1986_Intersil_Component_Data_Catalog 1986 Intersil Component Data Catalog
User Manual: 1986_Intersil_Component_Data_Catalog
Open the PDF directly: View PDF .
Page Count: 1098
Download | ![]() |
Open PDF In Browser | View PDF |
-UU:I Component Data Catalog 1986 CAUTION: Intersil's products are not intended for use as components in any life support or other medical devices intended for surgical implant into the human body, Intersil cannot assume responsibility for use of any circuitry described other than circuitry entirely embodied in an Intersil product. No circuit patent licenses are implied. Intersil reserves the right to change the circuitry and specifications without notice at any time. Printed in U.S.A. © Copyright !985, Intersil, Inc., All Rights Reserved @isaregisteredtrademarkOfGeneral Electric Company, U.S.A. Table of Contents Description Page Section 1 Selector Guides .................................................................... 1-1 Section 2 - Discretes 2N2607 P-Charinel JFET General Purpose Amplifier ....................................................... 2-1 2N2608 P-Channel JFET General Purpose Amplifier ....................................................... 2-1 2N2609 P-Channel JFET General Purpose Amplifier ........................................................ 2-1 2N2609JAN P-Channel JFET General Purpose Amplifier .................................................. 2-1 2N3684 N-Channel JFET Low Noise Amplifier ........................ , ...................................... 2--2 2N3685 N-Channel JFET Low Noise Amplifier ......................... ~ ..................................... 2-2 2N3686 N-Channel JFET Low Noise Amplifier ............................................................... 2-2 2N3687 N-Channel JFET Low Noise Amplifier ............................................................... 2-2 2N3810/A Dual Matched PNP General Purpose Amplifier ................................. ~ ............... 2-3 2N3811/ A Dual Matched PNP General Purpose Amplifier ................................ ; ................. 2--3 .2N3821 N-Channel JFET High Frequency Amplifier ........................................................ 2-5 2N3821JAN N-Channel JFET High Frequency Amplifier .................... ~ ............................... 2-5 2N3821JTX N-Channel JFET High Frequency Amplifier .................................................... 2-5 2N3821JTXV N-Channel JFET High Frequency Amplifier .................................................. 2-5 2N3822 N-Channel JFET High Frequency Amplifier ........................................................ 2-5 2N3822JAN N-Channel JFET High Frequency Amplifier ............... : ............ : ...................... 2-5 2N3822JTX N-Channel JFET High Frequency Amplifier .................................................... 2-5 2N3822JTXV N-Channel JFET High Frequency Amplifier ........•.................. , ...................... 2--5 2N3823 N-Channel JFET High Frequency Amplifier ........................................................ 2-7 2N3823JAN N-Channel JFET High Frequency Amplifier ................................................... 2-7 2N3823JTX N-Chan.nel JFET High Frequency Amplifier .................................................... 2-7 2N3823JTXV N-Channel JFET High Frequency Amplifier ......... , ..... , .......•.......................... 2-7 2N3824 N-Channel JFET Switch ........................................... , ..................................... 2-8 2N3921 Dual N-Channel JFET (3eneral Purpose Amplifier ................................................ 2-9 2N3922 Dual N-Channel JFET General Purpose Amplifier ................................................ 2-9 2N3954 Dual N-Channel JFET General Purpose Amplifier ............................... , ............... 2 -11 2N3954A Dual N-Channel JFET General Purpose Amplifier ............................................. 2-11 2N3955 Dual N-Channel JFET General Purpose Amplifier ............................................... 2-11 2N3955A Dual N-Channel JFET General Purpose Amplifier., ........................................... 2-11 2N3956 Dual N-Channel JFET General Purpose Amplifier ............................................... 2-11 2N3957 Dual N-Channel JFET General Purpose Amplifier ., .......................... , .................. 2-11 2N3958 Dual N-Channel JFET General Purpose Amplifier ............................................... 2-11 2N3970 N-Channel JFET Switch ...........................................................'..................... 2-13 2N3971 N-Channel JFET Switch ................................................................................ 2-13 2N3972 N-Channel JFET Switch ................................................................................ 2"': 13 2N3993 P-Channel JFET General Purpose Amplifier/Switch ..................... , ...... : ................ 2-15 2N3994 P-Channel JFET General Purpose Amplifier/Switch ............................................. 2-15 2N4044 Dielectrically Isolated Dual NPN General Purpose Amplifier ................................... 2-17 2N4045 Dielectrically Isolated Dual NPN General Purpose Amplifier ................................... 2-17 2N4100 Dielectrically Isolated Dual NPN General Purpose Amplifier ................................... 2-17 2N4878 Dielectrically Isolated Dual NPN General Purpose Amplifier ................................... 2-17 2N4879 Dielectrically Isolated Dual NPN General Purpose Amplifier .................................... 2-17 2N4880 Dielectrically Isolated Dual NPN General Purpose Amplifier ................................... 2 -17 ITE4091 N-Channel JFET Switch ............................................................................... 2-19 2N4091 N-Channel JFET Switch ................................................................................ 2-19 2N4091 JANTX N-Channel JFET Switch ...................................... , .............................. 2-19 Table . of Contents , Page Description Section 2 Discretes (Cont.) ITE4092 N-Channel JFET Switch ........................ '....................................................... 2-19, 2N4092 N-Channel JFET Switch ............................................................... " ............... 2-19 2N4092 JANTX N-Channel JFET Switch ..................................................................... 2-19 ITE4093 N-Channel JFET Switch ....................................................... , ....................... 2-19 2N4093 N-Channel JFET Switch ................................................................................ 2-19 2N4093 JANTX N-Channel JFET Switch .................. : .................................................. 2-19 2N4117 N-Channel JFET General Purpose Amplifier ...................................................... 2-21 2N4117A N-Channel JFET General Purpose Amplifier .................................................... 2-21 2N4118 N-Channel JFET General Purpose Amplifier ...................................................... 2;...21 2N4118A N-Channel JFET General Purpose Amplifier .................................................... 2-21 2N4119 N-Channel JFET General Purpose Amplifier ...................................................... 2-21 2N4119A N-Channel JFET General Purpose Amplifier .................................................... 2-21 2N4220 N-Channel JFET General Purpose Amplifier/Switch ............................................ 2-22 2N4221 N-Channel JFET General Purpose Amplifier/Switch ............................................ 2~22 2N4222 N-,Channel JFET General Purpose Amplifier/Switch ............................................ 2-22 2N4223 N-Channel JFET High Frequency Amplifier ....................................................... 2-23 2N4224 N-Channel JFET High Frequency Amplifier ....................................................... 2-23 2N4338 N-Channel JFET Low Noise Amplifier .............................................................. 2-24 2N4339 N-Channel JFET Low Noise Amplifier ...... ~ ....................................................... 2-24 2N4340 N-Channel JFET Low Noise Amplifier ..•......... ; ................................................. 2-24 2N4341 N-Channel JFET Low Noise Amplifier .............................................................. 2-24 .2N4351 N-Channel Enhancement Mode MOSFET General Purpose Amplifier/Switch ............. 2-25 ITE4391 N-Channel JFET Switch ............................................................................... 2-26 2N4391 N-Channel JFET Switch ................................................................................ 2-26 ITE4392 N-Channel JFET Switch ............................................................................... 2-26 2N4392 N-Channel JFET Switch ............................................................... ; ................ 2-26 ITE4393 N-Channel JFET Switch ............................................................................... 2:"26 2N4393 N-Channel JFET Switch .............................................•.................................. 2-26 ITE4416 N-Channel JFET High Frequency Amplifier ....................................................... 2-28 2N4416/A N-Channel JFET High Frequency Amplifier .................................................... 2-28 2N4856N-Channel JFET Switch ................................................................................ 2-30 2N4856JAN,JTX,JTXV N-Channel JFET Switch ....................................... ; ...................... 2..:30 2N4857 N-Channel JFET Switch ................................................................................ 2-30 2N4857JAN,JTX,JTXV N-Channel JFET Switch ............................................................. 2-30 2N4858 N-Channel JFET Switch ............................... '................................................. 2-30 2N4858JAN,JTX,JTXV N-Channel JFET Switch .................. , ................................ , ......... 2-30 2N4859 N-Channel JFET Switch ................................................................................ 2-30 2N4860 N-Channel JFET Switch ................................................ : ............................... 2 -30 2N4861 N-Channel JFET Switch.: .............................................................................. 2-30 2N4867/ AN-Channel JFET Low Noise Amplifier ........................................................... 2-32 2N4868/ A N-Channel JFET Low Noise Amplifier ........................................................... 2-32 2N4869! A N-Channel JFET Low Noise Amplifier ........................................................... 2-32 2N5018 P-Channel JFET Switch .: .............................................................................. 2-34 2N5019 P-Channel JFET Switch .......................................................................... ; ..... 2-34. 2N5114 P-Channel JFET Switch ................................................................................ 2-'36 2N5114JAN,JTX,JTXV P-Channel JFET Switch .............. ~ ............................................... 2-36 2N5115 P-ChannelJFET Switch .......................................................... : ..................... 2-36 2N5115JAN,JTX,JTXV P-Channel JFET Switch .................. ; .................................. ; ........ 2-36 2N5116 P-Channel JFET Switch ................................................................................ 2-36 2 Table of Contents Description Section 2 - Page Discretes (Cont.) 2N5116JAN,JTX,JTXV P-Channel JFET Switch .............................................................. 2-36 2N5117 Dielectrically Isolated Dual PNP General Purpose Amplifier ................................... 2-38 2N5118 Dielectrically Isolated Dual PNP General Purpose Amplifier ................................... 2-38 2N5119 Dielectrically Isolated Dual PNP General Purpose Amplifier ................................... 2-38 2N5196 DualN-Channel JFET General Purpose Amplifier ............................................... 2~40 2N5197 Dual N-Channel JFET General Purpose Amplifier ............................................... 2-40 2N5198 Dual N-Channel JFET General Purpose Amplifier ............................................... 2-40 2N5199 Dual N-Channel JFET General Purpose Amplifier ............................................... 2-40 2N5397 N-Channel JFET High Frequency Amplifier ....................................................... 2-42 2N5398 N-Channel JFET High Frequency Amplifier ....................................................... 2-42 2N5432 N-Channel JFET Switch ................................................................................ 2 -44 2N5433 N-Channel JFET Switch ................................................................................ 2-44 2N5434 N-Channel JFET Switch ........................................................ ; ....................... 2-44 2N5452 Dual N-Channel JFET General Purpose Amplifier ............................................... 2-46 2N5453 Dual N-Channel JFET General Purpose Amplifier ............................................... 2-46 2N5454 Dual N-Channel JFET General Purpose Amplifier ............................................... 2-46 2N5457 N-Channel JFET General Purpose Amplifier/Switch ............................................ 2-48 2N5458 N-Channel JFET General Purpose Amplifier/Switch ............................................ 2-48 2N5459 N-Channel JFET General Purpose Amplifier/Switch ............................................ 2-48 2N5460 P-Channel JFET Low Noise Amplifier ........................................................... ; .. 2-49 2N5461 P-Channel JFET Low Noise Amplifier .............................................................. 2-49 2N5462 P:...Channel JFET Low Noise Amplifier .............................................................. 2-49 2N5463 P-Channel JFET Low Noise Amplifier .............................................................. 2-49 2N5464 P-Channel JFET Low Noise Amplifier .............................................................. 2-49 2N5465 P-Channel JFET Low Noise Amplifier ............................................................... 2-49 2N5484 N-Channel JFET High Frequency Amplifier ....................................................... 2-50 2N5485 N-Channel JFET High Frequency Amplifier ....................................................... 2-50 2N5486 N-Channel JFET High Frequency Amplifier ........................................................ 2-50 2N5515 Dual N-Channel JFET Low Noise Amplifier ....................................................... 2-52 2N5516 Dual N-Channel JFET Low Noise Amplifier ....................................................... 2-52 2N5517 Dual N-Channel JFET Low Noise Amplifier ....................................................... 2-52 2N5518 Dual N-Channel JFET Low Noise Amplifier ....................................................... 2-52 2N5519 Dual N-Channel JFET Low Noise Amplifier ....................................................... 2-52 2N5520 Dual N-Channel JFET Low Noise Amplifier ....................................................... 2-52 2N5521 Dual N-Channel JFET Low Noise Amplifier ....................................................... 2-52 2N5522 Dual N-Channel JFET Low Noise Amplifier ....................................................... 2-52 2N5523 Dual N-Channel JFET Low Noise Amplifier ....................................................... 2-52 2N5524 Dual N-Channel JFET Low Noise Amplifier ....................................................... 2-52 2N5638 N-Channel JFET Switch ................................................................................ 2-54 2N5639 N-Channel JFET Switch ................................................................................ 2-54 2N5640 N-Channel JFET Switch ................................................................................ 2-54 2N5902 Dual N-Channel JFET General Purpose Amplifier ............................................... 2-56 2N5903 Dual N-Channel JFET General Purpose Amplifier ............................................... 2-56 2N5904 Dual N-Channel JFET General Purpose Amplifier ............................................... 2-56 2N5905 Dual N-Channel JFET General Purpose Amplifier ............................................... 2-56 2N5906 Dual N-Channel JFET General Purpose Amplifier .......................................... ; .... 2-56 2N5907 Dual N-Channel JFET General Purpose Amplifier ............................................... 2-56 2N5908 Dual N-Channel JFET General Purpose Amplifier ............................................... 2-56 2N5909 Dual N-Channel JFET General Purpose Amplifier ............................................... 2-56 3 Table of Contents 'Oescription Section 2 - Page Discretes (Cont.) 2N5911 Dual N-Channel JFET High Frequency Amplifier ............•.............•..................... 2-58 IT5911 Dual N-Channel JFET High Frequency Amplifier: .............'..•...•...............'....... , ....... 2-58 2N5912 Dual N-Channel JFET High Frequency Amplifier ................................................ 2-58 IT5912 Dual N-Channel JFET High Frequency Amplifier ............................................... , .. 2-58 2N6483 Dual N-Channel JFET Low Noise Amplifier ................•...................................... 2:...60 2N6484 Dual N-Channel JFET Low Noise Amplifier ...........•........................................... 2-60 2N6485 Dual N-Channel JFET Low Noise Amplifier ....... : ............................. , ................. 2-60 IMF6485 Dual N-Channel JFET Low Noise Amplifier ....... ; .. , ........................................... 2-62 3N161 Diode Protected P-Channel Enhancement Mode MOSFETGeneral Purpose Amplifier/ Switch ............................................................................................................. 2-64 3N163 P-Channel Enhancement Mode MOSFET General Purpose Amplifier/Switch .............. 2-65 3N164 P-Channel Enhancement Mode MOSFET General Purpose/Switch ........................... 2-65 3N165 Dual P-Channel Enhancement Mode MOSFET General Purpose Amplifier ................. 2-67 3N166 Dual P-Channel Enhancement Mode MOSFET General Purpose Amplifier ................. 2-67 3N170 N-Channel Enhancement Mode MOSFET Switch ................................................. 2-69 3N171 N-Channel Enhancement Mode MOSFET Switch ...... , .......................................... 2-69 3N 172 Diode Protected P-Channel Enhancement Mode MOSFET General Purpose Amplifier / ' .Switch .............................................................. , ............................................. 2-7.1 3N173 Diode Protected P-Channel Enhancement Mode MOSFET General Purpose Amplifier/ Switch ............................................................................................................ 2-71 3N 188 Dual P-Channel Enhancement Mode MOSFET General Purpose Amplifier ................. 2 - 72 3N189 Dual P-Channel Enhancement Mode MOSFET General Purpose Amplifier ................. 2-72 3N 190 Dual P-Channel Enhancement Mode MOSFET General Purpose Amplifier ................. 2 - 72 3N191 Dual P--Channel Enhancement Mode MOSFETGeneral Purpose Amplifier ................. 2-72 ID100 Dual Low Leakage Diode ................................................................................ 2-74 ID101 Dual Low Leakage Diode ................................................................................ 2-74 IT100 P-Channel JFET Switch ............................................ : ...................................... 2-76 IT101 P-Channel JFET Switch ................. '.................................................................. 2-76 IT120 Dual NPN General Purpose Amplifier .................................................................. 2-77 IT120A Dual NPN General Purpose Amplifier ................................................................ 2:... 77 IT121 Dual NPN General Purpose Amplifier .................................................................. 2- 77 IT122 Dual NPN General Purpose Amplifier .................................................................. 2-77 IT124 Dual Super-Seta NPN General Purpose Amplifier ................................... : .............. 2 -79 IT126 Dual NPN General Purpose Amplifier .................................................................. 2-81 IT127 Dual NPN General Purpose Amplifier .................................................................. 2-81 IT128 Dual NPN General Purpose Amplifier .................................................................. 2-81 IT129 Dual NPN General Purpose Amplifier .................................................................. 2-81 IT130 Dual PNP General Purpose Amplifier ................................................................... 2-83 IT130A Dual PNP General Purpose Amplifier ........................................ , ....................... 2-83 IT131 Dual PNP General Purpose Amplifier .................................. , ................................. 2-83 IT132 DualPNP General Purpose Amplifier .................................'..........................•...... 2-83 IT136 Dual PNP General Purpose Amplifier ................................................................... 2-85 IT137 Dual PNP General Purpose Amplifier .................................................................. 2-85 IT138 Dual PNP General Purpose Amplifier ........................................................ , .......... 2-85 IT139 Dual PNP General Purpose Amplifier .................................................................. 2-85 IT500 Dual Cascoded N-Channel JFET General Purpose Amplifier .................. : ................. 2-87 ·IT501 Dual Cascoded N-Channel JFET General Purpose Amplifier ..........................•......... 2 .... 87 1T502 Dual Cascoded N-Channel JFET General Purpose Amplifier .................................... 2-87 IT503 Dual Cascoded N-Channel JFET General Purpose Amplifier .................................... 2-87 4 Table of Contents Description Section 2 - Page Discretes (Cont.) IT504 Dual Cascoded N-Channel JFET General Purpose Amplifier .................................... 2-87 IT505 Dual Cascoded N-Channel JFET General Purpose Amplifier .................................... 2-87 IT550 Dual N-Channel JFET Switch ........................................................................... 2-90 IT1700 P-Channel Enhancement Mode MOSFET General Purpose Amplifier ........................ 2-92 IT1750 N-Channel Enhancement Mode MOSFET General Purpose Amplifier/Switch .............. 2-93 J105 N-Channel JFET Switch ................................................................................... 2-94 J106 N-Channel JFET Switch ................................................................................... 2-94 J107 N-Channel JFET Switch ................................................................................... 2-94 J111 N-Channel JFET Switch ................................................................................... 2-95 J112 N-Channel JFET Switch ................................... '........................................... : .... 2-95 J113 N-Channel JFET Switch ................................................................................... 2-95 J 174 P-Channel J FET Switch .................................................................................... 2 -97 J175 P-Channel JFET Switch ......................................................................... .' ..... : .... 2-97 J176 P-Channel JFET Switch .................................................................................... 2-97 J177 P-Channel JFET Switch .................................................................................... 2-97 J201 N-Channel JFET General Purpose Amplifier .......................................................... 2-99 J202 N-Channel JFET General Purpose Amplifier ......................................................... ;2-99 J203 N-Channel JFET General Purpose Amplifier ...................................... , ................... 2-99 J204 N-Channel JFET General Purpose Amplifier .......................................................... 2-99 J308 N-Channel JFET High Frequency Amplifier ... , ..................................................... 2-100 J309 N-Channel JFET High Frequency Amplifier ..... : ........................................ : .......... 2-100 J310 N-Channel JFET High Frequency Amplifier ....................................... ; ............ : .... 2-100 LM114/H Dual NPN General Purpose Amplifier ........................................................... 2-102 LM114A1AH Dual NPN General Purpose Amplifier ....................................................... 2-102 M116 Diode Protected N-Channel Enhancement Mode MOSFET General Purpose Amplifier. 2 -104 U200 N-Channel JFET Switch ................................................................................. 2-105 U201 N-Channel JFET Switch ................................................................................. 2-105 U202 N-Channel JFET Switch ................................................................................. 2-105 U231 Dual N-Channel JFET General Purpose Amplifier ................................................ 2-106 U232 Dual N-Channel JFET General Purpose Amplifier ................................................ 2-106 U233 Dual N-Channel JFET General Purpose Amplifier ................................................ 2-106 U234 Dual N-Channel JFET General Purpose Amplifier ................................................ 2-106 U235 Dual N-Channel JFET General Purpose Amplifier ................................................ 2-106 U257 Dual N-Channel JFET High Frequency Amplifier ......................... , ................... : .... 2-108 U304 P-Channel JFET Switch ................................................................................. 2-109 U305 P-Channel JFET Switch ................................................................................. 2-109 U306 P-Channel JFET Switch ................................................................................. 2-109 U308 N-Channel JFET High Frequency Amplifier ......................................................... 2-111 U309 N-Channel JFET High Frequency Amplifier ......................................................... 2-111 U310 N-Channel JFET High Frequency Amplifier ...................... : .................................. 2-111 U401 Dual N-Channel JFET Switch ............................... , ............................. , ............ 2 -113 U402 Dual N-Channel JFET Switch .......................................................................... 2-113 U403 Dual N-Channel JFET Switch .......................................................................... 2-113 U404 Dual N-Channel JFET Switch .......................................................................... 2-113 U405 Dual N-Channel JFET Switch .......................................................................... 2-113 U406 Dual N-Channel JFET Switch .......................................................................... 2-113 U1897 N-Channel JFET Switch ............................................................................... 2-115 U1898 N-Channel JFET Switch ............................................................................... 2-115 U1899 N-Channel JFET Switch ..................................... ;;'....................................,.... 2-115 5 Table of Contents Page Description Section 2 - Discretes (Cont.) VCR2N Voltage Controlled Resistors ..........................................•.............................. 2-117 VCR3P Voltage Controlled Resistors ......................................................................... 2-117 VCR4N Voltage Controlled Resistors ............................... , ............... ~ •........................ 2-117 VCR7N Voltage Controlled Resistors ........................ ; ................................................ 2-117 VCR11N Voltage Controlled Resistors ....................................................................... 2-120 Section 3 - Analog Switches and Multiplexers D123 SPST 6-Channel JFET Switch Driver ......................................... , ......................... 3-1 D125 SPST 6-Channel JFET Switch Driver ................................................................... 3-1 D129 4-Channel Decoded JFET Switch Driver ............................................................... 3-6 DG118 SPST 4-Channel Driver With Switch ................................... ; .............................. 3-8 DG123 SPST 5-Channel Driver With Switch .................................................................. 3-8 DG125 SPST 5-Channel Driver With Switch .................................................................. 3-8 DG126 Dual DPST 80 Ohm JFET Analog Switch .......................................................... 3-12 DG129 Dual DPST 30 Ohm JFET Analog Switch .......................................................... 3:...12 DG133 Dual SPST 30/35 Ohm JFET Analog Switch ...................................................... 3-12 DG134 Dual SPST 80 Ohm JFET Analog Switch .......................................................... 3-12 DG140 Dual DPST 10/15 Ohm JFETAnalog Switch ...................................................... 3-12 DG141 Dual ~PST 10 Ohm JFET Analog Switch .......................................................... 3-12 DG151 Dual SPST 15 Ohm JFET Analog Switch .......................................................... 3-12 DG152 Dual SPST 50 Ohm JFET Analog Switch .......................................................... 3-12 DG153 Dual DPST 15 Ohm JFET Analog Switch .. , ....................................................... 3-12 DG154 Dual DPST 50 Ohm JFET Analog Switch .......................................................... 3'-12 DG139 DPDT 30 Ohm Differentially Driven JFET Switch ................................................. 3-17 DG142. DPDT 80 Ohm Differentially Driven JFET Switch ................................................. 3-17 DG143 SPDT 80 Ohm Differentially Driven JFET Switch ................................................. 3-17 DG144 SPDT 30 Ohm Differentially Driven JFET Switch ................................................. 3-17 DG145 DPDT 10 Ohm Differentially Driven JFET Switch ................................................. 3-17 DG146 SPDT 10 Ohm Differentially Driven JFET Switch ................................................. 3-17 DG161 SPDT 15 Ohm Differentially Driven JFET Switch ................................................. 3-17 DG162 SPDT 50 Ohm Differentially Driven JFET Switch ................................................. 3-17 DG163 DPDT 15 Ohm Differentially Driven JFET Switch ................................................. 3-17 DG164 DPDT 50 Ohm Differentially Driven JFET Switch ................................................. 3-17 DG180 Dual SPST 10 Ohm High-Speed Driver With JFET Switch ..................................... 3-22 DG181 Dual SPST 30 Ohm High-Speed Driver With JFET Switch ..................................... 3-22 DG 182 Dual SPST 75 Ohm High-Speed Driver With JFET Switch ..................................... 3 -22 DG183 Dual DPST 10 Ohm High-Speed Driver With JFET Switch ..................................... 3-22 DG184 Dual DPST 30 Ohm High-Speed Driver With JFET Switch ..................................... 3-22 DG185 Dual DPST 75 Ohm High-Speed Driver With JFET Switch ...................................... 3-22 DG186 SPDT10 Ohm High-Speed Driver With JFET Switch ............................................ 3-22 OG187 SPDT 30 Ohm High-Speed Driver With JFET Switch ............................................ 3-22 DG188 SPDT 75 Ohm High-Speed Driver With JFET Switch ............................................ 3-22 DG189 Dual SPDT10 Ohm High-Speed Driver With JFET Switch ..................................... 3:"'22 DG190 Dual SPDT 30 Ohm High-Speed Driver With JFETSwitch ..................................... 3-22 DG191 Dual SPOT 75 Ohm High-Speed Driver With JFET Switch ..................................... 3-22 DG200 Dual SPST CMOS Analog Switch ..• ; ................................................................. 3-27 IH5200 Dual SPST CMOS Analog Switch ..................................................................... 3-27 DG201 Quad SPST CMOS Analog Switch .................................................................... 3-32 6 Table of Contents Description Section 3 - Page Analog Switches and Multiplexers (Cont.) IH5201 Quad SPST CMOS Analog Switch ................................................................... 3-32 DG211 SPST 4-Channel Analog Switch ....................................................................... 3-36 DG212 SPST 4-Channel Analog Switch ....................................................................... 3-36 DGM181 Dual SPST 50 Ohm High-Speed CMOS Analog Switch ...................................... 3-39 DGM182 Dual SPST 50/75 Ohm High-Speed CMOS Analog Switch .................................. 3-39 DGM184 Dual DPST 50 Ohm High-Speed CMOS Analog Switch ...................................... 3-39 DGM185 Dual DPST 50/75 Ohm High-Speed CMOS Analog Switch .................................. 3-39 DGM187 SPOT 50 Ohm High-Speed CMOS Analog Switch ............................................. 3-39 DGM188 SPOT 50/75 Ohm High-Speed CMOS Analog Switch ......................................... 3-39 DGM190 Dual SPOT 50 Ohm High-Speed CMOS Analog Swi.tch ...................................... 3-39 DGM191 Dual SPOT 50/75 Ohm High-Speed CMOS Analog Switch .................................. 3-39 G115 6-Channel MOSFET Switch .............................................................................. 3-45 G123 4-Channel MOSFET Switch .............................................................................. 3-45 G116 5 Channel MOSFET Switch .............................................................................. 3-48 G118 6 Channel MOSFET Switch ..................................... " ....................................... 3-48 G119 6 Channel MOSFET Switch .............................................................................. 3-48 IH311 High Speed SPST 4-Channel Analog Switch ....................................................... 3-52 IH312 High Speed SPST 4-Channel Analog Switch ....................................................... 3-52 IH401 QUAD Varafet Analog Switch ........................................................................... 3-59 IH401A QUAD Varafet Analog Switch ............................................................ , ............ 3-59 IH5009 Quad 100 Ohm Virtual Ground Analog Switch ................................................ : .... 3-65 IH5010 Quad 150 Ohm Virtual Ground Analog Switch .............................................•...... 3-65 IH5011 Quad 100 Ohm Virtual Ground Analog Switch .................................................. ~. 3-65 IH5012 Quad 150 Ohm Virtual Ground Analog Switch .................................................... 3-65 IH5013 Triple 100 Ohm Virtual Ground Analog Switch ....... " ........................................... 3-65 IH5014 Triple 150 Ohm Virtual Ground Analog Switch .................................................... 3-65 IH5015 Triple 100 Ohm Virtual Groung Analog .Switch .................................................... 3-65 IH5016 Triple 150 Ohm Virtual Ground Analog Switch ..................................................... 3-65 IH5017 Dual 100 Ohm Virtual Ground Analog Switch , .................................................... 3-65 lH5018 Dual 150 Ohm Virtual Ground Analog Switch ..................................................... 3-65 IH5019 Dual 100 Ohm Virtual Ground Analog Switch ..................................................... 3-65 IH5020 Dual 150 Ohm Virtual Ground Analog Switch ..................................................... 3-65 IH5021 Single 100 Ohm Virtual Ground Analog Switch ................................................... 3-65 IH5022 Single 150 Ohm Virtual Ground Analog Switch ................................................... 3-65 IH5023 Single 100 Ohm Virtual Ground Analog Switch ................................................... 3-65 IH5024 Single 150 Ohm Virtual Ground Analog Switch ................................................... 3-65 IH5025 Quad 100 Ohm Positive Signal Analog Switch ........... , ........................................ 3-71 IH5026 Quad 150 Ohm Positive Signal Analog Switch .................................................... 3-71 IH5027 Quad 100 Ohm Positive Signal Analog Switch .................................................... 3 - 71 IH5028 Quad 150 Ohm Positive Signal Analog Switch .................................................... 3 - 71 IH5029 Triple 100 Ohm Positive Signal Analog Switch .................................................... 3-71 IH5030 Triple 150 Ohm Positive Signal Analog Switch .................................................... 3-71 IH5031 Triple 100 Ohm Positive Signal Analog Switch .................................................... 3-71 IH5032 Triple 150 Ohm Positive Signal Analog Switch .......................,............................. 3-71 IH5033 Dual 100 Ohm Positive Signal Analog Switch ..................................................... 3-71 IH5034 Dual 150 Ohm Positive Signal Analog Switch ..................................................... 3-71 IH5035 Dual 100 Ohm Positive Signal Analog Switch ..................................................... 3-71 IH5036 Dual 150 Ohm Positive Signal Analog Switch ..................................................... 3-71 IH5037 Single 100 Ohm Positive Signal Analog Switch .......... : ........................................ 3-71 7 Table of Contents Description Page Section 3 -Analog Switches and Multiplexers (Cont.) IH5038 Single 1'50 Ohm Positive Signal Analog Switch ..................................................... 3-71 IH5040 SPST 75 Ohm High-Level CMOS Analog Switch ....... , .........................................,3-.79 IH5041 Dual SPST 75 Ohm High-Level CMOS Analog Switch .......................................... 3-79 IH5042 SPOT 75 Ohm High-Level CMOS Analog Switch ............. ; ......................... , ....... ,. 3-79 IH5043 Dual SPOT 75 Ohm High-Level CMOS Analog Switch ............................... , ......... , 3-79 IH5044 DPST 75 Ohm High-Level CMOS Analog Switch .............................. ; ....... , .......... 3-]9 IH5045 Dual DPST 75 Ohm High-Level CMOS Analog Switch .......................................... 3-79 IH5046 DPDT 75 Ohm High-Level CMOS Analog Switch ........................................' .......... 3-79 IH5047 4PST 75 Ohm High-Level CMOS Analog Switch ....... ; ..... : .................................... 3-79 IH5048 Dual SPST 35 Ohm High-Level CMOS Analog Switch ........................................... 3-88 IH5049 Dual DPST 35 Ohm High-Level CMOS Analog Switch .......................................... 3-88 IH5050 SPOT 35 Ohm High-Level CMOS Analog Switch ................................................. 3-88 IH5051 Dual SPOT 35 Ohm High-Level CMOS Analog Switch ......................" ................... 3-88 IH5052 QUAD CMOS Analog Switch ........................................................................... 3-93 IH5053 QUAD CMOS Analog Switch ........................................................................... 3-93 IH5108 8-Ch~nnel Fault Protected Analog Multiplexer ............................................. , ....... 3-99 IH5116 16-Channel Fault Protected Analog Multiplexer .............. 01 . . . . . . . . . . . . . , " . . . . . . . . . . . . . . . . . . . 3 -1 07 IH5140 SPST High-Level CMOS Analog Switch ..................................... ; ................ ; .... 3-110 IH5141 Dual SPST High-Level CMOS Analog Switch ..................................................... 3 -110 IH5142 SPOT Hig~-Level CMOS Analqg Switch ................................................ ; .... , ..... 3-110 IH5f43 Dual SPOT High-Level CMOS Analog Switch .................................................... 3-110 IH5144 DPST High-Level CMOS Analog Switch ................................ ; .......................... 3-110 IH5145 Dual DPST High-Level CMOS Analog Switch ............................... , ..................... 3-110 IH5148 Dual SPST High-Level CMOS Analog Switch ...................... : ..... ; ....................... 3-119 IH5149 Dual DPST High-Level CMOS Analog Switch ........................ , .. , ...... , .................. 3-119 IH5150 SPOT High-Level CMOS Analog Switch .......................,.................................... 3-119 IH5151 Dual SPOT High-Level CMOS Analog Switch ........ , ........................................... 3-119 IH5208 4-Channel Differential Fault Protectbu Analog Multiplexer .................................... 3-127 IH52168-Channel Differential Fault Protected Analog Multiplexer •........• ~ ......................... 3-135 IH5341 Dual SPST CMOS RFlVideo Switch ............... : ................................................ 3-1.38 IH5352 QUAD SPST CMOS RFlVideo Switch ............................................................. 3-144 IH6108 8-Channel CMOS Analog Multiplexer ................................... , .......................... 3-149 IH6116 16-Channel CMOS Analog Multiplexer ................................ ; ............. ; ............. 3-155 IH6201 Dual CMOS DriverlVoltage Translator ........................... ; ................................. 3-162 IH6208 4-Channel Differential CMOS Analog Multiplexer ............................................... 3-166 IH6216 8-Channel Differential CMOS Analog Multiplexer ............. ; ................................. 3-172 MM450 Dual Differential High Voltage Analog Switch .................................................... 3-178 MM550 Dual Differential High Voltage Analog Switch ................................................... 3-178 MM451 Four Channel High Voltage Multiplexer ............................................................3.-178 MM551 Four Channel High Voltage Multiplexer ........................................................... 3-178 MM452 Quad SPST High Voltage Analog Switch ............ "................... : ........................ 3-178 MM552 Quad SPST High Voltage Analog Switch .......................................................... 3-178 MM455 Three SPST High Voltage Analog Switch ..,...................................................... 3-178 MM555 Three SPST High Voltage Analog Switch ........................................................ :)-178 Section 4 - Amplifiers - Operational and Special Purpose ICH8500/ A Ultra Low Input-Bias Operational Amplifier ..................................................... 4-1 ICH8510 Power Operational Amplifier ........................................................................... 4-7 8 Table of Contents Description Section 4 (Cont.) Page Amplifiers - Operational and Special Purpose rCH8520 Power Operational Amplifier ........................................................................... 4-7 ICH8530 Power Operational Amplifier ........................................................................... 4-7 ICH8515 Power Operational Amplifier ......................................................................... .4-16 ,ICL7605 Commutating Auto-Zero (CAZ) Instrumentation Amplifier ...................................... 4-23 ICL7606 Commutating Auto-Zero (CAD) Instrumentation Amplifier ...................................... 4-23 ICL76XX Series Low Power CMOS Operational Amplifiers .............................................. .4-34 ICL7650 Chopper-Stabilized Operational Amplifier .......................................................... 4-50 ICL7652 Chopper-Stabilized Low-Noise Operational Amplifier ........................................... 4-57 ICL8007 JFET Input Operational Amplifier .................................................................... 4-65 ICL8021 Low Power Bipolar Operational Amplifier .......................................................... 4-69 ICL8022 Dual Low Power Bipolar Operational Amplifier ....................................... : .......... .4-69 ICL8023 Triple Low Power Bipolar Operational Amplifier .................................................. 4-69 . ICL8043 Dual JFET Input Operational Amplifier ............................................................ .4-74 ICL8048 Logarithmic Amplifier .................................................................................... 4-82 ICL8049 Antilog Amplifier ......................................................................................... 4-82 ICL8063 Power Transistor Driver/Amplifier ................................................................... .4-90 LH2108 Dual Super-Beta Operational Amplifier ............................................................ .4-99 LH2308 Dual Super-Beta Operational Amplifier ............................................................ .4-99 LM108/A Super-Beta Operational Amplifier ................................................................ 4-102 LM308/A Super-Beta Operational Amplifier ................................................................ 4-102 NE/SE592 Video Amplifier ................................................................................ ; ..... 4-106 Section 5 - Special Analog Functions AD590 2-Wire Current Output Temperature Transducer .................................................... 5-1 ICL7660 CMOS Voltage Converter ............................................................................... 5.,.12 ICL7662 CMOS Voltage Converter .............................................................................. 5-20 ICL7663 CMOS Programmable Micropower Positive Voltage Regulator ............................... 5-27 ICL7664 CMOS Programmable Micropower Negative Voltage Regulator .............................. 5-27 ICL7665 Micropower Under/Over Voltage Detector ......................................................... 5-39 ICL7667 Dual Power MOSFET Driver .......................................................................... 5-47 ICL7673 Automatic Battery Back-up Switch .................................................................. 5-55 ICL8013 Four Quadrant Analog Multiplier ..................................................................... 5-63 ICL8038 Precision Waveform Generator/Voltage Controlled Oscillator ................................. 5-72 ICL8069 Low Voltage Reference ................................................................................ 5-81 ICL8211 Programmable Voltage Detector ..................................................................... 5-83 ICL8212 Programmable Voltage Detector ..................................................................... 5-83 IH5110 General Purpose Sample & Hold ..................................................................... 5-94 IH5111 General Purpose Sample & Hold ..................................................................... 5-94 IH5112 General Purpose Sample & Hold ..................................................................... 5-94 IH5113 General Purpose Sample & Hold ..................................................................... 5-94 IH5114 General Purpose Sample & Hold ..................................................................... 5-94 IH5115 General Purpose Sample & Hold ..................................................................... 5-94 Section 6 - Data Acquisition AD7520 10/ 12-Bit Multiplying D/ A Converter ................................................................. 6-1 AD7521 10/12-Bit Multiplying D/ A Converter ........................................................ ; ........ 6-1 9 Table of Contents Page Description Section 6 - Data Acquisition (Cont.) AD7530 10/12-Bit Multiplying D/A Converter ................................................................. 6-1 AD7531 10/12-Bit Multiplying D/ A Converter ............................ ; .................................•.. 6-1 AD7523 8-Bit Multiplying D/ A Converter ....................................................................... 6-7 AD7533 10-Bit Multiplying D/ A Converter ................. , .........................................', ........ 6-11 AD7541 12-Bit Multiplying D/A Converter .................................................................... 6-16 ADC0802 8-Bjt J,LP-Compatible AID Converter ............................................................... 6-22 ADC0803 8-Bit J,LP-Compatible AID Converter .. ; ............................................................ 6-22 ADC0804 8-Bit J,LP-Compatible AID Converter ................................................................6-22 ICL7106 3 Y2-Digit LCD Single-Chip AID Converter ....................................................... 6-37 ICL7107 3 Y2-Digit LED Single-Chip AID Converter ....................................................... 6-37 ICL7109 12-Bit J,LP-Compatible AID Converter ............................................................... 6-48 ICL7115 14-Bit High-Speed CMOS J,LP-Compatible AID Converter .................................... 6-66 ICL7116 3 Y2-Digit with Display Hold Single-Chip AID Converter ........................................ 6-78 ICL7117 3 Y2-Digit with Display Hold Single-Chip AID Converter ...................................... 6-78 ICL7126 3 Y2-Digit Low-Power Single-Chip AID Converter .............................................. 6-88 ICL7129 4 Y2 Digit I.CD Single-Chip AID Converter ....................................................... 6-98 ICL7134 14-Bit Multiplying J,LP-Gompatible D/A Converter .............................................. 6-109 ICL7135 4 Y2-Digit BCD Output AID Converter ............................................................ 6-121 ICL7136 3 Y2-Digit LCD Low Power AID Converter ...................................................... 6-132 ICL71373 Y2-Digit LED Low Power Single-Chip AID Converter ...................................... 6-142 ICL8018A 4-Bit Expandable Current Switch ................................................................ 6-151 ICL8019A 4-Bit Expandable Current Switch ................................................................ 6-151 ICL8020A 4-Bit Expandable ~urrent Switch ................................................................ 6-151 ICL7104/ICL8052 12/14/16-Bit J,LP-Compatible 2-Chip AID Converter ................... " ......... 6-157 ICL7104/1CL8068 12/14/16-Bit J,LP-Gompatible 2-Chip AID Converter ............................. 6-157 . Section 7 - ( Timer/Counter Circuits ICM7206 CMOS Touch-Tone Encoder .......................................................................... 7-1 ICM7207/A CMOS Timebase Generator ....................................................................... 7 -10 ICM7208 7-Digit LED Display Counter ......................................................................... 7 -15 ICM7209 Timebase Generator ................................................................................... 7 -22 ICM7213 One Second/One Minute Timebase Generator ................................................. 7 -25 ICM72Hi 6-Digit LED Display 4-Function Stopwatch ...................................................... 7 -30 ICM7216A 8-Digit Multi-Function Frequency Counter/Timer .............................................. 7-36 ICM7216B 8-Digit Multi-Function Frequency Counter/Timer .............................................. 7-36 ICM7216C 8-Digit Multi-Function Frequency Counter/Timer .............................................. 7 -36 ICM7216D 8-Digit Multi-Function Frequency Counter/Timer ............................................. 7-36 ICM7217 4-Digit LED Display Programmable Up/Down Counter ........................................ 7 -52 ICM7227 4-Digit LED Display Programmable Up/Down. Counter ........................................ 7 -52 ICM7224 4 Y2-Digit LCD/LED Display Counter .......................... ; ................................... 7 -67 ICM7225 4 Y2-Digit LCD/LED Display Counter .............................................................. 7 -67 ICM7226A1B 8-Digit Multi-Function Frequency Counter/Timer .......................................... 7-75 ICM7236 4 Y2-Digit CounterlVacuum Fluorescent Display Driver ........................................ 7-88 ICM7240 Programmable Timer ................................................................................... 7 -93 ICM7250 Programmable Timer ...................................... , .......................................... ;. 7-93 ICM7260 Programmable Timer ................................................................................... 7-93 ICM7241 Timebase Generator ............................ , .................... : ............................... 7-103 ICM7242 Long-Range Fixed Timer ........................................................................... 7-105 10 Table of Contents Page Description Section 7 ICM7245 IGM7249 ICM7555 ICM7556 Stepper Motor Quartz Clock ....................................................................... 7 -111 S-Y2 Digit LCD J..!-Power Event/Hour Meter .................................................... 7-115 General Purpose Timer .............................................................................. 7 -123 Dual General Purpose Timer ..................................... ,.................................. 7-123 Section 8 ICM7211 ICM7212 ICM7218 ICM7231 ICM7232 ICM7233 ICM7234 ICM7235 ICM7243 ICM7280 ICM7281 ICM7283 Timer/Counter Circuits (Cont.) Display Drivers 4-Digit LCD/LED Display Driver ..................................................................... 8-1 4-Digit LCD/LED Display Driver ........................ ; ............................................ 8-1 8-Digit LED Multiplexed Display Driver ............................................................ 8-1 0 Numeric Triplexed LCD Display Driver ............................................................ 8-20 Numeric Triplexed LCD Display Driver ............................................................ 8-20 Alphanumeric Triplexed LCD Display Driver ...................................................... 8-20 Alphanumeric Triplexed LCD Display Driver ...................................................... 8-20 4-Digit Vacuum Fluorescent Display Driver ...................................................... 8-40 8'-Character LED J..!P-Compatible Display Driver ................................................ 8-45 Dot Matrix LCD Controller/Row Driver ............................................................ 8-54 40-Column LCD Dot Matrix Display Driver ....................................................... 8-69 LCD Dot Matrix Controller/Row Driver ............................................................ 8-79 Section 9 - Microcontrollers, Microperipherals, Memory ICM7170 J..!P'-Compatible Real-Time Clock ..................................................................... 9-1 IM4702/4712 Baud Rate Generator ............................................................................. 9-9 IM6402 Universal Asynchronous Receiver Transmitter (UART) .......................................... 9-16 IM6403 Universal Asynchronous Receiver Transmitter (UART) .......................................... 9-16 IM6653 4096-Bit CMOS UV EPROM .......................................................................... 9-25 IM6654 4096-Bit CMOS UV EPROM .......................................................................... 9-25 IM80C35 B-Bit CMOS Microcontroller .......................................................................... 9-33 IM80C39 B-Bit CMOS Microcontroller .......................................................................... 9-33 IM80C48 B-Bit CMOS Microcontroller .......................................................................... 9-33 IM80C49 B-Bit CMOS Microcontroller .......................................................................... 9-33 IM82C43 CMOS I/O Expander ..........................•....................................................... 9-45 Section 10 - High Reliability/Military Products and Ordering Information .................................................................................................... 10:"1 11 Alphanumeric Index 2N2607 P-Channel JFET General Purpose Amplifier ....................................................... 2-1 2N2608 P-Channel JFET General Purpose Amplifier .............................................• , ... ; .... 2-1 2N2609 P-Channel JFET General Purpose .Amplifier ....................................................... 2-1 2N2609JAN P-Channel JFET Gen.eral Purpose Amplifier ............................................ , ...".2-'1 2N3684 N-Channel JFET Low Noise Amplifier ............................................................... 2-2 2N3685 N-Channel JFET Low Noise Amplifier ............................................................... 2-2' 2N3686 N-Channel JFET Low Noise Amplifier ............................................................... 2-2 2N3687 N-Channel JFET Low Noise Amplifier ............................................................... 2-2 2N3810/A Dual Matched PNP General Purpose Amplifier ................................................. 2-3 2N3811 / A Dual Matched PNP General Purpose Amplifier ................................................. 2-3 2N3821 N-Channel JFET High Frequency Amplifier ............................................... ; ....../.2-5 2N3821JAN N-Channel JFET High Frequency Amplifier ................................................... 2-5 2N3821 JTX N-Channel JFET High Frequency Amplifier ...... : ............................................. 2-5 2N3821JTXV N-Channel JFET High Frequency Amplifier ........ ~ ......................................... 2-5 2N3822 N-Channel JFET High Frequency Amplifier .................... : ................................... 2-5 2N3822JAN N-Channel JFET High Frequency Amplifier ................................................... 2-5 2N3822JTX N-Channel JFET High Frequency Amplifier .................................................... 2-$ 2N3822JTXV N-Channel JFET High Frequency Amplifier .................................................. 2-5 2N3823 N-Channel JFET High Frequency Amplifier ........................................................ 2-7 2N3823JAN N-Channel JFET High Frequency Amplifier ................................................... 2-7 2N3823JTX N-Channel JFET High Frequency Amplifier .................................................... 2..., 7 2N3823JTXV N-Channel JFET High Frequency Amplifier .................................................. 2-7 2N3824 N-Channel JFET Switch .................... ~ ............................................................ 2-8 2N3921 Dual N-Channel JFET General Purpose Amplifier ................................................ 2-9 2N3922 Dual N-Channel.JFET General Purpose Amplifier ..................................... , .......... 2-9 2N3954 Dual N-Channel JFET General Purpose Amplifier ............................................... 2 -11 2N3954A Dual N-Channel JFET General Purpose Amplifier ..... ; ....................................... 2-11 2N3955 Dual N-Channel JFET General Purpose Amplifier ............................................... 2-11 2N3955A Dual N-Channel.JFET General Purpose Amplifier ............................................. 2-11 2N3956 Dual N-Channel JFET General Purpose Amplifier ............................................... 2-11 2N3957 Dual N-Channel JFET General Purpose Amplifier ............................................... 2-11 2N3958 Dual N-Channel JFET General Purpose Amplifier ...................... , ....................;.... 2-11 2N3970 N-Channel JFET Switch ................................................................................. 2-13 2N3971 N-Channel JFET Switch ................................................................................ 2-13 2N3972 N-Channel JFET Switch ................................................................................ 2-13 2N3993 P-Channel JFET General Purpose Amplifier/Switch ............................................. 2-15 2N3994 P-Channel JFET General Purpose Amplifier/Switch ............................................. 2-15 2N4044 Dielectrically Isolated Dual NPN General Purpose Amplifier ................................... 2-17 2N4045 Dielectrically Isolated Dual NPN General, Purpose Amplifier ................................... 2-17 2N4091 JANTX N-Channel JFET Switch ..................................................................... 2-19 2N4091 N-Channel JFET Switch ................................................................................ 2-19 2N4092 JANTX N-Channel JFET Switch .......................... : .......................................... 2-19 2N4092 N-Channel JFET Switch ........................................................... '..................... 2-19 2N4093 JANTX N-Channel JFET Switch ..................................................................... 2-19 2N4093 N-Channel JFET Switch ................................................................................ 2-19 2N4100 Dielectrically Isolated Dual NPN General Purpose Amplifier ................................... 2-17 2N4117 N-Channel JFET General Purpose Amplifier ...................................................... 2-21 2N4117A N-Channel JFET General Purpose Amplifier .................................................... 2-21 2N4118 N-Channel JFET General Purpose Amplifier ...................................................... 2-21 2N4118A N-Channel JFET General Purpose Amplifier .................................................... 2-21 2N4119 N-Channel JFET General Purpose Amplifier ...................................................... 2-21 2N4119A N-Charinel JFET General Purpose Amplifier .................................................... 2-21 2N4220 N-Channel JFET General Purpose Amplifier/Switch ............................................ 2-22 2N4221 N-Channel JFET General Purpose Amplifier/Switch ............................................ 2-22 12 Alphanumeric Index (Continued) 2N4222 N-Channel JFET General Purpose Amplifier/Switch ............................................ 2-22 2N4223 N-Channel JFET High Frequency Amplifier ....................................................... 2-23 2N4224 N-Channel JFET High Frequency Amplifier .................................................... : .. 2-23 2N4338 N-Channel JFET Low Noise Amplifier .............................................................. 2-24 2N4339 N-Channel JFET Low Noise Amplifier .............................................................. 2-24 2N4340 N-Channel JFET Low Noise Amplifier .............................................................. 2-24 2N4341 N-Channel JFET Low Noise Amplifier .............................................................. 2-24 2N4351 N-Channel Enhancement Mode MOSFET General Purpose Amplifier/Switch ............. 2-25 2N4391 N-Channel JFET Switch ................................................................................ 2-26 2N4392 N-Channel JFET Switch ................................................................................ 2-26 2N4393 N-Channel JFET Switch ................................................................. , .............. 2-26 2N4416/A N-Channel JFET High Frequency Amplifier .................................................... 2-28 2N4856 N-Channel JFET Switch ................................................................................ 2-30 2N4856JAN,JTX,JTXV N-Channel JFET Switch ............................................................. 2-30 2N4857 N-Channel JFET Switch ................................................................................ 2-30 2N4857 JAN,JTX,JTXV N-Channel JFET Switch ............................................................. 2-30 2N4858 N-Channel JFET Switch ................................................................................ 2-30 2N4858JAN,JTX,JTXV N-Channel JFET Switch ............................................................. 2-30 2N4859 N-Channel JFET Switch ................................................................................ 2-30 2N4860 N-Channel JFET Switch ................................................................................ 2-30 2N4861 N-Channel JFET Switch ................................................................................ 2-30 2N4867/ A N-Channel JFET Low Noise Amplifier ........................................................... 2-32 2N4868/ A N-Channel JFET Low Noise Amplifier ........................................................... 2-32 2N4869/ A N-Channel JFET Low Noise Amplifier ........................................................... 2-32 2N4878 Dielectrically Isolated Dual NPN General Purpose Amplifier ......................... ; ......... 2-17 2N4879 Dielectrically Isolated Dual NPN General Purpose Amplifier ................................... 2-17 2N4880 Dielectrically Isolated Dual NPN General Purpose Amplifier ................................... 2-17 2N5018 P-Channel JFET Switch ................................................................................ 2-34 2N5019 P-Channel JFET Switch ................................................................................ 2-34 2N5114 P-Channel JFET Switch ...................................................................... :·, ........ 2-36 2N5114JAN,JTX,JTXV P-Channel JFET Switch ........................ ; ..................................... 2-36 2N5115 P-Channel JFET Switch ................................................................................ 2-36 2N5115JAN,JTX,JTXV P-Channel JFET Switch .............................................................. 2-36 2N5116 P-Channel JFET Switch ................................................................................ 2-36 2N5116JAN,JTX,JTXV P-Channel JFET Switch .............................................................. 2-36 2N5117 Dielectrically Isolated Dual PNP General Purpose Amplifier ................................... 2-38 2N5118 Dielectrically Isolated Dual PNP General Purpose Amplifier ................................... 2-38 2N5119 Dielectrically Isolated Dual PNP General Purpose Amplifier ................................... 2-38 2N5196 Dual N-Channel JFET General Purpose Amplifier ............................................... 2-40 2N5197 Dual N-Channel JFET General Purpose Amplifier ............................................... 2-40 2N5198 Dual N-Channel JFET General Purpose Amplifier ............................................... 2-40 2N5199 Dual N-Channel JFET General Purpose Amplifier ........................................... : ... 2-40 2N5397 N-Channel JFET High Frequency Amplifier ....................................................... 2-42 2N5398 N-Channel JFET High Frequency Amplifier ....................................................... 2-42 2N5432 N-Channel JFET Switch ................................................................................ 2 -44 2N5433 N-Channel JFET Switch ................................................................................ 2 -44 2N5434 N-Channel JFET Switch ................................................................................ 2-44 2N5452 Dual N-Channel JFET General Purpose Amplifier ............................................... 2-46 2N5453 Dual N-Channel JFET General Purpose Amplifier .............. : ................................ 2-46 2N5454 Dual N-Channel JFET General Purpose Amplifier ............................................... 2-46 2N5457 N-Channel JFET General Purpose Amplifier/Switch ............................................ 2-48 2N5458 N-Channel JFET General Purpose Amplifier/Switch ............................................ 2-48 2N5459 N-Channel JFET General Purpose Amplifier/Switch ............................................ 2-48 2N5460 P-Channel JFET Low Noise Amplifier .............................................................. 2-49 13 Alphanumeric Index (Continued) - 2N5461 P-Channel JFETLow Noise Amplifier ...................•. ; ................... :., .•...•............ 2 ...,49 2N5462 P-Channel JFET Low Noise Amplifier ....... ~.~, .," .•............................................... 2-:49 2N5463 P-Channel JFET Low Noise Amplifier ........................... : .................................. 2 ...049 2N5464 P-ChanneIJFET Low Noise Amplifier ............... : .............................................. 2;,..49 2N5465 P-Channel JFET Low Noise Amplifier ............... : ............ : ................................. 2-49 .2N5484 N-Channel JFET High Frequency Amplifier ..... : .............. '.........................,........... 2-50 2N5485 N,..channel JFET High Frequency Amplifier ..... ; ... ~ ........... ,.: ................. , ............. 2:..,50 2N5486 N-Channel JFET High Frequency Amplifier ... '..............•........................ : ............. 2-.50 2N5515 Dual N-Channel JFET Low Noise Amplifier ........................................-............... 2-,52 2N5516 Dual N-Channel JFET Low Noise Amplifier ....................................................... 2-52 2N5517 Dual N-Channel JFET Low Noise Amplifier ....................................................... 2-52 2N5518 Dual N-Channel JFET Low Noise Amplifier .... ~ ........................... : ... : .................. 2-52 2N5519 Dual N-Channel JFET Low Noise Amplifier ....................................................... 2-52 2N5520 Dual N-Channel JFET Low Noise Amplifier ........................................................ 2 .... 52 2N5521 Dual N-Channel JFET Low Noise Amplifier ........................................................ 2-52 2N5522 Dual N-Channel JFET Low Noise Amplifier ....................................................... 2-52 2N5523 Dual N-Channel JFET Low Noise Amplifier ........................................................ 2-52 2N5524 Dual N-Channel JFET Low Noise Amplifier ................................................... : ... 2-52 2N5638 N-Channel JFET Switch ................................................................................ 2-54 2N5639 N-Channel JFET Switch ....,............................................................................ 2..,.54 2N5640 N-Channel JFET Switch ............. : .....................................................••........... 2-54 2N5902 Dual N-Channel JFET General Purpose Amplifier .. , ....... : .................................... 2-56 . 2N5903 Dual N-Channel JFET G~neral Purpose Amplifier. .............................................. 2-56 2N5904 Dual N-Channel JFET General Purpose Amplifier ............................................... 2-56 2N5905 Dual N-Channel JFET General Purpose Amplifier .. , ............................................ 2-56 2N5906 Dual N-Channel JFET General Purpose Amplifier ......... , ..................................... 2-56 2N5907 Dual N-Channel JFET General Purpose Amplifier ............................................... 2-56 2N5908 Dual N-Channel JFET General Purpose Arnplifier .................. : ............................ 2-56 2N5909 Dual N-Channel JFET General Purpose Amplifier ............................................... 2-56 2N5911 Dual N-Channel JFET High Frequency Amplifier .................. : .............................. 2-58 2N5912 Dual. N-Channel JFET High Frequency Amplifier ........................... : ..................... 2-58 2N6483 Dual N-Channel JFET Low Noise Amplifier ....................................................... 2-60 2N6484 Dual N-Channel JFET Low Noise Amplifier ....................................................... 2-60 2N6485 Dual N-Channel JFET Low ,N9ise Amplifier ....................................................... 2-60 3N161 Diode Protected P-ChannelEnhancement Mode MOSFET General Purpose Amplifierl . Switch ..................................... ::.....•....•....•..,........................................................... 2-64 3N163 P-Channel Enhancement Mode MOSFET General Purpose AmplifierlSwitch .............. 2-65 3N164 P-Channel Enhancement Mode MOSFET General Purpose/Switch ........................... 2,..65 3N165 Dual P-Channel Enhancement Mode MOSFET General Purpose Amplifie~ ................. 2-.67 3N166 Dual P-Channel Enhancement Mode MOSFET General Purpose Amplifier ................. 2-67 3N170 N-Channel Enhancement Mode MOSFET Switch ................. : ......... , ..................... 2-69 3N171 N-Channel Enhancement Mode MOSFET Switch .................................................. 2-69 3N172 Diode Protected P-Channel Enhancement Mode MOSFET General Purpose Amplifierl Switch ..................................• : ......................................................_.................... 2-71 3N173 Diode Protected P-Channel ~nhancement Mode MOSFET General Purpose Amplifierl Switch .......................................................................... : ................................... 2-71 3N188 Dual P-Channel Enhancement Mode MOSFET General Purpose Amplifier .................. 2,.. 72 3N189 Dual P-Channel Enhancement Mode MOSFET General Purpose Amplifier ................. 2-72 3N190 Dual P-Channel Enhancement Mbde MOSFET General Purpose Amplifier ................. 2-72 3N1.91 Dual P-Channel Enhancemel1tMo.d.EI: MPSFET General Purpose Amplifier ................. 2-72 AD590 2-:Wire Current Output Temperature TransdUcer .................... : ............................... 5-1 AD7520 10/12-8it Multiplying D/A·Cqhyerter .....• : .......... : .............. ~ ................................ 6-1 AD7521 10/12-8it Multiplying D/A C6nverter: ................................................................ 6-1 AD7523 8-8it Multiplying 01 A Converter ............................................,........................... 6-7 14 Alphanumeric Index (Continued) AD7530 10/12-Bit Multiplying DI A Converter .. , .............................................................. 6-1 AD7531 10/12-Bit Multiplying DI A Converter .......................................................... : ...... 6-1 AD7533 10-Bit Multiplying DI A Converter .................................................................... 6-11 AD7541 12-Bit Multiplying DI A Converter .................................................................... 6-16 ADC0802 8-Bit /lP-Compatible AID Converter ............................................................... 6-22 ADC0803 8-Bit /lP-Compatible AID Converter ............................................................... 6-22 ADC0804 8-Bit /lP-Compatible AID Converter ............................................................... 6-22 D123 SPST 6-Channel JFET Switch Driver ................................................................... 3-1 D125 SPST 6-Channel JFET Switch Driver ................................................................... 3-1 D129 4-Channel Decoded JFET Switch Driver ............................................................... 3-6 DG118 SPST 4-Channel Driver With Switch .................................................................. 3-8 DG123 SPST 5-Channel Driver With Switch .................................................................. 3-8 DG125 SPST 5-Channel Driver With Switch .................................................................. 3-8 DG126 Dual DPST 80 Ohm JFET Analog Switch .......................................................... 3-12 DG129 Dual DPST 30 Ohm JFET Analog Switch .......................................................... 3-12 DG133 Dual SPST 30/35 Ohm JFET Analog Switch ...................................................... 3-12 DG134 Dual SPST 80 Ohm JFET Analog Switch .......................................................... 3-12 DG139 DPDT 30 Ohm Differentially Driven JFET Switch ................................................. 3-17 DG140 Dual DPST 10/15 Ohm JFET Analog Switch ...................................................... 3-12 DG141 Dual SPST 10 Ohm JFET Analog Switch ........................ ; ................................. 3-12 DG142 DPDT 80 Ohm Differentially Driven JFET Switch ................................................. 3-17 DG143 SPDT 80 Ohm Differentially Driven JFET Switch ................................................. 3-17 DG144 SPDT 30 Ohm Differentially Driven JFET Switch ................................................. 3-17 DG145 DPDT 10 Ohm Differentially Driven JFET Switch ................................................. 3-17 DG146 SPDT 10 Ohm Differentially Driven JFET Switch ................................................. 3-17 DG151 Dual SPST 15 Ohm JFET Analog Switch .......................................................... 3-12 DG152 Dual SPST 50 Ohm JFET Analog Switch .......................................................... 3-12 DG153 Dual DPST 15 Ohm JFET Analog Switch .......................................................... 3-12 DG154 Dual DPST 50 Ohm JFET Analog Switch .......................................................... 3-12 DG161 SPDT 15 Ohm Differentially Driven JFET Switch ................................................. 3-17 DG162 SPDT 50 Ohm Differentially Driven JFET Switch ................................................. 3-17 DG163 DPDT 15 Ohm Differentially Driven JFET Switch ................................................. 3-17 DG164 DPDT 50 Ohm Differentially Driven JFET Switch ................................................. 3-17 DG180 Dual SPST 10 Ohm High-Speed Driver With JFET Switch ..................................... 3-22 DG181 Dual SPST 30 Ohm High-Speed Driver With JFET Switch ..................................... 3-22 DG182 Dual SPST 75 Ohm High-Speed Driver With JFET Switch ..................................... 3....,22 DG183 Dual DPST 10 Ohm High-Speed Driver With JFET Switch ..................................... 3,...22 DG184 Dual DPST 30 Ohm High-Speed Driver With JFET Switch ..................................... 3-22 DG185 Dual DPST 75 Ohm High-Speed Driver With JFET Switch ..................................... 3-22 DG186 SPDT 10 Ohm High-Spee~ Driver With JFET Switch ............................................ 3-:22 DG187 SPDT 30 Ohm High-Speed Driver With JFET Switch ............................................ 3-22 DG188 SPDT 75 Ohm High-Speed Driver With JFET Switch ................................ ; ........... 3-22 DG189 Dual SPDT 10 Ohm High-Speed Driver With JFET Switch ....... ; ............................. 3-22 DG190 Dual SPDT 30 Ohm High-Speed Driver With JFET Switch ..................................... 3-22 DG191 Dual SPDT 75 Ohm High-Speed Driver With JFET Switch ..................................... 3-22 DG200 Dual SPST CMOS Analog Switch ..................................................................... 3-27 DG201 Quad SPST CMOS Analog Switch .................................................................... 3-32 DG211 SPST 4-Channel Analog Switch ....................................................................... 3-36 DG212 SPST 4-Channel Analog Switch ....................................................................... 3-36 DGM181 Dual SPST 50 Ohm High-Speed CMOS Analog Switch ...................................... 3-39 DGM182 Dual SPST 50175 Ohm High-Speed CMOS Analog Switch .................................. 3-39 DGM184 Dual DPST 50 Ohm High-Speed CMOS Analog Switch ...................................... 3-39 DGM185 Dual DPST 50175 Ohm High-Speed CMOS Analog Switch .................................. 3-39 DGM187 SPDT 50 Ohm High-Speed CMOS Analog Switch ............................................. 3-39 15 Alphanumeric Ind.x (Continued) OGM188 SPOT 50/75 Ohm High-Speed CMOS AnalogSwitch ........ i ....... , ..........•........... ; .. 3-"'39 DGM190 Dual SPOT 50 Ohm High-Speed .CMOS Analog Switch .......... ,; .......................... 3-'39 DGM191 Dual SPOT 50/75 Ohm High-Speed CMOS Analog Switch ......... ;." ...................... 3..;39 G115 6-Channel MOSFET Switch ........................................... ; ..... : ..:.•.... ; .................... :.3-45 G.116 5 Channel,MOSFET Switch .................................... :· ........... '...... ; ....................... 3-48 G118 6 Channel MOSFET Switch ............................................................................... 3-48 G119 6 Channel. MOSFET. Switch ........................... ; ...'............................., ................... 3-48 G123 4-Channel MOSFET. Switch ..................................................................... , ........ 3-45 lCH85001 A Ultra Low Input-Bias Operational Amplifier .... ; ............. : .............'..................... 4-1 ICH8510 Power Operational Amplifier ............................................................................ 4-7 ICH8515 Power Operational Amplifier ................................... ; ........................... , ......... , 4~ 16 ICH8520 Power Operational Amplifier ............................ ; .......................... , .. : .... , ...... , .... 4-'7 ICH8530 .Power Operational Amplifier ........................................................................... 4-7 ICL76XXSeries Low Power CMOS Operational Amplifiers .............................................. .4-34 ICL7104/1CL8052 12/14/16-Bit j.LP-Compatible 2-Chip AID Converter .... .'........................ 6-157 ICL7104/1CL8068 12/14/16-Bit /o1P-Compatible 2-Chip AID Converter ............................. 6-157 IGL7106 .3 }'2-Digit .LCD Single-Chip AID Converter ....................................................... 6-37 ICL7107 3 }'2-Digit LED Single-Chip AID Converter ....................................................... 6-37 ICL7109 12-Bit /o1P-Compatible AID Converter .............................................................. 6-48 ICL7115 14-Bit High..cSpeed CMOS /o1P-Compatible AID Converter .................................... 6-66 ICL71163 }'2-Digit with Display Hold Single-Chip AID Converter ........................................ 6-78 ICL7117. 3}'2-Digit with Display Hold Single-Chip AID Converter ...................................... 6-78 ICL7126 3 Y.2-Digit Low-Power Single-Chip AID Converter ............................................... 6-88 ICL7129 4 Y2 Digit LCD Single-Chip AID. Converter ....................................................... 6-98 ICL7134 14-Bit Multiplying /o1P-Compatible D/A Converter .............................................. 6-109 ICL7135 4 }'2-Digit BCD Output AID Converter ........................................................... 6-121 ICL7136 3 }'2-Digit LCD Low Power AID Converter .................... : ......................... '........ 6-132 ICL71373 }'2-Digit LED Low Power Singl9-'-Chip AID Converter ...................................... 6-142 ICL7605 Commutating Auto-Zero (CAZ) Instrumentation Amplifier ................. : .. : ................ .4-23 ICL7606 CommutatingAuto-Zero (CAD) Instrumenta:tion Amplifier .': .... ; .............................. .4-23 ICL7650 Chopper..cStabilized Operational Amplifier ............. ; ........................................... .4-50 ICL7652 Chopper..cStabilized Low-Noise Opera:tiona:IAmplifier .......................................... .4-57 ICL7660 CMOS Voltage Converter ................•..... ; ....................................................... 5-12 ICL7662 CMOS Voltage Converter ....•......................................................................... 5-20 ICL7663 CMOS Programmable Micropower Positive Voltage Regulator ..................... , ........... 5-27 ICL7664 CMOS Programmable MicrOpower Negative Voltage Regulator ......... : ..... ; .............. 5-27 ICL7665 Micropower Under/Over Voltage Detector .......................................................... 5-39 ICL7667 Dual Power MOSFET .Driver ............................................................................5-47 ICL7673 Automatic Battery Back-up Switch .................................................................... 5-55 ICL8007 JFET Input Operational Amplifier! .................... ; .... :.\ ........................... , ............ 4-65 ICL8013 Four Quadrant Analog Multiplier ..................................................................... 5-63 ICL8018A 4-Bit Expandable Current Switch ........ : .......................................... , ............ 6-151 ICL8019A 4-Bit Expandable Current Switch ................................................................ 6-151 ICL8020A 4-Bit Expandable Current Switch ...... '.; ........ : ........................... ; .... ; .............. 6-151 ICL8021 Low Power Bipolar Operational Amplifier ... , .................. " .................................. 4-69 ICL8022 Dual Low Power Bipolar Operational Amplifier ................................................... .4-69 ICL8023 Triple Low Power Bipolar Operational Amplifier ................ , ........... , .................... .4-69 ICL8038 Precision Waveform GeneratorlVoltage Controlled Osc;iIIat9r ........................•........ 5-72 ICL8043 Dual JFET Input Operational Amplifier ................................ ; ............................. 4-74 ICL8048 Logarithmic Amplifier ............................... ~ ....................... ; ............................ .4:-82 ICL8049 Antilog Amplifier ........................................................................................ .4-82 ICL8063 Power Transistor Driver I Amplifier ............ ",'" ................ ~ .... ,; .... "...................... .4-90 ICL8069 Low Voltage Reference ............•• ; ...... ;......•.................... :; .. ; ............................. 5-81 .ICL8211 Programmable Voltage Detector ..................................................................... 5-,83 16 Alphanumeric Index (Continued) ICL8212 Programmable Voltage Detector ..................................................................... 5-83 ICM7170 I.LP-Compatible Real-Time Clock ..................................................................... 9-1 ICM7206 CMOS Touch-Tone Encoder .......................................................................... 7-1 ICM7207 / A CMOS Timebase Generator ....................................................................... 7 -10 ICM7208 7-Digit LED Display Counter ......................................................................... 7 -15 ICM7209 Timebase Generator ................................................................................... 7 -22 ICM7211 4-Digit LCD/LED Display Driver ..................................................................... 8-1 ICM7212 4-Digit LCD/LED Display Driver ..................................................................... 8-1 ICM7213 One Second/One Minute Timebase Generator ................................................. 7 -25 ICM7215 6-Digit LED Display 4-Function Stopwatch ...................................................... 7 -30 ICM7216A 8-Digit Multi-Function Frequency Counter/Timer .............................................. 7-36 ICM7216B 8-Digit Multi-Function Frequency Counter/Timer •............................................. 7 -36 ICM7216C 8-Digit Multi-Function Frequency Counter/Timer .............................................. 7 -36 ICM7216D 8-Digit Multi-Function Frequency Counter/Timer ............................................. 7-36 ICM7217 4-Digit LED Display Programmable Up/Down Counter ........................................ 7 -52 ICM7218 8-Digit LED Multiplexed Display Driver ............................................................ 8-1 0 ICM7224 4 1'2-Digit LCD/LED Display Counter .............................................................. 7 -67 ICM7225 4 1'2-Digit LCD/LED Display Counter .~ ............................................................. 7 -67 ICM7226A1B 8-Digit Multi-Function Frequency Counter/Timer .......................................... 7 -75 ICM7227 4-Digit LED Display Programmable Up/Down Counter ........................................ 7 -52 ICM7231 Numeric Triplexeq LCD Display Driver ............................................................ 8-20 ICM7232 Numeric Triplexed LCD Display Driver ............................................................ 8-20 ICM7233 Alphanumeric Triplexed LCD Display Driver ...................................................... 8-20 ICM7234 Alphanumeric Triplexed LCD Display Driver .........•.............................. ; ............• 8-20 ICM7235 4-Digit Vacuum Fluorescent Display Driver ...................................................... 8-40 ICM7236 4 1'2-DigitCounterlVacuum Fluorescent Display Driver. ....................................... 7-88 ICM7240 Programmable Timer ................................................................................... 7 -93 ICM7241 Timebase Generator ................................................................................. 7 -103 ICM7242 Long-Range Fixed Timer ........................................................................... 7 -105 ICM7243 8-Character LED I.LP-Compatible Display Driver ................................................ 8-45 ICM7245 Stepper Motor Quartz Clock ... ; ................................................ ~ ........... , ...... 7 -111 ICM7249 5-1'2 Digit LCD I.L-Power Event/Hour Meter .................................................... 7-115 ICM7250 Programmable Timer ................................................................................... 7 -93 ICM7260 Programmable Timer ................................................................................... 7-93 ICM7280 Dot Matrix LCD Controller/Row Driver ............................................................ 8-54 ICM7281 40-Column LCD Dot Matrix Display Driver ....................................................... 8-69 ICM7283 LCD Dot Matrix Controller/Row Driver ............................................................ 8-79 ICM7555 General Purpose Timer ..............................•............................................... 7 -123 ICM7556 Dual General Purpose Timer ....................................................................... 7 -123 10100 Dual Low Leakage Diode ................................................................................ 2-74 10101 Dual Low Leakage Diode ................................................................................ 2-74 IH311 High Speed SPST 4-Channel Analog Switch ....................................................... 3-52 IH312 High Speed SPST 4-Channel Analog Switch ....................................................... 3-52 IH401 QUAD Varafet Analog Switch ........................................................................... 3-59 IH401A QUAD Varafet Analog Switch ......................................................................... 3-59 IH5009 Quad 100 Ohm Virtual Ground Analog Switch .................................................... 3-65 IH5010 Quad 150 Ohm Virtual Ground Analog Switch .................................................... 3-65 IH5011 Quad 100 Ohm Virtual Ground Analog Switch .................................................... 3-65 IH5012 Quad 150 Ohm Virtual Ground Analog Switch .................................................... 3-65 IH5013 Triple 100 Ohm Virtual Ground Analog Switch .................................................... 3-65 IH5014 Triple 150 Ohm Virtual Ground Analog Switch .................................................... 3-65 IH5015 Triple 100 Ohm Virtual Groung Analog Switch ........... ; ........................................ 3-65 IH5016 Triple 150 Ohm Virtual Ground Analog Switch .................................................... 3-65 IH5017 Dual 100 Ohm Virtual Ground Analog Switch ..................................................... 3-65 17 Alphanumeric Index IH5018 IH5019 IH5020 IH5021 IH5022 IH5023 IH5024 IH5025 IH5026 IH5027 IH5028 IH5029 IH5030 IH5031 IH5032 IH5033 IH5034 IH5035 IH5036 IH5037 IH5038 IH5040 IH5041 IH5042 IH5043 IH5044 IH5045 IH5046 IH5047 IH5048 IH5049 IH5050 IH5051 IH5052 IH5053 IH5108 IH5110 .IH5111 IH5112 IH5113 IH5114 IH5115 IH5116 IH5140 IH5141 IH5142 IH5143 IH5144 IH5145 IH5148 IH5149 IH5150 IH5151 IH5200 (Continued) Dual 150 Ohm Virtual Ground Analog Switch ....... : .................. ; .................. ; ...... ,30-65 f"'ual 100 Ohm Virtual Ground Analog Switch ..................................................... 3-65 Dual 150 Ohm Virtual Ground Analog Switch ................ : ......................•............. 3-65 Single 100 Ohm Virtual Ground Analog Switch , ............. ; .................................... 3-65 Single 150 Ohm Virtual Ground Analog Switch ................. ; ................................. 3-65 Single 100 Ohm Virtual Ground Analog Switch .................................. ; .... , .......... ;.3-65 Single 150 Ohm Virtual Ground Analog Switch ................................................... 3-65 Quad 100 Ohm Positive Signal Analog Switch .........................................,............ 3-71 Quad 150 Ohm Positive Signal Analog Switch ..................................................... 3-71 Quad 100 Ohm Positive Signal Analog Switch .................................................... 3-71 Quad 150 Ohm Positive Signal Analog Switch ..................................................... 3-71 Triple 100 Ohm Positive Signal Analog Switch ............ ; ....................................... 3-71 Triple 150 Ohm Positive Signal Analog Switch .................................................... 3-71 Triple 100 Ohm Positive Signal Analog .Switch .................................................... 3-71 Triple 150 Ohm Positive Signal Analog Switch .................................................... 3- 71 Dual 100 Ohm Positive Signal Analog Switch ........... : ......................................... 3-71 Dual 150 Ohm Positive Signal Analog Switch ..................................................... 3-71 Dual 100 Ohm Positive Signal Analog Switch ..................................................... 3-71 Dual 150 Ohm Positive Signal Analog Switch ..................................................... 3-71 Single 100 Ohm Positive Signal Analog Switch ................................................... 3-71 Single 150 Ohm Positive Signal Analog Switch ................................................... 3-71 SPST 75 Ohm High-Level CMOS Analog Switch ................................................. 3-79 Dual SPST 75 Ohm High-Level CMOS Analog Switch .......................................... 3-79 SPOT 75 Ohm High-Level CMOS Analog Switch ................................................. 3-79 Dual SPOT 75 Ohm High-Level CMOS Analog Switch .......................................... 3-79 DPST 75 Ohm High-Level CMOS Analog Switch ................................................. 3-79 Dual DPST 75 Ohm High-Level CMOS Analog Switch .......................................... 3-79 DPDT 75 Ohm High-Level CMOS Analog Switch ............................................ , .... 3-79 4PST 75 Ohm High-Level CMOS Analog Switch ...............•................................. 3-79 Dual SPST 35 Ohm High-Level CMOS Analog SWitch .......................................... 3-88 Dual DPST 35 Ohm High-Level CMOS Analog Switch .......................................... 3-88 SPOT 35 Ohm High-Level CMOS Analog Switch ................................................. 3-88 Dual SPOT 35 Ohm High-Level CMOS Analog Switch .......................................... 3-88 QUAD CMOS Analog Switch ........................................................................... 3 .... 93 QUAD CMOS Analog Switch ........................................................................... 3-93 8-Channel Fault Protected Analog Multiplexer ..................................................... 3-99 General Purpose Sample & Hold ..................................................................... 5-94 General Purpose Sample & Hold ..................................................................... 5-94 General Purpose Sample & Hold ..................................................................... 5-94 General Purpose Sample & Hold .................................. ; .................................. 5-94 General Purpose Sample & Hold ..................................................................... 5-94 General Purpose Sample & Hold ..................................................................... 5-94 16-Channel Fault Protected Analog Multiplexer ........... "..................................... 3-107 SPST High-Level CMOS Analog Switch ........................................................... 3-110 Dual SPST High-Level CMOS Analog Switch .................................................... 3-110 SPOT High-Level CMOS Analog Switch ........................................................... 3'-110 Dual SPOT High-Level CMOS Analog Switch .................................................... 3-110 DPST High-Level CMOS Analog Switch ........................................................... 3-110 Dual ,DPST High-Level CMOS Analog Switch .................................................... 3-110 Dual SPST High-Level CMOS Analog Switch .................................................... 3-119 Dual DPST High-Level CMOS Analog Switch .................................................... 3-119 SPOT High-Level CMOS Analog Switch ... ; ............ : .......................................... 3-119 Dual SPOT High-Level CMOS Analog Switch .................................................... 3-119 Dual SPST CMOS Analog Switch ................. ,' .................................................. 3-27 18 Alphanumeric Index (Continued) IH5201 Quad SPST CMOS Analog Switch ................................................................... 3-32 IH5208 4-Channel Differential Fault Protected Analog Multiplexer .................................... 3-127 IH5216 8-Channel Differential Fault Protected Analog Multiplexer .................................... 3-135 IH5341 Dual SPST CMOS RFlVideo Switch ............................................................... 3-138 IH5352 QUAD SPST CMOS RFlVideo Switch ............................................................. 3-144 IH6108 8-Channel CMOS Analog Multiplexer .............................................................. 3-149 IH6116 16-Channel CMOS Analog Multiplexer ............................................................ 3-155 IH6201 Dual CMOS DriverlVoltage Translator ............................................................. 3-162 IH6208 4-Channel Differential CMOS Analog Multiplexer ............................................... 3-166 IH6216 8-Channel Differential CMOS Analog Multiplexer ............................................... 3-172 IM80C35 8-8it CMOS Microcontroller .......................................................................... 9-33 IM80C39 8-8it CMOS Microcontroller .......................................................................... 9-33 IM80C48 8-8it CMOS Microcontroller .......................................................................... 9-33 IM80C49 8-8it CMOS Microcontroller .......................................................................... 9-33 IM82C43 CMOS I/O Expander .................................................................................. 9-45 IM4702/4712 8aud Rate Generator ............................................................................. 9-9 IM6402 Universal Asynchronous Receiver Transmitter (UART) .......................................... 9-16 IM6403 Universal Asynchronous Receiver Transmitter (UART) .......................................... 9-16 IM6653 4096-8it CMOS UV EPROM .......................................................................... 9-25 IM6654 4096-8it CMOS UV EPROM .......................................................................... 9-25 IMF6485 Dual N-Channel JFET Low Noise Amplifier ...................................................... 2-62 IT100 P-Channel JFET Switch ................................................................................... 2-76 In01 P-Channel JFET Switch ................................................................................... 2-76 IT120 Dual NPN General Purpose Amplifier .................................................................. 2-77 IT120A Dual NPN General Purpose Amplifier ................................................................ 2 - 77 IT121 Dual NPN General Purpose Amplifier .................................................................. 2-77 IT122 Dual NPN General Purpose Amplifier .................................................................. 2-77 IT124 Dual Super.,..8eta NPN General Purpose Amplifier .................................................. 2-79 IT126 Dual NPN General Purpose Amplifier .................................................................. 2-81 IT127 Dual NPN General Purpose Amplifier .................................................................. 2-81 IT128 Dual NPN General Purpose Amplifier. ................................................................. 2-81 IT129 Dual NPN General Purpose Amplifier .................................................................. 2..,81 IT130 Dual PNP General Purpose Amplifier ......., .......................................................... 2-83 IT130A Dual PNP General Purpose Amplifier ................................................................ 2-83 .IT131 Dual PNP General Purpose Amplifier .................................................................. 2-83 IT132 Dual PNP General Purpose Amplifier ... ; .............................................................. 2-83 IT136 Dual PNP General Purpose Amplifier .................................................................. 2-85 IT137 Dual PNP General Purpose Amplifier .................................................................. 2-85 IT138 Dual PNP General Purpose Amplifier ............................................................ , ..... 2-85 IT139 Dual PNP General Purpose Amplifier .................................................................. 2-85 IT500 Dual Cascoded N-Channel JFET General Purpose Amplifier .................................... 2-87 IT501 Dual Cascoded N-Channel JFET General Purpose Amplifier .................................... 2-87 IT502 Dual Cascoded N-Channel JFET ~eneral Purpose Amplifier .................................... 2-87 IT503 Dual Cascoded N-Channel JFET General Purpose Amplifier .................................... 2-87 IT504 Dual Cascoded N-Channel JFET General Purpose Amplifier ....... : ............................ 2-87 IT505 Dual Cascoded N-Channel JFET General Purpose Amplifier .................................... 2-87 IT550 Dual N-Channel JFET Switch ........................................................................... 2-90 IT1700 P-Channel Enhancement Mode MOSFET General Purpose Amplifier ........................ 2-92 IT1750 N-Channel Enhancement Mode MOSFET General Purpose Amplifier/Switch .............. 2-93 IT5911 Dual N-Channel JFET High Frequency Amplifier .................................................. 2-58 IT5912 Dual N-Channel JFET High Frequency Amplifier .................................................. 2-58 ITE4091 N-Channel JFET Switch ............................................................................... 2..,.19 ITE4092 N-Channel JFET Switch ............................................................................... 2-19 ITE4093 N-Channel JFET Switch ............................................................................... 2-19 19 Alphanumeric Index (Continued) ITE4391 N-Channel JFET Switch .................................... ; ... :; ..... : ................ : ............. 2....:26 ITE4392 N-Channel JFET Switch ............. : .. ;;' ............. : . .'. .' .......•.... , ..... : ....................... 2-26 ITE4393 N-Channel JFET Switch .............................................................................. 2-26 ITE4416 N-Channel JFET High Frequency Amplifier ............................ ~, ......................... 2-28 J105 N-Channel JFET Switch .................................... : ................... : ......... ,................. 2-94 J106 N-Channel JFET Switch ................................................................................... 2-94 J107 N-Channel JFET Switch ............................................................ : ...................... 2-94 J 111 'N-Channel JFET Switch ................................................................................... 2 - 95 J112 N-Channel JFET Switch ................................................................... : ............... 2-95 J113 N-Channel JFET Switch .................................................................................. :2-95 J174 P-Channel JFET Switch ................................................................................ ; ... 2-97 J175 P-Channel JFET Switch ................................................................................... :2-97 J176 P-Channel JFET Switch .........................................................·............................ 2-97 J177 P-Channel JFET Switch .................................................................................... 2-97 J201 N-Channel JFET General Purpose Amplifier ...................................... , ................... 2-99 J202 N-Channel JFET General Purpose Amplifier .......................................................... 2-99 J203 N-Channel JFET General Purpose Amplifier ........................................................... 2-99 J204 N-Channel JFET General Purpose Amplifier .......................................................... 2-99 J308 N-Channel JFET High Frequency Amplifier ......................................................... 2-100 J309 N-Channel JFET High Frequency Amplifier ....................................... ; ................. 2-100 J310 N-Channel JFET High Frequency Amplifier ........ ! ................................................ 2-100 LH2108 Dual Super-Beta Operational Amplifier ................................. ; ........................... 4-99 LH2308 Dual Super-Beta Operational Amplifier ............................................................. 4-99 LM1 081 A Super-Beta Operational Amplifier ................................................................ 4-102 LM114/H Dual NPN General Purpose Amplifier ........................................................... 2-102 LM 114A1 AH Dual NPN General Purpose Amplifier ............... ; ................ : ...................... 2 -102 LM308/A Super-Beta Operational Amplifier ................................................................ 4-102 M116 Diode Protected N-Channel Enhancement Mode MOSFET General Purpose Amplifier. 2-104 MM450 Dual Differential High Voltage Analog Switch ................................................... 3-178 MM451 Four Channel High Voltage Multiplexer ........................................................... 3-178 MM452 Quad SPST High Voltage Analog Switch ......................................................... 3-178 MM455 Three SPST High Voltage Analog Switch ....................... ~ ................................. 3-178 MM550 Dual Differential High Voltage Analog Switch ................................................... 3-178 MM551 Four Channel High Voltage Multiplexer ...................... ; ........... : ........................ 3-178 MM552 Quad SPST High Voltage Analog Switch ......................................................... 3 -178 MM555 Three SPST High Voltage Analog Switch ........................................................ 3-178 NE/SE592 Video Amplifier ................................................................................. , .... 4-106 U200 N-Channel JFET Switch ..................................................................... : ........... 2-105 U201 N-Channel JFET Switch ..........................................'....................................... 2-105 U202 N-Channel JFET Switch ................................................................................. 2-105 U23.1 Dual N-Channel JFET General Purpose Amplifier ................................................ 2-106 U232 Dual N-Channel JFET General Purpose Amplifier ................................................ 2-106 U233 Dual N-Channel JFET General Purpose Amplifier ................................................ 2-106 U234 Dual N-Channel JFET General Purpose Amplifier ................................................ 2-106 U235 Dual N-Channel JFET General Purpose Amplifier ........... : .................................... 2-106 U257 Dual N-Channel JFET High Frequency Amplifier .................................................. 2-108 U304 P-Channel JFET Switch ................................................................................. 2-109 U305 P-Channel JFET Switch .......................................................... ; ....... ~ .............. 2-109 U306 P-Channel JFET Switch ............................................................................ : .... 2-109 U308 N-Channel JFET High Frequency Amplifier ......................................................... 2-111 U309 N-Channel JFET High Frequency Amplifier ......................................................... 2-111 U310 N-Channel JFET High Frequency Amplifier ......................................................... 2-111 U401 Dual N-Channel JFET Switch .......................................................................... 2-113 U402 Dual N-Channel JFET Switch ........................................................................... 2-113 20 Alphanumeric Index (Continued) U4o.3 Dual N-Channel JFET Switch .......................................................................... 2-113 U404 Dual N-Channel JFET Switch .......................................................... ; ................ 2-113 U4o.5 Dual N-Channel JFET Switch .......................................................................... 2-113 U4o.6 Dual N-Channel JFET Switch ...................................... ; ................................... 2-113 U1897 N-Channel JFET Switch ............................................................................... 2-115 . U1898 N-Channel JFET Switch ........................................................................ ~ ...... 2-115 U1899 N-Channel JFET Switch ............................................................................... 2-115 VCR2N Voltage Controlled Resistors ......................................................................... 2-117 VCR3P Voltage Controlled Resistors ......................................................................... 2-117 VCR4N Voltage Controlled Resistors ......................................................................... 2-117 VCR7N Voltage Controlled Resistors ......................................................................... 2-117 VCR 11 N Voltage Controlled Resistors ....................................................................... 2 -120. 21 IIO~OIl. ,408-996-5000 TWl<;" 91'0-338-2014 10600'Ridgeview Court, Cupertino, CA 95014 ALPHANUMERIC CROSS REFERENCE ALTERNATE SOURCE PRODUCT INTERSIL EQUIVALENT -ALTERNATE SOURCE PRODUCT INTERSIL EQUIVALENT ALTERNATE SOURCE PRODUCT INTERSIL EQUIVALENT 103M 2N5458 2N3684 2N5686 2N5457 2N5457 2N2606 2N2607 2N2608 2N2609 2N2609JAN 2N2607 2N2607 2N2608 2N2609 2N2609JAN 2N3331 2N3332 2N3333 2N3334 2N3335 2N5270 2N5268 1T132 1T132 ITr32 1035 104M 105M 105U 106M 2N5459 2N5458 2N5459 2N434O 2N5485 2N2639 1T120 ITI22 1Tl22 1T120 1Tl22 2N3336 2N3347 2N3348 2N3349 2N3350 1T132 2N2640 2N2641 2N2642 2N2643 107M 2N5485 2N3685 2N3686 '2N4339 2N3822 2N2644 2N2652 2N2652A 2N2720 2N2721 IT122 1Tl20 1T120 1Tl20 ITI22 2N3351 2N3352 2N3365 2N3366 2N3367 1T138 1Tl39 2N434O 2N4338 2N4338 2N3821 2N3822 2N4341 2N2722 2N2802 2N2803 2N2804 2N2805 1Tl20 \ln39 'Tl39 1Tl39 1T139 2N3368 2N3369 2N3370 2N3376 2N3378 1284A 1285A 1286A 130U 2N4340 2N4222 2N3821 2N4220 2N3687 2N2806 2N2807 2N2841 2N2842 2N2843 1T139 1Tl39 2N2607 2N2607 2N2607 1325A 135U 14T 155u 1714A 2N4222 2N4339 2N4224 2N4416 2N434O 2N2844 2N2903 2N2903A 2N2910 2N2913 1825 1835 1975 1985 1995 2N4391 2N3823 2N4338 2N434O 2N4341 2N2914 2N2915 2oo0M 2001M 2005 200U 2015 2N3823 2N3823 2N4392 2N3824 2N4391 2025 2035 2045 2078A 2079A 1005 100U 102M 1025 IIDU 120U 125U 1277A 1278A 1279A 1280A 1281A 1282A 1283A SD:~:,=~;~'i,CT INTERSIL EQU,IVALENT, 2N3814 2N381,5 2N3816 2N3816A 2N3817 ITI32 1T132 1T130' ITI30A 1T130 2N3817A 2N3819 ' 2N3820 2N3821 2N3822 lT1aOA 2N5484 2N2608 2N3821 2N3822 2N3823 2N3824 2N3907 2N3908 2N3909 2N3823 2N3824 1T120 1T120 2N2609 2N4341 2N4339 2N4338 2N2608 2N2608 2N3909A 2N3921 2N3922 2N3949 2N3950 2N2609 2N3921 2N3922 1T132 1Tl32 2N3380 2N3382 2N3384 2N3386 2N3409 2N2609 2N3994 2N3993 2N5114 1Tl22 2N3954 2N3954A 2N3955 2N3955A 2N3956 2N395' 2N3954A 2N3955 2N3955A 2N3956 2N2607 ITI22 1Tl20 1T122 1Tl22 2N3410 2N3423 2N3424 2N3425 1Tl22 1Tl22 1Tl22 1T122 1T122 2N3957 2N3966 2N3967 2N3967A 2N3968 2N3957 2N4416 2N4221 2N4221 2N3685 1Tl20 1Tl20 1Tl20 1Tl20 ITI20 2N3436 2N3437 2N3438 2N3452 2N3453 2N4341 2N434O 2N4338 2N4220 2N4338 2N3968A 2N3969 2N3969A 2N3970 2N3971 2N3685 2N3686 2N3686 2N3970 2N3971 2N2917 2N2918 2N2919 2N2919A 2N2920 1Tl22 1Tl20 1T120 2N2920 2N3454 2N3455 2N3456 2N3457 2N3458 2N4338 2N4340 2N4338 2N4338 2N4341 2N3972 2N3993 2N3993A 2N3994 2N3994A 2N3972 2N3993 2N3993 2N3994 2N3994 2N4392 2N3821 2N3821 2N3955 2N3955 2N2920A 2N2936 2N2937 2N2972 2N2973 2N2920 1Tl20 1T120 1T122 1T122 2N3459 2N3460 2N3513 2N3514 2N3515 2N4339 2N4338 ITl22 1T122 1T122 2N4009 2N4010 2N4011 2N4015 2N4016 ITI32 1T132 1T132 1T139 1T137 2N3821 2N4224 2N2915A 2N2916 2N2916A 2N3411 ITI22 ITl37 1T138 1T139 1T137 I 2080A 2081A 2N3955A 2093M 2094M 2095M 2N3687 2N3686 2N3686 2N2974 2N2975 2N2976 2N2977 2N2978 1T120 1T120 ITl20 1T120 1T120 2N3516 2N3517 2N3521 2N3522 2N3574 ITi22 1T122 1T122 1T122 2N2607 2N4017 2N4018 2N4019 2N4020 2N4021 1T139 1T139 1T139 ITl39 2098A 2099A 210U 2130U Z132U 2N3954 2N3955A 2N4416 2N5452 2N3955 2N2979 2N2980 2N2981 2N2982 2N3043 1T120 1T121 1T122 1T122 1T121 2N3575 2N3578 2N3587 2N3608 2N3680 2N2607 2N2608 1T122 3N172 1Tl20 2N4022 2N4023 2N4024 2N4025 2N4026 ITl39 1T137 ITl37 ' ITI37 3N163 2134U 2N3956 2N3955A 11139 2136U 2N3957 2138U 2139U 2147U 2N3958 2N3958 2N3958 2N3044 2N3045 2N3046 2N3047 2N3048 ITI22 1T122 1T121 1T122 1T122 2N3684 2N3684A 2N3685 2N3685A 2N3686 2N3684 2N3684 2N3685 2N3685 2N3686 2N4038 2N4039 2N4065 2N4066 2N4067 2N4351 2N4351 3N163 3N166 3N166 2148U 2149U 2315 2325 2335 2N3958 2N3958 2N3954 2N3955 2N3956 2N3049 2N3050 2N3051 2N3052 2N3059 1T139 1Tl39 1Tl39 1T129 1Tl39 2N3686A 2N3687 2N3687A 2N3726 2N3727 2N3686 2N3687 2N3687 1T131 1T130 2N4082 2N4083 2N4084 2N4085 2N4091 2N3954 2N3955 2N3954 2N3955 2N4091 2345 2355 2N3957 2N3958 2N4869 2N4091 2N4392 2N3066 2N3067 2N3068 2N3069 2N3070 2N4340 2N4338 2N4338 2N4341 2N4339 2N3728 2N3729 2N3800 2N3801 2N3802 ITI22 1T121 1T132 1T132 1T132 2N4091A 2N409IJAN, 2N409IJANTX 2N409IJANTXV 2N4092 2N4091 2N409IJAN 2N409IJANTX 2N409lJANTXV 2N4092 2N2060 2N2060A 2N20608 2N2223 2N2223A 1T120 1T121 ITl22 ITl21 2N3071 2N3084 2N3085 2N3086 2N3087 2N4338 2N4339 2N4339 2N4339 2N4339 2N3803 2N3804 2N3804A 2N3805 2N3805A 1Tl32 1T13O 1T130A ITl30 1T130A 2N4092A 2N4092JAN 2N4092JANTX 2N4092JANTXV 2N4093 2N4092 2N4092JAN 2N4092JANTX 2N4092JANTXV 2N4093 2N2386 2N2386A 2N2453 2N2453A 2N2480 2N2608 2N2608 1Tl22 1Tl21 1T122 2N3088 2N3088A 2N3089 2N3089A 2N3113 2N4339 2N4339 2N4339 2N4339 2N2607 2N3806 2N3807 2N3808 2N3809 2N3810 ITI22 2N4093A 1T122 1T122 1Tl22 2N3810 2N4093JAN 2N4093JANTX 2N4093JANTXV 2N41oo 2N4093 2N4093JAN 2N4093JANTX 2N4093JANTXV 2N4100 2N2480A 2N2497 2N2498 2N2499 2N2500 ITl21 2N2608 2N2608 2N2609 2N2608 2N3277 2N3278 2N3328 2N3,329 2N3330 2N2606 2N2607 2N5265 2N5267 2N5268 2N3812 2N3813 2N381OA 2N3811 2N3811A 1T132 1T132 2N4117 2N4117A 2N4118 2N4118A 2N4119 2N4117 2N4117A 2N4118 2N4118A 2N4119 241U 250U 251U 1T12l "CONSULT FACTORY 2N3810A ~~~mA 22 ALTERNATE SOURCE PRODUCT INTERSIL EQUIVALENT ALTERNATE SOURCE PRO~UCT ALTERNATE SOURCE PRODUCT INTERSIL EQUIVALENT INTERSIL EQUIVALENT ALTERNATE SOURCE PRODUCT INTERSIL EQUIVALENT 2N4119A 2N4120 2N4139 2N4Z20 2N4220A 2N4119A 3N163 2N3822 2N4220 2N4220 2N5045 2N5046 2N5047 2N5078 2N5090 2N5453 2N54S4 2N5454 2N5397 1T122 2N5484 2N5485 2N5486 2N5515 2N5516 2N5484 2N548S 2N5486 2N5515 2N5516 2N6484 2N6485 2N6502 2N6503 2N6550 2N6484 2N648S ITl22 ITl22 2N4868A 2N4221 2N4221A 2N4222 2N4222A 2N4223 2N4221 2N4221 2N4222 2N4222 2N4223 2N5103 2N5104 2N5105 2N5114 2N5114JAN 2N4416 2N4416 2N4416 2NSl14 2NSl14JAN 2N5517 2N5518 2NS519 2N5520 2N5521 2N5517 2N5518 2N5519 2N5520 2N5521 2N6568 25C294 25Jll 25J12 25J13 2N5432 1T122 2N2607 2N2607 2N5270 2N4224 2N4267 2N4268 2N4302 2N4303 2N4224 3N163 3N161 2N4302 2N5459 2N5114JANTX 2N5114JANTXV 2N5115 2N5115JAN 2N5115JANTX 2N5114JANTX 2N5114JANTXV 2N5115 2N5115JAN 2N5115JANTX 2N5522 2N5523 2N5524 2N5545 2N5546 2N5522 2N5523 2N5524 2N3954 2N3955A 25J15 25J16 25J47 25J48 25J49 2N2607 ~~2607 2N4304 2N4338 2N4339 2N4340 2N4341 2N5458 2N4338 2N4339 2N4340 2N4341 2N5115JANTXV 2N5116 2N5116JAN 2N5116JANTX 2N5116JANTXV 2N5115JANTXV 2N5116 2N5116JAN 2N5116JANTX 2N5116JANTXV 2N5547 2N5549 2N5555 2N5556 2N5557 2N3955 2N4093 J310 2N3685 2N3684 25J50 25J78 25J79 25J80 25Kll 2N4342 2N4343 2N4351 2N4352 2N4353 2N5461 2N5462 2N4351 3N163 3Nl72 2NSl17 2NSllB 2N5119 2N5120 2N5121 2NS117 2N5118 2N5119 1Tl31 1T132 2N5558 2N5561 2N5562 2N5563 2N5564 2N3684 U401 U402 U404 IT550 25K12 2SK13 25K132 25K133 25K134 2N4360 2N4381 2N4382 2N4391 2N4392 2N5460 2N2609 2N5115 2N4391 2N4392 2N5!22 2NS123 2N5124 2N5125 2N5158 1Tl32 1T131 1Tl32 1Tl32 2N5434 2N5565 2N5566 2N5592 2N5593 2N5594 IT550 IT550 2N3822 2N3822 2N3822 2SK135 25KI5 2SK17 25K178 2$K179 2N4393 2N4416 2N4416A 2N4417 2N4445 2N4393 2N4416 2N4416A 2N4416 2N5432 2NS159 2N5163 2N5196 2N5197 2N5198 2N5433 2N3822 2N5196 2N5197 2N5198 2N5638 2N5639 2N5640 2N5647 2N5648 2N5638 2N5639 2N564O 2N4117A 2N4117A 25K18 25K180 2SK19 25K23 25K30 ITE4416 2N5459 2N5458 2N4446 2N4447 2N4448 2N4856 2N4856A 2N5434 2N5432 2NS434 2N4856 2N4856 2N5199 2N5245 2N5246 2N5247 2N5248 2N5199 ITE4416 2N5484 2N5486 2N5486 2N5649 2N5653 2N5654 2N5668 2N5669 2N4117A ,2N5638 2N5639 2N5484 2N5485 25K32 25K33 25K34 25K37 2SK41 2N3822 2N5397 2N3822 2N5484 2N5459 2N4856JAN 2N4856JANTX 2N4856JANTXV 2N4857 2N4857A 2N4856JAN 2N4856JANTX 2N4856JANTXV 2N4857 2N4857 2N5254 2N52S5 2N5256 2N5257 2N5258 ITI32 1Tl32 1Tl30 2N5457 2N5458 2NS670 2N5793 2N5794 2N5795 2N5796 2N5486 1T129 1Tl29 ITl39 1Tl39 2SK42 25K43 25K44 25K46 25K48 2N3822 ITE4092 ITE4416 2N5459 2N3821 2N4857JAN 2N4857 JANTX 2N4857JANTXV 2N4858 2N4858A 2N4857JAN 2N4857JANTX 2N4857 JANTXV 2N4858 2N4858 2N5259 2N5265 2N5266 2N5267 2N5268 2N5459 2N2607 2N2607 2N2608 2N2608 2N5797 2N5798 2N5799 2N5800 2N5801 2N2608 2N2608 2N2608 2N2608 2N4393 25K49 25K50 25K54 25K55 25K56 2N5484 ITE4416 2N3822 2N3822 2N5459 2N4B58JAN 2N4858JANTX 2N4858JANTXV 2N4859 2N4859A 2N485BJAN 2N4858JANTX 2N4858JANTXV 2N4859 2N4859 2N5269 2N5270 2N5277 2N5278 2N5358 2N2609 2N2609 2N4341 2N4341 2N4220 2N5802 2N5803 2N5843 2N5844 2N5902 2N4393 2N4392 1Tl30 ITl30 2N5902 2SK61 25K65 25K66 25K68 2SK72 2N5397 J201 2N3821 2N3822 2N5196 2N4859JAN 2N4859JANTX 2N4860 2N4860A 2N4860JAN 2N4856JAN 2N4856JANTX 2N4860 2N4860 2N4857JAN 2N5359 2N5360 2N5361 2N5362 2N5363 2N4220 2N4221 2N4221 2N4222 2N4222 2N5903 2N5904 2N5905 2N5906 2N5907 2N5903 2N5904 2N5905 2N5906 2N5907 3G5 3N145 3N146 3N147 3N148 2N3821 3N163 3N163 3N189 3N189 2N4860JANTX 2N4861 2N4861A 2N486IJAN 2N4861JANTX 2N4B57 JANTX 2N4861 2N4861 2N4858JAN 2N4858JANTX 2N5364 2N5391 2N5392 2N5393 2N5394 2N4222 2N4867A 2N4B68A 2N4869A 2N4869A 2N5908 2N5909 2N5911 2N5912 2N5949 2N5908 2N5909 2N5911 2N5912 2N5486 3N149 3N15O 3N151 3N155 3N155A 3Nl61 3N163 3N190 3N163 3N163 2N4867 2N4867A 2N4868 2N4868A 2N4869 2N4867 2N4867A 2N4868 2N4868A 2N4869 2N5395 2N5396 2N5397 2N5398 2N5432 2N4869A 2N4869A 2N5397 2N5398 2N5432 2N5950 2N5951 2N5952 2N5953 2N6085 2N5486 2N5486 2N5484 2N54B4 1Tl22 3N156 3N156A 3N157 3N157A 3N158 3N163 3N163 3N163 3N163 3N163 2N4869A 2N4878 2N4879 2N4880 2N4937 2N4869A 2N4878 2N4879 2N4880 1n31 2N5433 2N5434 2N5452 2N5453 2N5454 2N5433 2N5434 2N5452 2N5453 2N5454 2N60B6 2N6087 2N6088 2N6089 2N6090 ITI22 1T121 ITI21 ITI22 1Tl21 3N158A 3N160 3N161 3N163 3N164 3N163 3N161 3N161 3Nl63 3N164 2N4938 2N4939 2N494O 2N4941 2N4942 ITI32 IT132 IT132 1T131 1Tl32 2N5457 2NS458 2N5459 2N5460 2N5461 2N5457 2N5458 2N5459 2N5460 2N5461 2N6091 2N6092 2N6441 2N6442 2N6443 1T121 1T121 ITl22 1Tl22 ITl22 3N165 3N166 3N167 3N168 3N169 3N165 3N166 3N161 3N161 3N170 2N4955 2N4956 2N4977 2N4978 2N4979 1Tl22 1Tl22 2N5433 2N5433 2N4859 2N5462 2N5463 2N5464 2N5465 2N5471 2N5462 2N5463 2N5464 2N5465 2N5265 2N6444 2N6445 2N6446 2N6447 2N6448 IT122 ITl21 ITl21 1Tl21 1T121 3N170 3N171 3NI72 3N173 3N174 3N170 3N171 3N172 3NI73 3N163 2N5018 2N5019 2N502O 2N5021 2N5033 2N5018 2N5019 2N2843 2N2607 2N5460 2N5472 2N5473 2N5474 2N5475 2N5476 2N5265 2N5265 2N5265 2N5265 2N5266 2N6451 2N6452 2N6453 2N6454 2N6483 U310 U310 U310 U310 2N6483 3N175 3N176 3N1n 3N178 3N179 3N170 3N170 3N171 3NI72 3N172 "CONSULT FACTORY I 23 .... .. ...... 2N5457 2NS457 ~~5457 .... .. .. 2N4868 2.~5484 2.~3821 ALTERNATE SOURCE PRODUCT INTERSIL EQUIVALENT ALTERNATE SOURCE PRODUCT INTERSIL EQUIVALENT ALT£RNATE SOURCE PRODUCT INTEIISIL EQUIVALENT ALT.ERNATE SOURCE PRODUCT ' , INTERSIL EQUIVALENT 3NI80 ' 3NI81 3NI82 3NI83 3NI88 3NI72 3NI61 3NI61 3NI61 3NI88 AD7520KD AD7520KN AD7520LD AD7520LN AD7520SD AD7520KD AD7520KN AD7520LD AD7520LN AD7520SD AH0139D/883 AHOI4OCD AHOl4OD AH0140D/883 AHOl41CD DG I 39AK/883B DGl40BK DGI40AK DG 140AKl883B DGI41BK BF801 BF802 BF804 BF805 BF806 2N4867 2N4338 2N4338 2N4869 2N4869 3NI89 3NI90 3NI91 3N207 3N208 3NI89 3NI9O 3NI91 3NI90 3NI88 AD7520TD AD7520UD AD752lJD AD752lJN AD7521KD AD7520TD AD7520UD AD7521JD AD752lJN AD7521KD AHOl41D AH0141D/883 AHOl42CD AHOl42D AH0142D/883 DGI41AK DGI41AKl883B DGI42BK DGI42AK DG142AK/883B BF808 BF810 BF811 BF815 BF816 2N4868 2N4858 2N4858 2N4858 2N4858 3SK22 3SK23 3SK28 42T 4360TP 2N5486 2N5397 2N5397 2N4392 2N5462 AD7521KN BF817 AD7521lD DG143AK BF818 AD7521LN AD7521SD AD752lTD AD7521LN AD7521SD AD752ITO AHOl43CD AH01430 AH0143D/883 AHOl44CD AHOl44D DGI43BK A07521LD DG143AK/883B DGI44BK DGI44AK BFSIO BF II BF 12 2N4858 2N4858 U401 U401 U402 5033TP 588U 58T 59T 703U 2N5460 2N4416 2N5457 2N4416 2N4220 AD7521UD AD7523AD AD7523BD AD7523CD AD7523JN AD7521UD AD7523AD AD7523BD AD7523CD AD7523JN AHOI44D/883 AHOl45CD AHOl45D AH0145D/883 AHOI46CD DG144AK/883B DGI45BK DGI45AK DG I 45AK/883B DGI45BK BFQI3 BFQI4 BF l5 BFS 16 BF 23 U406 IT5912 704U 705U 707U 714U 734EU 2N4220 2N4224 2N4860 2N3822 2N4416 AD7523KN AD7523SD AD7523TD AD7523UD AD7523KN AD7523LN AD7523SD AD7523TD AD7523UD AHOl46D AHOI46D/883 AHOl51CD AH0151D/883 AHOl52CD DGI46AK DG146AK/8838 DGI5IBK DGl5IAK/883B DGI52BK BF 44 BFr BF 45 BF 49A BF 49B IT5912 2N3055 2N3958 734U 751U 752U 753U 754U 2N5516 2N434O 2N434O 2N4341 2N434O AD7530JD AD7530JN AD7530KD AD7530KN AD7530LD AD7530JD AD7530JN AD7530KD AD7530KN AD7530LD AHOl52D AH0152D/883 AHOl53CD AHOl53D AH0153D/883 DGI52AK DG I 52AK/883B DGI53BK DGI53AK, DG I 53AKlS83B BFQ49C BFS21 BFS21A BFS67 BFS67P 2N3958 2N5199 2N5199 2N3821 2N5459 755U 2N4341 2N434O ITE4416 ITE4416 2N4416 AD7530LN DGI54BK AD753lJN AD7531KD AD7531KN AD7530LN AD753lJD AD753lJN AD7531KD AD7531KN AHOl54CD AI90 AI91 AI92 AI93 AI94 AI95 AI96 AI97 2N5484 2N5484 2N5484 ITE4416 ITE4391 AD7531LD AD7531LN AD7533AD AD7533BD AD7533CD AD7531LD AD7531LN AD7533AD AD7533BD AD7533CD AI98 AI99 A5T382I A5T3822 A5T3823 ITE4392 ITE4393 2N5484 2N5484 2N4416 AD7533JN AD7533KN AD7533LN AD7533SD AD7533TD AD7533JN AD7533KN AD7533LN AD7533SD AD7533TD A5T3824 A5T5460 A5T5461 A5T5462 ADI08 2N4341 2N5460 2N5461 2N5462 LMI08 AD7533UD ' AD754IAD, AD7541BD AD754lJN AD754IKN AD30B AD3954A AD3955 AD3956 LM308 2N3954 2N3954A 2N3955 2N3956 AD3958 AD503 AD589 AD590 AD5905 AD7521KN A07523LN U403 U404 U405 U403 lT5912 AH0154D DG154AK AHOI54D/883 AHOl55D AHOl61CD DGI43AK/883B DGI5IAK DGI61BK BFS68 BFS68P BFS70 BFS71 BFS72 2N3823 2N4416 2N3821 2N3822 2N3823 AHOl61D AHOl61D/883 AHOl62CD AHOl62D AHOI62D/883B DGI61AK DGI61AKl883B DGI62BK DGI62AK DG 162AK/883B BFS73 BFS74 BFS75 BFS76 BFS77 2N3821 2N4856 2N4858 2N4859 AHOl63CD AHOl63D/883 AHOl64CD AHOl64D DGI63BK DGI63AK DG I 63AK/883B DGI64BK DGI64AK BFS78 BFS79 BFS80 BFTIO BFTlI 2N4860 2N4861 2N4416A 2N5397 2N5019 AD7533UD AD754IAD AD7541BD AD754lJN AD7541KN AHO 1640/883 AH5009CN AH50IOCN AH5012CN AH5013CN DG I 64AK/883B IH5009CPD IH50lOCPD IH5012CPE IH5013CPD BFWIO BFWII BFWI2 BFWI3 BFW39 2N3823 2N3822 2N4416 2N4867 1Tl29 AD7541SD AD754lTD AD810 AD811 AD812 AD7541SD AD754lTD 2N4878 2N4878 2N4878 AH5014CN AH5015CN AH5016CN AM50llCN BC264 IH5014CPD IH5015CPE IH5016CPE IH50llCPE 2N5458 BFW39A BFW54 BFW55 BFW56 BFW61 ITi20 2N3822 2N3822 2N4860 2N4224 2N3958 AD503 ICL8069 AD590 2N5905 AD813 AD814 AD815 AD816 AD818 2N4878 1T124 1Tl24 1Tl20A 1Tl4O BC264A BC264B BC264C BC264D BCY87 2N5457 2N5458 2N5458 2N4416 1Tl21 BFXII BFX.15 BFX36 BFX70 ITl32 1Tl22 1Tl31 ITi22 ITl22 AD5906 2N5906 AD5907 2N5907 2N5908 AD5908 2N5909 AD5909 AD7506/COM/CHIPS IH6116C/D AD820 AD821 AD822 AD830 AD831 ITl32 1Tl30A 1Tl30A 2N552O 2N5521 BCY88 BCY89 BF244 BF244A BF244B 1Tl22 1Tl22 2N5486 2N5484 2N5485 BFX78 BFX82 BFX83 BFX99 AD7506/MIUCHIPS AD7506JD AD7506JD/883B AD7506JN AD7506KD IH6116M/D IH6116CJI IH6116CJI/883B IH6116CPI IH6116CJI AD832 AD833 AD833A AD835 AD836 2N5522 2N5523 2N5524 2N3954 2N3955 BF244C BF245 BF245A BF245B BF245C 2N5486 2N5486 2N4416 2N4416 2N4416 AD7506KD/883B AD7506KN AD7506SD AD 7506SD/883B AD7506TD IH6116CJI/883B IH6116CPI IH6116MJI IH6116MJI/883B IH6116MJI AD837 AD838 AD839 AD840 AD841 2N3955 2N3956 2N3957 2N5520 2N5521 BF246 BF246A BF246B BF246C BF247 2N5485 2N5639 2N5638 2N5638 2N4091 BFV85 ITI22 BFY86 BFY91 BFY92 BN209 1T122 ITI22 1Tl22 1Tl22 AD7506TD/883B AD7507/COM/CHIPS AD7507/MIUCHIPS AD7507JD AD7507JD/8838 IH6116MJI/883B IH6216C/D IH6216M/D IH6216CJI IH6216CJI/883B AD842 AHOl26CD AHOl26D AHOl26D/883 AHOl29CD 2N5523 DGI26BK DGI26AK DG I 26AK/883B DGI29BK BF247A BF247B BF247C BF256 BF256A 2N4091 2N4091 2N4091 2N5484 2N5484 BSV22 BSV78 BSV79 BSV80 BSX82 2N4416 2N4856A 2N4857A 2N4858A 2N3822 AD7507JN AD7507KD AD7507KD/883B AD7507KN ' AD7507SD IH6216CPI IH6216CJI IH6216CJI/883B IH6216CPI IH6216M/D AH0129D DG129AK AHOI29D/883 AHOl33CD AHOl33D AHOl33D/883 DGI29AK/883B DGI33BK DGI33AK DG 133AKl883B BF256B BF256C BF320 BF320A BF320B 2N4416 2N4416 2N5461 2N5460 2N5461 C21 C2306 C38 C413N C610 2N5196 2N4338 2N5434 2N4392 AD7507SD/8838 AD7507TD AD7507TD/883B AD7520JD IH6216MJI/8838 IH6216MJI IH6216MJI/883B AD7520JD AD7520JN AHOl34CD AHOl34D AH0134D/883, AHOl39CD AHOl39D DGI34BK DGI34AK DG I 34AKl883B DGI39BK DGI39AK BF320C BF346 BF347 BF348 BF800 2N5462 ITE4392 J201 J310 2N4867 C611 C612 C613 C614 ' C615 2N4221 2N4221 2N4221 2N4220 2N4221 756U AD3954 A07520JN ··CONSULT FACTORY AD7531JO AH0163D 24 BFX71 BFX12 BFY20 BFY81 BFY82 BFY83 BFY84 2N4857 ITl22 2N5397 2N5019 2N5019 1T120A 1T122 1T122 ITI22 1T122 1T122 2N3821 INTERSIL EQUIVALENT ALTERNATE SOURCE PRODUCT ALTERNATE SOURCE PRODUCT INTERSIL EQUIVALENT ALTERNATE SOURCE PRODUCT INTERSIL EQUIVALENT ALTERNATE SOURCE PRODUCT INTERSIL EQUIVALENT C620 C621 C622 C623 C624 2N4220 2N4220 2N4220 2N4220 2N4220 01202 01203 0123AL D123AP DI23BP 2N3821 2N4220 0123AL 0123AK 01238K DG151BP OGI52AL DG152AP OGI52BP OGI53AL DG1518K OGI52AL DG152AK OG152BK DG153Al OGI88BP DG189Al OGI89AP OGI89BP OGI90AL OGI88BK DG189Al OGI89AK OG189BK OGMI90AL C625 C650 C651 C652 C653 2N4220 2N4220 2N4220 2N4220 2N4220 DI23SP 0125AL 0125AP OI25BP 0129Al 0123BJ 0125AL 0125AP D125BK O129Al DG153AP DG153BP OGI54AL OGI54AP OGI54BP OGI53AK OGI53BK OGI54AL OG154AK OGI54BK OGI90AL OGI90AP OGI90AP DG190BP OGI90BP OGI90AL OGMI90AK OGI90AK OGMI9DCJ OGM190BK C6690 C6691 C6692 C673 C674 2N4341 2N4341 2N4339 2N4341 2N4341 0129AP 0129BP 01301 01302 01303 D129AK 0129BK 2N4222 2N4220 2N4220 DG161Al DG161AP OGI6lBP DG162Al OGI62AP OG161AL OG161AK OG161BK OG162Al OG162AK OG190BP OG191AL 0G191AL OGI91AP 0G191AP OG190BK OGM191Al OGI91AL OGM191AK OGI91AK C680 C680A C681 C681A C682 2N4338 2N4338 2N4338 2N4338 2N4339 01420 01421 01422 02T2218 02T2218A 2N4868 2N3822 2N4869 ITl29 ITI29 OG162BP DGI63Al OGI63AP OGI63BP OGI64AL OG162BK OGI63AL OGl63AK OG163BK OGI64AL OGI91BP DG191BP 0G191BP , OG200AA OG200AK OGMI91CJ OGM191BK OG191BK OG200AA OG2ooAK C682A C683 C683A C684 C684A 2N4339 2N4339 2N4339 2N4220 2N4220 D2T2219 02T2219A D2T2904 02T2904A 02T2905 ITl29 ITl29 IT139 ITl39 ITl39 DG164AP DG164BP DGl80AA DG180Al OGI80AP DG164AK OG164BK OG180AA OGI80AL OGl80AK DG200Al OG200AP OG200BA OG2ooBK OG200BP OG200AL OG200AK OG200BA OG200BK OG200BK C685 C685A COO C81 C84 2N4220 2N4220 2N4338 2N4338 2N4338 02T2905A 02T918 OA102 DA402 DAClO20lCD 1T139 ITI29 2N5196 2N5196 A07520lD OGI80BA OGI80BP OGI81AA DG181AA DG181Al OGl80BA OGl80BK DGM181AA OG181AA OGM181AL OG200CJ OG201AK OG201AP OG201BK OG20lCJ OG200CJ OG20lAK OG20lAK OG20lBK OG201CJ C85 C91 C92 C93 C94 2N4338 2N4858 2N4091 2N4393 2N5457 OAC1020lD OAC1021lCO OACI021LD OAC1022LCO DAC1022lD AD7520UD A07520KO A07520TD AD7520JD A07520SD DG181Al OG181AP OGI81AP OG181BA OGI81BA OG181AL OGMI81AK OGI81AK OGMI81BA OGI81BA DG210BP OG281AA OG281AP OG281BA OG281BP OG201BK IHI82CTW IH182CJO C94E C95 C95E C96E C97E 2N5457 2N5457 2N5459 2N5484 2N3822 OACI218LCO OAC1218LCN OACI218LCN OAC1219LCO OACI219LCN A07541BD A07541LN A07541KN AD7541AD AD754lJN OG181BP OGI81BP OG181BP OGI82AA OGI82AA OGMI81CJ OGMI81BK OG181BK OGMI82AA OGI82AA OG284AP OG284BP OG287AA OG287AP OG287BA IHI85MJE IHI85CJE IHI88MTW IHI88MJO IHl88CTW C98E CA308 CC4445 CC4446 CC697 2N3822 LM308 2N5432 2N5434 2N4856 OAC1220LCO OACI220LD OACI221LCO OAC1221LO OAC1222LCO AD7521LD A07521U0 A07521KO A0752\T0 A0752lJD DG182Al OG182AL OGI82AP OGI82AP OGI82BA DGM182AL OGI82AL OGM182AK OGI82AK OGMI82BA OG287BP OG290AP OG290BP OG381AA OG381AK IHl88CJO IH191MJE IHI9ICJE. OGM182AA OGMI82AK COnoolH C022015E CF2386 CF24 CFM 13026 ICMI424C ICM7051A 2N5458 2N3824 2N4858 OACI222LO OGI23AL OGI23AP OGI23BP 0G125AL A0752150 OG123AL OG123AK OG1238K OG125AL OGI82BA OGI82BP OGI82BP OGI82BP OGI83AL OGI82BA OGMI82CJ OGMI82BK OGI82BK OGI83AL OG381AP OG381BA OG381BK OG381BP OG381CJ OGMI82AK OGM181BA OGM181BK OGMI81BK OGM181CJ CM600 CM601 CM602 CM603 CM640 2N4092 2N4091 2N4091 2N4091 2N4093 OG125AP OGI25BP OGI26AK OGI26AL OG126BP DG12SAK OGI258K OGI26AK OG126AL OGI26BK OGI83AP OGI83BP OGI84AL OGI84AL OGI84AP DG183AK OGI83BK OGM184AL OGI84AL OGM184AK OG384AK OG384AP OG384BK OG384BP OG384CJ DGM185AK OGMI85AK DGM184BK OGMI84BK OGMI84CJ CM641 CM642 CM643 CM644 CM645 2N4093 2N4093 2N4092 2N4092 2N4092 OGI29AL OGI29AP OGI29BP OG133AL OG133AP OG129AL DG129AK OGI29BK OG133AL OGI33AK OG I84AP OGI84BP OGI84BP OGI84BP OGI85AL OGl84AK OGM184CJ OGM184BK OGl84BK OGMI85AL DG387AA OG387AK OG387AP OG387BA OG387BK OGMI88AA OGMI88AK OGMI88AK OGMI87BA OGMI87BK CM646 CM647 CM650 CM651 CM652 2N4092 2N4091 2N5432 2N5433 2N5432 OGI33BP OG134AL OGI34AP OGI34BP OGI39AL OGI33BK DG134AL DG134AK OG134BK OG139AL OGI85AL OGI85AP 0G185AP OGI85BP OGI85BP OGI85AL OGM185AK OG185AK OGM185CJ OGM185BK DG387BP OG390AK OG390AP OG390BK OG390BP DGM187BK OGMI91AK OGMI91AK OGM190BK OGMI90BK CM653 CM697 CM8DO CM856 CM860 2N5433 2N5433 2N5433 2N5433 2N4868A OG139AP OGI39BP OGI40AL OGI40AP OGl40BP OG139AK OGI39BK OGI40AL. OGI40AK OGI40BK OGl858P OGI86AA OGI86AL OGI86AP OGI86BA OG185BK OG186AA OG186AL OGI86AK OGl86BA OG390CJ OG503 OG5040AK OG5040AL OG5040CJ OGMI9DCJ A0503 IH5040MJE IH5040MFD IH5040CPE CMX740 CP640 CP643 CP650 CP651 2N5432 2N4091 2N5434 2N5432 2N5433 OG141AL OGI41AP OG141BP OGI42AL OG142AP OG141AL OG141AK OG141BK OG142AL OGI42AK OGI86BP OGI87AA OGI87AA OGI87AL OGI87AL OGI86BK OGM187AA OGI87AA OGMI87AL OGI87AL OG5040CK OG5041AA OG5041AK OG504IAL OG5041CJ IH5040CJE IH5041MTW IH504IMJE IH504IMFO IH5041CPE CP652 CP653 01101 01102 01103 2N5433 2N5433 2N3821 2N3821 2N4338 OGI42BP OG143AL OGI43AP OG143BP OGI44AL OG142BK OG143AL OGI43AK OG143BK OG144AL OGl87AP OGI87AP OGI87BA OGI87BA OGI87BP OGMI87AK OGI87AK OGM187BA OGI87BA OGMI87BK OG5041CK OG5042AA OG5042AK OG5042AL OG5042CJ IH5041CJE IH5042MTW IH5042MJE IH5042MFO IH5Q42CPE 01177 01178 01179 01180 01181 2N3821 2N3821 2N4338 2N3822 2N4338 OGI44AP DG144BP OG145AL OG145AP OG145BP OGl44AK DG144BK OGI45AL OGI45AK OGI45BK OGI87BP OGI88AA OGI88AA OGI88AL OG188AL OGI87BK OGMI88AA OGI88AA OGMI88AL OGI88AL OG5042CK OG5043AK OG5043AL OG5043CJ OG5043CK IH5042CJE IH5043MJE IH5043MFO IH5043CPE IH5043CJE 01182 01183 01184 01185 01201 2N4338 2N4341 2N4340 2N4339 2N4224 OGl46AL DG146AP OGl46BP OG151AL OGI51AP OGI46AL OGl46AK OGI46BK DG15lAl OGI51AK OGl88AP OGI88AP OG188AP OG188BA OGI88BA OGMI88BK OGMI88AK OGI88AK OGMI88BA OGI88BA OG5044AA OG5044AK OG5044AL OG5044CJ OG5044CK IH5044MTW IH5044MJE IH5044MFO IH5044CPE IH5044CJE "CONSULT FACTORY 25 :m~~~j~ ,' .. ".' ALTERNATE SOURCE P,!ODUC.T '.. .......... "" INTERSIL EoUIVALE"lT DG5045AK OG5045AL IH5045MJE IH5045MFD DG504SCJ DG5045CK IH5045CPE IH5045CJE DG506J\~ IH6116MJI DG506BR IH6116CJI DG506CJ OG507AR. DGS07BR IH6116CPI IH6216MJI IH6216CJI IH6216CPI ALTERNATE SO""I:E. PIIO!)UCT : INTERSIL EQUIVAL:ENT E212 E230 E231 E232 2N5397 2N5397 2N4867 2N4868 2N4869 E270 E271 £300 E304 E30S J270 J27\ 2NS397 2NS486 2NS464 E308 E309 E310 E311 E312 J308 J309 J310 J310 2NS397 IH6208CPE DGlllAL DGlllAK DGlllBK 2N3821 E400 E401 E402 E410 DN3067A DN3068A 2N4338 DN3069A 2N3822 2N3821 £412 E413 E414 DG507CJ DG508AP DGSOBBP DG508CJ DGS09AP DGS09BP DGS09CJ DGMlllAL DGMlllAP DGMUlBP DNJa66A DN3070A DN3071A ON336SA ON336SB DN3366A' DN3366B DN3367A DN3367B IH610BMJE IH6108CJE IH6108CPE lHS20BMJE IH6208CJE 2N4338 E211 E411 HIl-0506A-2 HII-OS06A-5 HII-0506A-8 IH5116MJI lHS116UI IHS116MJI/883B ESM4445 ESM4446 2NS432 2N5434 2N5432 2NS434 G116AL G116AP G116BP HII-OS09-2 HIl-OS09-S GII6AK 2N4386 2NS4B5 Gl17Al GllBAL G118AP 2N4341 -H1OOA 2N3821 2N3821 2~4222 FEI02 2N4119 2N4339 2N4220 FE102A 2N4119 2N4118 2N4118 2N4092 FEI04 FEI04A G1l68P G119AL GI23AL Gl23AP GET54S7 GETS458 GETS4S9 HA2720 2N3821 IH6216MJI HII-0507A-2 HIl-0507A-5 IH6216MJII883B IH5216MJI IH5216UI 2N5460 HIl-OS07A-8 HIl-OS08-2 IHS216MJI/883B IH6108MJE HIl-OS08-5 IH6!08CJE IH6108MJE/883B tH5108MJ£ IH5108UE IHSI08MJE/883B G116AL IH6208CJE IH6208MJE/8838 IHS208MJE HII-OS09A-S IHS208IJE G1l7Al GllBAL Hll-OS09A-8 HIl-5040-2 IHS208MJE/883B IHS040MJE Gl18AK Gll9AL HIl-5040-5 IHS040CJE HII-5040-8 IHS040MJEI883B G123Al HIl-504l-2 GI23AK HIl-5041-5 " HIl-S041-8 IHS041CJE IHS041MJEI883B HI 1-5042-2 IH5042MJE IH5042CJE IHS142MJE/8838 2NS4S7 2N5458 2N54S9 ICL8021 2N3821 HA7807 HA7809 ITI32 tTI32 HD43871 ICM70S0H ICM70S0G 3NI63 FE3819 FE4302 2NS484 2NS4S7 2NS4S9 2NS4S8 2N4416 HEP801 HEP802 2N3822 HEP803 HEPFOO21 HEPFlO35 2NSOl9 2NS484 JI76 2N4416 2N4416 2N4339 2NS398 2N5458 J204 2NS4S7 2NS459 FE4303 FE4304 FES245 FES246 FES247 FES4S7 FE5458 FES4S9 2NS486 2N54S7 FE5484 2N5484 FES48S J107 FE5486 2NS48S 2N5486 JlOS JI06 FMllOO El12A JI12 JI13 JI13 JIll ICMl115A J11l JI12 J204 ICMI1l5B FF400 2N5457 2N39S4A HI0-OS07-6 2N5906 2NS906 HIO-OS07 A-6 HI0-OS08-6 2N3954 FMIl02A FMl103 2NS906 2N39SS HIO-OS08A-6 HI0-0509-6 HI0-0509A-6 FMllOM FMll04 FMll04A FMll05 FMll05A 2NS908 HIO-S040-6 2N39S7 2N5909 2N3954A ITSOO HI0-5041-6 HI0-S042·6 HI0-S043-6 . HI0-S044-6 FMll06 FMII06A 2N3954A 1T500 HIO-S04S-6 H10-5046-6 2N3954 ITSOO 2N39S5 HI0-5047-6 HI0-5049-6 HI0-SOSO-6 IT502 2N3957 ITS03 2N39SS 2NS908 HI0-SOSI-6 HII-0200-2 HII-020D-4 HIl-0200-S HIl-0200-6 ICM7050U EI7S EI76 J175 J176 JI77 FMl107 FMll07A J201 J202 J203 J204 2NS397 FMll08A "CONSULT FACTORY HI0-0387-6 HI0-0390-6 HI0-OS06-6 HI0-OS06A'6 FMllOOA FMllOIA FMll02 EI426 El74 Jl74 HI0-0201-6 "10-0381'6 HI0-0384-6 2NS4S8 2NS4S9 JIOS J106 JI07 HEPF2004 HEPF200S 2NS484 FMll08 FMl109 FMll09A FMIIIO FMIIIOA 26 IH6208MJE G116BK G116BJ 2N3822 2N3821 2N3821 ICl7667 2NS397 IH6216CJI HIl-OS09-8 HII-0509A-2 FE204 HDIGl030 DGM190BK HII-OS07-8 FE300 FE302 FE304 HD43871 DGM188AK HIl-OS07-2 HIl-OS07-5 2N5486 2N4338 2N3821 DGMI8SAK/883B OGMI87BK DGMI88AK/883B DGMI91AK 2NS486 2N4221 2N4221 2N4869 2N4868 EllO [Ill Ell15 ElllA E112 E204 E210 2N4339 2N4340 HIl-OS08A-8 FE202 E20l FP4339 Gl1S8J 2N4338 E202 E203 2N3956 2N39S7 GllSBK DNX2 El77 IT5911 G1l58P FEI600 FE200 EII3A E114 EllSI 2N39S7 FM39S8 FM39S6 GlISBP 2N4338 E1l3 FM39S7 2N5454 2N5458 2N4338 2N4220 E109 ITS911 ESM4304 DN3460A DN34608 ONXI E"IOS HII-OS06-8 DGM191AK/8838 IH6116MJI IH6116CJI IH6116MJI/883B HIl-0506-5 HIl-0508-8 HIl-0508A-2 Hll·0508A-S FEiOO EI06 El07 El08 HIl-0390-S HI 1-0390-8 HIl-OS06-2 3NI63 GllSAK FE0654B DU4340 ElOO EI0l 2N3954 2N39S4A 2N39SS 2N39S5A' 2N39S6 FM3954A FM3955 FM3955A HI 1-0390-2 FT703 FT704 GllSAP FE06S4A El02 El03 FM3954 HIl-0387-8 2N4093 2NS457 2NS4S9 2N4338 DGM182AK/883B DGM185AK 'DGM184BK 2N39SS 2N39SS 2N39S7 2N39SS IT5911 2N3955A ESM4093 ESM4302 ESM4303 2N4220 DGMI82AK DGMI81BK 2N3954 2N5019 2N4339 DG201AK DG201BK DG20lBK DG20lAK/883B 2N39S5 2N39S5A ITS911 2N5019 3N161 DN34378 ON3'438A DN3438B DN34S8A DN3458B DG200AKI.883B FM1207 FM12Q8 FT3820 ESM4447 ESM4448 INTERSIL EQUIVALENT FMI209 FMl210 FM12I1 FT3909 2N4340 2N4338 HIl-0384-S 2N4091 2N4092 DN3437A DNXl HIl-0384-S HIl-0387-2 HIl-0387-S HIl-0384-2 ESM4091 ESM4092 2N4341 2N4222 DNXB HIl-0381-2 HIl-0381-5 HIl-0381-8 E431 ESM2S ESM2SA 2N3686 2N4Q91 DN3436A DN3436B DNX9 DS0026 DU4339 2N3954 2N3955A 2N39SS 2N3954 2N3954 FT0654C FT0654D H3820 2N4338 2N4338 DNXS DNX6 HI1~0201-8 J309(X2) J310(X2) U401 U401 2N4339 2N4220 ONX3 ONX4 FM1206 HIl-0200-8 HIl-0201·2 HIl-0201-4 HIl·0201-5 FT06S4B DN3370A DN3370B DN34S9B FM1202 FMI203 FMI204 FMI20S 2N3957 2N5909 2N5196 2N3954 2N3954 ALTERNATE SOURCE PRODUCT IT5912 E421 E430 DN3368A ON3368B DN3369A' DN3369B DN34S9A FMllll FMIlllA FMII12 FM1200 FM1201 INTERSIL EQUIVALENT 1T5911 E41S E420 2N4220 2N4091 2N4091 2N4341 2N4221 ALTERNATE SOURCE PRODUCT FP4340 FT0654A 2N4338 2N3687 ,". 2NS484 HIl-5042-5 HII-5042-8 HIl-S043-2 IHS041MJE IHS143MJE IH5143CJE HIl-S043-S HII-5043-8 IHS143MJEl883B HIl-S044-2 HIl-S044-S IH5144MJE IHSJ44CJE HII-5044-8 HII-S045-2 HIl-504S-S IH5144MJE/883B IHSI4SMJE HIl-5045-S IH514SCJE IHS14SMJE/8838 HIl~5046-2 IHS046MJE HIl-5046·S HIl-S046-8 HIl-5047-S IHS046CJE IHS046MJEl8838 IHS047MJE IHS047CJE DGM184C/O Hll·5047~8 IHS047MJEl883B OGM187C/D HIl-5049-2 HIl-S049-S HIl-5049-8 HIl-5050-2 IHS149MJE tHS149CJE IH5149MJEt,8838 2NS484 2NS4S9 OG20lCID OGMI81C/O DGMI90C/D IH6116C/O IH5116C/O IH6216C/O HII-S047-2 Hil-SOSO-S IH51S0MJE IH51S0CJE IH5216C/D HIl-SOSO-8 IH5150MJEJ8838 IH6108C/D IHSI08CID IH6208C/D HIl-SOSI-2 Hil-SOSI-S IHSISIMJE HU-5051-8 IHSI51MJE/883B IHS20BC/D HI2-0200-2 OG200AA IH5140C/D IHS141C/O IH5142C/O HI2-0200-4 DG200BA OG200BA OG200AAI883B IHSlS1CJE IHSI43C/D HI2-0200-S HI2-0200-8 HI2-0381-2 IHS144C/D HI2-0381-S DGMI81BA IHS145C/O OGM18lAA/883B IHS046C/D HI2-0381-8 H12-0387-2 IH5047C/D IH5149CI.D IH5150C/O HI2-0387-S H12-0387-8 HI3-0200-S OGMI88AAl883B DG200CJ IHSOSICID DG200AK DG200BK DG200BK OG200C/D HI3-0201-S HI3-0381-5 H13-0384-S HI3-0390-S HI3-0506-5 DG20lCJ OGMI81CJ DGMI84CJ DGMI90CJ IH6116CPI OGM182AA DGMI88AA DGM1878A ALTERNATE SOURCE PROOUCT INTERalL EQUIVALENT ALTERNATE SOURCE PRODUCT INTERSIL EQUIVALENT ALTERNATE SOURCE PRODUCT INTERSIL EQUIVALENT ALTERNATE SOURCE PRODUCT INTERSIL EQUIVALENT HI3-0506A-5 HI3-0507-5 HI3-0507A-5 HI3-0508-5 HI3-0508A-5 IH5116CPI IH6216CPI IH5216CPI IH6108CPE IH5I0SCPE ITC4023 ITC4024 ITC4025 1TE2453 11E2639 ITI37 ITI37 ITI37 ITI20 ITl20 J109 JI09-18 J110 J110-18 J111 JI06 JI06 JI07 JI07 Jill J4393 J4416 J4856 J4857 J4858 ITE4393 ITE4416 ITE4856 ITE4857 ITE4858 HI3-0509-5 HI3-0509A-5 10100 10101 IMF3954 IH620BCPE IH5208CPE 10100 10101 2N3954 ITE2640 ITE2641 11E2642 11£2643 ITE2644 ITI22 11122 ITl20 ITl22 ITl22 Jill-IS JlllA Jll1A-18 J112 Jl12-18 Jll1 Jill Jll1 J112 J112 J4859 J4860 J4861 J4867 J4867A ITE4859 ITE4860 ITE4861 2N4867 2N4867A IMF3954A IMF3955 IMF3955A IMF3956 IMF3957 2N3954A 2N3955 2N3955A 2N3956 2N39S7 ITE2720 11£2721 ITE2722 11£2903 ITE2913 1T120 ITl22 1Tl20 ITI22 ITI22 JI12A J112A-18 J113 J113-18 J113A J112 J112 J113 J113 J113 J4867RR J4868 J4868A J4868RR J4869 2N4867 2N4868 2N4868A 2N4868 2N4869 IMF3958 IMF5911 IMF5912 IMF6485 IT 100 2N3958 IMF5911 IMF5912 IMF6485 1Tl00 ITE2914 11£2915 ITE2916 ITE2917 ITE2918 ITI22 IT120 ITI20 1Tl22 1Tl22 Jl13A-IS J114 J1401 JI402 JI403 Jl13 2N5555 IT501 IT502 IT503 J4869A J4869RR J5103 J5104 J5105 2N4869A 2N4869 2N5484 2N5485 2N5486 ITIOI ITlO8 ITI09 ITI20 ITI20A ITIOI ITE4416 ITE4416 IT120 ITl20A ITE2919 ITE2920 ITE2936 ITE2937 ITE2972 1Tl20 1Tl20 1Tl20 ITI20 ITl22 J1404 JI405 JI406 JI74 J174-18 IT503 IT504 IT505 JI74 JI74 J5163 K114-18 K210-18 K211-18 K212-18 2N5486 2N5555 2N5397 2N5397 2N5397 ITI21 ITI22 !TI24 ITI26 ITI27 ITl21 \T122 ITI24 1T126 ITI27 ITE2973 11£2974 ITE2975 ITE2976 ITE2977 ITl22 ITI20 ITl20 1Tl20 1Tl20 JI75 J175-18 JI76 J176-18 ' JI77 JI75 JI75 J176 J176 JI77 K300-18 K304-18 K305-18 K308-18 K309-18 2N5397 2N5486 2N5484 J308 J309 ITI28 1Tl29 ITI30 ITI30A ITI31 IT128 ITl29 !TI30 1Tl30A ITI31 ITE2978 ITE2979 ITE3066 ITE3067 ITEJ068 1Tl20 1Tl20 2NJ685 2N3686 2N3687 JI77-18 J201 J201-18 J202 J202-18 JI77 J201 J201 J202 J202 K310-18 KE3684 KE3685 KE3686 KEJ687 J310 2NJ684 2N3685 2NJ686 2N3687 IT132 ITl36 ITI37 11138 1T139 1T132 1T136 ITI37 1T13S ITI39 ITE3347 11E3348 ITE3349 ITE3350 ITE3351 1Tl37 1Tl38 ITl39 1T137 1Tl38 J203 J203-18 J204 J204-18 J210 J203 J203 J204 J204 2N5397 KE3823 KE3970 KE3971 KE3972 KE4091 2N3823 ITE4391 ITE4392 ITE4393 ITE4091 ITl40 1T1700 1T1701 1T1702 ITl750 1T140 1Tl7oo 3NI72 3NI63 IT1750 ITE3680 ITE3800 ITE3802 ITE3804 ITE3806 1Tl20 ITI32 ITI32 1T130 1T132 J211 J212 J230 J231 J232 2N5397 2N5397 2N4867 2N4868 2N4869 KE4092 KE4093 KE4220 KE4221 KE4222 ITE4092 ITE4093 2N5457 2N5459 2N5459 IT2700 IT2701 IT400 IT500 IT500P 3NI65 3NI65 2N4392 IT500 IT500 ITE3807 ITE3808 ITE3809 ITE3810 ITE381\ ITI32 1T132 ITI32 1T130 1Tl30 J270 J270-18 J271 J271-18 J300 J270 J270 J271 J271 2N5397 KE4223 KE4391 KE4392 KE4393 KE4416 J204 ITE4391 ITE4392 ITE4393 ITE4416 IT501 1T501P lT502 IT502P IT503 IT501 1T501 IT502 IT502 IT503 ITE3907 ITE3908 ITE4017 ITE4018 ITE4019 1T120 1T120 1T139 1T139 1Tl39 J304 J305 J308 J309 J310 2N5486 2N5484 J308 J309 J310 KE4856 KE4857 KE4858 KE4859 KE4860 ITE4391 ITE4392 ITE4393 ITE4391 ITE4392 IT503P IT504 IT505 IT550 IT5911 IT503 IT504 IT505 IT550 IT5911 ITE4020 ITE4021 IT£4022 ITE4023 11£4024 1T139 1Tl39 ITI39 1T137 1T137 J315 J316 J317 J3970 J3971 2N5397 U309 U310 ITE4391 ITE4392 KE4861 KE510 KE5103 KE5104 KE5105 ITE4393 ITE4393 J204 ITE4416 ITE4416 IT5912 ITC2972 ITC2973 ITC2974 ITC2975 IT5912 IT122 1T122 ITI20 1T120 ITE4025 ITE4091 ITE4092 ITE4093 IT£41\7 1Tl37 ITE4091 ITE4092 ITE4093 2N41\7 J3972 J401 J402 J403 J404 ITE4393 IT501 IT502 IT503 IT503 KE511 KH5196 KH5197 KH5198 KH5199 ITE4392 2N5196 2N5197 2N5198 2N5199 ITC2976 ITC2977 ITC2978 ITC2979 ITC3347 1T120 1T120 1T120 ITI20 ITl37 ITE41\8 ITE4119 ITE4338 ITE4339 ITE4340 2N4118 2N41\9 2N4338 2N4339 2N4340 J405 J406 J4091 J4092 J4093 IT504 IT505 ITE4091 ITE4092 ITE4093 KS5183 KS5240BOIH KS5240BOIJ KS5240BIOH KS5240BI2H ICM7269 ICM7245B ICM7245A ICM7245D ICM7245E ITC3348 ITC3349 ITC3350 ITC3351 ITC3352 ITl38 ITI39 1Tl37 1T138 ITI39 ITE4341 IT£439I ITE4392 ITE4393 ITE4416 2N4341 ITE4391 ITE4392 ITE4393 11£4416 J410 J41\ J412 J420 J421 IT502 IT503 IT503 IT591\ IT5912 KS5240B20H KS5240UOIE LDF603 LDF604 LDF605 ICM724SF ICM7245U 2N4221 2N4221 2N4221 ITC3800 ITC3802 ITC3804 ITC3806 ITe3807 ITI32 ITI32 1T130 1T132 1T132 ITE4867 ITE4868 ITE4869 JlOO JIOI 2N4867 2N4868 2N4869 2N5458 2N4338 J4220 J4221 J4222 J4223 J4224 J204 J202 J203 J202 J202 LFl I 201D LFI\ 201 0/883 LF1\202D LF 1\ 2020/883 LFl,IS080 IH202MJE IH202MJE/883B IH6108MJE ITC3808 ITC3809 ITC3810 ITC3811 ITC4017 ITl32 1T132 ITI30 1T130 1T139 JI02 JI03 JI05 JI05-18 JI06 2N5457 2N5459 JI05 JI05 JI06 J430 J4302 J4303 J4304 J431 J309(X2) 2N4302 2N5459 2N5458 J310(X2) LFI\ 5080/883 LF1\5090 LFI\509D/883 LFl320lD LFl320lN IH6108MJE/883B IH6208MJE IH6208MJE/883B DG20lBK DG20lCJ ITC4018 ITC4019 ITC4020 ITC4021 ITC4022 1T139 ITI39 1T139 ITl39 In39 JI06-18 JI07 J107-18 Jl08 JI08-18 JI06 JI07 J107 J105 JI05 J433 J4338 J4339 J4391 J4392 2N5457 2N5457 2N5457 IT£439I ITE4392 LF\3202D LFI3508D LF13508N LFl3509D LF13509N IH202CJE IH6108CJE IH6108CPE IH6208CJE IH6208CPE "CONSULT FACTORY 27 ~~gl~~883B ."0,- • . A!LTEIINATE SOURCE PRODUCT· _. !.INTERS.L EQUIVALENT . .ALTERNjl.TE . SOURCE PRODUCT ·"iTER.IL EQUIVALENT ALtEIlNATE SOURCE PRODUCT INTERSIL EQUIVALENT ALTERNATE SOURCE PRODUCT INTEIISIL EQUIVALENT LH0042 LH210B LH230B LM105 LMlOB LH0042 lH2108 LH2308 LM105 LM.l08 LTCI044 LTC1052 LTC7652 M103 MlO4 ICLl660 ICL7650 ICL7652 3N161 3N161 MDlOO3A M07003B M07004 M07007 M07007A ITI32 1Tl32 1Tl29 1Tl29 ITI29 MEM807A MEM814 MEM816 MEM817 MEM823 3Nl72 3N161 3Nl72 3N172 MFE823 LMl13 LM114 lM114AH LM114H ICL8069 !TI20 1Tl20A ITI20A 1Tl20. MlO6 M107 M108 Ml13 Ml14 3N166 3N189 3N191 3N161 3N161 M07007B M0708 M0708A M0708B .M08001 1Tl29 1Tl29 1Tl29 IT129 ITI20 MEM954 MEM954A MEM954B MEM955 MEM955A 3N188 3N188 3N188 3N190 3N190 lM115 LMIlSA LM115AH LM1l5H LM194 1T120 1Tl20A 1Tl20A 1Tl20 ITI20A MIl6 Ml17 M119 M163 M164 MIl6 2N4351 3N161 3N163 3N164 MD8002 M08003 M0918 M0918A MD918B !TI20 1Tl22 1T122 ITI22 1Tl22 MEM95.5B MF510 MFB03 MF818 MFE2000 3N190 2N4092 2N4338 2N4858 2N4416 LM305 LM308 LM394 LM4250 LS3069 LM305 LM308 1Tl20A LM4250 2N5458 M5001 M511 M511A M517 M58434P ICM7269 3Nl72 3N172 3N163 ICM70380 M0982 M0984 MEFl03 MEFlO4 MEF3069 1Tl39 1Tl39 2N5457 2N5459 2N4341 MFE2001 MFE2004 MFE2005 MFE2006 MFE2007 2N4416 2N4093 2N4092 2N4091 2N4860 LS3070 LS3071 LS3458 LS3459 LS3460 2NS4S8 2N5458 J204 J204 J204 M58435P M58436-001P M58437-001P MAl807 MA7809 !CMll15B ICM7050G ICM7070L 1Tl32 1Tl32 MEF3070 MEF3458 MEF3459 MEF3460 MEF3684 2N4339 2N4341 2N4339 2N4338 2N3684 MFE2008 MFE2009 MFE2010 MFE2011 MFE2012 2N4859 2N4859 2N4859 2N5433 2NS434 LS3684 LS3685 LS3686 LS3687 LS3819 2N3684 2N3685 2N3686 2N3687 2N5484 MAT-QIAH MAT-01FH MAT-01GH MAT-QIH MB101 ITI40· 1Tl40 1Tl40 1T140 ICM7245B MEF3685 MEF3686 MEF3687 MEF3821 MEF3822 2N3685 2N3686 2N3687 2N3821 2N3822 MFE2012 MFE2093 MFE2094 MFE2095 MFE2133 2N5433 2N4338 2N4339 2N4340 2N4860 lS382 I LS3822 LS3823 LS3921 LS3922 2N54S7 2NS458 2N5458 2N3921 2N3922 MBI03 MBlO5 MBlO7 MB108 MB143 ICM7245E ICM7245U ICM72450 ICM7245E ICM7245A MEF3823 MEF3954 MEF3955 MEF3956 MEF3957 2N3B23 2N3954 2N3955 2N3956 2N3957 MFE2912 MFE3002 MFE3003 MFE3020 MFE3021 2N5433 3N170 3N164 3N166 3N166 LS3966 LS3967 LS3968 LS3969 LS4220 ITE4416 ITE4416 ITE4416 ITE4416 J204 MB144 MB510 MB511 MB512 MB513 ICM7245F ICMll15B ICM7050H ICM7050H ICM7050G MEF3958 MEF4223 MEF4224 MEF4391 MEF4392 2N3958 2N4223 2N4224 ITE4391 ITE4392 MFE4007 MFE4008 MFE4009 MFE4010 MFE4011 2N3686 2N3686 2N3685 2N2608 2N2608 LS4221 LS4222 LS4223 LS4224 LS4338 J202 J203 J202 J202 2N5457 MB521 MB522 MB531 MB533 M8541 ITS9068 ITS9068 ICM7050H ICM7050H ICM7052 MEF4393 MEF4416 MEF4856 MEF4857 MEF4858 ITE4393 ITE4416 2N4856 2N4857 2N4858 MFE4012 MFE823 MHW590 MJ41 MJ6 2N2609 ITI700 AD590 ICM1424C ICM7220 LS4339 LS4340 LS434f LS4391 LS4392 2NS457 2N5457 2N5458 ITE4391 ITE4392 MB542 M8le MCC14440 MCC14483 M01l20 ICM7052 ICM7245U ICM1424C ICM72lO 1Tl22 MEF4859 MEF4860 MEF4861 MEF5103 MEF5104 2N4859 2N4860 2N4861 ITE4416 ITE4416 MKlO MM450H MM451H MM4520 MM452F 2N4416 MM450H MM451H MM452J MM452F LS4393 LS4416 LS4856 LS4857 LS4858 ITE4393 ITE4416 ITE4091 ITE4092 1TE4093 M01l21 MOl122 MOl123 MOl129 M01l3Q 1Tl22 ITI22 1Tl39 1Tl29 1Tl39 MEF5105 MEF5245 MEF5246 MEF5247 MEF5248 ITE4416 ITE4416 2N5484 2N5486 2N5486 MM455H MM550H MM551H MM5520 MM552F MM455H MM550H MM5S1H MM552J MM552F LS4859 LS4860 LS4861 LS5103 LS5104 ITE4091 ITE4092 ITE4093 2N5484 2N5485 M02218 M02218A M02219 M02219A M02369 1Tl29 1Tl29 tTI29 1Tl29 1Tl29 MEF5284 MEF5285 MEF5286 MEF5561 MEF5S62 2N5484 2N5485 2N5486 U401 U402 MM555H MMFl MMF2 MMF3 MMF4 MM555H 2N5197 2N3921 2N5198 2N3922 LS5105 LS5245 LS5246 LS5247 LS5248 2N5486 ITE4416 2N5484 2N5486 2N5486 M02369A M02369B M02904 M02904A M02905 1T129 ITI22 1Tl39 In39 1Tl39 MEF5563 MEM511 MEM511A MEM511C MEM517 U403 3N172 3Nl72 3Nl72 3Nl72 MMF5 MMF6 MMT3823 MN6091 MN6092A 2N5199 2N3955A 2N3823 ICM7038B ICM7038E LS5358 LS5359 LS5360 LS5361 LS5362 J204 J204 J202 J202 J203 M02905A M02974 M02975 M02978 M02979 1Tl39 1Tl20 1Tl20 1T120 1Tl20 MEM517A MEM517B MEM517C MEM550 MEM550C 3Nl72 3Nl72 3N172 3N189 3N189 MN6093 MN6252 MP301 MP302 MP303 ICM70S1A ICM7050G ITl24 ITl24 ITI24 LS5363 LS5364 LS5391 LS5392 LS5393 J203 J203 2N4867A 2N4868A 2N4869A M03008 M03250 M03250A M03251 M03251A 1Tl20 1Tl32 1Tl31 1Tl32 ITl31 MEM550F MEM551 MEM551C MEM556 MEM556C 3N189 3N190 3N189 3Nl72 3Nl72 MP310 MP311 MP312 MP313 MP318 2N4045 2N4045 2N4044 1Tl24 ITI20A LS5394 LS5395 LS5458 2N4869A 2N4869A 2N4)!6.9A 2NS457 . 2N5458 MD3409 M03410 M03467 M03725 M03762 1Tl29 1Tl29 ITl39 1Tl29 ITl39 MEM560 MEM560C MEM561 MEM561C MEM562 3N161 3Nl61 3N163 3N163 2N4351 MP350 MP351 MP352 MP358 MP360 ITI32 ITI30 1Tl30 1Tl30A ITI32 LS5459 LS5484 LS5485 LS5486 LS5556 2N5459 2N5484. 2N5485 2N5486 2N3685 MD4957 MD5DOO MD5DOOA MD5DOOB M07000 1Tl32 1Tl32 1Tl32 1Tl32 1Tl29 MEM562C MEM563 MEM563C MEM711 MEM712 2N43S1 2N4351 2N4351 M1l6 M1l6 MP361 MP362 MP3954 MP3954A MP3955 ITl30A 1Tl30A 2N3954 2N3954A 2N3955 LS5557 LS5558 LS5638 LS5639 LS5640 2N3684 2N3684 2N5638 2N5639 2N5640 M07001 MD7002 M07002A MD7002B MD7003 1Tl39 1Tl22 1Tl22 1Tl22 ITl32 MEM712A MEM713 MEM806 MEM806A MEM807 M1l6 3N170 3N163 3N163 3Nl72 MP3956 MP3957 MP3958 MP5905 MP5906 2N3956 2N3957 2N3958 2N5905 2N5906 LM114~ tm~~. "CONSULT FACTORY .. , 28 INTEASIL EQUIVALENT ALTERNATE SOURCE PRODUCT ALTERNATE SOURCE PRODUCT INTERSIL EQUIVALENT ALTERNATE SOURCE PRODUCT INTERSIL EQUIVALENT ALTERNATE SOURCE PRODUCT INTERSIL EQUIVALENT MPS907 MP5908 MPS909 MP5911 MP5912 2N5907 2N5908 2N59a9 2N5911 2N5912 NF4303 NF43a4 NF4445 NF4446 NF4447 2N5459 2N5458 2N5432 2N5433 2N5433 PF511 PF5301 PF5301-1 PF5301-2 PF5301-3 2N5114 2N4118A 2N4117A 2N4118A 2N4118A SG3D5 5G308 5G4250 SG733 SI7135CPI LM305 LM308 LM4250 UA733 ICl7135CPI MP7520JD MP7520JN MP7520KD MP7520KN MP7520lD AD7520JD AD7520JN AD7520KD AD7520KN AD7520lD NF4448 NF500 NF501 NF506 NF5101 2N5433 2N4224 2N4224 2N4416 2N4867 PU091 PlI092 PlI093 Pl1094 PM308 2N3823 2N3823 2N3823 2N3823 LM308 517660 517661 5JM181BCC SJMIBIBIC 5JM182BCC ICL7660 ICL7662 JM38510/11101BCC JM38510/11101BIC JM38510/11102BCC MP7520lN MP7520SD MP7520TD MP7520UO MP7521JO AD7520lN A0752050 AD7520TD AD7520UD AD752IJD NF5102 NF5103 NF511 NF5163 NF520 2N4867 2N4867 2N4860 2N4341 2N3684 PN3684 PN3685 PN3686 PN3687 PN4091 2N3684 2N3685 2N3686 2N3687 ITE4091 5JM182BIC SJM184B£C 5JM185BEC 5JM187BCC SJM18781C JM385101l1I02BIC JM3851O/ll103BEC JM38510/11104BEC JM38510/11105BCC JM38510/11105BIC MP752lJN MP7521KD MP7521KN MP75211D MP7521LN AD752lJN AD7521KD AD7521KN AD7521LD AD75211.N NF521 NF522 NF523 NF530 NF5301 2N3685 2N3686 2N3865 2N4341 2N4118A PN4092 PN4093 PN4220 PN4221 PN4222 ITE4092 ITE4093 J204 J202 J203 5JM188BCC 5JM188BIC 5JM190BEC SJM191BEC SL301AT JM38510/11106BCC JM38510/11106BIC JM38510/11107BEC JM3851O/ll108BEC 1Tl29 MP7521SD MP752lTD MP7521UO MP7523JN MP7523KN AD7521SD AD7521TD A07521U0 A07523JN AD7523KN NF5301-1 NF5301-2 NFS301-3 NF531 NF532 2N4117A 2N4118A 2N4118A 2N4339 2N4341 PN4223 PN4224 PN4342 PN4360 PN4391 J204 J202 2N5461 2N5460 ITE4391 SL30IBT 5L301CT 5L301ET SL360C 5L362C 1T129 1Tl29 ITl29 1T129 ITl29 MP7523LN MP7621AD MP7621BO MP762lJN MP762J KN AD7523LN AD7541AD AD7541BD AD754IJN AD7541KN NF533 NF5457 NF5458 NF5459 NFS484 2N4339 2N5457 2N:;458 2N5459 2N5484 PN4392 PN4416 PN4856 PN4857 PN4858 ITE4392 ITE4416 2N48S6 2N4857 2N4858 5M5011 5M5510 SM5530B 5U2000 5U2020 ICM7050G ICMll15B ICM7070P 2N4340 2N3954 MP7621S0 MP7621TD MP804 MP830 MP831 AD7541SD AD7541TO 2N5520 2N5520 2N5521 NF5485 NF5486 NF5555 NF5638 NF5639 2N5485 2N5486 2N5484 2N5638 2N5639 PN4859 PN4860 PN4861 PN5033 PTC151 2N4859 2N4860 2N4861 2N5460 2N5484 5U2021 5U2022 SU2023 SU2024 5U2025 2N3954 2N3954 2N3954 2N3954 2N3954 MP832 MP833 MPS35 MP836 MPS37 2N5522 2N5523 2N3954 2N3955 2N3955 NF5640 NF5653 NF5654 NF580 NF581 2N5640 2N4860 2N4861 2N5432 2N5432 PTC152 51424 SA2253 SA2254 SA2255 2N5485 ICM1424C ITl22 ITl22 1T122 5U2026 5U2027 SU2028 5U2029 5U2029 2N3954 2N3954 2N3954 2NSI97 2N3954 MP838 MP839 MP840 MP841 MP842 2N3956 2N3957 2N5520 2N5521 2N5523 NF582 NF583 NF584 NF585 NF6451 2N5433 2N5434 2N5433 2N4859 U310 SA2644 SA2648 SA2710 SA271! SA2712 1Tl20 ITI20 1T120 ITI20 1Tl21 5U2030 5U2030 SU2031 5U2031 5U2032 2N3955 2N3954 2N5198 2N3954 2N3954 MPFl02 MPFI03 MPFI04 MPF105 MPFl06 2N5486 2N5457 2N5458 2N5459 2N5485 NF6452 NF6453 NF6454 NKT80111 NKT80112 U310 U310 U310 2N4220 2N4220 SA2713 SA2714 SA271S 5A2716 SA2717 IT121 ITl22 1Tl20 ITl20 ITl21 SU2033 5U2034 5U2034 5U2035 5U2035 2N3954 2N3955 2N3954 2N3955 2N3954 MPFl07 MPFI08 MPFI09 MPFlll MPF112 2N5486 2N5486 2N5484 2N5458 2N5458 NKT80113 NKT80211 NKT80212 NKT80213 NKT80214 2N3821 2N4339 2N4339 2N4339 2N4339 SA2718 SA2719 SA2720 5A2721 SA2722 ITl22 11120 11121 IT122 IT120 SU2074 5U2075 5U2076 SU20n 5U2077 2N3954 2N3954 2N3954 2N395S 2N3954 MPFl61 MPF208 MPF209 MPF256 MPF4391 2N5398 2N3821 2N3821 ITE4416 ITE4391 NKT80215 NKTS0216 NKTB0421 NKT80422 NKTB0423 2N4339 2N4339 2N4220 2N4220 2N4220 SA2723 SA2724 SA2726 SA2727 SA2738 1T121 ITI22 11122 11122 11120A 5U2078 SU2079 SU2080 5U2081 SU2098 2N3955 2N3955 U404 U404 2N5197 MPF4392 MPF4393 MPF820 MPF970 MPF971 ITE4392 ITE4393 J310 J175 J175 NKT80424 NPCI08 NPC211N NPC212N NPC213N 2N4220 2N5484 2N4338 2N4338 2N4338 SA2739 5CL54301 SClS478 50Flool SDFlD02 1Tl20 ICM1424C ICM7269 2N5432 2N5433 5U2098A 5U20988 SU2099 5U2099A 5U2365 2N5197 2N5196 2N5197 2N5197 2N3954 MPS5010 M5M5OOl MSM5011 MSMS977 MTF}Ol ICLB069 ICM7269 ICM1424C ICM1424C 2NS484 NPC214N NPC215N NPC216N NPD5564 NPD5565 2N4339 2N4339 2N4339 IT550 IT550 SOFlOD3 SOF500 SDF501 50F502 SOF503 2N5434 2N5520 2N5520 2N5520 2N5520 SU2365A 5U2366 5U2366A 5U2367 5U2367A 2N3954 2N3955 2N3955 2N3955 2N3955 MTFI02 MTFI03 MTFlO4 N05700 ND5701 2N5484 2NS4S7 2N5459 ITl20A 11120.!\ NP05566 NP08301 NP08302 NPD8303 OT3 IT550 2N3954 2N3955 2N3956 2N4338 SDFSQ4 SOF50S 50F506 SDF507 50F508 2N5520 2N5520 2N5520 2N5520 2N5520 5U2368 5U2368A 5U2369 5U2369A 5U2410 2N3956 2N3956 2N3957 2N3957 2N5907 ND5702 NDF9401 NDF9402 NDF9403 NDF9404 1Tl20 IT500 IT501 1T502 IT503 PlOO4 PlOO5 P1027 PI028 P1"029 2N5116 2N5115 2N5267 2N5270 2N5270 50F509 SOF51O SDF512 SOF513 SDF514 2N5520 2N3954 2N3954 2N3954 2N3954 SU2411 5U2412 5U2652 5U2652M 5U2653 2N5908 2N5909 U401 U401 U401 NOF9405 NDF9406 NDF9407 NDF9408 NDF9409 IT504 IT500 IT501 1T502 IT503 PI069E Pl086E PI087E P1117E P1118E 2N2609 2N5115 2N5516 2N5640 2N5641 SDF661 50F662 SOF663 SES3819 SFT601 1Tl22 ITl22 11122 2N5484 2N4338 5U2653M 5U2654 SU26S4M 5U2655 5U2655M U401 U401 U401 U402 U402 NDF9410 NE590 NE592 NF3819 NF4302 IT504 AD590 NE592 2N5484 2N5457 Pll19E PF510 PF5101 PF5102 PF5103 2N5640 2N5115 2N4867 2N4867 2N4867 SFT602 SFT603 SFT604 5G105 5Gl08 2N4338 2N4339 2N4339 LM105 LMI08 5U2656 5U2656M 5X3819 5X3820 TC803lP U404 U404 2N5484 2N260B ICM7038A "CONSULT FACTORY 29 ':LTERNATE SOURCE PRODUCT IriTERSIL EQUIVALENT ALTERNATE 80URCE PRODUCT 'INTI!R8IL EQUIVALENT ALTERNATE 80URCE PRODUCT INTER81L I;QUIVALENT ALTERNATE 80URCE PRODUCT INTf;RSIL EQUIVALENT TC8032P ICM7038F T0710 1T122 U112 TC8051P TC8052P TC8056PA TC8057P ICM7038B ICM7038E ICMI115B ICM70380 T0711 T07l3 TIS14 TlS25 1Tl22 ITl22 2N434O 2N3954 ~m Ul177 U1178 2N2608 2N2608 2N2608 2N4220 2N3821 U285 U290 U291 U295 U296 2N5454 2N5432 2N5434 2N5432 2N5434 TOl00 TOI0l TOI02 T02CO T0201 1Tl29 1Tl29 ITl29 1T129 1T129 TIS26 TIS27 TI534 TIS41 TlS42 2N3954 2N3955 2N5486 2N4859 2N4393 U1179 U1180 U1181 U1182 U1277 2N3821 2N4221 2N4220 2N3821 2N3684 U300 U3000 U3001 U3002 U301 2N5114 2N4341 2N4339 2N4338 2N5115 TD202 T02219 T0224 T0225 T0226 ITl29 1T129 ITl22 1Tl22 1T122 TI558 TIS59 TIS68 TlS69 TIS70 2N5484 2N5486 2N3955A 2N3955A 2N3956 U1278 U1279 U1280 U1281 U1282 2N3685 2N3686 2N3684 2N3822 2N4341 U3010 U3011 U3012 U304 U305 2N4341 2N4340 2N4338 U304 U305 T0227 T0228 T0229 T0230 T0231 ITl22 ITI22 ITl22 ITl21 1T121 TIS73 TIS74 TI575 TIS88 TIS88A ITE4391 ' ITE4392 ITE4393 2N4416 2N4416 U1283 U1284 UI285 U1286 U1287 2N434O 2N4341 2N4220 2N4341 2N4092 U306 U308 U309 U310 U311 U306 U308 U309 U310 U310 T0232 T0233 T0234 TIXS33 T0236 ITl22 1T122 ITl22 ITl22 1T122 TIXS42 2N4392 2N4857 2N4391 2N4859 2N5639 Ul321 U1322 U1323 U1324 U1325 2N4860 2N3822 2N3822 2N3687 2N3686 U312 U314 U315 U316 U317 2N5397 2N5555 2N5397 U309 U310 T0237 T0238 T0239 T0240 T0241 1T122 1Tl22 1T122 1T121 1Tl21 TIXS59 TIXS78 TIXS79 TU82CL TU82CN 2N5459 2N4341 2N4341 OGM182BA OGM182CJ U133 U1420 U1421 U1422 U146 2N2608 2N3821 2N3822 2N3822 2N2608 U320 U321 U322 U328 U329 2N5433 2N5434 T0242 T0243 T0244 T0245 T0246 ITl20A 1Tl20A 1Tl29 1Tl29 1Tl29 TL1821L TU821N TU82ML TU85CJ TU85CN DGM182BA OGM182CJ OGM182AA IH5045CJE IH5045CPE U147 U148 U149 U168 U1714 2N2608 2N2608 2N2609 2N2609 2N4340 U330 U331 U350 U401 U402 U401 U402 T0247 T0248 TD250 T02905 T0400 1Tl29 1T129 IH20A In39 11139 TU851J TU851N TU85MJ TUBSCL TU88CN IH5045CJE IH5045CPE IH5045MJE IH5042CTW IH5042CPE U1715 U182 U183 U1837E UI84 2N4340 2N4857 2N3824 2N5486 2N5397 U403 U404 U405 U406 U410 U403 U404 U405 U406 2N3955 T0401 TD402 TOSOO T0501 T0502 ITl39 1Tl39 1Tl39 1T139 1Tl39 TU881L TUBSIN TU88ML TLl91CJ TU91CN IH5042CTW IH5042CPE IH5042MTW IH5043CJE IH5043CPE U1897E U1898E UI899E UI97 UI98 U1897 U1898 U1899 2N4338 2N4340 U411 U412 U421 U422 U423 2N3956 2N3958 2N5908 2N5908 2N5909 T0509 T0510 T05l! T0512 T0513 1Tl32 1T132 1T132 1Tl32 1Tl32 TU911J TU911N TU91MJ Tl503 TL592 IH5043CJE IH5043CPE IH5043MJE A0503 NE592 UI99 UI994E U200 U20\ U202 2N4341 2N4416 2N4861 2N4860 2N4859 U424 U425 U426 U430 U431 2N5908 2N5908 2N5909 J309(X2) J310(X2) T0514 T0517 T0518 T0519 T0520 1T132 1T132 1Tl32 1T132 1T139 TlC555 TN4117 TN4117A TN4118 TN4118A ICM7555 2N4117 2N4117A 2N4118 2N4118A U2047E U221 U222 U231 U232 2N4416 2N4391 2N4391 U231 U232 U440 U441 UA105 UAI08 UA305 IT5911 IT5912 LMI05 LM108 LM305 T0521 T0522 T0523 T0524 T0525 1Tl39 1T139 ITl39 1T139 1T132 TN4119 TN4119A TN4338 TN4339 TN4340 2N4119 2N4119A 2N4338 2N4339 2N4340 U233 U234 U235 U240 U241 U233 U234 U235 2N5432 2N5433 UA308 UA733 UCl00 UCIIO UC115 LM308 UA733 2N3684 2N3685 2N434O T0526 T0527 T0528 T05432 T05433 ITl32 1T131 ITl31 2N5432 2N5433 TN4341 TN5277 TN5278 TP5114 TP5115 2N4341 2N4341 2N4341 2N5114 2N5115 U242 U243 U244 U248 U248A 2N5432 2N5433 2N5433 2N5902 2N5906 ' UCI20 UCI30 UC155 UCI700 UC1764 2N3686 2N3687 2N4416 3N163 3N163 T05434 T0550 T05902 T05902A T05903 2N5434 1T129 2N5902 2N5902 2N5903 TP5116 TSC426 TSC7106CJL TSC7106CPl TSC7106RCPL 2N5116 ICL7667 ICl7l06CJL ICl7l06CPL ICL7106RCPL U249 U249A U250 U250A U251 2N5903 2N5907 2N5904 2N5908 2N5905 UC20 UC200 UC201 UC21 UC210 2N3686 2N3824 2N3824 2N3687 2N4416 T05903A T05904 T05904A T05905 T05905A 2N5903 2N5904 2N5904 2N5905 2N5905 TSC7107CJL TSC7107CPL TSC7107RCPL TSC7109CPL TSC7109IJL ICL7107CJL ICL7107CPL ,ICL7107RCPL ICL7109CPL ICL7109IJL U251A U252 U253 ,U254 U255 2N5909 IT5911 IT5912 2N4859 2N4860 UC2130 ' UC2132 UC2134 UC2136 UC2138 2N5452 2N5453 2N5454 2N5454 2N5454 T05906 T05906A T05907 T05907A T05908 2N5906 2N5906 2N5907 2N5907 2N5908 TSC7109MJL TSC7116CJL TSC7116CPL TSC7117CJL TSC7117CPL ICL7109MJL ICL7116CJL ICL7116CPL ICL7117CJL ICL7117CPL U256 U257 U257/T0·71 U266 U273 2N4861 U257 U257/TO·71 2N4856 2N4118A UC2139 UC2147 UC2148 UC2149 UC220 2N3958 2N3958 2N3958 2N3958 2N3822 T0590BA T05909 T05909A T05911 T059\1A 2N5908 2N5909 2N5909 IT5911 IT59\1 TSC7126CJL TSC7126RCPL TSC7135CJI TSC7135CPI TSC7650 ICL7126CJL ICL7126RCPL ICL7135CJI ICL7135CPI ICL7650 U273A U274 U274A U275 U275A 2N4118A 2N4119A 2N4119A 2N4119A 2N4119A UC240 UC241 UC250 UC251 UC2766 2N4869 2N4869 2N4091 2N4392 3N166 T05912 TD5912A T0700 T0701 T0709 IT5912 IT5912 1T122 ITl22 ITI22 TSC7660 TSC9491 TI·590 U110 U\lI ICL7660 ICL8069 A0590 2N2608 2N2608 U280 U281 U282 U283 U284 2N5452 2N5453 2N5453 2N5453 2N5454 UC300 UC310 UC320 UC330 UC340 2N2608 2N2607 2N2607 2N2607 2N2607 TD235 "CONSULT FACTORY TlXS35 TIXS36 TIXS41 30 2~5433 .. .... .. ALTERNATE SOURCE PRODUCT INTERSIL EQUIVALENT UC40 UC400 UC401 UC41 UC410 2N2608 2""5270 2N5116 2N2608 2N5268 UC420 UC450 UC451 UC588 UC703 2N5267 2N5114 2N5116 2N4416 2N4220 UC704 UC705 UC707 UC714 LJC714E 2"'14220 2N4224 2N4860 2N3822 2N4341 UC734 UC734E UC751 UC752 UC753 2N4416 2N4416 2N4340 2N4340 2N4341 UC754 UC755 UC756 UC805 UC807 2N4340 2N4341 2N4340 2N5270 2N5115 UC814 UC851 UC853 UC854 UC855 2N5270 2N2608 2N2608 2N2608 2N2609 UCN-4111M UCN-4112M UCN-4113M UHP-503 UPDl952P lCM7038C ICM7051A ICM70388 AD503 ICM7220MFA UPD1962C UPD1963C UPD815C UPD816C UPD820C ICM7050G ICM7050 ICM7038E ICM70388 ICMl115B UPD833G UTlOO ICM7223 unOI ALTERNATE SOURCE PRODUCT INTERSIL .EQUIVALENT ALTERNATE SOURCE PRODUCT 2N5397 UXC2910 VCRION 2N5397 1T126 2N4869 VCRllN VCR12N VCR13N VCR20N VCR2N VNRllN 2N3958 2N3958 2N4341 VCR2N VCR3P VCR4N VCR5P VCR6P VCR7N VCR2P VCR4N VCR5P VCR6P VCR7N VF28 VF811 YF8l5 VFW40 VFW40A 2N4392 2N4858 2N4858 lT122 1T120 YR-8069 W245A W2458 W245C W300 ICl8069 ITE4416 IT£4416 ITE4416 2N5398 W300A W300B W300C W300D WG-8038 2N5397 2N5397 2N5397 2N5398 ICl8038 WK5457 WK5458 WK5459 XR8038 ZD140 2N5457 2N5458 2N5459 ICl8038 1Tl29 ZDT41 ZDT42 ZOT44 ZDT45 IT129 1Tl29 1Tl29 1Tl29 "CONSULT FACTORY 31 INTERSIL EQUIVALENT ALTERNATE SOURCE PRODUCT INTERSIL EQUIVALENT Section 1 - Selector Guides 2.DISCRETES Switches-Junction FET N Channel PART NUMBER PACKAGE rOS(ON) n Max Vp v Min IGSS BVGSS ID(OFF) loSS tap Crss ClsS Max pA Max V Min pA Max rnA Min ns Max pF Max pF Max -4.0 -2.0 8.0 -10.0 -5.0 -100 -250 -250 -50 -40 -40 250 250 50 25 150 75 6 25 25 High Isolation High Isolation High Isolation -0.5 -3.0 -250 -40 250 5 30 50 90 180 3 6 6 6 25 High Isolation -10.0 -10.0 -7.0 -7.0 -5.0 -5.0 -200 -40 -200 40 -200 40 -40 -50 -40 -50 -40 -50 200 200 200 200 200 200 30 30 15 15 8 8 65 65 95 95 140 140 5 5 5 5 16 16 16 16 16 16 High High High High High High 55 75 100 3.5 3.5 3.5 14 14 14 High Isolation High Isolation High Isolation 34 60 120 34 60 120 8 8 8 8 8 8 18 18 18 18 18 18 High High High High High High Max COMMENTS 2N3824 2N3970 2N3971 2N3972 TO-72 TO-18 TO-18 TO-18 250 30 60 100 " 2N4091 2N4091A " 2N4092 2N4092A " 2N4093 2N4093A TO-18 TO-18 TO-18 TO-18 TO-18 TO-18 30 30 50 50 80 80 -5.0 -5.0 -2.0 -2.0 -1.0 -1.0 2N4391 2N4392 2N4393 TO-18 TO-18 TO-18 30 60 100 -4.0 -2.0 -0.5 -10.0 -5.0 -3.0 -100 -100 -100 -40 -40 -40 100 100 100 50 25 5 2N4856 2N4857 2N4858 2N4859 2N4880 2N4861 TO-18 TO-18 TO-18 TO-18 TO-18 TO-18 25 40 60 25 40 60 -4.0 -2.0 -0.8 -4.0 -2.0 -0.8 -10.0 -6.0 -4.0 -10.0 -6.0 -4.0 -250 -250 -250 -250 -250 -250 -40 -40 -40 -30 -30 -30 250 250 250 250 250 250 50 20. 8 50 20 2N4978 TO-18 20 -2.0 -8.0 -500 -30 500 15 55 8 35 Low rOS(ON) 2N5432 2N5433 2N5434 TO-52 TO-52 TO-52 5 7 10 -4.0 -3.0 -1.0 -10.0 -9.0 -4.0 -200 -200 -200 -25 -25 -25 200 200 200 150 100 30 41 41 41 15 15 15 30 30 30 Low rOS(ON) Low rOS(ON) Low rOS(ON) 2N5555 T0-92 150 -10.0 -lnA -25 10nA 15 35 1.2 5 Low Cost 2N5638 2N5639 2N5640 2N5653 2N5654 T0-92 TO-92 T0-92 TO-92 TO-92 30 60 100 50 100 -12.0 -8.0 -6.0 -12.0 -8.0 -lnA -lnA -lnA -lnA -lnA -30 -30 -30 -30 -30 lnA 50 lnA25 lnA 5 lnA 40 lnA 15 24 44 63 24 44 4 4 4 3.5 3.5 10 10 10 10 10 Low Low Low Low Low ITE4091 ITE4092 iTE4093 TO-92 TO-92 TO-92 30 50 80 -5.0 -2.0 -1.0 -10.0 -7.0 -5.0 -200 -200 -200 -40 -40 -40 200 200 200 30 15 8 65 95 140 5 5 5 16 16 16 Low Cost Low Cost Low Cost ITE4391 ITE4392 ITE4393 TO-92 TO-92 TO-92 30 60 100 -4.0 -2.0 -0.5 -10.0 -5.0 -3.0 -100 -100 -100 -40 -40 -40 100 100 100 50 25 5 55 75 100 3.5 3.5 3.5 14 14 14 Low Cost Low Cost Low Cost Jl05 Jl06 Jl07 Jl08 Jl09 Jll0 Jlll Jl12 Jl13 Jl14 TO-92 TO-92 TO-92 TO-92 TO-92 TO-92 TO-92 TO-92 TO-92 TO-92 3 6 8 8 12 18 30 50 100 150 -4.5 -2.0 -0.5 -3.0 -2.0 -0.5 -3.0 -1.0 -0.5 -10.0 -6.0 -4.5 -10.0 -6.0 -4.0 -10.0 -5.0 -3.0 -10.0 -3nA -3nA -3nA -3nA -3nA -3nA -lnA -lnA -lnA -lnA -25 -25 -25 -25 -25 -25 -35 -35 -35 -25 3nA 3nA 3nA 3nA 3nA 3nA lnA lnA lnA lnA 500 200 100 80 40 10 20 5 2 15 " " " " " " "Also available as JAN/JANTX & JANTXV ""Most TO-92's afe available lead formed to a TO-18 or TO-5 configuration 1-1 8 150 75 30 100 80 100 80 150 75 30 20 20 20 41 41 41 48 48 48 26 5 5 Isolation Isolation Isolation Isolation Isolation Isolation Isolation Isolation Isolation Isolation Isolation Isolation Cost Cost Cost Cost Cost Lowest rOS(ON) Lowest rOS(ON) Lowest rOS(ON) Low Cost Low Cost Low Cost Lowest Cost Lowest Cost Lowest Cost Low Cost 2. DISCRETES Switches .... Junction FET N Channel rDS(ON) PART NUMBER PACKAGE Il Max vp. IGSS' V pA BVGSS V ID(017Fl loss rnA Min tap. ns Max Cras Clss pF Max pF Max 15 8 65 95 140 5 5 5 16 16 16 Low Cost Low Cost Low Cost 41 41 41 15 15 15 30 Lowest rOS(ON) Lowest rOS(ON) Lowest rOS(ON) 8 8 30 30 8 30 Low Cost Low Cost Low Cost 5 5 5 16 16 16 Low Cost Low Cost Low Cost Min Max Max. Min pA Max -10.0 -7.0 -5.0 -200 -200 -200 -40 -40 -40 200 200 200 30 PN4091 PN4092 PN4093 10-92 TO-92 TO-92 50 80 -5.0 -2.0 -1.0 PN5432 PN5433 PN5434 TO-92 TO-92 TO-92 5 7 10 -4.0 -3.0 -1.0 -10.0 -9.0 -4.0 -200 -200 -200 -25 -25 -25 200 200 200 150 100 30 U200 U201 U202 TO-18 TO-18 TO-18 150 75 50 -0.5 -1.5 -3.5 -3.0 -5.0 -10.0 -InA -1nA -1nA -30 -30 -30 InA InA 1nA 3 15 U1897 UI898 UI899 TO-92 TO-92 TO-92 30 -5.0 -2.0 -1.0 -10.0 -7.0 -5.0 -400 -400 -40 -40 -40 200 200 200 30 50 80 -400 'Also available as JAN/JANTX & JANTXV "Most TO-92's are available lead formed to a TO'18 or TO-5 configuration 1-2 30 30 15 8 Max 25 75 150 65 95 140 30 30 COMMENTS DlL 2. DISCRETES Switches-Junction FET P Channel PART NUMBER PACKAGE rDS(ON) fI Max Vp IGSS BVGSS 'D(OFF) V Min Max pA Max V Min pA Max loss mA Min Max 5.0 5.0 9.5 15nA 15nA 15nA 30 30 30 -2nA -2nA -2.5nA -3-30 -15-30 -15-SO 9.5 5.5 1.2nA 1.2nA 25 25 -1.2nA -1.2nA -10 -2 12.0 7.0 2nA 2nA 30 30 -10nA -10nA -10 2N3382 2N3384 2N3386 TO·72 TO·72 TO·72 300 lSO 1.0 4.0 4.0 2N3993 2N3994 TO·72 TO·72 lSO 300 4.0 1.0 2NS018 2NS019 TO·18 TO·18 75 150 • 2N5114 • 2N5115 • 2N5116 TO·18 TO·18 TO·18 75 100 150 5.0 3.0 1.0 10.0 6.0 4.0 500 500 500 30 30 30 IT100 IT10l TO-18 TO-18 75 60 2.0 4.0 4.5 10.0 200 200 J174 J175 J176 Jl77 TO-92 TO-92 TO-92 TO-92 125 2SO 300 5.0 3.0 1.0 0.8 10.0 6.0 4.0 2.25 PN5114 PN5115 PN5116 TO-92 TO-92 TO-92 75 100 lSO 5.0 3.0 1.0 U304 U305 U306 TO-18 TO-18 TO-18 85 5.0 3.0 1.0 180 85 110 175 tap ns Max Crs• pF Max C,•• Max COMMENTS 16 typ Low rOS(ON) 16 typ Low rOS(ON) 16 typ Low rOS(ON) 4.5 4.5 16 16 -5 100 215 10 10 45 45 Low rOS(ON) Low rOS(ON) -500 -500 -30 -90 -15 -60 -5 -25 37 66 102 7 7 7 25 25 25 Low rOS(ON) Low rDS(ON) Low rOS(ON) 35 35 -100 -100 -20 12 12 35 35 TIL Compatible TIL Compatible lnA lnA lnA lnA 30 30 30 30 -lnA -lnA -lnA -lnA -20 -100 -7 -60 45 -2 -25 -1.5 -20 90 10.0 6.0 4.0 500 30 30 30 -500 -500 -500 -30 -90 -15 -60 -5 -25 37 68 102 7 7 7 25 25 25 Low Cost Low Cost Low Cost 10.0 6.0 4.0 500 30 30 30 -500 -500 -500 -30 -90 -15 -60 -5 -25 70 105 7 7 7 27 27 27 High Off Isolation High Off Isolation High Offlsoiation 500 500 500 500 -500 • Also available as JAN/JANTX & JANTXV "Most TO-92's are available lead formed to a TO-18 or TO-5 configuration 1-3 -10 22 Low Cost Low Cost Low Cost TIL Compatible 70 140 ·.·.B··~.·.<.·· .. ··>·.·."'.~.··.··.·:n.';0.,;;;;:" ;. :.:..·."·.·....... ; Stnb '• . ~. 2. DISCRETES Switches and Amplifiers MOSFET N·Channel BVoss loss 9,. loss rO~ON) PACKAGE VGS(TH) V Min' Max ID(ON) mA Min 2N4351 TO-72 1.0 5.0 25 10nA 10 1000 300 3 High Input Z 3N170 3N171 TO·72 TO-72 1.0 1.5 2.0 3.0 25 25 10nA 10nA 10 10 1000 1000 200 200 10 10 . High Input Z High Input Z 1T1750 TO-72 0.5 3.0 25 10nA 10 3000 50 10 M116 M117 TO-72 TO-72 1.0 1.0 5.0 5.0 30 30 lanA 10nA 100 PARJ NUMBER 'Max V Min pA Max pA Max "mho Min' ID(ON) mA.·. Max COMMENTS Low rOS(ON) Diode Protected High Input Z lOQ 100 P·Channel Generally used where max. isolation between signal.source and logic drive is required: switch "On" resistance varies with signal amplitude. PART NUMBER' PACKAGE 9,. VGS(TH) V Min BVoss V Min loss MIIIX pA Max IGSS pA Max I'mho Min rDS(ON) 0 Max IIl(ON) mA Min IIl(ON) mA Max COMMENTS 2N4352· TO-72 -1.0 -5.0 -25 -10nA 10 1000 600 ":3 High Input Z 3N155 3N15SA 3N157 3N157A TO-72 T0-72 TO-72 TO·72 -1.5 -l.S -1.5 -1.5 -3.2 -3.2 -lnA -250 -lnA -250 10 10 10 10 1000 1000 1000 1000 600 300 -5 -5 -3.2 -35 -35 -35 -50 High High High High 3N161 3Nl63 3N164 TO-72 TO-72 TO-72 -1.5 -2.0 -2.0 -5.0 -5.0 -5.0 -25 -40 -30 -10nA -200 400 -100 -10 10 3500 2000 1000 3N172 3N173 TO-72 TO-72 -2.0 -2.0 -5.0 -5.0 -40 -30 -400 -200 -10nA -500 IT1700 IT1701 T0-72 T0-72 . -2.0 -2.0 -5.0 -5.0 -40 -40 200 200 100 -3.2 2000 2000 '-5 -5 -40 Input Z Input Z Input Z Input Z -3 -120 -30 -30 Diode Protected High Input Z High Input Z 250 350 -5 -S -30 -30 Diode Protected Diode Protected 400 -2 -2 250 300 -5 400 High Input Z Diode Protected Low Leakage Diodes PART NUMBER 10100 10101 PACKAGE 'R@ 1V (PA) Typ IR@ 10 V, 125°C (nA) Max BVR@ 1~ (V) Min TO-7S TO-71 0.1 0.1 10 10 30 30 Note 1_ Used to protect the inputs of MOSFETs such as 3NI63, while maintaining input leakage< LM108 ISlAS (pA Max) SLEW RATE ~/,..) - GBW (MHz) COMPEN· SATION VSUPPLY EXT INT :20 :1:18 :1:9 ~Mlx) TEMPERATURE RANGE (OC) Bipolar, Super·Beta Bipolar, Super·Beta CMOS, Selectable la 2.0 7.5 2,5,15 2000 50 1.6 1.0 1.0 1.4 •. ICL8007M • ICL8007C JFET Input Op-Amp JFET Inpul Op-Amp 20 50 20 50 6 6 1.0 1.0 INT INT :18 :1:18 LH2108 LH2308 ICL7621 Bipolar, Super·Beta Bipolar, Super·Beta CMOS, Fixed la 2.0 7.5 2,5,15 2000 7000 50 -- EXT EXT 0.16 1.0 1.0 0.48 INT :1:20 :1:18 :1:9 ICL8043M ICL8043C JFET Input Op-Amp JFET Input Op-Amp 20 50 20 50 6 6 1.0 1.0 INT INT :18 :1:18 ICL7631 CMOS, Selectable la 5,10,20 50 1.6 1.4 INT :1:9 1 ICL7641 CMOS, Fixed la 5,10,20 50 1.6 1.4 INT :1:9 ~ VOUT VSUPPLY ~Min) ~Max) Vos (mVMax) ISlAS (nA Max) AVOL (dB Typ) TEMPRATURE RANGE (OC) :26 :26 :32 :32 :12 :12 :18 :18 250 250 250 :26 :26 :32 :32 :32 :32 3.0 6.0 3.0 6.0 3.0 6.0 3.0 6.0 100 100 100 100 100 100 100 100 -55 to +125 -25 to +85 -55 to +125 -2510 +85 -55 to +125 -2510 +85 -55 to +125 -25 to +85 .. .!l ·c g T j Iq VOS· (mV MIX) LM308 ICL7611 ..~ AI .;.fJil DESCRIPTION 7000 EXT -55 10 +125 ~ to +70 to +70 -55 to +125 -55 10 +125 o to +70 1 -55 to +125 a to +70 1 Oto +70 -55 to +125 -55 to +125 Oto +70 Oto +70 -55 to +125 010 +70 -55 10 +125 Operational Amplifiers: High Output Current TYPE ! ~ % (i) ICH8510M iCH85101 ICH8515M ICH85151 ICHB520M ICHB5021 ICHB530M ICHB5301 DESCRIPTION Hybrid Amplifier Hybrid Amplifier Hybrid Amplifier Hybrid Amplifier Hybrid Amplifier Hybrid Amplifier Hybrid Amplifier Hybrid Amplifier lOUT (A Min) 1.0 1.0 1.5 1.25 2.0 2.0 2.7 2.7 :25 :25 1-15 50 250 500 250 500 4. AMPLIFIERS Operational Amplifiers: Low/Ultra.lowlnputOff$et Voltage TYPE e\":i ICL7650C ICL76501 ICL7850M ·.·1m ...... ." ". ",' I DESCRIPTION Vos ",VMilx) AVos/AT "'Vl°C) (Max) AVos/At (ilVlmoiIIh) (TyP) (pA Max) IBIAS Gaw (MHz) VSUPPLY (V Max) TEMPERATURE RANGE (0C) ::t5 ::t5 :1:5 ::to.05 ::to.05 ::to.05 100 100 100 10 10 10 2.0 2.0 2.0 ::t9 ::t9 ::t9 o to +70 -25 to +85 -55 to +125 :1:5 ::t5 100 100 30 30 7000 2.0 2.0 1.0 1.0 ::t9 ::t9 :1:20 ::t18 o to +70 -25 to +85 -55 to +125 o to +70 2000 7000 1.0 1.0 ::t2O ::t2O -55 to +125 010 +70 ICL7652C ICL78521 LM108A LM308A CMOS, Chopper· stabilized CMOS, Chopperstabilized Low-noise 7850C Low-noise 76501 Bipolar, Super·Beta Bipolar, Super·Beta 500 500 ::to.05 ::to.05 5.0 5.0 LH2108A LH2308A Bipolar, Super·Beta Bipolar, Super·Beta 500 500 5.0 5.0 - 2000 Operational Amplifiers: Low Input Bias Current TYPE DESCRIPTION IBIAS (PA Max) los GaW (MHz) COM PEN· SATION VSUPPLY (V Max) TEMPERATURE RANGE (0C) (PA Typ) Vos ' (mV Max) 0.5 2,5,15 0.5 0.5 2,5,15 1.4 1.4 INT INT :1:9 ::t9 2,5,15 1.4 INT ::t9 0.5 2,5,15 0.48 0.5 2,5,15 0.48 EXT EXT ::t9 CMOS, Input Protected 50 50 50 ,50 50 ICL8007M JFET Input Op-Amp 20 0.5 20 1.0 INT :1:18 -55 to +125 ICL8007AM JFET Inpul, Low Bias 4.0 0.2 1.0 INT ::t18 -55 to +125 ICL8007C JFET Input Op-Amp 50 0.5 1.0 INT :l:1j! 010 +70 ICL.8007AC JFET Input, Low Bias 4.0 0.2 1.0 INT :1:18 Oto +70 ICH8500 ICH8500A PMOS Input 0.1 0.7 INT :1:18 -25 to +85 PMOS Input, Low Bias 0.01 30 50 30 50 50 0.7 INT :1:18 -25 to +85 'I ICL7621 CMOS, Fixed Ie INT :1:9 0.5 2,5,15 2',5,15 0.48 CMOS, Offset Null Pins 50 50 0.5 ICl7622 0.48 INT :1:9 Oto +70 -55 to +125 ICL8043M JFET Inpul Op-Amp 20 0.5 20 1.0 INT :1:18 -55 to +125 ICL8043C ,JFET Input Op-Amp 50 0.5 50 1.0 INT :1:18 "a! ICl7631 CMOS, 'Selectable Ie 5,10,20 1.4 INT :1:9 CMOS, Selectable Ie 50 50 0.5 ICl7632 0.5 5,10,20 1.4 NONE :1:9 ICl7641 CMOS, Fixed Ie 5,10,20 1.4 INT :1:9 CMOS, Fixed Ie 50 50 0.5 ICl7642 0.5 5,10,20 0.044 INT :1:9 " ID fij , , IC,L7611 CMOS, Selectable Ie ICL7612 CMOS, Extended CMVR ICL.7613 CMOS, Input Protected ICL7614 CMOS, Fixed Ie ICL7615 - } .» +~ ,-55 to :125 :1:9 ',' . "'.", .".' III g I' 1-16 } o to +70 } 010 +70 -55 to !125 } 010 +70 -55 to !125 4. AMPLIFrERS Commutating Auto-Zero (CAl) Instrumentation Amplifiers TYPE DESCRIPnON Vos {j.V MaX) 'Nos/aT {j.V/"C) (Max) aVos/at (nV/month) (Typ) IBIAS (pA Max) SIGNAL BANDWIDTH (Hz Max) TEMPERATURE RANGE AVOL (dB Typ) (0C) o ICL7605C ICL76051 ICL7605M CMOS, Compensated CMOS, Compensated CMOS, Compensated 5.0 5.0 5.0 0.2 0.2 0.2 40 40 40 1500 1500 1500 10 10 10 105 105 105 to +70 -25 to +85 -55 to +125 ICL7606C ICL7!l(l61 ICL7606M CMOS, Uncomp911sated CMOS, Uncompensated CMOS, Uncompensated 5.0 5.0 5.0 0.2 0.2 0.2 40 40 40 1500 1500 1500 10 10 10 105 105 105 Oto +70 -25 to +85 -55 to +125 Logl Antilog Amplifiers TYPE DESCRIPnON ICL8048BC ICl.8048CC Logarithmic Amplifier, 1V/Decade Output ICL8049BC ICL8049CC . Antilog Ar:npllfler 1V/Decade Input Vos (mVMax) aVOAJtlaT (mV/"C) (Typ) DYNAMIC RANGE (dB) 30 60 25 50 0.8 0.8 120 120 ±14 ±14 ±18 ±18 10 25 25 50 0.38 0.55 60 60 ±14 ±14 ±18 ±18 ABSOLUTE ERROR (mVMax) OUTPUT SWING (V Typ) TEMPERATURE VSUPPLY (V Max) RANGE (OC) Oto.+70 o to +70 o to +70 o to +70 Power Transistot Drive Amplifiers TYPE ICLB063M ICL8063C DESCRIPTION Bipolar Monolithic Driver Amplifier lOUT (mAMin) VOUT (V Min) Vos (mVMax) AYOL (VN) +50/-25 +40/-20 ±27V 50 75 6 6 IBIAS Il Differential Inputs ~P-Compatlble, ADC0804 t: ; ICL711!>J/K Differential Inputs DIGITAL OUTPUT FORMAT 8-Blt Binary 8-Blt Binary 8-Blt Binary ~P-Compatlble, 816 Bits High Speed Converter Ao Byte Enable INPUT CONVERSION VOLTAGE OVERALL SPEED (PS) RANGE ACCURACY - 114 (Max) Oto +5.0V 114 (Max) Oto +5.0V - 114 (Max) Oto +5.0V - 40 (Max) 0.01% (J) Oto +5.0V 0.006%(1<) Oto -5.0V 1-21 TOTAL . ERROR GAIN TEMP. COEFF. ±'!J LSB - (Unadjusted) . ±Y. LSB (Adjusted) - ±H.SB (Unadjusted) - +1 LSB SUPPLY VSUPPLY/ ISUPPLY TEMP RANGE (0e) +5V (Typ) 2.5mA(Max) Oto +70 -40 to +85 -55 to +125 +5V (Typ) 2.5mA(Max) o to +70 -40 to +85 -55 to +125 +5V (Typ) 2.5mA(Max) o to +70 -40 to +85 -55 to +125 4 ppml"C +5V (Typ) 5 mA(Typ) o to +70 6. DATA ACQUISITION Dlgltal·ta-Analog Converters (CMOS) TYPE I AD7523 SPECIAL FEATURES Blnaryl pp-Compatlble, Offset Low Power Multiplying CAC Binary ~P-Compatlble, SUPPLY GAIN VSUPPLY LlNERITY ISUPPLY 1.5% (Max) 10 ppm/oC 2 ppm/°C +1SV (Typ) '1oopA (Max) o to +70 -25 to +85 -55 to +125 0.2% (J,A,S) 0.1% (I<,B,1) 0.05% (L,C,U) 0.3% (Typ) 10 ppm/°C 2 ppm/°C +15V(Typ) 2mA(Max) Oto +70 -25 10 +85 -55 to +125 :l:VREF A 10Kn (Max) 0.2% (J,A,S) 0.1% (K,B,1) 0.05% (L,C,U) 0.3% (Typ) 10ppm/°C 2 ppm/oC +15V (Typ) 2 mA(Max) 010 +70 -2510 +85 -55 to +125 :l:VREF A 10Kn (Max) 0.2% (J,A,S) 0.1% (I<,B,1) 0.05% (L,C,U) 1.4% (Max) 10 ppm/°C 2 ppm/°C +15V (Typ) 2mA(Max) Oto +70 -25 to +85 -55 to +125 :l:VREF A 10Kn (Max) 0.2% (J,A,S) 0.1% (I<,B,1) 0.05% (L,C,U) 0.3% (Typ) 10 ppm/"C +15V (Typ) 2 ppm/°C , 2mA(Ma~) 010 +70 -25 to +85 -55 10 +125 0.2% (JA,S) 0.1% (K,B,1) 0.05% (L,C,U) 0.3% (Typ) (Typ) :l:VREF A 10Kn (Max) 10 ppm/°C 2 ppm/°C +15V (Typ) 2mA(Max) 010 +70 -2510 +85 -55 to +125 1,.s (Max) :l:VREF A 10Kn (Max) 0.02% (J,A,S) O.OW. (K,B,1) 0.01 % (L,C,U) 0.3% (Max) '2 ppm/°C +15V (Typ) 2mA(Max) Oto'+70 -25 to +85 -55 to +125 3,.s (Max) :l:VREF A 7KO (Max) 0.1 % (J,A,S) '0.02% (J) 0.006% (I<,B,1) 0.012% (K) 0.003% (l.,C,U) 0.006% (L)' 5 ppm/°C 1 ppm/°C +5V (Typ) 0.5 mA (Max) 010 +70 -25 to +85 -55 to +125 200 ns (Max) 500 ns AD7530 Blnaryl Same as '7520 But no leakage Offset /leed thru specs Binary 500 ns AD7533 "P-Compatlble, Lowesl c;osl 1O-blt DAC Binaryl Offset Binary 600 ns ~P-Compatlble, 500 ns 500 ns 8, 9, 10 Bit Lin. Mulliplylng CAC Ii SfABILITY SETTLING nME (TO 0.050/0 FS) Binaryl Offset Binary i AD7520 ~. DIGITAL INPUT FORMAT i ••••• Multiplying CAC Blnaryl Offsel Binary I AD7531 Same as '7521 But nO leakage /feed Ihru specs Binaryl Offsel Binary AD7541 pp-Compatlble, High performanee CAC Blnaryl Offsel Binary AD7521 ,~, if AD7134 ••• :~::: 8, 9, 10 BII Lin. Binaryl "P-Compatlble, Low power 2's Multiplying CAC Complement (Typ) (Typ) (Typ) (Typ) OUTPUT VOLTAGE CURRENT NON LIN· EARITY GAIN ERROR :l:VREF A 10KO (Max) 0.2% (J,A,S) 0.1% (I<,B,1) 0.05% (L,C,U) :l:VREF A 10Kn (Max} Quad Current Switches For D/A Conversion (Singles or Matched Pairs) TYPE DESCRIPTION ICL8018A High precision current ICL8019A switches for use In summing D/A converters ICL8020A ABSOLUTE ERROR (% Max) ERROR TEMPCO. (pPM/"C Max) :1:0.01 :1:0.10 :1:5 :1:25 :1:50 :1:1.00 1-22 VSUPPLY (V Max) ISUPPLY (rnA Max) :1:20- 10 :1:25 :1:20 10 :1:20 TEMPERATURE RANGE (0C) ~ 010 +70 -55 to +125 TEMP RANGE (0C) 7. TIMER/COUNTER CIRCUITS Timer/Counters With Display Drivers DISPLAY LED FUNCTIONS UNIT COUNT LCD VF UNIVERSAL COUNTERS NUMBER OF DIGITS TYPICAL APPLICATIONS AND COMMENTS TYPE ICM7217 ICM7217A • ICM72178 • • • • • • • • • ••• • ••• ••• 2 ••• • • •• 2 ••• • • Industrial control: preset/predetermin· ing counters, sequencers, on/off delay timers, batch counters. Presets and loads compare register from thumbwheel switches 2 !i! ICM7217C. •• • •• •••• 2 Q.~---+~~~rr++++++~~~~~~~-------------i =i ICM7227 • •• • •. • •••• 2 Microprocessor compatible interface. ICM7227A ICM7227B I'. ICM7~7C • • • ICM7224 ICM7224A • • • • • • • • • ••• ••••••• • •••••• • ••• • •• • 2 2 •• •• 15 • 15 •• Industrial control: presel/predetermin. ing counters, sequencers, onloff delay timers, batch counters. Presets and loads compare register from a microprocessor 2 • i..~•.t-'C_M_7_225 _ _-+_.+++_t-+-+-'-.+.:...r-t.++-+-++.+.+.+.++-+-+-_15_+.-I • !i ICM7225A. • • • • • • 15 ICM7236 • • •• • ICM7236A • • • • • • •••• 15. t------t-t-+-+-+-+-t-t-t-l-l-ll-+-+-+++-+--+-t-t-ll---t-l !~. • ICM7249 CRYSTAL FREQUENCY PULSE WIDTH OTHER OUTPUTS/COMMENTS ICM7213 t Pulse/Min 2-4 100 125,1000 4.19 MHz 1 PulseJSec, 2048, 1024, 34.133, 16 Hz ICM7207A 0.5 Hz 4-5.5 260 1000, 0.391 5.24288 MHz 5 Hz, 1600 Hz (Note 1) ICM7213 1 Hz 2-4 100 7.B 4.19 MHz 1 Pulse/Min, 2048, 1024, 34.133, 16 Hz ICM7207A 5 Hz 4-5.5 260 100,0.391 5.24288 MHz 0.5,1600 Hz ICM7207 5 Hz 4-5.5 260 100,0.312 6.5536 MHz 50 Hz, 1260 Hz ICM7213 16 Hz 2-4 100 Sq. Wave 4.19 MHz 1 Pulse/Min, 2048, 1024, 34.133, 1 Hz ICM7207 50Hz 4-5.5 ' 260 20,0.312 6.5536 MHz .5 Hz, 1260 Hz ICM7213 ICM7213 ICM7207A ICM7207 1000 Hz 1024 Hz 1260 Hz 1600 Hz 2-4 2-4 4-5.5 4-5.5 100 100 260 260 Sq. Wave Sq. Wave Sq. Wave Sq. Wave 4.096 MHz 4.19 MHz 5.24288 MHz 6.5536 Mhz 2000, 2000 Pulses/Min 1 Pulse/Min, 2048, 34.133, 16, 1 Hz 0.5,5 Hz 5,50 Hz ICM7213 204s Hz. 2-4 100 Sq. Wave 4.19 MHz 1 Pulse/Min, 1024,34.133,16, 1 Hz ICM7209 25OkHz- ' 10 MHZ 4.s.5.5 11,000 Sq. Wave 1-10 MHz Note.: 1. Oscillator/controller for frequency counter. 2. Two buffered outputs"":Crystal Frequency and + B output. Drives up to 5 TTL loads. 1-24 (Note 2) 8. DISPLAY DRIVER . .OF CHARACTERS OR DIGITS ' DISPLAY TYPE . FEATURES AND COMMENTS INTERFACE FONT .D~D[6 TYPE ICM7211 ICM7211A ICM7211M IGM7211AM 4 4 4 4 ICM7212 ICM7212A ICM7212M ICM7212AM 4 4 4 4 ICM7218A ICM7218B ICM7218C ICM721BD ICM7218E 8 8 8 8 8 8 ICM7231A ICM7231B ICM7231C 8 16 8 i6 8 16 10 20 10 20 10 20 ICM7232A ICM7232B ICM7232C ICM7233A ICM7233B •• •• B 8 B 8 • •• • • 4 4 3 3 3 3 3 3 3 3 3 5 5 4 4 4 4 •• 8 ICM7243A ICM72438 8 • •• • • •• • • • •• •• • • •• •• •• •• •• 3 ICM7234A ICM7234B ICM7235 ICM7235A ICM7235M ICM7235AM • •• • 14 SO 7& 10 14 SO 16 200 200 1000 1000 200 200 • •• • • • • • •• • 1000 1000 • • •• • • • • •• • • •• •• • • •• • • • • 550 550 500 500 500 500 Drives Conventional LCD Displays. Includes RC Oscillator, Divider Chain, latches, Interface and LCD Drivers. Evaluation Kit Available Drives Common Anode LED Displays. 28 Current Controlled Outputs. Includes latches, Interface and Brightness 'Control. Evaluation Kit Available. 3 Decode Formats Drives UP to 64 Independent LED's . Includes 8x8 Memory, Multiplexed LED Drivers, Decoders, Interface and control. Applications Include Bar Graphs. ' B Digits, 16 Annunciators on COM 3, Hexadecimal 500 500 .350 B Digits, 16 Annunciators on COM 3, Code B .350 .350 10 Digits, 20 AnnunCiators on COM 3, Code B 500 500 .350 .350 1000 1000 200 200 • • • • - B Digits, 16 Annunicators on COM 1 + 3, Code B 10 Digits, 20 Annunciators on COM 3, Hexadecimal 10 Digits, 20 Annunciators on COM 1 + 3, Code B 4 Alphanumeric Characters. Evaluation Kit Available 4 Alphanumeric Characters. Full·Width Numbers 5 Alphanumeric Characters. Half·Width Numbers 5 Alphanumeric Characters. Full·Width Numbers Drives 30 Volt Vacuum Fluorescent Displays Directly. Includes Latch/Decoder ~P Interface or 4·Bit Inpul. Hexadecimal or Code B Format Available. 250 8 Alphanumeric Characters + Decimal PI. can be Daisy Chained or Cascaded. Evaluation Kit Available. 400 lxSO Ch. Dot Matrix LCD Controller' and Row Driver. Use with ICM7281. 400 2x40 Ch. Dot Matrix LCD Controller and Row Driver. Use with ICM7281. Column Driver for use with ICM7280 or ICM7283. 'New Product 1-25 U~UI6 9. MICROCONTROLLERS, MICROPERIPHERALS, MEMORY Microcontrollers, Microperipherals, Memory Microcontrollers 8048/80C48 Family Compatible 6 6 6 6 2X the memory of IM80C48 Same as IM80C48 without ROM Same as IM80C49 without ROM Microprocessor Peripherals - INTERNAL MEMORY fe ". MHz DESCRIPTION (0C) ROM RAM lK x 8 2Kx8 None None 64x8 128 x 8 64 x 8 128 x8 PL, PL, PI.; PL, JL JL JL JL ! DESCRIPTION (MHz) Max PACKAGE loMj!Wo~·.". I'P·Compatible Real·Time Clock, Binary Time Format, Micropower Standby Operation (2,.A @ 2.8V) 4.19 PG,JG IM6402 IM6402·1 IM6402A CMOS' Industry Standard Compatible UART High·Speed Version of IM6402 10VOperating Version of IM6402 1.0 2.0 4.0 PL PL, JL PL,JL' 2.46 3.58 6.0 PL PL, JL PL,JL IM6403 IM6403·1 IM6403A Like Corresponding IM6402 Device but with On·board Crystal , Oscillator and Baud Rate Generator 1< 1_C43~"·' 0 - +70 -40 - +85 CMOS I/O Expander for BOC4B/49 Microcompu.ters TEMPERATURE RANGE (OC) -40 - PG,JG ....... IM4702/12 } See also Display Drivers, Counters, AID, and D/A Converters. fC TYPE TEMPERATURE ' RANGE PACKAGE Baud Rale Generator' 3.58 +85 } -40,... +85 } -40- +85 } 0- +70 PE,JE -55 - -55 - +125 +125 -40- +85 -40- +85 CMOS EPROMs ORGANIZATlONI TYPE MAX ACCESS TIME(ns) Vcc (VI IgcMAX(mA) PERATING Icc MAX (,.AI STANDBY PACKAGE 1024 x 4 IM66531 IM6653M 1M6853-11 IM6853A1 IM6853AM 550 600 450 300 350 5 5 5 10 10 6 6 6 12 12 140 140 140 140 140 JG JG JG JG JG -40 - 512x 8 1M68541 IM6854M IM66M-l I IM6854AI IM6854AM 550 600 450 300 350 5 5 5 10 10 6 6 6 12 12 140 140 140 140 140 JG JG JG JG JG -40 - * New Product 1-26 TEMPERATURE RANGE (OC) +85 +125 -40 - +85 ,..40 - +85 -55 ~ +125 -55 - -55 -40 -40 - -55 - +85 +125 +85 +85 +125 Section 2 - Discretes 2N2607-2N2609 2N2609JAN P-Channel JFET General Purpose Amplifier APPLICATIONS • • • CHIP TOPOGR~PHY Low-Level Choppers Data Switches Commutators ~ Z (lcr2N2807,8) 5510 ~ ! D(2) l ~FUUR ,-_+-:II .0017 ~1)~~~T PIN CONFIGURATION TO·18 .0025 x'OO25 .0035 .0035 1-<0'" := ~~~ z ~ NOTE: SUBSTRATE IS GATE .013 5503 o liE':}:,: S G,C PC000111 f----, .016--1 NOTE: ~~i~ATE CT005811 ABSOLUTE MAXIMUM RATINGS ORDERING INFORMATION* TO-18 WAFER DICE 2N2607/W 2N2607/D 2N2608 2N2608/W 2N2608/D 2N2609 2N2609/W 2N2609/D 2N2607 2N2609JAN - (TA = 25°C unless otherwise noted) Gate-Source Voltage ........... ,.,. , ..... , ................... 30V Gate-Drain Voltage ............. , ... , .... , .. , ... ,............. 30V Gate Current ......................... ,." ....... , ......... ", 50mA Storage Temperature Range ............ -65°C to +200°C Operating Temperature Range ... "",. -55°C to + 175°C Lead Temperature (Soldering. 10sec) ..... , .. , ..... +30QoC Power Dissipation ............. ,."" .. ", ... , ...... " ..... 300mW Derate above 25°C.""."."""."".""". 2mW/oC - 'When ordering waler/dice reler to Section 10, page 10-1, ELECTRICAL CHARACTERISTICS (@ 25°C unless otherwise noted) 2N2607 SYMBOL PARAMETER 2N2609 UNIT MIN MAX MIN MAX MIN MAX vGS - 30V, vos = 0 3 10 30 nA VGS= 5V, VOS=O, TA=l50°C 3 10 30 p.A IGSSR Gate Reverse Current BVGSS Vp Gate·Orain Breakdown Voltage IG = 1p.A, VOS - 0 Gate·Source Pinch·Off Voltage VOS=-5V, 10= -1p.A 30 lOSS Drain Current at Zero Gate Voltage VOs= -5V, VGS=O gl. Small·Signal Common·SourCe Forward Transconductance VOS = -5V, VGS = 0, I = 1kHz CiS&' Common·Source Input CapaCitance VOS = -5V, VGS = lV, 1= lMHz (Note I) Noise Figure (Note 1) VOS· -5V, VGS=O, I = 1kHz NF 2N2608 TEST CONDITIONS I RG= 10MU I RG=lMU NOTE 1: For design relerence only, not 100% tested. 2-1 Note: All typical values have been guaranteed by characteriZation and are not tested: 30 iJ 30 1 4 1 4 1 4 V -0.30 -1.50 -0.90 -4.50 -2 -10 rnA 330 1000 10 2500 JJS 17 30 3 3 pF 3 dB ... 2N'3884.,2N3687 . iz i zft N~Char1nel "JPET ,,' ," Low Noise Amplifier FEATURES APPLICATIONS • • • • • • • Low Noise High Input Impedance Low Capacitance PIN CONFIGURATION Low Level Choppers Data Switches Multiplexers Low Noise Amplifiers CHIP TOPOGRAPHY 5010 TO-72 0(2) .0013 FULLR .0017 ~1) ~T • .0025 x .0025 .0035 ~ ,0035 :=~ -.l.NOTE: SUBSTRATE IS GATE .013 PC000211 CTOOO321 ORDERING INFORM'ATION* TO-72 ,WAFER DICE 2N3684 2N3684/W 2N3684/D 2N3685 2N3685/W 2N3685/D 2N3686 2N3686/W 2N3686/D 2N3687 2N3687/W 2N36871D ABSOLUTE MAXIMUM RATINGS (TA = 25°C unless otherwise noted) Gate-Source or Gate-Drain Voltage .................... -sOV Gate Current , ................................................ 50mA Storage Temperature Range ............ -65°C to +200°C Operating Temperature Range ......... -55°C to + 175°C Lead Temperature (Soidering, 10sec) .............. + 300°C Power Dissipation .......................................... 300mW Derate above 25°C .............. ; ........... 2.0mW I"C 'When ordering wafer/dice refer to Section 10, page 10-1. ELECTRICAL CHARACTERISTICS (2S0C unless otherwise noted) 2N3684 SYMBOL PARAMETER BVGSS Gate to Source Breakdown Voltage Vos = 0, IG = 1.0pA -50 Vp Pinch-Off Voltage VOS = 20V, 10 = O.OOlpA -2.0 IGSS Total,'Gate Leakage Current IVlsl Forward Transadmitlance Gos Common Source Output Conductance Ciss Common Source Input CapaCitance MAX MIN -5.0 -1.0 Vos =20V, VGS = 0 f= 1kHz MIN _3.5 -0.6 2N3687 MAX MIN -2.0 -0.3 -50 -0.1 -0,5 YGS = 0, VOS = 20V MAX -50 -0.1 ' VGS = -30V, VOS = 0 I,TA = 150'C Saturation CuO'ent, Drain·te-Source 2N3686 UNIT MIN "loss 2N3685 TEST CONDITIONS -50 -0.1 -0,5 MAX V -1.2 -0.1 -0.5 nA -0.5 pA 2:5 7.5 1.0 3.0 0.4 1.2 0.1 0.5 mA 2000 3000 1500 2500 1000 ,2000 500 1500 iJS 50 25 10 5 iJS 4.0 4.0' 4.0 4.0 pF VOS = 20V, VGS = 0 f=IMHz (Note 1) 1.2 1.2 1.2 1.2 pF ohms Crss Common Source Short Circuit Reverse Transfer Capacitance rOS(on) On Resistance VOS = 0, VGS = 0 600 800 1200 2400 NF Noise Figure (Note 1) f = 100Hz, RG = 10M(/. NBW = 6Hz, VOS = 10V, VGS=OV 0.5 0.5 0.5 0.5 NOTE 1: For design reference only, not 100% tested. 2-2 Note: All typical values have been guaranteed by characterization, and are not tested. dB , 2N3810/A, 2N3811/A Dual Matched PNP General Purpose Amplifier PIN CONFIGURATION ~ Z CHIP TOPOGRAPHY Co» CD ...... 4501 T0-78 ~ f-033-1 ~ .023 I ......L EMITIEA BASE c, B, BASE .0030 )( .0040 COLLECTOR .0044 CTOOO4tl ORDERING INFORMATION* 2N3810 WAFER ABSOLUTE MAXIMUM RATINGS (TA = 25°C unless otherwise noted) Emitter-Base Voltage (Note 1) ............................. ~5V Collector-Base or Collector-Emitter Voltage (Note 1) .................................. , ................. -60V Collector Current (Note 1) ................................ 50mA Storage Temperature Range ....... , .... -'65°C to + 175°C Operating Temperature Range ......... -55°C to + 175°C Lead Temperature (Soldering, 10sec) .............. + 300°C ONE SIDE BOTH SIDES DICE 2N3810/W 2N3810/D 2N3811/W 2N3811/D 2N3810A 2N3811 .0040 TYP 2 PLACES PCOOO31 I TO-78 .0030 TYP 2 PLACES .0035 x .0034 .0045 E, E"'TTER .0029 ,.JlO~ .0039 .0039 TVP 2 PLACES 2N3811A 'When ordering waferI dice refer to Section 10, page 10-1. Power Dissipation .................... . Derate above 25°C .............. .. 500mW 3.3mW/oC 600mW 4.0mW/oC ELECTRICAL CHARACTERISTICS TEST CONDITIONS: 25°C Ambient Temperature unless otherwise noted SYMBOL PARAMETER 2N3810/A 2N3811/A MIN MIN UNIT TEST CONDITIONS MAX BVceo Collector-Base Breakdown Voltage Ic = -10pA, IE = 0 -60 -60 BVCEO Collector-Emitter Breakdown Voltage (Note 2) IC = -10mA, 18 = 0 -60 -60 BVEeO Emitter-Base Breakdown Voltage IE = -10pA, IC = 0 -5 -5 lC(off) Collector Cutoff Current ITA=+l50'C IE(off) hFE Emitter Cutoff Current Vce = -50V, IE = 0 Static Forward Current VCE= -5V Transfer Ratio ITA = -55'C VeE(sa!) Base-Emitter Saturation Voltage VCE(sa!) Collector-Emitter Saturation Voltage IC = -10pA 100 IC= -l00pA to -lmA 150 Ic = 10mA (Note 2) 125 IC = 100pA 75 V -10 -10 nA -10 -10 pA -20 nA -20 VeE = 4V, Ic = 0 MAX 225 450 300 900 250 150 VCE = -5V le= -10pA -0.7 IC= -100pA Ie = -100pA -O.B -O.B -0.2 -0.2 Ie = -10pA, Ic = -100pA (Note 2) le= -100pA, IC= -lmA hie Input Impedance (Note 4) VCE = -10V tit. Forward Current Transfer Ratio (Note 4) Ic= -lmA hre Reverse Voltage Transfer Ratio (Note 4) f= 1kHz hoe Output Admittance (Note 4) -0.7 -0.25 -0.25 3 30 10 40 150 600 300 900 0.25 5 2-3 Note: All typical values have been guaranteed by characterization and are not tested. 60 V kn 0.25 5 60 ,",S 2 :~ aN3,81o/A,:2N38111A' =ELECTRICAL I ,-.. C o = I CHARACTERISTICS (CONT.) 2N3810/A ,"A~AMETER SYMBOL 2N3811/A UNIT TEST CONDITIONS MIN MAX MIN MAX Ihlel Magnitude 01 small signal Ilc= -lmA, f= looMHz VCE= -5V current gain (Note 4) I Ie = - SOOM, Cobo Output Capacitance (Note 4) VCS = -SV, IE * 0, f= lMHz Cibo Input Capacitance (Note 4) VCS hFE1/hFE2 DC Current Gain Ratio IVSE1-VSE2 I Base-Emitter Voltage Differential IA devices = -O.SV, f = 30MHz VCE = '-SV, IC - loollA NF Base-Emitter Voltage Differential Gradienl I A devices Spot Noise Figure 5 1 4 4 8 0.9 1.0 0.9 8 1.0 0.95 1.0 0.95 1.0 -S -2.5 -2.5 -3 -3 ,-1.5 -l.S 10 5 10 5 VCE - -10V, Ic = -loollA, RG = 3ka, f - 100Hz, Noise Bandwidth - 20Hz 7 4 VCE - -10V, Ic = -1001lA, RG = 3Ka, f = 1kHz, Noise Bandwidth = 200kHz 3 1.5 VCE - -10V, Ic = -1001lA, RG - 3ka 2,5 1.5 3.5 2.5 VCE = -SV I A devices ,n 1 -S IC= loollA .6.VSE1- VSE2 5 1 Ie = 0, f = 1MHz IC = 10pA to, lOrnA I A devices 1 VeE = -5, Ic = 100"" f = 10kHz, Noise Bandwidth - 2kHz (Note 4) VCE = -10V, Ic = -1001lA, RG = 3ka, Noise Bandwidth = 15.7kHz (Note 3) NOTES: 1. Per transIstor. 2. Pulse,width" 3OOjAS, duty cycle" 2.0%. 3.. 3dB down at 10Hz and 10kHz: 4, For design reference only, not 100% tested. 2-4 Note: All typical values have ~n guaranteed by characterization and are not tested. ' pF mV pNrc dB 2N3821, 2N3822, JAN, JTX, JTXV N-Channel JFET High Frequency Amplifier FEATURES • • CHIP TOPOGRAPHY Low Capacitance Up to 6500l-ls Transconductance 2N3821 5010 j PIN CONFIGURATION .0013 FULL R .0011 ~1),,~~T T0-72 .0025 x .0025 00350035 1-- ~~~ ::: ~ NOTE: SUBSTRATE IS GATE .013 5003 2N3822 o T~._._ 1 _ G,C CTOO6501 .0025 ORDERING INFORMATION* TO·72 WAFER 1--.016 4 .0025 NOTE: SUBSTRATE IS GATE CTOOO521 DICE 2N3821 2N3821/W 2N3821/0 ABSOLUTE MAXIMUM RATINGS 2N3822 2N3822/W 2N3822/0 (TA = 25'C unless otherwise noted) Gate-Source Voltage ....................................... -50V Gate-Drain Voltage ......................................... -50V Gate Current ................................................ , 10mA Storage Temperature Range ............ -65'C to + 200'C Operating Temperature Range ......... -55'C to + 175'C Lead Temperature (Soldering. 10sec) .............. + 300'C Power Dissipation .. , ............... , .. , ...... ", ... " ..... 300mW Derate above 25·C .......................... 2,OmW /"C 'When ordering waferI dice refer to Section 10, page 10-1. tadd JAN, JTX, JTXV to basic part number to specify these devices. ELECTRICAL CHARACTERISTICS (25'C unless otherwise noted) 2N3821 SYMBOL PARAMETER UNIT MIN Gate Reverse Current VGS = -30V, vos = 0 BVGSS ITA=150·C Gate-Source Breakdown Voltage Gate-Source Cutoff Voltage IG=-IjJ.A, VOs-O VOS = 15V, 10 = 0.5nA -50 VGS(off) VOS = 15V, 10 = 50jJ.A -0.5 IGSS VGS Gate-Source Voltage losS Saturation Drain Current (Note I) 2N3822 TEST CONDITIONS MAX 2-5 Note: All typical values have been guaranteed by characterization. and are not tested. 0.5 MAX -0.1 -0.1 -O.t -0.1 nA jJ.A -50 -4 -2 Vos = 15V, 10 = 200jJ.A Vos = 15V, VGS = 0 MIN 2.5 -6 V -I -4 2 10 mA 2Na821,'2N;t8~2, ~AN, JTX, JTXV ,', 2N3821 SYMBOL PARAMETER MIN MAX 4500 3000 6500 I-1kHz 1500 IYlsl Common-Source Forward Transadmittance (Note 2) 1= 100MHz 1500 gos Common-Source Output Conductance (Note 1) C;•• ' Common-Source Input Capacitance (Note 2) Crss Common-Source Reverse Transler Capacitance (Note 2) NF Noise Figure (Note 2) NOTES: Vos s 15V, VGS = 0 1= 1kHz 3000 10 20 6 ,'6 3 3 5 5 dB 200 200 nV -y11z 1. These parameters are measured dunng a 2ms Interval lOOms after DC power IS applied. 2. For design reference only, not 100% tested. 2-6 pF 1= 10Hz VOS = 15V, VGS = 0, BW= 5Hz Note: All typical values have been guaranteed by characterization and 'are not tested. " /.IS 1-1MHz VOS - f5V, VGS = 0, Rgen - 1meg, BW = 5Hz " UNIT, MAX Common-Source Forward Transconductance (Note 1) Equivalent Input Noise Voltage (Npte 2) " MIN ~ en 2M3822 TEST CONDITIONS 2N3823,JAN, JTX, JTXV N-Channel JFET High Frequency Amplifier FEATURES • • • CHIP TOPOGRAPHY Low Noise Low Capacitance Transductance Up to 6500MS .0035 FUlLR 5000 .0025 ~- r T \, PIN CONFIGURATION ~~~~ T .017 ~ TO-72 ,0035 x .0035 :0025 -:oo2s .0066 NOTE: SUBSTRATE ~0062~ IS GATE .017 CT00061I ABSOLUTE MAXIMUM RATINGS (TA = 25°C unless otherwise noted) Gate-Source or Gate-Drain Voltage .................... -30V . Gate Current ................................................. 10mA Storage Temperature Range ............ -65°C to +200°C Operating Temperature Range ......... -55°C to + 175°C Lead Temperature (Soldering, 10sec) .............. + 300°C Power Dissipation ......................................... 300mW Derate above 25°C .......................... 2.0mW 1°C PCOOO201 ORDERING INFORMATION* 'When ordering wafer/dice refer to Section 10, page 10-1. tadd JAN,JTX,JTXV to basic part number to specify these devices ELECTRICAL CHARACTERISTICS SYMBOL (25°C unless otherwise noted) PARAMETER TEST CONDITIONS IGSS Gate Reverse Current BVGSS Gate-Source Breakdown Voltage IG VGS(off) Gate-Source Cutoff Voltage VOS = 15V, 10 = 0.5nA VGS Gate,Source Voltage VOS = 15V, 10 = 400pA VOS I TA=150·C MIN VGS = -20V, Vos = 0 = lpA, UNIT -0.5 nA -0.5 pA -8 V -30 VOS = 0 = 15V, MAX -t.O =0 -7.5 loSS Saturation Drain .Current 4 20 Sts Common-Source Forward Transconductance (Note 1) f= 1kHz 3,500 6,500 IVlsl Common-Source Forward Transadmittance (Note 2) f = 100MHz 3,200 gos Common-Source Output Transconductance (Note 1) f= 1kHz gis. Common-Source Input Conductance (Note 2) goss Common-Source Output Conductance (Note 2) C;ss Common-Source Input CapaCitance (Note 2) Crss Common-Source Reverse Transfer Capacitance (Note 2) NF Noise Figure (Note 2) NOTES: VGS 35 rnA p.s 800 VOS = 15V, VGS = 0 f = 200MHz 200 6 pF f=IMHz 2 VOS = 15V, VGS RG= lk!1 =0 f= 100MHz 1. These parameters are measured dunng a 2ms ,nterval lOOms after DC power ,s applied. 2. For design reference only, not 100% tested. 2-7 Note: All typical values have been guaranteed by characterization and are not tested. 2.5 dB ! 2,N3824, N Switch " -; N~hannel JFET FEATURES • rds < 250 Ohms • 10(Off) CHIP TOPOGRAPHY 5003 < 0.1nA PIN CONFIGURATION ABSOLUTE MAXIMUM RATINGS (TA = 25°C unless otherwise noted) Gate-Source or Gate-Drain Voltage .................... - 50V Gate Current ................................................. 10mA Storage Temperature Range ............ -65°C to +200°C Operating Temperature Range ......... -55°C to + 175°C Load Temperature (Soldering. 10sec) .............. + 300°C Power Dissipation ......................................... 300mW Derate above 25°C ...................... ; ... 2.0mW 1°C PC000201 ORDERING INFORMATION* 'When ordering waferI dice refer, to Section 10. page 10-1. ELECTRICAL CHARACTERISTICS TEST CONDITIONS' 25°C unless otherwise noted LIMITS SYMBOL PARAMETER " TEST CONDITIONS ,. I IGSS Gate Reverse, Current, BVGSS Gate-Source Breakdown Voltage 10(af!) Drain Cutoff Current TA = 150·C VGS = -30V. VOS = 0 TA=150·C VOS = 1.5V. VGS = ,-BV rds(on) Drain-Source ON Resistance VGS=OV.lo=O CiSS Common-Source Input Capacitance (Note 1) VOS = 15V. VGS = 0 Crss Commol)-Source Reverse (Note 1) f= 1kHz VGS = -BV. VOS = 0 NOTE 1: For design reference only, not 100% tested. 2~ Note: All typical values have been guaranteed by characterization and are nol tested. -0.1 nA -0.1 IJ.A V " 0.1 nA 0.1 IJ.A 250 S1 6 f=lMfo!,z Capacitance MAX -50 IG= llJ.A. VOs=O I Tran~9r UNIT MIN pF " 3 2N3921, 2N3922 Dual N-Channel JFET General Purpose Amplifier FEATURES • • • CHIP TOPOGRAPHY Low Drain Current High Output Impedance Matched VGS. AVGS. and gfs 6037 1+--.025--1 PIN CONFIGURATION TO-71 s,- .!~itll;; t D'.~S. ,COPR __ .. G, ALL BONO PADS ARE 4 x '" MIL. CTOOO71! ABSOLUTE MAXIMUM RATINGS (TA = 2S0C unless otherwise noted) Gate-Source or Gate-Drain Voltage (Note 1) ........ -SOV Gate Current (Note 1) ..................................... SOmA Storage Temperature Range ............ -6SoC to +200°C Operating Temperature Range ......... -SSoC to +200°C Load Temperature (Soldering, 10see) .............. + 300°C Total Power Dissipation ................................. 300mW Derate above 2SoC .......................... 1.7mW/oC PC00051I ORDERING INFORMATION* TO·71 WAFER DICE 2N3921 2N3921/W 2N3921/D 2N3922 2N3922/W 2N3922/D 'When ordering wafer/dice refer to Section 10, page 10--1. ELECTRICAL CHARACTERISTICS TEST CONDITIONS: (2S0C unless otherwise noted) PARAMETER SYMBOL TEST CONDITIONS I IGSS Gate Reverse Current BVOGO Drain-Gate Breakdown Voltage 10=lpA,ls=0 TA -100·C MIN VGS = -30V, VOS = 0 VGS(olf) Gate·Source Cutoff Voltage VOS = 10V, 10 = InA VGS Gate·Source Voltage VOS = 10V, 10 = 100pA IG Gate Operating Current 10S$ Saturation Drain Current (Note 1) gfs Common·Source Forward Transconductance (Note 2) 90S Common-Source Output Conductance Ciss Common·Source Input CapaCitance (Note 3) Crss Common·Source Reverse Transfer CapaCitance (Note 3) 9fs Common-Source Forward Transconductance gas. Common·Source Output Conductance NF Spot Noise Figure (Note 3) MAX UNIT -1 nA -1 pA -3 V 50 -0.2 -2.7 -250 I TA = 100·C VOG = 10V, 10 = 700pA Vos -10V, VGS - 0 nA 1 10 rnA 1500 7500 f=lkHz VOS = 10V, pA -25 35 VGS = 0 !,S 18 pF f-1MHz 6 1500 VOG = 10V, 10 = 700pA f= 1kHz VOS = 10V, VGS = 0 f= 1kHz, RG = lmeg 2-9 Note: All typical values have been guaranteed by characterization 'and are not tested. 20 !,S 2 dB ·'i 2,N;J921 •.. 2N392~ ; MATCHING CHARACTERISTICS' tt ;:=z tt . .D~DIL . 2N3921 SYMBOL PARAMETER UNIT MIN IVGS1- VGS21 Differential Gate-Source Voltage AlvGS1- VGS2 1 Gate~Source AT 91.1/9182 Differential Voltage Change with Temperature 2N3922 TEST CONDITIONS MAX MIN 5 VOG= 10V. 10 = 700p.A TA=O'C Ts = 100'C f-lkHz Transconductance Ratio NOTES: 1. Per transistor. 2. Pulse test duration =,.2 ms. 3. For design reference ~nly, not 100% tested. 2-10 Note: All typical values have been guaranteed by characterization and are not tested. 10 0.95 1.0 0.95 MAX 5 mV 25 /lVrC 1.0 2N3954-2N3958 2N3954A/2N3955A Dual N-Channel JFET G.eneral Purpose Amplifier FEATURES • • • • • CHIP TOPOGRAPHY Low Offset and Drift Low Capacitance Low Noise Superior Tracking Ability Low Output Conductance N Z 6037 W G ! 1·- -.025,,---1 PIN CONFIGURATION ii zW :_'F.l TO-71 ..... _ G UI I: t G. 'ALL BOND PADS ARE" II: " MIl. CTOO0811 ABSOLUTE MAXIMUM RATINGS (TA = 25°C unless otherwise noted) Gate-Drain or Gate-Source Voltage .................... -50V Gate-to-Gate Voltage ................... : .................... ±50V Gate Current ..................................,' .............. 50mA Total Device Dissipation 85°C (Each Side) ........ 250mW Case Temperature (Both Sides) ........ 500mW Power Derating (Each Side) ...................... 2.8SmWI"C (Both Sides) ....................... 4.3mW I"C Storage Temperature Range ............ -S5°C to +200°C Lead Temperature (1/1S" from case for 10 seconds) .......................................... 300°C PC000501 ORDERING INFORMATION* TO-71 2N3954 2N3954/W 2N3954A 2N3954A/W 2N3954A1D 2N3955 2N3955/W 2N3955/D 2N3955A 2N3955A/W 2N3955A1D 2N3956 2N3956/W 2N3956/D WAFER DICE 2N3954/D 2N3957 2N3957/W 2N39571D 2N3958 2N3958/W 2N3958/D 'When ordering wafer/dice refer to Section 10, page 10-1. ELECTRICAL CHARACTERISTICS SYMBOL PARAMETER (25°C unless otherwise noted) TEST CONDITIONS 2N3954 2N3954A 2N3955 2N3955A 2N3956 2N3957 2N3958 UNIT MIN MAX MIN MAX MIN MAX MIN MAX MIN MAX MIN MAX MIN MAX Gate Reverse Current IGSS BVGSS VGS = -30V, I TA = 125°C Vos=O Gate-Source Vos-O Breakdown Voltage IG = -lIlA -10 -10 -lOi -IOi -10e -10 -10 pA -50 -50 -SOi -50 -5OC -50 -50 nA -50 -50 -50 -50 -50 -50 -50 VGS(Off) Gate-Source Cutoff Voltage Vos = 20V, 10= lnA VGS{o Gate-Source Forward Voltage Vos=O IG=lrnA VGS Gate-Source Voltage Vos = 20V Gate Operating Current Vos = 20V, -50 -50 -50 -50 -50 -50 -50 ITA = 125°C 10 = 2001lA -25 -25C -25C -25 -25 -25 -25C nA 5.0 rnA IG loss Saturation Drain Current -1.0 -4.5 -1.0 -4.5 -1.0 -4.5 -1.0 -4.5 -1.0 -4.5 -1.0 -4.5 -1.0 -4.5 V 110 = 501lA Vos = 20V, VGs=O 110 = 2001lA 2.0 2.0 2.0 2.0 2.0 2.0 2.0 _4.2 -4.2 -4.2 -4.2 -4.2 -4.2 -4.2 -0.5 -4.0 -0.5 -4.0 -0.5 -4.0 -0.4 -4.0 -0.5 -4.0 -0.5 -4.0 -0.5 -4.0 0.5 5.0 0.5 2-11 Note: All typical values have been guaranteed by characterization and are not tested. 5.0 0.5 5.0 0.5 5.0 0.5 5.0 0.5 5.0 0.5 pA 2 j 2Na'5"'2",a9'~ ~":I954A/2N3955A . 'f') ELECTRICAL .CHARACTERISTICS (CONT.) :..... I C J • I :IG» ; i f') z C\I SYMBOL ' . ' PARAMETER TEST CONDITIONS Common-Source Forward ~ Tranaconductance g"" Coinmon-Source' OutPut Conductance q. Common-Source Input Capacitance (Note 2) C... Common Source Reverse Transfer Capscitance (Note 2) Cdgo Drain-Gate Capscitance . (Note 2) NF Common-Source Spot .' Noise Figure . (Note 2) lim -la2 1 Differential Gate C~rreni loss,IIoss2 Drain Saturation Current Ratio (Note 2) Vos = 2OV, Vas=O 20V, 10 - 200pA Vos=20V VGS.=O Gate-Source Differe.ntial aT g';',Ig.", Voltage Change With Temperature Transconductance Ratio Vas - 20V, 10= 200pA 2N3955A· 2N.395& 2N3957 2N3958 1000 1000 1000 1000 1000 1000 UNIT 1000 I'S 35 35 35 35 35 35 35. 4.0 4.0 4.0 4.0 4.0 4.0 4.0 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.5 1.5 1.5 1.5 1.5· 1.5 1.5 I = 100Hz 0.5 0.5 0.5 0.5 0.5 0.5 0.5 dB T -125'C 10 10 10 10 10 10 10 nA pF 0.95 1.0 0.95 1.0 0.95 1.0 0.95 1.0 0.95 1.0 0.90 1.0 0.85 1.0 IVaS,-vGS2 1 Differential Gate-Source Voltage alvGS,-v... 1 2N3955 1-200MHz 1= 1kHz VDG= 10V, 1.-0 Vos - 2N3954A I-1kHz l=lMHz Vos-20V V... -O . Ra=lOMf! 2N3954 MIN MAX MIN MAX MIN MAX MIN MAX MIN MAX MIN MAX MIN MAX 1000 3000 1000 3000 1000 3000 1000 3000 1000 3000 1000 3000 tOOO 3000 5.0 5.0 10.0 5.0 15 20 25 T=2S'C to -55'C 0.8 0.4 2.0 1.2 4.0 6.0 8.0 T-25'Cto 125'C I-1kHz 1.0 0.5 2.5 1.5 5.0 7.5 10.0 0.97 1.0 0.97 1.0 0.97 NOTES: 1. Per Transistor. . 2. For design reference only, not 100% tested, 2-12 Note: All typiCal values have been guaranteed by characterization and !!fe not tested. 1.0 0.95 1.0 0.95 1.0 0.90 1.0 0.85 1.0 mV 2N3970-2N3972 N-Channel JFET Switch FEATURES CHIP TOPOGRAPHY • • Low rDS(on) ID(OFF) < 250pA • Fast Switching SOOl .00135 FULL RADIUS .00l75 (DRAIN) PIN CONFIGURATION TO·18 x I--- --I .016 .OO3~ .0026 (SOURCE) CT000911 ABSOLUTE MAXIMUM RATINGS (TA = 25°C unless otherwise noted) Gate-Source or Gate-Drain Voltage .................... -40V Gate Current ................................................. 50mA Storage Temperature Range ............ -65°C to +200°C Operating Temperature Range ......... -55°C to +200°C Lead Temperature (Soldering. 10sec) .............. + 300°C Power Dissipation ............................................ 1.SW Derate above 25°C ........................... 10mW/oC o PC000611 ORDERING INFORMATION* TQ-18 WAFER DICE 2N3970 2N3970/W 2N3970/D 2N3971 2N3971/W 2N3971 10 2N3972 2N3972/W 2N3972/D ·When ordering wafer I dice refer to Section 10·, page 10-1. ELECTRICAL CHARACTERISTICS TEST CONDITIONS: 25°C unless otherwise noted 2N3970 SYMBOL PARAMETER 2N3971 2N3972 TEST CONDITIONS UNIT MIN MAX MIN MAX MIN MAX BVGSS Gate Reverse Breakdown Voltage 1000 Drain Reverse Current 10(0f!) Drain Cutoff Current ITA ~ 150·C iTA = 150·C VOG = 20V, IS = 0 VOG = 20V, VGS = -12V VGS(Of!) Gate·Source Cutoff Voltage Vos = 20V, 10 = lnA loSS Saturation Drain Current (Pulse width 300l'S, duty cycle::; 3%) VOS = 2OV, VGS = 0 VOS(on) Drain·Source ON Voltage VGS=O -40 -40 IG = -lIlA, VOS = 0 -40 250 2SO pA 500 500 SOO nA 250 250 2SO pA 500 500 nA -4 -10 -2 -5 -0.5 500 -3 50 150 25 75 5 30 10= 5mA 1.5 30 60 100 30 60 100 25 25 25 6 6 6 RL 10 15 40 450.11 10 15 40 30 60 100 Static Drain·Source ON Resistance VGS=O, 10= lmA rels(on) Drain·Source ON Resistance VGS=O, 10=0 Ciss Common·Source Input Capacitance VOS = 20V, VGS = 0 (Note 1) Cr•• Common·Source Reverse Transfer Capacitance VOS=O, VGS= -12V (Note 1) Id Tum-On Delay Time (Note 1) 1r loft Rise Time (Note 1) Voo = 10V, VGS(on) = 0 10(on) VGS(ofI) 2N3970 20mA -10V 2N3971 2N3972 8SOn 1.6Kn f= 1kHz f=lMHz - 5V - 3V NOTE 1: For design reference only, not 100% tested. 2-13 Note: All typical values have been guaranteed by characterization and are not tested. V 1 rOS(on) 10mA 5mA V rnA 2 10= 10mA lo=20mA Turn-Off Time (Note 1) V 250 .11 pF ns ·..0)~ 2N3.97Q;'2N3972 . ". " ..CO) .Z .' EL.:ECTRICAL tHARACTERISTICS(CONT.) ,: &\I ~ ... VDD = • R _ VDD-VDSlONI Z l' .&\1 D VIN 0 - -......- Ra L - IDlON) ~VOUT 1_-, .... ; 500 TCO0551I 2-14 Note: All typical '(alues have been guaranteed by characterization and are. not testeP.. .U~UIl.I 2N3993, 2N3994 P-Channel JFET General Purpose AmplifierISwitch .~ ~ z FEATURES APPLICATIONS • • Used in high-speed commutator and chopper applications. Also ideal for "Virtual Gnd" switching; needs no ext. translator circuit to switch ±10 VAC. Can be driven direct from TTL or CMOS logic. Low rOS(on) High Yfs/Ciss Ratio (High-Frequency Figure-ofMerit) PIN CONFIGURATION = : CHIP TOPOGRAPHY 5508 TO-72 ~Jliil~'-' .0025 .0027 .016 .0037 x .0035 0 .0027 .0025 = NOTE: SUBSTRATE IS GATE CTOO1011 PCO0071I ABSOLUTE MAXIMUM RATINGS ORDERING INFORMATION* TO-72 WAFER 2N3993 2N3993/W 2N3993/D 2N3994 2N3994/W 2N3994/D 'When ordering wafer/dice refer to Section 10, page 10-1. ELECTRICAL CHARACTERISTICS SYMBOL BVGSS lOGO loSS 10(of!) @ 25°C free-air temperature (unless otherwise noted) TEST CONDITIONS PARAMETER Gate-Source Breakdown Voltage Drain Reverse Current Zero-Gate-Voltage Drain Current Drain Cutoff Current n 6r~i~-~!:~ ~:::::e ~~~~~i.~~ ~.~~~.~~ .. .................... -25V Drain-Source Voltage ....................................... -25V ~ Continuous Forward Gate Current .................... -1 OmA Storage Temperature Range ............ -65°C to + 200°C Operating Temperature Range ......... -55°C to + 175°C Lead Temperature (Soldering. 10sec) .............. + 300°C Power Dissipation ......................................... 300mW Derate above 25°C .......................... 2.0mWI"C DICE (Note 3) 2N3993 2N3994 UNIT MIN MAX MIN MAX IG = lIlA. VOS=O VOG = -15V, 10=0 -1.2 -1.2 nA Voo = -15V, 1.-0, TA = 150'C -1.2 -1.2 IlA VOS= -10V, VGS= 0, (See Note 1) Vos= -10V, VGs=6V VOS= -10V, VGS= 6V, TA = 150'C VOS= -10V. VGS -10V -1.2 VOS= -10V, VGs=10V, TA = 150'C -1 VGS(of!) Gate-Source Voltage VOS= -IOV, 10 = -lIlA rdo(on) Small-Signal Drain-Source On-State Resistance VGS-O, f= 1kHz 10- 0• iYf. i Small-Signal Common-Source Forward Transfer Admittance Vos= -IOV, f= 1kHz, VGS=O, (See Note 1) Ciss Common-Source Short-Circuit Input Capacitance (Note 4) VOS= -10V, f= IMHz, VGS=O, (See Note 2) 2-15 Note: All typical values have been guaranteed by characterization and are not tested. 25 25 -10 4 -2 9.5 12 16 mA -1.2 nA -1 IlA nA IlA 1 150 6 V 4 5.5 V 300 n 10 /.IS 16 pF : 2"3,993,·2N3994 iN :o ELECTRICAL CHARACTERISTICS (CONT.) SYMBOL .. '" Z N TEST CONDITIONS (Note 3) PARAMETER Cr•• Common-Source Short-Circuit .Reve (VSE1- VSE2)IIL>T Base Emitter Voltage Differential Change with Temperature 3 S 10 IlVI"C 1L>(lel- ls2)I/L>T Base Current Differential Change with Temperature 0.3 0.5 1 nAI"C 0.9 le= lallA. VeE =SV TA = -S5°C to + 12SoC 1 0.85 1 0.8 1 SMALL SIGNAL CHARACTERISTICS SYMBOL PARAMETER hlb Input Resistance hrb Voltage Feedback Ratio hie Small Signal Current Gain hob Output Conductance hie Input Resistance' hre Voltage Feedback .Ratio hoe Output Conductance NOTES: 1. 2. 3. 4. TYPICAL VALUE TEST CONDITIONS 28 Ie ~1 mAo Ves = 5V (Note 4) 43 UNIT n x 10- 3 250 Ie = lmA. VeE = SV (Note 4) ., 60 /lS 9.6 kn 42 12 x 10-~ IlS Per transistor. The reverse base-emitter voltage must never exceed 7.0 volts and the reverse base-emitter current must never exceed 101lA. The lowest 01 two hFE readings is taken as hFEl lor purposes 01 this ratio. For design relerence only. not 100% tested. 2-18 Note: All typical values have been guaranteed by characterization and are not tested. ITE4091-ITE4093 2N4091-2N4093 JAN, JTXV, JANTX· N-Channel JFET Switch FEATURES • • • CHIP TOPOGRAPHY Low rDS(on) ID(OFF) < 100pA (JAN TX Types) Fast Switching 5001 PIN CONFIGURATIONS TO-18 TO·92 x .0036 .0028 (SOURCE) CTO05511 ABSOLUTE MAXIMUM RATINGS G,C s o 0 (TA = 25°C unless otherwise noted) Gate-Source or Gate-Drain Voltage .. , .... , ........... , -40V Gate Current, ............ ,"',." ........... ,", .. , ..... , ... , 10mA Storage Temperature Range ............ -65°C to +200°C Operating Temperature Range ......... -55°C to +200°C Lead Temperature (Soldering, 10sec) .............. + 300°C TO-18 T0-92 G PCOO3711 ORDERING INFORMATION* TO-92 TO-1St WAFER DICE ITE 4091 2N4091 2N4091/W 2N4091/0 ITE 4092 2N4092 2N4092/W 2N4092/0 ITE 4093 2N4093 2N4093/W 2N4093/0 Power Dissipation".""""""".". Derate above 25°C"."""""." Plastic Storage .............................. " .... -55°C to + 150°C Operating ............................ " .... - 55°C to + 135°C tadd JANTX to these part numbers if JANTX processing is desired, 'When ordering wafer/dice refer to Section 10, page 10-1, ELECTRICAL CHARACTERISTICS SYMBOL (25°C unless otherwise noted) PARAMETER TEST CONDITIONS 2NIITE 4091 2NIITE 4092 MIN MAX MIN BVGSS Gate·Source Breakdown Voltage IG = -ljJA, VOS = 0 (Not JANTX Specified) 200 ITA = 150'C Voo = 20V, IS = 0 Gate Reverse Current IGSS 10(OFF) I(JANTX, ITE devices only) TA = 150'C JAN, JTXV; TA = 25'C Drain Cutoff Current JAN, JTXV, TA = 150'C Vp loSS VGS = -20V, VOS = 0 ~ VOS= 20V VGS - -12V(4091) VGS = -8V(4092) VGS = -6V(4093) ~ Gate·Source Pinch·Off Voltage VOS - 20V, 10 - lnA Drain Current at Zero Gate Voltage VOS - 20V, VGS - 0, Pulse Test Duraton = 2ms -5 -40 200 Drain·Source ON Voltage VGS=O 2-19 Note: All typical values have been guaranteed by characterization and are not tested. V 200 pA 400 400 400 nA -100 -100 pA -200 -200 -200 nA 100 100 100 200 200 200 200 200 200 400 400 400 -10 30 -2 -7 15 -1 -5 pA nA V mA 8 0.2 10 = 4mA 10 = 6.6mA UNIT -100 10 = 2.5mA VOS(ON) 2NIITE 4093 MAX MIN MAX -40 -40 Drain Reverse Current 1000 360mW 3,3mWrC 1,8W 10mWrC 0.2 0.2 V 2 .O~Dll ITE4091-ITE4093 . 2N.4091-2N4093 JAN, JTXV, JANTX* ELECTRICAL CHARACTERISTICS (CONT.) SYMBOL PARAMETER TEST CONDITIONS 2N/ITE .2NIITE 2""TE 40111 4092 4093 MIN UNIT MAX MIN MAX MIN MAX rOS(on) Static Drain-Source ON Resislance VGS=O,10-1mA 30 50 80 rds(on) Sialic Drain Source ON Resistance Vas - 0, 10 = 0, f= 1kHz 30 50 80 Ciss Common-Source Inpul Capacitance Vos-20V, VGS-O, f-1MHz 16 . 16 16 IJANTX Only (Nole 1) 5 5 5 Crss Common-Source Reverse Transfer. Capacitance VOs=O, Vas = -20V, f=1MHz (Nole 1) 5 5 5 Id(ON) Turn-ON D.elay TilTle (Nole 1) Ir Rise ·Time (Nol", 1) loft Turn-OFF Time (Note 1) VOO = 4091 4092 4093 3~(O~ao(o~~;! "8lrmA ~ RL 90% V'N V".(ON) RG 100n 220n 390n IO(ON) -15mA -7mA -3mA : ~.~~ _ 6V 10% t, 90% 10% 510 t-- -12V -7V -5V WF00011I 7.5K. v > t.2K L-...,.. SAMPLING ~ ~-SCOPE- : RISE TIME 0.4 ns INPUT RESISTANCE 10 MHz INPUT CAPACITANCE 1.5 pF \ __ ~ Ro v ;. > ;> 1 SAMPLING SCOPE 12K ~ V'N~ OUTPUT VIN ? 510 . 510 ":" TCOO171 I TYPICAL PERFORMANCE CHARACTERISTICS Vp vs loss Vp VB rOS(ON) ... 7.0 U '.0 7.G 4.0 ~ > '.0 2.0 ...t.o 7.0 4.0 '\ \. ! 'los = 0.1'1 'los = 0 1\ -'vVas Ol ""= 020V 2.0 ... ..., 4.0 - 3.0 II 1.0 0.& 0.. 0.. t.OOO '0 30 2-37 iPUlood) ... ,.0 . , OPOO1211 Note: All typical values have been guaranteed by characterization and are not tested. Vos "" 20V Vos'" 0 2.0 _mAl OPOO1111 I > 0.& 0.7 OA 0.7 to '0.0 ... ...s.o U Vp vs 9fS ...... ...s.o ... ~ to.O 1.0 10.0 !... jJJ 2N5114 = -18V 2N5115= -15V 2N5116 = -15V Drain Current at Zero Gate Voltage (Note 1) tz OA 0. 7 0. O. 1,000 •• 3,000 10,000 30,000 100,000 • .....Yl OPOO1311 > ! 2N5117-2N5119 I Dielectrically Isolated Dual PNP ~ General Purpose Amplifier 'P' 'P' 10 I ,FEATURES • • • • • CHIP TOPOGRAPHY High Gain at Low Current Low Output Capacitance Good hFE Match Tight VBE Tracking Dlelectrlcally Isolated Matched Pairs for Differential Amplifiers 4501 1-,033-j ~ . EMITTER ,1lO29 .0039 .023 L PIN CONFIGURATION' EMITTER x ,1lO29 .0039 TYP 2 PLACES BASE COLLECTOR .ob3o x .0030 .0040 .0040 TYP 2 PLACES .0035 x .0034 BASE ..0045 .0044 TYP2PLACES CT001711 TO-78 ABSOLUTE MAXIMUM RATINGS (TA = 25°C unless otherwise noted) Collector-Base or Collector-Emitter Voltage (Note 1) ........................................... -45V Emitter-Base Voltage (Notes 1 and 2) .................. - 7V Collector-Collector Voltage ................................. 100V Collector Current (Note 1) ................................ 10mA Storage Temperature Range ............ -65°C to +200°C Operating Temperature Range ......... -55°C to +200°C Lead Temperature (Soldering, 10sec) .............. + 300·C ONE SIDE BOTH SIDES PCOO1101 ORDERING INFORMATION* TO-78 WAFER DICE 2N5117 2N5117/W 2N5117/D 2N5118 2N5118/W 2N5118/D 2N5119" 2N5119/W 2N5119/D 400mW 2.3m'l"'oC Power Dissipation..................... Derate above 25°C................ 750rilW 4.3mW'oC ·When ordering waler/dice reler to Section 10, page la-I, ELECTRICAL CHARACTERISTICS SYMBOL (25°C unless otherwise noted) PARAMETER 2N5117 2N5118 TEST CONDITIONS 2N5119 UNIT MIN MAX MIN MAX hFE DC Cumint 'Gain ITA = -55°C ICBO Collector Cutoff·Current IC = lallA. VCE = 5.0V 100 Ic = 500PA. VCE = 5.0V 100 Ic = lallA. VCE = 5.0V 300 50 30 IE-a. Vce-3OV ,ITA-1S0°C 50 20 0.1 0.1 nA 0.1 0.1 IIA nA lEBO Emitter Cutoff Current IC = O. VEB = 5.0V 0.1 0.1 IC1,C2 GBW Coliector·Coliector Leakage Vcc-l00V 5.0 5.0 Current Gain Bandwith Product (Note 4) Ie = 5001lA. 100 VCE = 10V 100 COb Output Capacitance (Note 4) IE'" 0, Vee = 5.0V. 1= lMHz Gte Emiller Transition CapaCitance (Note 4) IC - 0, VEe CC1,C2 Coliector·Colleqlor Capacitance (Note 4) Vee - 0, I = 1MHz VCEO(sust) Coliector·Emitter Sustalni,ng Voltage Ic = 1'.OmA. Ie = 0 NF Narrow Band Noise Figure (Note 4) IC = lallA. VCE = 5.0V BW= 200Hz BVCBO Collector Base Breakdown Voltage Ic = lallA. IE = a 45 45 V BVEeO Emitter Base Breakdown Voltage IE = lallA. Ic = a 7.0 7.0 V = 0.5V, 0.8 pA MHz 1= lMHz I' 2-38 Note: All typical values have been guaranteed by characterization and are not tested. 1.0 0.8 0.8 45 = 1kHz. RG = 10kO O.B 1.0 45 4.0 pF V 4.0 dB MATCHING CHARACTERISTICS I (25°C unless otherwise noted) 2N5117 SYMBOL PARAMETER 2N5118 ~ 2N5119 TEST CONDITIONS UNIT MIN MAX MIN MAX MIN MAX DC Current Gain Ratio hFE1/hFE2 (Note 3) Base-Emitter Voltage VSE,-VSE2 Is 1-IS2 Base Current Differential Base Voltage Differential Change with Temperature "(ls 1-ls2)/"T Base-Current Differential Change with Temperature NOTES: 1. 2. 3. 4. Ie - 10iJA to SOOIlA, VeE = SV = 10iJA, VeE = S.OV Ie = 10iJA to SOOIlA, VeE = SV 0.9 Ie - 10iJA, VeE = S.OV 0.85 1.0 0.8 1.0 mV 3.0 5.0 5.0 10.0 15 40 nA TA= -55'Cto + 125'C 3.0 5.0 10 IlV/'C TA= -55'Cto + 125'C 0.3 0.5 1.0 nAI'C Per transistor. The reverse base-la-emitter voltage must never exceed 7.0 volts and the reverse base-to-emitter current must never exceed 101lA. Lower of two hFE readings is defined as hF E1' For design reference only, not 100% tested.. 2--'l9 Note: All typical values have been guaranteed by characterization and are not tested. Z ca I&) 1.0 Ie Differential "(VSE1-VSE2)1 "T ....... .. N 2N5117-2N5119 i! 2N51'96-2N5199 ~ o Gene·ral· Purpose Amplifier .!II Dual N-Channel JFET ;;z PIN CONFIGURATION " CHIP TOPOGRAPHY 6037 TO-7,l 0, ALL80ND PADS ARE 4x 4MIL. CT000701 PC002501 ABSOLUTE MAXIMUM RATINGS (TA = 25°C unless otherwise noted) Gate-Source or Gate-Drain Voltage (Note 1) ........ -50V Gate Current (Note 1) ..................................... 50mA Storage Temperature Range ............ -65°C to +200°(; Operating Temperature Range ......... ~55°C to + 150°C Lead Temperature (Soldering, 10sec) .............. + 300°C ONE SIDE' BOTH SIDES ORDERING INFORMATION* T0-71 WAFER DICE 2N5196 2N5196/W 2N5196/D 2N5197 2N5197/W 2N5197/D 2N5198 2N5198/W 2N5198/D 2N5199 2N5199/W 2N5199/D Power Dissipation (TA = 85°C) ... . Derate above 25°C ............... . 250mW 2.6mW/"C 500mW 4.3mW/oC ·When ordering wafer/dice refer to Section 10, page 10-1, ELECTRICAL CHARACTERISTICS SYMBOL IGSS (25°C unless otherwise noted) TEST' CONDITIONS PARAMETER Gate Reverse Current MIN VGS = -30V, Vos = 0 ITA = 150·C MAX UNIT -25 pA -50 nA V BVGSS Gate-Source' Breakdown )/oltage IG=-lj.iA, VOS=O -50 VGS(off) Gate-Source Cutoff Voltage VOS = 20V, 10 = lnA -0.7 -4 VGS Gate-Source Voltage -0.2 -3,8 IG Gate Operating Current -15 VOG = 20V,Io = 200j.iA ITA -125·C lOSS Saturation Drain Current (Note 2) VOS = 20V, VGS = 0 Qfs Common-Source Forward Transconductance (Note 2) VOS - 20V, VGS Qfs Common-Source Forward Transconductance (Note 2) YOG - 20V, 10 = 200j.iA gas Common-Source Output Conductance (Note 2) VOS = 20V, VGS = 0 VOG = 20V, 10 = 200j.iA gas Common-Source Output Conductance (Note 2) Ciss Common-Source Input Capacitance (Note 4) Crss Common-Source Reverse Transfer Capacitance (Note 4) NF Spot Noise Figure (Note 4) en Equivalent Input Noise Voltage (Note 4) =0 f= 1kHz pA -15 nA 0.7 7 rnA 1000 4000 700 1600 50 /J.s 4 6 f=lMHz pF 2 VOS = 20V, VGS = 0 f = 100Hz, RG = 10Mn 0.5 dB f= 1kHz 20 /J.nV JFIz 2-40 Note: All typical values have been guaranteed by characterization and, are not tested, Z VI CD ELECTRICAL CHARACTERISTICS (CONT.) 2N5196 SYMBOL PARAMETER 2N5197 2N5198 2N5199 TEST CONDITIONS UNIT MIN MAX MIN MAX MIN MAX MIN MAX IIG1-IG2 1 Differential Gate Current VOG =20V, 10 = 2001'ft, IOSSI/10SS2 Saturation Drain Current Ratio (Note 2) VOS = 20V, VGS = OV 9101 / g'02 Transconductance Ratio (Note 2) IVGS1-VGS2 1 Differential Gate-Source Voltage LllvGS1=VGS2 1 Gate-Source Differential Vo~age Change with Temperature LIT (Note 3) 1gOOI-go021 NOTES: 1. 2. 3. 4. .. ~ .. I N 2N5196-2N5199 125"C f= 1kHz Voo = 20V, 10 = 2001'ft, 0.95 0.97 TA - 25"C TS = 12S"C TA= -55"C TR = 2SoC f= 1kHz Differential Output Conductance Per transistor. Pulse test required, pulsewidth = 300"s, duty cycle Measured at endpOints TA and T B. For design reference only, not 100% tested. 5 < 3%. 2-41 Note: All typical values have been guaranteed by characterization and are not' tested. 5 5 1 0.95 1 0.97 1 0.95 1 0.95 5 1 0.95 1 0.9S nA 1 1 5 5 10 15 5 10 20 40 5 10 20 40 1 1 1 1 mV ",I"C is Z VI .U~UI6 2N5397, 2N5398 iz II) C\I N~¢hannel JFET High F~equency Amplifier FEATURES G,s = 15dB Minimum (Common Gate) at 450MHz • • , , ., CHIP TOPOGRAPHY 5011 Uw Noise Low Capacitance • " ' " , I--- .015---1 I I PIN CONFIGURATION NOTE: SUBSTRATE IS GATE. T~. .012 TO-72 0.0035 .0042 .0025 x -:0032 1 S .0035 x .00405 .0025 .00305 ' CTOO191t ABSOLUTE MAXIMUM RATINGS (TA = 25°C unless otherwise noted) Drain-Gate Voltage ........................................... 25V Drain-Source Voltage ............................. : ........... 25V Continuous Forward Gate Current.. .................... 10mA Storage Temperature Range ............ -65·C to +200°C Operating Temperature Range ......... -55°C to + 150°C Lead Temperature (Soldering, 10sec) .............. + 300°C Power Dissipation ......................................... 300mW Derate above 25°C .......................•.. 2.4mW fOC PCOOO201 ORDERING INFORMATION* TC>-72 WAFER DICE 2N5397 2N5397/W 2N5397/D 2N5398 2N5398/W 2N5398/D 'When ordering waferI dice refer to Section 10, page 10-1. ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted) 2N5397 SYMBOL PARAMETER UNIT MIN IGSS 2N5398 TEST CONDITIONS Gate Reverse Current VGS= -15V, VOS=O ITA = + 150·C 150·C MAX MIN MAX -0.1 0.1 nA -0.1 -0.1 IIA BVGSS Gate-Source Breakdown Voltage VOS=O, IG = -IlIA -25 VGS(off) Gate-Source Cutoff Voltage VOS = 10V, 10 = InA -1.0 -6.0 -1.0 -6.0 loSS Saturation Drain Current (Note I) VOS = 10V, VOS = 0 10. 30 5 40 rnA VGS(f} Gate-Source Forward Voltage VOS-O,IG-lmA 1 V Common..source JForward '-:OS = 10V, 10 = lOrnA 6000 10,000 Transconductance (Note I) VOS = 10V, VGS = 0 Common..source Output VOS Conductance VOS = 10V, VGS = 0 Common-Source Reverse Transfer Vos = 10V, 10 = lOrnA Capacitance (Note 2) VOS = 10V, VGS = 0 gls goss Crs• = 10V, 10 = lOrnA VOG = 10V, 10 = lOrnA Cis. Common-Source Input CapaCitance (Note 2) VOS = 10V, VGS = 0 2-42 Note: All typical values have been guaranteed by characterization and are not tested. -25 1 f= 1kHz , 5500 V 10,000 ps 200 400 1.2 1.3 f=IMHz pF 5.0 5.5 2N5397, 2N5398 ELECTRICAL CHARACTERISTICS (CONT.) 2N5397 SYMBOL PARAMETER UNIT MIN 9iss 9055 Common-Source Input VOG = 10V, 10 = 10mA Conductance (Note 2) VOG = 10V, VGS = 0 Common-Source Output VOG = 10V, 10 = 10mA Conductance (Note 2) VOS = 10V, VGS = 0 Common-Source FOlWard VOG = 10V, 10 = 10mA VOS = 10V, VGS 9fs Transconductance (Note 1, 2) Gps Common-Source Power Gain (neutralized) NF Common-Source, Spot Noise Figure (neutralized) NOTES: 2N5398 TEST CONDITIONS MAX MIN MAX 2000 3000 400 500 f = 450MHz 5500 IlS 9000 =0 5000 10,000 15 dB VOG = 10V, 10 = 10mA 3.5 (Note 2) 1. Pulse test duration = 2ms 2. For design reference only, not 100% tested. 2-43 Note: All typical values have been guaranteed by characterization and are not tested. 2N5432-2N5434 N-Channel JFET Switch CHIP TOPOGRA~HY FEATURES • Low rds(on) .• Excellent SWitching • Low Cutoff Current' 5018 o .0035 . x .0036 .. if-------::;,,.....,.OO25 PIN CONFIGURATION .0026 TO-52 NOTE: SUBSTRATE is GATE CT0Q2011 PCOO12U ORDERING INFORMATION· TO-52 WAFER 2N5432 2N5432/W 2N5432/0 2N5433 2N5433/W 2N5433/0 2N5434 2N5434/W 2N5434/0 ABSOLUTE MAXIMUM RATINGS (TA = 25·C unless otherwise noted) DICE Gate-Source Voltage ....................................... -25V Gate-Drain Voltage ......................................... -25V Gate Current .................................. _............. 100mA Drain Current ............................................... .400mA Storage Temperature Range ............ -65·C to + 200·C Operating Temperature Range ......... - 55·C to + 150·C Lead Temperature (Soldering, 10sec) .............. + 300·C Power Dissipation ......................................... 300mW Derate above 25·C ........................ ;. 2.3mW JOC 'When ordering waferI dice refer to Section 10, page 10-1. ELECTRICAL CHARACTERISTICS (25·C unless otherwise noted) 2N5432 SYMBOL PARAMETER 2N5433 2N5434 TEST CONDITIONS UNIT MIN MAX MIN MAX MIN MAX IGSS Gate Reverse Current BVGSS Gate Source Breakdown Voltage ITA = 150·C VGs= -15V, Vos=O -200 -200 -200 pA -200 -200 -200 nA 200 pA 200 nA -25 IG=-IIlA, Vos=O -25 200 IO(off) Drain Cutoff Current VGS(off) Gate-Source Cutoff Voltage VoS = 5V, 10 = 3nA -4 lOSS Saturation Drain Current (Note I) VOS = 15V, VGS = 0 150 rOS(On) Static Drain-Source ON Resistance VoS(on) Drain-Source ON Voltage rds(on) Drain-Source ON Resistance CiSS Common-Source Input Capacitance (Note 2) Crss Common-Source Reverse Transfer CapaCitance (No.te 2) ITA = 150·C VoS= 5V, VGS= -IOV 200 2 VGS = 0, 10 = lOrnA VGS=O, 10=0 f= 1kHz Vos=O, VGS= -tOY f=IMHz 2-44 Note: All typical values have been guaranteed by characterization and are not tested.. -10 -25 200. 200 -3 -9 100 -I V -4 30 V rnA 5 7 10 50 70 100 mV 5 .7 10 ohm 30 30 30 15 15 15 Ohm pF 2N5432~2N5434 ELECTRICAL CHARACTERISTICS (CONT.) 2N5432 SYMBOL PARAMETER 2N5433 2N5434 TEST CONDITIONS UNIT MIN MAX MIN MAX. MIN MAX IcJ Turn-ON Delay Time (Note 2) VOO= 1.5V, 4 4 tr Rise Time (Note 2) VGS(on) = 0, 1 1 1 toff Turn-OFF Delay Time (Note 2) VGS(off)= -12V 6 6 6 tf Fall Time (Note 2) 10(on) = 10mA 30 30 30 NOTES: 1. Pulse test required, pulsewidth 300"s, duty cycle:S 3%. 2. For design reference only, not 100% tested. Voo R _ VOo-Vos(ON) L - o VIN lo(ONI ~VOUT o---.._-...j-RG !- 5O1l TCOO1811 2-45 Note: All typical values have been guaranteed by characterization and are not tested. 4 ns ;Z·2N5452-2N5454 I Dual N-Channel JFET , General· Purpose Amplifier &'4' !GENERAL DESCRIPTION I FEATURES \ Matched FET pairs for differential amplifiers. This family of general purpose FETs iscnaracterized for low and medium frequency differential amplifier applications requiring low drift and low offset voltage. • • • • Low Low Low Low Offset Voltage Drift Capacitance Qutput Conductance CHIP TOPOGRAPHY PIN CONFIGURATION 6037 TO-71 0, ALL BONO PADS ARE 4 x 4 MIL. CTOOQ701 PC002501 ABSOLUTE MAXIMUM RATINGS (TA = 25°C unless otherwise noted) Gate-Source or Gate Drain Voltage (Note 1) .................................................... -50V Gate Current (Note 1).................................... 50mA Storage Temperature Range ........... -65°C to +200°C Operating Temperature Range ........ -55°C to + 150°C Lead Temperature (Soldering, 10sec) ............. +300°C ORDERING INFORMATION* TO-71 WAFER DICE 2N5452 2N5452/W 2N5452/D 2N5453 2N5453/W 2N5453/D 2N5454 2N5454/W 2N5454/D ·When ordering walerI dice reler to Section 10, page 10-1. ELECTRICAL CHARACTERISTICS Power Dissipation (TC = 85°C) .... Derate above 25°C................ BOTH SIDES 250mW 2.9mWrC 500mW 4.3mW/oC (TA = 25°C unless otherwise noted) 2N5452 SYMBOL ONE SIDE 2N5453 2N5454 TEST CONDITIONS PARAMETER UNIT MIN MAX MIN MAX MIN MAX VGS = -30V, VOS = 0 -100 -100 ~100 pA -200 -200 -200 nA -1 -4.5 V -0.2 -4.2 IGSS Gate Reverse Current ITA = 150.C BVGSS Gate-Source Breakdown Voltage Vos=O, IG= -1/'A -50 VGS(off) Gate-Source CutoWVoltage VOS= 20V, 10=lnA -1 -4.5 -1 -4.5 VGS Gate-Source Voltage Vos = 20V, 10 = 50/'A -0.2 -4.2 -0.2 -4.2 VGS(f) 'Gate-Source Forward Voltage VOS =0, IG = lmA lOSS ·Ssturation Drain Current VOS = 20V, VGS = 0 0.5 5.0 0.5 5.0 0.5 5.0 1000 3000 1000 3000 1000 3000 2 Common-Source Forward Qt. Transconductance I(Note 2) I VOS = 20V, VGS = 0 = 1kHz f= 100MHz Common-Source Output gos Conductance Ciss Common-Source Input CapaCitance (Note 2) VOS = 20V, 10 = 200p.A = 20V, Crss Common-Source Reverse Transler Capacitance (Note 2) VOS Cdgo Drain-Gate CapaCitance (Note 2) VOG=10V, 15=0 -50 1= 1kHz 1000 -50 2 1000 2 rnA 1000 3.0 3.0 3.0 1.0 1.0 1.0 4.0 4.0 4.0 1.2 1.2 1.2 1.5 1.5 1.5 p.s VGS = 0 1= lMHz 2-46 Note: All typical values have been .guaranteed by characterization and are not tested. pF .U~UIL 2N5452-2N5454 ELECTRICAL CHARACTERISTICS (CO NT.) 2N5452 SYMBOL PARAMETER UNIT en Equivalent Short Circuit Input NOise Voltage VOS = 20V. VGS NF Common-Source Spot Noise Figure (Note 2) VOS = 20V. VGS = 0 RG= 10MS'! _"-'-'1 =. 0 f= 1kHz f = 100Hz wc 1.0 MAX MIN 20 0.5 0.95 T' 2S"C to - MIN 20 Vos = 20V. VGS = 0 Gate-Source Voltage MAX 0.5 0.95 1.0 0.95 MAX 20 -L!L 0.5 d3 5.0 10.0 15.0 0.8 2.0 0.5 1.0 2.5 Differential Change with "IVGS1-VGS21 Temperature mV Vos = 20V. 10 = 200j.tA 9'91/9'92 19091-9092 1 NOTES: y'1IZ 1.0 0.4 T =2S'C to + 125'C Transconductance Ratio 0.97 Differential Output Conductance f= 1kHz 1. Per transistor. 2. For desi9n reference only. not 100% tested. 2-47 Note: All typical values have been 9uaranteed by characterization' and are not tested. 1.0 0.25 0.97 1.0 0.25 0.95 1.0 0.25 Z ! N I N 2N5454 TEST CONDITIONS MIN IOSSl/IOSS2 Drain Saturation Current Ratio IVGS1-VGS2 1 2N5453 N IJS Z : CII ~ ! i~N5457.2N5459 IN-Channel JFET ,.... General Purpose Amplifier/Switch ~ 10 Z PJN CONFIGURATION CHIP TOPOGRAPHY ft 5010 T0-92 D(2) .0013 FULLR .0017 ~1) ~T • . o S .0025 x~ .0036 .0036 := ~ ~ ~ NOTE: SUBSTRATE IS GATE .013 G PCO01311 CT0Q0321 ABSOLUTE MAXIMUM RATINGS ORDERING INFORMATION* TO-92 WAFER DICE 2N5467 2N5457/W 2N5457/D 2N545B 2N5458/W 2N5458/D 2N5459 2N5459/W 2N5459/D 'When ~rda"ing (TA = 25°C unless otherwise noted) Drain-Gate Voltage ........................................... 25V Drain-Source Voltage ......................................... 25V Continuous Forward Gate Current.. .................... 10mA Storage Temperature Range ............ -65°C to + 150°C Operating Temperature Range ......... -55°C to + 135°C Lead Temperature (Soldering, 10sec) .............. + 300°C Power Dissipation ......................................... 310mW Derate above 25°C ........................ 2.82mWrC waler / dice reler 10 Section 10, page 10-1. ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted) SYMBOL BVGSS PARAMETER TEST CONDITIONS Gale-Source Breakdown Voltage IG - -IOpA, Vos - 0 MIN TYP -25 -60 Gale Reverse Currenl VGS(off) Gale-Source Cutoff Voltage 2N5458 -0.5 VOS=15V,IO=IOnA 2N5459 VGS Gale-Source Vollage -8.0 -2.5 VOS = 15V, 10 = 200pA -3.5 2N5459 VOS = 15V, 10 = 400pA -4.5 (Nole I) 2N5459 Forward Transler Admittance 2N5458 VOS = 15V, VGS = 0 2N5457 IYlsl -7.0 -2.0 VOS -15V, 10 = 100pA 2N5458 VOS -15V, VGS = 0, I = 1kHz 2N5459 -200 -1.0 2N5458 Zero-Gale-Voltage Drain Currenl V nA -6.0 2N5457 2N5457 lOSS .05 VGS = -15V, VOS- 0, TA -IOO'C 2N5457 UNIT -1.0 VGS - -15V, VOS = 0 IGSS MAX V V 1.0 3.0 5.0 2.0 6.0 9.0 4.0 9.0 16 1000 3000 5000 1500 4000 5500 2000 4500 6000 mA ,,"S IYosl Oulpul Admittance VOSs 15V, VGS-O, I-1kHz 10 50 Ciss Inpul Capacitance (Nole 2) VOS=15V, VGS=O, 1=IMHz 4.5 7.0 "" Crss Aeverse Transler CapaCitance (Nole 2) VOS = 15V, VGS = 0, 1= IMHz 1.5 3.0 pF NF Noise Figure (Nole 2) VOS -15V, VGS = 0, RG = IMHz BW -1Hz, I -1kHz 3.0 dB NOTES: I. Pulse lest required. PW S 630ms. duty cycle S 10% 2. For deSign relerence only, nol 100% lesled. 2-48 Nole: All typical values have been guaranleed by characterization and are nol lested. pF 2N5460-2N5465 P-Channel JFET Low Noise Amplifier PIN CONFIGURATION CHIP TOPOGRAPHY 5503 TO·92 q II'~;}'='= H r- s 0 .016 ---i NOTE: i1U:~i:ATE CTOO2111 G PC003111 ABSOLUTE MAXIMUM RATINGS (TA = 25°C unless otherwise noted) Drain-Gate or Source-Gate Voltage 2N5460 - 2N5462 ................................. -40V 2N5463 - 2N5465 ................................. -60V Gate Current ................................................. 10mA Storage Temperature Range ............ -65°C to + 150°C Operating Temperature Range ......... -55°C to + 135°C Lead Temperature (Soldering, 10sec) .............. +300°C Power Dissipation ........................................ :310mW Derate above 25°C ........................ 2.82mWI"C ORDERING INFORMATION* TO-92 WAFER DICE 2N5460 2N5460/W 2N5460/0 2N5461 2N54611W 2N5461/0 2N5462 2N5462/W· 2N5462/0 2N5463 2N5463/W 2N5463/0 2N5464 2N5464/W 2N5464/0 2N5465 2N5465/W 2N5465/0 'When ordering waler/dice refer to Section to, page to-to ELECTRICAL CHARACTERISTICS SYMBOL (25°C unless otherwise noted) PARAMETER TEST CONDITIONS 2N5460, 2N5461 , 2N5462 BVGSS Gate·Source Breakdown Voltage 2N5463, 2N5464, 2N5465 IG = 101lA, VOS = 0 2N5460, 2N5463 VGS(off) Gate·Source Cutoff Voltage 2N5461, 2N5464 VOS= -15V, 10= 1.011A 2N5462, 2N5465 2N5460, 2N5461, 2N5462 Gate Reverse Current IGSS ITA = 100°C VOs=O 2N5463, 2N5464, 2N5465 2N5460, 2N5461 , 2N5462 2N5463, 2N5464, 2N5465 Zero·Gate Voltage Drain Current gts Gate-Source Voltage Forward Transadmittance V 0.75 6.0 1.0 7.5 1.8 9.0 IIA -1.0 rnA -2.0 -9.0 -4.0 -16 2N5460, 2N5463 2N5461, 2N5464 0.5 4.0 0.8 4.5 2N5462, 2N5465 10 = -O.4mA 1.5 6.0 2N5460, 2N5463 1000 4000 2N5461, 2N5464 1500 5000 2N5462, 2N5465 2000 6000 VOS= -15V 1= 1.0kHz Output Admittance Input Capacitance (Note 1) Crss NF Reverse Transler Capacitance (Note 1) 1= lMHz Common·Source Noise Figure (Note 1) en Equivalent Short·Circuit Input Noise Voltage (Note 1) I -100Hz BW= 1.0Hz RG=I.0MU VGS= OV NOTE 1: For deSIgn reference only, not 100% tested. 2-49 Note: All typi"al values have been guaranteed by characterization and are not tested. V 5.0 1.0 1.0 _5.0 VGS=O 10=0.lmA 10= -0.2mA VOS = -15V UNIT 5.0 Ciss gos MAX VGS= 30V VGS-20V VGS= 30V 2N5461, 2N5464 2N5462, 2N5465 VGS TYP 40 60 VGs=20V 2N5460, 2N5463 loss MIN 75 5.0 1.0 7 2.0 1.0 2.5 60 115 nA V IlS IlS pF pF DB nV/ .!Hz II CD ....CD 10 Z i z (II 2N5484-2N5486 N-Channel ,JFET ' High Frequency Amplifier FEATURES CHIP TOPOGRAPHY Up. to 400MHz Operation Economy Packaging eras < 1.0pF .0035 .0025 FULL~ PIN CONFIGURATION .017 • • • 5000 T ~. ~:0035 .0025 x .0035 .0025 •_ ~ 0(2)1 TO-92 . I~;[r ~= ~ NOTE: SUBSTRATE . IS GATE q .017 CTOO221 I rl ABSOLUTE MAXIMUM RATINGS o S (TA = 25°C unless otherwise specified) Drain-Gate Voltage ........................................... 25V Source Gate Voltage ......................................... 25V Drain Current ................................................. 30mA Forward Gate Current ...................................... 10mA Storage Temperature Range ............ -65°C to + 150°C Operating Temperature Range ......... -·55°C to + 135°C Lead Temperature (Soldering. 10sec) .............. + 300°C Power Dissipation ......................................... 310mW Derate above 25°C ........................ 2.82mW fOC Q PCO0340t ORDERING INFORMATION* TO·92 WAFER DICE 2N5484 2N5484/W 2N5484/D 2N5485 2N5485/W 2N5485/D 2N5486 2N5486/W 2N5486/D 'When ordering waler/dice reler to Section 10. page 10-1. ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted) 2N5484 SYMBOL PARAMETER 2N5485 2N5486 TEST CONDITIONS UNIT MIN MAX MIN MAX MIN MAX -1.0 -1.0 -1.0 -200 -200 -200 IGSS Gate Reverse Current ITA = l00.C VGS = -20V. Vos = 0 BVGSS Gate-Source Breakdown Voltage IG = -lIlA. VOS - 0 -25 VGS(off) Gate-Source Cutoff Voltage VOS - 15V. 10 - 10nA -0.3 -3.0 -0.5 -4.0 -2.0 -6.0 VOS = 15V. VGS = 0 (Note 1) loSS Satliration Drain Current gts COmmon-Source Forward Transconductance gos Common-Source Output Conductance Re(yta) Common-Source Forward Transconductance (Note 2) Re(yos) Common-Source Output Conductance (Note 2) Re(yis) Common-Source Input Conductance (Note 2) Ciss Common-Source Input CapaCitance (Note 2) 1:0 5.0 4.0 nA -25 -25 10 8.0 20 V rnA 3000 6000 3500 7000 4000 8000 1= 1kHz 50 VoS=15V. VGS=O 1= 100MHz 1=400MHz 1=,100MHz I -400MHz l-l00MHz 1=400MHz 75 60 2500 3000 3500 fJS 75 100 100 100 1000 1000 5.0 5.0 5.0 1.0 1.0 1.0 2.0 2.0 2.0 Common-Source Reverse Crss Transler Capacitance (Note 2). Coss Common-Source Output Capacitance (Note 2) 1= lMHz 2-50 Note: All typical velues have been guaranteed by characterization and are not tested. pF 2N5484-2N5486 ELECTRICAL CHARACTERISTICS (CO NT.) 2N5484 SYMBOL PARAMETER 2N5485 2N5486 UNIT TEST CONDITIONS MIN MAX MIN MAX MIN MAX vos = 15V, vGS = 0, RG = lM.f! f= 1kHz 2.5 VOS = 15V, Vo = lmA, RG= lk.f! NF Noise Figure (Note 2) f = 100MHz VOS = 15V, 10 = 4mA, RG= lk.f! f = 400MHz VOS = 15V, 10 = lmA Gps NOTES: Common-Source Power Gain (Note 2) 16 f = 100MHz VOS = 15V, 10 = 4mA 1. Pulse test required. Pulse width = 300;. 30V Crss 0.75pF (Typical) = CHIP TOPOGRAPHY TO·71 TO·78 4000 1-- --1 023 l CATHODE" T~ ~:~~~~~~~s .0040 x.0040 .017 ---.l ~~~~~~!CES ~qQ~DIA .0030 .0030 .0040 j ANODEM1 . CT00331I ABSOLUTE MAXIMUM RATINGS (TA = 25°C unless otherwise noted) Diode Reverse Voltage ...................................... 30V Diode to Diode Voltage ....................•............... ±50V Forward Current ............................................. 20mA Reverse Current ............................................ 100!-IA Storage Temperature Range ............ -65°C to + 200°C Operating Temperature Range ......... -55°C to + 150°C Lead Temperature (Soldering, 10sec) .............. + 300°C Power Dissipation ........................ ; ................ 300mW Derate above 25°C .......................... 2.4mWfOC PCQ0211 I ORDERING INFORMATION* 'When ordering wafer/dice refer to Section 10, page 10-1. ELECTRICAL CHARACTERISTICS (@ 25°C unless otherwise noted) 10100, 10101 SYMBOL TEST CONDITIONS PARAMETER UNIT MIN TYP MAX VF Forward Voltage Drop IF = lOrnA 0.8 BVR Reverse Breakdown Voltage IR=lpA 30 IR Reverse Leakage Current VR= 1V 1.1 V 0.1 2.0 I IiR,-IR2 1 Crss TA = 125°C VR = 10V Differential Leakage Current Total Reverse Capacitance VR=10V, f=lMHz (Note 1) NOTE 1: For design reference only. not 100% tested. 2-74 Note: All typical values have been guaranteed by characterization and are not tested; V 0.75 pA 10 10 nA 3 pA 1 pF ID100, ID101 TYPICAL PERFORMANCE CHARACTERISTICS REVERSE CURRENT vs. VOLTAGE 1.0 11 0.9 ." 10 . _ CAPACITANCE 12 9 .!: • ~ 0.8 0.7 0.6 L -- FORWARD CURRENT .!'-lmA~ lDO"A lOjJA • r-- r-- -- r-- 0.3 0.2 /" hA 0.1 ~~ o 10 15 20 25 VOLTAGE 10mA~1I - i -t- VS. 0.4 /1-'" ,/ o VOLTAGE 0.5 ./ t--- f-- f-- "- VS. 30 00 10 15 VRIVI 25 20 VR (VI OPOO1811 OP001911 2-75 Note: All typical values have been guaranteed by characterization and are not tested. 30 100 nA r--r-- - . " • H o~--'-1.......L..-'.:Jol';-.5-'--'---'-~1';;-.0-'--'--"'-:".4 V F {VI OPOO201 I ....a o 2_' ' 1'1100, IT101 P-Channel JFET Switch 8 t GENERAL DESCRIPTION FEATURES This P-channel JFET has been designed to directly interface with TTL logic, thus eliminating the need for costly drivers, in analog gate circllitry. Bipolar inputs of ±15V can be switched. The FET is OFF for hi level inputs (+ 5V or + 15V) and ON for low level inputs « 0.5 V for IT100, < 1.5V for 1T101). ' PIN CONFIGURATION • • Interfaces Directly w/TTL Logic Elements rOS(on) < 7Sq for SV Logic Drive • IO(Ciff) < 100pA CHIP TOPOGRAPHY 5514 T()'18 o G,C *~---,028 - - - - - I s 1.... I PCO0011I NOTE: SUBSTRATE IS GATE. CT003411 ORDERING INFORMATION* TO-18 WAFER DICE 1T100 IT100/W 1T100/D 1T101 IT10l/W IT10l/D ABSOLUTE MAXIMUM RATINGS (TA = 25°C unless otherwise noted) Gate-Source Voltage ......................................... 35V Gate-Drain Voltage ........................................... 35V Gate Current ................................................. 50mA Storage Temperature Range ............ -65°C to +200°C Operating Temperature Range ......... -55°C to + 150°C Lead Temperature (Soldering, 10sec) .............. + 300°C Power Dissipation ......................................... 300mW Derate above 25°C ......... ; ................ 2.4mW 1°C 'When ordering wafer/dice refer to Section 10, page 10-1, ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted) IT100 SYMBOL PARAMETER UNIT MIN loss Vp BVGSS IGSS g15 gos 10(011) rOS(on) Ciss Crss Drain Current Pinch Off Voltage Gate-Source Breakdown Voltage Gate Reverse Current Transconductance Output Conductance Drain (OFF) Leakage Drain·Source "ON" Resistance Input CapaCitance Reverse Transfer CapaCitance IT101 TEST CONDITIONS VGS=O, VDS=-15V 10 = InA, VOS = -15V IG=lpA, VOs=O VGS = 20V, VOS = 0 -10 2 35 MAX MIN -20 4.5 VOS = -10V, VGS = 15V VGS - 0, VOS - -0, tV VOG - -20V, VGS - 0 (Note 1) VOG- -10V, IS-O (Note 1) NOTE 1: For design reference only, not 100% tested. 2-76 Note: All typical values have been guaranteed by characterization and are not tested. 4 mA 10 V 35 200 8 VGS = 0, VOS'" -15V MAX 200 pA 1 -100 60 35 12 mS 8 1 -100 75 35 12 pA n pF IT120, IT122 Dual NPN General Purpose Amplifier FEATURES • • • • CHIP TOPOGRAPHY High hFE at Low Current Low Output Capacitance Good Matching Tight VBE Tracking 4003 .0045 x .0045 .0035 .0035 ·j:---C-O-LL-EC-T-O-RII-,-b. . .=tii;i....,...,,..,..,,=c--ISOLATION COLLECTOR PIN CONFIGURATION /12 TYP 2 PLACES .0045 x .0045 .0035 .0035 BASE,2 TVP 2 PLACES .025 I TO-71 TO-78 ~---.,.c..,<--"<-""" BAse,,1 :~~~ DIAMETER EMITTER.2 .0040 TYP 2 PLACES .0030 EMITTERlf1 DIAMETER CTOO3511 ABSOLUTE MAXIMUM RATINGS (TA = 25°C unless otherwise noted) Collector-Base Voltage (Note 1) .......................... 45V Collector-Emitter Voltage (Note 1) ........................ 45V Emitter Base Voltage (Notes 1 and 2) .................... 7V Collector Current (Note 1) ................................ 50mA Collector-Collector Voltage .................................. 60V ,Storage Temperature Range ............ -65°C to +200°C Operating Temperatur.e Range ......... -55°C to + 150°C Lead Temperature (Soldering. 10sec) .............. + 300°C PCQOO81 I ORDERING INFORMATION* TO-78 TO-71 WAFER DICE IT120 IT120-T071 IT120/W IT120/0 TO-78 IT121 IT121-T071 IT121/W IT121/0 IT122 IT122-T071 IT122/W IT122/0 ONE SIDE PARAMETER BOTH SIDES (25°C unless otherwise noted) 1T120A SYMBOL ONE SIDE Power Dissipation ........ 250mW 500mW 200mW 400mW Derate Above 25°C ...................... 1.7mWfOC 3.3mW/oC 1.3mW/oC 2.7mW/oC 'When ordering wafer/dice reler to Section 10, page 10-1. ELECTRICAL CHARACTERISTICS TO-71 BOTH SIDES 1T120 IT121 IT122 TEST CONDITIONS UNIT MIN MAX MIN MAX MIN MAX MIN MAX Ie = 101lA, VCE = 5.0V 200 200 80 80 IC = 1.0mA, VCE 225 225 100 100 hFE DC Current Gain VSE(ON) Emitter-Base On Voltage IC = 101lA, VCE = 5.0V 0.7 0.7 0.7 0.7 VCE(SAT) Collector Saturation Voltage IC = 0.5mA, IS = 0.05mA 0.5 0.5 0.5 0.5 1.0 1.0 1.0 1.0 nA = 5.0V 75 ITA = -55·C ,ICSO COllector Cutoff Current ITA = + 150·C IE=O, VCB= 45V 75 30 30 V 10 10 10 10 /lA lEBO Emitter Cutoff Current IC = 0, VEB = 5.0V 1.0 1.0 1.0 1.0 nA Cobo Output Capacitance IE =0, VCB =5.0V 2.0 2.0 2.0 2.0 Cte Emitter Transition Capacitance IC=O, VEB =0.5V 2.5 2.5 2.5 2.5 CC1,C2 Collector to Collector Capacitance Vee=O 4.0 4.0 4.0 4.0 IC"C2 COllector to Collector Leakage Current Vee = ±60V (Note 3) 10 10 10 10 1=IMHz (Note 3) 2-77 Note: All typical values have been guaranteed by characterization and are not tested. pF nA 2 's IT120,lr1,22 !: ELECTRICAL cHARACTERISTICS (CONT.) i E 1T120A SYMBOL PARAMETER 1T120 IT121 IT122 UNIT TEST CONDITIONS MIN MAX MIN MAX MIN MAX MIN MAX VCEO(SUSn Collector to Emitter Sustaining Voltage IC ~ 1,OmA, IB = 0 GBW Current Gain Bandwidth Product (Note 3) Ic Ic IVBE1-VBE2 i Base Emitter Voltage Differential, . IIB1-IB21 Base Current Differential A(VBE1- VBE2) Ll.T Base-Emitter vOltage Differential Change with Temperature =10llA, VCE = 5V =lmA, VCE = 5V 45 45 45 45 10 10 220 7 180 7 220 V MHz 180 1 2 3 5 mV 2,5 5 25 25 nA 3 5 10 20 p'vrc Ic = 10llA, VCE - 5,OV (Note,3) TA - -55·C to + 125·C IC - 10llA, VCE - 5,OV NOTES: 1, Per transistor. 2. The reverse base-to-emitter voltage must never exceed 7.0 volts and the reverse base-to-emitter current must never exceed 101lA. 3. For deSign reference only, not 100% tested. 2-78 Note: All typical values have been guaranteed by characterization and are not tested. IT124 Dual Super-Beta NPN General Purpose Amplifier FEATURES • • • • CHIP TOPOGRAPHY 4003 Very High Gain Low Output Capacitance Tight VBE Matching High GBW .0045 x .0045 .0035 .0035 -, COLLECTOR '.1 i:iiiilii=;1i-:::::-:-=:::=-'SOLATION COLLECTOR 1#2 TYP 2 PLACES _~ x .0045 .0035 .0035 'l 025 PIN CONFIGURATION BASE"2 TYP 2 PLACES ~~- TO-78 DIAMETER '--- EMITTER'2 .0040 TYP 2 PLACES .0030 DIAMETER CT003611 ABSOLUTE MAXIMUM RATINGS ORDERING INFORMATION* (TA = 25°C unless otherwise noted) Collector-Base Voltage (Note 1) ............................ 2V Collector-Emitter Voltage (Note 1) .......................... 2V Emitter-Base Voltage (Notes 1 and 2) ..................... 7V Collector-Current (Note 1) ................................ 10mA Collector-Collector Voltage ................................. 100V Storage Temperature Range ............ -65°C to + 200°C Operating Temperature Range ......... -55°C to + 150°C Lead Temperature (Soldering, 10sec) .............. + 300°C 'When ordering wafer/dice refer to Section 10, page 10-1. Power Dissipation ...•................. Derate above 25°C ............... . E, e, c, PCOOO31 I TQ.78 ELECTRICAL CHARACTERISTICS @ ONE SIDE BOTH SIDES 300mW 2.4mW/oC 500mW 4.0mW/oC 25°C (unless otherwise noted) LIMITS SYMBOL PARAMETER UNIT TEST CONDITIONS MIN MAX ISOO Ic = liJA, VCE = IV hFE DC Current Gain IS00 VSE(ON) Emitter-Base "ON" Voltage VCE(SAT) Collector Saturation Voltage ICBO Collector Cutoff Current I I TA= -SS·C 600 IC = 10iJA, VCE = IV 0.7 IC = lmA, IB = O.lmA TA = + ISO·C O.S 100 IE=O, VCB=IV lEBO Emitter Cutoff Current IC = 0, VEB = SV Cabo Output Capacitance (Note '3) IE-O, VCB-IV Cte' Emitter Transition Capacitance (Note 3) IC = 0, VEB = O.SV CC1 C2 Coilector to Collector Capacitance (Note 3) VCC=O IC1C2 Collector to Collector Leakage Current VCC - ±SOV Current Gain Bandwidth Product (Note 3) tv Ic = 100iJA, VCE = tv NF Narrow Band Noise Figure (Note 3) Ic = IOiJA, VCE = 3V, f= 1kHz. RG = 10kf! BW = 200Hz BVCBO Collector-Base Breakdown Voltage BVEBO (Note 2) VCEO(SUST) Emitter-Base Breakdown Voltage IC - 10iJA. IE - 0 IE = 10iJA, IC = 0 7 Collector-Emitter Sustaining Voltage Ic=lrnA.IB=O 2 IC = 10iJA, VCE = GBW '2-79 Note: All typical values have been guaranteed by characterization and are not tested. I I V pA 100 nA 100 pA O.B f= IMHz 1.0 pF O.B 2S0 pA 10 MHz 100 3 dB 2 V : 11:124 e MATCHING CHARACTERISTICS @' 25°C (unless otherwise noted) LIMITS SYMBOL PARAMETER '. TEST CONDITIONS .' UNIT TYP MAX ; IVBE1-VBE2 1 Base Emitter Voltage Differential IC - 101lA. VCE = 1V 2 5 mV al(VBE1-VBE?!lt aT Base Emitter Voltage Differential Change with Temperature (Note 3) , Ic = lallA. VCE = tV T - -55°C to + 125°C 5 15 p.VI'C IIB1-IB2 11 Base Current Oifferential Tc-l01lA. VCE -lV .6 nA NOTES: 1. Per transistor.. . 2. The reverse base-to-emitle( voltage must never exceed 7.0 volts and the reverse base-to-emitter current must never exceed lallA. 3. For design releren~e only. not 100% tested. 2,.80 Note: All typical values have 1!een guaranteed by eharacteri:zation and are not tested, IT126-IT129 Dual NPN General Purpose Amplifier FEATURES • • • • • CHIP TOPOGRAPHY 4001 High Gain at Low Current Low Output Capacitance Tight Ie Match Tight VBE Tracking Dielectrically Isolated Matched Pairs for Differential Amplifiers EMln.eR .0029 )( _.0029_ .0039 .0039 TYP 2 PLACES PIN CONFIGURATION BASE .0030 x -:0030 .0040 .0040 TYP 2 PLACES EMITTER BASE TO·71 TO·78 CTOO371 I ABSOLUTE MAXIMUM RATINGS (TA = 25'C unless otherwise specified) Collector-Base Voltage (Note 1) IT126, IT127 ........................................... 60V IT128 .................................................... 55V IT129 .........................................•.......... 45V COllect~+;~~:tt~l ~~~~~~~.. ~~~.t~ ..1.~ ........................ 60V IT128 ..................................................... 55V IT129 .................................................... 45V Emitter-Base Voltage (Notes 1 and 2) ................... 7.0V Collector Current (Note 1) ............................... 1OOmA Collector-Collector Voltage .................................. 70V Storage Temperature Range ............ -65'C to + 175'C Operating Temperature Range ......... -55'C to + 175'C Lead Temperature (Soldering. 10sec) .............. +300'C ORDERING INFORMATION* T078 1°-71 WAFER DICE IT126 IT126-T071 IT126/W IT126/0 IT127 IT127-T071 IT127/W IT127/0 IT128 IT128-T071 IT128/W 1T128/0 IT129 IT129-T071 IT129/W 1T129/0 T071 PARAMETER BOTH SIDES 250mW 1.7 mW/'C 500mW 3.3 mW/'C IT127 IT128 IT129 TEST CONDITIONS Ic = 10/'A, VCE = 5V Ic = LOrnA, VCE = 5V Ic = lOrnA, VCE = SV IC = SOmA, VCE = SV Ic = lmA. VCE = SV IC = lOrnA, Vce = SV Ic - SOmA. VCE - SV IC = lOrnA, Ie = lmA IC - SOmA, Ie - SmA Ie = 0, Vce - 4SV, 30V' hFE DC Current Gain VeE(on) ITA = -SS'C Emitter·Base On Voltage VCE(sat) Collector Saturation Voltage Iceo Collector Cutoff Current ITA - + lS0·C Emitter Cutoff Current Ic = 0, VEe = SV IEeo ONE SIDE (25'C unless otherwise noted) IT126 SYMBOL BOTH SIDES Total Dissipation at 25'C...... 200mW' 400mW 1.3 2.7 Derating Factor ................... mW/'C mW/'C 'When ordering waferldice refer to Section 10, page 10-1. ELECTRICAL CHARACTERISTICS ONE SIDE Power Dissipation T078 2-Bt Note: All typical values have been guaranteed by characterization and are not tested. UNIT MIN MAX MIN MAX MIN MAX MIN MAX 150 150 100 70 200 800 200 800 ISO 800 100 170 lIS 230 230 100 100 7S SO 7S 7S 60 40 0.9 0.9 0.9 0.9 1.0 1.0 1.0 1.0 0.3 0.3 0.3 0.3 1.0 1.0 1.0 1.0 0.1 0.1 0.1 0.1' 0.1 0.1 0.1 0.1' 0.1 0.1 0.1 0.1 V nA /'A nA r:. r.- ...~ IT12S-IT129· . ...t: ···.D~OlL I,i .&'<1 'f",1' ELECTRICAL· CHARACTERISTICS (CONT.)· IT126 PARAM~T~R SYMBOL IT127 IT128 IT129 UNIT TEST CONDITIONS MIN MAX MIN MAX MIN MAX MIN MAX Cobo output Capacitance (Note 3) Ie = 0, vcs = 20V BVC1 C2 Collector to Collector Breakdown Voltage IC - ±lpA Collector to Emitter Sustaining . Voltage 3 3 3 3 ±100 ±100 ±IQO ?;1?0 Ic=lmA,ls=O 60 60 55 45 BVCBO Collector Base Breakdown Voltage IC = 10pA, Ie = 0 60 60 55 45 BVESO Emitter Base Breakdown Voltage IE = 10pA, Ic = 0 7 7 7 7 VceO(sust) pF V MATCHING CHARACTERISTICS IT126 SYM.BOL PARAMETER IT127 IT128 IT129 UNIT TEST CONDITIONS MIN MAX MIN MAX MIN MAX MIN MAX IVSE1-VSE21 Base Emitter Voltage Differential .1(IVsel·VSE21) Base Emitter Voltage Differential Change with Temperature (Note 3) AT Ils1-1621 Base Current Differential IC -lmA, VCE = 5V 1 2 3 5 mV IC = lmA, VCE = 5V TA - _55°C to + 125°C 3 5 10 20 ,.VfOC = 5V 2.5 5 10 20 nA Ic = lmA, VCE - 5V 0.25 0.5 1.0 2.0 pA Ic = 10pA, VCE NOTES: 1. Per tnsnsistor. 2. The reverse base-to-emitter voltage must never exceed 7.0 volts and the reverse base-to-emitter current must never exceed 10pA. 3. For design reference only, not 100% tested. 2-132 Note: AU typical values have been guaranteed by characterization and are not tested. IT130-IT132 Dual PNP General Purpose Amplifier FEATURES • • • • CHIP TOPOGRAPHY High hFE at Low Current Low Output Capacitance Tight IB Match Tight VBE Tracking 4503 .0045 x .0035 .0045 .0035 '!:--------i-_.=iitl--=:c;-;:="""'SOLATION CgLlECTOR'l f..1 COLLECTOR PIN CONFIGURATIONS .2 TYP 2 PLACES ::~ .Of5 TO·71 TO·78 • x :~~~ BASE '2 TVP 2 PLACES ~~~ BASE 11 DIAMETER EMITTER 112 .0040 TVP 2 PLACES .0030' EMITTER.1 DIAMETER CTO03811 ABSOLUTE MAXIMUM RATINGS E, B, (TA = 25°C unless otherwise specified) Collector-Base Voltage (Note 1) .......................... 45V Collector-Emitter Voltage (Note 1) ........................ 45V Emitter Base Voltage (Notes 1 and 2) .................... 7V Collector Current (Note 1) ................................ 50mA Collector-Collector Voltage .................................. 60V Storage Temperature Range ............ -65°C to + 175°C Operating Temperature Range ......... -55°C to + 175°C lead Temperature (Soldering. 10sec) .............. + 300°C To-71 T0-78 c, PC00241 I ORDERING INFORMATION* TO-78 TO-71 IT130A 1T130A-T071 WAFER DICE IT130AlW IT130A/D IT130 IT130-T071 IT130/W IT130/D IT131 IT131-T071 IT131/W IT131/D IT132 IT132-T071 IT132/W IT132/D PARAMETER BOTH ONE SIDE SIDES (25°C unless otherwise noted) IT130A SYMBOL SIDES 200mW 400mW 250mW 500mW Power Dissipation ........ 1.3mW/oC 2.7mWrC 1.7mW/oC 3.3mW/oC ·When ordering wafer/dice refer to Section 10, page 10-1. ELECTRICAL CHARACTERISTICS BOTH ONE SIDE IT130 1T131 IT132 TEST CONDITIONS UNIT MIN MAX MIN MAX MIN MAX MIN MAX Ic= 10llA, VCE = 5.0V 200 200 80 80 IC = 1.0mA, VCE = 5.0V 225 225 100 100 = 5.0V = 5.0V 75 hFE DC Current Gain VBE(ON) Emitter·Base On Voltage IC - 10llA, VCE VCE(SAT) Collector Saturation Voltage IC - 0.5mA, IB = 0.05mA ICBO Collector Cutoff Current ITA = -55·C ITA = lEBO Cob (Note 3) + 150·C IC -101lA, VCE 75 30 30 0.7 0.7 0.7 0.7 0.5 0.5 0.5 0.5 -1.0 -1.0 -1.0 -1.0 nA -10 -10 -10 -10 IlA -1.0 -1.0 -1.0 -1.0 nA = 5.0V 2.0 2.0 2.0 2.0 IE = 0, VCB = 45V Emitter Cutoff Current IC - 0, VEB = 5.0V Output CapacHance IE = 0, VeB Gte (Note 3) Emitter Transition Capacitance Ic = 0, VEB = 0.5V 2.5 2.5 2.5 2.5 CC1-C2 (Note 3) Collector to Collector Capacitance Vee=O 4.0 4.0 4.0 4.0 IC1-C2 Collector to Collector Leakage Current Vee - ±60V 10 10 10 10 VCEO(SUST) Collector to Emitter Sustaining Voltage IC = 1.0mA, IB = 0 GBW Current Gain Bandwidth Product (Note 3) IVBE1-VBE2' Base Emitter Voltage Differential -45 -45 -45 -45 IC = 10llA, VCE = 5V 5 5 4 4 IC = 1mA, VCE = 5V 110 110 90 90 Ic = 10llA, VCE = 5.0V 2-83 Note: All typical values have been guaranteed by characterization arfd' are not tested. 1 2 3 V pF nA V MHz 5 mV II IT130A PARAMETER SYMBOL 1T130 IT131 IT132 TEST CONDITIONS UNIT MIN MAX MIN MAX MIN MAX MIN MAX IIB1-IB21 Base Current Differential IC = 101lA. VCE ~ 5.0V a(VBE,-VBE2)1 aT Base-Emitter Voltage Differential Change with Temperature (Note 3) TA = _55°C to + 125°C Ic = 101lA. VCE = 5.0V . NOTES: 1. Per transistor. 2.5 5 25 25 nA 3 5 1Ct 20 ,.VloC , 2. The reverse base-to-emitter voltage must never exceed 7.0V. and the reverse base-to-emitter current must never exceed 101lA. 3. For design reference only. not 100% tested. 2~ Note: All typic81 values have been guaranteed by characterization and are not tested. IT136-IT139 Dual PNP General Purpose Amplifier FEATURES • • • • • CHIP TOPOGRAPHY High Gain at Low Current Low Output Capacitance Tight Is Match Tight VSE Tracking Dielectrically Isolated Matched Pairs for Differential Amplifiers 4501 R 1- -1 033 EMITTER .0029 , PIN CONFIGURATION EMITTER .0039 TVP 2 PLACES .9!l~ I -L TO·71 TO·78 .0029 .0039 .023 BASE . .0040 COLLECTOR x -:.9_0~ .0040 TVP 2 PLACES .09~.~)( _:.~q~ BASE .0045 .0044 TYP 2 PLACES CTQ03911 ABSOLUTE MAXIMUM RATINGS (TA = 25°C unless otherwise noted) Coliector·Base Voltage (Note 1) IT136, IT137 ........................................... 60V IT138 __ ........ .- ____ ............. __ ... ______ .... __ ... ____ 55V E. COllect~~.~~itt~'r' 'v~it~g~" iN~t~' '1'j -- .... -- -- -- --. -- .. -- --. 45V c, B. 1T136, IT137.. ________________________________________ . 60V IT 138 .... ____ . ____ ...... __ ... ______________ ........... __ 55V IT139 __ ... __ ...... ____ ....... ______ . ________ .......... __ . 45V Emitter Base Voltage (Notes 1 and 2). ____ .. __ . ______ . __ .7V Collector Current (Note 1). __ . __ . ____ . ______________ . ____ 100mA Coliector·Coliector Voltage .. __ . __ ... __ .... ______ .......... __ 70V Storage Temperature Range __ . ______ ' __ -65°C to + 175°C Operating Temperature Range ______ . __ -55°C to +175°C Lead Temperature (Soldering, 10sec) ____ ..... ____ . + 300°C PC0024U ORDERING INFORMATION* TO-78 TO-71 WAFER DICE IT136 IT136·T071 IT136/W IT136/0 IT137 IT137·T071 IT137/W IT137/0 IT138 IT138·T071 IT138/W IT138/0 IT139 IT139·T071 IT139/W IT139/0 TO-71 ONE SIDE 'When ordering wafer I dice refer to Section 10, page 10-1. TO·78 ONE BOTH SIDES BOTH SIDES SIDE Power Dissipation ...... __ 200mW 400mW 250mW 500mW Derate above 25'C ... 1.3mWrC 2.7mW/'C 1.7mW/'C 3.3mWI'C ELECTRICAL CHARACTERISTICS (@ 25°C unless otherwise noted) 1T136 SYMSOL PARAMETER 1T137 IT138 IT139 TEST CONDITIONS UNIT MIN MAX MIN MAX MIN MAX MIN MAX hFE DC Current Gain ITA = 55'C VSE(on) VCE(sat) Emitter·Base On Voltage Collector Saturation Voltage Ic = 10"A, VCE = 5V 150 Ic = 1.0mA, VCE = 5V 150 = lOrnA, VCE = 5V 125 Ie = 50mA, VCE = 5V 65 Ic = lmA, VCE = 5V 75 Ic 100 150 800 150 BOO 125 100 70 BOO 70 BO 50 60 40 25 75 60 BOO 40 IC = lOrnA, VCE = 5V .9 .9 .9 .9 IC = SOmA, VCE = SV 1.0 1.0 1.0 1.0 IC=lmA,IS=·lmA .3 .6 .3 .6 .3 .3 .6 IC = lOrnA, Is = lmA 2-85 Note: All typical values have been guaranteed by characterization and are. not tested. .6 V r:. r.- IT136·IT139 ,: ELECTRICAL CHARACTERISTICS (CO NT.) IT136 SYMBOL PARAMETER IT137 IT138 IT139 TEST CONDITIONS UNIT MIN MAX MIN MAX MIN MAX MIN MAX ICBO Collector Cutoff Current lEBO ITA -' + 150°C Emitter Cutoff Current IC = 0, VEB = 5V , Cobo Output Capacitance (Note 3) IE - 0, VCB - 20V, f -1MHz BVc,C2 Collector to Collector Breakdown Voltage le=±1p.A VeEO(sust) Collector to Emit,ter Sustaining Voltage BVeBO Collector Base Breakdown Voltage BVEBO 1VBE,-VBE21 0.1 0.1 0.1 0.1" nA 0.1 0.1 0.1 0.1" p.A 0.1 0.1 0.1 0.1 nA 3 3 3 3 pF ±100 ±100 ±100 ±100 le=1mA,IB=0 60 60 55 45 Ie = 10p.A, IE = 0 60 60 55 45 Emitter' Base Breakdown Voltage IE = 10p.A, Ie = 0 7 7 7 7 Base Emitter Voltage Differential Ie = 1mA, VeE = 5V 1 2 3 5 mV Ic = 1mA, VeE = 5V TA = _55°C to + 125°C 3 5 10 20 IlV/oC Base Emitter Voltage Differential ~1(VBE,-VBE2~/~T Change with Temperature (Note 3) . , 1IB,-1821 IE'= 0, VCB = 45V, 30V" Base Current Differential V Ie = 10p.A, VeE = 5V 2.5 5 10 20 nA Ie = 1mA, VeE = 5V .25 .5 1.0 2.0 p.A NOTES: 1. Per transistor. 2. The reverse base-to-emitter voltage must never exceed 7.0 volts and the reverse base-to-emitter current must never exceed 10p.A. 3. For design reference only, not 100% tested. 2-86 Note: All typical values have been guaranteed by characterization and' are not tested. IT500-IT505 Dual Cascoded N-Channel JFET General Purpose Amplifier GENERAL DESCRIPTION FEATURES A low noise, low leakage FET that employs a cascode structure to accomplish very low IG at high voltage levels, while giving high transconductance and very ,high common, mode rejection ratio. • CMRR • • • IG < 5pA @ 50VDG Crss < O.5pF gos > .025/lB PIN CONFIGURATION > 120dB CHIP TOPOGRAPHY 6028 TO·71 low profile BODY .00301A DRAIN 1 -T' ~.I~J·003X'003 ii~I ~~~SOURCE1 ~~ '003 ~2~~'iiJ1Ij 003 DRAIN 2 003 x G, 0, /11 111111' 033 003 x ~.-r--.J ~~; ~ ~ '\ SOURCE 2 .003)( .003 s, CT00411i PCOO261 I ABSOLUTE MAXIMUM RATINGS (TA ':' 25·C unless otherwise specified) Drain-Source and Drain-Gate Voltag~s (Note 1) .................... ; ........................ 60V Drain Current (Note 1) .................................... 50mA Gate-Gate Voltage ........................................... ±60V Storage Temperature .... , ................. -65·C to +200·C Operating Temperature ................... - 55·C to + 150·C Lead Temperature (Soldering, 10sec) .............. + 300·C ONE SIDE BOTH SIDES SCHEMATIC DIAGRAM ~~-----+--i-CASE 08000311 Power Dissipation (Note 3) ........ Derate above 25·C................ ORDERING INFORMATION* To-71 IT500 WAFER IT500/W DICE IT500/D IT501 IT501/W IT501/D IT502 IT502/W IT502/D IT503 IT503/W IT503/D IT504 IT504/W IT504/D IT505 IT505/W IT505/D 250mW 3.8mWI"C 500mW 7.7mW/oC NOTE 1. Per transistor. NOTE 2. Due to the non·symmetrical structure of these devices, the drain and source ARE NOT interchangeable. NOTE 3. @ 85°C free air temp. 'When ordering wafer/dice refer to Section 10, page 10-1. 2-87 Note: All typical values have been guaranteed by characterization and are not tested: ·D~Dlb ',' ',f ELECTAICAL CHA'RACTEFUSTIcS (@ 25°C unle~s' otherwise ',. '.;. specified) ., ", ", ., , LIMITS SYMBOL CHARACTERISTICS 1EST CONDITIONS UNIT MIN MAl!- =125°C IGSS Gate Reverse Current BVGSS Gate-Source Breakdown Voltage VGS(off) Gate-Source Cutoff Voltage VGS Gate-Source Voltage. IG Gate Operating Cun:ent . ITA YGS = -20V, "DS .' =: 0 IG = -l/lA, VOS= 0 -60 VOS = 20V, 10 = lnA -0.7 -100 pA -5 nA -4 V -0.2. -3.8. '. -5 VOG = 50V, 10 = 200/lA ITA = 125°C loss Saturation Drain Cun:ent. (Note 1) VOS = 20V, VGS = 0 0.7 9fs Common-Source Forward Tr!\nsconductance (Note 1) . VOS = 20V, VGS = 0 1000 9fs Common-Source Forward Transconductance (Note 1) VOG = 20V, 10 = 200/lA 700 pA -5 nA 7 rnA 4000 - 1600 1= 1kHz gas Common-Source 'Out)'rut Conductance VOS = 20V, VGS" 0 gas Common-Source' ,Output Conductance Vos .. 20V, 10 ~ 200/lA Cg lg2 Gate to Gate Capacitanca (Note 4) VGI = VG2 = 10V Cis. Common-Source Inpul Crss Common-Source Reverse Transler Capacitance (Note 3, 4) NF Spot Noise Figure (Not~ 4) Capactt~nce /lS 1 0.025 3.5 (Note 4) 1= lMHz pF 7 pF 0.5 VOS = 2OV; VGS = 0 en I = 100Hz, RG = 10Mn .Equivalent Input Noise. Voltage (Note 4) IT500 SYMBOL CHARACTERISTICS IT501 0.5 dB 1= 10Hz 0.Q35 1= 1kHz 0.010 IT502 IT503 IT504 /lV .1Hz IT505 TEST CONDITIONS UNIT MIN MAX MIN MAX MIN MAX MIN MAX MIN MAX MIN MAX IG1-IG2 Differential Gale Cun:ent VOG= 20V, 10 = 200/lA 10SSl -I05S2 Saturation' Drain Cun:ent Ralio. (Note 1) VOS = 20V, VGS = OV 9fsl / gis2 Transconductance Ratio (Note 1) VGS1-VGS2 Differential Gate-Source Voltage AVGS1-VGS2 Gate-Source Differential Voltage + 125°C f= 1kHz VOG= 20V 10" 200/lA 5 5 5 5 10 15 0.95 1 0.95 1 0.95 1 0.95 1 0.9 1 0.85 1 0.97 1 0.97 1 0.95 1 0.95 1 0.90 1 0.85 1 5 5 10 15 25. 50 TA = 25"C Te" 125"C 5 10 20 40 100 200 TA = -55"C Te=25"C 5 10 20 40 100 200 /mV /lVrC AT Change with Temp. (Note 2, 4) Common Mode Rejection Ratio (Note 4) CMRR·· A Voo = 10V, 10 = 200/lA 120 120 120 •• CMRR = 20 log10AV001 A [Vgsl-Vgs21, AVOO = 10/-20V NOTES: nA 1. 2. 3. 4. Pulse lest required, pulsewidth = 300j.lS, duty cycle", 3%. Measured at end points, TA and Te. With case guarded Crss is typically < 0.15pF. For design relerence only, not 100% tested. 2-88 Note: All typical values have been guaranteed by characterization and are not tested- 120 120 120 dB IT500-IT!$05 TYPICAL PERFORMANCE CHARACTERISTICS OUTPUT CHARACTERISTICS GATE LEAKAGE .." r i yt ~ IO·~A I-- u 7 _v r 20"·30 40 SO -a.tv vOS·-O.1V vos·-O.IV VOS·-UN VOl- -1.2V Yos. -ttY vos' -!.IV 0 o 10 VDII-DRAIN-GATE VOLTAGE - VOLTS 10 0P002211 TYPICAL CAPACITANCE VS. GATEoSOURCE VOLTAGE OUTPUT CHARACTERISTICS 10 ~ Z.O 1 ... I 1,\ B 1.5 w :il ~ ~ c ~ ~ 0 1"-. a I I I I . VD~:~_ l- f~ • \ 0." I ~ ~ z r\ ~ '0 -0.& -1.0 -1.5 -2.0 = -- DRAIN TO SOURCE VOLTAGE 0P002111 2.0 I VOS. , 1,·0 I 0.0 I VOS. -D.N , 1.5 ~ 10 vo.Jov ~ 2.0 TA· 25~C o -2.1 to. ...~ o -2 -t ... ... -10 Yos-GATE SOURCE YOLTAGE-VOLTS Vos-GATE-8OURCE VOLTAGE-VOLTS OP~1I OPOO2311 2-89 Note: All typical values have been guaranteed by characterization and are not tested. PI JlltS.c);,' t: Dual N-Channel JFET Switch ~ FEATURES • • • D~nll:l . ',' ' . . ,, CHIP TOPOGRAPHY Specified Matching Ch,aracterlstics High Gain Low "ON" Resistance, 6033 PIN CONFIGURATION 1'0-71 30 CTOO4011 ABSOLUTE MAXIMUM RATINGS G. (25°C Unless otherwise noted) Gate-Drain crGate-Source Voltage .................... -40V Gate Current .............. , ............ , ..................... 50mA Gate-Gate Voltage ................... ;·....................... ±80V Storage Temperature Range ............. -65°C to +200°C Operating Temperature Range ......... -55°C to +175°C Lead Temperature (Soldering; 10sec) .............. +300°C ONE SIDE BOTH SIDES 0. PCOO0511 ORDERING INFORMATION* Power Dissipation .................... . Derate above 25°C .............. .. 325mW 2.2mW'oC 650mW 4.3mW'oC ·When ordering wafer/dice refer to Section 10, page 10-1. ELECTRICAL CHARACTERISTICS TEST CONDITIONS (25°C unless otherwise noted) LIMITS SYMBOL PARAMETER TEST CONDITIONS UNIT MIN IGSSR Gate·Reverse Current VGS = -20V, Vos = 0 ITA = 150·C MAX -100 pA -200 rnA -3 V lOSS Saturation Drain Current (Note 1) = -lIlA, VOS = 0 = 15V, 10 = InA VOS = OV, IG = 2mA VOS = 15V, VGS = 0 rOS(on) Static Drain Source ON Resistance 10= 1rnA, VGS=O gts Common-Source Forward gos Crss Common-Source Reverse Transfer CapaCitance f=IMHz 3 Ciss Common-Source Input CapaCitance (Note 4) 12 NF Spot Noise Figure (Note 4) f=10Hz, Rg =IM 1.0 en Equivalent Short Circuit Input Noise Voltage (Note 4) f= 10Hz 50 BVGSS Gate-Source Breakdown Voltage VGS(off) Gate-Source Cutoff Voltage VGS(I) Gate-Source Voltage IOSS1 -IOSS2 IG '-40 VOS -0.5 1.0 5 f= 1kHz 7500 Transconductance (Note 1) f = 100MHz (Note 4) 7000 Common-Source Output Conductance f= 1kHz Saturation Drain Current Ratio (Notes I, 2) VOG = 15V, 10 = 2mA VOS = 15V, VGS = 0 2-90 Note: All typical values have been guaranteed by characterization, and are' not tested;' ;' 30 rnA 100 n 12,500 I'S 45 0.95 I pF dB nV - v'Hz - IT550 ELECTRICAL CHARACTERISTICS (CO NT.) LIMITS SYMBOL UNIT' TEST CONDITIONS PARAMETER MIN IVGS1-VGS2 1100dB CHIP TOPOGRAPHY 4003 TO-71 TO·78 :=x::: . ', llc---;;CO;;L~LE~C;:;;To;R~'~1:J:i.;:;:I-:o=-""";==-"SOLATION COLLECTOR t2 TYP 2 PLACES .0045 x .0045 .025 .0035 J .0035 BASE '2 TYP 2 PLACES : : : OIAMETER BASEj1 EMITTER It2 .0040 TYP 2 PLACES .0030 EMITTER"1 DIAMETER CT003511 PCOO081f ABSOLUTE MAXIMUM RATINGS (TA = 25·C unless otherwise noted) Collector-Base Voltage (1) .................................. 45V Collector-Emitter Voltage (1) ............................... 45V Collector-Collector Voltage .................................. 45V Emitter-Base Voltage (1) ...................................... 6V Collector Current (1) ....................................... 20mA Storage Temperature Range ............ -65·C to +200·C Operating Temperature Range ......... -55·C to + 150·C Lead Temperature (Soldering, 10sec) .............. + 300·C Power Dissipation (Tc = 25·C) ......................... 800mW Derate above 25·C ........................... 14mW I"C ORDERING INFORMATION* TO-71 T0-78 WAFER DICE LM114 LM114H LM114/W LM114/D LM114A LM114AH 'When ordering wafer/dice refer to Section 10, page lCJ.:-1. ELECTRICAL CHARACTERISTICS (NOTE 2) MAXIMUM LIMITS PARAMETER SYMBOL TEST CONDITIONS LM114A, AH LM114, H UNIT VSEl-2 Offset Voltage ll1A:$ Ic:$ l0011A 0.5 2.0 mV IS·2 Offset Current IC - 1011A 2.0 10 nA Ie = lIlA 0.5 40 nA Bias Current IlVSEIV Offset Voltage Change IlVSEIV Offset Current Change Ie ~ 1011A 20 Ie -lIlA 3.0 OV:$ VCS :$ VMAX, IC = 1011A 0.2 1.5 mV 1.0 4.0 nA 2-102 Note: All typical values have been guaranteed by characterization and are not tested. LM114/H, LM114A/ AM ELECTRICAL CHARACTERISTICS (CONT.) MAXIMUM LIMITS SYMBOL PARAMETER AVBE/AT Offset Voltage Drift AIBl_2/ AT Offset Current TEST CONDITIONS -55·C S TA S + 125·C, Ic = 101lA AlB/AT Bias Current ICBO Collector-Base Leakage Current VCB=VMAX ITA = 125·C (Note 3) ICEO Collector-Emitter Leakage Current VCE = VMAX. VEB = OV Collector-Collector Leakage Current Vcc= VMAX ITA = 125·C (Note 3) NOTES: LM114, 10 12 50 60 150 nA 10 nA 50 50 50' 200 50 200 nA 100 300 pA 100 300 nA 1: Per transistor. 2: These specifications apply for TA = + 25·C andOV S VCB S VMAX. unless otherwise specified. For the LM114 and LMI14A. VMAX = 30V. 3. For desi!!n reference only. not 100% tested. 2-103 Note: All typical values have been guaranteed by characterization and are not tested. UNIT H 2.0 10 ITA = 125·C (Note 3) IC1-C2 LM114A, AH ,NrC pA pA ..... '., '10.' -.·.S,·' .'. ····O·.ru • . .,o~'·.···· , M118 i Diode Protected N-Channel i.' . ,. " . , ! ., • Enhancement· Mode MOSFET General' "purpose Amplifier FEATURES CHIP- TOPOGRAPHY • Log IGSS . • Integrated Zener Clamp 1003 for Gate Protection PIN CONFIGURATION T0-72 m G .0025 x .0029 .0035 .0039 .J...L+-'----'\,-'O .0030 , .()()28 IS BODY .0040 .()()38 CTOO451t ABSOLUTE MAXIMUM RATINGS eGo (TA = 2S0C unless otherwise noted) PGOO2711 Drain to Source Voltage .................................... 30V Gate to Drain Voltage ....................................... 30V Drain Current ................................................. SOmA Gate Zener Current ..................................... ±0.1 mA Storage Temperature Range ............ -6SoC to + 200°C Operating Temperature Range ......... -SsoC to + 150°C Lead Temperature (Soldering, 10seo) .............. + 300°C Power Dissipation ......•.................................. 22SmW Derate above 2SoC .......................... 2.2mWrC ORDERING INFORMATION* 'When ordering wafer/dice refer to Section 10, page 10-1. DEVICE SCHEMATIC tp:: 4 0SD00411 ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted, Vas = 0) M116 SYMBOL PARAMETER TEST CONDITIONS UNIT MIN MAX vGS = 2OV, 10 = 100llA, ves = 0 100 I 200 n rOS(on) Drain Source ON Resistance VGS(lh) Gate .Threshold Voltage VGS = VOS, 10 = 10llA, VBS = 0 BVOSS. Drain-Source Breakdown Voltage 10 = lIlA, VGS = VBS· 0 30 BVsos Source-Drain Breakdown Voltage IS=lllA, VGO=VBO=O 30 BVGBS Gate-Body Breakdown Voltage IG - 10llA, VSB = VOB = 0 30 10(OFF) Drain Cutoff Current VOS = 20V, VGS = VBS = 0 10 IS(OFF) Source Cutoff Current VSO - 20V, VGO = VBO = 0 10 IGSS Cgs Gate-Body Leakage VGS =0 100 pA Gate-Source (Nole 1) VGe = Voe = Vse = 0, f = 1MHz Cgd Gate-Drain Capacitance. (Note 1) Body Guarded Cdb Drain-Body Capacitance (Note 1) VGe = 0, Voe 2.5 2.5 7 pF Ciss Input Capacitance (Note 1) VGB=O, Voe=10V, Ves-O, f-1MHz VGS = 10V, = 20V, NOTE 1: For design reference only, not 100% tested. 2-104 Note: All typical values have been guaranteed by characterization and are not tested. 10 = 100llA, Ves = 0 VOS = VBS = 10V, f= lMHz. 1 5 V 60 10 nA U200-U202 N-Channel JFET Switch FEATURES APPLICATIONS • • • • • Low Insertion Loss Good OFF Isolation PIN CONFIGURATION Analog Switches Commutators Choppers CHIP TOPOGRAPHY 5001 TO-18 .00135 FULL RADIUS .00175 (DRAIN) )( .oo~ .0026 (SOURCE) CT000911 o PC000611 ABSOLUTE MAXIMUM RATINGS ORDERING INFORMATION* TO-18 U200 U200/W DICE U200/0 U201 U201/W U201/0 U202 U202/W U202/0 WAFER (TA = 25°C unless otherwise noted) Gate-Drain or Gate-Source Voltage ................. ,,' -30V Gate Current ......... "., .................................... 50mA ~ Storage Temperature Range ......... , .. -65°C to + 200°C ~ Operating Temperature Range ......... -55°C to + 150°C Lead Temperature (Soldering. 10sec) "."" ....... + 300°C Total Device Dissipation (TC = 25°C) " ........ ",,: .... 1.8W Derate above 25°C ... " ...................... 10mWrC 'When ordering waler I dice rlller to Section 10, page 10-1. ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted) U201 U200 SYMBOL PARAMETER UNIT MIN IGSS Gate Reverse Current VGSS = 20V, Vos = 0 ITA = 150'C BVGSS Gate-Source Breakdown Voltage IG = -1jJ.A, VOs=O -30 VGS(off) Gate·Source Cutoff Voltage VOS = 20V, 10 = 10riA -0.5 10(011) Drain Cutoff Current VOS = 10V, VGS = -12V lOSS ITA = 150'C Saturation Drain Current (Note 1) VOS = 20V, VGS = 0 rds(on) Drain-Source ON Resistance VGS = 0, 10 = 0 Ciss Common-Source Input Capacitance (Note 2) VOS = 20V, VGS = 0, erss Common-Source Reverse Transfer Capacitance (Note 2) VOS=O: VGS= -12V NOTES: U202 TEST CONDITIONS MAX MIN -1 -1 nA -1 -1 -1 "A -30 -3 -1.5 25 -30 -5 -3.5 1 15 75 -10 1 1 1 f= 1kHz MIN .MAX -1 1 3 MAX 30 1 jJ.A lPO rnA ohm 150 7$ 50 30 30 30 8 8 8 f=IMHz 1: Pulse test required, pulsewidth = 300"., duty cycle S 3%. 2. For design reference only, not 100% tested. 2-105 Note: All typical values have been guaranteed by characterization and are not tested. V nA pF U231-U235, !=: General Dual ·N..;ehannel JFET Purpose Amplifier fJ 9 FEATURES APP.LICATIONS • • • Good Matching Characteristics PIN CONFIGURATION Differential Amplifiers Low and Medium Frequency Amplifiers CHIP TOPOGRAPHY 6037 ·10-71 ALL BOND ~AOS ARE 4)( 4 MIL. CT004811 ABSOLUTE MAXIMUM RATINGS ORDERING INFORMATION* (TA = 25·C unless otherwise noted) Gate-Source or Gate-Drain Voltage (Note 1) •....... -50V Gate Current (Note 1) .... ; ........................... : .... 50mA Storage Temperature Range ............ -65·C to + 200·C Operating Temperature Range ......... -55·C to + 200·C Lead Temperature (Soldering, 10sec) .............. +300·C Power Dissipation ......................................... 300mW Derate above 25·C .......................... 1.7mWI"C ·When ordering wafer/dice refer to Section 10, page 10-1. ELECTRICAL CHARACTERISTICS TEST CONDITIONS: 25·C unless otherwise noted. LIMITS SYMBOL PARAMETER TEST CONDITIONS UNIT MIN -100 pA -500 nA -0.5 -4.5 V -0.3 -4.0 IGSS Gate Reverse Current BVGSS Gale-S()urce Breakdown Vollege IG -IlIA, VOS = 0 -50 VGS(ofI) Gate-Source Cutoff Voltege VOS = 20V, 10 - InA VGS Gate-SoUrce Voltage IG Gate Operating Current ' loSS Saturation Drain Current (Note 2) Vos - 20V, VGS - 0 9fs Common-Source Forward Transconductance (Note 1) Vos = 2OV, VGS - 0 Sf. Common-Source Forward Transconductance (Note 1) Voo = 20V, 10 = 2oo11A 90s 90s Common-Source Output Capacitance Vos=20V, VGS = 0 CommOn-SourClil Output Conductance Voo - 20V, 10 - 2001iA Q.. Common-Source Input CapaCitance Crss Common-Source Reverse Transfer Capacitance I TA = 150·C MAX VGS =-30V, Vos ··0 -50 en I pA VOG = 20V, 10 - 20011A -250 nA 0.5 5.0 rnA f= 1kHz 1000 3000 f-looMHz (Note 4) 1000 TA = 125·C /.IS . 600 f= 1kHz 1600 35 10 6 f-1MHz 2 Vos = 2OV, VGS - 0 Equivalent Short CircuH Input Noise Voltage (Note 4) 2-106 Note: All typical values have been guaranteed by characterization and are not tested. f= 100Hz 80 pF nV -VHz .D~OIL U231-U23S ELECTRICAL' CHARACTERISTICS:tCONT.) SYMBOL MATCHING CHARACTERISTICS = 20V, IIGI -IG21 Differential Gate Current (Note 4) VOG (10551- 10552) Saturation Drain Current Match (Note 2, 4) V05 = 20V, VG5 = 0 10551 IVG51-VG52 1 6.IVGS1- VG52 1 6.T -glsl -1gosl-gos21 NOTES: 1. 2. 3. 4. 10 = 2001lA Differential Gat&-Source Voltage 125°C TA = 25°C 1.0 10 10 10 10 nA 5 5 5 10 15 % 5 10 15 20 25 mV 10 25 50 75 100 TA = 25°C Gate-Source Voltage Differential Diift (Note 3) TB-125°C jJvrc VOG (glsl-91s2) U231 U232 U233 U234 U235 UNIT MAX MAX MAX MAX MAX TEST CONDITIONS = 20V, 10 = 2001lA f~ Transconductance Match (Note 2) Differential OUtput Conductance Per transistor. Pulse test required, pulse width - 3OOjJs, duty cycle Measured at end pOints, TA and TB Eor design reference only, not 100% tested. TA = -55°C TB = 25°C ~ 3%. 2-107 Note: All typical values have been guaranteed by characterization and are not tested. 1kHz 10 25 50 75 100 3' 5 5 10 15 % 5 5 5 5 5 jJS 'too I 0287 Dual N-Channel JFET High Frequency Amplifier . FEATURES .U~UI6 ;".;" • '... c',' . CHIP TOPOGRAPHY -9'.). 5OO0psFrom DC to 100MHz - Matched Vas. 91. and 90s ' PIN CONFIGURATION\ T0-99 ABSOLUTE MAXIMUM .RATINGS (TA .: 2S·C unless otherwise noted) G, 0, Gate-Drain or Gate-Source Voltage ·(Note 1) ........ -25V Gate Current (Note 1) .................•................... 50mA Storage Temperature Range ............ -65·C to + 200·C Operating Tempe;ature Range ......... -55·C to + 150·C Lead Temperature (Soldering, 10sec) .. , ........... +300·C S, PC00151i 'ORDERING INFORMATION* ONE SIDE Power Dissipation (TA =85·C) .•.......•............ ,... Derate above 25·C ...••.•...... ·When ordering wafer/dice refer to Section 10, page 10-1. ELECTRICAL CHARACTERISTICS SYMBOL 250mW 3.8mW 500mW 7.7mWrC rc (25·C unless otherwise noted) PARAMETER TEST CONDITIONS Gate Reverse Current IGSSR BOTH SIDES MIN MAX UNIT. VGS -15V, Vos = 0 jTA = 150°C ;...100 pA -250 nA BVGSS Gate-Source Breakdown Voltage IG - -lpA, Vos- 0 -25 VGS(off) Gate-Source Cutoff Voltage Vos-l0V, io-lnA -1 -5 5 40 V loss Saturation Drain Current (Note 2) Vos -10V, VGS - 0 91. 91s Common-Source Forward Transconductance Vos = 10V, 10 - 5mA I-1kHz 5000 10,()O( Coinmon.&>urce Forward Transconductance Voo - 10V, 10" 5mA 1= 100MHz (Note 3) 5000 10,oo! gas Common-Source Output Conductance Vos = 10V, 10 = 5mA I-1kHz 150 gOBS Common-Source Output Conductance 1= 100MHz 150 C;s. Common-Source Input Capacitance c,i. Common.&>urce Reverse Transfer Capacitance Voo -10V, .10 - 5mA f-1MHz e;; Equivalent Input Noise Voltage (Note 3) f-l0kHz -IO$S2 Drain currerit Retio at Zero Gate Voltage (Note 2) VOS" 10V, VGS - 0 IVGS1-VGS2 1 Differllntlal Gate-Source Voltage 9181 9102 T~nsconductance Ratio 1900 1-90021 Differential Output Conductance IOSS1 mA jill 5 1,2 nV 30 0.85 0.85 f-lkHz NOTES: 1. Per transIstor. 2. Pulse test nsquired, pulse width = 300jlll, duty cycle $ 3%. 3. For design reference only, not 100% tested. 2-108 Note: All typical values have been guaranteed by characterization and are not tested. - ~ 1 100 Voo -10V, 10 = 5mA pF mV 1 20 jill .D~DIL U304-U306 P-Channel JFET Switch FEATURES APPLICATIONS • • • • • • Low ON Resistance ID(off) < 500pA Switches directly from TTL Logic (U306) PIN CONFIGURATION cCot o t c I Analog Switches Commutators Choppers CHIP TOPOGRAPHY _--.021--_ TO·18 - lJ~111!11~'l= .0027 (0685) '~~!':~l 0 x 0037 (.0939) .0027 (.0685) I NOTE: SUBSTRATE IS GATE CT00491! o ABSOLUTE MAXIMUM RATINGS G.C (TA = 25·C unless otherwise noted) Gate-Drain or Gate-Source Voltage (Note 1) .......... 30V Gate Current ................................................. 50mA Storage Temperature Range ............ -65·C to + 200·C Operating Temperature Range ......... -55·C to + 150·C Lead Temperature (Soldering, 10sec) ................. 300·C Power Dissipation ......................................... 350mW Derate above 25·C .......................... 2.8mW PCOO0111 ORDERING INFORMATION* To-18 WAFER DICE U304 U304/W U304/D U305 U30S/W U305/D U30S U30S/W U30S/D rc 'When ordering wafer/dice refer to Section 10. page 10-1. ELECTRICAL CHARACTERISTICS TEST CONDITIONS: 25°C unless otherwise noted. U304 SYMBOL PARAMETER U305 U306 TEST CONDITIONS UNIT MIN MAX MIN MAX MIN MAX laSSR Gate Reverse Current Vas = 20V, Vos = 0 ITA = 150·C Gate·Source Breakdown Voltage la = lIlA. VOS - 0 VaS(off) Gate·Source Cutoff Voltage VOS(on) Drain·Source ON Voltage VOS= -15V. 10= -11lA vas 0, 10 15n:A.. \~~04J, 10 = - 7mA (U30S), 10 = -3mA (U306) lOSS Saturation Drain Current (Note 1) VOS=-15V, Vas=O Drain Cutoff Current VOS = -15V, VGS = 12V (U304) VGS - 7V (U305) VGS = 5V (U306) ITA = 150·C r05(on) Static Drain·Source ON Resistance VGS=OV, 10= -1mA rds(on) Drain·Source ON Resistance VGS=OV, 10=0 Ciss Common·Source Input CapaCitance (Note 2) VOS= -15V, VGS=O Crss Common·Source Reverse Transfer Capacitance (Note 2) VOS = 0, VGS = 12V (U304) Vas = 7V (U305), VGS= 5V (U30S) 500 500 pA 1.0 1.0 1.0 IlA 30 BVass 10(0ff) 500 5 f=1MHz 2-109 Note: All typical values have been guaranteed by characterization and are not testE!(!. 10 3 -1.3 -30 f= 1kHz 30 30 6 1 -0.8 -15 -60 4 V -0.6 -25 rnA -500 -500 -500 pA -1.0 -1.0 -1.0 IlA 85 110 175 85 110 175 n n 27 27 27 7 7 7 -90 -5 pF PI 8 '" .j :11. D~DlL. U304--U306 . . .. .. . ELECTRiCAL CHARACTERiStiCS (CONT.) ,'" = U304· SYMBOL PARAMETER U304 Turn-ON pelay Time (Nole 2) Ir Rise Time (Note 2) lct(oIf) Turn-OFF Delay Time (Nole 2) If Fall Time (Nole 2) U306 UNIT MIN Id(on) U305 TEST CONDITIONS U305 MAX MIN MAX MIN MAX U306 -6V -6V 20 25 25 7V 5V 15 25 35 743n laOOn 10 15 20 0 0 VGS(on) 0 -15mA -7mA -3mA 10(on) 25 ,40 60 Voo -10V VGS(off) 12V 560n RL NOTES: 1. Pulse· tesl pulsewidlh ~ 300jtS, duty cycle S 3%. 2. For design reference only, nol 100% lested. 2-flo Nole: All typical values have been guaranleed by characterizalion and are nol lested. ns .U~UIL! U308-U310 N-Channel JFET High Frequency Amplifier .. Co) o FEATURES • • • • CHIP TOPOGRAPHY High Power Gain Low Noise Dynamic Range Greater Than 100dB Easily Matched to 7SU Input ~-1 x .0068 G .0021 .0058 PIN CONFIGURATIONS TO-52 NOTE: SUBSTRATE IS GATE TYP 0035 x 0035 2 PLACES .00,35 .0025 CT00501I ABSOLUTE MAXIMUM RATINGS (TA = 25·C unless otherwise noted) Gate-Drain or Gate-Source Voltage _______________ •.•.. -25V o Gate Current ...............................••......••........ 20mA Storage Temperature ...................... -65·C to +200·C Operating Temperature Range ......... - 55·C to + 150·C lead Temperature (Soldering. 10sec) .............. +300·C Power Dissipation .....•.•..•.•.•......•....•.•.•.••.•.•.•. 500mW Derate above 25·C .••••.•••..•.•.•......•.•..• 4mW S PC001211 rc ORDERING INFORMATION* TO-52 WAFER DICE U30S U30S/W U30S/0 U309 U309/W U309/0 U310 U310/W U310/0 ·When ordering wafer/dice refer to Section 10, page 10-1. ELECTRICAL CHARACTERISTICS (25·C unless otherwise noted) U30a SYMBOL PARAMETER U310 U309 TEST CONDITIONS MIN TYP MAX MIN TYP MAX MIN IGSS BVGSS VGS(off) loSS VGS(f) 9tg Gate Reverse Current trA = 125°C Gate-Source Breakdown Voltage Gate-Source Cutoff Voltage Saturation Drain Current (Note 1) Gat....Source Forward Voltage Common-Gate Forward Transconductance (Note 1) VGs= -15V VGS=O -150 pA -150 -150 nA -25 -25 Vos=10V,lo¥lnA -1.0 -6.0 -1.0 -4.0 -2.5 VOS = 10V, VGS = 0 12 60 10 30 17 -6.0 24 1.0 10 17 10 V 60 rnA 1.0 V 17 iJS 1= 1kHz Cgd Cgo Gate-Source Capacitance VOS= 10V 1= lMHz (Note 2) en Equivalent Short Circuit Input Noise Voltage VOS-l0V, 10-10mA I-100Hz (Note 2) VGS - -10V, 12 1.0 Common Gate Output Conductance Drain-Gate. Capacitance gogo -150 -150 -25 . VOS=10V, 10= lOrnA UNIT MAX -150 IG = -lILA, Vos =0 IG = lOrnA, VOS = 0 TYP 2-111 Note: All typical values have been guaranteed by characterization and are not tested. 250 250 250 2.5 2.5 2.5 5.0 5.0 5.0 iJS pF 10 10 10 -nV v'Hz IIO~OI6 ELECTRICAL CHARACTERISTICS (CO NT.) U3d9 U308 SYMBOL PARAMETER U310 UNIT TEST CONDITIONS MIN TYP MAX MIN TYP MAX MIN T,(P MAX Common-Gate Forward Transconductance 91g Ie 100MHz 15 15 15 1- 450MHz 14 14 14 1= 100MHz 0.18 O.Hi 0.18 ,/.IS Common-Gate Output Conductance gog. Gpg Common-Gate Power Gain Vos'= 10V, 1=450MHz 10= lOrnA I -100MHz 14 16 14 16 14 1=450MHz 10 11 10 11 10 (Note 2) NF Noise Figure 0.32 0.32 0.32 16 11 f= 100MHz 1.5 2.0 1.5 2.0 1.5 2.0 f=450MHz 2.7 3.5 2.7 3.5 2.7 3.5 NOTES: 1. Pulse test duration = 2ms. 2. For design reference only, not 100% tested. 2-112 Note: All typical values have been guaranteed by characterization and are not tested. dB .U~UI6I U401-U406 Dual N-Channel JFET Switch FEATURES • • • • CHIP TOPOGRAPHY, Minimum System Error and Calibration Low Drift With Temperature Operates From Low Power Supply Voltages High Output Impedance Cb 6037 PIN CONFIGURATION TO-71 "LL BONO PADS ARE' x • MIL. CTOOO711 ABSOLUTE MAXIMUM RATINGS (TA = 25·C unless otherwise noted) S, Gate-Drain or Gate-Source Voltage ...................... 50V Gate Current (Note 1) ..................................... 10mA Storage Temperature Range ............ -65·C to + 200·C Operating Temperature Range ......... -55·C to + 150·C Lead Temperature (Soldering, 10see) .............. + 300·C PC000511 ORDERING INFORMATION* ONE SIDE BOTH SIDES 300mW 2.6mWI"C SOOmW SmW/·C Power Dissipation (TA = 8S·C) ... . Derate above 2S·C ............... . 'When ordering waler/dice reler to Section 10, page 10-1. ELECTRICAL CHARACTERISTICS TEST CONDITIONS: 25·C unless otherwise noted. U401 SYMBOL PARAMETER U402 U403 U404 U40S U406 TEST CONDITIONS UNIT MIN MAX MIN MAX MIN MAX MIN MAX MIN MAX MIN MAX BVGSS Gate-Source Breakdown Voltage Vos - 0, IG = -lIlA IGSS Gate Reverse Current (Note 2) VOS = 0, VGS = -30V VGS(off) Gate-Source Cutoff Voltage VOS -15V, 10 -InA VGS(on) Gata-Source Voltage (on) VOG loSS Saturation Drain Current (Note 3) VOS = 10V, VGS = 0 IG Operating Gate Current VOG - 15V, 10 = 200jiA (Note 2) .1 = 15V, -50 -50 -25 -50 -25 -50 -25 -50 -50 -25 -25 V -25 pA -.5 -2.5 -.5 -2.5 -.5 -2.5 -.5 -2.5 -.5 -2.5 -.5 -2.5 V -2.3 10 = 200jiA -2.3 -2.3 -2.3 -2.3 -2.3 0.5 10.0 0.5 10.0 0.5 10.0 0.5 10.0 0.5 10.0 0.5 10.0 TA-125°C rnA -15 -15 -15 -15 -15 -15 pA -10 -10 -10 -10 -10 -10 nA BVG1-G2 Gate-Gate Breakdown Voltage VOS - 0, VGS - 0, IG - ±ljiA ±50 gfs Common-Source Forward Transconductance (Note 3) VOS· 10V, 2000 7000 2000 7000 2000 7000 2000 7000 2000 7000 2000 7000 gos Common-Source Output Conductance VGS=O 91s Common-Source Forward Transconductance 90s Common-Source Output Conductance Voo-15V, Cis. Common-Source Input Capacitance (Note 6) 10 = 2001lA ±50 ±50 ±50 ±50 ±50 V 1= 1kHz 20 20 20 20 20 20 I'S 1000 1600 1000 1600 1000 1600 1000 1600 1000 1600 1000 1600 1= 1kHz 2.0 2.0 2.0 2.0 2.0 2.0 B.O B.O B.O 8.0 B.O B.O I=IMHz Crss Common-Source Reverse Transler capaCitance (Note 6) pF 3.0 2-113 Note: All typical values have been 9uaranteed by characterization and are not tested. 3.0 3.0 3.0 3.0 3.0 I U40'.U,~~~ ,,' ,'" ; '4- ELECTRICAL CHARACT':FlISTICS (CONT.) ,i::» '. SYMBOL U401 PARAMETER U402 'U403 U404 U405 TEST CONDITIONS MIN MAX MIN MAX MIN MAX ,.IN MAX. MIN U~ MAX MIN MAX UNIT en Equivalent Short-Circuit Input Noise Voltage VOS·15V. VGS=O CMRR Common-Mode Rejection Ratio Voo - 10 \0 20V, 10 - 200"" (Note 5, 6) IVGS1- VGS21 Differential c Gate~$ource Voltage Voo = 10V. 10 = 200"" 5 10 10 15 20 40 mV Gate-Sour"". Voltage Dlfferenti!ll Drift (Not!i 4) ITA = '-55'C Voo = 10V. T = +25'c' 10 = 200"" Tg = + 125'(; 10 10 25 25 40 80 pV/'C ""'GS1-VGS21 Ll.T I f-10Hz (Note 6) 20 95 95 NOTES: 1. Per transistor. 2. Approximately doubles for every 10'C increase in TA. 3. Pulse test duration = 300"s; duty cycle :;; 3%. 4. Measured at end points. TA, TB. Tc. 5. CMRR=.20 log10 [ 20 . AVoo , ] . AVoo = 10V. AIVGS1"VG82' 6. For design reference only, not 100% ·tested. 2-114 Note: All typical values have been guaranteed by characterization and are not tested. 20 20 95 20 20 90 .1I5 nV -VRi dB U1897~U1899 N-Channel JFET Switch FEATURES APPLICATIONS • • • Low Insertion Loss No Error or Offset Voltage Generated By Closed Switch PIN CONFIGURATION Analog Switches, Choppers CHIP TOPOGRAPHY 5001 TO-92 .00135 FULL RADIUS q I L :00175 (DRAIN), 0072 NOTE ~ --1 ~ .016 o S ~i'~~:::~ATE ~~ ---I .0025 x .0029 .0035 .0026 (SOURCE) Cro05,'1 G PCO01311 ABSOLUTE MAXIMUM RATINGS ORDERING INFORMATION* TO-92 U1897 TO-92-18 U1897-18 WAFER U1897/W (TA = 25°C unless otherwise noted) Gate-Drain or Gate-Source Voltage _................... -40V Forward Gate Current ...................................... 10mA • Storage Temperature Range ............ -55°C to + 150°C Operating Temperature Range ......... -55°C to + 135°C lead Temperature (Soldering, 10sec) .............. + 300°C Power Dissipation ...................................... ; .. 350mW Derate above 25°C .......................... 3.2mW fOC DICE U1897/D U1898 U1898-18 U18,98/W U1898/D U1899 U1899-18 U1899/W U1899/D 'When ordering wafer/dice refer to Section 10, page 10-1_ ELECTRICAL CHARACTERISTICS TEST CONDITIONS: 25°C unless otherwise noted U1897 SYMBOL' PARAMETER U1898 U1899 UNIT TEST CONDITIONS MIN MAX MIN BVGSS Gate-Source Breakdown Voltage IG = -1 #-lA, VOS = 0 IGSS Gate Reverse Current VGS = -20V, VOS = 0 -400 -400 -400 1000 Drain-Gate Leakage Current VOG = 20V, IS = 0 200 200 200 ISGO Source-Gate Leakage Current VSG= 20V, 10=0 200 200 200 10(011) Drain Cutoff Current VOS - 20V, VGS= -12V (U1B97) 200 200 200 ITA = B5'C -40 MAX MIN' MAX VGS = -BV (U1B9B) VGS = -6V (U1B99) -40 10 10 -7.0- 10 -5.0 nA VOS = 20V, 10 = lnA -5.0 lOSS Saturation Drain Current (Note 1) VOS - 20V, VGS = 0 30 VOS(on) Drain-Source ON Voltage VGS = 0, 10 = 6.6mA (U1897) 10 = 4.0mA (U1898) 10 = 2.5mA (U1899) 0.2 0.2 0.2 V rOS(on) Static Drain-Source ON Resistance 10=lmA, VGS=O 30 50 BO n Cdg Drain-Gate Capacitance VOG 5 5 5 CSg Source-Gate Capacitance VSG =20V, 10 = 0 Ciss Common-Source Input Capacitance Crss Common-Source Reverse Transfer Capacitance 15 -1.0 pA Gate-Source Cutoff Voltage Is = 0 -2.0 V VGS(oll) = 20V, -10 -40 B.O 5 5 5 f= lMHz 16 16 16 (Note 2) 3.5 3,5 3.5 VOS = 20V, VGS = 0 2-115 Note: All typical values have been guaranteed by characterization and are~ot tested. V mA pF , I U1897-U1899 ; :::» ELECTRICAL CHARACTERISTICS (CONT.) ,! ::::».. U1897 SYMBOL PARAMETER U1898 UNIT MIN MAX MIN MAX 'Id(on) Tum ON Delay Time (Note 2) Ir Rise Time (Note 2) Ioff NOTES: Turn OFF Time (Note 2) U1899 TEST CONDITIONS MIN MAX Switching Time Test Conditions 15 15 20 U1897 U1898 U1899 10 20 40 40 60 80 3V Voo 0 VGS(on) VGS(off) -12V 425n RL 6.6mA 1010nl 3V 0 -8V 3V 0 -BV non 1120n 4mA 2.5mA 1. Pulse test pulsewidth - 3001-'s; duty cycle < 3%. 2. For design reference only. not 100% tested. 2-116 Note: All typical values have been guaranteed by characterization and are not tested. ns , .O~OIl.I VCR2N/3P/4N/7N Voltage Controlled Resistors -• Col APPLICATIONS • • • • .'! z CHIP TOPOGRAPHY -... VCR2N 5001 Small Signal Attenuators Filters Amplifier Gain Control Oscillator Amplitude Control .00135 FULL RADIUS .oom (DRAIN) Z PIN CONFIGURATIONS TO·18 TO-71 r-- • .0036 -:0026 --I .01. (SOURCE) CTOO6BOI VCR7N 5007 -hD15~ :: G (3) , o PCOOO611 PC000511 .0025 )( .0025 .0035 .0035 -r T0-72 (N-Ghannel) TO·72 (P-Ghannel) .0013 FULLR .0017 CTOO69OI VCR3P 5508 ,Rrilm~'='.0025 o .0027 .016 PC004801 PCOO4701 .0037 x .0035 0 .0025 .0027 ORDERING INFORMATION* . . • NOTE: SUBSTRATE IS GATE CT007001 To-18 TO·72 WAFER DICE VCR2N - VCR2N/W VCR2N/O VCR4N - VCR4N/W VCR4N/O - VCR3P VCR3P/W VCR3P/O VCR7N VCR7N/W VCR7N/O VCR4N 5010 (4N) D(2) ~{Irr~' 'When ordering wafer/dice refer to Section 10, page 10-1. .0025 • .0025 .0035 .0035 .~:~~~ ~ NOTE: SUBSTRATE IS GATE .013 CTOO71OJ VCRllN 6019 0, --i G'lf'§§§§~tfeil ~2~~ , { - - .D39 s, .025 [ll G, ~. .0037 I _ ,.1I .0027 .0027 ..L ____..... "!-- 0, TYP. 2 PLACES Sa ~x .0035 .0025 .0025 TYP.2 PLACES CTOO1201 2-117 Note: All typical values have been guaranteed by characterization and are not tested. VtR2N/3Pf,4NI7N , :. ;'.' ' 0--1-"."0'" .'OV---i\ TG002501 0,25 WFOOO601 TCOO2601 Circuit Diagrams Figure 2: Switching Times TYPICAL PERFORMANCE CHARACTERISTICS SWITCHING TIMES VS TEMPERATURE 0123 AND 0125 (SEE NOTES 4 AND 5) toff(delay) VS IIN(PEAK) 0123 c 1.8 , 1.7 1 1.6 E :t0 . 1.5 / N ::; 1.4 c :I 1.3 Z 1.2 "0 / 1 " ' / j ,000 1100 ./ L V ~900 .. VR-O VEE --20V V+- ,OV CCUT-1OpF :I 700 ;::: V"-O VEE --20V V+o < COUT < ,0000F 0< 10UT<4mA ,ov "Zsoo ~ I- ~300 liN CPEAKI (mA) toft (1 mA. L.-1"'" ." - -- ....... >800 alOmA ~:;_0_2OV- ~t-... ! I -" 1o,,(4mA!/ 10. 100 "N I I -0 lOUT ....... i ...... ~ ~600 V 10" (dellyl TA·25°C 1.0, VIN(ON) VS TEMPERATURE 0123 -so I I 400 75 o 25 TEMPERATURE (OCI 125 -25 25 75 ,25 TEMPERATURE tOCI OPOO2801 OPOO2801 -75 3-3 Note: All typical values have been guaranteed by characterization and are not tested. OPOIl3OOI ! 1»12311)125'; Q -TYPICAL' PERFORMANCE CHARACTERISTICS (CONT.) = is liN VS VIN 0123 u ;( ...! _v. 10' 1.4 ! Vu. • -20V 26'C ~';!- ~ :( 0.3 .; .,55'C 0.6 V o r--+--+--+---I ./ 0.21--+-- I ~ 0.2 Vee" 10V ~ 0.4 I--+--+--+-~ 126'C i:-'~ U V, •• 0.5V (0126) V.·O V,·4.5V 0.5 I ffi IOUT(OFF) VS TEMPERATURE ,0123 ANO 0125' liN" 1 inA (0123) -0 VIE .. -20V II: 0:: ...."" VSAT VS TEMPERATURE 0123 ANO 0125 / r '"""1 10 ......-....L.._...J 1 0.1 1=~=.!:IO~Ui!-T,:,·.!.1!mA I O'---......-75 0.2 0.4 0.6 0.8 V,. - INPUT VOLTAGE IV) -25 26 75 TEMPERATURE I'C) OPOO3101 26 126 45 65 APPLICATIONS Using INTERSIL'S MOSFET SWITCH, G117, with either the 0123 or 0125 drivers provides a convenient means of designing a 5 channel analog multiplexer with a series on/ off switch. 0 f 117 -r '.. .. I. I AFOO0501 Figure 3: 5-Chan~el 105 126 0P003301 QPO07001 r ~~~oo--~----------~ :L~! -:0 c~o:;j 65 TEMPERATURE I'C) Multiplexer Note: All typical valUes have been guaranteed by characterization and are not tested. D123/D125 APPLICATION TIPS Interfacing the D123 and D125 In order to meet all the specifications on this data sheet, certain requirements must be met by the drive circuitry. The D125 can be turned ON easily, but care must be exercised to insure turn-off. Keeping VL - VIN S DAV is a must to insure turn-off. To accomplish this, a shunt resistor must be added to supply the leakage current (ICES) for DTL devices. Since ICES = 50pA, a OAV IO.05mA = 8kn or less resistor should be used. For TTL devices using a 2kn resistor will insure turn-off with up to 200pA of leakage current. Y" ••.• ... ..- -- D'. 01'L"IIUL"'~ •• 110 ...... aa -- ~'" fl'fLI"""'LUIIt .. - m._ ......... LD012301 Figure 5: 0125 Interface Using the ENABLE Control . Device pins VR or VL, can be used to enable the D123 or D125 drivers. For the D123, the enabling driver must sink IR(ON) X no. of channels used. For the D125, IL(ON) X no. of channels used must be sourced with a voltage at least + 4V greater than VIN. v. LD012201 Figure 4: 0123 Interface 3-5 Note: All typical values have been guaranteed by characterization and are not tested. ! 8,12'9 " 4-Channel Decoded JFET Switch Dri,ver GENERAL DESCRIPTION FEATURES The 0129 is a 4-channel driver with binary decode input. It was designed to provide the DC level-shifting required to . interface low-level logic outputs' (0.7 to 2.2V) to field-effect transistor inputs (up to 50V peak-to-peak). For a 5V input logic supply, the V- terminal can be set at any voltage between -5V and -30V. The output transistor is capable of sinking 10mA and will stand-off up to 50V above V- in the off-state. The ON state of the driver is controlled by a logic "1" (open) on all three input logic lines, while the OFF state of the driver is achieved by pulling anyone of the three inputs to a logie, "0" (ground). The 4-channel driver is internally connected such that each one can be controlled independently or decoded from a binary counter. .. • ·Quad Three;;lnputGates Decode Binary Counter to. Four Lines • Inputs .Compatible With Low Power TTL and DTL, IF 200MA Max • Output Curr.ent Sinking Capability 10mA -- External Pull-Up Elements Required • Compatible With G115 and G123 Series Multichannel MOSFET Switches Which Include Current-Umiter Pull-Up FETs = ORDERING INFORMATION D129 A,--,--T -:---'--- - - - - - . , . - - - - - - - - - - - - - 'Package 1 K - 14-pin CERDIP L - 14-pin' Flat Pak P - 14-pin Ceramic DIP (Special Order Only) Temperature Range A - Military (- 55·C .to + 125·C) B - Commercial (,.. 20·C to + 85·C) ~-------------------- Device Chip Type v' I. IN, 13 IN2 12 IN3 IN. INS 11 IN. I. IN, OUT, OUl 2 OUT3 OUT4 (eACH DRIVER) LOOOO701 GNO vLOOOO601 Flg~re 1: Functional Diagrams (Outline Dwgs DO, FD-2, JD) Note: All typical values have been guaranteed by characterization and are not tested." ...D D129 I\) co ABSOLUTE MAXIMUM RATINGS Vo - V- ........................................................ 50V GND - V- ...................................................... 33V V+ - GND ....................................................... 8V VIN - GND ..................................................... ±'6V Current (any terminal) .....................................:. 30mA Storage Temperature ...................... -65°C to + 150°C Operating Temperature ................... -55°C to + 125°C Power Dissipation (note) ................................ 750mW Lead Temperature (Soldering, 10sec) ................. 300°C Note: Dissipation rating assumes device mounted with ali leads welded or soldered to pc board in ambient temperature of 70·C. Derate 1OmW I·C for higher ambient temperatures, Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure 10 absolute maximum rating conditions for extended periods may affect device reliability. ELECTRICAL CHARACTERISTICS Test conditions unless otherwise specified V- = -20V, V+ = 5V MAXIMUM LIMIT SYM· PARAMETER D129M 01291 -5S·C 25°C 85°C -19.3 -19 -19.8 Va = 10V, VIN = 0.7V Input Current Input Voltage High Input Current Input Voltage Low BOL TEST CONDITIONS UNIT 12S·C -20·C 2SoC -19.3 -19 -19.25 -19.25 -19.8 -19.75 0.1 0.1 20 0.2 0.2 10 VIN = 5V Input Under Test, VIN = 0 Ali Other Inputs 0.25 0.25 5 1 1 5 VIN = 0, V+ = 5.5V -250 -200 -160 -250 -225 -200 OUT VOL Output Voltage, Low 10= 10mA VOL OUtput Voltage, Low 10=lmA Output Current, High 10H INPUT IINH IINL . . I VIN = 2.2V. V + = 4.5V V "A IlA TIME ton Ioff Tum-ON Time I Turn-OFF I See Time 0.25 Switching Time Test Circuit I I 1.0 0.3 I I I 1.5 I I SUPPLY lEE Negative Supply Current -2 "" -2.25 IL LogiC Supply Current V- = -20V One Channel "ON" 3 3.3 lEE Negative Supply Current V+ = 5.5V Ali VIN=O, -10 -25 IlA Ali Channels "OFF" 0.75 1 mA Logic Supply Current IL • Per gate Input IN:::::8 -.'OY .5V 1 ri> I I I -1 r If''' lOOns t f .. lOOns OUT IN 'Pw. ' '''' .,~:~ OY mA =t- f .. lOOK Hz ton~ ·'OY - - - - - OUT OV - - - - - - - - - -2OV ~90'4 WFOOO701 TCOO2701 Figure 2: Switching Time and Test Circuit 3-7 Note: Ali typical values have been guaranteed by characterization and· are not tested. ; DG11'8IDG123/DG125 Z4 & 5-Channel SPST Driver c;With Switch CIt ~ g-. CD ~ ~ g GENERAL DESCRIPTION FEATURES This series includes devices with four and five channel switching capability. Each channel is composed of a driver and a MOSFET switch. Two driver versions are supplied for inverting and noninverting applications. A MOSFET, used as a current source provides an active pull-up. for faster . switching. An external biasing connection is brought out for biasing, the current source, for optimization of speed and power. • Available With and Without Programmable Constant Current Pull-up Zener Protection on All Gates P-Channel Enhancement-Type MOSFET Switches Each Switch Summed to One Common Point • • • ORDERING INFORMATION TRUTH TABLE DGl18 A L = K Package DGl18, DG125 DG123 K - 14-ptn CERDIP L - 14-pin Flat Package P - 14-pin Ceramic DIP (Special Order Only) Temperature Range A - Military (- 55°C to + 125°C) B - Commercial (_20°C to +B5°C) Device Chip Type VIN VR VIN VL L H L H L L H H L L H H H L H OG123 OG125 (One Channel) (One Channel) • v· " ;t::~:::;~::::::~~3D , 1 ~ I I , : v· I• IN .,'..., ' . .." So" " 1 1 v' . 3• I I I I I I I I· I I · ___ JI I I I I I I I iI I I I I I I I ..'~2t-------~+-r-~-~ I I I1 : ! : I I I 1 _____ JI 1 1 1 1 I. 1 1 1 1 I I _____ JI " s.~'t====:r;~==Sr3D sak- ~~'t-------~~r---~ ~~3t-------~+-~r_~ I I I I I I I ___ J 1 v- v- v. v' ... I OFF ON .OFF OFF L=OV, H= +V OGllS v- Condo L (One Channel) IN Switch _______ JI 1 --_- .. - __ 1 lOOOO201 LDO00101 Figure 1: Schematic & Logic Diagrams (Outline Dwgs DD, FD-2, JD) 3-8 Note: All typical values have been guaranteed by characterization and· are not tested. lOOO030t .D~D[6 DG118/DG123/DG125 g Collector to Emitter (V+ -V-) ............................. 33V Collector to Pull-up (V + - Vp) .............................. 33V Drain to Emitter (Vo-V-) .................................. 32V Source to Emitter (Vs-V-) ................................ 32V Drain to Source (VO-VS) ................................... 28V Source to Drain (VS-Vo) ................................... 28V Logic to Emitter (VL -V-) ................................... 33V Reference to Emitter (VR-V-) ............................ 31V Reference to Input (VR - V,N) ................................ 6V Logic to Input (VL -V,N) ..................................... ±6V ",put to Emitter (V'N-V-) ..................................33V Current (any terminal) ...................................... 30mA Storage Temperature ...................... -65°C to +150°C Operating Temperature ................... -55°C to + 125°C Dissipation (Note) ......................................... 750mW Lead Temperature (Soldering, 10sec) ................. 300°C NOTE: Dissipation rating assumes device is mounted with all leads welded or soldered to printed circuit board in ambient temperature of 70 o e. Derate 1OmW I"C for higher ambient temperature. Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated' in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. ELECTRICAL CHARACTERISTICS Test conditions unless specified otherwise are as follows: VL = 4.5V, VR test conditions used for output and power supply specifications. = 0, V- = -20V, and P = -20V. Input ON and OFF I MAX LIMITS PARAMETER (NOTE) TEST CONDITIONS -55°C + 25°C + 125°C UNIT INPUT pA IIN(OFF) Y,N - O.4V 1 1 100 VIN(ON) IIN-1mA 1.3 1.0 0.8 V DG118 IIN(OFF) VIN - 4.1V 1 1 20 IlA DG125 IIN(ON) VIN =0.5V -0.7 -0.7 -0.7 rnA DG123 OUTPUT 800 n n n IO(ON) Vo - 10V. IS(all) - 0 4 4000 nA IO(OFF) VS(all) = 10V. -4 -4000 nA -1 -1000 nA rOS(ON) All circuits IS(OFF) POWER SUPPLY All circuits 100 100 125 Vo = O. Is = -100IlA 200 200 250 Vo - -10V. IS - -1001lA 450 450 Vo = -10V Vo = 10V. Vs = -10V ICG(ON) 3 3 rnA -0.5 rnA IEE(ON) -6 rnA ICC(OFF) 10 pA IL(OFF) 10 pA -15 IlA pA All circuits VO-10V.IS--1mA IL(ON) IR(ON) IR(OFF) One Channel (ON) All Channels (OFF) I t(ON) circuits JtlOFFL rnA -20 lEE OFF} SWITCHING TIMES All ... CD ..... ABSOLUTE MAXIMUM RATINGS DEVICE NO. g... I See Switching Times I I I 0.3 1 I I I .. NOTE: (OFF) and (ON) subscnpt notation refers to the conduction state of the MOSFET switch for the given test condition . 3-9 Note: All typical values have been guaranteed by characterization and are not tested. I p.s Ils ;; W a I:) ;; UI OG'I23 v" to I, 01 ,JS 01 tIS s. +--,--o'OUT'U1 DG123 OUTPUr "'p' TC002301 OG118,125 DG118,125 OUTPUT oJl.. WFOOO501 OUTPUT "p' TCOO2401 i=igure 2: Switching Times TYPICAL PERFORMANCE CHARACTERISTICS liN vs VIN DG123 1.8 i ! ... .. " VR- 0 V-'-20V I.' ,.~ ~ ,, II II 1100 !900 ...'" '~:g:NL ~ ...u SWITCHING TIMES vs TEMPERATURE -ssoc' ~ II NIl 0.6 0.2 V 0.2 0.4 I 0.6 ~ ;: rOS(ON) vs Vo or Vs IK VR"'O v- .. -20V v+ = 10V ;<;,:~;v3(lpF --+_1-+--+-/---::1 700 C> ~ I V 0.8 VIN - INPUT VOLTAGE (VI z i IS'-lmA Vr::: ~~ ~-55. _t-t- ' ...... 500 u .... ~ 300 ....... V+- 10V -20V Vp = -20V v- .. ~~E~ tONr--..... 100 -50 125·_ 25·- o 25 125 10 -10 -10 TEMPE'AATURE (OC) OP002501 OPO02601 3-10 Note: All typical values have been guaranteed by characterization and are not tested. OP002701 DG118/DG123/DG125 APPLICATION TIPS The recommended resistor values for interfacing RTl, DTl, and TTL logic are shown in Figures 3 and 4. .. DTL911941 9oI9H'163 TTLS414 TTl9000SEAIES SU"l AFOOO21I Figure 4: DG123 Interface AFOOO11 I Figure 3: DG118 and DG125 Interface Enable Control The VR and Vl terminals can be used as either a Strobe or an Enable control. The requirements for sinking current at VR or sourcing current at VL are: IL(ON) x No. of channels used, for DG 118 and DG 125, and IR(ON) x No. of channels used for the DG123 devices. The voltage at VL must be greater than the voltage at VIN by at least +4V. 3-11 Note: All typical values have been guaranteed by characterization and are not tested. i~ ,DG126,':!,DG129, DG133, g8 DG134, DG140, DG141, DG151, DG152', DG153, DG154 DUAL ,JFET Analog Switch ,FEATURES GENERAL DESCRIPTION These switching circuits contain two channels in one package, each, channel conSisting of a driver circuit controlling a SPST or DPST junction - FET switch. The driver interfaces DTl, TTL or RTl logic signals for multiplexing, commutating, and Df A converter applications, which permits logic design directly with the switch function. logic "1" at the input turns the FET switch ON, and'iogic "0" turns it off. 1 • Each Channel Complete-:-Interfaces With Most Integrated Logic ' ' . Low OFF Power DisSipation, 1mW • Switches Analog Signals Up to 20 Volts Peak-toPeak • Low rOS(ON). 10 Ohms Max on DG140/A and DG1411A • Switching Times Improved 100%-'A' Versions ORDERING INFORMATION 0126 1A ~ L ___________________ DUAL SPST 00133 (rOS(ON) = 30!'!) DG134 (rOS(ON) = 80!'!) DG141 (rOS(ON) = 10!'!) DG151 (rOS(ON) = 1S!'!) DG152 (rOS(ON) = 50!'!) Package K - 14-pin CEROIP L - 14-pin Flat Pack P - 14-pin Ceramic 01 P (Special Order Only) Temperature-Range A - Military (-55'C to +125'C) B - Industrial (- 20°C to + 80°C) Device Chip Type DUAL DPST DG126 (rOS(ON) = 80!'!) DG129 (rOS(ON) = 30!'!) DGI40 (rOS(ON) = 10!'!) DG153 ('OS(ON) = IS!'!) DG154 (roS(ON) = 50!'!) ~~_sw, $W, SW, SW, VIlIENABlE) lD012101 '0 V. (ENABLE) 08027401 " <>:"11-------f.-I~sw, o-"'j---"! ---+--+-<>sw, 12 VII (ENABLEl lD012001 Figure 1: Functional Diagrams (Outline Dwgs DO, FD-2, JD) 3-12 Note; All typical values have been guaranteed by characterization and are not tested. v05027501 DG126, DG129, DG133, DG134, DG140, DG141, DG151, DG152, DG153,· DG154 ABSOLUTE MAXIMUM RATINGS Analog Signal Voltage (VA-V- or V+ -VA) ......... 30V Total Supply Voltage (V + - V-) .......................... 36V Positive Supply Voltage to Ref. Voltage (V+ - VR) .. 25V Ref. Voltage to Neg. Supply Voltage (VR - V-) ...... 22V Power Dissipation (Note) ................................ 750mW Current (any terminal) ...................................... 30mA Storage Temperature ...................... -65°C to + 150°C Operating Temperature ................... -55°C to + 125°C Lead Temperature (Soldering, 10sec) ................. 300°C NOTE: Dissipation rating assumes device is mounted with all leads welded or soldered to printed circuit board in ambient temperature below 70'C. For higher temperature, derate at rate of 1OmW I'C. Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. ELECTRICAL CHARACTERISTICS (Per Channel) Applied voltages for all test: DG126, DG129, DG133, DG134, DG140, DG141 (V+ = + 12V, V- = -1BV, VR = 0), and DG151, DG152, DG153, DG154 (V + = + 15V, V- = -15V, VR = 0). Input test condition which guarantees FET switch ON or OFF as specified is used for output and power supply specifications ABSOLUTE MAX LIMIT SYMBOL (NOTE) CHARACTERISTIC TYPE TEST CONDITIONS UNIT -55°C 25°C 125°C INPUT VIN(ON) Input VOltage-On V>;.=-12V 2.9 min 2.5 min 2.0 min· Volts VIN(OFFI Input Voltage-Off V2 = -12V 1.4 1.0 0.6 Volts IIN(ON) Input Current VIN =2.5V 120 60 60 p.A IIN(OFF) Input leakage Current VIN =0.8V 0.1 0.1 2 p.A 80 80 150 n 30 30 50 n 10 10 20 n 15 15 30 n All .circuits SWITCH OUTPUT DG126 DG134 DG129 DG133 rOS(ON) Drain-Source On Resistance VIN = (See Note) Vo = 10V. Is = lOrnA DG140 DG141 DG151 DG153 DG152 DG154 Vo = 7.5V, IS = lOrnA 50 100 n VO=VS= -10V ±2 100 nA Vs = 10V. Vo = -10V ±1 100 nA Vo=10V, VS=-10V ±1 100 nA Vo=Vs= -10V ±2 100 nA Vs = 10V, Vo = -10V ±10 1000 nA Drain leakage Current Vo= 10V, VS= -10V ±10 1000 nA IO(ON) + IS(ON) Drive leakage Current Vo=Vs= -7.5V ±2 500 nA IS(OFF) Source leakage Current = - 7.5V ±10 1000 nA IO(OFF) Drain Leakage Current Vo = 7.5V,. Vs = - 7.5V ±10 1000 nA IO(ON) + IS(ON) Drive leakage Current Vo=Vs= -7.5V ±2 500 nA IS(OFF) Source leakage Current Vs = 7.5V, Vo = - 7.5V ±2 200 nA IO(OFF) Drain Leakage Current Vo = 7.5V. Vs = - 7.5V ±2 200 nA IO(ON) + IS(ON) Drive leakage Current IS(OFF) Source leakage Current IO(OFF) Drain Leakage Curr.ent IO(ON) + IS(ON) Drive leakage Current IS(OFF) Source leakage Current IO(OFF) DG126 DG129 DG133 DG134 DG140 DG141 DG151 DG153 DG152 DG154 VIN = (See Note) Vs = 7.5V, Vo NOTE: VIN must be a step function with a minimum slew-rate of tV / jJS. 3-13 Note: All typical values have been guaranteed by characterization and are not tested. 50 DG128J DG129, DG133, DG134, DG140, DG141, DG151, DG152,· DG153, DG154 .:f .. " go ELECTRICAL CHARACTERISTICS (CONT.) (I) . . -N (1)110 " gg.. SYMBOL (NOTE) ABSOLUTE MAX LIMIT CHARACTERISTIC TYPE TEST CONDITIONS UNIT 25°C -55"C 125°C POWER SUPPLY I, (ON) Positive Power Supply Drain Current 12(ON) Negative Power Supply Drain Current IR(ON) Reference Power Supply Drain Current 11 (OFF) Positive Power Supply Leakage· Current 12(OFF) Negative Power Supply Leakage Current IR(OFF) Reference Power Supply Leakage Current One Driver ON. VIN = 2.5V All Circuits Both Drivers OFF. VIN = O.BV 3 mA -l.B mA -1.4 mA 25 !lA -25 !lA -25 !lA SWITCHING toN Turn-On Time See Below DG126. DG129. DG133. DG134. DG152. 00154 600 ns toFF Turn-Off Time See Below DG126. DG129. DG133. DG134. DG152. DG154 1.6 p.s toN Turn-On Time See Below DG140. DG141. DG151. DG153 1.0 p.s toFF Turn-On Time See Below DG140. 00141. DG151. DG153 2.5 p.s POWER PON ON Driver Power POFF OFf Driver Power 175 Both Inputs VIN = 2.5V I All Circuits I Both Inputs VIN = 1V I NOTE: (OFF) and (ON) subscript notation refers to the conduction state of the FET switch for the given test. 3-14 Note: All typical values have been guaranteed by characterization and are not tested. I 1 mW I I mW .O~OIb DG126, DG129, DG133, DG134, DG140, DG141, DG151, DG152, DG153, DG154 ELECTRICAL CHARACTERISTICS (CONT.) DG126, 129, 133, 134, 140, 141 NY:'. ,<0.1" ,,<0.'" \1 .... _ - . DG151, 152, 153, 154 1Wr-------,. J.MII ., ., """"' V•• ·?IV '11'.",.,1'1 WF0269GI WF026801 . v.",.O\' "" •• I:N '" INPUI C>-'V1I'rf--""""--' OUTPUT TC035201 TC035301 OFF MODEL OFF MODEL ~OUTPUT IHPUT ~ A' m AI = OUTPUT • INPUT TC03550t TC035401 ON MODEL ON MODEL -1'::' ~.n. -c>--t>- -,; ~.:: hVOI,tT 'o,.F TC035601 1 ='_0 TC035701 Figure 2: Switching Times (at 25°C) 3-15 Note: All typical values have been gualanteed by characterization and are not tested. DG1'26,DCi29, .DCi33, DG1340,.DG140, DG141, DGi51, DG152~ DG153,DG154 TYPICAL PERFORMANCE CHARACTERISTICS (per channel) DG126, 129, 133, 134, 140, 141 DG151, 152, 153, 154 VIN THRESHOLD VII TEMPERATURE VIN THRESHOLD vs TEMPERATURE VR =0 V+ = +12V ~~ ON V- ~ = -12V VR -0 v+ = +1'5V 2 0 -' 0 ~~ % : r- OFF II: ON V- = -12V - OFF % l- .. 1 I- ::> ~ z z :> :> o -15 -26 \ o 126 75 26 -75 -25 TEMPERATURE C'C) 25 OP058101 OP05BOOI rOS(ON) vsTEMPERATURE (Normalized to 25'C Value) 2 rOS(ON) vs TEMPERATURE 100 VIN = 2.5V -VR =0 DGI52.1~ f-V+ = +12V f-V- = -lBV ./ 1 , ! -75 ..... i-" 10 " ~ iiji;i;; i,..oo" 1 ./ DG151. DGI53 ~ ." o 125 75 TEMPE RATURE C'CI ~ 1 -25 26 75 -75 125 -26 26 75 126 TEMPERATURE COC) TEMPERATURE C'c) QP056301 OP058201 ALL CIRCUITS ON SUPPLY CURRENT vs TEMPERATURE 2.6 I-- \000 I - 1::::- .. 100 I- z \.8 a: a: ::> 1.4 OJ .... > 1.0 -' Ii! 0.6 0 0.2 - - 10 ;;( C 2.2 f-- --' ! ~ ~ 12C~"" ;;( .!; f- IRIONI .E g ;t;;t;~G'40. '4'. 151.153 W w > -' ::> '29. DGI26. 133.13<4 z ~ 0.1 ......'" 0 / om 0.1 TEMPERATURE lOCI Z '"'"::> . DG152. 1~ 25 50 75 100 125 .3 I- UTf>UT 00142 DG14~ D<3139 DG144 rOS(oNj Drain-Source On Resistance DG145 DG146 DG161 DGl63 00162 00164 10(ON) + IS(ON) Drive 'Leakage Current IS(OFF) Source LeBkage Current 10tOFFI Drain. Leakage Current 10tON) + IStON)' Orive Leakage Current 00139 D.G142 00143 DG144 DG145 DG146 VO" 10V, IS'" -IOmA . VIN (See Note) Vo-l0V, Is= -lamA VIN (See Note) VD.= 7.5V,. Is = -HlmA 50 100 n VO" Vs, -: -10V 2 lOG nA Vs';' 10V, VP.'" -10V 1 100 nA VO=10V, vS.- -10V 1 100 nA vo=vs= -10V 2 100 nA VS.-l0V; Vo - -10V 10 1000 nA lW, Vs = -10V 10 1000 nA Vo = Vs =·:"7.5V 2· 500 nA Vs - 7.5V, VD = -7.5V ·10 1000 nA VIN (see Note) IS(OFF) . SOllrce Leakage Currerit 1010FF) Drain Leakage Current 10(0,,!>-+ IS(ON) Clm(e Leakage Currerit IS(OFF) SOUrce Leakage Current IO(OFF) Drain Leakag8 Current Vo = 1.5V, Vs - -7.5V 10 1000 nA IO(ON) + IS(ON) Dilve Leakagli Current Vp=lIs· -7.5V 2 500 nA IS(OFF) Source Leakage Current Vs-7.5V, 110- -7.5V 2 200 nA IDlOFFl Drain Leakage. Current Vo=7.5V, Vs= -7.5V 2 200 nA . VO= 00161 00163 00162 00164 NOTE: (OFF) and (ON) subscript notation refers to the oondu.ction state 'of . the FET .switch for the given test. VIN must be a step function with a minimum slew-rate bf 1VI p.s. . 3-18 Note: All typicai values have been guaranteed by characterizatkin and are' not tested. .D~[l DGi3e, DGi42-DGi46, DGi6i-DGi64 UNIT ; g... 4.0 mA g -2.0 mA -2.0 mA 25 pA -25 pA -25 pA ELECTRICAL CHARACTERISTICS (CONT.) ABSOLUTE MAX LIMIT SYMBOL (NOTE) PARAMETER TYPE TEST CONDITIONS -55°C 25°C 125°C 11 (ON) 12(ON) Negative Power Supply Drain Current IR(ON) Reference Power Supply Drain Current I1(OFF) Positive Power Supply Leakage Current 12(OFF) Negative Power Supply Leakage Current IR(OFF) Reference Power Supply Leakage Current VINl =3V or VINl =2V All Circuits VIN1 = VINE, = O.BV SWITCHING toN Turn-On Time DG139, DQ142 DG143, OG144 OG162, OG164 See Switching Times O.B iJ.S tOFF Turn-Off Time DG139, OG142 DG143,OGt44 DG162, DG164 See Times 1.6 iJ.S tON Turn-On Time OG145, DG146 OG161, OG163 See Switching Times 1.0 iJ.S Turn-Off Time OG145, OG146 DG161, OG163 See . Switching Times 2.5 iJ.S tOFF t I POWER SUPPLY Positive Power Supply Drain Current ; Sw~ching NOTE: (OFF) and (ON) subscript notation refers to the conduction state of the FET switch for the given test 3-19 Note: All typical values have been guaranteed by charecterizatiOA and ar& not testeel.· J ; ! b o ... : ;I)Q13~ 'DG142-DG14,6,.DG181,..DG164 ~ i 8 DG139,142, 143, 144, 145, 146' ~."".~.."~~""'f . •,,01,,$ • C.' 01/~ -- I uG142. 143 i--" 'i;;;r:r+DG145.146 100 10 E .!' I-"" O~ -75 ______ -so -25 -L~~~~ 0 25 so 1 -75 75 100 125 -so -25 0 25 so EXCEPT DG145.146 0.1 75 100 125 TEMPERATURE I"C, TEMPERATURE COCI ~ §§ §~ DG145.146 ! OP003601 25 45 65 85 105 125 TEMPERATURE lOCI QP003701 OP003801 DG161, 162, 163, 164 VIN1 THRESHOLD vs TEMPERATURE RDS(ON) vs TEMPERATURE 100 - ..;:: DG162.164 ..,... ~ '" .£ z ~ 10 -- -75 ______ -so -25 0 -L~ 25 __ so :: DG161.163 E O~ looo·em_ IS(OFF) vs TEMPERATURE ~~ 1 75 100 125 TEMPERATURE C·CI -75 -50 -25 0 25 so 75 100 125 TEMPE RATURE I·CI 65 55 105 125 TEMPERATURE C'CI 0f'00400! OPO03901 45 3-21 Note: All typical values have been guaranteed by characterization and are not tested.· OPOO4101 iDG180-191 i High-Speed Driver With .c; JFET Switch a GENERAL DESCRIPTION FEATURES The DG180 thru DG191 series of analog gates consist of 2 or 4 N-channel junction-type field-effect transistors (JFED designed to function as electronic switches. Level-shifting drivers enable low-level inputs (0.8 to 2V) to control the ONOFF state of each switch. The driver is designed to provide a turn-off speed which is faster than turn-on speed, so that break-before-make action is achieved when switching from one channel to another. In the ON state, each switch conducts current equally well in both directions. In the OFF condition, the switches will block voltages up to 20V peakto-peak. Switch-OFF input-output isolation is SOdB at 10MHz, due to the low output impedance of the FET-gate driving circuit. • • • • • • • Constant ON-Resistance for Signals to ±10V (DG182, 185, 188, 191), to ±7.5V (All Devices) ± 15V Power Supplies < 2nA Leakage From Signal Channel In Both .ON and OFF States TTL, DTL, RTL Direct Drive Compatibility ton, toff < 150ns, Break-Before-Make Action Cross-talk and Open Switch Isolation> 50dB at 10MHz (75n Load) JAN 38510 Approved ORDERING INFORMATION PART NUMBER DG180 DG181 DG182 DG183 DG184 DG185 DG186 DG187 DG188 DG189 DG190 DG·191 TYPE Dual Dual Dual Dual Dual Dual SPST SPST SPST DPST DPST DPST SPDT SPDT SPDT Dual SPDT DuslSPDT Dual SPDT o rOS..l0n) L 1 1 (M Xl 10 30 75 10 30 75 10 30 75 10 30 75 ~ PACKAGE x . A - 10-PIN METAL CAN L - l4-PIN FLAT PACK P - CERAMIC DIP (Special Order Only) K - CERDIP . TEMPERATURE A - MILITARY (- 55°C to + 125°C) B - INDUSTRIAL (- 20°C to + 85°C) ' - - - - - - - DEVICE TYPE ' - - - - - - - - - DRIVER ONE AND TWO CHANNEL SPDT AND SPST CIRCUIT CONFIGURATION TWO CHANNEL DPST CIRCUIT CONFIGURATION v+ v' VL IN IN o II I I .........' - - - - 4 -........,....J GNDV- OG11111871188 SHOWN ONO v- OG1831184/185 SHOWN LOOO1201 LQOO1301 Figure 1: Functional Diagram (Typical Channel) 3-22 Note: All typical values have been guaranteed by characterization and are not tested. .n~nll DG180-191 ABSOLUTE MAXIMUM RATINGS . v + -v - .......................................................... 36V GND-V- ......................................................... 27V GND-VIN ........................................................ 20V Current (S or D) See Note 3 ........................... 200mA Storage Temperature ...................... -65·C to + 150·C Operating Temperature ................... -55·C to + 125·C Power Dissipation* ................... 450 (TW), 750 (FLAT), 825(DIP)mW Lead Temperature (Soldering, 10sec) ................. 300·C V+ -Vo ........................................................... 33V Vo-V- ........................................................... 33V Vo-VS ........................................................... ±22V VL-V- ............................................................ 36V VL-VIN ............................................................. 8V VL-GND ........................................................... 8V VIN-GND .......................................................... 8V 'Device mounted with all leads welded or soldered to PC board. Derate 6mW;oC (TW); 10mW;oC (FLAT); l1mW;oC (DIP) above 7S"C. Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only. and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. DUAL SPST (DG180, 181, 182) Metal Can Package Flat Package 5, c:::=====;::;! CERDIP* " r;:=====::I5, - u - _.. D, Ne Ne Ne Ne - - - . .____ IN, IN'_........ . - - - y+ y, y- CDOQ0401 CDOOOSOI (OUTLINE DWG TO-l00) (OUTLINE DWG FD-2) CD000601 (OUTLINE DWG JD) DUAL DPST (DG183, 184, 185) Flat Package 54 CERDIP* C:==:::::::;:;J D. D· INI y+ "C:=====::J OND COOOO701 COOOO801 (OUTLINE DWG FD-2) (OUTLINE DWG JE) Figure 2: Pin Configurations and Switching State Diagram 3-23 Note: All typical values have been guaranteed by characterization and are not tested. ...g ?... ... CD ...,. DG·1·80-191 i.. g SPOT (OG186, 187, 188) Metal Can Package Flat Package CERDIP' D, NC NC DtC:::::Jl---,.. 5t r--.1. __ .__ --" VL IN NC v' v- COOOO901 cOaOtODI COOO110J (OOTLINE DWG FD·2) (OUTLINE DWG TO·l00) (OUTLINE DWG JD) DUAL SPOT (OG189, 190, 191) Flat Package CERDIP' ,. 53 D. NC v, Dt (SUBSTAATE) " NC 5t It INt vTOP VIEW OND CDOO1901 CDOO1201 'Side braze ceramic package available as special order only. Consult factory. (OUTLINE DWG JE) (OUTLINE DWG FD·2) Figure 2: Pin Configurations and Switching State Diagram (Cont.) ELECTRICAL CHARACTERISTICS (v+ PARAMETER DEVICE NO. = + 15V, v- = -15V, VL = 5V, Unless Noted) TEST CONDITIONS (NOTE 1) A SERIES B SERIES UNIT -SS'C +2S'C + 12S'C -20'C +2S'C +8S'C ±1 100 ±5 100 SWITCH IS(off) IO(olt) Io(on) + IS(on) OG181, 182, 184, 185 187, 188, 190, 191 (OG180, 183, 186. 189) Vs=10V, Vo= -10V, v+ =10V V- = -20V, VIN = "OFF" ±(10) (1000) (15) (300) OG181, 184, .187, 190 (OG 180, 183, 186, 189) Vs = 7.5V, Vo = -7.5V VIN = "OFF" ±1 ±(10) 100 (1000) ±5 (15) 100 (300) nA OG182, 185, 188, 191 Vs - 10V, Vo - -10V VIN="OFF" .±1 100 ±5 100 nA OG181, 182, 184, 185 187, 188, 190, 191 (OG180, 183,186, 189) Vs -10V, Vo - -10V, v+ -10V ±1 100 ±5 100 ±(10) (1000) (300) OG181, 184, 187, 190 (OG180, 183, 186, 189) Vs = 7.5V, Vo VIN = "OFF" ±1 ±(10) 100 (1000) (15) ±5 (15) 100 (300) nA OG182, 185, 188, 191 Vs = 10V, Vo = -10V VIN = "OFF" ±1 100 ±5 100 nA OG180, 181, 183, 184 186, 187, 189, 190 Vo = Vs = -7.5V, VIN = "ON" ±2 -200 -10 -200 nA OG182, 185, 188, 191 Vo-Vs- -10V, VIN-"ON" ±2 -200 -10 -200 nA nA nA V- = -20V, VIN = "OFF" = -7.5V 3-24 Note: All typical values have been guaranteed by characterization and are not tested. DG180-191 ELECTRICAL CHARACTERISTICS (CONT.) PARAMETER DEVICE NO, B SERIES A SERIES TEST CONDITIONS (NOTE 1) -SS'C UNIT +12S'C +2S'C -20'C +2S'C +8S'C INPUT IINL I ALL IINH All I I VIN - OV I VIN = SV -2S0 I I -2S0 -2S0 10 I 20 I I -2S0 I I -2S0 10 I I -2S0 20 I I p.A p.A DYNAMIC ton Ion Switches 300 30n Switches ISO 180 2S0 300 2S0 300 7Sn Switches toff See switching time test circuit IOn Switches 30n and 7Sn Switches CS(off) CO(ofQ DG181, 182, 184, 18S, 187, 188, 190, 191 (DG180, 183, 186 189) CO(on) + CS(on OFF Isolation 3S0 150 130 9 typical (21 typical) Vs=-SV, 10=0, f=IMHz VO- +SV, IS-O, 1-1MHz 6 typical (17 typical) Vo - Vs - 0, I - 1MHz 14 typical (17 typical) RL = 7Sn, CL = 3pF ns pF Typically> SOdS at 10MHz (See Note 2) SUPPLY 1+ 1- DG180, 181, 182, 189 190, 191 I,S I.S DG183, 184, 185 0.1 0,1 DG186, 187, 188 0.8 0.8 DG180, 181, 182, 189 190. 191 -S.O -S.O DG183, 184, 18S IL IGNO 1+ 1- -4.0 -4.0 DG186, 187, 188 -3.0 -3.0 DG180, 181, 182, 183 184, 18S, 189, 190, 191 4.S 4.S DG186, 187, 188 3.2 3.2 VIN = SV ALL -2.0 -2.0 DG180, 181, 182, 189 190, 191 1.5 I.S DG183, 184, 18S 3.0 3.0 DGI8S, 187, 188 0.8 0.8 DG180, 181, 182, 189 190, 191 -S.O -S.O -S.S -S.S -S.O -S.O DG18S, 184, 18S VIN = OV DG186, 187, 188 IL IGNO NOTES 1. 2. S. . DG180, 181, 182, 183 184, 18S, 189, 190, 191 4.S 4.S DG186, 187, 188 3.2 S.2 All -2.0 -2.0 mA See SWitching State Diagrams lor VIN " ON " and VIN " OFF " Test Conditions. Off Isolation typically> SSdB at lMHz for DG180, 18S. 186, 189. Saturation Drain Current lor DG180, 183, 186, 189 only, typically SOOmA (2ms Pulse Duration). Maximum Current on all other devices (any terminal) 30mA. 3-2S Note: All typical values have been guaranteed by characterization and are not tested. ;; D0180-'I91 ..g~ a» ELECTRICAL CHARACTERISTICS (CONT.) DEYICE NUMBER CONDITIONS (Note 1) y+ 15Y, Y- ,.15Y, YL 5Y = = = vo· -7.5V Vo- -7.5V OG180 OG181 OG182 OG183 OGI84 OG185 OG186 OG187 OG188 OG189 OG190 OG191 Vo VoVoVO= Vo= Vo'" Vo = Vo = Vo = VO- -10V -7.5V -7.5V -10V -7.5V -7.5V -10V -7.5V -7.5V -10V IS= -10mA VIN-"ON" MAXIMUM RESISTANCES (rOS(ON) MAX) INDUSTRIAL TEMPERATURE MILITARY TEMPERATURE -55°C + 25°C + 125°C -20°C 10 30 75 10 30 75 10 30 75 10 30 75 10 30 75 10 30 75 10 30 75 10 30 75 20 60 100 20 60 150 20 60 150 20 60 150 15 50 100 15 50 100 15 50 100 15 50 100 UNIT + 25°C + 85°C 15 50 100 15 50 100 15 50 100 15 50 100 25 75 150 25 75 150 25 75 150 25 50 150 n n n n n n n n n n n n APPLICATION HINT (for design only): Normally the minimum Signal handling capability of the OG180 through OG191 family is 20V peak-to-peak for the 75n switches and 15V peak-to-peak for the Ion and 30n (refer 10 and IS tests above). For other Analog Signals, the following guidelines can be used: proper switch tum-off requires that V- SVANALOO(peak) -Vp where Vp =7.5V for the Ion and 30n switches and Vp =5.0V for 75n switches e.g., -10V minimum (-peak) analog Signal and a 75n switch (Vp=5V), requires that V- S -10V -5V= -15V. logic Input for "OFF" to "ON" Condition (DG180/181/182 Shown) LOGIC 3V INPUT I, <1Ons If <1Ons 1.SV SWITCH OUTPUT 0 A-t-~~---1----~Yo SWITCH Vs INPUT SWITCH OUTPUT CL I30pF O.9Vo (REPEAT TEST FOR 0 -15Y ALL CHANNELS) ~ Ion RL Yo = Ys RL + FDS(ON) -= v-v Y- o- RL S AL T roS(on) TC035601 WF027011 Figure 3: Switching Time Test Circuits output waveform shown for Vs = constant w~h logic input waveform as shown. Note that Vs may be + or.- as per switching time test circuit. Vo Is the steady state output with switch on. Feedthrough via gate capac~nce may result in spikes at leading and trailing edge of output waveform. Sw~ch DUA~ DUAL SPST-DG180/181/182 DPST -DG183/184/185 TEST CONDITIONS TEST CONDITIONS 00180/181/182 VIN "ON" = O.8V VIN "OFF" = 2.0V DG183/184/185 I .AII Channels All Channels . VIN "ON" = 2.0V VIN "OFF" = O.8V SWITCH STATES ARE FOR LOGIC "1" INPUT = 2.0V DUAL SPOT -DG189/190/191 TEST CONDITIONS TEST CONDITIONS DG189/1901191 DG186/187/188 "ON" = 2.0V "ON" = O.SV "OFF" = 2.0V "OFF" = O.SV All Channels All Channels SWITCH STATES ARE FOR LOGIC "1" INPUT = 2.0V SPOT-DG186/1871188 VIN VIN VIN VIN I Channel Channel Channel Channel VIN VIN VIN VIN 1 2 2 1 "ON" = 2.0V "ON" = O.SV "OFF" = 2.0V "OFF" = O.8V Channels Channels Channels Channels SWITCH STATES ARE FOR LOGIC "1" INPUT = 2.0V SWITCH STATES ARE FOR LOGIC "1" INPUT = 2.0V 3-26 Note: All typical values have been guarantaed by characterization and are not lested. 1 3 3 1 & & & & 2 4 4 2 .U~Ulbi DG200/lH5200 CMOS Dual SPST A.nalog Switches ...... i UI N GENERAL DESCRIPTION FEATURES The DG200llH5200 solid state analog gates are designed using an improved, high voltage CMOS monolithic technology. They provide ease-of-use and performance advantages not previously available from solid state switches. Destructive latCh-Up of solid state analog gates has been eliminated by INTERSIL's CMOS technology. The DG200 is completely spec and pin-out compatible with the industry standard device, while the IH5200 offers significantly enhanced specifications with respect to ON and OFF leakage currents, switching times, and supply current. • • • • • • • 8 Switches Greater Than 28Vpp Signals With ±15V Supplies Break-Before-Make Switching toff 250ns, ton 700ns Typical TTL, DTL, CMOS, PMOS Compatible Non-Latching With Supply Turn-Off Complete Monolithic Construction Industry Standard (DG200) Improved Performance Version (IH5200) ORDERING INFORMATION INDUSTRY STANDARD PART IMPROVED SPEC DEVICE DG200AA IH5200MTW 10-Pin Metal Can -55°C to + 125°C DG200AK IH5200MJD 14-Pin CERDIP _55°C to + 125°C DG200AL IH5200MFD 14-Pin Flat Pak DG200BA IH5200lTW 10-Pin Metal Can TEMPERATURE RANGE PACKAGE 55°C to + 125°C .- 25°C to + 85°C DG200BK IH5200lJD 14-Pin CERDIP - 25°C to + 85°C DG200BL IH5200lFD 14-Pin Flat Pak -25°C to + 85°C DG200CJ IH5200CPD 14-Pin Epoxy Dip CERDIP & EPOXY DUAL-IN-LINE PACKAGE (outline dwgs JD, PO) O°C to +70°C METAL CAN PACKAGE FLAT PACKAGE (outline dwg TO-l00) (outline dwg FD-2) v+ (SUasTRATI-ANO CASE) " I.., 5~~~iF~E'N' NC NC y+ GND (SUBSTAATE) NC Ne NC 12 Ys~BSTRATE) 'HIe '" ~~~-.......--~,-- ¥, '" y- =~=rr::""::;~E.= D, V REF s. CDOQ1401 TOP VIEW SWITCH STATES ARE FOR LOGIC "'" INPUT (POSITIVE LOGIC) CDOO1501 C0001301 Figure 1: Pin Configurations 3--27 Note: All typical values have been guaranteed by characterization and are not tested. .•O~OIl 8 DG2001lH5200 (II 10 ! § " D .. . .. ABSOLUTE MAXIMUM RATINGS V+-V'- ........................................................ <33V v+ -Vo ........................................................ < 30V Vo-V- .........................., .............................. < 30V Vo-Vs ........................................................ < ±22V VIN-GND ...................................................... < 20V Current (Any Terminal) ................................. > 30mA Storage Temperature ...................... -65'C to + 150'C Operating Temperature ........•..•....... -55'C to + 125'C Lead Temperature (Soldering, 10sec) ................. 300·C Power Dissipation .. : ...................................... 450mW (All Leads Soldered to a P.C. Board.) Derate 6mW I"C Above 75·C. Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only. and functional operation of the device· at thaseor any other Conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. GATE PROTECTION RESISTOR INPUT LD001501 Figure 2: Functional Diagram (1/2 DG200/1H5200) DG200 ELECTRICAL CHARACTERISTICS (TA = 25'C, v+ = +15V, v- MINIMAX LIMITS PER CHANNEL SYMBOL CHARACTERISTIC = -15V) TEST CONDITIONS MILITARY COM'LIINDUSTRIAL UNIT -55'C +2S'C + 12S'C +2S'C +70'C! +8S'C ±I ±10 ±.10 ±10 p.A ±IO ±10 I'A 80 100 n 01 -2S'C IIN(ON) Input Logic Current VIN = O.8V See Note I ±10 IIN(OFF) Input Logic Current VIN = 2.4V See Note 1 ±10 ±1 ±10 rOS(ON) Drain-Source On Resistance Is=10mA VANALOG = ±10V 70 70 100 rOS(ON) Channel-to-Channel rOS(ON) Match 25 (typ) 30 (typ) n VANALOG Min. Analog Signal Handling Capability ±tS ±15 V IO(OFF) Switch OFF Leakage Current VANALOG = -14V to +14V ±2 100 ±5 100 nA IS(OFF) Switch OFF Leakage Current VANALOG = -14V to +14V ±2 100 ±5 100 nA 200 ±10 200 nA 80 IOION) + S(ON) Switch ON Leakage Current Vo=Vs= -14V to +14V ±2 ton Switch "ON" Time See Note 1 RL = 1kn, VANALOG = -10V to + 10V See Fig. 3 1.0 1.0 I'S toff Switch "OFF" Time RL = 1kn. VANALOG =-10Vto +10V See Fig. 3 0.5 0.5 I'S Q(INJ.) Charge Injection See Fig. 4 15 20 (typ) mV (typ) 3-28 Note: All typical values have been guaranteed by characterization and are not tested. DG2001lH5200 PER CHANNEL SYMBOL CHARACTERISTIC MINIMAX LIMITS MILITARY TEST CONDITIONS -55°C OIRR Min. Off Isolation Rejection Ratio 1= IMHz. RL = 100n. CL::; 5pF See Fig. 5 (Note I) IVI + Power Supply Quiescent Current VIN =OV or VIN = 5V - Power Supply IV2 COM'L/INDUSTRIAL + 125'C +25°C 01 -2S'C +2S'C UNIT +70'CI +85'C 50 (typ) 54 (typ) dB 1000 1000 2000 1000 1000 2000 IlA 1000 1000 2000 1000 1000 2000 IlA Quiescent Current CCRR Min. Channel to Channel Cross Coupling Rejection Ratio One Channel 011 54 (typ) dB 50 (typ) NOTE 1. Pull Down ReSistor must be ::; 2kn NOTE 2: Typical values are lor design aid only. not guaranteed and not subject to production testing. IH5200 ELECTRICAL CHARACTERISTICS (@ 25°C, V+ = +15V, V- = -15VREF open) PER CHANNEL SYMBOL CHARACTERISTIC MINIMAX LIMITS TEST CONDITIONS MILITARY COM'L/INDUSTRIAL -SS'C +2S'C + 125'C 01 -2S'C + 25'C +70'CI +85'C UNIT I'N(ON) Input Logic Current Y,N =0.8V ±10 ±I ±IO ±10 '±10 p.A I'N(OFF) Input Logic Current. Y,N = 2.4V ±IO ±1 10 ±10 ±10 p.A rOS(ON) Drain·Source On Resistance IS·,OmA VANALOG = ±IOV 70 70 100 80 100 rOS(ON) Channel·to·Channel rOS(ON) Match Min. Analog Signal Handling Capability VANALOG 80 " n 25 (typ) 30 (typ) n ±15 (typ) ±15 (typ) V IO(OFF) Switch OFF Leakage Current VANALOG= -14V to +14V ±I 50 I ±2 50 nA IS(OFF) Switch OFF Leakage Current VANALOG= -14V to +14V ±I 50 I ±2 50 nA IOION) + S(ON) Switch ON Leakage Current Vo=Vs= -14V to +14V ±1 100 I ±2 100 nA Ion Switch "ON" Time See Note 3 RL = I kn, VANALOG = -10V to + 10V See Fig. 3 0.7 0.8 IlS Ioff Switch "OFF" Time RL = Ikn, VANALOG = -IOV to +IOV See Fig. 3 0.25 0.4 p.s Q(INJ.) Charge Injection See Fig. 4 5 (typ) 10 (typ) mV OIRR Min. Off Isolation Rejection' Ratio 1= lMHz. RL = loon. CL::; 5pF See Fig. 5 54 (typ) 50 dB (typ) IVI + Power Supply Quiescent .Current Y,N - OV or Y,N = 5V IV2 - Power Supply Quiescent Current CCRR Min. Channel to Channel Cross Coupling Rejection Ratio 250 200 150 300 250 200 p.A 10 10 100 10 10 100 p.A One Channel Off 54 (typ) 3-29 Note: All typical values have bean guaranteed by characterization and are not tested. 50 (typ) dB I gDG200/lH6200 (II I ::. 8 I .J TEST CIRCUITS WLOGINPUT w-OINPU' -: F"r;;;.. Stu 11. ' • := -D--\>-W r~ ':'. m _OGINNT LOGIC INPUT , CNO~_ It-I ":' ':' t-~' 'oou ':" TC003601 TC003701 Figure 3 TC004111 Figure 4 Figure 5 NOTE 3: All channels are turned off by high" 1" logic inputs and all channels are turned on by low "0" inputs; however Q,8V to 2AV describes the min, range for switching properly, Peak input current required for transition is typically -120/LA, TYPICAL, PERFORMANCE CHARACTERISTICS rOS(on) vs VD and Power Supply Voltage rDS(on) vs VD and Temperature H-+++' lGO +.;. V + = + 15V ' ;' V- =-15V A- v· = • 15V. V - = - llV • - .... :::. • 12Y. V - ::; - 12V C-Y· ,.10\1.\;-=-1011 __Y_.___.~~,v__-_=_-_._v~ o~_O_- o~~~~~~~~~ -15-10 -5 0 5 10 15 ~ - IS -'0 Yo - DIWH VOLTAGE (VOLTS) Vo - 5 0 10 OPOO7101 0P003201 IS(off) or lD(off) vs Temperature· ID(on) vs Temperature· 10 15· DIlAiN VOLTAGE /VOLTS) aI_ 1°~R ~~-+--. ''1 0.1 !': : I' : I ,...- ,~.~/.~.~'~!~~'~:~~ 1, ~: :-: IT---.-++i I ;. 0.01 ' i 25 45 I .1 : as as 10S 125 T - TEMPERATURE C·e) OPOO7201 OPOO7301 3-30 Note: All typical values have been guaranteed by characterization and are not tested~ DG200/lH5200 APPLICATIONS V+ Supply (V) Using the VREF Terminal The DG200 has an internal voltage divider setting the TTL threshold on the input control lines for V + equal to + 15V. The schematic shown here with nominal resistor values, gives approximately 2.4V on the VREF pin. As the TTL input signal goes from +O.8V to +2.4V, 01 and 02 switch states to turn the switch ON and OFF. + 15 + 12 + 10 +9 +8 +7 If the power supply voltage is less than + 15V, then a resistor must be added between V + and the VREF pin, to restore + 2.4V at VREF. The table shows the value of this resistor for various supply voltages, to maintain TTL compatibility. If CMOS logic levels on a + 5V supply are being used, the threshold shifts are less critical, but a separate column of suitable values is given in the table. For logic swings of -5V to +5V, no resistor is needed. TTL Resistor (kU) - - - 100 51 - (34) 34 (27) 18 27 18 V· (+15V) r-... t--t-::o:- In general, the "low" logic level should be < O.8V to prevent Q1 and 02 from both being ON together (this will cause incorrect switch function). With open collector logic, and a low value of pull-up resistor, the logic "low" level can be above O.8V. In this case, INTERSIL can supply parts with thresholds> 1.5V, allowing the user to define the "low" as < 1.5V (consult factory). The VREF point should be set at least 2.6V above this "low" state, or to > 4.1V. An external resistor of 27kn between V + and VREF is required, for a + 15V supply. }~ GATE PROTECTION INPUT RESISTOR AFOOO6QI Figure 6. 3-3.1 Note: All typical values have been guaranteed by characterization and are not tested.' CMOS Resistor (kU) o DO:201/IH5201 i Quad SPST ~ CMOS Analo~ 'Swi~ch ' .. g GENERAL' DESCRIPTION FEATURES The DG20111H5201 solid-state analog switches are designed using an improved, high-voltage CMOS monolithic technology. They provide performance' advantages not previously available from solid-state switches. Destructive latch-up .of solid-state analog gates has been eliminated by INTERSIL's CMOS technology. The DG201 is completely specification and pin-out com, patible with the industry standard device, while the IH5201 offers significantly enhanced specifications with respect to ON and OFF leakage currents, switching times, and supply current. • • • • • • • SlIIIltches Greater Than 28Vp_p Signals With ±15V Supplies ' ., Break-Before-Make Switching toff 250ns, ton Typically 500ns ' TTL, OTt, CMOS, PMOS Compatible Non-latching With Supply Turn-Qff Complete Monolithic .Construction Industry Standard (OG201) Improv!td Performance Version IH5201 = = ORDERING INFORMATION INDUSTRY STANDARD PART NUMBER IMPROVED SPEC PART NUMBER TEMPERATURE RANGE PACKAGE DG201AK IHS201MJE -SS·C to + 12S·C ,16-Pin CERDIP DG201BK IHS2011JE -2S·C to +8S·C 16-Pin CERDIP DG201CJ IHS201CPE O·C to +70·C 16·Pin PlastiC DIP , 52 V + (SUBSTRATE) VREF D3 GATE PROTECTION RESISTOR INPUT CDOO1601 LOOO1601 Figure 1: Functional Diagram (1/4 DG201/1H5201) Figure 2: Pin Configuration (Outline dwgs JE, PEl DUAL-IN-LINE PACKAGE Switch Open For Logic "1" Input '3-32 Note: All typical values have been guaranteed by characterization and are not tested. DG201/IH5201 g ABSOLUTE MAXIMUM RATINGS ...... ~ ... V+ to v- .................................................... < 33V v+ to VD .................................................... < 30V Vo to v- .................................................... < 30V VD to Vs ................................................... < ±22V VREF to v- ................................................. < 33V VREF to VIN ................................................. < 30V VREF to GND ............................................... < 20V VIN to GND ................................................. < 20V Current (Any Terminal) ................................. < 30mA Storage Temperature ...................... -65°C to + 150°C Operating Temperature ................... -55°C to + 125°C Lead Temperature (Soldering, 10sec) ................. 300°C Power Dissipation ......................................... 450mW Derate 6mW rc Above 70°C Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only. and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specificatIons is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. DG201 ELECTRICAL CHARACTERISTICS (TA = 25°C, V+ = + 15V, V- = -15V) PER CHANNEL SYMBOL MINIMAX LIMITS TEST CONDITIONS CHARACTERISTIC = O.SV = 2.4V MILITARY COMMERCIAL UNIT -55'C +25'C + 12S'C O'C +2S'C +70'CI +85'C See Note 1 10 ±1 10 ±t ±1 10 p.A See Note 1 10 ±1 10 ±1 ±1 10 #LA 80 80 125 100 100 125 51 I'N(ON) Input Logic Current Y,N I'N(OFF) Input Logic Current Y,N ROS(ON) Drain·Source On Resistance IS= 10mA VANAlOG = ±10V ROS(ON) Channel 10 Channel ROS(ON) Match 25 (typ) 30 (typ) VANAlOG Analog Signal Handling Capability ±15 (typ) ±15 (typ) IO(OFF) Switch OFF Leakage Current VANAlOG +14V = -14V to ±1 100 ±5 100 nA IS(OFF) Switch OFF Leakage Current VANAlOG +14V = -14V to ±1 100 ±5 100 nA IO(ON) +IS(ON) Switch ON Leakage Current Vo = Vs = ±14V ±2 200 ±S 200 nA ton Switch "ON" Time See Note 2 Rl = 1kn. VANALOG = -10V to + 10V See Figure 3 1.0 1.0 p.s toll Switch "OFF" Time See Note 2 Rl = 1kn. VANALOG = -10V to +10V See Figure 3 0.5 0.5 p.s Q(INJ.) Charge Injection See Figure 4 15 (typ) 20 (typ) mV OIRR Min. Off Isolation f = 1 MHz. Rl = 10051. CL" 5pF See Figure 5 54 (typ) 50 dB (typ) Rejection Ratio /0 + Power Supply Quiescent Current 10 -Power Supply Quiescent Current CCRR Min. Channel to Channel Cross Coupling Rejection Ratio V,N =OV to 5V 51 " V 2000 1000 2000 2000 1000 2000 p.A 2000 1000 2000 2000 1000 2000 p.A One Channel Off 54 (typ) NOTE 1: Typical values are for design aid only. not guaranteed and not subject to production testing. 3-33 Note: All typical values have been guaranteed by characterization and are not tested. 50 (typ) dB i CII ~ ... o DG201/UtS201 ~ 110 Z :::. g TEST CIRCUITS r m ANALOG INPUT g AHAlOGIMPUT .... ,,-0...., (Note 2) J r~h: 3. 0.I1. 5tU _ r-' LOQIC INPUT (NO~_ = -D-I>-'0'-'1 ":' ~- . 1DOl! TCOO391 I TCOO411J TC004001 Figure 3 -=- Figure 4. Figure 5 NOTE 2: All channels are turned off bihigh"1" logic inputs and all channels are turned on by low "0" inputs; however 0.8V to 2.4V describes the min. range lor switching properly. Peak. input current required lor transition is typically -1201tA. IH520t ELECTRICAL CHARACTERISTICS (TA = 25°C, V+ PER CHANNEL SYMBOL CHARACTERISTIC = +15V, V- = -15V) MINIMAX LIMITS TEST CONDITIONS MILITARY COMMERCIAL -55'C +25'C + 125'C O'C +25'C UNIT +70'CI +85'C IIN(ON) Input Logic Current VIN =0.8V 1 1 10 1 1 10 p.A IIN(OFF) Input Logic Cum;nt VIN = 2.4V 1 1 10 1 1 10 ROS(ON) Drain-Source On Resistance IS= 10mA VANALOG = ± 10V 75 75 100 100 100 125 ItA .11 ROS(ON) Channel to Channel ROS(ON) Match 25 (typ) 30 (typ) .11 VANALOG Analog Signal Handling Capability ±15 (typ) ±15 (typ) V IO(OFF)' IS(OFF) Switch OFF Leakage Current VANALOG = -14V to +14V· ±0.5 50 ±2 50 nA IO(ON) +IS(ON) Switch ON Leakage Current VO=VS=±14V ±0.5 100 £2 100 nA ton Switch "ON" Time See Note 2 RL = 1kn., VANALOG = -10V to +10V See Figure 3 0.7 0.8 p.s Ioff Switch "OFF" Time See Note 2 RL = 1k.l1, VANALOG = -10V to +10V See Figure 3 0.35 0.4 p.s Q(INJ.) Charge Injection See Fig. 4 5 (typ) 10 (typ) mV OIRR Min. Off Isolation Rejection Ratio 1= 1MHz, RL = 100n., CL ~5pF See Figure 5, (Note 1) 54 (typ) 50 (typ) dB 10 + Power Supply Quiescent Current VIN =OV to 5V 10 - Power Supply Quiescent Current CCRR Min. Channel to Channel Cross Coupling Rejection Ratio One Channel Off (Note 1) 1000 750 600 1500 1000 1000 ItA 10 10 100 20 20 200 ItA 54 (typ) NOTE: Pull Down resistor must be ~ 2k.l1 NOTE: Typical values are lor design aid only, not guaranteed and not subject to production testing. Note: All typical values have been guaranteed by characterization and are not tested. 50 . (typ) dB DG2011lH5201 TYPICAL PERFORMANCE CHARACTERISTICS I ! V+=+15V V-, = -15V D 100 ,\. C·" 125'C 1-=;;0; SS'C t;d... B .P 50 25' C 1;:;; ... '" A = +15V. Y- = -15Y Y+ = +12V. Y- = -12V C - Y+ +IOY. Y- -lOY D - Y + = +BV. Y - = -8Y c-- A - Y+ r- B - o r- o = = -15 -10 - 5 0 5 10 15 Vo - DRAIN VOLTAGE (VOLTS) -15 -10 -5 0 5,10 15 Vo - DRAIN VOLTAGE (VOLTS) OPOO7401 Temperature OP007501 ~ .s iiI~ 1°BflB ZIII ~ ~~~~E3~~~~~ f"" I ~! (,)(,) Z I~ - g~0.111l1. ... " .§~ ~ 0.01 ~......-'--'--'--'-"-'--....... 25 45 as as 105 125 45 T - TEMPERATURE ('C) as as 105 125 T - TEMPERATURE ('e) OPOO7601 0P00'7Ol y+ Supply (y) APPLICATIONS Using the VREF Terminal The DG201 has an internal voltage divider that sets the TTL threshold on the input control lines for V + = 15V. The schematic is shown here, with nominal resistor values, giving approximately 2.4V on the VREF pin. As the TTL input Signal goes from + o.av to + 2.4V, 01 and 02 switch states to turn the switch ON and OFF. +15 +12 + 10 +9 +8 +7 If the power supply voltage· is less than + 15V, then a resistor needs to be added between V+ and VREF pin, to restore + 2.4V at VREF. The table shows the value of this resistor for various supply voltages, to maintain TTL compatibility. If CMOS logic levels with a + 5V supply are being used, the threshold shifts are less critical, but a separate column of suitable values is given in the table. For logic swings of -5V to + 5V, no resistor is needed. TTL CMOS Resistor (kn) Re$istor fie!) - 100 51 (34) j (27) 18 V'(+15VI In general, the "low" logiC level should be < o.av to prevent 01 and 02 from both being ON together (this will cause incorrect switch function). With open collector logic, and a low value of pull-up resistor, the logiC 'low' level can be above o.av. In this case, INTERSIL can supply parts with thresholds > 1.5V(consult factory). The VREF point should be set at least 2.6V above this" low" state, or to > 4.1 V. An external resistor of 27kn and VREF is required, for a .+. 15V supply. GATE PROTECl'l011 '"PUT RESISTOR AFOO070l Figure 6 3-35 Note: All typical values have been guaranteed by characterization and are not tested, - 34 27 18 ;-1)02'1'1/1)0212 8 SPST 4-Channel Anal ..... .. ... C\I g ,. \)C!>,\'l'> ,' .\.,V""" ,,0"" s·' GENERAL DESCRIPTION FEATURES ,.~. The DG2ll and DG2l2 are low cost.\€~bs monolithic, QUAD SPST analog switches. The,se can be used in general purpose switching applications for communications, instrumentation, process control arid compu~er peripheral equipment. Both devices provide true bidirectional performance in the ON condition and will block signals to 30V peak-lo-peak in the OFF condition. The DG2ll and DG212 differ only in that the digital control logic is inverted, as shown in the truth table. DG211 and DG2l2 are available in a l6-pin Dual-In-Line plastic package and are rated for operation over D·C to 70·C. • • • • Switches ± 15V Analog Signals TTL Compatibility Logic Inputs Accept Negative Voltages RON. ~ 175 Ohm ' ORDERING INFORMATION PART NUMBER TEMPERATURE RANGE PACKAGE DG2llCJ DG2l2CJ O·C to +70·C O·C to +70·C l6-Pin Plastic DIP l6-Pin Plastic DIP DG211 DG212 s, IN, S, Dual·ln·LlRe Package IN, 0, 0, S2 S2 IN2 IN2 02 02 S3 S3 1N3 13 V+ (SUBSTRATE) 1N3' 03 '03 S4 S4 IN4 IN4 D4 04 80014301 TOP VIEW CD032301 80014401 Figure 2. Pin Configuration Four SPST Switches per Package Switches Shown for Logic "1" Input Truth Table LOGIC 00211 DG212 0 1 ON OFF OFF ON . Logic "0" ::; 0.8V Logic "1" 2: 2.4V Figure 1: Functional Diagrams :J,-36 Note: All typical values have been guaranteed by characterization and are not tested. 30702Q-<>01 s... DG211/DG212 .......ICII ABSOLUTE MAXIMUM RATINGS V+ to v- ....................................................... 36V VIN to Ground ............................................ V-, V+ VL to Ground ........................................ -0.3V, 25V Vs or VD to V+ ......................................... 0, -36V Vs or VD to V- ............................................ 0, 36V Peak Current, S or D (Pulsed at 1msec, 10% duty cycle max) ....... 70mA Storage Temperature ...................... -65°C to + 125°C Operating Temperature ........................ O°C to + 70°C Lead Temperature (Soldering, 10sec) ................. 300°C Power Dissipation (Package)' 16 Pin Plastic DIP" ................................. .470mW V + to Ground ................................................. 25V V- to Ground ................................................ -25V Current, Any Terminal Except S or D ................. 30mA Continuous Current, S or D .............................. 20mA 'Device mounted with all leads soldered or welded to PC board. "Derate 6.5mW/OC above 25°C ELECTRICAL CHARACTERISTICS (TA = 25°C) SYMBOL TEST CONDITIONS V1 = + 15V, V2 = -15V, VL= +5V, GND PARAMETER LIMITS UNIT MIN1 Typ2 MAX 15 V 115 175 rI O.ot 5.0 SWITCH VANALOG Analog Signal Range V ROS(ON) Drain-Source On Resistance Vo = ±10V. VIN = 2.4V - DG212 IS=lmA. VIN=0.8V - DG211 = -15V. VL = +5V -15 IS(off) Source OFF Leakage Current 10(oft) Drain OFF Leakage Current VIN = 2.4V DG211 VIN =0.8V DG212 10(ON) Drain ON Leakage Current3 Vs = Vo = -14V. VIN = 0.8V. DG211 VIN = 2.4V. DG212 VS= 14V. VD= -14V Vs - -14V. Vo -14V -5.0 -0.02 -5.0 -0.02 -5.0 -0.15 -10 -0.0004 Vo = 14V. Vs = -14V VO=-14V. VS=14V 0.01 0.1 5.0 5.0 nA INPUT IINH Input Current With Input Voltage High IINL Input Current With Input Voltage Low VIN VIN = 2.4V = 15V 0.003 -1.0 VIN =OV 1.0 p.A -0.0004 DYNAMIC Ion Turn-ON Time Ioft1 toft2 Turn-OFF Time CS(oft) Source OFF Capacitance Vs = OV. VIN = 5V. f CO(oft) Drain OFF Capacitance Vo = OV. VIN = 5V. f = 1MHz 2 5 Co + S(on) OIRR Channel' ON Capacitance Vo=Vs=OV. VIN=OV. f= lMHz2 16 See Switching Time Test Circuit5 Vs = 10V. RL = lkrl. CL = 35pF 460 1000 360 500 ns 450 OFF Isolation 4 Crosstalk (Channel to Channel) CCRR = 1MHz 2 VIN = 5V. RL = lkrl. CL = 15pF. Vs = tVRMS. f = 100kHz 2 5 pF 70 dB 90 SUPPLY 1+ Positive Supply Current 1- Negative Supply Current IL Logic Supply Current NOTES: VIN =0 and 2.4V .1 10 .1 10 .1 10 p.A 1. The algebraic convention whereby the most negative value is a minimum. and the most positive is a maximum. is used in this data sheet. 2. For design reference only. not 100% tested. 3. 10(on) is leakage from driver into "ON" switch. ~. 4. OFF Isolation = 2010g Vs = Vo 5. Switching times only sampled. i~put to OFF switch. VD = oulput. 3-37 Note: All typical values have been guaranteed by characterization and are not tested. e... II) " DG211/DG212 ;:.... Switch output waveform shown for Vs = constant with logic input waveform as shown. Note the Vs may be + or as per switching time test circuit. Vo is the steady state output with switch on. Feedthrough via gate capacitance may result in spikes at leading and trailing edge of output . waveform. I I " +15V SWITCH INPUT SWITCH 5, OUTPUT Vs = 'ov o - t - - - - i f ......1-<>_ _>--00 Vo LOGIC INPUT (REPEAT TEST FOR IN2 IN3 ANO IN" v- Figure 4: Switching Time Test Circuit WFQ27301 Figure 3: Switching Time Test Circuit Logic shown for DG211. Invert for DG212. +15V TTL INQ--'W.......H -15V +6V LD012701 Figure 5: DG212 Schemat.ic (1/4 as shown) 3--38 Note: All typical values have been guaranteed by characterization and are not tested. DGM181-191 High-Speed CMOS Analog Switch GENERAL DESCRIPTION FEATURES The OGM181 family of CMOS monolithic switches utilizes intersil's latch-free junction isolated processing to combine the speed of the hybrid OG 181 family with the reliability and low power consumption of a monolithic CMOS construction. These devices, therefore, are a cost effective replacement for the OG181 family. The OGM181 family has a high state threshold of 2.4V; and a low state of + O.8V. Very low quiescent power is dissipated in either the ON or OFF state of the switch. Maximum power supply current is 10IlA from any supply, and typical quiescent currents are in the 10nA range. OFF leakages are typically less than 200pA at 25°C. • • • • • • • Pin and Function Replacement for DG181 Family Meets or Exceeds All DG181 Family Specifications With Monolithic Reliability Low Power Consumption 1nA Leakage From Signal Channel in Both ON and OFF States TTL. DTL, RTL Direct Drive Capability ton. toff < 150ns. Break·Before·Make Action Crosstalk and Open Load Switch Isolation > 50dB at 10MHz (75U Load) ORDERING INFORMATION TYPE Dual SPST Dual DPST SPOT Dual SPOT STANDARD PART NUMBER STANDARD PART NUMBER M X AT 25°C DGM161BX DGM182AX DGM182BX DGM184BX DGM185AX DGM185BX DGM187BX DGM188AX DGMl88BX DGM190BX DGM191AX DGM191BX DGMS181BX DGMS182AX DGMS182BX DGMS181BX DGMS185AX DGMS185BX DGMS187BX DGMS188AX DGMS188BX DGMS190BX DGMS191AX DGMS191BX 50 50 75 50 50 75 50 50 75 50 50 75 o ros!on) M 181 L A LPACKAGE A - lO-PIN METAL CAN L - 14-PIN FLAT PACK : K - CERAMIC DIP J - EPOXY DIP TEMPERATURE RANGE A - MILITARY,.-55°C to + 125°C B - INDUSTRIAL -20°C to +85°C L -_ _ _ _ _ DEVICE TYPE ' - - - - - - - - - DRIVER '------~---- CMOS ANALOG DRIVER r--~---~--'----~v+ ·ud. . t s lOO01401 NOTE: 1/2 of DGM182 Figure 1: Functional Diagram (Typical Channel) 3-39 Note: All Iypical values have been guaranteed by characterization and are not tested. ;; .,. ,.. . I I DUAL SPST (DGM181, 182) Flat Package (FD-2) Metal Can Package C::::====::::;::;J 0,_..........-$, Dual-In-Line Package [ :;;::===';:4:3 5, "'C "'c NC Ne; IN, y+ VL y- c0000401 COOOOSOI COOOO601 (OUTLINE DWGS DD, PD) (OUTLINE DWG TOol00) SWITCH STATES ARE FOR LOGIC "1" INPUT DUAL DPST (DGM184, 185) Flat Package 54 C:::==:::::::;:;;J Dual-In-Line Package " 53 D. 0, 5, IN, '', y+ y- v, c:::====:J OND c0000701 CDOOO801 (OUTLINE DWG FD-2) (OUTLINE DWGS DE, PEl SWITCH STATES ARE FOR LOGIC "1" INPUT Figure 2: Pin Configuration and Switching State Diagram 3-40 Note: All typical values have been guaranteed by characterization and are not tested. aI:) DGM181-191 ... I: CD SPDT (DGM187, 188) Metal Can Package Flat Package (FD-2) Dual-In-Une Package I. NC NC NC 0, 52 .NC VL v- V+ GND COOOO901 COOO1001 c000110J (OUTLINE DWG TO-100) (OUTLINE DWGS DD, PD) SWITCH STATES ARE FOR LOGIC "1" INPUT DUAL SPDT (DGM190, 191) Flat Package Dual-In-line Package IN, Ne v+ (SUBSTRA.TE) 11 Ne s, IN, D, v+ TOP VIEW CDOO1201 COOO1301 (OUTLINE DWG FD-2) (OUTLINE DWGS DE, PEl SWITCH STATES ARE FOR LOGIC "1" INPUT Figure 2: Pin Configuration and Switching State Diagram (Cont_) 3-41 Note: All typical values have been guaranteed by characterization and are not tested. ! ! ,...... ·.D~ DGM181-f91 co ABSOLUTE MAXIMUM RATINGS II g V+ -v- ............................................................ 36V :V--VD ........................................................... 33V VrrV- ............................................................ 33V . VrrVs ............................................................. ±22V VL-V- ............................................................ 36V VL-VIN ............................ , .............................. 30V VL-VGND ......................................................... 20V VIN-VGND : ....................................................... 20V GND-V- ......................................................... 27V GND-VIN ......................................................... 20V Current (Any Terminal) .................................... 30mA Storage Temperature ...................... -65·C to +:150·C Operating Temperature ................... -55·C to + 125·C Lead Temperature (Soldering. 10sec) ................. 300·C Power Dissipation' ................... 450 (TW). 750 (FLAT). 825(OIP)mW 'Device mounted with all leads welded or soldered to PC board. Derate 6mWI'C (TW); 10mWI'C (FLAT); l1mW/'C (DIP) above 7S'C. . Stresses above those listed under Absolute Maximum Ratings may cause permanent damage·to the ·device. These are stress ratings only. and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. ELECTRICAL CHARACTERISTICS PARAMETER (v+ = + 15V. v- = -15V. VL = 5V. unless noted) TEST CONDITIONS (Note 1) DEVICE NO. A SERIES -55'C B SERIES +25'C +125'C ±1 UNIT +25'C +85'C 100 ±2.0 200 nA -20'C SWITCH IS(off) 10(011) = -7.SV DGMI81, 184. 187, 190 Vs = 7.SV, Vo VIN-"OFF" DGM182, 18S, 188, 191 Vs = 10V, VD - -10V VIN "OFF" ±1 100 ±2 200 nA DGMI81, 184, 187, 190 VS" 7.5V, Vo - -7.5V VIN-"OFF" ±1 100 ±2 200 nA DGMI82, 185, 188, 191 Vs = 10V, Vo VIN = "OFF" ±1 100 ±2 200 nA VIN - "ON" ±2 ±200 ±S 500 nA -10V, VIN - "ON" ±2 ±200 ±S 500 nA 20 20 10 20 10 20 IlA IlA = = -10V = -7.SV, DGMI81, 184, 187, 190 VO" Vs DGM182, 18S, 188, 191 Vo IINL ALL VINcOV ±1.0 IINH DYNAMIC ALL VIN-5V ±1.0 DGMI81, 184, 187, 190 DGMI82, 185, 188, 191 See switching time test circuit 10(on) + IS(on) = VS" INPUT Ion SOO 450 I 250 loll CS(oll) ALL DGMI81, 182, 184, 185, Vs - -SV, 10 =0, f- lMHz CO(off) 187, 188, 190, 191 Vo - + SV, IS" 0, f .. 1MHz 6pF typical Vo=Vs-O, f=IMHz 11 pF typical COlon) + CS(on) OFF Isolation 5pF typical ALL I ALL IL pF Typically> SOdS at 10MHz RL .. 75n, CL = 3pF SUPPLY 1+ ns 275 10 10 100 10 10 100 100 ALL 10 10 100 100 IGNO 1+ ALL 10 10 100 100 ALL 10 10 100 100 1- ALL 10 10 100 100 IL ALL 10 10 100 100 IGNO ALL 10 10 100 100 VIN - 5V VIN" OV Note 1: See Switching State Diagrams for VIN and VIN "OFF" Test Conditions. 3-42 Note: All typical values have been guaranteed by characterization and are not tested.· 100 IlA DGM181-191 ELECTRICAL CHARACTERISTICS DEVICE NUMBER OGM181 OGM182 OGM184 OGM185 OGM187 OGM188 DGMI90 OGM191 MAXIMUM RESISTANCES rDS(ON) = Vo = Vo= VoVoVo= Vo Vo'" Vo = = -55°C + 25°C - -7.5V -10V -7.5V -10V -7.5V -10V -7.5V -10V INDUSTRIAL TEMPERATURE MILITARY TEMPERATURE CONDITIONS (Note 1) V+ 15V,V- -15V,VL= 5V Is= -lOrnA VIN = "ON" -20°C + 25°C +85°c - 50 75 50 75 50 75 50 75 50 75 50 75 50 75 50 75 75 100 75 100 ·75 100 75 100 - 50 30 50 30 50 30 50 UNIT + 125°C 50 30 50 30 50 30 50 75 60 75 60 75 60 75 n n n n n n n n APPLICATION COMMENT: The charge iniection in these switches is of opposite polarity to that of the standard OGI80 family, but considerably smaller. SWITCHING TIME TEST CIRCuiT Switch output waveform shown for Vs = constant with logic input waveform as shown. Note that Vs may be + or - as per switching time test circuit. Vo is the steady state output with switch on. Feedthrough via gate capacitance may result in spikes at leading and trailing edge of output waveform. LOGIC INPUT tr< 10nl tf< 10nl 3V--, SWITCH INPUT Vs SWITCH OUTPUT 1/ ~ J 1.5V~~ 0 o.evo ~ ..J J O.9Vo O.1VO~ II ton toff WFOO1111 Figure 3: Logic Input for "OFF" to "ON" Condition (DGM1811182 Shown) SWITCH INPUT SWITCH OUTPUT SI O-+---- ----~-------, s,'''''+--t-""'; o-------~l-O ,,"o.+--+-~'i ...------+ s.'_'........_'" Oo-----~+~ $,'...'+--t-o"1 - - - -..... " "o>--1t--t--+-O"'j o---t-t....., 5.0-1---+--+---+--<,..-, 00----. " s,O'''+--+-f----t-~-''! •.'...0+_--..,_+---+_'1 ~'oo+--+-+-~-~~_o1 G. G; G, 05021001 0S021101 Figure 1: Functional Diagrams and Pin Configurations (Outline Dwgs DO, FD-2, JD, PO) NOTE: G115 Built-in 16·Pin DIP Only. 3-45 Note: All typical values have been guaranteed by characterization and are not tested. 0115/G123 ABSOLUTE MAXIMUM RATINGS (25°C) Source Current (IS) ............... ~ ........................ 100mA Drain Current (10) ..............•........................... 1OOmA Gate Current (IG) ......................... : ................... 5mA Pull-up Control Current (If).: ............................ 100pA Body to Source (VB-VS .... , ................ -2V to +25V Body to Drain (VB - Vo) ........................ -2V to + 25V Body to Gate (VB - VG) ................................... +35V Body to Pull-up (VB - Vp) ................................. + 35V Power Dissipation ' (derate 10mW/oCabove 70°C) .................... 750mW Lead Temperature (Soldering, 10sec) ................. 300°C Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only. and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. ELECTRICAL CHARACTERISTICS (per channel unless noted) LIMITS DEVICE PARAMETER TEST CONDITIONS ROS(ON) -20°C 25°C 85°C 125 150 Vso = O. VGO = -30V Ils= 125 VSO = + 10V. VGO = -20V limA 250 250 300 500 500 600 VBO= +20V. VGO= -10V n Vos= -20V. Vss=VGS=Vps=O -10 -500 Max nA VSO = -20V. VBO = VGO = VPO = 0 -5 -100 Max nA IGSS VGS = -20V. Vos - VSB ~ VPB =0 -5 -100 Max nA VGB = -30V. VPB = -30V. VOS = 0 -0.8 Min -2.4 Max mA -1.5 -1.5 -1.5 Min VBS= VpS = 0 -4 -4 Max SVOSS 10 = -101lA. VGB = VSS = VPS = 0 -25 -:4 -25 -25 Min V BVsos IS = -101lA. VGO = VBO = VPO = 0 -25 -25 -25 Min V -35 -35 -35 Min V -110 -110 -110 Max V -35 -35 -35 Min V -110 -110 -110 Max V Typ pF 0.4 Typ pF 18 Typ pF 9 Typ pF 3.5 Typ pF IS = -101lA. Voo = O. IG = -101lA. Vos = Vss = VPB BVGBS BVpss =0 Ip = -101lA. Vos = Vss = VGB = 0 GGS. GGO VGB=O. Vss=O. VOB-O. VPB-O GOS f = 1MHz. Body Guarded 3 · · G115 . Max IS(OFF) VGS(th) G123 UNIT 10(OFF) IG(ON) G115 and MINI MAX G123 GOB VOB = -5V. VSB = VGB = VPB = 0 f=IMHz Both GSB VSB = -5V. VOB = O. VGB = VPB = 0 f= lMHz V Typical values not garanteed or tested in production TYPICAL PERFORMANCE CHARACTERISTICS E ~ 10' VB~" OV u 10 Z <[ in ~ 15 10' ,-f-'-- .... a: u 10' .. 50 I Is" a: 100~A Tp. '" 25 C 10 '" w >- .-III p- ~ V SB " VGB,:-O u w 0 E 100 .. .... e; 1/ a: u ::J ~ u "'z I-- - f - ;----I{) v!'!> -5 o V oo - DRAIN BODY VOL TAGE (VI 0P0372Ot OP037301 3-46 Note: All typical values have been guaranteed by characterization and are not tested. · o 0 ,3D > V(,S 25 20 15 lOO~A 0 -10 GATE SOURCE VOLTAGE (VJ OP037401 G115/G123· voltage to be switched (-10V). Therefore, VG should go to -20V. To insure turn-off VG should not be less than the most positive voltage to be switched, + 10V. For convenience the same potential as the body could be used. B-Terminal- This terminal is connected to the body (substrate) of the chip and must be maintained at a voltage that is equal to or greater than the most positive voltage to be switched. This is to ensure that the drain-to-body or the source-to-body junctions do not become forward biased. P-Terminal- The potential, with respect to the body, at this terminal determines the gate-to-source voltage of 01 which determines the amount of drain current available for driver-collector pull-up. Shorting terminal P to 8 prevents 01 and 03 from conducting, but still allows the body-todrain junction of 01 to act as a forward biased diode for positive gate voltages, and to act as a Zener diode for negative voltages which exceed BVOSS (-30 to -90V) for protecting the gate of 02. D-Terminal- The common point of the MOSFET switches (summing point). S-Terminal- This is the normally-open terminal of the MOSFET switch and is normally used as the input. APPLICATION TIPS Description of Analog Switch Single Channel "''": GATf SC009201 Figure 3 G-Terminal- This is the control terminal of the switch. The voltage at this terminal determines the conduction state of 02. To insure conduction 01 02 when voltages between ±10V are switched, the gate voltage (VG) should be at least 10V more negative than the most negative APPLICATIONS Dual Current·to·Voltage Converter With Range Programming Channel Multiplexer AF030901 Figure 4 3-47 Note: All typical values have been guaranteed by characterization and are not tested. AF031001 S! G116,G118, ;; Monolithic !MOSFET Switch G119 C5 ;. GENERAL DESCRIPTION FEATURES ; • • • , These switches may be connected directly to the INTERSIL switch-driver D123 series without need of any interfacing components. These MOSFET switches are inh,~rnally protected by a Zener diode integrated on the silicon chip. A MOSFET used as a current source provides an active pullup for' faster switching. The active pull-up FET can be disabled without sacrificing the Zener protection of the gates. r P-Channel Enhancement-Type MOSFET Switches Zener Protection on All Gates With and Without Constant Current Source Pull-, Up ORDERING INFORMATION G116 ,~ Package J - 14·pin Plastic DIP K - 14-pin CERDIP L - 14-pin Flat Package P - 14·pin Hermetic DIP (Special Order Only) , L.,"-'- - -_ _ _ _ _ _ _ _ _ _ _ _ _ _ Temperature Range A - Military (- 55°C to + 125°C) B - Industrial (- 20°C to + 85°C) L-_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _--,- Device Chip Type . ~ G116 G118 LD011701 LD011801 G119 LD011901 Figure 1: Functional Diagrams (Outline DwgsPD, JD, FD-2, DO) 3-48 Note: All typical values have been guaranteed by characterization and are not tested, ...... !IJ t;) G116, G118, G119 ...... ~ t;) ABSOLUTE MAXIMUM RATINGS (25°C) Source Current (IS) ........................................ 1OOmA Drain Current (I D) .......................................... 1OOmA Control Gate Current IG ..................................... 5mA Pull-Up Gate Current Ip .................................. 100J..lA Body Voltage (Va) to Any Terminal .......... -2 to + 30V Power Dissipation (Note) ................................ 750mW Storage Temperature ...................... -55°C to + 150°C t;) Operating Temperature ... , ............... -50°C to + 125°C ::: Lead Temperature (Soldering. 10sec) ................. 300°CCG NOTE: Dissipation rating assumes device is mounted with all leads welded or soldered to printed circuit board in ambient temperature below + 70·C. For higher temperatures, derate 1OmW I·C. Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. ELECTRICAL CHARACTERISTICS (Per Channel Unless Noted) References to pull-up gate P do not apply to G 118. LIMITS PARAMETER rOS(ON) (Note 1) TEST CONDITIONS G116C Series 25°C 25°C 125°C vso = 0, vGO = -30V, Vps = 0 IS= 100 125 125 VSO = + 10V, VGO = -20V, VPS = 0 -lmA 200 250 250 4S0 600 600 VSO- +20V. VGO= -10V. VPs-O -O.S -SOO -1 G116 -2.S -2S00 -S VSO = -20V, VSO = VGO = VPO = 0 IS(OFF) G116M Series VOS= -20"; VSO - VGO - VPO = 0 10(OFF) VG1S to VGSB - 0, VG6S - -30V, VOS = -20V, VSS = VPS = 0 G116 -3.0 -3000 -6 Gl19 -1.S -lS00 -3 Gl17 -O.S -SOO MINIMAX UNIT Max n Max nA Max nA nA 125°C -1 Max 10 = -10pP., VGS = VSS = VPS = 0 -30 -30 Min BVSOS IS = -10pP., VGO = VSO = VpO = 0 -30 -30 Min BVGSS IG = -10pP., VPS = VSS = VOS = 0 -30 -30 Min -110 -110 Max -30 -30 Min -110 -110 Max -1.S -1.S Min -4 -4 Max -O.S -0.3 Min -2 -2.S Max BVOSS Ip = -10pP., VGS = VSS = VOS = 0 BVpSS / Is. = -10pP., VOS = -10V, VSS = 0 VGO(th) IGS(ON) VGS = -30V, VPS = -30V, VSS = VOS = 0 (Note 2) IGSS VGS = -20V, Vos = VSS = VPS = 0 CGO or CGS Vps = 0, VSS = 0, or VSO = 0 CSO (Note 3) Body Guarded, f = 1MHz CSS (Note 3) VPS = VGS = VOS = 0, VpB = VGS = VSS = 0 COG (Note 3) NOTES: -1 Max nA 3 Typ pF 0.4 0.4 Typ pF -3.5 -3.S Typ pF Gl16 18 16 Typ pF Typ pF VSB = -5V, f = lMHz Gl18 18 18 G09 10 10 VG6S = -30V, VPB = VSB = 0, VG1S to Gl17 VGSB=O, VOS= -SV, f=lMHz 20 20 VOS = -SV, f = lMHz rnA 3 -O.S -500 V 1. For the G 117 this is the resistance from each of the source terminals (S terminals) and the one drain terminal to the internal junction of the output MOSFETs. 2: Not applicable to G118. 3: Typical values not guaranteed or tested in production. 3-49 Note: All typical values have been guaranteed by characterization' and are not tested. 'G116, G118, G119 ,; ; .. TYPICAL PERFORMANCE CHARACTERISTICS YD. - ORAIN·BODV VOLTAGE tvl j 1e,;30 -25 -20 -15 -10 ~ ~ ~20 ~ ~~ i 0 100 ~ -5 .9 '-lMHz w 10 ~ ~ /20§ V,. -YG.-O 10 5 5 StNGLE SOURCE. ALL TYPES 2 VOl· VG• -0 J ~z ~ I I 1 -30 -25 -20 -15 -10 -5 0 V.. - SOURCE·BODY VOLTAGE (VI QP057601 OP057701 I ; i .,. 10' i fer' a,r' . ~ ~::0 c III"" ~< ~ ~ 1Cf4 0 -10 I -'0 :§ v•• -GATE-IOURCE VOLTAGE IV} VG,-GATE·SOURCE VOLTAGE IV! 0P057801 OP0579ot APPLICATiON TIPS B-Terminal- This terminal is connected to the body (substrate) of the chip and must be maintained at a voltage that is equal to or greater than the most positive voltage to be switched. This is to insure that the drain-to-body or the source~to-body junctions do not become forward biased. Description of Analog Switch -~:~f[~ ~ . 10' c .0" GATE . P-Terminal- The potential, with respect to the body, at this terminal determines the gate-to-source voltage of Q1 which determines the amount of drain current available for driver-collector pull-up. Shorting terminal P to B prevents Q1 and Q3 from conducting, but still allows the bOdy-to-drain junction of Q1 to act as a forward biased diode for positive gate voltages, and to act as a Zener diode. for negative voltages which exceed BVOSS (-30 to -110V) for protecting the gate of Q2. OOIllAl" AF037301 Figure 2: Single Channel G-Terminal- This is the control terminal of the switch; the voltage at this terminal determines the conduction state of Q2. To insure conduction of Q2 when voltages between ± 1OV are switched, the gate voltage (VG) should be at least 10V more negative than the most negative voltage to be switched (-1 OV). Therefore, VG should go to -20V. To insure turn-off VG should not be less than the most pOSitive voltage to be switched, + 10V. For convenience the same potential as the body could be used. D-Terminal- The common pOint of the MOSFET switches (summing point). S-Terminal - This is the normally-open terminal of the MOSFET switch and is normally used as the input. 3-50 Note: All typical values have been guaranteed by characterization and are not tested. G116, G118, G119 APPLICATIONS r ........ ~OG o-:::.t-+---d'f - - - - + -r::-....-i O'~~!:\I":':'+-+--+--'f "---4i-*"r... L -+---t----~ "",+-+" .. "'. 1i,_I\I, AF037501 AF037401 Figure 3: S-Channel Multiplexer With Series Switch Figure 4: 3-Channel Differential Multiplexer 3-51 Note: All typical values have been guaranteed by characterization and are not tested. ~ IH3'11/IH312 ~ High Speed SPST ; 4-ChannelAnalog S z - "\(>\... ,;;.,v.\;.,/;("l. GENERAL DESCRIPTION".>""·" FEAtURES The IH311 and IH312 are CMO'S;"'<~onolithic, QUAD, SPST analog switches for use in high-speed switching applications for communications, instrumentation, process control and computer peripherals. Both devices provide true bi-directional performance in the ON condition and will block signals to 30V peak-to-peak in the OFF condition. The IH311 and IH312 differ only in that the digital control logic is inverted, as shown in the truth table. IH311 and IH312 are available in 16-pin Dual-In-Line packages and are offered in both military and commercial temperature ranges. IH311 • • • • Switches ± 15V Analog Signals TTL Compatibility Logic Inputs Accept Negative Voltages RON ~ 175 Ohm ORDERING INFORMATION PART NUMBER TEMPERATURE RANGE PACKAGE IH311MJE -55·C to + 125·C 16 Pin CERDIP IH311CJE D·C to +70·C 16 Pin CERDIP IH311CPE D·C to +70·C 16 Pin Plastic DIP IH312MJE -55·C to + 125·C 16 Pin CERDIP IH312CJE O·C to +70·C 16 Pin CERDIP IH312CPE O·C to +70OC 16 Pin Plastic DIP IH312 S1 S1 DUAl·II·LlNE PACKAGE IN1 IN1 01 01 S2 S2 IN2 IN2 02 02 S3 S3 IN3 IN3 D3 03 S4 S4 IN4 IN4 04 04 TOP VIEW 00035301 CD035401 COO35501 Figure 2: Pin Configuration (Outline dwgs DE, PEl Four SPST Switches per Package Switches Shown for Logic "1" Input Truth Table LOGIC IH311 IH312 0 1 ON OFF OFF ON Logic "0":0; O.SY Logic "1" ~ 2.4Y Figure 1: Functional Diagram 3-52 Note: All typical values have been guaranteed by characterization and are not'· tesled. 307040-001 ABSOLUTE MAXIMUM RATINGS V+ to V- ............................................... ; ....... 36V VIN to Ground ........................................... V+, V+ VL to Ground ........................................ -0.3V, 25V Vs or VD to V + ......................................... 0, -36V Vs or Vo to V- ............................................ 0, 40V Peak Current, S or D (Pulsed at 1msec, 10% duty cycle max) ....... 70mA Storage Temperature ................... ; .. -65°C to + 125°C Operating Temperature ................... -55°C to + 125°C Power Dissipation (Package)" . 16 Pin Plastic DIP"" ................................. .470mW V + to Ground ................................................. 25V V- to Ground ................................................ -25V Current, Any Terminal Except S or D ................. 30mA Continuous Current, S or D .............................. 20mA ELECTRICAL CHARACTERISTICS SYMBOL "Device mounted with all leads soldered or welded to PC board. "·Derate 6.5mWrC above 25°C MILITARY TEMPERATURE RANGE TEST CONDITIONS V1 = + 15V, V2 = -15V VL=5V, GND PARAMETER LIMITS UNIT -55°C + 25°C + 125°C SWITCH VANALOG ROS(ON) = +5V Analog Signal Range V- = -15V, VL Drain-Source On Resistance Vo = ±10V, VIN = 2.4V - IH312 IS = lmA, VIN = O.BV - IH311 Source OFF Leakage Current ±15 125 150 ±1 100 VS- -14V, VO-14V ±1 100 Vo -14V, Vs - -14V ±1 100 = 14V ±1 100 ±2 200 ±2 200 IO(off) Drain OFF Leakage Current IO(ON) Drain ON Leakage Current3 Vs = Vo = -14V, VIN VIN = 2.4V, IH312 Vo - -14V, Vs = O.BV, 125 V Vs -14V, Vo = -14V VIN = 2.4V IH311 VIN = O.BV IH312 IS(off) IH311 n nA INPUT IINH Input Current With Input Voltage High IINL Input Current With Input Voltage Low ..-... .O~Oll ifit IH311/IH312 = 2.4V 10 ±1 10 VIN = 15V 10 ±1 10 VIN=OV 10 10 10 VIN 3-53 Note: All typical values have been guaranteed by characterization and are not tested. p.A ifit ... N .D~OIL Ion Tum·ON Time IotIl Tum-OFF T'"1e 200 see Switching Time Test Circuit Vs = 10V, RL = lkn, CL - 35pF ,1otI2 80 Cs(olf) , Source OFF Capacitance Drain OFF Capacitance Vs = OV, VIN - 5V, f-1MHz Vo;'OV, VIN=5V, f= lMHz2 5 CO(oIf) Co + S(on) OIRR Channel ON Capacitance Vo-VS-OV, VIN-OV, f-1MHz 16 'OFF Isolation4 5 pF 70 VIN = 5V, RL - lkfl, CL = 15pF" Vs - lVRMS, f = 100kHz 2 Crosstalk (Channel to Channel) CCRR dB 90 " SUPPLY 1+ 1- Negative Supply, Current IL logic Supply Current NOTES: ns " Positive Supply Current VIN = 0 and 2.4V' " 10 1 10 10 1 10 10 1 10 pA 1. The algebraic co,mientionwhereby the most negative value is a minimum, and the most positive is a m'aximum, is used in this data sheet. ' 2. For design reference, only" not 100% tested. 3. 10(on) is leakage 'from driver into "ON" switch. 4. OFF Isolation - 2010g Vs , Vs = Input to OFF switch, Vo = output. ,VO 3-54 Nota: All typical values have been guaranteed by characterization and are not tested. ~ -...... C') ,IH311/IH312 :z: ...... ABSOLUTE MAXIMUM RATINGS ! V+ to v- ....................................................... 36V VIN to Ground ........................................... V+. V+ VL to Ground ........................................ -0.3V. 25V Vs or VD to V+ ......................................... 0. -36V Vs or VD to V- ............................................ 0. 40V Peak Current. S or D (Pulsed at 1msec. 10o/~ duty cycle max) ....... 70mA +125°C storage Temperature ...................... -65°C Operating Temperature ........................ OOG to + 70°C Power Dissipation (Package)' 16 Pin Plastic DIP" .................................. 470mW '0 V + to Ground ................................................. 25V V- to Ground ................................................ -25V Current. Any Terminal Except S or D ................. 30mA Continuous Current. S or D .............................. 20mA ELECTRICAL CHARACTERISTICS SYMBOL 'Device mounted with all leads soldered or welded to PC board. "Derate 6.5mWrC above 25°C COMMERCIAL TEMPERATURE RANGE TEST CONDITIONS V1 = + 15V, V2 = -15V, VL=5V, GND PARAMETER LIMITS UNIT + 25°C + 70°C SWITCH VANALOG Analog Signal Range V- = -15V, VL = +5V ±15 ROS(ON) Drain-Source On Resistance Vo = ±10V, VIN = 2.4V - IH212 IS" 1mA, VIN = O.BV - IH211 150 175 Source OFF Leakage Current ±5 100 Vs = -14V, Vo = 14V ±5 100 Drain OFF Leakage Current Vo -14V, VS'- -14V ±5 100 IO(of!) VIN = 2.4V IH311 VIN -O.BV IH312 Vs -14V, Vo = -14V IS(oft) Vo - -,14V, Vs = 14V ±5 100 Drain ON Leakage Currenfl Vs = Vo = -14V, VIN = O.BV, IH211 VIN * 2.4V, IH212 ±5 200 ±5 200 VIN = 2.4V ±1 -10 VIN = 15V ±1 10 VIN =OV ±1 -10 IO(ON) V n nA INPUT IINH Input Current With Input Voltage High IINL Input Current With Input Voltage Low p.A DYNAMIC Ion Turn-ON Time Ioft1 10112 Turn-OFF Time See Switching Time Test Circuit 5 Vs = 10V, RL = 1kn, CL = 35pF CS(of!) Source OFF Capacitance Vs = OV, VIN = 5V, f = 1MHz 5 CO(of!) Drain OFF capacitance Vo = OV, VIN = 5V, f = 1MHz2 5 CO+S(on) OIRR Channel ON Capacitance Vo=Vs=OV, VIN-OV, f=1MHz 16 OFF Isolation4 Crosstalk (Channel to Channel) CCRR VIN = 5V, RL = 1kn, CL = 15pF, . Vs = 1VRMS, f = 100kHz 2 300 150 ns pF 70 dB 90 SUPPLY 1+ Positive Supply Current 1- Negative Supply Current IL Logic Supply Current NOTES: VIN = 0 and 2.4V ±1 10 ±1 -10 ±1 10 p.A 1. The algebraic convention whereby the most negative value is a minimum, and the most positive is a maximum, is used in this data sheet. 2. For design reference only, not 100% tested. 3. 10(on) is leakage from driver into "ON" switch. 4. OFF Isolation = 20log Vs , Vs = input to OFF switch, Vo = output. Vo 5. Switching times only sampled. 3-55 Note: All typical values have been guaranteed by characterization and are not tested. Switch output wav!lform shown for Vs = constant with logic input waveform as shown. Note the Vs may be + or as per switching ~ilT1e test circuit. Vo istl)e 'steady state output with sWitch on. Feedthroughvia gate bapacitance may resulUri spikes at leading and trailing' edge of output waveform. ' , ' , '. . f LOGIC· INPUT (IN 1) -::\.0 ~"'o ~ t,< 20 n5 tf < 20 n5 _ - - - - - - ,~ SWITCH Vs INPUT I lof11 _---1~----_-.,.___---J-+--_+_- 0,9 Vo SWITCH OUTPUT (VO) ____~--J ton J 'off2 Figure 3: Switching Time Test Circuit LogiC shown for IH311. Invert for IH312. Note: All typical values have been guaranteed by characterizatioo:and ·are· noLiested.,:.,." ". " IID~OIb IH311/IH312 ! :t .. I ,(,a N + 15V +5V SWITCH INPUT Vs VL V+ SWITCH OUTPUT S1 = 10V D - - t - - - - - - ( y a-~cr-.--~--o I LOGIC INPUT Vo CL 36pF (REPEAT TEST FOR IN2 IN3 AND IN4) V-15V RL VO=VS RL + rDS(on) Figure 4: Switching Time Test Circuit 3-57 Note: All typical values have been guaranteed by characterization and are ,not tested.. +16V TTL IN~-'W __r l +6V LOO12701 Figure 5: IH311 Schematic (114 as shown) 3-58 Note: All typical values have been guaranteed by characterization and are not tested. IH4011lH401A QUAD Varafet Analog Switch GENERAL DESCRIPTION FEATURES The IH401 is made up of 4 monolithically constructed combinations of a varactor type diode and an N-channel JFET. The JFET itself is very similar to the popular 2N4391, and the driver diode is specially designed, such that its capacitance is a strong function of the voltage across it. The driver diode is electrically in series with the gate of the N-channel FET and simulates a back-to-back diode structure. This structure is needed to prevent forward biasing the source-to-gate or drain-to-gate junctions of the JFET when used in switching applications. Previous applications of JFETs required the addition of diodes, in series with the gate, and then perhaps a gate-tosource referral resistor or a capacitor in parallel with the diode; therefore, at least 3 components were required to perform the switch function. The IH401 does this same job in one component (with a great deal better performance characteristics). Like a standard JFET, to practically perform a solid state switch function a translator should be added to drive the diode. This translator takes the TTL levels and converts them to voltages required to drive the diode/FET system (typically a OV to -15V translation and a 3V to + 15V shift). With ±15V power supplies, the IH401 will typically switch 18~_p at any frequency from DC to 20M Hz, with less than 30H RDS{on). The IH401A will typically switch 22Vp_p with less than 50n RDS{on). . • . ROS{on) 25n Typical (IH401) • ID{Off) of 10pA Typical • Switching Times of 25ns for ton and 75ns for toff (RL 1kn) • Built-In Overvoltage Protection (±25V) • Charge Injection Error of 3mV Typical Into 0.01 IlF Capacitor • Ciss < tpF Typical • Can Be Used for Hybrid Construction = = ORDERING INFORMATION PART NUMBER PACKAGE IH401 CERDIP IH401A CERDIP IH401/D DICE CD030801 Figure 1: Pin Configuration (Outline Dwg JE) 3-59 Note: All typical values have been guaranteed by characterization ana,'are.not tested.· IH401IIH~01A " Storage Temperature ......................., -65°C to + 150°C Lead Temperature (Soldering: 10sec) ................. 300°C Vs to VD .. · ..... ··· .......... · .......................... ,.........,35V VG to VS, VD ................................................•. 35V Operating Temperature ................... -55°C to + 125°C Stresses abQve those listed under Absolute Maximum Ratings may cause permanent damage to the device. Th",se are stress ratings only. and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. ELECTRICAL CHARACTERISTICS AT 25°C/125°C IH401 SYMBOL CHARACTERISTIC UNIT TEST CONDITIONS MIN VORIVE = 15V. VORAIN = - 7.5V 10 = 10mA TYP MAX 20 30 n ROS(on) Switch "on" Resistance Vp Pinch-Off Voltage 10 = 1nA. VOS = 10V 6 -7.5 V 10(011) Switch "off" Current or "off" Leakage VORIVE = -15V, VSOURCE = - 7.5V. VORAIN = + 7.5V 10 ±500 pA 10(011) Switch "off" Leakage at 125°C VORIVE = -15V. VSOURCE = -7.5V. VORAIN = + 7.5V 0.25 50 nA IS(oll) Switch "off" Current VORIVE = -15V. VORAIN = -7.5V. VSOURCE= +7.5V . 10 ±500 pA IS(off) Switch "off" Leakage at 125°C VORIVE = -15V, VSOURCE = -7.5V. VORAIN = + 7.5V 0.3 50 nA· Vo= Vs = -7.5V. VO~IVE = + 15V 0.02 ±2 nA Switch Leakage when 10(on) + IS(on) Turned "on" Vanalog AC Input Voltage Range without Distortion See Figure 3 Vinject Charge Injection Error Voltage See Figure 4 BVdiode Diode Reverse Breakdown Voltage. This Correlates to Overvoltage Protection Vo=VS= -V, 10RIVE = 1 jJA. VORIVE =OV' BVGSS Gate to Source or Gate to Drain Reverse Breakdown Voltage lOSS 3 18 Vp_p 3 mVp_p -30 -45 V VORIVE = -V. Vo= Vs = OV. 10RIVE = 1iJA 30 41 V Maximum Current Switch can Deliver (Pulsed) VORIVE = 15V. VS=OV. VO=+10V 45 70 mA fen Switch "on" time (Note 1) See Figure 2 50 ,ns loff Switch "off" time (Note 1) See Figure 2 150 ns 15 NOTE 1: Driving waveform must be > 100ns rise and fall time. 3-60 Note: All typical values have been guaranteed by characterization and are not tested. IIO~OIlI IH401/IH401A ... ..... ·5V +15V -,s'vSL STROBE: INPUT ~ z '0% .,5V SIGNAL OV \ -15V "'" Your ton __ -. ",. loff -"'" - -·5V ton_ TC033601 • STROBE INPUT -5V "'" lkn ...~ / OV i5V SIGNAL :C--- -5V SIGNAL 10% (olf - - WF024401 Figure 2: Switching Time Test Circuit and Waveforms .. 15V OVLr -15V 1 C~OOl.1'F TC033701 TC033801 Figure 3: Analog Input· Voltage Range Test Circuit Figure 4: Charge Injection Test Circuit ELECTRICAL CHARACTERISTICS AT 25°C/125°C IH401A SYMBOL CHARACTERISTIC TEST CONDITIONS MIN VORIVE = 15V. VORAIN = -10V. 10 = 10mA UNIT TYP MAX 35 50 n ROS(on) Switch "on" Resistance Vp Pinch-Off Voltage 10 = 1nA. VOS = 10V 4 5 V 10(011) Switch "off" Current or "off" Leakage VORIVE.= -15V. VSOURCE = -10V. VDRAIN = + 10V 10 ±500 pA 10(011) Switch· "off" Leakage at 125°C VORIVE = ~15V. VSOURCE = -10V. VORAIN = + 10V 0.25 50 nA IS(off) Switch "off" Current VORIVE = -15V. VORAIN = -10V. VSOURCE = +10V 10 ±500 pA IS(off) Switch "off" Leakage at 125°C VORIVE = -15V. VSOURCE = -10V. VORAIN = + 10V 0.3 50 nA Vo = Vs = -10V. VORIVE = + 15V 0.02 ±2 nA Switch Leakage when 10(on) + IS(on) Turned "on" Vanalog AC Input Voltage Range without Distortion See Figure 3 Vinject Charge Injection Amplitude See Figure 4 BVdiode· Diode Reverse Breakdown Voltage. This Correlates to Overvoltage Protection VO=VS= -V. 10RIVE = 1/lA. VORIVE = OV 2 20 -30 3-61 Note: All typical values have been guaranteed by characterization arid are not tested. 22 Vp_p 3 mV p_p -45 V ',§ . lH4011IH401A Z ::::. ELECTRICAL CHARACTERISTICS 'AT 25"C/125°C (tONT.) ~ IH401A SYMBOL ! CHARACTERISTIC UNIT TEST CONDITIONS MIN TYP MAX i BVGSS Gate to Sowce or Gate to Drain Reverse Breakdown Voltage VORIVE= -V, Vo=Vs=OV, ,IPRIVE = lIlA 30 41 V loss Maximum Current Switch can Deliver (Pulsed) VORIVE = 15V, Vs = OV, VO=+10V 35 55 ~A ton Switch "on" time (Note 1) See Figure 2 50 ns toft Switch "off" time (Note 1) See' Figure 2 150 ns NOTE: Driving waveform must be, > 1DOns rise and fall time. ,APPLICATIONS IH401 Family In general, the IH401 family can be used in any application formally using a JFET /isolation diode combination (2N4391 or similar). Like standard FET circuits, the IH401 requires a translator for normal analog switch function. The translator is used to boost the TIL input signals to the ± 15V analog supply levels which allow the IH401 to handle ±7.5V analog signals (or IH401A to handle ±10V analog signalS); A typical simple PNP translator is shown in Figure 5. -l!iV Although this simple PNP circuit represents a minimum of components, it requires open collector TTL input and t(off) is limited by the collector load resistor (approximately 1.5J.1s for 10kn). Improved switching speed can be obtained by ,increasing, the complexity of the translatorl;ltage. ' A translator which overcomes the problems of the simple PNP stage is the Intersil IH6201. * This translator driving an IH401varafet produces the following typical features: , '. Ion' time of approx. 200ns • toff time 0.1 approx." 80(1s • TIL compatible Strobing levels of IN L.. ,....., O.4V...J L... • ID(on) +IS(on) typically 20pA up to ±10V analog signals • ID(Off) or IS(off) typically 20pA ,. Quiescent current drain of approx. 100nA in either ".on" or "off" case +15V ,...., break before make switch +2 .• V ANALOG SIGNALS ov...J J lQ4(O FROM TTL OPEN COLLECTOR lOGIC *Th,e IH6201 is a dual translator (two independent ,tran~lators per package) constructed from monolithic CMOS technology. The schematic of one-half IH6201, driving one-fourth of an IH401, is shown in Figure 6. t15V TC033901 Figure 5 3-62 Note: All typical values have been guaranteed by characterization and are not, tested. .n~nlb IH401/IH401A I... i ~ .~ r----' I I UV Uy..r-L. I I I I I IL_v~_J • I +I5V B +15,r' '. -15Y~ .. .. I I - +15V I I I I I I B."1..I' .. -ISV i -15Y 05027801 NOTE: Each translator output has a 9 and 11 output. 11 is, just the .inverse of 8 i.e:. (~ output·is 1sOo "out of, Figure 6: IH6201 Driving An IH401 Phas~ with ,. CD030QOI NOTE: Either switch is turned on when strobe input goes high. Figure 7: Dual SPST Analog Switch Note: AU typical values have been guaranteed by characterization and are not tested.' respect to 8 output). +3V ovs-LT2L1 COO31001 Figure 8: DpDTAnalog :SWltCh (i§)----< T2L INPUT 1 '. d ~ liiil---< r2L INPUT 2 COO:J1101 Figure 9: Dual SPDT Analog Switch A very useful feature of this system is that one-half of an . IH6201 and one-half of an IH401· can combine to make a SPOT switch, or an IH6201 plus an IH401 can make a dual \ SPOT analog switch. (See Figure 9) .!.j' 00031201 Figure 10: Dual DPST Analog Switch Note: All typical values have been guaranteed by characterization and IlI"I\ not. tested., IH5'009-IH5024 Virtual Ground Analog Switch GENERAL DESCRIPTION FEATURES The IH5009 series of analog switches were designed to fill the need for an easy-to-use, inexpensive switch for both industrial and military applications. Although low cost is a primary design objective, performance and versatility have not been sacrificed. Each package contains up to four channels of analog gating and is designed to eliminate the need for an external driver. The odd numbered devices are designed to be driven directly from TTL open collector logic (15 volts) while the even numbered devices are driven directly from low level TIL logic (5 volts). Each channel simulates a SPOT switch. SPOT switch action is obtained by leaving the diode cathode,unconnected; for SPOT action, the cathode should 'be grounded (OV). The parts are intended for high performance multiplexing and commutating usage. A logic "0" turns the channel ON and a logic "1" turns the channel OFF. • • • • • • Switches Analog Signals Up to 20 Volts Peak-toPeak Each Channel Complete - Interfaces With Most Integrated Logic Switching Speeds Less Than O.S~ IO(OFF) Less Than SOOpA Typical at 70·C Effective rds(ON)- sn to son Commercial and Military Temperature Range Operation ORDERING INFORMATION BASIC PART NUMBER CHANNELS LOGIC LEVEL ~ACKAGES IH5009 4' +15 JD,DD,PD IH5010 4 +5 JD,DD,PD JE,DE,PE IH5011 4 +15 IH5012 4 +5 JE,DE,PE IH5013 3 +15 JD,DD,PD IH5014 3 +5 JD,DD,PD IH5015 3 +15 JE,DE,PE IH5016 3 +5 JE,DE,PE IH5017 2 +15 JD,DD,PA IH5018 2 +5 JD,DD,PA JE,DE,PA IH50XX M DE L Package PA - 8-PIN PLASTIC DIP PD - 14-PIN PLASTIC DIP PE - 16-PIN PLASTIC DIP DO - 14-PIN CERAMIC DIP (Special Order Only) DE - 16-PIN CERAMIC DIP (Special Order Only) JD - 14-PIN CERDIP JE - 1.6-PIN 'CERDIP ' - - - - - - TEMPERATURE RANGE M = MILITARY (-55°C to + 125°C) C = COMMERCIAL (O°C to + 70°C) L..._ _ _ _ _ _ IH5019 2 +15 IH5020 2 +5 JE,DE,PA IH5021 1 +15 JD,DD,PA IH5022 1 +5 JD,DD,PA IH5023 1 +15 JE,DE,PA IH5024 1 +5 JE,DE,PA NOTE: Mil-Temperature range (-55°C to packages only. + 125°C) available in ceramic. 3-65 Note: All typical values have been guaranteed by characterizaijon' and are not tested .. BASIC PART NUMBER .~. ·:s.. I H500Q-1tHS024, . ~,' ... ,..... ,.. ".,': '. . "' , ' ·.O~1lIL , , f i' :. .' " '. f.~',· " ~~~'; 'I' ABSOLUTE MAXIMUM RATINGS i I Lead Temperature (Soldering, 1O~~~) .......... :: ..... 300·6 Operating Temperature 5009C Series ....... " ........ : ........ :. 0·0' to + 70·0 5009M Series ... :' .......... : ...... :. ":55·C Jo +125·C Lead Temperature (Soldering/tOsee) ....... : ... , ..... 300·C Positive Analog Signal Voltage ............................ 30V Negative Analog Signal Voltage ......................... -15V Diode Current ......................................... '" ..... 1OmA Pow~r Dissipation (Note} ......................... ~~ ....• 500mW Storage Temperature ....... :: ........'..... -65"C to + 150·C NOTE: Dissipation rating assumes devies is mounted with all leads welded or soldered to printed circuit board in ambient temperature below 75'G. For higher temperature. derate at rate of 5m/W'G, .. . . . . . . . .. Stresses above those listed under Absolute Mllxim~m Ratings may cause permanent damage to the device. These are stress ratings only. ana fu~ctiollal operation of the device at. these or any other conditions above those indicated in the operational sections of the specificatiQns is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. ..," . IH5009 (rOS(ON)::; 100n) IH5010 (rOS(ON)::; 150n) 14 PIN DIP (OUTLINE DWGS DO, PO, JD) IH5013 (rOS(ON) ~ 100n) IH5014 . (rOS(ON)::; 150n) 1.4 PIN DIP (OUTLINE DWGS DO, PE; JE) IH5011 (rOS(ON)::; 100n) IH5012 (rOS(ON) ::; 150n) 16 PIN DIP (OUTLINE DWGS DE, PE, JE) COOO~9Ol CDOO1801 c0001701 IH5015 (rOS(ON)::; 100n) IH5016 (rDS(ON) ::; 150n) 16. PIN DIP (OUTLINE DWGS DE, PE, JE) IH5019 (rOS(ON)::; 100n) IH5020 (rOS(ON) ::; 150n) 8 PIN DIP' (OUTLINE DWGS DE; PA, JE) IH5017 (rOS(ON)::; 100n) .1""5018 (rOS(ON)::; 150n) 8 PIN DIP (OUTLINE DWGS DO: PA, JD) 11 I ~ I;; :~t'-----t:~- r- -'" -:L.~I;~ -' [1.J :2 7 :2 10 CDO02101 ,'. 7 CDOO2201 c0002001 . IH5023 (rOS(ON)::; 100n) IH5024 (rOS(ON)::; 150n) 8 PIN DIP (OUTLINE DWGS DE, PAl IH5021 (rDS(ON) ::; 100n) IH5022 (rOS(ON)::; 150n) 8 PIN DIP (OUTLINE DWGS DO, PA, JD) : I~ 1-~ I --+-<0. CDOO2401 CDOQ2301 (Note: Numbers in brackets refer to CERDIP packages.) Figure 1: Pin Connections 3-66 Note: All typical values have been guaranteed by characterization and are not tested. IH5009-IH5024 FOUR CHANNEL IH5009 (rDS(ON):O: 100n) . IH5010 (rOS(ON):O: 150n) 14 PIN DIP THREE CHANNEL IH5011 (rOS(ON):O: 100n) IH5012 (rOS(ON):O: 150n) 16 PIN DIP IH5013 (rOS(ON):O: 100n) IH5014 (rOS(ON):O: 150n) 14 PIN DIP . IH5015 (rOS(ON):O: 100n) IH5016 (rOS(ON):O: 150n) 16 PIN DIP IT • 3~' t. b, 8 T.T. '~8 t. L ,IT. "~. t2 b'0 IT 08000801 05016901 05016801 05016701 TWO CHANNEL IH5017 (rDS(ON):O: 100n) IH5018 (rOS(ON):O: 150n) 8 PIN DIP SINGLE CHANNEL IH5019 (rOS(ON):O: 100n) IH5020 (rOS(ON):O: 150n) 8 PIN DIP IH5021 (rOS(ON):O: 100n) IH5022 (rOS(ON) S 150n) 8 PIN DIP 3~' "TT!Yr4 31T' t . .b2 .~. t. DSOOO901 IH5023 (rOS(ON):O: 100n) IH5024 (rOS(ON):O: 150n) 8 PIN DIP 3 , • • 2 b7 DSOO3701 08001001 Figure 2: Device Schematics and Pin Connections ELECTRICAL CHARACTERISTICS (per channel) SPECIFICATION LIMIT SYMBOL (Note 1) TEST CONDITIONS (Note 2) TYPE (Note 4) -55'e (M) o'e (e) MINIMAX TYP MINIMAX + 125'C (M) +70'C (C) MINIMAX VIN - OV, 10 - 2mA 0.Q1 ±0.5 100 p.A 5V Logic Ckts VIN = +4.5V, VA = ±10V 0.04 ±0.5 20 nA Input Current-OFF 15V Logic Ckts VIN- +l1V, VA-±10V 0.04 ±0.5 20 nA VIN(ON) Channel Control Voltage·ON 5V Logic Ckls See Figure 7, Note 3 0.5 0.5 0.5 .V 1.5 CHARACTERISTIC IIN(ON) Input Current-ON ALL IIN(OFF) Input Current-OFF IIN(OFF) 25'C UNIT VIN(ON) Channel Control Voltage·ON 15V Logic Ckts See Figure 8, Note 3 1.5 1.5 V VIN(OFF) Channel Control Voltage·OFF 5V Logic Ckts See Figure 6, Note 3 4.5 4.5 V VIN(OFF) Channel Control Voltage·OFF 15V Logic Ckts See Figure 8, Note 3 11.0 11.0 V 10(OFF) Leakage Current-OFF 5V Logic Ckts VIN = +4.5V, VA - ±10V 0.02 ±0.5 20 nA 10(OFF) Leakage Current-OFF 15V Logic Ckts VIN= +11V, VA=±10V 0.02 ±O.S 20 nA IO(ON) Leakage Current·ON 5V Logic Ckts VIN = OV, Is = lmA 0.30 ±1.0 1000 (M) 200 (C) nA ±0.5 500 (M) 100 (C) nA 1.0 10 p.A 2.0 100 p.A 150 385 (M) 240 (C) n 80 100 250(M) 160 (C) 150 500 = OV, IS = lmA = OV, Is - 2mA VIN = OV, IS = 2mA 10 =2mA, VIN = 0.5V 10(ON) Leakage Current-ON 15V Logic Ckts VIN IO(ON) Leakage Current·ON 5V Logic Ckts VIN 1[)(ONt Leakage Current·ON 15V Logic Ckts rOS(ON) Drain-Source ON·Resistance 5V Logic Ckts roo(ON) Drain-Source ON·Resistance l(on) Turn-ON Time 15V Logic Ckts All 10 = 2mA, VIN = 1.5V See Figures 5 & 6 3-67 Note: All typical values have been guaranteed by characterization and are not tested. 0.10 150 100 90 n ns r&n~Dn ,lflsO09~B5024 _UlNJUl$lJ'I@}UfD ELECTRICAL CHARACTERISTICS (CONT.) , SPECIFICATION LIMIT SYMBOL (Note 1) TEST CONDITIONS (Note 2) TYPE (Note' 4) CHARACTERISTIC -55'C (M) 2S'C ,O'C (C) MINIMAX t(off) Turn-OFF Time Cross Talk CT See Figures 5 & 6 f = 100Hz All All TYP MINIMAX 300 120 500 , +12S'C (M) +,70'e (e) ' MINIMAX UNIT ns dB NOTES 1: (OFF) and (ON) subscript notation refers to the conduction state of the FET switch for the given ,test. 2: Refer to Figure 2 for definition of terms. 3: V'N(ON) and V'NIOFF) are test conditions guaranteed by the tests of rOSION) and IO(OFF) respectively. 4: "5V Logic CKTS' applies to even-numbered devices. "15V Logic CKTS' ' applies to odd·numbered devices. TYPICAL PERFORMANCE CHARACTERISTICS ID(ON) VI. IS AT 25'e 1 1000 1 lOOk ... .... ~ ~ I z / Z 0: 0: i... looo ...0 ... ...Z !='s"mA f-VA -10V I ~ c( c( I.S 2.0 2.5 . I, - SOURCE CURRENT (mAr ~ 10 9 <.> 1.4 ~ 1.2 w -120 -110 25 7S TEMPERATURE ( Cl :; ~ 1.0 /' V 0: ~ ...~" .... c( I 1 rt ~ :"0.8 ! - ' f- z ~ cf 0.6 r-o 25 50 75 TEMPERATURE ( CI 100 . ...... c( / 100 25 50 7S TEMPERATURE r Ci "- -90 -80 -70 10kU '\. "- I'\. a: -60 "- -so I' . - 0 t.> -40 -30 10 100 0P004201 CROSSTALK MEASUREMENT CIRCUIT .r, !-100 VI N ~ '-- ~ .' CROSSTALK AS A FUNCTION OF FREQUENCY -130 I /' Y ':" 1-- 0P00e001 RD~ON) VI. TEMPERATURE (NORMALIZED TO 25'C VALUE) '"o (11 ':" +iV.' .15V ...u OP007911 .N . I R '.1,0 10D.!> 100 .... ~.- Is V I ." -~~ E:: -~~ t- ;:::: :::> 100 lk <.> ...".... I. . 0:. 0: :::> ~ c( g 10k ID(OFF) VI. TEMPERATURE 0: 0: a 100 ~, (per channel) ID(ON) VI. TEMPERATURE ~ v,. ... -5\1 (5010ETCI '16VI6008HCI 100 lK lQK lOOK FREQUENCY 1Hz.) OPOO4311 1M TC004201 OPOO44Q1 DETAILE.D DESCRIPTION The signals seen at the drain of 'a junction FET type analog switch can be arbitrarily divided into two categories; those which are less than ±200mV, and those which are . greater than ±200mV. The former category iricludesall those circuits where switching is performed at the virtual ground point of an op-amp, and it is primarily towards these applications that the IH5009 family of circuits is directed. Those devices which feature common drains have another FET in addition to the channel switches. This FET, which has gate' and source connected' such that VGS = 0, is intended to compensate for the on-resistance of the switch. When placed in series with the feedback resistor (Figure 3) the gain is given by: By limiting the analog signal at the switching point to ±200mV, no external driver is required and the need for additional power supplies is eliminated. Devices are available with both common drains and with uncommitted drains. Note: All typical values have been guaranteed by characterization and are nof tested •. G~N= 10kn + rOS(ON)(compensator) ... 10kn + rOS(switch) 1145009-1115024 SWITCHING CHARACTERISTICS A.OOO8OI Figure 3: Use of Compensation FET TC0G4301 "'" Clearly, the gain error caused by the switch is dependent on the match between the FETs rather than the absolute value of the FET on-resistance. For the standard product, all the FETs in a given package are guaranteed to match within son. Selections down to sn are available however. Contact factory for details. Since the absolute value of rOS(ON) is guaranteed only to be les$ than 1oon or 1son, a substantial improvement in gain accuracy can be obtained by using the compensating FET. 10V PW-5I,.. tr <0.1/001 .,<0.1". ?5V 7.5V f1II 10" OUTPUT V... ·,OV f1II f1II OUTPUT·~ VA--1OV WFOO1301 DEFINITION OF TERMS Figure 5: High Level Logic Figure 4. . 'if1N PW • 5,l1 NOISE IMMUNITY 5 V r - - - -....... 2.5V Z.5V toFF t. --.....-oVOUT , ANALOG OUTNl ,, ,, __ ... &!i~T!.L!.A!E _~ _ _' lCOOO101 Figure, 7: Interfeclng .wIth + 5V Logic ,,',4-+-+-h , , ,,r-----'.:..--.,..---, ,,, , ANALOG INPU1Nwtl : L ___________ 'lSV 1 7 • I " "'~ e~,A.w:TE.ISTtCS4AI" '" -::.UT " Rn 14 ~ -,~' AF:001001 _LOG Figure 9 , OUT1'UT <·'1 ,,, , ,,, , :L!~!!~G~T! ____ ":' ":'..J -=-: ..)) , LCOOO2Ol Figure 8: Interfec.!ngwlth + 15V Open Collector Logic 10Kn ,, I , , ,,, , ,, I,; : ANALOG INPUTS ,1Gttu 11 I L -- --, 4 10kn I AFOOt1m Figure, 10 NOTE: Additional applications information is given in Application Bulletins A003 "Understanding and Applying the Analog Switch" and A004 "The 5009 Series of Low Cost Analog Switches". 3-70 Note: All typical values have been guaranteed by characterizatiOn, and. are not tested. , '. IH5025-IH5038 Positive Signal Analog Switch GENERAL DESCRIPTION FEATURES The IH5025 series of analog switches was designed to fill the need for an easy-to-use, inexpensive switch for both industrial and military applications. Although low cost is a primary design objective, performance and versatility have not been sacrificed. Each package contains up to four channels of analog ,gating and is designed to eliminate the need for an external driver. . The entire family is designed to be driven from TTL open collector logic (15V), but can be driven from 5V logic if signal input is less than 1V. Alternatively, 20V switching is readily obtainable if TTL supply voltage is +25V. Normally, only positive signals can be switched; however, up to ±10V can be handled by the addition of a PNP stage (Figure 14) or by capacitor isolation (Figure 13). Each channel is a SPST switch. A logic "0" turns the channel ON and a logic "1" turns the channel OFF. • • • • • • Switches Up to + 20V Into High Impedance Loads (i.e. Non-Inverting Input of Operational Amp.) Driven From TTL Open Collector Logic IO(OFF) < 50pA rOS(ON) < 150n rOS(ON) Match < 50n Channel to Channel Switching Speeds < 100ns ORDERING INFORMATION BASIC PART NUMBER CHANNELS LOGIC LEVEL PACKAGES IH5025 4 +15 JD,DD,PD IH5026 4 +5 IH5027 IH5028 4 4 +15 +5 JD,DD,PD JE,DE,PE IH5029 3 +15 JD,DD,PD IH5030 3 +5 IH5031 3 +15 JD,DD,PD JE,DE,PE IH5032 IHS033 3 2 +5 +1S JE,DE,PE JD,DD,PA IHSOXX IHS034 2 +5 2 +15 JD,DD,PA JE,DE,PA IHS036 2 +5 JE,DE,PA IHS037 IH5038 1 1 +15 +5 JD,DD,PA JD,DD,PA DE L PACKAGE PA - a-PIN PLASTIC DIP PD - 14-PIN PLASTIC DIP PE - 16-PIN PLASTIC DIP DD - 14-PIN CERAMIC DIP (Special Order Only) DE - 16-PIN CERAMIC DIP (Special Order Only) JD - 14-PIN CERDIP JE - 16-PIN CERDIP L -_ _ _ TEMPERATURE RANGE M = MILITARY (-SSOC to + 12S°C) C = COMMERCIAL (O°C to + 70°C) JE,DE,PE IHS03S M ' - - - - - - - - BASIC PART NUMBER NOTE: Mil-Temperature range (-5S0C to + 12S°C) available in ceramic packages only. IH5025 (rOS(ON) ::; 100n) IH5026 (rOS(ON)::; 150n) 14 PIN DIP IH5027 (rOS(ON)::; 100n) IH5028 (rOS(ON)::; 150n) 16 PIN DIP IH5029 (rOS(ON):S 100n) IH5030 (rOS(ON):S 150n) 14 PIN DIP IH5031 (rOS(ON):S 100n) IH5032 (rOS(ON):S 150n) 16 PIN DIP 11 4 C0004201 CDOO2501 CDOO2601 Figure 1: Pin Connections 3-71 Note: All typical values have been guaranteed by characterization' and are not tested. 5 12 COOO2701 IH5025-IH5C)38 , {; ~, ~ IH5033 (rOS(ON) ~ 100.12) IH5034 (rOS(ON) ~ 150.12) 8 PIN OIP (3)3 ' IH5037 (rciS(ON)~ 100.12) IH5038 (rOS(ON) ~ 150.12) 8 PIN DIP IH5035 (rOS(ON) ~ 100.12) IH5036 (rOS(ON) ~ 150.12) 8 PIN OIP 6(12) (3)3 7(15) (2)2 I 3(3) (2)2 O-+_4-<~------IHl6(·'4) 4(4) ('3)9-11---<>"1 "'---.--If-Q5(11) 6(14) '(1) 4(4) (212 o-j----4'i 5('3) CDOO2801 CDOO4101 CDOO29()1 NUMBERS )N PARENTHESES INDICATE CERAMIC PACKAGE PIN-OUT Figure 1: Pin Connections (Cont.) FOUR CHANNEL IH5025 (rOS(ON) ~ 100.12) IH5026 (rOS(ON) ~ 150.12) 14 PIN DIP THREE CHANNEL IH5029 (rOS(ON) ~ 100.12) IH5030 (rOS(ON) ~ 150.12) 14 PIN DIP IH5027 (rOS(ON) ~ 100.12) IH5028 (rOS(ON) ~ 150.12) 14PIN DIP 'rr' 'n' 'rr. 'rr" 2 • , " IH5031 (rOS(ON) ~ 100.12) IH5032 (rOS(ON) ~ 150.12) ~6 PIN DIP "rr" 10 12 15 13 'rr' 'rr" " 05001301 2 • 7 • 10 12 DSOQ1401 05001201 05001101 TWO CHANNEL SINGLE CHANNEL IH5033 (rDS(ON) ~ 100.12) IH5034 (rOS(ON) ~ 150.12) 8 PIN DIP IH5035 (rOS(ON) ~ 100.12) IH5036 (rOS(ON) ~ 150.12) 8 PIN DIP IH5037 (rOS(ON) ~ 100.12) IH5038 . (rOS(ON) ~ 150.12) 8 PIN DIP ~rr~ 5(11) 3(31 '(1) 05001701 6(12) 8(''') 05001501 09001601 Numbers in parentheses indicate CERAMIC PACKAGE LAYOUT . Figure 2: Device Schematics 3-72 Note: All typical values have been guaranteed by characterization and are not tested. i IH5025-IH5038 § ABSOLUTE MAXIMUM RATINGS t Positive Analog Signal Voltage ............................ 25V Negative Analog Signal Voltage ..................... -O.5VDC Drain Current ................................................. 25mA Power Dissipation (Note) ................................ 500mW Storage Temperature ...................... -65'C to + 150'C Operating Temperature Z 5025C Series ............................ O'C to + 70'C 5025M Series ...................... -55'C to + 125'C to» Lead Temperature (Soldering, 10sec) ................. 300·C. CD g NOTE: Dissipation rating assumes device is mounted with all leads welded or soldered to printed circuit board in ambient temperature below 7S·C. For higher temperature, derate at rate of 5m/W·C. Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. ELECTRICAL CHARACTERISTICS (per channel) SPECIFICATION LIMIT SYMBOL (Note 1) CHARACTERISTIC TEST TYPE -55'C CONDITIONS O·C (C) IIN(ON) Input Current·ON All UNIT 25'C (M) TYP MINIMAX 0.30 VIN = OV IIN(OFF) Input Current-OFF All VIN = 15V VIN(ON) Channel Control Voltage·ON All See Figure 3 1.5 VIN(OFF) Channel Control Voltage·OFF All See Figure 3 14.0 ID(OFF) Leakage Current·OFF All See Figure 5 0.20 + 125'e (M) + 7O'e (e) 1.0 100 (M) 25 (C) 1.0 50 (M) 50 (C) nA (max) 1.5 1.5 V (max) nA (max) 14.0 V (min) 0.5 100 (M) 50 (C) nA (max) nA (max) 14.0 0.06 MINIMAX ID(ON) Leakage Current·ON Odd Nos. See Figure 6 1.00 10.0 5000 (M) 250 (C) ID(ON) Leakage Current·ON Even Nos. See Figure 6 0.10 1.0 500 (M) 25 (C) nA (max) 100.0 250 (M) 150 (C) n (max) 150.0 385 (M) 240 (C) n (max) n (max) n (max) rDS(ON) rOS(ON) Drain·Source ON·Resistance Drain·Source ON-Resistance Odd Nos. Even Nos. 100 VIN = 0.5V, ID = 1rnA VIN = 0.5V, ID = 1rnA rDS(ON) Drain-Source ON-Resistance Odd Nos. VIN = 1.0V, ID = lmA rDS(ON) Drain-Source ON-Resistance Even Nos. VIN-l.0V.ID=lmA t(oo) Turn·ON Time I(off) Q(INJ) 60.00 150 90.00 85.00 160.0 420 (M) 250 (C) 110.00 200.0 400 (M) 250 (C) 0.2 0.4 0.4 160 All See Figure 4 0.10 Turn·OFF Time All See Figure 4 0.10 0.2 Charge Injection All See Figure 5 7.0 20.0 VA(OFF) Cross Coupling Rejection All See Figure 6 0.10 1.0 AraS(ON) Channel to Channel rDS(ONl Match All VIN = 0.5V. I1S (max) mVp•p (max) mVp. p (max) n 25.00 ID = 1rnA 1'5 (max) (max) Note 1: (OFF) and (ON) subscript notati9n refers to the conduction state of the FET switch for the given test. +10V~VOU~OSCOftEPA08E !10XI VAYl. . 'vou, f 10Mu 1'KO FET "ON" FOR VIN n 1 K!! +1SY OV~LOGtc· --l .. r-" .~: YOUT II II II II tOFF tON 1.5V Fer "OFF" FOR VIN ;><.,.14.0V TC004501 TCOO4601 Figure 3: Test Circuits Figure 4: Test Circuits 3-=-73 Nole: All typical values have been guaranteed by characterization and are not tested. OV +5Y .oon ~ : ~~y ·,5V OyJL . TCOO4101 1 Ku '0"", ..• f.., 1 KC Figure 5: Test Circuits +lSV TCOo4'BOI t::1gure 6: Test Circuits TYPICAL PERFORMANCE CHARACTERISTICS (per channel) IO(OFF) VS. TEMPERATURE ~'" +10V lOOnA f- ... + , . _. f-- lOOnA f-- 1DnA .. ii: 10nA r----1 '. .E .........,.. ~ vP' +15V 9 ./ ~ V InA .E lOOpA V /' loopA 10pA IO(ON) VS. TEMPERATURE / lDpA 1 pA / ~ /' tl- +IOV,::,' -25 +25 +75 +25 ~25 +125 +75 TEMPERATURE (OC) TEMPERATURE (OC) OPOO4601 , OPOO4501 CROSS COUPLING REJECTION VS. FREQUENCY 14 ~I I- ::> ~ ROS(ON) Vs. VIN 200 +5V 12 176 10 150 c: 8 6 S a: 75 4 I / 125 j'00 - ~io"'" ., V 50 25 o L.J::::::t=t=:l::::::L-.L.J 1 KH, 10 KH, 100 KH, . +125 OV 1 MH, FREQUENCY 0.5V 1.0V 1.5V VIN OP00471 I 0P004801 3-74 Note: All typical values have been guaranteed by characterization' and are not tested. LOGIC INTERFACE CIRCUITS Channel FET has been sel4ilcted betw~en 2.0V and3.9V; thus with + 15V at the logical.input, and a + 10V signal input, 1.1 V of margin exists for turn-off. When the IH5025 is used with 5V TIL logic, a maximum of + 1V can be switched. The gate of each FET has been brought out so thaI a "referral resistor" can be placed between gate and source. This is used to minimize charge injection effects. The connection, is shown below: When operating with TIL logic it is necessary to use pUIIup resistors as shown in Figures 6 and 7. This ensures the necessary positive voltages for proper gating action. r---------...,..., TC00400l LCOOO3OI . Figure 9 Figure 7: Interfacing with + 5V Logic For switching levels> + 10V, the + 15V power supply must be increased so that there is a minimum of 5V of difference between supply and signal. For example, to switch + 15V level, + 20V TIL supply is required. Up to + 20V levels can be gated. r--- ---,+,5V I I - APPLICATIONS •I I I I I I• I 1..: _GATE"" _____ "5V_ TTL ."...1I LC000411 Figure 8: InterfaCing with + 15V Open Collector Logic . THEORY OF OPERATION The IH5025 series differs from the IH5009 series in that they may be driven by floating outputs. This family is generally used when operating into thenon-invertil"lg inpl,rt of an operational amplifier, while the IH5009series is used in operations where the output feeds into the inverting (virtual ground) input. . The IH5025 model is a basi~ charge. area sViitching _ device, in that proper gating action .depends upon the .capaoitance vs. voltage· relationship fort"'e diode junctions. This C vs. V, when integrated, produces total charge Q. It is Q total which is switched between the series diode and the gate to source and gate to drain junctions. The charge area (C vs. V) for the diode has been chosen to be a minimum of four (4) times the area of the gate to source junction, thus providing adequate safety margins to insure proper switching action. If normal logical voltage levels of ground to + 15V (open collector TIL) are used, only signals which are between OV and + 10V can be switched. The pinch-off range of the p- AFOOt2Of Figure 10: Multiplexer from Positive Output Transducers +111,1 ov.fL. AFOO1301 Figure 11: Sample and Hold Switch 3-75 Note: All typical values have been guaranteed by characterization ",d are not tested. .~. " IIH502.~IiI'038 i I APPlJCATIONS:1~.) ! r - .... - -,,- I ""'--,.211/ I I I I I I I "lOI/nLGATE "::" '''::" J I L:: ___ "' _____ AFOO1411 flgyre 12: Switching up to +20V $I9".alsYiith TTL ~ogic r--;---:--':--:-'·"V : I" l~;~ I . I TO : 1'0K1!' .-~:~~__________J I I eSHIFT· l,O."1OMI ! . '";;oJi ~-' . ~_I" · ONO 0, 0, 0, o• a~~,2 ~~4 • SSOO'5Oi ~1401 SWITCH STATES ARE FOR LOGIC "1" INPUT I ".'~ ., ss001201 DUAL DPST IH504S (rOS(on) < 7SSl) A '0/ FLAT PACKAGE.FD-2) DIP (DE) PACKAGE OPOT IH5046 (roS(ON) < 7SSl) , "o, ", o, .. • 'N v, v' Y,o f· v, ~ '",- ..., - " ...... .~' GOO 0, ., 0, 5, 3~DI , :.r-- !.o • D4 _J 5, , v' f" I ;-u I -v 0 ' "'-:. II · ,. · ...... .J..: _t b" v' o. .~5 ~:' v' y" ~J .NO 88001801 0, !..,., 03 r-o D4 88001701 4PST IHS047 (ros (ON) < 7SSl) v, , , .." • 10 f. ~OI 5, $, IN ,4 u!' 5, ~O'l 4~D3, ...... .1 -v 0, ~-. b" GNO , y" ", ~., I II " • o. • ' 1 5, 0, :-u 0, • 1 ~D. 'foIo!! -Qi>-J &" !" !" v' ON. 85001801 V' 88001901 Figure 2: Switching. State Diagrams (Cont.), :Hl2 Note: All typical values have been guaranteed by characterization .and ·are not tested. TO-l00 i IH5040~IH504 7 TYPICAL PERFORMANCE CHARACTERISTICS 40 160 I I ,hv 100 I '40 '20 +l~~C 10- ~ 60 +25"C +e 0 ., -10 -5 -25' 0 ~ .-1.·e i-= l.·'re 40 ·20 S R L.- +25~C '00 I 25 ! r-- !--+-,12V 50 '15V S 1? -75 t-+ -10-75 -5 -25 10 '" 0 lk 20 5 0 0 25 5 0 -10 -7.5 -5 -25 7510 I I I ',oon , L-=- , ov..JL ~_ ~ SWITCHED CHANNEL VOUT '- - - - - " .~ 2Vpp @lMC -l,oon 5H!' 10k lOOk 1M OP005201 TCO05301 -12 01" .. ~ ~ . e ,. -80 l' 1"-1-t-- -60 OFF STATE ~~_ OEPENOS ON PART~- -40 -2 0 oTHz ~VOUT l'Do!) OIRR = 20LOG 2000mVpp VOUT (mVpp) TOHz 100Hz lk 2.5 5 7.S 10 OPOO5101 FREQUENCY (Hz) -100 0 VANAlOG (V) , I , CCRR = 20LOG 2000mVpp VOUT (mVpp) 100 ~ ." : "'I-- 0 10 25 z ~: ~-J¥ 3V 1 30 ~ >- I 0 o I- g > .§. OPQ05001 1"-", 100 I-"" VANALOG (V) OPQQ4901 20 l...- ,...- t5 20 ~ t - VANALOG (V) 120 , I 40 15V SUPPLIES 35 i 80 Is!1mA • CHARGE INJECTION vs VANALOG (SEE FIG. B) CL = 10,OOOpF rOS(on) vs POWER SUPPLY VOLTAGE rOS(on) vs VANALOG SIGNAL 80 (Per Channel) 10k lOOk 1M FREQUENCY (Hz) TCOO5401 QP005301 3-83 Note: All typical values have been guaranteed by characterization and are not tested. ~i CIt ! '*", I! ~ .1 .. TYPICAL PERFORMANCE CHARACTERISTICS (CONT.) POWER SlIPPLY QUIESCENT CURRENT FREQlIENCY RATE - l/ / ,,- V V ., V8 LOGIC V / V 1/, WFQ01601 ... , LOGIC FREQUENCV@ tO"lo DUTV CYCLE IH~) 0P005401 TEST CIRCUITS ·Jj~-h1.,. Vour 'tiff ·: rt . m AlAUlllIIIPUT AIA~IIPUT 'kO iU) OVn~_. . 1IO.rQ-i>-_' . VOUT 'D.oao,F TC035701 Figure 3 LOGIC IlPUT ~ .,. .,. f.:~ 1010 TC03580t TC035901 Figure 4 Figure 5 NOTE 1: Some channels are turned on by high "1" logic inputs and other channels are turned on by low "0" inputs; however O.BV to 2.4V describes the min. range for switching properly. Refer to logic diagrams to see absolute value of logic input required to produce "ON" or "OFF" state. APPLICATIONS ANALOG INPUT I."" ·3\1 ~ > SAMPl E MOOE ov • > HOLD MODE AF005BOI Figure 6: Improved Sample & Hold USing IH5043 3-84 Note: All typical values have been guaranteed by characterization and are' not tested. IH5040-IH5047 APPLICATIONS (CO NT.) lOGIC STROI£ EXAMPLE: If -v ANALOG' -10VOCand +V ANALOG' +10VDC then Ladder Legs are switched between, 1OVDC. depending upon lIal. of lotIic Strobe. JL r'L LOGIC STROlE 2R AFOO2101 Figure 7: Using the CMOS Switch to Drive an R/2R Ladder Network (2 Legs) UIOldl LOPASS OUTPUT Constant gain, constant Q. variat>te frequency filter which provides simultaneous Lowpass. Bandpass, and H ighpass outputs. With the component values shown, center frequency will be 235Hz and 23.5Hz for high and low logic inputs respecti.... ly. Q,. 100, and Gain'" 100. fn .. Center Frequency'" _,_ 21rRC AFOO2201 Figure 8: Digitally Tuned Low Power Active Filter 3-85 Note: All typical values have been guaranteed by characterization and are not tested. APPLICATION~ (CONT.) T'L.r--t. LOGIC I L~2:'~~T~ I I I I I LOGIC' INPUT ~-~6---k:"""--<> +15V .". I ___ ...J LCOo0501 Figure 9:. InterfaCing· with TTL Open Collector Logic (Typ. Example for + 15V Case Shown) y. GND IN ·~--O--4_-o 'VDD 15Y~ y . . . 6Y IN .. Y- ...16V LCOOO6OI Figure 10: Interfacing with CMOS Logic 3-86 Note: All typical values have been guaranteed by characterization and are· hoi· tested. . ·IIIIIU~UI!.I 1H5040-1 H5047 APPLICATIONS (CONT.) +5V -.. IN rrL~ I I I LOGIC J ~+ I I - +5V I ":"":" I . + 15V OR + VCc(VI TERMINAL} 1 L~~L~~~ ___ ...J 100 lCOOO711 Figure 11: TTL Logic Interface 3-87 Note: All typical values have been guaranteed by characterization and are nOI tested. Ii IH5048~jH5051 I GENERAL DESCRIPTION FEATURES The IH5048 family of analog switches is especiaUymade ,for low charge injection and low leakage. Construction includes our CMOS high level driver circuitry combined wi~h unique "VARAFEr' switches. • • • • •. • I Low Charge Injection I CMOS Analog Switches Low· Charge Injection-6mV (Typ.) Quiescent Current Less Than 1J.LA TTL, DTL, CMOS, PMOS Compatible Non-latching With Supply Turn-Off Low rOS(on) - 3Sn (Typ.) Pin-Out Compatible With IHS040 Family .ORDERING INFORMATION ,!g I Package DE -16-Pin Ceramic DIP (Special Order Only) FD·2 - l4-Pin Flatpak JE - l6-Pin CERDIP PE - l6-Pin Plastic DIP TW - TO-l00 Metal can (lHS048, IH5050 Only) Temperature Range . M - Military (- SS"C to + l2S"C) C - Commercial (O"C to + 70"C) Basic Part Number ORDERING INFORMATION INTERSIL PART NO. IH5048 Dual IHS049 Dual IHS050 IHS051 Dual TYPE 'OS(on) SPST DPST SPOT SPOT 3Sn 3Sn 3Sn 3Sn NOTE 1. See Switching State diagrams for appHcable package equivalency. SWITCH STATES ARE FOR LOGIC '1" INPUT FLAT PACKAGE (FD-2) T0-1oo DIP (DE) PACKAGE DUAL SPST IH5048 (rDS (ON) < 3Sn) v, " v, v' D, I 'N, " _J " v, 0, ", -, .. 'N, v' '" D, 0, "," .. .. ", 0, GNO .NO ss00200/ SSOO2101 Figure 1: Switching State Diagrams Note: All typical values have been guaranteed by characterizatiOri "and are! nortested.,· v' v' $8002201 .D~OIl. .IH5048-IH5051 SWITCH STATES ARE FOR LOGIC '1" INPUT FLAT PACKAGE (FD·2) DIP (DE) PACKAGE DUAL DPST IHS049 (rDS (ON) < 3SQ) T00100 (DG184 EQUIVALENT) " v, s, D, D, S, ..... , D, D, D, " " OJ '" '" 0, 0. '." GND SSOO2301 SS002401 SPOT IHSOSO (rDS (ON) < 3SQ) '. v, v' S, D, S, D, I _J v, v' " " ·v· D, S, D, D, S, D, " GND G'D 58002501 S8002601 DUAL SPOT IHSOS1 (rDS (ON) < 3SQ) ss002701 (DG190 EQUIVALENT) v. v, s, S, S, D, D, S, v' D, 0, '" 'N, '" D, D, D, D, GND GND ss002801 SS002901 Figure 1: Switching State Diagrams (Cont.) 3-89 Note: All typical values have been guaranteed by characterization and are not tested. IH5048~IH5051 ABSOLUTE MAXIMUM RATINGS Current (AnyTermi~al) ............... : .. , .............. < 30mA Storage Temperature .. : ....... : ........... ..,S.5·C to 150·C Operating Temperature ................•.. -55~C to + 125·C Lead Temperature (Soldering. 10sec) ................. 300·C Power. Dissipation ......................................... 450mW (All Leads Soldered to a P.C. Board) Derate SmW I·C Above 70·C v+ -v- .. ; ....... '......................................... : ... .( 33V vi' -vo ... :·.: ... : .............................................. < 30V Vo-V- ........................................................ <30V Vo-Vs ...................................................... < ±22V VL-V- ........................................................ < 33V VL -VIN ....................................................... < 30V VL -GND ...................................................... < 20V VIN-GND .................................................... < 20V + Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to . absolute maximum rating conditions for extended periods may affect device reliability. ELECTRICAL CHARACTERISTICS (@ 25·C, V + = + 15V, V- = -15V, VL = + 5V) PER OHANNEL MINIMAX LIMITS TEST CONDITIONS SYMBOL MILITARY OHARACTERISTIC -55·C IIN(ON) IIN(OFF} r05(on) Ar05(ON) VANALOG IO(OFF}' IsioFFi I~ON) + 5(00) Ion + 125·C ±1 10 10 80 ±t ±1 .±1 ·40 IS· -10mA VANALOG - -10V 0 ±.1 ±1 Vo-VS=-10Vto +tOV +70·C ±1 ±1 10 10 75 45 15 (Typ) ±10 VANALOG = -10V to + 10V UNIT + 25·C p.A p.A n 15 (Typ) ±10 n V . ±1 100 ±5 100 nA ±2 200 ±10 200 nA '. RL = lk!1, VANALOG - -.10V 500 1000 ns to + 10V See Fig. 2 loft Switch "OFF" Time Q(lNJ.) OIRR Charge Injection Min. Off Isolation Rejection Ratio V + Power Supply 1+ Q IIIN ~ 2.4V Note t VIN ~ O.SV Note 1 Input Logic Current Input Logic Current Drain·Source On Resistance Channel to Channel rOS(ON) Match Min. Analog Signal Handling Capability Switch OFF Leakage Current Switch On Leakage Current Switch "ON" Time COMMERCIAL + 25·C RL=lk!1, VANALOG= -10V to + 10V See Fig. 2 Sea Fig. 3 f = 1MHz, RL = lOOn, CL S 5pF Sea Fig. 4, (Note 1) 250 500 .ns 1 (Typ) 2 (Typ) 54 (Typ) 50 (Typ) mV dB 1 1 10 10 10 100 p.A 1 1 10 1 1 10 10 10. 100 p.A 10 10 100 p.A 1 10 10 10 100 I'A Quiescent Current 1- Q 1- LQ V+ = +'15V, V= -15V, VL= +5V VL = +5V V - Power Supply Quiescent Current +5V Supply Quiescent Current IGNO CCRR Gnd SUpply Quiescent Current Min. Channel to Channel Cross Coupling Rejection Ratio 1 One Channel Off; Any Other Channel Switchell as per Periormance Characteristics (Note 1) 54 (Typ) 50 (Typ) dB Note 1: Not tested in production. TEST CIRCUITS r , rn t-- ANALOG IfIIPUT "'IOV v1\~-J ~G" h INPuT ' lOpF J VO\JT "'NALOG INPUT v..n. o---[)---t>--3K COG'C INPUT 1D--l>-_ LOGIC INPUT ( N0 1oooo .,F loon TC005111 TC005011 Figure 2 ":" ~ VOUT I ":,111,0 "=' 5111 Figure 3 TC00411t Figure 4 NOTE 1: Some channels are tumed on by high "1" logic inputs and other channels are turned on by low "0" inputs; however O.BV to 2.4V describes the min. range for switching properly. Refer to logic diagrams to see absolute value of logic input required to produce "ON" or "OFF" state. 3-00 Note: All typical values have been guaranteed by characterization arid are not' jested. .D~Dll IH5048-IH5051 TYPICAL PERFORMANCE CHARACTERISTICS (Per Channel) CHARGE INJECTION vs VANALOG (SEE FIG. 3) CL = 10,OOOpF rOS(on) vs POWER SUPPLY VOLTAGE roS(on) vs VANALOG SIGNAL 160 100 140 3S 120 80 ! 100 60 f 80 60 • 40 .., 0 +121"C +2I·C r- r- .,.·c 0 -10 -5 -25'0 's·1mA • 1 1SV SUPPLIES 2.5 5 ~5 -75 0 T 0 -10 -7.5 -5 -25 10 0 0 25 "ANALOG IV) 100 CHANNEL iii <> 0: ~ I o--f--D---t>--=I r 1=' I I , I to-. to-. I 60 3V Ov...n.. 40 20 o1 CCRR 10 = 2ULOG 100 2000mVpp Your (mVpp) lk 10k lOOk 1M SWITCHED CHANNEL I I I loon L-=- ~.I ~--t~ .10 FREQUENCY (Hz) TCOO5301 OP005201 -12 0" -10o ! -80 ii:" e -6 0 -40 r-. r"-" """"'' 0 2.5 5 7.5 10. OPOO5101 VOU, to-. " 80 c > -7.5· -5 -2.5 "ANALOG (VI I OFF to-. to-. .. -to 10 r-----7.h 120 ;;; 7.5 OPO05021 0P004921 :!. 5 VANALOG IVI OFF STATE ~ DEPENDS ON PART~- ~VOU' 1 -20 '00n OIRR = 20LOS 2QOOmVpp VourfmVDjii 0 1Hz 10Hz 100Hz lk 10k lOOk 1M TC005401 FREQUENCY (Hz) OPOO5301 3-91 Note: All typical values have been guarantliled by characterizalion and are not tested. i IH6048~IH5051 , TYPICAL PERFORMANCE CHARACTERISTICS (CO~T;) . I . '.' "IID~ POWER SUPPLY QUIESCENT CURRENTY81.0GIC FREQUENCY RATE ," '000 1 i.- Ii i !i: j V v / 'DO /' 10 V' /' 3V V V V 10 100 1k 'OIl WFOO1601 lOOk LOGIC fREQUEN'tV@ 10"10 DUTY CYCLE 1Hz) OPO05401 3-92 Note: All typical values have been guaranteed by characterization and are not'tested; 1"5052/IH5053 QUAD CMOS Analog Switch GENERAL. DESCRIPTION FEATURES The IH5052/3 analog switches use an improved, high voltage CMOS technology, which prbvides performance advantages not previously available from solid state switches. Early CMOS switches were destroyed when power supplies were removed with an input signal present. The INTERSIL CMOS technology has ·eliminated this serious systems problem. Key performance advantages are TTL compatibility and ultra low-power operation - the quiescen.t current requirEjm~ntis less ,than 10pA. . The IH5052/3 also guarantees Break-Before-Make switching. This is accomplished by extending the tON time (400ns TYP.) such that it exceeds tOFF time (200ns TYP.). ,This insures that an ON channel will be turned OFF before an OFF channel can turn ON, and eliminates ,the need for external logic required to avoid channel to channel shorting during switching. With a logical "0" (0.8V or. less) at ,its control inputs, the IH5052 switches are closed, while the IH5053 switches are closed with -a logical "1" (2.4V or . more) at its control inputs. • .• •. • • • • • Switches Greater Than 20Vpp Signals With ± 15V Supplies Quiescent Current Less Than 101lA Overvoltage Protection to f25V Break-Before-Make Switching toff 100ns, ton 250ns Typical TTL, CMOS Compatible Non-~tchln.9, WIth Supply Turri-Off .IH50524 Normally Clps,d Switches IH5053 4 Normally Open Switches ORDERING ,INFORMATION IH505X , C JE, ~ .. . . ~ . Package -' . JE c 16·Pin CERDIP DE =·16-Pin 'Ceramic DIP . (Special Order Only) Temperature Range M - Military C = Ccmmercial. ' - - - - - - - - Basic Part Number OUTI,INE DWQS . 'DE,JE DUAL-IN-LlNE PACKAGE' lOb .. . D. D, v' ISU. .TIIATEI II> a.,TCH STATES AIIII '0lIl LOQtC ..," tHlI!UT ... D. . . 0;' v' VL Dr II> lDOO1801 WF01060t Figure 1: Functional Diagram Figure 2: Pin Configurations 3-93 Note: All typical values have been guaranteed by characterization· and, are not tested. .,,' Current (Any Terminal) .................... : .• ~._.i.i..:.< 30mA Storage Tell;lper/iJture ...................... -6S·Cto +1~0·C Operating, Temperature ....•...........,... _5S·C to +.12S·C Lead Temperature, (Soldering, 1Osec:) .......••... , ..•• 3!)0·C Power DissiPation ........................................... 4S0mV'/ (All .Leads Soldered to ,a P.C.,Board) DElrate 6mW I"C Above 10·C V+ -V- ............................................ : .......... < 33V V,+,-Vo •. "........ , •........•.. ,; ..•........•...... , ........... '< 30V VrrV- •....................................................,... ,~' 30V VrrVs ................ i ...... ';'; •. t ••••• :; ••• , . . . . . . . . . . . . . , •• ,., <: ±22V ~~=~~.::::::::::::::::::::::::'::::~::::::::,:::::::::::::::::::: ~'~~~ < 20V ,< 20V Stres$8S above thos~ Iist9d und":' Absolute·M;b.irriuinFiatings 'iIl8Y cause perma~ent damage to the device. These are ~tress ratings"only, and functional 'operation of the device at these1lt'iany otherconditions"aboVethose illdicated in the operational 'sections of the speclficationS'lanet implied, Exposure to VL-GND ...................................... ; ........ : ...... VIt~-GND ..........•............. ,',... 1 •• ' ......... " ...... '........ $ ',' absolute maximum ratirig;,conliJllioA&'for exte'nded periods' may'affect device rellabi!ity. ELECTRICAL CHARACTERISTICS ' MINIMAX LIMITS PER CHANNEL MiLiTARY TEST CONDITIONS SYMBOL , (TA =2SoC, V + =+, 15V" V': - ":'1SV, VL -' +.5'.() CHARACTEFilmC -55°C + 25°C IIN(ON) Input Logic Current VIN - 2.4V (IH5053) = 0.8V (IH5052) ,10 ±1 IIN(OFF) Input, Logic Current VIN -P.8V (IH5053) - 2.4V (IH5052) ,10 'DS(ON) Drain-Source On ResistanCe IS -lOrnA, Vanalog - -10V to + 10V 75 ArOS(ON) Channel ,to Channel 'DS(ON) Match +125°C ,. , ,COMMERCIAL 0 + 25°C ,,+70°C lQ ±10 ±1 10 flO 75 100 80 80 100 UNIT fAA, ,iA' ri 30 (typ) .Il (typ) ±11 (typ) ±10 (typ) V 25 , VANALOO Min. Analog Signal Handling Capability IO(OFF) I IS(OFF) Switch OFF Leakage' Current '\lANALOG= -10V to +10V ±1 100 ±5 100 nA ID(ON) +IS(ON) Switch On Leakage Current' " Vo-Vs· -10V to +10V ±2 200 ±10, 100 nA toN Switch "ON" Time "RL - lkn, Vanalcg - -10V to + 10V 500 jooo ns toFF Switch "OFF" 250 500 ns Q(INJ.) Charge 'i'njection, 15 20 (typ) mV (typ) 54 (typ) '50 dB (typ) , See, Fig. 3 TIme Min, Off IsolatiOn Rejection Ratio OIRR 1+ + Power Supply Quiescent Current 1- - Power Supply Quiescent Current RL.+lk.ll, VanaIcg- -10V to +10V See~!"ig. 3 See/Fig. 4 I -lMHz; RL -lOOn, CL'; 5pF See Fig, 5 V+ - + 15V, V- - -15V, VL= +5V +5V Supply Quiescent Current CCRR Min, Channel, to ,'Channel One Channel Off Cross Coupling·· Rejection RatiO ". are 10 100 10 10 100 fAA 10 10 100 10 10 100 p.A 10 10 100 10 10, 100 fAA with GND IVL NOTE 1: Typical values 10 54 (typ) lor design aid only, not guaranteed and not subject to productiOn testing, I 3-94 Note: All, typical values ha~ been guaranteed by characterization and are notlested, 50 (typ) dB IH5052/IH5053 TEST CIRCUITS rhI ":' ov.fl. -D-1>-- ~ INPUT VOUT -D----D-1>--f r LOGIC INPUT . .to TTL LOGIC INPUT (NO~_ · YOUT "-I ,on 'Opf m 1:-' AJW.OG_T ANALOQINPU' '":'":" ,oon TC006121 TCOO6011 TCOO5911 Figure 3 Figure 5 Figure 4 NOTE 1: The 5053 is turned on by high "1" logic inputs and the 5052 is turned on by low "0" inputs; however O.BV to 2.4V describes the min. range for switching properly. Refer to logic diagrams to see absolute value of logic input required to produce "ON" or "OFF" state. TYPICAL PERFORMANCE CHARACTERISTICS ros(ON) vs VANALOG SIGNAL '00 ... (Per Channel) ros(ON) vs POWER SUPPLY VOLTAGE ,. ,. 10 .... +'~·C ",10 ·c + :::. J!l c .. ·Cf= . Is = 1111A @:!:15VSUPP • -10 -7.5 -5 -2.5 0 2.5 5 -I., 7.5 10 ., I-- e - .... . 1,..00 :ttl • -10 -7.5 -5 -2.5 a 2.5 CHARGE INJECTION vs VANALOG (SEE Figure 8) CL = 10,OOOpF 4Sr-,..--r-....,..--,.--,-r-'T'"""" - .. ~+-++-+-l-I-+-~ ""r--+-+-+---1r--+-+-+---I I-""" 5 .... 1201-+-+-+-1I--+-+-+-l 1-0 J:t-+-+--+-t-+-+--+--i ,.t-+-+--+-t-+-+--+--i 7.5 ': tt~t:t:f:ttj t. -'0 -7.5 -5 -2.5 OP005601 OPOO5501 r------., I II ... ~ I r-..i'o .. •, J "..... TTLLEYELS C R ,. fTl ~NEL+D_t>_-I.! !'or-.. '00 CHANNa. =I*iOGlv=~':.1 100 tit 10k ,. ~ r.ITofiD I * IiI ,_ I L - +cH>-- vour -r'r-~-. I L-----=lJ 1000 111 2.5 I 7.5 to 0P005701 CROSS COUPLING REJECTION vs FREQUENCY ,.. 0 VANALOG (II) "ANALOG (V~ VANALOG (II) '510 2V"" @1MHz FREQUENCY (Hz) OPO05BOI TC00621 I CrossCoupling Rejection Test Circuit 3-95 Note: All typical values have been guaranteed by characterization and. a(Eil. not. tested. I 1"5052/IH5053 I TYPICAL PERFORMANCE CHARACTERISTICS (CONT.) ;:, ~ I ; OFF ISOLATION vs FREQUENCY -'10 """" ... " ! -'00 ( ... ~ -40 IV", @.IIC '" -10 OIRR '" 2OLOG o 1Hz .UI ..... v:un::) 10Hz 100Ha tic ,. ,. ,. TC006301 _auINCY (Hz) 0P005901 Off Isolation Test Circuit POWER SUPPLY QUIESCENT CURRENT vs LOGIC FREQUENCY RATE i'''' ,.: /~ ,.~ · , too I~ 3. · ! • i!. ~ I to a w I" / § .1 " WF001711 101 tic ,. 100II LOGIC FMOUiNCY @ . . . DUTY CYCLI (Hz) OPO06001 Logic Input Waveform r-------~-, ·t5V I I I ...., (11111 TO _II) I I IN I I II V"'" __ +11V L..; __ __ _ _ _ ...... _'--', '11V TTL GATE LCOOO91 I Figure 6: + 15V Open Collector TTL Interface to IH5052/5053 r 3-96 Note: All typical values have been guaranteed by characterization and are not tested. .D~OI1. i IH5052/IH5053 I APPLICATIONS N PROGRAMMABLE GAIN NON-INVERTING AMPLIFIER WITH SELECTABLE INPUTS i !eft W .... o--.t---....... .... -..t---....,""--H CM, .... -;;t---.....-r C'" .... ---.+---..,..., u. C... .." " 101kU '101, '101' .S!I AFOO2301 Figure 7: Active Low Pass Filter with Digitally Selected Break Frequency .. ANALOG IWITCM OECODUI VIN' MUX SEOUENCE RATE VIN2 Do .. RESET .~, D, VIN4 D, DUAL ,,-K FLIP ,LOP I INPUT NAND Poe'Ia'LlTIEI TTL - 1 11S IN5410 I'QU'BILlT... TTL· SNI473 CIIOI - C04027 ENABLE OUT CMOS - 1 1/3 CD4023 0----------' AF002401 TRUTH TABLE (IH5052) ENABLE MUX SEQUENCE RATE 0 1 1 1 1 1 0 0 1 pulse 2 pulses 3 pulses 4 pulses SEQUENCER OUTPUT SWITCH STATES (- DENOTES OFF) 2° 21 SW1 SW2 SW3 SW4 0 0 1 0 1 0 0 0 0 1 1 0 ON - ON - - -ON - ON Figure 8: 4-Channel Sequencing MUX 3-97 Note: All typical values have been guaranteed by characterization and are not tested. - - ,: IM'505211H5053 I - :::. A LATCHING DPDT SWITCH ~ I The latch feature insures positiye switching action in response to non-repetitive or erratic' commands. The A1 and A2 inputs are normally low. A HIGH input to A2 turns 81 . and $2 ON, a HIGH to A1 turns S3 al)d S4 ON. Desiral:!le for use with limit detectors, peak detectors, or mechanicalcontact closures. , TRUTH TABLE (IHSOS2) ~15V COMMAND -sv So A, A2 A1 53 & 54 51 & 52 0 0 0 same on same 1 1 A, OUAO 2 INPUT NAND GATES TTL -01l74C1O OR OM_ .r STATE OF SWITCHES AFTER COMMAND cllas . CD4011 DM74COO . AFOO2501 Figure 9: A latching DPOT 3-98 Note: All typical values have been guaranteed by characterization and are not tested. 1 0 1 off off on INDETERMINATE IH5108 8-Channel Fault Protected CMOS Analog Multiplexer GENERAL DESCRIPTION FEATURES . The IHS108 is a dielectrically isolated CMOS monolithic analog multiplexer, designed as a plug-in replacement for the HIS08A and similar devices, but adds fault protection to the standard performance. A unique serial MOSFET switch ensures that an OFF channel will remain OFF when the input exceeds the supply rails by up to ±2SV, even with the supply voltage at zero. Further, an ON channel will be limited to a· throughput of about 1.SV less than the supply rails, thus affording protection to any following.circuitry such as op amps, DI A converters, etc. A binary 3-bit address code together with the ENable input allows selection of anyone channel, or none at all. These 4 inputs are all TTL compatible for easy logic interface; the ENable input also facilitates MUX expansion and cascading . • • • • • • • • All Channels OFF When Power OFF, for Analog Signals up to ±2SV Power Supply Quiescent Current Less Than 1mA ± 13V Analog Signal Range No SCR LatchliP Break-Before-Make Switching Pin Compatible With HI-SOBA Any Channel Turns OFF If Input Exceeds Supply Ralls by Up to ± 2SV TTL and CMOS Compatible Binary Address and ENable Inputs .ORDERING INFORMATION PART NUMBER IH510BMJE IH510BIJE, IH510BCPE TEMPERATURE RANGE -55°C to + 125°C -20°C to +B5°C O°C to 70°C PACKAGE 16 pin CERDIP 16 pin CERDIP 16 pin plastic DIP DECODE TRUTH TABLE YouT D A2 X 0 0 0 0 A1 X 0 0 1 1 0 0 1 1 1 1 1 1 Ao X 0 1 0 1 0 1 0 1 EN 0 1 1 1 1 1 1 1 1 ON SWITCH NONE 1 2 3 4 5 6 7 B AO, AI, A2. EN Logic "1" = VAH::: 2.4V Logic "0" = VAL ~ O.BV (outline dwg JE. PEl Ao A; A2 EN (ENABLE INPUT) 3 LINE BINARY ADDRESS INPUTS (1 0 11 AND EN HI . ABOVE EXAMPLE SHOWS CHANNEL. TURNED ON LOO01901 Figure 1: Functional Diagram TOPVJEW CDOO4401 Figure 2: Pin Configuration 3-99 Note: All typical values have been guaranteed by characterization and are not tested. I .1'11108 ,,';; I A8~OuiTE 'MAXI'M'U~ RATINGS ,. " Current (Any Terminal) ....... :;': .................. ~ ....... 20mA Operating Temperature ......................... -55 to 125·C Storage Temperature .... ; i-r, ........ ; ......:.... -65 10, .150·C Lead Temperature (Solderirig, 10sec) .....• ; ........:.• ~OO·C ................... :'.........; ... ~ .• , .';" f200mW . POwer Dissipation* . ' ::: . ',': VIN(A, EN) ................................... V- to (V+ -0.05) VIN(A, EN) to Ground ........................... -15V to 15V Vs or Vo to V+ ................................ ,. +2SV, '-40V Vs or Vo ~o V- ...•............. ; ................. -25V, +40V V+ to Ground ....•................... ~ ....... : ......... : ........ 16V V- to. Ground •...............•.........................•..... -16V , " " • All leads soldered or welded 10 PC board: Derale 10tnWI"C above.70·C: Stresses above Ihoselisled under Absolute Maximum flatings may cause permanenl dama~e 10 Ihe device. These are streSs riltings' only: and l~nctiOnal operation of Ihe device al lhese or any other conditiOris above Ihose iridicaled in Ihe operational sections· of the specificatioils is' nOI implied: Exposure 10 absolute maximum raling conditions for extended periods may affect device reliability. ELECTRICAL CHARACTERISTICS (V of; ,= 15V, V- = -15V, VEN = 2.i4V. unless otherwise specified.) MAX LIMITS NO CHARACTERISTIC MEASURED TERMINAL TESTS . TYP 2$'C TEST CONDmONS PER TEMP M SUFFIX CSUFFIX -55'C 25'C 125'C ~20'CI G'C UNIT 25'C 85'CI - 7O'C SWITCH rOS(on) StoD 8 VO-l0V, IS--l.0mA Sequence each swnch on 700 1000 1000 1500 1200 1200 1800 8 Vo- -10V IS· -1.0mA VAL =0,8V, VAH=2.4V' 500 . 1000 1000 1500 1200 1200 1800 ~OS(on)~ '''05(On) roS(on)max-i'D5(on)min ..,'S'!;. S % rOS(on)avg. VS-±10V 1S(0II) . 10(011) S P , 10(on) '0 a.. VS-l0V, VO- -lOY 0,02 iO.S 50 itO 8 VS· -10V, VO= 10V 0,02 iO.5 50 il.0 50 1 VO- 10V, Vs = -IOV 0,02 il.0 100 100 1 VO· -tOV, VS" 10V O.OS itO 100 i2.0 ±2,0 8 VS(IIIQ = Vo = 10V Sequence eaCh switch on 0,1 ±2,0 100 i5 100 8 VS(AIQ=VO= -10V VAL -0.8V, VAH=2,4V, VEN=2.4V 0,1 i2,0 100 ' i5 100 VEN=0.8V 50 nA tOO FAULT IS with Power OFF S 6 VSUpp = OV, VIN - ±2SV, VEN=VO=OV, Ag, AI, A2=OV t.O 2.0 5,0 IIS(0ff) with Ov9fV01lage S 8 VIN = ±25V, VO· il0V 1.0 5.0 10 AO, At, A21 or, EN 4 pA INPUT IEN(on) IA(on) or IEN(Off} IAIOff} DYNAMIC I I VA =2.4V or OV 0,01 I I itO 0.01 it,O 1 ttransition 0 See Figure 3 0.3 IoDen 0 See Figure 4 0.2 IonIEN) 0 See Figure 5 0.6 1,5 ioff(EN) Ion'foff Break· Before-Make Delay Settling TIme 0 0.4 'I "OFF" IsolatiOn D Cs(oII) S VS·O Coloff} C05(off} 0 Vo-O VEN= OV, I-140kHz VS-O, Vo=O to 1 MHz 0 o.to S I I -30 -10 I -30 , VA=I5VorOV 8 VEN - + SV, Ag, At, A2 Strobed VIN - ± IOV, Figure 6 VEN-O, RL -200n, CL=3pF, VS-3 YAMS, f= 500kHz 30 to I pA 30 /JS to 60 dB 5 25 1 pF 3-100 Note: All typical values have been guaranteed by characterization· and are not tested. , IH5108 CHARACTERISTIC MAX UMITS NO TESTS PER TEMP MEASURED TERMINAL M SUFFIX TYP 25'C TEST CONDITIONS - 55'C J I 25'C C SUFFIX - 2Q'CI 125'C D'C I I 25'C UNIT 85'CI 7O'C SUPPLY Supply 1+ Current I- 1 I VEN I 1 ~5V I All VADD =OV/5V 0.5 0.7 I 0.6 I 0.5 0.02 0.7 I 0.6 I 0.5 I I 1.0 I I 1.0 I Note 1. Readings taken 400rns after the overvoltage occurs. SWITCHING TIME TEST CIRCUITS +11SY V. tr<100na V+ "< ~1OV lOOns YOUT Va1:;1; +10V lISa = -10V :a:10V PROBE -15V ~_""_..._:_:T':.: .. - -:t:o Vour VS1I= -10V lISa = +10V Cp PROBE IMPEDANCE ~:= WFOO1801 TC006701 Figure 3: ttransition Switching Test Circuit and Waveforms +ISV VOUT ---'¥"'s1'-=_--'fII::..:..._ _ _ _ _ _ _~_ II, ON SoON ~% V. -I tape. 1- -II... 1WFOO1901 TCOO6801 Figure 4: t open (Break-Before-Make) Switching Test Circuit and Waveforms +15V 3V VE. A2r--'--}- '4>----1-Q VOUT 35pF WFOO2001 TC006901 Figure 5: ton and toff Switching Test Circuit and Waveforms 3-101 Nole: All typical values have been guaranleed by characterizalion and are nol lesled. rnA "~ IMa.s: It» ! 'SWITCHING TIME TEST CIRCUITS (CaNT.) lao .ncl1oH OF LOGIC INPUT s10fta , +3V , Ao.A,.A• I-- 4oO-L.I _ _ _S:;EO=.UENCEO .;;,OV;...._ _... ,I:' ,: I I BREAK.BEFORE MAKEOELAV-V- II INPUT ~I '-+1OV V : =-------T----~------ ~ BREAK·BEFORE MAKEOELAV- IOKn , - - OV W INPUT --IOV WFOO2101 TCOO7001 Figure 6: Break-Before-Make Delay Test Circuit and Waveforms Within the normal analog signal range, the inherent variation of switch ON resistance will balance out almost as well as the customary' parallel configuration, but as the analog signal approaches either supply rail, even for an ON channel, either the p- or the n-channel will become a source follower, disconnecting the charmel (Figure 8). Thus protection is provided for any input or output channel against overvoltage, even in the absence of multiplexer supply voltages. This applies up to the breakdown voltage of the respective switches. Figure 9 shows a more de~ailed schematic of the channel switches, including the back-gate driver devices which ensure, optimum channel ON resistances and breakdown voltage under the various conditions. DETAILED DESCRIPTION The IH5108, like allintersil's multiplexers, contains a set of CMOS switches that form the channels, and driver and decoder circuitry to control which channel turns ON, if any. In addition, the IH5108 contains an internal regulator which provides a fully TTL compatible ENable input that is identical in operation to the Address inputs. This does away with the special conditions that many multiplexer enable , inputs require for proper'logic swings. The identical circuit conditions of the ENable and Address lines also helps ensure the extension of break-before-make switching to wider multiplexer systems (see applications section). Another, and more important difference lies in the switching channel. Previous devices have used parallel nand p-channel MOSFET switches. While this scheme yields reasonably good ON resistance characteristics and allows the switching of rail-to-rail input signals; it also has a number of drawbacks. The sources and drains of the switch transistors will conduct to the substrate if the input goes outside the supply rails, and ,even careful use of diodes cannot avoid channel-to-output and channel-to-channel coupling in ca!;es of input overrange. The IH5108 uses a novel series arrangement of the p- and n-channel switches (Figure 7) combined with a dielectrically isolated process to eliminate these problems. ' -15V +15V +25YFORCED -av OVERVOLTAGE S D S N-CHAHNELMOSFET-r/JD ISTURNEDON BECAUSE Va _ + 25Y '.CHANNEL ":" Q ON.COMMON OUTPI,IT LlNEIY 03 Qa S Q TD'" ..l. ':" EXtE,RNAL CIRCU1TRY N-CHANNEL M08FET IS OFF MO$FET IS OFF 08001901 (a) OVERVOLTAGE WITH MUX POWER OFF -l-ll1~ 'I-: -~-: ~ -1IV OVERVOLTl:V /, _INPUT~OUTPUT l~ l~ l~ _ I I T N-CHANNEL MOSFET TURNED ON BECAUSEVoa_ +1OY as +--__+-~---="'_.:I ~C~:C:~~AY , M O S F E T IS OFF -15VFAOM +15VFROM P.CHANNEL DRIVERS DRIVERS MOSFET IS OFF 08002001 (b) OVERVOLTAGE WITH MUX POWER ON Figure 8: Overvoltage Protection -15VFROM +15YfROM DRIVER DRIVER 08001801 Under some circumstances, if the logic inputs are present but the multiplexer supplies are not, the circuit will use the logic inputs as a sort of phantom supply; this could result in an output up to that logic level. To prevent this from Figure 7: Series Connection of Channel Switches 3-102 Note: All typical values have been guaranteed by characterization and are not tested. IH5108 DETAILED DESCRIPTION (CONT.) occurring, simply ensure that the ENable pin is LOW any time the multiplexer supply voltages are missing (Figure 10). lOOpF s 08002201 Figure 10: Protection Against Logic Input MAXIMUM SIGNAL HANDLING CAPABILITY The IH510B is designed to handle signals in the ±10V range, with a typical rOS(on) of 600n; it can successfully handle signals up to ± 13V, however, rOS(on) will increase to about 1.Bkn. Beyond ± 13V the device approaches an open circuit, and thus ±12V is about the practical limit, see Figure 11 . • '5V Figure 12 shows the input/output characteristics of an ON channel, illustrating the inherent limiting action of the series switch connection (see Detailed Description), while Figure 13 gives the ON resistance variation with temperature. 0500210) Figure 9: Detailed Channel Switch Schematic .. .. t 21<0 "OFf" BEYOND TIllS VOLTAGE 1.51(0 lK1l 3-103 Note: All typical .values have been guaranteed by characterization and are not tested. co ....010 IH5i08 is +1IouT 1. 14 12 10 IIouT • VIN -4 -I -I -10 -12 -14 -18 -VOUT SCOOO201 Figure 12: MUX Output Voltage vs Input Voltage (Channel Shown; All Channels Similar) 10000 8CIOII 300!1 2OO!l 100II -SSOC -25°C 7SOC 125°C TEMPERATURE sc000301 Figure 13: Typical rDS(on) Variation With Temperature 3-104 Note: All typical values have been guaranteed by characterization and are not tested. IH5108 USING THE IH5108 WITH SUPPLIES OTHER THAN ± 15V The IH51 08 will operate successfully with supply voltages from ±5V to ±15V, however rOS(on) increases as supply voltage decreases, as shown in Figure 14. Leakage currents, on the other hand, decrease with a lowering of supply voltage, and therefore the error term product of rOS(on) and leakage current remains reasonably constant. r05(on) also decreases as signal levels decrease. For high system accuracy [acceptable levels of rOS(on)] the maximum input signal should be 3V less than the supply voltages. The logic levels remain TTL compatible. FOR ~ s2VSlGNAL5 +lOVSlGNAL -IOVSlGNAL APPLICATION NOTES Further information may be found in: A003 "Understanding and Applying the Analog Switch," by Dave Fullagar A006 "A New CMOS Analog Gate Technology," by Dave Fullagar A020 "A Cookbook Approach to High Speed Data Acquisition and Microprocessor Interfacing," by Ed Slieger zSV slOV :t:1SV SC0Q0401 Figure 14: Typical rDS(on) Variation With Supply Voltages IH5108 APPLICATIONS INFORMATION DECODE TRUTH TABLE +1&V -1&V EN 1- ":' At A, So 5, +1&V -15V At \'ouT At mOR CMOS INVERTER ":' IHI10I EN s,. So A3 A2 A1 Ao ON SWITCH 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 51 52 53 S4 55 56 57 0 1 58 59 S10 511 512 513 514 515 516 AFOO2601 Figure 15: 1 of 16 Channel Multiplexer Using Two IH5108s. Overvoltage Protection Is Maintained Between All Channels, As Is Break-Before-Make Switching. 3-105 Note: All typical values have been guaranteed by characterization and are not tested. I is 1..5108 IH5108 APPLICATIONS INFORMATION (CONT.) ~ T TTUCMOS INVERTER :::L>- Ao TTUCIIOS NOR GATE ...... IHllOI 10UTOFa MUX A. I ....... ... I!tI I - I! • IH6108 .OUTOFa MUX 1~ - 'I • ANALOG INPUTS n J. '-1 1 IN. rD-r>i . . ANALOG INPUTS U J" A3 A2 A1 AO 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 (} 0 0 0 1 1 1 1 Jv AF002701 DECODE TRUTH TABLE DECODE TRUTH TABLE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0, S. i A4 O. r--< ....0 .L J. >--OVaUT s!..,. • OUT OF a I MUX '-----ii" 02, IH5053 IH5101 ~ f-D-t>-l S. ~ ~ ~ J>' .~ EN I Ih 1 ANALOG INPUTS .. ~ ~ I s. IN. IHllOI 10000Fa MUX EN 1'17 n !!!! ~ 4... I 1 j 1 ANALOG INPUTS • I: +r VL ON SWITCH 81 82 83 84 85 86 87 88 89 810 811 812 813 814 815 816 A4 A3 A2 A1 Ao ON SWITCH 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 '0 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 817 818 819 820 821 5,22 823 824 825 826 827 828 829 830 831 832 Figure 16: 1 Of 32 Multiplexer Using 4 IH5108s and An IH5053 As A Submultlplexer. Note That The IH5053 Is Protected AgalnstOvervoltages By The IH5108s. Submultiplexlng Reduces Output Leakage arid Capacitance. 3-106 Note: All typical values have been guaranteed by characterization and are not tested. IH5116 16-Channel Fault Protec• • CMOS Analog Multi GENERAL DESCRIPTION FEATURES The IHS116 is a dielectrically monolithic analog multiplexer, designed as a plug-in replacement for the HIS06A and similar devices, but adding fault protection to the standard performance. A unique serial MOSFET switch ensures that an OFF channel will remain OFF when the input exceeds the supply rails by up to ±2SV, even with the supply voltage at zero. Further, an ON channel will be limited to a throughput of about 1.SV less than the supply rails, thus affording protection to any following circuitry such as op amps, D/A converters, etc. Cross talk onto "good" channels is also prevented. A binary 2-bit address code together with the ENable input allows selection of any channel pair or none at all. These 3 inputs are all TTL compatible for easy logic interface. The ENable input also facilitates MUX expansion and cascading. • ORDERING INFORMATION DECODE TRUTH TABLE isolat~~r~MOS PART NUMBER TEMPERATURE RANGE • • • • • • • • PACKAGE IH5116MJI -S5°C to + 125°C 28 pin CERDIP IH5116CJI O°C to + 70°C 28 pin CERDIP IH5116CPI O°C to + 70°C 28 pin Plastic DIP 'Ceramic package available as special order only (IHS116MDI/CDI) All Channels OFF When Power OFF, for Analog Signals Up to ±25V Power Supply Quiescent Current Less Than 1mA ±13V Analog Signal Range No SCR Latchup Break-Before-Make Switching TTL and CMOS Compatible Strobe Control Pin Compatible With HI506A Any Channel Turns OFF If Input Exceeds Supply Rails By Up to ±25V TTL and CMOS Compatible Binary Address and ENable Inputs A3 Az A1 Ao EN ON SWITCH X 0 0 0 0 0 0 0 0 X 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 X 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 X 0 1 0 1 0 1 0 1 0 0 NONE 1 1 1 1 1 1 1 1 CD031311 Figure 1: Pin Configuration (Outline dwg JE, PEl 3-107 Note: All typical values have been guaranteed by characterization and are not tested. 1 1 2 3 4 5 6 1 1 1 1 1 1 1 1 1 0 1 0 1 0 1 1 1 1 1 1 1 Logic "1" = VAH 2: 2.4V VENH 2: 2.4V Logic "0" =' VAL $ 0.8V TOPYIEW Y" COMMON TO SUBSTRATE 1 7 8 9 10 11 12 13 14 15 16 ! 1ft 1"5110 .\ , Z ~ s,~ s.~ s. 0--:---;. s.~ s.~ s.~ s,~ s,~ VOUT D S,C>---+- S'O~ s,'~ $,,0----'< s,. o-:----:"'i s.. ~ s.. ~ S.. ~ TO OEtODE LOGIC COIiTROlLlIG 10TH TlElIS OF MUXIfIG 4 LIIIE IIIAR' AOOIIESS IlPUTS (OGOI) AIIO II • 5V ABOVE ElWIPlE SHOWS CHAIIIElS I TURNEO 01. LD011311 Figure 2: Functional Diagram +15V +3.0V VA+~ VOUT .~~~, VA 0 O.9~~ ~........~~~---r~VO~ 35pF WK'· ;iL.' open -t- - open I Vs WF00301t TC038501 Figure 3: t open (Bre~k·Before-Make) 3-108 Note: All typical values have been guaranteed by characterization and are not tested. Switching Test ien IH5116 ...... G» ABSOLUTE MAXIMUM RATINGS VIN (A, EN) to Ground ....................... -15V to + 15V Vs or VD to V+ ............................... +25V to -40V Vs or VD to V- ................................ -25V to + 40Y Current (Any Terminal) .................................... 20mA Operating Temperature ..... :................. -55 to +~25~C Storage Temperature .......... : .............. -65 to + 150·C Lead Temperature (Soldering, 10sec) ................. 300·C Power Dissipation· ...................................... 1200mW V+ to Ground ................................................. 16V V- to Ground ................................................ -16V 'Allieads soldered or welded to PC board. Derate 10mW/·C above 70·C. 8tresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. ELECTRICAL CHARACTERISTICS (v+ CHARACTERISTIC = 15V, v- = -15V, VEN = 2.4V, unless otherwise specified.) MAX LIMITS NO MEASURED TESTS TERMINAL PER TEMP TYP 25·C TEST CONDITIONS M SUFFIX C SUFFIX UNIT -55·C 25·C 125·C G·C 25·C 7G·C SWITCH 8 to D ROS(on) 16 VO-l0V, IS - -1.0mA Sequence each switch on 700 1000 1000 1500 1200 1200 lBOO 16 VO= -10V IS = -1.0mA VAL = O.BV, VAH = 2.4V 500 1000 1000 1500 1200 1200 1BOO LlROS(on) LlROS(on) - ROS(on)max""ROS(on)min 5 n % ROS(on)avg. VS=±10V 8 IS(oft) D IO(oft) D 10(on) 16 Vs -10V, VO- -10V 0.02 ±0.5 50 ±1.0 50 16 Vs - -10V, VO= 10V 0.02 ±0.5 50 ±1.0 50 1 Vo - 10V, Vs = -10V 0.05 ±1.0 100 ±2.0 100 0.05 ±1.0 100 ±2.0 100 0.1 ±2.0 100 ±4.0 100 100 :1:4.0 100 VEN = O.BV 1 Vo = -10V,VS = 10V 16 VS(AII) = Vo = 10V 16 VS(AII) = Vo = -10V VAL = O.BV, VAH = 2.4V 0.1 ±2.0 VSUPP = OV, Y,N - ±25V, VEN = Vo = OV, Ao, A1, A2 = OV or 5V 1.0 2.0 5.0 1.0 2.0 5.0 0.01 -10 -30 -10 -30 O.ot 10 30 10 30 Sequence each switch on nA FAULT IS with Power OFF 8 16 IS(off) with Overvoltage 8 16 A1, A2, A3 or EN 4 Y,N = ±25V, Vo = ±10V IIA INPUT IEN(on) IA(on) or IEN(oft) IA(oft) DYNAMIC Ao, VA 4 = 2.4V or OV VA = 15V ttransition D 0.3 Iopen D 0.2 Ion(EN) D 0.6 1.5 toff(EN) D 0.4 1 Ion-loft BreakBefore-Make Delay 8ettling Time D "OFF" Isolation D c,,(off) 8 Vs-O D Vo=O CO(off) 16 D to S COSLoff) SUPPLY Supply I+ I 1+ Current I- I I- Vs I IIA 1 ps VEN - +5V, AD, A" A2 8trobed Y,N = ±10V. 25 ns VEN = 0, RL - 2oon, CL - 3pF, Vs = 3VRM8, f = 500kHz 60 dB = 0, Vo = 0 VEN-OV, 5 f= 140kHz 25 to 1 MHz 1 1 I All VA-OV/5V 0.5 I I VEN= 5V 0.02 pF I 0.6 I 0.6 3-109 Note: All typical values have been guaranteed by characterization and are not tested. I I 1.0 I I 1.0 I rnA !z High-Level IM5140~I'H5145 Family .. & ... CMOS Analog Switch 10 :!: GENERAL DESCRIPTION FEATURES ThelH5140Family of CMOS monolithic switches utilizes Intersil's latch-free junction isolated processing to build the fastest switches currently available. These switches can be toggled at a rate of greater than 1MHz with super fast ton times (80ns typical) and faster toft times (50ns typical), guaranteeing break before make switching. This family of switches combines the speed of the hybrid FET DG 180 family with the reliability and low power consumption of a monolithic CMOS' construction. OFF leakages are guaranteed to be less than 200pA at 25°C. Very low quiescent power is dissipated in either the ON or the OFF state of the switch. Maximum power supply current is 1pA from any supply and typical quiescent currents are in the 10nA range which makes these devices ideal for portable equipment and military applications. The IH5140 Family is completely compatible with TTL (5V) logic, TTL open collector logic and CMOS logic. It is pin compatible with Intersil's IH5040 family and part of the DG180/190 family as shown in the switching state diagrams. • . Super Fast Break-Before-Make Switching • ton 80ns Typ. toft SOns Typ (SPST SWitches) • Power Supply Currents. Less Than l.pA • OFF Leakages Less Than 100pA @ 25°C Guaranteed • Non-latching With Supply Turn-off • Single Monolithic CMOS Chip • Plug-in Replacements for IH5040 Family and Part of the DG180 Family to Upgrade Speed and Leakage • Greater Than 1MHz Toggle Rate • Switches Greater Than 20Vp-p Signals With ±15V Supplies • TTL. CMOS Direct Compatibility ORDERING .INFORMATION Order Function Part Number IHSI40 IHSI40 IHS140 IHSI40 MJE CJE CPE MFD SPST SPST SPST SPST IHS141 IHS141 IHS141 IHS141 IHS141 IHS141 MJE CJE CPE MFD CTW MTW Dual Dual Dual Dual Dual Dual IHS142 IHS142 'IHSI42 IHS142 IHS142 IHS142 MJE CJE CPE MFD CTW MTW IHS143 IHS143 IHS143 IHS143 Package CEADIP CEADIP Plastic DIP Flat Pack -SS'C O'C to O'C to -SS'C to 12S'C 70'C 70'C to 12S'C 16 Pin CEADIP 16 Pin CEADIP 16 Pin Plastic DIP 14 Pin Flat Pack TD·l00 TO·l00 - SS'C O'C to O'C to -SS'C O'C to - SS'C to 12S'C 70'C 70'C to 12S'C 70'C to 12S'C SPOT SPOT SPOT SPOT SPOT SPOT 16 Pin CEADIP 16 Pin CEADIP 16 Pin Plastic DIP 14 Pin Flat Pack TO·l00 TO·l00 -SS'C O'C to O'C to - SS'C O'C to - SS'C to 12S'C 70'C 70'C to 12S'C 70'C to 12S'C MJE CJE CPE MFD Dual SPOT Dual SPOT Dual SPOT dual SPOT 16 16 16 14 -SS'C O'C to O'C to - SS'C to 12S'C 70'C 70'C to 12S'C IHSI44 IHSI44 IHSI44 IHSI44 IHS144 IHS144 MJE CJE CPE MFD CTW MTW DPST DPST DPST DPST DPST DPST 16 Pin CEADIP 16 Pin CEADIP 16 Pin Plastic DIP 14 Pin Flat Pack TO·l00 TO·l00 - SS'C to 12S'C O'C to 70'C O'C to 70'C - SS'C to 12S'C O'C to 70'C - SS'C to 12S'C IHS14S IHS14S IHS14S IHS14S MJE CJE CPE MFD Dual Dual Dual Dual 16 16 16 14 - SS'C to 12S'C O'C to 70'C O'C to 70'C - SS'C to 12S'C Note: 16 16 16 14 SPST SPST SPST SPST SPST SPST DPST DPST DPST DPST Pin Pin Pin Pin Temperature Range Pin Pin Pin Pin Pin Pin Pin Pin CEADIP CEADIP Plastic DIP Flat Pack CERDIP CERDIP Plastic DIP Flat Pack '000 I~T O>-'\/IIIr......."Io--..., lOOO2001 Figure 1: Functional Diagram Typical Driver! Gate - IH5142 1. Ceramic (Side braze) d9V1C9S also available; consult factory. . 2. MIL temp range parts also available with MIL-STD-883 proCessing. 3-110 Note: All typical values have been guaranteed by characterization and are not tested .. IH5140-IH5145 ABSOLUTE MAXIMUM RATINGS V+ - v- ..................................................... <33V V+ - Vo ..................................................... < 30V Vo - V- ..................................................... < 30V Vo - VS .................................................... < ±22V VL - V- ...................................................... < 33V VL - VIN ..................................................... < 30V VL .............................................................. < 20V VIN ............................................................. < 20V Current (Any Terminal) ................................. < 30mA Storage Temperature ...................... -65·C to + 150·C Operating Temperature ................... -55·C to + 125·C Lead Temperature (Soldering 1Osee) .................. 300·C Power Dissipation ......................................... 450mW (All Leads Soldered to a P.C. Board) Derate 6 mWI"C Above 70·C NOTE: Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. ELECTRICAL CHARACTERISTICS (@ 25·C, v+ = +15V, v-= -15V, VL= +5V) PER CHANNEL MINIMAX LIMITS TEST CONDITIONS SYMBOL CHARACTERISTIC MILITARY -55·C UNIT COMMERCIAL + 25·C + 12S·C 0 +2S·C +70·C LOGIC INPUT IINH Input Logic Current VIN = 2.4V Note 1 ±1 ±1 10 ±10 10 IINL SWITCH Input Logic Current VIN = O.BV Note 1 ±1 ±1 10 ±10 10 iJA iJA rOS(on) Drain-Source On Resistance IS= -10mA VANALOG = -10V to +10V 50 50 75 75 100 n ArOS(on) Channel to Channel rOS(on) Match Min. Analog Signal Handling Capability VANALOG 75 30 (typ) n (typ) ±11 (typ) ±10 (typ) V 25 10(011)+ IS(off) Switch OFF Leakage Current Vo= +10V, Vs= -10V Vo= -10V, Vs= +10V ±.5 ±.5 100 100 ±5 ±5 100 100 nA 10(on)+ IS(on) CCRR Switch On Leakage Current VO=VS- -10V to +10V ±1 200 ±2 200 nA Min. Channel to Channel Cross Coupling Rejection Ratio One Channel Off; Any Other Channel Switches See Performance Characteristics ton toff Switch "ON" Time Switch "OFF" Time See switching time specifications and timing diagrams. Q(INJ.) Charge Injection See Performance Characteristics OIRR Min. Off Isolation Rejection Ratio f = lMHz, RL = toOn, CL S 5pF See Performance Characteristics SUPPLY 1+ + Power Supply Quiescent Current 1- - Power Supply Quiescent Current IL +5V Supply Quiescent Current IGNO Gnd Supply Quiescent Current NOTES: V+ = +15V, V - = -15V, VL = +5V 54 (typ) 50 (typ) dB 10 (typ) 15 (typ) pC 54 (typ) 50 (typ) dB 1.0 1.0 10.0 10 10 100 iJA 1.0 1.0 10.0 10 10 100 iJA 1.0 1.0 10.0 10 10 100 iJA 1.0 1.0 10.0 10 10 100 IJ.A See Performance Characteristics 1. Some channels are turned on by high (1) logic inputs and other channels are turned on by low (0) inputs; however O.BV to 2.4V describes the min. range for switching properly. Refer to logic diagrams to find logical value of logic input required to produce ON or OFF state. 2. Typical values are for design aid only, not guaranteed and not subject to production testing. 3-111 Note: All typical values have been guaranteed by characterization and are not tested. = z ;; ... .H5140~IMa145 TYPICAL PERFORMANCE CHARACTERISTICS ..• . ~ I eo 0 S - 30 +1D +8 +fS .'25"C .... -u·e 20 .'. I -r-- t-- i---I'-- r- 40 IH61.'0ATA I I 50 -.2OF==:::f:::==:t--T--t-------1 I ! i eo 1 , . I -20 SOCKn ON CQ'HJt GAOUHDI'lANE JIQ I -2 +2 +4 c- ,,,F ~OO=-~~~.~K~~~~.~~-L~UU.OOK~-L~~.~M--~~~,~ ... -10 FREQUENCV (Hzt ANALOG SIGNAL VOLTAGE (V) OP006401 0P006201 "OFF" Isolation vs. Frequency rDS(on) vs. Temp., @ ±15V, +5V Supplies ur-~~II~~--r-rT~nn--~,-rr~ ... I--------I-----'----l--...:.-...:.~.;.:..~ 2~r_----------4_-----------+----------~ .00 \ eo ul-------I- eo § I i --..r-- 1--' 80 " ! 5V, .SV SUPPLIES r--...i V II I I I 50 40 r- I 30 _~lOV ••SV TA. '"' +25"C IH51., DATA I I T SUPPLIES-- 1 t--... 1%15v. .sv ~IES T .'0 +. 20 +& +4 1'2 OPOO6501 ANALOG SIGNAL, VOLTAGE fV' Pow.er Supply Currents vs. Logic Strobe Rate OPOO6301 rDS(on) vs. Pow.er Supplies -'20 +.00 I "I--+-~~=--+--+--- -'00 j ~ ~ 1 8 . - • -... -eo >1 4'r_--~~~-+--4---+- ;: J .... .\1....(:, >i _'Oll-;-~:'--+f'--+--+_-+-.::..,t-T:.:.;... ·\1"'11'"' ~ -'00 -VIfW'CT~ r--t--t--t--+--+-+-+-+' .". . . .ov.. .FRIQuENCY -V_lOG -20 c:, 0 100 -'0 -.ERIOO Of 'ULIE REPETITION RATE (101" -2 +.0 'K 'OK ,- 1M 10M FREQUENCY ftb) ANALOG SIGNAL VOLTAGE (V) OP0111Of Channel to Channel Cross Coupling Rejection vs. Frequency OPOO9601 Charge Injection vs. Analog Signal 3--112 Note: All typical values have .been guaranteed by characterizatioo and are not tested. .D~DIL IH5140-IH5145 SWITCHING TIME SPECIFICATIONS (ton. toft are maximum specifications and ton-toft is minimum specifications) PART NUMBER SYMBOL IH51405141 IH51425143 CHARACTERISTIC Ion Switch "ON" time loff ton-loff Sw~ch Break-belore-make ton loff lon-loff Switch "ON" time Switch "OFF" time Break-belore-make Ion toff ton-loff TEST CONDITIONS COMMERCIAL MILITARY -55'C + 25'C + 125'C 0 + 25'C UNIT +70'C 100 150 75 125 10 5 Figure 3 150 125 '10 (typ) 175 150 5 ns Switch "ON" time Switch 'OFF" time Break-belore-make Figure 2' 175 125 10 250 150 5 ns ton loff ton-10ft Switch "ON" time Switch "OFF" time Break-belore-make Figure 3 200 125 '10 (typ) 300 150 5 ns 175 250 125 150 10 5 200 300 125 150 10 5 175 250 125 150 10 5 200 125 '10 300 150 5 Figu;e 2 "OFF" time ton Switch "ON" time 10ft Switch "OFF" time lon-10ft Break-belore-make Ion Switch "ON" time 10ft Switch "OFF" time lon-10ft Break-belore-make ton Switch "ON" time 10ft Switch "OFF" time IH5144- ton-10ft Break-belore-make 5145 ton 10ft ton-10ft Switch "ON" time Switch "OFF" time Break-belore-make Figu;e 4 Figu;e 5 Figu;e 2 Figure 3 ns ns ns ns ns I"N_O_T_E_:_S_W_IT_C_H_I_N_G_T_IM_E_S_A_R_E_M_E_A_S_U_R_E_D_@_9_0_%_P_T_S_____'_T_Y.,PicalvaluesIOrdeSign aid only, not guaranteed nor subject to production testing_ fijd ~ "en : ~ NOTE: SWITCHING TIMES ARE MEASURED @ 9O%PT5. VOUTA lOpF , 16 2 15 I~'K!! ton :£ lOY =-i T 15V ~INPUT l~ 13 7 • i -=- .. __ ~ .• ~llnAl 1H914 12 ~ ... UV ~c ~ I I VOUTAORB. " I 10% ,I -ISV i" I ~'NPUT I 9 i : , +15v • ',-"r--' ""f ~'_'OV!~T 11 , ~10V .lOV@0 -:~ -lOV@ ~ INPUT IOH tON 16'1OY ,Op' ..clJ!~ 14 -lSY 8 t-- Cotf -i I-- il IOV " :~-uv -11Ion --1:- TCO0731I lolf Figure 4. TC007111 Figure 2. I~ VOUTA lOpF '"iT" ~I 0.5 • ~ o .3V ~ -10VL.@ .,v ~ 11 ..-,5V 3 --. r0 15 14 -15V 2 lKn 16 :rlOV 1 TTL INPUT 6 TTL INPUT 10 9 z10V TC00721 I TC007411 Figure 3. Figure 5. 3-113 Note: All typical values have been guaranteed by characterization and are not tested. II IH5140-IH5145 . FLATPACK (FD-2) DIP (JE, PEl VL 12 " .. ON. SS00350t SSOO3601 SPST IH5140 (rDS(on) < 75U) FLATPACK (FD-2) T0-100 DIP (JE, PEl v' " ", o-'-+---<>,-;,,-~.!..o., '•• ...,ro.~.....- _, GNO S8003701 ss000901 DUAL SPST 1!'f5141 (rDS(on) < 75U) FLATPACK (FD-2) DIP (JE, PEl T0-100 (00188 EQUIVALENT) V' .. o-t---o-o"""'I-<>.' " " o-'-l----<>-1r.y8>., ... .. o-'--I--""""~""",ro.·, .. 0::1---<>"---..,..,0. ... GNO 88004001 SS004201 SSOO410\ SPOT IH5142 (rDS(on) < 75 U) FLATPACK (FD-2) DIP (JE, PEl (D0191 EQUIVALENT) " S, '" '" D, D, o, D. 5500<30' SSOO4401 DUAL. SPDT IH5143 (ros(OI1) < 75U) SWITCH STATES ARE FOR LOGIC "1" INPUT Figure 6: Switching State Diagrams '3-114 Note: All typical values have been guaranteed by characterization and. are not tested. iUI IH5140-IH5145 ... FLATPACK (FD-2) f T()..100 DIP (JE, PEl ...2: UI '" " " <>,-!,..---o'fLf.'-'o D, UI ',o:.:,l--<>T'4-'<>D, " o::.l--<>T'4-'-o D, .. o-=-tl---o~t=<>D. ON. 8S004501 v- GND SSOO46Of 55004601 DPST IH5144 (ros(on) < 75Q) FLATPACK (FD-2) DIP (JE, PEl (DG185 EQUIVALENT) " <>"+--<>"""".:.0 ., 13 03 IN, 88004801 55004901 DUAL DPST IH5145 (roS(on) < 75il) Figure 6: Switching State Diagrams (Cont.) TYPICAL SWITCHING WAVEFORMS SCALE: VERT... 5V10IV. HORIZ. = 100ns/0IV. TTL OPEN COLLECTOR LOGfC DRIVE (Corresponds to Figure 8) +125"C WFOO4701 WF00220I. WF002301 TTL OPEN COLLECTOR LOGIC DRIVE (Corresponds to Figure 9) +25°C -&SOc WFOO2401 +12S·C WF002501 3-115 Note: All typical values have been guaranteed by characterization and are not tested. WF002601 TYPICAL SWITCHING WAVEFORMS (CONT.) TTL OPEN COLLECTOR LOGIC DRIVE (Corresponds to Figure 10) TTL OPEN COLLECTOR LOGIC DRIVE (Corresponds to Figure 11) +25"1: +25 0 C WFOO2801 WFOO2701 APPLICATION NOTE occur. Turning off the supplies would turn off the analog signal at the same time. This fault situation can also be eliminated by placing a diode in series with the negative supply line (pin 14) as shown in Figure 10. Now when the power supplies are off and a negative input signal is present this dio(ie is reverse biased and no current can flow. To maximize switching speed on the IH5140 family, TTL open collector logic (15V with a 1kil or less collector resistor) should be used. This configuration will result in (SPST) ton and Ioff times of 80ns and 50ns, for signals between -10V and + 10V. The SPOT and OPST switches are approximately 30ns slower in both ton and loft with the same drive configuration. 15V CMOS logic levels can be used (OV to + 15V), but propagation delays in the CMOS logic will slow down the switching (typical 50ns -+' 100ns delays). I ANALOG OUT • 3 • When driving the IH5140 Family from either +5V TTL or CMOS logic, switching times run 20ns slower than if they were driven from + 15V logic levels. Thus Ion is about 105ns, and toff 75ns for SPST switches, and 135ns and 105ns (ton, Iofl) for SPOT or OPST switches. The low level drive can be made asfa~t as the high level drive if ±5V strobe levels are I;ISed instead of the usual OV'.... + 3.0V drive. Pin 13 is taken to -5V instead of the usualGNO and strobe input is taken from +5V to -5V levels as shown in Figure 7. & l ' ANALOG IN {CHANNEL AI ! rrL !iii .:!!J ' • = ANALOG, OUT : CMOS LEVEL IM'UT STROBE 9 ANALOG IN {CHANNEL 81 AF002801 Figure 7,. The typical channel of the IH5140 family conslsts of both P and N-cllimn~1 MOSFETs. The N-channel MOSFET uses a "Body, Puller" FET'todrive the body to -1SV(±'1Sv supplies)t6 get good breakdown voltages when the switch is in the off state (See Fig. 8). This "Body Puller" FET also allows the N-channel body to electrically float when the switch is in the on state producing a fair.ly constant RoS(ON) with different signal voltages. While this "Body Puller" FET improves switch performance, it can cause a problem when analog input sigl1als are present (negative signals only) arid 'power supplies are off. This fault condition is shown, in Figure 9. 2:.15" FROM DRIVERS -16V AFOO2901 Figure 8. Current,will flow, from ':'10V analog voltage through the drain to body junction of Q1, then through the drain ,to body junction of OS to GNO. This means that there is 10Vacross: two forward"biased silic,on diodes and current will go to whatever value', the input signal Source is capable of supplying. If the ~oalog input $ignal is derived from the same supplies as the switch this fault condition cannot AFOO3001 Figure 9. 3-116 Note: All typical values have been guaranteed by characterization: and are not tes~ed, IH5140-IH5145 APPLICATION NOTE (CONT.) 'i6 ~r:~~UIVALENT INA ~ PL.IN ... 1 (1.~or-----"f-- -'6V (,1;)-----. ~ ~ +15V -;;< IN. ~ ,.1 -=1- . .V T2LBIN AF00310l Figure 10. APPLICATIONS +15V +15V 2 r 3 ANALOG 0--+-"-4 INPUT 6 -+-OOUTPUT 510 -15V 10.000PF POLY-=- STYRENE I LOGIC INPUT +3V OV = IH5143 => SAMPLE MODE > HOLD MODE AFOO3211 Figure 11: Improved Sample and Hold Using IH5143 16 15 +VANALOG .s-L TTL 12 "::" +5V 11 +15V 10 9 2R R ETC. R LOGIC STROBE SL +VANALOG TTL LOGIC STROBE R ETC. AF003311 EXAMPLE: If - VANALOG - -10VDC and + VANALOG = + 10VDC then Ladder Legs are switched between ± 10VDC, depending upon state of Logic Strobe. Figure 12: Using the CMOS Switch to Drive an R/2R Ladder Network (2 Legs) 3-117 Note: All typical values have been guaranteed by characterization and are not tested. I ·IID~DI6 ., I.H5140-IH5145 !z .,. j APPL.ICATIONS (CONT.) lOOk!) ! LOGIC STROBE AF003401 CONSTANT GAIN, CONSTANT Q; VARIABLE FREQUENCY FILTER WHICH PROVIDES SIMULTANEOUS LOWPASS, BANDPASS, AND HIGHPASS OUTPUTS. WITH THE COMPONENT VALUES SHOWN, CENTER FREQUENCY WILL BE 235Hz AND 23.5Hz FOR HIGH AND LOW LOGIC INPUTS RESPECTIVELY, Q = 100, AND GAIN = 100. fn = CENTER . 1 FREQUENCY = 21T RC Figure 13: Digitally Tuned Low Power Active Filter 3-118 Note: All typical values have been guaranteed by characterization and are not tested. IH5148-IH5151 High-Level CMOS Analog Switches GENERAL DESCRIPTION FEATURES The. IH5148 family of solid state analog switches are designed using an improved, high voltage CMOS technology. Destructive latchup has been eliminated. Early CMOS switches were destroyed when power supplies were removed with an input signal present; the IH5148 CMOS technology has eliminated this problem. Key performance advantages of the 5148 series are TTL compatibility and ultra low-power operation. RDS(on) Switch resistance is typically in the 14n To 18n Area, for Signals in the -10V to + 10V range. Quiescent current is less than 10j.lA. The 5148 also guarantees Break-Before-Make switching which is logically accomplished by extending the tON time (200nsec typ.) such that it exceeds toFF time 120nsec typ.). This insures that an ON channel will be turned OFF before an OFF channel can turn ON. The need for external logic required to avoid channel to channel shorting during switching is thus eliminated. Many of the devices in the 5148 series are pin-for-pin compatible with other analog switches, and offer improved electrical characteristics. • • • • • • • • Low RDS(ON) - 25n Switches Greater Than 20Vpp Signals With ± 15V Supplies Quiescent Current Less Than 100j.tA Break-Before-Make Switching tOFF 120nsec, Typ. toN 200nsec Typical TIL, CMOS Compatible Non-Latching With Supply Turn-Off Complete Monolithic Construction ±5V to ±15V Supply Range CMOS ANALOG SWITCH PRODUCT CONDITIONING • • • • • • • The Following Processes Are Performed 100% in Accordance With MIL-STD-883 Precap Vlsual- Method 2010, Condo B Stabilization Bake - Method 1008 Temperature Cycle-Method 1010 Centrifuge - Method 2001, Condo E Hermeticity-Method 1014, Condo A, C (Leak Rate < 5 x 10- 7 atm ccls) ORDERING INFORMATION ORDER PART NUMBER FUNCTION PACKAGE TEMPERATURE RANGE HARRIS EQUIVALENT IH5148MJE IHS148CJE IH5148CPE IH5148MFD IH5148CTW IH5148MTW Dual Dual Dual Dual Dual Dual SPST SPST SPST SPST SPST SPST 16 Pin CERDIP 16 Pin CERDIP 16 Pin Plastic DIP 14 Pin Flat Pack TO-l00 TO-l00 -SS·C O°C to O°C to - SO°C O°C to -SsoC to 12SoC lO°C 70°C to 12S·C 70°C to 12SoC HI-5048 HI-S048 HI-S048 HI-5048 HI-S048 IHS149MJE IHS149CJE IH5149CPE IH5149MFD Dual DuaL Dual Dual DPST DPST DPST DPST 16 16 16 14 -5S·C O°C to O°C to -SO°C to 125·C 70°C 70°C to 12SoC HI-S049 HI-5049 HI-S049 HI-S049 IHS1S0MJE IHS1S0CJE IH51S0CPE IHS1S0MFD IH51S0CTW IHS150MTW SPOT SPOT SPOT SPOT SPOT SPOT 16 Pin CERDIP 16 Pin CERDIP 16 Pin Plastic DIP 14 Pin Flat Pack TO-l00 TO-l00 -SS·C to 12SoC O°C to 70°C O°C to 70°C -SO°C ,to 12S·C O·C to 70°C -SsoC to 12S·C HI-S050 HI-SOSO HI-5050 HI-S050 HI-SOSO HI-5050 IHS1S1MJE IH51S1CJE IHS1S1CPE IHS1S1MFD Dual Dual Dual Dual 16 16 16 14 -55°C O°C to O°C to -50·C HI-5051 HI-5051 HI-SOSl HI-S051 SPOT SPOT SPOT SPOT Pin Pin Pin Pin Pin Pin Pin Pin CERDIP CERDIP Plastic DIP Flat Pack CERDIP CEROIP Plastic DIP Flat Pack to 125°C 70·C lO°C to 12SoC HI~S048 NOTES: 1. Ceramic (side braze) devices also available; consult factory. 2. MIL temp range parts also available with MIL-STD-883 processing. 3-119 Note: All typical values have been guaranteed by characterization and are not tested. 304300-002 :.n~oll i IH5148.~IH5151· !I ABSOLUTE MAXIMuM RATINGS I V+, v- ...........................·............................ <3SV v+, Vo ....................................................... <30V VO, v- .................................................•...... <;: 30V Vo, Vs ................................................. : ..... < .±22V VL,. v- .................................................... :....... < 33V VL, VIN ............ : .......................................... < 30V VL ............................. ; ................................. < 20V VIN................................................: ........... ,. < 20V '10 Current (Any Terminal) .............................., .. < SOmA Storage Temperature ...................... -SS·C to + 1S0·C Operating Temperature ...... ; ..... , ...... -5S·C to . + 12S·C Lead Temperature (Soldering, 1Qsec) ................. 300·C Power Dissipation .......... ; .............................. .4S0mW (All Leads Soldered to a P.C. Board) Derate SmW I"C Above 70·C NOTE: Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only. and functional operation of the device at these or any other conditions above those indicated in the operational sections. of the spec"ications is not implied. E~posure to absolute maximum rating conditions for extended periods may affect device reliability. +15V (vtl 4KO 51(0 16 BD014011 Figure 1: Functional Diagram (Typical SwltchSchematic-IH5150 in 16 pin DIP PKG.) 3-120 Note: All typical values have been guaranteed by characterization and are not tested. .O~OIL IH5148-IH5151 ELECTRICAL CHARACTERISTICS (TA @ 25°C, V+ = +15V, V- = -15V, PER CHANNEL = +5V) MINIMAX LIMITS TEST CONDITIONS SYMBOL VL COMMERCIAL MILITARY CHARACTERISTIC + 25°C + 70°C IIN(ON) Input Logic Current VIN = 2.4V (Note 1) ±1 ±1 ±10 ±1 ±10 p.A IIN(OFF) Input Logic Current VIN = 0.8V (Note 1) ±1 ±1 ±10 ±1 ±10 p.A ROS(ON) Drain-Source On Resistance Vo=±10V, 15= -10mA 25 25 50 30 n -55°C + 25°C + 125°C UNIT 0 AROS(ON) Channel to Channel ROS(ON) Match 10 (Typ) 15 (Typ) n VANALOG Min. Analog Signal Handling Capability ±14 (Typ) ±14 (Typ) V Switch OFF Leakage Current VANALOG = -10V to + 10V ±0.5 50 ±1.0 100 nA Switch On Leakage Current Vo= Vs = -10V to + 10V ±1.0 100 ±2.0 100 nA Q(INJ) Charge Injection See Figure 4 (10) (Typ) (10) (Typ) mV OIRR Min. Off Isolation Rejection Ratio 1= lMHz, RL ~ tOOn, CL:S 5pF See Figure 5 54 (Typ) 50 (Typ) dB IO(OFF) IS(OFF) ID(ON) + IS(ON) SUPPLY 1+ + Power Supply Quiescent Current 1- - Power Supply Quiescent Current IL + 5V Supply Quiescent· Current IGNO Gnd Supply Quiescent Current CCRR Min. Channel to Channel Cross Coupling Rejection Ratio 10 10 100 10 p.A 10 10 100 10 p.A 10 10 100 10 p.A 10 10 100 10 p.A 50 dB VI = + 15V, V2 = -15V. VL= +5V, VR=O One Channel Off; Any Other Channel Swijches as per Figure B 54 (Typ) NOTE 1: Some channels are turned on by high "I" logiC inputs and other channels are turned on by low "0" inputs; however O.BV to 2.4V describes the min. range lor switching properly. ReIer to logic diagrams to lind logical valus 01 logic input required to produce "ON" or "OFF" state. SWITCHING TIME SPECIFICATION IH5148 SPST SWITCH SYMBOL MAX UNIT Ion Swijch "on" time PARAMETER RL=IKn, VANALOG= -IOV TEST CONDITIONS MIN 250 ns loll Switch "off" time To + 10V; See Figures 3 and 6 200 ns IH5149 OPST SWITCH SYMBOL MAX UNIT ton Switch "on" time PARAMETER RL = 1Kn;· VANALOG = -10V TEST CONDITIONS MIN 350 ns loll Switch "off" time To + 10V; See Figures 3 and 6 250 ns IH5150 & IH5151 SPOT SWITCH MAX UNIT ton Switch "on" time RL = lKn, VANALOG = -10V 500 ns loll Switch "off" time To + 10V; See Figures 3 and 6 250 ns SYMBOL PARAMETER TEST CONDITIONS MIN NOTE 2: For IH5150 & IH5151 devices, channels which are off lor logic input ~ 2.4V (Pins 3 & 4 on 5150, & Pins 3 & 4, 5 & 6 on 5151) have slower Ion time, than channels on Pins I, 16, & 8, 9. This is done so switch will maintain break-balora-make action when connected in OT configuration, i.e. Pin 1 connected in Pin 3. 3--121 Note: All typical values have been guaranteed by characterization and are not tested. ... ".U~OIL 10 ;; IH5148";I'H5151 ; I ...... ' cD " SWITCH S1'ATESARE FOR L()GIC "1" INPUT DIP (DE) PACKAGE FLAT PACKAGE (TW) PACKAGE 10 ; DUAL.SPST IH5148 v, " v· v· ,i " I, ., ., 0, I, 0, I, ., v, II " II I, 0, ., ., lID v· .. II v- II' SS007401 • I, 0, I, ... v- . v88007601 S$007501 DUAL DPST IH5149 v, v, . .,.. I, 0, 0, I _1 .. It II lID ., ., . I, v· n " .. t, II I 0, ,. ... II vS5007701 .. V- 55007801 SPDT IH5150 " ,. " ,. I, I, I, .. • ,. V, n II ," II I, .. t, I, I, It • • ... . II lID II V88007901 SSOO8OOI DUAL SPDTIH5151 v, ,. .,.... I, " OJ .... ..'1 lID ., I, I, "" II v· n 0, Is ., , .... ,. II OlD SSOO82 - IOpf I m f:'" _oa ...... :: --D-i>- 1110 ",00000 5.0 LOGIC IUUT tlDro--t>-- ~ 1 '":'":" '000 ":'''':'' TC03681 I ~ TC037011 TC03691 I Figure 3 Figure 4 TYPICAL PERFORMANCE CHARACTERISTICS Figure 5 (Per Channel) ROS(ON) @ ±15V, ±5V SUPPLIES Ros(ON) o 100 90 80 70 60 50 40 30 20 10 ±5V SUPPLIES i@ .,...Er- 't!J A5V SUPPLIEs.. o -12V-l0-8-6 -4 -2 OV 2 +4V 6 8+10V+121 HDS (ON) vs ANALOG INPUT VOLTAGE 0P056911 CROSS COUPLING REJECTION vs FREQUENCY 120 .......... 100 =- ~ ... 80 ec 60 Vi C> II: :> . ~ '~-;¥ ~ ..... I" ..... .... ......... ~ ..... 40 3V INPu.!!"l.- 20 CCRR o 1 10 2oLOG 2000mVpp VOUT (mVpp) 100 1k 10k 100k 1M SWITCHED CHANNEL '" FREOUENCY (Hz) r I I I I I I I I I L"" VOUT 1000 ~I ~-I ~----1'" ~ 510 TC033521 OP056811 CROSS COUPLING REJECTION TEST CIRCUIT 3-123 Note: All typical values have been guaranteed by characterization and are not tested, ;; IIf5148-IH5151 ;; , ! TYPICAL PERFORMANCE CHARACTERISTICS (CONT.) OFF ISOLATION ,...120 ! i" -100 '- ~ ..... ii' -80 ~ ...ei&:" c :» VI FREQUENCY . 510 .... 1"'- ..... -60 -- OFF STATE ~_ OEPENDS ON. PART~ -40 -20 20LOG 2000mVpp VOur(mVpp) 1Hz 10Hz 100Hz lk 10k lOOk 1M = OIRR o l---o . 1 1000 Your .... FREQUENCY (Hz) TC033111 OFF ISOLATION TEST CIRCUIT POWER SUPPLY QUIESCENT CURRENT FREQUENCY RATE :!!i ~ + ffi z: 20 I ~ LOGIC / f = TI ~ ~ !i! ~ / ~ VI I 2 1 V 10 TC033411 100 lk 10k lOOk LOGIC FREQUENCY @ 10% DUTY CYCLE (Hz) OP056711 LOGIC INPUT WAVEFORM TC0367 2.4V VENH > 2.4V Logic "0" = VAL < O.8V v+ Db NC 3 S8b S7. S7b SIb" S8a S5a S4lI S3a S2a Ao A, A2 V+ COMMON TO SUBSTRATE CD035601 Figure 1: Pin Configuration (Outline dwgs JE, PEl 3-135 Note: All typical values have been guaranteed by characterization and are not tested. 1 1 1 1 1 1 1 1 1 2 3 4 5 6 7 8 IIH5216 ! 511 u.o---"'i S30o---"'i S40o---"'i S5ao---"'i ... 0-:--; 57. o---"'i ... 0---"1 Do till SI~ S2~0---"I S3IIo---"I Mo---"I S5IIo---"'i SIll 0---'"< S~O---:J S.o---'"< TO OlCOOl lOGIC COITROIUNG 80TH TIERS Of MUXI!IG 3 UIE "I'RY AOIHIfSS IIIPUTS 110 01 AID Ell • 5V AIOVE EXAMI'U SHOWS CHA.IElS I. 'NO ,_ ON. LD011211 Figure 2: Functional Diagram +15V WK' tIL +3.0V VA+~ .wrr~o~ VOUT 0 ~~~-r~~----~VO~ O.9VO Vo 35pF open - open Vs TC034611 TC038501 Figure 3: t open (Break-Before-Make) Switching Test 3-136 Nole: All typical values have been guaranteed by characterizalion and are nol l'1sled. iUI IH5216 ...N ~ ABSOLUTE MAXIMUM RATINGS VIN (A, EN) to Ground ....................... -15V to + 15V Vs or VD to V+ ............................... +25V to -40V Vs or VD to V- ................................ -25V to +40V Current (Any Terminal) .................................... 20mA Operating Temperature ...................... -55 to + 125·C Storage Temperature ......................... - 65 to + 150·C Lead Temperature (Soldering, 10sec) ................. 300·C Power Dissipation" ...................................... 1200mW V+ to Ground ............................. , ................... 16V V- to Ground ................................................ -16V "All leads soldered or welded to PC board. Derate 10mW/'C above 70'C. Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and lunctional operation 01 the device at these or any other conditions above those indicated in the operational sections 01 the specilications is not implied. Exposure to absolute maximum rating conditions lor extended periods may allect device reliability. ELECTRICAL CHARACTERISTICS (v+ CHARACTERISTIC = 15V, v- = -15V, VEN = 2.4V, unless otherwise specified.) MAX LIMITS NO MEASURED TESTS TERMINAL PER TEMP TYP 25'C TEST CONDITIONS M SUFFIX C SUFFIX UNIT -55'C 25'C 125'C G'C 25'C 70'C SWITCH S to D ROS(on) 16 Vo -10V. IS= -LOrnA Sequence each switch on 700 1000 1000 1500 1200 1200 1800 16 Vo - -10V IS= -1.0mA VAL - 0.8V, VAH - 2.4V 500 1000 1000 1500 1200 1200 1800 .:l.Ros(on) ROS(on)max-ROS(on)min .:l.ROS(on) = n % 5 ROS(on)avg. VS=±10V S IS(oll) D 10(otl) D 10(on) 16 Vs -10V, Vo = -10V 0.02 ±0.5 50 ±1.0 50 16 Vs - -10V, Vo = 10V 0.02 ±O.S SO ±1.0 SO 1 Vo -10V. VS= -10V O.OS ±1.0 100 ±2.0 100 0.05 ±1.0 100 ±2.0 100 0.1 ±2.0 100 ±4.0 100 0.1 ±2.0 100 ±4.0 100 VEN =O.8V 1 VO= -10V,VS-10V 16 VS(AIJ) = Vo 16 VS(AIJ) = 10V = Vo = Sequence each switch on -10V VAL - 0.8V, VAH = 2.4V nA FAULT IS with Power OFF S 16 Vsupp = OV, VIN = ±25V, VEN=VO=OV, A(:), AI, A2=OV or SV 1.0 2.0 S.O IS(oII) with OVervoltage S 16 VIN = ±25V, Vo - ± 10V 1.0 2.0 S.O A(j, AI, A2 or EN 4 VA = 2.4V, or OV om -10 -30 -10 -30 4 VA=ISV 0.01 10 30 10 30 p.A INPUT IEN(on) IA(on) or lEN (off} IA(off} DYNAMIC ttransition D 0.3 Iopen D 0.2 Ion(EN) D 0.6 I.S D 0.4 1 \on-loll BreakBelore-Make Delay Settling Time D "OFF" Isolation D VEN = S Vs-O CO(otl) D Vo=O Supply Current D to S 1+ I- 1+ I- At, A2 Strobed VIN = ±10V. VEN = 0, RL = 200n, CL = 3pF, Vs = 3VRMS, I = SOOkHz Cs(otl) CDStoffl SUPPLY +SV,' A(:), Vs = 0, Vo - 0 1 I 1 I 1VEN-OV, 1I = 140kHz 1to 1 MHz p.A 1 IoIl(EN) 16 1 I'S 25 ns 60 dB 5 25 pF 1 1 0.5 I 0.02 All VA = OV/SV VEN=SV 3--137 Note: All typical values have been guaranteed by characterization and are not tested. 0.6 0.6 1 I 1 I 1.0 1.0 1 I mA ; IH5341 ('I) ; Dual SPST CMOS RFIVideo Switch GENERAL DESCRIPTION FEATURES The IHS341 is a dual SPST, CMOS monolithic switch which uses a "Series/Shunt" ("T" switch) configuration to obtain high "OFF" isolation while maintaining good frequency response in the "ON" condition. Construction of remote and portable video equipment with extended battery life is facilitated by the extremely low current requirements. Switching speeds are typically ton = lS0ns and toti = 80ns, and "Break-Before-Make" switching is guaranteed. Switch "ON" resistance is typically 40n-SOU with ± 15V power supplies, increasing to typically 175U for ±5V supplies. The devices are available in TO-l00 and 14-pin epoxy DIP packages. • • • • • • • • • ROS(on) < 75U Switch Attenuation Varies Less Than 3dB From DC to 100MHz "OFF" Isolation> 60dS @ 10MHz Cross Coupling Isolation> 60dB @ 10MHz Compatible With TTL. CMOS Logic Wide Operating Power Supply Range Power Supply Current < 1~ "Break-Before-Make" Switching Fast Switching (80ns1150ns Typ) ORDERING INFORMATION PART NUMBER TEMPERATURE RANGE PACKAGE IH5341 CPO o to +70·C 14-pin PLASTIC DIP IH53411TW -20·C to +85·C 10-pin TO-l00 IH5341MTW -55·C to + 125°C 10-pin TO-l00 s, o--~------<~------- -J I ON,D I , I INz TOPYIEW TOI'VIEW COOO3301 LS00781t Figure 1: Functional Diagram (Switches are open for a logical "0" control input, and closed for a logical "1" control input.) Outline dwg: PO Outline dwg: TW Figure 2: Pin Configurations 3-138 Note: All typical values have been guaranteed by characterization and are not tested. 30S528-002 i IH5341 en ...... Col ABSOLUTE MAXIMUM RATINGS v+ to Ground ............................................... + 17V V- to Ground ................................................ -17V VL to Gro.und .......................................... V+ to VLogic Control Voltage ................................ V + to VAnalog Input Voltage ................................. V + to VCurrent (any Terminal) ..................................... 50mA Operating Temperature: (M Version) ......................... -55°C to +125°C (I Version) ............................. -25°C to + 85°C (C Version) .............................. O°C to + 70 0 e Storage Temperature ...................... -65°e to + 150 0 e Lead Temperature (Soldering, 10sec) ................. 300 oe Power Dissipation ......................................... 250mW Derate above 25°C @ ........•............. 7.5mW/oe Stresses above those listed under" Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. +15V -15V .......~--+-=-o SWITCH 05002901 Figure 3: Equivalent Schematic Diagram IH53411TW (1/2 of actual circuit on chip shown) 3-139 Note: All typical values have been guaranteed by characterization and are not tested. ; IH5341· :3 ! DC ELECTRICAL CHARACTERISTICS = + 15V, VL = +5V, v- = -15V, ·TA = 25°C unless v+ otherwise specified. M GRADE DEVICE SYMBOL PARAMETER Supply Voltage Ranges Positive Supply Logic Supply Negative Supply V+ VL V- TEST CONDITIONS Switch "ON" Vo = ±5V Resistance (Note 4) IS = lOrnA, VIN Vo-±10V ROS(on) Switch "ON" Resistance On Resistance Match Between Channels dROS(on) -SS·C + 25·C + 12S·C IIC GRADE DEVICE -251 O·C +2S·C +851 , +70·C 4.5> 16 .4.5> V+ -4> -16 (Note 3) ROS(on) TYP V 75 ~ 75 100 75 75 100 2.4V V+ =VL= +5V, VIN = 3V V- = -5V, Vo = ±3V 15= lOrnA IS = lOrnA, Vo = ±5V 125 125 175 150 150 175 250 250 350 300 300 350 VIL 10(011) or 15(011) Switch "OFF" Leakage (Notes 2 and 4) VS/O - ±5V VIN" O.BV VS/O = ±14V ±0.5 50 ±1.0 100 ±0.5 50 ±1.0 100 10(on) + IS(on) Switch "ON" Leakage VS/O =±5V VIN ~ 2.4V VS/O = ±14V ±1 50 ±2 100 liN Input Logic Current VIN 1+ Positive Supply Quiescent Current 1IL NOTES: 1. 2. 3. 4. > 2.4 V < O.B ±1 100 ±2 100 0.1 .±1 ±1 10 ±1 ±1 10 VIN=OVOr +5V 0.1 1 1 10 1 1 10 Negative Supply Quiescent Current VIN =OV or +5V 0.1 1 1 10 1 1 10 Logic Supply Quiescent Current VIN -OV pr +5V 0.1 1 1 10 1 1 10 ~ 2.4V or < OV AC ELECTRICAL CHARACTERISTICS = + 15V, VL = + 5V, v- = OV, TA = 25°C unless SYMBOL p.A otherwise specified (Note 5). PARAMETER TEST CONDmONS MIN TYP MAX UNIT 150 BO 300 150 ns Ion Switch "ON" Time See Figure 4 toll OIRR Switch "OFF" Time "OFF" Isolation Rejection Ratio See Figure 4 See Figure 5 (Note 6) CCRR Cross Coupling Rejection 'Ratio See Figure 6 (Note 6) 60 Switch Attenuation 3dB Frequency See Figure 7 (Note 6) 100 f3dB nA Typical values are not tested in production. They are given as a design aid only.. Positive and negative voltages applied to opposite sides of switch, in both directions successively. These are the operating voltages at which the other parameters are tested, and are not directly tested. The logic inputs are either greater than or equal to 2.4V or less than or equal to O.BV, as required, for this test. V+ NOTES: n 5 Logical "I" Input Voltage Logical "0" Input Voltage VIH UNIT 5. All AC parameters are sample tested only. 6. Test circuit should be built on copper clad ground plane board, with correctly terminated coax leads, etc. 3-140 Note: All typical values have been guaranteed by characterizaiion and, are not tested. 60 dB iCII IH5341 ~ TEST CIRCUITS Tn INPUT +3V ov -""7'50%------'"""" .+1W-T---~~=-----~ YouT 10% VANALOG + SY +:: YouT ov ov----... =rI...!TL IN -+--''F't 10" YOUT RL = VANALOG 1Il00 =- SV __ 1W _____ ~~IO%~~___~ WFOO33(J1 TCOO791 I Note: Only one channel shown. Other acts identically. Figure 4: Switching Time Test Circuit and Waveforms TC008101 TGOOSOOI VIN = ±5V (10Vp_p) @ f = 10MHz VIN VIN OIRR = 20log - - Your = 225mVrms @ f = 10MHz VIN CCRR = 20109 - - vour Note: Only one channel shown. Other acts identically. Figure 5: OFF Isolation Test Circuit Figure 6: Cross-Coupling Rejection Test Circuit RL ATTN: =20 10910---"-ROS(on)+RL Nominally, at DC, this ratio is equal to -4dB. When the attenuatio reaches -1 dB, the frequency at which this occurs is f3dB. TCOO8201 Note: Only one channel shown. Other acts identically. Figure 7: Switch Attenuation Versus Frequency, Test Circuit 3-141 Note: All typical values have been guaranteed by characterization and are not tested. i·IH5341 I TYPICAL PERFORMANCES CHARACTERISTICS ROS(on) Versus Analog Input Level with ±SV POl/ier Supplies Ros(onl Versus Analog Input Voltage w th ± 1SV Power .Supplies 70 PIN 3= +ISIf, PIN 7= -15V PIN.l0= +SV . TA=25·C .: 60 7 'I g i 50 i 40 V V" " PIN 3=PIN 10= +5V PIN 7= -SV fo-160 TA=2S·C ~ ~120 V 80 if S 70 II: II: 80 6 / 50 , 90 80 30 0.1 0 +S ANALOG INPUT VOLTAGE LEVEL (V) 1 10 100 FREQUENCY (MHz) QP006701 CPOO6601 100 '\ 40 80 -s ·c TA= +25 90 / OPOOB801 Typical Switch Attenuation Versus Frequency (RL = 7S0, See Figure 7) CCRR (Cross Coupling Rejection) Versus Frequency (See Figure 6) -3.3 TA=ZSOC T,,-.+2S·C m-3.4 S " -3.5 .2 if 70 S II: II: .; 100 30 -15 -10 -5 0 5 10 15 ANALOG INPUT VOLTAGE LEVEL (V) u u 100 j g140 OIRR (OFF Isolation Rejection) Versus Frequency (See Figure 5) ~ -3.8 S " ~3.7 ' - - 50 ~ -3.8 40 UI ~ 60 :c ~- ~ • -3.9 -4.0 0.1 30 0.1 1 10 100 l}111111 1 10 OPO07801 0P006901 750 ~0--0 DRAIN SWITCH L_ _ _ J (OUT) I +15V SOURCE 0-----<)"'"'1/ ( SWITCH. (IN) CONTROL ~_ r-'\...~o IN~ DRIVER TRANSLATOR 100 FREQUENCY (MHz) FREQUENCY (MHz) --'11\'-.....- - . , Vour r------':r; ANALOG ~ INPUT LOOO2201 Figure 8: Internal Switch Configuration DETAILED DESCRIPTION As can be seen in Figure 8, the switch Circuitry is of the so-called "T" configuration, where a shunt switch is closed when the switch is open. This provides much better isolation between the input and the output than single series switch does, especially at high frequencies. The result is excellent performance in the Video and RF region compared to conventional Analog Switches. The input level shifting circuit is similar to that of the IH5140 Series of Analog Switches, giving very high speed and guaranteed "Break-belore-Make" action, with negligible static power consumption and TTL compatibility. 1000pFT CHOLD r--1-+ 3V ...J L-ov TTL. IN ISTROBE) TCO08301 • Adiust pot for OmYpop step @ YOUT with no analog (AC) signal· present Figure 9: Charge Injection Compensation 3-142 Note: All typical values have been guaranteed by characterization and are not tested. .U~OI1. en i IH5341 ! DETAILED DESCRIPTION (CONT.) +5V YoUT DC81AS VOLTAGE --sv o-.J\I..,.,....., ANALOG '--.l INPUT~ ...-......-=f:ll I.F 22I>i'-3SpF CHOto T.... 1000pF + 3V OV :rL TTL CONT~LII'I TC008401 Figure 10: Alternative Compensation Circuit APPLICATIONS Charge Compensation Techniques +,15V-IW-_----. Charge injection results from the signals out of the level translation circuit being coupled through the gate-channel and gate-source/drain capacitances to the switch inputs and outputs. This feedthrough is particularly troublesome in Sample-and-Hold or Track-and-Hold applications, as it causes a Sample (Track) to Hold offset. The IH5341 devices have a typical injected charge of 30pC-50pC (corresponding to 30mV-50mV in a 1000pF capacitor),at VS/O of about OV. This 'Sample (Track) to Hold offset can be compensated by bringing in a signal equal in magnitude but of the opposite polarity. The circuit of Figure 9 accomplishes this charge injection compensation by using one side of the device as a S & H (T & H) switch, and the other side as a generator of a compensating signal. The 1kn potentiometer allows the user to adjust the net injected charge to exactly zero for any analog voltage in the -5V to +5V range. Since individual parts are very consistent in their charge injection, it is possible to replace the potentiometer with a pair of fixed resistors, and achieve less than 5mV error for all devices without adjustment. An alternative arrangement, using a standard TTL inverter to generate the required inversion, is shown in Figure 10. The capacitor needs to be increased, and becomes the only method of adjustment. A fixed value of 22pF is good for analog values referred to ground, while 35pF is optimum for AC coupled signals referred to -5V as shown in the figure. The choice of - 5V is based on the virtual disappearance at this analog level of the transient component of switching charge injection. This combination will lead to a virtually "glitch-free" switch. TCOO8501 Figure 11: Overvoltage Protection Circuit Overvoltage Spike, Protection If sustained operation with no supplies but with analog signals applied is pOSSible, it is recommended that diodes (such as 1N914) be inserted in series with the supply lines to the IH5341. Such conditions can occur if these Signals come from a separate power supply or another location, for example. The diodes will be reverse biased under this type of operation, preventing heavy currents from flowing from the analog source through the IH5341. The same method of protection will provide over ±25V overvoltage protection on the analog inputs when the supplies are present. The schematic for this connection is shown in Figure 11. 3-143 Note: All typical values have been guaranteed by characterization and are not tested. :: .HS35l:·' i QUAD SPST CMOS - RFIVideo Switch ·GENERAL DESCRIPTION ~~ FEATURES cM'os The IH5352 is a QUAD SPST, monolithic vide9 'switch which uses a "Series/Shunt" ("T" switch) configuration to obtain high "OFF" isolation while maintaining good frequency response in the "ON" condition. Construction of remote and portable video equipment with extended battery life is facilitated by the extremely iow current requirements. Switching speeds are typically ton = 150ns and toft = 80ns, and "Break-Before-Make" switching is guaranteed. Switch "ON" resistance is typically 40n-50n with ±15V power supplies, increasing to typically 175n for ±5V supplies. IH5352CPE IH53521JE IH5352MJE TEMPERATURE RANGE Q'C to +70'C ROS(on) • Switch Attenuation Varies Less Than 3dB From DC to 100MHz "OFF" Isolation> SOdB @ 10MHz Cross Coupling I,solation > SOdB @ 10MHz Directly Compatible with TTL, CMOS Logic Wide Operating Power Supply Range Power Supply Current < 1~ "Break-Before-Make" Switching Fast SWitching (80ns/150ns Typ) • • • • • • • APPLICATIONS • • • • • ORDERING INFORMATION PART NUMBER < 7Sn • PACKAGE Video Switch Communications Equipment Disk Drives Instrumentation CATV l6-PIN PLASTIC DIP -25'C to +85°C l6-PIN CERDIP -55'C to + l25'C l6-PIN CERDIP IH5352 s., 0 a"'(o~---- -J CD030701 lSOO780l, Figure 1: Functional Diagram (Switches are open for a, logic ",0" control Input, and closed for a logic "1" control input.) Figure 2: Pin C.onfigurations Package Outline Drawing: PE, JE 3-144 Note: All typical values have been guaranteed by characterization amI' are not tested. 305529-003 IH5352 ABSOLUTE MAXIMUM RATINGS (TA = 25'C Unless Otherwise Noted)' y+ to Ground ................................................ + 17Y Y- to Ground ................................................ -17V YL to Ground .......................................... V+ to YLogic Control Yoltage ................................ V+ to VAnalog Input Yoltage ................................. Y + to YCurrent (any terminal) ................................... < SOmA Operating Temperature: (M Version) ......•.................. -55'C to + 125'C (I Version) ............................. -20·C to +85'C (C Version) .............................. O'C to + 70'C Storage Temperature ...................... -65'C to + 160'C Lead Temperature (Soldering, 10sec) ..................................300·C Power Dissipation: CERDIP ............................................ .450mW derate 4mWrC above 25'C Plastic ............................................... 350mW derate 3mWrC above 25°C Stresses above those listed under" Absolute Maximum Ratings" may cause permanent. damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational Sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. DC ELECTRICAL CHARACTERISTICS y+ = + l5V, Y- = -15Y, YL = +5Y, TA = 25'C unless otherwise noted. MAXIMUM RATINGS SYMBOL PARAMETER TEST CONDITIONS TYP @2S'C M GRADE DEVICE IIC GRADE DEVICE -SS'C +2S'C + l2S'C -2S/0'C . + 25'C V+ Supply Voltage Ranges: Positive Supply VL Logic Supply V- Negetive Supply Sw~ch ROS(on) "ON" Resistance (Note 4) ROS(on) Switch "ON" Resistance AROS(on) On Resistance Match Between Channels VIH Logical "1" Input Voltage VIL 10(off) or 15(011) 10(on) + IS(on) Logical "0" Input VoIlI!ge Switch 'OFF' Leakage (Note 2 and 4) Sw~ch 'ON' Leakage UNIT +851 +70'C 5 to 15 (NoteS) 5 to 15 V -5 to .-15 Is-lOrnA IVo - ±5V 50 75 75 VIN 2.4 V <0.6 VS/0-±5V VS/O" ±14V VIN $0.8V ±1.0 50 ±2.0 ±1.0 50 ±2.0 100 VS/0-±5V VS/O - ±14V VIN --~~<:r L__ _ MDEO I.pun DETAILED. DESCRIPTION Figure 3 shows the internal circuit of one channel of the IH5352. This is identical to the IH5341 "T-Switch" configuration. Here, a shunt switch is closed, and the two series switches are open when the video switch channel is open or off. This provides much better isolation between the input and output terminals than a simple series switch does, especially at high frequencies. The result is excellent offisolation in the Video and RF frequency ranges when compared to conventional analog switches. SWITCH O--ODRAlI (VIDEO OUTPun I LOGIC o - - - [ ) 4 - ; > o l COmOL .' - I.PUT .' DIUVER TRA.SLATOR TC032601 The control input level shifting Circuitry is very similar to 'that of the IH5140 series of Analog Switches, and gives very high speed, guaranteed "Break-BefOre-Make" action, low static power consumption and TTL 'compatibility. NOTE: 1 CHANNEL OF 4 SHOWN Figure 3: Internal Switch Configuration 1000 1000 TIL INPUT +3V OV +3.3V 1000 VOUT VANALOG = +5V riv OV 1000 Your VAl!IALOG= --SV -3.3V WF027401 ~S"L LOGIC CONTROL SIGNAl. TC037301 Figure 4: Switching Time Test Circuit and Waveforms 3-146 Note: All typical values heve been guaranteed by characterization and are not tested, 5! CI IH5352 W CI N 750 RG·59 COAX 750 TC037411 VIN OIRR = 20 LOG - VOUT VIN = 5V pn SINEWAVE @ 10MHz Figure 5: Off Isolation Test Circuit IH5352 +5V 2 15 3 14 4 13 +15V VOUT1 750 VOUT2 750 5 -= 750 16 6 750 7 8 -= -= Too37501 CCRR = 20 LOG ~ VOUT VIN = 225mV RMS SINEWAVE @ 10MHz Figure 6: Cross-Coupling Rejection Test Circuit 3-147 Note: All typical values have been guaranteed by characterizatiOn and are not tested. ! .O~OIl IH5352 '10 -z 750 IH53S2 +5V RQ.68COAX NC NC RG·59 COAX . 18 VOUT 2 15 3 14 4 13 5 12 8 11 +15V 750 750 750 ":" -15V 7 NC 8 +5V ":" '::" TC037601 f - 3dB ~ FREQUENCY WHERE DC SWITCH ATTENUATION IS DOWN 3dB VIN = 225mV RMS@ 10-100MHz Figure 7: Switch Attenuation -3dS Frequency Test Circuit 3-148 Note: All typical values have been guaranteed by characterization and are not lested. IH6108 S-Channel CMOS Analog Multiplexer GENERAL DESCRIPTION FEATURES The IH6108 is a CMOS monolithic, one of 8 multiplexer. The part is a plug-in replacement for the DG508. Three line decoding is used so that the 8 channels can be controlled by 3 Address inputs; additionally a fourth input is provided for use as a system enable. When the ENable input is high (5V), a channel is selected by the three Address inputs, and when low (OV) all channels are off. The 3 Address inputs are TTL and CMOS logic compatible, with a "1" corresponding to any voltage greater than 2.4V. • • • • • • • • • Ultra Low Leakage - IO(Off):::: 100pA rOS(on) < 400 Ohms Over Full Signal and Temperature Range Power Supply Quiescent Current Less Than 100jJA ±14V Analog Signal Range No SCR Latchup Break-Before-Make Switching Binary Address Control (3 Address Inputs Control 8 Channels) TTL and CMOS Compatible Strobe Control Pin Compatible With DG508, HI-508 & AD7508 ORDERING INFORMATION PART NUMBER TEMPERATURE RANGE PACKAGE IH6108MJE -SS·C to + 12S·C 16 pin CERDIP IH6108CJE O·C to 70·C 16 pin CERDIP IH6108CPE O·C to 70·C 16 pin plastic DIP Ceramic package available as special order only (IH6108MDE/CDE) DECODE TRUTH TABLE S. 0 CV""""" S. 0 CV""""" 0 CV""""" VOUT D A1 x 0 0 1 1 0 1 1 1 1 1 0 1 Ao x 0 1 0 1 0 1 0 1 EN 0 1 1 1 1 1 1 ON SWITCH NONE 1 2 3 4 S 6 7 8 1 1 AO, A1, A2 EN SWITCH S. ~ A2 x 0 0 0 0 Logic "1" = VAH::: 2.4V VENH::: 4.SV Logic "0" = VAL:::: 0.8V Sa S. ~ S. ~ AD A. A. EN (ENABLE INPUT) c0003411 3 LINE BINARY ADDRESS INPUTS (1 0 1) AND EN @ SV ABOVE EXAMPLE SHOWS CHANNEL 6 TURNED ON' Figure 2: Pin Configuration LDD0231 I Figure 1: Functional Diagram 3-149 Note: All typical values have been guaranteed by characterization and are not tested. 305530-002 IIU~UIl IH61("~ ABSOLUTE MAXIMUM RATINGS VIN (A, EN) to Ground .......................... -15V to 15V Vs or Vo to V+ ......................................... 0, -32V Vs or Vo to V- ..........•................................ 0, 32V V+ to Ground ................................................. 16V V- to Ground ....... ~ . .'...................................... -16V Current (Any Terminal) .................................. ~. 30mA Current (Analog Source or Drain) ...................... 20mA Operating Temperature ......................... -55 to 125°C Storage Temperature .......................... ;·. -65 to 150°C Lead Temp (SOldering, 10sec) .......................... 300°C Power Dissipation (Package)· ....................... 1200mW 'All leads soldered or welded to PC board. Derate 10mW/'C above 70'C. Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and lunctional operation 01 the device at these or any other conditions above those indicated in the operational sections 01 the specilications is not implied. Exposure to absolute maximum rating conditions lor extended peri()(js may allect device reliability. ELECTRICAL CHARACTERISTICS V+ = 15V, V - :, ...: 15V, VEN = + 5'1 MEASURED TERMINAL CHARACTERISTIC (Note 1), Ground = OV, unless otherwise specified. MAX LIMITS NO TES!5 TYP PER 25'C TEMP TEST CONDITIONS M SUFFIX C SUFFIX UNIT -SS'C 2S'C 12S'C O'C 2S'C 70'C SWITCH S to D rOS(ON) 8 180 Vo = 10V, Is = -1.0mA Sequence each switch on 8 150 Vo=-10V,IS=-1.0riJA VAL "rOS(on) = 20 arOS(ON) t.rOS(on)min rOS(on)avg. VAH = 2.4V 300 300 400 350 350 450 300 300 400 350 350 450 0.002 Vs = 10V, Vo = -10V ±.5 50 ±1 8 0.002 Vs = -10V, Vo -10V ±:5 50 ±1 50 1 0.03 ±2 100 ±5 100 1 0.03 Vo = -10V, Vs = 10V ±2 100 ±5 100 8 0.1 VS(ALL) - Vo - 10V Sequence each switch on ±2 100 ±5 100 8 0.1 VSIALLl = Vo = -10V VAL = 0.8V, VAH = 2.4V ±2 100 ±5 100 AI or A2 3 0.01 VA - 2.4V or OV -10 -30 -10 -30 Inputs 3 0.01 VA=15V or OV 10 30 10 30 -10 -30 -10 -30 -10 -30 -10 -30 10(OFF) D 1010N) . D Vo = 10V, Vs = -10V VEN =0.8V .11 % Vs = ± 10V 8 S IS(OFF) = 0.8V, 50 nA INPUT Ao, IAN(ON) or IA(on) IAN(OFF) IA(off) Ao, IA p.A AI A2 3 VEN = 5V EN 1 VEN=O All VA = 0 (Address pins) DYNAMIC ttransition D 0.3 See Fig. 1 Iopen D 0.2 See Fig. 2 Ion(EN) D 0.6 See Fig. 3 Ioff(EN) "OFF" Isolation 0 0.4 D 60 VEN = 0, RL = 200.11, CL = 3pF, Vs = 3VRMS, f = 500kHz S 5 Vs=O Cd(off) D 25 Vo=O D to S 1 Supply + v+ 1 40 Current - V- I 2 Standby + V+ 1 1 Current - V- I 1 1.5 p.s 1 Cs(oll) COSloff) SUPPLY 1 dB VEN = OV, I = 140kHz to lMHz pF Vs=O, Vo= 0 VEN = 5V All VA=O or 5V VEN=O NOTE 1: See Enable Input Strobing Levels, in Application Section. 3-150 Note: All typical values have been guaranteed by characterization and are not tested. 200 1000 100 1000 100 1000 100 1000 p.A IM6108 SWITCHING INFORMATION VA tr < l00ne •• < l00nl 3V O.aV----jt---5O'Io---\'-ltrans(8-1) - - -.... +10V Your VSl = +10Y Vs. = -10V ttrans(l-B) i-,..=;.;-9!lV!....._¥ -10V t--S8 ON...-j t--510N---l 1--580N-- l--J.~=T+i9itv;--11+10V trans (1-8) Your' Vs, = -10V Vsa = +10V _ _ _...I-l0V ttrans(8-1) TGOOSeOI WFOO3401 PROBE IMPEOANCE Rp ~ 1Mil Cp $ 30pF Figure 3: ttransltlon Switching Test 3V +15V r--~W!,-",,~--o-2V L-~ VA ____~__J=~=i::~:r~VOUT ~~'00n. ~ If < 100n, O.8V o; ;.a~V \ " '_ _ _ _ Your vs, = -2V 51 ON 35pF TC008701 WF003501 Figure 4: t open (Break-Before-Make) Swltchi!1g Test 3-151 Note: All typical values have been guaranteed by characterization and are not tested. ,,,< YEN 100... If < 100... '+1sv r----.-.j,o.",;l-~~--_o VSI IH6108 L.,....___r-<>-'-r-=-T~Your, O.IV Your OV 35pF VEN rCOO88Ot WFOO3601 Figure 5: ton and toff Switching Test IH6108 APPLICATION INFORMATION ENable Input Strobing Levels The ENable input on the IHp10S requires a minimum of + 4:5V to trigger to the" 1" state and a maximum of + O.SV ~o trigger to the "0" state. If the ENable input is being driven from TTL logic, a pull-up resistor of 1k to 3kn is required from the gate output to + 5V supply. (See Figure 6) +5V lKn DM7404N TTL LOG,IC +3V 11 .2l!I"1... VOUT AFo05101 Figure 6: ENable Input Strobing from TTL Logic When the EN input is driven. from CMOS logic, nopullup is necessary, see ,Fig. 7. 3-;.152 Note: All typical values have been guaranteed by characterization and are not tested. IH6108 IH6108 APPLICATION INFORMATION (CONT.) +5V AFOO520t Figure 7: ENable Input Driven from CMOS Logic supply voltages decrease, however, the multiplexer error term (the product of leakage times rOS(on» will remain approximately constant since leakage decreases as the supply voltages are reduced. The supply voltage of the CD4009 affects the switching speed of the IH6108; the same is true for TTL supply voltage levels. The following chart shows the effect, on ttrans for a supply varying from +4.5V to +5.5V. CMOS OR TTL SUPPLY VOLTAGE +4.5V +4.75V +5.00V +5.25V +5.50V Caution must be taken to ensure that the enable (EN) voltage is at least 0.7V below V + at all times. If this is not done, the Address input strobing levels will not function properly. This may be achieved quite simply by connecting EN (pin 2) to V + (pin 13) via a silicon diode as shown in Figure 8. When using this type of configuration, a further requirement must be met: the strobe levels of AO and A 1 must be within 2.5V of the EN voltage in order to define a binary "1" state. For the case shown in Figure 8 the EN voltage is 11.3V which. means that logic high at AO and A 1 is = +8.8V(logic low continues to be = 0.8V). In this configuration the IH6108 cannot be driven by TTL (+ 5V) or CMOS (+ 5V) logic. It can be driven by TTL open collector logic or CMOS logic with + 12V supplies. TYPICAL ttrans @ 25°C 400ns 300ns 250ns 200ns 175ns The throughput rate can therefore be maximized by using a + 5V to + 5.5V supply for the ENable Strobe Logic. The examples shown in Figures 6 and 7 deal with ENable strobing when expansion to more than eight channels is required. In these cases the EN terminal acts as a fourth address input. If eight channels or less are being multiplexed, the EN terminal can be directly connected to + 5V logic supply to enable the IH6108 at all times. If the logic and the IH6108 have common supplies, the EN pin should again be connected to the supply through a silicon diode. In this case, tying EN to the logic supply directly will not work since it violates the 0.7V differential voltage required between V + and EN, (See Figure 9). A 11lF capaCitor can be placed across the diode to minimize switching glitches. Using the IH6108 with supplies other than ±15V The IH6108 can be used with power supplies ranging from ±6V to ±16V. The switch rOS(on) will increase as the 3,-153 Note: All typical values have been guaranteed by characterization and are not tested. I.... IH610S I - IH&108 APPLICATION INFORMATION (CONT.) AFOO5301 Figure 8: IH6108 Connection Diagram for less than ± 15V Supply Operation 1N914 OR ANY SILICON DIODE CDOO3901 Figure 9: IH6108 C~nnection Diagram with ENable Input Strobing for less than ±15V Supply Operation Peak-to-PeakSignal Handling Capability The electrical specifications of the IH6.108 are guaranteed for ±1OV signals, but the specifications have very minor changes for ±14V signals. The notable changes are slightly lower rOS(on) and slightly higher leakages. The IH6108 can handle input signals up to ± 14V (actually -15V to + 14.3V because of the input protection diode) when using ± 15V .supplies. :r-154 Note: All typical values have been guaranteed by characterization and are not tested. IH6116 16-Channel CMOS Analog Multiplexer 'GENERAL DESCRIPTION FEATURES The IH6116 is a CMOS monolithic, one of 16 multiplexer, The part is a plug-in replacement for the DG506. Four line binary decoding is used so that the 16 channels can be controlled by 4 Address inputs; additionally a fifth input is provided to be used as.a system enable. When the ENable input is high (5V) the channels are sequenced by the 4 line Address inputs, and when low (OV), all channels are off. The 4 Address inputs are controlled by TTL logic or CMOS logic elements with a "0" corresponding to any voltage less than 0.8V and a "1" corresponding to any voltage greater than 2.4V. Note that the ENable input must be taken to 5V to enable the system and less than 0.8V to disable the system. • • • • • • • • • • Pin Compatible With DG506, HI-506 & AD7506 Ultra Low Leakage - 10(Off)::: 100pA ± 11 Analog Signal Range rOS(on) < 700 Ohms Over Full Signal and Temperature Range . Break-Before-lIIIake' Switching TTL and CMOS Compatible Address Control Binary Address Control (4 Address' ,,,,puts Control 16 Channels) Two Tier Submultiplexlng to Facilitate . Expaildability Power Supply Quiescent Current Less Than 1001lA No SCR Latchup ORDERING INFORMATION PART NUMBER IH6116MJI IH6116CJI IH6116CPI TEMPERATURE RANGE -55·C to + 125·C O·C to 70·C O·C to 70·C PACKAGE 28 pin CERDIP 28 pin CERDIP 28 pin Plastic DIP IH6116MDIICDI DECODE TRUTH TABLE EN ON SWITCH A1 Ao X X 0 NONE 1 1 0 0 0 0 1 1 2 0 0 1 0 1 3 0 1 1 1 4 0 0 0 0 1 5 0 1 1 1 0 1 0 6 0 1 0 1 7 1 0 1 1 1 1 8 1 0 0 9 1 0 0 1 1 10 1 0 1 1 0 1 11 0 1 1 1 12 1 0 0 1 13 1 1 0 1 1 1 1 0 14 1 1 1 0 1 15 1 1 1 1 1 16 LogiC "1" = VAH ~ 2.4V VENH ~ 4.5V Logic "0" = '(Al ::: O.SV . A3 X 0 .. h~=LI·· L~~~:fL~. 811~ .12~ . ~ ~. , 'VOU"OI . .,.~ 81$~ SI.~· A2 X 0 y+ He a TO DECODE LOGIC ' CONTROLUNG BOTH TIER,"OF MUXING' ~ ., H" " .. . . .. DeVOUl) 27 N.C 3 V- ... .."...,. .. " , "OS .. 1181 810 " ,. EN SO" , .... GNO 12 .. A, """ 1542 TOPYIEW 4 LINE BINARY ADDRESS INPUTS 0 0 1)ANDENQ.t5V ABOVE EXAMPLE SHOWS CHANNEL' TURNED ON yTCOMMON TO SUBSTRATE (0 C0OO3501 Figure 2: Pin Configuration LOOO2401 Figure 1: Functional Diagram 3-155 Note: All typical values have been guaranteed by characterization and are not t YOUT -15V +15V D2 82 TTL OR -: CMOS 1H6116 INVERTER -: EN V2 -15V VA S32 S" "" -TTL .... 'mu•• ha.,e pullup mlstor 10 + 5V to drive EN Inputs AFOO5601 DECODE TRUTH TABLE A4 A3 A2 A1 Ao 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 1 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 0 1 1 0 0 1 1 DECODE TRUTH TABLE ON SWITCH 81 82 83 54 85 86 87 88 89 810 811 812 813 814. 815 816 A4 A3 A2 A1 Ao ON SWITCH 1 1 1 1 1 1 1 1 1 1 1 1· 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 '1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 Figure 7: 1 Out of 32 Channel Multiplexer U~ing 2 IH6116s; Using 3-159 Note: All typical values have been guaranteed by characterization and are not tested. 0 0 0 0 1 1 1 1 An IH5041 for Submultiplexing C) i IH6116 IH6116 APPLICATIONS (CONT.) V, ~15V i J Ao A, A2 - IHl111 lOUT OF " A3 I I .... , 1 l I '~7 i I" n 41 1,1 1 1 I ~LJoIIIII~Jsl I I I Do ~ ~ 03 I I 11113 ~~ . I IH111. 1 OUT OF " MUX EIilABLE I IH5053 ~ <'2 A3 1 I I 331 I I 1 I ~~LJo IIN~U~sl I I I 1·1 ~ mUI' have ,..I.tor to ctrive EN InpPoIti ....'r..TLuplat. f--O-t>-l J., IH111. 1 OUT OF " MUX A3 j!NA8LE 1 ~ ~lLOGIIIIILU~11 Ao A, A2 I 1 .J IHe11e 1 OUT OF " MUX 111 I I I I 0, I 1111, ....!!! A3 INA... ... S.!-,.I I 11 I I I I JJL~IIN~U~I I I I 1" Ao A, A2 I ~ MUX INAILE I 1M ~" D. JV2 -l$V AFOO5701 Figure 8: 1 Out of 64 Multiplexer Using 4 1/16s and IH5053 As Submultiplexer ~eneral note on expandabillty of IH6116 The IH6116 is a two tier multiplexer, where sixteen input channels are routed to a common output in blocks of 4. Each block of 4 input channels is routed to one common output channel, and thus the submultiplexed system looks like 4 blocks of 4 inputs routed to 4 different outputs with the 4 outputs tied together; Thus 20 switches are needed to handle the 16 channels of information. The advantage of this is lower output capacitance and leakage than would be possible with a system using all 16 channels tied to one common output. Also the expandability into 32, 64, 128, channels etc. is facilitated. Figures 6,7, and 8 show how the IH6116 can be expanded. Figure 6 shows a 1 of 32 multiplexer, using 2 IH6116s. Since the 6116 is itself a 2 tier MUX, the system as shown is basically a 2 tier system. The four output channels of each 6116 are tied together so that 8 channels are tied to the VOUT common pOint. Since only one channel of information is on at a time, the common output will consist of 7 OFF channels and 1 ON channel. Thus the output leakage will correspond to 7 10(ofts) and 1 10(on), or about 1.0nA of typical leakage at room temperature. Throughput speed will be typically 0.81lS for. ton andO.3~s for toft. Throughput channel resistance will be in the 500n area. Figure 7 shows the 1 of 32 MUX of Figure 6, with a third tier of submultiplexing added to further reduce leakage and output capacitance. The IH5041 has typical ON resistances of 50n (max. is 75n) so it only increases thruput channel resistance from the 500 ohms of Figure 6 to about 550 ohms for Figure 7. Throughput channel speed is a little slower by about 0.5~s for both ON and OFF time, and output leakage is about 0.2nA. 3-t60 Note: All typical values have been guaranteed by characterization. and are not test~. .O~OlL IH6116 Figure B shows a 1 of 64 MUXusing 3 tier MUXing (similar to Figure 7). The Intersil IH5053 is used to get the third tier of MUXing. The VOUT point will see 3 OFF channels and 1 ON channel at anyone time, so that the typical leakages will be about 0.4 nA. Throughput channel resistance will be in the 550 ohm area with throughput switching speeds about 1.3J.1s for ON time and O.BJ.IS for OFF time. The IH5053 was chosen as the third tier of the MUX because it will switch the same AC signals as the IH6116 (typically plus and minus 15V) and uses break before make switching. Also power supply quiescent currents are on the order of 1-2/lA, so that no excessive system power is dissipated. Note that the logic of the 5053 is such that it can be tied directly to the ENable input (as shown in the figures) with no extra circuitry being required. the low state. When using TTL logic, a pull-up resistor of 1kn or less should be used to pull the output voltage up to 5V. When using CMOS logic, the high state goes to the power supply so no pull-up is required. If used on high voltage logic supplies, EN should be at least 0.7V below V + at all times. See IH610B data sheet for details. APPLICATION NOTES Further information may be found in: AOO3 "Understanding and Applying the Analog Switch," by Dave Fullagar A006 "A New CMOS Analog Gate Technology," by Dave Fullagar A020 "A Cookbook Approach to High Speed Data Acquisition and Microprocessor Interfacing," by Ed Slieger ROOe "Reduce CMOS Multiplexer Troubles Through Proper Device Selection," by Dick Wilenken Enable input strobing levels The enable input (EN) acts as an enabling or disablihg pin for the IH6116 when used as a 16 channel MUX. However, when expanding the MUX to more than 16 channels, the EN pin acts as another address input. Figures 6 and 7 show the EN pin used as the A4 input. For the system to function properly the EN input (pin 1B) must go to 5V ±5"1o for the high state and less than O.BV for NOTE: This multiplexer does not require external resistors and/or diode.s to eliminate what is commonly known as a latch up or SCR action. Because of this fact, the rOS(ON) of the switch is maintained at specified values. 3-161 Note: All typical values have been guaranteed by characterization and are not tested. i... a g 1'146201 ! Dual CMOS Driver Iyoltag~ .Translator GENERAL DESCRIPTlON FEATURES The IH6201 is a CMOS; Monolithic, Dual Voltage Trarislator; it takes low level TTL or CMOS logic signals and converts them to higher levels (i.e. to ±15V swings). This translator is typically used in making solid stilte switches, or analog gates. Wheli used in conjunction with the IntersillH401 family· of Varafets, the combination makes a complete solid state switch capable of switching signals up to 22Vpp and up to 20MHz in frequency. This switch is a "break·before,make" type (i.e. loft time < Ion time). Tile combination has typical loft "" 80ns and typo ton"" 20()ns fqr signals. up to 20Vpp in amplitude. A TTL "1" input strobe will force. the (J driver output up to V+ level; the lJ output will be driven down .to the V- level. When the TTL input goes to "0", the (J output goes to Valid 'lJ goes to V +; thus (J and lJ are 18Qo out of phase with each other. These complementary outputs can be used to create a wide variety of functions such asSPDT and DPDT switches, etc.; alternatively the complementary outputs can be used to drive Nand P channel MOSFETs, to make a complete CMOS analog gate. The driver typically uses + 5V and ± 15V power supplies, however a wide range of V + and V- is also possible. It is necessary that V + > 5V for the driver to wprk properly, however. • • • -5V DRIVER OUTPUT J---., '---_ii, Driven Direct From TTL or CMOS logic Translates _Logic Levels Up to 30V Levels Switches 20VACPP Signals When Used in Conjunction With Intersil IH401A Varafet (As An ,Analog Gate) • tON::S 300ns & tOFF::S 200ns for ~OV Level Shifts • Quiescent Supply Current::s 1001lA for Any State (D.C.) • Provides Both Normal & Inverted Outputs ORDERING INFORMATION PART NUMBER TEMPERATURE RANGE *IHe201CDE ooe to 70 0 e "IH6201MDE -55°e _ + 125"e IH6201CJE ooe to 70 0 e IH6201MJE -55°e to t25°e IH6201ePE ooe to 70 0 e "SpeCial Order Only ., . " 80000201 Figure 1: Functional Diagram ,. DRIVER OUTPUT • LOGIC STROBE TTL INPUT 1 y- OND +5V 1 rll E:-...J v+ DRIVER OUTPUT • TTL INPUT 2 82 • COOOO601 (Outline dwgs DE,JE,PEl V- Figure 2: Pin Configuration 05003001 Figure 3: Schematic Diagram (One Channel) 3-162 Note: All typical values have been guaranteed by characterization and are not tested: IH6201 ABSOLUTE MAXIMUM RATINGS y+ y+ Yy+ to Y- ....................................................... ................................................................ ................................................................ to YIN ...................................................... 35Y 35Y 35Y 40Y Operating Temperature ............... ,... -55°C to +125°C Storage Temperature ...................... -65°C to + 150°C Lead Temperature (Soldering, 10sec) ....•............ 300°C Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only. and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions lor extended periods may affect device reliability. ELECTRICAL SPECIFICATIONS y+ = +15Y, v- = -15V, VL= +5V IH6201CDE ITEM 8 or 71 driver output swing IH6201MDE TEST CONDITIONS VIN = OV .I1.. -2S'C +2S'C -SS'C 28 +2S'C UNIT +12S'C 28 Vpp VIN strobe level ("1")lor proper translation 8~ 14V Ii~ -14V 3.0 3.0 3.0 2.4 VO.C. VIN strobe level ("'O")for proper translation 8 ~ -14V 11~ 14V 0.4 0.4 0.4 0.8 Vo.C. liN input strobe current draw (for OV - 5V range) VIN ±1 ±1 10 ton time VIN = OV .I1.. CL = 30pF switching turn-on time lig. 58 400 300 ns toff time VIN = OV .I1.. CL = 30pF switching turn-off time fig. 58 300 200 ns I + (V +) power supply quiescent current.· VIN=OVor +5V 100 100 100 100 100 100 IlA 1- (V -) power supply quiescent current VIN = OV or + 5V 100 100 100 100 100 100 p.A IL (vLl power supply quiescent current VIN=OVor +5V 100 100 100 100 100 100 p.A = OV + 3V Fig. 58 +8S'C or +5V ±1 ±1 10 IlA APPLICATIONS ral" resistor is normally in the 1OOkSl to 1Mil range and is not too critical. Input Drive Capability The strobe input lines are designed to be driven from TTL logic levels; this means O.BV to 2.4V levels max. and min. respectively. For those users who require O.BY to 2.0Y operation, a pull-up resistor is recommended from the TTL . output to + 5V line. This resistor is not critical and can be in the 1kil to 10kil range. , . . - - - - , SIGNAL INPUT +3V ~ When using 4000 series CMOS logic, the input strobe 'is connected direct to the 4000 series gate output and no pull up resistors, or any other interface, is necessary. REFERRAL RESISTOR TTL INPUT ---~ SWITCH OUTPUT RL When the input strobe voltage level goes below Gnd (i.e. to -15Y) the circuit is unaffected as long as y+ to YIN does not exceed absolute maximum rating. TC009201 Figure 4 Output Drive Capability The translator output is designed to drive the Intersil IH401 family of Yarafets; these .are N-channel JFETS with built-in driver diodes. Driver diodes are necessary to isolate the signal source from the driver!translator output; this prevents a forward bias condition between the signal input and the + Yee supply. The IH6201 will drive any JFET provided some sort of isolation is added i.e. Making a Complete Solid State Switch That Can Handle 20Vpp Signals The limitation on signal handling capability comes from the output gating device. When a JFET is used, the pinchoff of the JFET acting with the V- supply does the limiting. In fact max. signal handling capability = 2 (Vp + (V-n Vpp where Yp = pinch-off voltage of JFET chosen. Le. Vp = 7V, V- = -15Y :. max. signal handling = 2 (7Y + (-15Y)) Vpp = 2(7Y-15)pp = 2(-'BVpp) = 16Ypp. Obviously to get;:: 20Ypp, Vp ;:: 5V with Y- = -15Y. Another Simple way to get 20Vpp with Vp=7V, is to increase V- to -17V. In fact using V + = + 12V or + 15V andsatting V - = -1 BV You will notice in Figure 4 that a "referral" resistor has been added from 2N4391 gate to its source. This resistor is needed to compensate for the inadequate charge area curve for isolation diode (Le. if C vs. Y plot for diode ~ 2 [C vs. Y plot for output JFEn switch won't function; then adding this resistor overcomes this condition. The "refer3-163 Note: All typical values have been guaranteed by characterization and are not tested. i I lH8201· APPLICATIONS (CONT.) NOTE: Each translator output has a 8 and II output. 8 is just the inverse of lI. allows one to switch 20Vpp with any member of IH401 family. The advantage of using the Vp = 7V pinch-off (along with unsymmetrical supplies), over the VP"= 5V pinch-off (and ± 15Vsupplies), is that you will have· a much lower ROS(ON) for the Vp = 7 JFET (i.e. for the 2N4391). TOS(ON) ~ 22n, rOS(ON) "~ 35n) Vp '" 7V Vp = 5V A very useful feature of this system is that one-half of an IH6201 and one-half of an IH401 can combine to make a SPOT switch, or an IH6201 plus an IH401 can make a dual SPOT analog switch. (See Figure 8) The IH6201 is a dual translator, each containing 4 CMOS FETs pairs. The schematic of one-half IH6201, driving onequarter of an IH401, is shown in Figure 5A. ,----1 ,. . , ...... L- ';:~:1 INPUT STROlE I I I I I I I .,. DSOO3201 I S Figure 6: Dual SPST Analog Switch I L.!A-"-~E_J GNO , VL +1SV +5V --ov, -15V TRANSLATOR 08003101 Figure 5A 08003301 Figure 7: DPDT Analog Switch NOTE: Either swHch Is turned on when strobe input goes high. . 1 - - - ." - - - I +15V b-15V~ I I I I I I I I T15Y.Lr' -15V. 08000401 Figure 8: Dual SPDT W~I Figure5B 3-164 Note: All typical values have been guaranteed by characterization and" are not tested. IH6201 APPLICATIONS (CO NT.) 08003501 Figure 9: Dual DPST , 3-165 Note: All typical values have been guaranteed by characterization and are not tested. r;! 1"6208 zI 4-Channel Differential "- CMOS Analog Multiplexer GENERAL DESCRIPTION FEATURES ThtllH6208 is a monolithic 2 of 8 CMOS multiplexer. The part is a plug-in replacement for the DG509. Two line binary decoding is used so that the 8 channels can be controlled in pairs by the binary inputs; additionally a third input is provided to use as a system enable. When"the ENable input is high (5V) the channels are sequenced by the 2 line binary inputs, and when low (OV) all channels are off. The 2 Address inputs are controlled by TTL logic or CMOS logic elements with a "0" corresponding to any voltage less than 0.8V and a "1" corresponding to any voltage greater than 2.4V. Note that the ENable input must be taken to 5V to enable the system, and less than 0.8V to disable the system. • • • • • • • • • Ultra Low Leakage - 10(off) ~ 100pA rOS(on) < 400 Ohms Over Full Signal and Temperature Range Power Supply' Quiescent Current Less Than 100pA ±14V Analog Signal Range No SCR Latchup Break-Before-Make Switching Binary Address Control (2 Address Inputs Control 2 Out of 8 Channels) TTL and CMOS Compatible Address Control Pin Compatible With H1509, DG509 & AD7509 ORDERING INFORMATION PART NUMBER TEMPERATURE RANGE PACKAGE IH6208MJE -55°C to + 125°C 16 pin CERDIP IH6208CJE O°C to 70°C 16 pin CERDIP IH6208CPE O°C to 70°C 16 pin Plastic DIP Ceramic package available as special order only (lH6208MDE/CDE) DECODE TRUTH TABLE S1.o--~--.., Al Ao EN ON SWITCH PAIR X X 0 0 1 1 0 1 0 1 0 1 1 1 1 NONE 1a, 1b 2a,2b 3a,3b 4a,4b EN SWITCH I '--~)__.;-:..-0----.1.... D, I I Ao, .--~)__.;-I..-0----.1.... D, Al LOGIC" 1" = VAH ? 2.4V VENH ? 4.5V LOGIC "0" = VAL::; 0.8V S1bo--~---, EN GND v- v+ S1b S2b S4a Ae At EN COO03701 Figure 2: Pin Configuration" 2 LINE BINARY ADDRESS INPUTS (0 0) AND EN "I' SV (EN ...., .. fOR ... 5V. ''0'' FOR 0\11 ABOVE EXAMPLE SHOWS CHANNELS ,. I: 1b ON. LDOO250\ Figure 1: Functional Di~gram 3-166 .. Note: All typical values have been guaranteed by characterization and are not tested. IH6208 ABSOLUTE MAXIMUM RATI,NGS Current (Analog Source or Drain) ...................... 20mA Operating Temperature ......................... -55 to 125'C Storage Temperature ................... , ........ -65 to 150'C Lead Temp (Soldering. 10sec) ...... , ................... 300·C Power Dissipation (Package» ....................... 1200mW VIN (A. EN) to Ground ............................... -15V. V1 Vs or Vo to V+ ......................................... 0. -32V V~ or Vo to V- ............................................ 0. 32V V to Ground ................................................. 16V V- to Ground ................................................ -16V Current (Any Terminal) .................................... 30mA *Allieads soldered or welded to PC board. Derate 10mW/'C above 70·C. Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. ELECTRICAL CHARACTERISTICS v+ = 15V. v- = -15V. VEN = +5V (Note 1). Ground = OV. unless otherwise specified. MAX LIMITS NO MEASURED TERMINAL CHARACTERISTIC ~~ TYP 25·C M SUFFIX TEST CONDITIONS TEMP C SUFFIX UNIT - ~'C 25·C 125·C O·C 25·C 70·C SWITCH S to D rOS(ON) 8 180 Vo -10V, Is - -1.0mA!Sequence each switch on 300 300 8 ISO Vo=-10V,ls--l.DmAVAL=0.8V. VAH=2.4V 300 300 20 ArOS(ON) "ros(on) = ''DS(on)max-rOS(on)min 400 400 3S0 3S0 4S0 3S0 350 450 n % Vs = ±IDV rOS(on)aYg· S IS(OFF) 8 0.002 VS-l0V, Vo- -10V ±.S 50 ±1 8 0.002 Vs= -10V, Vo=10V ±.S SO ±1 50 2 0.03 VO-l0V, Vs= -10V ±2 SO ±5 100 ±2 50 ±5 100 VEN -0.8V 50 IO(OFF) D 2 0.03 Vo - -10V, Vs = 10V 8 0.1 VS(ALLj = Vo = 10V Sequence each switch on ±2 50 ±S 100 IOtON) INPUT D 8 0.1 VstALL) - -10V VAL=0.8V, VAH= 2.4V ±2 50 ±S 100 IA(on) 2 0.01 VA = 2.4V or OV -10 -30 -10 -30 IA(off) 2 0:01 VA-15V or OV 10 30 10 30 -10 -30 -10 -30 -10 -30 -10 -30 IA Ao; At EN 2 VEN-SV 1 VEN-O All VA=O (Address Pins) nA p.A DYNAMIC SSe Fig. 3 SSe Fig. 4 SSe Fig. 5 ttransilion D 0.3 \open D 0.2 tEN(on) D 0:6 tEN(off) "OFF" Isolation D 0.4 D 60 VEN - 0, RL f = 500kHz 1 I.S 2OOn, Cs(off) S 5 VS=O Cd(off) D 12 VO-O CIoS 1 Vs - Q, Vo = 0 CdS/offl SUPPLY Supply + v+ 1 40 Current - V- I 2 Standby + v+ 1 1 Current - V- I 1 'j./S t dB ' CL - 3pF, Vs - 3VRMS, VEN lMHz av, f =140kHz to VEN -5V AIIVA=00r5V VEN-O NOTE 1: See Section 1 Enable Input Strobing Levels. 3-167 Nota: All typical values have been guaranteed by characterization and 'are not tested. pF 200 1000 100 1000 100 1000 100 1000 p.A B rH6208 = ! SWITCHING INFORMATION a.ov 1.4V O.IV 1----'1 O~------~--~--------+_--------- Vs,. I - - - - - t VA G.tvs,. 'S4b 10V IH6208 G4-------~~------~--+_~~----- O.tvs. VS4b PROBE IMPEDANCE Ap" lMn CP" 30pF WF0Q4101 ' TC009301 Figure 3: ttrans Switching Test VA ,I .' ______+3.0V §l%_____-'l +15V ~ SWITCH OUTPUT 1 J-, ~~~TFIG.2) ~~'A -::fVs~ ' tope,n ,,'------ ~~~_ 3t r--......"1-~~---2V L""__"'TJ~:Fr.=:l:::VOUT 35pF Tooo9401 WFOO421t Figure 4: t open (Break-Before-Make) Switching Test +15V IEN(oH) ~~--~--~-t---------t---b~--- G.Wo r - -..............~---o .. V VOUT SWITCH OUTPUT (SEE FIG. a) 35pF TCOO9501 WF004301 Figure 5: ton and toff Switching Test 3,-168 Note: All typical values have been guaranteed by characterization and l\I"e, n,ot tested. IH8208 IH6208 APPLICATION INFORMATION ENable Input Strobing Levels The ENable input on the IH620B requires a minimum of + 4.SV to trigger it into the "1" state and a maximum of + O.BV to trigger it into the "0" state. If the ENable input is being driven from TTL logic, a pull-up resistor of 1k to 3kn is required from the gate output to + SV supply. (See Figure 6). 1K +3V 1~ TC009601 Figure 6: ENable Input Strobing From TTL Logic When the EN input is driven from CMOS logic, no pullup is necessary. (See Fig. 7) +5V TC009701 Figure 7: CMOS Logic Driving ENable Pin 3-169 Note: All typical values have been guaranteed by characterization and are not tested. I IH6208 i IH6208 APPLICATION INFORMATION (CONT.) The supply voltage of the CD4009 affects the switching speed of the IH620S; the same is true for TTL supply voltage levels. The chart below shows the effect on ttrans for a supply varying from +4.5V to +5.5V. CMOS OR TTL SUPPLY TYPICAL ttrans @ 25°C +4.5V +4.75V +5.0V +5.25V +5.50V 400ns 300n5 250ns 200ns 175ns supply voltages decrease, however, the multiplexer, error term (the product of leakage times r05(on») will remain approximately constanf,since leakage decreases as the supply volta,ges are,' reduced. caution must betaken to ensure that the enable (EN) voltage is at least O.7V below V+ at all times. If this is not done the Address Input strobing levels will not function properly. This may be achieved quite simply by cpnnecting EN (pin 2) to V+ (pin 14) via a silicon diode as shown in Figure 8. A further requirement must be met when using this type of configuration; the strobe levels at AO and A1 must be within 2.5V of the EN voltage in order to define a binary "1" state. For the case shown in Figure 8 the EN voltage is 11.3V, which means that logic high at AO and A1 is = + 8.SV (logic low continues to be = O.SV). In this configuration the IH6208 cannot be drivenby TTL (+ 5V) or CMOS (+ 5V) loQic. It can be driven by TTL open collector logic or CMOS logic with + 12V supplies. The throughput rate can therefore be maximized by using a + 5V to + 5.5V supply for the ENable Strobe Logic. The examples shown in Figures 6 and 7 deal with ENable strobing when expansion to .more than four differential channels is required; in these cases the' EN terminal acts as a third address input. If four channel pairs or less are being multiplexed, the EN terminal can be directly connected to + 5V to enable the IH620S at all times. If the logic arid the IH620S have common supplies, the EN pin should again be connected to the supply through a silicon diode. In this case, tying EN to the logic supply directly will not work since it violates the 0.7V differential voltage required between V + and EN (See Figure 9). A 1j.LF capacitor can be placed across the diode to minimize switching glitohes. Using the IH6208 with supplies other than ±15V The IH620S can be used with power supplies ranging, from ±6V to ±16V. The switch r05(on) will increase as the IN.14 +12V ·~'~·-l A CHANNEI.S COMMON DRAIN OUTPUT =0, ).-~,~ 1 • Do ...._ _ _ _ _.. ' =(COMMON) B CHANNEL DRAIN OUTPUT CD003801 Figure 8: IH6208 Connection Diagram for Less Than ± 15V Supply Operation '3-'170 Note: All typical values have been guaranteed by characterization and are not tested. IH6208 IH6208 APPLICATION INFORMATION (CONT.) lN914 EN IH6208 CO004501 Figure 9: IH6208 Connection Diagram With ENable Input Strobing for Less .T~n ± 15V Supply Operation Peak-to-Peak Signal Handling Capability The IH6208 can handle input signals up to ±14V (actually -15V to + 14.3V because of the input protection diode) when using ± 15V supplies. The electrical specifications of the IH6208 are guaranteed for ± 1OV .signals, but the specifications have very minor changes for ±14V signals. The notable changes are slightly lower rDS(on) and slightly higher leakages. 3-171 Note: All typical values have been guaranteed by characterization and are not tested. , IH821:6 (II I S-Channel Differential CMOS Analog Multiplexer GENERAL DESCRIPTION FEATURES The IH6216 is a CMOS monolithic 2 of 16 multiplexer. The part is a plug-in replacement for the DG507. Three line binary decoding is used so that the 16 channels can be controlled in pairs by the binary inputs; additionally a fourth input is provided to use as a system enable. When the ENable input is high (5V) the channels are sequenced by the 3 line binary inputs, and when low (OV), all channels are off. The 3 Address inputs are controlled by TTL logic or CMOS logic elements with a "0" corresponding to any voltage less than O.BV and a "1" corresponding to any voltage greater than 3.0V. Note that the ENable input must be taken to 5V to enable the system and less than O.BV to disable the system. • • • • • • • • • • Pin Compatible With HI507, DG507 & AD7507 ± 11V ..Analog Signal Range rOS(on) < 700 Ohms Over Full Signal and Temperature Range Break·Before·Make Switching TTL and CMOS .Compatlble Address Control Binary Address Control (3 Address Inputs Control 2 Out of 16 Channels) Two Tier Submultlplexlng to Facilitate Expandability Power Supply Quiescent Current Less Than 1001lA No SCR Latchup Very Low Leakage IO(OFF):OS 100pA ORDERING INFORMATION PART NUMBER IH6216MJI IH6216CJ1 IH6216CPI TEMPERATURE RANGE -55°C to + 125°C O°C to 70~C O°C to 70°C PACKAGE 28 pin CERDIP 28 pin CERDIP 28 pin Plastic DIP Ceramic package available as special order only (IH6216MDIICDI) .......,..... .......,..... .,..... ~~ ..........,..... .,..... .,..... :: ~~!T. ...... .,..... ... .,..... DECODE TRUTH TABLE ON SWITCH PAIR X X NONE 0 X 1 1 0 0 0 1 0 1 2 0 1 0 1 3 0 0 1 1 1 4 1 0 0 1 5 0 1 1 6 1 1 1 0 1 7 1 1 1 1 8 LOGIC "1" = VAH > 3V VENH > 4.5V LOGIC "0" = VAL < 0.8V Ail I "00 A1 Ao EN ~ -.,..... TO DECODE LOGIC COHTIIOWNG 10TH TIERS OF MUIING Ao AI A, EN (ENABLE INPun 3 UNE BINARY ADDRESS INPUTS (0 0 0) ANOEN_SV CD004001 ABOVE ElCAMPl.E SHOWS CHANNELS'•• 'b ON. Figure 2: Pin Configuration LOOO2601 Figure 1: Functional Diagram 3-172 Note: All typical values have been guaranteed by characterization and are not tested. I... IH82i8 CI ABSOLUTE MAXIMUM RATINGS VIN (A. EN) to Ground .............................. -15Vo-Vl Vs or Vo to V + ......................................... 0. -32V Vs or Vo to V- ........................................... 0. 32V V+ to Ground ................................................. 16V V- to Ground ................................................ -16V Current (Any Terminal) .................................... 30mA Current (Analog Source or Drain) ...................... 20mA Operating Temperature ......................... -55 to 125'C Storage Temperature ............................ -65 to l50'C Lead Temperature (Soldering. 10sec) ................. 300·C Power Dissipation (Package)" ....................... 1200mW • All leads soldered or welded to PC board. Derate 1OmW I'C above 70'C. Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operalion of the device at these or any other conditions above those in~icated in the operational sections of the specifications is not implied. Exposure to. absolute maximum rating conditions for extended periods may affect device reliability. ELECTRICAL CHARACTERISTICS v+ = 15V. v- = -15V. VEN = +5V MEASURED TERMINAL CHARACTERISTIC (Note 1). Ground = OV. unless otherwise specified. MAX LIMITS NO TES,!S TYP PER 2S'C TEMP TEST CONDITIONS C SUFFIX M SUFFIX UNIT -55'C 25'C 12S'C O'C 2S'C 70'C SWITCH S to D rDS(ON) 16 4BO VD = 10V, IS = -lmA Sequence each switch on 600 600 700 650 650 750 16 300 Vo = -10V, .Is = lmA VAL = O.BV,. VAH = 3V 600 600 700 650 650 750 ~rDS(ON) 20 "rOS(on) = rOS(on)max - rOS(-+--i--i-...... ,A I.A ,1 0' OUTLINE DWG. OUTLINEDWG OllTLINE DWGS JE,FD·2 To-l00 To-l00 DS02~301 D$0214Q1 OUTLINE DWG TO·1oo OUTLINE DWGS JE, FD·2 Figure 1: Functional Diagram 3-178 Note: All Iypical.values have been guwantaed by characterization· and arenottestEld. G3 OllTLINEDWG TO·100 08021501 OUTLINE DWG T().100 02 05021601 OUTLINE DWG T().100 IID~DIL MM450/451/452/455 MM550/551/552/555 ABSOLUTE MAXIMUM RATINGS (Note 1) Gate Voltage (VGG) ......................... + 14.5V to -30V Bulk Voltage (VSULK) ...................................... + 14V Analog Input (VIN) ............................. + 14V to -20V Power Dissipation ......................................... 200mW Operating Temperature MM450, MM451 , MM452, MM455 .. - 55·e to + 125·e MM550, MM551, MM552, MM555 .......... o·e to 70·e Storage Temperature...................... -65·e to + 150·e Lead Temperature (Soldering, 10sec) ................. 300·e NOTE 1: Dissipation rating assumes device is mounted w~h all leads welded or soldered to printed circuit board in ambient temperature below 70·C. For higher temperature, derate at rate of 10mWI"C for FD package and 6.5 mWI"C for TW package. Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. ELECTRICAL CHARACTERISTICS (per channel unless noted) LIMITS SYMBOL CHARACTERISTIC TYPE Analog Input Voltage VIN TEST CONDITIONS All VOG=O Threshold Voltage VGS(Th) All Drain·Source On Resistance All IGSS Gate Leakage Current All Drain Leakage Current 10(OFF) VGS = -25V, VSS = Vos = 0 VOS- -25V MM550, MM551 MM552, MM555 VGS =VSS= 0 MM450, MM451 MM452, MM455 IS(OFF) Source Leakage Current Cos Drain·Body Capacitance NOTE 1: V Max 600 700 Max 200 250 Max n n t5 100 Max nA to.5 200 Max nA Max nA Max nA 100 to.5 400 Max nA 10 Typ pF MM450, MM550 14 Typ pF MM451 , MM551 24 Typ pF MM452, MM552 11 Typ pF 11 Typ pF 13 TY1! Typ pF pF Typ pF Typ pF Typ pF 100 VOS = VGS = VSS = 0 f= lMHz (Note 1) MM455, MM555 8 9 9 All 5 MM452, MM552 Gate·Source Capacitance CGS V Min 125·C All MM450 MM550 MM451, MM551 Gate·Body CapaCitance Max 1.0 VOS -VGS = 0 MM455, MM555 CGS ±10 20 VSS = -25V MM550, MM551 MM552, MM555 Source·Body CapaCitance CSS liD-lornA VS=10V JVGS= -20V VIN= +10V MM450, MM451 MM452, MM455 UNIT 70·C 3.0 10 = 10jJA VIN - -10V ROS(ON) MIN -MAX 25·C Typical characteristics not tested in production TYPICAL PERFORMANCE CHARACTERISTICS RDS(on) VB VGS RDS(on) 10,000~m g VGS VB RDS(on) '11.- .I.~.: 10,000 100.000 V11\I-OV 10" 1 rnA VB DRAIN CURRENT va GATE TO SOURCE VOLTAGE VGS VU C tlOV V, .. • -10'11 10 ! 8.0 1000 10,000 ; I T .. • 2S~C Til· _55°C .~ 1000 ~60~~~~~~~~ ~40~-r4-~~~1-~ ~ o ·s ·s -16 -22 IO~~~~~---'-L~ o -4 -8 -12 -16 -20 100 '-''-'--'-'----'---'---'-' -'6 -II -19 -20 OP036901 3-179 Note: All typical values have been guaranteed by characterization and are not tested. 2.0 H-+-+-+-il-+~+-H o~~~~~-L~LJ o -to -2.0 -3.0 ..... 0 -SO VG5 - GATE TOSOURCi VOLTAGE IVI VGSIYI VGslVI OP036801 _17 'lin-a.... Z T .. " 85"C . ;" 100 ' ",,..."'-=....,.""'=.,.-,r-r-r-r-...... . 10= 1 mA OP037OO1 0P037101 Section 4 - Amplifiers Operational and Special Purpose ICH8500/A Ultra Low Input-Bias Operational Amplifier GENERAL DESCRIPTION FEATURES The ICM8500 and ICH8500A are hybrid circuits designed for ultra low input bias current operational amplifier applications. They are ideally suited for analog and electrometer applications where high input resistance and low input current are of prime importance. Functionlllly, they are pin for pin identical to the popular 741 monolithic amplifier. These amplifiers are unconditionally stable and the input offset voltage can be adjusted to zero with an external 20kil potentiometer. The input bias current for the inverting and noninverting inputs is 0.1 pA maximum for the ICH8500, and 0.01 pA maximum for the ICH8500A and are constant over the operating temperature range of -25°C to +85°C. Pin 8 is connected to the case. This permits the designer to operate the case at any desired potential. This is the key to achieving the ultra low input currents associated with these two amplifiers. Forcing the case to the same potential as the inputs eliminates current flow between the case and the input pins, and leakage currents that may have otherwise existed between any of the other pins and the inputs are intercepted by the case. • • • • • • Input Diode Protection Input Bias Current Less Than O.01pA C8500A) at All Operating Temperatures No Frequency Compensation Required Offset Voltage Null Capability Short Circuit Protection Low Power Consumption APPLICATIONS • • • • • • • Femto Ammeter Electrometers Long Time Integrators Flame Detectors pH Meters Proximity Detector Sample and Hold Circuits ORDERING INFORMATION ICH 12=~~"::9M"" 8500A TV DEVICE TYPE INTERSIL HYBRID '----------CIRCUIT v' CASE (GUARD) CO018801 OFFSET NULL 05019901 Figure 1: Functional Diagram Figure 2: Pin Configuration (Outline dwg TV) 4-1 Note: All typical values have been guaranteed by characterization and are not tested. Cao i ICM850c)1A 10 zCD !:! IID~OIL ABSOLUTE MAXIMUM RATINGS Supply Voltage ................................................ ±18V Internal Power Dissipation (1) ......................... 500mW Differential Voltage ........... ; ............. , ......... , ...... ±O.5V Storage Temperature ...................... -65°C to + 150°C Operating Temperature .............•....... -25°C to +85°C Lead Temperature (Soldering, 10sec) ................. 300°C Output, Short Circuit Duration ........................ Indefinite Note: 1. Rating applies for ambient te":lperature, to + 70·C NOTE: Stresses above those listed u~ "Absolute Maximum Ratings" may cause permanent device failure. These are stress ratings only and functional operation of the devices at these or any other cond~ions above 1hose indicated in the operation sections of this specHication is not implied. Exposure to absolute maximum rating condition~ for extended' periods may cause device failures. ELECTRICAL CHARACTERISTIOS '(TA = 25°C unless otherwise specified, VSUPPLY ICH8500 SYMBOL IBIAS VOS CHARACTERISTICS Input Bias Current (Inverting and Non-Inverting) TEST CONDITIONS ±7S , ±SO mV ±200 ±100 mV ±3.0 ±3.0 mV 75 dB Common Mode Rejection Ratio ± 5 volts common mode voltage Large Signal Voltage Gain pA mV At 2S·C AVOL ±O.o1 +25 to +85·C -2S to +2S·C Long Term Input Offset Voltage Stability Output Voltage Swing UNIT ±50 D.Vos/D.t Common· Mode Voltage Range TYP MAX ±SO D.VoslD.T tNo MIN ±0.1 , 20kn Potentiometer Change in Input Offset Voltage Over Temperature CMVR ICH8500A TYP MAX Input Offset Voltage Offset Voltage Adjustment Range CMRR MIN Case at same potjlntial as inputs = ±15V) 75 RL'" 10kn ±11 ±11 ±10 ±10 20,000 105 20,000 V V 105 - Cfb Feedback Capacitance Case guarded, 0.1 0.1 pF SR Slew Rate RL'" 2kn 0.5 0.5 V/IJS CIN Input CapaCitance Case guarded 0.7 0.7 pF CIN Input CapaCitance Case grounded 1.5 1.5 pF VOLTAGE OFFSET NULL CIRCUIT VOLTAGE FOLLOWER LOW LEVEL CURRENT MEASURING CIRCUIT OUTPUT Yo • 1VOLT IpA = 1012, liN CASE GUARD TCQ281(N LC014701 1.0014801 NOTE: Adjust input offset voltage to OV±10I'V balore measuring leakage. Figure 3: Circuit Notes 4-2 Note: All typical values have been guaranteed by characterization and are not tested. ICH8500/A TYPICAL PERFORMANCE CHARACTERISTICS INPUT VOLTAGE RANGE SUPPLY VOLTAGE OPEN LOOP VOLTAGE GAIN VI. FREQUENCY 106 ;: ~ i w ~ o ~ z o ~ 100 1 Ie. 10k lOOk '" 8'" INPUT OFFSET VOLTAGE SUPPLY VOLTAGE 100 - 4'VSU~LY'+5~ 60 8 9 10 11 12 '. ...::>~ ! I I:;;;;: f-- Tp.."''''aso C - = ~ ~ 80 0 ~ 'j"+25' C ,0 4 13 14 15 16 9 10 1 10 ~~ 0 "~'" \. " 11 12 13 14 15 8 1.6 10 11 12 13 14 15 0P035401 OP035301 INPUT REFERRED NOISE VOLTAGE 500 ~ , I r-" ~ ~ TOO 10 \ I 100 SUPPLY V8. 80 'I o POWER CONSUMPTION VOLTAGE ~s'.!\odn \ 16 SUPPLY VOLTAGE i'V) V8. SUPPLY VOLTAGE ltV} ~~ .. , ...0- ~ OP0352OI ±QUIESCENT SUPPLY CURRENT SUPPLY VOLTAGE ~ .. ~\.. I!:::> SUPPLY VOLTAGE (:tV) SUPPLY VOLTAGE bVI 16 TA"'+25"C o 8 16 ~ i ~ 12 14 OUTPUT VOLTAGE SWING VB. SUPPLY VOLTAGE '" 11 13 0P035101 ~ 90 10 - 5 VOLT COMMON MODE VOLTAGE z ...>w 8 • ~~ ;..;;; SUPPLY VOLTAGE I-V) ±POWER SUPPLY REJECTION RATIO V8. SUPPLY VOLTAGE V8. • 0 ~ ~ OP035001 10 s 70 SUPPLY VOLTAGE (tVI 0P034901 ~ ~ .;.:! 'po 1M FREQUENCY (Hz I :;'" 80 ~ z o 1 10 • o TA· .. 2oC ~ COMMON MODE REJECTION RATIO V8. SUPPLY VOLTAGE ~ V~UI'P .I,lSV l"- :> V8. z \2 Ii: . I ::> '0!1 u i '" ~ ~ lk 10k lOOk FREQUENCY IHzl OP035501 Note: All typical values have been guaranteed by characterization and are not tested, 50 40 30 iff.! 1 ....:: 20 ~ 10 o 8 ?' 9 10 11 .' ~ .....,:" '-- f-- ... ,.. 12 13 14 15 16 SUPPLY VOLTAGE (tVI CP035601 OP035701 i .O~OIL ICH8soO/A I currents that may otherwise exist between the ± 15V input and the inverting input summing junctions. FeedbaCk capacitance" should be kept to minimum in order to maximize the response time of the circuit to step function input currents. The time constant of the circuit is approximately the product of the feedback capacitance Ctb times the feedback resistor Rfb: For instance, the time constant of the circuit in Figure 4 is 1 sec if Cfb = 1pF. Thus, it takes approximately 5 sec (5 time' constants) for the circuit to stabilize to within 1% of its final oiJtput voltage after a step function of input curre~t has been applied. Ctb of less than 0..2 to O.3pF can be achieved with proper circuit layout. A practical pico ammeter circuit is illustrated in Figure 5. APPLICATIONS ;:; ThePICo Ammeter t~rmina,ls A very ~ensitive pico ammeter can be constructed with the ICH850Q. The basic circuit (illustrated in Figure 4) employs the amplifier in the inverting or current summing mode. Care must be taken to eliminate any stray currents from flowing into the current summing node. This can be accomplished by forcing all points surrounding the input to the same potential as the input. In this case the potential of the input is at virtual ground, or O.V.Therefore, the case of the device is grounded to intercept any stray leakage a Rib" loUn CURRENT SOURCE ~U. ENT/ >----'---'--OUTPUT Vo" .IIN SUMMING NODE Atb -·IVOl.T/pA LC014901 Figure 4: Basic Pico Ammeter Circuit .,sv .Ib 10t20: ., t"" IMNT>---~~--~~----~----~~----------_I ----I,. cO ~----_--_--------. OU""'T V•.--I IfW JlIOUSl .. -I VOl.TIpA INTERNAl. olooes 08020001 Figure 5: Pico Ammeter Circuit Note: All typical values have been guaranteed by characterization and are not tested. ICH8500/A .... CAN IE REDUCED TO 10K IF CIRCUIT IS EllPl.OYED AS ANINTEORATOR INPUT TERMINAL If CIRCUIT ASAN::'~:~~~~~ VIN-OTOt'OV CHARGE STORAGe CAPACITOR r--"""-+-----------. / SW2 INPUT ~E~~~~~ AS A'::::tt!~g 111700 • l00ttO >-~Oy.OI/l'....__+-----...;O r-i~--""'--_--O;"""---f HOLD CIRCUn Y,N -OTO:t10V 8 ....._ >.....:~- 1T1100 G OUTPUT +lSV 'Oof v, .-...J'I/I."",......_0_15V IOkn -ISV 'M" .ok" o.c. lERO v, SAMPLE 1T1700 PuLSfOR CAPACITOR OISCHARGE PULSE ADJUST eNULL TO ELIMINATe ANV OUTP\lt OfFSET VOLTAGE DUE TO CHARGE INJECTION t-----------------------~---JF.OMSW2 ,."" ":" -1SV TC0264~ Figure 6: Sample and Hold Circuit or Integrator Circuit The internal diodes CR1 andCR2 together with external resistor R1 protect the input stage of the amplifier from voltage transients. The two diodes contribute no error currents, since under normal operating conditions there is no voltage across them. source, drain and gate of switch SW2 are zero or near zero when the circuit is in the hold mode. Careful construction will eliminate stray resistance paths and capacitor resistance can be eliminated if a quality capacitor is selected. The net result is a low drift sample and hold circuit. As an example, suppose the leakage current due to all sources flowing into the current summing node of the sample and hold circuit is 100pA. The rate of change of the voltage across the 0.01 j.LF storage capacitor is then 1OmV I sec. In contrast, if an operational amplifier which exhibited an input bias current of 1nA were employed, the rate of change of the voltage across CSTO would be 0.1 V Isec. An error build up such as this could not be tolerated in most applications. Wave forms illustrating the operation of the sample and hold circuit are shown in Figure 7. Feedback capacitance is the capacitance between the output and the inverting input terminal of the amplifier. Sample and Hold Circuit The basic principle of this circuit (Figure 6) is to rapidly charge a capacitor CSTO to a voltage equal to an input Signal. The input signal is then electrically disconnected from the capacitor with the charge still remaining on CSTO. Since CSTO is in the negative feedback loop of the operational amplifier, the output voltage of the amplifier is equal to the voltage across the capacitor. Ideally, the voltage across OSTO should remain constant, causing the output of the amplifier to remain constant as well. However, the voltage across CSTO will decay at a rate proportional to the current being injected or taken out of the current summing node of the amplifier. This current can come from four sources: leakage resistance of CSTO, leakage current due to the solid state switch SW2, currents due to high resistance paths on the circuit fixture, and most important, bias current of the operational amplifier. If the ICH8500A operational amplifier is employed, this bias current is almost non-existant « 0.01pA). Note that the VOltages on the The Gated Integrator The circuit in Figure 6 can double as an integrator. In this application the input voltage is applied to the integrator input terminal. The time constant of the circuit is the product of R1 and CSTO. Because of the low leakage current associated with the ICH8500 and ICH8500A, very large values of R1 (Up to 10 12 ohms) can be employed. This permits the use of small values of integrating capacitor (CSTO) in applications that require long time delays. Waveforms for the integrator circuit are illustrated in Figure 8. 4-5 Note: All typical values have been guaranteed by characterization and are not tested .. IIO~DIL ~ ·ICH8500/A 8 ~.------____----__--~ I O....Jr----, ., +5V V,N SAMPLE PULSE 0--1 +I.V~TIME-. bl V, v, bl -f5V ,I ~' V2 V3 ,I V2 , - - -...., .1 STATE OF SW2 II I +'.V~' : ., hI i--CLOSED--I I OUTPUT OP.AMP. ., . STATE OF SWI ~ .000EN "'-=LE 0------- ~ I II 11 II " CLOSED ~Of'EN_jlIHr ...~_ _ Of'EN I, I V3 -15V " CLOSED II INPUT TO +18V - - - - - - - - " " \ SAH -15:~ +15V -15V STATE OF SW' TIME~ +16V~ -15V 0-, -15V dl r--'""'1 •. :.•..•...•• ~ >IV STAn OF SW2 WINDOW _____ "-- 0=S: -----------_______________ ~v--~~------ CLOSED II - I ~OPEN __ Of'EN II ~LOSEO IL.:it: I--CLOSED-t OPEN ~=LEWINDOW 9\ INTE~~:ri~~ 0 ------~---INPUT -lOY hi INTE~~~~~ V,N Vo" - RCSTO 1" 0.1 VOLT/SEC. WF015801 Figure 7: Sample and Hold Circuit Waveforms -~---~------WF015901 Figure 8: Gated Integrator Waveforms Note: All typical values have been guaranteed by characterization and . are nat tested. U~D[61.. ICH8510/8520/8530 Power Operational Amplifier o CD GENERAL DESCRIPTION FEATURES The ICH8510/8520/8530 is a family of hybrid power amplifiers that have been specifically designed to drive linear and rotary actuators, electronic valves, push-pull solenoids, and DC & AC motors. There are three models available for up to + 30V power supply operation: 2.7 amps @ 24 volt output levels, 2 amps @ 24V and 1 amp @ 24V. All amplifiers are protected against shorts to ground by the addition of 2 external protection resistors. For a device operating at lower voltages, see the ICH8515 data sheet. ' The design uses a conventional 741 operational amplifier, a special monolithic driver chip (BL8063), NPN & PNP power transistors, and internal frequency compensating capacitors. The chips are mounted on a beryllium oxide substrate for optimum heat transfer to the metal package. This substrate also provides electrical isolation between amplifiers and metal package. The I.C. power driver chip has built-in regulators that provide the 741 with typically a ±13V supply. • • • • • • • • • Delivers Up to 2.7 Amps @ 24-28V DC (30V Supplies) Protected Against Inductive Kick Back With Internal Power Limiting Programmable Current Limiting (Short Circuit Protection) Package Is Electrically Isolated (Allowing Easy Heat Sinking) Open Loop DC Gain> 100dB 20mA Typical Standy Quiescent Current Popular 8 Pin TO-3 Package Internal Frequency Compensation Can Drive Up to 0.1 Horsepower Motors ORDERING INFORMATION ICH8SXO M KA I T <=-~- ~ KA = 8 lead T0-3 can Temperature Range M - Military -SsoC to I = Industrial - 20°C to + 12SoC + 8SoC Basic Part Number 8S10 = 1A output 8520 = 2A output 8S30 = 2.7A output y+ (TOPYIEW) +----""---l-=-...;. voo-=; '~_-+'W'v-1...;IASC-· c001B901 y- 08020101 FI ure 1: Functional Dia ram Fi ure 2: Pin Confl uration 4-7 Note: All typical values have been guaranteed by characterization and are not tested. i CD &II W o g10' ICtl851Qj852018530 '.;.' . . '.' . , .' ~ AB50LUTEMAXIMUMRATINGS @TA=25·C i...... Operating Temperature Range M ...... -55·C ~ +125·C . I ........ -20·C ~ +85·C Storage Temperature Flange ........ ::.:. -65·C to +150·C Le~d Temperature (Soldering" 1Psec) ...... ,.",..... ,.3qO·p . Max Case Temperature ...... , ~ ................ : .......... 150·C Supply Voltage ............................................ ; .• ~.± 32V Power Dissipation, Safe Operating Area ...... See Curves 0, Differential Input Voltage ...................................±30V 10 Input Voltage ............................ , ........ ±15V (Note 1) CD peak Output Current ................... See Curves (Note 2) Output Short Circuit Duration (to ground) .............................. Continuous (Note 2) .. -lj' Note 1: Rating applies to supply vollSges of ± 15V.For lower supply voltages, VrNMAX ~ Vsupp. Note 2: Ratings apply as long as package dissipation is not exceeded. Device must be mounted on heat sink, see Figures 12 and 16. Stresses above those listed under Absolute' Maximum Ratings may cause permanent damage' to ·the device. These arestrEiss ratings only, and flinctional operation of the device at these or any other conditions above those indicated in the operational sections of the spec~ications is not implied. Exposure to absolute maximum rating conditions for extended; periods may affect device reliability. ELECTRICAL CHARACTERISTICS TA = + 25·C. VSUPPLY = ±30V (unless otherwise stated) SYMBOL .DESCRIPTION TEST CONDITIONS t.VOSIt.Pd Input Offset Voltage Change with Power DiSsipation Mtd on Wakefield 403 Heat Sink Vos Input Offset Voltage RS< 10kll Pd< lW ISlAS Input Bias Current RS< 10kll Pd< lW ICH85101 ICH8510M ICH85201 MIN MIN MIN 4 (Typ.) -6 -3 +6 +3 500 Inpol Offset Current RS< 10kll Pd< lW Large Signal Voltage Gain RL-201l Vo> 2/3 Vsupp VCMR Input Voltage Range Typical CMRR Common Mode Relction Ratio Rs-l0kll PSRR Power Supply RS-l0kll SR 'Slew Rate VOMAX Ou1pol Voltage Swing RL-201l Ay -10 ±26V ±26V IMAX Output Current (3) RL-ell Av-l0 1.0 1.0 10 Power Supply Quiescent Cur:rent RL-X VIN-OV 100 (Typ.) -10 +10 -10 70 (Typ.) CL-3pF, Av-l RL -lOll Vo - 2/3 Vsupp -6 +6 70 (Typ.) -10 MAX ICH65301 -3 +3 70 (Typ.) -6 ICH8530M +6 70 (Typ.) -3 200 100 (Typ.) +10 Mifol 500 100 -10 MAX 4 (Typ.) 250 100 (Typ.) +10 MIN 2 (Typ.) 200 100 (Typ.) +10 MIN 500 100 200 100 (Typ.) MAX 4 (Typ.) 250 lOS Rejection Ratio MAX 2 (Typ.) AVOL NOTE 2: ICH8520M UNIT MAX -10 MAX 2 (Typ.) mV/W +3 mV 250 nA 100 'M dB 100 (Typ.) +10 -10 +10 V dB 70 (Typ.) 70 (Typ.) 77 77 77 77 77 77 (Typ.) (Typ.) (Typ.) (Typ.) (Typ.) (Typ.) 0.5 (Typ.) 0.5 (Typ.) 0.5 (Typ.) 0.5 (Typ.) 0.5 (Typ.) 0.5 (Typ.) VII'S ±26V ±26V ±25V ±25V V 2.0 2.0 2.7 2.7 A (RL (RL - 3011) -30n 125 100 125 100 125 dB 100 mA See Figure 7 if P~r Suplies are less than ± 30V '. ELECTRICAL SPECIFICATIONS TA= -55·C. to +125·C.(M) or TA= -20·C. to +85·C (I). SYMBOL DESCRIPTION TEST CONDITIONS VOs Inpol Offset Voltage Pd oI ~igure l.C015001 Figure 3: Maximum Output Current for GlvenRSc 5: Inductive Load (Note catch diode) NOTE ON AMPLIFIER POWER DISSIPATION The steady state power dissipation limit is given by In general, for a given Va, Isc limit, and case temperature TC, Rsc can be calculated from 'the equation below for Va positive, lOUT positive. ' RSC= PO= _ _ T.::,J",,(M;;;,.AX=-.)-_T...;cA.:,.'_ R8JC + RBCH + R8HA where: TJ = Maximum junction temperature TA = Ambient temperature R8JC = Thermal resistance from transistor junction to case of package R8CH = Thermal resistance from case to heat sink R8 HA = Thermal resistance f~om heat ,sink to ambient air And since TJ = 200"C for silicon transistors R8JC 9!; 2.0°C/W for a steel. bottom TO-3 package with die attachment to beryllia substrate header ROCH;>= .045°C/W for 1 mil thickness of Wakefield type 120 thermal joint compound .09°C/W for 2 mil thickness of type 120 .13°C/W for 3 mil thickness of type 120 .17°C/W for 4 mil thickness for type 120 .21°C/W for 5 mil thickness of type 120 .24°C/W for 6 mil thickness of type 120 (20.6VO)" + 680-2.2(TC..,2S0C) ISC(lIMIT) "For Va negative, replace this term with 10.3 (VA - 1.2) For example, for 10 = 1.SA @ Va = 2SV and TC = 2SoC, 119S Rsc = - - = 0.797 1500 Therefore for this application, RsC = 0.820 (closest standard value). When 0.820 is used, ISC @ Va = OV will be reduced to about 1A. Except for small changes in the "±VO(max) Limit" area, the effects of changing Rsc on the lOUT vs VOUT characteristics can be determined by merely changing the lOUT scale on Figure 3 to correspond to the new value. Changes in TC move the limit curve bodily up, and down. This internal current limiting cirCUitry however does not at all restrict the normal use of the driver. For any normal load, the static load line will be similar to that shown in Figure 3. 4-9 Note: All typical values have been guaranteed' by characterization and are not tested. I lCH8smls520/8530 R8HA = The choice of heat sink that a user selects 1'. depends'upbnthe amount of room availablE! mount the'l\eat Sink.. A sample calculation follows: by' choosing a Wa:kefield 403 heat sink,' wlthfree air, natural convection 1no fan). R6HA ~ 2.0·C/W. Using 4 'mil 'joint compound, to Po .. 12001'6_ 2S"C 4. 17°CIW. 42W and @ TA =, 125°C, "200°C -125°C , =18W 200·C- TA ' 200·C- TA .. - - - - ' - ' (2.0 + 0.17 + 2.0)OC/W 4.17°C/W 4. 17ciC!W From Figure 6 the worst case steady state power dissipation 'for an IH8520 (Rsc .'0;62fl) is 'aoout30W and 18W'I"espectively. Thus this heat sink is adequate. ,TYPICAL PERFORMANCE' CHARACTERISTICS tat 1120. lI'Iu111p1f lou• .., .... For ICtIIS30 ICH_ RIC" ...n TCASE HOC Vee ,.~ louT f ..,ua . loUT TeASE '.·C Vee !3IV' For lett.B'G. ......'· Rile = 1.an Source CurNftt ,I on., ......... _c.._ --. -~ ..........1 .... Dt..... LInH... with T."",; '-~~~~~~4-~~~~~~-' __ ..11 ..act . " , ..'0 ... • 10 15 20 H 1DV YOuT . . -25 -21 -15 .. '0 5 -S 10 15 20 25 30 YOUT sc007001 Safe Operating Area; lOUT vs VOUT vs TC 101( 100 " 15 10 II 30 _ _ _ (WI ... :"1.;.; on YIn ~ 10 get ......,... Po'ftf DIu.. tMn.,_IOGo!II''' _ _ ('IOUT·11X'~ sc007101 lC015101 Input ,Offset Voltage vs Power Dissipation ... "':':. LC015201 sc007201 Input .Impedance vs Gain vs Frequency +10 Note: All typical values have been guaranteed by characterizatioll. and .ara not,tastad. ,~ IID~OIL ICH8510 /8520 /8530 TYPICAL PERFORMANCE CHARACTERISTICS (CONT.) •I I ....... +Vee CM' ..Vee t_) ./ .' 40 IK ~ ~ ID ; o GuIeIGHI: c....... IrOIn • .. g 0 LC015301 SCOO7301 Quiescent Current va Power Supply Voltage .. Your _ _ _ Your 2: :tt7'lo Yee 100kHz 1_ ,K 111Hz Vln@f - 100 c:IoMci Iaop ..... 100 ,0 --At IIIClI At IIIn Rf ",on ,.... sc007'" Rt .. 1Kn 1iir LCOt5401 ' Large Signal Power Bandwidth II At c..._ IK ,- Vln@t 1KHI 1OKHI. 100KHI _HlI ':;' LC01 .... SCOO7&Ol Small Signal Frequency Response 4-11 Note: All typical values have been guaranteed by characlellzalion ilhd lil'enot I_tett -::- Rf~1~RI 080202.01 Figure 8: Non-Inverting Amplifier .... . . 0 +15" +10 +11 +100 ..., •. c.o.'T_ CTe)' C·CI , SCOO7601 , Figure 6: Maximum Output Current vs. Case Temperature v'" III 05020301' Figure 9:, Inverting Amplifier ... Power dissipation is another important parameter to consider. The current prptection circuit protects the device against short circuits to ground,,(but only for transients to the oppo~ite supply) provided the, device has adequate heat sinking. A 'curve of power dissipation Viii Vo under short circuit conditions is given in Figure 10. The limiting circuit is more' closely dependent on case temperature than (output transistor) junction temperatures. Although these operating conditions are unlikely to be attained in actual use, they do represent the limiting case a heat sink must cope with. For a fully safe design, the antic1patedrange, of Vo values that could occur;' (steady state, includihgfaults) should be examined for the highes~ power dissipatiOn, and the device provided with a heat 'sio1( that will'keep the junction temperature below 200·C and the case temperature below 150·C with the worst case ambient, t~mperature expected. ... Figure 7: scoonot Maximum Output Current vs. VSUPPLY .,- ,',> APPLICATION' NOTES. :> The maximum input voltage'rang~, for VSUPPLY < ± 15V, is substantially less t~an thcf avail.~bleoi1tput voltage swing. Thus non-inverting amplifiers, as ,in Figure 8, should always be set up witha,gairi greater than iit;out 2.5, (with ±30V supplies), so that the full oiJtput swing is available without hazard to the input. At first sight, it would seem that no restrictions would apply to inverting amplifiers" since the' inputs are virtual ground and ground. However, under fault (output short-circuited) or high slew conditions, the input can be substantially removed from ground. Thus for inverting amplifiers with gains less than about 5, some protection should be provided at this input. A suitable resistor from the input to ground will provide protection, but also increases the effect of input offset voltage at the output. A pair of diodes, as shown in Figure 10, has no effect on normal operation, but gives excellent protection. Source eIIMeIon ....... ' ,. ,(, .,,~"": Pella' . ~r----""'---...!' ,--;ani, For II. ., " " ' " 'lOUT "'_.-. TrinMnts ,,;'-' ,,;' ./ ·YOUT' 30Y 25'1 20V 15Y lOY 5Y sc007601 Figure 10: Power Dissipation under Short Circuit Conditions +-12 Note: All typical values have been guaranteed by characterization aod ,are not teste!!;, ICH8510 /8520 /8530 TYPICAL APPLICATIONS Actuator Driving Circuit (24 .... 28 VDC rated) Obtaining Up To 5 Amps Output Current Capability By Paralleling Amplifiers . . , .... " Actuato, / .... 'on Acht.-tOf /j:::::') YOu' 05020401 Figure 11: Power Amp Driving Actuator The gain of the circuit is set to + 10, so a VIN = +2.4V will produce a +24V output (and deliver up to 2.7 amps output current). To reverse the piston travel, invert VIN to -2.4V and VOUT will go to -24V. Diodes 01 and 02 absorb the inductive kick of the motor during transients (turn-on or turn-off); their breakdown should exceed 60V. SCOO7901 Figure 12: Paralleling Power Amps for .Increased Current Capability This paralleling procedure can be repeated to get any desired output current. However, care must be taken to provide sufficient load to avoid .the amplifiers pulling against each other. Driving A 48VDC .Motor --- --------, _ow I I 1 1 1 1 1 1 I 1 1 __ ____ 1 ~--~~-+~-_~_-_~ ~ .... . ....... = .,.~ 90007801 Figure 13: Power Amp Driving 48 VDC Motor 4-13 Note: All typical values have been guaranteed by characterization and are not tested. I IC"8510/8520/8530 CD 2,I 0' .. :I ~..... .... Precise Rate Control' of an Electronic Valve The circuit presented in Figure 14 is also an excellent way to get a precise power supply voltage; in fact, it is possible to build a preCision variable power supply using a BCD coded DAC with' BCD Thumbwheel switches. There are two methods to get very fine control of the opening of an orifice driven by an electronic valve. 1. Keep the voltage constant, i.e., 24VDC or 12VDC, and vary the time the, voltage is applied, i.e., if it takes five seconds to completely open an orifice at 24VDC, then applying 24V for only 2Y2 seconds opens it only 50%. 2. Simply vary the DC driving voltage to valve. Most valves obtain full opening as an inverse of applied voltage,i.e., valves open 100% in five seconds at 24VDC and in·l0 seconds at 12VDC. A circuit to perform the second method is shown below; the advantage of this is that digit switches can precisely set driving voltage to 0.2% accuracy (S-bit DAC), thereby controlling the rate at which the valve opens. There is great power available in the sub-systems shown in Figures 14 & 15; there the 0/ A converter is shown being set manually (via digit switches) to get a precise analog output (binary #x full scale voltage), then the driver amplifier multiplies this voltage to produce the final output voltage. It seems obvious that the next logical step is to let a microprocessor control the 0/ A converter. Then total; pre-programmable, electronic control of an actuator, electronic valve, motor, etc., is obtained. This would be used in conjunction with a transducer/multiplex system for electronic monitoring and control of any electromechanical function. 'Ok +5" ... lC015601 Figure 14: Digitally Controlled Electronic 4-14 Note: All typical values have been guaranteed by characterization and are net tested. Valu~ ICH8510 /8520/8530 4K .-tIY +5V Nt. -=LC015701 21 22 1 1 1 1 1 0 1 0 0 0 0 0 The power 2° 1 1 0 0 23 24 25 26 27 o BITVout + 25VDC 1 1 1 1 1 1 1- 1 1 1 1 o -25VDC 1 1 0 0 1 1 +15VDC 1 1 0 0 1 o -15VDC +0.098VDC 0 0 0 0 0 1 -0.098VDC 0 0 0 0 0 o supply can be set set Ie ± 0.1 VDC. Figure 15: Digitally Programmable Power Supply HEAT SINK INFORMATION Heat sinks are available from Intersil. Order part number 29-0305 ($10.00 ea.) with a ROHA = 1.3°C/watt. A convenient mating connector is also available. Order part number 29-0306 ($4.50 ea.). Note: This product contains Beryllia. If used in an application where the package integrity may be breached and the internal parts crushed or -machined, avoid inhalation of the dust. APPLICATION NOTES For Further Applications Assistance, See: A021 "Power D/A Converters Using The ICH8510/201 30," by Dick Wilen ken A026 "DC Servo Motor Systems Using The ICH8510/201 30," by Ken McAllister A029 "Power Op Amp Heat Sink Kit," by Skip Osgood 4-15 Note: All typical values have been guaranteed by characterization and are not tested. , ICM8515 iPower Operationa'i ~Amplifier GENERAL DESCRIPTION FEATURES The ICH8515 is a hybrid power amplifier specifically designed to drive linear and rotary actuators, electronic valves, push-pull solenoids, and DC & AC motors. The design uses a conventional 741· operational amplifier, a special monolithic driver chip (BL8063), NPN & PNP power transistors, and an internal frequency compensating capacitor. The chips are mounted on a. beryllium oxide substrate, for optimum heat transfer to the metal package. This substrate provides electrical isolation between the amplifier and the metal package. The 8515 has special SOA (safe operating area) circuitry which allows it to withstand a direct short to ground or to either supply indefinitely. It has been designed to operate with ± 12 or ± 15VDC supplies and will deliver typically 1.5 to 1.8A @ +13V out using ±15V supplies. Internal frequency compensation provides stability down to unity gain (either inverting or noninverting) even when using inductive loads. • • • • • • • • • Delivers Up to 1.5 Amps @ + l2VDC (±15VDC Supplies) Protected Against Inductive Kick Back By Internal Power Limiting Prograinmable Current Umiting (Short Circuit . Protection) Package Is Electrically Isolated (Allowing Easy Heat' ·Sinking) Open Loop DC Gain> 100dB Popular 8 Pin TO-3 Package Internal Frequency Compensation Can Drive Up to 0.033 Horsepower Motors Pin Equivalent to ICH8510/20/30 Family ORDERING INFORMATION PART NUMBER OUTPUT CURRENT TEMPERATURE PACKAGE ICH8515MKA 1,5A -55°C to + 125°C 8·Lead TO-3 ICH85151KA 1.25A -25°C to +85°C 8'Lead TO·3 Y' (TOP VIEW) +----1--:,---..;;' Yo~ .....~~+'IN..,........o5ASC- C1lO19OO1 4 08020501 Figure 1: Functional Diagram 4-16 Note: All typical values have been guaranteed by characterization and· are not tested. Figure 2: Pin Configuration (Outline dwg KA) n z ICH8515 CD ABSOLUTE MAXIMUM RATINGS @ TA ... UI UI = 25°C Supply Voltage ................................................ ±18V Power Dissipation, Safe Operating Area ...... See Curves Differential Input Voltage ................ , .................. ±30V Input Voltage ..................................... ±15V (Note 1) Peak Output Current ................... See Curves (Note 2) Output Short Circuit Duration (to ground) .............................. Continuous (Note 2) Operating Temperature Range M ...... -55°C to + 125°C I ......... -25°C to +85°C Storage Temperature Range ............ -65°C to + 150°C Lead Temperature (Soldering, 10sec) ................. 300°C Max Case Temperature ................................... 150°C Note 1: Rating applies to supply voltages of ± 15V. For lower supply voltages, VINMAX = VSUPPLy. Note 2: Rating applies as long as package dissipation is not exceeded for heat sink attached. Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other cond~ions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. ELECTRICAL CHARACTERISTICS OPERATING CHARACTERISTICS TA = + 25°C. VSUPPLY = ±15V (unless otherwise stated) ICH85151 SYMBOL PARAMETER ICH8515M TEST CONDITIONS UNIT MIN TYP MAX MIN TYP MAX tiVos/tiPd Input Offset Voltage Change with Power Dissipation Vos Input IBIAS Input Bias Current RS S 10kn, Pd < lW 500 250 nA lOS Input Offset Current RS S 10kn, Pd < lW 200 100 nA AYOL Large Signal Voltage Gain VCMR CMRR Off~t Voltage Input Voltage Range Mtd. on Wakefield 403 Heat Sink 4 (Typ.) RS S 10kn, Pd < 1W RL -10n, , Vo > 2/3 VSUPPL Y Typical 1 -6 6 100 (Typ.) -3 0.7 2 (Typ.) mV/W 3 mV 100 (Typ.) -10 +10 dB -10 +10 V Common Mode Rejection Ratio Rs·l0kn 70 (Typ.) 70 (Typ.) dB PSRR Power Supply Rejection Ratio RS= 10n 77 (Typ.) 77 (Typ.) dB SR Slew 'Rate CL = 30pF, Ay = 1, RL=10n Vo ~ 2/3 VSUPP ,RL=10n, Ay=10 0.5 (Typ.) 0.5 (Typ.) VII'S ±1.25 tiVo Output Voltage Swing 10 Output Current RL-5n, Ay=10 IQ Power Supply Quiescent Current RL =00, OPERATING CHA,RACTERISTICS (continued) TA Input Offset Voltage Pd > RL. VIN RIN RL This circuit allows 'precisely set motor drive current with op. amp. feedback accuracy. If RIN = RF = 1kn, and I":" L ______ J -15V 08020601 Figure 9 IL RL = 10n, then - = -0.1' AmpslVolt, and if RL = 1n VIN (use 4W or more). and RF = RIN = 1kn, IL 1 Amp -=-1x1 = - . - . VIN Volt thus if VIN = 1.5V. 1.5 amps will flow thru the motor. Since one side of the motor will. have a 1.5\{ drop (with respect to GND), the Vo point will go to 13.5V and develop 12V acrOS$ motor. HEAT SINK INFORMATION Heat sinks are available from Intersil. Order part number 29-0305 ($10.00 ea.) with a R6HA = 1.3°C/watt. A convenient mating connector is also available. Order part number 29-0306 ($4.50 ea.). NOTE: This product contains Beryllia. If used in an application. where the package integrity may be breached and the internal parts crushed or machined. avoid inhalation of the dust. 4-22 Note: All typical values have been guaranteed by characterization. and are not tested.. , ICL7605/ICL7606 Commutating Auto-Zero (CAZ) Instrumentation Amplifier GENERAL DESCRIPTION FEATURES The ICL7605/1CL7606 CMOS commutating auto-zero (CAZ) instrumentation amplifiers are designed to replace most of today's hybrid or monolithic instrumentation amplifiers, for low frequency applications from DC to 10Hz. This is made possible by the unique construction of this new Intersil device, which takes an entirely new design approach to low frequency amplifiers. Unlike conventional amplifier designs, which employ three op-amps and require ultra-high accuracy in resistor tracking and matching, the CAZ instrumentation amplifier requires no trimming except for gain. The key features of the CAZ principle involve automatic compensation for longterm drift phenomena and temperature effects, and a flying capacitor input. The ICL7605/1CL7606 consist of two analog sectionsa unity gain differential to single-ended voltage converter and a CAZ op amp. The first section senses the differential input and applies it to the CAZ amp section. This section consists of an operational amplifier circuit which continuously corrects itself for input voltage errors, such as input offset voltage, temperature effects, and long term drift. The ICL760511CL7606 is intended for low-frequency operation in applications such as strain gauge amplifiers which require voltage gains from 1 to 1000 and bandwidths from DC to 10Hz. Since the CAZ amp automatically corrects itself for internal errors, the only periodic adjustment required is that of gain, which is established by two external resistors. This, combined with extremely low offset and temperature coefficient figures, makes the CAZ instrumentation amplifier very desirable for operation in severe environments (temperature, humidity, toxicity, radiation, etc.) where equipment service is difficult. • • • • • • • • • Exceptionally Low Input Offset Voltage - 2jl.V Low Long Term Input Offset Voltage DrlftO.2jl.V/Year Low Input Offset Voltage Temperature Coefficient - O.05jl.V rc Wide Common Mode Input Voltage Range - O.3V Above Supply Rail High Common Mode Rejection Ratio-100 dB Operates at Supply Voltages As Low As ±2V Short Circuit Protection On Outputs for ±5V Operation Static-Protected I",puts - No Special Handling Required Compensated (ICL7605) or Uncompensated (ICL7606) Versions AZ -iNPUT -oIFF IN +DIFFIN C3 Co C, C, DR osc v+ (outline cIwg JNI COO14701 Figure 1: Pin Configuration ORDERING INFORMATION Order parts by the following part numbers' PART NUMBER ICL7605CJN ICL76051JN ICL7605MJN ICL7605/D ICL7606CJN ICL76061JN ICL7606MJN ICL7606/D COMPENSATION TEMPERATURE RANGE O·C to +70·C -25·C to + 85·C -S5·C to + 125·C INTERNAL INTERNAL INTERNAL INTERNAL EXTERNAL EXTERNAL EXTERNAL EXTERNAL - O·C to +70·C -25·C to + 85·C -55·C to + 125·C - PACKAGE 18-PIN CERDIP 18-PIN CERDIP 18-PIN CERDIP DICE" 18-PIN CERDIP 18-PIN CERDIP 18-PIN CERDIP DICE" "Parameter MiniMax Limits guaranteed at 2S·C only for DICE orders. 4-23 Note: All typical values have been guaranteed by characterization and are not tested. 301681-002 II ·1 ICJ.,7895/ICL.7808 !:i !:! y+ 10 g !:iu - +01" IN -DIFF IN OUTPUt AZ -INPUT LSOO6901 Figure 2: Symbol r'i I CAZ OP AMP INPUT AZ ANALOG SWITCH SECTION DIFFERENTIAL TO SINGLE ENDED VOLTAGE CONVERTER ANALOG SWITCH SECTION DIFFIN BIAS ~ + ~l RFI R" ~ I CAZ OP AMP OUTPUT ANALOG SWITCH SECTION ::;:-.... 1 C, ~ r- I AZ INPUT i t t oC 0 , LEVEL TRANSLATORS 2 OSC ---o.OUTPUT I ! RC OSCILLATOR I JR DIVISION RATIO I ! LEVEL I TRANSLATORS f STABILIZED POWER SUPPLY 1 '20R .32 DIVIDER NETWORK V· I I i V 80006101 Figure 3: Functional Diagram 4-24 Note: All typical values have beEm guaranteed by characterization and are not tested. .O~O[l ICL7605/ICL7606 !CIt ABSOLUTE MAXIMUM RATINGS Total Supply Voltage (V+ to V-) ........................ 18V DR Input Voltage ................... (V+ -8) to (V+ +0.3)V Input Voltage (C1, C2, Ca, C4 +DIFF IN, -DIFF IN, -INPUT, BIAS, OSC), (Note 1) ......................... (V- -0.3) to (V+ +0.3)V Differential Input Voltage (+ DIFF IN to -DIFF IN) (Note 2) ......................... (V- -0.3) to (V+ +0.3)V Duration of Output Short Circuit (Note 3) ........ Unlimited Continuous Total Power Dissipation (Note 4) ..... 500mW Operating Temperature Range: . ICL7605/1CL7606CJN ..................... 0 to + 70°C ICL760511CL76061JN ............... -25°C to +85°C ICL7605I1CL7606MJN ............ -55°C to +125°C Storage Temperature Range ............ -65°C to + 150°C Lead Temperature (Soldering, 10sec) ................. 300°C Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating cond~ions for extended periods may affect device reliabil~. Note 1: Due to the SCR structure inherent in all CMOS devices, exceeding these limits may cause destructive latch up. For this reason, it is recommended that no inputs from sources operating on a separate power supply be applied to the 7605/6 before its own power supply is established, and that when using multiple supplies, the supply for the 7605/6 should be turned on first. Note 2: No restrictions are placed on the differential input voltages on either the + DIFF IN or - DIFF IN inputs so long as these voltages do not exceed the power supply voltages by more than 0.3V. Note 3: The outputs may be shorted to ground (GND) or to either supply (V + or V~). Temperatures and/or supply voltages must be limited to insure that the dissipation ratings are not exceeded. Note 4: For operation above 25°C ambient temperature, derate 4mW/oC from 500mW above 25°C. ELECTRICAL CHARACTERISTICS Test Conditions: SYMBOL Vos v+ = +5V, v- = -5V, TA = +25°C, DR pin connected to V+ (fCOM~160Hz, fCOMl ~80Hz), Cl = C2 = Ca = C4 = 1j.1F, Test Circuit 1 unless otherwise specified. PARAMETER Input Offset Voltage TEST CONDITIONS RsS lkn MIL version over temp. AVOS/AT Average Input Offset Voltage Temperature Coefficient (Note 5) Low or Med Bias Settings AVos/At Long Term Input Offset Voltage Stability Low or Med Bias Settings CMVR Common Mode Input Range CMRR Common Mode Rejection Ratio PSRR Power Supply Rejection Ratio -IBIAS -INPUT Bias Current en(P'P) Equivalent Input Noise Voltage peak·to·peak P ... Low Med High Med VALUE MIN Bias Setting Bias Setting Bias Setting Bias Setting TYP MAX ±2 ±2 ±7 ±5 0.01 0.01 0.05 -55°C> TA > +25°C +25°C > TA > +B5°C + 25°C> TA > + 125°C ,.v ±20 ,.V ,.V ,.V 0.2 0.2 0.2 ,.vrc ,.vrc ,.vrc 0.5 -5.3 ,.V/Year +5.3 Case = 0, DR connected to V +, Ca = C4 = I,.F Cose = I,.F, DR connected to GND, Ca = C4 = I,.F COSC = I,.F, DR connected to GND, Ca = C4 = 10,.F 94 100 104 Any bias setting, fc = 160Hz (Includes charge injection currents) 0.15 Low Bias Mode Med Bias Mode High Bias Mode All Bias Modes en Equivalent Input Noise vollege Band Width 0.1 to 1.0Hz AVOl Open Loop Voltage Gain Rl=10kn ±VO Maximum Output Voltage Swing Rl = lMn Rl = l00kn Rl = 10kn Low Bias Setting Med Bias Setting High Bias Setting Positive Swing Negative Swing GBW Bandwidth of Input Voltage Translator Ca = C4 = I,.F All Bias Modes fCOM Nominal Commutation Frequency Cose- O fCOM1 Nominal Input Converter Commutation Frequency Casc=O VBH VBM VBl Bias Voltage required to set Quiescent Current Low Bias Setting Med Bias Setting High Bias Setting IBIAS Bias (Pin 8) Input Current 90 90 80 V dB dB dB dB 110 Band Width 0.1 to 10Hz UNIT 1.5 nA 4.0 4.0 5.0 ,.V ,.V ,.V 1.7 ,.V 105 105 100 dB dB dB ±4.9 ±4.8 V V V V +4.4 -4.5 10 Hz DR Connected to V + DR Connected to GND 160 2560 Hz Hz DR Connected to V + DR Connected to GND 80 1280 V+ GND Hz Hz y+ -0.3 y- +1.4 Y- -0.3 Y- ±30 4-25 Note: All typical values have been guaranteed by characterization and are not tested. V+ + 0.3 V+ -1.4 V- +0.3 V V V pA P c: - 2 _ .D~DIl !cp ICL7805/ICL7808 a:::. I i ELECTRICAL CHARACTERISTICS (CO NT.) VALUE SYMBOL TEST CONDITIONS PARAMETER UNIT MIN :s YOR :s Y + + 0.3 lOR Division Ratio Input Current y+ -S.O YDRH VORL DR Yoltage require "+1 S~ .:.r -2 ~~0: -3 I\, ~INJi..TING ...... 1000. -5 1000 100 0P618401 ffi 5 .a 4 0: 0: t iil j"-... ....... v+·y- = 10 VOLTS NO LOAD NO INPUT 3 -r- MED BIAS o 10k LOBIAS LOBIAS -50 -25 ~ :a OP018601 "l'oo.. losc - 5.2 k~Z r Fo, Cose ~ 0 pF lk I'-... ~ - 0: ~ r>.. ::1100 -- ~ 10 0 ZS 50 75 100 lZS TA • AMBIENT TEMPERATuRE"C 1 10' 100 0P018eQI FREQUENCY RESPONSE OF THE 10Hz LOW PASS FILTER USED TO MEASURE NOISE (TEST CIRCUIT 2), AMPLITUDE RESPONSE OF THE INPUT DIFFERENTIAL TO SINGLE ENDED VOLTAGE CONVERTER ~ TA - +25°C (V-,V-) = 5 VOLTS C, = C2 = C3 = C. = 1~P. .a " h~!D=B,:Hz 0 I _T~=lzslJ \ \ ~ I II I ~l' I ~IASIN "- : ,REGION 10 1000 COSC· OSCILLATOR CAPACITANCE· pF 0P018701' "- 100 1,000 T TA = 25"C ~ < IV+·V 1< 10 VOLT.S= ~ ........ 2 .-. 246 8 W U " ~ ,Y+.V-, • SUPPLY VOLTAGE· VOLTS OP018S01 % HI'I~ MED BIAS OSCILLATOR FREQUENCY AS A FUNCTION OF EXTERNAL CAPACITIVE LOADING N -J. o lOOk lk 10k RL • LOAD RESISTANCE SUPPLY CURRENT AS A FUNCTION OF TEMPERATURE 6 ~ ... -4 INPUT CURRENT ICOM· COMMUTATION FREQUENCY· Hz ... TA = ZSOC NO LOADNO INPUT TA = ZSoC fIV+ ·V-, = 10V RL C NNECTED TO GND_ ~ ~~-1 100 1 ......HIBIAS " 1/ 0 I!: 0 I) 1/ ~ 10 >+4 J \ V j~-I00 1-50 I II - -+5 I I ~ti-400 t=~-350 0:0: SUPPLY CURRENT AS A FUNCTION OF SUPPLY VOLTAGE 1\ "- , 1\ 10,GOO 2 345 .10 20 304050 100 I • FREQUENCY· Hz I - FREQUENCY - Hz QP018901 QP019001 4-27 Note: All typical values have been guaranteed by characterization and are not tested. INPUT' GND OR VOLTAGE 1 AZ -DIFF IN 11 ,.-----10 -IN +DIFF IN 17 .,e., +DIFFIN BETWEEN (V- +0.3) AND (V- -iI.3) VOLT 1~F 'C. rI I -DrFF IN -1 I I OUTPUT I S~2 6C. 7V- IBIAS OSCll • OUTPUT V- ,. +5V 90006201 Figure 6: Simplified Block Diagram OUTPUT 1M 1K VOLTAGE GAIN = 1000 The ICL760S/ICL7606 have approximately constant equivalent input noise VOltage, CMRR, PSRR, input offset voltage and drift values independent of the gain configuration. By comparison, hybrid-type modules which use the traditional three op. amp configuration have relatively poor performance at low gain (1 to 100) with improved performance above a gain of 100. The only major limitation of the ICL760SIICL7606 is its low-frequency operation.(10 to 20Hz maximum). However in many applications bandVliidth is not the most important parameter. TC024911 Figure 4: Test Circuit 1 CAZ Op Amp Section VOUT Operation of the CAl op-amp section of the ICL760S/ ICL7606 is best iII!Jstrated by referring. to Figure 7. The basic amplifier configuration; represented by the large triangles,. has one more input than does a regular op ampthe AZ; or auto-zero terminal. The voltage on the AZ input is that level at which each of the internal op amps will be auto-zeroed. In Mo<;le A, op amp # 2 is connected in a unity gain mode through on-chip analog switches. It charges external capacitor C2 to a voltage equal to the DC input offset voltage of the amplifier plus the instantaneous lowfrequency. noise voltage. A short time later, the analog switches reconnect the on-chip op amps to the configuration shown in Mode B. In this mode, op amp #2 has capacitor C2 (which is charged to a voltage equal to the offset and noise voltage of op amp #2) connected in series to its non-inverting ( + ) input in such a manner as to null out the input offset and noise voltages of the amplifier. While one of the on-chip op amps is processing the input Signal, the second op amp is in an auto"zero mode, charging a capacitor to a voltage equal to its equivalent DC and low frequency error voltage. The on~chip amplifiers are connected and reconnected at a nite designated as the commutation frequency (feOM), so that at all times one or the other of the on-chip op amps is processing the input Signal, while the voltages on capaCitors Cl and C2 are being updated to compensate for variables such as low frequency noise voltage arid input offset voltage changes due to temperature, drift or supply voltages effects. ,TC025011 Figure 5: Test Circuit 2 DC to 10Hz Unity Gain Low Pass Filter DETAILED DESCRIPTION CAZ Instrumentation Amp Overview The CAZ instrumentation amplifier operates on principles which are very' different from thoSe of the conventional three op-amp deSigns, which must use ultra-precise trimmed resistor networks in order to achieve acceptable accuracy. An important advantage of the ICL760SIICL7606 CAZ instrumenta~ion amp is the provision ·for self-compensation of internal error voltages, whether they are derived from steady-state conditions, such as temperature and .supply voltage fluctuations, or are du~ to long term drift. The CAl instrumentation amplifier is constructed with monolithic CMOS technology, and consists of three distinct sections, two analog and one digital. The two analog sections - a differential to single-ended voltage converter, and a CAZ op amp - have on-chip analog switches to steer the input Signal. The analog switches are driven from a self-contained digital section which consists of an RC oscillator, a programmable divider, and associated voltage translators. A functional layout of the ICL760SIICL7606 is shown in Figure 6. 4-28 Note: All typical values have bean guaranteed by characterization and are not tested. ICL7605/ICL7606 ~ ________~~O~UTPUT .v-r__________~~O~UTPUT 80006301 Figure 7: Diagrammatic representation of the 2 half cycles of operation of the CAZ OP AMP. c, -+------......-------t c, -+-+-----; INFUT FROMFIQ4 AZ OUTPUT NPUT .. (100k!l) -INPUT - - - - ' - - - - ' - - - ' ~ (C._TATION FREQUENCY) er CL DS017401 Figure 8: Schematic of analog switches connecting each Internal OP AMP . to Its inputs and output. 4-29 Note: All tvDical values have been auaranteed bv characterization and are not tested. I ··.D~Dll ICL1605/1CL7606 !:i S:! ! .. r--~-GND -DlFf' IN OR 'REFERENCE VOLTAGE _-+-.... s, '---1 '1M fNquencf.1 wNch ..... A I 8 .... cycled " known .. .... INPUT COMMUTATION FREQUENCV {So '--DS[).17501 Figure 9: Schematic of the differential. to single ended voltage. converter reference voltage to the input of the CAZ instrumentation amp. The output signal of this configuration is shown in Figure 10, where the voltage steps equal the differential voltage (VA-VB) at commutation times a, b, c, etc. The output waveform thus represents all information contained in the input signal from DC up to the commutation frequency, including commutation and noise voltages. Sampling theory states that to preserve the information to be processed, at least, two samples must be taken within a period (1/f) of the highest frequency being sampled. Consequently this scheme preserves information up to the commutation frequency. Above the commutation· frequency, the input signal is translated to a lower frequency. This phenomenon is known as aliasing. Although the output responds to inputs above the commutation frequency, the frequencies of the output responses will be below the commutation frequency. Compared to the standard bipolar or FET input op amps, the CAZ amp scheme demonstrates a number of important .advantages: Effective input offset voltages can be reduced from 1000 to 10,000 times without trimming. Long-term offset voltage drift phenomena can be compensated and dramatically reduced. Thermal effects can be compensated for over a wide operating temperature range. Reductions can be as much as 100 times or better. Supply voltage sensitivity is reduced. CMOS processing is ideally suited to implement the CAZ amp structure. The digital section is easily fabricated, and the transmission gates (analog switches) which connect the on-chip op amps can be constructed for minimum charge injection and the widest operating voltage range. The analog section, which includes the on-chip op amps, contributes performance figures which are similar to bipolar or FET input designs. The CMOS structure provides the CAZ op-amp with open-loop gains of greater than 100dS, typical input offset voltages of ±5mV, and ultra-low leakage currents, typically 1pA. The CMOS transmission gates connect the on-chip op amps to external input and output terminals, as shown in Figure 8. Here, one op amp and its associated analog switches are required to connect each on-chip op amp, so that at any time three switches are open and three switches are closed. Each analog switch consists of a P-channel transistor in parallel with an N-channel transistor. t---1-__ OUTPUT VOLTAGE --~~--1---J.,1 GNDOR -lREFERENCE VOLTAGE INPUT COMMUTATION PERtOD (1IfCOM1) DIFFERENTIAL-TO-SINGLE-ENDED UNITY GAIN VOLTAGE CONVERTER WF014201 Figure 10: Input to Output Voltage waveforms from the differential to single ended voltage converter. For additional information, see frequency characteristics in Amplitude Response of the Input Differential to single ended voltage converter graph on page 5. An idealized schematic of the voltage converter block is shown in Figure 9. The mode of operation is quite simple, involving two capacitors and eight switches. The switches are arranged so that four are open and four are closed. The four conducting switches connect one of the capacitors across the differential input, and the other from a ground or 4-30 Note: All typical values have been guaranteed by characterization and are not tested. ICL7605/ICL7606 'AZ -DIFF IN 10 , - - - - i . -IN ...OIFF IN 17 3C<$ :g; CJ'6 C,13 7 V- DR12 • BIAS 9 ,. ICl7606 g~~: 6 C2 11 '2 OSC11 OUTPUT V' y'10 ,." ,. 15 10k!! 1M!! At 1.5Hz At + A2 Av = -R-,- = 101 TIMES ,. 17 LOW PASS FILTER I . o.'~F 19 _ 20 OSC 140 OSC 2" OSC 3" TEST" REF HI" REF LO" C REF" C REF" COMM" IN HI31 IN LO" AZ" . BUFF" .... lOOk V· V- • INT27 V· .. ICL7I06 " 22 21 -::- } LCD DISPLAY AF028201 Figure 11: 3·1/2 Digit Digital Readout Torque Wrench The vOltage converter is fabricated with CMOS analog switches, which contain a parallel combination of P-channel and N-channel transistors. The switches have a finite ON impedances of 30kn, plus parasitic capacitances to the substrate: Because of the charge injection effects which appear at both the switches and the output of the voltage converter, the values of capacitors .C3 and C4 must be about 1j.lF to preserve signal translation accuracies to 0.01%. The 1j.lF capacitors, coupled with the 30kn equivalent impedance of the switches, produce a low-pass filter response from the voltage converter which is down approximately 3dB at 10Hz. the AID. In order to set the full-scale reading, a value of gain for the ICL7S05/1CL7S0S instrumentation CAZ amp must be selected along with an appropriate value for the rEiference voltage. The gain should be set so that at full scale, the output will swing about 0.5V. The reference voltage required is about one-half the. maximum output swing, or approximately 0.25V. In this type of system, only one adjustment is required. Either the amplifier gain or the reference voltage' must be varied for full-scale adjustment. Total current consumption of all Circuitry, less the current through the strain .ga\lge bridge, is typically 2mA. The accuracy is limited only by resistor ratios and the transducer. APPLICATIONS Using the ICL760511CL7606 to Build a Digital Readout Torque Wrench SOME HELPFUL HINTS Testing the ICL7605/1CL7606 CAZ Instrumentation Amplifier A typical application for the ICL7S05/1CL7S0S is in a strain gauge system, such as the digital readout torque wrench circuit shown in Figure S. In this application, the CAZ instrumentation amplifier is used as a preamplifier, taking the differential voltage of the bridge and converting it to a single-ended voltage referenced to ground. The signal is then amplified by the CAZ instrumentation amplifier and applied to the input of a 3-1/2 digit dual-slope AID converter which drives the LCD panel meter display. The AID converter device used in this instance is the Intersil ICL71 OS. In the digital readout torque wrench circuit, the reference voltage for the ICL710S is derived from the stimulus applied to the strain gauge, to utilize the ratiometric capabilities of Figure 4 and 5 (Test Circuits) provide a convenient means of·· measuring most of the important electrical parameters of the CAZ instrumentation amp. The output signal can be viewed on an oscnloscope after being fed through a low-pass filter. It is recommended that for most applications,a low-pass filter of about 1.0 to 1.5Hz be used to reduce the peak-to-peak noise to about the same level as the input offset voltage. . The output low-pass filter must be a high-input impedance RCtype - not simply a capaCitor across the feedback resistor R2. Resistor and capacitor-values of about 100kn and 1.0j.lF are necessary so that the output load impedance on the CAZ op-amp is greater than 100kn. 4--31 Note: All typical values have been guaranteed by characterization and are not tasted. EI ~ IID~Oll IICL1605tlCL7606 ;;.;, 51! ! 'a GND~ ____ ~ ______ ~ ____ ~r- ____ A.f\ ~ INPUT AC R,ouReE WAVEFORMS OUTPUT VOLTAGE WF014401 WF014301 Figure 12: Effect of a load capacitor on output voltage waveforms. 'Bias Control capacitor produces an area error in the output waveform, and hence an effective gain error. The output low-pass filter must be of a high-impedance type to avoid these area errors. For example, a 1.SHz filter will require a 100kn resistor and a 1.0pF capacitor, or a 1Mn resistor and an 0.1 pF capacitor. The on-chip op amps consume over 90% of the power required by the ICL760~/ICL7606. For this reason, the internal op amps have eXternally~ programmable bias levels. These levels are,set by cOnnecting the elAS terminal to either V + , GND, or V-, for lOW, MEQ or HIGH BIAS levels, respectively. The difference between each "bias setting is about a factor of 3, allowing a 9:1 ratio of quiescent supply current versus bias setting. This current programmability provides the user with a choice of device power dissipation levels, slew rates (the higher the slew rate, the better the recovery from commutation spikes), and offset errors due to "IR" Voltage drops and thermoelectric effects (the higher the power dissipation, the higher the input offset error). In most cases, the medium bias (MED BIAS) setting will be found to be the best choice. Oscillator and Digital Circuitry Considerations The oscillator has been designed to run free at about S.2kHz when the OSC terminal is open circuit. If the full divider network is used, this will result in a nominal commutation frequency of approximately 160Hz. The commutation frequency is that frequency at which the on-chip op amps are switched between the signal processing and the auto-zero modes. A 160Hz commutation frequency represents the best compromise between input offset voltage and low frequency noise. Other commutation frequencies may provide optimization of some parameters, but always at the expense of others. The oscillator has a very high output impedance, so that a load of only a few picofarads on the OSC terminal will cause a significant shift in frequency. It is therefore recommended that if the natural oscillator frequency is desired (S.2kHz) the terminal remains open circuit. In other instances, it may be desirable to synchronize the oscillator with an external clock source, or to run it at another frequency. The ICl760S/ICL7606 CAZ amp provides two degrees of flexibility in this respect. First, the DR (division ratiO) terminal allows a choice of either dividing the oscillator by 32 (DR terminal to V +) or by 2 (DR terminal to GND) to obtain the commutation frequency. Second, the oscillator may have its frequency lowered by the addition of an 8Idernal capacitor connected between the OSC terminal and the V + or system GND terminals; For situations which require that the commutation frequency be synchronized with a master clock, (Figure 13) the OSC terminal may be driven from TIL logic (with resistive pull-up) or by CMOS logic, provided that the V+ supply is +SV (±10.%) and the logic driver also operates from a similar voltage supply. The reason for this requirement is that the logic section (including the OSCillator) operates from an internal -SV supply, referenced to V+ supply, which is not accessible externally. Output Loading (Resistive) With a 10kn load, the output voltage swing can vary across nearly the entire supply voltage range, and the device can be used with I,oads as low as 2kn. However, with loads of less than SOkn, the on-chip op amps will begin to exhibit the characteristics of transconductance amplifiers, since their respective output impedances are nearly SOkn each. Thus the open-loop gain is 20dB less with a 2kn load than it would be with a 20kn load. Therefore, for high gain configurations requiring high accuracy, an output load of 100kn or more is suggested. There is another consideration in applying the CAZ instrumentation op amps which must not be overlooked. This is the additional power dissipation of the ,chip which will result from a large output voltage SWing into a low resistance load. This added power dissipation can affect the initial input offset voltages under certain conditions. Output Loading (Capacitive) , In many applications, it is desirable to include a low-pass filter at the output of the CAZ instrumentation op' amp to reduce' high-frequency noise outside the desired signal passband. An obvious solution when using a conventional op amp would be to place a capacitor across the external feedback resistor and thus produce a low-pass filter. However, with the CAZ op amp concept this is not possible because of the nature of the commutation spikes. These voltage spikes exhibit a low-impedance characteristic in the direction of the auto-zero voltage and a highimpedance characteristic on the recovery edge, as shown in Figure 12. It can be seen that the effect of a large load ThermoelectriC Effects The ultimate limitations to ultra-high-sensitivity DC amplifiers are due to thermoelectric, Peltier, or thermocouple effects in electrical junctions consisting of various metals, (alloys, silicon, etc.) Unless all junctions are at precisely the 4-32 Note: All typical values have been guaranteed by characterization and are not tested. ICL7605/ICL7606 same temperature, small thermoelectric voltages will be produced, generally about 0.1 /lV rc. However, these voltages can be several tens of microvolts per ·C for certain thermocouple materials. switching transients which occur at both the input and output terminals because of commutation effects. These transients have a frequency spectrum beginning at the commutation frequency, and including all of the higher harmonics of the commutation frequency. Assuming that the commutation frequency is higher than the highest inband frequency, then the commutation transients can be filtered out with a low-pass filter. The input commutation transients arise when each of the on-Chip op amps experiences a shift in voltage which is equal to the input offset voltages (about 5-10mV), usually occurring during the transition between the signal processing mode and the auto-zero mode. Since the input capacitances of the on-chip op-amps are typically in the 10pF range, and since it is desirable to reduce the effective input offset voltage about 10,000 times, the offset voltage autozero capaCitors C1 and C2 must have values of at least 10,000 x 10pF, or 0.1/lF each. The charge that is injected into the input of each op amp when being switched into the signal processing mode produces a rapidly-decaying voltage spike at the input, plus an equivalent DC input bias current averaged over a full cycle. This bias current is directly proportional to the commutation frequency, and in most instances will greatly exceed the inherent leakage currents of the input analog switches, which are typically 1.0pA at an ambient temperature of 25°C. The output waveform in Figure 4 (with no input signal) is shown in Figure 14. Note that the equivalent noise voltage is amplified 1000 times, and that due to the slew rate of the on-Chip op amp!!, the input transients of approximately 7mV are amplified by a factor of less than 1000. TTL OR CMOS LOGIC USE RL - 22k1l FOR TTL LOGIC (NOT NEEDED FOR CMOS) LC008101 Figure 13: ICL7605 being c::locked from external logic into the oscillator terminal. In order to realize the extremely low offset voltages which the CAZ op amp can produce, it is necessary to take precautions to avoid temperature gradients. All components should be enclosed to eliminate air movement across device surfaces. In addition, the supply vol.tages and power diSSipation should be kept to a minimum by use of the MED BIAS setting. Employ a high impedance load and keep the ICL7605/1CL7606 away from equipment which dissipates heat. Component Selection The four capacitors (C1 thru C4) should each be about 1.0/lF. These are relatively large values for non-electrolytic capacitors, but since the voltages stored on them change significantly, problerils of dielectric absorption, charge bleed-off and the like are as significant as they would be for integrating dual-slope AID converter applications. Polypropylene types are the best for Ca and C4,although Mylar may be adequate for C1 and C2' Excellent results have been obtained for commercial temperature ranges using several of the less-expensive, smaller-size capaCitors, since the absolute values of the capacitors are not critical. Even polarized electrolytic capaCitors rated at 1.0/lF and 50V have been used successfully at room temperature, although no recommendations are made concerning the use of such capaCitors. OUTPUT VOLTAGE WF014511 Figure 14: Output waveform from Test Circuit 1. Layout Considerations Care should be exercised in positioning components on the PC board particularly the capaCitors C1, C2, Ca and C4, which must all be shielded from the asc terminal. Also, parasitic PC board leakage capacitances associated with these four capaCitors should be kept as low as possible to minimize charge injection effects. Commutation Voltage Transient Effects Although in most respects the CAZ instrumentation amplifier resembles a conventional op amp, its prinCipal applications will be in very low level, low-frequency preamplifiers limited to DC through 10Hz. The is due to the finite 4-33 Note: All typical values have been guaranteed by characterization and are not tested. = ICL76XX ~ ICL76XX, Series Low Power ~ CMOS Operational Amplifiers GENERAL DESCRIPTION FEATURES The ICL761X1762X1763X1764X series is a family of monolithic CMOS operational amplifiers. These. devices provide the designer with high performance operation at low supply voltages and selectable quiescent currents, and are an ideal design tool when ultra low input current and low power dissipation are desired. The basic amplifier ~iII operate at supply voltages ranging from ± 1.0V to ±av, and may be operated from a single Lithium cell. A unique quiescent current programming pin allows settingof.standby current to 1mA, 100,..A, or 10,..A, with no external components. This results in power consumption as low as 201lW. Output swings range to within a few millivolts of the supply voltages. Of particular significance is the extremely low (1 pAl input and 1012n input current, input noise current of .01 pAl impedance.. These features optimize Performance in very high source impedance applications. The inputs are internally protected and require no special handling procedures. Outputs are fully protected against short circuits to ground or to either supply. AC performance is excellent, with a slew rate of 1.6V/ /lS, and unity gain bandwidth of 1MHz at IQ 1mAo Because ot the low power dissipation, operating temperatUres and drift are quite low. Applications utilizing these features may include stable instruments, extended life designs, or high density packages. • • • • • • • • • • Wide Operating Voltage Range ±1.0V to ±8V High Input Impedance - 1012n Programmable Power Consumption - Low As 20llW Input current Lower Than BIFETs-Typ 1pA Available As Singles, Dlj8ls, Triples, and Quads Output Voltage Swings to Within Millivolts Of Vand V+ Low Power Replacement for Many Standard· Op Amps Compensated and Uncompensated Versions Inputs Protected to ±200V (lCL7613/15) Input Common Mode Voltage Range Greater Than Supply RaUs (ICL7612) APPLICATIONS YHz, • • • • • • Portable Instruments Telephone Headsets Hearing Aid/Microphone Amplifiers Meter Amplifiers Medical Instruments High Impedance Bu·ffers = SELECTION GUIDE DEVICE. NOMi:NCLATURE. ICL76XX X x SPECIAL FEATURE CODES xx C E H I L M .L Package Code TV - TO-99, B pin PA - Plastic B pin Minidip PO - 14 pin Plastic Dip PE - 16 pin Plastic Dip JO - 14 pin CERDIP JE - 16 pin CEROIP 10 - Dice L . -_ _ Temperature Range C ~ O"C to 70"C M = -55"C to + 125"C ' - - - - - - V o s Selection A=2mV B=5mV C= 10mV 0= 15mV E = 20mV o P V 4-34 Note: All typical values have been guaranteed by characterization and are not tested. = = = = = = = = INTERNALLY COMPENSATED EXTERNALLY COMPENSATED HIGH QUIESCENT CURRENT (1 mAl INPUT PROTECTED TO ±200V LOW QUIESCENT CURRENT (10jlA) MEDIUM QUIESCENT CURRENT (100jlA) OFFSET NULL CAPABILITY PROGRAMMABLE QUIESCENT CURRENT EXTENDED CMVR 302060-002 ICL76XX ORDERING INFORMATION NUMBER OF OP-AMPS IN PACKAGE,AND SPECIAL FEATURES (SEE ABOVE) BASIC PART NUMBER ICL7611 ICL7612 ICL7613 ICL7614 ICL7615 SINGLE OP-AMP: C, 0, P C, 0, P, V C, I, 0, P E, M, 0 E, I, M, 0 ICL7621 DUAL OP-AMP: C, M ICL7622 DUAL OP-AMP: C, M,O ICL7631 ICL7632 TRIPLE OP-AMP: C, P P(3) ICL7641 ICL7642 QUAD OP-AMP: C, H C, L PACKAGE TYPE AND SUFFIX a-LEAD TO-99 a-PIN MINIDIP a-PIN SOIC PLASTIC DIP (1) O·C to +70·C O·C to +70·C -55·C to + 125·C O·C to +70·C O·C to +70·C ACTV BCTV DCTV AMTV BMTV ACPA BCPA DCPA DCPA DCBA ACTV BCTV DCTV AMTV BMTV ACPA BCPA DCPA CERAMIC DIP (1) O·C to +70·C -55·C to + 125·C DICE DID DID ACPD BCPD DCPD ACJD BCJD DCJD AMJD BMJD CCPE ECPE CCJE ECJE CMJE CCPD ECPD CCJD ECJD CMJD DID E/D E/D NOTES: 1. Duals and quads are available in 14 pin DIP package, triples in 16 pin only. 2. Ordering code must consist of basic part number and package suffix, e.g., ICL7611 BCPA. 3. ICL7632 is not compensatable. Recommended for use in high gain circuits only. "Parameter MiniMax Limits guaranteed at 25·C only for DICE orders. DEVICE ICL7611XCPA ICL7611XCTV ICL7611XMTV ICL7612XCPA ICL7612XCTV ICL7612XMTV ICL7613XCPA ICL7613XCTV ICL7613XMTV DESCRIPTION Internal compensation, plus offset null capability and external 10 control PIN ASSIGNMENTS 8 PIN DIP (TOP VIEW) (outline dwg PAl TO-99 (TOP VIEW) (outline dwg TV) 10 SET OFFSET IQ SET -IN v+ +IN OUT QFFSET v• Pin 7 connected to case. 8 PIN DIP (TOP VIEW) (outline dwg SA) vFigure 1: Pin Configurations 4-35 Note: All typical values have been guaranteed by characterization and are not· tested. ICL76XX DEVICE ICL7614XCPA ICL7614XCTV ICL7614XMTV ICL7615XCPA ICL7615XCTV ICL7615XMTV DESCRIPTION PIN ASSIGNMENTS Fixed 10 (l00IlA), eX1ernal compensation, and offset null capability 8 PIN Dip (TOP VIEW) (outline dwg PAl TO·99 (TOP VIEW) (outline dwg TV) SOI~ COMP COMP OFFSET -IN y• • ,N OUT y. 'Pin 7 connected to ICL7621XCPA ICL7821XCTV ICL7621XMTV Dual op amps with internal compensation; 10 fixed at 10011A Pin compaptible willi Texas Inst. TL082 Motorola MC1458 Raytheon RC4558 case. • PIN DIP (TOP VIEW) (outline dwg PAl TO'99 (TOP VIEW) (outline dwg TV) y' OUT. -IN. +IN. y' OUT. -IN. +IN. y'Pin 8 connected to ICL7822XCPD case. 14 PIN OIP.(TOP VIEW) (outline dwgs JD, PO) Dual op amps with eX1ernal compensation and offset null capability; Ia fixed at 10011A Pin compatible with Texas Insl TL083 Fairchild 1lA747 OFFSET OFFSET. Y' OUT. N/C OUT. Y' OFFSET. 14 Nole: Pins 9 and 13 are internally connected. Figure 1: Pin Configurations (Cont.) 4-38 Note: All typical values have been guaranteed by characterization and are not tested. y. ICL76XX DEVICE ICL7631XCPE ICL7632XCPE DESCRIPTION PIN ASSIGNMENTS 16 PIN DIP (TOP VIEW) (outline dwgs JE, PEl Triple op amps with internal compensation (lCL7631) and no compensation (ICL7632). Adjustable 10 Same pin configuration as ICLB023. I.,. 100 SET y- SET 16 • -INa +fNa OUT. V+ 10(: -INe SET Note: pins 5 and 15 are internally connected. ICL7641XCPD ICL7642XCPD Quad op amps with internal compensation. 10 fixed at lmA (ICL7641) 10 fixed at 1011A (lCL7642) Pin compatible with Texas Instr. TLOB4 National LM324 Harris HM741 14 PIN DIP (TOP VIEW) (outline dwg JD, PO) OUTD -INo +INo V- +INc -INc OUTc 8 U • Figure 1: Pin Configurations (Cont.) 4-37 Note: AU typical values have been guaranteed by characterization and are not tested. +INc OU"",,T STAGE o ONPUT STAGE r--L---o . + ® >--_____.. OFFSET +INPUT .,CD ouv .. '. OUTPUT y- y' o ~INPUT y- r--- --.--- - - - - - - I j ! r TABLE OF JUMPERS leL 7611 ICL.7613 : :~~;:!:. 1 ! I ! 8. F, H B. F. H 8, r.H tel·J6l2 ICI..·7821 leL 7622 ICI..-7631 ICL·7632 ICl·7641 ICL·7642 .1' C.D. E C,D, E E E e. e. a.F," 8.F.H e.G A.E NOTES: oy·--"H....--- - .A-" >- ~ i--' I 10 = l00"A 100 () ! ....- 10'" 10;,.A; 10 . .A"" '02 '-10' 'OpA '0 10 12 14 16 +25 +50 +75 FREE·AIR TEMPERATURE SUPPLY VOL T AGE - VOL 15 '000 I ".15 CD - RL:z 10K!! IQ""lmA '0 ~ 0 50 -25 +25 i!: I = - ~ ~ 90 ~ l!! lIS ~ ~> 80 IQ= l()Qs.1A • ~"""A 75 >- 'l ....... 70 65 -75 -so -25 '06 VSUpp·,OV r- ~A 0 +25 r-~~.,~ ~ 'o-'mA r--_~_ 102 r""'" , ~1S .. SO +15 qOQ +125 FREE-AIR TEMPERATURE - C -25 0 +50 +25 +75 +100 +125 0P016701 EQUIVALENT INPUT NOISE VOLTAGE AS A FUNCTION OF t~ 0:. 600 soo ~ > l!l0 400 ~ § g E 200 I!::\.I ' i I: .i '00 11:1 ' I !: ,~ , '0 :: T" ' r-... ,..... ,rv 12 '0 'K 'OK FREQUENCY - Hz - , 0P017001 CPO, .... 4-44 Note: All typicel values have been guaranteed by characterization and are not tested. ~ 1\ TAo • +2S'C I 'o"mA ---'o"OpA •..•• '0 -100"" , , , 1.\ ).\""\ v...,,,,., , \ i v..... o '00 i 'K ,2V . , ~ \ \ \ r,,__ r--,... , t?~'.: ~ I ""\ ~ II r'SV . r--_ )J ,. v.u,;;. .~ I !' '00 , '6 il :! rfFII:: · :I ++- ~ 3V " VsUPP " llV 300 I- I TA "' ....25 C i~! Z :i ~Illli ~.J"ill; Ii iI I- OP016801 PEAK-To-PEAK OUTPUT VOLTAGE AS A FUNCTION OF FREQUENCY FREQ~ENCY "~ ~ ...... -50 ....... ....... r-..... FREE·AlR TEMPERATURE _·C FREQUENCY - Hz ....... ....... +100 +125 OP016501 +75 +100 +125 ---- . - ~ r-.... +75 COMMON MODE REJECTION RATIO AS A FUNCTION OF FREE-AIR TEMPERATURE r- 15 ~~ +50 5 '0r--+-t--+-~~~~~ I ~ a: +26 FREE·AIR TEMPERATURE _·C 70 +50 VSUPP" lOV 96 -25 Co • ~r~~/~S CPO'66OI lo.',mA ,-60 ~ 1~F!~~~~-i--r--t--1 POWER SUPPLY REJECTION RATIO AS A FUNCTION OF FREE-AIR TEMPERATURE '00 ./ _oc TA" +25'C '00 f--+-+--+-4 FREE·AIR TEMPERATURE - C i I 2 o. I a 1/ 1.0 ~ Vsupp '" 10 VOL TS VOUT ., 8 VOL TS I -15 ~ ~ 1~f--+-~~~~-~-+~ I I / ii g~ 104 R L ,.. tOOK!! 'O"OOpA _ l- S > >, z ~ ~ +'00 +126 OP016301 ! v- --SVOLTS 100 a: r- , " tI -- I::!o. 'OOpA :ia: Y'-~5vdTS ~ -NQS'GNAL I ~ ::> ,0' '000 vi - y- ~ '0 vbLTS NOlDAD - r-1o = '.mA INPUT BI.AS CURRENT AS A FUNCTION OF TEMPERAT~RE 'OK ~\ ~ 'OOK 'M 10M FREOU~NCV - Hz OP017101 ICL76XX TYPICAL PERFORMANCE CHARACTERISTICS (CONT.) MAXIMUM PEAK·TO·PEAK OUTPUT VOLTAGE AS A FUNCTION OF SUPPLY VOLTAGE MAXIMUM PEAK·To-PEAK OUTPUT VOLTAGE AS A FUNCTION OF FREQUENCY > > 6 II • ! I 2 II \ 6 , I TA .. +125' 2 0 10K 10~ ~ '0 -Iii II I ~ [""'. a TA, := • ! I " I Ii! ~ lOOK RL = 2 I· ~'IPPl Y 14 0 1/ ,,. 1/ o.01 i , 10 -tOStA I I ! 10 12 14 16 0P017601 > '0'" lmA , 2 TA =.+25 C .< > l00pF INPUT c,. .... ... = l00KU lOOp' = +25 C • 0 > .... " S 0 \ 2 1--1--+--+-+ RL '"~ \ 0 6 " 10K!! 1\ J !oUTPUT , VSUPP ., TOV VSUPf' " lOV R, C, ......z 0 l\. 10 -2 ~ -, 12 -6 ~ 1 mA 20 40 TIME ~ 60 100 120 -"s OPQ19101 0P035801 4--45 Note: All typical values have been guaranteed by characterization and are not tested. 1/ V I 2 0.1 : 1.0 10 100 0P017701 VOLTAGE FOLLOWER LARGE SIGNAL PULSE RESPONSE VOLTAGE FOLLOWER LARGE SIGNAL PULSE RESPONSE a 6 = lQVOlTS TA ,,25 C LOAD RESISTANCE - K!! SUP:Pl y VOLTAGE - VOLTS OP017501 VOLTAGE FOLLOWER LARGE SIGNAL PULSE RESPONSE v· -V- 'V t:=- o 10 16 °c 0 a ! 10 -lOO/.1A Ie;; '~A= SUPPLY VOLTAGE - VOLTS ~ o +}5 +100 +125 2 6 " +50 MAXIMUM PEAK·To-PEAK OUTPUT VOLTAGE AS A FUNCTION OF LOAD RESISTANCE 10 1\ "12 ... 25 OP017401 .1-- .0 10 0 6 I I I -25 FREe.AIR TEMPERATURE _ ~ .1 1/1 l i 0 o-75 -so VOLTAGE - VOL T8 MAXIMUM OUTPUT SINK CURRENT AS A FUNCTION OF SUPPLY VOLTAGE 1---+-- 1/,", 16 0P017301 V 1/ i VSUPP' '" 10 VOL T5 1 10 = 1mA 12 10M MAXIMUM OUTPUTISOURCE CURRENT AS A FUNCTION OF SUPPLY VOLTAGE : i/ f""".. I I OP017201 I I 1'.... 2K!~ I 1M 40 Rl '" 10K!! .......... I ! FREQUENCV - Hz O~ !'--.. a TA "+25 C ;. I II I I ii Ii I ~-\ 30 I RL • TOOK!! 11 -55 C I J\. !\i\ 12 I Vwpp ' "lmA I I 0 MAXIMUM PEAK·To-PEAK VOLTAGE AS A FUNCTION OF FREE-NR TEMPERATURE =lCL78xX' a DETAILED DESCRIJ)TION Static Protection Input Offset Nulling All devices are static protected by the use ,of input diodes. However, strong static fields should be avoided, as it is pos~ible for the strQ,ng fields to cause degraded diode junction characteristics, which may result in increased input' ' leakage currents. For those models provided with OFFSET NULLING pins, nulling may be achieved by conne~ting a 25K pot between the OFFSET terminals with the wiper connected to V + . At quiescent currents of 1mA and 100pA,the nulling range provided is adequate for all Vas selections; however with 10 = 10pA, nulling may not be possible with higher values of Vas· Latchup Avoidance Frequency Compensation Junctioncisolated CMOS circuits employ configurations which produce a parasitic 4-layer (p-n-p-n) structure. The 4layer structure has characteristics similar to an SCR, and under certain circumstances may be triggered into a low impedance state resulting in excessive supply current. To avoid this condition, no voltage greater than 0.3V beyond the supply rails may be applied to any pin. (An exception to this rule concerns the inputs of the ICL7613 and ICL7615, which are protected to ±200V.) In general, the op-amp supplies must be established simultaneously with, or before any input signals are applied. If this i~ not posSible, the drive circuits must limit input current flow to 2mA to prevent latchup. The ICL7611/12/13, 7621/22, 7631, 7641/42 are internally compensated, and are stable for closed loop gains as low as unity with capacitive loads up to 100pF The ICL7614/15 are externally compensated by connecting a capacitor between the COMP and OUT pins. A 39pF capacitor is required for unity gain compensation; for greater than unity gain applications, increased bandwidth and slew rate can be obtained by redUCing the value of the compensating capacitor. Since the gm of the first stage is proportional to ViQ, greatest compensation is required when 10=1 mAo The ICL7632 is not compensated internally, nor can it be compensated externally. The device is stable when lIsed as follows: 10 of 1mA for gains ~ 20 10 of 100pA for gains ~ 10 10 of 10pA for gains ~ 5 Choosing the Proper IQ Each device in the ICL76XX family has a similar 10 set-up scheme, which allows the amplifier to be set to nominal quiescent currents to 10pA, 100pA or 1mA. These current settings change only very slightly over the entire supply voltage range. The ICL7611/12/13 and ICL7631/32 have an external 10 control terminal, permitting user selection of each amplifiers' quiescent current. (The ICL7614/15, 76211 22, and 7641/42 have fixed 10 settings - refer to selector guide for details.) To set the 10 of programmable versions, connect the 10 terminal as follows: High Voltage Input Protection The ICL7613 and 7615 include on-Chip thin film resistors and clamping diodes which allow voltages of up to ±200V to be applied to either input for an indefinite time without device failure. These devices will be useful where high common mode voltages, differential mode voltages, or high transients may be experienced. Such conditions may be found when interfacing separate systems with separate supplies. Unity gain stability is somewhat degraded with capacitive loads because of the high value of input resistors. 10 = 10pA -10 pin to V+ 10 = 100pA -.,. 19, pin to ground. If this is not possible; any -0.8 to V- + 0.8 can be used. voltage from V 10 = 1mA-IO pin to V- Extended Common Mode Input NOTE: The negative output current available is a function of the quiescent current setting. For maximum p-p output voltage swings into low impedance loads, 10 of 1mA should be selected. ~ange The ICL7612 incorporates additional processing which allows the input CMVR to exceed each power supply rail by 0.1 volt for applications where VSUpp ~ ±1.5V. For those applications where VSUpp S ±1.5V, the input CMVR is limited in the pOSitive direction, but may exceed the negative supply rail by 0.1 volt in the negative direction (eg. for VSUpp = ± 1.0V, the input CMVR would be + 0.6 volts to -1.1 volts). Output Stage and ,Load Driving Considerations Each amplifiers' quiescent current flows primarily in the output stage. This is approximately 70% of the 10 settings. This allows output swings to almost the supply rails for output loads of 1Mn, 100kn, and 10kn, using the output stage in a highly iinear class A mode. In this mode, crossover distortion is avoided and the voltage gain is maximized. However, the output stage can also be operated in Class AS for higher output currents. (See graphs under Typical Operating Characteristics). During the transition from Class A to Class S operation, the output transfer characteristic is non-linear and the voltage gain decreases. OPERATION AT VSUPP =±1.0 VOLTS Operation at Vsupp = ± 1.0V is guaranteed at 10 = 10pA only. This applies to those devices with selectable la, and devices that are set internally to 10 = 10pA (i.e., ICL7611, 7612, 7613, 7631; 7632, 7642). OutP!Jt swings to within a few millivolts of the supply rails are achievabl,e for RL ~ 1Mn. Guaranteed input CMVR is ±0.6V minimum and typically + 0.9V to -O.7V at VSUpp = ± 1.0V. For applications where greater common mode range is deSirable, refer to the description of ICL7612 above. A special feature of the output stage is that it approximates a transconductance amplifier, and its gain is directly proportional to load impedance. Approximately the same open loop gains are obtained at each of the 10 settings if corresponding loads of 10kn, 100kn, and 1Mn are used. The user is cautioned that, due to extremely high input impedances, care must be exercised in layout, construction, 4-46 Note: All typical values have been guaranteed by characterization and are not tested. ICL76XX board cleanliness, and supply filtering to avoid hum and noise pickup. APPLICATIONS Note that in no case is 10 shown. The value of 10 must be chosen by the designer with regard to frequency response and power dissipation. DUTYCVCLE _0 VIN-----!+' .....- - - - !>--~-- VOUT Since the output range swings exactly from rail to rail, frequently and duty cycle are virtually independent of power supply variations. Figure 6: Precise Triangle/Square Wave Generator AF028301 Figure 3: Simple Follower* 1M' .-".""'--.-VOH V,. V,N TO SUCCEEDING INPUT STAGE >---+-----f >---......- - - TO CMOS OR VOUT l00k~-_-I LPTTL LOGIC COMMON 1M AF028401 08017601 Figure 7: Averaging AC to DC Converter for A/D Converters Such as ICL71 06, 7107, 7109, 7116, 7117 ·By using the ICL7612 in these applications, the circuits will follow rail to rail inputs. Figure 4: Level Detector* 1M 100k.1% 5QOk,1% lOOk INPUT \loUT 1M, 1% > - -......- - - - V O U T . - - - - - -.... v+ o--"I'>I'Y-_--I 1M AF02B501 08017701 Note that AVOL = 25; single Ni-cad battery operation. Input current (from sensors connected to patient) limited to < 5iJ,A under fault conditions. "Low leakage currents allow integration times up to several hours. Figure 5: Photocurrent Integrator Figure 8: Medical Instrument Preamp 4-47 Note: All typical values have been guaranteed by characterization and are not tested. O,2! r-- ;:> O.1j,lF O.2~F 1M I L--ii-=_.J I 360Ic 'M • OUTPUT I L--H":-c.J AF028601 The low bias currents permit high resistance and low capacitance values )0 be used to achieve low frequency cutoff. fe = 10Hz, AVCL = 4, Passband ripple - O.ldB "Note that small capacitors (25-50pF) may be needed for stability in some cases. Figure 9: Fifth Order Chebyshev Multiple Feedback Low Pass Filter +8V 16k TA '" +125'C l60k 1.5k VOUT LCOO8401 NOTES: 1. For devices with external compensation, use 33pF. 2. For deVices with programmable standby current, connect 10 pin to V- (10 = 1mA mode). AF028701 Q Note that 10 on each amplifier may be different. AVCL = 10, = 100, fo -100Hz. Figure 10: Second Order Biquad Bandpass FiRer Figure 11: Burn-In and Life Test Circuit 4-48 Note: All typical values have been guaranteed by characterization and are riot tested, ICL76XX >----YOUT Y'N>----! I. l00pF .". AL .. 10k FOR '0 '" 1rnA lOOk FOR '0 • l00,.A 1M FOR 10 • lo,.A ·FOR ICL7614115 . LC0085QI Figure 13: Unity Gain Frequency Compensation Figure 12: Vos LCOO83OI Null Circuit 4-49 Note: All typical values have been guaranteed by characterization and are not tested. i D~U16 ICL7650 !:i .Chopper-Stabilized S! Operational Amplifier GENERAL DESCRIPTION FEATURES The ICL7650 chopper-stabilized amplifier is a highperformance device which offers exceptionally low offset voltage and input-bias parameters, combined with excellent bandwidth and speed characteristics. Intersil's unique CMOS approach to chopper-stabilized arnplifier design yields a versatile precision component that can replace more expensive hybrid or monolithic devices.· The chopper amplifier achieves its low offset by comparing the inverting and non-inverting input voltages in a nulling amplifier, null8d by alternate clock phases. Two eXternal capacitors are required to store the correcting potentials on the two amplifier nulling inputs; these are the only external components necessary. The clock oscillator and all the other control circuitry is entirely self-contained, however the 14-pin version includes a provision for the use of an external clock, if required for a particular application. In addition, the ICL7650 is internally compensated for unity-gain operation. • • • • • • • • • • Extremely Low Input Offset Voltage - 2ILV Low Long-Term and Temperature Drifts of Input Offset Voltage Low DC Input Bias Current - 10pA (20pA 7650B) Extremely High Gain, CMRR and PSRR - Min 120dB High Slew Rate - 2.5V1ILS Wide Bandwidth - 2MHz Unity-Gain Compensated Very Low Intermodulatlon Effects (Open Loop Phase Shift < 10·C @ Chopper Frequency) Clamp Circuit to Avoid Overload Recovery Problems and Allow Comparator Use Extremely Low Chopping Spikes at Input and Output ORDERING INFORMATION TEMPERATURE RANGE PACKAGE ICL76S0CPA-1 O·C to +70·C 8-PIN Plastic ICL7650BCPA-1 ICL7650CPD O·C to +70·C O·C to +70·C ICL7650BCPD O·C to +70·C ICL76S0CTV-1 O·C to +70·C PART ICL7650BCTV-1 TEMPERATURE RANGE PACKAGE ICL76S0lJD -2S·C to +8S·C 14-PIN CERDIP 8-PIN Plastic ICL76S0BIJD ICL76501TV-1 - 2S·C to + 8S·C -2S·C to + 8S·C 14-PIN CERDIP 14-PIN Plastic 14-PIN Plastic ICL7650BITV-1 -2S·C to +8S·C 8-PIN TO-99 8-PIN T0-99 ICL7650MJD - SS·C to + 12S·C 14-PIN CERDIP 14-PIN CERDIP PART 8-PIN T0-99 O·C to +70·C 8-PIN TO-99 ICL76S0BMJD - SS·C to + 12S·C ICL76S0IJA-1 - 2S·C to + 8S·C 8-PIN CERDIP ICL76S0MTV-1 -SS·C to + 12S·C a-PIN TO-99 ICL76S0BIJA-1 -2S·C to + 8S·C 8-PIN CERDIP ICL76S0BMTV-1 - SS·C to + 12S·C 8-PIN TO-99 CEXT:~ CeXTA Nc(GUA~: ~ 1• 14 : :~ ~+T eLK OUT 2 +IN ~ 5 10 6 • NC(GUAAD~ [ INJECT t3 EXT eLK IN ~ OUTPUT ~ OUTPUT CLAMP y": [""",_ _.....;:.""J CRETN 14· PIN DIP CEXT:U:· ..·· 7 y+ I CASE ~ ... cu< .. ~A.~K~ -IN 2 ---r--l...-' • OUTPUT +IN 3 ~. ~ ~c 5 OUTPUT CLAMP CR£'N(-') 8 LEAD TO· 99 80006411 c0015721 Figure 1: Functional Diagram Figure 2: Pin Configuration 4-50 Note: All typical values have been guaranteed by characterization. and are not tested. 302061-003 ICL7650 ABSOLUTE MAXIMUM RATINGS Total Supply Voltage (V+ to V-) ................... 18 Volts Input Voltage ................. (V + + 0.3) to (V- - 0.3) Volts Voltage on oscillator control pins ................. V+ to Vexcept EXT CLOCK IN: ... (V + + 0.3) to (V + - 6.0) Volts Duration of Output short circuit ..................... Indefinite Current into any pin ........................................ 10mA -while operating (Note 4) .............................. 100j.tA Cont. Total Power Dissipn (TA = 25·C) CERDIP Package ................................ 500mW Plastic Package .................................. 375mW TO-99 ............................................... 250mW Storage Temp. Range ....................... -65·C to 150·C Operating Temp. Range ........................... See Note 1 Lead Temperature (Soldering, 10sec) ................. 300·C Stresses above those listed under" Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and lunctional operation 01 the device at these or any other cond~ions above those indicated in the operational sections 01 the specHications is not implied. Exposure to absolute maximum rating conditions lor extended periods may affect device reliability. ELECTRICAL CHARACTERISTICS Test Conditions: V+ = +5V, = -5V, V- TA = +25·C, (unless otherwise specified) LIMITS 7650 SYMBOL PARAMETER UNIT MIN Input Offset Voltage Vos Average Temp. Coefficient AVos LIMITS 7650B TEST CONDITIONS TYP MAX MIN ±5 TYP MAX ±2 ±5 ±10.0 TA= + 25'C -25'C < TA < +85'C -55'C ut 'N~ise. VoltaQ'!.' in.' ,Input NoiSl! Current u~·,G.illri-' ~ildwidth GBW. ., tr V+ to'VISUpp Ich CMVR= -5V to +1.5 -5.0 -5.2 to +2.0 110 120 110 120 120 130 t20 130 Rs-l00n 1=0 to 10Hz I -10Hz ,. ±20 pA pA 5.0 AVOL SR, pV ±75 ±50 1.5 -5.0 -5.2 to +2.0 n I VIV V 1.5 V I ,I dB dB 2 2 0.Q1 0.01 2.0 2.0 pA/v'Hz MHz pVp.p 2.5 2.5 V/IJS 'RisJi> Ti"1e' 0.2 0.2 .Ov& +1 o -1 ~-+--+---+ -2 1--+--+- ----I----i---I • • 10 14 II VOLTS OP020001 l 211 5 0 ~ --I----i--"'1 TOTAL SUPPLY VOLTAGE - OUTPUT WITH· ZERO. INPUT; GAIN =1000;BAI:.ANCED SOURCE IMPEDANCE = 10KO INPUT OFFSET VOLTAGE VI. CHOPPING FREQUENCY INPUT OFFSET VOLTAGE CHANGE VI. SUPPLY VOLTAGE ~ 150 "C 0P019701 i .... I I 01 EACHSUPPLYVOLTAGE(+ AND-I I , I :t-+---+-:7fC-t-+-+-+-t I> \ , I. 211 I o 10 10k tk CHOPPING FlIIOuENcY CCLDCII.()U1) HI 0P02011 I 4-52 Note: All typical values have been guaranteed by characterlzalion and are not tested. 23 .. TlM.E~ .7 • • m. HT000021 ICL7850 TYPICAL PERFORMANCE CHARACTERISTICS (CO NT.) OPEN LOOP GAIN AND PHASE SHIFT VI. FREQUENCY ,.,,. OPEN LOOP GAIN AND PHASE SHIFT VI. FREQUENCY ,. I 1. " 10, "- "§. -tOO , ,'. I' I. • i" RL =, 10k.n. cDj • oj'''' Ut o.t 10 100 10 1 .t: ... , 1. I "- , "°1 I• .. ,.... :\.. 1. " V , ! • -I • • Cr .,'.O~f 100 ./ r---, f-~L = 10k.n. o.t Ut 1 k 10k tOOk tOO 10 10 'I"- 0 1. 10'1 ·i no I ~ ;" tk ,. if I" 10k 100k 'REQUENCY HI ,IIEGUiENCY ... 0PIJ20311 VOLTAGE FOLLOWER LARGE SIGNAL PULSE RESPONSE" i! IIIC ' !:i 0 ~ !; I ...... +2 ~+1 VOLTAGE FOLLOWER LARGE SIGNAL PULSE RESPONSE· ... 'I/;. J CLOCK OUT LOW, -1 I! f/ \. "- V I CLOCK OUT HIGH CLOCK OUT H'GH ..K '\ \\"'- f ~-2 o CLOCK OUT , LOW o.s.1 1.1 T'..E .... 2 o 2.1 1 ~ 0.5 1.5 I . 2 T'''E·~S OP020401 OP020501 • THE TWO DIFFERENT RESPONSES CORRESPOND TO THE TWO PHASES OF THE CLOCK. N-CHANNEL CLAMP CURRENT VI. OUTI'UT , VOLTAGE P-CHANNEL CLAMP CURRENT VOLTAGE ,.,.. VI. OUTPUT 10e,.A tll,oA 111,oA ,,.,. . 110A ii 1G011A 18 1011A 1M 1011A ~! 7 100pA 100pA 1apA tapA tpA +0.1 +0" +0.4 o +0.2 f 1M 1pA f -0.1 -0., -0.4 -0.2 o OUTPUT VOLTAGE ,\V + OUTPUT VOLTAGE AV0P020601 Note: All typical values have been guaranteed by characterization and are not tested. OP0207OI i ICL7650 a Output 'Clamp RZ The OUTPUT CLAMP pin allows reduction of the overload recOvery time inherent with chopper-stabilized amplifiers. When tied to the inverting input pin, or summing jUnction, a current path between this point and the OUTPUT pin occurs just before the device' output saturates. Thus uncontrolled .input differential inputs are avoided, together with the consequent charge build-upon the correctionstorage capacitors. The output swing is slightly reduced. 0 ...........- - · .OUTPUT Clock The ICl7650 has an internal oscillator giving a chopping freqUency of 200Hz, available at the CLOCK OUT pin on the 14-pih devices. Provision has also been made for the use of an external clock in these parts. The INT100 pin has an internal pull-up and may be left open for normal operation, but to utilize an external clock this pin must be tied to V- to disable the internal clock: The external clock signal may then be applied to the EXT. CLOCK IN pin. At low frequencies, the duty cycle of the external clock is not critical, since an internal divide-by-two provides the desired 50% switching duty cycle. However; since the capacitors are charged only when EXT ClK IN is HIGH, a 50-80% positive duty cycle is favored for frequencies above 500Hz to ensure that any transients have time to settle before the capacitor~ are turned OFF. The external clock should swing between V + an~ GROUND for pOwer supplies up to ±6V, and between V and V+ -6V for highl;lr supply voltages. Note that a signal of about 400Hz will be present at the EXT ClK IN pin with INT high or open. This is the internal clock signal before the divider. Ti::025101 Figure 3: I~L7650/B Test Circuit DETAILED DESCRIPTION Amplifier The functional diagram shows the major elements of the ICl7650. There are two amplifiers, the main amplifier, and the nulling amplifier. Both have otfseMull capability. The main amplifier is connected continu,ously from the input to the output, while the nulling amplifier, under the control of the chopping oscillator and clock circuit, alternately nulls itself and the main amplifier. The nulling connections, which are MOSFET gates, are inherently high impedance, and two external capacitors provide the required storage of the nulling potentials and the necessary nulling-loop time constants. The nulling arrangement operates over the full common-mode and power-supply ranges, and is also independent of the output level, thus giving exceptionally high CMRR, PSRR, and AVOL. , . Careful balancing of the input switches, and the inherent balance of the input circuit, minimizes chopper frequency charge injection: at the input terminals, and also the feedforward-typeinjection into the compensation capaCitor, which is the main cause of output spikes in this type of circuit. 1m In those applications where' a strobe signal is available, an ~Iternate approach to avoid capacitor misbalancing during overload can be used; Ita Strobe Signal is connected to' EXT ClK IN so that it is low during the time that the overload signal is applied to the amplifier, neither capacitor will be charged. Since the. leakage at the capacitor pins is quite I.ow at room temperature, the typical amplifier will drift less than 10pV/sec, and relatively long measurements can be made with little change in offset. Intermodulation Previous chopper-stabilized amplifiers have suffered from intermodulation effects between the chopperfrequency and input signals. These arise because the finite AC gain of the amplifier necessitates a lImall AC signal at the input. This is seen by the zeroing circuit as an error signal; which is chopped and fed back, thus injecting .sum and difference frequencies and causing disturbances to the gain and phase vs. frequency characteristics near the' chopping frequency. These effe<;ts are sUbstantially reduced in the ICl7650 by feeding the nulling circuit with a dynamic curre~t, corresponding to the co'1lpensation capacitor current, In such a way as'toJ:ancel that portion of the il1Put signal due to finite AG gain. Since that is the major error contribution to the ICl7650, the intermodulation and gainl phase disturbances are held to very low values, and can generally be ignored. 'BRIEF APPLICATION NOTES Component Selection The two required capacitors, CEx-rA and CEXTB, have optimum values depending on the clock or chopping frequency. For the preset internal clock, the correct value is 0.1pF, and to maintain the same relationship between the chopping frequency and the nulling time constant this value should be scaled approximately in proportion if an external clock is used. A high-quality film-type capacitor such as mylar is preferred, although a ceramic or other lower-grade capacitor may prove suitable in many applications. For quickest settling on initial turn-on, low dielectric absorbtion capacitors (such as polypropylene) should .be used. With ceramic capacitors, several seconds may be required to settle to 1pV. Capacitor Connection Protec~ion All device pins are static-protected by the use of input diodes. However, strong static fields and discharges should be avoided, as they can cause degraded diode. junction characteristics, which may result in increased input-leakage currents. Static The nullistorage capaCitors should be connected to the CEXTA and CEXTB pins, with a common connection to the CRETN pin. This connection should be made directly by either a separate wire or PC trace to avoid injecting load current IR drops into the capacitive circuitry. The outside foil, where available, should be connected to CRETN. 4-54 Note: All typical values ' eve been guaranteed by characterization and are not tested. ICL7650' _....- .- N--· -W~ - NOTE:...!.!J!.1 INVERTING AMPLIFIER FOLLOWER +... -- ' """"'. . .,,0 IXnMAL C .~' :="'''7" ..... 8HOULD •• LOW IMPEDANCE FOIl OP1111U11 GUARDING RETN ~, .0 O~ ?" 8O'n'OII VIEW 80AIID LAYOUT .011......". GUAIQIIIrIO WITH _ _ NON-INVERTING AMPLIFIER .......... SSOO6801 Figure 4: Connection of 'Input Guards Latchup Avoidance Guarding Junction-isolated CMOS circuits inherently include a parasitic 4-layer (p-n-p-n) structure which has characteristics similar to an SCR. Under certain circumstances this junction may be triggered into a low-impedance state, resulting in excessive supply current. To avoid this condi' tion, no voltage greater than 0.3V beyond the supply rails should be applied to any pin. In general, the amplifier supplies must be established either at the same time or before any input signals are applied. If this is not possible, the drive circuits must limit input current flow to under 1rnA to avoid latchup, even under fault conditions. Extra care must be taken in the assembly of printed circuit boards to take full advantage of the low input currents of the ICL7650. Boards must be thoroughly cleaned with TCE or alcohol and blown dry with compressed air. After cleaning, the boards should be coated with epoxy or silicone rubber to prevent contamination. Even with properly cleaned and coated boards, leakage currents may cause trouble, particularly since the input pins are adjacent to pins that are at supply potentials. This leakage can be significantly reduced by using guarding to lower the voltage difference betWeen the inputs and adjacent metal runs. Input guarding of the 8-lead TO-99 package is accomplished by using a 10-lead pin circle, with the leads of the device formed so that the holes adjacent to the inputs are empty when it is inserted in the board. The guard, which is a conductive ring surrounding the inputs, is connected to a low impedance point that is at approximateIy the same voltage as the inputs. Leakage currents from high-voltage, pins are then absorbed by the guard. The pin configuration of tlie 14-pin dual in-line package is designed to facilitate guarding, since the pins adjacent to the inputs are not used (this is different from the standard 741 and 101A pin configuration, but corresponds to that of the LM108). Output Stage/Load Driving The output circuit is a high-impedance type (approximately 18kn), and therefore with loads less than this value, the chopper amplifier behaves in some ways like a transconductance amplifier whose open-loop gain is proportional to load resistance. For example, the open-loop gain will be 17dB lower with a 1kn load than with a 10kn load. If the amplifier is used strictly for DC, this lower gain is of little consequence, since the DC gain is typically ,greater than 120dB even with a 1kn load. However" for wideband applications, the best frequency response will be achieved with a load resistor of 10kn or higher. This will result ,in a smooth 6dB/octave response from 0.1 Hz to 2MHz, with phase shifts of less than 10· in the transition region where the main amplifier takes over from the nU,1I amplifier. Pin Compatibility The basic pinout of the 8-pin device corresponds, where possible, to that of the industry-standard 8-pin devices, the LM741 , LM101, etc. The null-storing external capacitors are connected to pins 1 and 8, usually used for offset null or compensation capaCitors, or simply not connected. The output-clamp pin (5) is similarly used. In the case of the OP05 and OP-07 devices, the replacement of the offset-null pot, connected between pins 1 and 8 and V +, by two capacitors from those pins to V-, will provide easy compatibility. As for the LM108, replacement of the compensation capacitor between pins 1 and 8 by the two capaCitors to Vis all that is necessary. The same operation, with the removal of any connection to pin 5, will suffice for the LM101, jlA748, and similar parts. The 14-pin device pinout corresponds most closely to that of the LM108 device, owing to the provision of ,"NC" pins for guarding between the input and all other pins. Since this device does not use any of the extra pins, and has no provision for Offset-nulling, but requires a compensation capacitor, some changes will be required in layout to convert it to the ICL7650. Thermo-Electric Effects The ultimate limitations to ultra-high precision DC amplifiers are the thermo-electric or Peltier effects arising in thermocouple junctions of dissimilar metals, alloys, silicon, etc. Unless all junctions are at the same temperature, thermoelectric voltages typically around 0.1 jlV but up to tens of jlVrC for some materials, will be generated. In order to realize the extremely low offset voltages that the chopper amplifier can provide, it is essential to take special precautions to avoid temperature gradients. All components should be enclosed to eliminate air movement, especially that caused by power-dissipating elements in the system. Low thermoelectric-coefficient connections should be used where possible and power supply voltages and power dissipation should be kept to a minimum. High-impedance loads are preferable, and good separation from surrounding heat-dissipating elements is advisable. rc, 4-05 Note: All typical values have been guaranteed by characterization and are not tested;' 4 ! .ICL7080 d TYPICAL APPUCATI()NS +7.JV Clearly the appliCations of the ICL7650 will mirror those of other op. amps. A.nywhere that the performance of a circuit can be significantly improved by a reduction of inputoffset voltage and. ~las current, the ICL765Q is the logical choice. Basic non·'nverting and inverting amplifier circuits are shown in FiglJr~iI 5 and 6. Both cire;:uits. can use the output clamping circ:uit to.enhancethe overload recovery performance. The only limitations on the replacement of other op amps by the ICL7650 are the supply voltage (±8V max.) and the output drive capability (10kn load for full swing). Even these limitations can be overcome using a simple booster circuit, as shown in Figure 7, to enable the full output capabilities of the LM741 (or any other standard device) to be combined .with the input capabilities of the ICL7650. The pair form a composite device, so loop gain stability, when the feedback network is added, should be watched carefully. ".",,,,,,.. _ . 10k L -~----t cJl_--_ ..... __ ounvr LCOO8911 , FULL "'-IFFECT , OUT ..,., ~ . > - Figure 8: I,.ow Offset Comparator ... LC008601 Figure 5: Non Inverting Amplifier With (Optional Clamp) NOTE: R,I!R2 INQICATES THE PARALLEL COMBINATION OF R, AND R2 Normal logarithmic amplifiers are limited in dynamic range in the voltage-input mode by their input-offset voltage. The built-in temperature compensation and convenience features. of the ICL804B can be extended to a voltage-input dynamic range of close to 6 decades by using the ICL7650 to offset-null the ICL804B, as shown in Figure 8. The same concept can also be used with such devices as the HA2500 or HA2600 families of op amps to add very low offset voltage capability to their very high slew rates and b!lndwidths. Note that these circuits. will also have their DC gains, CMRR, and PSRR enhanced. LC008701 Figure 6: .Inverting Amplifier With (OptionallClamp NOTE: R,I!R2 lIilDICATES THE PARALLEL COMBINATION OFR, .um R2 . Figure 8 shows the use ·of the clamp circuit to advantage in a zero-offset comparator. The usual problems in using a chopper stabilized amplifier in. this application are aVOided, since the clamp circuit forC8$ the inverting input to follow the input signal. The threshold input must tolerate the output clamp current oto VIN/R without disturbing other portions of the. system. LCOOOOOl Figure 9: ICL8048 Offset Nulled by ICL7650 FOR FURTHER APPLICATIONS ASSISTANCE, SEE A053 AND R017 Note: All typical values heve been guaranteed by characterization and are not testad. ICL7652 Chopper-Stabilized low-Noise Operational Amplifier GENERAL DESCRIPTION FEATURES .The ICL7652 chopper-stabilized amplifier offers exceptionally low input offset voltage and is extremely stable with respect to time and temperature. It is similar to INTERSIL's ICL7650 but offers improved noise performance and a wider common-mode input voltage range. The bandwidth and slew rate are reduced slightly. INTERSIL's unique CMOS chopper-stabilized amplifier circuitry is user-transparent, virtually eliminating the traditional chopper amplifier problems of intermodulation effects, chopping spikes. and overrange lock-up. The chopper amplifier achieves its low offset by comparing the inverting and non-inverting input voltages in a nulling amplifier, nulled by alternate clock phases. Two external capacitors are required to store the correcting potentials on the two amplifier nulling inputs; these are the only external components necessary. The clock oscillator and all the other control Circuitry is entirely self-contained, however the 14-pin version includes a provision for the use of an external clock, if required for a particular application. In addition, the ICL7652 is internally compensated for unity-gain operation. • • • • • • • • • Extremely Low Input Offset Voltage - 10llY Over Temperature Range Ultra Low Long-Term and Temperature Drifts of Input Offset Yoltage (150nVlMonth, 100nVrC) Low DC Input Bias Current - 15pA Extremely High Gain, CMRR and PSRR - Min 110dB Low Input NoiSe Voltage- O.2IlVp-p (DC - 1Hz) Internally Compensated for Unity-Gain Operation Yery Low Intermodulatlon Effects (Open-Loop Phase Shift < 2·@ Chopper Frequency) Clamp Circuit to Avoid OVerload Recovery Problems and Allow Comparator Use Extremely Low Chopping Spikes at Input and Output ORDERING INFORMATION PART NUMBER ICL7652CPD ICL76521JD ICL7652CTV ICL76521TV TEMP. RANGE PACKAGE O'C to +70'C -25·C to +85·C O·C to +70·C -25'C to +85·C 14-pin plastic 14-pin CERDIP 8-pin TO-99 8-pin TO-99 _a-. - I _ - IN o-I-- --++--o OUTPUT 14 IITJIIT z 1Cl_ 13 __ IXYcura lIT CUI our II II V' " I GUrM IIUIPUr CLAW • V-'"I:.. 7 _ _-..:il!-,Como 14 LEAD (OuOI.o dwg PD, JD) CLAMP -0. V·_.. T ~EXTCl.KIN TOP VIEW ~A'Cl.KOm ---r--L-l +. ..r--l--r-a c.nn l v- ~c TQ.H BD012801 (Oulilno dwg TV) Figure 1: Functional Diagram CD031811 Figure 2: Pin Configuration ..3100 i - !t !; ... CEXT'"'G.1,.F- ! y 10 e +5 ~ Q W II: CEXT=1,.F I:: BROADBAND NOISE o 25 1..., .. 1000 50 75 100 ¥ 125 0 ~ -5 I&. w II: >.. 150 2345878 TIME(ma) TEMPERATURE ("C) TIME(ma) 01'036601 0P036501 4-59 Note: All typical values have been guaranteed by characterization and are not tested. 2345878 0P036701 :1 ICL7652 I» g~ TYPICAL PERFORMANCE CHARACTERISTICS (CONT.) Voltage Follower Large Signal Pulse Response· 3 ~2 c(ock III :I!:l g OUT LOW ~ If 3 t"- ~ III "g~ CLOCK OUT HIGH 0 O~ -2 I IF S AS 0 -1 2 4 6 8 10 12 14 TIME (,.a) 140 2 r- -~LohK OUT ,-- 0 :\ -1 -2 - 2 0 2 ~ z 100 ~ CLOCK e-OUT ~~IG~ - ~ I-- ~ 'I" 4 ~ ij120 l!. f- \LOW -3 -3 -2 0 Open·Loop Gain and Phase Shift vs Frequency Voltage Follower Large Signal Pulse Response· 80 I . 30 IpHkE '- I r\. 80 40 RL=1Ok 20 I o 6 8 10 12 14 TIME(,..) 0.1 1 ........ ~ 50 I 70 ~ \ ~\ 90 110 :!I ! ~. 130 ill ~ 150 j) 10 100 1k 10k 1001< 1M FREQUENCY (Hz) OP037601 0P037501 I 1_ ~ MARGIN-8O" 0P037701 ·The two different responses correspond to the two phases of the clock. N-Channel Clamp Current vs OutPl't Voltage :;- Ii 100,.A a: 1o,.A illa: ! 1"" :) 10nA iii 1nA 100pA u a: iC ~ Z ~ iii z :z: :t 0.8 0.6 11.4 0.2 OUTPUT VOLTAGE jaV-) ~ 3 "~ 2 2 g 0 6 III 100nA 1UnA 1nA ~ 100pA 10pA 1pA ..3 III U A- =s Input Offset Voltage Change vs Supply Voltage P·Channel Clamp Current vs Output Voltage 10pA 1pA -1.0 -0.8 -0.6 -0.4 -Q.2 OUTPUT VOLTAGE (4V+) -2 5 -3 o o 0PQ37901 0P037801 Iii III II: ~ - - I:') ."..,. "" -1 4 - ~ ~ 6 8 10 12 14 111 TOTAL SUPPLY VOLTAGE (V) 0P038001 control of the chopping frequency oscillator and clock Circuit, alternately nulls itself and the main amplifier. The nulling connections, which are MOSFET gates, are inherently'high-impedance, and two external capacitors provide the required storage of the nulling potentials and the necessary nulling-loop time constants. The nulling arrange, rnent operates over the full common-mode and power supply ranges,. and is also independent of the output level, thus giving exceptionally high CMRR, PSRR, and AVOL. Rz 1MO <';"- O-~.OUTPtlT Careful balancing of the input switches, together with the ,inherent balance of the input circuit, minimizes chopper frequency charge injection at the input terminals. Feedforward-type injection into the compensation capacitor is also minimized, which is the main cause of output spikes in this type of circuit. TC028401 Figure 3: Test Circuit Intermodulation Previous chopper-stabilized amplifiers have suffered from intermodulation effects between the chopper frequency and input signals. These arise because the finite AC gain of the amplifier necessitates a small AC Signal at the input. This is seen by the zeroing circuit as an error signal, which is chopped and fed back, thus injecting sum and difference frequencies and causing disturbances to the gain and phase vs frequency characteristics near the chopping DETAILED DESCRIPTION The Functional Diagram (Figure 1) shows the major elements of the ICL7652. There are two amplifiers, the main amplifier, and the nulling amplifier. Both have offset-null capability. The main amplifier is connected continuously from the input to the output. The nulling amplifier, under the 4-60 Note: All typical values have been guaranteed by characterization and are not tested. ICL7652 frequency. These effects are substantially reduced in the ICl7652 by feeding the nulling circuit with a dynamic current, corresponding to the compensation capacitor current, in such a way as to cancel that portion of the input signal due to finite AC gain. Since that is the major error contribution to t!"le ICl7652, the intermodulation and gainl phase disturbances are held to very low values, and can generally be ignored. lower-grade capacitor may prove suitable in many applications. For quickest settling on initial turn-on, low dielectric absorption capacitors (such as polypropylene) should be used. With ceramic capacitors, several seconds may be required to settle to 11lV. . Static Protection All device pins are static-protected by the use of input diodes. However, strong static fields and discharges should be avoided, as they can cause degraded diode junction characteristics which may result in increased input-leakage currents. Capacitor Connection The null-storage capacitors should be connected to the CEXTA and CEXTB pins, with a common connection to the CRETN pin. This connection should be made directly by either a separate wire or PC trace to avoid injecting load current IR drops into the capacitive circuitry. The outside foil, where available, should be connected to CRETN. Latchup Avoidance Junction-isolated CMOS circuits inherently include a parasitic 4-layer (p-n-p-n) structure which has Characteristics similar to an SCA. Under certain circumstances this junction may be trigerred into a low-impedance state, resulting in excessive supply current. To avoid this condition no voltage greater than 0.3V beyond the supply rails should be applied to any pin. In general, the amplifier sllpplies must be established either at the same time or before any input signals are applied. If this is not possible, the drive circuits must limit input current flow to under 1mA to avoid latchup, even under fault conditions. Output Clamp The OUTPUT CLAMP pin allows reduction of the overload recovery time inherent with chopper-stabilized amplifiers. When tied to the inverting input pin, or summing junction, a current path between this pOint and the OUTPUT pin occurs just before the device output saturates. Thus uncontrolled differential input voltages are avoided, together with the consequent charge build-up on the correctionstorage capacitors. The output swing is slightly reduced. Output Stage/Load Driving Clock The output circuit is a high-impedance type (approximately 18kn), and therefore, with loads less than this the chopper amplifier behaves in some ways like a transconductance amplifier whose open-loop gain is proportional to load resistance. For example, the open-loop gain will be 17dB lower with a 1kn load than with a 10kn load. If the amplifier is used strictly for DC, this lower gain is of little consequence, since the DC gain is typically greater than 120dB even with· a 1kn load. However, for wideband applications, the best frequency response will be achieved with a load resistor of 10kn or higher. This will result in a smooth 6dB/octave response from 0.1Hz to 2MHz, with phase shifts of less than 2° in the transition region where the main amplifier ,takes over from the null amplifier. The ICl7652 has an internal oSCillator, giving a chopping frequency of 400Hz, available at the CLOCK OUT pin on the 14-pin devices. Provision has also been made for the use of an external clock in these parts. The INT100 pin has an internal pull-up and may be left open for normal operation, but to utilize an external clock this pin miJst be tied to V- to disable the internal clock. The external ·clock signal may then be applied to the EXT CLOCK IN pin. An internal divide-by-two provides the desired 50% input switching duty cycle. Since the capacitors are charged only when EXT CLOCK IN is high, a 50%-80% positive duty cycle is recommended, especially for higher frequencies. The external clock can swing between V+ and V-. The logic threshold will be at about 2.5V below V + . Note also that a signal of about 800Hz, with a 70% duty cycle, will be present at the EXT CLOCK IN pin with INT /EXT high or open .. This is the internal clock signal before being fed to the divider. In those applications where a strobe signal is available, an alternate approach to a.void capacitor misbalancing during overload can be used. If a strobe signal is connected to EXT ClK IN so that it is low during the time that the overload signal is applied to the amplifier, heither capacitor will be charged. Since the leakage at the capacitor pins is quite low at room temperature, the typical amplifier will drift less than 1OIlV/sec, and relatively long measurements can be made with little change -in offset. Thermo-Electric Effects BRIEF APPLICATION NOTES Component Selection The ultimate limitations to ultra-high precision DC amplifiers are the thermo-electric or Peltier effects arising in thermo-couple junctions of dissimilar metals, alloys, silicon, etc. Unless all junctions are at the same temperature, but up thermo-electric voltages typically around 0.11lV for some materials, will be generated. In to tens of IlV order to realize the extremely low offset voltages that the chopper amplifier can provide, it is essential to take special precautions to avoid temperature gradients. All components should be enclosed to eliminate air movement, especially that caused by power-dissipating elements in the system. low thermoeleCtric-coefficient connections should be used where possible and power supply voltages and power dissipation should be kept to a minimum. High-impedance loads are preferable, and good separation from surrounding heat-dissipating elements is advisable. The required capacitors, CEXTA and CEXTB, are normally in the range of 0.11lF to 1.0IlF. A 1.01lF capacitor should be used in broad bandwidth circuits if minimum clock ripple noise is desired. For limited bandwidth applications where clock ripple is filtered out, using a 0.11lF capacitor results in slightly lower offset voltage. A high-quality film-type capacitor such as mylar is preferred, although a ceramic or other Extra care must be taken in the assembly of printed circuit boards to take full advantage of the low input currents of the ICl7652. Boards must be thoroughly cleaned with TCE or alcohol and blown dry with compressed air. After cleaning, the boards should be coated with epoxy or silicone rubber to prevent contamination. rc rc, Guarding 4-61 Note: All typical values have been guaranteed by characterization and are not tested. i... ..... 2 ICL.7852 ~. Even with properly cleaned and coated boards, leakage currents may cause trouble, particularly since the input pins are adjacent to pins that are at· supply potentials. This leakage Can be significantly reduced by using guarding to lower the voltage difference between the inputs and' adjacent metal runs. Input guarding of the 8 lead TO-99 package is acc9mplished by using a 10 lead pin circle, with , the leads of the device f.ormed so that the holes adjacent to the inputs are empty when it is inserted in the board. The. guard, which is a conductive ring surrounding the inputs, is , connected to a low-impedance point that is at approximately the same voltage as the inputs. Leakage currents from high-voltage pins are then absorbed by the guard. PIN COMPATIBILITY , The, basic pinout of the 8:pin de,vice corresponds, where possible, to that of theindusti"y-standard8-pin devices, the LM741, LM1 01, etc. The null-s~oring external capacitors are connected to pin,S 1 and 8, which are usu,ally used fO,r offsetnull or compensation capacitors. The output~clamp pin (5) is Similarly used. In the case of the OP-05 and OP-07 devices, the replacement of the offset-null pot; connected between pins 1 and 8 and Y + , by two capacitors from those pins 1'0 Y-, will prClvide easy compatibility. As for the LM108, replacement of the compensation capaCitor between pins 1 and 8 by the two capacitors to Y- is all thatis necessary. The same operation, with the removal of any connection to pin 5, will suffice for the LM101, jJA748, lind similar parts. The 14-pin device pinout corresponds most closely to that of the LM108 device, owing to the provision of "NC" pins for guarding between the input and all other pins. Since this device does not use any of the extra pins, and has no provision for offset-nulling, but requires a compensation capacitor, some changes will be required in layout to convert to the ICQ652. . The pin configuration of the 14"pin dual-in-line package is designed to facilitate' guarding, since the pins adjacent to the. inputs. are not used (this is different from the standard 741 and 101A pin configuration; but corresponds to that of the LM108). INPUT~~~-.------~~----~ OUTPUT OUTPUT INPUT ~++--t TC ----*-1 OUTPUT yo. lC017701 Figure 6: Inverting Amplifier with (Optional) Clamp Clearly the applications of the ICL7652 will mirror those of other op-amps. Thus, anywhere that the performance of a circuit can be significantly improved by a reduction of input-offset voltage and bias current, the ICL7652 is the logical choice. Basic non-inverting and inverting amplifier circuits are shown in Figures 5 and 6. Both circuits can use the output clamping circuit to enhance the overload recovery performance. The only limitations on the replacement of other op-amps by the ICL7652 are the supply voltage (±8V max) and the output drive capability (10kn load for full swing). Even these limitations can be overcome using a simple booster circuit, as shown in Figure 7, to enable the full output capabilities of the LM741 (or any other standard device) to be combined with the input capabilities of the ICL7652. The pair form a composite device, so loop gain stability, when the feedback network is added, should be watched carefully. AF031201 Figure 8: Low Offset Comparator It is possible to use the ICL7652 to offset-null such high slew rate and bandwidth amplifiers as the HA2500 and HA2600 series, as shown in Figure 9. The same basic idea can be used with low-noise bipolar devices, such as the OP05 and also with the ICL8048 logarithmic amplifier, to achieve a voltage-input dynamiC range of close to 6 decades. Note that these circuits will also have their DC gains, CMRR and PSRR enhanced. More details on these and other ideas are explained in application note A053. Mixing the ICL7652 with circuits operating at ±15V supplies requires the provision of a lower voltage. Although this can be done fairly easily, a highly efficient. voltage divider can be built using the ICL7660 voltage converter circuit "backwards". A suitable connection is shown in Figure 10. Note: All typical values have been guaranteed by characterization and are not tested. :" a ICL7652 TYPICAL APPLICATIONS OUT AFOS1311 HA2500l10/20 HA2600120 OR SIMILAR DEVICE Figure 9: HA2500 or HA2600 Offset-Nulled by ICL7652 2 'r---<+15V ICL7IIO 1--.--+ +7.5V 100F I--+--+ov AF0308CK Figure 10: Splitting + 15V with ICL7660 at > 95% efficiency. Same for -15V FOr further applications a..lstance, _ AOS3 and R017 4-64 Note: All typical values have been guaranteed by characterization and are not tested. ICLa007 JFET Input Operational Amplifier GENERAL DESCRIPTION FEATURES The Intersi! ICLB007 is a low input current JFET input operational amplifier. The ICLB007 A is selected for 4 pA max input current. The devices are designed for use in very high input impedance applications. Because of their high slew rate, high common mode voltage range and absence of "latchup", they are ideal for use as a voltage follower. The Intersil B007 and B007 A are short circuit protected. They require no external components for frequency compensation because the internal 6 dB/roil-off insures stability in closed loop applications. A unique bootstrap circuit insures unusually good common mode rejection for a JFET input op-amp and prevents large input currents as seen in some amplifiers at high common mode voltage. • • • • • • Ultra Low Input Current High Slew Rate - 6VI /J5 Wide Input Common Mode Voltage 1MHz Band Width Excellent Stability Ideal for Unity Gain Applications ORDERING INFORMATION PART NUMBER TEMPERATURE RANGE to +70·C ICL8007CTV ICL8007ACTV O·C ICL8007MTV ICL8007AMTV -55·C ICL8007/D to + 125·C - PACKAGE 8 LEAD TO-99 METAL CAN DICE"· ··Parameter MinIMax Limits quaranteed at 25·C only for DICE orders. ~.----------.--------~----~~o.· ••• ..., L.--+-oOUTPUT Q •• r'O"V'fW, CO01690t TC02590t ICL8007 pin 4 connected to case (TV package) ICL8007A pin 8 connected to case (TV package) Figure 1: Functional Diagram Figure 2: Pin Configuration 4-65 Note: All typical values have been guaranteed by characterization and are not tested. g ICLeoo7 a A'BSOLUTE MAXIM'UM RATINGS Supply Voltage ................................................ ±18V Power Dissipation (Note 1) ............................. 500mW Differential Input Voltage ...................................±30V Input Voltage (Note 2) ...............................'..... :.±15V Storage Temp.erature Range;·........... ~65·C to + 150·C Operating Temperature Range 8007M, 8007AM .................... - 55·C to -+: 125·C 8007C, 8007AC ........................... O·C to + 70·C Lead Temperature (Soldering, 10sec) ................. 300·C Output Short-Circuit Duration (Note 3) ............ Indefinite NOTES: 1. Rating applies lor case temperatures to 12S0C; derate linearly at 6.S mW/oC' lor ambient temperatures above + 7SOC. 2~ For supply voltages less than ± 15V, the absolute maximum input voltage is equal to the supply voltage. 3. Short circu~ may be to ground or e~her supply. Rating applies to + 12SoC case temperature or + 7SOC ambient temperature. 4. For Design only, not 100% tested. ELECTRICAL CHARACTERISTICS CHARACTERISTICS (Vs = ±15V unless otherwise specified) aOO7M TEST CONDITIONS MIN The following specifications apply for T A Input Offset Voltage 8007C TYP MAX 10 20 MIN a007AM & aOO7AC TYP MAX 20 SO MIN MAX 15 30 mV 4.0 pA =25·C: 'Rs ~ 100kn Input Offset Current 0.5 Input Bias Current (either input) 2.0 Input Resistance 106 106 106 Input Capacitance 2.0 2.0 2.0 Large Signal Voltage Gain UNIT TYP RL ~ 2kn, VOUT - ±10V 0.5 20 50.000 3.0 0.2 50 20,000 0.5 pA Mn pF viv 20,000 Output Resistance 75 75 75 n Output Short-Circuit Current 25 25 25 rnA Supply Current 3.4 5.2 3.4 6.0 3.4 6.0 rnA Power Consumption 102 156 102 160 102 180 mW Slew Rate 6.0 Unity Gain Bandwidth 1.0 6.0 1.0 2.S 6.0 VIliS 1.0 MHz Risetime CL ~ 100pF, RL - 2kn 300 300 300 ns Overshoot CL ~ loopF, RL - 2kn 10 10 10 % The following specifications apply for O·C :5 TA :5 (8007M and 8007AM): Input Voltage Range Common Mode Rejection Ratio + 70·C (8007C and 8007AC), and -55·C:5 TA:5 + 125·C ±10 ±12 ±10 ±12 ±10 ±12 V 70 90 70 90 86 95 dB Supply Voltage Rejection Ratio 70 Large Signal Voltage Gain Output Voltage Swing RL ~ RL~ Input Bias Current (either input) TA = + 125°C TA= + 70°C Average Temperature Coefficient 01 Input Offset Voltage 300 25,000 10kn 2kn ±12 ±10 70 600 ±14 ±13 ±12 ±10 ±14 ±13 ±12 ±10 2.0 SO 75 (Note 4) .-----""9"""9--- Your TC026011 Figure 3: Transient Response Test Circuit Note: All typical values have been guaranteed by characterization and are not tested. 70 200 15,000 15,000 75 "VIV VIV ±14 ±13 V V 1.0 30 nA pA 50 "V/oC ICLa007 TYPICAL PERFORMANCE CHARA~TERISTICS 10" 10" ~SII~ ••i&v t-... t\. z 10" C ... 10> ".... 10' I!I ~ g ~!U:";.~'5V 8 T•• +25·C 1\ t\. ""- 10 I 10 100 'I INPUT 7 ~ \ ~ TA =+2&"C RL = 'CIkfi I 1\ OUT..JT i1 I, ~ 10k lOOk 1M 10M lk ~!:,,..! =(±\~~ _ I~ ~ I!I OUTPUT VOLTAGE SWING AS A FUNCTION OF FREQUENCY VOLTAGE FOLLOWER LARGE SIGNAL PULSE RESPONSE OPEN LOOP VOLTAGE GAIN 0'23458781 FIlEQUENCYCHzl 'CIk TIME (~.) '00k 10M 1M FREQUENCY (Hz) QP026001 OP025901 0P025801 INPUT BIAS CURRENT AS A FUNCTION OF TEMPERATURE TRANSIENT RESPONSE OUTPUT SWING AS A FUNCTION OF SUPPLY VOLTAGE 20 28 T.=25"C R L ' 2kn 24 20 90"0 16 ~ I I '2 ,CrJ I o " W i tI< tI< Vs " f- o ~ z 103 ..a ~ ~lSV ~ ~ RISE TIME T.· 25 C RL " 2 kl! CL"loopF 5 1.0 TIME 2.0 1.S .... 1/ 0 ./ 10 /V 10 // ;) ;) V POSIT.VE SWING/ ~ / to' 15 / 5 V V NEGATIVE SWING N :::; 2.5 " ~ ./ 1 20 ~ (ps) 40 60 80 100 120 15 10 5 0 140 SUPPLYV(lTAGE "V) TEMPERATURE C·C) 0P026301 0P026101 0P026201 INPUT VOLTAGE RANGE AS A FUNCTION OF SUPPLY VOLTAGE OPEN LOOP VOLTAGE GAIN AS A FUNCTION OF SUPPLY VOLTAGE QUIESCENT SUPPLY CURRENT AS A FUNCTION OF SUPPLY VOLTAGE 5 20 ~ co z ~ 15 POSITIVE / C tI< ... ...... ~ > ~ ... ;) AI" 10 0 5 ~ I/, V / / V /NEGAT(VE T. "25'C i 4 tI< tI< a> 3 ~ 2 !i ... .... I-- I-- - .... V .0' L-.l-...l-....1..-L-L--l_.l....-J o 5 10 15 0 SUPPL Y VOLTAGE C'V) 10 10 15 SUPPLY VOLTAGE "VI 0P026401 0P026S01 U ...> 2 ~ - -r0- t- ~> oS ... ; 10' ~ ... 0 > ... -15 25 65 105 10' I-- '"~ ' Rs " iu son III 100 lk 10k lOOk FREQUENCY \Hzl TEMPERATURE I'CI OP026701 0 ... - For additional information, see Application Note AO05., 40-68 Note: All typlcal values have been guaranteed by characterization and are not tested. ~~~~001dtz V 8,0.0 Rs" 1 Mn I- 10 100 ~ '0 -55 WIDEBAND NOISE AS A FUNCTION OF SOURCE RESISTANCE INPUT VOLTAGE NOISE AS A FUNCTION OF FREQUENCY QUIESCENT SUPPLY CURRENT AS A FUNCTION OF TEMPERATURE I o.1 100 - ~ ~ =~~~(cHz I I 1 1k 10k 100k 1M 10M , _ SOURCE RESISTANCE (0) OP026911 .U~UlLi... ICL8021/ICL8022/ ICL8023 -I N Low Power Bipolar Operational Amplifier GENERAL DESCRIPTION The Intersil ICL8021 series are low power operational amplifiers specifically designed for applications requiring very low standby power consumption over a wide range of supply voltages. The electrical characteristics of the 8021 series can be tailored to a particular application by adjusting an external resistor, RSET, which controls the quiescent current. This is advantageous because IQ can be made independent of the supply voltages: it can be set to an extremely low value where power is critical, or to a larger value for high slew rate or wideband applications. Other features of the 8021 series include low input current that remains constant with temperature, low nOise, high input impedance, internal compensation and pin-forpin compatibility with the 741. The Intersil 8022 (8023) consists of two (three) low power operational amplifiers in a single 14(16)-pin DIP. Each amplifier is identical to an 8021 low power op amp, and has separate connections for adjusting its electrical characteristics by means of an external resistor, RSET, which controls 'the quiescent current of that amplifier. • • • • • • • VOS = 3mV Max (Adjustable to Zero) ± 1.SV to ± laV Power Supply Operation Power Consumption - 20j.lW @ ±1V Input Bias Current - 30nA Max Internal Compensation Pin-for-Pin Compatible With 741 Short Circuit Protected ORDERING INFORMATION ICLB021 C PART NUMBER TV LpaCkage TV - TO-99 Metal can PA - 8 pin Minidip JD PD - 14 pin CERDIP 14 pin Plastic DIP 8021 only 8022 only JE - 16 pin CERDIP 8023 only PE - 16 pin, Plastic DIP ' - - - - - Temperature C - Commercial - O·C to + 70·C M - Military - -SS·C to + 12S·C ' - - - - - - - - Basic Part Number 8021 - Single 8022 - Dual 8023 - Triple TEMPERATURE RANGE - ICL8021/D ICL8021CJA ICL8021C8A ICL8021 CPA ICL8021CTY ICL8021MJA ICL8021MJD ICL8021MTY O·C O·C O·C O·C -SS·C -SS·C -SS·C ICL8022/D ICL8022CJD ICL8022CPD ICL8022MJD O·C to 70·C O·C to 70·C -SS·C to + 12S·C ICL8023/D ICL8023CJE ICL8023CPE ICL8023MJE O·C to 70·C O·C to 70·C -SS·C to + 12S·C to to to to to to to 70·C 70·C 70·C 70·C + 12S·C + 12S·C +12S·C PACKAGE DICE" 8 Lead CERDIP 8 Lead S.O.l.C 8 Lead MINIDIP 8 Lead Metal Can 8 Lead CERDIP 14 Lead CERDIP 8 Lead Metal Can - DICE 14 Lead CERDIP 14 Lead MINIDIP 14 Lead CERDIP - DICE 16 Lead CERDIP 16 Lead MINIDIP 16 Lead CERDIP "Parameter MinIMax Limits guaranteed at 2S·C only for DICE orders. 4-69 Note: All typical values have been guaranteed by charscterization and are not tested. N FEATURES I fit ICLII021l1CL~022/1CL8023 ABSOLUTE MAXIMUM RATINGS Supply Voltage ................................................ ±18V Differential Input Voltage (Note 1) ....................... ±15V Common Mode Input Voltage (Note 1) ................ ±15V Output Short Circuit Duration .............. , ......... Indefinite Power Dissipation (Note 2) ............................. 300mW NOTE 1: For supply voltages less' than Operating Temperature Range, " 8021M .................... : .......... -55·C to +125·C 8021 C ..................................... O·C to + 70·C Storage Temperature Range , ........... -65·C 10 + 150·C Lead Temperature (Soldering. 10sec) ........ ~ ...... +300·C 'f 15V. the absolute maximum'input voltage is equal to the supply voltage, NOTE 2: Rating applies for case temperatures io + 125'C; derate linearly at 5,6 mW I'C for ambient temperatures above + 95,·C. In Z&KO V' 05026001 Figure 1: Functional Diagram 10 SET 8AL~, -IN 2 ,10 V·'SET 'IN 3· OUT _ '8 7 V-4 sBAL y' (outline dwg PAl (outline dwg TV) CD017501 CD017401 (outline dwg JE, PEl (outline dwg JO, PO) CD017t'101 CO0177ot Figure 2: Pin Configurations 4-70 Note: All typical values have been guaranteed by characterization and are not tested. 1I0~OIb ICL8021/ICL8022/ICL8023 ~ -i ... v' -i N N N Col TC034801 Figure 3: Voltage Offset Null Circuit ELECTRICAL CHARACTERISTICS (VSUPPLY = ±6V, la = 30j.lA, unless otherwise specified.) 8021C 8021M CHARACTERISTICS TEST CONDITIONS MIN TYP MAX MIN TYP UNIT MAX The following specifications apply for TA = 2S·C: 2 3 2 6 mV Input Offset Current .5 7,5 .7 10 nA Input Bias Current 5 20 7 30 Input Offset Voltage RS 5100kn Input Resistance Input Voltage Range Common Mode Rejection Ratio VSUPPLY'" ±15V Rs 510kn 10 3 10 ±13 ±12 ±13 V 70 80 70 80 dB Supply Voltage Rejection Ratio Rs 510kn 30 Output Resistance Open Loop 2 Output Voltage Swing RL <: 20kn, VSUPPLY ~ ± 1'5V ±12 RL<:IOkn, VSUPPLy=±15V· ±II 150 ·±14 ±I3 30 360 VOUT=O Slew Rate (Unity Gain) Unity Gain Bandwidth RL = 20kn, VIN = 20mV Transient Response (Unity Gain) RL'" 20kn, VIN '" 20mV Ri.setime Overshoot Mn 150 IlVN 2 kn .,±12 ±14 V ±II ±13 V ±I3 mA ±I3 Output Short-Circuit Current Power Consumption nA 3 ±12 480 380 600 IlW O.IS 0.16 V/JlS 270 270 kHz 1.3 10 1.3 10 IlS % The following specifications apply for O·C5TA5 +70·C (B021C) and -SS·C5TA5 +12S·C (B021M) Input Offset Voliage RS 5 lOkn Input Offset Current Input Bias Current Average Temperature Coefficient of Input Offset Voltage Average Temperature Coefficient of Input Offset Current RS 5 lOkn . Large Signal Voltage Gain RL = lOkn 50. Output Voltage Swing RL<: 10kn ±to 4-71 Note: All typical values have been guaranteed by characterization and are not ·tested. 2.0 4.0 2.0 7.5 mV 1.0 II 1.5 15 nA 10 32 15 50 nA 5 5 IlV/"C 1.7 0.8 pA/·C 50 200 V/mV ±IO ±IS V 200 ±13 =ICL8021/ICL8022/ICL8023 a II QUIESCENT CURRENT ADJUSTMENT &'II QUIESCENT CURRENT SETTING RESISTOR (PIN a to V-) QUIESCENT CURRENT SETTING RESISTOR (PIN a to V-) 10 Vs 10pA 301lA 1001lA ±1.5 1.5MQ 470kn l50kQ - ±3 3.3MQ 1.lMQ 330kQ lookQ ±6 7.5MQ 2.7MQ 750kQ 220kQ ±9 l3MQ 4MQ 1.3MQ 350kQ £ .t_ 3001lA ±12 laMQ 5.6MQ 1.5MQ 5l0kQ ±15 22MQ 7.5MQ 2.2MQ 620kQ I~ , 10"A 10M!!~IIIII~~~~ '~~ :z> I M!! ~IIIII~'~O~'~'OO~"A~ IQ = 300fjA 1.fI.Jo1"11111 U IIIII 100.) o 2 4 6 8 10 12 14 16 18 5UPPL Y VOLTAGE I· VI OPO.27501 TYPICAL PERFORMANCE CHARACTERISTICS· (TA = + 2SoC, Vs = ±6V, 10 - 30,iA unless otherwise specified.) INPUT BIAS CURRENT VS AMBIENT TEMPERATURE INPUT BIAS CURRENT VS QUIESCENT CURRENT DIFFERENTIAL INPUT IMPEDANCE VS QUIESCENT CURRENT lOll 100 C i ...z.s ~ c c ... w rr: rr: ;:) u 10 B '"c ii ~ iii ... 50 10 10 IQI_~,,! 1 5 i C ! -I- I" - 10 30 lOll ~ I IJ -80 300 -ID"A I I I I I -IOO"A -20 0 20 80 100 140 TEMPE RATURE ( CI QUIESCENT CURRENT ",AI QUIESCENT CURRENT ("AI OP027701 0P027601 0P027801 SLEW RATE VS QUIESCENT CURRENT FREQUENCY RESPONSE VS QUIESCENT CURRENT PHASE MARGIN VS QUIESCENT CURRENT RL ·2011U 'iii' w 5 J . /~ ~ w C ... rr: iI ...... 1/ ~ 4S :l:z: 30 ... V '" ...- .... 13 • rr: V 05 ~IO c/. w -..e..75 z L IL 01 10 30 100 30 300 QUIESCENT CURRENT ("AI 100 300 QUIESCENT CURRENT ("AI 0!' 0 0 ... 40 ~ "'..." 15 > 10 0 z :;) > 2 Z 5 :;) 0 RISE TIME o 4 8 12 ~ "z ~ RL • 20kfl "'" === l- S > I- :;) 100 fI 300 0P028401 EQUIVALENT INPUT NOISE CURRENT VS FREQUENCY ;i ~ 80 > "...c... __ 10 'IOOI~~ 50 , 40 .r---- 0 ... > 30 10 ·30p.A 10' 10 ,.A c/O / .. 30 aUIESCENT CURRENT I,.AI EQUIVALENT INPUT NOISE VOLTAGE VS FREQUENCY ... w ~ I i OP02B301 .!: 10 Ys ' ,6Y 10 16 TIME l,.tlCl OUTPUT VOLTAGE SWING VS SUPPLY VOLTAGE L Vs' 'ISV I OP028201 30 't-.. 5 i rt 0 10 Ik IOU. FREOUENCY IHzI 10 :;) 2 :;) 0I- "'- ... c ~~ 0- ! 50 ...~ I- "I~ .u 0 20 RL • tOka CL'IOOpF I- ~~ 0- > ! ... ~R, "50UI 80 MAXIMUM LOAD VS QUIESCENT CURRENT TRANSIENT RESPONSE 0 20 i 10 ...Z 0- :;) ! 0 '1 ,3 ,6 '10 50 SUPPLY VOL TAGE IVI 100 Ik 50 100 500 Ik FREaUENCY 1Hz, FREQUENCV 1Hz} 0P02a501 *ICL8021 C guaranteed only for O·C ::; T A ::; 500 0P0287Of 0P02II6OI + 70·C 4-73 Note: All typical values have been guaranteed by characterization and are not tested. !i ICL8043 ,3 Dual JFET Input Operational . g Amplifier GENERAL DESCRIPTION FEATURES ThelCL8043 contains two FET input op amps, each similar in performance .to the ICL8007. The inputs and outputs are fully short circuit protected, and no latch-up problems exist.· Offset nulling is accomplished by using a. single pot (for each amplifier) connected to .th!! positive supply voltage~ The devices have excellent common mode . rejection. • • • • • Very Low Input Current - 2pA Typical High Slew Rate - 6VI j.I8 Internal Frequency Compensation Low Power DIssipation - 135mW T.yplcal Monolithic Construction ORDERING INFORMATION PART NUMBER TEMPERATURE RANGE ICL8043MJE - 55°C to 125°C CERAMIC 16 Pin DIP ICL8043CPE O°C,to 70°C Plastic 16 Pin DIP ICL8043CJE O°C to 70°C CERAMIC 16 Pin DIP PACKAGE -... _NUU -IN (outline dwgs JE. PEl c0017901 08018701 Figure 1: Functional Diagram (One Side) Figure 2: Pin Configuration 16 Pin DIP (Top View) 4-74 Note: All typical values have been guaranteed by characterization and are not tested. .O~OIL ICL8043 ABSOLUTE MAXIMUM RATINGS Supply Voltage ................................................ ±18V Internal Power Dissipation (Note 1) .................. SOOmW Differential Input Voltage ................................... ±30V Input Voltage (Note 2) ...................................... ±1SV Voltage between Offset Null and V+ ................. ±O.SV Storage Temperature Range ............ -6S'C to + 150'C Operating Temperature Range 8043M ............................... -5S'C to + 12S'C 8043C ..................................... O'C to + 70'C Lead Temperature (Soldering. 10sec) ................. 300·C Output Short-Circuit Duration ......................... Indefinite Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only. and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods m~y affect device reliability. NOTES: 1. Rating applies for case temperatures to 12SoC; derate linearly at 9mWI"C for ambient temperatures above +9SoC. 2. For supply voltages less than ± 1SV, the absolute maximum input voltage is equal to the supply voltage. ELECTRICAL CHARACTERISTICS (VSUPPLY = ± 1SV unless otherwise specified) 8043M SYMBOL CHARACTERISTIC 8043C TEST CONDITIONS UNIT MIN TYP MAX 10 20 MIN TYP MAX 20 50 The following specifications apply for TA = 2SoC: VOS Input Offset Voltage lOS Input Offset Current RS < 100kn 0.5 liN Input Current (either input) 2.0 RIN Input Resistance 106 CIN Ay Input Capacitance RO Output Resistance ISC Output 3.0 20 Current 50 pA Mn 2.0 SO,OOO mV pA 106 2.0 RL> 2kn, You! ~ ± 10V Large Signal Voltage Gain Short-Circu~ 0.5 pF 20,000 VN 75 75 n 25 25 rnA ISUPPLY Supply Current (Total) 4.5 6 4.5 6.8 rnA POISS SR Power Consumption 135 180 135 204 mW Slew Rate 6.0 6.0 V/pB GBW Unity Gain Bandwidth 1.0 1.0 MHz tr Transient Response (Unity Gain) Risetime Overshoot 300 10 300 10 ns % The following specifications apply for O·C t.VIN CMRR CL < 100pF, RL = 2kn < TA < + 70°C (8043C). - SS·C < TA < + 12SoC Input Voltage Range Common Mode Rejection Ratio PSRR Supply Voltage Rejection Ratio Ay Large Signal Voltage Gain t.VO Output Voltage Swing VOS :np\ll Offset Voltage liN Input Current (either input) t.VOSlt.T Average Temperature Coefficient of Input Offset Voltage (8043M): ±10 ±12 ±10 ±12 V 70 90 70 90 dB 70 70 300 25,000 ±12 ±14 ±12 ±14 RL> 2kn ±10 ±13 ±10 ±13 15 30 2.0 15 TA = +70°C 75 (Note 3) NOTE: 3. For Design only, not 100% tested. 4-75 Note: All typical values have been guaranteed by characterization and are not tested. p.VN VN RL> 10kn TA= +12SoC 600 15,000 V V 30 60 mV 50 175 pA nA 75 p'vrc ·S!1 ~:::'~~:RFORMANCE CHARACTERISTICS OPEN LOOP VOLTAGE GAIN AS A FUNCTION OF FREQUENCY 10" 105 ~ ysJ.... = l15Y TA=+U'C l'\.. e--:.. 10 .. ...C '" ~ z ~ r\.. l'\.. OUTPUT VOLTAGE SWING AS A FUNCTION OF FREQUENCY ~ VOLTAGE FOLLOWER LARGE-5IGNAL PULSE RESPONSE· . v.:;.:.. •• 1~~ 1-. 1\ ~ I\.. " .,.~ "II! , 16 00( i'\ 0 Ik 10k lOOk 1M 10M FReQueNCY fHrI OP020901 INPUT CURRENT AS A FUNCTION OF TEMPERATURE OUTPUT SWING AS A FUNCTION OF SUPPLY VOLTAGE 20 - TA 1= I ~li o TL I-- I alc =2Icll POJITIVE SWI, I .5 I- Vsupp = :t15V ~:~ 1.0 1.5 TIME (.0) 2.0 2.5 .0 80 80 100 .120 TEMPERATURE rC) 1.0 o :t5 :tIO :tIS SUPPLY VOLTAGE 0_ 0P030101 OPEN LOOP VOLTAGE GAIN AS A FUNCTION OF SUPPLY VOLTAGE V V" ./V V I-- I-- NEjATtE jWlNj- I-- ~ TA = 25°C ~ i/17 ,/ RISETIME 1/ -8 100 lk 10k lOOk 1M 10M FREQUENCY (HI) TRANSIENT RESPONSE 'OUTPUT -I-i-I- ~- 8 00( ~ r INPUT Q 0P029801 ..• I I Yiu" •• ,5V : I ~~;H: 8 TA • +25°C RL"OkG 32 INPUT VOLTAGE RANGE AS A FUNCTION OF SUPPLY VOLTAGE QUIESCENT SUPPLY CURRENT AS A FUNCTI.ON OF SUPPLY VOLTAGE • 20 :/, T. -'H'C 1/ V I-- i- POSIT/ i/7 l/V - I.- I-'" ~ciATlVE- - ±20 .-- I.-~ V 1~0~~--:t~5-L-:t~10~--:t~15~-:t20~ SUPPLY VOLTAGE o ±5 ±10 ±15 SUPPLY VOLTAGE 0P030401 :t20 OP030501 4-76 Note: All typical values have been guaranteed by characterization and afe not tested. 2 :t5 ±10 ±15 SUPPLY VOLTAGE ±20 ICL8043 TYPICAL PERFORMANCE CHARACTERISTICS (CONT.) TOTAL QUIESCENT SUPPLY CURRENT AS A FUNCTION OF TEMPERATURE INPUT NOISE VOLTAGE AS A FUNCTION OF FREQUENCY WIDEBAND NOISE AS A FUNCTION OF SOURCE RESISTANCE 104 Vs= :t11Y -- r-- .... - -;01000 E .: > ___ BANDWIDTH ,L... 100 _ . 10H, TO 100kH,.T 1"--0 ..~ r-- r RS=1Mtl r--; ~ II~: = SOlI IE - 10.0 i--' c ... 1111 I -15 25 15 TEMP£RATURE COC) 10 105 100 Ik 10k BANDWIDTH • 01 H. T.O 01 FREQUENCY (Hz) OP030701 ::::: Hr':: 100 lOOk ." 1.0 I- ~ >' Ik· 10k lOOk 1M 10M 100M SOURCE RESISTANCE 1m 0P030901 0P030801 v+ 10 LC01170t DS018801 Figure 4: Channel Separation Test Circuit Figure 3: Offset Voltage Null Circuit CHANNEL SEPARATION " 0 Channel separation or crosstalk is measured using the circuit of Figure 4. One amplifier is driven so that its output swings ±10V; the signal amplitude seen in the other amplifier (referred to the input) is then measured. Typical performance is shown in Figure 5. . VOUT (A) Channel Separation = 20 log ( VIN (8) T1~ ~ ·c .... - I R=} I' ~ ) 10 10 '00 ~ 't 'Ok lOOk FREQUENCY (Hz) ,M OP031001 Figure 5: Channel Separation Performance 4-77 Note: All typical values have been guaranteed by characterization and are not tested. .. ICL8043 I APPLICATIONS as a normal amplifier while the voltage necesSlity to zero its offset voltage is stored on the integrator comprised of A2 and Ct. Applications for any dual amplifier fall into two categories. There are those which use the two-in-one package concept simply to save circuit-b9ard space and cost, but more interesting are those circuits whete the two sides of the dual are used to complement one another in a 'subsystem application. The circUits which follow have been selected on this basis. The advantage of .this circuit is that it allows chopper amplifier performance to be achieved at one-tenth the cost. The only limitation is that during the offset nulling mode, A1 is disconnected from the input. However, in most data acquisition systems, many inputs are scanned sequentially. It is fairly simple to synchronize the offset nulling operation so that it does not occur when that particular amplifier is being "looked at". For the component values shown in F;=igure 3, and assuming a total leakage of 50pA at the inverting input of A2, the offset voltage referred to the input of At will drift away from zero at only 40p.V/sec. Thus, the offset nulling information stored on Ct can be "refreshed" relatively infrequently. The measured offset voltage of At during the amplification mode was 11 p.V; offset voltage drift with temperature was less than 0.1 p.V AUTOMATIC OFFSET SUPPRESSION CIRCUIT The circuit shpwn in Figure 6 uses one amplifier (At) as a normal gain stage, whil!3 the other (A2) forms pari of an offset voltage zeroing loop. There are two modes of operation which occur sequentially. First, an offset null correction mode occurs during which the offset voltage of At is nulled out. Following this nulling operation, At is used rc. TC026301 'SW1, SW2, .. SW3 ARE ALL PART OF A SINGLE IH5043 CMOS ANALOG SWITCH CONNECTED AS SHOWN IN FIGURE 6(b) Figure 6(a): Automatic Offset Null Circuit +IV +l1V LOGIC IM'UT CDD18001 Figure 6(b) 4-78 Note: All typical values have been guaranteed by characterization and are not tested. . ICL8043 ..... ~- HORIZONTAL ~ 50MSIDIV ~~ WF015301 Figure 7: Staircase Generator Circuit 1H5042 ,. 1k!1 HORIZONTAl.. '" 2GOmSIDIY VOUT YREF WF015401 Figure 8.: Analog Counter Circuit STAIRCASE GENERATOR ground to assure complete discharge. The upper trip point could then be adjusted independently to determine the pulse count. The circuit shown in Figure 7 is a high input impedance version of the so-called "diode pump" or staircase generator. Note that charge transfer takes place at the negativegoing edge of the input-signal. SAMPLE & HOLD CIRCUIT Two important properties of the 8043 are used to advantage in this circuit. The low input bias currents give rise to slow output decay rates ("droop") in the hold mode, while the high slew rate (6V/IJS) improves the tracking speed and the response time of the circuit. See Figure 6. The ability of the circuit to track fast moving inputs is shown in Figure 10A. The upper waveform is the input (10V/div), the lower waveform the output (5V/div). The logic input is high. Actual sample and hold waveforms are shown in Figure 10B. The center waveform is the analog input, a ramp moving at about 67V!ms, the lower waveform is the logic input to the sample & hold; a logic" 1" initiates the sample mode. The upper waveform is the output, displaced by about 1 scope division (2V) from the input to avoid superimposing traces. The hold mode, during which the output remains constant, is clearly visible. At the beginning of a sample period, the output takes about 81JS to catch up with the input, after which it tracks until the next hold period. The most common application for staircase generators is in low cost counters. By resetting the capacitor when the output reaches a predetermined level, the circuit may be made to count reliably up to a maximum of about 10. A straightforward circuit using a LM311 for the level detector, and a CMOS analog gate to discharge the capacitor, is shown in Figure 8. An important property of this type of counter is the ease with which the count can be changed; it is only necessary to change the voltage at which the comparator trips; A low cost A-O converter can also be designed using the same principle since the digital count between reset periods is directly proportional to the analog voltage used as a reference for the comparator. A considerable amount of hysteresis is used in the comparator shown in Figure 8. This. ensures that the capacitor is completely discharged during the reset period. In a more sophisticated circuit, a dual comparator "window detector" could be used, the lower trip point set close to 4-79 Note: All typical values. have been guaranteed by characterization and are not tested. ~ ICLa043 51! -11V 10 7 ANALOG . OUTPUT 11 INPUT I -11V • • 10.000 pF POLYSTYRENE +av = > IIAIIPLI MODE IH5043 IN = > HOLD MODE LC011801 Figure 9: Sample And Hold Circuit ....... r ....... ........ A. l \ r ....... ....... \ WF015501 r\ \,. ..... ~ r-.... ...... , ~ TOP: INPUT (10V/DIV) BOTTOM: OUTPUT (5V/DIV) HORIZONTAL: 10jlll/QIV ....... -- WF015601 TOP: 2V1DIV CENTER: 2V1DIV BOTTOM: 10VlDIV HORIZONTAL: 10jlll/DIV Figure 10A . 4-80 Note: All typical values have been guaranteed by characterization· and are not tested. Figure 10B . ICL8043 .. INSTRUMENTATION AMPLIFIER A dual JFET-input operational amplifier is an attractive component around which to build an instrumentation amplifier because of the high input resistance. The circuit shown in Figure 11 uses the popular triple op-amp approach. The output amplifier is a High Speed 741 (741 HS, slew rate guaranteed ~ 0.7V/p.s) so that the high slew rate of the 8043 is utilized to the full extent. Input resistance of the circuit (either input, regardless of gain configuration) is in excess of 1012 ohms. For the component values showl), the overall amplifier "R1 + R2 gain is 200 (front end gain = - - - , back end gain, = Rs/R4). R2 Common mode rejection is largely determined by the matching between R4 and R5, and RS and R7. In applications where offset nulling is required, a single potentiometer can be connected as shown in Figure 12. Another popular circuit is given in Figure 13. In this case the gain is 1 + R1/R2, and the CMRR determined by the match between R1 and R4, R2 and R3. For more information on FET input operational amplifiers, see Intersil Application Bulletin A005 "The 8007: A High Performance FET-input Operational Amplifier." AF030211 Figure 13: Modified Instrumentation Amplifier .. .. ... '" AF0300tI Figure 11: Instrumentation Amplifier AF030111 Figure 12: Offset Nulling Both Amplifiers With One Potentiometer Note: All tvDical values have been auaranteed bv characterization and are not tested. ICL8048/1CL8049 Log! Antilog' Amplifier GENERAL DESCR:IPTION FEATURES The 8048 is a monolithic logarithmic amplifier capable of handling six decades of current input, or three decades of voltage input. It is fully temperature, compensated and is nominally designed to provide 1 volt of output for each decade change of input. For increased flexibility, the scale factor, reference current and offset voltage are externally adjustable. . The 8049 is the antilogarithmic counterpart ofthe 8048; it . nominally generates one decade of output voltage for each 1 volt change at the input. • • • • • • 1/2% Full Scale Accuracy Temperature Compensated for O·C t.o + 70·C Operation Scale Factor 1VIDecade, Adjustable 120dB Dynamic Current Range (8048) 60dB Dynamic Voltage Range (8048 & 8049) Dual JFET-Input Op-Amps ORDERING INFORMATION PART NUMBER ERROR (25·C) TEMPERATURE RANGE ICL8048BCJE 30mV O·C to +70·C 16 Pin CERDIP ICL8048BCPE 30mV O·C to +70·C 16 Pin Plastic DIP ICL8048CCJE 60rnV O·C to +70·C 16 Pin CERDIP ICL8048CCPE 60mV O·C to +70·C 16 Pin Plastic DIP ICL8049BCJE 10mV O·C to +70·C 16 Pin CERDIP ICL8049BCPE 10mV O·C to +70·C 16 Pin Plastic DIP ICL8049CCJE 25mV O·C to +70·C 16 Pin CERDIP ICL8049CCPE 25mV O·C to +70·C 16 Pin Plastic DIP PACKAGE .,'NPUT .--r-----t.:"f'I,OOT v,. ~'. \ V,. GAl. At OUTPUT A10UTPUT 05019021 05019121 (ICL8048) (ICL8049) Figure 1: Functional Diagram GROUND' A, INPUT GAIN IREF NO CONNECnoN 3 ,.. NO CONNECTION A1 OFFSET NULL .. 13 A2 OFFSET NOLL A, OFFSET NULL 4 A1 OFFSET NULL 5 11 A2 OFFSET NULL A1 OFFSET NULL A10UTPUT NO CONNECTION , • . 10 vYour A, OUTPUT 7 NO CONNECTION VIN 1 NO CONN~CTION CD018111 GROUND A21NPUT A2 OFFSET NULL 1 A20FFSET NULL v+ o Your • NO CONNECTION CD02081' Figure 2: Pin Configurations (Outline Dwgs, JE, PEl 302800-002 Note: All typical values have been guaranteed by characterization and are not tested. ICL8048/ICL8049 ABSOLUTE MAXIMUM RATINGS (ICL8048) Operating Temperature Range .............. O°C to + 70°C Output Short Circuit Duration ........................ Indefinite Storage Temperature Range ............ -65°C to + 150°C Lead Temperature (Soldering, 10sec) ................. 300°C Supply Voltage ................................................ ±18V liN (Input Current) ............................................. 2mA IREF (Reference Current) ................................... 2mA Voltage between Offset Null and V+ ................. ±O.5V Power Dissipation ......................................... 750mW ELECTRICAL CHARACTERISTICS (ICL8048) Vs = ±15V, TA = 25°C, IREF = 1rnA, scale factor adjusted for 1V1decade unless otherwise specified. PARAMETER 8048BC TEST CONDITIONS MIN TYP 8048CC MAX MIN TYP UNIT MAX Dynamic Range liN (lnA - 1mA) VIN (10mV - 10V) RIN = 10k!1 Error, % of Fu!1 Scale TA = 25°C, liN = InA to lmA .20 0.5 .25 1.0 % Error•. % of Full Scale TA-O°C to +70·C. liN = InA to lmA .60 1.25 .80 2.5 % Error, Absolute Value TA - 25·C, liN -InA to lmA 12 30 14 60 mV Error, Absolute Value TA=O·C to +70·C liN = InA to lmA 36 75 50 150 mV Temperature Coefficient of VOUT liN = InA to lmA O.B 0.8 Power Supply Rejection Ratio R"ferred to Output 2.5 2.5 Offset Voltage (AI & A2) Before Nulling 15 Wideband Noise At Output, for liN = 1COIlA Output Voltage Swing 120 60 dB dB 120 60 mvrc mVIV 15 25 250 50 "V(RMS) V RL -10k!1 ±12 ±14 ±12 ±14 Rl,=2k!1 ±10 ±13 ±10 ±13 Power Consumption Supply Current mV 250 V 150 200 150 200 mW 5 6.7 5 6:7 mA TYPICAL PERFORMANCE CHARACTERISTICS TRANSFER FUNCTION FOR CURRENT INPUTS TRANSFER. FUNCTION FOR VOLTAGE INPUTS SMALL SIGNAL BANDWIDTH AS A FUNCTION OF INPUT CURRENT ..... i ~ IREF-'mAo .... r- -- - i--r- I:I V vt - - -- -- - ~ ~ r--- ---- -- -.- -- -j "'" -- i;1 ~ '0 - 10 11 OP031101 MAXIMUM ERROR VOLTAGE AT THE OUTPUT AS A FUNCTION OF INPUT CURRENT 200 :;: ~ '.i ~ 0 > E I 1 -I I '25 ~ :> so ° 10·' .~ > I ~ . ! '" 804B Be 125"CI 25 J 10-8 10- 7 10-1 1 10'S 10-4 10-':J INPUT CURRENT I"'''PSI 10-5 OP031201 c tI048 Ie IO"C 10 10"CI 8048 cc 125~C) IS 10 7 OPOOl301 ". .so .,. " III I"·N·'O'" .,. 81MB CC fO"C to 1O"el 100 111 I 1111 lll.JJ:8i .00 ,. 8048 cc so ,. ° SMALL SIGNAL VOLTAGE GAIN AS A FUNCTION OF INPUT VOLTAGE FOR RS= 10kn '000 "'" 1011'1'1 III (Rs" 'Olin., n ,ov IV '0 , _0' lmV .o.V'N Iii I -}_. -10mV /ogloe Wi\i'iT" - -. You: "IN :±f 1ft °, INPUT VOLTAGE QPOS140r ~'IIOLTAGE GAIN· 125~CI ~.ct.-;ti l00mY 10-3 INPUT CUARENT IAM'SI MAXIMUM ERROR VOLTAGE AT THE OUTPUT AS A FUNCTION OF INPUT VOLTAGE !:l: 8CM8 CC IO"C 107O"CI .so '00 '" '~" '" I I 17S 10 • INPUT CURRENT I AMPS I INPUT VOLTAGE ,,~v;v I "~ lOOn," " 'ov INPUT VOLTAGE QP031501 4-83 Note: All typical values have baan guaranteed by characterization and are not tested. 0P031601 I ..... n 2 I'" _ CD ICL8048/ICL8049 ABSOLUTE MAXIMUM RATINGS (ICL8049) Supply Voltage ............ '.................•...'; .............. ±18V VIN (Input Voltage) ....•......•........,•..............•...... ±1SV IREF (Reference Current) .............•..................... 2mA Voltage between Offset Null and V+ ..............•.. ±o.SV Power Dissipation .•...•..•................................ 7S0mW Operating Temperature Range .............. O·C to + 70·C Output Short Circuit Duration ........................ Indefinite Storage Temperature Range ............ -6S·C to + 1S0·C Lead Temperature (Soldering, 10soo) ................. 300·C Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only. and functional operation of the device at these or any other conditions above those Indicated in the operational seclions of the specHications is not implied. Exposure to absolute maximum rating conditions 'for extended periods may affact device reliability. ELECTRICAL CHARACTERISTICS (ICL8049) Vs = ± 1SV, TA = 2S·C, IREF = 1mA, scale factor adjusted for 1 decade (out) per volt (in), unless otherwise specified. 8049BC PARAMETER 8049CC UNIT TEST CONDITIONS MIN TYP MAX MIN TYP MAX Dynamic Range (VOUT) Vour-10mV to 10V Error. Absolute Value TA = 2S·C. OV:S VIN:S 3V 3 10 5 25 mV Error. Absolute Value TA = O·C to + 70·C. OV:SVIN:S3V 20 75 30 150 mV Temperature Coefficient. Referred to VIN VIN ~3V 0.38 0.55 Power Supply Rejection Ratio Referred to Input, for VN-OV 2.0 2.0 60 Offset Voltage (At &: A2) Before Nulling 15 Wideband Noise Referred to Input, for VIN sOV 26 Output Voltage Swing dB 60 25 IS mV 50 26 p.V(RMS) V RL= 10kn ±12 tl4 ±12 ±14 RL=2kn ±IO ±13 ±IO ±13 Power Consumption mVl·C p.VIV V 150 200 150 200 mW 5 6.7 5 6.7 rnA Supply Current TYPICAL PERFORMANCE CHARACTERISTICS TRANSfER FUNCTION (VOUT AS A FUNCTION OF VIN) '0 MAXIMUM ERROR VOLTAGE REFERRED TO THE INPUT AS A FUNCTION OF VIN r-,....,........--..--...-.,............ .0 r--r-..,.....,..--.---r--,,............, .00' L.....L.....I..-L--I--ll.-L...J....JI -4 -3 -2 -1 0 +1 +2 +3 .4 ,,..PUT VOLTAGE (VI INPUT VOLTAGE (VI OP031701 OP031801 4-84 Note: All typical values have been guaranteed by characterization and are not tested. .D~DIl ICL8048/ICL8049 TYPICAL PERFORMANCE CHARACTERISTICS (CONT.) SMALL SIGNAL BANDWIDTH AS A FUNCTION OF INPUT VOLTAGE SMALL SIGNAL VOLTAGE GAIN AS A FUNCTION OF INPUT VOLTAGE -100 I ~ ~ :i IREF"' lmA. -lMr--r~~~-+--+--+~ -:~=-~ - - -- -10 i'\. z C " loo.""I.I',--.f---+~_- - ____ --- I - - - : = -- -' 10' i -23 ,. r--- -- -- w ~g -= I--- -0.0 1 o "f'\ -- -- r- -- -t-- ,J ICL8048 OFFSET AND SCALE FACTOR ADJUSTMENT'" The ICL8048 relies for its operation on the well-known exponential relationship between the collector current and the base-emitter voltage of a transistor: 11 A log amp, unlike an op-amp, cannot be offset adjusted by simply grounding the input. This is because the log of zero approaches minus infinity; reducing the input current to zero starves 01 of collector current and opens the feedback loop around Al. Instead, it is necessary to zero the offset voltage of Al and A2 separately, and then to adjust the scale factor. Referring to Figure 3, this is done as follows: 1) Temporarily connect a 10kU resistor (RO) between pins 2 and 7. With no input voltage, adjust R4 until the output· of Al (pin 7) is zero. Remove RO. Note that for a current input, this adjustment is not necessary since the offset voltage of Al does not cause any error for current-source inputs. 2) Set liN = IREF = lmA. Adjust Rs such that the output of A2 (pin 10) is zero. 3) Set liN = lIlA, IREF = 1mA. Adjust R2 for VOUT = 3 volts (for a 1 volt/decade scale factor) or 6 volts (for a 2 volt/decade scale factor). Step #3 determines the scale factor. Setting liN = lIlA optimizes the scale factor adjustment over a fairly wide dynamic range, from 1mA to 1nA. Clearly, if the 8048 is to be used for inputs which only span the range 100pA to 1mA, it would be better to set liN = 1001lA in Step #3. Similarly, adjustment for other scale fa«tors would require different liN and VOUT values. (1) For base-emitter voltages greater than l00mV, Eq. (1) becomes IC = IseQVBE/kT (2) From Eq. (2), it can be shown that for two identical transistors operating at different collector currents, the VBE difference (~VBE) is given by: = -2.303 xkT - log10 [IC1] IC2 q (3) Referring to Figure 3, it is clear that the potential at the collector of 02 is equal to the ~ VSE between 01 and 02. The output voltage is ~ VSE multiplied by tl1egain of A2: (Rf+R2R2)(kT)109l0 [~] q IREF r-- - -- r- -- 1--- -- I OP032001 ICL8048 DETAILED DESCRIPTION IC = Is[e qVBE/kT - -i'\. - I INPUT VOLTAGE tVI 0P031901 VOUT = -2.303 I -Il 1 INPUT VOLTAGE IV) ~VBE '\ -- -- n (4) "See A053 for an automatic offset nulling circuit. 4t The expression 2.303 x has a numeri~al value of 59mV at 25°C; thus in order to generate 1 volt/decade at the output, the ratio (Rl + R2)/R2 is chosen to be 16.9 For this scale factor to hold constant as a function of temperature, the (Rl + R2)/R2 term must have a l/T characteristic to compensate for kT/q. In the ICL8048 this is achieved by making Rla thin film resistor, deposited on the monolithic chip. It has a nominal value of 15.9kn at 25°C, and its temperature coefficient is carefully designed to provide the necessary compensation. Resistor R2 is external and should be a low T.C. type; it should have a nominal value of 1kn to provide 1 volt/ decade, and must have an adjustment range of ±20% to allow for production variations in the absolute value of R1. 4-85 Note: All typical values have been guaranteed by characterization and are not tested. II ~ 0. ···.lIn~OI1. ICLa048/1C~L8049 -a ! R. GROUNO ,5.111W c. GAIN 15 A.OUTPUT .{ I R. 'I L. _ ""1M- _ ...J 'CJI(O . - (LOW T.c.) ,KO LC028801 Figure 3: ICL8048 Offset and Scale Factor Adjustment ICLB049 DETAILED DESCRIPTION' For voltage references equation 7 becomes The ICL8049 relies on the'sam8 logarithmic properties Of the transistor as the ICL8048; The input voltage forces a specific 6.VSE between .01 and Q2 (Figure 4). This VSE difference is converted into Ii difference of collector currents by the transistor pair. The equation governing the behavior of the transistor pair is derived from (2) on the . previous page and is. as follows: ROUT [ -R2 qVIN] VOUT=VREFX-- exp x-RREF (R1 + R2) kT ICL8049 OFFSET AND SCALE' FACTOR ADJUSTMENT* As with the IQg amplifier, the antilog amplifier requires three adjustments. The first step is to null out the offset voltage of A2. This is accomplished by reverse biasing the base-emitter of Q2. A2 then operates as a unity gain buffer with a grounded input. The second step forces VIN = 0; the output is adjusted for VOUT = 10V.Thls step essentially "anchors" one point on the transfer function. The third step applies a specific input and adjusts the output to the correct voltage. This sets the scale factor. Referring to Figure 4, the exact procedure for 1 deCade/volt is as follows: 1) Connect the input (pin #" 16) to + l5V. This reverse biases the base-emitter of Q2. Adjust R7 for VOUT - OV. Disconnect the input from + l5V. 2) Connect the input to Ground. Adjust R4 for VOUT = 10V. Disconnect the input from Ground. 3) Connect the input to a precise 2V supply and adjust R2 for VOUT -100mV. . The procedure outlined above optimizes the performance over a 3 decade range at the output (i.e., VOUT froml0mV to 10V). For a more limited· range of output voltages, for example 1V to 10V, it would be better to use a precise 1 volt supply and adjust for VOUT = lV. For other scale factors /!.nd/or starting points, different values for R2 and RREF will be needed, but the same basic procedure applies. 'IC1 = exp[q6.VSE] Ic:! . kT When numerical values for q/kT are put into this equation, it is found that a 6.VSE of 59mV (at 25°C) is required to change the collector current ratio by a factor of ten. But for ease of application; it is desirable that a 1 volt cHange at the input'generate a tenfold change at the output. The requited input attenuation is achieved by the network comprising R1 and R2. In order that scale factors other than one decade per volt may be selected, R2 is external to the chip. It should have a value. of 1kn, adjustable ± 20%, for one decade per volt. R1 is a thin film resistor deposited on the monolithic chip; its temperature characteristics are chosen to compensate the temperature dependence of equation 5, as explained on the previous page. The overall transfer function is as follows: lOUT [-R2 qVIN] IREF = exp (R1 + R2) x kT (6) Substituting VOUT = lOUT x ROUT gives: VOUT = ROUT IREF exp [ -R2 qVIN] x-(R1 + R2) kT (8) (7) 'See A053 for an automatic offsel. nulling circuit 4-86 Note: All Iypicel values have been guaranteed by characterization and are' not tested. .U~U[l ICL8048/ICL8049 ,..(Ii . -.p ! .. CD ..... C+1Il/) R. 1OICO .... ... c. . 7 "'pF .... CD 0 CD 1OICO • +- 14~IOUT R• R. _0 R. 11<0 KO .., .... RouT CLOW T.e.) .. _0 R. . 'KO VouT . . y. LC028701 Figure 4: ICL8049 Offset and Scale Factor Adjustment EFFECT OF VARYING "K" ON THE LOG AMPLIFIER APPLICATIONS INFORMATION ICL8048 Scale Factor Adjustment The scale factor adjustment procedures outlined previously for the ICl8048 and ICl8049, are primarily directed towards setting up 1 volt (~VOUT) per decade (~IIN or ~VIN) for the log amp, or one decade (LWOUT) per volt (~VIN) for the antilog amp. This corresponds to K = 1 in the respective transfer functions: log Amp: VOUT = -K log liN 10[-1 IREF . 'REF·'mA ROUT -10kn (9) V - IN Antilog Amp: VOUT = ROUT IREF 10-K (10) INPUT VOLTAGE IV) By adjusting R2 (Figure 3 .and Figure 4) the scale factor "K" in equation 9 and 10 can be varied. The effect of changing Kis shown graphically in Figure 5 for the log amp, and Figure 6 for the antilog amp. The nominal value of R2 required to give a specific value of K can be determined from equation 11. It should be remembered that R1 has a ±20% tolerance in absolute value, so that allowance shall be made for adjusting the nominal value of R2 by ±20%. R2 = 941 (K-.059) n OP032101 Figure 5 EFFECT OF VARYING "K" ON THE ANTILOG AMPLIFIER 12 ~ (11) ~ ....... ~ g ~ Although the op-amps in both the ICl8048 and the ICl8049 are compensated for unity gain, some additional frequency compensation is required. This is because the log transistors inthe feedback loop add to the loop gain. In the 8048, 150 pF should be connected between Pins 2 and 7 (Figure 3). In the 8049, 200 pF between Pins 3 and 7 is recommended (Figure 4). ........ IREF·,rnA "- ~ ~.~ ..... -. ~ .::". L'- ~ Frequency Compensation ~ 10 ~ -r- 6 -2 "- l"11li 10-1010-1 10-1 10-7 10-1 10-5 10-4 10-3 INPUT CURRENT CAMPS) OPOG2201 Figure 6 4-87 Note: All typical values have been guaranteed by characterization and ara not tasted. i1CL8048/ICL8049 d Error Analysis ::::. ! 2_ d_· Performing a meaningful error analysis of a circuit containing log and antilog amplifiers is more complex than dealing with a similar circuit involving only op-amps. In this data sheet every effort has been made to simplify the analysis task, without in any way compromising the validity of the resultant numbers. The key difference in making error calculations in log/ antilog amps, compared with op-amps, is that the gain of the former is a function of the input signal level. Thus, it is necessary, when referring errors from output to input, or vice versa, to check the input voltage level, then determine the gain of the circuit by referring to the graphs given in the Typical Performance Characteristics section. The various error terms in the log amplifier, the ICL8048, are Referred To the Output (RTO) of the device. The error terms in the antilog amplifier, the ICl:.8049, are Referred To the Input (RTI) of the device. The errors are expressed in this way because in the majority of systems Ii number of log amps interface with an antilog amp, as shown in Figure 7. input voltage. This is because the output amplifier, A2, has an offset voltage drift which is directly transmitted to the output. When this error is referred to the input, it must be divided by the voltage gain, which is input voltage dependent. At VIN = 3V, for example, errors at the output are multiplied by 1/.023 (= 43.5) when referred to the input. TRANSFER FUNCTION FOR CURRENT INPUTS ll: ~ ol--"'Ioo.:+-+"""io':: ~-.~+-+""'"~ ~ -4 1---1C---+--+-+="'"40.O-+-~ ~ -.I--I--I--I--I--I--~ ~L-~~~~ 10- 10 lo-t ,0-' __~~~ 10- 7 10-1 10-' 10-4 10-3 INPUT CURRENT IAMI'S) Actual output will Ii. within sheded .... for 8048 BC 8t 25·C OP032301 Figure 8 ERROR OUE TO A IRTO) -.mV It is important to note that both the ICL8048 and the ICL8049 require positive values of IREF,· and the input (ICL8048) or output (ICL8049) currents (or voltages) respectively must also be positive. Application of negative liN to the ICL8048 or negative IREF to either circuit will cause malfunction, 'and if maintained for long periods, would lead to device degradation. Some protection can be provided by placing a diode between pin 7 and ground. LDOO700f Figure 7 It is very straightforward to estimate the system error at node (A) by taking the square root of the sum-of-the squares of the errors of each contributing block. Total Error = v'x2 + y2 + z2 at (A) If required, this error can be referred to the system output through the voltage gain of the antilog circuit, using the voltage gain versus input voltage plot. The numerical values of x, y, and z in the above equation are obtained from the maximum error voltage plots. For example, with the ICL8048BC, the maximum error at the output is 30mV at 25°C. This means that the measured output will be within 30mV of the theoretical transfer function, provided the unit has been adjusted per the procedures described previously. Figl,!re 8 illustrates this point. To determine the maximum error over the operating temperatu~e range, the 0 to 70°C absolute error values given in the table of electrical characteristics should be used. For intermediate temperatures, assume a linear increase in the error between the 25°C value and the 70·C value. For the antilog amplifier, the only difference is that the error refers to the input, i.e., the horizontal axis. It will be noticed that the maximum error voltage of the ICL8049, over the temperature range, is strongly dependent on the SETTING UP THE REFERENCE CURRENT In both the ICL8048 and the ICl8049 the input current reference pin (lREF) is not a true virtual ground. For the. ICl8048, a fraction of the output voltage is seen on Pin 16 (Figure 3). This does not constitute an appreciable error provided VREF is much greater than this voltage. A 10V or 15V reference satisfies this condition. For the ICl8049, a fraction of the input voltage appears on Pin 3 (Figure 4), placing a similar restraint on the value of VREF. Alternatively, IREF can be provided from a true current source. One method of implementing such a current source is shown in Figure 9. LOG OF RATIO CIRCUIT, DIVISION The 8048 may be used to generate the log ofa ratio by modulating the IREF input. The transfer function remains the same, as defined by equation 9: VOUT = -Klog10 [~] IREF (9) Clearly it is possible to perform division using just one ICl8048, folJowed by an ICl8049. For multiplication, it is generally necessary to use two log amps, summing their outputs into an antilog amp. To avoid the problems caused by the IREF input not being a true virtual ground (discussed in the previous section), the circuit of Figure 9 is again recommended if the IREF input is to be modulated. Note: All typical values have been guaranteed by characterization and are not tested, ICL8048/ICL8049 ERROR, % OF FULL SCALE The error as a percentage of full scale can be obtained from the following relationship: .1SY VREFf J ., 100 x Error, absolute value Error, % of Full Scale = -::--:::--=---:-:-:--FuliScale Output Voltage TEMPERATURE COEFFICIENT OF VOUT OR VIN For the ICL804S the temperature coefficient refers to the drift with temperature of VOUT for a constant input current. For the ICL8049 it is the temperature drift of the input voltage required to hold a constant value of VOUT. POWER SUPPL Y REJECTION RA TlO The ratio of the voltage change in the linear axis of the transfer function (VOUT for the ICLS048, VIN for the ICLS049) to the change in the supply voltage, assuming that the log axis is held constant. WIDEBAND NOISE For the ICL804S, this is the noise occurring at the output under the specified conditions. In the case of the ICLS049, the noise is referred to the input. SCALE FACTOR For the log amp, the scale factor (K) is the voltage change at the output for a decade (i. e. 10:1) change at the input. For the antilog amp, the scale factor is the voltage change required at the input to cause a one decade change at the output. See equations 9 and 10. 10----1 2NUII 10"" IREf PIN 18 ON B04B) ( TO TO PIN 3 ON 1041 AF030301 Figure 9 DEFINITION OF TERMS In the definitions which follow, it will be noted that the various error terms are referred to the output of the log amp, and to the input of the antilog amp. The reason for this is explained on the previous page. DYNAMIC RANGE The dynamic range of the ICL8048 refers to the range of input voltages or currents over which the device is guaranteed to operate. For the ICL8049 the dynamic range refers to the range of output voltage over which the device is guaranteed to operate. ERROR, ABSOLUTE VALUE The absolute error is a measure of the deviation from the theoretical transfer function, after performing the offset and scale factor adjustments as outlined, (ICLS04S) or (ICL8049). It is expressed in mV and referred to the linear axis of the transfer function plot. Thus, in the case of the ICL8048, it is a measu,re of the deviation from the theoretical output voltage for a given input current or voltage. For the ICL8049 it is a measure of the deviation from the theoretical input voltage required to generate a specific output voltage. The absolute error specification is guaranteed over the dynamic range. APPLICATION NOTES For further applications assistance, see A007 "The ICL8048/S049 Monolithic Log-Antilog Amplifi- ers", by Ray Hendry ~9 Note: All typical values have been guaranteed by characterization and are not tested. ia ICL8083 Power Transistor DriverlAmplifier - GENERAL DESCRIPTION FEATURES The ICLa063 is a. unique monolithic power transistor driver and amplifier that allows construction of minimum chip power amplifier systems. It includes built in safe operating area circuitry, short circuit protection .and voltage regulators, and i~ primarily intended for driving complementary output stages. Designed to operate with all varieties of operational amplifiers and other functions, two external power transistors, and a to 10 passive components, the ICLa063 is ideal for use in such applications as linear and rotary actuator drivers, stepper motor drivers, servo motor drivers, power supplies, power DACs and electronically controlled orifices. The ICLa063 takes the output levels (typically ± 11 V) from an op amp and boosts them to ±30V to drive power transistors, (e.g. 2N3055 (NPN) and 2N37a9 (PNP». The outputs from the ICLa063 supply up to 100mA to the base leads of the external power transistors. The amplifier-driver contains internal positive and negative regulators, to power an op amp or other device; thus, only ±30V supplies are needed for a complete power amp. • • • • • • Converts ±12V Outputs From Op Amps and Other Linear Devices to ± 30V.. Levels When Used In Conjunction With General-Purpose Op Amps and External Complementary Power Transistors, System Can Deliver> SO Watts to External Loads Built-in &lfe Area Protection and Short-Circuit Protection Produces 2SmA Quiescent Current in Power Output Stage Built-In ± 13V Regulators to Power Op Amps or Other External Functions SOOkn Input Impedance With RBIAS 1Mn = ORDERING INFORMATION PART NUMBER TEMPERATURE RANGE ICL8063MJE -55°C to + 125°C CERDIP ICL8063CJE O°C to +70°C CERDIP ICL8063CPE O°C to +70°C PLASTIC DIP PACKAGE - VREGOUT , '5 INPUT +VREGOUT -ABIA! 2 FREQ. COMPo CAPAC. PNP BASE DRIVE OUTPUT 5 • '2 GND 11 NPN BASE DRIVE OUTPUT 7 • ,. CURRENT COMP. CAPAC. - RSHORT CKT. PROT. OUTPUT • + RSHORT CKT. PROT. CD018211 08019211 Figure 1: Functional Diagram Figure 2: Pin Configuration 4-90 Note: All typical values have been guaranteed by qharacterizalion and are not tested. .D~DIL ICL8063 i ABSOLUTE MAXIMUM RATINGS Supply Voltage ................................................ ±3SV Power Dissipation ......................................... SOOmW Input Voltage (Note 1) ......................................±30V Regulator Output Currents ................................ 10mA Operating Temperature Range ICLS063MJE ........................ -SS'C to + 12S'C ICL8063CPE ............................. O·C to + 70'C ICL8063CJE ............................. O'C to + 70'C Storage Temperature Range ............ -6S'C to + 1S0'C Lead Temperature (Soldering. 10sec) ................. 300·C Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. ,These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods 'may affect device reliability. ELECTRICAL CHARACTERISTICS (TA = 2S'C; VSUPPLY = ±30V) MINIMAX LIMITS SYMBOL CHARACTERISTIC TEST CONDITIONS O·C -SS'C +2S·C + 12S·C Max. Offset Voltage See Figure 3 150 50 50 10H Min. Positive Drive Current See Figure 4 ' 50 50 50 loa Max. Positive Output Quiescent Current See Figure 5 500 250 250 10l Min. Negative Drive Current See Figure 4 25 25 25 10l Max. Negative Output Quiescent Current See Figure 6 VREG Regulator Output Voltages Range IREG Regulator Output Current (See Note 2) ZIN A.C. Input Impedance See Figure 8 VSUPPlY Power Supply Range 10 Power Supply Quiescent Currents Range of Voltage Gain VOUT(MIN) Minimum Output Swing IBIAS Input Bias' -Current NOTES: UNIT ICL8063C ICL8063M Vos AV P , +2S'C +70·C 75 mV 40 mA 300 I1A 20 mA 500 250 250 ±13.7 ±1.2V ±13.7 ±I.OV ±13.7 ±1.5V 300 10 10 10 mA 400 ,400 (Typ) kG ±13.7 !I.OV (Typ) ±13.7 ±I.OV ±5 to ±35V I1A ±13.7 ±1.0 V V V 10 6 6 7 mA 6±2 6±2 6±2 8±2 VIV VIN until VOUT flattens ±27 ±27 ±27 ±27 V See Figure 10 100 100 100 100 I1A See Figure 9 VIN=8Vp-p See Figure 9; Increase 1. For supply voltages less than ± 30V the absolute, maximum input voltage is equal ·to the supply voltage. 2. 'Care should be taken to ensure that maximum Power dissipation' is not' exCeeded. 4-91 Note: All typical values have been guaranteed by characterization and are not tested. IIn~nlL ...... +3D¥ tllli ~--"tIOl n2, and Ra for optimum sensitivity. That means making Ra "'I to minimize the voltage drop across Ra (the drop wili b(;, i i.'lrnp x 1 ohm or 1 volt). If 1 amp/volt sensitivity is d{;sirabIE) let R2 = R1 = 10kSlto minimize feedback current '>fmr. Thl111 a ± 1V input voltage will produce a ± 1 amp curr-;,mt through the motor. n Capacitors should be at least 50 volts working voltage c,nd all msistors 1/2W, except for those valued at 0.4 ohms. POI/,mr across Ra = I xV = 1 amp x 1 volt = 1 watt, so at least a 2 watt value should be used. Use large heat sinks for the 2N305G and 2N~791 power transistors. A Delta NC-641 ()1' the equivalent is appropriate. Use a thermal compound when mounting the transistor to the heat sink. (See InterSi! lCH8510 data sheet for further information). ..... .... '" @ow ... ... .". GAn ~1ouT @IW NOW ' : ' "" (-) IbIRt x Ii; LC013201 Figure 17: Constant Current Motor Drive Building A I-ow Cost 50 Watt per Channel Audio Amplifier ' For about $20 per channel, it is possible to build a high fidelity amplifier using the ICL8063 to drive 8 ohm speakers. Note: Ail typical values have been guaranteed by characterization and are' not tested. ICL8063 'A channel is defined here as all amplification between turntable or tape output and power output. (Figure 18) The input 741 stage is a preamplifier with R.IAA. equalization for records. Following the first 741 stage is a 10kU control pot, whose wiper arm feeds into the power amplifier stage consisting of a second 741, the ICL8063 and the power transistors. To achieve good listening results, selection of proper resistance values in the power amplifier stage is important. Best listening is to be found at a gain value of 6 [(5kU + 1kUI 1kU = 6)]. 3 is a practical minimum, since the first stage 741 preamp puts out only ±10 volt maximum signals, and if maximum power is necessary this value must be multiplied by 3 to get ±30 volt levels at the output of the power amp stage. Each channel delivers about 56 volts p-p across an 8 ohm speaker and this converts to 50 watts RMS power. This is derived as follows: Vrms2 56Vp_p Power = - - - , Vrms = - - 8 ohms 2.82 2 = 20V, (20V) = 400V 2 400V2 Power = - - - = 50 watts RMS Power. 8 ohms Distortion will be < 0.1 % up to about 100Hz, and then it increases as the frequency increases, reaching about 1 % at 20kHz. The ganged switch at the input is for either disc playing or FM, either from an FM tuner or a tape amplifier. Assuming DC coupling on the outputs, there is no need for a DC reference to ground (resistor) for FM position. To clear the signal in the FM pOSition, place a 51 kUresistor to ground as shown in Figure 18 (from FM input position to ground)_ ~ "~J ....... "'".........-. _J 90007601 Figure 18: Hi·Fi Amplifier 4--97 Note: All typical values have been guaranteed by characterization and are not tested. I... ICL8063' +'II---+----PIE--''"""~--__I > .1 'C ~r---~--~--~~-__i \ -I ,. ,.. ,. i 1-(111) OP032601 EOUT 050'.501 Figure 19: Typical Performance Curve of - - vs. Frequency· For Typical Circuit Shown VIN -.. , '" \ ..0----'-----. \ ~ \ 0P002701 .. -- ~-~~-~--~~_+----_+~4 050' .... Figure 20: Typical Performance Curve of Input Impedance Versus Frequency for Typical Circuit Shown Note: I"tarsil offers a hybrid power amplifier similar to that shown in Figure 11. See ICH8510/8520/8530 data Note: All typical values have been guaranteed by characterization and are not tested. s~t for details. LH2108/LH2308 Dual Super-Beta Operational Amplifier GENERAL DESCRIPTION FEATURES The lH210BAllH230BA and lH210B/lH230B series of dual operational amplifiers consist of two lM10BA or lM10B type op amps in a single hermetic package. Featuring all the same performance characteristics of the single device, these duals also offer closer thermal tracking, lower weight, and reduced insertion cost. • • • • • Low Offset Current - 50pA Low Offset Voltage-O.7mV Low Offset Voltage LH2108A: O.3mV LH2108: O.7mV Wide Input Voltage Range-±15V Wide Operating Supply Range - ±3V to ±20V ORDERING INFORMATION PART NUMBER TEMPERATURE RANGE LH210BD -55·C to + 125·C LH2108AD PACKAGE -55·C to + 125·C 16-PIN LH230BD O·C to +70·C CERAMIC LH230BAD O·C to +70·C INV INPUT 4 14 2 16 NON.INV 5 INPUT INV INPUT 12 v~ V+ BALANCE OUTPUT COMPENSATION OUTCOMP, OUTPUT SAL/COMP, BALiCOMPENSATION -IN. V· TIN. -OUT, N/C V· BALANCE OUTPUT COMPENSATION BAI.o OUTPUT OUT, NON-INV INPUT '3 BAL/COMPENSATION V+ CD014401 Figure 1: Functional Diagram (outline dwg DE) COO1451t Figure 2: Pin Configuration 4-99 Note: All typical values have been guaranteed by characterization and are not tested. II I !::!. I ;; 3 LH2108/LH~308 ABSOLUTE MAXIMUM RATINGS Operating Temperature Range· LH21 08A1LH21 08 .....•........... -55°C to + 125°C LH2308A1LH2408 ...................... O°C to + 70°C Storage Temperature Range ............ -65°C to + 150°C Lead Temperature (Soldering. 10sec) ................. 300.oC Supply Voltage ................................................±20V Power Dissipation (Note 1) .•..........................• 500mW Differential Input Current (Note 2) .................... ± 1OmA Input Voltage (Note 3) ................... : .................. ± 15V Output Short Circuit Duration ..................... Continuous ELECTRICAL CHARACTERISTICS (LH2108/LH2308) (See Note 4) LIMITS PARAMETER TEST CONDITIONS UNIT LH2108 LH2308 Input Offset Voltage TA = 2SoC 2.0 7.S Input Offset Current TA = 2SoC 0.2 t.O Input Bias Current TA - 2SoC 2.0 7.0 mV Max nA Max Input Resistance (Note S) TA = 2SoC 30 10 Mn Min Supply Current TA = 2SoC 0.6 0.8 rnA Max Large Signal Voltage Gain TA = 25°C VS·±ISV VOUT-±10V, RL~10kn 50 2S V/mV Min Input Offset Voltage 3.0 10 Average Temperature Coefficient of Input Offset Voltage (Note 8) IS 30 Input Offset Current 0.4 I.S nA Max Average Temperature Coefficient of Input Offset Current (Note 6) 2.5 10 pAloC Max Input Bias Current mV Max pvrc Max 3.0 10 nA Max Supply Current TA=+125°C 0.4 - rnA Max Large Signal Voltege Gain Vs=±ISV, VQUT=±10V RL~ 10kn 2S 15 VlmV Min Output Voltage Swing Vs=±15V, RL=10kn ±13 ±13 Input Voltage Range Vs = ±15V ±13.5 ±14 Common Mode Rejection Ratio VS-±15V, VCM-±13.5V 85 80 Supply Voltage Rejection Ratio ±SV to ±20V 80 80 ELECTRICAL CHARACTERISTICS - V Min dB Min LH2108/LH2308 Input Offset Voltage TA = 2SoC O.S 0.5 mV Max Input Offset Current TA = 2SoC 0.2 nA Max Input Bias Current 2.0 Input Resistance TA - 25°C TA - 2SoC '.0 7.0 30 10 Mn Min Supply Current TA = 25°C 0.6 0.8 rnA Max Large Signal Voltage Gain TA=2SoC VS=±ISV Your = ± 10V, RL ~ 10kn 80 80 VlmV Min 1.0 0.73 mV Max 5 S pvrc Max Input Offset Current 0.4 I.S nA Max Average Temperature Coefficient of Input Offset Current (Note 6) 2.5 10 pArc Max Input Offset Voltage Average Temperature Coefficient of Input Offset Voltage (Note 6) Input Bias Current 3.0 10 nA Max Supply Current TA= + 12SoC 0.4 - rnA Max Large Signal Voltage Gain Vs = ±15V, VOUT= ±10V RL~ 10kn 40 60 V/mV Min Output Voltage Swing VS=±15V, RL=10kn ±13 ±13 Input Voltage Range Vs = ±ISV ±13.S ±14 4-100 Nota: All typical values have been guarantaed by characterization and are not tested: V Min LH2108/LH2308 ELECTRICAL CHARACTERISTICS (CONT.) LIMITS PARAMETER TEST CONDITIONS UNIT LH2108 LH2308 96 96 Common Mode Rejection Ratio Supply Voltage Rejection Ratio NOTES: 96 150·C. and that of the LH23081A dB Min 96 85·C. The Ihermal resistance of the 1. The maximum lunctlon temperature of the LH21 081 A IS IS packages is 100·C C/W, junction to ambient. 2. The inputs are shunted with back-to-back diodes for overvoltage protection. Therefore, excessive current will flow if a differential input voltage in excess of 1V is applied between the inputs unless some lim~ing resistance is used. 3. For supply voltages less than ± 15V, the absolute maximum input voltage is equal to the supply Voltage. 4. These specifications apply for ±5V:S Vs S ±20V and - 55·C S TA S 125·C, unless otherwise specified, and the LH2308A1LH2308 for ±5V:S Vs S 15V and O·C:S TA:S 70·C. 5. Input resistance is guaranteed by Input Bias Current test. 6. For DeSign only, not 100% tested. STANDARD COMPENSATION CIRCUIT ALTERNATE" FREQUENCY COMPENSATION Your FEEDFORWARD COMPENSATION VOUT YOUT Ra +YI Cf"~2 ,+ CO-30pF Cf R3 -Improves rejec:ion of power supply noire by • factor often. C2 = SSOO6501 88006601 . Figure 3: Auxiliary Circuit 4-101 Nota: All typical vsiues have been guaranteed by characterization and are not tested. -=- 2"~ R2 fo=3MHz SSOO8701 I ~ c i! D~D[6 LM108/A, LM308/A Super-Beta Operational Amplifier GENERAL DESCRIPTION FEATURES These differential input, precision amplifiers provide low input currents and offset voltages comparable to FET and chopper stabilized amplifiers. They feature low power consl,lmption over,a supply voltage range of > 2V to ±20V. The amplifiers may be frequency compensated with a single external capacitor. The LM108A and LM308A are high performance selections from the 108/308 amplifier family. • • • • • • Input Bias Current - 2nA Max to 7nA Max Input Offset Current - O.2nA Max to 1nA Max Input Offset VOltage - O.SmV Max to 7.SmV Max 1::Nos/AT-SIl,Vrc to 30llVrC Alosl AT-.2.5pArC to 10pArC Pin for Pin Replacement for 101A/301A ORDERING INFORMATION PART NUMBER TO-99 CAN 8 PIN MINIDIP 14 PIN CERDIP 10 PIN FLATPAK LM108A LM308A LM108AH* LM308AH LM308AN LM108AJ LM308AJ LM108AF LM308AF LM108 LM308 LM108H* LM308H LM308N LM108J LM308J LM108F LM308F - ** DICE LM308/D "If 883C processing is desired add 1883C to part number. ""Parametric MinIMax Limits guaranteed at 25°C only for DICE orders. FREa COMPA8FREa COMP'B -IN y+ +IN OUT v- INVERTING INPUT ,. NON 1~~~TlNG 5 NC (outline dwg PAl TOP VIEW COO16101 (outline dwg JD) aJ01S301 NC COMP GUARD COMP -IN v' +IN OUT y- GUARD TOP VIEW (outline dwg FB-') (outline dwg TV) c0016401 , c0016201 Figure 1: Pin Configurations 4-102 NOte: All typical values have been guaranteed by characterization and are not tested. 302030-002 1I0~OIL LM108/A, LM308/A ABSOLUTE MAXIMUM RATINGS Supply Voltage 10B, 10BA ............................................. ±20V 30B, 30BA ............................................. ±1BV Internal Power Dissipation (Note 1) Metal CAn (TO-99) .............................. SOOmW DiP ••.. ;· .............................................. SOOmW Differential Input Current (Note 2) .................... ±10mA Input Voltage (Note 3) ...................................... ±1SV Output Short-Circuit Duration ......................... Indefinite , Operating Temperature Range W 10B, 10BA ........................... -SS·C to + 12S·C 30BAt...... ·R····· ................. ·6..S~C·Ct to++17S0 Storage30TB,empera 0:C C ';;: ure ange ............ 0 , Lead Temperature (Soldering,10sec) ...... , .......... 300·C i ELECTRICAL CHARACTERISTICS (TA =2S·C unless otherwise specified) (Note 4) PARAMETER TEST CONDITIONS 308 MAX Input Offset Voltage 2.0 Input Offset Current 0.2 Input Bias Current 1.5 Input Resistance Note 5 VS-±20V VS=±15V large Signal Voltage Gain Vs - ±15V, Vour= ±10V RL> 10kn 10 108 308A .TVP Supply Current MIN MIN TVP MAX 7.5 0.3 0.5 1.0 0.2 7 1.5 1.0 7 10 40 40 MIN 30 TYP 0.7 25 0.8 0.3 80 300 108A MAX MIN UNIT TVP MAX 2.0 0.3 0.5 mV 0.05 0.2 0.05 0.2 0.8 2.0 0.8 2.0 nA nA Mn mA mA 70 0.3 0.3 30 70 0.3 0.6 0.6 0.8 300 50 80 300 VlmV 300 THE FOLLOWING SPECIFICATIONS APPLY OVER THE OPERATING TEMPERATURE RANGES Input Offset Voltage 10 0.73 3.0 1.0 Input Offset Current 1.5 .1.5 0.4 0.4 nA 1.0 5.0 p'vrc 0.5 2.5 pArC Average Temperature CoefficiEintof Input Offset Voltage Note 6 Average temperature Coefficient of Input Offset Current Note 6 , 8.0 30 1.0 5.0 3.0 2 10 ·2.0 10 0.5 Input Bias Current Large Signal Voltage Gain 10 Vs = ±15V, Vour= ±10V RL ~ 10kn 15 2.5 3.0 10 15 25 60 Vs = ±15V V5=±15V VCM=±13.5V 80 100 96 110 85 100 96 110 dB Supply Voltage Rejection Ratio ±5V to ±20V 80 96 96 110 80 96 96 110 dB ±13 ±14 ±13 ±14 ±13 ±14 ±13 ±14 VS=±15V, RL=10kn TA = + 125·C, Vs = ±20V ±13.5 nA V/mV Input Voltage Range Supply Current ±13.5 3.0 40 mV Common Mode Rejection Ratio Output Voltage Swing ±13.5 ..~ ,. , ±13.5 0.15 0.4 V 0.15 "0.4 V mA NOTES: 1. Derate Metal Can package at 6.8 mWrc for operation at ambient temperatures above 75·C and the Dual In-Line package at 9mWI ·C 'for operation at ambient temperatures above 95°C. 2. The inputs are shunted with back-to-back diodes for over-voltage protection. Therefore, excessive current will flow if a differential input voltage in excess of tV is applied between the inputs unless some limiting resistance is used. . 3. For' supply voltages less than ± 15V, the maximum input voltage is equal to the supply voltage. 4. Unless otherwise specified, these specHications apply for supply voltages from + 5V to ± 20V for the 108, and 100A and + 5V to ± 15V for the 30B and 30BA. 5.. Input· resistance is guaranteed by Input Bias Current test. 6. For' Design only, not 100% tested. . 4--103 Note: All typical values have been guaranteed by characterization and are not tested. !~ LM108/A,LM308/A . ! INPUT CURRENTS C i... !j, . TYPICAL PERFORMANCE CHARACTERISTICS MAXIMUM DRIFT ERROR 2.0 , lk 1. 5 i t",....., N 1.0 I08A/l08 ~ O. 5 a" r--- t-... - "';> O.2S r-I108 308 t---,=- I-I~ w ~ 10 ....,...." - o" "" r-... 308(308A OFFSET ... 0.20 ~ a>;0.15 ii2 Q .108A/\08 0.10 OtSlT -...J.~ o ,.- I I J/JALIAL 308A 108A J; ~ 108/108A, 1.0 lOOk -5S'C < ~. < 12S'C O·C":T.< 10'C 1M 10M INPUT RESISTANCE TEMPERATURE ('CI ,.- ~ i7 FI .... 308/308A, ··55 -35 -15 5 2S 45 65.85 lQ5 12S MAXIMUM OFFSET ERROR . 100M 0P022201 0P022001 100M 1M 10M INPUT RESISTANCE 1m· 1m 0P022101 POWER SUPPLY REJECTION INPUT NOISE VOLTAGE 120 ·1000 jloo ~400 :; .: 280 0 ~ ... ;;: OPEN LOOP VOLTAGE GAIN ..,80 Rs ·1M ~'00 ~ 40 "...>' t 20 a 0 ia>; -20 100 lk 10k lOOk 1M 10M Rs' lOOk Rs'O 40 10 ·10 I 100 lk 10k lOOk 10 FREOUENCY (Hz! FREQUENCY (Hzl 0P022301 OUTPUT SWING 20 15 SUPPLY VOLTAGEltVI OP022511 OP022411 OPEN LOOP FREQUENCY RESPONSE SUPPLY CURRENT 15 VS' t15V I ... ~~~ ~ \ T.· 12S'C. " " " " " f-- --f"~pF d- T~'crCi o I I I It o 2 4 6 . C.'30pF~ I{- L'::T•• 70'C T.r. ~'C II I T... • -55'C 110 C.'IOOpF- :+,c.. GAIN PHASE ___ 8 01'022601 "10: f-- ~c.. :00 pF - OUTPUT CURRENT ('mAI "10: 1 SUPPLY VOLTAGE (tVl OP022701 Note: All typical values have been guaranteed by characterization and are not tested. 10 100 lk .... ;r- 30 pFFe!! o 10k lOOk 1M 10M FREOUENCY IHzI LM108/A, LM308/A TYPICAL PERFORMANCE CHARACTERISTICS (CONT.) CLOSED LOOP OUTPUT IMPEDANCE 1~ r--r--r--r--~-'=-~ ...§,~ r--H~~~--~-4--~ ~ ~10' r-~-'\r-'\-b~+--4--~ ~ ~ 1~ t--t---li7' ~ 10" 10 16 To' '"z ...~ 8 C," 3pF 1\ C.-30~ i-I it lOUT· ±1 mA 10" "'-......__..........__V;.::S.;.·_,';..;;S.;.V--, 10 100 lk 10k lOOk 1M 10M o lk "" 10k r- '1 r-I-\1H-+::.:r',,{- 1 r-HH-t-++--i"'-'U -2 r-HIH-t-+-,h:~j-.--+-- ~ I=t$!=t=~t~t;~t; ~ 1'-0. lOOk r-r-.r-T--.--.--.-,-- 8 I-+-HH......---·+_·+ 6 I-+-HH.......,-l-·_ ..l---+· 4 I - r H H......---{-·--- Vs" :!:15V ~ 4 I----H<---li----+-- 25'(: ~ 12 ~ :::> l!: VOLTAGE FO!JJ(;ii"i!:·.:, ~ PULSE RESP(Wl:",;: LARGE SIGNAL FREQUENCY RESPONSE -10 I-+-HH......-+-: L....L-&....JL....I~_ 1M FREQUENCY IHzl FREQUENCYIHzI 0P02S00l 0P022901 GUARDING Extra care must be taken in the assembly of printed circuit boards to take full advantage of the low input currents of the 108 amplifier. Boards must be thoroughly cleaned with TCE or alcohol and blown dry with compressed air. After cleaning, the boards should be coated with epoxy or silicone rubber to prevent contamination. Even with properly cleaned and coated boards, leakage currents may cause trouble at 125·C, particularly since the input pins are adjacent to pins that are at supply potentials. This leakage can be significantly reduced by using guarding to lower the voltage difference between the inputs and adjacent metal runs. Input guarding of the 8-lead TO-99 package is accomplished by using a 10-lead pin circle, with the leads of the device formed so that the holes adjacent to the inputs are empty when it is inserted in the board. The guard, which is a conductive ring surrounding the inputs, is connected to a low impedance point that is at approximately the same voltage at the inputs. Leakage currents from high-voltage pins are then absorbed by the guard. The pin configuration of the dual in~line package is designed to facilitate guarding, since the pins adjacent to the inputs are not used (this is different from the standard 741 and 101A pin configuration). ., INVl~~~~ _IVAII\'~-I .I IOOpF lC(J<11:;0! Figure 3: Frequency Compensat9()'ls',; e~r;'~"iG'~ ALTERNATE CIRCUIT IMPROVES FiE,i'l,",:-;1l1~/;:! POWER SUPPLY NOISE BY A FACTOi') Oil' Y',',.;,\ A' Co c, lOpF lC02'4OI Figure 2: Frequency Compensation Circuit STANDARD CIRCUIT 4-105 Note: All typical values have been guarenteed by cheracterization and are not tested. =Video NE/SE592 Amplifier 111 (I) I GENERAL DESCRIPTION FEATURES The NE/SE592 is a monolithic, two-stage, differential output, wideband video amplifier. It offers fixed gains of 100 and 400 without eXternal components and adjustable gains from 0 to 400 with one external resistor. The input stage has been designed so that with the addition of a few external reactive elements between the gain select terminals, the circuit can function as a high pass, low pass, or band pass filter. This feature makes the circuit ideal for use as a video or pulse amplifier in communications, magnetic memories, display, video recorder systems" and floppy disc head amplifiers. The NE/SE592 is a pin-for-pin replacement for the jJA733 in most applications. .... 2.4k • • • .• • 120MHz Bandwidth Adjustable Gains From 0 to 400 Adjustable Pass Band No Frequency Compensation Required Wave Shaping With' Mlnlinal· External Components ORDERING INFORMATION BASIC PART NUMBER PACKAGE TEMP RANGE SES92 -SS·C 10 + 12S·C NES92 O·C 10 +70·C 14-PIN PLASTIC 14-PIN CERDIP la-PIN To-l00 8-PIN MINI DIP - SES92F SES92H - NES92N NES92F NES92H NES92N-8 .. , t---+--1-t--+---.i'""""ovt-+-<>OUTPUT1 '----+---"JIIIo-j--+--<>OUTPUT 2 1IIPUT' G •• ... BDOO6OO1 Figure 1: Functional Diagram (Resistor Values Nominal Only) 14-Pln DIP Package (JD, PO Package) 10-Pln To-100 Package (H Package) 8-Pln DIP Package (N-8 Package) Qu,GAIN SELECT INPUT 1 1 G'A GAIN SELECT 2 7 G'B GAIN SELECT Goa"'". SELECT OUTPUll 4 5 OUTPUT2 y- TOP VIEW COO14001 TOP VIEW CD014301 c001~101 Note: Pin 5 connected to case. Figure 2: Pin Configurations 4-106 Note: All typical values have been guaranteed by characterization and are not tested. NE/SE592 ABSOLUTE MAXIMUM RATINGS Supply Voltage ................................................. ±8V Differential Input Voltage .................................... ±5V Common-Mode Input Voltage .............................. ±6V Output Current ............................................... 10mA Operating Temperature Range SE592 ................................ -55·C to +125·C NE592 ..................................... O·C to + 70·C Storage Temperature Range ............ -65·C to + 150 c C Power Dissipation ......................................... 500mW Lead Temperature (Soldering, 10sec) ................. 300·C Stresses above those listed under" Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions. lor extended periods may affect device reliability. ELECTRICAL CHARACTERISTICS + 25°C, VSUPPLY = ±6V, VCM = 0 unless otherwise specified. Vs = ±6.0V TA = NE592 SYMBOL. PARAMETER Differential Voltage Gain Gain 1 (Note 1) Gain 2 (Note 2) AVOL BW SE592 TEST CONDITIONS RL = 2kU, VOUT = 3Vp-p UNIT MIN TYP MAX MIN TYP MAX 250 80 400 100 600 120 300 90 400 100 500 '110 Bandwidth Gain 1 (Note 1) Gain 2 (Note 2) 40 90 40 90 MHz Rise Time t, Gain 1 (Note 1) Gain 2 (Note 2) (Note 4) Propagation Delay Gain 1 (Note 1) Gain' 2 (Note 2) (Note 4) td VOUT= 1Vp-p VOUT= lVp-p Input Resistance Gain 1 (Note 1) Gain 2 (Note 2) RIN CIN input Capacitance (Note 2) (Note 4) los Input Offset Currant IBIAS Input Bias Currant en Input Noise Voltage II.VIN Input Voltage Range I CMRR 10 Gain 2 10.5 4.5 12 10.5 4.5 10 7.5 6.0 10 7.5 6.0 10 4.0 30 20 2.0 BW= 1kHz' to 10MHz 3.0 9.0 30 9.0 20 12 ±1.0 60 86 60 Supply Voltage Rejection Ratio Gain 2 (Note 2) AVs = ±O.SV 50 70 50 70 Voo Output Offset Voltage Gain 2 (Note 2) RL = 00 VOCM Output Common-Mode Voltage RL = 00 VO(DIFF) Differential Output Voltage Swing RL =2kU Ro 1+ Output Resistance 1. 2. 3. 4. 0.35 0.75 2.4 2.9 3.4 3.0 4.0 20 = 00 Gain select pins G1A and G1B connected together. Gain select pins G2A and G2B connected together. Recommended supply voltage = ± 6V For design reference only, not 100% tested. 4-107 Note: All typical values have baen guaranteed by characterization and are not tested. 18 -dB 0.35 0.75 2.4 2.9 3.4 3.0 4.0 18 V dB V V V 20 24 iJA iJA jJ.V rms 12 ±1.0 RL pF 2.0 0.4 86 60 Power Supply Current (Note 3) kU 5.0 60 PSRR ns 0.4 VCM ±1V, f < 100kHz VCM ~ 1V, f = 5MHz I ns 4.0 30 Common-Mode Rejection Ratio Gain 2 (Note 2) Gain 2 (Note 2) NOTES: VIV U 24 rnA .n~nll :: NE/SE592 i. TYPICAL APPLICATIONS III z Filter Networks SCHEMATIC FILTER Vo (S) TRANSFER VI FUNCTION TYPE LOW PASS 1.4x104 [__ 1_] L $ + R/L HIGH PASS 1.4X104 [ S ] $+ 1/RC R BAND PASS 1.4x104 [ S ] - - L - S2+R/L s+1/LC AF027501 V ~(S) Vi :!! 1.4x104 Z(s) + 2re 1.4x104 :!!--- Z(s) + 32 BAND REJECT NOTE;: In the networks above, the R value used is assumed to include the internal 2re of approximately 32n. Figure 3: Basic Configuration +5V Q i ___ !! ___ -.J AMPUTUDE: FREQuENCY: I READ HEAD - I DIFFERENTIATOR/AMPUFIER "=' ZERO CROSSING DETECTOR AF027611 Figure 4: Disc/Tape Modulated Readback Systems 4-108 Note: All typical values have been guaranteed by characterization and are not tested. NE/SE592 For frequency f1 < < 1/21r(32)C dVj Vo a.1.4x104C d1 AF027101 Figure 5: Differentiation with High Common Noise Rejection 4-109 Note: All typical values have been guaranteed by characterization and are not tested. Section 5 Special Analog Functions AD590 2-Wire Current Output Temperature Transducer GENERAL DESCRIPTION FEATURES The AD590. is an integrated-circuit temperature transducer which produces an output current proportional to absolute temperature. The device acts as a high impedance constant current regulator, passing lilA/oK for supply voltages between + 4V and + 30.V. Laser trimming of the chip's thin film resistors is used to calibrate the device to 298.21lA output at 298.2°K (+ 25°C). The AD590. should be used in any temperature-sensing application between -55°C and + l50.°C (O.°C and 70'°C for TO-92) in which conventional electrical temperature sensors are currently employed. The inherent low cost of a monolithic integrated circuit combined with the elimination of support circuitry makes the AD590. an attractive alternative for many temperature measurement situations. linearization circuitry, precision voltage amplifiers, resistancemeasuring circuitry and cOld-junction compensation are not needed in applying the AD590.. In the simplest application, a resistor, a power source and any voltmeter can be used to . measure temperature. In addition to temperature measurement, applications include temperature compensation or correction of discrete components, and biasing proportional to absolute temperature. The AD590. is available in chip form making it suitable for hybrid circuits and fast temperature measurements in protected environments. The AD590. is particularly useful in remote sensing applications. The device is insensitive to voltage drops over long lines due to its high-impedance current output. Any well-insulated twisted pair is sufficient for operation hundreds of feet from the receiving circuitry. The output characteristics also make the AD590. easy to multiplex: the current can be switched by a CMOS multiplexer or the supply voltage can be switched by a logic gate output. • • • • Linear Current Output: 1pArK Wide Range: -55°C to + 150°C Two-Terminal Device: Voltage In/Current Out Laser Trimmed to to.5°C Calibration Accuracy (AD590M) Excellent Linearity: to.5°C Over Full Range (AD590M) Wide Power Supply Range: + 4V .to + 30V Sensor Isolation From Case Low Cost • • • • ORDERING INFORMATION PART NUMBER/PACKAGE NON-LINEARITY (OC) TO-52 PACKAGE TO-92 PACKAGE ±3.0 ±1.5 ±O.8 ±O.4 ±O.3 AD5901H AD590JH AD590KH AD590LH AD590MH AD590lZR AD590JZR TEMPERATURE RANGE -55°C to + 150°C O,°C to + 70°C DICE" AD590/D DICE ··Parameter MiniMax Limits guaranteed at 25°C only lor DICE ·orders. CASE (outline dwg TO·52) + SUBSTRATE (LEAVE FLOATING) (outline dwg TO·92) PC00421 I 05016601 Figure 1: Functional Diagram Figure 2: Pin Configurations 5--1 Note: All typical values have been guaranteed by characterization and are not tested. 30.0.10.6-00.2 ! ADS,90 .~ ABSOLUTE MAXIMUM RATINGS (TA = +25°C unless otherwise noted) Forward Voltage (v+ to V-) "."""." ....... ,, ....... +44V Reverse Voltage (v+ to V-),,""""""""""""" -20V Breakdown Voltage (Case to V+ or V-) """"".±200V Storage Temperature Range """",," -65°C to + 150°C Rated Performance Temperature Range TO-92 """",,",,",,",,",,"",,",,. O°C to + 70°C TO-52 "" ........ """"" ........ " .,.55°C to+ 15QoC Lead Temperature (Soldering, 10sec) ",,",,""" + 300°C Stresses above thoss listed under" Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the 298.2 a: a: u ...::> ...... ::> 0 218 1/ / L / 21SOK 298.2"K 42aoK ( - 55·C) ( + 2S'C) ( +15O"C) TEMPERATURE OP016201 Figure 8: Simple connection. Output is proportional to absolute temperature. 5-6 Note: All typical values have been guaranteed by characterization and are, not tested. AD590 TYPICAL APPLICATIONS y+ +15V (ADDITIONAL SENSORSt 05017101 Figure 10: Average-temperature sensing scheme. The sum of the AD590 currents appears across R, which is chosen by the formula: 10kn DS01700i Figure 9: Lowest-temperature sensing scheme. Available current is that of the "coldest" sensor. R= n n being the number of sensors. +15V -, I J ~~~~~T J .J A C 0.1% [I ':" 80005701 Figure 11: Single-setpoint temperature controlier. The AD590 produces a temperature-dependent voltage across R (C is for filtering noise). Setting R2 produces a scale-zero voltage. For the Celsius scale, make R 1kn and VZERO 0.273 volts. For Fahrenheit, R 1.8kn and VZERO 0.460 volts. = = = 5-7 Note: All typical values have been guaranteed by characterization and are not tested. = ~. 10 AD590 ICII C ROW COLUMN SELECT +15V SEl.ECT ,....-, ENABLE R (OPTtONALI • 0 5 , 6 2 IH6108 8-CHANNEi. -f-:~~~~~~~~~~~t-~~~~~7 3 MUX '2 • " 5 '0 6 A058O(&I1 ,0Idl 0.1% . ! "OUT I 80005901 Figure 12: Multiplexing sensors. If shorted sensors are possible, a series resistor in series with the D line will limit the current (shown as R, above: only one is needed). A six-bit digital word will select one of 64 sensors. .-----.----------------o+.w 11<0 ZERCSET IOmV/"C 118kO 101<0 0.'% 1000 201<0 FUlL·SCALE ADJUST ~ .01<0 2.13.5V .,.. _I LCOO76Oi Figure 13: Centigrade thermometer (O°C-100°C). the ultra-low bias current of the ICL7611 allows the use of large-value gain-resistors, keeping meter-current error under 1/2%, and therefore saving the expense of an extra meter-driving amplifier. Note: All typical values have been guaranteed by characterization and are not tested. AD590 Y+ SOkIl~+_Vlr-+--""'" (8Yminl Y- LC007701 Figure 14: Differential thermometer. The 50kn pot trims offsets in the devices whether internal or external, so it can be used to set the size· of the difference interval. This also makes it useful for liquid-level detection (where there will be a measurable temperature difference). Y+ r: ----------, 1"A/OK I L: +-__-r_ _- ._ _ _ I I SEEBECK +-<>-I..:::C::::O~EF:.::F~IC~IENT I =4O,.v/oK YI= 10.98mY TYPEK I + Y+ + YoUT I RI 4521!1 Y2=10.98 40.211 j '::" '::" 05017201 Figure 15: Cold-junction compensation for type K th~mocouple. The reference junction(s) should be in close thermal contact with the AD590 case. V must be at least 4V, while ICL8069 current should be set at 1mA - 2mA. Calibration does not require shorting or removal of the thermocouple: set R1 for V2 = 10.98mV.lf very precise measurements are needed, adjust R2 to the exact Seebeck coefficient for the thermocouple used (measured or from table) note V1, and set R1 to buck out this voltage (i.e., set V2 V1). For other thermocouple types, adjust values to the appropriate Seebeck coefficient. = sao,A - :rt:J==xx:)C)( x + ~-r~~~tLCOO7801 Figure 16: Simplest thermometer. Meter displays current output directly in degrees Kelvin. Using the AD590M, sensor output is within ±1.7 degrees over the entire range, and less than ±1 degree over the greater part of it. 5-9 Note: All typical values have been guaranteed by characterization and are not tested. i AD590,' a cc I of I °C v+ A, A. L,...--I--, AEFHI 5 E+-- AEF LO L 9,00 4,02 2.0 12.4 10.0 0 5.00 4.02 2.0 5.11 5.0 11.8 Rn = 28kn nominal n=l All values in kn A A. ICL1106 II< ~_INHI W /,:::1=1 .B ~ f--' The ICL71 06 has a VIN span of ±2.0V. and a VCM rE\nge of (V" -0,5) Volts to (V- + 1) Volts; R is scaled to bring ,each range within VCM while not exceeding VIN- VREF for both scales is 500mV."Maximum reading on the Celsius range is 199.9°C. limited by the (short-term) maximum allowable sensor temperature. Maximum reading on the Fahrenheit range is 199.9°F (93.3°C). limited by the number of display digits. See note next page. -COMMON +-----fINLO yAF027801 Figure 17: Basic digital thermometer, Celsius and Fahrenheit scales y+ 1.5kO REF HI 2.2Il1O AEFLO i5kIl SCALE ADJ 1i5k1l ,_ ICL1106 307 COM IN HI , INLO + A05IO yLCOO7901 Figure 18: Basic digital thermometer, Kelvin scale. The Kelvin scale version reads from 0 to'1999°K theoretically, and from 223°K to 473°K actually. The 2.26kn resistor brings the input within the ICL7106 VCM range: 2 general-purpose silicon diodes or an LED may be substituted. 5-10 Note: All typical values have been guaranteed by characterization and are not tested. AD590 y. 7.5kll ICUOlll 1.235V SCALE REF }DJ HI· REFLD 1kQ,O.1% IClnD8 '5kll 21.'' ' '---JWHH--lCOM IN HI t--------IINLO y- lCOO8OO1 Figure 19: Basic digital thermometer, Kelvin scale with zero adjust. This circuit allows "zero adjustment" as well as slope adjustment. The ICL8069 brings the input within the common-mode range, while the 5kn pots trim any offset at 218°K (-55°C), and set the scale factor. Note on Figure 17, Figure 18 and Figure 19: Since all 3 scales have narrow VIN spans, some optimization of ICL7106 components can be made to lower noise and preserve CMR. The table below shows the suggested values. Similar scaling can be used with the ICL7126/36. SCALE VIN RANGE (V) RIN"rtkn) CAZ(IlFj K C F 0.223 to 0.473 -0.25 to + 1.0 -0.29 to + 0.996 220 220 220 0.47 0.1 0.1 For all: Cose = 100pF Rose = 100kn CREF = O.1p.F CINT = O.221lF 5-11 Note: All typical values have been guaranteed by characterization and are not tested. !~~~!~~age Converter .D~UIl GENERAL DESCRIPTION FEATURES The Intersil ICL7660 is a monolithic CMOS power supply' circuit which offers unique performance advantages over' previously available devices. The ICL7660 performs supply voltage conversion from positive to negative for an input range of + 1.5V to + 10.0V, resulting in complementary output voltages of -1.5V to -10.0V. Only 2 non-critical external capacitors are needed for the charge pump and charge reservoir functions. The ICL7660 can also be connected to function as a voltage doubler and will generate output voltages up to + 1S.6V with a + 10V input. Note that an additional diode is required for VSUPPLY > 6.5V. Contained on chip are a series DC power supply regulator, RC oscillator, voltage level translator, and four output power MOS switches. A unique logic element senses the , most negative voltage in the device and ensures that the output N-channel switch source-substrate junctions are not forward biased. This assures latchup free operation. The oscillator, when unlOaded, o$cillates at a nominal frequency of 10kHz for an input supply voltage of 5.0 volts. This frequency can be lowered by the addition of an external capacitor to the "OSC"terminal, or the oscillator may be overdriven by an external clock. The "LV" terminal may be tied to GROUND to bypass the internal series regulator and improve low voltage (LV) operation. At medium to high voltages (+ 3.5 to + 10.0 volts), the LV pin is left floating to prevent device latchup. • Simple Conversion of +5V Logic Supply to ±5V Supplies ,. Simple Voltage Multiplication (VOUT nVIN) • 99.9% Typical Open Circuit Voltage Conversion Efficiency, • 98% Typical Power Efficiency • Wide Operating Voltage Range 1.5V to 10.0V • Easy to Use - Requires Only 2 External Non-Critical Passive Components =(-) APPLICATIONS • • On Board Negative Supply for Dynamic RAMs Localized /-I-Processor" (8080 Type) Negative Supplies Inexpensive Negative Supplies Data Acquisition Systems • • ORDERING INFORMATION PART NUMBER TEMP. RANGE ICQ660CTV O· to +10·C JCL7660CBA O·C to +70·C ICL7660CPA O· ,to +70·C ICL7660MTV' ICL7660/D PACKAGE TO-99 8 PIN SOIC ',8, PIN MINI DIP _55· to + 125°C TO-99 ' - DICE" • Add' /8,838.to part number if 8838 processing is required. "Parameter min/max limits guaranteed at 25·C only for DICE orders. V+(endCASEI V+ 8 OSC LV VOUT CAPCD035201 C0034111 (Outline Dwg BA) 8 LEAD MiniDIP (Outline Dwg TV) 8 LEAD TO-99 COO35901 (Outline Dwg PAl Figure 1: Pin Configurations 5-12 Note: All typical values have been guaranteed by characterization and are not tested. 302063--003 ICL7660 ABSOLUTE MAXIMUM RATINGS Supply Voltage ............................................... 10.5V LV and OSC Input Voltage (Note 1) ............... -0.3V to (V± +0.3V) for V+ < 5.5V (V+ -5.5V) to (V+ +0.3V) for V+ > 5.5V Current into LV (Note 1) ............... 20j.lA for V+ >3.5V Output Short Duration (VSUPPLY S 5.5V) ...... Continuous Power Dissipation (Note 2) ICL7660CTV ....................................... 500mW ICL7660CPA ....................................... 300mW ICL7660MTV ....................................... 500mW Operating Temperature Range ICL7660M ........................... -55°C to + 125°C ICL7660C ................................. O°C to +70°C Storage Temperature Range ............ -65°C to + 150°C Lead Temperature (Soldering, 1Osee) ...........................................300°C Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings -only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. r-------------~--------------~------~--------------------OV+ ~-----------------oCAP+ r-------------O CAP- Your OSC LV = BD01560r Figure 2: Functional Diagram OPERATING CHARACTERISTICS V + = 5V, TA = 25°C, Case = 0, Test Circuit Figure 3 (unless otherwise specified) LIMITS SYMBOL PARAMETER TEST CONDITIONS UNIT MIN TYP MAX 170 1+ Supply Current RL = 00 500 !lA VH1 Supply Voltage Range - Hi ooe S TA S 70°C, RL = 10kn, LV Open 3.0 6.5 V (Dx out of circuit) (Note 3) -55°C S TA S 125°C, RL = 10kn, LV Open MIN S TA S MAX, .RL = 10kn, LV to GROUND 3.0 1.5 5.0 V 3.5 V vli Supply Voltage Range - Lo (Dx out of circuit) VH2 Supply Voltage Range - Hi (DX in circuit) MIN S TA S MAX, RL = 10kn, LV Open 3.0 10.0 V Vl2 Supply Voltage Range - Lo (DX in circuit) MIN S TA S MAX, RL = 10kn, LV to GROUND 1.5 3.5 V 5-13 Note: All typical values have been guaranteed by characterization and are not tested. i a ICL7660 OPERATING CHARACTERISTICS (CONT.) LIMITS SYMBOL PARAMETER TEST CONDITIONS UNIT MIN TYP MAX 55 lOUT = 20mA, TA = 25°C lOUT = 20mA, O°C::; TA::; + 70°C Output Source Resistance ROUT 100 n 120 n lOUT = 20mA, -55°C::; TA::; + 125°C (Note 3) 150 n V+ =2V, IOUT=3mA, LV to GROUND O°C::;TA::; +70°C 300 n V+ = 2V, lOUT = 3mA, LV to GROUND, -55°C::; T A::; + 125°C, Ox in circuit (Note 3) 400 n . Oscillator Frequency 10 kHz PEl Power Efficiency RL = 5kn 95 98 % VOUT Ef Voltage Conversion Efficiency RL = 97 99.9 % Zose Oscillator Impedance V+ =2 Volts 1.0 Mn V= 5 Volts 100 kn fose 00 Notes: 1. Connecting any input terminal to voltages greater than V + or less than GROUND may cause destructive latchup. It is recommended that no inputs from sources operating from external supplies be applied prior to "power up" of . the ICL7660. 2. Derate linearly above 50°C by 5.5mWrC. 3. ICL7660M only. TYPICAL PERFORMANCE CHARACTERISTICS OPERATING VOLTAGE AS A FUNCTION OF TEMPERATURE (Circuit of Figure 3) OUTPUT SOURCE RESISTANCE AS A FUNCTION OF SUPPLY VOLTAGE '!A-~"'~= ~ 7.oF=;:=;::::=P i OUTPUT SOURCE RESISTANCE AS A FUNCTION OF TEMPERATURE g350 lOUT rJ ... ~ . .. 250 ./ m200 . i,oo ~ i-'"'" I'--. ,. 012345678 TEMPERATUAE(GC) ~ • o • POWER CONVERSION EFFICIENCY AS A FUNCTION OF OSC. FREQUENCY ..I..- Y+""5Y -50" -250 DO +25° +50" +75°+100"+125° TEMPERATURE (·C) SUPPLY VOLTAGE (v+) OPOO1011 - ~~=+zv rJ !i '50 4.ot-- ".. -50 '0 ..• . . " ; SLOPE SSO 7 .. e 20 30 40 50 &0 10 80 LOAD CURRENT !t(m") V ~ 1ft IV f-- V I 20 30 . c:t--J. I I ...... l100 ~ ~ w z 70 so 20.0 1B.O TA=+25D C V1"= '2.ov IV ! ... g:g 12.0 v+:-· 2V .. . __ 20;;: 10 ~ I 40 ~ so \ \ \ \ • 1 -2 ./ J ".. i--" V i--"jPY· 012345878 LOAD CURRENT IL (mA) OPOO0201 NOTE 4. These curves include in the supply current that current fed directly into the load RL from V + (see Figure 3). Thus, approximately half the supply current goes directly to the positive side of the load, and the other half, through the ICL7660, to the negative side of the load. Ideally, VOUT == 2 VIN, Is == 2 IL, so VIN • Is == VOUT • IL· 1 ~ ~, 4.0 2 so ~ 1ft 10.0 ~ .. .. l':/ ffi .. ~ o / u 20 o +- 3O~ OPOO0601 SUPPLY CURRENT & POWER CONVERSION EFFICIENCY AS A FUNCTION OF LOAD CURRENT ffi .. 50 ~ 40 -:;' lOAD CURRENT IL ImA) OPQ00101 TA!~OC 1 TA-=+25°CV+ +5V / 10 2 70 / 50 20 1 80 !( )t-,. ~ 30 ,.,... 3 -4 r I...... ffi .. / ::I-2 .... .. ..iii .. g 1 t-.... !i .. iii .. OUTPUT VOLTAGE AS,A FUNCTION OF OUTPUT CURRENT V 8.0 i 6.0 ~ 4.0 i •z .... 2.0 !: 3JI 4.5 6.0 7.5 LOAD CURRENT IL (mA) 1.5 9.0 OPQO0901 which shows an idealized negative voltage converter. Capacitor C1 is charged to a voltage, V + , for the half cycle when switches 81 and 83 are closed. (Note: 8witches 82 and 84 are open during this half cycle.) During the second half cycle of operation, switches 82 and 84 are closed, with 81 and 83 open, thereby shifting capacitor C1 negatively by V'I- volts. Charge is then transferred from C1 to C2 such that the voltage on C2 is exactly V +, assuming ideal switches and no load on C2. The ICL7660 approaches this ideal situation more closely than existing non-mechanical circuits. Is v+ r--------,-~(+5V) 7 ------l I ,I " I I I I RL ·coscl Ox I~~*,, , :r , .. ~VOUT L __ ..J In the ICL7660, the 4 switches of Figure 4 are M08 power switches; 81 is a P-channel device and 82, 83 & 84 are N-channel devices. The main difficulty with this ap~ proach is that in integrating the switches, the substrates of 83 & 84 must always remain reverse biased with respect to their sources, but not so much as to degrade their "ON" resistances. In addition, at circuit startup, and under output short circuit conditions (VOUT = V +), the output voltage must be sensed and the substrate bias adjusted accordingly. Failure to accomplish this would result in high power losses and probable device latchup. TCOOO301 NOTES: 1. For large values of Case ( > 1000pF) the values of Cl and C2 should be increased 'to 100"F, 2. Ox is required for supply voltages greater than 6.5V @ - 55'e S TA S + 70'C; refer to performance curves for additional information. Figure 3: ICL7660 Test Circuit This problem is eliminated in the ICL7660 by a logiC network which senses the output voltage (VOUT) together with the level translators, and switches the substrates of 83 & 84 to the correct level to maintain necessary reverse bias. DETAILED DESCRIPTION The ICL7660 contains all the necessary circuitry to complete a negative voltage converter, with the exception of 2 external capacitors which may be inexpensive 10IlF polarized electrolytic types. The mode of operation of the device may be best understood by considering Figure 4, The voltage regulator portion of the ICL7660 is an integral part of the anti-Iatchup circuitry, however its inherent voltage drop can degrade operation at low voltages. 5-15 Note: All typical values have been guaranteed by characterization and are not tested. II i a ICL7660 Therefore, to improve low voltage operation the "LV" pin should be connected to GROUND, disabling the regulator. For supply voltages greater than 3.5 volts the LV terminal must be left open to insure latchup proof operation, and prevent device' damage. ENERGY IS LOST ONLY IN THE TRANSFER OF CHARGE BETWEEN CAPACITORS IF A CHANGE IN VOLTAGE OCCURS. The energy lost is defined by: where V1 and V2 are the voltages on C1 during the pump and. transfer cycles. If the impedances of C1 and C2 are relatively high at the pump frequency (refer to Figure 4) compared to the value of RL, there will be a substantial difference in the voltages V1 and V2. Therefore it is not only desirable to make C2 as large as possible to eliminate output voltage ripple, but also to employ a correspondingly large value for C1 in order to achieve maximum efficiency of operation. ' DO'S AND DON'TS 1. 2. TCOO0801 Figure 4: Idealized Negative Voltage Converter 3. THEORETICAL POWER EFFICIENCY CONSIDERATIONS In theory a voltage converter can approach 100% efficiency if certain conditions are met: 'A The drive circuitry consumes minimal power. S The output switches have extremely low ON resistance and virtually no offset. C The impedances of the pump and reservoir capacitors are negligible at the pump frequency. The ICL7660 approaches these conditions for negative voltage conversion if large values of C1 and C2 are used. 4. 5. 6. Do not exceed maximum supply voltages. Do not connect LV terminal to GROUND for supply voltages greater than 3.5 volts. Do not short circuit the output to V + supply for , supply voltages above 5.5 volts for extended periods, however, transient conditions including startup are, okay. When using polarized capacitors, the + terminal of C1 must be connected to pin 2 of the ICL7660 and the + terminal of C2 must be connected to GROUND. Add diode Ox as shown in Figure 3 for high-voltage, elevated temperature ,applications. Add capacitor (~0.1IlF, disc) from pin 8 to ground to limit rate of rise of input voltage to approximately 2V//lS. -v+ ·NOTE: 1. Your = FOR 1.SV :5 V,V:5 6.SV 2. Your = -(v+ -VFOX) FOR 6.5 :5 v+ :5 10.0V Dx ,...-f4--, I ICL7660 I 9----T..------<0 Your· + L _____ J ~ 10j. 10V Current into LV (Note 1) •............... 20IlA for V+ > 10V Output Short Duration ...............•.......•...... Continuous Power Dissipation (Note 2) ICL7662CTY .........•...................•......... 500mW ICL7662CPA .........•.........................•... 300mW ICL7662M