The translator output is designed to drive the Intersil IH401 family of Yarafets; these .are N-channel JFETS with built-in driver diodes. Driver diodes are necessary to isolate the signal source from the driver!translator output; this prevents a forward bias condition between the signal input and the + Yee supply. The IH6201 will drive any JFET provided some sort of isolation is added i.e. Making a Complete Solid State Switch That Can Handle 20Vpp Signals The limitation on signal handling capability comes from the output gating device. When a JFET is used, the pinchoff of the JFET acting with the V- supply does the limiting. In fact max. signal handling capability = 2 (Vp + (V-n Vpp where Yp = pinch-off voltage of JFET chosen. Le. Vp = 7V, V- = -15Y :. max. signal handling = 2 (7Y + (-15Y)) Vpp = 2(7Y-15)pp = 2(-'BVpp) = 16Ypp. Obviously to get;:: 20Ypp, Vp ;:: 5V with Y- = -15Y. Another Simple way to get 20Vpp with Vp=7V, is to increase V- to -17V. In fact using V + = + 12V or + 15V andsatting V - = -1 BV You will notice in Figure 4 that a "referral" resistor has been added from 2N4391 gate to its source. This resistor is needed to compensate for the inadequate charge area curve for isolation diode (Le. if C vs. Y plot for diode ~ 2 [C vs. Y plot for output JFEn switch won't function; then adding this resistor overcomes this condition. The "refer3-163 Note: All typical values have been guaranteed by characterization and are not tested. i I lH8201· APPLICATIONS (CONT.) NOTE: Each translator output has a 8 and II output. 8 is just the inverse of lI. allows one to switch 20Vpp with any member of IH401 family. The advantage of using the Vp = 7V pinch-off (along with unsymmetrical supplies), over the VP"= 5V pinch-off (and ± 15Vsupplies), is that you will have· a much lower ROS(ON) for the Vp = 7 JFET (i.e. for the 2N4391). TOS(ON) ~ 22n, rOS(ON) "~ 35n) Vp '" 7V Vp = 5V A very useful feature of this system is that one-half of an IH6201 and one-half of an IH401 can combine to make a SPOT switch, or an IH6201 plus an IH401 can make a dual SPOT analog switch. (See Figure 8) The IH6201 is a dual translator, each containing 4 CMOS FETs pairs. The schematic of one-half IH6201, driving onequarter of an IH401, is shown in Figure 5A. ,----1 ,. . , ...... L- ';:~:1 INPUT STROlE I I I I I I I .,. DSOO3201 I S Figure 6: Dual SPST Analog Switch I L.!A-"-~E_J GNO , VL +1SV +5V --ov, -15V TRANSLATOR 08003101 Figure 5A 08003301 Figure 7: DPDT Analog Switch NOTE: Either swHch Is turned on when strobe input goes high. . 1 - - - ." - - - I +15V b-15V~ I I I I I I I I T15Y.Lr' -15V. 08000401 Figure 8: Dual SPDT W~I Figure5B 3-164 Note: All typical values have been guaranteed by characterization and" are not tested. IH6201 APPLICATIONS (CO NT.) 08003501 Figure 9: Dual DPST , 3-165 Note: All typical values have been guaranteed by characterization and are not tested. r;! 1"6208 zI 4-Channel Differential "- CMOS Analog Multiplexer GENERAL DESCRIPTION FEATURES ThtllH6208 is a monolithic 2 of 8 CMOS multiplexer. The part is a plug-in replacement for the DG509. Two line binary decoding is used so that the 8 channels can be controlled in pairs by the binary inputs; additionally a third input is provided to use as a system enable. When"the ENable input is high (5V) the channels are sequenced by the 2 line binary inputs, and when low (OV) all channels are off. The 2 Address inputs are controlled by TTL logic or CMOS logic elements with a "0" corresponding to any voltage less than 0.8V and a "1" corresponding to any voltage greater than 2.4V. Note that the ENable input must be taken to 5V to enable the system, and less than 0.8V to disable the system. • • • • • • • • • Ultra Low Leakage - 10(off) ~ 100pA rOS(on) < 400 Ohms Over Full Signal and Temperature Range Power Supply' Quiescent Current Less Than 100pA ±14V Analog Signal Range No SCR Latchup Break-Before-Make Switching Binary Address Control (2 Address Inputs Control 2 Out of 8 Channels) TTL and CMOS Compatible Address Control Pin Compatible With H1509, DG509 & AD7509 ORDERING INFORMATION PART NUMBER TEMPERATURE RANGE PACKAGE IH6208MJE -55°C to + 125°C 16 pin CERDIP IH6208CJE O°C to 70°C 16 pin CERDIP IH6208CPE O°C to 70°C 16 pin Plastic DIP Ceramic package available as special order only (lH6208MDE/CDE) DECODE TRUTH TABLE S1.o--~--.., Al Ao EN ON SWITCH PAIR X X 0 0 1 1 0 1 0 1 0 1 1 1 1 NONE 1a, 1b 2a,2b 3a,3b 4a,4b EN SWITCH I '--~)__.;-:..-0----.1.... D, I I Ao, .--~)__.;-I..-0----.1.... D, Al LOGIC" 1" = VAH ? 2.4V VENH ? 4.5V LOGIC "0" = VAL::; 0.8V S1bo--~---, EN GND v- v+ S1b S2b S4a Ae At EN COO03701 Figure 2: Pin Configuration" 2 LINE BINARY ADDRESS INPUTS (0 0) AND EN "I' SV (EN ...., .. fOR ... 5V. ''0'' FOR 0\11 ABOVE EXAMPLE SHOWS CHANNELS ,. I: 1b ON. LDOO250\ Figure 1: Functional Di~gram 3-166 .. Note: All typical values have been guaranteed by characterization and are not tested. IH6208 ABSOLUTE MAXIMUM RATI,NGS Current (Analog Source or Drain) ...................... 20mA Operating Temperature ......................... -55 to 125'C Storage Temperature ................... , ........ -65 to 150'C Lead Temp (Soldering. 10sec) ...... , ................... 300·C Power Dissipation (Package» ....................... 1200mW VIN (A. EN) to Ground ............................... -15V. V1 Vs or Vo to V+ ......................................... 0. -32V V~ or Vo to V- ............................................ 0. 32V V to Ground ................................................. 16V V- to Ground ................................................ -16V Current (Any Terminal) .................................... 30mA *Allieads soldered or welded to PC board. Derate 10mW/'C above 70·C. Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. ELECTRICAL CHARACTERISTICS v+ = 15V. v- = -15V. VEN = +5V (Note 1). Ground = OV. unless otherwise specified. MAX LIMITS NO MEASURED TERMINAL CHARACTERISTIC ~~ TYP 25·C M SUFFIX TEST CONDITIONS TEMP C SUFFIX UNIT - ~'C 25·C 125·C O·C 25·C 70·C SWITCH S to D rOS(ON) 8 180 Vo -10V, Is - -1.0mA!Sequence each switch on 300 300 8 ISO Vo=-10V,ls--l.DmAVAL=0.8V. VAH=2.4V 300 300 20 ArOS(ON) "ros(on) = ''DS(on)max-rOS(on)min 400 400 3S0 3S0 4S0 3S0 350 450 n % Vs = ±IDV rOS(on)aYg· S IS(OFF) 8 0.002 VS-l0V, Vo- -10V ±.S 50 ±1 8 0.002 Vs= -10V, Vo=10V ±.S SO ±1 50 2 0.03 VO-l0V, Vs= -10V ±2 SO ±5 100 ±2 50 ±5 100 VEN -0.8V 50 IO(OFF) D 2 0.03 Vo - -10V, Vs = 10V 8 0.1 VS(ALLj = Vo = 10V Sequence each switch on ±2 50 ±S 100 IOtON) INPUT D 8 0.1 VstALL) - -10V VAL=0.8V, VAH= 2.4V ±2 50 ±S 100 IA(on) 2 0.01 VA = 2.4V or OV -10 -30 -10 -30 IA(off) 2 0:01 VA-15V or OV 10 30 10 30 -10 -30 -10 -30 -10 -30 -10 -30 IA Ao; At EN 2 VEN-SV 1 VEN-O All VA=O (Address Pins) nA p.A DYNAMIC SSe Fig. 3 SSe Fig. 4 SSe Fig. 5 ttransilion D 0.3 \open D 0.2 tEN(on) D 0:6 tEN(off) "OFF" Isolation D 0.4 D 60 VEN - 0, RL f = 500kHz 1 I.S 2OOn, Cs(off) S 5 VS=O Cd(off) D 12 VO-O CIoS 1 Vs - Q, Vo = 0 CdS/offl SUPPLY Supply + v+ 1 40 Current - V- I 2 Standby + v+ 1 1 Current - V- I 1 'j./S t dB ' CL - 3pF, Vs - 3VRMS, VEN lMHz av, f =140kHz to VEN -5V AIIVA=00r5V VEN-O NOTE 1: See Section 1 Enable Input Strobing Levels. 3-167 Nota: All typical values have been guaranteed by characterization and 'are not tested. pF 200 1000 100 1000 100 1000 100 1000 p.A B rH6208 = ! SWITCHING INFORMATION a.ov 1.4V O.IV 1----'1 O~------~--~--------+_--------- Vs,. I - - - - - t VA G.tvs,. 'S4b 10V IH6208 G4-------~~------~--+_~~----- O.tvs. VS4b PROBE IMPEDANCE Ap" lMn CP" 30pF WF0Q4101 ' TC009301 Figure 3: ttrans Switching Test VA ,I .' ______+3.0V §l%_____-'l +15V ~ SWITCH OUTPUT 1 J-, ~~~TFIG.2) ~~'A -::fVs~ ' tope,n ,,'------ ~~~_ 3t r--......"1-~~---2V L""__"'TJ~:Fr.=:l:::VOUT 35pF Tooo9401 WFOO421t Figure 4: t open (Break-Before-Make) Switching Test +15V IEN(oH) ~~--~--~-t---------t---b~---­ G.Wo r - -..............~---o .. V VOUT SWITCH OUTPUT (SEE FIG. a) 35pF TCOO9501 WF004301 Figure 5: ton and toff Switching Test 3,-168 Note: All typical values have been guaranteed by characterization and l\I"e, n,ot tested. IH8208 IH6208 APPLICATION INFORMATION ENable Input Strobing Levels The ENable input on the IH620B requires a minimum of + 4.SV to trigger it into the "1" state and a maximum of + O.BV to trigger it into the "0" state. If the ENable input is being driven from TTL logic, a pull-up resistor of 1k to 3kn is required from the gate output to + SV supply. (See Figure 6). 1K +3V 1~ TC009601 Figure 6: ENable Input Strobing From TTL Logic When the EN input is driven from CMOS logic, no pullup is necessary. (See Fig. 7) +5V TC009701 Figure 7: CMOS Logic Driving ENable Pin 3-169 Note: All typical values have been guaranteed by characterization and are not tested. I IH6208 i IH6208 APPLICATION INFORMATION (CONT.) The supply voltage of the CD4009 affects the switching speed of the IH620S; the same is true for TTL supply voltage levels. The chart below shows the effect on ttrans for a supply varying from +4.5V to +5.5V. CMOS OR TTL SUPPLY TYPICAL ttrans @ 25°C +4.5V +4.75V +5.0V +5.25V +5.50V 400ns 300n5 250ns 200ns 175ns supply voltages decrease, however, the multiplexer, error term (the product of leakage times r05(on») will remain approximately constanf,since leakage decreases as the supply volta,ges are,' reduced. caution must betaken to ensure that the enable (EN) voltage is at least O.7V below V+ at all times. If this is not done the Address Input strobing levels will not function properly. This may be achieved quite simply by cpnnecting EN (pin 2) to V+ (pin 14) via a silicon diode as shown in Figure 8. A further requirement must be met when using this type of configuration; the strobe levels at AO and A1 must be within 2.5V of the EN voltage in order to define a binary "1" state. For the case shown in Figure 8 the EN voltage is 11.3V, which means that logic high at AO and A1 is = + 8.SV (logic low continues to be = O.SV). In this configuration the IH6208 cannot be drivenby TTL (+ 5V) or CMOS (+ 5V) loQic. It can be driven by TTL open collector logic or CMOS logic with + 12V supplies. The throughput rate can therefore be maximized by using a + 5V to + 5.5V supply for the ENable Strobe Logic. The examples shown in Figures 6 and 7 deal with ENable strobing when expansion to .more than four differential channels is required; in these cases the' EN terminal acts as a third address input. If four channel pairs or less are being multiplexed, the EN terminal can be directly connected to + 5V to enable the IH620S at all times. If the logic arid the IH620S have common supplies, the EN pin should again be connected to the supply through a silicon diode. In this case, tying EN to the logic supply directly will not work since it violates the 0.7V differential voltage required between V + and EN (See Figure 9). A 1j.LF capacitor can be placed across the diode to minimize switching glitohes. Using the IH6208 with supplies other than ±15V The IH620S can be used with power supplies ranging, from ±6V to ±16V. The switch r05(on) will increase as the IN.14 +12V ·~'~·-l A CHANNEI.S COMMON DRAIN OUTPUT =0, ).-~,~ 1 • Do ...._ _ _ _ _.. ' =(COMMON) B CHANNEL DRAIN OUTPUT CD003801 Figure 8: IH6208 Connection Diagram for Less Than ± 15V Supply Operation '3-'170 Note: All typical values have been guaranteed by characterization and are not tested. IH6208 IH6208 APPLICATION INFORMATION (CONT.) lN914 EN IH6208 CO004501 Figure 9: IH6208 Connection Diagram With ENable Input Strobing for Less .T~n ± 15V Supply Operation Peak-to-Peak Signal Handling Capability The IH6208 can handle input signals up to ±14V (actually -15V to + 14.3V because of the input protection diode) when using ± 15V supplies. The electrical specifications of the IH6208 are guaranteed for ± 1OV .signals, but the specifications have very minor changes for ±14V signals. The notable changes are slightly lower rDS(on) and slightly higher leakages. 3-171 Note: All typical values have been guaranteed by characterization and are not tested. , IH821:6 (II I S-Channel Differential CMOS Analog Multiplexer GENERAL DESCRIPTION FEATURES The IH6216 is a CMOS monolithic 2 of 16 multiplexer. The part is a plug-in replacement for the DG507. Three line binary decoding is used so that the 16 channels can be controlled in pairs by the binary inputs; additionally a fourth input is provided to use as a system enable. When the ENable input is high (5V) the channels are sequenced by the 3 line binary inputs, and when low (OV), all channels are off. The 3 Address inputs are controlled by TTL logic or CMOS logic elements with a "0" corresponding to any voltage less than O.BV and a "1" corresponding to any voltage greater than 3.0V. Note that the ENable input must be taken to 5V to enable the system and less than O.BV to disable the system. • • • • • • • • • • Pin Compatible With HI507, DG507 & AD7507 ± 11V ..Analog Signal Range rOS(on) < 700 Ohms Over Full Signal and Temperature Range Break·Before·Make Switching TTL and CMOS .Compatlble Address Control Binary Address Control (3 Address Inputs Control 2 Out of 16 Channels) Two Tier Submultlplexlng to Facilitate Expandability Power Supply Quiescent Current Less Than 1001lA No SCR Latchup Very Low Leakage IO(OFF):OS 100pA ORDERING INFORMATION PART NUMBER IH6216MJI IH6216CJ1 IH6216CPI TEMPERATURE RANGE -55°C to + 125°C O°C to 70~C O°C to 70°C PACKAGE 28 pin CERDIP 28 pin CERDIP 28 pin Plastic DIP Ceramic package available as special order only (IH6216MDIICDI) .......,..... .......,..... .,..... ~~ ..........,..... .,..... .,..... :: ~~!T. ...... .,..... ... .,..... DECODE TRUTH TABLE ON SWITCH PAIR X X NONE 0 X 1 1 0 0 0 1 0 1 2 0 1 0 1 3 0 0 1 1 1 4 1 0 0 1 5 0 1 1 6 1 1 1 0 1 7 1 1 1 1 8 LOGIC "1" = VAH > 3V VENH > 4.5V LOGIC "0" = VAL < 0.8V Ail I "00 A1 Ao EN ~ -.,..... TO DECODE LOGIC COHTIIOWNG 10TH TIERS OF MUIING Ao AI A, EN (ENABLE INPun 3 UNE BINARY ADDRESS INPUTS (0 0 0) ANOEN_SV CD004001 ABOVE ElCAMPl.E SHOWS CHANNELS'•• 'b ON. Figure 2: Pin Configuration LOOO2601 Figure 1: Functional Diagram 3-172 Note: All typical values have been guaranteed by characterization and are not tested. I... IH82i8 CI ABSOLUTE MAXIMUM RATINGS VIN (A. EN) to Ground .............................. -15Vo-Vl Vs or Vo to V + ......................................... 0. -32V Vs or Vo to V- ........................................... 0. 32V V+ to Ground ................................................. 16V V- to Ground ................................................ -16V Current (Any Terminal) .................................... 30mA Current (Analog Source or Drain) ...................... 20mA Operating Temperature ......................... -55 to 125'C Storage Temperature ............................ -65 to l50'C Lead Temperature (Soldering. 10sec) ................. 300·C Power Dissipation (Package)" ....................... 1200mW • All leads soldered or welded to PC board. Derate 1OmW I'C above 70'C. Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operalion of the device at these or any other conditions above those in~icated in the operational sections of the specifications is not implied. Exposure to. absolute maximum rating conditions for extended periods may affect device reliability. ELECTRICAL CHARACTERISTICS v+ = 15V. v- = -15V. VEN = +5V MEASURED TERMINAL CHARACTERISTIC (Note 1). Ground = OV. unless otherwise specified. MAX LIMITS NO TES,!S TYP PER 2S'C TEMP TEST CONDITIONS C SUFFIX M SUFFIX UNIT -55'C 25'C 12S'C O'C 2S'C 70'C SWITCH S to D rDS(ON) 16 4BO VD = 10V, IS = -lmA Sequence each switch on 600 600 700 650 650 750 16 300 Vo = -10V, .Is = lmA VAL = O.BV,. VAH = 3V 600 600 700 650 650 750 ~rDS(ON) 20 "rOS(on) = rOS(on)max - rOS(-+--i--i-...... ,A I.A ,1 0' OUTLINE DWG. OUTLINEDWG OllTLINE DWGS JE,FD·2 To-l00 To-l00 DS02~301 D$0214Q1 OUTLINE DWG TO·1oo OUTLINE DWGS JE, FD·2 Figure 1: Functional Diagram 3-178 Note: All Iypical.values have been guwantaed by characterization· and arenottestEld. G3 OllTLINEDWG TO·100 08021501 OUTLINE DWG T().100 02 05021601 OUTLINE DWG T().100 IID~DIL MM450/451/452/455 MM550/551/552/555 ABSOLUTE MAXIMUM RATINGS (Note 1) Gate Voltage (VGG) ......................... + 14.5V to -30V Bulk Voltage (VSULK) ...................................... + 14V Analog Input (VIN) ............................. + 14V to -20V Power Dissipation ......................................... 200mW Operating Temperature MM450, MM451 , MM452, MM455 .. - 55·e to + 125·e MM550, MM551, MM552, MM555 .......... o·e to 70·e Storage Temperature...................... -65·e to + 150·e Lead Temperature (Soldering, 10sec) ................. 300·e NOTE 1: Dissipation rating assumes device is mounted w~h all leads welded or soldered to printed circuit board in ambient temperature below 70·C. For higher temperature, derate at rate of 10mWI"C for FD package and 6.5 mWI"C for TW package. Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. ELECTRICAL CHARACTERISTICS (per channel unless noted) LIMITS SYMBOL CHARACTERISTIC TYPE Analog Input Voltage VIN TEST CONDITIONS All VOG=O Threshold Voltage VGS(Th) All Drain·Source On Resistance All IGSS Gate Leakage Current All Drain Leakage Current 10(OFF) VGS = -25V, VSS = Vos = 0 VOS- -25V MM550, MM551 MM552, MM555 VGS =VSS= 0 MM450, MM451 MM452, MM455 IS(OFF) Source Leakage Current Cos Drain·Body Capacitance NOTE 1: V Max 600 700 Max 200 250 Max n n t5 100 Max nA to.5 200 Max nA Max nA Max nA 100 to.5 400 Max nA 10 Typ pF MM450, MM550 14 Typ pF MM451 , MM551 24 Typ pF MM452, MM552 11 Typ pF 11 Typ pF 13 TY1! Typ pF pF Typ pF Typ pF Typ pF 100 VOS = VGS = VSS = 0 f= lMHz (Note 1) MM455, MM555 8 9 9 All 5 MM452, MM552 Gate·Source Capacitance CGS V Min 125·C All MM450 MM550 MM451, MM551 Gate·Body CapaCitance Max 1.0 VOS -VGS = 0 MM455, MM555 CGS ±10 20 VSS = -25V MM550, MM551 MM552, MM555 Source·Body CapaCitance CSS liD-lornA VS=10V JVGS= -20V VIN= +10V MM450, MM451 MM452, MM455 UNIT 70·C 3.0 10 = 10jJA VIN - -10V ROS(ON) MIN -MAX 25·C Typical characteristics not tested in production TYPICAL PERFORMANCE CHARACTERISTICS RDS(on) VB VGS RDS(on) 10,000~m g VGS VB RDS(on) '11.- .I.~.: 10,000 100.000 V11\I-OV 10" 1 rnA VB DRAIN CURRENT va GATE TO SOURCE VOLTAGE VGS VU C tlOV V, .. • -10'11 10 ! 8.0 1000 10,000 ; I T .. • 2S~C Til· _55°C .~ 1000 ~60~~~~~~~~ ~40~-r4-~~~1-~ ~ o ·s ·s -16 -22 IO~~~~~---'-L~ o -4 -8 -12 -16 -20 100 '-''-'--'-'----'---'---'-' -'6 -II -19 -20 OP036901 3-179 Note: All typical values have been guaranteed by characterization and are not tested. 2.0 H-+-+-+-il-+~+-H o~~~~~-L~LJ o -to -2.0 -3.0 ..... 0 -SO VG5 - GATE TOSOURCi VOLTAGE IVI VGSIYI VGslVI OP036801 _17 'lin-a.... Z T .. " 85"C . ;" 100 ' ",,..."'-=....,.""'=.,.-,r-r-r-r-...... . 10= 1 mA OP037OO1 0P037101 Section 4 - Amplifiers Operational and Special Purpose ICH8500/A Ultra Low Input-Bias Operational Amplifier GENERAL DESCRIPTION FEATURES The ICM8500 and ICH8500A are hybrid circuits designed for ultra low input bias current operational amplifier applications. They are ideally suited for analog and electrometer applications where high input resistance and low input current are of prime importance. Functionlllly, they are pin for pin identical to the popular 741 monolithic amplifier. These amplifiers are unconditionally stable and the input offset voltage can be adjusted to zero with an external 20kil potentiometer. The input bias current for the inverting and noninverting inputs is 0.1 pA maximum for the ICH8500, and 0.01 pA maximum for the ICH8500A and are constant over the operating temperature range of -25°C to +85°C. Pin 8 is connected to the case. This permits the designer to operate the case at any desired potential. This is the key to achieving the ultra low input currents associated with these two amplifiers. Forcing the case to the same potential as the inputs eliminates current flow between the case and the input pins, and leakage currents that may have otherwise existed between any of the other pins and the inputs are intercepted by the case. • • • • • • Input Diode Protection Input Bias Current Less Than O.01pA C8500A) at All Operating Temperatures No Frequency Compensation Required Offset Voltage Null Capability Short Circuit Protection Low Power Consumption APPLICATIONS • • • • • • • Femto Ammeter Electrometers Long Time Integrators Flame Detectors pH Meters Proximity Detector Sample and Hold Circuits ORDERING INFORMATION ICH 12=~~"::9M"" 8500A TV DEVICE TYPE INTERSIL HYBRID '----------CIRCUIT v' CASE (GUARD) CO018801 OFFSET NULL 05019901 Figure 1: Functional Diagram Figure 2: Pin Configuration (Outline dwg TV) 4-1 Note: All typical values have been guaranteed by characterization and are not tested. Cao i ICM850c)1A 10 zCD !:! IID~OIL ABSOLUTE MAXIMUM RATINGS Supply Voltage ................................................ ±18V Internal Power Dissipation (1) ......................... 500mW Differential Voltage ........... ; ............. , ......... , ...... ±O.5V Storage Temperature ...................... -65°C to + 150°C Operating Temperature .............•....... -25°C to +85°C Lead Temperature (Soldering, 10sec) ................. 300°C Output, Short Circuit Duration ........................ Indefinite Note: 1. Rating applies for ambient te":lperature, to + 70·C NOTE: Stresses above those listed u~ "Absolute Maximum Ratings" may cause permanent device failure. These are stress ratings only and functional operation of the devices at these or any other cond~ions above 1hose indicated in the operation sections of this specHication is not implied. Exposure to absolute maximum rating condition~ for extended' periods may cause device failures. ELECTRICAL CHARACTERISTIOS '(TA = 25°C unless otherwise specified, VSUPPLY ICH8500 SYMBOL IBIAS VOS CHARACTERISTICS Input Bias Current (Inverting and Non-Inverting) TEST CONDITIONS ±7S , ±SO mV ±200 ±100 mV ±3.0 ±3.0 mV 75 dB Common Mode Rejection Ratio ± 5 volts common mode voltage Large Signal Voltage Gain pA mV At 2S·C AVOL ±O.o1 +25 to +85·C -2S to +2S·C Long Term Input Offset Voltage Stability Output Voltage Swing UNIT ±50 D.Vos/D.t Common· Mode Voltage Range TYP MAX ±SO D.VoslD.T tNo MIN ±0.1 , 20kn Potentiometer Change in Input Offset Voltage Over Temperature CMVR ICH8500A TYP MAX Input Offset Voltage Offset Voltage Adjustment Range CMRR MIN Case at same potjlntial as inputs = ±15V) 75 RL'" 10kn ±11 ±11 ±10 ±10 20,000 105 20,000 V V 105 - Cfb Feedback Capacitance Case guarded, 0.1 0.1 pF SR Slew Rate RL'" 2kn 0.5 0.5 V/IJS CIN Input CapaCitance Case guarded 0.7 0.7 pF CIN Input CapaCitance Case grounded 1.5 1.5 pF VOLTAGE OFFSET NULL CIRCUIT VOLTAGE FOLLOWER LOW LEVEL CURRENT MEASURING CIRCUIT OUTPUT Yo • 1VOLT IpA = 1012, liN CASE GUARD TCQ281(N LC014701 1.0014801 NOTE: Adjust input offset voltage to OV±10I'V balore measuring leakage. Figure 3: Circuit Notes 4-2 Note: All typical values have been guaranteed by characterization and are not tested. ICH8500/A TYPICAL PERFORMANCE CHARACTERISTICS INPUT VOLTAGE RANGE SUPPLY VOLTAGE OPEN LOOP VOLTAGE GAIN VI. FREQUENCY 106 ;: ~ i w ~ o ~ z o ~ 100 1 Ie. 10k lOOk '" 8'" INPUT OFFSET VOLTAGE SUPPLY VOLTAGE 100 - 4'VSU~LY'+5~ 60 8 9 10 11 12 '. ...::>~ ! I I:;;;;: f-- Tp.."''''aso C - = ~ ~ 80 0 ~ 'j"+25' C ,0 4 13 14 15 16 9 10 1 10 ~~ 0 "~'" \. " 11 12 13 14 15 8 1.6 10 11 12 13 14 15 0P035401 OP035301 INPUT REFERRED NOISE VOLTAGE 500 ~ , I r-" ~ ~ TOO 10 \ I 100 SUPPLY V8. 80 'I o POWER CONSUMPTION VOLTAGE ~s'.!\odn \ 16 SUPPLY VOLTAGE i'V) V8. SUPPLY VOLTAGE ltV} ~~ .. , ...0- ~ OP0352OI ±QUIESCENT SUPPLY CURRENT SUPPLY VOLTAGE ~ .. ~\.. I!:::> SUPPLY VOLTAGE (:tV) SUPPLY VOLTAGE bVI 16 TA"'+25"C o 8 16 ~ i ~ 12 14 OUTPUT VOLTAGE SWING VB. SUPPLY VOLTAGE '" 11 13 0P035101 ~ 90 10 - 5 VOLT COMMON MODE VOLTAGE z ...>w 8 • ~~ ;..;;; SUPPLY VOLTAGE I-V) ±POWER SUPPLY REJECTION RATIO V8. SUPPLY VOLTAGE V8. • 0 ~ ~ OP035001 10 s 70 SUPPLY VOLTAGE (tVI 0P034901 ~ ~ .;.:! 'po 1M FREQUENCY (Hz I :;'" 80 ~ z o 1 10 • o TA· .. 2oC ~ COMMON MODE REJECTION RATIO V8. SUPPLY VOLTAGE ~ V~UI'P .I,lSV l"- :> V8. z \2 Ii: . I ::> '0!1 u i '" ~ ~ lk 10k lOOk FREQUENCY IHzl OP035501 Note: All typical values have been guaranteed by characterization and are not tested, 50 40 30 iff.! 1 ....:: 20 ~ 10 o 8 ?' 9 10 11 .' ~ .....,:" '-- f-- ... ,.. 12 13 14 15 16 SUPPLY VOLTAGE (tVI CP035601 OP035701 i .O~OIL ICH8soO/A I currents that may otherwise exist between the ± 15V input and the inverting input summing junctions. FeedbaCk capacitance" should be kept to minimum in order to maximize the response time of the circuit to step function input currents. The time constant of the circuit is approximately the product of the feedback capacitance Ctb times the feedback resistor Rfb: For instance, the time constant of the circuit in Figure 4 is 1 sec if Cfb = 1pF. Thus, it takes approximately 5 sec (5 time' constants) for the circuit to stabilize to within 1% of its final oiJtput voltage after a step function of input curre~t has been applied. Ctb of less than 0..2 to O.3pF can be achieved with proper circuit layout. A practical pico ammeter circuit is illustrated in Figure 5. APPLICATIONS ;:; ThePICo Ammeter t~rmina,ls A very ~ensitive pico ammeter can be constructed with the ICH850Q. The basic circuit (illustrated in Figure 4) employs the amplifier in the inverting or current summing mode. Care must be taken to eliminate any stray currents from flowing into the current summing node. This can be accomplished by forcing all points surrounding the input to the same potential as the input. In this case the potential of the input is at virtual ground, or O.V.Therefore, the case of the device is grounded to intercept any stray leakage a Rib" loUn CURRENT SOURCE ~U. ENT/ >----'---'--OUTPUT Vo" .IIN SUMMING NODE Atb -·IVOl.T/pA LC014901 Figure 4: Basic Pico Ammeter Circuit .,sv .Ib 10t20: ., t"" IMNT>---~~--~~----~----~~----------_I ----I,. cO ~----_--_--------. OU""'T V•.--I IfW JlIOUSl .. -I VOl.TIpA INTERNAl. olooes 08020001 Figure 5: Pico Ammeter Circuit Note: All typical values have been guaranteed by characterization and are not tested. ICH8500/A .... CAN IE REDUCED TO 10K IF CIRCUIT IS EllPl.OYED AS ANINTEORATOR INPUT TERMINAL If CIRCUIT ASAN::'~:~~~~~ VIN-OTOt'OV CHARGE STORAGe CAPACITOR r--"""-+-----------. / SW2 INPUT ~E~~~~~ AS A'::::tt!~g 111700 • l00ttO >-~Oy.OI/l'....__+-----...;O r-i~--""'--_--O;"""---f HOLD CIRCUn Y,N -OTO:t10V 8 ....._ >.....:~- 1T1100 G OUTPUT +lSV 'Oof v, .-...J'I/I."",......_0_15V IOkn -ISV 'M" .ok" o.c. lERO v, SAMPLE 1T1700 PuLSfOR CAPACITOR OISCHARGE PULSE ADJUST eNULL TO ELIMINATe ANV OUTP\lt OfFSET VOLTAGE DUE TO CHARGE INJECTION t-----------------------~---JF.OMSW2 ,."" ":" -1SV TC0264~ Figure 6: Sample and Hold Circuit or Integrator Circuit The internal diodes CR1 andCR2 together with external resistor R1 protect the input stage of the amplifier from voltage transients. The two diodes contribute no error currents, since under normal operating conditions there is no voltage across them. source, drain and gate of switch SW2 are zero or near zero when the circuit is in the hold mode. Careful construction will eliminate stray resistance paths and capacitor resistance can be eliminated if a quality capacitor is selected. The net result is a low drift sample and hold circuit. As an example, suppose the leakage current due to all sources flowing into the current summing node of the sample and hold circuit is 100pA. The rate of change of the voltage across the 0.01 j.LF storage capacitor is then 1OmV I sec. In contrast, if an operational amplifier which exhibited an input bias current of 1nA were employed, the rate of change of the voltage across CSTO would be 0.1 V Isec. An error build up such as this could not be tolerated in most applications. Wave forms illustrating the operation of the sample and hold circuit are shown in Figure 7. Feedback capacitance is the capacitance between the output and the inverting input terminal of the amplifier. Sample and Hold Circuit The basic principle of this circuit (Figure 6) is to rapidly charge a capacitor CSTO to a voltage equal to an input Signal. The input signal is then electrically disconnected from the capacitor with the charge still remaining on CSTO. Since CSTO is in the negative feedback loop of the operational amplifier, the output voltage of the amplifier is equal to the voltage across the capacitor. Ideally, the voltage across OSTO should remain constant, causing the output of the amplifier to remain constant as well. However, the voltage across CSTO will decay at a rate proportional to the current being injected or taken out of the current summing node of the amplifier. This current can come from four sources: leakage resistance of CSTO, leakage current due to the solid state switch SW2, currents due to high resistance paths on the circuit fixture, and most important, bias current of the operational amplifier. If the ICH8500A operational amplifier is employed, this bias current is almost non-existant « 0.01pA). Note that the VOltages on the The Gated Integrator The circuit in Figure 6 can double as an integrator. In this application the input voltage is applied to the integrator input terminal. The time constant of the circuit is the product of R1 and CSTO. Because of the low leakage current associated with the ICH8500 and ICH8500A, very large values of R1 (Up to 10 12 ohms) can be employed. This permits the use of small values of integrating capacitor (CSTO) in applications that require long time delays. Waveforms for the integrator circuit are illustrated in Figure 8. 4-5 Note: All typical values have been guaranteed by characterization and are not tested .. IIO~DIL ~ ·ICH8500/A 8 ~.------____----__--~ I O....Jr----, ., +5V V,N SAMPLE PULSE 0--1 +I.V~TIME-. bl V, v, bl -f5V ,I ~' V2 V3 ,I V2 , - - -...., .1 STATE OF SW2 II I +'.V~' : ., hI i--CLOSED--I I OUTPUT OP.AMP. ., . STATE OF SWI ~ .000EN "'-=LE 0------- ~ I II 11 II " CLOSED ~Of'EN_jlIHr ...~_ _ Of'EN I, I V3 -15V " CLOSED II INPUT TO +18V - - - - - - - - " " \ SAH -15:~ +15V -15V STATE OF SW' TIME~ +16V~ -15V 0-, -15V dl r--'""'1 •. :.•..•...•• ~ >IV STAn OF SW2 WINDOW _____ "-- 0=S: -----------_______________ ~v--~~------ CLOSED II - I ~OPEN __ Of'EN II ~LOSEO IL.:it: I--CLOSED-t OPEN ~=LEWINDOW 9\ INTE~~:ri~~ 0 ------~---INPUT -lOY hi INTE~~~~~ V,N Vo" - RCSTO 1" 0.1 VOLT/SEC. WF015801 Figure 7: Sample and Hold Circuit Waveforms -~---~------WF015901 Figure 8: Gated Integrator Waveforms Note: All typical values have been guaranteed by characterization and . are nat tested. U~D[61.. ICH8510/8520/8530 Power Operational Amplifier o CD GENERAL DESCRIPTION FEATURES The ICH8510/8520/8530 is a family of hybrid power amplifiers that have been specifically designed to drive linear and rotary actuators, electronic valves, push-pull solenoids, and DC & AC motors. There are three models available for up to + 30V power supply operation: 2.7 amps @ 24 volt output levels, 2 amps @ 24V and 1 amp @ 24V. All amplifiers are protected against shorts to ground by the addition of 2 external protection resistors. For a device operating at lower voltages, see the ICH8515 data sheet. ' The design uses a conventional 741 operational amplifier, a special monolithic driver chip (BL8063), NPN & PNP power transistors, and internal frequency compensating capacitors. The chips are mounted on a beryllium oxide substrate for optimum heat transfer to the metal package. This substrate also provides electrical isolation between amplifiers and metal package. The I.C. power driver chip has built-in regulators that provide the 741 with typically a ±13V supply. • • • • • • • • • Delivers Up to 2.7 Amps @ 24-28V DC (30V Supplies) Protected Against Inductive Kick Back With Internal Power Limiting Programmable Current Limiting (Short Circuit Protection) Package Is Electrically Isolated (Allowing Easy Heat Sinking) Open Loop DC Gain> 100dB 20mA Typical Standy Quiescent Current Popular 8 Pin TO-3 Package Internal Frequency Compensation Can Drive Up to 0.1 Horsepower Motors ORDERING INFORMATION ICH8SXO M KA I T <=-~- ~ KA = 8 lead T0-3 can Temperature Range M - Military -SsoC to I = Industrial - 20°C to + 12SoC + 8SoC Basic Part Number 8S10 = 1A output 8520 = 2A output 8S30 = 2.7A output y+ (TOPYIEW) +----""---l-=-...;. voo-=; '~_-+'W'v-1...;IASC-· c001B901 y- 08020101 FI ure 1: Functional Dia ram Fi ure 2: Pin Confl uration 4-7 Note: All typical values have been guaranteed by characterization and are not tested. i CD &II W o g10' ICtl851Qj852018530 '.;.' . . '.' . , .' ~ AB50LUTEMAXIMUMRATINGS @TA=25·C i...... Operating Temperature Range M ...... -55·C ~ +125·C . I ........ -20·C ~ +85·C Storage Temperature Flange ........ ::.:. -65·C to +150·C Le~d Temperature (Soldering" 1Psec) ...... ,.",..... ,.3qO·p . Max Case Temperature ...... , ~ ................ : .......... 150·C Supply Voltage ............................................ ; .• ~.± 32V Power Dissipation, Safe Operating Area ...... See Curves 0, Differential Input Voltage ...................................±30V 10 Input Voltage ............................ , ........ ±15V (Note 1) CD peak Output Current ................... See Curves (Note 2) Output Short Circuit Duration (to ground) .............................. Continuous (Note 2) .. -lj' Note 1: Rating applies to supply vollSges of ± 15V.For lower supply voltages, VrNMAX ~ Vsupp. Note 2: Ratings apply as long as package dissipation is not exceeded. Device must be mounted on heat sink, see Figures 12 and 16. Stresses above those listed under Absolute' Maximum Ratings may cause permanent damage' to ·the device. These arestrEiss ratings only, and flinctional operation of the device at these or any other conditions above those indicated in the operational sections of the spec~ications is not implied. Exposure to absolute maximum rating conditions for extended; periods may affect device reliability. ELECTRICAL CHARACTERISTICS TA = + 25·C. VSUPPLY = ±30V (unless otherwise stated) SYMBOL .DESCRIPTION TEST CONDITIONS t.VOSIt.Pd Input Offset Voltage Change with Power DiSsipation Mtd on Wakefield 403 Heat Sink Vos Input Offset Voltage RS< 10kll Pd< lW ISlAS Input Bias Current RS< 10kll Pd< lW ICH85101 ICH8510M ICH85201 MIN MIN MIN 4 (Typ.) -6 -3 +6 +3 500 Inpol Offset Current RS< 10kll Pd< lW Large Signal Voltage Gain RL-201l Vo> 2/3 Vsupp VCMR Input Voltage Range Typical CMRR Common Mode Relction Ratio Rs-l0kll PSRR Power Supply RS-l0kll SR 'Slew Rate VOMAX Ou1pol Voltage Swing RL-201l Ay -10 ±26V ±26V IMAX Output Current (3) RL-ell Av-l0 1.0 1.0 10 Power Supply Quiescent Cur:rent RL-X VIN-OV 100 (Typ.) -10 +10 -10 70 (Typ.) CL-3pF, Av-l RL -lOll Vo - 2/3 Vsupp -6 +6 70 (Typ.) -10 MAX ICH65301 -3 +3 70 (Typ.) -6 ICH8530M +6 70 (Typ.) -3 200 100 (Typ.) +10 Mifol 500 100 -10 MAX 4 (Typ.) 250 100 (Typ.) +10 MIN 2 (Typ.) 200 100 (Typ.) +10 MIN 500 100 200 100 (Typ.) MAX 4 (Typ.) 250 lOS Rejection Ratio MAX 2 (Typ.) AVOL NOTE 2: ICH8520M UNIT MAX -10 MAX 2 (Typ.) mV/W +3 mV 250 nA 100 'M dB 100 (Typ.) +10 -10 +10 V dB 70 (Typ.) 70 (Typ.) 77 77 77 77 77 77 (Typ.) (Typ.) (Typ.) (Typ.) (Typ.) (Typ.) 0.5 (Typ.) 0.5 (Typ.) 0.5 (Typ.) 0.5 (Typ.) 0.5 (Typ.) 0.5 (Typ.) VII'S ±26V ±26V ±25V ±25V V 2.0 2.0 2.7 2.7 A (RL (RL - 3011) -30n 125 100 125 100 125 dB 100 mA See Figure 7 if P~r Suplies are less than ± 30V '. ELECTRICAL SPECIFICATIONS TA= -55·C. to +125·C.(M) or TA= -20·C. to +85·C (I). SYMBOL DESCRIPTION TEST CONDITIONS VOs Inpol Offset Voltage PdoI ~igure l.C015001 Figure 3: Maximum Output Current for GlvenRSc 5: Inductive Load (Note catch diode) NOTE ON AMPLIFIER POWER DISSIPATION The steady state power dissipation limit is given by In general, for a given Va, Isc limit, and case temperature TC, Rsc can be calculated from 'the equation below for Va positive, lOUT positive. ' RSC= PO= _ _ T.::,J",,(M;;;,.AX=-.)-_T...;cA.:,.'_ R8JC + RBCH + R8HA where: TJ = Maximum junction temperature TA = Ambient temperature R8JC = Thermal resistance from transistor junction to case of package R8CH = Thermal resistance from case to heat sink R8 HA = Thermal resistance f~om heat ,sink to ambient air And since TJ = 200"C for silicon transistors R8JC 9!; 2.0°C/W for a steel. bottom TO-3 package with die attachment to beryllia substrate header ROCH;>= .045°C/W for 1 mil thickness of Wakefield type 120 thermal joint compound .09°C/W for 2 mil thickness of type 120 .13°C/W for 3 mil thickness of type 120 .17°C/W for 4 mil thickness for type 120 .21°C/W for 5 mil thickness of type 120 .24°C/W for 6 mil thickness of type 120 (20.6VO)" + 680-2.2(TC..,2S0C) ISC(lIMIT) "For Va negative, replace this term with 10.3 (VA - 1.2) For example, for 10 = 1.SA @ Va = 2SV and TC = 2SoC, 119S Rsc = - - = 0.797 1500 Therefore for this application, RsC = 0.820 (closest standard value). When 0.820 is used, ISC @ Va = OV will be reduced to about 1A. Except for small changes in the "±VO(max) Limit" area, the effects of changing Rsc on the lOUT vs VOUT characteristics can be determined by merely changing the lOUT scale on Figure 3 to correspond to the new value. Changes in TC move the limit curve bodily up, and down. This internal current limiting cirCUitry however does not at all restrict the normal use of the driver. For any normal load, the static load line will be similar to that shown in Figure 3. 4-9 Note: All typical values have been guaranteed' by characterization and are not tested. I lCH8smls520/8530 R8HA = The choice of heat sink that a user selects 1'. depends'upbnthe amount of room availablE! mount the'l\eat Sink.. A sample calculation follows: by' choosing a Wa:kefield 403 heat sink,' wlthfree air, natural convection 1no fan). R6HA ~ 2.0·C/W. Using 4 'mil 'joint compound, to Po .. 12001'6_ 2S"C 4. 17°CIW. 42W and @ TA =, 125°C, "200°C -125°C , =18W 200·C- TA ' 200·C- TA .. - - - - ' - ' (2.0 + 0.17 + 2.0)OC/W 4.17°C/W 4. 17ciC!W From Figure 6 the worst case steady state power dissipation 'for an IH8520 (Rsc .'0;62fl) is 'aoout30W and 18W'I"espectively. Thus this heat sink is adequate. ,TYPICAL PERFORMANCE' CHARACTERISTICS tat 1120. lI'Iu111p1f lou• .., .... For ICtIIS30 ICH_ RIC" ...n TCASE HOC Vee ,.~ louT f ..,ua . loUT TeASE '.·C Vee !3IV' For lett.B'G. ......'· Rile = 1.an Source CurNftt ,I on., ......... _c.._ --. -~ ..........1 .... Dt..... LInH... with T."",; '-~~~~~~4-~~~~~~-' __ ..11 ..act . " , ..'0 ... • 10 15 20 H 1DV YOuT . . -25 -21 -15 .. '0 5 -S 10 15 20 25 30 YOUT sc007001 Safe Operating Area; lOUT vs VOUT vs TC 101( 100 " 15 10 II 30 _ _ _ (WI ... :"1.;.; on YIn ~ 10 get ......,... Po'ftf DIu.. tMn.,_IOGo!II''' _ _ ('IOUT·11X'~ sc007101 lC015101 Input ,Offset Voltage vs Power Dissipation ... "':':. LC015201 sc007201 Input .Impedance vs Gain vs Frequency +10 Note: All typical values have been guaranteed by characterizatioll. and .ara not,tastad. ,~ IID~OIL ICH8510 /8520 /8530 TYPICAL PERFORMANCE CHARACTERISTICS (CONT.) •I I ....... +Vee CM' ..Vee t_) ./ .' 40 IK ~ ~ ID ; o GuIeIGHI: c....... IrOIn • .. g 0 LC015301 SCOO7301 Quiescent Current va Power Supply Voltage .. Your _ _ _ Your 2: :tt7'lo Yee 100kHz 1_ ,K 111Hz Vln@f - 100 c:IoMci Iaop ..... 100 ,0 --At IIIClI At IIIn Rf ",on ,.... sc007'" Rt .. 1Kn 1iir LCOt5401 ' Large Signal Power Bandwidth II At c..._ IK ,- Vln@t 1KHI 1OKHI. 100KHI _HlI ':;' LC01 .... SCOO7&Ol Small Signal Frequency Response 4-11 Note: All typical values have been guaranteed by characlellzalion ilhd lil'enot I_tett -::- Rf~1~RI 080202.01 Figure 8: Non-Inverting Amplifier .... . . 0 +15" +10 +11 +100 ..., •. c.o.'T_ CTe)' C·CI , SCOO7601 , Figure 6: Maximum Output Current vs. Case Temperature v'" III 05020301' Figure 9:, Inverting Amplifier ... Power dissipation is another important parameter to consider. The current prptection circuit protects the device against short circuits to ground,,(but only for transients to the oppo~ite supply) provided the, device has adequate heat sinking. A 'curve of power dissipation Viii Vo under short circuit conditions is given in Figure 10. The limiting circuit is more' closely dependent on case temperature than (output transistor) junction temperatures. Although these operating conditions are unlikely to be attained in actual use, they do represent the limiting case a heat sink must cope with. For a fully safe design, the antic1patedrange, of Vo values that could occur;' (steady state, includihgfaults) should be examined for the highes~ power dissipatiOn, and the device provided with a heat 'sio1( that will'keep the junction temperature below 200·C and the case temperature below 150·C with the worst case ambient, t~mperature expected. ... Figure 7: scoonot Maximum Output Current vs. VSUPPLY .,- ,',> APPLICATION' NOTES. :> The maximum input voltage'rang~, for VSUPPLY < ± 15V, is substantially less t~an thcf avail.~bleoi1tput voltage swing. Thus non-inverting amplifiers, as ,in Figure 8, should always be set up witha,gairi greater than iit;out 2.5, (with ±30V supplies), so that the full oiJtput swing is available without hazard to the input. At first sight, it would seem that no restrictions would apply to inverting amplifiers" since the' inputs are virtual ground and ground. However, under fault (output short-circuited) or high slew conditions, the input can be substantially removed from ground. Thus for inverting amplifiers with gains less than about 5, some protection should be provided at this input. A suitable resistor from the input to ground will provide protection, but also increases the effect of input offset voltage at the output. A pair of diodes, as shown in Figure 10, has no effect on normal operation, but gives excellent protection. Source eIIMeIon ....... ' ,. ,(, .,,~"": Pella' . ~r----""'---...!' ,--;ani, For II. ., " " ' " 'lOUT "'_.-. TrinMnts ,,;'-' ,,;' ./ ·YOUT' 30Y 25'1 20V 15Y lOY 5Y sc007601 Figure 10: Power Dissipation under Short Circuit Conditions +-12 Note: All typical values have been guaranteed by characterization aod ,are not teste!!;, ICH8510 /8520 /8530 TYPICAL APPLICATIONS Actuator Driving Circuit (24 .... 28 VDC rated) Obtaining Up To 5 Amps Output Current Capability By Paralleling Amplifiers . . , .... " Actuato, / .... 'on Acht.-tOf /j:::::') YOu' 05020401 Figure 11: Power Amp Driving Actuator The gain of the circuit is set to + 10, so a VIN = +2.4V will produce a +24V output (and deliver up to 2.7 amps output current). To reverse the piston travel, invert VIN to -2.4V and VOUT will go to -24V. Diodes 01 and 02 absorb the inductive kick of the motor during transients (turn-on or turn-off); their breakdown should exceed 60V. SCOO7901 Figure 12: Paralleling Power Amps for .Increased Current Capability This paralleling procedure can be repeated to get any desired output current. However, care must be taken to provide sufficient load to avoid .the amplifiers pulling against each other. Driving A 48VDC .Motor --- --------, _ow I I 1 1 1 1 1 1 I 1 1 __ ____ 1 ~--~~-+~-_~_-_~ ~ .... . ....... = .,.~ 90007801 Figure 13: Power Amp Driving 48 VDC Motor 4-13 Note: All typical values have been guaranteed by characterization and are not tested. I IC"8510/8520/8530 CD 2,I 0' .. :I ~..... .... Precise Rate Control' of an Electronic Valve The circuit presented in Figure 14 is also an excellent way to get a precise power supply voltage; in fact, it is possible to build a preCision variable power supply using a BCD coded DAC with' BCD Thumbwheel switches. There are two methods to get very fine control of the opening of an orifice driven by an electronic valve. 1. Keep the voltage constant, i.e., 24VDC or 12VDC, and vary the time the, voltage is applied, i.e., if it takes five seconds to completely open an orifice at 24VDC, then applying 24V for only 2Y2 seconds opens it only 50%. 2. Simply vary the DC driving voltage to valve. Most valves obtain full opening as an inverse of applied voltage,i.e., valves open 100% in five seconds at 24VDC and in·l0 seconds at 12VDC. A circuit to perform the second method is shown below; the advantage of this is that digit switches can precisely set driving voltage to 0.2% accuracy (S-bit DAC), thereby controlling the rate at which the valve opens. There is great power available in the sub-systems shown in Figures 14 & 15; there the 0/ A converter is shown being set manually (via digit switches) to get a precise analog output (binary #x full scale voltage), then the driver amplifier multiplies this voltage to produce the final output voltage. It seems obvious that the next logical step is to let a microprocessor control the 0/ A converter. Then total; pre-programmable, electronic control of an actuator, electronic valve, motor, etc., is obtained. This would be used in conjunction with a transducer/multiplex system for electronic monitoring and control of any electromechanical function. 'Ok +5" ... lC015601 Figure 14: Digitally Controlled Electronic 4-14 Note: All typical values have been guaranteed by characterization and are net tested. Valu~ ICH8510 /8520/8530 4K .-tIY +5V Nt. -=LC015701 21 22 1 1 1 1 1 0 1 0 0 0 0 0 The power 2° 1 1 0 0 23 24 25 26 27 o BITVout + 25VDC 1 1 1 1 1 1 1- 1 1 1 1 o -25VDC 1 1 0 0 1 1 +15VDC 1 1 0 0 1 o -15VDC +0.098VDC 0 0 0 0 0 1 -0.098VDC 0 0 0 0 0 o supply can be set set Ie ± 0.1 VDC. Figure 15: Digitally Programmable Power Supply HEAT SINK INFORMATION Heat sinks are available from Intersil. Order part number 29-0305 ($10.00 ea.) with a ROHA = 1.3°C/watt. A convenient mating connector is also available. Order part number 29-0306 ($4.50 ea.). Note: This product contains Beryllia. If used in an application where the package integrity may be breached and the internal parts crushed or -machined, avoid inhalation of the dust. APPLICATION NOTES For Further Applications Assistance, See: A021 "Power D/A Converters Using The ICH8510/201 30," by Dick Wilen ken A026 "DC Servo Motor Systems Using The ICH8510/201 30," by Ken McAllister A029 "Power Op Amp Heat Sink Kit," by Skip Osgood 4-15 Note: All typical values have been guaranteed by characterization and are not tested. , ICM8515 iPower Operationa'i ~Amplifier GENERAL DESCRIPTION FEATURES The ICH8515 is a hybrid power amplifier specifically designed to drive linear and rotary actuators, electronic valves, push-pull solenoids, and DC & AC motors. The design uses a conventional 741· operational amplifier, a special monolithic driver chip (BL8063), NPN & PNP power transistors, and an internal frequency compensating capacitor. The chips are mounted on a. beryllium oxide substrate, for optimum heat transfer to the metal package. This substrate provides electrical isolation between the amplifier and the metal package. The 8515 has special SOA (safe operating area) circuitry which allows it to withstand a direct short to ground or to either supply indefinitely. It has been designed to operate with ± 12 or ± 15VDC supplies and will deliver typically 1.5 to 1.8A @ +13V out using ±15V supplies. Internal frequency compensation provides stability down to unity gain (either inverting or noninverting) even when using inductive loads. • • • • • • • • • Delivers Up to 1.5 Amps @ + l2VDC (±15VDC Supplies) Protected Against Inductive Kick Back By Internal Power Limiting Prograinmable Current Umiting (Short Circuit . Protection) Package Is Electrically Isolated (Allowing Easy Heat' ·Sinking) Open Loop DC Gain> 100dB Popular 8 Pin TO-3 Package Internal Frequency Compensation Can Drive Up to 0.033 Horsepower Motors Pin Equivalent to ICH8510/20/30 Family ORDERING INFORMATION PART NUMBER OUTPUT CURRENT TEMPERATURE PACKAGE ICH8515MKA 1,5A -55°C to + 125°C 8·Lead TO-3 ICH85151KA 1.25A -25°C to +85°C 8'Lead TO·3 Y' (TOP VIEW) +----1--:,---..;;' Yo~ .....~~+'IN..,........o5ASC- C1lO19OO1 4 08020501 Figure 1: Functional Diagram 4-16 Note: All typical values have been guaranteed by characterization and· are not tested. Figure 2: Pin Configuration (Outline dwg KA) n z ICH8515 CD ABSOLUTE MAXIMUM RATINGS @ TA ... UI UI = 25°C Supply Voltage ................................................ ±18V Power Dissipation, Safe Operating Area ...... See Curves Differential Input Voltage ................ , .................. ±30V Input Voltage ..................................... ±15V (Note 1) Peak Output Current ................... See Curves (Note 2) Output Short Circuit Duration (to ground) .............................. Continuous (Note 2) Operating Temperature Range M ...... -55°C to + 125°C I ......... -25°C to +85°C Storage Temperature Range ............ -65°C to + 150°C Lead Temperature (Soldering, 10sec) ................. 300°C Max Case Temperature ................................... 150°C Note 1: Rating applies to supply voltages of ± 15V. For lower supply voltages, VINMAX = VSUPPLy. Note 2: Rating applies as long as package dissipation is not exceeded for heat sink attached. Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other cond~ions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. ELECTRICAL CHARACTERISTICS OPERATING CHARACTERISTICS TA = + 25°C. VSUPPLY = ±15V (unless otherwise stated) ICH85151 SYMBOL PARAMETER ICH8515M TEST CONDITIONS UNIT MIN TYP MAX MIN TYP MAX tiVos/tiPd Input Offset Voltage Change with Power Dissipation Vos Input IBIAS Input Bias Current RS S 10kn, Pd < lW 500 250 nA lOS Input Offset Current RS S 10kn, Pd < lW 200 100 nA AYOL Large Signal Voltage Gain VCMR CMRR Off~t Voltage Input Voltage Range Mtd. on Wakefield 403 Heat Sink 4 (Typ.) RS S 10kn, Pd < 1W RL -10n, , Vo > 2/3 VSUPPL Y Typical 1 -6 6 100 (Typ.) -3 0.7 2 (Typ.) mV/W 3 mV 100 (Typ.) -10 +10 dB -10 +10 V Common Mode Rejection Ratio Rs·l0kn 70 (Typ.) 70 (Typ.) dB PSRR Power Supply Rejection Ratio RS= 10n 77 (Typ.) 77 (Typ.) dB SR Slew 'Rate CL = 30pF, Ay = 1, RL=10n Vo ~ 2/3 VSUPP ,RL=10n, Ay=10 0.5 (Typ.) 0.5 (Typ.) VII'S ±1.25 tiVo Output Voltage Swing 10 Output Current RL-5n, Ay=10 IQ Power Supply Quiescent Current RL =00, OPERATING CHA,RACTERISTICS (continued) TA Input Offset Voltage Pd > RL. VIN RIN RL This circuit allows 'precisely set motor drive current with op. amp. feedback accuracy. If RIN = RF = 1kn, and I":" L ______ J -15V 08020601 Figure 9 IL RL = 10n, then - = -0.1' AmpslVolt, and if RL = 1n VIN (use 4W or more). and RF = RIN = 1kn, IL 1 Amp -=-1x1 = - . - . VIN Volt thus if VIN = 1.5V. 1.5 amps will flow thru the motor. Since one side of the motor will. have a 1.5\{ drop (with respect to GND), the Vo point will go to 13.5V and develop 12V acrOS$ motor. HEAT SINK INFORMATION Heat sinks are available from Intersil. Order part number 29-0305 ($10.00 ea.) with a R6HA = 1.3°C/watt. A convenient mating connector is also available. Order part number 29-0306 ($4.50 ea.). NOTE: This product contains Beryllia. If used in an application. where the package integrity may be breached and the internal parts crushed or machined. avoid inhalation of the dust. 4-22 Note: All typical values have been guaranteed by characterization. and are not tested.. , ICL7605/ICL7606 Commutating Auto-Zero (CAZ) Instrumentation Amplifier GENERAL DESCRIPTION FEATURES The ICL7605/1CL7606 CMOS commutating auto-zero (CAZ) instrumentation amplifiers are designed to replace most of today's hybrid or monolithic instrumentation amplifiers, for low frequency applications from DC to 10Hz. This is made possible by the unique construction of this new Intersil device, which takes an entirely new design approach to low frequency amplifiers. Unlike conventional amplifier designs, which employ three op-amps and require ultra-high accuracy in resistor tracking and matching, the CAZ instrumentation amplifier requires no trimming except for gain. The key features of the CAZ principle involve automatic compensation for longterm drift phenomena and temperature effects, and a flying capacitor input. The ICL7605/1CL7606 consist of two analog sectionsa unity gain differential to single-ended voltage converter and a CAZ op amp. The first section senses the differential input and applies it to the CAZ amp section. This section consists of an operational amplifier circuit which continuously corrects itself for input voltage errors, such as input offset voltage, temperature effects, and long term drift. The ICL760511CL7606 is intended for low-frequency operation in applications such as strain gauge amplifiers which require voltage gains from 1 to 1000 and bandwidths from DC to 10Hz. Since the CAZ amp automatically corrects itself for internal errors, the only periodic adjustment required is that of gain, which is established by two external resistors. This, combined with extremely low offset and temperature coefficient figures, makes the CAZ instrumentation amplifier very desirable for operation in severe environments (temperature, humidity, toxicity, radiation, etc.) where equipment service is difficult. • • • • • • • • • Exceptionally Low Input Offset Voltage - 2jl.V Low Long Term Input Offset Voltage DrlftO.2jl.V/Year Low Input Offset Voltage Temperature Coefficient - O.05jl.V rc Wide Common Mode Input Voltage Range - O.3V Above Supply Rail High Common Mode Rejection Ratio-100 dB Operates at Supply Voltages As Low As ±2V Short Circuit Protection On Outputs for ±5V Operation Static-Protected I",puts - No Special Handling Required Compensated (ICL7605) or Uncompensated (ICL7606) Versions AZ -iNPUT -oIFF IN +DIFFIN C3 Co C, C, DR osc v+ (outline cIwg JNI COO14701 Figure 1: Pin Configuration ORDERING INFORMATION Order parts by the following part numbers' PART NUMBER ICL7605CJN ICL76051JN ICL7605MJN ICL7605/D ICL7606CJN ICL76061JN ICL7606MJN ICL7606/D COMPENSATION TEMPERATURE RANGE O·C to +70·C -25·C to + 85·C -S5·C to + 125·C INTERNAL INTERNAL INTERNAL INTERNAL EXTERNAL EXTERNAL EXTERNAL EXTERNAL - O·C to +70·C -25·C to + 85·C -55·C to + 125·C - PACKAGE 18-PIN CERDIP 18-PIN CERDIP 18-PIN CERDIP DICE" 18-PIN CERDIP 18-PIN CERDIP 18-PIN CERDIP DICE" "Parameter MiniMax Limits guaranteed at 2S·C only for DICE orders. 4-23 Note: All typical values have been guaranteed by characterization and are not tested. 301681-002 II ·1 ICJ.,7895/ICL.7808 !:i !:! y+ 10 g !:iu - +01" IN -DIFF IN OUTPUt AZ -INPUT LSOO6901 Figure 2: Symbol r'i I CAZ OP AMP INPUT AZ ANALOG SWITCH SECTION DIFFERENTIAL TO SINGLE ENDED VOLTAGE CONVERTER ANALOG SWITCH SECTION DIFFIN BIAS ~ + ~l RFI R" ~ I CAZ OP AMP OUTPUT ANALOG SWITCH SECTION ::;:-.... 1 C, ~ r- I AZ INPUT i t t oC 0 , LEVEL TRANSLATORS 2 OSC ---o.OUTPUT I ! RC OSCILLATOR I JR DIVISION RATIO I ! LEVEL I TRANSLATORS f STABILIZED POWER SUPPLY 1 '20R .32 DIVIDER NETWORK V· I I i V 80006101 Figure 3: Functional Diagram 4-24 Note: All typical values have beEm guaranteed by characterization and are not tested. .O~O[l ICL7605/ICL7606 !CIt ABSOLUTE MAXIMUM RATINGS Total Supply Voltage (V+ to V-) ........................ 18V DR Input Voltage ................... (V+ -8) to (V+ +0.3)V Input Voltage (C1, C2, Ca, C4 +DIFF IN, -DIFF IN, -INPUT, BIAS, OSC), (Note 1) ......................... (V- -0.3) to (V+ +0.3)V Differential Input Voltage (+ DIFF IN to -DIFF IN) (Note 2) ......................... (V- -0.3) to (V+ +0.3)V Duration of Output Short Circuit (Note 3) ........ Unlimited Continuous Total Power Dissipation (Note 4) ..... 500mW Operating Temperature Range: . ICL7605/1CL7606CJN ..................... 0 to + 70°C ICL760511CL76061JN ............... -25°C to +85°C ICL7605I1CL7606MJN ............ -55°C to +125°C Storage Temperature Range ............ -65°C to + 150°C Lead Temperature (Soldering, 10sec) ................. 300°C Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating cond~ions for extended periods may affect device reliabil~. Note 1: Due to the SCR structure inherent in all CMOS devices, exceeding these limits may cause destructive latch up. For this reason, it is recommended that no inputs from sources operating on a separate power supply be applied to the 7605/6 before its own power supply is established, and that when using multiple supplies, the supply for the 7605/6 should be turned on first. Note 2: No restrictions are placed on the differential input voltages on either the + DIFF IN or - DIFF IN inputs so long as these voltages do not exceed the power supply voltages by more than 0.3V. Note 3: The outputs may be shorted to ground (GND) or to either supply (V + or V~). Temperatures and/or supply voltages must be limited to insure that the dissipation ratings are not exceeded. Note 4: For operation above 25°C ambient temperature, derate 4mW/oC from 500mW above 25°C. ELECTRICAL CHARACTERISTICS Test Conditions: SYMBOL Vos v+ = +5V, v- = -5V, TA = +25°C, DR pin connected to V+ (fCOM~160Hz, fCOMl ~80Hz), Cl = C2 = Ca = C4 = 1j.1F, Test Circuit 1 unless otherwise specified. PARAMETER Input Offset Voltage TEST CONDITIONS RsS lkn MIL version over temp. AVOS/AT Average Input Offset Voltage Temperature Coefficient (Note 5) Low or Med Bias Settings AVos/At Long Term Input Offset Voltage Stability Low or Med Bias Settings CMVR Common Mode Input Range CMRR Common Mode Rejection Ratio PSRR Power Supply Rejection Ratio -IBIAS -INPUT Bias Current en(P'P) Equivalent Input Noise Voltage peak·to·peak P ... Low Med High Med VALUE MIN Bias Setting Bias Setting Bias Setting Bias Setting TYP MAX ±2 ±2 ±7 ±5 0.01 0.01 0.05 -55°C> TA > +25°C +25°C > TA > +B5°C + 25°C> TA > + 125°C ,.v ±20 ,.V ,.V ,.V 0.2 0.2 0.2 ,.vrc ,.vrc ,.vrc 0.5 -5.3 ,.V/Year +5.3 Case = 0, DR connected to V +, Ca = C4 = I,.F Cose = I,.F, DR connected to GND, Ca = C4 = I,.F COSC = I,.F, DR connected to GND, Ca = C4 = 10,.F 94 100 104 Any bias setting, fc = 160Hz (Includes charge injection currents) 0.15 Low Bias Mode Med Bias Mode High Bias Mode All Bias Modes en Equivalent Input Noise vollege Band Width 0.1 to 1.0Hz AVOl Open Loop Voltage Gain Rl=10kn ±VO Maximum Output Voltage Swing Rl = lMn Rl = l00kn Rl = 10kn Low Bias Setting Med Bias Setting High Bias Setting Positive Swing Negative Swing GBW Bandwidth of Input Voltage Translator Ca = C4 = I,.F All Bias Modes fCOM Nominal Commutation Frequency Cose- O fCOM1 Nominal Input Converter Commutation Frequency Casc=O VBH VBM VBl Bias Voltage required to set Quiescent Current Low Bias Setting Med Bias Setting High Bias Setting IBIAS Bias (Pin 8) Input Current 90 90 80 V dB dB dB dB 110 Band Width 0.1 to 10Hz UNIT 1.5 nA 4.0 4.0 5.0 ,.V ,.V ,.V 1.7 ,.V 105 105 100 dB dB dB ±4.9 ±4.8 V V V V +4.4 -4.5 10 Hz DR Connected to V + DR Connected to GND 160 2560 Hz Hz DR Connected to V + DR Connected to GND 80 1280 V+ GND Hz Hz y+ -0.3 y- +1.4 Y- -0.3 Y- ±30 4-25 Note: All typical values have been guaranteed by characterization and are not tested. V+ + 0.3 V+ -1.4 V- +0.3 V V V pA P c: - 2 _ .D~DIl !cp ICL7805/ICL7808 a:::. I i ELECTRICAL CHARACTERISTICS (CO NT.) VALUE SYMBOL TEST CONDITIONS PARAMETER UNIT MIN :s YOR :s Y + + 0.3 lOR Division Ratio Input Current y+ -S.O YDRH VORL DR Yoltage require"+1 S~ .:.r -2 ~~0: -3 I\, ~INJi..TING ...... 1000. -5 1000 100 0P618401 ffi 5 .a 4 0: 0: t iil j"-... ....... v+·y- = 10 VOLTS NO LOAD NO INPUT 3 -r- MED BIAS o 10k LOBIAS LOBIAS -50 -25 ~ :a OP018601 "l'oo.. losc - 5.2 k~Z r Fo, Cose ~ 0 pF lk I'-... ~ - 0: ~ r>.. ::1100 -- ~ 10 0 ZS 50 75 100 lZS TA • AMBIENT TEMPERATuRE"C 1 10' 100 0P018eQI FREQUENCY RESPONSE OF THE 10Hz LOW PASS FILTER USED TO MEASURE NOISE (TEST CIRCUIT 2), AMPLITUDE RESPONSE OF THE INPUT DIFFERENTIAL TO SINGLE ENDED VOLTAGE CONVERTER ~ TA - +25°C (V-,V-) = 5 VOLTS C, = C2 = C3 = C. = 1~P. .a " h~!D=B,:Hz 0 I _T~=lzslJ \ \ ~ I II I ~l' I ~IASIN "- : ,REGION 10 1000 COSC· OSCILLATOR CAPACITANCE· pF 0P018701' "- 100 1,000 T TA = 25"C ~ < IV+·V 1< 10 VOLT.S= ~ ........ 2 .-. 246 8 W U " ~ ,Y+.V-, • SUPPLY VOLTAGE· VOLTS OP018S01 % HI'I~ MED BIAS OSCILLATOR FREQUENCY AS A FUNCTION OF EXTERNAL CAPACITIVE LOADING N -J. o lOOk lk 10k RL • LOAD RESISTANCE SUPPLY CURRENT AS A FUNCTION OF TEMPERATURE 6 ~ ... -4 INPUT CURRENT ICOM· COMMUTATION FREQUENCY· Hz ... TA = ZSOC NO LOADNO INPUT TA = ZSoC fIV+ ·V-, = 10V RL C NNECTED TO GND_ ~ ~~-1 100 1 ......HIBIAS " 1/ 0 I!: 0 I) 1/ ~ 10 >+4 J \ V j~-I00 1-50 I II - -+5 I I ~ti-400 t=~-350 0:0: SUPPLY CURRENT AS A FUNCTION OF SUPPLY VOLTAGE 1\ "- , 1\ 10,GOO 2 345 .10 20 304050 100 I • FREQUENCY· Hz I - FREQUENCY - Hz QP018901 QP019001 4-27 Note: All typical values have been guaranteed by characterization and are not tested. INPUT' GND OR VOLTAGE 1 AZ -DIFF IN 11 ,.-----10 -IN +DIFF IN 17 .,e., +DIFFIN BETWEEN (V- +0.3) AND (V- -iI.3) VOLT 1~F 'C. rI I -DrFF IN -1 I I OUTPUT I S~2 6C. 7V- IBIAS OSCll • OUTPUT V- ,. +5V 90006201 Figure 6: Simplified Block Diagram OUTPUT 1M 1K VOLTAGE GAIN = 1000 The ICL760S/ICL7606 have approximately constant equivalent input noise VOltage, CMRR, PSRR, input offset voltage and drift values independent of the gain configuration. By comparison, hybrid-type modules which use the traditional three op. amp configuration have relatively poor performance at low gain (1 to 100) with improved performance above a gain of 100. The only major limitation of the ICL760SIICL7606 is its low-frequency operation.(10 to 20Hz maximum). However in many applications bandVliidth is not the most important parameter. TC024911 Figure 4: Test Circuit 1 CAZ Op Amp Section VOUT Operation of the CAl op-amp section of the ICL760S/ ICL7606 is best iII!Jstrated by referring. to Figure 7. The basic amplifier configuration; represented by the large triangles,. has one more input than does a regular op ampthe AZ; or auto-zero terminal. The voltage on the AZ input is that level at which each of the internal op amps will be auto-zeroed. In Mo<;le A, op amp # 2 is connected in a unity gain mode through on-chip analog switches. It charges external capacitor C2 to a voltage equal to the DC input offset voltage of the amplifier plus the instantaneous lowfrequency. noise voltage. A short time later, the analog switches reconnect the on-chip op amps to the configuration shown in Mode B. In this mode, op amp #2 has capacitor C2 (which is charged to a voltage equal to the offset and noise voltage of op amp #2) connected in series to its non-inverting ( + ) input in such a manner as to null out the input offset and noise voltages of the amplifier. While one of the on-chip op amps is processing the input Signal, the second op amp is in an auto"zero mode, charging a capacitor to a voltage equal to its equivalent DC and low frequency error voltage. The on~chip amplifiers are connected and reconnected at a nite designated as the commutation frequency (feOM), so that at all times one or the other of the on-chip op amps is processing the input Signal, while the voltages on capaCitors Cl and C2 are being updated to compensate for variables such as low frequency noise voltage arid input offset voltage changes due to temperature, drift or supply voltages effects. ,TC025011 Figure 5: Test Circuit 2 DC to 10Hz Unity Gain Low Pass Filter DETAILED DESCRIPTION CAZ Instrumentation Amp Overview The CAZ instrumentation amplifier operates on principles which are very' different from thoSe of the conventional three op-amp deSigns, which must use ultra-precise trimmed resistor networks in order to achieve acceptable accuracy. An important advantage of the ICL760SIICL7606 CAZ instrumenta~ion amp is the provision ·for self-compensation of internal error voltages, whether they are derived from steady-state conditions, such as temperature and .supply voltage fluctuations, or are du~ to long term drift. The CAl instrumentation amplifier is constructed with monolithic CMOS technology, and consists of three distinct sections, two analog and one digital. The two analog sections - a differential to single-ended voltage converter, and a CAZ op amp - have on-chip analog switches to steer the input Signal. The analog switches are driven from a self-contained digital section which consists of an RC oscillator, a programmable divider, and associated voltage translators. A functional layout of the ICL760SIICL7606 is shown in Figure 6. 4-28 Note: All typical values have bean guaranteed by characterization and are not tested. ICL7605/ICL7606 ~ ________~~O~UTPUT .v-r__________~~O~UTPUT 80006301 Figure 7: Diagrammatic representation of the 2 half cycles of operation of the CAZ OP AMP. c, -+------......-------t c, -+-+-----; INFUT FROMFIQ4 AZ OUTPUT NPUT .. (100k!l) -INPUT - - - - ' - - - - ' - - - ' ~ (C._TATION FREQUENCY) er CL DS017401 Figure 8: Schematic of analog switches connecting each Internal OP AMP . to Its inputs and output. 4-29 Note: All tvDical values have been auaranteed bv characterization and are not tested. I ··.D~Dll ICL1605/1CL7606 !:i S:! ! .. r--~-GND -DlFf' IN OR 'REFERENCE VOLTAGE _-+-.... s, '---1 '1M fNquencf.1 wNch ..... A I 8 .... cycled " known .. .... INPUT COMMUTATION FREQUENCV {So '--DS[).17501 Figure 9: Schematic of the differential. to single ended voltage. converter reference voltage to the input of the CAZ instrumentation amp. The output signal of this configuration is shown in Figure 10, where the voltage steps equal the differential voltage (VA-VB) at commutation times a, b, c, etc. The output waveform thus represents all information contained in the input signal from DC up to the commutation frequency, including commutation and noise voltages. Sampling theory states that to preserve the information to be processed, at least, two samples must be taken within a period (1/f) of the highest frequency being sampled. Consequently this scheme preserves information up to the commutation frequency. Above the commutation· frequency, the input signal is translated to a lower frequency. This phenomenon is known as aliasing. Although the output responds to inputs above the commutation frequency, the frequencies of the output responses will be below the commutation frequency. Compared to the standard bipolar or FET input op amps, the CAZ amp scheme demonstrates a number of important .advantages: Effective input offset voltages can be reduced from 1000 to 10,000 times without trimming. Long-term offset voltage drift phenomena can be compensated and dramatically reduced. Thermal effects can be compensated for over a wide operating temperature range. Reductions can be as much as 100 times or better. Supply voltage sensitivity is reduced. CMOS processing is ideally suited to implement the CAZ amp structure. The digital section is easily fabricated, and the transmission gates (analog switches) which connect the on-chip op amps can be constructed for minimum charge injection and the widest operating voltage range. The analog section, which includes the on-chip op amps, contributes performance figures which are similar to bipolar or FET input designs. The CMOS structure provides the CAZ op-amp with open-loop gains of greater than 100dS, typical input offset voltages of ±5mV, and ultra-low leakage currents, typically 1pA. The CMOS transmission gates connect the on-chip op amps to external input and output terminals, as shown in Figure 8. Here, one op amp and its associated analog switches are required to connect each on-chip op amp, so that at any time three switches are open and three switches are closed. Each analog switch consists of a P-channel transistor in parallel with an N-channel transistor. t---1-__ OUTPUT VOLTAGE --~~--1---J.,1 GNDOR -lREFERENCE VOLTAGE INPUT COMMUTATION PERtOD (1IfCOM1) DIFFERENTIAL-TO-SINGLE-ENDED UNITY GAIN VOLTAGE CONVERTER WF014201 Figure 10: Input to Output Voltage waveforms from the differential to single ended voltage converter. For additional information, see frequency characteristics in Amplitude Response of the Input Differential to single ended voltage converter graph on page 5. An idealized schematic of the voltage converter block is shown in Figure 9. The mode of operation is quite simple, involving two capacitors and eight switches. The switches are arranged so that four are open and four are closed. The four conducting switches connect one of the capacitors across the differential input, and the other from a ground or 4-30 Note: All typical values have been guaranteed by characterization and are not tested. ICL7605/ICL7606 'AZ -DIFF IN 10 , - - - - i . -IN ...OIFF IN 17 3C<$ :g; CJ'6 C,13 7 V- DR12 • BIAS 9 ,. ICl7606 g~~: 6 C2 11 '2 OSC11 OUTPUT V' y'10 ,." ,. 15 10k!! 1M!! At 1.5Hz At + A2 Av = -R-,- = 101 TIMES ,. 17 LOW PASS FILTER I . o.'~F 19 _ 20 OSC 140 OSC 2" OSC 3" TEST" REF HI" REF LO" C REF" C REF" COMM" IN HI31 IN LO" AZ" . BUFF" .... lOOk V· V- • INT27 V· .. ICL7I06 " 22 21 -::- } LCD DISPLAY AF028201 Figure 11: 3·1/2 Digit Digital Readout Torque Wrench The vOltage converter is fabricated with CMOS analog switches, which contain a parallel combination of P-channel and N-channel transistors. The switches have a finite ON impedances of 30kn, plus parasitic capacitances to the substrate: Because of the charge injection effects which appear at both the switches and the output of the voltage converter, the values of capacitors .C3 and C4 must be about 1j.lF to preserve signal translation accuracies to 0.01%. The 1j.lF capacitors, coupled with the 30kn equivalent impedance of the switches, produce a low-pass filter response from the voltage converter which is down approximately 3dB at 10Hz. the AID. In order to set the full-scale reading, a value of gain for the ICL7S05/1CL7S0S instrumentation CAZ amp must be selected along with an appropriate value for the rEiference voltage. The gain should be set so that at full scale, the output will swing about 0.5V. The reference voltage required is about one-half the. maximum output swing, or approximately 0.25V. In this type of system, only one adjustment is required. Either the amplifier gain or the reference voltage' must be varied for full-scale adjustment. Total current consumption of all Circuitry, less the current through the strain .ga\lge bridge, is typically 2mA. The accuracy is limited only by resistor ratios and the transducer. APPLICATIONS Using the ICL760511CL7606 to Build a Digital Readout Torque Wrench SOME HELPFUL HINTS Testing the ICL7605/1CL7606 CAZ Instrumentation Amplifier A typical application for the ICL7S05/1CL7S0S is in a strain gauge system, such as the digital readout torque wrench circuit shown in Figure S. In this application, the CAZ instrumentation amplifier is used as a preamplifier, taking the differential voltage of the bridge and converting it to a single-ended voltage referenced to ground. The signal is then amplified by the CAZ instrumentation amplifier and applied to the input of a 3-1/2 digit dual-slope AID converter which drives the LCD panel meter display. The AID converter device used in this instance is the Intersil ICL71 OS. In the digital readout torque wrench circuit, the reference voltage for the ICL710S is derived from the stimulus applied to the strain gauge, to utilize the ratiometric capabilities of Figure 4 and 5 (Test Circuits) provide a convenient means of·· measuring most of the important electrical parameters of the CAZ instrumentation amp. The output signal can be viewed on an oscnloscope after being fed through a low-pass filter. It is recommended that for most applications,a low-pass filter of about 1.0 to 1.5Hz be used to reduce the peak-to-peak noise to about the same level as the input offset voltage. . The output low-pass filter must be a high-input impedance RCtype - not simply a capaCitor across the feedback resistor R2. Resistor and capacitor-values of about 100kn and 1.0j.lF are necessary so that the output load impedance on the CAZ op-amp is greater than 100kn. 4--31 Note: All typical values have been guaranteed by characterization and are not tasted. EI ~ IID~Oll IICL1605tlCL7606 ;;.;, 51! ! 'a GND~ ____ ~ ______ ~ ____ ~r- ____ A.f\ ~ INPUT AC R,ouReE WAVEFORMS OUTPUT VOLTAGE WF014401 WF014301 Figure 12: Effect of a load capacitor on output voltage waveforms. 'Bias Control capacitor produces an area error in the output waveform, and hence an effective gain error. The output low-pass filter must be of a high-impedance type to avoid these area errors. For example, a 1.SHz filter will require a 100kn resistor and a 1.0pF capacitor, or a 1Mn resistor and an 0.1 pF capacitor. The on-chip op amps consume over 90% of the power required by the ICL760~/ICL7606. For this reason, the internal op amps have eXternally~ programmable bias levels. These levels are,set by cOnnecting the elAS terminal to either V + , GND, or V-, for lOW, MEQ or HIGH BIAS levels, respectively. The difference between each "bias setting is about a factor of 3, allowing a 9:1 ratio of quiescent supply current versus bias setting. This current programmability provides the user with a choice of device power dissipation levels, slew rates (the higher the slew rate, the better the recovery from commutation spikes), and offset errors due to "IR" Voltage drops and thermoelectric effects (the higher the power dissipation, the higher the input offset error). In most cases, the medium bias (MED BIAS) setting will be found to be the best choice. Oscillator and Digital Circuitry Considerations The oscillator has been designed to run free at about S.2kHz when the OSC terminal is open circuit. If the full divider network is used, this will result in a nominal commutation frequency of approximately 160Hz. The commutation frequency is that frequency at which the on-chip op amps are switched between the signal processing and the auto-zero modes. A 160Hz commutation frequency represents the best compromise between input offset voltage and low frequency noise. Other commutation frequencies may provide optimization of some parameters, but always at the expense of others. The oscillator has a very high output impedance, so that a load of only a few picofarads on the OSC terminal will cause a significant shift in frequency. It is therefore recommended that if the natural oscillator frequency is desired (S.2kHz) the terminal remains open circuit. In other instances, it may be desirable to synchronize the oscillator with an external clock source, or to run it at another frequency. The ICl760S/ICL7606 CAZ amp provides two degrees of flexibility in this respect. First, the DR (division ratiO) terminal allows a choice of either dividing the oscillator by 32 (DR terminal to V +) or by 2 (DR terminal to GND) to obtain the commutation frequency. Second, the oscillator may have its frequency lowered by the addition of an 8Idernal capacitor connected between the OSC terminal and the V + or system GND terminals; For situations which require that the commutation frequency be synchronized with a master clock, (Figure 13) the OSC terminal may be driven from TIL logic (with resistive pull-up) or by CMOS logic, provided that the V+ supply is +SV (±10.%) and the logic driver also operates from a similar voltage supply. The reason for this requirement is that the logic section (including the OSCillator) operates from an internal -SV supply, referenced to V+ supply, which is not accessible externally. Output Loading (Resistive) With a 10kn load, the output voltage swing can vary across nearly the entire supply voltage range, and the device can be used with I,oads as low as 2kn. However, with loads of less than SOkn, the on-chip op amps will begin to exhibit the characteristics of transconductance amplifiers, since their respective output impedances are nearly SOkn each. Thus the open-loop gain is 20dB less with a 2kn load than it would be with a 20kn load. Therefore, for high gain configurations requiring high accuracy, an output load of 100kn or more is suggested. There is another consideration in applying the CAZ instrumentation op amps which must not be overlooked. This is the additional power dissipation of the ,chip which will result from a large output voltage SWing into a low resistance load. This added power dissipation can affect the initial input offset voltages under certain conditions. Output Loading (Capacitive) , In many applications, it is desirable to include a low-pass filter at the output of the CAZ instrumentation op' amp to reduce' high-frequency noise outside the desired signal passband. An obvious solution when using a conventional op amp would be to place a capacitor across the external feedback resistor and thus produce a low-pass filter. However, with the CAZ op amp concept this is not possible because of the nature of the commutation spikes. These voltage spikes exhibit a low-impedance characteristic in the direction of the auto-zero voltage and a highimpedance characteristic on the recovery edge, as shown in Figure 12. It can be seen that the effect of a large load ThermoelectriC Effects The ultimate limitations to ultra-high-sensitivity DC amplifiers are due to thermoelectric, Peltier, or thermocouple effects in electrical junctions consisting of various metals, (alloys, silicon, etc.) Unless all junctions are at precisely the 4-32 Note: All typical values have been guaranteed by characterization and are not tested. ICL7605/ICL7606 same temperature, small thermoelectric voltages will be produced, generally about 0.1 /lV rc. However, these voltages can be several tens of microvolts per ·C for certain thermocouple materials. switching transients which occur at both the input and output terminals because of commutation effects. These transients have a frequency spectrum beginning at the commutation frequency, and including all of the higher harmonics of the commutation frequency. Assuming that the commutation frequency is higher than the highest inband frequency, then the commutation transients can be filtered out with a low-pass filter. The input commutation transients arise when each of the on-Chip op amps experiences a shift in voltage which is equal to the input offset voltages (about 5-10mV), usually occurring during the transition between the signal processing mode and the auto-zero mode. Since the input capacitances of the on-chip op-amps are typically in the 10pF range, and since it is desirable to reduce the effective input offset voltage about 10,000 times, the offset voltage autozero capaCitors C1 and C2 must have values of at least 10,000 x 10pF, or 0.1/lF each. The charge that is injected into the input of each op amp when being switched into the signal processing mode produces a rapidly-decaying voltage spike at the input, plus an equivalent DC input bias current averaged over a full cycle. This bias current is directly proportional to the commutation frequency, and in most instances will greatly exceed the inherent leakage currents of the input analog switches, which are typically 1.0pA at an ambient temperature of 25°C. The output waveform in Figure 4 (with no input signal) is shown in Figure 14. Note that the equivalent noise voltage is amplified 1000 times, and that due to the slew rate of the on-Chip op amp!!, the input transients of approximately 7mV are amplified by a factor of less than 1000. TTL OR CMOS LOGIC USE RL - 22k1l FOR TTL LOGIC (NOT NEEDED FOR CMOS) LC008101 Figure 13: ICL7605 being c::locked from external logic into the oscillator terminal. In order to realize the extremely low offset voltages which the CAZ op amp can produce, it is necessary to take precautions to avoid temperature gradients. All components should be enclosed to eliminate air movement across device surfaces. In addition, the supply vol.tages and power diSSipation should be kept to a minimum by use of the MED BIAS setting. Employ a high impedance load and keep the ICL7605/1CL7606 away from equipment which dissipates heat. Component Selection The four capacitors (C1 thru C4) should each be about 1.0/lF. These are relatively large values for non-electrolytic capacitors, but since the voltages stored on them change significantly, problerils of dielectric absorption, charge bleed-off and the like are as significant as they would be for integrating dual-slope AID converter applications. Polypropylene types are the best for Ca and C4,although Mylar may be adequate for C1 and C2' Excellent results have been obtained for commercial temperature ranges using several of the less-expensive, smaller-size capaCitors, since the absolute values of the capacitors are not critical. Even polarized electrolytic capaCitors rated at 1.0/lF and 50V have been used successfully at room temperature, although no recommendations are made concerning the use of such capaCitors. OUTPUT VOLTAGE WF014511 Figure 14: Output waveform from Test Circuit 1. Layout Considerations Care should be exercised in positioning components on the PC board particularly the capaCitors C1, C2, Ca and C4, which must all be shielded from the asc terminal. Also, parasitic PC board leakage capacitances associated with these four capaCitors should be kept as low as possible to minimize charge injection effects. Commutation Voltage Transient Effects Although in most respects the CAZ instrumentation amplifier resembles a conventional op amp, its prinCipal applications will be in very low level, low-frequency preamplifiers limited to DC through 10Hz. The is due to the finite 4-33 Note: All typical values have been guaranteed by characterization and are not tested. = ICL76XX ~ ICL76XX, Series Low Power ~ CMOS Operational Amplifiers GENERAL DESCRIPTION FEATURES The ICL761X1762X1763X1764X series is a family of monolithic CMOS operational amplifiers. These. devices provide the designer with high performance operation at low supply voltages and selectable quiescent currents, and are an ideal design tool when ultra low input current and low power dissipation are desired. The basic amplifier ~iII operate at supply voltages ranging from ± 1.0V to ±av, and may be operated from a single Lithium cell. A unique quiescent current programming pin allows settingof.standby current to 1mA, 100,..A, or 10,..A, with no external components. This results in power consumption as low as 201lW. Output swings range to within a few millivolts of the supply voltages. Of particular significance is the extremely low (1 pAl input and 1012n input current, input noise current of .01 pAl impedance.. These features optimize Performance in very high source impedance applications. The inputs are internally protected and require no special handling procedures. Outputs are fully protected against short circuits to ground or to either supply. AC performance is excellent, with a slew rate of 1.6V/ /lS, and unity gain bandwidth of 1MHz at IQ 1mAo Because ot the low power dissipation, operating temperatUres and drift are quite low. Applications utilizing these features may include stable instruments, extended life designs, or high density packages. • • • • • • • • • • Wide Operating Voltage Range ±1.0V to ±8V High Input Impedance - 1012n Programmable Power Consumption - Low As 20llW Input current Lower Than BIFETs-Typ 1pA Available As Singles, Dlj8ls, Triples, and Quads Output Voltage Swings to Within Millivolts Of Vand V+ Low Power Replacement for Many Standard· Op Amps Compensated and Uncompensated Versions Inputs Protected to ±200V (lCL7613/15) Input Common Mode Voltage Range Greater Than Supply RaUs (ICL7612) APPLICATIONS YHz, • • • • • • Portable Instruments Telephone Headsets Hearing Aid/Microphone Amplifiers Meter Amplifiers Medical Instruments High Impedance Bu·ffers = SELECTION GUIDE DEVICE. NOMi:NCLATURE. ICL76XX X x SPECIAL FEATURE CODES xx C E H I L M .L Package Code TV - TO-99, B pin PA - Plastic B pin Minidip PO - 14 pin Plastic Dip PE - 16 pin Plastic Dip JO - 14 pin CERDIP JE - 16 pin CEROIP 10 - Dice L . -_ _ Temperature Range C ~ O"C to 70"C M = -55"C to + 125"C ' - - - - - - V o s Selection A=2mV B=5mV C= 10mV 0= 15mV E = 20mV o P V 4-34 Note: All typical values have been guaranteed by characterization and are not tested. = = = = = = = = INTERNALLY COMPENSATED EXTERNALLY COMPENSATED HIGH QUIESCENT CURRENT (1 mAl INPUT PROTECTED TO ±200V LOW QUIESCENT CURRENT (10jlA) MEDIUM QUIESCENT CURRENT (100jlA) OFFSET NULL CAPABILITY PROGRAMMABLE QUIESCENT CURRENT EXTENDED CMVR 302060-002 ICL76XX ORDERING INFORMATION NUMBER OF OP-AMPS IN PACKAGE,AND SPECIAL FEATURES (SEE ABOVE) BASIC PART NUMBER ICL7611 ICL7612 ICL7613 ICL7614 ICL7615 SINGLE OP-AMP: C, 0, P C, 0, P, V C, I, 0, P E, M, 0 E, I, M, 0 ICL7621 DUAL OP-AMP: C, M ICL7622 DUAL OP-AMP: C, M,O ICL7631 ICL7632 TRIPLE OP-AMP: C, P P(3) ICL7641 ICL7642 QUAD OP-AMP: C, H C, L PACKAGE TYPE AND SUFFIX a-LEAD TO-99 a-PIN MINIDIP a-PIN SOIC PLASTIC DIP (1) O·C to +70·C O·C to +70·C -55·C to + 125·C O·C to +70·C O·C to +70·C ACTV BCTV DCTV AMTV BMTV ACPA BCPA DCPA DCPA DCBA ACTV BCTV DCTV AMTV BMTV ACPA BCPA DCPA CERAMIC DIP (1) O·C to +70·C -55·C to + 125·C DICE DID DID ACPD BCPD DCPD ACJD BCJD DCJD AMJD BMJD CCPE ECPE CCJE ECJE CMJE CCPD ECPD CCJD ECJD CMJD DID E/D E/D NOTES: 1. Duals and quads are available in 14 pin DIP package, triples in 16 pin only. 2. Ordering code must consist of basic part number and package suffix, e.g., ICL7611 BCPA. 3. ICL7632 is not compensatable. Recommended for use in high gain circuits only. "Parameter MiniMax Limits guaranteed at 25·C only for DICE orders. DEVICE ICL7611XCPA ICL7611XCTV ICL7611XMTV ICL7612XCPA ICL7612XCTV ICL7612XMTV ICL7613XCPA ICL7613XCTV ICL7613XMTV DESCRIPTION Internal compensation, plus offset null capability and external 10 control PIN ASSIGNMENTS 8 PIN DIP (TOP VIEW) (outline dwg PAl TO-99 (TOP VIEW) (outline dwg TV) 10 SET OFFSET IQ SET -IN v+ +IN OUT QFFSET v• Pin 7 connected to case. 8 PIN DIP (TOP VIEW) (outline dwg SA) vFigure 1: Pin Configurations 4-35 Note: All typical values have been guaranteed by characterization and are not· tested. ICL76XX DEVICE ICL7614XCPA ICL7614XCTV ICL7614XMTV ICL7615XCPA ICL7615XCTV ICL7615XMTV DESCRIPTION PIN ASSIGNMENTS Fixed 10 (l00IlA), eX1ernal compensation, and offset null capability 8 PIN Dip (TOP VIEW) (outline dwg PAl TO·99 (TOP VIEW) (outline dwg TV) SOI~ COMP COMP OFFSET -IN y• • ,N OUT y. 'Pin 7 connected to ICL7621XCPA ICL7821XCTV ICL7621XMTV Dual op amps with internal compensation; 10 fixed at 10011A Pin compaptible willi Texas Inst. TL082 Motorola MC1458 Raytheon RC4558 case. • PIN DIP (TOP VIEW) (outline dwg PAl TO'99 (TOP VIEW) (outline dwg TV) y' OUT. -IN. +IN. y' OUT. -IN. +IN. y'Pin 8 connected to ICL7822XCPD case. 14 PIN OIP.(TOP VIEW) (outline dwgs JD, PO) Dual op amps with eX1ernal compensation and offset null capability; Ia fixed at 10011A Pin compatible with Texas Insl TL083 Fairchild 1lA747 OFFSET OFFSET. Y' OUT. N/C OUT. Y' OFFSET. 14 Nole: Pins 9 and 13 are internally connected. Figure 1: Pin Configurations (Cont.) 4-38 Note: All typical values have been guaranteed by characterization and are not tested. y. ICL76XX DEVICE ICL7631XCPE ICL7632XCPE DESCRIPTION PIN ASSIGNMENTS 16 PIN DIP (TOP VIEW) (outline dwgs JE, PEl Triple op amps with internal compensation (lCL7631) and no compensation (ICL7632). Adjustable 10 Same pin configuration as ICLB023. I.,. 100 SET y- SET 16 • -INa +fNa OUT. V+ 10(: -INe SET Note: pins 5 and 15 are internally connected. ICL7641XCPD ICL7642XCPD Quad op amps with internal compensation. 10 fixed at lmA (ICL7641) 10 fixed at 1011A (lCL7642) Pin compatible with Texas Instr. TLOB4 National LM324 Harris HM741 14 PIN DIP (TOP VIEW) (outline dwg JD, PO) OUTD -INo +INo V- +INc -INc OUTc 8 U • Figure 1: Pin Configurations (Cont.) 4-37 Note: AU typical values have been guaranteed by characterization and are not tested. +INc OU"",,T STAGE o ONPUT STAGE r--L---o . + ® >--_____.. OFFSET +INPUT .,CD ouv .. '. OUTPUT y- y' o ~INPUT y- r--- --.--- - - - - - - I j ! r TABLE OF JUMPERS leL 7611 ICL.7613 : :~~;:!:. 1 ! I ! 8. F, H B. F. H 8, r.H tel·J6l2 ICI..·7821 leL 7622 ICI..-7631 ICL·7632 ICl·7641 ICL·7642 .1' C.D. E C,D, E E E e. e. a.F," 8.F.H e.G A.E NOTES: oy·--"H....---- .A-" >- ~ i--' I 10 = l00"A 100 () ! ....- 10'" 10;,.A; 10 . .A"" '02 '-10' 'OpA '0 10 12 14 16 +25 +50 +75 FREE·AIR TEMPERATURE SUPPLY VOL T AGE - VOL 15 '000 I ".15 CD - RL:z 10K!! IQ""lmA '0 ~ 0 50 -25 +25 i!: I = - ~ ~ 90 ~ l!! lIS ~ ~> 80 IQ= l()Qs.1A • ~"""A 75 >- 'l ....... 70 65 -75 -so -25 '06 VSUpp·,OV r- ~A 0 +25 r-~~.,~ ~ 'o-'mA r--_~_ 102 r""'" , ~1S .. SO +15 qOQ +125 FREE-AIR TEMPERATURE - C -25 0 +50 +25 +75 +100 +125 0P016701 EQUIVALENT INPUT NOISE VOLTAGE AS A FUNCTION OF t~ 0:. 600 soo ~ > l!l0 400 ~ § g E 200 I!::\.I ' i I: .i '00 11:1 ' I !: ,~ , '0 :: T" ' r-... ,..... ,rv 12 '0 'K 'OK FREQUENCY - Hz - , 0P017001 CPO, .... 4-44 Note: All typicel values have been guaranteed by characterization and are not tested. ~ 1\ TAo • +2S'C I 'o"mA ---'o"OpA •..•• '0 -100"" , , , 1.\ ).\""\ v...,,,,., , \ i v..... o '00 i 'K ,2V . , ~ \ \ \ r,,__ r--,... , t?~'.: ~ I ""\ ~ II r'SV . r--_ )J ,. v.u,;;. .~ I !' '00 , '6 il :! rfFII:: · :I ++- ~ 3V " VsUPP " llV 300 I- I TA "' ....25 C i~! Z :i ~Illli ~.J"ill; Ii iI I- OP016801 PEAK-To-PEAK OUTPUT VOLTAGE AS A FUNCTION OF FREQUENCY FREQ~ENCY "~ ~ ...... -50 ....... ....... r-..... FREE·AlR TEMPERATURE _·C FREQUENCY - Hz ....... ....... +100 +125 OP016501 +75 +100 +125 ---- . - ~ r-.... +75 COMMON MODE REJECTION RATIO AS A FUNCTION OF FREE-AIR TEMPERATURE r- 15 ~~ +50 5 '0r--+-t--+-~~~~~ I ~ a: +26 FREE·AIR TEMPERATURE _·C 70 +50 VSUPP" lOV 96 -25 Co • ~r~~/~S CPO'66OI lo.',mA ,-60 ~ 1~F!~~~~-i--r--t--1 POWER SUPPLY REJECTION RATIO AS A FUNCTION OF FREE-AIR TEMPERATURE '00 ./ _oc TA" +25'C '00 f--+-+--+-4 FREE·AIR TEMPERATURE - C i I 2 o. I a 1/ 1.0 ~ Vsupp '" 10 VOL TS VOUT ., 8 VOL TS I -15 ~ ~ 1~f--+-~~~~-~-+~ I I / ii g~ 104 R L ,.. tOOK!! 'O"OOpA _ l- S > >, z ~ ~ +'00 +126 OP016301 ! v- --SVOLTS 100 a: r- , " tI -- I::!o. 'OOpA :ia: Y'-~5vdTS ~ -NQS'GNAL I ~ ::> ,0' '000 vi - y- ~ '0 vbLTS NOlDAD - r-1o = '.mA INPUT BI.AS CURRENT AS A FUNCTION OF TEMPERAT~RE 'OK ~\ ~ 'OOK 'M 10M FREOU~NCV - Hz OP017101 ICL76XX TYPICAL PERFORMANCE CHARACTERISTICS (CONT.) MAXIMUM PEAK·TO·PEAK OUTPUT VOLTAGE AS A FUNCTION OF SUPPLY VOLTAGE MAXIMUM PEAK·To-PEAK OUTPUT VOLTAGE AS A FUNCTION OF FREQUENCY > > 6 II • ! I 2 II \ 6 , I TA .. +125' 2 0 10K 10~ ~ '0 -Iii II I ~ [""'. a TA, := • ! I " I Ii! ~ lOOK RL = 2 I· ~'IPPl Y 14 0 1/ ,,. 1/ o.01 i , 10 -tOStA I I ! 10 12 14 16 0P017601 > '0'" lmA , 2 TA =.+25 C .< > l00pF INPUT c,. .... ... = l00KU lOOp' = +25 C • 0 > .... " S 0 \ 2 1--1--+--+-+ RL '"~ \ 0 6 " 10K!! 1\ J !oUTPUT , VSUPP ., TOV VSUPf' " lOV R, C, ......z 0 l\. 10 -2 ~ -, 12 -6 ~ 1 mA 20 40 TIME ~ 60 100 120 -"s OPQ19101 0P035801 4--45 Note: All typical values have been guaranteed by characterization and are not tested. 1/ V I 2 0.1 : 1.0 10 100 0P017701 VOLTAGE FOLLOWER LARGE SIGNAL PULSE RESPONSE VOLTAGE FOLLOWER LARGE SIGNAL PULSE RESPONSE a 6 = lQVOlTS TA ,,25 C LOAD RESISTANCE - K!! SUP:Pl y VOLTAGE - VOLTS OP017501 VOLTAGE FOLLOWER LARGE SIGNAL PULSE RESPONSE v· -V- 'V t:=- o 10 16 °c 0 a ! 10 -lOO/.1A Ie;; '~A= SUPPLY VOLTAGE - VOLTS ~ o +}5 +100 +125 2 6 " +50 MAXIMUM PEAK·To-PEAK OUTPUT VOLTAGE AS A FUNCTION OF LOAD RESISTANCE 10 1\ "12 ... 25 OP017401 .1-- .0 10 0 6 I I I -25 FREe.AIR TEMPERATURE _ ~ .1 1/1 l i 0 o-75 -so VOLTAGE - VOL T8 MAXIMUM OUTPUT SINK CURRENT AS A FUNCTION OF SUPPLY VOLTAGE 1---+-- 1/,", 16 0P017301 V 1/ i VSUPP' '" 10 VOL T5 1 10 = 1mA 12 10M MAXIMUM OUTPUTISOURCE CURRENT AS A FUNCTION OF SUPPLY VOLTAGE : i/ f""".. I I OP017201 I I 1'.... 2K!~ I 1M 40 Rl '" 10K!! .......... I ! FREQUENCV - Hz O~ !'--.. a TA "+25 C ;. I II I I ii Ii I ~-\ 30 I RL • TOOK!! 11 -55 C I J\. !\i\ 12 I Vwpp ' "lmA I I 0 MAXIMUM PEAK·To-PEAK VOLTAGE AS A FUNCTION OF FREE-NR TEMPERATURE =lCL78xX' a DETAILED DESCRIJ)TION Static Protection Input Offset Nulling All devices are static protected by the use ,of input diodes. However, strong static fields should be avoided, as it is pos~ible for the strQ,ng fields to cause degraded diode junction characteristics, which may result in increased input' ' leakage currents. For those models provided with OFFSET NULLING pins, nulling may be achieved by conne~ting a 25K pot between the OFFSET terminals with the wiper connected to V + . At quiescent currents of 1mA and 100pA,the nulling range provided is adequate for all Vas selections; however with 10 = 10pA, nulling may not be possible with higher values of Vas· Latchup Avoidance Frequency Compensation Junctioncisolated CMOS circuits employ configurations which produce a parasitic 4-layer (p-n-p-n) structure. The 4layer structure has characteristics similar to an SCR, and under certain circumstances may be triggered into a low impedance state resulting in excessive supply current. To avoid this condition, no voltage greater than 0.3V beyond the supply rails may be applied to any pin. (An exception to this rule concerns the inputs of the ICL7613 and ICL7615, which are protected to ±200V.) In general, the op-amp supplies must be established simultaneously with, or before any input signals are applied. If this i~ not posSible, the drive circuits must limit input current flow to 2mA to prevent latchup. The ICL7611/12/13, 7621/22, 7631, 7641/42 are internally compensated, and are stable for closed loop gains as low as unity with capacitive loads up to 100pF The ICL7614/15 are externally compensated by connecting a capacitor between the COMP and OUT pins. A 39pF capacitor is required for unity gain compensation; for greater than unity gain applications, increased bandwidth and slew rate can be obtained by redUCing the value of the compensating capacitor. Since the gm of the first stage is proportional to ViQ, greatest compensation is required when 10=1 mAo The ICL7632 is not compensated internally, nor can it be compensated externally. The device is stable when lIsed as follows: 10 of 1mA for gains ~ 20 10 of 100pA for gains ~ 10 10 of 10pA for gains ~ 5 Choosing the Proper IQ Each device in the ICL76XX family has a similar 10 set-up scheme, which allows the amplifier to be set to nominal quiescent currents to 10pA, 100pA or 1mA. These current settings change only very slightly over the entire supply voltage range. The ICL7611/12/13 and ICL7631/32 have an external 10 control terminal, permitting user selection of each amplifiers' quiescent current. (The ICL7614/15, 76211 22, and 7641/42 have fixed 10 settings - refer to selector guide for details.) To set the 10 of programmable versions, connect the 10 terminal as follows: High Voltage Input Protection The ICL7613 and 7615 include on-Chip thin film resistors and clamping diodes which allow voltages of up to ±200V to be applied to either input for an indefinite time without device failure. These devices will be useful where high common mode voltages, differential mode voltages, or high transients may be experienced. Such conditions may be found when interfacing separate systems with separate supplies. Unity gain stability is somewhat degraded with capacitive loads because of the high value of input resistors. 10 = 10pA -10 pin to V+ 10 = 100pA -.,. 19, pin to ground. If this is not possible; any -0.8 to V- + 0.8 can be used. voltage from V 10 = 1mA-IO pin to V- Extended Common Mode Input NOTE: The negative output current available is a function of the quiescent current setting. For maximum p-p output voltage swings into low impedance loads, 10 of 1mA should be selected. ~ange The ICL7612 incorporates additional processing which allows the input CMVR to exceed each power supply rail by 0.1 volt for applications where VSUpp ~ ±1.5V. For those applications where VSUpp S ±1.5V, the input CMVR is limited in the pOSitive direction, but may exceed the negative supply rail by 0.1 volt in the negative direction (eg. for VSUpp = ± 1.0V, the input CMVR would be + 0.6 volts to -1.1 volts). Output Stage and ,Load Driving Considerations Each amplifiers' quiescent current flows primarily in the output stage. This is approximately 70% of the 10 settings. This allows output swings to almost the supply rails for output loads of 1Mn, 100kn, and 10kn, using the output stage in a highly iinear class A mode. In this mode, crossover distortion is avoided and the voltage gain is maximized. However, the output stage can also be operated in Class AS for higher output currents. (See graphs under Typical Operating Characteristics). During the transition from Class A to Class S operation, the output transfer characteristic is non-linear and the voltage gain decreases. OPERATION AT VSUPP =±1.0 VOLTS Operation at Vsupp = ± 1.0V is guaranteed at 10 = 10pA only. This applies to those devices with selectable la, and devices that are set internally to 10 = 10pA (i.e., ICL7611, 7612, 7613, 7631; 7632, 7642). OutP!Jt swings to within a few millivolts of the supply rails are achievabl,e for RL ~ 1Mn. Guaranteed input CMVR is ±0.6V minimum and typically + 0.9V to -O.7V at VSUpp = ± 1.0V. For applications where greater common mode range is deSirable, refer to the description of ICL7612 above. A special feature of the output stage is that it approximates a transconductance amplifier, and its gain is directly proportional to load impedance. Approximately the same open loop gains are obtained at each of the 10 settings if corresponding loads of 10kn, 100kn, and 1Mn are used. The user is cautioned that, due to extremely high input impedances, care must be exercised in layout, construction, 4-46 Note: All typical values have been guaranteed by characterization and are not tested. ICL76XX board cleanliness, and supply filtering to avoid hum and noise pickup. APPLICATIONS Note that in no case is 10 shown. The value of 10 must be chosen by the designer with regard to frequency response and power dissipation. DUTYCVCLE _0 VIN-----!+' .....- - - - !>--~-- VOUT Since the output range swings exactly from rail to rail, frequently and duty cycle are virtually independent of power supply variations. Figure 6: Precise Triangle/Square Wave Generator AF028301 Figure 3: Simple Follower* 1M' .-".""'--.-VOH V,. V,N TO SUCCEEDING INPUT STAGE >---+-----f >---......- - - TO CMOS OR VOUT l00k~-_-I LPTTL LOGIC COMMON 1M AF028401 08017601 Figure 7: Averaging AC to DC Converter for A/D Converters Such as ICL71 06, 7107, 7109, 7116, 7117 ·By using the ICL7612 in these applications, the circuits will follow rail to rail inputs. Figure 4: Level Detector* 1M 100k.1% 5QOk,1% lOOk INPUT \loUT 1M, 1% > - -......- - - - V O U T . - - - - - -.... v+ o--"I'>I'Y-_--I 1M AF02B501 08017701 Note that AVOL = 25; single Ni-cad battery operation. Input current (from sensors connected to patient) limited to < 5iJ,A under fault conditions. "Low leakage currents allow integration times up to several hours. Figure 5: Photocurrent Integrator Figure 8: Medical Instrument Preamp 4-47 Note: All typical values have been guaranteed by characterization and are not tested. O,2! r-- ;:> O.1j,lF O.2~F 1M I L--ii-=_.J I 360Ic 'M • OUTPUT I L--H":-c.J AF028601 The low bias currents permit high resistance and low capacitance values )0 be used to achieve low frequency cutoff. fe = 10Hz, AVCL = 4, Passband ripple - O.ldB "Note that small capacitors (25-50pF) may be needed for stability in some cases. Figure 9: Fifth Order Chebyshev Multiple Feedback Low Pass Filter +8V 16k TA '" +125'C l60k 1.5k VOUT LCOO8401 NOTES: 1. For devices with external compensation, use 33pF. 2. For deVices with programmable standby current, connect 10 pin to V- (10 = 1mA mode). AF028701 Q Note that 10 on each amplifier may be different. AVCL = 10, = 100, fo -100Hz. Figure 10: Second Order Biquad Bandpass FiRer Figure 11: Burn-In and Life Test Circuit 4-48 Note: All typical values have been guaranteed by characterization and are riot tested, ICL76XX >----YOUT Y'N>----! I. l00pF .". AL .. 10k FOR '0 '" 1rnA lOOk FOR '0 • l00,.A 1M FOR 10 • lo,.A ·FOR ICL7614115 . LC0085QI Figure 13: Unity Gain Frequency Compensation Figure 12: Vos LCOO83OI Null Circuit 4-49 Note: All typical values have been guaranteed by characterization and are not tested. i D~U16 ICL7650 !:i .Chopper-Stabilized S! Operational Amplifier GENERAL DESCRIPTION FEATURES The ICL7650 chopper-stabilized amplifier is a highperformance device which offers exceptionally low offset voltage and input-bias parameters, combined with excellent bandwidth and speed characteristics. Intersil's unique CMOS approach to chopper-stabilized arnplifier design yields a versatile precision component that can replace more expensive hybrid or monolithic devices.· The chopper amplifier achieves its low offset by comparing the inverting and non-inverting input voltages in a nulling amplifier, null8d by alternate clock phases. Two eXternal capacitors are required to store the correcting potentials on the two amplifier nulling inputs; these are the only external components necessary. The clock oscillator and all the other control circuitry is entirely self-contained, however the 14-pin version includes a provision for the use of an external clock, if required for a particular application. In addition, the ICL7650 is internally compensated for unity-gain operation. • • • • • • • • • • Extremely Low Input Offset Voltage - 2ILV Low Long-Term and Temperature Drifts of Input Offset Voltage Low DC Input Bias Current - 10pA (20pA 7650B) Extremely High Gain, CMRR and PSRR - Min 120dB High Slew Rate - 2.5V1ILS Wide Bandwidth - 2MHz Unity-Gain Compensated Very Low Intermodulatlon Effects (Open Loop Phase Shift < 10·C @ Chopper Frequency) Clamp Circuit to Avoid Overload Recovery Problems and Allow Comparator Use Extremely Low Chopping Spikes at Input and Output ORDERING INFORMATION TEMPERATURE RANGE PACKAGE ICL76S0CPA-1 O·C to +70·C 8-PIN Plastic ICL7650BCPA-1 ICL7650CPD O·C to +70·C O·C to +70·C ICL7650BCPD O·C to +70·C ICL76S0CTV-1 O·C to +70·C PART ICL7650BCTV-1 TEMPERATURE RANGE PACKAGE ICL76S0lJD -2S·C to +8S·C 14-PIN CERDIP 8-PIN Plastic ICL76S0BIJD ICL76501TV-1 - 2S·C to + 8S·C -2S·C to + 8S·C 14-PIN CERDIP 14-PIN Plastic 14-PIN Plastic ICL7650BITV-1 -2S·C to +8S·C 8-PIN TO-99 8-PIN T0-99 ICL7650MJD - SS·C to + 12S·C 14-PIN CERDIP 14-PIN CERDIP PART 8-PIN T0-99 O·C to +70·C 8-PIN TO-99 ICL76S0BMJD - SS·C to + 12S·C ICL76S0IJA-1 - 2S·C to + 8S·C 8-PIN CERDIP ICL76S0MTV-1 -SS·C to + 12S·C a-PIN TO-99 ICL76S0BIJA-1 -2S·C to + 8S·C 8-PIN CERDIP ICL76S0BMTV-1 - SS·C to + 12S·C 8-PIN TO-99 CEXT:~ CeXTA Nc(GUA~: ~ 1• 14 : :~ ~+T eLK OUT 2 +IN ~ 5 10 6 • NC(GUAAD~ [ INJECT t3 EXT eLK IN ~ OUTPUT ~ OUTPUT CLAMP y": [""",_ _.....;:.""J CRETN 14· PIN DIP CEXT:U:· ..·· 7 y+ I CASE ~ ... cu< .. ~A.~K~ -IN 2 ---r--l...-' • OUTPUT +IN 3 ~. ~ ~c 5 OUTPUT CLAMP CR£'N(-') 8 LEAD TO· 99 80006411 c0015721 Figure 1: Functional Diagram Figure 2: Pin Configuration 4-50 Note: All typical values have been guaranteed by characterization. and are not tested. 302061-003 ICL7650 ABSOLUTE MAXIMUM RATINGS Total Supply Voltage (V+ to V-) ................... 18 Volts Input Voltage ................. (V + + 0.3) to (V- - 0.3) Volts Voltage on oscillator control pins ................. V+ to Vexcept EXT CLOCK IN: ... (V + + 0.3) to (V + - 6.0) Volts Duration of Output short circuit ..................... Indefinite Current into any pin ........................................ 10mA -while operating (Note 4) .............................. 100j.tA Cont. Total Power Dissipn (TA = 25·C) CERDIP Package ................................ 500mW Plastic Package .................................. 375mW TO-99 ............................................... 250mW Storage Temp. Range ....................... -65·C to 150·C Operating Temp. Range ........................... See Note 1 Lead Temperature (Soldering, 10sec) ................. 300·C Stresses above those listed under" Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and lunctional operation 01 the device at these or any other cond~ions above those indicated in the operational sections 01 the specHications is not implied. Exposure to absolute maximum rating conditions lor extended periods may affect device reliability. ELECTRICAL CHARACTERISTICS Test Conditions: V+ = +5V, = -5V, V- TA = +25·C, (unless otherwise specified) LIMITS 7650 SYMBOL PARAMETER UNIT MIN Input Offset Voltage Vos Average Temp. Coefficient AVos LIMITS 7650B TEST CONDITIONS TYP MAX MIN ±5 TYP MAX ±2 ±5 ±10.0 TA= + 25'C -25'C < TA < +85'C -55'Cut 'N~ise. VoltaQ'!.' in.' ,Input NoiSl! Current u~·,G.illri-' ~ildwidth GBW. ., tr V+ to'VISUpp Ich CMVR= -5V to +1.5 -5.0 -5.2 to +2.0 110 120 110 120 120 130 t20 130 Rs-l00n 1=0 to 10Hz I -10Hz ,. ±20 pA pA 5.0 AVOL SR, pV ±75 ±50 1.5 -5.0 -5.2 to +2.0 n I VIV V 1.5 V I ,I dB dB 2 2 0.Q1 0.01 2.0 2.0 pA/v'Hz MHz pVp.p 2.5 2.5 V/IJS 'RisJi> Ti"1e' 0.2 0.2 .Ov& +1 o -1 ~-+--+---+ -2 1--+--+- ----I----i---I • • 10 14 II VOLTS OP020001 l 211 5 0 ~ --I----i--"'1 TOTAL SUPPLY VOLTAGE - OUTPUT WITH· ZERO. INPUT; GAIN =1000;BAI:.ANCED SOURCE IMPEDANCE = 10KO INPUT OFFSET VOLTAGE VI. CHOPPING FREQUENCY INPUT OFFSET VOLTAGE CHANGE VI. SUPPLY VOLTAGE ~ 150 "C 0P019701 i .... I I 01 EACHSUPPLYVOLTAGE(+ AND-I I , I :t-+---+-:7fC-t-+-+-+-t I> \ , I. 211 I o 10 10k tk CHOPPING FlIIOuENcY CCLDCII.()U1) HI 0P02011 I 4-52 Note: All typical values have been guaranteed by characterlzalion and are not tested. 23 .. TlM.E~ .7 • • m. HT000021 ICL7850 TYPICAL PERFORMANCE CHARACTERISTICS (CO NT.) OPEN LOOP GAIN AND PHASE SHIFT VI. FREQUENCY ,.,,. OPEN LOOP GAIN AND PHASE SHIFT VI. FREQUENCY ,. I 1. " 10, "- "§. -tOO , ,'. I' I. • i" RL =, 10k.n. cDj • oj'''' Ut o.t 10 100 10 1 .t: ... , 1. I "- , "°1 I• .. ,.... :\.. 1. " V , ! • -I • • Cr .,'.O~f 100 ./ r---, f-~L = 10k.n. o.t Ut 1 k 10k tOOk tOO 10 10 'I"- 0 1. 10'1 ·i no I ~ ;" tk ,. if I" 10k 100k 'REQUENCY HI ,IIEGUiENCY ... 0PIJ20311 VOLTAGE FOLLOWER LARGE SIGNAL PULSE RESPONSE" i! IIIC ' !:i 0 ~ !; I ...... +2 ~+1 VOLTAGE FOLLOWER LARGE SIGNAL PULSE RESPONSE· ... 'I/;. J CLOCK OUT LOW, -1 I! f/ \. "- V I CLOCK OUT HIGH CLOCK OUT H'GH ..K '\ \\"'- f ~-2 o CLOCK OUT , LOW o.s.1 1.1 T'..E .... 2 o 2.1 1 ~ 0.5 1.5 I . 2 T'''E·~S OP020401 OP020501 • THE TWO DIFFERENT RESPONSES CORRESPOND TO THE TWO PHASES OF THE CLOCK. N-CHANNEL CLAMP CURRENT VI. OUTI'UT , VOLTAGE P-CHANNEL CLAMP CURRENT VOLTAGE ,.,.. VI. OUTPUT 10e,.A tll,oA 111,oA ,,.,. . 110A ii 1G011A 18 1011A 1M 1011A ~! 7 100pA 100pA 1apA tapA tpA +0.1 +0" +0.4 o +0.2 f 1M 1pA f -0.1 -0., -0.4 -0.2 o OUTPUT VOLTAGE ,\V + OUTPUT VOLTAGE AV0P020601 Note: All typical values have been guaranteed by characterization and are not tested. OP0207OI i ICL7650 a Output 'Clamp RZ The OUTPUT CLAMP pin allows reduction of the overload recOvery time inherent with chopper-stabilized amplifiers. When tied to the inverting input pin, or summing jUnction, a current path between this point and the OUTPUT pin occurs just before the device' output saturates. Thus uncontrolled .input differential inputs are avoided, together with the consequent charge build-upon the correctionstorage capacitors. The output swing is slightly reduced. 0 ...........- - · .OUTPUT Clock The ICl7650 has an internal oscillator giving a chopping freqUency of 200Hz, available at the CLOCK OUT pin on the 14-pih devices. Provision has also been made for the use of an external clock in these parts. The INT100 pin has an internal pull-up and may be left open for normal operation, but to utilize an external clock this pin must be tied to V- to disable the internal clock: The external clock signal may then be applied to the EXT. CLOCK IN pin. At low frequencies, the duty cycle of the external clock is not critical, since an internal divide-by-two provides the desired 50% switching duty cycle. However; since the capacitors are charged only when EXT ClK IN is HIGH, a 50-80% positive duty cycle is favored for frequencies above 500Hz to ensure that any transients have time to settle before the capacitor~ are turned OFF. The external clock should swing between V + an~ GROUND for pOwer supplies up to ±6V, and between V and V+ -6V for highl;lr supply voltages. Note that a signal of about 400Hz will be present at the EXT ClK IN pin with INT high or open. This is the internal clock signal before the divider. Ti::025101 Figure 3: I~L7650/B Test Circuit DETAILED DESCRIPTION Amplifier The functional diagram shows the major elements of the ICl7650. There are two amplifiers, the main amplifier, and the nulling amplifier. Both have otfseMull capability. The main amplifier is connected continu,ously from the input to the output, while the nulling amplifier, under the control of the chopping oscillator and clock circuit, alternately nulls itself and the main amplifier. The nulling connections, which are MOSFET gates, are inherently high impedance, and two external capacitors provide the required storage of the nulling potentials and the necessary nulling-loop time constants. The nulling arrangement operates over the full common-mode and power-supply ranges, and is also independent of the output level, thus giving exceptionally high CMRR, PSRR, and AVOL. , . Careful balancing of the input switches, and the inherent balance of the input circuit, minimizes chopper frequency charge injection: at the input terminals, and also the feedforward-typeinjection into the compensation capaCitor, which is the main cause of output spikes in this type of circuit. 1m In those applications where' a strobe signal is available, an ~Iternate approach to avoid capacitor misbalancing during overload can be used; Ita Strobe Signal is connected to' EXT ClK IN so that it is low during the time that the overload signal is applied to the amplifier, neither capacitor will be charged. Since the. leakage at the capacitor pins is quite I.ow at room temperature, the typical amplifier will drift less than 10pV/sec, and relatively long measurements can be made with little change in offset. Intermodulation Previous chopper-stabilized amplifiers have suffered from intermodulation effects between the chopperfrequency and input signals. These arise because the finite AC gain of the amplifier necessitates a lImall AC signal at the input. This is seen by the zeroing circuit as an error signal; which is chopped and fed back, thus injecting .sum and difference frequencies and causing disturbances to the gain and phase vs. frequency characteristics near the' chopping frequency. These effe<;ts are sUbstantially reduced in the ICl7650 by feeding the nulling circuit with a dynamic curre~t, corresponding to the co'1lpensation capacitor current, In such a way as'toJ:ancel that portion of the il1Put signal due to finite AG gain. Since that is the major error contribution to the ICl7650, the intermodulation and gainl phase disturbances are held to very low values, and can generally be ignored. 'BRIEF APPLICATION NOTES Component Selection The two required capacitors, CEx-rA and CEXTB, have optimum values depending on the clock or chopping frequency. For the preset internal clock, the correct value is 0.1pF, and to maintain the same relationship between the chopping frequency and the nulling time constant this value should be scaled approximately in proportion if an external clock is used. A high-quality film-type capacitor such as mylar is preferred, although a ceramic or other lower-grade capacitor may prove suitable in many applications. For quickest settling on initial turn-on, low dielectric absorbtion capacitors (such as polypropylene) should .be used. With ceramic capacitors, several seconds may be required to settle to 1pV. Capacitor Connection Protec~ion All device pins are static-protected by the use of input diodes. However, strong static fields and discharges should be avoided, as they can cause degraded diode. junction characteristics, which may result in increased input-leakage currents. Static The nullistorage capaCitors should be connected to the CEXTA and CEXTB pins, with a common connection to the CRETN pin. This connection should be made directly by either a separate wire or PC trace to avoid injecting load current IR drops into the capacitive circuitry. The outside foil, where available, should be connected to CRETN. 4-54 Note: All typical values ' eve been guaranteed by characterization and are not tested. ICL7650' _....- .- N--· -W~ - NOTE:...!.!J!.1 INVERTING AMPLIFIER FOLLOWER +... -- ' """"'. . .,,0 IXnMAL C .~' :="'''7" ..... 8HOULD •• LOW IMPEDANCE FOIl OP1111U11 GUARDING RETN ~, .0 O~ ?" 8O'n'OII VIEW 80AIID LAYOUT .011......". GUAIQIIIrIO WITH _ _ NON-INVERTING AMPLIFIER .......... SSOO6801 Figure 4: Connection of 'Input Guards Latchup Avoidance Guarding Junction-isolated CMOS circuits inherently include a parasitic 4-layer (p-n-p-n) structure which has characteristics similar to an SCR. Under certain circumstances this junction may be triggered into a low-impedance state, resulting in excessive supply current. To avoid this condi' tion, no voltage greater than 0.3V beyond the supply rails should be applied to any pin. In general, the amplifier supplies must be established either at the same time or before any input signals are applied. If this is not possible, the drive circuits must limit input current flow to under 1rnA to avoid latchup, even under fault conditions. Extra care must be taken in the assembly of printed circuit boards to take full advantage of the low input currents of the ICL7650. Boards must be thoroughly cleaned with TCE or alcohol and blown dry with compressed air. After cleaning, the boards should be coated with epoxy or silicone rubber to prevent contamination. Even with properly cleaned and coated boards, leakage currents may cause trouble, particularly since the input pins are adjacent to pins that are at supply potentials. This leakage can be significantly reduced by using guarding to lower the voltage difference betWeen the inputs and adjacent metal runs. Input guarding of the 8-lead TO-99 package is accomplished by using a 10-lead pin circle, with the leads of the device formed so that the holes adjacent to the inputs are empty when it is inserted in the board. The guard, which is a conductive ring surrounding the inputs, is connected to a low impedance point that is at approximateIy the same voltage as the inputs. Leakage currents from high-voltage, pins are then absorbed by the guard. The pin configuration of tlie 14-pin dual in-line package is designed to facilitate guarding, since the pins adjacent to the inputs are not used (this is different from the standard 741 and 101A pin configuration, but corresponds to that of the LM108). Output Stage/Load Driving The output circuit is a high-impedance type (approximately 18kn), and therefore with loads less than this value, the chopper amplifier behaves in some ways like a transconductance amplifier whose open-loop gain is proportional to load resistance. For example, the open-loop gain will be 17dB lower with a 1kn load than with a 10kn load. If the amplifier is used strictly for DC, this lower gain is of little consequence, since the DC gain is typically ,greater than 120dB even with a 1kn load. However" for wideband applications, the best frequency response will be achieved with a load resistor of 10kn or higher. This will result ,in a smooth 6dB/octave response from 0.1 Hz to 2MHz, with phase shifts of less than 10· in the transition region where the main amplifier takes over from the nU,1I amplifier. Pin Compatibility The basic pinout of the 8-pin device corresponds, where possible, to that of the industry-standard 8-pin devices, the LM741 , LM101, etc. The null-storing external capacitors are connected to pins 1 and 8, usually used for offset null or compensation capaCitors, or simply not connected. The output-clamp pin (5) is similarly used. In the case of the OP05 and OP-07 devices, the replacement of the offset-null pot, connected between pins 1 and 8 and V +, by two capacitors from those pins to V-, will provide easy compatibility. As for the LM108, replacement of the compensation capacitor between pins 1 and 8 by the two capaCitors to Vis all that is necessary. The same operation, with the removal of any connection to pin 5, will suffice for the LM101, jlA748, and similar parts. The 14-pin device pinout corresponds most closely to that of the LM108 device, owing to the provision of ,"NC" pins for guarding between the input and all other pins. Since this device does not use any of the extra pins, and has no provision for Offset-nulling, but requires a compensation capacitor, some changes will be required in layout to convert it to the ICL7650. Thermo-Electric Effects The ultimate limitations to ultra-high precision DC amplifiers are the thermo-electric or Peltier effects arising in thermocouple junctions of dissimilar metals, alloys, silicon, etc. Unless all junctions are at the same temperature, thermoelectric voltages typically around 0.1 jlV but up to tens of jlVrC for some materials, will be generated. In order to realize the extremely low offset voltages that the chopper amplifier can provide, it is essential to take special precautions to avoid temperature gradients. All components should be enclosed to eliminate air movement, especially that caused by power-dissipating elements in the system. Low thermoelectric-coefficient connections should be used where possible and power supply voltages and power dissipation should be kept to a minimum. High-impedance loads are preferable, and good separation from surrounding heat-dissipating elements is advisable. rc, 4-05 Note: All typical values have been guaranteed by characterization and are not tested;' 4 ! .ICL7080 d TYPICAL APPUCATI()NS +7.JV Clearly the appliCations of the ICL7650 will mirror those of other op. amps. A.nywhere that the performance of a circuit can be significantly improved by a reduction of inputoffset voltage and. ~las current, the ICL765Q is the logical choice. Basic non·'nverting and inverting amplifier circuits are shown in FiglJr~iI 5 and 6. Both cire;:uits. can use the output clamping circ:uit to.enhancethe overload recovery performance. The only limitations on the replacement of other op amps by the ICL7650 are the supply voltage (±8V max.) and the output drive capability (10kn load for full swing). Even these limitations can be overcome using a simple booster circuit, as shown in Figure 7, to enable the full output capabilities of the LM741 (or any other standard device) to be combined .with the input capabilities of the ICL7650. The pair form a composite device, so loop gain stability, when the feedback network is added, should be watched carefully. ".",,,,,,.. _ . 10k L-~----t cJl_--_ ..... __ ounvr LCOO8911 , FULL "'-IFFECT , OUT ..,., ~ . > - Figure 8: I,.ow Offset Comparator ... LC008601 Figure 5: Non Inverting Amplifier With (Optional Clamp) NOTE: R,I!R2 INQICATES THE PARALLEL COMBINATION OF R, AND R2 Normal logarithmic amplifiers are limited in dynamic range in the voltage-input mode by their input-offset voltage. The built-in temperature compensation and convenience features. of the ICL804B can be extended to a voltage-input dynamic range of close to 6 decades by using the ICL7650 to offset-null the ICL804B, as shown in Figure 8. The same concept can also be used with such devices as the HA2500 or HA2600 families of op amps to add very low offset voltage capability to their very high slew rates and b!lndwidths. Note that these circuits. will also have their DC gains, CMRR, and PSRR enhanced. LC008701 Figure 6: .Inverting Amplifier With (OptionallClamp NOTE: R,I!R2 lIilDICATES THE PARALLEL COMBINATION OFR, .um R2 . Figure 8 shows the use ·of the clamp circuit to advantage in a zero-offset comparator. The usual problems in using a chopper stabilized amplifier in. this application are aVOided, since the clamp circuit forC8$ the inverting input to follow the input signal. The threshold input must tolerate the output clamp current oto VIN/R without disturbing other portions of the. system. LCOOOOOl Figure 9: ICL8048 Offset Nulled by ICL7650 FOR FURTHER APPLICATIONS ASSISTANCE, SEE A053 AND R017 Note: All typical values heve been guaranteed by characterization and are not testad. ICL7652 Chopper-Stabilized low-Noise Operational Amplifier GENERAL DESCRIPTION FEATURES .The ICL7652 chopper-stabilized amplifier offers exceptionally low input offset voltage and is extremely stable with respect to time and temperature. It is similar to INTERSIL's ICL7650 but offers improved noise performance and a wider common-mode input voltage range. The bandwidth and slew rate are reduced slightly. INTERSIL's unique CMOS chopper-stabilized amplifier circuitry is user-transparent, virtually eliminating the traditional chopper amplifier problems of intermodulation effects, chopping spikes. and overrange lock-up. The chopper amplifier achieves its low offset by comparing the inverting and non-inverting input voltages in a nulling amplifier, nulled by alternate clock phases. Two external capacitors are required to store the correcting potentials on the two amplifier nulling inputs; these are the only external components necessary. The clock oscillator and all the other control Circuitry is entirely self-contained, however the 14-pin version includes a provision for the use of an external clock, if required for a particular application. In addition, the ICL7652 is internally compensated for unity-gain operation. • • • • • • • • • Extremely Low Input Offset Voltage - 10llY Over Temperature Range Ultra Low Long-Term and Temperature Drifts of Input Offset Yoltage (150nVlMonth, 100nVrC) Low DC Input Bias Current - 15pA Extremely High Gain, CMRR and PSRR - Min 110dB Low Input NoiSe Voltage- O.2IlVp-p (DC - 1Hz) Internally Compensated for Unity-Gain Operation Yery Low Intermodulatlon Effects (Open-Loop Phase Shift < 2·@ Chopper Frequency) Clamp Circuit to Avoid OVerload Recovery Problems and Allow Comparator Use Extremely Low Chopping Spikes at Input and Output ORDERING INFORMATION PART NUMBER ICL7652CPD ICL76521JD ICL7652CTV ICL76521TV TEMP. RANGE PACKAGE O'C to +70'C -25·C to +85·C O·C to +70·C -25'C to +85·C 14-pin plastic 14-pin CERDIP 8-pin TO-99 8-pin TO-99 _a-. - I _ - IN o-I----++--o OUTPUT 14 IITJIIT z 1Cl_ 13 __ IXYcura lIT CUI our II II V' " I GUrM IIUIPUr CLAW • V-'"I:.. 7 _ _-..:il!-,Como 14 LEAD (OuOI.o dwg PD, JD) CLAMP -0. V·_.. T ~EXTCl.KIN TOP VIEW ~A'Cl.KOm ---r--L-l +. ..r--l--r-a c.nn l v- ~c TQ.H BD012801 (Oulilno dwg TV) Figure 1: Functional Diagram CD031811 Figure 2: Pin Configuration ..3100 i - !t !; ... CEXT'"'G.1,.F- ! y 10 e +5 ~ Q W II: CEXT=1,.F I:: BROADBAND NOISE o 25 1..., .. 1000 50 75 100 ¥ 125 0 ~ -5 I&. w II: >.. 150 2345878 TIME(ma) TEMPERATURE ("C) TIME(ma) 01'036601 0P036501 4-59 Note: All typical values have been guaranteed by characterization and are not tested. 2345878 0P036701 :1 ICL7652 I» g~ TYPICAL PERFORMANCE CHARACTERISTICS (CONT.) Voltage Follower Large Signal Pulse Response· 3 ~2 c(ock III :I!:l g OUT LOW ~ If 3 t"- ~ III "g~ CLOCK OUT HIGH 0 O~ -2 I IF S AS 0 -1 2 4 6 8 10 12 14 TIME (,.a) 140 2 r- -~LohK OUT ,-- 0 :\ -1 -2 - 2 0 2 ~ z 100 ~ CLOCK e-OUT ~~IG~ - ~ I-- ~ 'I" 4 ~ ij120 l!. f- \LOW -3 -3 -2 0 Open·Loop Gain and Phase Shift vs Frequency Voltage Follower Large Signal Pulse Response· 80 I . 30 IpHkE '- I r\. 80 40 RL=1Ok 20 I o 6 8 10 12 14 TIME(,..) 0.1 1 ........ ~ 50 I 70 ~ \ ~\ 90 110 :!I ! ~. 130 ill ~ 150 j) 10 100 1k 10k 1001< 1M FREQUENCY (Hz) OP037601 0P037501 I 1_ ~ MARGIN-8O" 0P037701 ·The two different responses correspond to the two phases of the clock. N-Channel Clamp Current vs OutPl't Voltage :;- Ii 100,.A a: 1o,.A illa: ! 1"" :) 10nA iii 1nA 100pA u a: iC ~ Z ~ iii z :z: :t 0.8 0.6 11.4 0.2 OUTPUT VOLTAGE jaV-) ~ 3 "~ 2 2 g 0 6 III 100nA 1UnA 1nA ~ 100pA 10pA 1pA ..3 III U A- =s Input Offset Voltage Change vs Supply Voltage P·Channel Clamp Current vs Output Voltage 10pA 1pA -1.0 -0.8 -0.6 -0.4 -Q.2 OUTPUT VOLTAGE (4V+) -2 5 -3 o o 0PQ37901 0P037801 Iii III II: ~ - - I:') ."..,. "" -1 4 - ~ ~ 6 8 10 12 14 111 TOTAL SUPPLY VOLTAGE (V) 0P038001 control of the chopping frequency oscillator and clock Circuit, alternately nulls itself and the main amplifier. The nulling connections, which are MOSFET gates, are inherently'high-impedance, and two external capacitors provide the required storage of the nulling potentials and the necessary nulling-loop time constants. The nulling arrange, rnent operates over the full common-mode and power supply ranges,. and is also independent of the output level, thus giving exceptionally high CMRR, PSRR, and AVOL. Rz 1MO <';"- O-~.OUTPtlT Careful balancing of the input switches, together with the ,inherent balance of the input circuit, minimizes chopper frequency charge injection at the input terminals. Feedforward-type injection into the compensation capacitor is also minimized, which is the main cause of output spikes in this type of circuit. TC028401 Figure 3: Test Circuit Intermodulation Previous chopper-stabilized amplifiers have suffered from intermodulation effects between the chopper frequency and input signals. These arise because the finite AC gain of the amplifier necessitates a small AC Signal at the input. This is seen by the zeroing circuit as an error signal, which is chopped and fed back, thus injecting sum and difference frequencies and causing disturbances to the gain and phase vs frequency characteristics near the chopping DETAILED DESCRIPTION The Functional Diagram (Figure 1) shows the major elements of the ICL7652. There are two amplifiers, the main amplifier, and the nulling amplifier. Both have offset-null capability. The main amplifier is connected continuously from the input to the output. The nulling amplifier, under the 4-60 Note: All typical values have been guaranteed by characterization and are not tested. ICL7652 frequency. These effects are substantially reduced in the ICl7652 by feeding the nulling circuit with a dynamic current, corresponding to the compensation capacitor current, in such a way as to cancel that portion of the input signal due to finite AC gain. Since that is the major error contribution to t!"le ICl7652, the intermodulation and gainl phase disturbances are held to very low values, and can generally be ignored. lower-grade capacitor may prove suitable in many applications. For quickest settling on initial turn-on, low dielectric absorption capacitors (such as polypropylene) should be used. With ceramic capacitors, several seconds may be required to settle to 11lV. . Static Protection All device pins are static-protected by the use of input diodes. However, strong static fields and discharges should be avoided, as they can cause degraded diode junction characteristics which may result in increased input-leakage currents. Capacitor Connection The null-storage capacitors should be connected to the CEXTA and CEXTB pins, with a common connection to the CRETN pin. This connection should be made directly by either a separate wire or PC trace to avoid injecting load current IR drops into the capacitive circuitry. The outside foil, where available, should be connected to CRETN. Latchup Avoidance Junction-isolated CMOS circuits inherently include a parasitic 4-layer (p-n-p-n) structure which has Characteristics similar to an SCA. Under certain circumstances this junction may be trigerred into a low-impedance state, resulting in excessive supply current. To avoid this condition no voltage greater than 0.3V beyond the supply rails should be applied to any pin. In general, the amplifier sllpplies must be established either at the same time or before any input signals are applied. If this is not possible, the drive circuits must limit input current flow to under 1mA to avoid latchup, even under fault conditions. Output Clamp The OUTPUT CLAMP pin allows reduction of the overload recovery time inherent with chopper-stabilized amplifiers. When tied to the inverting input pin, or summing junction, a current path between this pOint and the OUTPUT pin occurs just before the device output saturates. Thus uncontrolled differential input voltages are avoided, together with the consequent charge build-up on the correctionstorage capacitors. The output swing is slightly reduced. Output Stage/Load Driving Clock The output circuit is a high-impedance type (approximately 18kn), and therefore, with loads less than this the chopper amplifier behaves in some ways like a transconductance amplifier whose open-loop gain is proportional to load resistance. For example, the open-loop gain will be 17dB lower with a 1kn load than with a 10kn load. If the amplifier is used strictly for DC, this lower gain is of little consequence, since the DC gain is typically greater than 120dB even with· a 1kn load. However, for wideband applications, the best frequency response will be achieved with a load resistor of 10kn or higher. This will result in a smooth 6dB/octave response from 0.1Hz to 2MHz, with phase shifts of less than 2° in the transition region where the main amplifier ,takes over from the null amplifier. The ICl7652 has an internal oSCillator, giving a chopping frequency of 400Hz, available at the CLOCK OUT pin on the 14-pin devices. Provision has also been made for the use of an external clock in these parts. The INT100 pin has an internal pull-up and may be left open for normal operation, but to utilize an external clock this pin miJst be tied to V- to disable the internal clock. The external ·clock signal may then be applied to the EXT CLOCK IN pin. An internal divide-by-two provides the desired 50% input switching duty cycle. Since the capacitors are charged only when EXT CLOCK IN is high, a 50%-80% positive duty cycle is recommended, especially for higher frequencies. The external clock can swing between V+ and V-. The logic threshold will be at about 2.5V below V + . Note also that a signal of about 800Hz, with a 70% duty cycle, will be present at the EXT CLOCK IN pin with INT /EXT high or open .. This is the internal clock signal before being fed to the divider. In those applications where a strobe signal is available, an alternate approach to a.void capacitor misbalancing during overload can be used. If a strobe signal is connected to EXT ClK IN so that it is low during the time that the overload signal is applied to the amplifier, heither capacitor will be charged. Since the leakage at the capacitor pins is quite low at room temperature, the typical amplifier will drift less than 1OIlV/sec, and relatively long measurements can be made with little change -in offset. Thermo-Electric Effects BRIEF APPLICATION NOTES Component Selection The ultimate limitations to ultra-high precision DC amplifiers are the thermo-electric or Peltier effects arising in thermo-couple junctions of dissimilar metals, alloys, silicon, etc. Unless all junctions are at the same temperature, but up thermo-electric voltages typically around 0.11lV for some materials, will be generated. In to tens of IlV order to realize the extremely low offset voltages that the chopper amplifier can provide, it is essential to take special precautions to avoid temperature gradients. All components should be enclosed to eliminate air movement, especially that caused by power-dissipating elements in the system. low thermoeleCtric-coefficient connections should be used where possible and power supply voltages and power dissipation should be kept to a minimum. High-impedance loads are preferable, and good separation from surrounding heat-dissipating elements is advisable. The required capacitors, CEXTA and CEXTB, are normally in the range of 0.11lF to 1.0IlF. A 1.01lF capacitor should be used in broad bandwidth circuits if minimum clock ripple noise is desired. For limited bandwidth applications where clock ripple is filtered out, using a 0.11lF capacitor results in slightly lower offset voltage. A high-quality film-type capacitor such as mylar is preferred, although a ceramic or other Extra care must be taken in the assembly of printed circuit boards to take full advantage of the low input currents of the ICl7652. Boards must be thoroughly cleaned with TCE or alcohol and blown dry with compressed air. After cleaning, the boards should be coated with epoxy or silicone rubber to prevent contamination. rc rc, Guarding 4-61 Note: All typical values have been guaranteed by characterization and are not tested. i... ..... 2 ICL.7852 ~. Even with properly cleaned and coated boards, leakage currents may cause trouble, particularly since the input pins are adjacent to pins that are at· supply potentials. This leakage Can be significantly reduced by using guarding to lower the voltage difference between the inputs and' adjacent metal runs. Input guarding of the 8 lead TO-99 package is acc9mplished by using a 10 lead pin circle, with , the leads of the device f.ormed so that the holes adjacent to the inputs are empty when it is inserted in the board. The. guard, which is a conductive ring surrounding the inputs, is , connected to a low-impedance point that is at approximately the same voltage as the inputs. Leakage currents from high-voltage pins are then absorbed by the guard. PIN COMPATIBILITY , The, basic pinout of the 8:pin de,vice corresponds, where possible, to that of theindusti"y-standard8-pin devices, the LM741, LM1 01, etc. The null-s~oring external capacitors are connected to pin,S 1 and 8, which are usu,ally used fO,r offsetnull or compensation capacitors. The output~clamp pin (5) is Similarly used. In the case of the OP-05 and OP-07 devices, the replacement of the offset-null pot; connected between pins 1 and 8 and Y + , by two capacitors from those pins 1'0 Y-, will prClvide easy compatibility. As for the LM108, replacement of the compensation capaCitor between pins 1 and 8 by the two capacitors to Y- is all thatis necessary. The same operation, with the removal of any connection to pin 5, will suffice for the LM101, jJA748, lind similar parts. The 14-pin device pinout corresponds most closely to that of the LM108 device, owing to the provision of "NC" pins for guarding between the input and all other pins. Since this device does not use any of the extra pins, and has no provision for offset-nulling, but requires a compensation capacitor, some changes will be required in layout to convert to the ICQ652. . The pin configuration of the 14"pin dual-in-line package is designed to facilitate' guarding, since the pins adjacent to the. inputs. are not used (this is different from the standard 741 and 101A pin configuration; but corresponds to that of the LM108). INPUT~~~-.------~~----~ OUTPUT OUTPUT INPUT ~++--t TC----*-1 OUTPUT yo. lC017701 Figure 6: Inverting Amplifier with (Optional) Clamp Clearly the applications of the ICL7652 will mirror those of other op-amps. Thus, anywhere that the performance of a circuit can be significantly improved by a reduction of input-offset voltage and bias current, the ICL7652 is the logical choice. Basic non-inverting and inverting amplifier circuits are shown in Figures 5 and 6. Both circuits can use the output clamping circuit to enhance the overload recovery performance. The only limitations on the replacement of other op-amps by the ICL7652 are the supply voltage (±8V max) and the output drive capability (10kn load for full swing). Even these limitations can be overcome using a simple booster circuit, as shown in Figure 7, to enable the full output capabilities of the LM741 (or any other standard device) to be combined with the input capabilities of the ICL7652. The pair form a composite device, so loop gain stability, when the feedback network is added, should be watched carefully. AF031201 Figure 8: Low Offset Comparator It is possible to use the ICL7652 to offset-null such high slew rate and bandwidth amplifiers as the HA2500 and HA2600 series, as shown in Figure 9. The same basic idea can be used with low-noise bipolar devices, such as the OP05 and also with the ICL8048 logarithmic amplifier, to achieve a voltage-input dynamiC range of close to 6 decades. Note that these circuits will also have their DC gains, CMRR and PSRR enhanced. More details on these and other ideas are explained in application note A053. Mixing the ICL7652 with circuits operating at ±15V supplies requires the provision of a lower voltage. Although this can be done fairly easily, a highly efficient. voltage divider can be built using the ICL7660 voltage converter circuit "backwards". A suitable connection is shown in Figure 10. Note: All typical values have been guaranteed by characterization and are not tested. :" a ICL7652 TYPICAL APPLICATIONS OUT AFOS1311 HA2500l10/20 HA2600120 OR SIMILAR DEVICE Figure 9: HA2500 or HA2600 Offset-Nulled by ICL7652 2 'r---<+15V ICL7IIO 1--.--+ +7.5V 100F I--+--+ov AF0308CK Figure 10: Splitting + 15V with ICL7660 at > 95% efficiency. Same for -15V FOr further applications a..lstance, _ AOS3 and R017 4-64 Note: All typical values have been guaranteed by characterization and are not tested. ICLa007 JFET Input Operational Amplifier GENERAL DESCRIPTION FEATURES The Intersi! ICLB007 is a low input current JFET input operational amplifier. The ICLB007 A is selected for 4 pA max input current. The devices are designed for use in very high input impedance applications. Because of their high slew rate, high common mode voltage range and absence of "latchup", they are ideal for use as a voltage follower. The Intersil B007 and B007 A are short circuit protected. They require no external components for frequency compensation because the internal 6 dB/roil-off insures stability in closed loop applications. A unique bootstrap circuit insures unusually good common mode rejection for a JFET input op-amp and prevents large input currents as seen in some amplifiers at high common mode voltage. • • • • • • Ultra Low Input Current High Slew Rate - 6VI /J5 Wide Input Common Mode Voltage 1MHz Band Width Excellent Stability Ideal for Unity Gain Applications ORDERING INFORMATION PART NUMBER TEMPERATURE RANGE to +70·C ICL8007CTV ICL8007ACTV O·C ICL8007MTV ICL8007AMTV -55·C ICL8007/D to + 125·C - PACKAGE 8 LEAD TO-99 METAL CAN DICE"· ··Parameter MinIMax Limits quaranteed at 25·C only for DICE orders. ~.----------.--------~----~~o.· ••• ..., L.--+-oOUTPUT Q •• r'O"V'fW, CO01690t TC02590t ICL8007 pin 4 connected to case (TV package) ICL8007A pin 8 connected to case (TV package) Figure 1: Functional Diagram Figure 2: Pin Configuration 4-65 Note: All typical values have been guaranteed by characterization and are not tested. g ICLeoo7 a A'BSOLUTE MAXIM'UM RATINGS Supply Voltage ................................................ ±18V Power Dissipation (Note 1) ............................. 500mW Differential Input Voltage ...................................±30V Input Voltage (Note 2) ...............................'..... :.±15V Storage Temp.erature Range;·........... ~65·C to + 150·C Operating Temperature Range 8007M, 8007AM .................... - 55·C to -+: 125·C 8007C, 8007AC ........................... O·C to + 70·C Lead Temperature (Soldering, 10sec) ................. 300·C Output Short-Circuit Duration (Note 3) ............ Indefinite NOTES: 1. Rating applies lor case temperatures to 12S0C; derate linearly at 6.S mW/oC' lor ambient temperatures above + 7SOC. 2~ For supply voltages less than ± 15V, the absolute maximum input voltage is equal to the supply voltage. 3. Short circu~ may be to ground or e~her supply. Rating applies to + 12SoC case temperature or + 7SOC ambient temperature. 4. For Design only, not 100% tested. ELECTRICAL CHARACTERISTICS CHARACTERISTICS (Vs = ±15V unless otherwise specified) aOO7M TEST CONDITIONS MIN The following specifications apply for T A Input Offset Voltage 8007C TYP MAX 10 20 MIN a007AM & aOO7AC TYP MAX 20 SO MIN MAX 15 30 mV 4.0 pA =25·C: 'Rs ~ 100kn Input Offset Current 0.5 Input Bias Current (either input) 2.0 Input Resistance 106 106 106 Input Capacitance 2.0 2.0 2.0 Large Signal Voltage Gain UNIT TYP RL ~ 2kn, VOUT - ±10V 0.5 20 50.000 3.0 0.2 50 20,000 0.5 pA Mn pF viv 20,000 Output Resistance 75 75 75 n Output Short-Circuit Current 25 25 25 rnA Supply Current 3.4 5.2 3.4 6.0 3.4 6.0 rnA Power Consumption 102 156 102 160 102 180 mW Slew Rate 6.0 Unity Gain Bandwidth 1.0 6.0 1.0 2.S 6.0 VIliS 1.0 MHz Risetime CL ~ 100pF, RL - 2kn 300 300 300 ns Overshoot CL ~ loopF, RL - 2kn 10 10 10 % The following specifications apply for O·C :5 TA :5 (8007M and 8007AM): Input Voltage Range Common Mode Rejection Ratio + 70·C (8007C and 8007AC), and -55·C:5 TA:5 + 125·C ±10 ±12 ±10 ±12 ±10 ±12 V 70 90 70 90 86 95 dB Supply Voltage Rejection Ratio 70 Large Signal Voltage Gain Output Voltage Swing RL ~ RL~ Input Bias Current (either input) TA = + 125°C TA= + 70°C Average Temperature Coefficient 01 Input Offset Voltage 300 25,000 10kn 2kn ±12 ±10 70 600 ±14 ±13 ±12 ±10 ±14 ±13 ±12 ±10 2.0 SO 75 (Note 4) .-----""9"""9--- Your TC026011 Figure 3: Transient Response Test Circuit Note: All typical values have been guaranteed by characterization and are not tested. 70 200 15,000 15,000 75 "VIV VIV ±14 ±13 V V 1.0 30 nA pA 50 "V/oC ICLa007 TYPICAL PERFORMANCE CHARA~TERISTICS 10" 10" ~SII~ ••i&v t-... t\. z 10" C ... 10> ".... 10' I!I ~ g ~!U:";.~'5V 8 T•• +25·C 1\ t\. ""- 10 I 10 100 'I INPUT 7 ~ \ ~ TA =+2&"C RL = 'CIkfi I 1\ OUT..JT i1 I, ~ 10k lOOk 1M 10M lk ~!:,,..! =(±\~~ _ I~ ~ I!I OUTPUT VOLTAGE SWING AS A FUNCTION OF FREQUENCY VOLTAGE FOLLOWER LARGE SIGNAL PULSE RESPONSE OPEN LOOP VOLTAGE GAIN 0'23458781 FIlEQUENCYCHzl 'CIk TIME (~.) '00k 10M 1M FREQUENCY (Hz) QP026001 OP025901 0P025801 INPUT BIAS CURRENT AS A FUNCTION OF TEMPERATURE TRANSIENT RESPONSE OUTPUT SWING AS A FUNCTION OF SUPPLY VOLTAGE 20 28 T.=25"C R L ' 2kn 24 20 90"0 16 ~ I I '2 ,CrJ I o " W i tI< tI< Vs " f- o ~ z 103 ..a ~ ~lSV ~ ~ RISE TIME T.· 25 C RL " 2 kl! CL"loopF 5 1.0 TIME 2.0 1.S .... 1/ 0 ./ 10 /V 10 // ;) ;) V POSIT.VE SWING/ ~ / to' 15 / 5 V V NEGATIVE SWING N :::; 2.5 " ~ ./ 1 20 ~ (ps) 40 60 80 100 120 15 10 5 0 140 SUPPLYV(lTAGE "V) TEMPERATURE C·C) 0P026301 0P026101 0P026201 INPUT VOLTAGE RANGE AS A FUNCTION OF SUPPLY VOLTAGE OPEN LOOP VOLTAGE GAIN AS A FUNCTION OF SUPPLY VOLTAGE QUIESCENT SUPPLY CURRENT AS A FUNCTION OF SUPPLY VOLTAGE 5 20 ~ co z ~ 15 POSITIVE / C tI< ... ...... ~ > ~ ... ;) AI" 10 0 5 ~ I/, V / / V /NEGAT(VE T. "25'C i 4 tI< tI< a> 3 ~ 2 !i ... .... I-- I-- - .... V .0' L-.l-...l-....1..-L-L--l_.l....-J o 5 10 15 0 SUPPL Y VOLTAGE C'V) 10 10 15 SUPPLY VOLTAGE "VI 0P026401 0P026S01 U ...> 2 ~ - -r0- t- ~> oS ... ; 10' ~ ... 0 > ... -15 25 65 105 10' I-- '"~ ' Rs " iu son III 100 lk 10k lOOk FREQUENCY \Hzl TEMPERATURE I'CI OP026701 0 ... - For additional information, see Application Note AO05., 40-68 Note: All typlcal values have been guaranteed by characterization and are not tested. ~~~~001dtz V 8,0.0 Rs" 1 Mn I- 10 100 ~ '0 -55 WIDEBAND NOISE AS A FUNCTION OF SOURCE RESISTANCE INPUT VOLTAGE NOISE AS A FUNCTION OF FREQUENCY QUIESCENT SUPPLY CURRENT AS A FUNCTION OF TEMPERATURE I o.1 100 - ~ ~ =~~~(cHz I I 1 1k 10k 100k 1M 10M , _ SOURCE RESISTANCE (0) OP026911 .U~UlLi... ICL8021/ICL8022/ ICL8023 -I N Low Power Bipolar Operational Amplifier GENERAL DESCRIPTION The Intersil ICL8021 series are low power operational amplifiers specifically designed for applications requiring very low standby power consumption over a wide range of supply voltages. The electrical characteristics of the 8021 series can be tailored to a particular application by adjusting an external resistor, RSET, which controls the quiescent current. This is advantageous because IQ can be made independent of the supply voltages: it can be set to an extremely low value where power is critical, or to a larger value for high slew rate or wideband applications. Other features of the 8021 series include low input current that remains constant with temperature, low nOise, high input impedance, internal compensation and pin-forpin compatibility with the 741. The Intersil 8022 (8023) consists of two (three) low power operational amplifiers in a single 14(16)-pin DIP. Each amplifier is identical to an 8021 low power op amp, and has separate connections for adjusting its electrical characteristics by means of an external resistor, RSET, which controls 'the quiescent current of that amplifier. • • • • • • • VOS = 3mV Max (Adjustable to Zero) ± 1.SV to ± laV Power Supply Operation Power Consumption - 20j.lW @ ±1V Input Bias Current - 30nA Max Internal Compensation Pin-for-Pin Compatible With 741 Short Circuit Protected ORDERING INFORMATION ICLB021 C PART NUMBER TV LpaCkage TV - TO-99 Metal can PA - 8 pin Minidip JD PD - 14 pin CERDIP 14 pin Plastic DIP 8021 only 8022 only JE - 16 pin CERDIP 8023 only PE - 16 pin, Plastic DIP ' - - - - - Temperature C - Commercial - O·C to + 70·C M - Military - -SS·C to + 12S·C ' - - - - - - - - Basic Part Number 8021 - Single 8022 - Dual 8023 - Triple TEMPERATURE RANGE - ICL8021/D ICL8021CJA ICL8021C8A ICL8021 CPA ICL8021CTY ICL8021MJA ICL8021MJD ICL8021MTY O·C O·C O·C O·C -SS·C -SS·C -SS·C ICL8022/D ICL8022CJD ICL8022CPD ICL8022MJD O·C to 70·C O·C to 70·C -SS·C to + 12S·C ICL8023/D ICL8023CJE ICL8023CPE ICL8023MJE O·C to 70·C O·C to 70·C -SS·C to + 12S·C to to to to to to to 70·C 70·C 70·C 70·C + 12S·C + 12S·C +12S·C PACKAGE DICE" 8 Lead CERDIP 8 Lead S.O.l.C 8 Lead MINIDIP 8 Lead Metal Can 8 Lead CERDIP 14 Lead CERDIP 8 Lead Metal Can - DICE 14 Lead CERDIP 14 Lead MINIDIP 14 Lead CERDIP - DICE 16 Lead CERDIP 16 Lead MINIDIP 16 Lead CERDIP "Parameter MinIMax Limits guaranteed at 2S·C only for DICE orders. 4-69 Note: All typical values have been guaranteed by charscterization and are not tested. N FEATURES I fit ICLII021l1CL~022/1CL8023 ABSOLUTE MAXIMUM RATINGS Supply Voltage ................................................ ±18V Differential Input Voltage (Note 1) ....................... ±15V Common Mode Input Voltage (Note 1) ................ ±15V Output Short Circuit Duration .............. , ......... Indefinite Power Dissipation (Note 2) ............................. 300mW NOTE 1: For supply voltages less' than Operating Temperature Range, " 8021M .................... : .......... -55·C to +125·C 8021 C ..................................... O·C to + 70·C Storage Temperature Range , ........... -65·C 10 + 150·C Lead Temperature (Soldering. 10sec) ........ ~ ...... +300·C 'f 15V. the absolute maximum'input voltage is equal to the supply voltage, NOTE 2: Rating applies for case temperatures io + 125'C; derate linearly at 5,6 mW I'C for ambient temperatures above + 95,·C. In Z&KO V' 05026001 Figure 1: Functional Diagram 10 SET 8AL~, -IN 2 ,10 V·'SET 'IN 3· OUT _ '8 7 V-4 sBAL y' (outline dwg PAl (outline dwg TV) CD017501 CD017401 (outline dwg JE, PEl (outline dwg JO, PO) CD017t'101 CO0177ot Figure 2: Pin Configurations 4-70 Note: All typical values have been guaranteed by characterization and are not tested. 1I0~OIb ICL8021/ICL8022/ICL8023 ~ -i ... v' -i N N N Col TC034801 Figure 3: Voltage Offset Null Circuit ELECTRICAL CHARACTERISTICS (VSUPPLY = ±6V, la = 30j.lA, unless otherwise specified.) 8021C 8021M CHARACTERISTICS TEST CONDITIONS MIN TYP MAX MIN TYP UNIT MAX The following specifications apply for TA = 2S·C: 2 3 2 6 mV Input Offset Current .5 7,5 .7 10 nA Input Bias Current 5 20 7 30 Input Offset Voltage RS 5100kn Input Resistance Input Voltage Range Common Mode Rejection Ratio VSUPPLY'" ±15V Rs 510kn 10 3 10 ±13 ±12 ±13 V 70 80 70 80 dB Supply Voltage Rejection Ratio Rs 510kn 30 Output Resistance Open Loop 2 Output Voltage Swing RL <: 20kn, VSUPPLY ~ ± 1'5V ±12 RL<:IOkn, VSUPPLy=±15V· ±II 150 ·±14 ±I3 30 360 VOUT=O Slew Rate (Unity Gain) Unity Gain Bandwidth RL = 20kn, VIN = 20mV Transient Response (Unity Gain) RL'" 20kn, VIN '" 20mV Ri.setime Overshoot Mn 150 IlVN 2 kn .,±12 ±14 V ±II ±13 V ±I3 mA ±I3 Output Short-Circuit Current Power Consumption nA 3 ±12 480 380 600 IlW O.IS 0.16 V/JlS 270 270 kHz 1.3 10 1.3 10 IlS % The following specifications apply for O·C5TA5 +70·C (B021C) and -SS·C5TA5 +12S·C (B021M) Input Offset Voliage RS 5 lOkn Input Offset Current Input Bias Current Average Temperature Coefficient of Input Offset Voltage Average Temperature Coefficient of Input Offset Current RS 5 lOkn . Large Signal Voltage Gain RL = lOkn 50. Output Voltage Swing RL<: 10kn ±to 4-71 Note: All typical values have been guaranteed by characterization and are not ·tested. 2.0 4.0 2.0 7.5 mV 1.0 II 1.5 15 nA 10 32 15 50 nA 5 5 IlV/"C 1.7 0.8 pA/·C 50 200 V/mV ±IO ±IS V 200 ±13 =ICL8021/ICL8022/ICL8023 a II QUIESCENT CURRENT ADJUSTMENT &'II QUIESCENT CURRENT SETTING RESISTOR (PIN a to V-) QUIESCENT CURRENT SETTING RESISTOR (PIN a to V-) 10 Vs 10pA 301lA 1001lA ±1.5 1.5MQ 470kn l50kQ - ±3 3.3MQ 1.lMQ 330kQ lookQ ±6 7.5MQ 2.7MQ 750kQ 220kQ ±9 l3MQ 4MQ 1.3MQ 350kQ £ .t_ 3001lA ±12 laMQ 5.6MQ 1.5MQ 5l0kQ ±15 22MQ 7.5MQ 2.2MQ 620kQ I~ , 10"A 10M!!~IIIII~~~~ '~~ :z> I M!! ~IIIII~'~O~'~'OO~"A~ IQ = 300fjA 1.fI.Jo1"11111 U IIIII 100.) o 2 4 6 8 10 12 14 16 18 5UPPL Y VOLTAGE I· VI OPO.27501 TYPICAL PERFORMANCE CHARACTERISTICS· (TA = + 2SoC, Vs = ±6V, 10 - 30,iA unless otherwise specified.) INPUT BIAS CURRENT VS AMBIENT TEMPERATURE INPUT BIAS CURRENT VS QUIESCENT CURRENT DIFFERENTIAL INPUT IMPEDANCE VS QUIESCENT CURRENT lOll 100 C i ...z.s ~ c c ... w rr: rr: ;:) u 10 B '"c ii ~ iii ... 50 10 10 IQI_~,,! 1 5 i C ! -I- I" - 10 30 lOll ~ I IJ -80 300 -ID"A I I I I I -IOO"A -20 0 20 80 100 140 TEMPE RATURE ( CI QUIESCENT CURRENT ",AI QUIESCENT CURRENT ("AI OP027701 0P027601 0P027801 SLEW RATE VS QUIESCENT CURRENT FREQUENCY RESPONSE VS QUIESCENT CURRENT PHASE MARGIN VS QUIESCENT CURRENT RL ·2011U 'iii' w 5 J . /~ ~ w C ... rr: iI ...... 1/ ~ 4S :l:z: 30 ... V '" ...- .... 13 • rr: V 05 ~IO c/. w -..e..75 z L IL 01 10 30 100 30 300 QUIESCENT CURRENT ("AI 100 300 QUIESCENT CURRENT ("AI 0!' 0 0 ... 40 ~ "'..." 15 > 10 0 z :;) > 2 Z 5 :;) 0 RISE TIME o 4 8 12 ~ "z ~ RL • 20kfl "'" === l- S > I- :;) 100 fI 300 0P028401 EQUIVALENT INPUT NOISE CURRENT VS FREQUENCY ;i ~ 80 > "...c... __ 10 'IOOI~~ 50 , 40 .r---- 0 ... > 30 10 ·30p.A 10' 10 ,.A c/O / .. 30 aUIESCENT CURRENT I,.AI EQUIVALENT INPUT NOISE VOLTAGE VS FREQUENCY ... w ~ I i OP02B301 .!: 10 Ys ' ,6Y 10 16 TIME l,.tlCl OUTPUT VOLTAGE SWING VS SUPPLY VOLTAGE L Vs' 'ISV I OP028201 30 't-.. 5 i rt 0 10 Ik IOU. FREOUENCY IHzI 10 :;) 2 :;) 0I- "'- ... c ~~ 0- ! 50 ...~ I- "I~ .u 0 20 RL • tOka CL'IOOpF I- ~~ 0- > ! ... ~R, "50UI 80 MAXIMUM LOAD VS QUIESCENT CURRENT TRANSIENT RESPONSE 0 20 i 10 ...Z 0- :;) ! 0 '1 ,3 ,6 '10 50 SUPPLY VOL TAGE IVI 100 Ik 50 100 500 Ik FREaUENCY 1Hz, FREQUENCV 1Hz} 0P02a501 *ICL8021 C guaranteed only for O·C ::; T A ::; 500 0P0287Of 0P02II6OI + 70·C 4-73 Note: All typical values have been guaranteed by characterization and are not tested. !i ICL8043 ,3 Dual JFET Input Operational . g Amplifier GENERAL DESCRIPTION FEATURES ThelCL8043 contains two FET input op amps, each similar in performance .to the ICL8007. The inputs and outputs are fully short circuit protected, and no latch-up problems exist.· Offset nulling is accomplished by using a. single pot (for each amplifier) connected to .th!! positive supply voltage~ The devices have excellent common mode . rejection. • • • • • Very Low Input Current - 2pA Typical High Slew Rate - 6VI j.I8 Internal Frequency Compensation Low Power DIssipation - 135mW T.yplcal Monolithic Construction ORDERING INFORMATION PART NUMBER TEMPERATURE RANGE ICL8043MJE - 55°C to 125°C CERAMIC 16 Pin DIP ICL8043CPE O°C,to 70°C Plastic 16 Pin DIP ICL8043CJE O°C to 70°C CERAMIC 16 Pin DIP PACKAGE -... _NUU -IN (outline dwgs JE. PEl c0017901 08018701 Figure 1: Functional Diagram (One Side) Figure 2: Pin Configuration 16 Pin DIP (Top View) 4-74 Note: All typical values have been guaranteed by characterization and are not tested. .O~OIL ICL8043 ABSOLUTE MAXIMUM RATINGS Supply Voltage ................................................ ±18V Internal Power Dissipation (Note 1) .................. SOOmW Differential Input Voltage ................................... ±30V Input Voltage (Note 2) ...................................... ±1SV Voltage between Offset Null and V+ ................. ±O.SV Storage Temperature Range ............ -6S'C to + 150'C Operating Temperature Range 8043M ............................... -5S'C to + 12S'C 8043C ..................................... O'C to + 70'C Lead Temperature (Soldering. 10sec) ................. 300·C Output Short-Circuit Duration ......................... Indefinite Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only. and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods m~y affect device reliability. NOTES: 1. Rating applies for case temperatures to 12SoC; derate linearly at 9mWI"C for ambient temperatures above +9SoC. 2. For supply voltages less than ± 1SV, the absolute maximum input voltage is equal to the supply voltage. ELECTRICAL CHARACTERISTICS (VSUPPLY = ± 1SV unless otherwise specified) 8043M SYMBOL CHARACTERISTIC 8043C TEST CONDITIONS UNIT MIN TYP MAX 10 20 MIN TYP MAX 20 50 The following specifications apply for TA = 2SoC: VOS Input Offset Voltage lOS Input Offset Current RS < 100kn 0.5 liN Input Current (either input) 2.0 RIN Input Resistance 106 CIN Ay Input Capacitance RO Output Resistance ISC Output 3.0 20 Current 50 pA Mn 2.0 SO,OOO mV pA 106 2.0 RL> 2kn, You! ~ ± 10V Large Signal Voltage Gain Short-Circu~ 0.5 pF 20,000 VN 75 75 n 25 25 rnA ISUPPLY Supply Current (Total) 4.5 6 4.5 6.8 rnA POISS SR Power Consumption 135 180 135 204 mW Slew Rate 6.0 6.0 V/pB GBW Unity Gain Bandwidth 1.0 1.0 MHz tr Transient Response (Unity Gain) Risetime Overshoot 300 10 300 10 ns % The following specifications apply for O·C t.VIN CMRR CL < 100pF, RL = 2kn < TA < + 70°C (8043C). - SS·C < TA < + 12SoC Input Voltage Range Common Mode Rejection Ratio PSRR Supply Voltage Rejection Ratio Ay Large Signal Voltage Gain t.VO Output Voltage Swing VOS :np\ll Offset Voltage liN Input Current (either input) t.VOSlt.T Average Temperature Coefficient of Input Offset Voltage (8043M): ±10 ±12 ±10 ±12 V 70 90 70 90 dB 70 70 300 25,000 ±12 ±14 ±12 ±14 RL> 2kn ±10 ±13 ±10 ±13 15 30 2.0 15 TA = +70°C 75 (Note 3) NOTE: 3. For Design only, not 100% tested. 4-75 Note: All typical values have been guaranteed by characterization and are not tested. p.VN VN RL> 10kn TA= +12SoC 600 15,000 V V 30 60 mV 50 175 pA nA 75 p'vrc ·S!1 ~:::'~~:RFORMANCE CHARACTERISTICS OPEN LOOP VOLTAGE GAIN AS A FUNCTION OF FREQUENCY 10" 105 ~ ysJ.... = l15Y TA=+U'C l'\.. e--:.. 10 .. ...C '" ~ z ~ r\.. l'\.. OUTPUT VOLTAGE SWING AS A FUNCTION OF FREQUENCY ~ VOLTAGE FOLLOWER LARGE-5IGNAL PULSE RESPONSE· . v.:;.:.. •• 1~~ 1-. 1\ ~ I\.. " .,.~ "II! , 16 00( i'\ 0 Ik 10k lOOk 1M 10M FReQueNCY fHrI OP020901 INPUT CURRENT AS A FUNCTION OF TEMPERATURE OUTPUT SWING AS A FUNCTION OF SUPPLY VOLTAGE 20 - TA 1= I ~li o TL I-- I alc =2Icll POJITIVE SWI, I .5 I- Vsupp = :t15V ~:~ 1.0 1.5 TIME (.0) 2.0 2.5 .0 80 80 100 .120 TEMPERATURE rC) 1.0 o :t5 :tIO :tIS SUPPLY VOLTAGE 0_ 0P030101 OPEN LOOP VOLTAGE GAIN AS A FUNCTION OF SUPPLY VOLTAGE V V" ./V V I-- I-- NEjATtE jWlNj- I-- ~ TA = 25°C ~ i/17 ,/ RISETIME 1/ -8 100 lk 10k lOOk 1M 10M FREQUENCY (HI) TRANSIENT RESPONSE 'OUTPUT -I-i-I- ~- 8 00( ~ r INPUT Q 0P029801 ..• I I Yiu" •• ,5V : I ~~;H: 8 TA • +25°C RL"OkG 32 INPUT VOLTAGE RANGE AS A FUNCTION OF SUPPLY VOLTAGE QUIESCENT SUPPLY CURRENT AS A FUNCTI.ON OF SUPPLY VOLTAGE • 20 :/, T. -'H'C 1/ V I-- i- POSIT/ i/7 l/V - I.- I-'" ~ciATlVE- - ±20 .-- I.-~ V 1~0~~--:t~5-L-:t~10~--:t~15~-:t20~ SUPPLY VOLTAGE o ±5 ±10 ±15 SUPPLY VOLTAGE 0P030401 :t20 OP030501 4-76 Note: All typical values have been guaranteed by characterization and afe not tested. 2 :t5 ±10 ±15 SUPPLY VOLTAGE ±20 ICL8043 TYPICAL PERFORMANCE CHARACTERISTICS (CONT.) TOTAL QUIESCENT SUPPLY CURRENT AS A FUNCTION OF TEMPERATURE INPUT NOISE VOLTAGE AS A FUNCTION OF FREQUENCY WIDEBAND NOISE AS A FUNCTION OF SOURCE RESISTANCE 104 Vs= :t11Y -- r-- .... - -;01000 E .: > ___ BANDWIDTH ,L... 100 _ . 10H, TO 100kH,.T 1"--0 ..~ r-- r RS=1Mtl r--; ~ II~: = SOlI IE - 10.0 i--' c ... 1111 I -15 25 15 TEMP£RATURE COC) 10 105 100 Ik 10k BANDWIDTH • 01 H. T.O 01 FREQUENCY (Hz) OP030701 ::::: Hr':: 100 lOOk ." 1.0 I- ~ >' Ik· 10k lOOk 1M 10M 100M SOURCE RESISTANCE 1m 0P030901 0P030801 v+ 10 LC01170t DS018801 Figure 4: Channel Separation Test Circuit Figure 3: Offset Voltage Null Circuit CHANNEL SEPARATION " 0 Channel separation or crosstalk is measured using the circuit of Figure 4. One amplifier is driven so that its output swings ±10V; the signal amplitude seen in the other amplifier (referred to the input) is then measured. Typical performance is shown in Figure 5. . VOUT (A) Channel Separation = 20 log ( VIN (8) T1~ ~ ·c .... - I R=} I' ~ ) 10 10 '00 ~ 't 'Ok lOOk FREQUENCY (Hz) ,M OP031001 Figure 5: Channel Separation Performance 4-77 Note: All typical values have been guaranteed by characterization and are not tested. .. ICL8043 I APPLICATIONS as a normal amplifier while the voltage necesSlity to zero its offset voltage is stored on the integrator comprised of A2 and Ct. Applications for any dual amplifier fall into two categories. There are those which use the two-in-one package concept simply to save circuit-b9ard space and cost, but more interesting are those circuits whete the two sides of the dual are used to complement one another in a 'subsystem application. The circUits which follow have been selected on this basis. The advantage of .this circuit is that it allows chopper amplifier performance to be achieved at one-tenth the cost. The only limitation is that during the offset nulling mode, A1 is disconnected from the input. However, in most data acquisition systems, many inputs are scanned sequentially. It is fairly simple to synchronize the offset nulling operation so that it does not occur when that particular amplifier is being "looked at". For the component values shown in F;=igure 3, and assuming a total leakage of 50pA at the inverting input of A2, the offset voltage referred to the input of At will drift away from zero at only 40p.V/sec. Thus, the offset nulling information stored on Ct can be "refreshed" relatively infrequently. The measured offset voltage of At during the amplification mode was 11 p.V; offset voltage drift with temperature was less than 0.1 p.V AUTOMATIC OFFSET SUPPRESSION CIRCUIT The circuit shpwn in Figure 6 uses one amplifier (At) as a normal gain stage, whil!3 the other (A2) forms pari of an offset voltage zeroing loop. There are two modes of operation which occur sequentially. First, an offset null correction mode occurs during which the offset voltage of At is nulled out. Following this nulling operation, At is used rc. TC026301 'SW1, SW2, .. SW3 ARE ALL PART OF A SINGLE IH5043 CMOS ANALOG SWITCH CONNECTED AS SHOWN IN FIGURE 6(b) Figure 6(a): Automatic Offset Null Circuit +IV +l1V LOGIC IM'UT CDD18001 Figure 6(b) 4-78 Note: All typical values have been guaranteed by characterization and are not tested. . ICL8043 ..... ~- HORIZONTAL ~ 50MSIDIV ~~ WF015301 Figure 7: Staircase Generator Circuit 1H5042 ,. 1k!1 HORIZONTAl.. '" 2GOmSIDIY VOUT YREF WF015401 Figure 8.: Analog Counter Circuit STAIRCASE GENERATOR ground to assure complete discharge. The upper trip point could then be adjusted independently to determine the pulse count. The circuit shown in Figure 7 is a high input impedance version of the so-called "diode pump" or staircase generator. Note that charge transfer takes place at the negativegoing edge of the input-signal. SAMPLE & HOLD CIRCUIT Two important properties of the 8043 are used to advantage in this circuit. The low input bias currents give rise to slow output decay rates ("droop") in the hold mode, while the high slew rate (6V/IJS) improves the tracking speed and the response time of the circuit. See Figure 6. The ability of the circuit to track fast moving inputs is shown in Figure 10A. The upper waveform is the input (10V/div), the lower waveform the output (5V/div). The logic input is high. Actual sample and hold waveforms are shown in Figure 10B. The center waveform is the analog input, a ramp moving at about 67V!ms, the lower waveform is the logic input to the sample & hold; a logic" 1" initiates the sample mode. The upper waveform is the output, displaced by about 1 scope division (2V) from the input to avoid superimposing traces. The hold mode, during which the output remains constant, is clearly visible. At the beginning of a sample period, the output takes about 81JS to catch up with the input, after which it tracks until the next hold period. The most common application for staircase generators is in low cost counters. By resetting the capacitor when the output reaches a predetermined level, the circuit may be made to count reliably up to a maximum of about 10. A straightforward circuit using a LM311 for the level detector, and a CMOS analog gate to discharge the capacitor, is shown in Figure 8. An important property of this type of counter is the ease with which the count can be changed; it is only necessary to change the voltage at which the comparator trips; A low cost A-O converter can also be designed using the same principle since the digital count between reset periods is directly proportional to the analog voltage used as a reference for the comparator. A considerable amount of hysteresis is used in the comparator shown in Figure 8. This. ensures that the capacitor is completely discharged during the reset period. In a more sophisticated circuit, a dual comparator "window detector" could be used, the lower trip point set close to 4-79 Note: All typical values. have been guaranteed by characterization and are not tested. ~ ICLa043 51! -11V 10 7 ANALOG . OUTPUT 11 INPUT I -11V • • 10.000 pF POLYSTYRENE +av = > IIAIIPLI MODE IH5043 IN = > HOLD MODE LC011801 Figure 9: Sample And Hold Circuit ....... r ....... ........ A. l \ r ....... ....... \ WF015501 r\ \,. ..... ~ r-.... ...... , ~ TOP: INPUT (10V/DIV) BOTTOM: OUTPUT (5V/DIV) HORIZONTAL: 10jlll/QIV ....... -- WF015601 TOP: 2V1DIV CENTER: 2V1DIV BOTTOM: 10VlDIV HORIZONTAL: 10jlll/DIV Figure 10A . 4-80 Note: All typical values have been guaranteed by characterization· and are not tested. Figure 10B . ICL8043 .. INSTRUMENTATION AMPLIFIER A dual JFET-input operational amplifier is an attractive component around which to build an instrumentation amplifier because of the high input resistance. The circuit shown in Figure 11 uses the popular triple op-amp approach. The output amplifier is a High Speed 741 (741 HS, slew rate guaranteed ~ 0.7V/p.s) so that the high slew rate of the 8043 is utilized to the full extent. Input resistance of the circuit (either input, regardless of gain configuration) is in excess of 1012 ohms. For the component values showl), the overall amplifier "R1 + R2 gain is 200 (front end gain = - - - , back end gain, = Rs/R4). R2 Common mode rejection is largely determined by the matching between R4 and R5, and RS and R7. In applications where offset nulling is required, a single potentiometer can be connected as shown in Figure 12. Another popular circuit is given in Figure 13. In this case the gain is 1 + R1/R2, and the CMRR determined by the match between R1 and R4, R2 and R3. For more information on FET input operational amplifiers, see Intersil Application Bulletin A005 "The 8007: A High Performance FET-input Operational Amplifier." AF030211 Figure 13: Modified Instrumentation Amplifier .. .. ... '" AF0300tI Figure 11: Instrumentation Amplifier AF030111 Figure 12: Offset Nulling Both Amplifiers With One Potentiometer Note: All tvDical values have been auaranteed bv characterization and are not tested. ICL8048/1CL8049 Log! Antilog' Amplifier GENERAL DESCR:IPTION FEATURES The 8048 is a monolithic logarithmic amplifier capable of handling six decades of current input, or three decades of voltage input. It is fully temperature, compensated and is nominally designed to provide 1 volt of output for each decade change of input. For increased flexibility, the scale factor, reference current and offset voltage are externally adjustable. . The 8049 is the antilogarithmic counterpart ofthe 8048; it . nominally generates one decade of output voltage for each 1 volt change at the input. • • • • • • 1/2% Full Scale Accuracy Temperature Compensated for O·C t.o + 70·C Operation Scale Factor 1VIDecade, Adjustable 120dB Dynamic Current Range (8048) 60dB Dynamic Voltage Range (8048 & 8049) Dual JFET-Input Op-Amps ORDERING INFORMATION PART NUMBER ERROR (25·C) TEMPERATURE RANGE ICL8048BCJE 30mV O·C to +70·C 16 Pin CERDIP ICL8048BCPE 30mV O·C to +70·C 16 Pin Plastic DIP ICL8048CCJE 60rnV O·C to +70·C 16 Pin CERDIP ICL8048CCPE 60mV O·C to +70·C 16 Pin Plastic DIP ICL8049BCJE 10mV O·C to +70·C 16 Pin CERDIP ICL8049BCPE 10mV O·C to +70·C 16 Pin Plastic DIP ICL8049CCJE 25mV O·C to +70·C 16 Pin CERDIP ICL8049CCPE 25mV O·C to +70·C 16 Pin Plastic DIP PACKAGE .,'NPUT .--r-----t.:"f'I,OOT v,. ~'. \ V,. GAl. At OUTPUT A10UTPUT 05019021 05019121 (ICL8048) (ICL8049) Figure 1: Functional Diagram GROUND' A, INPUT GAIN IREF NO CONNECnoN 3 ,.. NO CONNECTION A1 OFFSET NULL .. 13 A2 OFFSET NOLL A, OFFSET NULL 4 A1 OFFSET NULL 5 11 A2 OFFSET NULL A1 OFFSET NULL A10UTPUT NO CONNECTION , • . 10 vYour A, OUTPUT 7 NO CONNECTION VIN 1 NO CONN~CTION CD018111 GROUND A21NPUT A2 OFFSET NULL 1 A20FFSET NULL v+ o Your • NO CONNECTION CD02081' Figure 2: Pin Configurations (Outline Dwgs, JE, PEl 302800-002 Note: All typical values have been guaranteed by characterization and are not tested. ICL8048/ICL8049 ABSOLUTE MAXIMUM RATINGS (ICL8048) Operating Temperature Range .............. O°C to + 70°C Output Short Circuit Duration ........................ Indefinite Storage Temperature Range ............ -65°C to + 150°C Lead Temperature (Soldering, 10sec) ................. 300°C Supply Voltage ................................................ ±18V liN (Input Current) ............................................. 2mA IREF (Reference Current) ................................... 2mA Voltage between Offset Null and V+ ................. ±O.5V Power Dissipation ......................................... 750mW ELECTRICAL CHARACTERISTICS (ICL8048) Vs = ±15V, TA = 25°C, IREF = 1rnA, scale factor adjusted for 1V1decade unless otherwise specified. PARAMETER 8048BC TEST CONDITIONS MIN TYP 8048CC MAX MIN TYP UNIT MAX Dynamic Range liN (lnA - 1mA) VIN (10mV - 10V) RIN = 10k!1 Error, % of Fu!1 Scale TA = 25°C, liN = InA to lmA .20 0.5 .25 1.0 % Error•. % of Full Scale TA-O°C to +70·C. liN = InA to lmA .60 1.25 .80 2.5 % Error, Absolute Value TA - 25·C, liN -InA to lmA 12 30 14 60 mV Error, Absolute Value TA=O·C to +70·C liN = InA to lmA 36 75 50 150 mV Temperature Coefficient of VOUT liN = InA to lmA O.B 0.8 Power Supply Rejection Ratio R"ferred to Output 2.5 2.5 Offset Voltage (AI & A2) Before Nulling 15 Wideband Noise At Output, for liN = 1COIlA Output Voltage Swing 120 60 dB dB 120 60 mvrc mVIV 15 25 250 50 "V(RMS) V RL -10k!1 ±12 ±14 ±12 ±14 Rl,=2k!1 ±10 ±13 ±10 ±13 Power Consumption Supply Current mV 250 V 150 200 150 200 mW 5 6.7 5 6:7 mA TYPICAL PERFORMANCE CHARACTERISTICS TRANSFER FUNCTION FOR CURRENT INPUTS TRANSFER. FUNCTION FOR VOLTAGE INPUTS SMALL SIGNAL BANDWIDTH AS A FUNCTION OF INPUT CURRENT ..... i ~ IREF-'mAo .... r- -- - i--r- I:I V vt - - -- -- - ~ ~ r--- ---- -- -.- -- -j "'" -- i;1 ~ '0 - 10 11 OP031101 MAXIMUM ERROR VOLTAGE AT THE OUTPUT AS A FUNCTION OF INPUT CURRENT 200 :;: ~ '.i ~ 0 > E I 1 -I I '25 ~ :> so ° 10·' .~ > I ~ . ! '" 804B Be 125"CI 25 J 10-8 10- 7 10-1 1 10'S 10-4 10-':J INPUT CURRENT I"'''PSI 10-5 OP031201 c tI048 Ie IO"C 10 10"CI 8048 cc 125~C) IS 10 7 OPOOl301 ". .so .,. " III I"·N·'O'" .,. 81MB CC fO"C to 1O"el 100 111 I 1111 lll.JJ:8i .00 ,. 8048 cc so ,. ° SMALL SIGNAL VOLTAGE GAIN AS A FUNCTION OF INPUT VOLTAGE FOR RS= 10kn '000 "'" 1011'1'1 III (Rs" 'Olin., n ,ov IV '0 , _0' lmV .o.V'N Iii I -}_. -10mV /ogloe Wi\i'iT" - -. You: "IN :±f 1ft °, INPUT VOLTAGE QPOS140r ~'IIOLTAGE GAIN· 125~CI ~.ct.-;ti l00mY 10-3 INPUT CUARENT IAM'SI MAXIMUM ERROR VOLTAGE AT THE OUTPUT AS A FUNCTION OF INPUT VOLTAGE !:l: 8CM8 CC IO"C 107O"CI .so '00 '" '~" '" I I 17S 10 • INPUT CURRENT I AMPS I INPUT VOLTAGE ,,~v;v I "~ lOOn," " 'ov INPUT VOLTAGE QP031501 4-83 Note: All typical values have baan guaranteed by characterization and are not tested. 0P031601 I ..... n 2 I'" _ CD ICL8048/ICL8049 ABSOLUTE MAXIMUM RATINGS (ICL8049) Supply Voltage ............ '.................•...'; .............. ±18V VIN (Input Voltage) ....•......•........,•..............•...... ±1SV IREF (Reference Current) .............•..................... 2mA Voltage between Offset Null and V+ ..............•.. ±o.SV Power Dissipation .•...•..•................................ 7S0mW Operating Temperature Range .............. O·C to + 70·C Output Short Circuit Duration ........................ Indefinite Storage Temperature Range ............ -6S·C to + 1S0·C Lead Temperature (Soldering, 10soo) ................. 300·C Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only. and functional operation of the device at these or any other conditions above those Indicated in the operational seclions of the specHications is not implied. Exposure to absolute maximum rating conditions 'for extended periods may affact device reliability. ELECTRICAL CHARACTERISTICS (ICL8049) Vs = ± 1SV, TA = 2S·C, IREF = 1mA, scale factor adjusted for 1 decade (out) per volt (in), unless otherwise specified. 8049BC PARAMETER 8049CC UNIT TEST CONDITIONS MIN TYP MAX MIN TYP MAX Dynamic Range (VOUT) Vour-10mV to 10V Error. Absolute Value TA = 2S·C. OV:S VIN:S 3V 3 10 5 25 mV Error. Absolute Value TA = O·C to + 70·C. OV:SVIN:S3V 20 75 30 150 mV Temperature Coefficient. Referred to VIN VIN ~3V 0.38 0.55 Power Supply Rejection Ratio Referred to Input, for VN-OV 2.0 2.0 60 Offset Voltage (At &: A2) Before Nulling 15 Wideband Noise Referred to Input, for VIN sOV 26 Output Voltage Swing dB 60 25 IS mV 50 26 p.V(RMS) V RL= 10kn ±12 tl4 ±12 ±14 RL=2kn ±IO ±13 ±IO ±13 Power Consumption mVl·C p.VIV V 150 200 150 200 mW 5 6.7 5 6.7 rnA Supply Current TYPICAL PERFORMANCE CHARACTERISTICS TRANSfER FUNCTION (VOUT AS A FUNCTION OF VIN) '0 MAXIMUM ERROR VOLTAGE REFERRED TO THE INPUT AS A FUNCTION OF VIN r-,....,........--..--...-.,............ .0 r--r-..,.....,..--.---r--,,............, .00' L.....L.....I..-L--I--ll.-L...J....JI -4 -3 -2 -1 0 +1 +2 +3 .4 ,,..PUT VOLTAGE (VI INPUT VOLTAGE (VI OP031701 OP031801 4-84 Note: All typical values have been guaranteed by characterization and are not tested. .D~DIl ICL8048/ICL8049 TYPICAL PERFORMANCE CHARACTERISTICS (CONT.) SMALL SIGNAL BANDWIDTH AS A FUNCTION OF INPUT VOLTAGE SMALL SIGNAL VOLTAGE GAIN AS A FUNCTION OF INPUT VOLTAGE -100 I ~ ~ :i IREF"' lmA. -lMr--r~~~-+--+--+~ -:~=-~ - - -- -10 i'\. z C " loo.""I.I',--.f---+~_- - ____ --- I - - - : = -- -' 10' i -23 ,. r--- -- -- w ~g -= I--- -0.0 1 o "f'\ -- -- r- -- -t-- ,J ICL8048 OFFSET AND SCALE FACTOR ADJUSTMENT'" The ICL8048 relies for its operation on the well-known exponential relationship between the collector current and the base-emitter voltage of a transistor: 11 A log amp, unlike an op-amp, cannot be offset adjusted by simply grounding the input. This is because the log of zero approaches minus infinity; reducing the input current to zero starves 01 of collector current and opens the feedback loop around Al. Instead, it is necessary to zero the offset voltage of Al and A2 separately, and then to adjust the scale factor. Referring to Figure 3, this is done as follows: 1) Temporarily connect a 10kU resistor (RO) between pins 2 and 7. With no input voltage, adjust R4 until the output· of Al (pin 7) is zero. Remove RO. Note that for a current input, this adjustment is not necessary since the offset voltage of Al does not cause any error for current-source inputs. 2) Set liN = IREF = lmA. Adjust Rs such that the output of A2 (pin 10) is zero. 3) Set liN = lIlA, IREF = 1mA. Adjust R2 for VOUT = 3 volts (for a 1 volt/decade scale factor) or 6 volts (for a 2 volt/decade scale factor). Step #3 determines the scale factor. Setting liN = lIlA optimizes the scale factor adjustment over a fairly wide dynamic range, from 1mA to 1nA. Clearly, if the 8048 is to be used for inputs which only span the range 100pA to 1mA, it would be better to set liN = 1001lA in Step #3. Similarly, adjustment for other scale fa«tors would require different liN and VOUT values. (1) For base-emitter voltages greater than l00mV, Eq. (1) becomes IC = IseQVBE/kT (2) From Eq. (2), it can be shown that for two identical transistors operating at different collector currents, the VBE difference (~VBE) is given by: = -2.303 xkT - log10 [IC1] IC2 q (3) Referring to Figure 3, it is clear that the potential at the collector of 02 is equal to the ~ VSE between 01 and 02. The output voltage is ~ VSE multiplied by tl1egain of A2: (Rf+R2R2)(kT)109l0 [~] q IREF r-- - -- r- -- 1--- -- I OP032001 ICL8048 DETAILED DESCRIPTION IC = Is[e qVBE/kT - -i'\. - I INPUT VOLTAGE tVI 0P031901 VOUT = -2.303 I -Il 1 INPUT VOLTAGE IV) ~VBE '\ -- -- n (4) "See A053 for an automatic offset nulling circuit. 4t The expression 2.303 x has a numeri~al value of 59mV at 25°C; thus in order to generate 1 volt/decade at the output, the ratio (Rl + R2)/R2 is chosen to be 16.9 For this scale factor to hold constant as a function of temperature, the (Rl + R2)/R2 term must have a l/T characteristic to compensate for kT/q. In the ICL8048 this is achieved by making Rla thin film resistor, deposited on the monolithic chip. It has a nominal value of 15.9kn at 25°C, and its temperature coefficient is carefully designed to provide the necessary compensation. Resistor R2 is external and should be a low T.C. type; it should have a nominal value of 1kn to provide 1 volt/ decade, and must have an adjustment range of ±20% to allow for production variations in the absolute value of R1. 4-85 Note: All typical values have been guaranteed by characterization and are not tested. II ~ 0. ···.lIn~OI1. ICLa048/1C~L8049 -a ! R. GROUNO ,5.111W c. GAIN 15 A.OUTPUT .{ I R. 'I L. _ ""1M- _ ...J 'CJI(O . - (LOW T.c.) ,KO LC028801 Figure 3: ICL8048 Offset and Scale Factor Adjustment ICLB049 DETAILED DESCRIPTION' For voltage references equation 7 becomes The ICL8049 relies on the'sam8 logarithmic properties Of the transistor as the ICL8048; The input voltage forces a specific 6.VSE between .01 and Q2 (Figure 4). This VSE difference is converted into Ii difference of collector currents by the transistor pair. The equation governing the behavior of the transistor pair is derived from (2) on the . previous page and is. as follows: ROUT [ -R2 qVIN] VOUT=VREFX-- exp x-RREF (R1 + R2) kT ICL8049 OFFSET AND SCALE' FACTOR ADJUSTMENT* As with the IQg amplifier, the antilog amplifier requires three adjustments. The first step is to null out the offset voltage of A2. This is accomplished by reverse biasing the base-emitter of Q2. A2 then operates as a unity gain buffer with a grounded input. The second step forces VIN = 0; the output is adjusted for VOUT = 10V.Thls step essentially "anchors" one point on the transfer function. The third step applies a specific input and adjusts the output to the correct voltage. This sets the scale factor. Referring to Figure 4, the exact procedure for 1 deCade/volt is as follows: 1) Connect the input (pin #" 16) to + l5V. This reverse biases the base-emitter of Q2. Adjust R7 for VOUT - OV. Disconnect the input from + l5V. 2) Connect the input to Ground. Adjust R4 for VOUT = 10V. Disconnect the input from Ground. 3) Connect the input to a precise 2V supply and adjust R2 for VOUT -100mV. . The procedure outlined above optimizes the performance over a 3 decade range at the output (i.e., VOUT froml0mV to 10V). For a more limited· range of output voltages, for example 1V to 10V, it would be better to use a precise 1 volt supply and adjust for VOUT = lV. For other scale factors /!.nd/or starting points, different values for R2 and RREF will be needed, but the same basic procedure applies. 'IC1 = exp[q6.VSE] Ic:! . kT When numerical values for q/kT are put into this equation, it is found that a 6.VSE of 59mV (at 25°C) is required to change the collector current ratio by a factor of ten. But for ease of application; it is desirable that a 1 volt cHange at the input'generate a tenfold change at the output. The requited input attenuation is achieved by the network comprising R1 and R2. In order that scale factors other than one decade per volt may be selected, R2 is external to the chip. It should have a value. of 1kn, adjustable ± 20%, for one decade per volt. R1 is a thin film resistor deposited on the monolithic chip; its temperature characteristics are chosen to compensate the temperature dependence of equation 5, as explained on the previous page. The overall transfer function is as follows: lOUT [-R2 qVIN] IREF = exp (R1 + R2) x kT (6) Substituting VOUT = lOUT x ROUT gives: VOUT = ROUT IREF exp [ -R2 qVIN] x-(R1 + R2) kT (8) (7) 'See A053 for an automatic offsel. nulling circuit 4-86 Note: All Iypicel values have been guaranteed by characterization and are' not tested. .U~U[l ICL8048/ICL8049 ,..(Ii . -.p ! .. CD ..... C+1Il/) R. 1OICO .... ... c. . 7 "'pF .... CD 0 CD 1OICO • +- 14~IOUT R• R. _0 R. 11<0 KO .., .... RouT CLOW T.e.) .. _0 R. . 'KO VouT . . y. LC028701 Figure 4: ICL8049 Offset and Scale Factor Adjustment EFFECT OF VARYING "K" ON THE LOG AMPLIFIER APPLICATIONS INFORMATION ICL8048 Scale Factor Adjustment The scale factor adjustment procedures outlined previously for the ICl8048 and ICl8049, are primarily directed towards setting up 1 volt (~VOUT) per decade (~IIN or ~VIN) for the log amp, or one decade (LWOUT) per volt (~VIN) for the antilog amp. This corresponds to K = 1 in the respective transfer functions: log Amp: VOUT = -K log liN 10[-1 IREF . 'REF·'mA ROUT -10kn (9) V - IN Antilog Amp: VOUT = ROUT IREF 10-K (10) INPUT VOLTAGE IV) By adjusting R2 (Figure 3 .and Figure 4) the scale factor "K" in equation 9 and 10 can be varied. The effect of changing Kis shown graphically in Figure 5 for the log amp, and Figure 6 for the antilog amp. The nominal value of R2 required to give a specific value of K can be determined from equation 11. It should be remembered that R1 has a ±20% tolerance in absolute value, so that allowance shall be made for adjusting the nominal value of R2 by ±20%. R2 = 941 (K-.059) n OP032101 Figure 5 EFFECT OF VARYING "K" ON THE ANTILOG AMPLIFIER 12 ~ (11) ~ ....... ~ g ~ Although the op-amps in both the ICl8048 and the ICl8049 are compensated for unity gain, some additional frequency compensation is required. This is because the log transistors inthe feedback loop add to the loop gain. In the 8048, 150 pF should be connected between Pins 2 and 7 (Figure 3). In the 8049, 200 pF between Pins 3 and 7 is recommended (Figure 4). ........ IREF·,rnA "- ~ ~.~ ..... -. ~ .::". L'- ~ Frequency Compensation ~ 10 ~ -r- 6 -2 "- l"11li 10-1010-1 10-1 10-7 10-1 10-5 10-4 10-3 INPUT CURRENT CAMPS) OPOG2201 Figure 6 4-87 Note: All typical values have been guaranteed by characterization and ara not tasted. i1CL8048/ICL8049 d Error Analysis ::::. ! 2_ d_· Performing a meaningful error analysis of a circuit containing log and antilog amplifiers is more complex than dealing with a similar circuit involving only op-amps. In this data sheet every effort has been made to simplify the analysis task, without in any way compromising the validity of the resultant numbers. The key difference in making error calculations in log/ antilog amps, compared with op-amps, is that the gain of the former is a function of the input signal level. Thus, it is necessary, when referring errors from output to input, or vice versa, to check the input voltage level, then determine the gain of the circuit by referring to the graphs given in the Typical Performance Characteristics section. The various error terms in the log amplifier, the ICL8048, are Referred To the Output (RTO) of the device. The error terms in the antilog amplifier, the ICl:.8049, are Referred To the Input (RTI) of the device. The errors are expressed in this way because in the majority of systems Ii number of log amps interface with an antilog amp, as shown in Figure 7. input voltage. This is because the output amplifier, A2, has an offset voltage drift which is directly transmitted to the output. When this error is referred to the input, it must be divided by the voltage gain, which is input voltage dependent. At VIN = 3V, for example, errors at the output are multiplied by 1/.023 (= 43.5) when referred to the input. TRANSFER FUNCTION FOR CURRENT INPUTS ll: ~ ol--"'Ioo.:+-+"""io':: ~-.~+-+""'"~ ~ -4 1---1C---+--+-+="'"40.O-+-~ ~ -.I--I--I--I--I--I--~ ~L-~~~~ 10- 10 lo-t ,0-' __~~~ 10- 7 10-1 10-' 10-4 10-3 INPUT CURRENT IAMI'S) Actual output will Ii. within sheded .... for 8048 BC 8t 25·C OP032301 Figure 8 ERROR OUE TO A IRTO) -.mV It is important to note that both the ICL8048 and the ICL8049 require positive values of IREF,· and the input (ICL8048) or output (ICL8049) currents (or voltages) respectively must also be positive. Application of negative liN to the ICL8048 or negative IREF to either circuit will cause malfunction, 'and if maintained for long periods, would lead to device degradation. Some protection can be provided by placing a diode between pin 7 and ground. LDOO700f Figure 7 It is very straightforward to estimate the system error at node (A) by taking the square root of the sum-of-the squares of the errors of each contributing block. Total Error = v'x2 + y2 + z2 at (A) If required, this error can be referred to the system output through the voltage gain of the antilog circuit, using the voltage gain versus input voltage plot. The numerical values of x, y, and z in the above equation are obtained from the maximum error voltage plots. For example, with the ICL8048BC, the maximum error at the output is 30mV at 25°C. This means that the measured output will be within 30mV of the theoretical transfer function, provided the unit has been adjusted per the procedures described previously. Figl,!re 8 illustrates this point. To determine the maximum error over the operating temperatu~e range, the 0 to 70°C absolute error values given in the table of electrical characteristics should be used. For intermediate temperatures, assume a linear increase in the error between the 25°C value and the 70·C value. For the antilog amplifier, the only difference is that the error refers to the input, i.e., the horizontal axis. It will be noticed that the maximum error voltage of the ICL8049, over the temperature range, is strongly dependent on the SETTING UP THE REFERENCE CURRENT In both the ICL8048 and the ICl8049 the input current reference pin (lREF) is not a true virtual ground. For the. ICl8048, a fraction of the output voltage is seen on Pin 16 (Figure 3). This does not constitute an appreciable error provided VREF is much greater than this voltage. A 10V or 15V reference satisfies this condition. For the ICl8049, a fraction of the input voltage appears on Pin 3 (Figure 4), placing a similar restraint on the value of VREF. Alternatively, IREF can be provided from a true current source. One method of implementing such a current source is shown in Figure 9. LOG OF RATIO CIRCUIT, DIVISION The 8048 may be used to generate the log ofa ratio by modulating the IREF input. The transfer function remains the same, as defined by equation 9: VOUT = -Klog10 [~] IREF (9) Clearly it is possible to perform division using just one ICl8048, folJowed by an ICl8049. For multiplication, it is generally necessary to use two log amps, summing their outputs into an antilog amp. To avoid the problems caused by the IREF input not being a true virtual ground (discussed in the previous section), the circuit of Figure 9 is again recommended if the IREF input is to be modulated. Note: All typical values have been guaranteed by characterization and are not tested, ICL8048/ICL8049 ERROR, % OF FULL SCALE The error as a percentage of full scale can be obtained from the following relationship: .1SY VREFf J ., 100 x Error, absolute value Error, % of Full Scale = -::--:::--=---:-:-:--FuliScale Output Voltage TEMPERATURE COEFFICIENT OF VOUT OR VIN For the ICL804S the temperature coefficient refers to the drift with temperature of VOUT for a constant input current. For the ICL8049 it is the temperature drift of the input voltage required to hold a constant value of VOUT. POWER SUPPL Y REJECTION RA TlO The ratio of the voltage change in the linear axis of the transfer function (VOUT for the ICLS048, VIN for the ICLS049) to the change in the supply voltage, assuming that the log axis is held constant. WIDEBAND NOISE For the ICL804S, this is the noise occurring at the output under the specified conditions. In the case of the ICLS049, the noise is referred to the input. SCALE FACTOR For the log amp, the scale factor (K) is the voltage change at the output for a decade (i. e. 10:1) change at the input. For the antilog amp, the scale factor is the voltage change required at the input to cause a one decade change at the output. See equations 9 and 10. 10----1 2NUII 10"" IREf PIN 18 ON B04B) ( TO TO PIN 3 ON 1041 AF030301 Figure 9 DEFINITION OF TERMS In the definitions which follow, it will be noted that the various error terms are referred to the output of the log amp, and to the input of the antilog amp. The reason for this is explained on the previous page. DYNAMIC RANGE The dynamic range of the ICL8048 refers to the range of input voltages or currents over which the device is guaranteed to operate. For the ICL8049 the dynamic range refers to the range of output voltage over which the device is guaranteed to operate. ERROR, ABSOLUTE VALUE The absolute error is a measure of the deviation from the theoretical transfer function, after performing the offset and scale factor adjustments as outlined, (ICLS04S) or (ICL8049). It is expressed in mV and referred to the linear axis of the transfer function plot. Thus, in the case of the ICL8048, it is a measu,re of the deviation from the theoretical output voltage for a given input current or voltage. For the ICL8049 it is a measure of the deviation from the theoretical input voltage required to generate a specific output voltage. The absolute error specification is guaranteed over the dynamic range. APPLICATION NOTES For further applications assistance, see A007 "The ICL8048/S049 Monolithic Log-Antilog Amplifi- ers", by Ray Hendry ~9 Note: All typical values have been guaranteed by characterization and are not tested. ia ICL8083 Power Transistor DriverlAmplifier - GENERAL DESCRIPTION FEATURES The ICLa063 is a. unique monolithic power transistor driver and amplifier that allows construction of minimum chip power amplifier systems. It includes built in safe operating area circuitry, short circuit protection .and voltage regulators, and i~ primarily intended for driving complementary output stages. Designed to operate with all varieties of operational amplifiers and other functions, two external power transistors, and a to 10 passive components, the ICLa063 is ideal for use in such applications as linear and rotary actuator drivers, stepper motor drivers, servo motor drivers, power supplies, power DACs and electronically controlled orifices. The ICLa063 takes the output levels (typically ± 11 V) from an op amp and boosts them to ±30V to drive power transistors, (e.g. 2N3055 (NPN) and 2N37a9 (PNP». The outputs from the ICLa063 supply up to 100mA to the base leads of the external power transistors. The amplifier-driver contains internal positive and negative regulators, to power an op amp or other device; thus, only ±30V supplies are needed for a complete power amp. • • • • • • Converts ±12V Outputs From Op Amps and Other Linear Devices to ± 30V.. Levels When Used In Conjunction With General-Purpose Op Amps and External Complementary Power Transistors, System Can Deliver> SO Watts to External Loads Built-in &lfe Area Protection and Short-Circuit Protection Produces 2SmA Quiescent Current in Power Output Stage Built-In ± 13V Regulators to Power Op Amps or Other External Functions SOOkn Input Impedance With RBIAS 1Mn = ORDERING INFORMATION PART NUMBER TEMPERATURE RANGE ICL8063MJE -55°C to + 125°C CERDIP ICL8063CJE O°C to +70°C CERDIP ICL8063CPE O°C to +70°C PLASTIC DIP PACKAGE - VREGOUT , '5 INPUT +VREGOUT -ABIA! 2 FREQ. COMPo CAPAC. PNP BASE DRIVE OUTPUT 5 • '2 GND 11 NPN BASE DRIVE OUTPUT 7 • ,. CURRENT COMP. CAPAC. - RSHORT CKT. PROT. OUTPUT • + RSHORT CKT. PROT. CD018211 08019211 Figure 1: Functional Diagram Figure 2: Pin Configuration 4-90 Note: All typical values have been guaranteed by qharacterizalion and are not tested. .D~DIL ICL8063 i ABSOLUTE MAXIMUM RATINGS Supply Voltage ................................................ ±3SV Power Dissipation ......................................... SOOmW Input Voltage (Note 1) ......................................±30V Regulator Output Currents ................................ 10mA Operating Temperature Range ICLS063MJE ........................ -SS'C to + 12S'C ICL8063CPE ............................. O·C to + 70'C ICL8063CJE ............................. O'C to + 70'C Storage Temperature Range ............ -6S'C to + 1S0'C Lead Temperature (Soldering. 10sec) ................. 300·C Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. ,These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods 'may affect device reliability. ELECTRICAL CHARACTERISTICS (TA = 2S'C; VSUPPLY = ±30V) MINIMAX LIMITS SYMBOL CHARACTERISTIC TEST CONDITIONS O·C -SS'C +2S·C + 12S·C Max. Offset Voltage See Figure 3 150 50 50 10H Min. Positive Drive Current See Figure 4 ' 50 50 50 loa Max. Positive Output Quiescent Current See Figure 5 500 250 250 10l Min. Negative Drive Current See Figure 4 25 25 25 10l Max. Negative Output Quiescent Current See Figure 6 VREG Regulator Output Voltages Range IREG Regulator Output Current (See Note 2) ZIN A.C. Input Impedance See Figure 8 VSUPPlY Power Supply Range 10 Power Supply Quiescent Currents Range of Voltage Gain VOUT(MIN) Minimum Output Swing IBIAS Input Bias' -Current NOTES: UNIT ICL8063C ICL8063M Vos AV P , +2S'C +70·C 75 mV 40 mA 300 I1A 20 mA 500 250 250 ±13.7 ±1.2V ±13.7 ±I.OV ±13.7 ±1.5V 300 10 10 10 mA 400 ,400 (Typ) kG ±13.7 !I.OV (Typ) ±13.7 ±I.OV ±5 to ±35V I1A ±13.7 ±1.0 V V V 10 6 6 7 mA 6±2 6±2 6±2 8±2 VIV VIN until VOUT flattens ±27 ±27 ±27 ±27 V See Figure 10 100 100 100 100 I1A See Figure 9 VIN=8Vp-p See Figure 9; Increase 1. For supply voltages less than ± 30V the absolute, maximum input voltage is equal ·to the supply voltage. 2. 'Care should be taken to ensure that maximum Power dissipation' is not' exCeeded. 4-91 Note: All typical values have been guaranteed by characterization and are not tested. IIn~nlL ...... +3D¥ tllli ~--"tIOl n2, and Ra for optimum sensitivity. That means making Ra "'I to minimize the voltage drop across Ra (the drop wili b(;, i i.'lrnp x 1 ohm or 1 volt). If 1 amp/volt sensitivity is d{;sirabIE) let R2 = R1 = 10kSlto minimize feedback current '>fmr. Thl111 a ± 1V input voltage will produce a ± 1 amp curr-;,mt through the motor. n Capacitors should be at least 50 volts working voltage c,nd all msistors 1/2W, except for those valued at 0.4 ohms. POI/,mr across Ra = I xV = 1 amp x 1 volt = 1 watt, so at least a 2 watt value should be used. Use large heat sinks for the 2N305G and 2N~791 power transistors. A Delta NC-641 ()1' the equivalent is appropriate. Use a thermal compound when mounting the transistor to the heat sink. (See InterSi! lCH8510 data sheet for further information). ..... .... '" @ow ... ... .". GAn ~1ouT @IW NOW ' : ' "" (-) IbIRt x Ii; LC013201 Figure 17: Constant Current Motor Drive Building A I-ow Cost 50 Watt per Channel Audio Amplifier ' For about $20 per channel, it is possible to build a high fidelity amplifier using the ICL8063 to drive 8 ohm speakers. Note: Ail typical values have been guaranteed by characterization and are' not tested. ICL8063 'A channel is defined here as all amplification between turntable or tape output and power output. (Figure 18) The input 741 stage is a preamplifier with R.IAA. equalization for records. Following the first 741 stage is a 10kU control pot, whose wiper arm feeds into the power amplifier stage consisting of a second 741, the ICL8063 and the power transistors. To achieve good listening results, selection of proper resistance values in the power amplifier stage is important. Best listening is to be found at a gain value of 6 [(5kU + 1kUI 1kU = 6)]. 3 is a practical minimum, since the first stage 741 preamp puts out only ±10 volt maximum signals, and if maximum power is necessary this value must be multiplied by 3 to get ±30 volt levels at the output of the power amp stage. Each channel delivers about 56 volts p-p across an 8 ohm speaker and this converts to 50 watts RMS power. This is derived as follows: Vrms2 56Vp_p Power = - - - , Vrms = - - 8 ohms 2.82 2 = 20V, (20V) = 400V 2 400V2 Power = - - - = 50 watts RMS Power. 8 ohms Distortion will be < 0.1 % up to about 100Hz, and then it increases as the frequency increases, reaching about 1 % at 20kHz. The ganged switch at the input is for either disc playing or FM, either from an FM tuner or a tape amplifier. Assuming DC coupling on the outputs, there is no need for a DC reference to ground (resistor) for FM position. To clear the signal in the FM pOSition, place a 51 kUresistor to ground as shown in Figure 18 (from FM input position to ground)_ ~ "~J ....... "'".........-. _J 90007601 Figure 18: Hi·Fi Amplifier 4--97 Note: All typical values have been guaranteed by characterization and are not tested. I... ICL8063' +'II---+----PIE--''"""~--__I > .1 'C ~r---~--~--~~-__i \ -I ,. ,.. ,. i 1-(111) OP032601 EOUT 050'.501 Figure 19: Typical Performance Curve of - - vs. Frequency· For Typical Circuit Shown VIN -.. , '" \ ..0----'-----. \ ~ \ 0P002701 .. -- ~-~~-~--~~_+----_+~4 050' .... Figure 20: Typical Performance Curve of Input Impedance Versus Frequency for Typical Circuit Shown Note: I"tarsil offers a hybrid power amplifier similar to that shown in Figure 11. See ICH8510/8520/8530 data Note: All typical values have been guaranteed by characterization and are not tested. s~t for details. LH2108/LH2308 Dual Super-Beta Operational Amplifier GENERAL DESCRIPTION FEATURES The lH210BAllH230BA and lH210B/lH230B series of dual operational amplifiers consist of two lM10BA or lM10B type op amps in a single hermetic package. Featuring all the same performance characteristics of the single device, these duals also offer closer thermal tracking, lower weight, and reduced insertion cost. • • • • • Low Offset Current - 50pA Low Offset Voltage-O.7mV Low Offset Voltage LH2108A: O.3mV LH2108: O.7mV Wide Input Voltage Range-±15V Wide Operating Supply Range - ±3V to ±20V ORDERING INFORMATION PART NUMBER TEMPERATURE RANGE LH210BD -55·C to + 125·C LH2108AD PACKAGE -55·C to + 125·C 16-PIN LH230BD O·C to +70·C CERAMIC LH230BAD O·C to +70·C INV INPUT 4 14 2 16 NON.INV 5 INPUT INV INPUT 12 v~ V+ BALANCE OUTPUT COMPENSATION OUTCOMP, OUTPUT SAL/COMP, BALiCOMPENSATION -IN. V· TIN. -OUT, N/C V· BALANCE OUTPUT COMPENSATION BAI.o OUTPUT OUT, NON-INV INPUT '3 BAL/COMPENSATION V+ CD014401 Figure 1: Functional Diagram (outline dwg DE) COO1451t Figure 2: Pin Configuration 4-99 Note: All typical values have been guaranteed by characterization and are not tested. II I !::!. I ;; 3 LH2108/LH~308 ABSOLUTE MAXIMUM RATINGS Operating Temperature Range· LH21 08A1LH21 08 .....•........... -55°C to + 125°C LH2308A1LH2408 ...................... O°C to + 70°C Storage Temperature Range ............ -65°C to + 150°C Lead Temperature (Soldering. 10sec) ................. 300.oC Supply Voltage ................................................±20V Power Dissipation (Note 1) .•..........................• 500mW Differential Input Current (Note 2) .................... ± 1OmA Input Voltage (Note 3) ................... : .................. ± 15V Output Short Circuit Duration ..................... Continuous ELECTRICAL CHARACTERISTICS (LH2108/LH2308) (See Note 4) LIMITS PARAMETER TEST CONDITIONS UNIT LH2108 LH2308 Input Offset Voltage TA = 2SoC 2.0 7.S Input Offset Current TA = 2SoC 0.2 t.O Input Bias Current TA - 2SoC 2.0 7.0 mV Max nA Max Input Resistance (Note S) TA = 2SoC 30 10 Mn Min Supply Current TA = 2SoC 0.6 0.8 rnA Max Large Signal Voltage Gain TA = 25°C VS·±ISV VOUT-±10V, RL~10kn 50 2S V/mV Min Input Offset Voltage 3.0 10 Average Temperature Coefficient of Input Offset Voltage (Note 8) IS 30 Input Offset Current 0.4 I.S nA Max Average Temperature Coefficient of Input Offset Current (Note 6) 2.5 10 pAloC Max Input Bias Current mV Max pvrc Max 3.0 10 nA Max Supply Current TA=+125°C 0.4 - rnA Max Large Signal Voltege Gain Vs=±ISV, VQUT=±10V RL~ 10kn 2S 15 VlmV Min Output Voltage Swing Vs=±15V, RL=10kn ±13 ±13 Input Voltage Range Vs = ±15V ±13.5 ±14 Common Mode Rejection Ratio VS-±15V, VCM-±13.5V 85 80 Supply Voltage Rejection Ratio ±SV to ±20V 80 80 ELECTRICAL CHARACTERISTICS - V Min dB Min LH2108/LH2308 Input Offset Voltage TA = 2SoC O.S 0.5 mV Max Input Offset Current TA = 2SoC 0.2 nA Max Input Bias Current 2.0 Input Resistance TA - 25°C TA - 2SoC '.0 7.0 30 10 Mn Min Supply Current TA = 25°C 0.6 0.8 rnA Max Large Signal Voltage Gain TA=2SoC VS=±ISV Your = ± 10V, RL ~ 10kn 80 80 VlmV Min 1.0 0.73 mV Max 5 S pvrc Max Input Offset Current 0.4 I.S nA Max Average Temperature Coefficient of Input Offset Current (Note 6) 2.5 10 pArc Max Input Offset Voltage Average Temperature Coefficient of Input Offset Voltage (Note 6) Input Bias Current 3.0 10 nA Max Supply Current TA= + 12SoC 0.4 - rnA Max Large Signal Voltage Gain Vs = ±15V, VOUT= ±10V RL~ 10kn 40 60 V/mV Min Output Voltage Swing VS=±15V, RL=10kn ±13 ±13 Input Voltage Range Vs = ±ISV ±13.S ±14 4-100 Nota: All typical values have been guarantaed by characterization and are not tested: V Min LH2108/LH2308 ELECTRICAL CHARACTERISTICS (CONT.) LIMITS PARAMETER TEST CONDITIONS UNIT LH2108 LH2308 96 96 Common Mode Rejection Ratio Supply Voltage Rejection Ratio NOTES: 96 150·C. and that of the LH23081A dB Min 96 85·C. The Ihermal resistance of the 1. The maximum lunctlon temperature of the LH21 081 A IS IS packages is 100·C C/W, junction to ambient. 2. The inputs are shunted with back-to-back diodes for overvoltage protection. Therefore, excessive current will flow if a differential input voltage in excess of 1V is applied between the inputs unless some lim~ing resistance is used. 3. For supply voltages less than ± 15V, the absolute maximum input voltage is equal to the supply Voltage. 4. These specifications apply for ±5V:S Vs S ±20V and - 55·C S TA S 125·C, unless otherwise specified, and the LH2308A1LH2308 for ±5V:S Vs S 15V and O·C:S TA:S 70·C. 5. Input resistance is guaranteed by Input Bias Current test. 6. For DeSign only, not 100% tested. STANDARD COMPENSATION CIRCUIT ALTERNATE" FREQUENCY COMPENSATION Your FEEDFORWARD COMPENSATION VOUT YOUT Ra +YI Cf"~2 ,+ CO-30pF Cf R3 -Improves rejec:ion of power supply noire by • factor often. C2 = SSOO6501 88006601 . Figure 3: Auxiliary Circuit 4-101 Nota: All typical vsiues have been guaranteed by characterization and are not tested. -=- 2"~ R2 fo=3MHz SSOO8701 I ~ c i! D~D[6 LM108/A, LM308/A Super-Beta Operational Amplifier GENERAL DESCRIPTION FEATURES These differential input, precision amplifiers provide low input currents and offset voltages comparable to FET and chopper stabilized amplifiers. They feature low power consl,lmption over,a supply voltage range of > 2V to ±20V. The amplifiers may be frequency compensated with a single external capacitor. The LM108A and LM308A are high performance selections from the 108/308 amplifier family. • • • • • • Input Bias Current - 2nA Max to 7nA Max Input Offset Current - O.2nA Max to 1nA Max Input Offset VOltage - O.SmV Max to 7.SmV Max 1::Nos/AT-SIl,Vrc to 30llVrC Alosl AT-.2.5pArC to 10pArC Pin for Pin Replacement for 101A/301A ORDERING INFORMATION PART NUMBER TO-99 CAN 8 PIN MINIDIP 14 PIN CERDIP 10 PIN FLATPAK LM108A LM308A LM108AH* LM308AH LM308AN LM108AJ LM308AJ LM108AF LM308AF LM108 LM308 LM108H* LM308H LM308N LM108J LM308J LM108F LM308F - ** DICE LM308/D "If 883C processing is desired add 1883C to part number. ""Parametric MinIMax Limits guaranteed at 25°C only for DICE orders. FREa COMPA8FREa COMP'B -IN y+ +IN OUT v- INVERTING INPUT ,. NON 1~~~TlNG 5 NC (outline dwg PAl TOP VIEW COO16101 (outline dwg JD) aJ01S301 NC COMP GUARD COMP -IN v' +IN OUT y- GUARD TOP VIEW (outline dwg FB-') (outline dwg TV) c0016401 , c0016201 Figure 1: Pin Configurations 4-102 NOte: All typical values have been guaranteed by characterization and are not tested. 302030-002 1I0~OIL LM108/A, LM308/A ABSOLUTE MAXIMUM RATINGS Supply Voltage 10B, 10BA ............................................. ±20V 30B, 30BA ............................................. ±1BV Internal Power Dissipation (Note 1) Metal CAn (TO-99) .............................. SOOmW DiP ••.. ;· .............................................. SOOmW Differential Input Current (Note 2) .................... ±10mA Input Voltage (Note 3) ...................................... ±1SV Output Short-Circuit Duration ......................... Indefinite , Operating Temperature Range W 10B, 10BA ........................... -SS·C to + 12S·C 30BAt...... ·R····· ................. ·6..S~C·Ct to++17S0 Storage30TB,empera 0:C C ';;: ure ange ............ 0 , Lead Temperature (Soldering,10sec) ...... , .......... 300·C i ELECTRICAL CHARACTERISTICS (TA =2S·C unless otherwise specified) (Note 4) PARAMETER TEST CONDITIONS 308 MAX Input Offset Voltage 2.0 Input Offset Current 0.2 Input Bias Current 1.5 Input Resistance Note 5 VS-±20V VS=±15V large Signal Voltage Gain Vs - ±15V, Vour= ±10V RL> 10kn 10 108 308A .TVP Supply Current MIN MIN TVP MAX 7.5 0.3 0.5 1.0 0.2 7 1.5 1.0 7 10 40 40 MIN 30 TYP 0.7 25 0.8 0.3 80 300 108A MAX MIN UNIT TVP MAX 2.0 0.3 0.5 mV 0.05 0.2 0.05 0.2 0.8 2.0 0.8 2.0 nA nA Mn mA mA 70 0.3 0.3 30 70 0.3 0.6 0.6 0.8 300 50 80 300 VlmV 300 THE FOLLOWING SPECIFICATIONS APPLY OVER THE OPERATING TEMPERATURE RANGES Input Offset Voltage 10 0.73 3.0 1.0 Input Offset Current 1.5 .1.5 0.4 0.4 nA 1.0 5.0 p'vrc 0.5 2.5 pArC Average Temperature CoefficiEintof Input Offset Voltage Note 6 Average temperature Coefficient of Input Offset Current Note 6 , 8.0 30 1.0 5.0 3.0 2 10 ·2.0 10 0.5 Input Bias Current Large Signal Voltage Gain 10 Vs = ±15V, Vour= ±10V RL ~ 10kn 15 2.5 3.0 10 15 25 60 Vs = ±15V V5=±15V VCM=±13.5V 80 100 96 110 85 100 96 110 dB Supply Voltage Rejection Ratio ±5V to ±20V 80 96 96 110 80 96 96 110 dB ±13 ±14 ±13 ±14 ±13 ±14 ±13 ±14 VS=±15V, RL=10kn TA = + 125·C, Vs = ±20V ±13.5 nA V/mV Input Voltage Range Supply Current ±13.5 3.0 40 mV Common Mode Rejection Ratio Output Voltage Swing ±13.5 ..~ ,. , ±13.5 0.15 0.4 V 0.15 "0.4 V mA NOTES: 1. Derate Metal Can package at 6.8 mWrc for operation at ambient temperatures above 75·C and the Dual In-Line package at 9mWI ·C 'for operation at ambient temperatures above 95°C. 2. The inputs are shunted with back-to-back diodes for over-voltage protection. Therefore, excessive current will flow if a differential input voltage in excess of tV is applied between the inputs unless some limiting resistance is used. . 3. For' supply voltages less than ± 15V, the maximum input voltage is equal to the supply voltage. 4. Unless otherwise specified, these specHications apply for supply voltages from + 5V to ± 20V for the 108, and 100A and + 5V to ± 15V for the 30B and 30BA. 5.. Input· resistance is guaranteed by Input Bias Current test. 6. For' Design only, not 100% tested. . 4--103 Note: All typical values have been guaranteed by characterization and are not tested. !~ LM108/A,LM308/A . ! INPUT CURRENTS C i... !j, . TYPICAL PERFORMANCE CHARACTERISTICS MAXIMUM DRIFT ERROR 2.0 , lk 1. 5 i t",....., N 1.0 I08A/l08 ~ O. 5 a" r--- t-... - "';> O.2S r-I108 308 t---,=- I-I~ w ~ 10 ....,...." - o" "" r-... 308(308A OFFSET ... 0.20 ~ a>;0.15 ii2 Q .108A/\08 0.10 OtSlT -...J.~ o ,.- I I J/JALIAL 308A 108A J; ~ 108/108A, 1.0 lOOk -5S'C < ~. < 12S'C O·C":T.< 10'C 1M 10M INPUT RESISTANCE TEMPERATURE ('CI ,.- ~ i7 FI .... 308/308A, ··55 -35 -15 5 2S 45 65.85 lQ5 12S MAXIMUM OFFSET ERROR . 100M 0P022201 0P022001 100M 1M 10M INPUT RESISTANCE 1m· 1m 0P022101 POWER SUPPLY REJECTION INPUT NOISE VOLTAGE 120 ·1000 jloo ~400 :; .: 280 0 ~ ... ;;: OPEN LOOP VOLTAGE GAIN ..,80 Rs ·1M ~'00 ~ 40 "...>' t 20 a 0 ia>; -20 100 lk 10k lOOk 1M 10M Rs' lOOk Rs'O 40 10 ·10 I 100 lk 10k lOOk 10 FREOUENCY (Hz! FREQUENCY (Hzl 0P022301 OUTPUT SWING 20 15 SUPPLY VOLTAGEltVI OP022511 OP022411 OPEN LOOP FREQUENCY RESPONSE SUPPLY CURRENT 15 VS' t15V I ... ~~~ ~ \ T.· 12S'C. " " " " " f-- --f"~pF d- T~'crCi o I I I It o 2 4 6 . C.'30pF~ I{- L'::T•• 70'C T.r. ~'C II I T... • -55'C 110 C.'IOOpF- :+,c.. GAIN PHASE ___ 8 01'022601 "10: f-- ~c.. :00 pF - OUTPUT CURRENT ('mAI "10: 1 SUPPLY VOLTAGE (tVl OP022701 Note: All typical values have been guaranteed by characterization and are not tested. 10 100 lk .... ;r- 30 pFFe!! o 10k lOOk 1M 10M FREOUENCY IHzI LM108/A, LM308/A TYPICAL PERFORMANCE CHARACTERISTICS (CONT.) CLOSED LOOP OUTPUT IMPEDANCE 1~ r--r--r--r--~-'=-~ ...§,~ r--H~~~--~-4--~ ~ ~10' r-~-'\r-'\-b~+--4--~ ~ ~ 1~ t--t---li7' ~ 10" 10 16 To' '"z ...~ 8 C," 3pF 1\ C.-30~ i-I it lOUT· ±1 mA 10" "'-......__..........__V;.::S.;.·_,';..;;S.;.V--, 10 100 lk 10k lOOk 1M 10M o lk "" 10k r- '1 r-I-\1H-+::.:r',,{- 1 r-HH-t-++--i"'-'U -2 r-HIH-t-+-,h:~j-.--+-- ~ I=t$!=t=~t~t;~t; ~ 1'-0. lOOk r-r-.r-T--.--.--.-,-- 8 I-+-HH......---·+_·+ 6 I-+-HH.......,-l-·_ ..l---+· 4 I - r H H......---{-·--- Vs" :!:15V ~ 4 I----H<---li----+-- 25'(: ~ 12 ~ :::> l!: VOLTAGE FO!JJ(;ii"i!:·.:, ~ PULSE RESP(Wl:",;: LARGE SIGNAL FREQUENCY RESPONSE -10 I-+-HH......-+-: L....L-&....JL....I~_ 1M FREQUENCY IHzl FREQUENCYIHzI 0P02S00l 0P022901 GUARDING Extra care must be taken in the assembly of printed circuit boards to take full advantage of the low input currents of the 108 amplifier. Boards must be thoroughly cleaned with TCE or alcohol and blown dry with compressed air. After cleaning, the boards should be coated with epoxy or silicone rubber to prevent contamination. Even with properly cleaned and coated boards, leakage currents may cause trouble at 125·C, particularly since the input pins are adjacent to pins that are at supply potentials. This leakage can be significantly reduced by using guarding to lower the voltage difference between the inputs and adjacent metal runs. Input guarding of the 8-lead TO-99 package is accomplished by using a 10-lead pin circle, with the leads of the device formed so that the holes adjacent to the inputs are empty when it is inserted in the board. The guard, which is a conductive ring surrounding the inputs, is connected to a low impedance point that is at approximately the same voltage at the inputs. Leakage currents from high-voltage pins are then absorbed by the guard. The pin configuration of the dual in~line package is designed to facilitate guarding, since the pins adjacent to the inputs are not used (this is different from the standard 741 and 101A pin configuration). ., INVl~~~~ _IVAII\'~-I .I IOOpF lC(J<11:;0! Figure 3: Frequency Compensat9()'ls',; e~r;'~"iG'~ ALTERNATE CIRCUIT IMPROVES FiE,i'l,",:-;1l1~/;:! POWER SUPPLY NOISE BY A FACTOi') Oil' Y',',.;,\ A' Co c, lOpF lC02'4OI Figure 2: Frequency Compensation Circuit STANDARD CIRCUIT 4-105 Note: All typical values have been guarenteed by cheracterization and are not tested. =Video NE/SE592 Amplifier 111 (I) I GENERAL DESCRIPTION FEATURES The NE/SE592 is a monolithic, two-stage, differential output, wideband video amplifier. It offers fixed gains of 100 and 400 without eXternal components and adjustable gains from 0 to 400 with one external resistor. The input stage has been designed so that with the addition of a few external reactive elements between the gain select terminals, the circuit can function as a high pass, low pass, or band pass filter. This feature makes the circuit ideal for use as a video or pulse amplifier in communications, magnetic memories, display, video recorder systems" and floppy disc head amplifiers. The NE/SE592 is a pin-for-pin replacement for the jJA733 in most applications. .... 2.4k • • • .• • 120MHz Bandwidth Adjustable Gains From 0 to 400 Adjustable Pass Band No Frequency Compensation Required Wave Shaping With' Mlnlinal· External Components ORDERING INFORMATION BASIC PART NUMBER PACKAGE TEMP RANGE SES92 -SS·C 10 + 12S·C NES92 O·C 10 +70·C 14-PIN PLASTIC 14-PIN CERDIP la-PIN To-l00 8-PIN MINI DIP - SES92F SES92H - NES92N NES92F NES92H NES92N-8 .. , t---+--1-t--+---.i'""""ovt-+-<>OUTPUT1 '----+---"JIIIo-j--+--<>OUTPUT 2 1IIPUT' G •• ... BDOO6OO1 Figure 1: Functional Diagram (Resistor Values Nominal Only) 14-Pln DIP Package (JD, PO Package) 10-Pln To-100 Package (H Package) 8-Pln DIP Package (N-8 Package) Qu,GAIN SELECT INPUT 1 1 G'A GAIN SELECT 2 7 G'B GAIN SELECT Goa"'". SELECT OUTPUll 4 5 OUTPUT2 y- TOP VIEW COO14001 TOP VIEW CD014301 c001~101 Note: Pin 5 connected to case. Figure 2: Pin Configurations 4-106 Note: All typical values have been guaranteed by characterization and are not tested. NE/SE592 ABSOLUTE MAXIMUM RATINGS Supply Voltage ................................................. ±8V Differential Input Voltage .................................... ±5V Common-Mode Input Voltage .............................. ±6V Output Current ............................................... 10mA Operating Temperature Range SE592 ................................ -55·C to +125·C NE592 ..................................... O·C to + 70·C Storage Temperature Range ............ -65·C to + 150 c C Power Dissipation ......................................... 500mW Lead Temperature (Soldering, 10sec) ................. 300·C Stresses above those listed under" Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions. lor extended periods may affect device reliability. ELECTRICAL CHARACTERISTICS + 25°C, VSUPPLY = ±6V, VCM = 0 unless otherwise specified. Vs = ±6.0V TA = NE592 SYMBOL. PARAMETER Differential Voltage Gain Gain 1 (Note 1) Gain 2 (Note 2) AVOL BW SE592 TEST CONDITIONS RL = 2kU, VOUT = 3Vp-p UNIT MIN TYP MAX MIN TYP MAX 250 80 400 100 600 120 300 90 400 100 500 '110 Bandwidth Gain 1 (Note 1) Gain 2 (Note 2) 40 90 40 90 MHz Rise Time t, Gain 1 (Note 1) Gain 2 (Note 2) (Note 4) Propagation Delay Gain 1 (Note 1) Gain' 2 (Note 2) (Note 4) td VOUT= 1Vp-p VOUT= lVp-p Input Resistance Gain 1 (Note 1) Gain 2 (Note 2) RIN CIN input Capacitance (Note 2) (Note 4) los Input Offset Currant IBIAS Input Bias Currant en Input Noise Voltage II.VIN Input Voltage Range I CMRR 10 Gain 2 10.5 4.5 12 10.5 4.5 10 7.5 6.0 10 7.5 6.0 10 4.0 30 20 2.0 BW= 1kHz' to 10MHz 3.0 9.0 30 9.0 20 12 ±1.0 60 86 60 Supply Voltage Rejection Ratio Gain 2 (Note 2) AVs = ±O.SV 50 70 50 70 Voo Output Offset Voltage Gain 2 (Note 2) RL = 00 VOCM Output Common-Mode Voltage RL = 00 VO(DIFF) Differential Output Voltage Swing RL =2kU Ro 1+ Output Resistance 1. 2. 3. 4. 0.35 0.75 2.4 2.9 3.4 3.0 4.0 20 = 00 Gain select pins G1A and G1B connected together. Gain select pins G2A and G2B connected together. Recommended supply voltage = ± 6V For design reference only, not 100% tested. 4-107 Note: All typical values have baen guaranteed by characterization and are not tested. 18 -dB 0.35 0.75 2.4 2.9 3.4 3.0 4.0 18 V dB V V V 20 24 iJA iJA jJ.V rms 12 ±1.0 RL pF 2.0 0.4 86 60 Power Supply Current (Note 3) kU 5.0 60 PSRR ns 0.4 VCM ±1V, f < 100kHz VCM ~ 1V, f = 5MHz I ns 4.0 30 Common-Mode Rejection Ratio Gain 2 (Note 2) Gain 2 (Note 2) NOTES: VIV U 24 rnA .n~nll :: NE/SE592 i. TYPICAL APPLICATIONS III z Filter Networks SCHEMATIC FILTER Vo (S) TRANSFER VI FUNCTION TYPE LOW PASS 1.4x104 [__ 1_] L $ + R/L HIGH PASS 1.4X104 [ S ] $+ 1/RC R BAND PASS 1.4x104 [ S ] - - L - S2+R/L s+1/LC AF027501 V ~(S) Vi :!! 1.4x104 Z(s) + 2re 1.4x104 :!!--- Z(s) + 32 BAND REJECT NOTE;: In the networks above, the R value used is assumed to include the internal 2re of approximately 32n. Figure 3: Basic Configuration +5V Q i ___ !! ___ -.J AMPUTUDE: FREQuENCY: I READ HEAD - I DIFFERENTIATOR/AMPUFIER "=' ZERO CROSSING DETECTOR AF027611 Figure 4: Disc/Tape Modulated Readback Systems 4-108 Note: All typical values have been guaranteed by characterization and are not tested. NE/SE592 For frequency f1 < < 1/21r(32)C dVj Vo a.1.4x104C d1 AF027101 Figure 5: Differentiation with High Common Noise Rejection 4-109 Note: All typical values have been guaranteed by characterization and are not tested. Section 5 Special Analog Functions AD590 2-Wire Current Output Temperature Transducer GENERAL DESCRIPTION FEATURES The AD590. is an integrated-circuit temperature transducer which produces an output current proportional to absolute temperature. The device acts as a high impedance constant current regulator, passing lilA/oK for supply voltages between + 4V and + 30.V. Laser trimming of the chip's thin film resistors is used to calibrate the device to 298.21lA output at 298.2°K (+ 25°C). The AD590. should be used in any temperature-sensing application between -55°C and + l50.°C (O.°C and 70'°C for TO-92) in which conventional electrical temperature sensors are currently employed. The inherent low cost of a monolithic integrated circuit combined with the elimination of support circuitry makes the AD590. an attractive alternative for many temperature measurement situations. linearization circuitry, precision voltage amplifiers, resistancemeasuring circuitry and cOld-junction compensation are not needed in applying the AD590.. In the simplest application, a resistor, a power source and any voltmeter can be used to . measure temperature. In addition to temperature measurement, applications include temperature compensation or correction of discrete components, and biasing proportional to absolute temperature. The AD590. is available in chip form making it suitable for hybrid circuits and fast temperature measurements in protected environments. The AD590. is particularly useful in remote sensing applications. The device is insensitive to voltage drops over long lines due to its high-impedance current output. Any well-insulated twisted pair is sufficient for operation hundreds of feet from the receiving circuitry. The output characteristics also make the AD590. easy to multiplex: the current can be switched by a CMOS multiplexer or the supply voltage can be switched by a logic gate output. • • • • Linear Current Output: 1pArK Wide Range: -55°C to + 150°C Two-Terminal Device: Voltage In/Current Out Laser Trimmed to to.5°C Calibration Accuracy (AD590M) Excellent Linearity: to.5°C Over Full Range (AD590M) Wide Power Supply Range: + 4V .to + 30V Sensor Isolation From Case Low Cost • • • • ORDERING INFORMATION PART NUMBER/PACKAGE NON-LINEARITY (OC) TO-52 PACKAGE TO-92 PACKAGE ±3.0 ±1.5 ±O.8 ±O.4 ±O.3 AD5901H AD590JH AD590KH AD590LH AD590MH AD590lZR AD590JZR TEMPERATURE RANGE -55°C to + 150°C O,°C to + 70°C DICE" AD590/D DICE ··Parameter MiniMax Limits guaranteed at 25°C only lor DICE ·orders. CASE (outline dwg TO·52) + SUBSTRATE (LEAVE FLOATING) (outline dwg TO·92) PC00421 I 05016601 Figure 1: Functional Diagram Figure 2: Pin Configurations 5--1 Note: All typical values have been guaranteed by characterization and are not tested. 30.0.10.6-00.2 ! ADS,90 .~ ABSOLUTE MAXIMUM RATINGS (TA = +25°C unless otherwise noted) Forward Voltage (v+ to V-) "."""." ....... ,, ....... +44V Reverse Voltage (v+ to V-),,""""""""""""" -20V Breakdown Voltage (Case to V+ or V-) """"".±200V Storage Temperature Range """",," -65°C to + 150°C Rated Performance Temperature Range TO-92 """",,",,",,",,",,"",,",,. O°C to + 70°C TO-52 "" ........ """"" ........ " .,.55°C to+ 15QoC Lead Temperature (Soldering, 10sec) ",,",,""" + 300°C Stresses above thoss listed under" Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the 298.2 a: a: u ...::> ...... ::> 0 218 1/ / L / 21SOK 298.2"K 42aoK ( - 55·C) ( + 2S'C) ( +15O"C) TEMPERATURE OP016201 Figure 8: Simple connection. Output is proportional to absolute temperature. 5-6 Note: All typical values have been guaranteed by characterization and are, not tested. AD590 TYPICAL APPLICATIONS y+ +15V (ADDITIONAL SENSORSt 05017101 Figure 10: Average-temperature sensing scheme. The sum of the AD590 currents appears across R, which is chosen by the formula: 10kn DS01700i Figure 9: Lowest-temperature sensing scheme. Available current is that of the "coldest" sensor. R= n n being the number of sensors. +15V -, I J ~~~~~T J .J A C 0.1% [I ':" 80005701 Figure 11: Single-setpoint temperature controlier. The AD590 produces a temperature-dependent voltage across R (C is for filtering noise). Setting R2 produces a scale-zero voltage. For the Celsius scale, make R 1kn and VZERO 0.273 volts. For Fahrenheit, R 1.8kn and VZERO 0.460 volts. = = = 5-7 Note: All typical values have been guaranteed by characterization and are not tested. = ~. 10 AD590 ICII C ROW COLUMN SELECT +15V SEl.ECT ,....-, ENABLE R (OPTtONALI • 0 5 , 6 2 IH6108 8-CHANNEi. -f-:~~~~~~~~~~~t-~~~~~7 3 MUX '2 • " 5 '0 6 A058O(&I1 ,0Idl 0.1% . ! "OUT I 80005901 Figure 12: Multiplexing sensors. If shorted sensors are possible, a series resistor in series with the D line will limit the current (shown as R, above: only one is needed). A six-bit digital word will select one of 64 sensors. .-----.----------------o+.w 11<0 ZERCSET IOmV/"C 118kO 101<0 0.'% 1000 201<0 FUlL·SCALE ADJUST ~ .01<0 2.13.5V .,.. _I LCOO76Oi Figure 13: Centigrade thermometer (O°C-100°C). the ultra-low bias current of the ICL7611 allows the use of large-value gain-resistors, keeping meter-current error under 1/2%, and therefore saving the expense of an extra meter-driving amplifier. Note: All typical values have been guaranteed by characterization and are not tested. AD590 Y+ SOkIl~+_Vlr-+--""'" (8Yminl Y- LC007701 Figure 14: Differential thermometer. The 50kn pot trims offsets in the devices whether internal or external, so it can be used to set the size· of the difference interval. This also makes it useful for liquid-level detection (where there will be a measurable temperature difference). Y+ r: ----------, 1"A/OK I L: +-__-r_ _- ._ _ _ I I SEEBECK +-<>-I..:::C::::O~EF:.::F~IC~IENT I =4O,.v/oK YI= 10.98mY TYPEK I + Y+ + YoUT I RI 4521!1 Y2=10.98 40.211 j '::" '::" 05017201 Figure 15: Cold-junction compensation for type K th~mocouple. The reference junction(s) should be in close thermal contact with the AD590 case. V must be at least 4V, while ICL8069 current should be set at 1mA - 2mA. Calibration does not require shorting or removal of the thermocouple: set R1 for V2 = 10.98mV.lf very precise measurements are needed, adjust R2 to the exact Seebeck coefficient for the thermocouple used (measured or from table) note V1, and set R1 to buck out this voltage (i.e., set V2 V1). For other thermocouple types, adjust values to the appropriate Seebeck coefficient. = sao,A - :rt:J==xx:)C)( x + ~-r~~~tLCOO7801 Figure 16: Simplest thermometer. Meter displays current output directly in degrees Kelvin. Using the AD590M, sensor output is within ±1.7 degrees over the entire range, and less than ±1 degree over the greater part of it. 5-9 Note: All typical values have been guaranteed by characterization and are not tested. i AD590,' a cc I of I °C v+ A, A. L,...--I--, AEFHI 5 E+-- AEF LO L 9,00 4,02 2.0 12.4 10.0 0 5.00 4.02 2.0 5.11 5.0 11.8 Rn = 28kn nominal n=l All values in kn A A. ICL1106 II< ~_INHI W /,:::1=1 .B ~ f--' The ICL71 06 has a VIN span of ±2.0V. and a VCM rE\nge of (V" -0,5) Volts to (V- + 1) Volts; R is scaled to bring ,each range within VCM while not exceeding VIN- VREF for both scales is 500mV."Maximum reading on the Celsius range is 199.9°C. limited by the (short-term) maximum allowable sensor temperature. Maximum reading on the Fahrenheit range is 199.9°F (93.3°C). limited by the number of display digits. See note next page. -COMMON +-----fINLO yAF027801 Figure 17: Basic digital thermometer, Celsius and Fahrenheit scales y+ 1.5kO REF HI 2.2Il1O AEFLO i5kIl SCALE ADJ 1i5k1l ,_ ICL1106 307 COM IN HI , INLO + A05IO yLCOO7901 Figure 18: Basic digital thermometer, Kelvin scale. The Kelvin scale version reads from 0 to'1999°K theoretically, and from 223°K to 473°K actually. The 2.26kn resistor brings the input within the ICL7106 VCM range: 2 general-purpose silicon diodes or an LED may be substituted. 5-10 Note: All typical values have been guaranteed by characterization and are not tested. AD590 y. 7.5kll ICUOlll 1.235V SCALE REF }DJ HI· REFLD 1kQ,O.1% IClnD8 '5kll 21.'' ' '---JWHH--lCOM IN HI t--------IINLO y- lCOO8OO1 Figure 19: Basic digital thermometer, Kelvin scale with zero adjust. This circuit allows "zero adjustment" as well as slope adjustment. The ICL8069 brings the input within the common-mode range, while the 5kn pots trim any offset at 218°K (-55°C), and set the scale factor. Note on Figure 17, Figure 18 and Figure 19: Since all 3 scales have narrow VIN spans, some optimization of ICL7106 components can be made to lower noise and preserve CMR. The table below shows the suggested values. Similar scaling can be used with the ICL7126/36. SCALE VIN RANGE (V) RIN"rtkn) CAZ(IlFj K C F 0.223 to 0.473 -0.25 to + 1.0 -0.29 to + 0.996 220 220 220 0.47 0.1 0.1 For all: Cose = 100pF Rose = 100kn CREF = O.1p.F CINT = O.221lF 5-11 Note: All typical values have been guaranteed by characterization and are not tested. !~~~!~~age Converter .D~UIl GENERAL DESCRIPTION FEATURES The Intersil ICL7660 is a monolithic CMOS power supply' circuit which offers unique performance advantages over' previously available devices. The ICL7660 performs supply voltage conversion from positive to negative for an input range of + 1.5V to + 10.0V, resulting in complementary output voltages of -1.5V to -10.0V. Only 2 non-critical external capacitors are needed for the charge pump and charge reservoir functions. The ICL7660 can also be connected to function as a voltage doubler and will generate output voltages up to + 1S.6V with a + 10V input. Note that an additional diode is required for VSUPPLY > 6.5V. Contained on chip are a series DC power supply regulator, RC oscillator, voltage level translator, and four output power MOS switches. A unique logic element senses the , most negative voltage in the device and ensures that the output N-channel switch source-substrate junctions are not forward biased. This assures latchup free operation. The oscillator, when unlOaded, o$cillates at a nominal frequency of 10kHz for an input supply voltage of 5.0 volts. This frequency can be lowered by the addition of an external capacitor to the "OSC"terminal, or the oscillator may be overdriven by an external clock. The "LV" terminal may be tied to GROUND to bypass the internal series regulator and improve low voltage (LV) operation. At medium to high voltages (+ 3.5 to + 10.0 volts), the LV pin is left floating to prevent device latchup. • Simple Conversion of +5V Logic Supply to ±5V Supplies ,. Simple Voltage Multiplication (VOUT nVIN) • 99.9% Typical Open Circuit Voltage Conversion Efficiency, • 98% Typical Power Efficiency • Wide Operating Voltage Range 1.5V to 10.0V • Easy to Use - Requires Only 2 External Non-Critical Passive Components =(-) APPLICATIONS • • On Board Negative Supply for Dynamic RAMs Localized /-I-Processor" (8080 Type) Negative Supplies Inexpensive Negative Supplies Data Acquisition Systems • • ORDERING INFORMATION PART NUMBER TEMP. RANGE ICQ660CTV O· to +10·C JCL7660CBA O·C to +70·C ICL7660CPA O· ,to +70·C ICL7660MTV' ICL7660/D PACKAGE TO-99 8 PIN SOIC ',8, PIN MINI DIP _55· to + 125°C TO-99 ' - DICE" • Add' /8,838.to part number if 8838 processing is required. "Parameter min/max limits guaranteed at 25·C only for DICE orders. V+(endCASEI V+ 8 OSC LV VOUT CAPCD035201 C0034111 (Outline Dwg BA) 8 LEAD MiniDIP (Outline Dwg TV) 8 LEAD TO-99 COO35901 (Outline Dwg PAl Figure 1: Pin Configurations 5-12 Note: All typical values have been guaranteed by characterization and are not tested. 302063--003 ICL7660 ABSOLUTE MAXIMUM RATINGS Supply Voltage ............................................... 10.5V LV and OSC Input Voltage (Note 1) ............... -0.3V to (V± +0.3V) for V+ < 5.5V (V+ -5.5V) to (V+ +0.3V) for V+ > 5.5V Current into LV (Note 1) ............... 20j.lA for V+ >3.5V Output Short Duration (VSUPPLY S 5.5V) ...... Continuous Power Dissipation (Note 2) ICL7660CTV ....................................... 500mW ICL7660CPA ....................................... 300mW ICL7660MTV ....................................... 500mW Operating Temperature Range ICL7660M ........................... -55°C to + 125°C ICL7660C ................................. O°C to +70°C Storage Temperature Range ............ -65°C to + 150°C Lead Temperature (Soldering, 1Osee) ...........................................300°C Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings -only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. r-------------~--------------~------~--------------------OV+ ~-----------------oCAP+ r-------------O CAP- Your OSC LV = BD01560r Figure 2: Functional Diagram OPERATING CHARACTERISTICS V + = 5V, TA = 25°C, Case = 0, Test Circuit Figure 3 (unless otherwise specified) LIMITS SYMBOL PARAMETER TEST CONDITIONS UNIT MIN TYP MAX 170 1+ Supply Current RL = 00 500 !lA VH1 Supply Voltage Range - Hi ooe S TA S 70°C, RL = 10kn, LV Open 3.0 6.5 V (Dx out of circuit) (Note 3) -55°C S TA S 125°C, RL = 10kn, LV Open MIN S TA S MAX, .RL = 10kn, LV to GROUND 3.0 1.5 5.0 V 3.5 V vli Supply Voltage Range - Lo (Dx out of circuit) VH2 Supply Voltage Range - Hi (DX in circuit) MIN S TA S MAX, RL = 10kn, LV Open 3.0 10.0 V Vl2 Supply Voltage Range - Lo (DX in circuit) MIN S TA S MAX, RL = 10kn, LV to GROUND 1.5 3.5 V 5-13 Note: All typical values have been guaranteed by characterization and are not tested. i a ICL7660 OPERATING CHARACTERISTICS (CONT.) LIMITS SYMBOL PARAMETER TEST CONDITIONS UNIT MIN TYP MAX 55 lOUT = 20mA, TA = 25°C lOUT = 20mA, O°C::; TA::; + 70°C Output Source Resistance ROUT 100 n 120 n lOUT = 20mA, -55°C::; TA::; + 125°C (Note 3) 150 n V+ =2V, IOUT=3mA, LV to GROUND O°C::;TA::; +70°C 300 n V+ = 2V, lOUT = 3mA, LV to GROUND, -55°C::; T A::; + 125°C, Ox in circuit (Note 3) 400 n . Oscillator Frequency 10 kHz PEl Power Efficiency RL = 5kn 95 98 % VOUT Ef Voltage Conversion Efficiency RL = 97 99.9 % Zose Oscillator Impedance V+ =2 Volts 1.0 Mn V= 5 Volts 100 kn fose 00 Notes: 1. Connecting any input terminal to voltages greater than V + or less than GROUND may cause destructive latchup. It is recommended that no inputs from sources operating from external supplies be applied prior to "power up" of . the ICL7660. 2. Derate linearly above 50°C by 5.5mWrC. 3. ICL7660M only. TYPICAL PERFORMANCE CHARACTERISTICS OPERATING VOLTAGE AS A FUNCTION OF TEMPERATURE (Circuit of Figure 3) OUTPUT SOURCE RESISTANCE AS A FUNCTION OF SUPPLY VOLTAGE '!A-~"'~= ~ 7.oF=;:=;::::=P i OUTPUT SOURCE RESISTANCE AS A FUNCTION OF TEMPERATURE g350 lOUT rJ ... ~ . .. 250 ./ m200 . i,oo ~ i-'"'" I'--. ,. 012345678 TEMPERATUAE(GC) ~ • o • POWER CONVERSION EFFICIENCY AS A FUNCTION OF OSC. FREQUENCY ..I..- Y+""5Y -50" -250 DO +25° +50" +75°+100"+125° TEMPERATURE (·C) SUPPLY VOLTAGE (v+) OPOO1011 - ~~=+zv rJ !i '50 4.ot-- ".. -50 '0 ..• . . " ; SLOPE SSO 7 .. e 20 30 40 50 &0 10 80 LOAD CURRENT !t(m") V ~ 1ft IV f-- V I 20 30 . c:t--J. I I ...... l100 ~ ~ w z 70 so 20.0 1B.O TA=+25D C V1"= '2.ov IV ! ... g:g 12.0 v+:-· 2V .. . __ 20;;: 10 ~ I 40 ~ so \ \ \ \ • 1 -2 ./ J ".. i--" V i--"jPY· 012345878 LOAD CURRENT IL (mA) OPOO0201 NOTE 4. These curves include in the supply current that current fed directly into the load RL from V + (see Figure 3). Thus, approximately half the supply current goes directly to the positive side of the load, and the other half, through the ICL7660, to the negative side of the load. Ideally, VOUT == 2 VIN, Is == 2 IL, so VIN • Is == VOUT • IL· 1 ~ ~, 4.0 2 so ~ 1ft 10.0 ~ .. .. l':/ ffi .. ~ o / u 20 o +- 3O~ OPOO0601 SUPPLY CURRENT & POWER CONVERSION EFFICIENCY AS A FUNCTION OF LOAD CURRENT ffi .. 50 ~ 40 -:;' lOAD CURRENT IL ImA) OPQ00101 TA!~OC 1 TA-=+25°CV+ +5V / 10 2 70 / 50 20 1 80 !( )t-,. ~ 30 ,.,... 3 -4 r I...... ffi .. / ::I-2 .... .. ..iii .. g 1 t-.... !i .. iii .. OUTPUT VOLTAGE AS,A FUNCTION OF OUTPUT CURRENT V 8.0 i 6.0 ~ 4.0 i •z .... 2.0 !: 3JI 4.5 6.0 7.5 LOAD CURRENT IL (mA) 1.5 9.0 OPQO0901 which shows an idealized negative voltage converter. Capacitor C1 is charged to a voltage, V + , for the half cycle when switches 81 and 83 are closed. (Note: 8witches 82 and 84 are open during this half cycle.) During the second half cycle of operation, switches 82 and 84 are closed, with 81 and 83 open, thereby shifting capacitor C1 negatively by V'I- volts. Charge is then transferred from C1 to C2 such that the voltage on C2 is exactly V +, assuming ideal switches and no load on C2. The ICL7660 approaches this ideal situation more closely than existing non-mechanical circuits. Is v+ r--------,-~(+5V) 7 ------l I ,I " I I I I RL ·coscl Ox I~~*,, , :r , .. ~VOUT L __ ..J In the ICL7660, the 4 switches of Figure 4 are M08 power switches; 81 is a P-channel device and 82, 83 & 84 are N-channel devices. The main difficulty with this ap~ proach is that in integrating the switches, the substrates of 83 & 84 must always remain reverse biased with respect to their sources, but not so much as to degrade their "ON" resistances. In addition, at circuit startup, and under output short circuit conditions (VOUT = V +), the output voltage must be sensed and the substrate bias adjusted accordingly. Failure to accomplish this would result in high power losses and probable device latchup. TCOOO301 NOTES: 1. For large values of Case ( > 1000pF) the values of Cl and C2 should be increased 'to 100"F, 2. Ox is required for supply voltages greater than 6.5V @ - 55'e S TA S + 70'C; refer to performance curves for additional information. Figure 3: ICL7660 Test Circuit This problem is eliminated in the ICL7660 by a logiC network which senses the output voltage (VOUT) together with the level translators, and switches the substrates of 83 & 84 to the correct level to maintain necessary reverse bias. DETAILED DESCRIPTION The ICL7660 contains all the necessary circuitry to complete a negative voltage converter, with the exception of 2 external capacitors which may be inexpensive 10IlF polarized electrolytic types. The mode of operation of the device may be best understood by considering Figure 4, The voltage regulator portion of the ICL7660 is an integral part of the anti-Iatchup circuitry, however its inherent voltage drop can degrade operation at low voltages. 5-15 Note: All typical values have been guaranteed by characterization and are not tested. II i a ICL7660 Therefore, to improve low voltage operation the "LV" pin should be connected to GROUND, disabling the regulator. For supply voltages greater than 3.5 volts the LV terminal must be left open to insure latchup proof operation, and prevent device' damage. ENERGY IS LOST ONLY IN THE TRANSFER OF CHARGE BETWEEN CAPACITORS IF A CHANGE IN VOLTAGE OCCURS. The energy lost is defined by: where V1 and V2 are the voltages on C1 during the pump and. transfer cycles. If the impedances of C1 and C2 are relatively high at the pump frequency (refer to Figure 4) compared to the value of RL, there will be a substantial difference in the voltages V1 and V2. Therefore it is not only desirable to make C2 as large as possible to eliminate output voltage ripple, but also to employ a correspondingly large value for C1 in order to achieve maximum efficiency of operation. ' DO'S AND DON'TS 1. 2. TCOO0801 Figure 4: Idealized Negative Voltage Converter 3. THEORETICAL POWER EFFICIENCY CONSIDERATIONS In theory a voltage converter can approach 100% efficiency if certain conditions are met: 'A The drive circuitry consumes minimal power. S The output switches have extremely low ON resistance and virtually no offset. C The impedances of the pump and reservoir capacitors are negligible at the pump frequency. The ICL7660 approaches these conditions for negative voltage conversion if large values of C1 and C2 are used. 4. 5. 6. Do not exceed maximum supply voltages. Do not connect LV terminal to GROUND for supply voltages greater than 3.5 volts. Do not short circuit the output to V + supply for , supply voltages above 5.5 volts for extended periods, however, transient conditions including startup are, okay. When using polarized capacitors, the + terminal of C1 must be connected to pin 2 of the ICL7660 and the + terminal of C2 must be connected to GROUND. Add diode Ox as shown in Figure 3 for high-voltage, elevated temperature ,applications. Add capacitor (~0.1IlF, disc) from pin 8 to ground to limit rate of rise of input voltage to approximately 2V//lS. -v+ ·NOTE: 1. Your = FOR 1.SV :5 V,V:5 6.SV 2. Your = -(v+ -VFOX) FOR 6.5 :5 v+ :5 10.0V Dx ,...-f4--, I ICL7660 I 9----T..------<0 Your· + L _____ J ~ 10j. 10V Current into LV (Note 1) •............... 20IlA for V+ > 10V Output Short Duration ...............•.......•...... Continuous Power Dissipation (Note 2) ICL7662CTY .........•...................•......... 500mW ICL7662CPA .........•.........................•... 300mW ICL7662MTY ........••...............•...•......... 500mW Lead Temperature (Soidering, 10sec) •.••.......•..... 300·C Stresses above those listed under, Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied, Exposure to absolute maximum rating conditions for extended periods may affect device reliability, . ELECTRICAL CHARACTERISTICS v+ = 15V, TA = 25·C, COSC = 0, unless otherwise stated. Test Circuit Figure 3. LIMITS SYMBOL PARAMETER UNIT TEST CONDITIONS MIN V+L V+H Supply Voltage Range-La Supply Voltage Range-Hi 1+ Supply Current = 10kn, LV = GND = 10kn, LV = Open RL = .., 'LV = Open Ro Output Source ReSistance 1+5 RL RL Min < TA < Max Min J..U.W-I..J.J.J..WI1--'-J..UJ.IIII 1 10 0P046911 UNLOADED OSCILLATOR FREQUENCY AS A FUNCTION OF TEMPERATURE I:... " " It«'" /' ...:- - ~~ ./ V .LLLLLLLL~LL~~~~"-J II /' n• ...• I :• •w I: OUTPUT SOURCE RESISTANCE AS A FUNCTION OF TEMPERATURE v... 100 _ .""' OP04701! OUTPUT VOLTAGE AS A FUNCTION OF LOAD CURRENT OUTPUT VOLTAGE AS A FUNCTION OF LOAD CURRENT 11¥ Caoc·' "- .t« H ~II ....... ......... ......... -a a +. ....... ... ..• """""""'- 12 S 46"" 1011121314161. t74818 .. LOAD CURRENT IL~ OP0472'I 0P047111 5-22 Note: All typical values have been guaranteed by characterization a"d are not tested. OP04731I ICL7662 TYPICAL PERFORMANCE CHARACTERISTICS (CO NT.) SUPPLY CURRENT & POWER CONVERSION EFFICIENCY AS A FUNCTION OF LOAD CURRENT SUPPLY CURRENT & POWER CONVERSION EFFICIENCY AS A FUNCTION OF LOAD CURRENT .•..... ~. ~ FREQUENCY OF OSCILLATION AS A FUNCTION OF SUPPLY VOLTAGE ' j: L i. :10 LOAD CURRENT IL trN\) 00 50 00 70 LOAD CURfloENT IL (IRA) 0P047411 OP04751I 0P047821 SUPPLY CURRENT AS A FUNCTION OF OSCILLATOR FREQUENCY LOAD CURRENT ',(rnA) Is V+ 1-------------1~·~1 + 5V ·'-">Trrm--rrrrrmr-'-n~m ~~~,.~.~~~--~+H~--+-H~~ ! .. -+ .. ~: :...tfI--++++tH1t-+ttlHtIi G1 i~~H4~~H4~~H4~ ·Cosc: T i :~-H-++H+H--~+H~--+!J-,~#l V • • • • M TC000311 . . OICIIAIOII_" NOTE: 1. For large value of COSC ( > 1000pl) the values of C, and C2 should be increased to 1001lF. Figure 3: ICL7662 Test Circuit OP04791I NOTE 4. Note that these curves include in the supply current that current led directly into the load RL Irom V + (see Figure 3). Thus, approximately half the supply current goes directly to the positive side 01 the load, and the other half, through the ICL7662, to the negative side of the load.ldeally, VLOAD "" 2V,N, IS "" 2 IL, so V,N • IS "" VLOAD • IL In the ICL7662, the 4 switches of Figure 4 are MOS power switches; Sl is a P-channel device and S2, S3 & S4 are N-channel devices. The main difficulty with this approach is that in integrating the switches, the substrates of S3 & S4 must always remain reverse biased with respect to their sources, but not so much as to degrade their "ON" resistances. In addition, at circuit startup, and under output short circuit conditions (VOUT = V+), the output voltage must be sensed and the substrate bias adjusted accordingly. Failure to accomplish this would result in high power losses and probable device latchup. CIRCUIT DESCRIPTION The ICL7662 contains al\ the necessary Circuitry to complete a negative voltage converter, with the exception of 2 external capacitors which may be inexpensive 10IJF polarized electrolytic capacitors. The mode of operation of the device may be best understood by considering Figure 4, which shows an idealized negative voltage converter. Capacitor Cl is charged to a voltage, V + , for the half cycle when switches Sl and S3 are closed. (Note: Switches S2 and S4 are open during this half cycle.) During the second half cycle of operation, switches S2 and S4 are closed, with Sl and S3 open, thereby shifting capacitor Cl negatively by V + volts. Charge is then transferred from Cl to C2 such that the voltage on C2 is exactly V +, assuming ideal switches and no load on C2. The ICL7662 approaches this ideal situation more closely than existing non-mechanical circuits. This problem is eliminated in the. ICL7662 by a logic network which senses the output voltage (VOUT) together with the level translators, and switches the substrates of S3 & S4 to the correct level to maintain necessary reverse bias. The voltage regulator portion of the ICL7662 is an integral part of the anti-Iatchup circuitry, however its inherent voltage drop can degrade operation at low voltages. Therefore, to improve low voltage operation the " LV" pin should be connected to GROUND, disabling the regulator. For supply voltages greater than 11 volts the LV terminal must be left open to insure latchup proof operation, and prevent device' damage. 5-23 Note: All typical values have been' guaranteed by characterization and are not tested. i ICL7662 a the + terminal of C2 must be connected to GROUND. TYPICAL APPLICATIONS Simple Negative Voltage Converter The majority of applications will undoubtedly utilize the ICL7662 for generation of negative supply voltages. Figure 5 shows typical connections to provide a negative supply where a positive supply of + 4.5V to 20.0V is available. Keep in mind that pin 6 (LV) is tied to the supply negative (GND) for supply voltages below 11 volts. The output characteristics of the circuit in Figure 5 are those of a nearly ideal voltage source in series with 65 ohms. Thus for a load current of -10mA and a supply voltage of + 15 volts, the output voltage will be 14.35 volts. The dynamic output impedance due to the capacitor impedances is approximately 11 we, where: TCOOO801 Figure 4: Idealized Negative Converter THEORETICAL POWER EFFICIENCY CONSIDERATIONS In theory a voltage multiplier can approach 100% efficiency if certain conditions are met: A The drive circuitry consumes l"fIinimal power 8 The output switches have extremely low ON resistance and virtually no offset. C The impedances of the pump and reservoir capacitors are negligible at the pump frequency. The ICL7662 approaches these conditions for negative voltage multiplication if large values of C1 and C2 are used. ENERGY IS LOST ONLY IN THE TRANSFER OF CHARGE BETWEEN CAPACITORS IF A CHANGE IN VOLTAGE OCCURS. The energy lost is defined by: C=C1 =C2 which gives ...:!.. = 1 = 3 ohms 271 fpump x 10~5 we for C = 10llF and fpump = 5kHz (1/2 of oscillator frequency) Paralleling Devices Any number of ICL7662 voltage converters may be paralleled to reduce output resistance. The reservoir capacitor, C2, serves all devices while each device requires its own pump capacitor, C1. The resultant output resistance . would be approximately E=1/2 C1 (V12_V22). ROUT (of ICL7662) ROUT=--~---------­ where V1 and V2 are the voltages on C1 during the pump and transfer cycles. If the impedances of C1 and C2 are relatively high at the pump frequency (refer to Figure 4) compared to the .. value of RL, there will be a substantial oifference in the voltages V1 and V2. Therefore it is not only desirable to ma,ke C2 as large as possible to eliminate output voltage ripple, but al!:lo to employ a correspondingly large value for C1 in order to achieve maximum efficiency of operation. n (number of devices) Cascading Devices The ICL7662 may be cascaded as shown to produce larger negative multiplication of the initial supply voltage. However, due to the finite efficiency of each device, the practical limit is 10 devices for light loads. The output voltage is defined by: DO'S AND DON'TS 1. 2. 3. VOUT = -n (VIN), Do not exceed maximum supply voltages. Do not connect LV terminal to GROUND for supply voltages greater than 11 volts. When using polarized capacitors, the + terminal of C1 must be connected to pin 2 of the ICL7662 and where n is an integer representing the' number of devices cascaded. The resulting output resistance would be approximately the weighted sum of the individual ICL7662 ROUT values. ' ,-----...,..---<> + VOUT ... - y+ TC038601 Figure 5: Simple Negative Converter &-24 Note: All typical values have been guaranteed by characterization and are not tested.' ICL7662 TCOOO91t Figure 6: Paralleling Devices V+ H~--9-.....,..- CAN BE ANY SUITABLE DIODE Regulated Negative Voltage Supply TC037901 Figure 10: Positive Voltage Doubler In some cases, the output impedance of the ICL7662 can be a problem, particularly if the load current varies substantially. The circuit of Figure 13 can be used to overcome this by controlling the input voltage, via an ICL7611 low-power CMOS op amp, in such a way as to maintain a nearly constant output yoltage. Direct feedback is inadvisable, since the ICL7662's output does not respond instantaneously to a change in input, but only after the switching delay. The circuit shown supplies enough delay to accommodate the 7662, while maintaining adequate feedback. An increase in pump and storage capaCitors is desirable, and the values shown provides an output impedance of less than 5.12 to a load of 10mA. Combined Negative Voltage Conversion and Positive Supply Doubling . Figure 11 combines the functions shown in Figures 5 and 10 to provide negative. voltage co.nversion and positive voltage doubling simultaneously. This approach would be, for example, suitable for generating + 9 volts and -5 volts from an existing + 5 volt supply. In this instance capacitors C1 and Cs perform the pump and reservoir functions respectively for the ·generation of the negative voltage, while capacitors C2 and C4 are pump and reservoir respectively for the doubled positive voltage. There is a penalty in this configuration which combines both functions, however, in that the source impedances of the generated supplies will be somewhat higher due to the finite impedance of the common charge pump driver at pin 2 of the device. -... ... ,.... v. I~ TC036101 Figure 13: Regulating the Output Voltage OTHER APPLICATIONS TC038201 Further information on the operation and use of the ICL7662 may be found in A051 "Principals and Applications of the ICL7660 CMOS Voltage Converter" by Peter Bradshaw and Dave Bingham. Figure 11: Combined Negative Converter and Positive Doubler 5-26 Note: All typical values have been guaranteed by characterization and are .not tested. .U~UIl5 ICL7663/7664 CMOS Programmable Micropower Voltage Regulators CI to) .CI... GENERAL DESCRIPTION FEATURES The ICL7663 (positive) and ICL7664 (negative) series regulators are low-power, high-efficiency devices which accept inputs from 1.6V to 10V and provide adjustable outputs over the same range at currents up to 40mA. Operating current is typically less than 4p.A, regardless of load. Output current sensing and remote shutdown are available on both devices, thereby providing protection for the regulators and the circuits they power. A unique feature, on the ICL7663 only, is a negative temperature coefficient output. This can be used, for example, to efficiently tailor the voltage applied to a multiplexed LCD through the driver (e.g., ICM7231 12/3/4) so as to extend the display operating temperature range many times. The ICL7663 and ICL7664 are available in either an a-pin plastic, TO-99 can, CERDIP, and SOIC packages. • • • • • • • • : Ideal for Battery-Operated Systems: Less Than 4/-lA Typical Current Drain Will Handle Input Voltages From 1.6V to 16V Very Low Input-Output Differential Voltage 1.3V Bandgap Voltage Reference Up to 40mA Output Current Output Shutdown Via Current-Limit Sensing or External Logic Signal Output Voltages Programmable From 1.3V to 16V Output Voltages With Programmable Negative Temperature Coefficients (lCL7663 Only) ORDERING INFORMATION POSITIVE REGULATOR TEMPERATURE RANGE PART NUMBER O·C to +70·C O·C to +70·C O·C to +70·C ICL7663CBA ICL7663CPA ICL7663CJA ICL7663/D ICL7663CTV O·C to +70·C NEGATIVE REGULATOR PACKAGE 8-Lead 8-Lead B-Lead DICE" B-Lead PART NUMBER SOIC MiniDIP CERDIP ICL7664/D ICL7664CBA ICL7664CJA ICL7664CPA ICL7664CTV TO-99 TEMPERATURE RANGE O·C O·C O°C QOC - +70·C to to to to +70·C + 70°C +70·C PACKAGE DICE" 8·Lead 8·Lead B-Lead B-Lead SOIC CERDIP MiniDIP T0-99 '-Parameter MinIMax Limits guaranteed at 25°C only lor DICE orders. ... ' ... ~------------~ . ..... ... r----"" -4·.880 - -4.975 ~ -4.970 I I II VI1=J-r - -4.855 o -4.950 1~ 10~ loo~ 1.0 10.0 100.0 I I I I .1.-1 I o .--rr / / .&~ 3.0 lOUT (mA) 100 90 80 70 VI7=1-115V 6.0 9.0 IaUT2 (mA) 12.0 51 2.0 I--tbol-::::lOf"'9-1.5 1.0 I++-+--+-~-+~--If-I 0.5 H-+-+-++-+--+-iH OLJ.!'WIL.l.WlIII....1.UJIIII.....I.1J.UllL.UJlIIII 0.1 1.0 10.0 100.0 FREQUENCY (Hz) lk I I V ~ VIN=I_~V I;;;;; 1:= _.... T o 3.0 IVIN= -15V 6.0 9.0 12.0 15.0 OP021601 OP021501 ICL7664 QUIESCENT CURRENT AS A FUNCTION OF INPUT VOLTAGE ~ 2.5H~'"""f~~ 0.01 Viii .. -2VI I Ioun (mA) 3.0 t-ttlltllll--ttttlt-tttllI-l-ttilllHolHllll TA= +25°C o 15.0 3.5~+-+-~~-+~~~ 40 30 20 10 2.0 1.8 1.6 ~ 1.4 1.2 ~ 1.0 ~ 0.8 Ii!! !!. 0.& 0.4 0.2 ICL7664 QUIESCENT CURRENT AS A FUNCTION OF TEMPERATURE 5.0 4.5 4.0 3.5 5.0 r-"--"--~-~~~""" -1.4V:5VouT:5V4.5 Voun AND VoUT2 4.0 CONNECTED TOGEtHER TA-+WC VIN= -II.ov AVIN=2.0V ii :s- 80 ac 50 ac If j... .......... i- ~ OP021401 ICL7664 INPUT POWER SUPPLY REJECTION RATIO ,---: VIN=-~ ! -4.915 -4.980 I I I I I TA;' +25"<: ICL7664 VOUT2 INPUT-oUTPUT DIFFERENTIAL VS OUTPUT CURRENT 2 4 6 8 10 12 14 16 YiN 1: _ 3.0 2.5 51 2.0 1.5 1.0 0.5 -- - Iv r-. ~ o -20 (V) V- ::;V r-. ... 0 20 J =l-l~V 1 I I v- = -2V I I I I I I 40 50 80 TEMPERATURE (OC) OP021801 0P021701 I I I I I I OP021901 DETAILED DESCRIPTION The ICL7663 and ICL7664 are CMOS integrated circuits which contain all the functions of a voltage regulator plus protection circuitry on a single monolithic chip. Referring to the functional diagrams (Figure 1), it can be seen that each contains a bandgap-type voltage reference of 1.3 Volts. This voltage, therefore, is the lowest output voltage the regulators can control ( -1.3V for the ICL7664). Error amplifier A drives either a P-channel (ICL7663) or an N-channel (ICL7664) pass transistor which is sufficient for low (under about SmA) currents; this transistor is augmented by a duplicate in the ICL7664, which permits higher current outputs. In the ICL7663, the high curren~ output is passed by an NPN bipolar transistor connected as a follower. This configuration gives more gain and lower output impedance. extremely low quiescent current. This does limit the dynamic response of the circuits, however, and transients are best dealt with outside the regulator loop. BASIC OPERATION The ICL7663 and ICL7664 are designed to regulate battery voltages in the SV to 1SV region at maximum load currents of about SmA to 30mA. Although intended as low power devices, power dissipation limits must be observed. For example, the power dissipation in the case of a 10V supply regulated down to 2V with a load current of 30mA clearly exceeds the power disSipation rating of the minidip: (10-2)(30) (10- 3) = 240mW. The test circuit illustrates proper use of the devices. Although the following discussion refers to the ICL7663, it applies as well to the parallel features of the ICL7664 as long as the appropriate polarities are reversed. Individual features and precautions will be discussed where appropriate. CMOS devices generally require two precautions: every input pin must go somewhere, and maximum values of applied VOltages and current limits must be rigorously observed. Neglecting these precautions may lead to, at the least, incorrect or non-operation, and at worst, destructive device failure. To avoid the problem of latchup, do not apply inputs to any pins before supply voltage is applied. Logic-controlled shutdown is implemented via an MOS transistor of the appropriate polarity. Current-sensing is achieved with comparator C, which functions with the Vour2 line on each chip. Finally, the positive regulator (ICL7663 only) has an output (Vre) from a buffer amplifier (B), which can be used to generate programmable-temperature-coefficient output voltages. The amplifiers, reference and comparator circuitry all operate at bias, levels well below 1jJA to achieve the 5-32 Note: All typical values have been guaranteed by characterization and are not tested. ICL7663/7664 -0.3V for the ICL7664 will keep the regulator ON, and a voltage level of more than l.4V but less than VI~ for the ICL7663, and less than -l.4V but not less than YiN for the ICL7664 control will turn the outputs OFF. If there is a possibility that the control signal could exceed the regulator input (ViN or YiN), the current from this signal should be limited to 100pA maximum by a high-value (1 Mil) series resistor. This situation may occur when the logic signal originates from a system powered separately from that of the regulator. Input Voltages - These regulators accept working inputs of l.4V to 18V. When power is applied, the rate-of-rise of the input may be hundreds of volts per microsecond. This is potentially harmful to the regulators, where internal operating currents are in the nanoampere range. The 0.047J.IF capacitor on the device side of the switch will limit inputs to a safe level around 2V I J.l.s. Use of this capacitor is suggested in all applications. In severe rate-of-rise cases, it may be advisable to use an RC network on the SHutDowN pin to delay output turn-on. Battery charging surges, transients, and assorted noise signals should be kept from the regulators by RC filtering, zener protection, or even fusing. Output Voltages- The resistor divider R2/R1 is used to scale the reference voltage, VSET, to the desired output using the formula VOUT = (1 + R2/R1) VSET. In the ICL7664, VIN and VSET are negative, so VOUT will also be negative. Suitable arrangements of these resistors, using a potentiometer, enables exact values for VOUT to be obtained. Because of the low leakage current of the VSET terminal, these resistors can be tens of megohms for minimum additional quiescent drain current. However, some load current is required for proper operation, so for extremely low-drain applications it is necessary to draw at least 1pA. This can include the current for R2 and R1. Output voltages up to nearly the VIN supply may be obtained at low load currents, while the low limit is the reference voltage. The minimum input-output differential in each regulator is obtained using the VOUT1 terminal. Output Currents - For the ICL7663, low output currents of less than 5mA are obtained with the least input-output differential from the VOUT1 terminal (connect VOUT2 to VOUT1). Either output may be used on the ICL7664, with the unused output connected to YiN. Where higher currents are needed, use VOUT2 on the ICL7663 (VOUT1 should be left open in this case) and parallel VOUT1 and VOUT2 on the ICL7664. High output currents can be obtained only as far as package dissipation allows. It is strongly recommended that output current-limit sensing be used in such cases. Current-Limit Sensing - The on-Chip comparator (C in the block diagrams) permits shutdown of the regulator output in the event of excessive current drain. As the test circuits show, a current-limiting resistor, RCL, is placed in series with VOUT2, and the SENSE terminal is connected to the load side of RCl. When the current through RCl is high enough to produce a voltage drop equal to VCl (0.7V for ICL7663, 0.35V for ICL7664) the voltage feedback is bypassed and the regulator output will be limited to this current. Therefore, when the maximum load current (llOAD) is determined, simply divide VCl by IlOAD to obtain the value for RCl. Logic-Controllable Shutdown - When equipment is not needed continuously (e.g., in remote data-acquisition sys'tems), it is desirable to eliminate its drain on the system until it is required. This usually means switches, with their unreliable contacts. Instead, the ICL7663 and ICL7664 can .be shut down by a logic Signal, leaving only IQ (under 4pA) ,as a drain on the power source. Since this pin must not be left open, it should be tied to ground if not needed. A ,voltage of less than 0.3V for the ICL7663, and greater than Additional Circuit Precautions - These regulators have poor rejection of voltage fluctuations from AC sources above 10Hz or so. To prevent the output from responding (where this might be a problem), a reservoir capacitor across the load is advised. The value of this capacitor is chosen so that the regl,Jlated output voltage reaches 90% of its final value in 20ms. From AV (20 xl 0- 3) lOUT I = C-, C = lOUT = 0.022--. At 0.9VOUT VOUT In addition, where such a capacitor is used, a currentlimiting resistor is also suggested (see "Current-Limit Sensing"). Producing Output Voltages With Negative Temperature Coefficients - The ICL7663 has an additional output (not present on the ICL7664) which is 0.9V relative to GND and has a tempco of + 2.5mV IOC. By applying this voltage to the inverting input of amplifier A (i.e., the VSET pin), output voltages having negative TC may be produced. The TC of the output voltage is controlled by the R2/R3 ratio (see Figure 4 and its design equations). > ......-OVOUT + lVTC lCO09201 EQ.l: VOUT R2 R2 R1 R3 = VSET(l + -) + -(VSET - VTcl R2 EQ.2: TC VOUT = --(TCVTC) in mVrC R3 WHERE: VSET = 1.3V VTC = 0.9V TCVTC = +2.5mV/ O C Figure 4: Generating Negative Temperature CoeffiCients 5-33 Nole: All typical values have been guaranleed by characterizalion and are nol lesled. ! I.CL766317664 fi' APPLICATIONS :8 .. i VIN SENS.E VOUT2 VOUT1 ICL7683 VTC VIN=~_ J RCL GND - 1 r~~ ~R2 - VOUT VOUT1 ICL7684 YOUTZ v,iii Rl GND SHDN 1 VOUT n Aa A\:L SENSE .. 1 VOUT R·I \/seT VSET O,047.F ~ I SHDN AF028901 _ R2+Rl V SET Your ICL _ O.7V RCL R2+Rl =----VSET Rl O.35V ICI..=-RCL AF029911 Figure 5: Basic Application of ICL7663 as Positive Regulator with Current Limit Figure 6: Basic Application of ICL7664 as Negative Regulator with Current Limit SENSE r - -.....- - - - - - - - - -....-~v,j; 8 v+ Cooc 7 ICL7683 A\:L VOUTI-'WIt-+-_-o+sv CAP+ 2 CAP- 4 ICL7680 GNDf3~-~~-1~_ _ l00pF +-_______~~~-, V0, lN4148 l00.F • A\:l '---------------~v,iii vouT!-'WIr-+-_-o-5V ICL7664 SENS!' 05017801 'Values depend on load characteristics Figure 7: Generating regulated split supplies from a single supply. The oscillation frequency of the ICL7660 is reduced by the external oscillator capacitor, so that it inverts the battery voltage more efficiently. 5-34 Note: All typical values have been guaranteed by characterization ·and are not tested. ICL7663/7664 I 1 y+ + BY£" ~-- L Vsn ~~ DIPS PM OSC OUT 1 SN. I l SHUTDOWN ICM7223A Y- R, GND RADIO OSC ENABLE IN SEG .. A2 ICL7684 Roc LCD DISPLAY VOUT1 Zz> SStSS VOUT2 1 L W 1 SYSTEM_I- T REPEAT SIGNAL SENSE VIN I LC009401 Figure 8: Once a Day System. This circuit will turn on a regulated supply to a system for one minute every day, via the SHUTDOWN pin on the ICL7664, and under control of the ICM7223A Alarm Cloc;j.k circuit. If the system decides it needs another one minute activation, pulling the REPEAT line to V (GND) during one activation will trigger a subsequent activation after a snooze interval set by the choice of SN pins (2 mins shown). Alternatively, activation of the Sleep timer, without pause, can be achieved. See ICM7223A data sheet for details. 5-35 Note: All typical values have been guaranteed by characterization and are not tested. I.... -: .O~DI1. ICL7663/7864 ICL7663B/4B ADDENDUM TO THE ICL7663/4 OATASHEET CD a This Addendum to the standard ICL7663/4 datasheet describes changes an~/or'modifications to the DC Operating characteristics 8pplicableto the ICL7663B/ICL7664B devices. The following table indicates those limits to which the ICL7663B/ICL7664B is tested and/or guaranteed operational. ICL7663B POSITIVE REGULATOR ORDERING INFORMATION POSITIVE REGULATOR ICL7663B/D ·ICL76638CBA ICL7663BCJA ICL7663BCPA ICL7663BCTV O·C O·C O·C O·C - to to to to DICE a-pin S.O.I.C. a-pin CERDIP a-pin MiniDIP TO-99 70·C 70·C 70·C 70·e ABSOLUTE MAXIMUM RATINGS ICL7663B Input Supply Voltage ...•........•............... ,., ......... + 12V Any Input or OutpuCVoltage(Note ..1) Terminals 1, 2, 3, 4, 5, 6, 7) ........... : ......• (GND -O.3V) to (ViI:! "t O.3V) Output Source Current (Terminal 2) ....................................... ,. SOmA (Terminal 3) .....•................................... 25mA . Output Sinking Current (Terminal 7) ................. -1 OmA Power Dissipation (Note 2) MiniDIP ............................................. 200mW TO-99 Can ......................................... 300mW Stresses above thOse listed under" Absolute Maximum'Ratings" may cause permanent damage to the device. These are stress ratings only and funCtional operation of the device at these or any other conditions above those indicated in the operational sections of the specffications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. ICL7663B OPERATING CHARACTERISTICS ViI:! = 9V, VOUT = 5V, TA = + 25°C, unless otherwise specified. LIMITS SYMBOL PARAMETER UNIT TEST CONDITIONS MIN Input Voltage TA- + 25·C 20·Q$TA$ +70·C IQ Quiescent Current jRL = 00 1.4V $ VOUT $ 8.5V VSET Reference VoHage VIN aVSET aT aVSET I TVP 1.5 1.6 1.2 MAX 10 10 V 3.5 10 IJA 1.3 1.4 V Temperature Coefficient 8.5V < VIN < 9V ±200 ppm Line Regulation 2V are not lested. 0.7 V n 2 1 n mA V 0.9 0 V nA 200 70 10 25 Open-Circuit Voltage Maximum Sink Current 10 8 2 mA ICL7663/7664 ICL7663B OPERATING CHARACTERISTICS (CONT.) LIMITS SYMBOL PARAMETER UNIT TEST CONDITIONS MIN tNTC LlT ILlmin) NOTES: Temperature Coefficient Open Circuit Minimum Load Current (Includes VSET Divider) TYP MAX mVl·C +.2.5 1 /lA 1. Connecting any tenminal to voltages greater than (Viii + O.3V) or less than (GND -O.3V) may cause destructive device latchup. It is recommended that no inputs from sources operating on external power supplies be applied prior to ICL7663B power-up. 2. Derate linearly above 50·C at 5mW for minidip and 7.5mW,·C for TO-99 can. . 3. This parameter refers to the saturation resistance of the MOS pass transistor. The minimum input-output voltage differential at low current (under 5mA), can be detenmined by multiplying the load current (including set resistor current, but not quiescent current) by this resistance. 4. This output has a positive temperature coefficient. Using it in combination with the inverting input of the regulator at VSET, a negative coefficient results in the output voltage. See Figure 3 for details. Pin will not source current. rc 5-37 Note: All typical values have been guaranteed by characterization and are not tested. IC1.766317884 ICL7664B NEGATIVE REGULATOR ORDERING INFORMATION ABSOLUTE MAXIMUM RATINGS ICL7664B . Negative Regulator ICL7664BCPA ICL7664BCTV ICL7664B/D ICL7664BCBA ICL7664BCJA o to o to o to o to +70·C +70·C -+70·C +70·C B-pin MiniDIP TO-99 DICE B-pin S.O.I.C B-pin. CERDIP Input Supply Voltage ........................................ -12V Any Input or Output Voltage (Note 1) (Terminals 1,2,3,4,5,6;7,) ................ (GND + O.3V) . to (ViN-O.3V) Output Source Current (Terminal 1,7) .................................... -25mA Power Dissipation (Note 2) MiniDIP ............................................. 200mW TO-99 ............................................... 300mW Stresses above those listed under" Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specijications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. ICL7664B OPERATING CHARACTERISTICS VjN=9V, Vout= -5V, TA= +25·C, unless otherwise specified. LIMITS PARAMETER SYMBOL TEST CONDITIONS UNIT MIN Input Voltage TA = +25·C O:5TA:5 +70·C 10 Quiescent Current lRl = 00 } -1.4V:5 VOUT:5 -8.5V VSET Reference Voltage YiN t.3V, OUT1 switch ON HYST1 switch ON VSETt < 1.3V, OUT1 switch OFF HYSTI switch OFF VSET2 > 1.3V, OUT2 switch OFF HYST2 switch ON VSET2 < 1.3V, OUT2 switch ON HYST2 switch OFF 'See Operating Characteristics for exact thresholds. HYST2 SETl<>---+------r.~ ~~t_t~~------OHY~l '>-1~_It~---oOUT2 sm <>---+------1;" 0UT1 ~---------------~----~_oGND 60006701 Figure 1: Functional Diagram v+ (CASE) (Outline dwg PAl GND CD016611 CD035SOI (Outline dwg TV) CD016711 (outline dwg SA) Figure 2: Pin Configurations 5-39 Note: All typical values have been guaranteed by characterization and are not tested., 302067-002 i ICL7865" g!:i ABSOLUTE MAXIMUM RATINGS Maximum Sink Output Current 00T1 and OUT2 ... 25mA: Maximum Source Output Current HYST1 and HYST2 ................... '............. ;, ............. ~25mA; Power Dissipation (Note 1) ............................. 200mW'. Operating Temperature Range .............. O°C to + 70°C Storage Temperature Range ............ -55°C to + 125°C Lead Temperature (Soldering, 10sec) ................. 300°C Supply Voltage .................................. -O.3V to + 18V Output Voltages OUT1 and OUT2 (with respect to GND) (Note 2) ............................... -O.3V to + 18V Output Voltages HYST1 and HYST2 (with respect to' V+) (Nate 2) ...... :.;;: ...................... +O.3Vto' -18V Input Voltages SEH and SET2' . (Note 2) ................ : .... (GND-O.3V) to (v+ +O.3V) Stresses above those listed under" Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions, above those indicated in the operational sections of the speCifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. ' ELECTRICAL CHARACTERISTICS DC OPERATING CHARACTERISTICS (v+ = 5V, TA = +25°C, unless otherwise specified. See Test Circuit Fig. 4) LIMITS SYMBOL PARAMETER TEST CONDITIONS UNIT MIN y+ Operating Supply Yoltage TA = +25·C O·C ~ TA ~ +70·C 1+ Supply Current GND ~ YSET1, YSET2 ~ y+ All Outputs Open Circuit y+ =2Y y+ =9Y y+ = 15Y YSETt YSET2 Inp~t t.YSET Temperature Coefficient of YSET t.T t.YSET Trip Yoltage Supply Yoltage Sensitivity of YSETt, YSET2 ROUTt, ROUT2, RHYST1, RHYST2 = 1MS1 IOlK IHlK Output Leakage Currents on OUT and HYST YSET = OY or YSET 2! 2Y 2.5 2.6 2.9 10 10 15 1.3 1.3 1.45 1.4 Y I1A Y ±200 ppm/·C 0.004 %/V 10 -10 200 -100 2000 -500 nA y+ = 2Y. YSETI = 2Y. IOUTl = 2mA Y + = 5Y. YSETt = 2Y. IOUTt = 2mA y+ = 9Y. YSETI = 2Y, IOUTl = 2mA 0.2 0.1 0.06 0.5 0.3 0.2 YHYSTt YHYSTI YHYSTt Y + = 2Y. YSETt = 2Y, IHYSTt = -O.SmA y+ = SY. YSETI = 2Y, IHYSTt = -O.SmA y+ = 9Y. YSETt = 2Y, IHYSTI = -O.SmA -0.15 -0.05 -0.02 -0.3 -0.15 -0.10 YOUT2 YOUT2 YOUT2 y+ = 2Y. YSET2 = OY. IOUT2 = 2mA Y + = 5Y, YSET2 = ay, IOUT2 = 2mA Y + = 9Y, YSET2 = OY. IOUT2 = 2mA 0.2 O.IS 0.11 0.5 0.3 0.2S YHYST2 VHYST2 YHYST2 y+ =2Y, YSET2= 2Y. IHYST2= -0.2mA Y + = 5Y. YSET2 = 2Y. IHYST2 = -O.SmA Y + = 9Y. YSET2 = 2Y, IHYST2 = -0.5mA -0.25 -0.43 0.35 -0.8 -1.0 -1.0 0.01 10 nA ±50 mY YOUTI YOUTI YOUTI ISET C.YSET YSETt"-YSET2 Output Saturation Yoltages MAX 16 16 y+ = 9Y, TA = 70·C y+ = 9Y. TA = 70·C IOlK IHlK , 1.6 1.8 1.15 1.2 t.Ys TYP YSET' Input Leakage Current GND ~ YSET ~ y+ t.YSET Input for Complete Output Change ROUT = 4.7kS1. RHYST = 20kS1 YOUTLO = 1% Y+, YOUTH I = 99% y+ Difference in Trip Yoltages ROUT, RHYST = 1MS1 Y 1 ±5 ±1 ROUT, RHYST = lMS1 NOTES: 1. Derate above ± 2S·C amb.ent temperature at 4mW I·C. 2. Due to the SCR s!ructure inherent in the CMOS process used to fabricate these devices, connecting any terminal to VOltages greater than (V + + 0.3V) or less than (GND-0.3YJ may" cause destructive device latchup. For these reason, it is recommended that no inputs from external sources not operating from the same power supply be applied to the device before its supply is established, and that in muHiple supply systems, the supply to the ICL7665 be turned on first If this is not possible, currents into inputs and/or outputs must be limited to ±0.5mA and voltages must no!" exceed those defined above. OutputlHysteresis Difference ~O Note: All typical values have been guaranteed by characterization and :are not tested. ICL7665 AC ELECTRICAL CHARACTERISTICS LIMITS SYMBOL PARAMETER UNITS TEST CONDITIONS TYP MIN tSOld tSHld tS02d tSH2d !Sold tsH2d ts02d tsH2d tolr to2r tHlr tH2r t01l t021 tH1f tH21 Output Delay Time Input Going HI VSET Switched from 1.0V to 1.6V ROUT = 4.7kn, CL = 12pF RHYST = 20kn, CL = 12pF 70 60 120 230 p.s VSET Switched from 1.6V to 1.0V ROUT = 4.7kn, CL = 12pF RHYST = 20kn, CL = 12pF 1040 610 70 30 p.s VSET Switched between 1.0V and 1.6V ROUT = 4.7kn, CL = 12pF RHYST = 20kn, CL = 12pF 120 60 330 25 p.s VSET Switched between 1.0V and 1.6V ROUT = 4.7kn, CL = 12pF RHYST = 20kn, CL = 12pF 30 60 160 30 p.s Output Delay Time Input Going LO Output Rise Times Output Fall Times ~------------,-------------------------1JV INPUT VSET1. VSET2 OUT1 Iso,. !------------------------1'OY -------Y· (5Y) I~---------- __ ~----------_+r_----------ONO J;---------+-------.t+-------------Y· (5Y) HYST1 !'-------------ONO "...----------IH----------------------v· (5Y) OUT2 MAX 1'----------------------- ONO r---------+i1r----:-------------------Y· (5Y) HVST2 I'-----------------·--~QNO WF014601 Figure 3: Switching Waveforms Y· 4.7kD r---------------+---+---+---.-------------oO~ ~--~---.----------oHYSTl ~--~~~r_--~--+_--._----~OUT2 INPUT 1.8V-r-l 1.QV ___-.J L-. HYST2 TC02541 I Figure 4: Test Circuits 5-41 Note: All typical values have been guaranteed by characterization and are not tested. TYPICAL PERFORMANCE CHARACTERISTICS OUT1 SATURATION VOLTAGE AS A FUNCTION OF OUTPUT CURRENT ~ 2.0 ,..--.--rr--.::----:= IU CJ ~ 1.6 g ~ i 1.2 t--I-+t--t---t---; 0.8 I--t-T-+---b~' 0.4 1-7t~""l;;~"'t"'\i' ::) ~ SUPPLY CURRENT AS A FUNCTION OF SUPPLY VOLTAGE ...~z IU F" 024 48121620 oun OUTPUT CURRENT (mA) 6 8 W n OP098701 ~ 2.0 IU ~ 1.6 ~ 1.2 ~ !ia: I V+ =2V ~ ~ 5.0 4.5 4.0 3.5 Z IU 3.0 a: a: ::) 2.5 CJ 2.0 ~ II. 1.5 II. ::) 1.0 ..... II. 1.5 HYST1 OUTPUT SATURATION VOLTAGE VS HYST1 OUTPUT CURRENT I-------J;f-----'-;------'---t--+-H -1.6 L.L.l_---I..._--'--_.l-L-J -2.0 ~--t HYSTt OUTPUT CURRENT (mA) OP023201 OP023301 SUPPLY CURRENT AS A FUNCTION OF AMBIENT TEMPERATURE HYST2 OUTPUT SATURATION VOLTAGE VS HYST2 OUTPUT CURRENT -5.0 --4.0 -3.0 -2.0 -1.0 tt- ~ OV" VSETI, VSET2 :s 8-~115J v+ r- I I U> 1--4--+·---t-Al'I+-; -1.0 ~t..;: vl=~v tV+ =2V 0z., !!l '~[,o£-7'I---+--+-; -3.0 o!:i '--L-L_~_~_L_---' -20 0 +20 +40 +60 OUT2 OUTPUT CURRENT (mA) AMBIENT TEMPERATURE ("C) OP023401 DP023501 DETAILED DESCRIPTION ~-< 1-.-t--J.~09---+--; -2.0 --l/'--+--t----t----j -4.0 o ~ :II: -5.0 <0 ~~ ~ --t 3 HYST2 OUTPUT CURRENT (mA) OP023601 be triggered into a potentially destructive high-current mode. This latchup can be triggered by forward-biasing an input or output with respect to the power supply, or by applying excessive supply voltages. In very-low current analog circuits, such as the ICL7665, this SCR can also be triggered by applying the input power supply extremely rapidly ("instantaneously"), e.g. through a low impedance battery and an ON/OFF switch with short lead lengths. The rate-of-rise of the supply voltage can exceed 100V//Js in such a circuil. A low-impedance capacitor (e.g. O.05/JF disc ceramic) between the V+ and GrouND pins of the ICL7665 can be used to reduce the rate-of-rise of the supply voltage in battery applications. In line-operated systems, the rateof-rise of the supply is limited by other considerations, and is normally not a problem. If the SET voltages must be applied before the supply voltage V + , the input current should be limited to less than O.5mA by appropriate external resistors, usually required for voltage setting anyway. A similar precaution should be taken with the outputs if it is likely that they will be driven by other circuits to levels outside the supplies at any time. See M011 for some other protection ideas. As shown in the Functional Diagram, the ICL7665 consists of two comparators which compare input voltages on the SE'f1 and SET2 terminals to an internal 1.3V band-gap reference. The outputs from the two comparators drive open-drain N-channel transistors for OUT1 and OUT2, and open-drain P-channel transistors for HYST1 and HYST2 outputs. Each section, the Under-Voltage Detector and the Over-Voltage Detector, is independent of the other, although both use the internal 1.3V reference. The offset voltages of the two comparators will normally be unequal, so VSET1 will generally not quite equal VSET2. The input impedances of the SET1 and SET2 pins are extremely high, and for most practical applications can be ignored. The four outputs are open-drain MOS transistors, and when ON behave as low resistance switches to their respective supply rails. This minimizes errors in setting-up the hysteresis, and maximizes the output lIexibility. The operating currents of the bandgap reference and the comparators are around 100nA each. PRECAUTIONS Junction-isolated CMOS devices like the ICL7665 have an inherent SCR or 4-layer PNPN structure distributed throughout the die. Under certain circumstances, this can 5-42 Note: All typical values have been guaranteed by characterization· and are not tested. ICL7665 APPLICATIONS 1 I v' Rp2 R" A21_~ OUT1 OUT2 r-~ ICL7885 SETI SEn R" .1. AF029011 AF029101 (b) Transfer Characteristics (a) Circuit Configuration Figure 5: Simple Threshold Detector Figure 5 shows the simplest connection of the ICL7665. for threshold detection. From the graph (b). it can be seen that at low input voltages OUTI is OFF. or high. while OUT2 is ON. or low. As the input rises (e.g. at power-on) toward VNOM (usually the eventual operating voltage). OUT2 goes high on reaching VTR2. If the voltage rises above VNOM as much as VTRI. OUT 1 goes low. The equations giving VSETl and VSET2 are, from Figure 1(a): conditions. The addition of hysteresis. making the trip points slightly different for rising and falling inputs, will avoid this condition. Figure 6(a) shows how to set up such hysteresis, while Figure 6(b) shows how the hysteresis around each trip point produces switching action at different pOints depending on whether VIN is rising or falling (the arrows indicate direction of change). The HYST outputs are basically switches which short out R31 or R32 when VIN is above the respective trip point. Thus if the input voltage rises from a low value, the trip point will be controlled by Rln, R2n and R3n, until the trip point is reached. As this value is passed, the detector changes state, R3n is shorted out, and the trip point becomes controlled by only Rln and R2n. a lower value. The input will then have to fall to this new point to restore the initial comparator state, but as soon as this occurs, the trip pOint will be raised again. V -V Rll 'V -V R12 SETI - IN(R R) , SET2 - IN(R R) 11 + 21 12 + 22 Since the voltage to trip each comparator is nominally 1.3V, the value of VIN for each trip point can be found from VTRl = VSET1 (Rl1+ R2l) R11 = 1.3 (Rl1+ R2l) R11 for detector 1 and VTR2 = VSET2 (R12 + R22) R12 = 1.3 (R12 + R22) R12 An alternative circuit for obtaining hysteresis is shown in Figure 7. In this configuration, the HYST pins put the extra resistor in parallel with the upper setting resistor. The values of the resistors differ, but the action is essentially the same. The governing equations are given in Table 1. These ignore the effects of the resistance of the HYST outputs, but these can normally be neglected if the resistor values are above ' about 100kn. for detector 2. Either detector may be used alone. as well as both together. in any of the circuits shown here. When VIN is very close to one of the trip voltages, normal variations and noise may cause it to wander back and forth across this level, leading to erratic output ON and OFF 5-43 Note:' All typical values have been guaranteed by characterization and are not tested. II ICL7665 OUT I I "', I ~~ I ~ HYST1 ~ SET1 I y. ICL781J6 HYST2 f--< SET2 - OUT1 OND ... I Au~ I I I 1 ON I' Au VL1 VU1 1 OUT2 UND£,WOLTAGE Rn __------+--------+1 V,N R,. j-DETECTOR 2---I---DETECTOA 1 - AF029211 AF02930i (a) Circuit Configuration (b) Transfer Characteristics Figure 6: Threshold Detector with Hysteresis V,N t--'\I\>/Ir-l HYST1 !CL781J6 t----ISET1 HYST2!c-"V\,..,....... SET2t---... Rn AF02941I Figure 7: An Alternative Hysteresis Circuit Table 1. Set~Point Equations c) HYSTERESIS PER FIGURE 7 a) NO HYSTERESIS Over-Voltage VTRIP = Rl1 + R21 Under-Voltage VTRIP = Rll x VSETl VUl = Over-Voltage VTRIP R12 + R22 R12 b) HYSTERESIS PER FIGURE 6A VUl = Rll + R21 + R31 XVSETl Rll VL1 = VU2 = Under-Voltage VTRIP Rll + R21 Rll Under-Voltage VTRIP XVSETl R12 + R22 + R32 XVSET2 R12 VL2= R12 + R22 R12 Rll xVSETl . R21 R31 Rll+---Vl1 = R21 + R31 XVSETl Rll x VSET2 Over-Voltage VTRIP Rl1 + R21 XVSET2 5-44 Note: All typical values have been guaranteed by characterization and are not tested. ICL7665 ICL7665B ADDENDUM TO THE ICL7665 DATASHEET This Addendum to the standard ICL7665B datasheet describes changes and/or modifications to the DC Operating characteristics applicable to the ICL7665B device. The following table indicates those limits to which the ICL7665B is tested and/ or guaranteed operational. ORDERING INFORMATION PART NUMBER TEMPERATURE RANGE o to +70·C o to +70·C ICl7665BCPA ICl7665BCTV ICl7665B/D ICl7665BCJA ICl7665BCBA o to +70·C o to +70·C PACKAGE 8 lead MiniDIP 8 lead TO-99 DICE Only 8-lead Cerdip 8-lead S.O.I.C. ABSOLUTE MAXIMUM RATINGS, ICL7665B Maximum Sink Output Current OUT1 and OUT2 ... 25mA Maximum Source Output Current HYST1 and HYST2 .............................................. -25mA Power Dissipation (Note 1) ............................. 200mW Operating Temperature Range .................. 0 to + 70·C Storage Temperature Range ............ - 55·C to + 125·C Supply Voltage .................................. -0.3V to +12V Output Voltages OUT1 and OUT2 (with respect to GND) (Note 2) ............................... -0.3V to + 12V Output Voltages HYST1 and HYST2 (with respect to V+) (Note 2) ................................. +0.3V to -12V Input Voltages SET1 and SET2 (Note 2) ..................... (GND -0.3V) to (V+ +0.3V) Stresses above those listed under" Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. DC OPERATING CHAF,lACTERISTICS v+ = 5V. TA = + 25°C. unless otherwise specified. SYMBOL PARAMETER TEST CONDITIONS V+ Operating Supply Voltage TA- +25·C 05 TA 5 +70·C I Supply Current GND 5 VSET1. VSET2 5 V + All Outputs Open Circu~ V+ ~2V V+ ~9V VSET1 VSET2 Input Trip Voltage aVSET Temperature Coefficient of VSET aT aVSET aVS IOLK IHLK IOLK IHLK VOUT1 VOUT1 VOUT1 VHYST1 VHYST1 VHYST1 VOUT2 VOUT2 VOUT2 VHYST2 VHYST2 VHYST2 LIMITS MIN 1.6 1.8 1.15 1.2 Supply Voltage Sensitivity of VSET1. VSET2 ROUT1. ROUT2. RHYST1. RHYST2 ~ 1Mn Output leakage Currents on OUT and HYST VSET ~ TYP OV or VSET <: 2V 10 10 2.5 2.6 1.3 1.3 10 10 1.45 1.4 V %/V 10 -10 200 -100 2000 -500 ~ 2V. VSET1 ~ 2V. IHYST1 ~ -0.5mA ~ 5V. VSET1 ~ 2V. IHYST1 ~ -0.5mA ~ 9V, VSET1 ~ 2V, IHYST1 ~ -0.5mA V - 2V, VSET2 - OV, IOUT2 - 2mA V + ~ 5V, VSET2 ~ OV, IOUT2 ~ 2mA V + ~ 9V, VSET2 ~ OV, IOUT2 ~ 2mA -0.15 -0.05 -0.02 0.2 0.15 0.11 0.5 0.3 0.25 -0.3 -0.15 0.15 0.5 0.3 0.3 V + - 2V, VSET2 - 2V, IHYST2 - -0.2mA V + ~ 5V, VSET2 ~ 2V, IHYST2 = -0.5mA V + ~ 9V, VSET2 ~ 2V, IHYST2 ~ -0.5mA -0.25 -0.43 0.35 -0.8 -1 -1 5--45 /lA 0.004 0.2 0.1 0.06 Note: All typical values have been guaranteed by characterization and are not tested. V ppm/·C ~ 2V, VSET1 ~ 2V, IOUT1 ~ 2mA ~ 5V. VSET1 ~ 2V. IOUT1 ~ 2mA ~ 9V. VSET1 ~ 2V. IOUT1 ~ 2mA V+ V+ V+ V+ V+ V+ UNITS ±200 V -9V, TA-70·C V+ ~ 9V. TA ~ 70·C Output Saturation Voltages MAX nA V i i .D~DIl ICL7685 DC OPERATING CHARACTERISTICS (CONT.) SYMBOL PARAMETER TEST CONDITIONS . LIMITS MIN TYP MAX UNITS 0.01 10 nA VSET Input Laakage C\Jrrent GNDSVSETSV AVSET Input for Complete ROUT = 4.7kSl, RHYST = 20kSl , VOUTLO = 1% v+, VOUTHI = 99% V+ Output Change mV ±S ±SO Difference in Trip Voltages ROUT, RI+YST = 1 MSl ±1 Output/Hysteresis DifferEmce NOTES: 1, Derate above ±2S"C ambIent temperature at 4mW/"C. . 2. Due to the SC~ structure inherent in the CMOS process used to fabricate these devices, connecting any terminal to voltages greater than. (V + 0.3V) or less than (GND - 0.3V) may cause .destructive device latchup. For this reason, it is recommended that no inputs from external sources not operating from the same power supply be applied to the device before its supply is established, and that in multiple supply systems, the supply to the ICL766S8 be tumed on first. If this is not pOSSible, currents into inputs and/or outputs must be limited to ± O.SmA and voltages must not exceed those defined above. ISET Il.VSET 5-46 Note: All typical values have been guaranteed by characterization and are not tested. ICL7867 Dual Power MOSFET Driver GENERAL DESCRIPTION FEATURES The ICL7667 is a dual monolithic high-speed driver designed to convert TIL level signals into high current outputs at voltages up to 15V. Its high speed and 1.5A peak current output enable it to drive large capacitive loads with high slew rates and low propagation delays. With an output voltage swing only millivolts less than the supply voltage and a maximum supply voltage of 15V, the ICL7667 is well suited for driving power MOSFETs in high frequency switched-mode power converters. The ICL7667's high current outputs (1.5A peak) minimize power losses in the power MOSFETs by rapidly charging and discharging the gate capacitance. The ICL7667's inputs are TTL compatible and can be directly driven by common pulse-width modulation control IC's. • • • • • • • 1.5A Peak Output Current Fast Rise and Fall Times - 40.ns With 1000pF Load Wide Supply Voltage Range -VCC=4.5 to 15V Low Power Consumption - 4mW With Inputs Low -120mW With Inputs High TTL/CMOS Input Compatible Power Driver -ROUT= 6n Direct Interface· With Common PWM Control IC' s Pin Equivalent to DS0026/DS0056; TSC426 TYPICAL APPLICATIONS • • • Switching Power Supplies DC/DC Converters Motor Controllers ORDERING INFORMATION PART NUMBER ICL7667MTV ICL7667MJA ICL7667CPA ICL7667CJA ICL7667CTV TEMPERATURE RANGE -55°C to + 125°C TO-99 Can a-Pin Cerdip ....---t~>O-__1I>O--- OUT a-Pin Plastic a-Pin Cerdip TO-99 Can O°C to +70°C - ICL7667/D vcc - -....- - -.....- - - - . PACKAGE IN-1 DICE" "Parameter MinIMax Limits guaranteed at 25°C only for DICE orders. 80006801 Figure 1: Functional Diagram N.C. OUT A v+ 8 7 8 2 3 4 N.C. IN v- IN B v+ OUT B 5 N.C. N.C. v- A TOP VIEW TO·. (TV) TOP VIEW 8-PlN DIP (PA. JA) COO1961I COO1682J Figure 2: Pin Configurations 5-47 Note: All typical values have been guaranteed by characlerization and are not tested. 302068-002 i .O~DIL IC,L76e1 , " iABSOLUTEMAXIMUM RATINGS Supply Voltage ................................................. 15V Input Voltage ............................... 15V to (V- -O.3V) Peak Output Current ......................................... 1~5A Package Dissipation, TA = ?5·C ....................... 500mW Linear Derating Factors TO-99 Plastic Cerdip 6.7mWfDC 5.6mWfDC 6.7mWfDC above50·C above 50'C above 36'C Storage Temperature ...................... -65'C to + 150'C Operating Temperature Range ICl:7667C .................................. O·C to +70·C ICL7667M ........................... -55'C to, + 125'C Lead Temperature (Soldering, 10sec) ................. 300'C Stresses above those listed under .. Absolute Maldmum Ratings" may cause permanent damage to the device. These are stress ratings only and fUnctional operation of the device at these or any other, cOnditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. ELECTRICAL CHARACTERISTICS (STATIC) Test Conditions: VCC = 4.5 to 15V, TA = + 25'C unless otherwise noted. LIMITS SYMBOL PARAMETER UNIT TEST CONDITIONS MIN VIH Logic 1 Input Voltage TYP MAX 2.4 V VIL Logic 0 Input Voltage liN Input Current VOH Output Voltage High VOL Output Voltage Low No Load 0 0.05 V ROUT Output Resistance VIN = VIL lOUT'" -10mA Vec"'15V 6 20 n. ROUT Output Resistance VIN=VIH lOUT = 10mA Vce = 15V 6 20 n. Icc Power Supply Current VIN = 3V (both inputs) 4 6 mA Icc Power Supply Current VIN = OV (both inputs) 150 400 p.A 0< VIN < Vee -1 0 No Load Vee -0.05 Vcc 0.8 V 1 !lA V ELECTRICAL CHARACTERISTICS (DYNAMIC) Test Conditions: Vce = 15V, TA = +25'C, unless otherwise noted. LIMITS SYMBOL PARAMETER TEST CONDITIONS UNIT MIN TYP MAX T02 Delay Time Figure 3 50 75 ns TR Rise Time Figure 3 35 50 ns 40 55 ns 20 35 ns TF T01 Fall Time Figure 3 Delay Time Figure 3 5-48 Note: All typical values have been guaranteed by characterization and arlO not tested. , ICL766.7 v + = 15V +5V ~O.'"F INPUT ......M.__-_- . OUTPUT "'.4V INPUI ----+~~-o--+- 109 INPUT RISE AND FALL TIMES IN4001 -13.5V , ..... ., -6 -8 SLOPE.,80 ~ -10 ::> ~ 1000"" IoC"li r-10kHz L -12 II!'< r- t- .o.=ISUPPLYWI.- OUT r- l - e, 1~kHz CLOCK RATE -14 -: TC025711 5 20 40 80 80 100 IOUT-mA OP025701 Figure 9: Voltage Inverter 5-53 Note: All typical values have been guaranteed by characterization and are not tested. i ICL7667 !i S! 9 shows a typical charge pump voltage inverter circuit and a typical performance curve. A common use of this circuit is to provide a low current negative supply for analog circuitry or RS232 drivers. With an input voltage of + 15V, this circuit will deliver 20mA at -12.6V. By increasing the size of the capacitors, the current capability can be increased and the voltage loss decreased. The practical range of the input frequency is 500Hz to 250kHz. As the frequency goes up, the charge pump capacitors can be made smaller, but the internal losses in the ICL7667 will rise, reducing the circuit efficiency. Figure 10, a voltage doubler, is very similar in both circuitry and performance. A potential use of Figure 8 would be to supply the higher voltage needed for EEPROM or EPROM programming. TC025801 Figure 10: Voltage Doubler OTHER APPLICATIONS RELAY AND LAMP DRIVERS CLOCK DRIVER The ICL7667 is suitable for converting low power TTL or CMOS signals into high current, high voltage outputs for relays, lamps and other loads. Unlike many other level translator/driver ICs, the ICL7667 will both source and sink current. The continuous output current is limited to 200mA by the 12R power dissipation in the output FETs. Some microprocessors (such as the 68XX and 65XX families) use a clock signal to control the various LSI peripherals of the family. The ICL7667's combination of low propagation delay, high current drive capability and wide voltage swing make it attractive for this application. Although the ICL7667 is primarily intended for driving power MOSFET gates at 15V, the ICL7667 also works well as a 5V high-speed buffer. Unlike standard 4000 series CMOS, the ICL7667 uses short channel length FETs and the ICL7667 is only slightly slower at 5V than at 15V.. CHARGE PUMP OR VOLTAGE INVERTERS AND DOUBLERS The low output impedance and wide Vee range of the ICL7667 make it well suited for charge pump circuits. Figure 5-54 Note: All typical values have been guaranteed by characterization and are not tested. ICL7673 Automatic Battery Back-up Switch GENERAL DESCRIPTION FEATURES The Intersil ICL7673 is a monolithic CMOS battery backup circuit that offers unique performance advantages over conventional means of switching to a backup supply. The ICL7673 is intended as a low-cost solution for the switching of systems between two power supplies; main and battery backup. The main application is keep-alivebattery power switching for use iii volatile CMOS RAM memory systems and real time clocks. In many applications this circuit will represent a low insertion voltage loss between the supplies and load. This circuit features. low current consumption, wide operating voltage range, and exceptionally low leakage between inputs. Logic outputs are provided that can be used to indicate which supply is connected and can also be used to increase the power switching capability of the circuit by driving external PNP transistors. The ICL7673 is available in either an a-pin plastic minidip package, a TO-99 metal can, or as dice. • • • • • • • • • Automatically Connects Output to The Greater Of Either Input Supply Voltage If Main Power to External Equipment Is Lost, Circuit Will Automatically Connect Battery Backup· . Reconnects Main Power When Restored Logic Indicator Signaling Status Of Main Power Low Impedance Connection Switches Low Internal Power Consumption Wide Supply Range: 2.5 to 15 Volts Low Leakage Between Inputs External Transistors May Be Added If Very Large Currents Need to Be Switched APPLICATIONS • • • • On Board Battery Backup for Real·Time Clocks, Timers, or Volatile RAMs Over/Under Voltage Detector Peak Voltage Detector Other Uses: - Portable Instruments, Portable Telephones, Line Operated Equipment ORDERING INFORMATION PART NUMBER ICl7673CPA TEMPERATURE RANGE ODC to +70°C PACKAGE B-pin minidip ICl7673CBA O°C to +70°C 8-pin SOIC ICl76731TV -25°C to + 85°C 8-pin TO-99 ICl7673/D - DICE ONLY" "Parameter MinIMax Limits guaranteed at 2S"C only for DICE orders. ~o-~---------,~~~------~---------o~ ~o--+~----------~----~ .--_ _oSbar Pbar G.Oo--------------------:.--......---l,--O 08028201 Vp > VS, P1 SWITCH ON AND Pbar SWITCH ON Vs > Vp, P2 SWITCH ON AND Sbar SWITCH ON Figure 1: Functional Diagram 5-55 Note: All typical values have been guaranteed by characterization and are not tested. 302070-003 ~ i 10 ICL7673 ABSOLUTE MAXIMUM RATINGS Package Dissipation ...................................... 300mW Linear Derating Factors TO-99 PLASTIC S.7mWrC 6.1mWrC above,SO'C above 36·C Operating 'Temperature Range: ICL7673CPA/CBA ...................... O·C to + 70·C " ICL76731TV ........................... -2S·C to +85·C Storage Temperature ...................... -6S'C to + 1S0·C Lead Temperature (Soldering, 10sec) ................. 300·C Input Supply (Vp or Vs) Voltage ........... -0.3 to + 18V Output Voltages Pbar and Sbar ............. -0.3 to + 18V 'Peak Current Input Vp (@ Vp = SV) (note 1) ................ 38rnA Input Vs (@ Vs 3V) ............................ 30mA Pbar or Sbar ....... ·:: .................. · .. · ........ 1S0mA Continuous Current ' Input Vp (@ Vp = SV) (note 1) ................ 38mA Input Vs (@ Vs = 3V) ............................ 30mA Pbar or Sbar ........... '........,: ..................... SOmA = Note 1. Derate above 25'C by O.3BmA/'C. Stresses above those listed under" Absolute Maximum Ratings" may cause permanent damage to ttie device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied, Exposure to absolute maximum rating conditions for 'eXtended periods may affect device reliability. Vp GNO CD033901 COO34001 C0036201 (Outline Dwg TV) 8-LEAD TO-99 ' (Outline Dwg BA) 8-LEAD SOle (Outline Dwg PAl 8-LEAD Mlnidip Figure 2: Pin Configurations ELECTRICAL CHARACTERISTICS SYMBOL Vp PARAMETER Rds(on)Pl TEST CONDITIONS TYP MAX 2.5 - 15 Vp = 0 volts Iload=OmA 2.S - 15 QUIESCENT SUPPLY CURRENT Vp= 0 volts Vs = 3 volts Iload=OmA - 1.5 5 ,.,A SWITCH RES!STANCE P1 (NOTE 2) Vp= 5 volts VS= 3 volts I load = 15mA - 8 15 n TA = 85·C 16 - Vp=9 volts VS= 3 vol,ts I load = 15mA - 6 - n Vp = 12 volts VS";3 volts I load = 15mA - 5 - n Vp = 5 volts Vs = 3 volts I load = 15mA - 2.03 - 'Yorc @ TC(P1) UNIT MIN Vs=O volts I load = OmA INPUT VOLTAGE Vs ,+ (TA = 2S·C unless otherwise specified) TEMPERATURE COEFFICIENT OF SWITCH RESISTANCE P1 5-56 Note: All typical values have been guaranteed by characterization 'and are not tasted. V ICL7873 ELECTRICAL CHARACTERISTICS (CONT.) SYMBOL PARAMETER Rds(on)P2 SWITCH RESISTANCE P2 (NOTE 2) TEST CONDITIONS MIN TYP MAX UNIT - 40 100 n @ TA = 85°C 60 - Vp = 0 volts Vs = 5 volts I load = 1mA - 26 - n Vp = 0 volts Vs = 9 volts I load = 1mA - 16 - n - 0.7 - %fOC 0,01 20 nA 35 - 0.01 50 120 - Vp= 0 volts Vs = 3 volts I load = 1mA TC(P2) TEMPERATURE COEFFICIENT OF SWITCH RESISTANCE P2 Vp = 0 volts Vs=3 volts I load = 1mA IL(PS) LEAKAGE CURRENT (Vp to Vs) Vp = 5 volts Vs = 3 volts I load = 10mA @ TA = 85°C IL(SP) LEAKAGE CURRENT (Vs to Vp) Vp - 0 volts Vs = 3 volts I load = 1mA @ TA = 85°C Vo Pbar OPEN DRAIN OUTPUT SATURATION VOLTAGES Vp = 5 volts Vs=3 volts I sink = 3.2mA I load = OmA - - nA 85 400 - 120 - - 50 - mV - 40 - mV - 150 400 mV @ TA = 85°C 210 - Vp = 0 volts Vs = 5 volts I sink = 3.2mA I load = OmA - 85 - mV Vp = 0 volts Vs = 9 volts I sink = 3.2mA I load = OmA - 50 - mV @ TA=85°C Vp = 9 volts Vs =3 volts I sink = 3.2mA I load = OmA Vp = 12 volts Vs = 3 volts I sink = 3.2mA I load = OmA Vo Sbar - Vp = 0 volts Vs = 3 volts I sink = 3.2mA I load =OmA 5-57 Note: All typical values have been guaranteed by characterization and are not tested. mV ~ ICL7673 a G ELECTRICAL CHARACTERISTICS (CONT.) SYMBOL PARAMETER TEST CONDITIONS OUTPUT LEAKAGE CURRENTS OF Pbar AND Sbar IL Pbar MIN TYP 50 TA '=85°C - Vp = 15 volts VS=O volts I load = OmA TA=85°C Vs =3 volts I sink = 3.2mA I load = OmA Vp=O volts Vs = 15 volts Iload=OmA @ IL Sbar @ SWITCHOVER UNCERTAINTY FOR COMPLETE SWITCHING OF INPUTS AND OPEN DRAIN OUTPUTS. Vp - Vs MAX UNIT . 500 900 - - 50 500 - 900 - - 5 50 nA nA mV NOTE 2. The minimum input to output voltage can be determined· by multiplying the load current by the· switch resistance. TYPICAL PERFORMANCE CHARACTERISTICS ON-RESISTANCE SWITCH P2 AS A FUNCTION OF INPUT VOLTAGE Vs ON-RESISTANCE SWITCH P1 AS A FUNCTION OF INPUT VOLTAGE Vp 100 100 ILOAO = lmA ILOAD = 15mA iii 2 :z: iii :IE :z: ...Q: N '~"' ;2 '" e e \ 10 ... A. '~"' ;2 -- II) ... ;;; II: Z CI o 2 4 & 8 ....... ........ - .r- r- 10 II) ... ;;; II: Z CI o 10 12 14 1& INPUT VOLTAGE Vp (V) 4 & 8 10 INPUT VOLTAGE Vs OP015BOI OP015701 5-58 Note: All typical values have been guatanteed by characterization and· are not tested. ICL7673 TYPICAL PERFORMANCE CHARACTERISTICS (CONT.) Pbar OR Sbar SATURATION VOLTAGE AS A FUNCTION OF OUTPUT CURRENT SUPPLY CURRENT AS A FUNCTION OF SUPPLY VOLTAGE 5 .....,... ...:IE ;;; ..., ..,..,... ....= ~ ... O.S '"e .... e CI 0.6 > ~ V 4 J / 3 2 CI ..,i=e I- 2 = e '" ...= = 0.4 l- ~ '"= !Vo=9V I- CI ... Vo=3V Vo=5V 0.2 IL I- CI +S5jC V o I- 40°C +25°C- 2 4 6 S 10 12 14 16 2 J V I ~ 1/ 7 Vo=15V 140 ISO OP016001 DETAILED DESCRIPTION IS LEAKAGE CURRENT Vp to Vs AS A FUNCTION OF INPUT VOLTAGE As shown in the functional diagram (Figure 1),the ICL7673 includes a comparator which senses the input voltages Vp and VS. The output of the comparator drives the first inverter and the open-drain N-channel transistor Pbar. The first inverter drives a large P-channel switch, P1, a second inverter, and another open-drain N-channel transistor, Sbar. The second inverter drives another large Pchannel switch 'P2. The ICL7673, connected to a main and a backup power supply, will connect the supply of greater potential to its output. The circuit provides break-beforemake .switch action as it switches from main to backup power in the event of a main power supply failure. For proper operation, inputs Vp and Vs must not be allowed to float, and, the difference in the two supplies must be greater than 50 millivolts. The leakage current through the reverse biased parasitic diode of switch P2 is very low. 1,.- i~1 1- 101lA CD C ~ / V VV ) v.... ~'" JV/ ~ V ~~ 120 o 40 so OP015901 .. .. 1/ OUTPUT CURRENT (mAl SUPPLY VOLTAGE (VI •rr:...... rr: ...'" V Vo=I~ IlIA OUTPUT VOLTAGE J'J The output operating voltage range is 2.5 to 15 volts. The insertion loss between either input and the output is a function of load current, input voltage, and temperature. This is due to the P-channels being operated in their triode region, and, the ON-resistance of the switches is a function of output voltage Yo. The ON-resistance of the P-channels have positive temperature coefficients, and therefore as temperature increases the insertion loss also increases. At low load currents the output VOltage is nearly equal to the greater of the two inputs. The maximum voltage drop across switch P1 or P2 is 0.5 volts, since above this voltage the body-drain paraSitic diode will become forward biased. Complete switching of the inputs and open-drain outputs typically occurs in 50 microseconds. 1001lpA IIIpA II I", 0 10 12 IIPUT Vp VOLTS 0P060901 5-59 Note: All typical values have been guaranteed by characterization and are not tested. [I . E ICl.7673, ...S:!... INPUT VOLTAGE The input operating voltage range for Vp or Vs is 2.5 to 15 volts. The input supply voltage (Vp or Vs) slew rate should be limited t02 volts per microsecond to avoid potential harm to the circuit. In line-operated systems, the rate-ol-rise (or fall) of the supply -is a function of power supply design. For battery applications it may be necessary to use a capacitor betWeen the input and ground pins to limit the rate-ol-rise of the supply voltage. A low-impedance capacitor such as a 0.041J.LF disc ceramic can be used to reduce -the rate-ol-rise. +5 VOLT o-_ _B ..... Vp Vo ",1-1r-oVo PRIMARY +5 VOLTS OR SUPPLY ICL + 3 VOLTS 7673 PIlar STATUS INDICATOR lITHIUM _ BATIERYGNOo-~---+-----u TC037701 Figure 4: ICL7673 Battery Backup Circuit STATUS INDICATOR OUTPUTS The N-channel open drain output transistors can be used to indicate which supply is connected, or can be used to drive external PNP transistors to increase the power switching capability 01 the circuit. When using external PNP power transistors, the output current is limited by the beta and thermal characteristics of the power transistors. The application section details the use 01 external PNP transistors. ' +5 VOLT o-~_ _ _ _B ..... vp Vo 1 PRIMARY SUPPLY teL 7673 4 APPLICATIONS A typical discrete battery backup circuit is illustrated in Figure 3. This approach requires several components, substantial printed circuit board space, and high labor cost. It also consumes a fairly high quiescent current. The ICL7673 battery backup circuit, illustrated in Figure 4, will often replace such discrete designs and offer much better performance, higher reliability, and lower system manufacturing cost. A trickle charge system could be implemented with an additional resistor and diode as shown in Figure 5. A complet~ low power AC to regulated DC system can be implemented using the ICL7673 and ICL7663 micropower voltage regulator as shown in Figure 6. +5 VOLT Vo PlIIMARY DC PDWfR +S VOlT DR +3 VOLT STATUS INDICATOR ..=. Nil:AD BATTERY STACK G.Do-......--+--......-----Sk SQUARE ROOT 7.Sk Tying the X and Y inputs together and using overall feedback from the Op Amp results in the square root function. The output of the mpdulator is again forced to eql!al the current produced by the Z input. CD01711 I Figure 11B: Actual Circuit Connection Divider Trimming Procedure 1. Set trimming potentiometers at mid-scale by adjusting voltage on pins 7, 9 and 10 (Xos, Yos, ZOS) for zero volts. 2. With ZIN = OV, trim ZOS to hold the Output constant, as X,N is varied from -10V through -1V. 3. With ZIN = OV and X,N = -1 O.OV adjust YOS for zero Output voltage.. 4. With ZIN = X,N (and/or ZIN = -XIN) adjust XOS for minimum worst-case variation of Output, as X,N is varied from -tOY to -tv. 5. Repeat Steps 2 and 3 if Step 4 required a large initial adjustment. 6. With ZIN = X,N (and/orZ'N = -XIN) adjust the gain control until the. output is the closest average around + 10.0V (-10V for ZIN = -X,N) as X,N is varied from -10V to -3V. The output is a negative voltage which maintains overall negative feedback. A diode in series with the Op Amp output prevents the latchup that would otherwise occur for negative input voltages. Z 80007121 Figure 13A: Square Root Block Diagram SQUARING The squaring function is achieved by simply multiplying . with the two inputs tied together. The squaring circuit may also be used as the basis for a frequency doubler since . cos2wt = 1/2 (cos 2wt + 1). ·5-69 Note: All typical values have been guaranteed by characterization' and are not tested. TYPICAL APPLICATIONS 1*)48 OUTPUT = - V"1ii%iN 4 GAIN 51< 7.51< AF029511 CDO.17311 Figure 15: Multiplication Figure 138: Actual Circuit Connection Square Root Trimming Procedure 1. 2. Connect the ICL8013 in the Divider configuration. Adjust ZOS, YOS, Xos, and' Gain using Steps 1 through 6 of Divider Trimming Procedure. 3. Convert to the Square Root configuration by connecting XIN to the Output and inserting a diode between Pin 4 and the Outpu,t node. 4. . With ZIN = OV adjust ZOS for zero Output voltage. Xos Yos Zos 7 1 • X.N"'!!:~~r=-~ Z,N_---.! GAIN~MPLIFIER Most applications for the ICL8013 are straight forward variations of the simple arithmetic functions described above. Although the circuit description frequently disguises the fact, it has already been shown that the frequency doubler'is nothing more than a squaring circuit. Similarly the variable gain amplifier is nothing more than a multiplier, with the input signal applied at the X input .and the control voltage applied at the Y input. VARIABLE AF029711 Figure 16: Division y+ Xoso-- ,201< '\f\; INPUT 0----=1 CON:':J~1' VOLTAGE 7.5k yAF029601 Figure 17: Potentiometers ·for Trimming Offset and Feedthrough Xos YosZos AF029901 Figure 14: Variable Gain Amplifier 1*'48 OUTPUT = - v'1QZ;N 4 '--------c::G..,.AI::':N-~5I< 7.51< AF02961[ Figure 18: Square Root 5-70 Note: All typical values have been guaranteed by characterization and are not tested. ICL8013 TYPICAL PERFORMANCE CHARACTERISTICS AMPLITUDE AND PHASE AS A FUNCTION OF FREQUENCV _ J 0 I ID ~ 5 ~ . ~, :::> 10 ~ :Ii i...... J ~ ... I\J II "'20 25 lk FEEDTHROUGH AS A FUNCTION OF FREQUENCY 100 10 o f. l) I\'~ 15 NONLINEARITY AS A FUNCTION OF FREQUENCY X-IPT 1 Y-IN T ~ 10k lOOk 1M 10M FREQUENCY (Hz) 100 OP027201 lk 10k FREQUENCY (Hz) lOOk OP027301 DEFINITION OF TERMS Multiplication/Division Error: This is the basic accuracy specification. It includes terms due to linearity, gain, and offset errors, and is expressed as a percentage of the full scale output. Feedthrough: With either input at zero, the output of an ideal multiplier should be zero regardless of the signal applied to the other input. The output seen in a non-ideal multiplier is known as the feedthrough. Nonlinearity: The maximum deviation from the best straight line constructed through the output data, expressed as a percentage of full scale. One input is held constant and the other swept through its nominal range. The nonlinearity is the component of the total multiplication/division error which cannot be trimmed out. 5-71 Note: All typical values have been guaranteed by characterization and are not tested. 10k lOOk 1M 10M FREOUENCY (Hz) OP027401 = ICL8038 a_ Precision Waveform GeneratorIVoltage Controlled Oscillator GEN,ERAL DESCRIPTION FEATURES The ICL8038 Waveform Generator is a monolithic integrated circuit capable of producing high accuracy sine, square, triangular, sawtooth and pulse waveforms with a minimum of external components. The frequency (or repetition rate) can be selected externally from .001 Hz to more than 300kHz using either resistors or capacitors, and frequency modulation and sweeping can be accomplished with an external voltage. The ICL8038 is fabricated with advanced monolithic teChnology, using Schottky-barrier diodes and thin film reSistors, and the output is stable over a wide range of temperature and supply variations. These devices may be interfaced with phase locked loop circuitry to reduce temperature drift to less than 250ppm/oC. • • • • • • • • Low Frequency Drift With Temperature -250ppmrC Simultaneous Sine, Square, and Triangle Wave Outputs Low Distortion -1% (Sine Wave Output) High Linearity - 0.1 % (Triangle Wave Output) Wide Operating Frequency Range-0.001Hz to 300kHz Variable Duty Cycle - 2% to 98% High Level Outputs - TTL to 28V Easy to Use - Just A Handful of External Components Required ORDERING INFORMATION PART NUMBER STABILITY TEMP. RANGE PACKAGE ICL8038CCJD 250ppm/'C typ O'C to +70'C CERDIP ICL80388CJD 180ppm/'C typ D'C to +70'C CERDIP ICL8038ACJD 110ppm/'C typ O'C to +70'C CERDIP ICL80388MJD' 350ppml'C max -55'C to + 125'C CE,RDIP ICL8038AMJD' 250ppml'C max - 55'C to + 125'C CERDIP ICL8038/D - - DICE" 'Add 18838 to part number if 883 processing is required. "Parameter MinIMax Limits guaranteed at 25'C only for DICE orders, r-----------------------~.v+ CURRENT SOURCE ., SINE WAVE ADJUST SINE WAVE OUT He TRIANGLE OUT c~~{ FREQUENCY ADJUST CURRENT SOURCE #2 Y-orGND 11 2 SINEWAVE ADJUST 4 5 TIMtNG CAPACIT()R SQUARE WAVE OUT FM BIAS FMSWEEP INPUT CD017801 Boo07301 Figure 2: Pin Configuration (Outline dwg JD) Figure 1: Functional Diagram 5-72 Note: All typical values have been guaranteed by characterization and are not tested, 302600-002 ICL8038 ABSOLUTE MAXIMUM RATINGS Storage Temperature Range ............ -65°C to + 150°C Operating Temperature Range: 8038AM, 8038BM ................. -55°C to + 125°C 8038AC, 8038BC, 8038CC .......... O°C to + 70°C Lead Temperature (Soldering, 10sec) ................. 300°C Supply Voltage (V- to v+) ................................ 36V Power Dissipation(1) ...................................... 750mW Input Voltage (any pin) .............................. V- to V + Input Current (Pins 4 and 5) ............................ 25mA Output Sink Current (Pins 3 and 9) ................... 25mA Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. NOTE 1: Derate ceramic package at 12.5mWI"C for ambient temperatures above tOo°C. ELECTRICAL CHARACTERISTICS (VSUPPLY = ±10V or +20V, TA = 25°C, RL = 10kn, Test Circuit Unless Otherwise Specified) 8038BC(BM) 8038CC SYMBOL UNIT MIN VSUPPLY V+ v+, VISUPPLY 8038AC(AM) GENERAL CHARACTERISTICS TYP MAX MIN TYP MAX MIN TYP MAX Supply Voltage Operating Range Single Supply +10 +30 +10 30 +10 30 V Dual Supplies ±5 ±IS ±S ±IS ±S ±IS V Supply Current (VSUPPLY = ±10V)(2) 8038AM. 8038BM 8038AC, 8038BC, 8038CC 12 20 12 15 12 15 rnA 12 20 12 20 rnA FREQUENCY CHARACTERISTICS (all waveforms) f max Maximum Frequency of Oscillation fsweep Sweep Frequency of FM Input 100 Sweep FM Range(3) !l.fI !l.T 100 100 10 10 35:1 35:1 35:1 FM Linearity 10:1 Ratio 0.5 0.2 0.2 Frequency Drift With Temperature(5) 8038 AC, BC, CC O'C to 70'C 250 180 110 kHz % ppm"C 8038 AM. BM, -SS'C to 12S'C !l.fI!l.V kHz 10 350 Frequency Drift With Supply Voltage (Over Supply Voltage Range) 0.05 250 0.05 0.05 %IV OUTPUT CHARACTERISTICS IOLK Square-Wave Leakage Current (Vg = 30V) VSAT Saturation Voltage (ISINK = 2mA) 0.2 tr Rise Time (RL = 4.7kn) 180 tf Fall Time (RL = 4.7kn) !l.D Typical Duty Cycle Adjust (Note 6) VTRIANGLE Triangle/Sawtooth/Ramp Amplitude (RTAI = 100kn) ZOUT 1 0.2 0.30 1 0.4 0.2 180 40 2 0.33 % 0.33 XVSUPPLY 0.05 0.05 % Output Impedance (lOUT = SmA) 200 200 200 n THD (RS - lMn)(4) 2.0 THD THD Adjusted (Use Figure 6) 1.5 0.2 0.22 0.2 5 0.30 ns 98 0.1 VSINE 0.33 V Linearity THD 0.30 2 jJA ns 40 98 2 0.4 180 40 98 Sine-Wave Amplitude (RSINE = 100kn) NOTES: 2. 3. 4. 5. 1 0.5 0.22 1.5 1.0 0.2 3 0.22 1.0 0.8 RA and Rs currents not included. VSUPPLy=20V; RA and Rs=10kn, f"'10kHz nominal; can be extended 1000 to 1. See Figures 7a and 7b. 82kn connected between pins 11 and 12, Triangle Duty Cycle set at 50%. (Use RA and Re.) Figure 3, pins 7 and 8 connected, VSUPPLY = ±10V. See Typical Curves for T.C. vs VSUPPLY. 5-73 Note: All typical values have been guaranteed by characterization and are not tested. xVSUPPLY 1.5 % % = ICL8038 a TEST CONDITIONS PARAMETER MEASURE RA RB RL C1 SW1 IOkn IOkn IOkn 3.3nF Closed Sweep FM Range(l) IOkn 10kn IOkn 3.3nF Open Frequency Drift with Temperature IOkn IOkn IOkn 3.3nF Closed Frequency at Pin 3 Frequency Drift with Supply Voltage(2) 10kn IOkn IOkn 3.3nF Closed Frequency at Pin 9 Output Amplitude: ISine IOkn IOkn IOkn '3.3nF Closed Pk-Pk output at Pin 2 (Note 4) ITriangle IOkn IOkn IOkn 3.3nl; Closed Pk-Pk output at Pin 3 Current into Pin 9 Supply Current Current into Pin 6 Frequency at Pin 9 Leakage Current (0ff)(3) 10kn IOkn 3.3nF Closed Saturation Voltage (on)(3) IOkn IOkn 3.3nF Closed Output (low) at Pin 9 Rise and Fall Times (Note 5) IOkn IOkn 4.7kn 3.3nF Closed Waveform at Pin 9 50kn -1.6kn IOkn 3.3nF Closed Waveform at Pin 9 ""25kn 50kn IOkn 3.3nF Closed Waveform at Pin 9 Triangle Waveform Linearity IOkn IOkn IOkn 3.3nF Closed Waveform at Pin 3 Total Harmonic Distortion IOkn IOkn IOkn 3.3nF Closed Waveform at Pin 2 Duty Cycle Adiust: (Note 5) I MAX 'IMIN NOTES: 1. The hi and 10 frequencies can be obtained by connecting pin 8 to pin 7 (fhi) and then connecting pin 8 to pin 6 (flo). Otherwise apply Sweep Voltage at pin 8 (2/3 VSUPPI.Y +2V) ~ VSWEEP ~ VSUPPLY where VSUPPLY is the total supply voltage. In Figure 7b, pin 8 should vary between 5.3V and 10V with respect to ground. 2. tOV ~ V+ ~ 30V, or ±5V ~ VSUPPLY ~ ±15V. 3. Oscillation can be halted by forcing pin 10 to + 5 volts or -5 volts. 4. Output Amplitude is tesled u"der static conditions by forcing pin I 0 to 5.0V then to - 5.0V. 5. Not tested; for design purposes only. DEFINITION OF TERMS: HOV Supply Voltage (VSUPPLv). The total supply voltage from V+ to V- Re 10k Supply Current. The supply current required from the power supply to operate the device, excluding load currents and the currents through RA and Rs. Frequency Range. The frequency range at the square wave output through which circuit operation is guaranteed. Sweep FM Range. The ratio of maximum frequency to minimum frequency which can be obtained by applying a sweep voltage to pin a.For correct operation, the sweep voltage should be within the range (2/3 VSUPPLy onn ICLS038 Vv RTR' 11 + 2V) < VSWEEP < VSUPPLY 12 '\IV 2 RSINE C. 3300pF 8211 -10V FM Linearity. The percentage deviation from the best-fit straight line on the control voltage versus output frequency curve. ' Output Amplitude. The peak-to-peak signal amplitude appearing at the outputs. Saturation Voltage. The output voltage at the collector of Q23 when this transistor is turned on. It is measured for a sink current of 2mA. Rise and Fall Times. The time required for the square wave output to change from 10% to 90%, or 90% to 10%, of its final value. Triangle Waveform Linearity. The percentage deviation from the best-fit straight line on the rising and falling triangle waveform. Total Harmonic Distortion. The total harmonic distortion at the sine-wave output. TC026201 Figure 3: Test Circuit 5-74 Note: All typical values have been guaranteed by characterization and are not tested. ICL8038 TYPICAL PERFORMANCE CHARACTERISTICS 10 10 30 15 15 20 25 7S 30 OPQ28901 QP028801 125 TEMPERATURE ·C SUPPLY VOLTAGE 'UPPLY VOLTAGE OP029001 Performance of the Square-Wave Output aoo 1 1 IJ... ~tl~E ~ j),c!r:::;i ,... ~~c 110 I-f-- r-r- 1 lOG c 13 OC!:::lj~ C , -~t7 /., ~~ 25;C I F 50 H- f21 o o 2 i , 1 ~jI' r.oiI 1 1 l- TIllE k:: ~~!SoC 125°C ~ ~""" 12ji°C • • • LOAD RI!818TANCE-llfi I' .... -rl 10 2 4 8 8 LOAD CURRENT-mA OP029101 10 OP029201 Performance of Triangle-Wave Output 10 .. 1.2 !e r' ;f O 1+- f!lo.t I: :; 0.1 OP029501 OP029401 Performance of Sine-Wave Output 12 I 10 .... \ CI • , 190. I r--------.---+-ov+ ICL8038 10 11 10 12 2 11 r-------~--~~v+ 3 12 2 c c c '-----~----.....----<>V- or GND '----~---~--___ v- orGND 12 2 11 10 LC010S01 82k '------~---......----<> v- or GND LC01Q701 lC010601 Figure 5: Possible Connections for the External Timing Resistors Neither time nor frequency are dependent on supply voltage, even though none of the voltages are regulated inside the integrated circuit. This is due to the fact that both currents and thresholds are direct, linear functions of the supply voltage. and thus their effects cancel. To minimize sine-wave distortion the 82kn resistor between pins 11 and 12 is best made variable. With this arrangement distortion of less than 1% is achievable. To reduce this even further, two potentiometers can be connected as shown in Figure 6; this configuration allows a typical reduction of sine-wave distortion close to 0.5%. J 7 4 5 6 11 12 I 91-'-', I RA 5RA The capacitor value should be chosen at the upper end of its possible range. 11.Il 3---0"'" 1 (v+ - V-I x~=-----'- A similar calculation holds for RS. RL ICL8038 C Rl x (v+ - V-I (Rl + R2) , Rs 10 For any given output frequency, there is a wide range of RC combinatibns that will work, however certain constraints are placed upon the magnitude of the charging current for optimum performance. At the low end, currents of less than 1pA are undesirable because circuit leakages will contribute significant errors at high temperatures. At higher currents (I > 5mA), transistor betas and saturation voltages. will contr'ibute increasingly larger errors. Optimum performance will, therefore, be obtained with charging currents of10pA to 1mA. If pins 7 and 8 are shorted together, the magnitude , of the charging current due to RA can be calculated from: v+ >RA 1kll 8 SELECTING RA, RB and C WAVEFORM OUT LEVEL CONTROL AND POWER SUPPLIES The waveform generator can be operated either from a single power-supply (10 to 30 Volts) or a dual power-supply (±5 to ±15 Volts). With a single power-supply the a:verage levels of the triangle and sine-wave are at exactly one-half of the supply voltage, while the square-wave alternates between V+ and ground. A split power supply has the advantage that all waveforms move symmetrically about ground. ,.... >,Ok 2f---o'\IV > }- 1G01eIl, 100kU The square-wave output is not committed. A load resistor can be connected to a different power-supply, as long as the applied voltage remains within the breakdown capability of the waveform generator (30V). In this way, the squarewave output can be made TTL compatible (load resistor connected to + 5 Volts) while the waveform generator itself is powered from a much higher voltage. 10k V-orGND LC010BOI Figure 6: Connection to Achieve Minimum Sine-Wave Distortion 5-77 Note: All typical values have been guaranteed by characterization and are not tested. .D~D[l (b) V+ SWJEEP RA VOLTAGE 4 >-8 R. 5 RL 8 ICL8038 10. 11 ::C 9~ 1U1. 31----> 12 21----> Blk V-orGND LC011001 Figure 7: Connections for Frequency Modulation (a) and Sweep (b) For larger FM deviations or for frequency sweeping. the modulating signal is applied batween the positive supply voltage and pin 8 (Flgure 7b). In this way the entire bias for the current sources is created by the modulating signal. and a very large (e.g. 1000:1) sweep range is created (f = 0 at Vsweep = 0). Cafe must be taken; however. to regulate the supply voltage; in this configuration the charge current is no longer a function of the supply voltage (yet the trigger thresholds still are) and thus the frequency becomes dependent on the supply voltage. The potential on Pin 8 may be swept down from V+ by (1/3 VSUPPLy-2V). FREQUENCY MODULATION AND SWEEPING The frequency of the waveform generator is a direct function of the DC voltage at terminal 8 (measured from V +). By. altering this voltage. frequency modulation is performed. For small deviations (e.g. ±10%) the modulating signal can be applied directly to pin 8. merely providing DC decoupling with a capacitor as shown in Figure 7a. An eXternal resistor between pins 7 and 8 is not necessary. but it can be used to increase input impedance from about 8kil (pins 7 and 8 connected together). to about (R + 8kil). APPLICATIONS With a dual supply voltage the external capacitor on Pin 10 can be shorted to ground to halt the ICL8038 oscillation. Figure 9 shows a FET switch. diode ANDed with an input strobe signal to allow the output to always start on the same slope. The sine wave output has a relatively high output impedance (1kil Typ). The circuit of Figure 8 provides buffering. gain and amplitude adjustment. A simple op amp follower could also be used. .... ,..... 7 4 R8 5 • 2~1TUOE ~ lOOk • 1CL8038 10 =Fe To obtain a 1000:1 Sweep Range on the ICL8038 the voltage across external resistors RA and RS must decrease to nearly zero. This requires that the highest voltage on control Pin 8 exceed the voltage at the top of RA and RS by a few hundred millivolts. v+ The Circuit of Figure 10 achieves this by using a diode to lower the effective supply voltage on the ICL8038. The large resistor on pin 5 helps reduce duty cycle variations with sweep. . _74~: 4.7k 11 '---- "'= vLC011101 Figure 8: Sine Wave Output Buffer Amplifiers 5-78 Note: All typical values have been guaranteed by characterization and are not tested. ICL8038 +15V ~IOY RA 1[: 4 15k RI • 5 T 1k Uk 15k Uk 1 F • ICL8038 A ~IN.14 10 11 2 nn !---o INlI. roC -[t; -- 10k ICL8038 FREQUENCY "Iv OFF 1 I +15V (+10V) ON -15V (-lOY) -15V .". ~ LC011201 Figure 9: Strobe-Tone Burst Generator DISTORTION 100k -1OY LC011301 Figure 10: Variable Audio Oscillator, 20Hz to 20kHz HIGH FREQUENCY SYMMETRY lN753A SOOIl (UV) 4.7kll lUkU 4.7kll lGOkO 1Ull lkO 1kU >-.....,\N""""~-I8 LOW FREQUENCY SY_ETRY • 4 ICL8038 FUNCTION GENERATOR SINE-WAVE OUTPUT '2 10 11 12 ~ 3 t--il-'-+--+------t SO.F 15V 1UkO 100kU OFFSET 3,1OOpF SINE-WAVE DISTORTION ' - - - + _ - -......- -......- - - - - _ - - - - - -_ _ -15V WF015101 Figure 11: Linear Voltage Controlled Oscillator The linearity of input sweep voltage versus output frequency can be significantly improved by using an op amp as shown in Figure 11. voltage will not exceed the capabilities of the phase detector. If a smaller VCO signal is required, a simple resistive voltage divider is connected between pin 9 of the waveform generator and the VCO input of the phasedetector. USE IN PHASE-LOCKED LOOPS Its high frequency stability makes the ICL8038 an ideal building block for a phase-locked loop as shown in Figure 12. In this application the remaining functional blocks, the phase-detector and the amplifier, can be formed by a number of available IC's (e.g. MC4344, NE562, HA2800, HA2820) Second, the DC output level of the amplifier must be made compatible to the DC level required at the FM input of the waveform generator (pin 8, O.8V +). The simplest solution here is to provide a voltage divider to V+ (R1, R2 as shown) if the amplifier has a lower output level, or to ground if its level is higher. The divider can be made part of the low-pass filter. In order to match these building blocks to each other, two steps must be taken. First, two different supply voltages are used and the square wave output is returned to the supply of the phase detector. This assures that the VCO input This application not only provides for a free-running frequency with very low temperature drift, but it also has the 5-79 Note: All typical values have been guaranteed by characterization and are not tested, ICL8038 unique feature of producing a large reconstituted sinewave signal with a frequency identical to that at the input. For further information, see Intersi! Application Note A013, "Everything You Always Wanted to Know About The lel8038.', y++ DUTY R, /, FMalM 0-- y+ 7 ' • ~CVCLE V FREOUINCY~ ADJUST '. TRIANGLE 5 • 3f--o ¥V OUT SQUARE WAVE SINE WAVE OUT laMa OUT. INPUT - ¥CO IN PHA8E~CTDR t-- AMPLIFIER DEMODULATED I FM FM SWEEP INPUT liz II ~ LOW-PASS FILTER • 1 10 11 I~::'~ 'V\, 2 -..:.. 12 /, - liNE WAVE ADJ. ~ ~':.: ADJ. V7GND Figure 12: Waveform Generator Used as Stable veo WF01520t in a Phase-Locked Loop .--+---I::..'Q10 !o·M i I~' 1 0.3 l'R. ....~... I '00 'OOl'OO! I I ~ ~ ~ I 1" SINE·CONVERTEA OS018601 Figure 13: Detailed Schematic 5-80 Note: All typical values have been guaranteed by characterization and are not tested. ICL8069 Low Voltage Reference GENERAL DESCRIPTION FEATURES The ICL8069 is a 1.2V temperature compensated voltage reference. It uses the band-gap principle to achieve excellent stability and low noise at reverse currents down to 50pA. Applications include analog-to-digital converters, digital-to-analog converters, threshold detectors, and voltage regulators. Its low power consumption makes it especially suitable for battery operated equipment. • • • • • Temperature Coefficient Guaranteed to 25ppmrC Max Low Bias Current - SOMA Min Low Dynamic Impedance Low Reverse Voltage Low Cost ORDERING INFORMATION ORDER PIN TO-92 ORDER PIN TO-52 TEMPERATURE RANGE ICL8069CCZR ICL8069CCSQ O°C to + 70°C . MAX. TEMP_ COEFF. OF VREF O.OO5%I"C - ICL8069CMSQ -55°C to + 125°C O.OO5%I"C ICL8089DCZR ICL8069DCSQ O°C to +70°C O.01%I"C - ICL8069DMSQ -55°C to +125°C O.01%I"C - ICL8069/D - DICE'- • 'Parameter MinIMax Limits guaranteed at 25°C only for DICE orders. ---~--~y 1511l! 1.lIln r----- . .7",-* : ICLIOII t ICL7107 "'1OVout IC..... 10kU ---01 . .!_-......_____~. YOUT ·"""'1 '.2kn DS025601 1 '--~_-I 05025801 06025701 (a) Simple Reference (1.2 volts or less) (b) Buffered 10V Reference using a single supply. ... LO (c) Double regulated 100mV reference for ICL7107 one-chlp DPM circuit. Figure 1: Functional Diagrams PC004501 PC00460' TO-52 TO-92 Figure 2: Pin Configurations 5-81 Note: All typical values have been guaranteed by characterization and are not tested. 303120-002 8 ICL8069 '( ,',',' ,;, :d ABSduJTe MAXIMUM GI '.- RATINGS Storage Temperature ......•........•...... - 65°C to, + 150,oC Operating Temperature .' "" ICL8069C .. , .............................. O°C to + 70°C ICL8069M ........................•.. -55°C to + 125°C Lead Temperature (Soldering, 10sec) ..... , ........... 300°C Reverse Voltage .................................. , .. See Note 2 Forward Current ............................................. 10mA Reverse Current ...................•........... : ....'......... 10mA Power Dissipation .................. Limited by max forward/ reverse current NOTE: Stresses above those listed under" Absolute Maximum Ratings" may cause permanent device failure. These are stress ratings only and functional operation of the devices at these or any other conditions above those indicated in the operati,on sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may cause device failures: ' ELECTRICAL CHARACTERISTICS CHARACTERiSTICS (TA = 25°C unless otherwise noted) TEST CONDITIONS Reverse breakdown Voltage IR =,500f./A Reverse', breakdown Voltage change MIN TYP MAX UNITS 1.20 1.23 1.2S V SOf./A $ IR $ SmA lS 20 mV Reverse dynamic impedance IR = 50f./A IR = SOOf./A 1 1 2 2 n 1 -- Forw~rd Voltage Drop IF = SOOf./A 0.7 RMS Noise Voltage 10Hz$ f $ 10kHz IR = SOOjJ.A S jJ.V Long Term Stability IR =4.7SmA TA = 2SoC 1 ppm/kHR V Breakdown voltage Temperature coefficient IR = SOOf./A TA = operating Temperature range (Note 3) ICLB069C ICLB069D' %I"C .OOS .01 Reverse Current Rimge O.OSO S mA TYPICAL PERFORMANCE CHARACTERISTICS REVERSE VOLTAGE AS A FUNCTION OF CURRENT VOLTAGE CHANGE AS A FUNCTION OF REVERSE CURRENT REVERSE VOLTAGE AS A FUNCTION OF TEMPERATURE ,..... ,. 1.245 I // ~:2S0C. ·'2S·C ~ 100....... 1m" REYEASE CURRENT 10m" ·'v .2 E ! I I -55°CL__ ~> ... ."" ..,.""'" t::: ~.,. .• .J 1.0 1.230 1.225 ~ r--'" 1.2aG 1.215 1.2 1.4 REVEASE VOLT AQE (V) OP056301 OP056201 1.235 0 " v.::f .Ar'l .4 ,.I""'~A ,.... I --50 -25 0 +25 +50 ... 75 ... 100 +125 TEMPERATURE C-C) OP056401 Notes: 1)" circuit strays in excess of 200pF a[9 anticipated, a 4,7p.F shunt capacitor will ensure stability under all operating conditions, 2) In normal use, the reverse voltage cannot exceed the reference voltage, However when plugging units into a powered·up test fixture, an instantaneous voltage equal to the compliance of the test circuit will be seen, This should not exceed, 20V, 3) For the military part, measurements are made at 25"C, - 55"C, and + 125"C, The unit is then classified as a function of the worst case T.C. from 25"C to -55"C, or 25"C to + 125"C. 5-a2 Note: All typical values have been guaranteed by characterization and are not tested. ICL8211/ICL8212 Programmable Voltage Detector GENERAL DESCRIPTION FEATURES The IntersillCl8211 18212 are micropower bipolar mono· lithic integrated circuits intended primarily for precise volt· age detection and generation. These circuits consist of an accurate voltage reference, a comparator and a pair of output buffer1drivers. Specifically, the ICl8211 provides a 7mA current limited output sink when the voltage applied to the 'THRESHOLD' terminal is less than 1.15 volts (the internal reference). The ICl8212 requires a voltage in excess of 1.15 volts to switch its output on (no current limit). Both devices have a low current output (HYSTERESIS) which is switched on for input voltages in excess of 1.15V. The HYSTERESIS output may be used to provide positive and noise free output switching using a simple feedback network. • • • • • • APPLICATIONS • • • ORDERING INFORMATION PART NUMBER ICl8211CPA ICL8211CBA ICl8211CTY ICl8211 MTY* ICl8212CPA ICl8212CBA ICl8212CTY ICl8212MTY* ICL8211/D ICl8212/D TEMPERATURE RANGE O°C to +70°C O°C to +70°C O°C to+70°C -55°C to+ 125°C O°C to +70°C O°C to +70°C O°C to +70°C -55°C to+ 125°C - High Accuracy Voltage Sensing and Generation: Internal Reference 1.15 Volts Typical I.ow Sensitivity to Supply Voltage and Temperature Variations Wide Supply Voltage Range: Typ. 1.8 to 30 Volts Essentially Constant Supply Current Over Full Supply Voltage Range Easy to Set Hysteresis Voltage Range Defined Output Current limit -ICL8211 High Output Current Capability -ICL8212 • • • PACKAGE Low Voltage Sensor/Indicator High Voltage Sensor/lndlcator Non Volatile Out-of-Voltage Range Sensor/ Indicator Programmable Voltage Reference or Zener Diode Series or Shunt Power Supply Regulator Fixed Value Constant Current Source 8 lead Mini DIP 8 lead SOIC TO·99 Can TO·99 Can 8 lead Mini DIP 8 lead SOIC TO·99 Can TO·99 Can DICE •• DICE •• • Add 18838 to part number if 8838 processing is required . • 'Parameter MinIMax Limits guaranteed at 25°C only for DICE orders. VOLTAGE REFEMHCE COMPARATOR OUTPUT BUFFERS HYSTERESIS 8 v+ ~r-"""'"1-""'----1r---"1'-"'-~--_'_ _.:.0 HlCO.· HYSTERESIS 2 lIS UIcll '--_---4_ _..:2'" HYST v+ 7 NIC THRESHOLO N/C OUTPUT 4 OUTPUT 2 5 GROUND 4 GROUND (outline dINg PAl (OUIlin. dINg lV) CD018601 THRESHOLO I I ,,) ;-• L/"Q20 <" R8 ~ , I . ~10C1111l CD036001 • : : (outline dwg BA) 08019701 Fi ure 1: Functional Dla ram Fi ure 2: Pin Confi urations 5-83 Note: All typical values have been guaranteed by characterization and are not tested. 303200-002 (II = d ICL8211/ICL8212 ABS()LUtE MAXIMUM' RATINGS ~ ;: (II rl_CIO .... Power Dissipation (Note 1 &2) ........................ 300mW Operating Temperature Range: . ICL8211 M/8212M ................. -55·C to +125·C ICL8211 C/8212C ....................... O·C to + 70·C Storage Temperature Range ............ -65·C to + 150·C Lead Temperature (Soldering, 10sec) ........·......... 3dO·C Supply Voltage .............................. -0.5 to + 30 volts Output Voltage .............................. -0.5 to + 30 volts Hysteresis Voltage .................... " .... + 0.5 to -10 volts Threshold Input Voltage ••••• , ..•.•• :: •.•. , ••..........•••.••••••.. + 30 to ...:5 volts with respect to GROUND. and + 0 to -30 volts with respect to V+ Current into Any Terminal .............................. ±30mA Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and fu~ctional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may. affect device reliability. . NOTE 1: Rating applies for case temperatures to 125·C to ICL8211MTY/8212MTY products. Derate lineariy at' -10mW/·C for ambient temperatures above 100·C. . NOTE 2: Derate linearly above 50·C by -10mW/·C for ICL8211C/8212C products. The threshold input voltage may exceed +7 vdlts for short periods of time. However for continuous operation this voltage must be maintained at a value less than 7 volts. ELECTRICAL CHARACTERISTICS (V+ = 5V, TA = 25·C unless otherwise specified) ICL8211 SYMBOL 1+ PARAMETER Supply Current , VTH Threshold Trip Voltage VTHP Threshold Voltage Disparity Between Output & Hysteresis Output 2.0 < v+ < 30 VT = 1.3V VT=0.9V lOUT = 4mA VOUT=2V V+ -5V V+ =2V V+ = 30V VSUPPlY Guaranteed Operating Supply Voltage Range (Note 5) IOUT=4mA VOUT = 2V IHYST=: 7pA VHYST= 3V +25·C o to +70·C -55·C to + 12S·C VSUPPlY Typical Operating Supply Voltage Range +2S·C + 125°C -55·C t!NTH/LlT Threshold Voltage Temperature Coefficient lOUT = 4mA VOUT=2V LlV+ = 10% at V+ = 5V Threshold Input Current VTH = 1.15V VTH = 1.00V IOlK Output Leakage Current VOUT= 30V VOUT= 30V VOUT=5V V VOUT= 5V VSAT Output Saturation Voltage ITH IOH Max Available Output Current TYP MAX MIN TYP MAX 10 50 22 140 40 250 50 10 110 20 250 40 pA pA 0.98 0.98 1.00 1.15 1.145 1.165 1.19 1.19 1.20 1.00 1.00 1.05 1.15 1.145 1.165 1.19 1.19 1.20 V V V -8.0 30 30 30 2.0 2.2 2.8 30 30 30 V V V 1.8 1.4 2.5 30 30 30 1.8 1.4 2.5 30 30 30 V V V V+ = 10V VHYST= V- VHYS (max) Hysteresis Sat Voltage IHYST = -7pA VTH = 1.3V measured with respect to V + IHYS (max) Max Available Hysteresis Current 4 VTH = 1.3V 1.0 nA nA 10 10 1 1 pA pA pA pA 0.4 7.0 12 15 100 5 0.17 15 12 -15 -21 -0.2 -0.1 -15 0.4 -21 V V mA mA mA 35 0.1 -0.1 mV 250 250 0.17 VTH = 1.0V ppm/·C +200 1.0 100 5 VTH = 1.0V VTH = 1.3V VTH=I.0V VTH = 1.3V VTH = 1.0V VTH = 1.3V lOUT = 4mA (Note 3 & 4) VTH = 1.0V VTH = 1.3V VOUT=5V -55·C S TA S 125·C VTH = 1.0V mV -0.5 2.0 2.2 2.8 .' Hysteresis Leakage Current IlHYS UNIT MIN +200 Variation of Threshold Voltage with Supply Voltage LlVTH/LlV+ ICL8212 TEST CONDITIONS 0.1 pA -0.2 V /J A NOTES: 3. The maximum output current of the ICL8211 is limited by design to 15mA 'under any operating conditions. The output voltage may be sustained at any voltage up to + 30V as long as the maximum power dissip.ation of the device is not exceeded. 4. The maximum output current of the ICL8212 is not defined, and systems using the ICL8212 must therefore ensure that the output current does not exceed 30mA and that the maximum power diSSipation of the device is not exceeded. 5. Threshold Trip -Voltage is 0.80V(min) to 1.30V(max). 5-84 Note: All typical values have been guaranteed by characterization and are not tested. .D~D[6 ICL8211/ICL8212 TYPICAL PERFORMANCE CHARACTERISTICS COMMON TO ICL8211 AND ICL8212 THRESHOLD INPUT CURRENT AS A FUNCTION OF THRESHOLD VOLTAGE HYSTERESIS OUTPUT SATURATION CURRENT AS A FUNCTION OF TEMPERATURE c~ 10.000 TA 25'C V' -10V 1.000 - V' "5V V'H "1.2V VHYS "4.5V I. 1 (or ~.5V wllh respecllo V' supply) ::>-10 . U ,-20 100 50-25 ./ !-3O J 10 0.0 1.1 1.15 1.2 2.0 3.0 '.0 1.0 10.0 THRESHOLD VOLTAGE - VrH (IRREGULAR SCALE) m ~ - .,... -20 ICLr" i r ICi212 f-- 0 +20 +40 +10 +10 TEMPERATURE'C OP032901 QP032801 TYPICAL PERFORMANCE CHARACTERISTICS ICL8211 ONLY SUPPLY CURRENT AS A FUNCTION OF SUPPLY VOLTAGE SUPPLY CURRENT AS A FUNCTION OF THRESHOLD VOLTAGE 150 ~.VTH=O.IV.i± TA=:ls,C I I - r-..... f- OUTPUTS jPEN CIRCUIT , 10 20 SUPPLY VOLTAGE 0.0 30 TA=25'C V· =5V Vo = O.5V 1CL8211 o I VHVS = V+ -()..25V i • ~ I I 8 • r-l f.LJUTPUT OU+~ 1\ ~: I II-.l..vI I -r-I HYSTERESIS I I ~.12 1.13 1.14 1.15 1.1. 1.17 THRESHOLD VOLTAGE !!i25t-+-6..r-=!--l--I 1.0 1.1 1.15 1.2 2.0 4.0 THRESHOLD VOLTAGE· VTH (IRREGULAR SCALE) 0P033001 '" -25 +5 +35 +65 +95 +125 TEMPERATURE 'c OP033201 QPQ33101 OUTPUT SATURATION CURRENTS AS A FUNCTION OF THRESHOLD VOLTAGE I .. § 75 ~ ........ "VTH = 1.3V 12 rr::t::::=+=::LT-' U50t-+-::-~±-;-t..., Ict'1 f_'O 150 ~'25 ~ 100 IhL8J,- o SUPPLY CURRENT AS A FUNCTION OF TEMPERATURE I TA=25'C V'=5V \~PUTSOPEN CIRCUIT l.. THRESHOLD VOLTAGE TO TURN OUTPUTS "JUST ON" AS A FUNCTION OF TEMPERATURE -loB ~ -15~ 9 1.14 "'--+-1l-7oOUTPUT lC01410l r------------~~V· Figure 10: Low Voltage Battery Indicator S ~----------~~vo "'OFF I LC014DOI ~ Low trip voltage RQRS [ + RP] x -.:.. x 1.15 volts VTR1 = (RQ+Rs) Rp SCOO6301 High trip voltage VTR2 . = (Rp+RQ) . Rp !:~rr~ !:l • :VTRl Figure 11: Low Voltage Detector and Memory .x 1.15 volts s ::I ON !:! I :YTR2 r-----------~~~--------------~~V· E ON .. . ~ ~ OFF~ a SUPPLY VOLTAGE SCOO6201 05019801 Figure 9: Two alternative voltage detection circuits employing hysteresis to provide pairs of well defined trip voltages. Figure 12: Schematic of Recorder 5-.90 Note: All typical values have been guaranteed by characterization and are not testEld. e...... ICL8211/ICL8212 to) A simple circuit to record an out of range voltage excursion may be constructed using an ICL8211, an ICL8212 plus a few resistors. This circuit will operate to 30 volts without exceeding the maximum ratings of the I.C.'s. The two voltage limits defining the in range supply voltage may be set to any value between 2.0 and 30 volts. --v: OUTPUT ICL8212 OUTPUT ICUI211 AS PER FIGURE. .VNOM OFF n I» ... to) ~ ~ == OUTPUT ICI.8211 ICUI212 DISCONNECTED ....... to) 1= 25"A (ICL82121 1= 130"A (ICL82111 - ON SUPPLY YOLTAGE AF030S01 SUPPLY VOLTAGE Figure 14: Constant Current Source Applications SC006401 Figure 13: Output States of the ICL8211 and ICL8212 as a Function of the Supply Voltage Referring to Figure 12, the ICL8212 is used to detect a voltage, V2, which is the upper voltage limit to the operating voltage range. The ICL8211 detects the lower voltage limit of the operating voltage range, V 1. Hysteresis is used with the ICL8211 so that the output can be stable in either state over the operating voltage range VI to V2 by making V3the upper trip point of the ICL8211 much higher in voltage than V2. The output of the ICL8212 is used to force the output of the ICL8211 into the ON state above V2. Thus there is no value of the supply voltage that will result in the output of the ICL8211 changing from the ON state to the OFF state. This may be achieved only by shorting out R3 for values of supply voltage between VI and V2. d) Constant Current Sources The ICL8212 may be used as a constant current source of value of approximately 251lA by connecting the THRESHOLD terminal to GROUND. Similarly the ICL8211 will provide a 1301lA constant current source. The equivalent parallel resistance is in the tens of megohms over the supply voltage range of 2 to 30 volts. These constant current sources may be used to provide biasing for various circuitry including differential amplifiers and. comparators. See Typical Operating Characteristics for complete information. e) Zener or Precision Voltage Reference The ICL8212 may be used to simulate a zener diode by connecting the OUTPUT terminal to the Vz output and using a resistor network connected to the THRESHOLD terminal to program the zener voltage TA = 25"C v' ~4 Is ~V' ~ 3 ..iii II: 2 N o ttl 8';,~ 50IIk VTH ~ OUT Ktri~1 0.01 0.1 15111< r- ... ,.;..ot R, a: R, z 5JAF~ W I I .111 1.0 1I11 10 100 SUPPLY CURRENT -I (mal OP034801 Figure 15: Programmable Zener or Voltage Reference Y·o--------.......- ___ YOUT (Rl +R2) (Vzener = - - - x 1.15 volts). Rl Since there is no internal compensation in the ICL8212 it is necessary to use a large capacitor across the output to prevent oscillation. Zener voltages from 2 to 30 volts may be programmed and typical impedance values between 3001lA and 25mA will range from 4 to 7n. The knee is sharper and occurs at a significantly lower current than other similar devices available. = R.;, R, x 1.15 YOLTS LC014201 Figure 16: Simple Voltage Regulator f) Precision Voltage Regulators The ICL8212 may be used as the controller for a highly stable series voltage regulator. The output voltage is simply programmed, using a resistor divider network Rl and R2. Two capacitors C1 and C2 are required to ensure stability since the ICL8212 is uncompensated internally. 5-91 Note: All typical values have been guaranteed by characterization and are not tested. .. ICL821111,CL8212 a -.... Y·-....------.--, a CIt CIt any commercial regulator. Applications would therefore include battery operated equipment especially those operating at low voltages . g) High supply voltage .dump circuit . In many circuit applications it is desirable to remove the power supply in the case of high voltage overload. For circuits consuming less than 5mAthis may be achieved using an ICL8211 driving the load directly. For higher load currents it is necessary to use an external pnp transistor or darlington pair driven by the output of the ICL8211. Resistors R1 and R2 set up the disconnect voltage and R3 provides optional voltage hysteresis if so desired. h) Frequency limit detectors Simple frequency limit detectors providing a GO/NO-GO output for use with varying amplitude input signals may be conveniently implemented with the ICL8211/8212. In the application shown, the first ICL8212 is used as a zero crossing detector. The output circuit consisting of R3, R4 and C2 results in a slow output positive ramp. The negative range is much faster than the positive range. R5 and R6 provide hysteresis so that under all circumstances the second ICL8212 is turned on for sufficient time to discharge C3. The time constant of R7 C3 is much greater than R4 C2. Depending upon the desired output polarities for low and high input frequencies, either an ICL8211 or an ICL8212 may be used as the output driver. This circuit is sensitive to supply voltage variations and should be used with a stabilized power supply. At very low frequencies the output will switch at the input frequency. CIt r-----A3 ' : L.~""'\/\r ,..------ : R3 L-"v"vAV' b LC014301 Figure 17: High Voltage Dump Circuits This regulator may be used with lower input voltages than .most other commercially available regulators and also consumes less power for a given output control current than Y·-~------~~-------------~~~----------~ C, INPUT lis' 0-\1+-.....---1 L------+-4---oOUTPUT TIME CONSTANT R3 C2 '" R. C2 ,; R7 C3 VARY R, FOR OPTION ZERO CROSSING DETECTION YARY R4 TO SET DETECTION FREQUENCY INPUT ---iINDETERMINATE BELOW I. ----;r---"r---+-~ OFF 1;:: .. Ill ~~ 1.15Y· B -+t+---,-----+-Hf--- 5 ON r ~ ( t. I I I FREQUENCY_ SC006501 Figure 18: Frequency Limit Detector 5-92 Note: All typical values have been guaranteed by characterization and are oot tlilsted .. n ICL8211/ICL8212 i) i...... Switch bounce filter Single pole single throw (SPST) switches are less costly and more available than single pole double throw (SPDT) switches. SPST switches range from push button and slide types to calculator keyboards. A major problem with the use of switches is the mechanical bounce of the electrical contacts on closure. Contact bounce times can range from a fraction of a millisecond to several tens of milliseconds depending upon the switch type. During this contact bounce time the switch may make and break contact several times. The circuit shown in Figure 19 provides a rapid charge up of C1 to close to the positive supply voltage (V +) on a switch closure and a corresponding slow discharge of C1 on a switch break. By proportioning the time constant of R1 C1 to approximately the manufacturer's bounce time the output as terminal #4 of the ICL8211/8212 will be a single transition of state per desired switch closure. j) Low voltage power disconnector SWITCH OUTPU OUTPUT Rl CLOSE OPEN HI LO LO HI ~--------~~~vo LC014601 Figure 19: Switch Bounce Filter There are some classes of circuits that require the power supply to be disconnected if the power supply voltage falls below a certain value. As an example, the National LM199 precision reference has an on chip heater which malfunctions with supply voltages below 9 volts causing an excessive device temperature. The ICL8212 may be used to detect a power supply voltage of 9 volts and turn the power supply off to the LM199 heater section below that voltage. LC014401 For further applications, see A027 "Power Supply Design using the ICL8211 and ICL8212" by D. Watson. Figure 20: Low Voltage Power Supply Disconnect 5-93 Note: All typical values have been guaranteed by characterization and are not tested. -2 ...N N ! IHS11'O....IH5115 I General Purpose Sample & Hold ~ ;; i GENERAL DESCRIPTION D~Ult. FEATURES Each of the ,5110 family is a complete Sample and Hold pircuit, (except for sampling capacitor) including input buffer amplifier, output buffer amplifier and CMOS switching logic. The devices are designed to operate from ±15V and + 5V supplies. The input logic is designed to "Sample" and "Hold" from standard TIL logic levels. The design is such that the input and output buffering is performed with only one operational amplifier, by switching the sampling capacitor from the output back to input. Switches 01, 02, and 03 (see Figure 1) accomplish this switching. In the sampling mode 01 and 03 are shorted and 02 is open; thus the op. amp. charges up the sampling capacitor. In the hold mode 01 and 03 are open and 02 is shorted; thus the sampling cap. is switched back to the noninverting input of the op. amp. This structure provides a very accurate d.c. gain of 1 with very fast settling times (i.e. 5#lS). Additionally the design has internal feedback to cancel charge injection effects (sample to hold offsets). 01 and 02 are driven 180 degrees out of phase to accompli~h this charge nUlling. '. Low Cost • Military and Industrial Temperature Ranges • ±10V Input Voltage R"nge • O.SmVlSec Drift Typical @ Cs 0.01/lF • TIL and CMOS Compatible • Short Circuit Protected • Input Offset Voltage Adjustable to < 100/lV USing A 20kn Potentiometer • 0.1% Guaranteed Sample Accuracy With 10V Signals and Cs 0.01/lF • Sample to Hold Offset Is SmV Max = = ORDERING INFORMATION IHSll0 M JE ~ package' JE = 16 pin CERDIP DE = 16 pin ceramic DIP (special order only) Temperature Range M = Military (- SS·C to + 12S·C) I = Industrial (- 20·C to + 8S·C) ' - - - - - - - B a 8 i c Part Number (outline dwg DE, JE) COO27801 00024101 Figure 1: Functional Diagram Figure 2: Pin Configuration 5-94 Note: All typical values have been guaranteed by characterization and are not tested. -002 ien IH5110-IH5115 ...... ABSOLUTE MAXIMUM RATINGS Supply Voltages .............................................. ±16V Power Dissipation ......................................... 500mW Operating Temperature ....................... -25°C to 85°C -55°C to 125°C ELECTRICAL CHARACTERISTICS SYMBOL Storage Tlilmperature Range ............... -65°C to 150°C Lead Temperature (Soldering, 10sec) ................. 300°C (TA = 25°C, Pin 7 = 5V, Pin 8 = GND, Pin 9 = -15V, Pin 11 --IH5110, 51"12, 5114 -- CHARACTERISTIC MiN = 15V) Note 3 IH5111, 5113, 5115 UNIT TVI' MAX MIN TYP MAX Close Aperture Time 120 tacq. Acquisition Time for Max Analog Voltage Step Cs = O.Ij.lF (0.1 % Aceur.) Cs = O.Olj.lF (0.1 % Accur.) Cs = O.OOIj.lF (0.1 % Accur.) See Figure 5 25 4 4 35 6 6 25 4 4 35 6 0.3 0.5 2.5 5 10 0.3 0.5 2.0 2.5 5 10 mV/s 5 5 25 <1 <1 12 5 5 25 mVp-p 12 0.1 0.1 0.2 0.5 0.5 0.5 0.1 0.1 0.2 0.5 0.5 0.5 Vdrift Vinject Vswttch Drift Rate Cs = O.Ij.lF Cs = O.OIj.lF Cs = O.OOIj.lF See Figure 3 2.0 Charge Injection or Sample to Hold Offsets Cs = O.Ij.lF Cs = O.OIj.lF Cs = O.OOIj.lF See Note '1 & Figure 4 <1 <1 Switching Transients or Spikes (Duration Less than 2j.ls) Cs = O.Ij.lF Cs = O.OIj.lF Cs =O.OOIj.lF See Figure 4 Vcouple A. C. Feedthrough Coupled to Output Vollset D.C. Offset When in Sample Mode Trimmable to Om V With Ext. 20k!1 Potentiometer - .- 5110 5111 Ain Input Impedance in Hold or Sample Mode (f '" 1OHz) It15V Plus or Minus 15V Supply Quiescent Current 15V 5V Supply Quiescent Current Vanalog D.C. Input Voltage Range D.VIN A.C. Inpul Voltage Range See Note 2 & Figure 6 Istrobe TTL Logic Strobe Input Current in Either Hold or Sample Mode 5 ns j.lS 6 5 V mVp-p 40 40 --L 5112 5113 See Figure 3 200 10 I mV 10 5114 5115 5 5 ---'100 100 3.4 -- ----0.3 -- 6 3.4 10 0.3 .,..,_... 6 rnA 10 A .. ±7.5 ±10 20 15 .... M!1 0.1 10 V 0.1 10 IlA NOTES: 1. Offset voltage of op. amp. must be adjusted to OmV (using 20kfl potentiometer) before charge injection is measured. 2. The A.C. input voltage range differs from the D.C. input VOltage range. All versions will handle any analog input within the range of plus 10V to minus 10V; however the IH5110, 5112, 5114 has the added restriction that the peak to peak swing should be less than 15Vp-p i.e. ±l.5 Vac. '. 3. All of the ·electric.al chara~'1eristics specs, are guaranteed with Cs = O.OIj.lF in series with loon as per Figure 3, Os = O.Ij.lF & Cs = a.OOI jJF are for design aid only. 4. If supplies are reduced to ± 12VDC, analog signal range will be reduced to ± 7Vp-p. 5-95 Note: All typical values have been guaranteed by characterization and are not tested. fi ...... en en ..; IH5110-IH5115 I.. 10 :z: APPLICATIONS INFORMATION 10 ! 1. N.C. IH5110 THRU IH5115 3V N.C. ov.-r-L.. S & H OUTPUT ,. N.C. " 13 N.C. 20k N.C. _ ISV OFFSET POTENTIOMEl ER 12 ·15V 11 TTL lOGIC STROBE N.C 10 ISV C0019201 NOTES: 1. To trim output offset to OmV. set strobe input to sample mode (3V). set analog input to GND. adjust potentiometer until S & H output is OmV. 2. Use a low dielectric absorption capacitor such as polystyrene. SAMPLE MODE occurs when logic input is greater than 2.4V. HOLD MODE occurs when logic input is less than O.BV. Figure 3: Typical Connection Diagram N.C. N.C. 1. PROBE IS N.C. TO 10 SCOPE I. O.Ol~F . P l00!l 13 N.C. 2Qk N.C. 15V _OFFSET POTENTIOMETER 12 ·3V ~ 11 ·SV 10 ·lSV N.C. 'SV C0019301 Adjust offset to OmV before testing for charge injection. See note 1. CHARGE INJECTION SWITCHING TRANSIENTS --.ra:= SY/DIV. VA GNO LOGIC INPUT C., O.Ql .. f r---1'- .- 0·v3V -.oJ L- UPPER TRACE LOWER TRACE TIME SV/DIV. , . . . - , - .3V '3V UPPER TRACE'" OV SmV/DIV. -.I L.- OY LOWER TRACE'" SOOmYfDIY. TIME '" 10~ ...cm to.. a/em WFOl6201 WF016301 Figure 4: Charge Injection (sample to hold offset) Measurement Circuit; also Switching Transients Test Circuit 5-96 Note: All typical values have been guaranteed by characterization and are not tested. iUI IH5110-IH5115 ...... f i ...... ACQUISITION TIME UI UI 11 N.C. +tOV OV ,. N.C. =Fl=. :~:;~Na..uT 2 FiI-'"-'JV'OOV',,1~ ... 3V PUTPUT TO 10)( SCOPE PR08E N.C. 20t -15V _OFFSET POTENTIOMETER 13 N.C. 12 ••v '0 TTL LOGfC IN " +15V N.C. 5VIDIV. -15V UPPER TR~E. =J'"1:: :ov COO19401 5V/DIV. LOGIC INPUT = +3Y LOWER TRACE Cs = 0.01/o1F ::ov ~ TI~E"'SI'-'CIn WF016401 NOTE: The acquisition time is actually a settling time spec. since the reading is only taken when the output has settled within 1% of its final value. The 61ls spec. (IH5111, 5113 & 5115 is the worst reading of the Ion or Ioff settling time shown above. The above test can be performed with a 0 to +7.5V or 0 to -7.5V step for the IH5110, 5112, 5114. . Figure 5: Typical Circuit for Measurement of A.C. Signal Handling Capability A.C. PEAK TO PEAK OUTPUT TO 10" SCOPE PROBE N.C. 2011 _ N.C. 1SV OFFSET POTlNTtOllET£R N.C. CD019501 To test this parameter, increase the amplitude of the signal generator until the output starts to distort (it will always show up on the positive excursion of the sine wave first); then back off until all distortion is gone. The resultant peak to peak swing must be" greater than 15Vpp for the IH5110, 5112, 5114 and greater than 20Vpp for the IH5111, 5113, 5115. TVP.IH5111 HTOOOO3I" .A"~O. UPPER TRACE" .Ltr LOGIC INPUT"" +3V UPPER .. Cs = 0.01/o1F t = kHz LOWER TRACE'" 1OVIOIV. TtME = O.5mt/cm O. WF016501 Figure 6: Typical Circuit for Measurement of A.C. Peak to Peak Signal Handling Capability &-97 Note: All typical values have been guaranteed by characterization and are not tested. ! '. 1"'51'10~IH5115 10 I.. 10 ! = jAwei wt. This means the slope of input signal = (dV/dt) is a maximum at t (time) = O. This maximum value is wA (in amplitude). (i.e.) ilJPut frequency is 10kHz, therefore dVldt = wA = 6.28 x 10 x 10V = 6.3 x 105V/sec.A = 10V, then slope or dV / dt - 0.63V / ps. Now if we wish error to be a Max. of say 1% of full scale 10V, we see that 100mV (1 %/ aperture time = 0.63VIps. Solving this equation we see that aperture tii:ne must be 160ns or less to get 1 % holding accuracy. Since our aperture time is 150ns typical, we have 1% accuracy in holding 10kHz varying signals; for Signal frequencies 1kHz and less, Max. error is 0.1 %. The simple interpretation of just how the off time of the switch causes this system error is due to the fact a finite time is required for the switch to react to a hold command; this reaction time manifests itself with a system voltage error because the time varying input Signal is changing to a new value before the switch has actually turned off. (i.e.) in the above example off = 10kHz and A = 10V, suppose we gave the hold command (thru TTL logic) at t = 0 (AC. signal goes thru zero pt.) At this pOint we have calculated the slope to be a Max. and equal to 0.63V / ps. If there were no aperture time error, we would read OV at output of Sample and Hold; however because of finite time for switch to respond to hold command, 150ns passes before switch goes off. During this 150ns, the input signal has gone to 100mV above or below OV, thus the stored value of signal will be 100mV and that is the reading at the output of the Sample and Hold. If the input frequency were 1kHz, the "error voltage" would be 10mV. APPLICATION TIPS The following text serves as a guide in choosing the correct deviCe frpmthe IH5110 family. First, deterniine, tti~~ input ~oltag~ 'range. . , ".,0(" ',e", :", ' "'. The even numbered parts ~re desighed to switch smaller AC. signal amp.li$uC\es with th~ goal ~ing' to minimize the charge injection 'effects (sanipleto hold offsets). This charge injection error ,is sHown ih;Figure,4~Once the voltage .offset is zeroed,.the5HO has. typical elTor amplitudes of 1 to 2mVp-p (corresponds to lOpe to 20pc of charge). Thus one could sample very low level d.c. signals with extreme accuracy. If very low level A.C.Signalsare being sampled, voltage offset potentiometer can be adjusted for a zero charge injection effect. Once the potentiometer has been adjusted, there will be a zero error going from sample to hold; however there will be a d.c. error caused by adjusting the potentiometer for zero charge injection and not for zero voltage offset. '"genera', this d.c. error will be in the area of 2mV to 5mV. The odd numbered parts are primarily designed to handle any input in the plus or minus 10V range, regardless of whether it is AC. or D.C.; to obtain this, the charge injection is about a factor of 2 higher than the even numbered parts. The use of Varafet switching elements similar to Intersil's IH401/401A leads to a trade-off between AC signal swing and charge injection. After the voltage range and charge injection require.ments have been determined, all that remains is to determine the input offsel voltage the system can tolerate. By using the higher numbered parts, it is pO$sible to eliminate the offset potentiometer if system accuracy will allow 5mV (5114,5115) or 10mV (5112; 5113) due to the low input offset voltllge on' these devices. ' The drift rate is specified .at , 10mV/ sec. Max. for all models: this corresponds to approximately 100pA total leakage into aO.01pF sampling capacitor (Csr. While the 10mV/sec. is the Max. encountered, a mortftYPical reading is less than 1mVIsec. (true for any input between -10V and + 10V); thus the IH5110 family is ideal for applications requiring very'low drift or droop rates. The aperture time is sPec'd M200ns Max..' for all models, but a more tYpical value is 150ns; this is basically the off time of switch Q1. The way this aperture time affects system accuracy is shown below: Assume the input signal to the Sample and Hold is an A.C. Signal of peak amplitude A (peak to pejik swing is 2A) and frequency 2m = w, then Vinput = Ael wt and dV/dt DEFINITION OF TERMS Aperture Time: The time it takes to switch from sample mode to hold mode and the actual opening of switch. Charge Injection: The amount of charge coupled across . , the switch with no input voltage. Drift Rate: The amount of drift of output voltage at a rate caused by current flow through the storage capacitor. (:~ =~) This current is the leakage across the switch and the amplifier'S bias current. Feed Through: The amount of input Signal that appears at thEioutput when in the hold mode. Normally caused by capacitance acroSs the switch. Offset Voltage: Voltage measured at output with no input voltage and circuit in sample mode. Acquisition Time: The time it takes amplifier to reach full scale output either plus or minus. 5-98 Note: All typical values have been guaranteed by characterization and are not tested. i IH5110-IH5115 ...... CII f ...... HI-SPEED SAMPLE AND HOLD i CII CII OUTPUT N.C. ",'0Y -1"'1'O;.,"1-ANALOG 2 OV~ '-"-~STEPINPUT r II TO 10 x SCOPE PROBE 15 N.C. N.C. O.Q01,..F •• SlOll 13 ·5V '3V . "k '5V OFFSET POTENTIOMETER •• N.C. TTL lOGIC IN - 11 -15V .0 N.C. SVIDIV. UPPEATRACE 15V VA ". COO19101 ---I""L: LOGIC INPUT Cs ·3Y "~;~OV "'OY 5V/DIV. OV LOWER TRACE 7 r--\,.- -J ",.(tOO1~F nME ~ ,.tOY '--OV 5,..alcm WF016101 NOTE: Typical times for the Sample and Hold to acquire the input are 2/Js for turn on (output) goes to + 10V and 3/JS for turn off (output goes down to OV). As a general note, all the electrical specffications are guaranteed with a sampling capacitor equal to O.OI/Jf. As the above application (Fig. 6) shows, other values of sampling capacitors can be used but the best combinations of S & H specs may not result with values other than O.OI/JF. The only advantage of using a O.OOI/JF for Cs is the acquis~ion time is 2/JS typical instead of 5/Js typical (with O.OI/JF; however the drift rate would be worse and charge injection would be affected). To minimize drift rate, use a O.I/JF capacitor; this should produce a O.lmV/sec rate of change and a charge injection amplitude of 0.2mVp-p. Of courSe the acquisition time will be slowed down to the 25/Js area. Also use a 0.1/JS system for slow speed changes (Le., input frequency is less than 1kHz. The series resistor should be about 100n- 200n to stabilize the system. Figure 7: Connection For Hi-Speed Sample and Hold With Following Typical Performance: W/Cs = 0.001 a. 2f..ts settling time (acquisition time) to 1% accuracy b. 25mV charge injection amplitude c. 1OmV /sec drift rate 5-99 Note: All typical values have been guaranteed by characterization and are not tested. Section 6 - Data Acquisition AD7520/AD7530 AD7521/ AD7531 10/12-Bit Multiplying 01 A Converters GENERAL DESCRIPTION FEATURES The AD75201 AD7530 and AD7521 I AD7531 are monolithic, high accuracy, low cost 10-bit and 12-bit resolution, multiplying digital-to-analog converters (DAC). Intersil's thin-film on CMOS processing gives up to to-bit accuracy with TTL/CMOS compatible operation. Digital inputs are fully protected against static discharge by diodes to ground and positive supply. Typical applications include digital/analog interfacing, multiplication and division, programmable power supplies, CRT character generation, digitally controlled gain circuits, integrators and altenuators, etc. The AD7530 and AD7531 are identical to the AD7520 and AD7521, respectively, with the exception of output leakage current and feedthrough specifications. • AD7520/AD7530: 10 Bit Resolution; 8, 9 and 10 Bit Linearity AD7521/AD7531: 12 Bit Resolution; 8, 9 and 10 Bit linearity Low Power Dissipation: 20mW (Max) Low Nonlinearity Tempco: 2· ppm of FSRrC Current Settling Time: 500ns to 0.05% of FSR Supply Voltage Range: + 5V to + 15V TTL/CMOS Compatible Full Input, Static Protection /883B Processed Versions Available • • • • • • • • ORDERING INFORMATION PART NUMBER/PACKAGE NONLINEARITY 0.2% (8-Bit) 0.1 % (9-Bit) 0.05% (10-Bit) TEMPERATURE RANGE PLASTIC DIP CERDIP CERDIP AD75120JN AD7530JN AD7521JN AD7531JN AD7520JD AD7530JD AD7521JD AD7521JD AD7520SD AD7520KN AD7530KN AD7521KN AD7531KN AD7520KD AD7530KD AD7521KD AD7531KD AD7520TD AD7520LN AD7530LN AD7521LN AD7531LN AD7520LD AD7530LD AD7521LD AD7531LD AD7520UD O°C to +70°C -25°C to + 85°C -55°C to + 125°C AD7521SD AD7521\D AD7521UD TOP VIEW 10Kll tOKn tUII AD7521 (AD7S31) AD7520 (A07530) RFEEOBACK GND lIT t (IIU) GND > I_ lIII0. IWtTCMU Ioun '+-.....- ......+---.....- - . 6....._-<> lou" lIT 1 (II") • ,IT 2 I .. .IT 10 (LS') .IT tl(LO) 'IT 2 'IT3 • IT3 BIT 4 , 'IT7 .IT4 .ITS ......_ _ _.:.o .ITS .IT, lIT ......._ _ _= .•IT 7 80004601 COO31901 'IT • COOt3201 (Switches shown for Digital Inputs "High") (Resistor values are nominal) Figure 1: Functional Diagram Figure 2: Pin Configurations 6-1 Note: All typical values have been guaranteed by characterization and are not tested. 300105-002 AD7,52017,53QI'152117531 ABSOLUTE'MAXIMUM RATINGS (TA = 25°C unless otherwise noted) Supply Voltage (V+) ....................................... + 17V VREF ............................................................±25V Digital Input Voltage Range ...................... V+ to GND Output Voltage Compliance ................. -1 OOmV to V + Power Dissipation (package) up to +75°C ...................................... 450mW' derate above 'i-75°C @ ..•..•.....••..•••..• 6mWrc Operating Temperature IN, KN, LN Versions ................. O°C to + 70°C JD, KD, LD Versions .......•......... -25°C to 85°C SO, TO, UD Versions ............ -55°C to + 125°C Storage Temperature ......................... -65°C to 150°C Lead Temperature, (Soldering, 10sec) ................. 300°C CAUTION: 1) The digitSl contro" inputs 'are, zener protected;' however, ~rmanent damage may occur on unconnected units under high energy electrostatic fields. Keep unuSl!d units in conductive foam at all time,S. 2) Do not apply voltages higher than Voo or less than GND potential on any terminal except VREF and RFEEOBACK. . . : Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied, Exposure to absolute maximum rating Conditions for extended periods may affect device reliability. ELECTRICAL CHARACTERISTICS PARAMETER (v+ .. + 15V, VREF = + 10V, TA = 25°C unless otherwise specified) TEST CONDITIONS AD7520 (AD7530) I AD7521 (AD7531) 10 I 12 DC ACCURACY (Note 1) Resolution Nonlinearity (Note i!) J S VERSION 't< T 'L S, T, 'U: over - 55°C to = 125°C -10V:S VREF:S = 10V, UNIT LIMIT Bits Fig, 3 0.2 (8-Bit) % of FSR Max Fig, 3 0.1 (9-Bit) % of FSR Max Fig. 3 0.05 (10-Bit) % of FSR Max 2 ppm of FSRrC Max U Nonlinearity Tempco (Notes 2 and 3) Gain Error (Note 2) -10V:S VREF:S + 10V 0,3 % of FSR Typ 10 ppm of FSRrC Max 200 (300) nA Max Fig, 4 ±0,OO5 % of FSR/% Typ ns Typ Gain Error Tempco (Notes 2 and 3) Output Leakage Current (either output) Power Supply Reie~tiOn Over the specified temperature range (Note 2) AC ACCURACY (Note 3) Output Current Settling Time 1'0 0,05% of FSR (All digital inputs low to high and high to low) Fig. 8 500 Feedthrough Error VREF = 20V pp, 100kHz (50kHz)' All digital inputs low Fig. 7 10 ~V pp Max REFERENCE INPUT Input Aesistance 5k 10k 20k All digital inputs high IOUTt at ground. n Min Typ Max ANALOG OUTPUT Voltage Compliance (both outpUts) (Note 3) Output Gapacitance (Note 3) All digital inputs high Fig. 6 120 37 pF pF Typ Typ All digital inputs low Fig. 6 37 120 pF pF Typ Typ Fig, 5 Equivalent to 10kn Johnson noise IpUT! IbuT2 lOUT! IOUT2 Output Noise (both outputsi (Note 3) See absolute max, ratings Typ DIGITAL INPUTS Low State Threshold Over the specified temp range High St,ate Threshold Input Current (low to high state) Input Coding See Tables 1 & 2 0.8 V 2.4 V Min 1 pA Typ Binary/Offset Binary , 6-2 Note: All typical values ha~e been guaranteed by characterizatiOn and are not tested, Max .n~n16 ~ AD7520/7530/7521/7531 ... CII ELECTRICAL CHARACTERISTICS (CONT.) PARAMETER AD7520 (AD7530) TEST CONDITIONS I AD7521 (AD7531) UNIT LIMIT V +5 to +15 All digital inputs at OV or V + 1 p.A Typ All digital inputs high or low 2 rnA Max 20 mW Typ Total Power Dissipation (Including the ladder network) 2. Using internal feedback resistor, RFEEDBACK. 3. Guaranteed by design, not subject to test. 4. Accuracy not guaranteed unlesS outputs at GND potential. TEST CIRCUITS NOTE: The followjng test circuits apply for the AD7520. Similar circuits are used for the AD7530, AD7521 and AD7531. +11¥ (ADJUST FOR VOUT ;;. OW) 1>,5V •• t = 1kHz 8.:::: 1Hz QUAN TECH MODEL COUNTER '34D , , WAVE AD.... ANALYZER '8IT1. (Lsa) IU1 CLOCK -=- -......... CIa N CII Co) NOTES: 1. Full scale range (FSR) is 10V for unipolar and ±10V for bipolar modes. ,.8IT BINARY -... CII ~ POWER REQUIREMENTS Power Supply Voltage Range 1+ ~... -=- -=TC022411 Figure 5: Noise He ...15 BITlf"'.)' 15 •• TC022211 Figure 3: Nonlinearity ~=::::I: II NC 100 IIIYp-, 1MHz TC022501 . .'0 v Figure 6: Output Capacitance VAEF~""'---"---+---'\.fV\.,.---...-~ BIT. (MS8) BIT 10 VREF "" 20 V p-p 130 kHz SINE WAVE ",'SV (LSB) BIT 1 (MSa) TC022311 Figure 4: Power Supply Rejection 15 h=:::::::J: BIT ,. (Lsi •• •• . ",,"'O'''''VOUT TC022601 Figure 7: Feedthrough Error Note: All typical values have been guaranteed by characterization and are not tested. ;; AD7520/7530/7521/7531 .. ~ ..... (\I t.o ...'" ..... o ... In (\I a constant current in each ladder leg independent of the input code. ,,-+15V .. 10 V '!: I1..fl..I1. DIGITAL INPUT .:..:y.",.~,...--..., , y,." i ~iil!!...+....!f 10 51 10KI1 1.0 10Kn 10Kn (11117) TC022701 Figure 8: Output Current' Settling Time .... toun NIIOI •.......... '-!--......-~-+----6._ _...-_ _ IoUT1 (2) (1) RFEE~CK (11111) DEFINITION OF TERMS NONLINEARITY: Error contributed by deviation of the OAC transfer function from a best straight line function. Normally expressed as a percentage of full scale range. For a multiplying OAC, this should hold true over the entire VREF range. RESOLUTION: Value of the LSB. For example, a unipolar converter with n bits has a resolution of (2- n) (VREF). A bipolar converter of n bits has a resolution of [2- In - 1)j [VREFj. Resolution in no way implies linearity. SETTLING TIME: Time required for the output function of the OAC to settle to within 1/2 LSB for a given digital input stimulus, i.e., 0 to Full Scale. .GAIN: Ratio of the OAC's operational amplifier output voltage to the nominal input voltage value. FEEDTHROUGH ERROR: Error caused by capacitive cou.piing from VREF to output with all switches OFF. OUTPUT CAPACITANCE: Capacitance from IOUT1 and IOUT2 terminals to ground. OUTPUT LEAKAGE CURRENT: Current which appears on IOUT1 terminal with all digital inputs LOW or on IOUT2 terminal when all inputs are HIGH. 80004701 (Switches shown for Digital Inputs "High") Figure 9: 752017521 Functional Diagram Converter errors are further reduced by using separate metal interconnections between the major bits and the outputs. Use of high threshold switches reduces the offset (leakage) errors to a negligible level. The level shift~r circuits are comprised of three inverters with a positive feedback from the output of the second to the first, (Figure 10). This configuration results in TTLI CMOS compatible operation over the full military temperature range. With the ladder SPOT switches driven by the level shifter, each switch is binarily weighted for an ON resistance proportional to the respective ladder leg current. This assures a constant voltage drop across each switch, creating equipotential terminations for the 2R ladder resistors and highly accurate leg currents., v+---_~~~--_.--_.--- DETAILED DESCRIPTION The A07520 (A07530) and A07521 (A07531) are monolithic, multiplying 01 A converters. A highly stable thin film R2R resistor ladder network and NMOS SPOT switches form the basis of the converter circuit, .CMOS level shifters permit low power TTLICMOS compatible operation. An external voltage or current reference and an operational amplifier are all that is required for most voltage output applications. A simplified equivalent circuit of the OAC is shown in Figure 9. The NMOS SPOT switches steer the ladder leg currents between IOUT1 and IOUT2 buses which must be held either at ground potential. This configuration maintains DTunLlCMOS Note: All typical values have been guaranteed by characterization and are not tested. INPUT 05015401 Figure 10: CMOS Switch .U~UlL ~ AD7520/7530/7521/7531 ...en o .en.. ~... en ... ... en to) +11 +11V ~----~-4----~~----' VFlEF----, alT 1 (Msa) OJGITAL INPUT 15 •5 : : alT ,. (LSa) ,. to) WOUT GND ... to) 08016401 AF026601 Figure 11: Unipolar Binary Operation (2-Quadrant Multiplication) Figure 12: Bipolar Operation (4-Quadant Multiplication) TABLE 2 CODE TABLE - BIPOLAR (OFFSET BINARY) OPERATION DIGITAL INPUT ANALOG OUTPUT -VREF (1_2-(n-1» 1111111111 -VREF (2-Tn -l) 1000000001 1000000000 0 VREF (2-(n- II) 0111111111 VREF (1 - 2-(n -11) 0000000001 TABLE 1 CODE TABLE - UNIPOLAR BINARY OPERATION DIGITAL INPUT ANALOG OUTPUT 1111111111 -VREF (1 - 2- n) 1000000001 -VREF (1/2+2- n) 1000000000 -VREF/2 0111111111 0000000001 -VREF (1/2-2-n) -VREF (2 n) 0000000000 0 NOTE: 1. LSB = 2- n VREF 0000000000 VREF NOTE: 1. LSB=2-(n-1) VREF 2. n = 10 for 7520 and 7521 n = 12 for 7530 and 7531 2. n = 10 for 7520. 7530 n= 12 for 7521.7531 A "Logic 1" input at any digital input forces the corresponding ladder switch to steer the bit current to IOUTl bus. A "Logic 0" input forces the bit current to IOUT2 bus. For any code the IOUT1 and IOUT2 bus currents are complements of one another. The current amplifier at IOUT2 changes the polarity of IOUT2 current and the transconductance amplifier at IOUTl output sums the two cu~rents. This configuration doubles the output range but halves the resolution of the DAC. The difference current resulting at zero offset binary code. (MSB;= "Logic 1" • All other bits = "Logic 0"). is corrected by using an external resistor. (10 Megohm) •. from VREF to IOUT2. OFFSET ADJUSTMENT 1. Adjust VREF to approximately + 10V. 2. Connect all digital inputs to "Logic 1" . 3. Adjust IOUT2 amplifier offset adjust trim pot for OV ± 1mV at IOUT2 amplifier output. . . 4. Connect MSB (Bit 1) to ., Logic 1" and all other bits to "Logic 0". 5. Adjust IOUTl amplifier offset adjust trimpot for OV ± 1 mV at VOUT. GAIN ADJUSTMENT 1. Connect all digital inputs to V + . 2. Monitor VOUT for a -VREF (1_2._(n-1» volts reading. (n = 10 for AD7520 and AD7530. and n = 12 for AD7521 and AD7531). 3. To increase VOUT. connect a series resistor of up to 500n between VOUT and RFEEDBACK. 4. To decrease VOUT. connect a series resistor of up to 500n between the reference voltage and the, VREF terminal. APPLICATIONS Unipolar Binary Operation The circuit configuration for operating the AD7520 (AD7530) and AD7521 (AD7531) in unipolar mode is shown in Figure 11. With positive and negative VREF values the circuit is capable of 2-Quadrant multiplication. The "Digital Input Codel Analog Output Value" table for unipolar mode is given in Table 1. ZERO OFFSET ADJUSTMENT 1. Connect all digital inputs to GND. 2. Adjust the offset zero adjust trimpot of th~ output operational amplifier for OV ± 1 mV at VOUT. GAIN ADJUSTMENT 1. Connect all AD7520 (AD7530) or AD7521 (AD7531) digital inputs to V + . 2. Monitor VOUT for a -VREF (1_2~n) reading. (n = 10 for AD7520 (AD7530) and n = 12 for AD7521 (AD7531». 3. To decrease VOU". connect a series resistor (0 to 500n) between the reference voltage and the VREF terminal. 4. To increase VOUT. connect a series resistor (0 to 500n) in the lOUT1 amplifier feedback loop. Bipolar (Offset Binary) Operation The circuit configuration for operating the AD7520 (AD7530) or AD7521 (AD7531) in the bipolar mode is given in Figure 12. Using offset binary digital input codes and positive and negative reference voltage values. 4-Quadrant multiplication can be realized. The "Digital Input Codel Analog Output Value" table for bipolar mode is given in Table 2. 6-5 Note: All typical values have been guaranteed by characterization and are not tested, ;; AD7520/7$30/7521/7531 .In ... ; . ... o .., ... In -...2 ...-----13 ,. -=.SWITCHU lIT { '2 11 10 INTI!R.... . 4· AD.,. ,. 10 • 7 • In _I"'OVI .,IV ,- lGKn LA} lIT SWITCHU S 05016501 Figure 13: Basic Power DAC POWER DAC. DESIGN· USING AD7520 A typical power DAG designed for 8 bit accuracy and 10 bit resolution is shown in Figure 13. An INTEASIlIH8510 power operational amplifier (1 Amp continuous output at up to ±25V) is driven by the AD7520. A summing amplifier betWeen the AD7520 and the IH8510 is I,!sed to separate the gain block containing the AD7520 on-chip resistors from the power amplifier gain stage whose gain is set only by the external resistors. This approach minimizes. drift since the reSistor pairs will track properly. Ot/:1erwise the AD7520 can be directly connected to the IH8510, by using a 25Vreference for the DAC.·· An important note on the AD7520/101A interface concerns the connection of pin 1 of the DAC) and pin 2 of the 101A. Since this point is thesl.Jlnming junCtion of an . amplifier with an AC gain of 50;000' or better, stray capacitance should be minimized; otherwise instabilities and poor noise performance will result. Note that the output of the101Ais fed into an inverting amplifier withs gain of -3,. which can be easil~ changed to a,non-inverting configuration. (For more information' see: INTEASll AWIlcation Bulletin A021:, Power O/A Converters Using. The IH8510 by Dick Wilenkeh.) AnaloglDlgltal. DiVision. , , With the AD7520 connected in its normal multiplying configurati9n as showl:] in Figure, 13, the transfer function is: (A1 VO" -V'N + A2 . 21 , 22 + A3.3 + ... '2 An. ) 2n where the coefficients Ax aSsume a value of l' for an ON. bit and 0 for an OFF bit. ' By connecting the DAC in the feedback of an operational amplifier, as shown in Figure 14, the. transfer function becomes: ThiS is division of an analog variable (V,N) by a digital word. With all bits off, the amplifier saturates to its bound, since division by zero isn't defined. With the LSB (Bit-10) ON, the gain is 1023. With all bits ON, the gain is 1 (±1 lSB). Dl(;lj~ : INPUT i ~..~r.:;;;,.:;iIL:&i..;t:~:-!I VO\JT Too22801 Figure 14: Analog/Digital Divider .. For further information on the use of this device, see the following Application Bulletins: .A016 "Selecting AID Converters," by'David Fullagar A018 "Do's and Don'ts of Applying AID Converters," by Peter Bradshaw and Skip Osgood A020 "A Cookbook Approach to High-Speed Data Acquisition and Microprocessor Interfacing" by Ed Sliger . -"021 ",Power D/A Converters Using the IH8510," by Dick Wilenken VO= Note: .AII typical values have been guaranteed by characterization and are not tested. AD7523 8-Bit Multiplying D/A Converter GENERAL DESCRIPTION FEATURES The AD7523 is a monolithic, low cost, high performance, 10 bit accurate, multiplying digital-to-analog converter (DAC), in a 16-pin DIP. Intersil's thin-film resistors on CMOS circuitry provide 8bit resolution (8, 9 and 10-bit accuracy), with TTL/CMOS compatible operation. The AD7523's accurate four quadrant multiplication, full military temperature range operation, full input protection from damage due to static discharge by clamps to V + and GND, and very low power dissipation make it a very versatile converter. Low noise audio gain controls, motor speed controls, digitally controlled gain and attenuators are a few of the wide range of applications of the 7523. • • • • • • • • 8, 9 and 10 Bit Linearity Low Gain and Linearity Temperature CoeffiCients Full Temperature Range Operation . Static Discharge Input Protection DTL/TTL/CMOS Compatible + 5 to + 15 Volts Supply Range Fast Settling Time: 150ns Max at 25°C Four Quadrant Multiplication ORDERING INFORMATION PART NUMBER/PACKAGE NONLINEARITY PLASTIC DIP CERDIP CERDIP 0.2% (8 Bit) AD7523JN AD7523AD AD7523SD 0.1% (9 Bit) AD7i523KN AD7523BD AD7523TD 0.05% (10 Bit) AD7523LN AD7523CD AD7523UD O'C to +70'C -25'C to + 85'C -55'C to + 125'C TEMPERATURE RANGE VREFIN 115) 20Kn SPOT SWIT'::':.~: I I : '---+'-+--+~~-+-~++--IOUT2(2) ........:...~IOUT1(I) 4 - -...... I--+i,---~I I 6 6 BIT2 (5) BIT3 (6) RFEEDBACK (16) 80004801 COO13301 Figure 1: Functional Diagram (Switches shown for Digital Inputs "High") s:.-7 Note: All typical values have been guaranteed by characterization and are not tested. Figure 2: Pin Configuration Outline Drawings DE, PE i i AD7523 ABSOLUTEMAXIMUM'RATI~GS (fA = 25·Cunless otherwise noted) Supply Voltage (V +) ....................................... + 17V VREF ............................................................±25V Digital Input Voltage Range ...................... V+to GND Output Voltage Compliance .................. -100mV to V+ Power Dissipation: Plastic Packageup to + 70·C ...................................... 670mW derate above +70·C by .................... 8.3mWI"C Ceramic Packageup to 75·C ........................................ 450mW derate above 75·C by ......................... 6mW,rC Operating Temperatures . .' . IN, KN, LN Versions ................. O·C to + 70·C AD, BD, CD Versions ............... -25·C to +85·C SO, TO, UD Versions ............ ~55·C to + 125·C Storage Temperature ...................... -65·C to +150·C Lead Temperature (Soldering, 10sec) .............. + 300·C CAUTION: , I. The digital control inputs are zener protected; however, permanent damage may occur on unconnected units under high energy electrostatic fields. Keep unused units in conductive foam at 'all times: 2. Do not apply voltages higher than VDD and lower than GND to any terminal except VREF + RFEEDBACK. Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating cond~ions for extended periods may affect device reliability. ELECTRICAL CHARACTERISTICS PARAMETER (V + = + 15V, VREF = + 10V unless otherwise specified) TEST CONDI'TIONS + 25·C TA TA MIN';'MAX 8 ±0.2 8 ±0.2 B~ Min % of FSR UNIT 1.IMIT DC ACCURACY (Note 1) Resolution Nonlinearity (Note 2) I (± Y2 LSB) I I (± Y4 LSB) -IOV::; VREF S + 10V ±O.I ±O.I % of FSR Max Max (± Y8 J,.SB) VOUT1 = VOUT2 = OV ±0.05 ±0.05 % of FSR Max % of FSR Max ppm of FSRI"C ppm of FSRI"C Monotonicity Gain Error (Note 2) I Digital Inputs high. Nonlinearity Tempeo (Notes "2 and 3) Gain Error Tempcc (Notes 2 and 3) Output Leakage Current Guaranteed ±1.5 ±1.8 (e~her 2 10 ±50 ±200 nA Max Max Max 0.02 0.03 % of FSR Max 150 200 ns Max ±Y2 ±1 LSB Max -IOV VREF +IOV output) VOUT1 = VOUT2 = 0 AC ACCURACY Power Supply Reiection (Note 2) V+ Output Current Settling Time (Note 3) = 14.0 to 15.0V To 0.2% of FSR, RL - lOOn VREF = 20V pp, 200kHz sine wave. All digital inputs low. Feedthrough Error (Note 3) REFERENCE INPUT Input Resistance (Pin 15) ANALOG OUTPUT Output CapaCitance (Note 3) 5K 20K n I -500 ppml"C All digital inputs high (VINH) 100 30 pF pF All digital inputs low (VINL) 30 100 pF Max Max pF Max 0.8 ':I Max 2.4 ±1 V IlA Min Max pF Max I Temperature Coefficient (Note 3) COUT1 CoUT2 CoUT1 ~ I I All digital inputs high. IOUTI at ground. CoUT2 Max I Max Max DIGITAL INPUTS Low State Threshold (VINU High State Threshold (VINH) Input Current (Low or high) Input Coding VIN=OVor +15V See Tables 1 & 2 Input Capacitance (Note 3) Binary/Offset Binary 4 POWER REQUIREMENTS Power Supply Voltage Range 1+ NOTES: 1. 2. 3. 4. Accuracy is tested and guaranteed at V+ - + 15V, only. All digital inputs low or high. Full scale range (FSR) is 10V for unipolar and ± 10V for bipolar modes. Using internal feedback resistor, RFEEDBACK. Guaranteed by design; not subject to test. Accuracy not guaranteed unless outputs at ground potential. Note: All typical values have been guaranteed by characterization. and. are not tested. +5 to +16 2 V I rnA I Max AD7523 APPLICATIONS BIPOLAR OPERATION UNIPOLAR OPERATION :-lOV ·1SV VREF NOTES: ., 2k 1. R1 AND R2 USED ONLY IF GAIN ADJUSTMENT IS AEQUIRED. 2. CA1 PROTECTS A07523 AGAINST NEGATIVE TRANSIENT&. R21k DATA ~ MSa INPUTS: LSB 11 TC022901 LD006201 Figure 3: Unipolar Binary Operation NOTES: 1. R3/R4 MATCH 0.1% OR BETTER. 2. Rl, R2 USED ONLY IF GAIN ADJUSTMENT IS REQUIRED. Table 1. Unipolar Binary Code Table DIGITAL INPUT MSB LSB 11111111 3. 4. R5-R7 USED TO ADJUST YOUT = OY AT INPUT CODE 10000000. CR1 I CR2 PROTECT AD7523 AGAINST NEGATIVE TRANSIENTS. Figure 4: Bipolar Operation ANALOG OUTPUT -VREF 10000001 -VREF 10000000 -VREF 01111111 -VREF (255) 256 f29) 256 f28) 256 Table 2. Bipolar (Offset Binary) Code Table DIGITAL INPUT MSB ANALOG OUTPUT LSB 11111111 -VREF 10000001 -VREF = _VREF 2 ~::) 10000000 0 +VREF 00000001 -VREF b:6) 01111111 00000000 -VREF b~6)=O 00000001 +VREF 00000000 +VREF NOTE: 1 LSB = (2- 8) (VREF) 1 = (-) 256 (VREF) f27) 128 (1:8) (1~8) f27) 128 f28) 126 1 NOTE: 1 LSB = (2 - 7) (VREF) = ( - ) (VREF) 126 A typical power DAC designed for 10 bit accuracy and 8 bit resolution is shown in Figure 5. The Intersil IH8510 power operational amplifier (1 Amp continuous output with up to + 25V) is driven by the AD7523. A summing amplifier between the AD7523 and the IH8510 is used to separate the gain block containing the AD7520 on-chip resistors from the power amplifier gain stage, whose gain is set only by the external resistors. This approach minimizes drift since the resistor pairs will track properly. Otherwise AD7523 can be directly connected to the IH8510, by using a 25 volt reference for the DAC. Note: All typical values have been guaranteed by characterization and are not tested. = AD7523, ... 10 ~ POWER DAC DESIGN USINGAD7523 '6t-----~-----., ,-------12 +------13 '5 '4 • INTERSIL '3 5 AD7523 12 ( I 81Ti SWITCHES 6 VR.F (,'OV) ,'5V HC HC 0."/\ 'OK/\ Your " '0 • l } :::ITCHfS '00p' o... n 7.SKf! TC036401 Figure 5: Basic Power DAC Design DEFINITION OF TERMS NONLINEARITY: Error contributed by deviation of the DAC transfer function from a best straight line function. Normally expressed as a percentage of full scale range. For a multiplying DAC, this should hold true over the entire VREF range. RESOLUTION: Value of the LSB. For example, a unipolar converter with n bits has a resolution of (2- n) (VREF). A bipolar converter of n bits has a resolution of [2- rn -1)1 [VREFI. Resolution in no way implies linearity. SETTLING TIME: Time required for the output function of the DAC to settle to within '1f2 LSB for a given digital input stimulus, i.e., 0 to Full Scale. GAIN: Ratio of the DAC's operational amplifier output voltage to the nominal input voltage value. FEEDTHROUGH ERROR: Error caused by capacitive coupling from VREF to output with all switches OFF. OUTPUT CAPACITANCE: Capacity from IOUT1 and IOUT2 terminals to ground. OUTPUT LEAKAGE CURRENT: Current which appears on IOUT1 terminal with all digital inputs LOW or on IOUT2 terminal when all inputs are HIGH. VOUT=-VtNlO WHERE: D= 8~' +8:Z+", 8~' >--6-<>VOUT AF026BOI Figure 6: Divider (Digitally Controlled Gain) VREF ~--------------~ R, +'5V ,. VOUT = YREF ~-!L) ~ Rl +R2 '.---0........ -(~)l + A2~ Al For further information on the use of this device, see the following Application Notes: A016 "Selecting AID Converters," by David Fullagar A018 "Do's and Don'ts of Applying AID Converters," by Peter Bradshaw and Skip Osgood A020 "A Cookbook Approach to High-Speed Data Acquisition and Microprocessor Interfacing" by Ed Sliger A021 "Power D/A Converters Using the IH851 0," by Dick Wilenken !!!...! + ~ +..• • ,T. 21 22 2" WHERE: D = AF026901 Figure 7: Modified Scale Factor and Offset 6-10 Note: All typical values have been guaranteed by characterization and are not tested. AD7533 10-Bit Multiplying 01 A Converter GENERAL DESCRIPTION FEATURES Lowest Cost 10-Bit DAC 8, 9 and 10 Bit Linearity Low Gain and Linearity Tempcos Full Temperature Range Operation Full Input Static Protection TTL/CMOS Direct Interface +5 to + 15 Volts Supply Range Low Power Dissipation Fast Settling Time Four Quadrant Multiplication Direct AD7520 Equivalent 883B Processed Versions Available The Intersil AD7533 is a low cost, monolithic 10-bit, fourquadrant multiplying digital-to-analog converter (DAC). Intersil's thin-film resistor on CMOS circuitry provide 10, 9 and 8 bit accuracy, full temperature range operation, + 5V to + 15V supply voltage range, full input protection from damage due to static discharge by clamps to V + and ground and very low power dissipation. Pin and function equivalent to the industry standard AD7520, the AD7533 is recommended as a lower cost alternative for old or new 10-bit DAC designs. Applications for the AD7533 include programmable gain amplifiers, digitally controlled attenuators, function generators and control systems. I ORDERING INFORMATION PACKAGE IDENTIFICATION ~ TEMPERATURE RANGE O'C to +70'C -2S'C to +8S'C -SS'C to + 12S'C ±O.2% (8-bit) AD7533JN AD7533AD AD7533SD ±O.1% (9-bit) AD7533KN AD7533SD AD7533TD ±O.O5% (10-bit) AD7533LN AD7533CD AD7533UD NONLINEARITY IL:lpaCkage D -18-Pin CERDIP DIP N - 18-Pin Plastic DIP Nonlinearity and Temperature Range J,K,L - Commercial O'C to + 70'C A,S -Industrial -25'C to + 85'C S,T-Military - 55'C to + 125'C ' - - - - - - - S a s i c Part Number 10Kn 10Kn 10Kn 10Kn (15) SPOT NMOS IoUT2 (2) ,----+--...... . . _ - - 10011 (11 SWITCHES 4---+-,;---<... , A I A 8m BIT3 (5) (6) RFEEDBACK (16) 8ooo49Ol . Figure 1: Functional Diagram Figure 2: Pin Configuration 6-11 Note: All typical values have been Quaranteed by characterization and are not tested. AI)7533, ABSOLutE MAXIMUM RATINGStTA = 25°C unless otherwise noted) V+ .............................................................. +17V VREF ............................................................±25V Digital Input Voltage Range ................ : .... N+ to GND Output Voltage Compliance .. ,., ............... -O.1V to V+ Power Dissipation Ceramic Package: __.. .. up to +75°C............. : ...................... : . .450mW· derates above + 75°C by .................... 6mW I"C Plastic Package: up to 70°C ........................................ 670mW derates above 70°C by ..................... 8.3mW Operating Temperature. Range: . IN, KN, LN Versions ................. O°C to + 70°C AD, BD, CD Versions ................ -25°C to 85°C SO, TO, UD Versions ............ -55°C to + 125°C 'Storage Temperature Range ............... ..:65°C to 150·C Lead Temperature (Soldering, 10sec) .............. + 300°C rc CAUTION: 1. The digital control inputs are zener protected; however, permanent damage may occur on unconnected units under high energy electrostatic fields. Keep unused units in conductive foam at all times. 2. Do not apply vo"ages lower than ground or higher than V + to any pin except VREF and RFB. Stresses above those listed under AbSolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device' at these or any other conditions above those' indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended p~riods may altect device reliability. ELECTRICAL CHARACTERISTICS (V+ = + 15V, VREF= +10V, VOUT1 =VOUT2=O unless otherwise specified.) TEST CONDITIONS PARAMETER TA +25°C TA MIN-MAX LIMIT UNIT DC ACCURACY (Note 1) Resolution Nonlinearity (Note 2) -IOVSVREFS +IOV VOUT1 = VOUT2 - OV Inputs = VINH Gain Error (Note 2 and 5) Digital Output Leakage Current (either .output) VREF = ±IOV 10 10 Min Bits ±0.2 ±0.2 Max % of FSR ±O.I ±O.I Max % of FSR ±O.OS ±O.OS Max % of FSR ±1,4 ±I.S Max % of FS ±50 ±200 Ml\x nA AC ACCURACY = 14.0.to Power Supply Rejection (Note 2) v+ 0.005 0.008 Max % of FSR/% Output Current Settling Time (Note 3) To 0.05% of FSR. RL = loon 600 (Note 6) 800 (Note 3) Max ns Feedthrough Error (Note 3) VREF = f 10V, 100kHz sine wave. Digital inputs low. fO.05 ±O.I Max % FSR 17.0V REFERENCE INPUT 5k Min 20k Max n -300 Typ ppmrC 100 Max pF 35 Max pF 35 .. Max pF 100 Max pF Low State Threshold .(VINL) 0.8 Max V High State Threshold (VINH)' 2,4 Min V ±I Max pA Max pF Input Resistance (Pin 15) All digital inputs high. Temperature Coefficient ANALOG OUTPUT Both outputs. See maximum ratings Voltage Compliance (Note 3) Output Capacitance (Note 3) 'CoUT! -IOOmV to V+ All digital inputs high (VINH) COUT2 .. GoUT1 All digRal inputs low (VINU GoUT2 DIGITAL INPUTS = OV Input Current (liN) VIN and V+ Input Coding See Tables I & 2 Binary/Offset Binary Input Capacitance (Note 3) 5 6-12 Note: All typical values have been guaranteed by characterization and are not tested. AD7533 ELECTRICAL CHARACTERISTICS (CONT.) PARAMETER TA +25°C TEST CONDITIONS I TA MIN-MAX LIMIT UNIT POWER REQUIREMENTS +15 ±10% Rated Accuracy Voo Power Supply Voltage Range 1+ 2 Digital Inputs = VINL to VINH Digital Inputs = OV or V + NOTES: 1. 2. 3. 4. 5. 6. 100 I 150 Full scale range (FSR) is 10V for unipolar arid ± 1OV for bipolar modes. Using internal feedback reSistor, RFEEOBACK. Guaranteed by design; not subject to test. Accuracy not guaranteed unless outputs at ground potential. Full scale (FS) = -(VREF) • (1023/1024) Sample tested to ensure specification compliance. The Intersi! A07533 is a 10 bit, monolithic, multiplying 01 A converter. A highly stable thin film R-2R resistor ladder network and NMOS SPOT switches form the basis of the converter circuit. CMOS level shifters permit low power TTL/CMOS compatible operation. An external voltage or current reference and an operational amplifier are all that is required for most voltage output applications. 1Q1(n 10Ku V Max mA Max p.A Specifications subiect to change without notice. constant current in each ladder leg independent of the input code. DETAILED DESCRIPTION VAEFIN V +5to +16 v+--------~~~----~----~-- 10Kn DTLlTTUCilOS (1$) INPUT 2OICl1 SPOT NMOS SWITCHES I I 4 I I 4 Bin BIT3 (5) (8) louT2(2) loun(l) LC006901 Figure 4 AFEEDBACK (18) The level shifter circuits are comprised of three inverters with a positive feedback from the output of the second to the first, (Figure 4). This configuration results in TTL/CMOS compatible operation over the full military temperature range. With the ladder SPOT switches driven by the level shifter, each switch is binarily weighted for an "ON" resistance proportional to the respective ladder leg current. This assures a constant voltage drop across each switch, creating equipotential terminations for the 2R ladder resistors resulting in accurate leg currents. LCO06801 (Switches shown for Digital Inputs "High") Figure 3 A simplified equivalent circuit of the OAC is shown in Figure 3. The NMOS SPOT switches steer the ladder leg currents between IOUT1 and IOUT2 busses which must be held at ground potential. This configuration maintains a 6-13 Note: All typical values have been guaranteed by characterization and are not· tested. =AD7,j'33 .. II) ... ~ APPLICATIONS BIPOLAAOPERATION, " (4-QUADRANT MULTIPLICATION) UNIPOLAR OPERATION (2-QUADRANT MULTIPLICATION) 81POlAR ~ ±1OV v+ R21k LC007001 LCO07101 NOTES: Inl1. R1 and R2 used only if gain adjustment is required. 2. Schottky diode CR 1 (HP5082-2811 or equiv) protects OUT1 terminal against negative transients. NOTES: , 1. R3/R4 match 0.05% or better. 2. R1 and R2 used only If gain adjustment Is required. 3. Schottky diodes CR1 and CR2 (HP5082-2811 or equiv) protect OUT1 and OUT2 terminals against negative transients. Figure 5: Unipolar Binary Operation (2-Quadrant Multiplication) Figure 6: Bipolar Operation (4-Quadrant Multiplication) Table 1. Unipolar Binary Code DIGITAL INPUT MSB LSB 111111~111 1000000001 NOMINAL ANALOG. OUTPUT (VOUT as shown in Figure 3) -VREF r -VREF (513) 1024 '.' 1000000000 -VR'EF Table 2. Bipolar (Offset Binary) Code Table DIGITAL INPUT MSB LSB 023 1024) (~)= 1024 0111111111 -VREF (511 ) 1024 0000000001 '. -VREF (10~4) 0000000000 -VREF _ VREF 2 (-0-) -0 1024 NOMINAL .ANALOG OUTPUT (VOUTas shown in Figure 4) -VREF 1000000001 -VREF 1000000000 0 0111111111 +VREF 0000000001 ' +VREF (~) 512 0000000000 +VREF (512) 512 NOTES: 1. Nominal Full Scale for the circuit of Figure 3 is given by 1023) FS= -VREF (1024 (5:2) (5:2) NOTES: 1. Nominal Full Scale for the circuit of Figure 4 is given by 1023) FSR=VREF (512 2. Nominal LSB magnitude for the circuit of Figure 4 is given by 2. Nominal LSB magnitude for the circun of Figure 3 is given by LSB = VREF (~) 512 1111111111 (_1_) 1024 LSB = VREF 6-14 Note: All typical values have been guaranteed by characterization and lIre not tested. (.2..) 512 AD7533 POWER DAC DESIGN USING AD7533 r---------~1 r------t2 { +-----13 - BIT SWITCHES 11t----------------------, 15 14 4 INTERSIL 13 5 AD7523 12 6 VRE,(;;1OVI +15V NC NC • ~'TCHES 11 10 0.1111 1CIKII VOUT • } 100pf 0.1111 7.51(11 AF027011 Figure 7: Basic Power DAC A typical power DAC designed for 8 bit accuracy and 10 bit resolution is shown in Figure 7. INTERSIL IH8510 power amplifier (1 Amp continuous output with up to ±25V) is driven by the AD7533. A summing amplifier between the AD7533 and the IH8510 is used to separate the gain block containing the AD7533 on-chip resistors from the power amplifier gain stage whose gain is set only by the external resistors. This approach minimizes drift since the resistor pairs will track properly. Otherwise the AD7533 can be directly connected to the IH8510, by using a 25 volts reference for the DAC. Notice that the output of the LM1 01 A is fed into an inverting amplifier with a gain of -3, which can be easily changed to a non-inverting configuration. (For more information write for: INTERSIL Application Bulletin A021-Power Of A Converters Using The IH8510 by Dick Wilenken.) CALIBRATE 10k Fl:f SQUARE WAVI! y I:N(~~) TRIANGULAR WAVI! RI= 1QkO O-+-------i>----+'--""Iou" I') IlFEEDMCIC (11) 90005201 CD013S01 Figure 1: Functional Diagram (Switches shown for Digital Inputs 'High') 6-16 Note: All typical values have been guaranteed by characterization and are not t6sted. < Figure 2: Pin Configuration (Outline dwgs ON, PN) 300150-002 AD7541 ABSOLUTE MAXIMUM RATINGS (TA = 25°C unless otherwise noted) V+ ... .'.......................................................... +17V VREF ............................................................±25V Digital Input Voltage Range ......................GND to V+ Output Voltage Compliance ................. -1 OOmV to V + Power Dissipation (package): up to +75°C ...................................... 450mW derate above +75°C by ..................... 6mW/oC Operating Temperature Range: IN, KN, LN Versions ................. O°C to + 70°C AD, SO Versions .................... -25°C to + B5°C SO, TO Versions .................. -55°C to + 125°C Storage Temperature ...................... -65°C to + 150°C Lead Temperature (Soldering, 10sec) ................. 300°C CAUTION 1. The digital control inputs are zener protected; however, permanent damage may occur on unconnected units under high energy electrostatic lields. Keep unused units in conductive loam at all times. 2. Do not apply voltages higher than VDD or less than GND potential on any' terminal except VREF and Rib. ,Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and lunctional operation 01 the device at these or any other conditions above those indicated in the operational sections 01 the speCifications is not implied. Exposure to absolute maximum rating conditions lor extended period may affect device reliability. ELECTRICAL CHARACTERISTICS (V + = + 15V, VREF = + 10V, TA = 25°C unless otherwise specified) PARAMETER TA TEST CONDITIONS TA LIMIT FIG. MIN-MAX + 25°C UNIT DC ACCURACY (Note 1) Resolution Nonlinearity (Note 2) S J r,:- ~ -10VSVREFS +10V r- ~ VOUTl = VOUT2 = Gain Error (Note 2) Output Leakage Current (either output) 12 12 Min Bits ±0.024 ±0.024 Max % 01 FSR ±0.012 ±0.012 Max ±0.012 ±0.012 Guaranteed Monotonic OV -10VSVREFS +10V ±0.3 VOUTl = VOUT2 - 0 ±50 I V+ = 14.5 to 15.5V ±0.01 I 1 % 01 FSR Max % 01 FSR ±0.4 Max % 01 FSR ±200 Max nA ±0.02 AC ACCURACY (Note 3) % 01 FSR/% Max 2 Output Current Settling Time To 0.01 % 01 FSR 1 Max 6 p.s Feedthrough Error VREF = 20V pp, 10kHz. All digital inputs low. i Max 5 mV pp Power Supply Rejection (Note 2) REFERENCE INPUT Input Resistance 5K Min All digital inputs high. 10K Typ 10UTl at ground. 20K Max n ANALOG OUTPUT Both outputs. See maximum ratings. Voltage Compliance (Note 4) " -100mV to V+ COUTl COUT2 All digital inputs high (VINH) 200 60 Max Max 4 pF pF CoUTl CoUT2 All digital inputs low (VINU 60 200 Max Max 4 pF pF Equivalent to 10Kn Johnson noise Typ 3 Low State Threshold (VINL) 0.8 Max High State Threshold (VINH) 2.4 Min V ±1 Max p.A Max pF 2.0/2.5 Max rnA 20 Typ Output capacitance (Note 3) Output NOise (both outputs) DIGITAL INPUTS Input Current VIN ·'0 or V+ Input Coding See TBbles 1 & 2 V Binary/Offset Binary 8 Input CapaCitance (Note 3) POWER REQUIREMENTS PQWer Supply Voltage Range 1+ Accuracy is not guarantaed over this range All digital inputs high or low Total PQWer DiSSipation (Including the ladc;ler) NOTES: 1. 2. 3. 4. Full scale range (FSR) IS 10V lor unipolar and ± 10V lor bipolar modes. Using intemal feedback resistor, RFEEDBACK. Guaranteed by design; not subject to test. Accuracy not guaranteed unless outputs at ground potential. 6-17 Note: All typical values have been guaranteed by characterization and, are not tested. +5 to +16 V .. mW Specifications sublect to change without notice. i IID~OIl AD7S41, & c TC023:JOI Figure 6: Output Capacitance Test Circuit +15V YAEF '" 20V p-p 10kHz 8tNE WAVE 8fT 1 (1IS8. 11 r:;::=:t.: TC023001 Figure 3: Nonlinearity Test Circuit ·1 15 BIT '2(LSB TC023401 _UNDID IIIIEWAVE -- a_TOil _tv" +10 V Figure 7: Feedthrough Error Test Circuit (~~~Tr-----~----+---~VV\---~--~.~~~, FOR ,. t +15V VE"""" ,... :'T:'=(="'~B~) =OV.DC,. +-10 V -"VA"'EFC-_-, r.*7....~.." EXTRAPOLATE :, :'~~NQ BIT 1 (MSB) • BIT 12 5 (LSB) AD7", Too23101 Figure 4: Power Supply Rejection Test Circuit TC023501 Figure 8: Output, Current Settling Time Test Circuit +1.1V (ADJUST FOR YOUT '" OV) DEFINITION OF TERMS +1SV 'k NONLINEARITY: Error contributed by deviation of the OAC transfer function from a best straight line function. Normally expressed as a' percentage of full scale range. For multiplying OAC, this should hold true over the entire VREF range. F= 111Hz ,8W=1Hz a QUAM TECH ..... MODEL WAVE ANALYZER RESOLUTION: Value of the LSB. For example, a unipolar converter with n bits has a resolution of (2- n) (VREF). A bipolar converter of n bits has a resolution of [2-(n -1») [VREFI. 'Resolutiori in no way implies linearity. SETTLING TIME: Time required for the output function of the OAC to settle to within 112 LSB for a given digital input stimulus, i.e., 0 to Full Scale. Too23201 Figure 5: Noise Test Circuit GAIN: Ratio of the'OAC's operational amplifier output voltage to the nominal input voltage value. ' FEEDTHROUGH ERROR: Error caused by capacitive coupling from VREF to output with all switches OFF. 6-18 Note: All typical values have been guaranteed by characterization and are not tested. AD7541 OUTPUT CAPACITANCE: Capacity from IOUTl and IOUT2 terminals to ground. OUTPUT LEAKAGE CURRENT: Current which appears on IOUTl terminal with all digital inputs LOW or on IOUT2 terminal when all inputs are HIGH. DETAILED DESCRIPTION The Intersil AD7541 is a 12 bit, monolithic, multiplying 0/ A converter. Highly stable thin film R-2R resistor ladder network and NMOS DPDT switches form the basis of the converter circuit. CMOS level shifters provide low power DTL/TTLICMOS compatible operation. An external voltage or current reference and an operational amplifier are all that is required for most voltage output applications. 101m V.... IN 101Ul LC006701 Figure 10: CMOS Switch 101CO APPLICATIONS General Recommendations (17) ..... NII08 OWIT"", Static performance. of the AD7541 depends on loun and IOUT2 (pin 1 and pin 2) potentials being exactly equal to GND (pin 3). IoUT2 (2) ~-"""f----4"""-----:;==:1' BIT' (MSB) lilT 20- BIT '2 (LSB) <>-'---1'!!.-li.....!J VOUT TC023601 Figure 13: General DAC Circuit with Compensation Capacitor, Co DYNAMIC PERFORMANCE INPUT SIGNAL WARNING The dynamic performance of the DAC, also depends on the output amplifier selection. For low speed or static applications, AC specifications of the amplifier are not very critical. For high-speed applications slew-rate, settling-time, openloop gain and gain/phase-margin specifications of the amplifier should be selected for the desired performance. Because of the input protection diodes on the logic inputs, it is important that no voltage greater than 4V outside the logic supply rails be applied to these inputs at any time, including power-up and other transients. To do so could cause destructive SCR latCh-up. 6'-21 Note: All typical values have been guaranteed by characterization and are not tested. Z ADC0802-ADC0804 8 8·Bit IIP·Compatible 9 § . AID Converters I § GENERAL DESCRIPTION FEATURES The ADC0802 family are cMOS 8-bit successive approximation A/Dconverfers which use a modified potentiometric ladder, and are designed to operate with the 8080A control bus via three-state outputs. These converters appear to the processor as memory locations or lID ports, and hence no interfacing logic is required. The differehtial analog voltage input has good commonmode-rejection, and permits offsetting the analog zeroinput-voltage value. In addition, the voltage reference input can be adjusted to allow· encoding any smaller analog voltage span to the full 8 bits of resolution: .• SOC4S and SOCSO/S5 Bus Compatible - No Interfacing Logic Required ' • Conversion Time < 100ps • Easy Interface to Most Microprocessors • Will Operate in a "Stand Alone" Mode • Differential Analog Voltage Inputs • Works With Bandgap Voltage References • TTL Compatible Inputs and Outputs • On-Chip Clock Generator • OV to 5V Analog Voltage Input Range (Single +5V Supply) • No Zero-Adjust Required ORDERING INFORMATION PART NUMBER TEMPERATURE RANGE ERROR PACKAGE ADC0802LCN ADC0802LCD ADC0802LD ± 1/2 bit no adjust O°C to +70~C -25°C to +85°C -55°C to +125°C 20 pin Plastic DIP 20 pin CERDIP 20 pin CERDIP ADC0803LCN ADC0803LCD ADC0803LD ± 112 bit adjusted full-scale O°C to +70°C -25°C to +85°C - 55°C to + 125°C 20 pin Plastic DIP 20 pin CERDIP 20 pin CERDIP ADC0804LCN ADC0804LCD ± 1 bit no adjust O°C to +70°C -25°C to +85°C 20 pin Plastic DIP 20 pin CERDIP cs iiii 11 12 13 14 15 18 17 18 WR INTR DBt DS. DIIs DII< DB, AID DBa DB, DBa 80003201 TOP VIEW GDOO6311 Figure 1: Typical Application 6-22 Note: All typical values have been guaranteed by characterization' and are not tested. (Outline dwg. CD, CN) Figure 2: Pin Configuration ADC0802-ADC0804 AD 2 READ CS~'[:::::::~::~==:> WAC 3 ________-J~jr~>-~~"'~"~=~R~~~~S~H~IFT~R~E~G~IS~T~E~R~-. "0" = BUSY AND RESET STATE ~~ __ RESET INPUT PROTECTION FOR All lOGIC INPUTS ClKR j:: INPUT 19 ClK TOINTERNAl CIRCUITS BV",30V I START F/F V" START CONVERSION 20 D (VREF) VREFJ2 o-9---4~ __--IH LA:,.oi R 1++++-+------4 SU;;::g~VE DECODER SL 8-BIT SHIFT REGISTER R ......-.......I~...... REGISTER AND lATCH IF RESET = "0" RESET INTRF/F AGND 8 DAC VOUT Q VIN( +) O"-+-f-+{D-~ DIGITAL OUTPUTS 3-STATE CONTROL "1" = OUTPUT ENABLE ~----------___________...J 8000330\ Figure 3: Functional Diagram of ADC0802-ADC0804 &-23 Note: All typical values have been guaranteed by characterization and are not tested. -.8 .D~DIl o ADC0802~ADC0804 9 I "" .0 "CiO § ABSOLUTE MAXIMUM RATINGS OPERATING RATIN(lS Supply Voltage ................................................. 6.SV Voltage at Any Input.. ................. -0.3V to (V++0.3V) Storage Temperature Range ............ .;.6S"C to+1S0'C Package Dissipation at TA = +2S"C ......... ·...... :.875mW Lead Temperature (Soldering. 10sec) ................. 300·C Temperature Range· ADC0802/03LD .................... -SS'C to +12S·C ADC0802/03/04LCD ............... -40·C to +8S'C ADC0802/03/04LCN .................. O'C to + 70'C Supply Voltage Range ............................ 4.SV to 6.3V Stresses above those listed under" Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure· to absolute maximum rating conditions for extended periods may affect device reliability. ELECTRICAL CHARACTERISTICS (Notes 1 and 7) Converter Specifications: v+= SV. VREF/2= 2.S00V. TMIN:::: TA:::: TMAX and fCLK = 640kHz unless otherwise stated. MAX UNIT ADC0802: TotsJ Unadiusted Error Completely Unadiusted ±1/2 LSB ADC0803: Total Adjusted Error With ±1/2 LSB ADC0804: Total Unadjusted Error Completely Unadjusted ±1 LSB VREF/2 -Input Resistance Input Resistance at Pin 9 Analog Input Voltage Range (Note 2) DC Common;Mode Rejection Over Analog Inp!Jt Voltage Range Power Supply SenSitivity V+ = 5V ±10% Over Allowed Input Voltage Range PARAMETER TEST CONDITIONS TYP Full Scale Adjust PARAMETER 1.0 1.3 kn V+ +0.05 V ±1/16 ±1/8 LSB ± 1/16 ± 1/8 lSB GND-0.05 DC ELECTRICAL CHARACTERISTICS Digital Levels and DC Specificatio,.s: SYMBOL MIN v+ '" SV and TMIN:::: TA:::: TMAX. unless otherwise noted. TEST CONDITIONS MIN 2.0 TYP MAX UNIT v+ V 0.8 V CONTROL INPUTS (Note 6) VINH Logical "I" Input Voltage (Except Pin 4 ClK IN) v+ - 5.25V VINl loQical "0" Input Voltage (Exqept Pin 4 elKIN) v+ = 4.75V v+ ClK ClK· IN (Pin 4) Positive Going Threshold Voltage 2.7 3.1 3.5 V V- ClK ClK IN (Pin 4). Negative Going Threshold Voltage 1.5 1.8 2.1 V 0.6 1.3 2.0 V 0.005 1 pA 2.5 rnA 0.4 V 3 IINHI ClK IN (Pin 4) Hysteresis (Vc!LK) - (VCLI() logical "I" Input Current (All Inputs) IINlO logical "0" Input Current (All Inputs) VIN=OV Supply Current (Includes Ladder Current) fClK = 640kHz. TA = +25"C and = HI VH 1+ DATA OUTPUTS AND VIN=5V -1 1.3 es pA -0.005 IIiffli logical "0" Output Voltage la·1.6mA V" - 4.75V VOH logical "I" Output Voltage 10= -360pA V+ = 4,75V 2.4 V IlO 3-State Disabled Output Leakage (All Data Buffers) VOUT~OV -3 pA pA VOL VOUT=5V 6-24 Note: All typical values have _been guaranteed by characterization and are not tested. ADC0802-ADC0804 DC ELECTRICAL CHARACTERISTICS (CO NT.) TEST CONDITIONS MIN TYP IsoUACE SYPt(lBOL Output Short Circuit Current PARAMETER VOUT Short to Gnd TA = +25°C 4.5 6 MAX UNIT rnA ISINK Output Short Circuit Current VOUT Short to V+ TA- +25°C 9.0 16 rnA NOTES: 1. All voltages are· measured with respect to GND, unless otherwise specified. The separate AGND point should always be wired to the DGND, being careful to avoid ground loops. 2. For VIN( _) ,., VIN( +) the digital output code will be 0000 0000. Two on-chip diodes are tied to each analog input (see Block Diagram) which will forward conduct for analog input voltages one diode drop below ground or one diode drop greater than the V + supply. Be careful, during testing at low V + levels (4.SV), as high level analog inputs (SV) can cause this input diode to conduct-especially at elevated temperatures, and cause errors for analog inputs near full-scale. As long as the analog VIN does not exceed ·the supply voltage by more than SOmV, the output code will be correct. To achieve an absolute OV to SV input voltage range will therefore require a minimum supply voltage of 4.950V over temperature variations, initial tolerance and loading. 3. With V + = 6V, the digital logic interfaces are no longer TTL compatible. 4. With an asynchronous start pulse, up to 8 clock periods may be required before the internal clock phases are proper to start the conversion process. S. The CS input is assumed to bracket the WR strobe input so that timing is dependent on the WR pulse width. An arbitrarily wide pulse width will· hold the converter in a reset mode and the start of conversion is initiated by the low to high transition of the WR pulse (see Timing Diagrams). 6. ClK IN (pin 4) is the input of a Schmitt trigger circuit and is therefore specified separately. 7. None of these AIDs requires a zero-adjust. However, if an all zero code is desired for an analog input other than O.OV, or if a narrow full-scale span exists (for example: 0.5V to 4.0Y full-scale) the YIN( _) input can be adjusted to achieve this. See Zero Error on page 10 of this data sheet. AC ELECTRICAL CHARACTERISTICS Timing Specifications: v+ SYMBOL = 5V and TA = +25°C unless otherwise stated. PARAMETER TEST CONDITIONS y+ = 6V (Note 3) y+ =5Y MIN TYP MAX UNIT 100 100 640 640 1280 800 kHz kHz fClK Clock Frequency Ieoo. Clock Periods per Conversion (Note 4) CR Conversion Rate In Free-Running Mode tw(WA)1 Width of tace Access Time (Delay from Falling Edge of RD to Output Data Valid) Cl = 100pF (Use Bus Driver IC for Larger CLl 135 200 ns tlh, tOh 3-State Control (Delay from Rising Edge of m'i to HI-Z State) Cl = 10pF, Rl = 10k (See 3-State Test Circuits) 125 250 ns tWI> tAl Delay from Falling Edge of Reset of IN'!'Fi 300 4S0 ns CIN Input Capacitance of logic Control Inputs S 7.5 pF GoUT 3-State Output CapaCitance (Data Buffers) 5 7.S pF WR 62 WR tied to WR with CS = OY, fClK = 640kHz v· 90% 50% DATA OUTPUTS ::~:::'h ~ GND------ 1r=2Ono 2.4Y-:--N-=;:;-- M. iiii O.8V DATA c..OUTPUT CS T T TC02OBOI Figure 4: 3-State Test Circuits and Waveforms 6-25 Note: All typical values have been guaranteed by characterization and are not tested. ns y. iffi T WF010701 convls 100 to y+ TC020701 8888 CS - OY (Note 5) Input (Start Pulse Width). 73 IN'!'Fi DATA Y+ I; OUTPUTS Y O l - - - I10% 1r=2Ons WF010801 IIO~OIl 3 ···ADC0802-ADC0804 co 8 ~I (\I § ~ TYPICAL PERFORMANCE CHARACTERISTICS Delay From Failing Edge of .RD to Output Data Valid vs load Capacitance logic Input Threshold Voltage vs Supply Voltage ~ 1.8 ~ ~ 1.7 9 1.6 >. i -SS·C S TA s +125"0 400 I,; at 1.5 j!: !; II. ! ;I 1.4 100 So! 1.34.50 5.00 5.25 s.so V+ -SUPPLY VOLTAGE (V) ~ o 4.7S 200 400 800 800 1000 LOAD CAPACITANCE (pF) OP014501 OPQ14401 ClK IN Schmitt. Trip levels VI Supply Voltage :g 3.5 ~ ;!! 3.1 ~ a 2.7 I I I-- I-- ... Yr+ -ssoc s TA s i2.3 I I I I j!: ! Yr- a fClK vs Clock Capacitor 1.' +l25°C II\,..- ) , 1.5 ~~~I~\ 100 1,.,...I-..J..J..u.IJ.LL....lo.L..J..AI.J.I,IJI 10 ·100 1000 CLOCK CAPACI1'OR (PF) 4.50 4.75 5.00 5.2S 5.50 Y+ -SUPPLYYOLTAGE(V) OPOl4601 OP01470i Effect of Unadjusted Offset Error Full-SCale Error vs FClK 16 v+ =4.5V Ido 'f- 10 ... 8 Iii !!! ... 0 y+ -8V o 4IJII 12 a: ia: -y+ =5V 14 8 4 2 0 0.01 800 1200 1800 2000 YlN(+)-VtN(-)-ov. ASSUMES Vos-zmv. THIS SHOWS THE NEED FOR A ZERO ADJ. I' THE SPAN IS REDUCED. tcLK(lcHz) 0.1 1.0 VREFI2(V) 0P014801 OP014901 Power Supply Current vs Temperature Output Current vs Temperature vs VREF/2 Voltage e f i 'eLK-840kHz ~ ""f- ~ t iil ~ -~NK \Iour=o.4V 2 -50-25 0 25 50 75 100 125 TA-AMBIENTTEMPERATURE("C) 0P015001 v'+'.lJv Y'+~Uv 131.3 ~OUT=2.4V 4 1.6 i :: ·.!o~RC~ 8 13 I f v+-sv I I I I DATA OUTPUT BUFFERS i 1.2 iL 1.0 -50 -25 0 25 50 75 100 125 TA-AMBIENT TEMPERATURE ("C) V+ 1.1 =4.~Y OP015101 6--26 Note: All typical values have been guaranleed by characterization and are not tested. ADC0802-ADC0804 Start Conversion _______ A -~ _________ WR I ACTUAL INTERNAL ITATUSOFTHE IWIiiiiJI I I j- ~P ________________~I~'~~ , (LAST DATA WAS READ. I ·BUSY" DATA IS VALID IN OUTPUT LATCHES '~'N~O~T~B~~Y'J' 1 TO a x 1Ife... ----l--INTPNAL Tc tv, WF010901 Output Enable and Reset INTR OUT=-- - - - -WF011011 Figure 5: Timing Diagrams Note: All liming is measured from the 50% vollage points. The error curve of Figure 6b shows the worst case transfer function for the ADC0802. Here the specification guarantees that if we apply an analog input equal to the LSB analog voltage center-value, the AID will produce the correct digital code. UNDERSTANDING AID ERROR SPECS A perfect AID transfer characteristic (staircase waveform) is shown in Figure 6a. The horizontal scale is analog input voltage and the particular points labeled are in steps of 1LSB (19.53mV with 2.5V tied to the VREF/2 pin), The digital output codes which correspond to these inputs are shown as 0 - 1, 0, and 0 + 1. For the perfect AID, not only will center-value (A - 1,A,A + 1,. . .) analog inputs produce the correct output digital codes, but also each riser (the transitions between adjacent output codes) will be located ± Y2 LSB away from each center-value. As shown, the risers are ideal and have no width. Correct digital output codes will be provided for a range of analog input voltages which extend ± Y2 LSB from the ideal center-values. Each tread (the range of analog input voltage which provides the same digital output code) is therefore 1LSB wide. Next to each transfer function is shown the corresponding error plot. Notice that the error includes the quantization uncertainty of the AID. For example, the error at point 1 of Figure 6a is + 1,12 LSB because the digital code appeared Y2 LSB in advance of the center-value of the tread. The error plots always have a constant negative slope and the abrupt upside steps are always 1LSB in magnitude, unless the device has missing codes. FUNCTIONAL DESCRIPTION A functional diagram of the ADC0802 series of AID converters is shown in Figure 3. All of the package pinouts 6-27 Nole: All typical values have been guaranleed by characterizalion and ara not tested. ~ ADC0802~ADC0804 I I I are shown and the major logic control paths are drawn in heavier-weight lines. The device operates on the successive approximation principle (see APPLICATION NOTE A016 and A020 for a more detailed description of this principle). Analog switches are closed sequentially' by successive-approximation logic until the analog differential input voltage [VIN( +) - VIN( -)1 matches a voltage derived from a tapped resistor string across the reference voltage. The most significant bit is tested first and afterS comparisons (64 clock cycles), an S-bit binary code (1111 1111 = full-scale) is transferred to an output latch. Digital Details The converter is started by having CS and WR simultaneously low. This sets the start flip-flop (F/F) and the resulting "1" level resets the S-bit shift register, resets the Interrupt (INTR) F/F and inputs a "1" to the D flip-flop, DFF1, which is the input end of the S-bit shift register. Internal clock signals then transfer tllis "1" to the Q output of DFF1. The AND gate, G1, combines this "1" output with a clock signal to provide a reset Signal to t~start.£lF. If the set signal is no longer present (either WR or CS is a "1"), the start F/F is reset and the 8-bit shift register then can have the "1" clocked in, which starts the conversion process. If the set signal were to still be present, this reset pulse would have no effect (both outputs of the start F/F would be at a "1" level) and the S-bit shift register would continue to be held in the reset mode. This allows for asynchronous or wide CS and WR signals. After the "1" is clocked through the S-bit shift register (which completes the SAR operation) it appears as the input to DFF2. As soon as this "1" is output from the shift register, the AND gate, G2, causes the new digital word to transfer to the 3-state output latches. When DFF2 is subsequently clocked, the Q output makes a high-to-Iow transition which causes the INTR F/F to set. An inverting buffer then supplies the INTR output Signal. When data is to be read, the combination of both CS and RD being low will cause the INTR F/F to be reset and the 3state output latches will be enabled to provide the 8-bit digital outputs. at The normal operation proceeds as follows. On the highto-low transition of the WR input, the internal SAR latches and the Shift-register stages are reset, and the INTR output will be set high. As long as the C'S input and iNA input remain low, the AID will remain in a reset state. Conversion will start from 1 to 8 clock periods after at least one of these inputs makes a low-to-high transition. After the requisite number of clock pulses to complete the conversion, the INTR pin will make a high-to-Iow transition. This can be used to interrupt a processor, or otherwise Signal the availability of a new conversion. A RD operation (with CS low) will clear the INTR line high again. The device may be operated in the free-running mode by connecting INTR to the WR input with C'S = O. To ensure start-up under all possible conditions,. an external WR pulse is required during the first power-up cycle. A conversion-In-process can be interrupted by islluing a second start command. Transfer Function Error Plot +1LSB / - - - - - - - - 8~ 0+1 .~ I I I _J. ___ .1 _4 _ _ 1. I I I I ___5__ _ /--+-\-t-'H---\-' 3i7 :I I I 1 +--,-_-1 . ST'i I 0 ~ 0-1 ~ +1/2LSB -II2LSB I 2 4 I I QUANT. ERROR 6 I -1LSB ' - - - - ' - - ' - - - ' - - A-1 A A+1 A-I A A+l ANALOG INPUT (\I)NI ANALOG INPUT (V,N) SCOO4301 SCOOMOI a) Accuracy = ±O LSB; A Perfect AID Transfer Function Error Plot +1~BI------.r---- -1 LSB '--_-'-_=---1._ _ A-I A A+l ANALOG INPUT (ViNI A-1 A A+1 ANALOG INPUT (VIN) SC004701 SCOO4BOI b) Accuracy = ± h LSB Figure 6: Clarifying the Error Specs of an AID Converter 6-28 Note: All typical values have been guaranteed by characterization and are not tested. ADC0802-ADC0804 Digital Control Inputs Analog Input Current The digital control inputs (CS. RD. and WR) meet standard TTL logic voltage levels. These signals are essentially equivalent to the standard AID Start and Output Enable control signals. and are active low to allow an easy interface to microprocessor control busses. For non-microprocessor based applications. the CS input (pin 1) can be grounded and the standard AID Start function obtained by an active low pulse at the WR input (pin 3). The Output Enable function is achieved by an active low pulse at the RD input (pin 2). The internal switching action causes displacement currents to flow· at the analog inputs. The voltage on the onchip capacitance to ground is switched through the analog differential input voltage. resulting in proportional currents entering the V'N( +) input and leaving the V'N( _) input. These current transients occur at the leading edge of the internal clocks. They rapidly decay and do not inherently cause errors as the on-chip comparator is strobed at the end of the clock period. Input Bypass CapaCitors Analog Operation Bypass capacitors at the inputs will average these charges and cause a DC current to flow through the output resistances of the analog signal sources.. This charge pumping action is worse for continuous conversions with the V'N( +) input voltage at full-scale. For a 640kHz clock frequency with the V'N( +) input at 5V. this DC current is at a maximum of approximately 5/lA. Therefore. bypass capacItors should not be used at the analog Inputs or the VREF/2 pin for high resistance sources ( > 1kill. If input bypass capacitors are necessary for noise filtering and high source resistance is desirable to minimize capaCitor size, the effects of the voltage drop across this input resistance. due to the average value of the input current, can be compensated by a full-scale adjustment while the given source resistor and input bypass capaCitor are both in place. This is possible because the average value of the input current is a precise linear function of the differential input voltage at a constant conversion rate. The analog comparisons are performed by a capacitive charge summing circuit. Three capacitors (with precise ratioed values) share a common node with the input to an auto-zeroed comparator. The input capacitor is switched between V'N( +) and V'N( _). while two ratioed reference capacitors are switched between taps on the reference voltage divider string. The net charge corresponds to the weighted difference between the input and the current total value set by the successive approximation register. A correction is made to offset the comparison by 1.12 LSB (see Figure 6a). Analog Differential Voltage Inputs and Common-Mode Rejection This AID gains considerable applications flexibility from the analog differential voltage input. The V,N(-) input (pin 7) can be used to automatically subtract a fixed voltage value from the input reading (tare correction). This is also useful in 4mA-20mA current loop conversion. In addition. commonmode noise can be reduced by use of the differential input. Input Source Resistance Large values of source resistance where an input bypass capaCitor is not used, will not cause errors since the input currents settle out prior to the comparison time. If a lowpass filter is required in the system, use a low-value series resistor ( :5 1kil) for a passive RC section or add an op amp RC active low-pass filter. For low-source-resistance applications. (:5 1kill. a 0.11lF bypass capaCitor at the inputs will minimize EMI due to the series lead inductance of a long wire. A 100il series resistor can be used to isolate this capaCitor (both the Rand C are placed outside the feedback loop) from the output of an op amp. if used. The time interval between sampling V'N( +) and V'N( _) is 41.12 clock periods. The maximum error voltage due to this slight time difference between the input voltage samples is given by: ~Ve(MAX) = (V p)(21Tfem ) [ -4.5] fCLK where: ~Ve is the error voltage due to sampling delay Vp is the peak value of the common-mode voltage fern is the com mon.-mode frequency Stray Pickup The leads to the analog inputs (pins 6 and 7) should be kept as short as possible to minimize stray signal pickup (EM I). Both EMI and undesired digital-clock coupling to these inputs can cause system errors. The source resistance for these inputs should. in general, be kept below .5kil. Larger values of source resistance can cause undesired signal pickup. Input bypass capaCitors. placed from the analog inputs to ground, will eliminate this pickup but can create analog scale errors as these capcitors will average the transient input switching currents of the AID (see Analog Input Current). This scale error depends on both a large source resistance and the use of an input bypass capaCitor. This error can be compensated by a full· scale adjustment of the AID (see Full-Scale Adjustment) with the source resistance and input bypass capacitor in place, and the desired conversion rate. For example. with.a 60Hz common-mode frequenqy. fern. and a 640kHz AID clock, fCLK, keeping this error to 1.14 LSB (-5mV) would allow a common-mode voltage. Vp. given by: [~Ve(MAX)(fCLK)] Vp = - - - - - - ' (21Tfem )(4.5) or Vp = (5x10- 3) (640 x 103) . (6.28) (60) (4.5) ",,1.9V The allowed range of analog input voltage usually places more severe restrictions on input common-mode voltage levels than thiS. An analog input voltage with a reduced span and a relatively large zero offset can be easily handled by making use of the differential input (see Reference Voltage Span Adjust). Reference Voltage Span Adjust For maximum application flexibility, these AIDs have been designed to accommodate a 5V. 2.5V or an adjusted 6-29 Note: All typical values 'have been guaranteed by characterization and are not tested. " ADCOa02-ADCOa04 §c voltage reference. This has been achieved in the design of thelC as shown in Figure 7. VREF' (5V) I I 20 >-....w~-+ TO VREFI2 ~ . FS>._--I ADJ. R VREFI2 I I 9 ,- t-}fR : DECODE TO 2""I1--+-......,Z=E=R:"::O:":S:7'H:::IFT:=':'V=O"" ::cA:":G=E:----+ VIN( -) LT DIGITAL CIRCUITS -i ANALOG CIRCUITS TC020901 I Figure 8: Offsetting the Zero of the ADC0802 and Performing an Input Range . (Span) Adjustment t-}- ~}- 5V (VREF) ...., R AGND 8 .~ DG~~O VaN :!:10V 2R 6 VIN(+) TC021001 2R Figure 7: The VREFERENCE Design on the IC v+ ADC0802AOC0804 7 ~ 'Tl0~F . ':' ~ VaN(-) ';:- Notice that the reference voltage for the IC is either V2 of the voltage which is applied to the V+ supply pin, or is equal to the voltage which is externally forced at the VREF/2 pin. This allows for a pseudo-ratiometric voltage reference using, for the V + supply, a 5V reference voltage. Alternatively, a voltage less than 2.5V can be applied to the VREF/2 input. The internal gain to the VREF/2 input is 2 to allow this factor of 2 reduction in the reference voltage. TC036201 Figure 9: Handling ±10V Analog Input Range 5V Such an adjusted reference voltage can accommodate a reduced span or dynamic voltage range of the analog input voltage. If the analog input voltage were to range from 0.5V to 3.5V, instead of OV to SV, the span would be 3V. With 0.5V applied to the VIN(-) pin to absorb the offset, the refererice voltage can be made equal to V2 of the 3V span . or 1.5V: The AID now will encode the VIN(+) signal from O.SV to 3.5V with the 0.5V input corresponding to zero and the 3.5V input corresponding to full-scale. The full 8 bits of resolution are therefore applied over this reduced analog input voltage range. The requisite connections are shown in Figure 8. For expanded scale inputs, the circuits of Figures 9 and 10 can be used. (VREF) R VIN :!:5V R '" v+ ~ ADC0802ADC0804 f 6 VaN(+) ~ + 10PF 'liN( -) TC036301 Figure 10: Handllng±5V Analog Input Range Reference Accuracy Requirements The converter can be operated in a pseudo-raticimetric mode or an absolute mode. In ratiometric converter applications, the magnitude of the reference voltage is a factor in both the output of the source transducer and the output of the AID converter and therefore cancels out in the final digital output code. In absolute conversion applications, both the initial value and the temperature stability of the 6-'30 Note: All typical values have been guaranteed by characterization and are not tested. ADC0802-ADC0804 the magnitude of the VREF/2 input (pin 9) for a digital output code which is just changing from 1111 1110 to 1111 1111. When offsetting the zero and using a span-adjusted VREFI 2 voltage, the full-scale adjustment is made by inputting VMIN to the VIN(-) input of the AID and applying a voltage to the VIN( +) input which is given by: reference voltage are important accuracy factors in the operation of the AID converter. For VREF/2 voltages of 2.5V nominal value, initial errors of ±10mV will cause conversion errors of ± 1LSB due to the gain of 2 of the VREF/2 input. In reduced span applications, the initial value and the stability of the VREF/2 input voltage become even .more important. For example, if the span is reduced to 2.5V, the analog input LSB voltage value is correspondingly reduced from 20mV (5V span) to 10mV and 1LSB at the VREF/2 input becomes 5mV. As can be seen, this reduces the allowed initial tolerance of the reference voltage and requires correspondingly less absolute change with temperature variations. Note that spans smaller than 2.5V place even tighter requirements on the initial accuracy and stability of the reference source. In general, the reference voltage will require an initial adjustment. Errors due to an improper value of reference voltage appear as full-scale errors in the AID transfer function. IC voltage regulators may be used for references if the ambient temperature changes are not excessive. VIN( + )fsadj = VMAX - 1.5[ where: VMAX = the high end of the analog input range and VMIN = the low end (the offset zero) of the analog range. (Both are ground referenced.) Clocking Option The clock for the AID can be derived from an external source such as the CPU clock or an external RC network can be added to provide self-clocking. TheCLK IN (pin 4) makes use of a Schmitt trigger as shown in Figure 11. Heavy capacitive or DC loading of the CLocK R pin should be avoided as this will disturb normal converter operation. Loads less than 50pF, such as driving up to 7 AID converter clock inputs from a single CLK R pin of 1 converter, are allowed. For larger clock line loading, a CMOS or low power TTL buffer or PNP input logic should be used to minimize the loading on the CLK R pin (do not use a standard TTL buffer). Zero Error The zero of the AID does not require adjustment. If the minimum analog input voltage value, VIN(MIN), is not ground, a zero offset can be done. The converter can be made to output 0000 0000 digital code for this minimum input' voltage by biasing the AID VIN(-) input at this VIN(MIN) value (see Applications section). This utilizes the differential mode operation of the AID. The zero error of the AID converter relates to the location of the first riser of the transfer function and can be measured by grounding the VIN(-) input and applying a small magnitude positive voltage to the VIN( +) input. Zero error is the difference between the actual DC input voltage which is necessary to just cause an output digital code transition from 0000 0000 to 0000 0001 and the ideal 1.12 LSB value (Y2 LSB = 9.8mV for VREF/2 = 2.500V). Full-Scale Adjust Restart During a Conversion If the AID is restarted (CS and WR go low and return high) during a conversion, the converter is reset and a new conversion is started. The output data latch is not updated if the conversion in progress is not completed. The data from the previous conversion remain in this latch. Continuous Conversions In this application, the CS input is grounded and the WR input is tied to the INTR output. This WR and INTR node should be momentarily forced to logic low following a power-up cycle to insure circuit operation. See Figure 12 for details. . The full-scale adjustment can be made by applying a differential, input voltage which is 1Y2 LSB down from the desired analog full-scale voltage range and then adjusting \".J ClKR 19 ADC0802ADC0804 R r ClK IN C 4 (V MAX - VMIN)] , 256 ~ V- ClK 1 'ClK= 1.1 RC R=10kO AF021911 Figure 11: Self-Clocking the AID 6-31 Note: All typical values have been guaranteed by characterization and are not tested. 3 ADC0802-ADC0804 I r--.________~1~OkI\r-.,..__------__.:;5V (OR VREF)* I C\I I ,--",--o-.;..1=.., CS L-<>-...:2~RD ~~--~*-~...:3~-W-R '-----i--C.-4=-1CLK IN ~:>-:~INTR 7 VJN(+) ADC0802- ADC0804 o--o--:'-I:~~ DATA OUTPUTS 10 VREFI2 DOND COOO641 I Figure 12: Free-Running Connection inductance tantalum filter capacitor should be used close to the converter V + pin, and values of 1JJ.F or greater are recommended. If an unregulated voltage is available in the system, a separate SV voltage regulator for the converter (and other analog circuitry) will greatly reduce digital noise on the V + supply. An ICL7663 can be used to regulate such a supply .from an input as low as S.2V. Driving the Data Bus This CMOS AID, like MOS microprocessors and memories, will require a bus driver when the total capacitance of the data bus gets large. Other circuitry, which is tied to the data bus, will add to the total capacitive loading, even in 3state (high-impedance mode). Backplane bussing also greatly adds to the stray capacitance of the data bus. There are some alternatives available to the designer to handle this problem. Basically, the capacitive loading of the data bus slows down the response time, even though DC specifications are still met. For systems operating with a relatively slow CPU clock frequency, more time is available in which to establish proper logic levels on the bus and therefore higher capacitive loads can be driven (see Typi- Wiring and Hook-Up Precautions Standard digital wire-wrap sockets are not satisfactory for breadboarding with this AID converter. Sockets on PC boards can be used. All logic signal wires and leads should be grouped and kept as far away as possible from the analog signal leads. Exposed leads to the. analog inputs can cause undesired digital noise and hum pickup;. therefore, shielded leads may be necessary in many applications. cal Performance Characteristics). At .higher CPU clock frequencies time can be extended for 110 reads (and/or writes) by inserting wait states (80BO) or using clock-extending circuits (6BOO). Finally, if time is short and capacitive loading is high, external bus drivers must be used. These can be 3-state buffers (low power Schottky is recommended, such as the 74LS240 series) or special higher-drive-current products which are deSigned as bus drivers. High-current bipolar bus drivers with PNP inputs are recommended. A single-point analog ground should be used which is separate from the logic ground points. The power supply bypass capaCitor and the self-clocking capacitor (if used) should both be returned to digital ground. Any VREF/2 bypass capaCitors, analog input filter capacitors, or input signal shielding should be returned to the analog ground point. A test for proper grounding is to measure the zero error of the AID converter. Zero errors in excess of Y4 LSB can usually be traced to improper board layout and wiring (see Zero Error for measurement). Further information can be found in A01 B. Power Supplies Noise spikeS on the V + supply line can cause conversion errors as the comparator will respond to this noise. A .low- 6-32 Note: All typical values have been guaranteed by characterization and are not tested. ADC0802-ADC0804 For example, for an output LED display of 1011 0110, the MS character is hex B (decimal 11) and the LS character is hex (and decimal) 6, so TESTING THE A/D CONVERTER There are many degrees of complexity associated with testing an AID converter. One of the simplest tests is to apply a known analog input voltage to the converter and use LEOs to display the resulting digital output code as shown in Figure 13. VOUT = (-11 + - 6) (5.12) = 3.64V. 16 256 Figures 14 and 15 show more sophisticated test circuits. For ease of testing, the V~EF/2 (pin 9) should be supplied with 2.560V and a V supply voltage of 5.12V should be used. This provides an LSB value of 20mV. If a full-scale adjustment is to be made, an analog input voltage of 5.090V (5.120 - fY2 LSB) should be applied to the VIN( +) pin with the VIN( _) pin grounded. The value of the VREF/2 input voltage should be adjusted until the digital output code is just changing from 1111 1110 to 1111 1111. This value of VREF/2 should then be used for all the tests. R ANALOG ..c·· INPUT ",... R 100XANALOG ERROR VOLTAGE 15OpF-;; lD003501 ,. 3 N.O. STMi O.1"F 17 5 16 DIGITAL INPUT A0C0802ADC0804 7 '::" 2.560V IIREF/2 G.1 PF .. 6 YlN(+) T Figure 14: AID Tester with Analog Error Output. This circuit can be used to generate "error plots" of Figure 6. TEST D 12 10 11 ~~~~ ~ lDOO3601 Figure 15: Basic "Digital" AID Tester '" • DOND AID UNDER 15 13 . - - - - - , DIGITAL OUTPUT APPLICATIONS Interfacing 8080/85 or Z-SO Microprocessors This converter has been designed to directly interface with 8080/85 or Z-80 Microprocessors. The 3-state output capability of the AID eliminates the need for a peripheral interface device, although address decoding is still required to generate the appropriate CS for the converter. The AID can be mapped into memory space (using standard memory-address decoding for CS and the MEMR and MEMW strobes) or it can be controlled as an I/O device by using the I/O Rand I/O W strobes and decoding the address bits AO ~ A7 (or address bits A8 ~ A15, since they will contain the same 8-bit address information) to obtain the CS input. Using the I/O space provides 256 additional addresses and may allow a simpler 8-bit address decoder, but the data can only be input to the accumulator. To make use of the additional memory reference instructions, the AID should be mapped into memory space. See A020 for more discussion of memory-mapped vs I/O-mapped interfaces. An example of an AID in I/O space is shown in Figure 16. Ukll (I) LEOs (I) LOO0341I Figure 13: Basic Tester for the AID The digital-output LED display can be decoded by dividing the 8 bits into 2 hex characters, one with the 4 most-significant bits (MS) and one with the 4 least-significant bits (LS). The output is then interpreted as a sum of fractions times the full-scale voltage: MS LS) VOUT= (-+-(5.12)V. 16 256 6-33 Note: All typical values have been guaranteed by characterization and are not tested. rI • 3 ADC0802-ADC0804 ·CD § ..... INT(14) ..... I (II UOWR(27)· i § UORD(25)· 10k • 1 - '-" CS ~ \iii iiD 4 ANALOG INPUTS -- 'W CLKIN DBt 5 INTR 87 V!N(+) V!N(-) A0C0802AOC0804 :_~~AGND :T ':J, ' oio V+ 1F5V CLKR 18 (LS8)08o 17 VREFI2 DGND D8t ~1~F 080(13)· r 18 DS, (18)· D82(11)· 15 DB4 14 13 DBa 12 D8e 11 (MS8)DB7 DIb(t)* Dib 014(5)· DBs(18)· DBt(20)· DB7 (7)* 5V I Y I ~ ~ "'"r-~ ~ T5 T4 Ta T2 T, TO I V+ OUT Bs 8.t 8131 BUS COMPARATOR Ib 82 ~ 8, So 1 ~ I Ao,s(38) Ao,4 (38) Ao,a (38) Ao,2 (37) Ao" (40) Ao,o (1) 1 #, COOO6511 Note: Pin numbers for 8228 system controller: others are 8080A Figure 16: ADC0802 to 8080A CPU Interface The standard control-bus signals of the 8080 (CS, RD and WR) can be directly wired ,to the digital control inputs of the AID, since the bus timing requirements, to allow both starting the converter, and outputting the data onto the data bus, are met. A bus driver should be used for larger microprocessor Systems where the data bus leaves the PC board and lor must drive capacitive loads larger than 100pF. generalized strobes to provide the appropriate signals. An advantage of operating the AID in I/O space with the Z-80 is that the CPU will automatically insert one wait state (the RD and WR strobes are extended one clock period) to allow more time for the I/O devices to respond. Logic to map the AID in I/O space is shown in Figure 17. By using MREO in place of 10RO, a memory-mapped configuration results. Additional I/O advantages exist as software DMA routines are available and use can be made of the output data transfer which exists on the upper 8 address lines (A8 to A 15) during I/O input instructions. For example, MUX channel selection for the AID can be accomplished with this operating mode. . The 8085 also provides a generalized RD and WR strobe, with an 101M line to distinguish I/O and memory requests. The circuit of Figure 17 can again be used, with 101M in place of 10RO for a memory-mapped interface, and an extra inverter (or the logic equivalent) to provide 101M for an I/O-mapped connection. It is useful to note that in systems where the AID converter is 1 of 8 or fewer I/O-mapped devices, no address-decoding circuitry is necessary. Each of the 8 address bits (AO to A7) can be directly used as CS inputs, one for each I/O device. Interfacing the Z-80 and 8085 The Z-80 and 80B5 control buses are slightly different from that of the 8080. General RD and WR strobes are provided and separate memory request, MREQ, and 110 request, 10RQ, signals have to be combined with the 6-34 Note: All typical values have been guaranteed by characterization and are not tested. ADC0802-ADC0804 Interfacing 6800 Microprocessor Derivatives (6502, etc.) APPLICATION NOTES Some applications bulletins that may be found useful are listed here: A016 "Selecting AID Converters," by Dave Fullagar. A018 "Do's and Dont's of Applying AID Converters," by Peter Bradshaw and Skip Osgood. A020 "A Cookbook Approach to High Speed Data Acquisition and Microprocessor Interfacing," by Ed Sliger. A030 "The ICL7104 - A Binary Output AID Converter for Microprocessors," by Peter Bradshaw. R005 "Interfacing Data Converters & Microprocessors," by Peter Bradshaw et ai, Electronics, Dec. 9, 1976, The control bus for the 6800 microprocessor derivatives does not use the RD and WR strobe signals. Instead it employs a single R/W line and additional timing, if needed, can be derived from the cp2 clock. All 1/0 devices are memory-mapped in the 6800 system, and a special signal, VMA, indicates that the current address is valid. Figure 16 shows an interface schematic where the AID is memorymapped in the 6800 system. For simplicity, the CS decoding is· shown using 1/2 DM8092. Note that in many 6800 systems, an already decoded 4/5 line is brought out to the common bus at pin 21. This can be tied directly to the CS pin of the AID, provided that no other devices are addressed at HEX ADDR: 4XXX or 5XXX. Ri)2 In Figure 19 the ADC0802. series is interfaced to the MC6800 microprocessor through (the arbitrarily chosen) Port B of the MC6820 or MC6821 Peripheral Interface Adapter (PIA). Here the CS pin of the AID is grounded since the PIA is already memory-mapped in the MC6800 system and no CS decoding is necessary. Also notice that the AID output data lines are connected to the microprocessor bus under program control through the PIA and therefore the AID RD pin can be grounded. Wii3 ADC0802ADC0804 74C32 AF022011 Figure 17: Mapping the AID as an I/O device for use with the z-eo CPU A 1111 1 as ~ v+ 1< AD Imz 4 5 ANALOG INPUTS 150pFF~ • 7 (LS8)DIo ClKIN iNTi VJN(+) DB! ADCII802ADCOII04 DIo DBa V!N(-) DBt AGND • VREFI2 10 DGND DBe (MS8)DIIr rH ,f, ? 20 f1i" Cl.KR DIIs ~~ F 7 '18 Dz (31) 00 Dz(3O)iiii lit 12811321 Os (2lt(3OJ De (27) iii Dr(28)ijj 1 '~3 YiDM~ 4 5 ( ABC) 123 lID (33) 1311 01(32)1281 17 11 15 14 13 12 11 2 $V. AI2 (22) [34J ,.,. .A Ala (23)iNi A14t241(MJ 4-----" AI, (25) [33J VMA(5) [FJ COOO6611 'Note 1: Numbers in parentheses refer to MC6800 CPU pinout. "Note 2: Numbers or letters in brackets refer to standard MC6800 system common bus code. Figure 18: ADC0802 to MC6800 CPU Interface 6-35 Note: All typical values have been guaranteed by characterization and are not tested. 18 19 10k CSt CB2 y 1~ 1 d, ANALOG INPUTS .... - 2 iii Wi ~ 4 CLKIN 5 8- INTA ViN(+) 7 ViN(-) 8 AGND '=d,"=:F r <>io 150pF CS 9 VREF/2 DGND '-../ Y+ CLKA MC8820 ~5Y 19 18 (LS8)DBo 17 DB1 18 ADC0802DB:! 15 ADC0804 DBa 14 D8.t 13 Dis 12 Die 11 (MSB)DB7 (IICS852O) 10 11 12 13 14 15 18 17 No PIA PSt PB2 PB3 PB.t PBs Pie PBr C[)l)06711 Figure 19: ADC0802 to MC6820 PIA Interface 6-36 Note: All typical values have been guaranteed by characterization and are not tested. p .... ICL 7106/ICL 7107 3 Y2-Digit LCD/LED Single-Chip A/D Converter i ...... GENERAL DESCRIPTION FEATURES The IntersillCL7106 and 7107 are high performance, low power 3 h-digit AID converters containing all the necessary active devices on a single CMOS I.C. Included are sevensegment decoders, display drivers, a reference, and a clock. The 7106 is designed to interface with a liquid crystal display (LCD) and includes a backplane drive; the 7107 will directly drive an instrument-size light emitting diode (LED) display. The 7106 and 7107 bring together an unprecedented combination of high accuracy, versatility, and ,true economy. It features auto-zero to less than 10/lV, zero drift of less than 1/lV input bias current of 10 pA max., and rollover error of less than one count. True differential inputs and reference are useful in all systems, but give the designer an uncommon advantage when measuring load cells, strain gauges and other bridge-type transducers. Finally, the true economy of single power supply operation (7106), enables a high performance panel meter to be built with the addition of only 10 passive components and a display. • • • • rc, y' l" r-r fA t: ~ - _ !II .. t:. 08C3 TEST REF HI F1 G' REFLO ., COMMON INLO AlZ BUFF F2 IN HI ICL7107CJL ICL7107CDL ICL7107CPL O·C to +70·C O·C to +70·C O·C to +70·C ICL7106EV/Kit ICL71 07EVIKit Evaluation kits contain IC, display, circuit board, passive components and hardware. 40 40 40 44 pin pin pin pin ceramic DIP plastic DIP CERDIP Surface Mount 40 pin CERDIP 40 pin ceramic DIP 40 pin plastic DIP § "'(TENSI - E3 BP POL ~~ A84 ~:. D1 C1 B1 C'l'= .PlGNO II G2 C3 A3 G3 y+ 83 F2 (MINUS) O·C O·C O·C O·C OSC 2 OSC 1 INT y- .- ('0001_ POL to +70·C to +70·C to +70·C to +70·C PACKAGE ICL7106CDL ICL7106CPL ICL7106CJL ICL7106CM44 TEST OSC 3 C-AEF 112 U • ORDERING INFORMATION TEMPERATURE PART NUMBER RANGE C'REF C2 a AI • • O$C' OSC2 C, 81 A' o Guaranteed Zero Reading for 0 Volts Input on All Scales True Polarity at Zero for Precise Null Detection 1pA Typical Input Current True Differential Input and Reference Direct Display Drive - No External Components Required - LCD ICL7106 .,... LED ICL7107 Low Noise":'Lesll Than 15/lV pop On-Chip Clock and Reference Low Power Dissipation-Typically Less Than 10mW No Additional Active Circuits Required New Small Outline Surface Mount Package Available Evaluation Kit Available • • • • F3 83 (71061 (7107) CD006801 .............. N N N N N N , . , .:u..CDWQUCDCI.&..WQ CD03241 I Figure 1: Pin Configurat/()ns 6-37 Note: All typical values have been guaranteed by characterization and are not tested. e........ 301650-002 1C;1-7j~6jICL 7107 , '"~ y . ' .'. • " : ~ ABSOLUTE MAXllliluMRATINGS Power' Dissipation (Note 2)' Ceramic Package .............................. 1000mW Plastic Package .................................... 800mW. Operating Temperature ........................ O·C to + 70·C Storage Temperature ........... : .......... -65·'C to + 150·C Lead Temperature (Soldering, 10sec) ................. 300·C Supply Voltage ICL71 06, V+ to V- ................................ 15V ICL71 07, V+ to GND ..................• , ......... +6V ICL71 07, V- to GND .............................. ':'9V Analog Inpilt Voltage (either iriput)(Note 1) ... V + td VReference Input Voltage (either input) ......... V + to VClock I n p u t ' · ICL7106 ................ : .................... TEST to V + ICL7107 .........................;............. GND to V+ . Stresses above those listed under Absol"le M~imum .Ratings may cause permanent damage to the device. These are stress ratings only, and func~onal operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Note 1: Input voltages may exceed the suppiy voltages provided the input current is limited to ± 100"A. Note 2: Dissipation rating assu~es device.' is mounted )Nith aU leads soldered to printed circuit board. ELECTRICAL CHARACTERISTICS (Note 3) MIN TYP MAX UNIT -000.0 ±OOO.O + 000.0 Digital Reading VIN =VREF VREF-l00mV 999 999/1000 1000 Digital Reading Rollover Error (Difference in reading for equal poSitive and negatiVe inputs. near Full' Scale) - VIN = + VIN",,2oo.0mV -1 ±.2 +1 Counts Unearity (Max. deviation from best straight line' lit) Full scale = 200.0mV or lull scale", 2.OO0V (Note 6) -1 ±.2 +1 Counts Common Mode Rejection Ratio (Note 4) VCM = ±IV, Villi = OV Full Scale = 200.0mV 50 Noise (Pk·Pk value not exceeded 95% Of time) VIN =OV Full Scale = 200.0mY 15 Leakage" Current Input YIN = 0 (Note 6) 1 10 pA Zero Reading Drift YIN=O O· < TA < 70·C (Note 6) 0.2 1 p.Y/·C Scale Factor Temperature Coefficient YIN = 199:0mY 0·"<_ _ TODIGITIU. . . ~ - GI.=."+--(!1}-.......---+--.....=--+-------' I.'" co_ -----~------~------+---------------~ L________________________ _ I INPUT LOW _ 80003411 Figure 4: Analog Section of 710617107 6-39 Note: All typical values have been guaranteed by characterization and are not tested. S ICL71061lCL7107 it: . d Auto-zero phase ::::. . CD ~ .... ~ error. However, by selecting the reference capacitor such that it is large enough in comparison to the stray capacitance, this error can be. held to less than 0.5 count worst case. (See Component Value Selection.) During auto-zero three things happen. First, input high and low are disconnected from the pins and internally shorted to analog COMMON. Second, the reference capacitor is charged to the reference voltage. Third, a feedback loop is closed around the system to charge the auto-zero capacitor CAZ to compensate for offset voltages in the buffer amplifier, integrator, and comparator. Since the comparator is included in the loop, the AlZ accuracy is limited only by the noise of the system. In any case, the offset referred to the input is less than 10jJV. Analog COMMON This pin is included primarily to set the common mode voltage for battery operation (7106) or for any system where . the input Signals are floating with respect to the power supply. The COMMON pin sets a voltage that is approximately 2.8 volts more negative than the positive supply. This is selected to give a minimum end-of-Iife battery voltage of about 6V. However, the analog COMMON has some of the attributes of a reference voltage. When the total supply voltage is large enough to cause the zener to regulate (> 7V), the COMMON voltage will have a low voltage coefficient (0.001 %IV), low output impedance (~15n), and a temperature coefficient typically less than 80ppml"C. The limitations of the on-Chip reference should also be recognized, however. With the 7107, the internal heating which results from the LED drivers can cause some degradation in performance. Due to their higher thermal resistance, plastiC parts are poorer in this respect than ceramic. The combination of reference Temperature Coefficient (TC), internal chip· dissipation, and package thermal resistance can increase noise near full scale from 25 IN to 80#lVP-P. Also the linearity in going from a high dissipation count such as 1000 (20 segments on) to a low dissipation count such as 1111 (8 segments on) can suffer by a count or more. Devices with a positive TC reference may require several counts to pull out of an overrange condition. This is because overrange is a low dissipation mode, with the three least significant digits blanked. Similarly, units with a negative TC may cycle between overrange and a nonoverrange count as the die alternately heats and cools. All these problems are of course eliminated if an external reference is used. The 7106, with its negligible dissipation, suffers from none of these problems. In either case, an external reference can easily be added, as shown in Figure 5. Signal Integrate phase During signal integrate, the auto-zero loop is opened, the internal short is removed, and the internal input high and low are connected to the external pins. The converter then integrates the differential voltage between IN HI and IN LO for a fixed time. This differential voltage can be within a wide common roode range: up to one volt from either supply. If, on the other hand, the input signal has no return with . respect to the converter power supply, IN LO can be tied to analog COMMON to establish the correct common-mode voltage. At the end of this phase, the polarity of the integrated signal is determined. De-Integrate phase' The final phase is de-integrate, or reference integrate. Input low is internally connected to analog COMMON and input high is connected across the previously charged reference capacitor. Circuitry within the chip ensures that the capacitor will be connected with the correct polarity to cause the integrator output to return to zero. The time required for the output to return to zero is proportional to the input signal. Specifically the digital reading displayed is (~). VREF Differential Input 1000 The input can accept differential voltages anywhere within the common mode range of the input amplifier, or specifically from 0.5 volts below the positive supply to 1.0 volt above the negative supply. In this range, the system .has a CMRR of 86 dB typical. Mowever, care must be exercised to assure the integrator Olltput does not saturate. A worst case condition would be a large positive comrrionmode voltage with a near full-scale negative differential input voltage. The negative input signal drives the integrator positive when most of its swing has been used up by the positive common mode voltage. For these critical applications the integrator output swing can be reduced to less than the recommended 2V full scale Swing with little loss of accuracy. The integrator output can swing to within 0.3 volts of either supply without loss of linearity. See A032 for a discussion of the effects of stray capacitance. y+ y' y' 6.akll 710617107 710617107 ICL lOll 1" COMMON Differential Reference y- (a, The reference voltage can be generated anywhere within the power supply voltage of the converter. The main source of common mode error is a roll-over voltage caused by the reference capaCitor losing or gaining charge to stray capacity on its nodes. If there is a large common mode voltage, the reference capacitor can gain charge (increase voltage) when called up to de-integrate a positive signal but lose charge (decrease lioltage) when called up to deintegrate a negative input signal. This difference in reference for positive or negative input voltage will give a roll-over (b' 08012601 Figure 5: Using an External Reference Analog COMMON is also used as the input low return during auto-zero and de-integrate. If IN LO is different from analog COMMON, a common mode voltage exists in the system and is taken careot by the excellent CMRR of the converter. However, in some applications IN LO will be set at a fixed known voltage (power supply common for 6-40 Note: All typical values have been guaranteed by characterization and are not tested. .O~O[b ICL7108/ICL 7107 DIGITAL SECTION instance). In this application, analog COMMON should be tied to the same pOint, thus removing the common mode voltage from the converter. The same holds true for the reference voltage. If reference can be conveniently tied to analog COMMON, it should be since this removes the common mode voltage from the reference system. Within the IC, analog COMMON is tied to an N channel FET that can sink approximately '30mA of current to hold the voltage 2.8 volts below the positive supply (when a load is trying to pull the common line positive). However, there is only 10pA of source current, so COMMON may easily be tied to a more negative voltage thus over-riding the internal reference. v' 1Mu TOlCD DECIMAL POINT '------0 ~~c'";~ANE O50127Of Figure 6: Simple Inverter for Fixed Decimal Point v' 7106 BPl----_H DECIMAL [ POINT SELECT TEST a S The TEST pin serves two functions. On the 7106 it is coupled to the internally generated digital supply through a 500n resistor. Thus it can be used as the negative supply for externally generated segment drivers such as decimal points or any other presentation the user may want to include on the LCD display. Figures 8 and 9 show such an application. No more than a 1mA load should be applied. INTEASIL 111750 § Figures 8 and 9 show the digital section for the 7106 and ...... 7107, respectively. In the 7106, an internal digital ground is generated from a 6 volt Zener diode and a large P channel :.. souroe follower. This supply is made stiff to absorb the ... relative large capacitive currents when the back plane (BP) voltage is switched. The BP frequency is the clock frequency divided by 800. For three readings/second this is a 60Hz square wave with a nominal amplitude of 5 volts. The segments are driven at the same frequency and amplitude and are in phase with BP when OFF, but out of phase when ON. In all cases negligible DC voltage exists across the segments. Figure 9 is the Digital Section of the 7107. It is identical to the 7106 except that the regulated supply and back plane drive have been eliminated and the segment drive has been increased from 2 to 8 mA, typical for instrument size common anode LED displays. Since the 1000 output (pin 19) must sink current from two LED segments, it has twice the drive capability or 16mA. In both devices, the polarity indication is "on" for negative analog inputs. If IN LO and IN HI are reversed, this indication can be reversed also, if desired. TEST 7106 P .... CD4030 __ ..JI L -_ _ _ _ _---'--'-...J \OND 05012801 Figure 7: Exclusive 'OR' Gate for Decimal Point Drive The second function 'is a "lamp test". When TEST is pulled high (to V + ) all segments will be turned on and the display should read - 1888., The TEST pin will sink about 10mA under these conditions. Caution: on the 7106, in the lamp test mode, the segments have a constant DC voltage (no square-wave) and may burn the LCD display if left in this mode for several minutes. 6-41 Note: All typical values have been guaranteed by characterization and are not tested. ..S~ CL'7:tCl811CL g ..a8 I 7107 DISPLA,( FONT C:23'1SG189 _ ~ ... . ........ . . . ........ --- - -----------------------.-;!!!-----.-+'!----.---.!!-------------.____.____ .____ .__ 3 LCO04501 Figure 8: Digital Section 7106 Ol231.f56189 ---f'r-~~;-,,:r------~~;_II~:t::J:::t:~--~~==~v37 t TeST "0000 I L----+~~~--_4~~~_~~-_-_~_-_-_-_-_-_-_-_-_-_--_-_~_-_-_-_-_-~-_~_~_-_-_~~~.~$I g~~~~~ osc, OSC2 OSC3 LC004611 Figure 9: Digital Section 7107 6-42 Note: All typical values have been guaranteed by characterization and are not tested. .O~DlL ICL 7106/ICL7107 System Timing O.lO~F, respectively. Of course, if different oscillator frequencies are used, these values should be changed in inverse proportion to maintain the same' output swing. Figure 10 shows the clocking arrangement used in the 7106 and 7107. Three basic clocking arrangements can be used: 1. An external oscillator connected to pin 40. 2. A crystal between pins 39 and 40. 3. An R-C oscillator using all three pins. I 710617107 I An additional requirement of the integrating capacitor is that it must have a low dielectric absorption to prevent rollover errors. While other types of capacitors are adequate for this application, polypropylene capaCitors give undetectable errors at reasonable cost. I I I The size of the auto-zero capacitor has some influence on the noise of the system. For 200mV full scale where, noise is very important, a 0.47~F capaCitor ,is recommended. On the 2 volt scale, a 0.047~F capacitor increases the speed of recovery from overload and is adequate for noise on this scale. TO : COUNTER I I I I I I I I I I L_______ _ ~________ ~ o Auto-Zero CapaCitor I I I e. g -e.. .... ________ J EXTERNAL OSCILLATOR Reference CapaCitor A 0.1 ~F capacitor gives good results in most applications. However, where a large common mode voltage exists (i.e. the REF LO pin is not, at analog COMMON) and a 200mV scale is used, a larger value is required to prevent roll-over error. Generally 1.0~F will hold the roll-over error to O.S count in this instance. TE_T (710&) . c,rGND(7107) lCO04701 Figure 10: Clock Circuits The OSCillator frequency is divided by four before it clocks decade counters. It is then further divided to form the three convert-cycle phases. These are signal' integrate (1000 counts), reference de-integrate (0 to 2000 counts) and auto-zero (1000 to 3000 counts). For signals less than full scale, auto-zero gets the unused portion of reference deintegrate. This makes a complete measure cycle of 4,000 counts (16,000 clock pulses) independent of input voltage. For three readings/second, an oscillator frequency of 48kHz would be used. ' To achieve maximum rejection of 60Hz pickup, the signal integrate cycle should be a multiple of 60Hz. Oscillator frequencies of 240kHz, 120kHz, 80kHz, 60kHz, 48kHz, 40kHz, 33 "'13kHz, etc. should be selected, For SOHz rejection, Oscillator frequencies of 200kHz, 100kHz, 6693 kHz, SOkHz, 40kHz, etc. would be suitable. Note that 40kHz (2.S readings/second) will reject both SO and 60Hz (also 400 and 440Hz). ~he Oscillator Components For all ranges of frequency a 100kn resistor is, recommended and the capacitor is selecte,d from the equation f = 0.45. For 48kHz clock (3 readings/second),C='100pF. RC Reference Voltage The analog input required to generate full-scale output (2000 counts) is: VIN = 2VREF. Thus, for the 200.0mV and 2.000 volt scale, Vref should equal 100.0 mV and 1.000 volt, respectively. However, in many applications where the AID is connected to a transducer, there will exist a scale factor other than unity between the input voltage and the digital reading. For instance, in a weighing system, the designer might like to have a full scale reading when the voltage from the transducer is 0.682V. Instead of dividing the input down _ , to 200.0mV, the designer should use the input voltage ~ directly and select VREF = 0.341V. Suitable values for integrating resistor and capacitor would be 120kn and 0.22~F. This makes the system slightly quieter and also avoids a divider network on the input. The 7107 with ±SV supplies can accept input Signals up, to ±4V. Another advantage of this system occurs when a digital reading of zero is desired for VIN O. Temperature 'and weighing systems with a variable tare are examples. This offset reading can be conveniently generated by connecting the voltage transducer between IN HI and COMMON and the variable (or fixed) offset voltage between COMMON and IN LO. COMPONENT VALUE SELECTION Integrating Resistor Both the buffer amplifier and the integrator have a class A output stage with 100pA of quiescent current. They can supply 20pA of drive current with negligible non-linearity. The integrating resistor should be large enough to remain in this very linear region over the input voltage range, but small enough that undue leakage requirements are not placed on the PC board. For 2 volt full scale, 470kn is near optimum and similarly a 47kn for a 200.0 mV scale. *' Integrating Capacitor The integrating capacitor should be selected to give the maximum voltage swing that ensures tolerance build-up will not saturate the integrator swing' (approx. 0.3 volt from either supply). In the 7106 or the 7107, when the analog COMMON is used as a reference, a nominal ±2 volt full scale integrator swing is fine. For the 7107 with ±S volt supplies and analog COMMON tied to supply ground, a ±3.S to ±4 volt swing is nominal. For three readings/second (48kHz clock) nominal values for CINT are 0.22~F and 7107 Power Supplies The 7107 is designed to work from ±SV supplies. However, if a negative supply is not available, it can be generated from the clock output with 2 diodes, 2 capacitors, and an inexpensive I.C. Figure 11 shows this application. See ICL7660 data sheet for an alternative. 6-43 Note: All typical values have been guaranteed by characterization and are not tested. .D~DIL .S .... ICL7106/ICL7107 ...S:!.... - 7107 ! ~ It: ~ To ..... ' 40 OSC. OSC. OSC3 100ten s.tVREF'" 'OO.OnlV COMMON / 'GOp' TEST REF HI RlfLO CREF CREF :~, Do,,·'1 • .01,.F 47KI1 The input signal can be referenced to the center of the common mode range of the converter. 2, The, signal is less than 3. An external reference is used. ±1.5 C, J• CDOO7001 volts. 7107 '-' To pin 1 OlC1 40 -AAA'OOK!!l ... ''If'. v ose3 TEST AEF HI AEF LO ',' To pin 1 40 OSC. CRE. ,OO«n •• OSC3 TEST REFHI REFLO A'A 1MO INHI INLO AlZ aUFF INT ' •.01,., 47t(U ',,'[ v- 0....' 0, 10~1I ~i . O.47... F •• 47KU 0.22 F , IN , : I I 0, ...='" v· O'luv (ICLlO891 1Mn v· IN 10tell 'Yf C, I Ai [TO DISPLAY G, GND I , : I ______________ .1I 2' c0007101 C, Figure 14: 7107 with an external band-gap reference (1.2V type). IN LO is tied to CO.MMON, . thus establishing the correct common mode voltage. If COMMON is not shorted to GND, the input voltage may float with respect to the power supply and COMMON acts as a pre-regulator for the reference. If COMMON is shorted to GND, the Input is single ended (referred to supply ground) and the pre-regulator is over-ridden. } TO OISPLAY '" 5-- G3 8P • / • .01... F INT - OAt,.F 'ten ~. Do.', INHt INLO AlZ BUFF Jo. 1ten CO.MON _n , ' , s.. VAEF =' l00.amv COMMON Set YREF= 1DD.OmV :::;:0.1,., CRIF CRIEI' C AEF / 4 •• OSC2 OSC. _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ "'1 __ Figure 13: 7107 using the internal reference. Values shown are for 200.0mV full scale, 3 readings per second. IN LO may be tied to either COMMON for Inputs floating with respect to supplies, or GND for single ended inputs~ (See discussion under Analog COMMON.) The 7106 and 7107 may be used in a wide variety of configurations. The circuits which follow show some of the possibilities, and serve to illustrate the exceptional versatili· ty of these AID converters. '-' ,, }TO DISPLAY '" 0, TYPICAL APPLICATIONS 7108 -----.-,~ .••,..,••~'V\.~+--O'N INLO O.47.,F A'Z 471(1. aUFf OICl OSC' OSC' TEST ... ~AEF COMMON 1.1" CO;~:~===--Jr----~~-1 71G117107 1001(11 REF HI REF LO D----<,........'VI.IIr.......~I\,_-+_o -5V G, CJ AJ G, GND ...,.. . TEST ole 3 O l - - - U - - - ' TEST 40 OSC' OSC • OSC' I TO DISPLAY '" v· GJ GND TO DISPLAY •• Figure 18: 7107 measuring ratiometric ;:i~';s of Quad Load Cell. The resistor values within the bridge are determined by the desired sensitivity. c0007301 Figure 16: 710617107: Recommended component values for 2.000V full scale. 6-45 Note: All typical values have been guaranteed by characterization and are not tested. ..S... ICl..71061lCL7107 it !.. .... .0 ...... ,t=s=0.,,'l ".D~UIL =;:. 'OY To pin 1 ....., OIC' 100lm DOC • u ScM/e tack»' adJus. / aSC3 TEST REF HI REFLO CREF C REF COMMON IN HI INLO AlZ lUFF INT yG, , " II SHk:on NPH "mU., ~.----~ II -,- 220KII . \zero.dIU.' .D1~F. - 0.47.. ' 47KII .., C, osc • C, OSC3 ii' TEST REF HI f1 To G' E' IOgIe Vee "". 12KU -5- IY -.J O.U",F OSC, D' A' UPS 3704 or ••• lUn ~ l00K'1 1107 V. D. B. . REFLO CREF CREf COMMON C. INHI A. IMLO AlZ ,~ BUFF E2 .NT r TO DISPLAY Go BP 2 t - - TO BACK PLANE C0007601 Figure 19: 7106 used as a digital centigrade thermometer. A silicon diode-connected transistor has a' temperature coefficient of about -2mVrC., Calibration is achieved by placing the sensingtrans,istor in ice water and adjusting the zeroingpolentiometer for a 000.0 reading. The sensor should then be placed'in bOiling water and 'the' scale-factor potentiometer adjusted for 100.0 reading. CD4023 or 74Cl0 33KO C0007801 Figure 21: Circuit for developing Underrange and Overrange signals from 7107 outputs. The LM339 is required to ensure logic compatibility with heavy display loading. 710617107 EVALUATION' KITS 7'ao Y' To TEST REFHI f1 AU-LD . Yee , 101 D2 C> 12 DOC. CR., COIIIION INHI IHLO IoJZ BUf' B. EO AM POL TolGgle OND• eRE' f2 f3 .. OSC. A2 a o. ~ osc, y. 0' C, 11 A' After purchasing a sample of the 7106 or the 7107, the majority of users will want to build a simple voltmeter. The parts can then be evaluated ag'ainst the data sheet specifications, and tried out in the intended application. However, locating and purchasing even the small number of additional components required, then wiring a breadboard, can often cause delays of days or sometimes weeks. To avoid this problem and facilitate evaluation of' these unique circuits, Intersil is offering a kit which' contains all the necessary components to build a3V2-digit panel meter. With the help of this kit, an engineer or technician can have the system "up and running" in about half an hour. Two kits are offered, the ICL7106EV/KIT and the ICL71 07EVIKIT. Both contain the appropriate IC, a circuit board, a display (LCD for 7106EV/KIT, LeDs for 7107EVI KIT), passive components, and miscellaneous hardware. ,INT ... Y- '".., •• Y- Q, APPLICATION NOTES 21 A016 "Selecting' AID Converters", by, David Fullagar. A017 "The Integrating AID Converter", By Lee Evans. ·A018 "Do's and Don'ts of Applying AID Converters", by Peter Bradshaw and Skip Osgood. A019 "4"'.t2-Digit Panel Meter Demonstratorl Instrumentation Boards", by Michael Dufort. A023 "Low Cost Digital Panel Meter Designs", by David Fullagar and Michael Dufort. A032 "Understanding the Auto-Zero and Common Mode Performance of the ICL7106/7/9 Family", by Peter Bradshaw. A046 "Building a Battery-Operated Auto Ranging DVM with the ICL71 06", by Larry Goff. A052 "Tips for Using Single-Chip 3V2-Digit AID Converters", by Dan Watson. co.... or 74C10 C04077 CDO07701 Figure 20: Circuit for developing Underrange and Overrange signals from 7106 outputs. 6-46 Note: All typical values have been guaranteed by characterization and are not tested. .U~UI1. ICL7106/ICL7107 7'" i .. To pin 1 OSCl ....... n r- Scale laclor Mjust (VRH '" l00mV lor AC 10 RMS) l00KfI O&C2 OSC) ....... '.... TEST REF HI REFLO CREF C REF ....o lKn 22t(1l COMMON IN HI INLO AI. 41KU aUFF INT 0.22 F VG, e, )TODIS,....Y '" OJ 8" P ....... TO BACK PLANE 2' Coo07901 Figure 22: AC to DC Converter with 7106. TEST is used as a common mode reference level to ensure compatibility with most op-amps. 05012901 Figure 23: Display Buffering for increased drive current. Requires four DM7407 Hex Buffers. Each buffer is capable of sinking 40 mAo 6-47 Note: All typical values have been guaranteed by characterization and are not tested. 's '12-Bit I'CL710'9 IlP-Compatible ~ 51! AID Converter GENERAL DESCRIPTION FEATURES The ICL7109 is a high performance, CMOS, low power integrating AID converter designed to easily interface with microprocessors. The output data (12 bits, polarity and overrange) may be directly accessed under control of two byte enable inpu.ts and a chip select input for a simple parallel bus interface. A UART handshake mode is provided to allow the ICL7109 to work with industry-standard UARTs in providing serial data transmission, ideal for remote data logging applications. The RUN/HOLD input and STATUS output allow monitoring and control of conversion timing. The ICL7109 provides the user with the high accuracy, low noise, low drift, versatility and, ~conomy of the dualslope integrating AID converter. Features like true differential input and reference, drift of less than 1pV rc, max:imum ,input bias current of 10pA, and typical power consumption of 20mW make the ICL7109 an attractive per-channel alternative to analog multiplexing for many data acquisition applications. • • • • • • • • 12 Bit Binary (Plus Polarity and Overrange) Dual Slope Integrating Analog-te-Dlgital Converter Byte-Organized TTL-Compatible Three-State Outputs and UART Handshake Mode for Simple Parallel or Serial Interfacing to Microprocessor Systems ' RUN/HOLDlnput and STATUS Output Can Be Used to Monitor and Control Conversion Timing True Differential Input and Differential Reference Low NOise - Typically 15j.1V pop 1pA Typical Input Current Operates At Up to 30 Conversions Per Second On-Chip OSCillator Operates With Inexpensive 3.58MHz TV Crystal Giving 7.5 Conversions Per Second for 60Hz Rejection May Also Be Used With An RC Network Oscillator for Other Clock Frequencies ORDERING INFORMATION PART NUMBER ICL7109MDL ICL71091DL ICL71091JL ICL7109CPL TEMP. RANGE PACKAGE -55·C to + 125°C -25°C to +85°C -25°C to +85°C O°C to 70°C f f L OR~~! Ceramic DIP Ceramic DIP CERDIP Plastic DIP TOPYIEW ~~I~G~N~D--~LI~---y~~~ GND-HIGH ORDER 8YTE OUTPUTS 40-Pin 40-Pin 40-Pin 40-Pin OUT~~: I L 2 STATUS 3 POL 4 DR 5 812 .811 ~ :~o 988 :~ 1087 :: :: :; 15 82 :~ ~~ST REF IN-3tIO------~ REF CAP-38 DIFFERENTIAL REF CAP + 37 REFERENCE REF IN" 31 + IN HI 35 INPUT HIGH CO~:~~ : ICLlI09 REF ~:~T LOW INT 32n-~~~~11-~ AZ 311=~~~~~! ~~~ :~ REF IN n. RUN/~:! 8UF ~ic o,~~ ~: y+ +5Y GND BYTE .. I. LIDi OSC OUT 2311}------. CONTROL HHA osc IN 22 INPUTS ~'''1.:20 __ CE;;.I;;;LO;,;l;;;D;....__.....:M::0~D~E..:2.:.Jll-'" 24kJl l " 'R'NT " 20kJl FOR O.ZY REF - _Jl FOR Z.OY REF CD032001 (See Figure 2 for typical connection to a UART or Microcomputer) Figure 1: Pin Configuration and Test Circuit 6-48 Note: -All typical values have been guaranteed by characterization and are not tested. 301655-Q02 .D~DIl. ICL7109 o cg ABSOLUTE MAXIMUM RATINGS Positive Supply Voltage (GND to V+) ............... +6.2V Negative Supply Voltage (GND to V-) ................. -9V Analog Input Voltage (Lo or Hi) (Note 1) ...... V + to VReference Input Voltage (Lo or Hi) (Note 1) .. V+ to VDigital Input Voltage V + + O.3V (Pins 2-27) (Note 2) ................................ GND -O.3V Power Dissipation (Note 3) Ceramic Package ......................... 1W @ + 85°C Plastic Package ..................... 500mW @ + 70°C Operating Temperature Ceramic Package (MOL) ........ -55°C to + 125°C Ceramic Package (IDL) ............ -25°C to + 85°C Plastic Package {CPL) ................ O°C to + 70°C Storage Temperature ...................... -65°C to + 150°C Lead Temperature (Soldering, 10sec) .............. + 300·C 'COMMENT: Stresses above those listed under" Absolute Maximum Ratings" may cause permanent damage to the devices. This is a stress rating only and functional operation of the devices at these or any other conditions above those indicated in the operational sections of the· specifications is not implifil(j. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. ELECTRICAL CHARACTERISTICS (v+ = +5V, v- = -5V, GND indicated.) Test circuit' as shown on first page of this data sheet. = OV, TA = 25·C, unless otherwise ANALOG SECTION MIN TYP MAX UNIT Zero Input Reading VIN=O.OV Full Scale = 409.6mV -OOOOa ±OOOOS +OOOOa Octal Reading Ratiometric Reading VIN = VREF VAEF = 204.6mV 3777a 3777a 4000a 4000a Octal Reading Non-Linearity (Max deviation from best straight line fit) Full Scale = 409.6mV to 2.046V Over full operating temperature range. (Note 4), (Note 6) -1 ±.2 +1 Counts Roll-over Error (difference in reading for equal pos. and neg. inputs near full scale) Full Scale = 409.6mV to 2.048V (Note 5), (Note 6) -1 ±.2 +1 Counts CMRR Common Mode Rejection Ratio VCM ±1V VIN - OV Full Scale = 409.6mV VCMR Input Common Mode Range Input Hi, Input Lo, Common (Note 4) en Noise (p-p value not exceeded 95% of time) VIN=OV Full Scale = 409.6mV 15 Leakage current at Input VIN - 0 All devices at 25·C ICL7109CPL O·C S TA S + 70·C (Note 4) ICL71091DL -25·C S TA S + 85·C (Note 4) ICL7109MDL - 55·C S TA S + 125·C 1 20 100 2 10 100 250 5 pA pA pA nA 0.2 1 IlV'·C 1 5 ppml"C SYMBOL IILK PARAMETER TEST CONDITIONS 50 V- +1.5 IlVIV V+ -1.0 V IlV Zero Reading Drift VIN = OV Rl = on (Note 4) Scale Factor Temperature Coefficient VIN = 408.9mV = > 7770a reading Ext. Ref. 0 ppm'·C (Note 4) 1+ Supply Current V + to GND VIN = 0, Crystal Osc 3.56MHz test circuit 700 1500 IlA ISUpp Supply Current V + to V Pins 2-21, 25, 26, 27, 29; open 700 1500 IlA VAEF Ref Out Voltage Referred to V +, 25kn between V + and REF OUT _2.6 -3.2 V Ref Out Temp. Coefficient 25kn between V + and REF OUT -2.4 80 ppml"C DIGITAL SECTION SYMBOL PARAMETER TEST CONDITIONS VOH Output High Voltage lOUT = 1001lA Pins 2-16, 18, 19, 20 VOL OU\j:lut Low Voltage lOUT = 1.6mA Output Leakage Current Pins 3-16 high impedance Control I/O Pullup Current Pins 18, 19,20 VOUT=V+-3V MODE input at GND Control I/O Loading HBEN Pin 19 LBEN Pin 18 Input High Voltage Pins 18-21, 26, 27 referred to GND Input Low Voltage Pins 16-21, 26, 27 referred to GND VIH VIL ......P 6-49 Note: All typical values have been guaranteed by characterization and, are not tested. MIN 3.5 TYP MAX 4.3 UNIT V 0.2 0.4 V ±:ot ±1 IlA 5 IlA 50 pF V 2.5 1 V § IC"7109 s!.... ELECTRICAL CHARACTERISTICS (CONT.) SYMBOL PARAMETER TEST CONDITIONS MIN TYP MAX UNIT 5 pA Pins 17, 24 VOUT = V+ -3V 25 pA Pin 21 VOUT = GND +3V 5 pA High VOUT= 2.5V 1 mA Input Pull-up Current Pins 26, 27 VOUT = V+ ';'3V InpUt Pull-up Current Input Pull-down Current " OOH Octillator Output OOL Current Low VOUT=2.5V 1.5 mA BOOH Buffered Oscillator High VOUT= 2.5V 2 mA BOOL Output Current Low VOUT= 2.5V 5 mA tw MODE Input Pulse Width NOTES: (Note 4) 1. Input voltages may exceed the supply voltages provided the input current is limited to ± 100pA 2. Due to the SCR structure inherent in the process used to fabricate these devices, connecting any digital inputs or outputs to voltages greater than V + or less than GND may cause destructive device latchup. For this reason it is recommended that no inputs from sources other than the same power supply be applied to the ICL71 09, before its power supply is established, and that in multiple supply systems the supply to the ICL7109 be activated first. 3. This limit refers to that of the package and will not be obtained during normal operation. 4. This parameter is not production tested, but is guaranteed by design. S. Roll-over error for TA = -SsoC to + 125°C is ±3 counts maximum. 6. A full scale voltage of 2.048V is used because a full scale voltage of 4.096V exceeds the devices Common Mode Voltage Range. TABLE 1: - Pin Assignment and " PIN DESCRIPTION ' SYMBOL GND Digital Ground, OV. Ground return for all digital 'logic. 2 STATUS Output High during integrate and deintegrate until data is latched. OUtpUt Low when analog section is in Auto-Zero configuration. 3 POL Polarity - HI for Positive input. 4 OR 5 B12 Bit 12 6 7 B11 Bit 11 B10 Bit '10 All 8 B9 Bit 9 three 20 9 B8 Bn 8 B7 Bn 7 11 B6 Bit 6 data B5 Bn S bita 13 B4 Bit 4 14 B3 Bit 3 1S B2 Bit 2 16 B1 Bit 1 17 TEST InpUt High - Normal Operation. Input Low - Forces all bit outputs high. Note: This input is used for test purposes only. Tie high if not used. 18 mEN Low g~e62Bble-With Mode (Pin 21) low, and L (Pin 20) low, taking this pin low activates low order byte oUtpUts B1B8. DESCRIPTION ghi~ gnable Load-With Mode (Pin 21) low. E L AD serves as a master output enable. When high, B1-B12, POL, OR outputs are disabled. 21 MODE InpubLow-,Direct output mode where W LOA (Pin 20), Frn8il (Pin 19) and r:BEN (Pin 18) 'act as inputs directly controlling byte outputs. Input Pulsed High - Causes immediate entry into handshake mode and output of data as in Figure 10. l!!e!!LHigh - Enables CE/LOAD (Pin 20), HBEN (Pin 19), and LBEN (Pin 18) as outputs, handshake mode will be entered and data output as in Figures 8 and 9 at conversion completion. 22 OSC IN Oscillator Input 23 OSC OUT Oscillator Output 24 OSC SEL Oscillator Select -Input high configures OSC IN, OSC OUT, BUF OSC OUT as RC oscillator - clock will be same phase and duty cycle as BUF OSC OUT. -Input low configures OSC IN, OSC OUT for crystal oscillator - clock frequency will be 1/S8 of frequency at BUF OSC OUT. 25 BUF OSC OUT Buffered Oscillator Output 26 RUN/HOLD Input High - Conversions continuously performed every 8192 clock pulses. Input Low - Conversion in progress completed, converter will stop in Auto-Zero 7 counts before integrate. 27 SEND Input- Used in handshake niode to indicate ability Of an external device to accept data. Connect to + SV if not used. 28 V- Analog Negative Supply - Nominally -SV with respect to GND (Pin 1). ' 29 REF OUT Reference Voltage Output - Nominally 2.8V down from V' (Pin, 40). 30 BUFFER Buffer Amplifier Output output 12 (Least Significant Bn) - With Mode (Pin 21) high, this pin serves as a low byte flag oUtput used in handshake mode. See Figures 8, 9, 10. HBEN CE'7COAi5 state HI = true Description SYMBOL - With Mode (Pin 21) high, this pin serves as a load strobe used in handshake mode. See Figures 8, 9, 10. Overrange - HI if Overranged. (Most Significant Bit) 10 F~nction PIN 1 19 ns 50 High&relnable-With Mode (Pin 21) low, and /L AD (Pin 20) low, taking this pin low activates high order byte outputs B9- " B12, POL, OR. :..;. With Mode (Pin 21) high, this pin serves as a high byte flag output used in handshake mode. See Figures 8, 9, 10. 6-50 Note: All typical values have been guaranteed by characterization and are not tested. n r- ICL7109 PIN SYMBOL DESCRIPTION PIN SYMBOL ....... DESCRIPTION 31 AUTO-ZERO Auto-Zero Node - Inside foil of CAl 36 REF IN + Differential Reference Input Positive 32 INTEGRATOR Integrator Output - Outside foil of CINT 37 REF CAP + Reference Capacitor Positive 33 COMMON Analog Common - System is Auto-Zeroed to COMMON 38 REF CAP Reference Capacitor Negative 39 REF IN V+ 34 INPUT LO Differential Input Low Side 35 INPUT HI Differential Input High Side 40 i Differential Reference Input Negative Positive Supply Voltage - Nominally + 5V with respect to GND (Pin 1). Note: All digital levels are positive true. v· 40 aND +IV aND +IV 'OND 2S BUF OlC OUT aSTATUS 1000 pF REF IN - :It :::g::~: , .SV .",a,POL,OR TIRL 23 TIR! 22 MIIal AZ31 "CDR 211~ RINT 2OkO O.ZV REF 200koav REF v-a RullJii&a 21 OIC SlL24 OSCOUT 2 3 t - - -.... OSCIN 22 27 lEND GNO PULLUP' fIIlSISTOIIII TO INPUT _30 al MOD! '011 LOWEST POW" COiIlUMPTtOH. 'f8IIJ1·'.....HPUT.IHOULD MAW tOOle(1 GND .15 REF OUT 2t 17 T!ST DRRI'I~~~~~~~~~~~~~ DR I. • C:: :t---""INT F~ w -GND IUR~E 1= ~~ : T~i't------7---------~~i t,'~ TRE24 +IV RIPIN.. ,. iiiiii , t---------o:-- ICL710t CMOS AID CONVERTER .,v COO08121 Figure 2A: Typical Connection Diagram UART Interface- To transmit latest result, send any word to UART "IV ONG .IV 40 y. I GNO 17 TEST ICL710t 21 RUNliR!DI 2 STATUS II LIlli tt AIIIiI 12-1' GIIID :10 _ DIIO-Oa7 iilho REF IN :It ·RIFC,., - . RIFCM·37 REF IN'. IN HI 35 IN LOlM COM 33 INT32 AZ31 IUF 30 REF OUT 2t v-al SEND 27 IUF OIC OUT 2.. OSC SEL24 OSC OUT 23 OSC IN 22 ~--GND EXTERNAl. REFERENCE I.F n : INPUT ~~5.F -tv R'~T 201111 O.av REF. 200k1l 2V REF. .IV aNO MODIal COO0821 I Figure 28: Typical Connection Diagram Parallel Interface With 8048 Microcomputer Auto-Zero Phase DETAILED DESCRIPTION Analog Section During auto-zero three things happen. First, input high and low are disconnected from their pins and internally shorted to analog COMMON_ Second, the reference capacitor is charged to the reference voltage. Third, a feedback loop .is closed around the system to charge the auto-zero capacitor CAZ to compensate for offset voltages in the buffer amplifier, integrator, and comparator. Since the comparator is included in the loop, the AZ accuracy is limited only by the noise of the system. In any case, the offset referred to the input is less than lO/-lV. Figure 3 shows the equivalent circuit of the Analog Section of the ICL7109_ When the RUN/HOLD input is left open or connected to V +, the circuit will perform conversions at a rate determined by the clock frequency (8192 clock periods per cycle). Each measurement cycle is divided into three phases as shown in Figure 4. They are (1) Auto-Zero (AZ), (2) Signal Integrate (I NT) and (3) Deintegrate (DE): . 6-51 Note: All typical values have been guaranteed by characterization and are not tested. I .~. .... leL7109 ~ CREF Ct~T INTEGRATOR i2----------- RIFCAP'I- r--I I I TO ZERO CROll DETECTOR DIGITAL IECTlOfII I , COMMON ~--+-""T""-_..J I.2V 33 1 I I AZ- _ CONTROL INT- LOGIC DEINT (+)- DIGITAL IECTIOIiI DEINT(-)- INT IN~LO~~~--~~-----------------------------J 1M I 1 L. ___....:. __________________ 21 v+ REF OUT lCO04901 Figure 3: Analog Section I POLARITY ZERO CROSSING DE~TECTED OCCURS , ZERO CROSSING . I _ DETECTED I I I INTEGRATOI1 OUTPUT 1 L,' INTERNAL CLOCK h.r ~ J11U1.h... Jl11IlI1r 1.11I1lu"tr INTERNAL LATCH 1 I, II II h II I I I I I I I I I_ I-;-AZ PHASE I--I-INT PHASE II I STATUS OUTPUT I I I-I DEINT PHASE III----i--AZ- 2048 COUNTS, MIN. I .1. I FIXED 2048 COUNTS I .1. I NUMBER OF COUNTS TO ZERO CROSSING / PROPORTIONAL TO VIN 1 I ."- I I 4098 COUNTS--l MAX I I' "'-AFTER ZERO CROSSING, ANALOG SECTION WILL ' BE IN AUTOZERO CONFIGURATION WF011101 Figure 4: Conversion Timing (RUN/HOLD Pin High) '(during auto-zero) reference capacitor. Circuitry within the chip ensures that the capacitor will be connected with the correct polarity to cause the integrator output to return to zero crossing (established in Auto Zero) with a fixed slope. Thus the time for the output to, return to zero (represented by the num~er of clock periods counted) is proporti,onal to the input signal. Signal Integrate Phase During signal integrate the auto-zero loop is opened,the internal short is removed and the internal high and low inputs' are connected to the external pins. The converter then integrates the differential voltage betw,een INHI and IN LO for a fixed time of 2048 clock periods. Note that this differential voltage must be within the common mode range of the inputs. At the end of this phase, the polarity of the integrated signal is determined. Differential Input The input can accept differential voltages' anywhere within the common mode range of the input amplifier; or specifically from 1.0 volts below the positive supply to 1.5 volts above the negative supply. In this range the system has a CMRR of 86dS typical. However, since the integrator De-Integrate Phase The final phase is de-integrate, or, reference integrate. Input low is internally connected to analog COMMON and input high is connected across the previously charged 6-52 Note: All typical values have been guaranteed by characterization and are not tested. ICL7109 also swings with the common mode voltage, care must be exercised to assure the integrator output does not saturate. A worst case condition would be a large positive common mode voltage with a near full-scale negative differential input voltage. The negative input signal drives the integrator positive when most of its swing has been used up by the positive common mode voltage. For these critical applications the integrator swing can be reduced to less than the recommended 4V full scale with some loss of accuracy. The integrator output can swing within 0.3 volts of either supply without loss of linearity. The ICL7109 has, however, been optimized for operation with analog common near digital ground. With power supplies of + 5V and -5V, this allows a 4V full scale integrator swing positive or negative thus maximizing the performance of the analog section. enough that undue leakage requirements are not placed on the PC board. For 4.096 volt full scale, 200kn is near optimum and similarly a 20kn for a 409.6mV scale. For other values of full scale voltage, RINT should be chosen by the relation full scale voltage RINT= 20~ Integrating Capacitor The integrating capacitor CINT should be selected to give the maximum. integrator output voltage swing without saturating the integrator (approximately 0.3 volt from either supply). For the ICL7109 with ±5 volt supplies and analog common connected to GND, a ±3.5 to ±4 volt integrator output swing is nominal. For 7-1/2 conversions per second (61.72kHz clock frequency) as provided by the crystal oscillator, nominal values for CINT and CAZ are 0.15jAF and 0.33/lF, respectively. If different clock frequencies are used, these values should be changed to maintain the integrator output voltage.swing. In general, the value of CINT is given by Differential Reference The reference voltage can be generated anywhElre within the power supply voltage of the converter. The main source of common mode error is a roll-over voltage caused by the reference capacitor losing or gaining charge to stray capacity on its nodes. If there is a large common mode voltage, the reference capacitor can gain charge (increase voltage) when called up to deintegrate a positive Signal but lose charge (decrease voltage) when called up to deintegrate a negative input signal. This difference in reference for (+) or (-) input voltage will give a roll-over error. However, by selecting the reference capacitor large enough in comparison to the stray capacitance, this error can be held to less than 0.5 count for the worst case condition (see Component Values Selection below). . The roll-over error from these sources is minimized by having the reference common mode voltage near or at analog COMMON. An additional requirement of the integrating capacitor is that it have low dielectric absorption to prevent roll-over errors. While other types of capacitors.are adequate for this application, polypropylene capacitors give undetectable errors at reasonable cost. up to 85'C. For the military temperature ~ange, Teflon® capacitors are recommended. While their dielectric absorption characteristics vary somewhat from unit to unit, selected devices should give less than 0.5 count of error due to dielectric absorption. Component Value Selection Auto-Zero Capacitor. CINT= (2048 x clock period){20jJA) . integrator output voltage swing The size of the auto-zero. capacitor has some influence on the noise of the system: the smaller the capacitor the lower the over.all system noise. However, CAZ cannot be increased without limits since it, in parallel with the integrating capacitor forms an R-C time constant that determines the speed of recovery from overloads and more important the error that exists at the end of an auto-zero cycle. For 409.6mV full scale where noise is very important and the integrating resistor small, a value of CAZ twice CINT is optimum. Similarly for 4.096V full scale where recovery is more important than noise, a value of CAZ equal to half of CINT is recommended. For optimum performance of the analog section, care must be taken in the selection of values for the integrator capacitor and resistor; auto-zero capacitor, reference voltage, and conversion rate. These values must be chosen to suit the particular application. The most important consideration is that the integrator output swing (for full-scale input) be as large as possible. For example, with ±5V supplies and COMMON connected to GND, the nominal integrator output swing at full scale is ±4V. Since the integrator output can go to 0.3V from either supply without Significantly affecting linearity, a 4V integrator output swing allows 0.7V for variations in output swing due to component value and oscillator tolerances. With ±5V supplies and a common mode range of ± 1V required, the component values should be selected to provide ±3V integrator output swing. Noise and rollover errors will be slightly worse than in the ±4V case. For larger common mode voltage ranges, the integrator output swing must be reduced further. This will increase both noise and rollover errors. To improve the performance, supplies of ±6V may be used. For optimal rejection of stray pickup, the outer foil of CAZ should be connected to the R-C summing junction and the inner foil to pin 31. Similarly the outer foil of CINT should be connected to pin 32 and the inner foil to. the R-C summing junction .. Teflon®, or equivalent, capacitors are recommended above 85'C for their low leakage characteristics. Reference Capacitor A 1/lF capacitor gives good results in most applications. However, where a large reference common mode voltage exists (i.e. the reference low is not at analog common) and a 409.6mV scale is used, a larger value is required to prevent roll-over error. Generally 10jAF will hold the roll-over error to 0.5 count in this instance. Again, Teflon®, or equivalent capacitors should be used for temperatures above 85'C for their low leakage characteristics. Integrating Resistor Both the buffer amplifier and the integrator have a class A output stage with 100~ of quiescent current. They supply 20~ of drive current with negligible non-linearity. The integrating resistor should be large enough to remain in this very linear region over the input voltage range, but small 6-53 Note: All typical values have been guaranteed by characterization and ·are not tested. a • ...g ''P' d... ICL7109 , Reference Voltage, ,The analog input required to generate a full ,scale output of 4096, Counts is, VIN = 2VREF. Thus for a normalized scale,a reference of 2.048V should be used, for a 4.096\1 full scale, and 204.8mV should be used for a OA096V full scale. However; in many applications where the AID is sensing the output of a transducer, tl:lere will exist a ,scale factor other than unity be/ween the absolute output voltage to be measured and a desired digital output. For instance, in a weighing system, the designer, might like to have a full scale reading when the voltage from the transducer is 0.68,2V. Instead of dividing the input down to 409.6mV, the input voltage !lhould be measured directly and a reference voltage, of 0.341 V shoul(:l be used. Suitable values for integrating resistor and capaCitor are 34kn and 0.15IlF. This avoids a divider on the input. Another advantage of this system occurs when,a zero re8clingis desired for non-zero input. Temperature and weight measurements with an offset or tare are examples. The offset may be introduced by connecting the voltage output of the transducer between common and analog high, and the offset voltage between common and analog low, observing polarities carefully. However, in processor-based systems using the ICL7109, it may be more efficient to perform this type of scaling or tare subtraction digitally using software. Reference Sources The stabilitY of the reference voltage is a major factor in the overall absolute accuracy of the converter. Th~ resolution'of the ICL71 09 at 12 bits is one part in 4096,or 244ppm. Thus if the reference has a temperature c'Oefficientof 80ppmfOC (onboard reference) a temperature difference of 3°C' will introduce a one-blCabsolute error. For this reaso~, \t is recommended, that an external highquality reference be I,Jsed where t!'le ambient temperature is not controlled or where high-accuracy absolute measurements are being made. ' The ICL71 09 provides 'a REFerence OUTput (pin 29) which may be used with If resistive divider to generate a suitable reference voltage. This output will sink up to about 20mA without significant variation in output voltage, and is provided with a pulluP bias' device Which sources about 101lA. The output voltage is nominally 2;8V below V + , and has a temperature coefficient o( ±80ppml"C typo When using the onboard reference, REF OUT (Pin 29) should be connected to REF- (pin 39), and REF + should be connected to the wiper of a precision potentiometer between REF' OUT and V +. The circuit for a 204.8mV reference is shown in the test circuit. For a 2.048mV reference, the fixed resistor should be removed, and a 25kn precision potentiometer between REF OUT and V + should I;>e used. Note that if pins 29 and 39 are tied together and pins 39 and 40, 'aCCidentally shorted ,(e.g., during testing), .the reference supply will sink enough current to destroy the device. This can be avoided by placing' a 1kn resistor in series with pin 39. Throughout this description, logic levels will be referred to as "Iow"or "high", The actual logic levels an~ defined in the ,Electrical Charac\eristics Table. For minimum power consumption, aU. inputs should swing from GND (low) to V + (high). Inputs driven from TIL gates should have 3-Skn pullup, resistors added for maximum noise immunity. MODE Input The MODE )nput' is used to control the output mode of the converter. When the MODE pin is low or left open (this input is provided with a pulldown resistor to ensure a low level when the pin is left open), the converter is in its "Direct" output mode, where the output data is directly accessible under the control of the chip and byte enable inputs. When the MODE input is pulsed high, the converter enters the UART handshake mode and outputs the data in, two bytes, then returns to "direat"mode. When the MODE input is left high, the converter will output data in the handshake mode at the end of every conversion cycle. (See section entitled "Handshake Mode" for further details). STAJ"US Output During a conversion cycle, the STATUS Qutput goes high at the beginning of Signal Ihtegrate (Phase II), and goes low one-half clock period after new data from the conversion has been ,stored in the output latches. See Figure 4 for details of this timing. This signal may be used ·as a "data valid" flag (data never changes while STATUS is low) to drive interrupts, or for monitoring the status of the converter. RUN/HOLD I'nput When the RUN/HOLD input is high, or left open, the circuit will continuously perform conversion cycles, updating the output latches after zero crossing during the Deintegrate (Phase III) portion of the conversiOn cycle (See Figure 4). In this mode of operation, the conversion cycle will be performed in 8192 clock periods, regardless of the resulting value. . If RUI';.)/ROiJ) goes low at any time during Deintegrate (Phase III) after the zero crossing has occurred, the circuit ~ill immediately terminate Deintegrate and jump to AutoZero. This feature can be used to eliminate the time spent in Deintegrate after the zero-crossing. If RUN/HOLD stays or goes'low, the converter will ensure minimum Auto-Zero time, and then wait in Auto-Zero until the RUN/HOLD input goes high. The converter will begin the Integrate (Phase II) portion of the next conversion (and the STATUS output will ,go high) seven clock periods after 'the high level is detected at RUN/!:i0LD. ,See Figure 6 for details" DETAILED· DESCRIPTION Digital Selection The digital section includes the clock oscillator, and scaling circuit, a 12-bit binary counter with output latches and TIL-compatible three-state output drivers, polarity, over~range and control logic,and UART han9shake logic, as shown, in Figure' 5. e..54 Note: All typical values have been guaranteed by characterization and are no\ tested. ·ICL7109 t t HIGH ORDER IIYTE OUTPUTS B B B a POL OR 12 11 10 9 TEST ;-;I LOW ORDER . BYTE OUTPUTS B .·B B a B B 8 7 & 5 4 3 2 B 1 17 18 19 20 AD I I I I I I I I I I COMPOUT TO AZ { ANALOG INT SECTION DEINT(+) DEINT(-) -~.,...----r-l I I I - -- ---.e-- JI 21 STATUS 27 IIUt!l OSC OSC OSC aUF MODE HOLD IN OUT SEL OSC· OUT It SEND GND 80003501 . Figure 5: Digital Section DEINT TERMINATED AT ZERO CROSSING INTEGRATOR _ -_ _ ~ OUTPUT ~ETECTION ~ ~ ----f !NTERNAL CLOCK INTERNAL LATCH I-AUTDZERD--l PHASE I I STATIC IN I MIN 1790 COUNTS I HOLD STATE I MAX 2041 COUNTS I .... 'NT I PHASE" j. , 'I' Lr 'lIU1.I1... J1ItnnI1.11... ..I1.tLh.Itn......ru-- h ': I J ___ r---7 COUNTS----I ~ ; ~;;;;~==~=======~~~=;;~~: t..----------_L-r"l- ~ L ________r-~--- STATUS OUTPUT RUNIHOLDINPUT: WF011201 Figure 6: Run/Hold Operation If the RUN/HOLD input goes low and stays low during Auto-Zero (Phase I), the converter will simply stop at the end of Auto-Zero al)d wait for RUN/HOLD to. go high. As above, Integrate (Phase II) begins seven clock periods after the high level is detected. Using the RUN/HOLD input in this manner allows an easy "convert on demand" interface to be used; The converter may be held at idle in auto-zero with RUN/HOLD low. When RUN/HOLD goes high the conversion is started, and when the STATUS output goes low the new data is valid (or transferred to the UART - see Handshake Mode). RUN/HOLD may now be taken low which terminates deintegrate and ensures a minimum Auto-Zero time before the next conversion. Direct Mode When the MODE pin is left at a low level, the data outputs (bits 1 through 8 low order byte, bits 9 through 12, polarity and over-range high order byte) are accessible under control of the byte and chip enable terminals a$ inputs. These three inputs are all active low, and are provided with pullup resistors to ensure an inactive high level when left open. When the chip enable input is low, taking a byte enable input low will allow the outputs of that byte to become active (three-stated on). This allows a variety of parallel data accessing techniques to be used, as shown in the section entitled "Interfacing." The timing requirements for these outputs are shown in Figure 7 and Table 2. Alternately, RUNiHOLD can be used to minimize conversion time by ensuring that it goes low during Deintegrate, after zero crossing, and goes high after the hold point is reached. The required activity on the RUN/HOLD input can be provided by connecting it to the Buffered Oscillator Output. In this mode the conversion time is dependent on the input value measured. Also refer to Intersil Application Bulletin A032 for a discussion of the effects this will have on Auto-Zero performance. 6-55 Note: All typical values have been guaranteed by characterization· and are not tested.. ICL7109 Table 2 - Direct Mode Timing Requirements (See Note 4 of Electrical Characteristics) SYMBOL DESCRIPTION MIN TYP 350 220 MAX UNIT tSEA Byte Enable Width tOAS Data Access Time from Byte Enable tOHS Data Hold Time from Byte Enable tcEA Chip Enable Width tOAC Data Access Time from Chip Enable 260 400 ns tOHC Data Hold Time from Chip Enable 240 400 ns emmi~ AS INPUT 400 ns 210 350 ns 150 300 ns 260 ns r- '------' RftR AS INPUT LIER AS INPUT tOAC LOW BYTE OATA - - - - - - - - - - - - - - ... 1-- DATA VALID - - - - = HIGH IMPEDANCE WF011301 Figure 7: Direct Mode Output Timing It should be noted that these control inputs are asynchronous with respect to the converter clock - the data may be accessed at any time. Thus it is possible to access the latches while they are being updated, which could lead to erroneous data. Synchronizing the' access of the latches with the conversion cycle by monitoring the STATUS output will prevent this. Data is never updated while STATUS is low. Handshake Mode The handshake output mode is provided as an alternative means of interfacing the ICL7109 to digital systems, where the AID converter becomes active in contrOlling the flow of data instead of passively responding to chip and byte enable inputs. This mode is specifically designed to allow a direct interface between the ICL7109 and industry-standard UARTs (such as the Intersil IM6402/3) with no external logic required. When triggered into the handshake mode, the ICL7.109 provides all the control and flag signals necessary to sequentially transfer two bytes of data into the UART and Initiate their transmission in serial form. This greatly eases th.e task and reduces the cost of designing remote data acquisition stations using serial data transmission. Entry into the handshake mode is controlled by the MbDE pin. When the MODE terminal is held high, the ICL7109 will enter the handshake mode after new data has been stored in the output latches at the end of a conversion (See Figures 8 and 9). The MODE terminal may also be used to trigger entry into the handshake mode on demand. .At any time during the conversion cycle, the low to high transition of a short pulse at the MODE input will cause immediate entry into the handshake mode. If this pulse occurs while new data is being stored, the entry into handshake mode is delayed until the data is stable. While the converter is in the handshake mode, the MODE input is ignored, and although conversions will still be performed, data updating will be inhibited (See Figure 10) until the converter completes the output cycle and clears the handshake mode. When the converter enters the handshake mode, or when the MODE. input is high, the chip and byte enable terminals become TIL-compatible outputs which provide the control signals for the output cycle (See Figures 8, 9, and 10). In handshake mode, the SEND input is used by the converter as an indication of the ability of. the receiving device (such 'as a UART) to accept data. Figure 8 shows the sequence of the output cycle with SEND held high. The handshake mode (Internal MODE high) is entered after the data latch pulse, and since MODE remains high the CE/LOAD, LBEN and HBEN terminals are active as outputs. The high level at the SEND input is sensed on the same high to low internal clock edge that terminates the data latch pulse. On the next low to high internal clock edge the CE/LOAD and the HBEN outputs assume a low level, and the high-order byte (bits 9 through 12, POL, and OR) outputs are enabled. The CE/LoAD output remains low for one full internal clock period only, the data outputs remain active for 1-1/2 internal clock periods, and the high byte enable remains low for two clock periods. Thus the CE/LOAD output low level or low to high edge may be used as a synchronizing Signal to ensure valid data, and the byte enable as an output may be used as a byte identification flag. With SEND remaining high the converter completes the output cycle using CE/LOAD and LBEN while the low order byte outputs (bits 1 through 8) are activated. The handshake mode is terminated when both bytes are sent. Figure 9 shows an output sequence where the SEND input is used to delay portions of the sequence, or handshake to ensure correct data transfer. This timing diagram shows the relationships that occur using an industry-standard IM6402/3 CMOS UART to interface to serial data channels. In this interface, the SEND input to the ICL7109 is driven by the TBRE (Transmitter Buffer Register Empty) output of the UART, and the CE/LOAD terminal of the ICL7109 drives the TBRL (Transmitter Buffer Register Load) input to the UART. The data outputs are paralleled into the eight Transmitter Buffer Register inputs. Note: All typical values have been guaranteed by characterization and are not tested. ICL7109 I "I" INTEGRATOR OUTPUT INTERNAL CLOCK ZERO CROSSING ZERO CROSSING OCCURS L_DeTECTED .--.r-IL....-J"--I - - ~ f--- ~ r-- r--tr- INTERNAl. LATCH STATUS OUTPUT MODO INPUT IIOOE HleaH ACTIVATES INTERNAL UART MODE NOIIM 91ImD. ~ [JIll . .ND SEND INPUT III HIGHS"" DATA LOWBvn DATA TERMINATES ---- \------------ 1\\ \\ -------- ------ UARTMODE a:~, ' / / / ',!ODE LOW. NOT IN HANDSHAKE IfOD£ ~ DI6A8LES OUTPUTS ~. 7-.1.±_.1._ HftIii. i:IIR ---------r--::~:= 1--- ------------------- --------- --DATA VALID )--- DATA-YALID _ ; DON'T CAM - - - - = THREt:-STAT~ HIGH IMPEDANCE _.1._.1._ = THftEE-STATE WITH PUUUP WF011401 Figure 8: Handshake With Send Held Positive ZERO CRosatNG OCCURS zao CROUtNG wq~~ ----~~--~~~~' INTERNAL' CLOCK INTERNAl. LATCH _ _ _ _ _.1 STATUS OUTPUT ..ODE INPUT --------t1--+-----... ,..--t-+----- - - t - - t - - - ' - - l ' i. ._ . . . . . . . ._---r- .. .......... =-____..;..-11--+------... ,..--1-1-+------ --4--4TE / INTE....L UART MODE ::00:::... SEND INPUT (UMT TBRE) UART MODE a.IIIIIIIIIIIIIIIIIIIIII~"'-r==..;..? -------+--1. ~ -------+--1. CiiLl!iD OUTPUT (UARTTIRL) '--.---- HIGH8YTE _ _ _ _ _ _ _ _ _ _ DATA LOWlnE DATA - - - - - - - - - - • '" DON'T CARE - --------t J<--- - ,I'-__-=D~AT:.;;A;.:V.;;AL~ID - - - - = THREE4TATE HIGH NIIIPEDANCE WF011501 Figure 9: Handshake - Typical UART Interface Timing 6-57 Note: All typical values have been guaranteed by characterization and are not tested. ..g ICL7109 .D~DIl ~ . S:! ZERO CROSS_ DETECTEO ~ ~ --+--+-----..... OUT~~ --+-;;;.=;.:..=;=-'--.... --+--+--- = POSITM! TIIANSITlON.CAUMS :~~="~" III••IIIIIIIIII! .,TEANAI. UAIIT . .. " 11001; NORM I=~·· ASc:.,~o,::: /v . _..1. __ .t. __.v-- --':""-l ~ HtOH:~: --------I--oof ,. ___ ...:. LiEN _.1_...1 __V - LOW:~! __________ .... III = OONT CARl --+--+----.,.........--+--1 ':~O _ _r ~-..;...-- ...___1-.._ _ _ _.....-+-1. ~----- .--- ___ ,... __ ~--__t =THRIE",TATE HIGH IMPEDANCE - '-----.... DATAVAUD i_ '= THltEE-sTATE WITH PULLUP WFQ11601 Figure 10: Handshake Triggered By Mode Assuming the UART Transmitter Buffer Register is empty, the SEND input will be high when the handshake mode is entered after new data is stored. The CE/LOAD and HBEN terminals will go low after SEND is sensed,. and the high order byte outputs become active. When CE/LOAD goes high at the end of one clock period, the high order byte data is clocked into the UART Transmitter Buffer Register. The UART TBRE output will now go low, which halts the output cycle with the HBEN output low, and the. high order byte outputs active. When tM.l)ART has transferred the data to the Transmitter R~gister and cle~re,d the.. Transmitter Buffer Register, the TBRE returns high. On the next ICL7109 internal clock high to low edge, the high order byte outputs are disabled, and orie-half internal clock later, the. HBEN output returns high. At the same time, the CE/LOAD and LBEN outputs go low, and the low order. byte outputs become active. Similarly, when the CE/LOAD returns high at the end of one clock periqd, the low order data is clocked into the UART Transmitter Buffer Register, and TBRE again goes low. When TBRE returns to a high it will be sensed on the next ICL7109 internal clock high to low edge, disabling the data outputs. One-half internal clock later, the handshake mode will be cleared, and the CE/LOAD, HBEN, and LBEN terminals return high and stay active (as long as MODE stays high). to high edge on the MODE input, handshake output sequences may be performed on demand. Figure 9 shows a handshake output sequence triggered by such an edge. In addition, the SEND input is shown as being low when the converter enters handshake mode. In this case, the whole output sequence is controlled by the SEND input, and the sequence for the first (high order) byte is similar to the sequence for the second byte. This diagram also shows the output sequence taking longer than a conversion cycle. Note that the converter still makes conversions, with the STATUS output and RUN/HOLD input functioning normally. The only difference is that new data will not be latched when in hand,shake mode, and is therefore lost. Oscillator The ICL7109 is provided with a versatile three terminal oscillator, to generate the internal clock. The oscillator may be overdriven, or may be operated with an RC network or crystal. The OSCILLATOR SELECT input changes the internal configuration of the oscillator to optimize it for RC or crystal operation. When the OSCILLATOR SELECT input is high or left open (the input is provided with a pullup resistor), the oscillator is configured for RC operation, and the internal clock will be of the same freqUency and phase as the signal at the BUFFERED OSCILLATOR OUTPUT. The resistor and capacitor should be connected as in Figure 11. The circuit will oscillate at a frequency given by f ,=f OAS/RC. A 100kn resistor is recommended for useful ranges of With the MODE input remaining high as in these examples, the converter will output the results of every conversion excepUhose completed during a handshake operation. By triggering the converter into handshake mode with a low 6-58 Note: All typical values have been guaranteed by characterization' and are not tested. ICL7109 frequency. For optimum 60Hz line rejection, the capacitor value should be chosen such that 2048 clock periods is close to an integral multiple of the 60Hz period (but should not be less than 50pF). BUFFERED OSCILLATOR OUTPUT of the ICL7109 may be used to drive the OSCILLATOR INPUT of the UART, saving the need for a second crystal. However, the BUFFERED OSCILLATOR OUTPUT does not have a great deal of drive capability, and when driving more than one slave device, external buffering should be used. Test Input 24 T~ SEL 22 23 25 OSC IN OSC OUT BUFFEREO OSC OUT When the TEST input is taken to a level halfway between V + and GND, the counter output latches are enabled, allowing the counter contents to be examined anytime. When the TEST input is connected to GND, the counter outputs are all forced into the high state, and the internal clock is disabled. When the input returns to the 112 (V + -GND) voltage (or to v+) and one clock is applied, all the counter outputs will be clocked to the low state. This allows . easy testing of the counter and its outputs. ---- R C v+ OR OPEN I('I~,.· 4'5/RC lCO05101 Figure 11: RC Oscillator INTERFACING Direct Mode When the OSCILLATOR SELECT input is Iowa feedback device and output and input capacitors are added to 'the oscillator. In this configuration, as shown iii Figure 11, the oscillator will operate with most crystals in the 1 to 5MHz range with no external components. Taking the OSCILLATOR SELECT input. low also inserts a fixed +58 divider circuit between the BUFFERED OSCILLATOR OUTPUT and the internal clock. Using an inexpensive 3.58MHz TV crystal, this division ratio provides an integration time given by: T = (2048 clock periods) x [ __ 58 __] 3.58MHz Figure 13 shows some of the combinations of chip enable and byte enable control signals which may be used when interfaCing the ICL7109 to parallel data lines. The CEI LOAD input may be tied low, allowing either byte to be controlled by its own enable as in Figure 13A. Figure 13B shows a configuration where the two byte enables are connected together. In this configuration, the CE/LOAD serves as a chip enable, and the HBEN and LBEN may be connected to GND or serve as a second chip enable. The 14 data outputs will all be enabled simultaneously. Fi~ 13C shows the HBEN and LBEN as flag inputs, and CEI LOAD as a master enable, which could be the READ strobe available from most microprocessors. = 33.18ms This time is very close to two 60Hz periods or 33.33ms. The error is less than one percent, which will give better than 40dB 60Hz rejection. The converter will operate reliably .at conversion rates of up to 30 per second, which corresponds to a clock frequency of 245.8kHz. v+-.....- - - _ - 24 22 23 25 IN OSC OUT BUFFEREO OSC OUT ----~osc osc SEL GND 0 ---- CRYSTAL LGO05001 Figure 12: Crystal Oscillator If at any time the oscillator is to be overdriven, the overdriving signal should be applied at the OSCILLATOR INPUT, and the OSCILLATOR OUTPUT should be left open. The internal clock will be of the same frequency, duty cycle, and phase as the input Signal when OSCILLATOR SELECT is left open. When OSCILLATOR SELECT is at GND, the clock will be a factor of 58 below the input frequency. When using the ICL7109 with the IM6403 UART, it is possible to use one 3.58MHz crystal for both devices. The 6-59 Note: All typical values have been guaranteed by characterization and are not tested. !... JCL7109 ... :g A: GND.-......, . - - -..... B. CHIP SELECT 1 GND c. 89·812 POL. OR 81·812 POL. OR ANALOG· IN ICL7109 ICL7109 ANALOG IN RUN/HOLD CONVERT CONTROL ANALOG IN ICL7109 RUN/HOlii 1--:--.,.,.-. CONVERT RUN/HOLD J - - CONVERT CHIP S~~~~~ -~--..... AF022501 8YTE FLAGS· AF022601 AF022701 Figure 13: Direct Mode Chip and Byte' Enable Combinations CONVERTER CONVERTER CONVERTER SELECT SELECT SELECT MODE 81·88 • ANALOG ANALOG ~ ~ RUN/HOLD ANALOG . IN RUN/HOi'D RUN/HOLD -5V 8YTE SELECT FLAGS AF022801 Figure 14: Tri-stating Several 7109's to a Small .Bus Figure 14 shows an approach to interfacing several ICL7109s to a bus, ganging the HBEN and LBEN si8nals to several converters together, and using the CE/LOA inputs (perhaps decoded from an address) to select the desired converter. will lead to scrambled data. This will occur very rarely, in the proportion of setup-skew times to conversion time. One way to overcome this is to read the STATUS output as well, and if it is high, read the data again after a delay of more than 1/2 converter clock period. If STATUS is no,!\, low, the second reading is correct, and if it is still high, the first reading is correct. Alternatively, this timing problem is completely avoided by using a read~after-update sequence, as shown in Figure 16. Here the high to low transition of the STATUS output drives an interrupt to the microprocessor causing it to access the data latches. This application also shows the RUN/HOLD input being used to initiate conversions unde~ software .control. Some practical circuits utilizing the parallel three·state output capabilities of the ICL7109 are shown in Figures 15 through 20. Figure 15 shows a straightforward application to the Intel 8048/80/85 microprocessors via an 8255PPI, where the ICL7109 data outputs are active at all times. The I/O ports of an 8155 may be used in the same way. This interface can be used in a read·anytime mode, although a read performed while the data latches are being updated IHIO Note: All typical values have been guaranteed by characterization and are not tested. .O~O[l ICL7109 ~ ADDIIESS BUS ~ CONTROLaus 1I ( GNO I I MODE CEiLDAD 1'1' RO • , POL. DR RUN/HOLD ViR STATUS ONO HiEii LiEN 1 I I I ~J ~J AO-Al Pa,-PBo I ~ I I I tJ ~J CI t---+sv al-81 IN 07-110 PAs-PAc ICL7101 9 I I DATABUS 1J fJ ....12 i ~ I I _.IOIS. 1255 (MDOEO) _._ETC I--WTOT - Pes l0003701 Figure 15: Full-time Parallel Interface to 8048/80/85 Microprocessors ? ADO_BUS t CONTRDLBUS IJ ; GND I I MODE CEILOAD ....,2 • , POL, DR . 9 It I I 1J f} 1J 1J RD WR 07-00 All-Al Pa,_ I al-81 ONO LiEN 1 I ~J , . ~t II STBA -.- _ _ ETC 8255 PC. 101cll iiiiii t~ CI PCo RUNtHOLii STATUS "S I I DATA BUS PAs-PAc ICL7101 IN -~ fr I I PCo INTRA INTR +IV SEE TEXT LD003801 Figure 16: Full-time Parallel Interface to 8048/80/85 Microprocessors With Interrupt of this are shown in Figures 18 and 19. It is necessary to carefully consider the system timing in this type of interface, to be sure that requirements for setup and hold times, and minimum pulse widths are met. Note also the drive limitations on long buses. Generally this type of interface is only favored if the memory peripheral address density is low .50 that simple address decoding can be used. Interrupt handling can also require many additional components, and using an interface device will usually simplify the system in this case. A similar interface to Motorola MC6800 or MaS Technology MCS650X systems is shown in Figure 17. The high to low transition of the STATUS output generates an interrupt via the Control Register B CB1 line. Note that CB2controis the RUN/HOLD pin through Control Register B, allowing software-controlled initiation of conversions in this system as well. The three-state output capability of the ICL7109 allows direct interfacing to most microprocessor busses. Examples 6-61 Note: All typical values have been guaranteed by characterization and are not tested. e... IC1.7109 GNO 119-812~';""'--'" PA0-6 POI., ORt-_6_ - . / CRBI--11R-G1! ICL7108 B1-86 8 MceaoX OR MCSISOX PBO-7 MC6820 ANALOG IN STATUS~---~CB1 RUN/iiOLi) OND-......- CB2 ......_..;,l ADDRESS BUS DATA BUS CONTROL BUS LDOO3901 . Figure 17: Full-time Parallel Interface to MC680X or MCS650X Microprocessors 119-812 POL. DR ICL7109 8009. 8080. 8085 Bl-B8 8 ANALOG IN C£[OiD~----~ ·MEMR or lOR 'or 80801I22I Systam OND +5V LOO0410i Figure 18: Direct Interface -ICL7109 to 8080/8085 ~2 Note: All typical values have been guaranteed by characterization and are not tested. ICL7109 89-812 POL,OR 81-118 MCI80X 8 OR MCS850X ANALOG IN ~~------------; ~~------------~ AOORESS BUS DATA 8US CONTROL 8US LD004201 Figure 19: Direct ICL7109 - MC680X Bus Interface Handshake Mode The handshake mode allows ready interface with a wide ~ariety of external devices. For instance, external latches may be clocked by the rising edge of CE/LOAD, and the byte enables may be used as byte identification flags .or as load enables. Figure 20 shows a handshake interface to Intel microprocessors again using an 8255PPI. The handshake operation with the 8255 is controlled by inverting its Input Buffer Full (ISF) flag to drive the SEND input to the ICL71 09, and using the CE/LOAD to drive the 8255 strobe. The internal control register of the PPI should be set in MODE 1 for the port used. If the 7109 is in handshake mode and the 8255 IBF flag is low, the next word will be strobed into the port. The stroQe will cause ISF to go high (SEND goes low), which will keep. the enabled byte outputs active. The PPI will generate an interrupt which when executed will result in the data being read. When the byte is read, the IBF will be reset low, which causes the ICL7109 to sequence into the next byte. This figure shows the MODE input to the ICL7109 connected to a control line on the PPI. If this output is left high, or tied high separately, the data from every conversion (provided the data access takes less time than a conversion) will be sequenced in two bytes into the system. If this output is made to go from low to high, the output sequence can be obtained on demand, and the interrupt may be used to reset the MODE bit. Note that the RUNI HOLD input to the ICL7109 may also be driven by a bit of the 8255 so that conversions may be obtained on command under software control. Note that one port of the 8255 is not used, and can service another peripheral device. The same arrangement can also be used with the 8155. Figure 21 shows a similar arrangement with the MC6800 or MCS650X. microproce!\sors, except that both MODE and RUN/HOLD are tied high to save port·outputs. The handshake mode is particularly convenient for directly interfacing to industry standard UARTs (such as the IntersillM6402/6403 or Western Digital TR1602) providing a minimum component count means of serially transmitting converted data. A typical UART connection is shown in Figure 2A. In this circuit, any word received by the UART causes the UART DR (Data Ready) output to go high. This drives the MODE input to the ICL7109 high, triggering the ICL7109 into handshake' mode. The high order byte is output to the UART first, and when the UART has transferred the data to the Transmitter Register, TBRE (SEND) goes high and the second byte is output. When TBRE (SEND) goes high again, LBEN will go high, driving the UART ORR (Data Ready Reset) which will signal the end of the transfer of data from the ICL7109 to the UART. Figure 22 shows· an extension of the one converterone UART scheme to severallCL7109s with one UART. In this circuit, the word received by the UART (available at the RBR outputs when DR is high) is used to select which converter will handshake with the UART. With no external components, this scheme will allow up to eight ICL7109s to interface with one UART. Using a few more components to decode the received word will allow up to 256 converters to be accessed on one serial line. Note: All typical values have been guaranteed by characterization and are not tested. 6 ........ ICL7109 ·~ S! t ADDRESS BUS t CONTROL.US 'I I ~ 1r II I I I I I I ~J t} I I DATA BUS . ....,2 POL,OR \ li ICL7108 8 ~J RD WR 81-118 -- ~J 07-00 AD-AI ( t a PA1-PAo RUNtHOU) Pc. MODE pc, 8008,8010, 80115, 8048 ETC 1255 (MODEl) mr. PC. SEND ~ PC$ CEILOAD IN tj t pc, INTR LD004301 Figure 20: Handshake Interface -ICL7109 to 8048, 80/85 ·,5V-_---, CRA l--loo411 ICL7109 MC6800 OR MCS650X ANALOG IN Ciii:O'Ao~-­ SEND CA2 ADDRESS 8US DATA SUS CONTROl BUS LOO04401 Figure 21: Handshake Interface -ICL7109 to MC6800, MCS650X Note: All typical values have been guaranteed by characterization and are not tested. ICL7109 SERIAl. OUTPUT o 1--- _CMOSUART SERIAL INPUT 1 - - - - MOOE CfJ U!AD 89·812 POL.·OR ~:-::: ICL1109 89-B12 8 POL. OR ICL7109 Bl·B8 Bl·B8 ANALOG 8 ANALOG IN IN RUN/HOLD -5V 8 ICL7109 81-88 8 ANALOG IN RUN/HOLD +5V lOOO45Q1 Figure 22: Multiplexing Converters with Mode Input The applications of the ICL7109 are not limited to those shown here. The purpose of these examples is to provide a starting pOint for users to develop useful systems, and to show ii10me of the variety of interfaces and uses of the ICL7109. Many of the ideas.suggested here may be used in combination; in particular the uses ot the STATUS, RUN/ HOLD, and MODE signals may be mixed. APPLICATION NOTES A016 "Selecting AID Converters," by David Fullagar A017 "The Integrating AID Converters," by Lee Evans A018 "Do's and Don'ts of Applying AID Converters," by Peter Bradshaw and Skip Osgood A030 "The ICL7104 -A Binary Output AID Converter for Microprocessors," by Peter Bradshaw A032 "Understanding the Auto-Zero and Common Mode Performance of the ICL7106 Family," by Peter Bradshaw ROOS "Interlacing Data Converters & Microprocessors," by Peter Bradshaw et ai, Electronics, Dec. 9, 1976. Note: All typical values have been guaranteed by characterization and are not tested. !ICL711S. d.14-Bit High-Speed ,CMOS MP-Compatible AID Converter GENERAL DESCRIPTION FEATURES The ICL7115 is the first monolithic 14-bit resolution, fast successive approximation AID converter. It uses thin film resistors and CMOS circuitry combined with an on~chip PROM calibration .table to achieve 13-bit linearity without laser trimming. Special design techniques used in the DAC and comparator result in high speed operation, while the fully static Silicon-gate CMOS circuitry keeps the power dissipation very low. Microprocessor bus interfacing is made easy by the use of standard WRite and ReaD cycle timing and control Signals, combined with Chip Select and Address pins. The digital output pins are byte-organized and three-state gated for bus interface to 8 and 16-bit systems. The ICL7115 provides separate Analog and Digital grounds. Analog ground, voltage refer~nce and input voltage pins are separated into force and sense lines for increased system accuracy. Operating with ±5V supplie's, the ICL7115 accepts OV to + 5V input with a -5V reference or OV to -5V input with a +5V reference. • • • DGNO 40 39 38 37 36 35 34 (MSI) 0" 33 0" 32 IUS 5 6 4 3 2 1 31 PART NUMBER RESOLUTION WITH NO MISSING CODES TEMP. RANGE PACKAGE ICL7115JCDL ICL7115KCDL 12 B~s 13 Bits O'C to +70'C O'C to +70'C 40 Pin Ceramic 40 Pin Ceramic ICL7115JIDL ICL7115KIDL 12 Bits, ' 13 Bits - 25'C to 85'C 40 Pin Ceramic - 25'C to + 85'C 40 Pin Ceramic ICL7115JMDL ICL7115KMDL ICL7115JMLL ICL7115KMLL 12 Bits 13 B~s 12 Bits' 13 Bits - 55'C - 55'C - 55'C - 55'C to to to to + 125'C 40 Pin Ceramic + 125'C 40 Pin Ceramic + 125'C 40 Pin LCC + 125'C 40 Pin LCC Wli Sl! USC2 0SC1 10 11 12 29 TESf 0, 13 28 PRUG 0, 14 Z1 15 26 17 18 19 20 21 22 23 24 25 16 ORDERING INFORMATION v- 0" 30 • • • • CAl 0" 0. ICL7115 • • • = 14-Blt Resolution (LSB 3051lV) No Missing Codes Mlcroprocess(lr Compatible Byte-Organized Buffered Outputs Fast Conversion (40l-ls) Auto-Zeroed Comparator for Low Offset Voltage Low Linearity and Gain Tempco (1.5ppmI"C, 5ppmrC) , Low Power Consumption (60mW) No Gain or Offset Adjustmen,t Necessary Provides 3% Useable Overrange FORCE/SENSE and Sepa~ate Digital and Analog Ground Pins for Increased System Accuracy V' OVR tSdtSdQ"!mmm t!r (Outline DWG LL) (Outline DWG DL) Figure 1: Pin Configuration 6-66 Note: All typical values have been guaranteed by characterization and are nol'tested. 301659-002 ICL7115 ABSOLUTE MAXIMUM RATINGS (Note 1) Supply Voltage V + to DGND ............. -O.3V to + 6.SV Supply yoltage V- to DGND .............. +O.3V to -6.SV VREFs. VREFf. VINs. VINf to DGND ....... +2SV to -2SV AGND s• AGNDf to DGND ...................... + 1V to -1V Current in FORCE and SENSE Lines ................. 2SmA Digital 1/0 Pin Voltages ............... -O.3V to V+ +O.3V PROG to DGND Voltage ................. V- to V+ +O.3V Operating Temperature Range ICL711SXCXX ........................... O'C to +70'C ICL711SXIXX ................ ; ........ -2S·C to +8S'C ICL7t1SXMXX ...................... -SS·C to +12S'C Storage Temperature Range ............ -6S'C to + 1S0'C Power Dissipation ......................................... SOOmW derate above 70'C @ 1OOmW I"C Lead Temperature (Soldering. 10sec) ................. 300·C NOTE 1: All voltages with respect to DGND, unless otherwise noted. Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of. the spec~ications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. ""EF, ...-J\I\"""--o "'NI SC OSC1 OSC2 ""EFf AGNDf AGND, 17·BITSAR CONTROL LOGIC v-~ ' . 4 1 - - - - - - - - 0 WR ~-------_oEOC 17 ,.----.-"1....-,> OVR 0,3 (MSB) .............:-7-r....-... Do (LSB) liD eli All Figure 2: ICL7115 Functional Block Diagram 6-67 Note: All typical values have been guaranteed by characterization and are not tested. BUS ......... ICl.7t15 IIO~O[l '10 - u ELECTRICAL CHARACTERISTICS . DC ELECTRICAL CHARACTERISTICS V+ = +S.OV. V- = -S.OV. VREFs = -S.OV. TA = +2SoC. fClK = SOOkHz unless otherwise n o t e d ' SYMBOL . .. PARAMETER Resolution , 14 ~=VIL 12 ILE Integral Unearity Error Note 1 TC(ILEl Temperature Coefficient of ILE TA - RES(NMC) Min Resolution' with No Missing Codes TC(FSE) Temperature Coefficient of FSE Zero Error Notes 1.2 Temperature Coefficient of ZE TA - Operating Range PSRR Power Supply Rejection Ratio VIN Analog Input Range (VIN•• VREFsl RIN Input Resistance (VIN•• VREFsl 13 12 ±0.1 ±0.08 ± 1t2 TA - 25°C o to 1 ppml"C ±1 -300 TA = 25°C TA=Operating Range 2 Supply Voltage Range Functional Operation Only VIL Low State Input Voltage Operating Temperature Range VIH High State Input Voltage Operating Temperature Range ILIH Logic Input Current o V+ Low State .Oujput Voltage lOUT- 1.6mA Operating Temperature Range VOH High State Oujput Voltage lOUT = -200pA Operating Temperature Range ±4.5 ±6.0 0.8 2.4 2.8 rnA V V pA V V lOX Three-State Oujput Current 0< VOUT> V + 1 Logic Input Capscitance (Note 4) 15 GoUT Logic Output Capacitance Three-State (Note 4) 15 6-68 10 0.4 CIN Note: All typical values have been guaranteed by characterization and are not tested. kn V 1 Full·scale range (FSR) is 5V (reference adiusted). Assume all leads soldered or welded to printed clrcuH board. Assume all leads soldered or welded to· printed circuit board. LSB ppml"C 4 6 VOL LSB V 9 TA - Operating Range VSUPPLY 2. 3. ppml"C +5 4 ISUPPLY %FSR 5 ±1 ±2 TA - Operating Range Note 3 %FSR ppm/oC Bits 11 2 Supply Current I +. 1- NOTES: 1. 1.5 12 TA - Operating Range TeeZE) Tc(RIN) ±0.018 J K ZE UNIT Bits 1 J K J K MAX ±0.012 Operating Range fA - Operating Range (Note 2) FSE TYP J K TA= 25°C Full Scale calibration Error (Adjustable to Zero) MIN' TEST CONDITIONS ~~VIH pA pF .D~DIL ICL7115 ..P... en VALID A. ~I---_ 00-013 -~l+------ -_18_d EOC ~ = DON'T CARE Figure 3: Read Cycle Timing with BUS = V,L ~~J~}- EOC ~ = DON'T CARE Figure 4: Write Cycle Timing AC ELECTRICAL CHARACTERISTICS v+ = +S.ov, v- = -S.ov, TA= +2S0C, fclk=SOOkHz unles otherwise noted. Data derived from extensive characterization testing. Parameters are not 100% production tested. PARAMETER SYMBOL I TEST CONDITIONS MIN TYP MAX UNIT READ CYCLE TIMING led lad Prop. Delay ~ to Data tro Prop. Delay ~ to Data Inc Prop. Delay Data to Three State 100 ted Prop. Delay EDC High to Data 200 Prop. Delay Ao to Data ~ Low. Ao Valid 200 ~ Low, ~ Low 200 Cl; Low. Ao Valid 200 ns WRI'rE CYCLE TIMING twr WIt low Time twe Prop. Dalay lao EOC High Time Free-Run Mode COnversion Time S"C: = V,H S"C: = V,L !conv WI'i ns 100 low to EDC low Wait Mode 1 2 0.5 1.5 20 18 6-69 Note: All typical values have been guaranteed by characterization and are not tested, 111clk ....... ... .1ft ICL7115" gTABLE 1: PIN DESCRIPTIONS PIN NAME 1 2 VREFf AGNDf 3 CS FORCE input 'for analog ground ~ (active low) 5 Ao Byte select (low = Do-D7, high = D8-DI3, OVR) 6 BUS 7 DGND 8 D13 Bit 13 (most significant) 9 D12 Bit 12 10 Dl1 Bit 11 Bus select (low = outputs enabled by Ao, · high - all outputs enabled together) Bit 9 Output 13 D8 Bit 8 Data 14 D7 Bit 7 15 D6 Bit 6 16 Ds Bit 5 17 D4 Bit 4 18 D3 Bit 3 19 D2 Bit 2 20 Dl Do 23 B16 24 25 B17 EOC 26 OVR x x 0 0 0 Low Byte is Enabled 0 x 0 1 0 High Byte is Enabled 0 x 0 x 1 Low and High Bytes Enabled Together x x 1 x x Disables Outputs (High-Impedance) INPUT VOLTAGE Bit 10 BIS 1 x Initiates a Conversion x Disables all Chip Commands TABLE 3: TRANSFER FUNCTION High Byte Dl0 D9 21 FUNCTION BUS 0 0 Digital·GrouND return 12 22 110 CONTROL AD Ao x x x x 0 Chip Select enables reading and writing (active low) REi 11 CS WR · FORCE line for' reference input. 4 2: TABLE FUNCTION VREF= -5.0V EXPECTED OUTPUT CODE LSB OVR MSB 0 +0.0003 0 0 0 0 000000000000 000000000000 0 1 +0.150 0 0 000011110101 1 +2.4997 +2.500 0 0 0 1 111111111111 000000000000 1 0 'Bit 1 +4.9994 +4.9997 +5.000 +5.0003 0 0 1 1 1 1 0 0 111111111111 111111111111 000000000000 000000000000 0 1 0 1 Bit 0 (least significant) +5.150 1 0 000011110101 1 Bits, (High = True) Low Byte Used for programming only (leave open) DETAILED DESCRIPTION The ICl7115 is basically a successive approximation End Of Conversion flag (low = busy, · high - conversion complete) AID converter with an internal structure much more complex than a standard SAR-type converter. Figure 2 shows the functional diagram of the ICl7115 14-bit AID converter. The additional Circuitry incorporated into the ICl7115 is used to perform error correction and to maintain the operating speed .in the 40j.ls range. The internal 17-bit DAC of the ICl7115 is designed around a radix of 1.85 rather than the traditional 2.00. This radix gives each bit of the DACa weight of approximately 54 % of the previous bit. The result is a useable range that extends to 3% beyond the full-scale input of the A/D. The actual value of. each bit is measured and stored in the. onchip PROM. The absolute vahle of each bit weight then becomes relatively unimportant because ofthe error correction action of the ICl7115. The output of the high-speed auto-zeroed comparator is fed to the datainput of a 17-bit successive approximation register (SAR). This register is uniquely designed for the ICl7115 in that it tests bit pairs instead of ,individual bits in the manner of a standard SAR. At the beginning of the conversip" cycle, the SAR turns on the MSB (B16) and the MSB-4 bit (B12)' The sequence continues for each liIit pair, Bx and BX-4, until only the four lSBs remain. The sequence concludes by testing the four LSBs individually. The SAR output is fed to the DAC register and to the preprogrammed 17-word by 17-bit PROM where it acts as PROM address. PROM data is fed to a 17-bit full-adder/ accumulator where the decoded results from each successive phase of the conversion are summed with the previous results. After 20 clock cycles, the accumulator contains the ·OVerRange flag (valid at end of conversion when output code exceeds full-scale, threestate output enabled with high byte) 27 V+ 28 PROG Used for programming only. Tie to V+ for normal operation 29 TEST Used for programming only. Tie to V + for normal operation 30 OSC1 Oscillator inverter input 31 OSC2 Oscillator inverter output 32 "SC PosHive power supply input , .Short cycle input (high = 14-bH, low = 12-bit operation) 33 WR WRite pulse input (low starts new conversion) 34 Auta:-zero capaCitor connection 35 CAl V- 36 COMP Negative power supply input Used in test, tie to V- 37 Y,N. 38 39 VREF. AGND. SENSE line for analaQ ground 40 VINf FORCE line for input voltage SENSE line for input voltage SENSE line for reference input 6-70 Note: All typical values have been guaranteed by characterization and are ,not tested. ICL7115 final binary data which is latched and sent to the three-state output buffers. The accuracy of the AID converter depends primarily upon the accuracy of the data that has been programmed into the PROM during the final test portion of the manufacturing process. The error correcting algorithm built into the ICL7115 reduces the initial accuracy requirements of the DAC. The overlap in the testing of bit pairs reduces the accuracy requirements on the comparator which has been optimized for speed. Since the comparator is auto-zeroed, no external •adjustment is required to get ZERO code for ZERO input voltage. Twenty clock cycles are required for the complete 14-bit conversion. The auto-zero circuitry associated with the . comparator is employed during the last three clock cycles of the conversion to cancel the effect of offset voltage. Also during this time, the SAR and accumulator are'reset in preparation for the start of the next conversion. When the Short Cycle (SC) input is low, 18 clock cycles are required to complete a 12-bit conversion. The overflow output of the 17-bit full-adder is also the OVerRange (OVR) output of the ICL7115. Unlike standard SAR-type AID converters, the ICL7115 has the capability of providing valid useable data for inputs that exceed the fullscale range by as much as 3%. INPUT WARNING As with any CMOS integrated circuit, no input voltages should be applied to the ICL7115 until the ±5V power supplies have stabilized. INTERFACING TO DIGITAL SYSTEMS The ICL7115 provides three-state data output buffers, CS, RD, WR, and bus select inputs (Ao and BUS) for interfacing to a wide variety of microcomputers and digital systems. The 1/0 Control Truth Table shows the functions of the digital control lines. The BUS select and Ao lines are provided to enable the output data onto either 8-bit or 16-bit data buses. A conversion is initiated by a WR pulse (pin 33) when CS (pin 3) is low. Data is enabled on the bus when the chip is selected and RD (pin 4) is low . ¥REFI ICl7115 '-------'1 AGNo. OPTIMIZING SYSTEM PERFORMANCE r-----t The FORCE and SENSE inputs for VIN and VREF are also shown driven by external op-amps. This technique eliminates the effect of small voltage drops which can . appear between the input pin of the IC package and the actual resistor on the chip. If the small gauge wire and the bonds that connect the chip to its package have more than 300mn of total series resistance, the result can be a voltage error equivalent to 1LSB. If no op-amps are used for VIN and VREF, connections should be made directly to the SENSE lines. The external op-amps also serve to transform the relatively low impedance althe VIN and VREF pins into a high impedance. The input offset voltages of these amplifiers should be kept low in order to maintain the overall AID converter system accuracy. When using AID converters with more than 12 bits of resolution, special attention must be paid to grounding and the elimination of potential ground loops. A ground loop can be formed by allowing the return current from the ICL7115's DAC to flow through traces that are common to other analog circuitry. If care is not taken, this current can generate small unwanted voltages that add to or detract from the reference or input voltages of the AID converter. Ground loops can be eliminated by the use of the analog ground FORCE and SENSE lines provided on the ICL7115 as shown in Figures 5 and 6. In Figure 5 the FORCE line is the only point that is connected to system analog ground. In Figure 6, the op-amp A3 forces the voltage at AGND to be equal to analog system ground. The addition of this op-amp overcomes the main deficiency of the arrangement in Figure 5: the VIN and VREF sources are not referenced to true analog system ground. .The clamp diodes in Figure 6 are required because spurious op-amp output on AGNDf during power-on can exceed the absolute max rating of ± 1.0V between AGDf and DGND. The two inverse-parallel diodes clamp the voltage between AGNDs and DGND to ±O.7V. AGNDt DGND Figure 5: VIN and VREF Input Buffers '>----1 101•, '---------1101., !,>-----; VA£Ff ICl7115 '----------I VAEFS r---------I AGND, '7.,---r--4 AGNDt DIODES IN914 -=- 1- m DGND Figure 6: Using a Forced Ground Figure 7 illustrates atypical interface to an 8-bit microcomputer. The "Start and Wait" operation requires the fewest external components and is initiated by a low level on the WR input to the ICL7115 after the 1/0 or memorymapped address decoder has brought the CS input low. After executing a delay or utility routine for a period of time greater than the conversion time of the ICL7115, the processor issues two consecutive bus addresses to read output data into two bytes of memory. A low level on Ao enables the LSBs and a high level enables the MSBs. 6-71 Note: All typical values have been guaranteed by characterization .and are not tested. .! iCL7115· '"g L -____~----~__~AD~D~R~E~S~S~BUSr_--------~~--~ Ao AO-AN CSI+-----' lID 1 + - - - - - - - - 1 lID WR 1 + - - - - - - - - 1 WR ICL7115 I DATA BUS START CONVERSION - WAIT READ LOW BYTE . READ HIGH BYTE Figure 7: "Start and Wait" Operation reads the most significant byte until it detects a high level on the EOC bit. The "Start and Poll" interface increases data throughput compared with the "Start and. Wait" method by eliminating delays between the conversion termination .and the microprocessor read. operation. By adqing a threl'l-state buffer and two ccmtrol gates, the End-of-Conversion (EOC) output can be used to. control a "Start and Poll'.' interface (FigureS). In this mode, the Ao and CS lines connect the EOC output to the data bus al~ with the most significant byte of data. After pulsing the WR line to initiate a conversion, the microprocessor continually 6-72 Ncrte: All typical values have been guaranteed by characterization and are hOI' tested. .D~Do" ICL7115 P .......... UI I ) wRI.--------r~--~WR CS 1.--------+.... ROI.--------+~--__1RD ICL7115 EOC BUS DATA BUS END OF ____ CONVERSION _START CONVERSION POLL- READ HIGH BYTE READ HIGH BYTE READ LOW BYTE Figure 8: "Start. and Poll" Operation Other interface configurations can be used to increase data throughput without monopolizing the microprocessor during waiting or polling operations by using the EOC line as an interrupt generator as shown in Figure 9. After the conversion cycle is initiated, the microprocessor can continue to execute routines that are independent of the AID converter until the converter's output register actually holds valid data. For fastest data throughput, the ICL7115 can be connected directly to the data bus but controlled by way of a Direct Memory Access (DMA) controller as shown in Figure 9. 6-73 Note: All typical values have been guaranteed by characterization and are not tested. .D~DIL ADDRESS BUS AD AD-AN AD CS ICL7115 RD RD WR WR EOC iNf -= .p 00-0, DATA BUS II S INTERRUPT ,---- - ~~~RJERSION READ LOW BYTE Figure 9: Using EOC as an Interrupt 6-74 Note: Ali typical values have been guaranteed by characterization and are not tested. _READ HIGH BYTE I .n~nlb ICL7115 e.. ,QI s I ADDRESS BUS Ao-AN EOCr--------------.IDRQN DMA CONTROLLER ICL7115 I DATA BUS EOC Ao READ LOW BYTE ENDOF CONVERSION READ HIGH BYTE Figure 10: ,Data to Memory via DMA 6--75 Note: All typical values have been guaranteed by characterization an,d are not tested. I START r--- CONVERSION Con~roller .U~UIl " ICL7115' ~ ...... ''P' 2' +5V 28 32 29 27 OVR SC TEST V+ VREFI OSC 5V REFERENCE SYSTEM CLOCK EOC ~2:::5__________+ Rl lOOk HI R2 lOOk R3 50k 37 Y,N. ICL7115 DATA{ INPUT VOLTAGE +5VTO -5V OUT LOW BYTE 21 WR j!3~3__________-. RD ..4'--_________ LOo-----~--~----~\ CS 3 Ao DGND ANALOG GROUND ':" 35 7 BUS 6 ,DIODES IN914 DIGITAL GROUND Figure 11: Typical Application with Bipolar Input Range, Forced Ground, and 5 Volt Ultra-Stable Reference APPLICATIONS Figure 11 shows a typical application of the ICL7115 14bit AID converter. A bipolar input voltage range of + 5V to -5V is the result of using the current through R2 to force a 1/2 scale offset on the input amplifier (A2). The output of A2 swings from OV to -5V. The overall gain of the AID' is varied by adjusting the 100kil trim resistor, Rs. Since the ICL7115 is automatically zeroed every conversion, the system gain and offset stability will be superb as long as a reference with a tempco of 1ppml"C and stable external resistors are used. greater than full-scale, and because the converter's OVR output flags overrange inputs, a simple microprocessor routine can be employed to precisely measure and correct for system gain and offset errors. Figure 12 shows a typical data acquisition system that uses a 5.0V reference, input Signal multiplexer, and input signal Track/Hold amplifier. Two of the multiplexer's input channels are dedicated to sampling the system analog ground and reference voltage. Here, as in Figure 11, bipolar operation is accommodated by an offset resistor between the reference voltage and the summing junction of A1. A flip-flop in IC3 sets 1C2'S Track/ Hold input after the microprocessor has initiated a WR command, and resets when EOC goes high at the end of the conversion. In Figure 11, note that the 0.22/-1F auto-zero capacitor is connected directly between the CAZ pin and analog ground SENSE. A3 forces the analog ground of the ICL7115 to be the zero reference for the input signal. Its offset voltage is , not important in this example because the voltage to be digitized is referred to the analog ground SENSE line rather than system analog ground. It is important to note that since the 7115's DAC current flows in A1, A2 and A3 these amplifiers should be wideband (GBW > 20M Hz) types to minimize errors. The first step in the system calibration routine is to select the multiplexer channel that is connected to system analog ground and initiate a conversion cycle for the ICL7115. The results represent the system offset error which comes from the sum of the offsets from IC1, IC2, and A1. Next the channel connected to the reference voltage is selected and measured. These results, minus the system offset error, represent the system full-scale range. A gain error correction factor can be derived from this data. Since the ICL7115 provides valid data for inputs that exceed full-scale by as much as 3%, the OVR output can be thought of as a valid 15th data bit. Whenever the OVR bit is high, however, the total 14-bit result should be checked to insure that it falls within 100% and 103% of full-scale. Data beyond 103% of full-scale should be discarded. The clock for the ICL7115 is taken from whatever system clock is available and divided down to the 500kHz level for a conversion time of 40/-ls. Output data is controlled by the BUS and Ao inputs. Here they are set for 8-bit bus operation with BUS grounded and Ao under the control of the address decode section of the external system. Because the ICL7115's internal accumulator generates accurate output data for input Signals as much as 3% 6-76 Note: All typical values have been guaranteed by characterization and are not tested. 1I0~OIl. ICL7115 en ADDRESS BUS A. Uk I. ANALOG INPUTS 1 Figure 12: Multi-Channel Data Acquisition System with Zero and Reference Lines Brought to Multiplexer for System Gain and Offset Error Correction The ICL7115 provides an internal inverter which is brought out to pins OSC1 and OSC2, for crystal or ceramic resonator oscillator operation. The clock frequency is calculated from: and fCLK 18 z -- !cony 20 fCLK = - - for 14-bit operation tconv 6-77 Note: All typical values have been guaranteed by characterization and, are not tested. e.. for 12-bit operation '~ ICL711617117 '~ 3Y2~[)igit LCOll-i.:D , ' ' , ,Single.-Chip AID Converter g with Di~play Hold ~ GENERAL DESCRIPTIO", FEATURES The IntersillCL7116 and 71178re high performance, low power 3-h digit AID converterS. All the necessary active devices are contained on a single CMOS I.C., including seven segment decoders, display drivers, reference, and a clock; The 7116 is designed to interface with a liquid crystal display (LCD) and includes a backplane drive; the 7117 will directly drive an instrument-size light emitting diode (LED) display. The 7116 and 7117 have almost all of the features of the 7106 and 7107 with the addition ofa HoLD Reading input. With this input, it is possible to make a measurement and then retain the value on the display indefinitely. To make room for this feature the reference input has been referenced to Common rather than being fully differential. These circuits retain the accuracy, versatility, and true economy of the 71 06 ~nd 7107. They feature auto-zero to ,less than 10,N, zero drift of less than 1JJ.VrC, input bias current of 10pA maximum, and roll over error of less than one count. The versatility of true differential input is of particular advantage when measuring load cells, strain gauges and other bridge-type transducers. And finally, the true economy of single power supply operation (7116) enables a high performance panel meter to be built with the addition of only eleven passive components and a display. • I HUHI e;; :, § - A1 _ I Q1 E1 '1 C'REF COMMON { 82 ~ F2 D (tOOO).... ICL7116CDL ICL7116CPL ICL7116CJL ICL7116CM44 ICL7117CDL ICL7117CPL • ICL7117CJL TEMPERATURE RANGE O·C O·C O·C O·C O·C O·C O·C to to to to to to to +70·C +70·t +70·C + ,70·C +70·C +70·C +70·C 08C2 D2 .2 i I= - PART NUMBER :;T3 RIFHI C2 = ORDERING INFORMATION "";--r..,..-...,oac t Dt t: HoLD Reading Input Allows Indefinite Display Hold • $uaranteed Zero Reading for 0 Voltil Input • True Polarity' at Zero for Precise Null DetectIon '. 1pA Input' Current Typical • True, DIfferential Input • Direct Display Drlve- No External Components Required - LCD ICL7116 -- LE,D ICL7117 • Low Noise - L.ess Than 15JJ.V pk-pk Typical • On-Chip Clock and Reference • Low Power Dissipation - Typically Less Than 10mW • No Additional Active Circuits Required • New Small Outline Surface Mount Package Available . V' C~REF INH. INLO ~z aUFF !NT ~; ~l!._ (TENS) ~ (MIN~4ilII.----iIiII-'r;;~w:rr'17) COOO8401 COO3251I Figure 1: Pin Configurations 6-18 Note: All typical values have been guaranteed by characterization anCi are noi tested. PACKAGE 40-Pin 40-Pin 40-Pin 44-Pin 4O-Pin 4O-Pin 40-Pin Ceramic DIP Plastic DIP CERDIP Surface Mount Ceramic DIP Plastic DIP CERDIP .u~nlb ICL7116/7117. ABSOLUTE MAXIMUM RATINGS ICL7117 Supply Voltage y+ .......................................... +6V V- ........................................... -9V Analog Input Voltage (either input) (Note 1) .. V+ to VReference Input Voltage (either input) .......... V + to VHLDA, Clock Input .................................. Gnd to V+ Power Dissipation (Note 2) Ceramic Package .............................. 1000mW Plastic Package ........ , ......................... 800mW Operating Temperature ........................ O°C to +70°C Storage Temperature ...................... -65°C to + 150°C Lead Temperature (Soldering, 10sec) ................. 300°C Note 1: Input voltages may exceed the supply voltages previded the input current is limited to ± 1001lA. Note 2: Dissipation rating assumes device is mounted with all .leads soldered to printed circuit board. Stresses above those listed. under •• Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to abSOlute maximum rating condItions for extended periods may affect device reliability .. ELECTRICAL CHARACTERISTICS (Note 3) PARAMETER TEST CONDITIONS MIN TYP MAX UNIT -000.0 ±OOO.O + 000.0 .Digital Reading 999 999/1000 1000 Digital Reading IV,N I"" 200.0mV ~1 ±O.2 +1 Counts Full Scale - 200mV or Full Scale = 2.000Y (Note 7) -1 ±0.2 +1 Counts Y,N =O.OV Full Scale = 200.0mV Ratiometric Reading Y,N =YREF VREF= l00mV Rollover Error (Difference in reading for equal positive and negative. reading near Full Scale) Linearity (Max. deviation from best straight line fit) Common Mode Rejection Ratio (Note 4) VCM = ±lY, Y,N = OV, Full Scale =200.0mV 50 Noise (Pk - Pk value not exceeded 95% of time) V'N":'OV . Full Scale = 200.0mV 15 Leakage .C~rrent Y,N = OV (Note 7) 1 10 0.2 1 1 5 ppm/·C ~. Input Zero Reading Drift V'N=O O·C < TA < 70·C (Note 7) Scale Factor Temperature Coefficient Y,N = 199.0mV O·C < TA < 70·C (Ext. Ref. Oppml"C) (Note 7) V + Supply Current (Does riot include LED current for 7117) V- Supply Current (7117 only) 25kn Detwean COMMON & pos. Supply Temp. Coeff. of Anal~ Common (with respect to pos. upply) 25kn between COMMON & pos. Supply p.v1V p-V pA . p-V/·C , V'N=O Analog Common Voltage (With respect to pos. supply) 2.4 0.6 1.6 rnA 0.6 1.6 rnA 2.6 3.2 V ppml"C 60 Input ReSistance, Pin 1 (Note 6) 30 70 kn V'L, Pin 1 (7116 only) TEST + 1.5 V V'L, Pin 1 (7117 only) GND+ 1.5 V V+ -1.5 V'H, Pin 1 (Both) 7116 ONLY Pk-Pk Segment Drive Voltage Pk-Pk Backplane Drive Voltage (Note 5) G» ICL7116 Supply Voltage (V + to V-) ................................ 15V Analog Input Voltage (either input) (Note 1) . V + to VReference Input Voltage (either input) ......... V + to VHLDR, Clock Input. ................................. Test to V+ Power Dissipation (Note 2) Ceramic Package ........................... , .. 1000mW Plastic Package .................................. 800mW Operating Temperature ........................ O°C to + 70°C Storage Temperature ...................... -65°C to + 150°C Lead Temperature (Soldering, 10sec) ................. 300°C Zero Input Reading p ......... ... ......... 4 4 V+-V-=9V 6-79 Note: All typical values have been guaranteed by characterization and are. not tested. Y 5 5 6 6 Y ~ ICL7f18/71'17 po. i' ELECTRICAL CHARACTERISTICS (CONT.) ~ - d PARAMETER TEST CONDITIONS 7117 ONLY Segment Sinking Current (Except Pin 19 and 20) (Pin 19 only) (Pin 20 only) NOTES: MIN TYP 5 10 4 8.0 16 7 MAX UNIT V+ = 5.0V Segment Voltage", 3V mA 3. Unless otherwise noted, specffiCiltions 'apply t9 both the 7116 and 7117. at TA=25'C, fclock = 48kHz. 7116 is tested in the circuit of Figure 4. 7117. is tested in the circuit of Figure 5. 4. Refer to "Differential Input" disc,ussion. ' , 5, Back plane driVe is in phase with segment driVe for 'off' segment, 180' out of phase for 'on' segment. Frequency is 20 times ' conversion rate. Average DC component is less than 50mV. 6. The 7116 logic' Input has an Internal pull-down resistor connected from HLDR, pin 1, to TEST, pin 37. The 7117 logic input has an internal pull-down resistor connected from HLDR, pin 1 to GROUND, pin 21. 7. Not tested, guaranteed by design. TEST CIRCUITS DETAILED DESCRIPTION Analog Section I. + - Figure 4 shows the Analog Section for the ICL7116 and 7117. Each measurement cycle is divided into three phases. They are (1) auto-zero (A/Z), (2) signal integrate (IND and (3) de-integrate (DE). Auto-zero phase During auto-zero three things happen. First, input high and low are disconnected from the pins and internally shorted to analog COMMON. Second, the reference capacitor is charged to the reference voltage. Third, a feedback loop is closed around the system to charge the auto-zero capacitor CAZ to compensate for offset voltages in the buffer amplifier, integrator, and comparator.' Since the comparator is included in the loop, the A-Z accuracy IS limited only by the noise of the system. In any case, the offset referred to the input is less than 101lV. Signal Integrate phase AF023601 Figure 2: ICL7116 Test Circuit and Typical Application With liquid Crystal Display .. ." +- . , ...n ",TPI l;1 . 1SOU 'Nn ~ Tf3 lir I. r+.-::~~Al 11- . ~~ ~fI IWi ~v During Signal integrate, the auto-zero loop is opened, the internal short is removed, and the intermil input high and low are connected to the external pins. The converter then integrates the differential voltage between IN HI.and IN LO for a fixed time. This differential voltage can be within a wide common mode range; within ohe volt of either supply. If, on the other hand, the input Signal has no return with respect to the ,converter power supply, IN LO can be tied to analog COMMON to establish the correCt common-mode voltage. At the end of this phase, the polarity of the integrated signal is determin·ed. ,~ F~.';~~ i g . .~ 3 ~ • •i , t--- De-integrate phase , , The final phase is de-integrate, or reference integrate. Input low is internally connected to analog COMMON and input high is connected across the previously charged reference capacitor. Circuitry within the chip ensures that the capacitor will be connected with the correct polarity to ' cause the integrator output to return to zero. The time 'required for the output to return to zero is proportional to the input signal. Specifically the digital reading displayed is INTERSIL 7117 ~ ~11'11'1 ~l '" I" ~LI~ I-I ~II~ 1·11-11·1 ~I ~II~ d.... ....LAV III II .-Jo I, I I I'9°0 1000 (::). AF0237o'l Figure 3: ICL7117 Test Circuit and Typical Application With LED Display 6-80 Note: All typical values have been guaranteed by characterization and are not' tested. e...... .O~O[6 ICL7116/7117 -...... at c.,,, r-----I .... .... .. : vI I I I 10~. I ......._ - TO OIGITAL SECTION I 'N HI ($II"-"+~~~-+:::-:-~=-:+__---J I !NT I I I I' A/Z C~N~I~U~_ _~_~_~_ _ _-J I +-_______---..J INLO,~II""'---Qi~_-~-_ _ _ _ _ _ I !NT L ________ ---______________ ~ ~~~T ____________________________________ _ v- , " 05013001 Figure 4: Analog Section of 711617117 Differential Input impedance (=15n), and a temperature coefficient typically less than 80ppml"C. The input can accept differential voltages anywhere within the common mode range of the input amplifier; or specifically from 0.5 vQlts below the positive supply to 1.0 volt above the negative supply. In this range the system has a CMRR of typically 86dS. However, since the integrator also swings with the common mode voltage, care must be exercised to assure the integrator output does not saturate. A worse case condition would be a large positive commonmode voltage with a near full-scale negative differential input voltage. The negative input signal drives the integrator positive when most of its swing has been used up by the positive common mode voltage." For these critical applications the integrator swing can be reduced t6 less than the recommended 2V full scale swing with little loss of accuracy. The integrator output can swing to within 0.3 volts of either supply without loss of linearity." See A032 for a discussion of the effects of stray capacitance. The limitations of the on-chip reference should also be recognized, however. With the 7117, the internal heating which results from the LED drivers can cause some degradation in performance. Due to their higher thermal reSistance, plastic parts are poorer in this respect than ceramic. The combination of reference Temperature Coefficient (TC), internal chip disSipation, imd package thermal resistance can increase noise near full scale from 251lV to 80IlVpk-pk. Also the linearity in going from a high dissipation count such as 1000 (20 segments on) to a low dissipation count such as 1111 "(8 segments on) can suffer by a count or more. Devices with a positive TC reference may require several counts to pull out of an overload condition. This is because .overload is a low dissipation mode, with the three least significant digits blanked. SimilarIy, units with a negative TC may cycle between overload and a nonoverload count as the die alternately heats and cools. All these problems are of course eliminated if an external reference is used. Reference The reference input must be generated as a positive voltage with respect to COMMON. Note that.current flowing in the COMMON pins' internal resistance causes a slight shift in the effective reference voltage, disturbing ratiometric readings at low reference inputs. If pOSSible, do not let this current vary. The .7116, with its negligible disSipation, suffers from none of these problems. In either case, an external reference can easily be added, as shown in Figure 5. Analog COMMON Analog COMMON is also the voltage that input low returns to during auto-zero and de-integrate. If IN LO is different from analog COMMON, a common mode voltage exists in the system and is taken care of by the excellent CMRR of the converter. However, in some applications IN LO will be set at a fixed known voltage (power supply common for instance). In this application, analog COMMON should be tied to the same pOint, thus removing the common mode voltage from the converter. This pin is included primarily t6' set thecommCin mode voltage for battery operation (7116)' or for any system where the input signals are floating with respect to the power supply. The COMMON pin sets a voltage that is approximately 2.8 volts less than the positive supply. This is selected to provide proper operation with a minimum endof-life battery voltage of about 6V. However, the analog COMMON does have some of the attributes of a reference voltage. When the total supply voltage is large enough to cause the zener to regulate ( > 7V), the COMMON voltage will have a low voltage coefficient (.001 'YoN), low output 6-81 Note: All typical values have been guaranteed by characterization and are riot tested. II • ~ IC~7,118/7~,17 too o...... , V· . i AEFHI COMMON v' r- • ....u '.8 VOLT HNER t-.:~ ~ t-+- 2Ok1l \' 7116n117 lIZ REF til DECIIilAL [ POINT SELECT ~ DECIMAL POINTS I CD4030 I \QND Figure 7: Exclusive 'OR" Gate for Decimal Point Drive DS013101 Figure 5: Using an External Reference The second function is a "lamp test". When TEST is pulled to high (to V +) all segments will be turned on and the display should read - 1888. [Caution: on the 7116, in the lamp test mode, the segments have a constant DC voltage (no square-wave) and will burn the LCD display If left in this mode for several minutes.] Within the IC, analog COMMON is tied to an N channel FET that can sink 30mA or more of current to hold the voltage 2.8 volts below the positive supply (when a load is trying to pull the common line positive). However, there is only 10~ of source current, so COMMON may easily be tied to a more negative voltage thus over-riding the internal reference. DIGITAL SECTION Figures 8 and 9 show the digital section for the 7116 and 7117, respectively. In the 7116, an internal digital ground is, generated from a 6 volt Zener diode and a large P channel source 'follower. This supply is made stiff to absorb the, relative large capacitive currents when the back plane (BP) voltage is switched. The BP frequency is the clock frequency divided by 800, For threereadings/second this is a 60Hz square wave with a, nominal amplitude of 5 volts. The segments are-driverr at the same frequency and amplitude and are in phase with BP when OFF, but out of phase when ON, In, all cases negligible DC voltage exists across the segments. Figure 9 is the Digital Section of the 7117. It is identical to that of the 7116 except the regulated supply and back plane drive have been eliminated ~nd the segment drive has been increased "from 2 to SmA, typical for instrument size common anode LED displays. Since the 1000 output (pin 19) must sink current from two LED segments, it ,has twice the drive capability or 16mA. In both devices the polarity indicator is ON for negative analog inputs. This can be reversed by simply reversing IN LOand IN HI. TEST The TEST pin serves two functions. On the 7116 it is coupled to the internally generated digital supply through a soon resistor. Thus it can be used as the negative supply for externally generated segment drivers ,such as decimal pOints or any other presentation the user may want to inClude on the LCD display. Figures 6 and '7 show such an applicati,On. No more than a ,1 mA load should be applied. V.' ,lIIn TOLCO DECIMAL POINT . . 2' TEST t;37;;-!t--~ I AF024101 (b) INTERSn. 1T171O t I L ____ ~ GROUND = DP OFF. ~~~~VT=DPON. ~ 7116 :~g±lTOLcD D+:D+ , , '-COMMON (aj 7116 r-~~ ~,ICL"" ,',2V REFERENCE ~ 7116/7117 r---------------I~ V· TO LCD ' - - - - B A C K PLANE HOLD Reading Input AF024001 The HLDR input will prevent the latch from being updated when this input is at a logic "1". The chip will continue to make AID conversions, however, the results will notba, updated to the internal latches until this input goes low: This input can be left open or connected to TEST (7116) or' GROUND (7117) to continuously update the display. ThiS inp\Jt'is CMOS compatible, and has a 70kntypical resistance to either TEST (7116) or GROUND (7117). Figure 6: Simple Inverter ,or Fixed Decimal Point 6-82 Note: All typical values have been guaranteed by characterization and are not tested. .U~U16 ICL7116/7117 DISPLAY FONT a :2 :3 '-I e...... Gl ...... ......... ... 5 6 -: 8 9 ------------------------·--·--.--·----.--.----+------4.1~~4+·t-·.-tt~14~+··-~~~tll~-----~~.=~~~~ -----------------------_ ....:=_._.- LCOO5201 Figure 8: Digital Section 7116 6-83 Note: All typical values have been guaranteed by characterizatiQn and are not tested. IC1..711617117 DISPLAY FONT (CONT.) o CI ,It, C t • I '..' .'." I· ------------------------------------- --------,,, I I I I I I I I I I I I I I I I I I I 35. --~~------~~----------~--~--~_+----------~v. naT ,~, LC005301 Figure 9: Digital Section 7117 System Timing ,and auto-zero (1000 to 3000 counts). For signals less than full scale, auto-zero gets the unused portion of reference deintegrate. This makes a complete measure cycle of 4,000 (16,000 clock pulses) independent of input voltage. For three readings/second, an oscillator frequency of 48kHz would be used. Figure 10 shows the clocking arrangement used in the 7116 and 7117. Three basic clocking arrangements can be used: 1. An external oscillator connected to pin 40. 2. A crystal between pins 39 and 40. 3. An R-C oscillator using all three pins. , To achieve maximum rejection of 60Hz pickup, the signal integrate cycle should be a multiple of 60Hz. Oscillator frequencies of 240kHz, 120kHz, 80kHz, 60kHz, 48kHz, 40kHz, 33 YakHz, etc. should be selected. For 50Hz rejection, Oscillator frequencies of 200kHz, 1OOkHz, 66~kHz, 50kHz, 40kHz, etc. would be suitable. Note that 40kHz (2.5 readings/second) will reject both 50 and 60Hz (also 400 and 440Hz). , I I I I I TO : COUN. . . , I I I I I , I _______ _ L ~-------- .. I : ' _________ J COMPONENT VALUE SELECTION Integrating Resistor Both the buffer amplifier and the integrator have a class A output stage with 1001lA of quiescent current. They can supply 201lA of drive current with negligible non-linearity. The integrating resistor should be large enough to remain in this very linear region over the input voltage range, but small enough that undue leakage requirements are not placed on the PC bOl!,rd. For 2 volts full scale, 470kU is near optimum and similarly a 47kU resistor is optimum for a 200.0mV scale. TIlT e111.) orGND(n'7) LCO05401 Figure 10: Clock Circuits The oscillator frequency is divided by four before it clocks the decade counters. It is then further divided to form the three convert-cycle phases. These are signal integrate (1000 counts), reference de-integrate (0 to 2000 counts) 6-84 Note: All typical values have been guaranteed by characterization and are not tested. ICL7116/7117 IID~DIl Integrating Capacitor and an inexpensive I.C. Figure 11 shows this application . See ICL7660 data sheet for an alternative. . The integrating capacitor should be selected to give the maximum voltage swing that ensures tolerance build-up will not saturate the integrator swing (approx. 0.3 volt from either supply). In the 7116 or the 7117, when the analog COMMON is used as a reference, a nominal ±2 volt full scale integrator swing is fine. For the 7117 with ±S volt supplies and analog common tied to supply ground, a ±3.S to ±4 volt swing is nominal. For three readings/second "(48kHz clock), nominal values for CINT are 0.22j.1F and 0.10j.lF, respectively. Of course, if different oscillator frequencies are used, these values should be changed in inverse proportion to maintain the same output swing. An additional requirement of the integrating capacitor is it have low dielectric absorption to prevent roll-over errors. While other types of capacitors are adequate for this application, polypropylene capacitors give undetectable errors at reasonable cost. OSC3t-rllt---' 7117 v- TC021301 Figure 11: Generating Negative Supply from +5v Auto-Zero Capacitor The size of the auto-zero capacitor has some influence on the noise of the system. For 200mV full scale where noise is very important, a 0.47j.1F capacitor is recommended. On the 2 volt scale, a 0.047j.1F capacitor increases the speed of recovery from overload and is adequate for noise on this scale. In fact,in selected applications no negative supply is required. The conditions to use a single + SV supply are: 1. The input signal can be referenced to the center of the common mode range of the converter. Reference Capacitor 2. The signal is less than ± 1.S volts in magnitude. A 0.1 j.lF capacitor gives good results in most applications. If rollover errors occur a larger value, up to 1.0j.lF may be required. 3. An external reference is used. TYPICAL APPLICATIONS Oscillator Components The 7116 and 7117 may be used in a wide variety of configurations. The circuits which follow show some of the possibilities, and serve to illustrate the exceptional versatility of these A/D converters. for all ranges of frequency a 1bOkU resistor is recommended and the capacitor is selected from the equation f""~' For 48kHz clock (3 readings/second), C = 100pF. RC Reference Voltage The analog input required to generate full-scale output (2000 counts) is: VIN = 2VREF. Thus, for the 200.0mV and 2.000 volt scale, VREF should equal 100.0mV and 1.000 volt, respectively. However, in many applications where the A/D is connected to a transducer, there will exist a scale factor other than unity between the input voltage and the digital reading. For instance, in a weighing system, the designer might like to have a full scale reading when the voltage from the transducer is 0.682V. Instead. of dividing the input down to 200.0mV, the deSigner should use the input voltage directly and select VREF = 0.341V. Suitable values for integrating resistor and capacitor would be 120kU and 0.22j.1F. This makes the system slightly quieter and also avoids a divider network on the input. The 7117 with ±S volts supplies can accept input Signals up to ±4 volts. Another advantage of this system occurs when a digital reading of zero is desired for VIN *0. Temperature and weighing systems with a variable tare are examples. This offset reading can be conveniently generated by connecting the voltage transducer between IN HI and COMMON and the variable (or fixed) offset voltage between COMMON and IN LO. 711. ~ Ole' . pee 2 ,~ ..A ..... Olea TaT .'HI fo- V+ eMF c_ ~ eo_ "'HI ..,.. 1oI¥MF-'oo.oonv / .ICII .1< 121m 11111 + • .01,., INLO IoIZ BUFF INT 0A7,...F .A onell ".n.' v- IN -.: ':'IV y 0. C3 }TOOllPUlY Ao Go BP I-- TO /lACK PLANE 2' CD008501 Figure 12: 7116 using the internal reference. Values shown are for 200.0mV full scale, 3 readings per second, floating supply voltage (9V battery). 7117 Power Supplies The 7117 is designed to work from ±S volt supplies. However, if a negative supply is not available; it can be generated from the clock output with 2 diodes, 2. capacitors, 6-85 Note: All typical values have been guaranteed by characterization and are not tested. P ...j ....... ......... ... Gt -IC:L711'S/1117 TYPICAL APPLICATIONS . . 7117 . 7117 '-" OSC1 ,_Ii] oscz OSC3 TEST REf HI ·OSC1 100tcH ~: : L.I---1I-'VV'v~~ Set YREF =100.GmV TEST A.FHI ,_' y. ,,/ C REF C REF COMMON .~ v bO." . AlZ --=r=.01,..F ---''--:22,..F Y- : G, C, rro A3 I -.;.,,----- -------:..---~ 0:1= C0008801 7117 Ole 1 .. J...--_ I I TO DIGITAL SECTION I S1 WHIQr~~~~--~~~~~t-----~ I I I I INT Uy AlZ I C~NG'F·~----~---1~~h---~ I :::- INLOQ'~·~~~----~~--------------~~--------------J L____'!!."__________________ .!: '!! ____________________________________ _ 8D003701 Figure 2: Analog Section of 7126 TEST CIRCUITS IN r-------<~----'+-+-.f--llill IY 240KCl 1Mn •n -. i II n - •. -, AF024201 Figure 3: ICL7126 with Liquid Crystal Display AF024301 Figure 4: 7126 Clock Frequency 16kHz. (1 reading/sec) 6-90 Note: All typical values have been guaranteed by characterization· and are not tested. n r- ICL7126 input signal. Specifically the digital reading displayed is 1000 (~). IN VREF ...... = Differential Input The input can accept differential voltages anywhere within the common mode rante of the input amplifier; or specifically from 0.5 Volts below the positive supply to 1.0 Volt above the negative supply. In this range the system has a CMRR of 86 db typical. However, since the integrator also swings with the common mode voltage, care must be exercised to assure the integrator output does not saturate. A worst case condition would be a large positive commonmode voltage with a near full-scale negative differential input voltage. The negative input Signal drives the integrator positive when most of its swing has been used up by the positive common mode voltage. For these critical applications the integrator swing can be reduced to less than the recommended 2V full scale swing with little loss of accuracy. The integrator.output can swing within 0.3 Volts of either supply without loss of linearity. AF024401 Figure 5: Clock Frequency 48kHz. (3 readings/sec) Differential Reference The reference voltage can be generated anywhere within the power supply voltage of the converter. The main source of common mode error is a roll-over voltage caused by the reference capacitor losing or gaining charge to stray capacity on its nodes. If there is a large common mode voltage, the reference capaCitor can gain charge (increase voltage) when called up to de-integrate a positive signal but lose charge (decrease voltage) when called up to deintegrate a negative input signal. This difference in reference for (+) or (-) input voltage will give a roll-over error. However, by selecting the reference capacitor large enough in comparison to the stray capacitance, this error can be held to less than 0.5 count for the worst case condition. (See Component Value Selection.) DETAILED DESCRIPTION Analog· Section Figure 2 shows the Functional Diagram of the Analog Section for the ICL7126. Each measurement cycle is divided into three phases. They are (1) auto-zero (A-Z), (2) signal integrate (IND and (3) de-integrate (DE). Auto-zero phase During auto-zero three things happen. First, input high and low are disconnected from the pins and internally shorted to analog COMMON. Second, the reference capacitor is charged to the reference voltage. Third, a feedback loop is closed around the system to charge the auto-zero capacitor CAZ to compensate for offset voltages in the buffer amplifier, integrator, and comparator. Since the comparator is included in the loop, the A-Z accuracy is limited only by the noise of the system. In any case, the offset referred to the input is less then 1O~N. Signal Integrate phase During signal integrate, the auto-zero loop is opened, the internal short is removed, and the internal input high and low are connected to the external pins. The converter then integrates the differential voltage between IN HI and IN LO for a fixed time. This differential voltage can be within a wide common mode range; within one Volt of either supply. If, on the other hand, the input signal has no return with respect to the converter power supply, IN LO can be tied to analog COMMON to establish the correct common-mode voltage. At the end of this phase, the polarity of the integrated signal is determined. De-integrate phase The final phase is de-integrate, or reference integrate. Input low is internally connected to analog COMMON and input high is connected across the previously charged reference capacitor. Circuitry within the chip ensures that the capacitor will be connected with the correct polarity to cause the integrator output to return· to zero. The time required for the output to return to zero is proportional to the Analog COMMON This pin is included primarily to set the common mode voltage for battery operation or for any system where the input Signals are floating with respect to the power supply. The COMMON pin sets a voltage that is approximately 2.8 Volts more negative than the positive supply. This is selected to give a minimum end-of-life battery voltage of about 6V. However, the analog COMMON has some of the attributes of a reference voltage. When the total supply voltage is large enough to cause the zener to regulate ( < 7V), the COMMON voltage will have a low voltage coefficient (0.001 %/%), low output impedance (",,15n), and a temperature coefficient typically less than 80ppm/oC. The limitations of the on-chip reference should also be recognized, however. The reference temperature coefficient (TC) can cause some degradation in performance. Temperature changes of 2 to 8°C, typical for instruments, can give a scale factor error of a count or more. Also the common voltage will have a poor voltage coefficient when the total supply voltage is less than that which will cause the zener to regulate ( < 7V). These problems are eliminated if an external reference is used, as shown in Figure 6. 6-91 Note: All typical values have been guaranteed by characterization and are not tested. 6 y' y+ Y' 8.1-----_-i-4 27KII 7126 COMMON AF024601 Figure 8: Exclusive 'OR' Gate for Decimal Point Drive y- lal 101 . D8013201 Figure 6: Using an' External ..Reference The Second function is a "lamp test." When ,TEST is pulled high (to V +) all segments will be turned on and the display should read - 1888. The TEST pin will sink about 10mA under these conditions. Caution: In the lamp test mode, the segments have a constant D-C voltage (no square-wave) and may burn the LCD display if left in this mode for extended periods. Analog COMMON is also used as the input low return during auto·zero and de·integrate. If INLO is different from analog COMMON, a commoh mode voltage exists in the system and is taken care of by the excellent CMRR of the converter. However, in some applications IN LO will be set at a fixed known voltage (power supply common for instance). In this application, analog COMMON should be tied to· the same point,' thus -removing the common mode voltage from the converter. The same holds true for the reference voltage. If reference can be conveniently refer· eMced to analog COMMON, it should be since this removes the -common mode voltage from the reference system. DIGITAL SECTION Figure 9 shows the digital section for the 7126. An internal digital ground is generated from a 6 Volt Zener diode and a large P channel source follower. This supply is made stiff to absorb the relative large capacitive currents when' the back plane (BP) voltage is' switched. The BP frequency is the clock frequency divided by 800. For three readings/second this is a 60 Hz square wave with a nominal amplitude of 5 Volts. The segments are driven at the same frequency and amplitude and are in phase. with BP when OFF, but out of phase when ON. In all cases negligible DC voltage exists across the segments. The polarity indication is "ON" for negative analog inputs. If IN LO and IN HI are reversed, this indication can be reversed also, if desired. Within the IC, analog COMMON is tied to an N channel FET that can sink 3mA or more of current to hold' the voltage 2.8 Volts below the positive supply (when a load is trying to pull the commofl line positive). However, there is only 1p.A of source currerit, so COMMON may easily be tied to a more negative voltage thus over·riding the internal reference. TEST The TEST pin serves two functions. It is coupled to the internally generated digital supply through a 500n resistor. Thus it can be used as the negative supply for externally generated segment drivers such as .decimal pOints or any other presentation the user may want to include on the LCD display. Figures 7 and 8 show such an appiication. No more than a 1rnA load should be applied, 1M!"! 7126 TO LCD· INTEASIL IT1750 DECIMAL POINT AF024501', Figure 7: Simple Inverter for Fixed Decimal Point 6-92 Note: All typical values have been guaranteed by characterization and are not tested. n r- ICL7126 ....... N DISPLAY FONT G) 0123'156789 ----------------------------------.--.---.~-·-----,I~~++~~··--~~.·+4·,+--~1~4-~~+4-·--- TYPICAL SEGMENT OUTPUT 1\' Three inverters. One inverter shown for clarity. --------+-~--~~v__________________________ ..J osc 1 osc 2 OSC3 LCOO5511 Figure 9: Digital Section , The oscillator frequency is divided by four before it clocks the decade counters. It is then further divided to form the three convert-cycle phases. These are signal integrate (1000 counts), reference de-integrate (0 to 2000 counts) and auto-zero (1000 to 3000 counts). For signals less than full scale, auto-zero gets the unused portion of reference deintegrate. This makes a complete measure cycle of 4,000 (16,000 clock pulses) independent of input voltage. For three readings/second, an oscillator frequency of 48kHz would be used. I I I I I TO : COUNTERI I I , I I I I I IL _____ _ ~ _____________ ..JI nST D5013301 To achieve maximum rejection of 60 Hz pickup, the signal integrate cycle should be a multiple of 60 Hz. Oscillator frequencies of 60kHz, 48kHz, 40kHz, 33-1/3kHz, etc. should be selected. For 50Hz rejection, oscillator frequencies of 66-2/3kHz, 50kHz, 40kHz, etc. would be suitable. Note that 40kHz (2.5 readings/second) will reject bott, 50 and 60Hz (also 400 and 440Hz). Figure 10: Clock Circuits System Timing Figure 10 shows the clocking arrangement used in the 7126. Three basic clocking arrangements can be used: 1. A,n external oscillator connected to pin 40. 2. A crystal between pins 39 and 40. 3. An R-C oscillator using all three pins. 6-93 Note: All typical values have been guaranteed by characterization and are· not tested. ..... I JCL7126 5! COMPONENT VALUE SELECTION the system slightly quieter and also avoids the necessity of a divider network on the input. Another advantage of this system occurs when a digital reading of zero is desired for VIN =F O. Temperature and weighting systems with a variable tare are examples. This offset reading can be conveniently generated by connecting the voltage transducer between IN HI and COMMON and the variable (or fixed) offset voltage between COMMON and IN LO. Integrating Resistor Both the buffei.'amplifier and the integrator have a class A output stage with 6pA. of quiescent current. They can supply -1 pA. of drive current with negligible non' linearity. The integrating resistor should be la~ge enough to remain in this' very linear region over the input'. voltage range, but small enough that undue leakage 'requirements are not placed on the PC board. For 2 Volt full scale, ,1..8mn is near optim!Jm ' and similarly 180kn for a 200.0rtlV' scale. TYPICAL APPLICATIONS Integrating Capacitor The 7126 may be used in a wide variety of configurations. The circuits which follow show some of the possibilities, and serve to illustrate the exceptional versatility of these AI D converters. The integrating capacitor should be selected to give the maximum voltage SWing that ensures tolerance build-up will not saturate the integrator swing (approx. 0.3 Volt from either supply). When the analog COMMON is used as a reference, a nominal ±2 Volt full scale integrator swing is fine. For three readings/second (48kHz clock) nominal values for CINT are 0.047/lF, for 1Isec (16kHz) 0.15/lF. Of course, if different oscillator frequencies are used, these values should be changed in inverse proportion to maintain the same output swing. The integrating capacitor should have low dielectric absorption to prevent roll-over errors. While other types may be adequate for this application, polypropylene capacitors give undetectable errors at reasonable cost. At three readings/sec., a 750n resistor should be placed in series with the integrating capacitor, to compensate for comparator delay. See App. Note A017 for a description of the need and effects of this resistor. '-' osc. .. To pin 1 11OKO OSC2 OSC3 TEST Sel VNf '" tOO.OmY / 5CIpF REF HI REFLO CREf C REF COMMON INH. 1= 30,•. ~ 0.33,..F I I 110ICn BUFF INT G, C, .., Auto-Zero Capacitor 'G, BP The size of the auto-zero capacitor has some influence on the noise of the system. For 200mV full scale where noise is very important, a 0.321lF capacitor is recommended. On the 2 Volt scale, a 0.033/lF capacitor increases the speed of recovery from overload and is adequate for noise on this scale. 220KO , 1MB ..01,..f INLO AiZ y- 101CO A, 8 75011 -'L .. 0.047,..F IN ,:: tV T }TO DISPLAY ~ TO BACK PLANE 2. CDOO920! Figure 11: 7126 using the internal reference. Values shown are for 200.0mV full scale, 3 readings per second, floating supply voltage (9V battery). Reference Capacitor A 0.1/lF capacitor gives good results in most applications. However, where a large common mode voltage exists (i.e., the REF LO pin is not analog COMMON) and a 200mV scale is used, a larger value is required to prevent roll-over error. Generally 1.0/lF will hold the roll-over error to 0.5 count in this instance. Oscillator Components For all ranges of frequency a 50pF capacitor is recommended and the resistor is selected from the approximate 0.45 ' equation f - - - . For 48kHz clock (3 readings/second), RC R = 180kn. Reference Voltage The analog input required to generate full-scale output (2000 counts) is: VIN = 2VREF. Thus, for the 200.0mV and 2.000 Volt scale, VREF should equal 100.0mV and 1.000 Volt, respectively. However, in many applications where the AID is connected to a transducer, there will exist a scale factor other than unity between the input voltage and the digital reading. For instance, in a weighing system, the designer might like to have a full scale reading when the voltage from the transducer is 0.682V. Instead of dividing the input down to 200.0mV, the designer should use the input voltage directly and select VREF = 0.341V. A suitable value for integrating resistor would be 330kn. This makes 6-94 Note: All typical values have been guaranteed by characterization and are not tested, ICL7126 '-' ose 1 osea . ~ QSe3 SOpF TEST REF HI REF LO C REF C REF COMMON PO.' 20KIl ,A ose2 / OSC 3 .~. 1l REF LO CREF C REF COMMON T .,01"F IN 0.15/.-' COO10101 OPt 80003801 Figure 1: Functional Diagram Figure 2: Pin Configuration (outline dwg PL) 6-98 Note: All typical values have been guaranteed by characterization and are not tested. 301663-002 ICL7129 ABSOLUTE MAXIMUM RATINGS Supply Voltages (V + to V-) .............................. 15V Reference Voltage (REF HI or REF LO) ....... V+ to VInput Voltage (Note 1) (IN HI or IN LO) ............................. V+ to VVDISP ....................................... DGND -0.3V to V+ Digital Input Pins 1,2, 19,20,21,22,27, 37, 38, 39, 40 ............................ DGND to V+ Power Dissipation (Note 2) Plastic package ................................... 800mW Operating Temperature ........................ O°C to + 70°C Storage Temperature ...................... -65°C to + 150°C Lead Temperature (Soldering, 10sec) ................. 300°C Nole 1: Input voltages may exceed Ihe supply voltages provided that input current is limited to ±400/lA. Currents above this value may result in invalid display readings but will not destroy the device if limited to ± 1rnA. Nole 2: Dissipation ratings assume device is mounted with all leads soldered to printed circuit board. Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. ELECTRICAL CHARACTERISTICS to V + = 9V, VREF = 1.00V. TA = + 25°C, fCLK = 120kHz, unless otherwise noted. v- CHARACTERISTICS VIN ~ OV 200mV Scale Zero Reading Drift VIN ~ OV O'C __-.........;1~9 VOISP 5k >...I-----,I~ L--~o--_--.:.=-t VDISP ICL7129 ICL7129 36 DGND DGND 18k 75k ~ ____~~____________-.23 ~ __________.. 23 V- VlOO05201 Figure 14: Two Methods for Temperature Compensating the Liquid Crystal Display For different conversion rates,. the value will change in inverse proportion. Asecond requirement for good linearity is that the capacitor have lo'lli dielectric absorption. Polypropylene caps give good perf.ormance at a reasonable price. Finally. the foil side of the cap should be connected to the integrator output to shield against pick-up. DISPLAY TEMPERATURE COMPENSATION For most applications an adequate display can be obtained by connecting VOISP (pin 19) to DGND (pin 36). In applications where a wide temperature range is encountered, the voltage drive levels for some triplexed liquid crystal displays may need to vary with temperature in order to maintain good display contrast and viewing angle. The amount of temperature compensation will depend upon the type of liquid crystal used. Display manufacturers can supply the temperature compensation requirements for their displays. Figure 14 shows two circuits that can be adjusted to give a temperature compensation of "" + 1OmV I 'c between V + and VOISP. The diode between DGND and VOISP should hav.e a low turn-on voltage to assure that no forward current is injected into the chip if VOISP is more . negative than DGND. The only requirement for the reference cap is that it be low leakage. In order to reduce the effects of stray capacitance, a 1.0j.lF value is recommended. CLOCK OSCILLATOR The ICL7129 achieves its digital range changing by integrating the input Signal for 10bo clock pulses (2,000 oscillator cycles) on the 2V scale and 10,000 clock pulses on the 200mV scale. To achieve complete rejection of 60Hz on both scales, an oscillator frequency of 120kHz is required, giving two conversions per second. COMPONENT SELECTION In low resolution applications, where the converter uses only 3'Y2 digits and 100j.lV resolution, an R-C type oscillator is adequate, In this application a C of 51pF is recommended and the resistor value selected from fosc = 0.45/RC. However, when the converter is used to its full potential (41;2 digits and. 10j.lV resolution) a crystal osciilator is recommended to prevent the noise from increasing as the input signal is increased due to frequency jitter of the R-C oscillator. Both R-C and crystal oscillator circuits are shown in Figure 15. There are only three passive components around the ICL7129 that need special consideration in selEiction. They are the reference capacitor, integr-ator resistor, and integrator capacitor. There is no auto-zero capacitor like that found in earlier integrating AID converter designs. The integrating resistor is selected to be high enough to assure good current linea.rityfrom the buffer amplifier and integrator and low enough that PC board leakage is not a problem. A value of 1~Okn should be optimum for most applications. The integrator capacitor is selected to give an optimum integrator swing at full-scale. A .large integrator swing will reduce the effect of noise sources in the comparator but will affect rollover error if the swing gets too close to the positive rail (""O.7V). This gives an optimum swing of ""2.5V at full-scale. For a 150kn integrating resistor and 2 conversions per second the value is 0.10j.lF. 6-106 Nole: All typical values have been guaranleed by characlerization and are not tested. ICL712.9 I I +5V I I I ICL7129 I I _ _ _ ..JI L_ 2 V~EFHI ~:~: ICL~~LO ~ I I I I I I ICL7129 I 40 DGNO COM 35 28 IN HI !-,33=--..~W'v--o + ":" I ___ -.I L_ 36 ICL8069 Y,N O.l,F 2 V- -o IN LO,!-'3=2_+-_ _ _ 23 270kll 5pF v+ ~ 120kHz 10pF ~ 01------4--1 ~ v+ -5V D5027801 05013501 Figure 15: RC and Crystal Oscillator Circuits Figure 16: Powering the ICL7129 from +5V and -5V Power Supplies POWERING THE ICL7129 When a battery voltage between 3.8V and 7V is desired for operation, a voltage doubling circuit should be used to bring the voltage on the ICL7129 up to a level within the power supply voltage range. This operating mode is shown in Figure 17. The ICL7129 may be operated as a battery powered hand-held instrument or integrated into larger systems that have more sophisticated power supplies. Figures 16, 17, and 18 show various powering modes that may be used with the ICL7129. The standard supply connection using a 9V battery is shown in Figure 3. The power connection for systems with +5V and -5V supplies available is shown in Figure 16. Notice that measurements are with respect to ground. COMMON is not connected to INPUT La but is used only as a pre-regulator for the external voltage reference. It is important to notice that in Figure 16, digital ground of the ICL7129 (DGND pin 36) is not directly connected to power supply ground. DGND is set internally to approximately 5V less than the V + terminal and is not intended to be used as a power input pin. It may be used as the ground reference for external logie, as shown in Figure 7 and 8. In Figure 7, DGND is used as the negative supply rail for external logic provided that the supply current for the external logiC does not cause excessive loading on DGND. The DGND output can be buffered as shown in Figure 8. Here, the logic supply current is shunted away from the ICL7129 keeping the load on DGND lew. This treatment of the DGND output is necessary to insure compatibility when the external logic is used to interface directly with the logiC inputs and outputs of the ICL7129. 24 v+ + : REF 34 HI REFLO 35 3.8VT08V 38 OOND COM 28 ICLl129'N HI "'33"--+-_-'V.....-o + ICL7660 23 TC021501 Figure 17: Powering the ICL7129 from a 3.8V to 6V Battery 6-107 Note: All typical values have been guaranteed by characterization and are not tested. :l... ICL7129 ~ g VOLTAGE REFERENCES Again measurements are made with respect to COMMON since the entire system is floating. Voltage doubling is accomplished by using an ICL7660 CMOS voltage convert-, er and two inexpensive electrolytic capacitors. The same principle applies in Figure 18 where the ICL7129 is being used in a system with only a single + 5V power supply. Here measurements are made with respect to power supply ground. The COMMON output of the ICL7129 has a temperature coefficient of ±80ppm/oC typically. This voltage is only suitable asa reference voltage for applications where ambient temperature variations are expected to be minimal. When the ICL7129 is used in most environments, other voltage references should be considered. The diagram in Figures 3 and i 8 show the ICL8069 1.2V band-gap voltage source used as the reference for the ICL7129, and the COMMON output as its pre-regulator. The reference voltage for the ICL7129 is set to 1.000V for both 2V and 200mV full-scale operation. A Single polarity power supply can be u,sed to power the ICL7129 in applications where battery operation is not appropriate or convenient only if the power supply is isolated from system ground. Measurements must be made with respect to COMMON or some other voltage within its input common-mode range. +5V'~~~~~~~----------.-------~ 24 O.l,.F y+ ICL8088 O.l~F 38 ICL7129 8 33 2 + 3 ICL7880 4 lo,.F + YIN 32 y23 5 ':' + ':' 08013601 Figure 18: Powering the ICL7129 from a Single Polarity Power Supply 6-108 Note: All typical values have been guaranteed by characterization and are not tested. ICL7134 14-Bit Multiplying J,lP-Compatible D/A Converter GENERAL DESCRIPTION FEATURES The ICL7134 combines a four-quadrant multiplying DAC using thin film resistor and CMOS circuitry with an on-chip PROM-controlled correction circuit to achieve true 14-bit linearity without laser trimming. Microprocessor bus interfacing is eased by standard memory WRite cycle timing and control signal use. Two input buffer registers are separately loaded with the 8 least significant bits (LS register) and the 6 most significant bits (MS register). Their contents are then transferred to the 14bit DAC register, which controls the output switches. The DAC register can also be loaded directly from the data inputs, in which case the registers are transparent. The ICL7134 is supplied in two versions. The ICL7134U is programmed for unipolar operation while the ICL7134B is programmed for bipolar applications. The VREF input to the most significant bit of the DAC is separated from the reference input to the remainder of the ladder. For unipolar use, the two reference inputs are tied together, while for bipolar operation, the polarity of the MSB reference is reversed, ' giving the DAC a true 2's complement input transfer function. Two resistors which facilitate the reference inversion are included on the chip, so only an external op-amp is needed. The PROM is coded to correct for errors in these resistors as well as the inversion of the MSB. • • • • • • • 14-l3it Linearity (0.003% FSR) No Gain Adjustment Necessary Microprocessor-Compatible With Double Buffered Inputs Bipolar Application Requires No Extra Adjustments or External Resistors Low Linearity and Gain Temperature Coefficients Low Power Dissipation Full Four-Quadrant Multiplication CD010201 Figure 1: Pin Configuration (Outline dwg JI) ORDERING INFORMATION TEMPERATURE RANGE NON-LINEARITY O°C to +70°C - 25°C to + 85°C -55°C to + 125°C ICL7134BJCJI ICL7134BKCJI ICL7134BLCJI ICL7134BJIJI ICL7134BKIJI ICL7134BLlJI ICL7134BJMJI ICL7134BKMJI ICL7134BLMJI ICL7134UJCJI ICL7134UKCJI ICL7134ULCJI ICL7134UJIJI ICL7134UKIJI ICL7134ULlJI ICL7134UJMJI ICL7134UKMJI ICL7134ULMJI Bipolar Versions 0.01 % (12-bit) 0.006% (13-bit) 0.003% (14-bit) Unipolar Versions 0.01 % (12-bit) 0.006% (13-bit) 0.003% (14-bit) PACKAGE: 28-pin CERDIP only 6-109 Note: All typieal values have been ~!:.J.;..'..r;~nI.0ed by characterization and are not tested. 301664-002 . ICL7134 ~ ....... S:! ABSOLUTE MAXIMUM RATINGS (Note 1) Supply Voltage (v+ to DGND) .............. -O.3V to 7.5V VRFL, VRFM, RINV, RFB to DGND ...................... ±15V lOUT, AGNDF, AGNDs .......................... -O.W to·V+ Current i~GNDS, AGNDF ........................... :t. 25mA An, On, WR, CS, PROG ............... -O.3V to V + O.3V Operating Temperature Range ICl7134XXC ............................. O°C to +70°C ICl7134XXI ........................... - 25°C to + 85°C ICl7134XXM ........................ -55°C to +125°C Storage Temperature Range ; ........... -65°C to. + 150°C Power Dissipation (Note 2) ............................. 500mW Derate Linearly Above 70°C @ 1OmW JOC lead Temperature (Soldering, 10sec) ................. 300°C Note 1: All voltages with respect to DGND. Note 2: Assumes all leads soldered or welded to printed circuit ,board. Stresses above those listed under" Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditionS above those indicated in the operational sections of the specifications is not implied. Exposure \0 absolute maximum rating conditions for extended periods may affect device reliability. VRFM VRFL F AINV RFB F A=7IcilTYP A 2A 2A A 2A A 2A A 2R 2R 2A , ----~--~~--~~~----------_+--~L-------+_~~--~--~~~T ----~--~~----~~----------~----L-------._~r-------~-oAGN~ AGNIlF C.DAC ..----+-----------+--1DECOD PROM - - - - -oPROG 14-BIT DAC REGISTER ~-----oA1 REGISTER Ao CS .-------------+-~~_+_r-----iA~~ t---------O WR 00·,·····07 De • • • • 0,3 BD004101 Figure 2: ICL7134 Functional Diagram ELECTRICAL CHARACTERISTICS (v+ = 5V, VREF = 10V, TA = 25°C unless otherwise specified.) LIMITS SYMBOL PARAMETER TEST CONDITIONS TYP MAX 14 Resolution Non-Linearity MIN IJ IK Bits 0.003 % FSR % FSR % FSR 2 ppm/"C Test Figure 4 0.012 (Notes 1 and ·2) 0.006 IL Non-Linearity Temperature Coefficient (Note 3) Operating Temperature Range 6-110 Note: All typical values have been guaranteed by characterization and are not tested. UNIT 1 ICL7134 n I'" ELECTRICAL CHARACTERISTICS (CO NT.) Col ..... LIMITS PARAMETER SYMBOL TEST CONDITIONS UNIT MIN Gain Error TYP Test Figure 4 (Notes 1 and 2) I J IK /L 'Gain Error Temperature Coefficient (Note 3) Monotonicity (Note 3) PSRR ZREF Reference Input Resistance Output Capacitance Bits Bits IL 14 Bits 10 TA= +25°C Operating Temperature Range 50 TA- + 25°C, tJ.V+ -±10% 10 IICL7134U IICL7134B VREF - ± 10V, 2kHz Sinewave VRFl - VRFM (Unipolar Mode) DAC Register = All O's DAC Register = All l' s ppm IV IJS JNp.p 4.0 10 kn 160 pF 235 7 I,in Logic Input Current Clin V+ Logic Input Capacitance (Note 3) Supply Voltage Range (Note 4) Functional Operation 1+ Supply Current Long Term Stability (Excluding Ladder) 1.0 1000 Hours, + 125°C (Note 3) 10 1. 2. 3. 4. 100 150 1 Equivalent Johnson Res. High State Input nA 250 500 Operating Temperature Range Operating Temperature Range 0"; VIN"; V+ NOTES: % FSR ppm/oC 8 13 Output Noise Low State Input VINl VINH 0.006 12 Operating Temperature Range COUT % FSR % FSR I J Power Supply Rejection Output Current Settling Time Feedthrough Error 0.024 0.012 IK lOUT Leakage Current IOlK 2 MAX kn 0.8 V V 1.0 p.A 2.4 15 3.5 pF 6.0 V 2.5 mA ppm/month Full-Scale Range (FSR) is 10V for unipolar mode, 20V (± 10V) for bipolar mode. USing internal feedback and reference inverting resistors. Guaranteed by design, not production tested. Full scale tested to 0.040% FSR. AC CHARACTERISTICS SYMBOL (V + = 5V, see Timing Diagram) PARAMETER tAWs tAWh tCWs tCWh IWR tOWs tOWh TEST CONDITIONS MIN TYP MAX Address·WRite Set-Up Time (Min) Address-WRite Hold Time (Min) (Note 3) 0 Chip Select·WRite Set·Up Time (Min) (Note 3) Chip Select·WRite Hold Time (Min) WRite Pulse Width Low (Min) Data-WRite Set·Up Time (Min) (Note 3) 0 0 Data-WRite Hold Time (Min) (Note 3) 200 200 0 UNIT 100 ns DEFINITION OF TERMS Ao.A1 ~ .... transfer function from a straight line function between endpoints. Normally expressed as a percentage of full scale range. For a multiplying DAC, this should hold true over the entire VREF range. 1 ADDRESS VALID, STABLE .....-r--J . 1---..... - Ci I--tcw. NONLINEARITY: Error contributed by deviation of the DAC !---tWR !---+-Icwb· RESOLUTION: Value of the LSB. For example, a unipolar \iii ./:::..'-DNDATA DATA VALID converter with n bits has a resolution of (2- n) (VREF). A .1-.:.... bipolar converter of n bits has a resolution of [2 - (n - l)j [VREFj, Resolution in no way implies linearity, ~ SETTLING TIME: Time required for the output function of the DAC to settle to within 112 LSB for a given digital input stimulus, i.e., 0 to full-scale. WF012601 Figure 3: Timing Diagram .. GAIN: Ratio of the DAC's operational amplifier output voltage to the nominal input voltage value. 6-111 Note: All typical values have been guaranteed by characterization and are not tested. ICL7134 FEEDTHROUGH ERROR: Error caused by capacitive coupling from VREF to output. with all switches OFF. Table 1: Pin Descriptions PIN DESCRIPTION SYMBOL PIN DESCRIPTION SYMBOL 1 ~ Chip Select (active low). Enables register write. 17 PROG Used for programming only. Tie to +5V for normal operation. 2 WR' WRite. (active J2.w). Writes in register. Equivalent to CS. 18 VRFL VREF for lower bits. 19 R,NV Summing node for reference inverting amplifier. 3 4 5 6 Do Bit 0 01 Bit 1 20 VRFM VREF for MSB only (bipolar). 02 Bit 2 21 RFB 03 Bit 3 Feedback resistor for voltage output applications. 7 04 Bit 4 B~ Least significant ~5 06 5 Input 9 Bit 6 Data 10 07 Bit 7 11 08 Bit 8 8 12 09 Bit 9 13 010 Bit 10 14 011 Bit 11 15 012 Bit 12 16 013 Bit 13 Bits (High 22 DGND Digital GrouND return. 23 AGNDF Analog GrouND force lines..Use to carry current from internal Analog GrouND connections. Tied internally to AGNDs. 24 AGNDs Analog GrouND sense line. Reference point for external circuitry. Pin should carry minimal current; tied internally to AGNDF. 25 lOUT V+ Current output pin. 26 27 A1 Address 1 28 Ao Address 0 = True) Most significant. 8IT1(MS8) voltage. "..1------..., D" 1....81T BINARY COUNTER Pos~ive lOUT I.,... (LSB) ICL7134U Do '01<0 0.001% 'M. Co CLOCf1I\- LINEARITY ERROR VREF 16-BIT REFERENCE x,oo 'Ok. 0.001% DAC TC021601 Figure 4: Non-Linearity Test Circuit 6-112 Note: All typical values have been guaranteed by characterization and are not tested. l Control register lines ICL7134 UNGROUNDED +sv StNEWAVE GENERATOR 4OHz2Vp-p ..0 ~.+~ (ADJUSTFO" "fRROR .. OVoc) ----- 400k for effective input offset less than 25IlV). These input data pins are also ysed to program the PROM. under control of the PROG ,pin. This is done in manufacturing, and for normal read-oniy use the PROG pin should be tied to V + (+ 5V). Table 2: Data Loading Controls CONTROL lIP Ao A1 cs WR ICL7134 OPERATION X X X 1 X X 1 X 0 0 0 0 load all registers from data bus. 0 1 0 0 load lS register. from data. bus. 1 0 0 0 load MS register from data bus. 0 load DAC register from MS'an,d lS register. 1 1 0 No operation, device not selected. Note: Data is latched on LO-HI transition of either . TAUE OIP NQQE ~;.~,---'\r-~IOUT '---l---I---/'/ RE~::NCE WR" or CS. VJlEf IN - - - - - , AF024901 Figure 9: Eliminating Ground Loops '0 RESTOF LA"'A The reference inverting amplifier used in the bipolar mode circuit must also be selected carefully.. If 14-bit accuracy is desired without adjustment, low input bias current (less than 1nA), low offset voltage (less than 50IlY), and high gain (greater than 400k) are recommended. If a fixed reference voltage is used, the gain requirement can be relaxed. For highest accuracy (better than 13 bits), an additional op-amp may be needed to correct for IR drop on the Analog GrouND line (op-amp A2 in Figure .11).This opamp should be selected for low bias current (less than 2nA) and low offset voltage (less than 501lY). AF024801. Figure 8; Bipolar Operation, with Inverted VREF to .MSB 6-114 Note: All typical values have been guaranteed by characterization and are not tested.' ICL7134 The op-amp requirements can be readily met by use of an ICL7650 chopper stabilized device. For faster settling time, an HA26XX can be used with an ICL7650 providing automatic offset null (see A053 for details). The output amplifier's non-inverting input should be tied directly to AGNDS. A bias current compensation resistor is of limited use since the output impedance at the summing node depends on the code being converted in an unpredictable way. If gain adjustment is required, low tempco (approximately 50ppm/°C) resistors or trim-pots should be selected. V... ' N -_ _~_--, 'F8f2"-'-~--------, 'OUT f"25"--+_-I DATA INPUTS ICL7134U POWER SUPPLIES The V + (pin 25) power supply should have a low noise level, and no transients exceeding 7 volts. Note that the absolute maximum digital input voltage allowed is V + , which therefore must be applied before digital inputs are allowed to go high. Unused digital inputs must be connect,ed to GND or V+ for proper operation. Unipolar Binary Operation (ICL7134U) D5014oo1 The circuit configuration for unipolar mode operation (lCL7134U) is shown in Figure 10. With positive and negative VREF values the circuit is capable of two-quadrant .multiplication. The "digital input code/analog output value" table for unipolar mode is given in Table 3. The Schottky diode (HP5082-2811 or equivalent) protects lOUT from negative excursions which could damage the device, and is only necessary with certain high speed amplifiers. For applications where the output reference ground point is established somewhere other than at the DAC, the circuit of Figure 10 can be used. Here, op-amp A2. removes the slight error due to IR voltage drop between the internal Analog GrouND node and the external ground connection. For 13bit or lower accuracy, omit A2 and connect AGNDF and AGNDS directly to ground through as Iowa resistance as possible. Figure 11: Unipolar Binary Operation with Forced Ground Table 3: Code Table - Unipolar Binary Operation DIGITAL INPUT 11111111111111 1 0 0 0 0 000 000 0 0 1 1 0 0 0 0 0 0 0 0.0 0.0 0 0 01111111111111 o0 0 0 0 00 00 0 0 0 0 1 o0 0 0 0 00 0 00 0 0 0 0 ANALOG OUTPUT -VREF(l _1/214) - VREF(l /2 + 1/214) -VREF/2 -VREF(1/2 _1/214) -VREF(1/214) 0 ZERO OFFSET ADJUSTMENT 1. Connect all data inputs and WR, CS, Ao and A1 to DGND. . 2. Adjust offset zero-adjust trim-pot of the operational amplifier A2, if used, for a maximum of OV ±50/-IV at AGNDS· Adjust the offset zero-adjust trim-pot of the output op-amp, A1, for a maximum of OV ±50/-IV at VOUT. VREF IN - - -......- - - - - , 3. DATA INPUTS GAIN ADJUSTMENT (OPTIONAL) 1. 050'13901- Connect all data inputs to V + , connect WR, and A1 to DGND. CS, Ao 2. Monitor VOUT for a -VREF (1 _1(214) reading. 3. To decrease VOUT, connect a series resistor of lOOn or less between the reference vcil!age and the VRFM and VRFL terminals (pins 20 and 18). 4. To increase VOUT, connect a series resistor of lOOn or less between A1 output and the RFS terminal (pin 21). . Figure 10: Unipolar Binary, Two-Quadrant Multiplying Circuit 6-:-115 Note: All typical values have been guaranteed by characterization and are nol lesled. IID~DIl " ICL7f34· a VREFIN 18 YRFl RINVl 19 RlNV RINV2 20 YRFM Y+ 16. D13(MSB) 15 0 RFB 21 D12 loUT DATA ICL7134B INPUTS 0 +5Y 3 Do(LSB) 17· PROG 08014101 Figure 12: Bipolar (2'5 Complement), Four-Quadrant Multiplying Circuit Bipolar (2' s .Complement) Operation (ICL7134B) 2. The circuit configuration for bipolar mode Glperation (ICL7134B) is shown in Figure 12. Using 2's complement digital input codes and positive and negative reference voltage values, four-quadrant multiplication is obtained. The "digital input code/analog output value" table for bipolar mode is given in Table 4. Amplifier A3, together with internal resistors RINV1 and RINV2, forms a simple voltage inverter circuit. The MSB ladder leg sees a reference input of approximately :"'VREF, so the MSB's weight is reversed from the polarity of the other bits. In addition, the ICL7134B's feedback resistance is switched to 2R under PROM control, so that the bipolar output range is + VREF to -VREF (1 - 1J213). Again, the grounding arrangement of Figure 11 can be used, if necessary. 3. 4. 5. GAIN ADJUSTMENT (OPTIONAL) 1. 2. 3. 4. Table 4: Code Table - Bipolar (2'8 Complement) Operation DIGITAL INPUT 01111'111111111 00000000000001 00000000000000 11111111111111 1 000 0 0 0 0 0 0 0 0 0 1 10000000000000 5. ANALOG OUTPUT Connect WR, CS, Ao and A1 to OGNO. Connect DO, 01 ... 012 to V+, 013 (MSB) to OGNO. Monitor Your for a -VREF (1- ""2 13) reading. To increase Your, connect a series resistor of 200n or less between the A1 output and the RFB terminal (pin 21). To decrease Your, connect a series resistor of 1oon or less between the reference voltage and the VRFL terminal (pin 18). Processor Interfacing -VREF(1-1/2 13) -VREF(1/2 13) 0 VREF(1/2 13) VREF(l _1/2 13) VREF The ease of interfacing to a processor can be seen from Figure 14, which shows the ICL7134 connected to an 8035 or any other processor such as an 8049. The data bus feeds into both register inputs; three port lines, in combination with the WR line, control the byte-wide loading into these registers and then the OAC register. A complete OAC set-up requires 4 write instructions to the port, to set up the address and CS lines, and 3 external data transfers, one a dummy for the final transfer to the OAC register. OFFSET ADJUSTMENT 1. Adjust the offset zero-adjust trim-pot of the operational amplifier A2, if used, for a maximum of OV ±50j.N at AGNOS. Set data to 00000 .... 00. Adjust the offset zeroadjust trim-pot of the output op-amp A1, for a maximum of OV ±50j.lV at Your. Connect 013 (MSB) data input to v+. Adjust the offset zero-adjust trim-pot of op-amp A3 for a maximum of OV ±50j.lV at the RINV terminal (pin 19). Connect all data inputs and WR, CS, Ao and Al to OGNO. 6-116 Note: All typical values have been guaranteed by characterization and are not tested. ICL7134 +5V OV +5V P1o..17 } OTHER I/O P" .,. IM:;:aDBo Do P2CI-24 P,. P,. IM80C35 OV CS 8050 8748 ETC. 0, 08, WR ICL7134 0, 0, AGNDF .". 0" WR LOO05401 Figure 14: Interface to 8080 System lDO05301 Figure 13: ICL7134 Interface to 8048 System Aa- 15 t-_ _ _ _ _ _-'-'-..,. \ . . _ - - - - - - - - - - - - - - - - - - , 8212 LOOO5501 Figure 15: 8085 System Interface A similar arrangement can be used with an 8080A, 8228, and 8224 chip set. Figure 14 shows the circuit, which can be arranged as a memory-mapped interface (using MEMW) or as an I/O-mapped interface (using I/O WRITE). See A020 and R005 for discussions of the relative merits of memory-mapped versus I/O-mapped interfacing, as well as some other ideas on interfacing with 8080 processors. The 8085 processor has a very similar interface, except that the control lines available are slightly different, as shown in Figure 15. The decoding of the 10/M line, which controls memory-mapped or I/O-mapped operation, is arbitrary, and can be omitted if not necessary. Neither the MC680X nor R650X processor families offer specific I/O operations. Rgure 16 shows a suitable interface to either of these systems, using a direct connection. Several other decoding options can be used, depending on the other control signals generated in the system. Note that the R650X family does not require VMA to be decoded with the address lines. 6-117 Note: All typical values have been guaranteed by characterization and are not tested. ICL7134 ICL7134 MC·680X MCS·650X OPTIONAL GATE (SEE TEXT) lOOO5BOI lDO05601 Figure 17: Avoiding Digital Feedthrough in an 8048 to ICL71'34 Interface Figure 16: R650X and MC680X Families' Interface to ICL7134 INTERSIL ANALOG CIRCUIT r---A '---V 1M80C48 INTEL ICL7134 8080 808S ETC. LD00590t Figure 18: ICL7134 to 8048/80/85 Interface with Low Feedthrough Digital Feedthrough allow only 8 bits to be updated at anyone time, but a little ingenuity will avoid difficulties with DAC steps that would result from partial updates. The problem can be solved for the 8048 family by tying the 14 port lines to the data input lines, with CS, Ao and A1 held low, and using only the WR line to enter the data into the DAC (as shown in Figure 17). WR is well separated from the analog lines on the ICL7134, and is usually not a very active line in 8048 systems. Additional "protection" can be achieved by gating the processor WR line with another port line. The heavy use of port lines can be alleviated by use of the IM82C43 port expander. The same type of technique can be employed in the 8080/85 systems by, using an' 8255 PIA (peripheral Interface adapter) (Figure 18) and in the MC680X and R650X systems by using an MC6820 (R6520) PIA. All of the direct interfaces shown above can suffer from a capacitive coupling problem. The '14 data pins,and 4 control pins, all tied to active lines on a microprocessor bus, and in close proximity to the sensitive DAC circuitry, can couple pseudo-random spikes into the analog output. Careful board layout and shielding can minimize the problems (see PC layout), and clearly wire-wrap type sockets should never be used. Nevertheless, the inherent capacitance of the package alone can lead to unacceptable digital feedthrough in many cases. The only solution is to keep the digital inpIJt lines as inactive as possiblf;l. One easy way to do this is to use the peripheral interface circuitry available with all the systems previously discussed. These generally 6-118 Note: All typical values have been guaranteed by characterization and are not tested. n r ICL7134 ........ Col - v.. +ISV ~D?~sv II - .... HP2800 ..... 3IIcII ,r ~ -~rJ· + + ~ A3 ... HP2800 ~ +sv 22 ~ Ci ~ ~ ~ 18 19 OGNO VAL AlHv 24 20 VAUAGNDs WR 25 louT HA2805 II MSB ,.,5 1413 12 " 10 9 I!:? 21 ICL7I34B Ao A, 23 PROG V + AGNIlF RF. LSB a 7 8 5 4 3 + -15V LSBL _ +5V - + ~"~ OUT SV 6IIOIl LM311 r- + ~ -15V ~- ~ IN927A ~ ~ lMU 1300 ~ -1SV +sv--1! ,F I-f-o ~f-o ~ ~MS8 15 13 12 11 6 5 4 3 t Os. • • • • Qo CC 2 p----!. AM25L03 S 0 CP It-~ 71 10 14 13 12 11 654 AM25L03 CP . 0 i 71 10 T rio-' 2IdI 5100 Iff '~"'E I k" 1000p HOLOIAUJi n. .iT """'lr II(N+I) 1 0 , · · · · · 0 , ~+5V ... CC 2 ~ SHORT CYCLE UNE lN4!48 ~ ~.;;:. .~ T .iTP~ ~ 14 221J1i..l.- "J; l00pF 7 STATUS D5014201 figure 19: Successive Approximation AID Converter bits, 'where settling-time is most critical, than for the last 6 bits. The short-cycle line is shown tied to the 15th bit; if fewer bits are required, it can be moved up accordingly. The circuit will free-run if the HOLD/RUN input is held low, but will stop after completing a conversion if the pin is high at that time. A low-going pulse will restart it. The STATUS output indicates when the device is operating, and the falling edge indicates the availability of new data. A unipolar version may be constructed by tying the MSB (0,3) on an ICL7134U to pin 14 on the first AM25L03, deleting the reference inversion amplifier A4, and tying VRFM to VRFL. Successive Approximation AID Converters Figure 19 shows an ICL7134B-based circuit for a bipolar input high speed A/D converter, using two AM25L03s to form a 14-bit successive approximation register. The comparator is a two-stage circuit with an HA2605 front-end amplifier, used to reduce settling time problems at the summing node (see A020). Careful offset-nulling of this amplifier is needed, and if wide temperature range operation ,is desired, an auto-null circuit using an ICL7650is probably advisable (see A053). The clock, using two Schmitt trigger TTL gates, runs at a slower rate for the first 8 6-119 Note: All typical values have been guaranteed by characterization and are not tested. :... ICL7134 ... ..I .' S:! ... Do Il/Ii ..... ... eli - ... ---- .... DIGITAl INPUT 'LSO ANALOG G~ND ,_." OUT CS.WR t I ANALOG Q":ND -::..- DaNO AODliIESs PL010001 PL009901 (a) Printed Circuit ~ide of Card (Single Sided Board) (b) Top Side with Component Placement figure 20: Printed Circuit Board Layout (Bipolar Circuit, see figure 12) A018 "Do's and DonI's of Applying AID Converters," by Peter Bradshaw and Skip Osgood. A020 "A Cookbook Approach to High Speed Data Acquisition and Microprocessor Interfacing," by Ed Sliger. A021 "Power AID Converters Using the ICH8510," by Dick Wilenken. A030 "The ICL7104 - A Binary Output AID Converter for Microprocessors," by Peter Bradshaw. R005 "Interfacing Data Converters & Microprocessors," by Peter Bradshaw et ai, Electronics, Dec. 9, 1976. Most of these are available in the Intersil Data Acquisition Handbook, together with other material. PC BOARD LAYOUT Great care should be taken in the board layout to minimize ground loop and similar "hidden resistor" problems, as well as to minimize digital signal feedthrough. A suitable layout for the immediate vicinity of the ICL7134 is shown in Figure 20, and may be used as a guide. APPLICATION NOTES Some applications bulletins that may be found useful are listed here: A016 "Selecting AID Converters," by Dave Fullagar. A017 "The Integrating AID Converter," by Lee Evans. 6-120 Note: All typical values have been guaranteed by characterization and are not tested, ICL7135 4 Y2-Digit BCD Output AID Converter GENERAL DESCRIPTION FEATURES The Intersil ICL7135 precision AID converter, with its multiplexed BCD output and digit drivers, combines dualslope conversion reliability with ±1 in 20,000 count accuracy and is ideally suited for the visual display DVM/DPM market. The 2.0000V full scale capability, auto-zero and auto-polarity are combined with true r-Y- 05014301 (a) (b) Figure 6: Using an External Reference UARTs or microprocessors. There are 5 negative going STROBE pulses that occur in the center of each of the digit drive pulses and occur once and only once for each measurement cycle starting 101 pulses after the end of the full measurement cycle. Digit 5 (MSD) goes high at the end of the measurement cycle and stays on for 201 counts. In the center of this digit pulse (to avoid race conditions between changing BCD and digit drives) the first STROBE pulse goes negative for Y2 clock pulse width. Similarly, after digit 5, digit 4 goes high (for 200 clock pulses) and 100 pulses later the STROBE goes negative for the second time. This continues through digit 1 (LSD) when the fifth and last STROBE pulse is sent. The digit drive will continue to scan (unless the previous signal was overrange) but no additional STROBE pulses will be sent until a new measurement is available. . Analog Common Analog COMMON is used as the input low return during auto-zero and de-integrate. If IN LO is different from analog COMMON, a common mode voltage exists in the system and is taken care of by the excellent CMRR of the converter. However, in most applications IN LO will be set at a fixed known voltage (power supply common for instance). In this application, analog COMMON should be tied to the same pOint, thus removing the common mode voltage from the converter. The reference voltage is referenced to analog COMMON. Reference The reference input must be generated as a positive voltage with respect to COMMON, as shown in Figure 6. DETAILED DESCRIPTION Digital Section Figure 7 shows the Digital Section of the 7135. The 7135 includes several pins which allow it to operate conveniently in more sophisticated systems. These include: Run/HOLD (Pin 25). When high (or open) the AID will freerun with equally spaced measurement cycles every 40,002 clock pulses. It taken low, the converter will continue the full measurement cycle that it is doing and then hold this reading as long as R/Ff is held low. A short positive pulse (greater than 300ns) will now initiate a new measurement cycle, beginning with between 1 and 10,001 counts of auto zero. If the pulse occurs before the full measurement cycle (40,002 counts) is completed, it will not be recognized and the converter will simply complete the measurement it is doing. An external indication that a full measurement cycle has been completed is that the first strobe pulse (see below) will occur 101 counts after the end of this cycle. Thus, if Run/HOLD is low and has been low for at least 101 counts, the converter is holding and ready to start a new measurement when pulsed high. STROBE (Pin 26). This is a negative going output pulse that aids in transferring. the BCD data to external latches, y+ --~--- DIGITAL GND . CLOCK IN RUNI Hml) OVER RANGE UNDER RANGE STiii5iE BUSY AF025101 Figure 7: Digital Section of the 7135 BUSY (Pin 21). BUSY goes high at the beginning of signal integrate and stays high until the first clock pulse after zerocrossing (or after end of measurement.in the case of an 6-125 Note: All typical values have been guaranteed by charadterizati.on and are not tested. ensures that the tolerance built-up will, not· saturate the integrator swing (approx. 0.3 volt from either supply). For ±5 volt supplies and analog COMMON tied to supply ground, a ±3.5 to ±4 volt full· scale integrator swing is fine, and 0.47pF is nominal. In general, the value of CINT is given by overrange). The internal latches are enabled (i.e., loaded) during the first clock pulse after busy and are latched at the end of this clock pulse. The circuit automatically reverts to auto-zero when not BUSY, so it may also be .considered a (ZI + AZ) signal. A very simple means for transmitting the data down a single wire pair from a remote location would ,be to AND BUSY with clock. and subtract 10,001 counts from the number of pulses received - as mentioned previously there is one "NO-count" pulse in each reference integrate cycle. OVER-RANGE (Pin 27). This pin gOEls positive when the input signal exceeds the range (20,000) of the converter. The output F/F is set at the end of BUSY and is reset to zero at the beginning of Reference integrate in the next measurement cycle. UNDER-RANGE (Pin 28). This pin goes positive when the reading is 9% of range or less. The output F/F is set at the end of BUSY (if the new reading is 1800 or less) and is reset at the beginning of signal integrate of the next reading. POLARITY (Pin 23). This pin is positive for a positive input signal. It is valid even for a zero reading. In other words, + 0000 means the signal is positive but less than the least significant bit. The converter can be,used as a null detector by forcing equal frequency of ( + ) and ( - ) readings. The null at this point should be 'Iess than 0.1 LSB. This output becomes,valid at the beginning of reference integrate and remains correct until it is re-validated for the next'measurement. Digit Dr!ves (Plris 12, 17, 18, 19 and 20). Each digit drive is a positive going signal fhat lasts for 200 clock pulses. The scansEiquence is D5 (MSD), D4, D3, D2 and D1 (LSD). All five digits are scanned and this scan is continuous unless an over-range occurs. Then all digit drives are blanked from the end of the strobe sequence until 'the beginning of Reference Integrate when D5 will start the scan "again. This can give a blinking display as a visual indication of overrange. BCD (Pins 13, 14, 15 and 16). The Binary coded Decimal bits Bs, B4, B2 and B1 are positive logic signals that go on simultaneously with the digit driver signal. CINT=( (10,000) (clock period) (20/lA) integrator output voltage swing A very important characteristic of the integrating capacitor is that it has low dielectric absorption to prevent roll-over or ratiometric errors. A good test for dielectric absorption is to use the capacitor with the input tied to the reference. This ratiometric condition should read half scale 0.9999, and any deviation is probably due to dielectric absorption. Polypropylene capacitors give undetectable errors at reasonable cost. Polystyrene and polycarbonate capaCitors may also be used 'in less critical applications. INTEGRATOR. OUTP\IT If.4Y,().I ~ ~ INTEGRATE REFERENC£J 20.001 1~ COUNTS CO COUNTS MAX. FULl. MEASUREMENT CYCLE 4O,Q02COUNTS 8USY~ WHEN """LIC....L~ iii FOR o~:11~~rL...J""L..JL- D, ~D. ..JL....JL-Il..D:! ---IL-1L-..J D; COMPONENT VALUE SELECTION . --I1-...IL-.D', ~~=-~ For optimum performance of the analog section, care must be taken in the selection of values for the integrator capaCitor and resistor, auto-zero capacitor, reference voltage, and conversion rate. These values must be chosen to suit the particular application. 'FIRST Os OF AZ AND REF INT ONE COUNT LONGER mRIII! .. II I r-AUTOZERO SCANI, SIGNAL INTEGRATE FORO~~ANGEnD' Integrating Resistor J1~D.~ The integrating resistor is determined by the full scale input voltage and the output current of the buffer used to charge the integrator capacitor. Both the buffer amplifier and the integrator have.a.class A output stage with 100/lA 'of quiescent current. They can supply 20/lA of drive current with negligible' non-linearity. Values of 5 to 40pA give good results, with a nominal. of 20/lA, and the exact value of .integrating resistor may be chosen by RINT = [10,0'00 x clock period] x liNT . ) integrator output voltage swing . , ________ •____-tJ -11~D:!~ _____ ____ .--n=D:!~ ~ __ ~ ____ ~ ~~ ~~---+--~ WF01?701 .. Figure 8: Timing Diagram for Outputs full scale voltage 20/lA' Auto-Zero'and Reference CapaCitor Integrating CapaCitor The size of the auto-zero'capacitor has some influence on the noise of the system, a large capacitor giving less noise. The reference capaCitor should be large enough The product of integrating resistor and capacitor Should be .selected to give the' maximum. voltage, swing which 6-12~ Note: All typical values have been guarant!l 7V), the COMMON voltage will have a low voltage coefficient (0.001 %/%), low output impedance ("",35n), and a temperature coefficient typically less than BOppml"C. DE·INTEGRATE PHASE The next phase is de-integrate, or reference integrate. Input low is internally connected to analog COMMON and input high is .connected across the previously charged reference capacitor. Circuitry within the chip ensures that 6-135 Note: All typical values have been guaranteed by characterization and are not tested. I '" = ICL7136·· ...... 2 v, v' v' 1.2 VOLT REFERENCE (INTERSll ICL8C!6"I 6.' VOLT ZENER liZ v(8) (b) 08014501 OS014601 Figure 6: Using an External Reference The limitations of the on-Chip reference should also be recognized, however. The reference temperature coefficient (TC) can c:ause some degradation in performance. Temperature changes. of 2°C to 8°C, typical for instruments, can give a scale factor error of a count or more. Also, the COMMON voltage will have a poor voltage coefficient when the total supply voltage is less than that which will cause the zener to regulate ( < 7V). These problems are eliminated if an external reference is used, as shown in Figure 6. Analog COMMON is also used as the input low return during auto-zero and de-integrate. If IN LO is different from analog COMMON, a common-mode voltage exists in the .system and is taken care of by the excellent CMRR of the converter. However, in some applications IN LO will be set at a fixed known voltage (power supply common for instance). In this application, analog COMMON should be tied to the same pOint, thus removing the common-mode voltage from the converter. The same holds true for the reference voltage. If the reference can be conveniently referred to analog COMMON, it should be since this removes the common-mode voltage from the reference system. Within the IC, analog COMMON is tied to an N channel FET which can sink 3mA or more of current to hold the voltage 3.0V below the positive supply (when a load is trying to pull the common line positive). However, there is only 1pA of source current,so COMMON may easily be tied to a more negative voltage, thus overriding the internal reference. .. TEST The TEST pin serves two functions. It is coupled to the internally generated digital supply through a 500n resistor. Thus, it can be used as the negative supply for external segment drivers such as for decimal points or any other presentation the user may want to include on the LCD display. Figures 7 and 8 show such an application. No more than a 1mA load should be applied. The second function is a "lamp test." When TEST is pulled high (to V +) all segments will be turned on and the display should read -1888. The TEST pin will sink about 10mA under these conditions . Caution: In the lamp test mode, the segments have a constant DC voltage (no square-wave). This may burn the LCD display if maintained for extended periods. TOLCO DECIMAl POINTS TC022001 Figure 8: Exclusive "OR" Gate for Decimal Point Drive v, DETAILED DESCRIPTION 1MO ICL7136 BPI-'2""1-.-11+-- (Digital Sectionl Figure 9 shows the digital section for the 7136. An internal digital ground is generated from a 6V Zener diode and a large P channel source follower. This supply is made stiff to absorb the relatively large capacitive currents when the backplane (BP) voltage is switched. The BP frequency is the clock frequency divided by 800. For three readings/ second this is a 60Hz square-wave with a nominal amplitude of 5V. The segments are driven at the same frequency and amplitude and are in phase with BP when OFF, but out of phase when ON. In all cases negligible DC voltage exists across the segments. The polarity indication is "ON" for TO LCD DECIMAL POINT :~J7~SIL TEST 1,3=7-I---"'...J TO LCD BACKPLANE 09014701 Figure 7: Simple Inverter for Fixed Decimal Point 6-136 Note: All typical values have been guaranteed by characterization and are not tested .. ICL7136 negative analog inputs. If IN LO and IN HI are reversed, this indication can be reversed also, if desired. DISPLAY FONT 0123'-:'5:5:8'3 --------------------.---.--------.--.---.-----~------~~H+~~---·~r+·++-I+--+~-~~~·~~----=~·~~~~n~ *~- One _ _ for-,. ------------------------&""'---osc O8CI osc> AF025501 Figure 9: Digital Section System Timing L Figure 10 shows the clock oscillator provided in the 7136. Three basic clocking arrangements can be used: 1. An external oscillator connected to pin 40. 2. A crystal between pins 39 and 40. 3. An RC oscillator using all three pins. The oscillator frequency is divided by fbur before it clocks the decade counters. It is then further divided to form the four convert-cycle phases. These are Signal integrate (1000 counts), reference de-integrate (0 counts to 2000 counts), zero integrator (11 counts to 140 counts') and auto-zero (910 counts to 2900 counts). For signals less than fullscale, auto-zero gets the unused portion of reference deintegrate and zero integrator. This makes a complete measure cycle of 4000 (16,000 clock pulses) independent ...J TC022101 Figure 10: Clock Circuits • After an overranged conversion of more than 2060 counts, the zero integrator phase will last 740 counts, and auto-zero will last 260 counts. 6-137 Note: All typical values have been guaranteed by characterization. and are not tested. of input voltage. For three readings/second, an oscillator frequency of 48kHz would be used. To achieve maximum rejection of 60Hz pickup, the signal integrate cycle should be a multiple. of the 60Hz ~eriod. Oscillator frequencies of 60kHz, 48kHz, 40kHz, 33-V3kHz, etc. should be selected. For. 50Hz rejection, oscillator frequencies of 662t3.kK~;-'I~pkHz, 40kHz, etc. would be suitable. Note that 4()kl::(Z:(~i? readings/second) will r~je¢t both 50Hz and 60Hz (ills04QOHz ai1d 440Hz). See also A052. . . respectively. However, in many applications where the AID is connected to a transducer, there will exist scale factor other than unity between the input voltage and the digital reading. For instance, in a weighing system, the designer might like to liave a full-scale reading when the voltage from the transducer is 0.682V. Instead of dividing the input down . to 200.0mV, the designer should use the input voltage directly and select VREF = 0.341V. A suitable value for the integrating resistor would be 330kn. This makes the system 'slightly quieter and also avoids the necessity of a divider network on the input. Another advantage of this system occurs when a digital reading of zero is desired for VIN O. Temperature and weighing systems with a variable tare are examples. This offset reading can be conveniently generated by connecting the voltage transducer between IN HI and COMMON and the variable (or fixed) offset voltage between COMMON and IN LO. a COMPONENT VALlJE:'SELECTION- *' (See also A052) Integrating Resistor Both the buffer amplifier and the integrator have a class A output stage with 6pA of quiescehtcurrent. They can supply -1 pA of drive current with negligible non-linearity. The integrating resistor should be large enough to remain in this very linear region over the input voltage range, but small enough that undue leakage requirements are not placed on the PC board. For 2.V full-scale, 1.8Mn is near optimum, and similarly 180kn for a .200.0mV scale. TYPICAL APPLICATIONS The 7136 may be used in a wide variety of configurations. The circuits which follow show some of the possibilities, and serve to illustrate the exceptional versatility of these AID converters. Integrating CapaCitor . The integrating capaCitor should be selected to give the maximum voltage swing that ensures tolerance build-up will not saturate the integrator swing (approx. 0.3V from either supply). When the analog COMMON is used as a reference, a nomil)al ±2V full-scale integrator swing is fine. For three readings/second (48kHz clock) nominal values for CINT are 0.047j.1F, for 1 reading/second (16kHz) 0.15j.1F. Of course, if different oscillator frequencies are used, these values should be changed in inverse proportion to maintain the same output swing. The integrating capaCitor should have low .dielectric absorption to prevent roll-over errors. While other types may be adequate for this application, polypropylene capacitors give undetectable errors at reasonable cost. ,OSC1 .. To pin 1 11Ok" osea ose3 Set Vre' "" 100.OmV TEST· / SOpF REF HI REFLO "C REF O.1J.!F C REF ....0 1OkO COMMON 1Ml! IN HI 0.011'F IN LO 0.47"F A-2 11Ok0 BUFF The size of the auto-zero capacitor has some influence on the noise of the system. For 200mV full-scale where noise is very important, a 0.47j.1F capacitor is recommended. The ZI phase allows a large auto-zero· capaCitor to be used without causing the hysteresis or overrange hangover problems that can occur with the ICL7126 or ICL7106 (see A032). = tV INT V· G, C3 A3 G3 BP Auto-Zero Capacitor IN O.047J. Ol ..... EO POL n "'H' IHLO .." BUFF 'NT v- ...C, .. '" B. c ...... or 74C10 CD4077 CD012001 Figure 18: Circuit for Developing Underrange and Overrange Signals from 7136 Outputs To pin t 40 leal. '1ICtor .dlu" (VNf .,. 100mV tor AC to Rill) ACIN I' CD011101 Figure 19: AC to DC Converter with 7136 Test is used as a common-mode reference level to ensure compatibility with most op amps. A052 "Tips for USing Single-Chip 3Y2-Digit AID Converters," by Dan Watson. APPLICATION NOTES A016 "Selecting AID Converters," by David Fullagar. A017 "The Integrating AID Converter," by Lee Evans. A018 "Do's and Dont's of Applying AID Converters," by Peter Bradshaw and Skip Osgood. A019 "4Y2-Digit Panel Meter Demonstratorl Instrumentation Boards," by Michael Dufort. A023 "Low Cost Digital Panel Meter Designs," by David Fullagar and Michael Dufort. A032 "Understanding the Auto-Zero and Common-Mode Behavior of the ICL7106/7/9 Family," by Peter Bradshaw. A046 "Building a Battery-Operated Auto Ranging DVM with the ICL7106," by Larry Goff. A047 "Games People Play with Intersil's AID Converters," edited by Peter Bradshaw. 7136 EVALUATION KIT After purchasing a sample of the 7136, the majority of users will want to build a simple voltmeter. The parts can then be evaluated against the data sheet specifications, and tried out in the intended application. To facilitate evaluation of this unique circuit, Intersil is offering a kit which contains all the necessary components to build a 3Y2-digit panel meter. With the ICL7136EV/Kit and the small number of additional components required, an engineer or technician can have the system "up and running" in about half an hour. The kit contains a circuit board, a display (LCD), passive components, and miscellaneous hardware. 6-141 Note: All typical values have been guaranteed by characterization and are not tested. ICL7137 3 ~2~DigitLED Low Power Single-Chip AID Converter GENERAL DESCRIPTION FEATURES The Intersil ICL7137 is a high performance, very low power 3Y2-digit AID converter. All the necessary active devices are contained on. a single CMOS IC, including seven-segment decoders, display drivers, reference, and clock. The 7137 is designed to interface with a light emitting diode (LED) display. The supply current (exclusive of . display) is under 200/lA, ideally suited for battery operation. The 7137 brings together an unprecedented combination . of high accuracy, versatility, and true economy. The device features auto-zero to less than 10/lV, zero drift of less th.an 1/lV input bias current of 10pA max., and rollover error of less than one .count. The versatility of true differential input and reference is useful in all systems, but gives the deSigner an uncommon advantage when measuring load cells, strain gauges and other bridge-type transducers. And finally the true economy of the ICL7137 allows a high performance panel meter to be built with the addition of only 10 passive components and a display. The ICL7137 is an improved version of the ICL7107, eliminating the overrange hangover and hysteresis effects, and should be used in its place in all applications, changing only the passive component values. • • • • • • • • rc, • • • • First-Reading Recovery From Overrange allows Immediate "OHMS" Measurement Guaranteed Zero Reading for OV Input True Polarity at Zero for Precise Null Detection 1pA Typical Input Current True Differential Input and Reference Direct LED Display Drive - No External Components Required Pin Compatible With The ICL7107 Low Noise -15/lVp-p Without Hysteresis or Overrange Hangover On-Chip Clock and Reference Improved Rejection of Voltage On COMMON Pin No Additional Active Circuits Required Evaluation Kit Available ICL7137EV/Kit ORDERING INFORMATION* PART NUMBER TEMPERATURE RANGE PACKAGE ICL7137CJL O·C to +70·C CERDIP ICL7137CDL . O·C to +70·C 40·Pin Ceramic ICL7137CPL O·C to +70·C 40-Pin Plastic ICL7137RCPL O·C to +70·C 40-Pin Plastic ICL7137EVIKIT EVALUATION KIT - - V+ OSCl en 81 TEST - Gl C+AEF El 02 C2 82 INHI INLO A2 F2 E2 A-Z BUff INT .:. r··~! ~l!~ 1 ~ _ ~ I ';i I ~~ ~ ~t:~ (1000) A84 ..... ~L!!..._~_~_-_-_-_-=._c.:_:.._-_-_4.;::_=_=_=_=_=-_-_-.J._____________ _ g~~ :::~~ C-"EF COMMON ~; (TENS) ~~\i G31 i: (MIN~~'-liI'----....i.!P DIG GND CD012101 v· 80004401 . Figure 2: Pin Configuration* (Outline dw~s Pl, Jl, Dl) Figure 1: Functional Diagram 6-142 Note: All typical values have been guaranteed by characterization and are not tested. 301669-{)02 ICL7137 ABSOLUTE MAXIMUM RATINGS Supply Voltage V + .......................................... + 6V V- ........................................... -9V Analog Input Voltage (either input)(Note 1) .... V + to VReference Input Voltage (either input) .......... V+ to VClock Input ...........................................GND to V + Power Dissipation (Note 2) Ceramic Package .............................. 1000mW Plastic Package .................................. 800mW Operating Temperature ........................ O°C to + 70°C Storage Temperature ..................... - 65°C to + 150°C Lead Temperature (Soldering, 10sec) ................. 300°C Note 1: Input voltages may exceed the supply voltages, provided the input current is limited to ± 1OOIlA. Note 2: Dissipation rating assumes device is mounted with all leads soldered to printed circuit board. Stresses above those listed under" Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. ELECTRICAL CHARACTERISTICS (Note 3) PARAMETER TEST CONDITIONS Zero Input Reading VIN = O.OV Full-Scale = 200.0mV Ratiometric Reading VIN Roll-Over Error (Difference in reading for equal positive and negative reading near full-scale) - VIN Linearity (Max. deviation from best straight line fit) Full-scale = 200mV or Full-Scale = 2.000V Common-Mode Rejection Ratio (Note 4) VCM = ±1V, VIN = OV Full·Scale = 200.0mV Noise (Pk-Pk value not exceeded 95% of time) VIN Leakage Current @ Input Zero Reading Drift Scale Factor Temperature Coefficient V + Supply Current (Does not Include LED current) = VREF. VREF = + VIN = OV, = 100mV "" 200.0mV MIN TYP MAX UNIT -000.0 ±OOO.O + 000.0 Digital Reading 998 999/1000 1000 Digital Reading -1 ±0.2 +1 Counts -1 ±0.02 +1" Counts 30 Full-Scale = 200.0mV 15 = OV VIN = OV, O°C < T A < + 70°C VIN = 199.0mV, O°C < T A < + 70°C VIN IlV 1 10 pA 0.2 1 IlV/·C 1 5 ppml"C 70 200 /lA 3.2 V (Ext. Ref. Oppm/°C) VIN = OV (Note 5) V - Supply current 40 Analog COMMON Voltage (With respect to positive supply) 250kn between Common and Positive Supply Temp. Coeff. of Analog COMMON (With respect to positive supply) 250kn between Common and Positive Supply Segment Sinking Current (Except Pins 19 & 20) (Pin 19 only) (Pin 20 only) V+ = 5.0V Segment Voltage Power Dissipation Capacitance vs. Clock Frequency NOTES: 3. 4. 5. 6. IlVN 2.4 2.8 150 5 8.0 10 4 16 7 = 3V ppml"C mA 40 pF Unless otherwise noted, specifications apply at TA = 25°C, fclock = 16kHz and are tested in the circuit of Figure 4. Refer to "Differential Input" discussion. 48kHz OSCillator, Figure 5, increases current by 35/lA (typ). Extra capacitance of CERDIP package changes oscillator resistor value to 470kn or 150kn (1 reading/sec or 3 readings/sec). 6-143 Note: All typical values have been guaranteed by characterization and are not tested. a ICL7137 .... ~ I. ". 40KD +- -IV L ov 1Mn AF0257QI Figure 5: Clock Frequency 48kHz (3 readings/sec) COO1220! Figure 3: ICL7137 with LED Display DETAILED DESCRIPTION (Analog Section) Figure 1 shows the Functional Diagram of the Analog Section for the ICL7137. Each measurement cycle is divided into four phases. They are 1) auto-zero (A-Z) , 2) signal integrate (INn, 3) de-integrate (DE) and 4) zerointegrator (ZI). . AUTO-ZERO PHASE During auto-zero three things happen. First, input high and low are disconnected from the pins and internally shorted to analog COMMON. Second, the reference capacitor is charged to the reference voltage. Third, a feedback loop is closed around the system to. charge the auto-zero capacitor, CAZ, to compensate for offset voltages in the buffer amplifier, integrator, and comparator. Since the comparator is included in the loop, the A-Z accuracy is limited only by the noise of the system. In any case, the offset referred to the input is less than 10j.lV. SIGNAL INTEGRATE PHASE During signal integrate, the auto-zero loop is opened, the internal short is removed, and the internal input high and low are connected to the external pins. The converter then integrates the differential voltage between IN HI and IN La for a fixed time. This differential voltage can be within a wide common-mode range; within 1V of either supply. If, on the other hand, the input signal has no return with respect to the converter power supply, IN La can be tied to analog COMMON to establish the correct common-mode voltage. At the end of this phase, the polarity of the integrated signal is determined. TEST CIRCUITS IN ". +- ov IMn AF025601 Figure 4: 7137 Clock Frequency 16kHz (1 reading/sec) 6-144 Note: All typical values have been guaranteed by characterization and are not tested. ICL7137 However, analog COMMON has some of the attributes of a reference voltage. When the total supply voltage is large enough to cause the zener to regulate ( > 7V), the COMMON voltage will have a low voltage coefficient (0.001 %/%), low output impedance(",,35n), and a temperature coefficient typically less than 150ppmrC. DE-INTEGRATE PHASE The next phase is de-integrate, or reference integrate. Input low is internally connected to analog COMMON and input high is connected across the previously charged reference capacitor. Circuitry within the chip ensures that the capacitor will be connected with the correct polarity to cause the integrator output to return to zero. The time required for the output to return to zero is proportional to the input signal. Specifically; the digital reading displayed is 1000(VINIVREF)· The limitations of the on-Chip reference should also be recognized, however. The reference temperature coefficient (TC) can cause some degradation in performance. Temperature changes of 2°C to 8°C, typical for instruments, can give a scale factor error of a count or more. Also, the COMMON voltage will have a poor voltage coefficient when the total supply voltage is less than that which will cause the zener to regulate ( < 7V). These problems are eliminated if an external reference is used, as shown in Figure 6. ZERO INTEGRATOR PHASE The final phase is zero integrator. First, input low is shorted to analog COMMON. Second, the reference capacitor is charged to the reference voltage. Finally, a feedback loop is closed around the system to input high to cause the integrator output to return to zero. Under normal conditions, this phase lasts for between 11 to 140 clock pulses, but after a "heavy" overrange conver'Sion, it is extended to 740 clock pulses. V' Y+ REF Differential Input v' HI The input can accept differential voltages anywhere within the common-mode range of the input amplifier; or specifically from 0.5V below the positive supply to 1.0V above the negative supply. In this range the system has a CMRR of 90dB typical. However, since the integrator also swings with the common-mode voltage, care must be exercised to assure the integrator output does not saturate. A worst case condition would be a large positive commonmode voltage with a near full-scale negative differential input voltage. The negative input signal drives the integrator positive when most of its swing has been used up by the positive common-mode voltag'S. For these critical applications the integrator swing can be reduced to less than the recommended 2V full-scale swing with little loss of accoracy. The integrator output can swing within 0.3V of either supply without loss of linearity. 6.8 VOLT ZENER 1.2 VOLT REFERENCE (lNTERSIL I ICL7137 ICI.808ll) t COMMON v(b) (a) 0501480) 08014901 Figure 6: Using an External Reference Analog COMMON is also used as the input low return during auto-zero and de-integrate. If IN LO is different from analog COMMON, a common-mode voltage exists in the system and is taken care of by the excellent CMRR of the converter. However, in some applications IN LO will be set at a fixed known voltage (power supply common for instance). In this application, analog COMMON should be tied to the same point, thus removing the common-mode voltage from the converter. The same holds true for the reference voltage. If the reference can be conveniently referred to analog COMMON, it should be since this removes the common-mode voltage from the reference system. Differential Reference The reference voltage can be generated anywhere within the power supply voltage of the converter. The main source of common-mode error is a roll-over voltage caused by the reference capacitance losing or gaining charge to stray capacity on its nodes. If there is a large common-mode voltage, the reference capacitor can gain charge (increase voltage) when called up to de-integrate a positive signal but lose charge (decrease voltage) when called up to deintegrate Ii negative input signal. This difference in reference for ( + ) or ( - ) input voltage will give a roll-over error. However, by selecting the reference capaCitor large enough in comparison to the stray capacitance, this error can be held to less than 0.5 count for the worst case condition (see Component Value Selection). Within the IC, analog COMMON is tied to an N channel FET which can sink 100iJA or more of current to hold the voltage 3.0V below the positive supply (when a road is trying to pull the common line positive). However, there is only 1iJA of source current, so COMMON may easily be tied to a more negative voltage, thus overriding the internal reference. ' Analog Common TEST This pin is included primarily to set the common-mode voltage for battery operation or for any system where the input signals are floating with respect to the power supply. The COMMON pin sets a voltage that is approximately 3.0V more negative than the positive supply. This is selected to give a minimum end-of-life battery voltage of about 6V. The TEST pin is coupled to the internal digital supply through a 500n reSistor, and functions as a "lamp test." When TEST is pulled high (to V +) all. segments will be turned on and the display should read - 1888. The TEST pin will sink about 10mA under these conditions. 6-145 Note: All typical values have been guaranteed by characterization and are not tested. alCL7137 ... , ... DISPLAY FONT ~ o ,. ,. :·2:: '-: S S -: :3 '3 ,I·.-J. 0';'. • To SWitch Drive,. -----r---- .v From Comp.tt.tor O u t p u l - - - - - j - - - - , El7, l' -~~----~~r_----------;_--r__;--T_----------~v- . I ContrOl Logic SOO II I I "Three Inverters. One inverter shown for clarity. OSC 1 • TEST ! ~ ::JL~'D : ~-------~~----------------------------~ , ' OSC 3'; '---------+-----1 j-----J AF025801 Figure 7: Digital Section System, Timing Figure 9 shows the clock oscillator provided in the 7137. Three basic clocking arrangements can be used: 1300 1. An external oscillator connected to pin 40. 2. A crystal between pins 39 and 40. 3. An RC oscillator using all three pins. 08015001 Figure a: Display Buffering for Increased Drive Current L DETAILED DESCRIPTION (Digital Section) Figure 7 shows the digital section for the 7137. The segments are driven at 8mA, suitable for instrument size common anode LED displays. Since the 1000 output (pin 19) must sink current from two LED segments, it has twice the drive capability or 16mA. The polarity indication is "ON" for negative analog inpllts. If IN La and IN HI are reversed, this indication can be reversed also, if desired. 08015101 Figure 9: Clock Circuits The oscillator frequency is divided by four before it clocks the decade counters. It is then further divided to form the four convert-cycle phases. These are Signal integrate (100P counts), reference de-integrate (0 counts to 2000 counts), Figure 8 shows a method of increasing the output drive current, using four DM7407 Hex Buffers. Each buffer is capable of sinking 40mA. 6-146 Note: All typical values have been guaranteed by characterization and are not tested, .D~DIl. ICL7137 Oscillator Components zero integrator (11 counts to 140 counts') and auto-zero (910 counts to 2900 counts). For signals less than fullscale, auto-zero gets the unused portion of reference deintegrate and zero integrator. This makes a complete measure cycle of 4000 (16,000 clock pulses) independent of input voltage. For three readings/second, an oscillator frequency of 48kHz would be used. For all ranges of frequency a 50pF capacitor is recommended and the resistor is selected from the approximate equation f "" 0.45/RC. For 48kHz clock (3 readings/ second), R = 180kn, while for 16kHz (1 reading/sec), R = 560kn. Reference Voltage To achieve maximum rejection of 60Hz pickup, the signal integrate cycle should be a multiple of the 60Hz ~eriod. Oscillator frequencies of 60kHz, 48kHz, 40kHz, 33 Y3kHz, . etc. should be selected. For 50Hz rejection, oscillator frequencies of 6693kHz, 50kHz, 40kHz, etc. would be suitable. Note that 40kHz (2.5 readings/second) will reject both 50Hz and 60Hz (also 400Hz and 440Hz.) See also A052. The analog input required to generate full-scale output (2000 counts) is: VIN = 2VREF. Thus, for the 200.0mV and 2,000V scale, VREF should equal 100.0mV and 1.000V, respectively. However, in many applications where the A/D is connected to a transducer, there will exist a scale factor other than unity between the input voltage and the digital reading. For instance, in a weighing system, the deSigner might like to have a full-scale reading when the voltage from the transducer is O.682V. Instead of dividing the input down to 200.0mV, the deSigner should use the input voltage directly and select VREF = 0.341V. A suitable value for the integrating resistor would be 330kn. This makes the system slightly quieter and also avoids the necessity of a divider network on the input. Another advantage of this system occurs when a digital reading of zero is desired for VIN -4= o. Temperature and weighing systems with a variable tare are examples. This offset reading can be conveniently generated by connecting the voltage transducer between IN HI and COMMON and the variable (or fixed) offset voltage between COMMON and IN LO. • After an overranged conversion of more than 2060 counts, the zero integrator phase will last 740 counts, and auto-zero will last 260 counts. COMPONENT VALUE SELECTION (See Application Note A052) Integrating Resistor Both the buffer amplifier and the integrator have a class A output stage with 6p.A of quiescent current. They can supply -1 p.A of drive current with negligible non-linearity. The integrating resistor should be large enough to remain in this very linear region over the input voltage range, but small enough that undue leakage requirements are not placed on the PC board. For 2V full-scale, 1.8Mn is near optimum, and similarly 180kn for a 200.0mV scale. Integrating Capacitor TYPICAL APPLICATIONS The integrating capacitor should be selected to give the maximum voltage swing that ensures tolerance build-up will not saturate the integrator swing (approx. 0.3V from either supply). When the analog COMMON is used as a reference, a nominal ±2V full-scale integrator swing is fine. For three readings/second (48kHz clock) nominal values for CINT are 0.047p.F, for 1 reading/Second (16kHz) 0.15p.F. Of course, if different oscillator frequencies are used, these values should be changed in inverse proportion to maintain the same output swing. The 7137 may be used in a wide variety of configurations. The circuits which follow show some of the possibilities, and serve to illustrate the exceptional versatility of these A/D converters. The integrating capacitor should have low dielectric absorption to prevent roll-over errors. While other types may be adequate for this application, polypropylene capacitors give undetectable errors at reasonable cost. Auto-Zero Capacitor The size of the auto-zero capacitor has some influence on the noise of the system. For 200mV full-scale where noise is very important, a 0.47p.F capacitor is recommended. The ZI phase allows a large auto-zero capacitor to be used without causing the hysteresis or overrange hangover problems that can occur with the ICL7107 or ICL7117 (See Application Note A032). Reference Capacitor A 0.1/LF capacitor gives good results in most applications. However, where a large common-mode voltage exists (Le., the REF LO pin is not at analog COMMON) and a 200mV scale is used, a larger value is required to prevent roll-over error. Generally, 1.0p.F will hold the roll-over error to 0.5 count in this instance . • After an overranged conversion of more than 2060 counts, the zero intergrator phase will last 740 counts, and auto-zero will last 260 counts. 6-147 Note: All typical values have been guaranteed by characterization and are not tested. e... ... Co) ... ......... g '(11) ICL7137 . osc, To,",,' ......., OSC. OSC.3 . Set VN' '" 1.000V OSC) COMMON REF LO C REF C REF COMMON lMiI D'0....;::7•• ' ::-4~---'l'-'O=.O1"".'-'....--_ _--o'N I.Z PO.,lIo'F v- 240Idl IN 0.47"F 1.eMn BUFF INT G, C, v· A --.O.Ol,.F "", INT ...." 1M!! IHHI INLO '1OIdl BUFF e-- REF HI 'Oldl C REF C REF / SOp. TEST RIFLO INLO '1OIdl ! au', INT y. G, .c, '" Go GND 21 AF026001 Figure 17: AC to DC Converter with 7137 A052 "Tips for Using Single-Chip 3V2-Digit AID Converters," by Dan Watson. APPLICATION NOTES A016 "Selecting AID converters," by David Fullagar. A017 "The Integrating AID Converter," by Lee Evans. A018 "Do's and Dont's of Applying AID Converters," by Peter Bradshaw and Skip Osgood. A019 "4V2-Digit Panel Meter Demonstratorl Instrumentation Boards," by Michael Dufort. A023 "Low Cost Digital Panel Meter Designs," by David Fullagar and Michael Dufort. A032 "Understanding the Auto-Zero and Common-Mode Behavior of the ICL71061719 Family," by Peter Bradshaw. A046 "Building a Battery-Operated Auto Ranging DVM with the ICL7106," by Larry Goff. A047 "Games People Play with Intersil's AID Converters" edited by Peter Bradshaw. ICL7137 EVALUATION KITS After purchasing a sample of the 7137, the majority of users will want to build a simple voltmeter. The parts can then be evaluated against the data sheet specifications, and tried out in the intended application. To facilitate evaluation of this unique circuit, Intersil is offering Ii kit which contains all the necessary components to build a 3V2-digit panel meter. With the ICL7137EVIKit, an engineer or technician can have the system "up and running" in about half an hour. The kit contains a circuit board, LED display, passive components, and miscellaneous hardware. . 6-'150 Note: All typical values have been guaranteed by characterization and are not tested. ICL8018A/8019A/8020A 4-Bit Expandable Current-Switch GENERAL DESCRIPTION FEATURES The Intersil ICL8018A family are high speed precIsion current switches for use in current summing digital-toanalog converters. They consist of four logically controlled current switches and a reference device on a single monolithic silicon chip. The reference transistor, combined with precision resistors and an external source, determines the magnitude of the currents to be summed. By weighting the currents in proportion to the binary bit which controls them, the total output current will be proportional to the binary number represented by the input logic levels. The performance and economy of this family make them ideal for use in digital-to-analog converters for industrial process control and instrumentation systems. • • • • • TTL Compatible 12 Bit Accuracy 40ns, Switching Speed Wide Power Supply Range Low Temperature Coefficient APPLICATIONS: • • • • • DI A and AID Converters Digital Threshold Control Programmable Voltage Source Meter Drive X-V Plotters ORDERING INFORMATION ACCURACY MILITARY TEMP RANGE CERDIP COMMERCIAL TEMP RANGE PLASTIC DIP Individual Devices .01% 0.1% 1.0% ICL8018AMJD ICL8019AMJD ICL8020AMJD ICL8018ACPD ICLB019ACPD ICLB020ACPD Matched Sets· .01% 0.1% 1.0% ICL8018AMXJD ICL8019AMXJD ICL8020AMXJD ICL8018ACXPD ICL8019ACXPD ICL8020ACXPD °NOTE: Units ordered in equal quantities will be matched such that the VSE'S of the 8019 will be within ±10mV of the 8018 compensating transistor, and the VSE'S of the 8020 will be w~hin ± 50mV. The ICL8018·X matched sets consist of one 8018, one 8019, and one 8020. The 8019-X contains one 8019 and one 8020, while the 8020-X contains two 8020's. Units shipped as matched sets will be marked with a unique set number. . LOGIC INPUTS I BITe 5 BIT 3 e BIT 2 3 BIT 1 2 v+ D12 r' v+ LOGIC INPUTS REFERENCE TRANSISTOR '-} BIT2 BIT3 1 BIT 4 1 COMPENSATION{E 6 TRANSISTOR C • 14 V- BIT2 TO PRECISION 11 BIT 3 RESISTORS BIT4 9 BASE LINE • OLITPUT loUT BASE OUTLINE DWGS JD,PD COO13601 EMITTER \ 10 BITe ... 11 BIT a . 12 BIT 2 - 13 BIT 1, TO PRECISION RESISTORS 4CIII 10k 80005301 Figure 1: Functional Diagram Figure 2: Pin Configuration 6-151 Note: All typical values have been guaranteed by characterization and are not tested. 302200-002 ta ~ IC.L8018A/8019A/8020A "i ... ABSOLUTE MAXIMUM RATINGS = i -= ... a Supply Voltage ................................................ ±20V Logie Input Voltage ................................. -2V to V+ VSASELINE .....................................•...... V- to +SV Output Voltage ........................... VSASELINE to + 20V Storage Temperature ...................... -6S'C to + 1S0'C Operating Temperature ICL8018AM ICL8019/20AM ..................... -SS'C to + 12SoC ICL8018/19/20AC ...................... O·C to +70'C Lead Temperature (Soldering, 10sec) .........•....... 300°C Stresses above those listed under Absolute M~imum Ratings may cause permanent dal)'lage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. ELECTRICAL CHARACTERISTICS (4.SV::; V+ ::; 20V, V- = -1SV, TA - 25°C, Voltage PARAMETER Absolute Error ICLB01BA ICLB019A ICLB020A TEST CONDITIONS MIN i @ pin 6 = -SV) I TYP VINHI = 5.0V VINLO= O.OV MAX UNIT ±.01 ±0.1 ±1 % Error Temperature Coefficient ICLB01BA ICLB019A ICLB020A ±2 ±2 ±2 Settling Time To ±1/2 LSB, RL * lkn B BIT 12 BIT 100 200 ns Switching Time To Turn On LSB 40 ns 1.0 0.5 0.25 0.125 mA Output Current (Nominal) BIT 1 (MSB) BIT 2 BIT 3 BIT 4 (LSB) Zero Oulput Current Input Coding-Complementary Binary (See Truth Table) Logic Input Voltage "0" (Swijch ON) "1" (Switch OFF) Logic Input Current "0" "1" (into device) 10 VIN = 5.0V Outpu1 Voltage Range VBASELINE + 1V ~IOUT ±5 ±25 ±50 ppml"C 50 nA +10 V O.B V -2 0.1 mA p.A < 400nA 2.0 -1.0 0.01 VIN -OV VIN= 5V Power Supply Reiection V+ V- .005 .0005 Supply Voltage Range V+ V- 4.5 -10 %IV 5 -15 20 -20 V 7 1 10 3 mA surflY Current (Vsupp - ±20V) 1- 6-152 Note: All typical values have been guaranteed by characterization and are not tested. n ICL8018A/8019A/8020A BASIC 01 A THEORY limiting value is called full scale output. The maximum output is always less than the full scale output by one least significant bit, LSB. For a twelve bit system (resolution 1 part in 4096) with a full scale output of 10.0 volts the maximum output would be 4095/4096 x 10V. Since the numbers are extremely close for high resolution systems, the terms are often used interchangeably. The majority of digital to analog converters contain the elements shown in Figure 3. The heart of the 01 A converter is the logic controlled switching network, whose output is an analog current or voltage proportional to the digital number on the logic inputs. The magnitude of the analog output is determined by the reference supply and the array of precision resistors, see Figure 4. If the switching network has a current output, often a transconductance amplifier is used to provide a voltage output. The accuracy of a 01 A converter is generally taken to mean the largest error of any output level from its nominal value. The accuracy or absolute error is often expressed as a percentage· of the full scale output. Linearity relates the maximum error in terms of the deviation from the best straight line drawn through all the possible output levels. Linearity is related to accuracy by the scale factor and output offset. If the scale factor is exactly the nominal value and offset is adjusted to zero, then accuracy and linearity are identical. Linearity is usually specified as being within ±1/2 LSB of the best straight line. LOGIC INPUTS REFERENCE SWITCHING NETWORK Another desirable property of 01 A converter is that it be monotonic. This simply implies that each successive output level is greater than the preceding one. A possible worst case condition would be when the output changes from most significant bit (MSB) OFF, all other bits ON to the next level which has the MSB ON and all other bits OFF, e.g., 10000 . . . to 01111. RESISTOR ARRAY lD00630r Figure 3: Elements of a DI A Converter In applications where a quad current switch drives a transconductance amplifier (current to voltage converter), transient response is almost exclusively determined by the output amplifier itself. Where the quad output current drives a resistor to ground, switching time and settling time are useful parameters. DEFINITION OF TERMS The resolution of a 01 A converter refers to the number of logic inputs used to control the analog output. For example, a 01 A converter using two quad current sources wOl.lld be an S bit converter. If three quads were used, a 12 bit converter would be formed. Resolution is often stated in terms of one part in, e.g., 256 since the number of controlling bits is related to total number of identifiable levels by the power of 2. The four bit quad has sixteen different levels (see Table 1) each output corresponding to a particular logic input word. Switching time is the familiar 10% to 90% rise time type of measurement. Low capacitance scope probes must be used to avoid masking the high speeds that current source switching affords. The settling time is the elapsed time between the application of a fast input pulse and the time at which the output voltage has settled to or approached its final value within a specified limit of accuracy. This limit of accuracy should be commensurate with the resolution of the OAC to be used. Table 1: ICL8018/19/20 Truth Table LOGIC INPUT NOMINAL OUTPUT CURRENT (rnA) o 0 0 0 000 1 001 0 001 1 o 10 0 o 10 1 o 1 10 o 1 1 1 1 000 1 00 1 101 0 101 1 1 10 0 1 10 1 1110 1 1 1 1 1.B75 1.750 1.625 1.500 1.375 1.250 1.125 1.000 0.B25 0.750 0.625 0.500 0.375 0.250 0.125 0.000 Typically, the settling time specification describes how soon after an input pulse the output can be relied upon as accurate to within ± 1/2 LSB of an N bit converter. Since the SOlSA family has been designed with all the collectors of the current switching transistors tied together, the output capacitance is constant. The transient response is, therefore, a simple exponential relationship, and from this the settling time can be calculated and related to the measured rise time as shown in Table 2. Table 2: Settling Time vs. Rise Time Resistor Load ±1I2 LSB BITS OF RESOLUTION ERROR % FULL SCALE B 10 12 Note that maximum output of the quad switch is 1 + 11 2 + 1/4 + liS = 1-7/S = 1.S75 mAo If this series of bits were continued as 1/16 + 1/32 + 1/64 . . . . . 1/2(n -1), the maximum output limit would approach 2.0 mA. This .2% .05% .01% NUMBER OF NUMBER OF TIME RISE TIMES CONSTANTS 6.2 7.6 9.2 Rise Time (10% - 90%) = 2.2 RL Ceff 6-153 Note: All typical values have been guaranteed by characterization and are not tested. 2.S 3.4 4.2 ! CXI ~ m 0 ca ~ CD S e g i....... ..i= = ICI..8018A/8019A/8020A and the precision resistors at the emitter that determine the exact value of switched output current. The emitter resistor of 07 is equal.to that of as, therefore, 07' s collector current will be IREF or 125tJA. as has 40kn in the emitter so that its collector. current will .be twice IREF or 250tJA. In the same way, the 20kn and 10kn in the emitters of 09 and 010 contribute O.5mA and 1mA to the total collector current. DETAILED DESCRIPTION An example ofa practical circuit for the ICL8018A quad current switch is shown .in Figure 4. The circuit can be analyzed in two sections; the first generates very accurate ....... currents and the second causes these currents to be switched according to. input logic signals. A reference current of 125tJA is generated by a stable reference supply and a precision resistor. An op-amp with low offset voltage and low input bias current, such as the ICL8008, is used in conjunction with the internal reference. transistor, as, to force the voltage on the common base line, so that the collector current of as is equal to the reference current. The will be the sum of the reference emitter current of current and a small base current causing a drop of slightly greater than 10 volts across the 80.kn resistor in the emitter of as. Since this resistor is connected to -15V; this puts the emitter of at nearly -5V a(1d the common base line at one VBE more positive at -4.35V typically. Also connected to the common base line are the switched current source transistors 07 through 010. The emitters of these transistors are also connected through weighted precision resistors to -15V and their collector currents summed at pin 8. Since all these transistors, as through 010, are designed to have equal emitter-base voltages, it follows that all the emitter resistors will have equal voltage drops across them. It is this constant voltage The reference transistor and four current switching transistors are designed for equal emitter current density by making the number of emitters proportional to the current switched. a The remaining circuitry provides switching Signals from the logic inputs. In the switch ON mode, zener diodes 05 through OS, connected to the emitter of each current switch. transistor 07 thru 010, are reverse biased allowing the transistors to operate, produCing precision currents summed in the collectors. The transistors are turned off by raising the voltage on the zeners high enough to turn on the zeners and raise the emitters of the switching transistor. This reverse biases the emitter base diode thereby shutting off that transistor's collector, current. aS aS The analog output current can be used to drive one load directly, (1 kn to ground for FS = 1.875V for example) or can be used to drive a transconductance amplifier to give larger output voltages. LOGIC INPUTS i lIlT 4 S r-- VIlE. lis LIRE. 7 BIT 3 " lIlT 2 , BIT 1 y+ 432 "':"""'- --- -- ------ I I I I I I I I I I I I VOUT INl14 RS 10k 08015701 Figure 4: Typical Circuit 6-154 Note: All typical values have been guaranteed by characterization and are not tested. ICL8018A/8019A/8020A ANALOG VOLTAGE OUT TO~AL 1 TC0237QI Figure 5: Expanding the Quad Switch EXPANDING THE QUAD SWITCH While there are few requirements for only 4 bit D to A converters, the 8018A is readily expanded to 8 and 12 bits with the addition of other quads and resistor dividers as shown in Figure 5. BIT 4 5 81T3 4 8112 3 8.Tl 2 , y' D" To maintain the progression of binary weighted bit currents, the current output of the first quad drives the input of the transconductance amplifier directly, while a resistor divider network divides the output current of the second quad by 16 and the output current of the third by 256. e.g., ITotal = 1 x (1 + "1,12 + 1/4 + Ya) + 1,116(1 + "1,12 + 1t4 + Ya) + 1,125611 + 1,12 + "1,14 + 1,18) = 1 + Y2 + "1,14 + Ya + "1,116 + Y32 + Ys4 + 1,1128 + "1,1256 + Ys12 + 1,11024 + "1,12048. r-i-r+,-+.,-+--+--if--O·IOUT L-O-£-=.p!!....jt-!:!!....I-f-~t-F.!!!!+---1- - - -TO OTHER QUADS Note that each current switch is operating at the same high' speed current levels so that standard 10k, 20k, 40k and 80kn resistor networks can be used. Another advantage of this technique is that since the current outputs of the second and third quad are attenuated, so are the errors they contribute. This allows the use of less accurate switches and resistor networks in these positions; hence, the three accuracy grades of .01%, 0.1%, and 1% for the 801SA, 8019A and 8020A, respectively. It should be noted that only the reference transistor on the most significant quad is required to set up the voltage on the common base line joining the three sets of switching transistors (Pin 9). 10k 'Ok OS015801 Figure 6: Simple Zener Reference The zener current will be typically 1 mA per quad. The compensation transistor 06 'is connected as a diode in series with the external zener. The VSE of this transistor will approximately match the VSE'S of the current switching transistors, thereby forcing the external zener voltage across each of the external resistors. The temperature coefficient of the external zener will dominate the temperature dependence of this scheme, however using a tempera, ture compensated zener minimizes this problem. Since 06 is operating at a higher current density than the other switching transistors, the temperature matching of VSE'S is not op,timum, but should be adequate for a simple 8 or 10 bit converter. GENERATING REFERENCE CURRENTSZENER REFERENCE As mentioned above, the 8018A switches currents determined by a constant voltage across the external precision resistors in the emitter of each switch. There are several ways of generating this constant voltage. One of the simplest is shown in Figure 6. Here an external zener diode is driven by the same current source line used to bias internal Zener D11. 6-155 Note: All typical values have been guaranteed by characterizatiQn and are not tested. .D~DIL c0 ICL8018A/8019A/8020A S CD ..... .,TO C • ...0Gt BIT 3 81T2 3 81T1 • CD ..... V· • D.' C ... CD 0 CD ..I S:! 8 lOUT --TO OTHER QUADS 200(1 'Ok 2Dk ... -15Y 05015901 Figure 7: PNP Reference The 8018A series is tested for accuracy with 10V reference voltage across the precision resistors, implying use of a ,10 volt zener. Using a different external zener voltage will only slightly degrade accuracy if the zener voltage is above 5 or 6 volts. When using other than 10 volt reference; the effects on logic thresholds should also be noted (see logic levels below). Full scale adjustment can be made at the output amplifier. The op-amp feedback loop using the internal reference transistor will maintain proper currents in spite of VSE drift, beta drift, resistor drift and changes in V-. Using this circuit, temperature drifts of 2 ppmfOC are typical. A discrete diode connected as shown will keep 06 from saturating and prevent latch up if V- is disconnected. In any reference scheme, it is advisable to capacitively decouple the common base line to minimize transient effects. A capacitor, .001 J-lF to .1 J-lF from Pin 9 to analog ground is usually sufficient. PNP REFERENCE Another simple reference scheme is shown in Figure 7. Here an external PNP transistor is used to buffer a resistor divider. In this case, the -15 volt supply is used as a reference. Holding the V- supply constant is not too difficult since the 8018A is essentially a constant current load. In this scheme, the internal compensation transistor is not necessary, since the VSE matching is provided by the emitter-base junction of the external transistor. A small pot in series with the divider facilitates full scale output adjustment. A capacitor from base to collector of the external PNP will lower output impedance and minimize transient effects. IMPROVED ACCURACY As a final note on the subject of setting up reference levels, it should be pointed out that the largest contributor of error is the mismatch of VSE'S of the current switching transistors. That is, if all the VSE'S were identical, then all precision resistors would have exactly the same reference voltage across them. A one millivolt mismatch compared with ten volt reference across, the precision resistors will cause a .01 % error. While decreasing the reference voltage will decrease the accuracy, the voltage can be increased to achieve better than .01 °/~ accuracies. The voltage across the emitter resistors can b,e doubled or tripled with a proportional increase in resistor values resulting in improved absolute accuracy as well as improved temperature drift performance. This technique has been used successfully to implement up to 16 bit Of A converters. ' FULL COMPENSATION REFERENCE For high accuracy, low drift applications, the reference scheme of Figure 4, offers excellent performance. In this circuit, a high gain op-amp compares two currents.,The first is a reference current generated in RS by the temperature compensated zener and the virtual ground at the noninverting op-amp input. The second is the collector current of the reference transistor 06, provided on the quad switch. The output of the op-amp drives the base of 06 keeping its collector current exactly equal to' the reference current. 'Since the switching transistor's emitter current densities are equal and since the preciSion resistors are proportional, all of the switched collector currents will have the proper value. For further information see the following Applications Bulletins. A016 "Selecting AID Converters" by Dave Fullagar. A018 "Do's and Don'ts of Applying AID Converters" by Peter Bradshaw and Skip Osgood. A020 "A Cookbook Approach to High Speed Data Acquisition and Microprocessor Interfacing"by Ed Sliger. 6-156 Note: All typical values have been guaranteed by characterization and are not tested. .U~UIl.; ICL80521lCL 7104 and ICL8068/ICL7104 -... N 14/16-Bit IlP-Compatible 2-Chip AID Converter n r ... GENERAL DESCRIPTION FEATURES The ICl7104, combined with the ICl8052 or ICl8068, forms a member of Intersil's high performance AID converter family. The ICl7104-16, performs the analog switching and digital function for a 16-bit binary AID converter, with full three-state output, UART handshake capability, and other outputs for easy interfacing. The ICl7014-14 is a 14-bit version. The analog section, as with all Intersil's integrating converters, provides fully precise Auto-Zero, Auto-Polarity (including :to null indication), single reference operation, very high input impedance, true input integration over a constant period for maximum EMI rejection, fully ratiometric operation, over-range indication, and a medium quality built-in reference. The chip pair al.so offers optional input buffer gain for high sensitivity applications, a built-in clock oscillator, and output signals for providing an external Auto-Zero capability in preconditioning circuitry, synchronizing external multiplexers, etc. • • • • • • • • • • • • 2 16/14 Bit Binary Three-State Latched Outputs Plus Polarity and Overrange Ideally Suited for Interface to UARTs and Microprocessors Conversion On Demand or Continuously Guaranteed Zero Reading for Zero Volts Input True Polarity at Zero Count for Precise Null Detection Single Reference Voltage for True Ratiometric Operation Onboard Clock and Reference AutO-Zero; Auto-Polarity Accuracy Guaranteed to 1 Count All Outputs TTL Compatible ±4V Analog Input Range Status Signal Available tor External Sync, AIZ in Preamp, etc ORDERING INFORMATION PART NUMBER TEMP. RANGE PACKAGE ICLB052CPD O·C to +70·C 14-Pin Plastic DIP ICLB052CDD O·C 10 +70·C 14-Pin Ceramic DIP ICLB052ACPD O·C 10 +70·C 14-Pin Plaslic DIP ICLB052ACDD O·C to +70·C 14-Pin Ceramic DIP ICLB06BCJD O·C to +70·C 14-Pin CERDIP ICLB06BACJD O·C to +70·C 14·Pin CERDIP +11V PART NUMBER TEMP. RANGE PACKAGE ICL7104-14CJL O·C to -70·C 40-Pin CERDIP ICL7104-14CPL O·C to +70·C 40-Pin Plastic DIP ICL7104-14CDL O·C to +70·C 40-Pin Ceramic DIP ICL7104-16CJL O·C to +70·C 4O-Pin CERDIP ICL7104-16CPL O·C to +70·C 40·Pin Plastic DIP ICL7104-16CDL O·C to +70·C 4O-Pin Ceramic DIP -1IV rnl t. • I-:== ~~~~~~~~~~~~--, 'f I· .. , .... I 14 .... 12. AIIIi MODE 80005401 Figure 1: ICL8052A (8068A)/ICL7104 16/14 Bit AID Converter Functional Diagram 6-157 Note: All typical values have been guaranteed by characterization and are not tested. g ICL8052/1CL7,104 . d ABSOLUTE MAxIMUM RATINGS ..... ~ :::. (\I 1ft a - ; ..... , ICL7104 V+ Supply (GND to V+) '. ................ , ............. , .. 12V V ++ to V- ................................... , ................ 32V Positive Supply Voltage (GND to V ++) ............... 17V Negative Supply Voltage (GND to V-) ................. 17V Analog Input Voltage (Pins 32 -39) (4) ...... V + + to VDigital Input Voltage ' (Pins 2-30) (5) ........ (GND-0.3V) to (V+ +0.3V) Power Dissipation (1) All Devices ""."""""." .. 500mW Storage Temperature ...................... -65°C to + 150°C Operating Temperature ...... , ... ,., ........... O°C to + 70°C Lead Temperature (Soldering, 10sec) ., .......... ,., .. 300°C ICL8052, 8068 Supply Voltage ................................................ ±18V Differential Input Voltage (8068) ......................... ±30V (8052) .......................... ±6V Input Voltage (2) ........ , ........... , ........................ ±1.5V Output Short Circuit ,Duration, All Outputs (3) ... , ...... " .. , ................... lndefinite Notell: 1: Dissipation rating assumes device is mounted with all leads welded or soldered to printed circuit board in ambient temperature below + 70·C. For higher temperatures, derate 1OmW I·C, 2: For supply voltages less than ± 15V, the absolute maximum input voltage is equallo the supply voltage, 3: Short circuit may be to ground or either supply, Rating applies to + 70·C ambient temperature, 4: Input voltages may exceed the supply voltages provided the input current is limited to ± 1001tA, 5: Connecting any digital inputs or outputs to voltages greater than V + or less than GND may cause destructive device latchup. For this reason it is recommended that no inputs from sources not on the same power supply be applied to the ICL7104 before :its power supply is established. Stresses above those listed under" Absolute· Maximum Ratings" may cause permanent damage to the devices, This is a stress rating only and ·functional operation of ,the devices at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for el(lended periods may affect device reliability, INTEGRATOR .. OUT COMP OUT V•• DIGGND STH POL BUFFER (-+iN) REF CAP O.R. BIT 18 BIT 15 BIT 14 BIT 13 BIT 12 BIT 11 BIT 10 BITe BIT 8 BITT BITS BITS BIT 4 BIT 3 BIT 2 INTEGRATOR (+IN) REF PASS 11 :~1~GRATOR BUFFER (-IN) REF OUT V•• DIGGND STH BUFFER OUT REF SUPPLY !,~-- .. ~ POL [ •,. ,." " "" ICL7104 -16 " 17 ,t to . O.R. BIT 14 BIT 13 BIT 12 BIT 11 BIT 10 BIT 9 N.C. N.C. BIT a BIT 7 BITS BITS BIT 4 BIT 3 ·BIT2 VCOMPIN REFCAP 1 VREF AZ ANALOG·GND REFCAP2 BUFIN ANALOG liP : : ··,• • • .....• .." ~ .. :... ~ .. f 1:1 "I!ill,. ·1 If ICL7104 ,. -14 " 12 !" " ".. ~ V+ eE7[I'l SEN Rlii MODE CLOCK· 2 CLOCK 1 17 24 ",t 23 It 21 NOTE LiEN BIT 1 .. = c0013711 COO13811 (OUTLINE DWGS DO, JD, PO) (OUTLINE DWGS DL, JL, PL) Figure 2: Pin Configurations ICL7104 ELECTRICAL CHARACTERISTICS SYMBOL (V+ =+5V, V++ = +15V, TEST CONDITIONS CHARACTERISTICS v- MIN = -15V, TA=25°C) TYP MAX UNIT liN Clock Input CLOCK 1 Vin'" +5V to OV ±2 ±7 ±30 'iN Comparator lIP CaMP IN (Note 1) Vin= OV to +5V -10 ±0,001 +10 I'H I,L Inputs MODE with Pulldown I'H I,L V,H Inputs SEN, RtH with Pullups LBEN, MBEN, HBEN, .CE7[O Input High Voltage All Digital Inputs I (Note 2) Y,N = +5V +1 -10 +5 ±0.01 +30· Vin= OV Vin= +5V -10 ±O,Ot +10 Yin =OV -30 -5 -1 ItA ItA ItA ItA ItA ItA 2,5 2.0 - V &-158 Note: All typical· values have been guaranteed by characterization and are not tested. +10 ICL8052/ICL 7104 ICL7104 ELECTRICAL CHARACTERISTICS (CONT.) SYMBOL TEST CONDITIONS CHARACTERISTICS VIL Inpul Low Voltage f-:V.:.O::.:;L=----_--\ Digital VOH Outputs f-:V.:.O :::.H'-----\ Three-Stated On Digital Outputs Three-Stated Off MIN All Digital Inputs LBEN MBEN (IS-only) HBEN CEILD BIT n, POL, OR 1(Note 3) IOL = I.SmA I 4.5 V 2.4 3.S V -10 ±.001 +10 0.3 .4 IOH = -10llA BIT n, POL, OR 05Vou t:5V+ VOL Non-Three State I-V....:O:..:H=------t Digital STTS IOL = 3.2mA I-V....:O:..:L=----_-t Output VOH CLOCK 2 IOL = 3201lA CLOCK 3 (-14 ONLY) o.S V 4.S V 0.27 IOL = I.SmA 2.4 VOH .4 2Sk Switch 1 ROS(on) Switches 2,3 4k 20k Switches 4,S,S,7,8,9 2k 10k Switch Leakage 15 1+ Clock Freq. (Note 4) DC pA 200 400 200 SOO kHz + SV Supply Current All outputs high impedance Freq. = 200kHz 1++ + ISV Supply Current Freq. = 200kHz .3 1.0 1- - 15V Supply Current Freq. = 200kHz 25 200 I-~-:-+---t Supply Voltage Logic Supply Note 5 4.0 +11.0 V I-V-~-----\ Positive Supply +10.0 +16.0 Negative Supply -16.0 -10.0 V V NOTES: 1. 2. 3. 4. S. Supply Currents V V 3.S ROS(on) f-R....:O;:.:S",(o::;n:<..)---\ Switch IO(of!) Clock V V 3.3 2.4 Range mA This spec applies when not in Auto-Zero phase. Apply only when these pins are inputs, I.e., the mode pin is low, and the 7104 is not in handshake mode. Apply only when these pins are outputs, i.e., the mode pin is high or the 7104 is in handshake mode. Clock circuit shown in Figs. 15 and 16. V + must not be more positive than V + + . ICL8068 ELECTRICAL CHARACTERISTICS SYMBOL CHARACTERISTICS (VSUPPLY = ±15V unless otherwise specified) TEST CONDITIONS 8068 8068A UNIT MIN TYP MAX MIN TYP MAX EACH OPERATIONAL AMPLIFIER vas Input Offset Voltage VCM=OV 20 65 20 65 mV liN CMRR Input Current (either input) (Note 1) VCM = OV 175 250 80 150 pA Common-Mode Rejection Ratio VCM - ±10V Non-Linear Component of CommonMode Rejection Ratio (Note 2) VCM=±2V Av Large Signal Voltage Gain RL = 50kn 70 90 70 110 90 dB 110 20,000 dB 20,000 VIV SR Slew Rate S 6 GBW Unity Gain Bandwidth 2 2 ISC Output Short-Circuit Current 5 10 5 V/jJ.s MHz 10 mA COMPARATOR AMPLIFIER AVOL Small-signal Voltage Gain +VO Positive Output Voltage Swing RL = 30kn +12 4000 +13 +12 +13 VIV V -yo Negative Output Voltage Swing -2.0 -2.6 -2.0 -2.6 V 1.60 1.75 VOLTAGE REFERENCE 1.75 1.90 V Vo Output Voltage RO Output Resistance 5 5 ohms TC Temperature· Coefficient 50 40 ppm/DC 1.5 6-159 Note: All typical values have been guaranteed by characterization and are not tested. 2.0 ~ 7104 ... ICL80521lCL . a ICL8068 ELECTRICAL CHARACTERISTI~S .~ ~ a SYMBOL , CHARACTERISTICS VSUPPlY Supply Voltage Range ISUPPlY Supply Current Total (CONT.) TEST CONDITIONS 8068A 8068 UNIT MIN TYP MAX MIN ±16 ±10 ±10 TYP 14 MAX ±16 V 14 mA 8 ICL8052 ELECTRICAL CHARACTERISTICS (VSUPPLY = ±15V unless otherwise specified) SYMBOL TEST CONDITIONS CHARACTERISTICS 8068 8068A UNIT MIN TYP MAX MIN TYP MAX EACH OPERATIONAL AMPLIFIER VOS Input Offset Voltage VCM=OV 20 75 20 75 mV liN CMRR Input Current (either input) (Note 1) VCM=OV 5 50 2 10 pA Common-Mode Rejection Ratio VCM - ±10V Non-Linear Component of CommonMode Rejection Ratio (Note 2) VCM=±2V Large Signal Voltage Gain Rl = 50kn AV SR 70 70 90 110 20,000 90 dB 110 dB 6 V/p.s 20,000 Slew Rate VIV 6 GBW Unity Gain Bandwidth 1 ISC Output Short-Circuit Current 20 MHz 1 100 20 mA 100 COMPARATOR AMPLIFIER AVOl Small-signal Voltage Gain +VO Positive Output Voltage Swing Rl =30kn +12 4000 +13 +12 +13 VIV V -yo Negative Output Voltage Swing -2.0 -2.6 -2.0 -2.6 V 1.60 1.75 VOLTAGE REFERENCE Vo Output Voltage RO TC Output Resistance VSUPPlY Supply Voltage Range 1.5 1.75 2.0 5 Temperature Coefficient 1.90 V 5 50 ohms 40 ±10 ±16 ppm/'C ±16 ±10, V Supply Current Total 12 6 12 6 mA ISUPPlY NOTES: 1. The Input bias currents are lunctlon leakage currents which approximately double for every 10'C Increase In the lunctlon temperature, TJ. Due to limited production test time, the input bias currents are measured with junctions at ambient temperature. In normal operation the junction temperature rises above the ambient temperature as a result of internal power dissipation, Pd. TJ = TA + ROJAPd where ROJA is the thermal resistance from junction to ambient. A heat sink can be used to reduce temperature rise. ' 2, This is the only component that causes error in dual-slope converter. SYSTEM ELECTRICAL CHARACTERISTICS: ICL806817104 (V++ = +15V, v+ = +5V, v- = -15V, Clock Frequency = 200kHz) 8068A17104·14 CHARACTERISTICS 8068A17104·16 TEST CONDITIONS UNIT MIN TYP MAX MIN TYP MAX -0.0000 ±O.OOOO +0.0000 -0.0000 -0.0000 +0.0000 Hexadecimal Reading lFFF 2000 2001 7FFF 8000 8001 Hexadecimal Reading 1 0.5 1 Zero Input Reading Vin= O,OV Full Scale = 4.000V Ratiometric Reading (1) Vin Linearity over ± Full Scale (error of reading from best straight line) -4V:S Vin:S +4V 0.5 Differential· Linearity (difference between worst case step of adjacent counts and ideal step) -4V:S Vin:S +4V .01 Rollover error (Difference in reading for equal positive & negative voltage near full scale) -Vin= +Vin-::::=.4V 0.5 Noise (P-P value not exceeded 95% of time) Vin= OV Full scale = 4.OO0V Leakage Current at Input (2) Vin=OV Zero Reading Drift Vin=OV O'C:S TA:S 70'C = VRef. Full Scale = 4.000V .01 1 0.5 100 165 0.5 2 2 6-160 Note: All typical values have been guaranteed by characterization and are .not tested. LSB LSB 1 LSB 100 165 pA 0.5 2 p.V 2 p.V/·C ICL8052/ICL7104 SYSTEM ELECTRICAL CHARACTERISTICS: ICL806817104 (CONT.) 8068A17104-16 8068A17104·14 CHARACTERISTICS TEST CONDITIONS UNIT MIN Yin ~ +4V Scale Factor Temperature (3) Coefficient 0" TA" 50'C (ext. ref. OppmrC TYP MAX 2 5 MIN TYP MAX 2 5 ppmrC SYSTEM ELECTRICAL CHARACTERISTICS: ICL805217104 (V++ = +15V, v+ = +5V, v- = -15V, Clock Frequency = 200kHz) 8052A17104-14 CHARACTERISTICS 8052A17104·16 UNIT TEST CONDITIONS MIN TYP MAX MIN TYP MAX -0.0000 to.OOOO +0.0000 -0.0000 to.OOOO +0.0000 Hexadecimal Reading lFFF 2000 2001 7FFF 8000 8001 Hexadecimal Reading 1 0.5 1 Zero Input Reading Yin ~ O.OV Full Scale Ratiometric Reading (3) Vin Linearity over ± Full Scale (error of reading from best straight line) -4V" Vin" +4V 0.5 Differential Linearity (difference between worst case step of adjacent counts and ideal step) -4V" Vin" +4V .01 Rollover error (Difference in reading for equal positive & negative voltage near full scale) - Yin ~ 4.000V = VRef. Full Scale ~ 4.000V ~ 0.5 + Vin"'4V .01 1 0.5 LSB LSB 1 LSB Noise (P-P value not exceeded 95% of time) Vin~OV Leakage Current at Input (2) Yin = OV 20 30 20 30 pA Zero Reading Drift Yin = OV 0'" TA" 70'C 0.5 2 0.5 2 /lVrC Scale Factor Temperature Coefficient Yin = +4V 0" TA" 70'C (ext. ref. OppmrC 2 5 2 5 ppm/'C Full scale ~ 4.000V 30 /lV 30 NOTES: 1. Tested with low dielectric absorption integrating capacitor. 2. the input bias currents are junction leakage currents which approximately double for every 10'C increase in the junction temperature, TJ. Due to limited production test time, the input bias currents are measured with junctions at ambient temperature. In normal operation the junction temperature rises above the ambient temperature as a result of internal power dissipation, Pd. TJ ~ T A + ROJAPd where ROJA is the thermal resistance from junction to ambient. A heat sink can be used to reduce temperature rise. 3. The temperature range can be extended to 70'C and beyond if the Auto-Zero and Reference capacitors are increased to absorb the high temperature leakage of the 8068. See note 2 above. CONVEIIT CONTROL - _AI 7104 -1. !-:t='orCHtPSELICTI ' - - - 4 -......._ - ' - - _ CHIP IELaCT 1 AF027101 Figure 3: Full 18 Bit Three State Output 6-161 Note: All typical values have been guaranteed by characterization and are not tested. I ICL8052/ICL 7104 d :::. (II 10 o a - -... 011 011 POL IOSW IOSW 7104 POL 7104 ... COfITIIOL COfITIIOL 011 POL -. IOSW 7104 o.ia LCO07201 Figure 4: Various Combinations of Byte Disables AC CHARACTERISTICS (V++ = +15V, v+ = +5V, v- = -15V) CElLO AS INPUT iII!fj AS INPUT IIlIER AS INPUT [DR AS INPUT HIGH BYTE DATA ----------------------·~~-t-~~ ~=~ BYTE ---------------------------<=)-------.---t.1~.i!i~)! LOW BYTE ENABLE - - - - - - - = HIGH IMPEDANCE WF013301 Figure 5: Direct Mode Timing Diagram 6-162 Note: All typical values have been guaranteed by characterization and are not tested. . ICL8052/ICL 7104 Table 1: Direct Mode Timing Requirements (Note: Not tested in production) SYMBOL DESCRIPTION MIN TYP tbea XBEN Min. Pulse Width 300 Ictab Data Access Time from XBEN 300 lethb Data Hold Time from XBEN 200 tcea CE/LD Min. Pulse Width 350 350 letae Data Access Time from CEI LD lethe Data Hold Time from CE/LD 280 Icwh CLOCK 1 High Time 1000 UNIT MAX ns Table 2: Handshake Timing Requirements NAME DESCRIPTION MIN TYP tmw MODE Pulse (minimum) 20 tsm t me MODE pin set·up time -150 MODE pin high to low Z CE/LD high delay 200 tmb MODE pin high to leel CLOCK 1 high to CE/LD low delay 700 teeh CLOCK 1 high to CE7iJ) high delay 600 X8E1ii low Z (high) delay UNIT MAX 200 lebl CLOCK 1 high to XBEN low delay 900 Icbh CLOCK 1 high to XBEN high delay 700 ledh CLOCK 1 high to data enabled delay 1100 ledl CLOCK 1 low to data disabled delay 1100 Iss Send ENable set·up time -350 lebz CLOCK 1 high to XBEN disabled delay 2000 leez CLOCK 1 high to CE/LD disabled delay lewh CLOCK 1 High Time ns 2000 1250 1000 H CLOCK 1 ( _ 25) ~ -- EITHER: OR: INTERNAL LATCH PULSE IF MODE "HI", INTERNAL MODE UART NOIIM-""""'-....L.-:--IJ SEN (EXTERNAL SIGNA~1 OJR.POL01·14 :--~~~~~:tr------~------- H"'::l::;'-'---..:.::....;;;;~---.-~--.;.;;..\. r.-':'l::-::r.::: . '- _ _ _ _ _-1,... _ _.......1 . .. ~ lIlTS '''' ..... __..... ~..........4 -..........~..........__. . . .i._~~ «::~D~A~TA!!V~AU~D~.~S~TA8~;~~ ~ ..........__.......... HAND8HAKEIIODETRIGGEREDBY__DR---14 BIT VERSION SHOWN THIIEE-sTATE _ 4 -.....4 - _ THREE-STATE W PULWP .... -1. HAS EXTRA (iiiEij) PHASE WF013411 Figure 6: Handshake Mode Timing Diagram 6-163 Note: All typical values have been guaranteed by characterization and are not tested, : ICL8052/ICL7104 ;:: g ...... I Table 3: Pin Descriptions PIN SYMBOL OPTION V(++) Positive Supply Voltage Nominally + 15V 2 GND Di~ital Ground .OV, ground return 3 STTS STaTuS output. HI during Integrate and Deintegrate until data is latched. LO when analog section is in Auto-Zero configuration. 4 POL POLarity. Three-state output. H I for positive input. 5 OR OverRange. Three-state output. 6 BIT 16 BIT 14 -16 -14 7 BIT 15 BIT 13 -16 -14 8 BIT 14 BIT 12 -16 -14 9 BIT 13 BIT 11 -16 -14 10 BIT 12 BIT 10 -16 -14 11 BIT 11 BIT 9 -16 -14 12 BIT 10 nc -16 -14 13 BIT 9 nc -16 -14 14 BIT 8 15 BIT 7 16 BIT 6 17 BIT 5 18 BIT 4 PIN DESCRIPTION 1 23 24 PIN OPTION DESCRIPTION MBEN SYMBOL -16 HBEN -14 Mid Byte §\jable. Activates BITS 9-16, see LBEN(pin 22) High Eiyte ENable. Activates BITS 9-14, POL, OR, see LBEN (pin 22) HBEN -16 CLOCK3 -14 SYMBOL DESCRIPTION Clock input. External clock or ocsillator. 25 CLOCK1 26 CLOCK2 27 MODE 28 RIH Run/Hoid: Input HI-conversion~ c?gtinously performed every 2 7(-16) or 2 (-14) clock pulses. Input LOconversion in progress completed, converter will stop in Auto-Zero 7 counts before input integrate. 29 SEN Send-ENable:, Input controls timing of byte transmission in handshake mode. HI indicates ·send'. 30 CElLO 'C:hip-E:nable/LoaD. With MODE (pin 27) LO, CElLO serves as a master output enable; when HI, the bit outputs and POL, OR are disabled. With MODE HI, pin serves as a Loal) strobe (-ve going) used in handshake mode. See Figures 12 & 13. 31 V(+) Positive Logic Supply Voltage. Nominally +5V. 32 'AN,IN ANalog INput. High side. 33 BUF IN BUFfer INput to analog chip (ICL8052 or ICL8068) (Most significant bit) Data Bits, Three-state outputs. See Table 4 for format of §\jables and bytes. HIGH = true High Byte ENable. Activates 'POL, OR, see LBEN (pin 22). RC oscillator pin. Can be used as clock output. Clock output. Crystal or RC oscillator. !!!QullO; Direct output mode where CElLO, HBEN, MBEN and LBEN act as inputs directly controlling byte outputs. If pulsed HI causes immediate entry into handshake mode (sOe Figure ~ , If HI, enables CEIL , HBEN, MB N, and LBEN as outputs. Handshake mode will be entered and data output as in Figures 12 & 13 at conversion completion. 19 BIT 3 20 BIT 2 34 REFCAP2· REFerenCe CAPacitor (negative side) 21 BIT 1 Least significant bit. 35 AN.GND. 22 LBEN Low Eiyte ENable. If not in handshake mode (see pin 27) when LO (with c::E/[5, pin 30) activates low-order byte outputs, BITS 1-6 When in handshake mode (see pin 27), serves as a low-byte flag output. See Figures 12, 13, 14. 36 A-Z Auto-Zero node. 37 VREF Voltage REFerence input (positive side). ANalog GrouND. Input low side and reference· low side. 36 REFCAP1 REFerence CAPacitor (positive side). 39 CaMP-IN COMParator .INput from 8052/8068 40 V(-) Negative Supply Voltage. Nominally -15V. 6'-164 Note: All typical values have been guaranteed by characterization and are not tested, .D~DIL ICL8052/ICL7104 n ... ! -e.. Table 4: Three-State Byte Formats and ENable Pins ~ 7104·16 i 7104·14 Figure 1 shows the functional block diagram of the operating system. For a detailed explanation, refer to Figure 7 below. o Q ZERO CROSSING F/F CL ......k - 4 -... VREF POL CL TC023811 Figure 7A: Phase I Auto-Zero AN liP D Q ZERO CROSSING F/F CL POL CL TC02391 I Figure 7B: Phase II Integrate Input for - 16 and 32,368 for - 14 clock periods per cycle (see Figure 9 conversion timing). Auto-Zero Phase I Figure 7A During Auto-Zero, the input of the buffer is shorted to analog ground thru switch 2, and switch 1 closes a loop around the integrator and comparator. The purpose of the loop is to charge the Auto-Zero capacitor until the integrator output no longer changes with time. Also, switches 4 and 9 recharge the reference capacitor to VREF. DETAILED DESCRIPTION Analog Section Figure 7 shows the equivalent Circuit of the Analog Section of both the ICL7104/8052 and the ICL7104/8068 in the 3 different phases of operation. If the Run/Hold pin is left open or tied to V + , the system will perform conversions at a rate determined by the clock frequency: 131,072 6-165 Nole: All typical values have been guaranteed by characterization and are not tested. '~ ICL8052/ICL7104 !:i sa ( 'II 1ft a D Q ZERO CROSSING 'F/F CL POL Figure 7C: Phase III TC024011 + Oeintegrate o Ci - Q ZERO CROSSING F/F 6 7 9a, CL CL + POL CREF CL TC024111 Figure 70: Phase III - Oeintegrate established in Phase I. The, time, or number of counts, required to do this is proportional to the input voltage. Since the Deintegrate phase can be twice as long as the Input integrate phase, the input voltage required to give a full scale reading = 2VREF. Input Integrate Phase II Figure 78 During input integrate the Auto-Zero loop is opened and the analog input is connected to the buffer input thru switch 3. (The reference capacitor is still being charged to VREF during this time.) If the input signal is zero, the buffer, integrator and comparator will see the same voltage that existed in the previous state (Auto-Zero). Thus the integrator output will no.tchange but will remain stationary during the entire Input Integrate cycle. If VIN is not equal to zero, an unbalanced condition exists compared to the Auto-Zero phase, and the integrator will generate a ramp whose slope is proportional to VIN. At the end of this phase, the sign of the ramp is latched into the polarity F/F. Note: Once a zero crossing is detected, the system automatically reverts to Auto-Zero phase for the leftover Deintegrate time (unless Run/Hold is manipulated" see RunlFiold Input in detailed description, digital section), Buffer Gain At the end of the auto-zero interval, the instantaneous noise voltage on the auto-zero capacitor is stored, and subtracts from the input voltage while adding to the reference voltage during the next cycle. The result is that this noise voltage effectively is somewhat greater than the input noise voltage of the buffer itself during integration. By introducing some voltage gain into the buffer, the effect of the auto-zero noise (referred to the input) can be .reduced to the level of the inherent buffer noise. This generally occurs, with a buffer gain of between 3 and 10, ,Further increase in buffer gain merely increases the total offset to be handled by the auto-zero loop, and reduces the available buffer and integrator swings, without improving the noise performance of the, system. The circuit recommended for doing this with the ICL8068/1CL7104 is shown in Figure 8. With careful layout, the circuit shown can achieve effective input noise voltages on the order of 1 to 2 /lV, allowing full 16-bit use ,Deintegrate Phase III Figure 7C & D During the Deintegrate phase, the switch drive logic uses the output of the polarity FIF in determining whether to clOse switches 6 and 9 or 7 and B~ If the input Signal was positive, switches 7 and 8 are closed and a voltage which is VREF more negative than during Auto-Zero is impressed on the buffer input. Negative inputs will cause + VREF to be ,applied to the buffer input via switches 6 and 9. Thus, the reference capaCitor generates the equivalent ofa (+) reference, or Ii (-) reference from the single reference voltage with negligible error. The reference voltage returns the output of the integrator to the zero-crossing point 6-166 Note: All typical values have been guaranteed by characterization and are. not tested .. ICL8052/ICL7104 with full scale inputs of as low as 1S0mV. Note that at this level, thermoelectric EMFs between PC boards, IC pins, etc., due to local temperature changes can be very troublesome. For further discussion, see App. Note A030. +15Y -15V rb-l ,,' 7 1 05016201 Figure 8: Adding Buffer Gain to ICL8068 Table 5: Typical Component Values (V ++ = + 1SV, ICL8052/8068 WITH ICL7104-16 = SV, V+ V- = -1SV, Clock Freq = 200kHz) ICL7104-14 UNIT 200 800 4000 100 4000 mV Buffer Gain 10 1 1 10 1 VIV Full scale VIN RINT 100 43 200 47 180 kf! , CINT .33 .33 .33 0.1 0.1 J1F CAZ 1.0 1.0 1.0 1.0 1.0 J1F Cref 10 1.0 1.0 10 1.0 J1F VREF 100 400 2000 50 2000 mV Resolution 3.1 12 61 6.1 244 J1V POlARITY D~ INTEGRATOR OUTPUT I I I. I ,.. L- ZERO CROSSING OCCURS I ~ /~ERO CROSSING I DETECTED I _ .1 I--AZ PHASE I--J--INT PHASE II "l-/' DEINT PHASE III--I--AZ- INTERNAL CLOCK h.r ~ J111I1.h.. J1Il11J1.r ~ INTERNAL LATCH II II 1 I ,• h I1 1 1 STATUS OUTPUT I I 1 1 1 1 I1 1 I 1 NUMBER OF COUNTS TO ZERO CROSSING! PROPORTIONAL TO Y,N 'I I I ""AFTER ZERO CROSSING. ANALOG SECTION WILL BE IN AUTOZERO CONFIGURATION WF013501 COUNTS PHASE I PHASE II PHASE III -115 32768 32768 65536 -14 8192 8192 16384 Figure 9: Conversion Timing ~167 Note: All typical values have been guaranteed by characterization and are not tested. .D~DlL 3.... ICL8052/ICL7104 .... - 2 ICL8052 vs ICL8068 W 10 ~ S:! Note: When gain is used in the bUffer. amplifier the reference capacitor shouldbe,l!ubstantially larger than the auto-zero ,capacitor. As a. rule of thumb, the reference capacitor should be approximately the gain times. the value of the auto-zero capacitor. The dielectric absorption of the reference cap and auto-zero cap are only important at power-on or when the circuit is recovering from an overload. Thus, smaller or cheaper caps can be used here if accurate readings are not required for the first few seconds of recovery. The ICl8052 offers significantly lower input leakage currents than the ICl8068, and may be found preferable in systems with high input impedances. However, the ICl8068 has substantially lower noise voltage, and for systems where system noise is a limiting factor, particularly in low signal level conditions, will give better performance. COMPONENT VALUE SELECTION For optimum performance of the analog section, care must be taken in the selection of values for the integrator capacitor and resistor, auto-zero capacitor, reference voltage, and conversion rate. These values must be chosen to suit the particular application. Reference Voltage The analog input required to generate a full scale output is VIN = 2 VREF. The stability of the. reference voltage is a major factor in the overall absolute accuracy of the converter. The resolution of the ICl7104 at 16 bits is one part in 65536, or 15.26ppm. Thus, if the reference has a temperature coefficient of 50ppm/oC (on board reference) a temperature change of 1 /3°C will introduce a one-bit absolute error.'For this reason, it is recommended that an external high quality reference be . used where the ambient temperature is not controlled or where high-accuracy absolute measurements are being made. Integrating Resistor The integrating resistor is determined by the full scale input voltage and the output current of the buffer used to charge the integrator capacitor. This current should be small compared to the output short circuit current such that thermal effects are kept to a minimum and linearity is not affected. Values of 5 to 40J.LA give good results with a nominal of 20IlA. The exact value may be chosen by RINT = DETAILED DESCRIPTION Digital Section full scale voltage" 20llA The digital section includes the clock oscillator circuit, a 16 or 14 bit binary counter with output latches and TTlcompatible three-state output drivers, polarity, over-range and control logic and UART handshake logic, as shown in the Block Diagram Figure 10 (16 bit version shown). Throughout this description, logic levels will be referred to as "low" or "high": The actual logic levels are defined under "ICl71 04 Electrical Characteristics". For minimum power consumption, all inputs should swing from GND (low) to V + (high). Inputs driven from TTL gates should have 3-5kn pullup resistors added for maximum noise immunity. "Note: If gain is used in the buffer amplifier thenRINT = (Buffer gain) (full scale voltage) 20J.LA Integrating Capacitor The product of integrating resistor and capacitor is selected to give 9 volt swing for full scale inputs. This is a compromise between possibly saturating the integrator (at + 14 volts) due to tolerance build-up between the resistor, capacitor and clock and the errors a, lower voltage swing could induce due to offsets referred to the output of the . comparator. In general, the value of CINT is given by [ MODE Input The MODE input is used to control the output mode of the converter. When the MODE pin is connected to GND or left open (this input is provided with a pulldown resistor to ensure a low level when the pin is left open), the converter is in its "Direct" output mode, where the output data is directly accessible under the control of the chip and byte enable inp,uts. When the MODE input is pulsed high, the converter enters the UART handshake mode and outputs the data in three bytes for the 7104-16 or two bytes for the 7104-14 then returns to "direct" mode. When the MODE input is left high, the converter will output data in the handshake mode at the end of every conversion cycle. (See section entitled "Handshake Mode" for further details). (32768 for -16)] x 20J.LA x clock period (8192 for -14) CINT = - - - - - - - - - - - - - - - - Integrator Output Voltage Swing A very important characteristic of the integrating capacitor is that it have low dielectric absorption to prevent roll-over or ratio metric errors. A good test for dielectric absorption is to use the capacitor with the input tied to the reference. This ratiometric condition should read half scale (100 . . . 000) and any deviation is probably due to dielectric absorption. Polypropylene capacitors give undetectable errors at reasonable cost. Polystyrene and polycarbonate capacitors may also be used in less critical applications. STaTuS Output During a conversion cycle, the STaTuS output goes high at the beginning of Input Integrate (Phase II), and goes low one-half clock period after new data from the conversion has been stored in the output latches. See Figure 9 for details .of this timing. This signal may Qe used as a "data valid" flag (data never changes while STaTuS is low) to drive interrupts, or for monitoring the status of the converter. Auto-Zero and Reference Capacitor The size of the auto-zero capacitor has some influence on the noise of the system, a large capacitor giving less noise. The reference capacitor should be large enough such that stray capacitance to ground from its nodes is negligible. 6-168 Note: All typical values have been guaranteed by characterization and are not tested. ICL8052/ICL 7104 eEim RIER LB!N iiiim 7104-16 POL OIR B16 B15 B14 B13 B12 Bll Bl0 B9 B8 B7 B8 B5 B7 B6 B5 RIER 7104-14 B4 B3 B2 Bl I:RN POL OIR B14 B13 B12 Bll Bl0 B9 B8 B4 B3 B2 Bl t--.-t-lI-$RIER I I 1ii8Eiii I (-16 only) I I I I I COMPOUT TO AZ ANALOG { INT SECTION DEINT(+) DEINT(-) 1-~-t-l1-$ 00iJ) I I I 2.L ___ J STaTuS R/R CLOCK CLOCK 1 2 CLOCK MODE SEND 3 LDO0641I Figure 10: Digital Section OPTION MIN MAX INTEGRATOR OUTPUT INTERNAL CLOCK ::~1~== -14 -16 7161 2866S 8185 32761 I ~ETECT~ON I ~ I ~ I I ~=-ASE I I STATICIN I HOLD STATE -' I l 1_ _ _ tr '11l.nfl... JU1ItI11lIt. ~ ~ ~ I I I INTERNAL LATCH _ _- - - - - - -_ _ _ _ _ _ _ _~n I STaTuS OUTPUT .... ...--------'----------- RUN/HOLD INPUT -------.,i~----- I ----~I-I I &..------1---i LD006511 Figure 11: Run/Hold Operation If Run/Hold goes low at any time during Deintegrate (Phase III) after the zero crossing has occurred, the circuit will immediately terminate Deintegrate and jump to AutoZero. This feature can be used to eliminate the time spent in Deintegrate after the zero-crossing. If Run/Hold stays or goes low, the converter will ensure a minimum Auto-Zero time, and then wait in Auto-Zero until the Run/Hold input goes high. The converter will begin the Integrate (Phase II) portion of the next conversion (and the STaTuS output will go high) seven clock periods after the high level is detected at Run/Hold. See Figure 11 for details. Run/Hold Input When the Run/Hold input is connected to V + or left open (this input has a pullup resistor to ensure a high level when the pin is left open), the circuit will continuously perform conversion cycles, updating the output latches at the end of every Deintegrate (Phase III) portion of the conversion cycle (See Figure 9). (See under "Handshake Mode" for exception.) In this mode of operation, the conversion cycle will be performed in 131,072 for 7104-16 and 32768 for 7104-14 clock periods, regardless of the resulting value. 6-169 Note: All typical values have been guaranteed by characterization and are not tested. . ! ICL805211CL7104 .... Using the Run/Hold input in this manner. allows an easy d ::::. "convert on demand" interface to be used. The converter ' CIt I conversion is completed) while MODE pin (pin 27) is high, in which case entry occurs at the end of the latch cycle; or secondly, if the MODE pin goes from low to high, when entry will occur immediately (if new data is being latched, entry is delayed to the end of the latch cycle). While in the handShake mode, data latching is inhibited, and the MODE pin is ignored. (Note that conversion cycles will continue in the normal manner). This allows versatile initiation of handshake operation without danger of false data generation; if the MODE pin is held high, every conversion (other than those completed during handshake operations) will start a new handshake operation, while if the, MODE pin is pulsed high, handshake operations can be obtained "on demand." may be held at idle in Auto-Zero with RunlHold low. When RunlHold goes high the conversion is started, and when the STaTuS output goes low the new data is valid (or transferred) to the UART - see Handshake Mode). Run/ Hold may now go low terminating Deintegrate and ensuring a minimum Auto-Zero time before stopping to wait for the next conversion. Alternately, RunlHold can be used to minimize conversion time by ensuring that it goes low during Deintegrate, after zero crossing, and goes high afte':...,the hold point is reached. The required activity on the RunlHold input can be provided by connecting it to the CLOCK3 (-14), CLOCK2 (-16) Output. In this mode the conversion time is dependent on the input value measured. Also refer to Intersil Application Bulletin A030 for a discussion of the effects this will have on Auto-Zero performance. If the Run/Holdinput goes low and stays low during AutoZero (Phase I), the converter will simply stop at the end of Auto-Zero and wait for Run/Hold to go high. As above, Integrate (Phase II) begins seven qlock periods after the high level is detected. Direct Mode When the MODE pin is left at a low level, the data outputs [bits 1 through B low order byte, see Table 4 for format of middle (-16) and high order bytes] are accessible under control of the byte and chip ENable terminals as inputs. These ENable inputs are all active low, and are provided with pullup resistors to ensure an inactive high level when left open. When the chip ENable input is low, taking a byte ENable input low will allow the outputs of that byte to ' become active (three-stated on). This allows a variety of parallel data accessing techniques be used. The timing requirements for these outputs are shown under AC Characteristics and Table 1. It should be noted that these control inputs are asynchronous with respect to the converter clock - the data may be accessed at any time. Thus it is possible to access the data while it is being updated, which could lead to scrambled data. Synchronizing the access of data with the conversion cycle by monitoring the STaTuS output will prevent this. Data is never updated while STaTuS is low. Also note the potential bus conflict described under "Initial Clear Circuitry" . to Handshake Mode The handshake output mode is provided as an alternative means of interfacing the ICL7104 to digital systems, where the AID converter becomes active in controlling the flow of data instead of passively responding to chip and byte ENable inputs. This mode is specifically designed to allow a direct interface between the ICL7104 and industry-standard UARTs (such as the Intersil CMOS UARTs, IM640,2/3) with no external logic required. When triggered into the handshake mode, the ICL7104 provides all the control and flag signals necessary to sequence the three (ICL7106-16) or two (ICL7104-14) bytes of data into the UART and initiate their transmission in serial form. This greatly eases the task and reduces the cost of designing remote data acquisition stations using serial data transmission to minimize the number of lines to the central contrOlling processor. Entry into the handshake mode will occur if either of two conditions are fulfilled; first" if new, data is latched (I.e. a When the converter enters the handshake mode, or when the MODE input is high, the chip and byte ENable terminals become TTL-compatible outputs which provide the control signals for the output cycle. The Send ENable pin (SEN) (pin 29) is used as an indication of the ability of the external device to receive data. The condition of the .line is sensed once every clock pulse, and if it is high, the next (or first) byte is enabled on the next rising CLOCK 1 (pin 25) clock edge, the corresponding byte ENable line goes low, and the Chip ENablelLoaD pin (pin 30) (CElLO) goes low for one full clock pulse only, returning high. On the next falling CLOCK 1 clock pulse edge, if SEN remains high, or after it goes high again, the byte output lines will be put in the high impedance state (or three-stated Off). One half pulse later, the byte ENable pin will be cleared ~h, and (unless finished) the CElLO and the next byte ENable pin will go low. This will continue until all three (2 111 the case of the 14 bit device) bytes have been sent. The bytes are individually put into the low impedance state I.e.: three-stated on during most of the time that their byte ENable pin is (active) low. When receipt of toe last byte has been acknowledged by a high SEN, the handshake mode will be cleared, re-enabling data latching from conversions, and recognizing the condition of the MODE pin again. The !.:lyte and chip ENable will be three-stated off, if MODE is low, but held high by their (weak) pull ups. These timing relationships are illustrated in Figure 12, 13, and 14, and Table 2. Figure 12 shows the sequence of the output cycle with SEN held high. The handshake mode (Internal MODE high) is entered after the data latch pulse (since MODE remains high the CElLO, LBEN, MBEN and HBEN terminals are active as outputs). The high level at the SEN input is sensed on the same high to low internal clock edge. On the next to high interna,1 clock edge, the CElLO and the HBEN outputs assume a low level and the high-order byte (POL and OR, and except for -16, Bits 9-14) outputs are enabled. The CElLO output remains low for one full internal clock period only, the data outputs remain active for 1-112 internal clock periods, and the high byte ENable remains low for two clock periods. Thus the CElLO output low level or low to high edge may be used as a synchronizing signal to ensure valid data, and the byte ENable as an output may be used as a byte identification flag. With SEN remaining high the converter completes the output cycle using CElLO, MBEN and LBEN while the remaining byte outputs (see Table 4) are activated. The handshake mode is terminated when all bytes are sent (3 for -16, 2 for -14). 6-170 Note: All typical values have been guaranteed by characterization and are not' tested. .•D~Dll ICL8052/ICL7104 is I N ...... ~/0CCUR8 INTEGRATOR OUTPUT INTERNAL CLOCIC INTERNAL ~~~~~~~rLI LATCH STATUS OUTPUT MODE INPUT INTERNAL MODE -- MODE HIGH ACTIVAlU CIlmID. I11III. CBIJI =. i .-_D~ /11 SBI. INPUT ~ I\ ~ 1 HIGH BYTE DATA --------- J I\. \. - -- f 1)-- J ~& DI _ _ 12ItD .. I/' DATA VALlO - L: --r------.. ------- __ _RP.!!I!P.-I!.'! I/' LDWBYTE DATA ----------- ~-- -------- -- DATA VALlO DATA -------------------------~----------~ _=DOHTCARE 1'-4 -4~-4_ ------ ~-.- -- ----------- ------ ,----- ~ LDWBYTE s:: TERM.....lU UAllTIIODE DATA VALlO ---a_-STATE HIGH 1 _ ~-~----I -~-= _-BTATI WITH PULLUP L0OO6601 Figure 12: Handshake with SEN Held. Positive 6-t7t Note: All typical values have been guaranteed by characterization and are not tested. e...2 .o~nlL 7104 ;:3 ICL8052/ICL , d i a .CLOCIC LATCH ,v==-f' I 'DJIOoCIIOI8INQ DETICTED n....r--t-r ..J iL r- ~f'1--.r1.,r ~ . r ' 10- ~r ~ r-u- ITAlUI OUTPUT MODe INPUT -- .. INTIIIIW. UART 1I0OI _INPUT (UAI\T T8III) C:: 2ltDOUTPUT _BYTI DATA MIDDU!BYTI DATA LOWBYTI DATA [J':=' ~ (UART T8IIL) ------- ~-.- DATA VALID ------- ~- "'------~,...- -------• - ------..,10-- = DON'T CARl ~ , 1\ ------ofl--- -- ~. .- 1\ DATAVAUD ------~,.-- ~- ~---..,.-- , ~- ------~,.-- ...- 1\ -:- ------...,~-- fo-- -----IJ' DATA VALID ~- ------ - - - = _-STATE HIGH I~ LO006701 Figure 13: Handshake - Typical UART Interface Timing TBRE output will now go low, which halts the output cycle with the HBEN output low, and the high order byte outputs active. When the UART has transferred the data to the Transmitter Register and cleared the Transmitter Buffer Register, the TBRE returns high. On the next ICL7104 internal clock high to low edge, the high order byte outputs are disabled, and one-half internal clock later, the HBEN output returns high. At the same time, the CElLO and MBEN (-16) or LBEN outputs go low, and the corresponding byte outputs become active. Similarly, when the CElLO returns high at the end of one clock period, the enabled data is clocked into the UART Transmitter Buffer Register, and TBRE again goes low. When TBRE returns to a high it will be sensed on the next ICL7104 internal clock high to low edge, disabling the data outputs. For the 16 bit device, the sequence is repeated for LBEN. One-half internal clock later, the handshake mode will be cleared, and the chip and byte ENable terminals return high and stay active (/is long as MODE stays high). Figure 13 shows an output sequence where the SEN input is used to delay portions of the sequence, or handshake, to ensure correct data transfer. This timing diagram shows the relationships that occur using an industry-standard IM6402/3 CMOS UART to interface to serial data channels. In this interface, the SEN input to the ICL7104 is driven by the TBRE (Transmitter Buffer Register Empty) output of the UART, and the CElLO terminal of the ICL7104 drives the TBRL (Transmitter Buffer Register Load) input to the UART. The data outputs are paralleled into the eight Transmitter Buffer Register inputs. Assuming the UART Transmitter Buffer Register is empty, the SEN input will be high when the handshake mode is entered after new data is stored. The CElLO and HSEN terminals will go low after SEN is sensed, and the high order byte outputs become active. When CElLO goes high at the end of one clqck period, the high order byte data is clocked into the UART Transmitter Buffer Register. The UART &-172 Note: All typical values have been guaranteed by characterization and are not tested. .D~D[b ICL8052/ICL7104 E -p Ul II) ....... INTl!RNAL i CLOCK INTERNAL LATCH _ _....,.._--1~ ~_+-+ _____ ~&.!~L..:&......i.~ ..~~~~~-.-_-+-j--- '!~P. STATUS OUTPUT~ MODE INPUT =:':'==:;::1 INTERNAL MODE ~=--+.f SEN INPUT --illlllll---.. . RIIIJij _ _ _ _ _ HIGH g~! r-- --+---11. ________ ~ ~ -----t 1IlIDl _____ r---+-+----J---+-~ MIOOLE :~! LOwg~! ________ ________ • = OON"T CARE '----~I-~---f ~ ~-~--...,---- ..,~- ...,--------.. . ~-...,---+---- - - - =THREE-STATE HIGH IMPEDANCE -.&.- = THREE-STATE WITH PULLUP LD0Q6801 Figure 14: Handshake Triggered By Mode registers if the supply voltage "glitches" to a low enough value. Additionally, if the supply voltage comes up too fast, this clear pulse may be too narrow for reliable clearing. In general, this is not a problem, but if the UART internal • "MODE" F/F should come up set, the byte and chip ENable lines will become active outputs. In many systems • this could lead to bus conflicts, especially in non-handshake systems. In any case, SEN should be high (held high for non-handshake systems) to ensure that the MODE F/F will be cleared as fast as possible (see Figure 12 for timing). For these and other reasons, adequate supply bypass is recommended. With the MODE input remaining high as in these examples, the converter will output the results of every conversion except those completed during a handshake operation. By triggering the converter into handshake mode with a low to high edge on the MODE input, handshake output sequences may be performed on demand. Figure 14 shows a handshake output sequence triggered by such an edge. In addition, the SEN input is shown as being low when the converter enters handshake mode. In this case, the whole output sequence is controlled by the SEN input, and the sequence for the first (high order) byte is similar to the sequence for the other bytes. This diagram also shows the output sequence taking longer than a conversion cycle. Note that the converter still makes conversions, with the STaTuS output and Run/Hold input functioning normally. The only difference is that new data will not be latched when in handshake mode, and is therefore lost. Oscillator Initial Clear Circuitry The ICL7104-14 is provided with a versatile three termi" nal oscillator to generate the internal clock. The oscillator may be overdriven, or may be operated as an RC or crystal oscillator. The internal logic of the 7104 is supplied by an internal regulator between V ++ and Digital Ground. The regulator includes a low-voltage detector that will clear various registers. This is intended to ensure that on initial power-up, the control logic comes up in Auto-Zero, with the 2nd, 3rd, and 4th MSB bits cleared, and the "mode" F/F cleared (Le. in "direct" mode). This, however, will also clear these Figure 15 shows the oscillator configured for RC operation. The internal clock will be of the same frequency and phase as the voltage on the CLOCK 3 pin. The resistor and capacitor should be connected as shown. The circuit will oscillate at a frequency given by f = .45/RC. A 50-100kn resistor is recommended for useful ranges of frequency. For optimum 60Hz line rejection, the capacitor value should be 6-173 Note: All typical values have been guarante6d by characterization and are not tested. .....z ICL80521lCL7104 .... g chosen such that 32768 (-16), 8192 (-14) clock periods is close to an integral multiple of the 60Hz. period. ANALOG AND DIGITAL GROUNDS Extreme care must be taken to avoid ground loops in the layout of ICL8068 or ICL8052/7104 circuits, especially in 16-bit and high sensitivity circuits. It is most important that return currents from digital loads are not fed into the analog ground line. A recommended connection sequence for the ground lines is shown in Figure 17. C\II I APPLICATIONS INFORMATION Some applications bulletins that may be found useful are listed· here: A016 "Selecting AID Converters", by Dave Fullagar A017 "The Integrating AID Converter" , by Lee Evans A018 "Do's and Dont's of Applying AID Converters", by Peter Bradshaw and Skip Osgood A02S "Building a Aemote Data Logging Station", by Peter Bradshaw A030 "The ICL71 04 - A Binary Output AID Converter for Microprocessors", by Peter Bradshaw ROOS "Interfacing Data Converter & Microprocessors", by Peter Bradshaw et ai, Electronics, Dec. 9, 1976. 24 CLOCK 1 lose = .45/RC Figure 15: RC Oscillator Note that CLOCK 3 has the same output SUPPl.Y RETURN +> ..0... DEVICE PIN +5V SUPPLY BYPASS CAPACITOR(S) 06016301 Figure 17: Grounding Sequence 6-175 Note: All typical values have' been guaranteed by characterization and are not tested. Section 7 - Timer/Counter Circuits PI ICM7206 CMOS Touch-Tone Encoder GENERAL DESCRIPTION FEATURES The Intersil ICM720S/ AlB/C/O are 2-of-8 sine wave tone encoders for use in telephone dialing systems. Each circuit contains a high frequency oscillator, two separate programmable dividers, a 0/ A converter, and a high level output driver. • • • • • • • • • • • Low Cost Oscillator Uses 3.58MHz Color TV Crystal High Current Bipolar Output Driver Low Output Harmonic Distortion Wide Operating Supply Voltage Range: 3 to 6 Volts Uses 3 x 4 or 4 x 4 Single Contact Keypad Low Power ( ::; 5.5mW With A 5.5V Supply) Single and Dual Tone Capabilities Multiple Key Lockout Disable Output: Provides Output Switch Function Whenever A Key Is Pressed Custom Options Available ORDERING INFORMATION PART NUMBER TEMPERATURE RANGE PACKAGE ICM72061PE -40·C to + 85·C 16 Pin PLASTIC DIP ICM7206AIPE -40·C to +85·C 16 Pin PLASTIC DIP ICM7206BIPE -40·C to + 85·C 16 Pin PLASTIC DIP ICM7206CIPE -40·C to +85·C 16 Pin PLASTIC DIP ICM7206DIPE -40·C to + 85·C 16 Pin PLASTIC DIP ICM7206/D -40·C to + 85·C DICE ICM7206A/D -40·C to +85·C DICE ICM7206B/D -40·C to +85·C DICE ICM7206C/D -40·C to +85·C DICE ICM7206D/D -40·C to + 85·C DICE osc osc LPt voo lP2 OUTPUT OUTPUT ROWt COlt ROW 2 COL 2 ROW 3 COL 3 ROW 4 COl4 DISABLE vss OSCOUT OSCIN CD028111 DISABLE D5024811 Figure 1: Functional Diagram 7-1 Note: All typical values have been guaranteed by characterization and are not tested. Figure 2: Pin Configuration (Outline Dwg PEl 202100-002 PI 8ft ICM72()6 l"- I ABSOLUTE MAXIMUM RATINGS (Note 1) Supply Voltage VOO-VSS (Note 2) ...................... S.OV Supply Current VSS (terminal 8) ........................ 25mA Supply Curre'lt Voo (terminal 1S) ...................... 40mA Disable Output Voltage (term. 7) ....... (Voo-SV) to Voo Output Voltage (term 15) ..... (VSS-1.0V) to (VOO + 5.0V) Input Voltage ....................... VSS - O.3V to Voo + O.3V Output Current (terminal 15) ............................. 25mA Power Dissipation ................................•........ 300mW Operating Temperature Range ...... : .... -40°C to +85°C Storage Temperature Range ............ - 55°C to + 125°C Lead Temperature (Soldering, 10sec) ................. 300°C NOTE 1. Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. 2. The ICM7206 family has a zener diode connected between Voo and Vss having a breakdown voltage between 6.2 and 7.0 volts. If the currents into terminals 8 and 16 are limited to 25 and 40mA maximum respectively. the supply voltage may be increased above 6 volts to zener voltage. With no such current limiting, the supply voltage must not exceed 6 volts. ELECTRICAL CHARACTERISTICS TEST CONDITIONS: VOO = 5.5V, Test Circuit, Vss SYMBOL = OV TA = 25°C unless otherwise specified. PARAMETER TEST CONDITIONS 100 Supply Current Rl disconnected VSUPPLY Guaranteed Operating Supply Voltage Range (Note 3) -40·C" TA" +85·C VOUT THDI UNIT 450 JJA 3.0 1000 6.0 V C1, C2 disconnected - Low Band 0.90 1.15 vis Peak to Peak Output Voltage Rl = 1kn, no filtering - High Band 1.10 1.40 1.70 RMS Output Voltage Rl = 1kn, fOUT = 697Hz Rl = 1kn, fOUT = 1633Hz Zo MIN TYP MAX Skew Between High and Low Band Output Voltages RL Output Impedance RL = lkn Total Output Harmonic Distortion = 1kn, C2 Only 480 C1 to C2 No filtering 480 C1 490 C1 to C2 580 No filtering 655 490 mV 2.5 3.0 Operating 90 200 Quiescent 25 C1, C2 disconnected Either Hi or Low Bands Total Output Harmonic Distortion VOH Maximum Output Voltage Level Val Rl = lkn, C1 = .002"F C2 = 0.02"F 20 25 2.3 10 % fOUT= 697Hz fOUT = 1633Hz 1.0 Minimum Output Voltage Level = lkn Rl = lkn 0.5 35 10 4.6 RL RIN Keyboard Input Pullup Resistors Terminals 3,4,5,6,11,12,13,14 CIN Keyboard Input CapaCitance Terminals 3,4,5,6,11,12,13,14 fose Guaranteed Oscillator Fequency Range (Note 4) 3" (VDO-VSS)" 6V 2.0 4.5 4V " (Voo - VSS) " 6V ICM7206, ICM7206A 2.0 7 Guaranteed Oscillator Frequency Range ton System Startup Time on Application of Power System Startup Time on Application of Power and Key Depressed Simultaneously ICM7206B, ICM7206C, ICM7206D RO DISABLE Output Saturation Resistance (ON STATE) See Logic Table for Input Conditions Current=4mA IOlK DISABLE Output Leakage (OFF STATE) See Logic Table for Input Conditions OsCillator Load CapaCitance Measured between terminals 9 & 10, no supply voltage applied to circuit -40·C" TA" 85·C Cose 7-2 Note: All typical values have been guaranteed by characterization and are not tasted. n kn No Low Pass Filtering THD2 dB 100 V 150 kn 5 pF MHz 10 330 7 7 ms 700 n 10 JJA pF ICM7206 n a::: ELECTRICAL CHARACTERISTICS (CO NT.) o SYMBOL ... N PARAMETER TEST CONDITIONS fO Guaranteed Output Frequency Tolerance Any output frequency Crystal tolerance ± 60ppm Crystal load capacitance CL = 30pF tstart Oscillator Startup Time ICM7206B,C,D Voo - VSS = 3V MIN TYP MAX (Note 5) UNIT ±0.75 % 7 ms Gl NOTES: 3. Operation above 6 volts must employ supply current limiting. Refer to 'ABSOLUTE MAXIMUM RATINGS' and the Application Notes for further information. 4. The ICM7206 family uses dynamic high frequency circuitry in the initial 23 divider resulting in low power dissipation and excellent performance over a restricted frequency range. Thus, for reliable operation with a 6 volt supply an oscillator frequency of not less than 2M Hz must be used. 5. After row input is enabled. TRUTH TABLE ROWS(1) LINE ACTIVATED 1 0 2 3 OUTPUT (TERMINAL # 15) COLS(2) ACTIVATED DISABLE (TERMINAL #7) COMMENTS 0 Off Off 1 1 frow +fcol On Dual Tone 1 2 or 3 (incl. col #4) frow On Single Tone Single Tone Quiescent State 4 2 or 3 1 2 or 3 2 or 3 (excl. col #3) fcol D.C. Level On 5 On No Tone 6 1 4 or 3 (must excl. col #4) f row, 50% Duty Cycie f row , 50% Duty Cycle frow Test 7 4 1 fcoh 50% Duty Cycle fcoh 50% Duty Cycle leol Test 8 0 lor2or30r4 Off Off n/a* 9 1 0 On nJa* 10 2 or 3 0 902Hz + f row 902Hz On n/a* 11 4 0 902Hz,. 50% Duty Cycle 902Hz, 50% Duty Cycle n/a" 12 20r30r4 4 D.C. Level Indeterminate Multiple Key Lockout 13 4 20r30r4 D.C. Level Indeterminate Multiple Key Lockout "n/a - not applocable to telephone callong. NOTES: 1. Rows are activated for the ICM7206/C by connecting to a negative supply voltage with respect to Voo (terminal 16) at least 33% of the value of the supply voltage (Voo-VSS). For the ICM7206A rows (and columns) are activated by connecting to a positive supply voltage with respect to VSS (terminal B) at least 33% of the value of the supply voltage WOO - Vss). The rows "nd columns 01 the ICM7206B are activated by ' connecting to a negative supply v6ltage. 2. Columns (ICM7206) are activated by being connected to a positive supply voltage with respect to VSS (terminal 8) at least 33% 01 the value 01 the supply voltage (Voo - VSS). OPTIONS COMMENTS (For additional information consult the factory) All combinations of row and column activations are given in the truth table. Lines 1 through 7 and 12, 13 represent conditions obtainable with a matrix keyboard. Lines 8 thru 11 are given only for completeness and are not pertinent to telephone dialing. Lines 6 and 7' show conditions for generating 50% duty cycle full amplitude Signals useful for rapid testing of' the row and column frequencies on automatic test equipment. In all other cases, output frequencies on terminal 15 are single or dual 4 level synthesized sine waves. A 'DC LEVEL' on terminal 15 may be any voltage level between approximately 1.2 and 4.3 volts with respect to VSS (terminal 8) for a 5.5 volt supply voltage. The impedance of the OUTPUT (terminal 15) is approximately 20k ohms in the OFF state. The 'DISABLE OUTOUT ON and OFF conditions are defined in the TYPICAL PERFORMANCE CHARACTERISTICS. Options can be achieved using metal mask additions to provide the following. 1) The sequence or position of either the row or column terminals can be interchanged i.e., row 1 terminal 3 could become terminal 11, etc. 2) Any frequency oscillator from approximately 0.5MHz to 7MHz can be chosen. Note that the accuracy of the output frequencies will depend on the exact oscillator frequency. For instance, a 1MHz crystal could be used with worst case output frequency error of 0.8%. Or, if high accuracy is required, ±0.25%, oscillator frequencies of 5,117,376Hz or 2,558,688Hz could be selected. ROM's are used to program the dividers. 3) The 'DISABLE' output may be changed to an inverter or an uncommitted drain n-channel transistor. 4) The oscillator may be disabled until a key is depressed. 7-3 Note: All typical values have been guaranteed by characterization and are not tested. fII § ... .D~DIb ICM7206 I C2 (O.02:1,.FI ROW. OUTPUT ,. Rl ROW2 12 -5.5V 11 ROW 3 ROW. QUARTZ CRYSTAL PARAMETERS f • 3,579.546 Hz COL 1 COL 2 COL 3 RS": 109H CM= 200mpf -s.SV COL 4 Co .. 4.6 pF Cl "'30pF TC031201 Figure 3: Test Circuit (single contact keyboard devices shown) TYPICAL PERFORMANCE CHARACTERISTICS SUPPLY CURRENT AS A FUNCTION OF SUPPLY VOLTAGE TOTAL HARMONIC DISTORTION AS A FUNCTION OF LOAD RESISTANCE 16 ~ Z 0 ;: a: 0 t; 15 u Z 0 .. ...... :;; a: X -' 0 .... LOAD RESISTANCE (!l) SUPPl Y VOL TAGE (VDD - V.s) 0P048eOI 0P048421 7-4 Note: All typical values have been guaranteed by characterization and are not tested. ICM7206 TYPICAL PERFORMANCE CHARACTERISTICS (CONT.) OSCILLATOR FREQUENCY DEVIATION AS A FUNCTION OF SUPPLY VOLTAGE +1.5 1+ PEAK TO PEAK OUTPUT VOLTAGE AS A FUNCTION OF SUPPLY VOLTAGE U5,..---,---,--.,.---,-...,....----, ,..-----r-...,....-.,.....-~_n..__, TA' 25 C C~YSTAl 1.0 z PARAMETERS: f '" 3,579,545 Hz RS "45~! t--1Ii----l 1 eM = 20mpF Q +0.5 ~ 1.251----+--+--+_---..~-A--_l ~ Co = 4.5 pF ~ I ~ c !:i g a: o ~ -0.5 ~ -1.0 1.5 1.0 >- ~ O.751----+---h~If---~--+-_l >- o" 0.5 1----+~.*-+_--1-----+-_l t----t---.II'-'--+_-i----+-_l ·1.5 L-.....J.L--'-_..L-_L-.....L_.J 1 SUPPL V VOL TAGE SUPPL V VOLTAGE OP048501 !- KEY STANDARD TELEPHONE KEYBOARD COL 1 ROW 1 ROW 2 ROW 3 ROW 4 OP048701 COL 2 COL 3 1 2 3 4 5 6 7 8 9 COL 4 D 8 D [J D D 8 G D 8 [J G D c:J D G . 0 # ; !••- - - - - F U L L A KEYBOARD----~.I! B C SC011001 D LOW BAND FREQ. Hz HI BAND FREQ. Hz 697 697 697 770 770 770 852 852 852 941 941 941 697 770 852 941 1209 1336 1477 1209 1336 1477 1209 1336 1477 1209 1336 1477 1633 1633 1633 1633 Figure 4: Keyboard Frequencies approximately --3dBV into a 900 ohm termination. The skew between the high and low groups is typically 2 ..5 dB without low pass filtering. The 7206 uses either a 3 x 4 or 4 x 4 single contact keyboard; the oscillator will run whenever the power is applied, and the DISABLE output consists of a p-channel open drain FET whose source is connected to VDD. The 7206A can also use a 3 x 4 or 4 x 4 keyboard, but requires a double contact type with the common line tied to VDD. The oscillator will be on whenever power is applied; the DISABLE output consists of a p-channel open drain FET; its source is connected to VDD. The 7206B requires a 4 + 4 double contact keyboard with the common line tied to VSS. The oscillator will be on only during the time that a ROW is enabled, and the DISABLE DETAILED DESCRIPTION The reference frequency is generated from a fully integrated oscillator requiring only a 3.58MHz color TV crystal. This frequency is divided by 8 and is then gated into two divide by N counters (possible division ratios 1 through 128) which provide the correct division ratios for the upper and lower band of frequencies. The outputs from these two divide by N counters are further divided by 8 to provide the time sequencing for a 4 voltage level synthesis of each sinewave. Both sinewaves are added and buffered to a high current output driver, with provisions made for up to two external capacitors for low pass filtering, if desired. Typically, the total output harmonic distortion is 20% with no L.P. filtering and it may be reduced to typically less than 5% with filtering. The output drive level of the tone pairs will be 7--5 Note: All typical values have been guaranteed by characterizatibn and are not tested. 81CM7206 ... til I output consists of an n-channel open drain FET with its source tied to VSS. The 7206e uses either a 3 x 4 or 4 x 4 single contact keyboard; the oscillator will be on o(1ly during the time that a key is depressed. The DISABLE output consists of an nchannel open drain FET with its source tied to VSS. The 72060 uses a single .contact 3 x 4 or 4 x 4 keyboard. The oscillator will be on only during the time that a key is depressed. DISABLE output consists of a p-channel open drain FET with its source tied to VOO. I4pF OSC IN <>---+-..., Figure 6 shows individual currents of a low band and high band frequency pair into the summing node A (see Figure 7) and the resul.tant voltage waveform. DESIRED FREQUENCY Hz 14pF f------....-----1f---- TO-8 FREQUENCY ACtUAL FREQUENCY DEVIATION DIVIDE BY N Hz % RATIO 697 699.13 +0.30 770 766.17 -0.50 73 852 847.43 -0.54 66 941 947.97 +0.74 59 1209 1215.88 +0.57 46 1336 1331.68 -0.32 42 1477 1471.85 -0.35 38 1633 1645.01 +0.74 34 O~OUT<>-------------J 0$024701 Figure 5: Schematic Diagram ICM7206 Oscillator 2.4141 ~ l LOW BAND SIGNAL LHI BAND SIGNAL -T HIGH AND LOW APPROX 2.6Vp-p _1 FREOUENCI ES COMBINED APPROX. 1.2V REFERRED TO VWF021501 Figure 6 .7-6 Note: All typical values have been guaranteed by characterization and lire not tested. 80 .O~OlL ICM7206 peak of O.4dB occurs at 1100Hz with sharp attention (12dB per octave) above 2500Hz. This type of active filter produces a sharper and more desirable knee characteristic than would two simple cascaded RC networks. APPLICATION NOTES Device Description The ICM7206 family is manufactured with a standard metal gate CMOS technology having proven reliability and excellent reproducability resulting in extremely high yields. The techniques used in the design have been developed over many years and are characterized by wide operating supply voltage ranges and low power dissipation. r--------------.----.-------------~-QV~ ,------t-_QLP 2 To minimize chip size, all diffusions used to define source-drain regions and field regions are butted up together. This results in approximately 6.3 volt zener breakdown between the supply terminals, and between ali components on chip. As a consequence, the usual CMOS static charge problems and handling problems are not experienced with the ICM7206. "'<>_--0 OUT ~~~~--------_oLPl The oscillator consists of a medium size CMOS inverter having on chip a feedback resistor and two capacitors of 14pF each, one at the oscillator input and the other at the oscillator output. The oscillator is followed by a dynamic .;23 circuit which divides the oscillator frequency to 447, 443Hz. This is applied to two programmable dividers each capable of division ratios of any integer between 1 and 128, and each counter is controlled by a ROM. The outputs from the programmable counters drive sequencers (divide by 8) which generate the eight time slots necessary to synthesize the 4-level sine waves. ~----~-------4----~--------------__oVSS 09024911 Figure 7 TIME - - - - voo The control logic block recognizes signals on the row and column inputs that are only a small fraction of the supply voltage, thereby permitting the use of a simple matrix single contact per key keyboard, rather than the more usual two contacts per key type having a common line. The row and column pullup resistors are equal in value and connected to the opposite supply terminals (lCM7206/C only; for the ICM7206A all pullup resistors are connected to the VSS terminal and for the ICM7206B they are tied to the VOO. Therefore, connecting a row input to a column input generates a voltage on those inputs which is one half of the supply voltage. I I I I 1121314,5,617181 OUTPUT WAVEFORM WF02141t The ICM7206 family employs a unique but extremely simple digital to analog (D to A) converter. This D to A converter produces a 4 level synthesized sine wave having an intrinsic total harmonic distortion level of approximately 20%. Figure 8 shows a single channel D to A converter. The current sources 02 and 03 are proportioned in the ratio of 1:1.414. During time slots 1 and 8 both S1 and S2 are off, during time slots 2 and 7 only S1 is on, during time slots 3 and 6 only S2 is on, and during time slots 4 and 5 both S1 and S2 are on. The resultant currents are summed at node A, buffered by 04 and further buffered by R3, R4 and 05. Switch S3 allows the output to go into a high impedance mode under quiescent conditions. Figure 8: 0 to A Converter and Output Buffer lsao 1400 1300 +25°C A .. 1200 1100 1000 .s. i= 5! 800 ~ 800 ~ 700 ~800 VOD :;; 16V ffisao - g400 i<300 Node A is the common summing point for both the high and low band frequencies although this is not shown in Figure 8. .... 100 r- t~r o o The synthesized sine wave has negligible even harmonic distortion and very low values of third and fifth harmonic distortion thereby minimizing the filtering problems necessary to reduce the total harmonic distortion to well below the 10% level required for touch tone telephone encoding. Figure 9 shows the low pass filter characteristic of the output buffer for C1 = 0.0022J..1F and C2 = 0.022J..1F. A small VD D - 1 5V ~ ~ .v..l!. 2 3 4 5 8 7 8 9 10 TRIGGER AMPLITUDE (VOLTS) OP04881I Figure 9: Frequency Attentuation Characteristics of the Output Buffer 7-7 Note: All typical values have been guaranteed by characterization and are not tested. a... I :§ ....2 !:! ICM7206 " C~msiderations Most jllnction isolated CMOS integrated circuits, especially those of moderate.or high complexity, exhibit latchup phenomena whereby they can be triggered into an uncontrollable. low impedance. mode between the supply terminals. This can be due to gross forward biasing of inputs or outputs (with respect to the supply terminals), high voltage supply transients, or more rarely by exceptional fast rate of rise of supply voltages. 4ltchup prevents the output going more than 1 volt negative with respect to the negative supply VSS and the circuit operates over the supply voltage range from 3.5 volts to 15 volts on the device side of the bridge rectifier. Transients as high as 100 volts will not cause system failure, although the encoder will not operate correctly under these conditions. Correct operation will. resume immediately after the transient is removed. The output voltage of the synthesized sine wave is almost directly proportiqnal to the supply voltage (VDo-VSS) and will increase with increase of supply voltage until zener breakdown occurs (approximately 6.3. volts between terminals 8 and 16) after which the output voltage remains constant. The ICM7206 family is no exception, and precautions must b!9 taken to limit the supply current to those values shown in the ABSOLUTE MAXIMUM RATINGS. For an example, do not use a 6 volt very low impedance supply source in an extremely electrically noisy environment unless a 5000hm current I.imiting resistor' is included in series with the Vss terminal. For normal telephone encoding applications no problems are envisioned, even with low impedance transients of 100 volts or more, if circuitry similar to that shown in the next section is used; Portable Tone Generator The ICM7206A1B require a two contact key keyboard with the common line connected to the positive supply (neg for ICM7206B) (terminal 16). A simple diode matrix may be used with this keyboard to provide power to the system whenever a key is depressed, thus avoiding the need for an on/off switch. In Figure 11 the tone generator is shown using a 9 volt battery. However, if instead, a 6 volt battery is used, the diode D4 is not required. It is recommended th~t a 4700hm resistor still be included in series with a negative (positive) supply to prevent accidental triggering of latchup. Telephone Handset A typical encoder for telephone handsets is shown in Figure 10. This encoder uses a single contact per key keyboard and provides all other switching functions electronically. The diode-connected between terminals 8 and 15 Ra (i)®@ @®@ o---J MULTIPLEX OUTPUT !VDD ~ Vss "Full ,......... on .eM 72!J7A ~:~L.~ '-~ R"ET~' __________~ 80006121 Figure 2: Functional Diagram 202200-002 7-10 Note: All typical values have been guaranteed by characterization and are n~t tested. n ICM72071A ... ... ....... I: N o ABSOLUTE MAXIMUM RATINGS Supply Voltage (VDD - Vss) ................................ 6.0V Input Voltages ..................... VSS - 0.3V to VDD + 0.3V Output Voltages: 7207 .......................................... VSS to + 6V 7207A ......................................... VDD to VSS Output Currents .............................................. 25mA Power Dissipation @ 25°C Note 1 ................... 200mW Operating Temperature Range ........... -20°C to +85°C Storage Temperature Range ............ -55°C to + 125°C Lead Temperature (Soldering, 10sec) ................. 300°C ~ NOTE 1: Derate by 2mWrC above 25°C. Absolute maximum ratings refer to values which if exceeded may permanently change or destroy the device. Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only. and functional operation of the device at these or any other conditions above those indicated in the operation~1 sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. ELECTRICAL CHARACTERISTICS fosc = 6.5536MHz(7207), 5.24288MHz(7207A), VDD = 5V, TA = 25°C, VSS = OV, test circuit unless otherwise specified. SYMBOL PARAMETER TEST CONDITIONS + 85°C Voo Operating Voltage Range - 20°C to 100 Supply Current All outputs open circuit Rds(on) Output on Resistances Output current = SmA All outputs 10lK Output Leakage Currents All outputs (STORE only) (ROUT) (Output Resistance Terminals 12,13,14) Output current - 50llA, 7207A only Ipd Input Pulldown Current Terminal 11 connected to VOO fosc Oscillator Frequency Range Note 2 fSTAB Oscillator Stability CIN = GoUT = 22pF rose Oscillator Feedback Resistance Quartz crystal open circuit Note 3 Input Noise Immunity MIN TYP MAX V 260 1000 /JA 50 120 n 50 /J A 50 33K n 200 /JA % supply voltage 25 2 0.2 3 UNIT 5.5 4 10 MHz 1.0 ppmlV Mn NOTES: 2. Dynamic dividers are used in the initial stages of the divider chain. These dividers have a lower frequency of operation determined by transistor sizes, threshold voltages and leakage currents. 3. The feedback resistor has a non-linear value determined by the oscillator instantaneous input and output voltage voltages and the supply voltage. PI 7-11 Note: All typical values have been guaranteed by character:~ation and are not tested. oC ...,., S ell IC1Vl7207/A ... •2 CRYSTAL PARAMETERS ! CtN - <:OUT - 22pF I J 1C1I7207 f-6.5631MHz "'-401) C,-IS"",F Co-UpF ICM7207A Y f • 6.24211MHa '" < 75Il Co - 4pF Coo - IZmpF CL - 12pF 5CIk' 10k 5CIk' 5CIk' 01--.-----11] + TC027401 SWITCHES S,. S2. Sa. S4 OPEN CIRCUIT FOR SUPPLY CURRENT MEASUREMENT. SWITCH S5 OPEN CIRCUIT FOR SLOW GATING PERIOD. t SWITCHES S2. Sa. S4 and SDk RESISTORS ARE NOT NEEDED WHEN USING THE ICM72D7A. Figure 3: Test Circuit TYPICAL PERFORMANCE CHARACTERISTICS SUPPLY CURRENT AS A FUNCTION OF OSCILLATOR FREQUENCY 300 TA-250 C 250 ~iu-m5~.lny au.,.. Cry..... OUTPUT SATURATION RESISTANCES AS A FUNCTION OF SUPPLY VOLTAGE 1,'" ~ 3OO~--+---+---f70r'12MHz 5 a> I '" 150 ~ II< t ~ ., .... \. ~ 100 1: \ COUT " IOpF C.N • 10pF 6.5 MHz , CoUT"IOpF 3.3 MHz CIN " IOpF CoUT - 22pF 2 MHz CIN' 22pF r --+--1 ~CoUT·22pF----~--~--~~ CIN- 22pF O~3--~--4~-J--_.L.--~--J o 8 10 OSCILLATOR FREQUENCY MHz 12 SUPPLY VOLTAGE OP038901 0P03881 I 7-12 Note: All typical values have been guaranteed by characterization and are not tested. .n~nll ICM7207/A TYPICAL PERFORMANCE CHARACTERISTICS (CONT.) OSCILLATOR STABILITY AS A FUNCTION OF SUPPLY VOLTAGE I\,) SUPPLY CURRENT AS A FUNCTION OF SUPPLY VOLTAGE 600 TA E ... I > .. :::; III 2S0C I 500 lose .. 6.5 MHz It +0.51-"=r-=-:;::-:::-t0.0 CaUT' 22pF CIN" 22pF , I i !----t:-7''tJ-iIi'f-+--!f----j ; / 300 e -1.0~---¥:,..q 200 ~ -1.S 17'--'1--->--+--+--+---1 100 j ,i • i ! -0.5 o .... ..... I i , ii ~ a: i.... / I ~ I I I ! ./ o " -,z.03 L --"'-------.l.--'---'-----.JS'--.-L---.J 3 • 5 SUPPL V VO!- TAGE SUPPLY VOLTAGE 0P039001 OP039101 OUTPUT TIMING WAVEFORMS 7207 (7207A) Crystal Frequency 6.5536(5.24288)MHz = 1 ~Hz or ~I (, ~H.t 1-=-1 MULTIPLIXOUTPOT . ~----JLrl----JLQ 1 GATINGOUTPUT or 18t,...) 20 .. 200... ~----lj200or2000mS) ·1 I -L--...,.--- -~_10 or 100 (100 or 1000) m, .----lj ----, 1"'---ffiiiiE U '----~ WF016801 Figure 4: Output Waveform DETAILED DESCRIPTION If a very high quality oscillator is desired, it is recommended that a quartz crystal be used having a tight tuning tolerance ± 1Oppm, a low series resistance (less than 2Sn), a low motional capacitance of SmpF and a load capacitance of 20pF. The fixed capacitor CIN should be 39pF and the oscillator tuning capaCitor should range between approximately 8 and 60pF. Referring to the Test Circui~ Figure 3, the crystal oscillator frequency is divided by 21 to provide both the multiplex frequency and generate the output pulse widths. The GATING OUTPUT provides a SO% duty cycle signal whose period depends upon whether the RANGE CONTROL terminal is connected to VOO or VSS (open circuit). OSCILLATOR CONSIDERATIONS Use of a high quality crystal will result in typical oscillator stabilities of O.OSppm per 0.1 volt change of supply voltage. The oscillator consists of a CMOS inverter with a nonlinear resistor connected between the input and output terminals to provide biasing. Oscillator stabilities of approximately 0.1 ppm per 0.1 volt change are achievable at a supply voltage of S volts, using low cost crystals. The crystal specifications are shown in the TEST CIRCUIT. FREQUENCY LIMITATIONS The ICM7207 / A uses dynamiC frequency counters in the initial divider sections. Dynamic frequency counters are faster and consume less power than static dividers but suffer from the disadvantage that there is a minimum operating frequency at a given supply voltage. It is recommended that the crystal load capaCitance (CLl be no greater than 1SpF for a crystal having a series resistance equal to or less than 7Sn, otherwise the output amplitude of the oscillator may be too low to. drive the divider reliably. 7-13 Note: All typical values have been guaranteed by characterization and are not tested. PI ICM72c)1l4 APPLICATION A PRACTICAL FREQUENCY COUNTER A complete frequency counter using the ICM7207 I A together with the ICM7208 Frequency Counter is described in the ICM7208 data sheet. Other frequency counters using the ICM7207 I A can be constructed using the ICM7224, ICM7225, and ICM7236, for LCD, LED and VF displays. The latter are available as EVIKits also. SUPPLY VOLTAGE 3 WINDOW 2 1OKH, 100KHz 1MHz tOMHz FREQUENCY' sc009301 QUARTZ CRYSTAL MANUFACTURERS Figure 5 The following list of possible suppliers is intended to be of assistance in putting a design into production. It should not be interpreted as a comprehensive list of suppliers, nor does it constitute an endorsement by Intersi!. a) CTS Knights, Sandwich, Illinois, (815) 786-8411 b) Motorola Inc., Franklin Park, Illinois (312) 451-1000 c) Sentry Manufacturing Co., Chickasaw, Oklahoma (405) 224-6780 d) Tyco Filters Division, Phoenix, Arizona (602) 272". 7945 e) M-Tron Inds., Yankton, South Dakota (605) 6659321 f) Saronix, Palo Alto, California (415) 856-6900 For example, if .instead of 6.5MHz, a 1MHz oscillator is required, it is recommended that the supply voltage be re~uced to between 2 and 2.5 volts. This may be realized by ~slng a series resistor in series with the 5V positive supply hne plus a decoupling capacitor. The quartz crystal parameters, etc., will determine the value ofthis resistor. NOTE: Except for the output open drain n-channel transistors no other terminal is permitted to exceed the supply voltage limits. 7-14 Note: All typical values have been guaranteed by characterization and are not te~ted. ICM7208 7-Digit LED Display Counter GENERAL DESCRIPTION FEATURES The ICM7208 is a fully integrated seven decade counterdecoder-driver and is manufactured using Intersil's low voltage metal gate C-MOS process. Specifically the ICM7208 provides the following on chip functiohs: a 7 decade counter, multiplexer, 7 segment decoder, digit & segment driver, plus additional logic for display blanking, reset, input inhibit, and display on/off. For unit counter applications the only additional components are a 7 digit common cathode display, 3 resistors and a capacitor to generate the multiplex frequency reference, and the control switches. The ICM7208 is intended to operate over a suppJy voltage of 2 to 6 volts as a medium speed counter, or over a more restricted voltage range for high frequencyapplications. As a frequency counter it is recommended that the ICM7208 be used in conjunction with the ICM7207 Oscillator Controller, which provides a stable HF OSCillator, and output signal gating. • Low Operating Power Dissipation < 10mW • Low Quiescent Power Dissipation < SmW • Counts and DisplaYs 7 Decades • ',Wide Operating Supply Voltage Range 2V::; Voo::; 6V • Drives Directly 7 Oecade 'Multiplexed Common , Cathode LED pisplay • Internal Store Capability • Internal Inhibi,t to Counter Input • Test Speedup Point ORDERING INFORMATION PART NUMBER TEMPERATURE RANGE PACKAGE ICM72081PI -20°C to +85°C 28 Lead Plastic DIP ICM72081JI -20°C to +85°C 28 Lead CERDIP ICM7208/D DICE C0021111 80006221 Figure 1: Functional Diagram 7-15 Note: All typical values have been guaranteed by characterization and are ,not tested; Figure 2: Pin Configuration (Outline Drawing PI) -002 !('\I Ie,M7208 ... I ABSOLUTE MAXIMUM RATINGS Power Dissipation (Note 1) ......... : ........................ 1W Operating Temperature Range ........... -20·C to +85·C Storage Temperature Range ............ -65·C to + 150·C Lead Temperature (Soldering, 10sec) ................. 300·C Supply Voltage (Note 2) (Voo - Vss) ...................... 6V Input Voltage Range (any input terminal) (Note 2) ............. :', ......... :-;. Vss-O.3V to Voo+O.3V Output Digit Drive Current (Note 3). ~ .......•......... 150rriA Output Segment Drive, Current •.........•.... ; ...... : ... 30mA Stresses above those listed under AbS()lute Maximum, Ratings may cause permanent damage to the d9vice. These are stress ratings only, and functiOnal operation of the device ai these or any bther conditions abOVe th9Se indicated in the operational sections of tlie specifications is not implied. Exposure to ,absolute maximum rating conditiOns for extended periods may affect device reliability. ELECTRICAL CHARACTERISTICS SYMBOL • TEST CONDITIONS PARAMETER MIN TYP MAX Quiescent Current 30 300 102 Quiescent Current All control inputs plus terminal 19 connected to 1100 except STORE which is connected to Vss 70 350 1001 Operating, Supply Current All iinputs connected to VOO, RC multiplexer osc operating fin < 25kHz 210 500 1002 Operating Supply Current fin =2MHz VSUPPLY Supply Voltege Range fin::; 2MHz . ROIG Digit Driver On Resistance 10lG Digit Driver Leakage Current rSEG Segment Driver On Resistance ISLK Segment Driver Leakage Current R~ Pullup Resistance of RESET or STORE Inputs RIN COUNTER INPUT Resistance VHIN COUNTER INPUT HystereSiS Voltage UNIT I All controls plus terminal 19,'connected to Voo No multiplex oscillator 101 , (Voo = 5V, Vss ~ OV, TA = 25·C, display off, unless otherwise specified) pA 700 3.5 4 5.5 V 12 n 500 pA 500 pA m 40 100 400 kn 100 Terminal 12 either at Voo or VSS 25 50 NOTES: 1. This value of power dissipation refers to that of the package and will not be obtained under normal operating conditions. mV 2, The supply voltage must be applied before Or 'at the same time as any input voltage. This poses no problems with a single power supply system. If, a multiple poWer supply system is used, ,1\ Is mandatory that the supply for the ICM7208 is switched on before the, other supplies otherwise the device may be permanently damaged. ' , 3, The output' digit drive current must be limited to 150mA or less under steady state conditions. (Short term transients up to 250mA will not damage the device.) Therefore, depending upon the LED display and the supply voltage to be used it may be necessary to include additiOnal segment series resistors to liri\~ the digit currents. 7-16 Note: ,All typical values have been guaranteed by characterization and are not tested. ICM7208 b • c ,.--d r--e ;--1 r--I aaaaaa f!fI 1 2 I 1 1 • 2 3 ~ f5.0V 4 5 FUNCTION~I I.GENERATOR DISPLAY ~! My ~ v~o ~ ,_ rl~ ~ 5 3 • -fJ,- -: 10 11 12 13 14 RESET COMMDIII CATHODE 2IJ 27 VDD 26- 25 24 .ICM7208 23 22 21 • STORE COUNT ENABLE INHIBIT 7- VDD SOl< 20 "llf-- 27k RX f-- .. 171-- " R. s. Mux R.c. 0 SCILLATOR (APPROx. 1.5kHz) .o;·~F ex lSf-- TC027521 Figure 3: Test Circuit TYPICAL PERFORMANCE CHARACTERISTICS SEGMENT OUTPUT CURRENT AS A FUNCTION OF SUPPLY VOLTAGE MAXIMUM COUNTER INPUT FREQUENCY.AS A FUNCTION OF SUPPLY VOLTAGE 30.0 OJ :z: ! . l u ...Z ...a ... TA =125oC 6.0 ~ . II: / 5.0 4.0 ~ iii 3.0 II: II: .. .. . o 1.0 I 20.0 U ~ Q. 15.0 ~ 0 Z 10.0 :I III f/I V PI j III c:I I / / V ~ V c :I 2.0 ~ / :I :I V -' 25.0 Z III / ~ Q. ! 1 .. 7.0 TF~OC I LED FORWARD VOLTAGE DROP@ 15 mAo 1.IV 5 SEGMENTS LIT 5.0 V ." 2.0 3.0 4.0 5.0 SUPPLY VOLTAGE (V) 1.0 6.0 2.0 3.0 4.0 5.0 SUPPLY VOLTAGE !VI 6.0 OP03931I OP039211 7-17 Note: All typical values have been guaranteed by characterization and are not tested. ! ICM72.0$' ... Ii ('II g TYPICAL PERFORMANCE CHARACTERISTICS (CO NT.} SUPPLY CURRENT AS' A FUNCTION OF SUPPLY VOI::TAGE . 300 a~ ~ i... a: a: 0:) U I I TA = 25°C 250 'IN = G- o:) "' , 600 / V 25kHz RC oscill.1or 1.5kHz 200 --c . .: / 150 >oJ Q. SUPPLY CURRENT AS A FUNCTION OF COUNTER INPUT FREQUENCY 100 / 50 ./ / T~ l'ds'd 500 400 z '"::> II: II: U / 300 >- t::> 200 I II co 100 .r i.-" 1.6kHz RC MUX OSC 1111 1.~~~' EX~EJJ~~ .~ MUX INPUT'TTii o 1.0 2.0 3.0 4.0 5.0 SUPPLY VOLTAGE IV) 6.0 0.001 0.01 0.1 1.0 COUNTER INPUT FREQUENCY OP0394H OP03951I TEST PROCEDURES When driving the input of the ICM7208 from TTL, a 1k-5kil pull-up resistor to the positive supply must be used to increase peak to peak input signal amplitude. The ICM7208 is provided with three input terminals 7, 23, 27 which may be used to accelerate testing. The least two significant decade counters may be tested by applying an input to the 'COUNTER INPUT' terminal 12. 'TEST POINT' .terminal 23 provides an input which bypasses the 2 least significant decade counters and permits an injection of a signal into the third decade counter. Similarly terminals 7 and 27 permit rapid counter advancing at two pOints further along the string of decade counters. Display Considerations Any common cathode multiplexable LED display may be used. However, if the peak digit current exceeds 150mA for any prolonged time, it is recommended that resistors be included in series with the segment outputs to limit digit current to 150mA. The ICM7208 is specified with 5001lA of possible digit leakage' current. With certain new LED displays that are extremely efficient at low currents, it may be necessary to include resistors between the cathode outputs and the positive supply to bleed off this leakage current. CONTROL INPUT DEFINITIONS INPUT TERMINAL VOLTAGE FUNCTION 1. DISPLAY 9 Voo VSS Display On Display Off 2. STORE 11 VOO Counter Information Latched VSS Counter Information Transferring 3. ENABLE 4. RESET 13 VOO 14 VSS VOO VSS 10 "N (MHz) Display Multiplex Rate The ICM7208has approximately 0.5/lS overlap between output drive signals. Therefore, if the multiplex rate is very fast, digit ghosting will occur. The ghosting determines the upper limit for the multiplex frequency. At very low multiplex rates flicker becomes visible. It is recommended that the display multiplex rate be within the range of 50Hz to 200Hz, which corresponds to 400Hz to 1600Hz for the multiplex frequency input. For stand alone systems, two inverters are provided so that a simple but stable RC oscillator may be built using only 2 resistors and a capacitor. The multiplex oscillator is eight times the multiplex rate. Tne frequency is given using the following formulii: Input to Counter Blocked Normal Operation Normal Operation Counters Reset COUNTER INPUT DEFINITION The internal counters of the ICM7208 index on the negative edge of the input signal at terminal # 12. DETAILED DESCRIPTION Format of Signal to be Counted 1 f=-. 2.2R xCx The noise immunity of the COUNTER INPUT Terminal is approximately 1/3 the supply voltage. Consequently, the input signal should be at least 50% of the supply in peak to peak amplitude and preferably equal to the supply. The optimum input signal is a 50% duty cycle square wave equal in amplitude to the supply. However, as long as the rate of change of voltage is not less than approximately 1O- 4Vf/.ls at 50% of the power supply voltage, the input waveshape can be sinusoidal, triangular, etc. Rs should always be :::: 1Mil and Rs = kR x where k is in the range 2-10. An external generator may be used to provide the multiplex frequency input. This signal, applied to terminal 19 (terminals 16 and 20 open circuit), should be approximately equal to the supply voltage, and should be a square wave for minimum of power dissipation. 7-18 Note: All typical values have been guaranteed by characterization and are not lested. .O~O[l\~ ICM7208 • " r-- C d ,--. ,..---1 r--D B d C 7 aaaaaa 5 41 4 I ~5.OV T 5 DISPLAY VDD ..:::t::. 0 ~0:--1 0- 7 I 10 11 12 13 14 I I N.O. - - • -s lOGIc ~RVDD I I 2 3 4 " INPUT PROCESSING 2 '. VDD _( 3 -r 1- 241J 24125 24 ICM7208 23 22 21 20 " i COMMON CATHODE VDD 27 111718 15r-- ... VDD lOGIc - lOGIc 1 0.01.' RESET 05021911 Figure 4: Schematic Unit Counter the counting window. Figure 6 shows the recommended input gating waveforms to the ICM720S. At the end of a counting period (50% duty cycle) the counter input is inhibited. The counter information is then transferred and stored in latches, and can be displayed. Immediately after this information is stored, the counters are cleared and are ready to start a new count when the counter input is enabled. . Unit Counter Figure 4 shows the schematic of an extremely simple unit couriter that can' be used for remote traffic counting, to name one application. The power cell stack should consist of 3 or 4 nickel cadmium rechargeable cells (nominal 3.6 or 4.S volts). If 4 x 1.5 volt cells are used it is recommended that a diode be placed in series with the stack to guarantee that the supply voltage does not exceed 6 volts. The input switch is shown to be a single pole double throw switch (SPDT). A single pole single throw switch (SPST) could also be used (with a pullup resistor), however, anti-bounce circuitry must be included in series with the counter input. In order to avoid contact bounce problems due to the SPDT switch the ICM720S contains an input latch on chip. The unit counter updates the display' for each negative transition of the input signal. The information on the display will count, after reset, from 00 to 9,999,999 and then reset to 0000000 and begin to count up again. To blank leading zeros, actuate reset at the beginning of a ·count. Leading zero blanking affects two digits at a time. For battery operated systems the display may be switched off to conserve power. Using a 6.5536MHz quartz crystal and the ICM7207 driving the ICM720S, two ranges of counting may be obtained, using either 0.01 sec or 0.1 sec counter enable windows. Previous comments on leading zero blanking, etc., apply as per the unit counter. The ICM7207 provides the multiplex frequency reference of 1.6kHz. Period Counter For this application, agopposed to the frequency counter, the gating and the input signal to be measured are reversed to the frequency counter. The input period is multiplied by two to produce a single polarity signal (50% duty cycle) equal to the input period, which is used to gate into the counter the frequency reference (1 MHz in this case). Figure S shows a block schematic of the input waveform generator. The 1MHz frequency reference is generated by the ICM7209 Clock Generator using an SMHz oscillator frequency and internally dividing this frequency by S. Alternatively, a 1MHz signal could be applied directly to COUNTER INPUT. Waveforms are shown in Figure 7. Frequency Counter' The ICM720S may be used as a frequency counter when used with an external frequency reference and gating logic. This can be achieved using the ICM7207 Oscillator Controller (Figure 5). The ICM7207 uses a crystal controlled oscillator to provide the store and reset pulses together with 7-19 Note: All typical values have been guaranteed by characterization and are not tested. !ft ICM"l208 ... I B 8- B B B B • r-. 8 b ~d e '---" "de ,....,....-' • 7 5 4 3 2 I I I , ~ •.ov r--< VDOo-:r =:~ DISPLAY 'k ~ L:'1'U 8-4OpF 7 0 h 8 22>;-V';' OMII SOk 60k ~ 1~ RESET 11 ,. Voo VDD 17f-- ,. I- '6 1o.47~F t--- Voo CRYSTAL PARAMETERS c\.-uof CM" , 6mpf lIS - 6611 CO - 301' PROC~~ SELECT COMMON CATHODE 18t-- "'2 ~ GATING WINDOW * ~ '3 ~T J MHz ! . 28J 27 2 28 f-3 26 4 24 5 8 ICM720823 22 7 2, 9 20 I'0 '9 t-- -. c>- '00k , ICM 7207 VDD 1- INPUT LC017311 Figure 5: Frequency Counter Note: For a 1 sec count window which allows all 7 digits to be used with a reSOlution of 1Hz. the ICM7207 can be replaced with the .lCM7207A. Circuit details are given on the 7207A data sheet. . 1:1 C~---OV I COUNT ENABLE INPUT ~COUNTERINPUT~ ENAILEDICOUNTING WINDOW) lJ iiEsii'INPUT COUNTER INPUT - PULSE WIDTH NOT CRITICAL> SO.Sec. "~SE-=GM=-=EN:-:T=-=D~A-=TA-:ULATCHED COUNTER RESET EXTERNAL FREOUENCY TO IE MEASURED WF016911 Figure 6: Frequency Counter Input. Waveforms 7-20 Note: All typical values have been guaranteed by characterization and are not testad. .D~OlL ICM7208 a ..... N COUNT ENABLE INPUT i ~~TERNAL FREQUENCyl STORE GENERATED BY THE POSITIVE EDGE OF THE ENAiLi INPUT STORE INPUT RESeT INI!UT =U=RESET COUNTER INPUT INPUT IS = 1MHz --------------------------------------------WF017011 Figure 7: Period Counter Input Waveforms INPUT ---------f 1 - - -.....- - - - - ENiiLE INPUl iiEiET INPUT ~---------- STORE INPUT [ ~ ICM7209 r ______'_M_Hz_ COUNTER INPUT ~~~~To~~----L-____~ 80008301 Figure 8: Period Counter Input Generator 7~21 Note: All typical values have been guaranteed by characterization and are not tested. § ICM7209 ,~ Timebase Generator S:! GENERAL DESCRIPTION FEATURES The Intersil ICM7209 is a versatile CMOS clock generator capable of driving a number of 5 volt systems with a variety, of input requirements, When used to drive up to 5 TIL gates, the typical rise and fall times are 10ns. The ICM7209 consists of an oscillator, a buffered output, equal to the oscillator frequency and a second buffered output having an output frequency one-eighth that of the oscillator. The guaranteed maximum oscillator frequency is 10MHz. Connecting the DISABLE terminal to the negative supply forces the +8 output into the '0' state and the output 1 into the '1' state. • • • • • • • • High Freq!lency Operation - 10MHz Guaranteed Requires Only A Quartz Crystal and Two Capacitors Bipolar, CMOS Compatibility High Output Drive Capability - 5 x TIL Fanout With 10ns Rise and Fall Times Low Power-50mW at 10MHz Choice of Two Output Frequencies - Osc., and Osc. + 8 Frequencies Disable Control for Both Outputs Wide Industrial Temperature Range - 20°C to + 85°C ORDERING INFORMATION PART NUMBER TEMPERATURE RANGE ICM72091JA -20°C to +85°C 8 pin CERDIP ICM72091PA -20°C to + 85°C 8 pin PLASTIC ICM7209/D - DICE PACKAGE • 4,J.,YOO styss 1 OSC OUT 0 - - - - - - ' 3 OISABLE 0-----------------4-4 5 b----oOUT1 TOPYIEW CD02B41I D5025011 Figure 1: Functional Diagram 'Zener Voltage is Typically 6.3 Volts Figure 2: Pin Configuration (Outline dwg PAl Pin 1 Is designated by either a dot or a notch 7-22 Note: All typical values have been guaranteed by characterization and are not tested. -002 ICM7209 ABSOLUTE MAXIMUM RATINGS Supply Voltage ................................................... 6V Output Voltages ................... Vss - O.3V to Voo + O.3V Input Voltages ..................... VSS - O.3V to VDO + O.3V Power Dissipation (25°C) ................................ 300mW Storage Temperature .................. , ... -55°C to + 125°C Operating Temperature Range ........... -20°C to +85°C Lead Temperature (Soldering, 10sec) ................. 300°C NOTE: Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specification. is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. ELECTRICAL CHARACTERISTiCS (VOD - Vss = 5V± 10%, test circuit, SYMBOL 100 f05C = 10MHz, T A = 25°C unless otherwise specified.) PARAMETER TEST CONDITIONS Supply Current Co Disable Input Capacitance IILK Disable Input Leakage VOL Output Low State VOH Output High State -- r---' TYP MAX UNIT 11 20 mA ±10 JiA pF 5 Either '" or '0' state Either OUT 1 or OUT 0-8 simulated 5 x TTL loads t::ither OUT 1 or OUT 78 simulated 5 x TIL loads tR Output Rise Time (Note 3) Either OUT 1 or OUT 78 simulated 5 x TIL loads tF Output Fall Time (Note 3) Either OUT 1 or O'UT 78 simulated 5 x TTL loads fOSC Minimum OSC Frequency for +8 Output Note 2 Output 78 duty cycle Any' operating frequency Low state : High state GM MIN Note 1 No Load 0.4 - I 4.0 V 4.9 10 ns 10 2 MHz 7:9 80 Oscillator Transconductance 200 JiS of NOTES: 1. The power dissipation is a function the oscillator jrequency (1st ORDER EFFECT see curve) but is also effected to a small extent by the oscillator tank components. ' 2. The 78 circuitry uses a dynamic ,scheme. As with anY dynamic system, information or data is stored on very small nodal capacitances instoad Of latches (static systems) and there is a lower cutoff frequency of operation. Dynamic dividers are used in the ICM7209 to significantly improve high frequency performance and to decrease power consumption'. 3. Rise and iall times are defined between the output levels of 0.5 and 2.4 volts. CRYSTAL PARAMETERS: c.,- 5mpF RS -15 ohms CO= 3pF CL = 10pF f= 10 MHz O.01I.1F ~I----+ OUT+s rqo31311 Figure 3: Test Circuit 7-23 Note: All typical values have been guaranteed by characterization and are not tested. 81CIII7209 '~ ~ .". ' I , TYPICAL PERFORMANCE CHARACTERISTICS SUPPLY CURRENT AS A FUNCTION OF OSCILLATOR FREQUENCY 15 I TA - 25°C . LOADS AT OUTPUT 1 j ( 5 "\ TA-25°C = LOAD 5x TTL LOADS TA= 25°C fOSC· 10MHz \ 3 V i" V 100kHz V OUTPUTS D!SABLE;D .~--4--~; o~ 1MHz 10MHz FREQUENCY I 100MHz SUPPLY VOLTAGE RANGE FOR CORRECT OPERATION Of ,+8 COUNTER AS A FUNCTION OF OSCILLATOR FREQUENCY. 'TYPICAL OUT 1 RISE AND FALL TIMES 4 SIM~LAT~D ~~TTL II (VDD - Vss = 5V) o J 20 40 60 / J / ~LYVOLTAGE \. 80 100 T,IME (ns) , f---- / 0P048911 o LOCI FOR CO~RECT OPERATION 10kHz 100MHz 1 MHz 10MHZ 100MHz OSCILLATOR FREQUENCY 'v 0P049001 0P049111 Rise and fall times of OUT +8 are similar to those Of OUT 1. store voltage levels instead of latches (which are used in static dividers). The dynamic divider has advantages in high speed operation and low power but suffers from limited low frequency. operation. This results in a window of operation for any oscillator frequency (see TYPICAL PERFORMANCE CHARACTERISTICS). DETAILED DESCRIPTION OSCILLATOR CONSIDERATIONS The oscillator consists of a CMOS inverter with a nonlinear resistor connected between the oscillator input and output to provide D.C. biasing. Using commercially obtainable quartz crystals the oscillator will operate from low frequencies (10kHz) t010MHz. The oscillator circuit consumes about 500~ of current using a 10MHz crystal with a 5 volt supply, and is designed to operate with a high impedance tank circuit. It is therefore necessary that the quartz crystal be specified with a load capacitance (Cl) of 10pF instead of the standard 30pF. To . maximize the stability of the oscillator as a' function of supply voltage and temperature, the motional capacitance of the crystal should be low (5mpF or less). Vsing a fixed input capacitor of 18pF and a variable capacitor of nominal value of 18pF on the output will result in oscillator stabilities of typically 1ppm per volt change in supply voltage. THE +8 OUTPUT DRIVERS The output drivers consist of CMOS inverters having active pullups and pUlidowns. Thus the outputs can be used to directly drive TTL gates, other CMOS gates operating with a 5 volt supply, or TTL compatible MOS gates. The guaranteed fanout is 5 TTL loads although typical fanout capability is at least 10 TTL loads with slightly increased . output rise and fall. times. DEVICE POWER CONSUMPTION At low frequencies the principal component of the power consumption is the oscillator. At high oscillator frequencies the major portion of the power is consumed by the output drivers, thus by disabling the outputs (activating the DISABLE INPUT) the device power consumption can be dramatically reduced. OUTPUT A dynamic divider is used to divide the oscillator frequency by 8. Dynamic dividers use small nodal capacitances to 7-24 Note: All typical values have been guaranteed by characterization and are not tested. ICM7213 One Second/One Minute Timebase Generator GENERAL DESCRIPTION FEATURES The. ICM7213 is a fully integrated micropower oscillator and frequency divider with four buffered outputs suitable for interfacing with rnostlogic families. The power supply may be either a two battery stack (Ni-cad, alkaline, etc.) or a regular power supply greater than 2 volts. Depending upon the state of the WIDTH, INHIBIT, and TEST inputs, using a 4.194304MHz crystal will produce a variety of output frequencies including 2048Hz, 1024Hz, 34.133Hz, 16Hz, 1Hz, and 1160Hz (plus composites). The ICM7213 utilizes a very high speed low power metal gate CMOS technology which uses 6.4 volt zeners between the drains and sources of each transistor and also across the supply terminals. Consequently, the ICM7213 is limited to a 6 volt maximum supply voltage, although a simple dropping network can be used to extend the supply voltage range well above 6 volts (See Figure 7). • • Guaranteed 2 Volts Operation Very Low Current Consumption: Typ. 1001lA @ 3V • • • • • • All Outputs TTL Compatible On Chip Oscillator Feedback Resistor Oscillator Requires Only 3 External Components: Fixed CapaCitor, Trim CapaCitor, and A Quartz Crystal Output Inhibit Function 4 Simultaneous Outputs: One PulselSec, One PulselMln, 16Hz and Composite 1024 + 16 + 2Hz Outputs Test Speed-Up Provides Other Frequency' Outputs ORDERING INFORMATION PART NUMBER TEMPERATURE FlANGE ICM72131JD -20'C to +85'C 14 pin CERDIP ICM72131PD -20'C to +85'C 14 pin PLASTIC DIP ICM7213/D - DICE PACKAGE WIDTH OUT 4 OUT 3 OUT 2 INHIBIT V.. OUT 1 TEST OSCOUT V.. OSCIN Nie NIC COO28511 60012911 Figure 1: Functional Diagram 7-25 Note: All typical values have been guaranteed by characterization and are not tested. Figure 2: Pin Configuration (Outline drawing PO) 202800-002 PI IC"7213 ABSOLUTE MAXIMUM RATINGS Supply Voltage (Voo - Vss) ................................ 6.0V Output Current (Any output) .............................. 20l)1A All Input and Oscillator Voltages (Note 1) •...... ;.' .... 1.; .. : Vss-O:~Vto Voo+O.3V All Output Voltages (Note 1) ..............•..... VSS to.6.0V Operating Temperature Range ........... -20°C to +85°C Storage Temperature Range, ........... -4;O·C to + 125°C Power Dissipation (Note 2): .... : ....................... 200mW Lead Temperature (Soldering, 10sec) ................. 300°C Stresses above those listed under Absolute Maximum Ratings may 'cause permanent ·damage to ·the device. These are stress ratings only, and functional operation of the device at theSe or 'any"dther conditions above· those indicated in the operational s9ctions of the specifications is not implied. Exposure to absolute maximum rating . conditions for· extended periods may· affect device reliability. NOTE 1: The ICM7213like mdst CMOS devices: may enter a destructive latchup mode if an input or output voltage is applied in excess of those; defined and there is no 'supply current limiting. NOTE 2: oerate linearly power rating of 200mW at 25·C to50mW at 70·C. ELECTRICAL CHARACTERISTICS. (Voo- Vss = 3 OV , fosc = 4· 194304MHz, Test Circuit TA = 25°C unless otherwise specified) SYMBO,L TEST CONDITIONS PARAMJ:TER 100 Supply Current VSUPPLY Guaranteed Operating Supply Voltage Range (VOO - VSS) -20·C IOlK Output leakage Current Any output, VOUT = 6 Volts ROUT Output Sat. Resistance Any output, IOlK" 2.5mA II Inhibit Input Current Inhibit terminal connected to VOO ITP Test Point Input Current IW , MIN < TA < 85·C TYP MAX UNIT 100' 140 p.A 4 2 V 10 p.A 120 200 n 10 40 Test pOint terminal connected to VOO 10 40 Width Input Current Width terminal' connected to Voo 10 40 gm Oscillator gm VOO= 2V fOSC Oscillator Frequency Range (Note 3) fSTAB Oscillator Stability ts Oscillator Start Time jlA jlS 100 1 2V < VOO < 4V 10 MHz 1.0 ppm 0.1 sec. 0.2 Voo.= 2.0 volts NOTE: 3. The ICM7213 uses dynamic dividers for high frequency division. As with any dynamic system, information is stored on very smail nodal capacitances instead of latches (static system)', therefore there is a lower frequency.of operation. Dynamic dividers are use;d to improve the high frequency performance while at the. same time significantly decreaSing power consumption. At low supply voltages, operation at less than 1MHz is possible. See application notes. WIDTH CRYSTAL PARAMETER f = 4.194.304 MHz (PARALLEL RS = 35 RESONANT) N.O. n ~-17mpF Co = 2.5 pF INHIBIT T.P. }--+.---o+ SUPPLY VOLTAGE TCQ31411 Figure 3: Test Circuit 7-26 Note: All typical values have been guaranteed by characterization alld are not tested.- ICM7213 TYPICAL PERFORMANCE CHARACTERISTICS SUPPLY CURRENT AS A FUNCTION OF TEMPERATURE I ~ 110 Z w ~100 ~ VSUpp=3V CIN CO~T 30 pF'OS = 4.1 MHz = ~ U90 ....>- ~ 1 250 = o 9200 !z~150~-+--~~~~~+-~ J "- ...... ::l tao il 70 - ,..... V a: a'00~-+--~~--~--+-~ ~ 50 AA- il -40 -20 0 0 L.....-I._-'----I_....l.._.L.-.....J 3.0 4.0 5.0 SUPPLY VOLTAGE V DD -V•• TEMPERATURE _ °c +1.5 VOO-VSS=3V +1.0 CIN. COUT ANO QUARTZ CRYSTAL MAINTAINEO AT 25°C +0.5 fOSC=4.19MHz .,.,.. L V OP049401 OSCILLATOR STABILITY AS A FUNCTION OF SUPPLY VOLTAGE ~ < :; i: f w Q > +1 H 5~ /' -0.5 0.1 0.2 0.3 0.4 0.5 0.6 OUTPUT SATURATION VOLTAGE (ANY OUTPUT I OP04931I OP049201 OSCILLATOR STABILITY AS A'FUNCTION OF DEVICE TEMPERATURE o o 2.0 +20 +40 +60 +80 -1.0 OUTPUT CURRENT AS A FUNCTION OF OUTPUT SATURATION VOLTAGE <300r--r-.--.--.--r-~ I I 130 ~12O SUPPLY CURRENT AS A FUNCTION OF SUPPLY VOLTAGE 0 ~$-1 1--+::;;iIooi~+--+7"-I---t CINI:: COUT = 30 pF "'<1 ~. oc( ~: I 1 -1.5 -40 -20 0 +20 +40 +60 +80 TEMPERATURE _ ·C ~ 2~.O--L-~~--~~~5"".O SUPPLY VOLTAGE Voo-V.. OP04961I 0P049501 OUTPUT DEFINITIONS INPUT STATES· TEST INHIBIT WIDTH L L L L L H L H L L H H H H H L L H L H L PIN 12 OUT 1 PIN 13 OUT 2 PIN 14 OUT 4 PIN 2 OUT 3 +2'8 1024 + 16 + 2Hz (+2'2+2'8+22') composite +222 1160Hz, 1 Sec. +(224 x 3 5) 16Hz 1024 + 16 + 2Hz 1Hz, 7.8ms 1160Hz, 125ms +2'8 (+2'2+2'8-<-221) composite +222 16Hz 1024 + 16Hz OFF 16Hz 1Hz, 7.8ms x OFF' +2 '8 (+2'2+2'8) composite 16Hz 1024 + 16Hz +2'8 (+2'2+2 '8) composite ON 4096 + 1024Hz 2048Hi 34_133Hz, 50% D.C. (+2 ' °+2'2) composite +2 " +(2 '3 x 5 x 3) ON ON OFF S~E WAVEFORMS 4096 + 1024Hz 2048Hz 34.133Hz, 50% D.C. (+2 1°+2 12) composite +2 11 +(2'3 x 5 x 3) 1024Hz ON OFF ON OFF +2 12 H H H ON 1024Hz +2 12 NOTE: When TEST and RESET are connected to ground, or left open, all outputs except for OUT 3 and OUT 4 have a 50% duty cycle. 7-27 Note: All typical values have been guaranteed by characterization and' are not tested. PI -I 1-16 Hz •••••••• OUT 2 I' . • .024 Hz ••• .j 2 Hz WF021601 Figure 4: Output Waveforms , INHIBIT OUT. 3 C~SE 1l oUT 4 I 'OUT3 CASE 2 , (PULSE 3\ COINCIDENT OUT 4 WITH INHIBIT. I I ULJ I , I .: I t ,, I I , , I I l--t.r 0.75 - 1.0 SliC , :- 59~75 to , 60SECS. I I ,..n (""'. (EFFECT OF .' WIOTH OUT 3 ..... (ou" (EFFECT OF WIDTH 'WIDTH ON OUT 4) I , I I , , I I ,. I I u! I I ,, U I I I'I ~ I =:t!F=7.8ms I r-::u- 7.8m. , <7.8ms-:- OUT 3 WIDTH ON OUT 4' --,, II i , I , I I I I , , I I n . I I II I iI ~ I I U:I U I , I , , I , , I I I I I u ~-. I I I I , I ! WF021701 Figure 5: Effect of Input Inhibit (Test Connected to Vss or Left Open) All time scales are arbitrary, and in the case of OUT 3 only the pulses coinciding with the negative edge of OUT 4 are shown, Where time intervals are relevant they are clearly shown. "r- .- APPLICATIONS SOPPLY VOLTAGE Supply Voltage Considerations The ICM7213 may be used to provide various precision outputs with frequencies from 2048Hz to 1160Hz using a 4, 194,304Hz quartz oscillator, and other output frequencies may be obtained using other quartz crystal frequencies. Since the ICM7213 uses dynamic high frequency dividers for the initial frequency division there are limitations on the supply voltage range depending on the oscillator frequency. If, for example, a low frequency quartz crystal is selected, the supply voltage should be selected in the center of the operating window, or approximately 1.7 volts. r OPERATING WINDOW 3 2 , 'OkHz 'l1lIkHz ' ..Hz 'DOIHz OP05&701 Figure 6: Window of Correct Operation The supply voltage to the ICM7213 may be derived from a high voltage supply by using a simple resistor divider (if power is of no concern), by using a series resistor for minimum current consumption, or by means of a regulator. 7-28 Note: All typical values have been guaranteed by characterization. and are not tested. ICM7213 Oscillator Considerations EXAMPLE: f ~ 4.2 MHz 8V 0;;; V 0;;; 12V (10 nom.1 11 ""100IlA R 1 ""1 mA 2 ~2 ""3KOHMS R1 ""6.8K OHMS CBYPASS 0.01 11 The oscillator consists of a CMOS inverter and a feedback resistor whose value is dependent on the voltage at the oscillator input and output terminals and the supply voltage. Oscillator stabilities of approximately 0.1 ppm per 0.1 volt variation are achievable with a nominal supply voltage of 5 volts and a single voltage dropping resistor. The crystal specifications are shown in the TEST CIRCUIT. Il F It is recommended that the crystal load capacitance (Cl) be no greater than 22pF for a crystal having a series resistance equal to or less than 75 ohms, otherwise the output amplitude of the oscillator may be too low to drive the divider reliably. 05025101 11 CBYPASS 0.011lF +-_ _-, If a very high quality oscillator is desired, it is recommended that a quartz crystal be used having a tight tuning tolerance ± 1Oppm, a low series resistance (less than 25 ohms), a low motional capacitance of 5mpF and a load capacitance of 20pF. The fixed capacitor CIN should be 30pF and the oscillator tuning capacitor should range between approximately 16 and 60pF. EXAMPLE: fOse - 4.2 MHz svo;;; V 0;;; 12V (10V noml 11 "" 100IlA R3 = (1().. 31 K OHMS 10- 4 Use of a high quality crystal will result in typical stabilities of 0.05ppm per 0.1 volt change of supply voltage. ""68l< OHMS Control Inputs 05025201 Figure 7: Biasing Schemes with High Voltage Supplies Logic Family Compatibility The TEST inRut inhibits the 2 18 output and applies the 29 output to the 221 divider, thereby permitting a speedup of the testing of the +60 section by a factor of 2048 times. This also results in alternative output frequencies (see table). Pull up resistors will generally be required to interface with other logic families. These resistors must be connected between the various outputs and the positive power supply. The WIDTH input may be used to change the pulse width of OUT 4 from 125ms'to 1 sec, or to change the state of OUT 4 from ON to OFF during INHIBIT. 7-29 Note: All typical values have been guaranteed by characterization and are not tested. "C"I ICII7215 . ~ 6-Digit LED Display .~ 4-Function Stopwatch GENERAL DESCRIPTION FEATURES The ICM7215 is a fully integrated six digit LED stopwatch circuit fabricated with Intersil's low threshold metal gate CMOS process. The circuit interfaces directly with a six digit/seven segment common cathode LED display. The low battery indicator can be connected to the decimal point anode or to a separate LED. The only components required for a complete stopwatch are the display, three SPST switches, a 3.2768MHz crystal, a trimming capacitor, three AA batteries and an ON-OFF switch. For a two function stopwatch, or to add a display off feature, one additional slide switch is required. The circuit divides the oscillator frequency by. 215 to. obtain 100Hz, which is fed to the fractional seconds, seconds and mii1Ujes counters, while an intermediate frequency is used to obtain the 1/6 duty cycle 1.07kHz multiplex waveforms. The blanking logic provides leading zero blanking for seconds and minutes independently of the clock. The ICM7215 is packaged in a 24-lead plastic DIP. • Four Functions: Start/Stop/Reset, Split, Taylor, Time Out . .• Six Digit Display: Ranges Up to 5.9 Minutes 59.99 Seconds • High LED Drive Current: 13mA Peak Per Segment at 16.7% Duty Cycle With 4.0 Volt Supply • Requires Only Three Low Cost SPST Switches Without Loss of Accuracy: Start/Stop, Reset, Display Unlock • Chip Enable Pin Turns Off Both Segment and Digit Outputs; Can Be Used for Multiple Circuits Driving One Display • Low Battery Indicator • Digit Blanking On Seconds and Minutes • Wide Operating Range: 2.0 to 5.0 Volts • 1kHz Multiplex Rate Prevents Flickering Display • Can Be Used. Easily In Four Different Single Function Stopwatches or Two Two-Function Stopwatches: Start/Stop/Reset With Time-out, Split With Taylor. The Component Count for A Three- or Four-FunctiQn Stopwatch Will Be Slightly" Greater . •. Retr(lfit to ICM720fj .for Split and/or Taylor Applications ORDERING INFORMATION PART NUMBER TEMP. RANGE PACKAGE ICM72151PG -20·C to + 70.C 24-Pin PLASTIC ICM7215/D DIP DICE 2INPUTSB- DIGIT 6 OUTPUTS OUTPUTS OSCOUT ~-====r---' LBIANOOE voo Seg • !leg d 10th. Sallg l00th. VSS $ega 7 OUTPUTS Sell b $eg I SI S10 ~ ~10UTPUT TEST START/STOP MODE RESET DISPLAY Segc LOW FREQUENCY DIVIDER OSCIN CHIP ENABLE Ml0 Ml CD028721 BD013001 Figure 1: Functional Diagram Figure 2: Pin Configuration (Outline dwg PG) 7-30 Note: All typical values have been guaranteed by characterization and are not tested: -002 ICM7215 ABSOLUTE MAXIMUM RATINGS Storage Temperature ...................... -55°e to +125°e Input Voltage ........................ Vss-O.3V to VDD+O.3V Output Voltage ....................................... VSS to VDD Supply Voltage (VDD to Vss) .............................. 5.5V Power Dissipation (Note 1) .............................. O.75W Operating Temperature ..................... - 20 0 e to + 70 0 e Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only. and lunctional operation 01 the device at these or any other conditions above those indicated in the operational sections 01 the specifications is not implied. Exposure to absolute maximum rating conditions lor extended periods may affect device reliability. ELECTRICAL CHARACTERISTICS: (T A = + 25°e, stopwatch circuit, VDD = 4.0V, Vss = av, unless otherwise specified.) SYMBOL PARAMETER TEST CONDITIONS ~ TA ~ VSUPPLY Supply Voltage (Voo - Vss) -20·C 100 Supply Current Display off ISEG Segment Current Peak Average 5 segments lit 1.8 Volts across display MIN +70·C TYP 2.0 0.6 9.0 MAX UNIT 5.0 V 1.5 mA 13.2 2.2 Switch Actuation Current All inputs except CHIP ENABLE 20 50 Switch Actuation Current Chip enable 50 200 IOLK Digit Leakage Current VOIG = 2.0V 50 ISLK Segment Leakage Current VSEG = 2.0V 100 VLBI Low Battery Indicator Trigger Voltage Isw 2.8 2.2 ILBI LBI Output Current VOO = 2.0V, VLBI = 1.6V ISTAB Oscillator Stability Voo = 2.0V to Voo = 5.0V gm Oscillator Transconductance VOO = 2.0V JJ.A V 2.0 mA 6 ppm 120 JJ.s 30 pF Oscillator Input Capacitance COSCI NOTE: 1. The output devices on the ICM7215 have very low Impedence characteristics, espeCially the digit cathode drivers. II these devices are shorted to a low impedance power supply, the current could be as high as 300mA. 1:=~ @_ 1-8, 7 _d I ~ •• 5....... •c 4 _ 2 - d COMMON CATHODE DISPLAY b C • D.P.M10 t 14 B. B. B. B. B. M1 S10 51 lOths t t t t 13 12 11 18 VOO QUARTZ CRYSTA PARAMETERS I = 3.27S8MHz RS = 50/1 CM =23mpF CO = 14pF CL = 15pF l00ths t 17 VOD ~ .l- PI SWITCH TRUTH TABLE SWITCH MODE POS. (21) MODE START/STOP/RESET FLOAT 1 SPLIT 2 VDD TAYLOR 3 vss TIME-OUT 4 FLOAT DISPLAY (19) FLOAT UNLOCK UNLOCK Vss N.O. NORMALLY OPEN _ T O DISPLAY LC026111 Figure 3: Stopwatch Circuit 7-31 Note: All typical values have been guaranteed by characterization and are not tested. !... ~ ICM7215 TYPICAL PERFORMANCE CHARACTERISTICS SEGMENT CURRENT VS SUPPLY VOLTAGE SUPPLY CURRENT VS VOLTAGE C .!20 DISPLAY OFF TA" +zsoC L / ia: § / V ~ 15 V ~ 10 /' I 3.0 4.0 5.0 ~ 5 i 0 L ./ :/ 3.0 4.0 5.0 SUPPLY VOLTAGE (VI OP0497Q1 0P04981 I LOW BATTERY INDICATOR (LBI) TRIGGER VOLTAGE VS TEMPERATURE OSC. STABILITY VS'SUPPLY VOLTAGE I =2.9 -' TA = +25°C COUT =22pF V ./ V i'-. ~ 11/ 2.7 V " 1"- "~ -' 2.5 g "'" i'-- a: V V L V 2.0 SUPPLY VOLTAGE I I ,/ U 0.0 2.0 TA = +zsoC I VF(LED) = 1.8V ~2.3 , I!= 2.1 2.0 3.0 4.0 ~ 5.0 -10 0 SUPPLY VOLTAGE (VI 10 30 50 TEMPERATURE eC) 0PG49911 OPOSOOOI ,-; -, ,/I, ,-,,-, L"_' RESET START/STOP ... 27.65 lee ONCE RESET MEn MEn .. LJl.' DISPLAY STOPS CLOCK AND DISPLAY COUNTING MEn ,-,,-, 2765 '_'':' -,0 START/STOP ONCE START/STOP ONCE LD00871' Figure 4: Start/Stop/Reset Mode The Start/Stop/Reset mode can be used for single event timing in a one-button stopwatch; an additional switch can be used to provide an instant reset. To time another event, the display must be reset before the start of the event. Seconds will be displayed after one second, minutes after one minute. The range of the stopwatch is 59 minutes 59.9,9 seconds, and if an event exceeds one hour, the number of hours must be remembered by the user. Leading zeroes are not blanked after orie hour. DETAILED DESCRIPTION FUNCTIONAL OPERATION Turning on the stopwatch will bring up the reset state with the fractional seconds displaying 00 and the other digits blanked. This display always'indicates that the stopwatch is ready to go. The display can be turned off in any mode by connecting the CHIP ENABLE input to Voo. START/STOP/RESET MODE When the MODE input is floating and the DISPLAY input is floating or connected to VDD the circuit is in the Start/ Stop/Reset mode. (Figure 4). . 7-32 Note: All typical values have been guaranteed by characterization' and are not tested. ICM7215 ,-,,-, 2DL:7 ii:J ,_,, __00 'L' L'U RESET DISPLAY STOPS CLOCK RESETS AND STARTS COUNTING CLOCK AND DISPLAY COUNTING PRESS START/STOP ONCE PRESS START/STOP ONCE - - 20.47 _ . - - -..... ~_--12.35 III L I L_--I rm;-t '" 'L' uJ -"' 'L H I:'. LAP 3 '---O-'SP-LA-Y-S-T-O-PS--' CLOCK AND DISPLAY COUNTING I':; _,_, ::JC IL DISPLAY STOPS CLOCK RESETS AND STARTS COUNTING PRESS STARTISTOP ONCE PRESS DISPLAY UNLOCK ONCE _.---_.oo-____ 42.7tHC._ _ __ 11,-' } L"_' . - _ .....---R-ES-E-T--.J CLOCK RESETS AND STARTS COUNTING PRESS START/STOP ONCE PRESS RESET Figure·5: Taylor or Sequential Mode ,i" .:"i ,_, 1 "_' iO "_, '_'U ,_ L' I , RESET PRESS START/STOP ONCE " DISPLAY STOPS CLOCK CONTINUES COUNTING CLOCK AND DISPLAY COUNTING PRESS START/STOP ONCE DISPLAY STOPS CLOCK CONTINUES COUNTING PRESS START/STOP ONCE PRESS DISPLAY UNLOCK ONCE _ _ _ 20.47 _ . - - -.. _---12.35 H C . _••_ _ _ _ 42.71 _ . , - - - - UC IIJ '-' "-' CLOCK AND DISPLAY COUNTING ,. I L' , 'e c RESET DISPLAY STOPS CLOCK CONTINUES COUNTING PRESS START/STOP ONCE "" '_'L' ,_, U PRESS RESET LOOO8601 Figure 6: Split Mode TAYLOR OR SEQUENTIAL MODE Iy and start counting the next interval. The time displayed is that elapsed since the last activation of START/STOP. The display is stationary after the first interval unless the display unlock is used. by connecting the DISPLAY input to Vss. to show the running clock•. RESET can be used at any time. When the MODE input is connected to VSS. the stop· watch is in the Taylor or Sequential mode. (Figure 5). Each split time is measured trom zero in the Taylor mode; i.e.• after stopping the watch. the counters reset momentari· 7-33 Note: All typical values have been guaranteed by characterization and are not tested. ICM7215 ,-,,-, II,] RESET CLOCK AND PRESS DISPLAY COUNTING START/STOP O~E • ( 20 L:t 00 LII_ _"_, ULI 2lf:8 b;1 CLOCKANO DISPLAY COUNTING PRESS START/STOP DISPLAY STOPS CLOCK STC?PS PRESS PRESS START/STOP START/STOP O~E O~E 20.47 - . - - T I M E OUT _ _ 22.32_. DD}- L:279H '----,----' DISPLAY STOPS CLOCK STOPS . RESET PRESS RESET O~E LOOO8801 Figure 7: Time-Out Mode Taylor mode. The circuit, Figure 8, shows how the user can obtain lap and cumulative readings of the same event. SWITCH CHARACTERISTICS The ICM7215 is designed for use with SPST switches throughout. On the DISPLAY and RESET inputs the characteristics of the switches are unimportant, since the circuit responds to a logic level held for any length of time however short. Switch bounce on these inputs does not need to be specified. The START/STOP input, however, responds to an edge and so requires a switch with less than 15ms of switch bounce. The bounce protection Circuitry has been specifically designed to let the circuit respond to the first edge of the Signal, so as to preserve the full accuracy of the system. SPLIT MpDE When the MODE input is connected to VOO the stopwatch is in the Split mode. (Figure 6). The Split mode differs from the Taylor in that the lap times are cumulative in the Split mode. The counters do not reset or stop after the first start until RESET is activated. Time displayed is the cumulative time elapsed since the first start after reset. Display unlock can be used, by connecting the DISPLAY input to Vss, to let the display 'catch up' with the clock, and RESET can be used at any time. TIME OUT MODE When the MODE input is floating and the DISPLAY input is tied to VSS, the stopwatch is in the Time-out mode. (Figure 7). In the Time-out mode the clock and display alternately start and stop with activations of the START/STOP switch. RESET can be used at any time. The display unlock button is bypassed in this mode. DISP!-AY TO DISPLAY TO DISPLAY APPLICATION NOTES LOW BATTERY INDICATOR The on-chip low battery indicator is intended for use with a small LED or the decimal pOints on a standard LED display. The output is the drain of a p-channel transistor two-thirds the size of the segment drivers which will typically source 2mA of current. The threshold voltage is approximately 2.5 volts at room temperature. Normal AA type batteries will provide many hours of accurate timekeeping after the indicator comes on, however the wide voltage spread between the LBI threshold voltage and minimum operating voltage is required to guarantee low battery indication LInder worst case conditions. CHIP ENABLE The CHIP ENABLE input is used to disable both segment and digit drivers without affecting any of the functions of the device. When the CHIP ENABLE input is floating or connected to VSS, the display is enabled, and when the tied to VOO the display is turned off. One example of the many possible uses of this feature is driving one display from two ICM7215 devices, one in the split mode and the other in the ICM7215 24 TAYLOR 15 ~~---------~ r--+---i ~------~~ VDO TAYLOR SPLIT ALL OTHER SWITCHES COMMON TO BOTH DEYICES LD00891I Figure 8 LATCHUP CONSIDERATIONS Due to the inherent structure of junction isolated CMOS devices, the circuit can be put in a latchup mode if large currents are injected into device inputs or outputs. For. this reason special care should be taken in a system with multiple power supplies to prevent voltages being applied to inputs and/or outputs before power is applied to the 7215. If only inputs are affected, latchup can also be prevented by limiting the current into the input terminal to less than 1mAo 7-34 Note: All typical values have been guaranteed by characterization and are not· tested. .U~Dll ICM7215 series resistance and/or load capacitance should be speci- OSCILLATOR DESIGN ~d. The oscillator of the ICM7215 includes all components on chip except the 3.2768MHz crystal and the trimming capacitor. The oscillator input capacitance has a nominal value of 30pF, and the circuit is designed to work with a crystal with a load capacitance of approximately 15pF. If the crystal has characteristics as shown in the Typical Performance Characteristics, an 8-40pF trimming capacitor will be adequate for a tuning tolerance of ±30PPM on the crystal. If the crystal' s static capacitance is significantly lower, a narrower trimming range may be selected. After deciding on a crystal and a nominal load capacitance, take the worst case values of Cin, Cout and Rs and calculate the gl")1 required by: TEST The TEST input is used for high speed testing of the device. When the input is pulsed low, a latch is set which speeds up counting by a factor of 32; each pulse on the TEST input rapidly advances both minutes and seconds in a parallel mode. To accurately rapid advance the signal applied to the TEST input must be free of switch bounce. The circuit is taken out of the test mode by using either RESET or START/STOP. ? W" REPLACING THE ICM7205 WITH THE ICM7215 Cin = input capacitance The ICM7215 is designed to be compatible with circuits using the ICM7205. If the 7205 is used only in the Split mode no changes are required. If the 7205 is used in the Taylor mode and the Split-Taylor input (pin 21) is left open, a jumper from pin 21 to VSS must be added when converting to the 7215. A jumper may also be needed if the 7205 is used with a Split/Taylor switch. Once the jumper has been added the board can be used with either device. Cout = output capacitance = 21T x ~ Tuning can be accomplished by using the 10th or 100th seconds with the device reset. The frequency on the cathode should be tuned to 1066.667Hz, which is equivalent to a period of 937.5 microseconds. Note that a. frequency counter cannot be connected directly to the oscillator because of possible loading. RS = series resistance w ~ I\) OSCILLATOR TUNING [ Co (Cin + Cout) ]2 Cin Cout RS 1 + ....::..-'-''-'--'-':..::.::. Cin 'Cout Co = static capacitance gm = a crystal frequency The resulting gm should be less than half the gm specified for the device. If it is not, a lower value of crystal fI 7-35 Note: All typical values have been guaranteed by characterization and are not tested. S ICM7216A/B/C/D iii' 8-Digit Multi-Function .... Frequency CounterITimer =N a G~NERAL DESCRIPTION The ICM7216A and B are fully integrated Timer Counters with LED display drivers. They combine a high frequency OSCillator, a decade timebasecounter, an 8-decade data counter and latches, a 7-segment decoder, digit multiplexers and 8 segment and 8 digit drivers which directly drive large multiplexed LED displays. The counter ihputs have a maximum frequency of. 10MHz in frequency and unit counter modes and 2MHz in the other modes. Both inputs are digital inputs. In many applications, amplification and level shifting will be required to obtain proper digital Signals for these inputs. The ICM7216A and B can function as a frequency counter, period counter, frequency ratio (fA/fs) counter, time interval counter or as a totalizing counter. The counter uses either a 10MHz or 1MHz quartz crystal timebase. For period and time interval, the 1OMHz timebase gives a 0.1 fJ.S resolution. In period average and time interval average, the resolution can be in the nanosecond range. In the frequency mode, the user can select accumulation times of 0.01 sec, 0.1 sec, 1 sec and 10 sec. With a 10 sec accumulation time, the frequency can be displayed to a resolution of 0.1 Hz in the least significant digit. There is O~2 seconds between measurements in all ranges. The ICM7216C and 0 function as frequency counters \ only, as described above. All versions of the ICM7216 incorporate leading zero blanking. Frequency is displayed in kHz. In the ICM7216A and B, time is displayed in fJ.S. The display is multiplexed at 500Hz with a 12.2% duty cycle for each digit. The ICM7216A and C are deSigned for common anode display with typical peak segment currents of 25mA. The ICM7216B and 0 are designed for common cathode displays with typical peak segment currents of 12mA. In the display off mode, both digit and segment drivers are turned off, enabling the display to be used for other functions. FEATURES ALL VERSIONS: • Fun(:tions as a Frequency Counter (DC to 10MHz) • Four Internal Gate Times: 0.01 Sec, 0.1 Sec, 1 Sec, 10 Sec in Frequency Counter Mode • Directly Drives Digits and Segments of Large Multiplexed LED Displays (Common Anode and Common Cathode versions) • Single Nominal 5V Supply Required • Highly Stable OSCillator, Uses 1MHz or 10MHz Crystal • Internally Generated Decimal POints, Interdigit Blanking, Leading Zero Blanking and Overflow Indication • Display Off Mode Turns Off Display and Puts Chip Into Low Power Mode • Hold and Reset Inputs for Additional Flexibility ICM7216A AND ICM7216B • Functions Also as a Period Counter, Unit Counter, Frequency Ratio Counter or Time Interval Counter • 1 Cycle, 10 Cycles, 100 Cycles, 1000 Cycles in Period, Frequency Ratio and Time Interval Modes • Measures Period From 0.5fJ.s to 10s ICM7216C AND ICM7216D • Decimal Point and Leading Zero Blanking May Be Externally Selected ORDERING INFORMATION PART , NUMBER TEMPERATURE RANGE ICM7216A1D -20·C to +85·C DICE ICM7216AIJL -20·C to +85·C 28 pin CERDIP PACKAGE ICM7216B/D -20·C to +85·C DICE ICM7216BIPI -20·C to + 85·C 28 pin PLASTIC DIP ICM7216BIJL -20·C to + 85·C 28 pin CERDIP ICM7216C/D -20·C to + 85·C DICE ICM7216CIJL -20·C to +85·C 28 pin CERDIP ICM7216D/D -20·C to + 85·C DICE ICM7216DIPI -20·C to +85·C 28 pin PLASTIC DIP ICM7216DIJL -20·C to +85·C 28 pin CERDIP 7-36 Note: All typical values have been guaranteed by characterization and are not tested. 202815-002 I... ICM7216A/B/C/D ...0> II.) .- EXT OIIC INPUT ~~ DECQOER SELECT osc OUlPUT 3 osc. OIIC INPUT ~ ....-.- r--- I l- I , REFERENCE COUNTER IJ-r- I I INPUT I II iJo OIGIT DRIVERS 1 r---1 RANGE SELECT LOGIC RANGE CONTROL ~ Q • STOREANO AESET LOGIC -~ INPUT CONTROL LOGIC INPUT A - EN MAIN -;- 101 COUNTER CL OVERFLOW ofO , o to t, t' INPUT 8 OATA LATCHES AND (NOTE II OU1PUTMUX 0 STORE!-- I r--- CONTROL - INPUT CONTROL LOGIC ~ -'-- RANGE ''''U1 CONTROL L--EXT DP. INPUT lNOTE 2) D.P. f-- r- '-r- I...; DECODER LOGIC. r+- - CL MAIN FF ~ a f-o INPUT lOGIC 0 """01..0 L... n ...... .LOGIC r-- OUTPUTS (81 l....- '--- 6 ...... DIGIT "os ,,040R.,QII } - iiiiET --• .--SEGMENT DRIVER fh· SEGMENT OUTPUTS (81 L--MEASURE MENTIN PROGRESS OUTPUT 1........- (NOTE 21 r-FUNCTION INPUT (NOTE 1I FN CONTROL LOGIC ~ HOLO INPU T PI 6 NOTES, 1) FUNCTION INPUT AND INPUT B AVAILABLE ON ICM7216A/8 ONLY. 2) EXT D.P. INPUT AND MEASUREMENT IN PROGRESS OUTPUT AVAILABLE ON --- leM 7216C/D ONLY. 90008801 Figure 1: Functional Diagram 7-37 Note: All typical values have been guaranteed by characterization and are not tested. D '.D~DIL () ""- ICf.t7216A/B/C/D iii 'ABSOLUTE MAXIMUM RATINGS ;,.. Maximum Supply. Voltage (VOO-VSS) .................. 6.5V Maximum Digit Output Current ......................... 400mA MaximUm, Segment Output Current ..................... 60mA Voltage On Any Input or Output Termin,aI[1j ....... Voo+0.3V to Vss-0.3V ~ co B Maximum Power Dissipation at· 70·C ............................. 1.0W (ICM7216A & C) , 0.5W (ICM72168 & D) Operating Temperature Range ........ ·... -20·C to +85·C Storage Temperature Rimge ............ -55·C to + 125·C Lead Temperature (Soldering, 10sec) ................ ;300·0 'Note: 1. The ICM7216 may be triggered into a destructive latchup mode if either input signals are applied before the power supply is applied or if input or outputs are forced to voltages exceeding Voo to VSs by more than 0,3 volts. Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sl'ctions of the specifications is not implied. Exposure to absolute maximum rating ~onditions for .extended periods may affept device reliability. CONTROL INPUT INWT A CONTROl. INPUT FUNCTION INPUT HOLD INPUT OSCOUTPUT FUNCTION INPUT OECIMAL POINT outPUT OSC INPUT SEG E OUTPUT SEG G OUTPUT EXT OSC INPUT SEGAOUTPUT v.. DIGIT 2 OUTPUT DIGIT 3 OUTPUT SEG D'OUTPUT SEGBOUTPUT SEGCOUTPui DIGIT 4 OUTPUT DIGIT 5 OUTPUT VDD DIGIT 6 OUTPUT DIGIT 7 OUTPUT DIGIT 8 OUTPUT' SEG F OUTPUT iiE!n' INPUT RANGE INPUT INPUTB DIGIT 1 OUTPUT DIGIT 1 OUTPUT DIGIT 2 OUTPUT DIGIT 4 OUTPUT v.. DIGI·T 5 OUTPUT DIGIT. OUTPUT DIGIT 7 OUTPUT DIGIT 8 OUTPUT iiES£f INPUT RANGE INPUT COO2171I CD021e11 CONTROL INPUT INPUT A INPUT A HOLD INPUT DSCDUTPUT MEASUREMENT fA ~ DECIMAL I'OINT OUTPUT SEG E OUTPUT SEG G OUTPUT SEG A OUTPUT v.. SEGDOUTPUT SEG8OUTPU~ SEGCOUTPUT SEGFOUTPUT iIHlf,NPUT EX, D.P, INPUT RANGE INPUT OSCINPUT EXT DSC INPLn; EXT OSC INPUT DIGIT 1 OUTPUT DIGIT 2 OUTPUT DECIMAL POINT OUTPUT SEGGOUTPUT SEGEOUTPUT SEGAOUTPUT SEGDOUTPUT vDD DIGIT 3 OUTPUT DIGIT 4 OUTPUT DIGIT 5 OUTPUT SEG B OUTPUT SEGcOUTPUT SEG F OUTPUT DIGIT 7 OUTPUT ,)IGIT 8 OUTPUT COO21811 COO2e:311 Figure 2: Pin Configurations ICM7226AIJL (Common Anode LED Display), a 10MHz quartz crystal, eight 7 segment 0.3" LED's, P.C. board, resistors, capacitors, diodes, switches, socket: everything needed to quickly assemble a functioning ICM7226 Universal Counter System. EVALUATION KIT The ICM7226 Universal Counter System has all of the features of the ICM7216 plus a number of additional features. The ICM7226 Evaluation Kit consists of the 7-38 Note: All typical values have been guaranteed by characterization and are not tested. ..C~ ICM7216A/B/C/D ELECTRICAL CHARACTERISTICS (ICM7216A/B) (VDD = 5.0V ±5%, Vss = 0, T A = 25°C, unless otherwise specified,) SYMBOL PARAMETER N .' TEST CONDITIONS MIN TYP MAX UNIT 2 5 rnA 6.0 V ICM7216A/B 100 Operating Supply Current Display Off, Unused Inputs to VSS Supply Voltage Range (Voo - VSS) -20'C < TA < + 85'C, INPUT A, INPUT B Frequency at Imax 4.75 Maximum Frequency INPUT A, Pin 28 -20'C < TA < +8S'C 4.75 < VOO 5 6.0V, Figure 3, Function = Frequency, Ratio, Unit Counter Function = Period, Time Interval 10 2.5 MHz MHz VSUPPlY IA(max) Maximum Frequency INPUT B, Pin 2 -20'C < TA < +BS'C 4.75 < VOO:S 6.0V, Figure 4 2.5 ..MHz Minimum Separation INPUT A to INPUT B Time Interval Function -20'C < TA < +8S'C 4.75 < VOO :s 6.0V, Figure 5 250 ns lose Maximum Osc. Freq. and Ext. Osc. Frequency -20'C < TA < +8S'C 4.75 < VOO :s 6.0V lose Minimum Ext. Osc. Freq. 9m fmux Oscillator Transconductance VOO = 4.7SV, TA = + 8S'C Multiplex Frequency lose = 10MHz lose = 10MHz IB(max) Time Between Measurements VINl VINH RIN Input Voltages: Pins 2,13,25,27,28 Input Low Voltage Input High Voltage Input Resistance to VOO Pins 13,24 IllK Input Leakage Pin 27,28,2 dVIN/dt Input Range 01 Change 10 !n! MHz 100 -20'C -" 2000 kHz /lS 500 Hz 200 ms < TA < +8S'C 1.0 3.5 VIN = VOO - 1.0V 100 400 kn 20 Supplies Well Bypassed V V /lA 15 mV//ls ICM7216A IOH IOl Digit Driver: Pins 15,16,17,19,20,21,22,23 High Output Current Low Output Current VOUT=Voo-2.0V VOUT=VSS+l.0V -140 -180 +0.3 rnA rnA IOl IOH SEGment Driver: Pins 4,5,6,7,9,10,1'1,12 Low Output Current High Output Current VOUT= VSS+ I.SV VOUT = Voo - 2.5V 20 35 -100 rnA VINl VINH RIN Multiplex Inputs: Pins 1,3,14 Input Low Voltage Input High Voltage Input Resistance to VSS VIN = VSS+ 1.0V '/lA 0.8 2.0 50 100 V V kn 75 -100 rnA /lA ICM7216B IOl IOH Digit Driver: Pins 4,5,6,7,9,10,11,12 Low Output Current High Output Current VOUT = VSS+ 1.3V VOUT=VoO-2.SV 50 IOH ISLI( SEGment Driver: Pins 15,16,17,19,20,21,22,23 High Output Current Leakage Current VOUT = VOO-2.0V VOUT = Voo - 2.SV -10 VINl VINH RIN Multiplex Inputs: Pins 1,3,14 Input Low Voltage Input High Voltage Input Resistance to VOO VIN = VOO - 2.SV 7--39 Note: All typical values have been guaranteed by characterization and are not tested. Voo-0.8 100 mA 360 10 /lA VoO-2.0 V V kn PI ~ ICM7216A1B1C/D ..... II ELECTRICAL CHARACTERISTICS ..... (ICM7216C/D) (Voo = 5.0V ±5%, Vss = 0, TA = 25°C,unless otherwise specified.) = H po. SYMBOL I! sa PARAMETER TEST CONDITIO"S MI" TYP MAX UNIT 2 5 mA 6.0 V ICM7216C/D 100 Operating Supply Current Display Off, Unused Inputs to 'ISS VSUPPLY Supply Voltage Range (Voo": 'Iss) -20°C < TA < +85°C; INPUT A Frequency at lmax IA(max) Maximum Frequency INPUT A, Pin 28 _20°C <·TA < + 85°C 4.75 <'100 < 6.0'1, Figure 3 10 lose Maximum Osc. Freq. and Ext. Osc. Frequency _20°C < TA < +85°C 4.75 < '100 < 6.OV 10 lose Minimum EXt. Osc. Freq. gm Oscillator Transconductance '100 =4.75'1, TA" +85°C Imux Multiplex Frequency lose .. 10MHz SOO fJS Hz Time Between Measurements lose·l0MHz 200 ms VINL VINH Input Voltages: Pins 12,27,28 Input Low Voltage Input High Voltage RIN Input Resistance to '100 Pins 12,24 IILK Input Leakage Pin 27, Pin 28 IOL 4.75 MHz MHz 100 2000 _20°C -- *""A SIGNAL. I!>--~' -,,---,,--''''''0.. -,,WF017401 Figure 3: Waveform for Guaranteed Minimum fA(max) Function Frequency, Frequency Ratio, Unit Counter. = ... , 1N1,. v.. T:' v.. TC027B21 INPUT A OR INPUT B 4.5V DEVICE O.5V 1 2 TYPE CD4049B Inverting Buffer CD4070B Exclusive-OR WF017SOI Figure 4: Waveform for Guaranteed Minimum fs(max) and fA(max) for Function = Period and Time Interval. Figure 5: Priming Circuit, Signal A&B High or Low. Following the priming procedure (when in single event or 1 cycle range input) the device' is ready to measure one (only) event. When timing repetitive signals, it is not necessary to "prime" the ICM7216A1B as the first alternating signal states automatically prime the device. See Figure 5. During any time interval measurement cycle, the ICM7216A1B requires 200ms, following B going low to update all internal logic. A new measurement cycle will not take place until completion of this internal update time. TIME INTERVAL MEASUREMENT The ICM7216A1B can be used to accurately measure the time interval between two events. With a 10MHz time-base crystal, the time between the two events can be as long as ten seconds. Accurate resolution in time interval measurement is 100ns. The feature operates with Channel A going low at the start of the event to be measured, followed by Channel B going low at the end of the event. When in the time interval mode anq measuring a single event, the ICM7216A1B must first be !'primed" prior to measuring the event of interest. This is done by first generating a negative going edge on Channel A followed by a negative going edge on Channel B to start the "measurement intervaL" The inputs are then primed ready for the measurement. Positive going edges on A and B, before or after the priming, will be needed to restore the original condition. 7-42 Note: All typical values have been guaranteed by characterization and are not tested. n ICM7216A/B/C/D ... I: ...N --0) ~ III n FUNCTION: I t' TIME INTERVAL (intern.lon 250rKMIN. MEASURED INTERVAL IFIAST! I I-- I --l I-- MEASURED INTERVAL (LAST) WF017601 NOTE: IF RANGE IS SET TO 1 .EVENT. FIRST AND LAST MEASURED INTERVAL WILL COINCIDE Figure 6: Waveforms for Time Interval Measurement (Others are similar, but without priming phase). INPUT A ~'00pF 21 27 21 25 24 6 7 FR TI. U.C. •• o.F. 23 1~ EXT t---~------------------~~~---------------------+~~ D, INPUT Z2 21 20 I. TY'ICAL CRYSTAL SPECS, F· '0 MHz PARALLEL RESON~NCE c 22pF As· <3$0 CL •• I - -..... ~VDO 17 I '6 15 RANGE 0, 100m • I .0./1 .1/10 1/'00 'OI1K LEO OVERFLOW INOICATOR "V BBBBBBBB LC02960J Figure .7: Test Circuit (7216A shown; others similar) 7-43 Note: All typical values have been guaranteed by characterization and are not tested. .--, . ~ ICM7216A/B/C/D ID C ... ... G (II D I ~ ~ :1 ~ LC0178Q1 , 5 6 Overflow will be indicated on the decimal point output of digit e. A separate LEO overflow indicator can be connected as follows: S 9 LC017901 ICM7216A1C ICM7216B/D CATHODE ANODE DEC. PT. De De DEC. PT. Figure 8: Segment Identification and Display Font DETAILED DESCRIPTION INPUTS A and B VDD. The chip will remain in this "Display Off" mode until HOLD is switched back to VSS. While in the "Display Off" mode, the segment and digit driver outputs are open, the oscillator continues to run with a typical supply current of 1.5mA with a 10MHz crystal, and no measurements are made. In addition, inputs to the multiplexed inputs will have no effect. A new measurement is initiated when the HOLD input is switched to VSS. Segment and Digit Drive outputs may thus be bussed to drive a common display (up to 6 circuits). ·1 MHz Select - The 1MHz select mode allows use of a 1MHz crystal with the same digit multiplex rate and time between measurements' as with a 10MHz crystal. The decimal point is also shifted one digit to the right in Period and Time Interval, since the least significant digit will be in ps increments rather than O.lps increments. INPUTS A and B are digital inputs with a typical switching threshold of 2.0V at VDD = 5.0V. For optimum performance the peak-to-peak input signal should be at least 50% of the supply voltage and centered about the switching voltage. When these inputs are being driven from TTL logic, it is desirable to use a pullup resistor. Tt'le circuit counts high to low transitions at both inputs. (INPUT B is available only on ICM7216A1B). Note: The amplitude of the input should not exceed the supply, otherwise, the circuit may be damaged. Multiplexed Inputs The FUNCTION, RANGE, CONTROL and EXTERNAL DECIMAL POINT inputs are time multiplexed to select the input function desired. This is achieved by connecting the appropriate Digit driver output to the inputs. The input function, range and control inputs must be stable during the last half of each digit output, (typically 125ps), The multiplex inputs ai'e. active high for the common anode ICM7216A and C and active low for the common cathode ICM7216B and D. External Oscillator Enable - In this mode the EXTERNAL OSCILLATOR INPUT is used instead of the on-chip oscillator for Timebase input and Main Counter input in period and time Interval modes. The on-Chip oscillator will continue to function when the external oscillator is selected. The external oscillator input frequency must be greater than 100kHz or the chip will reset itself to enable the on-Chip oscillator. OSCillator INPUT (pin 25) must also be connected to EXT.OSC. input when using EXT.OSC. input. External Decimal Point Enable - When external. decimal point is enabled a decimal point will be displayed whenever the digit driver connected to EXTERNAL DECIMAL POINT input is active. Leading Zero Blanking will be disabled for all digits following the decimal point (7216C/D only). Noise on the multiplex inputs can cause improper operation. This is particularly true when the unit counter mode of . operation is selected, since changes in voltage on the digit drivers can becapacitively coupled through the LED diodes to the multiplex inputs. For maximum noise immunity, a 10kfl resistor should be placed in series with the multiplex inputs as shown in the application circuits. Table 1 shows the functions selected by each digit for these inputs. RANGE INPUT The RANGE INPUT selects whether the measurement is made for 1, 10, 100, 1000 counts ofthe reference counter. In all functional modes except unit cou~ter a change in the RANGE INPUT will stop the measurement in progress without updating the display and then initiate a new measurement. This prevents an erroneous first reading after the RANGE INPUT is ,changed. 'CONTROL INPUT Functions Display Test - All segments are enabled continuously, giving a display of all 8's with,decimal points. The display will be blanked if Blank Display is selected at the same time. Display Off- To disable the drivers, it is necessary to tie 04 to the CONTROL INPUT and havethe HOLD input at 7-44 Note: All typical valUes have Qaen guaranteed by characterization and are not tested. ICM7216A/B/C/D after the decimal point. This input is available on the ICM7216C and 0 only. HOLD Input - Except in the unit counter mode, when the HOLD Input is at VDD, any measurement in progress (before STORE goes low) is stopped, the main counter is reset and the chip is held ready to initiate a new measurement as soon as HOLD goes low. The latches which hold the main counter data are not updated, so the last complete measurement is displayed. In unit counter mode when HOLD input is at VDD, the counter is not stopped or reset, but the display is frozen at that instantaneous value. When HOLD goes low the count continues from the new value in the counter. RESET Input - The RESET input resets the main counter, stops any measurement in progress, and enables the main counter latches, resulting in an all zero output. A capaCitor to ground will prevent any hang-ups on power-up. Table 1: Multiplexed Input Functions FUNCTION DIGIT FUNCTION INPUT Frequency D1 Pin 3 Period D8 (ICM7216A & B Frequency Ratio D2 Only) Time Interval D5 Unit Counter D4 Oscillator D3 Frequency RANGE INPUT .01 sec/1 Cycle D1 Pin 14 .1 sec/1 0 Cycles D2 1 sec/1 00 Cycles D3 10 sec/1 K Cycles D4 CONTROL INPUT Blank Display D4 and Hold Pin 1 Display Test D8' 1 MHz Select D2 External Oscillator D1 Enable External Decimal D3 Point Enable EXT. D.P. INPUT Decimal pOint is output for same Pin 13, ICM7216C digit that is connected to this input & D Only DISPLAY CONSIDERATIONS The display is multiplexed at a SOOHz rate with a digit time of 244 IJ.S. An interdigit blanking time of 6 J.AS is used to prevent ghosting between digits. The decimal point and leading zero blanking assume right hand decimal point displays, and zeros following the decimal pOint will not be blanked. Also, the leading zero blanking will be disabled when the Main Counter overflows. Overflow is indicated by the decimal point on digit 7 turning on. The ICM7216A and C are designed to drive common anode LED displays at peak current of 2SmAi segment, using displays with VF = 1.8V at 2SmA. The average DC current will be over 3mA under these conditions. The ICM7216B and 0 are deSigned to drive common cathode displays at peak current of 1SmAisegment using displays with VF = 1.8V at 1SmA. Resistors can be added in series with the segment drivers to limit the display current in very efficient displays, if required. The Typical Performance Characteristics curves show the digit and segment currents as a function of output voltage. To get additional brightness out of the displays, VOO may be increased up to 6.0V. However, care should be taken to see that maximum power and current ratings are not exceeded. The segment and digit outputs in ICM7216's are not directly compatible with either TTL or CMOS logic when driving LEOs. Therefore, level shifting with discrete transistors may be required to use these outputs as logic Signals. FUNCTION INPUT The six functions that can be selected are: Frequency, Period, Time Interval, Unit Counter, Frequency Ratio and Oscillator Frequency. This input is available on the ICM7216A and B only. These functions select which signal is counted into the Main Counter and which signal is counted by the Reference Counter, as shown in Table 2. In all cases, only 1 ~O transitions are counted or timed. In time Interval, a flip-flop is toggled first by a 1 ~ 0 transition of INPUT A and then by a 1 .... 0 transition of INPUT B. The oscillator is gated into the Main Counter from the time INPUT A toggles the flip-flop until INPUT B toggles it. In unit counter mode, the main counter contents are continuously displayed. A change in the FUNCTION INPUT will stop the measurement in progress without updating the display and then initiate a new measurement. This prevents an erroneous first reading after the FUNCTION INPUT is changed. Table 2: 7216A1B Input Routing REFERENCE COUNTER DESCRIPTION Frequency (fA) MAIN COUNTER Input A Period (tA) Ratio (fA/fB) Time Interval (A_B) Oscillator Input A Osc.(Time Interval FF) Unit Counter (Count A) Input A N'ot Applicable Osc. Freq. (fose) Oscillator 100 ~z (OSCillator .;. 10 or 104) 100 Hz (Os.f,illator ';'10 5 or 10 ) ACCURACY Input A Input B In a Universal Counter crystal drift and quantization effects cause errors. In frequency, period and time interval modes, a Signal derived from the oscillator is used in either the Reference Counter or Main Counter. Therefore, in these modes an error in the oscillator frequency will cause an identical error in the measurement. For instance, an oscillator temperature coefficient of 20ppm/oC will cause a measurement error of 20ppmrC. In addition, there is a quantization error inherent in any digital measurement of ± 1 count. Clearly this error is reduced by displaying more digits. In the frequency mode the maximum accuracy is obtained with high frequency inputs and in period mode maximum accuracy is obtained with low frequency inputs. As can be seen in Figure 9, the least accuracy will be obtained at 10kHz. In time Interval Time Interval FF EXTernal DECimal Point INput When the external decimal point is selected this input is active. Any of the digits, except 08, can be connected to this point. 08 should not be used since it will override the overflow output and leading zeros will remain unblanked 7-45 Note: All typical values have been guaranteed by characterization and are not tested, .·.U~UIl ~ ICM7216A/B/C/D -=...... ...... III CII a measurements there can be an error of 1 count per interval. As a result there is the same inherent accuracy in ali-ranges as shown in Figure 10. In frequency ratio measurement can be more accurately obtained by averaging over more cycles of INPUT B as shown in Figure 11. Ii '~ ~ Mlx,MUM TIME "- INTERVAL FOR 103 '/ERjALS "'- / .----"'- I ~'ME MAX;MUM INTERVAL FOR '02 '~ERVALS '""- MAXIMUM TIME INTERVAL_ fFO~'O IN~ERVAlS 10 102 103 104 105 106 107 10B 'TIME INTERVAL (~.IS) OP040701 Figure 10: Maximum Accuracy of Time Interval Measurement Due to Limitations of Quantization Errors fREQUENCY 1Hz) OP040601 Figure 9: Maximum Accuracy of Frequency and Period Measurements Due to Limitations of Quantization Errors·· oP040eOI Figure 11: Maximum Accuracy for Frequency RatiO Measurement Due .to . Limitation of Quantization Errors 7-46 Note: All typical values have been guaranteed by characterization and are not tested. i... ICM7216A/B/C/D ... ~ Yeo 22M!2 FREQUENCY PERIOD FREQUENCV RATIO TIME INTE RVAl 0, 0, 0. 1OkO 03 0, 0, 0. O. 28 27 26 25 2. 23 leM 22 72168 21 20 10 19 11 18 17 12 13 16 ,. DRIVERS Yeo 10k!! ....... II ....... n ....... = o 10MHz CRYSTAL ~~D D.P. G 10kn A 0 1--+--4---------------------------~==========~~---_--+ 'Ok!! FREC. D. I . COMMON ANODE LED DISPLAV I PERIOD FREQ. RATIO BBBBBBBB. 02' LED =~~~~'V 0, LC018311 Figure 15: 100MHz Multifunction Counter OSCILLATOR CONSIDERATIONS The oscillator is a high gain complementary FET inverter. An external resistor of 10Mn to 22Mn should be connected between the OSCillator INPUT and OUTPUT to provide biasing .. The oscillator is designed to work with a parallel resonant 1OMHz quartz crystal with a static capacitance of 22pF and a series resistance of less than 35 oh(11s. The required gm should nqt exceed 50% of the gm specified for the ICM7216 to insure reliable' startup. The OSCillator INPUT and OUTPUT pins each contribute about 5pF to Cin and Couto For maximum stabilitY of frequency, Cin and Cout should be approximately twice the specified crystal static' capacitance. . For a specific crystal and load capacitance, the required gm can be calculated as follows: In cases where non decade prescalers are used it may be desirable to use a crystal which is neither 10MHz or 1MHz. In that case both the multiplex rate and time between measurements will be different. The multiplex rate gm = J. Cin Cout R+ + ~~)2 . f08c f05c isfmux = ---4 for 1OMHz mode and fmux = ---3 for the 2x10 2x10 6 2 x 10 1MHz mode. The time between measurements is - - - in where CL = (_C.::.in:...C..:o.::ut:... \ Cin+ CouJ f05c 2x 105 the 10MHz mode and - - - in the 1MHz mode. Co = Crystal Static Capacitance f08c RS = Crystal Series Resistance The crystal and oscillator components should be located as close to the chip as practical to minimize pickup from other Signals. Coupling from the EXTERNAL OSCILLATOR INPUT to the OSCILLATOR OUTPUT or INPUT can cause undesirable shifts in oscillator frequency. Cin = Input Capacitance Cout = Output Capacitance w = 27rf 7-50 Note: All typical values have been guaranteed by characterization and are not tested: ICM7216A/B/C/D ' ....n 22MSl 24 • ,eM 0, 23 22 0, 0, n16A 21 O. I. I. 20 It "- 17 0,.0, " e" YIJO ~ 0, 10k!! 0, 0, COMMON ANODE LED DISPLAY D. I BBBBBBBB~ lED OVERFLOW INDICATOR ~+-~ __ ~ ____ ~ ____+-__ ~~ __-*____ ~ ____ 0, ~~~ __ ~-J LC029701 Figure 16: 100MHz Frequency, 2MHz Period Counter ~r-------r-------~------, l'r-------~------~~~----_4 ! ~ ~ ffi S ...a: 10~--------t_--------+---------4 fA __ • fa '_I PERIOD. nME INTERVAL MODES Voo - Vss (VOLTS) OP040911 voo Figure 17: Typical Operating Characteristics fA(max), fB(max) as a Function of 7-51 Note: All typical values have been guaranteed by characterization and are not tested. PI ~:.:t~~~/~~:a~~~~rammable .U~OlL Up/Down Counter GENERAL DESCRIPTION FEATURES The ICM7217 and ICM7227 are four digit, presettable up/ down counters, each with an onboard presettable register continuously compared to the counter. The ICM7217 ver, sions are intended for use in hardwired applications where thumbwheel switches are used for loading data, and simple SPOT switches, are used for chip control. The ICM7227 versions are for use in processor-based systems, where presetting and control functions are performed under processor control. ' These circuits provide multiplexed 7 segment LED dis, play outputs, with common anode or common cathode configurations available. Digit and segment drivers are provided to directly drive displays of up to 0.8" character height (common anode) at a 25% duty cycle. The frequency of the onboard multiplex oscillator may be controlled with a single capacitor, or the oscillator may be allowed to free run. Leading zeros can be blanked. The data appearing at the 7 segment and BCD outputs is latched; the content of the counter is transferred into the latches under external control by means of the Store pin. The ICM7217/7227 (comll)on anode) and ICM7217A1 7227A (common cathode) versions are decade counters, providing a maximum count of 9999, while the ICM7217B, 7227B (common anode) and ICM7217C/7227C (common cathode) are intended for timing purposes, providing a maximum count of 5959. These circuits provide 3 main outputs; a CARRY /BORROW output, which allows for direct cascading of counters, a ZERO output, which indicates when the count is zero, and an EQUAL output, which indicates when the count is equal to the value contained in the regi!?ter . .Data is multiplexed to and from the device by means of a three-state BCD I/O port. The CARRY/BORROW, EQUAL, ZERO outputs, and the BCD port will each drive one standard TTL load. To permit operation in noisy environments and to prevent multiple triggering with slowly changing inputs, the count , input is provided with a Schmitt trigger. Input frequency is guaranteed to 2M Hz, although the device will typically run with fin as high as 5MHz. Counting and comparing (EQUAL output) will typically run 750kHz, maximum. • Four Decade, Presettable Up-Down Counter With Parallel Zero Detect • Settable Register With Contents Continuously Compared to Counter • Directly Drives Multiplexed 7 Segment Common Anode or Common Cathode LED Displays • , On-Board Multiplex Scan Oscillator • Schmitt Trigger On' Count Input • TTL Compatible BCD I/O Port, Carry/Borrow, Equal, and Zero Outputs • Display Blan" Control for Lower Power Operation; Quiescent Power Dissipation < SmW • All Terminals Fully Protected Against Static Discharge • Single 5V !i)upply Operation ORDERING, INFORMATION PART NUMBER ICM72171JI PACKAGE DISPLAY OPTION 28 Lead CERDIP Common Anode COUNT OPTION MAX COUNT Decade/9999 ICM7217AIPI 28 Lead PLASTIC Common Cathode Decade/9999 ICM7217BIJI 28 Lead CERDIP Common Anode Timer/S9S9 ICM7217CIPI 28 Lead PLASTIC Common Cathode Timer/5959 ICM72271J1 28 Lead CERDIP Common Anode Decade/9999 ICM7227AIPI 28 Leail PLASTIC Common Cathode Decade/9999 ICM7227BIJI 28 Lead CERDIP Common Anode Timer/S9S9 ICM7227CIPI 28 Lead PLASTIC Common Cathode Timer/S9S9 ICM7217/D DICE ICM7217A/D DICE ICM7217B/D DICE Common Anode ICM7217C/D DICE Common Cathode Timer/S9S9 ICM7227/D DICE Common Anode ICM7227A1D DICE Common Cathode Decade/9999 ICM7227B/D' DICE Common Anode ICM7227C/D DICE Common Cathode Timer/S9S9 7-52 Note: All typical values have been guaranteed by characterization and are not tested, Common Anode Decade/9999 ' Common Cathode Decade/9999 Timer/59S9 Decade/9999 Timer/S9S9 202816-002 ICM7217/ICM7227 ----+-01.. ftlilj---+--I ..IIO uplliii ---+-I'UIO COUNT -~~+-I r---1===;r===t~~~!~~~~~~~==~===[CAARY/.ORROW ,., 2·, ,., MUX. OSCILLATOR !-----SCA. D4 D3D2Dl 8DOO9oo1 Figure 1: ICM7217 Functional Diagram l"iliiS---+--I COUNT ---+-~ r---!===1===9~~$ij~~~~~g~==~==~~-_CA.RRY/I!IOfl:ROW w. L..:======~s 80009101 Figure 2: ICM7227 Functional Diagram 7-53 Note: All typical values have been guaranteed by characterization and are not tested. .CPtt721711CM7227 ABSOLUTE MAXIMUM RATINGS Supply Voltage (VDD - Vss) ............................... 6V Input Voltage (any terminal) ....................... VSS +O.3V, Vss -O.3V Note 2 Power Dissipation (common anode/Cerdip) ... 1W Note 1 Power Dissipation (common cathode/Plastic) ........ O.5W Note 1 Operating Temperature Range ........... -25°C to +85°C Storage Temperature Range ............ -55°C to + 125°C Lead Temperature (Soldering, 10sec) ................. 300°C NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent device failure. These are stress ratings only and functional operation of the devices at these or any other cond~ions above those indicated in the operation sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may cause device failures. D1 D2 D3 CARRY/BORROW %!1m ImJA[ BCD 1108's D4 BCD 1/04's VDD BCD I/O 8's BCD 1104's BCD I/O 2'. BCD I/O 1's COUNT INPUT STORE UPIDOWN SC1 SC2 ~O·AT¥A .. TR~A~NwS ..F~E~R DISPLAY CONT. 22 !1m. 2 20 Vss srob !1m. !lEG, "-11_ _ _ _ _- SEGo SEQb SEG, SEGc VDD SEG. SEG. SEGg DISPLAY CONT. !lEGo !lEG. Vss D1 02 03 CWS .........._ _ _ _..t= D4 SEGc CD021911 CO022011 COMMON ANODE COMMON CATHODE Figure 3: Pin Configurations (Outline dwgs JI., PI) ELECTRICAL CHARACTERISTICS (VDD = 5V ±10%, Vss = OV, TA = 25°C, Display Diode Drop 1.7V, unless otherwise specified) SYMBOL 100 (7217) 100 (7227) TYP MAX UNIT Supply Current (Lowest power mode) PARAMETER Display Off, LC, DC, UPIDN, ST, RS, BCD I/O Floating or at Voo (Note 3) 350 500 jlA Supply current (Lowest power mode) Display off (Note 3) 300 500 lOp Supply Current OPERATING . VOO Supply Voltage TEST CONDITIONS Common Anode, Display On, all "8's" Common Cathode, Display On, all "8' s" MIN 140 200 IlA rnA rnA 50 100 4.5 5 140 200 rnA peak -20 -35 rnA peak -50 -75 rnA peak 5.5 V IOIG Digit Driver output current Common anode, VOUT - Voo -2.0V ISEG SEGment driver output current Common anode, VOUT = IOIG Digit Driver output current .Common cathode, VOUT = ISEG SEGment driver output current Common cathode VOUT = Voo -2V 9 12.5 rnA peak Ip ST, VOUT=VDD-2V (See Note 3) 5 25 IlA liN 3 level input impedance VSIH BCD I/O input high voltage RS, UP/DN input pullup current + 1.5V + 1.0V 40 ICM7217 common anode (Note 4) (VOO = 5.0V) ICM7217 common cathode (Note 4) ICM7227 with 50pF effective load VSll BCD I/O input low voltage 75 kn 1.5 V 4.40 V 3 V ICM7217 common anode (Note 4) (VOO = 5.0V) 0.60 ICM7217 common cathode (Note 4) 3.2V V 1.5 V ICM7227 with 50pF effective load 7-54 Note: All typical values have been guaranteed by characterization and are not tested. V n a:::: ICM7217/ICM7227 SYMBOL PARAMETER TEST CONDITIONS MAX UNIT MIN TYP Ispu BCD 1/0 input pullup current ICM7217 common cathode VIN = VOO - 2V (Note 3) 5 25 /lA Ispo BCD 1/0 input pulldown current ICM7217 common anode VIN = + 2V (Note 3) 5 25 /lA VOH BCD 1/0, ZERO, EQUAL Outputs output high current IOH = 100/lA 3.5 VOL BCD 1/0, CARRY IBORROW ZERO, EQUAL Outputs output low current IOL = -1.SmA fin Count input frequency (Guaranteed) VOO=5V±10%, -20·C 60iJA. A 10kn pull-up resistor to Voo on the EQUAL or ZERO outputs is recommended 7-56 Nole: All typical values have been guaranleed by characlerization and are not tested. ....~I\) ....... ICM7217/ICM7227 -i .... .... I\) I\) INTERNAL [~ _D2~ (SCDAND SEGMENT ENABI.E) EXTERNAL (COMMON ANODE) DIGIT STROBES ________________________ o.--,~ ~ __________________________________________ l-~:......----------!k--! _D2~ ~ --Jr- INTERDIGIT BLANK ______________________________ o.--,~ ____ ____________________ ~ ~ L WF017701 Figure 5: Multiplex Timing SYMBOL tucs tUCh tCUh tCUI tCB tBw tCEI· tCZI DESCRIPTION MIN UP/DOWN setup time (min) UP/DOWN hold time (min) COUNT pulse high (min) COUNT pulse low (min) COUNT to CARRY/ BORROW delay CARRY/BORROW pulse width COUNT to EQUAL delay COUNT to zrnc5 delay TYP MAX UNIT 300 a 100 250 100 250 750 ns 100 500 300 PI WF017801 Figure 6: ICM7217/27 COI,jNT and Output Timing Multiplex SCAN Oscillator width is used to delay the digit driver outputs, thereby providing inter-digit blanking which prevents ghosting. The digits are scanned from MSO (04) to LSO (01). See Figure 4 for the display digit multiplex timing. Table 1: ICM7217. Multiplexed Rate Control The on-poard multiplex scan oscillator has a nominal free-running frequency of 2.5kHz. This may be reduced by the addition of a single capacitor between the SCAN pin and the positive supply. Capacitor values and corresponding nominal oscillator frequencies,. digit repetition rates, and , loading times (for ICM7217 versions) are shown in Table 1 below. NOMINAL DIGIT SCAN CYCLE TIME OSCILLATOR REPETITION SCAN (4 digits) RATE CAPACITOR FREQUENCY The internal oscillator output has a duty cycle of approximately 25:1, providing a short pulse. occurring at the oscillator frequency. This pulse clocks the four-state counter which provides the four multiplex phases. The short pulse None 2.5kHz 625Hz 1.6ms 20pF 1.25kHz 300Hz 3.2ms 90pF 600Hz 150Hz 8ms 7-57 Note: All typical values have been guaranteed by characterization and are not tested. ICM7217/ICM7227 VDD = IV SCAN INPUT ICM7217 SCAN INPUT ICM7217 •• 20KII c 1MlI 20011 500!! SCAN INPUT ICM7217 1M!! .OlI-'F 08022001 ov SC009411 Figure 7: Brightness Control Circuits During load counter and load register operations, the multiplex oscillator is disconnected from the SCAN input and is allowed to free-run. In all other conditions, the oscillator may be directly overdriven to about 20kHz, however the internal oscillator signal will be of the same duty cycle and phase as the overdriving signal, and the digits are blanked during the time the external signal is at a positive level. To insure proper leading zero blanking, the interdigit blanking time should not be less than about 2j.1s. Overdriving the oscillator at less than 200Hz may cause display flickering. LOADing the COUNTER and REGISTER The BCD I/O pins, the LOAD COUNTER (LC), and LOAD REGISTER (LR) pins combine to provide presetting and compare functions. LC and LR are three-level inplits, being self-biased at approximately 1/2VOO for normal operation. With both LC and LR open, the BCD I/O pins provide a multiplexed BCD output of the latch contents, scanned from MSD to LSD by the display multiplex. When either the LOAD COUNTER (Pin 12) or LOAD REGISTER (Pin 11) is taken high, the drivers are turned off and the BCD pins become high-impedance inputs. When LC is connected to VOO, the count input is inhibited and the levels at the BCD pins are multiplexed into the counter. When LR is connected to Voo, the levels at the BCD pins are multiplexed into the register without disturbing the counter. When both are connected to VOO, the count is inhibited and both register and counter will be loaded . The LOAD COUNTER and LOAD REGISTER inputs are edge-triggered, and pulsing them high for 500ns at room temperature will initiate a full sequence of data entry cycle operations (see Figure 7). When the circuit recognizes that either or both of the LC or LR pins input is high, the multiplex oscillator and counter are reset (to D4). The internal oscillator is then disconnected from the SCAN pin and the preset circuitry is enabled. The oscillator starts and runs with a frequency determined by its internal capaCitor, (which may vary from chip to chip). When the chip finishes a full 4 digit multiplex cycle (loading each digit from D4 to· D3 to D2 to D1 in turn), it again samples the LOAD REGISTER and LOAD COUNTER inputs. If either or both is still high, it repeats the load cycle, if both are floating or low, the oscillator is reconnecte.d to the SCAN pin and the chip returns to normal operation. Total load time is digit "on" time multiplied by 4. If the Digit outputs are used to strobe the BCD data into the BCD I/O inputs, the input will be automatically synchronized to the appropriate digit (Figure 8). Input data must be valid at the trailing edge of the digit output. When LR is connected to GROUND, the oscillator is inhibited, the BCD 110 pins gO.to the high impedance state, and the segment and digit drivers are tu.rned off. Ttlis allows the display to be used for other purposes and minimizes power consumption. In this display off condition, th~t will continue to count, and the CARRY/BORROW, EQUAL, ZERO, UP/DOWN, RESET and STORE functiOnS operate as normal. When LC is connected to ground, the BCD I/O pins arefon,ed to. the high impedance state without disturbing' the counter or register. See "Control Input The display brightness may be altered by varying the duty cycle. Figure 7 shows several variable-duty-cycle oscillators suitable for brightness control at the ICM7217 SCAN input. The inverters should be CMOS CD4000 series and the diodes 'may be any inexpensive device such as IN914. . Counting Control As shown in Figure 6, the counter is incremented by the rising edge of the COUNT INPUT signal when UP/DOWN is high. It is decremented when UP/DOWN is low. A Schmitt trigger on the COUNT INPUT provides hysteresis to prevent double triggering on slow rising edges and permits operation in noisy environments. The COUNT INPUT is inhibited during reset and load counter operations. The STORE pin controls the internal latches and consequently the signals appearing at the 7-segment and BCD outputs. Bringing the STORE pin low transfers the contents of the counter into the latches. The counter is asynchronously reset to 0000 by bringing the RESET pin low. The circuit performs the reset operation by forcing the BCD input lines to zero, and "presetting" all four decades of counter in parallel. This affects register loading; if LOAD REGISTER is activated when the RESET input is low, the register will also be set to zero. The STORE, RESET and UP/DOWN pins are provided with pullup resistors of approximately 75kU. BCD I/O Pins . The BCD I/O port provides a means of transferring data to and from the device~ The ICM7217 versions can multiplex data into the counter or register via thumbwheel switches, depending on inputs to the LOAD COUNTER or LOAD REGISTER pins; (see below). When functioning as outputs, the BCD I/O pins will drive one standard TTL load. Common anode versions have internal pull down resistors and common cathode versions hlilve internal pull up resistors on the four BCD I/O lines as inputs. 7-58 Note: All typical values have been guaranteed by characterization and are not tested. n I: ICM7217/ICM7227 Definitions" (Table 2) for a list of the pins that function as three-state self-biased inputs and their respective operations. Note that the ICM7217 and 7217B have been designed to drive common anode displays. The BCD inputs are high true, as are the BCD outputs. The ICM7217A and the 7217C are used to drive common cathode displays, and the BCD inputs are low true. BCD outputs are high true. reliable power-up reset and a fast rise time on the RESET input is shown below. --~----~~~------Y~ iiiiiT INPUT leM'II1? IKO --------~~~------Ya The thumbwheel switches used with these circuits (both common anode and common cathode) are TRUE BCD coded; i.e. all switches open corresponds to 0000. Since the thumbwheel switches are connected in parallel, diodes must be provided to prevent crosstalk between digits. See Figure 8. In order to maintain reasonable noise margins, these diodes should be specified with low forward voltage drops (IN914). Similarly, if the BCD outputs are to be used, resistors should be inserted in the Digit lines to avoid loading problems. TC02B011 Figure 8 When using the circuit as a programmable divider (+ by n with equal outputs) a short time delay (about 1/.1s) is needed from the EQUAL output to the RESET input to establish a pulse of adequate duration. (See Figure 9) Output and Input Restrictions Dc The CARRYIBORROW output is not valid during load counter and reset operations. The EQUAL output is not valid during load counter or load register operations. The ZERO output is not valid during a load counter operation. The RESET input may be susceptible to noise if its input rise time (coming out of reset) is greater than about 500/.ls. This will present no problems when this input is driven by active devices (i.e., TTL or CMOS logic) but in hardwired systems adding virtually any capacitance to the RESET input can cause trouble. A simple circuit which provides a iC5iJi[ f YDD .7", ~,......---~O--- ________-o, IIIIIT TC028111 Figure 9 When the circuit is configured to reload the counter or re ister with a new value from the BCD lines (upon reaching E UAL), loading time will be digit "on" time multiplied by four. If this load time is longer than one period of the input count, a count can be lost. Since the circuit will retain data in the register, the register need only be updated when a new value is to be entered. RESET will not clear the register. LOAl> COUNrER (OR LOAD REGISTER) ·GNO DO DO DO D1 INTERNAL OPERAnNG MODE INPUT OUTPUT _ _ _ _.... BCD I/O -r - - - - • = HIGH IMPEDANCE THREE-STATE W PULLDOWN WF01791I Figure 10: ICM7217 BCD 1/0 and Loading Timing .7-59 Note: All typical values have been guaranteed by characterization and are not tested, . -a N N N N.D., Notes on Thumbwheel Switches & Multiplexing ... ...... ... ... .U~U[b ICM7217/ICM7227 TO D4 STROBE TO D1 STAOBE TOD4STROBE TO 01 STR08E IN9'4 OR EQUIVALENT ,8, I TO BCD INPUTS Of 7217, 72178 i / TO BCD INPUTS OF 7217A. 7217C CD022101 Note: If the BCD pins are to be used for outputs a 10kn resistor should be placed in series with each digit line to avoid loading problems through the switches. Figure 11: Thumbwheel Switch/Diode Connections Table 2: Control Input Definitions ICM7217 INPUT TERMINAL VOLTAGE ~ 9, UP/DOWN 10 RESET 14 LOAD COUNTER/ I/O OFF 12 LOAD REGISTER/ 11 Voo (or floating) Vss. Voo (or floating) VSS Voo (or floating) Vss Unconnected VOO Vss Unconnected Voo VSS OFF DISPLAY CONTrol (DC) 23 Common Anode 20 Common Cathode FUNCTION Output latches not updated Output latches updated Counter counts up Counter counts down , Normal Operation Counter Reset Normal operation Counter loaded with BCD data BCD.. port forced to Hi Z condition Normal operation Register loaded with BCD data Display drivers disabled; BCD port forced to Hi Z condition, mpx' counter reset to 04; mpx oscillator inhibited Unconnected Voo VSS Normal Operation Segment drivers disabled Leading zero blanking inhibited Table 3: Control Input Definitions ICM7227 ' INPUT Control Word Port " TERMINAL VOLTAGE DATA TRANSFER 13 Voo Vss STORE 9 UP/DCSWN 10 Select Code Bit 1 (SCI) Select Code Bit 2 (SC2) 11 12 VOO (During Vss Voo (During VSS VOO="I" VSS"" "0" Control Word Strobe (CWS) 14 2" DISPLAY CONTrol (DC) 23 Common Anode . 20 Common Cathode FUNCTION Normal Operation Causes transfer of data as directed by select code CWS Pul~e) Output latches updated Output latches not updated CWS Pulse) Counter counts up Counter counts down SCI, SC2 control:00 Change store jIIld up/down latches. No data transfer. 01 Output latch data active 10 Counter to be preset 11 Register to be preset Voo Vss Normal operation Causes control word. to be written into control latches Unconnected Voo Vss Normal operation Display drivers disabled l.,eading zero blanking inhibited 7-00 Note: All typical values have been guaranteed by characterization and are not tested. ICM7217/ICM7227 . ~-"'" cws - IN"; --..:...I. &&.iii&iif_ r INPUT .1 I ISCS ;' ""==1 It---IO'.-'r-__~ --! u Ise" ~ L-J , ~'---..-I!I'fM»C*~~Il.i* I . SC1,SC2 LATCHES RESET U/O ~m~~--T.mm I SC' IItl REGISTER WRITE CVC1.E (SC1.SC2 (COUNT,. 1,1) W.,TE CYCLE IS SIMILA., SC'. sc. ',0) LSC'=~~I'OO~~~ BCDIIC .{SC,~~_ sc. mmE.--t.ma DATA OUTPUT CYCLE (SCI,se:!: '" 0,1) "O~mmmmam~~~;~~~m~IC==J\lmaim~:::=:Jmimm~c=::JG~~ OUTPU"Y. BCD ITO! ~ '" OONT CARE" 0: CONTROL WORD INPUTS WF018001 Figure 12: ICM7227 I/O Timing (see Table 4) The sequence of digits will be D4-D3-D2-D1, i.e. when outputting, the data from D4 will be valid during the first DT pulse, then D3 will be valid during the second pulse, etc, When presetting, the data for D4 must be valid at the positive:going transition (trailing edge) of the first DT pulse, the data for D3 must be valid during the second DT pulse, etc.. At the end of a data transfer operation, on the positive going transition of the fourth DT pulse, the SC1 and SC2 control latches will automatically reset, terminatirig the data transfer and reconnecting the multiplex counter clock to the oscillator. In the ICM7227 versions, the multiplex oscillator is always free-running, except during a data transfer operation when it is disabled. Figure 12 shows the timing of data transfers initiated with a 11 select code (writing into the register) and a 01 select code (reading out of the output latches). Typical times during which data must be valid at the control word and BCD I/O ports are indicated in Table 4. Table 4: ICM7227 I/O Timing Requirements CONTROL OF ICM7227 VERSIONS The ICM7227 series has been designed to permit microprocessor control of the inputs. BCD inputs and outputs are active high. In these versions, the STORE, UP/DOWN, SC1 and SC2 (Select Code bits 1 and 2) pins form a four-bit control word .input. A negative-going pulse on the CWS (Control Word Strobe) pin writes the data on these pins into four internal control latches, and resets the multiplex counter in preparation for sequencing a data transfer operation. The select code 00 is reserved for changing the state of the Store and/ or Up/Down latches without initiating a data transfer. Writing a one into the Store latch sets the latch and causes the data in the counter to be transferred into the output latches, while writing a zero resets the latches causing them to retain data and not be updated. Similarly, writing a one into the Up/Down latch causes the counter to count up and writing a zero causes the counter to count down. The state of the Store and Up/Down latches may also be changed with a non-zero select code. SYMBOL ICWS Writing a nonzero select code initiates a data transfer operation. Writing select code of 01 (SC1, SC2) indicates that the data in the output latches will be active and enables the BCD I/O port to output the data. Writing a select code cif 11 indicates that the register will be preset, and a 10 . indicates that the counter will be preset. tiCs IDi'w tscs tSCh tlDs tlDh trDacc trD! When a nonzero select code is read, the clock of the four-state multiplex counter is switched to the DATA TRANSFER pin. Negative-going pulses at this pin then sequence a digit-by-digit data transfer, either outputting data or presetting the counter or register as determined by the select code. The output drivers ofthe BCD I/O port will be enabled only while DT is low during a data transfer initiated with a 01 select code. 7-01 Note: An typical values have been guaranteed by characterization and are not tested: DESCRIPTION Control Word Strobe Width (min) Internal Control Set·up (min) DATA TRANSFER pulse width (min) Control to Strobe setup (min) Control to Strobe hold (min) Input Data setup (min) Input Data Hold (min) Output Data access Output Transfer to Data float MIN TYP MAX 275 2.5 300 300 300 300 300 300 300 UNIT ns 3 liS ns ns ns ~s ns ns ns =(II ... ~ i ::::. ... 'P' ... :Ii W S:! .IIU~UI6 ICM7217/ICM7227 APPLICATIONS· Voo FIXED DECIMAL POINT ICM121718 ICM~IB In the common anode versions, a fixed decimal pOint may be activated by connecting the D.P. segment lead from the appropriate digit (with separate digit displays) through a 39n series resistor to Ground. With common cathode devices, the D.P. segment ·Iead should be connected through a 75n series resistor to VDD. To force the device to display leading zeroes after a fixed decimal point, use a bipolar transistor and base resistor in a configuration like that shown below with the resistor connected to the digit output driving the D.P. for left hand D.P. displays, and to the next least significant digit output for right hand D.P. display. See Performance Characteristics for a similarly operating multi-digit. connection. -t (ICM 7217 Ale) (leM 7227 Ale) DIGIT (S£G) SEQ (DIGIT) V58 05022111 Figure 14: Driving High Curr&nt Displays --------~----------v~ Dt-..v ... CONTaoL Oft~' DIGIT . . . . . . LCD DISPLAY INTERFACE 01011 LlHI ~ The low-power operation of the ICM7217 makes an LCD interface desirable. The IntersillCM7211 4 digit BCD to LCD display driver easily interfaces to the ICM7217 as shown in Figure 15. Total system power consumption is less than 5mW. System timing margins can be improveq by using capacitance to ground to slow down the BCD lines. A similar circuit can be used to drive Vacuum Fluorescent displays, with the ICM7235. The 10-20kn resistors on the switch BCD lines serve to isolate the switches during BCD output. COMMON ANODE COIIMON CATHODI 05022211 Figure 13: Forcing Leading Zero Display DRIVING LARGER DISPLAYS For displays requiring more current than the ICL7217/ 7227 can provide, the circuits of Figure 14 can be used. VOD" 5V VOD '" 5V .... ...... LCO DISPLAV ,.,., '., 28 SEGMENTS AND BACKPLANE L ~ J 35 0434 37~ 03 33 ICM7211 ~ D2 52 D• ~ •• 24 083 30 DB2 29 DBl Z8 DIG I 4 8'. 5 4', 6 2', 7 1', iiEiET'4 tg' y Y Q ~ A~ :4~ ~ ~~ ~ ~ A~ .. D.~.~ ICM7217 IJI COUNT 8 STORE t UPlDN 'O A~ ~ ~ VDD D1~ D2ff." g:~ ~ A~ , 24 8 C 10-20KU LC01871I Figure 15: LCD Display Interface (with Thumbwheel Switches) 7-62 Note: All typical values have been guaranteed by characterization and are not tested. .U~U[6 ICM7217/ICM7227 a... ...... II) CARRY ZERO ...... 21-23 25-28 COMMON-CATHODE LED DISPLAY leM 7217A COUNT INPUT 8 n I: 7 SEGMENTS _ 0 ... ... . 0 " 0 II) II) uUOO 24 J-D"-I'""Sp:-L-AY-'--BLA-O:;o 9 20 CONTROL ISJ-----4 NORMAL INHIBITLZB 15-18 4 DIGITS LC018811 Figure 16: Unit Counter Voo =5VOLTS 3K 10K p-~______________~9~DD .047 ICM7555 ICM7217 2TR 8 TH cv VIS INVERTERS: C040108B COUNT INPUT 0 -_ _ _ _ _ _ _ _ _-----' NANOS: CD40118 ____....1--300••---4===~,;:!'~SE~C:::==:::!·I GATE mH ~-----~,,/-'----- I "I U '/-I-----..,ur-----------J{~;' ____....1-+50. . -- ~--J'~'----------~ ~----------~LI-'----WF018411 Figure 17: Inexpensive Frequency Counter in Figure 17. To provide the gating signal, the timer is configured as an astable multivibrator, using RA, RB and C to provide an output that is positive for approximately one second and negative for approximately 300-500J.lS. The positive waveform time is given by twp = 0.693 (RA + RB)C while the negative waveform is given by twn = 0.693 RBC. The system is calibrated by using a 5Mil potentiometer for RA as a "coarse" control and a 1kil potentiometer for RB as a "fine" control. C040106B's are used as a monostable multivibrator and reset time delay. UNIT COUNTER WITH BCD OUTPUT The simplest application of the ICM7217 is a 4 digit unit counter (Figure 16). All that is required is an ICM7217, a power supply and a 4 digit display, Add a momentary switch for reset, an SPOT center-off switch to blank the display or view leading zeroes, and one more SPOT switch for up/ down control. Using an ICM7217A with a common-cathode calculator-type display results in the least expensive digital counter/display system available. INEXPENSIVE FREQUENCY COUNTERI TACHOMETER This circuit uses the low power ICM7555 (CMOS 555) to generate the gating, STORE and RESET signals as shown 7-63 Note: All typical values have been guaranteed by characterization and are not tested. ICM7217/ICM7227 COMMON-CATHODe LID D...... AY RIEL IWITCH et..OSEO ONCE/R.V r~;....l.-,--~:===~~ LD012901 Figure 18: Tape Recorder Position Indicator .- v.. 2 13 > • RUN HRSIMtN I.' • leM •• ~ih;::::::::f'I 7~'3" " ... • 7 • VDO C4 VOLTS MAX) • "00 L6i6 lit pt. DtSPU,YO!F' Voo PRESeT ReSET C002231 I Figure 19: Precision Timer T"'e ,1Mn resistor and .0047j.1F capacitor on the COUNT INPUT provide a time constant of about 5ms to debounce the reel switch. The Schmitt trigger on the COUNT INPUT of the ICM7217 squares up the signal before applying it to the counter. This technique may be used to debounce switchclosure inputs in other application~. TAPE RECORDER POSITION INDICATORI CONTROLLER The Circuit in Figure 18 shows an application which uses the up/down counting feature of the ICM7217 to keep track of tape position. This circuit is representative of the many applications of up/down counting in monitoring dimensional position. For example, ar ICM7227 . as a peripheral to a processor can monitor the position of a lathe bed or digitizing head, transfer the data to the processor, drive interrupts to the processor using the EQUAL or ZERO outputs, and serve as a numerical, display for the processor. PRECISION ELAPSED TIME/COUNTDOWN TIMER The circuit in Figure 19 uses an ICM7213 precision one minute/one second timebase generator Lising a 4.1943MHz crystal for generating pulses counted by an ICM7217B. The thumbwheel switches allow a starting time to be entered into the counter for a preset-countdown type timer, and allow the register to be set for compare' functions. For instance, to make a 24-hour clock with BCD output the register can be preset with 2400 and the EQUAL output used to reset the counter. Note the 10k resistor connected between the LOAD COUNTER terminal and Ground. This resistor pulls the LOAD COUNTER' input low when not loading, thereby inhibiting the BCD output drivers. This resistor. Should be eliminated and SW4 replaced with an SPOT center-off switch if the BCD outputs are to be used. In the tape recorder application, the LOAD REGISTER, EQUAL and ZERO outputs are used to controlthe recorder. To make the recorder stop at a particular point on the tape, the register can be set with the stop point and the EQUAL , output used to stop the recorder either on fast forward, play or rewind. To make the recorder stop before the tape comes free of the reel on rewind, a leader should be used. Resetting the counter at the starting point of the t e, a few feet from the end of the leader, allows the ZER· output to be used to stop the recorder on rewind, leaving the leader on the reel. 6 7-64 Note: All typical values have been guaranteed by characterization aM are not tested. ICM7217/ICM7227 COMMON-ANODE I , ,-, " " LED DISPLAYS ,-, ,-, ,-, " "--- 1:, CI CI CI '-, CI CI CI .-/ COUNT INPUT ~CA~.~.Y~D~U!!T::-_t-.f1~'22"'5'2;a. ',DIGITS • CARRY/BORROW DIGITS BCD OUTPUTS HIGH ORDER DIGITS V .. ~OWN 4 4-7 leM 24 7217 .p 7 SEGMENTS D1 y .. 25-21 2. HIGH ORDER SOK!! COO22401 Figure 20: 8 Digit Up/Down Counter --~--~----~-1---------~~Y+=5V 22pF 1QAll BCD OUT ~l COMMON·ANODE LED DISPLAY 'CM 7217 COUNT. CRYSTAL , 5.24288 MH% R<; 7St! STORE iiEsET 14 INPUT CD022501 Figure 21: Precision Frequency Counter (MHz Maximum) This technique may be used on any 3-level input. The 100kn pullup resistor on the count input is used to ensure proper logic voltage swing from the ICM7213. For a less expensive (and less accurate) timebase, an ICM7555 timer may be used in a configuration like that shown in Figure 17 to generate a 1Hz reference. ICM7227 devices, since the two devices are operated as peripherals to a processor. PRECISION FREQUENCY COUNTER/ TACHOMETER The circuit shown in Figure 21 is a simple implementation of a four digit frequency counter, using an ICM7207A to provide the one second gating window and the STORE and RESET signals. In this configuration, the display reads hertz directly. With Pin 11 of the ICM7027 A connected to VDD, the gating time will be 0.1 second; this will display tens of hertz as the least significant digit. For shorter gating times, an ICM7207 may be used (with a 6.5536MHz crystal), giving a 0.01 second gating with Pin 11 connected to VDD, and a 0.1 second gating with Pin 11 open. To implement a four digit tachometer, the ICM7207A with one second gating should be used. To get the display to read directly in RPM, the rotational frequency of the object to be measured must be multiplied by 60. This can be done electronically using a phase-locked loop, or mechanically by 8-DIGIT UP/DOWN COUNTER This circuit (Figure 20) shows how to .cascade counters and retain correct leading zero blanking. The NAND gate detects whether a digit is active since one of the two segments or b is active on any unblanked number. The flip flop is clocked by the least significant digit of the high order counter, and if this digit is not blanked, the Q output of the flip flop goes high and turns on the NPN transistor, thereby inhibiting leading zero blanking on the low order counter. It is possible to use separate thumbwheel switches for presetting, but since the devices load data with the oscilla' tor free-running, the multiplexing of the two devices is difficult to synchronize. This presents no problems with the a 7-65 Note: All typical values have been guaranteed by characterization and are not tested. ... ICM7217/1CM7227 ..... = Ii using a disc rotating with the object with the appropriate !:! - t: ~ Ii g inverts the data and an ICM7218 Universal Display Driver stores and displays it. number of holes drilled around its edge to interrupt the light from an LED to a photo-dector. For faster updating, use 0.1 second gating, and multiply the rotational frequency by 600. For more "intelligent" instrumentation, the ICM7227 interfaced to a microprocessor may be more convenient (see Figure 21). For example, an ICM7207 A can be used with two ICM7227's to provide an 8 digit, 2M Hz frequency counter. Since the ICM7207A gating output has a 50% duty cycle, there is 1 second for the processor to respond to an interrupt, generated by the negative going edge of this signal while it inhibits the count. The processor can respond to the interrupt using ROM based subroutines, to store the data, reset the counter, and read the data into main memory. To add simultaneous period display, the processor .- AUTO·TARE SYSTEM This circuit uses the count-up and count·down functions of the ICM7217, controlled via the EQUAL and ZERO outputs, to count in SYNC with an ICL7109 AID Converter as ·shown in Figure 22. By RESETing the ICM7217 on a "tare" value conversion, and STORE-ing the result of a true value conversion, an automatic tare subtraction occurs in the result. The ICM7217 stays in step with the ICL7019 by counting up and down between 0 and 4095, for 8192 total counts, the same number as the ICL7109 cycle. See A047 for more details. r:+- FULLICAa INPUT 0 - 0 c is L...~ ~0.~:yorgb --+- --~ I I I '5V - 'ONO 2 STATUI - .PDL REF CAl'-.3I tOR AEF CAP· 37 REF IN·"II 5812 ...n ....... INT3I AZ •• 1087 .... •• 83 1582 ,1., 17 TEST IIIHJij .. i"- ~ p .., tCL7101 osc IN 22 .i- L.. L-- .. MODE 2' ~+sv '-.- - oa. f - - 5K114 VDO" OIIP.COHT.II 1K11' ICM7217 • iTI5iii '0 upliiOWii ':' .5V~~ 1 10"F Ia. vss. f--: ill ,.. 12LOADCTR. 017 C > - - .411D1f U ·SV ~~7.' ilaa 11 LOAD RIG . 13 SCAN ~ l.! OUS I - - IKII2 lCOUNT 47• SENO 27 J--+5V RUN/HOLD 21 CAMYIIIORIlOW • BIAS alillllt 4K111 o.l~'ih v.... ~ I ::~ Sa'''''. :'!~ .~ f- -ff- Ho.aa.. aUF 30 REF OUT 21 aUF osc OUT 2S OSC SEL 24 osc OUT 23 .- '01< IN HI 35 IN LO 34 COMMON 33 '810 I .. 1285 H'~ VDD 40 ~.5V REF IN- 31 7 .,.. i,. e15 TARE CD02261I Figure 22: Auto-Tare System for AID Converter 7-66 Note: All typical values have been guaranteed by characterization and are not tested. ICM7224/ICM7225 4 b-Digit LCD/LED Display Counter GENERAL DESCRIPTION FEATURES The ICM7224 and ICM7225 devices constitute a family of high-performance CMOS 4 1/2-digit counters, including dec~ders, output latches, display drivers, count inhibit, leading zero blanking, and reset circuitry. The counter section provides direct static counting, guaranteed from DC to 15 MHz, using a 5V ±10% supply over the operating temperature range. At normal ambient temperatures, the devices will typically count up to 25 MHz. The COUNT input is provided with a Schmitt trigger to allow operation in noisy environments and correct counting with slowly changing inputs. The COUNT INHIBIT, STORE and RESET inputs allow a direct interface with the ICM7207 I A to implement a low cost, low power frequency counter with a minimum component count. These devices also incorporate several features intended to simplify cascading four-digit blocks. The CARRY output allows the counter to be cascaded, while the Leading Zero Blanking INput and OUTput allows correct Leading Zero Blanking between four-decade blocks. The BackPlane driver of the LCD devices may be disabled, allowing the segments to be slaved to another backplane signal, necessary when using an eight or twelve digit, single backplane display. In LED systems, the BRighTness input to several ICM7225 devices may be ganged to one potentiometer. The ICM7224/1CM7225 family are packaged in a standard 40-pin dual-in-line plastic or CERDIP package, or in dice. • • • • • • • • • High Frequency Counting - Guaranteed 15MHz, Typically 25MHz at 5V Low Power Operation - Typically Less Than 100llW Quiescent STORE and RESET Inputs Permit Operation as Frequency or Period Counter True COUNT INHIBIT Disables First Counter Stage CARRY Output for Cascading Four-Digit Blocks Schmitt-Trigger On The COUNT Input Allows Operation In Noisy Environments or With Slowly Changing Inputs Leading Zero Blanking INput and OUTput for Correct Leading Zero Blanking With Cascaded Devices LCD Devices Provide Complete Onboard OSCillator and Divider Chain to Generate Backplane Frequency, or Backplane Driver May Be Disabled Allowing Segments to be Slaved to A Master Backplane Signal LED Devices Provide BRighTness Input Which Can Function Digitally As A Display Enable or As A Continuous Display Brightness Control With A Single Potentiometer and Directly Drive Common Anode LED Displays ORDERING INFORMATION DISPLAY TYPE COUNT OPTION ICM72241PL ICM7224AIPL ICM7224/D ICM7224A1D ICM7224AIJL ICM72241JL LCD LCD LCD LCD LCD LCD 19999 15959 19999 15959 15959 19999 ICM72251PL ICM7225AIPL ICM7225/D ICM7225A1D ICM7225AIJL ICM72251JL LED LED LED LED LED LED 19999 15959 19999 15959 15959 19999 PART NUMBER ICM7224 .. COUNT (ICM722S) 31 COUNT INHIBIT 10 LZBOUT It LZBIN .. fiIiIiY 11H>1G1T .. F. 2104 24£4 •• DC -,._ _ _ .. CC ....t~84 CD02341I Figure 1: Pin Configuration (Outline dwg PL) Evaluation Kits, order ICM7224 EV/Kit or ICM7225 EV/Kit 7-67 Note: All typical values have been guaranteed by characterization and are not tested. -002 = ICM,7224/I()M1225, ... ! N ::::. ICM7224(A) 'It ...2~ MSD LSD ~ H_~wmm OS D2 H_~OUTPUTS HGMI~ OUTPUTS 1M tl2-OlQIT H_~OUTPUTS OUTPUT .5:! LEADING lLAN::----------i LEADING ZERO BLANKING INPUT OUTPUt ~~--------------~ COUNT INPUT ~---------------~----~----~----+---+-~----~----~----~~+-~ 60009511 ICM7225(A) MSD LSD 01 00 O. 1M 1120010IT SEGMENT OUTPUTS SEGMENT OUTPUTS SEGMENT OUTPUTS SEGMENT OUTPUTS OUTPUT LEADWG ~~---~------------i ~PUT LEADING ~--~-r~ ZERO BLANKING INPUT ~--------------~ COUNT INPUT ~ ______________ -4~ __ ~ CARRY OUTPUT BRIGHTNESS 80009611 Figure 2: Functional Diagrams 7'-68 Note: All typical values have been guaranteed by characterization and are not tested. ICM7224/ICM7225 n ABSOLUTE MAXIMUM RATINGS ~ ~ ... ~ Supply Voltage Voo - Vss .................................. 6.SV Input Voltage (Any Terminal) (Note 2) ........ VOO+O.3V to VSs-O.3V Power Dissipation (Note 1) .................... O.SW @ 70°C Operating Temperature Range .... , ...... -20°C to +8SoC Storage Temperature Range ............ -SSoC to + 12SoC Lead Temperature (Soldering, 10sec) ................. 300°C Stresses above those listed under" Absolute Maximum Ratings" may cause permanent damage to the device. Theses are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating .conditions for extended periods may affect device reliability. ELECTRICAL CHARACTERISTICS (Voo = SV ±10%, TA = 2S0C, Vss = OV unless otherwise indicated) ICM7224 CHARACTERISTICS VSUPPLY PARAMETER Operating current TEST CONDITIONS MIN Test circuit, Display blank Operating supply voltage range (VOD-VSS) TVP MAX UNIT 10 50 6 IlA V ±10 IlA 3 ±2 10SCI OSCILLATOR input current Pin 36 tR, tF Segment riselfall time Cload tR, tF BackPlane riselfall time Cload - 5000pF 1.5 IlS lose Oscillator Irequency Pin 36 Floating 19 kHz fBP Backplane frequency Pin 36 Floating 150 Hz ~ 0.5 200pF ICM7225 CHARACTERISTICS SYMBOL PARAMETER ISTBY Operating current display off VSUPP Operating supply voltage range (VDO-VSS) TEST CONDIT!ONS MIN Pin 5 (BRighTness) at VSS Pins 29, 31-34 at VOO TVP MAX UNIT 10 50 IlA 6 V 4 100 Operating current Pin 5 at VOO, Display 18888 ISLK Segment leakage current Segment Off ISEG Segment on curr'!nl Segment On, Vout = + 3V 5 8 IH Half-digit on current Half-digit on, Vout = + 3V 10 16 200 ±0.01 rnA ±1 IlA rnA FAMILY CHARACTERISTICS SYMBOL Ip PARAMETER TEST CONDITIONS MIN TYP MAX Input Pullup Currents Pins 29, 31, 33, 34 Vout = Voo - 3V VIH Input High Voltage Pins 29, 3t, 33, 34 VIL Input Low Voltage Pins 29, 31, 33, 34 VCT COUNT Input Threshold 2 VCH COUNT Input: Hysteresis 0.5 10H Output High Current CARRY Pin 28 Leading Zero Blanking OUT Pin 30 Vout = Voo - 3V 350 500 10L Output Low Current CARRY Pin 28 Leading Zero Blanking Out Pin 30 Vout = +3V 350 .500 Count Frequency 4.5V fCOUNT tS,tR STORE, Ri:SE'i' < VOO < 6V Minimum Pulse Width 10 7-69 UNIT IlA 3 1 0 3 Note: All typical values have been guaranteed by characterization ,and are not tested. ... UI NOTE 2: Due to the SCR structure inherent in the CMOS process, connecting any terminal to voltages greater than Voo or less than Vss may cause destructive device latchup. For this reason, it is recommended that no inputs Irom sources operating on a different power supply be applied to the device belore its supply is established, and that in multiple supply systems, the supply to the ICM7224IJCM7225 be· turned on lirst. 100 a ~ ~ NOTE 1: This limit relers to that 01 the package and will not be obtained during normal operation. SYMBOL ... - V IlA 15 MHz IlS S, "", ICM7224/ICM7225 Ji. TYPICAL PERFORMANCE CHARACTERISTICS u i"" 7224 OPERATING SUPPLY'CURRENT AS A FUNCTION OF SUPPLY VOLTAGE • ~ I -.- .. :;;..o::::.i-r cIIocuIr .. I -" 7225 LED SEGMENT CURRENT AS A FUNCTIoN OF OUTPUT VOLTAGE .. , ,.J,1A~~o!, t/' .L '/ V' ~ JV ..... rIII IL Ysum.y" 4V ~ IL ~ /. ~ ~~~ .,,~~ ~ .. VI,V io' r') I TA-.- 7 ~ 1'::"- T,,"'we , 1J c I J VlUPft.y-I5Y r.L •• • SUPPLY VOLTAGE lVl I" IV r- r- a I • OUTPUT VOLTAGE {VI O~311 0P042211 7224 BACKPLANE FREQUENCY AS A FUNCTION OF SUPPLY VOLTAGE .. .. ~~~ 7225 OPERATING POWER (LED DISPLAY) AS A FUNCTION OF SUPPLY VOLTAGE •• ,. 1': ..Y Caoo •• ~ ,. ~.~.I- , , , ..:.~ OISPLAY ALL IIGItTI uo POIIW'AAD VOLTAU DIIOP ¥IUD· t.7V' ...IAT Voo J T..,= . .C l/ V .. .. ..... .....- V ..... V' ". I'COso ~ V ... I' • I'" ... . Caoo-_ •, I , ... "......- ~ I • •• SUPPLY VOLTAGE {VI • SUPPLY VOLTAGE {VI OP04241 I 7224 BACKPLANE FREQUENCY AS A FUNCTION OF OSCILLATOR CAPACITOR COSC - ...," • • • II. ..." 7225 LI'D S.EGMENT CURRENT AS A FUNCTION OF BRIGHTNESS CONTROL VOLTAGE a ~~~. ,• ~ ~I 'oo I""~ o:e I I ~ ... • , IL .. 'oo Cose pF I IL • ~ ... , •• LL .L • YlUl'Ply.4V~~ 3v',. .... ~~!:r oL...J. AT' VOU'[" 3V i• ~Yv:':'''l5v v........V" • 0P042511 / .L ,~ • • • • BRIGHTNESS CONTROL VOLTAGE OP04271I OP042611 7-70 Note: All typical values have been guaranteed by characteriiation and are not tested. • ICM7224/ICM7225 TYPICAL PERFORMANCE CHARACTERISTICS (CONT.) MAXIMUM COUNT FREQUENCY (TYPICAL) AS A FUNCTION OF SUPPL Y VOLTAGE . . SUPPLY CURRENT AS A FUNCTION OF COUNT FREQUENCY • ....,...' I- IN WAVE INPUT IWINGING FUU. lI..ItPly . . .. . .. .. 'V1/ . ~~ ",. ~ ! V « ~ ~~ -aoc TA V ". ..... V 10' ~ rr ,~ 1 c i- 1I 4:J.c rT _- T",a7 C 1 ./ • SUPPLY VOLTAGE (VI .. 1 lltHi • ..... 1C1kHl l00kHa lMMI 1011Hz INPUT TERMINAL Leading Zero Blanking INput 29 COUNT INHIBIT 31 RESET 33 SiOF!E 34 0P042921 VOLTAGE FUNCTION Leading Zero Blanking Enabled Leading Zeroes Displayed Voo or Floating Vss VOO or Floating VSS VOO or Floating VSS VOO or Floating VSS Counter Enabled Counter Disabled Inactive Counter Reset to 0000 Output Latches not Updated Output Latches Updated the number of devices that can be slaved to one master device backplane driver is the additional load represented by the larger backplane of displays of more than four digits, and the effect of that load on the backplane rise and fall times. A good rule of thumb to observe in order to minimize power consumption is to keep the rise and fall times less than about 5 microseconds. The backplane driver devices of one device should handle the backplane to a display of 16 one-half-inch characters without the rise and fall times exceeding 5jJs (ie, 3 slave devices and the display backplane driven by a fourth master device). It is recommended that if more than four devices are to be slaved together, that the backplane signal be derived externally and all the ICM7224 devices be slaved to it. . CONTROL INPUT DEFINITIONS In this table, Voo operating input logic are specified in the power consumption, supply. 10DMHz fCOUNT QP042821 and Vss are considered to be normal levels. Actual input low and high levels Operating Characteristics. For lowest input signals should swing over the full . DETAILED DESCRIPTION LCD Devices The LCD devices in the family (ICM7224 and ICM7224A) provide outputs suitable for driving conventional 4 Y2-digit by seven segment LCD displays, including 29 individual segment drivers, backplane driver, and a self-contained oscillator and divider chain to generate the backplane frequency. The segment and backplane drivers each consist of a CMOS inverter, with the n- and p-channel devices ratioed to provide identical on resistances, and thus equal rise and fall times. This eliminates any D.C. component which could arise from differing rise and fall times, and ensures maximum display life. The backplane output devices can be disabled by connecting the OSCILLATOR input (pin 36) to VSS. This synchronizes the 29 segment outputs directly with a signal input at the BP terminal (pin 5) and allows cascading of several slave devices to the backplane output of one master device. The backplane may also be derived from an external source. This allows the use of displays with characters in multiples of four and a single backplane. A slave device will represent a load of approximately 200pF (comparable to one additional segment). The limitation on This external signal should be capable of driving very large capacitive loads with short (1-2jJs) rise and fall times. The maximum frequency for a backplane signal should be about 150Hz, although this may be too fast for optimum display response at lower display temperatures, depending on the display used. The onboard oscillator is designed to free run at approximately 19kHz, at microampere power levels. The oscillator frequency is divided by 128 to provide the backplane frequency, which will be approximately 150Hz with the oscillator free-running. The oscillator frequency may be reduced by connecting an external capaCitor between the OSCillator terminal (pin 36) and Voo; see the plot of oscillator/backplane frequency in "Typical Characteristics" . for detailed information. 7-71 Note: All typical values have been guaranteed by characterization and are not tested. ICM7224/ICM7225 The oscillator may also be overdriven if desired, although care must be taken to insure that the backplane driver is not disabled during the negative portion of the overdriving signal (which could cause a D.C. component to the display). This can be done by driving the OSCILLATOR input between the positive supply and a level out of the range where the backplane disable is sensed, about one fifth of the supply voltage above the negative supply. Another technique for overdriving the oscillator (with a signal swinging the full supply) is to skew the duty cycle of the overdriving signal such that the negative portion has a duration shorter than about one microsecond. The backplane disable sensing circuit will not respond to signals of this duration. ----1~--'VDD(Ll!D , '....".'11"· _ ANODI!a) :."!:* TC02821I Figure 3: Brightness Control COUNTER SECTION The devices in the ICM7224/ICM7225 family implement a four-digit ripple carry resettable counter, including a Schmitt trigger on the COUNT input and a CARRY output. Also included is an extra D-type flip-flop, clocked by the CARRY signal and outputting to the half-digit segment driver, which can be used as either a true half-digit or as an overflow indicator. The counter will index on the negative~dge of the signal at the COUNT input, while the CARRY output provides a negative-going edge following the count which indexes the counter from 9999 (or 5959) to 10000. Once the half-digit flip-flop has been clocked, it can only be reset (with the rest of the counter) by a negative level at the RESET terminal, pin 33. However, the four decades will continue to count in a normal fashion after the half-digit is set, and subsequent CARRY outputs will not be affected. A negative level at the COUNT INHIBIT input disables the first divide-by-two in the counter chain without affecting its clock. This provides a true inhibit, not sensitive to the state of the COUNT input, which prevents false counts that can result from using a normal logic gate to prevent counting. Each decade of counter. drives d,irectly into a four-toseven decoder which develops the seven~segment output code. The output data is latched at the driver, when the STORE pin is low, these latches are updated, and when high or floating, the latches hold their contents. The decoders also include zero detect and blanking logic to provide leading zero blanking. When the Leading Zero Blanking INput is floating or at a positive level, this circuitry is enabled and the device will blank leading zeroes; when low, or the half-digit is set, leading zero blanking is inhibited, and zeroes in the four digits will be displayed. The Leading Zero -Blanking OUTput is provided to allow cascaded devices to blank leading zeroes correctly. This output will assume a positive level only when all four digits are blanked; this can only occur when the Leading Zero Blanking INput is at a positive level, and the half-digit is not set. For example, in an eight-decade counter with overflow using two ICM7224/ICM7225 devices, the Leading Zero Blanking OUTput of the high order digit would be connected to the Leading Zero Blanking INput of the low order digit device. This will assure correct leading zero blanking for all eight digits., The STORE, RESET, COUNT INHIBIT, and Leading Zero Blanking INputs are provided with pullup devices, so that they may be left open when a positive level is desired; The CARRY and Leading Zero Blanking OUTputs are suitable for interfacing to CMOS logic in general, and are specifically designed to allow cascading of ICM7224 to ICM7225 devices in four-digit blocks. LED Devices The LED devices in the family (ICM7225, ICM7225A) provide outputs suitable for directly driving 4V2-digit by seven segment common-anode LED displays, including 28 individual segment drivers and one half-digit driver, each consisting of a low-leakage current-controlled open-drain nchannel transistor. The drain current of these transistors can be controlled by varying the voltage at the BRighTness input (pin 5). The voltage at this pin is tr,msferred to the gates of the output devices for "on" segments, and thus directly modulates the transistor's "on" resistance. A brightness ,control can be easily implemented with a single potentiometer controlling the voltage at pin 5, connected as in Figure 3. The potentiometer should be a high value (100kn to 1Mn) to minimize power consumption, which can be significant when the display is off. The BRighTness input may also be operated digitally as a display enable; when a Voo, the display is fully on, and at Vss, fully off. The display brightness may also be controlled by varyi\lg the duty cycle of a signal swinging between the tw,o supplies at the BRighTness input. Note that the LED devices have two connections for VSS; both should be connected. The double connection is necessary to minimize effects of bond wire resistanpe with the large total display currents possible. When operating the LED devices at higher temperatures and/or higher supply voltages, the device power dissipation may need to be reduced to prevent excessive chip temperatures. The maximum, power dissipation is 1 watt at 25°C, derated linearly above 35°C to 500mW at 70°C (15mW/oC above 3S0C). Pqwer disSipation for the device is given by: P = (VOO ~ VFLEO) x (ISEG) x (nSEG) where VFLEO is the LED forward voltage drop, ISEG is segment current, and nSEG is the number of "ON" segments. It is recommended that if the device is Jo,be operated at elevated temperatures the segment current be limited by use of the BRighTness input to keep power dissipation within the limits described above. 7-72 Note: All typical values have been guaranteed by characterization and are not tested. .U~UlL ICM7224/ICM7225 OSCILUTO. FREQUENCY n r ' ' ' n n n r' ., n n r' JU UUUU UUU 1 - - - 1 2 1 CYCLES---j BACKPLANE INPUT/OUTPUT -----;1 r--" I I L-.- S f ,7/b d """ I\) I\) en :::0 LC019401 WFOl8601 (; I: '3 :3-, , _I Ie ON SEGMENTS .... 3 '-: a L- CYCLES--?=: . . CYCLES---l OFF SEGMENTS-----;t """ I\) I\) ,-, '-', , ,? ., n n n r UUUU Figure 4: Display Waveforms -' (BLANK) lC020501 + IV Figure 6: Segment Assignment and Display Font - .1.1------. IACH HGMlNT TO hCII"'- WITH _ CAPACITOII COUNT INHIBIT 31 t-.......!-;... A"'US"'E~ LZB IN 30 (CLOSED) LZtI OUT 29 .----~'LZ .... CAiiAi 28: INHIBIT (CLOSED) '---=,,:-::.."'a"'U;;;::ENT=S-;~~ ' - -_ _':..:HA=LF...:-D:::IG=-'TC--!37-40 ICU7225+~01 SEGMENT OUTPUTS I') I_f-O-+-oICL MAIN " ~ICD ' - - - - - - - r-----y---;---:--- T-~-- :::T L_________-----~~~~~','-'--'~-~: ~ i'iiiiNiiiiOci OU'PUTo---~~I_-----~--+-~ HOI.DINPUT o-....,.____-"-____ OUTPUTS (4) --''-~ OUTPUT 80009701 Figure 2: Functional Diagram 7-76 Note: All typical values have been guaranteed by characteriza!ion and are, not tested. ICM7226A/B ELECTRICAL CHARACTERISTICS SYMBOL 100 VSUPPLY IA(max) IB(max) IOSC gm fmux dVin/dt VIL VIH (Voo = 5.0V, PARAMETER TA = 25°C, unless otherwise specified.) TEST CONDITIONS Operating Supply Current Display Off Unused inputs to VSS Supply Voltage Range VOO - VSS -2SoC < TA < 85°C Input A, Input B Frequency at IMAX Maximum Guaranteed FrequenCy Input A, Pin 40 -25°C < TA < 8SoC 4.75V < VOO < 6.0V Figure 4 Function = Frequency, Ratio, Unit Counter Function = Period, Time Interval MIN TYP MAX UNIT 2 5 mA 6.0 V 4.75 10 2.5 14 MHz Maximum Frequency Input B, Pin 2 -25°C < TA < 8SoC 4.75V < VOO < 6.0V Figure S 2.5 Minimum Separation Input A to Input B -2SoC < TA < 85°C 4.75V < VOO < 6.0V Figure 6 250 ns Time Interval Function Osc. Iraq. and ext. osc. Ireq. (minimum ext. osc. Ireq.) -2SoC < TA < 8SoC 4.75V < Voo < 6.0V 10 (0.1) MHz Oscillator Transconductance VOO= 4.75V TA = +85°C 2000 JJ.s Multiplex Frequency lose = 10MHz SOO Hz Time Between Measurements lose = 10MHz 200 ms Input Rate 01 Charge Inputs A, B 15 mV/JJ.S INPUT VOLTAGES PINS 2, 19, 33, 39, 40, 35 input low voltage -2SoC < TA < +85°C input high voltage 1.0 V 20 JJ.A 3.5 IILK PIN 2, 39, 40 INPUT LEAKAGE, A, B RIN Input resistance to VOO PINS 19,33 VIN = VOO -1.0V 100 400 RIN Input resistance to Vss PIN 31 VIN = + 1.0V 50 100 IOL Output Current PINS 3,S,6,7,17,18,32,38 VOL = +O.4V 400 IOH PINS S,6,7,17,18,32 VOH = +2.4V 100 IOH PINS 3,38 VOH = Voo-Q·8V 265 Vo = Voo -2.0V ISO kn JJ.A JJ.A ICM7226A IOH IOL IOL PINS 22,23,24,26,27,28,29,30 DIGIT DRIVER high output current low output current SEGMENT DRIVER PINS 8,9,10,11,13,14,15,16 low output current IOH high output current VIL MULTIPLEX INPUTS PINS 1,4,20,21 input low voltage VIH input high voltage RIN input resistance to VSS VO= +1.5V 180 mA -0.3 Vo = + 1.0V 25 Vo = VOO-I.0V 35 mA 100 JJ.A 0.8 2.0 VIN = + 1:0V 7-77 Note: All typical values have been guaranteed by characterization and are not tested. 50 tOO V kn !!. ICM7226A/B = ... ELECTRICAL CHARACTERISTICS (CONT.) ft SYMBOL PARAMETER TEST CONDITIONS TYP MIN MAX UNIT ICM7226B IOL DIGIT DRIVER PINS 8,9,10,11,13,14,15,16 low output current IOH VO= +1.0V high output current IOH SEGMENT DRIVER PINS 22,23,24,26,27,28,29,30 high output current IL leakage current 50 Vo = Voo-2.5V Vo = Voo-2.0V 10 75 rnA 100 p.A rnA 15 10 Vo=Vss VIL MULTIPLEX INPUTS PINS 1,4,20,21 input low voltage VIH input high voltage RIN, input resistance to Voo p.A Voo-2.0 V Voo-O.B VIN = VoO-1.0V 100 k!1 360 NOTE: Typical values are not tested. EVALUATION KIT An evaluation kit is available 'for the ICM7226A. It includes all the components necessary to assemble and evaluate a universal frequency/period counter based on the ICM7226A. With the help of this kit, an engineer or technician can have the ICM7226A "up-and-running" in less than an hour. Specifically,' the kit contains an ICM7226AIJL, a 10MHz quartz crystal, eight each 7segment 0.3" LEOs, PC board, resistors, capacitors, diodes, switches and IC socket. Order Number ICM7226AEV /Kit. TEST COHTIIOI._ VO .5.011 CRVSTALSPlC'.::; '0 10.00MHI Co UpF UNIII f 'OOCNOTES IUS WITH , COHOUCTOIIIS ..,. -= As 3511 ~~t£!!..Q.-:t£9.!!1~ KO I OUTPUT :::;::=4=~ leo A OUTPUT .... OVERFLOW WILL 8. INDICA TID ON THE DECIMAL POINT OUTPUT Of DiCIT 7 W!!!!I!i ANODE ,.....,. filET 1( .. 7221& leM7Z" cI.p. De; Dt d.p. TC028521 Figure 3: Test Circuit 7-7B Note: All typical values have been guaranteed by characterization and are not tested. ICM7226A/B a '/-;-/b e/-/e d ed.p. 0:23""561S9 LC019701 lC019601 LED overflow indicator connections: Overflow will be indicated on the decimal point output of digit 8. ICM7226A ICM7226S CATHODE ANODE d.p. DB DB d.p. Figure 4: Segment Identification and Display Font COUNTED ~TR""'SITIDHS INPUT .. if't 4.SV----o.sv 50 .. "'N 50 M MIN INPUT AOR INPUT' •.5V a.5V ~,.-.-.,-:-1~._-WF026601 Figure 6: Waveform for Guaranteed Minimum fB(max) and fA(max) for Function = Period and Time Interval. WFQ26501 Figure 5: Waveform for Guaranteed Minimum fA(max) Function Frequency, Frequency Ratio, Unit Counter. = Duri.ng any time interval measurement cycle, the ICM7226A/B requires 200ms following B going low to update all internal logic. A new measurement cycle will not take place until completion of this internal update time. TIME INTERVAL MEASUREMENT The ICM7226A1B can be used to accurately measure the time interval between two events. With a 10 MHz time-base crystal, the time between the two events can be as long as ten seconds. Accurate resolution in time interval measurement is 100ns. The feature operates with Channel A going low at the start of the event to be measured, followed by Channel B going low at the end of the event. When in the time Interval mode and measuring a single event, the ICM7226A1B must first be "primed" prior to measuring the event of interest. This is done by first generating a negative going edge on Channel A followed by a negative going edge on Channel B to start the "measurement interval." The inputs are then primed ready for the measurement. Positive going edges on A and B, before or after the priming, will be needed to restore the original condition. Following the priming procedure (when in single event or 1 cycle range input) the device is ready to measure one (only) event. When timing repetitive signals, it is not necessary to "prime" the ICM7226A/B as the first alternating signal states automatically prime the device. See Figure 7. DETAILED DESCRIPTION INPUTS A & B The signal to be measured is applied to INPUT A in frequency period, unit counter, frequency ratio and time Interval modes. The other input signal to be measured is applied to INPUT B in frequency ratio and time interval. fA should be higher than fS during frequency ratio. Both inputs are digital inputs with a typical switching threshold of 2.0V at VDD': 5.0V and input impedance of 250kn. For optimum performance, the peak to peak input signal should be at least 50% of the supply voltilge and centered about the switching voltage. When these inputs are being driven from TTL logic, it is desirable to use a pullup resistor. The circuit counts high to low transitions at both inputs. Note: The amplitude of the input should not exceed the supply by more than O_3V otherwise, the circuit may be damaged. 7-79 Note: All typical values have been guaranteed by characterization and are not tested. 7 .O~O[l ~ ICM7226A1B CD tJ ~, ~ .... ~ H'-.J Ift5IiI 3OTO_' 1--+_ ' n~-_!_--~ RElET _ _..._ _ _ _... 1-+- I _'IOu;g"~---_--",,_G--_I"'-----"EASUREMENTINTERV"" I UPOATE- INI'UTA IM'UTI I ....... 16OnsMiN. MEASURED INTERVAL , --4I t-- _ MEASURED CFIRS!); INTERVAL (LASTI WF026701· ' NOTE: IF RANGE IS SET TO 1 EVENT, FIRST AND LAST MEASURED INTERVAL WILL COINCIDE. Figure 7: Waveforms for Time Interval Measurement (Others are similar, without priming phase) ~I~UT" SIGNAL 8 'r--l~I~PUT •. FUNCTION Voo N)~lpRI"EI ...:. ........ VDD ,... I~ , to.!' '~T''''''' ' Va. Voo ~ l .... .... to.! O.'''f 10GppF Vas , 05028001 Figure 8: Priming Circuit; Signal A&B High ()r Low DEVICE 1 2 ", drivers can be capacitively coupled through thel,.E;D d!odes to the multiplex inputs. For maximum noise immunity. a 10kn resistor should be placed in seri~s' with the' multiplex inputs as shown, in the application notes. Table 1 shows the functions selected by each digit for these .inputs. ' Table 1: Multiple Input Control This can be'easily accomplished with the following circuit: (Figure 8). SIGNAL A . TYPE D1 D8 D2 D5 .D4 D3 RANGE; INPUT PIN 21 D1, '02 D3 D4 D5 PIN 31 CD4049B 'Inverting Buffer CD4Q70B Exclusive-OR 0.Q1 Seb/l Cycle 0.1 Sec/10 cycles 1 Sec/l00 Cycles 10 Secll k CyCles Enable External Range Input CONTROL INPUT Display Off PIN 1 Display Test lMHz Select External Oscillator Enable External'Decimal Point Enable MULTI~LEXED INPUTS The FUNCTION, RANGE. CONTROL and EXTERNAL DECIMAL POINT inputs are time multiplexed to select the input function desired. This is achieved by connecting the appropriate digit driver output to the inputs. The input function, range and control inputs must be stable during the last half of each digit output, (typically 125/ls). The multiplex inputs are active high for the common anode ICM7226A. and active low for the common cathode ICM7226B. DIGIT FUNCTION INPUT Frequency Pin 4 Period Frequency Ratio Time Interval Unit Counter Oscillator Frequency D4 & Hold D8 . D2 D1 D3 EXTERNAL DECIMAL Decimal Point is Output for Same POINT INPUT, PIN Digit That is Connected to This 20 Input CONTROL INPUTS Display Test - All segments are enabled continuously. giving a display of all 8's with decimal points. The display will be blanked if display off is selected at the same time. Noise on the multiplex inputs can cause improper operation. This is particularly true when the unit counter mode of operation is selected. since changes in voltage on the digit . 7-80 Note: All typical values have been guaranteed by characterization and are not tested. .D~DlL ICM7226A/B Display Off - To enable the display off mode it is necessary to tie 04 to the CONTROL input and have the HOLD input at VDD. The chip will remain in this mode .until MOLD is switched low. While in the display off mode, the segment and digit driver outputs are open and the oscillator continues to run (with atypical supply current of 1.5mA with a 10MHz crystal) but no measurements are made. In addition, signals applied to the multiplexed inputs have no effect. A new measurement is initiated after the HOLD input goes low. (This mode does not operate when functioning as a unit counter.) ~ Table 2: Input Routing DESCRIPTION REFERENCE COUNTER Frequency (fA) Input A 100 Hz (Oscillator .;. 105 or 104 ) Period (tA) Oscillator Input A Ratio (fA/fB) Input A Input B Time Interval Osc ON .Gate Osc OFF (A~B) , 1MHz Select - The 1MHz select mode allows use of a 1MHz crystal with the same digit multiplex rate and time between measurements as a 10MHz crystal. The internal decimal point is also shifted one digit to the right in period lind time interval, since the least significant digit will be in 1~s increments rather than 0.1 MS. MAIN COUNTER Unit Counter (Count A) I~put Osc. Freq. (fosC> OscillatOr A Gat~, Not Applicable 100 Hz (Oscillator .;. 105 or 104 ) EXTERNAL DECIMAL POINT INPUT When the external deCimal point is selected, this input is active. Any of the digits, except 08, can be connected to this point. DB, should not be used .since it will override the overflow output and leading zeros will remain unblanked after the decimal point. HOLD Input - Except in the unit counter mode, when the HOLD input is at VDD, any meaSurement in progress (before STORE goes. low) is stopped, the main counter is reset and ,the chip is held ready to initiate a new measurement as soon as HOLD goes low. The latches which hold the main counter data are not updated, so the last complete' measurement is displayed. In unit counter mode when HOLD input is at VDD, the counter is not stopped or reset, but the display is frozen at that instantaneous value. When HOLD goes low the count continue.s from the new value in the counter. RESET Input - The RESET Input resets the main counter, stops any meal\urement in progress, and enables the main counter latches, resulting in an all zero output. A capacitor to ground will prevent any hang-ups on power_up. EXTernal'RANGE Input- The EXTernal.RANGE Input is used to select other ranges than those provided on the chip. Figure 9 shows the relationship between MEASurement IN PROGRESS and EXTernal RANGE Input External Oscillator Enable -1r:J this mode, the EXTernal OSCillator INput is used, rather than the on-chip oscillator, for the Timebase and Main Counter inputs in period and time interval modes. The on-chip oscillator will continue to function when the external oscillator is selected; but have no effect on circuit operation. The external oscill,....-j,.."9-'~'--~"±~ a 140L120 ~ 100 ~ ~- - --i- r--iJ~iL--+ 80 60 ';---II'F-+---+40 SUPPL Y VOLTAGE IV) TIMING CAPACITOR. C ("FI OP044401 0P044711 TIMEBASE FREE RUNNING FREQUENCY AS A FUNCTION OF RAND C MINIMUM TRIGGER PULSE WIDTH AS A FUNCTION OF TRIGGER AMPLITUDE 1500 1400 1300 .. 1200 So 1100 i!= 1000 i III !l ..." '" ""...i< III 900 800 700 800 500 400 300 200 100 0 0 TIME BASE FREOUENCY (HzI A - +25"C Voo = 16V - rtr5~\ Voo = f 2V ,.., I I J r 1'0.. 5 6 9 10 TRIGGER AMPUTUDE (VOLTS) 0P04451 I 0P045811 7-95 Note: All typical values have been guaranteed by characterization and are not tested. PI ICM7240/1CM7250/ICM7260 TYPICAL PERFORMANCE CHARACTERISTICS (CO NT.) NORMALIZED FREQUENCY STABILITY IN THE ASTABLE MODE AS A FUNCTION OF TEMPERATURE MINIMUM RESET PULSE WIDTH AS A FUNCTION OF RESET AMPLITUDE 1500 1400 1300 I II i' Ei ~ ~ I 700 600 ~ 500 ~ a: I I I TA = 25'C ,VDD=5~ V i +--t---r--~- I , 800 ~ I ! , ! T .~ ,--r-----t-, i 1100 1000 900 I I 1200 i I VDO = 2V 1/ I I / 400 :VDD = 16V r« ., 300 \' 200 100 I I --i-- I ! I I '-.L ~-'----'-- 0 6 9 7 10 RESET AMPLITUDE IVOL TSI OP044901 0P0446tl NORMALIZED FREQUENCY STABILITY IN THE ASTABLE MODE AS A FUNCTION OF SUPPLY VOLTAGE MAXIMUM DIVIDER FREQUENCY VB. SUPPLY VOLTAGE100M I -- ~ ~ R=I~n~ _ > 10M .!!! il. ff: C=O.Ip~'" I ~,c· ~ O.lpF ~ TA =+25·C _ == RC.CONNECTED TO GROUND _ I 1M = ffi Q I ;: is I ~ lOOK ~ 5V" VDD<> ISV == == ~g~J~':~:)~~~~~~'~~L~- 10K +25 +50 o +75 - -'- NO PROGRAMMING CONNECTIONS 4 8 10 12 14 16 18 20 SUPPL V V9L T AGE IV) TEMPERATURE I'CI OP04501 I 0P045201 OUTPUT SATURATION CURRENT AS A FUNCTION OF OUTPUT SATURATION VOLTAGE DISCHARGE OUTPUT CURRENT AS A. FUNCTION OF DISCHARGE OUTPUT VOLTAGE :( oS :( oS l- . ...a:Z :> "0z I- Z a: a: a: :> ""z iii " l- :a II: I !:i l: &l I J!::> i5 0 0.1 .01 0.1 TA = +2S'C 0.1 10 10 OUTPUT SATURATION VOLTAGE IV) DISCHARGE SATURATION VOLTAGE IV) 0P04531 I OP045111 7-96 Note:, All typical values have been guaranteed by characterization and are not tested. ICM7240/lCM7250/lCM7260 CIRCUIT DESCRIPTION RESET AND TRIGGER INPUTS (PINS 10 AND 11) The circuits are reset or triggered by a positive level applied to pins 10 and 11, and once triggered they ignore additional trigger inputs until either .the timing cycle is completed or a reset signal is applied. If both reset and trigger are applied simultaneously trigger overrides reset. Minimum input pulse widths are shown in the typical performance characteristics. Note that all devices feature power ON reset. MODULATION AND SYNC INPUT (PIN 12) The period, t, of the time base oscillator can be modulated by applying a DC voltage to this terminal. The time base oscillator can be synchronized to an external clock by applying a sync pulse to pin 12. TIMEBASE INPUT/OUTPUT PIN (PIN 14) While this pin can be used as either a time base input or output terminal, it should only be used as an input if the RC pin is connected to VSS. If the counter is to be externally driven, care should be taken to ensure that fall times are fast (see Operating Limits section). Under no conditions is a 300pF capacitor on this terminal useful and should be removed if a 7240/50/60 is used to replace an 8240/50/60 or 2240. CARRY OUTPUT (PIN 15, ICM7250/60 ONLY) This pin will go HI for the last 10 counts of a 59 or 99 count, and can be used to drive another 7250 or 7260 counter stage while still using all the counter outputs of the first. Thus, by cascading several 7250's a large BCD countdown can be achieved. The basic timing diagrams for the ICM7240/50/60 are shown in Figure 4. Assuming that the device is in the RESET mode, which occurs on powerup or after a positive level on the RESET terminal (if TRIGGER is low), a positive level on the trigger input Signal will initiate normal operation, The discharge transistor turns on, discharging the timing capacitor C, and all the flip-flops in the counter chain change states. Note that for straight binary counting the outputs are symmetrical; that is, a 50% duty cycle HI-LO. This is not the case when using BCD counting. (See Figure 6.) The timing cycle is initiated by applying a positive-going trigger pulse to pin 11. This pulse enables the counter section, sets all counter outputs to the LOW or ON state, and 'starts the time base oscillator. Then, external C is charged through external R from 20% to 70% of VDD-VSS, generating a timing waveform with period t, equal to 1Re. A short negative clock or time base pulse occurs during the capacitor discharge portion of the waveform. These clock pulses are counted by the binary counter of the 7240 or by two casca,ded Binary Coded Decimal (BCD) Counters in the 7250/60. The timing cycle terminates when a positive level is applied to RESET. When the circuit is at reset, both the time base and the counter sections are disabled and all the counter outputs are at a HIGH or OFF state. The carry-out is also HIGH. Each of the three devices utilizes an identical timebase, control flip-flops, and basic counters, with the outputs consisting of open drain n-channel transistors. Only the ICM7250/60 have CARRY outputs. In most timing applications, one or more of the counter outputs are connected back to RESET the circuit will start timing when a TRIGGER is applied and will automatically reset itself to complete the timing cycle when a programmed count is completed. If none of the counter outputs are connected back to the RESET (switch S1 open), the circuit operates in its astable, or free-running mode, after initial triggering. DESCRIPTION OF PIN FUNCTIONS COUNTER OUTPUTS (PINS 1 THROUGH 8) Each binary counter output is a buffered "open-drain" type. At reset condition, all the counter outputs are at a high, or non-conducting state. After a trigger input or when using the internal timebase, the outputs change state (see timing diagram, Figure 4). If an external clock input is used, the trigger input must overlap at least the first falling edge of the clock. The counter outputs can be used individually, or can be connected together in a wired-AND configuration, as described in the Programming section. Jl '--__________ --- 1\ I I I I I I I II I TRIGGER INPUT (TERMINAL 11) PROGRAMMING CAPABILITY TIMEBASE OUTPUT (TERMINAL 141 The counter outputs, pins 1 through 8, are open-drain Nchannel FETs, and can be shorted together to a common pull-up resistor to form a "wired-AND" connection. The combined output will be LOW as long as anyone of the outputs is low. Each output is capable of sinking ""'5mA. In this manner, the time delays associated with each counter output can be summed by simply shorting them together to a common output. For example, if only pin 6 is connected to the output and the rest left open, the total duration of the timing cycle (monostable mode) to would be 32t for a 7240 and 20t for a 7250/60. Similarly, if pins, 1, 5, and 6 were shorted to the output bus, the total time delay would be to = (1 + 16 + 32)t for the 7240 or (1 + 10 + 20)t for the 7250/60. Thus, by selecting the number of counter terminals connected to the output bus, the timing cycle can be programmed from: 11 ~ to ~ 255t (7240) 11 ~ to ~ 99t (7250) 11 ~ to ~ 59t (7260) - - - - 2 OUTPUT (TERMINAL 1) _I 2. I-- . ~ 1--- •• ---1 -, Ir---~ 1----.. ___..r L 4 OUTPUT (TERMINAL 2) -s OUTPUT (TERMINAL 3) .1 ~~~ 1--'28'.-J +256 OUTPUT fTERMINAL 8; 7240 ONL VI WF020101 Figure 4: Timing Diagram for ICM7240/50/60 Vss (PIN 9) This is the return or most negative supply pin. It should have a very low impedance as the capacitor discharge and other switched currents could create transients. 7-97 Note: All typical values have been guaranteed by characterization and are not tested. :aN ICM-1"240/ICM7250/ICM7260' ... -... I 51 N !=::. !... I ICM7260, there are standard BCD thumbwheel switches for the 0 through 5 digit (twelve position 0 to 5 repeated). Note that for the 7250 and 7260, invalid count states (BCD values;::: 10) will not be recognized and the counter will not stop. ' The 7240/50/60 can be configured to initiate a controlled timing cycle upon power up, and also reset internally; see Figure 5. Applications for this could include lawn watering sprinkler timing, pump operation, etc. NOTES ON THE COUNTER SECTION Used asa straight binary counter (ICM7240), as a +100 (lCM7250), or +60 (ICM7260) all devices are significantly faster than their bipolar equivalents. However, when using these devices as programmable counters the maximum frequency of operation is reduced by more than an order of magnitude. For any division ratio other than 256 (ICM7240), 100 (ICM7250), or 60 (ICM7260) the maximum input frequency must be limited to approximately 100kHz or less (with VDD equal to + 5 volts). The reason for this is two-fold: a. Since Ripple counters are used, there is a propagation delay between each individual +2 counter (8 counters for the ICM7240/50 and 7 for the ICM7260). Outputs from the individual +2, counters are AND'ed together to provide the output signal and the RESETITRIGGER Signal. b; There must be a delay of the positive going output to RESET, (pin 10) and TRIGGER (pin 11). The RESET Signal must therefore be generated first, and from this Signal another signal is obtained through a delay network. The TRIGGER overrides RESET. The delay between TRIGGER and RESET is generated by the Signal RC network consisting of the 56kn resistor and the 330pF capacitor. The delay caused by the counter ripple delays can be as long as 2!JS (5 volt supply), and the delay between RESET and TRIGGER should be at least 2j.1s. The sum of these two delays cannot be greater than one-half of the input clock period for reliable operation. See Figure 7 and 8. BINARY OR DECIMAL PATTERN GENERATION In astable operation, as shown in Figure 5, the output of the 7240150 appears as a complex pulse pattern. The waveform of the output pulse train can be determined directly from the timing diagram of Figure 4, which shows the phase relations between the counter outputs. Figure 6 shows some of these complex pulse patterns. The pulse pattern repeats itself at a rate equal to the period of the highest counter bit connected to the common output bus. The minimum pulse width contained in the pulse train is determined by the lowest counter bit connected to the output. THUMBWHEEL SWITCHES While the ICM7240 is frequently hard wired for a particular function, the ICM7250 and' ICM7260 can easily be programmed using thumbwheel switches. Standard BCD thumbwh,eel switches have one common and four inputs (1,2,4 and 8) which are connected according to the binary equivalent to the digits 0 through 9. For a single ICM7250 two such switches would select'a time of 1RC to 99RC. Cascading two ICM7250's (using the carry out gate) would expand selection to 9999RC. For a Voo Voo 10K, C~VOD :t VDO SO.F JL TRIGGER· 5K OUTPUT VDD::tr Vs.:~ I--,!. S, PROGRAMMING IY SOLDER CONNECTIONS OR THUMIWHEEL SWITCHES * FOR POWER UP TRIGGERINQ(1w = AND OMIT EXTERNAL PULSE. '._1 USE CIRCUIT SHOWN C0025511 Figure 5: Generalized Circuit for Timing Applications (Switch S1 open for astable operation, closed for monostable operation) 7-98 Note: All typical values have been guaranteed by characterization and are not tested, ICM7240/1CM72~O/ICM7260 A 2 PIN PATTERNS JLJLJUUL JlJlJ1IL-111lIl ,,.1 ~ L ,-J ~ ~8'---1_7,-l 3t PINS 1 81 2 SHORTED t = Re B PINS 1 & 4 SHORTED 3PIN PATTERNS fo-----211----..J PINS 1, 3, &- 5 SHORTED 4 PIN PATTERNS C ~~ ----I Ir- --I 3, _I 1--5t-, 3, d 1- - r---21t-- 3t b~ 5t . 3t ~- 1--85t- PINS 1. 3. 5, & 7 SHORTED WF020201 Figure 6: Pulse Patterns Obtained by Shorting Various Counter Outputs CLOSE TO INHIBIT INTERNAL TIMEBASE ~-----------4---_ OUTPUT CD02561 I Figure 7: Programming the Counter Section of the ICM7240/50/60 TBSIGNAL OFF PIN 1 ON PlNZ-, ~,----" PIN3-, II ~----.. I L,_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _~ ---.n , I OFF ~,------------~ n_______ I OUTPUT IRESET) FF rO ~,----" ON I ,-------------------J~, , TRIGGER , f\ ~_ ~~ - --i~ RESET TO TRIGGER RC DELAY RESET TO TRIGGER Re DELAY WF020301 Figure 8: Waveforms for Programming the Counter Section 7-99 Note: All typical values have been guaranteed by characterization and are not tested_ PI iN ICM7240/ICM7250/1CM7260 ". ' . , ,.., . .... :IE APPLICATIONS u· ::::; GENERAL CONSIDERATIONS iN ... 3=:::. !... :IE !:! Shorting the RC terminal or output terminals to VOD may exceed dissipation ratings and/or maximum DC current limits (especially at high supply voltages). There is a limit of 50pF maximum loading on the TB I/O terminal if the time base is being used to drive the counter section. If higher value loading is used, the counter sections may miscount. ICM7240 For greatest accuracy, use timing component values shown in the graph under Typical Performance Characteristics. For highest frequency operation it will be deSirable to use very low values for the capacitor; accuracy will decrease for oscillator frequencies in excess of 200kHz. ICM1240 • TRIGGERING CAN BE OBTAINEO FROM A PREVIOUS STAGE. A LIMIT SWITCH, OPER- ATOR SWITCH. ETC. When driving the counter sectionfrom an external clock, the optimum drive waveform is a square wave with. an amplitude equal to supply voltage. If the clock is a very slow ramp triangular, sine wave, etc.; it \\IiII be necassary to "square up" the waveform (rise/fall time $ 1/ls); this can be done by using two CMOS inverters in series, operating from the same supply voltage as the leM 7240/50/60. ICM7Z40 ICM724Q By cascading devices, use of low cost CMOS AND/OR gates and appropriate RC delays between stages, numerous sequential control variations can be obtained. Typical applications include injection molding machine controllers, phonograph record production machines, automatic sequencers (no metal contacts or moving parts), milling machine controllers, process timers, autornatic lubrication systems, etc. ICM7240 By selection of Rand C, a wide variety of sequence timing can be realized. A typical flow chart for a machine tool controller could be as follows: ~tl WAIT , 5 SEC. It~ ENABLE 10 SEC. WAIT 5 SEC. COUNT TO 186 ENABLE 5 SEC. LDO07401 Figure 9 7-100 Note: All typical values have been guaranteed by characterization and are not tested. ICM7240/lCM7250/lCM7260 VDD-VSS = QUARTZ XTAL + 5 VOLTS DC VDD = 32,761 Hz I. 20MD 8 .". 11 330KD ,4 2 CD40808 10 CD40248 4Hz RESET 27pF 12 vsso-+-_-' IPULSE/MIN IPULSEISEC START ~:~~~-.____-1~~;;;--------' 11 TRIGGER VDD 0--0 0- 110 CD-tOOI 8 38K SOK 10 RESET ICM7250IPE 15K VDD 54 S5 10K I=OFF O=COUNTING S~ 2 DECADE BCD THUM8WHEEL SWITCHES o----oVDD SOK BUZZER RESET LC02061I Figure 10 The circuit operates as tollows: .. The time base is first selected with. S1 (seconds or minutes), th~n units 0-99 are selected on the two thumbwheel switches S4 and S5. Finally, switch S2 is depressed to start the timer. Simultaneously thEiquartz crystal controlled divider circuits are reset, the ICM7250 is triggered and counting begins. The ICM7250 counts until the preprogrammed value is reached, whereupon it is reset, pin 10 of the CD40828 is enabled and the buzzer is turned on. Pressing S3 turns the buzzer off. CMOS PRECISION PROGRAMMABLE 0-99 SECONDS/MINUTES LABORATORY TIMER The ICM7250 is well suited as a laboratory timer to alert personnel of the expiration of a preselected interval of time. When connected as shown in Figure 10, the timer can accurately measure preselected time intervals of 0-99 seconds or 0-99 minutes. A 5 volt buzzer alerts the operator when the preselected time interval is over. 7-101 Note: All typical values have been guaranteed by characterization and are not tested. fJ ,ICM72401ICM7250/ICM7260 ' I RI 1 MEG 1.1 MEG Voo VDD INTERRUPT ONE-SHOT RESET VDD 13 10 , ICM7240IPE CMOS PROGRAMMABLE BINARY TIMER TRICGER' 11 10.. ,15K 10K • J1..' p~~ "ELAPSED TIME OVER .. INTERRUPT TO MICROPROCESSOR .. CIMOO1B 7 • 21, 31 • • 1. 14 CIMOO1B • 5 ~J" 2 1 ~VDD ~ 1 $ 2 ~ 14 9 • 1 11 O.,~ CI Ca.G18B OUADSWITCH Ca.G18B OUADSWITCH 13 5 8 12 13 5 8 12 5 7 • 11 17 19 21 23 TRIGGER RESET 1.13 STROBE 2,14 ER RESET ,.~ Ca.G17B WR FROM MICROPROCESSOR ..... .... 14CD40001B 3,15 CIiI4S08B 8 BIT LATCH 3 8 '8 '-=k 10 , . 18 20 22 2 417 14 .I 4 DISABLE II,• CD4017B DECADE COUNTER RESE1 ,1 .l.a. -=16 1 3 .001 MSB ,LSB ~ VDD 8 BIT MICROPROCESSOR BUS lC02071I Figure 11 LOW POWER MICROPROCESSOR PROGFtAMMABLE INTERVAL TIMER latch, the third triggers the ICM7240 to begin its timing cycle and the fourth resets the decade counter.' ' The ICM7240 CMOS programmable binary timer can be configured as a low cost microprocessor controlled interyal timer with the addition of a few inexpensive CD4000 series ,c;levices. ' the ICM7240 then counts the interval of time determined by the R-C value on pin 13, and the programmed binary count on pins 1 through 8. At the end of the programmed time interval, the interrupt one-shot is triggered, informing th~ microprocessor that the programmed time interval is over. With the devices, connected as shown in Figure 11, the sequence of operation is' as follows: The microprocessor sends out an 8 bit binary code on its 8 bit 1/0 bus (the binary value needed to program the ICM7240), followed by four WRITE pulses into the CD40178 decade counter. The first pulse resets the 8 bit latch, the second strobes the binary value into the 8 bit With a resistor of approximately 10Mil and capacitor of 0.1/lF, the time base of the ICM7240 is one second. Thus, a time of 1-255 seconds can be programmed by the microprocessor, and by varying R or C, longer or shorter time bases can be selected. 7-102 Note: All typical values have been guaranteed by characterization and are not tested. ICM7241 Timebase Generator GENERAL DESCRIPTION FEATURES The ICM7241 is a fully integrated oscillator, 2 divider and output driver which efficiency converts 4.194304MHz to 32.768kHz using a minimum of power. Only three external components are necessary for complete oscillator operation; a 4.194304MHz crystal, a fixed input capacitor, and an output trimmer capacitor. The output has a low enough impedance to satisfy most drive requirements. • • • Single Battery Operation (1.2 -1.8V) Low Power Consumption-Typo 40j.iA @ 1.5V Oscillator Biasing Resistor Included On-Chip ORDERING INFORMATION PART NUMBER TEMPERATURE RANGE PACKAGE ICM72411PA -20·C to + 70·C B-Lead Plastic Vss 7 osc OUTo-~~~.IYoon~------~------~ ZENER OIOOE HAS TVPICAL BREAKDOWN VOLTAGE OF &.3 VOLT$. Vss Vss 05025311 Figure 1: Functional Diagram PI Yss COUT UpF NOMINAL VALUE TOP VIEW COO292l1 VDD Yss Figure 2: Pin Configuration (Outline dwg PAl 32kHz PJN 1 IS DESIGNATED BY EITHER A DOT OR A NOTCH. OUTPUT QUARTZ CRYSTAL PARAMETERS t • 4.196.304 Hz Rs·36n Coo·IOm,_ e.,. 3.Sp' CL -l2pF C0029111 Figure 3: Typical Connection 7-103 Note: All typical values have been guaranteed by characterization and are not tested. -002 i IC.M724t too ~ ABSOLUTE MAXIMUM RATINGS Power Dissipation Output Short Gircuit[21 : .. : ....... 300inW Supply Voltage (VDo-'VSS) ....... ;'.'.. '..............'.......... 3V Output Voltage[il ................... Vss-O.3V to VoD+O.3V [ 1 1 ..................... " VSS-O.3V .' Input 'Voltage to VDD+O.3V Storage Temperature ......... ; ... '......... -30·e to + 125·e Operating Temperature ....................... -20·e to 70·e Lead Temperature (Soldering, 10sec) ................. 300·e NOTES: 1. All terminals may exceed the supply voltage (2,OV max) by ±0.3 volt provided that the currents in these terminals are limited to 2mA each, 2. This value of power dissipation refers to that of the package and will not be obtained under normal operating conditions. ELECTRICAL CHARACTERISTICS (VSS = 1.5V, VSS = OV, fosc SYMBOL = 4,194,304Hz, TA = 25·e, unless otherwise specified.) PARAMETER TEST CONDITIONS IDD Supply Current VSUPPLY Guaranteed Operating Voltage Range - 20·C S to S 70·C RSAT P·Ch Output Saturation Resistance IOUT=·SmA RSAT N·Ch Output Saturation Resistance IOUT=·SmA fSTAB Oscillator Stability 1,2V < VDD < 1.6V CIN = COUT = 15pF MIN TYP MAX UNIT 40 70 pA 1.8 V 660 2 kf2 240 1 kf2 1.2 1 ppm Oscillator Start·Up Time 1.0 s VDD = 1.2V tsTART NOTE: Stresses above those hsted under Absolute Maximum RatlOgs may cause permanent damage to the deVice. These are stress ratlOgs only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. TYPICAL PERFORMANCE CHARACTERISTICS SUPPLY CURRENT VS. SUPPLY VOLTAGE I" OSCILLATOR STABILITY SUPPLY VOLTAGE VS. CURRENT (SOURCE) VS. OUTPUT SATURATION VOLTAGE CRYSTAL PARAMETERS AS SPECIFIED ON PAGE 1. CRVSTAL PARAMETERS AS SPECIFIED ON PAGE·1 120 !... ~ II: II: 100 eo :0 U i 8. . ~ .- ~ 20 • 1.2 1.3 1.4 -- 1.5 If".., ~CoUT=22pF 1.8 I -- -j'... ·2 1.7 1.8 1.2 1,3 1.4 1.5 1.6 1.7 1.8 OUTPUT SATURATION VOLTAGE (YI SUPPLY VOLTAGE (V) SUf"PLY VOLTAGE (VI 0P051501 OP051401 OP051301 7-104 Note: All typical values have been guaranteed by characterization arid are' not tested. ICM7242 Long-Range Fixed Timer GENERAL DESCRIPTION FEATURES The ICM7242 is a CMOS timer/counter circuit consisting of an RC oscillator followed by an a-bit binary counter. It will replace the 2242 in most applications, with a significant reduction in the number of external components. Three outputs are provided. They are the oscillator output, and buffered outputs from the first and eighth counters. The ICM7242 is packaged in an a-pin CERDIP. • • • • • • Replaces The 2242 in Most Applications Timing From Microseconds to Days Cascadeable Monostable or Astable Operation Wide Supply Voltage Range: 2-16 volts Low Supply Current: 1151lA @ 5 volts ORDERING INFORMATION TEMPERATURE RANGE PART NUMBER - ICM7242D DICE" + ICM72421PA -25'C to +85'C 8 pin MINI·DIP ICM72421JA -25'C to +85'C 8 pin CERDIP ICM7242CBA D'C to + 7D'C VDDO .. PACKAGE TBIIO RC + 2 OUTPUT 2 7 1281256 OUTPUT 3 6 TRIGGER Vss 4 5 RESET CD02571I Figure 1: Pin Configuration (Outline Drawing JA, PAl 8 pin S.O.I.C. "Parameter MinIMax Limits guaranteed at 25'C only for DICE orders. VDD~--~~-------------1 1 __--__~ SOK 86K RC o---++-t '----------------1>__- - - 0 + 2 OUTPUT 2 SOK '----------------------~ ____--o TB 110 8 PI _4_-------------<1_------+-' VSS 0 - - -...... 8D010711 Figure 2: Functional Diagram 7-105 Note: All typical values have been guaranteed by characterization and are not tested. . . (If ~ ICM7242 ... >1 ABSOLUTE MAXIMUM RATINGS Power Dissipation[2] ...................................... 20OmW Operating Temperature Range ........... -2SoC to +8SoC Storage Temperature Range ............ -65·C to + 1S0·C Lead Temperature (Soldering, 10sec) ................. 300·C Supply Voltage (Voo to Vss) .............................. 18V Input Voltage[1] Terminals (Pins 5, 6, 7, 8) (VSS -0.3V) to (VOO +0.3V) Maximum continuous output current (each output) ......................................... 50mA NOTES: 1. Due to the SCR structure inherent in the CMOS process, connecting any terminal to voltages greater than Voo or less than Vss may cause destructive device latch up. For this reason, it is recommended that no inputs from external sources not operating on the same supply be applied to the device before its supply is established and, that in mUltiple supply systems, the supply to the ICM7242 be turned on first. 2. Derate at -2mWI"C abOve 25°C. Stresses above those listed under" Absolute Maximum Ratings" may cause permanent device failure. These are stress ratings only and functional operation of the devices at these or any other conditions above those indicated in the operation sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may cause device failures. ELECTRICAL CHARACTERISTICS (VOD = SV, TA = +2S·C, R = 10kU, C = 0.1IlF, Vss = OV unless otherwise specified.) SYMBOL PARAMETER Voo Guaranteed Supply Voltage 100 Supply Current TEST CONDITIONS MIt.! TYP 2 Reset Operating, R = 10kn, C - O.l/.LF Operating, R = 1Mn, C = 0.1 /.LF TB Inhibited, RC Connected to VSS 125 340 220 225 Timing Accuracy MAX UNIT 16 V 600 600 pA pA pA pA 5 % Independent of RC Components 250 ppml"C ISOURCE = 100pA ISINK = 1.0mA 3.5 0.40 V V tJ.flfn RC Oscillator Frequency Temperature Drift VOTB Time Base Output Voltage ITBLK Time Base Output leakage Current 25 pA VTRIG Trigger Input Voltage VOO=5V VOO = 15V I.S 3.5 2.0 4.5 V V VRST Reset Input Voltage Voo= 5V Voo -15V 1.3 2.7 2.0 4.0 V V ITRIG, IRST Trigger/Reset Input Current ft Max Count Toggle Rate RC = Ground Voo-2V } VOO = 5V Counter/Divider Mode Voo = 15V 50% Duty Cycle Input with Peak to Peak Voltages Equal to Voo and vSS 2 10 /.LA 1 6 13 MHz MHz MHz VSAT Output Saturation Voltage All Outputs except TB Output Voo = 5V, lOUT = 3.2mA 0.22 ISOURCE Output Sourcing Current 7242 Voo'" 5V Terminals 2 & 3, VOUT = 1V 300 Ct MIN Timing Capac"or (Note 1) Rt Timing Resistor Range (Note 1) 0.4 pA 10 lK Voo = 2-1SV NOTE: 1. For Design only, not 100% tested. 7-1 OS Note: All typical values have been guaranteed by characterization and are not tested. V pF 22M n ICM7242 VDD L--d~"''--;}:}--_ TIMEBASE INPUTIOUTPUT 21 (Rc 2) OUTPUT o - - - - ( ] 2 2B (RC 258) OUTPUT 3 VDD 4 11 11 • TIMEBASE PERIOD = 1.0RC; 1 SEC. = lMO x I.F TC02971I NOTE: OUTPUTS +2 ' AND +28 ARE INVERTERS AND HAVE ACTIVE PULLUPS. Figure 3: Test Circuit TYPICAL PERFORMANCE CHARACTERISTICS SUPPLY CURRENT AS A FUNCTION OF SUPPLY VOLTAGE 260 240 220 1 .. I ,.... I 200 180 0- z 160 II: II: :> u ~ ~ ./ 140 120 100 40 20 o J o V ~ ./ .L-!-"'"" TA"'+25 C Q 1// V- . rt/ IV TA / .....r-"" L ...I-/V .". 80 60 I TA -·20·C RECOMMENDED RANGE OF TIMING COMPONENT VALUES FOR ACCURATE TIMING =+75°C I I 1 1 I I - RESETMOOE 1 1 10 12 14 ,18 TIMING CAPACITOR, C (}.IF) SUPPL y VOLT AGE (V) DIMENSIONS IN INCHES AND MILLIMETERS 0P045401 OP04571 I TIMEBASE FREE RUNNING FREQUENCY AS A FUNCTION OF RAND C MINIMUM TRIGGER PULSE WIDTH AS A FUNCTION OF TRIGGER AMPLITUDE 1500 1400 1300 TA = +25'C li'12OO S 1100 1DOO i: j900 ~: ~800 VOO = llV ffi 500 "400 ~3OO 200 tr<:r J 5 , " 100 YDO = 2V ,.. o III o r 4 , ....... 7 8 9 10 TRIGGER AMPLITUDE (VOLTS) TIME BASE FREQUENCY (Hz) QP()45511 0Pn468l1 7-107 Note: All typical values have been guaranteed by characterization and are not tested. IN :t... ~TYPICAL PERFOR'MANCE CHARACTERISTICS (C()NT.) NORMALIZED FREQUENCY STABILITY IN THE ASTABLE MODE AS A FUNCTION OF SUPPLY , VOLTAGE MINIMUM RESET PULSE, WII)THAS A ,FUNCTION OF RESET AMPLITUDE ' , 1500 1400 1300 1200 i i' 1100 1000 ::; 900 i 800 ~ ~ ... ~ '" +10.0 i! ~ TA -25"C I V 700 600 500 400 r< 300 200 100 / I I ! 'Voo= 16V o 3 ,0 "" 4 ~ +4,0 \ ,,~ ..- '" : j -6.0 l5 -8.0 - --- ~~ -, "" I :::;, ~ ~~ ...... " R" " ,':::: ...... ,~ ~" 'Z 7 9 -10.0 2 10 10 12 '''''; "'~ 14 16 'OOM = ~=- 0 2 I I C = 0.1~~"" ____ 1 I MAXIMUM DIVIDER FREQUENCY VOLTAGE R=loJn~ 2 I --;.....---, ~ 10M ~ 1M 5 5V" VOO'; 15V :Ii +50 ;'"." - - I 1 1 " "TA - +25"C j-~ ,RC cONNEcTEo TO GROUND, , If.- --t-r-I '\ :I i' i, I ~ lOOK I +25 , SUPPLY VS. ¥ i ' I ;; i 3 ! a: ~ ! ! I ! H-- - 5w C=0.1pF ~ 20 0P045901 0P04561! NORMALIZED FREQUENCY STABILITY IN THE ASTABI.i: MODE AS A FUNCTION O,F TEMPERATURE' 3 18 SUPPLY VOLTAGE IV) RESeT AMPLITUDE (VOLTSI I _ ,000n ,01pF -4.0 N ! C .OO1Io1F--_a .. l00pF - - - _ .lpF :~n :~~~F=-:_-: "- , 5 \,6 ....~t.. 0,0 S I R ll1kn lMn lkn +2.0 51 , I -' +6.0 ~w Voo -2V ! ~ ! Q Voo -5V I TA = +25·C +8.0 ,OK o +75 i I .1 i--f- 1-1 8 ,HI 12 14 16 ,18 20 SUPPLY VOLTAGE W) TEMPERATURE ("CI OP046201 0P046011 DISCHARGE OUTPUT CURRENT AS A FUNCTION 'OF DISCHARGE OUTPUT VOLTAGE OUTPUT SATURATION CURRENT AS A FUNCTION OF OUTPUT SATURATION VOLTAGE ,0 0.1 OUTPUT SATURATION VOLTAGE (V) DISCHARGE SATURATION VOLTAGE (V) 0P046311 0P046111 7-108 Note: All typical values have been guaranteed by characterization and are not tested. ICM7242 OPERATING CONSIDERATIONS Shorting the RC terminal or output terminals to VDD may exceed dissipation ratings and/or maximum DC current limits (especially at high supply voltages). There is a limitation of 50pF maximum loading on the TB 110 terminal if the timebase is being used to drive the counter section. If higher value loading is used, the counter sections may miscount. For greatest accuracy, use timing component values shown in the graph under typical performance characteristics. For highest frequency operation it will be desirable to use very low values for the capacitor; accuracy will decrease for oscillator frequencies in excess of 200KHz. When driving the counter section from an external clock, the optimum drive waveform is a square wave with an amplitudli' equal to supply voltage. If the clock is a very slow ramp triangular, sine wave, etc., it will be necessary to "square up" the waveform; this can be done by using two CMOS inverters in series, operating from the same supply voltage as the ICM7242. The ICM7242 is a non-programmable timer whose principal applications will be very low frequency oscillators and long range timers; it makes a much better low frequency oscillator/timer than a 555 or ICM7555, because of the onchip 8-bit counter. Also, devices can be cascaded to . produce extremely low frequency signals. Because outputs will not be AND'd, output inverters are used instead of open drain N-channel transistors, and the external resistors used for the 2242 will not be required for the ICM7242. The ICM7242 will, however, plug into a socket for the 2242 having these resistors. The timing diagram for the ICM7242 is shown in Figure 4. Assuming that the device is in the RESET mode, which occurs on powerup or after a positive signal on the RESET terminal (if TRIGGER is low), a positive edge on the trigger input Signal will initiate normal operation. The discharge transistor turns on, discharging the timing capacitor C, and all the flip-flops in the counter chain change states. Thus, the outputs on terminals 2 and 3 change from high to low states. After 128 negative timebase edges, the +2 8 output returns to the high state. To use the 8-bit counter without the timebase, terminal 7 (RC) should be connected to ground and the outputs taken from terminals 2 and 3. n ..... ~_,------ _ I I I" I I I I I I I I I 'Ln~,- tin - 2!: ~(V+) s V4(V+) CD02S81I Figure 5: Using the ICM7242 as a Ripple Counter (Divider) The ICM7242 may be used for a very low frequency square wave reference. For this application the timing components are more convenient than thOSe that would be required by a 555 timer. For very low frequencies, devices may be cascaded (see Figure 6). C00259t1 Figure 6: Low Frequency Reference (OSCillator) For monostable operation the +2 8 output is connected to the RESET terminal. A positive edge on TRIGGER initiates the cycle (NOTE: TRIGGER overrides RESET). THE ICM7242 is superior in all respects to the 2242 except for initial accuracy and oscillator stability. This is primarily due to the fact that high value p - resistors have been used on the ICM7242 to provide the comparator timing points. PI OUTPUT ....- - - 0 TRIGOER INPUT (TERMINALS) ~:'=L~~TPUT + 2 OUTPUT (TERMINAL 2) + 1281258 OUTPUT TRIGGER -11'--__= - (TERMINAL 3) (ASTABLE OR "FREE RUN" MODE) "L---J --i Jl1lIl- T8 OUTPUT .... 12a1258 OUTPUT (TERMINAL 3) (MONOST ABLE TERMINAL 6 -I IIIIIII f 1T1=" TERMINAL 8 OR "ONE SHOT" MODE) !---'28RC WF020411 .' TC02981 I Figure 4: Timing Diagrams of Output Waveforms for the ICM7242. (Compare with Figure 8) Figure 7: Monostable Operation 7-109 Note: All typical values have been guaranteed by characterization and are not tested. .(\1 .... ICM7242 (\I 1'-. By selection of Rand C, a: wide variety of sequence timing can be realized ... A typical flow chart for a machine tool controller could be as follows: :IE COMPARING THE ICM7242 WITH THE 2 2242 ICM7242 a. b. c. d. e. t. g. h. 2242 Operating Voltage 2-16V 4-15V Operating Temp. -25·e to + 65·e o·e to +70·e Range Supply Current O.7mA Max. 7mA Max. VDD= 5V Pullup Resistors TB Output No Yes +2 Output No Yes +256 Output No Yes Toggle Rate 3.0MHz O:5MHz Resistor to Inhibit Oscillator No Yes Resistor in Series with Reset for Monostable Operation No Yes Capacitor TB Terminal for HF Operation No Sometimes leM 7?42 ".!!!!!.J t I WAIT 5 SEC. leM 7240 leM 7242 I t I ENABLE 10 SEe. I.!!!I!:... WAIT COUNT 5 SEC. TO 185 ENABLE 58EC. LDOO7501 Figure 8 By cascading devices, use of low cost CMOS AND/OR gates and appropriate RC delays between stages, numerous sequential control variations can be obtained. Typical applications include injection molding machine controllers, phonograph record production machines, automatic sequencers (no metal contacts or moving parts), milling machine controllers, process timers, automatic lubrication systems, etc. SEQUENCE TIMING • Process Control • Machine Automation • Electro-pneumatic Drivers . • Multi-operation (Serial or Parallel Controlling) r-- PUSH 51 TO STA.RT SEQUENCE: --1 TRIGGER MUST IE SHORTER THAN "ON lime." 5l L _ _ _ _ _ _ _ _ _ _ _......_ _ _ _ _ _ _ _ _ _ . . SELECT AC VALUES TO DISIREO"ONtime" FOR EA,CH lCM7242 ~'D~~r_------------------- I OUTPUT··l _+-_____,!---'28.C----!j-_ _ _ _ _ _ __ OUTPUT 8"_-+1._______+-______---1!--'28.C-!i-_ _ _ __ OUTPUTC' LJ I I f---128RC-~ OUTPUTD'-+-I--+----+----; II _ _ ON tilM~ ON timea-----f.oN I dm+-~H time0----1 LC020811 • • Process Control Machine Automation • • Electro-Pneumatic Drivers Multi-OPeration. (Serial or Parallel Controlling) Figure 9: Sequence Timer Note: All typical values have been guaranteed by characterization and are rot tested. ICM7245 Stepper Motor Quartz Clock GENERAL DESCRIPTION FEATURES The ICM7245 is a very low current, low voltage microcircuit for use in analog watches. ·'t consists of an oscillator, dividers, logic and drivers necessary to provide either bipolar or unipolar stepper motor drive for minimum-component count watches. The oscillator is extremely stable over wide ranges of voltage and temperature, and thus combines high accuracy with low system power. The ICM7245 is fabricated using Intersil's low threshold metal-gate CMOS process. The inverter oscillator contains all components on-chip except for the tuning capacitor and quartz crystal. The binary divider consists of 15 stages, the last 5 of which may be reset. If a reset (stop) occurs during an output pulse, the duration of the pulse is not affected. When the reset is released, the first output occurs approximately 1 second later. For the bipolar version, memory reset logic is included to make sure the first pulse after a "stop" occurs on the opposite output from the one just before the "stop". The bipolar bridge output consists of two large inverters, normally high. The output ON resistance of the P and N channel devices in· series is 200n maximum @ 1mAo In unipolar operation, the output is made up of a single normally high inverter. The ON resistance of the N-channel device is 50n maximum @ 3mA. • ORDERING INFORMATION TABLE 1 PART NUMBER TEMPERATURE RANGE -25°C to +85°C 8 pin Plastic DIP ICM72458IPA -25°C to + 85°C 8 pin Plastic DIP ICM7245DIPA • • • • • • • PACKAGE ICM7245AIPA , _25°C to + 85°C 8 pin PlastiC DIP ICM7245FIPA -25°C to +85°C 8 pin Plastic DIP ICM7245UIPA -25°C to + 85°C 8 pin Plastic DIP DEVICE NUMBER IT. MOTOR2 [I MOTOR 1 IT STOP II ICM7245 PULSE WIDTH (ms) PULSE OSCILLATOR FREQUENCY CAPACITOR ·8 9.7 1Hz ICM72458 8 7.8 1Hz C,N ICM7245D 8 7.8 0.1Hz (1 pulsel 10 seconds) COUT ICM7245E 8 7.8 0.0833Hz (1 pulsel 12 seconds) C,N ICM7245F 8 7.8 0.05Hz (1 pulsel 20 seconds) C,N ICM7245U U 3.9 1Hz C,N ~ V· BIPOLARI UNIPOLAR ICM7245A -25°C to + 85°C 8 pin Plastic DIP ICM7245EIPA Very Low Current Consumption: O.4j.tA at 1.55 Volt Typical 32kHz Oscillator Requires Only Quartz Crystal and Trimming Capacitor Bipolar Stepper Drive With Low Output On Resistance: 2000hms Maximum (7245 AlB/D/E/F) Unipolar Stepper Drive With Very Low Output On Resistance: 500hms Maximum (7245U) Extremely Accurate: Oscillator Stability Typically O.1ppm STOP Function for Easy Time Synchronization Wide Temperature Range: -25°C to +.85°C On Chip Fixed Oscillator Capacitor: 20pF ±200/0 COUT :Il OSC OUT 2J OSCIN ] ] TEST ~ vCD029311 Figure 1: Pin Configuration (Outline dwg PA) 7-111 Note: All typical values have been guaranteed by characterization. and are not tested. 002 = ICM:t245 .... Il\I ~ ABSOLUTE MAXIMUM RATINGS Supply Voltage (Voo-VSS) ............................. , ... 3.0V Input Voltages ................ , .. Vss-0.3 < VIN < Voo +0.3 Power Dissipation (Note 1) .............................. 25mW Storage Temperature ... ; .............•.... -60·C to +150·C Operating Temperature ...................... -25·C. to +85·C Lead Temperature (Soldering, 10sec) .................. 300·C NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permiment'device failure. These are stress ratings o,lIy and functional operation of the devices at these or any other conditions above those indicated in the operation sections of this specification is not :implied. Exposure to absolute maximum rating conditions for extended periods may cause device failures. Note 1: This value of power dissipation refers to that of the package and will not normally be obtained under normal operating conditions. ELECTRICAL CHARACTERISTICS (Voo = 1.55V, Vss unless otherwise stated Numbers are in absolute values) SYMBOL PARAMETER = OV, fosc = 32,768Hz, TEST CONDITIONS circuit in Figure 2, T A = 25·C, MIN TYP MAX UNIT 0.4 0.8 pA 100 Supply Current No Load VSUPPLY Operating Voltage (Voo-VSS) O·C < TA gm Oscillator Transconductance Start-up (Note 1) 15 Cose Oscillator Capacitance (Note 1) 16 ISTOP STOP Input Current ITEST TEST Input Current 10 fSTAB Oscillator Stability < 50·C 1.2 1.8 V 24 IlS pF 0.3 pA 20 0.1 100 Supply Current During Stop Ro Output Saturation Resistance Bipolar (N-CH. RO-p Output Saturation Resistance P-CH Unipolar IL = 3mA 200 RO-N Output Saturation Resistance N-CH Unipolar IL = 3mA 50 + P-CH) IL = 1mA 1.0 pA 200 n NOTE 1: For design reference only, not 100% tested. I I ~ 5·25.F CRYSTAL 8 ~ARAMETEAS f --'- -¢ 2 7 ICM 72458 3 -.;..STOP - 32768 Hz Cl -10 pF I:M = 2.5 mpF Rs =20kn D32768HZ _TCRYSTAl 4 I.SSV 5 TC09161I Figure 2: Typical Watch Circuit 7-112 Note: All typical values have been guaranteed by characterization and are· not tested. IlA ppm A(VSUPPL Y) - 0.6V •STOP' Connected to VOO n n ICM7245 (ICM7245U) (ICM7245B) I' 1 MOTOR SEc MOTOR'IMOTOR~\ '--U ~ ~'SEC-l STop_---1-----'r-r~ I ~ --------.tr S \-1 ~ U"--. MOTOR 2 --I1--7.8ms r~~~--'-SE-C-~~-- STOP ----------~ WF021901 WF02200J Figure 3: Timing Waveforms TYPICAL PERFORMANCE CHARACTERISTICS SUPPLY CURRENT AS A FUNCTION OF SUPPLY VOLTAGE BRIDGE OUTPUT CURRENT AS A FUNCTION OF LOAD VOLTAGE 16 1.6 '---_---1_ _-+__ TA =125°C 1.4 Ri. = I .3f----t---t---t----j _ 14 60~! toUT"" 20 pF "! 1.2 " -" i" "> t OSCILLATOR STABILITY AS A FUNCTION OF SUPPLY VOLTAGE 12 10 1.0 .8 -- ITA" 25'·CJ .2/---f---f---f----l V+-V-"'1.8V ............ "" ---r-.. ~=1.55V .6 ii! V· .4 .2 0 1.2 1.4 1.6 1.8 2.0 SUPPLY VOltAGE (VOL lS) o o v- J 1.2V- .4 ~ .8 " .~ -.1 "-\ \ -.2/---f---f---f----l 1.6 1.2 f----t---t---t-----/ 2.0 1.2 OP051601 1.4 1.6 1.8 2.0 SUPPLY VOLTAGE (VOLTS) BRIDGE LOAD VOLTAGE (VOLTS) OP051601 OP051701 where APPLICATION NOTES OSCILLATOR The oscillator of the ICM7245 is designed for low frequency operation at very low current from a 1.55 volt supply. The oscillator is of the inverter type, using a nonlinear feedback resistor having maximum resistance under start-up conditions. The nominal load capacitance of the crystal should be less than 12pF, with a preferred range of 7-10pF. In specifying the crystal, the motional capacitance, series resistance and tuning tolerance must be compatible with the characteristics of the circuit to insure start-up and operation over a wide voltage range under worst case conditions. RS = Series Resistance of Crystal f = Frequency of the Crystal Llf = Frequency Shift from Series Resonance Frequency Co = Static Capacitance of Crystal C'N = Input Capacitance COUT = Output Capacitance The following expressions can be used to arrive at a crystal specification: CL Tuning Range = Load Capacitance Cm = Motional Capacitance of Crystal Llf The gm required for start-up calculated should not exceed 50% of the gm guaranteed for the device. TEST POINT The TEST input, when connected to V-, causes the ICM7245B/U to speed-up the outputs by 16 times. On long f gm required for start-up gm = 471"2f2 CO)2 C'N COUT RS ( 1 + CL 7-113 Note: All typical values have been guaranteed by characterization and are not tested. i ... I .U~U[b ICM7245.···· period output versioris'(12,20.S0sec) the speed-up factor Will be larger. This allows easy.t8$tillg of the finished watch inodule. The pulse width is n6t affected by the speed-up of the pulse frequency. CUSTOM VERSIONS The ICM7245 may be modified with alternative metal . masks to provide different n\lmbeJ of dividers, various pulse widths, and different output configurations. In addition, MOS capacitors on-Chip up to a total of 50 pF may be connected to either the input andlor the output of the oscillator. Consult your Intersil representative or the factory for further information. !. 7-114 Note: All typical values have been guaranteed by characterization and are. not tested. ICM7249 5 h Digit LCD JJ-Pow Event/Hour Metet GENERAL DESCRIPTION FEATURES The ICM7249 Timer/Counter is intended for long-term battery-supported industrial applications. The ICM7249 typically draws 1p.A during active timing or counting, due to Intersil's special low-power design techniques. This allows more than 10 years of continuous operation without battery replacement. The chip offers four timing modes, eight counting modes and four test modes. The ICM7249 is a 48-lead device, powered by a single DC voltage source and controlled by a 32.768kHz quartz crystal. No other external components are required. Inputs to the chip are TTL-compatible and outputs drive standard LCD segments. The chip is available in dice and in ceramic side-brazed packages. • • • • • • • • • • • Hour Meter Requires Only 4 Parts Total Micropower Operation: < 1/lA at 2.8V Typical 10 Year Operation On One Lithium Cell 2h Year Battery Life With Display Connected Directly drives 5 h Digit LCD 14 Programmable Modes of Operation Times Hrs., 0.1 Hrs., .01 Hrs., .1 Mlns. Counts 1's, 10's, 100's, 1000's Dual Funtion Input Circuit: - Selectable Debounce for Counter - High-Pass Filter for Timer Direct AC Line Triggering With Input Resistor Winking "Timer Active" Display Output Display Test Feature APPLICATIONS • • • • AC or DC Hour Meters AC or DC Totalizers Portable Battery Powered Equipment Long Range Service Meters ORDERING INFORMATION 1'1IACIIflA1fl PART NUMBER TEMPERATURE RANGE ICM72491DM -40°C to + 85°C ICM7249/D 25°C PACKAGE 48-Pin Ceramic Die CD03300r Figure 1: Pin Configuration 80014701 Figure 2: Functional Diagram 7-115 Note: All typical values have been guaranteed by characterization' and are not tested. 203500-003 ICM7249, , . ~J ABSOLUTE MAX'IMUM RATINGS Operating Temperature Rang~· ............. "';40·C to 85°C Storage Temperature Range ............... -65·C to 150·C Lead Temperature (Soldering, 10sec) .: ............... 300·C Supply Voltage ................................................... 6V Input Voltage Pins 43-48 (Note 1) ......... (VSS-O.3V) to (VDD +O.3V) Power Dissipation (Note 2) ............................. 200mW Stresses above those listed under Ab';;'ute Maximum Ratings' may cause permanent damaQe to the de~ice, These are stress ratings only and functional operation of the device at these or any other conditions atiove those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. ELECTRICAL CHARACTERISTICS Temperature = -40·C to + 85·C, VDD otherwise noted. Typical specifications measured at temperature = 25·C and VDD 2.2V to 5.5V, VSS = OV, unless 2.8V unless otherwise noted. LIMITS SYMBOL PARAMETER UNIT TEST CONDITIONS MIN Voo Operating Voltage Note 3 100 Operating Current Note 4, All inputs = Voo or GNO VOO=2.8V VOO = 5.5V liN Iss lor V,L V,,, VOL Input Current: Co-Ca, V 1,0 4.0 3.0 10.0 pA pA 1.5 1 3.0 90 pA pA pA 0.3 Voo V V 0,8 V 0.8 V All Inputs VOO or GND Note 5 Input Voltage: Co-Ca, DT, SIS ,0.7 VOO Segment Output Voltage .IOL= lj.1A 10H = lpA 8ackpl,ane Output Voltage Voo 0.8 IOL = 10pA 10H = 10pA VOH - MAX 5.5 2.2 SIS DT VOH VOL TYP Voo 0.8 Oscillator Stability: Temp. = 25·C, Voo = 2.2V to 5.5V Temp, = -40·C to + 85·C, Voo = 2.2V to 5.5V V 0.1 ppm 5 ppm SIS Pulse Width: THP TOE TOE NOTES: High-pass Filter (Modes 0-3) Debounce (Modes 4, 6, 8, 10) wlo Debounce (Modes 5, 7, 9, 11) 5 10,000 5 10,000 j.lS j.lS j.IS 1. Due to the SCR structure inherent in junction-isolated CMOS devices, the circuit can be put in a latchup mode if large currents are injected into device inputs or outputs. For this reason special care should be taken in a system with multiple power supplies to prevent voltages being applied to inputs or outputs before poiNer is applied. If only inputs are affected, latchup also can be prevented by limiting the current into the input terminal to less than 1mAo 2. This limit refers to that of the package and will not occur during normal operation. 3. Internal reset to 00000 requires a maximum Voo rise time of 1j.IS. Longer rise times at power-up may cause improper reset. 4. Operating current is measured with the LCD disconnected and input current ISS supplied externally. 5. Inputs Co-Ca are latched internally and draw no DC current alter switching. During switching, a 90pA peak current may be drawn for 10 nanoseconds. 7_116 Note: All typical values have been guaranteed by characterization and are not tested. ICM7249 Table 1. Pin Assignment and Function PIN NAME 1 Be/Ce DESCRIPTION Half-digit LCD segment output. PIN NAME 37 W DESCRIPTION Wink-segment output. 2 F5 38 BP Backplane for LCD reference. 3 G5 39 V+ Positive supply voltage. 4 E5 40 5 D5 41 ascI ascO Quartz Crystal connections 6 Cs 42 GND Chip GRouND. 7 B5 43 Co 8 A5 44 C1 9 F4 45 C2 10 G4 Mode-select control inputs. 46 C3 E4 Seven-segment 47 SIS Start I Stop 12 D4 LCD outputs. 48 DT Display Test 13 C4 11 14 B4 15 A4 16 F3 17 G3 18 E3 19 D3 20 C3 21 B3 22 A3 23 F2 24 G2 25 E2 26 D2 27 C2 28 B2 29 A2 30 F1 31 G1 32 E1 33 D1 34 C1 35 B1 36 A1 7-117 Note: All typical values have been guaranteed by characterization and are not tested. Table 2. Mode Select Table· Control Pin Inputs Mode Function C3 C2 Cl Co 0 0 0 0 0 1 hour interval timer 1 0 0 0 1 0.1 hour interval timer 2 0 0 1 0 0.01 hour interval timer 3 0 0 1 1 0.1 minute interval timer 4 0 1 0 0 l's counter with debounce 5 0 1 0 1 l's counter 6 0 1 1 0 10' s counter with debounce 7 0 1 1 1 10's counter 8 1 0 0 0 100's counter with debounce 9 1 0 0 1 100' s counter 10 1 0 1 0 1000's counter with debounce 11 1 0 1 1 1000's counter 12 1 1 0 0 Test display digits 13 1 1 0 1 Internal test 14 1 1 1 0 Internal test 15 1 1 1 1 Reset with an input frequency between 40Hz and 50Hz has an indeterminate effect on the timing. The timing intervals are different for each mode. For example, in Mode 0 the display is incremented every hour, while in Mode 3 the display is incremented every tenth of a minute. While timing is active, the wink·segment output W will flash, as seen in Figure 1. On the upward transistion of SIS, the wink output turns off. It remains off for 16 backplane cycles and turns back on for another 16 cycles. If timing is still active, the wink segment repeats this process, giving it a flash rate of 1Hz: otherwise the wink output remains on until timing begins again. In counting modes 4-11, the count is registered and latched on each positive transition of SIS. The display is keyed to the specific counting mode. In the 1's counter mode, the display is incremented for each count; in the 10's counter mode, the display is incremented after every count. DETAILED DESCRIPTION After power is applied, the ICM7249 requires a rise time of tR to become active and for oscillation to begin, as seen in Figure 3. Initially the backplane output BP is a logic '1' level, but then changes after every 512 crystal oscillation cycles, giving BP a square·wave frequency of 32Hz. Segments are turned off when the voltage levels of the segment drive pins are the same as and in phase with BP. Segments are turned on by having the drive pin voltages out of phase with BP. The 16 modes are selected by placing the binary equivalent of the mode number on inputs C TIMING ~ INDETERMINATE DURING INTERVAL __I I-- Thp SIS INVALID -------""f 40Hz < f < 50Hz 1------- I.- TlMIN,G ACTIVE DURING INTERVAL --I ~Thp SIS VALID - - - - - - -..... WF023801 Figure 4: Start/Stop Input High-Pass Filtering in Timing Modes 7-119 Note: All typical, values have been guaranteed by characterization and are not tested. ________ ~.:;::::::::::::::r~J----n-M-II-G-AC-n-v-E:::::::::::::::::~1-------- SIS BP w 01 SEGMEITS OFF SEGMEITS WF027501 Figure 5: Wink Waveforms in Timing Modes SIS --~ BP w WF027701 Figure 6: Wink Waveforms in Counting Modes " " In counter modes 4. 6, Band 10, the count pulse is subject to debounce filtering. Figure 7 shows that only pulses with a frequency of less than 40Hz are valid. Pulses with a frequency between 50Hz and 120kHz are ignored, while those with a frequency between 40Hz and 50Hz have an indeterminate effect on the count. During counting. the display will wink off at each count input regardless of whether the display is incremented. When a count occurs. the wink segment output turns off at the end of the 16th B!i'cycle and turns back on at the end of the 32nd BP cycle. creating a half-second wink. as shown in Figure 6. If counting occurs more frequently than once a second. the wink output will default to a constant .1 Hz flash rate. 7-120 Note: All typical values have been guaranteed by characterization. and are not 26_ SIS - - - - - - - . . , IIVALID }-------------COUIT WITHOUT DEBOUICE UIKIOWI RESULTS WITH DEBOUICE 40Hz < " < 50Hz COUIT WITHOUT DEBOUICE 10 COUIT WITH DEBOUICE SIS _ _ _ _ _ _ _ _..."u VALID 50Hz s '. < 120Hz WF027601 Figure 7: Start/Stop Input Debounce Filtering in Counting Modes BP I I I DT ~~_____________~________________~:_______________ : ALL SEGMEITS 01 ALL 1 ~~::~!! ~""~~~~®""~""_~~o:\\~ : ALL SEGMEITS Off : DISPLAY RESTORED "--I : \c/\ fdM$/1WF027801 Figure 8: Display Testing lithium cell, will operate continuously for 2 Y2 years. Without the display, which only needs to be connected when a reading is required, the span of operation is extended to 10 years. When the ICM7249 is configured as an attendance counter, as shown in Figure 10, the display shows each increment. By using mode 2, external debouncing of the gate switch is unnecessary, provided the switch bounce is less than 35ms. The 3V lithium battery can be replaced without disturbing operation if a suitable capacitor is connected in parallel with it. The display should be disconnected, if possible, during the procedure to minimize current drain. The capacitor should be large enough to store charge for the amount of time needed to physically replace the battery (At = AVCI I). A 10llF capacitor initially charged to 3V will supply a current of 1.01lA for 8 seconds before its voltage drops to 2.2V, which is the minimum operating voltage for the ICM7249. Before the battery is removed, the capacitor should be placed in parallel, across the VDD and GND terminals. After the battery is replaced, the capacitor can be removed and the display reconnected. The display may be tested at any time without disturbing operation by pulsing DT high, as seen in Figure 8. On the next positive transition of BP, all the segments turn on and remain on until the end of the 16th BP cycle. This takes a half-second or less. All the segments then turn off for an additional 48 BP cycles (the end of the 64th cycle), after which valid data returns to the display. As long as DT is held high, the segments will remain on. Additional display testing is provided by using mode 12. In this mode each displayed decade is incremented on each positive transition of SIS. Modes 13 and 14 are for manufacturer testing only. Mode 15 resets all the decades and internal counters to zero, essentially bringing everything back to power-up status. APPLICATION NOTES A typical use of the ICM7249 is seen in Figure 9, the Motor Hour Meter. In this application the ICM7249 is configured as an hours-in-use meter and shows how many whole hours of line voltage have been applied. The 20Mil resistor and high-pass filtering allow AC line activation of the SIS input. This configuration, which is powered by a 3V 7-121 Note: All typical values have been guaranteed by characterization and are not tested. 7 !... ICM7249 I !'!" LCD /8:8·8:88 .W BP A, - Bo/C. OSC, 32.768kHz CRYSTAL 0 ICM7249 OSC. OT +3V Li ~ L -_ _ _ _~--------__~ DISPLAY TEST LC02981 I Figure 9: Motor Hour Meter LCD 18888 +3V TO +24V DC GATE ~ ,/' 20KO W BP ,/' A, - i-' 36 B.IC. SIS OSC, ICM7249 DSCo 1100 Vss H:LLi c. c, c. c. 32.76akHz CRYSTAL ..l 9 DT I -- ....::r:..._ DISPLAY TEST AF037711 Figure 10: Attendance Counter 7-122 Note: All typical values have been guaranteed by characterization and are not tested. ICM7555/ICM7556 General Purpose Timer GENERAL DESCRIPTION FEATURES The ICM7555/6 are CMOS RC timers providing significantly improved performance over the standard SEINE555/6 and 355 timers, while at the same time being direct replacements for those devices in most applications. Improved parameters include low supply current, wide operating supply voltage range, low THRESHOLD, TRIGGER and RESET currents, no crowbarring of the supply current during output transitions, higher frequency performance and no requirement to decouple CONTROL VOLTAGE for stable operation. Specifically, the ICM7555/6 are stable controllers capable of producing accurate time delays or frequencies. The ICM7556 is a dual ICM7555, with the two timers operating independently of each other, sharing only V + and GND. In the one shot mode, the pulse width of each circuit is precisely controlled by one external resistor and capacitor. For astable operation as an oscillator, the free running frequency and the duty cycle are both accurately controlled by two external resistors and one capacitor. Unlike the regular bipolar 555/6 devices, the CONTROL VOLTAGE terminal need not be decoupled with a capacitor. The circuits are triggered and reset on falling (negative) waveforms, and the output inverter can source or sink currents large enough to drive TTL loads, or provide minimal offsets to drive CMOS loads. • • • • • • • • • • • • • APPLICATIONS • • • • • • • ORDERING INFORMATION PART NUMBER ICM7555CBA ICM75551PA ICM75551TV ICM7555MTV' ICM75561PD ICM7556MJD' TEMPERATURE RANGE DOC to -25°C -25°C -55°C -25°C -55°C +7DoC to + 85°C to +85°C to + 125°C to +85°C to + 125°C - ICM7555/D ICM7556/D Exact Equivalent in Most Cases for SE/NE555/ 556 or TLC555/556 Low Supply Currenl- 60MA Typ. (ICM7555) 120MA Typ. (ICM7556) Extremely Low Trigger, Threshold and Reset Currents - 20pA Typical High Speed Operation -1MHz Typical Wide Operation Supply Voltage Range Guaranteed 2 to 18 Volts Normal Reset Function - No Crowbarring of Supply During Output Transition Can Be Used With Higher Impedance Timing Elements Than Regular 555/6 for Longer RC Time Constants Timing From Microseconds Through Hours Operates in Both Astable and Monostable Modes Adjustable Duty Cycle High Output Source/Sink Driver Can Drive TTL/ CMOS Typical Temperature Stability of 0.005% Per °C at 25°C Outputs Have Very Low Offsets, HI and LO PACKAGE 8 Lead S.O.I.C. 8 Lead MiniDip TO-99 Can TO-99 Can 14 Lead Plastic DIP 14 Lead CERDIP Precision Timing Pulse Generation Sequential Timing Time Delay Generation Pulse Width Modulation Pulse Position Modulation Missing Pulse Detector DICE" DICE" 'Add 18838 to part number if 6838 processing is desired. "Parameter MinIMax Limits guaranteed at 25"C only for DICE orders. v' • OUTPUT DRIYERS TWItE$HOLD .....- - - t - i , 00-------. CONTROL )o.-....r)o>...o-f':_ OUTPUT VOLTAGE COMPARATOR • 80013701 This Functional Diagram reduces the circuitry down to its simplest equivalent components. Tie down unused inputs. R = 100klt. ± 20% typo o Figure 1: Functional Diagram 7-123 Note: All typical values have been guaranteed by characterization and are not tested. PI ! ICM75551lCM7556 • ABSOLUTE MAXIMUM RATINGS () :::. 10 10 10 ... :Ii !:! Supply Voltage ......................................... + 18 Volts Input Voltage: Trigger, ' Control Voltage, Threshold, $. V+ + O.3V to 2: V- - O.3V Reset Output Current ..............................................1OOmA Power Dissipation[2) ICM7556 ......................... 300mW ICM7555 ............................................ 200mW Storage Temperature ...................... ,..65'C to' +150·C Lead Temperature (Soldering, 10see) ........ : ..... + 300°C Operating Temperature Range(2) ICM75551PA .......................... -25°C to +85°C ICM75551TV ..................•....... -25°C to + 85°C ICM75561PD .......................... -25°C to + 85°C . ICM7555MTV ............. , ......... -55°C to + 125°C ICM7556MJD ....................... - 55°C to + 125'C NOTE: Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure 'to absolute maximum' rating conditions for extended periods may affect device reliability. v+ AND CASE (OUTLINE DRAWING TV) v+ DISCHARGE OND Tiiiiiiii Z OUTPUT iiiiiT 7, DISCHARGE OUTPUT • THRISHOLD CONTROl. VOLTAGE RESET 4 THRESHOLD CONTROL VOLTAGE (OUTLINE DRAWING PAl COO35701 (OUTLINE DRAWING BA) OIICHAROE THftUHOI.D 1 2 CONTROL v~ OUTPUT TiiiiiGiii 4 V· DISCHARGE 1 THRUHOLD 11 10 ~&'''l::t iiiiiT • TiiiiiGiii (OUTLINE DRAWING olD. PD) COO29901 Figure 2: Pin Configuration (Top View) 7-124 Note: All typical values have been guaranteed by characterization and are not tested. ICM7555/ICM7556 ELECTRICAL CHARACTERISTICS ICM7555 ~YMBOL . ,+ PARAMETER TA = 25'C, unless otherwise specified. TEST CONDITIONS .. MIN TYP MAX UNIT Static Supply Cuirent TA = -55'C to 125'C Voo= SV VOO = 15V 40 60 Monostable Timing Accuracy RA = 10k, C = O.I/lF Voo=5V 2 % Drift with Temp' TA - -55 to 125'C VOO =5V VOO = 10V VOO = 15V 150 200 250 ppml'C ppm/'C ppml'C Voo=5 to 15V O.S %N 2 % ppm/'C ppm/'C ppm/'C Drift w~h Supply' Astable Timing Accuracy RA = RB = 10k, C = 0.1/lF', Voo = 5V Drift with Temp' TA = -55'C to. 125'C Voo=5V Voo = 10V Voo = 15V 150 200 250 200 300 pA p.A Drift with Supply' Voo=5to ISV 0.5 %N VTH Threshold Voltage VOO = 15V 67 % VOO VTRIG Trigger Voltage Voo = ISV 32 'TRIG Trigger Current Voo = 15V 10 'TH VCV Threshold Current Voo = 15V 10 Control Voltage VOO = 15V VRST Reset Voltage Voo=2tol5V IRST Reset Current Voo = 15V lOIS Discharge Leakage Voo = 15V VOL Output Voltage Drop Voo= 15V 'sink = 20mA VOO =5V Isink = 3.2mA VOH Output Voltage Drop 67 0.4 VOO = 15V lsource = O.SmA VOIS Discharge Output Voltage Drop V+ Supply Voltage' tR Output Rise Time' tF fMAX . Output Fall Time' Oscillator Frequency' nA nA % VOO 1.0 V 10 nA 10 nA 0.4 1.0 V 0.2 0.4 V 14.3 14.6 V 4.0 4.3 V , VOO = 5V Isource % Voo = O.SmA VOO= 5 to 15V 'sink = 15mA Functional Oper. 0.2 2.0 0.4 18.0 V V RL -10M, CL -10pF. Voo= 5V 75 ns RL = 10M, CL = IOIlF, VOO= 5V 75. ·ns 1 MHz VOO = 5V RA = 4700hm, RB = 2700hm C = 200pF • This parameter not tested. The majority of all parts meet this specification . . 7-125 Note: All typical values have been guaranteed by characterization and are not tested. .o~nlL 1-ICM755511CM7556 ··Ie ~ =::. ! ELECTRICAL CHARACTERISTICS ICM7556 . SYMBOL PARAMETER 1+ ~ uhless T A "" 25°C, otherwiSe specified. ' TEST.CONPITIONS " TyP MAX MIN UNIT. pA pA S'1'tic Supply Current T - -55°C to 125°C VOO-5V VOO=15V 80 120 Monestable Timing Accuracy RA -10k, C .. 0.11lF VOO-5V 2 % Drift with Temp' T = -55 to 125°C VOO=5V VOO = 10V VOO= 15V 150 200 250 ppml"C ppml"C ppml"C 0.5 %/V Drift with Supply' Voo-5 to 15V Astable Timing Accuracy RA-RS = 10k, C=0.1IlF, VOO=5V Drift with Temp' . 400 800 , 2 % T = -55°C to 125°C Voo=5V VOO = 10V VOO = 15V 150 200 250 ppm/oC ppml"C ppml"C Drift with Supply' Voo=5to15V 0.5 %V Threshold Voltage VOO = 15V 67 % VOO VTRIG Trigger Voltage VOO = 15V 32 ITRIG Trigger, Current VOO = 15V 10 ITH Threshold Current VOO = 15V 10 Vcv Control Voltage VOO = 15V VRST Reset Voltage Voo-2 to 15V IRST Reset Curren1 Voo .. 15V lOIS Discharge Leakage VOO = 15V VOL OUtPut Voltage Drop VOO -15V Isink = 20mA VOO=5V Isink .. 3.2mA VTH Output Voltage Drop VOH Discharge Output Voltage Drop nA nA 67 0.4 VOO -15V lsource .. 0.8mA VOO=5V lsource = 0.8mA. VOIS . % VOO % VOO 1.0 V 10 nA 10 nA 0.4 1.0 V 0.2 0.4 V 14.3 14.6 V 4.0 4.3 V 0.2 VOD=5toI5V Isink = 15mA 0.4 V V+ Supply Voltage' F~nctional IR Output Rise Time' RL - 10M, CL - 10pF, VDO= 5V 75 ns tF Output Fall Time' RL - 10M, CL - 10pF, VoO=5V ' ' 75 ns Oscillator Frequency' VOO .. 5V RA - 4700hm, RS = 2700hm C .. 200pF 1 MHz ·fMAX Oper. 2.0 18.0 V , This parameter net tested. The majority of all parts meet this specification. TYPICAL PERFORMANCE CHARACTERISTICS ,.. MINIMUM PULSE WIDTH REQUIRED FOR TRIGGERING " i'''' ~ i OOO :;000 ,. 1 Z5~C TA . ...7" -c-- --, - ii ~ ... i ... ~ ~ . i ... , o tv -1..,..;' v 5V T /, -- 10 ~~ v 20 LOWEST VOLT AOE LEVEL OF ~ ! ~ r- - -_. , - - ,-- ".g 140 ~I . I ~ I r-T- iiiGGi"irPULSE 40 (GIoV') ..... 10-' 120 ~ 100 ". 1 1,0 -"/" 10 40 lIV 30 ...... ...••• "jg ...'4. .... ... c,eo " VA y' 1 JOG - .,.., f-- J I. SUPPLY CURRENT AS A FUNCTION OF SUPPLY VOLTAGE 20 ~ 10-' ,..- Vt~ l - f TA' V ·20~C Y 11. ~lc .. I • 10 12 '4 " " a: a: "i". ," ...." '20 .. ,-2 20 SUPPLY VOLTAGE (VOLTS) 0P054901 OP055001 7-126 Note: All typical values have been guaranteed by characterization "and are net tested, OUTPUT VOLTAGE REFERENCEO TO V' "1.0 "0.1 '0.01 10 /"/ T,,:. U"C - V'~V,;' z ·25°C TA OUTPUT SOURCE CURRENT AS A FUNCTION OF OUTPUT VOLTAGE 0.' /' 1/ V· "'"5V V ? V" "11V i I - . , OPQ55101 i... ICM7555/ICM7556 QI QI QI TYPICAL PERFORMANCE CHARACTERISTICS (CONT.) OUTPUT SINK CURRENT AS A FUNCTION OF OUTPUT VOLTAGE S ztoo f-++-H--j;Y7f'-!+--+-+++H 10.0 II! s ~ OUTPUT SINK CURRENT AS A FUNCTION OF OUTPUT VOLTAGE OUTPUT SINK CURRENT AS A FUNCTION OF OUTPUT VOLTAGE '00 '00 T, Htt-v I 10.0 ::> u I I • I J..rTl 1.0 .iI I Vi .., Vl V/ ~J- I- ~. 1f' I 1/ II •.••:-+ - : ~ ~ :: i ,",,. / II!a: B 1 II H'C ! !/ : 0.0' 0.1 1.0 10.0 T, . '.·C 1 II! ~ u / ,.. I .., 0.1 l ~ ;: ! ~ ~ . T, • 2 !I • -- .."e: .. a ~ I ~ 2 -- r• r- ... 4 , ,.,n-., IU TA " 2S"C V'''' IV II \ ~, If " 1++ Ae i'...C, '00.' I , 10k!! f LI 100.0 .... ; . 0.' i\--'-+----'--+-+---'--+--+-i--i r:;a .0.7 k-':-+--r---+--r--+--+--+--I--i ::> ~ '0.3 '0.2 f-P<~.,... a ~ I -0.1 FREE RUNNING FREQUENCY AS A FUNCTION OF RA. RB and C o .5O 20 30 40 TiiGGiii PULSE (.... VO) OP055701 TIME DELAY IN THE MONOSTABLE MODE AS A FUNCTION OF RA AND C 1.0F loomF 'Omf 1o.-+---+--+-4-~--+----I---i ·'OmF 1 .. Ior"!.::~r'~ 'n' ,oo"r--r~~~~~~~~~ '••' r--r--+--~r+-~f-\~H!H ·10 OP055901 0P055Bor 7-127 Note: All typical values have been guaranteed by characterization and are not tested. ~ ' ' l00nF U 'OnF 5 ';.IF 1n. / 1/ 1./ 1/, 'l'" f / 1/ 1/ 1/ loopF tOpF '.' PI ./ / ././ / · . . .Z 7' 7' '7 R, Aotz / / / V /~~ . / / 1/V V,~ L7 ... 100;01' i .. T... '" 21°C 'm' 'm' 'OOn' f-+--...p;w...-+-+--+-j~,"",I--l 10 LOWEST VOLTAGE LEVEL OF t~mFf-"""'-+--+-4-~--+--+--i 10nF ·20 ·40 TEMPERATURE ~c "/ V, TA'" .. 25"C TA - -20°C- OP055601 '.' Ior"!.::~r'k ....,...--+ ~~+-....... IU 'II 1 '00 O.10.':-.,,..........w.L..='".,,--L...L..u.....,,'= .•,..........LJU-,~•.• OISCHARGE LOW VOLT ACE VOL l .,...."--r-~--'---r--r-r-r-'''''' S -0." 7J r TA:'" .. 700C c c 0f'055501 i ~:.': 1 0 NORMALIZED FREQUENCY STABILITY IN THE ASTABLE MODE AS A FUNCTION OF TEMPERATURE ~ y' "'IV .... zoo I' \ I 1.0 10.9 SUPPLY VOLTAGE (VOlTS) I ... S .. ... ~ a 10110 ~. r'.fC-111·lriI AA Rs PROPAGATION DELAY AS A FUNCTION OF VOLTAGE LEVEL OF TRIGGER PULSE '00 I-A~ 10.' OPQ66401 DISCHARGE OUTPUT CURRENT AS A FUNCTION OF DISCHARGE OUTPUT VOLTAGE '00 . .T1....".-r-rTTr...,......... :slb 1.0 OUTPUT LOW VOLTAGe VOL O~5301 OP055201 f- [/ 1.01 OUTPUT LOW YOLTAGE VOL NORMALIZED FREQUENCY STABILITY IN THE ASTABLE MODE AS A FUNCTION OF SUPPLY VOLTAGE I y' :2V 1/ "/ 1/ / i... QI IJ.. I'fVli po- ~ s. '/ .2 !i 10.0 f-- I.. ~ 1 ...... / V V 100 " 1 -..' 10 ~. 100 1 10 100 loiS .... .... "" TillE DELAY . 10 OP058001 CD II) II) ... ~ i ... II) ~ ICM7555/ICM7556 , APPLICATI,ON NOTES GENERAL OUTPUT DRIVE CAPABILITY The ICM7555/6 devices are, in most instances, direct replacements for the NE/SE 555/6 devices. However, it is possible to effect. economies in the external component count using the ICM7555/6. Because the bipolar 555/6 devices produce large crowbar currents in the output driver, it is necessary to, decouple the power supply lines with a good capacitor close to the device. The 7555/6 devices produce no such transients: See Figure 3. The output driver consists of a CMOS inverter capable of driving most logic families including CMOS and TTL. As such, if driving CMOS, the, output swing ,at all supply voltages will equal the supply voltage. At a supply voltage of 4.5 volts or more the ICM7555/6 will drive at least 2 standard TTL loads. ASTABLE OPERATION The circuit can be connected to trigger itself and free run as a multivibrator, see Figure 4. The output swings from rail to rail, and is a true 50% duty cycle square wave. (Trip pOints and output swings are symmetrical). Less than a 1 % frequency variation is observed, over a voltage range of + 5 to +15V. 500 T~ = aee 400 AV 1 f=-- 1.4 RC S E/NESS5 \ MONOSTABLE OPERATION )\CM755S/511 zoo 400 TIME· nl , fore, use high values ,for R and low values for C in Figures 4 and 5. lOG In this mode of, operation, the timer functions as a oneshot. Initially the external capacitor (C) is held discharged by a transistor inside the timer. Upon application of a negative TRIGGER pulse to pin 2, the internal flip flop is set which releases the short circuit across the external capacitor and drives the OUTPUT high. The voltage across the capacitor now increases exponentially with a time constant t = RAC. When the voltage across the capacitor equals 2/3 V + , the comparator resets the flip flop, which in turn discharges the capacitor rapidly and also drives the OUTPUT to its low state. TRIGGER must return to a high state before the OUTPUT can return to a low state. lOG OP056101 Figure 3: Supply Current Transient' Compared with a Standard Bipolar 555 During an Output Transition The ICM7555/6 produces supply current spikes of only 2-3mA instead of 300-400mA and supply decoupling is normally not necessary. Secondly, in most instances, the CONTROL VOLTAGE decoupling capacitors are not required since the input impedance of the CMOS comparators on chip are very high. Thus, for many applications 2 capacitors can be saved using an ICM7555, and 3 capacitors with an ICM7556. 1= G.69RC • ~~':::~U) 5 vglJ~GE '----~ v· : OPTIONAL.J.. V':s 18Y CAPACITOR J. *' CD030101 ,Figure 5: Monostable Operation 10K OUTPUT <>-.--+--i CONTROL VOLTAGE The CONTROL VOLTAGE terminal permits the two trip voltages for the THRESHOLD and TRIGGER internal comparators to be controlled. This provides the possibility of oscillation frequency modulation in the astable mode or even inhibition of OSCillation, depending on the applied voltage. In the monostable mode, delay times can be changed by varying the applied voltage to the CONTROL VOLTAGE pin. R Coo30001 Figure 4: Astable Operation RESET POWER SUPPLY CONSIDERATIONS The RESET terminal is designed to have essentially the same trip voltage as the standard bipolar 555/6, i.e. 0.6 to 0.7 volts. At all supply voltages it represents an extremely high input impedance. The mode of operation of the RESET Although the supply current consumed by the ICM7555/6 devices is very low, the total system supply can be high unless the timing components are high impedance. There7-128 Note: All typical values have been guaranteed by characterization and are not tested. ICM7555/ICM7556 function is, however, much improved over the standard bipolar 555/6 in that it controls only the internal flip flop, which in turn controls simultaneously the state of the OUTPUT and DISCHARGE pins. This avoids the multiple threshold problems sometimes encountered with slow failing edges in the bipolar devices. V· . THRESHOLD CONTAOl I. VOLTAGE OUTPUT "ND lC02830i Figure 6: Equivalent Circuit TRUTH TABLE THRESHOLD VOLTAGE TRIGGER VOLTAGE RESET OUTPUT DISCHARGE SWITCH DON'T CARE DON'T CARE LOW LOW ON > 2/3(V+) > 1/3(V+) HIGH LOW ON < 2/3 VTR> 1/3 HIGH STABLE STABLE < 1/3(V+) HIGH HIGH OFF VTH DON'T CARE NOTE: RESET will dominate all other inputs: TRIGGER will dominate over THRESHOLD. 7-129 Note: All typical values have been guaranteed by characterization and are not tested. Section 8 - Display Drivers .D~DI1.!... ICM7211/12 4-Digit LCD/LED Display Driver II) .:t. ... II) GENERAL DESCRIPTION ICM7211 (LCD) FEATURES The ICM7211 (LCD) and ICM7212 (LED) devices constitute a family of non-multiplexed four-digit seven-segment CMOS display decoder-drivers. The ICM7211 devices are configured to drive conventional LCD displays by providing a complete RC oscillator, divider chain, backplane driver, and 28 segment outputs. The ICM7212 devices are configured to drive commonanode LED displays, providing 28 current-controlled, low leakage, open-drain n-channel outputs. These devices provide a BRighTness input, which may be used at normal logic levels as a display enable, or with a potentiometer as a continuous display brightness control. Both the LCD and LED devices are available with multiplexed or microprocessor input configurations. The multiplexed versions provide four data inputs and four Digit Select inputs. This configuration is suitable for interfacing with multiplexed BCD or binary output devices, such as the ICM7217, ICM7226 and ICL7135. The microprocessor versions provide data input latches and Digit Address latches under control of high-speed Chip Select inputs. These devices simplify the task of implementing a cost-effective alphanumeric seven-segment display for microprocessor systems, without requiring extensive ROM or CPU time for decoding and display updating. The standard devices will provide two different decoder configurations. The basic device will decode the four bit binary inputs into a seven'segment alphanumeric hexadecimal output. The "A" versions will provide the "Code B" output code, i.e., 0-9, dash, E, H, L, P, blank. Either device will correctly decode true BCD to seven-segment decimal outputs. Devices in the ICM7211 17212 family are packaged in a standard 40 pin plastic dual-in-line package and all inputs are fully protected against static discharge. • • • • • • Four Digit Non-Multiplexed 7 Segment LCD Display Outputs With Backplane Driver Complete Onboard RC Oscillator to Generate Backplane Frequency Backplane Input/Output Allows Simple Synchronization of Slave-Devices to a Master ICM7211 Devices Provide Separate Digit Select Inputs to Accept Multiplexed BCD Input (Pinout and Functionally Compatible With Sillconix DF411) ICM7211M Devices Provide Data and Digit Address Latches Controlled by Chip Select Inputs to Provide a Direct High Speed Processor Interface ICM7211 Decodes Binary Hexadecimal; ICM7211A Decodes Binary to Code B (0-9, Dash, E, H, L, P, Blank) ICM7212 (LED) FEATURES • • • 28 Current-Umlted Segment Outputs Provide 4Digit Non-Multiplexed Direct LED Drive at > SmA Per Segment Brightness Input Allows Direct Control of LED Segment Current With a Single Potentiometer or Digitally as a Display Enable ICM7212M and ICM7212A Devices Provide Same Input Configuration and Output Decoding Options as the ICM7211 ORDERING INFORMATION PART NUMBER TEMPERATURE RANGE ICM7211M/D - ICM7211/D PACKAGE PART NUMBER TEMPERATURE RANGE PACKAGE DICE ICM7212A1D - DICE ICM7212AIJL -40·C to + 85·C 40 Pin CERDIP 40 Pin PLASTIC DICE ICM7211 AIJL -40·C to + 85·C 40 Pin CERDIP ICM7212AIPL - 40·C to + 85·C ICM7211 AMIJL -40·C to + 85·C 40 Pin CERDIP ICM7212AM/D - ICM72111JL -40·C to + 85·C 40 Pin CERDIP ICM7212AMIJL - 40·C to + 85·C 40 Pin CERDIP DICE ICM72111PL -40·C to + 85·C 40 Pin PLASTIC ICM72121JL -40·C to + 85·C 40 Pin CERDIP ICM7211 AIPL -40·C to + 85·C 40 Pin PLASTIC ICM72121PL -40·C to + 85·C 40 Pin PLASTIC ICM7211AMIPL -40·C to + 85·C 40 Pin PLASTIC ICM7212MIJL -40·C to +85·C 40 Pin CERDIP ICM7211 MIPL -40·C to + 85·C 40 Pin PLASTIC ICM7212MIPL -40·C to +85·C 40 Pin PLASTIC ICM7211 MIJL -40·C to + 85·C 40 Pin CERDIP ICM7212AMIPL -40·C to +85·C 40 Pin PLASTIC ICM7212AEV/KIT ICM7211AEV/KIT - EVALUATION KIT ICM7212/D - DICE 8-1 Note: All typical values have been guaranteed by characterization and are not tested. - EVALUATION KIT -002 !; ICM1211/12 . ;: \"I IIg ICM7211 (A) 1M siGIMHT OUTPUTS ' D. DO SEGMENT OUTPUTS SEGMINT OUTPUTS •• SEGMENT OUTPUTS OSCILLATOR INPUT B0015801 ICM7212 (A) D4 03 IlEGUENT OUTPUTS' 02 01 SEGMENT OUTPUTS SEGMENT OUTPUTS SEGMENT OUTPUTS BRIGHTNESS 80015901 Figure 1: Functional Diagrams 8-2 Note: All typical values have been guaranteed by characterization and are not lested. n ICM7211/12 I: ....N 1M SEGMENT OUTPUTS oa SEGMENT OUTPUTS D2 SEGMENT OUTPUTS D1 SEGMENT OUTPUTS DATA INPUTS 2-8IT DIGfT ADDRESS INPUT CHIP SELECT 1 CHIP SELECT 2 OSCILLATOR 18KHz FREE- .;-,28 aACKPUNE DRIVER RUNNING OSCILLATOR ENABLE INPUT ap~~T BD016001 ICM7212(A)M 1M _our.vra - - DATA 80016101 Figure 1: Functional Diagrams (Cont.) 8-3 Note: All typical values have been guaranteed by characteri28tion and are not tested. ...... ... ICM7211(A)M N .U~UIl ICM7.211/12 ABSOLUTE MAXIMUM RATINGS Operating Temperature Range ........... -40~C to +85·C Storage Temperature Range ............ - 55°C to + 125°C Lead Temperature (Soldering, 10sec) ................. 300°C Power Dissipation (Note 1) ....................... O.5W@ 70·C Supply Voltage (Voo - Vss) ................................ 6.5V Input Voltage (Any Terminal) (Note 2) ...................... .. . VSS - O.3V to VOO + O.3V NOTE 1: This limit refers to that of the package and will not be realized during normal operation. NOTE 2: Due to the SCR structure inherent in the CMOS process, connecting any terminal to voltages greater than Voo or less than Vss may cause destructive device latchup. For this reason, it is recommended that no inputs from external sources not operating on the seme power supply be applied to the device before its supply is established, and that in multiple supply systems, the supply to the ICM7211/1CM7212 be turned on first. Stresses above those listed under" Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods 'may affect device reliability. Voo, • ..... .. . •• l G' , ., ~.-v- "0', voo ... ••.. .. D' F•• -- c•• 7211M 7211AM 7211 7211,\ 0' • , GO" ' l 12 ., aMplMKl2 ~ .... e, • 0' • Ja Di;;tAdchu1iC2 31 DiIk AddreM lit 1 . . .3 H , .3 • ... F' e) " D. Ii "o. E' DO 22 C4 .. e •• '3 It , O. II C4 7212 72120\ 13 ,. ,• • ____r-' .. "Vss G211 '2 '2 ::)0.. ..... oo I:' '4 c. G' ~ , .••. ...,., " c• C0034611 C003451I " .... 0..' ~V~ ~ »03 02 ..... 3. 01 tftIIvb ! ., ..... 13 ~'OO •• I - r: II! F, J2~ 21~ CO03471 I C003481I Figure 2: Pin Configurations (Outline Drawing PL) ELECTRICAL CHARACTERISTICS ICM7211 CHARACTERISTICS (LCD) Voo = 5V ±10%, TA = 25°C, Vss = OV unless otherwise specified. SYMBOL VSUPPLY 100 PARAMETER TEST CONDITIONS Operating Supply Voltage Range (Voo-Vss) Operating Current MIN 3 Test circuit, Display blank TYP MAX UNIT V 5 6 10 50 ±10 p.A 10SCI Oscillator Input Current Pin 36 ±2 tA, tF Segment RiselFall Time CL = 200pF 0.5 tA, tF Backplane RiselFall Time CL = 5000pF 1.5 IlS fOSC Oscillator Frequency Pin 36 Floating 19 kHz fBP Backplane Frequency Pin 36 Floating 150 Hz ICM7212 CHARACTERISTIC~ (COMMON ANODE LED) SYMBOL VSUPPLY PARAMETER TEST CONDITIONS Operating Supply Voltage Range (Voo-Vss) ISTBY Operating Current Display Off MIN 4 Pin 5 (Brightness), Pins 27-34-VsS 100 Operating Current Pin 5 at Voo, Display all 8's ISLK Segment Leakage Current Segment Off ISEG Segment On Current Segment On. Vo = + 3V 8-4 Note: All typical values have been guaranteed by characterization and are not iested. TYP MAX UNIT 5 . 6 V 10 50 IlA 200 ±0.01 5 8 mA ±1 p.A mA n ICM7211/12 YIH PARAMETER TEST CONDITIONS MIN Logical "I" input voltage TYP MAX UNIT I Y ±I p.A ±I /lA N 4 YIL Logical "0" input voltage IILK Input leakage current Pins 27-34 ±.Ol CIN Input capacitance Pins 27-34 5 ISPLK BP/Brightness input leakage Measured at Pin 5 with Pin 36 at YSS ±.Ol CSPI BP/Brightness input capacitance 'All Devices 200 pF pF AC CHARACTERISTICS-MULTIPLEXED INPUT CONFIGURATION ,I twH Digit Select Active Pulse Width tos Data Setup Time 500 tOH Data' Hold Time 200 tlOS Inter·Digit Select Time AC CHARACTERISTICS - Refer to Timing Diagrams /lS ns 2 /lS MICROPROCESSOR INTERFACE tWL Chip Select Active Pulse Width other Chip Select either held active, or both driven together 200 tos Data Setup Time 100 tOH Data Hold Time 10 tiCS Inter·Chip Select Time 2 ns 0 /lS + ----------, =lJ ~ ICM7211 (A)(M) EACH SEGMENT TO BACKPlANE WITH 200pF CAPACITOR OSC 36 VSS 35 DIGIT/CHIP S~~~~ DATA INPUTS N INPUT CHARACTERISTICS (lCM7211 AND ICM7212) SYMBOL ... ......... I: {ra Voo ( MICROPROCESSOR) VERSIONS 32 r 29 1127 VSS ( MULTIPlEXED) VERSIONS VOO .&1 ... 2_0_ _ _ _ 2.. u-------.:.----- J CD034401 Figure 3: Test Circuits 8-5 Note: All tvoical values have been auaranteed bv characterization and· are not tested. ICM721'1/t2 TYPICAL PERFORMANCE CHARACTERISTICS ICM7211 OPERATING SUPPLY CURRENT AS A FUNCTION OF SUPPLY VOLTAGE ICM7211 BACKPLANE FREQUENCY AS A FUNCTION OF SUPPLY VOLTAGE 30 .. '80 t.:~e:'::N~EsT CIRCUIT I PIN 38 OPEN II 20 TA' , V 1 • i / .2. I / ~ 3 1"- .. ~ .6 ~ r"~ , r ,/ ... .... '" .... '" J. il •• YO (VOlTS) 0P061211 ICM7212 OPERATING POWER (LED DISPLAy) AS A FUNCTION OF SUPPLY VOLTAGE .800 LED DEVICES DISPLAY ALL EIGHTS LED FORWARD VOLTAGE DROP '500 V Jflr.Ai·~DO / T~=25-c / '200 J / V / 10' '/ V / -",,"" / • • 00 4 I ~...., V - OP061101 ~.J., O!rrPII~ AT ~ 3' I D ~ ,VIUPP. BV Vsupp- 4V YSUpp (VOLT$) ICM7212 LED SEGMENT CURRENT AS A FUNCTION OF BRIGHTNESS CONTROL VOLTAGE t 1/ II / '/ """";j-ev I-- I-J / /' . / VcOSC.22pF QP061001 .2 ,; --- 3 "" / •• Coac=22OpF •• -I-- cosc-o 30 4 PI!6A~....! TA'"'JrC (PIN 36 OPEN) _ TA'1O"C Vsupp (VOLTS) . 1 / / VJ/., • y .50 -2O"?"J I If '/ f A - 25 ), LbDDkJs r-TA-2SOC ICM7212 LED SEGMENT CURRENT AS A FUNCTION OF OUTPUT VOLTAGE 300 " / 2 3 • • VOLTAGE ON BRT PIN 5 (VOLTS) VSUPP (VOLT$) 0P061301 0P061401 INPUT DEFINITIONS In this table, VDD and Vss are considered to be normal operating input logic levels. Actual input low and high levels are specified under Operating Characteristics. For lowest power consumption, input signals should swing over the full supply. INPUT TERMINAL TEST CONDITIONS FUNCTION 27 Voo = Logical One Vss = Logical Zero Ones (Least Significant) 28 VOO = Logical One VSS = Logical Zero Twos B2 29 Voo - Logical One Vss = Logical Zero Fours B3 30 36 BO B1 OSC (LCD Devices Only) Voo = Logical One Vss = Logical Zero Floating or with external capacitor to Voo Vss Data Input Bits Eights (Most significant) Oscillator input Disables BP output devices, allowing segments to be synchronized to an external signal input at t~e BP terminal (Pin 5) Note: All typical values have been guaranteed by characterization and are not tested. i1CM7211/12 ICM721111CM7212 MULTIPLEXED-BINARY INPUT CONFIGURATION INPUT TERMINAL D1 31 D2 32 D3 33 D4 34 TEST CONDITIONS FUNCTION D1 Digit Select (Least significant) voo ~ Active D2 Digit Select VSS ~ Inactive D3 Digit Select D4 Digit Select (Most significant) ICM7211MIICM7212M MICROPROCESSOR INTERFACE INPUT CONFIGURATION INPUT DESCRIPTION TERMINAL DA1 Digit Address Bit 1 (LSB) 31 DA2 Digit Address Bit 2 (MSB) 32 CS1 Chip Select 1 33 ~ Chip Select 2 34 TEST CONDITIONS VOO ~ Logical One VSS ~ Logical Zero When both CS1 and ~ are taken low. the data at the Data and Digit Select code inputs are written into the input latches. On the rising edge of either Chip Select. the data is decoded and written into the output latches. VOO ~ Inactive VSS ~ Active The backplane output devices can be disabled by connecting the OSCillator input (pin 36) to VSS. This allows the 28 segment outputs to be synchronized directly to a signal input at the BP terminal (pin 5). In this manner, several slave devices may be cascaded to the backplane output of one master device, or the backplane may be derived from an external source. This allows the use of displayS with characters in multiples of four and a Single backplane. A slave device represents a load of approximately 200pF (comparable to one additional segment). Thus the limitation of the number of devices that can be slaved to one master device backplane driver is the additional load represented by the larger backplane of displays of more than four digits. A good rule of thumb to observe in order to minimize power consumption is to keep the backplane rise and fall times less than about 5 microseconds. The backplane output driver should handle the backplane to a display of 16 onehalf-inch characters. It is recommended that if more than four devices are to be slaved together, that the backplane signal be derived externally and all the ICM7211 devices be slaved to it. This external Signal should be capable of driving very large capacitive loads with short (1-2j.1S) rise and fall times. The maximum frequency for a backplane signal should be about 150Hz although this may be too fast for optimum display response at lower display temperatures, depending on the display used. ... OtOITULECT WF02991r Figure 4: Multiplexed Input Timing Diagram Cii (ca) FUNCTION DA 1 & DA2 serve as a two bit Digit Address Input DA2. DA 1 ~ 00 selects D4 DA2. DA 1 ~ 01 selects D3 DA2. DA 1 ~ 10 selects D2 DA2. DA 1 - 11 selects D1 ~~------------~~ Cii eel') DATA AND DIGIT ADDRESS . . = DONi CARE WF030001 Figure 5: Microprocessor Interface Input Timing Diagram OSCILLATOR DESCRIPTION OF OPERATION LCD DEVICES FREQUENCY n r "n nnr " n nr UUUU UUU JU "UUUU nnnr 1'----128 CYCLES---! BACKPlANE INPUT/OUTPUT The LCD devices in the family (lCM7211. 7211 A. 7211 M, 7211AM) provide outputs suitable for driving conventional four-digit, seven-segment LCD displays. These devices include 28 individual segment drivers, backplane driver, and a self-contained oscillator and divider chain to generate the backplane frequency. -----II : - - 64 CYCLES The segment and backplane drivers each consist of a CMOS inverter, with the n- and p-channel devices ratioed to provide identical on resistances, and thus equal rise and fall times. This eliminates any DC component, which could arise from differing rise and fall times, and ensures maximum display life. I -t-- I I...-- 64 CYCLES -1 L- OFF SEGMENTS-----II I ON SeC'MENTS "'---_....1 WF017301 Figure 6: Display Waveforms The.onboard oscillator is designed to free run at approximately 19kHz at microampere power levels. The oscillator 8-7 Note: All typical values have been guaranteed by characterization and are not tested. ~ ICM7211/12 .... ~ ~ frequency is divided by 128 to provide the backplane frequency, which will be IiPproximately 150Hz with the oscillator free-running; the' oscillator frequency may be reduced by connecting an external capacitor between the OSCillator terminal and Voo. - - -.......---vDo (LED ANODES) l00i ,:::; 0 " .J - ,b'd E ,- (BLANK) ::,- Ii , '- ,'::J reOOO701 These devices are actually mask-programmable to provide any 16. combinations of the seven segment outputs decoded from the four input bits. For large quantity orders custom decoder options can be arranged. Contact the factory for details. The ICM7211, ICM7211A, ICM7212. and ICM7212A devices are designed to accept multiplexed binary or BCD input. These devices provide four separate digit lines (least significant digit at pin 31 ascending to most significant digit at pin 34), each of which when taken to a positive level P = (Vsupp - VFLEO)(ISEG)(nSEG) where VFLEO is the LED forward voltage drop, ISEG is segment current, and nSEG is the number of "on" segments. It is recommended 'that if the device is to be operated at elevated temperatures the segment current be limited by use of. the BRighTness input to keep power dissipation within the limits described above. 8-8 Note: All typical values have been guaranteed by characterization and are not tested, ICM7211/12 APPLICATIONS decodes and stores in the output latches of its respective digit the character corresponding to the data at the input port, pins 27 through 30. The ICM7211M, ICM7211AM, ICM7212M, and ICM7212AM devices are intended to accept data from a data bus under processor control. In these devices, the four data input bits and the two-bit digit address (OA 1 pin 31, OA2 pin 32) are written into input buffer latches when both chip select inputs (CS1 pin 33, CS2 pin 34) are taken low. On the rising edge of either chip select input, the content of the data input latches is decoded and stored in the output latches of the digit selected by the contents of the digit address latches. An address of 00 writes into 04, OA2 = 0, OA 1 = 1 writes into 03, OA2 = 1, OA 1 = 0 writes into 02, and 11 writes into 01. The timing relationships for inputting data are shown in Figure 5, and the chip select pulse widths and data setup and hold times are specified under Operating Characteristics. 8CO,.,NAAV_4_L-l-W.+-'=====:f-tt-H...... -.J DATA 0IGIT1~~bdlli SELECTS 1M D. 02 01 LC03021I Figure 9: Ganged ICM7211's Driving 8-Digit LCD Display LC019401 Figure 8: Segment Assignment 8-0IG1T LCD~Y r::: _IV I l -.h~:!:-:~I":"_-_., • . .VIS . vee ¥DO anAL1 UTAU ~7"'. ~ PM t7 .. s. BBBBBSBBI HIGH OIIDEII DIGITS ~ .. : i.A......- .iiiiii -.: 1CII721111 "'5"...- 115 VDD V -::sa I/O _ 1 Del T' liT De7 r' ALE IIIIIR PROG "" lID I' ~ ~ f1!- • Vss - f-- r-- ICM721IC1D 7 (INPUT D.P.) "7 01' LI. 10 • GNDI. VDD DIGITI • OA' .. +svl, 1 _ _ NTS 5- JDO DO DO Of ~11I 0110 12 P23 ETC. 01 '- P01 .. E. I' 121 D. ......... ........ :...... ' ... ~ "7 •1iIOC35 r' I I. 01' ... 27 lIT.... R • ..., XTAL,l 1741 Me...! D" 01' • 13 ID1 ~ ,----l! +5~ HEXAICOOE 81 SHUTDOWN WiiiTE r I ODD 10' 102 'DO +S....! HEXAICODE 81 SHUTDOWN Wiiiii I' LC029911 Figure 11: 16 Digit Display 8-19 Note: All typical values have been guaranteed by characterization and are not tested. ~ICM7231-ICM7234 C'oI ... NumericlAlphanumeric· Triplexed LCD Display Driver .... ¥ ...:Ii!'"C'oI S:! GENERAL DESCRIPTION FEATURES The ICM7231"7234 family of integrated circuits are designedto generate the voltage levels and switching waveforms' required to drive triplexed liquid-crystal displays. These chips also include input buffer and digit address decoding circuitry and contain a mask-programmed ROM allowing six bits of input data to be decoded into 64 independent combinations of the output segments of the selected digit. The family is designed to interface to modern high performance microprocessors and microcomputers and ease system requirements for ROM space and CPU time . needed to serVice a display. • • • • • • • • • • ICM7231: Drives 8 Digits of 7 Segments With Two Independent Annunciators Per Digit Address and Data Input in Parallel Format ICM7232: Drives 10 Digits of 7 Segments With Two Independent Annunciators. Per Digit Address and Data Input in Serial Format ICM7233: Drives 4 Characters of 18 Segments Address and Data Input in Parallel Format ICM7234: Drives 5 Characters of 18 Segments Address and Data Input in Serial Format All Signals Required to Drive Rows and Columns of Triplexed LCD ·Display Are Provided Display Voltage Independent of Power Supply On-Chip Oscillator Provides All Display Timing Total Power Consumption Typically 200/-lW, Maximum 500/-lW at 5V Low-Power .Shutdown Mode Retains Data With 5JJ.W Typical Power Consumption at 5V, 1/-1W at 2V Direct Interface to High-Speed Microprocessors ORDERING . INFORMATION PART NUMBER TEMPERATURE RANGE PACKAGE PART NUMBER ' TEMPERATURE RANGE - PACKAGE ICM7231AFIJL - 25°C to + 85°C 40 pin CERDIP ICM7232CR/D ICM7231AFIPL - 25°C to + 85°C 40 pin PLASTIC Dip ICM7232CRIJ).. -25°C to +85°C 40 pin CERDIP DICE ICM7231BFIJL -25°C to + 85°C 40 pin CERDIP ICM7232CRIPL -25°C to + B5°C 40 pin PLASTIC Dip ICM7231 BFIPL -25°C to + 85°C 40 pin PLASTIC Dip ICM7233AEVIKIT ICM7231 CFIJL -25°C to +85°C 40 pin CERDIP ICM7233AF/D ICM7231CFIPL -25°C to + 85 0 C 40 pin PLASTfc Dip ICM7233AFIJL -25°C to + 85°C 40 pin CERDIP - 25°C to + 85°C 40 pin PLASTIC Dip Evaluiation Kit. - DICE ICM7232AFIJL -25°C to + 85°C 40 pin CERDIP ICM7233AFIPL ICM7232AFIPL -25°C to +85°C 40 pin PLASTIC Dip ICM7233AF/D ICM72328FIJL -25°C to + 85°C 40 pin CERDIP ICM7234AFIJL -25°C to +85°C 40 pin CERDIP ICM7232BFIPL -25°C to + 85°C 40 pin PLASTIC Dip ICM7234AFIPL -25°C to + 85°C 40 pin PLASTIC Dip - DICE :,." 8-20 Note: All typical values have been guaranteed by characterization and are not tested. 203299-002 ICM7231-ICM7234 DO D7 X V Z X V Z DO X V Z DO X V Z DC X V Z 02 D2 X V Z X V D. Z X V Z Voe VH :~!~ VL GENERATOR VOLTAGE LEVEL OUTPUT LATCHES 8 WIDE v.... H+--,o....:cPlN 2 (INPUT) COM. COMMON O~:~~R COM 2 '--_~r- COM 3 8ooo9B11 Figure 1: ICM7231 Functional Diagram QtO DO X V Z X V Z DO X V Z 07 X V Z DO DO X V Z X V Z os 1M X V Z x V z D2 o. X Y Z x y z Voo YH :'~ VOLTAGE LEVEL outPUT LATettES VL GENERATOA I WIDE H+"V-"-=-PlN2 flMlUTI COMMON LINE DRivERS COM' COM 2 COM 3 "" / SHIFT RECISTER SHIFTS RIGHT TO LEFT ON RISING EDGE OF DATA CLOCK DATA DATA Wi!iift INPUT CLOCK IWUT 'M'UT DATA ACCEPTED OUTPUT 60010011 Figure 2: ICM7232 Functional Diagram 8-21 Note: All typical values have been guaranteed by characterization and are not tested. .D~D[l ICM7231-ICM7234 CHAR. CHAR 3 UVWXYZ UVWXYZ CHAR 2 UVWXVZ CHAR 1 UVWXYZ SEGMENT LINE DRIVERS VDD 'WIDE ON CHIP OUTPUT VH LATCHES 1aWIDE 1. DISPLAY VOLTAGE LEVEL GENERATOR HH-_....V.::D:::... ~ PIN 2 (INPUT) 18 COM 1 COM 2 COMJ I jCS1,CS2, ASCII DATA INl'UTS CHIP SELECT INPUtS 80009911 Figure .3: ICM7233 Functional Diagram c;HAR 5 UVWXYZ CHAR. UVWXYZ CHAR 3 UVWXVZ CHAR' CHAR 1 UVWXYZ UVWXYZ SEGMENT LINE DRIVER Vo. • WIDE DNCHIP OUTPUT V" LATCHES 18 WIDE 18 18 DISPLAY VOLTAGE LEVEL Q(NERATDR VL VOl. PIN, (INPUT) 18 COM 1 COMMON LINE DRIVERS COM 2 COM 3 SHIFT REGISTER DATA INPUT SHIFTS RIGHT TO LEFT ON RISING EDGE OF OAT A CLOCK.. OATA WR'ift: DATA CLOCK INPUT ACCEPTED INPUT OUTPUT B0010111 Figure 4: ICM7234 Functional Diagram 8-22 Note: All typical values have been guaranteed by characterization. and are not tested. ICM7231-ICM7234 ABSOLUTE MAXIMUM RATINGS Power Dissipation!l] ............................. 0.5W @ 70·C Operating Temperature Range ........... -25·C to +85·C Storage Temperature Range ............ -65·C to + 150·C Lead Temperature (Soldering, 10sec) ................. 300·C Supply Voltage (Voo - Vss) ................................ 6.5V Input Voltage!2] ........................... VSS-0.3 ::; VIN ::; 6.5 Display Voltage!2] ....................... -0.3 ::; VOISP ::; + 0.3 NOTE: Stresses above those listed under AbsolL,te Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Notes: 1. This limit refers to that of the package and will not be obtained during normal operation. 2. Due to the SCR structure inherent in these devices, connecting any display terminal or the display voltage terminal to a voltage outside the power supply to the chip may cause destructive device latchup. The digital inputs should never be connected to a voltage less than - 0.3 volts below round, but ma be connected to volta es above V but not more than 6.5 volts above V . . Ci V_ co... COM2 COld ... ,...... OATACLOC« a:, v.. v.... 1iIIITI,,,,UT VDI.. A' COM' COM2 DATA INPUT DATA ACCEPTED COM, v.. COM' v.. . A:l OUTOUT ,Z IID3 1Y 102 10' ,X 10Z IX 2Z IX 7Z ZV 800 AN2 2V tV 7Y ZX AN' zx tIZ 7X 2Z .. ,. 11& ,V D4 IX D3 ,w Da COM2 'OR tOY IV . DATACLQCI( A' ..." v.. v.... iiIiiTf 'NPUT COM' OATAINIVJ ,. v.. COMS 5U ,V 5V .... 'X ,w 5x ,V Dl IV 5V IU DO IU 5Z 2Z ou zz 4U 4. ... av 4V 3Z IX 3Z IX R IV IV IV IV IV IX IZ IX IZ IX zv 4Z 7X 4Z 7X IZ 2X " IV 7Y tV 2W ex 2W IV DATA ACCEPTED OUTPUT COMa v.. COMI 1Z ,V ,x v.. eli, ... ax "" ox 7i 4X 7Z IX 2V 4V 2V 4V 5Z IX 4Z 3Z 3U IX R IX IZ 10X :IV IV AFIIF CR . 4Z IV IX ,IZ IV 10V 2U IV I. 5V 3X I I CD024111 au 3U 3Z IV 3X SIll :IW CD02421I COO24411 CD024311 Figure 5: Pin Configuration (Outline dwg PL) ELECTRICAL CHARACTERISTICS (v+ =5V±10%, Vss= OV, TA=-25·C to +85·C unless otherwise specified) SYMBOL PARAMETER TEST CONDITIONS/DESCRIPTION VOO Power Supply Voltage VOO Data Retention Supply Voltage Guaranteed Retention at 2V 100 Logic Supply Current Current from VOO to Ground excluding Display. VOISP ~ 2V Is Shutdown Total Current VOISP Pin 2 Open VOISP Display Voltage Range VSS ~ VOISP ~ VOO IOISP Display Voltage Setup Current VOISP ~ 2V Current from VOO to VOISP On·Chip ROISP Display Voltage Setup Resistor Value One of Three Identical Resistors in String DC Component of Display Signals (Sample Test only) fOISP Display Frame Rate See Figure 7 Vil Input Low Level VIH Input High Level ICM7231, ICM7233 Pins 30·35, 37·39, 1 IllK Input Leakage GIN Input Capacitance VOL Output Low Level Pin 37, ICM7232, ICM7234, IOl = lmA, VOH Output High Level VOO Top Operating Temperature Range Industrial Range 4.5V, IOH = -500JJA 8-23 Note: All typical values have been guaranteed by characterization and are not tested. TYP MAX V 100 JJA 1 10 JJA V 15 VOO 30 >4 2 1.6 30 0 40 V 75 JJA kU 14 1 90 120 Hz 0.8 V 1 JJA pF 004 V +85 ·C 2.0 % (VDO - VOISP) V 0.1 5 4.1 -25 UNIT 5.5 4.5 60 ICM7232, ICM7234 Pins " 38, 39 (Note 1) ~ MIN V AC CHARACTERISTICS (VDD = 5V±100/0 Vss = OV, -20·C S TA S +85·C) PARAL LEL INPUT (I CM 7231; ICM7233 ) See Fi ure 13 TEST CONDITIONS MIN TYP ~cs SYMBOL ehip Select Pulse Width PARAMETER (Note 1) 500 350 tds Address/ Data Setup Tim,,! (Note 1) 200 idh Address/Data Hold Time (Note 1) 0 tics Inter-Chip Select Time (Note 1) 3 MAX UNIT ns ns -20 ns IlS SERIAL INPUT ICM7232, ICM7234) See Figures 16, 17, 18 SYMBOL PARAMETER TYP MAX TES'r CONDITIONS MIN ICi Data Clock Low Time (Note 1) 350 UNIT ns tel Data Clock High Time (Note 1) 350 ns ids Data Setup Time (Note 1) 200 tdh Data Hold Time (Note 1) 0 -20 twp Write Pulse Width (Note 1) 500 350 twll Write Pulse to Clock at Initialization (Note 1) 1.5 ns ns ns !-IS todl Data Accepted Low Output Delay (Note 1) 200 400 ns Iodh Data Accepted High Output Delay (Note 1) 1.5 3 j.IS lews Wr~e (Note 1) Dralay After Last Clock 350 ns NOTE 1: For design reference only. not 100% tested. TABLE OF FEATURES TYPE NUMBER OUTPUT CODE ICM7231AF Hexadecimal ICM7231BF CodeB ICM7231CF ICM7232AF ANNUNCIATOR LOCATIONS INPUT OUTPUT Both Annunciators on COM3 Parallel Entry 4 bit Data 6 Digits plus 2 bit Annunciators 16 Annunciators Code B 1 Annunciator COMI 1 Annunciator COM3 3 bit Address Hexadecimal Both Annunciators on COM3 Serial Entry '4 bit Data 10 Digits plus 2 bit Annunciators 4 bit Address 20 Annunciators Parallel Entry 6 bit (ASCII) Data Four Characters ICM7232B Code B ICM7232CR Code B 1 Annunciator COMI 1 Annunciator COM3 ICM7233AF 64 Character (ASCII) 16 Segment (Half width numbers) No Independent Annunciators ICM7233BF 64 Character (ASCII) 16 Segment (Full width numbers) No Independent Annunciators Parallel Entry 6 bit (ASCII) Data ICM7234AF 64 Character (ASCII) 16 Segment (Half width numbers) No Independent Annunciators Serial Entry 6 bit (ASCII) Data ICM7234BF 64 Character (ASCII) 16 Segment (Full width numbers) No Independent Annunciators. Serial Entry 6 bit (ASCII) Data 2 bit Address Four Characters 2 bit Address Five' Characters 3 bit Address 3 bit Address 6-24 Note: All typical values have been guaranteed by characterization and are not tested. Five Characters ICM7231-ICM7234 TERMINAL DEFINITIONS ICM7231 PARALLEL INPUT NUMERIC DISPLAY , TERMINAL PIN NO. ANI AN2 30 31 Annunciator 1 Control Bit Annunciator 2 Control Bit High =ON Low = OFF BOO BDI BD2 BD3 32 33 34 35 Least Significant} 4 Bit Binary Data Inputs Input Data (See Table 1) AO Al A2 37 38 39 Least Significant} 3 Bit Digit Address Inputs Input Address (See Table 2) CS 1 Data Input Strobe/Chip Select (Note 3) NOTE: 3. DESCRIPTION Most Significant Most Significant FUNCTION See Table 3 HIGH = Logical One (1) LOW = Logical Zero (0) Trailing (Positive going) edge latches data, causes data input to be decoded and sent out to addressed digit CS has a special" mid-level" sense ci rcuit that establishes a test mode if it is held near 3V for several msec. Inadvertent triggering of this mode can be avoided by pulling it high when inactive, or ensuring frequent activity. ICM7233 PARALLEL INPUT ALPHA DISPLAY TERMINAL PIN NO. DO 01 02 03 04 05 30 31 32 33 34 35 Least Significant AO Al 37 38 Least Significant Most Significant J 39 1 Chip Select Inputs (Note 3) 1 FUNCTION DESCRIPTION Most Signoflcant I 1- 6 Bit (ASCII) Data Inputs Address Inputs Input Data HIGH = Logical One (1) LOW = Logical Zero (0) See Table 4 Input Add. See Table 5 Both inputs LOW load data into input latches. Rising edge of either input causes data to be latched, decoded and sent out to addressed character. NOTE: {5S1 has a special "mid-level" sense circuit that establishes a test mode if it is .held near 3V for several I1)sec. Inadvertent triggering of this mode can be avoided either by pulling it high when inactive, or ensuring frequent activity. ICM7232 and ICM7234 SERIAL DATA AND ADDRESS INPUT TERMINAL PIN NO. DESCRIPTION FUNCTION Dafa Input 38 Data + Address Shift Register Input HIGH = Logical One (1) LOW = Logical Zero (0) WRi'fE 39 Decode, Output, and Reset Strobe When DATA ACCEPTED Output is LOW, positive going edge of WRITE causes data in shift register to be decoded and sent to addressed digit, then shift register and control logiC to be reset. When DATA ACCEPTED Output is HIGH, positive going edge of WRITE triggers reset only. Data Clock Input 1 Data Shift Register and Control Logic Clock Positive going edge advances data in shift register. ICM7232: Eleventh edge resets s!Jift register and control logiC. ICM7234: Tenth edge resets shift register and control logic. DATA ACCEPTED Output 37 Handshake Output Output LOW when correct number of bits entered into shift register; ICM7232 8, 9 or 10 bits ICM7234 9 bits Input 8-25 Note: All typical values have been guaranteed by characterization and are not tested. 'lilt '" ·CII ICM7231"1CM7234 & ALL DEVICES () ... '..." 7 CII a TERMINAL Display Voltage VOISP PIN NO• 2 Common Line Driver Outputs 3,4,5 Segment Line Driver Outputs 6-29 6-35 FUNCTION' DESCRIPTION Negative end of on-chip resistor string used to generate intermediate voltage levels for display. Shutdown Input. Display voltage control. When open (or less than 1V from VOO) chip is shutdown; oscillator stops, all display pins to VOO. Drive display commons, or rows. (On ICM7231/33) (On ICM7232/34) Voo 40 Chip Positive Supply VSS 36 Chip Negative Supply Drive display segments, or columns. The degree of polarization of the liquid crystal material and thus the contrast of any intersection depends on the RMS voltage across the intersection capacitance. Note from Figure 4 that the RMS OFF voltage is always Vp/3 and that the RMS ON voltage is always 1.92 Vp/3. ICM7231 FAMILY DESCRIPTION The ICM7231 drives displays with 8 seven-segment digits with two independent annunciators per digit, accepting six data bits and three digit address bits from parallel inputs controlled by a chip select input. The data bits are subdivided into four binary code bits and two annunciator control bits. For a 1/3 multiplexed LCD, the ratio of RMS ON to OFF voltages is fixed at 1.92, achieving adequate display contrast with this ratio of applied RMS voltage makes some demands on the liquid crystal material used. The ICM7232 drives 10 seven-segment digits with two independent annunciators per digit. To write into the display, six bits of data and four bits of digit address are clocked serially into a shift register, then decoded and written to the display. Figure 10 shows the curve of contrast versus applied RMS voltage for a liquid crystal material tailored for Vp = 3.1V, a typical value for 1/3-multiplexed displays in calculators. Note that the RMS OFF voltage Vp/3'"'1V is just below the "threshold" voltage where contrast begins to increase. This places the RMS ON voltage at 2.1V, which provides about 85% contrast when viewed straight on. The ICM7233 has a parallel input structure similar to the ICM723t, but the decoding and the outputs are organized to drive four 18-segment alphanumeric characters. The six data bits represent a 6-bit ASCII code. The ICM7234 uses a serial input structure like that of the ICM7232, and drives five 18-segment characters. Again, the input bits represent a 6-bit ASCII code. All members of the ICM7231/ICM7234 family use an internal resistor string of three equal value resistors to generate the voltages used to drive the display. One end of the string is connected on the chip to Voo and the other end (user input) is available at pin 2 (VOISP) on each chip. This allows the display voltage input (VOISP) to be optimized for the particular liquid crystal material used. Remember that Vp = VOO - VOISP and should be three times the threshold voltage of the liquid crystal material used. Also it is very important that pin 2 never be driven below VSS. This can cause device latchup and destruction of the chip. Input levels are TTL compatible, and the DATA ACCEPTED output on the serial input devices will drive one LSTTL load. The intermediate voltage levels necessary to drive the display properly are generated by an on-chip resistor string, and the output of a totally self-contained on-chip oscillator is used to generate' all display timing. All devices in this family have been fabricated using Intersil's MAXCMOS@ process and all inputs are protected against static discharge. TRIPLEXED (1/3 MULTIPLEXED) LIQUID CRYSTAL DISPLAYS y z 1B'.~ Figure 6 shows the connection diagram for a typical 7segment display font with two annunciators such as would be used with an ICM7231 or ICM7232 numeric display driver. Figure 7 shows the voltage waveforms of the common lines and one segment line, chosen for this example to be the "Y" segment line. This line intersects with COM1 to form the "a" segment, COM2 to form ,he "g" segment and COM3 to form the" d" segment. Figure 7 also shows the waveform of the "Y" segment line for four different ON/OFF combinations of the "a", "g" and "d" segments_ Each intersection (segment or annunciator) acts as a capacitance from segment line to common line, shown schematically in· Figure 8. Figure 9 shows the voltage across the "g" segment for the same four combinations of ON/OFF segments in Figure 7. lH RH SEGMENT LINE CONNECTION COMMON LINE CONNECTION COO24501 Figure 6: Connection Diagrams for Typical 7-Segment Displays 8-26 Note: All typical values have been guaranteed by characterization and are not tested. ICM7231-ICM7234 I .,1.2! .31 ",.1 "2'1.3'1 q---_-_-----r:: COM'T-- r-1T~ ~ -R-,- D "LLOFF v+ - VOISP Vp .. = . - - - - - - - - - - - - - +v, -, '-r-T - n~ .J __LJ_ LJ _ .0 COMMON AND SEGMENT PEAK TO PEAK VOLTAGE Yf •VAMSOFF YAMS' --..,...,--------VDD COM zU-1- -r--w. - ,........, ·__.--_~_-1.:t---~:~. V" I I ~I I I I I VDD COM3"T - - -~Vo -' - - - - - . -=- - . . -",VL .- _________ .J.......J._ I I- - I- - I- - I- - I- -I. VDD .- bSEGMENT LINE 3F::=::::::=~l:===::£ ~ COMMON LINE • SEGMENT ON ",OFF - ALLaN - - - .----- - - - - - - Vo -'-_ _ _....&. - - - - - - - ---Vp _ - - - - - - - - - -+Vp "'VAMSOFF - - - - - - - - - - - - . -Vp :~~~~¢~-~ ~ ~~,-- -_" "NZ INPUT TYPICAL SEGMENT LINE I I I I I I I WAVEFORMS (SEGMENT LINE ''V'') ~,~ ~-=-=~=-=-=r2q~(,_.;; 'f.'-~~------------~'VP -t - - _ I I I I I I I J - -- - -~~~ISP I I I- ,I V I D I D I · -- - ""'---T! ----- - l --- - - -15K" -g----~~:D - ; . .-: r : = : : l - -= = - - __ - -_" D V VDD ----~VH - - ~ V3 - V ..... ±::Ot--------C~. I I I I I I I · - ••,ON dOFF - _ ONCIIIP RESISTOR STRING YL I I I I I I I - I II I I I I - - ALL OFF - - WAVEFORMS VO -VL V .... I I I I I I I WF019301 WF019211 Figure 9: Voltage Waveforms on Segment g(Vg} Figure 7: Display Voltage Waveforms NOTE:3-COMMON HIGH WITH RESPECT TO SEGMENT. VOLTAGE CONTRAST RATIO = VRMS 3'-COMMON LOW WITH RESPECT TO SEGMENT. ON VRMSOFF = VTI = 1,92 va COM 1 ACTIVE DURING 3-COMMON HIGH WITH RESPECT TO SEGMENT. COM 2 ACTIVE DURING 3,-COMMON LOW WITH RESPECT TO SEGMENT, COM 3 ACTIVE DURING 3 AND 3' COM 1 ACTIVE DURING 3 AND 3' Z_SEOMENT I I I' I I : RH I 05022301 Figure 8: Display Schematic 8-27 Note: All typical values have been guaranteed by characterization and are not tested. I ICM7231.i.ICM7234 8 seriously degrading display contrast. Some displays also use sealing materials unsuitable for high temperature use. Thus, when specifying displays the following must be kept in mind: liquid crystal material, polarizer, and seal materials. A more important effect of temperature is the variation of threshold voltage. For typical liquid crystal materials suitable for multiplexing, the peak vOltage has a temperature coefficient of - 7 to-14 mVl'C. This means. that as temperature rises, the threshold voltage goes down. Assuming a fixed value for Vp, when the threshold voltage drops below Vp/3 OFF segments begin to be visible. Figure 11 shows the temperature dependence of peak voltage for the same liquid crystal material of Figure 10. For applications where the display temperature does not vary widely, Vp may be set at a fixed voltage chosen to make the RMS OFF voltage, Vp/3, just below the threshold voltage at the highest temperature expected. This will prevent OFF segments turning ON at high temperature (this at the cost of reduced contrast for ON segments at low temperatures). For applications where the display temperature may vary to wider extremes, the display voltage VDI8P (and thus Vp) may require temperature compensation to maintain sufficient contrast without OFF segments becoming visible. T '...""w" :E 2 90 90 70 ~ 90 I: f---+--tT 20 10 _LIED VOLTAGE CV AMS I OP043801 Figure 10: Contrast vs. Applied RMS Voltage DISPLAY VOLTAGE AND TEMPERATURE COMPENSATION • These circuits allow control of the display peak voltage by bringing the bottom of.the voltage divider resistor string out at pin 2. The simplest means for generating a display voltage suitable to a particular display is to connect a potentiometer from pin 2 to V88 as shown in Figure 12. A potentiometer with a maximum value of 200 kn should give sufficient range of adjustment to suit most displays. This method for generating display voltage should be used only in applications where the temperature of the .chip and display won't vary more than ±5'C (±9'F), as the resistors on the chip have a positive temperature coefficient, which will tend to increase the display peak voltage with an increase in temperature. The display voltage also depends on the. power supply voltage,leading to tighter tolerances for wider temperature ranges. I I I I I I I I I 6 ~E~vbLT~GE ._~ ... 4 FOR"" CONTRAST ~lON! -- I I I T r-I I 1 o -1p r- - PEAK VOLTAGE FOR 1011 CONTRAST r- I cnll j "" 10 " I II L 30 20 40 .90 AMBIENT TEMPERATURE C"CI 0P043901 OI'IlN Figure 11: Temperature Dependence of LC Threshold 2 v",. TEMPERATURE EFFECTS AND TEMPERATURE COMPENSATION ~ f10nF 40 31 ~ ICM . 7231-· 7234 The performance of the IC material is affected by temperature in two ways. The response time of the display to changes in applied RMS voltage gets longer as the display temperature drops. At very low temperatures ( - 20'C) some displays may take several seconds to change a new character after the new information appears at the outputs. However, for most applications above O'C this will not be a problem with available multiplexed LCD materials, and for low-temperature applications, high-speed liquid crystal materials are available. One high temperature effect to consider deals with plastiC materials used to make the polarizer. Some polarizers become soft at high temperatures and permanently lose their polarizing ability, thereby TC029011 Figure 12: Simple Display Voltage Adjustment Figure 13(a) shows another method ot setting up a display voltage using five silicon diodes in series. These diodes, 1N914 or equivalent, will each have a forward drop of approximately 0.65V, with approximately 20/lA flowing 8-28 Note: All typical values have been guaranteed by characterization and are not tested. ICM7231-ICM7234 through them at room temperature. Thus, 5 diodes will give 3.25V, suitable for a 3V display using the material properties shown in Figures 10 and 11. For higher voltage displays, more diodes may be added. This circuit provides reasonable temperature compensation, as each diode has a negative temperature coefficient of - 2 mV 1°C; five in series gives -10 mVrC, not far from optimum for the material described. The disadvantage of the diodes in series is that only integral multiples of the diode voltage can be achieved. The diode voltage multiplier circuit shown in Figure 13(b) allows fine-tuning the display voltage by means of the potentiometer; it likewise provides temperature compensation since the temperature coefficient of the transistor base-emitter junction (about - 2 mVrC) is also multipled. The transistor should have a beta of at least 100 with a collector current of 10 pA. The inexpensive 2N2222 shown in the figure is a suitable device. 2 Vow +5V GND DATA.US AF031911 Figure 14: Flexible Temperature Compensation ~I---+Ii 35t-----, ICM 72317234 1GnF TC029111 Figure 13(a): String of Diodes 2GOIcll POTENTIOMETER 2.7110 !eM 72317234 TC029211 Figure 13(b): Transistor-Multiplier Figure 13: Diode-based Temperature Compensation 8-29 Note: All typical values have been guaranteed by characterization and are not tested. .D~DlL ICM7231-iCM7234 \ ti2 INPUT / ~--~--~~----~$l~------------~--~ ~ _ _-.,.1 ... ~ I CIl INPUT DATA ADDRESS INPUT DO NOT CARE PARALLEL INPUT T!MING ICM7233 (lCM1Z31 HAS ONLY ONE CHIP SELECT. IT APPEARS AT PIN 1.) WF019401 Figure 15: Parallel Input Timing DATA CLOCK IM'Ul (PER8IT OFOATAI 1£ ! I --+: ... I I I I I t--Idh I DATA ACCEPTED I I OUT'UT ---t r--'wtl t-twp..., l WlIiTr1---K= INPUT I , \'.-:::::J » lIB RESETS SHIFT REGISTER _____ - - AND INPUT CONTROL LOGtC WHEM DATA ACCEPTED HIGH DO NOT CARE WF019601 Figure 16: ICM7232 One Digit Input Timing Diagram, Writing Both Annunciators For battery operation, where the display voltage is generally the same as the battery voltage (usually 3-4.5V), the chip may be operated at the display voltage, with VDISP connected to VSS. The inputs of the chip are designed such that they may be driven above VDD without damaging the chip. This allows, for example, the chip and display to operate at a regulated 3V, and a microprocessor driving its inputs to operate with a less well controlled 5V supply. (The inputs should not be driven more than 6.5V above GND under' any circumstances.) This also allows temperature compensation with the ICL7663, as shown in Figure 14. This circuit allows independent adjustment of both voltage and temperature compensation. DESCRIPTION OF OPERATION PARALLEL INPUT OF DATA AND ADDRESS (ICM7231; ICM7233) The parallel input structure of the ICM7231 and ICM7233 devices is organized to allow simple, direct interfacing to all microprocessors, (see functional diagrams Figures 1 and 3). In the ICM7231, address and data bits are written into the input latches on the rising edge of the Chip Select input. In the ICM7233, the two Chip Selects are equivalent; when both are low, the latches are transparent and the data is latched on the rising edge of either Chip Select. 8-30 Note: All typical values have been guaranteed by characterization and are not tested. ICM7231-ICM7234 1-", -1-"'--' I DATA _ _ _.,1 CLOCK INPUT DATA ACCEPTED OUTPUT -..; WIim -,. INPUT --I 1--"''' I w........... I tcwl~ !r RESETS SHIFT REGISTER L...,J.- AND CONTROL LOGIC , I I WHEN DATA ACCEPTED IS HIGH DO NOT CARE WF019701 Figure 17: ICM7232 Input Timing Diagram, Leaving Both Annunciators Off The rising edge of the Chip Select also triggers an onchip pulse which enables the address decoder and latches the decoded data into the addressed digit/character outputs. The timing requirements for the parallel input devices are shown in Figure 15, with the values for setup, hold, and pulse width times shown in the AC Characteristics section. Note that there is a minimum time between Chip Select pulses; this is to allow sufficient time for the on-chip enable pulse to decay, and ensures that new data doesn't appear at the decoder inputs before the decOded data is written to the outputs. SERIAL INPUT OF DATA AND ADDRESS (ICM7232, ICM7234) The ICM7232 and ICM7234 trade six pins used as data inputs on the ICM7231 and ICM7233 for six more segment lines, allowing two more 9-segmen~ digits (ICM7232) or one more 18-segment character (ICM7234). This is done at the cost of ease in interfacing, and requires that data and address information be entered serially. Refer to functional diagrams, Figures 2 and 4 and timing diagrams, Figures 16, 17 and 18. The inte.rface consists of four pins: DATA Input, DATA CLOCK Input, WRITE Input and DATA ACCEPTED Output. The data present at the DATA Input is clocked into a shift register on the riSing edge of the DATA CLOCK Input signal, and when the correct number of bits has been shifted into the shift register (8 in the ICM7232, 9 in the ICM7234), the DATA ACCEPTED Output goes low. Following this, a low-going pulse at the WRITE input will trigger the chip to decode the data and store it in the output latches of the addressed digit/character. After the data is latched at the outputs, the shift register and the control logiC are reset, returning the DATA ACCEPTED Output high. After this occurs, a pulse at the WRITE input will not change the outputs, but will reset the control logic and shift register, assuring that each data bit will be entered into the correct position in the shift register depending on subsequent DATA CLOCK inputs. The shift register and control logic will also be reset if too many DATA CLOCK INPUT edges are received;. this prevents incorrect data from being decoded. In the ICM7232, the eleventh clock resets the shift register and control logic, while in the ICM7234 it is the tenth. The recommended procedure for entering data is shown in the serial input timing diagram, Figure 16. First, when DATA ACCEPTED is high, send a WRITE pulse. This resets the shift register and control logic and initializes the chip for the data input sequence. Next ,clock in the appropriate number of correct data and address bits. The DATA ACCEPTED Output may be monitored if desired, to determine when the chip is ready to output the decoded data. When the correct number of bits has been entered, arid the DATA ACCEPTED Output is low, a pulse at WRITE will cause the data to be decoded and stored in the latches of the addressed digit/character. The shift register and control logiC are reset, causing DATA ACCEPTED to return high, and leaving the chip ready to accept data for the next digiti character. Note that for the ICM7232 the eleventh clock resets the shift register and control logic, but the DATA ACCEPTED Output goes low after the eighth clock. This allows the user to abbreviate the data to eight bits, which will write the correct character to the 7-segment display, but will leave the annunciators off" as shown in Figure 17. It only AN2 is to be turned on, nine bits are clocked. in; if AN1 is to be turned on, ali·ten bits are used. 8-31 Note: All typical values have been guaranteed by characterization and are no! tested. ICM7231-ICM7234 TENTH CLOCK WITH NOMOn: PULSE RESETS SRANDLOGle , DATA CLOCK INPUT \..- DATA ACCEPTED OUTPUT = _i I-twfl I --l ..... i-- tcws--l D-RE-SE-TS-SH-,F-T-.-EG-,ST-E-R-------~ I I :~;:J:"~~~~~';:H WF0198(l1 WRITE ORDER Figure 18: ICM7234 One Character Input Timing Diagram TABLE 1. BINARY DATA DECODING (ICM7231/32) In the ICM7234, nine bits are always required; the control logic is similar, but allowsonly a WRITE (DATA ACCEPTED Low) with nine bits entered in the shift register, as shown in Figure 18. The DATA ACCEPTED Output will drive one low-power Schottky TTL input, and has equal current drive capability pulling high or low. Note that in the serial input devices, it is possible to address 'digits/characters which don't exist. As shown in Tables 2 and 5, when an incorrect address is applied together with a WRITE pulse, none of the outputs will be changed. CODE INfUT SO so DISPLAY OUTPUT SO SO 3 2' 1 0 0 0 0 0 o :0 0 1 0 0 l' 0 0 0 I I 0 I 0 0 DISPLAY FONTS AND OUTPUT CODES 0 I 0 1 The standard versions of the ICM7231 and ICM7232 chips are programmed to drive a 7-segment display plus two annunciators per digit. See Table 3 for annunciator ' input controls. The "A" and "s" suffix chips place both annunciators on COM3. The display connections for one digit of this display are shown in Figure 19. the "A" devices decode the input data into a hexadecimal7:segmerit output, while the "S" devices supply Code S outputs (see Table 1). The "C" devices place the left hand annunciator, on COM1 (AN2) and the right hand annunciator (usually a decimal point) on COM3 (AN1). (See Figure 20). The "C" devices provide only a "Code S" output for the 7-segments. The ICM7233 and ICM7234 are supplied in "A" and "S" versions. Soth versions decode an ASCII 6-bit subseUo an l8-segment display, with 16 "flag" segmen~,.and ,two "dots". The "A" devic.es have numbers which are half width and the "s" devices have full width numbers. The layout for a single character is shown in Figure 21 with output decoding shown in Table 4. 0 I I 0 0 I I I I 0 0 0 I 0 0 I . I 0 I 0 I 0 I I 0 I I 0 I I 0 1 I 1 I 0 I I I I HEX COOE S I:' CO ,-, ,-, '-',, '-',, ;) :=! 1:- -,, -' -' 1""!'1 ,- ,-'-I ,-:' CI,-:' -I 1:1 E: -',-,:1 '3 ,-, ,,,-b :-l': , .:' ,, 'E P F BLANK T8000801 8-32 Note: All typical values have been guaranteed by characterization and are not tested. ICM7231-ICM7234 TABLE 2. ADDRESS DECODING (ICM7231132) help of such a kit, an engineer or technician can have the system "up and running" in about half an hour. The ICM7233EV IKIT contains the appropriate ICs, a circuit board, a Multiplexed LCD display 16/18 segment, passive components, and miscellaneous hardware. DISPLAY OUTPUT CODE INPUT ICM7232 ONLY A3 A2 A1 AO DIGIT SELECTED 0 0 0 0 01 0 0 0 1 02 0 0 1 0 03 0 0 1 1 04 0 1 0 0 05 0 1 0 1 06 0 1 1 0 07 0 1 1 1 08 1 0 0 0 09 1 0 0 1 010 1 0 1 0 NONE 1 0 1 1 NONE 1 1 0 0 NONE 1 1 0 1 NONE 1 1 1 0 NONE 1 1 1 1 NONE x COM1~ COM2~ COM AN AN 2 I :~ cr .DcplJ 9 A~ COMMON LINE CONNECTIONS SEGMENT LINE CONNECTIQNS 80TH ANNUNCIATORS ON COMMON #3 (AT BOTTOM OF CHARACTER) '''A'' AND "8" SUFFIX VERSIONS) LC019BOI Figure 19: ICM7231 and ICM7232 Display Fonts ("A" and "B" Suffix Versions) ~.z lf1:i1H _. TABLE 3. ANNUNCIATOR DECODING COOE INPUT y DISPLAY OUTPUT ICM7231C ICM7231 AlB ICM7232 AlB ICM7232C LH BOTH !ANNUNCIATORS ANNUNCIATOR COM I ON COM 3 RH ANNUNCIATOR COM 3 F: COM3'--~-~--~- SEGMENT LINE CONNEI':TIONS + .. ANNUNciATORS CAN BE: ~ • [§QI ,.l::J.. -ARROWS THAT POINT TO INFORMATION PRINTED AROUND THE DISPLAY OPENING, ETC., WHATEVER THE DESIGNER CHOOSES TO INCORPORATE IN THE LIQUID CRVSTAL DISPLAY. :=: F: 0 0 0 I I 0 .1=' I-I I:', '::: I I .EI. 'r::. COMMON LINE CONNECTIONS LH ANNUNCIATOR ON COMMON # 1 (TOPI fAN 2) RH ANNUNCIATOR ON COMMON #3IBOTTOMI (AN 11 "C" SUFFIX DEVICES LC019901 Figure 20: ICM7231 and ICM7232 Display Fonts ("C" Suffix Versions) T8000901 COM 1'--,---,-,---r-,.-- EVALUATION KITS After purchasing a sample of the ICM7231 132/33/34, the majority of users will want to build a sample display. The _parts can then be evaluated against the data sheet specifications, and tried out in the intended application. However, locating and purchasing even the small number of additional components required, then wiring a breadboard, can often cause delays of days or sometimes weeks. To avoid this problem and facilitate evaluation of these unique circuits, Intersil is offering kits which contain all the necessary components to build 8 character displays. With the COM. c~,--~-~--­ SEGMENT LINE CONNECTIONS COMMON LINE CONNECTIONS lC020001 Figure 21: ICM7233 and ICM7234 Display Font (18-Segment Alphanumeric) 8-33 Note: All typical values have been guaranteed by characterization and are not tested. ''''ICM7'231-ICM7234/ .... COMPATIBLE DISPLAYS 's () Compatible displays are manufactured by: ....T G.E, Displays Inc., Beechwood, OhiO .(1) :s ... C\I ~ (216)831·8100 (#356E3R99HJ) Epson America Inc., Torrance CA (Model Numbers LDB726/7/8). Seiko Instruments USA Inc., Torrance CA (Custom Displays) Crystaloid, Hudson, OH TABLE 4. DATA DECODING 6-BIT ASCII_ 18 SEGMENT (lCM7233/34l , DISPLAV OUTPUT CODE INPUT r;:-ra- 06,04 03 02 0' DO 0,0 O. , 0 0 0 0 ~ p 0 0 0 0 0 0 o. 0 o. 0 0 , , , , 0 0 0 ',0 R LI B R I I I 2 2 :; I 3 3 /I , , [ , I1 T Cfi Y Y , , E % 5 5 , , • F- U V jj Ib 5 0 , , 0 0 0 0 G hi H X , 1- y I ".1 * 0 0 0 0 1 1 < tJ tJ > 9 9 0 , , , , KJ Z[ + , , L \ , , , M , , , N ?J , , , , [J ( I , 1,1,' 0 0 0 I 0 0 I L -, ? TBO01001 TABLE 5. ADDRESS DECODING (ICM7233/34) CODE INPUT DIGIT SELECTED ICM7234 ONLY A1 0 AO 0 0 01 0 0 0 1 1 1 1 0 1 1 0 0 1 1 1 D2 03 04 05 A2 0 1 0 1 0 1 NONE ' NONE NONE 8-34 Note: All typical values have been guaranteed by characterization and are not tested. .U~UIL ICM7231-ICM7234 I\) TYPICAL APPLICATIONS CoJ J. a ... - MICROCOWUHR I\) vool lvee 21 "" 40 ~VIS 20pF ·-0 -r II }w~ "0 27 I I 20SC1 ~ I I I I 30SC2 "730 "2OpF ~--Hf';"i~-- '20 2' "'"23 22 4 RESET 7 EA V'- silli -= I~UTS{= liNT 24 IlOl'OAn /\ 27 27 '28~ r- DBO 12 I I ' TO aus : 38T1 I I VDD r I 3-29 VDD "II' Vas 3IIOND 00 -------06 AO A1 2 VD,.. ICM7233A caCS1 30 ---------36 37 38 38 , .. V' Vas 300ND VDIll' 20Ckn Yo.. ICM7233A ADJ. 30 -------- 35 37 38 31 1 1 2N2222 2 00--------06 AOA1Cs2CS1 I 1 3-29 YDD 36 '2738 TEMPE MATURE COMOENSATiON I J*F -= l~ro EXTERN AL MEMOR V AND OTHER PERIPHERALS 08719 11 9 2S 108 ALE I ~J a... . line 'ROG . ViR ·PULL·UP RECOMMENDED ON CSl. SEE. NOTE 3. VDD 1M!! AF032011 Figure 22: 8048/1M80C48 Microcomputer with 8 Character 16 Segment ASCII Triplex Liquid Crystal Display. The two bit character address is merged with the data and written to .the display driver under the control of the WR line. Port lines are used to .either select the target driver, or deselect all of them for other bus operations. 6-35 Note: All typical values have been guaranteed by characterization. and are oot te.sted. CoJ ,. -."'--. IlJTEF~SIL 27 27 V' .MQ w-___ 1l1li ISEE NOTE 31 ~-_ OntER 110 • -= - ROM-IIO-TtMEill LC020211 Figure 23: MC6802 Microprocessor with 16 Character 16 Segment ASCII Liquid Crystal Display. The peripheral ~evlce provides ROM and Timer functions In addition to port line control of the display bank. Individual character locations are addressed via the address bus. Note that VMA is not decoded on these lines, which could cause problems with the TST· Instruction. 8-36 Note: All typical values have been guaranteed by characterization and are· not tested. ICM7231-ICM7234 fIlfllfllfllfllfllfllfll r lJ I II ICM7233 CS2 CS1 ICM7233 Ao DC)·DS A1 CS2 CS1 A1 AO DC).DS 6 .A 8 +SV r !l TOQ60N EPROM 1k ~ 75Ok1l ~ ~ ~ VOO RC o'1I'F~ 11- 2 4 ICM7240 8 ~ 8 x 100kll ....... .... ... 16 f +SV- TRIG RESET VSS 32 MC14049B OR CD4049B ......... ........ 64 I 128 AS -1 A4 A3 A2 A1 \All A7 As ,r- F RC ICM7240 1 2 Oe~ E1 +5V TBIIO IM66S4 Ao 00·05 mi 4 +SV- TRIG RESET VSS 80010211 Figure 24: EPROM-Coded Message System. This circuit cycles through a message coded in the EPROM, pausing at the end of each line, or whenever coded on Q6. 8-37 Note: All typical values have been guaranteed by characterization and are not tested. ·D~UIL + ~,1'E1IIOO I i"INTERVA\' t ,~[!!EJ I FR.~.fI4'IO I "1 FRIEQUEJtCy I 9. 8. I 9. 9. B~ B.B. . '" B. "'., I, ~, . lOVER RANGE ~ J='~ 1'~ TC029301 Figure. 25: .10MHz Frequency/Period Pointer with LCD Display. The annunciators show function and the decimal pOints indicate the range of the current operation. The system can be efficiently battery 'operated. 08 CJ 07 06 o. 04 03 0' 0' B.. B.. B.. B. ~B..B. ~B..B. COM 1 COM. COM' ICM7231AF/BF TOP VIEW COO24601 Figure 26: "Forward" Pin Orientation and Display Connections Note: All typical values have been guaranteed by characterization and are not tested,' ICM7231-ICM7234 01. DO 01 DO 05 D3 D2 01 B. 8. B. B. B. B. '8. B. B. 8. COM 1 COM' COM. '-----}.,- PCB TRACES UNOER PACKAGE COO24701 Figure 27: "Reverse" Pin Orientation and Display Connections ICM7233AFfO w v v~U-'--T"""'T"'--_}._ L - -_ _ V'::-:::-::-x ----,W LCD DIE MOUNTS UNDER lCD TOP VIEW (BOTH DIE AND lCDI CD024BOI Figure 28: "Forward" Die Pad Orientation and Typical Triplex Alphanumeric Display Connections 8-39 Note: All typical values have been guaranteed by characterization and are not tested. ~ ICM7235 ,~ 4-Di9~t Vacuum g Fluorescent Display Driver GENERAL DESCRIPTION FEATURES The ICM7235 family of display driver circuits provides the user with a single chip interface between digital logic or microprocessors to non-multiplexed 7-segment vacuum fluorescent displays. ' The chips provide 28 high voltage open drain P-channel transistor outputs organized as four 7-segment digits. The devices are available with two input configurations. The basic devices provide four data-bit inputs and four digit select inputs. This configuration is suitable for interfacing with multiplexed BCD or binary output devices such as the IntersillCM7217, ICM7226 and ICL7135. The ~icroproces­ sor interface devices (suffix M) provide data input latches and digit address latches under control of high-speed chip select inputs. These devices simplify the task of implementing a cost-effective alphanumeric 7-segment display for microprocessor systems, without requiring extensive ROM or CPU time for decoding and display updating. The standard devices available will provide two different decoder configurations. The basic device will decode the four bit binary input into a seven-segment alphanumeric hexadecimal output (0-9, A-F). The "A" versions provide the Code "B" output (0-9, dash, E, H, L, P, blank). Either device will correctly decode true BCD to seven-segment decimal outputs. ' • VDD ,,~ 4ii El Gt ~ Ff Fa Fl F. DISPLAY ON/oFF rt 't 'fa 'TI 01 Cl ~ 81 AI :! ~ ICM 7235135A 34 'E ORDERING INFORMATION .ORDER PART NUMBER ~ Ts -20'C to + 85'C 40 Pin CERDIP -20'C to + 85'C 40 Pin CERDIP ICM7235MIPL -20'C to + 85'C 40 Pin PLASTIC ICM7235AIJL -20'C to +85'C 40 Pin PLASTIC ICM7235AIPL -20'C to + 85'C 40 Pin PLASTIC ICM7235AMIJL -20'C to +85'C 40 Pin CERDIP ICM7235AMIPL -20'C to + 85'C 40 Pin PLASTIC ICM7235/D DICE ICM7235A/D DICE ICM7235AM/D DICE ICM7235M/D DICE DISPLAYONIQFF ~ 140 !iii DSI Inputs ! G3~ ~D4 ~ F4 25 G4 ~E4 F3~ A4~ ~ C4 ~B4 ~ Vss ~ VDD 34 ICM 7235M/35AM FIT lit 83} B2 Data 81 Inputs 27 SO C3~ D3 16 E3~ ~ Fa D1 C1 ~81 ~ AI A2~ 82 7 C2 D21i" E2 ~ G2 F2 DS4} DS3 Oigit PACKAGE ICM7235MIJL Ff Ff ~ DS2 Select 'TI TEMPERATURE RANGE ICM7235IPL ~ G2 F2 ~ A3 83 1. ~ • • VDD " . E1 G1 Fl Vss ~ VDD A2,; B2 7 C2 D2 E2 ~ • • • 28 High Voltage Output8 Drive Four 7-Segment Digits Multiplexed BCD Input (7235) High Speed Processor Interface (7235M) 7-Segment Hexadecimal or Code-B Output Versions Available Display Blanking Input Low Power Operation A3~ iii F,i ~ ~ 'TI Ijij ~ ~ 83 C3 D3Fii' I¥, Fii IB E3~ G3 F3Fi'i A4 ~ ~ ~ ~ ~ ]1 : 32 31 30 26 2S 27 F4 G4 E4 D4 C4 84 ~~I CHIP SELECT INPUTS ilA21 DIGIT ADDRESS DAI 83 } 82 DATA INPUTS Bl BO C0033711 Coo33601 Figure 1: Pin Configurations 8-40 Note: All typical values have been guaranteed by characterization and are. not teSted. -002 ICM7235 ABSOLUTE MAXIMUM RATINGS Power Dissipation (Note 1) ................. O.5W @ + 70 0 e Supply Voltage (Voo-VSS) ........................... 6.5 Volts Input Voltage (Note 2) ........... VSS -O.3V to Voo+O.3V Output Voltage (Note 3) ............................. VoO-35V Operating Temperature Range ........... -20 o e to + 85°e Storage Temperature Range ............ -55°e to + 125°e Lead Temperature (Soldering. 10sec) ................. 300 o e . Stresses above listed under" Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. 04 03 SEGMENT OUTPUTS SfGMENT OUTPUTS 0' D' SEGMENT OUTPUTS SEGMENT OUTPUTS OATA INPUTS DIGIT SElECT INPUTS 80010301 Figure 2: ICM7235/35A Functional Diagram D4 SEGMENT OUTPUTS 03 02 SEGMENT OUTPUTS SEGMENT OUTPUTS 01 SEGMENT OUTPUTS DISPLAY 01 Off DATA INPUTS 2·81T DIGIT ADDRESS CHIP SELECT 1 cAip SELECT 2 BD01540l Figure 3: ICM7235M/35AM Functional Diagram 8-41 Note: All typical values have been guaranteed by characterization and are not tested. glCM7235 ... ~ ELECTRICAL CHARACTERISTICS (All parameters measured with VOO = 5V±10%, VSS = av, TA = 25°C, unless stated otherwise). P~RAMETER SYMBOL TEST CONDITIONS Operating Supply Voltage Range (Voo - VSS) ISTBY Supply Current 100 Supply Current Measured Voo to Display Segment OFF Output Voltage ISLK = 101lA Segment OFF Leakage Current VSEG = Voo-30V Segment ON Current VSEG = Voo-2V VSEG ILS ISEG MIN TYP 4 VsuPP Measured VOO to VSS Test circuit; display blank or OFF 10 MAX UNIT 6 V 50 IlA 100 rnA 10 IlA 30 V 0.1 1.5 2.5 rnA MIN TYP MAX UNIT INPUT CHARACTERISTICS SYMBOL PARAMETER TEST CONDITIONS VIH Logical "1" Input Voltage Referred to VSS 3 VIL Logical "0" Input Voltage Referred to VSS V IILK Input Leakage Current Pins 27-34 ±0.1 CIN Input Capacitance Pins 27-34 5 IILK(ON/OFF) ON/OFF Input Leakage All Devices ±0.1 CINtON/OFF.l ON/OFF Input Capacitance All Devices 200 1.5 V ±1 IlA ±1 IlA pF pF AC CHARACTERISTICS - MULTIPLEXED INPUT CONFIGURATION twH tos 1 IlS Data Setup Time Digit Select Active Pulse Width 500 ns tOH Data Hold Time 200 ns IIOS Inter-Digit Select Time 2 IlS 200 ns AC CHARACTERISTICS - MICROPROCESSOR INTERFACE Other Chip Select either held active, or both driven together twL Chip Select Active Pulse Width tos Data Setup Time 100 tOH Data Hold Time 10 tiCS Int,!r-Chip Select Time 2 ns 0 ns Ils NOTES: 1. This limit refers to that of the package and will not be realized during normal operation. 2. Due to the SCR structure inherent in the CMOS process used to fabricate these devices, connecting any input terminal to a voltage in exeessof Voo or VSS may cause destructive device latch-up. For this reason, it is recommended that inputs from external SQurces operating on a different power supply be applied only after the device's own power supply has been established, and that on multiple supply systems the supply to the ICM7235 be turned on first. 3. This value refers to the display outputs only. INPUT DEFINITIONS In this table, Voo and Vss are considered to be normal operating input logic levels. Actual input low and high levels are specified under Operating Characteristics. For lowest power consumption, input signals should swing to either VDO or VSS. INPUT BO TERMINAL 27 TEST CONDITIONS FUNCTION Voo = Logical One VSS = Logical Zero Ones (Least Significant) 28 Voo = Logical One VSS = Logical Zero Twos B2 29 Voo - Logical One VSS = Logical Zero Fours B3 30 VOO = Logical One VSS = Logical Zero Eights (Most Signijicant) Bl 5 ON/OFF Data Input Bits Voo = OFF, Vss=ON Display ON/OFF Input ICM7235, ICM7235A MULTIPLEXED-BINARY INPUT CONFIGURATION INPUT TERMINAL 01 31 02 32 03 33 04 34 TEST CONDITIONS FUNCTION 01 Digit Select (Least Significant) VOO = Active VSS = Inactive 02 Digit Select 03 Digit Select 04 Digit Select (Most Significant) 8-42 Note: All typical values have been guaranteed by characterization .and are not tested. ICM7235 ICM7235M, ICM7235AM MICROPROCESSOR INTERFACE INPUT CONFIGURATION INPUT DESCRIPTION TERMINAL DAI Digit ADDRESS Bit 1 (LSB) 31 DA2 Digit ADDRESS Bit 2 (MSB) 32 CS1 Chip Select 1 33 (;S2 Chip Select 2 34 TEST CONDITIONS FUNCTION DA2 & DA 1 serve as a two bit Digit Address Input DA2, DA 1 = 00 selects D4 DA2, DAI = 01 selects D3 DA2, DA 1 = 10 selects D2 DA2, DA 1 = 11 selects Dl VOO = Logical One Vss = Logical Zero When both CSI and CS2 are taken to VSS the data at the. Data and Digit Address inputs are written into the input latches. On the rising edge of either Chip Select, the data is decoded and written into the output latches. Voo = Inactive VSS = Active OPEN·DRAIN HIGH·VOLTAGE P-CHANNEL TRANSISTOR OUTPUTS \ 10-3QY ~---""~----If'35\\~~~~flm -=-=ICM7235 DEP~~ING ON + + UY VDD _ DISPLAY _Vss 36 PHOSPHOR·COATED /., ANODES [~~hrG1-_+~-_f~-_-+~c-_+~:....._-t_':'~-_-1L..r~-_f~'-~7'2~""i<_"h/~'~~==L~~:~gE DC FILAMENT DISPLAY r+ III F l< ;!:2.5~ DEPENDING ON DISPLAY LD012601 Figure 4: ICM7235 Typical DC Vacuum Fluorescent Display Connection VACUUM FLUORESCENT DISPLAYS (4 DIGIT) AVAILABLE FROM: N.E.G. Electronics, Inc. Models FIP4F8S and FIP5F8S CIRCUIT DESCRIPTION Input Configurations and Output Codes Each device in the ICM7235 family provides signals for directly driving the anode terminals of a four-digit, 7segment non;multiplexed vacuum fluorescent display. The outputs are taken from the drains of high-voltage, lowleakage P-channel FETs. Each is capable of withstanding > -35V with respect to VOO. In addition, the inclusion of an ON/OFF input allows the user to disable all segments by connecting pin 5 to Voo; this same input may also be used as a brightness control by applying a signal swinging between Voo and VSS and varying its duty cycle. The standard devices in thelCM7235 family accept a four-bit true binary (i.e., positive 'level = logical one) input at pins 27 through 30, least significant bit at pin 27 ascending to the most significant bit at pin 30. The ICM7235 and ICM7235M decode this binary input into a 7-segment alphanumeric hexadecimal output, while the ICM7235A and ICM7235AM decode the binary input into the same 7segment output as the ICM7218 "Code B," i.e., 0~9, dash, E, H, L, P, blank. These codes are shown explicitly in Table 1. Either decoder option will correctly decode true BCD to a 7-segment decimal output. The ICM7235 may also be used to drive nonmultiplexed common cathode LED displays by connecting each segment output to its corresponding display input, and tying the common cathode to VSS. Using a power supply of 5V and an LED with a forward drop of 1.7V results in an "ON" segment current of about 3mA, enough to provide sufficient brightness for displays ,of up to 0.3" character height. These devices are actually mask-programmable to provide any 16 'combinations of the 7-segment outputs decoded from the four input bits. For larger quantity orders, (10K pcs. minimum) custom decoder options can be arranged. Contact your Intersil Sales Office for details. The ICM7235 and ICM7235A devices are intended to accept multiplexed binary or BCD output. These devices provide four separate Digit select lines (least significant digit at pin 31 ascendingta most significant digit at pin 34). Each Digit Select line when taken to a positive level decodes and stores in its respective output latches the character corresponding to the data at the input port, pins 27 through 30. Note that these devices have two Voo terminals, and each should be connected to thE! positive supply voltage. This double connection is necessary to minimize the effects of bond wire resistance, which could be a problem due to . the high display currents. 8-43 Note: All typical values have been guaranteed by characterization and are not tested. = .CM7235 ...&'II ~ The ICM7235M and 7235AM devices are intended to accept data from a data bus. under processor control. In these devices,the four data input bits and the2-bit Digit Select code (OAl pin 31, OA2 pin 32) are written into input buffer latches when both Chip Select inputs (CSfpin 33, CS2 pin 34) are taken to VSS. On the rising edge of either Chip Select input, the content of the data input latches is decoded and stored'in the output latches of the digit selected by the contents of the select code latches. A select code of 00 writes into 04, 01 writes into 03,10 writes into 02 and 11 writes into 01. The timing relationships for inputting data are shown in Figure 7, and the chip select pulse widths and data setup and hold times are specified under Operating Characteristics. ~~~-'~--------------------------~- ",,' .I=:L:.~ .: VAOUo~ , ' ~DON'fCAFIE. WF019,931, Figure 6: Multiplexed Input Timing Diagram •v ... ~ .ml~· DATA AND " ' " " ' ' ' ' " " " " " ,.:~~ tow ItIS VALID . , YAUD r VDO SEGMENTS OfF Vss '" SEGMEN!S ON ~DOH'TCARE v .. WF020031 v " DlGITICHIP SElECT INPUTS I" :13 \ Figure 7: Microprocessor Interface Input Timing Diagram Veo MICROPROCESSOR YER~ONS 32 Vss MUL TlPLEliED VERSIONS 3t TABLE 1: Output Codes voo .. BINARY 2' TC02941t Figure 5: Test Circuit TYPICAL PERFORMANCE CHARACTERISTICS - to - - - - • J II, =,v VSupp =,.5 vJPP 1sv VS~ ! tV '-4-f . vsJPP -- .... ~ ", f-" -~ ~ 1/ L JIll • '~r ~ CI / i-- ~ ~ B1 BO 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 1 0 0 1 0 0 1 1 0 0 1 1 0 0 1 1 1 1 1 1 1 1 ~r VSUPP B2 .1 Voo - VOUT - 12 B3 2 1 1 0 0 1 ' 1 1 1 HEXADECIMAL CODE B ICM7235A ICM7235 ICM7235M ICM7235AM a a 1 1 2 3 1 2 3 0 4 4 1 0 5 6 7 8 5 6 7 8 1 0 9 A - 1 0 1 9 1 b E 0 C 1 d E F H L 0 1 P (BLANK) .... •IOu, • • LC02030t Figure' 8: Segment Assignment • OP04401I 8-44 Note: All typical values, have been guaranteed by characterization and are not tested. ICM7243 8-Character LED IlP-Compatible Display Driver GENERAL DESCRIPTION FEATURES The ICM7243 is an a-character alphanumeric display driver and controller which provides all the circuitry required to interface a microprocessor or digital system to a 14- or 16-segment display. It is primarily intended for use in microprocessor systems, where it minimizes hardware and software overhead. Incorporated on-chip are a 64-character ASCII decoder, a x 6 memory, high power character and segment drivers, and the multiplex scan circuitry. Six-bit ASCII data to be displayed is written into the memory directly from the microprocessor data bus. Data location depends upon the selection of either Serial (MODE = 1) or Random (MODE = 0). In the Serial Access mode the first entry is stored in the lowest location and displayed in the' 'left-most" character position. Each subsequent entry is automatically stored in the next higher location and displayed to the immediate "right" of the previous entry. A DISPlay FULL signal is provided after a entries; this signal can be used for cascading. A CLeaR pin is provided to clear the memory and reset the location counter. The Random Access mode allows the processor to select the memory address and display digit for each input word. The character multiplex scan runs whenever data is not being entered. It scans the memory and CHARacter drivers, and ensures that the decoding from memory to display is done in the proper sequence. Intercharacter blanking is provided to avoid display ghosting. .14- and 16-Segment Fonts With Decimal Point • Mask Programmable For Other Font-Sets Up to 64 Characters • Microprocessor Compatible • Directly Drives Small Common Cathode Displays • Cascadable Without Additional Hardware • Standby Feature Turns Display Off; Puts Chip in Low Power Mode • Serial Entry or Random Entry of Data Into Display . • Single + 5V Operation • Character and Segment Drivers, All MUX Scan Circuitry, 8 x 6 Static Memory and 64-Character ASCII Font Generator Included On-Chip ORDERING INFORMATION PART NUMBER TEMPERATURE RANGE PACKAGE ICM7243AIJL -20·C to +85·C CERDIP ICM7243BIJL -20·C to + 85·C CERDIP ICM7243B EV/KIT ICM7243BIPL -20·C to +85·C - ICM7243B/D ICM7243BCPL CHAR. o·C PLASTIC DICE to +70·C PLASTIC -""==...r" CD0261U CD026011 Figure 1: Pin Configurations 8-45 Note: All typical values have been guaranteed by characterization. and are not tested. -002 .U~U[l :(II ICM7243 " , &'ABSOLUTE MAXIMUM RATINGS '!:! " Operating Temperature Range (I) ....... -25°C to +85°C (C) ..... ; ....... O°C to 70°C Storage Temperature Range ............ : -55°C to + 125°C Lead Temperature (Solder.ing, 10sec) ...... ; .......... 300°C Supply Voltage (Voo - VSS) .................................. 6V CHARacter Output Current ..............................300mA SEGment Output Current ......................... : ....... 30mA Input,Voltage (Any Terminal) (Voo+ O.3V) to (VSS-O.3V) Power Dissipation ....•....•.................................... 1W Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are-stress ratings only and-functional operation of the device at these or any otller condnions above those indicated in the operational sections of the specifications is not implied. Exposllre to absolute maximum rating conditions for extended periods may affect device reliability. SEGMENT DRIVERS 4- SEGMENT OUTPUTS SEC. - CHAn.. CHARACTER OUTPUTS I I AoISEN _ _ 11 SEL SEL • ICM72UA HAS ONLV ONE CSAND NO CS.ICM72'3B HAS 15 SEGMENTS ADDRESS MULTIPLEXER AND DECODER ,,'OISP FULL 4---+ INTER·CHARACTER BLANKING 80010801 Figure 2: Functional Diagram DC ELECTRICAL CHARACTERISTICS (Voo = 5V, Vss = OV, TA = 25°C unless otherwise stated) LIMITS SYMBOL PARAMETER TEST CONDITIONS UNIT MIN 4.75 Vsupp Supply Voltage (Voo - VSS) 100 Operating Supply Current ~Supp VSUPP - 5.25V, OSC/~ Pin ISTBY Quiescent Supply Current VIH Input High Voltage VIL Input Low Voltage liN Input Current ICHAR CHARacter Drive Current ICHLK CHARacter Leakage Current ISEG SEGment Drive Current - 5.25V, 10 Segments ON, All 8 Characters < 0.5V, TYP MAX 5.0 5.25 180 CS = Vss 30 250 2 140 0.8 V +10 p.A 190 mA 100 VSUPP = 5V, VOUT = 2.5V 8-46 Note: All typical values have been guaranteed by characterization and are not tested. - 14 p.A V -10 VSUPP = 5V, VOUT = 1V V mA 19 /lA mA ICM7243 DC ELECTRICAL CHARACTERISTICS (CO NT.) PARAMETER SYMBOL ISlK SEGment Leakage Current VOL DISPlay FULL Output Low IOl = 1.6mA VOH DISPlay FULL Output High IIH Ids Display Scan Rate = 5V. MIN TYP MAX 0.01 = 100/J.A UNIT 10 /J.A 0.4 V V 2.4 Hz 400 AC ELECTRICAL CHARACTERISTICS VOD LIMITS TEST CONDITIONS (Drive levels O.4V and 2.4V. timing measured at O.8V and 2.0V. T A = 25°C unless otherwise stated). SYMBOL TEST CONDITIONS PARAMETER TYP MIN \wPI WR. CLeaR Pulse Width Low 250 \wPH tOH WR, CLeaR Pulse Width High (Note 1) 250 Data Hold Time 0 -100 tos Data Setup Time 250 150 tAH Address Hold Time 125 tAS Address Setup Time 40 tes CS, ~ Setup Time 0 tT Pulse Transition Time !sEN SEN Setup Time 0 -25 tWOF Display Full Delay 600 480 MAX UNIT ns 15 100 CAPACITANCE SYMBOL CIN TEST MIN TYP Input Capacitance (Note 2) Output Capacitance (Note 2) Co "Not tested. (Guaranteed) NOTES: 1. In Serial mode WR high must be ::: TSEN + TWOF. 2. For design reference only, not 100% tested. MAX UNIT 5 pF 5 pF TYPICAL PERFORMANCE CHARACTERISTICS SEGment Current VB Output Voltage 30 , CHARacter Current I 1 r-- -- 1 .~5.0V I ~.5V 10 .~. o Output Voltage 500 VDD·6.5V 20 VB I I P 100 o SEGment Voltage (V) If'!'. voo· 5.~~_ "':.- ~Y .' •.5Y- 3 2 CHARacter Voltage (V) OP04651I OP04641J 6-47 Note: All typical values have been guaranteed by characterization and are not tested. .D~DIl ICM7243 ICM7243A/B DISPLAY FONT AND SEGMENT ASSIGNMENTS Note: Some display manufacturers use different designations for some of the segments. Check' data sheets carefully. " " 'f;S ~ • b ~~J I J C d d2 d1 DISPLAY o 0..0. 0 1 1 0 C? RB C]] EF GH IJ I- 1 0 12 3Y S.5 l8 g I 0 0 o o 0 0 1 1 1 0 1 0 D, 0 0 0. 0 D, 0 Do 0 o 0 0 1 1 1 0 0 1 1 0 0 ~ / ,? L / 1 '1 1 1 1 o 0 o 0 1 o 0 1 1 1 0 1 0 1 0 1 1 1 1 1 1 1 1 o 0 1 1 1 0 1 _ _ _ tJpJ SEGMENT LEOs VIS 08022411 Figure 5: Segment and Character Drivers Output Circuit TBOO11QI Figure 3: ICM7243A 16-Segment Character Font with Decimal Point ca _ _"1 • ,r~ g, ~ b .~ ~c d 0 0.. 0.' 0 1 1 oc? R B C]] EF GH ItJ I-< LM N 0 lP Q R 5T U VW Xy Z ~ \ ~ 7' 0 1 ":±! CJJ~ .& 1 <> 12 3Y S.5 l8 g *+ 10 0, 0 0 0 0 0 0 0 0 1 1 1 0, 0 0 0 0 1 1 1 1 0 0 0 0, 0 0 1 1 0 0 1 1 0 0 1 0, 0 1 0 1 0 1 0 1 0 1 0 / - ./ L- ~? 1 1 1 1 1 0 1 1 1 1 1 0 0 1 1 1 0 1 0 1 / TBOO1201 WF020511 Figure 6: Random Access Timing NOTE: Segments a and d appear as 2 segments each, but both halves are driven together. Figure 4: ICM7243B 14-Segment Character Font with Decimal Point 8-48 Note: All typical values have been guaranteed by characterization and are not tested. ICM7243 WR SEN DISPLAY FULL ~-------------------Figure 7: Serial Access Mode Timing (Mode =1) WF03011I TABLE 1: PIN DESCRIPTIONS, ICM7243A(B) SIGNAL PIN FUNCTION 00- 0 5 10-15 (8-13) Six-Bit ASCII Data input pins (active high). CS, CS 16 (14-16) Chip Select for decoding from I'P address bus, etc. WR 17 WRite pulse ine!!!..Pin (active low). For an active high write pulse, CS can be used, and WR can be used as C§. MODE 31 Selects data entry MODE. High selects Serial Access (SA) mode where first entry Is displayed in "leftmost" character and subsequent entries appear to the "right". Low selects the Random Access (RA) mode where data is displayed on the character addressed via Ao - A2 Address pins. AO/SEN 30 In RA mode it is the LSB of the character Address. In SA mode it is used for cascading display driver/ cI:mtroliers for displays of more than 8 characters (active high enables driver controller). A1/a:eaFi 29 In RA mode this is the second bit of the address. In SA mode, a low input will CLeaR the Serial Address Counter, the Data Memory and the display. A2/DISPlay FULL 28 In RA mode this is the MSB of the Address. In SA mode, the output goes high after eight entries, indicating DISPlay FULL. OSC/5FF 27 OSCillator input pin. Adding capacitance to VOO will lower the internal oscillator frequency. An external oscillator is also applied to this pin. A low puts the display controller/driver into a quiescent mode, shutting OFF the display and oscillator but retaining data stored in memory. SEG a - SEG m, D.P. CHARacter 1 - 8 2-9 (7), 32-40 SEGment driver outputs. 18-21, 23-26 CHARacter driver outputs. 8-49 Note: All typical values have been guaranteed by characterization and are not tested. 17 SEGMENTS ~'---Fil-m-llJ-llJ-llJ-FlI-FlI-FlI CHAR 1 2 3 5 6 7 8 8 CHARACTERS' SEGMENTS __-=----"-"'-"-'---+-_---''---- DISPLAY FULL OUTPUT o--voo y:>-~ HC (FOR SA MODE) TC02291I Figure 8: Test Circuit edge of WR (or its equivalent). Subsequent changes on the Address lines will not affect device, operation. This allows use of a multiplexed 6-bit bus controlling both address and data, with timing controlled by WR. DETAILED DESCRIPTION WR, cs; CS. These pins are immediately functionally ANDed, so all actions described as occurring on an edge of WR, with CS and CS enabled, will occur on the equivalent (last) enabling or (first) disabling edge of any of these inputs. The delays from CS pins are slightly (about 5ns) greater than from WR or due to the additional inverter required on the former. Serial Access Mode. If the internal latch is set for Serial Access (SA), (MODE latched high). the Serial ENable input on SEN will be latched on the falling edge of WR (or its equivalent). The CLR input is asynchronous. and will force· clear the Serial Address Counter to address 000 (CHARacter 1). and set all Data Memory contents to 100000 (blank) at any time. The DISPlay FULL output is always active in SA mode also, and indicates the overflow status of the Serial Address Counter. If this output is low, and SEN is (latched as) high, the contents of the Counter will be used to establish the Data Memory location for the Data input. The Counter is then incremented on the rising edge of WR. If SEN is low, or DISPlay FULL is high. no action will occur. es MODE. The MODE pin input is latched on the falling edge of WR (or its equivalent. see above). The location in Data Memory where incoming data will be placed is determined either from the Address pins or the Serial Address Counter. under control of this latch. which also controls the function of AO/SEN, A1/CLR, and A2/DISPIay FULL. ' Random AccesS Mode. When the internal mode latch is set for Random Access (RA) (MODE latched low), the Address input on AO. A1 and A2 will be latched by the falling 8-50 Note: All typical values have been guaranteed by" characterization and are not tested. .U~Ulb This allows easy "daisy-chaining" of display drivers for multiple character displays in a Serial Access mode. Changing Modes. Care must be exercised in any application involving changing from one mode to another. The change will occur only on a falling edge of' WR (or its equivalent). When changing mode from Serial Access to Random Access, note that A2/DISPlay FULL will be an output until WR has fallen low, and an Address drive here could cause a conflict. When changing from Random Access to Serial Access, A1/CLR should be high to avoid inadvertent clearing of the Data Memory and Serial Address Counter. DISPlay FULL will become active immediately after the falling edge of WR. Data Entry. The input Data is latched on the rising edge of WR (or its equivalent) and then stored in the Data Memory location determined as described above. The six Data bits can be multiplexed with the Address information on the same lines in Random Access mode. Timing is controlled by the WR input. OSC/OFF. The device includes a one-pin relaxation oscillator with an internal capacitor and a nominal frequency of 200kHz. By adding external capacitance to VDD at the OSC/OFF pin, this frequency can be reduced as far as desired. Alternatively, an external signal can be injected on this pin. The oscillator (or external) frequency is pre-divided by 64, and then further divided by 8 in the Multiplex Counter, to drive the CHARacter strobe lines (see Display Output), An intercharacter' blanking signal is derived from the predivider. An additional comparator on the OSC/OFF input detects a level lower than the relaxation oscillator's range, and blanks the ,display, disables the DISPlay FULL output (if active), and clears the pre-divider and Mutliplex Counter. This puts th,e circuit in a low-power-dissipation mode in which all outputs are effectively open circuits, except for parasitic diodes to the supply lines. Thus a display connected to the output may be driven by another circuit (including another ICM7243) without driver conflicts. Display Output, The address output of the Multiplex Counter is multiplexed into the address input of the Data Memory, except during WR operations (in Serial Access mode, with SEN high and DISPlay FULL, low), to control display operations. The address decoder also drives the CHARacter outputs, except during the inter-character blanking interval (nominally about 5f.1s). Each CHARacter output lasts nominally about 300f.ls, and is repeated nominally every 2.5ms, i.e., at a 400Hz rate (times are based on internal oscillator without external capacitor). The 6 bits read from the Data Memory are decoded in the ROM to the 17 (15 for ICM7243B) segment signals, which drive the SEGment outputs. Both CHARacter and SEGment outputs are disabled during WR operations (with SEN high and, DISPlay FULL Low 'for Serial Access mode). The outputs may also be disabled by pulling OSC/OFF low. The decode pattern from 6 bits to 17 (15) segments is done by a ROM pattern according to the ASCII font shown. Custom decode patterns can be arranged, within these limitations, by consultation with the factory. APPLICATIONS 8 CHARACTER lED DISPLAY *',-,:::I_ 'LI: T~-JI: I ,_ • 1 CLR CHAR SEG DlSP FULL +5V_ SEN +5V_ MODE r--- WR r~-5 DATA BUS -",. ... T/\ \JITEF~5TI .J..l I .J..L . " 8 - LClR - CHAR SEG DlSPFULL SEN +5V_ MODE VOS?, r--- WR r~-5 CS I . • CS. (WR) FIRST 8 CHARACTERS SECOND 8 CHARACTERS '17 rr-- CHAR SEa DlSPFULL 1----- +5 VDO i+-+ 5V VOS?, '. '6 6 8 CHARACTER LED DISPLAY - VDO _+5V CS 8 CHARACTER LED DISPLAY VDO CS +5V Vos -------- .111 8 CHARACTERS 'or 'CM72.3A. 15 lor ICM72<13B AF032111 Figure 9: Multicharacter Display using Serial Access Mode 8-51 Note: All typical values have been guaranteed by characterization and are not tested. a.... !: " .D~UIl. ilCM7243 ...~ APPLICATIONS (CONT.) --+ RBR8H~~~ RRI c::::l RBR7H.....~~ ETC. 1M8403 UART RB R,-e......,,.;;-;;,;;.;...;;;..;;.;;.._.., DR DRR +sv OUT ICL7565 DELAY ETC. 200pF AF032201 Figure 10: Driving Two Rows of Characters from a Serial Input. UART converts data stream to parallel bytes. Bit 7 of each word sets which row data will be entered into. Bit 8 will blank and reset whole display if low. Each MODE pin should be tied high. ICM7243A can also be used, with inverter on RSR7 for one· row. COMP.ONENT SELECTION Texas Instruments Inc., Dallas, Texas (214) 995-6611 (part # HDSP6508) Displays suitable for use with the ICM7243 may be obtained from the following manufacturers; among others: Hewlett Packard Components, Palo Alto, California (415) 857-6620 (part #HDSP6508, HDSP6300) General Instruments Inc., Palo Alto, California (415) 4930400 (part #MAN2815) A.N.D., Burlingame, California (415) 347-9916 (part #AND370R) lEE Inc., Van Nuys, California (213) 787-0311 (part #LR3784R) 8-52 Note: All typical values have been guaranteed by characterization ·and are not tested. .U~UlL ICM7243 wwwmmmmmmmoooommmoowwmmmmmmoomm~moom~ I 1CM7243AIII CS Ai AI Ao Ow I'zI Pz1 IMIOC35 IMIOC4I ... ~ I 1 .t:. I ICM7243AIII i AI Ow WR Viii Cs Ai I I r~ i.o 4i!. 1 I ::.. ICM7243AIII i CS Ai AI Ao Ow WR 1 I ICM7243A/lJ CS Ai AI Ao Ds-o Wii ~~1 ;4i!. I i.e;' ';::.. '*7 Dee D8w 8-BlTBUS WR I AF03231I Figure 11: Random Access 32-Character Display in IM80C48 system. One port line controls A2. other two are CS lines. 8-bit data bus drives 6 data and 2 address lines. MODE should be GrouNDed on each part. +5V I I +5V +5V +5V +5V I I 1.4 AMP PEAK I I I 1k I I 1000 1000 : I I ICM7243 :300II I I I I (l00mA PEAK) 1k ':" GND 05022601 05022501 (Sa.) Common Cathode Displays (5b.) Common Anode Displays Figure 12: Driving Large Displays. The circuits of Figures 12a and 12b can be used to drive 0.5" or larger alphanumeric displays, either common cathode (12a) or common anode (12b). 8-53 Note: All typical values have been guaranteed by characterization and are not tested. i.... .., t IICM7·280 .... Dot Matrix LCD ~ ControllerIRow Driver .GENERAL DESCRIPTION FEATURES The ICM72BO is designed to provide a complete microprocessor interface for an BO-character alphanumeric LCD .display system. It includes a character generator, c!isplay voltage generator and resistor string, row drivers, an9 control circuitry. Interface to a host microprocessor is achieved through either a multiplexed or non-multiplexed parallel bus. The ICM72BO is designed to offload all display-related tasks from the host microprocessor and to provide an easyto-program software interface. Since the internal circuitry operates at full microprocessor speeds, there is no waiting for completion of internal operations. Testing ofa "Busy" flag, when characters or commands are written, is not required. Character data can be loaded with an auto-incremented CUrsor or in a random-access mode. Versatile control functions allow all or selected portions of the display to be underlined, blinked, blanked, or displayed in reverse video. Display start offset and power-down features are provided, and both an underline and a blinking-box cursor are available. The ICM7280 can display four user-defined characters in addition to the standard 96 ASCII upper and lower-case characters and 14 European and graphics characters. • • • • • • 80 Character Wide Display Memory - Directly Drives 10 ICM7281 Column Drivers High Speed iJP Intertace . -ICM7280A: Intel, Zllog Compatible -ICM7280B: Motorola, Rockwell Compatible 120 Character Font With Multiple Attributes - Underline, Cursor, Blinking, Reverse 4 User Definable Characters Versatile Character Font Matrix - 5 or 6 Columns By 7 to 10 Rows High Speed Internal Architecture - No Busy Flag Needed APPLICATIONS • • • • Battery Hand-Held Terminals Portable Computers Instrument Control Panels LCD Display Modules ORDERING INFORMATION PART NUMBER ICM7280AIPL ICM7280AIJL ICM7280AlD ICM7280BIPL ICM7280BIJL ICM72809/D TEMPERATURE RANGE -40°C to +85°C -40°C to + 85°C -40°C to +85°C -40°C to +85°C - . PACKAGE 40-Pin Plastic DIP 40-Pin CEADIP DIE 40-Pin Plastic DIP 40-Pin CEADIP DIE CD033801 PART # 7280A 72809 PIN 29 AD E PIN 30 WA PIN 31 ALE A/W AS Figure 1: Pin Configuration 8-54 Note: All typical values have been guaranteed by characterization and are not tested. 301689-004 ICM7280 ABSOLUTE MAXIMUM RATINGS Operating Temperature Range ........... -40 oe to +85°e Storage Temperature Range ............ -ssoe to + 125°e Lead Temperature (Soldering, 10sec) ................. 300 oe Supply Voltage (VDD - VSS) ............................ +6.5V Display Voltage (VDD - VDISP) ......................... + 12V Input Voltage ........................ VSs-O.SV to VDD+O.5V Power Dissipation ............................. SOOmW @ 70 0 e Note: Stresses above those listed under" Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only. and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute. maximum rating conditions for extended periods may affect device reliability. ANNUNCIATOR RAM 2 1 'I' / /7 1/8 I I ....... AD·AI 4x10x 5 SERCLK FONT RAM I--- 80 CHARACTER RAM DATA OUT SERIAL INTERFACE 120.10.5 00·117 FONT ROM I~ AD I:: 1/ , r INTERFACE ATTRIBUTE INFO & TIMING CONTROL REGISTERS Wii t & CONTROL LOGIC DISPLAY CONTROL ~ cs '/ DATA LATCH r----- ALE pP ~ ~ • I, 1""'- osc • • DISPLAY VOLTAGE GENERATION ROM & TIMING CLOCK LCD ROW OUTPUTS ~ , 80015511 Figure 2: Functional Diagram ELECTRICAL CHARACTERISTICS 'AC CHARACTERISTICS (VDD = S.OV±10%, TA = -40 to +8soe, VDISP = VDD SYMBOL IlL PARAMETER -8V, VSS = OV, unless otherwise specified.) TEST CONDITIONS Input Leakage Address/Data pins high impedance 0< VIN < Voo MIN -10 TYP MAX UNIT +10 I1A ISS Supply Current Osc open ckt,' VIL = OV, VIH = VDO 2.5 mA ISlBY Shutdown Current VIL = OV, VIH = VDO 100 IJA VSUPP, Operating Voltage Range lose Osc. Frequency Osc., open ckt. 4.5 5.5 V 0.2 l:b MHz 1.0 V Serial Outputs VOL Output Voltage, Low IOL = lmA ,8-55 Note: All typical values have been guaranteed by characterization and are not tested. i ICM7280· .... a (II ELECTRICAL CHARACTERISTICS (CONT.) SYMBOL PARAMETER Data 110, p.P Interlace Inputs MIN TEST CONDITIONS Output Voltag~. High .VOH TYP MAX UNIT V Voo-l.0 ;IOH=.lmA . . u VOL Output Voltage, Low IOL = 1.6mA VOH Output Voltage, High IOH =400j.iA VIL Input Voltage, Low VIH Input Voltage, High 0.4 V V 2.4 V 0.8 V 3.0 Row Driver Outputs RON Output Resistance, ON DCONT high, Vo = VOISP + 0.5V DCONT low, Vo = -0.5V ROFF Output Resistahce, OFF DCONT high, Vo = V4±.5V DCONT low, liD = Vl±0.5V VI DCONT high V2, V3 V4 . DOONT low 1 kSl 2.5 kSl -1.5 -1.0 0.5 V 0.5 1.0 1.0 V 2.5 3.0 3.5 V AC CHARACTERISTICS (See Timing Diagram) (VDD ... 5.0V± 10%, VDISP = OV, VSS = OV, TA =; -40 to .. SYMBOL PARAMETER + a5·C, CL = 1~OpF. TEST CONDITIONS unless otherwise specified.) MIN TYP MAX UNIT 200 ns 400 ns Serial Output Timing Prop.D~lay SCLK to DLAT Prop Delay SCLK to Tscdo DOUT Microprocessor Interface Tscdl TLL ALE! AS Pulse Width. High 55 ns TAL Address to ALE Setup time 30 ns Tla Address to ALE Hold Time 30 ns IntellZllog Option (ICM7280A) Tad Address Setup Time 50 ns Tah Address Hold Time 30 ns Twi WRITE Pulse Width, Low 100 ns Tdw Data to WRITE Setup· Time ··150 ns 30 ns Twd Data to WRITE Hold . Time Trd READ to Valid Data Trx READ to Data Hold . Time TBsd ALE Setup Time 550 ns 150 ns 60. ns ns MotoroI8/R~e" Option (lCM7280B) Tad Address to E· Setup Time 50 Tah Address to E Hold TIme 30 Note: All typical val\l8s have been guaranteed by characterization and· are not tested. ! ns n .u~nlL !I ICM7280 .... N AC CHARACTERISTICS (See Timing Diagram) (CONT.) SYMBOL PARAMETER TEST CONDITIONS Q) MIN TYP MAX UNIT Tee E Pulse Width, High 200 ns Tdw Data to E Setup Time 100 ns TWd Data to E Hold Time 30 Trd E to Valid Data Trx E to Data Hold Time Tasd E to AS Setup Time WRITE CYCLE TIMING (RD Tee = 400ns 60 ns 550 ns '150 ns ns = 1") II 00-D7, AO-A6 WF031501 READ CYCLE TIMING (WR = "1") WF031601 Figure 3: ICM7280A Timing Diagrams (Multiplexed Operation) 8-57 Note: All typical values have been guaranteed by characterization and· are not tested. 0 :1...°ICM7280: 2, S:! WRITE CYCLE, TIMING (RD ='~1") (ALE = "1") ADDRESS VALID AO-A6 DO-D7 I.--~--Tad----+l' ,.--~-- WF031301 READ CYCLE TIMING (WR = "1") cs. AO-A6 DO-D7 WF031401 , Figure 4: ICM7280A Timing Diagrams (Non-Multiplexed Operation) 8-58 Note: All typical values have been guaranteed by characterization and are not, tested. ICM7280 WRITE CYCLE TIMING (AS = "1") WF03170! READ CYCLE TIMING (AS = "1") WF031801 Figure 5: ICM7280B Timing Diagrams (Non-Multiplexed Operation) 8-59 Note: All typical values have been guaranteed by characterization and are not tested. .iICM1'280 ':&\1 :..., ,Iii .! WRITE CYCLE TIMING WF031001 READ CYCLE TIMING AS DO-D7. AO-A6 E ~--+-~~-+---------Tqc----------------------~ RiW. WF031101 Figure 6: ICM7280B Timing Diagrams (Multiplexed Operation) Note: All typical values have been guaranteed by characterization and are not tested. ICM7280 J SelK T..... j ~ i . - - T..... ~ '-1 DLAT / ~ J DOUT ~t WF029801 Figure 7: ICM7280 Serial Output Timing Diagram Microprocessor Bus Interface Table 1: Pin Descriptions SIGNAL ROW10-1 PIN DESCRIPTION 1-10 11 Serial data 12 Negative LCD supply voltage °OUT VOISP V2, V3 13, 14 OCONT 15 Column driver control output SCLK 16 Serial data clock output OLAT 17 Row data latch output VINV 18 Negative voltage generator clock OSC 19 Oscillator input VSS 00-07 20 28-21 LCD column voltage Digital ground To use the ICM7280 on a multiplexed bus, tie the AO-A6 lines to the DO-06 lines and ALE/AS driven with the system address latch enable or strobe signal. For a non-multiplexed bus, AO-A6 should be connected to the least significant address lines, 00-07 connected to the data bus and ALE/ AS tied high. The only external circuitry needed is a chip select or address decoder. The ICM7280 uses an address space of 128 bytes. Data 1/0 ICM7281 Data Interface Address inputs The ICM7280 Row Drivers require ICM7281 Column Drivers to operate an LCD display. Three lines are used to load data serially into the ICM7281 column drivers, DOUT, SCLK, and DLAT. The data is latched and shifted with each negative going edge of SCLK, and the data is transferred from the ICM7281 shift register to its latches with the negative going edge of DLAT. The frequency of the SCLK is set by the oscillator frequency of the ICM7280 and is normally about 600kHz. Positive digital and LCD supply voltage Oscillator RO(7280A) E(7280B) 29 29 Read input Enable input WR(7280A) R/WFi(7280B) 30 30 Write input Read/w.rite input ALE(7280A) AS(7280B) 31 31 Address latch enable .Address strobe 32 Chip select input ~ AD-AS VOO 39-33 40 There are two versions of the ICM7280. The ICM7280A has WR and RD pins, as well as ALE and CS. This version can be interfaced to standard multiplexed or non-multiplexed data buses of parts such as the 8085, Z80, 8088 and other microprocessors. The ICM7280B has R/W, E and AS pins instead of WR and RD and ALE. The ICM7280B is intended for use on 6800 and 6500 family buses. LCD row drivers The ICM7280 oscillator will free run at 600kHz in die form, when not loaded with any capacitance. With 15pF of external capacitance at pin 19, the frequency will be about 250kHz. Figure 8 shows the relationship between oscillator period and the value of Cexternal. Table 1 shows the relationship between the oscillator frequency and various display system Signals and features. Standard CMOS logic gates can be used. to overdrive the oscillator to control frequency. A suitable frequency can also be derived by dividing down the host processor's clock. DETAILED DESCRIPTION Hardware Interface Figure 1 is a simplified block diagram of the ICM7280. It is a dedicated hardware IC and the speed of data entry and command processing is limited only by gate delays. Unlike other display controliers, the ICM7280 will not "go busy" for milliseconds at a time while processing data or commands. 8-61 Note: All typical values have been guaranteed by characterization and are not tested. iICM'7280·· C\I 1& Table 2: ICM7280 Display System Frequencies 2 SIGNAL NAME COMMENTS FREQUENCY SCLK OSC Sets data transfer rate to ICM7281 column drivers DLAT Display Control OSC/M OSC/M Once per row multiples period. LCD Multiplex Freq. OSC/(NxMx2) Should be above 30Hz to avoid flicker. Blink Rate OSC/(NxMx64) Blink rate for blinking cursor and blinking characters VINV OSC AC waveform for generating a negative voltage for VDISP Where N = number of rows - 7, 8, 9, or 10. M = 80 x number of columns (5 or 6) per character. Add 14 if annunciators enabled. NOTES: Table 3: ICM7280 Memory Map ADDRESS FUNCTION DECIMAL HEX 0-79 00H-4FH Character RAM. Loaded with ASCII data characters to be displayed. Address 0 is the leftmost character (assuming the Preset Display Position Register is 0.) 80-119 50H-77H Font RAM. Holds bit pattern for ,four user-definable characters. See Table 4. 120 78H Instruction register 0 (lRO) 121 79H Instruction register 1 (IR1) 122 7AH Instruction register 2 (IR2) 123 7BH Cursor Register (IR3) 124 7CH, Preset Display Position Register (IR4) 125 7DH Annunciator Register 1 (AR1) 126 7EH Annunciator Register 2 (AR2) 127 7FH Cursor-Addressed Entry Register NOTE: See Table 6 for more detail about addresses 120-127 (78H-7FH). Display Interface TI.... The ICM7280 will support a dot matrix LCD display which has 7,8,9, or 10 rows, and either evenly-spaced columns or a space after every fifth column. If the display has evenlyspaced columns, then 6 columns per characte~ should be selected and the sixth column is always blank. If the display provides a blank after every fifth column, then 5 columns per character should be selected .. The character font is automatically changed to take advantage of all rows. The ICM7280 will automatically use one of the 6 evenly-spaced columns for a' space. ..... " ./ ,/ 1./ / 1/ '" V The ICM7280 can drive LCD displays with threshold voltages up to 2.5 volts. There is no minimum display threshold voltage since VDISP can be above VSS' '" " 20 " .. S8 -- The ICM7280 also has 10 onboard row drivers deSigped to handle large dot ml:!trix displays. These drivers provide fast slew rates, and have a minimum offset voltage. 6U c....,..IIpFI 0P057401 Figure 8: The Relationship Between .Oscillator Period and Cexternal. 8-62 Note: All typical values have been guaranteed by characterization and are not tested. ICM72QO Vall (+5V) i UllV ,4 R3 150K 4.111 ! TAiT 100"A 0.1,4 411 Vall -I, H2 1.5M R, 10011 b( ICM7280 +5V Ibsp 11.,4 TO ICM7281 4 -= R4 1011 COLUMI ORIVliR -= VIIV 1011 18 1bsP'f'~2 ________________________________________ ~ 20 L0012501 Figure 9: ICM7280 VOISP Temperature Compensation Circuit Display Voltage Generator ators or flags, 40 bytes for storing 4 user-programmable characters, 5 bytes for control registers, and one dummy address to identify cursor-addressed character entry. The ICM7280 not only has an onboard resistor string to generate the required V" V2, V3, and V4, but also has an output that assists in generating a negative voltage for VDISP. The VINV pin is a loW-impedance output that swings from VDD to VSS at the oscillator frequency. The circuit of Figure 9 connected to the VINV pin generates a temperature-compensated VDlSP. Diodes 0, and 02, with capacitors C, and C2 form a charge-pump negative voltage generator. The ICl7611 CMOS op-amp and its associated circuitry form an adjustable temperature compensated voltage source that provides VDISP to the ICM7280, as well as the ICM7281 column drivers. Temperature compensation for VDISP is necessary because the threshold voltage of LCD fluids have a pronounced negative tempco. Character RAM Data may be entered in a random-access mode by simply writing to the desired character address. Address 0 corresponds to the leftmost character of the display, and address 79 corresponds to the rightmost character (assuming the Preset Display Position register has been loaded with a 0). Block moves or other high-speed data transfers can be used to move data from the host system's RAM or ROM to the ICM7280's character RAM. Character data format is standard ASCII for the 96 upper and lower case characters, with the eighth data bit ignored. As shown in Figure 10, the ICM7280 Character Font Table, the display controller also recognizes three special control characters and 14 additional European and graphics characters. The characters 08 through .17 are alternate lower case characters that are used with 8, 9, and 10 row displays. SOFTWARE INTERFACE Table 3 provides a memory map of the ICM7280. The ICM7280 uses 128 bytes of memory space: 80 bytes for character data storage, 2 bytes for 14 independent annunci- 8-63 Note: All typical values have been guaranteed by characterization and are not tested. 8 ~ ICM7'280·· .O~OIL ~ ~-~~--'----~ :Ii g III1I1III1IIIII1 III11IIIII1IIIII III1IIIIIIIIIIII III1IIIII11I1III IIIIIIIII11I1III IIIIIIIIIIIIIII1 III11I1II111IIII . III1IIIIII1IIIII M •• U UM wn "K n. U. M. ~ un DU NU nu au "K uw UU »w ~ Ra an an ~ft ~u un UK UR ~ft uu n uu nK MR ••• a UM .H UX •• hK au A ~U .~ .N ron nu nu nu uu n~ n~n~ n~ H au AM M" ny M" ~N. UY nM §. ~~ n~ un M~ § .. 13 • 14 1,110 15 101" 102 17 104 lit 105 &A 108 &I 107 IC '08 80 101 IE 110 I5f 111 "$ 74 116 15 117 11 "1 120 7. 121 lA 122 71 123 7C 124 70 125 7E '" 7f 127 U .m nu ftN AM M •••• d u" nn uu HM au nu a an un un UN an » un UU Mn hM ~ M~ .u HU M .n hR 110 II 11 97 12 71 112 71 . 111 7t 114 13 n 103. I n 119 71 HEX DECIMAL KEY TBOO2201 Figure 10:ICM7280 Character Font 8--64 . Note: All typical values have been guaranteed by characterization and are not tested. ICM7280 Table 4: Font RAM for User-Definable Characters ROW ASCII CHARACTER 0 FONT ADDRESS ASCII CHARACTER 1 FONT ADDRESS ASCII CHARACTER 2 FONT ADDRESS ASCII CHARACTER 3 FONT ADDRESS Decimal Hex Decimal Hex Decimal Hex Decimal Hex 80 50H 90 5AH 100 64H 110 - - - - - - 6EH - - 106 6AH 116 6DH - Row 1 (top row) - - - - Row 10 (bottom row) - - 86 56H 96 - - - 89 59H - - - - - Row 7 - - - 99 - - - 60H 63H Font RAM - 109 - - - - 119 74H - 77H Table 5: ASCII Character 0 Example In addition to the 120 characters available in the built-in character ROM, 4 characters may be user-defined. Table 4 shows the mapping between the Font RAM and the userdefined character font. An example of an additional character is provided in Figure 11. Note that addresses 80-119 (50H-77H) hold 5 bit words that correspond to the bit pattern of the four user-definable characters, such that each 5 bit word defines the pattern for one row of the character. The LSB corresponds to the right-hand dot. Each character uses 10 words, with the lowest address representing the top row. Once defined, these characters are treated the same as the predefined characters from the Font ROM. Enter ASCII data 0, 1, 2, or 3 into Character RAM to call up one of those characters. Row 1 2 3 4 5 6 7 8 9 10 Font Address Decimal Hex 80 81 82 83 84 85 86 87 88 89 50H 51H 52H 53H 54H 55H 56H 57H 58H 59H Data Decimal Hex 5 14 21 14 21 14 21 4 4 14 05H OEH 15H OEH 15H OEH 15H 04H 04H OEH The starting point of the display can be offset by changing the value stored inlR4, the Preset Display Position Register, at address 124 (7CH). The number in this register (usually 0) specifies the address of the character in character RAM that will appear at the leftmost position on the display. For example, a 5 in this register causes the sixth character in the RAM to be displayed at the left end of the display. The Preset Display Position Register can be loaded with a value, or it can be incremented and decremented by writing to bits 2 and 3 of IR2, address 122 (7 AH). The Preset Display Position Register will automatically wrap around from 79 to 0 when incremented, and wrap around from 0 to 79 when decremented past O. I TB002111 Figure 11: An Example of a User-Defined Character CAUTION: If a number greater than 79 is loaded into the Preset Display Position Register, display multiplexing stops. The LCD can be damaged if left in this condition for an extended period of time. Instruction and Annunciator Registers Table 5 details the bit assignments of the control registers. All registers are write-only registers. The Cursor Register determines the location of the cursor on the display, depending upon value in the Preset Display Position Register. If for example, the Cursor Register is set to 5 and the Preset Display Register is set to 0, the cursor will then be displayed in the 6th character of the display. If, however, the Cursor Register is set to 14 and the Preset Display Position Register is also set to 14, then the cursor will be displayed in the leftmost character position. If data is written to address 127 (7FH), the data is entered at the current location of the cursor and the cursor position is incremented. The cursor position may be directly set by writing to Cursor Register address 123 (7BH). The cursor Attributes are enabled by bit 5 of Instruction Register IR2, at address 122 (7AH). Blinking, underlined, and reverse video characters are controlled by attribute characters in the character RAM. These attribute characters are displayed as blanks, but signal the ICM7280 that the characters to the right of the attribute character are to be displayed with one of the three attributes (5 = underline, 6 = reverse video, and 7 = blinking). Each attribute is cancelled by a second occurence of the attribute character. The entire display can be blinked or blanked by setting the appropriate bits in IRO. 8-65 Note: All typical values have been guaranteed by characterization and are not tested. I .1'CM,7280 ... ~ may also be incremented or decremented by writing the appropriate instructions to IR2 at address 122 (7AH). The cursor location will wrap around from ,79 to 0 or vice versa when incremented or decremented. A number greater than 79 written to the Cursor Register causes no cursor to be displayed, but the ICM7280 will otherwise function normally. If bit 4 of IR1 at address 121 (79H) is at "1", then all characters to the right of the cursor are blanked but the data in the character RAM is retained. The IRO r.egister is a bit set/reset register. The MSB selects either set (1) or reset (0) operation. A "1" in any other bit position selects that bit to be set! reset. For example, a bit pattern of 10011001 will set bits 0,3 and 4, while a bit pattern of 00010000 will clear bit 4. Unselected bits are not affected. The Annunciator Registers are bit set!reset registers that operate similarly to IRO. When used with the ICM7281 column drivers, bit 0 of Annunciator Register 1 will be the last bit shifted out, and will appear at the column 1 output of the ICM7281. Bit 6 of Annunciator Register 2 is the first annunciator bit to be shifted out, andwill appear on column 14 of the ICM7281. The annunciator outputs, if enabled, appear on all rows in columns 1-14. Annunciators are enabled by bit 7 at IR1. Bit 6 of instruction register 2 resets all instruction registers and annunciator registers, as well as the Cursor Register and Preset Display Position Register. Bit 6 of Instruction Register 2 also resets and stops the display multiplex and blink counters. All register bits except bit 6 of IR2 are reset upon powerup. Since bit 6 of IR2 is indeterminate at power-up, and the instruction registers cannot be written to while bit 6 is set, the initialization routine should first clear bit 6 before the other registers of the ICM7280 display controller, are accessed. When normal operation resumes after bit 6 of IR2 is cleared, the attributes will be off, the cursor will be present at 0, and the 5 x 7 character format will be engaged. CAUTION: The ICM7280 should not be left in the reset mode for extended periods, because in this condition there is a DC bias on .the liquid crystal display which can permanently damage it. 80 CHARACTER· LIQUID CRYSTAL DISPLAYSYSTEM a Figure 10 shows complete 80 character IntellZilog compatible display system without annunciators. The ICM7280A receives ASCII character data from the hOlilt microprocessor, converts it to a serial data stream for the ICM7281 column drivers, and provides the row drive voltages and overall display system timing and control. The power consumption of this display system is typically 6 milliwatts during normal operation and 5 microwatts when shutdown (but retaining data and control setup). If less than 80 characters are desired, the ICM7281, s that would normally drive the right-hand characters of the display may be left out. This means that an 80 character display module and a module with fewer characters can have exactly the same hardware and software interface, except that extra ICM7281's are miSSing from the module with fewer characters. The Preset Display Position Register is most useful when the LCD system has fewer than 80 characters. For example, if.the display has only 16 characters, all 80 characters stored in RAM can be displayed by first setting the Preset .Display Position Register to 0, waiting 2 seconds, setting it to 16, waiting 2 seconds, and so forth, on up through a character preset of 64. The host processor would need to do just one write of the data and then use one command to write to the Preset Display Position Register. This requires much less time than shifting all pf the data around byte by byte. Another use of the preset display feature is to implement a character-by-character scroll. Each time the Preset Display Position Register is incremented by one, the displayed characters will shift left one character position. Note: All typical values have been guaranteed by characterization and are not tested. ICM7280 ICM 7280 ROW DRIVE RI-l0 1- MICROPROCESSOR TO ALE 7 8 ~o AO-6 10 00-7 RD SClK WR DOUT DATA lATCH DISPLAY CONTROL V2 Cs" V3 +5 LCD DISPLAY 7-10 ROWS, UP TO 480 COLUMNS 10 Vee V01SP ClK r--- --- ClK DATA IN COl ~ DATA IN COL 40 DATA DATA 40 lATCH lATCH DISPLAY DISPLAY CONTROL CONTROL V2 V2 V3 VOISP Vss ICM7281 #1 Jr r-- V3 V01SP ICM7281 #2 •••• 1---1---1---1---1---1---1---•••• 10 ClK DATA IN DATA lATCH DISPLAY CONTROL V2 V3 VDlSP ICM7281 #12 1 V01SP GENERATOR LC0Q4401 Figure 12: SO-Character LCD Display System 8-67 Note: All typical values have been guaranteed by characterization and are not tested_ Table 6: Instruction and Annunciator Registers 120 Decimal 78 Hex 07 06 05 04 03 02 01 DO 121 Decimal 79 Hex 07 06 05 04 03 02 01. DO Instruction Register 0 IRO 1 = SET 0 = RESET 1 = Blank Display 1 = Blink Display 1 = Cursor' Enabled 1 = Power Down Mode unassigned, set to 0 SET to 0 o = Normal Operation, 1 = Test Mode Instruction Register 1 IRI ' 1 = Enable Annunciators 1 = Blinking Box Cursor 0 = Underline Cursor 1 = Blank characters to the right of the cursor 1 = 6 columns per character 0 = 5 columns per character 1 = All on test mode. All dots and annunciators turned on. unassigned, set to 0 Controls number of rows per character, according to the following table: 01 Do Character Size - 0 0 1 1 122 Decimal 7A Hex 07 06 05 04 03,02 Instruction Register 2 IR2 Production test mode only. Must be set to O. 1 = Resets all registers. See test on previous page. 1 = Enable Attributes unassigned, set to 0 Preset Display Position Increment/Decrement 03 02 Control Bit Designators - 01, DO 0 7 Rows/ character ' 1 . BRows/character 0 9 Rows/character 1 10 Rows/character 0 0 1 1 See 01' o 1 o No operation Decrement Preset Display Position Register Increment Prei;let Display Position Register 1 Increment Preset Display Position Register the following table: Do Control Bit Designators -0 0 1 1 0 1 0 1 No operation Decrement Cursor Register Increment Cursor Register Increment Cursor Register 123 Decimal Cursor Register 78 Hex IR3 This register specifies the address of the cursor using a 7 bit value in the range of 0-79 decimal, 0-4F hexadecimal. The location of the cursor on the display is determined by both the Cursor Register and the Preset Display Position Register. The eighth bit is ignored. 124 Decimal 7C Hex Preset Display Position Register IR4 The Preset Display Position Register is normally set to O. If set in the range of 0 to 79, the character at that address appears in the leftmost location on the display. 125 Decimal Annunciator Register 1 70 Hex AR1 126 Decimal Annunciator Register 2 7E Hex AR2 The 7 LSBs of each annunciator register (00-06) each control one annunciator. To set, write a 1 to the MSB and a 1 to the bits to be set. To clear, write a 0 to the MSB and a 1 to the bits to be cleared. The annunciators will appear left to right AR1 :00 to 06 then AR2:DO to 06. 127 Decimal Cursor-Addressed Entry 7F Hex When character data is written to this address, the data is loaded into the character RAM using the Cursor Register as a pointer and the Cursor Register is incremented. 8-68 Note: All typical values have been guaranteed by characterization and are not tested. ICM7281 40-Column LCD Dot Matrix Display Driver GENERAL DESCRIPTION FEATURES The ICM7281 LCD Dot Matrix Column Driver is designed to convert a serial data stream into drive signals for a multiplexed dot matrix LCD. Easily cascadable, up to 16 ICM7281's can be driven by one ICM7280 Intelligent Row Driver to make an 80 character dot matrix display.. The ICM7281 also serves as both a Row Driver and Column Driver in LCD dot matrix graphics displays. The low output resistance and the 15V drive capability make it well suited for graphics displays with up to 256 x 256 dots (with 1OpF / dot capacitance). The ICM7281 consists of a 40 bit shift register, a 40 bit latch and 40 level-shifters/drivers. The 4 display drive voltages are generated externally, usually by a Row Driver. A serial data interface is used to minimize the number of pins needed for digital interfacing. A data Carry Output is ·included for cascading several ICM7281's to drive large LCD displays. • • ORDERING INFORMATION • PART NUMBER TEMPERATURE RANGE ICM72811PL ICM72811JL ICM7281/D -40°C to + 85°C • • • 40 High Voltage LCD Column Drive Outputs Easy Interface - Serial Input Shift Register with Parallel Latch and Carry Outputs Directly Compatible with ICM7280 Row Driver - Up to 16 ICM7281's can be Driven by an ICM7280 with No External Components Low Resistance Outputs - Can Drive Both Columns and Rows of LCD Graphics Displays Will Drive 1.5V Threshold LCDs with Only Single 5V Supply - Can Drive Up to 4.5V Threshold LCDs with 15V VOISP APPLICATIONS • PACKAGE • 40:Pin PLASTIC DIP • Column Drivers For Dot Matrix Alphanumeric Displays Using ICM7280 Row Driver Rowand Column Drivers For LCD Dot Matrix Graphics Displays Segment Driver For LCD Bargraphs and Annunciators Serial Input I/O Expander 40-Pin CERDIP DICE 40 DtSPLAY CONTROL ......- - ••• - - - i 1-+-- ••• ----ef COLUMN 40 CARRY OUTPUT DATA INPUT S 36 CARRY OUTPUT COWIIN30 1 - - -••• ----ef I - - - ••• - - - i I - - - ••• - - - f I - - - ••• - - - f DiSPLAY CONTROL COL 40 80015311 CD03351! Figure 1: Functional Diagram 8-69 Note: All typical values have been guaranteed by characterization and are not tested. Figure 2: Pin Configuration (Outline dwg. PL) -002 ,.. ":1.... ICM7281 ~ ABSOLUTE MAXIMUM RATINGS Supply Voltage (Voo - VSS) .................................. 6V Display Voltage (Voo - VOISP) ............................. 18V V2, V3· .. ···· ... ···· ... ··· .... ·.· ..... ·· ..... · ....... VOISP to VOO Input Voltage (Note 1) .... ~.(VSS -O.3V) to (Voo +O.3V) Power Dissipation (Note 2) ................. O.3W @ + 85·C Operating Temperature Range ........... -40·C to +85·C Storage Temperature Range ..... ,' ...... ...,65·C to +150·C Lead Temperature (Soldering, 10sec) ........ ~ ........ 300·C Stresses above those listed under" Absolute Maximum R'aiings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods ,may affect device reliability. NOTE 1: Due to the SCR structure inherent in any junction isolated CMOS device, connecting an input to any voltage greater than Voo or less ihan VSS may cause destructive device latch-up. If the input voltage can exceed the recommended range, the input should be limited to less than 1mA to avoid latch-up. NOTE 2: This limit refers to that of the packag,e and will not occur during normal operation. ELECTRICAL CHARACTERISTICS, (Voo = 5V, VSS =OV, TA = -40'C to SYMBOL +85·C. VOISP = -10V, V2 = 1/3 (VOO - VOISP). V3 =2/3 (VOO - VOISP), Unless otherwise specified.) PARAMETER TEST CONDITIONS MIN TYP 5.0 MAX UNIT SUPPLY CHARACTERISTICS VSUPP Operating Supply Range 4.5 VOISP Display Voltage -10 ISTBY Supply Current Quiescent Dynamic 100 V V .' .1 500 FCLK = 0 FCLK = 500kHz 5.5 VOO " 10 1000 IJ.A INPUT CHARACTERISTICS VIH Logic 1 Input Range DATA INPUT, DATA LATCH, CLOCK and DISPLAY CONTROL VIL Logic 0 Input Voltage DATA INPUT, DATA LATCH, CLOCK and DISPLAY CONTROL liN Input Current DATA INPUT, DATA LATCH, CLOCK and OISPLAY CONTROL 0< VIN :~6L t---"V2 Va t - - -..... Va +S DATAIN COL DATA 40 LATCH DISPLAY CONTROL V2 VOISP . ......,.-. . V01SP VOO Vss ICM7281 •1 ICM7281 .2 •••• ICM7281 .12 VDISP GENERATOR 80015201 Figure 5: Alphanumeric LCD Display System 6-72 Note: All typical values have been guaranteed by characterization and are not tested. ICM7281 VooROW/COL DISPLAY VOLTAGES ROW 24140 SUPPLY 64 x 64 DOT LCD DISPLAY DISPLAY VOLTAGES ROW SUPPLY ROWDc;.~~TROrL_ _ _ _ __ 24140 40 VOISP ROW/COL ICM7281 1 LATCH 1 DATA IN 1 DISPLAY CONTROL GRAPHICS DATA INPUT CHIP DC~----~~~~~~~~ CONTROLLER DATA DL~____~__~D~A~T~A~L~A~T~C~H~-t CLOCK CLOCK DISPLAY VOLTAGES COLUMN 1'2 DISPLAY SUPPLY VOLTAGES COLUMN LD012411 Figure 6: ICM7281 Column Driver. Used in a Graphics Application C, R~2K~ -COLI I V2 V3 > > L---- COL 1 DATA 0 R - 2000 0 • • A 1'....---+--1 ·C R VOISP> 0 R - 200U Voo> TRUTH TABLE COLUMN DATA o 1 DISPLAY CONTROL 0 ~ 2K~ N I L--- B r----~ I I I -COL "N" DATA • • >- ___ ...1 • ~40 R - 2KO DISPLAY CONTROL 0 t-~-+"":::::'-I _ COL "N" I I • COL 40 L---- COL 40 DATA AF03791I Figure 7: Column Output Multiplexer and Truth Table 8-73 Note: All typical values have been guaranteed by characterization and are not tested. i.... ~ ·ICM7281 applied RMS voltage gets longer as the display temperature drops. At very low temperatures some displays may take several seconds to change to a new character after the new information appears at the LCD driver outputs. However, for most applications above O·C this will not be a'problem, and for low temperature applications, high-speed liquid crystal materials are available. High temperature operation is generally limited by long term degradation of the polarizer and the sealing materials above + 70·C or + 85·C. LCD MULTIPLEXING Multiplexing Schemes The goal in LCD multiplexing is to increase the number of segments a given number of column lines can drive, while not unacceptably degrading the viewability of' the LCD display. Increasing.the number of rows driven by a column decreases the ratio between the voltage across an ON segment and the voltage across an OFF segment. This ON/OFF voltage ratio is critical since the contrast of an LCD segment is determined by the RMS voltage across that segment. Figure 8 shows a typical curve of contrast vs. RMS voltage. For an acceptable display, the RMS OFF voltage must be below the 10% con~rast point and the RMS ON voltage must be above the 50·/0 contrast point. The RMS on voltages for different multiplex ratios are also shown in Figure 8. Note that as the number of rows or backplanes goes up, the RMS ON voltage decreases. The ICM7281 can drive either columns or rows using the modified Alt and Pleshko waveforms as shown in Figure 9. The ON/OFF voltage ratio formula and the calculated values for common multiplex ratios are shown in Table 1. Table II shows the optimum voltages for V1 to V5 for different multiplex ratios. The temperature effect most important in the 0-70·C range is the variation of threshold voltage with temperature. For typical liquid crystal materials, the threshold voltage, VTHRESH, has temperature coefficient of - 7 to -14mV I·C. Since the VOISP is 3.27 times VTHRESH (for 7 row multiplex, see Table 1), the VOiSP has a tempco of about -25 to -50mV I·C, depending on LCD fluid tempeo. As can be seen in Figure 8, for optimum viewability and contrast ratio, the driving voltage must be accurately matched to the LCD threshold voltage. If a Significant variation in temperature is expected, a method of adjusting the VOISP must be provided. Figure 10 is a typical Temperature Compensation circuit USing an ICL7660 negative voltage converter to give the required VOISP' range, .if necessary. With the fluids now available for 32 and 64 multiplex operation it is quite common to have a "Contrast" adjustment accessible to the user. This "Contrast" adjustment varies the VDISP to compensate for both temperature variations and for variations in the viewing angle. Temperature Effects and Temperature Compensation of VOISP The performance of LCD fluids is affected by temperature in two ways. The response time of the display to changes in 100 ~ 80 8 80 V N w =5 V = 4.10 = 2.75 ~ 5w 40 Ifl. 20 N=7 V =2.53 CONTRAST VERSUS VOLTAGE ac 0t=~~~ __L-~__~-7,,-~~~-L~ 4.0 6.0 DRIVE VOLTAGE VRMS SC011401 Figure 8: C()ntrast Versus RMS D.rive Voltage &-74 Note: All typical values have been guaranteed by characterization' and are noltested. ICM7281 Table 1: Optimum Multiplex Drive ROWS VON/OFF 4 7 8 9 10 12 14 16 32 64 1.73 1.488 1.447 1.414 1.387 1.346 1.315 1.290 1.196 1.134 I ICM7280/ICM7281 VOO - V DISPLAY /VT ALT AND PLESHKO VOO-V DISPLAY/VT 4 4.74 4.97 5.20 5.41 5.81 6.18 6.532 8.817 12.01 TabIe 2: optlmum . 3 3.27 3.37 3.46 3.56 3.74 3.917 4.08 5.19 6.804 D' I rive Votages N Vl V2 V3 V4 "5 ON/OFF VOLTAGE RATIO 4 5 6 7 8 9 10 11 12 16 20 24 30 32 40 48 54 64 1.000 0.951 0.919 0.897 0.879 0.866 0.855 0.846 0.838 0.816 0.802 0.793 0.782 0.779 0.771 0.764 0.761 0.756 2.000 1.902 1.838 1.793 1.759 1.732 1.710 1.692 1.677 1.633 1.605 1.585 1.564 1.559 1.541 1.529 1.522 1.512 1.000 1.176 1,332 1.476 1.608 1.732 1.849 1.960 2.066 2.449 2.786 3.090 3.502 3.629 4.103 4.332 4.830 5.292 2.000 2.127 2.252 2.372 2.488 2.598 2.704 2.806 2.904 3.266 3.589 3.883 4.284 4.409 4.874 5.296 5.590 6.047 3.000 3.Q78 3.171 3.269 3.367 3.464 3.559 3.652 3.743 4.082 4.3!;l1 4.676 5.066 5.188 5.645 6.061 6.351 6.803 1.732 1.618 1.543 1.488 1.447 1.414 1.387 1.365 1.346 1.291 1.255 1.23 1.203 1.196 1.173 1.156 1.147 1.134 8-75 Note: All typical values have been guaranteed by characterization and are not tested. .O~D(L MODIFIED ALT & PLESHKO T01 T11T21Tal T41TSlTelT11T21Tal VSV4 ROW2 I ROW ~::I ~~ 3x5DISPLAY 1 2 3 4 5 V,- COLUMN TBOO1301 Vo- WITH VO=O VSV4- V1 =V(3 V2= 2V(3 V3=Va- V (3 V4=Va VaCOL2 V2- V,- VO- V5 VS. V4- = VOl SPLAY = Va+ V (3 .~ v'KTI 2(K-1) 2 COL3 V2- V, VO- VTH = THRESHOLD VOLTAGE OF LCD V",- 4 AF038001 Figure 9: ICM7281 Display Multiplexing Scheme 8'-76 Note: All typical values have been guaranteed by characterization and are not tested. .U~UlL c; ~ ICM7281 .. ~ N IX) VOISP ADJUST Voo 10,.F R3 lOOK Kv 0.1,. -I, 100K VDISP IN914 ASSUMING R4 R, R3 = Ai! DS02S101 Figure 10: Temperature Compensated VOISP Generator Multiplex Rate and Maximum Drive . Capability than ~ OOOpF capaCitance per 40 columns (each ICM7281 drives 40 columns). The minimum multiplex rate is determined by the response time of the LCD. To avoid flicker, the multiplex rate should be above 30Hz. The maximum multiplex rate is determined by power dissipation limits and the drive capability of the ICM7281. POWER DISSIPATION The power dissipation of a display system driven by the ICM7281 has several components: 1) Quiescent or DC power dissipation of the ICM7281 2) Dynamic or AC power dissipation of the ICM7281 3) .. Power ,consumed in driving the LCD display. The drive capability of the ICM728f indirectly sets the upper limit of the multiplex rate. The absolute maximum limit of DC voltage across an LCD is usually specified as 50mV. As the multiplex rate increases, any asymmetry in the rise and fall times will cause a DC offset, in addition to any offset caused by V2 and V3 not being exactly symmetrical with respect to VDISP and VDD. The ICM7281 was designed to have equal rise and fall times, as well as low resistance drivers which make the rise and fall times short. This allows the ICM7281 to drive over 2000pF at multiplex rate of 100Hz. Normally an LCD dot matrix display will have less ICM7281 Power Dissipation The quiescent current of the ICM7281 is very low, typically less than 1/lA, and can generally be ignored. The dynamic current is proportional to the clock frequency, with a .typical value of 1.0mA per MHz. This means that at a 500kHz clock the dynamic current will be 0.5mA. LCD Display Drive Dissipation Since the LCD has very low leakage currents, most of the power used to drive the LCD is used to charge and discharge the LCD capacitance. The power is 6-77 Note: All typical values have been guaranteed by characterization and are not tested. used to generate the row and column data that is serially transferred into the ICM7281's. (See Figure 6). Thadisplay drive voltages are generated in a resistor divider network. The optimum voltages for V1 through V5 can be calculated using the ,equations of Figure 9. Optimum voltages for common multiplex ratios are shown in Table 2. . The LCD shown in Figure 6 is a 32 row display, divided Into two sections of 16 rows to increase the ON/OFF RMS voltage ratio, thereby improving the contrast of the display. As LCD fluids improve it will become practical to use 32 or 64 row multiplexing, reducing the number of column drivers by a factor of 2 or 4. As the number of rows increases, the VOISP required by the ICM7281's modified Alt and Pleshko multiplex scheme . increases less than the VOISP required by a classic Alt and Pleshko multiplex scheme. For example: a 64 row display with a 1.45V threshold would require +5V and -12.4V supplies using standard Alt and Pleshko multiplexing. The ICM7281 would require only +5V and -4.9V to drive this same display with 64 row multiplexing. The negative voltage could easily be generated using a charge pump such as the ICL7660. (See Figure 10). Where: PLeo is the power dissipated in driving the display C is the display capacitance V is Voltage across the display fEFF is the effective multiplex frequency The effective multiplex frequency ranges from fMUX to N x fMUX, where fMUX is the multiplex rate and' N is the number of rows. The actual effective multiplex frequency Is dependent on which characters or bit pattern is being displayed and is typically about N/3 x fMUX Low Power Shutdown If the data clock is stopped and the voltages across the LCD are not changing, the power consumption will drop to the 5 to 50 microwatt range. Set VOISP, V2 and va equal to VOO to prevent permanent damage to the LCD display by a DC bias. APPLICATIONS Alphanumeric Display Using ICM7280 In~elligent Row Driver Serial Input 1/0 Expander The ICM7280 Intelligent Row Driver is specifically designed to drive multiple ICM7281 LCD Column Drivers. Figure 5 shows a typical 80 character display. The ICM7280 and ICM7281's will drive either 7,8,9 or 10 row displays, . with the characters having either 5 or 6 columns. The Row Driver receives ASCII data, converts that data to bit-by-bit column data for the ICM7281's and serially shifts data into the ICM7281's. This process is repeated for each phase of the multiplex cycle. Temperature compensation and generation of VOISP for the ICM7280/81 system is shown in Figure 10. For further details refer to the ICM7280 Intelligent LCD Row Driver data sheet. In addition to driving LCD's, the ICM7281 can be used as an 110 expander as shown in Figure 11. In this case, the data can be serially entered into the IcM7281 shift register using the 80C51 serial port. The 80C51 then transfers the data to the output latch by pulSing the DATA LATCH input with an I/O port line. Note that multiple ICM7281 's can be cascaded to get more than 30 output lines. This cascading does not require any additional logic since the ICM7281 CARRY OUTPUTs are used. DISPLAY CONTROL is tied to VDD so that the data on the column outputs is the same as the data that was entered. If DISPLAY CONTROL is grounded, the column outputs will be inverted data. with V3 grounded, the logic lev~1 .at the column outputs will be CMOS compatible, sWinging from ground to VDD. The output resistance of the column outputs is about 2k ohms LCD Graphics Display In this circuit, ICM7281's are used to drive both the rows and columns of the LCD dot matrix. An external controller is P3.2 8051 P3.1 DL P3.0 +5V -r: CLK DATA 110. I I· OR 8OC51 CARRY ICM 7281 DC 1·.·30 COL Va Va VDtSP COL ,ru .... DATA +sv--r: DL CLK CARRY +sv-r: ICM 7281 110. COL DC Va VaVDtSp DATA COL 1···30 p .... 110. DL r CLK CARRY TO NEXT ICM7281 r- ICM 7281 DC COL COL Va Va VDISP 1 • • • 30 ,ru .... 8D014811 Figure 11: Ser,lal 1/0 Expander Using ICM7281 8--78 Nole: All typical values have been guaranteed by characterization and are not tested. ICM7283 LCD Dot Matrix Controller/Row Driver GENERAL DESCRIPTION FEATURES The ICM7283 is designed to provide a complete microprocessor interface for an 2 line by 40-character alphanumeric LCD display system. It includes a character generator, display voltage generator and resistor string, row drivers, and control circuitry. Interface to a host microprocessor is achieved through either a multiplexed or nonmultiplexed parallel bus. The ICM7283 is designed to offload all display-related tasks from the host microprocessor and to provide an easyto-program software interface. Since the internal circuitry operates at full microprocessor speeds, there is no waiting for completion of internal operations. Testing of a "Busy" flag, when characters or commands are written, is not required. Character data can be loaded with an auto,incremented cursor or in a random-access mode. Versatile control functions allow all or selected portions of the display to be underlined, blinked, blanked, or displayed in reverse video. Power-down features are provided, and both an underline and a blinking-box cursor are available. The ICM7283 can display four user-defined characters in addition to the standard 96 ASCII upper and lower-case characters and 14 European and graphics characters. • • • • • • Two Lines by 40 Characters Wide Display Memory - Directly Drives up to 6 ICM7281 Column Drivers High Speed /.IP Interface - ICM7283A: Intel, Zilog Compatible - ICM7283B: Motorola, Rockwell Compatible 120 Character Font With Multiple Attributes - Underline, Cursor, Blinking, Reverse 4 User Definable Characters Versatile Character Font Matrix - 5 or 6 Columns By 8 Rows High Speed Internal Architecture - No Busy Flag Needed APPLICATIONS • • • • Battery Hand·Held Terminals Portable Computers Instrument Control Panels LCD Display Modules ORDERING INFORMATION PART NUMBER TEMPERATURE RANGE ICM7283AIDM -40°C to + 85°C ICM7283A1D ICM7283BIDM ICM7283B/D -40°C to + 85°C - PACKAGE 48-Pin Side Braze Ceramic DIE 48-Pin Side Braze Ceramic DIE CD03491t PART PIN PIN '" 33 34 PIN 35 7283A AD WR ALE 72838 E R/W AS Figure 1: Pin Configuration 8-79 Note: All typical values have been guaranteed by characterization and are not tested. 301691-001 C') ... = a .O~OIL ICM7283 , ,. ' ABSOLUTE MAXIMUM RATINGS Operating Temperature Range ........... -.40 o e to + 85°e Storage Temperature Range ............ -55°e to + 125°e Lead Temperature (Soldering, 10se6) ................. 300 o e Supply Voltage (Voo - Vss) ............................ + 6.5V Display Voltage (VOO - VOISP) ................••........ +12V Input Voltage ........................ VSS-0.5V to Voo+0.5V Power Dissipation ...... ; ..................... : 500mW @ 70 0 e Note: Stresses above those listed under" Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other· conditions above those indicated· in the operational sections of the specifications is not implied. Exposure to absolute maximum ratinfj conditions for' extended periods may· affect device reliability. VA > > ANNUNcIATIOR RAIl ! /7 4x 8x5 FONT RAM 2 UNES 8Y AD-A8 40 CHARACTERS RAIl 1/8 / 12Ox8x5 FONT ROM OD·117 ALE .p RD INTERFACE t i CONTROL REGISTERS . \Vii SERIAL INTERFACE ATTRIBUTE INFO .. TIMING t CONTROL LOGIC ~ ~ ~ J DCONT Cs ~ DISPLAY VOLTAGE GENERATION. ROW TIMING CLOCK OSC LCD ROW DRIVERS ~ VDISP • • • ADw. 0 UTPUTS ~ V V 80016211 Figure 2: Functional Diagram ELECTRICAL CHARACTERISTICS AC CHARACTERISTICS (Voo = 5.0V±10%, TA = -40 to +85°e, VOISP = Voo SYMBOL PARAMETER -8V, VSS = OV, unless otherwise specified.) TEST CONDITIONS Address/Data pins high impedance 0< VIN < Voo MIN -10 TVP MAX UNIT +10 p.A IlL Input Leakage 100 ' Supply Current Osc open okt, VIL = OV, VIH = Voo 2.5 mA ISTBY Shutdown Current VIL = OV, VIH = Voo 100 p.A VSUPP Operating Voltage Range VIL = 0.4V, VIH lose Osc. Frequency Pin 23 open okt. = 2.4V 4.5 5.5 V 0.2 1.0 MHz 1.0 V Serial Outputs VOL Output Voltage, Low IOL = lmA !HlO .Note: All typical values have been guaranteed by characterization and are not tested. ICM7283 ELECTRICAL CHARACTERISTICS (CONT.) SYMBOL VOH PARAMETER TEST CONDITIONS Output Voltage, High IOH = 1mA MIN TYP MAX UNIT V VOO-1.0 Data I/O, /lP Interface Inputs VOL Output Voltage, Low IOL = 1.6mA VOH Output Voltage, High IOH VIL Input Voltage, Low VIH Input Voltage, High 0.4 = 400/lA 2.4 V V 0.8 3.0 V V Row Driver Outputs RON Output Resistance, ON DCONT high, Vo = VOISP + 0.5V DCONT low, Vo = -0.5V ROFF Output Resistance, OFF DCONT high, Vo = V4±·5V DCONT low, Vo = V,±0.5V V, kS1 2.5 kS1 -1.0 DCONT high V2, Va V4 1 DCONT low V 1.0 V 3.0 V AC CHARACTERISTICS· (See Timing Diagram) (VDD = S.OV± 10%, VDISP SYMBOL = OV, TA = -40°C PARAMETER to + 85°C, CL = 150pF, unless otherwise specified.) TEST CONDITIONS MIN TYP MAX UNIT 200 ns 400 ns Serial Output Timing Prop. Delay SCLK to DLAT Prop Delay ScLK to Tscdo DOUT Microprocessor Interface Tscdl Tw ALE I AS Pulse Width, High 55 ns Tal Address to ALE Setup time 30 ns Tla Address to ALE Hold Time 30 ns ns IntellZIIog Option (ICM7280A) Tad Address Setup Time 50 Tah Address Hold Time 30 ns Twl WRITE Pulse Width, Low 100 ns Tdw Data to WRITE Setup Time 150 ns TWd Data to WRITE Hold Time 30 ns Trd READ to Valid Data Trx READ to Data Hold Time . ALE Setup Time Tasd Motorola/Rockwell Option (ICM7280B) 550 ns 150 ns 60 ns 50 ns Tad Address to E Setup Time Tah Address to E Hold Time 30 ns Tee E Pulse Width, High 200 ns 8-81 Note: All typical values have been guaranteed by characterization and are not tested. : ICM7283, . ... '-. (II () AC CHARACTERISTICS (See Timing Diagram) (CO NT.) SYMBOL PARAMETER TEST CONDITIONS MIN TYP MAX UNIT Tdw Data to E Setup Time 150 ns TWd Data to E Hold Time 30 ns Trd E to Valid Data Trx E to Data Hold Time Tasd E to AS Setup Time Tee = 400ns 60 550 ns 150 ns ns WRITE CYCLE TIMING (RD = "1") WF030201 READ CYCLE TIMING (WR ="1") WF03031I Figure 3: ICM7283A Timing Diagrams (Multiplexed Operation) 8-82 Note: All typical values have been guaranteed by characterization and are not tested. ICM7283 WRITE CYCLE TIMING (RD ="1") (ALE = "1") READ CYCLE TIMING (WR ="1") (ALE = "1") WF030401 AO-A6 00-07 WF030501 Figure 4: ICM7283A Timing Diagrams (Non-Multiplexed Operation) 8-83 Note: All typical values have been guaranteed by characterization and are not tested. i i ICM72S:3 WRITE CYCLE TIMING (AS = "1") AD-AS ADDRESS VALID 00-07 E WF030601 READ CYCLE TIMING (AS ="1") ADDRESS VALID 00-07 E f+----Tad----+l~ WF030701 Figure 5: ICM7283B Timing Diagrams . (Nol1~Multiplexed Operation) Note: All typical values have been guaranteed by characterization and are not tested. ICM7283 WRITE CYCLE TIMING AS ----", DD·D7. AD·A6 -+__+-+-______ E ____________ ~ WFOS0601 READ CYCLE TIMING AS ----, • RNl~ Teye ~T.I T~~ ~/#~oW$$$#I?· W///#r0:· . • .I WF030901 ~____________F_i9_U_~__6._~_'C_M_7~2_83_B__T_im_'_ng__D_ia_g_ra_m_S__(M_u_lt_iP_'e_x_e_d_o_p_e_r_at_io_n_)__________~ ~ 8-85 Note: All typical values have been guaranteed by characterization and· are not tested. SelK DOUT --_----'4-_ _ _-.-+_-+I.------i---.£--- DLAT ______~~_~-----t~dl-WF029201 IC~7283 Figure 7; Serial Output Timin9 Diagram other display controllers, the ICM7283 will not "go busy" for milliseconds at a time while processing data or commands. Table 1: Pin Descriptions SIGNAL ROW1-16 PIN 10-1, 48,47 DESCRIPTION "' 15 Serial data VOISP V2, V3 16 Negative LCD supply voltage 17, 18 DCONT 19 Column driver contr.ol .output SCLK 20 Serial data cicek .output DLAT 21 R.ow data latch .output VINV 22 Negative v.oltage generlilt.or cl.ock OSC 23 Oscillat.or input VSS 24 Digital gr.ound DO-D7 RD(7280A) E(7280B) LCD c.olumn v.oltage Data I/O R/W(7280B) Write input , Read/write input ALE(7280A) AS(7280B) 37 37 Addr!lss latch ~nable 'Address strobe 38 Chip select input CS AO-A6 VOO 39-45 46 To use the ,ICM7283 on a multiplexed bus, tie the AO-AS . lines tO,the DO-0.6 lines and ALE/AS driven with the system address latch enable .or strobe signal. For a non-multiplexed bus, AO-A6 should be connected to the least Significant address lines, 00-07 connected to the data bus and ALE/ ·AS tied high. The only external circuitry needed is a chip select or address decoder. The ICM7283 uses an address sPaC;e of 1,2/J. bytes. ' ICM7281 Data Interface Read input Enable input . 35 35 36 36 W~7280A) There are two versions of the ICM7283. The ICM7283A has WR and RD pins, as well as ALE and CS. This version can be interfaced to standard multiplexed or n.on-multiplexed data buses of parts such as the 8085, Z80, 8088 and .other microprocessors. The ICM7283B has R/W, E and AS pins instead of WR and RD and ALE. The ICM7283B is intended for use on 6800 and 6500 family buses. ". Dou':·· 25-29 32-34 Microprocessor Bus Interface LCD r.ow drivers The 'ICM7283 RO'N Drivers require ICM7281 Column Drivers to operate an LCD display. Three lines are used to load data serially into thelCM7281 column drivers, DOUT, SCLK, and DLAT. The data is latched and shifted with each negative going edge of SCLK, and the data is transferred from the ICM7281 shift register to its latches with the ,negative going Eldge of DLAT. The frequency of the SCLK is set by the oscillator frequency of the ICM7283 and is normally about 600kHz. Address inputs P.ositive digital and LCD supply v.oltage Oscillator The ICM7283 oscillator will free run at 600kHz in die form, when not loaded with any capaCitance. With 15pF of external capaCitance, the frequency will be about 250kHz. Figure 8 shows the relationship between oscillat.or peri.od and the value of Cexternal. Table 1 shows the relationship between the oscillator frequency and various display system Signals and features. Standard CMOS logic gates can be used to overdrive the oscillator to control frequency. A DETAILED DESCRIPTION Hardware Interface Figure 1 is a simplified block diagram .of the ICM7283. It is a dedicated hardware IC and the speed of data entry and command processing is limited only by gate delays. Unlike 8-86 Note: All typical values have been guaranteed by characterization and are not tes\ed. ICM7283 suitable frequency can also be derived by dividing down the host processor's clock. Table 2: ICM7283 Display System Frequencies SIGNAL NAME FREQUENCY COMMENTS SCLK asc Sets data transfer rate to ICM7281 column drivers DLAT Display Control OSC/M Once per row multiples period. LCD Multiplex Freq. OSC/(NxMx2) Blink Rate OSC/(NxMx64) Blink rate for blinking cursor and blinking characters OSC AC waveform for generating a negative voltage for VDISP VINV NOTES: OSC/M Should be above 30Hz to avoid flicker. Where N = number of rows - I.e. 16. M = 40 x number of columns (5 or 6) per character. Add 14 if annunciators enabled. Table 3: ICM7283 Memory Map ADDRESS FUNCTION DECIMAL HEX 0-79 00H-4FH Character RAM. Loaded with ASCII data characters to be displayed. Address 0 is the upper leftmost character and Address 40 (28H) is the lower leftmost character. 80-119 50H-77H Font RAM. Holds bit pattern for four user-definable characters. See Table 4. 120 78H Instruction register 0 (IRO) 121 79H Instruction register 1 (IR1) 122 7AH Instruction register 2 (IR2) 123 7BH Cursor Register (IR3) Unassigned Annunciator Register 1 (AR1) 124 7CH 125 7DH 126 7EH Annunciator Register 2 (AR2) 127 7FH Cursor-Addressed Entry Register NOTE: See Table 6 for more detail about addresses 120-127 (78H-7FH). Display Interface rlpa, The ICM7283 will support a dot matrix LCD display which has 16 rows, and either evenly-spaced columns or a space after every fifth column. If the display has evenly-spaced columns, then 6 columns per character should be selected and the sixth column is always blank. If the display provides a blank after every fifth column, then 5 columns per character should be selected. The character font is automatically changed to take advantage of all rows. The ICM7283 will automatically use one of the 6 evenly-spaced columns for a space. I" 10 / V V V ./ V /' 10 l/ 20 The ICM7283 can drive. LCD displays with threshold voltages up to 2.5. volts. There is no minimum display threshold voltage since VDISP can be above VSS. 30 40 50 - The ICM7283 also has 16 onboard row drivers designed to handle large dot matrix displays. These drivers provide fast slew rates, and have a minimum offset voltage. 60 CllItenII!flFI OP057401 Figure 8: The Relationship Between OSCillator P·eriod and Caxternal- /HI7 Note: All typical values have been guaranteed by characterization and are not tested. I. Voo(+5V) 116v +6.8"" 4.3K TAIIT ·3 15011 ~ 1OllIlA , 0.1"" 46 Voo -I, R2 ,., 1.5M lOOK VoF( ICM7283 111914 +5V 4 -=- R4 10K \UsP TO ICM7281 COLUM. DRIVER -=VIIV 22 ~Sp,~1~6~ 10K - -3.IV ________ ~ ____ ~ __________ ~ __________________ 24 AF038101 Figure 9: ICM7283, VOISP Temperature Compensation Circuit , character data storage, 2 bytes for 14 independent annunciators or flags, 32 bytes for storing 4 user-programmable characters, 4 ,bytes for control registers, and one dummy address to identify cursor-addressed ,character entry. Display Voltage Generator The ICM7283 not only has an onboard resistor string to generate the required V" V2, Va, and V4, but also has an output that assistS in generating a negative voltage for VOISP. The VINV pin is a low-impedance output that swings from VOO to VSS at the oscillator frequency. The circuit of Figure 9 connected to the VINV pin generates a temperature-compensated VOISP. Diodes 0, a,nd 02, with capacitors C, and C2 form ,a charge-pump negative voltage generator. The ICl7611 CMOS op-amp and its associated circuitry form an adjustable temperature,compensatedvoltage source ,that provides VOISP to the ICM7283, as well as the ICM7281 column drivers. Temperature, compensation for VOISP is necessary because the threshold voltage of LCD fluids have a pronounced negative tempco. Character RAM Data may be entered in a random-access mode by simply writing to the desired character address. Address 0 corresponds to the upper leftmost character of the display, and address 79 corresponds to the lower rightmost character. Block moves or other high-speed data transfers can be used to move data from the host system's RAM or ROM to the ICM7283's character RAM. Character data format is standard ASCII for the 96 upper and lower case characters, with the eighth data bit ignored. As shown in Figure 10, the ICM7283 Character Font Table, the display controller also recognizes three special eOntrol characters and 14 additional European and graphics characters. The characters 08 through 17 are alternate lower case characters. SOFTWARE INTERFACE Table 3 provides a memory map of the ICM7283. The ICM7283 uses 128 bytes of memory space: 80 bytes for 6-88 Note: All typical values have been guaranteed by characterization and are not tested, 11•••11••••••••• III1IIIIIIIII1I1 m Rn D~ MD DU .5 va .~ ••• a uu ~n a~ ~m Qa .W Q .1111••••ill.ll• • I.ililillllili. Ililll••• I.lllil •••11••••11••••• 10 IBll 17 12 1113 11154 100 &l5 10166 102 &7 103 18 104 &9 105 SA 10161 lG71e 1011D 101 IE no IF ", iii.ii.i.i•••••• 7G 11271 11372 "473 11514 11115 117 76 11877 III 18 12019 12171 12218 123 7C 124 7D 125 7E 1281F 127 I rI HEX DECIMAL KEY TBOO191I Figure 10: ICM7283 Character Font 8-89 Note: All typical values have been guaranteed by characterization and are not tested. a ICM7283 ... ~ . Table 4: Font RAM for User-Definable Characters ROW Row 1 (top row) - - Row 8 (bottom row) ASCII CHARACTER 0 ASCII CHARACTER 1 ASCII CHARACTER 2 ASCII CHARACTER 3 FONT ADDRESS FONT ADDRESS FONT ADDRESS FONT ADDRESS Decimal Hex Decimal Hex Decimal Hex Decimal Hex 80 SOH 90 5AH 100 64H 110 6EH - - - - - '- 87 57H - - -- - 97 Font RAM - - - - 61H 107 - - - - 68H 117 - - - 75H second occurence of. the attribute character. The entire display can be blinked or blanked by setting the appropriate bits in IRO. In addition to the 120 characters available in the built-in character ROM, 4 characters may be user,defined. Table 4 shows the mapping between the Font RAM and the userdefined character font. An example of an additional character is provided in Figure 11. Note that addresses 80-119 (50H-77H) hold 5 bit words that correspond to the bit pattern of the four user-definable characters, such that each 5 bit word defines the pattern for one row of the character. The LSB cor~esponds to the. right-hand dot. Each character uses 8 words, with the lowest address represent·ing the top row. Once defined, these characters are treated the same as the predefined characters from the Font ROM. Enter ASCII data 0, 1, 2, or 3 irt9 Character RAM to call up one of those characters. Table 5: ASCII Character 0 Example Row 1 2 3 4 5 6 7 8 Font Address Decimal Hex 80' 81 82 83 84 85 86 87 '50H 51H 52H 53H 54H 55H 56H 57H I Data Decimal Hex 5 14 21 14 21 14 21 4 05H OEH 15H OEH 15H OEH 15H 04H The CursQr Register determines the location of the cursor on the display. If data is written to address 127 (7FH), the data is entered at the current location of the cursor and the cursor position is incremented. The cursor position may be directly set by writing to Cursor Register address 123 (7BH). The cursor may also be incremented or decremented by writing the appropriate instructions to IR2 at address 122 (7AH). The cursor location will wrap around from 79 to 0 or vice versa when incremented or decremented. A number greater than 79 written to the Cursor Register causes no cursor to be displayed, but the ICM7283 will otherwise function normaily. If bit 4 of IR1 at address 121 (79H) is at "1 ", then all characters to the right of the cursor are blanked but the data in the character RAM is retained. TBOO2011 The IRO register is a bit setlreset register. The MSB selects either set (1) or reset (0) operation. A "1" in any other bit position selects that bit to be set/reset. For example, a bit pattern of 10011001 will set bits 0,3 and 4, while a bit pattern of 00010000 will clear bit 4. Unselected bits are not affected. Figure 11: An Example of a User-Defined Character Instruction and Annunciator Registers Table 5 details the bit assignments of the control registers. All registers are write-only registers. Attributes are enabled by bit 5 of Instruction Register IR2, at address 122 (7AH). Blinking, underlined, and reverse video characters are controlled by attribute characters in the character RAM. These attribute characters are displayed as blanks, but signal the ICM7283 that the characters to the right of the attribute character are to be displayed with one of the three attributes (5 = underline, 6 = reverse video, and 7 = blinking). Each attribute is cancelled by a The Annunciator Registers are bit setlreset registers that . operate similarly to IRO. When used with the ICM7281 column drivers, bit 0 of Annunciator Register 1 will be the last bit shifted out, and will appear at the column 1 output of the ICM7281. Bit 6 of Annunciator Register 2 is the first annunciator bit to be shifted out, and will appear on column 14 of the ICM7281. The annunciator outputs, if enabled, appear on all rows in columns 1-14. Annunciators are enabled by bit 7 at IR1. 8-90 Note: All typical values have been guaranteed by characterization and are not tested. ICM7283 Bit 6 of instruction register 2 resets all instruction registers, annunciator registers, and the Cursor Register. Bit 6 of Instruction Register 2 also resets and stops the display multiplex··and ·blink counters. 2x40 CHARACTER LIQUID CRYSTAL DISPLAY SYSTEM Figure 10 shows a complete 2 line by 40 character Intel/ Zilog compatible display system without annunciators. The ICM7283A receives ASCII character data from the host microprocessor, converts it to a serial data stream for the ICM7281 column drivers, and provides the row drive voltages and overall display system timing and control. The power consumption of this display system is typically 6 milliwatts during normal operation and 5 microwatts when shutdown (but retaining data and control setup). If less than 80 characters are desired, the ICM7281, s that would normally drive the right-hand characters of the display may be left out. This means that an 80 character display module and a module with fewer characters can have exactly the same hardware and software interface, except that extra ICM7281's are missing from the module with fewer characters. All register bits except bit 6 of IR2 are reset upon powerup. Since bit 6 of IR2 is indeterminate at power-up, and the instruction registers cannot be written to while bit 6 is set, the initialization routine should first clear bit 6 before the other registers of the ICM7283 display controller, are accessed. When normal operation resumes after bit 6 of IR2 is cleared, the attributes will be off and the. cursor will be present at O. CAUTION: The ICM7283 should not be left in the reset mode for extended periods, because in this condition there is a DC bias on the liquid crystal display which can permanently damage it. 1CM7283 R1-18 1f TO MICROPROCESSOR lCDDISPLAY 18 ROWS. UP TO 240 COLUMNS 18 ALE 7 8 140 AO·6 1)0.7 ~iiD S.ClK Wii Cs" DOUT DATA LATCH DISPLAY CONTROL V2 VOD VDISP V3 +5 ROW DRIVE ClK f40 r-40 r-r-r-r-r---r-- DATA IN COL DATA LATCH DISPLAY CONTROL V2 V3 VDISP Vss ICM7281 #1 ,h ClK D.ATA INC~L DATA LATCH DISPLAY CONTROL V2 V3 VDISP ICM7281 112 •••• t---t---- ------ ~--...---- ---•••• f40 ClK DATA IN DATA LATCH DISPLAY CONTROL V2 V3 VDISP ICM7281 #8 I VDISP GENERATOR BD015001 Figure 12: 2 Line by 40-Character LCD Display System 8-91 Note: All typical values have been guaranteed by characterization and are not tested. .:3 ICM7283 ....(\I ~ Table 6' instruction and Annunciator Registers 120 Decimal 78 Hex D7 D6 D5 D4 D3 D2 D1 DO Instructl!)" Register 0 IRO' . 1 = SET 0 = RESET 1 = Blank Display 1 = Blink DispllilY 1 = Cursor .Enabled 1 = Power Down Mode unassigned, set to O. unassigned, set to O. o = Normal Operation, 1 = Test Mode 121 Decimal 79 Hex D1 06 D5 D4 D3 D2, 01, DO 122 Decimal 7A Hex 07 06 .05 D4, 03, 02 D1, DO Instruction Register 1 IR1 1 = Enable Annunciators 1 =, Blinking Box Cursor 0 = Underline Cursor 1 = Blank characters to the right of the cursor 1 = 6 columns per character 0 = 5 columns per character 1 = All on test mode. Ail dots and annunciators turned on, 0 = Normal Operation unassigned, set to O. Instruction Register 2 IR2 Production test mode only. MOst beset to O. 1 = Resets ail registers. See test on previous page. 1 = Enable Attributes unassigned, set to O. See the following table: ~ Do Control Bit Designators 0 1 0 1 0 0 1 1 No operation Decrement Cursor Register Increment Cursor Register Increment Cursor Register 123 Decimal Cursor Register IR3 78 ...ex This register specifies the address of the cursor using a 7 bit value in the range of 0-79 decimal, 0-4F hexadecimal. The eighth bit is ignored. 124 Decimal 7C Hex 125 Decimal 70 Hex 126 Decimal 7E Hex Unassigned " , Annunciator Register 1 AR1 Annunciator Register 2 AR2 The 7 LSBs of each annunciator register (DO-D6) each control one annunciator. To set, write a 1 to the MSB and a 1 to the bits to be set. To clear, write a 0 to the MSB and a 1 to the bits cleared. Then annunciator will appear left to right AR1 :DO to D6 then AR2:DO to D6. . 127 Decimal Cursor-Addressed Entry 7F Hex When character data is written to this address, the data is loaded into the character RAM using the Cursor Register as a pOinter and the Cursor Register is incremented. 8-92 Note: All typical values have been guaranteed by characterization and are 'not tested. Section 9 - Microcontrollers, Microperipherals, Memory ICM7170 MP-Compalible Real-Time Clock",':". ""1& GENERAL DESCRIPTION FEATURES The ICM7170 real time clock is a microprocessor bus compatible peripheral, fabricated using Intersil's silicon gate CMOS LSI process. An S-bit bidirectional bus is used for the data I/O circuitry. The clock is set or read by accessing the S internal separately addressable and programmable counters from 1/100 seconds to years. The counters are controlled by a pulse train divided down from a crystal oscillator circuit, and the frequency of the crystal is selectable with the on-chip command register. An extremely stable oscillator frequency is achieved through the use of an on-chip regulated power supply. The device access time (tacd of 300ns eliminates the need for any microprocessor wait states or software overhead. Furthermore, the ALE (Address Latch Enable) input is provided for interfacing to microprocessors with a multiplexed address/data bus. With these two special features, the ICM7170 can be easily interfaced to any available microprocessor. The ICM7170 generates two types of interrupts. The first type is the periodic interrupt (i.e., 100Hz, 10Hz, etc.) which can be programmed by the internal interrupt control register to provide 7 different output signals. The second type is the alarm interrupt. The alarm time is set by loading an on-chip 51-bit RAM that activates an interrupt output through a comparator. The alarm interrupt occurs when the real time counter and alarm RAM time are equal. A status register is available to indicate the interrupt source. An on-chip Power-Down Detector eliminates the need for external components to support the battery back-up function. When a power-down or power failure, occurs, internal logic switches the on-chip counters to battery back-up operation. Input/output and read/write functions become disabled and operation is limited to time-keeping and interrupt generation, resulting in low power consumption. Internal latches prevent clock roll-over during a read cycle. Counter data is latched on the chip by reading the 100th-seconds counter and is held indefinitely until the counter is read again, assuring a stable and reliable time value. • • • • • • • • • • • • 8-Bit /lP Bus Compatible - Multiplexed or Direct Addressing Binary Time Data Format Lowers Software Overhead Time From 11100 Seconds to 99 Years Software Selectable 12/24 Hour Format Latched Time Data Ensures No Roll-Over During Read Full Calendar With Automatic Leap Year Correction On-Chip Battery Backup Switchover Circuit Access Time Less Than 300ns 4 Programmable Crystal Oscillator Frequencies On-Chip Alarm Comparator and RAM Interrupts from Alarm and 6 Selectable Periodic Intervals Standby Micro-Power Operation: 2p.A Typ. at 3.0V and 32kHz Crystal APPLICATIONS • • • • Portable and Personal Computers Industrial Control Systems Data Logging Point Of Sale ORDERING INFORMATION PART TEMPERATURE NUMBER RANGE PACKAGE ICM7170lPG ICM7170lJG -40·C to +85°C -40·C to + 85·C WR ALE 24-PIN PLASTIC DIP 24-PIN CERDIP Rii Voo cs 07 A4 06 A3 05 A2 04 AI 03 AO 02 OSC OUT 01 OSCIN 00 INT SOURCE INTERRUPT VBACKUP Vss (GNO) Figure 1: Pin Configuration 9-1 Note: All typical values have been guaranteed by characterization and are not tested. 301680-005 I .~ ... '<*1110' ~ ABSOLUTE MAXIMUM RATINGS Supply Voltage ...•..• ; .•..•....•..••••••.••••••••...•.•.••.•.•... 8V Operating Temperature """,,,,.,.,, ••• ,,.-40'C to +85'C Storage Temperature ...• " •..•••••.••.•••• .,.65'C to + 150·C Lead Temperature (Soldering, 10sec) ..•••..••..•.•.•• 300·C Power Dissipation (Note 1)".""."""."".""."" 500mW Input Voltage (Any Terminal) (Note 2) """"""".""."". VOD+O.3V to VSS -O.3V NOTE 1: TA = 25°C. NOTE 2: Due to the SCR structure inherent in the CMOS process, connecting any terminal at voltages greater than VDD or less than Vss may cause destructive device latchup. For this reason, it is recommended thai no inputs from external sources not operating on the same power supply be applied to the device before its supply .is established. and. that .in multiple supply systems, the supply to the ICM7170 be turned on first Stresses above those listed under" Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. OSCILLATOR CRYSTAL INTERRUPTS INT 11 SOURCE VnD VuACKUP Vss DATA 110 00.0, ADDRESS} INPUTS Ao·A, . Figure 2: Functional Diagram ELECTRICAL CHARACTERISTICS D.C. CHARACTERISTICS (TA = -40'C to + 85·C, VDD = +5V ±10%, VSACKUP = Voo,Vss OV unless otherwise specified) SPECIFICATION SYMBOL PARAMETER TEST CONDITIONS UNIT MIN vpo 2.6 voo Supply Range (32kHz/4MHz) ISTBY(I) Standby Current ISTBY(2) Standby Current 100(1) Operating Supply Current TYP FXTAl - 32kHz Pins 1-8,15-22 & 24 = Voo VOO = VSS; VBACKUP = VOO-3.0V FXTAl = 4MHz Pins 1-8,15-22 & 24 = VDD Voo = VSS; VBACKUP = VoO-3.0V FxrAl = 32kHz Read/Write Operation at 100Hz FXTAl = 32kHz Read/Write Operation at 1MHz 100(2) Operating Supply Current Vil VIH Input low voltage Input high voltage Voo= 4.5V Voo-4.5V VOL Output low voltage except INTERRUPT IOl-I.6mA MAX 5.5 V 2.0 20 p.A 20 150 p.A 0.3 1.2 mA 1.0 2.0 mA 0.8 V V 0.4 V 3.5 9-2 Note: AU typical values have been guaranteed by characterization and are not tested. , ICM7170 ELECTRICAL CHARACTERISTICS (CONT.) PARAMETER SYMBOL VOH IlL IOL VBAITERY VBAITERY VOL Output high voltage except 1i\li'E:RRUPT Input leakage current Tristate leakage current (00-07) Backup Battery Voltage Backup Battery Voltage Output low voltage INTERRUPT IOL Leakage current INTERRUPT SPECIFICATION TEST CONDITIONS IOH -400"A VIN - VOO or VSS Va - VOO or VSS FXTAL -1, 2, 4MHz FXTAL - 32kHz IOL = 1.6mA liNT SOURCE connected Va = VOO or VSS to VSS UNIT MIN 2.4 -10 -10 2.6 TYP MAX 0.5 0.5 +10 +10 3.2 3.2 0.4 V 2.0 I 10 "A IlA V V V IlA AC CHARACTERISTICS (TA= -40·8 to +85·C, VDD= +5V ±10% Do-D7 VBACKUP= VDD Load Capacitance = 150pF, VIL = O.4V, VIH = 3.5V unless otherwise specified) SYMBOL PARAMETER MIN TYP MAX UNIT '170 200 250 300 ns ns ns 65 ADDRESS to READ set up time'. 100 ADDRESS HOLD time after READ' 0 READ pulse width, loW' 0.25 'Guaranteed Parameter by Design (Not 100% Tested) 100 ns ns ns 9,000' IlS MAX UNIT READ CYCLE TIMING trd tacc Icyc trx tas tar trl READ to DATA valid ADDRESS valid to DATA valid READ cycle time RD high to bus tristate 400 WRITE CYCLE TIMING MIN tad twa ADDRESS valid to WRITE strobe ADDRESS hold time for WRITE twl WRITE pulse width, low Idw DATA IN to WRITE set up time 100 twd DATA IN hold time after WRITE 30 Icvc WRITE cycle time 400 MULTIPLEXED MODE TIMING MIN TYP ns 100 0 " ns ns 100 ns ns 10 ns TYP MAX UNIT til ALE Pulse Width, High 50 ns tal tla ADDRESS to ALE set up time 30 30 ns ADDRESS hold time after ALE 9-3 Note: All typical values have been guaranteed by characterization and are not tested. ns .O~DI6 " READ CYCLE TIMING FOR NON·MULTIPLEXED BUS (ALE = "1"; WR= 1) ADDRESS VALlD,CS LOW ~------~------~ Do-D7 --'-- I-----t_------I Wf"02820\ \'IiRITE CYCLE TIMING FOR NON·MULTIPLEXED BUS (ALE = "1", RD= 1) ADDRESS VALlD,CS LOW r tw1 ~----~----'~--------~.....~ 00-07 _____ ~"'::::::::::_fdw-I.:P:UT:D:A:TA:V:;A-L1-D---' 3 _.. :. __ "- ~ __ d _fw_ WF028301 Figure 3: Timing Diagrams - Nonmultiplexed Bus Note; All typical values have been guaranteed by characterization and are not tested.' ICM7170 READ CYCLE TIMING FOR MULTIPLEXED BUS (WA Ao-A4. Do-DJ = 1) OUTPUT DATA VALID CS - - 1-01----111----+1 ALE ~---~I---~~ WF028001 WRITE CYCLE TIMING FOR MULTIPLEXED BUS (RD = 1) Ao-A4. Do-D7 a - - \ twd 1--'----111 - ALE 14----101 ---+i WF028101 NOTE: The AO to A4 aridress inputs may be connected to the DO to D4 data lines when a multiplexed bus is used. Figure 4: Timing Diagrams -- Multiplexed Bus Note: All iypical values have been guaranteed by charact"riza~on and .l!'e not tested. \ 2 ,""... ~ 'ICM7170 Table 1 SIGNAL PIN WR 1 Write input ALE 2 Address latch enable input 3 Chip select bar input CS A4-AO 4-8 The 4000Hz signal is divided down further to 100Hz, which is used as the clock for the counters. Time and calendarinformation is provided by 8 consecutive addressable, programmable counters: 100ths of seconds, seconds, 'minutes, hours, day of week, date, month, and year. The data: is in binary format and is configured into 8 bits per digit. See Table 4 for address information. Any unused bits are held at logic "0" during a read and ignored during a write operation. DESCRIPTION Address inputs OSC OUT 9 Oscillator output OSC IN 10 Oscillator input INT SOURCE 11 Interrupt common INiERRUj5T 12 Interrupt output VSS(GND) 13 Digital common VBACKUP DO-07 14 Battery negative side Compare Interrupts On the chip are 51 bits of Alarm Compare RAM grouped into, words of different lengths. These are used to store the time, ranging from 100ths of seconds to years, for comparison to the real-time counters. Each counter has a corresponding RAM word. In the Alarm Mode an interrupt is generated when the current time is equal to the alarm time. The RAM contents are compared to the counters on a word by word basis. If a comparison to a particular counter is unnecessary, then the appropriate 'M' bit in Compare RAM should be set to logic "1". 15-22 Data 1/0 Voo RD 23 Positive digital supply 24 Read input' DETAILED DESCRIPTION Oscillator The 'M' bit, referring to Mask bit, causes a particular RAM word to be masked off or ignored during a compare. Table 4 shows addresses and Mask bit information. This circuit uses a standard CMOS Pierce oscillator, for maximum accuracy, stability, and 'low-power consumption. Externally, one crystal and two capacitors are required. One of the capacitors is variable and is used to trim or tune the oscillator output. Typical values for these capacitors are C'N = 18pF and COUT = 10 - 35pF, or approximately double the recommended CLOAD for the crystal being, used. Both capacitors must be connected from the respective oscillator pins to VDO for maximum stability. The oscillator output is divided down to 4000Hz by one of four selected ratios, via a variable prescaler. The ICM7170 can use anyone of four different low-cost crystals: 4.194304MHz, 2.097152MHz, 1.048576MHz, or 32.768kHz. The command register must be programmed for the frequency of the crystal chosen, and this in turn will determine the prescaler's divide ratio. Command Register frequency selection is written to the DO and 01 bits at address 11 H and the 12 or 24 hour format is determined by bit 02, as shown in Table 4. Periodic Interrupts The interrupt output can be programmed for 6 periodic signals: 100Hz, 10Hz, once per second, once per minute, once per hour, or once per day. "The 100Hz Interrupt, 10Hz Interrupt and the hundreths of a second counter have instantaneous errors of ± 2.5%, ± 0.15% and ± 2.5% respectively; the time average, however, is zero." These can occl,Jr concurrently and in addition to Alarm Interrupts. Both the Periodic and the Alarm Interrupts are controlled by the Interrupt Mask Register. The desired interrupt is enabled by writing a logic "1" to the appropriate bit, as shown in Table 5. The Interrupt Status Register, when read, indicates the cause of the interrupt and resets itSelf on the trailing edge of the read pulse. Once one or more bits have been set in the Mask Register, a roll-over in a corresponding counter will strobe the appropriate bit in the Interrupt Status Register. The interrupt pin (# 12) is then pulled to the potential of the interrupt source pin ( # 11) through an internal open-drain Nchannel MOSFET. This facilitates wire-ORing the ICM7170 with other interrupt generators that must be connected to the system MPU. Table 2: Command Register Format COMMAND REGISTER ADDRESS (10001b, 11h) WRITE-ONLY I I D7 nla De nla I I ' I I D5 Test D4 In!. I I 03 Run I I 02 12/24, I I 01 Freq I I DO Freq Table 3: Command Register Bit Assignments 01 0 DO 0 CRYSTAL FREQUENCY 02 24/12 HOUR FORMAT 03 RUN/STOP INTERRUPT ENABLE 05 TEST BIT 0 Normal Mode 1 Test Mode 32.768kHz 0 12 hour mode 0 Stop 0 Interrupt disabled 1 24 hour mode 1 Run 1 Interrupt enable 0 1 1.048576MHz 1 0 2.097152MHz 1 1 4.194304MHz 9-6 Note: 04 All typical values have been guaranteed by characterization and are not tested. .U~U(b ICM7170 Table 4: Address Codes and Functions ADDRESS A3 A2 A1 AO HEX 0 0 0 0 0 0 0 0 0 1 00 01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 0 0 1 0 1 0 1 0 1 02 03 04 05 06 0 0 0 0 0 0 1 1 1 1 1 1 0 0 1 0 1 0 1 0 1 OA OB OC 00 1 1 1 1 0 0 1 1 1 0 0 0 0 10 1 0 0 0 1 11 NOTES: 1 VALUE 07 Counter-l/100 seconds Counter-hours 12 Hour Mode Counter-minutes Counter-seconds Counter-month Counter-date Counter-year Counter-day of week RAM-l/100 seconds RAM-hours 12 hour Mode RAM-minutes RAM-seconds RAM-month RAM-date RAM-year RAM-day of week Interrupt Status and Mask Register Command register 07 06 09 OE OF - . -M . 06 05 04 - - _. - -. M - M - M M M M M M - - - - - - 03 02 01 DO 0-99 0-23 1-12 0-59 0-59 1-12 1-31 0-99 0-6 0-99 0-23 1-12 0-59 0-59 1-12 1-31 0-99 0-6 - - - - - + - - Address 10010 to 11111 ( 12h to lFh) are unused. '+' Unused bit for Interrupt Mask Register, MSB bit for Interrupt Status Register. '-' Indicates unused bits. '., AMIPM indicator bit in 12 hour format. Logic "0" indicates AM, logiC "1" indicates PM. 'M' Alarm compare for particular counter will be enabled if bit is set to logic "0". Table 5: Interrupt and Status Registers Format INTERRUPT MASK REGISTER ADDRESS (10000b, 10h) WRITE·ONLY 07 I 06 I 05 I 04 I 03 I 02 I 01 I DO nla I Day I Hour I Min. I Sec. I 1110 sec. I 11100 sec. I Alarm 07 I 06 I 05 I 04 I 03 Inl. I Day I Hour I Min. I Sec. INTERRUPT STATUS REGISTER ADDRESS (10000b, 10h) READ·ONLY I I. 02 1110 sec. I I 01 I DO 11100 sec. I Alarm If standby battery operation is not required the VBACKUP . should be connected to Voo. Interrupt Operation The interrupt output N-channel MOSFET is active at all times when the Interrupt Enable bit is set (bit 4 of the Command Register), and operates in both the standby and . battery backup modes. Since system power is usually applied between Voo and VSS, the user can connect the Interrupt Source (pin" 11) to VSS. This allows the Interrupt Output to turn on only while system power is applied and will not be pulled to VSS during standby operation. If interrupts are required only during standby operation, then the interrupt source pin should be connected to the battery's negative side (VBACKUP). In this configuration, for example, the interrupt could be used to turn on power for a cold boot. APPLICATION NOTES Time Synchronization Time synchronization is achieved through bit 03 of the Command Register, which is used to enable or disable the 100Hz clock from the counters. A logic "1" allows the counters to function and a logic "0" disables the counters. To accurately set the time, a logic "0" should be written into 03 and then the desired times entered into the appropriate counters. The clock is then started at the proper time by writing a logic "1" into D3 of the Command Register. Latched Data Power-Down Detector To prevent ambiguity while the processor is gathering data from the registers, the ICM7170 incorporates data latches and a transparent transition delay circuit. By accessing the 100ths of seconds counter an internal store signal is generated and data from all the counters is stored into a 36-bit latch. A transition delay circuit will delay a 100Hz transition during a READ cycle until the internal store operation is completed. The data stored by the latches is then available for further processing until the 100ths of seconds counter is read again. The ICM7170 contains an on-chip power-down detector that eliminates the need for external components for the battery back-up function. Whenever the voltage from the VBACKUP pin to the VSS pin is less than approximately 1.0Volt, the chip automatically switches to battery backup operation. Until power is restored, operation is limited to time counting and interrupt generation only. All other functions are disabled to achieve micropower standby power and to preserve time integrity. 9-7 Note: All typical values have been guaranteed by characterization and are not tested. ........... o DATA FUNCTION 44 i 2 ICM7170 ,.. ... sU _ +5V 25--~----------------~------------------~~~-----, RIW" 18 11674HC04 WR ALE 24 23 110 SELECT 1 CS A4 6 Ali 4 A3 5 A3 A2 4 A2 Al Al 5 6 7 AD AD 8 OSC OUT DICRYSTA:r COUT lD-35pF IRQ elN 18pF 21 ICM7170 iiii Vou 07 42 07 06 43 06 05 44 05 04 45 04 03 46 03 47 48 02 49 DO 26 GNO 9 02 01 OSCIN 10 DO INT SOURCE 11 INTERRUPT 12 01 30 + Figure 5: Apple " Plus Board Schematic Control Lines 2) Connect a fixed capaCitor from OSC IN to VOO. 3) Connect a variable capaCitor from OSC OUT to Voo. In cases where the crystal selected is. a 32kHz Statek type (Cl = 9pF), the typical value of .CIN = 18pF and COUT = 10-35pF. 4) Place a 5Kn resistor from the '"IN1'iT""E"'R;;=R;oUii'P;TT pin to Voo, and connect the INT SOURCE pin to VSS. 5) Apply 5V power and insure the clock is not in standby mode. 6) Write all O's to the Interrupt Mask Register, disabling all interrupts. 7) Write to the Command Register with the desired oscillator frequency, Hours mode (12 hour or 24 hour), Run = "1", Interrupt Enable = "1", and Test = "0". 8) Write to the Interrupt Mask Register, enabling onesecond interrupts only. 9) Monitor the INTERRUPT output pin with a precision period counter and trim the OSC OUT capacitor for a reading of 1.000000 seconds. The period counter must be triggered on the falling edge of the interrupt output for this measurement to be· accurate. 10) Read the Interrupt Status Register. This action resets the interrupt output back to a logic" 1" level. 11) Repeat steps 9 and 10 with a software loop: A suitable computer should be· used. The RD, WR, and CS signals are active low inputs. Data is placed on the bus from counters or registers when RD is a logic "0". Data is transferred to counters or registers when WR is a logic "0". RD and WR must be accompanied by a logical "0" CS as shown in Figures 3 and 4. With the ALE (Address Latch Enable) input, the ICM7170 can be interfaced directly to microprocessors that use a multiplexed address/data bus by connecting the address lines AO-A4 to the data lines 00-04. To address the chip, the address is placed on the bus and ALE is strobed. On the falling edge, the address and CS information is read into the address latch and buffer. RD and iNA are used in the same way as on a non-multiplexed bus. If a non-multiplexed bus is used, ALE should be connected to Voo. Test Mode The test mode is entered by setting 05 of the Command Register to a logic" 1". This connects the 1OOHz pulse train to the seconds counter, and speeds up the counting functions. Oscillator Tuning Oscillator tuning should. not be attempted by direct monitoring of the oscillator pins, unless very specialized equipment is used. External connections to the oscillator pins cause capacitive loading of the crystal, and shift the oscillator frequency. As a result, the precision setting being attempted is corrupted. One indirect method of determining the oscillator frequency is to measure the period between interrupts on the Interrupt Output pin (#12). This measurement must be relative to the falling edges of the INTERRUPT .pin. The oscillator set-up and tuning can be performed .as follows: 1) Select one of 4, readily-available oscillator frequencies and place the crystal between OSC IN (pin #10) and OSC OUT (pin #9). CIRCUIT APPLICATIONS. Apple II Plus ~eal~Time Clock C Figure. 5 shows the schematic. of a board, using the ICM7170, that has been fabricated to plug into a slot.in an Apple II Plus microcomputE1r. Very few external components are ne,eded on the board to provide an interface to the Apple's 6502 MPU. 9-8 Note: All typical values have been guaranteed by characterization and are not tested. IM4702/4712 Baud Rate Generator GENERAL DESCRIPTION FEATURES The IM4702/12 Baud Rate Generators provide necessary clock signals for digital data transmission systems, such as UARTs, using a 2,4576MHz crystal oscillator as an input. They control up to 8 output channels and can be cascaded for output expansion. • • • • • • Output rate is controlled by four digital input lines, and with the specified crystal, is selectable from "zero" through ,9600 Baud. In addition, 19200 Baud is possible via hardwiring. • • Multi-channel operation is facilitated by making the clock frequency and the +8 prescaler outputs available externally. This allows up to eight simultaneous Baud rates to be .generated. Provides 14 Most Commonly Used BAUD Rates On-Chip Oscillator Requires Only One External Part (lM4712) Controls Up to Eight Transmission Channels TTL Compatible Outputs Will Sink 1.6mA Uses Standard 2.4S76MHz Crystal Low Power Consumption: S.SmW Guaranteed Maximum Standby Pin and Function Compatible With 4702B and HD-4702 Inputs Feature Active Pull-Ups PIN DESCRIPTION The IM4712 is identical to the IM4702 with the exception that the IM4712 integrates the oscillator feedback resistor and two load capacitors on-chip. ORDERING INFORMATION SIGNAL PIN 0 0- 0 2 1,2,3 ECP 4 CP 5 External Clock Input Ox 6 Crystal Output Ix 7 Crystal Input VSS 8 Negative Supply Co 9 Clock Output Z 10 SO-S3 14-11 DESCRIPTION Prescaler Outputs External Clock Enable Input ORDER NUMBER TEMPERATURE RANGE PACKAGE IM47021JE -40°C to +85°C 16-pin CERoIP IM47021PE -40°C to + 85°C 16-pin PLASTIC IM47121JE -40°C to + 85°C 16-pin CERDIP 1M 15 Multiplexed Input IM47121PE -40°C to +85°C 16-pin PLASTIC VOO 16 Positive Supply Baud Rate Output Baud Rate Select Inputs :r------, c::t.: r----------------r-------, I COUNTU NETWOM I : : ....... .,lal L : . ; ; I : !I I I I I I 1c'-1r---~-LJ IIUL'N'C.EIIU , I I 00 : H-t-H+t++==~ I I :tHttHit:===-~~ I I I 1·----------- VDO 0,. 1M cq So Ec, St CP Ox Sz Sa Ix Vss CO Z I I , " ",:I-+-DIO>-1"""O>-' :~ I : o. f : l"!'!~ MAX UNIT V 70% Voo -1.0 10% VOO V 1.0 IlA V + 0.01 V ICC Power Supply Current Standby VIN = VSS or Voo 500 IlA IlA Icc Power Supply Current IM6402A fcrystal - 4MHz 9.0 mA ICC Power Supply Current IM6403A Icrystal = 3.58MHz 13.0 mA CIN Input CapaCitance [1] [3] TA = 25°C 7.0 8.0 pF Co Output CapaCitance [1] [3] TA = 25°C 8.0 10.0 pF -1.0 1.0 5.0 NOTE: 1. Except IM6403 XTAl input pins (i.e. pins 17 and 40). 2. VOO = 5V, T A = 25°C. 3. These parameters are guaranteed but not 100% tested. AC ELECTRICAL CHARACTERISTICS SYMBOL PARAMETER Ic Clock Frequency IM6402A Icrystal Crystal Frequency IM6403A tpw Pulse Widths CRl, tmr Pulse Width MR tds Input Data Setup Time Idh Input Data Hold Time ten Output Enable Time Dm'i, (Voo = 10.0V ±5% Vss = OV, CL TEST CONDITIONS = 50pF, MIN TA = Operating Temperature Range) TYp2 D.C. TIiR[ MAX UNIT 4.0 MHz 6.0 MHz 100 40 ns See Timing Diagrams 400 200 ns (Figures 4,5,6) 40 0 ns 30 30 40 9-19 Note: All typical values have been guaranteed by characterization and are not tested. ns 70 ns .O~DIL S IM64021lM8403 :! .ft !! (IM6402-11/1M, IM6403-1111M) ABSOLUTE MAXIMUM RATINGS Supply Voltage (Voo-Vss) ..••••..........•....••••.•.. +8.0V Voltage On Any Input or Output Pin ..••••••• (VSS -0.3V) to (VOO + 0.3V) Operating Temperature Range IM6402-11/03-11. .••••••.....•••...•.. -40·C to +85·C IM6402-1M/03-1M .••............. -55·Cto +125·C Storage Temperature Range ..........•• -65·C to + 150·C Lead Temperature (Soldering, 10sec) ..•....••........ 300·C NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent device failure. These are stress ratings only and functional operation of the devices at these or any other conditions above those indicated in the operation sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may cause device failures. DC ELECTRICAL CHARACTERISTICS SYMBOL PARAMETER (Voo = 5.0 ±10% VSS MIN TEST CONDITIONS VIH Input Voltage High Vil Input VOltage Low III Input VOH Output Voltage High VSS :5 VIN :5 Voo IOH= -0.2mA VOL Output Voltage Low IOl = 2.0mA IOlK Icc Output Leakage Vss :5 VOUT:5 VOO Power Supply Current Standby ICC Power Supply Current IM6402 Dynamic VIN = Vss or Voo fe = 2M Hz Lea~age = OV,TA = Operating Temperature Range) TYp2 MAX [1 )[3] UNIT V VOO-2.0 -1.0 0.8 V 1.0 pA 2.4 V -1.0 1.0 0.45 V 1.0 pA 100 pA 1.9 , mA 5.5 ICC Power Supply Current IM6403 Dynamic CIN Input Capacitance 11) [3) 'Crystal = 3.58MHz TA = 25'C 7.0 8.0 mA pF Co Output Capacitance [1] [3) TA = 25'C 8.0 10.0 pF NOTE: 1. ExceptlM6403 XTAL input pins (i.e. pins 17 and 40). 2. VOO = 5V, TA = 25'C. 3. These parameters are guaranteed but not 100% tested. AC ELECTRICAL CHARACTERISTICS SYMBOL PARAMETER (voo = S.ov ± 10% VSS TEST CONDITIONS IM6402~1 fe Clock Frequency ferystal tpw Crystal Frequency tmr Pulse Width MR Ids Idli len Input Data Setup Time Pulse Widths CRL, = OV, CL = SOpF, TA - Operating Temperature Range) MIN Typ2 D.C. IM640~-1 DF!R, T!lR[, See Timing Diagrams (Figures 4,5,6) Input Data Hold Time MAX UNIT 2.0 MHz 3.58 MHz 150 50 ns 400 200 ns 50 20 ns 60 40 Output' Enable Time 80 ns 160 ns TIMING DIAGRAMS CLSI. CLS2, SSS, PI, EPE WF009201 Figure 4: Da~ WFOO9301 Input Cycle Figure 5: Control Register Load Cycle 9-20 Note: All typical values have been guaranteed by characterization and are not tested. IM8402/IM8403 SFDDR RRD \ STATUS OR RBAl· RBR8 PIN SYMBOL DESCRIPTION 15 OE A high level on OVERRUN ERROR indicates the data received flag was not cleared before the last character was transferred to the receiver buffer register. The Error is reset at the next character's stop bit if DRR has been performed (i.e.. DRR: active low). 16 SFD A high level on STATUS FLAGS DISABLE forces the outputs PE. FE. OE. DR". TBRE" to a high impedance state. See Block Diagram and Figure 6. V" ) VALID DATA ~t.nWFOO9401 Figure 6: Status Flag Enable Time or Data Output Enable Time " IM6402 only. Table 1: IM6402/3 Pin Description PIN SYMBOL 1 VOO 2 IM6402-N/C IM6403-Control 17 IM6402-RRC IM6403-XTAl DESCRIPTION Positive Power Supply 'No Connection Divide Control High: 24 (16) Divider low: 211 (2048) Divider 3 VSS Negative Supply 4 RRD A high level on RECEIVER REGISTER DISABLE forces the receiver holding rellister outputs RBR1-RBR8 to a high impedance state. 5 RBR8 The contents of tne RECEIVER BUFFER REGISTER appear on these three-state outputs. Word formats less than 8 characters are right justified to RBR1. 6 RBR7 See Pin 5 - RBR8 7 RBR6 See Pin 5-RBR8 8 RBR5 See Pin 5 - RBR8 9 RBR4 See Pin 5 - RBR8 10 RBR3 See Pin 5 - RBR8 11 RBR2 See Pin 5 - RBR8 12 RBR1 See Pin 5 - RBR8 13 PE A high level on PARITY ERROR indicates that the received parity does not match parity programmed by control bits. The output is active until parity matches on a succeeding character. When parity is inhibitec;l. this output is low. 14 FE A high level on FRAMING ERROR indicates the first stop bit was invalid. FE will stay active until the next valid character's stop bit is received. The RECEIVER REGISTER CLOCK is 16X the receiver data rate. 18 DAR' A low level on DATA RECEIVED RESET clears the data received output (DR), to a low level. 19 DR A high level on DATA RECEIVED indicates a character' has been received and transferred to the receiver buffer register. 20 RRI Serial data on RECEIVER REGISTER INPUT is clocked into the receiver register. 21 MR A high level on MASTER RESET (MR) clears PE. FE. OE. DR. TRE and sets TBRE. TRO high. less than 18 clocks after MR goes low. TflE returns high. MR does not clear the receiver buffer register. and is required after power-up. 22 TBRE A high level on TRANSMITTER BUFFER REGISTER EMPTY indicates the transmitter buffer register has transferred its data to the transmitter register and is ready for new data. 23 TBRl A low level on TRANSMITTER BUFFER REGISTER lOAD transfers data from inputs TBR1TBR8 into the transmitter buffer register. A low to high transition on TBRl requests data transfer to the transmitter register. If the transmitter register is busy. transfer is automatically delayed so that the two characters are transmitted end to end. See Figure 4. 24 TRE A high level on TRANSMITTER REGISTER EMPTY indicates completed transmission of a character including stop bits. 9-21 Note: All typical values have been guaranteed by characterization and are not tested. §IM6402/IM6403 I:::. !! TRANSMITTER OPERATION Tabl, 1: IM6402/3 Pin De$cription (CONT.) PIN SYMBOL DESCRIPTION 25 TRO ,Character data, start data and stop bits. appear serially at the, TRANSMITTER REGISTER OUTPUT. 26 TBRt 5-8 DATA BITS orART I Character data is loaded into the TRANSMITTER BUFFER REGI,STER via inputs TBRtTBRS. For character formats less than a-bits, the TBRB, 7, and 6 Inputs are ignored corresponding to tl)e programmed word length. TBR2 2B TBR3 See Pin 26-TBRt 29 TBR4 'See Pin 26 -TBRt ' 30 TBRS See Pin 26 - TBRt 3t TBR6 See Pin 26 - TBRt 32 TBR7 See Pin 26 - TBRt 33 TBRB, See Pin 26 - TBRt 34 Cfll A high level on CONTROL REGISTER LOAD loads the control register. See Figure S. 35 PI" A high level on PARITY INHIBIT inhibits parity generation, parity checking and forces PE output low. I 36 SBS' A high level on' STOP BIT SELECT selects 1.5 stop bits for a.5 character format and 2 stop bits for other lengths. 37 ClS2* These inputs program the CHARACTER LENGTH SELECTED. (CLS1 low CLS2 low 5-bits)(ClS1 high CLS2 low 6bits)(CLS1 low CLS2 high 7bits)(ClSt high ClS2 high B-bits) 3B CLS1' See Pin 37 - CLS2 39 EPE' When PI is low, a high level on EVEN PARITY ENABLE generates and checks even parity. A low level selects odd parity. 1,11/2 OR 2 STOP BITS .IT~ ~I::;=;:::;::;:':::;~:;:::;:~'-f'~I;:;:+,_ ILSS! !M.. ! \1 U.L . L!PARITV ·.F ENABLED AF021101 Figure 7: Serial Data Format Transmitter timing is shown in Figure 8. Data is loaded into the transmitter buffer register from the inputs TBR1 through TBRS by a lo,gic low on the TBRload input. Valid data mUst be present at least tDS prior.to and tOH following the riSing edge ofTBRL. If words less than 8 bits are used, only the least significant bits are used. The character is right justified into the least significant bit, TBR1. The rising edge of TBRl clears TBREmpty. 0 to 1 clock cycles later, data is transferred to the transmitter register, TREmpty is cleared and transmission starts. TBREmpty is reset to a logic high. Output data is clocked by TRClock, which is 16 times the data rate. A second pulse on TBRLoad loads data into the transmitter buffer register. Data transfer to the transmitter register is delayed until transmission of the current character is complete. Data is automatically transferred to the transmitter register and transmission of that character See Pin 26-TBRt 27 40 IM6402-TRC IM6403-XTAL The transmitter section accepts parallel data, formats it •and transmits it in serial form (Figure 7) on the TROutput terminal. begin~. A D \'NDO' LAST STOP BIT WF009501 Figure 8: Transmitter Timing (Not to Scale) The TRANSMITTER REGISTER CLOCK is 16X the transmit data rate. ".,. 'See Table 2 (Control Word Function) 9--22 Note: All typical values have been guaranteed by characterization and are not. tested. ,IM640211M6403 Table 2· Control Word Function CONTROL WORD CLS2 CLSl PI EPE SB~ L L L L L L L L L. L L L L L L H H H H H H L L L L L L H H H H H H L L L H H L L L L H H L L L L H H L L L ·L H H L L H H X X L L H H L H L H L H L H L H L H L H L H L H L H L H L H L~ L L L H H H H H H H H H H H H X X L L H H X X L L H H X X DATA BITS PARITY BIT STOP BIT(S) 5 ODD ODD EVEN EVEN DISABLED DISABLED ODD ODD EVEN EVEN DISABLED DISABLED ODD ODD EVEN EVEN DISABLED DISABLED ODD ODD EVEN EVEN DISABLED DISABLED 1 1.5 1 1.5 1 1.5 1 5 5 5 5 5 6 6 6 6 6 6 7 7 7 7 7 7 8 8 8 8 8 8 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 x = Don't Care RECEIVER OPERATION Data is received in serial for,." at the RI input. When no data is being received, RI input must remain high. The data is clocked by the RRClock, which is 16 times the data rate. .Receiver timing is shown in Figure 9. BEGINNING OF FIRST STOP BIT~' ~7 1/2 CLOCK CYCLES RR I I I DATA RBR1-8.0 E. PE ~~ DR logic high on FError indicates an invalid stop bit was -received. The receiver will not begin searching for the next start bit until a stop bit is received. START BIT DETECTION The receiver uses a 16X clock for tirning. (See Figure 10.) The start bit (A) could have occurred as much as one clock cycle before it was detected, as indicated by the shaded portion. The center of the start bit is defined as clock 'count 7'1;2. If the receiver clock is a symmetrical square wave, the center of the start bit will be located within ± 112 clock cycle, ± 1/32 bit or ±3.125%. The receiver begins searching fOr the next start bit at the center of the first stop bit. I FE A --- B CLOCK _ 1 CLOCK CYCLE --rn C RRIINPUT WF009601 I.. Figure 9: Receiver Timing (Not to Scale) 14. COUNT "-=-- CENTER OF 71/2 DEFINED START START BIT 71/2 CLOCK CYCLES---j 81/2 CLOCK CVCLES----! WF009701 A low level on DRReset clears the DReadyline. During the first stop bit, data is transferred from the receiver register to the RBRegister. If the word is less than' 8 bits, 'the unused most significant bits will be a logic low.' The output character is right justified to the least significant bit RBR1. A logic high on DError indicates an overrun which occurs when DReady has not been cleared before the present character was transferred to the RBRegister. A logic high on PError indicates a parity. error. 1/2 clock cycle later, DReady is set to a logic high and FError is evaluated, A Figure 10: Start Bit Timing TYPICAL APPLICATION Microprocessor systems, which are inherently parallel in nature, often require an asynchronous serial interface. This function can be performed easily with the IM6402/03 UART. Figure 11 shows how the IM6402 can be interfaced to an IM80C48 microcomputer system. 9-23 , Note: All typical values have been guaranteed by characterization and are not tested. i IM6402/IM6403 I I assure that a slow rising capacitor voltage does not retrigger RESET. A long reset pulse after power-up (-20ms) is required by the processor to assure that the on-board crystal oscillator has sufficient time to start. I If parity is not inhibited, a parity error will cause the PE pin to go high until the next valid character is received. In this example the characters to be received or transmit...... ted will be eight bits long (ClS 1 and 2: both HIGH) and (II transmitted with no parity (PI:HIGH) and two stop bits (SBS:HIGH). Since these. control bits will not be changed _ during operation, Control Register load (CRl) can be tied high. Remember, since the IM6402/03 is a CMOS device, all unused inputs should be tied to either VOO or VSS The baud rate at which the transmitter and receiver will operate is determined by the IM4702 Baud Rate Generator. To ensure consistent and correct operation, the IM64021 '03 must be reset after power-up. The Master Reset (MR) pin is active high, and can be driven reliably from a Schmitt trigger inverter and R-C delay: hi this example, the IM80C48 is reset through still another inverter. The Schmitt trigger between the processor and R-C network is needed to A framing error is generated when an expected stop bit is not received. FE will stay high after the error until the next complete character's stop bit is received. The overrun error flag is set if a received character is transferred to the RECEIVER BUFFER REGISTER when the previous character has not been read. The OE pin will stay high until the nex1 received stop bit after a DRR is performed. XTAL l- XTAL eo +5 t il i t ~r---~------------------~ SFD CLIo +5 CAL +5 WRr---f:,-------------I TiRL TBRE IMIOC48 TRO DR i>" 1-----,"----------4_-1 iiiiii RRD +5 2 22IIK • TBR, .. • RBR,.. MR 1RRI TRANSMIT DATA RECEIVE DATA 10,.1 ... OS028301 Figure 11: IM80C48 Interface to IM6402 9-24 Note: All typical values have been guaranteed by characterization and are' not tested: IM6653/IM6654 4096-Bit CMOS UV EPROM GENERAL DESCRIPTION FEATURES The Intersil IM6653 and IM6654 are fully decoded 4096 bit. CMOS electrically programmable ROMs (EPROMs) fabricated with Intersil's advanced CMOS processing technology. In all static states these devices exhibit the microwatt power dissipation typical of CMOS. Inputs and threestate outputs are TTL compatible and allow for direct interface with common system bus structures. On-chip address registers and chip select functions simplify system interfacing requirements. The IM6653 and IM6654 are specifically designed for program development applications where rapid turn-around for program changes is required. The devices may be erased by exposing their transparent lids to ultra-violet light, and then re-programmed. • .Organization - • • Low Power High Speed - 300ns 10V Access Time For IM6653/54 AI - 450ns 5V Access Time For IM6653/54-1I Single + 5V Supply Operation UV Erasable Synchronous Operation For Low Power Dissipation Three-State Outputs and Chip Select for Easy System Expansion • • • • IM6653: 1024 x 4 IM6654: 512 x 8 770fJ.W Maximum Standby ORDERING INFORMATION PART NUMBER TEMPERATURE RANGE PACKAGE IM6653/41JG -40 c C to +85 c C 24-Pin CERDIP IM6653/4-1IJG -40 c C to + 85 c C 24-Pin CERDIP IM6653/4AIJG -40 c C to + 85 c C 24-Pin CERDIP IM6653/4MJG* -55 c C to +125 c C 24-Pin CERDIP IM6653/ 4AMJG * -55 c C 24-Pin CERDIP to + 125 c C • Add /HR for HiRel processing .. . A, A, A, E, A, . A, A, ., V.. PROGRAM AS .. Vee A, A, E, A, vc• A, PROGRAM .. a. COO0551I COOO56l1 80002411 Figure 1: Functional Diagram Figure 2: Pin. Configurations. 9-25 Note: All typical values have been guaranteed by characterization and are not tested. 002 ! -I I - I"'S853/IM,86!S4 ABSOLUTE MAXIMUM RATINGS (IM6653/54 I, -11, M) Supply Voltages , voo-vss ................................. : ... : ..... +8.0V vee-vss ........................................ : •. +8.0V Input or Output Voltage .... (Vss -O.3V) to (Voo +O.3V) Operating Range Range (TAl Industrial. .............................. -40·C to +85'C Military ............................... -55'C to + 125'C Storage Temperature Range ............ -65'C to + 150'C Lead Temperature (Soldering, 10sec) ................. 300·C NOTE: Stresses above those Usted under Absolute Maximum Ratings may cause permanent damage tothe de~ce. These are stress ratings only. and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specHications is not implied. Exposure'to absolute maximum rating conditions for extended periods may affect device reliability. DC ELECTRICAL CHARACTERISTICS (Vee = VOO = 5V ±10% VSS = OV, TA = Operating Temperature Range) SYMBOL PARAMETER Logical "1" Input Voltage VIH VIH JM6653/541, -11, M TEST CONDITIONS UNIT MIN MAX ~1. S Voo-2.0 Address Pins 2.7 V 0.8 Logical "0" Input Voltage VIL GND ~ VIN ~ Voo '-1.0 VOH Logical "1" Output Voltage IOH- -0.2mA 2.4 VOL IOLK Logical "0" Output Voltage IOL=2.0mA Output Leakage ISTBY Standby Supply Current VIN=VOO 100 40 Operating Supply Current (1) VIN =VOO f-1MHz Input Leakage II 1.0 IlA V GND~VO~Vcc Icc 100 0.45 -1.0 1.0 p.A 6 CI Input Capacitance Note 1 7.0 Co Output CapaCitance Note l' 10.0 rnA pF Note: 1. For design reference only, not 100% tested. AC ELECTRICAL CHARACTERISTICS (Vee = Voo = 5V SYMBOL ±10% Vss = OV, CL = 50pf, TA = Operating Temperature Range) IM6653/54-1I IM6653/54 I IIM6653/54 M MIN MIN MIN PARAMETER UNIT MAX MAX MAX TEILOV Access 'Time From ~ 1 450 550 TSLOV· Output Enable Time 110 140 150 TE1HOZ Output Disable Time 110 140 150 TE1HE1L ~1 Pulse Width (POSitive) 130 150 150 TE1LE1H E1 Pulse Width (Negative) 450 550 600 TAVEIL Address Setup Time 0 0 0 100 600 TE1 LAX Address Hold Time 80 100 TE2VE1L Chip Enable Setup Time (6654) 0 0 0 TE1LE2X Chip Enable Hold Time (6654) 80 100 100 9-26 Note: All typical values h,ave bee,n guaranteed by characterization and are not tested. ns IM6653/IM6654 i0) ABSOLUTE MAXIMUM RATINGS (IM6653/54AI, AM) ,Co) 0) Supply Voltages Voo '-vss ............. · ........ · ........ · ..... · ... + 11.0V Vee-Vss ......................................... +11.0V Input or Output Voltage .... (Vss -O.3V) to (Voo +O.3V) CIt ...... Operating Temperature Range Industrial ............................... -40°C to + 85°C Military ............................... -55°C to + 125°C Storage Temperature Range ............ -65°C to + 150°C Lead Temperature (Soldering. 10sec) ................. 300°C NOTE: Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only. and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. DC ELECTRICAL CHARACTERISTICS = Voo = 4.5V to 10.5V Vss = OV. TA = Operational Temperature Range) (Vee IM6653/54AI. AM SYMBOL PARAMETER TEST CONDITIONS UNIT MIN VIH logical "1" Input Voltage Vil II VOH 1:1• S Voo-2.0 Address Pins VIH MAX V VOO-2.0 Logical "0" Input Voltage 0.8 Input leakage GND S VIN S Voo logical "I" Output Voltage lOUT VOL logical "0" Output Voltage IOlK Output Leakage ISTBY Standby Supply Current a (Note lOUT ~ a (Note ~ -1.0 1) 1) -1.0 VSS S Vo SVCC VIN I'A Vss + 0.01 V 1.0 ~VOO !1A 100 VIN ~VOO ICC 1.0 Vee-om 40 lob Operating Supply Current f~IMHz 12 CI Input Capacitance Note 1 7.0 Co Output Capacitance Note 1 10.0 mA pF Note: 1. For design reference only. not 100% tested, AC ELECTRICAL CHARACTER1STICS (Vee = Voo = 10V ±5% Vss '" OV. CL = 50pf. TA = Operating Temperature Range) IM6653/54 AI SYMBOL IM6653/54 AM PARAMETER UNIT MIN MAX MIN MAX TEllQV Access Time From El 300 350 TSLQV Output Enable Time 60 70 TE1 HQZ Output Disable Time 60 TE1HEll 1:1 Pulse Width (Positive) 125 125 TEllE1H 1:1 Pulse Width (Negative) 300 350 TAVEll Address Setup Time a 0 60 70 TEl LAX Address Hold Time 60 TE2VEll Chip Enable Setup Time (6654) 0 a TE1LE2X Chip Enable Hold Time (6654) 60 60 9-27 Note: All typical values have been guaranteed by characterization and are not tested. ,. ns i0) ,d) : . In IM6853/IM6654 2 PIN ASSIGNMENTS co co ::::. C') In CO CO ! PIN SYMBOL 1-8,23 Ao-A7,Ae 9-11, 13-17 00-07 00-03 12 18 VSS Program 19 VDD 20 21 E1 S 22 ~g .•U~OIl ACTIVE LEVEL Data Out lines, 6654 Data Out lines, 6653 Negative Supply Programming pulse input Chip positive supply, normally tied to VCC E2 24 DESCRIPTION Address Unes L Strobe line, latches both address lines and, for 6654, Chip enable E2 L Chip select line, must be low for valid data out L Additional address line for 6653 Chip enable line, latched by Chip enable E1 on 6654 Output buffer positive supply VCC READ MODE OPERATION In a typical READ operation address lines and chip enable E2· are latched by the falling edge of chip enable E1 (T = 0). Valid data appears at the outputs one access time (TElQV) later, provided level-sensitive chip select line S is low (T = 3). Data remains valid until either E1 or S returns to a high level (T = 4). Outputs are then forced to a high-Z state. Address lines and E2 must be valid one setup time before (TAVEL), and one hold time after (TElAX), the falling edge of E1 starting the read cycle. Before becoming valid, Q output lines become active (T = 2). The Q output lines return to a high-Z state one output disable time (TE1 HQZ) after any rising edge on 1:1 or S. . The program line remains high throughout the READ cycle. -At 1Me8&3 only. it ...... only Chip enable line E1 must remain high one minimum positive pulse width (TEHEl) before the next cycle can begin. WFOO9801 Figure 3: Read Cycle Timing FUNCTION TABLE INPUTS TIME REF E1 E2 5 A OUTPUTS Q -1 H X X X Z DEVICE INACTIVE 0 -"- L X V Z CYCLE BEGINS; ADDRESSES, E2 LATCHED· 1 L X X X Z INTERNAL OPERATIONS ONLY 2 L X L X A OUTPUTS ACTIVE UNDER CONTROL OF E1, S 3 L X L X V OUTPUTS VALID AFTER ACCESS TIME 4 _F X L X V READ COMPLETE 5 H X X X Z CYCLE ENDS (SAME AS -1) NOTES 9-28 Note: All typical values have been guaranteed by characterization and are not tellted. IM6653/IM6654 r. t----tEl< -:==::::: + .... --~ I-TPlPH ....I .-----------------------1 -----IlEAD-----_.I. . 1... u-,- ~ ------t~ DATAOUT} \~_____________ .I_.____ - - - - P R O G R A M - -_ _ READ_---_ WFOO9901 Figure 4: Read and Program Cycle Timing DC CHARACTERISTICS FOR PROGRAMMING OPERATION (Vee = VOO = 5V ±5% VSS = OV, TA = 25°C) SYMBOL PARAMETER IpROG Program Pin Load Current VPROG Programming Pulse Amplitude IcC Vee Current IDD VDD Current VIHA Address Input High Voltage VILA Address Input Low Voltage VIH Data Input High Voltage VIL Data Input Low Voltage TEST CONDITIONS MIN -38 TYP MAX UNIT 80 100 mA -40 -42 V 0.1 5 40 100 mA VDD-2.0 0.8 V VDD-2.0 0.8 AC CHARACTERISTICS FOR PROGRAMMING OPERATION (Vee = Voo = 5V ±5% Vss = OV, TA = 25°) SYMBOL TPLPH PARAMETER Program Pulse Width TEST CONDITIONS MIN TYP MAX UNIT tose = tlaU = 51's 18 20 22 ms Program Pulse Duty Cycle 75% TDVPL Data Setup Time TPHDX Data Hold Time TE1HE1L Strobe Pulse Width TAVEIL Address Setup Time 0 TE1LE1 X Address Hold Time 100 TE1LQV Access Time 9 9 I'S 150 ns 1000 be set at Voo -2V minimum. Low logic levels must be set at Vss + O.BV maximum. Addressing of the desired location in PROGRAM mode is done as in the READ mode. Address and data lines are set at the desired logiC levels, and PROGRAM and chip select (8) pins are set high. The address is latched by the downward edge on the strobe line (E1). During valid DATA IN time, the PROGRAM pin is pulsed from VDO to -40V. This pulse initiates the program- PROGRAM MODE OPERATION Initially, all 4096 bits of the EPROM are in the logiC one (output high) state. Selective programming of proper bit locations to "O"s is performed electrically. In the PROGRAM mode for all EPROMs, Vee and Voo are tied together to a + 5V operating supply. High logic levels at all of the appropriate chip inputs and outputs must 9-29 Note: All typical values have been guaranteed by characteriiation and are not tested. : IM6853/1M8854 I :::::. :g'" In ! ming of the device to the levels set on the data outputs. Duty cycle limitations are specified from chip heat dissipation considerations. PULSE RISE AND FALL TIMES MUST NOT BE FASTER THAN 5j.Ls. 3. Intelligent programmer equipment with successive REAO/PROGRAM/VERIFY sequences is recommended. 4. ERASING PROCEDURE PROGRAMMING SYSTEM CHARACTERISTICS 1. During programming the power supply should be capable of limiting peak instantaneous current to 100mA. 2. The programming pin is driven from VOO to -40 volts (±2V) by pulses of 20 milliseconds duration. These pulses should be applied in the sequence shown in the flow chart. Pulse rise and fall times of 10 microseconds are recommended. Note that any individual location may be progr~mmed at any time. Addresses and data should be presented to the device within the recommended setup/hold time and high/low logic level margins. Both "A" (10V) and non "A" EPROMs are programmed at Vee. Voo of 5V ±5%. Programming is to be done at room temperature. The IM6653/54 are erased by exposure to high intensity short-wave ultraviolet light at a wavelength of 2537 A. The recommended integrated dose (i.e .• 'UV intensity x exposure time) is 10W sec/cm 2 . The lamps should be used without short-wave filters. and the IM6653/54 to be erased should be placed about one inch away from the lamp tubes. For best results it is recommended that the device remain inactive for 5 minutes after erasure. before reprogramming. The erasing effect of UV light is cumulative. Care should be taken to protect EPROMs from exposure to direct sunlight or fluorescent lamps radiating UV light in the 2000A to 4000A range. 9-30 Note: All typical values have been guaranteed by characterization and are not tested. IM66531lM6654 LD003101 Figure 5: Programming Flow Chart 9-31 Note: All typical values have been guaranteed by characterization and are not· tested: AF021411 Figure 6: IM6653 CMOS EPROMS as External Program Memory with the IM80C35 ••v -Ii ....J. 0=r= , osc, GN. GN. b"t Voo VS& P,o PII P12 PI3 PI< PIS P16 3 OSC2 -If----! iImT 7 E. ~ Vee --tfi, P20 21 P21 ~ P23 -!- P25 -!- IM8OC48 ~ 8 7 • :! *l!... • '0 II 13 I< ...... " .-.! iN'!' 15 "16 . . . 17 16 II PRoo AI AO IM6654 512 .. , 080" 081 14 TI 'JftJi A3 CMOS EPAOM 12 TO ALE .7 '8 AS ·..., 3 P24~ P28 INPU{ 23 ....g.. Ii Wii ii6 v" v" , '8 , , " ~ -¥.-l!- ~ .a P27 ..-.+ ? 017 L h" Vee ~ 17 087 " I' I" 1 I' 00 0' 0' 03 O. O. O. 07 E, lI" E, I" I" 10 20 lSOO1001 Figure 7: Using IM6654 CMOS EPROM To Extend Program Memory 9-32 Note: All typical values have been guaranteed by characterization and are not. tesled. IM80C48/49/35/39 CMOS Microcontroller GENERAL DESCRIPTION FEATURES The IntersillM80C48 family of CMOS microcontrollers combines the speed of the industry standard NMOS8048 with the low power consumption of CMOS. In addition to the low operating current, the IM80C48 family has three versatile power-down modes that reduce power dissipation even further. The HALT mode, entered by software command, shuts down selected portions of the CPU to reduce power ;, consumption while retaining rapid response time to an interrupt or reset. The STandBY and STOP modes shut . down all but the onboard RAM, reducing the supply current to typically 1 microamp. The IM80C48 family microcontrollers include 27 I/O lines, RAM, and an 8-bit timer/counter on-chip, and are well suited for control applications. The low power consumption , of the IM80C48 makes it particularly desirable in applications that require battery operation or long term battery backup of on-Chip RAM during AC power interruptions. • • • • • • Industry Standard NMOS 8048 Family Compatible Expanded Instruction Set Includes Software STandBY Ultra Low Power Consumption - Operating Supply Current: 3mA at 6MHz -IDLe Supply Current: 8001lA at 6MHz -STandBY and STOP Modes: 1j.LA Wide Operating Voltage Range - 3.5V to 6V Compatible with 8048/80/85 Peripherals 4 Standard ROM and ROM-Less Versions APPLICATIONS • • • • Portable Instrumentation Telecom Industrial Control Battery Operated Equipment ORDERING INFORMATION INTERNAL MEMORY SUFFIX BASIC PART NUMBER TEMP. RANGE: O°C to +70°C TEMP. RANGE: -40°C to +85°C ROM RAM 40-PIN PLASTIC 40-PIN CERDIP 40·PIN PLASTIC 40,PIN CERDIP IM80C48 CPL CJL IPL IJL 1K x 8 IM80,C49 CPL CJL IPL IJL 2K IM80C35 CPL CJL IPL IJL NONE 64 x 8 IM80C39 CPL CJL IPL IJL NONE 128 ALE )(TAL> )(TAL> +"'"------------, _L.r----' . . ._ _..... ~ TO - - ' - - - - - - - POWER { Vee 40 SUPPLY Vss ..:20~_ _... 12-19 DBO-DB7 21-24,35-38 P20-P27 27-34 P10-P17 Figure 1: Functional Diagram 9-33 Note: All tvoical values have been Quaranteed bv characterization and are not tested. x 8 64 128 x8 x8 x 8 --= IM80C-4e/4$135/3.9 10 (I') I ~ ! ABSOLUTE MAXIMUM RATINGS Voltage on Any Pin ............ (VSS-0.3V) to (Vee+0.3V) Supply Voltage ................................ (Vee - VSS) + 8V Storage Temperature (Plastic) .......... -65°C to + 150°C Operating Temperature Range: IM80CXXCXL ............................ O·C to + 70°C IM80CXXIXL ................. ., ....... -40°C to +85°C Lead Temperature (Soldering, 10see) ................. 300°C Stresses above those listed under" Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. ELECTRICAL CHARACTERISTICS DC CHARACTERISTICS Test Conditions: Vce = 5V± 10% Vss = OV, TA = -40°C to + 85°C LIMITS SYMBOL PARAMETER TEST CONDITIONS UNIT MIN TYP MAX VIL Input Low Voltage (All Except XTAL1) VILI Input Low Voltage XTALI VIH Input High vOI~ge (All Except RE ET, XTAL1, Voo/STOP) VIHI R S VOL Output Low Voltage IOL=2mA VOH Output High V~I~N BUS, ~, ~, , ALE IOH = -100pA 2.4 V VOHI Output High Voltage All Other Outputs IOH = -50pA 2.4 V IILP Input Pullup Current Port I, Port 2 VIN S VIL -150 -300 IJ.A IlL !!!!lut P~IUP Current SS, RE ET VIN SVIL -20 -40 pA IlL Input Le~e Current Tl, EA, IN VsssVee 0 ±1 pA IOL Output Leakage Current Bus, TO-High Impedance Vss S VIN S Vcc 0 ±1 pA ICC Total Supply Current TA = 25'C, 6MHz 3 8 rnA 0.8 2.0 rnA 1 20 pA -0.3 Vec-2V In~uk~i9h Voltage Vee- 0.5V ,XTAL1, XTAL2, Voo/STOP ICCI IDLE Power Supply Current 6MHz. ICC2 STandBY and STOP Modes Supply Current VIN = Vcc 0.8 V Vee- 0.8 V Vce V Vee V 0.45 V AC CHARACTERISTICS PORT 2 TIMING Test Conditions: Vec = 5V±10% Vss = OV, TA PARAMETER SYMBOL = -40°C to + 85°C, fCLK = 6MHz LIMITS TEST CONDITIONS (Note 1) UNIT MIN TYP MAX tcp Port Control Setup Before Falling Edge of ,PROG 110 nS tpc Port Control Hold after Falling Edge of~ 140 nS j5RQG to Time Port 2 Input Dat,a 810 nS IpR must be valid top Output Data Setup Time 220 tpo Output Data Hold Time 65 tpF Input Data Hold Time 0 tpp j5RQG Pulse Width 1200 ns tPL Port 2 I/O Data Setup 350 ns tLP Port 2 I/O Data Hold 150 ns Note 1: Inputs are driven to 0.45V and 2.4V. Output timing measurements are made at 0.8V and 2.0V. 9-34 Note: All typical values have been guaranteed by characterization and are not tested. ns ns 150 ns IM80C48/49/35/39 READ, WRITE AND INSTRUCTION FETCH - EXTERNAL DATA AND PROGRAM MEMORY Test Conditions: Vcc = 5V±10% Vss = OV, TA = -40·C to + 85·C, fCLK LIMITS TEST CONDITIONS PARAMETER SYMBOL = 6MHz (Note 1) UNIT MIN TYP MAX tLL ALE Pulse Width 400 ns tAL Address Setup before ALE Falling 120 ns tLA Address Hold from ALE Falling BO ns tcc Control Pulse Width (PSEN, RD, WR) 700 ns tow Data Setup before WR Rising Data Hold after WR Rising 500 ns two Icv Cycle Time tOR Data Hold tRO ~, tAW Address Setup before tAD tAFC Address Setup before Data in Address Float to RD, ~ RD CL = 20pF ns 120 2.5 150 0 to Data in Valid WR 200 IlS ns 500 ns 230 ns 950 0 ns ns Note 1: For Control Outputs CL = BOpF, for Bus Outputs CL = 150pF. Inputs are driven to 0.45V and 2.4V. Output timing measurements are made at O.BV and 2.0V. ROM CODE DATA ENTRY Intersil can accept customer ROM codes in a variety of media, including standard byte-wide EPROMs (2176, 2732, 2764, 27C16, 27C32, etc,) or (8048, 8748, 8049, 8749) microcomputers. Contact GE-Intersil sales office for other formats. EnF.RNAl ACCESS --+ ROM CODE VERIFICATION (IM80C48/49) IM80C4a IM80C3S !~80CG9 The IM80C48/49 ROM code can be verified by applying negative 5V to the EA pin while RESET is low. The address is then applied to DBO-DB7 and P20-P22. Bringing RESET high will internally latch the address and cause the ROM content for that address to appear on DBO-DB7, This verify cycle can then be repeated by returning RESET low and applying the next address to DBO-DB7 and P20-P22; then bringing RESET high to read the ROM content. To exit the verify mode first set RESET low then return EA to OV. IMMe39 LSOOO701 Figure 3: Logic Symbol ALE EXPANDER PORT PCH OUTPUT EXPANDER PORT INPUT PCH ---,pp---WF02280! Figure 4: Port 2 Timing 9-35 Note: All typical values have been guaranteed by characterization and are not tested. :1 IM80C48/49/35/39 -:;n f) I ~-B_ICY_~ ! WF02291I Figure 5: Read From External Data Memory BUS~~. WF02301I Figure 6:. Write to External Data Memory ALE !----------ICY--------.j WF02311I Figure 7: Instruction Fetch From External Program Memory 9-36 Note: All typical values have been guaranteed by characterization and are .not tested. IM80C48/49/35/39 sv REm ov ov EA -sv SV DBO-DB7 OV SV P20-22 OV -------'" \ ,------ I ~---I~'--------~/ ( I ADDRESS )(~__________________D_A_TA___________________ { ADDRESS WF02321I Figure 8: Verify Mode Timing Table 1: Pin Description PIN NAME TO PIN FUNCTION 1 An input pin that is tested by the conditional jump instructions JTO and JNTO. This pin can be designated as a clock outplot using the ENTO ClK instruction. XTAL1 2 Connected to one side of the crystal for internal oscillator operation. Also used as the external clock input when using an external oscillator. XTAl2 3 Connected to one side of the crystal when using the internal oscillator. leave open when using an external oscillator. RESET 4 Active low input used to reset the microcomputer. A capacitor from this pin to ground will automatically reset the device on power-up. SS 5 Single-Step input, active low, that can be used in conjunction with ALE to single-step the processor through each instruction. INT 6 INTerrupt input, active low. Initiates an interrupt if external interrupt is enabled. EA 7 External Access input, active high, is used to force all program memory accesses to reference external memory. RD 8 This output, active low, is used by external devices to place data onto the bus during a bus read operation. ~ 9 Program Store ENable. This output, active low, occurs only during fetches to external program memory. The system uses this signal to strobe external program memory. PIN NAME PIN FUNCTION WR 10 This output, active low, is used to strobe data into external devices during a bus write operation. ALE 11 Address latch Enable. This output, active high, occurs once during each cycle. The falling edge of this timing signal, is used to strobe the address bits appearing on the data bus. DBODB7 (Bus) VSS P20P27 12-19 Data Bus. These eight lines form a true bidirectional port which can store data as a latched output port or serve as a non-latching input! output port. 20 Circuit GND potential. 21 -24 Port 2. Identical to Port 1 except that 35-38 P20 - P23 contain the four high-order program' counter bits during external program memory fetches. If IM82C43 1/0 Expanders are being used in the system, they communicate with the IM80C46 through these four lines. PROG 25 Output strobe for IM82C43 1/0 Expander. Voo' 26 Used to select low power hardware STOP mode. SiQj5 P10PH 27-34 Port 1. An 8-bit quasi-bidirectional port. The 110 structl!re on these eight lines allows each to be used separately as an input or output. T1 39 An input pin tested by the conditional jump instructions, JT1 and JNT1. The pin can also be programmed as the input to the counter. Voo 40 Main power supply. 9--37 Note: All tYPical values have been guaranteed by characterization and are not tested. :: eIMaOC48/49/35/39 "-!! '11) 41 • :co ....... " o CD ! Table 2. Instruction Set by MnemoniC (Cont.) Table 2. Instruction Set by Mnemonic Accumulator Mnemonic Subroutine Description Add register to A Add .data. memory to A Add immediate to A Add register with carry Add data memory with' carry ADDC A, " data Add immediate with carry ANl A, R And register to A ANl A, @R And data memory to A And immediate to A ANl A, " data ORl A, R Or register to A ORl A, @R Or data memory to A Or immediate. to A ORl A, " data XRl A, R Exclusive or register to A XRl A, @R Exclusive or data memory to A Exclusive or immediate XRl, A, " data to A INC A Increment A DEC A Decrement A Clear A ClR A CPl A Complement A DA A Decimal adjusl A SWAP A Swap nibbles of A Rl A Rotate' A left Rotate A left through RlC A , carry Rotate A right RR A RRC A Rotate A right through carry ADO A, R ADO A, '@R ADD A, II data ADDC A, R ADDC A, @R Input/Output Mnemonic IN A, P OUTl P, A ANl P, " data ORl P, " data INS A, BUS OUTl BUS, A ANl BUS, " data ORL BUS, " data MDVD A, P MOVD P, A ANlD P, A ORLD P, A Description Input port to A Output A to port And immediate to port Or immediate to port Input BUS to A Output A to BUS And immediate to BUS Or immediate to BUS Input expander port to A Output A to expander port And A to expander port 'Or A to expander port . Registers Mnemonic Description INC R INC @R DEC R Increment register Increment data memory Decrement register Branch Mnemonic Description JMP'addr JMPP @A DJNZ R, addr JC addr JNC addr JZ addr JNZ addr JTO addr JNTO addr JTl addr JNTl add, JFO add, JFl add, JTF addr JNI addr JBb addr Jump unconditional Jump indirect Decrement register and skip Jump on carry = 1 Jump on carry = 0 ' Jump on Z zero Jump on A not zero Jump on TO= 1 Jump on TO=O Jump on T1 = 1 Jump on T1 =0 Jump on FO = 1 Jump on Fl = 1 Jump on timer flag Jump on INT .. 0 Jump on accumulator bit .... Mn~monic Description Jump to subroutine Return Return and restore' status Bytes Cycles 1 .1 2 1 1 1 1 2 1 1 CAll addr RET RETR Flags Mnemonic Description 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 ClR CPl ClR CPl ClR CPl Clear carry Complement carry Clear flag 0 Complement flag 0 1 Complement flag 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 MOV MOV MOV MOV MOV MOV 1 1 1 1 Bytes Cycles 1 1 2 2 1 1 2 2 1 1 2 2 2 2 2 2 2 2 2 2 1 1 2 2 Bytes . Cycles 1 1 1 1 1 1 Bytes Cycles 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 C C FO FO Fl Fl Data Moves Mnemonic Description A, R A, @R A, " data A, A @A, A A " data Move register to A Move data memory to A Move immediate to A Move A to register Move A to data memory Move immediate to register MOV @R, " data Move immediate to data memory Move PSW to A MOV A. PSW MOV PSW, A Move A ·to PSW XCH A, R Exchange. A and register XCH A, @A Exchange A and data memory XCHD A, @A Exchange nibble of A and register MOVX A. @A Move external data memorY to A MOVX @A, A Move A to external data memory MOVPA, @A Move to. A from current page MOVP3 A, @A Move to A from page 3 Timer/Collnter Mnemonic MOV A. T MOV T, A STRT T STAT CNT STOP TCNT EN TCNTI DIS TCNTI Control' Mnemonic Description Aead timer/counter load time, / counter Start timer Start counter Stop timer/counter Enable timer/counter interrupt Disable timer/counter interrupt Description EN I DIS I SEl RBO SEl RB1. SEl MBO SEl MBl ENTO ClK Enilble external interrupt Disable external interrupt Select register bank 0 Select register 'bank 1 Select memory bank 0 Select memory bank 1 Enable clock output on TO Mnemonic Description NOP IDl No operation low power Mode,OSC. on low power Mode, OSC... off STBY' Note: All typical values have baen guaranteed by characterization and are not tested. .Bytes Cycles· 2 1 1 2 2 2 Bytes Cycles 1 1 1 1 1 1 1 1 1 1 Bytes Cycles 1 1 2 1 1 2 1 1 2 1 1 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 2 1 2 1 2 1 2 Bytes Cycles 1 1 t 1 1 1 1 1 1 1 1 1 1 1 Bytes Cycles 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Bytes Cycles 1 1 1 1 1 1 .D~nlL i IM80C48/49/35/39 I Power consumption drops to less than 1mW. Either a RESET or external INTerrupt will terminate the IDLE mode. _ A RESET will start execution from address OOH. An external INTerrupt will start execution from 03H if iNTerrupt is : enabled, or start execution from the next sequential instruction following the IDLE instruction if the iNierrupt is UI disabled. LOW POWER MODES The Intersil IM80C48 family incorporates IDLE and STandBY instructions as well as the hardware STOP mode. The IDLE instruction, opcode 01 H, operates as shown in Figure 1. Execution of opcode 01 H disables the internal clock and timing circuits while leaving the oscillator running. W W CD OSC RUNS BUT INTERNAL CLOCK OISABLED POWER CONSUMPTION .1mW Figure 9: IDLe Mode CPU INT EXECUTE _____IlJlLfL___ . INTERNAL CLOCK HAlT FIF INT WF023301 Figure 10: IDLe Mode 9-39 Note: All typical values have been guaranteed by characterization. and are not tested. = .MaOC4S/49/35/39 := ..... :..... ..... I- Figure 11 illustrates the STOP mode. To enter the STOP mode, first take RESET low, then pull Voo/ STOP .Iow. The STOP mode, like the ·STandBY mode, shuts down the oscillator and causes the device to draws less than 1pA of current. To exit the STOP mode, take Voo~~TOP high, wait for the oscillator to stabilize, then pUll HE T high. Execution starts at address OOOOH. Since the power consumption of the IM80C48 is directly proportional to the clock frequency, significant power savings can be achieved by selecting the lowest clock frequency that provides sufficient processing power for the specific application. For example, while operating with a 32.768kHz clock, the IM80C48 will typically draw less, than. 2j.1A of' current. . . Figure 13 shows the operation of the STandBY instruction, opcode 63H. This instruction is similar to IDLE except' that the oscillator is also turned off, reducing current' drain to less than 1pA. A RESET or INTerrupt will restart the oscillator and execution will resume after the oscillator startup time,plus a delay of 2-3 instruction cycles that allows the oscillator to stabilize. The start-up time of the oscillator, which depends on the operating voltage and the crystal parameters, is normally 5-50msec. The address at which execution resumes is the same as for the IDLe instruction. STOP MODE osc DISABLED POWER CONSUMPTION <1~W LD010901 Figure 11: STOP Mode 9-40 Note: All typical values have been guaranteed by characterization and are not tested; IM80C48/49/35/39 osc OSCSTARTS JlJ1.___ _ ____ fL INTERNAL CLOCK CPU BUS _ _ _ _1 ..._ _ _ __ AORS 00Il0(H) WF023401 Figure 12: STOP Mode • IV GN• U .•... ... 1-' .... a .... INI'UT OUTPUT 22 •a ':" 11 . ." .. » ,. 11 17 Me LD011001 1-' 1-- .... INPUT OUTPUT INPUT AN. OUTPUT Me LS000811 Figure 14: Stand Alone System Figure 13: STANDBY Mode 9-41 Note: All typical values have been guaranteed by characterization and are not tested. IIII80C4'8/4.9/35/39 .. SY 0,.0 b2t!. Vee VDD VIS' P'O ~ PII P1a P•• OSC. ~ .i OSC2 , PIS iiEiET €A Vcc--r! Ii ~ ... • r¥.... r.!!~~ At Vee -P21 I'U P23 ... r-;::.:= P2S • INPUT { ~ - P27 TO DI3 15 II i I" " AU 0, 0• 0. A, 012 ,. iHf Do ... ... ......... D80 .2 011 13 T' bT h-.T § P17 Voo Vee v.. IGIOD ONO ... •• - r-;:== = • Do 0, 0, - r-- 0. ... ... ......... lie ... EPROM lit •• EPROM A, A. A. 0 •• 1 De5 .7 DM II 087 t 8 ... :II A, A, I i, ViR iiii I I , In 1·0 It I 1 i, I LSOOO911 Figure 15: IM6653 CMOS EPROMSs As External Program Memory with The IM80C35 -capacitance values dependent on package type USING IM6654 CMOS EPROM TO EXTEND PROGRAM MEMORY tlt -H~ ~~ -l~ , -=- h. *" :~~ ~ '00 ... ..c, .~ Pl0 P13~ OSC2 P14 .;;- :::~ li. ..... P17 .. :~~ ::!~ IM8Oc48 '",,{ D86 " , ., AO -.. 512., · " 13 :15 011,," 10 11 00 01 13 02 14 03 OK l' 01718 16 H !)as n 3 o• A3 .. CMOS EPROM otl,. " '"~: 17 r I" I" I' PROG 1.1 o :: 1t .-....: " ~"... .--: RlN ! ::~ Vcc--": 1! ALE I.e . ·.. 23 ~ L 'n '" Wfi Jm 01 '. I" r ~ " " LSO01001 Figure 16: Using IM6654 CMOS EPROM to Extend Program Memory 9--42 Note: All typical values have been guaranteed by characterization· and are not tested. IID~DIL iIII IM80C48/49/35/39 ~It -Co) CII Co) CO IM8OC48/9 P.OG~-------------4~-------------4---------------4~------------~ AF034601 Figure 17: Using IM82C43 1/0 Expanders, This Five Chip System Has 80 I/O Lines 'Capacitance values dependent on package type 9-43 Note: All typical values have been guaranteed by characterization and are not tested. :: IM80C48/49/35/39 ..... ID !!. :..... I ! Table 3: Instruction Summary By Hexadecimal Opcode HEX MNEMONIC HEX HEX MNEMONIC HEX MNEMONIC 00 01 02 03 30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3Ei 3F XCHO A,@RO XCHO A,@Rl JBl undefined CAll (page 1) DIS TCNTI JTO CPl A undefined OUTl Pl,A OUTl P2,A undefined .MOVO P4,A MOVO PS,A MOVO P6,A MOVO P7,A 70 71 72 73 74 75 76 78 79. 7A 7B 7C 70 7E 7F AOOC A,@RO AOOC A,@Rl JB3 undefined CAll (page 3) ENTO ClK JFl RR A AOOC A,RO AODC A,Rl AODC A,R2 AODC A,R3 AODCA,R4 AODC A,RS AOOC A,R6 AOOC A,R7 AO Al A2 A3 05 06 07 08 09 OA OB OC 00 OE OF NOP 10l OUTl BUS,A ADD A,#data JMP (p~ge 0) EN I undefined DEC A undefined INA,Pl IN A,P2 undefined MOVO A,P4 MOVO A,P5 MOVO A,P6 MOVO A,P7 AB AC AD AE AF MOV @RO,A MOV @Rl,A undefined MOVP A,@A JMP (page 5) ClR Fl undefined CPl C MClV RO,A MOV Rl,A MOV R2,A MOV R3,A MOV R4,A MOV R5,A MOV R6,A MOV R7,A 10 11 12 13 14 lS 16 17 18 19 lA lB lC 10 lE IF INC @RO INC@Rl JBO AOOC A,#data CAll (page 0) DIS I JFT INC A INC RO INC Rl INC R2 INC R3 INC R4 INC R5 INC R6 INC R7 40 ORl A,@RO ORl A,@Rl MOV A,T ORl A,#data JMP (page 2) STRT CNT .JNTI SWAP A OAl A,RO ORl A,Rl ORl A,R2 ORl A,R3 ORl A,R4 ORl A,RS ORl A,RS ORl A,R7 80 81 82 83 84 85 86 87 88 89 8A 8B 8C 80 8E 8F MOVX A,@RO MOVX A,@Rl undefined RET JMP (page 4) ClR FO JNI undefined ORl BUS,#data ORl Pl,#data ORl P2,#data undefined ORlO P4,A ORlO P5,A ORLO PS,A ORlO P7,A BO Bl B2 B3 B4 B5 B6 B7 B8 B9 BA BB BC BO BE BF MOV @RO,#data MOV @Rl,#data JB5 JMPP @A CPl Fl CPl Fl JFO undefined MOV RO,#data MOV Rl,#data MOV R2,#data MOV R3, # data MOV R4,#data MOV R5,#data MOV R6, # data MOV R7,#data 20 21 22 23 24 25 2S 27 28 29 2A 2B 2C 20 2E 2F XCH A,@RO XCH A,@Rl undefined MOV A,#data JMP (page 1) EN TCNTI JNTO CLR A XCH A,RO XCH A,Rl XCH A,R2 XCH A,R3 XCH A,R4 XCH A,R5 XCH A,RS XCH A,R7 50 51 52 53 54 5S 56 57 58 59 5A SB 5C 50 5E SF ANL A,@RO ANl A,@Rl JB2 ANl A,#data CAll (page 2) STRT T JT 1 OA A ANL A,RO ANl A,Rl ANl A,R2 ANl A,R3 ANl A,R4 ANl A,RS ANL A,R6 ANL A,R7 CO Cl C2 C3 undefined undefined undefined undefined JMP (page S) SEL RBO JZ MOV A,PSW DEC RO DEC Rl DEC R2 DEC R3 DEC R4 DEC RS DEC R6 DEC R7 EO El E2 E3 E4 E5 E6 E7 E8 E9 EA EB EC ED EE EF undefined undefined undefined MOVP3 A,@A JMP (page 7) SEL MBO ' JNC RL A OJNZ RO,addr OJNZ Rl,addr OJNZ R2,addr OJNZ R3,addr OJNZ R4,addr OJNZ RS,addr OJNZ R6,addr DJNZ R7,addr 60 61 62 63 64 6S 66 67 S8 S9 SA 6B 6C 60 SE 6F ADD A,@RO ADD A,@Rl MOV T,A STBY JMP (page 3) STOP TCNT undefined RRC A ADD A,RO ADD A,Rl ADD A,R2 ADD A,R3 ADD A,R4 ADD A,R5 ADD A,R6 ADD A,R7 90 91 92 93 94 9S 96 97 98 99 9A 9B 9C 90 9E 9F MOVX @RO,A MOVX @Rl,A JB4 RETR CALL (page 4) CPl FO JNZ ClR C ANL BUS,#data ANL Pl,#data ANL P2,#data undefined ANLO P4,A ANLO PS,A ANLO P6,A ANLO P7,A XRl A,@RO XRL A,@Rl JB6 XRl A,#data CAll (page 6) SEl RBl undefined "MOV PSW,A XRl A,RO XRl A,Rl XRl A,R2 XRl A,R3 XRL A,R4 XRl A,RS XRl A,R6 XRl A,P7 FO Fl F2 F3 F4 FS FS F7 F8 F9 FA FB FC FO FE FF MOV A,@RO MOV A,@Rl JB7 undefined CAll (page 7) SEl MBl JC RlC A MOV A,RO MOV A,Rl MOV A,R2 MOV A,R3 MOV A,R4 MOV A,RS MOV A,R6 MOV A,R7 04 41 42 43 44 45 46 47 48 49 4A 4B 4C 40 4E 4F MNEMONIC 77 C4 CS C6 C7 C6 C9 CA CB CC CD CE CF DO 01 02 03 D4 05 OS 07 08 09 OA DB DC DO DE OF Note: All typical values have been guaranteed by characterization and are, not tested. A4 A5 AS A7 A8 A9 AA IM82C43 CMOS 1/0 Expander DESCRIPTION FEATURES The Intersil IM82C43 is a CMOS input/output expander equivalent to the NMOS 8243. It is designed to provide I/O expansion for the CMOS IM80C48 and NMOS 8048 families of single-chip microcomputers. The 24-pin iM82C43 provides four 4-bit bidirectional 1/0 ports: 8048/41 instructions control bidirectional transfers between thelM82C43 and the 8048 family microcomputers, and can execute logical ANDIOR operations directly on the data contained in the IM82C43 ports. • • • • • • • 8048/41 Compatible I/O Expander CMOS Pin-For-Pin Replacement for Standard NMOS 8243 Low Power Dissipation - Maximum 25mW Active Four 4·8it 1/0 Ports in 24-Pln DIP Logical ANDIOR Directly to Ports High Output Drive Single + 5V Supply ORDERING INFORMATION PART NO. TEMP. RANGE PACKAGE IM82C43CJG O°C to + 70°C 24 PIN CERDIP IM82C43CPG O°C to + 70°C 24 PIN PLASTIC IM82C431JG -40°C to +85°C 24 PIN CERDIP IM82C431PG -40°C to + 85°C 24 PIN PLASTIC PORT 4 PORTS PORT 2 PORT 6 PROG PSO voo P40 PSI P4' P52 P42 P53 P43 P60 cs P61 PiiOO P62 P23 P63 P22 P73 P2' P72 P20 P71 vss P70 CD033201 PoRT 7 AF038201 Figure 2: Pin Configuration (Outline dwgs JG, PG) Figure 1: Functional Diagram 9-45 Note: All typical values have been guaranteed by characterization and are not tested. 002 §co IM82C43 ! ABSOLUTE MAXIMUM RATINGS Supply Voltage (Voo - VSS) ............................... + 8V Voltage on Any Pin ............ (VSS-O.5V) to (VoO+O.5V) Power Dissipation .............................................. 1W Operating Temperature (C) ................... O'C to + 70'C (I) ................. -40'C to + 85'C Storage Temperature ...................... -65'C to + 150'C Lead Temperature (Soldering, 10sec) ................. 300·C NOTE: Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. ELECTRICAL CHARACTERISTICS DC ELECTRICAL CHARACTERISTICS (TA = Operating Temperature Range, Voo=5V±10%, Vss = OV) SYMBOL PARAMETER VIL Input Low Voltage VIH Input High Voltage TEST CONDITIONS -0.5 Output Low Voltage Ports 4-7 VOL VoO=4.5 2.0 VOO= 5.S 2.4 0.4 O.B IOL= 1.6mA Output High Voltage Ports 4-7 IOH= 3.2mA VOH2 Output Voltage Port 2 es, PROO 0.4 IOH= 1.6mA 2.B VIN = VOO to VSS -10 Supply Current ISTBY Standby Current VIN = 0 or Voo, All outputs open ~IOL Sum of all ICL from 16 Outputs SmA each pin average ·AC ELECTRICAL CHARACTERISTICS SYMBOL (TA = Operating PARAMETER 1.6 es = Voo, TEST CONDITIONS MIN BOpF Load tb Code Valid After 20pF Load 60 Ie Data Valid Before ~ BOpF Load 140 Icj Data Valid After ~ 20pF Load 20 th Floating After tk PROO Code Valid Before PROO 20pF Load Ie. es Valid Ports 4-7 Valid After tip Ports ·4-7 Valid Before/After tacc Port 2 Valid After PROG Before/After p.A 5.0 rnA 100 /lA 80 rnA PROO PROO 0 MAX UNIT 150 ns SO 100pF Load PROO 700 0 BOpF Load 9--46 Note: All typical values have been guaranteed by characterization and are not tested. = OV) 100 700 Negative Pulse Width tpo 10 Temperature Range, Voo = 5V±10%, Vss PROO PROO ta V 2.B WRITE mode, All outputs open, tk = 700ns 100 UNIT O.B IOL =20mA Output Low Voltage Port 2 Input Leakage Ports 4-7, Port 2, MAX 10L= lOrnA VOH1 IILK TYP MIN 650 IM82C43 PORT 2 FLOAT (WRITE OPERAnONI ~-----~----~~ PORT 2 (READ OPERAnONI PREVIOUS OUTPUT VALID PORTS 4-7 OUTPUT VALID tip PORTS 4-7 INPUTVAI.ID WF02950J AC TEST CONDITIONS VIH = 2.BV INPUT RISE AND FALL TIMES: 5ns (10% TO 90%) INPUT AND OUTPUT TIMING VOLTAGE REFERENCE LEVELS: O.BV AND 2.0V Figure 3: Timing Diagram 9-47 Note: All typical values have bean guaranteed by characterization and are not tested. 3 IM82C43 Write Modes iPIN DESCRIPTIONS Designator Pin Number PROG 7 Strobe input; The falling edge of PRO~ implies valid address and control information on P20-P23, while the rising edge implies valid data on P20:-P23. CS 6 Chip select input. When HIGH, it disables PROG, thus inhibiting change in output or internal status. The device has three niodes. MOVD P,A directly writes new data into the selected port with old data being lost; ORLO P,A ORs the new data with the old data and writes it to the port; and ANLO P,A ANDs new data with old data ancj writes it to the selected port. After the designated operation is performed, the data is latched and directed to the port. The old data remains latched until the new data is written by the rising edge of PROG. Function P20-P23 8-11 Four bit directional port, carrying address and control bits on the falling edge of PROG and 1/0 data on the rising edge of PROG. P40-43 P50-P53 P60-P63 P70-P73 2-5 1,21-23 17-20 13-16 Four bit bidirectional 1/0 ports. May be configured for input, tri-state output (READ mode) or latched output. Data on pins P20-23 may be directly written. ANDed, or' ORed with previous data. Vss 12 Circuit ground potential Voo 24 Posit,ive supply. Read Mode The device has one read mode. The command and port address are latched from port 2 on the high-to-Iow transition of the PROG pin~ As soon as the read operation and port address are decoded, the designated port output buffers are disabled and the input buffers enabled. The read operation is terminated by the low-to-higt) transition of the PROG pin. The port selected is switched to the high impedance state while port 2 is returned to the input mode. Normally a port will be in an output mode (write) or input mode (read). The first read of a port, following a mode change from write to read should be ignored; all following , reads are valid. This is to allow the external driver on the port to settle after the first read instruction removes the low impedance drive from the IM82C43 output. A read of any port will leave that port in a high impedance state. 1/0 Expansion The Use ot. a single IM82C43 with an 8048 or 8021 is shown in Figure 4. I'f more ports are required, more IM82C43s can be added as shown in Figure 5. Here, the upper nibble of, port 2 is used to select one of the IM82C43s. Two lines could have been decoded but that would require additional hardware. Assuming that the leftmost IM82C43 chip select is connected to P24, the instructions to select and de-,select would be: DETAILED DESCRIPTION, The IM82C43 has four 4-bit 1/0 ports, which are ad, dressed as, Ports 4 thru 7 by the processor. The following operations may be performed on these ports: • Transfer accumulatqr to pol1 (write) • Transfer port to accumulator (read) • AND accumulator to port '. OR accumulator to port All communication between the microcomputer and the IM82C43 occurs over Port 2 (P20-P23) with timing provided by an output pulse on the PROG pin of the processor. Each data transfer consists of two 4-bit nibbles: • The first contains the port address and command to the IM82C43. This is latched from Port 2 during the high-to-Iow transition of PROG and is encoded as shown in the table on page 3. • The' second contains the four bits of data associated with the instruction. The low-to-high transition of' PROG indicates the presence of data. P22 0 0 0 1 1 0 1 1 INSTRUCTION CODE Read Write ORlO ANlO P21 P20 0 0 0 1 1 0 1 1 MOV A, #OFFH OUTl P2, A Disable All Send it Initial application of power to the device forces ports 4, 5, 6, and 7 to the high impedance state, Port 2 will be in an input state if PROG or CS are high when power is applied. The first high-to-Iow transition of PROG causes the device to exit the power-on mode. The power-on sequence is initiated if VOO drops below one volt. ADDRESS CODE Port Port Port Port P24 =0 Enable IM82C43 Power On Initialization Port Address And Command Format P23 MOV A, #OEFH OUTl P2, A 4 5 6 7 9-48 Note: All typical values have been guaranteed by characterization and are not tested. IM82C43 TYPICAL APPLICATIONS n cs -PROG PROG 8021 OR 8OC4B P4 4 P5 4 P6 4 P7 4 IM82C43 .A P20-P23 . 4 v I/O > I/O 110 DATA IN P2 I/O v AF038401 Figure 4: Expander Interface Nole: The IM82C43 does not have the same quasi-bidirectional port structure as Pl/P2 of the 8048. When a "1" is written to P4-7 of the IM82C43 it is a "hard 1" (low impedance to + 5V) which cannot be pulled low by an external device. All 4 bits of any port can be switched from output mode to input mode by executing a dummy read which leaves the port in a high impedance (no pullup or pulldown) state. 4 1M80C48 ~~--------------~----------------~----------------+---------------~ AF038301 Figure 5: Using Multiple IM82C43s 9-49 Note: All typical values have been guaranteed by characterization and are not tested. Section 10 - High Reliability / Military Products and Ordering Information DIE .& WAFER ORDERING INFORMATION FET, MOSFET, AND DUAL TRANSISTOR CHIPS INTRODUCTION Intersil recognizes the increasing need for transistors and FETs in die form. To fulfill this need, Intersil offers a full line of JFETs, MOSFETs, and dual transistors in die form. Die sales do, however, present some unique problems. In many cases the chips cannot be guaranteed to the same electrical speCifications as the packaged part. This is due to the fact that leakage, noise, AC parameters and temperature testing cannot be tested to the same degree of accuracy for dice as it can for packaged devices. This is due to equipment limitations and handling problems. • • PURCHASE OPTIONS Small Signal Devices Intersil offers dice which are delivered in a number of forms: • Chips which have been electrically probed, inked, visually inspected and diced. • Wafers which have been electrically probed, inked, scribed, and mounted on rings with adhesive tape. • Wafers which have been electrically probed, inked, and visually inspected only. • • GENERAL PHYSICAL INFORMATION • • Consult individual product information sheets for dimensions. Except for the aluminum bonding pads, the chips are completely covered with vapox (silicon WAFER PROCESSING Chips are available with exact length X width dimensions plus tolerance (see individual data sheets). Chip height ranges from .003" to .006". To facilitate die attaching, chips are gold backed. Approximate thickness is 1000 angstroms. In general, dice should be attached to gold, platinum, or palladium metallization. Thin-film gold, moly-gold and most of the thick-film metallization materials are compatible. All chips have aluminum metallization and aluminum bonding pads. Typical aluminum thickness is 12,000 angstroms. QC ELECTRICAL INSPECTION VISUAL INSPECTION WAFER LASSIFICATION AND ALLOCATION QCsample assembled for I--+---!~ .pecial testing BACKUP AND BACKMETAL r - - - 100% ELECTRICAL PROBE dioxide). This minimizes damage to the chip caused by handling problems. Dice are 100% tested to D.C, +25°C electrical specifications, then visually inspected. When wafers are ordered, dice which fail the electrical test are inked out. Generally the minimum size of the die-attaching pad metallization should be at least 5 mils larger (on every edge) than the chip dimensions. For example, a 15 mil chip should be attached on at least a 25 mil pad. I . I : ....._.,..._..1 when required WAFERS" I QC VISUAL INSPECTION : I L _ _ _ _ _ _ .J PACKING AND SHIPPING LOO10601 Figure 1: Chip and Wafer Processing Flow Chart 10-1 DIE &'WAFER ORDERING lNFORMATION RECOMMENDED DICE ASSEMBLY PROCEDURE FETS' Breakdown voltage CLEANING Dice supplied in die form do not require cleaning prior to assembly. Dice supplied in wafer form should be cleaned after scribing and breaking. Freon TF in a vapor deg~easer is the preferred cleaning method. However, an alternative is 10 boil the die in TCE for five minutes with a rinse in isopropyl alcohol for 1·2 minutes. 0-20V VGS(th) 0-5 rOS(on) 5 !2min.@ VGS = 0 (VGS = 30 MOSFETs) @ ~ @ ~ 1nA 10 iJA loSS 100mA max. gfs 20,000 p.MHOS max. 10(011), IS(oll), IGSS DIE ATTACH: The die attach operation should be done under a gaseous nitrogen ambient atmosphere to prevent oxidation. A preform should be used if the mounting sur/ace has less than 50 microinches of gold and the die should be handled on the edges with tweezers. Die attach tel1)perature should be between 385°C and 400°C with eutectic visible on three sides of the die after attachment. 100V max.. @ 1 iJA Pinch-off voltage 100pA min. 5mV min. VGS1-VGS2 Electrical testing is guaranteed to a 10% LTPD. AC parameters such as capitance and switching time cannot be tested in wafer or dice form. STANDARD DIE CARRIER PACKAGE • • BONDING: Thermocompression gold ball or aluminum ultrasonic bonding may be used. The gold ball should be about 3 times the diameter of the gold wire. The ball should cover the bonding pad, but not excessively, or it may short out surrounding metallization. 1-mil aluminum wire may be used on most dice, but should not be used if the assembled unit will be plastic encapsulated. • • • • • • HANDLING OF DICE: All dice shown in this catalog are passivated devices and Intersil warrants that they will meet or exceed published specifications when handled with the following precautions: • Dice should be stored in a dry inert-gas atmosphere. • Dice should be assembled using normal semiconductor techniques. • Dice should be attached in a gaseous nitrogen spray at a temperature less than 430°C. • Easy to handle, store and inventory. 100% electrically probed dice with electrical rejects removed. 100% visually sorted with mechanical and visual rejects removed. Easy visual inspection - dice in carriers, geometry side up. Individual compartment for each die. Carriers usable in customer production area. Carrier may be storage container for unused dice. Carriers hold 25, 100, or 400 dice, depending on die size and quantity ordered. Part numbers shown in this catalog are for carrier packaging. COMPARTMENTED TRAY ELECTRICAL TEST LIMITATIONS DICE DUAL BIPOLAR TRANSISTORS LVCEO BVCBO BVEBO hFE VCE(sat) ICBO VBE1-VBE2 IB1-IB2 100V max. @ ";:1 mA 100V max. @ .~1 iJA 100V max. @ ";:10 mA ";:1000 @ ~10 iJA ~10 mV @ ";:10 mA ~100 pA @ ";:100V ~1 mV @ ~10 iJA ~2 nA CLEAR AMBER COVER CT006201 Figure 2 10-2 DIE & WAFER ORDERING INFORMATION OPTIONAL WAFER PACKAGE SUMMARY • • Of the 14 items specified for the package part, onlyB can be tested and guaranteed in die form. It is to be noted that those specifications which cannot be tested in die form can be sample tested in package form as an indicator of lot performance. Many of the tests, however, such as capacitance tests, are design parameters. The above electrical testing is guaranteed to a 10% LTPD. However, there are occasions where customer requirements cannot be satisfied by wafer sort testing alone. While the previously described tests will be done on a 100% basis, Intersi! recognizes the need for additional testing to obtain confidence that a particular customer's needs can be met with a reasonably high yield. Toward this end Intersi! has instituted a dice sampling plan which is twofold, First, random samples of the dice are packaged and tested to assure adherence- to the electrical specification. When required, wafers are identified and wafer identity is tied to the samples. This tests both the electrical character of the die and its ability to perform electrically after going through the high temperature dice attachment stage. Second, more severe testing can be performed on the packaged devices per individual customer needs, When testing is required other than that called out in the data sheet, Intersi! issues an ITS number to describe the part. Examples of tighter testing which can be performed on packaged samples is shown as follows: FET & DUAL FET PAIRS 1. Leakages to 1 pA (lGSS) 2. ROS(on) to as low as 3 ohms 3. IO(off) to 10 pA 4. lOSS to 1 amp (pulsed) fS. gfs to 20,000 Ilmho 6. 90S to 1 Ilmho 7. en noise to 5 nVlVRZ at frequencies of 10Hz to 100Hz 8. CMRR to 100dB 9. Ll(VGS1-VGS2)/LlT down to 10llVrC to an LTPD of 20% 10. gm match to 3% 11. loss match to 3% TRANSISTOR PAIRS 1. Leakages to as low as 1pA 2. Beta with collector current up to 50mA and as low as 100nA 3. tr up to 500MHz with collector currents in the range of 101lA to 10mA 4. Noise measurements as low as 5nV / VRZ from 10Hz to 100kHz 5. Ll(VBE1- VBE2)/ LlT to 10IlV JOC to an LTPD of 20% VISUAL INSPECTION Individual chips are 100% inspected to MIL-STD-750, Method 2072 or, as an option, MIL-STD-B83, Level B. Inspection is done to an LTPD of 20%. As an option, Intersi! offers S.E.M. capability on all wafers. 100% electrically probed - rejects inked. 10% extra good dice included (no charge) to cover possible breakage and/or visual rejects. Preferred for production quantities. Lowest cost. Wafer is supplied unscribed. For wafer package - replace "D" in catalog number with "W", e.g.: 2N4416/D (2N4416 dice in carrier) becomes 2N4416/W (2N4416 dice in wafer). • • • • FOAM MYLAR FILTER PAPER .~_ ..._ FILTER PAPER CTOO64ot NOTE:'lntersil reserves the right to improve device geometries and manufacturing _processes as required. These improvements may result in slight geometry changes. However, they will not affect the electrical limits, basic pad layouts or maximum die sizes in this catalog. Figure 3 ELECTRICAL TEST CAPABILITY As an example of how to use the capability chart to see what Intersil actually guarantees and tests for, on a 100% basis, compare the 2N4391 in a TO-1 B package to the 2N4391 delivered as a chip ELECTRICAL TEST SPEC. 2N4391 IN A TO-1S 2N4391 CHIP IGSS @ 25C 100pA max, 100pA max. BVGSS 10(011) @ 25C 40V min. 40V min. 100pA max. 100pA max. VGs(forward) See note 1 IV max. VGS(oll) or Vp 4V to 10V 4V to 10V lOSS 50 to 150mA 50 to 150tnA VOS(on) O.4V max. 0.4 max. rOS(on) 30n max. 30n max. Ciss 14pF max. Guaranteed by Design Crss 3.5pF max. Guaranteed by Design id 15ns max. Guaranteed by Design tr 5ns max. Guarantee!! by Design loft 20ns max, Guaranteed by Design tf 15ns max. Guaranteed by Design NOTE 1. ThIS parameter IS very dependent upon quahty of metahzation to which chip is attached. 10-3 rr. ~ DIE' & WAFER ORDERING INFORMATION CMOS INTEGRATED CIRCUIT CHIPS INTRODUCTION • In addition to discrete device chips, Intersil also offers a full line of metal gate CMOS integrated circuits in die form. Die sales, however, present. some unique problems: In many cases, chips cannot be guaranteed to the same electrical specifications as can the packaged parts. This is because leakage, noise, AC parameters and temperature testing cannot be guaranteed to the same degree of accuracy for di.ce as for packaged devices. • • • Dice are 100% tested to DC electrical specifications, at 25·C then visually inspected according to, MIL-STD-883, Method 2010.2, condition B, with modifications reflecting CMOS requirements. Bonding pad dimensions are 4.0 x 4.0 mils minimum. Storage temperature is -40·C to + 150·C. Guaranteed AQL Levels: 2.0% Visual 1.0% functional electrical testing 4.0% Parametric DC testing GENERAL PHYSICAL INFORMATION • Chips are available with precise length and width dimensions, ±2 mils in either dimension. • Chip thickness is 9 to 20 mils, depending on device type. • Bonding pad and interconnected material is aluminum, 10K to 15K A thick. • Each die surface is protected ,by planar passivation and additional surface glassivation except for .bonding pads and scribe lines. The surface passivation is removed from the bonding pad areas by anHF etchan1;. bonding pads may appear discolored at low magnification due to surface roughness of the aluminum caused by the etchant. • WAFER PROCESSING ~-----VISUAL INSPECTION • OC ELECTRICAL INSPECTION + CARRIER LOADING t t WAFER CLASSIFICATION & ALLOCATION SCRIBE & FRACTURE PACKING & SHIPPING 100% 100% ELECTRICAL PROBE CLEAN , I + Ii '--- + 100% VISUAL + QC VISUAL -- QCsampie assembled for spec:ial testing whanrequi..... I LOO10701 Figure 4: CMOS Integrated Circuit Chip Processing Flow Chart 10-4 DIE & WAFER ORDERING INFORMATION RECOMMENDED DICE ASSEMBLY PROCEDURES STANDARD DIE CARRIER PACKAGE • • CLEANING Dice supplied in die form do not require cleaning prior to assembly. However, if cleaning is desired, dice should be subjected to freon TF in a vapor degreaser and then vapordried. • • RECOMMENDED HANDLING • • • Intersil recommends that dice be stored in the vacuumsealed plastic bags which hold the dice carriers. Once removed from the sealed bags, the dice should be stored in a dry, inert-gas atmosphere. Extreme care should be used when handling dice. Both electrical and visual damage can occur as the result of an unclean environment or harsh handling techniques. • • DIE ATTACH The die attach operation should be done under a gaseous nitrogen ambient atmosphere to prevent oxidization. If a eutectic die attach is used, it is recommended that a 98% gold/2% silicon preform be used at a die attach temperature between 385°C and 435°C. If an epoxy die attach is used, the epoxy cure temperature should not exceed 150°C. If hermetic packages are used, epoxy die attach should be carried out with caution so that there will be no "outgassing" of the epoxy. Easy to handle, store and inventory. 100% electrically probed with electrical rejects removed. 100% visually sorted with mechanical and visual rejects removed. Easy visual inspection - dice are in carriers, geometry side up. Individual compartment for each die. Carriers usable in customer production area. Carrier may be used as storage contained for unused dice. . Carriers hold 25, 100 or 400 dice, depending on die size and quantity ordered. Packing of integrated circuit dice in carriers is identical to illustration shown earlier for discrete device, except that IC chips are not available in vial packs or in wafer form. CHANGES Intersi'I reserves the right in improve device geometries and manufacturing processes without prior notice. Although these improvements may result in slight geometry changes, they will not affect dice electrical limits, pad layouts,or maximum die sizes. USER RESPON$IBILITY Written notification of any non-conformance by IntersH of IntersH's dice specifications must be made within 75 days of the shipment date of the die to the user. Intersil assumes no responsibility for the dice after 75 days or after further u~er processing such as, but not limited to, chip mounting or wire bonding. BONDING Thermocompression gold ball or aluminum ultrasonic bonding may be used. The wire should be 99.99% pure gold and the aluminum wire should be 99% aluminum/1 % silicon. In either case, it is recommended that 1.0 mil wire be used for normal power circuits. 10-5 HIGH-RELIABILITY/MILITARY·PRODUC1S 100% INTEGRATED CIRCUIT PROCESSING 38510 Per MIL-M-38510 Slash Sheet Intersil is committed to build and process integrated circuits for the Military/High-Rei market segments in conformance with MIL-STD-883 and MIL-M-38510. Any customer drawing which specifies testing as set forth in these documents will be automatically processed to the latest revisions of MIL-STD-883 and MIL-M~3851 0, unless specific requests are made to. the contrary. . HI·REL PROCESS OFFERINGS 38510 PRODUCTS Intersil holds QPU status on a number of JAN MIL-M38510 products as listed herein .. As required by JAN specifications, these products are fabricated, assembled, and 100% processed within the United States and are fully compliant with all the requirements, procedures, and methods as given in MIL-M-38510 Revision F and MIL-STD-883 Revision C. 883B PRODUCTS The 8838 flow diagram represents product processed in accordance with Method 5004 and Method 5005 of MILSTD-883 Rev. C, 'Glass 8. Most products listed as /8838 herein are availilble as compliant to paragraph 1.2 of MILSTD-8838 Rev. C while others are available only as noncompliant at this time (Allowances for sale of non-compliant /8838 products are covered in nOtice 3 of MIL-STD-883 Rev. C). Check with Intersil Custom!lr Service as to the compliant status of individual product offerings at any point in time. . HR PRODUCTS The HR flow diagram, newly offered by Intersil, represents high reliability hermetic product utilizing many, but not necessarily all, of the test methods and requirements of MIL-STD-883 Rev. C, to be used in high reliability applications where some deviations from Rev. C may be justified and economic advantages realized. Such product may not be branded /8838 but may be branded /HA or a special brand as required as purchase order. FH'lal Elec.tfleal per Apphcable Device SpeCification Static, DynamIC, FunChonal, & SWltchmg BR PRODUCTS @25-C SlatlC @ Mall Operatmg Temperatur. The 8A flow diagram, newly offered by Intersil, represents hermetic or plastic encapsulated product intended for application in the computer, industrial, or hi-rei commercial marketplace. In addition to. 100% burn-in, many other reliability processing steps are included to enhance quality levels on shipped parts and to improve long term reliability characteristics. Such product may be branded /8A or as required by purchase order. Contact Product Marketing for availability and pricing on 8838, HA and 8A products not listed here. SIaliC @ Mm. Operating Temperature Quahty Conformance Inspection per Method 5005 Group A" Table I, Each lot per Applicable Device Specification SUBaR' - 100% DISCRETE DEVICE PROCESSING ,, 1 ·•• - 7 - 8 --I. • Intersil also offers several QPL-approved discrete products carrying the JANTX deSignation, which are screened and qualified to the latest revisions of MIL-STD-750 and MIL-S-19500. -11 TEST Sialic TEMP 25'C SIalic Mall. Stallc DynamiC 2S"C DynamiC Max. DynamiC Func Func Mm.lMa-.. M,. M,. ,.·C SWitch ,.·C SWitch Switch Max. M,. Group B: Table liB, Each Inspection 1..01. Gl"OIJpC: Table Ill, 3 Mo. Periodic Group D: Table IV, 6 MOo Periodic 10-6 LTPO HR (1, 2, 4) In-House Hi Rei Processing Flows Performed 100% Unless Otherwise Noted Applies to IC's and Hybrids 18838 (1, 2, 4) Per MIL-STD-883 Rev. C, Class 8 Screening per Method 5004 lracsability to Wafer & 'nspec. Lots Internal Visual Method 2010, Condo B I I I Internal Visual Method 2010, Cond B Stabilization Bake Method 1008, Condo C I Stabilization Bake Method 1006, Condo C Temperature Cycle Meth~ I I Temperature Cycle Method 1010. Condo C Constant Acceleration Method 2001, Condo E, 30 k.g I I Constant Acceleration Method 2001, Condo E, 30 kg Hermeticity Fine & Gross, Method 1014 I I Hermeticity Fine & Gross, MethOd 1014 Initial (Pre-B.!.) Elec. Parameters per Applicable Device Specification I I Initial (Pre-a.L) Elee Parameters per Burn-In Test 160Hrs. Min., TA = -t12Sacor Equiv. Applicable Device Speciitcallon ~ I I Burn-In Test ~ ____ •______ M_"h~Ord~lO_15________~ Elec Test/Applicable DevicQ Spec. (3) I I Intenm (Post B.I.) Elee. Parameters per Applicable Devic;e Specification 5% Defective Allowable (POA) Unless QA Acceptance Sample per Applicable Device S~c. (3) Otherwise Specified. DC@MaxOC I DC@Min"C Func. @"25OC Func.·@MinfMaxo AC@25OC I External Visual per Jnste1siJ Spac. I QCIData Group B "" 6 Weeks Group C .. 12 Months Group 0 ",·12 Months Quality Conformance Inspec. per Method 5005 Group A: Table I, Ea. Lot per Applicable Oevice Spec -t -2 -3 -4 .- 5 -6 -7 -. -to -11 tEST Static StatIC Static Dynamic Dynamic DynamiC TEMP 250C Male. Func Func 250C Min.lMax 250C Male. Mm. Min. 250C Ma><. Mm. Switch SWitch Switch LTPO .. 5 lTPO = 7 lTPD .. 7 LTPD = 5 LTPD.10 LTPD = 5 DC@2S"C.: Final Elect. per Applicable Dalliee Specification, Stalic, Dynamic, Functional, & SWitchmg@25"C Stalic@Max.OperatingTemperature Slatlc@Min.OperatingTemperature SUBGRP 1010, Condo C I LTPD 2 Device Marking InterSlI Logo Product Code fHR a_Code 3 5 2 3 5 2 5 2 3 5 Group B: Tabie liB, Ea. Inspection Lot Group C' Table III, Twelve Mo. Periodic Group D. Table IV, Twelve Mo. Periodic I External Visual Method 2009 I Device Mark./ng Intersil Logo Product Code 1883B Date Code 10-7 BR (1,2) BI (1,2) Performed 100%·Unless Otherwise Noted Performed tOO% Unless Otherwise Noted APPLIES TO IC'S AND HYBRIDS APPLIES TO IC'S ANY HYBRIDS' AND TRANSiStORS \ FOOTNOTES: (1) Governing Document, Order of Precedence A. Purchase Order Contract e, Detail Specification C, This Flow (2) (3) (4) Where test methods are indicated, the test will be performed to MIL-STD-883. With exception of parameters guaranteed by basic design, not tested. Does not apply to plastic packages. (5) May be performed any time after encapsulation. (6) For Plastic 12 Hr. @ 140·C± 10·C. Weekly Reliability Monitor. For Plastics-Thermal Shock Method 1011. (7) (8) 10-8 .O~OIb Standard Product (1, 2) Performed 100% Unless Otherwise Noted APPLIES TO IC'S AND HYBRIDS AND TRANSISTORS FOOTNOTES: (1) Governing Document, Order of Precedence A. Purchase Order Contract B. Detail Specification C. This Flow (2) Where test methods are indicated, the test will be performed to MIL-ST0-883. (3) With exception of parameters guaranteed by basic design, not tested. (4) Does not apply to plastiC packages. May be performed any time after encapsulation. For Plastic 12 Hrs @ 140·C ± 10·C. Weekly Reliability Monitor. For Plastics-Thermal Shock Method 1011. (5) (6) (7) (8) 10-9 .D~DIL High-ReliabilityIMilitary Products Discrete Products. JA.NTXV, 'JANTX and JAN Per MIL-S-19500and MIL-STD-750 Performed 100% unless otherwise noted JANTXV JAN 10-10 HIGH RELIABILITY PROCESSING PROCESS FLOW SELECTION GUIDE -STANDARD IC PROCESS FLOWS38510 JAN ON-SHORE BUILD WAFER LOT TRACEABILITY PRE-CAP VISUAL M2010B STABILIZATION BAKE TEMPERATURE CYCLE CENTRIFUGE HERMETICITY ELECTRICAL TEST BURN-IN ELECTRICAL TEST POST BURN-IN PDA D.C. ELECT. @ 3 TEMPS. A.C. ELECT. @ 25°C GROUP A SAMPLE INSPECTION GROUP B EAC INSP. LOT STRICT DOCUMENTATION GROUP C & D INSPECTION X X X X X X X X X X X X X X X X S 883B REV. C. X X X X X X X X X X X X X X X S HR BR X X X X X X X X X X X S X X X X X X S X S G G m COMMERCIAL NOTES 2 X X S S S S S S 3 X X X X X X 5 S 3 3 NOTES: 1. ONLY MAJOR IC PROCESSING DIFFERENCES ARE SHOWN HERE. SEE DETAIL FLOWS ON FOLLOWING PAGES FOR MORE SECIFIC DATA. CHART IS FOR HERMETIC PACKAGES. ONLY MINIMUM REQUIREMENTS ARE SHOWN. 38510 IS CLASS B. 2. WAFER LOT TRACEABILITY MAINTAINED AND AVAILABLE AT EXTRA CHARGE FOR OTHER PRODUCTS. 3. S = SAMPLE TEST ON REGULAR BASIS. X = PERFORMED 100%. G = GENERIC DATA. 4. INTERSIL ALSO OFFERS "SPECIALS" TO SPECIFIC CUSTOMER SCD'S. SPECIALS ARE AVAILABLE WITH ANY OF THE ABOVE PROCESSING PLUS SEM, PIND, ETC. HIGH RELIABILITY PROCESSING PROCESS FLOW SELECTION GUIDE -STANDARD TRANSISTOR PROCESS FLOWS- ON-SHORE BUILD INSPECTION LOT TRACEABILITY PRE-CAP VISUAL STABILIZATION BAKE TEMPERATURE CYCLE CENTRIFUGE HERMETICITY ELECTRICAL TEST BURN-IN ELECTRICAL TEST POST BURN-IN PDA D.C. ELECT. @ 25°C A.C. ELECT. @ 25°C GROUP A GROUP B EACH INSP. LOT STRICT DOCUMENTATION GROUP C INSPECTION JANTXV X X X X X X X X X X X X X X X X S JANTX JAN X X X X X X X X X X X X X X X X X X X S m CQMMERglAL NOTES 2 X X S S S S S S 3 X X X X X S X S X X X G X X X G 3 NOTES: 1. ONLY MAJOR TRANSISTOR PROCESSING DIFFERENCES ARE SHOWN HERE. SEE DETAIL FLOWS ON FOLLOWING PAGES FOR MORE SPECIFIC DATA. CHART IS FOR HERMETIC PACKAGES. ONLY MINIMUM REQUIREMENTS ARE SHOWN. 2. WAFER LOT TRACEABILITY MAINTAINED AND AVAILABLE AT EXTRA CHARGE FOR OTHER PRODUCTS. 3. S = SAMPLE TEST ON REGULAR BASIS. X = PERFORMED 100%. G = GENERIC DATA. 4. INTERSIL ALSO OFFERS "SPECIALS" TO SPECIFIC CUSTOMER SCD'S. SPECIALS ARE AVAILABLE WITH ANY OF THE ABOVE PROCESSING PLUS SEM, PIND, ETC. 10-11 MIL~STD·883 'REV. C, CLASS B '" I I GROUP A ELECTRICAL TESTS I SUBGROUP 1 SUBGROUP 3 SUBGROUP 4 SUBGROUPS SUBGROUP 7 SUBGROUP 9 SUBGROUP 11 STATIC (DC) TESTS@ 25°C STATIC (DC) TESTS@ MIN. TEMP. DYNAMIC TESTS@ 25'C DYNAMIC TESTS@ MIN. TEMP. FUNCTIONAL TESTS @25'C SWITCHING (AC) TESTS @25'C SWITCHING (AC) TESTS @ MIN. TEMP. LTPD=2 LTPD=5 LTPD=2 LTPD=5 LTPD=2 LTPD=2 LTPD=5 SUBGROUP 2 SUBGROUP 5 SUBGROUP 9 SUBGROUP 10 STATIC (DC) TESTS@ MAX. TEMP. DYNAMIC TESTS@ MAX. TEMP. FUNCTIONAL TESTS@ MAX. & MIN. TEMPS. SWITCHING (AC) TESTS @ MAX. TEMP. LTPD=3 LTPD=3 LTPD=5 LTPD=3 Notes: 1. The specific parameters to be included for 1ests In each. subgroup shall be specified in the applicable procurement document. Where no parameters have been Identified in a particular subgroup or test within a 2. ~U~~~~~a~p~~: ~et~:~~~~ ~~~i~~~of~~ :::t\~~.b~~~~ ;q~~!d size exceeds the lot size, 100 a)g inspec- tion shall be allowed. 3. Maximum accept number is 2. I GROUP B I SUBGROUP 1 SUBGROUP 3 SUBGROUP 5 SUBGROUP 7 METHOD201S PHYSICAL DIMENSIONS METHOD 2003 SOLDERABILITY METHOD 2011 BOND STRENGTH ' METHOD 1014 FINE'AND GROSS LEAK LTPD=15 LTPD=5 LTPD,,15 OTY=2(O) SUBGROUP 2 SUBGROUP 4 METHOD 2015 RESISTANCE TO SOLVENTS METHOD 2014 INTERNAL VISUAL AND MECHANICAL OTY = 4(0) OTY = 1(0) Notes: 1. Required only if package contains a desiccant. 2. Where no LTPD IS shown, OTY =sample size and f#) =maximum allowed rejects, 10'...12 SUBGROUP 6 [METHOD 1018 INTERNAL WATER·VAPOR CONTENT OTY = 3(0) • (NOTE 1) .n~nll I GROUP C I J SUBGROUP 1 SUBGROUP 2 METHOD 1005 STEADY STATE LIFE TEST METHOD 1010 TEMPERATURE CYCLING LTPD=5 METHOD 2001 CONSTANT ACCELERATION METHOD 1014 SEAL LTPD=15 I GROUP D I SUBGROUP 1 SUBGROUP 3 SUBGROUP 5 SUBGROUP 7 METHOD 2016 PHYSICAL DIMENSIONS METHOD 1011 THERMAL SHOCK METHOD 1009 SA.LT ATMOSPHERE METHOD 2025 ADHESION OF LEAD FINISH LTPD=15 METHOD 1010 TEMPERATURE CYCLING METHOD 1014 SEAL LTPD=15 LTPD=15 METHOD 1004 MOISTURE RESISTANCE SUBGROUP 2 METHOD 2004 LEAD INTEGRITY METHOD 1014 SEAL LTPD=15 METHOD 1014 SEAL LTPD=15 SUBGROUP 4 SUBGROUPS SUBGROUP 8 METHOD 2002 MECHANICAL SHOCK METHOD 1018 INTERNAL WATER·VAPOR CONTENT METHOD 2024 LID TOROUE METHOD 2007 VARIABLE FREQUENCY VIBRATION METHOD 2001 CONSTANT ACCELERATION METHOD 1014 SEAL LTPD=15 Notes: 1. APplies it package has a Frit·SeaI. 2. Where no LTPD is shown, arv = sample size and (I) = maximum allowed rejects. 10-13 [ OTY = 5(0) QTY=3(O) (NOTE 1) Ordering Information for MIL-S-19500 Processed Devices The following Intersil devices are available asa standard Processed to MIL-S-19500. To order, order by the part number as shown below: Part Number 2N3821 JAN 2N3821JTX 2N3821JTXV 2N3823JAN 2N3823JTX 2N3823JTXV 2N4091 JAN 2N4091JTX 2N4091JTXV 2N4092JAN 2N4092JTX 2N4092JTXV 2N4093JAN 2N4093JTX 2N4093JTXV 2N4856JAN 2N4856JTX MIL-8-19500 Slashsheet MIL-S-19500/375 MIL-S-19500/375 MIL-S~19500/375 MIL-S-19500/375 MIL-S-19500/375 MIL-S-19500/375 MIL-S-19500/431 MIL-S-19500/431 MIL-S-19500/431 MIL-S-19500/431 MIL-S-19500/431 MIL-S-19500/431 MIL-S-19500/431 MIL-S-19500/431 MIL-S-19500/431 MIL-S-19500/385 MIL-S-19500/385 Part Number 2N4856JTXV 2N4857JAN 2N4857JTX 2N4857JTXV 2N4858JAN 2N4858JTX 2N4858JTXV 2N5114JAN 2N5114JTX 2N5114JTXV 2N5115JAN 2N5115JTX 2N5115JTXV 2N5116JAN 2N5116JTX 2N5116JTXV MIL-8-19500 Slashsheet MIL-S-19500/385 MIL-S-19500/385 MIL-S-19500/385 MIL-S-19500/385 MIL-S-19500/385 MIL-S-19500/385 MIL-S-19500/385 MIL-S-19500/476 . MIL-S-19500/476 MIL-S-19500/476 MIL-S-19500/476 MIL-S-19500/476 MIL-S-19500/476 MIL-S-19500/476 MIL-S-19500/476 MIL-S-19500/476 Ordering Information for MIL-M-38510 Slash Sheet Processed Devices The following Intersil devices are available as a standard processed to the 38510 Slash Sheets. To order, use the part number as shown below: . Part Number JM38510/11101BAC JM38510/11101BCC JM38510/11101BIC JM38510/11102BAC JM38510/11102BCC JM38510/11102BIC 'JM3851 0/111 03BAC JM38510/11103BEC JM38510/11104BAC JM38510/11104BEC JM38510/11105BAC JMs8510/11105BCC JM38510/11105BIC JM3851 0/111 06BAC JM38510/11106BCC JM38510/11106BIC JM38510/11107BAC JM38510/11107BEC JM3851 0/111 08BAC JM3851 0/111 08BEC JM3851 0/ 12704BVC Generic NUmber (DG181AL) (DG181AP) (DG181AA) (DG182AL) (DG182AP) (DG182AA) (DG184AL) (DG184AP) (DG185AL) (DG185AP) (D~187AL) (DG187AP) (DG187AA) (DG188AL) (DG188AP) (DG188AA) (DG190AL) (DG190AP) (DG191AL) (DG191AP) (AD7541TD) 10-14 Ordering Information for DESC Drawing Processed Devices The following Intersil devices are available as a standard processed to the DESC Drawings. To order, use the part number as shown below: Part Number Generic Number Part Number Generic Number DESC770S2-01 EB DESC770S2-01 EX DESC770S3-01 EB DESC770S3-01 EX DESCS1 00S-01 AC DESCS100S-01AX DESCS1 00S-01 EB DESCS1 00S-01 EX DESCS100S-02AC DESCS100S-02AX DESCS100S-02EB DESCS100S-02EX DESCS100S-02IC DESCS100S-02IX DESCS100S-03AC DESCS100S-03AX DESCS100S-03EB DESCS100S-03EX DESCS100S-04AC DESCS100S-04AX DESCS100S·04EB DESCS100S·04EX (IHS10SMJE) (IHS10SMJE) (DG201AK) (DG201AK) (lHS040MFD) (IHS040MFD) (IHS040MJE) (IHS040MJE) (IHS041 MFD) (IHS041 MFD) (IHS041 MJE) (IHS041 MJE) (IHS041 MTW) (IHS041 MTW) (IHS042MFD) (IHS042MFD) (IHS042MJE) (IHS042MJE) (IHS043MFD) (IHS043MFD) (IHS043MJE) (IHS043MJE) DESCS100S-0SAC DESCB 1OOS-OSAX DESCB 1OOS-OSEB DESCS100S-0SEX DESCB 1OOS-OSAC DESCS100S-0SAX DESCS100S-0SEB DESCS100S-0SEX DESCS1 00S-07AC DESC81 00S-07AX DESCS100S-07EB DESCS100S-07EX DESCS100S-0SAC DESCS100S-0BAX DESCS1 OOS~OSEB DESCS100S-0SEX (IHS044MFD) (IHS044MFD) (IHS044MJE) . (IHS044MJE) (IHS04SMFD) (IHS04SMFD) (IHS04SMJE) (IHS04SMJE) (IHS04SMFD) (IHS04SMFD) (IHS04SMJE) (IHS04SMJE) (IHS047MFD) (IHS047MFD) (IHS047MJE) (IHS047MJE) 10-15 HIOM 'RELIABILITY PROCESSING GLOSSARY OF MII,.ITARY/AEROSPACE HI-REL DEFINITIONS/TERMINOLOGY .. GROUP B ~ For Integrated Circuits, Package-Related Environmental Tests are performed for Class B. Products per MIL-STD-883, Method 5005 (For Revision Products) or per the "HR" program. For Class S, GroupS includes Additional Processing, including steady state life test. ACCELERATED BURN-IN - Same as ."Burn-In", except that testing is carried out at an increased temperature (nominally 150°C) for reduced' ewell' time. Accelerated testing is not .permissible for .Class·S devices. ATTRIBUTES DATA - Go-No-Go data. Strictly pass/fail and number of rejects recorded. A typical requirement for post burn-in electrical tests on Class B devices. BASELINE - Technique used to define manufacturing and test processes at time of order placement. Baselining usually involves development of a Program Plan and an Acceptance Test Plan which include flow charts, specification identification/revision letters,.QA procedures; and actual specimens of certain' important specifications. During subsequent manufacture and testing of parts, it is not permissible to make revisions or changes to any of the identified specifications, unless prior notification and possible customer approval occurs. BURN-IN - A screening' operation. Devices are subjected to high temperature (typically 125°C) and normal power/ operation for 160 hours (Class B devices) or 240 hours (Class S devices). CLASS SAND B INTEGRATED CIRCUITS - These classes set forth the screening, sampling and document control requirements for IC testing. Terminology is defined in MILM-38510 and in Test Methods 5004 and 5005 of MIL-STD883. Classes, Sand B are sometimes referred to as "Levels S and B." The Classes cover: CLASS S - For space and satellite programs. Includes Condition A Precap, SEM, 240 hour burn-in, PIND test and elaborate qualification and quality conformance testing. Normally requires extensive data, documentation; and program planning. Formerly referred to as Class A. Class S devices are quite expensive. . CLASS B - For manned flight, and includes most frequently-procured military integrated circuits. Used for all but highest reliability requirements. Class B uses burn-in, pre-cap visual, etc. CORRECTIVE ACTION - Those actions which a given supplier (or user) agrees to perform so that a detected problem does not reoccur. DESC - Defense Electronic Supply Center, located in Dayton, Ohio. DESC LINE CERTIFICATION - The document which approves a supplier's facilities as an appropriate site to manufacture JAN parts. DPA - Destructive Physical Analysis. Finished products are opened and analyzed, in accordance with customer or MIL Spec criteria. ' For Diodes and Transistors, both enviromental and life test are performed per MIL-S-19500. GROUP C - For Class B or "HR" program I.Co's, DieRelated Tests are performed. Not required for Class S I.Co's. Group C includes life testing temperature cycling and constant acceleration per MIL-M-3851 o. For diodes transistors, Group C includes both environmental and life tests per MIL-l:?-19500. . . GROUP D - Additional Package-Related Environmental Test for I.Co's for Class B or Class S products or per the "HR" program. JAN"":'" "Joint Army Navy", a registered trademark of the U.S. Government. The JAN marking denotes a device which is in full compliance to MIL-M-38510 or MIL-S-19500. JAN TX - A JAN-qualified diode or transistor which has been subjected to additional screening and burn-in tests. MIL-S-19500 only. JAN TXV - A JAN-qualified diode or transistor ~hich, in additional to burn-in testing, has been subjected to additional screening including pre-cap visual inspection, as witnessed by a government source inspector. Equivalent to Class B screening for integrated circuits. MIL-S-19500 only. LTPD-Lot Tolerance Percent Defective is a sampling plan measurement criteria. MIL-M-38510 - The general military specification for integrated circuits. M38510/XXX - Detail specifications (or "slash sheets") for integrated circuits. For example, the 101 specification covers Operational Amplifiers, with electrical requirements for the 741, LM101, 108, 747 types, etc. MIL-S-19500 - The general military specifications for diodes and transistors. MIL-S-19500/XXX - Detail specifications (or "slash sheets" for diodes and transistors. MIL-STD-750 - Specifies Test Methods for diodes and transistors, such as burn-in, pre-cap, temperature cycling, etc. MIL-STD-883 - Specifies Test Methods for integrated circuits, such as pre-cap, burn-in, hermeticity, storage life, etc. NPFC - Naval Publications and Forms Center, Philadelphia Printing and distribution source for military speCifications. GENERIC DATA - Data pertaining to a device family; not necessarily the specific part number ordered by the customer, but representative of parts in the family. Group B, C and D generic data is frequently requested in lieu of the performance of special qual tests on a given order. GROUP A - Sample electrical test which are performed on each lot. Group A is defined in Test Method 5005 for integrated circuits and in MIL-S-19500 for diodes and transistors. NON-STANDARD PARTS-In government terminology, refers to non-JAN devices. Non-standard parts are typically covered· by user Source Control Drawings (SCD). NON-STANDARD PARTS APPROVAL-Approval by the government (frequently RADC) of non-JAN parts, typically on source control drawings, for use in a military system or program. This approval is essentially a waiver which permits non-JAN 38510 parts in a system which otherwise mandatorially requires JAN parts only. 10-16 HIGH RELIABILITY PROCESSING OPERATING LlF£ TEST - Same conditions as burn-in, biJt duration is usually 1000 hours. This is a sample test , (Qualification and Quality Conformance). PCA - Parts Configuration' Analysis. A new term which has mucn the same meaning as "Baseline". PDA - Percent Defective Allowable. Criteria sometimes I applied to burn-in screening. MIL-STD-883 and MIL-M38510 typically require either a 5% or 10% PDA. A 10% PDA means that if more Uian 10% of that lot fails.aS a result of burn-in (as determined by pre- and 'post-burn-inelectrical tests) the entire lot is considered to have failed. PDS - Parameter Drift Screening. Measures the changes (4s) in electrical parameters through burn-in. Common for Class S devices. 'PIND ...... Particle Impact Noise Detection, This is an audio screening test to locate and eliminate those parts which 'have loose internal particles. The test can isolate a high percentage of defectives" even in otherwise gooo lots. ,Repeatability of the tests is que~tionable. Th~s test is one of the screening .items for Class S integrated circuits., 'PREPARING ACTIVITY ~ The organizational element of .the government which writes specifications, frequently RADC. PRESEAL VISUAL:- A s,eteiming inspection which in,..valves, observation of a die' through a microscope. ,PROCURING' ACTIV1TY- Per MIL-M-38510, this is the QrganizationaJ element, in ..the government which contracts fo,r ar:ticles or services. The Procuring Activity can be a subcontractor (O",M); providing that the government delega~es this respon'sibility. In such a case, the subcontractor. does' not have the power 'to grant waivers, unless this authority has been approved by the government. PRODUCT RELI~BILITY - Pertains to the level of quality of a product olier a Period of. time. Reliability is usually measured or expressed in terms of Failure Rate (such as "0.002% per 1000 hours) or MTBF (mean time between failure in hours). MTBF is the reciprocal of Failure Rate. QPL:-Qualified Products l,.ist. In the case of JAN products, QPLs areideritifi~d as QPL"3851 0 for' integrated "circuits and QPL~1950,Ofordiodes and transistors. QPL"38510 revisions: o.cc'ur approximately quarterlY and QPL,'. 1950Qrevisions obcur approximately annually, In the inter'1m, thE! government wiU notify suppliers via letter of any new device qualifications which may have" been granted. Two 'types. of QPLs exist for MIL-M-38510: , PART U QPL - This is an interim or temporary QPL 'which is grante,d on the basis of having obtained line, 'certific,ation aAd approval of, an Application to Condvct Qualifipation, Testing. A PART II QPL is automatically Voided after 90 ,days whenever 'any ,',one supplier is granted a PART I QPL. PART I QPL - A "permlment" QPL, granted after all' qualification testing is completed and test data is approved by the government. QUALIFYING ACTIVITY - Per MIL-M-38510, the organi, zationaf' element in the government which designate,s , bertificatiorr (i.e., DESC). , QUALIFICATION TESTING -Initial one-time sample tests which are performed to determine whether device types and processes are good. For integrated circuits, this usually means testing to Groups A, B, C and D per MIL~STD-883. For diodes and transistors, this, usually means testirig to Groups A, Band C per MIL-STD-750. QUALITY CONFORMANCE TESTING _ These are sample tests which must be performed at prescribed intervals per MIL-M-3851 0 or MIL-S-19500, assuring that processes remain in control and that individual lots are passed. RADC - Rome Air Development Command, Griffiss AFB, New York. This is the government organization which created semiconductor specifications; MIL-M-38510 and MIL-STD,883 were developed at RADC. This Air Force unit develops specifications for all U.S. military services. RADC is frequently involved in granting waivers for non-standard parts for Air Force systems. READ AND RECORD DATA;- Same as variable data. REWORK PROVISION - For semiconductor devices, permissible rework of parts is usually limited to re-testing (screening), re-marking, and cleaning . SCREENING - Operations which are per(ormed on devices on a 100% .basiS (not ~mpling).Exampres,include pre-cap visual, burn~in hermeticityi1OO% electrjeaLtest, etc. SEM INSPECTION -Inspection:by ScarJflingElect/'on Mi~ croscope. Die sampleS are examined at VI~ry high magnification for metallization ,defects. , , , SERIALIZATION - The marking .of a unique part number on each part, with assigned numbers marked sequentially/ consecutively. SCDs - Source Control Drawings. Typically user-generated drawings which require development of internal IC vendor sheets. Although each drawing may be slightly different, all will be modelled around MIL-M-38510, MIL-S19500, MIL-STD-883, or MIL-STD-750. SOURCE INSPECTION - Can be either Customer Source Inspection (CSI) or Government Source Inspection (<3SI). Source Inspection is initjated via purchAse order, and,can typically occur at one or more points: ' • ' Pre-cap Visual. Expensive and adds to throughput time. • Final Inspection. ' ,TRACEABILiTy - A production and manufacturing,COritrol system which includes: '. ,..." • Wafer run identification n u m b e r . ' , . ' Date pre-cap visu/ifinspection was performed, Identity of inspedoT""I:\I1d:specification number a"d revision. . . ,: ". ':. 1-, '. :.,' ' . .Lot' number and inspection histQry. • QA Group A electricalrE;iSults. VARIABLE DATA - Read and recorded electrical measurem'ents (parametriC values); Usually, required for pre- and post-burn-in electrical tests. Also common for Group C and D testing. ' .... lQ-,-17 rr:t Ira!. PART NUMBERING SYSTEM Examples of Intersil Part Numbers BASIC ELECTRICAL TEMF PKG PIN OPTION ICH8500 A ICL8038 C C' IH5040 ORDER # T V ICH8500ACTV C P 0 ICL8038CCPD M 0 E IH5040MDE ON ALL INTERSIL IC PART NUMBERS. THE LAST THREE LETTERS ARE TEMPERATURE, PACKAGE, AND NUMBER OF PINS, RESPECTIVELY. PACKAGE: TO-237 Plastic flat-pack TO-220 o Ceramic dual-in-line E Small TO-8 F Ceramic flat-pack H TO-66 16 pin (.6 x .7 pin spacing) I hermetic hybrid dip Cerdip dual-in-line J K TO-3 Leadless, ceramic L Plastic dual-in-line P S TO-52 TO-5 type T (also TO-78, TO-99, TO-100) type u TO-72 (also TO-18, TO-71) V TO-39 Z TO-92 IW Wafer 10 Dice NUMBER OF PINS: A 8 P B Q 2 F G 10 12 14 16 22 24 R S T U V 3 4 6 7 8 (0.200" pin circle, isolated case) H I 42 28 W 10 (0.230" pin circle, isolated case) J K 32 35 Y 8 (0.200" pin circle, case to pin 4) L M 40 48 Z 10 (0.230" pin circle, case to pin 5) N 18 A B C C o E 20 10-19 \ .O~DIL . .,' '\ \ " APPLICATION NOTE SUMMARY The following are brief descriptions of current Intersil Application notes. A021 A003 UNDERSTANDING AND APPLYING THE ANALOG AOO4 AOO5 AOO7 A011 A013 A015 A016 A017 A018 A019 A020 SWITCH Introduces analog switches and compares them to relays. Describes CMOS, hybrid (FET + driver), JFET "virtual ground" and J-FET "positive signal" types. Application information included. IH5009 LOW COST ANALOG SWITCH SERIES Compares the members of the IH5009 "virtual ground" analog switches and provides suggested applications. THE 8007 - A HIGH PERFORMANCE FET INPUT OP AMP Compares the 8007 with the 741, which is pin compatible and suggests applications such as logantilog amplifier, sample and hold Circuit, photometer, peak detector, 'etc. USING THE 8048/8049 MONOLITHIC LOGANTILOG AMPLIFIER Describes in detail the operation of the 8048 logarithmetic amplifier, and its counterpart, the 8049 antilog amp. A PRECISION FOUR QUADRANT MULTIPLlERTHE 8013 Describes, in detail, the operation of the 8013 analog multiplier. Included are multiplication, diVision, and square root applications. EVERYTHING YOU ALWAYS WANTED TO KNOW ABOUT THE 8038 This note includes 17 of the most asked questions regarding the use of the 8038. DESIGN FOR A BATTERY OPERATED FREQUENCY COUNTER Describes a low cost battery operated frequencyl period counter using the 7207A and 7208. Includes specifications, schematics, PC layout, etc. SELECTING AID CONVERTERS Describes the differences between integrating converters and successive approximation converters. Includes a checklist for decision making, and a note on multiplexed data systems. THE INTEGRATING AID CONVERTER Provides an explanation of integrating AID converters, together with a detailed error analysis. DO'S AND DONT'S OF APPLYING AID CONVERTERS .An analysis of proper deSign techniques using DI A converters. 4Y2 DIGIT PANEL METER DEMONSTRATION I INSTRUMENTATION BOARDS Describes two typical PC board layouts using the 8052A17103A 4Y2 digit AID pair. Includes schematics, parts layout, list of materials, etc. Also see A028. A COOKBOOK APPROACH TO HIGH SPEED DATA ACQUISITION AND MICROPROCESSOR INTERFACING Uses the building block approach to design a complete 12 volt system. Explains the significance of each component and demonstrates methods for A022 A023 A026 A027 A028 A029 A030 A031 A032 A046 A047 10-20 microprocessor .in~erfacing,incllldin9 the use of control. signalS. POWER D/ACONVERTERS USING THE ICH 8510 Detailed analysis of the 8510. Included area section describing the linearity of the device and appliCation notes for driving servo motors, linear and rotary actuators, etc. Also see A026. A NEW J-FET STRUCTURE - THE VARAFET Describes in detail the operation of the varafet, a standard J-FET with the analog gate interfacing c;:omponents monolithically built-in. LOW COST DIGITAL PANEL METER DESIGNS Provides a detailed explanation of the 7106 and 7107 3Y2 digit panel meter IC's, and describes two of the evaluation kits available· from Intersil. DC SERVO MOTOR SYSTEMS USING THE ICH8510 This companion note to A021 explains the design techniques utilized in using the ICH8510 family to drive closed loop servo motor systems. POWER SUPPLY DESIGN USING THE ICL8211 AND ICL8212 Explains the operation of the ICL8211/12 and describes various power supply configurations. Included are positive and negative voltage regulators, constant current source, programmable current source, current limiting, voltage crowbarring, power supply window detector, etc. BUILDING AN AUTO RANGING DMM WITH THE ICL7103A18052A CONVERTER PAIR This companion app note to A019 explains the use of the 8052A/7103A converter pair to build a ±4Y2 digit auto ranging digital multimeter. Included are schematiCS, circuit descriptions, tips and hints, etc. POWER OP AMP HEAT SINK KIT Describes the heat sinks for the ICH8510 family. These heat sinks may be ordered from the factory. THE ICL7104: A BINARY OUTPUT AID CONVERTER FOR MICROPROCESSORS Describes in detail the operation of the 7104. Includes in digital interfacing, handshake mode, buffer gain, auto-zero and external zero. Appendix includes detailed discussion of auto-zero loop residual errors in dual slope AID conversion. COIL DRIVE ALARM DESIGN CONSIDERATIONS Explains the procedure used when using watch circuits to drive piezoelectric transducers . UNDERSTANDING THE AUTO-ZERO AND COMMON MODE PERFORMANCE OF THE I.CL7106/710717109 FAMILY Explains in detail the operation of the ICL7106/7/9 family of AID Converters. . BUILDING A BATTERY OPERATED AUTO RANGING DVM WITH THE ICL7106 Explains principles of auto ranging, problems and solutions. Includes clock circuits, power supply requirements, design hints, schematiCS, etc. GAMES PEOPLE PLAY WITH AID CONVERTERS Describes 25 different integrating AID converter applications. Input circuits, conversion modifications, display and microprocessor interfaces are shown in detail. A050 USING THE IT500 FAMILY TO IMPROVE THE INPUT BIAS CURRENT OF BIFET OP AMPS A brief description of a preamplifier for BIFET OP AMPS. A051 PRINCIPLES AND APPLICATIONS OF THE ICL7660 CMOS VOLTAGE CONVERTER Describes internal operation of the ICL7660. Includes a wide range of possible applications. A052 TIPS FOR USING SINGLE CHIP 3Y2 DIGIT AID CONVERTERS Answers frequently asked questions regarding the operation of 3Y2 digit single chip AID converters. Included are sections on power supplies, displays, timing and component selection. A053 THE ICL7650 A NEW ERA IN GLITCH-FREE CHOPPER STABILIZER AMPLIFIERS A brief discussion of the internal operation of the ICL7650, followed by an extensive applications section including amplifiers, comparators, log-amps, pre-amps, etc. ' A054 DISPLAY DRIVER FAMILY COMBINES CONVENIENCE OF USE WITH MICROPROCESSOR INTERFACABILITY Compares and describes the various display drivers. Includes design examples for 7 segment, Alphanumeric, and bargraph systems. M011 AVOIDING PROBLEMS IN CMOS MEMORY OPERATION Discusses input overvoltage and SCR latchup and the multiple address access problem in CMOS RAMs. 10-21 Device Family Prefixes ~o = 1M LH -Microcontroller Ie ' -National Semiconductor Hybrid Alternate Source LM - National Semiconductor Alternate Source ~~~~~~;:i~:n~:~~g;~~ Source DG ....,.Siliconix Analog Switch Alternate Source OOM-Monolithlc DG Analog.switch Replacement ICL -Linear Ie leM - Microperip.herallC ICH - Hybrid Ie ~~ :~i~~ey~I!~~e~~:~~~~~r~~h SE -Signetics Alternate Source Electrical OptioniVariation of Basic Device Type Designators Th~se designators are datasheet dependent, and are not ~Iways used. Temperature Range Designators C -Commercial: O·C to + 70 e -Industrial: Either - 25 C to + 85·C or - 4O"C to + 85"C G Q (Specified on Oalasheet) M + 125"C - Military: - 55"C to Package Type Designators A B -TO-237 -Small Outline Ie (SOle) o - T0-220 -ceramic Dual·in-line -SmaIlTO-8 F H -Ceramic Flat Pack I -16 Pin (.6 x.7 Pin Spacing) Hermetic Hybrid Dip - CEAolP Dual-In Line C E J K L P S T u V Z IW 10 -TO-66 -TO-3 ..... Leadless, Ceramic ....:... Plastic oual-Io-line -TO-52 --TO-72 ~c;.~ j\'~B, TO-99, TO-1OD) Type (Also TO-1B, -TO-39 -TO-92 T0-7~ -Wafer -Dice Part Numbering System All IntersilIC part numbers consist of a device family prefix, a basic numeric pari number, and an option suffix. as follows: 1,20r3 Dlg;.t Prefix 3, 4 or 5 Digit Un;que Device --- -Number' T ""I 30r4 Digit Option Suffix X"XxX High Reliability Designator /XXXX Lp;nco~~t' Designator ~ Package Type Designator - - - Temperature Range Designator . - - - - - ElectricafOption Designator. Only User if More Than One Electrical Option is Available. - - - - - - - - - - - - Variation 01 Basic Device Type Designator. OnlY'Usect il More Than One Basic Device Type is Available. - - - - - - - - 3 or 4 Digit Basic Device Type Part Number ~-------- Device Family Prefix ORDERING INFORMATION Pin Count Designator 8 P V 20 2 3 4 6 7 8 (0.200" pin circle, 42 28 W 10 (0.230'" pin circle J K 32 35 Y 8 (0.200" pin circle. case to pin 4) L M 40 48 Z 10 (0.230" pin circle, case to pin 5) N 18 A 8 E F G 10 12 14 16 22 24 H I C 0 a A S T U isolated case) isolated case) HIGH RELIABILITY DESIGNATOR /8838 - MIL-STD-8838 Sc""'ned Device fHR -High-Reliability Device ISR -Cost Effective High- 181 - Burn-In Only Process Flow ReliabIlity Device "'" Ttft Example Part Numbers . .-~-.. ~:~~~2U.'-'''-Line D·C to ,"""'IW :::::::::.~",' - O"C to + 70'C Temp. Range + 70·C Temp. Range L Type Electrical Option Basic Part Number: B Type Device Designator 7129 AlD Converter. ' - - - - - - - - - Basic Part Number: ' - - - - - - - - - - - - Linear '.C Family Device ,""TtF ".-~-. CEADIP Dual·ln lme Package .. 7134 DIA Converter __._'.e ' - - - - - - - - - - - - Linear Ie Family Device 51 - 40°C to + 85'C Temp. Range Basic Part Number: 7170 Real Time Clock '-------------Microperipheral Ie Family Device IH I~'L L .'~ , CEROIP Dualln·Line Package 14 Pms on Package - SS'C to + 125'C Temp. Range L -____________________ ~c~~~~~~~ 31 · ""J1fT '--_ _ _ _ _ _ _ _ _ _ _ _ _ Hybrid Ie Family Device :.::"=.... - 55°e to + 125"C Temp. Range B Type Electrical Option ' - - - - - - - - - - Basic Part Number: 5043 Analog Switch ' - - - - - - - - - - - - - Hybrid Ie Family Device 10--23 EvALuatioN KITS PRODUCT DESCRIPTION " PART NUMBER CONTENTS ICH8510i + Socket + Heat Sink ICH8510 + Socket + Heat Sink ICH8520i + Socket + Heat Sink ICH8520M + Socket + Heat Sink ICH8530i + Socket + Heat Sink ICH8530M + Socket + Heat Sink Power Amplifier Kits ICH8510lEV/KIT ICH8510MEV/KIT ICH852011EVIKIT ICH8520MEV/KIT ICH853011EVIKIT ICH8530MEVIKIT 312 312 312 Digit LCD Panel Meter Kit ICL7106EV/KIT ICL7106 + PC Card + All Passive Components Digit LED Panel Meter Kit ICL7107EV/KIT ICL7107 + PC Card + All Passive Components Digit Low Power LCD Panel Meter Kit ICL7126EV/KIT ICL7126 + PC Card 412 Digit AID Converter Kit ICL7129EV/KIT ICL7129 + 4Y2 Digit LCD Display + ICL8069 + PC Card + Active, Passive Components 412 Digit AID Converter Kit ICL7135EV/KIT ICL7135 + ICL7660 + ICL8069 + PC Card + Active, Passive Components 412 Digit LCD Display Driver Kit ICM7211EV/KIT ICM7211 + 4 Y2 Digit LCD Display + PC Card + Active, Passive Components 8 Character Multiplexed LCD Display Driver Kit ICM7233AEVIKIT 2 01 ICM7233A + PC Card + 8 Character Triplexed LCD Display 8 Character Multiplexed LED Display Driver Kit ICM7243BEV/KIT ICM7243B + PC Card + 8 Character LED + All Passive Components 412 Digit LCD Display Co~nter Kit ICL7224EV/KIT ICM7224 + ICM7207A + 5.24288MHz Crystal + 4 Y2 Digit LCD Display + PC Card + Passive Components 412 Digit LED Display Counter Kit ICM7225EV/KIT ICM7225 + ICM7207A + 5.24288MHz Crystal + 4Y2 Digit LED Display + PC Card + Passive Components 412 Digit VF Display Counter Kit ICM7236EV/KIT ICM7236 + ICM7207A + 5.24288MHz Crystal + 4Y2 'Digit VF Display + PC Card + Passive Components ICM7206EVlKIT ICM7206AEV/KIT ICM7206 + 3.579545MHz Crystal ICM7206A + 3.579545MHz Crystal ICM7206BEV/KIT ICM7206B + 3.579545MHz Crystal 8 Digit Frequency/Period Counter 5 Function ICM7226AEV/KIT ICM7226A + 10MHz Crystal + PC Card + LEDs + All Passive Components Oscillator Controller For Application as Ireq. counter with ICM7208 ICM7207EV/KIT ICM7207AEV/KIT ICM7207 + 6.5536MHz Crystal ICM7207A + 5.24288MHz Crystal Touch Tone Encoder One contact per key Two contacts per key, common to positive supply Common to negative supply, oscillator enabled when key depressed 10-24 'fl -=+105- PACKAGE OUTLINES All dimensions given in inches and (millimeters). 1--1 0.178-0.181 0.208-0.219 (5.308-5.583) 0.188-0.210 ,• • I 0.208-0.218 (5.308-5.583) 0.178-0.181 " 0.142-0.150 (4.521-4.851) ~ I (3.507 3.810) I I-i--- "- ,I SEATING PLANEp y_~ (::~: (::= IL 0001 MAX 0.018-0.018 __ (0.0408-0.483) I II 0.01:~~.019 00 Ii (0.406-0.483) -11- 0.500 (12.70) MIN 01 0.500 (12.70) 1_ _ _1 0.050 'I (1.270)- :-1 ' - 0.100 (2.540) POOO1811 PQ001611 TO-18 TO-52 (SQ*, SR) _'- I I 1 '1_ 0.209-0.218 (5.308-5.683) G.178-0." , , _ 0.188-0.210 (4.521-4.851) -I (4.775-;-5.334) i 0.178-0.191 , (4.521-4.851) --7iQJ SEATING II__ 0.142-0.159 (3.507-4.038) PLANED_~~ 0.::- ~0n11 (~~ mom_l MAX 0.016-0.019 _ (0.406-0.483) ~'_II 0.208-0.219 (5.308-5.583) (0.782) MAX 0.018-0.019 (0.406-0.483) 0.500 (12.70) I _1__ W 0.500 (12.70) MIN MIN PQ002111 POOO2011 TO-71 TO-71 LOW PROFILE SQ" denotes a two lead package; center lead missing. II 10-25 PACKAGE OUTLINES All dimensions given in inches and (millimeters). TO-78 TO-72 .021 .016 DIA(3) .019 DLAj31 r=~_L-==uc6 _J±-=--d:;~ ~ 1 to., j . 1~ L l 17ll .055 .016 ... 5 ~ ,I I -0 1 .... I t r .135 MLN t , I .105 0·' • I .095 I I 1 .205 .115 PO' I -0" j I {~l .140 500M'. SEATING PLANE TO-92 0.335-0.315 (8.509-8.001) DIA o.a50-0.370 (I.IIO-Uta) 0010 R-'::::::: Q.315-0.3U =+±!. . .-.. ---- (1n1~ (8.001-8..500) MAX DOlo SEATING 0.185-0.185 L '91' PLANE-j +*,:C:::m;;::;;::;rn;::':J-.1INSULATOR DlA , D.... D. (12.7) l~~ ~LEADS ~~ ~ ~~ -----+-L-Mt (.254-1.018) ~--IL I. (0.483-0.406) TO-99 TV TO-99 TV 10-26 PACKAGE OUTLINES I" All dimensions given in inches and (millimeters). .370-.335 • I 0.205-0.185 (5.21 -4.85) I. .. I P0Q03011 POO0271I TO-100 (TW, TX) TO-237 JEDEC POO03111 2 LEAD CERAMIC (DH) 10-27 .O~OIl. PACKAGE OUTLINES All dimensions given. in inches and (millimeters). [[] 0.407 (10.338) _ MAX LJrnt I_II 0.115.(2.921) . .!!,lli (1.778) 0.060 (1.524) 0.030 (O.~ . r~~ (5.08) __ t ~:=I~:~~![ 0.060~ +0T25 (3.175) 0.110 (2.794) 0.090 (2.286) 0.023 (0.5841 D.li14 (0.356 - ,--- t (5.08) . I I il.ii25 (0.6351) t 0.200 . ... 0.015 (0.381) I (~:~3) .. Ii 0.320 (8.128) , .. 0290 (7.366) I PO003311 8 LEAD CERAMIC (DA) O ~ ~:f -J i 1'_1 ~". I 0.045 d1!1.. .090 ~ 1 ( 1-- 0.01 6 ' -i i- 0.271 0.245 F -~~ , I iWM. --I LO.375 P0004011 8 LEAD CERDIP 10-28 PACKAGE OUTLINES All dimensions given in inches and (millimerters). ~ 0.260" 0 . 0 1 0 0 8.35'" .264 -,- - (~:~) 1-----+1 0.310 " 0.010 17.87'" .25) POO04211 8 LEAD PLASTIC (PA) o.no i1i.iii 0.344-0.384 ~ /8.74-8.26) I I t~..lSEATING T 0.480-0.500 - - . (12.18-12.71 ~ (1.02) PLANE 0.118&-0.100 (2.18-2.64) TYp-ll- 0500 1.182-1.182 (12.70) R (30.02 30.271 ".010 (.254) - 0.188-0.178 RAD (4.22-4.471 • POOO4l1l 8 LEAD TO-3 METAL CAN 8 LEAD S.O.l.C. I .1502PL . · _ _ _ _ _ . ___ ~ __ L, .010:t.OO8RTYP '=====±:-==*==---,'--== _ ., _ ..I O"TOSOTYPALLLEADS 1 ,014"'IN LENGTH OF FLAT AREA TYP ALL lEADS 10-29 PACKAGE OUTLINES All dimensions' given in inches and (millimeters). MINl 0.750 (19.05) f-I 0.330 (S.392) - [ D.2iiiI (6.35) L L S[ --J _ 0.019 (0.483) D.OiO (0.254) .1 It!MAX LO.260 (6.604) 0.055 (1.397) 0.045 (1.143) ---1 1 t f 0.240 (6.096) 1-il.22ii(S.588) 0.006 (0.152) 0.070 (l.77S) if.04ij (1.016) If.liii4 (0.1021 L~!~ (6.6041 0.040 (1.016) i~O.020(O.SOS) ~ .j PQ00431 I 10 LEAD FLATPACK (FB) [[:]3 MAxk. ~:=W::~IC 1 I_ 0.200 (5.081 I MAX _0.710 (lS.034) 0.11512.9211 0.060 1.5241 ~ ~ 0.070 1.77S 0.030 0.752 r 14 ~ H H H I 0.110 (2.7941_ 0.090 (2.2861 ~ ~I 0.060 !C1.-=S2:c: 4):----r'-J-r-'i D.ii25 0.6351] 0.200 (6.08) ffi5 i3:i751 _~ (0.5841 I 0.014 (0.356) ~1 t !e: 0.015 I I' 0.320 (S.1281 0.290 (7.3661 .. POO0441 I 14 LEAD CERAMIC (DO) 1 , "I PACKAGE OUTLINES All dimensions given in inches and (millimetes). POO0351 I 14 LEAD CERDIP (JD) n 0.017 ± 0.002 TYP ; 1 I I 0.050 f :===1 T 0.:Js5 L r 0.056 (0.139) 0.045 (0.114) II:[I::ilI::=::f.t c==J C 0 7 (0.177) 0.004 (0.101) 0.270EJ 0.266 (0.673) 0.250 (0.635) t t Lo.olB (0.457) o:ii1O (0.254) LO.07B (0.198) 0.066 (0.165) P0003411 POOO4511 14 LEAD FLATPACK (FD) 14 LEAD FLATPACK 1()"'31 PACKAGE OUTLINES All dimensions given in inches and (millimeters). --*.' . .~~,:,::[::::: ] -r ~ MAX~ - .770(19.658) ~.310 '" 0.010 7.874 '" 0.254 0.130 '" 0.005 3.302 '" .127 .060 (1.624) m·Fi----~------,-.-IL ---+-I!F?L'''.~I ,>oJ .090 (2.286) l"~1 ~l::= j ~~:_, .046 (1.143) .015 (.3810) POO0361I 14 LEAD PLASTIC [c::]] 1 -0.810 (20.574) MAX 0.115(2.921) 0.080 (1.524) !!.:!!Z!!(1.7781_ 0.030 (0;762 ~~~~~~~~~~. 1 P00037t1 16 LEAD CERAMIC (DE) 10-32 PACKAGE OUTLINES' All dimensions given in inches and (millimeters) .. 16 9 .0.696 )17.653) il.106 /17.907) 0.790 (20.066) 0.800 r.32O) .1 8 I.' ~"""~ 0.880 /22.362) 0.966 /24.511) 0.975 (24.765) 0.200 MAX (5.080) 0.100 (2.54) . ; TVP.~ I I f- 1_ 0.600~1 1(15.240) I POO0521! 16 LEAD CERAMIC (IE) [~~~~] 0.060 (1.5209 L 0.015(0.381) 0.320 (8.128)_r--_ _~ 0.290 (7.366) ~'840 MAX~ mIT121.34) . ~ . -O.175 - MAX -14.451,--.-t...,....... I I I ~ 0.110 (2.794) 0.090 (2.286) J~ JI~ 1 L I ' . . 0.070 (1.778) 0.030 (0.762) 0.200 (5.08) 0,126 (3.175) 0.023 (0.584) 0.015 (D.3iii) 0.015 J L I I 0.008 :g:~~~: I I 0.415110.5411 0.33018.382) P0Q05311 16 LEAD CERDIP (JE) 10·33 . PACKAGE OUTLINES All dim~nsions given in inches and (millimeters). ·---l.046~--~'~' r 0.050 TVP I I I j t:~ I I! , ! I- 0.016 % 0.002 I I I , . II I 0.370 t 0.063 "I 0.003 MAX. --I f-POOO3911 16 LEAD FLATPACK (FE-2) 0.380 (9.662) D.Jiilj If.i2r Fl~~ MAX~ -. . I'· (j 290 J ~~(7.366). I MAX . M!! lo.4831 0.015 0.381 t ~[i~.~~' ~ t + - 0.400 MAX (10.18) 0.066 (U87) 110.280 (7.1l2) t * 0.046 (1.143) .~======~==~~~~.2~(~6.~b=3)~!=.~r-~:~!~~: L . 0.006(0.162) 0.003 (0.076) 0.080 (2.032) Q]4O (1.016) ~ POOO3811 16 LEAD FLATPACK (FE-1) 10-34 PACKAGE OUTLINES All dimensions given in inches and (millimeters). ;':--t=~[:::~::] I - F~MAx~1 I m.~~r--. -II--;~·--r-l~8t 0.130,,0.005 3.302 " 0.127 1&.558 .080 (1.524) ',-I r-l I ~ := :~l~~:: ~L I r..I I-- ~, . .160(4.064) .100!2.54Ol l .015(.~1) .008 (.203) --.. :::~~: :g~:~ _15° POO0541 I 16 LEAD PLASTIC (PE) ir-------------------------------------------------------------__-----------------------, r-=-0.910(23.114) ,.,AX~ [['-J]~.~ 0.110~ I 0.090 (2.286). L- t: . == ~...~'MAIX' !!.l!Z!!. 0,030 (0.762)· (1.7781 J~~r '.. -.Lffi1--m?:~. ~*:::;"===:;:t=It;:;;-.l:--.l~1 T 0.115 (2.921) 0.080 (1.524) il - f 0.060 (1.524) t M15 3811_11_(0.203) - (0. O.OOS ..~.. k .. ' ' " .. 0.023 (0~5Ii41 0.014 (0.356) T i 0,?,25 (0.635): ·0.200 15:08)"" I 0.125(3.1751 ~ : I ~ 0.320 (8.128! . 0.290 17.366 POOO551 I 18 LEAD CERAMIC (ON) 10-35 IID~DIl,. PACKAGE OUTLINES All dimensions given in inches and (millimeters). ~ 0.290 •128) 187.386) [~~~~~] J..- Y12. 0.280 !U~:I .910123.1141 MAX---J 0.060~ o+~u r¥WWM~¥WW[ rns~ 0.200(5.08) -I~ -! !- ~ (2.794) 0.070 (1.778) 0.090 (2.286) 0.030 (0.7621 0.023 (0.594) 0.015 (0.3811 18 LEAD CERDIP (IN) PIN ONE INDICATOR f M"'J"'' ; ~~~=r=~~~9 -0.050 (1.270) 0.005 ± 0.002 (0.127 ± O,05O L TYP~0'315 (8.001) 0.950 t 0.050 (24.130 ± 1.27) r (g:=) --.l REf ~~~:~=a:===c~ P0007511 18 LEAD FLATPACK (FN)* 10-36 PACKAGE OUTLINES All dimensions given in inches and (millimeters). 1-. I •.310 005 t 'f j rt=i1 f WI ==r ~ L'-~ ~:=} L · .050±.005 1 f L.005~.~ . ,_::=-:j.; V'" rF'Z? U .019 •.002 .230 POOO561 I 18 LEAD FLATPACK .(FN-2) PIN NUMBER 1 C; '----1.000-----{2.54} :-{~::!}l ~ • 11 D 0.01? ItD:JI~ (0.12?) L_~~:::J~~i~_~=! .,-J l L 0.005 {0.0127} 0.063 (0.160) 0.020 {0.051} P000761t 18 LEAD FLATPACK (FN-3) 10-37 .U~UIb PACKAGE OUTLINES All dimensions given in inches and (millimeters) .. t 0.310 ± 0.010 7.874 ± 0.264 . ;~:;(::::::] fl. .'20MAX . 23.388 . . .. I .130 ± .006 :;:I~r-------------------I--_3~.3~0~2~f~·~12~7~~~ t 0.110 (2.794) 0.0701l.nSI 0.022 (0.669) 0.090 (2.288) 0.030 (0.762) O.OIS (0.467) U .160 (4.064) .100 l2Ji4Oj rl\- ~ :::'~~: l 0"_160 P0007911 18 LEAD PLASTIC (PN) ~ [~~~~~~~~J !---;.025.126.035) MAX--i . m~ 0.290 r .!1d!l! I~::) I -(6:ilI4i -L..- -.~! r- 0.110 ~ M!9 lh12'!.! 0.090 12.286) 0.030 10.7621 0.023 10.584) 0.015 IO.381f POOO4711 20 LEAD CERDIP (JP) 10-38 PACKAGE OUTLINES All dimensions given in inches and (millimeters). ---LC--::J .260:t .010 8.35,. .264 0.310 ± 0.010 1--7.874:t0.264 -- • -rIO ~.~MAX ., 26.418 .130", .006 3.302'" .;27 =~::~~I80~12~0.d(1'778) O.=!~) :::l~l ~~I-..j \ ~0"-15" 0.090 12.2&8) 0.030 10.782) 0.01810.467) POO0771 I 20 LEAD PLASTIC (PP) r 1.100 127.940) MAX~ [[~~JJ~,~, ~.~~~.=) •. t 0.070 10.782} Il.ns)l 0:000 r-1 _ Jg:~ -Lm1--m~+ ! T t f -JI T il 11 ~:~ l~~M· --". 0.060 11.524) 0.025 (0.635) 0.130 13.302) 0.070 11.nS) 0.200 ~ Q.,ill10;584) 0.014 10.366) 0.12613.175) mr i I ~ i I 0:420 110::/ 0.390 9. ~ POOO4811 22 LEAD CERAMIC (OF) 10-39 PACKAGE OUTLINES All dimensionS given in inches and(millimeters). r---------:; 1 i1li 'Ilar = ,L_-~~ - - .~ l=~r I I I ~:j:WWL ~lfl ~'- -'- '- -'Lo.o,:(:'~\ r ".,. r--- ·1.,0(27.94)MA)( Jl' !I L ! 0.200 ((6.OS) 0.126 3.115 r-l 0.110 12.194) 0.090 2.286) I o.oOS (0.203) I ' . 0.070 (1.ne) 0.030(0.162) 0.023 (0.584) 0.015 (0.381) I L 0.S10(12.964J 0.440(11.116) POOO4911 22 LEAD CERDIP (JF) ~'.290 (32:~) MAX~ 0.620 (16.148) , __ r '"'"-o;....-.;,..;;;;;;:;;c;r-- ~!ii1mt~-Po:mImm~;1 =r I .!!.!1§ (2.921) 0.060 (1.524) I I 0.200 (6.08) MAX i !1~~ == I I . .T. _11_- ~ (0.5841 0.014 (0.356 y ~ t I I 0.015 !0.381) D.OOi 0.203) I I 0.200 I I 0.125 (3.115) '0.620 (16.148) ---.l M§!! (1.624) j1i.69O (iUfili 0.026 (0.636) POOO5111 24 LEAD CERAMIC (DG) ; .,' 10-40 PACKAGE OUTLINES All dimensions given in inches and (millimeters). _ 1.290 (32.766) MAX 0.060 (1.524) O.kOO -~:~~~ m:~l- I~~I , ::~mrIsa 5(Ti cc 0.o1 ~~ 1)mr!!' II!I 0.015 (0.381) 0.008 (0.203) I! ! !1_ _ _ _ - , (5.08) 0.125 (3.1751--\ 0.110 (2.794) 0.070 (1,llS) 0.090 (2.286) 0.030 (0.7&2j 0.023 (0.5841 0.015 (0.381) _ 0.700 (17.780) _ _ 0.630 (16.002) POO06511 24 LEAD CERDIP (JG) 0.060 (1.524) 0'0I 5(or ~ :~=!~::=] II 0.5,0 (12.9541 .'76 m JI! - 1 . 2 9 0 (32.766) MAX I~:~I " ,l! ::~mr=t~ i LL O.~OO ~ ! 1_ ! _ _ -, 0.125 (3.175)--\ 0.1'0 (2.794) 0.070 (1.77S) 0.090 (2.286) 0.030 (0.762) 0.016 (0.38,)_.0.008 (0.203) I! I 0.023 (0.584) 0.0'5 (0.38,) _ 0.700 (17.780) _ _ 0.630 (16.0021 POO06a1i 24 LEAD CERDIP WITH WINDOW (JG/W) ,0-4' PACKAGE OUTLINES All dimensions-given in inclJesand.(millimeters). j P· 1MINl O.750.(19.06) ,0.310 0.380 (9.652) ii:3iiO (7.62) . 9 74 MAX . 0.019 (0.483) . '0.015lD.381) __ --.1 ~~==O=,OOS='=(1=·.3=97=)~~ 0.280 (7.1'12) 0.245·~ n . .' ' f I ----=r+ ~(1~':~) * 0.045 (1.143) !~ L' CO'C06=(0='1~52~)~~0~'0~90~(~2'~28~6=)J~=~Lo.04O 0.003 (0.076) 0.045 (1.143) (1.016) 0.010 (0.254) POO0641 I 24 LEAD FLATPACK (FG) . . .. _~[ . . . ~=]."""'" ' ··"·····;6~:!~~4 ".a~ "~ •.... Fl'~2~:x------J ;~~~o ~~'r---=r--., t==m--m~f ~ ~1~L J L' L,~~+i .060(1.524) .015(0.381) .' . II ~ .110 (2.794) .090(2.286) . II A -- . J .... .060 (1.524) .045 (1.143) ..160. .(4.064) .100 (2.540) .015 (o.02032i'. .008 \ ~UO_15C) .023 (.5842) .015 (.3810) POO0671 I 24 LEAD PLASTIC (PG) ',' " 10-'42 PACKAGE OUTLINES All dimensions given in inches and (millimeters). D · --:J0.010 (15.00 ± 0.25) ~__ 0.050±0.010 F 1 ---I 1 400 0014 0.085 ± 0.009 . ±. ~l2.16±0.231 tt=:= I "~~mtf;~ ~I:J! ~L h! 0.100 ± 0.005 (2.54 ± 0.13) I ::: I_ ~~E: 0.610 ± 0.010 ~ (15.49 ± 0.25) 0.018 ± 0.002 TYP (0.46 ± 0.05) J 0.050 TVP (1.27) POOOOSOI 28 LEAD CERAMIC (01) !M!!!I!Pi'~1 0.570 1 A 0.175 (4.445) MAX 0.015 !0.J1! l~--~ ILlmnrJ-rumrr ~I~ J GlL ~ ~ l-JL, 0.110 (2.7 li:iiiii 1 (1.524) ~ ~ 0.015 (0.3810) i ~~ 111 L _ 0.880 (17.2721 o:m m:4li4l 28 LEAD CERDIP (JI) 10-43 J 1,:, .' ,., PACKAGE OUTUNES All dimensions given in inches and (millimeters). ~['. 0.536 ± 0.015 ".p ";"' t . r. ==] r-- 0.610 ± 0.010--16.49", 0.25 -- . -1:470 MAX 37.34 • .155 ± .010 ~~::m~f I I r~II~ .11012.794) .090 12.286) rrJ~-I-' . .150 14.064) .100 12.540) .050 11.524) .0231.5842) .0151.3810) .04511.14~) POO05911 28 LEAD PLASTIC (PI) ~ --! L 2.020 (51.308) MAX - QJ.!!!! 12.540) "'--C:i~1C ~--r=--- --I·_J. 1. 0,050 11.270 ~ 15.050 11~~) _I I!..- SQUARE . 0.165 0.050 14.191) 11.270) MAX. TYP. I +rWW~F~;r rl!. I -I r 0.050 11.270) , 0.010 liiJli4J 11 -:i-:"0.018 10.;7! ., if.iili2 1.0. 1 I~: :~) jJ ~:~I~:=I-III I 0600 1 1--115.240) _ I I REF. I 1 MIN. P0006011 40 LEAD CERAMIC DUAL-IN-L1NE (DL) 10-44 .D~DIL PACKAGE OUTLINES All dimensions given in inches and (millimeters). [::J 0.060~1 1'-' . . . I 2.040 (51.816) MAX ~ ~ I ,i":: r~= ~~~:~:l I 1 1 =L ~(=) ~'"lm--ww--r----l~fl·.----r'-r---i' P=r-l 0.160 (4.0641 0.100 (2.540) I" I I-- 0.110 (2.794) 0.090 (2.268) ~ ~ J~ 0.060 (1.524) 0.045 (1.143) 0 . 023 15 «00·.584 38 ,z0» II J II L 0.680 (17.2721 0.610 (15.4941 POOO6fll 40 LEAD CERDIP (JL) , 2.000 •.020 (50.8. 0.508) _ "/ o nnnnnnn==nnnnnnnn==0--r I ............................... _-_ :r. .600 ••010 254 ) .................................. _-- .136TYP .060 ••008 L.032. 0.203) (a4~ ~~ J.~~.'a'~~ 1------' .200 (5.08) (1.27' 0.254) I .100'.005 (2.54.0.127)---1 I I--- .050TYP (1.27) --II--- ~ .018TYP (0.457) I II--- (15.494) I ~ .610TYp. POO07801 40 LEAD CERDIP WITH WINDOW m 10-45 PACKAGE OUTLINES All dimensions given in inches and (millimeters). 0.480 +.0.010 -0.005 (12.19) f+ 0.254) ( -0.127) ___ , ~..:~~ (11.68) sa 0.360 - so - -==~~ (:to.152) :!: 0.006 (9.144' sa ('t;' O. fS-2) 1- -35 11 PINNO.,/INDEX 1. ,. 20 2' PLATING TIE BARS _ .0.040 x9= ~~ (1.016) (9.144' - L 0.020 TYP (0.508) ~TYP -(1.016) ===:io.- ___ ~~ REF (2.540) / 0.025 450 REF (0.6351 Note 1: Finish: Gold plated 60 micro inches minimum Ihickress over nickel plated. Note 2: Pin number 1 connected 10 die attach pad ground 40 PIN LEADLESS CHIP CARRIER (LL) 10-46 PACKAGE OUTLINES All dimensions given in inches and (millimeters). ~ ....,....,....,n __ n,...,,.,,..., • t-- 0.610 ± 0.010- ( 0.535 ± 0.015 13.59 ± .38 --r-F:~~:= 0.025 62.68 15.49 ± 0.25 .155 ± .010 3.94±.25 '+m::ffitt~ JL~ I 0.060 (1.624) .0.020 (.51) .-~.. ~ II --li i "· rllIi (~~) 0.018 (0.467) TYP. 0.020 (0.508) 0.001 (0.025) 0.100 (2.540) POO0621I 40 LEAD PLASTIC (PL) ~=r---,t..." ±.006 F$==I---, w.s-;o:16i NON.ACCUMULATIVE TVP t ~I (3.6:!:O.ll! -'--~~'f--- NOTES: " 1. PART MUST COMPLY TO SPECIFICATION. MAX FLA5}ITYP 2. DIMENSIONS IN PARENTHESIS ARE IN MILLIMETERS. 3. PART IS SYMMETRICAL ABOUT THE CENTERLINES (Q,J SHOWN. 44 LEAD PLASTIC FLAT PACK 10-47 PACKAGE OUTLINES All dimensions given in inches and (millimeters). .1----'-1 '"'T' ' ~[gJ--~'" ( 0.590 • 0.010 _ b-~~~~---~~~~~ 0.050 ± 0.010 (1.27 ±0.25) I r- 2400 + 0024 .' I 0.085 ± 0.009 (60.~ ~ 0.611 ~_L (2.16 ± 0.23) *ffifff-JL-ffffl~. lo.l75 I! !I (4.46) .. lj 0.100 • 0.005 (2.54 ± 0.13) ~~:::~ JI LO.OlO . ~.~ . - ~ ?;~~:e'± ~O~~~) 0.018 ± 0.002, (0.46 ± 0.05) TYP (0.25 ) 0.050 TYP (1.27) P0007001 48 LEAD CERAMIC (OM) 10-48 .D~DI!. FIELD SALES OFFICES ALABAMA GEORGIA NEW YORK 3322 S. Memorial Parkway Holiday Office Center Suite 17 Huntsville, AL 35801 Tel: (205) 883-5713 FAX: (205) 883-8523 1835 Savoy Dr. Suite 215 Atlanta, GA 3034 t Tel: (404) 458-8401 TWX: 810-766-4593 FAX: (404) 458-5838 11 Computer Dr. W. Albany, NY 12205 Tel: (518) 454-2576 FAX: (518) 454-2580 ARIZONA ILLINOIS 5320 North 16th St. PhoeniX, AZ. 85016 Tel: (602) 241-7224 FAX: (602) 241-7266 2860 South River Road Suite 400 Des Plaines, IL 60018 Tel: (312) 827-9100 FAX: (312) 827-9064 CALIFORNIA 21201 Victory Blvd. Suite 245 Canoga Park, CA 91303 Tel: (818)'884-4911 FAX: (818) 884-2283 4063 Birch St. Suite 130 Newport Beach, CA 92660 Tel: (714) 852-9030 FAX: (714) 852-9035 1054 Saratoga-Sunnyvale Rd. Suite 100 San Jose, CA 95129 Tel: (408) 255-5800 FAX: (408) 255-4693 CONNECTICUT 270 Farmin9ton Avenue Suite 326 Farmington, CT 06032 Tel: (203) 677-7876 FAX: (203) 677-7015 FLORIDA 700 W. Hillsboro Blvd. Suite 207, Bldg. 4 Deerfield Beach, FL 33441 Tel: (305) 429-0440 TWX: 510-953-7634 FAX: (305) 426-2696 INDIANA 2200 Lake Ave. Lakeside 1 Office Bldg. Suite 225 Ft. Wayne, IN 46805 Tel: (219) 422-8551 FAX: (219) 380-3309 6321 La Pas Trail P.O. Box 68543 Indianapolis, IN 46268 Tel: (317) 298-5317 FAX: (317) 298-5374 MASSACHUSETTS 5 Militia Dr. Lexington, MA 02173 Tel: (617) 861-6220 TWX: 710-326-0887 FAX: (617) 861-7130 MINNESOTA 4600 W. 77th St. Suite 201 Minneapolis, MN 55435 Tel: (612)835-2550 FAX: (612) 830-8297 5794 Widewaters Parkway Dewitt, New York 13214 Tel: (315)445-4780 FAX: (315)445-4709 NORTH CAROLINA 2105 Enterprise Rd. P.O. Box 9476 Greensboro, NC 27408 Tel: (919) 379-8474 FAX: (919) 379-8478 OHIO 26250 Euclid Ave. Suite 521 Cleveland, OH 44132 Tel: (216) 266-2900 FAX: (216) 266-2951 TEXAS 4099 McEwen Suite 360 Dallas, TX 75244 Tel: (214) 661-8582 TWX: 910-997-0742 FAX: (214) 661-8212 VIRGINIA 503 Faulconer Dr. Suite 9A CharlottsvWe, VA 22901 Tel: (804) 978-5040 FAX: (804) 971-8350 NEW JERSEY 1600 St. Georges Ave. Rahway, NJ 07065 Tel: (201) 381-4210 FAX: (201) 381-0990 FOR POWER MOS PRODUCT INFORMATION CONTACT: Oanaral Elactrlc Powar Elactronlc. Samlconductor Dapartmant West Genessee Street, Mail Drop 44 Auburn, NY 13021 Tel: (315) 253-7321 FOR BOARD LEVEL PRODUCT INFORMATION CONTACT: OE Data' 11 Cabot Boulevard Mansfield, MA 02048 Tel: (617) 339-9341 .U~O[lDOMEST'IC SALES, REPRESENTATIVES ALABAMA GEORGIA MICHIGAN NEW YORK (cont.) CSR Electronics 303 Williams Ave.:Suite 931 Huntsville, AL 35801 Tel: (205) 533-2444 TWX: 510-600-2831 FAX: (205) 536-4031 CSR Electronics 1651 ML Vernon Road Suite 200 Atlanta, GA 30338 Tel: (404) 396-3720 TWX. (510) 600-2162 FAX: (404) 394-8387 Giesting & Associates S-J Associates 148-05 Archer Ave. Jamaica, NY 11435 Tel: (718) 29,1-3232 FAX: (718) 297-5885 ARIZONA Shetler-Kahn 2017 N. 7th St. Phoenix, AZ 85006 Tel: (602) 257-9015 TWX: 910-951-0659 FAX: (602) 252-3431 CALIFORNIA ADDEM S.D. Suite D-3 1015 Chestnut Ave. Carlsbad, CA 92008 Tel: (619) 729-9216 Telex: 754078 H-Technical Sales, Inc. 12453 Louis St.. '101 Garden Grove, GA 92640 Tel: (714) 740-0161 (714) 740-2139 Ewing-Foley, Inc 895 Sherwood Ave. Los Altos, GA 94022 Tel: (415) 941-4525 TWX: 910-370-6000 Ewing-Foley, Inc. 120 South Lincoln Roseville, CA 95678 Tel: (916) 969-2672 COLORADO Thorson Rocky Mountain, Inc. 7076 S. Alton Way Bldg. D Englewood, CO 80112 Tel: (303) 779-0666 TWX: 910-935-0117 FAX: (303) 773-2854 ILLINOIS D. Dolin Sales, Co. 609 Academy Drive Northbrook, IL 60062 Tel: (312) 498-6770 TWX: 910-686-4909 FAX: (312) 498-4885 INDIANA Giesting Associates 101 E. Carmel Drive Suite 210 Carmel. IN 46032 Tel: (317) 844-5222 Giesting Associates 4407 DeRome Driye Ft. Wayne, IN 46815 Tel: (219) 486-1912 21999 Farmington Road Farmington Hills, MI 48024 Tel: (313) 478-8106 FAX: (313) 477-6908 MINNESOTA PSI 7732 West 78th Street Minneapolis, MN 55435 Tel: (612) 944-8545 TWX: 910-576-3483 FAX: (612) 944-6249 MISSOURI Kebco, Inc. 75 Worthington Drive Suite 101 SL Louis, MO 63043 Tel: (314) 576-4111 TWX: 910-764-0826 FAX: (314) 576-4159 NEW JERSEY J.R. Sales Engineering, Inc. 1930 SL Andrews NE Cedar Rapids, IA 52402 Tel: (319) 393-2232 TWX: 910 525·1365 Gomtek, Inc. Plaza Office Center SUite 404 East Route 73 and Fellowship Rd. ML Lauiel, NJ 08054 Tel: (609) 235-8505 TWX: 710·897-0 t 50 FAX: (609) 235-5805 KANSAS Kebco. Inc. 10111 Santa Fe Drive Suite 13 Overland Park, KS 66212 Tel: (913) 541-8431 FAX: (913) 888-1036 Kebco, Inc. 16047 East Kellog Wichita, KS 67230 Tel: (316) 733·1301. MARYLAND Advanced Components Sales 1 Prestige Drive Meriden, CT 06450 Tel: (203) 238-6891 FAX: (203) 634-3964 Robert Electronics 5525 Twin Knolls Road Suite 331 Columbia, MD 21045 Tel: Ball. (301) 995-1900 Wash. (30t) 982-1177 TWX: 710-862-2879 FAX: (301) 964-3364 EIR, Inc. 1057 Maitland Center Common Maitland, Florida 32751 Tel: (305) 660-9600 FAX: (305) 660-9091 Giesting & Associates IOWA CONNECTICUT FLORIDA 5654 Wendzel Dr Coloma, MI 49038 Tel: (616) 468-4200 MASSACHUSETTS, Advanced Tech. Sales, Inc. 50 Mall Road, Suite 602 Burlington, MA 01803 Tel: (617)272-0100 FAX: (617) 272-1515 NEW MEXICO 'Shetler-Kahn 2709-J Pan American Freeway, N.E_ Albuquerque, NM 87107 Tel' (505) 345'3591 FAX: (505) 345-3593 NEW YORK Ossmann Component Sales Corp_ 280 Metro Park Rochester, NY 14623 Tel: (716) 424-4460 TWX: 510-253-7685 FAX .. (716) 427 -2861 Ossmann Component Sales Corp 6666 Old Collamer Rd. East Syracuse, NY 13057 Tel: (315) 437-7052 TWX: 710-541-1523 Ossmann Component Sales Corp. 300 Main Street Vestal, NY 13850 Tel: (607) 754-3264 TWX: 510-252-1987 NORTH CAROLINA CSR Electronics, 5880 Faringdon Place Suite 2 Raleigh, NC 27609 Tel- (919) 878-9200 TWX: 510-600-2709 FAX. (919) 878-91 17 OHIO Gjesting & AssocIates P.O. Box 39398 2854 Blue Rack Road Cincinnati,OH 45239 Tel' (513) 385-1105 TLX: 214-283 FAX: (513) 385-5069 Glesting & Associates 26250 Euclid Avenue SUite 525 Cleveland, OH 44132 Tel: (216) 261-9705 FAX: (216) 266-2951 G,€s1tng & Asso.ciates 8843 Washington Colony Dr. Dayton, OH 45459 . Tel: (513) 433-5832 OKLAHOMA Bonser-Phf'lhdwer Sales 4614 S. KnoXVille Avenue Tulsa, OK 74135 Tel (918) 744-9964 OREGON LD Electronics P.O. Box 626 Beaverton, OR 97075 Tel: (503) 649-8556 (503) 649-6177 TWX: 910-467-8713 FAX: (503)642-1518 PENNSYLVANIA Giesting & Associates 411 Walnut Street Pittsburgh, PA 15238 Tel: (412) 963-0727 TEXAS Bonser-Philhower Sales 8200 Mopac, Suite 120 Austin, TX 78"159 Tel: (512) 346-9186 TWX: 910-997-8141 .o~ou.. DOMESTIC SALES REPR'ESENTATIVES TEXAS (cont.) VIRGINIA WISCONSIN CANADA (cont.) Bonser-PhIlhower Sales Robert Electronics 11321 Richmond Avenue SUite 100A Houston, TX 77082 Tel: (713) 531-4144 TWX: 910-350-3451 7641 Hull Street Suite 101 Richmond, VA 23235 Tel: (804) 276-3979 FAX: (804) 745-5343 D. Dolin Sales Co. 131 W. Layton Ave. Milwaukee, WI 53207 Tel: (414)482-1111 TWX: 910-262-1139 FAX: (414) 482-2033 Bonser-Philhower Sales. 689 West Renner Road Suite C Richardson, TX 75080 Tel: (214) 234-8438 TWX: 910-867-4752 FAX: (214) 437-0897 Gldden·Morton Assoc., Inc. 3860 Cote Vertu Suite 221 SI. Laurent, Quebec Canada H4R 1V4 Tel: (514) 335-9572 FAX: (514) 335-9573 WASHINGTON UTAH Thorson Rocky Mountain, Inc. Bank of Utah, Suite A 2309 S. Redwood Rd. West Valley City, UT 841 t9 Tel: (801) 973-7969 TWX: 910-925-5826 LD Electronics 7410 77th Ave., S.E. Snohomish, WA 98290 Tel: (206) 568-0511 LD Electronics East 12607 Guthrie Dr. Spokane, WA 99216 Tel: (509) 922-4883 CANADA Access Electronics Suite 101 3570 East Hastings SI. Vancouver, B.C. Canada V5K 2A7 Tel: (604) 299-3556 FAX: (604) 299-4622 Gidden-Motron Assoc., Inc. 7548 8ath Road Mississauga, Ontario Canada L4T 1L2 Tel: (4t6) 671-2225 (416)671-8111 Gidden-Morton Assoc .. 301 Moodie Drive Suite 101 Nepean, Ontario Canada K2H 9C4 Tel: (613) 726-0844 Gidden-Morton Assoc., Inc. 605 Rue Filiatault SI. Laurent, Quebec Canada H4L 3V3 Tel: (514) 747-1770 .ll~O1l. AUTHORIZED DISTRIBUTORS ., ':' , ".', ' . ' ALAIiAMA CALIFORNIA (cont.) CAL·'FORNIA (cont.) COLORADO Arrow Electronics 1015 Henderson Road Huntsville, AL 35806 Tel: (205)837.6955. Hamilton/Avnet Electronics 4940A Research Drive Huntsville, AL 35805 Tel: (205) 837-7210 TWX: 810-726·2162 Arrow Electronics 2961 Dow Ave. Tustin, CA 92680 Tel: (714) 8~8-5422 Avn ..t Electronics 20501 Plummer S1. Chatsworth', CA 91311 Tel: (818) 700-2600 Avnet Electronics 350 McCormick Avenue Costa Mesa, CA 92626 Tel: (714) 754-6111 Schweber Electronics 1225 West 190 Stree.t Suite 360 .Gardena, CA 90248 Tel: (213) 327-8409 Schweber Electronics 17822 Gillette Ave. Irvine, CA 92714 Tel: (714) 863-0200 TWX: 910-595-1720 Arrow Electronics 1390 South Potomac Street Suite 136 Aurora, CO 80012 Tel: (303)696·111 t Hamilton Avnet Electronics 8765 E. Orchard Rmid Suite #708 Englewood, CO 80111 Admin: (303) 779-9998 Sales: (303) 740-1000 Kierulff Electronics 7060 S. Tucson Way Englewood, CO 80112 Tel: (303) 790-4444 TWX: 910-931-2026. Kierulff Electronics 2225 Drake Ave. Suite 14 Huntsville, AL 35805 Tel: (205) 883-6070 Schweber Electronics. 2227 Drake Ave. SW Suite 19 Huntsville, AL:35805 Tel: (20,5) 882-2200 ARIZONA Arrow Electronics 2127 West 5th Place Tempe. lIZ 85281 Tel: (602) 968-4800 Hamilton/Avnet Electronics 505 S. Madison Dr. Tempe, AZ 85281 Tel: (602) 231-5100 Kierulff Electronics 4134 E. Wood S1. Phoenix, AZ 85040 Tel: (602) 437-0750 TWX: 910-951-1550 Schweber Electronics 11049 N. 23rd Drive Suite 100 Phoenix, lIZ 85029 Tel: (602) 997-4874 Wyle DistributiOn Group 17855 No. Black Canyon Hwy. Phoenix, AZ 85023 Tel: (602) 866-2888 TWX: 910-951-4282 CALIFORNIA Arrow Electronics 19748 Dearborn S1. Chatsworth, CA 91311 Tel: (818) 701-7500 TWX: 910:483-2086 Arrow Electronics 1502 Crocker Avenue Hayward, CA 94544 Tel: (415) 487-4600 Arrow Electronics 1808 Tribute Road SuiteC Sacramento, CA 95815 Tel: (916) 925-7456 Arrow Electronics 9511 Ridgehaven C1. San Diego, CA 92123 Tel: (619) 565-4800 TLX: 888064 Arrow Electronics 521 Weddell Ave. Sunnyvale, CA 94086 Tel: (408) 745-6600 TWX: 910-338-0266 Hamilton Avnet 3002 E. "G" S1. Ontario, CA 91764 Tel: (714) 989-9411 Hamilton Avnet 4103 Northgate Blvd. Sacramento, CA 95834 Tel: (916) 925-2216 Hamilton Avnet 4545 Viewridge Ave. San Diego, CA 92123 Tel: (619) 571-7500 Hamilton Avnet 1175 Bordeaux Dr. Sunnyvale, CA 94089 Tel: (408) 743-3355 Hamilton Electro Sales 9650 DeSoto Ave. Chatsworth, CA 91311 Tel: (818) 700-6500 Hamilton Electro Sales Orange County 3170 Pullman Street Costa Mesa, CA 92626 Tel: (714) 641-4100 Hamilton Electro Sales 10950 Washington Blvd Culver City, CA 90230 Tel: (213) 558-2121 Kierulff Electronics Corporate Marketing 10824 Hope Street Cypress, CA 90630 Tel: (714) 220-6300 Kierul!f Electronics 5650 Jillson Los Angeles, CA 90040 Tel: (213) 725-0325 TWX: 910-580-3106 Kierulff Electronics 8797 Balboa Ave. San Diego, CA 92123 Tel: (619) 278-2112 Kierulff Electronics 1180 Murphy Ave. San Jose, CA 95131 Tel: (408) 971-2600 Kierulff ElectroniCS 14101 Franklin Ave. Tustin, CA 92680 Tel: (714) 731-5711 TWX: 910-595·2599 Schweber Electronics 21139 Victoiy Blvd. Canoga Park, CA 91303 Tel: (213) 999-4702 Schweber Electronics 1771 Tribune Rd. Suite B Sacramento, CA 95815 Tel: (916) 929-9732 Schweber Electronics 6750 Nancy Ridge Drive Suites 0 and E San Diego, CA 92121 Tel: (619) 450-0454 Schweber Electronics 90 East Tasman Drive San Jose, CA 95134 Tel: (408) 946-7171 TWX: 910-338-2043 Wyle Distribution Group 124 Maryland S1. EI Segundo, CA 90245 Tel: (213) 322-8100 TWX: 910-348-7140 Wyle Distribution Group 17872 Cowan Ave. Irvine, CA 92714 Tel: (714) 863-9953 TLX: 3719599 Wyle Distribution Group 11151 Sun Center Dr. Rancho Cordova, CA 95670 Tel: (916) 638-5282 Wyle Distribution Group 9525 Chesapeake Dr. San Diego, CA 92123 Tel: (619) 565-9171 TWX: 910-335-1590 Wyle Distribution Group 3000 Bowers Ave. Santa Clara, CA 95051 Tel: (408) 727-2500 TWX: 9 t 0-338-0296 Wyle Laboratories 26560 Agoura Rd. *203 Calabasas, CA 91302 Tel: (818) 880-9001 Wyle Military 18910 Teller Ave. Irvine, CA 92715 Tel: (714)851-9953 TWX: 910-595-2642 Schweber EI,ectronics 8955 E. Nichols Ave., Suite 200 Englewood, CO 80112 Tel: (303) 799-0258 Wyle Laboratories 451 E. 124th Ave. Thornton, CO 80241 Tel: (303) 457-9953 TWX: 910-936-0770 CONNECTICUT Arrow Electronics 12 Beaumont Rd. Wallingford, CT 06492 Tel: (203).265-7741 TWX: 710-476-0162 Hamilton/Avnet Electronics Commerce Industrial Park Commerce Drive Danbury, CT 06810 Tel: (203) 797-2800 Kierulff Electronics 10 Capital Drive Wallingford, CT 06492 Tel: (203) 265-1115 Lionex Corporation 170 Research Parkway Meriden, CT 06450 Tel: (203) 237-2282 Schweber Electronics Finance Drive Commerce Industrial Park Danbury;CT 06810 - Tel: (203) 748·7080 TWX: 710-456-9405 FLORIDA Arrow Electronics 350 Fairway Drive Deerfield Beach, FL 33441 Tel: (305) 429-8200 TWX: 510-955-9456 Arrow Electronics 1530 Bottle Brush Palm Bay, FL 32905 Tel: (305) 725-1480 TWX: 510·959-6337 Hamilton/Avnet Electronics 6801 N.w. 15th Way FI. Lauderdale. FL 33309 Tel: (305) 971-2900 Hamilton/Avnet Electronics 3197 Tech Drive North SI. Petersburg, FL 33702 Tel: (813) 576-3930 Hamilton/Avnet Electronics 6947 University Blvd. Winter Park, FL 32792 Tel: (305) 628-3888 .O~OIL. AUTHORIZED DISTRIBUTORS FLORIDA Icont.) ILLINOIS Icont.) MARYLAND Icont.) MICHIGAN Icont.) Kierulff Electronics 5410 NW. 33rd Ave. Ft. Lauderdale, FL 33319 Tel: (305) 486-4004 Schweber Electronics 904 Cambridge Drive Elk Grove Village, IL 60007 Tel: (312) 364-3774 TWX: 910-222-3453 Hamilton/Avnet Electronics 6822 Oak Hall Lane Columbia, MD 21045 Bait. Sales: (301) 995-3500 Wash. Sales: 301-621-5410 Klerulff Electronics 825 D. Hammonds Ferry Road Linthicun, MD 21090 Tel: (301) 636-5800 TWX: 710-234-1971 Hamilton/Avnet Electronics 32487 Schoolcraft Road Livonia, MI48150 Tel: (313) 522-4700 Schweber Electronics 12060 Hubbard Ave. Livonia, MI 48150 Tel: (313) 525-8100 TWX: 810-242-2983 Kierulff Electronics 3247 Tech Drive North St. Petersburg, FL 33702 Tel: (813) 576-1966 TWX: 810-863-5625 Schweber Electronics 181 Whooping Loop Altamonte Springs, FL 32701 Tel: (305) 331-7555 Schweber Electronics 2830 N. 28th Terrace Hollywood, FL 33020 Tel: (305) 921 -0301 TWX: 510-954-0304 GEORGIA Arrow Electronics 3155 Northwoods Parkway Suite A Norcross, GA 300?1 Tel: (404) 449-8252 TWX: 810-757-4213 Hamilton/Avnet Electronics 5825 D. Peachtree Corners E. Norcross, GA 30092 Tel: (404) 447-7500 Kierulff Electronios 5824 Peachtree Corners E. Norcross, GA 3.0092 Tel: (404) 447-5252 Schweber Electronics 303 Research Drive Suite 210 Norcross, GA 300SQ Tel: (404) 449-9170 ILLINOIS Arrow Electronics 2000 Algonquin Schaumburg, Il60195 Tel: (312) 397-3440 TWX: 910-291-3544 Hamilton/Avnet Electronics 1130 Throndale Aye. Bensonville, IL 60106 Tel: (312) 860-7700 Kierulff Electronics 1140 Wesl Throndale Itasca, IL 60143 . Tel: (312) 250-0500 .Newark Electronics 4801 North Ravenswood Chicago, IL 60640 Tel: (312) 784-5100 TWX: 910-221-0268 Newark Electronics 5308 West 124th St. AlSip, IL 60658-3295 Tel: (312) 371-9000 INDIANA Advent Electronics 8446 Moller Rd. Indianapolis, IN 46268 Tel: (317) 872-4910 TWX: 810-341-3228 Arrow Electronics 2495 Directors Row Suite H Indianapolis, IN 46241 Tel: (317) 243-9353 Hamilton/Avnet Electronics 485 Gradle Dr. Carmel, Indianna 46032 Till: (317) 844-9333 IOWA Advent Electronics 682 58th Avenue Court SW. Cedar Rapids, IA 52404 Tel: (319) 363-0221 TWX: 910-525-1337 Arrow Electronics 375 Collins Road N.E. Cedar Rapids, IA 52402 (319) 395-7230 Hamilton/Avnet Elec'tronics 915 33rd Avenue SW. Cedar Rapids, IA 52404 Tel: (319) 362-4757 TWX: 910-525-1316 Schweber Electronics 5720 N. Park Place N.E. Cedar Rapids, IA 52402 Tel: (319) 373-14-17 KANSAS Hamilton/Avnet Electronics 9219 Quivira Road Overland Park, KS S62 t 5 Tel: (913) 888-8900 Schweber Electronics 10300 W. 103rd Suite'103 Overland Park, KS 66214 Tel: (913) 492-2922 MARYLAND Arrow Electronics 8300 GUilford Road Suite H Columbia, MD 21046 Tel: (301) 995-0003 TWX: 710-236-9005 Lionex Corp. 9020 Mendell Hall Court Columbia, MD 21045 Tel: (301) 964-0040 Schweber Electronics 9330 Gaither Rd. Gaithersburg, MD 20877 Tel: (301) 840-5900 TWX: 710-828-9749 MASSACHI,ISETTS Arrow ElectroniCS Arrow Drive Woburn, MA 01801 Tel: (617) 933-8130 TWX: 71D-393-6770 Gerber Electronics 128 Carnegie Row Norwood, MA 02062 Tel: (617) 769-6000 TWX: 710-336-1987 HamiltontAvnet Electronics 50 Tower Office Park Woburn, MA01801 Tel: (617) 273-7500 Kierulff Electronics 13 Forturn Dr. Billerica, MA 01821 Tel: (617) 667-8331 TWX: 710-390-14.49 Lionex Corporation 36 Jonspin Rd. Wilmington, MA 01887 Tel: (617) 657-5170 Schweber Electronics 25 Wiggins Ave. Bedford, MA 01730 Tel: (617) 275-5100 TWX: 710-326-0268 . MICHIGAN Arrow Electronics 755 Phoenix Drive Ann Arbor, MI 48104 Tel: (313) 971-8220 TWX: 810-223-6020 Arr-:.:Jw Electronics 3510 Roger Chaffee Blvd .. S.E. Grand Rapids, MI 49508 Tel: (616) 243-0912 Hamilton/Avnet Electronics 2215 29th St" S.E. Space A-5 Grand Rapids, MI 49508 Tel: (616) 243-8805 MINNESOTA Arrow Electronics 5230 W. 73rd Street Edina, MN 55435 Tel: (612) 830-1800 TWX: 910-576-3125 Hamilton/AI/net Electronics 10300 Bren Rd., East Minnetonka, MN 55343 Tel: (612) 932-0600 Kierulff Elec'tronics 7667 Cahill Road Edina, MN 55435 Tel: (612) 941-7500 TWX: 910-576-2721 Schweber Electronics 7424 W. 78th Slreet Edina, MN 55435 Tel: (612) 941-5280 TWX: 910-576-3167 MISSOI,IRI Arrow Electronics 2380 Schuetz Rd. St. Louis, MO 63416 Tel: (314) 567-6888 TWX: 910-764-0882 Hamilton/Avnet Electronics 13743 Shoreline Court East Earth City, MO 63045 Tel: (314) 344-1200 Kierulff Electronics 2608 Metro Boulevard Maryland Heights, MO 63043 Tel: (314) 739-0855 Schweber Electronics 502 Earth City EXpwy. Suite 6203 . Earth City, MO 63045 Tel: (314) 739-0526 NEW HAMPSKIRE Arrow Electronics Three Perimeter Road Manchester, NH 03103 Tel: (603) 668-6968 TWX: 710-220-1684 Hamllton/Avne! Electronics 444 E. Industrial Park Drive Manchester, NH03104 Tel: (603) 624-9400 Schweber Electronics Bedford Farms, Bldg. 2 1st Floor Kitton & South River Rd. Manchester, NH 03102 Tel: (603) 625-2250 TWX: 710-220-7572 .B~Dll ,AUTHORIZED,DISTRIBUTORS NIWJIRSIY NEW YORK ,oo"t.) Arrow Electronics 2 Industrial Road Fairfield, NJ 07006 Tel: (201) 575-5300 TWX: 71'0-734-4403 Arrow Electronics 25 Hub Drive Melville, NY 11747 Tel: (516) 391-1300 TV>!X: 510-224-6126 Arrow Electronics 6000 Lincoln Drive East Marlton, NJ 08053 Tel: (609) 596-8000 TWX: 710·897-0829 Arrow Electronics 3375 Brighton Henrietta Townline Road Rochester, NY 14623 Tel: (716) 427-0300 TWX: 510-253-4766 Hamilton/Avnet Electronics 1 Keystone Ave, Bldg, #36 Cherry Hill, N,J, 08003 Tel: (609) 424-0110 Hamiiton/AvnetElectronics 10 Industrial Rd, Fairfield, N,J, 07006 Tel: (201) 575·3490 (201) 575-3390 Kierullf Electronics 37 Ku!ick Road Fairfie,ld, NJ 07006 Tel: (201) 575·6750 TWX: 7;0·734-4372 Kierullf Electronics 520 Fellowship Road Suite A 106 Mt Laural, NJ 08054 Tel: (609) 235-1444 Lionex 311 AI, 46 West Fairfield, NJ 07006 Tel: (201)227·7960 Schweber Electronics 18 Madison Rd, Fairlield, NJ 07006 Tel: (201) 227-7880 TWX: 710-734-4305 N.W ••XICO Avnet, Inc, 767 Fifth Avenue New York, NY 10153 Tel: (212) 644-1050 Hamilton Avnet 933 Motor Parkway Hauppauge, NY 11787 Tel: (516) 231-9800 Hamilton/Avnet Electronics 103 Twin Oaks Drive, Syracuse, NY 13214 Tel: (315) 437·2641 Hamilton/Avnet Electronics 333 Metro Park Rochester, NY 14623 Tel: (716) 475·9130 Hamilton/Avnet Export 1065 Country Road Suite 211A Westbury, NY 11590 Tel: (516) 997-6868 Lionex Corporation 400 Oser Ave, Hauppauge, LI, NY 11787 Tel: (516) 273-1660 Rome Electronics 216 Erie Blvd" E, Rome, NY 13440 Tel: (315) 337·5400 NORTH CAROLINA 10.l'It.) OHIO Icont.) ' Hamilton/Avnet Eleetronics 3510 spnn~ Forest Road Raleigh, N' 27604 Tel: (919) 878-08)0 Kierullf Electronics 1 North Commerce Center 5249 North Boulevard Raliegh, NC 27604 Tel: (919) 872-8410 Schweber Electronics 1 Commerce Center 5285 North Blvd, Raleigh, NC 27604 Tel: (919) 876·0000 Arrow Electronics 4719 S, Memorial Tulsa, OK 74145 Tel: (918) 665-7700 OHIO Arrow Electronics 7620 McEwen Road Centerville, OH 45459 Tel: (513) 435-5563 TWX: 810-459-1611 Norvell Electronics 12210 E, 52nd Sf. Suite 105UB5 Tulsa, OK 74146 Tel: (918) 254-8606 Arrow Electronics 1040 Crupper Avenue Columbus, OH 43229 Tel: (614) 885·8362 Arrow Electronics 6239 Cochran Solon, OH 44139 Tel: (216) 248·3990 TWX: 810-427-9409 Schweber Electronics 4815 S, Sheridan Road Suite #109 Tulsa, OK 74145 Tel: (918) 622·8000 Electronics Marketing Corporation 17 Alpha Park Highland Heights, OH 44143 Tel: (216)442·3441, Electronics Marketing Corporation 1150 W, 3rd Ave, Columbus, OH 43212 Tel: (614) 299·4161 Eleclronics Marketing Corporation 4660 Gateway Circle Kettering, OH 45440 Tel: (513)439-471,1 ~~~U&~~~:5_~~g7106 Schweber Electronics Jericho Turnpike Westbury, NY 11590 Tel: (516) 334·7474 TWX: 510·222·3660 Hamilton/Avnet Electronics 4588 Emery Industrial Parkway Cleveland"OH 44128 Tel: (216) 831-3500 NIWYORK NORTH CAROLINA Arrow Electronics 155 Sherwood Ave, Farmingdale, NY 11735 Tel: (516) 293-6363 Arrow Electronics 5240 Greens Dairy Rd, Raleigh, NC 27604 Tel: (919) 876·3132 Arrow Electronics 20 Oser Ave, Hauppauge, NY 11787 Tel: (516) 231·1000 TWX: 510·227·6623 Arrow Electronics 938 Burke SI. Winston-Salem, NC 27102 Tel: (919) 725·8711 TWX: 510-931-3169 Arrow Eleclronics 7705 Ma~lage Dr. Liverpool, NY 13088 Tel: (3.15) 652-1000 TWX: 710·545-0230 Electronics Marketing Corporation 19251·85 South Charlotte, NC 28208 Tel: (704) 394-6195 Hamilton/Avnet Electronics 2524 Baylor S,E, OKLAHOMA Kierulff Electronics 12318 E, 60th SI. Tulsa, OK 74145 Tel: (918) 252·7537 TWX: 910-845-2150 Schweber Electronics 4 Townl/ne Circle Rochester, NY 14623 Tel: (716) 424-2222 Arrow Electronics 2460 Alamo Avenue, S.E. Albuquerque, NM 87106 Tel: (505) 243·4566 TWX: 910-989-1679 Schweber Electroryics 7865 Paragon Road Suite 210 Dayton, OH 45459 Tel: (513) 439-1800 Hamilton/Avnet ElectroniCS 954 Senale Drive Dayton, OH 45459 Tel: (513) 433-0810 Hamilton/Avn.l ElectroniCS 777 Brooksedges Boulevard Westerville, OH 43081 Tel: (614) 882-7004 Kierulff Electronics 23060 Miles Rd, Bedford Heights, OH 44128 Tel: (216) 587·6556 TWX: 810-427-2282 Kierullf Electronics 476 Windsor Park Drive Dayton, OH 45459 Tel: (513) 439-0045 Schweber Electronics 23880 Commerce Park Rd, Beachwood, OH 44122 Tel: (216) 464-2970 OREOON Arrow Electronics 10260 SW, Nimbus Avenue Suite M3 Tigard, OR 97223 Tel: (503) 684-1690 Hamilton/Avnet Electronics 6024 SW, Jean Rd, Bldg, C, Suite 10 Lake Oswego, OR 97034 Tel: (503) 635·8157 Kierulff Electronics 14273 NW, Science Park Dr. Portland, OR 97229 Tel: (503) 641·9150 TWX: 910·467-8753 Wyle Distribution 5289 N,E, Elam Young Pkwy, Bldg, El00 Hillsboro, OR 97123 Tel: (503) 640·6000' TWX: 910·460-2203 "NNSYLVANIA Arrow ElectroniCS 650 Seco Rd, Monroeville, PA 15146 Tel: (412) a56·7000 TWX: 710-797 -3894 Hamiiton/AvnEit Electronics 2800 Liberty Avenue Building E Pittsburgh, PA 15222 Tel: (412) 281-4150 TWX: 710·670·1127 LionexCorp, 101 Rock Road Horsham, PA 19044 Tel: (215) 443-5150 .O~OIL AUTHORIZED DISTRIBUTORS PENNSYLVANIA (cont.) TEXAS (cont.) WASHINGTON Schweber Electronics Norvell Electronics Arrow Electronics Hamilton Avnet Electronics Prudential Business Campus 5800 Corporate Dr. SUite C5 Houston, TX 77036 Tel: (713) 777-1666 14320 Northeast 21 st Street Bellevue, WA 98007 Tel: (206) 643-4800 6845 Redwood Road, Unit 3, 4, 5 Schweber Electronics 14212 N.E. 21st SI. Bellvue, WA 98007 Tel: (206) 643-3950 231 Gibraltar Road Horsham, PA 19044 Tel: (215) 441-0600 TWX: 510-665-6540 Schweber Electronics 1000 RIDC Plaza Suite #203 Pittsburg, PA 15238 Tel: (412) 782-1600 6300 La Calma Dr. Suite 240 Austin, TX 78752 Tel: (512) 458-8253 TEXAS Schweber Electronics Arrow Electwnics 2227 West Braker Lane Austin, TX 78758 Tel: (512) 835-4180 TWX: 910-874-1348 Arrow Electronics 3220 Commander Drive Carrollton, TX 75006 Tel: (214) 380-6464 TWX: 910-860-5377 Arrow Electronics 10899 Kinghurst Dr. Suite 100 Houston, TX 77099 Tei: (713) 530-4700 Hamilton/Avnet Electronics 2401 Rutland Dr. Austin, TX 78758 Tel: (512) 837-8911 Hamilton/Avnet Electronics 8750 Westpark Dr. Houston, TX 77063 Tel: (713) 780-1771 Hamilton/Avnet Electronics 2111 West Walnut Hili Lane Irving, TX 75062 Tel: (214) 659-4100 Kierulff Electronics 3007 Longhorn Blvd. Suite 105 Austin, TX 78758 Tel: (512) 835-2090 TWX: 910-873-1359 Kierulff Electronics 9610 Skillman Ave. Dallas, TX 75243 Tel: (214) 343-2400 TWX: 910-861-2150 Kierulff Electronics 10415 Landsbury Dr. Suite 210 Houston, TX 77099 Tel: (713) 530-7030 TWX: 910-880-4057 Norvell ElectroniCS 8705 Shoal Creek Blvd. Suite 105 Austin, TX 78758 Tel: (512) 458-8106 Norvell Electronics 14410 Midway Rd. P.O. Box 801207 Dallas, TX 75380 Tel: (214) 233-0020 4202 Beltway Dallas, TX 75234 Tel: (214) 661-5010 TWX: 910-860-5493 Schweber Electronics 10625 Richmond Ave. Suite #100 Houston, TX 77042 Tel: (713) 784-3600 TWX: 910-881-4036 Hamdton/Avnet Electronics 2795 Rue Halpern Ville SI. Laurent, Montreal Canada H45 1P8 Tel: (514) 335-1000 WISCONSIN 2550 Boundary Rd. Suite 115 Burnaby, B.C. Canada V5M 3Z3 Tel: (604) 437-6667 Arrow Electronics 200 North Patrick Blvd. Brookfield, WI 53005 Tel: (414) 792-0150 2236 W. Bluemound Rd. Waukesha, WI 53186 Tel: (414) 784-8160 TWX: 910-265-3653 1515 W. 2200 South Salt Lake City, UT84116 Tel: (801) 972-0404 Hamilton/Avnet Electronics 1585 West 2100 South ~;:~ (~~~) ~~t~:2~6t4119 Kierulff ElectronIcs 2121 South 3600West Salt Lake City, Utah 841.19 Tel: (801) 973-6913 TWX: 910-925-4072 Wyle Distribution Group 1959 S. 4130 West, Unit B Salt Lake City, UT 84104 Tel: (801) 974-9953 VIRGINIA Arrow Electronics Kroger Executive Park 8002 Discovery Drive Campbell Bldg., Suite 214 Richmond, Virginia Tel: (804) 282-0413 TWX: 710-956-0169 190 Colonnade Road Nepean, Ontario Wyle Distribution Group 1750 132nd Ave., NE Bellevue, WA 98005 Tel: (206) 453,8300 TWX: 910-443-2526 Wyle Distribution Group 11001 S Wilcrest Suite 100 Houston, TX 77099 Tel: (713) 879-9953 UTAH Hamilton Avnet Electronics Canada K2E 7L5 Tel: (613) 226-1700 TLX 053-4971 2975 S. Moorland Rd. New Berlin, WI 53151 Tel: (414) 784-4518 Arrow Electronics Mississauga,Ontano Canada L4V 1R2 Tel (416) 677-7432 TWX: 610-492-8867 Kierulff Electronics 19450 68th Ave. S. Kent, WA 98032 Tel: (206) 575-4420 Wyle Distribution Group 2120 W_ Breaker Lane Suite F Austin, TX 78758 Tel: (512) 834-9957 TWX: 710-378-7282 Wyle Distribution Group 1810 N. Greenville Avenue Building A Richardson, TX 75081 Tel: (214) 235-9953 TWX: 310-378-7663 CANADA (cont.) Hamilton/Avnet Electromcs Kierulff Electronics Marsh Electronics 1563 S. 101 SI. Milwaukee, WI 53214 Tel: (414) 475-6000 Hamilton Avnet International HamIlton Avnet Electronics Zentronics 8 Tilbury Court Bramptan, Ontario Canada L6T 3T4 Tel: (416) 451-9600 TLX: 06-97678 Zentronics 3300-14 Ave N.E.' Calgary, Alberta Canada T2A 6J4 Tel: (403) 272-1021 Zentron;cs 155 Colonnade Rd. Unit 17 & 18 Schweber E!ectronics Nepean, Ontario 150 Sunnyslope Road Suite 120 Brookfield, WI 53005 Tel: (414) 784-9020 Canada K2E 7K 1 Tel: (613) 226-8840 . CANADA Canadian GE-ECO 189 Duffenn SI. Zentronics 108-11400 Bndgeport Road Richmond, BC Canada V6X 112 Tel: (604) 273-5575 Toronto, Ontano Zentronlcs Canada M6K 1Y9 Tel: (416) 530-2895 TLX: 06-23238 SL Laurent, Quebec Canadian GE·ECO 203 Colonnade Rd. Nepean, Ontario Canada K2E 7K3 Tel: (613) 723-0336 Electro Sonic 1100 Gordon Baker Rd. Willowdale, Ontaflo Canada M2H SB2 Tel: (416) 494-1555 TLX: 065-25295 Hamilton Avnet Electronics 2816 21st Street N.E .. Calgary, Alberta Canada T2E 6Z2 Tel: (403) 230-3586 TWX: 038-27642 505 Locke Street Canada, H4T tX7 Tel: (514) 735-5361 TLX: 05-827535 Zentronics 564 Weber SI. N. Unit 10 Waterloo, Ontario Canada N2L 5C6 Tel: (519) 884·5700 Zentronics 590 Berry Street Winnipeg, Manitoba Canada R3H OS 1 Tel: (204) 775-8661 Zentronics #210-3501 8th SI. East Saskatoon, Saskatchewan Canada, S7H OW5 Tel: (306) 955-2202 .D~Dlb INTERNATIONAL SALES OFFICES INTERNATIONAL MARKETING HEADQUARTERS FRANCE UNITED KINGDOM Intersillnc 10600 Ridgeview Court Cupertino CA 95014 HONG KONG RG21 2YS USA Tei (408) 996-5000 TWX 91 O~338~Oo33 (INTRSLINT ePTOI EUROPEAN HEADQUARTERS G WEST GERMANY ITALY JAPAN 3rd FI SPAIN KOREA BENELUX ASIA AND PACIFIC HEADQUARTERS SWEDEN DIVISion SINGAPORE of G E .D~DIl. INTERNATIONAL DISTRIBUTOR OFFICES AUSTRALIA HONG KONG ITALY Icont.) MALAYSIA R&D Electronics Pty.. Ltd. 4 Florence Street Po. Box 206 Burwood, Vic·toria 3125 Australia Tel: 288·8911/8232/8262 TLX: RADET AA 33288 Conmos Products, Ltd. 11th Fir. Hay-Nien Building #1 Tai Yip SI. Kwun Tong, Kowloon Hong Kong Tel: 3·7560103·8 TLX: 85448 CMOS HX Eledra 3S SPA Via Turazza, 32/41 35100 Padova Italy Tel: (49) 655488-655749 TLX: 430444 NIE Electronics (M) SDB BHD P.O.Box 12167 Lot 2.22 2nd Floor R&D Electronics Pty., Ltd. 133 Alexander SI. PO. Box 57 Crows Nest NSW 2065 Sydney Australia Tel: 439·5488 TLX: SECCO AA25468 Electrocon Products. Ltd. Rm 603. 6th Floor Perfect Commercial Bldg. 20 Austin Avenue, TSimshatsui Kowloon Hong Kong Tel: 3-687214-6 TLX: 39916 EPLET HX EUrelletronica Via Mascheroui, 19 20125 Milano Italy Tel: 4981851 TLX: 332102 Pantronic Via Mattia Battistini. 212A 00167 Roma AUSTRIA Italy Transistor Vertriebsges m.b.H. & INDIA Tel: 6273909 Co.. KG. Kaytronics Electronics Engineer TLX: 612405 204, 2nd Fl.. Karan Centre Auhofstrasse 41 A A-1130 Vienna P.B. No. 45, Sarojini Revi Rd. JAPAN Austria Seconuderabad 500 003 Internix, Inc. Tel: (0222) 829401·0 India Shinjuku Hamada Bldg. TLX: 133738 TVGWN A Tel: 77924 (7th Floor) TLX: 155 6707 7·4·7 Nishi Shinjuku BELGIUM ShinfUku-Ku INDIA-U.S. OFFICE Master Chips SPRL Tokyo 160. Blvd. SI. Lazare 4 Fegu Electronics Japan 1210 Brussels 2584 Wyandotte SI. Tel: (03) 369-1101 Belgium Mountain View, California 94043 TLX: INTERNIX J26733 Tel: (02) 219.58.62 U.SA Intern ix, Inc. (02) 219.14.84 Tel: (415) 961-2380 TLX: 62500 MASTER B TLX: 176572 FEGU ELEC MNTV Arai Bldg 5·3·36 Tokiwagi Uedashi, Nagano 386 DENMARK ISRAEL Japan E.V. Johanssen Eleclronik AS Vectronics, Ltd. Tel: (0268) 25·1610 15, Titangade 60 Medinat Hayehudim SI. Internix. Inc. DK-2200 Copenhagen N P.O. Box 2024 Sobajima Daini Noritake Bldg. Herzlia B 46120 Denmark 1·9-9 Noritake Tel: 45·1-839022 Israel Nakamura-Ku. Nagoya 453 TLX: 16522 EVICAS DK Tel: (052) 556070 Japan TLX: 342579 VECO IL Tel: (052) 452·8841 FINLAND Nabla Elektronlikka Oy P.O. Box 3 SF-02101 Espoo 10 Finland Tel: 90462829 or 4552955 TLX: 124270 NABLA SF FRANCE C.C.1. Zone Industrielle 5, Rue Marcelin Berthelot 92160 Antony France Tel: (1) 666.21.82 TLX: 203881 F C.C.1. 67, Rue Bataille 69008 Lyon France Tel: (78) 742375 TLX: 375456 Tekelec-Airtronic BP. No.2 Cite des Bruyeres Rue Carle·Vernet 92310 Sevres France Tel: (1) 534'.75.35 TLX: TKLEC A 204552F ITALY Eledra 3S S.P.A. Viale Elvezia. 18 20154 Milano Italy Tel: (2) 349 751 TLX: 332 332 Eledra 3S S.PA Via Paolo Galdano, 141/D 10137 Torino Italy Tel: (11) 3099111·2·3 TLX: 210632 Eledra 3S S.PA Via G. Valmarana, 63 00139 Roma Italy Tel: (6) 8110151 TLX: 612051 Eledra 3S S.P.A Via Zaccherini AlVIS!, 6 40138 Bologna Italy Tei: (51) 307781·340999 TLX: 213406 Internix. Inc. Takahashi Bldg. (Nishikan) 4·4·13 Nishi-Tenma, Kita-Ku Osaka 530 Japan Tel: (06) 364-5971 Komplex Setangor Jatan Sultoan Kuala Lumpur Malaysia Tel: 03-224344 TLX: NIE MA 31231 NIE Comptronics SDN BHD 14 Jalan Pahang, Penaog MalaYSia Tel: 362118 362200 362194 TLX: NIECOM MA 40608 NETHERLANDS Auriema Nederland B. V. Doornakkersweg 26 5642 MP Eindhoven Netherlarids:. Tel: 040-816565 TLX: 51992 AURI NL, NEW ZEALAND Delphi Industries. Ltd. 27 Ben Lomond Crescent Pakuranga, Auckland New Zealand Tel: 563-259 TLX: DELPHIC NZ21992 NORWAY Hans H. Schive AIS P.O. Box 15 Holmengt. 28 N·1360 Nesbru Norway Tel: (02) 84-51-60 TLX: 19124 SKIVE N PORTUGAL Decada Espectral de Electronica e Cie~tlficos. SARL Av. Bombeiros Voluntarios. Lote 102B Mirafiores/Alges 1495 Lisboa Portugal Tel: 2-103420 TLX: 15515 ESPEC P Eq~ipamentos Internix, Inc. Hachioji Technical Center SOUTH AFRICA 2-5-1 Ouwada·cho Hachioji 192 Electronic Bldg. Elements Pty.. Ltd. Japan P.O. Box 4609 Tel: (0426) 44-8671 Pretoria 0001 Intern ix, Inc. Republic of South Africa Sunlife Dai-san Bldg. Tel: 46-9221/7 2-5-19 Hakataeki-Higashi TLX: 20723 SA Hakata-Ku, Fukuoka 812 22786 SA Japan Tel: (092) 472-7716 SOUTH AMERICA- KOREA Duksung Trading Co. Room 301 Jinwon Bldg. 507·30 Sinrim 4·Dong Gwanak·Ku, Seoul Republic of Korea Tel: 856·9764 TLX: DUKSUNG K23459 U.S. OFFICE Intectra 2629 Terminal Blvd. Mountain View, California 94043 U.S.A. Tel: (415) 967-8818 TLX: 345·545 INTECTRA MNTV .D~DlL INTERNATIONAL DISTRIBUTOR OFFICES SPAIN UNITED KINGDOM WEST GERMANY (cont.) AmitronS.A Avemda Valiadolid, 47-A 28008 Madrid Spain Tel: (01) 247931312479332 TLX. 45550 AMIT E Farnell Electronic'Components, B!lronic GrrlbH Sommerfield ring 35 1000 Berlin 39 Ltd. 'Canal Road Leeds, LS12 2NE England Tel (0532) 636311 TLX: 55147 FEC G SWEDEN Svensk Teleimport AB Box 5071 S'I62 05 Valiingby Sweden Tel: 08-890265 TLX: 15372 TIMP S SWITZERLAND Laser & Electronic Equipment Hawke Elect., Ltd Amotex House 45, Hanworth Rd. Sunbury on Thames Middx England Tel: (01979) 7799 TLX: 923592 West Germany Tel 0 3018 05 25 26 Bltronic GmbH Hanauer Str. 39 6360 Friedberg Frankfurt West Germany Tel: 06031/9047 TLX: 4184050 BIT D Speziai-Electronic KG Hermann-Linggstr. 16 8000 Muenchen 2 Jermyn Distribution, Ltd. West Germany 8053 Zurich Vestry Estate Seven Oaks Tel: 891530387 TLX 5212176 SPEZ D Switzerland Kent England Tel: (0732) 450144 TLX: 95142 Kreuzbreite 14 3062 Bueckeburg Eierbrechtstrasse 47 Tel 01 55 33 30 TLX: 52124 LASEQ CH , Laser & Electronic Equipment Bureau Suisse Romande 1 Avenue Industrielie 1227 Carouge-Geneve Switzerland Tel' 022 425 677 TLX: 421 343 TAIWAN Galaxy Far East Corp. Room 4, 2nd FI., No. 312 Sec. 4 Chung Hsaio East Rd. P.O. Box 36-12 Taipei Taiwan, R,O.C. Tel: (02) 7811895-7 Cable: GALAXYER TLX: 26110 GALAXYER THAILAND Grawlnner Company limited 226127 Phahonyothln Rd. Phyathai Bangkok 10400 Thailand Tel 278-3411 TLX: 87155 GWN TH TURKEY Turkelek Elektronlk, Ltd Hatay Sokak #8 Ankara Turkey Tel: 41-2521091189483 TLX 42120 TRKL TR Turkelek Elektronik, Ltd West Germany Macro-Marketing, .Ltd. Burnham Lane Slough, Berks SL1 6LN England Tel: (06286) 4422, TLX: 847945 MACRO G Tel: (05) 722 2030 TLX: 971624 SPEZ D Spezial-Electronlc KG Magdeburgerstrasse 15 7090 Ellwangen West Germany The RadiO Resistor Co Tel. (07) 961 4047 Cambridge Road, S1. Martin's Way TLX: 74712 SPEZ D Bedford England Spezial-Electronic KG Tel' (0234) 47211 Hanauer Str. 4 TLX: 82651 6360 Friedberg West Germany Trident Microsystems, Ltd. Trident House 53 Ormside Way Redhlli, Surrey RH1 2LS England Tel: (0737) 69217 TLX: 8953230 TRELEC G WEST GERMANY Bitronic GmbH Dingolflnger Strasse 6 8000 Muenchen 80 West Germany Tel: 089149160101 TLX: 5212931 BIT D Bitronic GmbH Dieselstrasse 30 7016 Gerlingen West Germany Kemeralti Cad. Tophane Ishanl Tel: 0 71 56124051 406 Istanbul Turkey Tel: 1-143126811434046 TLX 22036 Spezial-Electronic KG TLX: 7266743 BIT D BitronlC GmbH Karl-Marx-Strasse 59 4600 Dortmund 1 West Germany Tel: 02 31152 82 93 TLX 822 664 BIT D Tel: (06) 031 4634 TLX: 4184025 SPEZ D

  • Source Exif Data:
    File Type                       : PDF
    File Type Extension             : pdf
    MIME Type                       : application/pdf
    PDF Version                     : 1.3
    Linearized                      : No
    XMP Toolkit                     : Adobe XMP Core 4.2.1-c041 52.342996, 2008/05/07-21:37:19
    Create Date                     : 2017:07:29 17:01:09-08:00
    Modify Date                     : 2017:07:29 18:21:33-07:00
    Metadata Date                   : 2017:07:29 18:21:33-07:00
    Producer                        : Adobe Acrobat 9.0 Paper Capture Plug-in
    Format                          : application/pdf
    Document ID                     : uuid:522968f3-df0d-4446-921e-8902c18fab00
    Instance ID                     : uuid:c383e75f-49ff-ed4b-8659-669eaf22fca3
    Page Layout                     : SinglePage
    Page Mode                       : UseNone
    Page Count                      : 1098
    
    EXIF Metadata provided by EXIF.tools

    Navigation menu