1986_Sharp_MOS_Semiconductor_Data_Book 1986 Sharp MOS Semiconductor Data Book
User Manual: 1986_Sharp_MOS_Semiconductor_Data_Book
Open the PDF directly: View PDF .
Page Count: 992
Download | |
Open PDF In Browser | View PDF |
SHARP 1986 SEMICONDUCTOR DATA BOOK SEMICONDUCTOR DATA BOOK (MOS Edition) General Information 11 ~ 4-Bit 1-Chip Microcomputers ~ 8-Bit 1-Chip Microcomputers [! 8-Bit Microprocessor and Peripheral LSls ~ 16-Bit Microprocessor and Peripheral LSls ~ Peripheral LSls for Microcomputers ~ [ZJ Memories [! Support Tools for Microcomputers LSls for Telephone ~ MOS ICs/LSls ~ Preface In recent years, the seemingly unlimited progress seen in integrated circuits technology has brought about phenomenal growth in electronic products for consumer and industrial use. As electronics continues to expand -in the future, we will direct our efforts at carefully researching trends and supplying our customers with products that meet their needs and contribute to the betterment of their way of life. We have now completed the "Sharp Semiconductor Data Book - - MOS Edition", which we present to you here how. This data book lists the microcomputers, memories and MOS LSIs produced and sold by Sharp, which have a wide range of applicability. We hope you will find this data book useful and will contact Sharp if you have any questions. The information contained in the databook isintended to be a general product description. Sharp reserves the right to make change in specifications at any time and without notice. Sharp does not assume any responsibility for use of any circuitry described; no circuit patent licenses are implied. CONTENTS· 1. General Information ................................................. ;. 1 Products Lineup ...........................•... ; .................... 2 Package Outline .................................................... 12 Quality Assurance ................................................. 25 2. 4-Bit I-Chip Microcomputers ..................................... 35 3. 8-Bit I-Chip Microcomputers .................................... 165 4. 8-Bit Microprocessor and Peripheral LSIs ........ · .......... ·209 5. I6-Bit Microprocessor and Peripheral LSIs ................... 313 6. Peripheral LSIs for Microcomputers ........ · .................... 459 7. Support Tools for Microcomputers .... · ........ · .. · ............ ·561 8. Memories .............................................................. 581 9. LSIs· for Telephone .................................................. 731 10. MOS ICs/LSIs ......................................................... 795 General Information Products Lineup .--.-...r.-..-.--.-..-.-..-..-..-..--.-..-..-..-..-..-...r . . . Products Lineup • 4-Bit 1-Chip Microcomputer Model Process Cycle ime. (f' s Supply voltage (V) ClnTent colEUlllPlion InstrucTYP.(mA) lions [operating] ROM (bit) RAM (bit) Sub· routine Package nesting SM-3A 10 -15 12 57 2268X8 128X4 2 60QFP SM-100 SM-105 SM-ll0 SM-115 SM-111 SM-116 10 10 10 10 10 10 -9 -9 -9 -9 -9 -9 10 10 13 13 13 13 58 58 90 90 90 90 1134X8 1134X8 2032X9 2032.X9 4064X9 4064X9 64X4 64X4 128X4 128X4 192X4 192X4 2 2 6 6 6 6 28DIP 28DIP 60QFP 60QFP 60QFP 60QFP SM-114 10 -9' 20 90 4064X9 192X4 6 60QFP SM-120 10 -9 20 54 1536X8 64X4 2 44QFP 10 -5 32 100 3072X9 128X4t16 3 60QFP SM-4A SM-5A SM-5L SM-500 SM-510 6)1 61' 61 61 61 -3 -3 -3 -2 -3 0.05 0.05 0.05 0.02 0.06 54 51 51 52 49 2268X8 1827X8 1827X8 1197X8 2772X8 96X4 65X4 65X4 40X4 128X4 1 1 1 1 2 60QFP 60QFP 60QFP 48QFP 60QFP SM-511 61 -3 0.04 55 4032X8 128X4 2 60QFP SM-520 11 -5 1.5 93 3072X10 160X4+ l6X2 4 64DIP SM-525 11 -5 0.6 93 3072X10 160X4+ 16X2 4 64DIP SM-530 91.6 -1.5 0.012 49 2016X8 88X4 1 80QFP SM-531 91.6 -1.5 0.01 45 1260X8 52X4 1 60QEP 16 -4.5 0.23 57 2016X8 128X4 60QFP SM-550 1.6 3-5 1 94 1024X8 80X4 SM-555 3.3 3-5 1 94 1024X8 80X4 SM-551 1.6 3-5 1 94 2048X8 128X4 SM-556 3.3 3-5 1 94 2048X8 128X4 2 using RAM area using RAM area using RAM area using RAM area SM-200 SM-540 2 PMOS NMOS CMOS Remarks External RAM expandable 8-bit A/D conversion 8-bit AID conversion 8-bit AID conversion 8-bit AID conversion 8-bit AID conversion Remote control signal receiver External ROM External ROM/REM Automatic display circuit External RAM Melody generator circuit External RAM Automatic display circuit External RAM Automatic display circuit Clock counter circuit Melody generator circuit Clock counter circuit Melody generator circuit Dot matrix Page 36 40 40 44 44 49 49 54 59 64 69 74 79 84 89 93 98 103 108 113 118 48QFP 8-bit serial 110 function 123 48QFP 8·bit serial I/O function 123 60QFP 8-bit serial 110 function 128 60QFP 8· bit serial 110 function 128 Products Lineup .'-'--------------------------(Continued) SM-552 L6 3-5 1 94 SM-557 3_3 3-5 1 94 SM-5E3 L6 3-5 1 97 SM-563 6_6 3-5 0-4 93 SM-572 2 3-5 1-5 93 using RAM area using 4096X8 256X4 RAM area using 4096X8 256X4 RAM area using 4096X8 l28X4t32X4 RAM area 2032X9 128X4 6 SM-578 2 3-5 1-5 94 4064X9 192X4 6 SM-579 2 3-5 1-5 94 6096X9 256X4 6 SM-590 SM-591 2 2 3-5 3-5 0_5 0_5 41 41 508X8 1016X8 32X4 56X4 4 4 CMOS • 256X4 60QFP 8-bit serial I/O function 133 60QFP 8-bit serial I/O function 133 80QFP 8-bit serial I/O function 138 64QFP 8-bit serial I/O function 139 64QFP 64DIP 64QFP 64DIP 64QFP 20DIP 20DIP 8-bit AID conversion 8-bit AID conversion 8-bit Serial 110 function 8-bit AID conversion 8-bit serial 110 function 16DIP, 18DIP 16DIP, 18DIP 144 150 151 152 156 8-Bit 1-Chip Microcomputer Model LH0801 LH0802 LH0803 LH0811 LH0812 LH0813 LH0881 • 4096X8 Cycle time MIN- (JLs) 1-5 1-5 1-5 1-5 1-5 1-5 1-5 Supply voltage (V) 5±5% 5±5% 5±5% 5+5% 5±5% 5±5% 5±5% Current consumption MAX_(mA) 180 180 180 180 180 180 180 I/O pins ROM (bit) RAM (bit) Package Remarks Page 32 32 32 32 32 32 24 2,048X8 4,096X8 - 144X8 144X8 144X8 144X8 144X8 144X8 144X8 40DIP 64DIP 40PBP 40DIP 64DIP 40PBP 40DIP Z8601MCU Z8602MPD Z8603MPE Z8611MCU Z8612MPD Z8613MPE Z8681MCU 166 180 182 184 186 189 191 I/O pins ROM (bit) RAM (bit) Package Remarks Page 8-Bit CMOS 1-Chip Microcomputer Cycle time MIN- (JLs) Supply voltage (V) SM-803 2.2 5±10% 32 4,096X8 144X8 SM-812 1 3-5 48 2,048X8 128X8 SM-813 1 3-5 48 4,096X8 192X8 LU810V1 1 3-5 48 Model Current consumption MAX.(mA) - 128X8 40DIP 44QFP 64DIP 64QFP 64QFP 64DIP 64QFP 64DIP - 195 - 198 - 201 - 204 --------------SHARP -..-.---------.-. 3 .....,----------... .~ ProduotsLineup' .......................,......~ -~--,.- • a-Bit Microprocessor and Peripheral LSls Function MOdel Process Supply voltage (V) LH0080 LH0080A LH0080B Parallel LH0081 input/output LH0081A controller LH0081B t80082 Counter / Timer .L80082A controller L80082B L80083 DMA controller LH0083A L80084 LH0084A LH0084B LH0085 Serial input/output LH0085A controller LH0085B L80086 LH0086A LH0086B Floppy disk LH0110 controller LH0110A LH5080 CPU LH5080L LH5080LM. Parallel LH5081 input/output LH5081L .controller LH5081LM LH5082 Counter /Timer LH5082L controller LH5082LM CPU Current consumption MAX.(mA) 150 200 200 ' NMOS 5±5% NMOS 5±5% 100 NMOS 5±5% 120 NMOS 5±5% 150 200 100 NMOS 5±5% 100 100 NMOS CMOS CMOS CMOS 5±5% 5±10% 5±10% 5±10% .170 180 10(TYP.} 2(TYP.) 2.5(TYP.) Clock fequency (MHz) 2.5 4 6 2.5 4 6 2.5 4 6 2.5 4 2.5 4 6 2.5 4 6 2.5 4 6 2.5 4 2.5 2.5 2.5 2.5 - 2.5 2.5 2.5 2.5 2.5 Package 40DIP 40DIP 28DIP 40DIP 40DIP 40DIP 40DIP . Remarks Page Z80 CPU Z80A CPU Z80B CPU Z80 PIO Z80A PIO Z80B PIO Z80 CTC Z80A CTC Z80B CTC Z80 DMA Z80A DMA Z80 SIO/O Z80A SIO/O Z80B SIO/O Z80 SIO/1 Z80A SIO/1 Z80B 510/1 Z80SI012 Z80A SIO/2 Z80B 510/2 210 210 210 235 235 235 245 245 245 255 255 270 270 270 270 270 270 270 270 270 279 279 296 296 296 302 302 302 307 307 307 ~ 40DIP ~ ~ 40DIP ~ 44QFP 40DIP - 44QFP - 28DIP - 44QFP - -~~-'----SI-iARP'---'-'-'---------- 4 ------------------------Products Lineup • 16-Slt Microprocessor and Peripheral LSls Function Model Process Supply voltage (V) CPU Memory control unit Serial communication controller CounterITimer parallel input/ output unit FIFO input/output interface unit FIFO buffer unit and Z-FIFO expander Serial parallel combination controller GPIB controller Multitask support processor Universal peripheral controller LH8001 LH8001A LH8002 LH8002A LH8010 LH8010A LH8030 LH8030A LH8036 LH8036A LH8038 LH8038A LH8060 LH8071 LH8072 LH8073 LH8075 LH8090 LH809QA LH8091 LH8091A LH8092 LH8092A LH8093 LH8093A LH8094 LH8094A Current consumption MAX.(mA) 320 NMOS 5±5% 320 NMOS 5±5% 300 NMOS 5±5% 250 NMOS 5±5% 200 NMOS 5±5% 200 NMOS 5±5% 200 Clock fequency (MHz) 4 6 4 6 4 6 4 6 4 6 4 6 4 Package 48DIP 40DIP 48DIP 40DIP 40DIP 40DIP 28DIP Remarks Z8001 CPU Z8001A CPU Z8002 CPU Z8002A CPU Z8010 MMU Z8010A MMU Z8030 SCC Z8030A SCC Z8036 CIO Z8036A CIO Z8038 FlO Z8038A FlO 314 ,314 314 314 332 332 342 342 356 356 377 377 Z8060 FIFO 396 402 413 421 423 NMOS 5±5% 250 4 40DIP NMOS 5±5% 250 4 40DIP ---- NMOS 5±5% 250 4 40DIP -- NMOS 5±5% 250 NMOS 5±5% 250 250 250 NMOS 5±5% 250 4 6 4 6 4 6 4 6 4 6 40DIP 64DIP 64DIP 40PBP 40PBP Page Z8090 UPC Z8090A UPC Z8091 ~:~f~~pment Z8091A ~:~~~~pment Z8092 ~:~i~~pment Z8092A ~:~fi~pment Z8093 ~~~t~~k Z8093A ~::'JI:."~~k Z8094 ~~~ff~~k Z8094A ~~Ou'l':.:~k 434 434 451 451 453 453 455 455 457 457 5 Products Lineup __ ~~~"" • __''_'':''''''''''' ~-II!IIf:_""""""""'''''' Peripheral LSls for Microcomputers Function Model Process Supply voltage (V) Serial communication controller CounterITimer parallel input/output unit Serial parallel combination controller GPIB controller Multitask support processor Universal peripheral controller Key-encoder and data transmitter receiver *1 *2 LH8530 LH8530A LH8536 LH8536A LH8571 LH8572 LH8573 LH8575 LH8590 LH8590A LH8591 LH8591A LH8592 LH8592A LH8593 LH8593A LH8594 LH8594A LH8661 ,Current Clock consumption ,fequency MAX.(mA) (MHz) 4 250 6 4 200 6 250 4 4 250 250 4 NMOS 5±5% NMOS 5±5% NMOS NMOS NMOS 5±5% 5±5% 5±5% NMds 5±5% 250 NMOS 5±5% 250 NMOS 5±5% 250 NMOS 5±5% 250 NMOS 5±5% 250 NMOS 5±5% 250 NMOS 5±5% 180 I 4 4 6 4 6 4 6 4 6 4 6 8 Package 40DIP 40DIP 40DIP 40DIP 40DIP 40DIP .40DIP 64DIP 64DIP 40PBP 40PBP 40DIP Remarks Page 460 28030 SCC , 28030A SCC 460 28036 CIO .474 28036A CIO 474 -49,1 -502 -511 -- 513 28090 UPC 28090A UPC 28091*1 28091A *1 28092*1 28092A *1 28093*2 28093A *2 28094*2 28094A *2 525 525 542 542 544 544 546 546 548 548 -- 550 Development device Protopack emulator . ; Microcomputer Development Support System Model LH8DH11 0 LH8DH130 LH8DH140 LH8DH312 LH8DH321 LH8DH330 LH8DH340 LH8DH403 LU4DH200 LUXXXH2 Function Development Support System SM-D-8000 n; SM Series 28, 280, Z8000 development device Development Support System SM-D-8100; 28, 280, 28000 development device Development Support System SM-D-8200; 28, 280, 28000 development device 280B In-circuit Emulator, for SM-D-8000 n Z8 In-circuit Emulator n, Stand-alone type 28000 Evaluation Board, Stand-alone type 28000 In-circuit Emulator SM-E-8100, Stand-alone type PROM Writer SM-E-8000 n SM Series Emulator Device SME-20, Stand-alone type SM Series Evaluation Board Page 562 564 566 569 571 572 573 575 576 578 ~~~----'-'---SHARP ---.-..-.------~--- 6 Products Lineup ~~.-..-.~~.-..-..-..-..-.~.-..-..-.~.-.~ • Mask ROM Capacih (bit) 32K 64K 96K 12SK 256K 512K 1M 102M • Model LH2331 LH2331A LH2332 LH2332A LH2362B LH2367 LH5366A LH5366S LH5367 LH5396 LH5396A LH5396S LH23126 LH53127 LH53129 LH53129A LH23257 LH53256 LH53257 LH53512 LH531000 LH53012 Series Process NMOS Bit composition (bit) 4,096XS NMOS S,192XS CMOS CMOS 12,2SSXS NMOS CMOS 16,3S4XS NMOS CMOS 32,76SXS CMOS CMOS 65,536XS 131,072 X8 CMOS 103,680X12 Process Bit composition (bit) Supply Access Power Cycle time time voltage consumption Package MIN.(ns) MAX.(ns) (V) MAX.(mW) 450 450 350 350 5±5% 5S0 24DIP 450 450 350 350 250 250 S40 24DIP 5±5% 250 250 420 2SDIP 2,500 4,000 5±10% 30 6,000 12,000 44QFP 3±0.5V 3.5 450 750 5±5% 60 7,500 6,000 35 4.5±0.5V 44QFP 3,000 4,500 60 1S,000 10 15,000 3±0.4V 250 250 5±1O% 440 2SDIP 44 250 350 5±10% 2SDIP 6,000 7,500 4.5±O.5V 35 44QFP 2,500 3,500 5±1O% SO 250 250 440 28DIP 44QFP 800 900 5±10% 55 250 250 165 2SDIP 3,000 4,400 5±IV 24S0P 9 2SDIP SO 5 250 250 5 -. Remarks Page 5S2 582 r-s86 r-s86 590 "594 599 '602 605 60S 608 ill 615 rsl8 ~ ~ 630 ~ '638 642 646 40DIP 647 EPROM Capacit) (bit) 64K 12SK 256K Model LH5764j-20 LH5764j-25 LH5764j-30 LH5764j-45 LH57128]-20 LH57128]-25 LH57128]-30 LH57128j-45 LH57256]-20 LH57256]-25 LH57256]-30 LH57256]-45 CMOS CMOS CMOS Access Cycle time time MIN.(ns) MAX.(ns) -200 250 S,192XS 300 450 200 -250 16,3S4XS 300 -450 -200 250 32,76SXS 300 -450 Supply voltage (V) Power consumption Package MAX.(mW) 5±10% 150 2SDIP (Ceramic) 150 2SDIP (Ceramic) Remarks Page 6"50 ~ ~ ~ 651 5±10% ~ . '651 ~ 652 5±10% 150 2SDIP (Ceramic) '652 rrnrrn- 7 • ., 1K 2K 4K 16K Model LH5101-30 LH5101-45 LH5101 LH5101L3 LH5101S LH5101W LH5102 LH5102-8 LH5102W LH2114L-20 LH5114-4 LH5104-4 LH5116-15 LH5116-20 LH5117-15 LH5117-20 LH5118-15 LH5118-20 r . . - ,Bit composition (bit) Supply Power Access Cycle time time voltage consumption Package MIN.(ns) (V) MAX.(mW) MAX;(ns) 300 300 140 5±10% 450 450 800 800 250X4 CMOS 5±5% 145 22DIP 650 650 3,000 3,500 3±OAV 45 800 800 5±10% 150 1,200 1,200 5±5% 145 512X4 CMOS 800 900 22DIP 1,200 1,200 150 5±10% NMOS 200 200 400 1,024X4 5±10% 18DIP CMOS 450 450 110 CMOS ' 4,096X 1 450 450 18DIP 5±.10% 85 150 150 200 200 150 150 2,048X8 220 24DIP CMOS 5±10% 200 200 150 150 200 200 frocess Remarks 118 pin CS 20 pin OE Page 653 653 658 658 602 666 670 670 675 680 684 688 693 693 118 pin GE, ~ 20 pin CEI 698 118 pin CE, 703 20 pin CEI 703 Dynamic RAM Capacity '(bit) Model LH2164-15 LH2164-20 64K LH2164A-15 LH2164A-20 , LH2464-10 LH2464-12 LH2464-15 LH2465c10 LH2465-12 LH2465-15 LH21256-10 256K LH21256-12 LH21256-15 LH21257-10 LH21257-12 LH21257-15 LH21258-10 LH21258-12 LH21258-15 8 .........._ _ _. ._ _ StaticRAM Capacih (bit) • . ~ ~ ' Products ,Lineup ................_ _. ._ _................ Process NMOS NMOS NMOS Bit composition (bit) Access Cycle time time MIN.(ns) MAX.(ns) 150 270 200 330 65,536X1 150 260 200 330 100 120 150 65,536X4 100 120 150 100 200 120 230 150 260 100 200 262,144X 1 120 230 150 260 , 100 200 120 230 150 260 Supply voltage (\1) Power consumption Package MAX.(mW) 248 16DIP 5±10% 275 5±10% 267.5 5±10% 467.5 440 385 467.5 440 385 467.5 440 385 18DIP ' Remarks Page 708 708 717 717 726 r-------'-Page mode 726 r-------'-726 726 r-------'-Nibble mode ~ 726 728 r-------'-Page mode 728 rns rmrns rmc-m-728 16DIP Nibble mode 728 Byte mode .............................. ......................... ......................... Products Lineup ~ • Tone Dialer LR4087 LR4089 Power Operating Oscillating Tone supply current frequency Oscillater Mute output output lvoltage(V) TYP.(mA) (MHz) CMOS 3.5-10 1 Crystal bipolar output Complementary 3.58 CMOS 3.0-10 1 3.58 Crystal bipolar output N-channel open drain LR4091 CMOS 3.0-10 1 3.58 Crystal bipolar output N-channel open drain LR4092 CMOS 3.5-10 1 3.58 Crystal bipolar output Model • • ~ Process Remarks Op amplifier output Complementary Package Page 16DIP 16DIP 732 735 18DIP 738 16DIP 741 Pulse Dialer Model Process LR40981A LR40982 LR40991 LR40992 LR40993 LR40994 CMOS CMOS CMOS CMOS CMOS CMOS Power Operating Oscillating Make supply current frequency Oscillator rate r-roltage(V) MAX.(mA (kHz) (%) 2.5-6 0.15 480 Ceramic 33/39 2.5-6 33/39 0.15 480 Ceramic 2.5-6 34/40 0.15 4 CR 34/40 2.5-6 4 CR 0.15 2.5-6 34/40 0.15 4 CR 2.5-6 34/40 0.15 4 CR Pluse ratio (pps) 10 10 10/20 10/20 Pluse Mute output output Positive Negative Negative Negative 10/20 Negative 10120 Negative Remarks Negative Negative Positive Negative Negative Key signal Negative Key. signal Package Page 16DIP 16DIP 18DIP 18DIP 18DIP 18DIP 744 748 752 756 760 764 Pulse / Tone Dialer Model Process Power Operating Oscillating supply current frequency Oscillator voltage(V) TYP.(mA) (MHz) Make rate (%) Pluse Abbrevication Redical ratio memory function (pps) 18 digits 18 digit last .LR480lD CMOS 2-6 2 3.58 Crystal 40 10/20 LR4802 CMOS 2-6 2 3.58 Crystal 32 10/20 LR4803 CMOS 2-6 2 3.58 Crystal 40 10/20 ~ LR4804 CMOS 2-6 2 3.58 Crystal .40 10120 LR4805 CMOS 2-6 1 3.58 Crystal 32 10120 LR4806B CMOS 2...,.6 1 3.58 Crystal 33/37 10/20 X9 stations 18 digits number 18 digit last X9 stations 18 digits number 18 digit last X9 stations number 32 digit last' --- numger 32 digit last 16 digits number 32 digit last X 20 stations number· Package Page 18DIP 768 18DIP 773 18DIP 778 20DIP 783 20DIP 788 28DIP 793 ---~------SHARP~------~---- 9 1 .---..... .....,.-.......... ·Products Lineup • ..... ............................... .-~~ .- MOS Ie / LSI F'unction Driver Clock/ TImer LCD driver Vacuum fluorescent display driver 10 Model LH5010 LH5011 kH5010D LH5011D LH5012 LH5013 LH5012D LH5013D LR3428 LR3429 LR3464 LR3468 Process CMOS CMOS CMOS CMOS CMOS CMOS CMOS CMOS CMOS CMOS CMOS CMOS LR3465 CMOS LR3441 CMOS LR3419 CMOS LR3472 CMOS LH5008 CMOS LH5003 CMOS LH5004 CMOS LH5821 CMOS LH5822 CMOS LH5823 CMOS LH5826 CMOS LH5030 LH5031 CMOS CMOS LH5035A CMOS LH5036A CMOS LH5006A LH5021A LH5022 LR3691A LR3692 LI2048 CMOS CMOS CMOS CMOS CMOS PMOS LH1001 PMOS Features 6-circuit signal non-inversion type, INHIBIT input 6-circuit signal inversion type, INHIBIT input 7-circuit signal non-inve(sion type, INHIBIT input 7-circuit signal iIiversion.type, INHIBIT input 7-circuit signal non-inversion. type 7 -circuit signal inversion type 8-circuit signal ·non-inversion type, 8-circuit signal inversion type Analog clock, alarm, oscillator: 4.19 MHz crystal Analog clock, alarm, oscillator: 4.19 MHz crystal Analog clock, alarm, oscillator : 32kHz crystal Analog clock, alarm, oscillator: 32kHz crystal Analog clock, melody generating function oscillator: 32kHz crystal (Hour, min) LCD display, timecast, alarm, snooze function, oscillator: 32kHz crystal (Hour, min) Fluorescent display tube indication, power failure display, oscillator 50/~0 Hz or 32kHz crystal (Hour, min) Fluorescent display tube, 6-program-a-week reservation, oscillator: 32kHz crystal 7-segment and 14-segment ·display, display RAM: 128 bits 5 X 7 -dot matrix display (master), display RAM: 240 bits, character generator: 125 types 5 X 7-dot matrix display (slave), display RAM: 320 bits, character generator: 128 types Dot matrix display (master), display RAM: 1280 bits, common output: 20 lines, segment output: 44 lines Dot matrix display (master), display RAM: 1280 bits, common output: 18 lines, segment output: 46 lines Dot matrix display (master), display RA.M : 1280 bits, common output: 16 lines, segment output: 48 lines Dot matrix display (slave), display RAM: 1280 bits, segment output: 64 lines Dot matrix display (common), common output: 80' lines Dot matrix display (common), common output;. 32 lines Dot matrix display (segment), display RAM: 3200 bits, segment output: 80 lines Dot matrix display (segment), display RAM: 3200 bits, segment output: 80 lines Dot matrix display, common output or segment output: 40 lines Dot matrix display, common output or segment output: 80 lines Dot matrix display, common output or segment output: 80 lines Dot matrix controller, max display capacity: 163,840 dots Dot matrix controller, max display capacity: 640 X 256 dots 5 X 7-dot matrix display, character generator: 128 types Grid drive, output voltage (MAX.): -50V, output current (MAX.): 20mA Package 16DIP. 16DIP 18DIP 18DIP 16DIP 16DIP 18DIP 18DIP 8DIP 8DIP 8DIP 8DIP Page 908 ·908 911 911 914 914 917 917 920 923 926 929 22DIP 932 48QFP 936 48QFP 94i 48QFP 945 60QFP 838 60QFP 899 60QFP 899 80QFP 879 80QFP 879 80QFP 879 80QFP 884 96QFP 44QFP 892 896 96QFP 889 96QFP 889 60QFP 866 100QFP 870 100QFP 870 60QFP 844 80QFP 853 60QFP 835 36QFP 905 .....---....---....------.......-.------------..... Products Lineup ~--------• MOS Ie / LSI (continued) Function High voltage Model Process LZI008AD DMOS LZI016AD DMOS LZI032AM DMOS LZll08AD DMOS LZ1116AD DMOS LZ1132AM DMOS LR3617 LR3727 LR3652 CMOS CMOS CMOS LR3715M CMOS LU59001 CMOS LR3461 CMOS LR3462 CMOS LR3681 CMOS . LZ2020 CMOS MOS Audio & Video Remote control Voice Synthesizer / Melody generator CCD Gate array LZ92 Series CMOS Features 8-output, N-channel, output voltage (MAX.): 300V, output current (TYP.): 35mA 16-output, N-channel, output voltage (MAX.): 250V, output current (TYP.): 45mA 32-output, N-channel, output voltage (MAX.): 250V, output current (TYP.): 45mA 8-output, P-channel, output voltage (MAX.): 300V, output current (TYP.): 20mA 16-output, P-channel, output voltage (MAX.): 300V, output current (TYP.): 30mA 32-output, P-channel, output voltage (MAX.): 300V, output current (TYP.): 30mA Up I down counter with LCD decoder driver VTR data hack PLL synthesizer for AM I FM radio 56-channel remote-controlled transmitter, oscillator: 455 kHz ceramic 56-channel remote-controlled transmitter, oscillator: 455 kHz ceramic 8-melody generation with accompaniment, Electromagnetic speaker driver, CR oscillation 8-melody generation, piezo·electric drive, CR oscillation Speech synthesizer, Waveform coding system, Built-in 32K-bit data ROM, Base frequency: 4.19MHz CCD image sensor, dynamic range (TYP.): 54dB, Transfer efficiency more than 99.996% Gate array, 300-5000 gates, 2.8ns/gate Package Page 18DIP 804 28DIP 807 44QFP 811 18DIP 815 28DIP 818 44QFP 821 48QFP 36QFP 22DIP 964 969 977 36QFP 952 20DIP 957 22DIP 824 18DIP 827 48DIP 831 24DIP (Ceramic) 799 -- 796 11 ...... Package Outljoe ~., Package Outline (Unit: mm) 8 8DIP 5 14DIP 16DIP 12 16 9 .....-..-..... .-..-..-. - ...-.-............ ........ Package Outline .-..-~ iSDIP 1 ;;== ;; 7.62 TVP. 20DIP 20 11 '~-~f:*) 1 24.5±o.25 10 :;; +1 .... ", 7.62TYP. ..; 22DIP 10.16 TYP . 13 _-_..................- ......-------_........... PackageOuUine . ......,.--. . -~ " 24DIP CD ® ® ® ® ® (J) ® p~.54TYP. 0.5±O.1 Shrink 6.35±O.2 22.0±O.2S 7.62TYP. 3.45±O.2 4.2±O·2 P-i, 778 TYP. 0.46±O.1 Normal Shrink 13.2±o.25 8.6±O.2 36.0±O·3 25.5±O..25 15.24 TYP: 10. 16 T¥P. 4.25±O.25 3.85±O.2 5.1 ±O.2 4.4±O.2 p-2.54T¥P. P-l, 778TYP. O.5±O.1 (J) O.46±O·1 28DIP 30DIP Normal 13.2±o.2s 31.0±O·3 15.24TYP. 4.25±O·2 5.1±o.2 CD ® ® ® ® ® Shrink Normal 13.2±o.25 8.6±O.2 36.0±O.3 27.2±O.25 lS.24 TYP . 10. 16 TYP. 4.25±o.25 3.85±o.2 4.4±O.2 S.l ±O.2 p-2.54 TYP. P-l, 778 TYP. O.46±O·1 (J) 0.5±O·1 3~ r"l t"J I'i fI t"J t"J ~ r"l r"l t"J t"J J'l r"1 ~6 --+-----$. - 1----. -$- \-IV V V V V V 1 CD ® ® ® ® ® I e I ! 'vi V V V V VL ® 15 ~ @ (§) ~ -H on "" .,.; 1 P- ,~ ~ ,," ~ ~ ~.-.------~--SHARP-.-.~~-.-.-- 14 Package Outline ~.-..-..-.-..-..-.-..-.-~.-.-.--.-..-.-. 40DIP 21 42DIP 48DIP 15 P~kage. Outline . . . - . - . - . - . - . . . . . , . - -..._ ..._~.-.:..._ _illr.. . . . ....,.IIiiIIIIiiiIif..... 640lP 64 33 42.0MAX. :....-------------t~1 24 DIP (Ceramic) I 24 _~ n ~L 13 J - Hjt:=chip ---+--- . 11 14.0TYI'· 12 ~ M .,; +1 ;2) >= N t.. ~~~~~=t~ J . 28 DIP(Ceramic) 16 O.25±o.05 \: 15.24TYP · ~ .1 Package Outline _________ ~~~"",~~"",~....,....,.--r~...., 8.9 TYP . 40PBP ( Ceramic Piggyback 40 21 ) ~ c::i '"0' M '" ~ +\ _ ;;. I +1 to: ~ ~ .,.: ........ 20 '"0 0; >- ti. ';;, ~------------~--------------~~ ~ ~ r--: 50.8±o.8 , J~0~46±O.1 .,; '" ... +1 M 8S0P JJ - - -'" r- C> -u; : II ~j ~ II. 0.15±o.05 14S0P '::' --+-------'- '"~ 6T1iirfIDriB ~~----~~----------~~ ..,., '" ci ~ ~IIE 0.15±O.05 0 '" .,; "" o~ .... o 17 16S0~ . 8 o ... on on on ~irini$nririC ~ <00 o~ o 24S0P IS.4 0 0.2 o on ~-~ ~ttl~: ~I 3 on II eO.IS±O.05 : 32QFP 16.0±O" O.8S±O.2 1.45±O.2 O.ITYP. -------~---~-~SHARP,-~~-.-------- 18 .....---- Package Outline .-..-..-.~.-..-.~.-.~~~.-.~~~.-. p-o.8 TYP• 36QFP 36 -0.38±o.1 0.15±o.o5 n7~-------' ~---- ~ .,; ++1--E""'a::Il N o .. 0 ~1=E=-88 <=> cD ............ 10.0±O.2 0.85±0.2 1.45±O.2 16.0±O.4 o.rrvp 44QFP _liE 0.15-{l.tl5 J-.- - 0.85-°·2 1.45- 0 . 2 16.0,,0.4 . . . - - . - - - - - , . . . . - - $ H A R p . - - - - - - - - - - -.......... 19 Paokage, Outline ........--.~...,...,.-. . ..-..-.. . .....r.-...........~......_ 48QFP p-o.75 TYP , 24 N o ~ 0 +i <:> <:> __ +I ~~ 13 16.01: 0 .4 O.I TYP , 60QFP 0.15 ±0.05 f N ---111==~3- , ~ 0 ~ o "" 00 -r-~ 1.0±0.2 1.9±0.2 . 20.3±0 .• 20 O.FYP' ' .... .-..-..-. .......-....................-........-..-..-........ Package Outline .-..-. 64QFP 64-0.4±O.! 64 1 I 20.0±O.2 \ 24.3±o.. . O.9±O.2 I ,. 1. 95±o.2 -1'--1iE-O-.I ±o.os -t6r;-fulunJ1tU1 rfilil~~ (21.9)._ _ _ _ _~-~ 76QFP P-O.8 T¥P. I --r'--, I 22.0±0.4 O.I±O.! 21 p,i1~kage Outline 80QFP O.15±0.01 p-0.8 TYP. ~----- +----I 1.25±0.2 18.0±0.2 2.4±0.2 O.1't:O.1 22.0±0.4 I" 80QFP 0.15±o.05 1'-0.8 TY I'· I 20.0±0.2 , 24.3±0.4 0.9±O., 1.95±0.2 0.1±0.1 _ _ ~~-----~-SHARP~------"--'----"""'- 22 ......-..-.......-.................-.................-.......-. Package Outline .-..-..-. 96QFP p-O.FYP' O.15±O.05 "II" . , I ~---+----, I I i 18.0±o.2 22.0±O.' 1.25±o.2 2.4±O.2 O.l±O.! lOOQFP 23 44PLCC ;>1 6' , I,E 40 !" \ 29 16.6.tO·2 (17.5) DIP : Dual-In-Line Package QFP : Quad Flat Package SOP: Small-Outline Package PBP : Piggyback Package PLCC : Plastic-Leadless-Chip-Carrier 24 28 ..... .-.,.-.,.-., ..... ..... ..... ..... ..... .......... .-.,.-., .-., .-., .-., .-., Quality Assurance .-., Quality Assurance 1. Quality Assurance System Sharp develops and manufactures a wide range of consumer and industrial-use semiconductor products, including ICs and LSIs. In recent years, the applications of ICs and LSIs have expanded significantly, into fields where extremely high levels of quality are critical. In response, Sharp has implemented a total quality assurance system that encompasses the entire production process from planning to after-sales service. This system ensures that reliability is a priority in the planning and manufacturing stages, and guarantees product quality through rigorous reliability testing. We will introduce a part of this system here. Sharp's quality and reliability assurance activities are based on the following guidelines: (1) All personnel should participate in quality assurance by continually cultivating a higher level of quality awareness. (2) In the developmental stage of new products, create designs that consider reliability in every respect. (3) In addition to quality control in all manufacturing processes, all working environments, materials, equipment, and measuring devices should be carefully monitored to ensure quality and reliability from the very beginning of the process. (4) Confirm long-term reliability and obtain a through understanding of practical limits through reliability testing. (5) Continually work to improve quality through application of data from process inspections, reliability testing, and market surveys. 2. Quality and Reliability Control in New Product Development The development of new products begins with a thorough understanding of the product specifications and quality that will satisfy the purpose for which the product is intended and with developmental planning that carefully considers pricing, quantity and the time of introduction to the market. In the design stage, reliability is designed into the product based on test data, process capability, and field data, and experimental models are made. These experimental models are referred to as TS (technical samples), and are evaluated pri- 1 ;;=;:; = I--_ _ _ Evaluation of functions and performance I--_ _ _ Eva!uation of quality and mass producibility f----Evaluation of reliability 1 - - - - - Decision to mass produce Fig. 1 New Product Development Steps marily for their ability to function and their performance. Next, ES (engineering samples) are made and evaluated to determine whether the functions, performance and quality aimed for in the design stage can be guaranteed under the existing manufacturing conditions. These ES are also evaluated in quality and reliability tests to determine whether their long-term reliability can be guaranteed. After this, mass producibility is evaluated using CS (commercial samples) obtained from a trial mass production, and the decision to mass produce or not is made. Fig. 1 shows the steps in the development of new products. 3. Quality and Reliability Control in Mass Production (1 ) Quality Control of Materials The quality and reliability of a product is affected by its component materials as well as the manufacturing processes and conditions. The quality control of purchased component . materials is ensured by material qualification and inspection upon receipt. .-....----~.------SHARP.---------~ 25 ........,.....,.... ..-.. ..... Q,uality Assurance .....,.....,....., ~- Table 1 Material Items ....,....., ........... .....,.....,.....,....., Examples of items considered in material approval Wafers Crystal growth method ,Crystal orientation Doping Oxygen content Dislocation density Diameter Thickness Parallelism Specific resistance Resins Composition Electrical characteristics Thermal characteristics Formability Process characteristics Reliability evaluation Reliability characteris tics by elements used Process Lead frames Composition Electrical characteristics Thermal characteristics Physical characteristics Appearance ' Dimensions Processing a~cl,lracy Plating characteristics Process characteristics .Bonding wire Purity Appearance Dimensions Strength Elongation character-istics Process characteristics C Control items Purchase of material . Silicon wafers Inspection upon receipt , Appearance, dimensions, specific resistance Eliminate items with incorrect dimensions; scratches; and crystal defects and assure resistance values. Appearance, film thickness Confirm the absence of pin holes and assure film thickness. Check the cleanliness of surfaces. Oxidation On line QC Surface cleanliness Photolithography Visual inspection On line QC Development, etching Check the suitability of development and ~tching. Wire width Control the wire width. Electrical. characteristics Eliminate items with unsuitable electrical characteristics. Appearance Confirm the absence of breakage and chips. Appearance, bond strength Check quality of die bond. Appearance, tensile strength Ch.eck position and shape of bond and assure sufficient tensile strength. Ion implantation Chip electrical inspection Dicing Breakage screening Die inspection Die bonding Die bonding inspection Wire bonding Wire bonding 'inspection Fig .. 2 Example of process quality control ! ' .-----~-----SHARP,-~-.---.-.-..-.- 26 ......-..-.......-.................-............-..-........... Quality Assurance .-..-..-. Table 1 shows examples of material qualification items. The inspections performed upon receipt of materials use criteria compiled from the purchase specifications and approval drawings, and employ sampling inspection methods that conform with MIL-STD-105D. (2) Control of Manufacturing Environment Environmental conditions in the manufacturing process - such as temperature, humidity, and dust - significantly affect the finished quality of semi· conductor products. Temperature is especially critical in maintaining the accuracy of the measurement of electrical characteristics and the accuracy of various devices. Humidity control is important for the prevention of moisture penetration into a device and the prevention of static electricity. Temperature and humidity are thus strictly maintained at constant levels. A dust-free environment is vital in the manufacture of refined semiconductor circuits, as dust can be the critical determining factor in their quality and reliability. Thus, the cleanliness of everything from air conditioning equipment to work benches to work clothes and office items is carefully controlled. Sharp is also concerned about creating an environment conducive to error-free high-precision work, and so provides background music and interior colors appropriate for specific tasks. agement. We perform a final inspection of all finished products as well as further quality assurance inspections through sampling to fully ensure quality. Detects found in these inspections are promptly reported to the design and production sections, and improvements made' in the processes to upgrade our uniform quality capabilitieS. Assembly process Electrical characteristics All items Appearance All items Eiectrical characteristics, Judge lot appearance ' by sampling -----------, I Reliability tests Sampling _ _ _ _ _ _ _ _ _ JI (3) Control of Manufacturing Equipment and Measuring Devices Tremendous technological innovation and progress has been made in s~miconductors themselves and in the processes and equipment by which they are produced. T,o achieve even higher levels of product uniformity and quality, Sharp is continually furthering the automation of its processes, strictly managing the maintenance of its manufacturing equipment, and carefully monitoring the accuracy of all measuring devices through daily and periodic inspections. (4) Process Quality Control and Product inspections Shipment Fig. 3 Product inspection system Fig. 3 Shows the product inspection system. Fig. 4 Shows an example of process quality control. (5) Reliability Assurance To guarantee the long·term reliability of our products, we periodically sample products and subject them to reliability testing such as life tests and environmental tests. In addition, reliability tests are performed whenever process changes have been made. Based on the fundamental concept of ensuring quality and reliability throughout the manufacturing process, we check at each stage to determine whether the prescribed characteristics are being obtained and to prevent defective items from going on to the next stage. We do this through strict monitoring, inspection of all items, sampling inspections, and other standardized methods of man---...-..--.----SHARP-.--~-- ........ - 27 Q.uatity~sslM'anc'i.l· .. ..r....__. . ,..-.r~~ ~ .....~......-..r.~. .~..........__~.......... ~~ SHARP Manufacturing Quality control Quality assurance Design ' Business, planning Investigation Development plan decision (New production planning collferen~e) sample/Engineering, sample General evaluation (New product debut conference) Pilot production production go - ahead conference) = .~ "" o "C &:: Fig.4 (a) Quality assurance system (SHARP side) 28 _ _ - .................... .............................. ..................... Customers 1 Design dept. C r Confirmation of\. Equipment discussionS' Parts 1 Quality Assurance ' Manufacturing dept., Quality dept. Assurance Parts dept. I End user Service dept. )-~------------------~------~o~·----o ) seleciion specifications 0 ( Equipment design I Design sample \.. r \ r \.. Purchase specifications }--( Parts approval 0 Speeificatjons approval )- 0 '\ ./ r \. 0 0 0 Mounting approval ~ ( ( Sample planning ) Design review • "\ r ../ \ Pilot production f "\ \. ) l ( ) General evaluation + J' Quality \... evaluation "\ ./ Process quality 1 Assembling control "\ J' \. r \. 0 Sample test r \.. Evaluation /Analysis Fig. 4 • l.n s pections /Aging Reliability evaluation "\ ./ ) "\ ../ J' \. Operation ) (b) Quality assurance system (User side) .-.-.--.-----SHARP-----.-.--- 29 Qua.lityAssurance ............... ..............r.....AIIiIIIIIir.............,___ ~ .....,~...................... - . Reliability Tests 4. In addition to determining the extent to which product reliability can be assured, the objectives of reliability testing il1clude getting an understanding of design limitations and the catastrophic failure mode, and predicting reliability in the field. The major categories of reliability testing are durability tests, thermal environmental tests, and mechanical test~. The standardized test .methods used are those prescribed by official standards or Table 2 Type Durability tests Thermal environmental tests Test item High temperature storage High temperature operation High temperature, high humidity storage High temperature, high humidity operation Low temperature storage Temperature cycling test Heat shock test Temperature and humidity cycling test Solder heat resistance Shock test Variable-frequency vibration test Pin strengeth Mechanical tests Air-tightness Salt spray test 'Solderability Solvent resistance 30 associations such as the International Electronics Commission (IEC), and the U. S. Military Specifications (MIL). Sharp standardizes specifications to conform with these standards. Table 2 shows a representative reliability test. Durability testing of semiconductor products places the greatest emphasis on high temperature operation tests. Priority in the testing of plastic m'olded products is on high temperature, high humidity storage (operation) tests. all Reliability test for semiconductor products Test condition T,tg(max.) Top, (max.) power supply voltage (max.) .60t 90% RH 85t 85% RH Pressure cooker at l20t and 2 atmospheres 60t 90% RH 85t 85% RH T,tg(min.) T,tg (max.)-T,tg (min.) ot -lOOt (liquid) -lOt to+65·C 90% RH 260t lOs 1,500G, 0.5 ms ±X, ±Y,±Z 20G, 20-2,000 Hz, X, Y, Z Tensile strength : holds fixed load for 10 seconds Bending strength: bend once 90 iu forward and reverse directions (Load is determined based on piu shape and the surface area of pin section.) ' Test for minute leaks using helium gas and large leaks using foaming. Spray 5% salt solution at Ta=35 t for 24 hours 230 tfor 5 seconds (with flux) Dip in isopropanol and acetone fo 30 seconds at Ta=25t Test objectives Evaluate resistance to high temperatures in longterm storage. Evaluate resistance to long, term thermal and electrical stress. Evaluate resistance to high temperatures and high humidity in long-term storage. 'Evaluate resistance to long-term thermal, humid, ity and electrical stress. Evaluate resistance to low temperatures in longterm storage. Evaluate resistance to sudden extreme temperature changes. Evaluate resistance to sudden extreme temperature changes. Evaluate resistance to extreme temperature changes at higgh humidity. Evaluate resistance to thermal stress during soldering. Evaluate structural and mechanical resistance to strong shocks. Evaluate resistance to vibration during transport and use. Evaluate resistance to mechanical stress applied to pins. Evaluate hermetic sealing. Evaluate resistance to corrosion in salt spray environment. Evaluate solderability of pins. Evaluate resistance to pitting. Quality Assurance .-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.5. offered and assure the products'long-life service, please refer to this manual to help in designing systems that make best use of their capabilities. (1) Maximum Ratings It is generally known that the failure rate of semiconductor products increases as the temperature increases. It is necessary, of course, that the ambient temperature be within the maximum rated temperature. Further it is desirable from the standpoint of reliability that the ambient temperature be lowered as much as possible. The voltage, current, and electric power used are also factors that significantly influence the life of semiconductor products. Voltage or current- that exceeds the rated level may damaged, the semiconductor product; even if applied only momentarily and the unit continues to operate properly, excessive voltage or current will likely increase the failure rate. Therefore, in actual circuit design, it is important that the semiconductor products used have a certain degree of allowance with respect to the voltage, current and temperature. conditions under which they will be used. The greater this allowance, the fewer the failures that will occur. To keep failures to a minimum, the circuit should be designed so that under all conditions to absolute maximum, the ratings are not exceeded even After-sales Service If a product malfunctions after shipment, we have the customer return the product for detailed analysis. We also obtain complete information concerning conditions of use, frequency of occurrence, and symptoms. When the cause has been determined, we report findings concerning the design, manufacturing process, or method of use to the departments concerned for preventive action against recurrence of the malfunction. We then submit a report to the customer. This process of tracking the performance of our products in actual use is an extremely effective way to enhance product reliability. We direct a lot of energy forwards its full imprementation. Fig. 5 shows the routes through which accidents and malfunctions outside of the company are handled, and Fig. 6 shows the procedures used in their analysis. 6. Handling Precautions All of the semiconductor products listed in this data book were manufactured based on exacting designs and under comprehensive quality control. However, to take full advantage of the features I I Complaint : Reply I I I Report of complaint : Investigation I report I I ,- Quality assurance I Request for corrective action I Report I I I I Report I Request for corrective action I I I I I I Instructions Manufacturing Request for corrective action Fig. 5 --, I I Design and technology Routes through which malfunctions outside the company, are handled ----------------SHARP .----.--~----- 31 quality Assurance ,....-r..... -................~-.,.-.-....... - ................................. momentarily and so that the maximum values for any two' or more items are not achieved simultaneously. In addition, remember that the circuit functions of semiconductor products are gua'ranteed' within the operating temperature'range (To.,) of the absolute maximum ratings, but that storage temperature (Tstg) is the range in a nonoperating condition. (2) Transportation and Storage Semiconductor products are susceptible to high' temperature and high humidity. Please store them in a dry place as near to room temperature as possible. During shipping and storage, keep semiconductor products in the packaging they were delivered in to prevent damage due to static electricity. If removed from tlIeir packaging, the terminals must be shortcircuited with a conductive material or the entire units wrapped in aluminum foil. Also remember that nylon and plastic containers build up electrostatic charges easily and so should not be used for storage or transportation. Mechanical vibration and shock should also be kept to a minimum. (3) Assembly When attached ,to printed, circuit boards, semiconductor products are removed from a conductive container, so electrical equipment, work benches, and operators must be grounded to protect the products fmm static electricity. It is good to use grounded metal plating on the surf(ices of work benches. Grounding metal rings and watch bands is a convenient method for grounding operators. The grounding of operators is required to prevent electric shock due to current leaks from electrical equipment, so it must be performed through a resistance of 1 M Working attire made of synthetic fabrics should be avoided in favor of fabrics such as cotton that do not easily generate static electricity. Keeping the relative humidity in working areas around 50% will 'also help to prevent the generation of static electricity. Current leakage from electrical equipment is not desirable from the standpoint of safety. All equipment'should therefore be, checked periodically for , current leakage. When forming the lead wires of semiconductor products to be mounted, forceps or a similar tool n. 32 that will prevent stress, frolll being applied to the base of the wires should be used. To prevent the input terminals of semicondudor products on c()mpleted printed circuit boards from becoming open during storage or transport, the terminals oilhe circuit board should be'shortcircuited or the entire circuit board itself should be wrapped in aluminum foil. (4) Soldering and Cleaning When using a soldering iron or solder bath, keep the temperature below 260t the .time and within 10 seconds. If using a soldering'iron, use one with no leakage from the soldering tip. An A class soldering iron with an insulation resistance of less than 10 Mil is recommended. When using a solder bath, it should be grounded to prevent its having an unstable electric potential. Using a strongly acidic or alkaline flux for soldering can cause corrosion of the lead wires. A resin flux is ideal for this type of soldering. To assure the reliability of a system, removal of the flux used in soldering, is generally required. Freon TE, a freon cleaning fluid, or difron solvent S3-E is recommended for use as the cleaning fluid. To prevent stress on semiconductor products and circuit board w'hen using ultrasonic cleaning, a cleaning method must be used that will shadow the main unit from the vibrator and keep cleaning time to less than 30 seconds. (5) Adjustment and Tests When the set is to be adjusted and tested upon completion of the printed circuit board, the printed circuit board must, be checked to ensure that there are no solder bridges or cracks ,before the power is turned on. Also, if the marked rated voltage and ~urrent are to be used, it is wise'to use a current limiter. Whenever a printed circuit board is to be removed or mounted on a socket, the power must be turned off. When testing with a probe, care must taken to assure that the probe does to' come in contact with other signals or the power supply. If the test location has been decided beforehand, it is wise to set , up a specially designed test pin for testing. When testing in high· and low temperatures, the constant temperature bath must be groundeq and measures taken to protect the set inside the bath from static electricity. Quality Assurance Report r--""] '--- .... Test is applied only to a hermetic sealed package. Fig. Failure analysis procedure 33 4-Bit 1-Chip Microcomputers [g SM-3A . PMOS 4-Bit 1-Chlp Microcomputer SM-3A • PMOS 4-Bit I-Chip Microcomputer Description The SM-3A is a 4-bit single chip PMOS microcomputer with 2,268 bytes of ROM, and 128 words of RAM. It is well suited for low cost systems requiring many I/O control ports. • Pin Connections KEa KE2 KE, AD .. • 1 0 Features 1. PMOS process 2. ROM capacity 2,268 X 8 bits 3. RAM capacity 128 X 4 bits 4. Instructions 57 5. Subroutine nesting 2 levels 6. Input ports 8 bits 7. Output ports 37 bits 8. Input/Output ports 4 bits 9. On-chip clock generator circuit 10. High voltage outputs (-38V) 27 bits 11. Single power supply -15V (TYP.) 12. Instruction cycle lOps 1a. 60-pin quad-flat package 36 P K~ Top View PMOS 4-Bit 1-Chip Microcomputer • SM-3A Block Diagram Output Port ROM 36x63x8 Frequency Control Clock 2 RAM 8x16x4 Output Port 31 '----------------------yr---------------------Output Port Symbol description ALU Acc C PB, PU,PM, PL SC : : : : : Arithmetic logic unit Accumulator Carry F/F Program counter Stack register of program counter RC : Stack register of program counter Bu, BM, BL : RAM address register X : Temporary register S : Flag F/F DISP : Display F/F 37 SM-3A PMOS 4-Bit t-Chip Microcomputer • Pin Description ,. Pin KE j -KE 4 a, fJ, AK, 'TAB DIO j -DI0 4 Rj -R 7 Rs -R 22 F j -F 4 ADI-AD IO I/O I I I/O 0 0 0 Type of circuit Pull clown Pull down Complementary 3 states Open drain Open drain Open drain Open drain IDF 0 Open drain OD, R/W T ACL 0 I I 0 Complementary Pull down ci ~2 Function_ Acc+--KEI-KE~ Possible to test 4 bits independently Acc+--DIOj -DI0 4 Segment output or R register output R register output F j-F 4+--Acc BL decode output or external RAM address output Possible to set, reset and test by command (Suitable for printer motor drive signal) External RAM control output For test (usually connected to VDD) Auto clear Synchronizing signal terminal Frequency control terminal Power source for external RAM connection Power source for logic circuit Complementary VI, SYNC Vs• VDD, GND • Absolute Maximum Ratings Parameter Pin voltage . Operating temperature Storage temperature Note 1: Note 2: Note 3: • Symbol VDD Vs VIN VOUTI VOUT2 Topr T s ." Rating -20-+0.3 -20-+0.3 -20-+0.3 -20-+0.3 -40-+0.3 -10-+60 -55-+150 Parameter Input voltage Output voltage Supply current Cycle time 38 4: 5: 6: 7: 8: Note 1 1 1 1,2 1,3 The maximum applicable voltage on any pin with respect to GND. Applicable pins include: R/W, DIOI·DIO., OD, ADI-ADlO Applicable pins include : RI-R2~, FI-F4, IDF (V DD =-15.0V±10%, VN=-38V, Ta=,-10-+60"C) Electrical Characteristics Note Note Note Note Note Unit V V V V V "C "C Applicable Applicable Applicable Applicable Applicable pins pins pins pins pins Symbol VIHI V1Ll VIH2 VjL2 VOH! VOLI VOH2 VOL2 VOH3 VOL3 IDD tc Conditions TYP. VDD =-13.5V MAX. -10.0 -0.8 VDD =-13.5V Io =-2mA RL = 50k il connected to VN Io =-8mA RL=50kilconnected to VN Io=-lmA R,L =50kil connected to VDD VDD =-15.0V ~, AK, TAB, KEI - KE. ACL, Vc SYNC RI- R7, FI"':F., IDF Rs- R22 ADl- ADIO MIN. -2.5 -10.0 -2.0 VN+I -3.5 VN+I ~L.O VDD+l -12 10 Unit V V V V V V V V V V mA f's Note 4 5 6 7 8 SM-3A PMOS 4-Bit 1-Chip Microcomputer • 1. 2. 3. 4. 5. 6. - 7. 8. 9. • Applications Electronic cash register Hard-Hold electronic calculator with printer POS terminal Electronic scale Vending machine Microwave oven controller Electronic sewing machine Controllers of game machines Others electronic appliance controller~ System Configuration (for VTR program timer) Control signals For channel selection Fluorescent tube display Rl~------;---------------f +15V 56kO 56kO -20V lOOkO Key matrix ~'-'------SHARP-'-'--------- 39 SM-1 00/SM-1 05 PMOS 4-Bit 1-Chip Microcomputer SM-IOO/SM-I05 • Description • PMOS 4-Bit I-Chip Microcomputer Pin Connections The SM-100/SM-105 isa 4-bit single chip PMOS microcomputer with 1,134 bytes of ROM; and 64 words of RAM. It is well suited for low cost systems requiring many I/O control ports. • Features 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. PMOS process ROM capacity 1,134X8 bits RAM capacity 64 X 4 bits Instructions 58 Subroutine nesting 2 levels Input ports 4 bits Output ports 17 bits Input/Output ports 1 bit On-chip clock generator circuit High voltage outputs (-38V) 18 bits (only SM-100) 11. Single power supply - 9V(TYP.) 12. Instruction cycle 10 ps 13. 28-pin dual-in-line package ------------~-SHARP------ ............ - - - - 40 SM-1 00/SM-1 05 PMOS 4-Bit 1-Chip Microcomputer • Block Diagram ACL Output Port Oscillator Instruction 1 - - - - - - - - - - 1 Decoder ~---------v~-------~ Output Port Symbol description ALU : Arithmetic logic unit Acc : Accumulator ACL : Auto clear C : Carry F/F PC : Program counter SC : Stack register of Program counter • RC DIV CG X ADC S : : : : : : Stack register of program counter Frequency divider Clock generator Temporary register RAM address register Flag F/F Pin Description Pin name KE 1-KE 4 IDF R1-R7 R8 -R 13 R14 -R 17 T ACL OSCIN, OSC OUT V DD , GND I/O I I/O 0 0 0 I I Pull Mid Mid Mid Mid Circuit type down voltage * open drain voltage * open drain voltage * open drain voltage * open drain Function Acc -KE 1-KE 4 Can be set, reset, and tested by instructions Segment output or R register output R register output R14-R17-Acc or R register output For test (Connected to V DD normally) Auto clear For clock oscillation Power supply for logic circuit * For SM-IOO --.-.--.--.-..--SHARP . . . - - . - - - - - - - - - 41 .SM'-100/SM-1 05 PMOS4-Bit 1-Chip Microcomputer • Absolute Maximum Ratings Parameter Pin voltage Operating temperature Storage temperature Note 1: Note 2: Note 3: • Symbol Voo VIN VOUT Topr T S' 2 Ratings -12-+0.3 -12-+0.3 -40-+0.3 -10-=--+50 -55-+150 Unit V V V Note 1 1,2 1,3 t t The .maximum .illm!icable voltage on any pin with respect to GND. Apply to pins ACL, K,-K4, T, OSCIN, OSCOUT. Apply to pins RI-RI7, !DF.. Recommended Operating Conditions Parameter Supply voltage Oscillator frequency • Symbol Voo fosc Ratings -8.1--9.9 400 (TYP.) Unit V kHz (V oo =-9.0V±10%, V N=-38V, Ta=25·C) Electrical Characteristics Parameter Input voltage I SM-I00 I SM-I05 Output voltage I SM-I00 I SM-I05 Current consumption Oscillator frequency Note Note Note Note Note 4: 5: 6: 7: 8: Symbol VIH1 VILl VIH2 VIL2 VOH1 Conditions MAX. -0.8 Vo~+1 IouT =-lmA Connect RL =50k'o' to VN VOH2 IOtJT =-8mA -1.0 V N+l Voo +l -1.0 10 400 [00 fose Applied to pins KEI-KE~. Applied to pins ACL, T, !DF. Applied to pins Rl - R7, !DF. Applied to pins R8-R17. Reference oscillation: 10 ,us/cycle at 400 kHz OSC 'N Unit V V V V V V Note 4 5 6 V V N+.1 Voo +l Connect RL =50k'o' to V N OSC OUT 42 TYP. Voo +l VOLl VOL2 MIN. -1.8 V rnA kHz 7 8 PMOS 4-Bit 1-Chip Microcomputer SM-110/SM-115 SM-II0/SM-115 • Description The SM-1I0/SM-1I5 isa 4-bit single chip PMOS microcomputer with 2,032X9 bits of ROM, 128 words of RAM, and AID converter. It is well suited for low cost systems requiring many I/O control ports. • • PMOS 4-Bit I-Chip Microcomputer Pin Connections r-- . . . ~ I p Nm~U')tl:lZ.t--oom ........................ N N N N NIN 0 N N'N N N N N 41 31 Features 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. PMOS process ROM capacity 2,032 X 9 bits RAM capacity 128 X 4 bits Instructions 90 Subroutine nesting 6 levels Input ports 11 bits Output ports 35 bits InputlOutput ports 4 bits On-chip clock generator circuit Interrupt function External interrupt 1 Timer interrupt 1 11. 8 bits AID conversion 12. Internal divider (1/50 or 1160) 13. High voltage outputs (-35V) 21bits (only SM-lIO) 14. Single power supply -9V (TYP.) 15. Instruction cycle lOps 16. 60-pin quad-flat package ~--'--------SHARP-----~--'----- 44 SM-100/SM-105 PMOS 4-:Bit 1-Chip Microcomputer • Applications 1. Various types of mechanical controllers for video players, vending machines, etc. 2. Game machines • System Configuration (Video timer) Sun AM MOD Tue Wed Thu Fri Sat n 0 PM I_I I_I 0 0 R14 Memory indicator Rr5 R8 Power-on indicator SM-Ioo/SM-I05 Clock Timer 50/60 ----.-----.---~-SHARP --.-.~---.-.-. 43 PMOS 4-Bit 1-Chip Microcomputer • SM-110/SM-115 Block Diagram· Input Port Input/Output Port ~~/~ __ ~ ________ Output Port ~ __________ -JA~ ______________________ ~ Analog Input Port Stack Register (6Ievels) ROM (2,032X9 Control and Judge Interrupt RAM (l28X4) TF CG IF HF 15i}--------------------------{:~ '-v--'VDD ACL GND Symbol description ALU : Arithmetic logic unit Acc : Accumulator ACL : Auto clear C : Carry F/F U '--y----/2.5kHz Input Port Pulse Output PC : Program counter CG : Clock generator DIV : Divider BM, BL : RAM address register "-v---" Oscillator DA X CF D/ A convert er Temporary register Comparater 45 PMOS .4-Bit l-Chip Microcomputer • SM-110/SM-1.15 Pin Description Pin name KE 1 -KE 4 KH KI KT KC 1 -KC 4 P 1 -P 4 R1 -R 16 I/O I I I I I I/O 0 0 Z I - Z I4 0 T ACL F I I 0 0 QI-Q4 "'2+ Pull Pull Pull Pull Circuit type down down down down Function Acc +-KE 1 -KE 4 HF flag set on t ; reset by instruction IF flag set on t ; reset by instruction External timer signal input (50 or 60Hz) Analog input or Acc +-KC 1 - KC 4 P 1 -P 4 +-Acc Q1-Q4- Acc R register output Z register output For test (Connected to V00 normally) Auto clear 2.5 kHz pulse output (System clock· 100kHz) Sync' signal output For clock oscillation AID conversion standard power supply Power supply for logic circuit Open drain Mid voltage * operi drain Mid voltage * open drain Mid voltage * open drain CLio CL 2 VR, AGND Voo, GND * For SM-llO, ZI pin only is high voltage • Absolute Maximum Ratings Parameter Pin voltage Operating temperature Storage temperature Note Note Note Note • Symbol Voo VIN VOliTI VOllT2 Topr T$t~ Ratings -12-+0.3 Voo -0.3-+0.3 Vj)j)-0.3-+0.3 -37-+0.3 -10-+70 -55-+150 Unit V V V V Note 1 1,2 1,3 1,4 "C "C 1: The maximum applicable voltage on any pin with respect to GND. 2: Applied to pins KHI-KEI, KCI-KCI, P,-P" Kl,-KIl, KT. 3: Applied to pins F, P,-P" Z,-Z,. 4: Applied to pins QI-Q" RI-RI6, z,. Recommended Operating Conditions Parameter Supply yoltage Reference voltage Symbol MIN. -9.9 V[)o VR 5/9 VDD -O.2 TYP. MAX. -8.1 -4.5 Unit V V -~-""""---'-"SHARP-~------------ 46 PMOS 4-Bit 1-Chip Microcomputer • SM-110/SM-115 (V oo =-9V±10%, VN (MAX.)=-35V, Ta=-10-70'C) Electrical Characteristics Parameter Input voltage I SM-110 Output voltage I SM-110 Input current Output current Current consumption Oscillator frequency Symbol VIIIl VILl VIII 2 VIL2 VOHl VaLl VOH2 VOL2 VOIU VOH4 VOL4 lIIi IR IOL:) 100 AID conversion zero error I AID covers ion full scale error AID conversion overall error Reset time MIN. -2 tACL TYP. MAX. Voo +2 -0.8 -4.5 Io =-10mA Connect RL=50kO to VN • Io=-lmA Connect RL = 50k 0 to VN. Io=-0.5mA Io=-0.2mA 10= 10 /LA VIN=OV V R=-5V Vo=Voo -2.5 VN +l -0.2 VN +l -1 -1 180 900 Unit V V V V V V V V V V V /LA /LA /LA 13 400 VR=-5V Vo[)=-9V VR=-5V V[)[)=-9V VR =-5V V[)[)=-9V V R=-5V V o[)=-9V At power up Voo +l 450 1200 -1 fosc AID conversion linear error Note 1: Note 2: Note 3: Note 4: Note 5: Note 6: Note 7: Note 8: Note 9: Note 10: Note 11: Conditions 30 rnA kHz ±3 LSB ±3 LSB ±3 LSB ±3 LSB 20 ms Note 1 1 2 2 3 3 4 4 5 6 6 7 8 5 10 11 12 Applied to pins KE,-KE" P,-P" KI, KH, KT __ Applied to pins KC,-KC1. (When used as a digital input), ACL. Applied to pins RJ(;-R" Applied to pins RR-R" Q,-Q" Z,. Applied to pins PI-P" Z,,-Z, Applied to pins F. Applied to pins KE,-KEI, KI, KH, KT. Applied to pins YR. (current flowing into ladder resistance for AID conversion). Applied to pins R,b-R" P,-P" Q,-Q" Z,,-Z1. Measured in no· load condition. Externally connected to oscillation circuit. CF : Ceramic oscillator KBR-400B(made by Kyocera Corp.) R, : 1MO C,: 220pF,C,: 220pF l,uF /16 ALCo---~------~ 56kO Note 12: The time for reset of "Low" signal that is applied to the ACL terminal after supply voltage returns to rated level. ----.--------SHARP---~.--.---- 47 SM..:nO/SM~f15 _ r i...~··~..... PMOS 4-Bit1-Chip Microcomputer . . . . . . . . ._ . . ._ . . . . . . . . . - . . . . . . . . . ....." ....... . - . . - . .................. :11. •. Applications 1. Microwave oven controllers 2. Blood pressure monitors 3. Controllers for home appliances and audio equipment • ' System Configuration (Microwave oven controllers) .Fluorescent tube display III" n ,-, III'd/U Vnn r--~J.....;:.;;:::';'::'::""-:f--:::L-....::...-~----,Crystal 220 F 400kHz P CL11--1_--11---, Key matrix Q--- }-........-\zs CL2 .........~~,tF--1--; I I I ACL tE-_-"V'.rv-~ I }-.......-\Z14 SM-llO/SM-1l5 L----:-~KE4 \ '--------'--tKEJ 50/60Hz signal --r--->I V,," 1----.----<>---<> -9 V GNDt---t----. AGND 48 PMOS 4-Bit 1-Chip Microcomputer SM-111/SM-116 SM-lll/SM ... 116 • Description The SM-lll1SM-116 is a 4-bit single chip PMOS microcomputer with 4,064 X 9 bits of ROM, 192 words of RAM, and AID converter. It is well suited for low cost systems requiring many 110 control ports. • • PMOS 4-Bit I-Chip Microcomputer Pin Connections r--. ... N ~ ..,. It:! ~ Q Z t-- GO 0) .............. ::<:NNNNNN(,!lNNNNNNN 41 3 3 31 F· KC, 7 KC, KC 2 KC," VR 51 Features 1. PMOS process 2. ROM capacity 4,064 X 9 bits 3. RAM capacity 192 X 4 bits 4. Instructions 90 5. Subroutine nesting 6 levels 6. Input ports 11 bits 7. Output ports 35 bits 8. Input/Output ports 4 bits 9. On-chip clock generator circuit 10. Interrupt function External interrupt 1 Timer interrupt 1 11. 8 bits AID conversion 12. Internal divider (1150 or 1160) 13. High voltage outputs (-35V) 21bits (only SM-ll1) 14. Single power supply -9V (TYP.) 15. Instruction cycle 10 ps 16. 60-pins quad-flat package I (62+ , CL2 1 2 3 4 5 6 7 8 91 ~ ~ ~ ~ r:J cE c:.~ ~ (,!l < (,!l 11 1 3 4 5 aa a a ~Id< Top View - - - - - - - - - - S H A R P .-..---------~-----49 PMOS 4-Bit1-Chip Microcomputer • SM-t111SM-116 Block Diagram Output Port r -____~----~--~----~----~A~----------------------------~ Analog Input Port Stack Register (6 levels) Control and Judge Interrupt RAM (192X4) TF IF HF '-v---" 2.5kHz Input Port Symbol description ALU : Arithmetic logic unit Ace : Accumulator ACL : Auto clear C : Carry F/F 50 Pulse, Output PC ,: Program counter CG : Clock generator DIV : Divider BM, BL : RAM address register '--y--' Oscillator DA X CF D/ A converter Temporary register Comparater PMOS 4-Bit 1-Chip Microcomputer • SM-111/SM-116 Pin Description Pin name KE 1 -KE 4 KH KI KT KC 1 -KC 4 P j -P 4 Qj-Q4 R1 -R 16 ZI-ZI4 T ACL F 1>2+ 110 I I I I I 110 0 0 0 Pull Pull Pull Pull Circuit type down down down down Function Acc -KE 1 -KE 4 HF flag set on t ; reset by instruction IF flag set on t ; reset by instruction External timer signal input (50 or 60Hz) Analog input or Acc-KCj-KC j P I -P 4 -Acc QI-Qj-Acc R register output Z register output For test (Connected to VI>I> normally) Auto clear 2.5 kHz pulse output (System clock·100kHz) Sync signal output For clock oscillation AID conversion standard power supply Power supply for logic circuit Open drain Mid voltage * open drain Mid voltage * open drain Mid voltage * open drain I I 0 0 CLio CL 2 YR. AGND VDI>. GND * For SM-1l1, ZI pin only is high voltage. • Absolute Maximum Ratings Parameter Pin voltage Operating temperature Storage temperature Note Note Note Note • 1: 2: 3: 4: Symbol VDI> VIN VOlITl VOllT2 Topr Tst~ Ratings -12-+0.3 VDD -0.3-+0.3 VI>D-0.3-+0.3 -37-+0.3 -10-+70 -55-+150 Unit V V V V Note 1 1,2 1,3 1,4 ·c t The maximum applicable voltage on any pin with respect to GND. Applied to pins KEI-KEI, KCI-KCI, PI-PI, Kl, KH, KT. Applied to pins F, PI-PI, Z2-ZI. Applied to pins QI-QI, RI-RI6, ZI. Recommended Operating Conditions Parameter Supply voltage Reference voltage Symbol MIN. -9.9 VDI> 5/9 VDD -O.2 VR TYP. MAX. -8.1 -4.5 Unit V V ---.-.-..-.--------SHARP - - - - - - - - - - - - 51 SM-111/SM-116 PMOS 4.:.Bit 1-Chip Microcomputer • (V DD =-9V±10%, VN (MAX.)=-35V, Ta=-.10-70·C) Electrical Characteristics Symbol Parameter Input voltage' I SM·111 Output voltage I SM·l11 Input current VIlli VII. I VIm V IL2 VOIII VOL! VOlI2 VOL" VOIU VOII.1 Vou lIN IR Output current Current consumption Oscillator frequency IoL:) Ill[) AID conversion zero error AID coversion full scale error AID conversion overall error Reset time MIN. -2 t ACL TYP. MAX. Vllll +2 -0.8 -4.5 Io =-10mA Connect RL = 50kO to VN. Io =-lmA Connect RL = 50k 0 to V N. Io=-0.5mA Io=-0.2mA Io =10,uA VIN=OV V R =-5V VO=VDD -2.5 V N+l -2 V N+l -1 1 180 900 13 400 V R =-5V V Dn =-9V V R =-5V V"n= -9V V R =-5V VllI)=-9V V R =-5V V DD =-9V . At power up V1)[)+1 450 1200 -1 fosc AID conversion linear error Note 1: Note 2: Note 3: Note 4: Note 5: Note 6: Note 7: Note 8: Note 9: Note 10: Note 11: Conditions 30 Unit V V V V V V V V V V V ,uA ,uA ,uA rnA kHz ±3 LSB ±3 LSB ±3 LSB ±3 LSB 20 Applied to pins KE,-KEI, P,-P" KI, KH, KT Applied tu pins KC,-KCI. (When used as a digital input), ACL. Applied to pins R'6- R9 Applied to pins RR-RI, QI-QI, Z,. Applied to pins PI-PI, ZII-ZI Applied to pin F. Applied to pins KEI-KEI, KI, KH, KT. Applied to pin YR. (current flowing into ladder resistance for AID conversion). Applied to pins Rlo-RI, P,-PI, Q,-QI, Z1I-Z,. Measured in no· load condition. Externally connected to oscillation circuit. CF : Ceramic oscillator KBR-400B(made by Kyocera Corp.) Rf: 1MO CI: 220pF,C2: 220pF l,uF/16 ACL 0---+-----, 56kO Note 12: 52 The time for reset of "Low" signal that is applied to the ACL terminal after supply voltage returns to rated level. ms Note 1 1 2 2 3 3 4 4 5 6 6 7 8 5 10 11 12 SM-114 PMOS 4-Bit 1';"Chip Microcomputer SM-114 • PMOS 4-Bit I-Chip Microcomputer Description • Pin Connections The SM-1l4 is a 4-bit single chip PMOS microcomputer with 4,064X9 bits of ROM, 192X4 bits of RAM, 8-bit A/D converter, timer/counter and remote control signal receiver. It is best suited to controllers which measure temperature and humidity of analog value from a sensor. • Z14 Features 1. 2. 3. 4. 5. 6. 7. 8. 9. PMOS process ROM capacity 4,064 X 9 bits RAM capacity 192X4 bits Instructions 92 Subroutine nesting 6 levels Input ports 8 bits Output ports 17bits Input/Output ports 24 bits Timer/counter 7-bit 1 8-bit 1 10. Interrupt functions External interrupt 1 Timer interrupt 2 11. 8-bit A/D conversion 12. Remote control signal receiver 13. Single power supply -9V(TYP.) 14. Instruction cycle 10 ps (TYP.) 15. 60-pin Quad-flat package 54 R20 ' AGND SM-11~/SM-116 PMO$4-Bit 1-Chip Microcomputer • Appli~a:tions 1. Microwave oven controllers 2. Blood pressure monitors' 3. Controllers for home applia,nces and audio equipment • System Configuration (Microwave oven controllers) Fluorescent tube display I I I / ' ,-,,-,I LII "LlU Vuu Key matrix 0--- }-..e---\Zs CL2r-+-~~~-+-, I I I ACL IE--.--IIM---' I I }-+----\Z14 SM-lll /SM-116 '-------:---.>-IKE 4 lkO VI>I)I---1'--~-o-9V \ '---------~KEI SO/60Hz GNDf---+'-----. signal----1o---+I AGND lOOkO iOOkO lOO'kO 53 ' PMOS 4-Bit 1-Chip Microcomputer • SM-114 Block Diagram . Input' Output Port Output Port , Input Port Symbol description ALV A .... ACL C CY B : : : : : : Arithmetic logic unit Accumula tor Auto clear Carry F F Over flow F F RAM address register PC SR SP INT CG Program counter Stack register of program counter Stack pointer Interrupt control unit Clock generator RCV D/A COMP DIV VR Remote control unit D A converter Comparator Divider Reference Voltage ------~.--SHARP.-----~--.-..--- 55 ·SM-H4 PMOS.4-Bit 1-Chip Microcomputer • Pin Description Pin name KC o -KC:1 KL KI, KH KT PO-P:l QO-Q3 RO(;-R3:1 ZO-ZI5 F TA,TB ACL 110 I I I I Pull Pull Pull 110 Open drain/Pull down * 0 0 I I 0 Open dra{n/Pull down * ~ Circuit type down* . * down. down* • .' Pull down CLl> CL 2 VR, AGND Voo , GND Function Analog input or Acc-KCo-KC:l For optical remote control circuit IF, HF flag set on t External timer signal input ! PO""'P:l RO, R1, R3-RAM QO-Q:l RO,R1,R3 Can be set, reset individually Sound output For test (Connected to VDD normally) Auto clear System clocj{ output For clock oscillation A/D coversion standard power supply Power supply for logic circuit Acc- * Mask option • Absolute Maximum Ratings Parameter Pin voltage . Operating temperature Storage temperature Note 1: • Symbol Ratings -12-+0.3 Voo (Voo-0.3)-+0.3 VIN VOllT (V 00-0.3)- +0.3 -10-+70 Topr -50-+150 TSt2 Unit V V V ·C Note 1 "C The maximum applicable voltage on any pin with respect to GND. Recommended Operating Conditions Parameter Supply voltage Reference voltage 56 Symbol Voo VR MIN. -9.9 -4.5 . TYP. MAX. -8.1 5/9VDD-O.2 Unit V V -. PMOS 4-Bit 1-Chip Microcomputer • SM-114 (V ee =-9V±10%, Ta=-10-70'C) Electrical Characteristics Parameter VIHI VILl VIII2 VIL2 VIII :l VIL:l VOH! VaLl VOH2 VOL2 Inll IR Input voltage OutJ'Ut voltage Input current Current consumption Oscillator frequency AID conversion linear error AID conversion zero error AID conversion full scale error Note Note Note Note 1: 2: 3: 4: Note 5: Note 6: Note 7: Note 8: Note 9: Applied Applied Applied Applied Symbol to to to to Conditions MIN. -1 Ratings TYP. MAX. Voo +1 -2 Voo +1 -0.8 Voo +1 lo=-2mA 10=20 pA Io =-2rnA RL =50kO VIN=OV VR =-5V -1 Voo +1 Voo +1.5 -1 100 fose V R =-5V VR =-5V VR =-5V Voo +1 180 500 20 400 900 ±3 ±3 ±3 Unit V' V V V V V V V V V pA pA rnA kHz LSB LSB LSB Note 1 2 3 4 5 6 7 8 9 pins pins pins pins RO:l-ROo, RIa-RIo, R2:l-R20, R3:l-R30, POI-PO, Q:l-Qo KI, KH, KL, KT KC:.- Keo (when used as a digital input), ACL. RO:l-ROo, Rl:!-RIo, R2:l-R20, R3:l-R30, POI-PO, Q:l-Qo, Z,,-Zo, F (when an internal pull-down resistance is attached to R, P, Q, and Z) Applied to pins RO:l-ROo, Rl:!-RIo, R2:l-R20, R3,,-R30, P,,-Po, Q:l-Qo, ZI'-ZO (when an internal pull-down resistance is not attached). Applied to pins RO,,-ROo, Rl:!-RIo, R2,,-R20, R3:I-R30, P,,-Po, Q,,-Qo, KI, KH, KL, KT (when an internal pUll-down resistance is attached) Applied to pin V. (current folwing into ladder resistance for AID conversion) Measured in no-load condition_ Externally connected to oscillation circuit Rr=lMO CI = 220pF C2=220pF 57 PMQS, 4-Bit 1-Chip Microcomputer • . SM-:-114 System Configuration (Controllers) Control signals , - -_ _~A R33 - R30 R23 - Control signals , ~ .R2o Zo - Z9 ----:----1Rl, ZlS.-------, I P3 k - - - - ' ------I RIo Control signals P2i------' ....---.---IR0 3 I --......c.--IRO o Pli-------~ Po~-----~---' KTt+--KI t - - - - } Sensor input 1 +-:--:---IQ3 I KHk---- ------IQo KC 3 ~ \ -------IF Optical remote control input o------IKL , - - - - - - - 1 AGND .------IGND TB TA V»» To KColE---- VDD 56k!l C+-~- 1:~ ,--1_M_!l-4_ _ 220pF 58 } I Sensor input 2 (analog input) SM-120 PMOS 4-Bit 1-Chip Microcomputer SM-120 • PMOS 4-Bit I-Chip Microcomputer Description • Pin Connections The SM-120 is a 4-bit single chip PMOS microcomputer with 1,536 bytes of ROM, 64 words of RAM, and a 17-stage divider. It is well suited for low cost systems requiring many 110 control ports. • 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. Features PMOS process ROM capacity 1,536 X 8 bits RAM capacity 64 X 4 bits Instructions 54 Subroutine nesting 2 levels Input ports 9 bits Output ports 26 bits External ROM expandable (512 X 8 bits) On-chip clock generator circuit Internal 17-stage divider with reset (timer circuit) Alarm sound generator circut High voltage outputs (-38V) 19 bits Single power supply -9V (TYP.) Instruction cycle 10 p.s 44-pin quad-flat package 59 SM-120 PMOS 4-Bit 1-Chip Microcomputer • Block Diagram Output 'Port Output Port ~ __ ___ ~A ~ Port Input Port '--v-" Voo GND Symbol description ALU Ace ACL PC 60 Arithmetic logic unit Accumulator Auto clear Program counter SRI, SR, DIVo, DIVI, DIV2 CG H,L Stack register of program counter Divider Clock generator RAM address register PMOS 4-Bit 1-Chip Microcomputer • Pin Description Pin P IO -P I3 P 2O -P 23 PI BIO -B I3 R lIO I I I Type of circuit down down down down down down 0 0 0 0 Pull Pull Pull Pull Pull Pull So-5 7 0 Open drain 0 0-0 10 F T ACL OSCIN, OSCOUT VDD, GND 0 0 I I Open drain Pull down Pull down Pull down • Function Aee-PlO-PI3 Aec -P 20 - P 23 PI flag set by t, reset by command BlO-BI3+-Ace Possible to set, reset, or CE signal output Possible to set and reset Display segment signal output or internal ROM data output Display digit signal output Alarm sound output For test Auto clear Clock oscillation Power source for logic circuit Absolute Maximum Ratings Parameter Pin voltage Operating temperature Storage temperature Note Note Note Note • SM-120 1: 2: 3: 4: Symbol VDD VIN VOUTl VOUTZ Toor TstQ Rating -20-+0.3 -20-+0.3 -20-+0.3 -40-+0.3 -10-+65 -55-+150 Unit V V V V Note 1 1,2 1,3 1,4 "C "C The maximum applicable voltage on any pin with respect to GND. Applicable to inputs Applicable Pins BIO- Bt:l, a, aSCOlIT, R, F Applica.ble Pins Do- DlO, SO-S7 Operating Conditions P¥ameter Supply voltage Oscillator frequency Note 5: Symbol Specified value Unit V DD -8.1--9.9 300-800 V fose kHz Note 5 Frequency supplied to aSCIN Pin. 61 ......-.-....-:--,..-..-.-.-.-.-.-..-.-....... 'SM-120 PMOS4-Bit1-Chip Microcomputer ;~--- • (V DD =-9.0±10%. V N=-36V, Ta=-10":"+65"C) Electrical Characteristics Symbol Parameter ViHl V ILl VIH2 V IL2 :IIHl IILl IIH2 IIL2 IIH3 IIL3 VOHl VOLl VOH2 VOL2 VOH3 VOL3 ' V'OL3 VOH4 Input voltage Input current Output voltage YOL4 Y'OL4 VOHS VOLS V'OLS, IDD Current consumption Note Note Note Note Note Note Note Note Note Note 6: 7: 8: 9: 10: 11: 12: 13: 14: 15: Applicable Applicable Applicable Applicable Applicable Applicable Applicable Applicable Applicable Applicable Conditions TYP. MAX. -7.0 -1.5 VIN=GND VIN=V DD ' VIN='GND VIN=VDD VIN=GND VIN=VDD IoH =-6.0rnA RL =50kO connected to V N IoH =-2.0rnA RL =50kO connected to V N IOH=-0.5mA IoL =50 pA IoL =200pA IoH =-1.0mA IOL=50pA IOL=200pA IoH =-1.0rnA IOL=100pA IOL=300pA pins PIO- PI3, P20- P':J pins PI, ACL, aSCIN, T pins PIO-PIS, P'O-P'3, PI, T pin ACL pin asclN , pins DIO-DI3 pins SO-S7 pins BIO- B13, F pins R, pin aSCOl1T a MIN. -3.5 -7.0 200 -10.0 700 -10.0 5.0 -10.0 -2;5 V N+1.0 -2.0 V N+1.0 -3.0 V DD +1.5 V Do +3.0 -1.5 V Do +1.5 V Do +3.0 -1.5 V DD +1.5 V Do +3.0 20 Unit V V V V pA pA pA pA pA pA' V V V V V V V V V V V V V rnA Note 6 7 8 9 10 11 12 14 15 PMOS 4-Bit 1-Chip Microcomputer • SM-120 Applications 1. VTR timer 2. Electronic home appliance controller 3. Game machine • System Configuration (for 5 X 7 dot matrix fluorescent display tube drive) 5 x 7 dot matrix fluorescent display tube r-------------~-- -------------- lOkO 27kO Power for display Crystal -36V 524.288kHz -36V 2.2kO 470pF 27kO IOkO -36VO--"I/VIr-T Sot---~+-+I Ao ~--+--IDo SM-120 ( ) Ll2048 (Dot matrix driver) \ I I I I --------6 Key matrix ---.-------SHARP.-.--...-.---63 - - .....----. ..... ....................,,----..........,..... SM-200 NMOS 4-Bit I-Chip Microcomputer ~-- • Description The SM-200 is 4-bit single .chip NMOS microcomputer with 3,072X9 bits of ROM, 132 words of RAM, automatic display circuit, and a 16-stage divider. It is well suited for low cost systems reqlliring many 110 control ports. SM:..200 • Pin Connections Q 22 r... d: rE d: ~ ~ rE ~ ~.:2~ ll~' OSCIN" SCOUT 7 CT 8 aD • Features 1. NMOS process 2. ROM capacity 3,072 X 9 bits 3. RAM capacity 128X4+ 16 bits 4. Instructions 100 5. Subroutine nesting 3 levels 6. Input ports 10 bits 7. Output ports 37 bits 8. Input/Output ports 4 bits 9. Enable 8 bits parallel input/output 10. Externally ROM/RAM expandable 11. External interrupt function 12. Internal 16-stage divider ·with reset (timer circuit) 13. Serial interfaces 8 bits 14. On-chip clock generator circuit 15. Single power supply 5V (TYP.) 16. Instruction cycle 10 p.s 17. 60-pin quad-flat package 64 Top View NMOS 4-Bit 1-Chip Microcomputer • SM-200 Pin Description Pin Ko-K 3 CT I/O I I I I P IO -P I3 I P 2O -P 23 I/O RW 0 OD 0 Eo-E 3 BIO -B I3 B20 -B 23 0 1 -0 3 0 0 0 0 Do-D l l 0 0 0 -0 7 F INT ACL OSC IN, OSCOUT VDD, GND 0 0 I I 1. h • Type of circuit Pull down Open Pull down Pull down for input Function ACCI-Ko-Ka Set by t, reset of after test instruction execution Internal clock period type, test possible For pulse count per unit time ACCI-PIO-PI3, Instruction code input for external ROM Acc2-P20-P2:j, Instruction code input for external ROM data transter from/to RAM for external RAM Set, reset by instruction; chip select for external ROM Connected to RW pin for external RAM Set, reset by instruction; Instruction code input for external ROM; connected to OD pin for external RAM Eo-E3-Accl BlO-BI3-Accl B2o-B23-AcC2 Set, reset by instruction Display digit signal output; Address signal output for external ROM, RAM Display segment signal output , Alarm sound output Set of INT F/F by t Auto clear Clock oscillation Power supply for logic circuit , Pull down Pull down Absolute Maximum Ratings Parameter Pin voltage Operating temperature Storage temperature Note 1: • Symbol VDD VIN Topr T st• Ratings -0.5-+7 -0.5-V DD +0.3 -10-+65 -55-+150 Unit V V Note 1 "C "C The maximum applicable voltage on any pin with respect to Vss (GND) Operating Conditions Parameter Supply voltage Oscillator frequency Symbol VDD fosc Specified value 4.5-5.5 262.144 Unit V kHz --------------SHARP---.---------66 SM... 200 NMOS 4-Bit 1-:-Chip Microcomputer ,...."~I1fIfIfIIII'....,,,..,~.,.,,,;•.•~~'-~"""~..tIIIIIIIII!IP....-.r~"""""""A!IIIIIIIIW • Block Diagram Divided Display Segment Output Display Digit Output r - __________ ~A~ Osci- { Bator Pulse Input ____________ ~ 46 47 Asynchronous Input Symbol description ALU Acc,. Acc2' ACL C PC SR,. SR2. SR3 : : : : : : Arithmetic logic unit Accumulator Auto dear Carry F/F Program counter Stack register of program counter CG DIV H.L SD DD X.Y : : : : : : Clock generator Divider RAM address r,!'gister Segment decoder Digit decoder Temporary register 65 NMOS 4-Bit 1-Chip Microcomputer • (VI)I)=5V, Vss=GND, fosc =262kHz, Ta=25"C) Electrical Characteristics Parameter Input voltage Input current Output voltage Symbol VIlli VILI VIII2 VIL2 11111 IlL I 11112 IIL2 1m3 11114 hL4 VOIll V'OIll VOLI VOH2 V'01l2 VOL2 VOll3 V'OIl3 VOL3 VOll4 V'01l4 VOL4 VOIIS V'OH5 Current consumption Note 2: Note 3: Note 4: Note Note Note Note • SM-200 5: 6: 7: 8: VOLS VOH6 VOL6 VOH7 VOL7 VOH8 VOL8 100 Conditions MIN. 2.4 0 2.4 0 VIN =5V VIN=GND VIN =5V VIN=GND VIII =5V IOH=10pA 101l=0.2mA I 10L I =0.15mA IOIl-25pA IOIl=0.6mA I 101. I =0.25mA 1011 =10 pA 1011 = O.4mA I 10L I =0.3mA IOII=10pA IOIl=0.3mA I IOL I = 0.3mA 1011 =10 pA IOH=0.3mA I IOL I =50 pA IOH=0.2mA I IOL I =0.25mA IOII=0.15mA I IOL I =0.15mA IOH=50pA I IOL I =50 pA Open all input and output" pins Applicable pins PIO-PI3, h-]2, INT, CT, ACL, P20P23 in input mode, OD in input mode. Applicable pins Ko- K3 Applicable pins PIO-PI3, Ko-K3, 11,]2, INT, P20-P23 in input mode, OD in input mode Applicable pin CT Applicable pin OSC IN Applicable pin ACL Applicable pins BIO-BI3, B20-B23, Eo-E3, 01-03 Note Note Note Note Note Note Note 9: 10: 11: 12: 13: 14: 15: Applicable Applicable Applicable Applicable Applicable Applicable Applicable TYP. Unit V V V V 15 -1 1 -1 5 15 MAX. 5 0.5 5 0.6 50 -10 10 -10 25 50 32 5 5 0.5 5 5 0.5 5 5 0.5 5 5 0.5 5 5 0.5 5 0.5 5 0.5 5 0.5 56 V V V V V V V V V V V V V V V V V V V V V rnA 3.6 2.4 0 3.6 2.4 0 3.6 2.4 0 3.6 2.4 0 3.5 2.4 0 2.4 0 2.4 0 3.6 0 pA pA pA pA pA pA pA Note 2 3 4 5 6 7 8 9 10 11 12 13 14 15 pins So- S7 pin RW pin F pins Do-[hlpin OD in output mode pins P20-P23 in output mode pin OSCOUT Applications 1. General·purpose program timer 2. Controllers for electronic home appliances, Audio equipment, Office machines 3. Door chime, Home security system 4. Hand-held calculator with printer 5. Cash register 6. Copy machine controller 7 . Vending Machine 8. Radio cassette tape recorder and PLL controller 9. TV remote control and channel controller - - - - - - - - - S H A R P -----.-.---------.-..-.67 ~I ;;;: ;;;: • "" _....,c:: }Key input '< MK output 3 ~ ~;;;: >ri I I ~ ~ . I I I I I I I I cO' d ~ o ::::J ..., I o~ oo :::0 FU output (2) E2 (Output level reverses on each FU input) EI I - - MT output t----->- I I I en CD I I FU output 77r DC + 5V K3 Counter control output K2 KI A Eo 03 OD INT D9 DB '"~. g. o ::::J ;;;: c:::: ~ .... s B22 ON/OFF SQ B21 r'l'1' E. '"' -5' ~ .... B20 '0 oC/) BI21MUTE Bl1 BIO (GND) s, il6 il6 D. il6 n, DI il6 Vss 80 81 82 83 8. 85 86 D, Radio ON/OFF '0-" -... ~ "- B23 SM·200 Dl1 Dlo Melody output 01 VDD RW J2 JI ACL PC5 output 02 'I·~·' en -I en P L L shift register term inal Cb 'og."' .... 2. :;; .:::!-. I~ II I I II 'I I I U SM-4A CMOS 4:-Bit 1-Chip, Microcomputer SM-4A • CMOS 4-Bit I-Chip Microcomputer Description The SM-4A is a 4-bit single chip CMOS microcomputer with 2,268 bytes of ROM, 96 words of RAM, a 15-stage divider and 68-segment liquid crystal driver circuits. It is well suited for applications of low power hand-held equipment with many liquid crystal display segments. • • Pin Connections ~~~~~~~~~~~:~:: 0000000"0000000 Features 1. CMOS process 2. ROM capacity 2,268 X 8 bits 3. RAM cap~city 96 X 4 bits 4. Instructions 54 5. Subroutine nesting 1 level 6. Input ports 6 bits 7. Output ports 40 bits 8. Input/Output ports 4 bits 9. On-chip 50-stage divider with reset (timer circuit) . 10. External RAM driver (256 X 4 bits) 11. Direct LCD driver circuits (3V, 112 duty, 112 bias and 68 segments MAX.) 12. Standby mode (10 fJ-A current consumption) 13. Single power supply - 3V (TYP.) 14. Instruction cycle 61 fJ-S 15. 60-pin quad-flat package 1 2 3 4 .... M N ...... 5 0000:': SSSS 6 ~ 7 I! 9 1 11 1 13 41 5'"''"' N ~ ..,. z r- ... z:'::'::':U' c:tl.Q " C/lU o ~ N Top View - . - . - - - . - - - S H A R P ........ .-..---~--- 69 CMds 4-Bit 1-Chip Microcomputer ..............................._ • . SM-4A .........,.............AIIIIiiIIIiF.....'...._ . ...."".... Block Diagram Segment Output r-___________________________________ ________________________________ ~A~ ~ Segment Output Segment Output '---v--" I/O Port Symbol description ALU AI'c ACL C Cx. CA. Pu. PL Cs. SUo SL 70 : : : : : : '-v-'~ ~~ Asynchronous Input Port Input Arithmetic logic unit Accumulator Auto clear Carry F/F Program counter Stack register of program counter Oscillator BM. BL DIV PLA Test : RAM address register : Frequency divider : Programable logic array CG : Clock generator WI-W,. Wl';...W. : Static shift·register CMOS 4-Bit 1-Chip Microcomputer • Pin Description Pin K1 -K 4 a 110 I I I 110 0 f3 DIO I -DI0 4 Rl -R 4 01l-048 OSlo OS2 • SM-4A Function Acc+-K l -K 4 Set by t, reset after test instruction execution Input signal is held for 1 instruction, test possible Acc-DIO I - DI0 4 Rl -R 4 +-Acc Output of Wand W' registers' content; used for LCD segment output 3-state level output possible, used for LCD common output For low voltage detection circuit For test (usually connected to V00) Auto clear For clock oscillation Power supply for LCD driver Power supply for logic circuit Type of circuit Pull down Pull down Pull down 3-state output Complementary 0 Hb H2 0 BA Tlo T2 ACL OSC lN , OSC OllT VM GND, Voo I I I Pull up Absolute Maximum Ratings Parameter Pin voltage Operating temperature Storage temperature Symbol Voo VM VlN T oDr Tst2 Ratings -,3.5-+0.3 -3.5-+0.3 V00-0.3- +0.3 -5-+55 -55-+150 Unit V V V Note 1 "C "C Note 1: The maximum applicable voltage on any pin witb respect to GND. • Operating Conditions Parameter Supply voltage Supply voltage Oscillator frequency Symbol Voo VM fose Specified value -3.2--2.6 Voo/2 (TYP.) 32.768 (TYP.) Unit V V kHz / '-'-~-----"'--'--SHARP -----..--,-~----..--~ 71 CMOS 4-Bit 1-Chip Microcomputer • 'SM-4A (V oo =-3.2--2.6V, Ta=25"C) Electrical Characteristics Parameter Symbol Conditions MIN. -0.6 V UIl • V ILl Input voltage Output voltage Ou.tput curreBt Current consumption 3: 4: 5: 6: 7: 8: Applicable Applicable Applicable Applicable Applicable Applicable -0.3 Vmz V IL2 VOHI VOLl VOH2 VOL2 VOII:l VOL:l VOA VOB Voc Iso ISIN InA Ins pin ACL pins 0'8-0ll, Osl, OS2 pins DIOI-DIO, pins R2, R3, R, pins HI, H2 pin RI V nn +0.3 louT-50 pA to Voo IOllT =5,uA to GND . IOllT=50 pA to Vno loUT = 30 pA to GND IOUT=50 pA to Vnn IOlIT=50 pA to GND No load Voo =-3.0V V M =-1.5V VOllT =-0.2V VOllT=Vno+0.2V In full- range operation When system clock is stationary -0.5 V nn +0.5 -0.5 Voo+0.5. -0.5 Vnn +0.5 -0.3 -1.5 -2.7 100 100 50 10 ' / 72 MAX. Voo+0.6 Note 2: Applicable pins KI, K2, K3, K" a, f3 Note Note Note Note Note Note TYP. 100 20 Unit V V V V V V V V V V V V V 'pA pA pA pA Note 2 3 4 5 6 7 8 SM-4A CMOS 4-Bit 1-Chip Microcomputer • 1. 2. 3. 4. 5. 6. 7. 8. • Applications Hand-held calculator with clock function High-quality clock Cash register General-purpose timer Electronic scale Game machine Vending machine Controllers for electronic home appliances and audio equipment System Configuration (for radio PLL controller) LCD DC voltage cutout O.02JlF r---:~~.....J._--:::--.......Ji...--'32. 768kHz 22 pF Band selection OSCOUTI--+----I r~-~BA Tape stop GND~-~~~~Nr~~~_, Various controls { V y. J--+_---, SM-4A 220kO PLL latch PLL shift register' clock PLL shift register data MUTE DIal DI0 2 DI0 3 DIO. V[)~-~~~+-----' O_33,uF ACL a P 047-----;~ 046---~ 045---~ 04'---~ 043-----;~ O.2-----;~ 038--~ .-.----------SHARP-.-.------- 73 .---....--.... ........ CMOS 4-Bit 1-Chip Microcomputer .-- -.".-~ -...., SM-SA • The SM-5A is a 4-bit single chip CMOS microcomputer with 1,827 bytes of ROM, 65 words of RAM, a 15-stage divider and 72-segment liquid crystal driver. circuit. It is well suited for applications of low power hand-held equipment with many liquid crystal display segments. • Features 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 74 .. CMOS 4-Bit I-Chip Microcomputer Description CMOS process ROM capacity 1,827 X 8 bits RAM capacity 65 X 4 bits Instructions 51 Subroutine nesting 1 level Input ports 6 bits Output ports 42 bits On-chip 15-stage divider with reset· (timer circuit) Direct LCD driver circuit (3V, 112 duty, 112 bias and 72 segments MAX.) On-chip crystal-controlled oscillator (32.768kHz) Standby mode (10 pA current consumption) Single power supply -3V (TYP.) Instruction cycle 61 ps 60-pin quad-flat package ....- ....- /' SM-SA • Pin Connections CMOS 4-Bit 1-Chip Microcomputer • SM-5A Block Diagram Segment ______________________ Output r -____________________ --JA~ Segment Output fl ~ 5 . Segment Output ,)-------{23 ~ Output Port '--v---' ~ Asynchronous Input Port Input Symbol description ALU : Arithmetic logic unit Acc : Accumulator CG : Clock generator ACL: Auto clear DIV : Frequency divider C : Carry flag CF CA, CB, Pu, PL Cs, Su, SL WI-W4, WI' -W4' BM,BL 22:)-------------' '--v--' Oscillator : : : : : Carry F/F Program counter Stack register of program counter Static shift register RAM address register 75 ............... .. ...... .......... .. .... .. ..... .......... CMOS 4-:-Bit 1-Chip MicrOComputer -~ • ~ ~ ~ SM-5A ~ ~ ~ ~ ~ Pin Oescription Pin K1 -K 4 a ,{J 0 11 -0 48 OSI-0S4 I/O I I H},H2 0 - 0 - R1 -R 4 0 Tp T}, T2 ACL OSCIN, OSCOUT VM Voo• GND I I I • Type of circuit Pull down Pull up , Function Acc-K 1 -K 4 Independent test possible Output of cont!!nts of Wand W' registers; used for out-' ,put oLLCD segment 3,-state, level output possible; used for LCD common output R 1 -R 4-Acc, R 1 --·,Control output or alarm sound output For test (usually open) For test (usually connected to GND) Auto clear For clock oscillation Power supply for LCD driver Power supply for logic circuit Absolute Maximum Ratings Parameter Pin voltage Operating temperature Storage temperature Note 1: • Symbol Voo VM VIN Topr To,,, Rating -3.5-+;0.3 -3.5-+0.3 VDo -0.3-+0.3 -5-+50 -55-+150 Unit V V V Note 1 'C 'C The maximum applicable voltage on any pin with respect. to GND (GND=OV) Operating Conditions Parameter Supply voltage Supply voltage Oscillator frequency Symbol Voo VM lose Specified value -3.3--2.7 Voo/2 (TYP.) 32.768 (TYP.) Unit V V kHz ....... -------~--SHARP'.-.----.-.--.--. ......... - 76 CMOS 4-Bit 1-Chip Microcomputer • SM-5A (V oo =-3.0V±10%,GND=OV, Ta=25t) Electrical Characteristics Parameter Input voltage Input ,current Output voltage Current consumption Oscillator start time Note Note Note Note Note Note Note Note 2: 3: 4: 5: 6: 7: 8: 9: Symbol VIH VIL IlHl IlLl IIH2 IlL2 VOHl VOLl VOH2 VOL2 VOA VOB Vc lOA Ios Tosc Applicable pins Kl, K2, K3, K4, a, fJ, ACL Applicable pins Kl, K2, K3, K, Applicable pins a, fJ Applicable pins ~I,..QS'!......O~ OSI, all Applicable pins RI, R2, R:l, RI Applicable pins HI, H2 Mean current consumption at 32.768 kHz Oscillating circuit constant Conditions MIN. -0.6 TYP. MAX. Voo+0.6 15 1.5 1 1 VIN=OV VIN =-3.0V VIN=OV V lN =-3.0V IouT=30 pA to Voo IouT= 10 pA to GND IouT=100 pA to Voo IouT= 100 pA to GND -0.5 Voo+0.5 -0.5 -0.3 -1.8 -3.0 No load VM =-1.5V In full-range operation When system clock is stationary -1.5 50 10 2 Voo+0.5 0 -1.2 -2.7 100 20 5 Unit V V pA pA pA pA V V V V V V V Note 2 3 4 5 6 7 pA pA 8 s 9 ~ -----VOH ----------VOA ------Voc • Oscillator circuit Oscillator circuit constant Co=C G =15- 20.u F ---'--------SHARP------....-.-77 SM-SA CMOS 4-Bit 1-Chip Microcomputer • Applications 1. Hand-held electronic calculator with clock 2. 3. 4. 5. 6. 7. 8. 9. • High-quality clock Cash register Hand-held electronic culculator with printer pas terminal Electronic scale Game machine Vending machine Controller for electronic home appliances and audio equipment System Configuration (for LCD game machine) AMI D·DD U'UU PM LCD DC voltage cutout O.02,uF r---'-~-"------'--"""32.768kHz 20pF 0" OSConJ-....,..--i Piezoelectric buzzer = Left Right -------~------SHARP----.----- 78 CMOS 4-Bit 1-Chip Microcomputer SM-SL • CMOS 4-Bit I-Chip Microcomputer Description The SM-5L is a 4-bit single chip CMOS microcomputer with 1,827 bytes of ROM, 65 words of RAM, a 15-stage divider and 72-segment liquid crystal driver circuit. It is well suited for applications of low power hand-held equipment with many liquid crystal display segments. • SM-5L • Pin Connections ~~;;"'MN_~ o 0 0 :.: :.: :.: :.: " d Ie:. . uNz >> '" <:!:I. ..: Features 1. CMOS process 2. ROM capacity 1,827 X 8 bits 3. RAM capacity 65X4 bits 4. Instructions 51 5. Subroutine nesting 1 level 6. Input ports 6 bits 7. Output ports 42 bits 8. On-chip 15-stage divider with reset (timer circuit) 9. Direct LCD driver circuit (3V, 112 duty, 112 bias and 72 segments MAX.) 10. On-chip crystal controlled oscillator (32.768kHz) 11. Standby mode (2.5 pA current consumption) 12. Single power supply - 3V (TYP.) 13. Instruction cycle 61 ps 14. 60-pin quad-flat package 100 '" ooooooozooooooo .... .., In In It) IJ') " \CO ID t-- r-- l'- I'- Top View 79 CMOS 4-Bit ~1-Chip M i c r o c o m p u t e r ' SM:~5L ' ..................................... .................,........................... ----~ • Block Diagram Segirient ______________________ Output r -____________________ ~A~ ~ Segment Output ~ Output Port '-----y--/ '--y---J Symbol description ALU : Arithmetic logic unit Acc : Accumulator CG : Clock generator ACL : Auto clear DIV : Frequency divider C : Carry F/F 80 '>--y-/ Oscillator Asynchronous Input Port Input CA, CD, Pu, PL Cs, Su, SL WI-W4, WI' c--W.' BM,BL DDe : : : : : Program c.ounter Stack register of program counter Static shift resister RAM address register LCD supply voltage generator CMOS 4-Bit 1-Chip Microcomputer • SM-5L Pin Description Pin K1 -K 4 a,p 0 11 -0 48 OSI-0S4 0 HI> H2 0 - - RI -R 4 0 Tp TI> T2 ACL OSC IN , OSCOUT VM VDD , GND I I I • Type of circuit Pull down Pull up I/O I I Function Acc+-K 1 -K 4 Independent test possible ' Output of contents of Wand W' registers; used for output of LCD segment 3-state level output possible; usep for LCD common output R 1 - R4+- Ace, RI "'Control output or alarm sound output For test (usually open) For test (usually connected to GND) Auto clear For clock oscillation Power supply for LCD driver Power supply for logic circuit Absolute Maximum Ratings Parameter Pin voltage Operating temperature Storage temperature Note 1: '. Symbol VDD VIN Topr Tst2 Rating -3.5-+0.3 VDD -0.3-+0.3 -5-+50 -55-+150 Unit V V Note 1 "C "C The maximum applicable voltage on any pin with respect to GND (GND=OV) Operating Conditions' Parameter Supply voltage Oscillator frequency Symbol V DD fose Specified value -3.3--2.7 32.768 (TYP.) Unit V kHz -"'-''--~''''''''---SHARP'-~---~--- 81 SM-5L CMOS 4-Bit 1-Chip Microcomputer • (Voo= -3.0V± 10%, GND=OV, Ta='25°C) Electrical Characteristics Parameter Input voltage Input current Output voltage , , Symbol MIN. Conditions V oo +0.6 IIH! 15 IIL2 1 3 IIH3 V OHl V OLI louT=30 VOH2 louT=100 pAtoVoo V OL2 IOlJT=100 IOllT= 10 pA pA -0.5 to Voo Voo+0.5 -0.5 pA pA pA V Voo+0.5 -0.3 V 2 3 4 5 6 7 V -1.8 -1.2 V -2.7 V 8 Voc VM C 1 =C 2 =0.1 -1.5 -1.2 V 9 100 In Full-range operation 50 100 When system clock is stationary 2.5 5 pA pA 10 2 5 s 11 10 Note 2: Note 3: Note 4: Note 5: Note 6: Note 7: Note 8: Note 9: Note 10: Note 11: V V to GND No load V M= -1.5V Note V to GND pA Unit V V 1L V OB Oscillation start time MAX. -0.6 V IH V OA Current consumption , TYP. pF -1.8 Tosc Applicable pins KI- K" a, fJ, ACL Applicable pins KI - K, Applicable pins a, fJ Applicable pin ACL Applicable pins ~I --::QSI, Oi, (i = 1- 4, j = 1 - 8) Applicable pins RI- RI Applicable pins HI, H, Applicable pin VM Mean current consumption at 32.768kHz Oscillating circuit constant Ce, CD= 15-22pF • Waveform of Hlo H2 - __________ V"" ~ ------ Vo " ------ Vile • Oscillation circuit, Intermediate potential generator circuit wJ' er :1:., 'T2 PF "t2PF lr OSC" Cc OSCOt:T 1rlDi~1 1 pC o.l ttF o.l tt -----------SHARP - . - - - - - - - - - - - 82 CMOS 4-Bit 1-Chip Microcomputer • SM-5L Applications 1. Digital watch 2. Game machine 3. Controller for electronic home appliances and audio equipment 4. Hand -held electronic calculator with clock • System Configuration LCD ~tt==~--------- I r- DC voltage .-t-±",-"""-1cutout O.02}lF .--...J.._--....:.....-.1.---,Crys~al 22 pF HI aj; (36 lines) aSCol'TH-l11---. 22 pF ascI~ '--'---R~ H2 Rt ACL SM-5L VDD Key matrix - - - - . -.......... ------SHARP--~-------83 SM-SOO CMOS 4-Bit 1-Chip Microcomputer . . . . .. - . -_ _ _ _ _ _ _. . . .. -. . . .. - . -___ SM-500 • _ _............._r...... ~_~ CMOS 4-Bit I-Chip Microcomputer Description The SM-500 is a 4-bit single chip CMOS micro,computer with 1,197 bytes of ROM, 40 words of. RAM, a 15-stage divider and 40-segment liquid crystal driver circuits. It is well suited for applications of low cost, low-power hand-held equipment with liquid crystal display. • Pin Connections Cl 86686~668666 a 3 O~2 ose"" • Features 1. CMOS process 2. ROM capacity 1,197X8 bits 3. RAM capacity 40 X 4 bits 4. Instructions 52 5. Subroutine nesting 1 level 6. Input ports 6 bits 7. Output ports 26 bits ' 8. Input/Output ports 8 bits 9. On-cp.ip 15-stage divider with reset (timer circuit) 10. Direct LCD driver circuit (3V, 112 duty, 112 bias and 56 segments MAX.) 11. On-chip crystal controlled oscillator (32.768kHz) 12. Standby mode (3 pA current consumption) 13. Single power supply -3V (TYP.) 14. Instruction cycle 61 ps 15. 48-pin quad-flat package 84 VillI K. K. K2 <5 <5 ci! c>: c>: Ii ~ I... " 0>. ~ d < ~ Top View CMOS 4-Bit 1-Chip Microcomputer • SM-500 Block Diagram Segment Output ROM (1,197 X8) '---y-/ I/O Port '--y--/ ACL Common Output Oscillator Symbol description ALU : Arithmetic logic unit Acc : Accumulator ACL : Auto clear C : Carry F/F CA, CB, Pu, PL : Program counter C~, Su, SL : Stack register of program counter CG : Clock generator DIV : Frequency divider WI - W4, WI' - W4' : Static shift register BM, BL Bp KF Ks S K : RAM address register : Backplate signal generator circuit : Hit F/F : 4-bit F/F : 4-hit F/F (status register) : Key input F/F -..-.---------SHARP----------85 CMOS 4-Bit 1-Chip Microcomputer • 8M-500 Pin Description Pin K1 -K 4 a,f3 I/O I I 0 11 -0 41 I/O . OSI-OS4 110 0 12 -0 46 0 HI> H2 0 R1 -R 4 T ACL OSCIN , OSCOUT VM Voo, GND 0 I I • Type of circuit Pull down Pull up Function Acc+-K 1-K 4 Independent test possible Output of contents of Wand W' registers or input/out· put to/ from KF register Output of contents of Wand W' registers or i.nput/out· put to/from Ks register Output of contents of Wand W' registers; Used for LCD segment output 3·state level output possible; used for LCD common output R1-R 4-Acc For test (usually connected to GND) Auto clear For clock oscillation Power supply for LCD driver Power supply for logic circuit Pull up Pull down Absolute .Maximum Ratings ?arameter Pin voltage Operating temperature Storage temperature Symbol Voo VM VIN VOUT T_ T stg Rating -4.0-+0.3 Voo -+0.3 VDD -0.3-+0.3 VDo -0.3-+0.3 -10-+70 -55-+150 Unit V V V V Note 1 t t Note 1: The maximum applicable voltage on aity pin with respect to GND. • Operating Conditions Parameter Supply voltage Oscillator frequency Symbol Voo VM fose Specified value -3.3--2.7 V00/2 (TYP.) 32.768 (TYP.) Unit V V kHz '-'-~'---------SHARP 86 ...--...--,.-------- CMQS 4-Bit1-Chip Microcomputer SM-SOO (Voo=-3.0V±10%, GND=OV, Ta=25'C) Electrical Characteristics • Parameter Input voltage Input current Output voltage Output Current Current consumption Note Note Note Note Note Note Note Note Note Note Symbol V IH V1L IHl IH2 IL3 VOA Vos Voc 10HI lOLl IOH2 IOL2 103 104 lOA los Conditions MIN. -0.6 TYP. Voo+0.6 15 3 1 V1N=OV V1N=OV VIN=Voo -0.3 V M-0.3 No load VM=VOOI2 VoUT =-0.5V VOUT=Voo+0.5V VouT =-0.5V VouT=Voo+0.5V Vos=0.3V Vos=0.5V In full·range operation When system clock is stationary 2: Applicable pins Kl-KI, a, p, ACL, 011-041, 051-0SI 3: Applicable pins Kl-K" 011-011, OSI-051 4: Applicable pin ACL 5: Applicable pins a, p 6: Applicable pins HI, H2 7: Applicable pins Oi, (i= 1-4, j=2-6) 8: Applicable pin Oll -041, OSI -051 9: Applicable pin Rl 10: Applicable pins Rz, R3, R, 11: Current consumption under no load conditions at fosc=32.768kHz MAX. V M+0.3 Voo+0.3 30 10 100 10 100 100 20 3 Unit V V Note pA pA pA 3 4 5 V V V 6 pA pA pA pA pA pA pA pA 2 7 8 9 1-0 11 • H},H2 waveform - IL -u-J"C.--.====~= U _______:::: Voc • Oscillator circuit c~fD~'" Oscillator circuit constant C"=C,,=22,,F '-'-~-------""--'----SHARP ---~----- 87 ..... ....,-........., . ...................--....,-...... OMOS 4-Bit l-Chip Microcomputer' ~- • . Applications 1. Digital watch 2. Game machine 3: pas terminal 4. Electronic scale 5. Controlle~ for electronic home appliances and audio equipment • System Configuration (for digital watch) R 12 H/24 H Cl-----i KI~---------------' K,!E-------------, K31E-------, 1-----IOSC0 1:T 22pF /3 R, R3 R. OSI OS2 a", 0 54 For control Mode switch 88 K. CMOS 4-Bit 1-Chip Microcomputer SM-510 • CMOS 4-Bit I-Chip Microcomputer Description The SM-510 is a 4-bit single chip CMOS microcomputer with 2,772 bytes of ROM, 128 words of RAM, a 15-stage divider and 132-segrnent liquid crystal driver circuits. It is well suited for applications of low cost, low power hand-held equipment with liquid crystal display. • SM-510 • Pin Connections Q ~ :;~;.Q :..Q~:~:;..Q:~: 1 3 3 3 31 Features L CMOS process 2. ROM capacity 2,772 X 8 bits 3_ RAM capacity 96X4+32X4 bits 4_ Instructions 49 5. Subroutine nesting 2 levels 6_ Input ports 6 bits 7_ Output ports 47 bits 8. On-chip 15-stage divider with reset (timer circuit) 9. DirectLCD driver circuit (3V, 1/4 duty, 1/3 bias and 132 segments MAX.) 10. On-chip crystal controlled oscillator (32.768kHz) 1 L Standby mode (10 pA current consumption) 12. Single power supply -3V (TYP_) 13. Instruction cycle 61 ps 14. 60-pin quad-flat package ~~-------SHARP"-------""'-~--"" 89 CMOS 4-Bit 1-Chip Microcomputer • SM-510 Block Diagram ~ Seliment ________________________ ~A~Output ________________________~ Display RAM (32X4) RAM (96X4) Segment Output Parallel Output Port Test ' - - y - - / ACL Input Parallel Input Port Symbol description ALU : Arithmetic logic unit Acc : Accumulator C : Carry F/F Pu, PM, PL : Program counter Su, SM, SL : Stack register of program counter Ru, RM, RL : Stack register of program counter DIV : Frequency divider "---v-' Voo GND W BM, BL Bp H,L, Y R K CG '-v-' Oscillator- : : : : : : : 8-bit shift register RAM address register Backplate signal generator circuit Hit F/F 2-bit F/F Key input F/F Clock Generator - , - - - - - - - - - - - - - - S H A R P , - - . - . '......... ------------'"......- 90 CMOS 4-Bit 1-Chip Microcomputer • SM-510 Pin Description Pin K I -K 4 SA, PIN aI-aIS, b I -b I6 bs I/O I I HI -H 4 0 SI- S8 Rr. R2 T ACL OSCIN, OSCOUT Voo, GND 0 0 • Type of circuit Pull down Pull up Function Acc-K I -K 4 Independent test possible Output of contents of display RAM as LCD segment signal 4-state level output possible; used for LCD common output Output of contents of W register For piezo-electric buzzer direct drive For Test (usually connected to V00) Auto clear For clock oscillation Power supply for logic circuit 0 I I Pull down Absolute Maximum Ratings Parameter Pin voltage Operating temperature Storage temperature Symbol Voo VIN T oDr T st• Rating -3.5-+0.3 V oo -+0.3 0-+50 -55-+150 Unit V V t t Note 1 Note 1: The maximum applicable voltage on any pin with respect to GND. • Operating Conditions Parameter Supply voltage Oscillator frequency • Symbol Voo fose Unit V kHz Specified value -3.2--2.6 32.768 (TYP.) (V oo =-3V±10%, Ta=25t) Electrical Characteristics Parameter Input voltage Input current Output voltage Output current Current consumption Note Note Note Note 2: 3: 4: 5: Applicable pins KI - K., PIN Applicable pins ACL, BA Applicable pins KI - K, Applicable pin PIN Symbol VIllI V ILI VIII2 V OL2 IIII IlL VOH VOL VOA VOB Voc Voo Iso ISIN lOA los Conditions MIN. -0.6 TYP. MAX. Voo+0.6 -0.3 3 3 -0.5 VIN=OV VIN=VOO IOlJT=50 pA to Voo IOUT=5 pA to GND V oo =-3.0V No load VouT=-0.2V VouT=Voo+0.2V In full-range operation When system clock is stationary Note Note Note Note Voo+0.3 15 15 6: 7: 8: 9: -0.3 -1.3 -2.3 -3.0 100 100 0 -1.0 -2.0 -3.0 60 10 Voo+0.5 0 -0.7 -1.7 -2.7 Unit V V V V Note pA pA 4 5 V V V V V V pA pA pA pA 2 3 6 7 8 9 Applicable pins SI -S8 Applicable pins al-al6, bl-blG, b8, HI-H, Applicable pins RI, R2 Current consumption when fosc is 32.768kHz (TYP.) and - 3.0V of V DISP is applied --~------SHARP'--~---~-- 91 GMQS:4-Bit 1-Chip Microcomputer • AppHcations 1. Hand-held electronic calcuator with multi-digit display and clock 2. High-quality clock: 3. Handy game machine' 4. Equipment that. need mUltiple LCD display segments • System Configuration (Hand-held electronic caleuator with clock) LCD DC voltage cutout O.02.uF 08C Ol"T I---D+ 0.6 -1 VI>D+ 0.6 -2.5 V",,+0.6 -2.5 V"D+0.6 -0.6 VI>D+ 0.6 -0.6 V I)Jl+0.6 600 50 90 11.2 32.768 150 Unit Note V 12 V 13, V 14 pA 15 V 16 V 17 V 18 V 19 V 20 V 21 V 22 V 23 pA pA 24 25 kHz 26 kHz 27 Applied to pins ACL, a, fJ, PE, QI, DIO,- DIO I, MP,- MP I Applied to pins KEI-KE, Applied to pin Cf Applied to pins a, fJ, QI, KEI-KEI, Dial-Dia" MPI-MPI, F2 (during floating condition) Applied to pins To-T'l Applied to pins S,-S" Applied to pins FI, F:l, F5 Applied to pins RI - R6, Q2, F I Applied to pins R,-RJO Applied to pins MPI-MPI, F2 Applied to pins DIOI-DIO, Applied to pin Rf No·load condition No·load condition, VOll= -3.5V, internal CG with externally attached capacitance C= 15pF Internal circuit with externally attached CG Circuit with externally attached crystal oscillator C, pJ' r C R=82kO C=15pF • When a ceramic oscillator is used, the operating voltage VDD is limited to -5.5 to -4.5V. • Oscillation starting voltage becomes larger than the CR oscillation. Cl=330pF C2=150pF Rl=lMO R2 =5600 Ceram ic oscillator : KB R , (made by Kyocera Corp.) Rl=200kO CG=lOpF Co=33pF Crystal: KF-38G (made by Kyocera Corp.) ~'-''---'---SHARP------'-'~-'--~ 106 SM-525 CMOS 4-Bit 1-Chip Microcomputer • System Configuration (for VTR timer) M 8.2V U~ Fluorescent tube display ~~---r~:f::~::~::~:;::~C:::::::::::~---------o-30V IkO IkO SM-525 KE, - KE, DIO, - DIO, F, - F; MP, - MP. s.... --~ S .... OSCOCT GND OSC" Crystal 32.768kHz c: ___ S "" "'...." 00 ~ Input signals ' - y - I Input signals Control signals 1000 lkO +5V Key matrix lkO '----y---' Input signals .----.-...-.------'--SHARP ----------....-.----107 •. SM~530 CMQS 4-Bit 1-Chip .Microcomputer SM-530 • CMOS 4-Bit I-Chip Microcomputer • Description Pin Connections The SM-530 is a 4-bit single chip CMOS microcOlI).puter with 2,016 bytes of ROM, 88 words of RAM, melody generator circuit and 96-segment LCD driver circuit. It is well suited for low cost, low power systems with many LCD segments. • Features 1. CMOS process 2. ROM capacity 2,016X8 bits 3. RAM capacity 64 X 4 + 24 X 4 bits 4. Instructions 49 5. Subroutine nesting 1 level 6. Input ports 8 bits 7, Output ports !i8 bits 8. Timer/Counter (On-chip 15-stage divider with reset, 10second counter and 11100-second counter) 9. Direct LCD driver circuit (3V, 112 duty, 112 bias and 96 segments MAX.) 10. On-chip crystal controlled oscillator (32.768kHz) 11. Melody generator circuit 12. Standby mode (1.5 p.A current consumption) 13. Single power supply -1.5V (TYP.) 14. Instruction cycle 91.6 p.s 15. 80-pin quad-flat package 108 Top Vi~w / CMOS 4-Bit 1-Chip Microcomputer • SM-530 Block Diagram ~ Segment Output ______________________________ ________________________________ ~A~ ~ Segment Output ROM (2,016 X 8) RAM' (4X16x4) Pu(5) PL(6) Parallel Output Port Battery Alarm Melody Output Parallel Input Port 12 '--v-' Oscillator Symbol description ALU : Acc : ACL : C : Pu. PL : Su, SL : Arithmetic logic unit Accumulator Auto clear Carry F/F Program counter Stack register of program counter DDC DIV CG BA BM, BL : : : : : LCD supply voltage generator Frequency divider Clock generator_ Battery alarm circuit RAM address register 109 ..............-.---.... .............-:-----..... -........ , SM~530 CMOS 4-Bit 1-Chip Microcomputer -~ • PIn Description Pin name Kl -K 4 KE l -KE 4 OlO- 0 4B I/O I I 0 . Hl -H 2 0 F l -F 4 Sl-S4 So BA Test ACL OSC1N, OSC OUT Voo, Vee, DDC VM,GND 0 0 0 • I I I Circuit type Pull down Pull down Pull down Pull down Function Acc -Kl-K,j Acc - KEl - KE4 Display RAM contents output as LCD segment signals Tri-value output capability; used for LCD common output F l -F 4 -Acc Sl-S4 - Acc Melody output For Iiatter,y alarm For test (Connected to Voo normally) Auto clear For clock oscillation LCD driv~ power supply Power supply for logic circuit Absolute Maximum Ratings Parameter Pin voltage Operating temperature Storage temperature Note 1: Note 2: Note 3: • Symbol VM Voo VINl V1N2 T oDr T st• Ratings -2.0-+0.3 -4.0-+0.3 VM-0.3-+0.3 VoD -0.3-+0.3 -10-+60 -55'-+150 Unit V V V V Note 1 1,2 1,3 1 t t The maximum applicable voltage on any pin with respect to GND. Applied to pins Kl-Kl, KE1-KE1, Sl-S." Fl-FI, SO, Test, DDC, BA. ACL, OSCIN, OSCollT Applied to pins O;j(i= 1-4, j=O-B)HI, H2, Vc Recommended Operating Conditions Parameter Supply voltage Oscillation start voltage Oscillator frequency Symbol VM VOD Vose fose Ratings -1.2--1.8 -2.3--3.6 -1.4 32.768(TYP.) Unit V V V kHz -------~--SHARP.-.-.--·------ 110 SM-S30 CMOS 4-Bit 1-Chip Microcomputer • (V M =-1.45-1.55V, V oo =-2.9--3.1V, Ta=25"C) EI,ectrical Characteristics Parameter Input voltage Input current Boost output voltage Output current Current consumption Oscillation start time Note Note Note Note Note Note Note Note Note Note Note Note Note Note 4: 5: 6: 7: 8: 9: 10: 11: 12: 13: 14: 15: 16: 17: Symbol V IH V1L IIHI IIH2 V OO1 V OO2 10l 102 103 104 10HI lOLl IOH2 IOL2 IOH3 IOL3 105 100 los Tosc Conditions V1N=OV V1N=OV VM =-1.55V, RL =5Mn VM =-1.30V, RL =5Mn Vos=0.5V Vos=0.5V Vos=0.5V Vos=0.5V VOLJT =-0.5V VOllT =V M +0,5V VOlJT =-0,5V VOllT =V M +0.5V VollT =-0,5V VOllT =V M +0.5V Vos=0.5V During all operation During system clock stop MIN. -0.5 TYP. MAX. VM +0.5 3 30 -2.80 -2.30 0.155 1.55 10 60 60 120 160 10 10 1.5 100 3 100 12 1.5 10 Unit V V Note pA pA 5 6 V V 7 pA pA pA pA pA pA pA pA pA pA pA pA pA s 4 8 9 10 11 12 13 14 15 16 17 Applied to pins KI-K" KEI-KEI, Test, ACL, OSC'N Applied to pins KI-K" KEI-KEI, ACL Applied to pin Test Applied to pin VDO Applied to pins 0" (i= 1-4, j =O-B) Applied to pins H" H, Applied to pin DDC Applied to pin Vc Applied to pin SO Applied to pins SI -S, Applied to pin F I Applied to pins F, - F I Current consumption during 32.768kHz Oscillation circuit constant, Cr;= 15pF, Cp=22pF ------------GND ~ ------- V" --------V,," eH"H2 Waveform Cc;=ISpF, C,,=22pF e Oscillation circuit e Boost circuit - - - - - - - - S H A R P - - - - - - -1". .- j"" ..... ..... ....................., ....,....., CMOS 4-8it 1-Chip Microcomputer • ............. .. ......,~ Applications 1. Digital watch 2. Game machine 3. Digital clock 4. Controllers for home appliances and audio equipment 5. Calculator with d9Ck • System Configuration Example (Caluculator watch) . Test III FJ " "8 F2 i:!0 F3 "... F, 0 ~ SO R Key matrix 112 ................,......... . ~.-. .. 'SM"':530 CMOS 4-Bit 1-Chip Microcomputer SM-531 CMOS 4-Bit I-Chip Microcomputer • • Description The SM-531 is a 4-bit single chip CMOS microcomputer with 1,260 bytes of ROM, 52 words of RAM, melody generator circuit and 80-segment LCD driver circuit. It is well suited for low cost, low power applications with many LCD segments_ • Pin Connections ... z ~ uuQ~Qu 00 ~""--MU)CJ)ZUCQU""_N OOO:C:':oo,,<>Q>:':OO 1 3 3 3 31 Features 1. 2. 3. 4. 5. 6. 7. 8. CMOS process ROM capacity 1,260 X 8 bits RAM capacity 32 X 4 + 20 X 4 bits Instructions 45 Subroutine nesting 1 level Input ports 6 bits Output ports 42 bits Timer/Counter (On-chip 15-stage divider with reset, 1/100second counter) 9. Direct LCD driver circuit (3V, 1/2 duty, 112 bias and 80 segments MAX.) 10. On-chip crystal controlled cscillator (32.768kHz) 11. Melody generator circuit 12. Standby mode (1.5 p.A current consumption) 13. Single power supply -1.5V (TYP.) 14. Instruction cycle 91.6 p.s 15. 60-pin quad-flat package ) ------------SHARP----..-,---113 CMOS 4-Bit 1-Chip • Microcomput~r SM-531 Block Diagram ~ common{ Output Segment Output _____________________ ____________________ A~ ~ 3 (2)----...r--"'L---~---...;;;..;...-------r----' DDC Segment Output ROM (1.260xS) RAM (2X16X4) PutS) PL(6) Parallel Input Port \ Melody { Output 9 'ID '--v-' VM '-v--' Test Oscillator GND Symbol description ALU Acc ACL C ,Pu. PL 114 : Arithmetic logic unit : Accumulator : Auto clear : Carry F/F : Program counter Suo SL DDC DIV CG BM. BL : : : : : Stack register of program counter LCD supply voltage generator Frequency divider Clock generator RAM address register SM-531 CMOS 4-Bit 1-Chip Microcomputer • Pin Description Pin name K1 -K 4 • KEh KE2 0 10 -0 49 110 I I 0 Hh H2 0 SOh S02 Test ACL OSCIN, OSCO\JT VDD , , Vee, DOC V M, GND 0 I I Pul1 down Function Acc - K I -K 4 Acc - KEh KE2 Display RAM contents output as LCD segment signals Tri·value output capability; used for LCD common output Melody output For test (Connected to VM normal1y) Auto clear For clock oscillation LCD driver power supply Power supply for logic circuit Absolute Maximum Ratings Parameter Pin voltage Operating temperature Storage temperature Note 1: Note 2: Note 3: • Circuit type Pul1 down Pul1 down Symbol VM VDD V INI V IN2 Toor T st" Ratings -2.0-+0.3 -4.0-+0.3 V M -0.3-+0.3 VDo -0.3-+0.3 -10-+60 -55-+150 Unit V V V V Note 1 1 1,2 1,3 "C "C The maximum applicable voltage on any pin with respect to GND. Applied to pins KI-KI, KEI, KE" Sal, SO" Test, DOC, ACL, OSCIN, OSCQlTT Applied to pins O,j(i= 1-4, j=O-9), HI, H" Vc Recommended Operating Conditions Parameter Supply voltage Oscillation start voltage Oscillator frequency Symbol VM Voo Vase fose Ratings -1.8-1.2 -3.6-2.3 -1.4 32.768 (TYP.) Unit V V V kHz Note 4 Note 4: Oscillation ciruit constant CG= 15pF, CD= 22pF Oscillation start. time : within 10 seconds . .-----------SHARp.-..--------....-. 115 CMOS4-Bit 1-Chip Microcomputer • (V M =-1.45--:-1.55V, Electrical Characteristics Parameter Input voltage Input current Boost output voltage Output current Current consumption Oscillation starting time Note Note Note Note Note Note Note Note Note Note Note 5: 6: 7: 8: 9: 10: 11: 12: 13: 14: 15: Symbol VIH VIL IIHI IIH2 VOOI V002 101 102 103 104 105 100 los Tosc SM"531 Conditions MIN. -0.5 VIN=OV VIN=OV VM =-1.55V, RL-5MO VM =-1.30V, RL =5MO Vos=0.5V Vns =0.5V Vos=0.5V Vos=0.5V Vos=0.5V During all operation During system clock stop Applied to pins KI-K" KEI, KE2" ACL, OSCIN Applied to pins KI-K" KEI, KE2, ACL Applied to pin Test Applied to pin VOD Applied to pins 0" (i= 1-4, j=0-9) Applied to pins HI, H2 Applied to pin DOC Applied to pin Vc Applied to pins Sal, SO, (::urrent consumption at 32.768kHz Oscillation circuit constant CG=15pF, Co=22pF TyP. MAX. VM +0.5 3 50 -2.80 -2.30 0.155 1.55 Ta=25"C) Unit V V Note pA pA 6 7 V V 8 10 60 60 120 900 10 1.5 10 5 pA pA pApA pA pA pA 9 10 II 12 13 s 15 14 • Hl,Hz Waveform --------------GND ~--------- V~I ------------ VIlIl • Oscillation circuit, Boost circuit ~---'--'---'-----SHARP 116 Voo=-2.~--3.1V; .-------------,--- CMOS 4-Bit 1-Chip Microcomputer • SM-531 Applications 1. Digital watch 2. Game machine 3. Controllers for home appliances and audio equipment 4. Calculator with clock • System Configuration (for melody alarm watch) LCD DC voltage cutout O.02,uF ~~--~--~~~--, o ij (40Iines) 1/.1F 15pF + 1.5 V SM-531 V,," DDC ACL Vc ACL ----------SHARP-------117 CMOS 4-Bit 1:"Chip Microcomputer SM-S40 • , SM-S40 CMOS 4':'Bit I-Chip Microcomputer Description • Pin Connections The SM-540 is a 4-bit single chip CMOS microcomputer with 2,016 bytes of ROM, 128 words of RAM, a 15-stage divider and a 256-segment liquid crystal driver circuit. It is well suited for low power applications with 16 X 16 dot-matrix liquid crystal display_ • Features L CMOS process 2. ROM capacity 2,016 X 8 bits 3. RAM capacity 128 X 4 bits 4. Instructions 57 5. Subroutine nesting 2 levels 6. Input ports 6 bits 7. Output ports 55 bits 8. On-chip 15-stage divider with reset (timer circuit) 9. Direct LCD driver circuit (4_5V; 1/8 duty, 113 bias and 256 segments MAX.) 10. On-chip clock generator circuit 1 L Standby mode (1 pA current consumption) 12. Single power supply -4_5V (TYP.) 13. Instruction cycle 16 ps 14. 60-pin quad-flat package I Vuu 5 ALM -~-----~'---SHARP''''''-''''-'-'-~'-'-~ 118 CMOS 4-Bit 1-Chip Microcomputer • SM-540 Block Diagram Segment Output ROM (2,016X8) Segment Output Backplate Control Common Output }-____~~I}-------~ Tone Output Oscillator ~ '--y-I GND Symbol description ALU Acc C P, PL SCI, SC2 Segment Driver : : : : : Arithmetic logic unit Accumulator Carry F/F Program counter Stack register of program counter ~--------'---SHARP CG DIV BM, BL S X, SB : : : : : Clock generator Frequency divider RAM address register Shift register Temporary register -----.-.-..-..-.-119 CMQS4-Bit 1-Chip Microcomputer • SM-S40 Pin Description Circuit type Pin name K1-K 4 1/0 I Ra I/O ' Pull down Rb I/O Pull down al-al6 bl -bi6 H1-H s SI-S4 RC ALM T Sync Rf 0 Vc 0 Function Acc - K1 -K 4 R register output; a F IF is\nput when R registerRa' is reset R re~ister output; f3 F IF is input when R register Rb is reset 0 Display RAM contents output as LCD segment signals 0 0 0 0 8·value output capability;used for LCD common output S register output R register output For sound generator For test (Connected to GND normally) External clock input System clock output When system clock is running, output at the same voltage as Vnn LCD driver power supply Power supply for logic circuit I I Pull up VDlSP Vnn, GND • , Absolute Maximum Ratings Parameter Pin voltage Operating temperature Storage temperature Ratings Symbol '-5,,5-+0,3 Vnn -5.5-+0,3 VDlSP VIN .' VM -0.3-+0.3 -5-+50 Toor -'-55-+150 Tst~ Unit V V 'V Note 1 1,2 1 "C "C Note 1: The maximum applicable voltage on any pin with respect to GND, Note 2: VDlSP;;;;;VDD • Recommended Operating Conditions Parameter Supply voltage Oscillator frequency Symbol Vnn VDlSP fose Ratings -5,5-+4.0 -5,5-+-3.0 120(TYP.) Unit V V kHz --'-'-"'-~-,--SHARP------'-'---""""'- 120 CMOS 4-Bit 1-Chip Microcomputer • SM-540 (V DD =-4.5V, Ta=25'C) Electrical Characteristics Parameter Input voltage Input current Output voltage Output current Current consumption Note Note Note Note Note Note Note Note 3: 4: 5: 6: 7: 8: 9: 10: Symbol VIH VIL IIH! IlL! IIH2 IIL2 VOA VOB Voc VOD VOE VOF 10Hi lOLl 10112 IOL2 IOH3 IOL3 IOH4 IOL4 IDA IDs MIN. Conditions TYP. MAX. 0.6 Unit V V 20 1.5 3.0 1.5 pA pApA pA -0.97 -3.12 -4.3 -1.95 -2.15 V V V V V V VDD +0.6 VIN=OV VIN =-4.5V VIN=OV VIN =-4.5V No load condition VDISP = -4.5V No load condition VDlsp =-4.5V No load condition VDlSP = -4.5V No load condition VDISP- -4.5V No load condition VD1SP= -4.5V No load condition VDISP= -4.5V VouT =-0.5V VOUT=VDD+0.5V VOUT= -0.5V VOUT=VDD+0.5V VouT=-0.5V VOUT=VDD+0.5V VOlIT =-0.5V VOUT=VDD+0.5V During operation During system clock stop Applied to pins Kl- K" R" Rb Applied to pins Kl- K, Applied to pins R" Rb Applied to pins HI-H8, al-aI6, bl-bl6 Applied to pins SI--S, Applied to pin RC Applied to pin ALM fose= 120kHz(TYP.) and VDlSP= -4.5V -0.2 -1.38 -3.53 -2.35 -2.55 40 2 100 2 100 5 100 100 230 1 --------- 3 4 5 6 pA pA pA pA pA pA pA pA pA 7 5 8 9 -rz-- - - -~A 10 eal-as,bl-bs Waveform e Hl-Hs Waveform ~ Note - VOA -------VOB ------ -Voc ------------- - VOIl Vo.' ----- - VOE ------- - V OF - - - - - - - - - - - VIlIl e Clock from external input pin SYNC . 50kHz-144kHz 121 SM-540 .CMOS 4-Bit 1-Chip Microcomputer .... ~"""""""'''''''''''''_ _' I11!11!1••_''''_ _~''''~''''''''''''.-..r • Application 1. Game machine .• System Configuration (for LCD game) 16 x 16 dot matrix LCD K2 t - - - { Hs K3~--{ SM-540 K,iE---{ S,I-----I S21-------' Vc lOOkO R, ViliSI' BOkO Piezoelectric buzzer 2SC45B 122 CMOS 4-Bit 1-Chip Microcomputer SM-550/SM-555 SM-550/SM-555 • Description The SM-550/SM-555 are 4-bit single chip CMOS microcomputers with 1,024 bytes of ROM, 80 words of RAM, a15 stage divider and an event counter. They has the advantages of high-speed instruc· tion cycle of 1.6 ,us(SM-550)/3.3 ,us(SM-555), 5 different interrupts, subroutine stack in the RAM area, and byte-by-byte data transfer capability. They are well suited for low power application systems with many control ports. • • CMOS 4-Bit I-Chip Microcomputer Pin Connections E- ~~C-:~~~~~tO~~~ 0.. 0.. 0.. 0.. E-C-'o..o.. 0.. 0..0.. 0.. ~ r Features 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. CMOS process ROM capacity 1,024 X 8 bits RAM capacity 80 X 4 bits Instructions 94 Subroutine nesting using RAM area Input ports 4 bits Output ports 8 bits Input/Output ports 24 bits Interrupt function External interrupts 2 Internal interrupts 3 External ROM/RAM expandable Timer/event counter Serial interface 8 bits Standby mode (10,uA current consumption) Single power supply (2.7-5.5V) Instruction cycle (MIN.) 1.6 ,us(SM-550) 3.3 ,us(SM-555) 48-pin quad-flat package Top View 123 CMOS4-Bit 1""Chip Microcomputer '. Block Diagram P ROM (1,024 X8l:: L "'" D (:I '1 Parallel I/O ~) Port GND 7 Parallel Output Port RESET 17 Parallel I/O Port Symbol description A,B : Accumulators ACL : Auto clear circuit ALU : Arithmetic logic unit CG : Clo~k generator DIV : DivIder H,L,D,E : General-purpose registers IE : Interrupt enable F /F IFT,IFA,IFS IFB,IFV : Interrupt requests IME : Interrupt mask enable F /F 124 Pl', PI. PO - PB PSW RD, RE, RF SB SP TC TM : : : : : : : : Program counters Registers Program status word regi'ster Mode registers Shift registers Stack pointer Count registers Module registers CMOS 4-Bit 1-Chip Microcomputer • Pin Description Pin name P7 PO, PI P5,P8 P6 P4 P2,P3 INTA,INTB TEST RESET ~ CKj, CK z OSC IN , OSCOUT Voo , GND • Circuit type Function 110 I Pull up 4·bit parallel 110 Input-pull up 110 selectable by instruction 110 110 0 I I I 0 Input·pull up Input-pull up 110 selectable using RF register Serial interface input capability using RE register 4-bit parallel Interrupt input For test (Connected to GND normally) Auto clear System clock output For system clock oscillation For clock oscillation Power supply for logic circuit Pull up Pull down Pull up Absolute Maximum Ratings Parameter Supply voltage Input voltage Output voltage Output current Operating temperature Storage temperature Note 1: Note 2: • SM-550/SM-555 Symbol Voo VIN VOUT lOUT Tope T st " Ratings -0.3-+7.5 -0.3-V oo +0.3 -0.3-V oo +0.3 40 -20-+70 -55-+150 Unit V V V rnA °C °C Note 1 1 1 2 The maximum applicable voltage on any pin with respect to GND. Sum of current output from (or flowing into) output pin. Recommended Operating Conditions Parameter Supply voltage Crystal oscillator frequency Basic clock oscillator frequency Note 3: Note 4: Symbol Voo fose SM-550 f SM-555 f Conditions MIN. 2.7 -. TYP. MAX. 5.5 32.768 VDD =5V VDD =3V V[)[)=5V V Do =3V 0.25 0.25 0.25 0.25 2.5 1 1.2 0.48 Unit V kHz Note 3 MHz 4 MHz Oscillation start time: within 10 seconds Degree of fluctuation frequency: ± 30% (tolerance of voltage fluctuation: ± 10%) .....-.-.-..-.-------SHARP---------- 125 SM-550/SM-555 CMQS 4-Bitt-Chip Microcomputer (V DD =2.7-5.5V, Ta;=-20-+70"C) Electrical Characteristics • Parameter Symbol VIHI V ILI V IH2 VIL2 Inptit voltage Input current lIN 10Hl lOLl IOH2 IOL2 Output current IOH3 J IOL3 lop MIN. 0.7VDD 0 VDD -0.5 0 2 VIH=OV IVoo =5.0V±10% 20 VOH =V DD -0.5V 50 VoL =0.5V 250 VOH =V DD -0.5V 100 500 VOL =0.5V 100 VOH = V DD -0.5V IVoo =5.0V±10% 400 VoL =0.5V 0.5 IVoo =5.0V±10% 1.6 f=0.5 MHz, VDD =3.0V±10% f=l MHz, V DD =5.0V±10% Conditions Current consumption Standby current 1ST Note 1: Note Note Note Note 2: 3: 4: 5: Note 6: Note 7: Note 8: • IVoo=3.0V±10% IVoo=5.0V±10% TYP. MAX. VDD 0.3VDD VDD 0.5 200 200 Unit V V V V ,Note pA 1 pA pA pA pA pA 1 2 3 4 5 mA 0.9 1 5 12 50 rnA 6 7 pA I--- 8 Applied to pins POO-P03, Plo-PI" P40-P43, P50-P53, P6o-P63, P8o-P83 (during input mode) P7o-P73, INTA, INTB, RESET. Applied to pins CK1, OSCIN, TEST. Applied to pin CK2 Applied to pin '" Applied to pins POO-P03, Plo-P13, P40-P43, P50-P53, P6o-P63, P8o- P83 (during output mode) P2o- P23, P30- P33 No·load, condition No-load condition when crystal oscillation circuit is not operating. Connect OSCIN pin to GND. No-load condition when crystal oscillation circuit is operating Oscillation circuit _ CKI CK2 ~ R • Clock oscillation circuit External The clock oscillation circuit is composed by connecting a resistance to the CKI and CK, pins. When inputting an external' clock directly, input it through CKI and leave CK2 open. The system clock ( ~ ) used is the clock supplied to CK, divided by 4. 126 R rCKI fl, 1:J CR oscillation cIOCk-rl Open -tJ External clock SM-550/SM-555 CMOS 4-Bit 1-Chip Microcomputer • Applications 1. Controllers for various home appliances, audio equipment, office equipment, etc. 2. Vending machines • System Configuration (for mechanism controller) +5V ~ u Z f- ::> :> U Ul 0 Pulse input { Control signals INTA INTB P40 I P43 POo \ P0 3 Pl o I PI, Z - -::<: ;;;u 0 ~ U Cl Cl >- E- o I 14 13 £ ~ 0:Top View ------.-.----~--SHARP---~-~-- 133 CMOS • 4~Bit t-Chip Microcomputer SM-552/SM;.557 Block Diagram P L D Parallel I/O Port ROM (4, 096X81:: ," ~ ) RAM (256X41:: '" r) Parallel Output Port OSC\\ 4 OSCo,"r 5 Parallel I/O Port , Parallel Output Port Symbol description A,B : Accumulators ACL : Auto clear circuit ALU : Arithmetic logic unit CG : Clock generator DIV : Divider H,L,D,E : General-purpose registers IE : Interrupt enable F IF IFT,IFA, IFS IFB, IFV : Interrupt requests IME : Interrupt mask enable F IF Pl', PL PO-PB PS W RD,RE,RF SB SP TC TM Parallel I/O Port : : : : : : : : Parallel Input Port Program counters Registers Program status word register Mode registers Shift registers S tack point er Count registers Module registers , . - . - - - - - - - - - S H A R P -~.-....-------.-.-134 'CMOS 4-Bit 1-Chip Microcomputer • SM-552/SM-557 Pin Description Pin name P7 PO,Pl P5, P8 P6 P4 P9, PA, PB P2,P3 INTA,INTB TEST RESET ~ Circuit type Function 110 I Pull up 4 -bit parallel 110 Input-pull up 110 selectable by instruction 110 I/O 110 0 I. I I 0 Input-pull up Input-pull up Input-pull up I 110 selectable using RF register Serial interface input capability using RE register 110 selectable by instruction 4-bit parallel Interrupt input For test (Connected to GND normally) Auto clear System clock output For system clock oscillation For clock oscillation Power supply for logic circuit Pull up Pull down Pull up CK h CK 2 OSC IN , OSC OUT Voo, GND • Absolute Maximum Ratings Parameter Supply voltage Input voltage Output voltage Output current Operating temperature Storage temperature Note 1: · Note 2: • Symbol Voo VIN VOUT lOUT Topr TstK Ratings -0.3-+7.5 -0.3-V nn +0.3 -0.3-V no +0.3 40 -20-+70 -55-+150 Unit V V V rnA Note 1 1 1 2 "C ·C The maximum applicable voltage on any pin with respect to GND. Sum of current output from (or flowing into) output pin. Recommended Operating Conditic:ms Parameter Supply voltage Crystal oscillator frequency Basic clock oscillator frequency Note 3: Note 4: Symbol Voo fose SM-552 f SM-557 f MIN. 2.7 TYP. MAX. 5.5 32.768 0.25 0.25 0.25 0.25 2.5 1 1.2 0.48 Unit V kHz Note MHz r---- MHz r--L 4 3 4. VDD=5.0V VDD=3.0V 135 CMOS 4;',Bit t-Chip M i c r o c , o m p u t e r S M - : 5 5 2 / S M - 5 5 7 '-1III!IIIIi~.II,I"... , ......................~. . . . . . . . . . . . . . . . . . ..-...-.;~-"......_ , . " . . , . " , . " • E,lectrical Characteristics Parameter Input voltage Input current Symbol lIN lOLl 10112 IOL2 IOIl~1 Current consumption Conditions MIN. 0. 7Vuo 0 V DD .c:.0.5 VIlli V ILt 'v III2 VIL2 10m Output current (V DD =2.7-5.5V, Ta=-2,0-+70t) TYP. 0 VIN=OV IVoo =5.0V±10% VoIl =V Do -0.5V VOL =0.5V VoII =V oo -0.5V VOL =Q.5V VOII~ VDo -0.5V I V",,=5.0V±10% IOL3 VOL =0.5V lop f=0.5 MHzV Do =3.0V±10% f=1 MHz V DD =5.0V±10% 1ST Standby current 2 20 50 250 100' 500 100 400 0.5 I VoD =5.0V±10% MAX. V DD 0.3VDD V DD 0.5 200 200 Unit V Vi V V Note pA 5 pA pA pA /LA pA 5 6 7 8 9 rnA 1.6 0.3 1 50 5 rnA 10 pA ~ 11 Note 5: Applied to pins POo-PO" P1o-P13, P4o-P,43, P50-P53, P6o-P63, P8o-P83, P90-P9, (during input mode) P7o-P73, INTA, INTB; RESET. Note 6: Applied to pins CKI, OSC IN , TEST. Note 7: 'Applied to pin CK 2 Note 8: Applied to pin '" Note 9: Applied to pins POO-P03, P1o-P13, P4o-P43, P50-P53, P6o-P6" P8o- P8, , P90- P9:1 , (during output mode) PZo-PZ" P30-P3,; PAo-PA3, PBo-PB3 Note. 10: No·load condition Note. 11: No-load condition when crystal oscillation circuit is operating Note. 12: No-load condition when crystal oscillation circuit is not operating • Oscillation Circuit CG=15pF, CD=22pF • Clock Oscillation Circuit The clock osciUation circuit is composed by connecting a resistance to the CKI and CK, pins. When inputting an external clock directly, input it through CKI and leave CK2 open. The system clock ( ¢ ) used is the clock supplied to CK, divided by 4. External openi:j C R oscillation .---.----.-~------.-~SHARP 136 ciOCk-fi External clock - - - - - . - - - - . . - - ........ CMOS 4-Bit 1-Chip Microcomputer • SM-552/SM-557 Applications 1. Controllers for various home appliances, audio equipment, office equipment, etc. 2. Vending machines • System Configuration (for mechanism controller) +sv PA3 \ INTA Pulse input { INTB P4 0 \ P43 POo \ Control signals P03 .. - SM -5521 SM -557 PA o P93 \ P9 0 P83 Control signals \ P80 P63 Plo \ \ P6 0 } Input signals Ph .....-.~-.---- ........S H A . R P - - - - - - - - - 137 CMOS 4-Bit 1-Chip Microcomputer S M- 5 E3 • CMOS 4-Bit I-Chip ,Microcomputer Description The SM-5E3 is a 4-bit single chip CMOS microcomputer with 4,096 bytes of ROM, 256 words of RAM, a 15 stage divider and an event counter. It has the advantages of a high-speed instruction cycle of 1.6 ps, 5 different interrupts, subroutine stack in the RAM area, and byte-by-byte data transfer capability. It is well suited for low power application systems with many control ports. • Features 1. 2. 3. 4. 5. 6. 7. 8. 9. SM-5E3 CMOS process ROM capacity 4,096 X 8 bits RAM capacity 256 X 4 bits Instructions 99 Subroutine nesting using RAM area Input ports 4 bits Output ports. 16 bits Input/Output ports. 48 bits Interrupt function (External interrupts 2 and internal interrupts 3) 10. External ROM/RAM expandable 11. Timer/event counter 12. Serial interface 8 bits 13. Standby mode (50 pA current consumption) 14. Single power supply (+2.7-+5.5V) 15. 1.6 ps instruction cycle (MIN.) 16. 80-pin quad-flat package • . Ph; Connections P21 I P22 2 P2, ' P3. • P3, 5 P32 6 P33 7 P40 8 P41 9 P42 ,. P4,lI PSo 12 P5,13 PS2 14 P53 15 P60 " P6,17 P62 18 P63 19 TEST P70 21 P71 22 P72 23 P7" ,. 2. Top View - . - - - - - - - - - S H A R P . - . . . . - . - - . - - - - - - -......... 138 CMOS 4-Bit 1-Chip Microcomputer SM-563 • SM-563 CMOS 4-Bit I-Chip Microcomputer Description • Pin Connections The SM-563 is a 4-bit single chip CMOS microcompter with 4,096 bytes of ROM, 160 X 4 bits of RAM, timer/event-counter and mUltiplex interrupt. It is best suited to controllers of application systems to drive multi LCD segments. • Features 1. CMOS process 2. ROM capacity 4,096 X 8 bits 3. RAM capacity 160X4 bits (including 32 X 4 bits for display) 4. Instructions 93 5. Subroutine nesting using RAM area 6. Input ports 4 bits 7. Input/Output ports 11 bits 8. Timer/event-counter 9. Interrupt functions 5 External interrupt Serial 110 interrupt Timer/event-counter interrupt f. signal interrupt Divider overflow interrupt 10. Serial interface 8 bits 11. Standby mode 12. Direct LCD driver circuits (1/4 duty, 113 bias and 128 segments (MAX.)) 13. Insturuction cycle 6.67 ps (MIN.) 14. Single power supply (2.7-5.5V) 15. 64-pin quad-flat package Top View --'---'---SHARP'--'---'--~-- 139 CMOS 4-Bit 1-Chip Microcomputer • SM-563 Block Diagram SP ROM (4,096XS) RAM (12SX4 ) Test PU RESET Clock Output Parallel I/O Port H D PL R4 R5 R6 R7 RD RE RF 2 Segment Output , Common Segment Output Output Symbol description : A,B : ACL : ALU : BR,DS : CG : DIV : D,E,H,L : HC : IE IFA,IFB IFS,IFT,IFV: Accumulators Auto clear Arithmetic logic unit Common signal control F/F Clock generator Divider General-purpose registers Common signal circuit Interrupt enable F /F : Interrupt mask enable F F IME. : Registers PI-P3 Program counters PL,PU : Program status word register PSW R4- R7 : General- purpose registers RD,RE,RF: Mode registers SB : Shift register SP : Stack pointer TC : Count register : Module register TM Interrupt requests -------~---SHARP-~-~-~--- 140 SM-563 CMOS 4-Bit 1-Chip Microcomputer • Pin Description Function Acc +- PO O-P0 3 I/O selectable by instruction I/O selectable individually Sound output only when P2 3 pin is used for output Serial interface input capability using RE register Display RAM contents output as LCD segment signals 4·value output capability; used for LCD common output For test (Connected to GND normally) Auto clear System clock output For system clock oscillation For clock oscillation LCD driver power supply Power supply for logic circuit Circuit type Pin name PO O-P0 3 P1 0 -P1 3 I/O I I/O Pull up Pull up P2 0 -P2 3 I/O Pull up P3 0 -P3 3 SO-S31 H1-H 4 TEST RESET I/O 0 0 I I 0 Pull up Pull down Pull up '" CK[, CK 2 OSC'N. OSC OUT Vos P• VOA• VOB Voo• GND • 'Absolute Maximum Ratings Parameter Supply voltage Input voltage Output voltage Output current Operating temperature Storage temperature Symbol Voo VosP VIN VOUT lOUT Toor T sto Ratings -0.3-+7 -0.3-+7 -0.3-V oo +0.3 -0.3-V oo +0.3 20 -20-+70 -55-+150 Unit V V V V rnA Note 1 1 1 2 "C "C Note 1: The maximum applicable voltage on any pin with respect to GND. Note 2: Sum of current output from (or flowing into) output pin. • (V nn =2.7-5.5V) Recommended Operating Conditions Parameter Supply voltage Symbol Voo VosP Basic clock oscillator frequency f Instruction cycle t Crystal oscillator frequency Conditions VnD=4.5~5.5V VDD =4.5-5.5V fosc MIN. 2.7 2.7 250 250 6.6 2 TYP. 32.768 MAX. 5.5 Voo 600 2000 16 16 Unit V V Note kHz 3 /-,s kHz Note 3: Degree of fluctuation frequency: ±30% • Oscillation circuit CKI CK2 ~ R CG=15pF. CD=22pF ....--.-~---------SHARP ------------------141 SM-:563 CMOS 4-Bit 1.-Chip Microcomputer • (Voo=2.7-5.5V, Ta=-20-+70t), Electrical Characteristics Parameter Symbol VIHI V ILl VIHZ VILZ Input voltage Input cu'rrent 'IIH IOHl , lOLl 10HZ IOLZ Output current IOH3 IOL3 Rc Rs VI Vz V3 V4 lop Output impedance Output voltage Current consumption Note Note Note Note Note 1ST Conditions f=600kHz, Voo=3.0V Vosp=3.0V Standby mode Voo=3.0V 142 I ; Applied to pins HI-HI Applied to pins SO-S31 Applied to pins H2-Hl, So-S;" No·load condition No·load condition when bleader resistance is ON No·load condition when bleader resistance is OFF MAX. Voo 0.3Vpo Voo 0.5 200 200 250 Unit V V V V Note p.A 1 p.A p.A p.A p.A 1 2 3 4 p.A 5 rnA 2.7 1.7 0.7 0 Vosp=3.0V No·load COA=lpF, COB=lpF Note 9: Note 10: Note 11: TYP. 5 10 1: Applied to pins POO-POI, RESET Plo- Ph, P2o- P23, P30-P32 (during input mode) 2: Applied to pins CKl, Test, OSCIN 3: Applied to pin CK2 4: Applied to pins Plo- Ph (during output mode) 5: Applied to pins P2o- P23, P3o- P32 (during output mode) Note 6: Note 7: Note 8: MIN. 0.7Voo 0 Voo-0.5 0 20 V1N=OV I VDD =4.5-5.5V 2 VOH =V DD -0.5V 50 250 VOL =0.5V VoH =V oo -0.5V 5 VOL ;:0.5V 500 VOH = 400 Voo-0.5V I VDD =4.5-5.5V 100 1.6 VOL =0.5V I VDD =4.5-5.5V 0.5 2 1 i 0.4 15 8 20 40 3 2.3 1.3 0.3 1.5 40 20 kn kn V V V V rnA p.A 6 7 8 9 10 ~ 11 CMOS 4-Bit 1-Chip Microcomputer • Applications • The instruction cycle of the SM563. is fast and the unit operates on little power, and therefore it is ideal for use as a controller with a liquid crystal display in a wide range of hand-held equipment and home appliances. • SM-563 Applications Example Portable devices, auto dialers, sphygmomano· meters, thermometers, pulsemeters, radio controllers, cameras, home appliances, various timers, VTR timers, home security system, pocket games System Configuration Key matrix -.-------SHARP-------143 CMOS4-Bit 1-Chlp Microcomputer 5 M- 57 2 • Description .SM.;572 CMOS 4-Bit I..Chip MicrOC()mputer· I • Pin Connections· The SM-572 is a 4-bitsingle chip CMOS microcomputer with 2,032X9 bits of ROM, 128X4 bits of RAM, 8 bits A/D converter and timer/counter. It is best suited for applications requiring A/D circuits. • Features 1. CMOS process 2. ROM capacity 2,032 X 9 bits 3. RAM capacity 128 X 4 bits· 4. Instructions 93 5. Subroutine nesting 6 levels 6. Input ports 8 bits 7. Output port . 1 bit 8. Input/Output ports 40 bits 9. Timer/counter 8-bit counters 2 10. Interrupt function External interrupt 2 Timer interrupt 2 11. A/D converter 8 bits Conversion time 32 ps(MIN.) 12. Single power supply (2.7-5.5V) 13. Instruction cycle 2 ps (MIN.) 14. 60-pin quad-flat package ....------,---SHARP"-~-------- 144 CMOS 4-Bit 1-Chip Microcomputer • SM-572 Block Diagram . Input/Output Port V,w Val. ROM I 2,032 x9 ) Input Port MPX . • Input Output Port Symbol description ALU : X : B : C : PC : SP : CG : MPX.: A/D : Arithmetic logic unit X register RAM address, register Carry F/F Program counter Stack pointer System clock generator Multiplexer A D convertor and Comparator unit Ace : SR RO,Rl,R2,R3: DIV Accumulator Stack register Latch Divider ~'-'-'-----SHARP~'-''------'--'-- 145 SM-572 CMos 4-Bit 1-Chip Microcomputer • Pin Description Pin name KC o -KC 3 110 I KI, KH KT,KL I ZO-ZI5 110 PO-P 3 1/0 QO-Q:l 110 RO,Rl,R2 F T ACL .fOUT Circuit type 3 states 110 0 I I 0 Pull down Pull down CLl> CL 2 OSC IN , OSC OliT VRH , VRL Voo , GND • Function Acc +- KC o - KC:l or AID conversion analog input Acc +- KI, KH, KT, KL KI ~ (IF flag set), KH +- (HF flag set), KT +- (External timer signal input) Z registor contents output;Can be tested individually Reset ZF IF ",hen used as input pins Acc - . PO-P:l QO-Q:l +- Acc Reset QF IF when used as input pins RO, Rl, R2 +- Acc Reset RF IF when used as input pins Sound output or 1 bit output For test (Connected to GND normally) Auto clear System clock output For system clock oscillation For clock oscillation AID conversion standard power supply Power supply for logic curcuit Absolute Maximum Ratings Parameter Supply vo'tage Input voltage Output voltage Output current * Operating temperature Storage temperature Symbol Vo~ VIN VOUT lOUT T~pr T". Ratings -0.3-+7.5 -0.3-V nn +0.3 -0.3-V nn +0.3 30 -10+70 -55+150 Unit V V V rnA 'C 'C ·Source current from output pin or sum of sync current. • Recommended Operating Conditions Parameter Supply voltage Symbol Vno Ratings 2.7-5.5 4-0.2 (Voo=5V) 2-0.2 (Voo=3V) Unit V System oscillator frequency fCL System clock frequency fs 500-50 (VDD=5V) 250-50 (V DD =3V) kHz Timer clock frequency fosc 32.768 (TYP.) kHz 146 KfHz CMOS 4-Bit 1-Chip Microcomputer • SM-572 (V oo =2.7-5.5V,.Ta=-20-+70"C) Electrical Characteristics Parameter Symbol Input voltage Input current Output current lUll V1N=Von 11112 V1N=Vnn 10111 VOII =V IlD -O.5V lOll Vou=0.5V IOL2 VolI =0.5V 1011 10112 ACL input pulse width t ACL V Illl rise time for the internal ACL operation tV1l1l IA Current consumption 1ST Note Note Note Note Note 1: 2: 3: 4: 5: Note Note Note Note Note Note Note Note 6: 7: 8: 9: 10: 11: 12: 13: Conditions VUII V 1LI V IJI2 V1L2 VDD =5.0V±10% VDIl =3.0V±lO% VDIl =5.0V±1O% VDIl =3.0V±lO% VDIl =5.0V±lO% VDIl =3.0V±lO% VDI)=5.0V±lO% VDIl =5.0V±lO% VOII =V IlIl -0.5V VolI =0.5V Vllo =5.0V±lO% VDIl =3.0V±10% VDIl =5.0V±lO% VDD =3.0V±10% VDIl =5.0V±lO% fs=500kHz VDD =73.0V±10% VDD =5.0V±lO% fs=100kHz VDD =3.0V±lO% VDD =5.0V±10% OFF mode VDD =3.0V±lO% VDD =5.0V±10% VDIl =3.0V±10% VDD =5.0V±10% Hold mode VDD =3.0V±10% VDD =5.0V±'10% VDD =3.0V±lO% MIN. 0.7Voo 0 Von -0.5 0 80 20 8 2 1 0.4 25 10 1 0.4 200 200 1 TYP. MAX. 300 90 25 8 Voo 0.3Voo Voo 0.5 800 300 100 35 50 1.5 1 0.5 0.3 5 3 50 30 400 100 600 200 Unit Note V 1 V 2 p.A 3 p.A 4 rnA 5,6 p.A 5 rnA 6 p.A 7 ps 13 ms 14 rnA 8 flA 9 p.A 10 p.A 11 p.A 12 , Applied to pins KH;KL, KI, Pa-Po, Q3-QO, R03-ROo, R13-Rlo, R23-R20, R33-R32, KC:,-KCo Applied to pins Z[5-Z0, CL[, OSCIN/KT, ACL . Applied to pins Q3-QO, R03-ROo, R1:J-Rlo, *R23-R20, *R3a-R30, *ZI5-Z0 Applied to pin ACL Applied to pins Q3-QO, R03-ROo, Rl:l-Rlo, R23-R20, R33-R3o, Z15-Z0 (*Jf CMOS buffer is specified for mask option, Note 6 applies to these pins.) Applied to pins P3- Po, F, fOliT Applied to pin CL 2 No·load condition When the OSC1N/KT pin is connected to GND and in no· load condition. When the timer clock crystal oscillation circuit and timer 1 are operating and in no·load condition. When the OSClN/KT pin is connected to GND and in no·load condition, f,= 100kHz When the OSClN/KT pin is connected to GND and in no·load condition, f,=500kHz tACL is the ACL input pulse width required to cause ACL to operate when Von has completely risen. VDD _______~~~,----------VDD W GND tVDD ACL __________~VDD - O.5V tACL Note 14: tVDD is the power supply rise time necessary for the built·in ACL to operate (ACL input pin is connected to GND). 147 ....................,.-...; • ..............................-................ 'SM";'S72 CMOS 4.,.Bit 1-Chip Microcomputer ~ Oscillation Circuit (values for referen'ce) (a) System clock frequency generating circuit (example 1) (1) (2) 400kHzoscillation Oscillator. KBR-400B : Made' by Kyocera Rr=IMO Corp. Rd=5600 CI=330pF C'2=330pF 2 MHz oscillation C~LI CL2 Oscillator KBR-2.0MS : Made by Kyocera Rr C2 I [] Rr=lMO I Corp. Rd Rd=8200 Cl =33pF C2 C2 =33pF '- (b) System clock frequency generating circuit (example 2) R-fcLCharacteristics VDD-fcL Characteristics N ::t: N i1 2 Rr=lOkO » "~ -- g. ~ 0.5 § 0.4 ] Rr=82kO 0.3 ~ ., " 2 .."». .& J:: 0.5 c .~ \\ ~ootv \Joo=3 V ~\ 1;; = . CL 2 110 110 110 110 110 Pull Pull Pull Pull I Circuit type down *1 down* 1 down/open drain * 2 down*1 Pull down V DD , GND Function Acc - RO o-R0 3 , RO o-R0 3 <-- RAM Ace - Rl o-R1 3 , Rl o-R1 3 <-- RAM Acc - R2 o-R2 3 , R2 o -R2 3 <-- RAM Acc - R3 0 -R3 3 , R3 0 -R3 3 <-- RAM Auto clear For system clock oscillation Power supply for logic circuit *1 Mask option; Open drain 110 or CMOS output selectable * 2 Mask option -----~.--.---....----SHARP -----.----~- ( 153 CMOS 4-Bit 1-Chip Microcomp~ter • SM-590 Absolute Maximum Ratings Parameter Supply voltage Input voltage Output voltage Source output current sum Sync output current sum Operating temperature Storage temperature • Symbol Ratings -0.3-+7.5 Voo -0.3-V oo +0.3 ' VI -0.3-V oo +0;3 Vo 120 :ZIoH :ZIoL ' 20 -10-+70 T@f -55-+150 T stg Unit V V V mA mA 'C 'C Recommended Operating Conditions Parameter Supply voltage Command execution time • Symbol Voo tSYS Conditions 3V±0.5V 5V±0.5V MIN. 2.5 4 1 TYP. MIN. TYP. MAX. 5.5 50 50 Unit V MAX. 50 50 6.3 6.3 Unit /Ls Clock Input Signal AC Characteristics Parameter Clock rise time Clock fall time Clock pulse width Symbol tr tf tL tH Conditions Voo =2.5-5.5V Voo =2.5-5.5V Voo=5V±0.5V Voo=3V±0.5V 0.08 0:45 ns /LS' Note: When external clock is input • (Voo=2.7V-5.5V. Ta=-10'C-+70'C) Electrical Characteristics Parameter Input voltage Input current Symbol Vun V1LI Vm2 V1L2 V1L3 e:.V 1 Imi 1m2 IAI Current consumption IA2 1ST 154 Conditions MIN. 0.7Voo 0 Voo-0.5 0 Voo =5V±10% 0.7 1.1 Voo=5V±lQ% 15 Voo =3V±10% VIN=VOO V oo =5V±10% 70 Voo=3V±1O% V1N=VOD Voo=5V±1O% tsys=2 f1S VDo =5V±10% Voo =3V±10% tSys= 10 f1s Voo =5V±10% Standby mode TYP. 1.4 2 70 250 7 20 1 100 200 1 MAX. Voo ,0.3V oo Voo 0.5 2.1 3<.1 200 750 20 60 3 200 500 ;, 2 Unit V V V V V V Note /LA 1 /LA 4: 1 2 3 mA /LA /LA 5 CMOS 4-Bit 1-Chip Microcomputer SM-590 Output current 10 (MIN.) ~n Pin ROo R0 1 R0 2 R0 3 RIo Rl1 R12 R13 R20 R21 R22 R23 R3 0 R3 1 R3 2 CL 2/R3 3 Mask option switch number (Ta= -lO·C - +70·C) IOH (rnA) IOL (rnA) Voo =5V±10% Voo=3V±10% VoL=Oo4V VoH =V oo -2V VOH =V OD -0.5V Voo =5V±10% 10 1 1.6 10 1 1.6 10 1 1.6 10 1 1.6 10 1 1.6 10 1 1.6 10 1 1.6 10 1 1.6 4 0.5 4 0.5 4 0.5 4 0.5 4 0.5 1.6 10 1 1.6 10 1 1.6 004 3 1 0.15 0.6 0.8 0.8 IOL (pA) VOL =Oo4V Voo =5V±10% 15 15 15 15 15 15 15 15 15 15 15 15 15 15 0.8 15 lIE 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 Note' lIE 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 6 7 0.3 2 1 Note 1: Applied to pin ROo, ROI, RO" R03, RIo, Rh, Rh, Rh, R20, R2l, R2" R23, R30, R3l, R3, . Note· 2: Applied to pins ACL, CL I Note 3: Applied to pin R2, (when standby cancel signal is input) t:. VI=VIH3-VIL3 (See the SM590 programming manual for details) Note 4: Applied to pin ACL Note 5: No-load condition Note 6: When the contents of the R latch is output to the R3, pin_ Nate 7: When the clock input to the CLI pin is output from the R3, pin_ lIE: VDD=3V±1O% 155 SM-591 CMOS 4-Bit 1-Chip Microcomputer SM-591 • CMOS 4-Bit I-Chip Microcomputer • Description Pin Connections The SM-591 is a 4-bit single chip CMOS microcomputer with 1,016 bytes of ROM, 56X4 bits of RAM. It is best suited for use in a compact controller, a system subcontroller and other various application systems. • Features 1. CMOS process 2. 3. 4. 5. 6. ROM capacity 1,016 X 8 bits RAM capacity 56 X 4 bits Instructions 41 Subroutine nesting 4 levels Input/Output ports 15 bits (MAX.) Available for use as lOrnA output port 10 bits (MAX.) by mask option (RO o-R0 3, R1 o-R1 3 , R3j, R3 2) 7. Standby mode 8. Single power supply (2.5 - 5.5V) 9. Instruction cycle 1 f.1S ROo 1 10'~P~a-c-ka-g-e-'~I~/O~p-(o-rt-s- 16DIP 18DIP 20DIP 11 bits 13bits 15bits RO" , R3,,/CL2 6 Top View -'-'---'-'--SHARP~-------~----- 156 CMOS 4-Bit 1-Chip Microcomputer • SM-591 Block Diagram Parallel I/O Parallel Out/Oscillator Oscillator , . -_ _ _ _ _ _ _ _ _ _.-J.4 _ _ _ _ _ _ _ _ _ _..., Voo RAM (56X4) ROM (1016X8 ) ACL Symbol description A('(' : Accumulators ALU : Arithmetic logic unit : RAM address register B : .Carry F/F C : Clock generator CG • GND PC RO-R3 SP SR X : Program .counter Register : Stack pointer : Stack register : Temporary register Pin Description Pin name RO o-R0 3 Rio-Ria R2 o-R2 3 R3 o-R3 3 ACL CLl> CL 2 I/O I/O I/O I/O I/O I Pull Pull Pull Pull Pull Circuit type down*l down*l down/open drain * 2 down* 1 down V DD, GND Function Ace - ROo-RO:l , ROo-RO a +- RAM Acc -Ri o-Ri 3 , Ri o-Ri 3 +- RAM Acc - R2 o-R2 3 , R2 o-R2 3 +- RAM Ace - R3 0 -R3 3 , R3 0 -R3 3 +- RAM Auto clear For system clock oscillation Power supply for logic circuit * 1 Mask option; Open drain 110 or CMOS output selectable *2 Mask option -.-----------SHARP.-..-.-------157 SM:.591 CMOS 4-Bit 1-Chip Microcomputer • Absolute Maximum Ratings Parameter Supply voltage Input voltage Output voltage Source output current sum _ Sync output current sum Operating temperature Storage temperature • Symbol Voo V, Vo -IIoHIIoL Toor T st• Ratings -0.3-+7.5 -0.3-V oo +0.3 -0.3-V oo +0.3 120 20 -10-+70 -55-+150 Unit V V V rnA rnA t t Recommended Operating Conditions Parameter Supply voltage Command execution time • Symbol Voo Tsys Conditions 3V±0.5V 5V±0.5V MIN. 2.5 4 1 TYP. MIN. TYP. MAX. 5.5 50 50 Unit V MAX. 50 50 6.3 6.3 Unit ps Clock Input Signal AC Characteristics Parameter Clock rise time Clock fall time Clock pulse width Symbol tr t( tL tH Conditions Voo =2.5-5.5V Voo =2.5-5.j'iV Voo=5V±0.5V Voo=3V±0.5V 0.08 0.45 ns ps Note: When external clock is input • (Voo=2.7V-5.5V, Ta=-10t-+70t) Electrical Characteristics Parameter Input voltage Input current Symbol Vnll V'LI VIII 2 V'L2 V'L3 6V, Inll ' IIII2 IAI Current consumption IA2 ' 1ST 158 Conditions MIN. 0.7Voo 0 Voo-0.5 0 Voo =5V±10% 0.7 Voo =5V±10% 1.1 15 Voo =3V±10% V'N=V OO Voo =5V±10% 70 Voo =3V±10% V'N=V OO Voo =5V±10% tsys=2 ps Voo =5V±10% Voo =3V±10% tSys= 10 pA Voo =5V±10% Standby mode TYP. 1.4 2 70 250 7 20 1 100 200 1 MAX. - Voo 0.3Voo Voo 0.5 2.1 3.1 200 750 20 60 3 200 500 2 Unit V V V V V V Note pA 1 pA 4 1 2 3 rnA pA pA 5 CMOS 4-Bit 1-Chip Microcomputer SM-591 Output current 10 (MIN.) ~ Pin ROo R0 1 R0 2 R0 3 RIo Rl1 R12 R13 R20 R21 R22 R23 R3 0 R3 1 R3 2 CL 2 /R3 3 Mask option switch number IOH (rnA) IOL (p. A) VOL =O.4V IOL (rnA) VOL =O.4V Voo =5V±10% Voo =3V±10% VoH =V oo -2V VoH =V oo -O.5V Voo =5V±10% 10 1 1.6 1 10 1.6 1 1.6 10 10 1 1.6 10 1 1.6 10 1 1.6 10 1 1.6 10 1 1.6 4 0.5 4 0.5 4 0.5 4 0.5 4 0.5 1.6 10 1 1.6 10 1 1.6 3 0.4 1 0.15 0.6 liE 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.3 (Ta= -IO·C - +70·C) Note Voo =5V±10% 15 15 15 15 15 15 15 15 15 15 15 15 15 15 liE 8 8 8 8 8 8 8 8 8 8 8 8 8 8 15 8 2 6 7 1 Note 1: Applied to pins ROo, ROl, RO" R03, RIo, Rh, Rh, Rh, R2o, R21, R22, R23, R3o, R31, R32 Note 2: Applied to pins ACL, CL I Note 3: Applied to pins R22 (when standby cancel signal is input) !!. Vr=VIH3-VrL3 (see the SH59I programming manual for details) Note 4: Applied to pin ACL Note 5: No-load condition Note 6: When the contents of the R latch is output to the R3 2 pin. Note 7: When the clock input to the CLI pin is output from the R3, pin. lIE: VDD =3V±10% ----....-......-.--------SHARP - - - - - - - - - - - - 159 DevetQpment Guide for 4-Bit 1-Chip Microcomputers (SM Series) I . . . . . .. . DeveJ6pmentguidefor.4-Bif 1-Chip Microcomputers (SM Series) (1) Description To facilita,te efficient product development using Sharp's SM series 4-bit, I-chip microcomputers, we have established a general development procedure covering determination of specifications to actual delivery of the microcomputer as shown below. (2) Development Procedure CD Determination of specifications Specifications for a product you intend to develop must be determined in such a way that the functions required of the microcomputer are clear. Specifications should be prepared by the user, but consultation on SM series microcomputers will be provided on request. In addition, a programming manual is available for each microcomputer. . ® Determining the microcomputer to be used Select a microcomputer mos.t suitable for the product. After determining the model of microcomputer, we will work out a rough development schedule in consultation with the user. ® System design Detailed specifications for the operation of the SHARP.side.w~rk End user side work r1 Technical meeting/Determining specifications Creating checkout device I I h System' design J -~ Checker, checklist, circuit diagram of checker t Write programme/ assemble /debug Program demonstration I!t Final check of program PLA designation J t I Program approval ROM design drawing I I TS evaluation/approval: l ~ TS approval ES evaluation/approval I. -l TS manufacture/ forwarding J I ES manufacture/ forwarding I ES approval C S evaluation / approval : + CS man.ufacture/ I L CS approval forwarding ~. Mass production Delivery of goods 160 l I J X-----I I (Can be eliminated) I 1------I I (Can be eliminated) t.I ______ Development Guide for 4-Bit 1-Chip Microcompliters (SM Series) --.-..---.-.-..-..-..-.-.-.-..-..-..-.microcOl~puter and its peripheral circuitry are determined of this stage. We recommend that the user confer with Sharp's staff even if the user himself under takes program development. If Sharp is to carry out program development, the user must prepare the specifications first. After consultation with Sharp, the user determines the final specifications. The subsequent schedule will then be settled after consultation with the user. @ Writing the program A flow chart is worked out and based on it, machine code is written. The mnemonic codes used for coding are covered in the programming manual or cross-assembler manual. After coding, a source file is prepared using a computer editor. Sharp's microcomputer development tools, the SM-D-8000II or SM-D-80 system can be used for this purpose. A microcomputer development system running under the CP/M (Digital Research Inc.) operating system can also be used. For the preparation of source file, refer to the respective development systems' manuals (SM-D-8000II User's Manual, for example). ® Assembler The object file is created from the source file using the cross-assembler prepared for the development system. There are a number of cross-assemblers available to meet the requirements of respective SM series products. Please, contact us for details. . ® Debugging and program revision After the object file has been created, the program must be debugged by operating the EVA board or CPU unit while using the checker to monitor program operatfon. If the program is not running properly, it must be revised and re-qssembled until a satisfactory object file is prepared. A number of development tools are available to perform this task efficiently. (j) Final confirmation of program operation The final confirmation of the program is included in the debugging work described in (2) ® if program development was made by the user. If Sharp undertook program development, three copies of programming specifications are usually presented to the user for final confirmation of program operation one week before the ROM is submitted. If no problem is found in the programming specifications, a copy of programming specifications shall be sent back to us bearing a signature of approval. In the event that probelms are discovered in the program at this time, the program will be revised after consultating with the user. PLA (Programmable Logic Array) assignments If the program is developed by the user, the user prepares the PLA assignments diagram which should be submitted to Sharp about two weeks before the date on which the ROM is scheduled to be submitted. The procedure for PLA assignment is covered in the programming manual. Pre-printed PLA assignment forms will be provided to the user on request. When the program is developed by Sharp, we will make the PLA assignments. ®, ROM submission If the program is developed by the user, the ROM must be submitted in the form of either an EPROM or diskettes. Along with the ROM , the ROM map should also be submitted to make sure that the correct data can be ,read from the ROM. Whoever develops the program, it is impossible to change the program after the ROM is submitted. The final confirmation of program operation must be extremely thorough. ®> TS (Technical Sample) The TS is submitted to the user in a ceramic package for performance evaluation as a trial model. If no problems are found, the user shall issue a statement of performance approval. Note that' the TS package is a ceramic type and differs from that which will be mass produced. @ ES (Engineering Sample) After approval ofthe TS, the ES is prepared and submitted to the user. The ES is normally contained in a plastic package the same shape as that which will be mass produced. After evaluating the performance of the ES, the user shall issue performance approval, assuming no problems are encountered. The ES may be skipped if desired. @ CS (Commercial Sample) After approval of the ES, the CS is prepared and submitted to the User. The CS is the mass-production trial model so it is made in the same shape and quality as that which will be mass prodl:lced. After evaluating the performance of the CS, the user shall issue performance approval, assuming no problems are encountered. The CS may be skipped if desired. @ Mass production After approval of the CS, mass production is initiated. If the ES and/or CS is omitted, the user shall advise us when to start mass production. ® (3) Development Tools To faciJ.itate program development for SM 161 @ 2 ==~ ...... .......-....:--,.-..- Development Guide for 4-BIt 1-Chip Microcomputers ,(SM Series) .' I .~~~~~~~~~ ~~ r-SM~W--~--~----------------~~ r---~-------------' CPU I SM-D -8000 II : I I Floppy disk ROM OK) RAM (64K) I I I I I I I II I I I ___________________________ JI I I SIO I I IL __________________ JI PTP/PTR Terminal printer (Sharp writer, etc.) series microcomputers, two kinds of development tools are available: one which uses the SM-D8000II and one which uses the sharp MZ-80B computer. Development tools equipped with an RS232C interface running under the CP1M OS can also be used. CD SM-D-8000II system This emulator consists of the keyboard, display LED, PROM writer, and interfaces. Although it is possible for the SME-20 to debug the prograin by connecting the CPU unit or EVA board, more efficient debugging can be achieved by transferring the object file through the SM-D-8000II and RS232C interface. For details, see the SM software package manual and instruction manuals of the SM series,SMD-800011 and SME-20. The SME-20 can be connected not only to the SM-D-80001l, but to any development device equipment with an RS232C interface. @ SM-D-80 system . The SM series development system can be configured by connecting the debugger unit and SM evalution board to the basic FDOS system (MZ-80B, floppydisk, printer) of the commercial personal computer MZ-80B. Various utility 'programs such as a cross-assembler, debugger and editor which operate under the control of the FDOS are provided as standard equipment to facilitate efficient program debugging. 162 SM-series evaluation board Debugger unit SM .evaluation board .......... Development Guide for 4-Bit 1-Chip Microcomputers (SM Series) ....,....,....,~....,....,~....,~~....,....,~~ ~...., Connector for PROM writer ----, I Power. r------------------l I I I ROM (2K) RAM (64K) I I I I I I I I I I I I I I Expansion I/O MZ-80B system (FDOS) L ___________ _ I I _____J I I I I I I IL ____ I I Main body of debugger unit I ..---___.i..J---:-_ _-:--. _ _ _ _ ...lI Floppy disk SM -series Printer evaluation board ....--------SHARP-------163 a-Bit 1-Chip Microcomputers LH0801 Z8-01 Microcomputer Unit LHOSO 1 Z8-0! Microcomputer Unit • Description • Pin Connections Compared to earlier single-chip microcomputers, the Z8 offers faster execution; more efficient use of memory, more sophisticated interrupt, input/output and bit-manipulation capabilities ; and easier system expansion. Under program control, the Z8 can be tailored to the needs of its user. It can be configured as a stand-alone microcomputer with 2K bytes of internal ROM, a traditional microprocessor that manages up to124K bytes of external memorY,or a parallel-processing element in a system with other processors and peripheral controllers linked by the Z-BUS. In all configurations, a large number of pins remain available for 110. • Features 1. Complete single-chip microcomputer with internal ROM, RAM and 110 • RAM 124 bytes • ROM 2K bytes • 110 32 lines 2. On-chip two programmable 8-bit counter/timers, each with a 6-bit programmbre prescaler 3. Full-duplex UART 4. 144-byte register file 5; Register pointer so that short, fast instructions can access any working register groups 6. Vectored, priority interrupts for 110, counter / timers, and UART 7. Up to 62K bytes addressable external space each for program and data memory 8. On':'chip oscillator 9. High speed instruction execution • Working register operating time: 1.5 ps • Average instruction execution time: 2.2 fJ.S ,; Maximum instruction execution time: 5.0 fJ.S 10. Low-power standby option which retains contents of general-purpose registers 11. Single + 5V power supply 12. All pins are TTL compatible Top View ---.--.-----SHARP-----,~--...-.-, 166 Z8-01 Microcomputer Unit • LH0801 Block Diagram System _ :ll Clock Serial and Parallel I/O and Control GND(OV) Vte( +5V) f"---., ~ }-------{ll}-------{ Machine Timing & Instruction Control Port 3 ALU UART Flags Program Memory (2,048X8) Counter/Timer Register Pointer Register File (I24x8 ) Program Counter Interrupt Control Port 2 Port 0 Port 1 ~-------vr-------- '---------vr --------- I/O or As-Als I/O or AD o -AD 7 --~--~--SHARP'-~-''''''''-'--~ 167 LH0801. Z8-01 Microcomputer Unit Pin Description • Pin PO O-P0 7 Pl o -P1 7 P2 o-P2 7 P3 0 -P3 7 Meaning Port Port Port Port - • Function 8-bit I/O port, programmable for I/O. Programmable for I/O in btyes. Programmable for I/O in bits. P3 0 -P3 3 for input, P3 r P3 7 for output. Active "Low", activated for external address memory . transfer. Active "Low", activated for external data memory transfer. Read at "High", Write at "Low". Active "Low". Initializes. Clock terminal pin. Clock terminal pin. I/O I/O I/O I/O I/O 0 1 2 3 0 AS Address Strobe DS Data Strobe 0 R/W RESET XTALl XTAL2 Read/Write Reset Clock 1 Clock 2 0 I I 0 Absolute Maximum Ratings Symbol VIN VOllT Tops T stg Parameter Input voltage Output voltage Operating temperature Storage temperature • Ratings -0.3-+7 -0.3-+7 0-+70 -65"':'+150 Unit V V 'C 'C (Vee=5V±5%, Ta=0-+70'C) DC Characteristics Symbol Parameter Clock input high voltage VeH Clock input low voltage VCL Input high voltage Input low voltage Reset input high voltage Reset input low volta,ge Output high voltage Output l~w voltage Input leakage current Output leakage current Reset input current Supply current Supply current VIR VIL VRH VRL VOH VOL IlL IOL IIR Icc IMM Note 1: [OH= -100,u A and [OL= Conditions Driven by external clock oscillator Driven by external clock oscillator IOII =-250pA IOL=+2.0mA OV:;;;:V IN :;;;:+5.25V OV~VIN~+5.25V MIN. MAX. Unit 3.8 Vee V -0.3 0.8 V 2.0 -0.3 3.8 -0.3 2.4 Vee 0.8 Vee 0.8 -10 -10 Vee=5.25V, VRL=OV TYP. Note V V V V V V 0.4 10 10 -50 180 10 1 1 pA pA pA rnA rnA l.OmA as to Ao-All, MDS, SYNC, SCLK and [ACK in LH0802. Vee From output under test 2.lkO From output ruDder test o---~-~~~~ l8kO 1.5kO ;>CJ>-------...... ;'O>--+--CrystaI2 74LS04 ~CL-=15pF MAX. ' - - - -.....--'Crystall lCL=15:PFMAX. Test load 1 Test load 2 TTL external clock interface circuit - - . . - . . - . . - - - - - - - - - S H A R P -~-.-.-.------ lEl8 Z8-01 Microcomputer Unit • LH0801 (Vcc=5V±5%, Ta=0-+70"C) External I/O or Memory Read/Write Symbol TdA (AS) TdAS (A) TdAS (DI) TwAS TdA (DS) TwDS TdDS (DI) ThDS (DI) TdDS (A) TdDS (AS) TdR (AS) TdDS (R) TdDO (DS) TdDS (DO) TdW (AS) TdDS (W) Parameter Address valid to AS t delay AS t to address float delay AS t to input data required valid delay AS t low width Address float to DS ! delay - DS low width I Read I Write DS! to input data required valid Input data hold time DS t to address active delay DS t to AS! delay Read valid to AS t delay DS t to read not valid Output data valid to DS! delay DS t to output data not valid delay Write valid to AS t delay DS to write not valid delay Conditions Test load 1 Test load 1 MIN. 50 70 Test load 1 Test Test Test Test Test Test Test Test Test Test Test Test Test load load load load load load load load load load load load load 1 1 1 1 1 1 1 1 1 1 1 1 1 MAX. Unit ns ns Note 2 2 360 ns 4 ns ns ns 2 80 0 250 160 200 0 80 70 50 60 50 80 50 60 ns ns ns ns ns ns ns ns ns ns 3 3 4 2 2 2 2 2 2 2 2 Note 1: Note 2: All timing references use 2.0 V for a logic "I" and 0.8 V for a logic "0". Delay times are for an input clock frequency of 8 MHz. If below this frequency, add the incremental clock period to the standard delay time. Note 3: DS lower width is for an input clock frequency of 8 MHz. If below this frequency, add 3 increments of clock period to the standard. The width varies with execution command. Note 4: These delay times show system memory access time with an 8·MHz QC unit. If below this frequency, add 4 increments of clock period for TdAS (OIl or 3 increments of clock period for TdDS (OIl. CLOCK PORT 0, DM PORT 1 AS DS dTdRIAS' _TdWIAS) *" TdDS(R) TdDS(W)~ RiW '-'-'--'-'-'--SHARP'--'-'-'-'--169 Z8-01 Microcomputer Unit LH0801 Additional Timing Table • Symbol TpC Parameter Input clock period TrC, TfC Clock input rise and fall times TwC Input clock width TdSC (AS) TdSY (DS) TwSY System clock input to AS delay Command sync output to DS delay Command sync output pulse width (Vcc=5V±5%, Ta=O-+70'C)I: Conditions Driven by, external clock oscillator Driven by external clock oscillator MIN. 125 MAX. 1,000 Unit ns 25 ns Note > 37 ns 200 160 ns ns ns 5 5,6 5,6 Note : All timing references use 2.0 V for a logic "1" and 0.8 V for a logic "0". __ , Note 5: Test load 1 is used when' SCLK and SYNC are outputt via port 3, aad test load 2 when SCLK and SYNC are direct-output with 64-pin version. Note 6: With an 8 MHz QC unit. If below this frequency, add 2 increments of clock period. CLOCK SCLK AS Data input sample 1--------1 Read cycle-=-1\-----\;-Write cycle DS r t:TdSY (DS 1---+1 SYNC ~_,T_w_S_Y_____jt • (V cc =5V±5%, Ta=0-+70'C) Handshake Timing Symbol TsOI (DA) ThDA (OI) , Parameter Data in setup time Data in hold time TwDA Data available width TdDAL (RY) DAV! to RDY! delay TdDAH (RY) TdDO (DA) TdRY (DA) 170 DAVt to RDY t delay Data out to DA V ! delay RDY to DAV t delay Conditions Input handshake Test load 1 Input handshake Test load 1 Output handshake Test load 1 Input handshake Test load 1 Output handshake Test load 1 Test load 1 Test load 1 MIN. 0 230 MAX. 175 20 ns 175 ns ns 0 150 ns ns 0 50 0 Unit ns ns 205 ns ns Note LH0801 Z8-01 Microcomputer Unit DAV (input) TdDAL(RY) RDY (output) Port read Input handshake DATA OUT ~ ----~DO(DA) Data out valid DAV (output) RDY--------------~------~~~~--~ ~---......---~ (input) Output handshake 171 .z~-01 Microcomputer Unit • LH0801 Architecture (1) Address Spaces (i) Program Memory The 16-bit program counter addresses 64K bytes of program memory space. Program memory can be located in two areas : one internal and the other external (Fig. 1). The first 2048 bytes consist of on-chip mask-programmed ROM. At addresses 2048 and greater, the Z8 executes external program memory fetches. The first 12 bytes of program memory are reserved for the interrupt vectors. These locations' contain six 16-bit vectors that correspond to the six available interrupts. (ii) Data Memory The Z8 can address 62K bytes of external data memory beginning at location 2048 (Fig. 2). External data memory may be include with or separated from the external program memory space. OM, an optical I/O function that can be programmed to appear on pin P3 4 , is used to distinguish between data and program memory space. (iii) ,Register File The 144-byte register file includes four I/O port registers (RO-R3), 124 general-purpose registers (R4-R127) and 16 control and status registers (R240-R255). These registers are assigned the address locations shown in Fig. 3. Z8 instructions can access registers directly or indirectly with an 8-bit address field. The Z8 also 'allows short' 4-bit register addressing using the , Register Pointer (one of the control registers). In the 4-bit mode, the register file is divided into nine working-register groups, each occupying 16 contiguous locations. The Register Pointer addresses the starting location of the active working-register group'. (iv) Stacks Either the, internal register file or the external data memory can be used for the stack. A 16-bit Stack Pointer (R254 and R255) is used for the external stack, which can reside anywhere in data memory between locations 2048 and 65535. An 8-bit Stack Pointer (R255) is used for the internal stack that resides within the 124 general-purpose registers (R4-R127). 65,535 External data me,mory 65, 535 External ROM or RAM 2, 048 Location of firs t On-chip ROM byte ,of instructJon '-.... executed after f"'------ --- --- -------reset 12 11 IRQ5 IRQ5 10 IRQ4 9 IRQ4 8 IRQ3 7 Interrupt vector IRQ3 6 (Lower byte) IRQ2 5'" IRQ2 ,4 J! IRQ1 r 3 Interrupt vecto IRQ1 (Upper byte ) 2 IRQO 1 IRQO 0 Fig: 1 172 Program memory map ---------1 2,048 t-' Not addressable O~ Fig. 2 ______________ ~ Data memory map Za-01 Microcomputer Unit LOCATION 255 STACK POINTER(BITS 7-0) 254 STACK POINTER(BITS 15-8) REGISTER POINTEIt 253 252 PROGRAM CONTROL FLAGS INTERRUPT MASK REGISTER 251 250 INTERRUPT REQUEST REGISTER 249 INTERRUPT PRIORITY REGISTER 248 PORTS 0-1 MODE PORT 3 MODE 247 PORT 2 MODE 246 TO PRES CALER 245 TIMER/COUNTER 0 244 T1 PRES CALER 243 TIMER /COUNTER I 242 241 TIMER MODE SERIAL I/O 240 LH0801 IDENTIFIERS Sl'L SPH RP FLAGS IMR IRQ IPR POIM P3M P2M PREO TO PREI Tl TMR SIO NOT IMPLEMENTED PORT PORT PORT PORT 1 ,0 3 2 I 0 000 0 ~253 The upper nibble of the reg ister file address >----+ provided by the register pointer specifies the ,active working-register group_ --1l r--------,127 -.J , l r-Jl 1-- -f The lower nibble l 1-_ _ _ _ _ _ _ _-1 of the register r file address SPECIFIED WORKING~ provided by the REGISTER GROUP instruction points to the specified -I register' __ll-________ f P3 P2 PI PO Fig. 3 The register file (2) r7r6irsr4 I l~ I_--::-:~:--.-_~I 240 t- - ,.. GENERAL- PURPOSE REGISTERS 2 -..J: r--.--ir l 127 4 3 r--;--;:::==t--------., 255 I/O ports The Z8 has 32 lines dedicated to input and output. These lines are grouped into four ports of eight lines each and are configurable as input, output or address/data. Under software control, the ports can be programmed to provide address outputs, timing, status signals, serial I/O, and parallel I/O with or without handshake. All ports have active. pull-ups and pull-downs compatible with TTL loads. ( i ) Port 1 can be programmed as a byt.e I/O port or an address/data port for interfacing external memory. Memory locations greater than 2048 are referenced through Port 1. To interface external memory, Port 1 must be programmed for the multiplexed Adress/Data mode. If more than 256 external locations are required, Port 0 must output the additional lines. (ii) Port 0 can be programmed as a nibble I/O port, or as an address port for interfacing external memory. For external memory references, Port 0 can pro- It--------t 15 r --l r---iIOP;rts---- ~ Register file Fig. 4 The register pointer vide address bits AsAll (lower nibble) or As-A15 (lower and upper nibble) depending on the required address space. (iii) Port 2 bits can be programmed independently as input or output. The port is always available for I/O operations. In addition, Port 2 can be configured to provide open-drain outputs. (iv) Port 3 lines can be configured as I/O or control lines. In either case, the direction of the eight lines is fixed as four input (P3 0 -P3 3 ) and four output (P3 4 -P3 7 ). For serial I/O, lines P3 0 and P3 7 are programmed as serial in and serial out respectively. • handshake for Ports 0, 1 and 2 (DA V and ROY) • four external interrupt request signals (IRQo-IRQ3) • timer input and output signals (TIN and TOUT) • Data Memory Select (OM). (3) Serial Input/Output Port 3 lines P3 0 and P3 7 can be programmed as serial I/O lines for full-duplex serial asynchronous ----.-~-"----SHARP-.-~--:----- 173 'Z8,...,01 Microcomputer Unit Transmitted Oata (No Parity) ISPjspl0710610sl04103102101100lSTI T I LSTART BIT EIGHT OATA BITS TWO STOP BITS Transmitted Oata (With Parity) ISplSpl P 106105104103102101lDoiSTI TI I LSTART BIT SEVEN DATA BITS OOD PARITY TWO STOP BITS I Received Oata (No Parity) IspI0710610sI0,10,,10210110oISTI I I , L.START BIT EIGHT OATA BITS ONE STOP BIT Received Oata (With Parity) ISpl pI0610sI0,10,,102101100ISTI II I L.START BIT SEVEN OAT A BITS PARITY ERROR FLAG ONE STOP BIT Fig. 5 Serial data formats LH0801 receiver/transmitter operation. The bit rate is con· trolled by Counter/Timer' 0, with a maximum rate of 62.5K b~ts/second. The Z8 ~utomatically 'adds a start bit and two stop bits to transmitted data (Fig. 5). Odd parity ,is also available as an option. '(4) Counter/Timer The Z8 contains two 8-bit programmable counter/timers (To and T I ), each driven by its own 6-bit programmable prescaler. The T I' prescaler can be driven by internal or external clock sources; however, the To prescaler is driven by the internal clock bnly. The counters can be start{!d, stopped, restarted to continue, or restarted from the initial value. The counters can also be programmed to stop upon reaching zero (single-pass mode) or to automaticaily reload the initial value and continue counting (modulo-n continuos mode). The counters, but not the prescalers, can be read any time without disturbing their value or count mode. (5) Interrupts The Z8 allows six different interrupts from eight sources: the four Port 3 lines P3 0 -P3 3, Serial In, Serial Out, and the two counter/timers. These interrupts are both maskable and prioritized. All Z8 interrupts are vectored. Polled interrupt systems ,are also supported. ~-------'---SHARP~~-------.-Ir~ 174 LH080t Z8-01 Microcomputer Unit • Instruction Set Notation (1) Addressing modes The following notation is used to describe the addressing modes and instruction operations as shown in the instr~ction summary. IRR Irr X DA RA 1M R r IR Ir RR Indirect register pair or indirect working-register pair address Indirect working-register pair only Indexed address Direct address Relative address Immediate Register or working-register address Working-register address only Indirect-register or indirect working-register address Indirect working-register address only Register pair or working register pair address (2) Symbols The following symbols are used in describing the instruction set. dst Destination location or contents src Source location or contents cc Condition code (see list) @ Indirect address prefix SP Stack pointer (control registers 254-255) PC Program counter FLAGS Flag register (control register 252) Register pointer (control register 253) RP Interrupt mask register (control register IMR 251) Assignment of a value is indicated by the symbol "+-". For example. dst +- dst + src indicates that the source data is added to the destination data and the result is stored in the destination location. The notation "addr (n)" is used to refer to bit "n° of a given location. For example, dst (7) refers to bit 7 of the destination operand. (3) Flags. Control Register R252 contains the following six flalSs : C Carry flag Z Zero flag ·S Sign flag V Overflow flag D Decimal-adjust flag H Half-carry flag Affected flags are indicated by : o Cleared to zero 1 Set to one Set or cleared according to operation Unaffected X Undefined (4) Condition codes See Table 1. * Table 1 Condition codes Value 1000 0111 1111 0110 1110 1101 0101 0100 1100 0110 1110 1001 0001 1010 0010 1111 0111 1011 0011 0000 Mnemonic C NC Z NZ PL MI OV NOV EQ NE GE LT GT LE UGE ULT UGT ULE Meaning Always true Carry No carry Zero Not Zero Plus Minus Overflow No overflow Equal Not equal Greater than or equal Less than Greater than Less than or equal Unsigned greater than or equal Unsigned less than Unsigned greater than Unsigned less than or equal Never true ...... Flags set C=l C=O Z=l Z=O S=O S=l V=l V=O Z=l Z=O (S XOR V) =0 (S XOR V) =1 (Z OR (S XOR V)) =0 (Z OR (S XOR V)) =1 C=O C=l (C=O AND Z=O) = 1 (C OR Z) =1 ...... -------------------SHARP - - - - - - - - - - - - - - - - 175 Z8-01 ~icrocomputer LH0801 Unit Opcodemap (5) Lower Nibble (Hex) o o 6.5 3 4 5 6 CI) e. CI) :0 .0 Z Oi 0. 8 10.5 10.5 rio rz rio Ir2 Hz. RI 1H z• RI 6.5 6.5 6.5 6.5 10.5 10.5 6.5 9 A R, JR, 6.5 INC r]. Ir:! Hz, RI 6.5 10.5 ~ IR z• RI A B C o E 6.5 12/10.5 12110.0 12/10.0 6.5 LD LD DJNZ JR LD JP INC rJ. Hz rz. RI rt. RA ce, RA rJ, 1M ce, DA r, 6.5 6.5 F ~ 10.5 10.5 r------ 10.5 INC SUB SUB SUB SUB SUB SUB R],IM IR],IM rio Irz H2. HI 6.5 6.5 10.5 10.5 10.5 JP 9 RhlM rRJ.IM 10.5 rl. r2 IR 2 • RI r------ 10.5 SRP SBC SBC SBC SBC SBC SBC lRRI JM ri. rz R:h HI IR2.RJ R],IM IRlolM B.5 B.5 6.5 6.5 10.5 10.5 10.5 10.5 DA DA OR OR OR OR OR OR R, JR, rl. rz rJ, Irz Hz, H, 1H z, HI 10.5 10.5 6.5 6.5 10.5 10.5 rl. Ir 2 ~ R 1 ,IM IRIoIM 10.5 ~ 10.5 POP POP AND AND AND AND AND AND R, JR, rl. rz rl.Irz Hz. RI IRz• RI R!,IM IRIoIM 6.5 6.5 6.5 6.5 10.5 10.5 10.5 10.5 r------ COM COM TCM TCM TCM TCM TCM TCM JR, HI.IM IR!.IM r., rz rl.Irz Hz. RI IRhR\ 6.5 6.5 10.5 10.5 10.5 10.5 PUSH PUSH TM TM TM TM TM TM Hz. RI IH20 Rl H],IM IR1.IM H,' JR, rl. rz r], Irz 10.5 10.5 12.0 18.0 ~ r--;;:,- DEC""' DEC""' LDE LDEI JR, rt.Irrz 6.5 6.5 RL R, JR, fz,Irf, Ir2.lrr] 10,5 10.5 6.5 6.5 12.0 6.5 6.5 CLR CLR JR, 6.5 r----;u- 18.0 LDE LDEI INCW INCW CP JR, 01 Irl.IrfL RL r l . f2 CP flo 6.5 EI 10.5 Ir2 6.5 10.5 CP CP R z• R t lRz• RI 10.5 10.5 10.5 lO~5 CP CP XOR XOR XOR XOR XOR XOR 1'10 1'2 R2• R\ rlt Ir2 12.0 IR 2 • RI R"IM Ir I. Irr2 6.5 6.5 12.0 18.0 SRA SRA LDC LOCI rio x. 20.0 20.0 CALL' CALL LD Ir2.lrr, IRRI DA rlo x, RJ 6.5 6.5 10.5 10.5 10.5 RR 10.5 LD LD LD LD LD R, JR, 1'1.11'2 R 2 • Rl IR z, RJ RItIM lRloIM 8.5 6.5 r---s:sSCF ~ CCF ~ 10.5 LD LD 11'\, RCF 10.5 6.5 JR, r---s:s- R~ RR R, IRET LD 1'1, Irrz SWAP SWAP r----w:o 10.5 JR, r~. 11'1'1 RET IR"IM 18.0 R, IRI ~ R"IM lRhIM ]0.5 10.5 RRC RRC LDC LOCI 8.5 F rz 6.5 6.1 R, E rl. JR, 6.5 D 10.5 10.5 R, R, C 10.5 HI.IM lR),IM B.O RR, B 8 7 RLC ADC ADC ADC ADC ADC ADC 6.5 HH, 0. ::J 6 JR, 10/12.1 12/14.1 7 6.5 6.5 5 4 R, R, )( 3 DEC DEC ADD ADD ADD ADD ADD ADO RLC 2 2 NOP Rz.IR I r2 -=--------------------''---------~-------,--~~------------~-------------------~ Bytes per Instruction Lower Opcode Nibble t Execution Cycles Upper Opcode Nibble - First 176 A Operand 3 Pipeline Cycles ~--- Mnemonic Second Operand 2 3 Legend: R =8~Bit Address r = 4 ~ Bit Address R 1 or rJ = Dst Address R2 or n = Src Address Sequence: Opcode, First Operand, Second Operand Note: The blank areas are not defined. Z8-02 Microcomputer Unit (6) Instruction Summary I and Operation I Instruction LH0801 Addr Mode dst src (Note 1) ADC dst,src dst<-dst + src + C ADD dst,src (Note 1) dst <-dst + src ANDdst,src (Note 1) dst<-dst AND src CALL dst DA SP<-SP-2 IRR @SP<-PC;PC<-dst CCF C<-NOTC CLR dst R IR dst<- 0 COM dst R . dst<-NOT dst IR CP dst,src (Note 1) dst<-src DA dst R IR dst<-DA dst DEC dst R dst<-dst-l IR DECW dst RR dst<-dst-l IR DI IMR(7)<-0 DJNZ r,dst RA r<-r-l if r o PC<-PC + dst Range: +127,-128 EI IMR(7) <-1 INC dst r dst<-dst+l R IR INCW dst RR dst<-dst+ 1 IR IRET FLAGS<-@SP; SP<-SP + 1 PC<-@SP;SP<-SP+2;IMR(7)<-1 JP cc,dst DA if cc is true PC<-dst IRR JR cC,dst RA if cc is true, PC <-PC + dst Range: +127,-128 LD dst,src 1M r dst<-src r R r R LDC dst,src dst<-src LDCI dst,src dst<-src r<-r + l;rr<-rr + 1 LDE dst,src dst<-src Instruction 'Opcode Byte Flags Affected (Hex) CZSVDH FF ------ 40 -**0-- POP dst dst<-@SP SP<-SP+ 1 R IR 50 51 ------ 70 - - - - - - 50 -**0-- D6 D4 ------ EF * - - - - - ****-- PUSH src SP<-SP - 1; @SP<-src RCF C<-O RET PC @SP;SP<-SP+ 2 RLdst ~ R C 7 0 IR 90 91 ****-- ***X- - RLCdst~R 10 **** - - - - - - -** o- - -***- -***-- - - - - - - - - - - - 9F ------ rE r=O-F 20 21 AO Al BF -***-- C RR dst IR 11 - - - - - - - - 7 0 EO E1 **** I@:[ii}J R C 7 0 IR CO Cl **** 3D ****1* DF 1----- R IR DO D1 ***0-- 1M 31 ------ C RRC dst SBC dst,src dst<-dst - src - C SCF C<-l (Note 1) 4£lCil?f--l SUB dst,src dst <-dst - src (Note 1) 20 ****1* ****** SWAPdst ~ 7 4 3 0 R IR (Note 1) FO Fl X**X-- TCM dst,src (NOT dst) AND src TM dst,src (Note 1) dst AND src 60 -**0-- 70 -**0-- XOR dst,src dst<-dst XOR src BO -**0-- ------ ------ 82 92 AF o- - -***-- ------ Irr r 71 CF SRP src RP<-src cD c=O-F 30 cB c=O-F r Irr 7 0 R IR 4il L[ii)J IRR SRA dst X r Ir r R IR 1M 1M R Irr r Irr Ir ------ (Note 1) Nap r X r Ir R R R IR IR r Irr Ir Irr Opcode Byte Flags Affected (Hex) CZSVDH OR dst,src dst<-dst OR src ****0* rC r8 r9 r=O-F C7 D7 E3 F3 E4 E5 E6 E7 F5 C2 D2 C3 D3 src 83 93 00 rA r=O-F dst Irr It ****0* 40 41 00 01 80 81 8F Addr Mode LDEI dst,src Ir dst<-src Irr r<-r + 1; rr<-rr + 1 10 BO Bl 60 61 AD I and OperationJ ------ (Note 1) Note 1 These instructions have an identical set of addressing modes, which are encoded for brevity. The first opcode nibble is found in the instruction set table above. The second nibble is ex· pressed symbolically by a 0 in this table, and its value is found in the following table to the left of the applicable addressing mode pair. For example, to determine the opcode of an ADe instruction use the addressing modes r (destination) and Ir (source). The result is 13 ----------- Addr Mode dst src r R R R IR r Ir R IR 1M 1M Lower Opcode Nibble i -----------SHARP--------..-, 177 Z8~01 • Microcomputer Unit LH0801 Register R244 (TO) Counter/Timer 0 Register (F4H: Read/Write) R240 (510) Serial I/O R:egister (FOH: Read/Write) -, ID71 Dsl Dsl D.I D31 D2 rDll Do I I~I~I~I~I~I~I~I~I LTD INITIAL VALUE (WHEN WRITTEN) (RANGE: 1-256 DECIMAL 01-00 HEX) To CURRENT VALUE (WHEN READ) [SERIAL DATA (Do=LSB) R245 (PREO) Prescaler 0 Register (F5H: Write Only) R241 (TMR) Timer Mode Register (FlH : Read/Write) II ID71 D61 Dsl D,I D31D21 DII Do' TOUT M~g:~~oo To OUT=OI Tl OUT = 10 INTERNAL CLOCK OUT =11, T IN MODES EXTERNAL =00 CLOCK INPUT GA TE INPUT = 01 TRIGGER INPUT = 10 (NON-RETRIGGERABLE) TRIGGER INPUT = 11 (RETRIGGERABLE) LO=NO FUNCTION I=LOAD To O=DIS. ABLE To COUNT I=ENABLE To COUNT O=NO FUNCTION ' I=LOAD Tl LLCOUNT MODE O=To SINGLE-PASS 1 = To MODULO-N RESERVED PRES CALER MODULO (RANGE: 1-64 DECIMAL , 01-00 HEX) O=DISABLE Tl COUNT I=ENABLE Tl COUNT R242 (T1) Counter Timer 1 Register (F2H: Read/Write) I~I~I~!~!~I~I~I~I LTI INiTIAL VALUE (WHEN WRITTEN) (RANGE 1-256 DECIMAL 01-00 HEX) TI CURRENT VALUE (WHEN READ) R243 (PRE1) Prescaler 1 Register (F3H: Write Only) ID1 ! D61 Dsl D.I D31 D21 Dd Do' I COUNT MODE O=TI SINGLE-PASS I=Tl MODULO-N CLOCK SOURCE 1 = Tl INTERNAL O=Tl EXTERNAL TIMING INPUT (TIN) MODE PRESCALER MODULO (RANGE: 1-64 DECIMAL 01-00 HEX) 178 ID71 D61 Dsl D" D31 D21 DII Do' R246 (P2M) Port 2 Mode Register (F6H: Write Only) I D11 D6! Dsl D.I D31 D21 Dl ! Do I Lp 20- P 27 I/O DEFINITION o DEFINES BIT AS OUTPUT 1 DEFINES BIT AS INPUT R247 (P3M) Port 3 Mode Register (F7H: Write Only) 1LL ID11D61 DsID.ID31 D21 D dDo] L 0 PORT 2 PULL-UPS OPEN DRAIN 1 PORT 2 PULL-UPS ACTIVE RESERVED o P32=INPUT P3s=OUTPUT 1 P32=DAV1i/RDYO P3s=,RDYO/DAVO 00 P 33 = INPUT P 3. = OUTPUT ~np33=INPUT P3.=DM 11 P33=DAVl/RDYl P3.=RDYI/DAVI o P31 = INPUT (TIN) P3s=OUTPUT (TouT) I P31 =DAV2/RDY2 P3s=RDY2/D AV2 o P 30 = INPUT P 31 = OUTPUT . 1 P30=SERIAL IN P37 = SERIAL OUT o PARITY OFF 1 PARITY ON LH0801 Z8-01 Microcomputer Unit ........................................................................................................... ' , R252 (FLAGS) Flag Register (Feu: Read/Write) R248 (P01M) Port 0 and 1 Mode Register (F8u: Write Only) J I~I~I~I~I~!~I~!~I I D7! Ds! Ds! D.! Da! D2! DI! Do! ~ PO.-P07 MODE OUTPUT =00 INPUT = 01 . A12- Als = IX EXTERNAL MEMORY TIMING NORMAL=O EXTENDED = 1 Llll &SER FLAG Fl USER FLAG F2 HALF CARRY FLAG DECIMAL ADJUST FLAG C'POO-P03 MODE LOO=OUTPUT 01=INPUT IX = Aa- All STACK SELECTION 0 = EXTERNAL 1 =INTERNAL Plo-Ph MODE 00 = BYTE OUTPUT 01 = BYTE INPUT 10=ADo-AD7 11 = HIGH· IMPEDANCE ADo- AD7, AS,DS, R/W,Aa-All,AwAls IF SELECTED OVERFLOW FLAG SIGN FLAG ZERO FLAG CARRY FLAG R253 (RP) Register Pointer (FDu: Read/Write) R249 (lPRl Interrupt Priority Register (F9u: Write Only) I D71 Dsl Dsl D.I D31 D21 DI I Dol RESERVE~ ! INTERRUPT GROUP A) PRIORITY IRQ3,IRQ5 PRIORITY ( GROUP RESERVED =000 0= IRQ 5> IRQ 3 '---+--+-1=IRQ3>IRQ5 C > A > B=OOI A > B > C =010 IRQO, IRQ2 PRIORITY (GROUP B) 0=IRQ2>IRQO A > C > B=Ol1 1 =IRQO>IRQ2 B > C > A = 100 IRQl,IRQ4 PRIORITY (GROUP C) C > B > A=10l O=IRQl>IRQ4 B > A > C=110 I=IRQ4>IRQl RESERVED=lll R250 (IRQ) Interrupt Request Register (F Au: Read/Write) 1 R251 (lMR) Interrupt Mask Register (FBu: Read/Write) l[ .ID7IDsIDs!D.IDaID21 DIIDol rs DON'T CARE DON'T CARE r4 REGISTER POINTER R254 (SPH) Stack Pointer (FEu: Read/Write) . IRQO=P32 INPUT IRQ 1 = P 33 INPUT IRQ 2 = P 31 INPUT IRQ3=P3o INPUT, SERIAL INPUT IRQ4=To, SERIAL OUTPUT IRQ5=TI RESERVED r7~1~ I ~LLDON'T CARE rs~ DON'T CARE I~!~I~I~I~I~I~I~I [STACK POINTER UPPER BYTE (SPa-SPIs) R255 (SPL) Stack Pointer (FFH : Read/Write) I D71 Dsl Dsl D.I D3\ D21 DII Do I [1 ENABLES IRQO-IRQ5 (Do=IRQO) RESERVED [STACK POINTER LOWER BYTE (SPO-SP7) 1 ENABLES INTERRUPTS - - - - - - - - ' - - - - - - - S H A R P ----~.-.-.-..-.-.-179 'LH0802 Z8-02 Development Device LH0802 ,Z8-02 Development Devic;:e, ' _ • Description' Th~ 64:-pin Z&,..02 is the development version of the Z8-01 with internal mask-programmed ROM. This device allows the user to build the prototype systems in hardware with an actual device and to deveiop the code that is eventually mask-programmed into the on-chip ROM of the Z8-0l. TheZ8-02 is identical to the Z8-01 with the following exceptions : • The internal ROM has been removed. • The ROM address lines and data lines are buffered and brought out to external pins. • Control lines for the new memory have been added. • Pin Connections P30 P2, RESET 6 IVW P2, P2, P21 P20 P3, P3, Pis PI, PI, PO, PI, PQ. Pit PO, lACK 21 In SYNC Do In ·Ao Al Ao A, An AlO A. A, A, Top View - . . . . - . - - - - - . - . - - S H A R P ~...-...-.~-- .......... - - - - - - - - '180 Z8-02 Development Device • LH0802 Block Diagram ., ., ." !~ . iii . System .... ~ rJl ., . Clock ~ .. ~ """" ~~~A « .,Q .~ Serial and Parallel 1/0 and Control A Vee( +5V) GND(OV) 17 2 3 6 7 .... In In 8 9 Port 3 Instruction Control .... ...""" 0 .,.'" ALU In Flags UART :g « .... .,"E Register Pointer ::e Counter/Timer ....." E Register Fil e (I24X8) Program 'Counter Po. ... Interrupt Acknowledge Output ! Interrupt Control 21 -:;;" A ..".." E Po. Port 0 Port 1 '-----yr---~ I/O or As-A,s ' - - - - vr ----- I/O or AD o -AD 7 * 1 Program Memory Data * 2 System Clock Output * 3 Instruction Sync • Strobe Output Output Pin Description The Z8-20 has 64 pins, 40 of which are the same as those on the Z8-01. The remaining 24 pins are as follows. Pin Ao-A l l Do-D 7 MDS lACK -- Meaning Address Bus Data Bus Data Strobe Interrupt Acknowledge 110 0 I 0 0 SYNC Command Synchronization 0 SCLK System Clock 0 Function Address signal for internal ROM. Data signal for internal ROM. Active "Low". Internal ROM addresses are valid. Active "High". Detects an interrupt. Active "Low". For synchronizing the command fetch cycle. Internlll system clock. 1/2 of the external clock. 181 [! ?8-03 Protopack Emulator LH0803 • LH0803 Z8-03 Protopack Emulator Description The 28-03 (LH0803) is a ROMless version of the standard 28-01, housed in a pin compatible 40-pin package. The 28-03 carries a 24-pin socket for a direct interface to program memory. 2716 type EPROM can be used for program memory. The 28-03 allows the user to build the prototype and pilot production units. When the final program is established, the user can then switch over to the 28-01. • Pin Connections P36 XTAL2 2 P31 XTALl 3 P27 P26 P25 RESET R!W 6 P24 7 P23 P22 P21 P35 P20 P33 P34 Ph Pl6 PIs Pl4 Pb Pl2 PIt Plo Top View .-..-.------SHARP---.------182 LH0803 Z8-03 Protopack Emulator • Block Diagram S erial and Parallel I/O and ~ontrol GND(OV) System t Clock :l ~p:; r------{ll}----{ Port 3 Instruction Control ALU ...e-" " 0 UART .... Ul Ul Flags "" «"" ...>. .'" ...... Registe~ Pointer E ::?l E Counter ITimer Register File (124XS) Program Counter ...'" 0.. ;; Interrupt Acknowledge Output .=i"" ! . Interrupt Control Q .... .....'" E 0.. Port 2 Port 0 Port 1 I/O or ADo - AD? *1 Program Memory Data Strobe Output *2 System Clock Output * 3 Instruction Sync Out put o : This • is equipped with ROM Pin Description The pins of the 28-03 are compatible with those of the 28-01. For the pin description, refer back' to the 28-01 explanation. 183 ~ LH0811· Z8::J 1 MicrOComputer Unit LH0811 • Z8-11 Microcomputer Unit Description Compared to earlier single-chip microcomputers, the Z8 offers faster execution; more efficient use of memory; more sophisticated interrupt, input/output and bit-manipulation c~pabilities ; and easier system expansion. Under program control, the Z8can be tailored to the needs of user. It can be configured as a standalone microcomp·uter with 4K bytes of internal ROM, a traditional microprocessor that manages up to 120K bytes of external memory, or a parallelprocessing element in a system with other processors and peripheral controllers linked by the Z-BUS. In all configurations, a large number of pins remain available for I/O. • Features 1. Complete single-chip microcomputer with internal ROM, RAM and 110 • RAM 124 bytes • ROM 4K bytes • 110 32 lines 2. On-chip two programmable 8-bit counter/timers, each with a 6-bit programmable prescaler 3. Full-duplex UART 4. 144-byte register file 5. Register pointer so that short, fast instructions can access any working register groups 6. Vectored, priority interrupts for 110, counter/ timers, and UART 7. Up to 60K bytes addressable external space each for program and data memory 8. On-chip oscillator 9. High speed instruction execution • Working register operating time: 1.5 ps • Average instruction execution time: 2.2 ps • Maximum instruction execution time: 5.0 ps 10. Low-power standby option which retains contents of general-purpose registers 11. Single + 5V power supply 12. All pins are TTL compatible • Pin Connections XTAL2 2 XTALl 3 o P36 P3l P27 P26 P2s RESET 6 P2. R/W 7 P23 P22 P2l P20 P3s GND 11 P33 P32 P3. POo Ph POI P16 P02 PIs P03 PI, PO. Pis POs Ph P0 6 Pll P07 Plo Top View ~-""""'-------SHARP---'----'-' 184 LH08011 Z8-11 Microcomputer Unit • Block Diagram "0 "0 cil.... !:: i:: ''"" System ~ -, "'oS" ! "'"...." ~-~ " Q" ..: ~ ! 0;:: (fJ Serial and Parallel I 0 and Control , ~ GND(OV) Vee( +5V) ~ ." 11 Machine Timing Port 3 & Instruction Control ALU Flags UART Program Memory (4,096X 8) Counter Ti mer Register Pointer Register File (124XS) Program Counter Port 0 Port 1 Interrupt Control Port 2 • T T I/O or As-A15 I/O or ADo- AD7 Pin Description The pins of the 28-11 are compatible with those of the 28-01. For the pin description, refer back to the 28-01 explanation. ----~-.--~......---SHARP.-.----.-.--- 185 Z8...,1,2 Development Device LH08·12 • LH0812 Z8-12 Development Device Description • Pin Connections The 64-pin 28-12 is the development version of the 28-11 with internal mask-programl\led ROM. This device allows the user to build the prototype systems in hardware with an actual device and to develop the code that is eventually mask-programmed into the on-chip ROM of the 28-11. The 28-12 is identical to the 28-11 with the following exceptions : • The internal ROM has been removed. • The ROM address lines and data lines are buffered and brought out to external pins_ • Control lines for the new memory have been added. Top View ~~'--~'---SHARP---'-~-'-~"""'" 186 LH0812 Z8-12 Development Device • Block Diagram "0 ... "0 Ul ... Ul ''"" "... ~ !: Serial and Parallel I/O an1 Control System Clock GND(OV) Vcc(+5V) ~ "'; ~ "-- "'" -0os " 0:::" ~ 0::: ~ !os 0 -0 -0 ...:: Port 3 Instruction Control ~ " 2- ALU " 0 UART '" "...'" Flags -0 -0 «: » ... 0 S Register Pointer " ;;;: S Counter Timer Register File '"... 1124X81 p.. bJl ...0 Program Counter 0; Q. Interrupt Acknowledge O~tput 11 ..:; ! 0'" Interrupt Control S ...'" ...0 p.. OJ) Port 2 Port a Port 1 I/O or ADo-AD, * 1 Program Memory Data Strobe * 2 System Clock Output * 3 Instruction Sync Output Output --------SHARP-------187 ~ ..........-.. Z8~12 Development Device • ...... -.... .... -----..,.~ , . - . - . -........-~--:.--.: LH08t2 Pin Description The 28-12 has 64 pins, 40 of which are the same as those on the 28-11. The remaining 24 pins are as follows. Pin Ao-A l l Do -D 7 MDS lACK -- 188 Meaning Address Bus· Data,Bus Data Strobe Interrupt Acknowledge 110 0 I 0 0 SYNC Command Synchronization 0 SCLK System Clock 0 Function Address signal for internal ROM Data signal for inter.nal ROM. Active "Low". Internal ROM addresses are valid. Active "High". Detects an interrupt. Active "Low". For synchronizing the command fetch cycle. Internal system clock. 112 of the external clock. Z8-13 Protopack Emulator LH0813 • LH0813 Za-I3 Protopack Emulator Description The 28-13 (LH0813) is a ROMless version of the standard 28-11, housed in a pin compatible 40-pin package. The 28-13 carries a 24-pin socket for a direct . interface to program memory. 2732 type EPROM can be used for program memory. The 28 -13 allows the user to build the prototype and pilot production units. When the final program is established, the user can then switch over to the 28-11. • Pin Connections o P36 P31 P2, P26 P25 RESET 6 P2. a P23 P22 P21 P3s P32 P3. POo Ph POI P16 POz P1s POs Pl. P13 P12 Ph P07 Top View I " 189 ZS",'13 Protopack Emulator • LH0813 Block Diagram Serial and Parallel I/O and Control " Vee( +5V) GND(OV) System t Clock :l ~c:: ,}-----~ }-------~111}_----~ Port 3 Instruction Control 1 :; o UART O - -.....-L;;>O-~---Crystal 2 74LS04 ;;;CI.=15 p FMAX. '----~-- Crystal 1 ICI.=15 PF MAX. Test load 1 • AC Characteri~tics The SM-803 is compatible with the 28-01 as to the AC characteristics. Refer back to the 28-01 description. • New Functions The SM-802 has two standby modes; HALT and STOP. TTL, external clock interface circuit So there is no power consumption now. This mode is cleared by a reset input, port 3 input, or timer interrupt at a mask option (designated at the time of ROM input). (2) STOP mode· The STOP mode is brought by decoding a STOP instruction (FF6FH). (1 ) HALT mode The HALT mode is introduced by decoding a HALT instruction (FF7F H). In this mode, the oscillation circuit is kept in operation, but no system clock is internally supplied any more. 197 ......... ........-:...,...,...,...,-.- CMo.S 8-Bit 1-Chip Microcomputer .~.-...., SM-812 • , CMOS 8-Bit I-Chip Microcomputer . Description The SM-812 is an 8-bit single chip CMOS micro· €omputer with 2,048·byte of ROM, 128·byte of RAM, timer/counter ,and multiplex interrupt capa· bility. It is best suited to high-function controllers due to its single power supply and high-speed proces· sing capability. • Features 1. CMOS process 2. ROM capacity 2,048 X 8 bits 3. RAM capacity 128 X 8 bits 4. 64-byte (MAX.) of address space 5. InstrudioJ?s 81 6. Subroutine nesting using RAM area 7. Output ports 32 bits 8. Input/Output ports 16 bits 9. Timer/counter 8 bit counter 2' 8 bit prescaler 1 10. Interrupt function External interrupt 1 Serial 110 interrupt 1 Timer interrupts 2 Non-maskable interrupt 1 11. Serial interface 8 bits 12. Standby mode (HALT mode, STOP mode) 13. Single power supply (2.7-5.5V) 14. Instruction cycle 1 ps(MIN.) 15. 64-pin quad-flat package 198 SM-812 ~...,.-....,~, • Pin Connections WAIT I Ml 2 P3./SI P31/SCK P32!SO P33/MRQ P3./CN P3s/T P36/RD P37/WR NC NC PO./AD. POJ/ADI P02!AD2 P031 AD, PO,I AD, POsl ADs PO,I AD, 3 ' s ' 7 8 • IO 11 12 13 U 15 I' 17 18 19 Top View SM-812 CMOS 8-Bit 1-Chip Microcomputer • Block Diagram Output Ports and External Address Bus I/O Ports and External Data Bus -" ~ WAIT Signal Input Sync. Clock Output j IIlO Ports S ync... Reset Clock Output 9 PC SP A B D H F C E L RAM 192XB ' ROM 4096xB 11 IIO Ports 49 o t--;;~~-+e--j Prescaler 9 Interrupt Input (non - maskable) Interrupt Input I Output Ports P5 Oscillator Symbol description ADR ALU PC SP F· A,B,C,D,E,H,L INC/DEC : : : : : : : Address latch Arithmetic logic unit Program counter Stack pointer Flag register General-purpose registers Incrementer / decrementer TM : TAC, TCB: IE : IME : IFO-IF3 : : OSC PO-P5 : Ti'mer modular register Timer counter Interrupt enable F /F Interrupt master enable F /F Interrupt request register System clock oscillator Port register 199 OMOS8-Bit 1-0hip Microcomputer • SM-812 Pin Description Pin P4o~P47 P2 o/DB o ~P27/DB7 POol ADo ~P17/AD15 P3 0/S1 P3 1/SCK P3 2 /S0 P3 3 /MRQ P3 4 /CN P3 5/T P3 6 /RD P3 7 /WR P50~P57 -- 110 110 Bidirectional Circtit Pull-up Pull-up at input 0 Oil O/Bidirectional 0 0 Oil 0 0 0 0 Pull-up at input Pull-up at input Pull -up at input Pull-up WAIT I Pull-up INT NMI RESET TEST I I I I Pull·-l!P Pull-up. Pull-up '" OUT. Ml CK lo CK 2 VDD • GND 0 Function Programmable for 110 in bits External memory data bus lIO in bytes signal BXternal memory address Output in bytes signal Serial data input Serial clock input/output Serial data output Memory request output Output in bytes Timer counter input Counter signal output Read signal output Write signal output Settablel resettable in bits Used to prolong an access time for external memory or to clear the standby mode. Maskable interrupt request Non·maskable interrupt request Auto clear For testing (usually connected to GND) Synchronization clock output For clock oscillator Logic circ·uit power supply ----------SHARP...--.---------200 . CMOS 8-Bit 1-Chip Microcomputer 5 M- 813 • CMOS a-Bit I-Chip Microcomputer Description The SM-813 is an 8-bit single chip CMOS microcomputer with 4,096-byte of ROM, 192-byte of RAM, timer/counter and multiplex interrupt capability. It is best suited to high-function controllers due to its single power supply and high-speed processing capability. • Features 1. 2. 3. 4. 5. 6. 7. 9. SM-813 CMOS process ROM capacity 4,096 X 8 bits RAM capacity 192 X 8 bits 64K-byte (MAX.) of address space Instructions 81 Subroutine nesting using RAM area Output ports 16 bits Timer/counters 8-bit counters 2 8-bit prescaler 1 10. Interrupt function External interrupt 1 Serial I/O interrupt 1 Timer interrupt 2 Non-maskable interrupt 1 11. Serial interface 8 bits 12. Standby mode (HALT mode, STOP mode) 13. Single power supply (2.7-5.5V) 14. Instruction cycle l!'-s (MIN.) 15. 64-pin quad-flat package • Pin Connections WAIT 1 Ml ' P30/SI 3 P3'/SCK , P3';SO s P3,/MRQ • P3,/CN ' P3s/T 8 P3. 9 P3,1O RD 11 WR 12 POD/ADD 13 PO,/AD, 14 PO,fAD, 15 P03/ AD, 16 PO,,/AD,17 POs/ADs 18 PO./AD. 19 43 Viln " P40 " NC 40 P2,fDB, 39 P2./DB. 38 P2s/DBs 37 P2,/DB, 36 P2,/DB, 35 P2,fDB, 34 P2,/DB, 33 P20/DBo Top View 201 .CMOS8-Bit1-Chip Microcomputer ___ .......... . . , . - :_ _ ~_ • ~_~. _______r.-_.._ _ SM ..813 BlOck Diagram I/O Ports and Output Ports and External Data Bus External Address Bus J. _ _ _ _ _ _""' ,------A------, 940 WAIT Signal Input Sync. Clock Output S ync. Reset 6 Clock Output RAM 192XB ROM 4096xB l ~ Output P5 I Ports 9 Interrupt Input (non - maskable) Interrupt Input J Oscillator Symbol description : : : : : F A,B,C,D,E,H,L : : INC/DEC ADR ALU PC SP 202 Address latch Arithmetic logic unit Program counter Stack pointer Flag register General-purpose regi sters Incrementer/decrementer • ~'-' TM TAC, TCB IE IME IF 0 - IF 3 OSC PO - P 5 :. Timer modular register : Timer cou~ten : Interrupt enable F /F : Interrupt master enable F /F : Interrupt request register : Sy!!tem clock oscillator : Port register CMOS 8-Bit 1-Chip Microcomputer • .~ SM-813 Pin Description Pin P4 o-P4 7 P2o/DBoP27/DB7 POo/ADo -P1 7/AD 15 P3 0 /SI P3 1 /SCK P3 2 /SO P3 3 /MRQ P3 4 /CN P3 5 /T P3 s P3 7 P5 0 -P5 7 RD WR -- I/O I/O Pull-up Circtit I/O Pull-up at input 0 0/1 O/Bidirectional 0 0 0/1 0 0 0 0 0 0 Pull-up at input Pull-up at input Pull-up at input Pull-up WAIT I Pull-up INT NMI RESET TEST "'OUT. Ml CK h CK 2 VDD• GND I I I I 0 Pull-up Pull-up Pull-up Function Programmable for I/O in bits External memory data bus I/O in bytes signal External memory address Output in bytes signal Serial data input Serial clock input/output Serial data output Memory output Output in bytes Timer counter input Counter signal output Settablelresettable in bits Read signal for external memory Write signal for external memory Used to prolong an access time for external memory or to clear the standby mode. Maskable interrupt request Non-maskable interrupt request Auto clear For testing (usually connected to GND) Synchronization clock output For clock oscillation Logic circuit power supply -..-..-.----------SHARP.....-..--------203 .. LU8l0Vl OMOS 8-Bit 1-Chip Microcomputer LU81 0 V1 CMOS a-Bit I-Chip Microcomputer • Description • Pin Con.nections LU810Vl, eliminating the internal ROM from SM-812, is the ROM less version of SM-812 and it uses Port 0 and Port 1 exclusively as the address bus and Port 2 as the data bus. Other functions are compatible with those of SM-812. WAIT Ml • I 2 Features 1. CMOS process 2. ROM capacity 128X 8 bits 3. 64K-byte (MAX.) of address space 4. Instructions 81 5. Subroutine nesting using ~AM area 6. Output ports 16 bits 7. Input/Output ports 8 bits 8. Timer 1counter 8-bit counters 2 8- bit prescaler 1 9. Interrupt function " OBI 3:, DB. Top View External interrupt 1 Serial 1/0 interrupt 1 Timer interrupts 2 Non-maskable interrupt l ' 10. Serial interface 8 bits 11. Standby mode (HALT mode, STOP mode) 12. Single power supply (2.7-5.5V) 13. Instruction cycle 1 ps(MIN.) 14. 64-pin quad-flat package 204. LU810V1 CMOS 8-Bit 1-Chip Microcomputer • Block Diagram Address Bus Data Bus A ,--------A----, WAIT Signal Input Sync. Clock Output P3 Reset , Sync. Clock Output ! fIIO p,,,, U ~ RAM " 192x8 Q u' l 2S fIIO p"" 49 Prescaler GND P5 Test IO"'~' Ports 9 Interrupt Input (non -maskable) Interrupt Input Oscillator Symbol description : : : PC : SP F : A, B, C, D, E, H, L : : INC/DEC ADR ALU Address latch Arithmetic logic unit Program counter Stack pointer Flag register General-pupose registers Incrementer / decrementer --.-..-..-..-r'-'-~SHARP TM : Timer modular register TAC, TCB: Timer counter IE : Interrupt enable F /F IME : Interrupt master enable F /F IF 0 - IF 3 : Interrupt request' register OSC : System clock oscillator : Port register PO-' P5 ---------------,205 ~ .---.. ---.-.-.-:---.....--- cMos 8-Bit 1-Chip Mjcrocomputer ......... • ..............,............ Pin Description Circtit Pin P4 o-P4 7 110 110 Pull up DB o-DB 7 1/0 Pull up at input AD o-AD 1s 0 , P3 0 /SI P3 1 /SCK P3 z /S0 P3 3 /MRQ P3 4 /CN P3 s /T P3 6 /RD P3 7 /WR P5 0 -P5 7 -- Oil Oil 0 0 Oil 0 0 0 0 " Pull up at input Pull up at input / Pull up at input -, Pull up WAIT I Pull up INT NMI RESET TEST 1> OUT. Ml CK h CK z VDD• GND I I I I 0 Pull up Pull up Pull up . LU810V1 ~---~--- Functioq Programmable for 1/0 in bits External memory data bus I/O in bytes signal External,memoryaddress Output in bytes signal Serial data input Serial clock input! output Serial data output Memory request output Output in bytes Timer counter input Counter signal output Read signal output Write signal output Settablel resettable in bits Used to prolong an access time for external memory or to clear the standby mode. Maskable interrupt request Non-maskable interrupt request Auto clear For testing (usually connected to GND) Synchronization clock output For -clock oscillation Logic circuit power supply .....-.~~------SHARP~-~------------- 206 28 Series Ordering Information .-..-..-...-,.-..-...-,.-...-,..-,..-,.-...-,---..-,.-. Z8 Series Ordering Information Below is discussed how to order the Z8 series products. Customers are requested to submit an EPROM or paper tape as the ROM data media. The following information should be attached in any form and any means. (1) ROM data media (2) Specific data (chip select, marking, and other information) (3) Your company's name, your own name, and stamp (4) Ordering date When submitting the ROM drawings, two sets of ROM data media are also required together with a list of ROM to see if the read-out data are correct. With the ROM data media, we computer-aid· ed-design a ROM masking magnetic tape and make up EPROM or paper tapes, and their list, in order to make sure the designed ROM data are correct. These materials are then checked up by the customer for approval. If it is okay, we start masking and make some technical evaluation samples (TS), which are delivered to the customer. When the samples are accepted, the customer will send us a "TS Confirmation". By a mass-production order at the moment or later, we will start producing the product in large quantities. SHARP Client t----+---~Business dept .t--'--------,l>j Project dept. ' - - - - - -...... t----+---~fiB3.u~s~in~e;ss;dde~PrttJ.-----------, Business dept. L-...;..:.-----+---~Business dept..I------------jE---.J Business dept. Business dept. ....--------SHARP-------.-. 207 a-Bit Microprocessor and Peripheral LSls LH0080/LH0080A/LH0080B Z80/Z80A/Z80B Central Processing Unit - LH0080/LH0080A/LH0080B ZSOIZSOAlZSOB Central Processing Unit • Description The Z80 product line is a complete set of microcomputer components, development system~ and support software. The Z80 microcomputer component set includes all of the circuits necessary tp bUild high-performance microcomputer systems with virtually no other logic and a minimum num· ber of low cost standard memory elements. The LH0080 Z80 CPU (Z80 CPU for short below) i~ the third generation microprocessor implemented using an N-channel silicon-gate process. The Z80 CPU is designed for using the standard memory components, higher system throughput and more efficient memory utilization. In addition, the output signals of the Z80 CPU is decoded to control peripherals. The Z80 CPU requires only single + 5V DC power supply and single phase clock, theref~re it is easy for the Z80 CPU to Implement into a system. The LH0080A Z80A and LH0080B Z80B CPU are the high speed version which can operate at the 4MHz and 6MHz system clock, respectively. • Pin Connections o Top View • , Features 1. 8-bit parallel processing single-chip microprocessor 2. N-'channel silicon-gate process 3. 158 instructions (The instruction of the 8080A are included as a subset; 8080A software compatibility is maintained) 4. 22 registers 5. The capability of 3 modes maskable interrupt and non-maskable interrupt 6. On-chip dynamic memory refresh counter 7. Instruction fetch cycle: 1.6ps(Z80), 1.0lPS (Z80A), 0.67 ps(Z80B) 8. Single + 5V power supply and single phase clock 9. All inputs and outputs fully TTL compatible 10. 40-pin dlial-in-line package '--~~-----------SHARP -~---!.........-.--210 " Z80/Z80AlZ80B Central Processing Unit • LH0080/LH0080A/LH0080B Block Diagram System Data Bus , Halt State Memory Request Input/Output Request Read Write Bus Acknowledge Machine Cyclel Refresh Data Bus Interface Instruction Instructionrr-_ _ _---' Decoder Register 1-,...------, ALU Interrupt Request Non- Maskable Interrupt Wait Bus Request Reset Address Bus Interface V~~ GND System C+5V) COy) Clock System Address Bus 211 LH0080/LHOO80A/LH0080B Z80/Z80A/Z80B Central Processing Unit • Pin Description Pin Ao-A 15 . Do-D 7 - Ml MREQ -10RQ - RD - WR -RFSH Data bus Machin(t cycle one 3-state 0 liD request 3-state 0 Memory read 3-state 0 Memory write 3-state 0- Halt state 0 Wait I -- Maskable interrupt request I -- Non-maskable interrupt request I Reset I Bus request I BUSAK Bus acknowledge O. CLOCK System clock I -- WAIT INT NMI --RESET --BUSRQ --- System data bus ! Memory request 0 HALT System address bus 0 Refresh -- Function liD 3-state 0 {3idirectional 3-state Meaning Address bus Active "Low". Indicates that the current machine cycle is the OP .code fetch cycle of an instruction execution. Active "Low''',- Indicates that the address bus holds a valid address for a memory read or memory wri~e operation. Active "Low". Indicates that the lower 8 bits of the addres& bus holds a valid liD address' for an liD read or write operation. Also generated concurrently with Ml during an interrupt acknowledge cycle to indicate an interrupt response. Active "Low". Indicates that the CPU wants to read data from memory or an liD device. Active "L(')w". Indicates that the CPU data bus holds valid data to be stored at the addressed memory or liD location. Active "Low". Indicates that the lower 7 bits of the_systern address bus can be used as a refresh address to the system's dynamic memories. Tog~ther with MREQ at "Low". Active "Low". Indicates that a Halt instruction is being executed. While halted, the CPU exe~utes NOPs to maintain memory refresh. The Halt state is cleared with RE- --SET, NMI, or INT (when allowed). Active "Low". Indicates to the CPU that the addressed memory or liD devices are not ready for a data transfer. The CPU continues to enter a wait state as long as this signal is acti ve. Active "Low". Generated by liD devices. The CPU honors a request at the end of the current instruction if the interrupt enable flip-flop is enabled. Active "Low". Has a higher priority than INT. Always recognized at the end of the current instruction, independent of the status of the interrupt enable flip-flop. Automatically forces the Z80 CPU to restart at location 0066H. Active "Low". Resets the int~rrupt enable flip-flop, the program counter interrupt vector register and the memory refresh register, and sets the interrupt status to Mode 0, in order to initialize the CPU. Active "Low". Has a higher priority than NMI. Always recognized at the end of the current machine cycle. Activated to allow a bus 11)aster other than the CPU to contro the system bus. Active "Low". Indicates to the requesting device that the external circuitry can control the system bus. Inputs+5V single-phase clock. --.----~--SHARP'---.--..--~.-..-.-- 212 - \. I ' " • Z80/Z80A/Z80B Central Processing Unit • LH0080/LH0080A/LH0080B Absolute Maximum Ratings Parameter Input voltage Output voltage Operating temperature Storage temperature Symbol VIN VOllT Topr ' T,tg Ratings -0.3-+7.0 -0.3-+7.0 0-+70 -65-+150 Unit V V "C "C Standard Test Conditions The characteristics below apply for the following standard test conditions, unless otherwise noted. All voltages are referenced to GND (OV). Positive current flows into the referenced pin. All ac parameters assume a load capacitance of 100 pF. Add IOns delay for each 50. pF increase in load up to a maximum of 200 pF for the data bus and 100 pF for address and control lines. • (Vcc=5V±5%, Ta=0-+70"C) DC Characteristics Parameter Clock input low voltage Clock input high voltage Input low voltage Input high voltage Output low voltage Output high voltage Symbol VILC V IHC V1L VIH VOL VOH Conditions IOL =1.8mA IoH =-250,uA consumption Input leakage current 3-state output leakage current in float • Icc I ILl I I ILEAK I MAX. 0.45 Vcc+ 0.3 0.8 150 200 200 10 Unit V V V V V V rnA rnA rnA ,uA 10 ,uA Vcc 0.4 Z80 CPU ,Z80A CPU Z80B CPU O::£VIN::£VCC VOllT =O.4V -Vcc (f=lMHz, Ta=25"C) Capacitance Parameter Clock capacitance Input capacitance Output capacitance TYP. 2.4 .- Curre~t MIN. -0.3 Vcc- 0 .6 -0.3 2.0 Symbol CCLOCK CIN COllT Conditions Unmeasured pins returned I to ground MIN. TYP. MAX. 35 5 10 Unit pF pF pF --~--'----SHARP'-''---'---- 213 Z80/Z80A/Z80B Central Processing Unit • LH0080/LH0080A/LH0080B (Vcc=5V±5%, Ta=0-+70°C) AC Characteristics No. Parameter 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Clock cycle time Clock pulse width (High) Clock pulse width (Low) Clock fall time Clock rise time Clock t to address valiC\ delay Address valid to MREQ ~ delay Clock ~ to MREQ ~ delay Clock t to MREQ t delay MREQ pulse width (High) MREQ pulse width (Low) Clock ~ to MREQ t delay Clock ~ to RD ~ delay Clock t to RD t delay Data setup time to clock t Data hold time from RD t WAIT setup time to clock ~ WAIT hold time after clock ~ Clock t to M1 ~ delay Clock t to M1 t delay Clock t to RFSH ~ delay Clock t to RFSH t delay Clock ~ to RD t delay Clock t to RD ~ delay Data Setup to clock t during M2 , M3 , M4 or M5 cycles Address stable prior to IORQ ~ Clock t to IORQ ~ delay Clock ~ to IORQ t delay Data stable prior to WR ~ Clock ~ to WR ~ delay WR pulse width Clock ~ to WR t delay Data stable prior to WR ~ Clock t to WR ~ delay Data stable from WR t Clock ~ to HALT t or ~ NMI pulse width BUSREQ setup time to clock t BUSREQ hold time after clock t Clock t to BUSACK ~ delay Clock ~ to BUSACK t delay Clock t to data float delay Clock t to control output float delay ----(MREQ, IORQ, RD, and WR) Clock t to address float delay MREQ t ,IORQ t, RD and WR t to address hold time 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 t 280 CPU MIN. MAX. 400* TcC 180* TwCh TwCl 180 2000 TfC 30 30 TrC 145 TdCr (A) TdA (MREQf) 125 * TdCf (MREQf) 100 TdCr (MREQr) 1QO 170* TwMREQh TwMREQ1 360* TdCf (MREQr) 100 TdCf (RDf) 130 TdCr (RDr) 100 TsD (Cr) 50 ThD (RDr) 0 TsWAIT (Cf) 70 ThWAIT (Cf) 0 TdCr (Mlf) 130 TdCr (Mlr) 130 TdCr (RFSHf) 180 TdCr (RFSHr) 150 TdCf (RDr) 110 TdCr (RDf) 100 Symbol TsD (Cf) TdA (IORQf) TdCr (IORQf) TdCf (I0RQr) TdDm (WRf) TdCf (WRf) TwWR TdCf (WRr) TdDi (WRf) TdCr (WRf) TdWRr (D) TdCf (HALT) TwNMI TsBUSRQ (Cr) ThBUSRQ (Cr) TdCr (BUSAKf) Tdef (BUSAKr) TdCr (Dz) 60 280A CPU MIN. MAX. 250* 1l0* 110 2000 30 30 110 65* 85 85 110* 220* 85 95 85 35 0 70 0 100 100 130 .120 85 85 50 320* 280B CPU* MIN. MAX. 165* 65 * 2000 65 20 20 90 35 * 70 70 65* 135* 70 80 70 30 0 60 0 80 80 110 100 70 70 40 ns us ns ns ns ns ns ns ns us ns us ns ns ns ns ns ns ns us ns ns ns ns us 110* 180* Unit 120 110 90 100 100 90 90 90 80 ns ns ns ns ns us ns us us us ns us ns ns us us ns TdCr (CTz) 110 80 70 us TdCr (Az) 110 90 80 ns TdCTr (A) 90 110 75 85 80* 190* 90 100 80 80 65 300 80 80 0 70 -55* 60* 120* 70 135* -10* 20* 160* 25 * 80 220* 360* 65 70 60 30* 260 300 80 50 0 80* 70 50 0 35 * ~ ns Rising edge, ~ Falling edge .....-.----------SHARP - - - - - - - - - - - - - - - 214 Z80/Z80A/Z80B Central Processing Unit No. 46 47 48 49 50 51 52 53 Parameter LH0080/LH0080A/LH0080B Z80 CPU MIN. MAX. TsRESET (Cr) 90 ThRESET (Cr) 0 TsINTf (Cr) 80 ThINTr (Cr) 0 TdMlf (I0RQf 920* TdCf (IORQf) 110 TdCf (IORQr) 100 TdCf (0) 230 Symbol RESET ! to clock t setup time RESET from clock t hold time INT to clock t setup time INT from clock t hold time M1 ! to IORQ ~ delay Clock ~ to IORQ ~ delay Clock t to IORQ t delay Clock ~ to data valid delay Z80A CPU MIN. MAX. 60 0 80 0 565* 85 85 150 All ac parameters assume a load capacitance of 100 pF. Add 10 p s delay for each 50 pF increase in load up to a maximum of 200 pF for the data bus and 100 pF for address and control lines. • For clock periods other than the minimums shown in the table, calculate parameters using the following expressions. * All timings are preliminary and subject to change. • Z80B CPU* MIN. MAX. 60 0 70 0 365* 70 70 130 Unit ns ns ns ns ns ns ns ns +5V 2.lkO Footnotes to AC Characteristics No. 1 2 7 10 11 26 29 31 33 35 45 50 Symbol TeC TwCh TdA (MREQf) TwMREQh TwMREQl TdA (IORQf) TdO (WRf) TwWR TdO (WRf) TdWRr (0) TdCTr (A) TdMIf (IORQf) Z80 TwCh+TwCl+TrC+TfC MAX.200ps TwCh+TfC-75 TwCh+TfC-30 TcC-40 TcC-80 TeC-210 TeC-40 TwCI+TrC-180 TwCI + TrC - 80 TwCl+TrC-40 2TcC+TwCh+TfC-80 AC Test Conditions: VIHC=Vcc-O.6V VlH=2.0V VIL=O.8V VILC=0.45V VOH=2.0V VOL=O.8V Z80A TwCh + TwCI + TrC + TfC MAX.200ps TwCh+TfC-65 TwCh+TfC-20 TeC-30 TcC-70 TcC-170 TcC-30 TwCl +TrC-140 TwCl+TrC-70 TwCI+TrC-50 2TeC+TwCh+TfC-65 Z80B TwCh + TwCl + TrC + TfC MAX.200ps TwCh+TfC-50 TwCh+TfC-20 TeC 30 TeC-55 TeC 140 TcC 30 TwCl+TrC:-140 TwCl+TrC 55 TwCl+TrC-50 2TeC+TwCh+TfC 50 FLOAT= ±O.5 - - - - - - - - - - - - - - - - - - - - - S H A R P ........ _ - - - . - . . - . _ - 215 .4.~O/Z80AlZ80B CPU Timing • ,L~OO80/LH0080A/LH.0080B Central Processing Unit (1.) Instruction Opcod~ Fetch The Z80 CPU executes instructions by proceed-, ing through a specific sequence of operations: • Memory read or write .' 110 device read or write .: Jnterrupt acknowledge The basic clock per;iod is referred to as a T time or cycle, ahti three or more T cycles make up a machine cycle (MI, M2 or M3 for instance). Machine cycles can be extended either by the CPU automatically inserting one or more Wait states or by the insertion of Dne or more Wait states by the user. The CPU places the contents of the Program Counter (PC) on the addre~s bus at the start of the . cycle (Fig. 1). Approximately one;-half clock cycle lat~r, MREQ goes active.,WheQ active, RD indicate$ that the memory d~ta ca~ be enabled onto the CPU data bus. The CPU samples the WAIT input with the falling edge of clock state T,. During clock states T3 and Ti of an Ml cycle dynamic RAM refresh can , occur while the CPU starts decoding and execu'ting the instruction. When the Refresh Contro\signal becomes active, refreshing of dynamic memory can . take place. ' CLOCK Note: Tw-~ait cycle added when necessary for slow ancilliary devices. Fig. 1 Instruction opcode fetch (2) Memory Read or Write Cycles Fig. 2 shows the timing of memo!:L,fead or write cycles other than~ opcode fetch (M 1) cycle. The MREQ and RD signals functibn exactly as in the fetch cycle. 1n a memory write cycle, MREQ also becomes active when the address bus is stable. The WR line is aj::tive when the data bus is stable, so 'that it can be used directly as an R/W pulse to most semiconductor memories. • ,(3) Input or Output Cycles Fig. 3 shows the timing for an 110 read or 110 write operation. During 110 operations, the CPU automatically inserts a single wait state (T w). This extra wait state allows sufficient time for an 110 port to decode the address from the port address lines. J --~~----SI-tARP---------~2H5 " Z80/Z80AlZ80B Central Processing Unit l LH0080/LH0080AlLH0080B CLOCK Ao-A15 MREQ WAIT RO Read operation { ~-r--cr--!--J ,/--'---~)"f--"" 1,-+--"\1 00-07 r---- 1 WR Write operation 00-07 Fig. 2 Memory read or write cycles '-"---'--~'---SHARP-'-'---------- 217 . LH0080/LH0080A/LH0080B ( . ZSO/Z80AlZ80BCentral Processing Unit " T2 Tw· Tw . '", ¥' , '" T3 CLOCK . {RD I/O read operation I/O write operation{ Do-D7 WR Do-D7 --------~============:;~D[a~t~a~o~utL:======} Note: Tw =One wait cycle automatically inserted by CPU. Fig. 3 Input or output (4) Interrupt requesVacknowledge,cycle The CPU samples the interrupt signal with the rising edge of the last clock at the end of any instruction (Fig. 4). When an interrupt is accepted, a special Ml cycle is generated. During this Ml cy- cle, IORQ becomes active (instead of MREQ) to indicate that the interrupting device can place an 8-bit vector on the data bus. The CPU automatically adds two wait states to this cycle. CLOCK Notel: TL=Last state of previous instruction. Note 2: Two wait cycles automatically inserted by CPU (*). Fig. 4 Interrupt request/acknowledge cycle 218 LH0080/LH0080A/LH0080B Z80/Z80AlZ80B Central Processing Unit (5) Non-maskable interrupt request cycle NMI is sampled at the same time as the maskable interrupt INT but has higher priority and cannot be disabled under software control. The subsequent timing is similar to that of a nor- Last Mcycle mal instruction fetch except that data put on the bus by the memory is ignored. The CPU instead executes a restart (RST) operation and jumps to the NMI service routine located at address 0066H (Fig. 5). ------~~--------------------Ml------------------~ Last T time Tl Ts CLOCK NMI Ml MREQ RD RFSH 'Although NMI is an asynchronous input, to guarantee its being recognized on the following machine cycle, NMI's falling edge must occur no later than rising edge of the clock cycle preceding T LAST- Fig. 15 (6) Non-maskable interrupt request operation Bus requesVacknowledge cycle The CPU samples BUSREQ with the rising edge of the last clock period of any machine cycle (Fig. 6). If BUSREQ is active, t~CPU sets its address, data, and MREQ, IORQ; RD, and WR lines to a high-impedance state with the rising edge of the next clock pulse. At that time, any external device can take control of these Iines,usually to transfer data between memory and I/O devices. (7) Reset cycle RESET must be active for at least three clock cycles for the CPU to properly accept it. As long as RESET remains active, the address and data buses float, and the co~trol outputs are inactive. Once RESET goes inactive, three internal T cycles are consumed before the CPU resumes normal processing operation. RESET clears the PC register, so the first opcode fetch will be location 0000 (Fig. 8). 219 ..........,..................,.... Z80/Z80A/Z80B C,entral Processing Unit ,~ , ' ......,......,......,- ............ LHQ080ltH0080AlLH0080B ....., CLOCK BUSRQ Ml Unchanged Note: TL=Last state of any M cycle. Tx=An arbitrary clock c~c1e used by requesting device. Fig. 6 Ml Z-bus request/acknowledge cycle ",/E "'1:'- MI MI CLOCK HALT HAL T r-t® instruction received ~------------------------ NMI Note: INT will also force a Halt exit. Fig. 7 220 Halt acknowledge cycle Z80/Z80AlZ80B Central Processing Unit LH0080/LH0080A/LH0080B CLOCK RESET Ml ============~~~~~~~7r-~f~--------------~ Il/IllI \___ MREQ, ------______~~~~r-----~£rc--------------------~-------- RD, WR, IORQ,RFSH, BUSAK, HALT Fig. 8 Reset cycle +5V +5V B A MI----I 74123 Q 1-------,1 )---- RESET 7408 151588 151588 Reset switch RESET Fig. 9 ~~------------------ Reset circuit and timing diagram when M1 cycle has no wait state 221 LH0080/LH0080AlLH0080B Z80/Z80A/Z80B Central Processing Unit (Reference circuit> RESET signal. (2) A walt state in the Ml cycle Input a RESET signal to start sampling this signal at the clock rising in the Ml cycle's T3 state. ~hen a 1 walt state occurs, this type of RESET signal can be generated by the circuit diagrammed in Fig. 10. In the circuit shown in Fig. 2, no RESET signal is given during an interrupt acknowledge cycle. • The RAM contents may be adversely affected by resetting the CPU while it is in operation. To prevent this, a RESET signal should be input in the following timings. (1) No walt state in the M1 cycle Input a RESET signal to start sampling this signal at the clock rising in the Ml cycle's T, state. Fig. 9 shows a typical circuit generating such a WAIT signal circle WAIT r--- -,---- -- - - ------------, I I +5V I +5V· I +5V I 7432 :+5V I MI I I I MREQ B I A I CLOCK 74123 Q'-------'"-..... RESET 7408 +5V. IS1588 CLOCK MI MREQ --J/ ~'-_ _ _ _ _ _ _ _ \.....______-.J/ \1...-.,-_--1, RESET \~----Fig. 10 Reset circuit and timing diagram when M1 cycle has a wait state --.--.----...-.--SHARP 222 ----~.-.-.- Z80/Z80A/Z80B Central Processing Unit • CPU Registers A Accumulator B General Purpose D General Purpose H General Purpose F Flag Register C General Purpose E General Purpose L General Purpose , , • LH0080/LH0080A/LH0080B F' Flag Register C' General Purpose E' General Purpose L' General Purpose A' Accumulator B' General Purpose D' General Purpose H' General Purpose . 8 bits I Interrupt Vector I Index Register IX IY Index Register Stack pointer SP Program Counter PC 16 bits R Memory Refresh . Architecture (1) CPU Registers (i) Program Counter (PC) The program counter holds the 16 bits memory address of a cur~ rent instruction. The CPU fetches the contents from memory address specified by the PC. The PC feeds the data to the address line, automatically setting the PC value to + 1. When a program jump takes place, a new value is directly set to the PC. (ii) Stack Pointer (SP) The stack pointer holds the top 16-bit address of the stack with an external RAM. An external file is based on LIFO (Last- In, First-Out). The data are transferred between a CPU-specified register and the stack by a PUSH or POP instruction. The last-pushed data are first popped from the stack. (iii) Index Register (IX & IV) For index mode addressing, there are independent index registers IX and IY, each of which holds 16-bit reference address. In the index mode, the index registers are used to designate the memory area for data input/output. With an INDEX ADDRESSING instruction, an effective address comes by adding a one-byte displacement to the register content. This displacement is an integral signed two's complement number (iv) Interrupt Register (I) The 280 CPU has indirect subroutine call mode for any memory area according to an interrupt. For this purpose, this register stores the upper 8 bits of memory address for vectored interrupt processing and the lower 8 bits for the interrupting device. (.) Ref'esh Registe, IR) Tb, built-in cefresh register provides user-transparent dynamic memory refresh. Its lower 7 bits are automatically incremented during each instruction fetch cycle. While the CPU records a fetched instruction and executes the instruction, the refresh register data are placed on the address bus by a REFRESH control signal. (vi) Accumulator and Flag Register (A & F) The CPU has also two independent 8-bit accumulators in combination with two 8-bit flag registers. The accumulators store an operand or the results of an 8-bit operation. The flag registers, on the other hand, deal with the results of an 8-bit or 16-bit operation; for example, seeing if the result is equal to 0 or not. (Vii) General-Purpose Registers There are several pairs of general-purpose registers. In each pair, they can be used separately or as a 16-bit paired register. The paired registers are BC, DE, HL, as well as Be' DE' HL'. Either of these sets can work by an "Exchange" instruction at any time on a program. (2) Arithmetic/Logical Unit (ALU) An 8-bit arithmetic/logical operation instruction is executed by the ALU inside the CPU. The ALU connects to each register through the internal bus for data transfer between them. (3) Instruction Register, CPU Control Each instruction is read out of the memory, held in the instruction register, and decoded. The con- '-~'---'---SHARP'-''------- 223 14 ~ \ Z80/Z80A/Z80BCentral 'Processing Unit LH0080/LH0080A/LH0080B .......~.....,_ _................,............ . -...............-..r......._ _............... / trol unit controls this action and gives control signals necessary to read and write data from and to the registers. The,control unit also makes ALU control signal and other external control signals. (Interrupts: General Operation> The Z~W,CPU accepts two interrupt input signals: NMI and INT_ The NMI is a non-maskable interrupt and has the highest priority. INT is a lower priority interrupt and it requires th,at interrupts be enabled in software in order to operate. (1) vice places an instruction on the data bus. This isa Restart instruction or a Call instruction. (ii) Mode 1 Interrupt Operation. Mode 1 operation is very similar to that for the NML The prir-cipal difference is that the Mode 1 interrupt has a restart location of 0038H only. ,(iii) Mode 2 Interrupt Operation. This interrupt 'mode has been designed to utilize most effectively the capabilities of the Z80 microprocessor and its associated peripheral family. The interrupting peripheral device selects the starting address (16 bits) of the interrupt service routine. It does this by placing an 8-bit vector on the data bus during the interrupt acknowledge cycle. The CPU forms a pointer using this byte as the lower 8-bits and the contents of the I register as the upper 8-bits. This points to an entry in a table of addresses for interrupt service routines. The CPU then jumps to the routine at that address. All the Z80 peripheral devices have the interrupt priority circuit with a daisy-chain configuration. puring an interrupt acknowledge cycle, vectors are automatically fed. For more details, refer to the Z80 PIO description. _ Non-Maskable Interrupt (NMi) The non-maskable interrupt will be accepted at all times by the CPU. After recognition of the NMI signal, the CPU jumps to restart location 0066H. (2) Maskable Interrupt (INT) The maskable interrupt, INT, has three prog-ram mabie response modes available. (i) Mode 0, Interrupt Operation. This mode'is similar to the 8080Amicroprocessor interrupt service procedures. The interrupting de- Table ~op::: :~:: t _1;---ypOinte: b,'_S____,7_bi_ts 101 _ t'-___ From application device I register contents To the beg inning of service rotine Fig. 1 Mode 2 interrupt diagram - . . . . - . - - - - - - - S H A R p . - . . . . - . . - - - - - - .......... - 224 Z80/Z80A/Z80B Central Processing Unit • LH0080/LH0080A/LH0080B Instruction Set Table 1 8-bit load group LD r, r LD r, n Symbolic operation , r+-r r+-n LD r,(HL) LD r, (IX+d) r+- (HL) r+- (IX+d) LD r, (IY+d) r+- (IY+d) LD (HL), r LD (IX+d), r (HL)+-r (IX + d)+-r LD (IY+d), r (IY+d)+-r LD (HL), n (HL)+-n Mnemonic , HEX code OP code 76 543 210 (Basic) C , 01 r r 40+ 00 r 110 06+ +- n -+ 01 r 110 46+ 11 011 101 DD 01 r 110 46+ +- d -+ 11 111 101 FD 01 r 110 46 +- d -+ 01 110 r 70+ 11 011 101 DD 01 110 r 70+ +- d -+ 11 111 101 FD 01 110 r 70+ +- d -+ 00 110 110 36 +- 0 -+ • • • • 3 5 19 • ••• • • • • • • • • 1 3 2 5 7 19 • ••• • • 3 5 19 2 3 10 4 5 19 • • • • • • 4 5 19 OA 1A 3A • • • • • • •••• •• • • • • • • 1 1 3 2 2 4 7 7 13 02 12 32 • • •• • • • • • • • • • • • • • • 1 1 3 2 2 4 7 7 13 • t IFF t 0 0 2 2 9 • t IFF t 0 0 2 2 9 2 2 9 2 2 9 DD 36 LD (IY+d), 0 (IY + d)+-o 11 00 ++00 00 00 ++00 00 00 ++11 01 11 01 11 01 11 01 FD 36 LD (BC), A LD (DE), A LD (00), A (BC) +- A (DE) +- A (00) +- A LD A,I A +- I LDA,R A+-R LDI,A I +- A LDR,A R+-A 0 -+ 0 -+ 000 010 010 010 110 010 0 101 010 101 011 101 000 101 001 • •• • • • • • • • • • Comments r,r 000 001 010 011 100 101 111 Reg. B C D E H L A -+ 001 010 011 010 III 010 0 •• • • •• • • No. of No. of No. of Bytes MCycles T States 1 1 4 2 2 7 • ••• • • 11 011 101 00 110 110 +d -+ +- 0 -+ 0 • • • • H 7 19 (IX + d)+-n A+- (BC) A +- (DE) A+- (00) • • • • N 2 5 0 LD A, (BC) LD A, (DE) LD A, (00) • • • • Flags S P/V 1 3 LD (IX+d), 111 101 110 110 d -+ Z -+ -+ 101 111 101 111 101 III 101 111 ED 57 ED 5F ED 47 ED 4F • • • •• • • • • • • • • Notes: r, r' means any of the registers A, B, C, D, E, H, L, IFF the content of the interrupt enable flip-flop, (IFF) is copied into the P/V flag_ Flags: C (carry), Z (zero), S (sign), P/V (parity/overflow), H (half carry), N (add/substract)_ : • =unchanged, O=reset, 1 =set, X=undefined. : t set or reset according to the result of the operation. -----~---SHARP-.----.-..--- 225 \ . LH0080/LH0080A/LH0080B Z80/Z80A/Z80B Central Processing Unit Table 2 OP code HEX code 76 543 210 (Basic) C 00 ddO 001 01+ 0 -+ 0 11 011 101 DO 00 100 001 21 0 0 11 111 101 FD 00 100 001 21 0 n 00 101 016 2A n n 11 101 101 ED 01 dd1 011 4B+ +n 0 11 011 101 DD 00 101 010 2A n n 11 111 101 FD 00 101 010 2A LD dd, nn Symbolic operation dd ~nn LD IX, nn IX - LD IY, 00 IY -00 10 HL, (00) H +- (00+1) L-(no) 10 dd, (00) ddH +- (00+1) ddL - (no) 10 IX, (no) IXH +- (nn+ 1) IXL - (nn) LD IY, (nn) IYH +- (on+1) IYL - (rin) 10 (nn), HL (nn+1) 4 - H 00 100 n (nn) - L n (on+1) +- ddH 11 101 01 ddO (nn) - ddL n n (on+ l)+-IX~ 11 011 (nn) +- IXL 00 100 n n (nn+ l)+-IYH 11 111 00 100 (nn) - IYL n n SP -HL 11 111 11 011 SP - IX 11 111 11 111 SP - IY 11 111 (SP-2)+-qqL 11 qqO (SP-1)+-qqH (SP-2)+-IXL 11 011 (SP-1)+-IXH 11 100 (SP-2)+-IYL 11 111 (SP-l)+-IYH 11 100 qqH +- (SP+ 1) 11 qqO qqL - (SP) IXH+-(SP+ 1) 11 011 IXL +- (SP) 11 100 IYH'" (SP+1) 11 111 IYL - (SP) , 11 100 Mnemonic 10 (nn), dd 10 (nn), IX 10 (nn), IY 10 SP, HL 10 SP, IX 10 SP, IY PUSH qq PUSH IX PUSH IY POP qq POP IX POPIY Notes: Flags: 226 00 16-bit load group --- No. of N H • • • • • • • • • • •• • • • • •• ---. .fl .,. Flags pd S • • •• • • • • •• -- -- --- --- -- ---- Z • • • • • • No. of No. of Bytes M CyCles T States 3 10 3 4 4 14 4 4 14 3 5 16 4 6 20 4 6 20 4 6 20 3 5 16 4 6 20 010 22 101 011 ED 43+ • • • • • • • • • • • • • • • • •• 101 010 DD 22 • • • • •• 4 6 20 101 010 FD 22 • • • • • • 4 6 20 001 101 001 101 001 101 F9 DD F9 FD F9 C5+ 1 2 1 2 6 10 2 2 10 1 3 11 101 101 101 101 001 DD E5 FD E5 Cl+ 2 4 15 2 4 15 1 3· 10 101 001 101 001 DD E1 . 2 4 14 2 4· 14 -- ---- FD E1 • • • • • • • • • • • • • • • • • • • • • • • • •• .. • •• • • • • • • •• • • •• •• • • •• • • • • • • Comments dd 00 01 10 11 no : 2·byte oumber. Lower byte just after opcode. Upper byte comes next. qq 00 01 10 11 dd is any of the register pairs BC, DE, HL, SP. qq is any of the register pairs AF, BC, DE, HL. (PAIR)H, (PAIR)L refer to high order and low order eight bits of the register pair respectively, e.g., BCL=C, AFH=A. • =unchanged, O=reset, 1 =set, X=undefined, =set or reset according to the result of the operation * Reg. BC DE HL SP Reg. BC DE HL AF Z80/Z80A/Z80B Central Processing Unit Table 3 Mnemonic EX DE, HL EX AF,AF' EXX EX (SP), HL EX (SP), IX EX (SP), IY LDI LDIR LDD LDDR CPI CPIR CPD CPDR Symbolic operation DE-HL AF-AF' ~~I'fj IDE-DE' \lIL HL' H ..... (SP+1) L-(SP) IXH ..... (SP+1) IXL - (SP) IYH ..... (SP+1) IYL - (SP) (DE) - (HL) DE - DE+1 HL - HL+1 BC - BC-1 (DE) - (HL) DE - DE+1 HL - HL+1 BC - BC-1 If BC=O end (DE) - (HL) DE - DE-1 HL - HL-1 BC - BC-1 (DE) - (HL) DE -DE-1 HL - HL-l BC - BC-1 If BC=O end A- (HL) HL ~ HL+1 BC - BC-1 A- (HL) HL - HL+1 BC - BC-1 If A= (HL) or BC=O end A- (HL) HL - HL-1 BC - BC-1 A- (HL) HL - HL-1 BC - BC-1 If A= (HL) or BC=O end LH0080/LH0080A/LH0080B Exchange, block transfer, block search groups HEX code OP code 76 543 210 (Basic) C 11 101 011 EB 00 001 000 08 11 011 001 D9 Z Flags S P/V N H •••••• •••••• • • • • • • 11 100 011 E3 11 11 11 11 11 10 011 101 100 011 111 101 100011 101 101 100 000 DD E3 FD E3 ED AO 11 101 101 10 110 000 ED BO 11 101 101 10 101 000 ED A8 11 101 101 10 111 000 ED B8 11 101 101 10 100 001 ED Al 11 101 101 10 110 001 ED B1 11 101 101 10 101 001 ED A9 11 101 101 10 III 001 ED B9 • • •••• •••••• •••••• •• t 10 7 7 19 t t t 1 1 3 1 3 6 4 11 23 t 3 6 23 1 0 0 t t 1*2 1 3 3 1*2 3 6 6 Note: V and P mean overflow and parity, respectively. Flags: • = unchanged O=reset l=set X=undefined J = set or reset according to the 'result of the operation . 7 19 Comments r 000 001 010 011 100 101 111 Mnemonic ADD ADC SUB SBC AND OR XOR CP Reg. B C 0 E H L A k 000 001 010 011 100 110 101 111 S=r, n, (HL), (IX + d), (IY +d) , Mnemonic INC DEC t 100 101 4*2 m=r, (HL), 11 (IX+d), (lY+d) 23 23 ,.1: depends on s. ,.2: depends on m. r - - - . - -........... ----SHARP---~~--------~ 228 LH0080/LH0080A/LH0080B Z80/Z80A/Z80B Central Processing Unit Table 5 General purpose arithmetic and CPU control groups CPL Symbolic OP code HEX code 76 543 210 (Basic) C operation Decimal 00 100 III 27 t adjustment (add/subtract) A-A 00 101 111 2F NEG A-O-A CCF SCF NOP HALT DI EI 1M 0 C-C C-1 No operation CPU halted IFF-O IFF - 1 Set interrupt mode 0 Set interrupt mode 1 Set interrupt mode 2 Mnemonic DAA 1M 1 1M 2 11 01 00 00 00 01 11 11 11 01 11 01 11 01 101 101 000 100 111 111 110 111 000 000 110 110 110011 111 011 101 101 000 110 101 101 010 110 101 101 011 110 ED 44 3F 37 00 76 F3 FB ED 46 ED 56 ED 5E Z t Flags S P t P/V N • H t No. of No. of No. of Comments Bytes M Cycles T States 1 Decimal adjust 4 1 accumulator. •••• 1 1 1 1 4 t t 1 t 2 2 8 0 0 X 0 1 1 1 1 1 1 2 1 1 1 1 1 1 2 4 4 4 4 4 4 8 2 2 8 2 2 8 t 1 • • • • • • • V t • • •• •• • • •• • • • • • • • • • • • • • • • • • • • •• •• •• • • •• • • Complement accumulator (one's complement). Negate acc. (two's complement). Complement carry flag. Set carry flag. Interrupt not enable Interrupt enable Set interrupt mode. Note : IFF indicates the interrupt enable flip· flop, CY indicates the carry f1ip·f1op. Flags: • = unchanged, O=reset, 1 =set, X=undefined, , =set or reset according to the result of the operation Table 6 ADD IX, pp Symbolic operation HL-HL +ss HL-HL +ss+C HL-HL -ss-C IX-IX+pp ADD IY, rr IY - Mnemonic ADD HL, ss ADC HL, ss SBC HL, ss INC ss INC IX ss IX - INC IY IY - DEC ss DEC IX ss IX - DECIY IY - 16-bit arithmetic group OP code HEX code 76 543 210 (Basic) C 00 ssl 001 09+ t 11 01 11 01 11 00 IY+rr 11 00 ss+l 00 IX+l 11 00 IY+1 11 00 ss-l 00 IX-l 11 00 IY-l 11 00 101 ssl 101 ssO 011 pp1 111 rr1 ssO 011 100 111 100 ssl 011 101 III 101 101 010 101 010 101 001 101 001 011 101 011 101 011 011 101 011 101 011 ED 4A+ ED 42+ DD 09+ FD 09+ 03+ DD 23 FD 23 OB+ DD 2B FD 2B Flags S Z P/V t t V t t V No. of No. of No. of Bytes M Cycles T States 1 11 3 N 0 H X t 0 X 2 4 15 t 1 X 2 4 15 t • • • 0 X 2 4 15 t • • • • • • • 2 4, 15 • • • • • • • • • Comments ss 00 01 10 11 •• •••• • • • • • • • • 0 X • • • • •••• • • • • \ pp 00 01 10 1 2 1 2 6 10 2 2 10 1 2 1 2 6 10 rr 00 01 10 2 2 10 11 11 Reg. BC DE HL SP Reg. BC DE IX SP Reg. BC DE IY SP Note: ss is any of the register pairs BC, DE, HL, SP. pp is any of the register pairs BC, DE, IX, SP. rr is any of the register pairs BC, DE, IY, SP. Flags: • =unchanged, O=reset, 1 =set, X=undefinede, , =set or reset according to the result of the operation 229 zao/zaOA/zaOB Central Processing Unit Table 7 Mnemonic Symbolic operation LHooao/LHooaOA/LHooaoB Rotate arid shift groups HEX code OP code 76 543 210 (Basic) C Z Flags S PlY N No. of No. of No. of H ' Bytes MCycles T States 0 0 1 1 4 Rotate left circular accumulator. 0 0 1 1 4 Rotate left accumulator. p 0 1 1 4 Rotate right circulart accumulator. 0 0 1 1 4 Rotate right accumulator. Rotate left circular register r. RLCA ~ A 00 000 111 07 + RLA ~ A 00 010 111 17 + RRCA ~ A 00 001 111 OF + On IF + CB 00+ CB 06+ DD CB + t p t 0 0 2 2 ,8 t t p t 0 0 2 4 15 t t p t 0 0 4 6 23 t t p t 0 0 4 6 23 + 0 0 RRA Lii3=@lJ A R,LCr RLC (HL) RLC (IX+d) ~ r. (HL). (IX+d). (IY+d) RLC (IY+d) 00 11 00 11 00 11 11 <- 00 11 11 <- 00 111 001 011 k r 001 011 k 110 011 101 001 011 d ..... k 110 111 101 001 011 d k 110 ..... 06+ FD CB • • • • •• • •• ••• , Comments r 000 001 010 011 100 101 111 Reg. B C D E H L A 06+ RLm ~m t + p RRC m ~ m t + p + 0 0 RRm LiBi=@J + + P + 0 0 m '2* 2* 2 4 4 4 6 6 Mnemonic RLC RRC RL RR 8,* ! SLA 15 SRA 23 SRL 23 k 000 001 010 011 100 101 111 SLAm ~ m t + p t 0 0 SRAm ~ t t ,P t 0 0 m=r. (HL). (IX+d). (IY+d). SRL m ~ m t t p t 0 0 * depends on m. RLD A~ RRD A~ 11 101 101 (HL) 01 101 111 (HL) 11 101 101 01 100 111 ED 6F • t p + 0 0 2 5 18 ED 67 • t p t 0 0 2 5 18 Flags: • =unchanged O=reset l=set X = undefined t = set or reset according to the result of the operation 230 Rotate digit left and right between the accumulator and location (HL). The content of the upper half of the accumulator is un· affected. Z80/Z80AlZ80B Central Processing Unit LH0080/LH0080AlLH0080B Table 8 Bit set, reset and test group BIT b, r Symbolic operation Z +- rb BIT b, (HL) Z +- (HL)b BIT b, (IUd) Z +- (IX+d)b BIT b, (IY+d) Z +- (IY+d)b Mnemonic SET b, r n+-1 SET b, (HL) (HL)b +- 1 SET b, (IX+d) (IX+d)b +- 1 SET b, (IY+d) (IY+d)b +- 1 HEX code OP code 76 543 210 (Basic) C 11 001 011 CB 01 r 40+ b 11 001 011 CB 01 b 110 46+ 11 011 101 DD 11 001 011 CB +- d ..... 01 b 110 46+ 11 111 101 FD 11 001 011 CB +- d ..... 01 b 110 46+ 11 001 011 CB r a b 11 001 011 CB 06+ a b 110 11 011 101 DD 11 001 011 CB +- d ..... a b 110 06+ 11 111 101 FD 11 001 011 CB +- d a b 110 06+ • • • • t Flags S X X N 0 H 1 t X X 0 1 2 3 12 t X X 0 1 4 5 20 t X X 0 1 4 5 20 Z PlY • • •• •• • • • • •• • • •• • • • • •• • • No. of No. of No. of Bytes M Cycles T States 2 8 2 2 2 8 2 4 15 4 6 23 4 6 23 ..... RES b, m fib +- 0 2* 2* 8* 2 4 4 4 6 6 15 23 23 Comments r 000 001 010 011 100 101 111 Reg. B C D E H L A b 000 001 010 011 100 101 110 111 Bit Tested 0 1 2 3 4 Mnemonic SET RES 5 6 7 a 11 10 m=r, (HL), (IX+d), (IY+d) * depends on m Note: The notation mb indicates bit b (0 to 7) or location ffi. Flags: • = unchanged o= reset l=set X=undefined ; = set or reset according to the result of the operation -.....-.-------SHARP------------231 Z80/Z80Al~80B C~ntral processing Unit' LH0080/LH0080AlLH0080B Table 9 Jump group OP code HEX code 76 543 210 (Basic) C 11 000 011 C3 n -+ n -+ If condition cc 11 cc 010 C2+ is true PC ... nn, n -+ otherwise conn -+ tinue 18 PC - PC+e 00 011 000 e-2 -+ If C=1 00 111 000 38 e-2 PC - PC+e If C=O continue If C=O 00 110 000 30 e-2 -+ PC - PC+e If C=1 continue If Z=1 00 101 000 28 e-2 \ -+ PC - PC+e IfZ=O continue If Z=O 00 100 000 20 e-2 -+ PC - PC+e IfZ=1 continue PC-HL 11 101 001 E9 PC -IX 11 011 101 DD 11 101 001 E9 11 III 101 PC -IY FD 11 101 001 E9 10 If B - B-1 00 010 000 Bio e-2 -+ PC - PC+l If B=O continue Symbolic operation pc,- nn Mnemonic JP nn • • -- JR e .... JR NC, e ... •••••• .... JP (HL) JP (IX) JP (IY) DJNZ, e • • • • .... ) ! •••• • •• • • • .... JR NZ, e H • • • • • • .... JR Z, e N ••• •• • •••••• .... JR C, e Flags S PIV •••••• -- JP cc, nn Z • • • • • • • • • • • • • • • • • • • • No. of No. of No. of Bytes M Cycles T States 3 10 3 3 3 10 3 3 10 2 3 12 2 3 12 2 2 7 2 3 12 2 2 7 2 3 12 2 2 7 2 3 12 2 2 7 1 2 1 2 4 8 2 2 8 2 -3 2 2 Comments cc 000 001 010 011 100 101 110 III Condition NZ Z NC C PO PE P M NZ : non-zero Z : zero C: carry PO : parity odd PE : parity even P: sign positive M : sign negative 13 8 -Note: e represents the extension in the relative addressing mode. e is a signed two's,complement number in the range -126.129> e -2 in the opcode provides an effective address of pc+e as PC i,s incremented by 2 prior to the addition of e. e itself is obtained from opcode position_ Flags: • = unchanged O=reset 1=set X=undefined t =set or reset according to the result of the operation < ~-------~--SHARP-"---'------ 232 Z80/Z80AlZ80B Central Processing Unit LH0080/LH0080A/LH0080B Table 10 Call and return group Mnemonic CALL nn CALL cc, nn RET RET cc RET! RETN RST p Symbolic operation (SP-1) .... PCH (SP-2) .... PCL PC -nn If condition cc is false continue, otherwise same as CALL nn PCL - (SP) PCH .... (SP+ 1) If condition cc is false continue, otherwise same as RET Return from interrupt Return from non· mask able interrupt (SP-l) +- PCH (SP - 2) +- PCL PCH - 0 PCL - P OP code HEX code 76 543 210 (Basic) C 11 001 101 CD n -+ n -+ 11 cc 100 C4+ n -+ n -+ Z Flags S PlY N H •••• •• --- •••••• 11 001 001 C9 11 cc 000 CO+ 11 01 11 01 101 001 101 000 101 101 101 101 ED 4D ED 45 11 t 111 C7+ •••••• •••••• • • • • •• • • • • •• • • • • •• No. of No. of No. of Bytes M Cycles T States· 3 17 5 3 5 17 3 3 10 1 3 10 1 '3 11 1 1 5 2 4 14 2 4 14 1 3 11 Comments , cc 000 001 010 011 100 101 110 111 Condition NZ Z NC C PO PE P M r 000 001 010 011 100 101 110 111 p OOH 08H 10H 18H 20H 28H 30H 38. Flags: • = unchanged O=reset l=set X = undefined • = set or reset according to the result of the operation '--''-~-----SHARP'-''---~---- 233 zao/zaOA/zaOB Central Processing Unit lHooaO/lHOOaOAllHOOaOB Table 11 Input and output group IN A, (n) Symbolic operation A+- (n) IN r, (C) r +- (C) INI OUT (n),A (HL) +- (C) B +- B-1 HL +- HL+1 (HL) +- (C) B +- B-1 HL +- HL+l Repeat until B=O (HL) +- (C) B +- B-1 HL +- HL-1 (HL) +- (C) B +- B-1 HL +- HL-1 Repeat until B=O (n) +- A OUT (C), r (C) +- r OUTI (C) +- (HL) Mnemonic INIR INO IN OR OTIR OUTD OTDR B +- B-1 HL +- HL+l (C) +- (HL) B +- B-1 HL +- HL+l Repeat until B=O (C) +- (HL) B +- B-1 HL +- HL-l (C) +- (HL) B +-B-1 HL +- HL-l Repeat until B=O OP code HEX code 76 543 210 (Basic) C 11011 011 DB +- n ..... 11 101 101 ED 01 r 000 .40+ 11 101 101 ED X 10 100 010 A2 11 101 101 10 110 010 N H P t 0 t t CD X X 1 X 2 1 @ X X 1 X 2 P/V t • • • • • • • ED B2 X No. of No. of No. of Comments Bytes MCycles T States n ..... Ao-A7 2 3 11 Aex ..... As-A15 12 2 3 Flags S Z 4 16 5 21 (If Bi'O) 2 4 16 (If B=O) 11 101 101 10 101 010 ED AA X t CD X X 1 X 2 11 101 101 10 111 010 ED BA X 1 X X 1 X 2 4 16 5 21 C"'" Ao-A7 B ..... As-A15 r. 000 001 010 011 100 101 111 Reg. B C 0 E H L A (If Bf 0) . @ 2 4 16 (If B=O) 11 +11 01 11 10 010 011 n ..... 101 101 r 001 101 101 100 011 D3 11 101 101 10 110 011 ED B3 ED 41+ ED A3 • • • • • • • • • • •• n ..... (A·BUS)O-7 Aex ..... (A·BUS)S-15 2 3 11 2 3 12 4 16 C ..... Ao-A7 5 21 B ..... As-A15 X t CD X X 1 X 2 X 1 X X 1 X 2 (If BfO) @ 2 4 16 (If B=O) 11 101 101 10 101 011 ED AB X t CD X X 1 X 2 11 101 101 10 111 011 ED BB X 1 X X 1 X 2 4 16 5 21 (If Bfa) @ 2 4 16 (If B=O) CDlf the result of B-1 is zero the Z flag is set, otherwise it is reset. ®Z flag is set upon instruction completion only. Flags: • =unchanged O=reset l=set X=undefined l = set or reset according to the result of the operation Note: ------~-.-.--SHARP -.-....,-----~.-.-- 234 Z80/Z80A/Z80B Parallel -Input/Output Controller LH0081.1LH0081A1LH0081 B LH0081/LH0081A/LH0081B Z801Z80AlZ80B Parallel Input/Output Controller • Description The 280 product line is a complete set of microcomputer components, development systems and support software. The 280 microcomputer component set includes all of the circuits necessary to build high-performance microcomputer systems with virtually no other logic and a minimum number of low cost standard memory elements. The LH0081 280 PIO (280 PIO for short below) is a programmable two port device which provides TTL compatible interfacing between peripheral devices and the 280 CPU. The 280 CPU configures 280 PIO to interface with standard peripheral devices such as tape punchers, print~rs, keyboards, etc. The LH0081A 280A and LH0081B 280B PIO are the high speed version which can opeate at the 4MHz and 6MHz system clock, respectively. • • Pin Connections D6 BfA SEL 6 Features 1. Two independent 8-bit bidirectional peripheral interface ports with "handshake" data transfer control 2. N-channel silicon -gate process 3. Anyone of the following four modes of operation may be selected. • Byte output mode • Byte input mode • Byte bidirectional bus (available on Port A only) • Bit mode 4. Programmable interrupt 5. Vectored daisy chain priority interrupt logic included 6. The port B outputs can drive Darlington transistors 7. All inputs and outputs fully TTL compatible 8. Single +5V power supply and single phase clock 9. 40-pin dual-in-line package Top View 235 Z80/Z80A/Z80B ParallellnputlOutput Controller • LH0081 ILH0081 AlLH0081B Block Diagram Internal Control Logic ;:; fr " ::. c. ..:;" 0 ...: u System Data Bus Port A Data Bus . 's. 0 ~ ....:I 0 Il. -=fr " c. ..:;" 0 ::. '" Port AlB Select " o:l :::> Il. u -=fr Machine Cycle 1 " ::. c. ..:;" 0 I/O Port B Data Bus o:l .. ~ Interrupt 0 Control Logic > > '"+ 2Q z u u > " -'" u 0 U e '" '»" Ul ~ ~ Il. BReady B Strobe ..:; ''""or" '" 0-= '" :c :c'" 0:: ~ " ~" ~ :::s oj oj .. .. .E'" ..:;!.. !.. ~ c. :::s ~ c. :::s ..:; '-'-~-----SHARP-------'- 236 Z80/Z80AlZ80B Parallel Input/Output Controller • Pin Description Pin Do-D 7 - B/A SEL Meaning Data bus I/O Bidirectional 3-state Port B or A select I Control or data select I CE Chip enable I CLOCK System clock I - C/D SEL - - M1 -IORQ RD lEI lEO INT Ao-A 7 --- Machine cycle one Input/ output request I I Read cycle status Interrupt enable in Interrupt enable out Interrupt request Port A bus I I 0 Open drain, 0 Bidirectional 3-state A STB Port A strobe I A RDY Port A ready 0 Bo-B 7 Port B bus -- • LH0081/LH0081A/LH0081B Bidirectional 3-state B STB Port B strobe I B RDY Port Bready 0 Function System data bus. Defines which port is accessed. A high selects port B, and a low port A. Defines the type of data transfer on the data bus. A high selects control, and a low data. Active "Low". A low enables the CPU to transmit and receive control words and data. Standard Z80 system clock used for internal synchro· nization signals. Active "Low". Indicates that the CPU is acknowledging -an interrupt, when both M1 and IORQ are active. Active "Low". Read operation when RD is active, and write operation when it is not active. Indicates that the CPU is acknowledging an interrupt, when both IORQ and M1 are active. Active "Low". Read operation when active. Active "High". Forms a priority-interrupt daisy-chain. Active "High". Forms a priority-interrupt daisy-chain. Active- "Low". Active when requesting an interrupt. Transfers information between port A and a peripheral device. Active "Low". Used as a handshake line for data transfer synchronization on port A. Not used in the bit control mode. Active "High". Used as a handshake line for data transfer synchronization on port A. Not used in the bit control mode. Transfers information between port B and a peripheral device. Active "Low". Used as a handshake line for data transfer synchronization on port B. Not used in the bit control mode. Active "High". Used as a handshake line for data transfer synchronization on port B. Not used in the bit control mode. - Absolute Maximum Ratings Parameter Input voltage Output voltage Operating temperature Storage temperature Symbol V IN V OUT T oDr T sto Ratings -0.3-+7 -0.3-+7 0-+70 -65-+150 Unit V V ·C ·C 237 Z80/ZS0A/Z80B Parallel Input/Output Controller LH008t1LH0081AILH0081 B • (Vcc =5V±5%,'Ta=0-+70t) DC Characteristiqs Parameter input low voltage Clock input high voltage Input low voltage Input high voltage Output low voltage Output high voltage Supply current Input leakage current 3 state output! data bus input leakage current Darlington drive current Clocl~ • Symbol Conditions MLN. -0.3 Vee- 0.6 -0.3 2.0 VILe V IHe VIL VII'! IOL =2mA IoH = -250pA VoH =1.5V VOL VOH Icc I ILl I TYP. 2.4 O:;;;VIN~Vee 100 10 I Iz I 0:;;;V1N:;;;V ee 10 IOHD REXT =390n • pA rnA (f=lMHz, Ta=25t) Symbol Conditions CCLOCK C1N COUT MIN. . Parameter TYP. Unmeasured pins returne<1 to ground MAX. 12 7 10 Unit pF pF pF (Vcc=5V±5%, Ta=0-+70t) AC Characteristics No. Symbol Z80 MIN. 400 170 170 PIO MAX. (Note 1) 2000 2000 30 30 Z80A MIN. 250 105 105 PIO Z80B PIO (Note 9) MAX. MIN. MAX. (Note 1) 165 (Note 1) 2000· 65 2000 2000 65 2000 20 30 20 30 Unit TcC TwCh TwCl TfC TrC 17 IEI ~ to lEO ~ delay TdlEI (IEOf) 190 130 120 ns 18 IEI t to lEO t delay (After ED decode) TdlEI (IEOr) 210 160 160 ns 6 7 8 9 10 11 12 13 14 15 16 238 TsCS (RI) Th TsRI (C) TdRI (DO) 50 50 50 ns 0 0 0 ns 430 380 300 ns ns 160 110 70 ns 115 TdRI (DOs) 115 70 Note ns ns ns ns ns Clock cycle time Clock width (high) Clock width (low) Clock fall time Clock rise time CE, B/ A, C/O to RD, IORO ~ setup time Any hold times for specified. setup time RD, IORQ to clock t setup time RD, IORQ ~ to data out delay RD, IORQ t to data out float delay Data in to clock t setup time IORQ ~ to vector out delay (INT ACK cycle) M1 ~ to clock t setup time M1 t to clock ~ setup time (M1 cycle) Ml ! to lEO ~ delay (interrupt immediately preceding M1 ~ ) tEl to IORQ ~ setup time (INT ACK cycle) 1 2 3 4 5 Unit V V V V V V rnA pA -1.5 CapaCitance Parameter Clock capacitance Input capacitance Output capacitance MAX. 0.45 Vee+ 0.3 0.8 5.5 0.4 6 2 50 50 40 ns CL-50pF TdIO (001) 340 160 120 ns 3 TsMl (Cr) 210 90 70 ns TsMl (Cf) 0 0 0 ns 8 ns 5,7 ns 7 TsDI (C) TdMI (lEO) TsIEI (10) . 300 140 100 190 140 100 5 C~=50pF 5 LH0081/LH0081A/LH0081B Z80/Z80AlZ80B Parallel Input/Output Controller Z80A PIO MIN. MAX. MIN. 220 200 170 ns TdC (RDYr) 200 190 170 ns TdC (RDYf) TwSTB 150 150 140 150 120 120 ns ns 5 CL=50pF 5 4 TsSTB (C) 220 220 150 ns 5 ns 5 Parameter Symbol 19 IORQ t to clock ! setup time (to activate READY on next clock cycle) TelO(C) 20 Clock 21 22 Clock ! to READY ! delay STROBE pulse width STROBE t to clock ! setup time (to activate READY on next clock cycle) IORQ t to PORT DATA stable delay (Mode 0) PORT OATA to STROBE t setup time (mode 1) STROBE ! to PORT OAT A stable (mode 2) STROBE t to PORT OAT A float delay (mode 2) PORT OAT A match to INT ! delay (mode 3) STROBE t to INT ! delay 23 24 25 26 27 28 29 t Rising edge, Note Note Note Note Note Note Note Note Note 1: 2: 3: 4: 5: 6: 7: 8: 9: ! to READY t delay Z80B PIO (Note 9) Z80 PIO MIN. MAX. No. TdIO (PO) 200 TsPD (STB) 260 TdSTB (PO 230 160 180 230 MAX. Unit Note ns 190 210 180 ns 5 CL=50pF TdSTB (PDr) 200 180 160 ns TdPD (INT) 540 490 430 ns TdSTB (INT) 490 440 350 ns ~ Falling edge TcC=TwCh+TwCI+TrC+TfC. Increase TdRI (DO) by 10 ns for each 50 pF increase in load up to 200 pF max. Increase TdIO (DOl) by IOns for each 50 pF, increase in load up to 200 pF max. For Mode 2 : TwSTB>TsPD (STB). Increase these values by 2 ns for each 10 pF increase in load up to 100 pF max. TsCS (RI) may be reduced. However, the time subtracted from TsCS (RI) will be added to TdRI (DO). 2.5 TcC>(N-2) TdIEI (IEOf)+TdMI (IEO)+TsIEI (IO)+TTL buffer delay, if any. Ml must be active for a minimum of two clock cycles to reset the PIa. Z80B PIa numbers are preliminary and subject to change. -------------SHARP-----.-........;...-239 -.,.-.-.... .............. -.. - .• .-- ..........,...... ... Z801Z80A/Z80B ParallellnputlOutput Controller' .- .... LH0081/LH0081A/LH0081 B -.~....,~ AC Timing Chart CLOCK CE B/A,C/O RD,IORQ OUT Do-D, { . IN IORQ Ml lEI lEO READY (ARDY or BRDY) STROBE (ASTB or B8TB) Mode 0 Ao-A, Mode 1 Mode 2 Mode 3 ---"---~----SHARP---'-""""'~""""'------ 240 Z80/Z80AlZ80B. Parallel Input/Output Controller Programming • (1) LH0081/LH0081A/LH0081B (3) Interrupt control The interrupt control words are as follows. Interrupt vector read An interrupting device needs giving an 8-bit interrupt vector to the CPU_ Using this vector, the CPU forms an interrupt service routine address_ y y Indicates that the information is interrupt control words Effective in bit control mode Bit7 = 1: (2) Operation mode select An operation mode is selected by writing data to the 2-bit mode control register in the following manner- I~: I::(:ID~ IDrl :'1 ~I '-y------' '-----v------" Mode Words Indicates Mode Words Interrupt enable flag is set to enable an interrupt. Bit7=O: Interrupt enable flag is reset to disable an interrupt. Bit6-4: Defines interrupt conditions in the bit mode. Ignored in other modes. Bit3-0: Indicates interrupt control words. If bit4 = I, the following control words are supposed to be written in the mask register. X means they are not used Mode Byte output mode Byte input mode Bidirectional byte bus mode Bit control mode Ml MO 0 0 1 1 0 1 0 1 In selecting the bit control mode, an input/output direction should be set later. Only the port data line with MB=O is monitored. When the interrupt conditions are satisfied, an interrupt takes place. Interrupt enable X X X 0 0 1 1 flag '---...r----" Not affected by these -bits Iio=l :Input ; • Interrupt control words I10=O:Output Timing (1) Output mode (Mode 0) An output cycle is always started by the execution of an output instruction by the CPU_ The WR * pulse from the CPU latches the data from the CPU data bus into the selected port's output register. The WR * pulse sets the Ready flag after a Lowgoing edge of CLK, indicating data is available. Ready stays active until the positive edge of the strobe line is received, indication that data was taken by the peripheral. T~positive edge of the strobe pulse generates an INT if the interrupt enable flipflop has been set and if this device has the highest priority. 241 . Z80/Z80A/Z80B Parallel Input/Output Controller . LHOb81/LH0081 AlLH0081 B CLOCK WR* Port output RDY 8TB (2) Input mode (Mode 1) When STROBE goes Low, data is loaded into the selected port iriput register. The next rising edge of strobe activates INT, if Interrupt Enable is set and this is the highest-priority requesting device. The following falling edge of CLK resets Ready to an in· active state, indicating that the input register is full and cannot accept any mote data until the CPU completes a rea~When a read is complete, the positive edge of RD sets Ready at the next Lowgoing transition of CLK. At this time new data can be loaded into the PIO. CLOCK Port input RDY RD" (3) Bidirectional mode (Mode 2) This is a combination of Modes 0 and 1 using all four handshake lines and the eight Port A I/O lines. Port B must be set to the bit mode and its inputs must be masked. The Port A handshake lines are used for output control and the Port B lines are used for input control. If interrupts occur, 242 Port A's vector will be used during port output and Port B's will be used during port Input. Data is allowed out onto the Port A bus only when- ASTB ·is Low: The rising edge of this strobe can be used to latch the data into the peripheral. Z80/Z80AlZ80B Parallel Input/Output Controller LH0081/LH0081A/LH0081B CLOCK WR" A RDY __________________-J Port A data bus ------------C~~}t-~:1!~Q-+--- INT B RDY (4) Bit mode (Mode 3) The bit mode. does not utilize the handshake signals, and a normal port write or port read can be executed at any time. When writing , the data is latched into the output registers with the same timing as the output mode. When reading the PIO, the data returned to the CPU is composed of output register data from those port data lines assigned as outputs and input regis- ter data from those port data lines assigned as inputs. The input register contains data that was present immediately prior to the falling edge of RD. An interrupt is generated if interrupts from the port are enabled and the data on the port data lines satisfy the logical equation defined by the 8-bit mask and 2-bit mask control registers. However, if Port A is programmed in bidirectional mode, Port B does not issue an interrupt in bit mode and must therefore be polled. CLOCK Port data bus RD L Data word 1 placed on bus 243 .-.-.--.........---.. Z80/Z80A/Z80B Parallel .Input/Output Controller ......,-....- LH0081/LH0081 A/LH0081B i ....,-----------~- (5) Interrupt acknowledge timing. During Ml time, peripheral Cflntroliers are inhibited from changing their interrupt enable status, permitting the Interrupt Enable signal to ripp.le through the daisy chain. The peripheral with lEI High and lEO Low during INT ACK places a pre- Last T state programmed 8-bit interrupt vector on the data bus at this time. lEO. is held Low until a Return From Interrupt (RETI) instruction is executed by the· CPU while lEI is High. The 2-byte RETI instruction is decoded internally by the PIO for this purpose. Tw' Tw' T3 CLOCK MI lEO lEI (6) Return from interrupt cycle If a Z-:80 peripheral has no interrupt Pending ·and is not under service, then its IEO=1E1. If it has an interrupt under service (i.e., it has already interrupted and received an interrupt acknowledge) then its lEO is always Low, inhibiting lower priority devices from interrupting. If it has an interrupt pending which has not yet been acknowledged, lEO is Low unless an "ED" is decoded as the first byte of a 2-byte opcode. In this case, lEO goes High until the next opcode byte is decoded, whereupon it CLOCK lEI lEO 244 goes Low again. If the second byte of the opcode was a "40", then the opcode was an RET! instruction. After an "ED" opcode is decoded, only the peripheral device which has interrupted and is currently under service has its lEI High and its lEO Low. This device is the highest-priority device in the daisy chain that has received an interrupt acknowledge. All other· peripherals have lEI = lEO. If the next opcode byte decoded is "40". this peripheral device resets its "interrupt under service" condition. LH0082/LH0082A1LH0082B Z80/Z80A/Z,80B Counter Timer Circuit LH0082/LH0082A/LH0082B Z801Z80AlZ80B Counter Timer Circuit • Description " • The Z80 product line is a complete set of microcomputer components, development systems and support software. The 280 microcomputer component set includes all of the circuits necessary to build high- performance microcomputer systems with virtually no other logic and a minimum number of low cost standard memory elements. The LH0082 280 eTe (Z80 eTe for short below) is a programmable, four channel device that provides counting and timing functions for the Z80 epu. The Z80 epu configures the 280 eTC's four independent channels to operate under various modes and conditions as required. The LH0082A 280A and LH0082B Z80B eTe are the high speed version which can operate at the 4MHz and 6MHz system clock, respectively. Pin Connections o ZC/TOo 7 Top View • Features 1. Four independent programmable 8-bit counterl16-bit timer channels 2. N-channel silicon gate process 3. Each channel may be selected to operate in either a counter mode or timer mode 4. Programmable interrupts on counter or timer states 5. When the down-counter reaches the zero count the eTe reloads its time constant automatically and continues it's channel operation 6. Readable down counter 7. Selectable 16 or 256 clock prescaler for each timer channels '8. Selectable positive or negative trigger may initiate timer or counter operation 9. Three channels have Ze/TO outputs capable of driving Darlington transistors 10. Vectored daisy chain priority interrupt logic included 11. Single +5V power supply and single phase clock 12. All inputs and outputs fully TTL compatible 1,3. 28-pin dual-in-line package ·----.-..--~---SHARP .......... - - - . - - - - 245 _-_......... .._..._._----------_.....-.... LH0082/LH0082A1LH0082B Z80/Z80AlZ80B Counter Timer Circuit • Bl.ock ,Diagra~ Zero Count/ Timeout Output Clock/Trigger Input Internal Control Logic System Data Bus Zero Count/ Ti meout Output Clock/Trigger Input Zero Count/ Timeout Output Clock/Trigger Input Clock/Trigger Input tIII ., > ><:> t:>:: U) -.,.," ... C,) 0 ;:; G uu z a + > " III .=i <1' ;jS t:>:: !III ~ .,......" '" (n·2) TdlEI (lEaf) + TdMI (lEO) + TsIEI (10) + TTL buffer delay, if any. [B] RESET must be active for a minimum of 3 clock cycles. Notel: TcC=TwCh+TwCl+TrC+TfC. Note 2 : Increase delay by 10 ns for each 50 pF increase in loading, 200 pF maximum for data lines, and 100 pF for control lines. Note 3 : Increase delay by 2 ns for each 10 pF increase in loading, 100 pF maximum. Note 4 : Timer mode. Note 5 : Counter mode. *: All timings are preliminary and subject to change. --~--'-'--SHARP''''''--------- 248 LH0082/LH0082A/LH0082B Z80/Z80A/Z80B Counter Timer Circuit • AC Timing Chart ® r I'---CD---.. ~ ® CLOCK r ... ;:q) ~ "~n~_r~ )l CSo, CSI -CE J IE-@~ IORQ Read ]( 1--(1)- ~ -® '\. ~ L \. ®~ -RO r-® ®-~ ¥ ®- ~ '\. ®--iE--- 00-07 i-@ f-J fE--@~ X CSo, CS, write X k-ev-- ~ -CE "\L. ¥ .....-4 ® ~'ll IORQ / ®--k--oo )l Do-Oj -® .....-..f- ® }( I-@--"'~ -{ Inter acknowl edge MI ~@ h -IORQ @f , I I 00-07 - INT --®l~ I-© ,..".1. CLK/TRGo-3 (Counter mode) CLK/TRGo-3 (Timer mode) ZCITOo-2 = I ----' ~@ lb.$" @~@---I :i \L / @ --1 re-@~ -@+/ f..:--@ lEO lEI ~ ®l =:-I i-----@ ---J k-~ ~@-r @\. ~ . ~49 t:801Z80AIZ80B Counter Timer Circuit 'LH0082/LH0082A/LHOO82B Programming • (1) Operation mocie select To select a channel operating mode, write a channel control word having bit 0 changed to 1 in the channel control register. D7 Interrupt enable Ds Ds Prescaler Mode value D. eLK/ D3 D2 Dl Trigger Time TRO mode constant Reset edge mode selection Do 1 D3 and Ds are used i~ timer mode only. • Bit 7 = 0: Disables a channel interrupt. • Bit 7 = 1: Enables a channel interrupt each time the down-counter counts down to zero. No interrupt is produced even with bit 7 as 1, after the counter has counted down to zero with bit 7 as O. • Bit 6 = 0: Selects the timer mode, having the prescaler output as the down-counter clock. The timer's period comes in te. P. TC. Where te represents system clock period, P has 16 or 256 (divisional scale by the prescaler), and TC means an 8-bit programmable time constant (max. 256). • Bit 6 = 1: Selects the counter mode, having the external clock (CLK input) signal as the downcounter clock. The prescaler is not used. • Bit 5 = 0: ,Used for the timer mode only. The 'prescaler divides the system clock into 16 sections. .Bit 5 = 1: Used for the timer mode only. The prescaler divides the system clock into 256 sections. • Bit 4 = 0: Starts the timer operation at the trigger input falling edge in the timer mode. In the counter mode, the down-counter comes on at the clock input rising edge. • Bit 4 = 1: Starts the timer operation at the trigger input rising edge in the timer mode. In the counter mode, the down-counter comes on at the clock input rising edge. • Bit 3 = 0: Effective in the timer mode only. With bit 1=1, the timer starts at the rising edge of the machine cycle T2 which is next to the write cycle of a time constant. With bit 1 =0, the timer starts at the rising edge of the machine cycle Tl which is next to the write cycle of this control information . • Bit 3 = 1: Effective in the timer mode only. The timer starts by an external trigger input that is given after the rising of the machine cycle T2 next to the write cycle of a time constant. 250 • • • • The operation starts at the second clock rising if the trigger input meets the set-up time, and at the third clock rising if It does not. If an external trigger input is given before writing a time c,onstant the' condition of bit 3 = 0 is caused. Bit 2 = 0: Indicates that there is no time constant written after the channel control word. This bit cannot be 0 for the channel control word to be immediately given when the channel is reset. Bit 2 = 1: Indicates that there is a time constant written after the channel control word. When a time constant is written during a downcounter operation, the new constant is set into the time constant register. But the counter keeps on counting. Once the counter counts zero, the new constant is available to use. Bit 1 = 0: The channel acts as a down-counter. Bit 1 = 1: Stops the operation as a down-counter. With bit 2 = 1, the operation restarts after a time contant is written. With bit 2 = 0, the channel does not act until a hew control word is given. (2) Time constant programming An 8-bit time constant is written into the time constant register, following the channel control word with bit 2 = 1. "00" (hexadecimal) indicates the time constant 256. Do 07 Os Os 0, TC7 (3) I TCs I TCs lTC, TCa TC2 TCI TCo Interrupt vector programming If the Z-80 CTC has one or more interrupts enabled, it can supply interrupt vectors to the Z-80 CPU. To do so, the Z-80 CTC must be pre-programmed with the most-significant five bits of the interrupt vector. Programming consists of writing a vector word to the 110 port corresponding to the Z-80 CTC Channel O. Note that Do of the v~ctor word'is always zero, to distinguish the vector from a channel control word. Dl arid D2 are not used in programming the vector word. These bits are sup- , plied by the interrupt logic to identify the channel requesting interrupt service with a unique interrupt vector. Channel 0 has the highest priority. Z80/Z80AlZ80B Counter Timer Circuit D6 V6 Dz 0 0 1 1 • D, 0 1 0 1 D, Ds Vs D3 Dz V3 v, D, LH0082/LH0082A1LH0082B and CSo selects the channel to be read. Ml must be High to distinguish this cycle from an interrupt acknowledge. No additional wait states are allowed. (3) Interrupt acknowledge timing Fig. 3 shows interrupt acknowledge timing. After an interrupt request~e Z-80 CPU sends an interrupt acknowledge (Ml and IORQ). All channels are inhibited from changing their interrupt request status when Ml is ~tive-about two clock cycles earlier than IORQ. RD is High to distinguish this cycle from an instruction fetch. The CTC interrupt logic determines the highest priority channel requesting an interrupt. If the CTC interrupt enable input. (lEI) is High, the high· est proiority interrupting channel within the CTC places its interrupt vector on the data bus when IORQ goes Low. Two wait states (TWA) are automatically inserted at this time to allow the daisy chain to stabilize. Additional wait states may be added. (4) Return from interrupt cycle If a Z-80 peripheral has no interrupt pending and is not under service, then its lEO = lEI. If it has an interrupt under service (i.e.,it has already interrupted and received an interrupt acknowledge) then its lEO is always Low, inhibiting lower priority devices from interrupting. If it has an interrupt pending which has not yet been acknowledged, lEO is Low unless an "ED" is decoded as the first byte of a 2-byte opcode. In this case, lEO goes High until the next opcode byte is decoded, whereupon it goes Low again. If the second byte of the opcode Do Vo Channel 0 1 2 3 Timing (1) Write cycle timing Fig. 1 shows write cycle timing for loading control, time constant or vector words. The CTC does not have a write signal input, so it generates one internally when the read (RD) input is High during T,. During T, IORQ and CE inputs are Low. Ml must be High to distinguish a write cycle from an interrupt acknowledge. A 2-bit binary code at inputs CSt and CSo selects the channel to be addressed, and the word being written is placed on the Z-80 data bus. The data word is latched into the appropriate register with the rising edge of clock cycle T3. (2) Read cycle timing Fig. 2 shows read cycle timing. This cycle reads the contents of a down-counter without disturbing the count. During clock cycle T2, the Z-80 CPU initiates a read cycle by driving the following inputs Low: RD, IORQ, and CEo A 2-bit binary code at inputs CSt Tl CLOCK ~ ru ~ ~rurL T2 T3 X Channel address X \ IORQ I RD Ml Input I I I Fig. 1 Write cycle timing ---~"'-'-----SHARP--'-----'- 251 LHOO82/LH0082A/LH0082B, Z801Z80A/Z80B Counter Timer Cifc:uit was a "4D," then the opcode was an RETI instruc~ tion. After an' "ED" opcode is decoded, only the peripheral device which 'has interrupted and is currently under service has its IEI High and its , lEO Low. This device is the highest-priority device in the daisy chain that has received an interrupt acknowledge. All other perjpherals have IEI' '" lEO. ' If the next opcode byte decoded is "4D", this peripheral device resets its "interrupt under service" condition. CLOCK Channel address Ml 0 0 -0 7 Output Fig_ 2 Read cycle timing Last T state CLOCK ---01 Tl T2 Tw· T. n-l\....J ~ rL ~ ~ ~ ru 11 \ IORQ - ---- ---- --- --- J L ---- lEI - ""\ ,....- II It Ml lEO Tg Tw· -- --~ -, --- --- ~-U r---- -h Vector I 00- 0 7 I Fig. 3 Interrupt acknowledge timing . - - . - - - - - - - - - - - $ H A R P . - - - - - . - . . - . .......... ~--- 25,2 \ LH0082/LH0082A/LH0082B Z80/Z80AlZ80B Counter Timer Circuit Tl T. Tl T2 T2 T3 Fig. 4 Return from interrupt cycle T3 T. Tl CLOCK Ml RD Do-D7 lEI lEO CD Daisy chain prior to interrupt During service ® When Channel 2 requests interrupt and receives ackno~ledge. During service ,® When Channell requests interrupt and receives acknow ledge. In this case, Channel 2 service is discontinued temporarily. ® When Channell service is completed and RETI instruction is executed. In this case, Channel 2 service is restarted. ® When Channel 2 service is ~ompleted and RETI instruction is executed. Fig. 5 Daisy-chain interrupt service 253 LH0082/LH0082A/LH0082B Z80/Z80A/Z80B Counter Timer Circuit (5) (6) Counter operation/timer operation Daisy-chain interrupt service In the counter mode, the CLK/TRG pulse input decrements the down-counter. The trigger is asynchronous, but the count is synchronized with CLK. For the decrement to occur on the next rising edge of CLK, the trigger edge must precede CLK bya minimum lead time. In the timer mode, a CLK/TRG pulse input starts the timer on the second succeeding rising edge of CLK. The trigger pulse is asynchronous, and it must have a minimun width. A minimun lead time (210 ns) is required between the active edge of the CLK/TRG and the next rising edge of CLK to enable the prescaler on the following clock edge. Fig. 5 shows a typical nested interrupt order with the CTC. Channel 2 first requests an inter· rupt to be serviced. If the higher-priority Channel 1 requests an interrupt while Channel 2 is in service, the Channel 2 service is interrupted and Channell is serviced instead. Now the Channell service routine has been completely executed, an RETI instruction can be given to indicate that Channel 1 has been serviced. At this moment, Channel 2 will be in service again. CLOCK CLK ~ L / \ Counter mode Down counter I ZC/TO / \ Zero count \ CLOCK TRG / Prescaler Fig. 6 254 \ I Start operatig Counter operation/timer operation Timer mode Z80/Z80A Direct Memory Access LH0083/LH0083A LH0083/LH0083A • Description • ZSOIZSOA Direct Memory Access Pin Connections The Z80 product line is a complete set of microcomputer components, development systems and support software. The Z80 microcomputer component set includes all o'{ the circuits necessary to build high-performance microcomputer systems with virtually no other logic and a minimum number of low cost standard memory elements. The LH0083 Z80 DMA (Z80 DMA for short below) is a powerful and versatile device for controlling and processing of data transfers. Its basic function of managing CPU-independent transfers between two ports is augmented by an array of features that optimize transfer speed and control with little or no external logic in systems using an 8-or 16-bit data bus and a 16"'bit address bus. Transfers can be done between any two ports (source and destination), including memory-to-I10, memory-to-memory, and I10-to-I10. Dual port addresses are automatically generated for each transaction and may be either fixed or incrementing/ decrementing. In addition, bitmaskable byte searches can be performed either concurrently with transfers or as an operation in itself. The LH0083A Z80A DMA is a high speed version which can operate at the 4MHz system clock. BAO 13 BAI 14 BUSRQ 15 CE/WAIT Top View • Features 1. Transfers, searches and search/transfers in byte-at-a-time, burst or continuous modes 2. Cycle length and edge timing can be programmed 3. Dual port addresses generated for memoryto-JlO, memory-to-memory, or I10-to-I10 operations Adderess may be fixed or automatically incremented/decremented 4. Next-operation loading without disturbing current operations via buffered starting-address 5. 6. 7. 8. 9. 10. registers and an entire previous seQuence can be repeated, automatically Extensive programmability of functions CPU can read complete channel status Vectored daisy chain priority interrupt logic Single + 5V power supply and single phase clock TTL-compatible inputs and outputs 40-pin dual-in-line package N-channel silicon-gate process .-.-----,---SHARP---------- 255 l ..........,.....................................................................Z-80/Z80A Direct Memory Access LH0083/LH0083A , • Block Diagram •...:0:.::; ;; ;; u" 0 l/') + u u :> 0 -'" E '" >. Ul 7 Bus Acknowlege In Bus Acknowlege Out Interrupt 'Request Interrupt Enable In Interrupt Enable Out Interrupt 'and Bus Priority Logic -Plllse , Logic Byte COllnter Port A Address System Address Bus Syste'm Data Bus Machine ,Cycle 1 I/O ReqQest Memory Request Read 256 Bus Control Logic Control and Status Registers Byte Match Logic Port B Address , Z80/Z80A Direct Memory Access • LH0083/LH0083A Pin Description Ao-A'5 Pin Meaning Address bus Do -D 7 Data bus -- BAI -- BAO BUSRQ 110 3-state 0 Bidirectional 3-state Bus acknowledge in I Bus acknowledge out 0 Bus request Open drain, 0 CE/WAIT Chip enable I CLOCK System clock I Machine cycle one I --- - Ml -IORQ Input/output request Bidirectional 3-state Function System address bus. System data bus. Active "low". Used to form a bus priority- interrupt daisy-chain. Active "low". U sed to form a bus priority- interrupt daisy-chain. Active "low". Active when controlling the bus. Active "low". Acts as CE when the CPU accesses the DAM, and as WAIT when the DAM is the bus master. Standard 280 system clock used for internal synchro· nization signals. Active "low". Indicates that CPU is acknowledging an in· -terrupt, when both Ml and IORQ are active. Active "low". Transmits and receives data from the CPU as an input line. Acts as 10RQ for another device as an output line. Indicates that the CPU is acknowledging an -interrupt, when both IORQ and Ml are active. Active "low". Requests a transfer from or to memory with the DMA as a bus master. Active "high". Used to form a priority-interrupt , daisy-chain. Active "low". Used to form a priority-interrupt daisy-chain. Active "low". Active when requesting an interrupt. Can also generate pulses. Active "low". Reads data from the CPU as an input line. Acts as RD for another device as an output line. Active "low". Writes data from the CPU as an input line. Acts as WR for another device as an output line. With the DMA as a bus master, starts DMA operation when active, and stops it when not active. - -MREQ 3-state 0 lEI Interrupt enable in I lEO Interrupt enable out 0 ---- INT/PULSE - RD - - Memory request Interrupt request/pulse Read WR Write RDY Ready Open drain, 0 Bidirectional 3-state Bidirectional 3-state I ----------SHARP-.--..-.----- 257 Z80/Z80A ,Direct Memory Access • LH 0083/LH0083A Absolute Maximum Ratings Parameter Input voltage Output voltage Operating temperature Storage temperature • Symbol VIN VOUT T oDe Tstg Ratings -0.3-+7 -0.3-+7 0-+70 -65-+150 Unit V V ·C ·C (Vce=5V±5%, Ta=0-+70·C) DC Characteristics Clock Clock Input Input Parameter input low voltage input high voltage low voltage high voltage Symbol Output low voltage VOL Output high voltage Vall Current consumption I Z80 DMA I Z80A DMA Input leakage current 3 -state output leakage current 3-state output leakage current Data bus leakage current in input mode • Conditions VILe VIlle VIL VIII Icc I ILl I I lLOII I I lLOL I I ILD I IOL =3.2mA for BUSREQ IOL =2.0 mA-for all others IoH =-250pA t,=400ns tc= 250ns MIN. -0.3 Vee- 0 .6 -0.3 2.0 O~VIN~Vee VouT=2.4V VOllT =O.4V - MAX. 0.45 5.5 0.8 5.5 Unit V V V V 0.4 V 150 200 10 10 10 V mA mA pA pA pA 10 pA 2.4 - OV~VIN~VCC (f=IMHz, Ta=25·C) Capacitance Parameter Clock capacitance Input capacitance Output capacitance TYP. Symbol ! CCLOCK CIN COUT Conditions ;Unmeasured pins returned to ground MIN. TYP. MAX. 35 5 10 Unit pF pF pF -~------SHARP-------'- 258 Z80/Z80A Direct Memory Access • LH0083/LH0083A AC Characteristics (1) Acting as CPU peripheral (inactive state) No. 1 2 3 4 5 6 7 8 9 10 II 12 13 14 15 16 17 18 19 20 21 22 Parameter Clock cycle time Clock width (high) Clock width (low) Clock rise time Clock fall time Hold time for any specified setup time IORQ, WR, CE ! to clock t setup time RD ! to data output delay Data in to clock t setup (WR or Ml) IORQ ! to data out delay (INT A cycle) RD t to data float delay (output buffer disable) lEI! to IORQ ! setup (INT A cycle) lEI t to lEO t delay lEI! to lEO ! delay Ml ! to lEO ! delay (interrupt just prior to Ml ! ) Ml ! to clock t setup MIt to clock ! setup RD ! to clock t setup (Ml cycle) Interrupt cause to INT ! delay (INT generated only when DMA is inactive) BAI t to BAO t delay BAI ~ to BAO ~ delay RDY active to clock t setup time Symbol TcC TwCh TwCl TrC TfC Th TsC(Cr) TdDO(RDf) TsWM(Cr) TdCf(DO) TdRD(D2) TsIEI(IORQ) TdIEOr(lElr) T dIEOf(IElf) 280 DMA MIN. MAX. 400 4000 170 2000 170 2000 30 30 0 280 500 50 340 160 140 210 190 TdMl(IEO) TsMlf(Cr) TsMlr(Cf) TsRD(Cr) 280A DMA MIN. MAX. 250 4000 110 2000 2000 110 30 30 0 145 380 50 160 110 140 160 130 190 300 210 20 240 90 -10 115 Unit ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns Tdl(INT) 500 500 ns TdBAlr(BAOr) TdBAIf(BAOf) TsRDY(Cr) 200 200 150 150 ns ns ns 150 100 Note : t Rising edge, ! Falling edge. Note 1: Negative minimum setup values mean that the first-mentioned event can come after the second-mentioned event. --~'--""-'--SHARP'-------- 259 .......- ....... ............,..............-.. ........ Z80/Z80A~ Direct Memory Access ---.--. ~ CLK CE. IORQ. WR. RD MI lEI lEO INT Interrupt state I _________F@).JI -----+I----~ . :: ~1~---(-@~)----;d~---RDY ~-@ ~ _ Inactive Acting as CPU peripheral (Inactive state) 260 . ...... ,... LH0083/LH0083A" ..-.-.. ~ Z80/Z80A Direct Memory Access. LH0083/LH0083A (2) Acting as bus controller (active state) No. Parameter Symbol 1 2 3 4 5 6 7 8 Clock cycle time Clock width (high) . Clock width (low) Clock rise time Clock fall time Address output delay Clock t to address float delay Address to MREQ ~ setup (memory cycle) Address stable to IORQ, RD, WR ~ setup (110 cycle) RD, WR t to addr. stable delay RD, WR t to addr. float delay Clock ~ to data out delay Clock t to data float delay (write cycle) Data in to clock t setup .(read cycle when rising edge ·ends read) Data in to clock ~ setup (read cycle when falling edge ends read) Data out to WR ! setup (memory clcle) Data out to WR ~ setup (110 cycle) WR t to data out hold time Hold time for any specified setup time Clock! to MREQ ! delay Clock t to MREQ t delay Clock ~ to MREQ t delay MREQ low pulse width MREQ high pulse width Clock t to IORQ ! delay Clock t to IORQ t delay Clock! to IORQ t delay Clock t to RD ~ delay Clock! to RD ~ delay Clock t to RD t delay Clock ~ to RD t delay Clock t to WR ~ delay Clock ~ to WR ~ delay Clock t to WR t delay Clock ~ to WR t delay WR Low pulse width WAIT to clock ~ setup Clock t to BUSREQ delay Clock t to IORQ, MREQ, RD, WR float delay TcC TwCh TwCl TrC TfC TdA TdC(AZ) TsA(MREQ) 9 *10 *11 12 *13 14 15 *16 17 *18 19 20 21 22 23 *24 25 26 *27 28 29 30 31 32 33 34 35 36 37 38 39 Note Note , Note Note Note : 1: 2: 3: 4: (Vco=5V±5%, Ta=0-+70"C) Z80 DMA MIN. MAX. 400 180 2000 180 2000 30 30 145 110 (21+(5)-75 Z80A DMA MAX. MIN. 250 110 2000 110 2000 30 30 110 90 (2)+(5)-75 Unit ns ns ns ns ns ns ns ns TsA(IRW) (1)-80 (1)-70 ns TdRW(A) TdRW(AZ) TdCf(DO) TdCr(Dz) (3)+(4)-40 (3)+(4)-60 (3)+(41-50 (3)+(4)-45 ns ns ns ns 230 90 150 90 TsDI(Cf) 50 35 ns TsDO(WfM) 60 50 ns 4 == ;; TsDO(WPI) TsDO(WPI) TdWr(DO) Th TdCf(Mf) TdCf(Mr) TdCf(Mr) TwMI TwMh TdCr(If) TdCr(lr) TdCr(Ir) TdCr(Rf) TdCr(Rf) TdCr(Rr) TdCr(Rr) TdCr(Wf) TdCf(Wf) TdCr(Wr) TdCf(Wr) TwWl TsWA(Cf) TdCr(B) TdCr(lz) (1)-210 100 (31+(4)-80 0 (1)-170 100 (3)+(4)-70 0 100 100 100 (1)-40 (2)+(51-30 85 85 85 (1)-30 (21+(3)-20 90 100 110 100 130 100 110 80 90 100 100 (1)-40 70 75 85 85 85 95 '85 85 65 80 80 80 (1)-30 70 150 100 100 80 ns us us fis ns us ns ns ns us ns us ns ns ns us ns ns us us ns us us ns t Rising edge. ~ Falling edge Numbers in parentheses are other parameter numbers in this table; their values should be substituted in equations. All equations imply DMA default (standard) timing. Data must be enabled onto data bus when RD is active. Asterisk (*) before parameter number means the parameter is not illustrated in the AC Timing Diagrams. 26f = Lti0083/ LH0083A Z8Q/Z80A Direct Memory Access ..-,,-,,-,,,,,,,,,,, ..~---;.,.~""",,,--,,,,,,,,,,,,,,-,-,-,,,,,, 'CLK; DO-D7{ Input Output --~~--#-~---4+-----+---~ RD WR BUSR Acting as bus controller (active state) • Prpgramming The Z-80 DMA has two programmable fundamental states_ • an enabled state, in which it can gain control of the system buses and direct the transfer of data between ports, and • a disabled state, in which it can initiate neither bus requests nor data'transfers. When the DMA is powered up or reset by any means, it is automatically placed into the disabled state. (1) Reading The Read Registers (RRO-RR6) are read by the CPU by addressing the DMA as an 110 port using an Input instruction. The readable bytes contain DMA status, byte-counter values, and port addresses since the last DMA reset. The registers are always read in a fixed sequence beginning with RRO and. ending with RR6. • Read Register 0 T~O O~I t L: =D.MAS;;~:: ::~RED D7 D6 D5 D. D3 D2 Dl Do I Xlix I XI I L O = READY ACTIVE . O=INTERRUPT PENDING O=MATCH FOUND . O=END OF BLOCK ~--------------INTERRUPT PENDING • Read Register 1 ~I~I~I~~I~I~I~~I~~' BYTE COUNTER (LOW BYTE) • Read Register 2 r--"TI__I'--"-I-TI'--I'--"-I--'--'1 'BYTE CO UNT E R (HIGH BYTE) • Read Register 3 ,....-...--r--r-,---rr-r-...,.." PORT A AD DRES S L-..,I--'-.....l..~~~J..-~-' COUNTER (LOW BYTE) • Read Register 4 1 I 1 1 I-.l-...I....-'---'---I__"--...L.......I PORT A ADDRESS COUNTER (HIG H B YT E) .-,------------.--..-SHARP-----.-.,.-.-.-.-.-- 262 Z80/Z80A Direct Memory Access • Read Register 5 • r-r--r---r-~"-""T'"""--' PO RT B AD D RE S S COUNTER (LOW BYTE) I • LH0083/LH0083A Wr.ite Register 2 D, D6 Ds D. D3 D2 D, Do' I 0 I I I I I 0 I 0 I 0 [ BASE REGISTER BYTE O=PORT B IS MEMORY l=PORT B IS I/O o =PORT B ADDRESS DECREMENTS 1 =PORT B ADDRESS INCREMENTS o =PORT B ADDRESS VARIABLE 1 =PORT B ADDRESS FIXED 1 I Read Register 6 I PORT B ADDRESS L..-...L.........L-~......L--J_J..-............. COUNTER (HIGH BY1IE) (2) Writing Control or command bytes are written into one or more of the Write Register groups (WRO-WR6) by first writing to the base register byte in that group. All groups have base registers and most groups have additional associated registers. The associated registers in a group are sequentially accessed by first writing a byte to the base register containing register-group identification and pointer bits (I, s) to one or more of that base register's associated registers. • Write Register 0 ~-r-'-r--r--r--'-'---.-.., bo J=CYCLE LENGTH=4 l=CYCLE LENGTH =3 1 O=CYCLE LENGTH=2 1 1 =DO NOT USE O=IORQ ENDS 112 CYCLE EARLY 0= MREQ ENDS 1/2 CYCLE EARLY 0= RD ENDS 112 CYCLE EARLY 0= WR ENDS 1/2 CYCLE EARLY • Write Register 3 D, D6 Dj D. D3 D2 D, Do BASE I I I I I 0 I 0 [ REGISTER D, D6 Ds D. D3 D2 D, Do [ 0 I I I I [ BASE REGISTER BYTE DO NOT USE b0 61= TRANSFER I 1 I Jl I I I I I • [ PORT A STARTING ADDRESS I I I I I 1 J PORT A STARTING ADDRESS I I I I I J BLOCK LENGTH (LOW BYTE) [ BLOCK LENGTH (HIGH BYTE) Write Register 1 D, D6 Ds D. D3 D2 D, Do I I I 1 I 0 I 0 I BASE REGISTER BYTE I0 I I b=PORT l=PORT o =PORT A 1 =PORT A = PORT A =PORT A o 1 I I I I A IS MEMORY A IS I/O ADDRESS DECREMENTS ADDRESS INCREMENTS ADDRESS VARIABLE ADDRESS FIXED [ J b o 1 1 BYTE ON MATCH [ I I I I I I I I MASK BYTE (0= COMPARE) [ I I I I I I I [MATCH BYTE (LOW BYTE) (HIGH BYTE) I 1 l=STOP DMA ENABLE =1 INTERRUPT ENABLE=l 1 0= SEARCH 1 1= SEARCH/TRANSFER O=PORT B --->PORT A l=PORT A--->PORT B I PORT B VARIABLE L..-,-..J..,.....L---'---L..,..-J-.-.L..,-..J..,...J TIMING BYTE ~?~1t i'f-lJABLE J=CYCLE LENGTH=4 l=CLCLE LENGTH =3 O=CYCLE LENGTH =2 l=DO NOT USE O=IORQ ENDS 112 CYCLE EARLY O=MREQ ENDS 112 CYCI;E EARLY O=RD ENDS 112 CYCLE EARLY O=WR ENDS 112 CYCLE EARLY • Write Register 4 D, D6 Ds D. D3 D2 D, Do 0 1 I BASE 1 1 REGISTER BYTE BY TE= ll1 J b b 1 0 1 CONTINU OUS= 0 BU RST= 1 DO NOT PROG RAM= 1 L [ [ I I I I I ~ I PORT B STARTING ADDRESS (LOW BYTE)' I PORT B STARTING ADDRESS (fiG" BYTE) 0 j j INTERRUPT CONTROL BYTE 1=INTERRUPT ON INTERRU PT MATCH ON R DY=l l=INT ERRUPT AT STATUS AF FECTS EN D OF BLOCK VE CTOR=l l=PULSE GENERATED [ I I I I I I r [ PULSE CONTROL BYTE INTERRUPT [ [ I I VECTOR' I I VECTOR IS AUTOMATICALLY { 0 o = INTERRUPT ON RDY ON MATCH MODIFIED AS SHOWN 9 1o == INTERRUPT INTERRUPT ON END ONLY IF" STATUS 1 OF BLOCK AFFECTS VECTOR" BIT IS SET i 1 = INTERRUPT ON MATCH AND END OF BLOCK ! 263 .---....--AIIIIIIiII'-............ . Z80/Z80A Direc.t. Memory Ac.cess . . ....- LH0083/L:H0083A -~-~- • ~ Write -Register 5 ....:...&..---I.-r-....,..~...,L...;.......~~ BASE REGIS TER BYTE O=REApy ACTIVE LOW / '. 1 == READY ACTIVE HIGH O'=CE ONLY l=CE!WAIT MULTIPLEXED STOP RESTART ON END O=STOP ON END OF BLOCK l=AUTO REPEAT ON END ,QF BLOCK • Write Register 6 D7 D6 Ds D. D3 D2 DJ Do I1I I I I I I1I1 C3 I I I I I 1 0 0 0 0 0 0 0 1 I BASE REGISTER BYTE INTERRUPT LINE RESET, INTERRUPT REQUEST AND BUS REQUEST DISABLE, INTERNAL READY STATE CLEAR, CE MULTIPLEX DISABLE, AUTOMATIC REPEAT STOP PORT A TIMING TOZ80 STANDARD TIMING C7 1 CB 10010 PORT B TIMING TO ZIlO STANDARD TIMING CF 1 0 BOTH PORTS START ADDRESS LOAD, BYTE CaNTER CLEAR 0 1 1 D3 1 0 1 0 0 ADDRESS CONTINU):': FROM CURRENT VALUE, BYTE COUNTER CLEAR AB o 1 0 1 0 INTERRUPT ENABLE AF o 1 011 INTERRUPT DISABLE A3 o o o o o o 1 0 0 0 0 0 0 1 INTERRUPT CIRCUIT RESET AND DISABLE (SAME AS RETI) , INTERNAL READY STATE CLEAR DMA ENABLE} EFFECTIVE FOR ALL SECTIONS BUT INTERRUPT. 87 83 A7 BF B3 88 B7 BB o o o 0 0 0 0 DMA DISABLE NOT ALL FUNCTIONS RESETTABLE, HOWEVER 1 0 0 1 READ SEQUENCE START FOR 1ST REGISTER DESIGNATED BY READ MASTER REGISTER . STATUS REGISTER READ SETUP. FROM STATUS REGISTER FOR NEXT READ 1·1 1 1 1 1 0 0 0 0 1 0 1 101 ENABLE AFTER RETI. BUS REQUEST ONLY AFTER RETI EXECUTION 1 1 READ MASK FOLLOWS I 0 I 1 I INTERNAL READY STATE TO BE FORCEDLY CLEAR OF "RDY" PIN (USED. FOR DMA BETWEEN MEMORIES NEEDING NO RDY SIGNAL. NOT OPERATIVE IN "BYTE .MODE") REINITIALIZE. END-OF-BLOCK BIT CLEAR 0 I I II I ! I READ MASK (I=ENABLE) STATUS BYTE BYTE COUNTER 1 1'-------BYTE COUNTER fL'_ _ _ L _L_-_-_-_-_-=--=--=--=--=--=PORT L_ _ _ _ _ _ _ _ PORT PORT '-----------PORT 264 A A B B (LOW 'BYTE) (HIGH BYTE) ADDRESS 1LOW BYTE) ADDRESS HIGH BYTE) ADDRESS LOW BYTE) ADDRESS HIGH BYTE) Z80/Z80A Direct Memory Access • Timing (1) Inactive state timing (DMA as CPU . Peripheral) In its disabled or inactive state, the DMA is addressed by the CPU as an I/O peripheral for write and read (control and status) operations. Write timing is illustrated in Fig. 1. Reading of the DMA's status byte, byte counter or port address counters is illustrated in Fig. 2. (2) Active state timing (DMA as BUS . LH0083/LH0083A wait cycle between T2 and T3. If the CE/WAIT line is programmed to act as aWAIT line during the DMA's active state, it is sampled on the falling edge of Tz for memory tr~nsactions a~d the falling edge of Tw for I/O transactions. If CE/W AIT is Low during this time another T -cycle is added, during which the CE/W AIT line will again be sampled. The duration of transactions can thus be indefinitely extended. CLOCK~ Controller) (i) Default read and write cycles By default, and after reset, the DMA's timing of read and write operations is exactly the same as the Z-80 CPU's timing of read and write cycles for men:lOry and 110 peripherals, with one exception: during a read cycle, data is latched on the falling edge of T3 and held on the data bus across the boundary between read and write cycles, through th'e end of the following write cycle. Fig. 3 illustrates the timing for memory to-I/O port transfers and Fig. 4 illustrates IIO-to-memory transfers. Memory-to-memory and I/O-to-I/O transfer timings are simply permutations of these diagrams. The default timing uses three T -cycles for memory. transactions and four T -cycles for 110 transactions, which include one automatically inserted W:Q Do-D7 -hLd:::::: -+-++---+-.. .cb Fig. 1 CPU-DMA write cycle timing Fig. 2 CPU-DMA Iread cycle timing .---'---.---SHARP....--.--.--.-.~-- 265 LH00J33!LH0083A Z60!Z80A Dire.ct Memory Access ................. ....,.....__....,_ _ _....,.-r.__... __ -.:~....,.- I+-- Memory TJ .' CLOCK -'-- Read n-~ I/O Write ' Tw . . . ~ ~r-Lr-~ L T2 X Tz Tl T3 ,.... T3 L X MREQ \ I RD \ J Read { IORQ : Write { r ~ 1\ _ WR rr-- \ Do-D7 l)- \ -- ---- ·7 r- ---- ---- --- 7 ..,- ---- r-... ---1---- -' -- ---""1---- --\ \ oJ Fig. 3 Transfer from memory to 1/0 device Memory Write I/O Read Tl CLOCK Tw T3 Tl Tz --;0 T3 - rLlLr- ~n- ~r--~~ - X X I'X - _ {IORQ ,Read .- RD T2 ' \ I \ I ~ l}\ MREQ Write { _ WR CE/WAIT -- ---- ---- -- --- ---_. J \ ---- \ I I\..W ------- --T \: --- Fig. 4 Transfer from 1/0 device to memory ~_. Z80/Z80A Direct Memory Access (ii) Variable cycle and edge timing The Z-80 DMA's default operation-cycle length for the source (read) port and destination (write) port can be independently programmed. This variable-cycle feature allows read or write cycles consisting of two, three or four T-cycles (more if Wait cycles are inserted), thereby increasing or decreasing the speed of all signals generated by the DMA. ~ddi tion, the trailing edges of the IORQ, MREQ, RD and WR signals can be independently terminated one-half cycle early. Fig. 5 illustrates this. In the variable-cycle mode. unlike default timing, IORQ comes active one-half cycle before MREQ, RD and WR. CE/W AIT can be used to extend only the 3 or 4 T-cycle variable memory cycles and only the 4-cycle variable 110 cycle. The CE/W AIT line is sampled at the falling edge of T2 for 3-or. 4-cycle memory cycles, and at the falling edge of T3 for 4-cycle 110 cycles. During transfers, data is latched~ the clock edge causing the rising edge of RD and held through the end of the write cycle. (iii) Bus requests Fig. 6 illustrates the bus request and acceptance timing. The RDY line, which may be programmed active High or Low, is sampled on every rising edge of CLK. If it is found to be active, and if the bus is not in use by any other device, the following rising edge of CLK drives BUSREQ low. After receiving BUSREQ the CPU acknowledges on the BAI input either directly or through a multiple-DMA daisy chain. When a Low is detected on BAI for two consecutive rising edges of CLK, the DMA will begin transferring data on the next rising edge of CLK. (iv) Bus release byte-at-a-time In Byte at a Time mode. BUSREQ is brought High on the rising edge of CLK prior to the end of each read cycle (search-only) or write cycle (transfer and transferl search) as illustrated in Fig. 7. This is done regardless of the state of RDY. The next bus request fo!:.l!!e next byte will come after both BUSREQ and BAI have returned High. (v) Bus release at end of block In Burst and Continuous modes, an end of block causes BUSREQ to go High usually on the same rising edge of CLK in which the DMA completes the transfer of the data block (Fig. 8). The last byte in the block is transferred even if RDY goes inactive before completion of the last byte transfer. (vi) Bus release on not ready In Burst mode, when RDY goes inactive it causes BUSREQ to go High on the next rising edge of CLK after the completion of its current byte operation (Fig. 9). The action on BUSREQ is thus somewhat delayed LH0083/LH0083A from action on the RDY line. The DMA always completes its current byte operation in an orderly fashion before releasing the bus. By contrast, BUSREQ is not released in Continuous mode when RDY goes inactive. Instead, the DMA idles after completing the current byte operation, awaiting an active RDY ~ain. (vii) Bus release on match If the DMA is programmed to stop on match in Burst or Continuous modes, a match causes BUSREQ to go inactive on the next DMA operation, i.e., at the end of the next read in a search or at the end of the following write in a transfer (Fig. 10). Due to the pipelining scheme, matches are determined while the next DMA read or write is being performed. The RDY line can go inactive after the matching operation begins without affecting this bus-release timing. (Viii) Interrupts Timings for interrupt acknowledge and return from interrupt are the same as timings for these in other Z-80 peripherals. (Refer to the Z80 PIO.) Interrupt on RDY (interrupt before requesting bus) does not directly affect the BUSREQ line. Instead, the interrupt service routine must handle this by issuing the following commands. a. Enable after return from interrupt (RETI) (Command code 87H) b. Enable DMA (Command code 87H) c. An RETI instruction -.-.-----.-.--SHARP..-......------- 267 Z80/Z80A Direct Memory Access LH0083lLH0083A -...r.-_......_ ..- I r - . - . - . - . - . -_ _..._-.:,..-.-.- CLOCK Ao-AIS MREQ - - """\r--.J1'- __ _ -...J,----I-' ~r T-,--r-T ,, - - I I I RD, WR , , .L_..I_ L._.L_ I ' ~YCLE ~ CYCLE • 2 CYClE 3 EARLY END EARLY END ' EARLY END Fig. 5 Variable cycle and edge timing CLOCK -INACTIVE -B-U-SR-Q- ==~::_j-rt-----1'"'". --t I---+_+-_-+__+-__ I BAl __ J I DMA INACTIVE Fig. 6 CLOCK Bus request and acknowledgement ~~. _ _ _ _ _ _ _ _ _ _ __ BUSRQ-HI I I I BAI DMA ACTIVE Fig. 7 268 DMA ACTIVE I i I"'D'M.A --+- INACTIVE Bus clear (byte mode) Z80lZ80A Direct Memory Access CLOCK LH0083lLH0083A ---ILnY ACTIVE RDY INACTIVE L LAST BYTE OPERATION--i.......-DMA INACTIVE BLOCK r - IN Fig. 8 End of block bus clear (burst, continuous mode) ACTIVE RDY INACTIVE ~.~_ _ _-I-_ _ _ _ _ __ BUSRQ '- CURRENT BYTE iOPERATION Fig. 9 RDY DMA INACTIVE No READY bus clear (burst mode) INACTIVE BUSRQ --~I-.----i~'~-~I~B~Y~T~E~n~+~l~R~E~A~D~~ BYTE n - + I N MATCH FOUN READ IN ON BYTE n Fig. 10 DMA INACTIVE Mating bus clear (burst, continuous mode) ------~-----SHARP .. . . . - . - . - . - - - - - - 269 ................ -........... -........-..... - . - . . -......................... l80/l80A/l80B Serial Input/Output Controller LH0084/84A!84B/85/85A/85B/86/86A/86B LH0084/LH0084A/LH0084B . LH0085/ LH0085A/LH0085B Z80/Z80A --:--- Read cycle timing T2 Tw T3 T\ CLOCK CE Channel address IORQ RD Ml DAtA X Input Fig. 3 Write cycle timing 278 X LH011 O/LH011 OA Floppy Disk Controller LH0 11 0/ LH0 110A Floppy Disk Controller • Description • Pin Connections The LHOllO is a micro-program controlled Floppy Disk Controller (FDC) designed as one of the Z80 peripherals. The LHOllO is fabricated with N-channel sili· con-gate process technology, and packaged in a 40-pin dual-in-line package. The LHOllO provides a TTL compatible inter· face and requires a single + 5V power supply. 06 07 INT MUXS ROY lOX WP/TRo VFO • Features 1. Can be connected directly to the Z80 CPU bus • Daisy chain interrupt signal • Interrupt vector output • Recognition of the Z80 CPU RETI instruc· tion 2. DMA or program controlled data transfers 3. Separate clocks for system control and FDD control. 4. Can be connected to other microprocessors 5. IBM format compatible • Single-sided, Dual-sided (FM) Dual-sided double-density (MFM) • FM: 128,256,512 bytes/sector MFM: 256, 512,1024 bytes/sector • 8, 15, 26 sectors/track 6. Can control minifloppies (change the 2MHz FCLK to a 1MHz clock) 7. Can control 2 dual-sided double-density floppy disk drives (4 single-sided drives) 8. A wealth of commands including VERIFY command *Can be specified as head load or head unload 9. A wealth of error status indicators available during command processing 10. CRC generation and checking (X16+X12+X5+ 1) 11. Deleted data address mark (DDAM) processing capabilities 12. Multi -sector processing capabilities 13. Signals generated for adjusting write data under MFM recording 14. Inner track processing capabilities 15. Stepping speed, head load time and head unload time after command processing' are program· mabie LCT/DIR 11 RS2 lEO ORQ FRISTP RSo PSL CLOCK 15 WOA WG RRO IORQ FCLK WOW 21 GNO Top View 16. Interrupt enable and disable are programmable 17. Window inversion is programmable 18. Input/Output is TTL compatible (except for clocks) --'--'~--'--"-SHARP . - . - - - - - - - - - - - 279 , • I'l .1 ~ I9 N 00 .0 1 to I 0" () 7' I I I I I I en I » N 'C /1 L I I I I I I' C"lUl o CIl C"l"l 0"0 C -""~ ""'-'" ~C"l S" co .... 9 I\) 3 ::;;: :0 :0 :0 Write 0 Unit Select ..... Head Load 00 H~ad Select Signal ~elect :: Wmdow'" Read Raw Data l:l 0 Machine Cycle IRead Chip Enable I/O Request .,. .,.:0 :0 System Data Bus ~ :0 :0 :0 CJ1 CJ1 ::;;: :0 :0 :0 0'> en ::;;: :os:: 0-' s::;;0 ...,:0 Interrupt Enable In Data Request I~terrupt Enable Out Interrupt Request .. 'I::l "i 0 "i 9 .... <> ..,.... <: "" "0z + C11 <: <:> <: I; I I I I h I ~ I~ Floppy Disk Controller • LH011 O/LH011 OA Pin Description Meaning Pin Do-D 7 Data bus 110 Bidirectional 3-state Register select I Ml Machine cycle 1 I RD Read cycle I Chip enable I IORQ 110 request I CLOCK System clock I FDC clock I lEI Interrupt enable input I IEO INT Interrupt enable output. Interrupt request DRQ Data request to DMA 0 Multiplex 0 WP/TRo Write protect/track zero I FLT/TS Fault/2-side disk I FR/STP Fault reset/step 0 LCT/DIR Low current/direction 0 RDY Ready I IDX Index I HDS Head select 0 HDL US WG WDA RRD Head load Unit select Writing gate Write data Read data 0 0 0 0 I WDW Window I RSo-RS2 - - CE -- FCLK MUXS 0 Open-drain 0 Function System data bus Used to select FDC internal register (RRO-RR6, WROWR7). Active low. Produced by ANDing Ml and RESET' of CPU. Active Ml with IORQ causes interrupt. Active low. Read operations proceed when active. Active low. Command or data transactions with CPU , possible when active. Active low. Active RD designates read operation; inactive RD designates write operation. -Interrupt occurs when IORQ and Ml are simultaneously active. Standard Z80 system clock is used as internal sync signal. 2-MHz clock is used for synchronizing FDD control signal(l-MHz clock for mini-floppy control). Active high. Used to form interrupt priority arbitration loop circuit (daisy chain). Active high. Used with IEI to form daisy chain. Active low. Active when placing interrupt request. Active high. Data request signal for transactions between FDC and DMA. Multiplexer select signal. Active high. WP signal at high MUXS, indicating that mounted diskette is write-protected. TRo signal at low MUXS, indicating that the head is positioned at track O. Active high. FL T signal at high MUXS, indicating fault status of FDD. TS signal at low MUXS, indicating that 2-side disk is mounted. Active high. FR signal at high MUXS, resetting fault status of FDD. STP signal at low MUXS, indicating seek. Active high. Connected to FDD low current input and direction input. Denotes LCT signal except when seek command is in effect, becoming high when head selects a cylinder above track 44. DIR signal during seek command, becoming high when seek direction is toward disk center (from perimeter). Active high. FDD ready signal Active high. Indicates the physical starting point on the disk track. With double-sided FDD, low HDS selects head 0 ; high HDS selects head 1. With single-sided FDD, HDS can be used as FDD select signal. Active high. Puts the FDD head in load state. Active high. Selects FDD unit. Active high. Write command to FDD. Active high. Serial data transferred to FDD. Active high. Serial data from FDD. Released by VFO circuit, used in separating RRD data and clock. ------------------SHARP - - - - - - - - - - - - 281 LH011 O/LH011 OA Floppy Disk Controller 110 0, Meaning VFO control, Pin' VFO Function Active high. Advises lock timing'to VFO'circuit. Active high. Write correction signal in MFM mode, instructing external write-correction circuit to delay WDA. Maintains active status in FM mode. Active high. Write-cortectionsigTIal in MEM mode, in· structing external write· correction circuit to accelerate WDA. Maintains active status in FM mode. , PSL Pre·shift 0 P~E Pre·shift early 0 *Resetting FOC FOC has no reset terminal, but by maintaining Ml at low for more than 2-c1ock lengths when both IORQ and RD,are high, the FOC's intern~1 reset flag is set and FDC reset is in effect. Reset status can be released by making access to an FOC register. • Absolute Maximum Ratings Parameter Input voltage 'Output voltage Operating temperature Storage temperature • Syoibol VIN VOUT T oDr T st• Ratings -0.3-+7 -0.3-+7 0-+70 -55-+150 Unit V V t t (V cc =5V±5%, Ta=0-+70t) DC Characteristics Parameter Clock input low voltage Clock input high voltage Input low voltage Input high voltage Output low voltage Output high voltage Input leakage current Data bus 110 leakage current Supply current • Symbol VCL VCH VIL VIH VOL VOH I ILl I I Iz I Icc Conditions MIN. -0.3' Vee-0.6 -0.3 2.0 IOL=2.0mA IOH =-250pA OsVINsV CC 10 10 170 180 O~VIN~VCC I LHOllO I MAX. 0.45 Vee + 0.3 0.8 Vee 0.4 2.4 LHOllOA Unit V V V V V V pA pA rnA (f=IMHz, Ta=25t) Capacitance Parameter Clock input capacitance Input capacitance Output capacitance Input/Output capacitance TYP. Symbol CCLOCK CIN COUT Conditions MIN. All pins except the one to be tested should be grounded. CliO MAX. 10 7 10 12 Unit pF pF pF pF \ '-~~--------"""SHARP -.-..-.----.-.-~ 282 I Floppy Disk Controller • AC Characteristics (1) CPU interface No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 LH011 O/LH011 OA (V cc =5V±5%, Ta"",0-+70t) Parameter Clock period Clock pulse width, high Clock pulse width, low Clock rise time Clock fall time Hold time Setup time to clock t under read/write cycle. Delay time from RD J, to data output under read cycle. Data setup time to clock t under write/M1 cycle. Delay time from 10RQ J, to data output (interrupt cycle). Delay time to bus floating. lEI setup time to IORQ J, (interrupt cycle). Delay time from lEI t to lEO t. Delay time from lEI J, to lEO J, Delay time from M1 J, to lEO J, (at interrupt before M1 J,) M1 J, setup time to clock t under INTA/M1 cycle. RD J, setup time to clock t under read/M1 cycle. Delay time from FCLK J, to INT output 10RQ J, setup time to clock t under 110 cycle. Symbol TcC TwCh TwCl TfC TrC Th TsCE(C) LH0110 MIN. MAX. 400 111 170 2000 170 2000 0 30 0 30 0 240 TdRI(DO) TsDI(C) 500 50 TdIO(DIO) TdRI(DOs) TslEl(IO) TdIEI(JEOr) TdlEl(IEOf) LH0110A MIN. MAX. 250 111 105 2000 105 2000 0 30 0 30 0 145 380 160 ns 160 ns 110 210 190 160 130 ns ns ns ns 300 190 ns 200 TdMl(IEO) ns ns ns ns ns ns ns ns 50 340 Unit 140 TsMl(Cr) 210 90 ns TsRI(C) 240 115 ns TdC(INT) Ts(IO) 300 240 300 115 ns ns (1) TcC=TwCh+TwCI +TfC+TrC. t indicates rising edge, l l~dicates failing edge. . . - . - . . - ., -.. - - . - . - - S H A R P . ---------283 LH011 OlLH011 OA Floppy Disk Coi:Jtroller (2) FDD interface Parameter No. 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 t , FDC clock period, standard floppy disk FDC clock period, mini-floppy disk FDC clock pulse width, high FDC clock pulse width, low FDC clock rise time FDC clock fall time Delay time from FDC clock t Delay time from FDC clock t (FDC clock !, in the case of MFM) Write data pulse width, MFM Write data pulse width, FM Step pulse width Step period Fault reset pulse width Delay time from clock t to fulfill IORQ ; setup time Data request period, MFM Data request period, FM Index pulse width Read data pulse width WDW setup time to read data WDW hold time from read data Window cycle time, MFM Window cycle time, FM Delay time from FDC clock ! to VFO indicates rising edge, ! Symbol LHOllO/LHOllOA MIN. TYP. MAX. 500 1000 TcFC TwFCh TwFCI TfFC TrFC TdPS(FC}l Unit ns ns ns ns ns ns ns 220 220 30 30 280 .•. 170 TdWDA(FC) 250 500 12 .TwWDA TwSTP TcSTP TwFR. TcWDW .•. TdVFO(FC) f1.S ms 12 f1S 230 TdDRQ(FC) TwIDX TwRRD TsWDW(RRD) ThWDW(RRD) ns ns 1 16 32 TcDRQ ns ns f1.S f1.S 50 100 100 100 f1.S ns ns ns 1 2 . f1.S f1.S 150 ns indicates falling edge. ~--.-......-----SHARP -----.--:--------~.- 284 LH011 O/LH011 OA Floppy Disk Controller • AC Timing Diagram "High" "Low" Timing test level : CLOCK Vcc-O.6V OUTPUT 2.0V , INPUT 2.0V FLOAT ..:IV 0.45V O.8V O.8V O.5V CLOCK CE RSo-RS2 IORQ RD --+--1t I ----------------'h ®~ i J F ! ~--- ~--@- lEI iEO----+@'--- lEO -.---------SHARP---------285 - . : Floppy Disk Controller '_ _ _. . . .a._a._ _ ~ t, LH011 O/LH011 OA ....................-....,._ _....._ FCLK PSL,PSE WDA VFO DRQ CLOCK ~--®'--.;..j WDW RRD 286 Floppy Disk Controller • LH011 O/LH011 OA Internal Structure • The FDC consists of a CPU bus interface,· internal control circuit (microprogram controlled), interrupt control circuit and floppy disk drive (FDD) control circuit. The interrupt control circuit arbitrates device priority and produces interrupt vectors. The FDC has the registers: • Two 8-bit data registers (RRO, WRO) • Six 8-bit status registers (RRl, RR6) • Seven 8-bit control registers (WRI-WR7) FDC Registers (1) FDC readout registers Among the seven FDC readout registers RRORR6, RR3 and RR4 are cleared at the beginning of each command. The registers have the functions listed in Table 1. Table 1 FDC readout register functions Register RRO PRI RR2 PR3 RR4 PR5 PR6 Function Data buffer Control status DMA control status; FDD control status Error status, A Error status, B Physical track address Sector address • Read Register 0 (RRO) I~I~I~I~I~I~I~I~I ~I- - - - - - B u f f e r register for latching data readout from FDD • Read Register 1 (RR1) I D7 I Ds I Ds I D. I Ds I Dz I Dl I Do I ~ Head selection } Unit selection Correspond to D7-Ds of WR3 Status selection Deleted data address mark (DDAM) detection (cleared at beginning of each command) Seek (remains "l"during command execution) Error B (ORed bits of RR4) Error A (ORed bits of RR3) Command end (set by reading RRl) • Read Register 2 (RR2) I D7 I Ds I Ds I D. I Ds I D2 I Dl I Do I ~ DRQ HDL MUXS FLT/TS WP/TRo (indicate the status of FDD coutrol signals) IDX RDY FDC ready (remains "0" during command execution) -~-------SHARP--'-'-""-'------287 Floppy Disk. Controller . LH011 O/LH011 OA • Read Register 3 (RR3) I D7 I D6 I D5 I D4 I D3 I Dz I D1 I Do I L Mis~ing data transfer (no data transfer between DRQs) Mis~ing DAM receptio~ (no DAM reception after ID and sync field dete~tion) Missing sync field reception (no sync field reception within stated bytes after ID detection) Seek error/i1iconsistency error (TRo=O.after stated number of step pulses sent by SEEK ZERO command; inconsistency of data dete~ted by VERIFY command) Write error (FLT=l after writing i\lto FDD) Fault error (FriD fault status when initiating WRITE. WRITE WITH DDAM or WRITE ID command) Write protect error (write-protected status when initiating WRITE. WRITE WITH DDAM or WRITE ID command) Not-Ready error (FDD not ready at c~mmand initiation.) • Read Register 4 (RR4) I D7 I D6 I Ds I D4 I D3 I Dz I D1 I Do I ~ CRC error (data field) CRC error (ID field) DDAM error (DDAM detected by READ command) Undefined record length'(ID field data size is not defined.) Side error (inconsistent side data in ID field) Address error (track data in ID field inconsistent with WR4) Defective track (track data in 10 field is FFH) Missing ID detection (target 10 remains undetected after 5 lOX receptions) • Read Register 5 (RR5) ' - - - - - - - Current physical track address . ' - - - - - - - . , - - - - - - - U n u s e d (0) • Read Register 6 (RR6) I~I~I~I~I~I~I~I~I IL-____ Sector address following access ' - - - - - - - - - - - - U n u s e d CO) Table 2 (2) FDC writing registers Among the eight registers WRO-WR7 written in by CPU, WRl, WR3, WR5 and WR6 do not accept writing when FDC is busy. Tte registers have the functions listed in Table 2. 288 Register WRO WRI WR2 ·WR3 WR4 WR5 WR6 WR7 FDC write register functions Function Data buffer Command designation Time setting Number·of·sectors designation and pin control Logical track address Physical track address Sector address Interrupt vector LH011 O/LH011 OA Floppy Disk Controller Write Register 0 (WRO) Write Register S (WRS) I D7 I D6 1 Ds 1 D.I I~I~I~I~I~I~I~I~I [ D3 1 D2 1 D, 1 Do 1 Buffer register for data sent to FFD L LSector address to be accessed (same as RR6) Urjused Write Register 1 (WR1) Write Register 7 (WR7) L FDC command Window inversion (inversion prevented by "0") Index count (index pulse'count after command completion until head unloading : 0 for 2 pulses ; 1 for 5 pulses) I~I~I~I~I~I~I~I~I [ Interrupt vector (read out at INT A) MFM/FM -EIIDI interrupt enable flag • Commands Write Register 2 (WR2) (1) L CD I D7 1 D6 1 Ds 1 D4 1 D31 D2 1 D, 1 Do 1 [Step rate time (N ms for value N; 20 ms for value N=O) Head load time (4M ms for value M; 64 ms for value M=O) (time length is doubled for mini -floppy disk) Write Register 3 (WR3) [Number of sectors for continuous access HDS L-------US } , (FDD signal control) ~----------MUXS Write Register 4 (WR4) [Track address (seek track address under SEEK command; track address in ID field in other commands) Unused Write Register S (WRS) (same as RR5) Unused Brief description SEEK ZERO (0000/1) Draw the head up to track 00. With command having LSB=O, task is excuted while retaining the head unload status; with LSB= 1, it is excuted while retaining the head load status. ® SEEK (0010/1) Move the head to specified track. With LSB=O, task is execused while retaining the head unload status; with LSB= 1, it is executed while retaining head load status. ® READ (0100) Read data from specified sector and transfer each byte in data section to main system. When data address mark is DDAM, operation is terminated as DDAM error. e!) READ DDAM (0101) Same as READ command, except that address DAM causes DDAM error, while DDAM does not cause error. (§) READ BOTH (0110) Same as READ command, except that address mark DDAM does not cause error. ® READ CRC (0111) Same as READ BOTH, except that data is not transferred to main system. (J) VERIFY (1000) Compare each byte in data section read out from a specified sector with the corresponding byte of data received from main system. ® READ ID (1001) Read out data in ID section of specified track and transfer each byte to main system. ® WRITE (1010) Write each byte of data received from main system into specified sector. -----......-------SHARP--.-.....I.---------289 LH011 O/LH011 OA Floppy Disk Controller' WRITE 1D1 26 sectors/track (FM: 12.8 bytes/ sector; MFM: 256 bytes/se(!tor) WRITE 1D2 15 sectors/track (FM: 256 bytes/ sector; MFM: 512 bytes/sector) WRITE 1D3 8 sectors/track (FM: 512 bytes/sector; MFM: 1024 bytes/sector) ~ RESET STATUS (1111) Initialize floppy disk drives. @ WRITE WITH DDAM (1011). Same as WRITE command, except that DDAM and not DAM is written as address mark. @ WRITE 1D1 (1100) \ @ WRITE 1D2 (1101) @ WRITE 1D3 (1110) Write initialization (ID section) and gaps of specified track. In this command, data section is filled with gaps. (2) Commands and error status register A ::s:: Error status Not-reaDB7 dy-error Write proDB6 tect error DB5 Fault error DB4 Write error Seek error DB3 Inconsistencyerror Missing DB2 sync field reception Missing DBI DAM reception Missing DBD data transfer READ READ DDAM BOTH WRITE WRITE RESET READ READ VERIFY WRITE WITH ID STATUS eRe ID DDAM 1,2,3 SEEK ZERO SEEK READ X 0 0 0' 0 0 0 0 0 0 0 X X X X X X X X X 0 0 0 X X ·X X X X X X X X 0 0 0 0 0 0 0 X X X X X X X X X X X X X X X X X X X X X X X X X 0 X X X X X X X 0 0 0 0 0 X X X X X X X 0 0 .. 0 0 0 X X X X X X X 0 0 0 X 0 0 0 0 0 X X (~) Commands and error status register B ~ Error status Missing ID DB7 detection . DB6 Defect track Address DB5 error DB4 Side error Undefined DB3 record length ,DDAM DB2 error eRe error DBI (ID field) eRe error DBD (data field) WRITE WRITE RESET READ READ WRITE WITH VERIFY ID eRe ID STATUS DDAM 1,2,3 SEEK ZERO SEEK READ X X 0 0 0 0 0 0 0 0 X X X X 0 0 0 0 0 X 0 0 X X X X 0 0 0 0 0 X 0 0 X X X X 0 0 0 0 0 X 0 0 X X X X -0 0 0 0 0 X 0 0 X X X X 0 0 X X X X X X X X X X 0 0 0 0 0 Or 0 0 X X X X 0 0 0 0 0 X X X X X READ READ DDAM BOTH --------SHARP-------290 Floppy • Dis~ LH011 O/LH011 OA Controller CPU Interface Timing (1) (3) FDC write cycle RSo RS2 Interrupt acknowledge cycle MI -,L_ _ _ _ _ _r---- lEI ====-===_1 I I CE MI,RD--------------~----------- r:: Do-D7 ______~I~_______________ Do-D7--------------~c::J~------ Vector (2) (4) FDC read cycle CLOCK Interrupt return cycle CLOCK MI ____________c= ~ ~~~ __ r--~ __ ~---- RD ----~CJ~------~~~----- MI ==:::':.::.-_-:.J"r-------------ED lEI ,'-_____-Jr--- lEO 4D ----------------------~,--- Do -D 7 - - - - - - - - - - - - - - - -__<::::)---Data ---------~------SHARP ---~-.-------291 ! .-.-.-~-.-~-~ • .--..... ..... ..... Flbppy Disk Controller ~ LH011 O/LH011 OA ~.-: FDD Interface Timing . (1) READ, READ DDAM, READ BOTH, READ CYC, VERIFY, READ 10 command timing -------1H)~J__- ,~ =::::~------~~ Command termination-:----r-- ..lo......-------!H -!~--- ~---------~Jj l~j--- .j)J--'- (' 11 --'---..A.---------it} :) 1 - - - - ! 5~Falls if next command No head load walt time needed if preceedmg command was is not issued within a certain time span. a read/write command. . . f . . --L1,:::;SL:yn:,:;;c.J.,.1~ID;U...I_--r.;ls;;,:YD;;;;;c.J.,.1---\rl~:_--l._-..JI.;;s~YD:::..cIL.o:1;:;:D. J,I_ _ Gap (2) Data section . Gap PSL and PSE timing FCLK WDA -1l D n C D n C D C D C ~ D PSL PSE MFM mode FCLK WDA PSL PSE J CI High n D n C D 11.:..C FM mode - - - - - - . . . . . - - . - - . . . - . - - S H A R P -.-.--~-,-.-- 292 Floppy Disk Controller LH011 O/LH01.1 OA (3) WRITE 101, WRITE 102, WRITE 103 command timing ~--------~n~------~i~~(--'------.....-.l!l {~'r--~Com~~i~ Jl T---------------~\~\------------~5~rj- - - - - \~j ----J''----------ll! Falls if next command ( (I-----(~~ • • d ·th· . 'C IS not I.SSU~ WI ID - - - -__r......c::;NLo head load wait time needed if preceeding command was a read/write command. r a certam hme span. f 5~~f-I _ _ _ _ _--11 Jl i~fj...___ X X ~t::::to---= Valid ~~ Valid U ID II gap Gap Sync 1t::::tD== lJ ISync I I )1 Gal! ID (4) WRITE, WRITE WITH OOAM command timing US HDS =:::x II r{ ::::::x'--------l(\}-.---------\11(----1.J If-f--C-o-m-m-a-nd-te-r-m-in-a-ti-on-:::C~-------- MUXS _____ RDY ::J~~--------{ljf---------j~!----- LCT _ _ _J\...X HDL --------i}~ ~(.. If---\~alls If next command No head load wait time needed if preceeding command was ~is not issued within (head/write command. a certain time span. ! ~l-l- - - - - VFO ------I. WG --------------~~~~------il(~----- WDA PSE PSL . ------------~~========~r\~~·==== -----~~~----~I~~----....L..--L...-~.I-~.I-..LI--tH Sync ID , . Gap I \ Data section Sync Gap Sync ID .--.-.-----SHARP-.-------- 293 LH0110lLH0110A Floppy Disk Controlle,r (5) RESET STATUS command timing MUXS :.:.J L..:' TYP. FR. -J 12ps l+rlL._'_---:._ FLT DIR' HDL (6) SEEK ZERO command timing MUXS:-1~ ____________~~______~r:: STP TY . 12ps 15}ls for 20ms seek rate time HDL __-LI____________________~~~------------ DIR ::t~ TRO ------------------------~l~ ____________________ ~ij~---------- (7) SEEK command timing MUXS~~_ _ _ _ _ _ _ _~!~---Lr-: STP c:::::J , ' !----ITY~ 12ps 15}ls for 20ms seek rate time HDL __-LI____________________~:----~------ J DIR RDY 294 .;,.j ~ ) LH011 O/LH011 OA Floppy Disk Controller • System Configuration Low current LCT/DIR Dire ction MUXS ! FR/STP ----WP/TR o Multiplexer FLT/TS LHOIIO FOC - Fault reset - Write protect - -- Step Track zero Fault ....- 2-side disk US Unit select HDS Head select HDL Head load WG Writing gate IDX Index RDY Ready RRD Read data WDW VFO circuit VFO 6 PSL PSE WDA ~ MFM ~ Delay circuit Write data CJ2MHz FCLK Oscillator (lMHz fo r mini -floppy disk) .-.----~~-SHARP~-.----------.-, 295 --............ ..... Z80 CMOS Central Processing Unit ~ - -~- LH5080/LH5080L/LH5080LM zao CMOS Central Processing Unit • Description The LH50BO is 2BO CPU fabricated with CMOS silicon-gate process technology and is fully compatible with the conventional NMOS 2BO CPU (LHOOBO). The LH50BO is designed with CMOS fully static circuits and so provides low power consumption and wide range power supply voltage operation. ' The LH5080LlLH5080LM provides power save mode controlled by software. ' • Features 1. 2BO CMOS CPU 2. Fully compatible with the NMOS 2BO CPU (LHOOBO) 3. 15B instructions 4. 22 registers 5. 3 modes of maskable interrupt and a nonmaskable interrupt 6. Instruction fetch cycle 1.6 flS 7. Single + 5V power supply and single phase clock B. All inputs and outputs except clock input fully TTL compatible 9. Fully static operation (DC-2.5MHz) 10. Low power consumption 11. Power save mode (LH50BOLlLH50BOLM) 12. 40-pin dual-in-line package (LH50BO/LH5080L) 13. 44-pin quad-flat package (LH50BOLM) Note: The l80 CMOS CPU (LH5080/LH5080LlLH5080LM) is compatible with the l80 NMOS CPU (LH0080). So there is no descrip.tion here about the pins, CPU registers, architecture, interrupts, basic timings, and instruction, sets. Refer back to the l80 NMOS CPU described earlier.' , 29p - ... .. ......- . -...-,..-.............. .- LH5080/LH5080LlLH5080LM • Pin Connections LH5080/LH5080L o Z80 CMOS Central Processing Unit • LH5080/LH5080L/LH5080LM Block Diagram System Data Bus A Halt State Memory Request Data Bus Interface Input /Output Request Read Write Bus Acknowledge Machine Cycle 1 Refresh Interrupt Request CPU Timing Control Instruction Decoder Inst. Reg. ALU Register Array Non Maskable Interrupt Wait Bus Request Reset Address Logic a~d Buffer System Address Bus 297 Z80 CMOS Central Processing Unit , ,.-..-.-.-.:__,._.. LH5080/LM50BOLlLH5080LM ....__,._.......-....................i.r.....r.-- ~ • Absolute Maximum Ratings Parameter Input voltage Output voltage Symbol VIN VOUT, Ratings -0.3-+7 -0.3-+7 Unit V V Operating'temperature Topr 0-+70 t Storage temperature T s ," -65-+150 t • (Vee=5V±10%, Ta=0-+70t) DC Characteristics Parameter Clock input low voltage Clock input high voltage Input low voltage Input high voltage Output low voltage Output high voltage Current conswnption Input leakage current 3·state output leakage current 3·state output leakage current Data bus leakage current Current conswnption in PS mode (LH50BOL/LH50BOLM) Symbol VILC V IHC VIL VIH VOL VOH Icc I ILl I IILOH I I ILOL I I ILD I leeps Conditions IOL=1.BmA IOH=-250 pA (Note) VIN=OV, Vee VouT=Vee VOUT=OV MIN. -0.3 Vee- 0.6 -0.3 2.4 TYP. MAX. 0.45 Vcc+ 0.3 Note 1 2 2 10 pA pA pA pA 150 pA O.B Vee 0.4 2.4 10 10 10 10 O~VIN~Vee VIH=;,OV, Vee Output pin open Unit V V V V V V mA 50 Note: TcC=400ns, Vn.=O.~ VIH=Vcc-OAV, output pin open. Notel: The INT , WAIT, NMI and (BUSRQ) pins are arranged as shown below. Note 2: The Ao-A3 pins are arranged as shown below. Note 1 and 2: The Do- D7 pins are arranged as shown ,below.~ • (f=1MHz, Ta=25t) Capacitance Symbol CeLocK CIN COUT 298 Parameter Clock capacitance Input capacitance Output capacitance MAX. 5 6 10 Unit pF pF pF Unmeasured pins returned to ground Z80 CMOS Central Processing Unit • AC Characteristics No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 t Parameter Clock cycle time Clock pulse width (high) Clock pulse width (low) Clock fall time Clock rise time Clock t to address valid delay Address valid to MREQ ~ delay Clock ~ to MREQ ~ delay Clock t to MREQ t delay MREQ pulse width (high) MREQ pulse width (low) Clock ~ to MREQ t delay Clock ~ to RD ~ delay Clock t to RD t delay Data setup time to clock t Data hold time after RD t WAIT setup time to clock ~ WAIT hold time after clock ~ Clock t to M1 ~ delay Clock t to M1 t delay Clock t to RFSH ~ delay Clock t to RFSH t delay Clock ~ to RD t delay Clock t to RD ~ delay Data setup to clock t during M2, M3, M4 or Ms cycles Address stable prior to IORQ ~ Clock t to IORQ ~ delay Clock ~ to IORQ t delay Data stable prior to WR ~ (memory cycle) Clock ~ to WR ~ delay WR pulse width Clock ~ to WR t delay Data stable prior to WR ~ (110 cycle) Clock t to WR ~ delay Data stable from WR t Clock ~ to HALT t NM1 pulse width BUSREQ setup time to clock t BUSREQ hold time after clock t Clock t to BUSACK ! delay Clock ! to BUSACK t delay Clock t data float delay Clock t to control output float ----delay (MREQ, IORQ, RD, and WR) LH5080/LH5080LlLH5080LM (Vcc=5V±10%, Ta=0-+70·C) Symbol TcC TwCh TwCl TfC TrC TdCr (A) TdA (MREQf) TdCf (MREQf) TdCr (MREQr) TwMREQh TwMREQ1 TdCf (MREQr) TdCf (RDf) TdCr (RDr) TsD (Cr) ThD (RDr) TsWAIT (Cf) ThWAIT (Cf) TdCr (Mlf) TdCr (M1r) TdCr (RFSHf) TdCr (RFSHr) TdCf (RDr) TdCr (RDf) TsD (Cf) TdA (IORQf) TdCr (IORQf) TdCf (IORQr) TdDm (WRf) TdCf (WRf) TwWR TdCf (WRr) TdDi (WRf) TdCr (WRf) TdWRr (D) TdCf (HALT) TwNMI TsBUSRQ (Cr) ThBUSRQ (Cr) TdCr (BUSAKf) TdCf (BUSAKr) TdCr (Dz) TdCr (CTz) MIN. 400* 180* 180 MAX. 30 30 145 125* 100 100 170* 360* 100 130 100 50 15 70 15 130 130 180 150 110 100 Unit ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns np ns ns ns ns ns 60 320* 120 110_ 90 ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns 110 ns 90 110 190* 90 360* 100 20* 80 120* 300 80 80 15 Rising edge, ~ Falling edge . .....--.-.-.--.---SH~RP-------.-. 299 LH5080/LH5080L/LH5080LM Z80'CMOS Central Processing Unit No. 44 45 46 47 4S 49 50 51 52 53 Parameter Clock t to address float delay MREQ t ,IORQ t, RD t, and WR t to address hold timE: RESET to clock t setup time Clock t to RESET hold time INT to clock t setup time Clock t to INT hold time M1 ! to IORQ ! delay Clock ! to IOR~ ! delay Clock t to IORQ t delay Clock ! to data valid delay Symbol TdCr (Az) MIN. Unit ns TdCTr (A) 160* ns' TsRESET (Cr) ThRESET (Cr) TsINTf (Cr) ThINTr (Cr) TdMIf (IORQf) TdCf (IORQf) TdCf (IORQr) TdCf (D) 90 15 SO 15 920* os ns ' ns ns ns ns ns ns MAX. 110 110 100 230 t Rising edge, ! Falling edge • For clock periods other than the minimums shown in the table, calculate parameters using the expressions in, the table on the following page. ' .. All timings are preliminary and subject to change. Footnotes to AC Characteristics No. 1 2 7 10 11 26 29 31 33 35 45 50 Symbol TcC TwCh TdA (MREQf) TwMREQh TwMREQl TdA (IORQf) TdD (WRf) TwWR TdD (WRf) TdWRr (D) TdCTr (A) TdMlf (IO~Qf) Formula TwCh+TwCl+TrC+TfC MAX. 2001's TwCh+TfC-75 TwCh+TfC-30 TcC-40 TcC-SO TcC-210 TcC-40 TwCI+TrC-1S0 TwCl+TrC-SO TwCI+TrC-40 2TcC+TwCh+TfC-SO AC Test Conditions e Input voltage amplitude: 004 V to 2.8V e Input judge level: 0.8V and 2.0V e Input signal rise and fall time : IOns eOutput judge level: 0.8V and 2.0V eClock input voltage amplitude: OAV to eOutput load: ITTL+ 100 pF Vcc-0.6V Output Pins Measuring Circuit Output pin o-.......~t-----1Ie-~ CR, CR 3 CR. CRI-CR<: IN914 or eguivalent CI: 50pF for all pins ---.------,~--SH~RP.--,.-----~-- 300 ......... Z80 CMOS Central Processing Unit • Power Save Function The LH5080L/LH5080LM features the power save (PS) function. After a HALT instruction has been executed, the internal clock signal is automatically cut off to bring the CPU into the halt mode. (1) PS mode setting With a HALT instruction executed, the PS mode will be automatically established. In this mode, the internal clock signal is cut off to save the power consumed for the clock signal operation. Cutting an external clock signal does not give any problem inside, therefore, in this mode. To cut off the external clock, it is possible to utilize the rise timing of a HALT signal output. It should be noted, however, that this timing cannot be used to restart the external clock. In the PS mode, the bus request (BUSRQ) is not accepted and the memory refresh is not done, either. LH5080/LH5080L/LH5080LM is then cleared and the reset just as before is carried out. (ii) Clearing with NMI: Input the NMI signal (edge trigger) to clear the PS mode and to carry out the instruction next to the HALT. Now the non-maskable interrupt processing routine will be introduced. (iii) Clearing with INT: Input the INT signal (level trigger) regardless of which state the interrupt enable flag is in. The PS mode is now cleared and the HALT instruction executed. If the interrupt enable flag is set up and the INT signal is "Low' at the clock pulse rise timing in the last clock cycle of the HALT instruction, the mask able interrupt processing routine will be introduced as the next machine cycle. CLOCK HALT~ PS·, ~~--Ml--------------------- RESET CLOCK . ...:===~~~~~~~~-r--- Ml * PS is internal signal, and not output externally. PS· _+--+~+--+...J Halt clear by NMI INT * PSis internal signal, and not output externally. PS mode setting CLOCK HALT (2) PS mode clear The PS mode is cleared by any of the following; reset (RESET), non-maskable interrupt (NMI) and maskable interrupt (INT). When the external clock is shut down in the PS mode, a stable clock signal must be input before clearing the PS mode. (i) Clearing with RESET: Input the RESET signal for more than 3 clock cycles. The PS mode PS· NMI INT * PS is internal signal, and not output externally. PS mode clear by MI signal ------------SHARP .-.-..---------301 zao. CMOS Parallel 1/0 Controller LH5081 fLH5081 L/LH5081 LM ,;.tI!IIIIIII'.-..-..... ......-..-..-..-,..-..- ..- -...... - . - . .....,~ LH5081/LH5081L/LH5081LM zao CMOS Parallel 110 Controller • Description The LH5081 is Z80 PIOfabricated with.CMOS silicon gate prQ(;ess techrlOlogy and is fully compatible with the conventional NMOS Z80 PIO (LH0081). The LH5081 is designed with CMOS fully static circuits and so provides low power consumption and wide range power supply voltage operation. The LH5081L1LH5081LM provides power save mode controlled by softwave. - • Pin Connections LH5081/LH5081L CE 4 C/D SEL 5 BIA SEL 6 Features 1. Z80 CMOS PIO 2. Fully compatible with NMOS Z80 PIO (LH0081) 3. Tow independent 8-bit bidirectional peripheral interface ports with handshake data transfer control 4. 4 programmable operating modes • Byte input mode • Byte output mode • Byte bidirectional bus mode (Port A only) • Byte control mode 5. Programmable interrupt on peripheral status conditions 6. Vectored daisy chain priority interrupt 7. Darlington transistor drive capability (port B output) 8. All inputs and outputs except clock input fully TTL compatible 9. Single +5V power supply and single phase clock 10. Fully static operation (DC-Z.5MHz) 11. Low power consumption 12. Power save mode (LH5081L1LH5081LM) 13. Status read mode (LH5081L1LH5081LM) 14. 40-pin dual-in-line package (LH5081/LH5081L) 15. 44-pin quad-flat package (LH5081LM) Note: The Z80 CMOS CPU (LH5081/LH5081L) is compatible • with the Z80 NMOS PIO (LH0081). So there is no descrip· tion here about the pins, programming, and basic timings waveforms. Refer back to the Z8.0 NMOS PIO described earlier. 302 • Top View LH5081LM 1 Top View 2 3 I~I~ ~ Z80 CMOS Parallel 1/0 Controller • LH5081/LH5081 L/LH5081 LM Block Diagram Internal Control Logic Port A Input! Output System Data Bus Port A Data Bus CPU Bus Input! Output Logic Port A!B Select Command/Data Select Chip Enable Macbine Cycle 1 I!O Request Read Port B Input! Output Port B Data Bus ~ Interrupt Control Logic :; > ....u0 It) = u + Q .,;; (.!) u z .e ... 'Vi CIl ..'". .s. ..'" .'" ::c... ::c.. 0 <:I' .. ..'" . '" ! .s !. ...'" p:: Q. r.z:I Q. .... r.z:I Q. ! .s ----~-.-----SHARP ----.----------~ 303 LH5081 ILH5081 LlLH5081 LM Z80 CMOS Pataltel 1/0 Unit' • Absolute Maximum Ratings Parameter Supply voltage Input voltage Output voltage Operating temperature Storage temperature • Symbol Vcc VIN VOUT Topr Ts". Ratings -0.3-7.0 -0.3-Vcc +0.3 -0.3-Vcc +0.3 0-+70 -65-+150 Unit V V V t t (Vcc=5V±10%, Ta=0-+70t) DC Characteristics Parameter Clock input low voltage Clock input high voltage Input low voltage Input high voltage Output low voltage Output high voltage Current consumption Input leakage current 3-state output leakage current 3-state output leakage current Data bus leakage current input Darlington drive current Current consumption in PS mode (LH5081L/LH5081LM) Symbol VILC VIHC VIL V IH VOL Conditions MIN. -0.3 Vcc- O.G -0.6 2.2 10HD, 10L =2inA IOH=-1.6mA 10H= -250 1'A (Note) VIN=OV, Vcc VOUT=VCC VOUT=OV oS::VIN S::VCC V OH = 1.5V, Port only Iccps Output pin open, VIN=OV, VCC VOH Icc I ILl I I lLOH I I lLOL I I ILD I TYP. MAX. 0.45 Vcc+ 0.3 0.8 Vcc+ 0. 3 0.4 2.4 Vee -D.4V 2 6 10 10 10' 10 -1.5 1 100 Note TcC=400ns, VIL=OAV, VIH=VCC-O.4V, output pin open. Note 1: The A STB and B STG pins are arranged as shown below. • The INT pin is arraged as shown below. Note 2: The Ao-A7 and Bo-B7 pins are arranged as shown below. • Parameter Clock capacitance Input capacitance Output capacitance 304 ""ID-' L Interruput request (f=lMHz, Ta=25t) Capacitance Symbol CCLOCK CIN COUT Conditions Unmeasured pins returned to ground -Note pA I'A I'A I'A 1 2 2 rnA - ,.,,,,,,,,,, ,,1m•• Unit V V V V V V V rnA MAX. 7 7 10 Unit pF pF pF pA Z80 CMOS Parallel I/O Controller • LH5081 ILH5081 L/LH5081 LM AC Characteristics No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 (V cc =5V±10%, Ta=0-+70t) 16 Parameter Clock cycle time Clock width (high) Clock width (low) Clock fall time Clock rise time CE, BfA, CfD to RD, 10RQ ~ setup time Any hold times for specified setup time RD, 10RQ to clock t setup time RD, 10RQ ~ to data output delay RD, 10RQ t to data output float delay Data in to clock t setup time 10RQ ~ to data o_ut delay (INT ACK cycle) M1 ~ to clock t setup time Ml t to clock ~ setup time (Ml cycle) Ml ~ to lEO ~ delay (interrupt immediately preceding MI l) lEI to 10RQ ~ setup time (INT ACK cycle) 17 lEI 18 lEI t to lEO t delay (after ED decode) 10RQ t to clock ~ setup time (to activate READY on next clock cycle) 15 19 l to lEO ~ delay t 20 Clock ~ to READY 21 22 Clock ~ to READY l delay STROBE pulse width STROBE t to clock ~ setup time (to activate READY on next clock cycle) 10RQ t to PORT DATA stable delay (mode 0) PORT DATA to STROBE t setup time (mode 1) STROBE ~ to PORT DATA stable (mode 2) STROBE t to PORT DATA float delay (mode 2) PORT DATA match to INT l delay (mode 3) STROBE t to INT ~ delay 23 24 25 26 27 28 29 delay Symbol TcC TwCh TwCI TfC TrC TsCS (RI) Th TsRI (C) TdRI (DO) TdRI (DOs) TsDI (C) TdlO (DOl) TsMI (Cr) TsMI (Cf) MIN. 400 170 170 30 30 50 15 115 430 160 50 340 210 0 TdMI (lEO) TsIEI (10) MAX. (Note l) 300 140 Unit ns ns ns ns ns ns ns ns ns ns ns ns ns ns Note 6 2 CL =50pF 3 8 ns 5,7 ns 7 5 TdlEI (IEOf) 190 ns TdlEI (lEOr) 210 ns CL =50pF 5 TcIO(C) 220 ns TdC (RDYr) 200 ns TdC (RDYf) TwSTB 150 150 ns ns 5 CL =50pF 5 4 TsSTB (C) 220 ns 5 ns 5 TdlO (PD) TsPD (STB) 200 ns 260 TdSTB (PD) 230 ns 5 TdSTB (PDr) 200 ns CL =50pF TdPD (INT) TdSTB (INT) 540 490 ns ns t Rising edge, ~ Falling edge Note 1: TcC=TwCh+TwCl+TrC+TtC. Note 2 : Increase TdRI (DO) by 10 ns for each 50 pF increase in load up to 200 pF max. Note 3 : Increase TdIO (001) by 10 ns for each 50 pF, increase in loading up to 200 pF max. Note 4 : For Mode 2 : TwSTB>TsPD (STB). Note 5 : Increase these values by 2 ns for each 10 pF increase in loading up to 100 pF max. Note 6 : TsCS (RI) may be reduced. However, the time substracted from TsCS (RI) will be added to TdRI (DO). Note 7 : 2.5 TcC > (N·2) TdIEI (IEOf)+TdM1 (IEO)+TsIEI (10) + TTL Buffer Delay, if any. Note 8 : M1 must be active for a minimum of two clock cycles to reset the PIO. AC Test Conditions: • Input voltage amplitude: OAV to 2.8V • Clock input voltage amplitude: OAV to Vcc-O.6V • Input signal rise and fall time : IOns • Input judge level: O.8V and 2.0V • Output judge level: O.8V and 2.0V • Output load: ITTL+ lOOpF (unless otherwise specified) ------~.--.----SHARP . - . - - . - . - . . - - ......... 305 LH5081 ILH5081 LlLH5081 LM Z80 CMOS Parallel I/O Controller • Power Save and Status Information Read Function Un1ike the LH00811LH5081, the LH5081Ll LH5081LM has the power save (l:'S) and status information read functions. (1 ) Power save function (i) PS mode setting When the CPU (LH5080LlLH5080LM) has executed an HALT instruction in the PS mode, the LH5081LlLH5081LM reads this HALT instruction to automatically go into the-PS mode. Now the internal clock signal is cut off. Therefore, cutting an external clock input gives no problem inside in this mode. Data--------~r---~~---+--------- PS' ----------------~ PS mode set timing Bits Ml ps' (ii) PS mode clear The. PS mode is cleared by detecting the fall of the Ml signal. When the external clock is off in the PS mode, however, a stable clock signal must be input before clearing the PS mode. When the CPU (LH50~OLlLH5080LM) is cleared from the PS mode and comes into the next fetch cycle, therefore, the LH5081LlLH5081LM is also cleared from itsPS mode at ~he fall of the first Ml signal in this cycle. The PS mode clearing can be done by issuing an interrupt request. Set up the interrupt generate conditions in Mode 3 of the LH5081LlLH50S1LM. By this, an interrupt request (INT) is issued even in the PS mode, the CPU (LH5080LlLH5080LM) is cleared from the PS mode, and thus LH5081LlLH5081LM is also cleared. (2) Status information read Under the following conditions, the mode setup bits and handshake signals of Port A and Port B are read from the data bus during the read cycle. See the chart below. Conditions: CE = "Low"~RD = "Low", IORQ "Low", C/D = "High", BI A = X (undefined) Return to original state * PSis internal signal and not output externally. PS mode clear timing 7 6 5 4 3 2 1 0 IAMIIAMOjARD\jASTIlI BMII BMO~RDYjilSTBI . I ~most ~he two bits of Uppermost two bits of tbe B port mode co~t~ol reglstor Aport mode control registor (Set mode bIts) (Set mode bits) LH5081/LH5081 LM status information words 306 Z80 CMOS Counter Timer Circuit LH5082/LH5082L1LH5082LM LH5082/LH5082L/LH5082LM zao CMOS Counter Timer Circuit • Description The LH5082 is 280 CTC fabricated with CMOS silicon-gate process technology and is fully compatible with the conventional NMOS 280 CTC (LH0082). The LH5082 is designed with CMOS fully static circuits and so provides low power consumption and wide range power supply voltage operation. The LH5082L1LH5082LM provides power save mode controlled by software. • • Pin Connections LH5082/LH5082L o Features 1. 280 CMOS CTC 2. Fully compatible with the NMOS 280 CTC (LH0082) 3. 4 independent programmable 8-bit counter/ 16-bit timer channels 4. Selectable counter/timer mode for each channel 5. Programmable interrupt triggered by counter/ timer 6. Downcounters !;eloaded automatically at zero count 7. Readable downcounters 8. Selectablp. 16 or 256 prescaler (timer mode) 9. Selectable positive or negative triggers for timer and selectable positive or negative clock edge for counter 10. 2C/TO outputs of three channels capable of driving Darlington transistors 11. Vectored and daisy chain piority interrupt 12. Single + 5V power supply and. single phase clock 13. All inputs and outputs except clock input fully TTL compatible 14. Fully static operation (DC-2.5MHz) 15. Low power consumption 16. Power save mode (LH5082L1LH5082LM) 17. 28-pin dual-in-line package (LH50821LH5082L) . 18. 44-pin quad-flat package (LH5082LM) Top View o " U Z Top View Note: The Z80 CMOS CTC (LH50821LH5082L/LH5082LM) is compatible with the Z80 NMOS CTC (LH0082)_ So there is no description here about the pins, programming, and basic timing waveform. Refer back to the Z80 NMOS CTC described earlier. -~--------SHARP--'-''--'-'------ 307 LH5082~LH5082L/LH5082LM Z80 CMOS Counter Timer Circuit· • Block Diagram Zero Count/ Timeout 0 Clock/Trigger 0 Internal Control Logic System' Data Bus Zero Count/ Timeout 1 Clock/Trigger CPU Bus Input/ Output Logic Zero Count/ Timeout 2 Channel { Select Clock/Trigger 2 Machine Cycle 1 Interrupt Logic I/O Request Clock/Trigger 3 _ ~ '" '" III ~ S > > c:> "' .... + ~~.l LI) u zu)u ~ t!l _ c= ~ t; ... Q) - §": ~O .... _::1 t & t~ t:i !~]~!~ ,.!;~ .-.-.----.....,.-.--SHARP-.-.------308 Z80 CMOS Counter Timer Circuit • Absolute Maximum Ratings Parameter Supply voltage Input voltage Output voltage Operating temperature Storage temperature • LH5082/LH5082L/LH5082LM Symbol Vee VIN VOUT ToDr TstQ Ratings -0.3-+7.0 -0.3-Vee +0.3 -0.3-Vee +0:3 0-+70 -65-+150 Unit V V V t t (Vee =5V±10%, Ta=0-+70t) DC Characteristics Parameter Clock input low voltage Clock input high voltage Input low voltage Input high voltage Output low voltage Output high voltage Current consumption Input leakage current 3-state output leakage current 3 -state output leakage current Symbol VILe V IHe V IL . V LH VOl. VOH I Icc I I ILl I I ILOH I I IIOL I Darlington drive current IOHD Current consumption in PS mode (LH5082L1LH5082LM) Iccps Conditions IOL =2mA IoH =-1.6mA IoH = -250pA (Note) VIN=OV, Vee VouT=Vee VOUT=OV V()H=1.5V AppIicated to ZC/TOo-ZCIT0 2 MIN. -0.3 Vee- 0.6 -0.3 2.2 TYP. MAX. 0.45 Vee+ 0.3 0.8 Vee 0.4 2.4 Vcc--:OAV 2.5 8 10 10 10 -1.5 Output pin open, VIN=OV, Vee Unit V V V V V V V rnA pA pA pA Note 1 rnA 1 100 pA Note: TcC=400ns, TcCTR=l p.s, VIL=O.4V, VIH=Vee-O.4V, output pin open. Notel: The CLK/TRGo-CLK/TGa pins arranged as shown below. • (f=lMHz, Ta=25t) Capacitance Parameter Clock capacitance Input capacitance Output capacitance Symbol CeLOeK CIN COUT Conditions Unmeasured pins returned to ground MAX. 5 5 10 Unit pF pF pF 309 LH5082/LH5082L1LH5082LM 280 GMOS Counter Timer Circuit • (V cc =5V±10%, Ta;;=0-+70"C) AC Characteristics No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 Para!lleter Clock cycle time Clock width (high) Clock width (low) Clock Jail time Clock rise time All hold times CS to clock t setup time CE to clock _t setup time IORQ ~ to clock t setup time_ RD ~ clock t setup time Clock t to data out delay Clock ~ to data out float delay Data In to clock t setup time Ml to clock t setup time Ml ~ to lEO ~ delay (interrupt immediately preceding Ml) IORQ ~ to data out delay (INT A cycle) lEI ~ to lEO ~ delay lEI t to lEO t delay (after ED decode) Clock t to INT ~ delay - CLK/TRG t to INT ~ delay (tsCTR (C) satisfied) CLK/TRG t to INT ~- delay (tsCTR (C) not satisfied) CLK/TR9 cycle time CLK/TRG rise time CLK/TRG fall time CLK/TRG width (low) CLK/TRG width (high) CLK/TRG t to clocl~ t setup time for immediate count CLK/TRG t to clock t setup time for enabling of prescaler on following clock Clock t to ZC/TO t delay Clock t to ZC/TO ~ delay lEI setup time to 10RQ ~ (INT A cycle) Symbol TcC TwCh TwCl TfC TrC Th TsCS (C) TsCE (C) TsIO (C) TsRD (C) TdC (DO) TdC (DOz) TsDI (C) TsMI (C) t MIN. 400 170 170 MAX. (Note 1) 30 30 15 250 200 250 240 240 230 60 210 Unit ns ns ns ns ns ns ns ns ns ns ns ns ns ns Note 2 TdMI (lEO) 300 ns 3 TdIO (001) TdIEI (IEOf) TdlEI (IEOr) TdC(INT) 340 190 220 TcCt200 ns ns ns ns 2 3 3 4 TdCLK (INT) TcCt230 ns 5 TdCLK (INT) 2TcCt530 ns 5 5 TcCTR TrCTR TfCTR TwCTRI TwCTRh 2TcC 200 200 ns ns ns ns ns TsCTR (Cs) 300 ns 5 TsCTR (Ct) 210 ns 4 TdC (ZC/TOr) TdC(ZCITOf) TsIEI (10) 50 50 260 190 140 ns ns ns t Rising edge, ! Falling edge IAI 2.5 TcC>(n-2) TdIEI (IEOf)+TdMI (lEO) +TsIEI (IO)+TTL buffer delay, if any: IBI RESET must be active for minimum of 3 clock cycles Note1: TcC=TwCh+TwCI+TrC+TfC. Note 2 : Increase delay by 10 ns for each 50 pF increase in loading, 200 pI" maximum for data lines, and 100 pF for control lines. Note 3 : Increase delay by 2 ns for each 10 pF increase in loading, 100 pF maximum. Note 4 : Timer mode. Note 5 : Counter mode. All timing are preliminary and subject to change. * -~~-'--'---SHARP'-''-----'-~- 310 Z80 CMOS Counter Timer Circuit AC Test Conditions • Input voltage amplitude: 0.4 V to 2.S V • Clock input voltage amplitude: 0.4 V to Vcc-0.6V • Input signal rise and fall time: IOns • Input judge level: O.S V and 2.0 V • Output judge level: O.S V and 2.0 V .Output load: ITTL + 100 pF (unless otherwise specified) • Power Save Function The LH50S2L1LH50S2LM has the power save (PS) function. (1) PS mode setting When the CPU (LH50S0LlLH50S0LM) has executed a HALT instruction, the LH5082L/LH5082 LM LH5082/LH5082L/LH5082LM reads this HALT instruction to autmatically go into the PS mode. In this mode, the internal clock signal is cut off. The external clock may be off duro ing the PS mode. About the external clock stop, the same is true as the power-saving CPU (LH50S0LlLH5080LM). (2) PS mode clear The PS mode is cleared by the fall of M1 signal or the RESET signal. When the external clock is off the PS mode, however, a stable clock signal must be input before clearing the PS mode. Once cleared from the PS mode, the power-saving CPU (LH5080LlLH50S0LM) comes into the next fetch cycle. At the time when the first M1 signal during this cycle falls, the LH5082L1LH5082LM is also cleared from the PS mode. CLOCK CLOCK RESET~ Ml PS' RD . I Reset state same as LH5082 * PS is an internal signal and not output externally. Date PS mode clear by RESET signal _ _ _ _ _ _ _ _ _..:r Power save state * PS is an internal signal and not output externally. PS mode set timing CLOCK Ml PS' ~ ~'----Return to original state * PS is an internal signal and not output externally. PS mode clear by MI signal -----------SHARP-...-...-~-.---.- 311 16-Bit Microprocessor and Peripheral LSls ZS001 IZS001 AlZS002/ZS002A Central Processing Unit LHS001 IS001 A/S002/S002A LH8001/LH8001A/LH8002/LH8002A zaoo IIZSOO IAlZSOO2lZS002A. Central Processing Unit • . Description LH800i, Z8001 CPU and LH8002, Z8002 CPU are advanced 16-bit microprocessor that spans a wide variety of applications ranging from simple stand..,alone computers to complexparallel-proces.sing unit. Essentially Z8000 CPU is a monolithic minicomputer central processing unit. The LH8001A Z8001A and LH8002A Z8002A CPU are the high speed version which can operate at 6MHz system clock. • • Pin Connections r------:----;::=====::----:L--:H=-SO--:Ol::-:;-=-LH=S=OO=-lA:i Features 1. Regular, easy-to-use architecture 2. Instruction set more powerful than many minicomputers 3. Directly addresses 8M bytes 4. Eight user-selectable addressing modes 5. Seven data types that ra~ge from bits to 32-bit l<;mg words and word strings 6. System and Normal operating modes 7. Separate code, data and stack spaces 8. Sophisticated interrupt structure 9. Resource-sharing capabilities 'for multiprocessing systems 10. Multi-programming support 11. Compiler support 12. Memory management and protection provided by Z8010 Memory Management Unit 13. 32-bit operations, including signed mUltiply and divide 14. Z-BUS compatible Top View LH8002lS002A Top View .-......-.--------SHARP .-..-....---------- 314 • I I I I I I I , m 0" 0 '"0 ii" CQ ; 3 Flags Address IData Address St robe I Date Strobe Memory Request » N Bus Acknowledge '0 I I I I I I I .... I Bus Request I~ Multi- Micro In Multi- Micro Out Non- Maskable Interrupt Segment Number Segment Trap Non- Vector Interrupt Vector Interrupt System Clock Control Register 11 36 Vee GND w 01, II Ii III i Ii ----. U1 11111111 I~ I h II II ZSQ(H IZ8001 A/Z8002/Za002A Central, Processing Unit LH8001 lLH8001 A/LH8002/LH8002A • Pin Description Meaning Pin ADo -AD I5 BUSAK Bus acknowledge 0 RESET Reset I Non-maskable interrupt I Vectored interrupt Non-vectored Interrupt Stop I I Active "Low". Requests a non-vectored interrupt. I WAIT Wait I Ml Mo CLOCK Multi-micro I Multi-micro 0 System clock I 0 I Active "Low". For single-step instruction execution. Active "Low". For synchronizing with a peripheral device. Active "Low". Forms a resource-request dai&y chain. Active "Low". Forms a resource-request daisy chain. Single-phase clock. 0 0 0 0 0 0 0 MREQ ST o-ST 3 N/S Address strobe Data strobe Read/write Byte/word Memory request Status Normal/system mode 3-state 3-state 3-state 3-state 3-state 3-state 3-state SNo-SNs Segment number 3-state 0 R/W B/W SEGT BUSRQ --- -NMI VI -NVI STOP -- Segment trap I ' Bus request I Absolute Maximum Ratings Parameter Input voltage Output voltage Operating temperature Storage temperature "~ 3-state / MUltiplexed system address and data bus. Active ~Low". Addresses,are valid. Active "Low". Data are valid. Read at "High". Write at "Low". Byte at "High". Word at "Low". Active "Low". For memory access. Specifies CPU status. Normal mode at "High", System mode at "Low". Designates segments to be accessed (for 28001 CPU only). Active "Low". Detects a segmentation trap from the 28010 MMU. Active "Low". Requests the bus line. Active "Low". Indicates the relinquished control of the bus. Active "Low", Resets the Z8000 CPU. Active "Low". High-to-low transition not interrupted non-maskable. Active "Low". Requests a vectored interrupt. AS DS • Addressl data' bus Function lIO Bidirectional . 316 Symbol V IN V OUT T01>t - T st • Ratings -0.3-+7.0 -0.3-+7.0 0-+70 -65-+150 Unit V V t t Z8001 IZ8001 A/Z8002/Z8002A Central Processing Unit LH8001 ILH8001 AlLH8002/LH8002A .-.-.-~.-.-~.-~~~.-~~~.-~.- • (Vcc=5V±5%, Ta=0-+70t) DC Characteristics Parameter Symbol Clock input high voltage VCH Clock input low voltage VCL Input high voltage Input low voltage Output high voltage Output low voltage Input leakage current Output leakage current Current consumption • VIH V IL VOH VOL I IlL I I IOL I Icc MIN. Conditions Driven by external clock oscillator Driven by external clock oscillator MAX. Vcc-004 Vcc+ 0.3 Unit V -0.3 0045 V 2.0, -0.3 Vcc+ 0.3 0.8 V V V V 204 IOH = -250 fLA IOL=+2.0mA Oo4:S::V IN :S::204V 004 10 10 300 Oo4~VouT~204V fLA fLA rnA AC Characteristics Number Symbol 1 2 3 4 5 TcC TwCh TwCI TfC TrC 6 TdC (SNv) 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 ,30 31 32 33 34 35 TdC (SNn) TdC (Bz) TdC (A) TdC (Az) TdA (DR) TsDI (C) TdDS (A) TdC(DW) ThDR (DS) TdDW (DS) TdA (MR) TdC (MR) TwMRh TdMR (A) TdDW (DSW) TdMR (DR) TdC (MR) TdC (ASf) TdA (AS) TdC (ASr) TdAS (DR) TdDS (AS) TwAS TdAS (A) TdAz (DSR) TdAS (DSR) TdDSR (DR) TdC (DSr) TdDS (DW) Parameter Clock cycle time Clock width (high) Clock width (low) Clock fall time Clock rise time Clock t to segment number valid (50 pF load) Clock t to segment number not valid Clock t to bus float Clock t to address valid Clock t to address float Address valid to read data required valid Read data to clock ! setup time DS t to address active Clock t to write data valid Read data to DS t hold time Write data valid to DS t delay Address valid to MREQ ! delay Clock ! to MREQ ! delay MREQ width (high) MREQ ! to address not active Write data valid to DS ! (write) delay MREQ ! to read data required valid Clock ! MREQ t delay Clock t to AS ! delay Address valid to AS t delay Clock ! to AS t delay AS t to read data required valid DS t to AS ! delay AS width (low) AS t to address not active delay Address float to DS (read) ! delay AS t to DS (read) ! delay DS (read) ! to read data required valid Clock ! to DS t delay DS t to write data not valid '-'--~----SHARP LH800JlLH8002(4MHz) MIN. MAX. 250 2000 105 2000 105 2000 20 20 LH800IA/LH8002A(6MHz) MIN. MAX. 165 2000 70 2000 2000 70 10 15 130 20 110 10 65 100 65 475* 30 80* 55 75 55 305 20 45* 100 75 0 195* 35* 0 295* 55* 80 210* 70* 55* 375* 70 135* 35* 35* 230* 80 80 60 60 35* 55* 90 80 220* 35* 55* 45'* 0 55* 130* 360* 70* 85* 70* , 0 80* 205* 70 75* 65 45 Unit ns ns ns' ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ----.----..---- 317 -----------------Z8001 IZ8001 A/Z8002/Z80Q2A Central Processing, Unit LH8001lLH8001 A/LH8002/LH8002A Number Symb01 36 37 38 39 40 41 42 43 44 45 TdA (DSR) TdC (DSR) TwDSR TdC (DSW) TwDSW TdDSI (OI) TdC(DSf) TwDS TdAS (DSA) TdC (DSA) 46 TdDSA (DR) 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 TdC (S) TdS (AS) TsR (C) ThR (C) TwNMI TsNMI (C) TsVI (C) ThVI (C) TsSGT (C) ThSGT (C) TsMI (C) ThMI (C) TdC (MO) TsSTP (C) ThSTP (C) TsW (C) ThW (C) TsBRQ (C) ThBRQ (C) TdC (BAKr) TdC (BAKi) TwA TdDS (S) Note: Parameter Address valid to DS (read) l delay Clock t to DS (read) l delay DS (read) width (low) Clock l to DS (write) l delay DS (write) width (low) DS (liD) to read data required valid Clock l to DS (II 0) l delay DS (II 0) width (low) AS t to DS (acknowledge) l delay Clock t to DS (acknowledge) l delay DS (acknowledge) l to read data required delay Clock t to status valid delay Status valid to AS t delay RESET to clock t setup time RESET to clock t hold time NMI width (low) NMI to clock t setup time VI, NVI to clock t setup time VI, NVI to clock t hold time SEGT to clock t setup time SEGT to clock t hold time MI to clock t setup time MI to clock t hold time Clock t to MO delay STOP to clock l setup time STOP to clock l. hold time WAIT to clock l setup time WAIT to clock l hold time BUSREQ to clock t setup time BUSREQ to clock t hold time Clock t to BUSACK t delay Clock t to BUSACK l delay Address valid width DS t to STATUS not valid r LH800IA/LH8002A(6MHz) MIN. MAX. 110* 180* 12,0 275* ' 85 185* 95 80 110* 210* 185* 330* 120 410* 1065* 90 255* 690* 120 85 295* 455* 110 50* 180 0 100 140 110 20 70 0 180 0 85 120 85 100 0 30 10 80 10 100 100 150* 80* 75 75 95* 55* ns ns ns ns ns ns ns ns ns ns ns 30* 70 0 70 70 50 20 55 0' 140 0 140 0 50 10 90 10 Unit ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns 'ns ns ns ns t Rising, ! Falling, ( I) 2TcC + TwCh - 130ns * Clock-cycle-time-dependent characteristics. ------~~----SHARP 318 LH800IlLH8002(4MHz) MIN: MAX. -.--...-.--------- Z8001 IZ8001 AlZ8002/Z8002A Central Processing Unit LH8001 ILH8001 A/LH8002/LH8002A .-..-.----.-..-.~.-.------.-.~--.-..-.--.-. • Composite AC Timing Diagram RESET --~X~~~~~')50~ ______________,. ~4~ r-'~ ~ NMI :>i VI,NVI - K53)a 1i54 SEGT = This composite timing diagram does not show actual timing sequences. Refer to this diagram only for the detailed timing relationships of individual edges. Use the preceding illustrations as an explanation of the various timing sequences. ~. ~ BUSRQ ~. BUSAK __________~JI--~ CLOCK ) WkiJr---\"'------'. ,- V7\ ~~~~ SNo-SN6 I' ~ r----. I .J~. ~ ____~rGr,9~~--~~~~ ADDRESS ----+-.r;><1:=t====1=~~ J { A",-AD" DATA IN . IE-I DATA OUT :i~-- ~~ ~ ~f~ '=' "'f--®- 'l :> I@ f ~~_) :""~f--~ ~ .J--t------t---+--+,j--+"'""'K...lr"-- I_~ MREQ L II.rg\. f'-----J I'V- ~ ~ ,- ~ lfijO)\ -=. 'C/ ~@1'r-tk--+-+.(J I",,......,H-+-tl'==t---+----t-........ lt"l t@;r-;-.o--t+-t--t{I~.zm-_ _-i --~--+-l~ ~v~ ~-o ~IE-t-L""-f{I~33}---I' ~ ~ AS MEMORY ./ READ -- 1- N., I=' I~~,~~~+=+=~;+==::l '\I!!! IQI ~ MEMORY ~ WRITE -' DS INPUT / OUTPUT ~ ',v ;g ~f@-l """J<-+_--~+_+_--+-_, ~ ~ -' INTERRUP~ T --j f-~I f-@-'4 -.IM'!I...." ~ ~Y' .J--_ ~/"I .... - - -... .~m ~ -@- .JI' .. ~ . J . r-_ r.--- ACKNOWLEDGE -"!!:J.'-1(!:;lI-1 .. ...---} STo-STg READ/WRIfE---.... )< NORMAL/SYSTEM ~------------------------------~I BYTE/WORD -~'-'--'-'--SHARP---'-'--~-"--"'" 319 Z8001 IZ8001 AlZ80021Z8002A Central' Processing Unit LH8001 ILH8001 AlLH8002/LH8002A • Register Organization The 28000 CPU is a register-oriented machine that offers sixteen 16-bit general-purpose registers and a set of special system registers. (1) General-purpose register All general-purpose registers can be used as but" one as index registers or accumulators and all ../ memory pointers. Register flexibility is created by grouping and overlapping multiple registers (Fig. 1 and 2). For byte operations, the first eight 16-bit registers (RO ... R7) are treated a~ sixteen 8-bit registers (RLO, RHO, ..., RL7, RH7). The sixteen 16-bit reg~ isters are grouped in pairs (RRO ... RR14) to form 32-bit long-word registers. Similarly, the register set is grouped in quadruples (RQO ... RQ12) to form 64-bit registers. (2) Specific -purpose register The 28000 CUP has the following specific-purpose registers. • Refresh counter • Program status register • Program status area pointer The refresh counter can be used to automatically refresh dynamic memory. The refresh counter register consists of a 9-bit row counter, a 6-bit rate RRO{ RR2{ RR4{ RR6{ RRS{ Ro~17====R=H=0===0*!=7==R=L=0==~0 I RHI i RHO Rol7 RROf RR2, RR4{ RR6{ { RR8 RRIO =~I RHl RH2 R31 RH3 R41 RH4 R51 RH5 R61 RH6 R71 RH7 01 } I RL2 RQO "" RL3 i I }R~ RIA RL5 I RL6 ! RL7 { RIOI Rlli }R~ RR12{ RI21 . Rl3 { R141 RR14 Rl5 R15 RQl2 SYSTEM STACK POINTER NORMAL STACK POINTER Fig. 2 Z8002 general-purpose register I ROW 9 S I I I I I I o I Fig. 3 Refresh counter counter and an enable bit (Fig. 3). This group of status registers contains the program counter, flags and control words. When an interrupt or trap occurs, the entire" group is saved "and a new program status group is loaded. Fig. 4 illustrates how the program status groups .of the 28001 and 28002 differ. RRIO{RIO :=1= = = = = = = = = = = 9 Rll~l.=======~ RR12{ ::: ==============: :=1 Fig. 1 Z8001 general-purpose register II RLl 0 RATE =:~I==================~ R14' SYSTEM STACK POINTER (SEG.NO.) R14 NORMAL STACK POINTER (SEG.NO.) RRl4 { " R15' SYSTEM STACK POINTER (OFFSET) Rl5 NORMAL STACK POINTER (OFFSET) RLO RsI15 R91 RLl R2~1==~R=H=2==~!===R=L=2==~ R3~L====R=H=3==~i==~R~L~3==~ R4~1====R=H=4===*i===§RL~4~==9 R5~1==~R=H=5==ii==RL=5==~ R6~1====R=H~6===\~I==~R§L~6==~ R7~1====R=H=7==~===R=L=7==~ 01 7 RQI2 Z8001 IZ8001 AlZ8002/Z8002A Central Processing Unit LH8001 ILH8001 AlLH8002/LH8002A Z8001 Program Status R-egisters ~ 0 I0 ISfGIj'Ef 1 CRC" CRC,jFLAGI Fig. 2 An SDLC loop SDLC/HDLC/X.25 "INFORMATION Fig. 1 Some Z-SCC protocols • SOLe Loop Mode The Z-SCC supports SDLC Loop mode in addition to normal SDLC. In an SDLC Loop, there is a primary controller station that manages the message traffic flow on the loop and any number of secondary stations. In SDLC Loop mode, the Z-SCC performs the functions of a secondary station while a Z-SCC operating in regular SDLC mode can act as a controller (Fig. 2). A secondary station in an SDLC Loop is always listening to the messages being sent around the loop, and in fact must pass these messages to the rest of the loop by retransmitting them with a one-bit-time delay. The secondary station can place its own message on the loop only at specific times. The con,troller signals that .secondary stations may transmit messages by sending a special character, called an EOP (End Of Poll), around the loop. The EOP character is the bit pattern 1111111 0. Because of zero insertion during messages, this bit pattern is unique and easily recognized. When a secondary station has a message to transmit and recognizes an EOP on the line, it chages the last binary 1 of the EOP to a 0 before transmission. This has the effect of turning the EOP into a flag sequence. The secondary station now places its message on the loop and terminates the message with an EOP. Any secondary stations further down the loop with messages to transmit can then append thier messages to the message of 'the first secondary station by the same process. 350 •. Data Encoding The Z-SCC may be programmed to encode and decode the serial data in four different ways (Fig. 3). In NRZ encoding, a 1 is represented by a High level and a 0 is represented by a Low level. In NRZI encoding, a 1 is represented by no change in level and a 0 is represented by a change in level. In FM1 (more properly, bi-phase mark) a transition occurs at the beginning of every bit cell. A 1 is represented by an additional translation at the center of the bit cell and a 0 is represented by no additional transition at the center of the bit cell. FMO (bi-phase space), a transition occurs at the beginning of every bit cell. A 0 is represented by an additional transition at the center of the bit cell, and a 1 is represented by no additional transition at the center of the bit cell. In addition to these four methods, the Z-SCC can be used to decode Manchester (bi-phase level). data by using the DPLL in the FM mode and programming the receiver for NRZ d~ta. Manchester encoding always produces a transition at the center of the bit cell. If the transition is 0 to 1, the bit is a O. If the transition is 1 to ' 0, the bit is a 1. DATA --''--_-''-, NRZ NRZI FMl FM MANCHESTER Fig. 3 Data encoding methods Z8030/Z8030A Serial Communications Controller • Auto Echo and Local Loopback The Z-SCC is capable of automatically echoing everything it receives. This feature is useful mainly in Asynchronous modes, but works in Synchronous and SDLC modes as well. In Auto Echo mode, TxD is RxD. Auto Echo mode can be used with NRZI or FM encoding with no additional delay, because the data stream is not decoded before retransmission. In Auto Echo mode, the CTS input is ignored as a transmitter. enable (although transitions on this input can still cause interrupts if programmed to do so). In this mode, the transmitter is actually bypassed and the programmer is responsible for disabling transmitter interrupts and WAIT /REQUEST on transmit. The Z-SCC is also capable of Local Loopback . In this mode TxD is RxD, just as in Auto Echo mode. However, in Local Loopback mode, the internal data is tied to the internal receive data and RxD is ignored (except to be echoed out via TxD). The CTS and DCD inputs are also ignored as transmit and receive enables. However, transitions on these inputs can still cause interrupts. Local Loopback works in Asynchronous, Synchronous and SDLC modes with NRZ, NRZI or FM coding of the data stream. • Baud Rate Generator Each channel in the Z-SCC contains a programmable band rate generator. Each generator consists of two 8-bit time constant registers that form a 16-bit time constant, a 16-bit down counter, and a flip-flop on the output producing a square wave. On startup, the flip-flop on the output is set in a High state, the value in the time constant register is loaded into the counter, and the counter starts counting down. The output of the baud rate generator toggles upon reaching 0, the value in the time constant register is loaded into the counter, and the process is repeated. The time constant may be changed at any time, but the new value does not take effect until the next load of the counter. The output of the baud rate generator may be LH8030/LH8030A used as either the transmit clock, the recieve clock, or both. It can also drive the Digital Phase-Locked Loop (see next section). If the receive clock or transmit clock is not programmed to come from the TRxC pin, the output of the baud rate generator may be echoed out via the TRxC pin. The following formula relates the time constant to the baud rate (the baud rate is in bits/second and the BR clock period is in seconds) : 1 baud rate • = 2 (time constant + 2) X (BR clock period) Digital Phase-Locked Loop The Z-SCC contains a Digital Phase-Locked Loop (DPLL) to recover clock information from a data stream with NRZI or FM encodling. The DPLL is driven by a clock that is nominally 32 (NRZI) or 16 (FM) times the data rate. The DPLL uses this clock, along with the data stream, to construct a clock for the data. This clock may then be used as the Z-SCC receive clock, the transmit clock, or both. For NRZI encoding, the DPLL counts the 32x clock to create nominal bit times. As the 32x clock is counted, the DPLL is searching the incoming data stream for edges (either 1 to 0 or 0 to 1). Whenever an edge is detected, the DPLL makes a count adjustment (during the next counting cycle), producing a terminal count closer to the center of the bit cell. For FM encoding, the DPLL still counts from 0 to 31, but with a cycle corresponding to two bit times. When the DPLL is locked, the clock edges in . the data stream should occur between counts 15 and 16 and between counts 31 and O. The DPLL looks for edges only during a time centered on the 15 to 16 counting transition. The 32x clock for the DPLL can be programmed to come from either the RTxC input or the output of. the baud rate generator. The DPLL output may be programmed to be echoed out of the Z-SCC via the TRxC pin (if this pin is not being used as an input). ------------SHARP---.-----351 Z803QJZ8030A Serial Communications Controller • LH8030/LH8030A Read Registers Read Register 10 . Read Register 0 . ~~~-r~~-r~~'-~~RxCHARACTER AVAILABLE ZERO COUNT Tx BUFFER EMPTY DCD SYNC/HUNT CTS Tx UNDERRUN /EOM· BREAK/ABORT Read Register 1 o LOOP SENDING o TWO CLOCKS MISSING ONE CLOCK MISSING Read Register 12 I D7 I D6 I Ds I D. I D3 I D, I DJ I Do ALL SENT RESIDUE CODE 2 RESIDUE CODE 1 RESIDUE CODE 0 PARITY ERROR Rx OVERRUN ERROR CRC/FRAMING ERROR END OF FRAME (SDLC) Read Register 2 I~I~I~I~I~I~I~I~I [INTERRUPT VECTOR' • MODIFIED IN B CHANNEL Read Register 3* o o CHANNEL B EXT/STAT IP' CHANNEL B Tx IP' CHANNEL B Rx II" CHANNEL A EXT/STAT IP' CHANNEL A Tx IP' CHANNEL A Rx IP' [ I LOWER BYTE OF TIME CONSTANT Read Register 13 1~lllilllil~I~I~I~I~1 [UPPER BYTE OF TIME CONSTANT Read Register 15 o o DCDIE SYNC/HUNT IE CTS IE Tx UNDER RUN / EOM IE BREAK/ABORT IE • ALWAYS 0 IN B CHANNEL '-'---~---SHARP-'------'--- 352 Z8030/Z8030A Serial Communications Controller • LH8030/LH8030A Write Register 2 Write Registers Write Register 0 1071 061 051 0./ 03/ 02/ 01/ Do / 1I NULL CODE NULL CODE SELECT SHIrr LEFT MODE' SELECT SHIFT RIGHT MODE' 0 0 0 1 1 0 1 1 ~--------------Vs ~--------------------V7 NULL CODE NULL CODE RESET EX T/STATUS INTERRUPTS SEND ABO RT ENABLE IN T ON NEXT Rx CHARACTER RESET Tx I NT PENDING ERROR RES ET Write Register 3 RESET HIG HEST IUS 0 1 0 1 0 1 0 1 NULL CODE RESET Rx CRC CHECKE R RESET Tx CRC GENERA TOR RESET Tx UNDERRUN / EOM LATCH I I / 071 061 051 04/ 031 02 / 01 Do II~ 'B CHANNEL ONLY 0 0 1 1 0 1 0 1 Rx Rx Rx Rx I 07 I061 051 0.1 031 021 01 I Do I ~ 1 1 0 1 0 1 5 7 6 8 Rx ENABLE SYNC CHARACTER LOAD INHIBIT ADDRESS SEARCH MODE (SDLC) ~ Rx CRC HUNT ENABLE ENTER MODE AUTO ENABLE BITS /CHARACTER BITS /CHARACTER BITS /CHARACTER BITS /CHARACTER Write Register 4 Write Register 1 0 0 INTERRUPT VECTOR ~------------------V6 o 0 0 1 1 0 0 1 1 0 0 0 0 1 1 1 1 ~~~ I I 071 061 051 04/ 03/ 021 01 I Do I 1I EXT INT ENABLE Tx INT ENABLE PARITY IS SPECIAL CONDITION 0 0 1 1 Rx INT DISA BLE Rx INT ON FI RST CHARACTER OR SPECIAL CONDITION INT ON ALL Rx CHARACTERS OR SPECIAL CONDITION Rx INT ON SPE CIAL CONDITION ONLY WAIT /0 MA REQUEST ON RECEI VE/TRANSMIT WAIT /0 MA REQUEST FUNCT ION WAIT /0 MA REQUEST ENABLE 0 0 1 1 0 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 ENABLE ~PARITY PARITY EVEN/ODD SYNC MODES ENABLE 1 STOP BIT/CHARACTER 1112 STO P BITS/CHARACTER 2 STOP BITS/CHARACTER 8 BIT SYNC CH ARACTER 16 BIT SYNC C HARACTER SDLC MODE (01 111110 FLAG) EXTERNAL SY NC MODE xl CLOCK MODE x16 CLOCK MODE x32 CLOCK MODE x64 CLOCK MODE . . . . - . - - - - - - - - - - - - S H A R P ...--~--.------- 353 5 ===_" .......... .......................... .......................... Z8030/Z8030A Serial Communications Controller ~~ . - LH8030lLH8030A ~...., ~ . ~ Write Register 5 I D71 Dsl Ds I D.I D31 D2 I Dl I Do I I~ 0 0 0 1 1 0 1 1 Tx Tx Tx Tx Tx CRC ENABLE RTS SDLC/CRC 16 Ti ENABLE SEND BREAK 5 BITS (OR LESS )/CHARACTER 7 BITS/CHARAC TER 6 BITS /CHARAC TER 8 BITS /CHARAC TER DTR Wrl!e Register 6 I D7! Dsl Dsl D.I D31 D21 Dl I Dol SYNC7 SYNCl SYNC7 SYNC3 ADR7 ADR7 FFJ~~~ SYNCs SYNCs SNNCs SYNC2 ADRs ADRs SYNCs SYNCs SYNCs SYNCl ADRs ADRs SYNC. SYNC. SYNC. SYNCo ADR. ADR. SYNC3 SYNC3 SYNC3 1 ADR3 x SYNC2 SYNC2 SYNC2 1 ADR2 x SYNCl SYNCl SYNCl 1 ADRl x SYNCo S'yNCo SYNCo 1 ADRo x MONOSYNC, 8 BITS MONOSYNC, 6 BITS BISYNC, 16 BITS BISYNC, 12 BITS SDLC ADDRESS, 8 BITS SDLC ADDRESS, 4 BITS Write Register 7 ID71 Dsl Dsl D.I D31 D21 Dl I Do I SYNC7 SYNCs SYNCls SYNCll 0 354 F,J~~~ I SYNCs SYNC. SYNC14 SYNClO SYNCs SYNC3 SYNCls SYNCg SYNC. SYNC2 SYNCl2 SYNCs SYNC3 SYNCl SYNCll SYNC7 SYNC2 SYNCo SYNClo SYNCs SYNCl SYNCo X X SYNCg SYNCs SYNCs SYNC. 1 1 1 1 1 1 o MONOSYNC, 8 BITS MONOSYNC, 6 BITS BISYNC, 16 BITS BISYNC, 12 BITS SDLC,FLAG Z8030/Z8030A Serial Communications Controller LH8030/LH8030A Write Register 12 Write Register 9 I D71 D61 D51 D41 D31 D21 D, I Dol I~ 0 0 1 1 0 1 0 1 VIS NV DLC MIE STATUS HIGH/STATUS LOW I LOWER BYTE OF TC4 TIME L---------------TC5 CONSTANT L-_________________ TC6 o NO RESET CHANNEL RESET B CHANNEL RESET A FORCE HARDWARE RE SET I I LL=~TgCC:3' L---------------------TC7 Write Register 13 I D71 D61 D51 D41 D31 D21 D, Write Register 10 II II I D71 D61 D51 D41 D31 D21 DI I Dol I~ 0 0 1 1 0 1 0 1 6 BIT /8 BIT SYNC LOOP MODE ABORT/ FLAG ON UNDERRUN MARK/FLAG-IDLE GO ACTIVE ON POLL NRZ NRZI FMI (TRANSITION =1) FMO (TRANSITION =0) Write Register 14 ID71 D61 D51 D41 D31 D21 D, I Do I I~ Write Register 11 I] TIUC OUT=XTAL OUTPUT TIUC OUT=TRANSMIT CLOCK TIUC OUT=GTGENERATOR OUTPUT TIUC OUT= DPLL OUTPUT TRxC 0/1 0 0 1 1 0 0 1 1 0 1 0 1 0 1 0 1 TRANSMIT TRANSMIT TRANSMIT TRANSMIT RECEIVE RECEIVE RECEIVE RECEIVE CL OCK=RTxC PIN CL OCK=TRxC PIN CL OCK= BR GENERATOR OUTPUT CL OCK=DPLL OUTPUT CLOCK = RTxC PIN CLOCK = TRxC PIN CLOCK = BR GENERATOR OUTPUT CLOCK = DPLL OUTPUT RTxC XTAL/NO XTAL Lm ~~~~"oF TC'2 TIME L--------------TC 13 CONSTANT '------------------- TC 14 '---------------------- TC 15 CRC PRESET I/O ID71 D6 ID51 D41 D3 ID21 D, IDo I I Dol 0 0 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 1 0 1 0 1 0 1 BR GENERATOR ENABLE BR GENERATOR SOURCE DTR/REQUEST FUNCTION AUTO ECHOLOCAL LOOPBACK NULL COMMAND ENTER SEARCH MODE RESET MISSING C LOCK DISABLE DPLL SET SOURCE=BR GENERATOR SET SOURCE = --C RTx SET FM MODE SET NRZI MODE Write Register 15 ID71 D6[ D5[ D4[ D3[ D2[ D, [ Do [ I I ~:ERO COUNT IE ~DCDIE SYNC!HUNT IE '----------------CTS IE ' - - - - - - - - - - - - - - Tx UNDERRUN/EOM IE L--------'-----BREAK/ABORT IE .--..-------SHARP--------- 355 Z8036/Z8036ACounter/Timer and Parallel 1/0 Unit LH8036/LH8036A LH8036/lH8036A -Z8036/Z8036A Counter/Timer and Parallel I/O Unit • Description The Z8036 Z-CIO Counter/Timer ~nd Parallel . 110 elemeniis ,a general-purpose peripheral circuit, satisfying most counter/timer and parallel 110 needs encountered in system designs. This versatile device contains three 110 ports and three counter/timers. Many progra\llmable options tailor its configuration to specific applications. The use of the device is simplified by making all internal registers (command, status, and data) readable and' (except for status bits) writable. In addition, each 'register is given its own unique address so that it can be accessed directly-no special sequential operations are required. The Z-CIO is directly Z-Bus compatible. • • Pin Connections o ' Features 1. Two independent 8-bit, double-buffered, bidirectional 110 ports plus a 4-bit speci,dpurpose 110, port. 110 ports feature programmable polarity, programmable direction (Bit mode), "pulse catchers," and programmable opendrain outputs 2. Four handshake modes, including 3-Wire (like . the IEEE-488) 3. REQUEST /W AIT signal for high-speed data transfer 4. Flexible pattern-recognition logic, programmable as a 16-vector interrupt controller 5. Three independent 16-bit counter/timers with up to four external access lines per counter/ timer (count input, output, gate, and trigger), and three output duty cycles (pulsed, one-shot, and s'quarewave), programmable as retriggerable or nonretriggerable. 6. Easy to use since all registers are read/write and directly addressable. 356 Top View Z8036/Z8036A Counter/Timer and Parallel I/O Uni.t • LH8036/LH8036A Block Diagram Interrupt Enable In Int erupt Enabl e Out Interrupt Request C24l--f Interrupt Acknowledge Address/Data Bus Data Strobe Read/Write Address Strobe 3 Chip Select { • Pin Description Pin AD o-AD 7 AS - DS Meaning Address/ data bus Address strobe I/O Bidirectional 3-state I Data strobe I R/W Read/write I CSo CS 1 Chip select 0 Chip select 1 I I - -INT Interrupt request Open-drain Interrupt acknowledge I lEI Interrupt enable in I lEO Interrupt enable out 0 INTACK PAo-PA 7 Port A I/O lines PBo-PB 7 Port B I/O lines PC O-PC 3 Port C I/O lines PCLK Clock Bidirectional 3-state Bidirectional 3-state Bidirectional 3-state I Function MUltiplexed system address/data bus. Active low. AS determines address while low. Active low. DS providies timing for data transfer while low. R/W indicates that the CPU is reading froln (high) or writing to (low) the Z-CIO. Active low. Chip select signal Active high. Chip select signal Active low. INT is pulled low when the Z·CIO requests on interrupt. Active low. INT ACK indicates that an Interrupt acknowledge cycle is in progress. Acvtive high. lEI is used to form an interrupt daisy chain that determines the priority order of interrupts. Active high. lEO is used to form an interrupt daisy chain that determines the priority order of interrupts. These eight I/O lines transfer information between the Z·CIO's port A and external devices. These eight I/O lines transfer information between the Z-CIO's port B and external devices. These four I/O lines transfer information between the ZCIO's port C and external devices. Single-phase clock, need not be same as CPU clock. Note: When AS and DS are detected "Low" at the same time, the Z-CIO is reset. -.-------SHARP--------~-357 ---___....._. . . ,. . . . . . . . . . . ......,------.---- za036/Z8036A CQunter/Timer and Parallel. 1/0 Unit LH8036/LH8036A ~~-,..-I':- • Absolute Maximum Ratings Parameter Input voltage Output voltage Operating temperature Storage temperature Note. 1: Symbol VIN VOUT Ratings -0.3-+7.0 -0.3-+7.0 0-+70 -65-+150 T= Tilic Unit V V "C "C Note 1 1 The maximum applicable voltage on any pin with respect to GND. +5V From output under test +5V 1R I . ~'2kO . , From output under test I 25 50pF ~A lSOPF Standard test load • Open drain test load (V cc =5V±5%, Ta=0-+70"C) DC Characteristics Parameter Input high voltage Input low voltage Output high voltage Symbol VIH VIL VOH Output low voltage VOL Input leakage current Output leakage current Supply current .! I IlL I I IOL I Conditions , IoH =-250,uA IOL=+2.0mA IOL=+3.2mA 0.4";;:V IN ";;:2.4V 0.4 ~VouT~2.4V MAX. Vcc+ 0.3 0.8 0.4 0.5 10.0 10.0 250 Unit V V V V V ,uA ,uA mA (f=lMHz, Ta=0-+70"C) Symbol CIN CO\!L CliO Conditions Unmeasured pins returned to ground ....-..-..-.-~-.-.--SHARP 358 MIN. 2.0 -0.3 2.4 Icc Capacitance Parameter Input capacitance Output capacitance' Bidirectional capacitance i T.2kO MIN. MAX. 10. 15 20 Unit pF pF pF -..-.-..-------- Z8036/Z8036A Counter/Timer and Parallel I/O Unit • Ui8036/LH8036A AC Characteristics (1) Interface timing No. Symbol Parameter 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 TwAS TsA (AS) ThA (AS) TsA (OS) TsCSO (AS) ThCSO (AS) TdAS (OS) TsCSI (OS) TsRWR (OS) TsRWW (OS) TwOS TsOW (OSf) TdOS (ORV) TdOSf (OR) ThOW (OS) TdOSr (OR) TdOS (ORz) ThRW (OS) ThCSI (OS) TdOS (AS) Trc 22 TdPM (INT) AS low width Address to AS f setup time Address to AS f hold time Address to OS ! setup time CS o to AS f setup time CS o to AS f hold time AS f to OS ! delay CS 1 to OS ! setup time R/W (read) to OS ! setup time R/W (write) to OS ! setup time OS low width Write data to OS ! setup time OS (read) ! to address data bus driven OS ! to read data valid delay Write data to DS f hold time OS f to read data not valid delay OS f to read data float delay R/W to OS f hold time CS 1 to OS f hold time OS f to AS ! delay Valid access recovery time Pattern match to INT delay (bit port) 23 TdACK (INT) 24 TdCI (INT) 25 TdPC (INT) PCLK to INT delay (Timer mode) 26 27 28 29 TdAS (I NT) TsIA (AS) ThIA (AS) TsAS (OSA) 30 TdOSA (OR) 31 32 33 34 35 36 TwOSA TdAS (lEO) TdlEI (lEO) TslEI (OSA) ThlEI (OSA) TdOSA (INT) AS to INT delay INT ACK to AS f setup time INT ACK to AS f hold time AS f to OS (acknowledge) ! setup time OS (acknowledge) ! to read data valid delay OS (acknowledge) low width AS f to lEO ! delay (INT ACK cycle) lEI to lEO delay lEO to OS (acknowledge) ! setup time lEI to OS (acknowledge) t hold time OS (acknowledge) ! to INT t delay LH8036 MIN. MAX. 70 2000 30 50 130 0 60 60 100 100 0 390 30 0 250 30 0 70 55 55 50 1000 ACKIN to INT delay (Port with handshake) Counter input to INT delay (Counter mode) - LH8036A MIN. MAX. 50 2000 10 30 100 0 40 40 80 80 0 250 20 0 180 20 0 45 40 40 25 650 1 1 4 4 1 1 1 1 0 250 350 0 250 250 250 390 180 250 250 100 350 150 100 100 70 70 600 600 Unit ns ns ns ns ns ns ns ns ns Note 1 1 1 1 1 1 ns ns ns ns ns ns ns ns ns lAs cycle +ns lAS cycle +ns lAs cycle +ns lAs cycle +ns ns ns ns ns 2 3 4 5 ns ns ns ns ns ns ns 5 5 5 Note: • t " indicates a rising edge -and •. ! .. a falling edge. Note 1: Parameter does not apply to Interrupt Acknowledge transactions. Nate 2: Float delay is measured to the time when the output has changed 0.5 V from steady state with minimum ac load and maximum de load. Note 3: This is the delay from DS t of one CIa access to DS ! of another CIa access. Note 4: The delay is from DAV ! for 3-Wire Input Handshake. The delay is from DAC t for 3-Wire Output Handshake. One additional AS cycle is required for ports in the Single Buffered mode. Note 5: The parameters for the devices in any particular daisy chain must meet the following constraint: the delay from AS t to DS ! must be greater than the sum of TdAS (lEO) for the highest priority peripheral, TsIEI (DSA) for the lowest priority peripheral, and TdlEI (lEO) for each peripheral separating them in the chain. 359 Z8036/Z8036A Counter I Timer and Parallel 1/0 'Unit LH8036lLH8036A AS R/W Read R/W Write -----++----4l'..,.-t------t-'------- DS Address ADo - AD7 Z-CIO Write \. Z-CIO Read CPI,J interface timing P~ttern Blt~rt match input ~ input _ _ _ _match ___ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __ ~~ r:==-@-- ----'----. Counter input PCLK INT Interrupt timing 360 Z8036/Z8036A Counter/Timer and Parallel 110 Unit ___ LH8036/LH8036A ---'XUndefined)>-----@-~ Vector) lEI lEO Interrupt acknowledge timing (2) Handshake timing No. Symbol Parameter 1 TsDI (ACK) 2 ThDi (ACK) 3 4 5 6 7 8 9 10 TdACKf(RFD) TwACKI TwACKh TdRFDr(ACK) TsDO (DAV) TdDA Vf (ACK) ThDO (ACK) TdACK (DAV) 11 ThDi (RFD) 12 TdRFDf(ACK) 13 TdACKr(RFD) 14 TdDAVr (ACK) 15 TdACK (DAV) 16 TdDA Vif (DAC) 17 ThDi (DAC) 18 TdDACOr(DA V) 19 TdDA VIr (DAC) Data input to ACKIN ~ setup time Data input to ACKIN ~ hold time-strobed handshake ACKIN ~ to RFD ~ delay ACKIN low width-strobed handshake AGKIN high width-strobed handshake RFD t to ACKIN ~ delay Data out to DA V ~ setup time DA V ~ to ACKIN ~ delay Data out to ACKIN ~ hold time ACKIN ~ to DA V t delay Data input to RFD ~ hold time-interlocked handshake RFD ~ to ACKIN t delay-interlocked handshake ACKIN t (DAV t) to RFD t delay-interlocked and 3-wire handshake DA V t to ACKIN t (RFD t) delay-interlocked and 3-wire handshake ACKIN t (RFD t) to DAV ~ delay-interlocked and 3-wire handshake DAV ~ to DACt delay-input 3-wire handshake Data input to DAC t hold time-3-wire handshake DAC t to DAV t delay-input 3-wire handshake DAV t to DAC ~ delay-input 3-wire handshake LH8036 MIN. MAX. 0 LH8036A MIN. MAX. 0 Unit Note ns ns 0 0 0 25 0 1 1 0 20 0 1 1 ns ns ns ns ns ns AS cycle [As cycle 0 0 ns 0 0 ns 0 0 ns 0 0 ns 0 0 ns 0 0 ns 0 0 ns 0 0 ns 0 0 ns 1 361 Z8036/Z8036A Counter/Timer and Parallel I/O Unit No. SymboL LH8036/LH8036A LH8036 MIN. MAX. Parameter 20 TdDA VOf (DAC) 21 ThDO (DAC) " 22 TdDAClr (DA V) 23 TdDA VOr(DAC) DAV! toDAC t delay-output 3-wire handshake Data output to DAC t hold time-3-wire handshake DAC t to DAV t delay-output 3-wire handshake DAV t to DAC ! delay-output 3-wire handshake LH8036A MIN. MAX. Unit 0 0 ns 1 1 AS cycl€ 1 1 \As CyclE 0 0 ns Note Note 1: This time can be extended through the use of the deskew timers. I--'--® Data ACKIN Input (Input) RFD--------------~ (Output) Data ==x:~valid ®J:5=®==I Output ACKIN (Input) data ; ® ~~ \ '----- DAV - - - (Output) Strobe handshake Data Input ACKIN (In"ut) RFD (Output) Data Output ACKIN (Input) DAV (Output) Interlock handshake '-'--~-~--SHARP-'-'-'--'-""'-""", 362 Z8036/Z8036A Counter/Timer and Parallel I/O Unit LH8036/LH8036A Data DAV (Input) Input RFD (Output) DAC (Output) Data DAC (Input) Output RFD (Input) DAV (Output) 3-Wire handshake (3) No. 1 2 3 4 5 6 7 8 Counter/timer timing Symbol 10 TcPC TwPCh TwPCl TfPC TrPC TcCI TClh TwCIl TfCI TrCI 11 TsTI (PC) 12 TsTI (CI) 13 TwTI 14 TsGI (PC) 15 TsGI (CI) 16 ThGI (PC) 17 ThGI (CI) 18 TdPC (CO) 19 TdCI (CO) 9 Parameter PCLK cycle time PCLK high width PCLK low width PCLK fall time PCLK rise time Counter input cycle time Counter input high width Counter input low width Counter input fall time Counter input rise time Trigger input to PCLKt setup time (Timer mode) Trigger input to counter input ~ setup time (Counter mode) Trigger input pulse"width (High or Low) Gate input to PCLK ~ setup time (Timer mode) Gate input to counter input ! setup time (Counter mode) Gate input to PCLK ! hold time (Timer mode) Gate input to counter input ! hold time (Counter mode) PCLK to counter output delay (Timer mode) Counter input to counter output delay (Counter mode) LH8036 MIN. MAX. 250 4000 2000 105 105 2000 20 20 500 230 230 20 20 LH8036A MIN. MAX. 165 4000 2000 70 70 2000 10 15 330 150 150 15 15 Unit Note ns ns ns ns ns ns ns ns ns ns 1 ns 2 ns 2 ns ns 2 ns 2 ns 2 ns 2 ns ns Note 1: PCLK is only used with the counter/timers (in Timer mode), the "deskew timers, and the REQUEST/WAIT logic. If these functions are not used, the PCLK input can be held low. Note 2: These parameters must be met to guarantee that trigger or gate are valid for the next counter/timer cycle. 363 Z8036/Z8036A .counter/Timer and Parallel 110 Unit LH8036/LH8036A PCLK PCLK/2 internal Counter input Trigger input Gate input Counter output -------1' _ _ _ _ _- . J ---------------~ Counter/timer timing (4) REQUEST/WAIT timing No. Symbol DS ~ DS ~ PCLK PCLK 4 5 TdACK (REQ) ACKIN ~ to REQ f delay 6 TdACK (WAIT) ACKIN ~ to WAIT - 3 Note 1: The Delay is from DAV -- t LH8036A MIN. MAX. Unit ns ns ns ns AScyc1es+ PCLK cyc1es+ns PCLK cyc1es+ns delay ! for the 3-wire input handshake_ Delay from DAC t for 3-wire handshake output mode. REQUEST/WAIT 364 LH8036 MIN. MAX. to REQ ~ delay to W AlT ~ delay ~ to REQ t delay ~ to WAIT f delay TdDS TdDS TdPC TdPC I 2 (REQ) (WAIT) (REQ) (WAIT) Parameter tim~ng Note 1 Z8036/Z8036A Counter/Timer and Parallel I/O Unit (5) LH8036/LH8036A Reset timing No. Symbol Parameter 1 2 TdDSQ (AS) TdASQ (DS) 3 TwRES Delay from DS t to AS ! for no reset Delay from AS t to DS ! for no reset Minimum width of AS and DS both low for reset Reset internal LH8036 MAX. MIN. 40 50 LH8036A MAX. MIN. 15 30 250 170 ____________________ Unit Note ns ns ns ~r Reset timing (6) No. Miscellaneous port timing Symbol 1 2 3 4 Trl Tfl Twl's TwPM 5 TsPMD 6 ThPMD Parameter Any input rise time Any input fall time 1 's catcher high width Pattern match input valid (Bit port) Data latched on pattern match setup time (Bit port) Data latched on patter,n match hold time (Bit port) LH8036 MIN. MAX. 100 100 250 750 0 1000 LH8036A MIN. MAX. 100 100 170 500 Unit ns ns ns ns 0 ns 650 ns Note 1 Note 1: If the input is programmed inverting, a low-going pulse of the same width will be detected. Any input 1's catcher input --------' Pattern match input _ _ _ _--::-:--..J @'iE---+;.--- Data to be latched to - - - - - ' " \ J.-'--------~ pattern match r----- Miccellaneous port timing handshake, they provide 16 input or output bits • Functional Description with the data direction programmable on a bit-(1) 1/0 port operations by- bit basis. Port B also provides access for Of the Z-CIO's three 110 ports, two (Ports A and Counter/Timers 1 and 2. In all configurations, B) are general-purpose, and the third (Port C) is a Ports A and B can be programmed to recognize special-purpose 4:-bit port. Ports A and B can be specific data patterns and to generate interrupts configured as input, output or bidirectional ports when the pattern is encountered. with handshake (Four different handshakes are The four bits of Port C provide the handshake available.). They can also be linked to form a siglines for Ports A and B when required. A REnal 16-bit port. If they are not used as ports with QUEST /W AIT line can also be provided so that ~....-.-...-----SHARP---'-------- 365 - Z8036/Z8036ACounter/Timer and Parallel 1/0 Unit Z-CIO transfers can be synchronized with DMAs or CPUs. Any Port C bits not used for handshake or REQUEST/WAIT can be used as input or output bits (individually data direction programmable) or external access lines for Counter/Timer3. Port C does not contain any pattern-recognition logic. It is, however, capable orbit-addressable writes. With this feature, any combination of bit can be set and/or cleared while the other bits remain undisturbed without first reading the register. (2) Bit port operations In bit port operations, the port's Data Direction register specifies the direction of data flow for each bit. A 1 specifies an input bit, and a 0 specifies an output bit. If bits are used as I/O bits for a counter/timer, they should be set as input or output, as required. The Data Path Polarity register provides the capability of inverting the data path. A 1 specifies inverting, and a 0 specifies noninverting. All discussions of the port operations assume that the path is noninverting. The value returned when readin~ an input bit reflects the state of the input just prior to the read. A 1 's catcher can be inserted into the input data path by programming a 1 to the corresponding bit position of the port's Special 110 Control register. When a 1 is detected at the 1 's catcher input, its output is set to a 1 until it is cleared. The 1 's catcher is cleared by writing a 0 to the bit. In all other cases, attempted writes to input bits are ignored. When Ports A and B include output bits, reading the Data register returns the value being output. Reads of Port C return the state of the pin. Outputs can be specified as open-drain by writing a 1 to the corresponding bit of the port's Special I/O Control register. Port C has' the additional feature of bit-addressable writes. When writing to Port C, the four most significant bits are used as a write protect mask for the least significant bits (0-4, 1-5, 2-6, and 3-7). If the write protect bit is written with a 1, the state of the corresponding output bit r is not changed. (3) Ports with handshake operation Ports A and B can be specified as 8-bit input, output, or bidirectional ports with handshake. The Z-CIO provides four different handshakes for its ports : Interlocked, Strobed, Pulsed, and 3-Wire. When specified as a port with handshake, th~ transfer of data into and out of the port' and interrupt generation is under control of the handshake 366 LH8036/LH8036A logic. Port C provides the handshake lines as shown in Table 1. Any Port C lines not used for handshake can be used as simple I/O lines or as access lines for Counter/Timer 3. When Ports A and B are configured as ports with handshake, they are double-buffered. This allows for more relaxed interrupt service routine response time. A second byte can be input to or output from the port before the interrupt for the first -byte is serviced. Normally, the Interrupt Pending (IP) bit is set and an interrupt is generated when data is shifted into the Input register (input port) or out of the Output register (output port). For input and output ports, the IP is automatically cleared when the data is read or written. In bidirectional ports, IP is cleared only by command. When the Interrupt on Two Bytes (ITB) control bit is set to 1, interrupts are generated only when two bytes of data are available to be read or written. This allows a minimum of 16 bits of information to be transferred on each interrupt. With ITB set, the IP is not automatically cleared until the second byte of data is read or written. When the Single Buffer (SB) bit is set to 1, the port acts as if it is only single-bufferd. This is useful if the handshake line must be stopped on a byte-by-byte basis. Ports A and B can be linked to form a 16-bit port by programming a 1 in the Port Link Control (PLC) bit. In this mode, only Port A's Handshake Specification and Command and Status registers are used. Port B must be specified as a bit port. When linked, only Port A has pattern-match capability. Port B's pattern-match capability must be disabled. Also, when the ports are linked, Port B's Data register must be read or written before Port A's. When a port is specified as a port with handshake, the type of port it is (input, output, or bidrectional) determines the direction of data flow. The data direction for the bidirectional port is determined by a bit in Port C (Table 1). In all cases, the contents of the Data Direction register are ignored. The contents of the Special I/O Control register apply only to output bits (3-state Of open -drain). Inputs may not have 1 's catchers ; therefore. those bits in the Special I/O Control register are ignored. Port C lines used for handshake should be programmed as inputs. The handshak~ specification overrides Port C's Data Direction register for bits that must be outputs. The contents of Port C's Data Path Polarity register still apply. Z8036/Z8036A Counter/Timer and Parallel I/O Unit LH8036(LH8036A Table 1. Port C bit utilization Port AlB Configuration Ports A and B : Bit ports Port A : Input or output port (Interlocked, strobed, or pulsed handshake) * Port B : Input or output port (Interlocked, strobed, or pulsed handshake) * Port A or B : Input port (3·wire handshake) Port A or B : Output port (3·wire handshake) Port A or B : Bidirectional port (Interlocked or strobed handshake) PC3 Bit I/O -- RFD or DA V (0) PC2 Bit I/O -- ACKIN (I) PC. Bit I/O -REQUEST IW AIT or Bit I/O -- REQUEST IW AIT or Bit I/O RFD (0) -- DAV(O) RFD or DA V (0) Bit 110 -- DAV(I) DAC (I) -- ACKIN(I) -- FD or DAV (0) REQUESTlW AIT or Bit 110 REQUEST IW AIT or Bit 110 REQUEST IW AIT or Bit 110 PCo Bit I/O Bit I/O -ACKIN (I) DAC(O) RFD (I) -- INIOUT *Both ports A and B can he specified input or output with interlocked, strobed, or pulsed handshake at the same time if neither uses RE· QUESTlW AlT. (4) Interlocked handshake In the Interlocked Handshake mode, the action of the Z-CIO must be acknowledged by the external device before the next action can take place. Fig. 1 shows timing for Interlocked Handshake. An output port does not indicate that new data is available until the external device indicates it is ready for the data. Similarly, an input port does not indicate that it is ready for new data until the data source indicates that the previous of the data is no loger available, thereby acknowledging the input port's acceptance of the last byte. This allows the Z-CIO to interface directly to the port of a Z8 microcomputer, a UPC, an FlO, an FIFO, or to another Z-CIO port with no external logic. A 4-bit deskew timer can be inserted in the Data Available (DA V) output for output ports. As data is transferred to the Buffer register, the deskew timer is triggered. After the number of PCLK cycles specified by the deskew timer time constant pi use one, DA V is allowed to go Low. The deskew timer therefore guarantees that the output data is valid for a specified minimum amount of time before DA Vgoes Low. Deskew timers are available for output ports independent of the type of handshake employed. (5) Strobed handshake In the Strobed Handshake mode, data is "strobed" into or out of the port by the external logic. The falling edge of the Acknowledge Input (ACKIN) strobes data into or out of the port Fig. 1 shows timing for the Strobed Handshake. In contrast to the Interlocked Handshake, the signal indicating the port is ready for another data transfer operates independently of the ACKIN input It is up to the external logic to ensure that data overflows or underflows do not occur. INPUT HANDSHAKE DATA =x VALID XI..________ ACKIN RFD DATA LATCHED IN BUFFER REGISTER DATA MOVED TO INPUT REGISTER INTERLOCKED HANDSHAKE OUTPUT HANDSHAKE DATA ACKIN DAV BUFFER REGISTER "EMPTIED" NEXT BYTE DESKEW TIME .,----- \ STROBED HANDSHAKE NEXT BYTE SHIFTED FROM OUTPUT REGISTER TO BUFFER REGISTER Fig. 1 Interlocked and strobed handshakes (6) 3-wire handshake The 3-Wire Handshake is designed for the situation in which one output port is communicating with many input ports simultaneously. It is essen· tially the same as the Interlocked Handshake, except that two signals are used to indicate if an in- ------------SHARP-----..-......---367. . , - .....- ............... .......... Z8036/Z8936A Counter/Timer and ParalleVIIQUnit -~ _.-: put port is ready for new data or if it has accepted the present data. In the 3-Wire Handshake (Fig. 2), ~he rising edge of one status line indicates that the port is read'y for data, and the rising edge of another status line indicates that the data has been accepted. With the 3-Wire Handshake, the output lines of many input ports can be bussed together with open-drain drivers; the output port knows when all the ports have accepted the data and are ready. This is the same handshake as is used on the IEEE-488 bus. Because this handshake requires'three lines, only one port (either A or B) can be a 3-Wire Handshake port at a time. The 3-Wire Handshake is not available in the bidirectional mode. Because the port's direction can be changed under software control, however, bidirectional IEEE-488-type transfers can be performed. INPUT HANDSHAKE DATA ~_______________ DAV INPUT RFD -~~ OUTPUT DAC OUTPUT '-------+---J DATA SHIFTED TO INPUT REGISTER DATA LATCHED I IN BUFFER REGISTER OUTPUT HANDSHAKE piA T A _ _ _ _ _ _ _ _ _BYTE ___ NEXT -JI,~ RFD INPUT __________J DAC INPUT LAST ONE DAV OUTPUT BUFFER REGISTER "EMPTIED" NEXT BYTE SHIFTED FROM OUTPUT REGISTER TO,BUFFER REGI~TER Fig. 2 3-wire handshake (7) Pulsed handshake The Pulsed Handshake (Fig. 3) is designed to interface to mechanical-type devices that require data to be held for long periods of time and need relatively wide pulses to gate the data into or out of the device. The logic is the same as the Interlocked Handshake mode, except that an internal counter / timer is linked to the handshake logic. If the port is specified in the input mode, the timer is inserted in the' ACKIN path,. The external ACKIN input trig- .......... ' LH8036/LR8036A ~- INPUT PORT ACKiN cEXT~ERNAL) , ACKIN TRIGGER COI!mR INPUT ~(INTERNAL) ,QUTPlIT CIT 3 • , r~l .J L . I - ' OUTPUT PORT TRIGGER COUNTER INPlIT OlITPlIT DAV CIT 3 Fig. 3 Pulse handshake gers the timer and its output used as the Interlocked Handshake's normal acknowledge input. If the port is an outP\1t port, the timer is placed in the Data Available (DAV) output path. The timer is triggered when the ilOrmal Interlocked Handshake DA V output goes Low and the timer output is used as the actual DAV output. The counter/timer maintains all of its normal capabilities. This handshake is not available to bidirectional ports. (8) REQUEST/WAIT line operation Port C can be programmed to provide a status signal output in addition to the normal handshake lines for either Port A or B when used as a port with handshake. The additional signal is either a REQUEST or WAIT signal. The REQUEST signal indicates when a port is ready to perform a data transfer via the Z-Bus. It is intended for use with a DMA -type device. The WAIT signal provides synchronization for transfers with a CPU. Three bits in the Port Handshake Specification register provide controls for the REQUEST /W AIT logic. Because the extra Port C line is used, only one port can be specified asa port with a handshake and a REQUEST /W AIT line. The other port must be a bit port. Operation of the REQUEST line is modified by the state of the port's Interrupt on Two Bytes (ITB) control bit. When ITB is 0, the REQUEST line goes active as soon as the Z-CIO is ready for a data transfer. If ITB is 1, REQUEST does not go active until two bytes can be transferred. REQUEST stays active as long as a byte is available to be read or written. The SPECIAL REQUEST function is reserved for use with bidirectional ports only., In this case, the REQUEST line indicates the status of the register not being used in the data path at that time. If the IN/OUT line is High, the REQUEST line is ' High when the Output register is empty. If IN/OUT is Low, the REQUEST line is High when the Input . - - . - - - - - - - - - - S H A R P ---~----..-.-.-368 Z8036/Z8036A Counter/Timer and Parallel I/O Unit register is full. (9) Pattern-recognition logic operation Both Ports A and B can be programmed to generate interrupts when a specific pattern is recognized at the port. The pattern-recognition logic is independent of the port application, thereby allowing the port to recognize patterns in all of its configurations. The pattern can be independently specified for each bit as 1, 0, rising edge, falling edge, or any transition. Individual bits may be masked off. A pattern-match is defined as the simultaneous satisfaction of all non masked bit specifications in the AND mode or the satisfaction of any nonmasked bit specifications in either of the OR or OR-Priority Encoded Vector modes. The pattern specified in the Pattern Definition register assumes that the data path is programmed to be non inverting. If an input bit in the data path is programmed to be inverting, the pattern detected is the opposite of the one specified. Output bits used in the pattern-match logic are internally sampled before the invert/noninvert logic. (10) Bit port pattern-recognition operations During bit port operations, pattern-recognition may be performed on all bits, including those used as I/O for the counter/timers. The input to the pattern-recognition logic follows the value at the pins (through the invert/noninvert logic) in all cases except for simple inputs with 1 '1) catchers. In this case, the output of the 1 's catcher is used. When operating in the AND or OR mode, it is the transition from a nomatch to a match state that causes the interrupt. In the "OR" mode, if a second match occurs before the first match goes away, it does not cause an interrupt. Since a match condition only lasts a short time when edges are specified, care must be taken to avoid losing a match condition. Bit ports specified in the OR-Priority Encoded Vector mode generate interrupts as long as any match state exists. A transition from a no-match to a match state is not required. The pattern-recognition logic of bit ports operates in two basic modes: Transparent and Latched. When the Latch on Pattern Match (LPM) bit is set to 0 (Transparent mode), the interrupt indicates that a specified pattern has occurred, but a read of the Data register does not necessarily indicate the state of the port at the time the interrupt was generated. In the Latched mode (LPM = 1), the state of all the port inputs at the time the interrupt was generated is latched in the input register and held until IP is cleared. In all cases, the PMF indicates the state of the port at the time it is read. If a match occurs while IP is already set, an LH8036/LH8036A error condition exists. If the Interrupt On Error bit (IOE) is 0, the match is ignored. However, if IOE is 1, after the first IP is cleared, it is automatically set to 1 along with the Interrupt Error (ERR). flag. Matches occurring while ERR is set are ignored. ERR is cleared when the corresponding IP is . cleared. When a pattern-match is pressent in the ORPriority Encoded Vector mode, IP is set to 1. The IP cannot be cleared until a match is no longer present. If the interrupt vector is allowed to include status, the vector returned during Interrupt Acknowledge indicates the highest priority bit matching its specification at the time of the Acknowledge cycle. Bit 7 is the highest priority and bit 0 is the lowest. The bit initially causing the interrupt may not be the one indicated by the vector if a higher priority bit matches before the Acknowledge. Once the Acknowledge cycle is initiated, the vector is frozen until the corresponding IP is cleared. Where inputs that cause interrupts might change before the interrupt is serviced, the 1 's catcher can be used to hold the value. Because a no-match to match transition is not required, the source of the interrupt must be cleared before IP is cleared or else a second interrupt is generated. No error detection is performed in this mode and the Interrupt On Error bit should be set to O. (11) Ports with handshake patternrecognition operation In this mode, the handshake logic normally controls the setting of IP and, therefore, the generation of interrupt requests. The pattern-match logic controls the Pattern Match Flag (PMF). The data is compared with the match pattern when it is shifted from the Buffer register to the Input register (input port) or when it is shifted from the Output register to the Buffer register (output port). The patternmatch logic can override the handshake logic in certain situations. If the port is programmed to interrupt when two bytes of data are available to be read or written, but the first byte matches the specified pattern, the pattern-recognition logic sets IP and generates an interrupt. While PMF is set, IP cannot be cleared by reading or writing the data registers. IP must be cleared by command. The input register is not emptied while IP is set, nor is the output register filled until IP is cleared. If the Interrupt on Match Only (IMO) bit is set, IP is set only when the data matches the pattern. This is useful in DMA-type applications when interrupts are required only after a block of data is transferred. ----.--.---SHARP---~---~.-.-r-- 369 Z8036/Z8036A Countertfimer and Parallel 110 Unit (12) Counter/timer operation the three independent 16-bit counter/timers consist of a presettable 16-bit down counter, a 16-bit Time Constant register, a I6-bit Current Counter register,art 8-bit Mode Specification register, an 8-bit Command and Status register, and the associated control logic that links these registers. The flexibility of the counter/timers is enhanced by the provision of up,to four lines per counter / timer (counter input, gate input, trigger input, and counter/timer output) for direct external control and status. Counter/Timer l's external I/O lines are provided by the four most significant bits of Port B. Counter/Timer 2's are provided by the four least significant bits of Port B. Counter/Timer 3's external I/O lines are provided by the four bits of Port C. The utilization of these lines (Table 2) is programmable on a bit-by-bit basis via the Counter /Timer Mode Specification registers. When external counter/timer I/O lines are to be used, the associated port lines must be vacant and programmed in the proper data direction. Lines used for counter/timer I/O have the same characteristics as simple input lines. They can be specified as inverting or noninverting ; they can be read and used with the pattern-recognition logic. They can also include the 1 's catcher input. Counter/Timers 1 and 2 can be be linked internally in three different ways. Counter/Timer 1 's output (inverted) can be uS'ed as Counter/Timer 2's trigger, gate, or counter input. When linked, the Table 2 Counter/timer external access Function Counter/timer output Counter input Trigger input Gate input 'C/T! PB4 PB5 PB6 PB7 C/T 2 PBO PBl PB2 PB3 C/T 3 peo PCl PC2 PC3 counter/timers have the same capabilities as when used separately. The only restriction is that when Counter/Timer 1 drives Counter/Timer 2's count input, Counter/Timer 2 must be programmed with its external count input disabled. There are three duty cycles available for the tim' er/counter output: pulse, one-short, and square -wave. Fig. 4 shows the counter/timer waveforms. When tte Pulse mode is specified, the output goes High for one clock cycle, beginning when the down-counter leaves the count of 1. In the One-Shot mode, the output goes High when the counter/timer is triggered and and goes Low when the ddwn- LH8036/LH8036A 'counter reaches O. When the square -wave output duty cycle is spec-ified, the counter/timer goes through two full sequences for each -cycle. The initial trigger causes the down-counter to be loaded and the normal countdown sequence to begin. If a 1 count is detected on the down-counter's clocking edge, the output goes High and the time constant value is reloaded. On the clocking edge, when both the down-counter and the output are 1 's, the output is pulled back Low. The Countinuous/Single Cycle (elSe) bit in the Mode Specification register controls operation of the down-counter when it reaches terminal count. If C/SC is 0 when a terminal count is reached, the 'countdown sequence stops. If the C/SC bit is 1 each time the countdown counter reaches 1, the next cycle causes the time constant value to be reloaded. The time constant value may be changed by the CPU, and on reload, the new time constant value is loaded. Counter/timer operations require loading the time constant value in the Time Constant register and initiating the countdown sequence by loading the down-counter with the time constant value. The Time Constant register is accessed as two 8-bit registers. The registers are readable as well as writable, and the access order is irrelevant. A 0 in the Time Constant register' specifies a time constant of 65,536. The down-counter is loaded in one of three ways : (1) By writing a 1 to the Trigger Command Bit (TCB : write-only), (2) On the rising edge of the external trigger input, or, (3) For Counter/Timer 2 only" on the rising edge of Counter/Timer l's internal output if the counters are linked via the trigger input. Once the down-counter is loaded, the countdown sequence continues toward terminal count as long as all the counter/timers' hardware and software gate inputs are High. If any of the gate inputs goes Low (0), the countdown halts. It resumes when all gate inputs ate 1 again. The reaction to triggers occurring during a countdown sequence is determined by the state of the Retrigger Enable Bit (REB) in the Mode Specification register. If REB is 0, retriggers are ignored and the countdown continues normally. If REB is 1, each'trigger causes the down-counter to be reloaded and the count-down sequence starts over again. If the output is programmed in the Square -Wave mode, retrigger causes the sequence to start over from the initial load of the time constant. ------~-----SHARP-.-.--~.---.-. 370 LH8036/LH8036A Z8036/Z8036A Counter/Timer and Parallel I/O Unit The rate at which the down-countor counts is determined by the mode of the counter/timer. In the Timer mode (the External Count Enable IECE] bit is 0), the down-counter is clocked internally by a signal that is half the frequency of the PCLK input to the chip. In the Counter mode (ECE is 1), the down-counter is decremented on the rising edge of the counter/timer's counter input. Each time the counter reaches terminal count, its Interrupt Pending (IP) bit is set to 1, and if interrupts are enabled (IE= 1), an interrupt is generated. If a terminal count occurs while IP is already set, an internal error flag is set. As soon as IP is cleared, it is forced to a 1 along with the Interrupt Error (ERR) flag. Errors that occur after the internal flag is set are ignored. The state of the down-counter can determined in two ways: PCLK/20R COUNTER INPUT By reading the contents of the down-counter via the Current Count register, or (2) By testing the Count In Progress (CIP) status bit in the Command Status register. The CIP status bit is set when the down-counter is loaded; it is reset when the down-counter reaches O. The Current Count register is a 16-bit register, accessible as two 8-bit registers, which mirrors the contents of the down-counter. This register can be read anytime. However, reading the register is asynchronous to the counter's counting, and the value returned is valid only if the counter is stopped. The down-counter can be reliably read "on the fly" by the first writing of a 1 to the Read Counter Control (RCC) bit in the counter/timer's Command and Status register. This freezes the value in the Current Count register until a read of the least significant byte is performed. (1) ~~ TRIGGER~ U GATE fI 1 TC ITC-1ITC-1I TC- 21 .. ·1.1 PULSE OUTPUT TC I OaR I ------------1r~ [J ONE SHOT OUTPUT - - - - ' SQUARE WAVE OUTPUT FIRST HALF _ _ _ _ _ _ _ _ _ _ --j;c~1 _ _--l SQUARE WAVE OUTPUT-----------------jfff------, SECOND HALF '---- Fig. 4 Counter/timer waveforms ..--.~------SHARP---------- 371 Z8036/Z8036A Gounter/Timer and Parallel I/O. Unit • LH8036/LH8036A Internal Registers The followings' illustrate the contents of the Registers and, in addition, give to register address summary • Maste~ Interrupt C.ontrol Register (MICR) Address : 000000 (Read/Write) l: II 107 1 06 1 Os 1041 03 1 Dd 011 Do I MASTERINTERRUPT~ ENABLE (MIE) 1 DISABLE LOWER CHAIN (DLC) NO VECTOR (NV) COUNTER/TIMERS VECTOR INCLUDES STATUS (CT VIS) PORT A VECTOR INCLUDES------" STATUS (PA VIS) • LRESET L'RIGHT JUSTIFIED ADDRESSES O=SHIFT LEFT (Ao from ADl) I=RIGHT JUSTIFY (Ao from ADo) '-------PORT B VECTOR INCLUDES STATUS (PB VIS) Master Configuration Control Register (MCCR) Address: 000001 (Read/Write) 107106/051 D41 031021011 Dol oj PORT ENABLE (PBE) I I ---CCOUNTERITIMER LINK CONTROLS (LC) LCI LCO 0 0 COUNTER/TIMERS INDEPENDENT 0 1 CIT 1's OUTPUT GATES CIT 2 0 CIT 1'8 OUTPUT TRIGGERS CIT 1 1 l I C I T l's OUTPUT IS CIT 2's COUNT INPUT COUNTER/TIMER 1 ENABLE (CTIE) COUNTER/TIMER 2 ENABLE (CT2E) PORT C AND COUNTER/------" TIMER 3 ENABLE (PCE AND CT3E) • '------PORTA ENABLE (PAE) '-------PORT LINK CONTROL (PLC) O=PORTS A AND B OPERATE INDEPENDENT I=PORTS A AND B ARE LINKED Port Mode Specification Registers (PMSR) Addresses: 100000 Port A 101000 Port B (Read/Write) I L 1071 D61 Os 1D41 D31 D21 01 Do 1 PORT SEL~CTS TYPE~ (PTS) PTSI PTSO o o 1 1 0 1 0 1 BIT PORT INPUT PORT OUTPUT PORT BIDIRECTIONAL PORT INTERRUPT ON TWO------' BYTES (ITB) SINGLE BUFFERED--------'--" MODE (SB) LLATCH ON PATTERN MATCH (LPM) (BIT MODE) DESKEW TIMER ENABLE (DTE) (HANDSHAKE MODES) . PATTERN MODE SPECIFIC~TION BITS (PMS) PMSI PMSO - 0 - --0- DISABLE PATTERN MATCH o 1 "AND" MODE 1 0 "OR" MODE 1 1 "OR PRIORITY ENCODED VECTOR" MODE '------INTERRUPT ON MATCH ONLY elMO) --.-.-----------SHARP ---....-.-------- 372 Z8036/Z8036A Counter/Timer and Parallel I/O Unit • LH8036/LH8036A Port Handshake Specification Registers (PHSR) Addresses: 100001 Port A 101001 Port B (Read/Write) ! D7! D61 D5! D.I Da! D2! D, HANDSHAKE TYPE SPECIFICATION~ LDESKW TIME SPECIFICATION BITS SPECIFIES THE MSB's OF DESKEW TIMER TIME CONSTANT LSB IS FORCED 1. BiTS (HST) HSTl HSTO o o 0 1 1 1 0 1 IDol INTERLOCKED HANDSHAKE STROBED HANDSHAKE PULSED HANDSHAKE THREE WIRE HANDSHAKE REQUEST/WAIT SPECIFICATION-----' BITS (RWS) RWS2 RWSI RWSO FUNCTION - 0 - --0- --0- REQUEST WAIT DISABLED o 0 1 OUTPUT WAIT o 1 1 INPUT WAIT 1 0 0 SPECIAL REQUEST 1 0 1 OUTPUT REQUEST 1 1 1 INPUT REQUEST • Port Command and Status Registers (PCSR) Addresses: 001000 Port A 001001 Port B (Read/Partial Write) ! D71 D6! D5! D4! Da! D21 Dl ! Dol INTERRUPT UNDER SERVICE (IUS) INTERRUPT ENABLE {IE} INTERRUPT PENDING {IP} IUS, IE, AND IP ARE WRITTEN USING THE F:0LLOWING CODE: NULL CODE CLEAR IP & IUS SET IUS CLEAR IUS SET IP CLEAR IP SET IE CLEAR IE ~ jJ I I I I I I I I I I II 0 0 0 0 1 1 1 1 0 0 1 1 0 0 1 1 INTERRUPT ON ERROR (IOE) PATTERN MATCH FLAG (PMF) (READ ONLY) INPUT REGISTER FULL (IRF) (READ ONLY) OUTPUT REGISTER EMPTY (ORE) (READ ONLY) 0 1 0 1 0 1 0 1 INTERRUPT ERROR (ERR) (READ ONLY) -----------........,.-----.--SHARP~--------- 373 .............................. ..... Z8036/Z8036A Counter/TImer and Parallel I/O Unit , • ~ Data Path Polarity Registers (DPPR) LH8036/LH8036A ~~~ • ~ Special 1/0 Control Registers (SIOCR) Addresses: 100010 Port A 101010 Port B 000101 Port C (4 LSBs only) (Read/W rite) Adclresses: 100100 Port A 101100 Port B 000111 Port C (4 LSBs only) (Read/W~ite) 1~1~1~1~1~I~t~I~1 I~I~I~I~I~I~I~I~I I I DATA PATH POLARITY (DPP) 0= NON -INVERTING 1 = INVERTING • ..... ..... .......... ~~ SPECIAL INPUT /OUTPUT (SIO) 0= NORMAL INPUT OR OUTPUT 1 = OUTPUT WITH OPEN DRAIN OR INPUT WITH I's CATCHER Data Direction Registers (DDR) • Port Data Registers (PDR) Addresses: 001101 Port A 001110 Port B (Read/Write) Addresses: 100011 Port A 101011 Port B ooono Port C (4 LSBs only) (Read/Write) I~I~I~I~I~I~I~I~I • DATA DIRECTION (DD) 0= OUTPUT BIT 1 = INPUT BIT • • Address: 001111 (Read/Write) 4 MSBs 0= WRITING OF CORRESPONDING LSS ENABLED 1 = WRITING OF CORRESPONDING LSS INHIBITED (READ RETURNS 1) Pattern Polarity Registers (PPR) Addresses: 100101 Port A 101101 Port B (Read/Write) ID71 D61 D51 D41 D31 Dzi D, IDo I I Pattern Transition Registers (PTR) Addresses: 100110 Port A 101110 Port B (Read/Write) ID71 D61 Dsl D41 D31 Dzi D, IDo I PM O· o 1 1 1 1 • 374 PT 0 1 0 0 1 1 PP PATTERN SPECIFICATION X BIT MASKED OFF X ANY TRANSITION 0 ZERO lONE 0 ONE-TO-ZERO TRANSITION (\.) 1 ZERO-TO-ONE TRANSITION (,i') Pattern Mask Registers (PMR) Addresses: 100111 Port A 101111 Port B (Read/Write) - Port C Data Register (PCDR) I~I~I~I~I~I~I~I~I I ........ ------~ .......... -SHARP . - . - . - - - - - - - - - - - - LH8036/LH8036A Z8036/Z8036A Counter/Timer and Parallel I/O Unit • Counter/Timer Command and Status Registers (CTCSR) Addresses 0 0 1 0 1 0 Counter /Timer 1 o 0 1 0 1 1 Counter /Timer 2 o 0 1 1 0 0 Counter/Timer 3 (Read/Partial Write) I~I~I~I~I~I~I~I~I II (IUS)-.J~ Interrupt under service (Read/Write) Interrupt enable (IE) - (Read/Write) Interrupt pending (IP) (Read/Write) IUS, IE, IP are written using the following code OOO=Null code 001 = Clear IP & IU S 010=Set IUS 011=ClearlUS 100 = Set IP 101 = Clear IP 110 = Set IE 111 = Clear IE • ' • "'","" (CIP) LCooo (Read only) Trigger command bit (TCB) (Write only. Read returns 0) Gate command bit (GCB) (Read/Write) Read counter control (RCC) (Read/Set only cleared by reading CCR Ls) ' - - - - - - - - Interrupt error (ERR) (Read only) Counter/Timer Mode Specification Registers (CTMSR) Addresses 0 1 1 1 0 0 Counter /Timer 1 o1 o1 1 1 0 1 Counter /Timer 2 1 1 1 0 Counter /Timer 3 (Read/Write) C~H"OOM ,mg" ,,''(C/SC)~ External output enable (EOE) I I II I External count enable (ECE) External trigger enable (ETE) External gate enable (EGE) • L 0."., ,.".,.,. ,.,.," 00 = Pulse output . 01 = One -shot output 10 = Sq'uarew ave output 11 = Do not specify Retrigger enable bit (REB) Counter/Timer Current Count Registers (CTCCR) Address 0 1 0 0 0 0 Counter/Timer 1's MSB o 1 0 0 0 1 Counter/Timer l's LSB o 1 0 0 1 0 Counter /Timer 2's MSB o 1 0 0 1 1 Counter/Timer 2's LSB o 1 0 1 0 0 Counter /Timer 3's MSB o 1 0 1 0 1 Counter/Timer 3's LSB (Read only) I I D71 Dol Dsl D41 D31 D,I Dl Do I D71 Dol Dsl D41 D31 Dzi Dl I Do Most significante byte---_--'f I ----Least significant byte ,--I 375 L.,H8036/LH8036A Z.8036/Z8036A Gounter/Timer and Parallel. I/O Unit • Counter/Timer Time Constant Registers (CTTCR) Addresses: 010110 Counter/Timer 010111 ·Counter/Timer 011000 Counter/Timer 011001 Counter/Timer 011010 Counter/Timer 011011 Counter/Timer (Read/Write) MOST 1's MSB 1's LSB 2;s MSB 2's LSB 3's MSB 3's LSB I~I~I~I~I~I~I~I~I~I~I~I~I~I~I~I~I SIGNIFICANT------.JI L-I--~--LEAST BYTE • Interrupt Vector Register (lVR) SIGNIFICANT BYTE • Counter/Timer Status D2 0 .0 1 1 Addresses: 000010 Port A 000011 Port B 000100 Counter /Timers (Read/Write) D1 0 1 0 C/T3 C/T2 C/Tl Error I~I~I~I~I~I~I~I~I I INTERRUPT VECTOR • Port Vector Status (1) P encoded vector mode X(X (2) X Number of highest priority bit with a watch All other modes ORE IRF PMF o 0 0 Normal Error • Current Vector Register (CVR) Address: 011111 (Read Only) I~I~I~I~I~I~I~I~I I INTERRUPT V~CTOR BASED ON HIGHEST PRIORITY UNMASKED IP. IF NO INTERRUPT PENDING ALL 1'8 OUTPUT. ~----------SHARP-~-----3.76 Z8038/Z8038A FlO Input/Output Interface Unit LH8038/LH8038A LH8038/LH8038A Z80381Z8038A FlO I~putl Output Interface Umt • Description The LH8038 Z8038 FlO provides an asynchronous 128 byte FIFO buffer between two CPUs or between a CPU and a peripheral device_ This buffer interface expands to a 16-bit or wider data path and expands in depth to add as many FIFOs (and an additional LH8038) as are needed. The LH8038 manages data transfers by assuming Z-BUS, non-Z-BUS microprocessor (a generalized microprocessor interface), Interlocked 2-Wire ,Handshake, and 3-Wire Handshake operating modes. These modes interface dissimilar CPUs or CPUs and peripherals running under differing speeds or protocols, allowing asynchronous data transactions and improving I/O overhead by as much as two orders of magnitude. The LH8038 supports the Z-BUS interrupt protocols, generating seven sources of interrupts upon any of the following events: a write to a message register, change in data direction, pattern match, status match, over/underflow error, buffer full and buffer empty status. Each interrupt source can be enabled or disabled, and can also place an interrupt vector on the port address/data lines. The LH8038A Z8038A 1"10 is the high speed version which can operate at 6MHz system clock. • Features 1. 128-byte FIFO buffer provides asynchronous bidirectional CPU/CPU or CPU/peripheral interface, expandable to any width in byte increments by use of multiple FIOs. 2. Interlocked 2-Wire or 3-Wire Handshake logic port mode; Z-BUS or non-Z-BUS interface. 3. Pattern-recognition logic stops DMA transfers and/or interrupts CPU; preset byte count can initiate variable-length DMA transfers. • Pin Connections o +5V [AJ rnJ ~ mJ ffi] [f] [Q] llil rn rn 00 OJ 02 ~ 03 O. 05 0& 07 GNO Mo Top View 4. Seven sources of vectored/nonvectored interrupt which include pattern-match, byte count, empty or full buffer status; a dedicated "mailbox" register with interrupt capability provides CPU/CPU communication. 5. REQUEST /W AIT lines control high-speed data transfers. 6. All functions are software controlled via directly addressable read/write registers. 377 Z8038/z8038A FlO Input/Output Interface Unit • LH8038/LH8038A Block Diagram Pattern Match Logic Data Bus Data Buff~r Register Status Logic and Registers Pattern Match Logic Data Buffer Register 128X8 FIFO Buffer Data Bus Port 1 Side I Port 2 Side I I :-~------SHARP 378 ....------...-.----------- Z8038/Z8038A FlO Input/Output Interface Unit • LH8038/LH8038A Pin Description (1) Pins common to both ports 1 and 2 Pin Mo Ml (2) Pin signal Mo Ml Meaning Multimicro output Multimicro input I/O 0 I Function Ml and Mo program Port 1 side CPU interface Z-bus low byte mode Pin Pin signal Meaning Do-D 7 AD o-AD 7 Address/ data bus ----- I/O Bidirectional 3-state REQ/WAIT Request/wait 0 DMASTB DMA strobe I Data strobe I Read/write I Chip select I AS Address strobe I G INTACK Interrupt acknowledge I H lEO Interrupt enable output 0 I lEI Interrupt enable input I Interrupt request 0 A B - C D DS - R/W - CS E F J - - INT Function Multiplexed bidirectional bus, Z-BUS compatible Active low. open-drain output with WAITselected ; REQUEST line for DMA transfer; WAIT line for data transfers to and from CPU. Active low. Provides timing for data transfer to and from the FIFO buffer. Active low. Provides timing for data transfer to or fn?m Z·FIO. Active high signals CPU to head from Z-FIO ; active Low signals CPU to write to Z-FIO. Active low. Enables Z-FIO. Latched on the rising edge of AS. Active low. Addresses. CS and INT ACK are sampled while AS is Low. Active low. Latched on the rising edge of AS. Active high. Sends interrupt enable to lower priority device lEI pin. Active high. Receives interrupt enable from higher priority device lEI pin. Active low, open-drain output. Interrupt request signal to CPU. (3) Z-bus high byte mode Pin Pin signal Meaning Do-D 7 ADo-;-AD7 Address/ data bus A B C D E F G-J ----- I/O Bidirectional 3-state I REQ/WAIT Request/wait 0 DMASTB DMA strobe I Data strobe I Read/write I Chip select I AS Address strobl· I Ao-Aa Address bits I - DS - R/W - CS - Function Multiplexed bidirectional bus, Z-BUS compatible. Active low, open-drain output when WAIT selected; REQUEST line for DMA transfer; WAIT line for data transfers to and from CPU. Active low. Strobes DMA data to and from the FIFO buffer. Active low. Provides timing for data transfer to or from Z-FIO. Active high signals CPU to read from Z-FIO ; active low signal CPU to write to Z-FIO. Active low. Enables Z-FIO. Latched on the rising edge of AS Active low. Addresses, CS and INT ACK are sampled while AS is low. Active high. Specify Z=FIO internal registers. 379 LH8038/LH8038A l8038/Z8038A FlO Input/Output Inter:tace Unit (4) Non-Z-bus mode Pin Pin signal Meaning Do -D 7 Do-D 7 Data bus ----- 110 Bidirectional 3-state REQ/WAIT Req uestl wait 0 B C D E DACK RD WR CE DMA acknowledge Read Write Chip select I I I I F C/D Controll data I G INTACK Interrupt acknowledge I H lEO Interrupt enable output 0 I lEI Interrupt enable input I Interrupt 0 I/O Bidirectional 3-state A - - J (5) INT Pin signal Meaning Do -D 7 Do-D 7 Data bus A RFD/DAV -- Ready for datal data available 0 ~: --- ACKIN -- Acknowledge input I Data availablel data accepted I Full 0 B DAV/DAC C FULL C DAC/RFD Data acceptedl ready for data 110 D EMPTY Empty 0 CLEAR Clear 110 F DATA DIR Data direction I/O G H INo OUT l Input Output I 0 OE Output enable 0 OUTa Output 0 E I J Bidirectional data bus. Active low, open-drain output when WAIT is selected ; REQUEST line for DMA transfer; WAIT line for data transfer to and from CPU. Active low. DMA acknowledge signal. Active low. Timing signal for reading. Active low. Timing signal for writing. Active low. Signal that is used to select Z-FIO. Active high identifies control byte on Do-D7, active low identifies data byte on Do- D7 Active low. acknowledges an interrupt. Active high. Sends interrupt enable to lower priority device IEI pin. Active high. Receives interrupt enable from higher priority device lEO signal. Active low, open drain. Signals Z-FIO interrupt to CPU. Port 2-1/0 port mode Pin B Function --- - Function Bidirectional data bus. For input handshake, RFD (active High) signals that Z-FIO is ready to receive data. For output handshake, DA V (active Low) signals that output data is valid Active low. Signals that input data is valid in the case of input handshake or that output data is received by peripherals in the case of output handshake. For input handshake, DA V (active low) signals that input data is valid. For output handshake, DAC (active high) signals that listener has received data. Active high, open drain. Signals that FIFO buffer is full. Both active high. For input handshake, DAC (an output) signals that data has been received from talker. For output handshake, RFD (an input) signals that the listeners are ready for data. Active high, open drain. Signals that FIFO buffer is empty. Active low. Can clear data from FIFO buffer in the case of input. Data direction is controllable for input. Active high signals data input to ports 2 ; Low signals data output from Port 2. Input line to bit 0 (Do) of control register 3. Output line from bit (D l ) of control register 3. Actiye low. When low, enables bus drivers. When high, floats bus drivers at high inpedance . . Output line from bit 3 (D3) of control register 3_ ---.-.------SHARP------------380 Z8038/Z8038A FlO Input/OLitput Interface Unit • LH8038/LH8038A Absolute Maximum Ratings Parameter Input voltage * Output voltage * Operating temperature Storage temperature Note Symbol V IN VOUT Top, ' T s'" Ratings -0.3-+7 -0.3-+7 0-+70 -6S-+1S0 Unit V V "C "C The maximum applicable voltage on any pin with respect to GND. +5V +5V 2.2kn From test output 0--..-+-1...... From test output i 12.2k!l r 50PF Standard test load • Parameter Input high voltage Input low voltage Output high voltage Symbol VlH V IL VOH Output low voltage VOL I IIIL I IloL I ILM Icc Conditions Ion =-2S0,uA IOL =+2mA IOL=+3.2mA O PORT 3 <8> Z80 bus I/O Z80 } HANDSHAKE SIGNALS MEMORY Z-bus Z80 bus Fig. 1 CPU to CPU configuration • Fig. 2 CPU to 110 configuration CPU Interface The LH8038 is designed to work with both Z-bus and non-Z-bus-type CPUs on both Port 1 and Port 2. The Z-bus configuration interfaces CPUs with time·multiplexed address and data in· formation on the same pins. The Z8001, Z8002, and Z8 are examples of this type of CPU. The AS (Address Strobe) pin is used to latch the address and chip select information sent out by the CPU. The RIW (Read/Write) pin and the DS (Data Strobe) pin are used for timing reads and writes from the CPU to the LH8038 (Fig. 3 and 4). Address valid ADo-AD, The non-Z-bus configuration is used for CPUs where the address and data buses are separate. An Example of this type of CPU is the Z80. The RD (Read) and WR (Write) pins are used to time reads and writes from the CPU to the FlO (Fig. 5 and 6). The C/O (Cantrall Data) ~n is used to directly ac· cess the FIFO buffer JC/D = Low) and to access the other register (C/D = High). To CPU --<'-_....1)>-----«'-_....1)>---- AS CS~ R/W DS , :J ,'-_ _ _....J/ Fig. 3 Z-bus read cycle timing 389 LH8038/LH8038A 2-8038/Z8038A' FlO Input/Output Interface Unit· Addre.ss valid ADo-AD7 --cJ-< Data from CPU }-- AS~ CS ''-__--II DS Fig. 4 c/n Z-bus write cycle timing :==x x:= (ToCPU~ \I.-_ _ _ _ _ _ _-JI CE \1.-_ _ _ _-J1 RD Fig. 5 Non-Z-bus read cycle timing X c/n Do- D7 \ CE WR Fig. 6 • < From CPU , ) x== I I Non-Z-bus write cycle timing CPU-CPU Operation (1) DMA operation The LH8038 is particularly well suited to work with a DMA in both Z-bus and non-Z-bus modes. A d~ta transfer between the LH8038 and system memory can take place durring every machin~ cycle on both sides of the LH8038 simultaneously. (2) Message registers Two CPUs can communicate through a dedicated "mailbox" register without involving the 128 X 8 bit FIFO buffer. This mailbox approach is useful for the transferring control parameters between the interfacing devices on either side of the LH8038 without using the FIFO buffer. (3) Direction of data transfer operation The Data Direction bit controls the direction of data transfer in the FIFO buffer. This bit reads correctly when read by either port's CPU. For example, if Port l's CPU reads Ii 0 (CPU output) in its Data Direction bit, then Port 2's CPU reads a 1 (input to CPU) in its Data Direction bit. 390 c \ R/W • CPU to I/O Operation When Port 2 is programmed in the Interlocked 2-Wire Handshake mode or the 3-Wire Handshake mode, and Port 1 is programmed in Z-bus or non-Z-bus Microprocessor mode, the LH8038 interfaces a CPU and a peripheral device. (1) Interlocked 2-wire handshake In the Interlocked Handshake, the action of the LH8038 must be acknowledged by the other half of the handshake before the next action can take place. In output mode, Port 2 does not indicate that new data is available until the external device indicates it is ready for the data. Similarly, in input mode, Port 2 does not indicate that it is ready for new data until the data source (external device) indicates that the previous byte of the data is no longer available, thereby acknowledging Port 2's acceptance of the last byte by Port 2's Ready for Data Signal (RFD -+ High). Z8038/Z8038A FlO Input/Output Interface Unit (2) 3-wire handshake The 3-Wire Handshake is designed for applications in which one output port is communicating with many input ports simultaneously. It is essentially the same as the Interlocked Handshack, except that two signals are used to indicate that an input port is ready for new data or that it has accepted the present data. With 3- Wire Handshake, these lines (RFD, DAC) of many input ports can be bussed together with open-drain drivers and the output port knows when all of the ports are ready and have accepted the data. This handshake is the same handshake used in the in IEEE-488 Instruments. Since the port's direction can be changed under software control, bidirectional IEEE-488-type transfers can be performed. (3) Data direction control In CPU -to- I/O mode, the direction of data transfer can be controlled by the CPU side (Port 1) under software control. The data direction can also be determined by hardware control by defining the LH8038/LH8038A Data Direction pin of Port 2 as an input (Control Register 3, bit 5 = 1). For cascading purposes, the Data Direction pin can also be defied as an output (Control Register 3, bit 5 = 0) pin which reflects the current state of the Data Direction bit. It can then be used to control the direction of data transfer for other LH8038s or for external logic. • Programming The programming of the LH 8038 is greatly simplified by the efficient grouping of the various operation modes in the control registers. Since all of the control registers are read/write, the need for maintaining thier image in system memory is eliminated. Also, the read/write feature of the registers aides in system debugging. Each side of the LH 8038 has 16 registers. All 16 registers are used by the Port 1 side ; Table 1 Z-FIO register address summary Non-Z-bus Z-bus high Z-bus low IRJA=O RJA=l Register Control Register 0 Control Register 1 Interrupt Status Register 0 Interrupt Status Register 1 Interrupt Status Register 2 Interrupt Status Register 3 Interrupt Vector Register Byte Count Register Byte Count Comparsion Register Control Register 2 * Control Register 3 Message Output Register Message Input Register Pattern Match Register Pattern Mask Register Data Buffer Register x D2 A2 AD3 AD2 D, A, AD2 AD, Do Ao AD, ADo 0 0 1 0 1 X X 0 0 1 1 0 0 1 1 0 1 0 1 0 0 0 0 0 0 0 1 1 1 1 X 1 0 0 0 X X 1 1 1 1 1 1 1 0 0 0 0 1 1 0 0 1 1 1 0 1 0 1 0 1 X DT D4 ADT AD 5 ADTAD4 X X X X X X X X X X X X X D3 A3 AD4 AD" 0 0 0 0 1 1 1 1 ADo X X X X X X X X X X X X X = Don't Care bit (0, 1) * Register is only 0 Port 1 side ---.--.------~-SHARP--------- 391 Z80S.8/Z8038A FlO Input/Output Interface Unit • LH8038/Lhl8038A Control Register 0 Address:, 0000 (Read/Write) I D7 I D6 I D51 D41 D3 I' D2 I DI I Do I E~ABLED J (MIE)J 1 1 = INTERRUPTS 1 = DISABLE LOWER DAISY CHAIN (DLC) 1 = NO VECTOR ON INTERRUPT ( N V ) ' I'---r Lin I L I ~ RESET . ' - 1 = RT.JUST.ADDRESS (RJA) (BI) (Bo)· } o0 01 == NON-Z-BUS Z-BUS CPU ,PROGRAMS CPU PORT 2 MODE 1 0 = 3-WIRE HS I/O ' 1 1 = INTERLOCKED HS 1 = VECTOR INCLUDES STATUS (VIS) . ·READ-ONLY FROM · PORT 2 SIDE • Control Register 1 Address: 0001 (Read/Write) I D71 D61 D51 D41D31 D21 DI IDol J I (MUST BE PROGRAMMED 0) NOT USED 1 = FREEZE STATUS REGISTER COUNT 1 = MESSAGE MAILBOX REGISTER FULL· JU REQUEST/WAIT ENABLED ~L= 01 == WAIT 1 = REQUEST 1 = MESSAGE MAILBOX REGISTER UNDER SERVICE· 1 = START DMA ON BYTE COUNT 1 = STOP DMA ON PATTERN MATCH • READ-ONL Y BITS • Control Register 2* Address: 1001 I D71 D61 Dsl D41 D31 D21 DI I Do I (Read/Write) I L L1 = PORT 2 SIDE ENABLED BITS 2-7 NOT USED MUST BE PROGRAMMED 0 1 = PORT 2 SIDE ENABLE HANDSHAKE ·THIS REGISTER READS ALL O'S FROM PORT 2 SIDE • Control Register 3 Address: 1010 (Read/Write) I D7 I D6 I D5 I D4 I D3 I D2 I DI I Do I o~ PORT 1510E CONTROL S CLEARJ·I 1 = PORT 2 SIDE CONTROLS ' 0= CLEAR FIFO BUFFER 0= PORT 1 SIDE CONTROLS 1 = PORT 2 SIDE CONTROLS • READ-ONL Y BITS ··ONLY WHEN PORT 2 IS AN I/O PORT 392 I I 1 I Lpo RT 2SlOE-INPUT LINE· (PIN 33)" PORT 2 SIDE-OUTPUT LINE (PIN 32)·· NOT USED (MUST BE PROGRAMMED 0) PORT 2 SIDE-OUTPUT LINE (PIN 30)·· DATA DIRECTION BIT 1 = INPUT TO CPU 0= OUTPUT FROM CPU ZS03S/ZS03SA FlO Input/Output Interface Unit • LHS03S/LHS03SA Interrupt Status Register 0 Address: 0010 (Read/Write) I D7 ID6 I D5 I D4 I D3 I D2 I DJ I Do I MESSAGE INTERRUPT UNDER SERVICE (IUS}j MESSAGE INTERRUPT ENABLE (IE) : MESSAGE INTERRUPT PENDING (IP): IUS, IE, AND IP ARE WRITTEN USIN THE FOLLOWING COMMAND: NULL CODE 0 CLEAR IP & IUS 0 SET IUS 0 CLEAR IUS 0 SET IP 1 CLEARIP 1 SET IE 1 CLEAR IE 1 GI • II [ • NOT USED (MUST BE PROGRAMMED 0) : I 0 0 1 1 0 0 1 1 I 0 1 0 1 0 1 0 1 Interrupt Status Register 1 Address: 0011 (Read/Write) I D7 I D6 1 D5 1 D41 D31 D21 DJ 1 Do I C~NGE DATA "''''''ON UNDER SERVI<::E (IUS) 'NTER'"",.J: DATA DIRECTION CHANGE INTERRUPT ' ENABLE (IE) : DATA DIRECTION CHANGE INTERRUPT: PENDING (Ip) NOT USED: (MUST BE PROGRAMMED 0 ) IUS, IE, AND IP ARE WRITTEN USING THE FOLLOWING COMMAND: NULL CODE CLEAR IP & IUS SET IUS CLEAR IUS SET IP CLEARIP SET IE CLEAR IE I 0 0 0 0 1 1 1 1 I I I I I I : : : , : I I 0 0 1 1 0 0 1 1 • : :: .' 0 1 0 1 0 1 0 1 II 0 0 0 0 1 1 1 1 0 0 1 1 0 0 1 1 PATTERN MATCH INTERRUPT PENDING (I P) PATTERN MATCH INTERRUPT ENABLED IE) PATTARN MATCH INTERRUPT UNDER SERVICE (IUS) US, IE, AND IP ARE WRITTEN USING HE FOLLOWING ,COMMAND: I~ 0 1 0 1 0 1 0 1 L, ~ PATTERN NATC' FLAG· NULL CODE CLEAR IP & IUS SET IUS CLEAR IUS SET IP CLEAR IP SET IE CLEAR IE *READ-ONL Y BITS 393 .. LH8038/LH8038A Z8038/Z8038A FIO.lnput/Output Interface Unit • Interrupt Status Register 2 Address: 0100 (Read/Write) lliER~ I t t~~~ ~tdJ BYTE COUNT COMPARE INTERRUPT UNDER SERVICE (IUS ) , BYTE COUNT COMPARE INTERRUPT ENABLE (IE); BYTE COUNT COMPARE INTERRUPT PENDING (IP): ,I OVERFLOW ERROR IUS,IE,AND IP ARE WRITTEN USIN GI THE FOLLOWING COMMAND: . : . NULL CODE CLEAR IP & IUS SET IUS CLEAR IUS SET IP CLEARIP SET IE CLEAR IE : 0 0 0 0 1 1 1 1 , : : I 0 0 I 0 1 0 1 0 1 0 1 1 1 0 0 1 1 0 0 0 0 1 1 1 1 ' UNDERFLOW ERROR· OR INTERRUPT PENDING (ID) : ERR OR INTERRUPT ENABLED (IE) R INTERRUPT UNDER SERVICE (IUS) E,AND IP ARE WRITTEN USING FOLLOWING COMMAND: 0 0 1 1 0 0 1 1 0 1 0 1 0 1 0 1 NU LL CODE CL EAR IP & IUS SE T IUS CL EAR IUS SE TIP CL EARIP SE TIE CL EARlE ·READ-ONLY BITS • Interrupt Status Register 3 Address: 0101 (Read/Write) ~ER I D7 I Ds I D5 I D. r D3 I D2 I Dl I Do I IIUSl~ FUll mTERRDPr SERVICE FULL INTERRUPT ENABLE (IE); FULL INTERRUPT PENDING (IP): . BUFFER FULL": IUS, IE, AND IP ARE WRITTEN USI THE FOLLOWING COMMAND NULL CODE CLEAR IP & IUS SET IUS CLEAR IUS SET IP CLARIP SET IE CLEAR IE ·READ-ONLY BITS 394 IIIIIL : :, :: ~GI I 0 0 0 0 0 1 1 1 1 0 1 1 0 0 1 1 I 0 1 0 1 0 1 0 1 : , : :: . I 0 0 0 0 1 1 1 1 I 0 0 1 1 0 0 1 1 I 0 1. 0 1 0 1 0 1 LBUFFER EMPTY· EMPTY INTERRUPT PENDING (IP) EMPTY INTERRUPT ENABLE (IE) EMPTY INTERRUPT UNDER SERVICE (IUS) IUS,IE,AND IP ARE WRITTEN USING THE FOLLOWING COMMAND: NULL CODE CLEAR IP & IUS SET IUS CLEAR IUS SET IP CLEARIP SETIE CLEAR IE Z8038/Z8038A FlO Input/Output Interface Unit • LH8038/LH8038A Interrupt Vector Register Address: 0110 (Read/Write) I D7 I D6 I Ds I D. I D3 I D2 I Dl I Do I ~ I I I I VECTOR STATUS • NOINTERRU PTS PENDING BU FFER EMPTY B UFFER FULL OVER/UNDER FLOW ERROR BYTE C OUNT MATCH PAT TERN MATCH DATA DIREC TION CHANGE MAILB OX MESSAGE Byte Count Register Address: 0111 (Read Only) I D7 I D61 Ds I D.I D3 • I D2 I Dl I Do I I D7 I D6 I Ds I D, I D3 I D2 I Dl I Do I 1 1 0 1 1 1 1 0 0 0 1 1 0 1 1 1 1 Pattern Match Register I D7 I D6 I Ds I D. I D31 D2 I Dl I Do I I I I I I I I I STORES BYTE COMPARED WITH BYTE IN DATA BUFFER REGISTER • I D7 I D6 I Ds I D. I D3 I D, I Dl I Do I I I I I I I I I CONTAINS VALUE COMPARED TO BYTE COUNT REGISTER TO ISSUE INTERRUPTS ON MATCH (BIT 7 ALWAYS 0.) IF SET,BITS I D7 I D6 I Ds I D. I D3 I D2 I Dl I Do I I I I I I I I I STORES MESSAGE SENT TO MESSAGE IN REGISTER ON OPPOSITE PORT OF FlO Message Input Register 0~7 MASK BITS 0~7 IN PATTERN MATCH REGISTER. MATCH OCCURS WHEN ALL BITS AGREE. NON~MASKED Message Output Register Address: 1011 (Read/Write) Pattern Mask Register Address: 1110 (Read/Write) I I I I I I I I • 0 Byte Count Comparison Register Address: 1000 (Read/Write) • 0 0 Address: 1101 (Read/Write) REFLECTS NUMBER OF BYTES IN BUFFER • 0 0 0 0 • Data Buffer Register Address: 1111 (Read/Write) I D7 I D6 I Dsl D. I D3 I D2 I Dl I Do I I I II I I I I CONTAINS THE BYTE TRANSFERRED TO OR FROM FIFO BUFFER RAM Address: 1100 (Read Only) I D7 I D6 I Ds I D. I D3 I D2 I Dl I Do I I I I I I I I I STORES MESSAGE RECEIVED FROM MESSAGE OUT REGISTER ON OPPOSITE PORT OF CPU -~------SHARP--------- 395 LH8060 za060FIFO Buffer Unit and Expander LH8060 Z8060 FIFO Buffer Unit and ·Expander • ,.Description The LH8060 First-In, First-Out (FIFO) buffer unit consists of a 128-bit-by-8-bit memory, bidirectional data transfer and handshake logic. The structure of the FIFO unit is similar to that of other available buffer units. LH8060 is a general-purpose unit; its handshake logic is compatible with that· of other members of Z8, Z8000 family and Z8500 family. • Pin Connections RFD/DAVA I ACKINA 2 FULL 3 EMPTY 0 A B 4 OEA DOH DIH D2B • Features 1. Bidirectional, asynchronous data transfer capability 2. Large 128-bit-by-8-bit buffer memory 3. Two-'wire, interlocked handshake protocol 4. 3-state data outputs 5. Wire-ORing of empty and full output for sensing of multiple-unit buffers 6. Connects any number of LH8060 in series to form buffer of any desired length 7. Connects any number of LH8060 in parallel to form buffer of any desired width • Top Vie.w Block Diagram Data Bus A Ready-for· Datal DataAvaiiable Data Buffer A Control Logic 396 GND 128X8 RAM Buffer Memory I---.J\J Data Buffer B Data Bus B Z8060 FIFO Buffer Unit and Expander • Pin Description Pin Do -D 7 --- ACKIN 110 Bidirectional 3-state Meaning Data bus Acknowledge input I Ready·for·data/data valid 0 Clear I DIR AlB Data direction I EMPTY Empty 0 Full 0 Output enable I -- RFD/DAV --CLEAR - FULL ---OEA,OE B • LH8060 Function Bidirectional data bus. Active low. Input handshake indicates that input data is valid; out· put handshake indicates that output data has been reo ceive by peripherals Input handshake indicates RFD (active High) : Z-FIFO is ready to receive data. Output handshake indicates DA V (active low) : Output data is valid. Active low. When set to low, this line causes all to be cleared from the FIFO buffer. This line allows control of the input data direction. When high, data is to be inputted through port B, when low, data is to be intputted through port A. Active high, open -drain. Indicates that the FIFO buffer is empty Active high, open -drain. Indicates that the FIFO buffer is full. Active low. OE A, when high, causes the bus drive~or port A to float to a high impedance level input. OE B controls the bus drivers for port B in the same manner as OE A con· troIs those for port A Absolute Maximum Ratings Parameter Input voltage Output voltage Operating temperature Storage temperature Ratings -0.3-+7 -0.3-+7 0-+70 -65-+150 Symbol VIN VOUT Topr T~ Unit V V "C "C Note 1 1 Note 1: The maximum applicable voltage on any pin with respect to GND. +SV +SV 2S0pA From output o----1>--,.,~... under test F_ "0'"" under test Standerd test load ~ o--f 2.2kn r SOPF Open-drain test load '-~-------'--SHARP--'-----~~ 397 Z8060 FIFO Buffer Unit and Expander • (Vcc=5V±5%, ra=0~+70"C) DC Characteristics Parameter Input high voltage Input low voltage Output high voltage Output low voltage Input'leakage current Output leakage current Current consumption • Symbol VIH VIL VOH VOL 1IlL I I IOL I Icc Conditions IOH = -250 f1A IOL = + 2mA, IOL = + 3.2mA OA:S::VIN <2AV • MIN. 2 -0.3 204 TYP. MAX. Vcc +0.3 0.8 004,0.5 10 10 200 OA~VouT<2AV (f=lMHz, Ta=0-+70"C) Capacitance Parameter Input capacitance Output capacitance Bidirectional capacitance Symbol CIN COUT MIN. Conditions Unmeasurred pins retured to ground CliO Unit pF pF pF MAX. 10 15 20 AC Characteristics (1) / LH8060 Parameter Input rise time Input fall time (2) , (f=IMHz, Ta=0-+70"C) Input pin Symbol tr tf Conditions MAX. 100 100 Unit ns ns 2-wire interlocked handshake timing No. 1 2 3 4 5 6 7 8 9 10 11 12 Symbol TsDI (ACK) TdACKf (RFD) . TdRFDr (ACK) TsDO (DAV) TdDAVf (ACK) ThDO (ACK) TdACK (DAV) ThDI (RFD) TdRFDf (ACK) TdACKr (RFD) TdDAVr (ACK) TdACKr (DA V) 13 TdACKINf (EMPTY) 14 TdACKINf (FULL) 15 16 17 18 19 ACKIN Clock Rate TdACKINf (DAVQ TwCLR TdOE (DO) TdOE (DRZ) Parameter Data input to ACKIN ~ to setup time ACKIN ~ to RFD ~ delay RFD t to ACKIN t delay Data out to DA V t set'up time DA V t ACKIN t delay Data out from ACKIN t hold time ACKIN t to DA V t delay Data input from RFD t hold time RFD ~ to ACKIN t delay ACKIN t to RFD t delay DA V t to ACKIN t delay ACKIN t to DA V t delay (Input) ACKIF t to EMPTY t delay, (Output) ACKIN ~ to EMPTY ~ delay (Input) ACKIN t to FULL t delay, (Output) ACKIN ~ to FULL t delay (Input or Output) ACKIN t to DA V ~ delay CLEAR "Low" hold.tiine to reset Z-FIFO OE ~ to data bus driven delay OE t to data bus float delay Note: All timing references assume 2.0 V for a logic 1 and 0.8 V for a logic 0 398 MIN. MIN. 0 0 25 0 0 0 0 0 0 MAX. Unit ns ns ns ns ns ns ns ns ns ns ns ns ns ns 1.0 700 0 MHz ns ns ns ns Unit V V V V p.A p.A rnA LH8060 Z8060 FIFO Buffer Unit and Expander • AC Timing Diagram DATA RFD EMPTY FULL Input timing DATA EMPTY FULL Output timing DAV Time from ACKIN! to DAV ! CLEAR INPUT \11"-------_®_....JI}/ OE DATA OUT Output enable and clear .-.-.-.--.-.-..--SHARP -..-...---------- 399 LH8060 Z8060:FIFO Buffer Unit and Expander • Interlocked 2-Wire Handshake The LH8060 uses interlocked handshake operations for data trasfer. In interlocked handshake operation, the action must be acknowledged by the other half of the handshake before the nextactton can occur. The following describs the handshake timing in input and output modes. (1) Input mode ,. In an Input Handshake mode, RFD (output) and ACKIN (input) are used as the handshake control lines. Unless the FIFO buffer is full, RFD is set High and signals to the peripherals involved that the FIFO buffer is ready to receive data. When the acknowledge signal ACKIN from the external device is set Low, the LH8060 takes the input data into the buffer and sets RFD Low to signal to the peripherals that the input signal has been received. This process is repeated until the FIFO is full, RFD is kept low. DATA IN =x Valid data X:::==::XValid dataL This contorol feature allows the LH8060, with no external logic, to directly interface with port of: eZ8 ' eZ-CIO ez-uPC eZ-FIO e Another FIFO •. Resetting and Clearing the FI FO The CLEAR input signal is used to reset and clear the LH8060 FIFO. A Low level on this input clears all data from the FIFO buffer and disallows any data transfer. • Bidirectional Transfer Control The LH8060 has bidirectional data transfer capability ~nder control of the DIR AlB input. When DIR AlB is set Low, data transfers are made from Port A to Port B. Setting DIR AlB High reverses the handshake assignments and the direction of transfer. ACKIN- Table 1 Bidirectional control function table RFD - DATA OUTJ Valid data C=X:Valid data><=:: ACKIN DAV--"""""' - -_ _oJ Fig. 2 2-wire interlocked handshake timing (output) 0 1 • Output mode ~,output handshake mode, DA V (output) and ACKIN are used as the control lines. If the LH8060 has data in the FIFO buffer and if ACKIN is high (indicating that the external device is ready to receive data), it sets DA V Low to signal to the external device that the output data is available. .When the external device sets ACKIN low to indicate that it has received the data, LH8060 sets DA V back to a high level. In response, the external device sets ACKIN high to request the LH8060 for the next data. This process repeats till the FIFO buffer becomes empty. when it becomes empty, DAVis kept high. Port B handshake Output Input transfer A to B Bto A Empty and Full Operation The EMPTY and FULL. output lines can be wire-ORed with the EMPTY and FULL lines of other LH8060s and LH8038s. This capability enables the user to determine the emptylfull status of a buffer consisting of multiple FIFOs, FIOs, or a combination of both. • (2) Port A handshake Input Output DIR AlB Fig. 1 2-wire interlocked handshake timing (input) Interconnection EXl;I.mple Fig. 3 illustrates a simplified block diagram showing the manner iIi which LH8060s can be interconnected to extend an LH8038 buffer. Table 2 Signals EMPTY and FULL operation table Number of bytes in. FIFO 0 1-127 128 EMPTY FULL High Low Low Low Low High ----....-~.-.---.---SHARP,-.-.-.- ......... - - - - - - - - 400. LH8060 Z8060 FIFO Buffer Unit and Expander • Output Enable Operation Table 3 The FIFO provides a separate Output Enable (OE) signal for each port of the buffer. An OE output is valid only when its port is in the Output Handshake mode. The control of this output function is sh~n in Table 3-Signal OE operates with lines DIR AlB. DIR AlB DEA Output control function table DEA 0 X 0 0 X 1 1 0 X 1 1 X Note: Function Disable port A output Enable port B output . Disable port A output Enable port B output Enable port A output Disable port B output Disable port A output Disable port B output X=Don't care SYSTEM FULL FULL EMPTY DATA A BUS" PORT 2 of Z8038 V I EMPTY FULL "- 1'\ K v/ ~ - '" ACKINA FULL EMPTY / K=> DATA BUS LH8060 FIFO LH8060 FIFO --- R FD/DAV DATA BUS SYSTEM EMPTY I -- --- RFD/DAVB ACKINA RFD/DAVs HANDSHAKE } SIGNALS ACKIN OE CLEAR RFD/DAVA Dr OEB OEA CLEAR RFD/DAVA ACKINB DIR AlB 1 nr ACKINs OEB OEA CLEAR 1 OUTPUT CONTROL DIR AlB SYSTEM CLEAR SYSTEM DIRECTION DA TA DIR Fig. 3 Connection diagram 401 LH8071 Serial Parallel Combination Controller LH8071 • Serial Parallel Combination Controller Description' The LH8071 (SPCC71) is a peripheral device for general purpose microcomputers, with control functions for RS232C interface and Centronics interface, within a single LSI chip. The LH8071 pr<;>vides a serial port for transferring data in asynchronous mode and also an 8-bit parallel port with handshaking function as a Centronics interface. The LH8071 has 24 commands for controlling these ports. The commands not only control the operation of RS232C terminal units and printers, but handle various utilities (e.g., code conversion) necessary for these units. Accordingly, the CPU needs . merely to specify an operation through the command, thus significantly reducing the CPU's load in handling 110 units through the program, and eventually reducing the amount of memory needed for storing the program. The LH8071 controls the peripheral unit control lines (e.g., RTS and CTS of RS232C interface) according to the status of the units, instead of by software control from the CPU. Consequently, the system designer can configure the interface merely by connecting buffer devices and connectors. In conclusion, the LH8071 not only easily implements the RS232C interface and Centronics interface, but achieves superior performance and space reduction. • • Pin Connections o RxD TxD DTR CTS DCD RTS SLCT INPUT PRIME FAULT ACKNLG WAIT DATA STROBE AD7 DATAs AD6 DATA7 AD5 DATA6 AD. DATA5 AD3 DATA. AD2 DATA3 ADI DATA2 ADo DATAl Top View Features 1. Asynchronous data transfer serial port • RS232C interface can easily' be realized • Programmable data: format and Baud rate , 2. Printer control parallel port • Centronics interface can easily be realized 3. Data transfer and conversion functions by command • 24 commands 4. Data conversion function • Serial-parallel conversion • Binary-ASCII conversion • Intel hex, format acceptable for data input! output 402 5. 128-byte data transfer buffer • Useful for the serial port and parallel port 6. Z-bus interface 7. 40-pin dual-in-line package 8. Single + 5V power supply Serial Parallel Combination Controller • LH8071 Block Diagram Data Bus Address! Data Bus "'" ·2 o Address Strobe Internal Control Logic 9 Interruput Request 5 Interruput Acknow ledge 6 Interruput Enable In 4 Interruput Enable Out 3 !; '" u" Buffer 128 Bytes -~----"'-'---SHARP'-'---'---'---- 403 Seriat Parallel 'Combination Controller • LH8071 Pin Description Pin AD o -AD 7 AS Meaning lIO Bidirectional 3 state Address/ data bus Address strobe I Data strobe I R/W Read/write I CS WAIT Chip select Wait - DS Function Multiplexedsystem address/data bus as address. Active low. Fetch iiiformation on address/data bus as address. Active low. Transact information on address/data bus as data. High at reading. Output contents of internal register onto address/data bus; Low at writing. Fetch data on address/ data bus. Active low. Chip selection signal Active low, open-drain. Used to synchronize with CPU. Active low, open-drain. Indicate interrupt request to CPU. Active low. Indicate interrupt acknowledge cycle. Active high. Used to form interrupt priority arbitration loop circuit (daisy chain). Active high. Used to form daisy chain. Output data Active low. Indicate settlement of data. Active high. Indicate printer in operation. Active high. Acknowledge signal from printer. Active low. Indicate printer inoperable. Active low. Printer initializing signal. Active low. Printer selection signal. Receiving data line. Transmitting data line. Active low. Indicate readiness for data transmission. Active low. Indicate data transmission is possible. Active low. Data transmission request signal. Active low. Indicate data reception is possible. Single-phase clock, need not be same as CPU clock. - Interrupt request INTACK Interrupt acknowledge I lEI Interrupt enable input I lEO Interrupt enable output Output data Data strobe Busy Acknowledge Fault Prime input Select Recei ved data Transmitted data Transmission request Transmission enable Data terminal ready Reception enable Clock a a a -- INT DATAI-DATA g DATA STROBE BUSY ACKNLG FAULT INPUT PRIME SLCT RxD TxD RTS CTS DTR DCD PCLK • I a a I I I a I I a a I a I I Absolute Maximum Ratings Parameter Input voltage * Output voltage * Operating temperature Storage temperature * Symbol V IN VOliT Toor T st• Unit V V Ratings -0.3-+7 -0.3-+7 0-+70 -65-+150 The maximum applicable voltage on any pin except for VBB "C "C with respect to GND. +5V 2.2kO """I--" Output terminal o---1~.... under test Standard tellt load - - - - - - - - - - - - - - - - - - - - - S H A R P - . . . . - , - ........ . - . - - - - - 404 ·Serial Parallel Combination Controller • (Vcc=5V±5%. Ta=0-+70"C) DC Characteristics Symbol VCH VCL VIH V IL VOH VOL I IlL I I 10L I Icc Parameter Clock input high voltage Clock input low voltage Input high voltage Input low voltage Output high voltage Output low voltage Input leakage current Output leakage current Current consumption • LH8071 Conditions MIN. 2.4 -0.3 2 -0.3 2.4 10H= -250 pA 10L =2mA 0:5::V IN :5::5.25V TYP. MAX. Vcc 0.8 Vcc 0.8 0.4 10 10 250 0~VIN~5.25V Unit V V V V V V pA pA rnA AC Characteristics (Vcc=5V±5%. Ta=0-+70"C) (1) CPU interface timing No. 1 2 3 4 5 6 7 8 9 10 Symbol TrC TwCh TfC TwCl TpC TsCS(AS) ThCS(AS) TsA(AS) ThA(AS) TwAS 11 TdDS(DR) 12 TdDS(DRz) 13 14 15 TdAS(DS) TdDS(AS) ThDW(DS) 16 TdDS(DR) 17 18 19 20 21 22 23 24 TdAz(DS) TwOS TsRWR(DS) TsRWW(OS) TsDW(OSf) TdAS(W) ThWR(OS) TsDR(W) Parameter Clock rise time DSClock pulse high width Clock fall time Clock pulse low width Clock period CS setup time to AS t CS hold time from AS t Address setup time to AS t Address hold time from AS t AS low pulse width Delay time from OS t to invalid readout data Delay time from DS t to readout data floating Delay time from AS t to OS ~ Delay time from OS t to AS ~ Written data hold time from OS t Delay time from OS ~ to readout data settlement Delay time from address floating to DS OS low pulse width R/W high (read) setup time to OS ~ R/W low (write) setup time to OS ! Written data setup time to OS l Delay time from AS t to WAIT ! R/W hold time from OS t Time from valid readout data to WAIT MIN. MAX. 20 105 20 105 250 0 60 30 50 70 ! ns 2 2095 ns ns ns 1 ns 3 1.95 t 1 1 1 1 70 0 390 100 0 30 60 0 Note 51~ I~ - ns 0 60 50 30 Unit ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns t indicates rising edge. ~ indicates falling edge. The reference voltage levels for timing measurement are 2.0 volts for 'high'; O.S volts for 'low'. Note 1: This does not apply to the interrupt acknowledge operation. Note 2: The Max. value of TdAS (DS) does not apply to the interrupt acknowledge operation, Note 3: The delay time depends on the status of LHS071 at the time of access by CPU. 405 I I L:.H8071 Serial Parallel Combination Controller PCLK ADo-AD7 CPU (read) AS R/W (write) R/W (read) ADo-AD7 CPU (write) ----.....f"l-t~..;...",,-~).---~=_+_----...:f,- CPU interface timing (2) No. Interrupt acknowledge timing 25 26 Symbol TsIA(AS) ThIA(AS) 27 TdAS(DSA) 28 TdDSA(DR) 29 30 31 32 33 34 TwDSA TdAS(IEO) TdIEIf(IEO) TsIEI(DSA) TdDS(INT) ThIEI(DS) Parameter INT ACK setup time to AS t INT ACK low hold time from AS t Delay time from AS t to DS ~ (acknowledge) Delay time from DS ~ (acknowledge) to vector settlement DS (acknowledge) low pulse width Delay time from AS t to lEO Delay time from IEI to lEO lEI setup time to DS ~ (acknowledge) Delay time from DS ~ to INT lEI hold time from DS t MIN. 0 250 MAX. Unit ns ns 940 ns 360 475 290 120 150 500 100 Note ns ns ns ns ns ns ns Interrupt acknowledge timing ---'-~~------SHARP----'-----'--- 406 LH8071 Serial Parallel Combination Controller (3) Reset timing No. Symbol 35 TdRDQ(AS) 36 TdWRQ(DS) 37 TwRES Note 4: Parameter Delay time from DS t (for suppressing reset) to AS ~ Delay time from AS t (for suppressing reset) to DS ~ Minimum low width of AS and DS (for setting) MIN. MAX. Unit Note 40 ns 50 ns 250 ns 4 MAX. Unit Note 19000 ns 5 MIN. MAX. 18000 Unit ns Note 13000 The internal reset signal lags by 112 to 2 clocks behind external reset conditions. Reset timing (4) Serial port timing No. Symbol 38 TdTxC(TxD) Parameter Delay time from sending clock transition to output data transition MIN. Note 5: Applies to all baud rates (110-9800 B) serial port timing TxC / TxD Serial port timing (5) No. Parallel port timing 39 Symbol TdACK(D) 40 TdD(DSTR) 41 TwDSTR Parameter Time from ACKNLG ~ to data output Time from data output to DATA STROBE ~ DATA STROBE pulse width 6000 ns 6000 ns ACKNLG DATAl \ . DATAs DATA STROBK Parallel port timing ----------SHARP--.--------~ 407 Sericil Parallel Combination Controller • LH8071 Registers Table 1 The LH8071 has the following registers which can be accessed externally (from CPU). e Master interrupt control register (MIC) e Data indirect address register (DIND) eData status command registers (DSCO, DSCl, DSC2, DSC3, DSC4, DSC5 and DSC8) Table 1 shows the register addresses assigned to these registers. The master interrupt control register (MIC) is used to control the interrupt operation (see Fig. 2). Writing into the MIC register falls into two groups. Group 2 uses the write code shown in Table 2. DSC31 D71 D6 I D51 D41 D31 D21 D1 [ -~-~-~-~ Register adpress Register Register address X XOOOOOX DSCO X X00001 X DSC1 X XOO010X DSC2 XXOOO11X DSC3 X ):(00100 X DSC4 Register Register address XX00101X DSC5 X X01000X DSC8 X X10101X DIND X X11110X MIC Note: A15- A6 is decoded and applied to cs, so that the location in the input/output address space is determined. Bits marked by 'x' are underfined. I Dol Co 1 Buffer area over 1 0 Input characters are other than 0-F (Intel format only) , 1 1 Check - sum error 0 1 Printer not select , 1 0 Printer paper empty (requires external circuit) 1 1 Printer fault L -_ _ _ _ _ _ _ Transter error ' - - - - - - - - - - Limit error ' - - - - - - - - - - - - Parity error '---------~----Illegal command Fig. 1 Error flag (DSC3) MIC I IE I IUS I IP I IDLC I ICST I TTT T ~Command execution start Lower chaining prohibited _ ' - - - - - - - - - - - Interrupt holding ' - - - - - - - - - - - - - Interrupt under service Interrupt enabled Fi'g. 2 Master interrupt control register Table 2 MIC register write code D7 0 0 0 ,0 1 1 1 1 408 Group 2 D6 0 0 1 1 0 0 1 1 1 0 0 1 Do X 0 0 0 0 0 0 0 0 1 0 0 D5 0 1 0 1 0 Group D2 X 0 0 I 0 Function Writing to Do and D2 Reset IP (D5) and IUS (D6) Set IUS (D6) Reset IUS (D6) Set IP (D5) Reset IP (D5) Set IE (D7) Reset IE (D7) LH8071 Serial Parallel Combination Controller • ° Programming mand. Command is used in specifying serial data format using DSC2 (Fig. 3). The result of command execution is indicated on DSCO and DSC3. DSC3 indicates error status as show in Fig. 1. DSC8 is used as a buffer register after command 22 or 23 is executed. Tables 3 and 4 show command functions versus registers. Use the registers, DSCO, DSCl, DSC2, DSC3, DSC4, DSC5, and DSC8, to specify operation mode. The 24 types of commands are made valid by first writing a value corresponding to the desired com· mand number into DSCO, then setting the CST bit on MIC. The registers DSCl, DSC2, DSC4, and DSC5 are used to specify parameters for each comOSC2 1 I 07 I 061 051 041 031 021 OJ I 00 I -,---, LPu'"m'" o : even parity 1 : odd parity Number of data bits o : 7 bits 1 : 8 bits ' - - - - - - - B a u d rate (see Note) o 0 0 : nOB o 0 1 : 150 B 010:300B 011:600B 1 0 0 : 1200B lOl:2400B 110:4800B 111:9600B Number of stop bits of transmission o : 1 stop bit 1 : 2 stop bit L -_ _ _ _ _ _ _ _ _ _ _ Interrupt mode L -_ _ _ _ _ _ _ _ _ o : Interrupt L -_ _ _ _ _ _ _ _ _ _ _ _ Note: enabled 1 : Interrupt disabled Echo back o : Echo back mode Baud rate at PCLK = 4.0MHz 1 : Echo back disable Fig. 3 Serial data format (DSC2) .-----.---~--SHARP.-..-..-~.---- 409 Serial Parallel Combination Controller Table 3 ~ Code DSCO 0 OOH 1 01 H 2 02 H Number of putput byte 3 03 H Number of putput byte 4 04 H 5 05 H Number of bytes of block transfer 6 06 H Number of putput byte! 7 07 H Number of putput byte! Cornman DSCI LH8071 Command function and writing register contents Parameter DSC4 DSC2 Transfer format and operating mode DSC5 Output serial-input data to Centronics printer until the stop character arrives Output seriaI-input data to Centronics printer. Load address Load address high order byte (low order byte) Output buffer area contents to serial port in Intel format. Read Intel format data on serial port and store in buffer area. Initialize block transfer between master CPU and buffer Output data in buffer area via serial port. Output data in buffer area to printer. -, .". 8 08 H Number of output byte! 9 09 H Number of output byte! 10 OA H Number of output byte! 11 OB H 12 OCH 13 OD H 14 OE H 15 OFH Number of output byte Output starting address Output starting address Output starting address Output starting address Display Display address address (High order) (Low order) Display Display address address (High order) (Low order) Number of Output input bytes character Output character Number of putput byte! Load address Remarks Sepcify transfer format . and operating mode. Stop character Output starting address Output starting address . Function Load address Convert binary data in buffer area into ASCII and area. Convert binary data in buffer area into ASCII and output via serial port. Convert binary data in buffer area into ASCII, and output to printer. Convert binary data in buffer area into ASCII, and output to printer. Read ASCII data on serial port, and store in buffer area. Read Intel format data on serial port and store in buffer area. Read ASCII data on serial port until arrival of CR eode. Convert data in buffer area into Intel format and output via serial port. Stop character is specified by DSC2. Operation stops upon detection of Control C (hex 03). Address information of data is appended. \ Operation stops upon detection of Control C (hex 03). Operation stops upon detection of Control C (hex 03). Address information of data is appended. Address information of data is appended. Used when reader is connected to serial port. After CR reception, CR and LF codes are sent out via serial port. Used when a puncher is connected to serial port. - - - - . - . . . - - - - - - ! ? H A R P .-~------------410 Serial Parallel Combination Controller Comman ~ Code DSCO 16 10 H 17 llH 18 12H 19 13 H 20 14H 21 15 H 22 16 H ., 23 17H DSCI Parameter DSC2 DSC4 Number of Output input bytes character Number of putput bytes Output starting address LH8071 DSC5 Function Read binary data on serial port into buffer area for storage. Output data in buffer area via serial ports. Output null codes via serial port. Output EOF in Intel format ( :OOOOOOOlFF) via serial port. Output null codes via serial port. Output EOF in Intel format ( :OOOOOOOlFF) via serial port. Read I-byte data on serial port. Output data written in DSC8 by CPU via serial port. Remarks Used when a reader is connected to serial port. Used when a puncher is connected to serial port. Operation stops upon detection of hex 03. 256 null codes outputted. Used when a puncher is connected to serial port. Used when a puncher is connected to serial port. Data is stored in DSC8. Data needs to be set in DSC8 prior to execution (high order byte) --------------SHARP .---------------.. 411 Serial Parallel Combination Controller Table 4 LH8071 Register contents after command execution (readout register) Parameter OOH 01 H 02 H 03 H Code DSCO 2* 80 H 81H 82H 83 H 3* C;OH CI H C2 H C3 H 4 04 H 84 H C4 H 5 6 7 8 9 10 11 12 05 H 06 H 07 H 08 H 09 H OA H OB H OC H . S5 H 86 H 87 H 88 H 89 H 8AH 8B H 8C H C5 H C6H C7 H C8 H C9 H CA H CB H CC H 13 OD H 8D H CD H 14 OE H 8E H CE H Error status 15 16 17 18 19 20 21 22 23 OF H 10 H llH 12H 13 H 14H 15 H 16 H 17H 8F H 90 H 91H 92Ii 93 H 94 H 95 H 96 H 97 11 CF H DOH DIH D2H D3 H D4H D5 H D6 H D7H Error Error Error Error Error Error Error Error Error 'S Command 0 1 2 3 Note 1 Note 2 Note 3 412 1* *: *: *: DSCI DSC2 Error Error Error Error Number of inputted bytes pluse hex 20 status status status status DSC5 flag Hag flag flag Error status flag Error Error Error Error Error Error Error Error Number of inputted bytes plus hex 20 DSC4 DSC3 Load address Load address (High order byte) (Low order byte) status flag status flag status flag status fl'ag status flag status flag status flag status flag Load Adress Load address (High order byte) (Low order byte) Number of inputteq flag byte pulse hex 20 flag flag flag flag flag flag flag flag flag Error status flag status status status status status status status status status 1 V,alue before command execution (command code value) Value upon normal completion of command execution. 2 3 Value upon abnormal completion (error) of command execution. These are common to all commands. . For error status flag value, see Fig. l. If FAULT input becomes low (printer error) during command execution, LH8071 suspends operation until FAULT returns to high (error recovery). At this time, DSCO has bit 6 set and bit 7 reset. Serial Parallel Combination Controller LH8072 • LH8072 Serial Parallel Combination Controller Description • Pin Connections The LH80n (SPCCn) is a peripheral device for general purpose microcomputer systems to perform asynchronous serial data transfers and control of Centronics compatible printers. It supports full duplex asynchronous serial data transfers. The transfer conditions such as the baud rate and character length can be set by the program. Further, it is equipped with a control I/O terminal for simple organization of the various types of modem interfaces. The Receive Buffer has a double buffer structure so that the master CPU can easily perform reading and writing of data. A printer control I/O terminal is available for easy connection to any printer which is Centronics compatible. A handshake line and control for other I/O lines is supported. A 128-byte printer data buffer memory having an FIFO structure is provided within the LH80n. Efficient use of the printer unit by the master CPU is made possible with this buffer. In this way, the LH80n peripheral device for Z8000 family, was developed to efficiently perform serial data transfer and printer output control within a compact pacil:age. It is suitable for use in small systems such as personal computers which use printer units, RS232C terminal units and modem units. • o TxD DTR CTS DCD INTACK DS R/W 6 RTS NC INPUT PRIME AS BUSY CS FAULT GND WAIT ACKNLG DATA STROBE AD, DATA, AD6 DATA, AD; DATA" AD, DATA" AD3 DATA. AD, DATA:. AD! DATA, ADo DATA. Top View Features 1. Asynchronous Full Duplex Data Transfer • Character length of 5""8 bits · 1 or 2 stop bits · No parity bit or odd/even parity • F.alse start bit or rejection (rejects spike noise in the mark line to prevent malfunction.) • Full duplex • Transmit buffer has double buffer structure. • Receive buffer has FIFO structure. • Error detection function, Parity error detection, Framing error detection, and Overrun error detection · Baud rates: 75, 110, 150,300,600,1200, 2400, 4800 baud selectable 2. Centronics Compatible Printer Control RxD 3. 4. 5. 6. · Furnishes printer interface signals compatible with Centronics specifications · Built-in handshake function for data output · Internal buffer: 128-byte FIFO structure • Error detection: Printer fault error/Paper empty error Vector Interrupt · Able to generate an interrupt on various condition such as Transmit Buffer empty, validity of received character, and printer Output Buffer empty. • Interrupt vectors for Transmit, Receive, Printer and Error detection can be set individually. Single + 5V power supply Z-bus interface 40-pin dual-in-line package ..-.-----.--....-SHARP-------·-.-~-- 413 LH8072 Serial Parallel Combination Controller • Block Diagram Data Bus Interface Address! Data Bus Address Strobe 9 Data Strobe 7 Chip Select 10 Read!Write 8 Wait 12 Interrupt Request Interrupt Acknowledge Interrupt Enable In Interrupt Enable Out Internal Control Logic Print FIFO 128 Bytes Data Bus ERR MSR CTLTxS RxS PRS TxB RxB PRB 6 ---------SHARP 414 -.....---....-.~----.- Serial Parallel Combination Controller • Pin Description Pin ADo-AD? - AS Signal Address/ data blls 110 Bidirectional 3-state Address strobe I Data strobe I R/W Read /write I CS WAIT INT Chip select wait I 0 Interrupt request 0 INTACK Interrupt acknowledge I lEI Interrupt enable input I lEO DATAI-DATA s DATA STROBE BUSY ACKNLG FAULT INPUT PRIME RxD TxD RTS CTS DTR DCD PCLK Interrupt enable output Output data Data strobe Busy Acknowledge Fault Prime input Receivived data Transmitted data Transmission request Transmission enable Data terminal ready Reception enable Clock 0 0 0 I I I 0 I 0 0 I 0 I I - DS - • LH8072 Function Multiplexed system address/data bus Active low. Fetch information on address/data bus as address. Active low. Transact information on address/data bus as data. High at reading. Output contents of internal register onto address/data bus; Low at writing. Fetch data on address/data bus. Active low. Chip selection signal Active low, open·drain. Used to synchronize with CPU. Active low, open-drain. Indicate interrupt request to . CPU. Active low. Indicate interrupt acknowledge cycle. Active high. Used to form interupt priority arbitration loop circuit (daisy chain). Active high. Used to form daisy chain. Output data Active low. Indicate settlement of data. Active high. Indicate printer in operation. Active high. Acknowledge signal from printer. Active low. Indicate printer inoperable. Active low. Printer initializing signal. Receiving data line. Transmitting data line. Active low. Indicate readiness for data transmission. Active low. Indicate data transmission is possible. Active low. Data transmission request signal. Active low. Indicate data reception is possible. Signal·phase clock; need not be same as CPU clock. Absolute Maximum Ratings Parameter Input voltage * Output voltage * Operating temperature Storage temperature Symbol VIN VOUT Topr Tst~ Ratings -0.3-+0.7 -0.3-+0.7 0-+70 -65-+150 *The maximum applicable voltage on any pin with respect to GND. Unit V V t t +5V 2.2kO Output terminal o---+--~r-MI--'" under test Standard test load 415 / Serial Parallel Combination Controller tH8072 DC Characteristics • Parometer Clock input high voltage Clock input low voltage Input high voltage, Input low voltage Output high voltage Output low voltage Input leakage current Output leakage current Current consumption • (Vee=5V±5%, Ta=0-+70"C) Symbol VeH VeL VlH VIL VOH VOL I IlL I I IOL I Icc Condition, MIN. 2.4 -0.3 2.0 -0.3 2.4 IoH =-250 pA IOL=+2.0mA MAX. Vee 0.8 Vee 0.8 Unit V V V V V V pA pA mA 0.4 10 10 250 0~VIN~5.25V , 0~VIN~5.25V Note AC Characteristics (1) 'CPU interface timing No. 1 2 3 4 5 6 7 8 9 10 Symbol TrC TwCh TfC TwCI TpC TsCS (AS) ThCS (AS) TsA (AS) ThA (AS) TwAS 11 TdDS (DR) 12 TdDS (DRz) i3 14 15 TdAS (DS) TdDS (AS) ThDW (DS) 16 17 18 19 20 21 22 23 24 I / TdDS (DR) TdAz (DS) TwDS TsRWR (DS) TsRWW (DS) TsDW (DSf) TdAS (W) ThRW (DS) TsDR (W) Parameter Clock rise time Clock pulse width, high Clock fall time Clock pulse width, low Clock period , CS setup time to AS t CS hold time from AS t Address setup time to AS t Address hold time from AS t AS low pulse width Delay time from DS t to invalid readout data Delay time from DS t to readout data fioating Delay time from AS t to DS ! Delay time from DS t to AS !, Written data hold time from DS t Delay time from DS ! to readout data settlement Delay time from address floating to DS DS low pulse width R/W high (read) setup time to DS ! R/W low (write) setup time to DS ! Written data setup time to DS ! Delay time from AS t to WAIT ! R/W hold time from DS t Time from vaild readout data to WAIT MIN. MAX. 20 105 20 105 250 0 60 30 50 70 Note 1 1 1 1 fiS ns 0 70 60 50 30 Unit ns ns ns ns ns ns, ns ns ns 2095 ns 2 ns fiS ns 1 3 0 390 100 , 0 30 195 60 0 ns ns ns ns ns ns ns ns f indicates rising edge, ! indicates falling edge. The reference voltage levels for timing measurement are 2.0 volts 'high' ; 0:8 volt for 'low'. Note1: This does not apply to the interupt acknowledge operation. Note 2: The Max. value of TdAS (DS) does not apply to the interrUpt acknowledge operation. Note 3: The 'delay time depends on the status of LH8072 at the time of access by CPU. . . . - - - - - - - - - - - - - - - - S H A R P - - - - - - - - - - - - - ..........- - 416 Serial Parallel Combination Controller LH8072 PCLK ADo-AD7 CPU (read) DS R/W (write) R/W (read) _ _ _---::,---++-_--' ADo-AD7 CPU (write) CPU interface timing (2) No. Interrupt acknowledge timing 25 26 Symbol TsIA (AS) ThIA (AS) 27 TdAS (DSA) 28 TdDSA (DR) 29 30 31 32 33 34 TwDSA TdAS (lEO) TdIElf (lEO) TsIEI (DSA) TdDS (INT)· ThlEI (DS) Parameter INT ACK setup time to AS t INT ACK low hold time from AS t Delay time from AS t to DS ~ (acknowledge) Delay time from D~ ~ (acknowledgge) to vector settlement DS (acknowledgge) low pulse width Delay time from AS t to lEO Delay time from lEI to lEO lEI setup time to DS ~ (acknowledge) Delay time from DS ~ to INT lEI hold time from DS t 0 250 Unit ns ns 940 ns MIN. MAX. 360 475 290 120 150 500 100 Note ns ns ns ns ns ns ns Interrupt acknowledge timing -'-~~-~--SHARP'--'-"-'------- 417 LH8072 Serial Parallel Combination Controller (3) Serial port timing No. Symbol 38 TdTxC (TxD) Parameter Delay time from sending clock transition to output data transistion MIN. MAX. Unit Note 35000 ns 4 MAX. Unit ns Note Note 4:· Applies to all baud rates (75-4800 B) TxC / TxD Serial port timing (4) Parallel port timing No. 39 Symbol TaACK (D) 40 TdD (DSTR) 41 TwDSTR MIN. 24000 Parameter Time from ACKNLG l to data output Time from data output to DATA STROBE l DAT A STROBE pulse width 6500 ns 6500 ns , \ AKCNLG DATAl I DATAs DATA STROBE Parallel port timing • Registers The LH80n uses 64 bytes in the system input! output address space. Within this area, 14 bytes are assigned to the I-byte registers (including data buffer, status, register, control register, etc.) which can directly be accessed by master CPU. Table 1 lists the registers used for data transaction with the maser CPU and their addresses. Table 1 Address X XOOOOOX XXOOO01X X XOO010X X XOOOllX X X00100X XX00101X X XOOllOX XXOOlllX X XOIOOOX XXOIOOIX X X01010X X XOIOll X X XOllOOX X X 11l10X Register input/output address Register Error status register(ERR) Mode setting register (MSR) Control register (CTL) Transmission status register (TxS) Reception status register (RxS) Printer status register (PRS) Transmission buffer (TxB) Reception buffer (RxB) Printer buffer (PRB) Transmission interrupt vector register (Tx V) Reception interrupt vector register (RxV) Printer interrupt vector register (PRV) Error interrupt vector register (ERV) Master interrupt control register (MIC) Note: AIs-A6 is decoded and applied to CS, so that the location in the input/output address space is determined. Bits marked by 'x' are undefined . ....-.-----------SHARP---------.-. 418 LH8072 Serial Parallel Combination Controller • Programming Note: Registers marked by. can be set or revised even during the operation of LH8072. The LH80n has 14 read/write registers which can be accessed directly by the master CPU. (1) Initialization The device is initialized in accordance with the following procedure. (1) Following power-on reset, or master reset by software, set the mode register is programmed for character format, baud rate, stop bit and parity mode. Subsequently data required by control register· and interrupt vector registers· (transmission, reception and printer error interrupt vector registers) is programmed. (2) Clear the error status register. (3) Wait until the data transfer enable bit in the master interrupt control register is set to "I", making the LH80n operable. In case interrupt is used, the above polling operation is unnecessary. When transmission, reception and printer output become enable, interupt request is forwarded to the master CPU, indicating that the LH80n has become operable. (2) Data inpuVoutput Data transfer between LH80n and CPU is carried out in accordance with the following procedure. (1) Poll the status registers (transmission, reception and printer status register) and wait until they become "1". In case interrupt (transmission, reception and printer interrupt) is used, interrupt occurs as soon as the value of each status register becomes "I", and polling is not necessary. (2) After the status register has been set to "I" (or after interrupt has occurred), begin data transfer via the buffers (transmission, reception and printer buffers). (3) Clear the status register. If the above operation is implemented using an interrupt routine, the interrupt-under-service (IUS) bit must be reset immediately before the end of each interupt routine. I D7 I D61 D5 I D. I D3 I D2 I D, I Do I II I L~:;:,~= L -_ _ _ _ _ _ _ _ Frammg error Overrun error Printer fault ' - - - - - - - - - - - Paper out ' - - - - - - - - - - - - - Unused ' - - - - - - - - - - - - - - - Master reset Fig. 1 Error status register (ERR) I D7 I D6 I D5 I D.I D3 I D2 I D, I Do I m o 1 1 0 0 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 1 0 1 0 1 0 1 1 0 1 5 6 7 8 bits / character bits / character bits / character bits / character 75B nOB 150B 300B 600B 1200B 2400B 4800B Stop-bit-2/Stop-bit -1 Odd -parity/Even -parity With - parity/Without -parity Fig. 2 Mode setting register (MSR) '-~--'------SHARP--'----------~ 419 LH8072 Serial Parallel Combination Controller I Drl DG I Ds I D.I D31,D21 DI I Do I I DrlDGI DsID.1 D31 Dzi DI I Do I ~ I"L=~~~, ~Transmission IL-.---,----Reception . Fig. 8 enabled Reception enabled Printer o~tput ,enabled' '----------Transmission interrupt enabled '-----------Reception interrupt enabled ' - - - - - - - - - - - - P r i n t e r interrupt enabled Fig. 3 I<------printer output data Fig. 9 Control register (CTL) I Dr LTransmission buffer empty Printer buffer (PRB) I DGI Ds I D4 I D3 I Dzi DI I Do I I --------0 ~. Fig. 4 Reception buffer (RxB) I Drl D61 Dsl D. I D3 I Dzi DI I Do I I Dr I DG I Ds I D4 I D3 I Dz I D I I Do I I data . L-.---Transmission interrupt vector Transmission status register (TxS) Fig. 10 Transmission Interrupt vector register I Dr I DGI Dsl D41 D31 Dzi Dd Dol (TxV) I Drl D6 I Dsl ~41 D31 Dz I DI I Do' I LReception character valid '-----0 Fig. 5 ~1----RecePtion interrupt vector Reception status register (RxS) Fig. 11 I Dr I D6 I Ds I D41 D31 Dz I DI I Do , , I Reception interrupt vector register (RxV) I Drl D61 Dsl D41 D31 Dzi Lprinter buffer empty DI I Dol ~'--------o Fig. 6 I'-----Printer interrupt vector Printer status re~ister (PRS) Fig, 12 I Dr I D61 Dsl D41 D31 Dzi Dl I Dol Printer interrupt register (PRV) I Dr I D61 Dsl D41 D3 I Dz I DI I Do " I L-I------·Transmission data '-----~-Error Fig. 7 Transmission buffer (TxB) Fig. 13 interrupt vector Error interrupt vector register (ERV) . I D7 I D61 Dsl D41 D31 D2 I DI I Do I enable(MlE)~ Master interrupt Atreadmg±u Interrupt under service(IUS) I ' . Interrupt pending(IP) :I :' , : : : At writing ! : 0 0 1 1 1 0 1 0 1 ' 1 1 1 0 l 0 0 0 0 Fig. 14 420 1 0 1 0 1 0 1 I ' . ~L" ',""0 at wrItmg .. ~ U~defmedat readm,g: . DIsabled lower chaIning (DLC) Data transfer enable ( reading only ) Undefined at reading/"O" at writing Writing to Do, DI, Dz, D3 and D4 Reset IP a~d IUS Set IUS Reset IUS Set IP Reset IP Set MIE Reset MIE Master interrupt control register (MIC) LH8073 General Purpose Interface Bus Controller LH8073 • General Purpose Interface Bus Controller Description The LH8073 (GPIB73) is a microcomputer peripheral device used to control interface buses conforming to IEEE Std. 488-1978* (will be termed simply "GPIB") The GPIB is used extensively as a linkage bus between data gathering instrumentation devices and a microcomputer system. The LH8073 incorporates three functions of talker, listener and controller, all integrated in one chip. Using this device, the GPIB interface can be provided for various instrumentation equipment, personal computers and office computers. The LH8073 is applicable to a CPU bus where address and data are multiplexed. There is a complementary device LH8573 which is applicable for a CPU bus where address and data are not multiplexed. • Pin Connections +5V 1 40 SRQ/REN IN PCLK 2 39 REN/SRQ OT lEO 3 lNT 5 lNTACK 6 DS 7 R/W 8 WAIT 12 *Note : The standard disclosed in IEEE Std. 488-1978 "IEEE Standard Digital Interface for Programmable Instrumentation" issued by IEEE, U.S.A. Top View • Features 1. Built-in talker, listener and controller. Talker function, listener function and controller function are integrated in one chip. 2. Built-in buffer memory. Talker or listener can use 160-byte on-chip buffer. 3. EOI automatic transmission. Upon detection of the last byte of or EOS in talker mode, EOI signal is transmitted automatically. 4. EOS automatic detection. Upon reception of EOS in listener mode, the CPU is informed. 5. Built-in timer. The bus time-out period for handshaking can be set by the on-chip timer in the range of 200 p.s -12 ms at 50 p.s interval. 6. Interrupt function. Daisy-chain type interrupt arbitration facility is provided, allowing vectored interrupt to CPU. 7. Z-bus interface. 421 LH8073 General Purpose Interface Bus Controller Block Diagram • Address/ Data Bus GPm Bus Da~ ir I l IFC IN IFC OT SRQ/RENIN 9 REN/SRQOT CONTI Data Strobe Read/Write' Address Strobe Chip Select Wait Interrupt Enable Out Interrupt Enable In Interrupt Request Interrupt Acknowledge TE 3 4 5 6 ATN DAV NDAC NRFD EOI CONT2 +5V 1 PCLK 2 GND , , --~------SHARP'-''''''-'-'''''''-'--- 422 Multi Task Support Processor LH8075 • Multi Task Support Processor Description The LH8075 (MTSP 7 5 ) is the stand alone type multitask support processor providing multitask capabilities for any simple microcomputer system. The concept of this multitask processing is similar to a conventional real time OS (operating system). The devices perform task management (creating, deleting, etc.) independently of the master CPU, and carry out multi task processing for systems bus with arbitrary CPU architectures merely by connecting to the system bus. User's programs are scheduled on a priority or time-sliced basis. Tasks are switched by an interrupt caused by the LH8075, and commands are given to the LH8075 by writing parameters and command numbers in the specified register in the LH8075. • LH8075 Features 1. Task management · Up to eight tasks can be controlled concurrently. By using the task creating and deleting technique, a maximum of 255 tasks can be handled. · Tasks can be controlled on a priority basis by the assignment of 255 priority levels. 2. Inter-task communication · Inter-task communication is possible using the "mail box" provided within the LH8075. · Inter-task synchronization is possible using the "mail box". 3. Built-in timer · Timers with ranges from lOms to 255 hours can be used for time-sliced processes and checking I/O wait time. • These times can be set independently for each task. 4. Bulit-in clock. Time (hours, minutes and seconds) can be set and read out. 5. 20-bit general-purpose I/O port · Two 8-bit ports operable in bit input/output • 2-bit input ports and 2-bit output ports. · Tasks can be resumed using the 2-bit input ports. 6. Memory assignment • Working memory areas can be assigned to each task. • Pin Connections a P30 P33 P27 P26 P2s INTACK 6 P2. P23 P2, P2l P20 P3l WAIT P3, AD7 Pb AD6 Ph ADs' Ph AD. Pl. AD3 PI:. AD, PI. AD! PIl ADo Plo Top View --------..-.---SHARP ------.--..-.---423 Multi, Task Support Processor • , LH8075 Block Diagram Port 1 Data Bus Address! Data Bus TeBl Data Strobe Read! W ri te Address Strobe Chip Select Internal Control Logic MBXl 7 8 Port .2 Data Bus 9 10 I nterrupt Request Interrupt Acknowledge Interrupt Enable Out Interrupt Enable In 0 6 3 4 SPB2 • Pin Description Pin AD o-AD 7 - AS Meaning Address/ data bus I/O Bidirectional 3-state Address strobe I Data strobe I R/W Read/write I CS WAIT Chip select Wait I 0 Interrupt request 0 IN TACK Interrupt acknowledge I lEI Interrupt enable input I lEO Pl o-P1 7 P2 o-P2 7 P3 0 -P3 3 PCLK Interrupt enable output I/O port lines I/O port lines I/O port lines Clock 0 110 I/O 110 I - DS - -INt 424 Function Multiplexed system address/data bus. Active low. Fetch information on address!data ,bus as address. Active low. Transact information on address/data bus as data. High at reading. Output contents of internal register on address/ data bus ; Low at writing. Fetch data on address/data bus. Active low. Chip selection signal Active low, open-drain. Used to synchronize CPU. Active low, open·drain. Indicate interrupt request to CPU. Active low. Indicate interrupt acknowledge cycle Active high. Used to form interrupt priority arbitration loop circuit (daisy chain). Active high. Used to form daisy chain. Parallel input/output Parallel input/output Parallel input/output Single· phase clock, need not be same as CPU clock. Multi Task Support Processor • LH8075 +SV Absolute Maximum Ratings Parameter Input voltage Output voltage Operating temperature Storage temperature • Symbol VIN VOUT :r opr T"2 . Ratings -0.3-+7 -0.3-+7 0-+70 -65-+150 2.2kO V Output pin under test o--~-'--I~'" V "C "C SOpF Standard test load 1 I (Vee=5V±5%, GND=OV, Ta=0-+70"C) DC Characteristics Parameter Clock input high voltage Clock input low voltage Input high voltage Input low voltage Output low voltage Output low voltage Inptt leakage current Output leakage current Current consumption • Unit Symbol VeH VeL VIH • V IL VOH VOL I IlL I I IOL I lee Conditions MIN. 2.4 -0.3 2 -0.3 2.4 IoH =-250,uA IOL =2mA MAX. Vee 0.8 Vee 0.8 0.4 10 10 250 0~VIN~5.25V 0;;;;V IN ;;;;5.25V Unit V V V V V V ,uA ,uA rnA AC Characteristics' (1) Master CPU interface timing No. 1 2 3 4 5 6 7 8 9 10 Symbol TrC TwCh TfC TwCl TpC TsCS (AS) ThCS (AS) TsA (AS) ThA (AS) TwAS 11 TdDS (DR) 12 TdDS (DRz) 13 14 15 TdAS (DS) TdDS (AS) ThDW (DS) 16 TdDS (DR) 17 18 19 20 21 22 23 24 TdAz (DS) TwDS TsRWR (DS) TsRWW (DS) TsDW (DSf) TdAS(W) ThRW (DS) TsDR (W) Parameter Clock rise time Clock pulse width, high Clock fall time Clock pulse width, low Clock period CS setup time to AS t CS hold time from AS t Address setup time to AS t Address hold time from AS t AS low pulse width Delay time from DS t to invalid readout data Delay time from DS t to readout data floating Delay time from AS t to DS l Delay time from DS t to AS l Written data hold time from DS f Delay time from DS l to readout data settlement Delay time from address floating to DS DS low pulse width R/W high (read) setup time to DS l R/W low (write) setup time to DS l Written data setup time to DS l Delay time from AS t to WAIT l R/W hold time from DS t Time from valid readout data to WAIT MIN. MAX. 20 105 20 105 250 0 60 30 50 70 l ns 2 2095 ns ns ns 1 ns 3 195 t 1 1 1 1 70 0 390 100 0 30 60 0 Note ns 0 60 50 30 Unit ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns The reference voltage levels for timing measurement are 2.0 volts for 'high' ; O.S volt for ·Iow'. All output paramaters are measured under the stated load conditions. Note 1: This does not apply to the interrupt acknowledge operation. Note 2: The Max. value of TdAS (DS) does not to the interrupt acknowledge operation. Note 3: The delay time depends on the status of LHS075 at the time of access by master CPU. 425 Multi Task Support Processor LH8075 PCLK ADo-AD7 Master CPU (read) AS R/W (writ!!) R/W (read) ADo-AD7 Master CPU (write) WAIT Master CPU interface timing '-'~~----~-SHARP 426 .-..-.-.-.-.------ ................... -............. -....... - . - . -....... - . - . -...... Multi Task Support Processor LH8075 .-~ I (2) Interrupt acknowledge timing No. 25 26 Symbol TsIA (AS) ThlA (AS) 27 TdAS (DSA) 28 TdDSA (DR) 29 30 31 32 33 34 TwDSA TdAS (lEO) TdIEif (lEO) TsIEI (DSA) TdDS (INT) ThIEl (DS) Parameter INT ACK setup time to AS t INT ACK low hold time from AS t Delay time from AS t to DS ! (acknowledge) Delay time from DS ! (acknowledge) to vector settlement DS (acknowledge low pulse width Delay time from AS t to lEO Delay time from lEI to lEO lEI setup time to DS ! (acknowledge) Delay time from DS ! to INT t IEI hold time from DS t 0 250 Unit ns ns 940 ns MIN. MAX. 360 475 290 120 150 500 100 ns ns ns ns ns ns ns Interrupt acknowledge timing (3) Reset timing No. Symbol 1 TdRDQ (WR) 2 TdWRQ (RD) 3 TwRES Parameter Delay time from DS t (for suppressing reset) to AS ! Delay time from AS t (for suppressing reset) to DS ! Minimum low width of AS and DS (for resetting) MIN. MAX. Unit 40 ns 50 ns 250 ns Note 1 Note 1: The internal reset signal lags 112 to 2 clocks behind external reset conditions. Reset timing ~--------------SHA.RP ------------.-.... 427 Ml..\lti :Task Support Processor (4) No. 1 2 3 LH8075 Handshaking timing Parameter Symbol TsDI (DA) ThDA(DI) TwDA MIN. 0 230 175 20 0 Data setup time Data hold time DAV width -- 4 TdDAL(RY) Delay, time from DA V low to RDY 5 TdDAH(RY) Delay time from DAV high to RDY 6 7 TdDO(DA) TdRY(DA) Delay time from data output to ,DA V Delay time from RDY to DA V MAX. 175 -- 150 0 50 0 205 Unit ns ns' ns ns ns ns ns ns ns . Note 1: Input handshaking Note 2: Measured under the stated load conditions. Note 3: Output handshaking Data input DAV input RDYoutput '---''--_ _ _ _ _..;;r Port read Input handshaking timing Data output ,DAVoutput __~>t :--r Valid output data -®--I Port om. 1 1I--@~~ ! \ >or?I®J. . .~. . .- RDY input ..... __ ... Serial port timing • Basic Specifications Table 1 LH8075 basic spec,ifications Performance Parameter Task control function Number of tasks registered Number of tasks controlled simultaneously Priority level Mail box Unit clock Scheduling Memory allo,cation Clock function Parallel data input/output function 428 Max. 255; task number: hex 01-FF Max. 8 Max. 255; priority level: hex 01-FF Max. 5; mail box number: hex 01-05 10 ms Priority order or time division; Task is switched by interrupt from LH8075. User's RAM is segmented in units of hex 100 bytes; Arbitrary area ranging hex OOOO-FFFF' can be controlled. Time (hour, minute, second) setting and readout Two '8-bit I/O ports and 'one 4-bit I/O port Note 1,2 1,2 2,3 1,2 2,3 2 2 LH8075 Multi Task Support Processor • Teble 2 Registers The LH8075 has the following registers which can be accessed externally (from CPU). (1) Task control CPIO (Command parameter register) This register writes the writing parameter previous to command writing. The readout parameter is placed in CPIO upon completion of command execution. CNST(Commandl status register) This register is used to write a command. Execution information of executed command is placed in CNST upon completion of command execution. SPN1, SPN2 (New task stack pointer registers) At occurrence of interrupt for task switching, execution starting address information for the new task is placed 'in this register. SPB1, SPB2 (Old task stack pointer registers) At occurrence of interrupt for task switching, execution end address information for the executed task is written in this register. MIC (Master CPU interrupt control register) Interrupt related parameters including interrupt enable (IE), interrupt pending (IP) and interruptunder-service (IUS) bits are set or reset in this register. (2) 1/0 ports P1D, P2P, P3D (port 1, 2, 3 data registers) These registers are used to transact data via port 1, port 2, and port 3. Table 2 lists the register addresses. Register address Register Address PID XXOOO01X X XOO010X P2D P3D X XOOOllX CNST SPN1 SPN2 X XOOllOX X XOOlll X X X01000X SPB1 X X01001X SPB2 X X01010X CPIO MIC X X 10101 X X X11110X Note 1: Bits marked by 'x' may be either '0' or '1'. Note 2: LH8075 uses 64 input/output address locations. ~ TIMR PEND . ~ ~ T~ {.SM ~~~~ ~__~ ~~g~T ~ TSPO TCRT TOEL ~ TOEL GD (1) Task in execution releases CPU. (2) 0 o o TSPO (Wait) ./ ~TOEL Higher ranking ta,sk becomes ready. Time-up by time division TNXT Fig. 1 Task status MIC I D, I 061 051 0.1 031 021 01 I 00 I -~--~TTT L Undefined at reading/"O" at writing ~isabled _ lower chaining (OLC) o (unused) Non -vector (NV) \ - - - - - - - - - - I n t e r r u p t pending (IP) ! - - + - - - - - - - - - Interrupt under service (IUS) ,!----'--+----------Interrupt enable (IE) , At writing· :, 0 0 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 1 0 1 0 1 0 1 Writing to 02 and O. Reset IP and IUS Set IUS Reset IUS Set IP Reset IP Set IE IP, IUS and IE bits are set or reset' by writing in Reset IE these codes_ *: Fig. 2 MIC bit configuration ....-...-----.-...---SHARP~---..-.-..-- 429 Multi Task Support Processor • LH8075 Programming The following describes the task control procedure using LH8075. (1) Initialization (1) The LH8075eauses interrupt for task switching 'However, in order to process, a separate interrupt processing routine must be prepared. (2) Each task is provided with a stack area. Table 3 Order 1 2 3 4 5 Item Vector RAM table 6 7 Task starting address and initial values for all registers are written at the top of each stack area. (3) LH8075 is initialized. Table 3 lists the initialization information to be written in LH8075. (4) When necessary, the clock is set and the port mode is specified. (5) Initialization completed. To transfer control from the initialization routine to a task, the task execution command (TSTR) must be executed. System information registered at initialization Contents LH8075 interrupt vector for task switching User RAM start address (high order byte) User RAM end address (high order byte) Task number (hex 01-FF) Priority level (hex 01 - FF) Task Task stack pointer (high order or low order byte) 1 Task stack pointer (low order or high order byte Task table 4n 4n+1 4n+2 4n+3 Task n (2) Command execution Table 4 lists the commands of LH8075, and Table 5 lists the command execution information. In writing commands into LH8075 the following data entry procedure applies. (1) Write parameters needed in writing command into CPIO in the order shown in Table 4. Commands with blank parameter field in Table 4 do not require writing (2) Write the command number in CNST. (3) It is necessary to confirm the completion of command execution by polling D7 in CNST (D 7 becomes "I" upon completion of command execution). 430 Task number (hex 01-FF) Priority level (hex 01 - FF) Task stack pointer (high order or low order byte) Task stack pointer (low order or high order byte) For commands without readout parameter, procedure is completed and the following procedures are unnecessary. Commands with readout parameter (CGET, MALC and PEND) further require the following procedures. (4) When D6=1 in CNST (indicating the readout parameter is prepared in CPIO), parameter is read out from ePIO. (5) Upon completion of parameter readout, PRME command must be executed to notify LH8075 of the parameter readout completion. (6) Wait until CNST D7 becomes "I" to confirm the completion of command execution. Multi Task Support Processor LH8075 Table 4 Command table No. OOH OlH Command name INIT TSTR 02 H TCRT Function LH8075 initialization Termination of LH8075 initialination and start of task execution Task creation 03 H 04 H 05 H TDEL TRSM TSPD Task deletion Task resumption Task suspension 06 H TPRI Task priority change 07 11 TSLI Task time-slicing process 08 H TNXK 09 H TIMR Swapping of task during time-sliced execution Timer setting OAII CSET Clock setting OBII CGET Clock readout OCII MALC Memory allocation 0011 OEII MREL POST Memory release Message transmission OFII PEND Message reception 10H PMOO Port mode setting PRME End of parameter readout 1111 Note 1: Note 2: Note 3: Writing parameter 1. Total number of tasks Readout parameter 1. Task number 2. Priority level 3. SP (high order or low order byte) 4. SP (low order or high order byte) 1. Task number 1. Task number 1. Task number 2. control switch 1. 2. 1. 2. 3. Remarks See paragraph(1) Task number New priority Priority Time base Count See paragraph(2) 1. control code 2. Count See paragraph(3) 1. Hour 2. Minute 3. Second 1. Number of memory blocks required 1. Mail box number 2. Message data 1 3. Message data 2 4. Message data 3 5. Message data 4 I.-Mail box number 1. 2. 3. 1. Hour Minute Second Allocated memory address * * See paragraph(4) 1. 2. 3. 4. Message Message Message Message data data data data 1 2 3 4 1. Port-l mode 2. Port-2 mode 3. Port-3 mode * See paragraph(5) *' Commands marked by require PRME command execution at parameter readout completion. Numerals given in 'writing parameter' and 'readout parameter' indicate the order of writing and reading. Numerals in 'remarks' indicate the reference number of supplementary explanation . .------..-.--SHARP.-..-.-.-..-.--- 431 . LH8075 MultiTask Support Prcx:iessor· Table 5 Command name IN IT 0 OOH 1 2 TSTR 02 H TCRT Normal termination Task number or priority setting error Double specification of same task number 3 Total number of tasks equal to o or larger than 8, Initialized information error, RAM table error 0 Normal termination 3 Initial information not yet set 0 1 2 3 03 H 04 H TDEL TRSM 0 1 2 4 0 1 2 4 5 05H TSPD 0 1 2 3 5 • Command name TPRI 06 H 0 1 2 07 H TSLI 0 1 5 08 H TNXT 0 09 H TIMR 0 1 Code Execution Code 01 H Command el(ecution information Normal termination Ta~k number or priority setting error Already created Control tasks more than 8 Normal termination Task number error Specified task not yet created Specify self Normal termination Task number error Specified task not yet created Specify self Specification of task in ready s,tatus Normal termination Task number or control switch number error Specified task not yet created Control switch setting error Specification· of task ill halt staus OA H CSET OB H OC H CGET MALC OD H MREL OE H POST OF H PEND 10 H PMOD PRME 11H Execution Normal termination Task number or priority setting error Specified task not yet created Normal termination . Ptiority error or data error Cancellation without setting Normal termination Normal termination Data error 5 Cancellation without setting 8 Resuming by TRSM 0 Normal termination 1 Data error 0 Normal termination 0 Normal termination 6 Allocation disabled 0 Normal termination 5 Memory not yet allocated 0 Normal termination 1 Mail box number error or message data error 7 Mail box busy 0 Normal termination 1 Mail box number error 8 TRSM command issued by other task or time out 0 Normal termination 0 Normal termination Supplement for writing parameter (1) 2. Controi switch I 07 1061 05 1O. 103 102 10, 100 1 IL-------Control switch o : Bring to complete stop 1 : Halt until external event 1 (fall of P 3,) 2 : Halt until external event 2 (fall of P 30) (2) 2. Time base 1071 06 1Ds 1o. 103 1D2 10, 1Do I 1 ...- - - - - - T i m e base o : Hour 1 : Minute 2 : Second 3 : 1/100 second 4 or above : Cancellation 432 _-_.. ..... - . -..... -..... -... Multi Task Support Processor .-.-.(3) LH8075 :.-...-...-...-...-...- 1. Control code 0: Hour 1 : Minute 2 : Second 3 : 1/100 second 4 or above : Cancellation ' - - - - - - - - Unused ' - - - - - - - - - - - - W a i t switch 0: Wait 1 : Time out period setting only 2. Count I 0, I 06 I Os I o. I 03 I 02 I01 I 00 I LI------Count (Count multiplied by time base becomes setup time) (4) 2. Only in message data I, '0' is not allowed. (5) 1. Port-1 mode Ir-0-,""T,-0-6 0-s-',""'0-."T,-0-3...-,o-,""T,-O-IT",0-0"""', T", ... I - - - - - - P o r t - l bit I/O definition (1 for input; 0 for output) 2. Port-2 mode Ir o-,""T,-0-6T"10-s-'l-o-."T,-03-,ro-,""T,-o-IT"lo-o-', LI------Port-2 bit I/O definition (1 for input; 0 for output) 3. Port-3 mode IrO-i""T,-O-6T"I-os-'I-0-."TI-O-alr 0-,""T1-0-1T"10-o"", ~~~~TTTLP~'" p.,h-,.n/"oo-'_ Port 1 : Push -pull/open -drain P31 : External event 1 input P 30 : External event 2 input ' - - - - - - - - Port -1 handshaking ( P31=OAVI/ROYl) P32=ROYI/OAVI ' - - - - - - - - - - - Port -2 handshaking ( P30=OAV2/ROY2) P33 = ROY2/0AV2 '------------Unused --,-------SHARP-.....-,--------433 ........... -.............................. -.......... ................. . LH8090/LH8090A Z8090/Z8090A Universal Peripheral Controller .-.- LH8090/LH8090A ~ , , za0901Z8090A Universal Peripheral Controller • Description The LH8090 Universal Peripheral Controller (UPC) is an intelligent peripheral controller: for c\istributed processing applications. The LH8090 unburdens the host processor by assuming tasks traditionally done by the host (or by added hardware), such as performing arithmetic; translating or formatting data, and controlling I/O devices. Based on the 28 microcomputer architecture and instruction set, the LH8090 contains 2K bytes of internal program ROM, a 256-byte register file, three 8-bitI/0 ports, and two counter/timers. The LH8090 offers fast execution time; an effective use of memory; and sophisticated interrupt, 1/ 0, and bit manipulation. Using a powerful and extensive instruction set combined with an efficient internal addressing scheme, the LH8090 speeds program execution and efficiently packs program code into the on-chip ROM. • Features 1. Complete slave microcomputer, for distributed processing 2- bus use 2. Unmatched power of 28 architecture and instruction set 3. Three prpgrammable I/O ports, two with optional 2-Wire Handshake' 4. Six levels of priority interrupts from eight sources: six from external sources and two from internal sources 5. Two programmable 8-bit counter/timers each with a 6-bit prescaler. Counter/Timer TO is driven by an internal source, and Counter/ Timer Tl can be driven by internal or external sources. Both counter/timers are independent of program execution 6. 256-byte register file, accessible. by both the master CPU and LH8090, as allocated in the LH8090 program 7. 2K bytes of on-chip ROM for efficiency and versatility 434 • Pin Connections o IEOI P37 3 IEIIP30 4 INT IP35 P31 P3. P27 P2. 5 iN'l'ACK I P32 6 P2. DS 7 P23 R/W 8 P22 P21 P20 WAIT P3. AD7 AD. Pl. AD5 PIs AD. Pl. AD3 PIa AD2 P12 AD1 ADo Plo Top View LH8090/{'H8090A Z8090/Z8090A Universal Peripheral Controller • Block Diagram Program Memory 2KX8 Address/ Data Bus Read.' Write Address Strobe Chip Select Wait Port 1 8 9 IRP l'ort2 Register File 256X8 15= • Pin Description Pin ADo-AD 7 Meaning . Address data bus I/O Bidirectional Address strobe I Data strobe I R/W Read/write I CS Chip select I Wait 0 I/O port lines I/O port lines I/O port lines I/O I/O I/O - AS - DS - -WAIT Pl o-P1 7 P2 o-P2 7 P3 0 -P3 7 PCKL Clock I Function Multiplexed system address/data bus . Active low. Causes information on the address/data bus to be fatched as address Active low. Causes information on the address/data bus to be sent/received as data A high level indicates a read cycle : Data is output from the internal register to the address/data bus. A low level indicates a write cycle : Data is fetched from the address/ data bus. Active low, Chip select signal. Active low, open-drain. For synchronizaion with the CPU. Parallel I/O Parallel I/O Parallel I/O (4-bit input, 4-bit output) Signal-phase clock, not need to be related to the CPU clock. -~'-'---""'--SHARP'-'-'--~---- 435 Z8090/Z8090A Universal Peripheral Controller __Nl_._'-'-''-'-:''_''__ '-'-:''-~ • ~''''''~ Absolute Maximum Ratings Parameter Input voltage· Output voltage· Operating temperature Symbol VIN VOUT Topr Tstg Storage temperature * LH8090/LH8090A ___ Ratings -0.3-+7.0 -0.3-+7.6 0-+70 -65-+150 Unit V V °C °C The maximum applicable voltage on any pin except for VBB, with respect to GNO. • Standared Test Conditions The characteristics below apply for the following standard test conditions, unless otherwise noted. All volta~es are referenced to GND. Positive current flows into the reference pin. Standard con· ditions are as followes . 4.75V~Vcc~5.25V Vss=GND=OV O°C::;;;Ta;£ +70°C +5V +5V 2.2kO 18kO From output O---- , and MR/W/IACK of the device for 64-pin development, IOH=100 Il A and 10L Unit Note V V V V V 1 V 1 pA pA rnA 1mA ---------SHARP-----.--------'.436 Z8090/Z8090A Universal Peripheral Controller • AC Characteristics (1) Master CPU interface timing No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Symbol TrC TwCh TfC TwC1 TpC TsCS(AS) ThCS(AS) TsA(AS) ThA(AS) TwAS TdOS(OR) TdOs(ORz) TdAS(OS) TdOS(AS) ThOW(OS) TdOS(OR) TdAz(OS) TwOS TsRWR(OS) TsRWW(OS) TsOW(OSf) TdAS(W) ThRW(OS) TsOR(W) Parameter Clock rise time Clock high width Clock fall time Clock low width Clock period to AS t setup time CS to AS t hold time Address to AS t setup time Address to AS t hold time AS low width OS t to read data not valid OS t to read data float delay AS t OS ~ delay OS t AS ~ delay Write data to OS t hold time OS ~ to read data valid delay Address float to OS delay OS low width R/W(read) to OS ~ setup time R/W(write) to OS ~ setup time W rite data to OS ~ setup time AS t to W AIT ~ valid delay R/W to OS t hold time Read data valid to WAIT t cs LH8090/LH8090A LH8090 MIN. MAX. 20 105 1855 20 105 1855 250 2000 0 60 30 50 70 0 70 2095 60 50 30 LH8090A MIN. MAX. 15 70 1855 10 70 1855 165 2000 0 40 10 30 50 0 45 40 2095 35 20 0 390 100 0 30 0 250 80 0 20 195 60 0 ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns 1 1 1 1 2 1 3 us 160 40 0 Unit Note ns ns ns ns Note : The timing characteristics given reference 2.0V as High and O.8V as Low. All output AC parameters use test load l. Note 1: Parameter does apply to interrupt acknowledge transactions. Note 2: The maximum value for TdAS (DS) does not apply to interrupt acknowledge transcations. Note 3: This parameter is dependent on the state of UPC at the time of master CPU access. '-~--------SHARP----~------ 437 Z8090/Z8090A Universal Peripheral Controller PCLK ADo-AD7 MASTER CUP READ AS R/W (WRITE) R/W (READ) ADo-AD7 MASTER CPU WRITE WAIT Master CPU interface timing 438 . LH8090/LH8090A Z8090/Z8090A Universal Peripheral Controller (2) LH8090/LH8090A Interrupt acknowledge timing Parameter No. Symbol 25 26 27 28 29 30 31 32 33 34 TsIA(AS) ThIA(AS) TdAS(DSA) TdDSA(DR) TwDSA TdAS(IEO) TdIElf(IEO) TsIEI(DSA) TdDS(INT) ThlEI(DS) INTACK to AS t setup time INTACK to AS t hold time AS t to DS ! (acknowledge) delay DS ! (acknowledge) to read data valid delay DS ! (acknowledge) low width AS t to lEO delay lEI to lEO delay lEI to DS ! (acknowledge) setup time DS ! to INT delay lEI to DS t hold time ADo-AD7 =:x Undefined LH8090 MIK MAX. 0 250 940 360 475 290 120 150 500 100 LH8090A MIN. MAX. 0 250 200 180 250 250 100 120 500 100 Unit ns ns ns ns ns ns ns ns ns ns )>-------- "f-----J INTACK lEI lEO Interrupt acknowledge timing 439 Z8090/Z80gpA ~niver5al Peripheral Controller (3) No. LH8090/LH8090A Handshake timing 1 2 3 TsDi(DA) ThDA(DI) TwDA Data in setup time Data in hold time Data available width 4 TdDAL(RY) Data available low to ready delay time 5 TdDAH(RY) Data available high to ready delay time 6 TdDO(DA) TdRY(DA) Data out to data available delay time Ready to data available delay time 7 Note 1: Input handshake LH8090 LH8090A MIN. MAX.. MIN. MAX. 0 0 230 230 175 175 20 175 20 175 0 0 .150 150 0 0 50 50 0 205 205 0 Parameter Symbol Note 2: Test load 1 Unit Note ns .ns ns ns ns ns ns ns ns 1,2 1,2 2,3 1,2 2,3 2 2 Note 3: ·Output handshake DATA IN DAV INPUT RDY OUTPUT Port read Input handshake timing DATA OUT r -~t=® Data out valid DAV OUTPUT RDY INPUT \ \ ~--@---->.:\,~ " Output handshake timing ----~.-.----.---SHARP 440 .--.-.---.---- Z8090/Z8090AUniversai • Pe~ipheral Controller Functional Description (1) Address space On the 40-pin UPC, all address space is committed to on-chip memory. There are 2048 bytes of mask programmed ROM and 256 bytes of register file. I/O is memory-mapped to three registers in the register file. Only the Protopack version of the UPC can access external program memory. See the section entitled "Special Configurations" for a complete description of the Protopack version. Program memory: Fig. 1 is a map of the 2K on-chip program ROM. The first 12 bytes of program memory are reserved for the LH8590 interrupt vectors. In the RAM version addresses OCH through 2FH are reserved for on-chip ROM. Register file: This 256-byte file includes three I/O port registers (1-3H), 234 generalpurpose registers (6H-EFH), and 19 control, Status and special I/O registers (OH,4H,5H and FO-FFH). The functions and mnemonics assigned to these register address locations are shown in Fig. 1. Of the 256 UPC registers, 19 can be directly accessed by the master CPU; the others are accessed indirectly via the ·block transfer mechanism. The I/O port and control registers are included in the register file without differentiation. This allows any UPC instruction to process I/O or control information, thereby eliminating the need for special I/O :and control in2047 LH8090/LH8090A structions. All general-purpose registers can function as accumulators, address pointers, or index registers. In instruction execution, the . registers are read when are defined as sources and written when defined as destinations. UPC instructions may access registers directly or indirectly using an 8-bit address mode or a 4-bit address mode and a Register Pointet. For the 4-bit addressing mode, the file is divided into 16 working register groups, each occupying 16 contiguous locations (Fig. 3). The Register Pointer (RP) addresses the starting point of the active working. register group, and the 4-bit register designator supplied by the instruction specifies the register within the group. Any instruction altering the contents of the register file can also alter the Register Pointer. The UPC inst~uction set has a special Set Register LOCATION :~AGS~ FDH REGISTER POINTER FCH PROGRAM CONTROL FLAGS FBH UPC INTERRUPT MASK REGISTER IMR FAH IRQ UPC INTERRUPT REQUEST REGISTER IPR F9H UPC INTERRUPT PRIORITY REGISTER PIM F8H PORT 1 MODE F7H PORT 3 MODE PORT 2 MODE F6H F5H F4H F3H F2H FI H USER ROM IDENTIFIER (UPC Side) SP STACK POINTER MIC MASTER CUP INTERRUPT CONTROL FOH EFH ToPRESCALER TIMER/COUNTER 0 T,PRESCALER TIMER/COUNTER 1 TIMER MODE MASTER CPU INTERRUPT VECTOR REG. 12 ~~~~HPlD °lFn\SftE~};ll OF INSTRUCTION 11 IRQ 5 LOWER BYTE IRQ 5 UPPER BYTE 10 9 8 IRQ 4 LOWER BYTE IRQ 4 UPPE R BYTE 7 6 IRQ 3 LOWER BYTE 5 4 3 2 IRQ 3 UPPER BYTE IRQ 2 LOWER BYTE J IRQ 2 IRQ I IRQ I IRQ 0 UPPE R LOWER UPPER LOWER BYTE BYTE BYTE BYTE 0 IRQO UPPER BYTE Fig 1 Program memory map P3M P2M PREO TO PREI T1 TMR MIV GENERAL-PURPOSE REGISTERS DATA INDIRECTION REGISTER DlND LC LIMIT COUNT REGISTER PORT 3 PORT 2 P3 P2 PORT I PI DATA TRANSFER CONTROL REGISTER Fig 2 DTC Register file organization -----------SHARP----.---------441 ~ LH8090/LH8090A Z8090/Z8090A Universal Peripheral Controller r- 1-...,,0 011 1 I o 000 7 5 H (01110101) FDH FOH EFH EOH DFH DOH CFH COH BFH BOH AFH AOH 9FH' 90H 8FH 80H ~ 70H 6FH 60H 5FH 50 H 4FH 40H 3FH 30H 2FH 20 H IFH 10 H OFH downs, compatible with TTL loads. In addition, Port 1 and Port 2 may be configured as opendrain outputs. Data in each port can be .known by reading a corresponding Port Mode register in the same way as acc~ssing the register. Port 1: Individual bits of port 1 can be confi· gured as input or output. This port can also be programmed as 110 Handshake Line. This port is accessed as general register 1H. It is written by specifying address 1H as the destination of any instruction used to store data in the output registers. The port is read by specifying address 1H as the source of an instruction. Port 2: lndividual bits of Port 2 can be confi- . gured as inputs or outputs. This port is accessed as general register 2H, and its functions and methods of programming are the same as those or Port 1. Port 3: This port can be configured as 1/0 or control lines. Port 3 is accessed as general register 3H. The directions of the eight data lines are fixed. Four lines, P30 through P33, are inputs, and the . other four, P3. through P37, are outputs. The control fun~tions performed by Port 3 are listed in Table 1. Table 1 0 Function '1: The 4-bit register pointer provides the upper nibble of the register file address for the 4-bit address mode. '2: The lower nibble of the register file address (010 1) is pro· vided by the instruction. Fig. 3 Pointer (SRP) instruction for iiIitializing or altering the pointer contents. Stacks: An 8-bit stack Pointer (SP), register R255. is used for addressing the stack, residing within the 234 general-purpose regisgers. address location 6H through EFH. PUSH and POP instructions can save and restore any register in the register file on the stack. During CALL instructions, the Program Counter is automatically saved on the stack. During UPC interrupt cycles, the Program Counter and the Flag register are automatically saved on the stack. The RET and IRET instructions pop the saved values of the Program Counter and Flag register. (2) Ports The LH8090 has 24 lines dedicated to input and output. These are grouped into three ports eight lines each and can be configured under software control as inputs, outputs or special control sig· nals. They can be programmed to provide Parallel 110 with or without handshake and timing signals. All outputs can have active pullups and pull· 442 Handshake Register pointer mechanism UPC Interrupt Request * Counter ITimer Master CPU Port 3 control functions Line P31 P33 P3. P36 P30 P3, P33 P3, P36 P35 P32 P30 P37 110 I I 0 0 I I I I 0 0 I I 0 signal DAV2/RDY, -DAVdRDY, -RDYdDAV, -RDYzlDAV2 IRQ3 IRQ, IRQ, TIN TOUT INT --INTACK lEI lEO * P3o. P3" and P33 can always be used as upe interrupt reo quest inputs, regardless of the configuration programmed. (3) Counter/timers The LH8090 contains two 8-bit programmable counter/timers, each driven by an internal 6-bit programmable prescaler. The T1 prescaler can' be driven by internal or external clock sources. The TO prescaler is driven by an internal clock source. Both counter Itimers operate independently of the processor instruction sequence to relieve the program from time-critical oPerations like event counting or elapsed-time calculation. Z8090/Z8090A Universal Peripheral Controller The counters can be started, stopped, restarted to continue, or restarted from the initial value., They can be programmed to stop upon reaching end-of-count (Single-Pass mode) or to automatical· ly reload the initial value and continue counting (Modulo-n Continuous mode). (4) Interrupts The LH8090 allows six interrupts from eight different sources as follows: • Port 3 lines P3o, P31, and P33. • The master CPU (3). • The two counter/timers. These interrupts can be masked and globally enabled or disabled. The order of their priority can be specified. All interrupts are vectored. Table 2 lists the LH8090's interrupt sources, their types, and their vector locations in program ROM. The LH8090 also supports polled systems. To acommodate a polled structure, any or all of the interrupt inputs can be masked and the interrupt request register polled to determine which of LH8090/LH8090A the interrupt request needs service. (5) Master CPU register file access There are two ways in which the master CPU can access the LH8590 register file: direct access and block access. Direst Access: Three LH8090 registers - the Data transfer Control, the Master Interrupt Vector, and the Master Interrupt Control - are mapped directly into the master CPU address space. The registers can directly be accessed in 16 bytes. Block Access: The masteJ;" CPU may be transmit or receive blocks of data via address X X X 10101 (X X 10101 X for shift address). When the master CPU accesses this address, the LH8090 register pointed to by the Data Indirection register (DIND) is read or written. The number of bytes is set in the Limit Count register (LC). The LH8090 controls everything in the block transfer and is therefore allowed to protect itself from master CPU errors. Table 2 Interrupt types, sources, and vector locations , Name IRQO IRQl IRQ2 IRQ3 IRQ4 IRQ5 Source EOM, XERR, LERR DAVl, IRQl -DA V2, IRQ2, TIN IRQ3, lEI TO T1 Vector Location 0, 1 2, 3 4, 5 6, 8, 10, 7 9 11 Comments Internal (RO Bits 0, I, 2) External (P33) ! edge triggerd External (P31) ! edge triggerd External (P3o) ! edge triggerd Internal Internal 443 Z8090lZ8090A • IMR Instruction (1 ) Addressing modes The following notation is used to describe the addressing modes and instrucion operations. IRR Indirect register pair or indirect work· ing-register pair address Indirect working-register pair only Irr Indexed address X Direct address DA Relative address RA Immediate 1M Register or working-register address R Working-register address only r Indirect-register or indirect workingIR register address Ir Indirect working-register address only RR Register pair or working-register pair address (2) . Symbol dst Destination location or contents Source location or contents src Condition code (see list) cc @ Indirect address prefix' PC Program Counter SP Stack Pointer (control register FFH) FLAGS Flag register (control register FCH) RP Register Pointer (control register FDH) Table 3 Value 1000 0111 1111 0110 1110 1101 0101 0100 1100 0110 1110 1001 0001 1010 0010 1111 0111 1011 0011 0000 LH8090lLH8090A Universal Peripheral Controller Mnemonic C NC 2 NZ PL MI OV NOV EQ NE GE LT GT LE UGE ULT UGT ULE Interrupt mask register (control register FBH) Assignment of a value is, indicated by the sym' bol "+-n. For example. dst +- dst + src indicates that the source data is added to the destination data and the result is stored in the destination location. The notation "addr(n)" is used to refer to bit "nn of a given location. For example. dst (7) refers to bit 7 of the destination operand. (3) Flags . Control Register FCH contains the following six flags: C Carry flag Z Zero flag S Sign flag V Overflow flag D Decimal-adjust flag H Half-carry flag Affected flags are indicated by: o Cleared to zero 1 Set to one Set or clear.ed according to operation Unaffected X Undefined (4) Condition codes * Table 3. shows condition codes. Condition codes Meaning Always true Carry No carry Zero Not zero Plus Minus Overflow No overflow Equal Not equal Greater than or equal Less than Greater than Less than or equal Unsigned greater than or equal Unsigned less than Unsigned greater than Unsigned less than or equal Never true Flags set ......... C=l C=O Z=l Z=O S=O S=l V=l V=O Z=l 2=0 (S XOR V)=O (S XOR V)=l [2 OR(S XOR V)) =0 [2 OR(S XOR V)) = 1 C=O C=l (C=O AND 2=0)= 1 (C OR 2)=1 ......... -~--------.-.....-SHARP---.------ 444 ?:8090/Z8090A Universal Peripheral Controller LH8090/LH8090A (5) Opcode Map Lower Nibble (Hex) o 6.5 6.5 o DEC 2 2 3 4 5 6 7 6.5 6.5 10.5 10.5 10.5 10.5 8 DEC ADD ADD ADD ADD ADD ADD R. IR. TI, T2 fl,ITZ Rz. R\ IRz, RI RI.IM IR,.IM 6.5 6.5 6.5 6.5 10.5 10.5 10.5 10.5 RLC RLC ADC ADC ADC ADC ADC n, R. IR. fl, T2 Rz. RI IRz. RI R •• IM 6.5 6.5 6.5 10.5 10.5 10.5 10.5 INC INC SUB SUB SUB SUB SUB SUB IR •• IM R. IR. T],TZ T\,IT2 Rz. RI IR 2• R, RI.IM 6.1 6.5 6.5 10.5 10.5 10.5 10.5 JP SRP SBC SBC SBC SBC SBC SBC IRRI 1M Tt, IT! Rz. RI IRz, RI RI.IM IR •• IM 8.5 8.5 6.5 6.5 10.5 10.5 10.5 10.5 4 DA DA OR OR OR OR OR OR R. IR. TI,T2 TIoIT2 Rz, RI IRz. R, R •• IM lRI.IM .= 5 10.5 10.5 6.5 6.5 10.5 10.5 10.5 10.5 POP POP III R. IR. r"r2 TI.IT2 .Q 6.5 6.5 6.5 6.5 xIII :c ::::l T2 C o 6.5 6.5 12110.5 12110.0 6.5 12110.0 6.5 LD LD DJNZ JR LD JP INC r"IM ce, DA " flo Rz f2. RI TI. RA ce, RA F E I--- I I--- I--- I--- I--- AND AND AND AND AND AND Rz. RI . IR2• Rl 10.5 10.5 RI.IM IR •• IM 10.5 10.5 I--- COM COM TCM TCM TCM TCM TCM TCM Z 6 Gi Q. Q. n, B IRI.IM H.n 3 A ADC 6.5 IT! 9 R. JR. TI,T2 fI, IT! R2. RI IR2. R\ R1. IM 10112.1 12114.1 6.5 6.5 10.5 10.5 10.5 10.5 TM TM TM TM TM TM TI,T2 TIoIT! Rz• R, RI.1M IR\.IM PUSH PUSH 7 8 9 R, IR, lO,:} 10.3 12.0 lOEI IrT2 In. lIT! RR. IR. 6,5 6.5 12.0 18.0 RL RL lOE LDEI R. IR • T2,lrrl Irz.lrrl w.;) 10.;) INCW INCW A B 0 E 6.1 01 I--6.1 EI I--14,0 6.5 6.5 10.5 10.5 10.5 CP CP CP CP CP CP Rt.IM IR1. 1M 10.5 IR. n.T2 n.lr! R2. R, IR z• RI 6.5 6.5 6,5 6.5 10.5 10.5 CLR CLR XOR XOR XOR XOR XOR XOR IR2. RI R],IM IR!, 1M IR. TI,T2 6,5 6.5 RRC RRC R. JR. 6.5 6.5 12.0 TI,lrn 12.0 SRA SRA n.lr! R2. RI IS.O 6.5 RCF Tl, 20.0 x, R2 20.0 10.5 CALL LD DA f2, X, RI R. JR. In.ITT\ IRR, 6.5 6.5 6.5 10.5 10.5 10.5 10.5 RR RR LD LD LD LD LD lRz. RI RJ,IM IR!, 1M R2• RI R. IR. T\,In 8,5 8.5 6.5 10.5 LD LD lrl,TZ Rz,IR, R. IR. IRET I--- 10.5 LDC lOCI CALL" f2.Irf! ~ LD ITI,lrr! 18.0 RET 10.5 10.5 LDC LOCI SWAP SWAP F I--- RR. R. C RI I--- 18.0 DECW DECW LDE T\, IR 2• IR1.IM I--6.5 SCF - 6.5 CCF - 6.0 NOP ~--------~------~~------~--------~~----------~----------~~~ Bytes per Instruction 3 2 Lower Opcode Nibble Execution Upper Opcode Cycles Nibble~ First A Operand Pipeline Cycles 4 - - Mnemonic 2 3 Legend: R = 8-Bit Address r = 4 - Bit Address Rl or n = Dst Address R2 or r2 = Src Address Sequence: Opcode. First Operand. Second Operand Note: The blank areas are not defined. Second Operand ----.-------.---SHARP - - - - - - - - - - - . - . . . 445 Z8090/Z8090A 'Universal Peripheral Controller LH8090/LH8090A Instruction Summary Instruction and Operation I I ADC dst, src dst....dst + src + C ADD dst, src dst ....dst + src AND dst, src dst ....dst AND src CALL dst SP....SP-2 @SP.... PC· PC ....dst CCF C.... NOT C CLR dst dst....O COM dst dst....NOT dst CP dst, src dst....src DA dst dst ....DA dst DEC dst dst.... dst-l DECWdst dst....dst-l Addr. mode dst src (Note 1) (Note 1) 00 ****0* (Note 1) 50 -**0-- D6 D4 ------ EF *--- R IR R IR (Note 1) BO Bl 60 61 AD ------ R IR R IR RR IR 40 41 00 01 80 81 8F ***X-- RA rA r=O-F DA IRR 01 IMR(7) .... 0 DJNZ r,dst r .... r-l if r+O PC .... PC+dst Range; + 127--128 EI IMR(7) .... 1 INC dst dst....dst+ 1 Opcode Flags Affected (Hex) CZSVDH 10 ****·0* 9F - -**0-****-- Instruction and Oparatlon I I LDEI dst, src dst....src r .... r+ 1; rr ....rr+ 1 NOP OR dst, src dst.... dst OR src POP dst dst....@SP SP....SP+l PUSH src Sp....SP-l· @SP ....src RCF C.... O PET PC ....@Sp· Sp....SP+2 4RL dst ------ R IR -**0-- ------ 70 71 CF 0 RR dst 4947 RRC dst ---- AF ~7 O~ ---- FF 40 50 51 R IR R IR RLC dst - (Note 1) O~ ~7 -***--***-- Addr. mode Opcode Flags Affected (Hex) CZSVDH dst src Ir Irr· 83 Irr Ir 93 -- 90 91 ****-- R IR 10 ****-- O~ R IR EO El **** ~7 O~ R IR CO Cl **** 3D ****1* DF 1 DO Dl * * * 0 31 ------ 2D ****1* FO Fl X* *X-- sec dst, src dst....dst - src - C SCF C.... l (Note 1) 11 ~ r R IR RR IR INCW dst dst....dst+ 1 IRET FLAGS ....@SP;SP....SP+ 1 PC ....@Sp·SP ....SP+2;IMR(7).... 1 DA JP cc, dst if cc is true PC ....dst IRR RA JR cc, dst if cc is true, PC .... PC+dst Range: +127--128 r LD dst, src 1M dst ....src r R R r LDC dst, src dst....src LOCI dst, src dst-src r-r+ l' rr-rr+ 1 LDE dst, src dst-src 446 r X r Ir R R R IR IR r Irr Ir Irr r Irr X r Ir r R IR 1M 1M R Irr r Irr r Irr r rE -***-r=O-F 20 21 AO -***-Al BF ****** cD c=O-F 30 cB c=O-F ------ rC r8 r9 r=O-F C7 D7 E3 F3 E4 E5 E6 E7 F5 C2 D2 C3 D3 ------ 82 92 L,g ell t P SRA dst 1M SRP src RP ....src SUB dst, src dst.... dst - src SWAP dst TCM dst,src (Note 1) ~ I(NOT ds!) AND src ------ TM dst,src dst AND src XOR dst,src dst.... dst XOR src ----------- (Note 1) 60 * * 0 (Note 1) 70 * * 0 (Note 1) BO -**0-- Note 1: These instructions have an identical set of' addressing modes, which are encoded for brevity. The first opcode nibble is found in the instruction set table above. The second nibble is ex· pressed symbolically by a 0 in this table, and its value is found in the following table to the left of the applicable addressing mode paie. For example, to determine the opcode of an ADC instruction using the addressing modes r (destination) and Ir (source) is 13. Addr Mode ------ R IR dst r r R R R IR src r Ir R IR 1M 1M Lower Opcode Nibble !2J 11I Ii] lID [ill [Z] Z8090/Z8090A Universal Periph~Hal Controller • LH8090/LH8090A Register RO (DTC) upe Register Address (Hex): 00 I D7 I D61 D51 D,I D31 D21 DI I Dol I I/O REGISTER POINTER ORP)I _ _ _ _ _ _(_E_D_X---..J). DISABLE DATA TRANSFER=O' ENABLE DATA TRNSFER=1 NO TRANSFER ERROR =0 (XERR) TRANSFER ERROR = 1 I(EOM) . 0=I=END OF MESSAGE (LERR) O=NO LIMIT ERROR 1 = LIMIT ERROR R4 (LC) R5 (DIND) upe Register Address (Hex): 04 upe Register Address (Hex): 05 I D7 I D6 I Dsl D,I I D71 D31 D21 DJ I Do I <-I- Ds! D51 D,I D31 D21 Dd Dol _ _ _ _ LIMIT COUNT VALUE (RANGE:0-255 DECIMAL 00- FF HEX) LINDIRECTION ADDRESS (Do= LSB) R240 (MIV) upe Register Address (Hex): f1 I D7 I D61 D5 I D4 I D31 D2 I DI I Do I VECTOR DATA (Do = LSB) I R241 (TMR) upe register address (Hex): Fl I D71 D61 I TOUT MODES=::::J RESERVED = 00 To OUT = 01 TJ OUT = 10 INTERNAL CLOCK OUT = 11 TIN MODES - - - - - - ' EXTERNAL CLOCK INPUT = 00 GATE INPUT =01 TRIGG ER INPUT = 10 (NON -RETRIGGERABLE) TRIGGER INPUT = 11 (RETRIGGERABLE) R242 (T1) Counter/Timer 1 Register upe Register Address (Hex): F2 FU~CTION O = NO 1 = LOAD To C O = DISABLE To COUNT 1 = ENABLE To COUNT 0 = NO FUNCTION 1 = LOAD TI ' - - -_ _ _ 0 = DISABLE TI COUNT 1 = ENABLE TI COUNT R243 (PRE1) upe Register Address (Hex): F3 I D71 D61 D5 1 D41 I D71 D61 D51 D41 D31 D21 DIlDo I C=:TI INITIAL VALUE (RANGE: 1-2 5 6 DECIMAL 01-00 HEX) L D5 I D41 D31 D2 I DI I Do I l D31 D21 DIlDo 1 LCOUNT MODE 0 = TI SINGLE PASS 1 = TI MODULO· N CLOCK SOURCE 0 = EXTERNAL TIMING IN (TIN) MODE 1 = TI INTERNAL '---------PRESCALER MODULO (RANGE: 1-64 DECIMAL 01-00 HEX) .-----.----------SHARP - - - - - . - . - - - - - - 447 LH8090/LH8090A Z8090/Z8090A Uhh,ersal Peripheral Controller R245 (PREO) Prescaler 0 Register UPC Register .Address (Hex): F5 R244 (TO) Counter/Timer 0 Register UPC Register Address (Hex): F 4 1 071 061 Dsl 04 1 03 1 02 I 01 I Do I 1 07 ' L I 061 Os I 041 031 02 I 0 1 I Do I C=To INITIAL VALUE (RANGE: 1-256 DECIMAL I 01-00 HEX) COUNT MODE O=To SINGLE-PASS 1 = To MODULO· N RESERVED '-------PRESCALER MODULO (RANGE: 1-64 DECIMAL R246 (P2M) Port 2 Mode Register UPC Register Address (Hex): F6 01-00 HEX) I 07 I 06 I Os I 04 I 031 02 I 01 I Do I L P20- P27 I/O DEFINITION BIT AS OUTPUT 1 DEFINES BIT AS INPUT o DEFINES R247 (P3M) Port 3 Mode Register UPC Register Address (Hex): F7 I 07 I 061 Os I 041 03 I 02 I 01 I Do I LS Lo PORT 2 PULL-UPS OPEN DRAIN 1 PORT 2 PULL-UPS ACTIVE o PORT I PULL-UPS OPEN DRAIN 1 PORT I PULL-UPS ACTIVE o P3S = OUTPUT I P3S = INT RESERVED o P33= INPUT I P3F DAV1/RDYI '-----0 P31= INPUT (TIN) I Pl!= DAV2/RDY2 ~-------'OP30=INPUT I P30 = lEI P34 = OUTPUT P34 = ROY l/DA V I P36 = OUTPUT (TOUT) P36 = RDY2/DAV2 P37 = OUTPUT P37 = IEO L----------OP32=INPUT I P3F INTACK R248 (P1 M) Port 1 Mode Register UPC Register Address (Hex): F5 1 07 I 061 05 I 04 I 031 021 01 I Do I I'----Plo-Ph I/O DEFINITION o DEFINES BIT AS OUTPUT I DEFINES BIT AS INPUT .-.---.---------$HARP----------448 Z8090/Z8090A Universal Peripheral Controller LH8090/LH8090A R249 (lPR) Interrupt Priority Register upe Register Address (Hex): F9 (write only) 1 D71 D61 D51 D.I D31 D21 Dl I Do I RESERVED~ IRQl,IRQ4 PRIORITY (GROUP C) o =IRQl>IRQ4 INTERRUPT GROUP PRIORITY--+---'----t------' I =IRQ4>IRQI RESERVED=OOO C>A>B=OOI ~---IRQO,IRQ2 PRIORITY (GROUP B) A>B>C=OIO o =IRQ2>IRQO A>C>B=OII 1 =IRQO>IRQ2 B>C>A=IOO ~-------IRQ3,IRQ5 PRIORITY (GROUP A) C>B>A=lOI o =IRQ5>IRQ3 B>A>C=IIO 1 =IRQ3>IRQ5 RESERVED =111 R250 (IRQ) Interrupt Request Register R251 (lMR) .Interrupt Mask Register upe Register Address (Hex): FB upe Register Address (Hex): FA I D7 I D6 I D5 I D.I D3 I D2 I Dl I Do I Uk~ I D71 D61 D5 I D.I D3 I D2 I DJ I Do I I IRQO=MASTER CPU COMMUNICATIONS QI=P3, INPUT Q2=P31 INPUT Q3=P3, INPUT IR Q4=To IR Q5=Tt RESERVED I I~ L I1 ENAIlLES ENABLES !ROO IRQI IRQ2 IRQ3 IRQ4 IRQ5 1 ENABLES 1 ENABLES ~-----1 ENABLES ' - - - - - - - - 1 ENABLES ' - - - - - - - - - RESERVED ' - - - - - - - - - - - - - 1 ENABLES INTERRUPTS R252 (FLAGS) Flag Register R253 (RP) Register Pointer upe Register Address (Hex): Fe upe Register Address (Hex): FD I D71 D61 D5 I D.I D31 D21 Dt! Do LS I I I D71 D61 D51 D.I LUSER FLAG Fl FLAG F2 HALF CARRY FLAG DECIMAL ADJUST FLAG '-------OVERFLOW FLAG ~-------SIGN FLAG ~--------ZEROFLAG . '------------CARRYFRAG ~USER I D31 D21 DJ I Do I LDON'T CARE ~.-------REGISTER (r.-n) -----~--.---SHARP--.-.---~---- 449 B Z8090/Z8090A Universal Peripheral Controller LH8090/LH8090A R~54 (MIC) Master CPU Interrupt Control Register UPC Register Address (Hex): FE I D71 D6 I Dsl D41 Dal D21 DI I Dol o INTERRUPT REQUEST DISABLEDJ o INTERRUPT REQUEST ENABLED o NO INTERRUPT UNDER SERVICE ~I II L: ;NO OF MESSAGE ENABLE WHEN WRITE 1 WAIT DISABLE WHEN WRITE o WAIT 1 INTERRUPT UNDER SERVICE o ENABLE o NO MASTER CPU INTERRUPT. PENDING 1 MASTER CPU INTERRUPT PENDING o VECTOR OUTPUT - - - - - - ' 1 NO VECTOR OUTPUT LOWER CHAIN 1 DISABLE LOWER CHAIN ' - - - - - - - 0 DISABLE DATA TRANSFER 1 ENABLE DATA TRANSFER R255 (SP) Stack Pointer UPC Register Address (Hex): FF I D7 I D61 Ds I D. I Da I D2 I DI I Do I II-----STACK POINTER Table 4. OOH 04 H 05 H FO H FIH F2H F3 H F4H F5 H F6 H F7H Control Register Data transfer control register Limit count register Data indirection register Interrupt vector register Timer mode Tl register T 1 prescaler TO register TO prescaler Port 2 mode port 3 mode port 1 mode Interrupt priority Interrupt request Interrupt mask Flag register Register pointer Master CPU interrupt control register FFH Stack pointer F8 H F9 H FAH EBH FC H FDH FEH Note: Control register reset conditions D7 D6 Ds D4 D3 D2 DI Do X X X X 0 0 0 0 Not defined Not defined Not defined 0 0 0 0 0 0 0 0 Not defined X X X X X X 0 0 Not defined X X X X X 0 Q X 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 X 1 1 X X 0 X 0 0 1 1 1 1 Not defined 0 0 0 0 X X X X Not defined Not defined 0 0 0 0 Comments Disable data transfer from master CPU Stops TO and T1 Single-pass mode 1 1 Single-pass mode external clock source Port 2 lines defined as inputs Port 1. 2 open drain output P3 s = INT P3 o• P3 10 P3 2. P3 3 defined as' input P3 4• P3 6• P3 7 defined as output Port 1 lines defined as inputs 0 X 0 X Reset interrupt request Interrupts disabled 0 0 Master CPU interrupt disabled: wait enable when write: lower chain enabled Not defined X means not defined. ---------.-.-..--SHARP -....--....-..----- 450 Z8091/Z8091 A Development Device LH8091/LH8091 A LH8091/LH8091A ~~:;:~;!DeViCe • Description The 64-pin LH8091 is the development version of LH8090 (Z8090) UPC with internal maskprogrammed ROM. This device allows the user to the prototype systems in hardware without an actual device and to develop the code that is eventually mask-programmed into the on-chip ROM of the LH8090. The LH8091 is identical to the LH8090 with the following exceptions. • The internal ROM has been removed . • The ROM address lines and data lines are buffered and brought out to external pins. • Control lines for the memory have been added. The LH8091A is the high speed version which can operate at 6MHz system clock. • Pin Connections +5V 1 PCLK 2 Top View 451 Z8091fZ8091 A • Development Device LH8091/LH8091A Block Diagram Program Memory Address Output , Address/Data Bus I/O Address Strobe 9 Data Strobe 7 Read/W rite 8 Chip Select 10 I/O Interrupt Request 5 Interrupt Acknowledge 6 Interrupt Enable In Interrupt Enable Out Interrupt Acknowledge Output/Memory Read • 24)---------------'----------' Pin Description LH8091 has the same functions as those of a 40-pin device LH8090, and the functions of the additional 24 pins are as follows. Meaning Program memory address Program data Interrupt acknowledge Imemory read. I/O 0 I MAS Memory address strobe 0 MDS Memory data strobe 0 Synchronization 0 Symbol Ao'- All Do -D 7 IACK/MR 0 -~ -- SYNC Function Used for the access to the external memory of 4K bytes. Reads the data through these lines from the external memory. Active high. This signal becomes high during interrupt or in· struction fetch cycle of LH8591. Active low. This signal is output every memory fetch cycle for the interface with the external ROM. Active low. This signal becomes low during instruction fetch cycle or write cycle. Active low. This signaJ becomes low at the clock cycle just before Op-code fetching. -------------SHARP,....-.-..-------452 Z8092/Z8092A Development Device LH8092/LH8092A LH8092/LH8092A • Description • The 64-pin LH8092 is the development version of LH8090 (Z8090 UPC) with internal maskprogrammed ROM. This device allows the user to the prototype systems in hardware with an actual device and to develop the code that is eventually mask-programmed into the on-chip ROM of the LH8090. The LH8092 is identical to the LH8090 with the following exceptions. • The internal ROM has been removed (But there are 36 bytes of internal ROM for a bootstrap program) . • The ROM address lines and data lines are buffered and brought out to external pins. • Control lines for the memory have been added. The LH8092A is the high speed version which can operate at 6MHz system clock. Z80921Z8092A Development Device Pin Connections +5V 1 PCLK 2 P37/IEO 3 P3o/IEI • P35/INT 5 P3,fINT ACK 6 5 P2. P23 P22 Top View .-----~--.-.--SHARP --.------------453 Z8092/Z8092A Development Device • LH8092/LH8092A Block Diagran . Program Memory Address Output Address/Data Bus I/O Address Strobe 9 Data Strobe 7 Read/Write 8 Chip Select 0 Wait 11 I/O Interrupt Request 5 o Interrupt Acknowledge 6 Interrupt Enable In Interrupt Enable Out Interrl!!t Acknowledg 241}-------~--------------' Memory/Read/ ' -_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _--' &~ti~~t • Pin Description LH8092 has the same functions as those of a 40-pin device LH8090, and the functions of additional 24 pins are' as follows. Symbol Ao-Au Meaning Program memory address I/O 00-07 Program data I LACK Interrupt acknowledge 0 MAS Memory address strobe 0 Memory data strobe 0 MR/W Memory read/write 0 SYNC Synchronization 0 -MOS - 0 Function Used for the access to the external memory of 4K bytes. Reads for data through these lines from the external memory. And it is possible to write into an external RAM through these lines. Active high. This signal is always active during interrupt cycle of LH8092. Active low. This signal is output every memory feich cyclefor interfacing with the external RAM. Active low. This signal is outptt eyery memory fetch cycle for cycle or write cycle. This signal is high during instruction fetching by LH8092, or low while writing into the external memory. Active low. This signal becomes low during clock cycle just before OP code fetching. - - - - - - - - - - - - - - S H A R P - - - . - - - - - , - - - - - - - ........ 454 LH8093/LH8093A Z8093/Z8093A Protopack Emulator LH8093/ LH809 3A ~:::1!093A • Description The LH8093 (28093) is a ROMless version of the standard LH8090, housed in a pin compatible 40-pin package. The LH8093 carries a 40-pin soket for a direct interface to program memory. 2716 type EPROM can be used for program memory. The LH8093 allows the user to build the prototype and pilot production units. When the final program is established, the user can then switch over the LH8090. The LH8093A is the high speed version which can operate at 6MHz system clock. • Protopack Pin Connections o P31 P36 P37/IEO 3 P27 P30/IEI 4 P26 P3s/INT 5 P2s P32/INTACK 6 P2. P23 P22 P21 P33 P3. Ph PIs PIs Pl. Pb Ph Ph ADo Top View 455 Z8093/ZS093A Protopack Emulator LH8093/LH8093A Block Diagram • *1*2*3' Address/Data Bus Address Strobe Data Strobe Read/Write Chip. Select Program Data Input Program Memory Address Output " • I/O 9 7 8 10 I/O Interrupt Request Interrupt Acknowledge Interrupt Enable In Interrupt Enable Out *1 Program Memory Data Strobe Output *2 System Clock Output *3 Instruction Sync Output o : This • is equipped with ROM Pin Description LH8093 pins are compatible with those of LH8090. For pin descriptions of LH8093, refer to those of LH8090. 456 Z8094/Z8094A Protopack Emulator LH8094/LH8094A LH8094/LH8094A ~~=094AProtopaCk • . Description The LH8094 (28094) is a RAM version (16K bits RAM) of the standard LH8090, housed in a pin compatible 40-pin package. The LH8094 carries a 24-pin soket for a direct interface to program memory, and has 36 bytes of internal ROM for a bootstrap program. The LH8094 allows the user to build the prototYPe and when the final program is established, the user can then switch over the LH8090. The LH8094A is the high speed version which can operate at 6MHz system clock. • Pin Connections o P31 P36 P37/IEO 3 P2, P30/IEI 4 P26 P35/INT 5 P32/INT ACK 6 P25 P2. P23 P2, P21 P33 P3. PI6 PIs Pl. PIa PI, Ph ADo Top View 457 / .Z8094/Z8094A· Protopack Emulator • LH8094/LH8094A Block Diagram Program Data Input Program Memory Address Output *1*2*3,~-----'~----~"r--------~'~--------~ Address/Data Bus Address Strobe 9 Data Strobe 7 Read/Write 8 Chip Select 10 Interrupt Request Interrupt Acknowledge Interrupt Enable In Interrupt Enable Out *1 Program Memory Data Strobe Output *2 System Clock Output *3 Instruction Sync Output C : This is equipped with RAM • Pin Description LH8094 pins are compatible with those of LH8090. For pin descriptions of LH8094, refer to those of LH8090. 458 Peripheral LSls for Microcomputers !-H 85301 LH 8530A Z8530/Z8530A Serial Communications Controller LH8530/LH8530A Z8S301Z8S30A Serial Communications Controller • Description The LH8530 Z8530 SCC Serial Communications Controller is a dual-channel, multi-protocol data communications peripheral designed for use with conventional non-multiplexed buses. The LH8530 functions as a serial-to-parallel, parallel-to-serial converter controller. The LH8530 can be softwareconfigured to satisfy a wide variety of serial communications applications. The device contains a variety of new, sophisticated internal functions including on-chip baud rate generators, Digital Phase- Locked Loops, and crystal oscillators that dramatically reduce the need for external logic. The LH8530 handles asynchronous formats, Synchronous byte-oriented protocols such as IBM Bisync, and Synchronous bit-oriented protocols such as HDLC and IBM SDLC. This versatile device supports virtually any serial date transfer application (cassette, disk tape drives, etc). The device can generate and check CRC codes in any Synchronous mode and can be programmed to check data integrity in various modes. The LH8530 also has facilities for modem controls in both channels. In applications where these controls are not needed, the modem controls can be used for general-purpose I/O. The daisy-chain interrupt hierarchy is also supported by the LH8530. The LH8530 is packaged in a 40-pin ceramic DIP and uses a single+ 5V power supply. The LH8530A Z8530A SCC is the high speed version which can operate at 6MHz system clock. • Features 1. Two independent, 0 to 1.5M bit/second, fullduplex channels, each with a separate crystal oscillator, baud rate generator, and Digital Phase-Locked Loop for clock recovery. 2. Multi-protocol operation under program control; programmable for NRZ, NRZI, or FM data encoding. 3. Asychronous mode with five to eight bits and one, one and one-half, or two stop bits per • Pin Connections 0 On 02 O. 06 RO WR AlB INTACK 8 +5V 9 W/REQA CE o/e GNO SYNCA W/REQB RTxCA SYNCB RxOA TRxCA TxOA OTR/REQA RTxCB RxllB TRxCB TxllB RTSA IlTR/R};qB CTSA RTSB DCDA CTSB PCLK Top View character; programmable clock factor, break detection and generation; parity, overrun, and framing error detection. 4. Synchronous mode with internal or external character synchronization on one or two synchronous characters and CRC generation and checking with CRC-16 or CRC-CCITT preset to either Is or Os. 5. SDLC/HDLC mode with comprehensive framelevel control, automatic zero insertion and deletion. I-field residue handling, abort generation and detection, CRC generation and checking, and SDLC Loop mode operation. 6. Local Loopback and Auto Echo modes. ----------$HARP-----~-.-.-- 460 Z8530/Z8530A Serial Communications Controller • LH8530/LH8530A Block Diagram Serial Data Baud Rate Generator A 11 Synchronization Wait/Request 16 Data Terminal Ready /Request 17 Request To Send 10 Data Bus 18 Clear to Send 23 Request To Send Data Terminal Ready / Request 30 Wait/Request 24 Synchronization Baud Rate Generator B Channel Clock Serial Data ... "o U 461 .-..---.. .............................,..... ..........,..... Z8530/Z8530A Serial Communications Controller ~ • .........., LH8530/LH853t>A --~ Pin Description Pin Function "" I Channel select signal. Chip enable I Active low. Enables the CPU to transmit ,and 'receive command and data when low. Clear to send I Active low. Enables the respective transmitters. D/C Datal control select I This signal defines the type of information on the data bus. High means data; Low indicates a command. -- DCDA DCDB Data carrier detect I Active low. Enables the respective receivers. Do-D 7 Data bus - CE CTSA CTSB - Bidirectional 3-state System data bus. INTACK Interrupt acknowledge I RD RXDA RXDB RTXCA RTXCB RTSA -RTSB SYNCA --SYNCB TXDA TXDB' TRXCA TRXCB WR Read I Active low. These outputs follow the state programmed into the DTR bit. Active high. lEI is used to form a daisy chain that deter· mines the interrupt priority order. Active high. lEO is used to form a daisy chain that de· termines the interrupt priority order. Active low, open·drain. Indicates an interrupt request to the CPU. Active low. This signal indicates an active interrupt acknowledge cycle. Active .low. This signal indicates a read operation. Receive data I Active high. These are receive data lines. Receive/transmit clocks I Active low. These are communication clock lines. Req uest to send 0 Active low. Goes high after the transmitter is empty. Synchronization 1/0 Data terminal ready I request 0 lEI Interrupt enable input I lEO Interrupt enable output 0 DTI3/REQA DTR/REQB -INT Interrupt request --- Open-drain Transmitl receive clocks PCLK Active high. These are transmit data lines. These are communication clocks. 1/0 Write W/REQB Active low. Indicates that a synchronization pattern has been recognized. 0 Transmit data --W/REQA --- • 'I/O Meaning Channel AI Channel B select AlB I Open-drain Waitl request Clock I +5V Absolute Maximum Ratings Parameter Input voltage Output voltage Active low. This signal indicates a write operation. Active low. Operate as request lines when the DMA is the bus master or as wait lines when the CPU is the bus master. Single-phase clock. It does not have to be the CPU clock., Symbol VIN VOUT -0.3~+7 -0.3-+7 Unit V V Operating temperature Topr 0-+70 ·C Storage temperature T st• -65-+150 t Ratings From output under test 0--.-.-114-.. +5V From output under test o--{ 2.2kO J;5OpF Open-drain test load 462 Z8530/Z8530A • Serial Communications Controller LH8530/LH8530A (Vcc=5V±5%, Ta=0-+70"C ) DC Characteristics Parameter Input high voltage Input low voltage Output high voltage Output low voltage Input leakage current Output leakage current Current consumption • Symbol VlH VIL VOH VOL I hL I I IOL I Icc Conditions MIN. 2 -0.3 2.4 IOH=-250pA IOL=+2mA 0.4 ;;;; VIN ;;;; 2.4V· 0.4 ;;;; VOUT ;;;; 2.4V Unit V V V V pA pA rnA 0.4 10 10 250 ( f= IMHz. Ta=O- +70"C ) Capacitance Parameter Input capacitance Output capacitance Bidirectional capacitance MAX. Vcc+0.3 0.8 Symbol CIN "COUT Conditions MIN. Unmeasured Pins Returned to Ground CliO • AC Characteristics (1) CPU interface timing, interrupt timing, and interrupt acknowledge timing No. Symbol Parameter 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 TwPCl TwPCh TfPC TrPC TcPC TsA(WR) ThA(WR) TsA(RD) ThA(RD) TsIA(pC) TsIAi(WR) ThIA(WR) TsIAi(RD) ThIA(RD) ThIA(PC) TsCEl(WR) ThCE(WR) TsCEh(WR) TsCEl(RD) ThCE(RD) TsCEh(RD) TwRDl TdRD(DRA) TdRDr(DR) TdRDf(DR) TdRD(DRz) TdA(DR) TwWRI TsDW(WR) PCLK low width PCLK high width PCLK fall time PCLK rise time PCLK cycle time Address to WR l setup time Address to WR t hold time Address to RD l setup time Address to RD t hold time INT ACK to PCLK t setup time INT ACK to WR l setup time INT ACK to WR t hold time INT ACK to RD l setup time INT ACK to RD t hold time INT ACK to PCLK t hold time CE low to WR l setup time CE to WR t hold time , CE high to WR l setup time CE low to RD l setup time CE to RD t hold time CE high to RD l setup time RD low width RD l to read data active delay RD t to read data not valid delay RD ! to read data valid delay RD t to read data float delay Address required valid to read data valid delay WR low width Write data to WR ! setup time LH8530 MIN. MAX. 105 2000 105 2000 20 20 250 4000 80 0 80 0 0 200 0 200 0 100 0 0 100 0 0 100 390 0 0 250 70 590 390 0 MAX. 10 15 Unit pF pF 20 pF LH8530A MIN. MAX. 70 1000 70 1000 10 15 165 2000 80 0 80 0 0 .200 0 200 0 100 0 0 70 0 0 70 250 0 0 180 45 420 250 0 Unit Note ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns 1 1 i 1 1 1 2 .-.--.-----SHARP--..-r---~.-.~-.. 463 .Z85~O/Z8530A Serial Communications Controller No. Symbol 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 ThDW(WR) TdWR(W) TdRD(W) TdWRf(REQ) TdRDf(REQ) TdWRr(REQ) TdRDr(REQ) TdPC(INT) TdIAi(RD) TwRDA TdRDA(DR) TsIEI(RDA) ThIEI(RDA) TdIEI(IEO) TdPC(IEO) TdRDA(INT) TdRD(WRQ) TdWRQ(RD)' TwRES Trc 48 49 Note Note Note Note Note 1: 2: 3: 4: 5: LH8530/LH8530A LH8530 MIN. MAX. 0 240 240 240 240 Parameter W rite data to WR t hold time WR ! to wait valid delay RD! to wait valid delay WR ! to W IREQ not valid delay RD ~ to W IREQ not valid delay WR t to DTR/REQ not valid delay RD t to DTR/REQ not valid delay PCLK ! to INT valid delay INT ACK to RD ! (acknowledge) delay RD (acknowledge) width RD ! (acknowledge) to read data valid delay IEI to RD ! (acknowledge) setup time IEI to RD t (acknowledge) hold time IEI to IEO delay time PCLK t to lEO delay RD ~ to INT inactive delay RD t to WR ~delay for no reset WR t to RD ! delay for no reset WR and RD coincident low for reset Valid access recovery time 5Tcl'Ct300 5TcPCt300 500 285 190 120 0 120 250 500 30 30 250 6TcPCt200 LH8530A Unit· Note MIN. MAX. 0 ns 200 ns 4 200 ns 4 200 ns 200 ns 5TcPCt250 ns 5TcPCt250 ns 4 500 ns ns 5 250 ns 180 ns 100 ns 0 ns 100 ns 250 ns 4 500 ns 15 ns ns 30 250 ns· 6TcPCt 130 ns 3 Parameter does not apply to Interrupt Acknowledge transactions. Float delay is defined as the time required for a ±O.5V change in the output with a maximum DC load and minimum AC load. Parameter applies only between transactions involving the SCC. Open·drain output, measured with open·drain test load. Parameter is system dependent. For any SCC in the daisy chain, TdlAi (RD) must be greater than the sum of TdPC (lEO) for the highest priority device in the daisy chain, TslEI (RDA) for the SCC, and TdlEIf (lEO) for each device separating them in the daisy chain. PCLK A/B,D/C-J'~~+-____~__-4__________~~~~~~______ INTACK W/REQ (WAIT) W/REQ (REQUEST) ________ DTR/REQ (REQUEST) ________ ~--~~-J ~ ____ ~~~ __ ~ __ ~--J Read and write timing . . . . . - . - - - - - - - - - - - - S H A R P -----~---~---- 464 Z8530lZ8530A Serial Communications Controller LH8530/LH8530A PCLK IN TACK ________~=t~:3~~~------~~~::==~::: RD IEI __~~~__~~~.~~________~.~______lEO -------"'F- INT __________________________- J Interrupt acknowledge timing Reset timing Cycle timing (2) System timing No. Symbol 1 2 3 TdRxC(REQ) TdRxC(W) TdRxC(SY) TdRxC(INT) TdTxC(REQ) TdTxC(W) TdTxC(DRQ) TdTxC(INT) TdSx(INT) TdExT(INT) 4 5 6 7 8 9 10 Note 1: Note 2: Note 3: Parameter RxC t to W IREQ valid delay RxC t to wait inactive delay RxC t to SYNC valid delay RxC t to INT valid delay TxC ~ to W IREQ valid delay TxC ~ to wait inactive delay TxC ~ to DTR/REQ valid delay TxC ~ to INT valid delay SYNC transition to INT valid delay DCD or CTS transition to INT valid delay LH8530 MIN. -MAX. 8 12 12 8 4 7 10 16 5 8 5 8 4 7 10 6 2 6 2 6 LH8530A MIN. MAX. 8 12 8 12 4 7 10 16 5 8 5 8 4 7 6 10 2 6 2 6 Unit Note TcPC TcPC TcPC TcPC TcPC TcPC TcPC TcPC TcPC TcPC 2 1,2 2 1,2 3 1,3 3 1,3 1 1 Open·drain output, measured with open·drain test load. RxC is RTxC or TRxC, whichever is supplying the receive clock. TxC is TRxC or RTxC, whichever is supplying the transmit clock. ----.-----~---SHARP--.-.------- 465 Z8530/Z8530A Serial Communication Controller LH8530/lH8530A RTxC, TRxC {RECEIVE) W/REQ (REQUEST) W/REQ (WAIT) SYNC (OUTPUT) ====::::I:=~ INT RTxC, TRxC (TRANSMIT) W/REQ (REQUEST) W/REQ (WAIT) DTR/REQ(REQUEST) CTS'DCD@' SYNC (INPUT) : --+-----I:.C£~________________ INT ~~~' System timing (3) General timing No. Symbol 1 2 3 4 5 6 7 8 9 10 TdPC(REQ) TdPC(W) TsRXC(PC) TsRXD(RXCr) ThRXD(RXCr) TsRXD(RXCf) rhRXD(RXCf) TsSY(RXC) ThSY(RXC) TsTXC(PC) TdTXCf(TXD) TdTXCr(TXD) TdTXD(TRX) TwRTXh TwRTXI TcRTX TcRTXX TwTRXh TwTRXI TcTRX TwEXT TwSY 11 12 13 14 15 16 17 18 19 20 21 22 Parameter PCLK l to W IREQ valid delay PCLK l to wait inactive delay RxC t to PCLK t setup time (PCLK 7 4 case only) RxD to RxC t setup time (Xl mode) RxD to RxC t hold time (Xl mode) RxD to RxC l setup time (Xl mode) RxD to RxC l hold time (Xl mode) SYNC to RxC t setup time SYNC to RxC t hold time TxC L to PCLK t setup time TxC l to TxD delay (Xl mode) TxC t to TxD delay (Xl mode) TxD to TRxC delay (send clock echo) RTxC high width RTxC low width RTxC cycle time Crystal oscillator period TRxC high width TRxC low width TRxC cycle time DCD or CTS pulse width SYNC pulse width LH8530 MIN. MAX. 250 350 80 0 150 0 150 -200 3TcPC+200 LH8530A MIN. MAX. 250 350 70 0 150 0 150 -200 3TcPC+200 0 0 300 300 200 180 180 400 250 180 180 400 200 200 1000 300 300 200 180 180 400 250 180 180 400 200 200 1000 Unit ns ns ns. ns ns ns n~ ns ns ns ns ns ns ns' ns ns ns ngns ns ns ns Note 1,4 1 1 1,5 1,5 1 1 2,4 2 2,5 6 6 6 3 ,3 6 6 ~'---~'-'---SHARP .-~-.....-.-----.-.-- 466 Z8530/Z8530A Serial Communications Controller LH8530/LH8530A Note 1: RxC is RTxC or TRxC. whichever is supplying the receive clock. Note 2: TxC is TRxC or RTxC. whichever is supplying the transmit clock. Note 3: Both RTxC and SYNC have 30 pF capacitors to ground connected to them. Note 4: Parameter applies only if the data rate is one· fourth the PCLK rate. In all other cases. no phase relationship between RxC and Note 5: Parameter applies only to FM encoding/decoding. Note 6: Parameter applies only for transmitter and receiver; DPLL and baud rate generator timing requirements are identical to chip PCLK PCLK or TxC and PCLK is required. requirements. PCLK W /REQ (REQUEST) Vi /REQ(WAIT) _ _ _ _-=:-~-------'. RTxC, TRxC(RECEIVE) _ _ _..."...,.....J['1 . RxD ____~~~~~~-~~~--~-------SYNC (EXTERNAL) ----J~--~r---~'~----------------- TRxC, RTxC (TRANSMIT) . -----j TxD ~@==-:ii 1<""---"';'-~-.I TR.C '-_ ____ . (OU:E~ ESj,,----.~ ---J~ CTS,DCD SYNC (INPUT) ~ ~ 1- ~ ~ 1~------ -------........., i-@--i k=@~ , i--@----I i:=@~ General timing ~~....-.--------SHARP-.---.-.-.--- 467 ................._-_............................................._,._....................... ZS,5301Z8530A Serial Communications Contr.oIler , • Data Communications Capabilities The LH85'30 provides two independ~nt fullduplex channels programmable for use in any common Asyncl1ronous or Synchron~)Us data communication protocol. Fig. 1 illustrates th~se protocols. START PARITY 1 l~TOP LH8530/LH8530A first secondary station by the same process. Any secondary stations without messages to send merely echo the incoming messages and are prohibited from placing messages on the loop (except upon recognizing an EOP). SDLC Loop mode is a programmable option in the LH8530. NRZ, NRZI, and FM coding may all be used in SDLC Loop mode. lli&ilJ ::":M'"="A":::R':':KI::"N:-::G:-IW@[]jl@illjr-DA ....r-Ar"T"I"Ij II LINE ASYNCHRONOUS I SYNC IDATA I :: IDATAI CRe, I CRC, I MONOSYNC ~IS-:-Y-NC~I-SY-N-C-rID~A....T....:1\TI~:; IDATAI CRC, I CRC, I ----- . CONTROLLER SIGNAL~YNC ~:~~I-:::DA~T~A~I....c~R~C~d....C-:::RC~,~I EXTERNAL SYNC Ir.:F=-LA-:-G=-I""AD--DR--ESS-.!~INFqRM.1 CRC, I CRc,lFLAGI SDLC/HDLC/X.25 Fig. 1 Some see protocols Fig. 2 An SOLe loop • SDLC Loop Mode The LH8530 supports SDLC Loop mode in addition to normal SDLC. In an SDLC Loop, there is a primary controller station that manages the message traffic flow on the loop and any number of secondary stations. In SDLC Loop mode, the LH8530 performs the functions of a secondary station while an LH8530 operating in regula~ SDLC mode can act as a controller (Fig. 2). A secondary station in an SDLC Loop is alway listening to the messages being sent a~ound the loop, and in· fact must pass these messages to the rest of the loop by retransmitting them with a one-bit-time delay. The secondary station can place its own message on the loop only at specific times. The controller signals that secondary stations' may transmit messages by sending a special character, called an EOP (En,d Of Poll), around the loop. The EOP character is the bit pattern 11111110. Because of zero insertion during messages, this bit pattern is unique . and easily recognized. When a secondary station has a message to transmit and recognizes an EOP on the line, it changes the last binary 1 of the EOP to a 0 before transmission. This has the effect of turning the EOP into a flag sequence. The secondary station now places its message on. Hie 10QP and terminates the message with an EOP. Any secondary stations further down the lO\Jp with Ijlessages to transmit can then append their messages to the message of the 468 • Data Encoding Tile LH8530 may be programmed to encode and decode the serial data in four different ways (Fig. 3). In NRZ encoding, a 1 is represented by a High level and a 0 is represented by a Low level. In NRZI encoding, a 1 is represented by no change in level and a 0 is represented by a change in level. In FMi (more properly, bi-phase mark), a transition occurs at the beginning of every bit cell. A 1 is represented by an additional transition at the center of the bit cell and a 0 is represented by no additional transition at the center of the bit cell. In FMO (biphase space), a transition occurs at the beginning of every bit cell. A 0 is represented by an additional transition at the center of the bit cell, and a 1 is represented, by no additional transition at the center of the bit cell. In addition to these four methods, the LH8530 can be used to decode Manchester (bi-phase level) data by using the DPLL in the FM mode and programming the receiver for NRZ data. Manchester encoding always produces a transition at the center of the bit cell. If the transition is 0 to 1, the bit is a o. If the transition is 1 to 0, the bit is a 1. ............... ...............- ..... ..... Z8530/Z8530A Serial Communications Controller ~~~ ~~.....,~ DA T A -...:.'-----'''----. NRZ ~______~ o NRZI FMl FMO MAN- CHESTER Fig. 3 • Data encoding methods Auto Echo and Local Loopback The LH8530 is capable of automatically echoing everything it receives. This feature is useful mainly in Asynchronous modes, but works in Synchronous and SDLC modes as well. In Auto Echo mode, TxD is RxD. Auto Echo mode can be used with NRZI or FM encoding with no additional delay, because the data stream is not decoded before retransmission. In Auto Echo mode, the CTS input is ignored as a transmitter enable (although transitions on this input can still cause interrupts if programmed to do so). In this mode, the transmitter is actually bypassed and the programmer is responsible for disabling transmitter interrupts and WAIT IREQUEST on transmit. The LH8530 is also capable of local loopback. In this mode TxD is RxD, just as in Auto Echo mode. However, in Local Loopback mode; the internal transmit data is tied to the internal receive data and RxD is ignored (except to be echoed out via TxD). The CTS and DCD inputs are also ignored as transmit and receive enables. However, transitions on these inputs can still cause inter· rupts. Local Loopback works in Asynchronous, Synchronous and SDLC modes with NRZ, NRZI or FM coding of the data stream. • Baud Rate Generator Each channel in the LH8530 contains a programmable baud rate generator. Each generator consists of two 8·bit time constant registers that form a 16·bit time constant, a 16·bit down counter, and a flip· flop on the output producing a square wave. On startup, the flip-flop on the output is set in a High state, the value in the time constant register is loaded into the counter, and the counter starts counting down. The output of the baud rate generator toggles upon reaching 0, the value in the time constant register is loaded into the counter, and the process is repeated. The ~ LH8530/LH8530A ~ time constant may be changed at any time , but the new value does not take effect until the next load of the counter. The output of the baud rate generator may be used as either the transmit clock, the receive clock, or both. It can also drive the Digital PhaseLocked Loop (see next section). If the receive clock or transmit clock is not programmed to come from the TRxC pin, the out· put of the baud rate generator may be echoed out via the TRxC pin. The following formula relates the time constant to the baud rate (the baud rate is in bitsl second and the BR clock period is in seconds). baud rate • 1 2(time constant +2) X(BR clock period) Digital phase-Locked Loop The LH8530 contains a Digital Phase-Locked Loop (DPLL) to recover clock information from a data stream with NRZI or FM encoding. The DPLL is driven by a clock that is nominally 32 (NRZI) or 16 (FM) times the data rate. The DPLL uses this clock, along with the data stream, to construct a clock for the data. This clock may then be used as the SCC receive clock, the transmit clock, or both. For NRZI encoding, the DPLL counts the 32X clock 60 create nominal bit times. As the 32X clock is counted, the DPLL is searching the incom· ing data stream for edges (either 1 to 0 or 0 to 1). Whenever an edge is detected, the DPLL makes a count adjustment (during the next counting cycle), producing a terminal count closer to the center of the bit cell. For FM encoding, the DPLL still counts from 0 to 31, but with a cycle corresponding to two bit times. When the DPLL is locked, the clock edges in the data stream should occur between counts 15 and 16 and between counts 31 and O. The DPLL looks for edges only during a time centered on the 15 to 16 counting transition. The 32X clock for the DPLL can be programmed to come from either the RTxC input or the output of the baud rate generator. The DPLL output may be programmed to be enchoed out of the LH8530 via the TRxC pin (if this pin is not being used as an input). ...--....-.------SHARP-------- 469 Z8530/Z8530ASeriai Communicatipns· Controller • LH8530/LH8530A Read Regi/sters • Read Register 0 • Read Register Rx CHARACTER AVAILABLE ZERO COUNT Tx BUFFER EMPTY DCD SYNC/HUNT CTS Tx UNDERRUN /EOM BREAK/ABORT • Read Register 1 to o LOOP SENDING o TWO CLOCKS MISSING ONE CLOCK MISSING • Read Register 12 I~I~I~I~I~I~I~I~I RESIDUE CODE 0 RESIDUE CODE 1 RESIDUE CODE 2 PARITY ERROR Rx OVERRUN ERROR CRC/FRAMING ERROR END OF FRAME (SDLC) • Read Register 2 ID7 ID6 1 Ds 1 D. 1 D3 1 D2 1 DIlDo 1 [ INTERRUPT VECTOR" [ LOWER BYTE OF TIME CONSTANT • Read Register 13 I D71 D6 1 Ds I D. I D3 I D2 I DII Do I [UPPER BYTE OF TIME CONSTANT "MODIFIED IN CHANNEL B • Read Register 3· CHANNEL B EXT/STAT Ip· CHANNEL B Tx IP" CHANNEL B Rx Ip· CHANNEL A EXT/STAT IP" CHANNEL A Tx Ip· CHANNEL A Rx Ip· o • Read Register 15 o o ZERO COUNT IE DCD IE SYNC/HUNT IE CTS IE TxUNDERRUN/EOMIE BREAK/ABORT IE ·ALWAYS 0 IN CHANNEL B --------SHARP-------470 .28530/Z8530A Serial Communications Controller • LH8530/LH8530A Write Registers • Write Register 0 D7 D6 D5 D. D3 • Write Register 2 D2 Dl Do 0 0 0 1 1 0 0 1 1 0 0 0 1 0 1 0 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 0 0 1 1 1 1 0 0 1 1 0 1 0 0 1 1 1 0 1 0 1 0 1 0 1 1 1 0 0 1 0 1 0 1 0 1 1 0 1 1 I~I~I~I~I~I~I~I~I REGISTER 0 REGISTER 1 REGISTER 2 REGISTER 3 REGISTER 4 REGISTER 5 REGISTER 6 REGISTER 7 REGISTER 8 REGISTER 9 REGISTER 10 REGISTER 11 SEGISTER 12 REGISTER 13 REGISTER 14 REGISTER 15 [INTERRUPT VECTOR • Write Register 3 * NULL CODE POINT HIGH RESET EXT /STAT INTERRUPTS SEND ABOR T (SDLc) ENABLE INT ON NEXT Rx CHARACTER RESET TxIN T PENDING ERROR RES ET RESET HIG HEST IUS NULL CODE RESET Rx CRC CHECKE R RESET Tx CRC GENERA TOR RESET Tx UNDERRUN/E OM LATCH Rx ENABLE SYNC CHARACTER LOAD INHIBIT ADDRESS SEARCH MODE (SDLC) Rx CRC ENABLE ENTER HUNT MODE AUTO ENABLES o o 0 1 1 0 1 1 Rx Rx Rx Rx 5 BITS/CHARACTER 7 BITS/CHARACTER 6 BITS/CHARACTER 8 BITS/CHARACTER • Write Register 4 ·WITH POINT HIGH COMMAND (D 5D.D3=00I) D7 D6 D5 D. 0 0 1 1 0 0 1 1 0 1 0 1 D2 1 1 0 0 1 1 0 1 0 1 Dl I Do I L Lp • Write Register 1 EXT INT ENABLE Tx INT ENABLE PARITY IS SPECIAL CONDITION o 0 Rx INT DISABLE o ~R I§lJ'A~'i'AtI~~~8fi.1~~CTER I-"--t-"-O"WRT SO::E~h.LL RCOCNHD1~tocNTERS 1 1 Rx!NT ON SPECIAL CONDITION L.....:O....L.....::.....JONLY WAIT/DMA REQUEST ON RECEIVE/TRANSMIT WAIT/DMA REQUEST FUNCTION WAIT/DMA REQUEST ENABLE D3 0 1 0 1 ARITY ENABLE PARIT Y EVEN/ODD SYNC MO DES ENABLE 1 STOP BIT /CHARACTER 11/2 STOP BITS/CHARACTER 2 STOP BITS/CHARACTER 8 BIT SYNC CHA RACTER 16 BIT SYNC CH ARACTER SDLC MODE (011 11110 FLAG) EXTERNAL SYN C MODE Xl CLOCK MODE x16 CLOCK MODE X32 CLOCK MODE X64 CLOCK MODE -~-~----SHARP'-'---------' 471 ,LH8530/LH8530A Z85.30/Z8530A Serial Communications Controller • Write Register 5 Tx CRC ENASLE RTS SDLC/CRC·16 Tx ENABLE SEND BREAK Tx 5 BITS (OR LEssl/CHARACTER ~-+-7-I 1---:'--+-7-1 Tx 7 BITS/CHARACTER 1, 0 Tx 6 BITS/CHARACTER 1 1 Tx 8 BITS/CHARACTER DTR Write Register 6 ID,I"' I D'~' ID~", ID, ID.I I . SYNC 7 SYNC! SYNC7 SYNC3 ADR7 ADR7 • SYNC, SYNCo SYNCs SYNC2 ADRs ADRs I SYNCs SYNCs SYNCs SYNC! ADRs ADRs I I SYNC. SYNC. SYNC. S.YNCo ADR. ADR. I I I I SYNC3 SYNC3 SYNC3 1 ADR3 SYNC2 SYNC2 SYNC2 1 ADR2 x x SYNC! SYNC! SYNC! 1 ADRI x 1 SYNCo MONOSYNC, 8 BITS SYNCo MONOSYNC, 6 BITS SYNCo BISYNC, 16 BITS BISYNC, 12 BITS 1 ADRo SDLC,8 BITS x SDLC,4 BITS (ADDRESS RUN) Write Register 7 ID, ID.I D'~:, for the data. Similarly, an input port does not indicate that it is ready for new data until the data source indicates that the previous byte of the data is no longer available, thereby acknowledging the . input port's acceptance of the last byte. This allows the LH8536 to interface directly to the port of a Z8 microcomputer, a UPC, an FlO, an FIFO, or to another CIO port with no external logic. i A 4·bit deskew timer can be inserted in the Data Available (DA V) output for output ports. The deskew timer guan,mtees that the output data is valid for a specified minimum amount of time. , Deskew timers are available for output ports in· dependent of the type of handshake employed. (5) Strobed handshake. In the Strobed handshake, mode, data is "strobed~' into or out of the port by the external logic. Fig. 1 shows timing for the Strobed handshake. IN contrast to the Interlocked handshake, the signal indicating the port is ready for another data transfer operates independently of the ACKIN input. It is up to the external logic to ensure that data oyerflows or under· flows do not occur. PCo Bit 110 Bit 110 DAC(O) RFD(I) -IN/OUT(I/O) at'the same time if RFQUESTlW AlT. INPUT HANDSHAKE DATA ~~______________ ACKIN (INPUT) STROBED HAND j RFD ---t-"o<:::\ SHAKE-Y--- -.,.--(OUTPUT) DATA MOVEDINTERLOCKED DATA LATCHED TO INPUT HANDSHAKE IN BUFFER REGISTER REGISTER OUTPUT HANDSHAKE DA fA ---1 ACKIN (INPUT) NEXT BYTE DESKEW TIME Jfr---- DAV , (OUTPUT) BUFFER NEXT BYTE HANDSHAKE REGISTER SHIFTED FROM "EMPTIED" OUTPUT REGISTER TO BUFFER REGISTER LSTROBED Fig.1 Interlocked and strobed handshakes ~.-----....--.-SHARP-.--------- 483 Z8536/Z8535ACounter/Timer and Parallel 1/0 Unit . (6) 3-wlre handsha~e . . The 3-wire handshake is designed for the ~itua- ' tion in which one output port' is communicating' with many input ports simultaneously. It is essen: tially the' same as the lnterlocked handshake, except that two signals are used to indicate if an input. port is ready for new data or if it has accepted the 'present data (Fig. 2). With the 3-wire handshake, the output lines of many input ports can be bussed together with open-drain drivers; the output port knows when all the ports have accepted the data and are ready. This is the same handshake as is used on the IEEE-488 bus. Because this handshake requires three lines, only one port (either A or B) can be a 3:wire handshake port at a time. The 3wire handshake is not available for the bidirectional mode. Because the port's direction can be changed under software control, however, bidirectional IEEE488·type transfers can be performed. INPUT HANDSHAKE DATA ~~____________ DAV (INPUT) RFD ---'-+1""'(OUTPUT) ~ ____+-__.J DAC (OUTPUT) DATA SHIFTED TO INPUT REGISTER OUTPUT, HANDSHAKE DATA ____________~,~N~E~X~T~B_Y~T_E_ RFD (INPUT) --:--:-:::-=-:::~---J DAC (INPUT) DAV (OUTPUT) NEXT BYTE BUFFER REGISTER SHIFTED FROM OUTPUT REGISTER TO "EMPTIED" BUFFER REGISTER Fig.2 3-wire handshake (7) Pulsed handshake The Pulsed handshake (Fig. 3) is designed to interface to mechanical-type devices that require data to be held for long periods of time and need relatively wjde pulses to gate the data into or out of the device. The logic is the same as the Inter· locked handshake mode, except that an internal . LH85361LH8q36A . counter/timer is linked to /the handshake logic. The counter/timer maintjlins all of its n:ormal capabilities. This handshake is not available for bidirectional ports. INPUT PORT ACKIN ACKIN OUTPUT PORT __ DA V ~TRIGGER ' INPUr _ Fig. 3 COUNTER~ _ ' _ . D AV OUTPUT C/T3 . . Pulse handshake (8) Pattern-recognition logic operation Both Ports A and B can be programmed to generate interrupts when a specific pattern is recognized at the port. The pattern:recognition logic is indePendent of the port application, thereby allowing the port to recognize patterns in all of its configurations.. The pattern can be independently specified for each bit as 1, 0, rising edge, falling edge, or any transition. Individual bits may be masked off. (9) Bit port pattern-recognition operations During bit port 'operations, pattern-recognition may be performed on all bits, including those used as 110 for the counter/timers. The pattern-recognition logic of bit ports operates in two basic modes: transparent and latched. In transparent mode, the interrupt indicates that a specified pattern has occurred~ but a read of the Data register does not necessarily indicate that state of the port' at the time the interrupt was , generated. In the Latched mode, the state of all the port inputs at the time the interrupt was generated is latched in the input register and held until IP is cleared. (10) Counter/timer operation The three independent 16-bit counter/timers consist of a presettable Hi-bit down counter, a 16' bit Time Constant register, a 16-bitCurrent Counter register, an 8·bit Mode Specification register, an ,8-bit Command and Status register, and the associated control logic that links these registers. The flexibility of the counter/timers is enhanced by ,the provision of up to four lines per counter/ timer (counter input, gate input,. trigger input, and counter/timer output) for direct external control and status. Counter/Timer l's external I/O lines are -------I------SHARP,--~.---~-- 484 Z8536/Z8536A Couner/Timer and Parallel 1/0 Unit 2's trigger, gate, or counter input. When linked, the counter/timers have the same capabilities as when used separately. The only restriction is that when Counter/Timer 1 drives Counter 2's count input, Counter/Timer 2 must be programmed with its external count input disabled. There are three duty cycles available for the timer / counter output: pulse, one-shot, and squarewave. Fig. 4 shows the counter/timer waveforms. Counter/timer operations require loading the time constant value in the Time Constant register and initiating the countdown sequence by loading the down-counter with the time constant value. The Time Constant register is accessed as two 8bit registers. The registers are readable as well as writable, and the access order is irrelevant. Once the down-counter is loaded, the countdown sequence continues toward terminal count as long as all the counter/timers' hardware and software gate inputs are High. If any of the gate inputs Low (0), the countdown halts. It resumes when all gate inputs are 1 again. provided by the four most significant bits of port B. Counter/Timer 2's are provided by the four least significant bits of Port B. Counter/Timer 3's external 110 lines are provided by the four bits of Port C. The utilization of these lines (Table 2) is programmable on a bit-by·bit basis via the Counter/Timer Mode Specification registers. Table 2 Counter/timer external access Function Counter ITimer Output Counter Input Trigger Input Gate Input CIT! PB4 PB5 PBG PB7 C/T2 PBo PBI PB2 PB3 LH8536/LH8536A C/T3 PCo PCI PC2 PC3 Lines used for counter/timer 110 have the same characteristics as simple input lines, they can be specified as inverting or noninverting; they can be read and used with the pattern· recognition logic. They can also include the 1 's catcher input. Counter/Timers 1 and 2 can be linked inter· nally in three different ways. Counter/Timer l's output (inverted) can be used as Counter/Timer. PCLK/2aR~~ caUNTERINPUT . TRIGGER ~ GATE -------, L-J fI TC ! TC / TC-l/TC-l!TC-2/ .... I I ! PULSE OUTPUT all r-l --------Irr------J '-,I ONE SHOT OUTPUT SQUARE WAVE OUTPUT (FIRST HALF) - - - - - - - - - - - - - 1 ( 1 1 - 1_ _.....J SQUARE WAVE OUTPUT - - - - - - - - - - - - - - - f f l f f - - - - - - , (SECOND HALF) Fig.4 Counter/timer waveforms 485 , , , ," , ". , \ , LH8536/LH8536A' Z8636/4853SA C.ount~r/Timer and Parallel 1/0,Unit • Internal Registers The followings, illustrate the contents of the registers and, In addition, given to register, address summary. • Master Interrupt Control Register (MICR) AIIdress : 000000 (Read/Write) I'~I~I~I~I~I~I~I~I MASTERmTERRUPT~ ENABLE (MfE) DISABLE LOWER CHAIN (DLC) I I NO VECTOR (NV) I LL= , PORT A VECTOR INCLUDES STATUS (PA VIS) PORT B VECTOR INCLUDES _ _ _ _ _----' STATUS (PB VIS) • ILRESET LRIGHT JUSTiFIED ADDRESSES 0= Si-lIFT LEFT (Ao from AD!) 1 = RIGHT JUSTIFY(Ao from ADo) COUNTER/TIMERS VECTOR INCLUDESSTATUS(CT VIS) Master Configuration Control Register (MCCR) Address: 000001 ( Read/Write) dJj I I D( I D61 D51 D.I D31 D2ID! I Do COUNTER/TIMER \ PORT B ENABLE (PBE).J ~ LINK CONTROLS (LC) LCI LCO - 0 -0- COUNTER/TIMERS INDEPENDENT 0 1 CIT l's OUTPUT GATES CIT 2 1 0 CIT 1> OUTPUT TRIGGE~S CIT 2 ,1 CIT 1 s OUTPUT IS CIT 2 s COUNT INPUT PORT A ENABLE (PAE) PORT LINK CONTROL (PLC) 0= PORT,S A AND B OPERATE INDEPENDENTLY 1 = PORTS A AND B ARE LINKED COUNTER/TfMER 1 ENABLE (CT,IE), COUNTER/TIMER 2 ENABLE (CT2E) PORT C AND COUNTER/TIMER 3 ENABLE (PCE AND CT3E) • Port Mode Specification Register (PMSR) Addresses: 1100000 Port A 101000 Port B (Read/Write) 1L I~I~I~I~I~I~I~I~I PORT TYPE PTS 1 PTS 0 SELECTS {PT o 0 BIT PORT o 1 INPUT PORT 1 0 OUTPUT PORT 1 1 BIDIRECTIONA L PORT INTERRUPT ON TWO BYTES '(ITB) SINGLE BUFFERED MODE (S B) INTERRUPT ON MATCH ,ONL Y IMO) ~J . LATCH ON PATTERN MATCH (LPM) BIT MODE) DESKEW TIMER ENABLE (DTE) HANDSHAKE MODES) PATT:ERN MODE SPECIFICATION BITS (PMS) PMSI P MS'O --DISABLE PATTERN MATCH 0 0 "AND"MODE 1 0 "OR" MODE 1 1 1 " OR PRIORITY ENCODED 1 VECTOR" MODE , ~~~~~,~'-~SHARP~~~--'-""""'----- 486 Z8536/Z8536A Counter/Timer and Parallel I/O Unit • LH8536/LH8536A Port Handshake Specflcation Registers (PHSR) 'Addressess : 100001 Port A 101001 Port B ----'-T (ReadIWrite) I~I~I~I~I~I~I~I~I HANDSHAKE TYPE SPECIFICATION BITS (HTS)----.J HTSO HTSI -o o INTERLOCKED HANDSHAKE o 1 STROBED HANDSHAKE 1 o PULSED HANDSHAKE 1 1 THREE-WIRE HANDSHAKE DESKEW TIME SPECIFICATION L---BlTS SPECIFIES THE MSB's OF DESKEW TIMER TIME CONSTANT. LSB IS FORCED 1. REQUEST/WAIT SPECIFICATION BIT(RWS) RWS 2 RWS 1 RWS 0 FUNCTION .. --0- --0- -O-REQUESTIWAIT DISABLED o o • I 1 1 0 1 0 0 1 1 1 1 0 1 OUTPUT WAIT INPUT WAIT SPECIAL REQUEST OUTPUT REQUEST INPUT REQUEST Port Command and Status Registers (PCSR) Addresses: 001000 Por A 001001 Por B (Read/Partial Write) . I II D71 D61 Dsl D.I D31 D21Dl Do INTERRUPT UNDER I SERVICE (IUS)--" INTERRUPT ENABLE (IE) • INTERRUPT PENDING (Ip) IUS. IE·, AND IP ARE WRITTEN USING THE FOLLOWING CODE: I I III NULL CODE 0 0 0 CLEAR IP & IUS 0 0 1 SETIUS 0 1 0 CLEAR IUS 0 1 1 SET IP 1 0 o· CLEARIP 1 0 .1 SET IE 1 ~ 0 CLEAR IE 1 1 1 L,NTERRUPT ON ERROR (IOE) PATTERN MATCH FLAG (PMF) (READ ONLY) . INPUT REGISTER FULL (IRF) (READ ONLY) OUTPUT REGISTER EMPTY (ORE) (READ ONLY) '-------INTERRUPT ERROR (ERR) (READ ONLY) . \ . ~'-~--'-----SHARP'----'-'---""-- 487 ---..... ........... - Z8~6iz8536A6dunt~r/Timer and ~ • Data Path Polarity Registers (DPPR) _ ..... ............... ...,............-. Parallel' I/O Unit ilH8536/lH8536A Special 1/0 Contr.ol Registers (SIOCR) • Addresses: 100010 Port A Addresses: 100100 Port A 101100 Port B 101010 Port B 000101 Port C (4 LS B s only) 00Q111 Port C (4 LSBs only) (Read;Write) (Read/Write) I~I~I~I~I~I~I~I~I I. 1~1~1~1~1~1~1~1~1 , i DATA PATH POLARITY (DPP) 0= NON-INVERTING 1 = INVERTING SPECIAL INPUT/OUTPUT (SIO) 0= NORMAL INPUT OR OUT PUr . 1 = OUTPUT WITH OPEN DRAIN -OR INPUT WITH I's CATCHER • • Port Data Registers (PDR) Addresses: 001101 Port A" 001110 Port B" (Read/Write) Data Direction Registers (DDR) Addresses: 100011 Port A 101011 Port B 000110 Port C (4 LSBs only) ( Read/Write) • Port C Data Registers (PC DR) Address: 001111" ( Read/Write) I DATA DIRECTION (DD) 0= OUTPUT BIT 1 = INPUT BIT "These registers can be addressed directly. 4 MSBs WRITING OF CORRESPONDING LSB ENABLED 1 = WRITING OF CORRSPONDING LSB INHIBITED (READ RETURNS 1) o= • Pattern Polarity Registers (PPR) Addresses :·100101 Port A 101101 Port B (Read/Write) • I D71 Dol Dsl D41 D31 D,I 011 Do I 1 Pattern Transition Registers (PTR) Addresses: 100110 Port A 101110 PortB (Read/Write) • PM PT PP PATTERN SPECIFICATJ4)N 0 X BIT MASKED OFF o 1 X ANY TRANSITION o o o .1 1 Pattern Mask Registers (PMR) Addresses: 100111 Port A. 101111 Port B ( R ead/W rite) 1 1 0 (iERO lONE 0 ONE TO ZERO TRANSITION(~) 1 ZERO-TO-ONE TRANSITION (l') I~I~I~I~I~I~I~I~I ·LI____ -------~SHARP-.-------.-. ........... -~ 488 Z8536/Z8536A Counter/Timer and Parallel I/O Unit • LH8536/LH8536A Counter/Timer Command Status Registers (CTCSR) Addresses: 001010 Counter/Timer 1 001011 Counter/Timer 2, 001100 Counter/Timer 3 ( ead/Partial Write) I~I~I~I~I~I~I~I~I INTERRUPT UNDER SERVICE (IUS) ~I ~ COUNT IN INTERRUPT ENABLE (IE)-. INTERRUPT PENDING (IP) IUS, IE, AND IP ARE WRITTEN USING THE FOLLOWING CODE: NULL CODE CLEAR IP & IUS SET IUS CLEAR IUS SET IP CLEARIP SET IE CLEAR IE • 0 0 0 0 1 1 1 1 0 0 1 1 0 0 1 1 . 0 1 0 1 0 1 0 1 ~ PROGRESS (CIP) (READ ONLY) TRIGGER COMMAND BIT (TCB) (WRITE ONLY READ RETURNS 0) GATE COMMAND BIT (GCB) ' - - - - - - READ COUNTER CONTROL (RCC) (READ/SET ONLY CLEARED BY READING CCR LSB) ' - - - - - - - - - INTERRUPT ERROR (ERR) (READ ONLY) CounterlTimer Mode Specifications Registers (CTMSR) Addresses: 011100 Counter/Timer 1 011101 Counter/Timer 2 Counter/Timer 3 (Read/Write) . I~I~I~I~I~I~I~I~I J JI CONTINUOUS SINGLE CYCLE (C/SC) EXTERNAL OUTPUT ENABLE (EOE) EXTERNAL COUNT ENABLE (ECE) EXTERNAL TRIGGER ENABLE (ETE) EXTERNAL GATE ENABLE (EGE) • 1\ ---,-OUTPUT DUTY CYCLE L....SELECTS (DCS) DCS 1 DCSO 0 0 PULSE OUTPUT 0 lONE-SHOT 0lJ TPUT 1 0 SQUARE-WAVE OUTPUT l I D O NOT SPECIFY RETRIGGER ENABLE BIT (REB) CounterlTimer Current Count Registers (CTCCR) Addresses: 010000 Counter/Timer 010001 Counter/Timer 010010 Counter/Timer 010011 Counter/Timer 010100 Counter/Timer 010101 Counter/Timer (Read Only) l's l's 2' s 2' s 3' s 3' s MSB LSB MSB LSB MSB LSB I~I~I~I~I~I~I~I~I~I~I~I~I~I~I~I~I MOST SIGNIFICANT BYTE-------'I IL-----LEAST SIGNIFICANT BYTE 489 Z85361Z8536A Counter1Timer and Parallel 110 Unit , LH8536/LH85.36A • C6unterITimer Time Constant Registers (CiTCR) Addresses: 010110 010111 011000 011001 . 011010 011011 Counter/Timer l's MSB Counter/Timer l's LSB Co~nt~r/Timel' 2' s MSB Counter/Timer 2' s LSB Counter/Timer 3' s MSB Counter/Timer 3' s LSB (Read/Write) I D71 D61 D51 D.I D31 D21 DII Do I D71 D61 D51 D41 D31 D21 DI I Do I MOST SIGNIFICANT BYTE I • Interrupt Vector Register (lVR) Addresses: 000010 Port A 000011 Port B 000100 Counter/Timers (Read/Write) I~I~I~I~I~I~I~I~I L-,--LEAST SH;NIFICAi-n • Counter/Timer Status • D2 0 0 1 1 01 0 0 C/T3 C/T2 CITI 1 Error 1 .. I INTERRUPT VECTOR • Port Vector Status (1) x (2) Priority Encoded Vector Mode X X All Other Mode ORE IRF PMF o 0 0 490 Number of highest priority bit with a match Normal Error • Current yector Register (CVR) .Address : 011111 (Read only) 10 71 0 61 D51 D41 031 021 DilDo I I INTERRUPT VECTOR BASED ON HIGTEST PRIORITY UNMASKED IP. IF .NO INTERRUPT PENDING. ALL 1's OUTPUT. BYT~ Serial Parallel Combination Controller LH8571 • Serial Parallel Combination Controller Description The LH8571 (SPCC71) is a peripheral interface device for general purpose microcomputer systems with two main control functions for an RS232C interface and Centronics interface, all within a single LSI chip. The LH8571 provides a serial port for transferring data in asynchronous mode-and an 8-bit parallel port with handshaking function as a Centronics interface. The LH8571 has 24 commands for controlling these ports. The commands not oI?ly control the operation of RS23.2C teminal units and printers, but handle various utilities (e.g.,code conversion) necessary for these units. Accordingly, the CPU needs merely to specity an operation through the commands, thus significantly reducing the CPU's load in handling 110 units through the program, and eventually reducing the amount of memory needed for storing the program. The LH8571 controls the peripheral unit control lines (e.g.,RTS and CTS of RS232C interface) according to the status oj the units, instead of by software control from the CPU. Consequently, the system designer can configure the interface merely by connecting buffer devices and connectors. • LH8571 • Pin Connections -+5V PCLK 2 o RxD TxD DTR CTS INTACK 6 RD 7 DCD RTS SLCT INPUT PRIME BUSY CS GND WAIT FAULT ACKNLG DATA STROBE _ DB7 DATAs DB6 DATA7 DB5 DATA6 DB. DATAs DBa DATA. DB2 DATAa DBI DATA2 DBo DATAl Top View Features 1. Asynchronous data transfer serial port • RS232C interface can easily be realized. 2. Printer control parallel port • Centronics interface can easily be realized. 3. Data transfer and conversion functions by command. • 24 commands. 4. Data conversion function . • Serial parallel conversion. • Binary-ASCII conversion. • Intel hex, format acceptable for data input/ output. , 5. 128-byte data transfer bufter. • Useful for the serial port and parallel port. 6. Non-multiplexed bus interface. 7. 40-pin dual-in-line package. 8. Single + 5V power s~pply. 491 , LH8571 Serial Parallel Combination Controller • Block Diagram Data Bus Data Bus Internal Control Logic Chip Interrupt Request Interrupt Acknowledge Interrupt Enable In Interrupt Enable Out 492 5 6 4 3 Buffer 128 Bytes LH8571 Serial Parallel Combination Controller • Pin Description Meaning Pin DBo-DB7 AID RD WR CS WAIT -INT • Data bus Address/ data select Read write Chip select Wait , Interrupt request lIO Bidirectional 3-state I I I I 0 0 INTACK Interrupt acknowledge I IEI Interrupt enable input I lEO DATA1-DATA g DATA STROBE BUSY ACKNLG FAULT INPUT PRIME SLCT RxD TxD RTS CTS DTR DCD PCLK Interrupt enable output Output data Data strobe Busy Acknowledge Fault Prime input Select Received data Transmitted data Transmission request Transmission enable Data'terminal ready Reception enable Clock 0 0 0 I I I 0 I I 0 0 I 0 I I Function System data bus Address/ data select signal Active low. Indicate the system in read operation. Active low. Indicate the system in write operation Active low. Chip selection signal Active low, open-drain. Used to synchronize with CPU. Active low, open-drain. Indicate interrupt request to input. Active low. Indicate interrupt acknowledge cycle. Active high. Used to form interrupt priority arbitration loop circuit (daisy chain). Active high. Used to form daisy chain. Output data Active low. Indicate settlement of data. Active high. Indicate printer in operation. Active high. Acknowledge signal from printer. Active low. Indicate printer inoperable. Active low. Printer initializing signal. Active low. Printer selection signal. Receiving data line. Transmitting data line. Active low. Indicate readiness for dflta transmission. Active low. Indicate data transmission is possible. Active low. Data transmission request signal. Active low. Indicate data reception is possible. Single-phase clock. Need not be same as CPU clock. Absolute Maximum Ratings Parameter Input voltage * Output voltage * Operating temperature Storage temperature Symbol VIN VOUT Topr Tstg Ratings -0.3-+7 -0.3-+7 0-+70 -65-+150 Unit V V "C "C * The maximum applicable voltage on any pin with respect to GND. +5V From output under test Standard test load ---------~--.---SHARP ---.------.-, 493 LH8571 Serial Parallel Combination Controller • DC Characteristics Parameter Clock input high voltage Clock input low voltage Input high voltage Input low voltage Output high voltage Output low voltage Input leakage curreot Output leakage current Current consumption • (1) No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 (Vee=5V±5%, Ta=0-+70t) Test Conditions Symbol VeH VCL VlH VIL VOH VOL I IIL IloL Ice I I IOH=-250,..A IOL=2mA 0;;;; VIN;;;;5.25V 0;;;; VIN;;;;5.25V AC Characteristics CPU interface timing Symbol TrC TwCh TfC TwCI TpC TsAlD(WR) TsAlD(RD) ThAlD(WR) ThAlD(RD) TsCSf(WR) TsCSf(RD) TsCSr(WR) TsCSr(RD) ThCS(WR) ThCS(RD) TsDI(WR) Tw(WR) Tw(RD) ThWR(DI) TdRD(DI) ThRD(DI) TdRD(DIz) TdRD(DBA) TdWR(W) TdRD(W) TdDI(W) Parameter Clock rise time Clock pulse width, high Clock fall time Clock pulse width, low Clock period AID setup time to WR ~ AID setup time to RD ~ AID hold time from WR t AID hold time from RD t CS low setup time to WR ~ CS low setup time to RD ~ CS high setup time to WR ~ CS high setup time to RD ~ CS low hold time from WR t CS low hold time from RD t Written data setup time to WR ~ WR pulse width RD pulse width W ritteo data hold time from WR t Delay time from RD ~ to valid data Written data hold time from RD t Delay time from RD t to data bus floating Delay time from RD ~ to readout data settlement Delay time from WR ~ to W AIT ~ Delay time from RD ~ to W AIT ~ Delay time from valid data to WAIT t Note : All AC output characteristics are based on the stated load conditions. Note 1: The delay time depends on the device status at the time of access by CPU. 494 MIN. 2.4 -0.3 2 -0.3 2.4 MAX. Vee '0.8 Vee 0.8 0.4 10 10 250 Unit V V V V V V ,..A ,..A mA (Vee=5V±5%, Ta=0-+70t) MIN. MAX. 20 105 20 105 250 80 80 30 30 0 0 60 60 0 0 0 390 390 0 0 70 0 150 150 0 Uoit ns ns ns os ns ns os ns os os os ns ns ns ns ns ns ns ns os ns ns os ns ns ns Note 1 Serial Parallel Combination Controller LH8571 PCLK AID DB o -DB 7 Write ----------+-----~~-I~ DB o-DB 7 Read ~~--_+--""fI1 CPU interface timing (2) Interrupt acknowledge timing No. 27 28 29 30 31 32 33 34 35 Note 2: Parameter Symbol INT ACK low setup time to RD TsACK(RD) TdRD(DI) MIN. ! Delay time from RD ! to valid vector lNT ACK low hold time from RD t ThRD(ACK) ThIEI(RD) 255 0 100 255 IEI hold time from RD t RD (Acknowledge) low pulse width TwRDI TdIEI(IEO) TdACK(IEO) TdADKr(IEO) 150 ! to lEO Delay time from lNT ACK hoIEO ! t Unit Note ns 2 ns ns ns ns 120 Delay time from IEI to lEO IEl setup time to RD ! Delay time from INT ACK TslEl(RD) MAX. 90 250 250 ns ns ns ns Interrupt arbitration loop circuit (daisy chain) is not used. Vector I--@ \ INTACK @i- f- - ) I ~@~ -®j @--.. f--- @- -K lEI rE-@~ lEO 1( I---@l----oo \ ~. 7 Interrupt acknowledge timing ---.-.----~--SHARP --.---------------495 , LH8Sn Serial Parallel Combination Controller (3) Reset timing Symbol TdRDQ(WR) TdWRQ(RD) No. 36 37 38 TwRES , .Parameter MIN. Delay time from,RD t (for suppressing reset) to WR Delay time from WR t (for suppressing reset) to, RD Minimum low width of WR and RD(for resetting) l l MAX. 40 ' 50 250 Unit ns ns ns Note 3 Note 3: The internal reset signal lags by 1/2 to 2 clocks behind external reset conditions. Reset timing (4) Serial port timing No. Symbol 39 TdTxC(T"xD) Note 4: Note, Parameter Delay time from sending clock transition to output data transition 4 Applies to all baud raets (110·9800 B) k TxC / TxD I ===========@=~-----------Serial port timing (5) No. Parallel port timing Symbol 40 TdACK (D) 41 TdD(DSTR) 42 TwDSTR Parameter Delay from ACKNLG l to data output Delay from data output to DATA STROBE DATA STROBE pulse width MIN. l ACKNLG DATAl K \ DATA. "'" "-" DATA STROBE , ~ f-@- f--@... Parallel port timing 496 'MAX. 13000 18000 6000 6000 Unit ns ns ns Note Serial Parallel Combination Controller • LH8571 Table 1 Register address Register The can be • • • LH8571 has the following registers which accessed externally (from CPU). Master interrupt control register (MIC) Data indirect register (DIND) Data status command registers (DSCO, DSCl, DSC2, DSC3, DSC4, DSC5 and DSC8) Register DSCO DSCI DSC2 DSC3 DSC4 DSC5. DSC8 DIND MIC Register address X X XOOOOO X X XOOOOI X X XOOOI0 X X X 00011 X X XOOI00 X X XOOI0l X X XOI000 X X X 10101 XXXI1110 Note: A7-A, is decoded and applied to CS, so that the location in the input/output address space is determined. Bits marked by 'x' are undefined. DSC31 D71 D61 Ds I D.I D3 I D21 DJ I Do I -,-,-,---,- L 01 Buffer overflow 1 0 Input characters are other than 0 - F . (Intel format only) 11 Check -sum error (Intel format only) 1 Printer unselect o 1 0 Printer paper out Cexternal" circuit required) 11 Printer fault T ransf er error Limit error Parity error I llegal command Fig. 1 Error flag (DSC3) Table 2 MIC register write code The master interrupt control register (MIC) is used to control the interrupt operation (see Fig. 2). Writing into the MIC register falls into two groups. Group 2 uses the write code shown in Table 2. Group D7 D6 0 0 0 0 0 1 0 1 1 0 1 0 1 1 1 1 2 . G~oup 1 Ds D2 Do 0 X X 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 Function Writing to Do and D2 Reset IP CDs) and IUS CD 6 ) Set IUS CD 6) Reset IUS CD 6 ) Set IP CDs) Reset IP CDs) Set IE (D7) Reset IE CD 7) 497 LH8571 Serial Parallel Combination Controller· 1TT. MIC L::::II=E:-,-II=U=sl~I=P:-LI_J.-...-"§==L=CJ...1~IC=S-:TI T ~Command execution start Lower chaining prohibited L - - - - - - - - - - I n t e r r u p t holding Interrupt under service Interrupt enabled Fig.2 Master interrupt control register • Programming Use the registers, DSCO, DSCl, DSC2, DSC3, DSC4, DSC5, and DSC8, to specify operation mode. The 24 types of commands are made valid by first writing a value corresponding to the desired command number into DSCO, then setting the CST bit on MIC. The registers DSCl, DSC2, DSC4, and DSC5 are used to specify parameters f()r each command. Command is used inspecifying serial data format using DSC2 (Fig. 3). The result of command execution is indicated on DSCO and DSC3. DSC3 indicates error status as shown in Fig. 1. DSC8 is used as a buffer register after command 22 or 23 is executed. Tables 3 and 4 show command functions versus registers. ° T ooc21~1~1~1~1~1~1~1~1 - - -:,-r- T. Parity mode o :Even parity 1 : Odd parity Number of data bits o : 7 bits 1 : 8 bits '-----~--- Baud rate (see Note) 000 : 1l0B 001 : 150B 010 : 300B 011 : 600B 100 : 1200B 101 : 2400B 110 : 4800B 111:9600B ' - - - - - - - - - - - - N u m b e r of stop bits of transmission o : 1 bit 1 : 2 bits ' - - - - - - - - - - - - - I n t e r r u p t mode o : Interrupt enabled 1 : Interrupt disabled ' - - - - - - - - - - - - - - - E c h o back o : Echo back mode 1 : Echo back disabled Note: The baud rate described above is for PCLK=4.0MHz Fig. 3 498 Serial data format (DSC2) LH8571 Serial Parallel Combination Controller Table 3 Command function and writing register contents ~ Code DSCO 0 OOH 1 01H 2 02H Number of output bytes 3 03H Number of output bytes 4 04H 5 05H Number of bytes of block transfer 6 06H Number of output bytes Output starting address 7 07H Number of output bytes Output starting address 8 08H Number of output bytes Output starting address 9 09H Number of output bytes Output starting address 10 OAH Number of output bytes Output starting address 11 OBH Number of output bytes Output starting address 12 OCH Number of iutput bytes Nunber of output bytes 13 ODH Command DSCI Parameter DSC4 DSC2 Transfer for· mat and oper· ating mode Stop character DSC5 Function Remarks Specify transfer format and operating mode. Output serial·input data to Stop character is spe· Centronics printer until cified by DSC2. the stop character arrives. Operaion stops upon de· Output serial·input data to tection of Control C (hex Centronics printer. 03). Output buffer area con· Load address Load address Address information tents to serial port in Intel (high order byte) (low order byte) of data is appended. format Read Intel format data on serial port and store in buffer area. Initialize block transfer between master CPU and buffer area. Operation stops upon de· Output data in buffer area tection of Control C (hex via serial port. 03). Operation stops upon de· Output data in buffer tectiOD of Control C (hex area to printer 03). Convert binary data in buffer area into ASCII and output via serial port. Convert binary data Display address Display address in buffer area into Address information (high order) (low order) ASCII and output via of data is appended. serial port. Convert binary data in buffer area into ASCII, and output to printer. Convert binary data Display address Display address in buffer area into Address information (high order) (low order) ASCII, and output to of data is appended. printer. Read ASCII data on se· rial port and store in buffer area. Read Intel format data Used when a reader on serial port and store is connected to serial in buffer area. port. .-....-------SHARP-.-~~----- 499 Serial Parallel Combination Controller ~ Code DSCO 14 OEH 15 OFH Number of output bytes 16 10H Number of input bytes 17 11H Number of output bytes IS 12H 19 13H 20 14H 21 15H 22 I6H 23 17H Command DSCI Parameter DSC4 DSC2 LH8571 DSC5 Function Read ASCII data on serial port until arrival of CR code. Convert data in buffer Load address Load address area into Intel format, (low order byte) (high order byte) and output via serial port. Read binary data on Output character serial 'port into buffer area for storage. Output data in buifer area , via serial ports. Output starting address Output character Remarks After CR reception, CR and LF codes are sent out via serial port. Used when a puncher is connected to serial port. Used when a reader is connected to serial port. Used when a puncher is connected to serial port. Opertion stops upon detec· tion of hex 03. Output null codes via 256 null codes out· serial port. putted. Output EOF in Intel for· mat ( : 00000001 FF) via serial port. Used when a puncher Output null codes via is connected to serial serial port. port. Output EOF in Intel for· Used when a puncher mat ( : 00000001 FF) via is connected to serial serial port. port. Read I-byte data on Data is stored in serial port. DSCS. Output data written Data needs to be set in DSCS by CPU via in DSCS prior to exserial port. ecution. --.-.--------SHARP----.-.-.-.--- 500 Serial Parallel Combination Controller Table 4 ~ Cornman 0 1 2 3 Register contents after command execution (readout register) Parameter Code DSCO 1* LH8571 DSCI DSC3\ DSC2 00 01 02 03 2* 80 81 82 83 3* COH Cl~ C2~ C3H 4 04 84 C4H 5 6 7 8 9 10 11 12 05 06 07 08 09 OA OB OC 85 86 87 88 89 8A 8B 8C C5H C6H C7~ C8.H C9H CA~ CB~ CCH 13 OD 8D CDH 14 OE 8E CEH Error status 15 16 17 18 19 20 21 22 23 OF 10 11 12 13 14 15 16 17 8F 90 91 92 93 94 95 96 97 CFA DOH DIH D2H D3H D4H D5H D6H D7H Error Error Error Error Error Error Error Error Error Note 1: Note 2: 1 *: 3 *: Error Error Error Error Number of bytes input+20H status status status status Value before command execution (command code value) 2 *: Value upon normal completion of command ex· ecution. DSC5 Load address (high order byte) Load address (low order byte) Load address (high order byte) Number of bytes flag· input+20H flag flag flag flag flag flag flag flag flag Load address (low order byte) flag flag flag flag Error status flag Error Error Error Error Error Error Error Error Number of bytes input+20H DSC4 status status status status status status status status flag flag flag flag flag flag flag flag Error status flag Note 3: status status status status status status status status status If FAULT input becomes low (printer error) during command execution, LH8571 suspends operation un· til FAULT returns to high (error recovery). At this time, DSCO has bit 6 set and bit 7 reset. Value upon abnormal completion (error) of command execution. These are common to all commands. For error status flag value, see Fig.I. 501 LH8572 • The LH8572 (SPCC72) is a peripheral device for general purpose microcomputer systems to perform asynchronous serial data tansfers and control of Centronics compatible printers. It supports full duplex asynchronous serial data transfers. The transfer conditions such as the baud rate and character length can be set by the program. Further, it is equipped with a control 1/ o terminal for simple organization of the various types of modem interfaces. The Receive Buffer has a double buffer structure so that the master CPU can easily perform reading and writing of data. A printer control 1/0 terminal is available for easy connection to any printer which is Centronics compatible. A handshake line and control for other I/O lines is supported. A 128-byte printer data buffer memory having an· FIFO structure is provided within the LH8572. Efficient use of the printer unit by the master CPU is made possible with this buffer. hi this way, the LH8572 peripheral device for general-purpose microcomputers, was developed to efficiently perform serial data transfer and printer output control within a compact package. It is suitable for use in small systems such as personal computers which use printer units, RS232C terminal units and modem units. Features 1. Asynchronous Full Duplex Data Transfer • Character length of 5 to 8 bits • 1 or 2 stop bits • No parity bit or oddleven parity • False start bit or rejection (rejects spike noise in the mark line to prevent malfunction.) • Full duplex • Transmit buffer has double structure. .; Receive buffer has FIFO structure. • Error detection function, Parity error detection, Framing error detection, and Overrun error detection • Baud rates: 75, 110, 150, 300, 600, 1200, 2400, 4800 baud selectable 502 LH8572· .....,.-. .-.. Serial Parallel Combination Controller . Description • _.... __ ... Serial Parallel Combination Controller .-..-..-..-..-..-..-.....,.-:...,. • Pin Connections o RxD TxD DTR CTS OCD RTS NC INPUT PRIME BUSY CS GND WAIT FAULT ACKNLG DATA STROBE DB, DATAs DB6 DATA, DB5 DATAs DB4 DATA5 DB3 DATA4 DB2 DATA3 DB! DATA2 DBo DATA! Top View .2. Centronics Compatible Printer Control . • Furnishes printer interface signals compatible with Centronics specifications • Built-in handshake fUnction for data output • Internal buffer: 128-byte FIFO structure • Error detection: Printr fault error/Paper empty error 3. Vector Interrupt' • Able to generate an interrupt on various conditions such as Transmit Buffer empty, validity of received character, and Printer Output Buffer empty. • Interrupt vectors for Transmit, Receive, Printer and Error detection can be set individually. 4. Non-multiplexed bus interface 5. 40-pin dual-in-line package Serial Parallel Combination Controller • LH8572 Block Diagram Internal Control Logic Data Bus Data Bus ERR MSR CTL Print FIFO 128Bytes Chip TxS RxS PRS ECW LDE LOEI RL INCW INCW XOR XOR R"IM IR"IM 10,5 10,5 ----w:o rt. Ira 18,0 R"R, IR"R, R"IM IR"IM 10,5 ~ CLR XOR R, 6,5 IR, 6,5 rl. r, 12,0 RRC RRC LOC LOCI R, 6,5 IR, 6,5 Irra Jr. , IrTI 12,0 18,0 SRA LDC LDCI R, 6,5 IR, 6,5 R; . IR, CP CP CP XOR XOR ra.Irf. Ira ,ITT! 6,5 LO SWAP SWAP lrll CP IRET XOR RCF R 10,5 f •• X, d~'~L" 20,0 CALL DA 10,5 IRR, 10,5 10,5 LD R"R, LD LD 6,5 IR"R, 10,5 LO LO Irll Ta R"IR, f •• 10,5 LO t SRA IR, 8,5 14.0 RET IR" R, 10,5 CLR R, 8,5 10,5 R"R, 10,5 rl. Ta RR EI r •• Irz 6,5 IR, 6,5 RR 6T ro,5 CP Tl 01 10,5 CP 6,5 6T ~ SCF LD ra.x, R 10,5 - 6,5 CCF LD R"IM IR.. IM ----a.o NOP ~------------------~~------------------~~----~----~------------'~'~-------- Bytes per Instruction 2 3 Lower opcode nibble Execution cycles 1 Pipeline cycles 2 3 Legend: R = 8-Bit Address r = 4-Bit Address, R1 or r 1 = Dst address R2 or r2 = Src Address Sequence: Opcode, First Operand, Second Operand . Upper opcode _ _ A . nibble Note: The blank areas are, not defined. First operand Second operand "2·byte instrliction; fatch cycle appears as a 3·byte instruction, --~-~-----,'--SHAAP 536 - - - - .......... -.--..-..r-~ Z8590/Z8590A Universal Peripheral Controller LH8590/LH8590A (6) Instruction summary Instruction I Addr. mode and Operation I dst src (Note 1) AOC dst, src dst-dst+src+C ADD dst, src (Note 1) dst-dst + src AND dst, src (Note 1) dst-dst AND src CALL dst DA SP-SP-2 IRR @SP-PC; PC-dst CCF C-NOT C R CLR dst dst-O IR COM dst R dst-NOT dst IR CP dst, src (Note 1) dst-src OA dst R dst-DA dst IR DEC dst R dst-dst-l IR RR OECW dst dst-dst-l IR 01 IMR171-0 OJNZ r,dst r+-r-l if r+O PC-PC+dst Range' +127--128 EI IMR(7)-1 INC dst dst-dst+ 1 RA R IR RR IR INCW dst dst-dst+l IRET FLAGS-@SP;SP-SP+ 1 PC-@SP'SP-SP + 2'IM~(7)-1 JP cc, dst DA if cc is true PC-dst IRR JR cc, dst RA if cc is true, PC-PC+dst Ranl!e: +127--128 LO dst, src 1M r dst-src r R R r LOC dst, src dst-src LOCI dst, src dst-src r-r+ 1; rr-rr+ 1 LOE dst, src dst-src r Irr Byte (Hex) 10 X r Ir r R IR 1M 1M R Irr r Irr r Irr r Flags Affected CZSVOH ****0* 00 ****0* 50 -**0-- D6 D4 ------ EF *----- BO Bl 60 61 AO 40 41 00 01 80 81 8F rA r=O-F r r X r Ir R R R IR IR r Irr Ir Irr Opcode -**0-****-- Inst~~~ron I Addr. mode Operation I dst src LOEI dst, src Ir Irr dst-src Irr Ir r-r + l' rr-rr + 1 NOP (Note 1) OR dst, src dst-dst OR src POP dst R dst-@SP IR SP-SP+l R PUSH src SP-SP-l; @SP-src IR RCF C-O RET PC-@SP; SP-SP+2 R RL dst IR RLC dst -***--***-- Flags Affected CZSVOH 83 93 ----- FF 40 ------ 50 51 ------ -**0-- 70 71 CF 0 - AF ****-- '~7 o~ IR R 10 11 ****-- RR dst l.ru ~ ql R IR EO El ****-- RRC dst 4::D-I7 0~ R IR CO Cl ****-- 7 ----------- ------ rE r=O-F 20 21 AO Al BF -***-- SRA dst -***-- SRP src RP-src SUB dst, src dst-dst - src ****** cD c=O-F 30 cB c=O-F ------ rC r8 r9 r=O-F C7 D7 E3 F3 E4 E5 E6 E7 F5 C2 D2 C3 D3 ------ ------ (Note 1) SBC dst, src dst-dst-src-C SCF C-l 9F 82 92 Byte (Hex) 90 91 ~ * * * X-- Opcode 4:£Jr111 , SWAP dst ----------- ****1* DF 1----- of IRR DO Dl ***0-- 1M 31 ------ 20 ****1* FO Fl X**X-- (Note 1) 60 -**0-- (Note 1) 70 -**0-- (Note 1) BO -**0-- (Note 1) ~ TCM dst,src NOT dst) AND src TM dst,src dst AND src XOR dst,src dst-dst XOR src R IR Note 1: These instructions have an identical set of addressing modes, which are encoded for brevity. The first opcode nibble is found in the instruction set table above. The second nibble is expressed symbolically by a 0 in this table, and its value is found in the following table to the left of the applicable addressing mode pair. For example, to determine the opcode of an ADC instruction using the addressing modes r (destination) and Ir (source) is 13. Lower Addr Mode ------ 30 dst r src r Opcode Nibble [2] r R Ir [ill [i] R R IR R IR 1M 1M lID lID ill ~-------SHARP---------------- 537 Z8590/Z8590A Universal Peripheral Controller. • '. LH8590/LH8590A Register RO (DTC) Date Transfer Control Regist~r UPC register address (Hex): 00 I D7 I Da I Ds I D4 I D3 I D2 I Dl I Do I (EOM) 0 (IRP) 1 I/O register pointer = 1 1 =:End of message Disable data transfer =O _ _ _ _~(E=D:::X~):...J (LERR) Enable data transfer= 1 o =No limit error 1 =Limit error No transfer error= O_ _ _ _ _----oc(X""E=R:,.:.R"")c..J Transfer error= 1 R4 (LC) limit Count Register' R5 (DIND) Date Indirect Register UPC register address (Hex): 04 UPC register address (Hex): 05 I D7 IDa' I Ds ID4 ID3 ID2 IDl IDo I I~I~I~I~I~I~I~I~I ,-I-----Indirection address (Do=LSB) ,-I- - - - L i m i t count value (range: 0-255 decimal OO-FF Hex) R240 (MIV) Master CPU Interrupt Vector Register UPC register address (Hex): FO I~I~I~I~I~I~I~I~I LI------Vector data (Do=LSB) R241 (TMR) Timer Mode Register UPC register address (Hex): F 1 T OUT modes Reserved= 00 Toout=OI Tl out = 10 Internal clock out = 11 :=J TIN I!lodes - - - - - ' External clock input = 00 Gate input = 01 Trigger input(non-retriggerable) = 10 Trigger input (retriggerable) = 11 538 L.o =No function 1 =Load To - 0 =Disable To count 1 =Enable To count ' - - - - - 0 =No function 1 =Load Tl ' - - - - - - - 0 =Disable Tl count 1 =Enable Tl count Z8590/Z8590A Universal Peripheral Controller LH8590/LH8590A R242 (T1) CounterlTimer 1 Register R245 (PREO) Prescilier 0 Register UPC register address (Hex): F2 UPC register address (Hex): F5 I~I~I~I~I~I~I~I~I COUNT MODE 0= To SINNGLE-PASS I=ToMODULO-N RESERVED '--------PRESCALER MODULO (RANGE: 1-64 DECIMAL 01-00 HEX) LTI INITIAL VALUE (RANGE: 1-.258 DECIMAL 01-00 HEX) R243 (PRE1) Prescaler 1 Register R246 (P2M) Port 2 Mode Register UPC register address (Hex): F3 UPC register address (Hex): F6 I~I~I~I~I~I~I~I~I COUNT MODE 0= TI SINGLE PASS 1 = Tl MODULO· N CLOCK SOURCE o = EXTERNAL TIMING INPUT (TlN)MODE 1 = Tl INTERNAL ' - - - - - - - - PRES CALER MODULO (RANGE: }-64 DECIMAL 01-00 HEX) I P2o-P27 I/O DEFINITION o DEFINES BIT AS OUTPUT 1 DEFINES BIT AS INPUT R244 (TO) Counter/Timer 0 Register UPC register address (Hex): F 4 I~I~I~I~I~I~I~I~I L I - - - - - T o INITIAL VALUE (RANGE: 1-258 DECIMAL Oi-OO HEX) R247 (P3M) Port 3 Mode Register UPC register address (Hex): F7 I D71 D61 Ds] Dd DdD 2 ~ DI I Do I L o PORT 2 PULL-UPS 1 PORT 2 PULL-UPS o PORT 1 PULL-UPS 1 PORT 1 PULL-UPS o P3s= OUTPUT 1 P35= INT RESERVED o P33=INPUT 1 P33= DAVl!RDYI o P31= INPUT (TIN) 1 P 31 = DA V2!RDY2 o P30= INPUT 1 P3D = lEI o P32=INPUT 1 P32=INTACK OPEN DRAIN ACTIVE OPEN DRAIN ACTIVE P3. = OUTPUT P 3. = RDYI!DA VI P 36 = OUTPUT (T OUT) P 36 = RDY2!DAV2 P37= OUTPUT P37= lEO -.----------SHARP.....-..------.-.-- 539 ...........-....-..--------.-w.....--------Z859O'/Z859O'A Universal Peripheral Controller LH859O'/LH8590A I R248 (PIM) Port 1 Mode Register upe register address (Hex): F8 1~1~1~1~1~1~1~1~1 1'-------P1ocPb I/O DEFINITION o DEFINES BIT AS OUTPUT 1 DEFINES BIT AS INPUT , R249 (IPR) Interrupt Priority Register upe register address (Hex): F9 (Write Only) I D7 I D6 I Ds I D. RESERVED D3 I D2 I Dl I Do I I :J 1 = IRQ4 >IRQl INTERRUPT GROUP PRIORIT Y RESERVED = 00 0 C>A>B=OO 1 A>B>C=Ol 0 A>C>B=Ol 1 B>C>A=100 C >B >A =101 B >A >C =110 RESERVED = 111 IRQO, IRQ2 PRIORITY (GROUP B) o = IRQ2 >IRQO 1 = IRQO > IRQ2 IRQ3, IRQ5 PRIORITY (GROUP A) IRQ5 > IRQ3 1 = IRQ3 > IRQ5 o= R252 (FLAGS) Flag Ftegister R250 (IRQ) Interrupt Request .Register upe register address (Hex): FA I D7 D6 IRQl, IRQ4 PRIORITY (GROUP C) o = IRQl >IRQ4 ) upe register address (Hex): Fe I Ds I D. I D3 I D2 I D, I Do I I IRQO = MASTER CPU COMMUNICTAIONS '- IRQ1 = P33 INPUT - I R Q 2 = P3, INPUT IRQ3 = P30 INPUT IRQ4 = To IRQ5 =T, RES ERVED USER FLAG Fl USER FLAG F2 HALF CARRY FLAG DE;CIMAL ADJUST FLAG ' - - - - - OVERFLOW FLAG ' - - - - - - SIGN FLAG ' - - - - - - - ZERO FLAG '---------CARRYFLAG R251 (IMR) Interrupt Mask Register upe register address (Hex): FB R253 (RP) Register Pointer upe register address (Hex): FD I~I~I~I~I~I~I~I~I I D7 I D6 I Ds I D4 I D3 I D2 I D, I Do I ~~ , ENABLES ENABLES 1 ENABLES 1 ENABLES 1 ENABLES 1 ENABLES R ESERVED 1 ENABLES I IRQO IRQ1 IRQ2 IRQ3 IRQ4 IRQ5 I'-'..- - - - - - - - R E--DONT CARE GISTER ,-I POINTER (rrn) INTERRUPTS . -.--.--.-.-.-----SHARP ------.-.-------540' LH8590/LH8590A Z8590/Z8590A Universal Peripheral Cotroller R254 (MIC) Master CPU Interrupt Control Register UPC register address (Hex): FE o INTERRUPT 0- REQUEST DISABLED 1 INTERRUPT REQUEST ENABLED 1 END OF MESSAGE o WAIT ENABLE o NO INTERRUPT WHEN WRITE 1 WAIT DISABLE WHEN WRITE UNDER SERVICE 1 INTERRUPT UNDER SERVICE o NO ' - - - - 0 ENABLE LOWER CHAIN 1 DISABLE LOWER CHAIN MASTER CPU INTERRUPT PENDING 1 MASTER CPU INTERRUPT PENDING o VECTOR OUTPUT 1 NO VECTOR OUTPUT L . . - - - - - O DISABLE DATA TRANSFER 1 ENABLE DATA TRANSFER R255 (SP) Stack Pointer UPC register address (Hex): FF I~I~I~I~I~I~I~I~I C=STACK POINTER (SPO-SP7) .-.--.-----SHARP-~--~--.- 541 LH8591'1LH8591A Z8591/Z8591 A Development Device LH8591/LH8591A • Description The 64 pinLH8591 (Z8591) is the development version of LH8590 Z8590 UPC with internal mask-programmed RqM. This device allows user to prototype the system in hardware with an actual device and to develop the code that is eventually mask-programmed into the on-chip ROM of the LH8590. The LH8591 is identical to the LH8590 with the following exceptions. • The internal ROM has been removed. • The ROM address lines and data lines are buffered and brought out to external pins. • Control lines for the new memory have been added. The LH8591A is the high speed version which can operate at 6MHz system clock. • Z8S911Z8S91A Development Device Pin Connections +5V PCLK P3,/IEO P3o/IEI P35/INT P32/INT ACK 1 2 3 4 6 RD, WRs A/D 9 Ph 4 MDS 23 IACK,RD 24 PI. Top View 542 Z8591/Z8591 A Development Device • LH8591/LH8591 A Block Diagram Data Bus I/O I/O Interrupt Request 5 Interrupt Acknowledge 6 Interrupt Enable In Interrupt • Pin Description LH8591 has the same functions as those of a 40-pin device LH8590, and the functions of the additional 24 pins are as follows: Pin AD-All Do-D 7 IACK/MR -MAS -- MDS -- SYNC Meaning Program memory address Program data Interrupt acknowledge Imemory read lIO 0 I 0 Memory address strobe 0 Memory data strobe 0 Synchronization 0 Function Used for the access to the external memory of 4 K bytes. Reads the data through these lines from the external memory. Active high. This signal becomes high during interrupt or in· struction fetch cycle of LH8591. Active low. This signal is output every memory fetch cycle for the interface with the external ROM. Active low. This signal becomes low during instruction fetch cycle or write cycle. Active low. This signal becomes low at the clock cycle just before Op-code fetching. ----~--.-------SHARP--~-------- 543 LH8592iLH8592A Z8592/Z8592A Development Device LH8592/LH8592A • Description The 64 pin LH8592 (Z8592) is the development version of LH8590 Z8590 UPC with internal mask-programmed ROM. This device allows user to prototype the system in hardware with an actual device and to develop the code that is eventually mask-programmed into the on-chip ROM of the LH8590. The LH8592 is identical to the LH8590 with the following exceptions. • The internal ROM has been removed. (But there are 36 bytes internal ROM for a bootstrap program). • The ROM address lines and data lines are buffered and brought out to external pins . • Contorl lines for the new memory have been added. The LH8592A is the high speed version which can operate at 6MHz system clock. • Z85921Z8592A Development Device Pin Connections +5V 1 PCLK 2 P37/IEO P30!IEI P35/INT 3 MDS MR/W flACK 4 5 23 24 Top View ......... :-.-.--.-.~-SHARP--.-.-.-----544 Z8592/Z8592A Development Device • LH8592/LH8592A Block Diagram Data Bus I/O 1/0 Chip Interrupt Request 5 Interrupt Acknowledge 6 Interrupt Enable In 4 Interrupt Enable Out 3 +5V PCLK 1}-------------~ 2}---------------~ GND171}-----------------~~ Interrupt Acknowledge Output 24)--------------------~ • Pin Description LH8592 has the same functions as those of a 40-pin device LH8590, and the functions of additional 24 pins are as follows: Pin Ao-A 11 Do-D 7 Meaning Program memory address Program data I/O 0 lACK Interrupt acknowledge 0 MAS Memory address strobe 0 MDS Memory data strobe 0 Memory re,ad/write 0 Synchronization 0 - MR/W ---SYNC I Function Used for the access to the external memory of 4K bytes. Reads/writes the data through these lines from the external memory. Active high. This signal is always active during interrupt cycle of LH8092. Active low. This signal is output every memory fetch cycle for interfacing with the external RAM. Active low. This signal becomes low during instruction fetch cycle or write cycle. This signal is high during instruction fetching by LH8592, or low while writing into the external memory. Active low. This signal becomes low during clock cycle just before Op- code fetching. -----.-.---------SHARP . - . - - - - - - - - - 545 lH8593iLH8593A Z8593/Z8593A Protopack Emulator LH8'593/ LH859 3A, ~~~a:!593A • Description TheLH8593 (Z8593) is a ROM less version of the standard LH8590 (Z8590) housed in a pin compatible 40 pin package. The LH8593 carries a 24-pin soket for a direct interface to program memory. 2716 type EPROM can be used- for program memory. The -LH8593 allows the user to build the prototype and pilot production units. When the final program is established, the user can then switch over the LH8590. The LH8593A is the high speed version which can operate at 6MHz system clock. • Protopack Pin Connections o P37/IEO 3 P30/lEI 4 I;'3;/lNT 5 P32/INTACK 6 DBo Top View 546 LH8593/LH8593A Z8593/Z8593A Protopack Emulator • Block Diagram Program Data Input Program Memory Address Output *1*2*3r ' " ' Data Bus I/O I/O Chip Interrupt Request 5 Interrupt Acknowledge 6 Interrupt Enable In Int errupl Enable OUI *1 *2 *3 Program Memory Data Strobe Output System Clock Output Instruction Sync Output ~ : This is equipped witch ROM. • Pin Description LH8593 pins are compatible with those of LH8590 . For pin description, refer to those of LH8590. .-..-.-.--.---SHARP------~-~-- 547 ~8594/Z8594A Protopack Emul;:ltor LH8594/LH8594A LH8594/LH8594A ~:=5S:A Protopack • De.scription The. LH8594(Z8594)is a RAM version (16K bits RAM) of the standard LH8590, housed in a pin compatible 40 pin package. The LH8594 carries a 24-pin soket for a direct interface to program memory, and has 36 bytes of internal ROM for a bootstrap program. This device allows the user to build the prototype, and when the final program is established, the user can then switch over the LH8590. The LH8594A is the high speed version which can operate at 6MHz system clock. • . Pin Connections 0 P36 P37/IEO 3 P27 P30/lEI 4 P26 P35! INT 5 P25 P32/INTACK 6 P2. P23 P22 P2, P33 P3. Ph PIs Top View 548 LH8594/LH8594A Z8594/Z8594A Protopack Emulator • Block Diagram Program Data Input Program Memory Address Output *1*2*3' • If • Data Bus Interrupt Request 5 Interrupt Acknowledge 6 Interrupt Enable In Interrupt Enable Out * 1 Program Memory Data Strobe Output * 2 System Clock Output * 3 Instruction Sync Output e : This is equipped with RAM. • Pin Description LH8594 pins are compatible with those of LH8590. For pin description, refer to those of LH8590. ------------------SHARP - - - - - - - - - - - - - - - 549 LH8661 Key"'encoder and Data Transmitter/Receiver LH8661 • I Key-encoder and Data TransmitterlReceiver Description The LH8.661 is a high performance and multipurpose interface LSI which has functions such as signal encoding from key matrix circuit, serial data transmission/receiving and parallel data input/ output. The LH8661 can be operated on one of the following five modes: • Encodes a key matrix signal, and outputs the data to a serial port (Mode 1). • Encodes a key matrix signal, and outputs the data to a parallel port (Mode 2). • Encodes a key matrix signal, and outputs the data to both serial and parallel ports (Mode 3). • Encodes a key matrix signal, and outputs the data to serial port, concurrently, serial input data is converted to parallel and output to a parallel port (Mode 4). • Parallel input data is converted to serial and output to a serial port (key scanning function is sleep)(Mode 5). • Pin Connections RTS XTAL2 2 XTALI 3 0 CTS SLCT INPUT' PRIME FAULT RESET 6 BUSY NC 7 KSO, NC 9 KSO" KS02 KSO, DS/RQ DCD ACK/RD 12 DTR DATAl KSIs - DATA2 KSI7 KSI6 KSI5 DATA. DATA5 I KSI. DATA6 KS13 DATA7 KSI2 DATAs • Features 1. Key encoding • 102 keys compatible with JIS ASCII array can be encoded. • Selectable encoding (compatible with ]IS 6220-1976 information exchange-code) or no·encoding (native code). • Encoded data can be transferred in serial or output in parallel (mono/bi-modes available) 2. Serial data communication • Encoded· key data can be transferred in asynchronous serial mode. • Serial port can be used as an RS232C interface by attaching buffers. • Selectable data format (data 7/8, parity, stop bit 112). • Selectable baud rate (110, 150, 300, 600, 1200, 2400, 4800, 9600, 19200). 3. Parallel data input/output • Encoded key data can be output to a parallel port in parallel. • Parallel port can be used as a printer interface compatible with Centronics by attaching buff- Top View- ers. 4. Serial/parallel data conversion • This device can be used as a serial/parallel data converter with/without a matrix key board. 5. Data buffers 80 bytes X 1 or 40 bytes X 2. 6. On-chip crystal oscillator circuit. 7. Single+5V power supply 8. 40-pln dual-in-line package -----------..--..-.--SHARP .....--.-.-----....-.-- 550 LH8661 Key-encoder and Data Trahsmitter/Receiver • Block Diagram Key In - Scan Data Parallel Data I/O Logic and Control Mode Registers Buffer 80 Byte Encoder Vee Buffer Pointer 1 GND In~ernal Control Logic ~-------'-'--SHARP _ _ _ _ _ _ _ _ _ _ _--.r 551 Key-encoder and Date Transmitter/Receiver • LH8661 . Pin Description Pin KSI 1 -KSI 8 KS0 1 -KS0 4 DATA 1 -DATA 8 -DS/RQ --ACKIRD BUSY --FAULT INPUT PRIME SLCT RxD TxD RTS CTS DTR DCD RESET XTAL 1 XTAL 2 • Meaning Key scan input Key scan output I/O I 0 Bidirectional 3-State Data bus Data strobel request 0 Acknowledge/read I Busy Bidirectional Fault Bidirectional Prime input Bidirectional Select Bidirectional Received data Transmitted data Transmission request Transmission enable Data terminal ready Reception enable Reset input Crystal I 0 0 I 0 I I Bidirectional Function Active low. Key scan data signal input Key matrix scanning signal output System data bus Active low. Data strobe signal when mode 1 to 4 is selected; request signal when mode 5 is selected. Falling edge active. Acknowledge signal when mode 1 to 4 is selected; read signal when mode 5 is selected. Active high. Indicate printer busy (input) when mode 1 to 4 is selected; indicate data buffer full (output) when mode 5 is selected. Active low. Indicate printer disable (input) when mode 1 to 4 is selected; indicate data buffer full when mode 5 is selected. Active low. Output printer initialization signal when in mode 1 to 4; input data buffer pointer initialization signal when in mode 5. Active high. Input printer select signal when in mode 1 to 4; indicate that parallel data output is available to device when in mode 5. Receiving data line. Transmitting data line. Active Low. Indicate readiness of data transmission. Active Low. Indicate data transmission enabled. Active Low. Data transmission request signal. Active Low. Indicate data reception enabled. Active Low initialization input. 7.3728 MHz crystal oscillator connected. Absolute Maximum Ratings Parameter Input voltage Output voltage Operating temperature Storage temperature • Symbol VIN VOUT Topr Tstg Ratings -0.3-+7·0 -0.3-+7.0 0-+70 -65-+150 Unit V V 'C 'C (Vcc=5V±5%, Ta=0-+70"C) DC Characteristics Parameter Clock input high voltage Clock input low voltage' Input high voltage Input low voltage Reset input high voltage Reset input low voltage Output high voltage Output low voltage Input leakage current Output leakage current Reset input current Supply current Conditions Symbol Driven by external clock. VCH Driven by external clock. VeL VIH VIL VRH VRL VOH IOH= :-250,uA VOL .IoL=2mA 0;£ VIN;£ +5.25V IIL 0;£ VIN;£ +5.25V' IOL Vee=5.25V, VRI,=OV IIR lee / MIN. 3.8 -0.3 2.0 -0.3 3.8 -0.3 2.4 -10 -10 MAX. Vee 0.8 Vee 0.8 Vee 0.8 0.4 10 10 -50 180 Unit V V V V V V V V ,uA ,uA ,uA mA Note ----~------SHARP.-----.--.-;...- 552 LH8661 Key-encoder and Data Transmitter/Receiver Vee Vee Vee 2.1kO From output under test 18kO From output under test Vee 1.5kO :>O~.......-J .Xl~>:--O 74LS04 Test load 2 Test load 1 • Crystal 2 15pF MAX. L----o--o Crystal 1 ;;; 15pF MAX. External C. G. circuit AC Characteristics (1) Serial port timing ( i ) Reception No. Time from DCD (Vee = 5 V ±5%. OSC freq. = 7.3728 MHz. Ta = 0 to +70°C) Parameter to DTR signal output DCD Symbol Tb DCD(DIR) Note \ DTR ~ RxD f-e---CD- (ii) No. ® ® Transmission (Vee Parameter Time from RTS ! to CTS signal acknowledge Time from RTS ! to data (TxD) output = 5 V ±5%. OSC freq. Symbol Td RTS(CTS) Td RTS(TxD) = 7.3728 MHz. Ta = MIN. 2.7 25 Unit p.s p.s 0 to +70°C) Note ~ \ , --®...; ® ----'--.-----------SHARP - . - - - - - - . - - . - . - 553 Key-encoder and Data Transmitter/Receiver (2) Parallel port timing (i)' Input No. CD @ ® @ (Vcc=5 V ±5%, OSC freq.=7.3728 MHz,Ta=O to+70°C) Parameter INPUT PRIME pulse width Time from INPUT PRIME t to RQ signal output RQ pulse width . Data settlement time from RD ~ INPUT PRIME RQ DATA1-DATA s No. ® ® (j) ® Symbol Tw IP Td IP (RQ) TwRQ Tr RD (D) MIN. 7.0 MAX. 13.8 4.3 16 Unit ps ps ps ps Note : -~ ~ ~ ' @ ' - - - - - ------Jx{S@-j I ~--------------------- ------------------ RD (ii) LH8661 Output (Vcc=5 V±5%, OSC freq. =7.3728 MHz, Ta=O to+70°C) Parameter Time from INPUT PRIME t to ACK ~ Time from ACK ~ to data output Time from data to DS ~ DS pulse width Symbol TdIP(ACK) TdACK(D) TdD(DS) TwDS , MIN. 5.0 23 5.4 2.6 MAX. Unit ps ps ps ps Note INPUT PRIME DATAl -DATAs • ________-+____- J Operation Mode Setting The LH8661 is available in five operation modes which are obtained by combining the key data' encode, parallel data transfer, and serial data transfer functions (Fig_I). An Operation mode is selected with mode switches (MODEI-MODE4) which control the scan signal, SCANl, and key scan input signals, KSI 5 -KSI8 . • Key Matrix Configuration The key matrix consists of key scan input signals (KSIl-KSI s) and scan signals (SCAN l -SCAN l6 ). The matrix requires status control circuit (switches plus diodes) in addition to the maximum 102 554 types of keyboard switches. The status control circuit should consist of operation mode selector, transmit data format selector, and baud rate selector. The LH8661's operation mode is selected by these settings. The compatible keyboard types, their configuration and status control switches on the key matrix and shown in Fig. 3. Conformity of key data to the 1IS code requires the key arrangement shown in Fig. 2. The status control circuit should consist of the SCAN 1 -SCAN 2 and key scan input signals (KSIl-KSI s). (Note. Shaded sections in the fig. are not usable.) Key-encoder and Data Transmitter/Receiver m===lfi]] RS232C ~: LH8661 Parallel 'output RS232C IlOI~I~ ..--,.Q. LH8661 lIII11 1Il\ • i .Q. serialoutputd : LH8661 ']} \~ {} 1-= ~ .Serial outpu/4t • ':1! ;" II " Keyboard (i) Operation mode 1 ]o!;/~~ Printer with ~ Centronics interface Keyboard (iv) Operation mode 4 -~:===;;;;=~--I~~ Serial output D rn 0:=<)\ ~ LH8661 I~ Parallel output Centronics interface (v) Operation mode 5 (ii) Operation mode 2 m===lfi]] RS232C ~O=<)CiLH8~~1 iJD=O~~ I..(J. is I P arall~1 L::-----:---' j_II\~utPut @. ~ ~ Centronics interface Serial !tput Keyboard (iii) Oyeration mode 3 Fig. 1 Description of device operation modes 9 SK 2 SP SK 3 SK 4 + SK 6 5 EXT Control key r-- SK 5 6 * SK 7 7 / SKs A + Notel: A, B and C are local scan blocks Note 2 : Shaded sections in the diagram are not usable Fig. 2 c -I Alphanumeric sectioni2j-KANA . (S I) sectIon (SO) Key types and key arrangement -~------SHARP-~-----'- 555 J LH8661 Key'-encoder Data Transmitter/Receiver • Keyboard Matrix (2) Transmit character codes The LH8661 can encode key data into]IS or native codes. Fig. 4 shows the transmit character codes that conform to the ]IS C 6220-1976 Information Exchanging Codes. Fig. 5 shows the native transmit character codes. The following figure shows typical combinations of keyface symbols in the alphanumeric and Kana sections of a key. (1) Key types and arrangement The LH8661 is capable of encoding data from up to 102 types of keys arranged on a key matrix which consists of key scan input signals. KSI1-KSIs• and scan signals. SCAN 3 -SCAN 16 . The 102 types of keys are divided into the following two blocks: CD Data key block: Consists of 96 keys arranged on the matrix composed of scan signals SCAN 5 -SCAN 16 and key scan input signals KSI1-KSI s . When the ]IS code system is selected (code select switch at OFF). key data is encoded into the transmit character codes shown in Fig. 5. In this case the key arrangement shown in Fig. 3 is required. When the native code system is selected (code select switch at ON). key data is en· coded into the transmit character codes as shown in Fig. 6. ® Control key block: Consists of six keys on the matrix which is composed of scan lines RCAN 3 -SCAN 4 and key scan input signals KSI1-KSI s . These keys are used to control data key encoding and key scanning. The shaded portion of the control key block shown in Fig. 2 is not usable. / Alphanumeric section b5 0 0 0 0 b. 0 1 b 3 _b 2 b 1 b o Coil Row 0 1 I / / / . ;/ /@ :;I Fig. 3 Keyface symbols (3) Key entry operations The LH8661 supports the following key entry features: • Key contact bounce time of approx. 5 ms. • Two-key rollover an(l N-key lockout. • Typamatic capability If any data key other than those listed below is 0- 0 0 0 0 1 0 0 1 1 1 1 0 0 0 1 0 2 1 3 4 5 5P 0 IB P 6 0 1 1 1 7 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 0 1 1 0 1 1 0 1 0 1 1 0 1 D E F 0 0 0 1 1 1 A Q a .b. CD @ ® @ 0 0 1 0 2 ..! 8 9 A B C P SK16 SK1 5P - 9 q SK 2 , 7' -T 2 B R b r SK3 r -1 .:/ ;t @ @ 0 0 1 1 1 1 0 3 ETX :11= 3 C 5 c 5 ? T -t ® ® i d t SK4 J SK 5 , ;r: ~ 1 5 e u SK 6 >t T ~ 0 f g = 1 6 7 V 0 8 .:t- :I (j) @ '7 ® @ I) ® @ 1 9 / JL- 0 A /, l; 0 0 0 0 0 0 1 0 1 1 0 1 0 1 0 1 0 1 1 1 1 1 1 1 1 0 0 1 1 0 0 1 0 0 4 $ 4 D T % 5 E U & 6 F V 7 G W ( 8 H X B5 ) 9 HTAB I Y : J Z LF ESC + ; K [ 1 1 B 0 0 1 0 C 1 F 51 0 1 1 D CR . * - E 50 / ~ KANA section (50) 0 1 )/ r-----:-, / (51) b7 0 b6 0 E , h i X y SK 7 '7 7J SK 8 7 :fSK 9 -{ 7 SKIO Ir j Z SK11 W L ¥ = M 1 m > N 1\ n ? 0 - 0 I I '" ::J -\" @ @ ® ® ® E5C+C(43H) E5C+D(44H) E5C+H(48H) 5K 17 E5C+E(45H) @ 5K18 E5C+J (4AH) @ 5K19 E5C+K(4BH) ;I- ~ ~ I'l @ @ -\' Y 7 '7 @ @ } SKI3 :J. A_ ...... :-- @ @ >I< SK15 " -I! DEL ') '? .~ E5C(1BH)+A(41H) E5C+B(42 H) HOME SK12 SK 14 t (~)' I k < ., :;I ,. . @® '@ @ Fig. 4 Transmit character codes (1) •.• J IS codes ---~--------~-SHARP-'-"'-'-------""-'--- 556 Key-encoder and Data Transmitter/Receiver b3 b2 b1 bo b, b6 b 5 b4 0 1 0 1 0 0 1 0 0 0 1 0 0 1 0 1 0 1 0 1 1 1 1 LH8661 '0 0 0 0 1 1 1 1 .1 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1 0 1 0 0 0 1 1 0 1 A B C D E F p @ WJJ) J v@ E H 0 0 1 1 0 1 0 1 0 0 4 5 6 7 8 9 0 EXT -> 7 / SKa SK 16 SKIs 7'-\", SK I4 6 CoIl Row 0 0 0 1 1 ENTER <- 6 * SK 7 1 0 2 RETURN ~ 5 - SK6 1 1 0 0 0 1 1 0 3 4 5 6 i 4 LF HOME 3 BS SKI9 HTAB ESC SKIs + SKs SK4 2 SP 1 9 SK3 SKI3 SK I2 SK 11 8( & ;t 10 .J: 1 1 7 DEL SKI7 0 T ., @ [ j r '" 3:j:1: 7 SKI SKg - / =l' " ® --® u -j-® * '7 • 1 '@ 9 ) :I 3 I -- Y ~ - z ':/ X .~ @. it @ (j]) C '/ J:l ® ] .b.IJ V I:::@ D @ S 0 iv ? ® / ;t.. G ® 11 > 11 ¥ I@ T (j) F 2 @ 0 ;;r -1 A I 8 -( R @ 0 4$? A ® y "'? 7 1 -t % 5 7 SK -iz -t' " SK2 ~ .:::L ® * :@ 'r B (j]) ;+@ N v ::::I ~ @ @ A 7® L IJ@ M@ '£: o '7® Q;$ICD K @ , / < ,*' Note: b 7 =1 when KANA key is ON, b7 =O when off. Fig. 5 Transmit character codes (2)... Native codes pressed and held for more than 1 second when the lIS code sytem is selected, the corresponding transmit character code is repeatedly entered at a frequency of approx. 20 Hz. When the native code system is selected, all the 96 data keys are effective for the auto repeat function. IJ2EkJ [ESk] I BS I ILF I IHTABI I RETURN I I ENTER II ETXI The above control keys are not effective for the auto repeat function. • Serial Data Transfer The LH8661 transmits serial data via RS232C interface when in modes 1, 3, or 5. It can transmit and receive serial data when in mode 4_ The serial data format can be selected from 7 bits with parity, 7 bits with no parity (b 7 fixed at '0'), and 8 bits with no parity. Selection is executed with bit 7 or 8 and with parity switch (see description of transfer data format setting). Fig. 6 shows the serial data format. (1) Transmit mode The LH8661 automatically adds one start bit and two stop bits to transmit data. It holds TxD at high to maintain mark status between characters. (2) Receive mode Receive data must have one start bit, eight data bits, and at least one stop bit. While the receiver has a two-stage buffer, data will not be protected in the event of an overrun. ~-'-'-'-----SHARP-'-'------ 557 .......... ......................... ......................... Key':'encoder and bata Transmitter/Receiver ~~ LH8661 ~~ ~ ~ Transmitted data (No parity) T . 1- Start bitT· ' - - - - 8 data bits ' - - - - - - - - - - - - 2 stop bits Transmitted data (With parity) ISP ISP I P I b6 I bs I b. I b3 I b2 I bl I bo IST I TT . L start bitT ' 7 data bIts L - - - - - - - - - - O d d parity ' - - - - - - , - - - - , - - - - - 2 stop bits Reception data (No parity) I bs I b. I b3 I b2 I bl I bo IST I -r I T Start bit L _ _ _ _ _ 8 data bits 1 stop bit Reception data (With parity) I SP I P I b6 I bs I b. I b3 I b2 I b, I bo IST I TT I StaJ;:t - - - - 7 data bits ' - - - - - - - - - - - - O d d parity ' - - - - - - - - - - - - 1 stop bit _ L. Fig. 6 Serial data format • Parallel Data Transfer When in modes 2, 3, and 4, the LH8661 can transfer parallel data to a printer having Centronics interface. When in mode 5, it can receive parallel data through Centronics interface. (1) Centronics interface (parallel data transmission) The LH8661 maintains INPUT PRIME at low for a given time period after being reset. The attached printer usually uses this ~ignal to initialize its internal circuitry. The LH8661 then tests the SLCT and FA UL T inputs to see whether or not the printer is ready for operation. When transmitting data, the device also tests for BUSY signals from the printer. When signal is at high, the printer is busy printing and the device waits for the printer to become ready. When the printer returns to the ready status, it resets the BUSY sig- ) nal to low and sets the ACKNLG signal at high. Seeing that the ACK signal (inverse of ACKLNG) is set to active low, the LH8661 transmits print data. It then sets the DS signal to low a given time period after completing data transmission. The printer uses the DS signal to read the data on the data bus (DATA1-DATAs),and prints it. The data transmission timing is shown in Fig. 7. (2) Parallel data reception When the LH8661 is placed in mode 5, the {larallel data port becomes a Centronics input port. Input data received through this port can be \,lUt· put in serial form after being subject to parallel-. to-serial conversion. The control signal SLCT is set to high when the LH8661 settles in mode 5. In receiving parallel data, the INPUT PRIME signal must be set to low for a given time period. ~'-'------SHARP---'----'-"---'- 558 Key-encoder and Data Transmitter/Receiver LH8661 INPUT PRIME (output)-V \~---------------------------------------------- BUSY (input) ACK (input) -'X. .___ DA TAl -DAT As (output) _ _ _ _ _ _ _ _ _ D_a_ta_se_tt_led _ _ __ DS (output) Fig. 7 Parallel port output timing INPUT PRIME (input) ~ BUSY (output) \'----------------------- RQ (output) -'X'-___ DAT Al -DAT As (input) _ _ _ _ _ _ _ _ _ _ D_at_a_s_et_tl_ed_ _ _ __ RD (input) Fig. 8 Parallel port input timing Receiving this low transition signal, the LHB661 responds by initializing the data buffer pointer and setting both the BUSY and RQ signals to low. Seeing that the ACKLNG signal is set to high, the data output device outputs data, then sets the DAT A STROBE signal to low after a given time period. The LHB661 uses this signal to read data off the data bus (DAT AI-DAT A8). The LHB661 then sets the RQ signal to low to repeat data read operation until the data buffer becomes full. When the data buffer becomes full, the LHB661 activates the BUSY and F AUL T signals to inform the output device. The parallel port input timing is shown in Fig. B. • Data Buffer The LHB661 has a built-in BO-byte RAM for data buffer, which is used to hold key entry data, serial input data or parallel input data. When the device is in mode 1, 2, or 3, the full BO-byte length of the buffer is used to hold key entry data. When the device is in mode 4, the buffer is divided into a 40-byte segment to hold key entu data and another 40-byte segment to hold serial input data. When in mode 5, the full BO-byte length of the buffer is used to hold parallel input data. When the buffer becomes full, the LHB661 behaves as follows: • No longer writes key entry data into the buffer. • During serial data input, sets the DTR signal to high to indicate buffer-full status to the data: output device (having RS-232C interface). The LHB661 accepts no serial data transferred while the DTR is at high. • During parallel data input, activates the BUSY --and F AUL T signals to indicate buffer-full status to the parallel data output device. The LHB661 outputs no RQ signal while the BUSY and F AUL T signals are active. - - - - - - - - - - - - - - - - S H A R P -.-..-.....-.--~- 559 Support Tools for Micrcomputers Development Support System SM-D-8000 IT LH8DH110 LH8 DH 11 0 Development Support System SM-D-8000 II • Description This system operates under control of the floppy disk operating system (FDOS), and incorporates software for developing Z80 application programs. The software includes a relocatable macro assembler, a text editor, and a debugger. The system facilitates Z80 software development ap.d minimizes developing time. In addition, program developing software for Z8, Z8000 and SM series can also be used in this system. The system can also be an aid for developing Z80A and Z8 systems by connecting the In-circuit Emulator (Z80A or Z8) to the system. In conjunction with a PROM writer, the system writers EPROMs directly further reducing developing time. • Features 1. Z80A CPU (clock frequency>: 4MHz) 2. RAM: 64K bytes 3. Two double-sided double-density floppy disk drives in standard (capacity: 2M bytes) 2ports 4. -RS232C 20mA curren loop 1port (shared with RS232C port) • Baud rate 110-19200B (9 levels selective) 5. Optional hardware PROM writer Z81Z80B In-circuit Emulator etc. Block Diagram Protect SW . F'DO PRO SW RS232C RS232C l. MAIN CPU borad SUB CPU board system bus FDJ' POWER SW 562 Development Support System SM-D-8000 IT • LH8DH110 Software Organization Control processor SM-D-8000II Operating system Language processor ----i[ Resident monitor Command line interpreter -r Resident software ZOO (standard) Cross software (option) Utilities (option) -E ~ High-level language (option) -l --i Text editor Relocatable macro assembler Linker Librarian Symbolic debugger System generator SM series software package for I-chip microcomputer Z8 cross-assemhler development Z-UPC cross-assembler Z8000 software package PROM programmer Z80B in-circuit emulator debugger Z8in-circuit emulator de1:iugger ~ASCAL FORTH FORTRAN COBOL BASIC CP/M is a registered trade mark of Digital Research Inc. 7 --.---.---SHARP....-..---~--- 563 ...............,.....,.......... Development Support System SM-D-a100 , ....... ......,.~.....,.....,.....,....,....., LH8-DH130 • Development $upport LH8DH136 , .....,.....,.....,~ Syste~ SM-D-8100 Description This system in based on the Z8001 CPU and operates under control of the floppy disk operating system (SM-DOS8100). The system provides a standard set of software for developing Z8000 programs. There include C compiler, relocatable macro assembler, text editor and linker for cost effective software development. The SM-D-8100 consists of main unit and a floppy disk'drive unit. The main unit is provided with four RS232C ports so that the system can be connected to other, devices. The system has 256K-byte of RAM for flexible upgrading in the future. • Features 1. Z8001 CPU (clock frequency: 4MHz) 2. RAM: 256K bytes (1 parity bit per 8-bit) 3. Two double-sided double-density floppy disk drives in standard (separate unit), (Capacity: 2M bytes) 4. Four RS232C ports Baud rate: 110-19200B , (9 levels selective for each port) 5. Centronics parallel output port 6. High-grade language, C compiler in standard 7. Optional hardware: SM-E-8100 In-circuit Emulator ------------SHARP---------.-...... ----564 Development Support System SM-D-8100 • LH8DH130 Block Diagram Z8001 CPU MH 1-_-:---' ~::--------I ZBI Bus Buffer. 1-'----11', L-_~=====L_ _~4~M~H~z~------_4BCLK ZBi Bus Buffer ,+12V -12V '+ 5V '-T-r-...,-,r--r-r-"T""T'...... ___ ___ ___ ..J, GND--...----r-;--..... L...-._--I • Disk Drive (FD 0 ) Disk Drive (FDI) AC 100 V Software Organization .---Control processor (standard) Resident monitor Lcommand line interpreter (CLI) t--- Language processor Resident software (Z8000) (Standard) C compiler Text editor Relocatable macro assembler SM-D-8100 Linker Operating system t-librarian (SM - DOS 8100) Debugger Translator (Z80-+Z8000) (Standard) PASCAL (under development) , Floating point arithmetic routines (under development) Cross software (Option) , Z80 cross assembler (Development planned) Z8 cross assembler (Development planned) Z - UPC cross assembler (Development planned) I- E "--Utility (Option) LGeneral-purpose OS (Pianned) .-.....----------SHARP---~-~.-.----- 565 De,v.elopment Support System SM-D-820.O LH8DH140 • Development Support System SM-D-8200 Description LH8DH140 is a microcomputer system using the 28001CPU. It is used as the microcomputer development support device or as the general-purpose microcomputer system, with the SM- UX8000 gener ai-purpose operating system mounted; which is based on the system of Bell Laboratories. • Features 1. Main memory function • 768K byte RAM • 1 parity bit for each 8 bits • Memory management function 2. Supplementary memory function • Hard disc drive: 1 Winchester type, 8 inch, 20M bytes • Floppy disc drive: 1 for back up of hard disc equipment double-side double-density, 8-inch, 1M bytes 3. I/O interface • Serial I/O interface: 4 ports RS232C compatible Baud rate: 110-9600 for each port • Parallel I/O interface: I-port Centro nice compatible 4. Optional hardware ·28000 in-circuit emulator (SM-E-8100) • 28000 evaluation board • 28 in-circuit emulator 566 LH8DH140 Development Support System SM-D-8200 LH8DH140 ..................................................................................... • Block Diagram AC100V ::[)=I ~ ,,r - - - , Power Supply ,, - - -- Main Board Slot 0- - - ----, I RAM 512K Bytes : with Parity Internal Bus I I I J ' I ~ ~ ~ "" "" "" '+ "I ~ Z , L ____________ r - - - - - - - - - - - - --Main Board Slot 1 1 ~Oo~ : , r--:, Clock ~ ROMmn ~8;~1 , 1--1,--' Buffer ~ Memory-Bus Buffer_ 1 + '" ZBI Bus 32K Bytes 1 , I --------' - --- -- ---l I ' - - Z8010 Memory RAM MMU -Bus 256K Bytes nr with Parity ! ZBI Bus r-t-- I OSC_ 'Hz , , ~ Internal Bus : 1 1 f--r--I 'I , 4MHz BCLK 16MHz MCLK r--------------- Main Board Slot 2 - - - - - - - - - , &~ ~ III ~ N L_'--_-_-_-_-_-_-_-_-_-_-_-_-_-_-_...::..;.._'--_-_-_-_--_--_-_L--.....l J 1 Control ROM 8K Bytes .-_ _ _...,J ~1l-----1 Hard , Disk : Drive .--,------J---l ~I----; Control W Buffer RAM 2K Bytes I 1 rr- I .-.!- DMA I ~ ~~~e~us I '-----I-nt-'ernal Bus 1 : 1 1 1 , I 1 1 Z80A CPU 1 L_____________ 1 _ _________ , J r - - - - - - - - - - - - - Main Board Slot 3- - - - - - - - - - - , --t r;----l r-ttr--i Floppy Disk Drive Control , I 1 I r----1 ~ DMA Internal Bus ' : ZBI Bus Buffer II L- - - - - - -.i.j - - - - -.u -J:±. -.ll----,.t..±. - - - - - - I , , Z 8036 CIO Centronix Interface Z 8030 X 2 RS232C Interface Centronix Parallel Output Floppy Disk Drive RS232C Ports 7 1 t----t-- _I 1--;--1----' , ZBI is the 1 Trademark -1 of Zilog_ Inc_ HD-10F Hard Disk Drive I Power Supply u q AClOOV 567 Development Support System SM-D-8200 • LH8DH140 Software Organization Kernel Shell System utilities User access control File managment Status display System maintenance Program run control SM-UX8000 Operating system Software development tools Languages , Assembler (For Z800l) C compiler (For Z800l) C source beautifying program: cb C program checker:lint Spreadsheet interpreter FORTRAN 77 compiler (option) : Text processing 1__ Text editor:ed Fstream editor:sed Programming support ~ : , Debugger: adb Loader SCCS (Source code control system) Program maintenance program Cross software L Z8 cross software r=..= Z80 cross software ! .-.-.----~--SHARP------------- 568 Z80B In-Circuit Emulator LH8DH312 • LH8DH312 Z80B In-Circuit Emulator Description This is an SM-D-8000 II option, which provides emulation functions for Z80B systems. The emulator operates under the control of FDOS. It facilitates debugging and reduces development time and costs. • Features 1. Support Z80B (6MHz) system 2. Real-time emulation 3. User system memory: 64K bytes 4. User 110 port: 256 ports 5. Memory address mapping function (unit:4K bytes) 6. Hardware break point: 2 (with 16-bit counter) 7. User system RAM: 64K-byte static RAM 8. In-circuit emulator debugger 9. Execution modes of user program (i) Real-time (ii) 1 step (number of steps can be set) (iii) Trace (iv) Snapshot 10. Program can be change at mnemonic. 11. I/O device if the user system can read the RETI instruction in the user RAM. 12. All the interrupts (NMI,mode 0,1,2) can be used by the user. ---~------SHARP--~~---~ 569 LH.8DH312. Z80B>ln-Circuit Emulator • Block Diagram ~------------------------------I Address Bus Adress Bus :==:::;~====~ I===~>t~ Z80B CPU Data Bus - Control Bus I Head Board : ~SI/l.~I--"140Pin Plug '" c6 I 9 Clock Selectabl,e Fla Cable~ I I I Clock Circuit I._S_W_J CPU Unit Main Board --------------------------------, I _ I I I I I I I I I I I ., " '--'-'--1'-1-t I ! .=i I I I I· I I I ROM I I ~--------------------------------~---------~ 570 Z8 In-Circuit Emulator n LH8DH321 LH8DH321 Z8 In-Circuit Emulator II • Description Z8 in-circuit emulator II (LH8DH321) is a device which has the function to support the development of the Z8 MCU 8-bit single-chip microcomputer (4Kbytes internal ROM: LH0811/LH0813, 2K bytes internal ROM: LH0801/LH0803)_ Software developed by the host computer can be downloaded via RS232C into this emulator for program debug purposes. Prototype Z8 application systems under development and developed systems can be emulated on the real time basis. By debugging the user system while emulating, the development term of the user system or maintenance period becomes shorter. • 1. 2. 3. 4. 5. • Features Usable for 4K and 2K bytes internal ROM Stand-alone type: load the program from the host computer, and save the program to the host computer after debugging. Mapping RAM can be designated for memory area both of program and data. User program in the external ROM can be transferred to the mapping RAM. Possess line assembler and reverse assembler, making debugging effective. 6. Break point possessing 8-bit break counter can be set: up to 4096 in the internal ROM (up to 2048 in the 2K internal ROM) 1 in the external ROM/RAM. 7. Step and trace of user program can be executed. 8. Contents of user program and register can be displayed and changed. 9. 110 ports and register files can all be executed by the user. Block Diagram Z8 Data r-....L.--, Bus Z80A CPU J1 J2 Terminal Host 571 ~ 7 ~= LH8DH330 Z8000 Evaluation Board LH8DH330 • Z8000 .Evaluation Board. Description This board is designed for evaluating application systems .using the Z8000 I6-bit microprocessor. It is also available for a development system due to the emulation function. • Features 1. User RAM: 32K bytes 2. Monitor ROM : 8K bytes 3. Break point :- I point 4. Support for debugging Z800I CPU Z8002 , CPU programs 5. In-circuit emulation functions 6. Object program execution : Real time, single step, and trace 7. Connection with SM-D-BOOO IT /SM-D-8100 via RS232C interface • Block· Diagram Segment Z8001 Z8002 CPU 7 Address/Data 16 Control 7 Status 12 User's Connecter 16 Console SM-D-8000 II 572 LHSDH340 ZSOOOln-circuit Emulator SM-E-S100 LH8DH340 • ZSOOO In-circuit Emulator SM-E-SIOO Description The SM-E-8100 supports the development of 28000 systems based on either the 28001 or 28002. A developed program loaded in the user's system memory or, the emulator memory (user RAM area) can be executed in real time. The SM-E8100 can emulate not only programs supplied from a host equipped with RS232C ports such as the SM-D-8000 II or SM-D-8100 but can also operate as a stand alone system. • Features 1. 2. 3. 4. Emulation for both 28001 and 28002 All I/O ports opened for the user User-opened RAM: 32K bytes (e~pandable) Hardware,break points (status, N/S, R/W, B/W available) 5. Break point counter (16-bit) available 6. Program execution : Real time, single step, trace, and snap shot 7. Down load and up load from a host computer 8. Built-in debugger (with 32 commands) 573 LH8DH340 Z8000 In ...Circuit Emulator SM-E-8100 • Block Diagram Option r:-----::;] I Changeable : I I I I I 1--:-:---:---11 Z8000 1 CPU """7-<3"7'~1 _J Control Circuit ... 2 'j3 ~ 574 ... Break Register 2 ,·e 0 ::;; Break Counter Mem,ory by User's 32 K Bytes LH8DH403 PROM Writer LH8DH403 • PROM Writer Description This equipment operates under control of SM-D-8000 II, FDOS. The control program is supplied on the floppy disk. The equipment writes programs that have been developed by using SM-D-8000 II into EPROMs directly, thereby reducing developing time. • Features 1. Applicable EPROM 2732A, 2764, 27128, and equivalents 2. Either mnemonic or spelled-out commands acceptable 3. Data management in file from 4. LED indication during command execution • Block Diagram SM-D-8000 II PROM Writer Unit 1------- I---------------~~----I I I Address Bus Buffer Address Bus I I I " I I I Add~!s Bus h====~ Buffer Data Data Bus II 1..:: __ 'L- I Drive Signal Data Bus 1,--------, I Control I Bus I Buffer I I~ _ _~ IL _____ _ Buffer Board __ JI --....,I PROM Bus Buffer Console II IC Socket I I I I Control Bus PIO ,------L.L..--, Drive Circuit I Cable I I I I I I I IL _____________________ I ~ +21 V +sv DC Power Supply AC 100 V 575 LU4DH200 8M Series Emulator 8ME-20 LU4DH200 • SM Series Emulator SME;:;20 Description The LU4DH200 is an emulator designed to support the development of programs for the SM series of 4-bit single-chip microcomputers. It consists of a data input and control key board, LED for display data, PROM writer and interface enabling· programs can also be dev~loped in ,RAM by using the RS232Cto connect it to SM-D-8000 II which supports a cross-assembler and other software to facilitate program debugging. • Features 1. PROM writer (2716, 2732) in standard 2. RS232C 1 port Baud rate 150-19200B (8 levels selective) ·3. Paper tape reader interface;Paper tape puncher interface in standard 4. Support all functions of SM series by altering PROM for PLA 5. Function of the emulator • Execute/halt program • Display/change data • One step operation • Execute start point of CPU • Repair address 576 SM Series Emulator SME-20 • LU4DH200 System Configuration The SME-20 can be connected through the RS 232C to the SM-D-8000 II to allow efficient prog· ram debugging. It can also be connected to other support tools which run under the CP1M operating system and equipped with an RS-232C interface. Host computer ¢==> L......_ _ _- - I RS232C Emulator (SME-20) L!======::!J URS232C SM evaluation board ,-----------------, SM-D-8000II r----------------------------, SME-20 Working RAM Floppy Disk (containing the editor, cross assembler, etc.) ROM (1 K) RAM (64 K) ________________________ -1 RS232C SIO ~ PTP/PTR L ________________ Terminal Unit (Sharp Writer, etc.) SM Series Evaluation Board .-~------SHARP----.----- 577 LUXXXH2 SM Series Evaluation Board LUXXXH2 • SM Series Evaluation Board Description There are designed for evaluating the SM series of 4-bit 1-chip microcomputers. The boards are functionally and electrically equivalent to the mask ROM version. Programs can be developed either at the EPROM level, or when used with any of the SM series support tools (SM-D-80, SM-D-8000 IT ) programs can be developed at the RAM level. • Features l. System debug with EPROM 2. Debug at RAM base in conjunction with support tool(SM- 0-80, SM- 0-8000 IT) 3. Function of the evaluation board • Hold function • One- step function • Auto-stop function • Display of the program counter • Display of accumlator and carry F IF • Display of RAM address, the register and memory • Display of instruction code • PLA set function ---.-.......------SHARP-.-.-------578 LUXXXH2 SM Series Evaluation Board • Block Diagram -~ -11-.===;;;::;- I * Crystal Memory Display Circuit asc Circuit Vc (-5V) GND (OV) Break Address Setting Circuit l!: I Programming (2716,2732 or equivalent) ~ '---~~ Instruction Display Circuit Control Board Evaluation Card • SM Series Evaluation Board Control board The evaluation board consists of two printed circuit boards: the control board and the evaluation card (on which the evaluation chip and EPROM socket installed). Evaluation chip Evaluation card (LUXXXH4) -~-----'------SHARP-'---'-'--- 579 Memories NMOS 32768-Bit Mask Programmable Read Only. Memory LH2331 ILH2331 A lH2331/LH2331A NMOS 32768-Bit Mask Programmable Read Only Memory • • Description Pin Connections The LH2331/LH23-31A are fully static mask programmable ROMs organized as 4,096-wordby-8-bit by using silicon~gate NMOS process technology. • o Features 1. 2. 3. 4. 5. 6. 4,096-word-by-8-bit organization Single + 5V power supply Fully static operation (no cloS;k required) All inputs and outputs TTL compatible Three-state outputs Access time (MAX.) LH2331 : 450ns, LH233iA : 350ns 7. Power-down function 8. 24-pin dual-in-line package (pin compatible with i 2732 type EPROM) • Top View Block Diagram Data Output ~ Output Enable Al\dress Input 32.768 Cell Matrix ---~'-------"--SHARP-~-----""--' 582 NMOS 32768-Bit Mask Programmable Read Only Memory • LH2331 ILH2331 A Absolute Maximum Ratings Parameter Pin voltage * Operating temperature Storage temperature Symbol VIN Topr T st " Ratings -.0.3-+7 ..0 0-+7.0 -55-+15.0 Unit V "C "C *Application voltage on any input pin with respect to ground. • Parameter Output low voltage Output high voltage Input low voltage Input high voltage Input leakage current Output leakage current Chip enabled power supply current Chip disabled power supply current • (Vcc=5V±l.o%, Ta=.o-+7.o"C) DC Characteristics Symbol VOL V OH VII. V IH I ILl I I lLO I Conditions IOI.=2 ..omA IoH = 2.0.0 p.A Access time Chip enable setup time Output enable time Output hold time Chip turn-off time TYP. 2.4 .0.8 D";:VIN";:V CC CE:;;;; 2V, D::£VouT::£V cc IccI Icc2 MAX. .0.4 2..0 - CE:;;;;2V Unit V V V V 1.0 1.0 p.A f'A 11.0 rnA 5.0 rnA (Vcc=5V±l.o%, Ta=D-+7.o"C) AC Characteristics Parameter MIN. Symbol MIN. MAX. MIN. 45.0 45.0 12.0 t ACC teE toE tOH tDF LH2331 TYP. .0 .0 1.0.0 LH2331A TYP. MAX. 35.0 35.0 12.0 .0 .0 1.0.0 Unit ns ns ns ns ns Test conditions o(AC characteristics • Input voltage amplitude········································ .. · + 0.4 - + 2.8V • Input rising/falling time ··········································10ns • Input threshold level ·······························,··············1.5V • Output threshold level .. ··········································· 0.8V and 2.0V • Output load condition .. ············································ 1TTL + 100pF • (f=IMHz, Ta=25"C) Capacitance Parameter Input capacitance Output capacitance Symbol CIN COUT Conditions VIN=.oV VouT=DV MIN. TYP. MAX. 15 15 Unit pF pF '-'-~--"--'--SHARP ----------~-------- 583 . NMOS 327.68-Bit Mask Programmable.Read Only Memory • Timing Diagram CE (High impedance) 584 LH2331 ILH2331 A NMOS 3276e-Bit Mask Programmable Read Only Memory • LH2331/LH2331A Electrical Characteristics Curves (Vcc=5V, Ta=25"C unless otherwise specified) Access time vs. supply voltage ]. Access time vs. ambient temperature .,..: 1.4,..---,----,----,-----, Ta=700e . .. .~ 1 . 2 1 - - - - + - - - - + - - - - f - - - - I 1;; ;; ~r--. P::: u ~ ., " <:" to III .,.. .:: ]., 1.2 u u 1.0 1.0 I-----+-==~_+---I_-__I ., '5 0.8 to to 0.6 4.5 5.0 6.0 5.5 Supply voltage Vcc -- --- <: 80 N U G 60 ....u .. <: -5 I-- ICCI N U ~ 60 ~ ~ 40 e'" Icc2 ~ j 20 III 0 4.0 <: 4.5 5.0 Supply voltage Vcc 5.5 ...,. 1.4 .,'" .,8-" .,~ 6.0 Ta=700e .,..: 1.4 ., - Icc2 Vcc=4.5 V .~ os 1;; ;; 1.2 P::: P::: '" .j .j V "'u u 1.0 ~ ~ V ./ 0.8 S 0 0.6 4.0 1.0 j "" i 0.8 s= Itl r---,- IcC! CE to output delay vs. ambient temperature os > .:: r---- 100 25 75 50 Ambient temperature Ta (T) 0 <: ;; 1.2 ... ..:., 20 > (V) CE to output delay vs. supply voltage .,..: -- .. 40 ~ .. r--- I---- ....9 ..::- "8- 80 ~ ~ ~ 50 75 25 Ambient temperature Ta (Oe) Average supply current vs. ambient temperature f.---- .::i o (V) Average supply current vs. supply voltage e::: 0.8 ., " <:" 0.6 4.0 -5 ~ .j ~ V ~ P::: ., :3 1.4 .. Vcc=4.5 \r I ~u 0.6 4.5 5:5 5.0 Supply voltage Vcc (V) 6.0 o 25 50 75 100 Ambient temperature Ta ee) 585 NMOS 32768-Bit Mask Programmable Read Only Memory LH2332/LH2332A LH2332/LH2332A NMOS 32768-Bit Mask Programmable Read Only Memory • Description • Pin Connections The LH23321LH2332A are fully static mask programmable. ROMs organized as 4,096 -wordby-S-bit by using silicon-gate NMOS process technology. • o Features 1. 4,096-word-by-S-bit organization Single + 5V power supply Fully static operation (no clock required) All inputs and outputs TTL compatible Three-state outputs Access time (MAX.) LH2332 : 450ns, LH2332A : 350ns 7. Programmable chip selects (CS1/CS lo CSz/CS z) S. 24-pin dual-in-line package (JEDEC standard pin configuration) 2. 3. 4. 5. 6. • Top View Block Diagram Data Output ~ Address Input 32.768 Cell Matrix ----------SHARP-------------586 NMOS 32768-Bit Mask Programmable Read Only MemOry • LH2332/LH2332A Absolute Maximum Ratings Parameter Supply voltage * Input voltage * Output voltage * Operating temperature Storage temperature Symbol Vee VIN VOUT Top, T stg Ratings -0.3-+7.0 -0.3-+7.0 -0.3-+7.0 0-+70 -55-+150 Unit V V V ·C ·C * The maximum applicable voltage on any pin with respect to GND. • Parameter Supply voltage Input voltage • Input leakage current Output leakage current Current consumption - Symbol Vee V IL VIH MIN. 4.75 TYP. 5 MAX. 5.25 0.8 2.0 Unit V V V (Vee=5V±5%, Ta=0-+70·C) DC Characteristics Parameter Input low voltage Input high voltage Output low voltage Output high voltage • (Ta=0-+70·C) Recommended Operating Conditions AC Characteristics Parameter Access time Output hold time Chip enable setup time Chi p turn -off time Symbol VIL VIH VOL VOH I ILl I I ILO I Icc Conditions MIN. TYP. MAX. 0.8 2.0 IOL =2.0mA IoH = 200 p.A 0.4 2.4 O~VIN~Vce 10 10 110 CS~2V, O~VouT~Vee Unit V V V V p.A p.A rnA (Vee=5V±5%, Ta=0-+70·C) Symbol tAce tClH MIN. MAX. 450 0 teE tDF TYP. 0 350 150 Unit ns ns ns ns Test conditions of AC characteristics • Input voltage amplitude··········································· + 0.4 - + 2.8V • Input rising/failing time···········································l0ns • Input threshold level·· ......................................... ····1.5V • Output threshold level·································· ........... 0.8V and 2.0V • Output load condition·············································· 1TTL + 100pF • - (f=IMHz, Ta=25·C) Capacitance Parameter Input capacitance Output capacitance Symbol CIN COUT Conditions VIN=OV VOUT=OV MIN. TYP. MAX. 15 15 Unit pF pF 587 ~NlOS 32768-Bit Mask Programmable Read Only Memory • Timing Diagram· cs Valid data (High impedance) 588 .LH.2332/LH2332A LH2332/LH2332A NMOS 32768-Bit Mask Programmable Read Only Memory • Electrical Characteristics Curves (Vcc=5V, Ta=25t unless otherwise specified) Access time vs. ambient temperature Access time vs. supply voltage 1.4r---..,.....--...,----,---__, 1.4 Ta=70'C .a. Vee=4.75 V > // .~ 1 . 2 1 - - - + - - - - + - - - + - - - \ 10 Q; Il::: tl 1.01-.=......+---+--~==:::::J :; .§ :; 0 . 8 1 - - - + - - - - + - - - + - - - \ V .~" O.s (Il (Il :l V ~ ~ ..:"" 0.6"::-_~~-~-!-::----=-=--~ 4.0 4.5 5.0 Supply voltage 5.5 Vee ..:" 0.6 0 6.0 50. 25 75 Ambient temperature Ta (OC) (V) Average supply current vs. supply voltage Average supply current vs. ambient temperature so SOr---~--~--_,_--__, -- I--- I--- ..: ~ 60~--+_--~--_+--~ ~ 100 u .....u .,... . " b" §' '" 60 r--- 0; 40 (Il 201---+---~--_+--_; ...~., . " ~ ..:> ..:> O~-~~-~~-~_!_::_-~ 4.0 4.5 5.0 5.5 6.0 Supply voltage Vee o (V) Input voltage vs. supply voltage :> :x: :> .".. 100 2.0r---.,...---..,.....--...,-----, 2:: 1.7 1.7 ~ :x: :> 1.4 VIH(MIN.) .g:, i VIL(MAX.) .::0 -.. 1.4 ~VlH(MIN.J VILCMAX.) > >. = .=;'" 75 25 50 Ambient temperature Ta ('C) Input voltage vs. ambient temperature 2.0 2:: ,., 20 1.1 ....."'" O.S 4.0 4.5 5.0 Supply voltage Vee 5.5 (V) 6.0 1.1 O.S !-_~:!=---=-=----=---~ o 25 50 75 Ambient temperature Ta 100 ('C) 589 NMOS 65536-Bit Mask Programmable Read'Oniy Memory LH2362B NMOS 6SS36-Bit Mask ProQrammable Read Only Memory • Description The LH2362B is a fully static mask programmable ROM organized as 8,192-word-by-8-bit by using silicon-gate NMOS process technology. • LH2362B • Pin Connections o Features 1. 8,192-word-by-8-bit organization 2. Single +5V power supply 3. Fully static operation (no clock required) 4. All inputs and outputs TTL compatible 5. Three-state outputs 6. Access time (MAX.) : 250ns 7. 24-pin dual-in-line package UEDEC standard pin configuration) Top View • Block Diagram Data Output ,A Control Signal Generator 1!32X8 Column Address Decoder Address Input .,., ...., ." ." <: ~ o !X:. 590 65,536(256 X 32 X 8) Cell Matrix NMOS 65536-Bit Mask Programmable Read Only Memory • Absolute Maximum Ratings Parameter Supply voltage * Input voltage * Output voltage * Operating temperature Storage temperature Symbol Vcc VIN VOUT Toor T st• Ratings -0.3-+7.0 -0.3-+7.0 -0.3-+7.0 0-+70 -55-+150 * The maximum applicable voltage,on any pin with respect to GND. • Input voltage Symbol Vcc V1L VIH MIN. 4.75 TYP. 5 MAX. 5.25 0.8 2.0 Unit V V V DC Characteristics Parameter Input low voltage Input high voltage Output low voltage 0fltput high voltage Input leakage current Output leakage current Current consumption • Unit V V V 'C 'C Recommended Operating Conditions Parameter Supply voltage • LH2362B AC Characteristics Parameter Access time Chip enable setup time Chip turn-off time Output hold time (Vcc=5V±5%, Ta=0-+70'C) Symbol V1L VIH VOL VOH I ILl I I ILO I Icc Conditions MIN. TYP. MAX. 0.8 2.0 IOL=2.0mA IOH=200pA VIN=OV-Vcc CS~2V, VOUT=OV-Vcc 0.4 2.4 10 10 160 Unit V V V ,V pA p.A rnA (Vcc=5V±5%, Ta=0-+70"C) Symbol t ACC tCE tDF tOH MIN. TYP. MAX. 250 100 100 0 Unit ns ns ns ns Test conditions of AC characteristics • Input voltage amplitude ........................................... + 0.4 - + 2.BV • Input rising/falling time ··········································10ns • Input threshold level································· ............. 1.5V • Output threshold level· .. ··························· .. ············· O.BV and 2.0V • Output load condition ·············································1 TTL+ 100pF • (f=lMHz, Ta=25'C) Capacitance Parameter Input capacitance Output capacitance Symbol CIN COUT Conditions V1N=OV VOUT=OV MIN. TYP. MAX. 16 13 Unit pF pF 591 NMOS 65536-Bit Mask Programmable Read Only Memory • Timing Diagram Ao-A12 ~--tACC--~ (High impedance) • Chip Select L H 592 DouT (Data output) High impedance Valid data LH2362B NMOS 65536-Bit Mask Programmable Read Only Memory LH2362B Electrical Characteristics Curves (Ta = 25 "C unless otherwise specified) • Access time vs. ambient temperature Access time vs. supply voltage 1.4 0;- . .,.. 1.4 0;- . Ta=70·C oS .,.. .::: .;., 1.2 .::: .;., --- Il:: 1.0 u u .-- ~ ;; ., ] 1.2 V ~ Il:: f-- u u 1.0 ",- ;; V ., ] .,..,'"'" 0.8 .,..,''"" Vcc=4.5V oS .., 0.8 .., ...:: ...:: 0.6 4.0 4.5 5.0 Supply voltage Vee 5.5 0.6 6.0 o (V) Supply current during operation vs. supply voltage < 100 .----,.-----.-----,------, -5 50 75 100 25 Ambient temperature Ta ("C) Supply current during operation vs. ambient temperature ...:: 100 -5 Vee=5.0V 90~--+---1----~----~ .~ ... rv 80~--1------+----~------; .S .g il ~ ii 1 ~ 70r-----4------+----~----~ 60L---~--~--~~-~ 4.0 4.5 5.0 Supply voltage Vee 5.5 6.0 .~ ~ 60 0 25 ~ 50 f'. 100 75 ("C) Chip enable time vs. ambient temperature ~ .,.. .~ os 0; Il:: 1.2 ./ 1.0 L 1.2 ~ 1.0 /"" / / .~ oE ~ 0.8 il ., 0.8 :g il .9U 0.6 4.0 Vee=4.5V ., ., "" 1 70 1.4 0; Il:: ~ ~ 0;- Ta=70·C oS il Ambient temperature Ta 1.4 0;- -ii "- (V) Chip enable time vs. supply voltage ...,. . "'-f'.... - ~ ~ .9- "" U 4.5 5.0 Supplyvoltage Vee 5.5 (V) 6.0 0.6 o 25 50 Ambient temperature Ta 75 100 ("C) - - - - - - - - - . . - S H A R P - - - - - - ............ - - 593 'LH2367 NMOS 65536-Bit Mask Programmable Read Only Memory LH2367 • . NMOS 65536-Bit Mask Prograinmable Read Only Memory Description • Pin Connections The LH2367 is a fully static mask programmable ROM organized as 8,192-word-by-8-bit by using silicon-gate NMOS process technology. • o Features 1. 2. 3. 4. 5. 6. 7. 8. 8,192-word-by-8-bit organization Single + 5V power supply Fully static operation (no clock required) All inputs and outputs TTL compatible Three-state output Access time (MAX.) : 250ns Programmable chip select (CS h CS 2) 28-pin dua:I-in-line package Top View • Block Diagram . Data Output Address Input 65,536(256X32X8) Cell Matrix 594 LH2367 NMOS 65536-Bit Mask Programmable Read Only Memory • Absolute Maximum Ratings Parameter Applied voltage * Operating temperature Storage temperature Symbol V Toor T stu Ratings -0.3-+7.0 0-+70 -55-+150 Unit V t t * The maximum applicable voltage on any pin with respect to GND. • Recommended Operating Conditions Parameter Supply voltage Input voltage • Symbol Vcc V1L VlH MIN. 4.75 -0.5 2.0 TYP. 5 MAX. 5.25 0.8 Vcc Unit V V V (Vcc=5V±5%, Ta=0-+70t) DC Characteristics Parameter Input low voltage In put high voltage Output low voltage Output high voltage Input leakage current Output leakage current Chip enabled power supply current Chip disabled power supply current Symbol V1L VlH VOL VOH I ILl I I ILO I Conditions MIN. -0.5 2.0 IoL =2mA IOH = 200,uA VIN=OV-Vcc VOUT=OV-Vcc (In non· selection mode) MAX. 0.8 Vcc 0.4 0.01 10 Unit V V V V ,uA 0.01 10 ,uA 50 80 rnA 20 40 rnA 2.4 ICCI IcC2 TYP. Note Note: CE;;;:; 2.0V (Non·active) or CSt or CS. is non-active (CE type chip select) • (Vcc=5V±5%, Ta=0-+70t) AC Characteristics Parameter Access time Chip enable time (from CE) Chip enable time (from CS) Output enable time (from OE) Output enable time (from CS) Output turn-off time (from CE) Output turn-off time (from CS) Output turn-off time (from OE) Output hold time Symbol tAcc tCE! tCE2 tOE! tOE2 tOFl tOF2 t OF3 toH MIN. 0 TYP. MAX. 250 250 250 100 100 100 100 100 Unit ns ns ns ns ns ns ns ns ns Test conditions of AC characteristics • Input voltage amplitude ................................. +OAV and +2.8V • Input rising/falling time ·······················;··················10ns • Input threshold level··········· .................................. ·1.5V • Output threshold level··········· ................................. O.8V and 2.0V • Output load condition ............................................. lTTL + 100pF 595 NMOS.65536-Bit Mask Programmable Read Only Memory Timing • Diagram (1) Type1 (CS1/CS2 is CE function type) Ao-AI2 tCEI CE cs· 1 tCE2 OE (High impedance) * 1 CS is the logical product of CS 1 and CS 2 (2) Type2 (CS1/CS2 is OE function type) t----tCE----'"'i cs· 1 (High impedance) * 596 1 CS is the logical product of CS 1 and CS 2 Valid data LH2367 LH2367 NMOS .65536-Bit Mask Programmable Read Only Memory • Chip Select OE X X H L *1 *2 cr CS*l H X X L X L X H Mode Non-select, power down *2 Output non-select Read DouT CS is high only when the CSl pin and the CSz pin are active at the same time and is low at all other times. (Non·connection pins are continuously active.) Chip select input CSl and CSz can be programmed into 2 types depending on the ROM pat· tern (see timing chart). Type (1) CE function type (2) OE function type • Do-D7 High impedance High impedance High impedance Function of CSl pin and CSz pin Functions at same time as CE pin; when CS = low, non-select power-down mode Functions at same time as OE pin; when CS = low, output non· select mode Electrical Characteristics Curves (Vcc=5V, Ta=25"C unless otherwise specified) Access time vs. supply voltage Access time vs. ambient temperature 1.4 1.4 ".a. > .!= ....'" ..!! Ta=70°C '" '-' '-' j .~'" 1.0 I'--- '" -- "* '-' '-' 1.0 j .~'" 0.8 0.8 V ./" V / ~ III III III III "'" "..,'" < Vcc=4.5V co > 1.2 .!= .... 1.2 ~ ".a OJ < 0.6 4.0 4.5 5.5 5.0 Supply voltage Vee 0.6 6.0 (V) o 25 50 75 Ambient temperature Supply current during operation vs. supply voltage 100 (OC) Supply current during operation vs. ambient temperature < 120 Ta 120 ~ '-' .§ 10... ~ 100 OIl .9 .g i... 90 j 80 '-' ~ ~ ::i 110 / / 110 .§ 10... ~ ~ ~ 100 ~ "" ~ 8 00 4.0 4.5 5.0 Supply. voltage Vee 5.5 (V) 6.0 25 50 Ambient temperature 75 Ta 100 (OC) 597 NMOS 65536-Bit Mask Programmable Read Only Memory Chip enable time vs. supply voltage .,..= 1.4 . Ta=70·C .,:- .i:: 'OJ .s 1 - - 0.6 4.0 4.5 5.0 Supply voltage Vee 598 . 5.5 (V) 6.0 1.4 Vee=4.5V .,:- / 1.2 e .; u ... ., :3 ~.,c .....S< U 0.8 .S< .... U .,..= E., p:; ~ 1.0 Chip enable time vs. ambient temperature .i:: 1.2 .Ql LH2367 1.0 V ~ '/ 0.8 0.6 o 25 50 75 Ambient temperature Ta 100 (·C) CMOS 65536-Bit Mask Programmable Read Only Memory LH5366A • CMOS 65536-Bit Mask Programmable Read Only Memory Description The LH5336A is a mask programmable ROM organized as 8,192-word-by-8-bit by using CMOS process technology. • • LH5366A • Pin Connections u z Features 1. 8,192-word-by-8-bit organization 2. Single + 5V power supply 3. Low power consumption 4. Edge enabled operation (CEl, CE,) 5. Three-state outputs 6. Access time (MAX.) : 2.5 ps 7. Programmable chip select 8. Selectable byte or digit output 9. 44-piJ;l quad-flat package Top View Block Diagram Address Input 65,536 (256X32X8) Cell Matrix ~----------~v~-----------J Data Output 599 CMOS 65536-Bit Mask Programmable Read Only Memory • LH5366A Absolute Maximum Ratings Parameter Supply voltage * Input voltage * Output voltage * Operating temperature Storage temperature Symbol Vcc VIN VOUT T oDc Ts'o Ratings -0.3-+7.0 -0.3-+7.0 -0.3-+7.0 0-+60 -55-+150 Unit V V V 'c ·C * The maximum applicable voltage on any pin with respect to GND. • Recommended Operating Conditions Ratings 4.5-5.5 Parameter Supply voltage • Unit V (V cc =5V±10%. Ta=0-+60·C) DC Characteristics Parameter Input high voltage Input low voltage Output high voltage Output low voltage Input leakage current Output leakage current Chip enabled power supply current Chip disabled power supply current Note 1: • Symbol VIH V1L VOH VOL I ILl I I lLO I Conditions MIN. -0.3 Vcc -1.0 IOH = 100 pA IOL =1.6mA VIN=OV-Vcc In non·selection mode TYP. Note 1.0 1.0 Unit V V V V pA pA 5 rnA 1 5 pA 0.4 IcC! Icc2 MAX. 0.8 Vcc 2.4 C3 • VIN=0.2V or Vcc-0.2V Average current at cycle time of 4,u s with output open and input set to OV or V cc. AC Characteristics Parameter Address setup time Chip enable setup time Chip enable precharge time Chip turn·off time (CE) Chip turn·off time (CS) Cycle time Symbol tAs tCE tD tDFI tDF2 [CYC MIN. 1 TYP. MAX. 2.5 1.5 1.5 1.5 4.0 Unit ps ps f.1s f.1s f.1s f.1s Test conditions of AC Characteristics • Input voltage amplitude·· ......................................... + 0.8V --- Vcc-1.0V • Input rising/falling time· ......................................... 20ns • Input threshold level··· ......................................... ··1.5V • Output threshold level············································ 0.4 V and 2.4 V • Output load condition ·········· .... ·······························10pF --~--.----SHARP-.-.------ 600 LH5366A CMOS 65536-Bit Mask Programmable Read Only Memory • Timing Diagram CE CS (High impedance) • Electrical Characteristics Curves (Vcc=5V, Ta=25"C unless otherwise specified) Access time vs. supply voltage 1.4 ". Access time vs. ambient temperature 1.4 Ta=60'C > Q) .~ > 1.2 Q) ~ -:0 Ql p:: u u 1.0 .~ ~ Ql p:: ~ Q) .~ 0.8 u u ~ rn rn j Q) .~ 0.8 rn " ..::" 0.6 0.6 4.0 4.5 5.0 5.5 Supply voltage Vee (V) 6.0 75 Ta 100 ("C) 2.5 -.S 2.0 ~ cQ) 1.5 bCo ~ Co = .....'on" > ..::'" 50 ..:: -.S Ul 25 Average supply current vs. ambient temperature 2.5 " o Ambient temperature ..:: ..= V V Q) Average supply current vs. supply voltage .;:; 1.0 /' Ul Q) u 1.2 -:0 j ..::"" Vee =4.5 V ". ..E! ..E! V / I tl 2.01-----+---+---+----1 V ...... ~ ~ 1.5 ~==:j::==t:::::::i:~=-~ 1 1.0 ~ 1.01-----+---+----+----; ~ > 0.5 4.0 5.0 4.5 Supplyvoltage Vee 5.5 (V) 6.0 ~ ..:: 0.5 '--_ _..L-_ _- ' -_ _~---'o 25 50 75 100 Ambient temperature Ta ('C) ~'-'-------SHARP'-'-"-----~ 601 CMOS 65536-Bit Mask Programmable Read Only Memory LH5366S CMOS 65536-Bit Mask Programmable Read Only Memory • Description The LH5366S is a mask programmable .ROM organized as 8,192-word-by-8-bit by using CMOS process technology. • • Pin Connections Features 1. 8,192-word-by-8-bit organization 2. Single + 3V power supply 3. Low power consumption 4. Edge enabled operation (CEl> CE 2 ) 5. Three -state outputs 6. Access time (MAX.) : 6 ps 7. Programmable chip select 8. Selectable byte or digit output 9. 44-pin quad-flat package • LH5366S Top View Block Diagram 65,536 (256X32X8) Cell Matrix Address Input ~----------~vr----------~I. Data Output '--'-~--'-'--SHARP -.--.-.~------- 602 LH5366S CMOS 65536-Bit Mask Programmable Read Only Memory • Absolute Maximum Ratings Parameter Supply voltage * Input voltage * Output voltage * Operating temperature Storage temperature Symbol Vcc VIN VOUT T oDr T stg Ratings -0.3-+5.0 -0.3-+5.0 -0.3-+5.0 0-+60 -55-+150 Unit V V V "C "C * The maximum appl\cable voltage on any pin with respect to GND. • Recommended Operating Conditions Ratings 2.5-3.5 Parameter Supply voltage • (V cc=3.0V, Ta=O- +60"C) DC Characteristics Parameter Input high voltage Input low voltage Output high voltage Output low voltage Input leakage current Output leakage current Chip enabled power supply current Chip disabled power supply current Note 1: • Unit V Symbol VIH VIL VOH VOL I ILl I I Iw I Conditions MIN. Vcc- 0.6 TYP. Note 0.5 1.0 1.0 Unit V V V V p.A p.A 1.0 rnA 1 5.0 p.A 0.6 IOH =50 p.A IOL=50p.A VIN=OV-Vcc In non· selection mode Vcc- 0.5 IcCl Icc2 MAX. Cs, VIN=0.2V or Vcc-0.2V Average current at cycle time of 12,us with output open and input set to OV or Vce. AC Characteristics Parameter Address setup time Chip enable setup time Chip enable precharge time Chip turn-off time (CE) Chip turn-off time (CS) Cycle time (Vcc =2.5-3.5V, Ta=0-+60"C) Symbol tAS MIN. 1 teE to tDFl tDF2 tCYC TYP. MAX. 6 6 1.5 1.5 12 Unit p.s p.s p.s p.s p.s p.s Test conditions of AC characteristics • Input voltage amplitude···········································+O.5V-Vcc-O.5V • Input- rising/falling time········· ................................. 20ns • Input threshold level .. ············· ....................•........... O.3V • Output threshold level .. ···· ....................................... Vcc- O.3V • Output load condition .. ············································ 10pF 603 CMOS 65536-Bit Mask Programmable Read Only Memory • LH5366S Timing Diagram Ao-A12 CE CS (High impedance) • Electrical Characteristics Curves (Vcc=5V, Ta=25t unless otherwise specified) Access time vs. ambient temperature Access time vs. supply voltage 1.4 Ta=60°C ".a.,.. ~ co .i: 1.2 p:: u u 1.0 .;; ] ., " <" ~ .~ \ 0.8 Ul Ul 0.6 2.0 1.2 .i: , ., "..., Vee=2.5 V .aco \ ~., 1.4 1.0 u u .;; ., '\ ] 0.8 ., " <" 0.6 ~ 2.5 3.0 3.5 Supply voltage Vee (V) 4.0 o 50 100 75 (OC) Average supply current vs. ambient temperature 0.8.-----.-----;----,.--.---, < < -5 -5 u 0.6 ~ t: 0.4 0.61----+---+---+-----1 u u ...,"... .....u ...... B ...- 1 0.2 ~., ----- ~ ...- ... .," .l:> ..,.,... 2.5 3.0 0.4 0.2 co . < Supply voltage Vee . ~ Ul 0 2.0 604 25 Ambient temperature Ta 0.8 .. V Ul Ul Average supply current vs. supply voltage < ~ 3.5 (V) 4.0 o 25 50 75 Ambient temperature Ta 100 eC) CMOS 65536-Bit Mask Programmable Read Only Memory LH5367 CMOS SSS3S-Bit Mask Programmable Read Only Memory • Description The LH5367 is a mask programmable ROM organized as 8,192-word-by-8-bit by using sili· con-gate CMOS process technology. • 1. 2. 3. 4. 5. 6. 7. 8. LH5367 • Pin Connections 00 cE u u Features 8,192-word-by-8-bit organization Single +5V power supply Low power consumption Edge enabled operation (CEl. CE 2 ) Three-state outputs Access time (MAX.) : 450ns Programmable chip select 44-pin quad-flat package Top View • Block Diagram Address Input 65,536 (256X32X8) Cell Matrix y Data Output ---~-------SHA.RP------"""""- 605 LH5367 CMOS 65536-8it Mask Programmable Read Only Memory • Absolute Maximum Ratings Parameter Supply voltage * Input voltage * Output voltage * Operating temperature Storage temperature Symbol Vcc VIN VOUT Topr TSIJl Ratings -0.3-+7.0 -0.3-+7.0 -0.3-+7.0 0-+60 -55-+150 Unit V V V t t * The maximum applicable voltage on any pin with respect to GND. • Recommended Operating Conditions Ratings 4.75-5.25 Parameter Supply voltage • Unit V (Vcc=5V±5%, Ta=0-+60t) DC Characteristics Parameter Input high voltage Input low voltage Output high voltage Output low voltage Input leakage current Output leakage current Chip enabled power supply current Chip disabled power supply current Symbol VIH V1L VOH VOL I ILl I I lLO I Conditions IOH=100pA IOL =1.6mA VIN=OV-Vcc In non-selection mode . TYP. MIN. Vcc -1.0 -0.3 2.4 Icc! Icc2 Cs , VIN=0.2V or Vcc-0.2V Note 1: Average current at cycle time of 750ns with output open and input set to OV or Vcc_ • AC Characteristics Parameter Address setup time Chip enable setup time Chip enable precharge time Chip turn-off time (CE) Chip turn-off time (CS) Cycle time Symbol tAs teE tp tDFl tDF2 teyC MIN. 50 TYP. MAX. 450 300 ·300 300 750 Unit ns ns ns ns ns ns Test conditions of AC characteristics • Input voltage amplitude .......................................... +0.8V-Vcc -1.0V • Input rising/falling time · ............................ · ............ 10ns • Input threshold level" ............................................ 1.5V • Output threshold level· .......................... · .... ·: .......... ·OAV and 2AV • Output load condition ........ · ...... · .............. · .............. ·10pF • Timing Diagram Ao-A12 CE CS (High impedance) 606 MAX. Vcc 0.8 Unit V Note V 0.4 1.0 1.0 V V pA pA 14 mA 5.0 pA 1 CMOS 65536-Bit Mask Programmable Read Only Memory • LH5367 Electrical Characteristics Curves (Vcc=5V, Ta=25"C unless otherwise specified) Access time vs. supply voltage ., Access time vs. ambient temperature ]. Ta=60'e . . ~ 1.2 ., .:: ~~ 1.0 Ol i"....... ........... ! ., oS ~ , tl 1.0 ! ., :a til til .,"'"' ., ..:"" 0.8 ..:"" 6.0 5.0 &l e .g: 75 100 ee) ,V / / ./ / V ./ ..: 5 / u u ... &l t: 4.51----+---+---+----1 e b ~ . ~ ..: ..: 4.0 5.01----+---+---+----1 ~ 5.0 Supply voltage Vee 4.01---+---+---+-----1 3.S'-_ _..i-_ _..I.-_ _-:!::-_ _:-! o 6.0 25 50 75 Ambient temperature Ta (V) 100 ('e) Input voltage vs. ambient temperature Input voltage vs. supply voltage 2.0 2:- 50 5.5.-----r----r---~-----, 5.0 3.0 25 Average supply current vs. ambient temperature 6.0 .,.. ~ Ambient temperature Ta Average supply current vs. supply voltage ~ o (V) Supply voltage Vee ~ 4.0 ~ ~ 0.8 0.6 4.0 -. Vee =4.75 V .~ 1;j 1.2 ~ u u 1.4 2.0,.---'T"""--....- - - , - - - - - , 2:1.7 d 1.7 d :> 23 :> :> 23 :> 1.4 ., . .::: VIH(MIN.) 1. VIL ~ 1.0 j ~ 0.8 4.0 4.5 Supply voltage 1.0 u u j --- oE'" 5.0 / 0.6 5.5 o 25 75 50 Ambient temperature (V) Vee V 0.8 ''"" "'" <:" Q) 0.6 3.5 / ~ Q) of ''"" " <:" 1.2 Q) ~ u u Vcc=4.0V v.: '\. > Q) .~ 1.4 Ta=60"e v.: Ta 100 ("e) Supply current during operation vs. ambient temperature Supply current during operation vs. supply voltage 4 4 Vcc=5.0 V tl'= 1.5,us tl'= 1.5,us 3 3 LH5396A(tcYc ~4.0 o~ ~J\. - ~I 2 11-~ 2 - . . ",,7.5I1- S ) LH5396(tc\C _ _ LJ396(tcY cJ7 .5 ,uS ) - I...i ... = " o 3.5 4.0 5.0 4.5 Supply voltage Vee 5.5 j o U) 0.4 C :z: 4.5 .---V-- o :> '~" .±:: ~ "§, ...--...-- C .-1 0.3 0 :> ., -- '" "0 0.2 3.0 > -"= ..s :.a "[ 1.5 '" 0.1 o 4.0 4.5 Supply voltage 5.0 Vee (V) 5.5 3.5 ---- :--- 0-= o-= 3.5 100 ("e) I oL =1.6mA ~ o 75 Ta Output low voltage vs. supply voltage 6:0 = -lOO,uA 50 Ambient temperature Output high voltage vs. supply voltage IOH 25 (V) 4.0 4.5 Supply voltage 5.0 Vee 5.5 (V) ----------SHARP-------611 CMOS 98304-Bit Mas~ Programmable Read Only Memory LH5396S • LH5396S CMOS 98304-Bit Mask Programmable Read Only Memory Description • Pin Connections The LH5396S is a ma~k programmable ROM organized as 12,288-word-by-8-bit by using silicon-gate CMOS process technology. • Features 1. 2. 3. 4. 5. 6. 7. 8. 9. • 12,288-word-by-8- bit organization Single + 3V power supply Low power consumption Edge enabled operation (CEl. CEz) Three-state ,outputs Access time (MAX.) : 15 ps Programmable chip select Byte/digit output select 44-pin quad-flat package Block Diagram Control Circuit Address Input .-----.-.--SHARP--------,,--612 CMOS 98304-Bit Mask Programmable Read Only Memory • lH5396S Absolute Maximum Ratings Parameter Supply voltage * Input voltage * Output voltage * Operating temperature Storage temperature Symbol Vee VIN VOUT Top, Tst2 Ratings -0.3-+5.0 -0.3-+5.0 -0.3-+5.0 0-+60 -55-+150 Unit V V V "C "C * The maximum applicable voltage on any pin with respect to GND. \ • Recommended Operating Conditions Parameter Supply voltage Input voltage Operating temperature • Symbol MIN. 2.6 Vee -0.3 VIL VIH Vee -0.5 Top, 0 TYP. 3 MAX. 3.4 0.5 Vee 60 Unit V V "C (V ee =+2.6-+3.4V, Ta=0-+60"C) DC Characteristics Parameter Input low voltage Input high voltage Output low voltage Output high voltage Input leakage current Output leakage current Chip enabled power supply current Chip disabled power supply current Symbol VIL VIH VOL VOH I ILl I I ILO I Conditions MIN. -0.3 Vee- 0.5 IOL=300pA IOH=30pA VIN=OV or Vee In non· selection mode: VOUT=OV or Vee TYP. MAX. 0.5 Vee 0.3 1.0 Unit V V V V pA 1.0 pA 2.0 mA 1 2.0 pA 2 Vee- 0.3 0.8 IcC! Iee2 Note Note 1: Average current at cycle time of 18 p. s with output open and input set to OV or Vee. Note 2: In chip selection mode: VIN=O.2V or VIN=Vcc-O.2V • AC Characteristics (Vee=+2.6V-+3.4V, Ta=0-+60"C) , Parameter Address setup time Chip enable setup time Chip enable precharge time Chip turn·off time (CE) Chip turn·off time (CS) Cycle time Symbol t AS teE tp tDFl tDF2 teYe MIN. 2.0 TYP. MAX. Unit p.s 15 3.0 p.s p.s 3.0 3.0 10,000 p.s p.s p.s Test conditions of AC characteristics • Input voltage amplitude .......................................... +0.5V-V cc -0.5V • Input rising/falling time ·········································20ns • Input threshold level········································ .. · .. Vcc /2 • Output threshold level··········································· 0.3V and Vcc-0.3V • Output load condition·· ............................................ Non loading 613 CMOS 98304-Bit Mask Programmable Read Only Memory LH5396S (f=IMHz, Ta=25t) Capacitance • Symbol CIN COUT Parameter Input capacitance Output capacitance • Conditions V1N=OV VOUT=OV MIN. TYP. Timing Diagram )K tcvc f-<-tAS CE J I---tCE- CS I tp ~ tDF2 ~ ,I f-;;--t D F l - ///h (High impedance) • Valid data ",~ Chip Select CS O/CSO-CS 3 /CS 3 In selection mode In non-selection mode • CE I CE 2 L L H H H L L H X X Do-D7 DOUT Mode Read High impedance Non-selection Byte/Digit Output Select LlU BID L L H H L H L H 614 D7 D7 D7 D7 D7 D6 D6 Ds D6 D6 D5 D5 D5 D5 D5 Data output pins D4 D3 D3 D4 D4 D3 D3 D4 D7 D4 D2 D2 D2 D2 D6 Dl DI DI DI D5 Do Do Do Do D4 MAX. 15 15 Unit pF pF LH23126 NMOS 131072-Bit Mask Programmable Read Only Memory LH23126 NMOS 131072-Bit Mask Programmable Read Only Memory • Description The LH23126 is a fully static mask programmable ROM organized as 16,384-word-by-8-bit by using NMOS process technology. • Pin Connections o 27 CSI/CSI/NC Al3 As A9 All • 1. 2. 3. 4. 5. 6. 7. 8. 9. • Features 16,384-word- by-8-bit organization Single + 5V power supply Fully static operation (no clock required) All inputs and outputs TTL compatible Three-state outputs Access time (MAX.) : 250ns Programmab.1e chip select Programmable output enable 28- pin dual-in-line package OE/OE CSo/CSo Top View Block Diagram Data Output J. -. -e 0 C; ~ Output Buffers C ~ Q)~ o ._ Utllc.:l ~ .,.''"" "0 "0 Column Address Decoder ..: c '" E .. ..::t:: o = Uo:l Address Input '.,'"" .,''"" '" "0 :;: ~ ~~ o = O::o:l <0 '" ., :g" ..: "0 u),.o ~ 0 131,072(256X64X 8) Cell Matrix ~ ...... 0::0 615 LH~.3126 NMO.S 131072-Bit Mask Programmable Read Only Memory Ab~olute Maximum t:latings • Parameter Supply voltage * Input voltage * Operating temperature Storage temperature * • Symbol Vcc VIN Topr TsUr Ratings -0.3-+7.0 -0.3-+7.0 0-+70 -55-+150 Unit V V t t The maximum applicable vol,tage on any pin with respect to GND. Recommended Operating Conditions Parameter Supply voltage Input voltage • Symbol Vcc V1L V lH MIN. 4.5 TYP. 5 MAX. 5.5 O.S Unit V V V 2.2 (Vcc=5V±1O%, Ta=0-+70t) DC Characteristics Parameter Symbol Input low voltage V1L Input high voltage VlH Output low voltage VOL Output high voltage VOH Input leakage current I ILl I Output leakage current I ILO I IDuring operation Icc I Current consumption I During standby Icc2 • AC Characteristics Parameter Read cycle time Access time Chip enable time Output enable time Chip select time Output select time Output turn·off time (from CS) Output turn·off time (from OE) Output hold time Conditions MIN. -0.3 2.2 IOL=3.2mA IoH =-400 f'A VIN=OV-Vcc VOUT=O-VCC during standby CSsO.SV, CS~2.2V TYP. MAX. O.S Vcc 0.4 2.4 10 10 SO 40 Unit V V V V pA pA rnA rnA (Vcc=5V±10%, Ta=0-+70t) Symbol t RC t ACC tCE tOE tcs tos tDFl tDF2 MIN. 250 toiI 10 TYP. MAX. 250 250 100 10 10 70 70 Unit ns ns ns ns ns ns ns ns ns Conditions for measurement of AC characteristics • Input voltage amplitude ................................... +OA-+2AV • Input rising/falling time ................................... 20ns • Input decision level ·········································1.5V • Output dicision level················,······················· O.BV and 2.0V • Output load condition··········· <........................... 1TTL + 100pF ---~~~-~--SHARP---------------.- 616 NMOS 131 072-Bit Mask Programmable Read Only Memory • LH23126 Timing Diagram Ao-A!3 tRC { ~I tACC tCE CS*! tcs OE*2 Do-D7 (High impedance) *1 CS is the reverse polarity of CS CS/CS is the logical product of CS/CSo and CS/CS/NC *2 OE is the reverse polarity of OE • Chip Select CS/CS" H/L LlH OE/OE 00-07 H/L DouT LlH High impedance Mode Operating Operating Standby ----.--~---SHARP--.-.-.--.-- 617 CMOS 131072-Bit Mask Programmable LH53127 • 'Rea~ CMOS l3l072-Bit Mask Programmable Read Only Memory Description The LH53127 is a mask programmable ROM organized as 16,384-word-by-8-bit by using poly-crystal silicon-gate CMOS process technology. • • Pin Connections CS!/CSI Features 1. 16,384-word-by-8-bit organization 2. Single +5V power supply 3. Low power consumption. 4. Edge enabled operation 5. All inputs and outputs TTL compatible . 6. Three-state outputs 7. Access time (MAX.) : 250ns 8. Programmable .chip select 9. 28-pin dual-in-fine package • LH53127 Only Memory. I 0 Vee A; CSo/CSo AI3 As As As A. A. All A3 )E A2 Al CE Ao D7 D6 DI D. GND Top View Block Diagram Data Output " Control Signal Generator 1!32XB Col'1mn Address Decoder Address Input ., .,.,... :g 65,536(256X32XB) Cell Matrix ..: ,. Q e<:: -----------------SHARP 618 .------.-.~---- LH53127 CMOS 131 072-Bit Mask Programmable Read Only Memory • Absolute Maximum Ratings Parameter Supply voltage * Input voltage * Output voltage * Operating temperature Storage temperature * • Ratings -0.3-+7.0 -0.3-V ee +0.3 -0.3-Vee +0.3 0-+70 -55-+150 Unit V V V 'C 'C The maximum applicable voltage on any pin with respect to GND. Recommended Operating Conditions Parameter Supply voltage Input voltage • Symbol Vee VIN VOUT Topr T st• Symbol Vee V1L VIH MIN. 4.5 TYP. 5 MAX. 5.5 0.8 2.2 Unit V V DC Characteristics Parameter Input low voltage Input high voltage Output low voltage Output high voltage Input leakage current Output leakage current Current consumption Current consumption during standby (Vee=5V±10%, Ta=0-+70'C) Symbol V1L VIH VOL VOH I ILl I I lLO I IcC! Iee2 Conditions MIN. -0.3 2.2 IOL=2.0mA IoH =-1.0mA VJN=OV-Vee TYP. 1.0 1.0 8 1 Unit V V V V pA pA mA mA 30 pA 2.4 ISB MAX. 0.8 Vee 0.4 CE=Vee, V1N=OV or Vee Note 1 2 3 Notel: During high impedance output, CE=2.2V or OE=2.2V, VOUT=OV-Vee Note 2: During operation, input amplitude is OV or Vee, teYe=350 ns and output pin is open. Note 3: During chip non-select, input amplitude is OV or Vee, teye=350 ns, and output pin is open. • AC Characteristics Symbol Parameter Cycle time teye Access time from CE teE Access time from CS/CS tes Access time from OE tOE Address setup time (from CE) t ASE Address setup time (from CS) tASS CE precharge time t pE CS/CS precharge time t ps Data off delay time from CE toFl Data off delay time from CS/CS toF2 Data off delay time from OE toF3 (Vee =5V±10%, Ta=0-+70'C) MIN. 350 TYP. MAX. 250 250 100 0 0 100 100 0 0 0 100 100 100 Unit ns ns ns ns ns ns ns ns ns ns ns 619 .................................................,...................... CMOS 131072-Bit Mask Programmable Read Only'Memory , LH53121 ~....,---.., Conditions for measurement of AC characteristics • Input voltage frequency··················,············:···· OAV -2AV • Input rise/falI' time .......................................... IOns • Input decision level ............ · ............................ 1.5V • Output decisipn level ............................... ; ....... O.8V and 2.0V • Output load condition ............ · .................. · .... · .. 1 TTL+ 100pF Address input requires that it should be defined' during an active period. • Capacitance Parameter Symbol Input capacitance Output capacitance • CrN COUT Conditions MIN. Ratings TYP. MAX. 10 10 VrN=OV VOUT=OV Unit pF pF Timing Diagram (1) When the CE input is used as the clock (The chip is selected by the input of CSo/CSo• CS 1 ICS,.) t---------tCYC-------~ Ao-At3 OE Do-D, (2) ----------------------~~K When the CS input is used as the clock (9E~VIL(MAX.)) ~------tCYC------__I CSo/CSo Chip select CSt/CSt Ao-At3 OE --------SHARP.......,~-----....--, 620 CMOS 131072-Bit Mask Programmable. Read Only Memory • LH53127 Chip Select IT L cSo/CSQ, CS,/CSISelect Non-select H DE L H X X Do-D7 Valid data output High impedance Mode Read Output non -select Non-select Standby ~---'---'---SHARP---'-'-"'------- 621 LH53129 CMOS 131072-Bit Mask Programmable Read Only Memory LH53129 CMOS 131072-Bit Mask Programmable Read Only Memory • Description The LH53129 is a mask programmable ROM organized as 16,384-word-by-8-bitby using silicon-gate CMOS process technology_ • L 2. 3. 4. 5. 6. 7. 8. 9. • . Pin Connections uu I~I~ I~I~ ::Je.8ooci).ci)r.i)u zz.;z;)CQ>uuuuz Features 16,384-word-by-8-bit organization Single +4.5V power supply Low power consumption Edge enabled operation (CE l. CE z) Three-state outputs Access time (MAX.) : 6 ps Programmable chip select Byte/digit output select 44-pin quad -flat package • Top View Block Diagram Chip Enable { Cbi, S.I~; { l~ , Circuit Address Input 622 CMOS 131072-Bit Mask Programmable Read Only Memory • Absolute Maximum Ratings Parameter Supply voltage * Input voltage * Output voltage * Operating temperature Storage temperature Symbol Vee VIN VOUT T oDr T s '" Ratings -0.3-+7.0 -0.3-+7.0 -0.3-+7.0 0-+60 -55-+150 Unit V V V "C "C * The maximum applicable voltage on any pin with respect to GND. • Recommended Operating Conditions Parameter Supply voltage Input voltage Operating temperature • Symbol Vee VIL VIH T oDr MIN. 4.0 -0.3 Vee -1.0 0 TYP. 4.5 MAX. 5.0 0.8 Vee 60 Unit V V "C (Vee=4.5V±10%, Ta=0-+60"C) DC Characteristics Parameter Input low voltage Input high voltage Output low voltage Output high voltage Input leakage current Output leakage current Chip enabled power supply current Chip disabled power supply current Note 1: • LH53129 Symbol V IL VIH VOL VOH I ILl I I ILO I Conditions MIN. -0.3 Vee -1.0 IOL =1.6mA IOH=100fLA VIN=OV-Vee In non -selection, VOUT=OV-Vee MAX. 0.8 Vee 0.4 2.4 3 leCl lee2 TYP. CS, VIN=0.2V or Vee-0.2V Unit V V V V 1.0 fLA 1.0 fLA 7 rnA 5.0 fLA Note 1 Average current at cycle time of 7.5,.,s with output open and input set to OV or Vee. (Vee=4.5V±10%, Ta=0-+60"C) AC Characteristics Parameter Address setup time Chip enable setup time Chip enable precharge time Chip turn-off time (CE) Chip turn-off time (CS) Cycle time Symbol t AS teE to tDFl tDF2 tcYe MIN. 1 TYP. MAX. 6 1.5 7.5 1.5 1.5 10,000 Unit fLS fLS fLs fLS fLs fLs Test conditions of AC characteristics • Input voltage amplitude·· .. ······································· +0.8V-Vcc -1.0V • Input rising/falling time···· ...................................... 20ns • Input threshold level··· ........................................... 1.5V • Output threshold level············································ 0.4 V and 2.4 V • Output load condition ............................................. 10pF • (f=lMHz, Ta=25"C) Capacitance Parameter Input capacitance Output capacitance Symbol CIN COUT Conditions VIN=OV VOUT=OV MIN. TYP. MAX. 15 15 Unit pF pF -----------SHARP--------623 CMOS 131072-Bit Mask Programmable Read Only Memory' • lH53129 Timing Diagram CE CS (High impedance) • Chip Select CS O/CS O-CS 3/CS 3 L L In selection mode In non-selection mode • CE 1 . CE 2 H L L H H II X X Do D7 DOUT Mode Read High impedance Non-selection Byte/Digit Output Select LlU BID L L L H H H H 624 L D7 D7 D7 D7 D7 D6 D6 D6 D6 D6 D5 D5 D5 D5 D5 Data output pins D4 D3 D4 D3 D4 D3 D4 D3 D4 D7 D2 D2 D2 D2 D6 D1 D1 D1 D1 D5 Do Do Do Do D4 CMOS 131072-Bit Mask Programmable Read Only Memory • LH53129 Electrical Characteristics Curves (Ta=25"C unless otherwise specified) Normalized chip-enable delay time supply voltage 1.4 1.4 , .,., II ~ u u 1.0 '" u .:t:: 0.8 u <: .II t:. u .:t::'" .;;'" ~ r--- 1.0 4.0 5.0 4.5 Supply voltage Vee (V) V /' , 0.8 0.6 5.5 o 25 50 Ambient temperature 4 <: .... 3 75 100 Ta ('C) Supply current during operation vs. ambient temperature 4 ~ G u tcye =7.5 /JS tl'=1.5/Js g .... / 0.0 Supply current during operation vs. supply voltage ~ / 1n 0.6 3.5 Vee =4.0 V 1.2 " ~ '" .;; Normalized chip-enable delay time vs . . ambient temperatur~ Ta=60'C ;; 1.2 ?: VS. Vee=5.0V tcye =7.5 /JS tl'=1.5/Js 3 .~ ...... -- "go / ~ ~ ...'" .g 2 .S: ..... ~ ... ..," ~ "" §' 4.0 4.5 5.0 Supply voltage Vee Output high voltage VS. 5.5 ient temperature 0.4 6.0 25 (V) ?: IOL=1.6 rnA 0.3 ~ :i ..c: i ~ 1 1.5 = o 0 3.5 4.0 4.5 Supply voltage Vee 5.0 (V) 5.5 0 3.5 4.0 4.5 Supply voltage Vee 5.0 5.5 (V) .-----.-------SHARP·~.-.----~-.-. 625 LH53129A CMOS 131072-Bit Mask Programmable Read Only Memory LH53129A • CMOS 131072-Bit Mask Progiammable Read Only Memory . Description • Pin Connections . The LH53129A is a mask programmable ROM lorganized as 16,384-word-by-8-bit by using silicon-gate CMOS process technology. • Features 1. 2. 3. 4. 5. 6. 7. 8. 9. 16,384-word-by-8-bit organization Single +5V power supply Low power consumption Edge enabled operation (CEl> CE z) Three-state outputs Access time (MAX.) : 2.5 ps Programmable chip select Byte/digit output select 44-pin quad-flat package • u u z Z Block Diagram Data Output ~ Chip Enable { 18 8JVCC 5 GND Chip Select { 24 LlU 9 B/D 30 L/U.B/D Control Circuit Address Input 626 Top View CMOS 131 072-Bit Mask Programmable Read Only Memory • LH53129A Absolute Maximum Ratings Parameter Supply voltage * Input voltage * Output voltage * Operating temperature Storage temperature Symbol Vcc VIN VOUT Topr T st " Ratings -0.3-+7.0 -0.3-+7.0 -0.3-+7.0 -5-+55 -55-+150 Unit V V V ·C ·C * The maximum applicable voltage on any pin with respect to GND. • Recommended Operating Conditions Parameter Supply voltage In put voltage Operating temperature • Symbol Vcc VIL V IH T oDr MIN. 4.5 -0.3 Vcc -1.0 -5 TYP. 5 MAX. 5.5 0.8 Vcc 55 Symbol V IL VIH Input leakage current VOL VOH I ILl I Output leakage current I lLO I Chip enabled power supply current Chip disabled power supply current V ·C (V cc =4.5V+5V±10%, Ta=-5-+55·C) DC Characteristics Parameter Input low voltage Input high voltage Output low voltage Output high voltage Unit V Conditions MIN. -0.3 Vcc -1.0 IOL =1.6mA IOH= 100 flA VIN=OV-Vcc In non-selection mode, VOUT=OV-Vcc MAX. 0.8 Vcc 0.4 2.4 7 IccI Icc2 TYP. CS, VIN=0.2V or Vcc-O.2V Unit V V V V 1.0 f'A 1.0 flA 14 rnA 5.0 flA Note 1 Note 1: Average current at cycle time of 4.0 p's with output open and input set to OV or Vee. • AC Characteristics(Vcc=5V±10%, Ta=-'-5-+55·C) Parameter Address setup time Chip enable setup time Chip enable precharge time Chip turn-off time (CE) Chip turn-off time (CS) Cycle time Symbol tAS tCE tD tDFI tDF2 tcYC MIN. 1 TYP. MAX. Unit f'S 2.5 f'S f'S 1.5 1.5 10,000 f's f's fls 1.5 Test conditions of AC characteristics • Input voltage amplitude ........................................... +O.8V - Vcc-1.0V • Input rising/falling time··· ...... ·· .... · .... ··· ............ ······· 20ns • Input threshold level ............................................. ·1.5V • Output threshold level ............................................ OAV and 2AV • Output load condition'" .......................................... lOpF ---------------$HARP-------627 CMOS 131072-Bit Mask Programmable' Read Only Memory • LH53129A - (f ko lMHz, Ta=25"C) Capacitance Parameter Input capacitance Output capacitance • Symbol CIN COUT Conditions V[N=OV Va T=OV MIN. TYP. Timing Diagram tCYC I--tAS J ~r---t CE r J---tCE-----I CS I---tOF1- ,,',/, /. (Highim pedance) . • Valid data Chip Select CS O/CS O -CS 3 /CS 3 In selection mode L L In non-selection mode H H X • CE 2 H CE 1 L L H X Do 0 7 DOUT Mode Read High impedance Non-selection Byte/Digit Output Select LlU BID L L L H H H H 628 L 07 07 07 07 07 06 06 06 06 06 . Os Os Os Os Os Data output pins 03 04 03 04 04 03 04 03 07 04 O2 O2 O2 O2 01 01 01 01 06 Os Do Do Do Do 04 '%" . MAX. 15 15 Unit pF pF CMOS 131072-Bit Mask Programmable Read Only Memory • LH53129A Electrical Characteristics Curves (Ta=25"C unless otherwise specified) Normalized chip-enable delay time vs. supply voltage 1.4 :> 1.4 Ta=60'C 1.2 "- 0 .n II u u :> 1.0 1.2 ~ '" 0.8 0.6 4.0 4.5 1n N . !: II ------r- 5.0 .;:"' .;:"' G ./ go 3.0 .~ 0.6 o 25 75 50 100 Ta ('C) Supply current during operation vs. ambient temperature 6.0 r-------,-----.----, Vee=5.5V G teyc=4.0.us ..:i tp=1.5.us 4.51===~===*==_t_----1 ./ ., 0.8 -< -5 ..:i 4.5 -:0... ~ Ambient temperature t eye =4.0.us tl' =1.5.us .§ ~ (V) Supply current during operation vs. supply voltage -5 1.0 ~ "- 6.0 5.5 Supply voltage Vee <" 6.0 Vee=4.5 V U u < .;:'" Normalized chip-enable delay time vs. ambient temperature ~ ~ .§ -:0 ~ ""o .~ 30r---+----r---+--~ . .g .g ~ 1.5 ~ 1.51----+----r---+--~ 1i 1i ... ... ..e;. ..e;. ~ r/l 0 IS: 4.0 4.5 5.0 Supply voltage Vee 5.5 6.0 ~ I (V) Ambient temperature Ta Output high voltage vs. supply voltage 10H=0.4 mA 4.5 ..,........ V" ........ ~ ('C) Output .low voltage vs. supply voltage 6.0 ~'" ., 0~--2~5~-~5~0---7=5~-~100 0.4 V IOL=1.6 rnA C ..J 0.3 0 :> ..,. :'if ,;:: 3.0 . ,;:: 0.2 .. o - 0 :; ..c ..s ~ 1.5 ~ 0.1 :; ~ :; o ,.,.. 0 o 4.0 O~_~~_~~ 4.5 5.0 Supply voltage Vee 5.5 (V) 6.0 4.0 4.5 _ _~____~ 5.0 Supply voltage . Vec 5.5 6.0 (V) .-.----------SHARP----.---629 NMOS 262144-Bit Mask Programmable Read Only Memory LH23257 NMOS 262144-Bit Mask Programmable Read ·Only Memory • Description The LH23257 is a fully static mask programmable ROM organized as 32,768-word-by-8-bit by using silicon-gate CMOS process technology. • • Pin Connections 0 A7 A6 A5 A. Features 1. 32,768-word-by-8-bit organization 2. Single + 5V power supply 3. Fully static operation (No clock required) 4. All input and output TTL compatible 5. Three-state outputs. 6. Access time (MAX.) : 250ns 7. ~rogrammable chip select 8. Programmable output enable 9. 28-pin dual-in-line package • LH23257 A3 A2 AI AI3 AM A9 All OE OE cs CS Do 01 0; 02 Top View Block Diagram Data Output " Output Buffers Address Input 262,144 Cell Matrix 630 Vee A" LH23257 NMOS 262144-BitMask Programmable Read Only Memory • Absolute Maximum Ratings Parameter Supply voltage * Input voltage * Output voltage * Operating temperature Storage temperature * • Vcc VIN VOUT Topr Tst~ Unit V V V 'C 'C Recommended Operating Conditions Input voltage Symbol Vcc V IL VlH MIN. 4.5 -0.3 2.2 TYP. 5 MAX. 5.5 O.S Vcc Unit V V V (Vcc=5V±10%, Ta=0-+70·C) DC Characteristics Parameter Symbol Input low voltage VIL Input high voltage VlH Output low voltage VOL Output high voltage VOH Input leakage current I ILl I Output leakage current I ILO I Current during operation ICCl consumption I during standby Icc2 I • Ratings -0.3-+7.0 -0.3-+7.0 -0.3-+7.0 0-+70 -55-+150 The maximum applicable voltage on any pin with respect to GND. Parametet: Supply voltage • Symbol Conditions MIN. -0.3 2.2 IOL=3.2mA IoH = -400,u A VlN =0-5.5V VouT =0-5.5V during standby IouT=OmA CS~O.SV, CS;;;;2.2V TYP. MAX. O.S Vcc 0.4 2.4 10 10 SO 45 Unit V V V V ,uA p.A rnA rnA AC Characteristics (Vcc=5V±1O%, Ta=0-+70'C) Parameter Read cycle time Access time Chip enable time Output enable time Chip select time Output select time Output turn-off time (from CS) Output turn-off time (from OE) Output hold time Symbol t RC t ACC tCE tOE tcs tos tDF! tDF2 tOH MIN. 250 TYP. MAX. 250 250 100 10 10 70 70 10 Unit ns ns ns ns ns ns ns ns ns Conditions for measurement of AC characteristics • Input voltage frequency .................................... + 0.4 - + 2.4 V • Input rise/fall time .......................................... 20ns • Input decision level ....................................... "1.5V • Output decision level ....................................... O.BV, 2.0V • Output load .................................................. ·1 TTL+ 100pF 631 NMOS 262144-Bit Mask Programmable Rea~ Only Memory • (f=1MHz, Ta=25'C) Pin Capacitance Parameter Input capacitance Output capacitance • LH232.57 Symbol CIN COUT MIN. Conditions V1N=OV VOUT=OV TYP. 8 12 Timing Diagram tRC ~ ~t\ I - - tOH tACC tCE \ tDFl tcs "(- tOE- ~ VII (High impedance) • ~\\ ro- tDF2 Valid data Chip Select CS/CS LlH H/L 632 OE/OE LlH H/L Output High impedance DOUT Current consumption Standby Operating MAX. -I) ) ) Unit pF pF NMOS 262144-Bit Mask Programmable Read Only Memory • LH23257 Electrical Characteristics Curves (Vcc=5V, Ta=25"C unless otherwise specified) Access time vs. supply voltage ., 1.4 .::'" 1.2 Access time vs. ambient temperature .,.a ... ~ .. .::'" Ql P::: 1.0 .~'" 0.8 ''"" '" " ..::" V 0.6 4.0 v--- --- u u ~ 5.5 4.5 5.0 Supply voltage Vee CV) 0.6 6.0 tcYc=250ns ~ 60 .§ 60 .-- 40 1;j V .... "go .ff 5.0 Supply voltage Vee 5.5 25 100 75 ("C) 2.0 E:: :: 1.7 1.2 :> VlH ;;'" 1.0 ~1.4 . .±:: 'B o ~ '"c " 50 Input voltage vs. supply voltage 1.4 " .0 r-- Ambient temperature Ta ~ "' B ~ t:......... 6.0 .::'" Ql 40 CV) Output enable time vs. supply voltage 1;j 100 COC) teYe=250ns Vee=5.5V 1 .g ... 75 50 25 Ambient temperature Ta Supply current during operation vs. u 4.5 ~ ambient temperature .Ii; .,.a o ..:: 80 ~ c .~ go ~ ~ 0.8 '" ""'" ..::" 80 u 1.0 " .~ supply voltage ~ 1.2 '" ~ Supply current during operation vs. ~ Vee=4.5V ] 1;j u u ~ 1.4 VIL ILl 0.8 i-;; 0 0.6 4.0 4.5 5.0 5.5 Supply voltage Vee CV) 6.0 0.8 4.0 4.5 5.0 Supply voltage Vee 5.5 6.0 CV) - . . - . - - - - - - S H A R P - - - - - . - . - - ....... 633 CMOS 2~2144-Bit Mask Programmable Read Only.Memory LH5325·6 .• LH53256 CMOS 262144-Bit Mask Programmable Read Only Memory • Description Pin Connections The LH53256 is a mask programmable ROM organized as 32,768-word-by-8-bit by using silicon-gate CMOS process technology. • Features 1. 2. 3. 4. 5. 6. 7. 8. 9. 32,768-word-by-8-bit organization Single + 5V power supply Low power consumption_ Edge enable operation (CEl> CE 2) Three-state outputs Access time (MAX.) : 800ns Programmable chip select Bytel digit output select 44-pin quad-flat package • Top View Block Diagram 262,144 (512X64X8)_ Cell Matrix Address Input ~----------~y~----------~ Data Output ----------SHARP---------634 LH53256 CMOS 262144-Bit Mask Programmable Read Only Memory • Absolute Maximum Ratings Parameter Pin voltage * Operating temperature Storage temperature Symbol VIN ,Topr T stg Ratings -0.3-+7.0 0-+60 -55-+150 Unit V "C "C * The maximum application voltage on any pin with respect to GND. • Parameter Input low voltage Input high voltage Output low voltage Output high voltage Input leakage current Output leakage current Chip enabled power supply current Chip disabled power supply current Input capacitance Output capacitance Note Note Note Note • (Vcc=5.0V±10%, Ta=0-+60"C) DC Characteristics Symbol V;L VIH VOL VOH I ILl I I Iw I Conditions MIN. -0.3 Vcc -O.4 Note 1.0 1.0 Unit V V V V pA pA Icc! 10 mA 2 Icc2 50 pA 3 CIN COUT 5 10 pF pF 4 4 IOL=2.0mA IoH =-1.0mA VIN=OV-Vcc TYP. MAX. 0.6 Vcc 0.4 2.4 1 1: CE I =Vcc-O.2V or CE2=O.2V or OE=Vcc-O.2V, VOUT=OV-Vcc 2: ~t amplitude: O.4V-Vcc-O.4V, tcYc=900ns, output open 3: CE1=VCC-O.2V, CE2=O.2V 4: Ta=25t:, f= IMHz AC Characteristics (Vcc=5.0V± 10%, Ta=0-+60"C) Parameter Chip enable setup time Output enable time Address setup time Address hold time Chip turn·off time (CE) Chip turn-off time (OE) Chip enable precharge time Cycle ,time Symbol tCE tOE t AS tAH tDFl tDF2 to tcYC MIN. TYP. MAX. 800 100 30 100 100 100 100 900 Unit ns ns ns ns ns ns ns ns Test conditions of AC characteristics • Input voltage amplitude .........................•................ +O.4V-V cc -O.4V • Input rising/falling time ......................................... 20ns • Input threshold level ··············································1.5V • Output threshold level ..•......................................... 0.4 V and 2.4 V • Output load condition ............................................. 10pF 635 ............,...............--...-:...-......................... CMOS 262144-Bit Mask Programmable Read Only Memory ............. ~ • . Timing Diagram A o -A 14 CSo/CSo-CS 3 /CS 3 L/U, BID Input transition (High impedance) 1-------tCYC----~~ • Chip Select Do-D 7 DOUT CE 2 OE CS2/CSO -CS 3/CS 3 Mode L H 0 1 In selection mode Read In non-seleCtion mode Non-selection L H H L L H CE 1 • X X High impedance X Standby X Byte/Digit Output Select L/U BID L L H H L H L H 636 07 06 05 D7 D7 D7 07 D6 D6 06 D6 05 D5 D5 05 Data output pins 03 04 03 D4 D4 D4 04 D3 D3 07 D2 01 Do D2 O2 D2 06 D1 D1 . D1 05 Do Do Do 04 LH53256 LH53256 CMOS 262144-Bit Mask Programmable Read Only Memory • Electrical Characteristics Curves (Ta=25t unless otherwise specified) Normalized chip-enable delay time vs. supply voltage Normalized chip-enable delay time vs. ambient temperature 1.4 1.4 Ta=60'C ~ > <= V cc=4.5V .... 1.2 "- u; II tl e 1.0 1.2 ~ '" <.) U 'tn C'O ~ ~ ~ 0.8 0.6 4.0 . !: II -- '" <.) ~ '" ~ 5.5 6.0 6 --- 4 ~. ~ .,/ 6 4 2 2 Vcc=5.5 V tcyc=900 DS tp =100 ns o 4.0 4.5 5.5 5.0 Supply voltage V cc o 6.0 (V) IOH=-1.0mA IOL=4mA Ta=75'C 4.5 0 > .",..,.. I-"" .--' ~ 25 50 Ambient temperature 75 Ta 100 ("C) Input voltage vs. supply voltage Output voltage vs. supply voltage ~VOH e := 2.4 r--------,------r---, Ta=O'C(VlH) Ta=60'C(VILl 1.8 > .; ::l > 0 ..'" 25 50 75 100 Ambient temperature Ta' ('C) 8 tcyc =900 DS tl'=100DS > / Supply current during operation vs. ambient temperature 8 0: o (V) Supply current during operation vs. supply voltage e ~ / 0.8 0.6 5.0 4.5 Supply voltage Vee 6.0 1.0 3.0 '~" 1.2 ;!:O ;!:O 0 0 '" :;'" 1.5 i 0.6 .....c .fr = 0 o 4.0 VOL 5.5 5.0 4.5 Supply voltage Vee (V) 6.0 0 4.0 4.5 5.0 Supply voltage Vce 5.5 6.0 (V) -----·-~.-----SHARP-.---------- 637 - LH53257 CMOS 262144-Bit Mask Programmable Read Only Memory LH53257 • CMOS 262144-Bit Mask Programmable Read· Only Memory Description The LH53257 is a fully static mask programmable ROM organized as 32,768-word-by-8-bit by using polycrystal silicon-gate CMOS process technology. • 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. Features 32,768-word-by-8-bit organization Single +5V power supply Low power consumption Fully static operation (No clock required) All input and output TTL compatible Three-state outputs Access time (MAX.) : 250ns Programmable chip select Programmable output enable 28-pin dual-in-line package • • Pin Connections 0 A7 A6 A, A, A3 A2 Al An DI Top View Data Output 638 CS CS Dz r - - -________~A~_ _~_ _~--~ Input OE OE Do Block Diagram Address Vee AI, AI3 As Ao All Cell Matrix (32,76SXS) LH53257 CMOS 262144-Bit Mask Programmable Read Only Memory • Absolute MaXimum Ratings Parameter Supply voltage * Input voltage * Output voltage * Operating temperature Storage temperature Symbol Vee VIN VOUT Toor T st• Ratings -0.3-+7.0 -0.3-+7.0 -0.3":'+7.0 0-+70 -55-+150 Unit V V V "C "C *The maximum applicable voltage on any pin with respect to GND. • Recommended Operating Conditions Parameter Supply voltage Input voltage • Symbol Vee VIL VlH MIN. 4.5 -0.3 2.2 TYP. 5 MAX. 5.5 0.8 Vee Unit V V V (V ee =5V±10%, Ta=0-+70"C) DC Characteristics Parameter Input low v~ltage Input high voltage Output low voltage Output high voltage Input leakage current Output leakage current Current consumption '. IDuring operation I During standby Symbol VIL VlH VOL VOH I ILl I I lLO I Icc ISB Conditions MIN. -0.3 2.2 10L =1.6mA IOH=-200 pA V IN =0-5.5V CS=0.8V, CS=2.2V, VoUT =0-5.5V 10uT=OmA CS";:0.2V, CS~Vee-0.2V TYP. MAX. 0.8 Vee 0.4 10 Unit V V V V pA 10 pA 30 30 rnA pA 2.4 AC Characteristics (Vcc =5V±10%, Ta=0-+70"C) Parameter Read cycle time Access time Chip enable time Output enable time Chip select time Output select time Output turn·off time (from CS) Output turn·off time (from OE) Output hold time Symbol t RC tAce tCE toE tcs tos tDFl tDF2 tOH MIN. 250 TYP. MAX. 250 250 100 10 10 100 100 10 Unit ns ns ns ns ns ns ns ns ns Conditions for measurement of AC characteristics • Input voltage frequency width····························· ······0.8 - 2.2V • Input rise/fall time ................................................. 20ms • Input decision level··· ............................................• ·1.5V • Output decision level····················· .......................... 0.8V and 2.2V • Output load .. ·························································1 TTL+ 100pF ---------SHARP-----.-.-.--639 CMOS 262144-:Bit Mask • Programmabl~ LH53257 Read Only Memory (f=IMHz,Ta=25'C) Pin Capacitance Parameter Input capacitance Output capacitance • Symbol CIN CIN Conditions VIN-OV VOUT=OV MIN. rip. 10 10 Timfng Diagram Ao-Au =x1-:_~-_-_-_-_~-_-_~t_RC~~~~~~~~~~ . .-_. . . I-.01----tACC----''"I I-o,""-----tcE-----""I ,e tcs OE (High impedance) • Chip Select CS/CS L/H H/L 640 OE/OE X' LlH H/L Output High impedance Output Power consumption During standby During operation MAX. ~-.,;..-+.;;:.:...--_ Unit pF pF LH53257 CMOS 262144-8it Mask Programmable Read Only Memorx • Electrical Characteristics Curves (Vcc=5V, Ta=25"C unless otherwise specified)· Access time vs. supply voltage Access time vs. ambient temperature 1.4 1.4 ~ . .,.. ~ ...,. ~ .~ 1.2 "- '" ]., p:: u u 1.0 .;; ., 'Srn .,rn ...:"" .~ ... ~ 0.8 1.2 ;; p:: ----- u u - 1.0 ~ .;; ., .! .,rnrn ~ ~ O.I! ...:"" 0.6 4.0 4.5 5.0 5.5 Supply voltage Vee CV) 0.6 6.0 o 25 50 75 Ambient temperature Ta 100 C·C) Supply current during operation vs. ambient temperature Supply current during operation vs. supply voltage 12 12.-----------.-----~----~ tnc=250ns 9 ,/ V tcye=250ns Vee=5.5V / u ..::; Vee=4.5V ~ 9~~~,-----+-----~----~ / .S... .,. go ./' -T'----I--_..J 61----+-----+-----/----1 .rr. .g . ~ 31----+-----+-----/----1 8 ~ 4.5 5.0 5.5 6.0 ~ {fl °0~--~25~-~5~0----~75~--~100 Supply voltage Vee CV) Ambient temperature Ta ~ .,. ~ 2.0 1.4 .~ ... ;; 1.2 e 2'" ., ..., 2: ;;'" r-... 1.0 ·s., ~ C·C) Input voltage vs. supply voltage Output enable time vs. supply voltage 0.8 ""'" :: :> ~ ., ~ '= ~ .;:: . 0 J 1.1 ~ 0 0.6 4.0 4.5 5.0 5.5 Supply voltage Vee (V) 6.0 0.8'--____-'-____--'-____--'____- - J 4.0 4.5 5.0 5.5 6.0 Supply voltage Vee CV) ~.-~-----SHARP-.------------ 641 . CMOS 524288-Bit Mask Prograf!1mable Read Only Memory LH53512 CMOS 524288-Bit Mask Progrartunable Read Only Memory • • Description The LH53512 is a mask programmable ROM organized as 65,536-word-by-B-bit by using silicon-gate CMOS process technology. • 1. 2. 3. 4. 5. 6. 7. B. Pin Connections Features 65,536-word-by-B-bit organization Single +5V power supply Low power consumption Edge enabled operation Three-state outputs Access time (MAX.) : 3.0 ps Programmable chip select 24-pin small-outline package Top View • Block Diagram 10 Address Input / Data Output 9 8 7 6 5 Low Address I--r- X Decoder Latch '4' - 65,536 X8 Cell Matrix 3 8 8 ~ ~. High Address Latch Y .1 l Chip Select {~.~ T Chip Select PLA ~ 16 Low Address Read Signal Decoder Y Selecter Output Buffer Output Latch / Output Mode Select 1 ~ 4 High Address Read Signal ~ Output Control I U Byte/Digit S elect I 1 GND 18 Vee Output Enable ,------...-. ....... . - - - - - S H A R P . - . - . - - - - - - 642 CMOS 524288-Bit Mask Programmable Read Only Memory • Absolute Maximum Ratings Parameter Supply voltage * Input voltage * Output voltage * Operating temperature Storage temperature Symbol Vcc VIN VOUT Topr Tst2 Ratings -0.3-+7.0 -0.3-+7.0 -0.3-+7.0 -5-+55 -55-+150 Unit V V V "C "C * The maximum applicable voltage on any pin with respect to GND. • (Ta=25"C) Recommended Operating Conditions Parameter Supply voltage Input voltage • LH53512 Symbol MIN. 4.0 Vcc -0.3 V1L Vcc -1.0 VIH TYP. 5.0 MAX. 6.0 0.8 Vcc Unit V V V (V ee =5.0V±20%, Ta=-5-+55"C) DC Characteristics Parameter Input low voltage Input high voltage Output low voltage Output high voltage Input leakage current Output leakage current Chip enable power supply current Chip disabled power supply current Symbol V1L VIH VOL VOH I ILl I I ILO I ICCI Icc2 Conditions IOL=0.5mA IOH =-0.5mA MIN. -0.3 Vec -1.0 TYP. MAX. 0.8 Vcc 0.4 1.0 1.0 1,500 500 Unit V V V V pA pA pA pA 3.0 pA Vcc -0.8 ICC3 Note 1 1 ·2 a . Note 1: Input leakage current (except A/Do_7): VIN=OV-Vcc 110 leakage current (A/Do-7): VIN/OUT=OV-Vcc CSI=0.2V, CSI=Vcc-0.2V or OE=0.2V, OE=Vcc-0.2V Note 2: tcyc=4.4 ,.,s, Vcc=5.5V, output open, VIN= +0.4-+5.1 V Note 3: tCyc= 15 ,.,S, Vcc=5.5V, output open, VIN=+0.4-+5.1 V Note 4: CS1=0.2V, CS1=Vcc-0.2V 643 CMOS 524288-Bit Mask·Programmable Read Only Memory • LH53512 AC Characteristics (V cc =5:0V±20%, Ta=-5-+55'C) Parameter Low.er ·address setup timeLower address hold time Higher address setup time Higher address hold time CS hold time (non· selection) CS setup time BID setup time BID hold time LAS pulse width HAS pulse width HAS access time OE access time AID open setup time OE to data out delay OE to pulse width CSI data off delay OE to data Qff delay OE LAS delay BID OE setup time BID OE hold time Cycle time (8-bit output mode) Cycle time (4-bit output mode) Symbol tSLA tHLA tSHA tHHA tHC tsc tSB tHB tWL tWH tHAS tOE tFO taD two tcF tOF taL tSBO tHBO tcYCl t CYC2 MIN. 0 200 0 200 0 200 0 200 500 500 TYP. MAX. 3,000 1,000 0 0 0 0 0 200 200 200 4,400 580 200 200 Unit ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns Test conditions of AC characteristics • Input voltage amplitude ........................................... +OAV -Vcc-OAV • Input risingifalling time························ ................... 20ns • Input threshold level .. ·· .. ············ .. ····· .. · .......... ··· ...... 1.5V • Output threshold level .. ······ .. ···· .. ····· .. ·· .... ·· .... ···· .... ··OAV and Vee -O.8V • Output load condition .......................... ·· ...... · ...... · .... l00pF • (f=IMHz, Ta=25'C) Capacitance Parameter Input capacitance Output capacitance 644 Symbol CIN COUT Conditions VIN=OV VOUT=OV MIN. TYP. MAX. 10 10 Unit pF pF CMOS 524288-Bit Mask Programmable Read Only Memory • Timing LH53512 Diagram a-bit output mode 4-bit output mode * DOUT=Do::-3 at B/D=O repetition. D4 - 7 at B/D= 1 Arbitrary order of output and number of output 645 ,LH531 000 CMOS 1048576-Bit Mask Programmable Read Only Memory LH531000 CMOS I048576-Bit Mask Programmable Read Only Memory • Description / The LH531000 is a mask programmable ROM organized as 131,072-wOl:d-by-B-bit by using silicon-gate CMOS process technology. Features 131,072-word-by-B-bit organization Single+5V power supply Low power consumption Fully static operation Automatic power down mode All input and output TTL compatible Three-state outputs Access time (MAX.) : 250ns (normal mode) BOns (nibble mode) 9. Programmable chip select CS type 20pin = CS/~ OE type 20pin = OE/OE 10. 2B-pin dual-in-line package • Pin Connections • 1. 2. 3. 4. 5. 6. 7. B. • 20 CS/CS/CE/CE Top View Block Diagram Data Output ~~----~~~--------~ D7 Ds Ds D4 Da D2 DI Do' CS/CS/OE/OE 20 Address Input 1,048,576(131,072 X 8) Cell Matrix 646 ................ -........... -...... - . - . -...... - . -.................... CMOS 1244160-Bit Mask Programmable Read Only Memory for "kanji" Characters Generation LH53012 Series I NEW I CMOS 12441S0-Bit Mask Programmable Read Only Memory for "kanji" Characters Generation LH53012 Series • Description LH530101 - 4 are mask ROMs for "kanji" characters generation which memorize a total of 6834 characters of non-"kanji" and "kanji". It is able to input the first and second bytes of JIS ~kan· ji" code and a character is composed of 24 X 24 dots prescribed in lIS C 6226-1983 • Pin Connections .---------------------------------~ Vee 0 NC NC Y7 Y6 Y5 y, • Y3 Features 1. 4 chips in a set Non-"kanji"(524 characters) + First standard "kanji"(2965 characters) : LH530101 + LH530102 Second standard "kanji"(3388 char· acters) : LH530103 + LH530104 2. Row scanning method 3. 103,680-word-by-12-bit organization 4. Single + 5V power supply 5. Low power consumption 6. Fully static operation (no clock required) 7. Three-state outputs 8. Access time (MAX.) : 250ns 9. Involved the error correcting. circuit 10. 40-pin dual-in-line packge y, D5 GND CSI OE NC NC D11 D", D9 DB D7 Top View 647 CMQS,124416-:-Bit Mask Programmable Read OnJy Memory for "kanji" Characters Generation .-........,....,... • ........... LH53012 Series -.-.-.-..-.-.-.- Block Diagram 30 Chip Select { Input Chip Select Buffer Output Enable Buffer Enable ,...---'..........., Ao Row Decoder Address Buffers Character Address Input Sense Amp. Column Decoder Memory Arrey ECC Output . Buffers Output -----..--.-~.---SHARP,.- ........... -~.-.~-- 648 Ordering Procedure of Mask ROM ..... ~~~.-~~.-~ .-.-~.-~~~~~ Mask ROM Ordering Procedure The ordering procedure for mask ROMs is de· scribed below along the mask ROM development flow chart. ROM data from the user should be submitted in the form of an EPROM or on paper tape. At the same time, the fo\1owing information should be provided. (1) Type of media on which ROM data is provided (2) Specified items (chip select, markings) (3) Corporate name, person in charge, signature (4) Date of order When submitting the ROM, two sets of ROM data media and ROM print-outs must be submitted to make sure that correct data can be read from the ROM. After the ROM data is received, we use a CAD system to create a magnetic tape to prepare the ROM mask, and create a new EPROM or paper tape and their print-outs for comparison to make sure that the CAD-processed ROM data is correct. After the user verifies that there are no problems with the results, we start preparing the mask and the TS (technical sample) and submit these to the user for evaluation. If there are no problems with the TS, the user submits the "Mask ROM TS Certification" to us. We can begin mass production immediately or shortly thereafter according to instructions given by the user. Mask ROM Development Flow Chart Client SHARP EPROM or paper tape Mask ROM delivery /+----+-------------1 Mass production start ---------.-.....-SHARP-.-.-,-------- 649 CMOS 65536-Bit Electrically Programmable ROM LH5764J • LH5764J CMOS 65536-Bit Electrically Programmable ROM Description • Pin Connections The LH5764] is a CMOS UV ERASABLE and electrically programmable read only memory organized as 8,192-word-by-8-bit. It is especially well suited for application where rapid turn-around and/or bit pattern experimentation, and low-power consumption and fast access time are important. • Features 1. 8,192-word-by-8- bit organization 2. Access Time (MAX.) LH5764]-20 : 200ns LH5764]-25 : 250ns LH5764]-30 : 300ns LH5764]-45 : 450ns 3. Single +5V power supply 4. Programming power supply: + 12.5V ± 40% Programming pulse width : 1 ms/byte 5. Power consumption (MAX.) : 150m W (operation) 0.55mW (standby) • 6. 7. 8. 9. Fully static operation Input and output TTL compatible Pin compatible with i2764 28-pin dual-in-line package (Ceramic) Block Diagram 65,536 Row Cell Array Address Input '" ... ec .'". '"0 = 'Ii '"0 _'"0" 0'"0 '" u r---. '" ~ l:3 1.0 :; .!'" OJ OJ '" .~ co Qi 1.2 ~ ~ 0.8 l:3 1.0 :; ~ '" / .!'" ~ 0.8 0.6 4.0 4.5 5.0 5.5 Supply voltage Vee 0.6 6.0 o (V) 100 ("e) 40 ...: 5 G 30 N <.) <.) ~ 30 >-< c ..'::s" C 20 is: ::s OJ co 75 Ta ...: 5 ..'" 50 Average supply current vs. ambient temperature 40 b" 25 Ambient temperature Average supply current vs. supply voltage ::s / ...:"" ...:"" ..'" 1/ v V 10 ...:'" ~ > ---- ~ ~ 4.5 r-- Q. §OJ g:, . co , 10 ...:'" > o 4.0 20 b" 5.0 5.5 SupplyvoItage Vee o 6.0 (V) ---- 25 50 Ambient temperature ... 100 75 Ta ("e) Input voltage vs. ambient temperature Input voltage vs. sup·ply voltage 2.0 ..-----..-----,----,---~ 2.0 ~ .... 1.5 ;; ;;'" V IH - i5 :> VIL '" 1.0 ~ ! g .::: ~ '[ 0.51---+----+----+----1 '[ 0.5 ..s o 4.0 .a 4.5 5.0 Supply voltage 5.5 Vee (V) 6.0 o 25 50 Ambient temperature 75 Ta 100 ("C) 657 CMOS 1024-Bit Sta~'ic Random Access Memory LH51 01 iLH51 01 L3 LH510'1/LH5101L3 CMOS I024-Bit Static Random Access Memory • .• Description Pin Connections The LH5101/LH5101L3 are fully static RAMs organized as 256-word-by-4-bitby using silicon-gate CMOS process technology. o • Features 1. 2. 3. 4. 5. 6. 256-word-by-4-bit organization Single +5V power supply Fully static operation All inputs and outputs TTL compatible Three-state outputs Access time (MAX.) LH5101 : 800ns, LH5101L3 : 650ns 7. Data can be held on +2V supply voltage 8. Low power supply current at standby mode 9. 22-pin dual-in-line package • Top View Block Diagram Chip Enable Input { 1 191)---L~ Data Output Read/Write Input Do<, r.,.. { : Output Disable 18 '--.r---I Address Input .-..-...-.....~----SHARP 658 ---------------- . CMOS 1024-Bit Static Random Access Memory • LH51 01 ILH51 01 L3 Absolute Maximum Ratings Parameter Supply voltage * Input voltage * Output voltage * Operating temperature Storage temperature Symbol Vcc VIN VOUT Topr T= Ratings -0.3-+7.0 -0.3-V cc +0.3 -0.3-V cc +0.3 0-+70 -55-+150 *The maximum applicable voltage on any pin with respect to GND. • Unit V V V "C "C (V cc =5V±5%, Ta=0-+70"C) DC Characteristics Parameter Input low voltage Input high voltage Output low voltage Output high voltage Input current' Output leakage current Symbol V1l VIH Val VOH I ILl I I lLO I Current consumption 1 IcC! Current consumption 2 Iccz Chip disabled current consumption Iccl • Conditions MIN. 0.3 2.2 Iol =2.0mA IOH =-1.0mA 0;&V1N;&V CC 0;&V1N;&V CC, CEI=2.2V Output open, VIN=Vcc CE 1 ;&0.65V Output open, VIN=2.2V CE I :S:0.65V I LH5101 CE z ;&0.2V I LH5101L3 TYP. MAX. 0.65 Vcc 0.4 1.0 1.0 Unit V V V V pA pA 9 22 mA 13 27 mA 100 200 pA 2.4 AC Characteristics (1) (V cc=5V± 10%, Ta=O- +70"C) Read cycle Parameter Cycle time Access time Chip enable time 1 Chip enable time 2 Output enable time Chip turn-off time Data hold time from address Data hold time from CE I Symbol tRc t ACC teal te02 too tOF tOHI tOHZ MIN. 800 LH5101 TYP. MAX. 800 800 850 350 200 0 0 0 Cycle time Access time Chip enable time 1 Chip enable time 2 Data setup time Data hold time Pulse width Recovery time Input enable time 0 0 0 LH5101L3 TYP. MAX. 650 600 700 350 150 Unit ns ns ns ns ns ns ns ns (V cc=5V± 10%, Ta=O- +70"C) (2) Write cycle Parameter MIN. 650 Symbol twc tAW tcwI tew2 tow tOH twp tWR tos MIN. 800 200 600 600 400 100 400 50 200 LH5101 TYP. MAX. MIN. 650 150 550 550 400 100 400 50 150 LH5101L3 MAX. TYP. Unit ns ns ns ns ns ns ns ns ns 659 . CMOS 1024.:Bif Static Random Access Memory· LH51 01 ILH5101 L3 . Test conditions of AC characteristics • Input voltage amplitude .. ·· ....................................... + 0.65 - + 2.2V • Input ri~ing/falling time········ .................................. 20ns • Timing reference level··· .. ········································ L5V • Output load condition .. ·················;··························1 TTL+ 100pF • (f=1MHz, Ta=25t) Capacitance' Parameter Input capacitance Output capacitance • Symbol CIN C~UT Conditions VIN=OV VOUT=OV MIN. TYP. 6 15 ** Symbol Conditions VDR VeE2~0.2V lee DR teDR tR VeE2~0.2V, Unit pF pF (Ta=0-+70t) Low-Voltage Data Hold Characteristics Parameter Supply voltage for data hold Supply current for data hold Chip turn:off time Operation recovery time ** MAX. 10 20 MIN. TYP. MAX. 2.0 V 20 VDR=2.0V Unit pA ns ns 0 tRe In data hold mode, all input/output pins are put below VD •. tRC : Read cycle time ---------- ........ ~--~-SHARP -------...~---~ 660 I LH5101/LH5101 L3 CMOS 1024-Bit Static Random Access Memory • Timing Diagram (1 ) Read cycle t-'--------tRC--------I t---+--tC02:----I OD (in I/O common mode) For'data input/output separation, OD is made low. In read cycle, R/~ is made high. (2) Write cycle ~-----~tWC:--------~ _ _ _1-_--. J----·tCWl--.......j eE, I--+---t-tCW2:-------;~ Oh-DI. f----tDW'-----!~ ___-+~,~---:tw~--~~~~~---- R/W In 110 common mode, OD is high during the write period. For data input/output separation, OD may be either high or low. (3) Low-voltage data hold Supply voltage i.~-- ~~~~~~:~---- 'b ________________ __ V,,-------VIH::£:t:'~ O.2V--- -- OV---- ~ - ------------ --- --- . - - - - - - . - . - - S H A R P .-......-,--_.-.....-._--- 661 CMOS 1024-Bit Static Random Access Memory LH5101S • LH5101S CMOS l024-Bit Static Random Access Memory • Description Pin Connections The LH5101S is a fully static RAM organized as 256-word-by-4-bit by using silicon-gate CMOS process technology. • Features 1. 256-word-by-4-bit organization 2. 3. 4. 5. 6. 7. 8. Single + 3V power supply Fully static operation All inputs and outputs TTL compatible Three-state outputs Access time (MAX.) : 3.0 ps Data can be held on +2V supply voltage Low power supply current at standby mode 10 pA (MAX.) 9. 22- pin dual-in-line package • Top View _Block Diagram Chip' Enable Input { Read/Write Input 19!>t==L~X~--' Data Output 0 Do<, I"., { ': Output Disable 18 '-v--' Address Input 662 CMOS 1024-Bit Static Random Access Memory • LH5101S Absolute Maximum Ratings Parameter Supply voltage * Input voltage * Output voltage * Operating temperature Storage temperature Symbol Vee VIN VOUT Topr T.t .. Ratings -0.3-+7.0 -0.3-V ee +0.3 -0.3-Vee +0.3 -10-+60 -55-+150 Unit V V V 'C 'C *The maximum applicable voltage on any pin with respect to GND. • (V ee =2.6-3.4V, Ta=-10-+60'C) DC Characteristics Parameter Input low voltage Input high voltage Output low voltage Output high voltage Input current Output leakage current Symbol VIL VIH VOL VOH I III I I lLO I Current consumption 1 IcC! Current consumption 2 lee2 Chip disabled current consumption leeL • Conditions, MIN. -0.3 Vee- 0.6 IOL =500 pA IOH=-30pA TYP. MAX. 0.6 Vee 0.3 Unit V V V V 1.0 1.0 pA 5 11 rnA 8 13 rnA 10 pA Vee- 0.6 OS::VIN~Vee OS::VINS::V ee, CE I =Vee- 0.6 Output open, VIH = Vee, CE I S::0.6V Output open, VIN=2.2V CEI~0.6V O~VIN~Vee, CE2~0.2V p.A AC Characteristics (1) Read cycle Parameter Cycle time Access time Chip enable time Address enable time Output enable time Chip turn-off time Data hold time from address Data hold time from CE I Adress enable delay time (2) Write cycle Parameter Cycle time Access time Chip enable time 1 Chip enable time 2 Data setup time Data hold time Pulse width Recove'ry time Input enable time Address enable delay time (V ee =2.6-3.4V, Ta=-10-+60'C) Symbol t Re t Aee teo t AEO too tOF tOHl toH2 toH3 tAEI tAE2 MIN. 3.5 TYP. MAX. 3.0 3.0 2.9 1.3 750 0 0 Unit ps ps ps ps ps ns ns 0 ns 0.1 0.5 ps p.s (V ee =2.6-3.4V, Ta=-10-+60'C) Symbol twe tAW tewl tAEW tow tDH twp tWR tDs tAE3 tAE4 MIN. 3.5 750 2.2 2.1 1.5 370 1.5 180 750 0.1 0.5 TYP. MAX. Unit p.s ns p.s p.s p.s ns ps ns ns p.s -'-'-~--'--SHARP'-~~~----'-- 663 CMOS 1024-Bit Static Random Access Memory LH5101S Test conditions of AC characteristics • Input voltage amplitude· .. ··· .. ····················· .. ········ .... + 0.65 - + 2.2V • Input risinglfaliing time .......................................... 10ns • Timing reference level .......................................... "1.5V • Output load condition ............................................ ·1 TTL+ 100pF • (fc=lMHz, Ta=25"C) Capacitance Symbol Parameter Input capacitance Output capacitance • CIN COUT Conditions MIN. VOUT=OV Symbol V OR IccoR tCOR tR Conditions VCE2 S:O.2V VCE2 S:O.2V, VOR-2.0V • Timing (1) MIN. 2.0 t RC tRe: Read cycle time Diagram Read cycle ~--------------tRC--~--------~ AE OD (in I/O common mode) For data input/ output separation, OD is made low_ 664 TYP. MAX. 5 0 **In data hold mode, all input/output pins are put below VDR_ MAX. 10 20 Unit pF pF (Ta= -10- +60·C) Low-Voltage Data Hold Characteristics Parameter Supply voltage for data hold Supply current for data hold Chip turn-off time Operation recovery time ** TYP. 6 15 VIN=OV Unit V pA ns ns LH5101S CMOS 1024-Bit Static Random Access Memory (2) Write cycle twe Ao-A7 tew! eE! AE tAt..W tDH DI!-DI. tDW tw R/W In 110 common mode, OD is made high during the write period. For data input/output separation, OD may be either high or low. (3) Low-voltage data hold Supply voltage ,Vee 2.60V VD. AE V 1H O.2V OV -------}=:.=~'~~":~------ -------- '"b ~~~------------------~ --- ------ - --- --- ----------------------------- Address enable (AE) may be high normally, but in this case, the address input level must strictly be below VIL and above VIH in. clusive of noise spikes. Use of AE in such a timing relationship that the AE input is included inside the address input as shown in the timing chart is fairly recommended. 665 LH5101W CMOS 1024-Bit Static Random Access Memory LH5101W • CMOS I024-Bit Static Random Access Memory • Description Pin Connections The LH5101W is a fully static RAM organized as 256-word-by-4-bit by using silicon-gate CMOS process technology. o • Features 1. 2. 3. 4. 5. 6. 7. 8. 256-word-by-4-bit organization Single ,+ 5\1 power supply Fully static operation All inputs and outputs TTL compatible Three-.state outputs Access time (MAX.) : 800ns Data can be held on +2V supply voltage Low power supply current at standby mode 100 pA (MAX.) 9. 22-pin dual-in-line package • Top View Block Diagram Chip Enable Input{ 19iH-_ _L";Y->--"---' Data Output Output Disable 8 ----~--.--,------SHARP ....-..-.~.-.------ 666 CMOS 1024-Bit Static Random Access Memory • LH5101W Absolute Maximum Ratings Parameter Supply voltage· Input voltage Output voltage· Operating temperature Storage temperature • Symbol Vcc VIN VOUT T= T","- Ratings -0.3-+7.0 -0.3-Vcc +0.3 -0.3-Vcc +0.3 0-+70 -55-+150 Unit V V V 'C 'C *The maximum applicable voltage on any pin with respect to GND. • (V cc =5V±10%, Ta=0-+70'C) DC Characteristics Parameter Input low voltage Input high voltage Output low voltage Output high voltage Input current Output leakage current Symbol V1L VIH VOL VOH I ILl I Current consumption 1 IcC! Current consumption 2 Icc2 Chip disabled current consumption ICCL • IILO I Conditions MIN. 0.3 2.2 IOL=0.2mA IoH =-1.0mA 0:5:V1N :5:Vcc 0:5:V1N :5:VCC , CE I -2.2V Output open, VIN=Vcc, CE 1;;;;0.65V Output open, VIN=2.2V, CE I :5:0.65V TYP. MAX. 0.65 Vcc 0.4 1.0 1.0 Unit V V V V p.A p.A 9 22 mA 13 27 mA 100 p.A 2.4 - 0;;;;V1N;;;;VCC, CE 2 ;;;;0.2V AC Characteristics (1) (V cc =5V±10%, Ta=0-+70'C) Read cycle Parameter Cycle time Access time Chip enable tillie 1 Chip enable time 2 Output enable time Chip turn-off time Data hold time from address Data hold time from CE I Symbol t RC tAcc teOI tC02 toD tDF toHl tOH2 (2) Write cycle Parameter Cycle time Access time Chip enable time 1 Chip enable time 2 Data setup time Data hold time Pulse width Recovery time Input enable time MIN. 800 TYP. MAX. 800 800 850 350 200 0 0 Unit ns ns ns ns ns ns ns ns B (Vcc=5V±10%, Ta=0-+70'C) Symbol twc tAW tcwi tCW2 tow tOH twp tWR tos MIN. 800 200 600 600 400 100 400 50 200 TYP. MAX. Unit ns ns ns ns ns ns ns ns ns Test conditions of AC characteristics • Input voltage amplitude .......................... ·· .............. · +O.65-+2.2V • Input risingifalling time ................................ · ........ ·10ns • Timing reference level ............................................ 1.5V • Output load condition .................. · .......................... 1TTL + 100pF 667 CMOS t024-Bit Static Random Access Memory LH5101W ............... - ............ - ......_ _ _ _ _ _ _ _r.._..:_ _ _,.._. • (f=IMH~, Capacitance Parameter Input capacitance Output capacitance • Symbol CIN COUT Conditions VIN=OV VOUT=OV MIN. TYP. 3.5 9 Symbol VDR IccDR tCDR til Conditions VCE2~0.2V VCE2~O.2V, **In data hold mode, all input/output pins are put below me : Read cycle time 668 MIN. 2.0 12 TYP. MAX. 5 VDR=2.0V 0 t RC VOR. 6 Unit pF pF (Ta=0-+70'C) Low-Voltage Data Hold Characteristics Parameter Supply voltage for data hold Supply current for data hold Chip turn-off time Operation recovery time ** MAX. Ta=25'C) Unit V pA ns ns CMOS 1024-Bit Static Random Access Memory • Timing (1) LH5101W Diagram Read cycle i-------tRC----------l tCOI t---+---tcoz-----I too 00 (in I/O common mode) tOF i---tACC DOl-DO. For data input/output separation, OD is mode low, In read cycle, R/W is mode high. (2) Write cycle I-------twc----------.~ ___+-__... ro<-----tcwl----t CE z I-+----tcwz---------;~ 00 (in I/O common mode) tOH 011-01. I----tow----<*;;-.- R/W ---~--,~-----twp r-----~---- In 110 common mode, OD is made high during the write period. For data input/output separation, OD may be either high or low. (3) Low-voltage data hold Supply voltage Vee 4.5V VD. CEz VIH O.2V OV === __ ~~r~:·~~"-·:~~;;-u- ~~~-----------------~ --- - -------------- --- .-.-----------SHARP .-.-.----------- 669 CMOS 2048-Bit Static Random Access Memory LH51 02/LH.51 02-8- LH5102/LH5102-8 CMOS 2048-Bit Static Random Access Memory • • Description Pin Connections The LH5102lLH5102-B are fully static RAMs organized as 512-word-by-4-bit by using metalgate CMOS process technology. Vee AI R/W • Features 1. 512-word- by-4-bit organization Single + 5V power supply Low power consumption Data can be held on + 2V supply voltage All inputs and outputs TTL compatible Three-state outputs Fully static operation Pin compatible with SHARP LH5101 or Intel 5101 (except Pin 19) 9. Access time (MAX.) LH5102-B: BOOns, LH5102 : 1,200ns 10. 22-pin dual-in-line package 2. 3. 4. 5. 6. 7. B. • Top View Block Diagram Chip Select Input Qll:J+------, Read/Write Input u Data Input { ; Output Disable '!'8=~;:::=~~:2~=j2f~~~ f(: 5i}-(:6)-o{7)----' ~ Address Input. 670 CMOS 2048-Bit Static Random Access Memory • LH51 02/LH51 02-8 Absolute Maximum Ratings Parameter Supply voltage * Input voltage * Output voltage * Operating temperature Storage temperature Symbol Vcc VIN VOUT T oDr Tst2 Ratings -0.3-+7.0 -0.3-V cc +0.3 -0.3-V cc +0.3 0-+70 -55-+150 Unit V V V t t *The maximum applicable voltage on any pin with respect to GND. • Parameter Supply voltage Input voltage • Symbol Vcc VIL VIH MIN. 4.75 -0.3 2.2 TYP. 5 MAX. 5.25 0.65 Vcc Unit V V V (V cc =5V±10%, Ta=0-+70t) DC Characteristics Parameter Input low voltage Input high voltage Output low voltage Output high voltage Input current Output leakage current Current consumption Chip disable current consumption • (Ta=0-+70t) Recommended Operating Conditions Symbol VIL VIH VOL VOH I ILl I I ILO I IcC! Icc2 IccL MIN. -0.3 2.2 Conditions IOL=2.0mA IoH --1.0mA VIN=O or Vcc CS~0.2V, VOUT=OV or Vcc Output open, VIN - VCC Output open, VIN = 2.2V TYP. MAX. 0.65 Vcc 0.4 7.0 1.0 22 27 Unit V V V V pA pA rnA rnA 200 pA 2.4 3 13 CS~0.2V (Vcc=5V±5%, Ta=0-+70t) AC Characteristics Parameter Unit Read cycle Cycle time Access time Chip enable time Output enable time Chip turn·off time Data hold time t RC t ACC 1,200 900 teo taD tDF toH 0 0 twc tAW tDW tDH twp tWR t DS 900 150 -200 70 650 100 150 800 800 400 200 0 0 1,200 1,200 500 250 ns ns ns ns ns ns Write cycle Cycle time Access time Data setup time Data hold time Pulse width Recovery time Input enable time 1,200 300 0 100 400 200 250 ns ns ns ns ns ns ns Test conditions of AC characteristics • Input vqltage amplitude··········· ................................ + 0.65 - + 2.2V • Input rising/falling time .......................................... 20ns • Timing reference level······ ...................................... 1.5V • Output load condition ········································ .. · .. 1TTL+ 100pF 671 CMOS 2048-Bit Static Random Access Memory • LH51021LH5102-8 (Ta=O-+70'C) Low-Voltage Data Hold Characteristics Parameter Supply voltage for data hold Supply current for data hold Chip turn·off time Operation recovery time ** Symbol VDR IccDR tCDR tR Condition-s Vcs~0.2V MIN. 2.0 TYP. Vcs";::0.2V. VDR=2.0V MAX. Unit V 40 pA ns ns 0 t RC **In data hold mode, all input/output pins are put below VD•. tRe: Read cycle time. - • (f=IMHz, Ta=25'C) Capacitance Parameter Input capacitance Output capacitance 672 Symbol CIN COUT Conditions VIN=OV VOUT=OV MIN. TYP. 6 15 MAX. 10 20 Unit pF pF CMOS 2048-Bit Static Random Access Memory • Timing (1) LH5102/LH51'02-8 Diagram Read cycle tRe 'V 'V JI\ Ao- As JI\ ..... tOHr--- cs ~ teo I tOD- OD ( Note 1) (in I/O common mode) I J ----- -----tAee ----'V _________ JI\ ----- I--tDFValid data ---- Notel: For data input/output separation, OD is made low. (2) Write cycle twe Ao-As cs W V-- JI\ .JIL- , l/ ~ OD ( Note 2) (in I/O common mode) ) 1"-V tDH i--=+ I---tos- ------ ----'V ------ ____ .11\tow ,V- ---~~- ---- Valid data ~ twp '\ R/W U 1\ I------tAW_ i--twR- Note 2 : tn I/O common mode, OD is made high during the write period. For data input! output separation, OD may be either high or low. (3) Low-voltage data hold Supply voltage . CS --- 'r ,~~n-----J ~~~~~ ~"~---1 . Vo.--------teoR ~~~:::::::~~=====~======; OV--- - - - --- ---'----.-..---SHARP . - . - . - - - - - - - - 673 LH51 02/LH51 02-8 CMOS 2048-81t Static Random Access Memory • Electrical Characteristics Curves (Vcc=5V, Ta=25"C unless otherwise specified) Access time vs. supply voltage 1.4 "...,. 1.2 ]., Il:: u u 1.0 .j ., .~ '.,'"" " <:" 1.4 Ta=700e ..= .:: Access time vs. ambient temperature 0.8 Vee=4.75 V \ "'" ~ u j 1.0 ....--' ., ~ V V V / .~ '" 0.8 ~ <:" 0.6 4.0 0.6 5.5 4.5 5.0 Supply voltage Vee (V) 6.0 Current consumption vs. supply voltage o 75 25 50 Ambient temperature Ta 100 coe) Current consumption vs. ambient temperature 5.0 5.0 <: 6 ~ - 4.0 tl 13.0 ~ § i" 2.0 ....-- ~ - ~ - 4.0 ~ 3.0 u u ~§ " ~ "l3 l3" 1.0 4.0 2.0 1.0 4.5 5.0 5.5 Supply voltage Vee (V) 6.0 Input voltage vs. supply voltage o 50 100 75 re) Input voltage vs. ambient temperature 2.5 2: 2: :: 2.0 2.0r---+--- > ., 1.5 i-----+----+---+----I ~ .:!:: 1 ~ 0.5!";:-_ _:'-:-_ _:::-::-_ _-="="_ _-:' 4.0 4.5 5.0 5.5 6.0 Supply voltage Vee (V) - V1L(MAX.) :; 1.0 ......."----+----+---+----1 - V1H(MIN.) >.," 1.5 > J 25 r-- Ambient temperature Ta 2 . 5 . - - - . , - - - . . . , - - -....- - , >;:; r-- u u ..I --- --- .§ 11.0 0.5 o 25 50 100 75 Ambient temperature Ta ee) -~-~----SHARP--------~-~-~ 674 CMOS 2048-Bit Static Random Access Memory LH5102W LH5102W CMOS 2048-Bit Static Random· Access Memory • Description The LH5102W is a fully static RAM organized as 512-word-by-4-bit by using metal-gate CMOS process technology. • Pin Connections o Vee A. R!W As • Features 512-word-by-4-bit organization Single + 5V power supply Low power consumption Data can be held on + 2V supply voltage All inputs and outputs TTL compatible Three-state outputs Fully static operation Pin compatible with SHARP LH5101 or Intel 5101 (except Pin-19) 9. Access time (MAX.) : 1,200ns 10. 22-pin dual-in-line.package 1. 2. 3. 4. 5. 6. 7. 8. • Top View Block Diagram :J-----iRow Row !r-_-.....Buffers Decoders l--_-;of.Address.t==~Address Chip Select Input 1 7 ' ) - + - - - - - - - , 00----1 Input l}----..... Data .3}----..;o-j Control Output Disable 181}----C>O-------L..J ~--------------------------~5~6 7~------~ '-----r---" Address Input --------------SHARP----------675 CMOS 2048-Bit Static Random Access Memory • lH51{)2W Absolute Maximum Ratings Parameter Supply voltage * Input voltage * Output voltage * Operating temperature Storage temperature - Ratings -0..3-+7.0. -D.3- Vee+ D.3 -0.3 Vec +0.3 -20.-+70 -55 +150. Symbol Vee VIN ,VOUT Toor T st• *The maximum applicable voltage on any pin with respect to GND. • Unit V V V .'C 'C Recommended Operating Conditions Parameter Supply voltage Input voltage • Symbol MIN. 4.0. -0..3 2.2 Vee V1L V IH TYP. 5 MAX. 5.5 0..65 Vee Unit V V V (V ee =5V±10%, Ta=-2D-+70'C) D'C Characteristics Parameter Input low voltage Input high voltage Output low voltage Output high voltage Input current Output leakage current Current consumption Chip disabled current consumption • Symbol V1L ViH VOL VOH I ILl I I Iw I IcCl Iec2 MIN. 0..3 2.2 IOL -2.DmA IoH =-1.DmA V1N-DV or Vee CS~0.2V, VOUT-OV or Vee Output open, V IN - Vee Output open, VIN=2.2V rCeL CS;a;0.2V I Symbol I t Re t Aee teo taD tDF tOH twe tAW tDW tDH twp tWR t DS MIN. I TYP. I MAX. I Unit 1.2 1.2 50.0. 250. ps j.lS ps ns ns ns 1.2 0. 0. 1.2 30.0. 6 10.0. 40.0. 20.0. 250 j.lS ns ns ns ns ns ns Test conditions of AC characteristics • Input voltage aIp.plitude···················· .. ····················· +0.65-+2.2V • Input rising/falling time' ......................................... 20ns • Timing reference lE\vel ............................................ 1.5V • Output load condition ......................'....................... 1TTL + 100pF 676 TYP. MAX. 0..65 7.0. ' 1.0 22 27 Unit V V V V ,pA pA rnA rnA 20.0. pA Vee 0..4 2.4 (Vee=5V± 10%, Ta=-2D-+7D'C) AC Characteristics Parameter Read cycle Cycle time Access time Chip enable time Output enable time Chip turn·off time Data hold time Write cycle Cycle time Access time Data setup time Data hold time Pulse width Recovery time Input enable time Conditions 3 13 LH5102W CMOS 2048-Bit Static Random Access Memory • . (Ta=-20-+70'C) Low-Voltage Data Hold Characteristics Parameter Supply voltage for data hold Supply current for data hold Chip turn-off time Operation recovery time ** Symbol VOR IccoR tCOR tR Conditions Vcs";;0.2V Vcs~0.2V, VOR=2.0V MIN. 2.0 TYP. MAX. Unit V 40 pA ns ns 0 tRc ** In data hold mode, all input/output pins are put below VDR. tRC : Read cycle time • (f=IMHz, Ta=25'C) Capacitance Parameter Input capacitance Output capacitance Symbol CIN COUT Conditions VIN=OV VOUT=OV MIN. TYP. 6 15 MAX. 10 20 Unit pF pF B 677 LH51.02W CMOS 2048-Bit Static Random Access Memory • Timing Diagram (1). Read cycle Ao-As cs J---1I----tco---..-i OD (Note 1) (in I/O common mode) DO,-DO. Valid d!lta Notel: For data input/output separation, OD is made low. (2) Write cycle J---------twc------------~~ cs OD (Note 2) (in I/O common mode) tDH _ _~f_--!::::::j""----twp------lr_-.......,r_-R/W Note 2 : In 110 common mode, OD is made high during the write period. For data input/output separation, OD may be either high or low. (3) Low-voltage data hold _1m~:-_h:"_'~~=-l 8"",1, ........¥l'l'--· VOR-------- cs 678 V[H~~~-----------------~~ O.2V--- -- ov--- - - - - - - -- -- --- - - --- --- LH5102W CMOS 2048-Bit Static Random Access Memory • Electrical Characteristics Curves (Vcc=5V, Ta=25°C unless otherwise specified) Access time vs. supply voltage 1.4 Ta=70'C \ ~ 0.8 .., 0.6 4.0 ..., 1.4 Vee=4.5V / > :J..,'" «: ., ..El ., .~ Access time vs. ambient temperature 4.5 .~ 1.2 ., ~ ~ '"" 5.0 5.5 Supply voltage Vee (V) u u 1.0 ."! ,../ ., ,,/' V V .~ 0.8 .,..,''"" .., «: 6.0 0.6 -20 0 20 40 60 80 Ambient temperature Ta Current consumption vs. supply voltage 100 ('C) Current consumption vs. ambient temperature 5.0 5.0 «: ~ 8 4.0 G ..... .§ ~ 3.0 "'" ~ i... 2.0 ~ u - ........ ~ - ~ .§ >== :5 VIH(MIN.) :5 :> > ., :.:: - 1.5 VIL(MAX.) 0 > :; 1.0 .....""" 0.5 ~----:-"=--~7--~-=----:! 4.0 4.5 5.0 5.5 6.0 Supply voltage Vee (V) 0.5 -20 0204060 Ambient temperature Ta 80 100 ('C) ------------$HARP---------679 NMOS· 4096-Bit Static Random Access Memory LH2114L-20 • LH2114L-20 NMOS 4096-Bit Static Random Access Memory • Description Pin Connections The LH2114L-20 is a fully static RAM organized as 1024-word-by-4-bit by using silicon-gate NMOS process technology_ o • Features 1. 1,024-word-by-4-bit organization 2. Single + 5V power supply 3. Fully static oper~tion (no refresh or clockrequired) 4. All inputs and outputs TTL compatible 5. Three-state outputs. 6. Access time (MAX.) : ,200ns 7. 18-pin dual-in-line package • Top View Block Diagram Address Input '" "...'" )-----------~~==~ ~ ...~ c " )-----------c~=====1 ]o 8" )--_ _ _--{:(~==~ M emory Array 64 Rows 64 Columns U I=l Row I/O Circuits ' Row Address Decoders T Address Input 680 LH2114L-20 NMOS 4096-Bit Static Random Access Memory • Absolute Maximum Ratings Parameter Supply voltage * Input voltage * Output voltage * Operating temperature Storage temperature Symbol Vcc VIN VOUT Topr T.tK Ratings -0.5-+7.0 -0.5-+7.0 -0.5-+7.0 0-+70 -55-+150 Unit V V V t t *The maximum applicable voltage on any pin with respect to GND. • Parameter Input low voltage Input high voltage Output low voltage Output high voltage Input leakage current Output leakage current Current consumption • (V cc =5V±10%, Ta=0-+70t) DC Characteristics Symbol VIL VIH VOL VOH I ILl I I ILO I Icc TYP. MAX. 0.8 2.0 IoL =2mA IoH =-lmA VIN=OV or Vcc CS=V IH, VI/0 =0.4V or Vcc VIN =5.5V,IlIo=OmA 0.4 2.4 Unit V V V V 10 ~A 10 pA mA 70 AC Characteristics (1) Read cycle i MIN. Conditions Parameter Cycle time Access time Chip enable time Chip select time Output turn·off time Output hold time (Vcc=5V± 10%, Ta=0-+70t) Symbol tRc t ACC tCE tcs tOF toH (2) Write cycle Parameter Cycle time Access time Pulse width Recovery time Data setup time Output turn·off time Data hold time MIN. 200 TYP. MAX. 200 80 10 70 20 Unit ns ns ns ns ns ns (Vcc=5V±1O%, Ta=0-+70t) Symbol twc tAW twp tWR tow tOF tOH MIN. 200 15 170 15 100 TYP. MAX. 70 0 Unit ns ns ns ns ns ns ns Conditions for measurment of AC characteristics • Input signal level .. ·········································· +OA-+2AV • Input signal rise/fall time ·································10ns • Time measurement level .................................. ·1.5V • Output load condition····································· .. 1TTL + 100pF 681 NMOS 4096-Bit Static Random Access Memory • LH211.4L-20 Pin Capacitance Parameter Input capacitance Input/output capacitance • (f=lMHz, Ta=25'C) Symbol CIN CliO MIN. Conditions VIN=OV VI/O=OV TYP. 2 4.5 Timing Diagram (1) Read cycle i--------tRC-------'"'i i-----tACC--_ (Note) WE is "High" (2) Write cycle Ao-Ag CS 682 1 tire tAIr ,. 3 MAX. 5 10 Unit pF pF NMOS 4096-Bit Static Random Access Memory • LH2114L-20 Electrical Characteristics Curves (Vcc=5V, Ta=25t unless otherwise specified) Access time vs. supply voltage Access time vs. ambient temperature 1.2 1.2 V ~ ~ ..eco .. ~ .. \ .:::'" ~ 1.1 <.> <.> 1.0 ~ j ]'" .,., ..,..,'" 0.9 .:::'" "'" 1.1 ~ / /' ~ """'- -- <.> <.> 1.0 j ]'" ..... ..,..,'" /' ./ 0.9 ...: ...: 0.8 4.0 4.5 5.0 Supply voltage Vee 0.8 6.0 5.5 50 c 40 .E:> ~ V ~ V <.l ~ -. V ./ 40 .," .'..'co"" ...: 30 OIl 20 0 6.0 5.5 4.5 5.0 Supply voltage Vee (V) 25 50 " 75 100 (,C) Input voltage vs. ambient temperature 2.5 2.5 2.0 2.0 :c :5 .'" ~ Ambient.temperature Ta > ;;.- ~ Co Input voltage vs. supply voltage ..J .......... '" ..," .E:> Co 30 20 4.0 50 c ,/ ~ ?:: 100 ('G) 60 ...: .. :f ..'..'"" ...: 75 ...: ~ il 50 Average supply current vs. ambient temperature 60 -..'" 25 Ambient temperature Ta Average supply current vs. supply voltage <.> o (V) VII!:-- 1.5 ~ OIl . .±: i :; 1.0 Co .E 0.5 4.0 VlH VIL ~ VIL 0 > 1.5 1.0 .E 4.5 5.0 Supply voltage Vee 5.5 (V) 6.0 50 75 25 100 Ambient temperature Ta ('C) 683 --------_....... .. ....- ..................- CMOS 4096""Bit Static Random Access Memory:' .- .- LH5114-4 • LH5114-4 - CMOS 4096. . Bit Static Random Access . Memory .' \ • Description Pin Connections The LH5114-4 is a fully static RAM organized as 1024-word-by-4-bit by using silicon-gate CMOS process technology. o • Features 1. 1,024-word-by-4-bit organization 2. Single + 5V power supply 3. Fully static operation 4. All inputs and outputs TTL compatible 5. Three-state outputs 6. Access time (MAX.) : 450ns 7. Data can be held on + 2V supply voltage 8. Supply current at standby mode 10 ~A (MAX.) on + 2V supply voltage 9. 18-pin dual-in-line package • Top View Block Diagram Memory Array 32 Rows 128 Columns Chip Select Input ~ ....--.. 'fY=) Write Input lO~-+~_~f---------rHH-t-----' ~----------------~~~~~~--------~ '----v--' Address Input 684 LH5114-4 CMOS 4096-Bit Static Random Access Memory • Absolute Maximum Ratings Parameter Supply voltage * Input voltage * Output voltage * Operating temperature Storage temperature Symbol Ratings -0.3-+7.0 -0.3-V ee +0.3 -0.3-V ee +0.3 0-+70 -55-+150 Vee VIN VOUT T oDr Tst~ Unit V V V "C "C *The maximum applicable voltage on any pin with respect to GND. • Recommended Operating Conditions Parameter Supply voltage Symbol Input voltage Operating temperature • TYP. 5 MAX. 5.5 0.65 Vee 70 Unit V V V "C (V ee =5V±10%, Ta=0-+70"C) DC Characteristics Parameter Input low voltage Input high voltage Output low voltage Output high voltage Input leakage current Output leakage current Current consumption Chip disabled current consumption • MIN. 4.5 -0.3 2.2 0 Vee V1L VIH Toor Symbol V1L VIH VOL VOH I ILl I I lLO I Icc Conditions IOL=2mA IoH =-lmA V1N=OV or Vee CSS;:V IH • VIIO =O.4V or Vee CS;;;;;0.65V. VIN=Vee=5.5V CS;;;;;Vee,O;;;;;VIN;;;;;Vee IeeL TYP. MAX. 0.65 1.0 1.0 15 Unit V V V V pA pA rnA 100 pA Vee 0.4 2.4 6 (V ee =5V±10%, Ta=0-+70"C) AC Characteristics Parameter Read cycle Cycle time Access time Chip enable time Data hold time Chip turn·off time Write cycle Cycle time Chip select time Chip select hold time Access time Address setup time Pulse width Recovery time Data setup time Data hold time MIN. -0.3 2.2 t Symbol t MIN. t Re tAee teo tOH tOF 450 twe lew teH tAW t AS twp tWR tow tOH 450 400 20 350 100 250 70 250 50 t TYP. t MAX. 450 500 0 150 t Unit ns ns ns ns ns ns ns ns ns ns ns ns ns ns Test conditions of AC characteristics • Input voltage amplitude ........................................... +0.65- +2.2V • Input rising/falling time .......................................... IOns • Timing reference level .......... · ................................. 1.5V • Output load condition· ............................................ 1TTL + 100pF .---.-~.---SHARP.-----.--- 685 CMOS 4096-Bit Static Random Access Memory • LH5114-4 Low-Voltage Data Hold Characteristics Parameter Supply voltage for data hold Symbol Conditions - 2.2V~VCC(PD ~Vcc CS voltage for data hold VCC(CS) Supply current for data hold Chip turn-off time Operation recovery time Icc PD ts,PD) tRPD VIN=Vcc=2.0V Symbol CIN Conditions VIN=OV VIIO=OV • MIN. 2.0 2.2 VCCPD VCC(PD) 2.0V~VcgpQt~2.2V TYP. 0.5 MAX. 10 Unit V V V pA ns ns tRC tRc Capacitance Parameter Input capacitance Output capacitance • CliO MIN. TYP. MAX. 15 35 Timing Diagram (1) Read cycle CS 1/01-1/0. (Data output) (2) Write cycle twc tCH tcw cs \ \ \ '\ -J- / / / / / / tAW tAS ~ \ WE 1/01-1/0. I (D ata input) (3) 'k. tWR_ twp «E Low-voltage data hold 5V VCC(PD) OV tDW Fixed data "I .. tDH~ » Unit pF pF LH5114-4 CMOS 4096-Bit Static Random Access Memory • Electrical Characteristics Curves (Vcc=5V. Ta=25"C unless otherwise specified) Access time vs. supply voltage 1.4 Access time vs. ambient temperature 1.4 Ta=70'C Vee =4.5 V ~ . ..3 > .,/' .~ 1.2 -............ tl 1.0 III r---........ ~ ~ -............ III .§ ., ~ ..:" :; 0.8 0.6 4.0 ./ ./ ] 4.5 5.0 Supply voltage ~ 1.0 "- 5.5 Vee V III .5 :; 0.8 .,., ..:"" 0.6 6.0 o (V) 25 50 75 Ambient temperature Ta 100 ('C) Average supply' current vs. Average supply current vs. ambient supply voltage temperature 20 20 ..: .5 tl 15 ...... ~... e 10 1 ;, ... 5 III > ..: u 15 ".,...... 10 ~ o -- --- 4.0 4.5 ~ "" ~ ..,. r----- r-- ~ 8: ., .," > ..: 5.0 5.5 Supply voltage Vee o 6.0 ... III ., ~ 1.0 .:::0 1> I - :> 1.0 eC) - Vw VIL :: :: :> r--- = 1.5 .... :> :> 100 75 2.0 G 1.5 50 r-- Input voltage vs. ambient temperature 2.0.----,-----r---...,----, G 25 --- Ambi~nt temperature Ta (V) Input voltage vs. supply voltage = 5 ... > "S 0.5 .s"'" o~--~-~~--~--~ 4.0 4.5 5.0 5.5 6.0 Supply voltage Vee (V) 0.5 o 25 50 Ambient temperature 75 Ta 100 ('C) ---.-----SHARP-...-.------~ 687 ................ -..... ........... ................-....,..... CMOS'4096-Bit Static Random Access Memory " "'LH5104-4 ~.-~...., LH5104-4 ,• .-' CMOS 4096-Bit Static Random Access Memory " Description • Pin Connections The LH5104-4 is a fully static ~AM organized as 4,096-word-by-l-bit by using silicon-gate CMOS process technology. o • Features 1. 4,096-word-by-l-bit organization 2. Single +5V power supply 3. Fully static operation (no refresh or clock reo quired) 4. All inputs and outpu~s TTL compatible 5. Three-state outputs 6. Access time (MAX.) : 450ns 7. Data can be held on + 2V supply voltage 8. Supply current at standby mode 10 pA on + 2V supply voltage (MAX.) 9. l8-pin duai-in-line package • Top View Block Diagram Row Address Decoders Data Input 1ll}--i-----1----:~-11>-------1 l---i>-----i.7 Data Output Chip Select Input 10!}--;~---==:;J:J_ _ _.J Write Input 688 8)....;~:±~J---------++-H-+++--...J CMOS.4096-Bit Static Random Access Memory • LH51 04-4 Absolute Maximum Ratings Parameter Supply voltage * Input voltage * Output voltage * Operating temperature Storage temperature Symbol Vee V IN V OUT TQI>r T~ Ratings -0.3-+7.0 0.3 Vee+ 0.3 -0.3 Vee+ 0.3 0-+70 -55 +150 Unit V V V "C "C *The maximum applicable voltage on any pin with respect to GND. • (Vee =5V±10%, Ta=0-+70"C) DC Characteristics Parameter Input low voltage Input high voltage Output low voltage Output high voltage Input leakage current Output leakage current Symbol VIL VIH VOL VOH I ILl I I Iw I Current consumption Icc Chip disabled current consumption IeeL • Conditions MIN. TYP. MAX. 0.65 1.0 1.0 Unit V V V V pA pA 15 rnA 50 pA 2.2 IOL -3.2mA IOH ImA VIN OV or Vee open CS- VIH, VOUT OAV or Vee open CS- VIN , Output open VIN =V ee =5.5V CS~Vee, 004 204 VIN=OV or Vee 7 AC Characteristics (1) (V ee =5V±10%, Ta=0-+70·C) Read cycle Parameter Cycle time Acc·ess time Chip enable time 1 Data hold time from address Chip turn-off time Output enable time Symbol t Re t Aee teo taH tOF ta~ (2) Write cycle Parameter Cycle time Chip select time Access time Address setup time Pulse width Recovery time Data setup time Data hold time Output disable setup time Output enable setup time MIN. 450 TYP. MAX. 450 450 30 120 20 Unit ns ns ns ns· ns ns (V ee =5V±10%, Ta=0-+70"C) Symbol twe tew tAW t AS twp tWR tow tOH twz tow MIN. 450 320 340 120 200 90 200 300 TYP. MAX. 110 0 Unit ns ns ns ns ns ns ns ns ns ns Test conditions of AC characteristics • Input voltage amplitude··················· ........................ + 0.65 - + 2.2V • Input rising/falling time ··········································10ns • Timing reference level· .......................................... ·1.5V • Output load condition ................. ····························1 TTL+ 100pF .-.-----~--.....-.--SHARP .-.~--.--.-.-- 689 LH51 04-4 CMOS 4096.;.Bit Static Random Access Memory • (f=lMHz, Ta=25"C) Capacitance Parameter Input capacitance Output capacita~ce • Symbol. CIN COUT Conditions YIN=OY YOUT=OY MIN. TYP. - CS v:oltage for data hold Supply current for data hold Chip turn·off time Operation recovery time YI Icc PD tS(pD tR PD) Conditions 2.2Y';;:YccPD ';;:Ycc 2.0Y~YCC(PD)~2.2Y Unit pF pF (Ta=0-+70·C) Low-Voltage Data Hold Characteristics Parameter Symbol Supply voltage for data holding YCCPD MAX. 6 15 MIN. 2.0 2.2 YCC(PD) YIN =Y cc =2.0Y TYP. Unit Y Y 0.2 t RC tRc MAX. 10 flA ns ns '-~-------SHARP~-----'---- 690 CMOS 4096-Bit Static Random Access Memory • Timing (1) LH51 04-4 Diagram Read cycle tRC "V \V 11\ 1\ tOH tACC ~ tc cs \\\\ ,'/////1/// ~ tou DOUT - tDF V L II 1\-"'.1'-- Valid data \ " \ /J (2) Write cycle fE-------twc:--------t WE DOUT (3) Low-voltage data hold 4.5V VCC(PD) OV _~C:.:::S:",-......J 691 CMOS 4096-Bit Static Random Access Memory • Electrical Characteristics Curves (Vcc=5V, Ta=25"C unless otherwise specified) Access time vs. supply voltage .,.a 1.4 10 ;; 1.2 ~ Il::: ($ 1.0 ;; .~'" Ul Ul 0.8 '" <"" 0.6 1.4 Ta=700e ... .=:'" Access time vs. ambient temperature 4.0 ... "" 4.5 -............ ~ .!!l '" Il::: 1.2 u u 1.0 ;; ~ .~'" Ul Ul 5.5 Supply voltage Vee (V) 6.0 15 u ......u 10 1 --------, Ul .- 5 .. <'" o 4.0 4.5 ~ 5.5 5.0 Supply voltage Vee 2.0 G .. ...'" 1.0 .. ~ i ..s ---- 1.5 > > o 25 50 75 100 Ambient temperature Ta (Oe) ~ 'ill. ~ 4.0 C ., ... "" i .'".." ~ r-- 5 ..'" ---- ~~ < o 25 50 75 --- 100 (Oe) Ambient temperature Ta Input voltage .vs. ambient temperature 2.0 G ... 1.5 > .. > ..'" 1.0 --- --- - VIH ~L ! .. '0 1 4.5 10 Ul 6.0 0.5 o 15 (V) Input voltage vs. supply voltage ... , < 3 C .'." / 20 < "" / Average supply current vs. ambient temperature 3 ..'" /' 0.8 0.6 5.0 20 u V / "'" <" Average supply current vs. supply voltage ......u Vee=4.5 V ~ 5.0 Supply voltage Vee 5.5 (V) 0.0 0.5 0 25 50 100 75 Ambient temperature Ta ee) -----~--~----SHARP.-.-.--.----- 692 CMOS 16384-Bit Static Random Access Memory LH5116-15/LH5116-20 LH5116-15/LH5116-20 CMOS 16384-Bit Static Random Access Memory • Description The LH5116-15/LH5116-20 are fully static RAMs organized as 2,04S-word-by-S-bit by using silicon-gate CMOS process technology_ • • Pin Connections o Features 2,04S-word-by-S-bit organization Single +5V power supply Fully static operation All inputs and outputs TTL compatible Three-state outputs Access time (MAX.) LH5116-15: 150ns, LH5116-20 : 200ns 7. Supply current at standby mode 10 pA (MAX.) on + 2V supply voltage S. 24-pin- dual-in-line package L 2_ 3_ 4. 5. 6. • Top View Block Diagram ~VCC Memory- Array 128 Rows 128 Columns ~GND Column Address Buffers Write In put,$l }- Chip Select 18~-t--tL:::8:=::::: Output Enable 20 )}-----+-11-+--+--------' 1 L---~====~~--------~~r-----------------------~ Address Input 693 LH5116-15/LH5116-20 CMOS 16384-Bit Static Random Access Memory Absolute Maximum Ratings • Parameter Supply voltage * Input voltage * Operating temperature Storage temperature Symbol Vcc VIN T OPT T stg Ratings -0.3-+7.0 -0.3-Vcc +0.3 0-+70 -55-+150 Unit V V 'C 'C *The maximum applicahle voltage on any pin with respect to GND. • (Vcc=5V±10%. Ta=0-+70'C) DC Characteristics Parameter Input low voltage Input high voltage Output low voltage Output high voltage Input leakage current Output leakage current Current consumption Current consumption during standby Symbol V1L VlH VOL VOH I ILl I I ILO I ICCI Icc2 ICCL MIN. -0.3 2.2 Conditions IOL=2.1mA IoH =-1.0mA VIN=OV. Vcc CS=V lH• Vl/o=OV-Vcc Il/o=OmA (OE=Vccl Il/o=OmA (OE=V lH ) CS=V cc. all other input pins= OV-Vcc TYP. MAX. 0.8 Vcc+ 0.3 0.4 1.0 1.0 30 40 Unit V V V V pA pA rnA rnA 10 pA 2.4 15 25 Note 1 2 Notel: CS=OV; all other input pins=Vcc Note 2: CS=VIL; all other input pins=VIH • AC Characteristics (1) Read cycle . Parameter Cycle time Access time Chip enable time Chip select time Output enable time Output select time Output turn-off time (from CE 2) Output turn-off time (from CEll Data hold time (Vcc=5V±10%. Ta=0-+70'C) Symbol tRc t ACC teE tcs tOE tos tOFl tOF2 tOH MIN. 150 LH5116-15 TYP. MAX. LH5116-20 TYP. MAX. 150 150 15 200 200 20 100 75 15 0 0 40 40 15 (2) Write cycle 20 0 0 20 60 60 Unit ns ns ns ns ns ns ns ns ns (Vcc =5V±10%. Ta=0-70'C) Parameter Symbol Cycle time Chip select time Access time Address setup time Pulse width Recovery time Output turn-off time (from OE) Data setup time Data hold time Output turn-off hold time (from WE) Output turn-off time (from OE) twc tcw ' tAw tAs twp tWR tOFl tow tOH tow tOF2 MIN. 150 110 110 0 110 20 LH5117-15 TYP. MAX. MIN. 200 135 135 5 140 35 LH5117-20 TYP. MAX. Unit 70 10 80 . 10 ns ns ns as ns ns ns ns ns 15 20 ns 40 40 --~-'---~--SHARP 694 MIN. 200 60 60 ns ---.-.----------- LHS116-1S/LHS116-20 CMOS 16384-Bit Static Random Access Memory Conditions for measurement of AC characteristics • Input voltage amplitude ........................................... +0.8- + 2.2V • Input signal rise/fall time ................ ························10ns • Time measurement level ····································· .... ·1.5V • Output load condition ............................................. 1TTL + 100pF • Low Supply Voltage Data Hold Characteristics: (Vee =5V±10%, Ta=0-70'C) Parameter Data hold supply voltage Data hold supply current CS setup time CS hold time • Symbol Conditions VeeDR VCs"=Vee, VIN=OV or Vee IecDR Vee=Ves=2.0V, VIN=OV or Vee MIN. MAX. 2.0 t Re tRe tSDR tRDR Unit V 10 pA ns ns (f=lMHz, Ta=25'C) Capacitance Parameter Input capacitance Input! output capacitance • TYP. Symbol CIN CliO Conditions VIN=OV VlIO=OV ~ MIN. TYP. MAX. 5 8 Unit pF pF Timing Diagram (1) Read cycle ----tRc-----ti--...j ~:::::::-t-Ac-C~~--~--~---~.-,~~-tO-H----------cs 1------tCE----~"'" I/O}-I/Os ~--.------SHARP.-----~.-.-~.--- 695 ..... .... CMOS.16384-Bit Static Random Access Memory ~ (2) ~.-~~.-~ .-~ LH5116-15/LH5116-20 ---.-~ Write cycle (Note 3) ~-----------twc----------~ Ao-AIO 1--------tAW -------+-~;o.j cs Note 3:· WE must be high when there is a change in Ao-Alo. Note 4: When CS and WE are alLlow at the same time, write occurs during the. period twP. Note 5: tWR is the time from the rise of CS or WE, whichever is first, to the end of the write cycle. Note 6: During this period the input/output pin is in an output condition, so input with a phase reversed from that of the output is not permitted. Note 7: If CS should drop at the same time as WE or later, the output buffer is maintained at high impedance. Note 8: OE is maintained at "L" level. Note 9: DOUT outputs data with the same phase as the input data of this write cycle. Note 10 : If CS is low during this period, the input/output pin is in the output condition. During this condition, a data input signal with a phase opposite that of the output is not permitted. (3) Low supply voltage data hold ~-----;;+<------- Data hold time -----~ofE_=:.::...~ 5.0V 4.5V VIH VCCDR VIL GND 696 -------------------------------- CMOS 16384-Bit Static Random Access Memory • LH5116-15/LH5116-20 Electrical Characteristics .Curves (Vcc=5V, Ta=25"C unless otherwise specified) Access time vs. supply voltage .,.e Access time vs. ambient temperature .,.e 1.2 ...,. 1.1 .~ 1;; Ql ~ 1.0 u u ""~ .j ., .! ., 1.2 .. .,.. .~ ~ 1.1 Il:: u u 1.0 ~ ........... ., .! ., 0.9 C/l C/l C/l C/l / V 0.9 ..:"" ..:"" 0.8 4.0 4.5 5.0 Supply voltage Vee 5.5 0.8 6.0 o CV) 25 50 75 Ambient temperature Ta Average supply current 1 vs. supply voltage 100 C·C) Average supply current 1 vs. ambient temperature 25 25 ..: -! ..: -! ~ 20 u ......u -.,"" "" " i "., ...,. .." ..: C/l 15 / ,/ u .;:; /' / 20 C ., " "" b" 15 is: .'.."" " C/l 10 -- --- r-- t--- 10 .. ..:'" 5 4.0 4.5' 5.0 Supply voltage Vee 5.5 25 6.0 CV) 75 100 C·C) Input voltage vs. ambien! temperature 2.5 2.5 2: 2: " 50 Ambient temperature Ta Input voltage vs. supply voltage 2.0 "., 2.0 > > >= .,OIl ~ .j ./ . .:: 1.5 $-= 1.0 .. 0 0.5 4.0 --- ~ 4.5 ~ 5.0 Supply voltage Vee ~ > - .::0 '"~ VIL 5.5 CV) 1.5 VlH .. $-= 6.0 VIL 1.0 0.5 o 25 50 75 Ambient temperature Ta 100 (·C) --------SHARP-~-.----- 697 .........,.........,.....,.....,- CMOS 16384-Bit Static Random Access Memory . LH5117 .:.15/LH5117-20 .-..-......,.....,.-.~ -.....,,....., LH5117-15/LH5117-20 CMOS 16384-Bit Static Random Access rtlemory • , • Description Pin Connections The LH5117-15/LH5117-20 are f.ully static RAMs organized as 2,048-word-by-8-bit by using silicon-gate CMOS process technology. • o Features 1. 2,048-word-by-8-bit organization 2. Single +5V power supply 3. Fully static operation 4. All inputs and outputs TTL compatible 5. Three-state outputs 6. Access time (MAX.) LH5117-15: 150ns, LH5117-20: 200ns 7. Supply current at standby mode 10 pA (MAX.) on + 2V supply voltage 8. 24-pin dual-in-line package • Top View Block Diagram --lvcc ~GND Memory Array 128 Rows 128 Columns .~~______~~~r-~---------~,~ Data I/O :ro ¥s -ui ~ ! r---, ~ 'is Sense Amp. L---->. I . ~ O r : :::::---->-+-I+t+h t t ~ Column Address Buffers Write Input~ Chip Enable ::::--- 'y- {~r-jH~=8;:::::~)}-____-+--+--l_+-______--' L--=====::::.-_.....:..__ --{4 5 6 .7~}----------------l ~ Address Input 698 hIII ~I>-+-+-f-h Column Decoders '-r- f ~ .5il~~ L-k ~ CMOS 16384-Bit Static Random Access Memory • Absolute Maximum Ratings Parameter Supply voltage Input voltage Operating temperature Storage temperature • Symbol Vcc VIN ToDr Tstg Ratings -0.3-+7.0 -0.3-V cc +0.3 0-+70 -55-+150 Unit V V "C "C (V cc =5V±10%. Ta=0-+70"C) DC Characteristics Parameter Input low voltage Input high voltage Output low voltage Output high voltage Input leakage current Output leakage current Current consumption Current consumption during standby Notel: Note 2: • LHS117-1S/LHS117-20 Symbol V1L VIH VOL VOH I ILl I I Iw I Iccl Icc2 ICCL Conditions MIN. -0.3 2.2 ICL=2.1mA IoH =-1.0mA VIN=OV-Vcc CS2=V IH • VIIO=OV-Vcc IIIo=OmA (CEl=Vcd IIIo=OmA (CE I =V IH ) CE 2=V cc. all other input pins=OV-Vcc MAX. 0.8 Vcc+ 0.3 0.4 1.0 1.0 30' 40 Unit V V V V pA pA rnA rnA 10 pA 2.4 15 25 Note 1 2 CE2=QV; all other input pins=Vcc CE2=VIL; all other input pins=VIH AC Characteristics (1) Read cycle Parameter Cycle time Access time Chip enable time Chip select time Output enable time Output select time Output turn·off time (from CE 2) Output turn·off time (from CEll Data hold time (2) TYP. (Vcc=5V±10%. Ta=0-+70"C) Symbol tRC t ACC tCE tcs tOE tos tDFl tDF2 toH MIN. 150 LH5117-15 TYP. MAX. MIN. 200 200 200 150 150 15 20 75 15 0 0 15 LH5117-20 TYP. MAX. 40 40 Write cycle 100 20 0 0 20 60 60 Unit ns ns ns ns ns ns ns ns ns (Vcc =5V±10%. Ta=0-70"C) Parameter Symbol Cycle time Chip select time Access time Address setup time Pulse width Recovery time Output turn-off time (from WE) Data setup time Data hold time Output turn-off hold time (from WE) twc tcw tAW tAS twp tWR tDF tDW tDH tow MIN. 150 110 110 0 110 20 LH5117-15 TYP. MAX. MIN. 200 135 135 5 140 35 LH5117-20 TYP. MAX. Unit 70 10 80 10 ns ' ns ns ns ns ns ns ns ns 15 20 ns 40 ---~"""-'--'-'--SHARP 60 ------.-.----.-. 699 CMOS 16384-Bit Static Random Acce~s Memory LH5H7-15/LH5117;.20 Conditions for measurement of AC characteristics • Input voltage frequency width .: ............................... + 0.8 - + 2.2V • . Input signal rise/fall time .··············,··················10ns • Time measurement level ·························:·······1.5V • Output load conditions ······· .. ·····················:··1 TTL+ 100pF • . Low Supply Voltage Da~a Hold Characteristics Parameter" (Vcc =5V±10%. Ta=0-70"C) Symbol Conditions MIN. Data hold' supply voltage VCCDR V~E2=VCC. VIN=OV or Vcc 2.0 Data hold supply voltage IccDR VCC=VCE2=2.0V. VIN=OV or Vcc CS setup time CS hold time tSDR tRDR • MAX. Unit V 10 pA ns ns t RC t RC (f=1MHz. Ta=25"C) Capacitance Parameter Input capacitan<;e Input! output capacitance • TYP. Symbol CIN CliO Conditions VIN=OV VlIO=OV MIN. TYP. MAX. 5 8 Unit pF pF Timing Diagram (l) Readicycle 1-------tRC-----~~ ~:= =-=-=-=- t-AC-C-=-=- =- =- =- =- . . .;-~;!-ci-tO-H----- CE2 ~----tCE----_3>oj -.----------,-SHARP----.---~~.--- 700 CMOS 16384-Bit Static Random Access Memory LH5117-15/LH5117-20 (2) Write cycle (Note 3)/ ~----------twc----------~~ ~---------tAW--------~~~ 14--+--- tcw (Note 7) --------;~ Note 3 : WE must be high when there is a change in Ao-AlO. Note 4 : When CE2, CEI, and WE are all low at the same time, write occurs during the period twP. Note 5 : tWR is the time from the rise of CE2 and CEI or WE, whichever is first, to the end of the write cycle. Note 6 : During this period the input/output pin is in an output condition, so input with a phase reversed from that of the output is not permitted. Note 7 : If CE2 or CEI should drop at the same time as WE or later, the output buffer is maintained at high impedance. Note 8 : Dour outputs data with the same phase as the input data of this write cycle. Note 9 : If both CEI and CE2 are low during this period, the input/output pin is in the output condition. (3) Low supply voltage data hold 5.0V 4.5V VIH VCCDR VIL GND -------------------------------- -----------SHARP----.-.-.----701 OMOS 16384-Bit Static Random Access Memory LH5117-15/LH5117-20 Electrical Characteristics Curves (Vcc=5V, Ta=25°C unless otherwise sp~ified) • Access time vs. supply voltage ., Access time vs ..ambient temperature ., 1.2 .,. ,... ..e III .:= ..e ... 1.1 III ~ <.l <.l III 1.0 < .,., ~ <.l <.l 1.0 .,., <"" 0.9 III <"" 0.8 4.0 4.5 5.0 Supply voltage 5.5 Vee 0.8 6.0 CV) < C'C) < 20 <.l <.l .... 15 10 "..., ~ ~ ~ ...'" ... ...'",. III III 20 III b" .,~ 15 10 - -- r---- -- III < < 5 4.0 4.5 5.0 Supply voltage Vee 5.5 25 6.0 50 Input voltage vs. supply voltage ~ 100 75 Ambient temperature Ta CV) C'C) Input voltage vs. ambient temperature 2.5,-----r----.,---,----...., 2.5 ~ :::l 2 . 0 1 - - - - t - - - + - - - + - - _ j :> :::l 2.0 :> = VIH :> 1.51----t---+--==;;;;;;o-+~=-_j ~ .::: ~ 11.01---+---+----+-----j 0.5 L-_ _I-_--:-I-_--:-I.:-_~ 4.0 4.5 5.0 5.5 6.0 Supply voltage V cc 702 100 75 -.§. / III 50 25 -.§. .... b" ...,g; ..,.g:, 25 Average supply current 1 vs. ambient temperature 25 i.. o Ambient temperature Ta Average supply current 1 vs. supply voltage <.l / V ., .!j III ....<.l /' :! ~ 0.9 V ./ 1.1 ~ I'" III ] .:= "~ ] .. 1.2 (V) - -VIH r-VIL 25 50 75 Ambient temperature Ta 100 C'C) CMOS 16384-Bit Static Random Access Memory LH5118-15/LH5118-20 LH5118-15/LH5118-20 CMOS 16384-Bit Static Random Access Memory . • • Description Pin Connections The LH5118-15/LH5118-20 are fully static RAMs organized as 2,048-word-by-8-bit by using silicon-gate CMOS process technology. • o Features 1. 2. 3. 4. 5. 6. 2,048-word -by- 8- bit organization Single +5V power supply Fully static operation All inputs and outputs TTL compatible Three-state outputs Access time (MAX.) LH5118-15: 150ns, LH5118-20: 200ns 7. Supply current at standby mode 10 pA (MAX.) on + 2V supply voltage 8. 24-pin dual-in-line package • Top View Block Diagram Memory Array 128 Rows 128 Columns "0 !::c Data I/O o U L~===~::!.:"'::"'::::'::'-_-<4 5 6 7 } - - - - - - - -_ _ _ _....I \ Addresvs Input J ~.-.-------SHARP--.------ 703 lH5H8-15/LH5118-20 CMOS:16384..;Bit Static Random Access Memory • Abs.olute Maximum Ratings Parameter Supply voltage Input voltage Operating temperature Storage temperature • Symbol Vcc VIN Toor T st• Ratil).gs -0.3-:-+7.0 -0.3-Vcc +0.3 0-+70 -55-+150 Unit V V "C "C (Vcc=5V± 10%. Ta=O- +70"C) DC Characteristics Parameter Input low voltage Input high voltage Output low voltage Output high voltage Input leakage current Output leakage current Symbol V1L VIH VOL VOH I ILl 1 I Iw I Current consumption ICCI Icc2 Current consumption during standby IccL Conditions MIN. -0.3 2.2 ICL=2.1mA IoH =-1.0mA VJN=OV-Vcc CE 2=V IH or CE I =V IH • Vl/O=OV-Vcc Il/o=OmA (WE=Vccl Il/o=OmA (WE=V1Ll CE 2 and CE I = Vcc. all other input pins=OV-Vcc TYP. MAX. O.B Vcc+ 0.3 0.4 1.0 Unit V V V V pA 1.0 pA 30 40 rnA rnA 10 pA 2.4 15 25 Note 1: CE2=CEl=OV; all other pins=Vcc Note 2: CE2=CEl=VIL; all other pins=VIH • AC Characteristics (1) Parameter Cycle time Access time Chip enable time Chip select time Output enable time Output select time Output turn-off time (from CE 2) Output turn-off time (from CEll Data hold time(from address) (2) (Vcc =5V±10%. Ta=0-+70"C) Read cycle Symbol tRc tACC tCE tcs tOE tos tOFl tOF2 tOH LH511B-15 TYP. MAX. MIN. 200 150 150 15 15 0 6 LH511B-20 TYP. MAX. 200 200 20 150 40 40 . 15 200 20 0 0 20 60 60 Unit ns ns ns 'ns ns ns ns ns ns (V cc= 5V± 10%. Ta=0-70"C) Write cycle Parameter Symbol Cycle time Chip select time Access time Address setup time Pulse width Recovery time Output turn-off time (from WE) . Data setup time Data hold time Output turn-off hold time (froni WE) twc tcw tAW tAS twp tWR t tow tOH 704 MIN. 150 tow MIN. 150 110 110 0 110 20 LH511B-15 TYP. MAX. MIN. 200 135 135 5 140 35 LH511B-20 ,MAX. TYP. Unit 70 10 BO 10 ns ns ns ns ns ns ns ns ns 15 20 ns 40 60 Note 1 2 LHS118-1S/LHS118-20 CMOS 16384-Bit Static Random Access Memory Conditions for measurement of AC characteristics • Input voltage amplitude········ .. ································· +O.8-+2.2V • Input signal rise/fall time .. ········· ·····························10ns • Time measurement level· .. ·······································1.5V • Output load condition············································· 1TTL + 100pF • Parameter • Symbol Conditions MIN. Data hold supply voltage VeeDR Vcrz=Vee• VIN=OV or Vee Z.O Data hold supply current IeeDR Vec=VeE2=Z.OV. VIN=OV or Vee CS setup time CS hold time tSDR tRDR TYP. MAX. Unit V 10 p.A ns ns tRe t Re (f=lMHz. Ta=Z5"C) Capacitance Parameter Input capacitance Input/output capacitance • (V ee =5V±10%. Ta=0-70"C) Low Supply Voltage Data Hold Characteristics Symbol C IN CliO Conditions VIN=OV VIIO=OV MIN. . TYP. MAX. 5 8 Unit pF pF Timing Diagram (1) Read cycle t-----tRc----\k--l A.-AI. ~=-=- =- =- =- :. .-t-A-C - - - - - - - -l>.-I.......;{f-tO-H----o! iE------tCE----~ iE----tcs-----i ~_r±_----r_~~ 1/01-1/0. 705 / CMOS 16384-Btt Static Random Access Memory LH5118-15/LH5118-20' (2) Write cycle (Note 3) ~------------twe----------~~ Note 3 : WE must be high when there is a change in AD-AID. Note 4 : When CE2, CEI, and WE are all low at the same time, write occurs during the period twP. Note 5 : tWR is the time from the rise of CE2 and CEI or WE, whichever is first, to the end of the write cycle. Note 6 : During this period, the input/output pin is in an output condition, so input with a phase reversed from that of the output is not permitted. Note 7 : If CE2 or CEI should drop at the same time as WE or later, the output buffer is maintained at high impedance. Note 8 : DOUT outputs data with the same phase as the input data of this write cycle. Note 9 : If both CEI and CE2 are low during this period, the input/output pin is in the output condition. During this condition, a data input signal with a phase opposite that of the output is not permitted. (3) Low supply voltage data hold 5.0V 4.5V VlH Vee DR VIL GND '--~-~'-----SHARP"-""--'-'--~--- 706 CMOS 16384-Bit Static Random Access Memory • LH5118-15/LH5118-20 Electrical Characteristics Curves (Vcc=5V, Ta=,25°C unless otherwise specified) Access time vs. supply voltage .,..e ...,. . .~ 1.1 P::: u u j ., .,., ., ..:"" ] .,..e 1.2 Ql 1.0 0.9 0.8 4.0 Access time vs. ambient temperature 1.2 .. "- "" 4.5 .,.. .~ ..!S ., 1.1 u 1.0 L ~ 5.0 Supply voltage Vee u ,/ j ., "" ] .,., ., ..:"" 0.9 0.8 6.0 5.5 o (V) G 20 C ., 15 10 /' V v G 20 V .,. 15 " .Q §: .,os 10 C . ..:" 5 4.5 5.0 6.0 5.5 o 25 50 75 100 (·C) Input voltage vs. ambient temperature 2.0 C 1.5 2.0 '" ~ 1.0 -- ---- --- - ;;-== 4.5 5.0 Supply voltage Vee VIL 1.0 "~ .::co .. VIL :; 0.5 "" ......c c ...... 0.5 4.0 VlH ;;- VlH 1.5 "~ i r--- r-- Ambient temperature Ta Input voltage vs. supply voltage .. 5 (V) 2.5 == ;;- '""'" os ..".. Supply voltage Vee ... :> -- -- ..:i . 4.0 C 100 (·C) ..: 5 ..:i ., .,.."" ..: 75 25 25 " .Q .,""os"" 5Q Average supply current 1 vs. ambient temperature ..: 5 os 25 Ambient temperature Ta Average supply current 1 vs. supply voltage .. /' V P::: V 5.5 (V) 6.0 0 75 50 25 Ambient temperature Ta (·e) 100 707 NMOS6.5536-Bit Dynamic Random Access Memory LH21.64-15/LH2164-20 LH2164-15/LH2164-20 NMOS 65536-Bit Dynamic Random Access Memory • Description • Pin Connections The LH2164 is a dynamic RAM organized as 65,536-word-by-1-bit by using high-performance depletion load, n-channel double-poly silicon-gate MOS technology. o • Features 1. 65,536-word-by-1-bit organization 2. Access time (MAX.) LH2164-15: 150ns, LH2164-20 : 200ns 3. Cycle time (MIN.) LH2164-15: 270ns, LH2164-20 : 330ns 4. Power supply: +5V±10% 5. Power dissipation (MAX.) : 248mW(operation) : 28mW(standby) 6. All inputs and outputs TTL compatible 7. Address and input date latch capability. __ 8. Three-state outputs date controlled by CAS and not latched at the end of cycle 9. Common 110 capability using the early-write mode 10. Read/modify/write, page-mode, RAS-only refresh, and hidden ~efresh capabilities 11. Built-in gated CAS function 12. Built-in biasing-voltage generator circuit for high-output board 13. 2 ms refresh period, 128 cycle refresh 14. 16-pin dual-in-line package Top View ------.-~-~---SHA~P-.-- ....... - . . . . - . . - - 708 NMOS 65536-Bit Dynamic Random Access Memory • LH2164-15/LH2164-20 Block Diagram ;;., ''"" {Row addres~.I.mn addrs. ~ -tWCR I !WC~ \l-- ~ twp ~-- X tCWL / tRWL -t'DHValid data K tDHR High impedance DOUT (3) Read write and read modify write cycles tRWC tRAS ~ tAR 1 tCSH tRSH tCAS f-o---- t RCD---;---'" / \. \. tA~ ~ -~ow tASC .-1"4- -t~X addres!x' J teAH t--- Column address ~ ~tCWL- -tRWL- -I tRWD . k---tCAC----- -< ~~ '~" .§ t 20~--+----r--~----; ~ ~ ~ 4.5 5.0 Supply voltage Vee 5.5 100L-----2~5----~50~--~7~5----~100 6.0 Ambient temperature Ta (V) Average supply current during standby vs. supply voltage ('C) Average supply current during standby vs. ambient temperature 5r-----------~----~----~ 5 .. temperature 50r-----------~----~----~ E g Ta=O'C e am~ient Ta=O'C Vcc=5.5V .S .a..." ~ "".., " 4r---..,.----r--~--~ 4 .... ;;.-< ~ 3 ~~ ~~ f 1 r--2 ~ .!! --- ---I--- - 3r-----+-----+-----~----~ ~-t-_-l gj,$ ~ "'g ~ .!! -< '" 2r---+----r--~--~ -< '" 1 4.0 5.0 5.5 4.5 Supply voltage Vee (V) 6.0 1~----~----~----~----~ .0 25 50 75 Ambient temperature Ta 100 ('C) .--------SHARP-----------715 LH2164;"15/LH2164~20 . NMOS 65536-Bit Dynamic Random Access Memory Average supply current during RAS only refresh vs. ambient temperature Average supply current during RAS only refresh vs. supply voltage \ 40~----------~----~----~ 40 I :::~ Ta=O'e -------~ Vee=5.5V .!f 30 ~--,--.-----+---/-----t .g i ~ ..." 'a <" 201---+----+---/-----t Ei ~ ~1 ... .t ~ ~ 101---+----+---/-----t < b6 o 4.0 4.5 5.0 5.5 O~----~----~----~----~ o 6.0 Supply voltage Vee (V) Average supply current during page mode vs. supply voltage 40 .e ...g... 30 i... ... B<" b E! 20 ~-., co ...,... "".., 10 0 ~ E! :> ..: ~ . ~ ---- 4.0 716 40 Vee=5.5V 301---.---+---~----~ ~ ,,~ b" ..:E! 20 1 - - - + - - - - + - - - ; - - - ; ~ ""~ ~i ...~ E! 1 0 1 - - - + - - - - + - - - / - - - - - t ~ ~ "" o Average supply current during page mode vs. ambient temperature . Ta=O'e OIl .e... ..g 25 50 75 100 Ambient temp·erature Ta ('e) 5.5 5.0 4.5 Supplyvoltage Vee (V) 6.0 °O~----2~5----~50-,----~75~--~100 Ambient temperature Ta ('e) NMOS 65536-Bit Dynamic Random Access Memory LH2164A-15/LH2164A-20 LH2164A-15/LH2164A-20 NMOS 65536-Bit Dynamic Random Access Memory • Description • Pin Connections The LH2164A is a dynamic RAM organized as 65,536-word-by-1-bit by using high-performance depletion load, n-channel double-poly silicon-gate MOS technology. o • Features 1. 65,536-word-by-1-bit organization 2. Access time (MAX.) LH2164A-15: 150ns, LH2164A-20 : 200ns 3. Cycle time (MIN.) , LH2164A-15: 260ns, LH2164A-20 : 330ns 4. Power supply: +5V±10% 5. Power consumption (MAX.) : 248mW(operation) : 28mW(standby) 6. All inputs and outputs TTL compatible 7. Address and input data latch capabili~ 8. Three-state output data controlled by CAS and not latched at the end of cycle 9. Common 110 capability using the early-write - mode 10. Read/modify/write, page-mode, RAS-only refresh, and hidden refresh capabilities 11. Built-in gated CAS function 12. Built-in biasing-voltage generator circuit for high-output board 13. 2 ms refresh period, 128 cycle refresh, 14. 16-pin dual-in-line package Top View --------$HARP-.--------717 - NMOS 65536-:-BitDynamic Random Access Memory • LH2164A-15/LH2164A-20 Block Diagram . = fij "' m E"" -00 o " " " ""'" >. ... c c " E"" Cflp. I " 0 -" o " E ~< 00 "...... < "'" " Decoder "' m c Cflp. I E I ~< Row 1=====~Row Ad tRCDlm,,). When tRCD< tRCDlm,,), tRAC becomes large by (tRco-tRCDlm,,)). Note 9: When tRCD=tRCDlm,,). Note 10: Load condition for 2TTL + 100pF. Note 11: tRCDlm,,) is the largest value of tRCD that protects tRAqm,,) and is not an operation limit. If tRCD(m,,);;>tRCD, the access time is controlled by tCAC. Note 12: tRCD(min)=tRAHlmm)+2tT+tASqmm). Note 13: The fall of CAS becomes the reference of tDS and tDH in the early write cycle and WE becomes the reference in the read/write cycle and in the read/modify/write cycle. Note 14: twcs, tCWD, and tRWD are not operation limits at the point the operation mode is prescribed. When twcs ;:;;;tWCSlmm), the early write cycle begins and the Dour pin becomes high impedance. If tRwD;:;;;tRWD(mm) when tCWD;:;;;tCWD(mm), the read/write cycle begins and the output data becomes in· formation of the selector cell. In the case of timing other than that above, output becomes indeterminate. Note 15: Operation is guaranteed when either tRCH or tRRH is satisfied. Note • 5: (Vee=5V± 10%,f= IMHz, Ta=O- +70"C) Capacitance Parameter Input capacitance Input capacitance Output capacitance Symbol CIN ! CIN2 COUT Conditions Ao -A 7 , DIN, WE RAS, CAS DOUT MIN. TYP. MAX. 5 6 8 Unit pF pF pF ~---'--------~~SHARP - - - - - - - - - - - - - - - - - 720 NMOS 65538-Bit Dynamic Random Access Memory • LH2164A-15/LH2164A-20 Timing Diagram (1 ) Read cycle tRC tRAS RAS tRSH tCAS CAS Ao-A? WE tRAC DouT (2) High impedance Write cycle (Early write) tRC tRAS fE----tRCD~ \ \ tAR- ~~H --X - tA!f Row address - I--tCRP-tCAS r- V J I---tCPN---1- ~ Column addres rLtRP~ ~ tRSH tCSH K B X -tWCR I"twc~ '\14- twp ~f- X ~/ tCWL tRWL -tDH~ Valid data K tDHR High impedance DOUT '-~---'-"'--SHARP----"--------- 721 NMOS 65538-Bit Dynamic Random Access Memory (3) LH2164A-15/LH2164A-20 Read/write and read/modify/write cycl~s tRWC RAS tRAS - tAR - fE--tRCD t-tRP ....... ' - - tCSH ~ tRSH tCAS V- r-.. ' tf.!! -.. ~ t~~ ~w Addre~Column address t~ WE J I--tcPs-l'- ~ K I--tqVLtCWD ~t'RWL---OO I .i tRWD -tCAC High impedance DOUT --twp-.,.j nn Valid data ~-\.- tRAC ~~ ~ #U ~~ X! J( Vahd data (4) RAS only refresh cycle ~--------------tRC--------------~ i------tRp·-----"'" High impedance DoUT 722 NMOS 65538-Bit Dynamic Random Access Memory (5) Hidden refresh cycle (6) Page mode read cycle LH2164A-15/LH2164A-20 723 NMOS 65536-B.it Dynamic Random Access Memory· (7) LH2164A-15/LH2164A-20 Page mode write cycle Ao-A7 DIN • Electrical Characteristics Curves Access time vs. supply voltage Access time vs. ambient temperature 1.3 1.3 ".a..., > .:: ".a.,. Ta=25'e .:: 1.2 Qj Qj Il:: ., 1.1 ~ I'-... ., u " ! ., 'E., .,., <"" 1.2 -:;; -:;; u Vcc=5V > 1.0 0.9 4.0 1.1 ! '" 4.5 ., :3 ~ 5.0 Supply voltage Vee 1.0 III III " «"" r-- 5.5 ~ ~ 25 6.0 / 50 75 Ambient temperature Ta (V) Average supply current during normal operation vs. supply voltage 100 ('e) Average supply current during normal operation vs. ambient temperature 50 50 .. Ta=O'e Vcc=5.5V .S bO .S ... ... 40 ..a i< ... 8 ..... " b ..a" ~ 30 ~ ~ ~ .,bO-ll. .. .,...> ...8 III 0 ~ ~ ~ III lO C. .. 0 < " 4.5 30 0 20 10 4.0 40 8~ " ~.~ c. .. ..c._ .,... .,bO.,...> 8... < " 0 5.0 Supply voltage Vee 724 ..a ffi< ... 8 5.5 (V) 6.0 20 , 25 50 75 100 Ambient temperature Ta ('e) LH2164A-15/LH2164A-20 NMOS 65536-Bit Dynamic Random Access Memory Average supply current during standby vs. ambient temperature Average supply current during standby vs. supply voltage 5~--------~~----,-----~ 5 Ta=O·C r-- Vee=5.5V .;... .g 4 ".,.... --- ~ - - .e>~ 3 8:< '" 8 rn~ r--- ~E 2 f:--g ~ ~ -- < '" 1 4.0 1~----L-----~----~ 5.5 5.0 4.5 Supply voltage Vee (V) o 6.0 Average supply current during RAS only refresh vs. supply voltage .~ . ..Iii. "'< ------- 30 .g .... ~ 20 " 8 .e>~ "" ''"" '"" ~ ""..= ~~ os . I~.., Vec=5.5V . "''"" ".'" 30 .5 ~ B< 20 .e>3 ""§"~ .'" . ... .... < 10 ~"i1 <~~0 § 4.0 4.5 5.0 5.5 Supply voltage Vee CV) °o~--~L-----~----~----~ 6.0 Average supply current during page mode vs. supply voltage 25 50 75 Ambient temperature Ta .., 100 C·C) Average supply current during page mode ambient temperature IVS. 40~----------,-----~----~ 40 .., Ta=O·C . .g ".'" .5 Vee=5.5V .5 30 '" < ... ,,~ -8:~ 8 20 '"'" " ,,"8 . ..," : 8 10 <" 10 >- o . .g ".." 100 (·C) 40~----------~----~----~ Ta=O·C P::: ____~ Average supply current during RAS only refresh vs. ambient temperature 40 CI) < 25 50 75 Ambient temperature Ta - > os "" o 4.0 --- - 4.5 '" < ... 30 <>~ ~ 5.0 Supply voltage Vee ~ -8:~ 8 20 '"''"" ""'0" ." ..,'" : 8 10 > .. < "" 5.5 (V) 6.0 0 0 25 50 75 Ambient temperature Ta 100 (·C) ---.---------SHARP-~---------- 725 NMOS 262144-Bit Dynaniic Random Access Memor:y LH2464/LH2465 LH2464/LH2465 • Description • I NEW I NMOS 262144-Bit Dynamic Random Access Memory Pin Connections The LH2464/LH2465 .are dynamic RAMs organized as 65,536-word-by-4-bit by using highperformance depletion load n-channel double-polycide silicon-gate MOS technology. • Features 1. 65,536-word by-4-bit organization 2. LH2464 : page-mode LH2465 : nibble-mode 3. Access time (MAX.) LH2464/5-10 : lOOns LH2464/5-12: 12Dns LH2464/5-15: 150ns 4. Single +5V power supply 5. Power consumption (MAX.) : 467.5mW (operation) 27.5mW (stand-by) 6. CAS-before-RAS refresh capabilities 7. Built-in refresh counter 8. 4ms refresh period, 256 cycle refresh 9. 18-.pin dual-in-line package 726 Top View NMOS 262144-Bit Dynamic Random Access Memory • LH2464/LH2465 Block Diagram Clock } - - - ; Generator No.1 A, Column Address Buffer A. A5 A6 A7 Row Address Buffer Clock Generator 1----_-------3>-1 No.2 2 3 :>< ~ ~ Refresh Address Counter " t::: ;< ~ .,... ""...:"" -----{JIQ) VKB Mute Output VDD Oscilation ~81)-~--t""--, Output Oscilation Input Tone Output '-!.F~-~-- XMTR Switch GND --J>--__--(~ Single L-===~_ _ _ _ _ _ ~--~--a~~~H~------~6r-----------------------------~ GND 732 Tone Inhibit Tone Dialer CMOS LSI- • LR4087 Absolute Maximum Ratings Parameter Supply voltage Operating temperature Storage temperature Maximum power consumption I Maximum pin voltage Ratings 10.5 30-+60 -55-+150 500 -0.3 +0.3 Symbol VDD Toor T st• PD VIN1 VIN2 Unit V t t mW V V Note 1 2 3 4 Note1: Referenced to GND. Note 2: Ta=25t Note 3: The maximum applicable voltage on any pin with respect to GND. Note 4: The maximum applicable voltage on any pin with respect to VDD. • Recommended Operating Conditions Parameter Supply voltage • Raiting 3.5-10.0 Unit V (Ta=-30-+60t) Electrical Characteristics Parameter STI input voltage COL input voltage -- ROW input voltage I Output voltage I ROW TONE COL TONE TONE output resistance XMTR output no key input XMTR output in key input MUTE output no key input MUTE output in key input current, current, current, current, Standby current Operating current Input resistance Tone output (no key input) Output rise time Pre-emphasis Tone output distortion Note Note Note Note Note Note 5: 6: 7: 8: 9: 10 : Symbol VIH1 V1L1 VIH2 V1L2 V1H3 V1L3 VOK Voc RLl RL2 IoHx1 IoHx2 Conditions RL =lk.o VDD=3.5V V DD =10.0V V DD =3.5V, VOHx=2.5V V DD =10.0V, VOHX=S.OV IXLEAK VDD =10.0V, VOUT=OV lOLl IOL2 lOB! IOH2 ISB1 ISB2 IOP1 IOP2 RIN VDD =3.5V, VOL =0.5V VDD=lO.OV, VOL =0.5V V DD =3.5V, VOH=3.0V VDD=lO.OV, VOH=9.5V VDD=3.5V VDD=lO.OV VDD=3.5V VDD =10.0V MIN. 0.7VDD 0.0 0.7VDD 0.0 0.9VDD 0.0 317 396 -15 -50 TYP. 400 500 620 330 -25 -100 0.1 0.5 1.0 0.5 1.0 2.0 4.0 2.0 4.0 0.25 0.5 1.0 5.0 20 tr 1.0 VDD~4.0V Applies to STI pin. Note 11 Applies COL input pin Note 12 Applies ROW input pin Note 13 Ta=25t All output pins open -Note 14 Applies to XMTR output pins Note 15 3.0 2.0 MAX. V DD 0.3VDD V DD 0.1 VDD V DD 0.3VDD 504 630 10.0 Unit V V V V V V mV rms mV rms .0 .0 rnA rnA pA rnA rnA rnA rnA 100 200 2.0 10.0 100 -SO 5.0 3.0 -20 pA pA rnA rnA k.o dBm ms dB dB Note 5 6 7 S 10 10 11 11 9 9,13 5,S 12,13 14 15 : Applies to MUTE output pin. : Rise time for tone output to reach 90% of maximum amplitude after key input.' : Characteristics of crystal resonator used. Rs=100n, Lm=96mH, CM=0.02pF, Ch=5pF, F=3.579545MHz : Level ratio of high group tone to low group tone. __ : Unnecessary frequency components against total power of basic tone signal of ROW and COL . .-.-----.--'~---SHARP-.....------ ......... - - - 733 ..............-..-...............-,.._..- . - ..................--.-..--.-...... . LR4087 Tone Dialer. CMOS LSI • System Configuration IN40004o (4X) H----rrImwi'DD 1!!H_---,1~'RllW§ a+-_....,1;;.t3 ROW3 TONE OUT 16 l!m~I!lIIii+---,liiiZ RliWi ... \1 LR4087 9 COU L----isi-lCOL3 1200 ' - - - - - ' i - l , COLZ L-----:S;..!COLI 3.579545 MHz 7 OSC '" MgM""IO,-+----+--. osc 8 OUT GND -" 6 0.0051'F -----------------~ ""....,......l-1~r 00 2N6660 network • Test Circuit v COLI COLz COLs COL. I 1 4 7 * 2 5 8 0 3 A B 6 C 9 # D f ~ 3.579545MHz I 7 1 3 8 T 4 5 9 Tone Output 16 ROWI ROWz ROWs -- ROW. LR4087 14 RL 13 --.__~'-------;::~J..---.cJ Output Oscillation Input 8 Bipolar Input Any Key Down Output 1 OPamp Output Chip Disable ' - - - - - - - - - - - - - - - ' - - - - U 6 Single Tone Inhibit 738 Tone Dialer CMOS LSI • LR4091 Absolute Maximum Ratings Parameter Supply voltage Operating temperature Storage temperature Maximum power consumption Maximum pin voltage Symbol Voo T oDr T st• Po VINl VIN2 Ratings 10.2 -30-+60 -55-+150 500 -0.3 +0.3 Unit V t t mW V V Note 1 2 3 4 Notel: Referenced to GND. Note 2: Ta=20t Note 3: The maximum applicable voltage on any pin with respect to GND. Note 4: The maximum applicable voltage on any pin with respect to VDO, • Recommended Operating Conditions Parameter Supply voltage • Rating 3.0-10.0 Unit V (Ta=-30-+60t) Electrical Characteristics Parameter Supply voltage Symbol In operating In stand-by COL input voltage ROW input voltage Input voltage Input resistance Tone output level Pre-emphasis (high-group tone signal) Tone output distortion Output rise time Voo Voo VlHl VILl VIH2 ' VIL2 VIH3 VIL3 Rl VOUT IAKD OFF \ 5: 6: 7: 8: 9: 10: 11: 12: Note Note Note Note 13: 14: 15: 16: Note 17: 1.0 2.0 Voo =3.4-10.0V AKD output off current Note Note Note Note Note Note Note Note MIN. TYP. 3.0 2.0 0.7VDO 0.0 Voo-0.3 0.0 0.7VOD 0.0 20 -10.Q -8.5 tr IAKD ON In operation In operation In stand-by Tone output (no key input) OP amplifier output resistance OP amplifier output current Ta=25t Voo =3.4-3.6V No filter AKD output source current Supply current Conditions When tone signal is output CD=O lop lop ISB VDD=3.5V VAKO=3.0V VDo =10.0V VAKD=OV VOD=3.5V VDD =10.0V VoD =10.0V Unit V V V V V V V V kO dBm Note 3.0 dB 10,17 -20 5 dB ms 11,17 12 /LA 13 500 1.0 5.0 1.0 10 VDD=3.0V MAX. 10.0 10.0 Voo 0.3 Voo O.3Voo Voo 0.3VDD 100 -7.0 250 10 /LA 2.0 rnA rnA /LA dBm kO /-LA 200 -80 5 6 7 8 '8 9,17 14 15 16 16 Voltage to whIch AKD output responds by key mput. Applies to COL input pins (COLI-4). Applies to ROW inQ!!!.pins (ROWI-4). Applies to CD and STI input pins. Applies to low-group single tone signal. , Level ratio of high-group tone signal to low-group tone signal. __ Unnecessary frequency component against basic tone signal total power (RMS) of ROWand COL. Rise time for tone output reach 90% of maximum amplitude after key input. Crystal reasonators used are as follows : R5=1000, Lm=96mH ,CM=0_02pF, Ch=5pF, F=3.579545MHz AKD output is P-channel open drain output. Crystal resonator is used as indicated in Note 12 when single key is pressed (pin 6). In stand-by, CD="O', STI="I" ' OP amplifier output resistance is determined by capacity of pin l. The 10 kO shown in the test circuit is used in a standard filter circuit. When the capacity of pin 1 is too large, it is necessary to reduce the resistance_ RL (Pin 18)=6200 : Voo=3.4-5V 3000 : Voo=7.5V or more - - - - - - - - - - . - . . - "'-SHARP ~~.-....-.---------..-, 739 Tone Dialer CMOS • Lsi LR4091 Test Circuit 2 . 18 VDD -,.;Power - supply LR4091· ~ 17 1 ~ --- 7 VBIAS=O.5V: VDD;;>4.0V VBIAS=OV: VDD>4.0V 740 lOkO Tone Dialer CMOS LSI LR4092 LR4092 • Tone Dialer CMOS LSI • Description Pin Connections The LR4092 is a monolithic LSI and uses an inexpensive crystal reference to provide eight audio sinusoidal frequencies. Dual-Tone Multi-Frequency is obtained by mixing these frequencies . . • Features 1. Internal regulation of tone amplitudes 2. Internal loop compensation and pre-emphasis 3. Tone frequencies within 0.65% for 12 standard frequencies 4. Uses inexpensive 3.579545MHz television colorburst crystal 5. Tone-disable capability 6. Mute output for electronic switching 7. Uses either 2-of-8 keyboard or single contact keyboard 8. Single-tone capability 9. 16-pin dual-in-line package • Top View Block Diagram Row Input , Mute ~--~.Q) Output 9 Oscillation 8hr--t--, Output Tone Output Oscillation 7 Input '---4---(2 Chip Disable Single ~-~----------------~--------(l~ Tone Inhibit .-------.-.---".-~SHARP'--------.-~- 741 Tone Dialer CMOS LSI • LR4092 Absolute Maximum Ratings Parameter Supply voltage Operating temperature Storage temperature Maximum power consumption Maximum pin voltage Symbol Voo Topr TSJiL Po VINl VIN2 Ratings '+10.5 0-+60 -35-+85 500 -0.3 +0.3 Unit V "C "C mW V V Note 1 2 3 4 Notel: Referenced to GND. Note 2: Ta=25't Note 3: The maximum applicable voltage on any pin with respect to GND. Note 4: The maximum applicable voltage on any pin with respect to VDO. • Parameter Supply voltage Tel Loop in Operation Power Supply in Operation Stand-by CD, STI mput voltage logic"'l " logic "0" COL input voltage logic "1" logic "0" ROW Input voltage logic "1" logic "0" Input resistance ROW COL CD, STI 742 " Electrical Characteristics I Symbol I Voo. VODb Vs (Ta=O- +60"C) Conditions CD=GND MIN. TYP. 3.5 3.8 3.0 MAX. Unit 10.0 10.0 10.0 V V V V V V V V V RRI ReI Ta=25"C Ta=25"C Ta=25"C 20 15 15 60 125 kO kO kO Tone Dialer CMOS LSI • LR4092. System Configuration 7 3 4 c:::::J !3.579545 MHz . 5 18 9 1 2 3 A 4 5 6 7 8 9 C 0 # D * B LR4092 14 6 13 12 11 16 10 1800 RCVR Type 2500 Speech network ~~~--~----------~RR GNI------' Bl------' 1N4004 (X4) 743 Ptdse:Dia/er CMOS LSI .....~~.......- LR40981 A . .IIIIIIf!.~. . . .~~....,.-.-......- LR40981A .• .....~.- Pulse Dialer CMOS LSI • Description Pin Connections The LR40981A is a monolithic CMOS LSI which uses a ceramic resonator and provides the features required for a pulse dialer with redial. o • Features 1. Direct telephone· line operation 2. Uses 2-of-7 matrix keyboard 3. CMOS process for low-power operation 4. 2.5 -6.0V power supply 5. Make/Break ratio pin-selectable 6. Ceramic resonator ·used as frequency reference 7. Redial with:lf or 8. MUTE output for electronic switching 9. 16-pin dual-in-line.package * • Top View Block Diagram ! COlumn.{ Input 5 Pulse Output Memory I!';,~ {fi34>----i'" o r-----~9r----o~------------------~ Oscillation Oscillation Make/Break Hook Switch/Test Input ,Output Ratio Select . 7~4 Mute Output Pulse Dialer CMOS LSI • LR40981A Absolute Maximum Ratings Parameter Supply voltage Operating temperature Storage temperature Maximum power consumption Maximum pin voltage Symbol Voo Topr T s," Po VIN1 VIN2 Ratings -0.3-+6.2 -30 +60 -55-+150 500 -0.3 +0.3 Unit V t t mW V V Note 1 2 3 4 Notel: Referenced to GNO. Note 2: Ta=25t: Note 3: The maximum applicable voltage on any pin with respect to GNO. Note 4: The maximum applicable voltage on any pin with respect to VDD. • Recommended Operating Conditions Parameter Supply voltage • Specified value 2.5 6.0 Unit V (Ta=-30-+60t) Electrical Characteristics Parameter Key contact resistance Key board capacity Input voltage Key pull-up resistance Key pull-down resistance MUTE sink current Pulse output sink current (V 00- VRFF) value Memory hold current Operating current MUTE, PULSE Output off current Note Note Note Note 5 6 7 8 Applies Applies Applies Applies Symbol RKI CK1 KIH KIL KIRU KIRO 1M Ip VREF IMR lop ILKG Conditions 2-of-7 input mode MIN. 0.8Voo GND Voo=6.0V, VouT=6.0V MAX. 1 30 Voo 0. 2Voo Note 150 Unit kO pF V V kO kO pA mA V pA pA 1 pA 6,7 100 4 Voo=6.0V, VIN=4.8V Voo-2.5V, VouT-0.5V Voo =2.5V, VouT -0.5V ISUPPLy-150pA All outputs in no-load state All outputs in no-load state TYP. 500 1.0 1.5 2.5 0.7 100 0.001 3.5 5 5 6 7 8 to key input pins (ROW 1-4, COLI-3) to MUTE output pin. to PULSE output pin. to VREF pin. 745 Pulse Dialer CMOS LSI • LR40981A Timil'lg. Diagram :t* or * Key input -------------------- COL scan ROW scan ON -HOOK input I--++------------i Digit 2 MUTE output Digit 4 ~---.., L--";;""'-f-' PULSE output -i----' sci ator 1---- . ON -HOOK mode ON-HOOK/I TEST mode "I" "I r-'~---- 0 Redial mode (Normal dial) • Test Circuit Power supply + 16 1 2 3 KeYboard{ }K~"ro 10 9 67% break 61% break 746 OFFHOOK 15 LR40981A 6 7 8 15kO eratJon 3OkO ~ Pulse Dialer CMOS LSI • LR40981A System Configuration R3 TIP RING Telephone line Re VDD M/B I I C1 15 ON-HOOK I I +-..:::..:__--1>-!6~GND 2 VRE~ULSE I I I .------'3'-1COL 1 .------'4'-1COL, 5 COL, I I I I I _______________ JI LR40981A I 4 7 ... 2 5 8 0 3 6 9 # 14 13 12 11 ROW, ROW, ROW, ROW, MUTE~I~O_ _-I--t OSC" OSCOL'T A type keyboard 7 Speech network 8 C3 QI.Q3 Q2.Q. Q5 DI.D2 C1 : : : : 2N5550 2N5401 2N6661 IN914 : C 2 .C 3 : 20,uF (low leakage product) lOOpF±20% RI : 2.7kO R2 : 75kO R3: 22MO R.: 390kO R5: IMO Re : 1500 R7 : 100kO 747 Pulse Dialer CMOS LSI LA40982 _ __ '-'_'-''-~''_'''_'''_IPi:-''~''_''''_'''-'-'~ LR40982 • Pulse Dialer CMOS LSI ..• Description Pin Connections The LR40982 is a monolithic CMOS LSI which uses a ceramic resonator and provides the 'features required for a pulse dialer with redial. o • Features 1. Direct telephone-line operation 2. 3. 4. 5. 6. 7. 8. 9. Uses 2-of-7 matrix keyboard CMOS process for low-power operation 2.5-6.0V power supply' Make/Break ratio pin-selectable Ceramic resonator used as frequency reference Redial with :1:1: or MUTE output for electronic switching 16-pin dual-in-line package • * Top View Block Diagram ! COlumn{ Input 5 Memory I~ {u. 3 Mute Output _---. Oscillation Oscillation Make/Break Hook Switch/Test Input Output - Ratio Select 748. Pulse Output LR40982 Pulse Dialer CMOS LSI Absolute Maximum Ratings • Parameter Supply voltage Operating temperature Storage temperature Maximum power consumption Maximum pin voltage Notel: Note 2: Note 3: Note 4: • Symbol VDD Toor T st• PD VIN ) VlN2 Ratings -0.3-+6.2 -30-+60 -SS-+lS0 SOO -0.3 +0.3 Unit V Note 1 ·C "C mW V V 2 3 4 Referenced to GND. Ta=25t:. The maximum applicable voltage on any pin with respect to GND. The maximum applicable voltage on any pin with respect to VDO. Recommended Operating Conditions Parameter Supply voltage • Specified value 2.5-6.0 Unit V (Ta=-30-+60"C) Electrical Characteristics Parameter Key contact resistance Key board capacity Input voltage Key pull-up registance Key pull-down resistance MUTE sink current Pulse output sink cllrrent (VDD-VRFF) value Memory hold current Operating current MUTE, PULSE Output off current Note Note Note Note 5 6 7 8 Applies Applies Applies Applies Symbol RKI CKI KlH KIL KIRU KIRD 1M Ip VREF IMR lop ILKG Conditions 2-of-7 input mode MIN. 0.8VDD GND VDD=6.0V, VOUT=6.0V MAX. 1 30 V DD 0.2VDD 100 4 VDD=6.0V, VIN=4.8V VDD=2.SV, VOUT=O.SV VDD=2.5V, VOUT=O.SV IsuPPLY= 150 pA All outputs in no-load state TYP. 500 1.0 1.S 2.5 0.7 100 0.001 Unit kO pF V V kO kO Note pA 6 7 8 3.S rnA V ISO pA pA 1 pA S S 6,7 to key input pins (RDW 1-4. COLl-3). to MUTE output pin. to PULSE output pin. to VREF pin. -.-----~---SHARP-.---.----- 749 Pulse Dialer CMOS LSI .........r.-__...____ J LR40982 ........................,......................... ....., ~ • Timing Diagram # or * Key input --------'------------ JUUu- COL scan ROW scan, ON -HOOK input MUTE output .-...1-....L.j Digit 4 L......,;=---~ PULSE output--1I---, SCI I----OFF-HOOK mode (Normal dial) • ON-HOOK/I TEST mode """ ., j-o.>------ ator ope,ratIon Redial mode Test Circuit Power supply + 16 15kll 15 .10 9 67% break 61% break 750 OFFHOOK 30kll LR40982 Pulse Dialer CMOS LSI • System Configuration TIP RING Telephone line Rs VDn 15 ON-HOOK Q 6 GND I 2 PULSE , ~-----l~"":3'-1v REF , - - - - ' - 1 COL, 4 COL, r _ _-=-t 5 COL, 1 2 LR40982 14 ROW, 4 5 6 7 8 9 13 ROW, 12 ROW, * 0 II 11 ROW4MUT"1-<~-+I OSC'NOSCOUT A type keyboard 7 8 1 1 1 -I I I I I I I I ____________________ J I Type 500 Speech network QI.Q3. Q.=2N5550 Qs,Q6=2N5401 Q2=2N3822 D1 =lN914 C1 =20,uF(Iow leakage product) C2.C3=100pF±20% RI=8kO R2=500kO R3=22MO R •• Rs=390kO R6,R g =100kO R7. RS=3kO 751 Pulse; Dialer CMOS LSI LR40991 LR40991 Pulse Dialer CMOS LSI • Description The LR40991 is a monolithic CMOS LSI which uses a CR oscillator and provides the features required for a pulse dialer with redial. • PinConnec,ions o • 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. Features Direct telephone-line operation Uses 2-of-7 matrix keyboard CMOS process for low-power operation 2.5-6.0V power supply Make/Break ratio pin-selectable 20/10 pps pin-selectable Redial with :1:1: or MUTE output for electronic switching CR oscillator IS-pin dual-in-line package • * T~p View Block Diagram Pulse Output 2 Mute Output L--r~~~J'<--------~o 20110 pps Select Make/Break Ratio Select Hook Switch/Test ~'-'~--~'---SHARP--'-"--'-'---- 752 Pulse Dialer CMOS LSI • LR40991 Absolute Maximum Ratings Parameter Supply voltage Operating temperature Storage temperature Maximum power consumption Maximum pin voltage Symbol VDD T oDr T stg PD VIN! V1N2 Ratings -0.3-+6.2 -30-+60 -55-+150 500 -0.3 +0.3 Unit V t t mW V V Note 1 2 3 4 Notel: Referenced to GND. Note 2: Ta=25"'C. Note 3: The maximum applicable voltage on any pin with respect to GND. Note 4: The maximum applicable voltage on any pin with respect to VDO. • Recommended Operating Conditions Parameter Supply voltage • Rating 2.5-6.0 Unit v (Ta=-30-+60t) Electrical Characteristics Parameter Key contact resistance Key board capacity Input voltage MUTE sink current MUTE source current PULSE sink current V REF output value Memory hold current Operating current Key pull-up resistance Key pull-down resistance ON-HOOK pull-up resistance MUTE, PULSE output off current Note Note Note Note 5 6 7 8 Applies Applies Applies Applies Symbol RKI CK1 KIH KIL IML IMH Ip VREF IMR lop K1RU KIRD ROH ILKG Conditions 2-of-7 input mode VDD =2.5V, VouT =0.5V VDD =2.5V, VouT=2.0V V DD =2.5V, VouT =0.5V ISUPPLY= 150 /L A All outputs in no-load state All outputs in no-load state VDD=6.0V VIN=4.8V VDD =6.0V, VouT=6.0V MIN. 0.8VDD GND 0.5 0.5 1.0 1.5 TYP. MAX. 1 30 V DD 0.2VDD 3.5 Unit kO pF V V rnA rnA rnA V 150 /LA 2.0 2.0 2.5 0.7 100 100 4 100 0.001 Note 5 6 7 8 /LA kO kO kO 1 /LA to key input pins (ROWI-4, COLI-3). to MUTE output pin. to PULSE output pin. to VREF pin. ----------SHARP----------------753 Pulse Dialer CMOS LSI • LR40991 Timing Diagram Digit 1 Digit 2 # or * -----.Ur----.L.Jr---------,Ur---------- Key input COL scan ROW ~----~~O!l~--- ~ ----------- m.r- scan~: ____ ~~0!l~___ lJ1JLJl.Jl----------- ~ I I I I . , ! :" ~ I MUTE output --'j i i ~ r),l' ON -HOOK in;;-l : : PULSE output I i I :l : I I t i l I III I !! : ' Oscillator stop , oscillatorl : : :1l1lrTT1I1n ------010: ..4kHz -------"1' .. .,.- ' Ii II - - - - - - - - - - - - ____ rnr,JU I I I I tDB I I :: tB tlDP I I I ~II !!II. I I : I I : I : I ItMOI I I : I I : .I 'E:~I Normal dial liP, I I" ·1· I I I I I tpDP /----'-'-"'"----1:11 ON -HOOK mode : I CR2 output r- L.IU': .. I!II~ I . • OFF -HOOK mode i _. i Redial mode OFF -HOOK mode TEST mode ~~---------------~~~-- \ • Test Circuit Power supply + 1MO 1 KeYboard{ 2 17 3 ~: } 4 5 6 LR40991 ~ OFF -HOOK IMO Keyboard 1L12 60% break 66'% break . 20pps IOppso--~ --.-------------SHARP - - - - - - - - - - - - - 754 Pulse Dialer CMOS LSI • LR40991 System Configuration Telephone line R6 Speech network R2 VDD 17 ONt--+---"-:-tHOOK 6 GND 2 12 MU TEI--~---+ ~----~~~--~3~VREF ~_ _-,-/4 ~~~l LR4099I .-____5, COL: PULSE~I~8~-----1-+----~ [t[t[tr--~I6~ROWI 15 ROW 7 R5 CRI 8 C2 1-4~~~-~I4d1 ____2 ~OW t*7hlj8rn9tl===:II3~ 0 ;l: ROW 4 C R2 t-9--1t;;RC-B4' 3 I CR3I-'-..JIf'V\r~ I M/B 20/10 I 11 I I 10 I I I IL _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ...1J Rl=2.7kO R2 =75kO R3=22MO R4=390kO R5=2MO R6=I500 R, =IOOkO RB=220kO Ql=2N5550 Q2=2N540I Q3=2N5550 Q4=2N5550 Q5=2N2222 Q6=2N2303 C 1 =22,uF C2=390pF C 3 =IO,uF D1 =IN9I4 D2=IN9I4 D3=IN4004 Relay: 1.5V bistable latching 9 ------------------SHARP - - - - - - - - - - - - - - 755 , '\LR40992 Pulse Dialer CMOS LSI , LR40992 Pulse Dialer CMOS LSI • Description The LR40992 is a monolithic CMOS LSI which uses a CR oscillator and provides the features required for a pulse dialer with redial. • Pin Connections o • Features 1. Direct telephone-line operation 2. Uses 2-of-7 matrix keyboard 3. CMOS process for low-power operation 4. 2.5-6.0V power supply 5. Make/Break ratio pin -selectable 6.,20/10 pps pin-selectable 7. Redial with :1* or 8. MUTE output for electronic switching 9. CR oscillator 10. 18-pin dual-in-line package * • Top View Block Diagram ! Column { Input 5 Row """ Pulse Output {11'46t--~ Mute Output L~=:::.!:....,.....r---------1Qg 20/10 pps Select Make/Break Ratio Select 756 Hook Switch/Test LR40992 Pulse Dialer CMOS LSI Absolute Maximum Ratings • Parameter Supply voltage Operating temperature Storage temperature Maximum power consumption Symbol Voo Topr Tst2 Po VIN1 V1N2 Maximum pin voltage Note Note Note Note • Ratings -0.3-+6.2 -30-+60 -55-+150 500 -0.3 +0.3 Unit V 'C 'C mW V V Note 1 2 3 4 1: Referenced to GND. 2: Ta=25t:. 3: The maximum applicable voltage on any pin with respect to GND. 4: The maximum applicable voltage on any pin with respect to VDD' Recommended Operating Conditions Parameter Supply voltage • Specified value 2.5-6.0 Unit V (Ta=-30-+60'C) Electrical Characteristics Parameter Key contact resistance Key board capacity Input voltage Key pull-up resistance Key pull-down resistance MUTE sink current Pulse output sink current V REF output current Memory hold current Operating current MUTE, PULSE Output off current Note Note Note Note 5 6 7 8 Applies Applies Applies Applies to ~ut Symbol RKI CK1 KJH KIL K1RU K1RO 1M Ip Conditions 2-of-7 input mode MIN. 0.8Voo GND IREF IMR lop VOO,VREF=6.0V All outputs in no-load state All outputs in no-load state ILKG Voo=6.0V, VouT=6.0V MAX. 1 30 Voo 0. 2Voo Note 150 Unit kO pF V V kO kO pA rnA rnA pA pA 1 pA 6,7 100 4 Voo=6.0V, VIN=4.8V Voo=2.5V, VouT =0.5V TYP. 500 1.0 1.0 7.0 0.7 ' 100 0.001 5 5 6 ,7 8 pins (RDW'-4, COL'-3) to MUTE output pin. to PULSE output pin. to VOEF pin. ~--""'-'-'--~-SHARP-~------ 757 Pulse Dialer CMOS LSI • LR40992 Timing Diagram * Digit 1 Digit 2 # or Key input ~--""LJr-----'LJr--------""'LJ""---------COL scan ---uuuuuL___ ~~O~~ __ ROW scan KnJlJ1Jlf : ____ JUL...fIJlf ----------- ~ 500Hz ----------~ ON-HOOKin~ : I: -- i MUTE output : --- PULSE output I, 1 : : : I I I i I : :I CR2 output ,)l : I, : ~~ r------f U : : 4kHz oscillato~: : tDB I : t8 II tpop , • .1. r; I : i ! I I : r-I I I I i :Oscillator stop : tmp I I: ~ ·1 , i Normal dial liP, I I I I lI I I .1': I I tMol ~:, OFF-HOOK mode I I ' _. Redial mode OFF-HOOK mode Test Circuit Power supply + IMO KeYboard{ 2 17 3 16 4 15 5 6 LR40992 14 OFF -HOOK IMO }KO,OOUd 13 12 60% break 66% break 20pps 10pps 758 ~ -----+--------'"1~~n~II-;-ilnn I I I I I J44 : I U~L-----------------:.ru-I I---------i,. ON-HOOKmode ------------ TEST mode LR40992 Pulse Dialer CMOS LSI • System Configuration TIP RING 2 6 3 V REF GND MUTE COL, 12 - - - 18 COL, PULSE COL, lR40992 ROW, 4 7 6 9 jj: 15 ROW, 14 ROW, 13 Rs 17 ON- R6 ROW, HOOK 20/10 10 RI =560kn R2 = 1.4kn R3 =470kn R. =330kn Rs = 2Mn R6 =220kn R7 =lOOkn Rs = 3kn R9 = 3kn R IO =100kn Rll = 10Mn QI=2N5401 Q2=2N5550 Q3=2N5550 Q.=2N5401 Qs=2N5401 C I =68,uF DI =IN4004 D2=lN4004 D3=IN4004 D.=IN4004 Ds=IN914 D6=lN914 D7=IN4004 C 2=390pF ZI=120voit, lwatt Zener 759 Pulse Dialer.CMOS LSI LR40993 • LR40993 Pulse Dialer CMOS LSI • Description Pin Connections The LR40993 is a monolithic CMOS LSI which uses a CR oscillator and provides the features required for a pulse dialer with redial. o • Features 1. Direct telephone-line operation 2. Uses 2-of-7 matrix keyboard 3. CMOS process for low-power operation 4. 2.5-6.0V power supply 5. Make/Break ratio pin-selectable 6.20110 pps pin-selectable 7. Redial with :j:j: or 8. MUTE output for electronic switching 9. CR oscillator 10. Beep-tone output for key input 11. 18-pin dual-in-line package 12 MUTE * • Top View Block Diagram '"0 ; ... '" ~ I-----~ o~ ~ ~ I-----~L______~______~~--;_~ '" ~ :.=:..:; '" "o U " Pulse 8 Output Tone Output Mute Output 20/10 pps Select ) - - - - - { l)----{J171}-........,----------.....J Make/Break Hook SJitch/Test Ratio Select I ~-----------SHARP-----.---___:_ 760 Pulse Dialer CMOS LSI • LR40993 Absolute Maximum Ratings Parameter Supply voltage Operating temperature Storage temperature Maximum power consumption Maximum pin voltage Symbol VDD Topr Tst~ PD VINl VIN2 , Ratings -0.3-+6.2 -30-+60 -55-+150 500 -0.3 +0.3 Unit V t t mW V V Note 1 2 3 4 Notel: Referenced to GND. Note 2: Ta=25'C. Note 3: The maximum applicable voltage on any pin with respect to GND. Note 4: The maximum applicable voltage on any pin with respect to VDO. • Recommended Operating Conditions Parameter Supply voltage • Specified value 2.5-6.0 Unit V (Ta=-30-+60t) Electrical Characteristics Parameter Key contact resistance Key board capacity Input voltage Key pull-up resistance Key pull-down resistance MUTE sink current Pulse output sink current TONE output sink current TONE output source current Memory hold current Operating current MUTE, PULSE Output off current Note 'Note Note Note 5 6 7 8 Applies Applies Applies Applies to to to to Symbol RKI CKI KIH KIL KIRU KIRD 1M Ip ITL ITH IMR lop ILKG Conditions 2-of-7 input mode MIN. 0.8VDD GND VDD =6.0V, VouT=6.0V key input pins (ROW(-4, COL I MUTE output pin. PULSE output pin. TONE pin. MAX. 1 30 VDD 0.2VDD 100 4 VDD =6.0V, VIN=4.8V V DD =2.5V, VouT =0.5V V DD =2.5V, VouT=0.5V V DD =2.5V, V ouT =0.5V V DD =2.5V, VOUT=VDD-0.5 All outputs in no-load state All outputs in no-load state TYP. 500 1.0 250 250 Unit kO pF V V kO kO Note pA 6 7 8 8 rnA 0.7 100 0.001 150 pA pA pA pA 1 pA 5 5 6,7 3) -'-~--'---SHARP~-'--'-'-----~ 761 _ ..........................._-,._.. .......................................... Pulse Djaler CMOS LSI • LR40993 Timing Diagram Digit 2 "* or * r --------Ur----.Ur--------....U Digit 1 Key inPlJt - - -.... - COL scan - - -. - ,UnUnUnUnUnl.""---------500Hz ~------------=unu______ : . . _____________~ R-O-W scan ~----52~f!z--- ~ ON -HOOK input ' ---1 ~",,_-+i!~ +1---------------IJJ.l'--------------ir- MuTE output - PULSE output I ~l 1 : I :I :! : : --';---;I-;I---lJf-----, ~ _ _';-_-1 1 ii : 1 I.. I I : 1 tB i : : : :: : I I tMO. I.~ I ~ -I dial l/Pr I • _____ MM~ ____ I ': -_*1.1\. . ~~ _________ Redial mode MM~ + \ Keyboard 18 -----L 17 {~ ---.!.. .~ LR40993 OFF -HOOK / :: } ~ _1_4__ Keyboard 6 13 7 J2 I390 p;' 8 11 /220kO 9 - 10 2MO 1MO 60% brea~ I / 66% break 0--- 20pps - lOpps 762 ' : I I : I I 1 I .od. :1 Power supply ~ . i . _____________ OFF HOOK Test Circuit - I I I 1 r I I ON -HOOK _m_od_e.-IIf.._ _ _ _O_F_F_-_H_O_O_K_m_Od_e_ _ _ _ Tone output ., -------.,..--------+.nr-- .. tDS ' tpDP 1 I tIDP 1-------'-'-'-t~I. I I Normal 1 : . 1. I I I I I : Oscillator stop 4kHz 1 1 Oscillator 1 1 I nn;----'-----'nn -------:-~--------:-:4-.Jl!U UJ.lL I I : : CR2 output I. U I i I TEST .odo Pulse Dialer CMOS LSI • LR40993 System Co~figuratiori RING Telephone line TIP Z2 1 2 4 5 6 7 8 9 0 # * VDD 11 M/B 2 TONE 12 6 GNDMUTE 3 COLI 13 4 COL2 5 ---'pULSE COL3 LR40993 16 ROW 1 15 ROW2 R5 14 CR 1 ROW3 13 ROW. CR2 D7 N-, I I I I I I 1 CR 3 17 ONHOOK 10/20 I I R6 I I 10 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ..J Speech network Rl =560kO R2 = l.4kCl R 3=470kO R.=330kO R5= 2MO Rs=220kO R 7·=100kO Rs= 3kO R9= 3kO R IO =100kO Rl1 =10MO QI =2N5401 Q2=2N5550 Q3=2N5550 Q.=2N5401 Q5=2N5401 C 1 =68.u F DI =IN4004 C 2=390pF D2=IN4004 D3=IN4004 ZI. Z2=120V : 1watt Zener Diode D.=1N4004 D5=IN914 Ds=IN914 D7=IN4004 Ds = Zener Diode '-'---'~------SHARP ~.-.-.-.------ 763 'LR40994 Pulse Dialer CMOS LSI LR40994 Pulse Dialer CMOS LSI • Description The LR40994 is a monolithic CMOS LSI which uses a CR oscillator and provides the features required for a pulse dialer with rediaL • Pin Connectio'ns o • Features L Uses'2-of-7 matrix keyboard 2. CMOS process for low-power operation 3. 2.5-6.0V power supply 4. Make/Break ratio pin-selectable 5. 20110 pps pin-selectable 6. Redial with # or 7. MUTE output for electronic switching 8. CR oscillator 9. Beep-tone output for key input 10. 18-:pin dual-in-line package ) * • Top View Block Diagram ! Column { Input "'5",----. Row { Input Pulse 8 Output I; 1 U3}--+j Tone Output 2 L.,.-=:.:.:::::....,......Jt----------~ Mute Output 20/10pps Select Make/Break Hook Switch/Test Ratio Select ~------- ........ --SHARP--.--,-.-.-----~ 764 Pulse Dialer CMOS LSI LR40994 Absolute Maximum Ratings • Parameter Supply voltage Operating temperature Storage temperature Maximum power consumption Maximum pin voltage Note Note Note Note • 1: 2: 3: 4: Symbol VDD Topr T st• Po VIN1 VIN2 Ratings -0.3-+6.2 -30-+60 -55-+150 500 -0.3 +0.3 Unit V Note 1 ·C "C mW .-t----2 V 3 V 4 Referenced to GND. Ta=25"C The maximum applicable voltage on any pin with respect to GND. The maximum applicable voltage on any pin with respect to V DO, (Ta= -30- +60"C) Electrical Characteristics Parameter Supply voltage Key contact resistance Key board capacity Input voltage Key pull-up resistance Key pull-down resistance MUTE sink current PULSE output sink current TONE output sink current TONE output source current Memory hold current Operating current MUTE, PULSE Output off current Note Note Note Note 5: 6: 7: 8: Applies Applies Applies Applies Symbol VDD RKI CK1 KIH KIL KIRU KIRD 1M Ip Conditions 2-of-7 input mode IMR lop ILKG VDD =6.0V, VOlrt=6.0V ITL to ~ut pins (ROW I to MUTE ou'tput pin. to PULSE output pin. to TONE pin . 4, COL , - TYP. 0.8VDD GND MAX. 6.0 1 30 V DD 0.2VDD 100 4 V oD =6.0V, VJN=4.8V VDo =2.5V, VouT=0.5V V Do =2.5V, VouT=0.5V V DD =2.5V, VouT=0.5V VDD =2.5V, VOUT=VDD-0.5V All outputs in no-load state All outputs in no-load state IrH MIN. 2.5 500 1.0 250 250 0.7 100 0.001 150 1 Unit V kD pF V V kD kD pA mA pA pA pA pA Note pA 6,7 5 5 6 7 8 8 3) .-..-------$HARP--------- 765 LR40994 Pulse Dialer CMOS LSI • Timing Diagram Digit 1 Key input COL scan ROW --utI1Jl.AA___ ~~ Switch 18 Tone Output 17 Pulse Output 11 Mute Output Mode Select Col_ """ { , Test Column Input Oscillation Input 8 Oscillation Output 9 Von • GND Pin Description Key input I Ground Test input Oscillator connection I I MODE Mode select I MUTE Mute 'output 0 HKS PULSE OUT TONE OUT 774 Symbol Power supply 110 Signal Name V DD COL 1 -COL 4 ROW 1 -ROW 4 GND TEST OSCIN OSC OUT 0 Hook switch input I Pulse output Tone output 0 0 Function COL 4-string key input ROW 4-string key input Negative power supply pin. Pin used for LSI testing Connect crystal for color burst Pin connection V DD Open GND Operating mode 20-pps pulse dialer lO-pps dialer DTMF tone dialer Sending of MUTE signal Pin connection V DD Open GND Operating mode On-hook mode On-hook mode Off-hook mode Sending lOOpps or 20pps pulse signal. Sending of DTMF tone signal. Pulse/Tone Dialer CMOS LSI • LR4802 (Ta=25"C). AC Characteristics Symbol Parameter Oscillation start time Key debounce time tDB Pulse rate PR Break time tB MIN. TYP. 4 10 20 68 Interdigital pause time t IDP 1000 Mute overlap time t MOL Predigital pause time t pDP Tone output rate tOR 2 40 220 Note 9: Note Note Note Note Note • 10: 11: 12: 13: 14: MAX. 8 32 tos Unit Note ms 9 10 ms pps ms ms 4 r-1L 12 13 13 14 ms ms 13 ms When crystal oscillation element with characteristics Rs= 1000, Lm=96mH, Cm=0.02pF, Ch=5pF, f=3.579545 MHz is used. Key input is accepted after oscillation begins if valid after tOB.' Opens the MODE pin. Connect the MODE pin to VDO. During 10·pps pulse mode (112 during 20·pps mode). 100 ms during DTMF mode. Timing Diagram (1) Pulse mode Key input m input [IJ inpu;..:.t_ _ _ _ _ _ _ _ _ _~I~R-=E=D_=;I~A=L:.I-in...:p-u-t_ _ _ _ _ _ _ _ _ __ ~ LJ COL scan ROW scan ------~ - - - - - - - - - - - - - HKS input MUTE input PULSE input Oscillator operation OSCIN (2) DTMF mode MUTE output TONE output ~~:RSJ Normal dialing mode Automatic dialing mode ---......-.-------SHARP------------776 LR4802 Pulse/Tone Dialer CMOS LSI • System Configuration (tone mode connection example) 7 - VOl) ~~~---+--~6~GND TEST RK B ----- 17 PULSE 1-1'-;'-1-<"'- 12 '----"VVIr----l HK S R Type 2500 GN Speech network C R'3 3 _ 4~ r - - - - " -5t C2 2 C3 LR4802 C 16 1 2 4 5 7 8 9 ST * 0 #RE Keyboard 15 14 13 GD • MUTE~I~I~-+--~-+----~t--r-~ S R, R2 10 P R3 MODE R. OSC OSCn, OUT P T 8 9 Ql 3.579545 MHz Connect to p' for pulse mode Connect to T for tone mode Z, =lODK820 Rl =2201W R2 =560kO R3 =1.5kO R. =1500 R5 =270kO R6 =510 R7 =5kO Rs = 1000 R9 =2000 RlO= 100kO Rll=IMO R12=lOkO R13=4700 Q,=2N6660 Q2=2N5401 Q3=2N5550 Q.=2N5550 Q5=2N5550 Q6=2N5550 Sl, S2, S3 = Hook switch DI-D.=IN4004 D5=IN270 DF IN752 (5.6V) D7=IN914 Ds=IN914 *1 R14=390 * 2C, =68!, F (Must be input to smooth the power supply and prevent latch up.) .-----~-----SHARP-.----~--...- 777 Pulse/Tone Dialer CMOS LSI LR4803 • LR4803 Pulse / Tone Diqler CMOS LSI • Description Pin Connections The LR4803 is a CMOS LSI for the repertory dialer switchable between tone and pulse dialing (make/break ratio: 40%/60%) with ten 18-digit number memory storage. o TONE OUT PULSE OUT ROW! ROW2 • Features ROW3 1. Switchable between DTMF tone dialing and pulse dialing modes 2. Stores ten 18-digit telephone number memory including a redial memory 3. PABX pause storage 4. Uses the single contact, the standard 2 of 7 or 2 of 8 matrix keyboard 5. Make/Break ratio: 40%/60% 6. Switch able between 10 pps and 20 pps in pulse dialing mode 7. A 3.579545MHz color burst crystal can be used for the clock oscillator 8. 18-pin dual-in-line package 778 ) ROW. HKS MUTE MODE Top View LR4803 Pulse/Tone Dialer CMOS LSI • Block Diagram Hook Switch 18 Tone Output 17 Pulse Output 11 Mute Output Mode Select Col~o j,... { , -.," '.."" Test til Col umn Input .~ Po.....:I ~. j,~. j Oscillation Input 8 Oscillation Output 9 VDD • Pin Description Signal Name Voo COL I -COL 4 ROW I -ROW 4 GND TEST OSCIN OSCOUT Symbol Power supply I/O Key input I Ground Test input Oscillator connection I I 0 Function COL 4·string key input ROW 4-string key input Negative power supply pin. Pin used for LSI testing Connect crystal for color burst Pin connection MODE Mode select I MUTE Mute output 0 Voo Open GND Sending of MUTE signal Pin connection HKS PULSE OUT TONE OUT Hook switch inJlut I Pulse output Tone output 0 0 Operating mode 20·pps pulse dialer lO·pps pulse dialer DTMF tone dialer Voo Open GND Operati\lg mode On·hook mode On·hook mode Off· hook mode Sending of lOOpps or 20pps pulse signal Sending of DTMF tone signal. - - - - - - - - - - S H A R P - - - - - . - ........ _ - - - - 779 Pulse/Tone Dialer CMOS LSI • LR4803 Absolute Maximum Ratings Parameter Supply voltage Input voltage Power consumption Operating temperature Storage temperature Symbol VDD VIN ' PD Toor Toor' Ratings 10.5 -0.3-VDD +0.3 500 -30-+60 -55-+150 Unit V V mW "C "C Note 1 2 3 Note1: Referenced to GND. Note 2: The maximum -applicable voltage on any pin with respect to GND. Note 3: Ta=25t • Recommended Operating Conditions Unit Parameter Supply voltage • (Ta=25"C) DC Characteristics Parameter Input voltage l Tone output ROW voltage I COLUMN Standby current Operating current Mute output current Pulse sync output current Pulse leakage output current Key pull-up input resistance Key pull-down input resistance Mode pull-up input resistance Mode pull-down input resistance HKS pull-up input resistance Tone output distortion Pre-emphasis Note Note Note Note Note 4: 5: 6: 7: 8: Symbol V1L VIH VOR Voc ISB lop Io'L IpL I ILKG I RKP RKD RMP Conditions RL=lkO RL=lkO VDD=3.5V VDD=3.5V VDD =2V, VoL =0.5V V DD =2V, Vo=0.5V V DD =6V, Vo=6V V Do =3.5V Voo=3.5V VDo=3.5V RMD VDD=3.5V R~K Voo=3.5V V Do ;;;;;4V, RL=lkO V Do ;;;;;4V, RL=lkO PE HB MIN. GND 0.8VDD 290 380 1 1 TYP. 350 450 3 2 2 MAX. 0.2VDD V DD , 450 550 6 3 100 5 100 rnA rnA rnA pA kO kO kO 100 kO 1 60 1 Unit V V mV RMS mV RMS pA 2 -20 3 kO dB dB Note 4 5 6 7 7 8 All output pins in no-load condition when clock is stopped and when on hook. All output pins in no-load condition during key input and when on hook/off hook. Applied to the MUTE pin. Resistance. when ROW pin or COL pin is 125 Hz and is scanned at high or low level. Unwanted frequency component corresponding to the total power of the fundamental tone signal of the ROW pin and COL pin. /' - - - - - - - - - - - - - S H A R P ---.-.-.-------~ Pulse/Tone Dialer CMOS LSI • LR4803 AC Characteristics (Ta=Z5"C) Symbol Parameter Oscillation start time Key debounce time tDB Pulse rate PR Break time tB MIN. TYP. 4 10 20 60 Interdigital pause time tIDp 1000 Mute overlap time Predigital pause time Tone output rate t MOL 2 40 220 Note 9: Note Note Note Note Note 10: 11: 12: 13: 14: MAX. 8 32 tos t pDP TOR Unit Note ms ms 9 10 pps t-------- ms ms 4 11 12 13 13 14 ms ms ms 13 When crystal oscillation element with characteristics Rs=1000, Lm=96mH, Cm=O.02pF, Ch=5pF, f=3.579545 MHz is used. Key input is accepted after oscillation begins if valid after tDB. Opens the MODE pin. Connect the MODE pin to VDD. During 10·pps pulse mode (112 during 20·pps mode). 100 ms during DTMF mode . • ' Timing Diagram ( 1) Pulse mode Key input rn input IT] inpu~t_ _ _ _ _ _ _~_ _~I~R=E:.::D~I~A=L=-I_in..:.p...:ut_ _ _ _ _ _ _ _ _ __ L...J ~ COL scan ROW scan ------~ HKS input MUTE input PULSE input Oscillator operation (2) Osci lator operation DTMF mode MUTE output TONE output ~~~:J Normal dialing mode Automatic dialing mode ---~-------SHARP-------.- 781 ............. ..... ...... ...... Poise/Tone Dialer CMOS LSI ~- • ~...,~..., ~ ..... LR4803 . ...,~~~~ . System Configuration (tone mode connection example) S1 Rl ~~~~~~~--~~~~~~~o~~~~~~~~-- 3- 4~ 5 C2 2 C3 C. 1 2 4 5 7 8 9 ST 0 ;I: *Keydoard LR4803 MUTE 16 if; 15 R2 14 R3 13 MODE R. OSCIN 11 10 P 20pps OSC 8 Q1 OUT 9 TWO Ru P T 3.579545 MHz Connect to P for pulse mode Connect to T for tone mode ZI =10DK820 . RI R2 R3 R. Rs Rs R7 =220,1W =560kO =1.5kO =1500 =270kO =510 =5kO RB =1000 QI=2N6660 Q2=2N5401 Q3=2N5550 , Q4=2N5550 Q5=2N5550 Qs=2N5550 SI, S2, S3=Hook DI-D4=lN4004 D5=1N270 Ds=1N752 (5.6V) D7=1N914 DB=1N914 R9 =2000 RlO=100kO Rl1=1MO R12=10kO R13=4700 * 1 R14=390 *2 CI=68,uF (Must be input to smooth the power supply and prevent latch up.) -----~~--~.-SHARP ~--,I-------------.- 782 Pulse/Tone Dialer CMOS LSI LR4804 • LR4804 Pulse / Tone Dialer CMOS LSI Description • Pin Connections The LR4804 is a CMOS LSI for the repertory dialer switchable between tone and pulse dialing with a 32-digit last number redial and the mode (pulse or tone) memory storages_ MOD OUT 2 o TONE OUT PULSE OUT ROW\ ROW2 • Features L Switchable between DTMF tone dialing and pulse dialing modes 2. The original mode in OFF HOOK state switchable by a pin and the mode in dialing by a mode key 3. Stores a 32 -digit telephone number redial memory and the mode memory 4. PABX pause Storage 5. Uses the single contact or 15 keys matrix keyboard 6. Make/Break ratio: 40%/60% 7. Switch able between 10 pps and 20 pps in pulse dialing mode 8. A 3.579545MHz color burst crystal can be used for the clock oscillator 9. 20-pin dual-in-line package ROW3 ROW. HKS MUTE MOD SELECT OSCOUT lO/20PPS SELECT Top View 783 LR4804 Pulse/Tone Dialer CMOS LSI • Block Diagram Mode Select Hook Switch Mode Select 19 Pulse Output 13 Mute Output Column Input _ CI,)~ ~_~1~6 f15 _R3 ~*~O~~lD~--~R4 Keyhoard "'9~---;i-:-:" 1 2 4 5 6 OSCOUT 787 --....- ....---... Pulse/Tone Dialer CMOS LSI .......... LR4805 • , I ................... LR4805 ~ Pulse / Tone Dialer CMOS LSI, Description The LR4805 is a CMOS LSI for the dialer switchable between tone and pulse dialing (make/break ratio: 32%/68%) with a 32-digit redial number memory and the pulse or tone mode memory storages. • Pin Connections TONE OUT MOD OUT 2 0 PULSE OUT ROWl ROW2 COL3 • Features 1. Switch able between DTMF tone dialing and pulse dialing modes 2. The original mode in OFF HOOK state switchable by a pin and the mode in dialing by a' mode key 3. Stores a 32-digit telephone number redial memory and the mode memory 4. PABX pause Storage 5. Uses the single contact or 15 keys matrix keyboard tl. Make/Break ratio: 32%/68% 7. Switchable between 10 pps and 20 pps in pulse dialing mode 8.A 3.579545MHz color burst crystal can be used for the clock oscillator 9. 20-pin dual-in-line package 788 GND 5 ROW3 ROW. HKS MUTE MOD SELECT OSCOUT lO/20PPS SELECT Top View Pulse/Tone Dialer CMOS LSI • LR4805 Block Diagram Modle Select r--------------;2~----------------------------------, Hook Switch Mode Select 19 Pulse Output 13 Mute Output Column Input RAM Oscillation Output L------------------{ll}------------------------( Voo IO/20PPS Select Note) Be sure not to apply higher voltage than Voo to the TONE OUTPUT pin. 789 Pulse/Tone Dialer CMOS LSI LR4805, Pin Description • Pin Voo COLl-COLs ROWl-ROW4 I/O Key input I GND Ground OSCIN OSCOUT Oscillator connection MOD OUT Mode output 10120PPS 10/20PPS SELECT select input MOD SELECT . Name Power supply MUTE HKS Function Key input of COL 5th row Key input of ROW 4th row Negative power supply terminal I Collar burst crystal connected 0 0 0 Mute output Hook switch Operating mode Voo Pin connection Operating mode • Pulse output TONE OUT Tone output Parameter Maximum pi!! voltage Power dissipation Operating temperature Storage temperature Note Note Note Note • Symbol Voo VINl VIN2 Po Topr Tstg 0.3 500 -30-+60 -55-+150 Operating mode Voo ON-Hook mode ON-Hook mode OFF-Hook mode Transmission of 10pps or 20pps pulse signal Transmission DTMF tone signal Unit V V V mW Note 1 2 3 4 "C "C 1: Referenced to GND 2: The Maximum applicable voltage on any pin with respect to GND 3: The Maximum applicable voltage on any pin with respect to GND 4: Ta = 25't Recommended Operatir:tg Conditions Parameter Supply voltage 790 DTMF tone dialer Open GND 0 0 Ratings 10.5 -0.3 Pulse dialer GND Pin connection Absolute Maximum Ratings Supply voltage Voo Transmission of Mute signal " PULSE OUT LOW IOpps pulse dialer 20pps pulse dialer I input Tone Level GND I input High impedance Pin connection I ,Mode select Mode Pulse Unit V LR4805 Pulse/Tone Dialer CMOS LSI • DC Characteristics Symbol Paramater Input voltage Conditions MIN. VIL TYP. GND VIH 0.8Voo MAX. Unit 0.2Voo V Note Voo V VOR RL= lkO, Voo=4V 300 400 500 mVRMS COLUMN Stand·by current Voc RL= lkO, Voo=4V 400 500 Voo=3.5V 1 600 2 mVRMs ISB Operating current lop Voo=3.5V 1 2 IOL IpL Voo=2V, VOL=0.5V Pulse sink output current Voo=2V, Vo=0.5V Pulse leak output current Key pullup input resistance iLKG RKP Voo=6V, Vo=6V pA 8 Voo=3.5V 60 KO Key pulldown input resistance RKO Voo=3.5V 2 KO 9 9 HKS pullup input resistance RHK Voo=3.5V 30 Tone output voltage I ROW I Mute output current 5 6 2 rnA 7 1 rnA 1 Voo 2': 4V Tone output distortion PEHB Pre-emphasis Memory retention current KO -23 Voo 2': 4V, RL=lkO 1 IMR dB 2 3 dB 0.5 1 pA 10 Note 9: Resistance at which ROW pin or COL pin is scanned to High/Low level by 125Hz. Note 10: Unnecessary component~ainst basic tone signal total power of ROWand COL pins. Note 5: All output pins in no· load state, clock stationary, on· hook. Note 6: All output pins in no· load state, key input, off· hook. Note 7: Applies to MUTE and MOD pins. Note 8: Applies to MUTE, MOD, and PULSE pins. • pA rnA AC Characteristics Paramater Key bounce time Symbol tOB Pulse rate PR Break time tB MIN. TYP. Unit Note ms 11 pps r--- 68 ms 14 54 10 20 MAX. 70 12 13 14 Interdigital pause time tIDP 1,000 ms Mute overlap time Pre·digital pause time tMOL tpop 6 40 ms 16 ms 14 Tone output rate tOR 220 ms 15 Note 11: Key input is accepted tOB after oscillation starts, if effective. Note 12: 1O/20pPs SELECT pin connected to GND. Note 13: 10120pPs SELECT pin connected to Vo~. Note 14: 10pPs pulse mode (1/2 in 20pPs pulse mode). Note 15: 120 ms in DTMF mode. Note 16: 3.5 ms in DTMF mode. -.-----..-~-SHARP-.-.-.--.--- 791 LR4805 Pulse/Tone Dialer CMOS LSI • Timing Diagram rn input IMODI inputlIl input~ inputr--_ _ _~IR:.:;E=D=I~A=L=I~in...:p-u-t_ _ _ _....;........_ _ _ _ __ Key input COL scan , , ROW scan HKS input MUTE output PULSE 'output TONE output lOOms MOD output OSCIN Oscillator operation OsciI ator operation Normal dialing mode Automatic dialing mode (10pps at pins 11 and 12, on pulse mode select) • System Configuration Rll T D?,: Telephone line 81 ~ D6 R . Ds .. , ..:J ~ ~ Z2 D. ~ ZI ~~ ;:r Si 1 2 3 A RED· IP 4 5 6 B P 7 8 g C IIIJ 0 :j:j:n * Keyboard -~~, Qs 1 18 CS RI 17 R2 MUTE 13 16 LED 15 R3 MODOUT ~ 0SC R4/ IN.f'-. 2 1 91 110 1m IRRB R GNI : 2500 type speech : IL C __________ network I R7 S I R2 Q. tf D3 121 VDD MOD 6 R8 GND SEL ~ 10/20PPS 83 20 RIO 14 HKS TONE 3lk.o 4 5~ LR4805' 7 C3 19 8 C. PULSE + Z~CI ~R3 Rs Rg ckRI D2 , V Q3 ~ DI R. I! i D FI G S j:{6 a. .... Q2 . OSCOUT 3.579545MHz QI = 2N5401 Q2 - Q s = 1N5550 CR I = CR033 DI - DB = 1N4004 R, = 1'00kO R2 = 3kO R3 = 470kO R. = 1000 Rs = 220k.o (YoW) R6 = 120kO R7 = 2,5kO RB = 3.30 Rg = 10M.o RIO = 1kO Rl1 = 22.0 (W) Z, = 5.6V: 1N752 Z2 = 110V : 1N5379 S, - S3 = Hook Switch C I = 681'F FI = 2N6660 Zener Diode ~'--'-"-----SHARP----'------·-- 792 Pulse/Tone Dialer CMOS LSI LR4806B • LR4806B Pulse / Tone Dialer CMOS LSI Description The LR4806B is a CMOS LSI for the repertory dialer switchable between tone and pulse dialing. It offers one-touch dialing of up to 21 numbers, last number redial and other features. • Pin Connections TEST 1 10/20 pps 0 MOD OUT M/B MOD 3 OSCOUT MUTE 4 OSCIN COL, COL2 • Features 1. Switchable between DTMF tone dialing and pulse dialing modes 2. The original mode in OFF HOOK state switchable by a pin and the mode in dialing by a mode key 3. Stores twenty 16-digit telephone number memory and recalls by one-touch in the same mode as the storing mode 4. Stores a 32 -digit telephone number redial memory and the mode memory and can clear it arbitrarily 5. Switchable for pulse ratio (10pps/20pps) and for make ratio (33%/37%) in pulse dialing mode 6. Hooking control input applied to on-hook dialing and speakerphone 7. Beep-tone output for key input 8. Auto-repeat dialing function/ (In other party's absence, repeats recalls automatically at constant intervals) 9. Flash signal output 10. PABX pause storage 11. A 3.579545MHz color burst crystal can be used for the clock oscillator 12. 28-pin dual-in-line package ROWs 7 COL3 ROW. S COL. ROW3 COLs ROW2 COL6 ROW! COL7 KEYTONE COL. PULSE OUT GND VDD TONE OUT Top View --------SHARP-------793 MOS ICs/LSls CMOS Gate Array -LZ92 Series , --~~--.-.-~~~-.-.~~-~- LZ92 Series • CMOS Gate. Array • Descripition Feature. 1. Short developing time 2., Low development cost 3_ Suitable for ralatively sin all volume production but large variety of special-purpose LSIs 4. Abundant series (for 300, 450, 600, 800, 1000, 1500,2200, 3000,4000, and 5000 gates) The LZ92 series employs the lastest silicon-gate CMOS technology, and features high speed and low' power consumption. The LZ92 series uses a single + 5V power source, allowing a wide operating voltage range, and having a TTL-level 110 interface. The basic internal gate operates in a time delay of 2.8ns. Ten series are availa-ble depending on the number of gates: LZ92300, LZ92450, LZ92600, LZ92800, LZ921000, LZ921500, LZ922200, LZ923000,LZ924000 and LZ925000. As development is supported by CAD system, reliable development of special purpose LSI is possible in a short time. In choosing a series, considers that 90 % of the internal gate can be used. • \ LZ92 Series Device List Model -Parameter No, of gates (as counted in terms of dual-input NAND gates) No. of I/O buffers Total No. of pins LZ92300 LZ92450 LZ92600 LZ92800 LZ921000 LZ921500 LZ922200 LZ923000 LZ924000 LZ925000 300 450 600 816 1010 37 40 45 48 51 61 64 67 110 level Internal gate Input buffer Delay time Output buffer Supply voltage Internal gate Power, consumption Input buffer Output buffer DIP QFP SOP PGA DIP: dual-in-Iine package QFP : quad-flat package 2240 3145 4009 5000 83 112 97 70 86 100 120 TTL/CMOS level 2.8 ns per gate (F.0.=3, wire length 2mm) 128 140 150 54 136 TTL input 4,5ns/CMOS input 4.0ns (F.O.=3, wire length 2mm) 4.5ns (CL=20pF) 5V±5% (TTL interface)/5V±10% (CMOS interface) 25,uW/gate (F.0.=3, wire length 2mm, f=lMHz) 32,uW/gate (F,0.=3, wire length 2mm, f=lMHz) 600,uW/gate (f=lMHz, CL=20pF) 16,18,20 16,18,20 18,20,22 18,20.22 22,24,28 24,28,30 22 24 28 24 28 30 24 28 30 24,28,40 ~,~,~ ~:~:~ ~:~:~ ~:~:~ ~,@,~ @,~.~ ~,@ Package 1500 M ~ 36.44,48 36,44.48 24 ' M ~.M M 40,64 64 64 M 44,48,60 60,64.76 64,76,80 76,80,*96 76,80,*96 36.44.48 36,44,48 44,48,60 64,76,80 80,96 60 60,64 64,76 96.100 100 100 96 100 24 24 24 24 120 SOP: small-out-Iine package PGA : pin-grid array 120.144 120,144,180 * Limited to 18 X 18 mm square type, -----------SHARP.--.-.-------- 796 CMOS Gate Array • LZ92 Series Absolute Maximum Ratings Symbol Vee VI Vo Topr Tstg Paramater Supply voltage Input voltage Output voltage Operating temperature Storage temperature • Ratings -0.3-7 -0.3-Vee+0.3 -0.3-Vee+0.3 -10-+70 -55-+150 Unit V V V QC QC Recommended Operating Conditions Symbol Parameter Supply voltage Operating temperature • Vee Topr MIN. 4.75 -10 TTL level TYP. MAX. 5.25 5 +70 Symbol Input low voltage Input high voltage Output low voltage Output high voltage Input leakage current Output leakage current • VIL VlH VOL VOH iIL Ioz Test conditions IOL=4mA ( IOH=-2mA Vl=OV-Vee High impedance status 10r----------------------------, Vcc=5V, Ta=25"C ., = 2mm -.5 .~ 5 c .S . ~ go ... p.. o 2 3 4 5 6 7 Fan out number V QC TTL level MIN. TYP. MAX. 0.8 2.0 0.4 2.4 -10 10 -10 10 CMOS level MIN. TYP. MAX. 1.5 3.5 0.4 4.0 -10 10 -10 10 Unit V V V V pA pA Logic cells such as inverters, NAND gates, and NOR gates, and composite gates such as latches and flip-flops are available in 81 cell types. (2) Input/output buffer cells Buffer cells used in the periphery of a chip are available in 6 types of write-only buffers, 4 types of read-only buffers, and 4 types of read/write buffers: 14 types in all. • ., ~ .... Unit (1 ) Logic cells Basic Cell Delay Time The following figure shows typical propagation delay times of a three-input NAND gate, two-input NAND gate, and inverter each configured with basic cells. Wire length CMOS level TYP. MAX. 5 5.5 +70 (Vee=5V±5%, Ta=-10-+70"C) Electrical Characteristics Paramater MIN. 4.5 -10 8 9 10 Development of LSI Devices USing Gate Arrays For gate array development we provide the following: CD Design manual ® Cell library ® Design form (2mm graph paper in A2 size) ® Test pattern coding sheet ® Logic template After completing logic design in accordance with the design manual. please submit the following to us: CD Logic diagram ® Input/output timing diagrams (test data) ® Package specifications ® Pin configuration 797 LZ92 Series CMOS Gate Array • Development Sequence Flowchart for Gate Array LSI -----Presentation of LST specifications - Client ! Logic circuit diagram Timing chart (test data) ..;- Layout I Package specification ........ _ , ....... ~ Approval OK approval Critical path assignment diagram and specifications ~ Design manual I: - Design manual Design remarks Function block Method of drawing logic circuit diagrams Method of making timing chart Log ic circuit diagram Tim ing chart input - Machine write Logical circuit output 1i I -- Cell library I ! Simulation and SHARP L oglca Slmu ation ' " E Jl ...'" Approval '" Automated positioning Automated layout OK I Q «: U - ~ Timing simulation t I ~ Writing design specification documents I Appr./ OK Mask making I - Making master wafer (Before dis tribution) Trial sample test ~ 1 I Sample making and NG I Evaluation mass production Mass production I Delivery II I 798 I ! OK I Sample Master wafer LZ92300 LZ92450 LZ92600 LZ92800 LZ921000 LZ921500 LZ922200 LZ923000 LZ924000 LZ925000 CCD Image Sensor LZ2020 LZ2020 • CCD Image Sensor • Description Pin Connections The LZ2020 is a CCD linear image sensor with 2,048 PN photodiode elements, two 1,024-bit analog shift registers, an output amplifier and compensation output amplifier on a single chip. • Features 1. Dynamic range 54dB (TYP.) 2. Enhanced spectral response (particularly in the blue range) and excellent output uniformity 3. Transfer efficiency 99.996% 4. 2,048 elements on a single chip; picture element size: 14 pmX 14 pm 5. On chip output amplifier and compensation amplifier 6. All operating voltages under 15V 7.8 lines/mm resolution across a 256 mm page 8. 24-pin dual-in-line package (Ceramic) • Top View Block Diagram Shift Registor Clock ~ r----U~--------~9 Reset Transistor Reset Transistor Output Gate , Drain Gate Clock 8}---------~5 Output Transistor Drain Test Output 1 Transistor Transfer Gate Clock Source Dummy 3 Output Transistor Source Test Shift Resister Clock Dummy Reset Transistor Gate Clock ~ Dummy Reset Transistor Drain -~--------SHARP-'------'-'" 799 CeD Image Sensor • lZ2020 Absolute Maximum Ratings Parameter Pin voltage * Operating temperature Operating temperature * • Ratings "-0.3-+18 -25-+55 -40-+100 Symbol VT Vonr T.t • Unit V t; t; Voltage applied to any pin with respect to Vss. Electrical Characteristics (foil =f0l2=0.2MHz, fRs =O.4MHz, T 1nt =10ms, VoD =15V, V RD =14V, VoG =9V, VPG =l1V, Ta=25t;) Parameter Dynamic range Saturation exposure Saturation output voltage Sensitivity Photo response non-uniformity Average dark signal Dark signal non-uniformity Spectrum range Power consumption Output impedance Symbol DR SE V••t R PRNU ADS DSNU SR P Z Conditions (IX2) (1) (lX2) (lX2) (2X3) (2) (2) MIN. 0.4 400 0.5 0 0 0.35 (2) (2) TYP. 54 0.7 550 0.8 ±7.5 0.8 150 1.0 MAX. 1.3 650 1.2 ±10 5.0 5.0 1.1 Unit dB 1x's mV V/lx-s % mV mV pm mW k.o Condition (1) : Standard tungsten lamp, 2854°K Condition (2) : Load resistance, 1k Condition (3) : Standard tungsten lamp, 2854 OK, with I -75 filter (1) Photo Response Non- uniformity (PRNU) Bit voltage non-uniformity Within ± 3.0% relative to the previous bit \ m I ,..-_,..- Reference J. it U"J:~~-==t level .1V .1V",= IVi-I-Vi I .1V V'_I XI00;;o3.0% where, i=1-2,048 Effective bits: 0-2,047, Reference level is a voltage at reset. (2) Signal Rise Time tl = 120ns t 2 =100ns t3=I60ns The output voltage shall settle within 100ns after ~ IA has risen above 8 volts. (Waveform is observed with an oscilloscope.) 800 LZ2020 CCO Image Sensor (3) Output during halt period f {> 1 =f {> 2=O.5MHz, fRS= lMHz T 1nt =2.2ms, VoD =12V, VRD =14V, VOG=9V . VPG =l1V, Ta=25t The output during the halt period shall be 7mV or lower, while the output level is kept at 125mV. Note: • The test conditions (1), (2) and (3) are applicable to items (1), (2), and (3). Pin Capacitance Parameter Shift register clock Transfer gate clock Reset transistor gate clock Output transistor source • (Ta=25"C) Pin number 8,9,16,17 13 4,20 1,23 TYP. 550 230 10 10 Unit pF pF pF pF Recommended Operating Conditions Symbol Parameter Output transistor drain voltage VOD Reset transistor drain voltage VRD Output gate voltage VaG Photo gate voltage VPG Test pins 1 and 2 TP io TP 2 Test pins 3 and 4 TP 3 , TP 4 ~ LAL> 12AL Shift register clock, low level ~ JBL> Shift register clock, high level (Ta=25"C) Conditions VPG =V,sTH+l(V) MIN. 14.5 13.5 8.0 10.0 14.5 TYP. 15.0 14.0 9.0 11.0 15.0 0 MAX. 15.5 14.5 10.0 12.0 15.5 Unit V V V V V V 0 0.5 0.8 V 11.0 12.0 13.0 V 0 9.0 0 9.0 0.5 10.0 0.5 10.0 0.8 11.0 0.8 11.0 V V V V ; 2BL ; LAU, ; 2M ; LBU, ; 2BH Transfer gate clock, low level Transfer gate clock, high level Reset gate clock, low level Reset gate clock, high level Shift register clock frequency V PTL V"TH VRSL VRSH f;LA>f;2A 0.5 MHz 1.0 MHz f;JB,f;2B Reset gate clock frequency fRs 801 LZ2020 CCD Image Sensor • Drive Signal Timing Chart r-IE;------------T,", -Il-------------ill-------l ¢T RS as Optoelectric transducing period 1 2 3 4 ~ ~~ bits t,>100ns t5 > lOOns 2047 tl>O tz>l,us t3> 1,us t/JT~ 1 tl~tz~ t3r- RS t/JIA,t/JIB~ os 2 *2 >IE 1 >1, >z vs. >T relationships • 3 > I, >z vs. RS relationships Photo-element Structure AI Channel stopper Unit: mm • Standard Characteristics Dark current characteristics 2) 100 55T I <:> ::: .. . x ., ., .±: ! '0" '0 > -" " > ~ 0 .~ I >. 60 ."'= -' 40T 0 " 10 ... 20 / '" / ./ 1/""""': .~ ./ .;; .," ., ./ / .fr 40 Ul ~ I :; B 100 I 80 0; .S Ul Spectral sensitivity characteristics til ./ ./ 0.5 1.0 1.5 2.0 2.5 Integration period T S (s) 50 V .::: ~t C 10 1\ \ ,,- " 0:: 0 3.0 / v 1\ .......... u " 400 600 800 1,000 Wavelength (nm) - - - - - - - - - - - - - - - - - S H A R P - - - - - - ' - - ........... 802 • I§ I I I (J) I» I I I ICIC I '0 IC3B C, .1~ 0 ::2. < CD +I5V 0 ;J; I I ~r c: CKQ CKQ J K Q J K Q IC2A IC2B IC5A ;:::;: 500 IC5B 500 CKQ 500 500 DS0026 X2 2kO Voe I L 2kO D Q L_ J-+15V Vee I I I I I I IC3A R,=IkO C, =500pF R, lkO I ~N 3 CD ~ +I2V ICI IC2,5,6 IC3 IC4 IC7,8,9 8I ~ SN 74132 SN 74107 SN 7404 SN7474 SN74I61 +15V LZ2020 1 2 3 4 5 7 8 9 10 11 12 16 15 14 13 +15V H I I I I I I I h ~ LZ1008AD High VOltage MOS IC LZI008AD High Voltage MOS • Description The LZI008AD is a high voltage (300V) 8-output-port monolithic Ie fabricated using Sharp's advanced N-channel DMOS process. It can be used as a matrix driver for electrolumiIlescent panels, plasma display panels, electrostatic printers and TTL-high voltage circuit interfaces. • 1. 2. 3. 4. 5. 6. • Ie Pin Connections Features High voltage 300V (MIN.) Output current 35mA (TYP.) Mutual conductance 10m U (TYP.) TTL compatible DMOS process I8-pin dual-in-line package • Top View Equivalent Circuit Gate 1 Drain 1 Gate 2 Drain 2 Gate 8 Drain 8 L---+-----4.------4--------4-----<>-----Q Source * leakage transistor .-.--------SHARP-~--...-..---- 804 High Voltage MOS IC • LZ1008AD Absolute Maximum Ratings Parameter Input high voltage On·output high voltage Off·output high voltage Power consumption Derating ratio Operating temperature Storage temperature Symbol BVIN Vo IN Vo OFF PD Conditions Applied to input pins. Applied to output pins at V;N=5.5V. Applied to output pins at VIN=OV. Ta;i25t Ta>+25t Ratings -0.4-+15 Unit V Note 1,2 -0.4-+300 V 1,2 -0.4-+600 V 1,2 0.91 9.5 -20-+70 -55-+155 mW/t t t Toor TstR W Note 1: The maximum applicable voltage on any pin with respect to GND. Note 2: Permanent damage will result if a voltage above the rated value is applied. • (Ta=-20-+70t) Electrical Characteristics Parameter Output high voltage Output voltage Input high voltage Threshold voltage Symbol BV OUT VOUT BV IN Vp Output current lOUT Output leakage current lLO Input leakage current On·state resistance Mutual conductance Input capacitance ILIN RON Gm CIN Conditions VIN=OV, IOUT=20 pA VIN =5.5V, D=O.1 % IIN=20pA VouT=10V,louT=lpA VIN =4.5V, VouT =300V, D=O.l% VIN =2.5V, VouT =300V, D=O.l% VIN =O.4V, VOUT=300V VIN =0.8V, VouT=300V VIN =10V VIN =4.5V, IouT=5mA VIN =2.55V, VouT =100V VIN=OV, f=IMHz Note 3: D(duty cycle)=O.l%, see following waveform. ON ----------~ MIN. 600 TYP. MAX. 300 15 0.8 30 1.5 1.4 35 .10 / 10 5.0 1.0 1.0 3 10 10 n OFF---------~ L-__________~. J I ~.----- Unit V V V V Note mA 3,4 pA pA pA kO mU pF 5 4,5 4 4 4 3 4 tl =101's t2=10ms ~1·~------;t2--------~., Note 4: At Ta=25't Note 5: The value for one HVMOST output pin. 805 High Voltage MOS IC • lZ1008AD Electrical\Characteristics Curves (Ta=25t unless otherwise specified) ) On-state resistance vs. Ambient temperature C 2.5 VOUT=5V IouT=5mA C ~ 2 ~ Threshold voltage vs. Ambient temperature 1.5;.--_,.-----r----,-----.------, VOUT=lOV IouT=I.uA e .. :>- ~ 1.5 ! .2l 1 ., (15 ~ ! 'f' ~ ~ 0 ~ .., L -- -50 ~ ~ ..!! ~ :si 115 ----- ...8Ul ., ....... Eo-< o 50 100 ('C) Ambient temperature Ta 60 VOUT=5V . VIN=5V - r---50 ---r----- - g 40 .. 30 il ~ 20 1.. 10 o 0 o -50 50 100 Ambient, temperature Ta 150 ('C) 0 50 Ambient temperature Output current vs. Ambient temperature -< ~ 0 -50 150 100 Ta 150 ('C) . Input current vs. Ambient temperature 4 ! z 3 ..:; --- V,,=10V r---- ~ 1 o 50 Ambient temperature 100 Ta 150 ('C) Output current vs. Output voltage· 50 V,,=6V -< ~ 40 .... :> 0 1i... !i 30 20 ...- ~ ,~ 5.5 5.04.5 I-- 4.03.5 I Ifr 3.0 2.5- 10 2.0 1.5 0 100 200 Output voltage 300 VOUT (V) ----~-----SHARP-...-.-.--.--- 806 High Voltage MOS IC LZ1016AD LZI016AD High Voltage MOS IC • Pin Connections • Description The LZI016AD is a high voltage (250V) 16-output-port monolithic IC fabricated using Sharp's advanced N-channel DMOS process. It can be used as a matrix driver for electroluminescent paneis, plasma display panels, electrostatic print· ers and TTL-high voltage circuit interfaces. • • Features 1. High voltage output 250V (MIN.) 2. Output current 45mA (TYP.) 3. Internal 8·bit X 2-shift-register circuit 4. Circuit expansion capability 5. TTL compatible 6. High speed data transfer (clock frequency 4MHz) 7. Single power supply: + 5V 8. DMOS process 9. 28-pin dual-in-line package Top View Block Diagram ...o " G --.. 109, '" Qo 8bits Shift Register NC Truth Table T DI~ CL X X L H L H H H STB I-iVMOST X OFF L ON H ON H OFF ' High Voltage Output ~'-~-----SHARP-'-'--'----"- 807 High Voltage MOS IC • LZ1016AD Absolute Maximum Ratings Parameter Supply voltage Input voltage Output voltage Symbol Vee VIN VOUT ON·output high voltage ,VHVO(ON) OFF ·output high voltage VHVO(OFF Power consumption Derating ratio Operating temperature Storage temperature Note Note Note Note PD (Ta=25'C) Conditions Applied to the logic supply pin. Applied to all input pin. Applied to the data output pin. Applied to the high voltage output pin. Applied to the high voltage output pin. Ratings -0.3-+7 -0.3-+7 -0.3-+7 Unit V V "V Note 1 1 1 -0.3-+250 V 1,2,4 -0.3-+350 V 1,3,4 600 5 -20-+70 -55-+155 mW mW/'C 'C 'C Ta~25'C Ta>+25'C Toor T st• 1: The maximum applicable voltage on any pin with respect 'to GND. 2: Applied when HVMOST is on. 3: Applied when HVMOST is off. 4: Permanent damage will result if a voltage above the started value is applied. DC Characteruistics • (V ee =+5V±10%) (1) HVMOST Characteristics Parameter Symbol ,ON·state resistance RON Output current IHvo Output leakage current IlL I Total output leakage current I hL I Conditions HVMOST "ON" IHvo=5mA, Ta=25'C HVMOST ·ON" VHvo =250V, Ta=25'C HVMOST ·OFF" VHvo =300V, Ta=-20-70'C HVMOST ·OFF" VHvo =300V, Ta=-20-70'C TYP. MIN. MAX. Unit 650 0 Note mA 5 10 pA 6 30 pA 7 40 Note 5: D(duty circle)=O.1 %, see following waveform. n . .....- - - ON ---------c:::Ltt OFF ---- _ _r-L IE t2 .. I tt=10ps, t2=10ms Note 6: Value for each HVMOST output pin. Note 7: Sum of total output leakage current. (2) Parameter Supply voltage Input high voltage Input low voltage Symbol Icc VIH VIL Output high voltage VOH Output low voltage VOL Input leakage current I IlL I 808 (Vcc =+5V±10%, Ta=-20-+70'C) Logic Section Characteristics Conditions MIN. VIN=OV 2.0 -0.3 IoH = -0.5mA; applied to Doun , DouTz. IOL = 1.6mA; applied to ---Doun, Doun. VIN=OV-Vcc ---- TYP. MAX. 18 Vee 0.8 Unit mA V V V 2.4 0.4 V 10 pA High Voltage MOS IC • LZ1016AD (V cc =+5V±10%, Ta=-20-+70t) AC Characteristics Symbol Parameter Clock frequency Clock pulse width DIN setup time DIN hold time LS pulse width Clock to LS delay LS to clock delay DouT delay LS to STB delay LS to CL delay STB pulse width CL pulse width HVO fall time HVO rise time Conditions MIN. t,., t~ t DS tDH t LP tCL t LC tpD t LSB tLCL tsp tcLP tpL tpH MAX. 4 CL=30pF+ 1TTL 190 0 0 1 1 CL=2,200pF RL=33kO LZ 1016 A Input signal conditions: Input pulse level: + 0.8 to + 2.0V Input rise/fall time: 20 ns Time measurement level: 50% Note Unit MHz ns ns ns ns ns ns ns fLs fLs fLs #s fLS #s 100 60 60 150 0 0 50 340 Note 7: Applied to data output pins. Note 8: Applied to high voltage output pins; test circuit is as follows. • TYP. f~ 7 8 8 RL =33kO -----4 ..---+--_-.1\/"'----_ HV (300V) (VCC=OV, f=lMHz, Ta=25t) Pin Capacitance Symbol CiN Parameter Input capacitance High voltage output pin capacitance CHVO Conditions MIN. VIN=OV VHVO=OV TYP. 6 17 MAX. 10 Unit pF 30 pF •. AC Timing Chart CLOCK L5 5TH 7 _ _ _ _ _...J,r~:---tcLP'------o~-----HV08 ~~------------ 90 % 809 . High Voltage MOS IC LZ1016AD .......II!I!I• ......,..-....,....... . - . . . . , . . - . . . . , . . . . , . . . . , . . -_ _ _ • ,._~....,...., Electrical Characteristics Curves (Vcc=5V, Ta=25t unless otherwise specified) Output current vs. ambient temperature. ON-state resistance vs. ambient temperature 1200 eL="High" ,. STB="Low ~<: Sa .,., z II ~! "'.., ! / / 1000 o 0 800 .. ... 600 til 'r;; ...'" '" E '(' 400 Z 0 200 I' / V / 80 / <: ~ 0 :z: .....> d i o -50 0 "~ 60 50 ......'" ..,os os 0 -100 70 eL=Pulse STB="Low '\. 50 ISO 100 30 20 -100 200 ("e) Ambient temperature Ta 40 -50 0 '" . '" '" 50 100 Ambient temperature Ta 150 200 ('e) Output current vs. output voltage 70 60 <: ~ 50 0 ..:;> Ii... ... ..,os -= ~ 40 30 20 #; JV , ~ ~ \'ee- 5.5\' 5.0\' 4.5V F - - - I--"" I 0 . 10 0 STB="Low eL=Pulse(Note 1 ) 100 300 200 Output voltage V HVO (V) Note 1: The pulse described below is applied to CL. n Vee -------I=t-tl . GND----~ L---H---~ L \E t2 .\ tl=IOjls, h=IOms (D=O.I%) -------.....-.-----$HARP . . . . - . - - - - - - - - - - 810 High Voltage Mas IC LZ1032AM LZI032AM • High Voltage MOS Description The LZ1032AM is a high voltage (250V) 32-output-port monolithic Ie fabricated using Sharp's advanced N-channel DMOS process. It can be used as a matrix driver for electroluminescent panels, plasma display panels, electrostatic printers and TTL-high voltage circuit interfaces. • • Ie Pin Connections Features 1. High voltage output 250V (MIN.) 2. Output current 45mA (TYP.) 3. Internal 32-bit shift register circuit 4. Expandable circuit structure 5. TTL compatible 6. High speed data transfer (clock frequency 4MHz) 7. Single power supply: + 5V 8. DMOS process 9. 44-pin quad-flat package • Top View Block Diagram Data Output High Voltage Output Truth Table Data Input 6 DIN CL STB HVMOST X X L H Clock L H H H X L H H OFF ON ON OFF Latch Strobe Clear Strobe 811 .........................................,..............:..,....:-..............-. HighVortage MOS IC LZ1032AM (Ta=25t) . •. Absolute Maximum Ratings Parameter Supply voltage Input voltage Oiitput voltage .Power consumption Derating ratio Operating temperature Storage temperature Symbol Vee VIN You;. VHVO(ON ~HVQLOFF " Po Conditions Ratings -0.3-+7 -0.3-+7 -0.3-+7 -0.3-+250 -0.3-+350 600 5 -20-+70 -55-+150 Appliep to input pins. Applied to data output pins. Ta~25t Ta>+25"C . Topr T't2 Unit V V V V V mW Noie 1 1 1 1,2 1,3 mW/t t t Note 1: The maximum applicable voltage on any pin with respect to GND. Note 2: . The maximum applicable voltage when HVMOST is ON. Note 3: The maximum applicable voltage when HVMOST is OFF. • DC Characteristics (V ee =+5V±10%) (1) . HVMOST Characteristics Parameter Symbol ON·state resistance RON Drain current IHvo Output leakage current Output total leakage current Note 4: Note 5: Note 6: (2) IL ITL MIN. Conditions HVMOST "ON" IHvo =5mA, Ta=25"C HVMOST "ON" VHvo =250V, Ta=25"C HVMOST "OFF" VHvo =300V, Ta=-20-+70t HVMOST "OFF" VHvo =300V, Ta=20-70t TYP. MAX. Unit 650 n 40 Note mA 4 10 pA 5 30 pA 6 Duty circle = 0.1 %. with 10,u s ON·period. The value for one HVO output pin. The total leakage current of HVO. (V ce =+5V±10%,Ta=-20-+70"C) Logic Characteristics Parameter Supply voltage Input high voltage Input low voltage Output high voltage Output low voltage Input leakage current Symbol lee VIR VIL VOH VOL IlL Conditions MIN. VIN=OV IoH = -0.5mA, Applied to DouT IOL = 1.6mA, Applied to DouT VIN=OV-Vee 2.0 -0.3 2.4 TYP. MAX. 18 Vee 0.8 0.4 10 Unit mA V V V V pA -----~~---SHARP~-.-..------.-....--- 812 High Voltage MOS IC • LZ1032AM (Vcc=+5V±10%, Ta=-20-+70t) AC Characteristics Parameter Clock frequen~y Clock pulse width DIN setup time DIN hold time LS pulse width Clock to LS delay LS to clock delay DouT delay LS to STB delay LS to CL delay STB pulse width CL pulse width HVO fall time HVO rise time Symbol Conditions MIN. TYP. f~ t ~, t-; tos tOH t LP tCL tLc tpo CL (D ouT )=30pF+1TTL 190 0 0 1 1 CL (HVO)=2,200pF, RL =33kO CL (HVO)=2,200pF, RL =33kO 50 340 Note 7: The output delay depends on the load condition. Test conditions: Input pulse level: + 0.8 to + 2.0V Input rise/faIl time: 20 ns Time measurement level: 50% HVO output load. condition: See figure. • Note 7 HV(300V) RL =33kO HVO ----i LZI032AM (VCC=OV, f=lMHz, Ta=25t) Capacitance Parameter Input capacitance Output capacitance Unit MHz ns ns ns ns ns ns ns ns ns fls fls fls flS 100 60 60 150 0 0 kSB tLCL tsp t CLP tpL tpH MAX. 4 Symbol CIN CHVO Conditions VIH=OV VHVO=OV All pms except for the pm under measurement are grounded. MIN. TYP. 6 17 MAX. 10 30 Unit pF pF ; -----------SHARP----------813 High Voltage MOS IC .LZ1032AM ........... - . . -__...._ ._ _...... - . . - . . - .......-.r.-.r.-.r.-..-...... • ' AC Timing Diagram CLOCK DIN DouT LS STB CL 90% Hvon • Example of Application The following is a thin film EL matrix panel drive circuit fabricat~d by application of the high voltage MOS Ie. Note: The thin film EL matrix panel is a capacitive load. 814 High Voltage MOS Ie LZ1108AD LZII08AD High Voltage MOS • Description The LZl108AD is a monolithic FET array fabricated using Sharp's abvanced P-channel DMOS process_ It provides voltage as high as 600V in input-off state, and permits stable operation at 300V drain voltage in input on state_ It can be used as a matrix driver for electroluminescent panels, plasma display panels, and electrostatic printers. • • • Ie / .Pin Connections o Features l. High voltage 300V (MIN_) 2_ High density 8 output/package 3_ Output current 20mA (TYP_ : VHVO = 300V) 4_ High mutual conductance 7.5m U (TYP.) 5_. DMOS process 6_ I8-pin dual-in-line package Top View Equivalent Circuit Drain 8 Drain 1 Gate 8 Gate 1 o--.JVV'r-----1--I Source o-----+----'-~~--------------+-------~-' 'Leakage transistor 815 ..... ......... .........--' Absolute PI(Iaximum Ratings (Ta=25"C) High Voltage MOS IC .-.~~ • .LZ1108AD -~~.-.~...--.~.....-~ Symbol BV IN Parameter Input high voltage , ON-output high voltage BVo ON /. OFF-output high voltage BVo OFF Power consumption Derating ratio Operating temperature Storage temperature PD Conditions Appiy to input pins. Applied to the output pin, when ViN=5.5V. Applied to the output pin, when VIN=OV. ~ Ratings -15-+0.4 .. Unit V Note 1,2 -300-+0.4 V 1,2,3 -600-+0.4 V 1,2 600 5 -20-+70 -55-+150 mW mW I"C "C "C I. Ta~25"C Ta>+25"C Topr T s,", Note 1: The maximum applicable voltage on any pin with respect to S (Source). Note 2: Permanent damage will result if a voltage above the stated value is applied. Note 3: D (duty cycle) = 0.1 %, ON time = 10 f.ls. • (Ta=-20-+70"C) Electrical Characteristics Parameter Output high voltage Output voltage Input high voltage Threshold voltage Symbol BVOUT VOUT BV IN Vp Output current louT Output leakage current I lLO I Total output leakage current I hLO I I ILIN I Input leakage current ON resistance Mutual conductance Input capacitance Note 4: RON Gm CIN Conditions VIN =OV,louT =-20pA VIN =-5.5V,O=0.1% IIN =-20pA VOUT= -10V, lOUT = -1 pA V1N =-4.5V, VouT =-300V, D=O.1% V1N =-2.5V, VouT =-300V, D=O.1% V1N =-0.4V, VouT =-600V VIN =-0.8V, VouT =-'600V V1N = -O.4V, VOUT= -600V VIN =-0.8V, VouT =-600V VIN =-10V VIN = -4.5V, louT= -lmA VIN =-3.0V, VouT =-150V VIN=OV, f=lMHz MIN. -600 TYP. MAX. -300 -15 -1.1 -15 -1 -1.1 -20 10 10 30 30 5 2 1 3 7.5 10 Unit V V V V Note rnA 4,5 pA pA pA pA pA 6 5,6 7 5,7 5 5 5 kn mU pF 4 5 D (duty cycle) = 0.1 %; see following waveform. r--------, OFFn---ON _________ -::L:J- Note 5: Ta=25"C Note 6: Value for each HVMOST output pin. Note 7: Sum of total HVMOST output current. U ~1>------t2----_"'i~1 r---h=10J'S t2=10ms .. ---------------SHARP 816 ~.-.-.--.-.-- High Voltage MOS IC • LZ1108AD Electrical Characteristics Curves Output current vs. Output voltage 6'......2. -60 -:; II 8 -50 <: -40 -5 1-< ::> -30 ~ ~ ""...... " ;;" ;;'" 0 -20 VIN=-7V / 6V - V 5V V 4V V -10 o 3V 2V ---'200 -400 -600 -800 - 1000 -1200 Output voltage V OpT (V) .--------SHARP-------- 817 . High Voltage MOS IC LZ1116AD LZll16AD •• High Voltage ·MOS • Description Ie Pin Connections The L21116AD is a high voltage (- 300V) 16-output-port monolithic Ie fabricated using Sharp's advanced P-channel DMOS process. It can be used as a matrix driver for electroluminescent panels, plasma display panels, electrostatic printers. o S'1'1l CL DOUT2 DIN2 GND HVOIS HV015 HV014 • Features 1. High voltage output 300V (MIN.) 2. Output current 30mA (TYP. : VHVO = 300V) 3. Internal 8-bit X2-shift-register circuit 4. Expandable circuit structure 5. High speed data transfer (clock frequency 4MHz) 6. Single power supply: - 5V ·7. DMOS process 8. 28"':pin dual-in-line package • HV03 HV013 HVO. HV012 HVOs HVOll HVOs HVOIO HV07 HV09 . HVOg NC Top View Block Diagram 8bits ::ihift Register , Truth Table DIN CL STB HVMOST X L X OFF H ON X L H L L ON OFF L L L High Voltage Output I, ~""""'------~--~SHARP~''-'----~--'''''''''''' 818 High voltage MOS IC LZ1116AD (Ta=25"C) Absolute Maximum Ratings • Parameter Supply voltage Input voltage Output voltage Symbol Vee VIN VOUT ON·output high voltage' VHYO(ON) OFF·output high voltage ~HVO(OFF Power consumption Derating ratio Operating temperature Storage temperature Note Note Note Note • 1: 2: 3: 4: Po Conditions Applied to the logic supply pin. Applied to all input pins. Applied to the data output pin. Applied to the high voltage output pin. Applied to the high voltage output pin. Ta~25"C Ta>+25"C T oDr T stg Ratings -7-+0.3 -7-+0.3 -7-+0.3 Unit V V V Note 1 1 1 -300-+0.3 V 1,2,4 -300-+0.3 V 1,3,4 600 5 -20-+70 -55-+150 mW mW/"C "C "C The maximum applicable voltage on any pin with respect to GND. Ap'plied when HVMOST is ON. D (duty cycle) = 0.1 %, ON time = 10 "s Applied when HVMOST is OFF. Permanent damage will result if a voltage above the stated value is applied. DC Characteristics (1) Parameter Symbol ON ·state resistance- RON Output current IHyo Output leakage cUl'rent I IL I Total output leakage current I ITL I Note 5: Note 6: Note 7: (2) (Vee=+5V±10%) HVMOST Characteristics Conditions HVMOST "ON" IHYo =-lmA, Ta=25"C HVMOST "ON" VHYo =-300V, Ta=25"C HVMOST "OFF" VHVO= -300V, Ta=-20-+70t; HVMOST "OFF" VHvo =-300V, Ta=-20-HOt; MIN. -20 TYP. MAX. Unit 1.3 kn -30 Note mA 5 10 p.A 6 10 p.A 6 D (duty cycle) = 0.1 %; see following waveform. 0:: ~~~~~~ ______t=:fr----------.. . . .U Value for each HVMOST output pin. Sum of total output leakage current. 'JooEE>-------t2-----"'''"i, (V ec =+5V±10%, Ta=-20-+70"C) Logic Section Characteristics Parameter Supply voltage Input high voltage Input low voltage Symbol Icc VIR V1L Output high voltage VOH Output low voltage VOL Input leakage current IlL tl=10"s t2=lOms ' Conditions MIN. V1N=OV -0.8 Vee IoH = -0.5mA; applied to DouTl, DOUT2 IOL = 1.6mA; applied to ---DOUTh DOUT2 VJN=OV-Vee ---- TYP. -6 MAX. -12 0.3 -2.4 -0.5 Unit mA V V V -2.5 10 V p.A --------.--------SHARP.-~~------ 819 High Voltage MOS IC LZ1116AD (V cc =:=+5Y±10%, Ta=-20-+70"C)· AC Characteristics • Parameter Clock frequency Clock pulse width DIN setup time DIN hold time LS pulse width Clock to LS delay LS to clock delay , DouT delay LS to STB delay LS to CL delay STB pulse width CL pulse width HVO fall time HVO rise time Symbol fl' tl', tr tos ton t LP tCL t LC tpo t LSB t LCL tsp t CLP tPL tpn Conditions MIN. CL=30pF 15 60 ps ps ps ps ps ps 0 0 1 1 CL=900pF, . RL =20kO Note 7 8 8 RL=20kO ~r--+--"l-""''''' .- LZll16AD 1 ___ I GND )I HV(-300VI CL=900pF (Vcc=OV, f=IMHz, Ta=25"C) Capacitance • 250 Unit MHz ns ns ns ns ns ns ns 125 60 60 150 0 0 Input signal conditions: Input pulse level: -2.0 to -0.8V Input rise/fall time: 20 ns Time measurement level: 50% Parameter Input capacitance Output capacitance MAX. . 4 Note 7: Applied to data output pins. Note 8: Appiled to high voltage output pins; test circuit is as follows. • TYP. Symbol CIN Cnvo Conditions VIN=OV Vnvo=OV MIN. T¥P. 6 17 MAX. 10 30 Unit pF pF AC Timing Diagram CLOCK LS -~l-<-- STB CL - t LSB ~-------------tsp------------~~ __________-JI1-'--------------tCLP------"'·~·-;.ll I~---- PL HV08 . ~ ___________ .. ~''7 % 1_0_%_o_.____________________--J~ .-....-------~--SHARP--".--------- 820 High Voltage MOS IC LZ1132AM LZl132AM • High Voltage MOS • Description Ie Pin Connections The LZ1132AM is a high voltage (300V) 32-output-port monolithic Ie fabricated using Sharp's advanced P-channel DMOS process. It can be used as a matrix driver for electroluminescent panels, plasma display panels, electrostatic printers. • • Features 1. High voltage output 300V (MIN.) 2. Output current 30mA (TYP. : VHVO = 300V) 3. Internal 32-bit shift register circuit 4. Expandable circuit structure 5. High speed data transfer (clock frequency 4MHz) 6. Single power supplJ! : - 5V 7. DMOS process 8. 44-pin quad-flat package 14 1 HV03 HV02 Top View Block Diagram Data Output High Voltage Output Data Input Truth Table DIN CL STB HVMOST X L X OFFX L H ON L ON H L L L L OFF 8 Latch Strobe Strobe Clear -------------SHARP - - - - - - - - - - - . . - 821 LZ1132AM High Voltage MOS IC • Absolute Maximum Ratings Symbol Parameter SUpply voltage Input voltage Output voltage Power consumption Derating ratio Operating temperature Storage temperature Note 1: Note 2.: Ndte 3: • Ratings -7"':"+0.3 -7-+0.3 -7-+0.3 -300-"""0.3 -350-+0.3 600 5 -;-20-+70 -55-+150 Conditions Applied to all input pins. Applied to the data output Ta~25"C Ta>+25"C Top; TSt2 The maximum applicable voltage on any pin with respect to GND. The maximum applicable voltage when HVMOST is ON. D (duty cycle) The'maximum applicable voltage when HVMOST is OFF. Unit V V V V V mW mW/"C "C "C Note 1 1 1 1,2 1,3 = 0.1 %, ON time = 10 ps . DC Characteristics (1) Symbol ON -state resistance RON Output current IHvo Output leakag~ current Total output leakage current Note 4: Note 5: Note 6: (2) (V ee =-5V±10%) HVMOST Characteristics Parameter I IL I I ITL I Conditions , HVMOST "ON" IHvo =-lmA, Ta=25"C HVMOST "ON" VHvo =-300V, Ta=25"C HVMOST "OFF" VHvo =-300V, Ta=-20-t70'C HVMOST "OFF" VHvo =-300V, Ta==20-70'C MIN. -20 TYP. MAX. Unit 1.3 n -30 Note rnA 4 10 /LA 5 30 pA 6 Duty cycle = 0.1 %, ON time = 10 ps Value for each HVMOST outPllt pin. Sum of total output leakage current. (Vee=+5V±10%, Ta=-20-+70"C) Logic Section Characteristics Parameter Supply voltage Input high. voltage Input low voltage Output high voltage Output low voltage. Input leakage current - i Vee VIN VOUT VHVO(ON iVHVo(OFF Po Symbol Icc VIH VIL VOH VOL IlL Conditions MIN. -0.8 IOH=-0.2mA; applied to DouT IOL = 1.6mA; applied to DouT VIN=OV-Vee TYP. -8 VIN=OV Veee -0.5 MAX. -16 0.3 -2.4 Unit rnA V V V V /LA -2.5 10 j ---------------SHARP . - . - . - - - - - - . - . - . 822 High Voltage MOS • Ie LZ1132AM (Vcc=5V±1O%, Ta=-20-+70"C) AC Characteristics Parameter Clock frequency Clock pulse width DIN setup time DIN hold time LS pulse width Clock to LS delay LS to clock delay DouT delay LS to STB delay LS to CL delay STB pulse width CL pulse width HVO fall time HVO rise time Symbol Conditions MIN. TYP. f~ MAX. 4 125 60 60 150 0 0 t", t" tos tOH t LP tCL tLc tpo 250 CL (DouT)=30pF 0 0 1 1 kSB t LCL tsp tcLP tPL t pH CL (HVO)=900pF, RL=20kO CL (HVO)=900pF, RL =20kO Note 7: Output delay time varies depending on load condition. Test conditions: Input pulse level: -2.0 to +0.8V Input rise/fall time: 20 ns Time measurement level: 50% HVO output load conditions (figure at right). 15 600 Unit MHz ns ns ns ns ns ns ns ns ns ps ps ps' ps Note 7 HV (-300Vi RI =20kO HVO LZl132AM -----I Tel =900pF 7Ir • (VCC=OV, f=lMHz, Ta=25"C) Capacitance Parameter Input capacitance Output capacitance Conditions V1N=OV VHVO=OV Symbol CIN CHVO MIN. TYP. 6 17 MAX. 10 30 Unit pF pF All pins except pin being measurement are counnected to GND. • AC Timing Diagram CLOCK LS -<>+--+>- t LS B STB CL ~-------------tsp------------~~ _ _ _ _ _ _ _ _ _ _ _ _- J~-------------tCLP------------~~ I~ 1 _______________ PL , HV032 ~_O_?~______________________ 7tPH90% --J' --------------SHARP------.---~ 823 LR3461 Electroni'c Melody Generator CMOS LSI 'LR3461 Electronic Melody Generator CMOS LSI • • Description The LR3461 is a CMOS LSI with melodies and alarm functions. It can be used in music boxes and alarm sound generators. Pin Connections o T3 2 NC MH ML OSCIN OSCoUT 4 • Features Melody with accompaniment Mask ROM programmable 8 melodies (3-melody select inputs) Loudness volume control function Melody envelope controlled by external CR cir-, cuit 6. CR controlled oscillation system (with external resistor) 7. Single power supply: -1.5V 8. CMOS process 9. 22-pin\dual-in line package MA 1. 2. 3. 4. 5. • NC VDl) SI S02 SOl EV2 EVI T2 Top View Block Diagram 1 Vss(OV) 0 OJ ~ . " -~ 0 Q) 0- .£ Q) > ,:: ~~ 824 c., ~ ~ OJ ~~ " 6. .. = ::;;0 -~ ~ 8 "S Q,) [go 8_ o ., " > "" <~ c 8'" .~ ~;; o "" ,,~ "= <0 "" 1"S .,.... """ 8 ~o-< ..., ..., '--v---'. "'~ "0 = "" o Q)~ ~o ~ ~ ~1j" 0 cu .......... .. .,~ "0 0 .... ::;;cii "i"'ii ~(/J Electronic Melody Generator CMOS LSI •, LR3461 Absolute Maximum Ratings Parameter Pin voltage * 1 Pin voltage * 2 Operating temperature Storage temperature Symbol VTl VT2 Topr Tstg Ratings +0.3--3.0 +0.3-Voo-0.3 -10-+50 -20-+100 • 1: • 2: Applied to Voo pin. Referenced to Vss. Applied to pins other than Vss and Voo. Refers to the Vss pin. • Recommended Operating Conditions Parameter Supply voltage Ext. resistor for OSC • Specifications -2.0--1.2 390±5% (Ta=25"C) Unit V kO (VOO= -1.5V, Ta=25"C) Electrical Characteristics Parameter Input voltage Input current Output current , Supply current Note 1: Note.2: Note 3: • Symbol VOOa Rs Unit V V "C "C Symbol VIH VIL IIH! IIH2 IOHl IOH2 IOL2 IOH3 IOL3 IOH4 IOL4 loos 100. Test conditions MIN. -0.3 TYP. MAX. -1.2 VIH=OV VIH=OV VOH=-0.5V VOH=-0.5V VOL=-lV VOH=-0.5V VOL=-lV VOH=-0.5V VOL=-lV Standby state with no load Melody ON with no load Applied to ST, SI,S3, and MA pins. Applied to SI pin when melody is OFF. Applied to EVI and EV2 pins. Melody Specifications 2 channels Note 4: Note 5: Note 6: 2 10 250 3 3 5 200 200 5 10 200 3 1 Unit V Note 1 pA pA pA 2 3 pA 4 pA 5 pA 6 pA rnA Applied to SO, and S02 pins. Applied to ML pin; Iou is for melody OFF. Applied to MH pin; IOL is for melody OFF. length of notes is controlled with "1" and "0". J= J:i(1)+ J:i(0) ................................. 2 steps J. =J:i(1)+J:i(0)+J:i(0) ...................... · 3 steps )! = J:i (1)+ J! (0) ................................ 2 steps Numbers given in parenthese provide envelope control. Note: given in parentheses are output only for attack sounds. Variable at 15 steps each (minimum length of note is selectable between 31 and 468 ms.) 2 types (other types are made available by controlling step count.) If the shortest note in a tune is J!, the two types of note, J! and J:i, can be specified in a step. The 1 to 15 endless (A single play with auto stop can be specified by connecting the T3 input to Voo, overriding the num· ber of repeated plays specified in ROM.) (Command types) Melody command Control commands Jump command Set Repeat Count command End command ----~-.-----.---SHARP --c C ---------------825 _-_....- ............__ ...... Electronic Melddy.Generator CMOS LSI ,.-_ CD' , Main melody tones Main melody envelope control Accompaniment tones Accompaniment envelope control Length-of-note control One of eight pieces of music is selected by the status of the music select input S1 to S3. Since these inputs are provided with pull-down resistors, they may be connected to Vss or be left open. If the status of the music select input is changed during play! the newly selected piece of music will be played from the beginning at that point. LR3461(A version of the LR3461 into which the following pieces of music have been written in at Sharp:) H: Music S2 S3 H H For Elise H H Lorelei L H The Smith in the Village L H Romance of Love H L Sakura Sakura H L Annie Rolley L L Green Sleeves L L Cuckoo Vss,~: VDD LR3461 ' S1 H L H L H L H L .._....,...., :.-.,. Remarks Beethoven German song Japanese children's song Spanish song Japanese old folk song Scottish song English fork song German song One shot type (repeat 1-15 times) Start input ST -1'l'--____-.-...n..____ Mode input MA ------------L.J Melody output ON OFF Auto stop ® Hold type (repeat -1-15 times) S tart input S T Mode input MA _ _ _ _ _ _ _ _ _ _ _ _ __ ON Melody output OFF Auto stop ® Forced stop Hold type (endless) Start input S T --1 Mode input MA _ _ _ _ _ _ _ _ _ _ _ _ __ Melody output ON OFF --1 /L-Forced stop or open (specifies endless for all the pieces.) • System Configuration o LR34611 33pF + Forced stop Tn: 2SC1383 Trz: 2SA683 826 \ Electronic Melody Generator CMOS LSI LR3462 • LR3462 Electronic Melody Generator CMOS LSI • Description Pin Connections The LR3462 is a CMOS LSI with melodies and alarm function. S, S2 • 0 S3 Features MA OSCOUT T, 1. Mask ROM programmable 2.8 melodies (3-melody select input) 3. Capable of driving piezo-electric buzzer 4. CR controlled oscillation system (with external resistor) 5. Single power supply: -1.5V 6. I8-pin dual-in-line package ST OSCIN Vss T3 T2 VDD NC NC NC so so NC Top View • Block Diagram Oscillator Circuit Programable Counter Tempo Control Circuit Melody Generator Melody Output Control Circuit Melody Control Jump, Repeat Start, Stop . - . - . - - - - - - S H A R P - - - - - - . - .......... ....,..----.. 827 . LR3462 Electric Melody Generator CMOS LSI • Absolute Maximum Ratings Parameter Pin voltage Pin voltage Operating temperature Storage temperature Symbol VTl VT2 T~Dr TSt2 Unit V V "C "C Ratings -0.3-+0.3 VTI -0.3-+0.3 -10-+50 -55-+150 Note 1,3 2,3 Note 1: Applied to VDD pin. Note 2: Applied to pins except Vss, VDD. Note 3: Referenced to Vss. • (Ta=25"C) Recommended Operating Conditions Parameter Supply voltage Oscillator frequency SYJJ.lbol Voo fose MIN. -2 TYP. MAX. -1.2 33 Unit V kHz Note 4 Note 4: The variable resistance Rsexternally attached between pins 15 and 16 varies between 0,1MO. When variance in the oscillation frequency between pins is permitted, use a fixed resistance Rs =680kO ± 5%. (Note that when measuring the OSC OUT signal, variations in the oscillation frequency may be caused by theinput impedance of the measuring device.) • (V oo =-1.5V, Ta=25"C) Electrical Characteristics Parameter Input voltage Input current Output current . Current consumption Note 5: Note 6: Symbol VIH VIL ITH IOH IOL I~os Ioo. Conditions VIH=OV VoH =-0.5V VOL=Voo+0.5V Standby, no·load Merody ON, no-load TYP. 2 MAX. -1.2 10 800 800 Unit Note V 5 pA pA 3 1 6 pA mA Applied to pins ST, g, S2, S3, MA Applied to pins SO, SO ------~----SHARP 828 MIN. -0.3 ---.-.--------.- Electric Melody Generator CMOS LSI • LR3462 Melody Specifications Max. 8 600 steps 1 sequence 2.5 octaves 15 steps each (select mlllimum note length between 31 and 468 ms) 2 types (lengths other than these are realized by the number of steps) Example: When the longest note in the melody is p, the two types of notes that can be specified for one step are ) and P. The length of notes is controlled using "1" and "0". J = P (1) + P (0) .................... 2 steps J. = P (1) + P (0) + P (0) .......... 3 steps Po = P (1) + }l (0) ..................... 7 steps value in parentheses ( ) : envelope control 1 to 15 or endless (by con necting the T 3 input to V DD, the melody can be set to play once and then turn off automatically.) Melody commands Jump command Con t ro I . d TImes repeat command comman s End command One of the eight melodies is selected depending on the state of the melody selection inputs Sl-S3. The melody selection input pins have a built-in pull-down resistance, so they can be connected to Vss or used open. When the state of the melody selection inputs changes during play, the melody specified is played from the first. -E (1 ) One shot type (repeats 1 to 15 times) Start input ST .....In'-_____ ~_ _ _ _ _ _ _ _ _ Mode input MA Melody output ON OFF I ---.I /' Auto stop (2) /' L Forced stop Hold type (repeats 1 to 15 times) S tart input S T Mode input MA ON Melody output OFF (3) ,------, I -.J Auto stop Hold type (repeats indefinitely) S tart input S T Mode input Melody output /I' /' L Forced stop ~ L MA ON OFF L r-------------~ '~ / Forced stop ---.-----SHARP--------~ 829 Electric Melody Generator CMOS L_SI • LR3462 System Configuration ! LR3462 o • LR3462! (LSI with melodies written by Sharp) Sl H L H L H L H L H: High, L: Low 8~O S2 H H L L H H L L Ss H H H H L L L L Melody When the Saints Go Marching in Twinkle Twincle Little Star Bridal March Silent Night Sole Mio For Elise Wedding March Jingle Bells o LR3681 Voice Synthesizer CMOS LSI LR3681 Voice Synthesizer CMOS, LSI • Description The LR3681 is a voice synthesizer CMOS LSI. The integration of all the functions required for generating voice output enables voice synthesizer 'systems to be easily composed. • Pin Connections ~ 08 gg~~S:g~22 ...l 2 DAI NC • Features 1. Voice output period of time: 4 - 5sec (The voice quality is determined by the length of voice generated) 2. Available sound sources include male, female voices and effect sounds 3. Voice synthesis method is based on a waveform encoding system 4. 32K bits of data ROM on chip 5. Expandable up to 128K bits of external ROM 6. Internal 8-bit of DI A converter 7. Time base: 4.19MHz crystal 8. Single power supply: - 3V 9. CMOS process 10. 48-pin quad-flat package • 5 6 7 ggg888~88 Top View Block Diagram y Address Output for Interface to External ROM Data Input Control Output . Output Input 831 LR3681 Voice Synthesiz9>r CMOS LSI • Absolute Maximum Ratings Perameter Pin voltage 1, Symbol Ratings Unit Voo -6.0-+0.3 V Pin voltage 2 VIN Voo-0.3-+0.3 Operating temperature Top'. -20-+70 V °C Storage temperature Tstg -55-+150 °C Note 1 The maximum applicable voltage on ~in with respect to Vss. Note 1: Applied to pins NrN g• CEo POW. DAIo DA 2• OSC'N. OSCOUT• EO,-EO g• AOI-AOs• , BO I-B06 • and CO I -C06 • ' • Recommended Operating Conditions Parameter Unit Symbol Specifications Supply voltage Voo -,2.7--3.3 V Oscillator frequency fose 4.1943 (TYP.) MHz • Electrical Characteristics Parameter Input voltage IIlPut current Output current (Voo=-3.0V, Ta=25t) Symbol Conditions MIN. VIL Voo+0.6 IlHl VlN=OV 2 30 VlN=OV 2 30 hH3 VlN=OV IOHI VouT=-0.5V lOLl VOUT=Voo+0.5V 10HZ VouT=-0.5V 100 IOL2 VouT=Voo+0.5V 100 3 100 ,100 8 Rf open 6 1 Max. output voltage amplitude Vpp Rf= 20kO,C=100pF.Rf= 20kO Oscillation start time Tose Voo=-2.7--3.3V Note , Note Note Note Note Note Note Note 2: 3: 4: 5: 6: 7: 8: 9: Note 10: Note 11: Note 12: 832 MAX. 11H2 Of A converter bits Of A converter monotonicity Current consumption TYP. -0.6 VlH Itot•• During region-wide operation During standby Applied to .pins ACL, Nl - N4, and EOI - E08. Applied to pins NI - N8. Applied to pins EOI - E08. Applied to the ACL pin. , Applied to pins AOI - A08, BOI - B06, and COl - C06. Applied to pinsCE and ROW. Applied to the built-in DA converter. Applied to pin DA2, with resistor Rf connected to pins DAI and DA2 left open. Applid to pin DAI. The difference in the output voltages at DAI,VOAI (00) and VOAI (FF), obtained when the input data to DI A converter is 00 and FF, respectively is: VDAI (OO)-VDAI (FF)=Vp-p (where Rf=20 Kno1)_ Applied to pins OSCIN and OSCOUT (Co = CG = 5 pF). Refers to the time required for the LSI to enter the region-wide operating status (POW rises) from the rising edge 'of the N2 pin under standby status, Measurement circuit 1.7 1.5 V 2 pA pA pA 4 pA 6 pA 7 bit 8 9 Vss 4.l9,4~MHz ceramic oscillator CG=C D=5pF ' 3 5 V 10 ms 11 mA 1 Crystal : Note bit 50 kENO Unit pA 12 LR3681 Voice Synthesizer CMOS LSI • System Configuration (1) Stand-alone LSI configuration Pressing one, out of the eight switches (N.-NB) connected to the input pins, produces the corresponding speech message. The number of connectable switches can be increased to 32 by building a matrix with the output pins. The voice output's maximum amplitude is almost equal to the supply voltage. It is amplified by a power amplifier to drive a speaker. A simple lowpass filter (CR network, etc.) should be used to eliminate RF noise. I Strobe (2) System combined with a microcomputer A microcomputer mllY be used to command the voice synthesizer LSI to produce a specific speech message. The device can be readily interfaced with the CMOS version of the SM Series. Data transfer SM-500 LCD panel Control !--=s"'ign=al:;:.s_ _--t N, output N2 Start/Stop signals Key input BUSY signal The following figure shows a sample system configuration in which serial data is transferred from the SM-500 to pin Nt of the device: ACL OINOOUT LR3681 DA, Control signals Note N2: Starts in the standby mode. ~---'-'---"""'-~SHARP----~'-'-'--- 833 Voice Synthesizer CMOS LSI LR3681 ..........~~........... . -__,._~............ - ....... - ...........-..r..... • Developing Procedure The following table shows a typical procedure for developing the LR3681 with customized specifications: Description Responsible Party Determines the 1/0 formats for the LSI, interface with microcomputer, etc. Customer Selects the tone from the samples provided by Sharp. CustQmer Determination of speech Specifies the words to be written into the device, extracts common words, Customer 3 message and creates the recording manuscript. Sharp As a rule, a professional announcer records the contents of the recording 4 Recording Customer manuscript onto a tape, in a noise· free environment. Checks the recorded tape for noise arid proper recording level. If any pro.b· Sharp 5 Recorded tape check lem is found, Sharp requests the customer to. reco.rd once again. Inputs the recorded message into. a computer, where it is subjected to voice Sharp 6 Voice analysis analysis and data co.mpression for writing into ROM. Writes the resulti"ng voice data into PROM, and programs the control sec· Sharp 7 ROM writing tion for lIO and other operations. Emulation for voice tone Emulates the PROM co.ntaining data to evaluate the tone of the recorded Customer 8 voice as well as the systems operations. and LSI functions If the result of emulation was positive, Sharp creates the mask for LSI 9 LSI mask generation Sharp device. 10 TS submission Fabricates test sample devices, tests them, and submits them to the customer. Sharp 11 TS evaluatio.n Custo.mer evaluates the sample devices. Customer 12 ES submission Sharp submits engineering samples. Sharp Parameter 1 System specs 2 Synthesized voice ·tone 834 5 X 7 Dot Matrix Decoder PMOS LSI LI2048 • LI2048 5 X 7 Dot Matrix Decoder PMOS LSI • Description Pin Connections The LI2048 is a PMOS LSI capable of driving 5 X 7 dot-matrix vacuum-fluorescent displays, and displaying 128 kinds of pattern. • 1. 2. 3. 4. 5. Features 128 patterns display Direct drive of vacuum-fluorescent displays Printer drive output TTL level voltage drive 60-pin quad-flat package 3 ~~~~JJ;~J6gJgg6 Top View • Block Diagram Dot Select Input GND ~ Dot Display Output Display/ Print S2r----....J Select Input . Dot Display Output 835 .... .......---,...-.. .... 5X7.D0t Matrix Decoder .-.~...., • .LI2048 -~....,~---~--~ Absolute Maximum Ratings Parameter Pin voltage * Symbol Voo VN .'VlIl, Operating temperature' Storage temperature Topr Ts... , *Referenced to GND. • Ratings -20-+0.3 -44-+0.3 .,-44-+0.3 -5-+55 -55-+150 Unit V V V t t Recommeded Operating Conditions Parameter Supply voltage Display voltage • Symbol Voo VN Ratings -8.1--9.9 -40 Unit V V Electrical Characteristics Parameter Input voltage Output voltage Current consumption Output delay time Symbol VIH V1L VOHl VOH2 VOL 100 IN tUl tdl tU2 td2 Input resistance • RIN Conditions TYP. MAX. -4.2 IOH=3.0mA IoH =1.0mA VIN =-40V Voo =-9.0V VN=-40V V1N =-40V No loading VN=-40V Loading capacity; 100pF. VIN =-40V Function (1 ) Dot matrix arrangement ~ ~ ~ ~ ~ @;) ~ ~ @;] ~ ~ @;] ~ @;J @;] @;] ~ @;J ~ ~ ~ ~ ~ @;] ~ ~ '~ ~ @;] @;] ,,'@;] ~ @;) [£;J @;J 836, MIN. -1.1 -1.0 -1.0 Unit V V -36.5 8.5 3.0 4.0 5.5 5.0 15.0 1.0 rnA ps MO 5X7 Dot Matrix Decoder (2) Ll2048 Dot data output For low CE l and CE 2 inputs. Dot data output is determined by input Ao -A6 • (ii) For low CE l and high CE 2 inputs. Dot data determined by input Ao - A6 is stored by input A 7 - Ag and outputted as dot data output Dil (i = 1-7) to the printer. (iii) For high input CEl. No dot data output. (i) Input CEI 0 • CE 2 1 D-'L output A7 As A9 Dll D21 D31 D41 DSI DSI 1 0 1 0 1 0 1 0 0 1 1 0 0 1 1 0 0 0 0 1 1 1 1 0 Dll D21 D31 D41 DSI DSI Dn Dn DI2 D22 D32 D42 DS2 DS2 D72 Dl3 D 23 D33 D43 DS3 DS3 D73 D14 D24 D34 D44 DS4 D64 D74 D I5 D 25 D35 D45 DS5 DS5 D75 No dot data output System Configuration 5 x 7 dot matrix fluorescent tube display e Di ; Dil (i=1-7) Printer =1-7) j=I-5 Dot output Ao Input Al A2 A3 A. As A6 A7 As A9 Vi-< VDD Ll2048 -40V -9V GND Input 837 LH5008 LCD Controlier/D-riVer CMOS LSI LH5008 • LCD -Controller / Driver CMOS LSI _Description • Pin Connections The LH5008 is a programmable LCD controller! driver which interfaces in serial fashion to the CPU of a microcomputer application system to directly control and drive LCDs in static operation -or dynamic operation (1/2,113 or 1/4-duty cycle). The LH500? incorporates a segment decoder for _generating specific segment patterns, and is also capable of controlling the blinking of the display. • Features 1. CMOS process 2. Number of display digits . 7 -s~gment device 1I4-duty cycle ·········16 digits 1/3-duty cycle ......... 10% digits 112-duty cycle ......... 8 digits Static operation········· 4 digits • 14-segment-device 1I4-duty cycle 8 digits 3. Operating mode Static, 112, 113, and 1I4-duty drive 4. Biasing Static, 112 and 113 5. Segment decoder output • 7 -segment device ; numerics 0 - 9 and 5 symbols-. 14-segment device; 36 alphanumerics and 12 symbols 6. Blinking function 7. LCD direct drive 8. Serial input (8-bit unit) 9. Capable of multi-chip configuration 10. Single power supply: + 5V 11. 60-pin quad-flat package .-------------.---SHARP.,-.-.....-.-.-..-.~- 838 LCD Controller/Driver CMOS LSI • LH5008 Block Diagram LCD Segment Output Synchronous Signal Input /Output Segment Output Chip Select Busy Output Command/ Data Select Reset Input • GND Serial Serial Clock Input Data Input '-v---' VDD Pin Description Pin name VDD, Vss VLCI> V LC2, V LC3 SI SCK CID CS RESET CL l CL 2 SO-S3l COM o-COM 3 BUSY SYNC No. of pins 3 3 1 1 1 1 1 1 1 32 4 1 1 110 Connect to Power supply I MPU Resistance Resistance 0 Liquid crystal 110 MPU LH5008 Functions Power supply for logic circuit Power supply for liquid crystal drive Serial data input Clock input for data shift Datal command select pin Chip select pin Reset input Internal clock oscillation pin Internal clock oscillation pin Liquid crystal segment drive signal Liquid crystal common drive signal Busy output Sync. signal .---------SHARP-.--.-----------839 LCD'Controlier/Driver CMOS LSI • LHS008. Absolute Maximum Ratings Parameter Supply voltage Input voltage Output voltage Operating temperature Storage temperature Note 1: • Symbol Voo . VIN VOUT ' Topr J'stg Ratings -0.3-+7.0 ~0.3-Voo+0.3 -0.3-V oo +0.3 -10-,+70 -55-'+150 Unit V V V "C "C Note 1 Referenced to Vss. Recommend Operating Conditions Parameter Supply. voltage Symbol Voo Oscillator frequency fose • Conditions MIN. 2.7 R=200kn, Voo =5V±10% R=240kn, Voo =3V±10% Input voltage , Input leakage current Output leakage current Output current Output resistance Current consumption MAX. 5.5 Unit V 130 100 kHz (V oo =,5V±IO%, Ta=-10-70"C) DC Characteristics Parameter TYP. Symbol VIH V1L I ILIH I I ILIL I I IWH I I IWL I IOHl IOH2 lOLl IOL2 RCOM RSEG 100 Conditions VIN=Voo VIN=OV VOUT = Voo VOUT=OV SYNC; BUSY SYNC, SYNC, BUSY, COM o-COM 3 VOUT=VDD-O.5V VouT=lV VouT=lV VouT=0.5V VOO: external clock CLl> external clock MIN. 50 85 2 2 900 400 400 0 250 200 TYP. 130 MAX. 200 175 16 16 Unit kHz kHz fiS fiS ns ns ns ns ns ns Load capacitance = 50 pF Load capacitance - 50 pF 3 1.5 fiS fiS fiS fiS fiS fis fis 50 pF 9 1 1 8tcyc * 8tcyc * tcyC * =5 fiS tcvc=lIfc (Voo=2.7V-4.5V, Ta=-10-70'C) Parameter Operating frequency Oscillator frequency High-level clock pulse width Low-level clock pulse width SCK frequency High-level SCK pluse width Low-level SCK pluse width BUSY t -+SCK hold time SI setup time (to SCK t ) SI hold time (to SCK f ) Delay of 8th SCK f -+BUSY l CS l-+BUSY l delay C/D setup time (to 8th SCK t ) C/D hold time (to 8th SCK t ) CS hold time (to 8th SCK t ) High-levellCS pluse width Low-levellCS pluse width SYNC load capacitance * Symbol fc fosc tWHC tWLC tcYK tWHK tWLK tHBK tsIK tHKI tOKB tncSB tsoK tHKO t HKCS tWHCS t WLCS CLSY Conditions R=240kO±5% Voo =3V±10% CLl> external clock CLl> external clock MIN. 50 50 3 3 4 1.8 1.8 0 1 1 Load capacitance=50 pF Load capacitance=50 pF TYP. 100 MAX. 140 140 16 16 fiS ps fis ps ps ns 5 5 18 1 1 8tcyc * 8tcyc * tCYC * =6.25 fiS Unit kHz kHz 50 ps fiS fiS ps fiS ps ps ps ps pF tcyc= lIfc 841 LCD Controller/Driver CMOS LSI u:iS008 AC Timing Diagram • Timing measurement voltage level X . ______- J O.7VDD?/. O.3VDD _ ./O. 7VDD X··· I/ --......,..O.3VDD _ Measurement points _ ~------ Timing waveforms t----tCyC (I/fc)--~ tWHCS ~-------------------tWLCS-------~------------~ tDCSB - tHKCS ----. I \ O.5V \ I I r----' \ \ \ ------.1.- SI eli) ________ ~~~_______________t_S_DK---------~~~~------ *1: Voo-O.5V at Voo=5V±10%. Voo-O.75V at Voo=2.7-4.5V * 2: O.8Voo at Voo=2.7-4.5V * 3: O.2Voo at Voo=2.7-4.5V 842 LCD Controller/Driver CMOS LSI • LH5008 System Configuration , ~ COMo -COM3 7-segment I6-column LCD rV 50-531 {'). COMo-COM3 r-----------, I I 50-531 VDD *CI RESET VLCI LH5008 :: C2 51 ::C3 VLC3 Ii" SCK CLI CL2 I I : RESET C/i) C/i) CS VLC2 R3 BUSY BUSY Vss ICS I 151 I SCK IL Microcomputer system I I I I I I I I I __________ J 1 -----~.-..-;...-----SHARP----.----.----- 843 LR3691A LCD Dot Matrix Controller CMOS LSI LR3691A • LCD Dot .Matrix Controller CMOS LSI Description The LR3691A is a controller CMOS LSI for dot matrix graphic LCD units. It stores display data corresponding to dot patterns from the 8-bit CPU in the external RAM. From this RAM, it transfers the display data to the LCD driver and generates clocks necessary to drive the LCD. • Features 1. Controller for LCD dot matrix graphic display 2. Maximum display data = 163, 840 dots (Horizontal X Vertical) 3. General 8-bit CPU interface 4. High -speed write cycle 5. Low frequency due to parallel output of data to 4 divisions of the LCD 6. Selectable display dots a. The number of horizontal dots • The LCD without right and left divisions 120,160,240,320,480,640 dots • The LCD with right and left divisions 240,320,480,640,960,1280 dots b. The number of vertical dots · The LCD without upper and lower divisions 32,64, 100, 128 dots • The LCD with upper and lower divisions 64, 12~ 200, 256,do~ 7. Single power supply: 5V (TYP.) 8. CMOS process 9. 60-pin quad-flat package 844 • Pin Connections LCD Dot Matrix Controller CMOS LSI • LR3691A Block Diagram Meory Address Output Oscillation LCD Control Timing Generator Memory Address Output LCD AC Drive Output Display Data Shift CLOCK Display Data Latch CLOCK Common Data Output Column Counter Row Counter CPU Address Counter Test Memory Data Bus • Absolute Maximum Ratings Parameter Supply voltage Input voltage Output voltage Operating temperature Storage temperature Note 1: • Symbol Vee VI Vo Topr Tstg Ratings -0.3-+7 -0.3-Vee+0.3 -0.3-Vee+O.3 -10-+70 -55-+150 Unit V V V °C °C Note 1 1 1 The maximum applicable voltage on any pin with respect to GND. Recommended Operating Conditions Parameter Supply voltage Input voltage Output low current Output high current Clock frequency Note: Symbol Vee VI MIN. 4.5 0 10L lOR fose 0.6 TYP. 5.0 MAX. 5.5 Vee 4 -500 6.6 Unit V V rnA f-lA MHz Any current sinks into the LSI is regarded posititve. 845 LCD Dot Matrix Controller CMOS LSI LR3691A DC Characteristics • (Vcc=5V±10%,GND=OV, Ta=-10-+70t) Parameter Symbol VaLl Output low voltage VOL2 VOH! VOH2 VILI Output high voltage Input low voltage MIN. Conditions IOL=4mA IOL=400pA IOH=-0.5mA IOH=-400pA Input high current IIH Current consmnption Icc 2.4 Vcc-0.6 VIH = Vcc fosc=6.6MHz Note Note Note Note 2: Applied to 3: Applied to 4: Applied to 5: Applied to Note 1,2 V 3 1,2 V V 3 2,4 V V 5 2,4 V 5 4,5 2 2,4,5 -30 -100 20 pA pA pA 12 36 rnA -20 VIL=OV VIL=OV MOo -M0 7 and 0 0 -0 7 are 110 pins which are pulled up by built·in resistors when in input mode. Note 1: Applied to output pins other than CP" CP2. S, M, 01, -01,. and OSCOUT. • V V 0.4 0.5 VIH2 Input low current Unit 0.4 0.2Vcc 0.8Vcc VIHI IlL! , IIL2 MAX. 2.4 , VIL2 Input high voltage TYP. pins MOo-M0 7 and 0 0 -0 7 , pins CP" CP2. S, M. 01,-01 4 , and OSCOUT input pins other than OSC'N, T, andT 2. pins OSC'N, T .. and T 2. AC Characteristics (1) LCD control timing (Vcc=5V±10%, Ta=-10-+70t) CP 2 clock width tWCP2 Data setup time Data hold time tDIS MIN. ;-50 ,; -100 tDIH ;-100 tLc tCLD twCP! 20 20 2';-50 ;/2 -(~/2+100 - ;12, l) tM tsc t) tcs Parameter Clock setup time (CP! l -CP 2 l) Clock setup time (CP 2 t -CPt f) CPt clock width Fall time of CP 1 referring to M signal Clock setup time (CP! l - S Clock setup time (CP! l - S Rise time of CP! and CP 2 Fall time of CPt and CP2 Symbol tr tf Measurement Conditions ~ =lIfosc(fosc=O.6-6.6MHz), CL=50pF. VOLc=O.2Vcc. VOHc=O.8Vcc Dh-DI. M s ~46 TYP MAX. ; ; ; Unit ns ns ns ;12+25 ;12 2; ; 200 ns ns ns ns ns 200 30 30 50 ns ns 50 ns LCD Dot Matrix Controller CMOS LSI (2) LR3691A (Vee RAM interface timing = 5V ± 10%. Ta = -10 - +70t) Symbol MIN. TYP. MAX. Unit Address output cycle time tAC tMRS 2s6 30 2s6 +50 100 ns MRD setup time (to address) Read data setup time tDRS 2 s6 -50 0 180 Read data hold time Memory write pulse width tDRH tMWW Write recovery time tDMW Parameter Write data output delay time (to MRD t) tDDW Write data setup time tDWS Write data hold time tDWH MRD time from write data (Hz) tDWZ ns ns 15 s6 -50 2 s6 -150 s6 -100 s6 -100 s6 -100 s6 -100 ns s6 2s6 s6 s6 s6 s6 ns ns ns ns ns ns Measurement Conditions ; =lIfosc(fosc=0.6-6.6MHz). CL=20pF. VOL=0.8V. VOH=2.0V. VIL=0.8V. VIH=2.0V. and hand tr of input signal are less than 50 ns. MAo-MAi. MDo-MD7 (READ) MDo-MD7 (WRITE) (3) (Vee CPU interface (read cycle) timing Parameter Symbol WAIT output time referring to RD tRDWT WAIT rise time referring to MRD tWURD Data output delay time referring to RD tRDHZ Data output settling time referring to WAIT t Data output hold time referring to RD RD setup time referring to MA Measurement Conditions ; = l/fosc(fosc=0.6-6.6MHz). CL=ZOpF. VOL=0.8V. VOH=2.0V. tWTS tRDH tASRD VIL=O.~V. = 5V ± MIN. s6 -100 2 s6 -150 0 200 10%. Ta = -10 - +70t) TYP. MAX. Unit 45 s6 25 2s6 20 150 ns ns 150 ns ns ns ns VIH=2.0V. and hand tr of input signal are less than 50 ns. MAo-MAl' h~-----.lVOH ~~~______~~V~OL~------------------- ----'----SHARp.-.---.-.----.--.. 847 LR3691A· LCD Dot Matrix Controller CMOS LSI (4) (Vee = 5V ± 10%. Ta = -10 - +70"C) CPU interface (read cycle) timing ,Paramerter WAIT rise time referring to MRD Data setup time referring to MWR Data hold time referring to MWR WR setup time referring to MRD WAIT output time referring to WR Symbol tWUWR tDSMW tDHMW tASWR tWRWT' MIN. TYP. 1> -100 1> 1> -50 1> 1> -50 1> Mj~.x. 200 45 150 Unit ns ns ns ns ns Measurement Conditions 1> = 1/fosc(fosc=0.6-6.6MHz). CL=20pF. VOL,=0.8V. VOH=2.0V. VIL=0.8V. VIH=2.0V. and hand teof input signal are less than 50 ns. MAo-MA14 ~_ _ _ _ _ _ _ _ _ _ MRD • VOH >CJC VOL Functional Descriptions (1) Power supply The Vee pin requires + 5 VDC to the ground. The GND pin should be externally grounded. (2) Clock pulse and divider The OSCIN pin of the device requires constant application of a clock. A clock used for the CPU may be used for this purpose. The OSCOUT pin, which provides an inverse of the clock applied to the OSCIN pin, should be left open. (3) RES pin and reset pulse The RES pin requires application of a reset pulse when power is turned ON to initialize the LR3691A's internal registers. The reset pulse should be active high, and should have a pulse width more than 4 time as long as that of the clock " pulse. The input circuit for the RES pin uses a floating gate. (4) Data control pins The LR3691A is controlled from the host CPU through pins CS, .RD, WR,.and RS, The signals ap· plied to pins RD, WR, and RS are made valid if the CS pin is set to low. The RD and.WR pins are used to determine the direction of data transfer between the display RAM and CPU. The RS pin specifies the type of data exchanged with the CPU through pins Do-D7, identifying dis· play RAM address specification data and display data. The data control pin signal timing is' shown in the paragraph for Electrical Characteristics. The input circuit for these control pins have floating gates. (5) WAIT signal The display RAM is accessed from both the CPU and the LCD driver. To avoid contention, the LR3691A delivers a WAIT signal to its WAIT pin when the LCD driver is accessing the display RAM, suspending display RAM access from the CPU. (6) Data input/output The LR3691A exchanges data with its host CPU through its pins Do-D7. The data transferred through these pins are display RAM address data, display RAM read data, and display RAM write data. The data type is specified by controlling a data control pin. The Do-Di pins are. normally connected to the host CPU's data bus. When in the input mode, the Do-D7 pins are pulled up through pull·up resistors. -------~------SHARP.-.-.--~---~- 848 LCD Dot Matrix Controller CMOS LSI LR3691A (7) Screen division and dot number selection The LR3691A controls an LCD screen through LCD drivers using serial data transfer scheme with duty cycle of 1/32 to 1/128. The LCD screen is often divided into sections to improve contrast and reduce driving frequency and driving voltage. The LR3691A permits division of the LCD screen into two sections both in the horizontal and vertical directions. The ROWand CLM pins have floating gate inputs with high impedance. (8) Connection to display RAM 'The LR3691A should be connected to the dis· play RAM as follows: The address data for display RAM is output through pins MA o-MA 14 • If th~ display RAM consists of more than one chip, the address data shoud be decoded through an address decoder before being coupled to the display RAM. Display dat.? is transferred through pins MDo' MD 7 • The MRD and MWR pins are used to control the display RAM: the MAD pin provides a display RAM read command signal; the MWR pin provides a display RAM write command signal.' (9) Display screen versus display RAM The display RAM is accessed from the CPU or LCD driver via the LR3691A. Access from the LCD driver occurs every 32 cycles of the system clock (applied to the OSCIN pin), of which one 16 cycle period is occupied by the LCD driver, and the remaining 16 cycle period is available to the o0 0 0 H o0 0 I H o0 0 2 H o0 0 3 H 4 0 0 I H ,4003 H 80 00 H 8.0 0 I H OOOOH I (OOOOH) (OOOh) I 0028HJ0029H I (OOOFH) (OOIOHU loooh OOOh (0002 H) 002AH (OOI1H) 8000H (8000H) 802 S. (800FH) 800lH (800h) 80219' H (80IOH) 8002H (8002H) 802 A H (8011H) . CPU. Display data is written and read byte-bybyte (8 bits). When viewed from the CPU, display RAM address alllocations to the display screen address are fixed. (To facilitate data readl write access to the display RAM and to impove availability of the RAM area, RAM addresses are actually translated within the LR3691A before read Iwrite access is performed.) The first addresses of the four sections on the screen are fixed to OOOOH, 4000H, 8000H, and COOOH. An example of the relationship between display RAM addresses and screen addresses as viewed from the CPU is shown in Fig. 1, where the number of pixels per row on the screen is 640 (numbers given in parentheses are that of 240). 00) LCD driver control The LR3691A drives an LCD dot matrix display panel via LCD drivers using serial data transfer scheme. It uses its pins S, M, CPI CP2, and DII -DI4 for controlling the LCD driver. The S pin provides data signal to the shift register input of the LCD driver which drives the common electrodes. The M pin supplies a signal needed for synchronized AC driving of the LCD driver. The CP2 pin drlivers a clock signal used to shift display data. The CPI pin provides a display data latch signal. The pins DII: -DI4 otuput display data after converting the 8-bit parallel data from the display RAM into serial data. - - - - ----!-=:::=:!~Ti'i:T+-':-~;;"'-I__';';;7;'''+- -- I! I 8027 H (800EH) I I I 1 I co 1 I COOOH ( COOOH) C028 H ( COOFH) CO 0 I H (COOl H) 02H (C002H) I - ~ ~~_--- C027H (COOEH) C029 HI C02AH, (COIOH) (COlh) I I I I I I I CO 0 CO 0 COO COO 0 I 2 3 H H H H I ( a) Memory map viewed from CPU (Note) Number of pixels per row is 640. (numbers given in ( ) are that of 240) ( b) Display viewed from CPU Fig. 1 Relationship between display RAM map and display screen as accessed from the CPU 849 lR3691A LCD Dot Matrix Controller CMOS LSI 0000. 000 1 • 0002 • 0003 • 0004. 0005. 0'006. 0007 • 0008 • I I 1 1 1 'I 1 I (b) ( a) Actual display screen Actual memory map Fig. 2 Actu~1 relationship beween display RAM map and display screen Display screen Display RAM / Fig. 3 Bit-by-bit relationship of display screen and display RAM The Dh pin provides display data for the upper left section of the display screen; the DIz pin pro, vides that for the upper right section of the screen; the Db pin provides that for the lower left section; and the DI4 pin provides that for the lower right section. The LCD driver control singnal timing is shown in the paragraph describing Electrical Characteristics. (11) DIsplay enable The DE pin is used to enable or disable display to the screen. If set at low, the entire screen is blanked. Data display is enabled only when the DE pin is set at high. The DE pin is used to suppress meaningless information from the screen pO,wer is being turned on. It has a floating gate input. (12) T1 and T2 pins The T 1 and T2 pins should be connected to the ground. These pins, having floating gate inputs, are used for device test and are not available to the user. • Display Control Method Display control consists of display data processing, RAM addressing, and display screen selection. (1) Display screen selection The LR3961A drives the display screen via shift·register type LCD drivers by, if necessary, dividing the screen into four sections according to the number of pixels (on the row and column) to be displayed. The number of pixels per row is specified with the CLMo-CLM2 pins. The number of pixels per column (duty) is specified with the ROW 0 and ROW 1 pins. See the following table. eLM No. of pixels ROW No. of pixels (2.1,0) 000 001 010 011 100 101 110 111 per row (1,0) 00 01 10 11 per column 120 160 240 320 480 640 32 64 100 128 unused unused I .----~--~.-.--SH.A.RP 850 , - . . - - ......... -----~------- LCD Dot Matrix Controller CMOS LSI If the screen is divided into two half sections (left and right), the displayable number of pixels becomes twice the numbers shown in the above left table. If the screen is divided into upper and lower , halves, the displayable number of pixels becomes twice the numbers shown in the below-right table on page 850. To prevent flicker of the display image, the total number of pixels per section should be limited to 40,960 of total pixels/divided screens. (2) Display RAM address control The addresses for the display RAM are apparently specified with 15-bit address data, whose output is implemented through pins MAo-MA14. Meanwhile, the host CPU uses an 8-bit bus, Do-D7, to address the display RAM. To specify a full 15-bit address, the CPU must transfer address data in two consecutive sequences: first the lower byte, and next the upper byte. At this time the RS pin (address specification) should be set to '1'. Once a display RAM address is specified, it is automatically incremented each time the CPU accesses it for read or write operation. So for display RAM addresses which are consecutive can be accessed by setting only the first address. LR3691A Address data is transferred in two consecutive sequences for upper and lower bytes. (3) Data write into display RAM Data can be written into the specified display RAM location. Specification is conducted by the RAM address counter through the Do-D7 pins when the RS is set at zero. Once data is written, the RAM address counter is automatically incremented, so that data may be written consecutively. (4) Data read from display RAM Data can be read out of the display RAM location specified by the RAM address counter. Specification is implemented through the Do-D7 pins when the RS is set at zero. Once data is read, the RAM address counter is automatically incremented. 851 • !R ~I I I II, J CPU -I (Z80 system) I I I ~J \ Address Bus , I I [:, rl+ CL2 CLI M FCS~ IPS' LH5021A /LH5022 Dil --- 5V 1"1" 1"1" "lJ Y.O-YI II-II N 'D I I I I I I '.. CLz CLI M FCS ~ LH5021A IPS /LH5022 OIl FCS/PS DII LH5021A M /LH5022Y CLI I Y.UI RD WR RS CS DE CP I 1---0-1+--1-+-1---4 WAIT ~ CP2 M Do- D7 , LR3691A MAo- MA14 ~--~~ I, III Y.O-YI u w , if o YSO-YI Y.O-YI LH5021A LH5021A ILH5022 0 I 1 - DO ILH5022, OIl FCS FCS CL2 CLI MIPS CL2 CLI MIPS I I~ - I~ fr YSO-Yl LH5021A ILH5022 0I1FCS CL CLI MIPS o o :J a0" II c:::: --- II I 8 C 3 fil" I - - - - - - - - -, - - - - - / - LCD panel-- - - - - - - - - - - - - - - ) I I , T, t----v' I ,I ~CL2 CLI M FCS 'PS LH5021A I DO /LH5022 OI I :u; r() ~ II LH5021A M / LH5022 Y1--------\ CLI , I I Y.O-Yl u FCS/PS DII' I 'I -0 ::::J ~-Q. CD U I I I II ~ II I~ r -;:0 w LR3692 LCD Dot Matrix Controller CMOS LSI LR3692 • LCD Dot Matrix Controller CMOS LSI Description • Pin Connections The LR3692 is a controller LSI for dot matrix graphic LCD unit. It stores display data transferred from 8-bit microcomputer in the external RAM and generates LCD drive signal suitable as serial type LCD driver. Selectable from graphic mode and character mode using character ROM for character display. • Features 1. Graphic or character mode selectable 2. Display duty: 1132 - 1/256 3. Maximum display capability Graphic mode : 640 X 256 dots Character mode: 80 X 32 characters (if character font is 8 X 8) 4. Capable of interfacing to an 8-bit CPU 5. Serial! 4-bit parallel output 6. Capable of driving upper and lower divisions LCD 7. Scroll function 8. Cursor display: ON, OFF, and BLINK 9. Character BLINK 10. Display ON, OFF 11. On -chip crystal oscillator 12. Single power supply: 5V (TYP.) 13. CMOS process 14. 80-pin quad-flat package DTMG 24 0 25 26 2 11 ...--------------SHARP - . - . - - - - - - - - - - - 853 LCD Dot Matrix Controller CMOS LSI __ .. _.~~"";.-.-..-.-..-.....,..-.r. • LR3692 ____ .~.-~.- Block Diagram Dot a Register Upper Screen Display Start pper Screen Display Start Latch Pulse Period Cursor Position Display Duty· Character Numher Upper Screen Address Counter Lower Screen Address Counter Cursor Address Register Memory Address Output ~ ®} Register Select : Chip Select 71 Display OFF Input 25 73 Read Input 61 Write Input Display RAM Select Input Display Timming Output Busy Output . GND ( 854 Memory Data Bus . Memory Read Output LCD Dot Matrix Controller CMOS LSI • Absolute Maximum Ratings Symbol Ratings Unit Note Voo -0.3-+7 V -O.3-Yoo+O.3 V °C 1 1 Operating temperature VIN Topr Storage temperature Tstg Parameter Supply voltage Input voltage Nate 1: • LR3692 0-+50 -55-+150 °C The maximum applicable voltage on any pin with respect to GND. Recommended Operating Conditions Parameter Unit V Supply voltage • (Voo=5V±5%. Ta=0-+50"C) DC Characteristics Parameter Symbol Conditions Input low voltage VILT Input high voltage Input low voltage VIHT VilC Input high voltage VlHC . VOLT iOL=2.0mA VOHT IOH=l.OmA VOLC VOHC iOL=0.6mA IOH=0.6mA VIN=OV Output low voltage Output high voltage Output low voltage Output high voltage Pull-up current Supply current III IOD Oscillator frequency fose Ext. clock frequency Ext. clock duty fCl Duty Rise time tRCL Fall time tFCL MIN. TYP. 0 2.4 MAX. 0.4 Voo 0.2VDO 0 0.8Voo VOD 0.4 2.4 0.4 YDo-O.4 10 fosc = 4MHz With crystal oscillator 4 0.2 47.5 50 4 52.5 50 50 Unit V Note 1 V 1 V V 2 2 V V 3 3 4 V V pA MHz MHz % ns ns 4 5 6 6 6 6 6 ! Note 1: Note 2: / Note 3: Note 4: Note 5: Note 6: Applied Applied Applied Applied Applied Applied to to to to to to pins pins pins pin's pins pins MDo -MD7. RIo-RI? Do·D7. CS. RS. CEo WR, RD. and DOFF. TEST and CGIN. __ __ ~_ MAo-MAI5. MDo-MD7. MWR. MRD,'Do-D7. BUSY, and DTMG. CLIo CL 2• S. DUO-OU 3• DLo-DL3. and M. _ _ ~ _ ~_ TEST. MAo-MAI5. MDo·MD7, RIo-Ri? Do-D7. CS. RS. CEo WR. RD. and DOFF. CGIN and CGOUT. 855 19D Dot Matrix Controller CMOS lSI • lR3692 AC Characteristics (1) LCD control signal Parameter Data setup time Data hold time Clock pulse low width Clock pulse high width Clock cycle time Clock delay time Clock pulse width Clock delay time Data delay tillie Data hold time Data setup time Signal rise time Signal fall time (Vcc=5V±5%, fosc=4M!Jz, CL=15pF, Ta=;oO-+50"C) I Symbol tsn tHn twLC tWHC tWCL2 tOCLl tWCLl tOCL2 tnM tHS tss tr tf Conditions MIN. 100 50 150 150 0 2 0 TYP. 375 125 250 250 500 125 4 135 MAX. 500 2 2 0.1 Vnn-0.9Vnn 0.1 Vnn-0.9Vnn Unit ns ns ns ns ns ns ps ns ns ps ps 50 50 ns ns DUo-DU3 DLo-DL3 ~--tSD'--~-~ CL2 tDCLl !E---;ofE--- t W C L I - - ¥ -.... CLI M j '-------------'X____ >-------tss--------......---tHS----!J-+J S. . . . . - - - . , - - - - - - - - S H A R P -~--.------..-. 856 LCD Dot Matrix Controller· CMOS LSI (2) 'LR3692 Writing display control command (Voo=5V±5%. Ta=0-+50t) Symbol Conditions , tSRS tWWR WR and CS overlap time Parameter Signal setup time Signal pulse width Signal hold ti!lle MIN. 500 220 30 250 30 tHRS tso tHO Data setup time Data hold ti!lle TYP . . MAX. Unit ns ns ns . ns ns 2'O~V RS O.BV "----tSRS tH!lS WR,CS J - - - - . tSD~ X . ------~ 2.0V := O.BV ~ "------------ (3) Control signal timing Signal Signal Signal Signal Signal delay delay setup delay delay Parameter time time time time time tHD~ (VoD=5V±5%. fosc=4MHz. CL=15pF Ta=0-+50t) Symbol tOWR tOOT tSOT tOBU tOFF Conditions MiN. 0.2 0.2 0.2 0.2 TYP. 1 1 1 1 MAX. Unit p.s p.s p.s p.s 200 ns 11~ ~-.-----.r---SH~RP-'------- 857 .... ....,._.......... .............,....... LCD Dot Matrix Controller CMOS LSI .. _.....,....., .....,....., J 2.0V O.8V LR3692 ....,....., ....,...-.: ~ ~ ~ 2.0V O.8V '2.0V tOWR \ O.8V J ~ tnDu O.8V O.8V II J ..... tOOT..,. DTMG O.8V, 2.0V O.8V MAo-MA15 / \ ( ) 2.0V O.8V ·~;f O_.8_V__________________ BUSY, DTMG, MWR, MRD MlAo-MA15 2.0V O.8V '[ L - - - _ (4) Parameter -- MOR delay time Data delay time Bus switching time -- MWR delay time Data delay time Data hold time Data hold ti!lle 858 (Voo=5V±5%, fosc=4MHz, CL=15pF, Ta=0-+50t) Bus timing (Direct mode) Symbol tOMRL tOMRH tOOR tCOR tOLMW tnHMW toow tHOW tHMO Conditions MIN. \ TYP. MAX. 150 150 150 0 150 150 150 50 0 Unit ns ns ns ns ns ns ns ns LR3692 LCD Dot Matrix Controller' CMOS LSI tDMRH MDo-MD7 1/f- CE / 1\ 1/ WR / I~HD: -----i ~ \ tDDW ---.. MDo-MD7 ) ~W / --- tHMD '( .-.--------------SHARP - - - - - - - . - - - - 859 LCDE)pt Matrix Controller CMOS LSI (5) Bus timing (I/O mode) LR3692 ! (Voo=5V±5%,"fosc=4MHz, CL=15pF, Ta=0-+50"C) Address delay time Symbol tcMO' Address hold time tUMO Parameter ': Conditions MIN. TYP. .- MAX. Unit 150 ns 1 p.s tCMO MAo-MA15 (6) Display RAM access (display busy in 4-blt Parameter Symbol mode)(Voo=5V±5%, fosc=4MHz, CL=15pF, Ta=0-+50"C) Conditions MIN. Data setup time tSMO 200 Data hold time tHMO b Access cycle time tCA ~ J\ tSMD ) 860 , tHMD , K MAX. Unit ns ns 500 tCA MAo-MA15 TYP. ns LCD Dot Matrix Controller CMOS LSI LR3692 • Display Control Commands Display control is accomplished by writing commands and data into the command and data registers_ (1) Mode control When writing data into the data regist~r, write code OOH into the command register to specify the Write Mode Control registerRegister name: Mode Control register RS 07 06 05 1 0 0 0 0 0 0 0 I 03 I 02 I 01 I 00 o I 0 I 0 101 0 04 MOOEOATA (5) Setting cursor position Register name: Cursor Position register RS 07 06 05 04 03 1 02 1 01 1 00 1 0 0 0 0 0 0 0 0 0 o CPo Specifies the row on which the cursor is located in Character mode. The horizontal length of the cursor is identical to the HP. (6) Setting lower byte of display start . address (upper screen) Register name: Display Start Address register RS 07 1 06 1 05 1 04 1 03 1 02 1 01 Data contents 1: 4-bit parallel output 0: 1-bit serial output 0: Graphic mode 1: Character mode 0: ~isplay OFF 02 1: ~isplay ON 1: Cursor blink (character blink when cursor is off.) 00 1: Cursor ON 0: Cursor OFF (7) (2) Setting character pitch Register name: Character Pitch register RS 07 1 0 RS 07 1 0 I 06 I 05 I D4 o I 0 I 0 I 0 (VP-1) I 00 03 02 01 0 0 0 0 011 (HP) VP: Vertical pitch in character mode. Invalid for Graphic mode. HP: Horizontal pitch in character mode. Invalid for Graphic mode. The HP can take on any of the following three values. However, when in the 4-bit parallel output mode, the horizontal character pitch is fixed at 8. HP 5 6 8 DI 00 0 1 0 1 0 0 Horizontal character pitch 5 Horizontal character pitch 6 Horizontal character pitch 8 (3) Setting the number of characters per row Register name: Characters Per Row register I 05 I 04 I 03 I 02 I 01 I 00 RS 07 06 1 0 0 0 o I 0 I 0 I o· I 0 I 1 I 0 (HN-1) HN: Specifies the number oj characters per row when in the char· acter mode, and the number of bytes per row when in the Graphic mode. When in the 4-bit parallel output mode, HN should be set to a multiple of four (4). Nunmber of pixels per row NX: NX=HP x HN in Character mode NX=8 x HN in Graphic mode (4) Setting display duty Register name: Display register ~ 1 ~I~I~I~I~I~I~I~ 0 I 0 101 0 I 0 I 0 I 1 I 1 (NY-1) o NY: Display duty - 1 1 1 0 1 0 (CP-1) 1 o o 1 00 010101011101010 Lower byte of start address Setting upper byte of display start address (upper screen) Register name: Display Start Address register I 06 I 05 I 04 I 03 I 02 I 01 I 00 I 0 I 0 101 1 I 0 I 0 I 1 Upper byte of start address This command sets the display start address for the upper section of the screen. The display start address refers to the RAM location in which the data to be displayed in the upper left corner of the screen is stored. (a) Setting lower byte of display start address (lower screen) Register name: Display Start Address register ~ ~1~1~1~1~1~1~1~ 101 0 o I 0 I 0 101 1 101 Lower byte of start address 1 (9) Setting upper byte of display start address (lower screen) Register name: Display Start Address register ~ ~I~I~J~J~J~J~J~ 1 0 1 0 101 0 1 0 1 110 o .Upper byte of start address 1 1 This command sets the display start address for the lower section of the screen. The display start address refers to the RAM location in which the data to be displayed in the upper left corner of the lower section of the screen is stored. 1/(32-256) ---~~-----------SHARP .------~-.-.,-, 861 LCD Dot Matrix Controller CMOS LSI LR3692 (10) Setting lower byte of cursor address Register name: Cursor Address register ~ 1 o 1/0 mode is selected by writing OCR into the command register. When BUSY = 1, thl! display RAM location specified by the Cursor Address register can be accessed through DIo-DI7 for read or write operations. The LR3692 also permits direct display RAM access using the address data fu~nished from the CPU. In either case the value of the Cursor Address register is incremented each time the display RAM is accessed. ~1~1~1~1~1~1~1~ 0 I 0 I 0 101 1 I 0 I 1 I 0 Lower byte' of cursor address (11) Setting upper byte of cursor address Register name: Cursor Address register RS 1 o. I Ds I D5 I D4 I D3 I D2 I Dl I Do 0 I 0 I 0 101 1 101 1 I 1 D7 Upper byte of cursor address This command sets cursor address data into the cursor address counter. (12) Setting latch pulse period Regipter name: Latch Pulse Period register RS 1 0 D7 0 0 Ds I D5 I D4 I D3 I D2 0 I 0 I 0 101 1 I Dl I I 1 I • Do 1 (NLP-l) HN + 1 ;:;;; NLP ;:;;; 121rwhen in serial mode. HN/4 + 1 ;:;;; NLP ;:;;; 128 when in 4-bit mode. The display frequency fd is related with the latch pulse period NLP by the following formula: fd = 1/(8NLP. TXS. NY) TXS: Shift clock period ·TXS = 500 ns when OSC frequency is 4 MHz. NLP: (13) Setting display RAM access mode RS 1 o System Configuration (1) Interface with CPU As shown in Figs. 1 and 2, the LR3692 (LCDC) is connected to the· standard bus of the ZBO-type' CPU, using it as a means of transferring data and commands. If the CS is at low and RS is at high, the command register within the LCDC is specified and the data on the data bus is written in. The write timing is determined by the WR signal. If the CS is at low and RS is at high, the contents of the LCDC's internal register requested by the command register cannot be read. The CE, BUSY, DOFF, and DTMG signals are used for CPU access to the display RAM. I Ds I D5 I D4 I D3 I D2 I Dl I Do 0 I 0 I 0 I 01 1 I 1 I 0 1 0 D7 DATA ICE Ao-Als RS LR3692 LCDC Z80A CPU CS Decoder IORQ RD RD WR WAIT WR -----------.-- BUSY ---------~ DOFF DTMG Do-Dr Do-D7 MAo-MA1s MDo-MD7 MRD ~ I Display RAM MWR I Fig. 1 Interface with CPU(I/O mode) - . - . . - - - - . - . - - S H A R P ---.--~------..-. 862 LCD Dot Matrix Controller CMOS LSI LR3692 Ao-Al5 RS LR3692 LCDC Z80A CPU MREQ CE j, IQRQ I Decoder I I I I RD -WR CS RD WR I WAIT I-- 1------ -------t-- . L I LR74HC244X2 BUSY DOFF DTMG Do-D7 Do-D7 MAo-MA15 MDo-MD7 MRD I Fig. 2 1! Display RAM MWR I Interface with CPU (Direct mode) (2) CPU access to display RAM CPU access to the display RAM includes the 110 mode which is made through the LCDC, and the Direct mode which is directly performed from the CPU. CD 110 mode A sample system configuration for 110 mode access is shown in Fig. 1. A value for OC. is first set into the command register. If the BUSY is high. CS is low. ap.d RS is low. the RD. WR. and Do-D7 lines are linked to the MRD. MWR. and MDo-MD7 lines. respectively. At this time the value of the Cursor Address register is output at the MAo- MAls pins. The Cursor Addre~register is incremented at the rising edge of the RD or WR signal. The BUSY line is set to high during the flyback period in which the LCDC does not access the . display RAM. Setting the DOFF to low causes the BUSY to be set to high. making the display RAM accessible at any timing. At this time. the LCD display is turned off. ® Direct mode A sample system configuration for Direct mode access is shown in Fig. 2. The Direct mode is selected if the value of the com· mand register is anything but OCH. If BUSY is high and CE is low, the RD, WR and Do-D7 pins are linked to the MRD, MWR, and MDo-MD7 lines, respectively. At this time the DTMG is set at low and the MAo-MAl5 pins are set to high impedance, to transfer the address specified of the CPU direct- ly to the display RAM. The Cursor Address regis· ter is incremented at the rising edge of the RD or WR signal. The functions of the BUSY and DOFF signals are identical to those in the 110 mode. Note: • In either mode the BUSY signal is output only when the CPU is accessing the display RAM. (When CE = 0 in Direct mode; when CS=O, RS=O and the command regis· ter value is OCH in I/O mode.) The BUSY is set to high in all other cases. LCD Control (1) Graphic mode The Graphic mode is selected by the Mode Control register value. In this mode each bit of the display RAM corresponds to each pixel on the LCD screen. CD Screen configuration The numbers of pixels per row and per column are determined by the values of the Character-Per-Row register and Duty register. No. of pixels per row: HNx8, HN= 16 to 128 No. of pixels per column: NYX2, NY=32 to 256 (When both the upper and lower sections of the screen are used.) ® Display start address The display start address refers to the first location of the di~play RAM area to displayed, specified by 16-bit data. Independent specification for the upper and lower sections of the screen is possible. Further, the utilization of display start address makes page con- ----..--.-..--SHARP-.-.------~ 863 LCD Dot Matrix Controller CMOS LSI 'LR3692 Display RAM MSB LSB LCD panel ll'"'·~-- .sXHN line Upper sc~een start address !a7 as as a4 aa a2 al ao ~I ila7as as Maa a2 al ao + t- NY line Lower screen start address b1 ba bs b4 ba b2 bl bo Upper screen b, ... b, '" b, b, b, b NY line Lower screen L~_---, Fig. 3 Screen configuration (Graphic mode) trol and screen scroll possible. (2) . Character mode The Character mode is specified by the value of the Mode Control register. In this mode pixel pat· terns are displayed by combining character codes of the display RAM with the corresponding char· acter patterns of the character generator ROM. (CGROM). CD Screen configuration The numbers of characters per row and per column are determined by the content of the Character-Per Row register, Duty register, and Character Pitch register. No. of characters per row: HN = 16 to 128 No. of characters per column: NYx2lVVP, NY= 32 x256 (When the upper and, lower sections of the screen are used.) The numbers of pixels per row and per column are determined as follows: No. of pixels per row: HHYx2 @ Character font The character font is specified by the value of the Character Pitch reg· ister. Horizontal pitch: HP=5, 6, 8 Vertical pitch: VP = 1-16 Fig. 4 shows an example of character font. If HP= 5 or 6, the LSB side of the Rlo-Rlt is invalid. ® Cursor display The cursor display mode is determined by the value of the Mode Control reg· ister. The cursor position.is specified by the vahte of Cursor. Address register. Since the character code address on the display RAM is specified for cursor position specification, screen scrolling is accompained by cursor scrolling., The cursor position in a character font is speci· fied by the Cursor Position register. @ Cursor blink Cursor or character blink· ing is controlled by the Mode Controll register. .r- =-:1 r ~o:~~~:~~ol HP .000.0 0 • • • • • 00 , ~~: ~ ~ ~ ~ ~~ VLP : OD'D 0 0 0 •••••• .0 0 0 0 0 DO 0 Fig.4 864 CGROM address MAls MA14 MAla MA12 J CP o o o o o o o o o o o o o o o 1 o 1 o o o 1 "0 1 1 1 o o o o 0 Example of character font (HP=8, VP=10, CP=9) LCD Dot Matrix Controller CMOS LSI LR3692 LR3692 LCDC Rlo-Rh DUo-DU3 ===¢ ---- MA12-MAI5 DLo-DL3 ===¢ Liquid crystal panel MAo-MAll CLI MDo-MD7 r- I Do-D7 Ao-AI5 CGROM Fig. 5 JI CL2 MRD M MWR s-- Display RAM I Connections to CGROM and LCD panel (TXS=500 ns when OSC frequency is 4 MHz.) Flyback period The LCDC does not access the display RAM during fiyback period. Blinking is performed for approx. 1H (64 frams) at 1/2 duty. (3) Parameter setting CD Display frequency The LR3692 uses the two-frame AC display system. The display system. The display frequency is determined by Display Duty and the value of the Latch Pulse Period register. One frame period: Td=8NLP.TXS.NY Display frequency: fd=l/Td ® Flyback period TDIS: When in Serial mode: TDIS= 18 (NLP-1)-8HN . TXS When in 4-bit mode: TDIS= 18 (NLP-1)-2HN .TXS Retrace time CLI _ _ _ _ _ _ _ _ _ _ n ~ Fig. 6 r I Retrace time ~I I" I ~ ____________ "I I IL- ~I Flyback period 865 . LH5006A LCD Dot Matrix Driver CMOS LSI LH5006A LCD Dot Matrix Driver CMOS LSI • Description The LH5006A has 2 sets of 20-stage bidirectional shift registers, 2 sets of 20-bit latches and 2 sets of 20 LCD drivers, so it converts serial character pattern data to parallel data and provides selected or nonselected waveforms output in accordance with mode select signal. • • Pin Connections Features 1. CMOS process 2. 40-LCD driver circuit (a half of 40 drivers can be used either as segment signal drivers or as common signal drivers) 3. Single power supply: -.5V (TYP.) 4. 60-pin quad-flat package • Top View Block Diagram Output -------~------~ __ Output ------A~------ __ Output Output Data I/O 866 Shift Direction Select Shift Direction Select Data I/O LH5006A LCD Dot Matrix Driver CMOS LSI • Pin Description Pin name YI-Y20 Y 21 -Y. O Name Liquid crystal output I/O a ~ SHL I SHL z FCS Ch. 1 data shift direction selection I Ch. 2 data shift direction selection I Ch. 2 mode selection I Functions Ch. 1 liquid crystal output Ch. 2 liquid crystal output SHL I Low High DLI IN OUT DRI OUT IN SHL 2 Low High DL2 IN OUT Shift direction SR 21 -SR 40 OUT IN SR.o-SR zl FCS High Low Mode Common signal drive mode Segment signal drive mode DR2 Common signal drive mode M DLI> DRI DL 2 , DR2 CL I, CL z VI> V2 V3, V. V 5 , V6 VDD VEE Vss Clock for liquid crystal drive circuit Data output I I/O Clock I Liquid crystal drive circuit output voltage supply I Power supply Shift direction SR I -SR 20 SR 20 -SR I Segment signal drive mode M Display Nondisplay M Display High Low V2 VI V6 Vs High Low VI V2 Non-display Ch.l Ch.l Vs V6 V3 V. Ch. 1 input/output Ch. 2 input/output Clock for data latch Durling select Ch. 1 durling non-select Ch. 2 durling non-select For logic circuit (- 5V) For liquid crystal drive circuit (-17V) GND ----------SHARP-.------867 LHS'006A LCD Dot Matrix Driver CMOS LSI • Absolute Maximum Ratings Parameter Applied voltage * (logic) Applied voltage * (LCD drive circuit) Input voltage'" Operating temperature Storage temperature Symbol VDD Ratings +0.3--7.0 Unit V VEE +0.3--13.5 V VIN Topr ,+0.3-V DD -0.3 -10-+70 -55-+150 V "C "C TS'l< *The maximum applicable voltage on any pin with respect to Vss. • (Vss=GND, VDD =-5±5%, VEE =-lOV±lO%, Ta=-10-+70"C) DC Characteristics Parameter Symbol Input low voltage V1L Input high voltage VIH Output lo~ voltage VOL Output high voltage VOH Voltage drop between VOl Y1-Y 1 VD2 Input leakage current I ILl I Output leakage current I ILO I Logic current consllmption ILOG LCD driver current consul!lption IDRv • Symbol tcWH tCWL tsu tSL tLS tod I:c, Note 1: Applicabte pins CLIo CL 2 Note 2:. Applicabte pin CL 2 Note 3: Applicabte pins DL" DR" DL2, DR2 868 MIN. TYP. MAX. -3.5 -1.5 IOL =O.4mA VoH =O.4mA When ImA current flows into one of the pins Y1 through S40 When O.2mA current flows into each of pins Y1 through S40 Logic clock 1.6MHz LCD driver clock VDD +O.4 -0.4 1.1 1.5 5.0 10.0 3.0 10.0 1kHz Unit V V V V V V pA pA mA pA (Vss=GND, VDD =-5±5%, VE~=-18--16V, Ta=-10-+70"C) AC Characteristics Parameter Clock high width Clock low width Data setup time Clock setup time (CL 2....CL 1) Clock setup time (CL 1....CL 2 ) Output delay time Clock rise/fall time Conditions Conditions CL=15pF MIN. 250 250 70 200 200 TYP. 180 50 MAX. ns ns ns ns ns ns ns Unit 1 2 3 1 1 3 1 LCD Dot Matrix Driver CMOS LSI • LH5006A Timing Diagram ____________~x~_____ DATAIN DATAoUT FLM • System Configuration I I -VDD >->-- - I M CPl CP2 FCS SHLI SHL2 VDD LH5006A DLI Yl-Y4o M CP2 f - - Vf CPl !------' ... .!! '0 ....c ... 0 C,) - - - FCS SHLI SHL2 DR2 U ~D FCS SHLI SHL2 -M L...- CP 2 Common driver Yl CPl \ LH5006A DLI Y.o DRI [ DL2 DR2 rr- Segment driver ~ I M CL2 CLI Segment driver LH5006A Yl-Y40 ~ LCD panel -/ ---....-----.-~--SHARP .....-..-.------869 LH5021 AlLH5022 LCD Dot Matrix Driver CMOS LSI . LH5021A/LH5022 • Description LH502lA/LH5022 is an LCD driver LSI which can receive either serial input data or parallel input data. In case of the serial input mode, it can be connected in series. It converts -character pattern data input to parallel data output with 80-bit latch circuit and provides character pattern waveforms output in accordance with mode select signal. • • LCD Dot Matrix Driver CMOS LSI Pin Connections . . rn .. ~.3u..:;..:~..::~o_~21 o~~ ... ~~»UZQQQQ>Q~U>~~~» 899994990 65848281 o Features 1. CMOS process 2. 80-LCD driver circuit 3. 4 functions selectable as follows (a)Segment signal drivers on the serial input mode (b)Segment signal drivers with the chip-selectable function on the serial input mode (c)Segment signal drivers with the chip-selectable function on the parallel input mode (d)Common signal drivers on the serial input mode 4. Auto count function ; in a chip selected state,. counts 80 input data automatically and stops the internal clock CL, 5. Power supply voltage: - 5V (TYP.) 6. Display voltage LH5021A: -17V (TYP.), LH5022: -24V (TYP.)· 7. 100-pin quad-flat package 870 o 312 51 Y5I 6 9144456784950 Top View LCD Dot Matrix Driver CMOS LSI • LH5021 AlLH5022 Block Diagram Chip Select Output r------{:MI}-----~ Alternate 85 Signal Cloak 87}-------~ 1-;::===1.....L.....I.....I.....I--::-;;:~~::~.....I.....L.....L"""1I-__+-_+_r:>-_..{89 Serial Data Output -.-....-.------SHARP-------871 LCD Dot Matrix Driver CMOS LSI • LH5021 AlLH5022 Pin Description Pin name VDD VEE Vss V 3, V 4 Yl-Y SO CL I CL 2 FCS,PS Name I/O Power supply Liquid crystal drive circuit output voltage supply 0 Clock I Mode select I Functions For logic circuit (- 5V) For liquid crystal drive circuit (LH502IA: -17V, LH5022: -24V) GND Durling non-select, however Vss > (V3, V 4»VEE For data latch *Must be applied when 4 times the shift clock For data shift FCS PS Low Low Low High High Low High High Note 1: Note 2: • 011 : • 01 2 : • 01 3 : '01 4 : Note 3: Note 4: Liquid crystal drive waveform AC conversion signal input I 01 1-01 4 Display data input I DO EI ED Serial data output For chip select 0 M 872 I 0 Mode I-bit serial input segment driver 4-bit parallel input segment driver I-bit serial input segment driver Commnn driver (serial input) Chip select DO out X 0 0 High 0 High X 0 In the serial input mode, data is supplied from the 011 pin. The relationship between data input during 4·bit parallel input and the Y output is as follows. Y b Y5 , Y9 , ••• Y 13 , Y77 Y2 , Y6 , Y lO , ... Y74 , Y78 Y3, Y7 , Y ll , .,. Y75 , Y79 Y4, Ys , Y12 , ... Y76 , Yso' When used as a comon driver, the clock used for transfer is input to the CL 2 pin. CL I is internally fixed. To minimize current consumption, it is necessary to fix unused input pins to the same level as the Vss pin or the V DO pin. Common signal drive mode Segment signal drive mode Latch data Low (non·display) High (display) Latch data Low (non-display) High (display) M Yout. Low V3 High V4 Low VEE High GND M Yout. Low V3 High V4 Low GND High VEE When used with a common driver and in the serial input mode, supply the data to the 011 pin. In this case, it is necessary to fix 01 2 - 014 to the Vss level or the VDO level. When used in the chip select mode, it becomes high level. Used only in the chip select mode. (1) The (CL 1 • CL 2) timing causes EO to become low level. (2) After (1), the device is set to the select mode by inputting a high signal to EI, and the input data is read in accord· ing to the timing of the fall of CL 2 • (3) When 80 items of input data (equivalent to 80 CL 2 clock cycles in the serial mode or 20 CL z clock cycles in the 4·bit parallel mode) have been read in, EO automatically becomes high level and data read in is terminated. EO is reset 1.5 cycles later. LCD Dot Matrix Driver CMOS LSI Pin name • Name I/O Functions (4) When two or more devices l:lre used in the chip select mode, EO of the first stage and EI of the second stage are connected and used. 1. EO of all devices connected is reset by (1) and goes to the non·select condition and waits for EI input. 2. When a high signal is applied to EI of the initial de· vice in the cascade connection, this device performs the operations in (2) and (3). 3. Connecting EO of the initial devices to EI of the next devices causes the devices perform the operations in (2) and (3) after the initial device. This operation is repeated in the same manner for all subsequent devices. In the non-select condition, the shift clock CL 2 stops internally, so power consumption becomes extremely small. Absolute Maximum Ratings Parameter Note 1: The ~aximum Voo LH5021A Ratings -7-+0.3 LH5022 Ratings -7-+0.3 VEl -20-+0.3 VIN Topr VDD -0.3-+0.3 -20-+70 -55-+150 Symbol Applied voltage (logic) Applied voltage (Liquid crystal drive circuit) Input voltage (logic) ·Operating temperature Storage temperature • LH5021 A/LH5022 T st" Unit Note V 1 -30-+0.3 V 1 Voo -0.3-+0.3 -20-+70 -55-+150 V 1 "C t applicable voltage on any pin with respect to Vss. DC Characteristics Parameter . Symbol Input low voltage Input high voltage Output high voltage Output low voltage VIL VIH VOL VOH Voltage fall between Vi - Yi VOl Voltage fall between Vi-Yi VD2 Input leakage current Output leakage current Logic circuit selection current consumption Conditions IOL =O.4mA IoH =O.4mA 1 rnA to one of YI-Y SO 0.2 rnA to each of YI-Y SO LH5021A *1 LH5022*2 MIN. TYP. MAX. MIN. TYP. MAX. 0.8Voo 0.8Voo 0. 2Voo 0. 2Voo VDD+OA ~DD+OA -0.4 -0.4 I Iu I I ILO I ILOG 1 bit serial transfer (3.3MHz) 4 bit parallel transfer (2.0MHz) Unit V V V V 1.1 1 V 1.5 1.5 V 1 10 1 10 pA pA 2.2 6.0 2.0 5.0 rnA 1.0 2.0 1.0 2.0 rnA *1 VEE =-17V±1V *2 VEE =-24V 873 LCD Dot Matr.ix Driver CMOS • LH5021 A/LH5022 AC Characteristics (1) 1-blt Serial Input Segment Driver (PS=FCS="Low") (Voo =-5V±10%, vss=ov, Ta=-20-+70t) Parameter Clook frequency High-level clock width Low-level clock width Data setup time Data hold time Output delay High-level latch clock width Clock margin time (from CL I ~ to CL 2 l ) Clock margin time ... 2 (from CL 2 l to CL I l ) Clock margin time (from CL 2 t to CL I t ) Clock t, l time Overlap time of CL 2 "L" and eLl "H" Symbol tc tcwH tcWL tsu tH to t LwH Conditions'" 1 MIN. 300 130 130 70 50 CL =15pF MAX. 230 130 *3 Unit ns ns ns ns ns ns ns Applicable pins CL 2 CL 2 CLl> CL 2 011 011 DO CL I tc12 20 ns CLl> CL 2 tc2l 200 ns CLl> CL 2 tp2l 20 ns CLl> CL 2 ns CLl> CL 2 ns CLl> CL2 50 tcT 130 tov Test conditions Input frequency: O.8VOlh O.2Voo: Input reference level: O.8V oo• O.2Voo: Output reference level: O_2V oo• O.8Voo *1 *2 * 3 LH5021A VEE =-17V±lV, LH5022 : V EE =-24V Internal shift register determination time 1.5tc-tC12-tp21 - 3tCT tCT DIt DO Valid tov tP2I t CT tCT t C2I --t-t-l-.... t C12 YI-YSO -~""-~-""""--SHARP---'-'''''''''''--~ 874 LCD Dot Matrix Driver CMOS LSI (2) LH5021 AlLH5022 4-blt Input Segment Driver (PS="High", FCS="Low") (VDD=-5V±10%. vss=ov. Ta=-20-+70"C) Parameter Clock frequency High-level clock width Low-level clock width Data setup time Data hold time Output delay High-level latch clock width Clock margin time (from CLI ~ to CL 2 ~ ) Clock margin time * 2 (from CL 2 ~ to CLI l ) Clock margin time (from CL 2 t to CLI t) Clock t. ~ time Overlap time of CL 2 "L" and CLI "W Symbol tc tcWH tcWL tsu tH tD tLWH Conditions * I MIN. 500 230 230 70 50 CL=15pF MAX. 230 130 *3 Unit ns ns ns ns ns ns ns Applicable pins CL 2 CL 2 CL h CL 2 Dlh Dl 2• Dl3• Dl4 • EI Dlh Dl 2• Dl 3• Dl4 • EI EO CLI tcl2 20 ns CL h CL 2 tc21 200 ns CL h CL 2 tp21 20 ns CL h CL 2 ns CL h CL 2 ns CLl> CL 2 50 tcT tov 130 Test conditions Input frequency: O_BV OD• O_2Voo; Input reference level: O.BVoo. O_2Voo: Output reference level: O.2V DO• O_BVoo *1 LH5021A VEE =-17V±lV. LH5022: VEE =-24V 2 Internal shift register determination time 3 L51:c-1:c12-tp21-3I:cT * * EI ... tC12 -~++ EO to tD to -------------SHARP-.-.--..----875 LCD Dot Matrix Driver CMOS LSI (3) LH5021 AlLH5022 (VDD =-5V±10%, Vss=OV, Ta=-20-+70·C) Common Driver (PS="Low", FCS = "High") Parameter Clock frequency High-level clock width Low-level clock width Data setup time Data hold time Output delay Clock t , ~ time Symbol tc tCWH tcwL tsu tH tD tCT Conditions * 1 . MIN. MAX. 1000 130 830 70 50 CL=15pF Test conditions Input frequency: O.SV DD, O.2V DD; Input reference level: O.SV DD, O.2V DD; *1 LH5021A VEE =-17V±lV, LH5022: VEE =-24V 500 50 Unit ns ns ns ns ns ns ns Applicable pins CL 2 CL 2 CL 2 011 011 DO CL 2 Output reference level: O.SV DO, O.2V DD CL2 ~J---tCWH DO Valid Yt-YBo .-.---.-.---SHARP------------ 876 LCD Dot Matrix Driver CMOS LSI (4) LH5021 A/LH5022 1-bit Serial Input Segment Driver (PS="Low", FCS="High") (VDD=-5V±10%, vss=ov, Ta=-20-+70"C) Parameter Clock frequency High·level clock width Low-level clock width Data setup time Data hold time Output delay High-level latch clock width Clock margin time (from CL I ~ to CL 2 ~ ) Clock margin time * 2 (from CL 2 ~ to CL I ~ ) Clock margin time (from CL 2 t to CL I t ) Clock t, ~ time Overlap time of CL 2 "L" and CL I "H" Symbol te teWH teWL tsu tH tD t LWH Conditions * I MIN. 380 170 170 70 50 CL=15pF MAX. 230 130 *3 Unit ns ns ns ns ns ns ns Applicable pins CL 2 CL 2 CLIo CL 2 DIb EI DIb EI EO CL I tel2 20 ns CLIo CL 2 tC21 200 ns CLIo CL 2 t p21 20 ns CLIo CL 2 ns CLIo CL 2 ns CLIo CL 2 50 teT tOY 130 Test conditions Input frequency: O.8V DD, O.2V OD ; Input reference level: O.8V oo• O.2Voo; Output reference level: O.2VDO• O.8VOD *1 LH5021A VEE =-17V±1V. LH5022: VEE =-24V 2 Internal shift register determination time 3 1.5tc-tc'2-tp2,-3tcT * * Ell ----oo+-loo-o·t C12 EO to to to 877 • Ig ~I en I '< I I I I I ..l~ \ Address Bus .!...> U II II .!...> 1r FCS/PS DII M LH5021A ~ /LH5022Y CLI r---v' CL2 I \ Control Bus I, .! .!. \y. . ~ ~IDEClOD~~ER RD IORQ . WR '-----.--...1 FCS/PSDII '_ jjJ, "I RD WR RS CS DE WAIT -'\ ---,/ Do- D7 I ---;== I f--- CPI CP2 M LR3691A DI _ CS Do-D, WE OE DISPLAY RAM Ao-AI5 ,..,J-,..L--L........J.,.., CL. CLI M FCS CL,'CLI M FCS LH5021A IPS LH5021A IPS /LH5022 Dltf----- DO /LH5022 Dhf- Yao-YI Yao-YI ' Yao-YI "'-.J. {J,. U I I I 3 "0 CD II N fr T ___ -__ ::: -=~= t: a0"... m I fr 10" D) : Yao- YI Yao-YI LH5021A LH5021A ILH5022 Dh ----- DO ILH5022 Dh FCS FCS CL, CLI MIPS CL, CLI M IPS 0 :::l ----'----~-------LCD IPanel - - - - - - - - - - - IT! Ii. - I~ 0 :::l )( : LH5021A ~ M /LH5022Y~ CLI I =jl 11 rr- 1"- I : CL2 IMAo- MAI4 DI2 Dh DI. MDo- MD, MWR MRD r: ..! DECODER +5V Yao-YI II ~~~-. -----, I CL. CLI M FCS CL, CLI M FCS LH5021A IPS ___ LH5021A IPS /LH5022 Dh r- -- DO /LH5022 Dh 1[" 1[" \ Data Bus I I -1 (Z80 System) I I I I I I II~~~~~~~-~~~--- CPU !e. CD 3 1t1'f" . Yao-YI Yao-YI LH5021A LH5021A ILH5022 Dh 1----- DO ILH5022 Dh rFCS FCS CL. CLI MIPS CL. CLI MIPS _ __ ---1 I ___ ----.J I --------1 :=~ 1Ir I! I I II II ~ ~ I~ LH5821/LH5822/LH5823 LCD Dot Matrix Driver CMOS LSI LH5821/LH5822/LH5823 LCD Dot Matrix Driver CMOS LSI • Description The LH58211LH5822/LH5823 are CMOS driver LSls for LCD dot matrix display. Anyone of display duty ratio, 117 - 1/20 can be selected by programming. Write and read to/from the built-in RAM of display data can be made only by 3 signals, serial data, synchronous signal, and transfer clock. The LH5826 is available for segment output expansion. • • Pin Connections :: '" <- '" M _ 30 dj~u ~ -<:O:~O:O:O:cCd: oo~~~~~>oo>u~~»~~~~~~~ • • Y5YHNDUDWoaUMOMUUOM Features 1. 2. 3. 4. Display data RAM: 1280bits 10-bit serial data transfer Built-in oscillator for display Duty (Selectable by programming) LH5821: 1/7-1120 LH5822: 1/7-1118 LH5823: 1/7-1116 5. Segment output LH5821 : 44bits LH5822 : 46 bits LH5823 : 48 bits 6. Common output LH5821 : 20 bits LH5822 : 18 bits LH5823: 16 bits 7. Clock output for double voltage 8. Power supply voltage: 5V (TYP.) 9. Display voltage LH5821, LH5822 : 12V (MAX.) LH5823 : lOV (MAX.) 10. 80-pin quad-flat package Top View 37 pin 38 pin 63 pin 64 pin * LH5821 BPIlI BPlo BP n LH5822 S" S" BPlo BP1 7 S" S" s" s" LH5823 BP14 --- f------'---- -'---~'-'--SHARP'-------'- 879 LCD Dot Mattix Driver CMOS LSI • LH5821/LH58221LH5823 Block Diagram Frame Sync. Clock 8 RAM 64 X 20 bits .Display Clock 7 Load Control 49)------~---..I...-__, ~------~vr------~ Output .-.------~--SHARP-.---.-.--- 880 LCD Dot Matrix Driver CMOS LSI • LH5821/LH5822/LH5823 Absolute Maximum Ratings Parameter Symbol Ratings Vee Vop Topr T stg -0.3-+7 -0.3-+13(+11) -5-+55 -5-+150 Pin voltage * Operating temperature Storage temperature Unit V V t: t: Note 1 1 Note 1: Referenced to GND. Value in parentheses ( ) applies to LH5823. • Recommended Operating Conditions Parameter Supply voltage Display voltage Symbol Vee Vop MIN. 4.5 6 TYP. MAX. 5.5 12(10) Unit V V Note '2 Note 2: Value in parentheses ( ) applies to LH5823. • DC Characteristics Parameter Input voltage Input current Output voltage Output resistance Input leakage current (V ee =4.5-5.5V, Ta=-5-55t:) Symbol V IH V lL IIH IlL V OH VOL RQ RSEG VIH=Vee VlL=OV IoH =410 pA IOL =1.6mA Vee=5V, Vos=1.0V ReoM Rv I IL I Vop=6V, Ta=25t:, Vos=IV Ieel Current consumption Iee2 lop Note 3: Note 4: Note 5: Note 6: Note 7: Note 8: Note 9: Note 10: • Conditions MIN. Vee- O.S 0 TYP. MAX. Vee O.S 50 1 25 2.4 O.S Durling no-load blank display f; = 100kHz, fcLo=OHz, Ta=25'C Durling data write (write cycle 1145 MHz) f; = 100kHz, ho=IMHz, Ta=25'C Durling no-load blank display VDP =12V, f; = 100kHz, 1116 duty Unit Note V 3 pA 4 V 5 0 7 S SO 1.0 1.5 40 30 4.5 1 kO kO 200 500 pA 2 rnA 10 pA 5 9 0 pA 10 6 Applied to pins CLo, LC, SDo Applied to pin LC Applied to pins SDo, H, {Applied to all pins except LC Applied to pins Q, Q Applied to segment output pin. Applied to common output pin. Applied to pins VA, VB AC Characteristics . Symbol Parameter t Re CLo cycle time LC hold time tLD LC setup time t LS SDo setup time tsso SDo input/output switching time to Conditions C L=50pF MIN. 1 0 100 100 TYP. MAX. Unit ps SO 450 ns ns ns ns ~'--~----SHA~P------'-'--- 881 . LH5821 ILH5822lLH5823 LCD Dot Matrix'Driver CMOS LSI • AC Timing Diagram CLo LC tSSD SOo (Input) 0:X S 00 (Output) UMdm~± ~Input --Input mode - - - - ! E - - - - - O u t p u t mode • mode Functions (1) Pin description Pin name Vee, GND Vop, VA, VM, VB LC CLo RX RY '" if . Q,Q S20-S63 (LH5821) S1S-S63 (LH5822) S16-S63 (LH5823) BPo-BP 19 (LH5821) BPo-BP 17 (LH5822) BPo-BP 15 (LH5823) SDo (2) 882 I/O 4 1 1 1 1 1 1 2 44 46 48 20 18 16 1 I Functions Power supply for logic circuit Power supply for liquid crystal drive Serial data transfer sync. signal Serial data transfer clock input Input clock oscillation pin Input clock oscillation pin Clock output for display Liquid crystal frame sync. signal Clock output for double voltage generation 0 Liquid crystal segment drive signal Liquid crystal common drive signal I/O Serial data input/output Relationship between 10-bit serial data and modes lO·bit data/mode Chip select/duty setup mode RAM address setup mode 8-bit data write mode 8-bit data read mode (C" C2 No: of pins 3 : Control data, Do-D7 : Data) CO 0 0 1 1 C1 0 1 o· 1 Do D1 D2 D3 D4 D5 D6 Chip select data I Duty data Ao A1 A2 A3 A4 A5 A6 Data Data D7 A7 LCD Dot Matrix Driver CMOS LSI LH5821/LH5822/LH5823 • LC single • (> signal The (> signal is the clock output for display and is supplied to LH5826. • H signal The H signal is the frame period signal for the liquid crystal and is supplied to LH5826. When the power is turned on, the timing signal in each device is in an unsynchronized condition, and after the H signal is generated, they are synchronized. • Auto clear When th'e power is turned on, the display signal generates an OFF pattern. Auto clear is canceled when all of the duty data of the chip select duty data are made" 1" and input, and then the contents of the RAM are displayed. The chip select duty does not change at this time. • Double voltage clock A double voltage clock is output from pins Q and Q. The Q and Q signals are clock signals made by dividing the display clock (> by 2, and their respective polarities are opposite. The LC signal is a sync. signal for serial trans· fer, and when LC is low, LSI remains in the stand· by condition regardless of the condition of SDo and CL o, When' LC becomes high and clock CLo is supplied, the LSI is enabled. • CL signal The CL signal is the clock signal for serial transfer and is used to write and read serial transfer data SDo. • SDo signal The SDo signal is lO-bit serial transfer data of which the first 2 bits are control data and the remaining 8 bits are data. In the read mode the SDo pin becomes an output pin and outputs the 8-bit RAM data in serial. After the write or read mode has been executed, the lower 6 bits, Ao-A5, of theRAM address are automatically incremented, but As and A7 do not change. • Chip select In the LSI, the chip select code is set at "0000", so by inputting the chip select code "0000" through the SDo pin, this chip is selected: The RAM address setting and writing and reading of the 8-bit data is executed only for the chip selected, and once a chip is selected, it remains in the selected condition until a select code for the next chip is input. • System Configuration ~ Dot matrix LCD ~ ~) 20 BPo-BP19 ~ S20 64r S63 .- RY LH5821 RX { H ¢ ¢ eS3 I - LH5826' GND GND Vee Vee +!V I f 7, R r r CS2 ~ CSI f- SDo LC CLo VDP VA Vo j 1 VDP RX H SDo LC CLo VDP VA VM VB CPU So S63 CS~ r- - +5V J R Cl: ~C2 : i:C3 : ~C4 , ----------SHARP-----.--883 lCO Dot Matrix Segment Driver CMOS LSI LH5826 • LCD Dot Matrix Segment Driver CMOS LSI De$cription The LH5826 is a segment driver CMOS LSI for LCD dot matrix display. Write and read to/from the built-in RAM of display data can be made only by 3 signals, serial data, synchronous signal, and transfer clock. The LH5826 is available for segment output expansion of the LH5821, LH5822 and,LH5823. • 'LH5826 • Pin Connections :: ......... .., .... ~QtL,j~ulC<." ........... :::= ~~~oo~oo>oo>u~~»oooooooooooooo 5 5 54 3 5 51 4 4 4 4 4 42 41 40 Features 1. 2. 3. 4. 5. 6. 7. Display data RAM: 1280 bits lO-bit serial data transfer Segment output: 64 bits Up to 15 drivers expandable Power supply voltage: 5V (TYP.) Display voltage: 12V (MAX.) 80-pin quad-flat package Top View --------.----.----SHARP -----.-.---.-,-.--884 LCD Dot Matrix Segment Driver CMOS LSI • LH5826 Block Diagram Segme'!,t Output ,--------------------------{15 ---- ----- 46 Frame Sync. 8 Clock RAM 64x20bits Dislay Clock 7 Load Control Segment Output • Absolute Maximum Ratings Parat:neter Pin voltage Operating temperature Storage temperature Note:1 • Symbol Ratings Vee VDP Topr Tstg -0.3-+7 -0.3-+13 -5-+55 -55-+150 Unit Note V 1 "C "C Referenced to GND. Recommended Operating Conditions Parameter Supply voltage Display voltage Symbol MIN. Vee VDP 4.5 6 TYP. MAX. Unit 5.5 12 V V - - - - - - - - - - - - S H A R P . -.......... - - - - - - - - - 885 LCD Dot Matrix Segment Driver CMOS LSI • LH5826 (Vcc=5V±10%, Ta=-5-+55t) DC Characteristics Symbol VlH VIL IlH IrL VOH VOL Parameter Input voltage Input current Output voltage RSEG Icc! Current consumption Icc2 lop • 2: 3: 4: 5: 6: Applied Applied Applied Applied Applied to to to to to MIN. TYP. Vee-O.S 0 25 VlH=Vee VIL=OV IOH=400pA IOL=1.6mA MAX. Vee Note V 2 pA 3 0.8 50 1 V 4 10 O.S 1 30 Vop=6V, Vos=lV, Ta=25t During still image display under no load ft} =100kHz, fcLO=OHz, Ta=25t During data write (write cycle 1145 MHz) ft} =100kHz, f~LO=lMHz, Ta=25t During still image display under no load Vop=12V, ft} = 100kHz, 1I20duty pA kO 5 6 200 500 pA 2 mA 10 pA 5 pins CLo, LC, SDo. H, and "'. pin LC. pin SDo. all pins other than LC. pins SO,S63. (Ta=25t) AC Characteristics Symbol Parameter CLo cycle time Conditions MIN. 1 0 100 100 tRC tLB tLS LC hold time LC setup time SDo setup time SDo 1/0 switching time • Unit 2.4 I IL I I/O leakage current Output resistance Note Note Note Note Note Conditions tsso tLD CL=50pF TYP. SO MAX. 450 Unit ps ns ns ns ns AC Timing Diagram \fV\JV CLo ( LC tsso SDo (Input) U~dmOO SDo (Output) --Input mode----'i-'----:. Output mode .---....-.~-----SHARP 886 ± Input mode ---...--------- LCD Dot Matrix Segment Driver CMOS LSI • LH5826 System Configuration ~ Dot matrix LCD I"" BPo BPl9 { {s:j j::j 20 S20 S63 ~ RY LH5821 RX H H ¢ ¢ { GND Vee Vee Jv ! t 1 VDP R TCl : r r CS3 r- GND SDo LC CLo VDP VA VM VB CPU SO-S63 RX "" LH5826 CSI r- SDo LC CLo VDP VA VB $ CS2 r- i CSot---:-t- +5V "" R C2 : j:C3 ~C4 1. 887 LH5826· LCD Dot Matrix Segment Driver CMOS LSI • Functions (1) Pin Description Signal Vee, GND VDP, VA, VB <} H CSo-CSa LC CLo RX So-S6a SDo (2) No. of pins 3 3 1 1 JlO Function Power supply for logic circuit LCD driving power Display clock input LCD frame sync signal Chip select input Serial data transfer sync signal Serial data transfer clock input Connected Vee or GND LCD segment driver signal Serial data JlO I 4 1 1 1 64 1 0 JlO r10-blt serial· data versus mode lO-bit data/mode Chip Select Duty Setting Mode RAM Address Setting Mode 8-bit Data Write Mode 8-bit Data Read Mode CI C2 0 0 1 1 0 1 0 1 Do DI D2 DaD4 D5 D6 D7 : Chip Select Data Duty Data Ao Al A2 Aa A4 1\.5 A6 A7 Data Data I (CI, C2: Control Data, Do-D7: Data) • LC signal The LC is a serial transfer sync signal input. If the LC is at low, the LH5826 maintains standby status ignoring the statuses of SDo and CLo. The device enters the enable status when the LC is set at high and the clock CLo is supplied. 0001 and 1111 for CS"a, CS2, CSI, and CSo, respectively. Chip select code DODO, used to select the; LH5821-5823, cannot be used for the LH6826. • CLo signal The 1> is a display clock input. The clock is supplied from the LH5821-5823. The CLo is a serial transfer clock input used for writing or reading serial transfer data SDo. • SDo signal The SDo is a 10-bit serial transfer data line. Data consists of two control bits and 8 data- bits. When in the Read mode, the SDo pin functions as an output to deliver 8-bit RAM data in serial form. When read or write operation is completed, the lower 6 bits, Ao-A5, of the RAM address are incremented. Bits A6 and A7 do not change, however. • CSo-CSs pins The CSO-CS3 are chip select inputs. On: the LH5826, the chip select code can take on a value between • _ '" '" ... ~~oo~»>UUUUU~~>U~~::t:oooooooooo 7 71 1 69 6 67 66 6 64 6 62 61 60 59 5 5 56 5 54 53 52 51 50 49 o Features 1. Display data RAM: 3200 bits 2. Segment output: 80 bits 3.1/32 or 1/40 duty 4. Automatic address modify 5. Scroll function 6. Power supply voltage: 5V (TYP.) 7. Display voltage: 15V (MAX.) 8. 96-pin quad-flat package Top View LH 5036A ""., '"' _ = _ 0 :::UCIlif:JfflffJZO ¢ _ N _ 0 0 ._ -<: ;:)..JU 000 0 N ... or> '" IfJlfJlfJoo»>ZUUUU~OO>U..J~XlfJlfJlfJrnrn 7 71 7 69 68 67 66 6 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 o Top View --.-------SHARP-.-.------ 889 LCD Dot Matrix Segment Driver CMOS LSI • LH5035A/LH5036A Block Diagram LCD Power , Supply Frame Sync. Clock 5'~-- 01 Display Controller RAM 40 X SObits Display Clock GND Load Control o .• CH (NCO) Serial Data Input I Output (NC') is for LH5036A. Absolute Maximum Ratings Parameter Pin voltage Operating temperature Storage temperature Symbpl Vee VOP VTl VT2 Topr T s '" Ratings -0.3-+0.7 -0.3-+16 -O.3-V ee +0.3 -0.3-Vop +0.3 -5-+55 -55-+150 Unit V V V V Note 1 1,2 1,3 "C "C Note 1: Referenced to GND. Note 2: Applied to pins HSi, ~ 0, LC. CL o• SDo• CSO-CS 3, CH Note 3: Applied to pins V~. VB. SO-S79 • Recommended Operating Conditions Parameter Supply voltage Display voltage Symbol Vee Vop MIN. 4 9.6 TYP. MAX. 6 14.4 Unit V V --~---""""'~-SHARP,'-'----------- 890 LSD Dot Matrix Segment Driver CMOS LSI • (Vee=4.0-6.0V, Vop =6.0-15V, Ta=-5-55t) DC Characteristics Parameter Input voltage 1 Input voltage 2 Symbol VIH V1L VIH V1L VOH VOL IOH IOL Output voltage Output current Display current consumption IOH=400pA IOL =1.6mA VOP-VOHI =lV VoL =lV Vop =15V, Vee=6V Durling no· load display f~ =4kHz CLo=OHz 1140 duty V1N=OV or Vee VOUT=OV (Va) or Vee (V A) lop I ILl I I lLO I Input current Output leakage current Note Note Note Note Note Note Conditions lee Logic current consumption • LH5035A1LH5036A MIN. 2.4 0 3.2 0 2.4 TYP .. . MAX. Unit Note V 4 V 5 V 6 pA 7 Vee 0.8 Vee 0.8 0.8 100 100 50 300 .pA 1 20 pA 0.1 0.1 1.0 10 pA pA 8 9 4: Applicable to pins LC, CL o, 50 0 , CS O-CS 3 , CH; Vce =4.5-5.5V 5: Applicable to pins ;'0, HS;; Vcc =4.5-5.5V 6: Applicable to pins 500 ; Vcc =4.5-5.5V 7: Applicable to pins 50 -5 79 ; VOH " VOHl is light signal output "High", "Low" voltage 8: Applicable to all input pins 9: Applicable to all output pins, ( ) applicable to segment output System Configuration + Vee [ CLoLSDo (10 HSi CH LC Vee L t-i. ,,--CS LH5035A VDP t t ~ CLo LSDo (10 HSi CH LC t...L 'CS LH5035A VA VB ~o r--n"-+-+--+-IVD~X RY DYoDYl C~· R ......... I.......................,H VA BPo ~ C~· r LH5030 I ..!Q.../ WI VM BP3.' IC~' r BP40 ~ ~:"""-R-~VB vr ~-+----4GND 7," 0 0-- ---- 79 - - --- - - - -- ---- - - - - - --- -- ---- -- 560 - - ---·639 I 39 Dot matrix LCD 0 BP7•.AQ,,; 3~ 0 ------79 - - -- - -- -- - --- - - - - -- - - - -- -- - - ---- - 560 ---- --639 ~~~~~--------------------------~~~~~~~ ¢Jo HSi Vee 80 801 SO-S7' SO-S7' LH5035A CS-f-.. Vee, GNO 5 LH5035A 4 4 LC1CHh HSi (10 SDo CLo I '1Ir iii CS-f-." LC1CHh HS, (10 SDo CLo I '1Ir TiT T VDP'VA'VB~:=!;~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ cpu{ ============~:±==================~t==~ .---~-------SHARP -.------,------891 LH5030 LCD Dot Matrix"Common Driv~r CMOS LSI LH5030 • LCD Dot Matrix Common Driver CMOS LSI • Description Pin Connections The LH5030 is a common driver CMOS LSI for LCD dot matrix graphic display. A built-in CR oscillator generates synchronous signal and clocks necessary for display to send to a segment driver. l~~~~E<~=U~~~»~oOO ~~~~~ ~~~~Z»»Z>Q~Q~~~~~~~~~~ 717 6766 6266 5 5 5 5549 8 BPs 0 47 BP6 . 46 BP1 45 BP, 44 BP, • Features 43 BP10 42 BPIl BPlit , BPe8 BP61 1. Common outputs : 80 bits 2. Built-in CR oscillator 3. Selectable duty ratio 1/32,1140, 1164, 1180 duty (2 pairs of common output, if 1132, 1140) 4. Power supply voltage: 5V (TYP.) 5. Display voltage: 15V (MAX.) 6. 96-pin quad-flat package 41 BP12 BP66 BPIJ BPI4 BP658 BPIS 1111 4116171819 12 Top View • Block Diagram Frame Sync. Clock r-----~55ir------------, LCD Driver Test 54 Input LCD AC Generator Decoder OSC L---------------{i56r-------{ Display Clock 892 Counter Frame Sync. Controller LH5030 LCD Dot Matrix Common Driver CMOS LSI • Absolute Maximum Ratings Parameter Pin voltage Operating temperature Storage temperature Symbol Vee VDP VTl VT2 Toor Totg Ratings -0.3-+7.0 -0.3-+16 -0.3-V ee +0.3 -0.3-VDP +0.3 -5-+55 -55-+150 Unit V V V V "C "C Note 1 1 1,2 1,3 Note 1: Referenced to GND Note 2: Applicable to pins HS" ; 0, RX, RY, DY 0, DY 1 Note 3: Applicable to pins BP o-BP79, V A, VB, VM • Recommended Operating Conditions Parameter Supply voltage Display voltage • Symbol Vee VDP MIN. 4 6 TYP. MAX. 6 15 (Vee=5V±lV, VDP =6-15V, Ta=-5-+55"C) DC Characteristics Parameter Input voltage Output voltage Output current Input leakage current Output leakage current Current consumption Unit V V Symbol VIR V1L VOH VOL IA Is IOH 10M IOL I ILl I I lLO I Icc IDP Conditions IOH=400pA IOL =1.6mA VDP -V A=lV, VDP =6V VB =lV, VDP =6V VDP -VoH =lV, VDP =6V VM-V OM =lV, VDP =6V VoL =lV, VDP =6V V1N=OV or Vee HSi. Po: VOUT=OV or Vee BPo-BP79: VOUT=OV or VDP VDP =15V. Vee=6V no load Durling no-load display (f ~ =8kHz. 1/80 duty) MIN. 2.4 0 2.4 TYP. MAX. Vee 0.8 0.4 10 10 1.5 1.5 1.5 Unit Note V 4 V 5 mA 6,8 mA 7 4 30 30 5 5 5 0.1 1 pA 0.1 1 pA 50 2 150 6 pA pA 9 Note Note Note Note 4: Applicable to pins DY o• DY 1; Vcc =5V±10% 5: Applicable to pins HS i• ;0; V cc =5V±10% 6: Applicable to pins VA, VB 7: Applicable to pins BPo- BP 79 VOH and VOL are the high and low voltage resulting when the scan signal is output to the common pin. When the voltage division resistance R for display equals r. (See System Configuration Example.) Note 8: This specification prescribes the internal transistor drive force of the LSI. The normal maximum effective current of IA • IB is 10 mAo Note 9: When pins VA. V M and VB are open. 893 LH5030 LCD Dot Matrix Common Driver CMOS LSI • (V ee =5V±IV, Vop =6-15V, Ta=-5-+55"C) AC Characteristics Parameter Sync. signal delay Display clock frequency ( ~ 0) Symbol to f~ Conditions ~ 0, HSi pin load CL =15pF Rf=R~±2%, Vee =5V±10% MIN. 50 fo-30% TYP. 100 fo Note 1: When f+ =l/tRc, Ro=530kO, fo=3.0kHz Note 2: When fo=2.24kHz-8.0kHz (Combination range of R, resistance) i----tRCo-----.f • Pin Description Pin name Vee, GND Vop, VA, VM• VB DYo• DY 1 T RX RY HS j ~o BP o-BP 79 894 No. of pins 3 4 2 1 1 1 1 1 80 I/O I 0 Functions Power supply for logic circuit Power supply for liquid crystal drive Duty selectinput Test input Internal clock oscillation pin Internal clock oscillation pin Frame sync. signal Display clock Liquid crystal common drive signal MAX. fo+30% Unit ns Note 1,2 LH5030 LCD Dot Matrix Common Driver CMOS LSI • System Configuration L Vr CLo SDo ;0 HSi CH LC .. LH5035A ~Vr~ VDP VA VB ~. R II C~· ___ I ~r ~. r i. C: R' V RX RYDX.DYI DP VA BPo \' ~ VM· LH5030 BP 39 Pl!...V BP •• \ VB BP79 GND Vee 1/10 HSi 4. ~S LH5035A SO-S79 ~~ ~~ \ \ Dot matrix LCD 0------79 -- --- ----- --- - - - --- - ---- --- - ---- - 560 ------639 8~ 8~ J SC-S79 LH5035A 4 CS~ GND LClCH HSi _. SDo CL. 5 --------------------- SO-S79 39 0 Vee Vee, GND VDP,VA,VB· I-f-cs l l 1 L CLo SDo ;0 HSi CH LC 0 0------79 - - --- - - - -- - - --- - - - - --- -- ---- -- 560 - - ----639 ~ 39 "'" L v 4 TTT SO-S79 ~-------------------- LH5035A 4 CS-+--" HS; ~o LClCH SD. CL. f f t f ~ CPU{ " ..--..-~------SHARP-.-.-.----- 895 LH5031 LCD Dot Matrix Common Driver CMOS LSI LH5031 • LCD Dot Matrix Common Driver CMOS LSI • Description Pin Connections The LH5031 is a common driver CMOS LSI for LCD dot matrix graphic display. A built-in CR oscillator generates synchronous signal and clocks necessary for display to send to a segment driver. • Features l. 2. 3. 4. 5. 6. Common output: 32 bits Built-in CR oscillator Duty ratio: 1/32 duty Power supply voltage: 5V (TYP.) Display voltage: 15V (MAX.) 44-pin quad-flat package Top View • Block Diagram ~ ______ Output __________ ~~A ~, Frame Sync. Clock }----'---(24}---------., LCD Driver Test 23 Input LCD AC Generator Decoder Counter OSC LCD Power Supply Frame Sync. Controller L-------------~25r-------------------------------------~ Display Clock --------SHARP-----------896 ( LCD Dot Matrix Common Driver CMOS LSI • LH5031 Absolute Maximum Ratings Parameter Pin voltage Operating temperature Storage temperature Symbol Vee Vop VTl VT2 Topr T s'" Ratings -0.3-+7 -0.3-+16 -0.3-Vee +0.3 -0.3-Vop +0.3 -5-+55 -55-+150 Unit V V V V "C "C Note 1 1 1,2 1,3 Notel: Referenced to GND Note 2 : Applied to pins HS;, 1> 0, RX, RY, DY o, DY 1 Note 3 : Applied to pins BP o-BP 79, VA, Va, VM • Recommended Operating Conditions Parameter Supply voltage Display voltage • Symbol Vee Vop Output voltage Output current Symbol VOH VOL IA IB IOH 10M IOL Output leakage current Iw Current consumption Icc lop Note 4 Note 5 Note 6 TYP. MAX. 6 15 Unit V V (Vee=5V±lV, Vop =6-15V, Ta=-5-+55"C) DC Characteristics Parameter MIN. 4 6 Conditions MIN. IoH =400 pA Vee- O.S IOL =1.6mA VOP-VA=lV 10 VB=lV 10 Vop -VoH =lV 1.5 VM-V OM =lV 1.5 VoL =lV 1.5 HS j , ~ 0 : VOUT=OV or Vee BPo-BP 31 : VOUT=OV or Vop Vop =15V, Vee=6V Durling no· load display (f ~ = 3.2kHz) TYP. MAX. O.S 30 30 5 5 5 Unit Note V 4 rnA 5 rnA 6 0.1 1 pA 25 1 SO 3 pA Applicated to pins HSi, 1>0; Vcc =5V±10% Applied to pins VA, Va Applied to pins BPo, BP 31 V OH and VOL are the high and low voltages resulting when the scan signal is output to the common' pin. ---------SHARP---~-----897 LCD Dot Matrix Common Driver CMOS LSI • LH5031 AC Characteristics (V ee =4-6V, Ta=-5-+55t:) Parameter Sync. signal delay time Display clock frequency ( <} 0) Symbol tn Conditions f~ Rf =Ro ±5% MIN. 50 fo -30% TYP. fo MAX. Unit ns Note 1,2 fo+30% Note 1 :. When f~ =lItRc, Ro =850kO, f o=2kHz Note 2 : When fo= 1012kHz-3.2kHz (Combination range of R, resistance) i----tRc----ooj 1/>10 • Pin Description No. of pins 3 4 1 1 1 1 1 32 Pin name Vee, GND VDP, V A, VM, VB T RX RY HSi <}o BPo -BP 31 • I/O I 0 Functions Power supply for logic circuit Power supply for liquid crystal drive Test input Internal clock oscillation pin Internal clock oscillation pin Frame sync. signal . Display clock Liquid crystal common drive signal , System Configuration ~ VDP 'fA VB ~~ Rl ~~ ~r Ca" r C/" ER ::'1 RY VDp RX 0, VA. BPo V LH5031 I ~ : M BP31 ---y' VB 31 GND Vee ~Ir "'0 , Dot matrix LCD 0------ 79------------- ----------- ---------- 560----·-639 8 80-879 vL LH5036A HS, ¢o SDo LC CLo 5 SO-S79 ---------------------- 4 C8-+" Vcc, GND VP,VA,VB ls~ 11 H8; Tf i 4 CS+-;> LH5036A HS; ;0 SDo LC CLo iii cpu{ .---~----SHARP.-..------.- ...... - 898 - LH5003/LH5004 LCD Character Display CMOS LSI LH5003/LH5004 • Description The LH5003/LH5004 are dot-matrix LCD controller driver capable of displaying 128 kinds of alphanumeric and symbolic characters. They are the most suitable LSls for constructing small dot-matrix LCD systems under under the control of 4-bit or 8-bit microcomputer. • • LCD Character Display CMOS LSI Pin Connections LH5003 ~ Q z _ _ ;> u~ "~ ~ U Q Features 1. CMOS process 2. 5 X 7 dot-matrix LCD controller/driver 3. Display data RAM 240 bits (LH5003) 320 bits (LH5004) 4. Character Generator 128 patterns 5. Driving method duty··· 118 duty 6. Character configuration is 5 X 7 dots plus cursor LH5003 (Master) 6 digits LH5004 (Slave) 8 digits 7. LCD drive circuit LH5003 ; Common signal 8 bits Segment signal 40 bits LH5004 ; Segment signal 30 bits 8. Single power supply: - 5V (TYP.) 9. 60-pin quad-flat package N_ln..,.""'="'_'"'''' 0000000>0000000 Top View LH5004 ~ ~ ~ ~ z u CG U .0 S Top View ......-.---------SHARP--~--------- 899 LCD Character Display CMOS LSI • LH5003/LH5004 Block Diagram LH5003 Common Output·· Clock Segment Output Data Input , Segment Output LH5004 Segment Output Display Control Signal Data Control Signal Segment Output Data Input . Segment Output -"~------SHARP-'-'------ 900 LH5003/LH5004 LCD Character Display CMOS LSI • Absolute Maximum Ratings Parameter Pin voltage Operating temperature Storage temperature • Symbol Voo VIN Toor T st• Ratings -0.3-+8.0 -0.3-V oo +0.3 -10-+60 -55-+150 Unit V V "C "C Recommended Operating Conditions Parameter Supply voltage Oscillator frequency • Symbol Voo fCLK Ratings 4.2-6.3 32-320 (V oo =5V,GND=OV, Ta=-10-+60"C) Electrical Characteristics Parameter Input voltage Input current Output voltage Current consumption Note Note Note Note Note Note Note Note 1: 2: 3: 4: 5: 6: 7: 8: Symbol VIL VIH VM VA VB IlL IIH VaLl VOHI VaLl VOHI VOL3 VOM -VOH3 1m 102 103 Unit V kHz Conditions MIN. TYP. MAX. 1 Unit 1 4 3.5 0 2.5 4 1 VIN=OV VIN =5V No-load condition I 10L I =50 pA 10H= 50 pA No-load condition fCLK =32kHz fCLK =64kHz fCLK =320kHz V A-0.2 VB VA V 5 1.5 1 1 V B+O.2 V M -0.2 4.8 pA 1 5 0.2 VM+0.2 50 100 400 ~ r-V 0 VM 5 28 60 220 r-- c--L 4 0.8 4.2 Note 6 r-7 pA 8 Applied to pins 10 -1 7, VFL, CLK, RST, CE, DISP, DIN Applied to pin VM Applied to pin VA Applied to pin VB Applied to pins OU-OS5 Applied to pin CS Applied to pins HI-Hs Output pin is opened and input pin set to GND level. ------------SHARP---------901 LCD Character Display CMOS LSI • LH5003/LH5004 Functions Pin description Pin name Voo, GND No. of pins' VA, VB, VM 3 10 -1 7 8 DIN 1 DSP 1 CLK 1 RST 1 CE 1 CS 1 VFL 1 H1 -H 2 0 11 -0 15 8(0)* 30(40)* 110 Connect to 3 Power supply I MPU Power supply (CS) * CE 0 MPU Liq uid crystal Functions Power supply for logic circuit Power supply VM=VOO/2 for liquid VA=VM+~V crystal drive VB=V M- ~ V (~V=1.0-VM) Character code input (10 - 16 ) from MPU Cursor display data input (I7) High: character data read one character shift in display memory "High" : Display mode "Low" : Blank mode (reset of cascade control data transfer control circuit) Clock pulse input "High" : Operation start signal (reset of cascade controller, cascade control data transfer control circuit, ring counter, etc.) Chip enable pin - . Chip select pin LCD frame frequency swithcing signal "High: 111024 of clock frequency "Low" : 11512 of clock frequency LCD common signal drive signal LCD segment signal drive signal *Applied to LH5004 • elK signal The clock signal is a clock pulse used to operate LH5003 and LH5004 and is continually applied while the power is on. For the CLK signal, apply the clock pulse made in the micro- . computer system or a pulse made by dividing this clock pulse and in sync with the microcomputer system. • DIN signal The DIN signal is used to set the data in the display memories of LH5003 and LH5004. Each time the DIN signal rises, it reads display data corresponding to the character code applied to pins 10 through 17 into the display memory and shifts the existing contents of the display memory one character. Set the pulse width of the DIN signal to at least two cycles of the clock pulse (a pulse width of 2TCK or greater when the clock pulse period is T CK.) • DSP signal The DSP signal determines the display condition. When it is high, the display mode is set and when it is low, the blank mode is set and the cascade controller and data transfer control circuit are reset. Normally, the nsp signal is made high after setting the data in the display memories of the LH5003 and LH5004. 902 • RST Signal The RST signal is used to initialize the internal control circuits of the LH5003 and LH5004 by applying the pulse of the RST signal to this pin immediately after the power is turned on. Synchronize the fall of the RST pulse with the rise of the clock pulse, and set the pulse width of the RST pulse to at least four times that of the normal clock pulse width (4 T CK .) • 10-17 signal The 10-17 signal is an 8-bit parallel signal that determines the characters and symbols to be displayed. Select the desired characters using the data of pins 10-16 (see the table relating input codes with displayed characters and symbols). When the h signal is high, the cursor is displayep, and when it is low, the cursor is displayed, and when it is low, the cursor is blanked out. LH5003 and LH5004 are controlled from the microcomputer system by the following procedure. (1) The clock pulse is applied continually to the CLK pin during the period from immediately after the power is turned on until it is turned off. (2) Immediately after the power is turned on, the RST pulse is applied to the RST pin. LCD Character Display CMOS LSI (3) The DSP and DIN pins are made low. (Not necessary if they are already low.) (4) The character code of the character to be displayed is output to pins 10-17. (5) The DIN pin becomes high level and -then low level again. (Apply one pulse to the DIN pin.) • LH5003/LH5004 (6) Steps 4 and 5 are repeated for each display position. (7) The DSP pin is made high level. (This condition sets the display mode.) (8) The contents of the display are changed by repeating steps 3 through 7. Input Codes and Displayed Characters and Symbols (LH5003/LH5004) - - - - - - - - S H A R P --.-.....-.-..------------ 903 LH5003/LH5004 LCD Character Display, CMOS LSI • System Configuration - -\ H -H8 ~ 5x7 dot matrix LCO (with cursor) 1 r-- ~-t-lI Micro computer system I ,..... ............. 10 l? - (;11-( 65 GNO H 1 -H 8 r--- LH5003 VM CE CS, eLK DSP DINRSTVDD VA VB r CLK OSP DIN RST V DDJ t f 1 Rl"i ::Cl R21 ::C2 ~ Rs R. U 1." 904 U -l} I ___ -II 0, 30 J I I 0 71 ,-0 145 0 11 -065 8 ,.C s C• iJ 10 l? 40 0 11 0 85 GNO LH5004 CE OSP CLK DIN RSTV D VA VB t Jf n LH1001 VFD Grid Driver PMOS LSI LH100 1 • VFD Grid Driver PMOS LSI • Description Pin Connections The LHIOOI is a VFD (Vacuum Fluorescent Dis· play) grid driver with an internal 20-bit serial shift register. Can be easily cascaded to extend the display. • Features L 2. 3. 4. 5. 6. 7. • Included 20-bit shift registers in a serial input Data controlled by shift clock and chip select Blanking input controlled by duty cycle High output voltage: - 50V (MAX.) High output current: 20mA (MAX.) Built-in output load resistor 36-pin quad-flat package Top View Block Diagram Serial Data Output ~----------------------------{6r-----------~------------, Serial{ 8 Data Input 9 Chip Select 1 r---------.,>i 20bit Serial Shift Register Blanking 2}------------i;.j Serial 3}----------i-L________________---.-r________________--.J Clock Input Serial Data Output 11 VN (-50V) ~--------------~vr--------------~ Output -------------SHARP--------905 VFD Grid Driver PMOS LSI • LH1001 Absolute Maximum Ratings Parameter Pin voltage'" V ss allowable current Operating temperature Storage temperature Symbol Voo VN VIN Iss Toor T sto Ratings -20-+0.3 -55-+0.3 -55-+0.3 70 -5-+55 -55-+150 Unit V rnA 'C 'C *Referenced to GND. • Recommended Operating Conditions Parameter Supply voltage Display voltage • Symbol Voo VN MIN. -9.9 TYP. MAX. -8.1 -40 Unit V V (V oo =-9V, Ta=25'C) DC Characteruistics Parameter Input voltage Output voltage Output current Current consumption Note 1: Note 2: • Symbol VIH VIL VOH VOL IOH IOL 100 IN MIN. -1.1 Conditions TYP. Unit -1 IoH =20mA VN =-50V VoH =-1.1V VoL =-4.2V Voo =-9V VN=-50V -48 50 3 .3 1.5 4.0 Note V -4.2 V 1 pA 2 rnA 8 Applied to pins DG 1 -DG 20 Applied to pins SOlO. SOzo (V oo =-9V, Ta=25'C) AC Characteruistics Parameter CK frequency CK cycle time CK high·level width CK low· level width SI setup time SI hold time CK high active time CK low active time CK ! -+ SO delay time Output delay time Symbol tcK t KSY tKH tKL tSIS tSIH tcSBKL tCSBKH tKso tu to MIN. Conditions TYP. MAX. 40 25 12 12 6 6 0 ' 6 CL=10pF VN =-50V, CL=100pF -~------"'-'-'-----SHARP .906 MAX. ... 3 15 20 5 20 Unit kHz ps ps ps ps ps ps ps ps ps --------.- VFD Grid Driver PMOS LSI • LH1001 AC Timing Diagram CK CS BK SOlO S020 Sh SIz 10% • Pin Description No. of pins 3 1 1 1 1 Pin name Von, GND VN CS BK CK Silo SI2 SOlo, S020 DG 1 -DG 20 I/O I 2 2 20 0 Functions Power supply for logic circuit Power supply for display Chip select ... select condition when CS="Low " Blanking ...... blanking when BK="High" Serial clock Serial data input Serial data output Digit output for fluorescent display tube l="High" level, O="Low" level • System Configuration input q. SI2 Sh S020 CS BK lHIOOI Dfl CK DG20 5 x 7 dot matrix fluorescent tube display VN VDD GND Dot output Dij -40V VN -9V O - - -......-+----------iVDD j=I-5CEl (i=1-7) ~------------__IIIGND l12048CE2 J<;:::J Input Ao-A9 *CS input must be high level when power is turned on. Input -..--.-------SHARP-------- 907 CMOS Driver .......-,....,.-.--..... ~-- - ............... .......... LH50l0/LH5011 --~ LH5010/LH5011 CMOS Driver • • Description Pin Connections The LH5010/LH5011 are 6-circuit CMOS drivers with 2-common INHIBIT inputs (AIN, BIN). The LH5010 is a non-inverting type and the LH5011 is an inverting'type. The outputs have an open drain construction 'fabricated using a P-channel MOS FET. They are used as drivers for VFD and interfaces between CMOS LSI and high-voltage MOS LSI. 15 OUT1(OUTd 14 OUT 2 (OUT 2 ) 13 OUT3(OUT 3) 12 OUT.(OUT.) II OUTs (OUTs) IOOUT6(OUT6) • Features 1. 2. 3. 4. CMOS process 6 independent driver circuits INHIBIT input port Non-inverting type······ LH5010 Inverting type ........... LH5011 5. I6-pin dual-in-line package • '( )= for LH5011 Top View Block Diagram High Voltage Output lnput (LH5010) High Voltage Output (Invert Signal) Input (LH5011) ----------SHARP.--.--..-~------- 908 CMOS Driver • LH5010/LH5011 Absolute Maximum Ratings Parameter Supply voltage Input voltage Output voltage Operating temperature Storage temperature • Symbol Ratings VDD VscO.5 - Vss+ 2O Vss -0.5-V oo +0.5 VIN VOUT Voo-50-Voo+0.5 -40-+85 To ~ -55-+125 T sto Unit V V V "C 'c Operating Conditions Parameter Supply voltage Input voltage • Symbol VDD VIN MIN. 3 0 TYP. MAX. 18 VDD Unit V V Electrical Characteristics Parameter Symbol Output high voltage VOH Output high current IOH VIH Input voltage VIL Input current IIH IlL Output leak·off current IOFF Static current consumption IDD Note Note Note Note VDD (V) 5 I louT I ~1 pA 10 VIN=VSS or VDD 15 VoH =3V(V oo -2V) 5 VoH =2V(V oo -3V) 5 VoH =7V(V oo -3V) 10 VoH =12V(V oo -3V) 15 VouT=0.5V,4.5V 5 VOUT -1.0V, 9.0V 10 VouT =1.5V, 13.5V 15 VouT=0.5V,4.5V 5 VOUT= 1.0V, 9.0V 10 VouT =1.5V, 13.5V 15 VIH =18V 18 18 VIL=OV 15 VOUT=OV VOUT =V DD -45V 15 5 VIN=VDD, Vss 10 output open 15 Conditions -40"C MIN. MAX. 4.95 9.95 14.95 -6 -9 -12 -17 3.5 7.0 11.0 1.5 3.0 4.0 0.3 ~0.3 3 10 4.0 8.0 16.0 25"C 80"C MIN. TYP. MAX. MIN. MAX. 4.95 5.00 4.95 9.95 10.00 9.95 14.95 15.00 14.95 5 -9 4 8 -11 6 -10 -28 --:8 -15 -39 -12 3.5 2.75 3.5 7.0 5.5 7.0 11.0 8.25 11.5 2.25 1.5 1.5 3.0 4.5 3.0 4.0 6.75 4.0 0.3 1.0 10 5 -10 5 -0.3 1.0 3 10 10 20 4.0 30 8.0 60 16.0 120 Unit Note V 1 rnA 1 V 2 V 2 pA 3 pA 1 pA 4 1: Applicable pins OUT j -OUT 6 2: RL =20kO, Applicable pins 1N.L:1N6' AIN BrN 3: Applicable pins IN j -IN 6 AlN, BrN 4: No load condition -------------SHARP.-.---.-.--909 CMOS Driver • LH5010lLH5011 Truth Table Input AIN L L * H B; H H L * HZ : High impedance Don't care IN L H * * Output LH5010 LH5011 HZ ' High HZ· High HZ HZ HZ HZ *: • Logic Diagram • LH5010 • LH5011 IN, IN2 OUT, 910 OUT2 INs IN. INs INs OUTs OUT. OUTs·· OUTs LH501 OD/LH5011 D CMOS Driver LH5010D/LH5011D CMOS Driver • • Description Pin Connections The LH5010D/LH5011D are 7 -circuit CMOS drivers with 2 common INHIBIT inputs (A IN , BIN). The LH5010D is a non-inverting type and the LH5011D is an inverting type. The outputs have an open drain construction fabricated using a P-channel MOS FET. They are used as drivers for VFD and interfaces between CMOS LSI and high-voltage MOS LSI. 17 OUT 1 (OUT I ) 150UT3(OUT3) 140UT.(OUT.) 130UT,(OUTs) 120UT6(OUT6) 11 OUT 7(OUT7) •. Features 1. 2. 3. 4. CMOS process 7 -independent driver circuits INHIBIT input port Non-inverting type ...... LH5010D In verting type . . . . .. .. ... LH 5 011 D 5. 18 -pin dual-in -line package • )= for LH5011D Top View Block Diagram Inhibit Signal High Voltage Output Input High Voltage Output (Invert ~ignaI) Input Inhibit Signal Inhibit Signal (LH5010D) (LH5011D) '-'-'-'---~--SHARP------------"-' 911 LH501 OD/LH5011 D CMOS Driver Absolute Maximum Ratings • Ratings Symbol VDD Vss-0.5- Vss+20 Vss -0.5-V oo +0.5 VIN VOUT VoO -50-V DD +0.5 -40-+85 Topr -55-+125 Tst£ Par.ameter Supply voltage Input voltage Output voltage Operating temperature Storage temperature • Unit V V V °C °C Operating Conditions Parameter Supply voltage Input voltage • Symbol VDD VIN MIN. 3 0 TYP. MAX. 18 VDD Unit V V Electrical Characteristics Parameter Output high voltage Output high current Symbol VOH IOH VIN Input voltage VIL Input current IIH IlL Output leak·off current IOFF Static current consumption IDD Note Note Note Note 1: 2: 3: 4: Conditions I louT I ~1 pA VoH =3V(V DD -2V) VoH =2V(V DD -3V) VoH =7V(V DD -3V) VoH =12V(V nn -3V) VouT=0.5V,4.5V VouT =1.0V,9.0V VouT =1.5V, 13.5V VouT=0.5V,4.5V VOUT= 1.0V, 9.0V VouT =1.5V, 13.5V VIH =18V VIL=OV VOUT=OV VOUT=VDD-45V VIN=VDD, Vss output open Vnn (V) 5 10 15 5 5 10 15 5 10 15 5 10 15 18 18 15 15 5 10 15 -40·C MIN. MAX. 4.95 9.95 14.95 -6 -9 -12 -17 3.5 7.0 11.0 1.5 3.0 4.0 0.3 -0.3 3 10 4.0 8.0 16.0 25"C 80"C 'Unit Note MIN. TYP. MAX. MIN. MAX. 4.95 4.95 5.00 V 1 9.95 9.95 10.00 14.95 14.95 15.00 -9 -4 -5 -8 -11 -6 rnA' 1 -10 -28 -8 -15 -39 -12 3.5 2.75 3.5 7.0 V 2 7.0 5.5 11.0 8.25 11.5 2.25 1.5 1.5 2 V 4.5 3.0 3.0 6.75 4.0 4.0 10 5 0.3 1.0 pA 3 -10 5 -0.3 -1.0 3 10 pA 1 10 20 4.0 30 pA 4 8.0 60 16.0 120 Applicable pins OUT1-OUT7,"VIN=Vss or VDD RL=20kO, Applicable pins IN1-IN7, AIN, BIN Applicable pins IN1-IN7, AIN, BIN No load condition --.----~-SHARP-.--'--~-----.- 912 CMOS Driver • LH501 OD/LH5011 D Truth Table Input AIN L L * BIN H H L IN L H * * * HZ : High impedance H Output LH5010D LH5011D High HZ High HZ HZ HZ HZ HZ * :Don't care • Logic Diagram • LH5010D IN7 OUT, OUT. OUT. OUT. OUTs OUT6 OUT 7 • LH5011D IN, IN. OUT, OUT. IN3 IN. OUT. OUT. INs OUTs IN6 OUT6 IN7 OUT 7 - - - - - - - - - - S H A R P -........... . . . - . - - - - . . . . . . . . . , 913 LH5012/LH5013 CMOS Driver LH5012/LH5013 CMOS Driver • Description The LH5012/LH5013 are 7 -circuit CMOS drivers. The LH5012 is a non-inverting type and the LH5013 is an inverting type. The outputs have an open drain construction fabricated using a P-channel MaS FET. They are used as drivers for VFD and interfaces between CMOS LSI and high-voltage MaS LSI. • Pin Connections 150UT 1 (OUT 1 ) 14 OUT 2 (OUT,) 130UT 3 (OUT 3 ) 120UT,(OUT,) II OUTs(OUT s ) IOOUT 6 (OUT 6 ) • 9 Features 1. CMOS process 2. 7 independent driver circuits 3. Non-inverting type ...... LH5012 Inverting type ........... LH5013 4. 16-pin dual-in-line package • OUT 7 ( OUT 7) )= for LH5013 Top View Block Diagram High Voltage Output Input (LH5012) High Voltage Output (Invert Signal) Input (LH5013) ----------~--SHARP---'" ........... - . - . - . . . . - - 914 LH5012/LH5013 CMOS Driver • Absolute Maximum Ratings Parameter Supply voltage Input voltage Output voltage Operating temperature Storage temperature • Symbol Ratings Vss -O.5-V ss +20 Voo VIN Vss-O.5- Voo+O.5 VOUT Voo -50-V oo +O.5 -40-+85 Toor -55-+125 T st• Unit V V V 'c 'c Operating Conditions Parameter Supply voltage Input voltage • Symbol VDD VIN MIN. 3 0 TYP. MAX. 18 VDD Unit V V Electrical Characteristics Parameter Output high voltage Output high current Symbol VOH IOH VIH Input voltage (LH5012) VIL VIH Input voltage (LH5013) VIL Input current IIH IlL Output leak -off current IOFF Static current consumption IDD Note Note Note Note 1: 2: 3: 4: Conditions IouT ;;;;l1'A VoH =3V(V DD -2V) VoH =2V(V OD -3V) VoH =7V(V DD -3V) VoH =12V(V oo -3V) VouT=4.5V VouT=9.0V VouT=13.5V VouT=0.5V VOUT =1.0V VouT =1.5V VouT=0.5V VOUT =1.0V VouT =1.5V VouT=4.5V VouT=9.0V VOUT=13.5V VIH =18V VIL=OV VOUT=OV VouT=Voo-30V VIN=VDD, Vss output open -40"C MIN. MAX. 5 4.95 10 9.95 15 14.95 -6 5 -9 5 10 -12 15 -17 3.0 5 10 8.0 15 12.5 1.0 5 10 2.0 15' 2.5 5 3.5 10 7.0 15 11.0 5 1.5 10 3.0 15 ,4.0. 18 0.3 -0.3 18 15 3 15 10 5 4.0 10 8.0 16.0 15 r-- Y{?r 25"C 80"C Unit MIN. TYP. MAX. MIN. MAX. 4.95 5.00 4.95 9.95 10.00 9.95 V 14.95 15.00 14.95 -4 -5 -9 -8 -11 -6 rnA -10 -28 -8 -15 -39 -12 3.0 3.0 V 8.0 8.0 12.5 12.5 1.0 2.0 V 2.5 3.5 3.5 2.75 7.0 5.5 7.0 V 11.0 8.25 11.0 2.25 1.5 1.5 4.5 3.0 3.0 V 4.0 4.0 6.75 10 5 0.3 LO I'A -10 5 -0.3 -1.0 3 10 I'A 20 10 4.0 30 8.0 60 I'A 16.0 120 Note 1 1 2 2 2 2 3 1 4 Applicable pins QUT,-QUT7, V'N=VSS or Voo RL=20kO, IouT;;;;lI'A, Applicable pins INI-IN7 Applicable pins IN,-IN7 No load condition '--~--'-'----SHARP----'----- 915 CMOS Driver • LH5012/LH5013 Logic Diagram (1 circuit) • LH5012 Voo I--C Vss • LH5013 Voo ·IN-C Vss -.-------~-SHAR/P 916 - - - - ......... --------------... CMOS Driver LH5012D/LH5013D LH5012D/LH5013D CMOS Driver • • Description The LH50I2D/LH50I3D are 8-circuit CMOS drivers. The LH5012D is a non-inverting type and the LH50 I3D is an inverting type. The outputs have an open drain construction fabricated using a P-channel MaS FET. They are used as drivers for VFD and interfaces between CMOS LSI and high-voltage MaS LSI. Pin Connections o 170UT j (OUT j ) 150UT 3 (OUT 3 ) 140UT 4 (OUT 4 ) 13 OUTs (OUTs) 120UT 6 (OUT 6 ) • 11 OUT,( OUT,) Features 100UT s (OUT s ) 1. CMOS process 2. 8 independent driver circuits 3. Non-inverting type ...... LH50I2D Invertingtype ........... LH50I3D 4. I8-pin dual-in-line package • )= for LH5013D Top View Block Diagram Input High Voltage Output (LH5012D) High Voltage Output (Invert Signal) Input (LH5013D) '-'---~--~SHARP-------- 917 CMOS Driver • LH5012D/LH5013D Absolute Maximum Ratings " Parameter Supply voltage Input voltage Output voltage Operating temperature Storage temperature • Symbol Ratings Vss -O.5-Vss +20 VDD Vss -O.5-V DD +O.5 VIN VOUT VDD -50-VDD +O.5 -40-+85 , Toor -55-:-+125 T.t2 Unit V V V °C °C Operating Conditions Parameter Supply voltage Input voltage • Symbol VDD : VIN MIN. 3 0 TYP. MAX. 18 VDD Unit V V Electrical Characteristics Parameter Symbol Conditions ,J Output high voltage Output low current VOH IOH VIH Input voltage (LH5012D) VIL VIH Input voltage (LH5013D) VIL Input current IIH IlL Output leak·off current IOFF Static current consumption IDD Note Note Note Note I louT I ~lpA VoH =3V(V DD -2V) VoH =2V(V DD -3V) VoH =7V(V DD -3V) VoH =12V(V Do -3V) VouT=4.5V VouT=9.0V VouT=13.5V VouT=0.5V VOUT =1.0V VouT =1.5V Vn,=0.5V VOUT =1.0V VlL =1.5V VOuT=4.5V VouT=9.0V VouT =13.5V VIH =18V Vu;=OV VOUT=OV VOUT=VDD-30V VIN=VDD• Vss ,output open ,-- y.qf 5 10 15 5 5 10 15 5 10 15 5 10 15 5 10 15 5 10 15 18 18 15 15 5 10 15 -40"(; MIN. MAX. 4.95 9.95 14.95 -6 -9 -12 -17 3.0 8.0 12.5 1.0 2.0 2.5 3.5 7.0 11.0 1.5 3.0 4.0 0.3 -0.3 3 10 4.0 8.0 16.0 25"(; 80"(; Unit MIN. TYP. MAX. MIN. MAX. 4.95 4.95 5.00 V 9.95 9.95 10.00 14.95 14.95 15.00 -4 -5 -9 -8 -11 -6 mA -8 -10 -28 -15 -39 -12 3.0 3.0 V 8.0 8.0 12.5 12.5 1.0 V 2.0 2.5 3.5 3.5 2.75 V 7.0 7.0 5.5 11.0 11.0 8.25 2.25 1.5 1.5 4.5 3.0 3.0 V 4.0 4.0 6.75 10 _5 -0.3 1.0 pA -10 5 -0.3 -l.0 3 10 pA 10 20 4.0 30 8.0 60 pA 16.0 120 Note 1 1 2 2 2 2 3 1 4 1: Applicable pins OUTI-OUTs. VIN=VSS or VDD 2: RL=20kO. IouT;:;>;lpA. Applicable pins INI-INs 3: Applicable pins IN.-INs 4: No load condition -.-----~~-SHARP'~.....--~~-~-- 918 CMOS Driver • LH5012D/LH5013D Logic Diagram (1 circuit) • LH5012D VDD IN-t • LH5013D IN~ 919 ___.-__.-_.-_.......... .._......,...._ LR34~6 Analog .Olock CMOS IC _:.iI._~ LR3428 • Analog Clock CMOS IC • Description Pin Connections The LR3428 is a CMOS IC for electronic clocks using a 4.19MHz crystal, 23-stage frequency divider, motor drive circuit and alarm output buffer. • Features l. 2. 3. 4. 5. 6. 7. Low power consumption Low impedance output buffer Modulated alarm output Single power supply: + l.5V 1Hz stepper motor drive 4.194304MHz crystal oscillator 8-pin dual-in-line pac.kage Top View • Block Diagram ll-stage Divider 12-stage Divider Output Control Circuit , Alarm Control Circuit VDD(1.5V) 920 Reset Input ---'l/" 6 Alarm Output Analog Clock CMOS IC • LR3428 Absolute Maximum Ratings Parameter Pin voltage * Operating temperature Storage temperature Symbol VDD VIN VOUT Topr Tst2 Ratings -0.3-+2.5 -0.3-V oo +0.3 -0.3-V oo +0.3 -10-+60 -55-+150 Unit V V V 'C 'C * Referenced to Vss • Parameter Supply voltage Oscillator frequency Oscillation start voltage • (Ta=25'C) Operating Conditions Symbol VDD fose Vose Electrical Characteristics Parameter Current consumption Oscillation stability Output on resistance Alarm output on resistance RESET pin pull up resistance Symbol IDD Mlf Rsatl (P+N) Rsat2 (P or N) RR Ratings + 1.15- + 1.80 4.194304 (TYP.) 1.15 Unit V MHz V (fosc=4.194MHz, CG =C o =15pF, C1 =400, Ta=25'C) TYP. 25 MAX. 50 1 Unit p.A ppm Voo=1.2V, RL =1800 50 100 0 Voo=1.2V, RL =9000 150 300 0 Conditions VDD =1.5V Voo= +1.2-+ 1.7V Voo =1.5V, VIN=OV MIN. 10 kO --...-...-..--.----.-SHARP . - . - . - - - - - 921 _ ........................... ....................-..-........................ . Analog Clock CMOS IC • LR3428 J Output Waveform (1) OUT1,OUT2 -.;o+-+-:31.25ms , t-ls~ I I I "----i--,....--Ir . . -----Jn~-+! --:":18... i: z OUT _ _---I I I RESET (2) I LJi--~ U I I I 1 Alarm output ,4t'-6.25ms -t-t-125ms ~8kHz III~III"III~, J~IIIIIIII~II .. ~OOm!1500m _ ALoUT 0( 1111111111111111111\ ' i 1, I -----------~' ~'----------- LJ RESET • 1 I ~~ : I 11111111,1111111 System Configuration o +-------12 Alarm Output L -_ _--{ M }--_ _ _--l Stepper Motor I' \ .--.------------$HARP .-----.-.....-.-..---- 922 Analog Clock CMOS IC LR3429 • LR3429· Analog Clock CMOS IC • Description Pin Connections The LR3429 is a CMOS IC for electronic clocks using a 4.19MHz crystal, 23-stage frequency divider, motor drive circuit and alarm output buffer. • Features 1. 2. 3. 4. 5. 6. 7. Low power consumption Low impedance output buffer Modulated alarm output Single power supply: + 1.5V 1Hz stepper motor drive 4.194304MHz crystal oscillator 8-pin dual-in-line package Top View • Block Diagram 0,,;11 ."•• { ll-Stage Divider 12-Stage Divider Output Control Circuit Alarm Control Circuit Vss(OV) VDD (l.5V) } Mo ! 932 .~ .~ "" c ~~ -< ...El :is .~ 1~ ., ... . . '" e~ 3,e- Il.._ <0 " ~ ... .. t:: rn 0'" "i.! ;;;00 Analog Clock CMOS LSI with Electronic Melody Generator • LR3465 Absolute Maximum Ratings Parameter Pin voltage * Storage temperature Operating temperature * Referenced • to Symbol Vss , VIN VOUT T st• Tonr Ratings -0.3-+0.3 Vss -0.3-+0.3 Vss -0.3-+0.3 -55-+150 -10-+50 Unit V V V "C "C Ratings -2.0--1.2 32.768 (TYP.) -1.4 Unit V VDD Operating Conditions Parameter Supply voltage Oscillator frequency Oscillation start voltage • Symbol Voo fose Vose kHz V (Voo=OV, Vss =-11.5V, Ta=25"C) Electrical Characteristics Parameter Current consumption Oscillation start time Input voltage Input current 1 Input current 2 Output current 1 Output current 2 Output current 3 Output current 4 Output voltage Output pulse width Output cycle Output phase difference Oscillation stability Note Note Note Note Note Note Note Note Note 1: 2: 3: 4: 5: 6: 7: 8: 9: Symbol Isss Issa Tosc V!H V1L I!HI I!H2 IOHI IOH2 IOL2 IOH3 IOL3 IOH4 IOL4 VOUT t TI T2 Mlf Conditions Standby no load Melody-ON no load Voo=1.4V MIN. TYP. MAX. 5 1 10 -0.3 VIN=OV V1N=OV VouT =-0.5V VOUT= -0.5Y. VOUT =-1.0V VouT =-0.5V VOUT =-1.0V VouT =-0.5V VOUT =-1.0V Vss= -1.2V, RL =3000 2 10 250 3 3 5 200 200 5 0.9 -1.2 10 200 31.25 2 1 Vss =-1.7-1.2V 2.5 Unit pA mA s V V pA pA pA pA pA pA pA pA pA V ms s s PPIlVO.IV Note 1 1 2 2 3 4 5 6 7 8 9 9 9 1 Cn=Cc=22pF , Applies to STl, ST, -S3, MA pins Applies to SI pin. Melody OFF time Applies to EVl, EV, pins Applies to SOl, SO, pins Applies to ML pin. The value of 10H for melody OFF time. Applies to MH pin. The value of IOL for melody OFF time. Applies to PI, p, pins. RL= 300 (} (Refer to the right figure. Refer to clock specifications. 933 AnaJog Clock CMOS LSI with Electronic Melody Generator • Clock Specifications Predominant melody interval Predominant envelope control Accompaniment interval Accompaniment envelope control Note length control 'PII ~t~ J41..-~_"""",n ___ I.TI~ I ,I P 21 : n ...---.. .rL According to the state of the music select input Sl-S3, one music will be selected from the 8 pieces of music available. The pull-down ,resistor built into the music select pins allows the pins to be used either connected to Vss or open. If the music select input state is altered in the middle of performance, the music then specified will be performed from the start. A music selection for the LR34651 in which 8 pieces of music is written in is shown in the table below. '--T~ I ,I By altering PLA, the output pulse width t can be selected from the following: 15, 31, 46, 62, 78, 93, 109 (ms) Second counting will be performed and the output for the step motor will turn off while the SS input is ON. On turning the SS input OFF, the second counter is enabled to start. (Maximum error: 31.25ms). • LR3465 Melody Specifications Up to 8 pieces 600 steps X 13 bits 2 sources 2.5 octaves For the sounds in parentheses ( ), only the attack sound output will be generated. 15 speeds for each music (The minimum note length shall be selected from between 31 -468ms). 2 kinds (Other notes of different length can be represented by the different number of steps.) , (Example) If the fastest note in a music is " the kinds of note that can be specified by 1 step are '_and 1>. The note length control is by "I" and "0". J = 1> (1) + 1> (0) ............................... 2 steps J. = 1> (1) + 1> (0) + 1>(0) ····,··············3 steps iY = 1> (1) + )l (0) .............................. 2 steps The number in parentheses ( ) represents envelop control. 1-15 times, endless Melody command . snooze command Control command Jump command Repetition number setting ' comniand End command 1 934 Music select input Name pf music SI S2 S3 H H H Westminster L H H Westminster H L H Spring (Four L L H seasons) Vivaldi Autumn (Four H H L seasons) Vivaldi Winter (Four L H L seasons) Vivaldi H L L Chime L L L Alarm * * TemNumber of repetitions po J = T3=VDD T3=V55 68.6 96 96 1 1 8 1 1 1 96 10 1 96 8 1 40 5 1 192 Endless Endless 240 Endless Endless Twinkle twinkle little star French music Ii: VDD L : Vss or open (1) One shot type Jl......___.....;._~n..____ Start input ST Mode input MA ON Melody output OFF Auto stop Forced stop LR3465 Analog Clock CMOS IC with Electronic Melody Generator _ _ _. -_ _. - _. . . .. - . - . -. . .ra. . . . . . ._ . - _ (2) Hold type (Number of repetitions 1-15 times) (3) Hold type (Number of repetition Endless) Start input ST.J Mode input MA-------------- S tart input S T Mode input MA ON L r------------------,L- Melody output OFF...J ON' Forced stop/ Melody output OFF' Forced stop Snooze function allows each music to be programmed into the mask ROM independently_ However, the number of musics that can be selected will be reduced because a program in snooze function is one of the melody programs. • System Configuration (LR34651) 3.3JlF + LR34651 L5V 33JlF Note TR,: 2SC1383 TR,: 2SA683 Envelope waveform is determined by the value of R applied to pins No. 14 and No. 15. Make sure that pins No. 10 and No. 12 are to be connected to No. 11. Make sure that pin No.2 is to be connected to pins No. 11 or No. 21. 935 LR3441 LCD Digital Clock CMOS LSI LR3441 • LCD Digital Clock CMOS L8.I • Description Pin Connections The LR3441 is CMOS LSI for LCD display clocks with a basic three function, daily alarm, hourly alarm and timer. • Features 1. Three functions ("Hour", "Minute", "Second") "Second" display by colon 2. Alarm function with Snooze function 3. Hourly alarm 4. Timer function 5. Instant second set function (1 - 59 sec ..... No carry to the minute digit) 6. 3V dynamic LCD drive 7. 32.768kHz crystal oscillator 8. Single power supply : - 1.5V (with voltage doubler) • Block Diagram Control Circuit Switch Input 936 Segment Output "Common Output LCD Digital Clock CMOS LSI • LR3441 Absolute Maximum Ratings Parameter Pin voltage Operating temperature Storage temperature Note 1: Note 2: Note 3: • Symbol Vss VEE VIN VOUTl VOUT2 Tope T stg Ratings -2.0-+0.3 -4.0-+0.3 Vss -0.3-+0.3 Vss -0.3-+0.3 VEE-0.3- +0.3 -10-+60 -5.5-+150 Parameter Supply voltage Oscillator frequency Oscillation start voltage (Ta=25·C) Symbol Vss VEE fase Vase Ratings -1.8--1.2 2Vss (TYP.) 32.768 (TYP.) -1.4 Unit V V kHz V (Voo=OV, Vss =-1.5V, VEE =-3.0V, Ta=25·C) Electrical Characteristics Parameter Current consumption Oscillation start time Segment output current Common output current DDC output current Vc output current AL (ACloUT. TSoUT Output current AL (DCloUT' SLoUT• TMouT Output current Pull down resistance Input voltage Note Note Note Note Note 4: 5: 6: 7: 8: Note 1 1 1,2 1,2 1,3 Referenced to VDD Applies to Vss pins Applies to VEE pins Operating Conditions • Unit V V V V V ·C ·C Symbol MIN. lov Conditions No load Vss= -1.4V Vos=0.5V Vos=0.5V Vos=0.5V Vos=0.5V 20 60 60 120 flA flA flA flA IOHl VouT=-0.2V 200 flA IOH2 Vos=0.2V 100 flA RSI RS2 RT VIH VIL VIN=OV VIN=OV VIN=OV Vss =-1.8--1.2V Vss =-1.8--1.2V I tota 1 Tosc los loc 100 TYP. 1.5 MAX. 3.0 10 Vss flA s kO kO kO 700 500 100 -0.1 Unit 0 Vss+O.l V V Note 4 4 5 6 7 8 8 Co=Cc=22pF, Cl=C2=O.1 pF Applies to O.5HIl H, SF pins Applies to ZA, S" S2, SN ISLoFF, SL, AL pins Applies to TE, TI" Tl2, IR pins Applies to O.5HIlH, SF, ZA, S" S2, SN/SLoFF, SL, AL, IND·SEL, ALoFF, 12H/24H pins ........-..-.-.-.----SHARP-------- 937 LR3441 LCD. Digital Clock CMOS LSI ,• Specifications (1) Input control Symbol Sl S2 SF ZA AL SL SN/SLoFF ALoFF 12H124H INDSEL IR O.5HIlH (2) (i) LR3441 Pull down to V1m Pull down to VDO Pull down to VDO Pull down to VDO Pull down to VDO Pull down to VDO . Pull down to VDO Open' drain Open' drain Open' drain Pull down to VDO Pull down to VDO Content "Hour" set "Minute" set Safety o adjust Alarm mode switch Sleep timer mode switch Snooze "ON" sleep "OFF" Alarm output "OFF" 12 hours/24 hou~s switch Indicator select Initial . reset Sleep time 32 minutes/64 minutes switch Operation flow Function read operation (iii) 0 adjust Operates only when the switch is ON and returns automatically after OFF I...._ _ _ _ _ _...J 1-59 seconds are truncable (iv) Alarm time display adjust operation (ii) Time display adjust operation 1 push 1 word forward ON more than 2 seconds hour digit 1Hz forward minute digit count up 5 minutes at a time (v) Sleep time display adjust operation 1 push 1 word forward ON more than 2 seconds hour digit 1Hz forward minute digit count up 5 minutes at a time (Example) 2 --+ 3 --+ 5 --+ 10 ... Correct from whichever was sel<\cted.0.5H/IH 1 push 1 word count down ON more than 2 seconds count down 5 minutes at a time -----------SHARP-----P.....-...-..-"-----938 I I LCD Digital Clock CMOS LSI LR3441 Mode display format (vi) Display Mode Time display Time display adjust operation Alarm time Sleep timer SF & S, ON SF & S2 ON ALON AL & S, ON AL & S2 ON SL ON SL & S2 ON HH : *1 : HH HH : *1 : HH MM MM *2 MM MM *2 MM *3 1 Hz flashing 1 S, 1 count-up with each ON 2 S2 1 count-up with each ON_ Rapid feed by 5 minutes if S2 held ON for more than 2 seconds_ 3 S2 1 count-down with each ON. Counts-down by 5 minutes if S2 held ON for more tban 2 seconds_ * * * • Functions (1) Alarm function (i) If the set alarm time coincides with the real time, the following outputs will be generated at each of the following outputs. • At AL(AC)ouT 4 minute tone output of 2kHz X 8Hz X 1Hz • At AL(DC)ouT approximately 32 (64) minute controloutput • At TMoUT approximately 32 (64) minute control output (ii) When the SN/SLoFF is turned ON while the alarm output is being g~nerated, the output will be interrupted for approximately 7 minutes until the output generation is resumed. Called snooze function, it can be repeated fot either approximately 32 minutes or 64 minutes. (iii) The alarm indicator selected by the INDSEL pin with the alarm timer being set can "be displayed. (iv) With ALoFF switch connected to Vss, the alarm indicator will not be displayed and alarm will not be output even if the alarm time and the real time coincide. (v) The alarm control output time can be selected by the 0.5HIlH pin to either 32 or 64 minutes except when alarm output is being generated. (2) Sleep timer functio!,) (i) If the SL is depressed with no TMoUT output, either 32 or 64 will be selected according to the state of the 0.5HIlH pin and TMouT and SLOUT will be output. (ii) The remainder of the time can be displayed if the SL is turned ON while the sleep timer is in operation. (iii) Whenever the SN/SLoFF pin is turned ON while the sleep timer is in operation, the sleep out will go OFF. (iv) If the SL is turned ON during the alarm output, the TMoUT and AL(DC)oUT will be output for another 32 or 64 minutes. The timer interval can be selected by the 0.5HIlH pinto either 32 or 64 minutes except in the sleep operation. (v) When S2 has been depressed to set the sleep timer to "0" in rapid feed, it will stay at "0" on further depression of S2. (3) Timer out The TM output (DC) will be generated when either the sleep output or the alarm output (DC) is generated. The timer out is an OR-circuit of the sleep out and AL(DC)oUT. If the ALoFF is ON with only AL(DC) as the output, the timer out will also be turned OFF. (4) Time Signal The TSouT pin that outputs time signal is provided. The output starts at 59 minutes 57 seoncds. (See the figure below.) 59min 57 sec (5) OOmin 58sec '59 sec OOsec In the case of alarm and sleep overlap (i) The figure below shows the state of each output pin when the sleep timer goes into operation during the alarm output. When the SL is turned ON, the AL(DC)oUT and TMouT intervals will be s~t to another 64 min/32 min. When the SN/SLoFF is turned ON, the TMouT, ALoUT, and SLOFF will be turned OFF. --------------SHARP AL(AC)OUT ~'--_ _ _ _ _ _ _ __ AL(DC)OUT ~I---------"'L I I : SLOUT L I I ™oUT ~ The S W that turns the AL (DC)auT, TMoUT, and SLOUT OFF_ I ~ 1 r---64min----, I,ALoFFsW'I' SL/SLoFF SW+- AL output synchroni zed with real time -~.---.-........,.-- 939 LCD Digital Clock CMOS LSI ... .-....,~.....,~- (ii) When the alar~ time and the real time coincide while the sleep timer is in operation togenerate the alarm. output, the SLOUT and TMouT intervals will be set for another '64 min/32 min. ~ . I AL(AC)OUT ~---r:-----;fl~--~----~'--- I~ I I AL(DC)wr : I I ~ TMoUT I i I I ~ r----64min--r TM OUT and I ~: ' !r-----+!:SN/SL",.,SW SLOUT into the OFF state SLo~ --r---J ALoUT syncronized with real time • ~--~ __........ In this case if the SN/SLoFF i~ turned ON, the AL(DC)oUT and AQ(AC)OUT will go OFF never to be output even 7 minutes later. When the ALoF~ is turned ON, only the AL(AC)oUT will go OFF. (6) SLOUT Switch to put AL(DC)OUT LR3441 ..... r..--II:.....,.....,.....,~ Initial reset· If the IR pin is connected to Vss, initial reset will be applied to immediately reset all the counters and AM 12 : 00 or a : 00 will be displayed depending on the 12H system in the case of the former, 24H system in the case of the latter.. (7) Indicator select The INDSEL pin can select either the bell mark or the note mark. Note mark: with Voo connected or open Bell mark: with Vss connected System Configuration 24J----~ 'LCD :>---'---i46 48 O.l,uF O.l,uF 0_1,uF Note) 0.5H/1H : 0.5H : 1H : 12H/24H: 12H: 24H : 940 with with with with Von V 55 Voo V 58 connected or open connected connected connected Digital ON/OFF Clock Timer CMOS LSI LR3419 • LR3419 Digital ON/OFF Clock.Timer CMOS LSI Description • Pin Connections The LR3419 is a CMOS LSI designed to provide clock and timer functions. The base frequency is selectable: 50 Hz or 60 Hz line input or 32.768kHz crystal. It is also capable of driving fluorescent displays tube (VFD) directly. • Features 1. "flours-Minutes' display 2. Timer function that permits both ON/OFF times to be set 3. Power failure indication 4. Directly static-drive a VFD 5. Time base: 50/60Hz line or 32.768kHz crystal 6. Power supply voltage: + 5V 7. CMOS process 8. 48-pin quad -flat package • Top View Block Diagram GND Cont ral Input Test ~=:=~=!=~:::!=~I_~Timer ON/OFF Detector r Timer Output Hour Advance lO-min Advance Min Advance 2 Timer ON/OFF 2 Real Time Mode Timer ON Set Mode Timer OFF Set Mode Segment Decoder/Driver Segment Output 941 Digital ON/OFF Clock Timer CMOS. LSI Absolute Maximum Ratings • Symbol Voo V IN BV Po Parameter Supply voltage Inp·ut voltage Output voltage Power consumption derating ratio Conditions Referenced to GND Referenced to GND IMerenced to GND Ta~+25'C J Ta>+25'C Pin current II Operating temperature Storage temperature Toor T st• Ratings Unit -0.3-+7.0 V -0.3-(Voo+0.3) V V oo +0.3--23 V mW 550 5.4 mW/'C ±2.0 rnA ±1.0 -10-+60 'C -40-+100 'c Note 1 1 2 Note 1: Applies to al-4, bI-a, CI--I, da--t, el-I, ft-1, gl-..a, QL, QH, QT pins Note 2: . Applies to 110 pins except Note 1 • Operating Conditions Parameter Supply voltage Input voltage Output voltage • . Symbol Voo V IN VQlIT Conditions Referenced to GND Referenced to GND Referenced to GND MIN . 4.5 0 -21 TYP. 5.0 -19 MAX. 5.5 Voo 0 Unit V V V Electrical. Characteristics Symbol VIH VIL Parameter Input voltage Input current .' IIHI IILl IIH2 IIL2 IIH3 I'L3 IIH4 IIL4 11115 Input amplitude Output voltage Time' base Current consumption Note Note Note Note Note Note Note 942 I'Ls VI Vom VOLI VOH2 VOL2 f 100 3: Applies to CONI, CON" 12114 pins 4: 5: 6: 7: 8: 9:. Applies to PI-3, SH, ST, SM, TI pins Applies to ACL pin Applies to TE, TI pins Applies to XI pin Applies to Tom pin Clock display mode Conditions Applies to all input pins Voo=5.0V VIN=VOO VIN=GND VIN=VOO VlN=GND V'N=VOD · VIN=GND VIN=VOJ) VIN=GND VIN=VOJ) V'N=GND f=50 or 60Hz Io [[=0.5mA, Voo=5.0V Connects to -19V at RL =100kO lo[[=0.2mA, VOJ)=5.0V IOL =-0.2mA, Voo=5.0V CONI =GND, CON 2=GND CONI =VoJ), CON 2 =GND CON I =GND, CON2=V~J) f=50Hz, VI=VOJ)V~~p f=60Hz, Vi=VOJ)VD~D With 32.768kHz crystal MIN. 4.0 0 TYP. 5.0 -0.5 -10 4.0 4.5 -19.0 4.5 100 0.5 -0.5 MAX. V OD 0.4 1.0 -1.0 30 -1.0 1.0 -3.0 1.0 3.0 -3.0 Voo 4.9 -18.0 4.9 0.1 50 60 32.768 0.5 Unit Note V 3-7 pA 3 pA 4 pA 5 pA 6 pA 7 Vp~p V 1 V 8 kHz 50 50 50 pA 1 8 9 LR3419 Digital ON/OFF Clock Timer CMOS LSI. • (iii) Timer ON (OFF) time setting operation Specifications (1) Basic time base Time base 50Hz 60Hz 32.768kHz Disable * Time base select input Time base input pin CONl CON, Xl 0 1 0 1 0 0 1 1 50Hz 60Hz Xc OPEN OPEN P,(P3) and either SH, ST or S M simultaneously * Oscillator feedback circuit that consists of crystal and capacitance (2) ( i) Operation flow chart o Function readout operation ==> o Transits only when SW is ON. Returns automatically after it is turnd OFF o o Setting will be complete when P2(P3) is OFF. While being adjusted, the 10 minute digit does not increment the hour digit, nor does the minute digit increment the 10 mi· nute digit. In the timer ON (OFF) time set mode, timing will not stop. In the timer ON (OFF) time set mode, timer output will not be affected even if the timer ON (OFF) time coincides with the time display. (iv) Simultaneous depression of setting switches Normally only one of Pl, P2, and P3 goes ON. If more than two of these are depressed simultaneously, they enter no input and go into the time display mode. (v) Simultaneous depression of rapid feed switches Note:· Hour rapid feed (SH) will proceed as follows. 12-hour representation 12--'1 --.2·············· ·--.1 0--'11 L-.~---AM/PM c h a n g e - - - - - - - - 24-hour representation 2--.13--.14···· .... '--.23--.0--'1 --.2· .. ····· '--.11 r C (ii) Normally only one of SIl, ST, and S" goes ON. If more than two of these are depressed simultaneously, the following operation will proceed. (a) If one input goes ON followed by another input that ON J Hour display adjust operation i SM -i-,_ _-<,~--!,...J '-------' i-----------i Hour forward o Counter digit below second will be reset (b) Decade minute forward 1-,---- I i--------.i Minute forwrd More than 2 inputs go ON simultaneously SH~ J S iI r------1 T SM ~ i ~r--------I I I i ; ~i----+:-..J : r--~I-~---'I-- i l lI~ ~ ~ I o o After P is turned OFF, timing starts from 00 second. While being adjusted, the 10 minute digit does not increment the hour digit, nor does the minute digit increment the 10 minute digit. , Hour forward I I Minute forward ~-:-'---'''---SHARP---'---'------ 943 LR3419 Digital ON/OFF Clock Timer CMOS LSI (vi) Power failare display function In any mode, LSI will be initialized inside on application of ACL to display: With 12 hour repres~ntation PM 12 : 00 With 24 hour representation 12: 00 This whole display goes flashing, 0.5 second ON and 0.5 second OFF. The display stays in the initial state. J To stop flashing, go into the time display mode (PION) and then timing starts with PI turned ON. On application of ACL with PI set to ON, the display will s,tay in the initial state without flashing. On the next PION, the display still in the initial state will go flashing. Then on the next PION, • flashing will stop. And on the next PION, timing starts. (vii)' Auto clear circuit The internal state on power-up will be as follows. (a) Time display 12 hour representation PM 12 : 00 24 hour representation 12 : 00 And the second, counfer will be reset. From the time when the auto clear input ceases to 'exist, it will operate according to the mode input (PI, P2, P3). (b) Time ON and Timer OFF time ' PM 12 : 00 With 12 hour representation With 24 hour representation 12 : 00 System Configuration VI FIP5B13S V, 23 24 25 26 27 VB (-19V) VDD(+5~) + 22I00-I--+1 GND(OV) 21I00-I--+1 20 i-+--.-I;I!II 181-+-.....-/· 17 t--\-.....J. 16H--.-f. 15 I-o-f-.....J. 141-+-~141 13H---,-.....!ii5\ 12H-.....-/' llt--\-.....J, 10t-t-....-f~18I 91--i--4----' 3}6,7'H--+----l 2) 4,1--i~-4----~ Note 1: Set to side 2 under 24 hour system, and set to side 1 under 12 hour system Note 2: Time base selection CONI CONz 50Hz side 1 side 1 60Hz side 2 eide 1 32.758kHz side 1 side 2 Note 3: Time base input circuit (alAt 50Hz, 60Hz O.lJlF.r-@ O-;f-:I:.@ SlJlIJlF o Note 4: 944 (plAt 32.768kHz ® Fluorescent display tube FIP5B135 The number indicates the pin number. The figure in ( ) is for 12 hour system. LR3472 VTR Program Timer CMOS LSI LR3472 • VTR Program Timer CMOS LSI • Description Pin Connections The LR3472 is a CMOS LSI for a 6 events 1 week VTR program timer. It can directly drive a fluorescent display tube (VFD). • Features 1. 2. 3. 4. 5. 6. 7. 8. 9. • cS c3 "Hours-Minutes" display Selectable 12/24 hr. format Max. of 6 events 1 week 6-daily and I-weekly reservation Directly drive a VFD Time base: 32.768kHz crystal Supply voltage: - 5V CMOS process 48-pin quad-flat package >2 ,;: :2 :2 Top View Block Diagram ~ /'"~ Error Colon UI' Down Rec. Power~ Grid K Input hr Set .---.-.----~-SHARP'-.-.-~----- 945 L.H3472 VTR Program Timer CMOS LSI • Absolute Maximum Ratings Parameter Supply voltage * 1 Input voltage * 1 Output voltage * 1.2 Operating temperature Storage temperature *1 *2 • Refer~ Symbol Voo V IN VN Toor T st• Ratings +0.3--7.0 +0.3-V DD -0.3 +0.3--40 -10-+60 -55-+150 Unit. V V V ·C "C to Vss Applies to Rl-I-R'-I,DI-Ds, S,-Sh pins Operating Conditions Parameter Supply voltage * 1 Input voltage * 1 Output voltage * 1.2 • Symbol Voo V IN VN MIN. -5.5 TY? -5.0 MAX. -4.5 0 Voo -32 (V oo =-5.0V±10%, V N=-.32V, Ta=25"C) Electrical Characteristics Parameter Input voltage Input current .' Output voltage Symbol VIII V IL IIIn IILl IIH2 IIL2 11113 IIL3 11114 IlL4 V OHl VOLI V OH2 V OL2 V OlI3 V OL3 V OH4 V OL4 Oscillator frequency fose Current consumption IODI 1002 Note 1: Note 2: Note·3: Note 4: Note 5: Note 6: Note 7:. Note 8: Note 9: Note 10: 946 Unit V V V MIN. -0.5 Conditions TYP. Voo VIN=OV VIN=Voo VIN=OV VIN=VOO VIN=OV VIN=VOO VIN=OV VIN=VOO IoH =-6mA RL =120kO to IoH =-12mA RL =120kO to IoH =-2mA RL=120kO to IoH =-3mA RL=120kO to MAX. 0 Voo+0.5 10 -1 5 -1 1 -5 4 -1 ~2.0 V N+1.2 VN -2.0 V N+1.2 VN -2.0 VN V N+1.2 -2.0 VN V N+1.2 32.768 No lo~d, uniterrupted power condition No load, interrupted power condition Vss OSCIN OSCOUT Note V 1 p.A 2 p.A 3 p.A 4 p.A 5 V 6 V 7 V 8 V 9 kHz 300 40 r, Applies to Vee, ACL, TI", T2, fi, a, K,-K. pins Applies to Kl - K. pins Applies to a, fiJins Applies to Vee, r pins Applies to ACL pins Applies to S.-Sh pins Applies to D,- D8, pins Applies to RI-I-RI-4~ R2-1-R2-' Applies to Ra-l-Ra-4, R'-I-R4-.' Test circuit (right figure) Unit p.A 10 VTR Program Timer CMOS LSI Specifications • (1) Input keys and operations LR3472 these keys to execute one by one the data being displayed on the fluorescent display tube. With each depression of these keys, the data gets renewed by 1. But if they are held pressed for longer than 0.5 second, the data gets renewed by 1 every 0.25 second. CSUn---i>Mon---i>Tue-+wect-:ThU-+Fri-+sa:-----YAlI daY~ ( i ) Clock Call key When to set the current time, depress the Day, Hour, and Min keys one after another while holding the key pressed. When both the Clock Call key and anyone of the Day, Hour, and Min keys are released, the clock starts from 00 second. Depression of the Clock Call key in other mode (time set mode) causes the data that has been displayed on the fluorescent display tube stored and at the same time goes back into the clock mode. (ii) Timer Call key This key is for calling the 6 timers in sequence. With each depression, this along with the symbol will be displayed on the fluorescent display tube in the order shown in the figure below. Only the data called by the Timer Call key to the fluorescent display tube can be altered in timer setting and clearing. In current data setting, the Day key should be depressed 7 times to return to the origin. But in timer ON time setting, it should be depressed 8 times because of the additiona of "everyday". (iv) Data renewal by the Hour key In current time setting or recording time setting, the data will be renewed in any of the following manners depending on whether the clock is under 12 hour system or 24 hour system. • Under 12 hour system CPM12--+PMl--+PM2-+-~PMll-AM12~.AM]----+----+AM11~ • Under 24 hour system CO ------+ 1 ---> 2 ---> 3 ---> m ____ m m ___ -- 23~ In recording time setting, the data is renewed in the following manner. CO -- 1 ---> 2 ---> 3 ~ ------------------->11 ~ The recording time can be set to up to 11 hou'rs ' and 59 minutes. (v) Data renewal by the Min key CO - - 1 (iii) Day, Hour, Min key To set the current time or set the timer, depress ---> 2 ---> 3 -+--------------->58->59~ (vi) Clear key This key is used to clear the data of the timer that is set. First depress the Timer Call key to call the timer then depress the Clear key to clear the stored data of the timer that was called to the flourescent display tube. The recording time data can be cleared independently but if their recording start time is cleared, the recording time data of the same timer will also be cleared. This key has a function of stopping the execution of timer recording. In other words, while timer recording is being excuted, only this key along with the Timer Call key and the Clock key that are used to confirm the preset time can be accepted and clears in the clock mode only the data of the timer which is executing recording to bring it to a forced stop. Simultaneous depression of any other key than the Clock Call cannot be accepted. A new key input cannot be recognized until all the keys are released. -.-----.-~-SHARP--.-.------- 947 VTR Program Timer CMOS LSI (vii) Other inputs' (a) 12 hour/24,hour swiching input (b) Tape end input ' This input gone "Low" is r~cognized as the tape end and causes the timer outputs Tp andT R to.go "Low'" for the timer operation to come to an end. (2) LR3472 And unless this input is "High", tne timer output T p and T R will not go ''.l{igh'' even if the current time and the recording start time coincide in the clock mode. (c) Power failure detect output Display and outputs r--~ I SAT I I I I I I I (ii) Outputs The LR3472 has the following outputs. Channel control output 2-bit Cu, CD Timer power output I-bit Tp Timer rec output I-bit T R The channel control output is for controlling the channel selector IC. The timer output T p goes "High" in rec9rding start time and recording time setting. And in the clock mode, it goes "High" 1 minute before the recording start time. The timer output T R in the clock mode goes "High" if the current time coincides with rhe timer ON time in the clock mode. Power failure causes all the displays to go bla'nk and resets the output. When the power comes back on, the power failure indication will be displayed during the. next 1 minute. If the power failure occurs while recording, T p goes "High" (on channell now) and another 1 minute later, TR goes "ijigh" (on the preset cha,nnel) to resume recording. The power failure display is indicated, by flash· ing 1 second ON and 1 second OFF. To stop the 948 I I I I I I I Start :RH .I I I L___ J The clock has 12 hour system/ 2 4 hour system switching capability. Under the 12 hour system, AM/PM change-over occurs bet~een 11 o'clock and 12 o'clock. When the clock is under 24 hour system, so is the ti~er ON time. The display "PRO" indicates the time is set to the timer and lights up when setting. The colon fashes 0.5 second ON and 0.5 second OFF while the clock is in operation. The character in the g7 position indicates the timer number in reo cording start time setting and recording time setting. Error lights up when more than two timers overlap. r----' I B: : I I I I' I I (i) Display Sh I I Length I R,-, I I IR'_3 I Error I !.. ____ J flashing, depress the Clock Call key. (3) Initial mode .[CH1 ..... CH14 key--Shift the channel by Cu, and CD. Clock Call key --For clock setting mode Goes into this mode after auto clear is reset on power-up. This mode accepts only the CHI-CH14 keys and the Clock Call key for clock setting. Once the Clock Call key is deressed, timing of the clofk, and timer operation are disabled. Timing cannot be performed until the clock is set. Initial state display SUN 0·0 D Display after depression of the Clock Call key (Note) The colon is lit. (4) Clock setting mode Clock Call key [ 1 Day key - - d + 1 ---- d Hour key h+1 - - h ...,,-,----,_'-::-.,., __ Min key m + 1 --m Clock Call, Day, Hour, Min key The LR3472 stays in this mode while the Clock Call key is held pressed. This mode accepts the Day, Hour, Min keys and allows for current time setting. Note that the minute digit does not increment the hour digit and the hour digit does not increment the day digit. LR3472 VTR Program Timer CMOS LSI (5) Clock mode Tape End - - - ' L - T n:(T m-l)nl>n--- T p Tn-Tm TH 3 Clock Call key ~ Day key Hour key -~---+--- Current time set mode . Min key Timer Call key - - - - - - - - - - - Recording time set mode CH1-CH14 key C", Cn channel shift TPITn=T'm Tn ; Current time T m; Timer ON time T'm ; Timer OFF time Lm=l, m=everyday-T p , TH m1'1, m = everyday - T p, T R, m clear m1'1, m = everyday - T p, T R, m clear Clear key Tape End _ _ _-1 This mode is an ordinary timer operation mode in that the timer output T p goes "High" 1 minute before the preset recording start time with the Tape End input "High" and when the current time coincides with the preset recording start time, the timer output T R goes "High". Even when the current time reaches one minute before the preset recording start time or when it coincides with the recording start time, the timer outputs, T p and T R will not go "High", nor will preset content be cleared if the Tape End input is "Low". When the timer output T p is "Low" (when timer recording is not being executed), if the Clock Call key and either of the Day, Hour, and Min key are depressed simultaneously to go into the current time setting mode, the current time can be adjusted. And when the timer recording is not being executed with the T p "Low", the Timer Call key is depressed to go into the recording start time setting mode to allow what is now being displayed to be the recording start time and the preset channel for the timer 1. On reaching the time where there is no recording time left with the timer output T R "High" (when timer recording is being executed), the timer outputs T p and T R go "Low" to have the corresponding memory content to be cleared except in the case that the memory content for the corresponding time happens to be "every day" and the corresponding timer happens to be the No.1 timer. This indicates that the timer 1 is preset for every week. If either the Clear Key is depressed or the Tape End input goes "Low" with output T.p "High" (when timer recording is being executed), the timer outputs Tp and TR go "Low" to have the memory content for the corresponding timer to be cleared except in the case that the preset content for the corresponding timer happens to be "every day" and the corresponding timer happens to be the No.1 timer. The CHI-CH14 keys can be accepted for the channel signal to be generated, while the timer output T p is "Low". (6) Recording start time set mode Tape End - - - Daykey---Hour k e y - - - Min key CH1-CH14 keyClock Call key - - Tp d + l-+d Day shift h + l-+h Hour shift m + l-+m Minute shift ClI , Cn Channel shift Display-+Memory, For the clock mode Timer Call key - - Display-+Memory, Timer address shift, For recording time setting mode Clear key - - - - Recording start time clear, Recording time clear This mode is the recording start setting time mode. The display in the state in which the called timer has been cleared or in which the non-set timer has been called is shown as below. Day digits are all OFF. The timer number is that of the timer called. (1-6) ......_ _ _ _ _ _ _ _ _ _-' The colon- is flashing. - . -: - I - B Ti;"er display when the preset is cleared The channel is set initially to channel 1. This can be adjusted by the CHI-CH14 keys. The CHI -CH14 keys and Day, Hour, and Min keys can be depressed in any order and if unnecessary need not be depressed at all. To exit for the mode in which to set recording time for the same timer, depress the Timer Call key. In which case the timer output T p remains "High". In this mode, the recording time memory for the same timer will be cleared on depression of the clear key. This mode disables timer recording. -..-..----~--SHARP-------- 949 .---,.-.. ...... ........................... VTR Program Timer CMOS LSI ~~~.-. (7) Recording time set Tape End -~-Hour key Min key Clear key Clock Call key - - Tp h + I-h Hour shift m + l-+m Minute shift Recording time Clear Display-+Memory, For the .clock mode Timer Call key - - Display-+Memory, Timer .address shift. For recording time set mode This mode is the mode in which to set the record· ing time. The display in the state in which the reo cording timer for the called timer has been cleared and in which the not·set time~ pas been called is shown as below: I- I The day digits are all OFF. . The timer number (1-6) d~splayed is that of the tim er called. . io-_ _ _ _ _ _ _ _ _- ' The colon is flashing. - : - ...:.. B This mode does not respond to depression of any of the Day key, and CHI-CHI4 keys. If not reo quired, the recording time setting procedure by the Hour and Min key can be skipped so that the Clock Call key and the Timer Call key may be operated to proceed to. the next step. If timer recording is attempted with the recording time cleared, either the Tape End signal goes "Low" or the recording will continue until the timer recording gets inter· rupted by the Clear key. With the recording time set to 00 hour 00 mi· nute, the Tp goes "High" 1 minute before the recording start time, but on reaching the recording start time, the Tp and T R go "Low" to disable reo cording. In this mode, the T p goes "Low" on transi· 950 LR3472 ' --.-..-.~-- tion by the Clock Call key to the clock mode. By th-e . Timer Call key, this is the same operation as the recording start time setting for the next timer. This mode disable timer recording. (8) Others ( i ) Error indication The error indication lights up when more than 2 of the preset timer contents overlap and the numbers overlapped will be alterl!ately displayed as in the example. (Example) When the timer No.1, No.2, and No.3 overlap 1-+2-+3-+ 1-+2-+3-+········· Note that more than 2 sets of overlaps cannot be distinguished from each one of the sets. If the recording time is not set, overlapped preset times give no error display. Error indication does not prevent transition to the program that starts halfway through. Timer~ . I (M>N ) M, N are timers, Tlmer~ No. 1-6 . N In the figure above, the timer M is the first to be executed. In which case the memory for the timer M gets cleared on completion of the timer M recording. The timer N completes recording the following week to be cleared. (ii) Preset for the second week If the current time is already past the recording start time, it is considered as the preset time for one week away. .LR3472 VTR Program Timer CMOS LSI • System Configuration ~ !OOV AC IpI~ :( I .. .,, ~~ Fluorescent tube display .. ! !tal =~rt.ttlLtltft.t t r47l r4~ r4~ 1441 ~~ 1421 F r4~ 13~ 138\ r3~ ~. ~ ~ "''..." 11 ~ ;: r"""'" 0 I ~ [[ I . Tape -end detector circuit Clock Clear Day H 13 ime ·14 9 10 ;: f""Mr' ~~ [! rs .-= J21 f""Mr' -= ~ 3Jl ~~ LR3472 ~ ~.9 6 2..m ~~ ~~ 'ii I26If""I""' 5 ~our 11 7 Min 12 8 .1 3 4 On .;r. -,g @.IN''- "- I!fJ if 15 16 Ll;!1 Ll~ I!2J ~ ~ ~i5 Channel selector L ~'-.--'--------SHARP I _ . - . i - - _ _ _ _ _ ____ 951 Remote Control Transmitter CMOS LSI LR3715M • LR3715M Remote Control Transmitter CMOS LSI Description • PinConnections The LR3715M is a CMOS LSI developed for use in infrared remote control transmitters. • Features· 1. 2. 3. 4. 5. 6. 56-channel of data can be transmitted Transmission code: PPM Time base: 455kHz ceramic oscillator Supply voltage : 3V CMOS process 36-pin quad-flat package Top View • Block Diagram VDD ... .... .; ." "... 'o·" Key· Input "c ~ .S System Address GND U ... '" ·s... " U DATA Inverter Circuit ." 0 Data Expansion Use Signal "c ~ Test DA T A Counter Control Circuit Key Scan Output' Oscillation· -'---'-'---~-----SHARP~""""""---"""-'-- 952 ...... - . -..... ............... .......................... LR371Srv1 Remote Control Transmitter CMOS LSI .-.-.• .- I .- Absolute Maximum Ratings Symbol Voo VIN Parameter Supply voltage Input voltage Supply current Output current Power consumption Rating -0.3-+6 -0.3-+6 ±5 ±2 483 -20-+70 -50-+125 100, lEE lOUT Po Topr Tstg Operating temperature Storage temperature Note 1: Note 2: Conditions Referenced to GND Referenced to GND Ta=25°C Unit V V mA mA mW Note 1,2 2 "C "C refers to the current that flows into the VDD pin; lEE refers to the current draining from the GND pin. The direction of current flowing into the device is defined as positive: that draining from the device is defined as negative. This definition is also applied to the electrical characteristics. IDD • . Recommended Operating Conditions Parameter Symbol Voo VIN , fose Supply voltage In put' voltage Oscillator frequency • Conditions MIN. 2.2 0 Referenced to GND Referenced to GND Current consumption VIN VIL IIHl Input voltage Input current Output voltage Oscillator frequency Feedback resistor Note 3: Note 4: Note 5: Note 6: , Note 7: Note 8: Applied Applied Applied Applied Applied Applied to to to to to to IrLl IIH2 IIL2 VOH! VaLl VOH2 VOL2 fosc Rib Unit V V kHz (Voo=3V, Ta=25"C) Symbol Voo 100 MAX. 3.3 Voo 455 Electrical Characteristics Parameter Supply voltage TYP. 3 Conditions All input pins open I fosc oscillated I fosc MIN. 2.2 TYP. 3 stopped Voo-O.6 0 VIN=VOO VlN=GND VIN=VOO VlN=GND IOH= -5 flA IOL=400 flA IOH=-0.5mA IOL=1mA MAX. 3.3 0.5 1 Unit V mA Voo 0.6 1 -1 V V 4 5 flA 4 flA 5 V 6 V 7 kHz Mil 8 1 -150 VOD-OA 0, Voo 0.4 Voo 0.4 Voo-OA 0 455 1 5 flA Note 3 3 pin VDD, pins CI·CS. C12. CI3 pins Ko·K6. TI. T2 ' pins SO,S7, pin OUT pin OSCIN. OSCOUT .-~------SHARP---------.-. ,,953 Remote Control Transmitter CMOS LSI o0 0 0 I I I I 1,0 0 0 I I I I I I I I I I I I I I I I I I I I I I I :01010:0 I I I I 1 00 0 0 0 O. (3) . Precautions in preparing a receiver Make sure that the non-inVerse and inverse signals are transmitte'd alternately. Be sure to verify that bit number 15 (K) is alternately set t? "1" and "0". It is not enough only to ~ompare bits C6 -C14 either after inverting them or before inverthing them. ® The PPM signal status "1" or "0" may be identified by checking its pulse interval as follows (fo=455 kHz): Tp<0.42 ms ... Non-PPM signal 0.42 ms~Tp<1.69 ms ... "0" 1.69 ms;;;;';Tp<3.37 ms ... "1" 3.37 ms;;;;';Tp ... Non-PPM signal If a non-PPM signal is received, the device clears all bits and begins processing with the first bit again . ® If 16 bits (17 pulses) or more of PPM signal are received, the device identifies it as a nonPPM signal, clears all bits, and begins processing with the first bit again. @ The correct data should be identified by matching the system addresses and data expansion bits of the transmitter and receiver. CD I I I I I LR3715M I I I 1 I While it is possible to @ Modulator circuit transmit serial 15-bit PPM signals directly, it causes the broadening of occupied bandwidth, To prevent this, the device samples the 15-bit PPM signa with a 37.9 kHz (When fo=455 kHz) signal and transmits PPM signal at 100% amplitude mod. ulation. IEnlarged diagram + JlfUU1J1JUUlJlJ (f=455kHz) U r-----67.5ms Forward signal • ,'" 67.5ms---1 J0?W&'-------'~ 26.4) iI (2) Parallel transfer ~ PD. DIN PDs PD6 SYS2 VDD SYS. SYS3 SYSI SYSs Ei 2 ,.,"' .." "' LU59001 ... " " 0 >iI PDo PDl PD7 PD2 IPD3 963 LR3617 Up/pown Counter CMOS LSI with LCD Decoder-Driver' LR3617' Up / Down Counter CMOS LSI with LCD Decoder-Driver • Description The LR3617 isan up/down counter with a decoder driver for 3 1 / 2 digit LeOs. It is best suited to tape counters for use in micro cassette tape recorders and VTRs. • • Pin Connections _ N ~~,§g-tj~ c:Z~r:Z::< QQ»»E-.P VIN=OV 5.0V at 1M!l IOL =lmA 5.0V at 1M!l IOL =lmA IOlI=-lmA IOL =lmA External resistance= 3.3k!l 0.0 0.0 4.0 0.0 4.0 0.0 4.5. 0.0 2.5 3.0 MAX. 5.0 0.1 5.0 1.0 1.0 -100 1.0 -1.0 5.0 0.5 5.0 1.0 5.0 0.5 3.5 Unit Note mA V 1 I'A 2 I'A 3 V 4 V 5 V 6 MHz 1: Applies to all input pins 2: Applies to Do-D3 pins 3: .Applies to input pins except Do- D3 pins 4: Applies to HCR, TCR pins 5: Applies to Sl -S, pins 6: Applies to DOliT pin --~-----SHARP~-'-'------ '970 VTR Data Back CMOS LSI • Operation (1) Data store operation The input data switch input pin is a pin that switches the way the input data is taken in. As will be shown later, it is suited for data setting by digital switch when this input pin is "Low" and for reading in the data from the external LSI when it is "lIigh". ( i) (ii) Input data switch (CNT pin) Input data select outputs (SI ...... S6 pins) As will be shown later, these outputs produce the output of strobe signal for each digit when the CNT pin is "Low" and produce the output of interface signal for the external LSI when the CNT pin is "High". (iii) Data input (Do ...... D3 pins) Enter the data selected by the data select outputs. The data inputs is by entering 6 times serially negative logic parallel BCD codes with each dight consisting of 4 bits. The data input is in the following order: 10 years' digit, 1 year's digit, 10 months' digit, 1 month's digit, 10 days' digit, and 1 day's digit. Note that with each data, the Do pin is LSB, and the D3 pin is MSB. (iv) Data clock input (DCLK pin) Enters the fundamental clock input for data transfer when the CNT pin is "High". This clock sets up the data transfer timing. With the CNT pin "Low", zero blanking input for the 10 months' and 10 days' digit occurs. When the DCLK pin is "High", zero blank is enabled. And when it is "Low", no zero blank is enabled. Note that zero blank is disabled ' when the CNT pin is "High". (2) Display operation (i) Horizontal sync signal and vertical sync signal input (HSYNC, VSYNC pin) To synchronize the picture, the positive-going horizontal sync pulse and vertical sync pulse are to be applied to these input signal pins. The pulse width required is more than Ips for the horizontal pulse, and more than twice the horizontal pulse width for the vertical pulse. (ii) Horizontal positioning (HCR pin) Input pin for the time constant of the one-shot multi vibrator positions the horizonal display in the picture. By varying the time constant of the external CR, horizontal display position can be changed. (iii) Vertical positioning (Vl ...... V126 pins) Input pins for positioning. The level of this pin determines the vertical display position. V12B V64 V32 VI6 VB V, V2 VI L L L L L L L L L L L L L H H L L L I H H I H H I L L I L L I L H I H L I H L H H I L H set value 1 2 I 99 100 " " H H I H H I H H I H H I H H I H H I 254 255 Set value=128' V12B+64' V6.+32· V32+16' VI6+8' VB +4' V.+2 • V2+VI Through the combinations in the table above any set value can be selected from 1 to 255. Th~ display starts in the position (set value + 4) scan lines from the fall of VSYNC. (iv) Oscillator input and output (OSGN, OSCoUT pins) The frequency of the built-in oscillator is determined by the external resistor connected between these pins. The oscillator frequency of this oscillator determines the horizontal size of the character. (v) Display time input (TCR pin) Input pin for time constant of one-shot multivibrator' that determines how long the characters shall be displayed on the screen. By varying the time constant of the external CR, display time can be changed. (Vi) Display data output (DouT pin) Display data output pin that produces "Low" output when no character is being displayed and produces "High" or "Low" output according to the display when character(s) is(are) being displayed. (Vii) Display blanking input (BL pin) Input that disables the display data output (DOl'T pin). When this pin goes "High", the DOtTT pin always will go "Low" level. This pin only disables the DouT output and does not affect the internal working of the LSI. ~ii~ Display start input (START pin) Input. for not only starting to read external data into the LSI but also for displaying this data on the screen after the data is read. When this input changes from "Low" to "High", the one-shot multivibrator that determines the display time will be triggered. The data display time is determined by the time constant of the CR externally connected to the display time input pin. --~--'-'---SHARP'-'------- 971 [ill 10;=_ ·LR3727 VTR Data Back CMOS LSI • Display The display is a total 6-digit, I-line display of year, month, and day each consisting of 2 digits; The character organization and character array are as follows_ D3 Dz D, Do P3 D2 D, Do Low High High Lbw Indication Indication ~ r-----' I I High High High High High High High Low [OJ ~ High High Low High 2 High High Low Low 3] High Low High High High Low High Low High Low Low High High Low Low Low Low High High High Low , [8J Low Low I I : (blank): I I I I L_____ J (1) Character organization The display character is of 5 X 7 numerics and dots that separate year, month, and day. The dots are fixed and not erasable. (2) Character array The character organized as described above will be displayed in array as follows. And the character size, and spacing are as shown in the figures A and B. A : Approx. 550ns (when the frequency of the built-in oscillator is 1.8MHz) B : Scan line_ ... _.3 lines/field % §J [§ Low Character array o Display of October 25,' 81 • Description of Operation (1) On application of the source voltage V oo , the capacitor externally connected to the timer T starts charging. And when the pulse is applied to each of.the VSYNC and HSYNC pins, display function is enabled. The display this time is not consistent, but most of the time, only the dots that separate the digits are displayed and the characters that would otherwise follow get blanked. No input signal should be applied prior to power-up because the LR3727 is of CMOS structure. It should be remembered that source voltage should always be kept turned on because of the LSI's small current consumption except when displaying. When the capacitor externally connected to the timer T finishes charging, the LR3727 will go into the standby mode. (2) Apply.the horizontal sync pulse and vertical -.-.-..-.-------SHARP - - - - - - - - - - 972 LR3727 VTR Data Back CMOS LSI mined by the time constant of the CR externally connected to the TCR pin. Therefore, if the TCR is left connected to GND, the operation time of the LSI will be infinitely long and go into continuous display. (However, if the CNT pin is "High", the display data will be read into the LSI only once immediately after the START signal input. Even in continuous display, the START signal should be entered again to alter the display.) (4) On the top signal going "High", the external data will be read into the LSI with the timing as shown in Fig. 1 and Fig. 2. In the data read timing chart, the CR time constant of the TRC pin (or TP signal output time) is shown to be long enough compared to the vertical sync signal cycle (longer than 2 cycles). With the CR time constant of the TCR pin short (shorter than the vertical sync signal cycle), the complete external data cannot be read into the LSI. The HP signal in the timing chart just discussed sync pulse to the HSYNC and VSYNC pin respectively. Until the START signal is applied, the whole LSI is in static state and retains the initial state with the DouT pin "Low", oscillator in static state, Sl-SS in high impedance state ("High"), and each of the time constant input pins (TCR pin, HCR pin) in high impedance state ("High"). VSYNC pin~...J"L.......fl START pin ~i-------------~i------:--- TCR pin - - - - , . ~~ : : I TP signal -.l r--I (I: LSI function TP - : (3) Vary the START input pin from "Low" to "High" to enter the START signal. As shown in the following figure, the TP signal is generated in the LSI while the TP signal is in sync with the VSYNC signal. More than 1 JL s of the width START input signal is required. The TP signal width is deter- HSYNCpm ~~__~L__~~__~~__~~~'L-~'~~I~-4I__~__~~__~~!L-~I~-4I~~__~L__ I I I I I I I I I I I 1 I I I I I I I I I I I I I I I START pin ~r--r--rl --r--r--:--1--r-l--t--~-T--1--i--~1 1 I 1 I I I I I I I I VSYNC pin I TP' signal J I I 1 1 I I I I I I I I I I I I I I I I I I I I I I I I I I I 1 ! ' I! : I I : : : I I I : -- ! I I HP signal _____.I. I I S1 pin ------~I I I---! I I 1 i I I I I S2 pin ---------+-......,~ Sa pm -----------~~I~..,l~ ~:I--~~~__-------------------- : ! i r '_ _ I I HI I I I I I I I I 1 II II ~I1--------------------- 1 1 I I I I I I --------~~+-~~II~U~~·------------------- S5 pin I S6 pin I I Do-D3 pms aOOZ77710zwm t • *t - I tJpmIMWl77ZmmmOV77m 110· II flO II I 10 I I 1 ,I " ~ " "Iday'si D 't C years year s months month s days d' 'I on are digit digil digit digit digil IgJ \ . D 't Care . on Fig. 1 Data read timing (eNT pin "Low") .-~----.-~---SHARP~-----.--- 973 VTR Data Back CMOS LSI . . . ._ LR3727 . . . . .. -......NII-..~_. . . . .. - .. . . . ._ Start pin ---fI-' ---------------------------I , DCLK pin VSYNC pin ........................._ , ,I' , _--;._ _....11 I ,, _.......- _...1• I1 TP signal , I SI pin -"'T'".....,~ S2 pin, --+----+--, S3 pin, ---iL.----+---+-~r_-+_-"'T""-_+-__1 ------+,---1 , , S5 pin , S. pin ------+,--.,~___1 I I !I I I I I I , . I I I , I S5 pin I I I . , Do - D 3 pins""'''''''''''''''''77'77'77:'77:'77:'77:'77:~ I 10 II ear's pO II I 10 I Ida 's I Don't Care I years' I ~. ,months' I month's I days' I d'! I Don't Care digit gtt digit digit digit 19tt Fig. 2 Data read timing (eNT pin "High") is a signal in sync with the rise of the horizontal sync signal applied to the HSYNC pin and has a, pulse width that is determined by the time constant of the CR externally connected to the HCR pin. Duty varies with the horizontal display position on the screen. The external data applied to Do - D3 pins goes into sync with the rise of the horizontal sync signal applied to the HSYNC pin when. the CNT pin is "Low", or goes into sync with the rise of the clock applied to the DCLK pin when the CNT pin is "High", to be read into the LSI. Note that while the LSI is reading external data, the display gets blanked and therefore the DouT pin maintains "Low". The external data read into the LSI is a 6 character data and is stored in a 6 X 4 shift register. The data for the dots that separate each digit will be set up in the LSI as fixed data. These character data o~ fixed data are to be through the multiplexer to the character generator. (5) The data read time is followed by the di,splay time if the TP signal is "High". The display time lasts while the TP signal maintains "High" and comes to an end when the TP signal goes "Low". During the display time, it is so designed, the V address counter counts the HP signals (the pulse width of which is determinerl by the time constant of the CR externally connected to the HCR pin) that . is in sync with rise of the horizontal sync signal applied to the HSYNC pin, collects out of the character generator the character data output produced du'ring each horizontal scan time, and produces - - - - - - - - - - - - - - S H A R P - - - . - . . . . . - r ........... . - - 974 LR3727 VTR Data eack CMOS LSI serially through the 5-bit shift register the character outputs one by one at the DouT pin_ In the meantime, the H address counter counts the timing pulses HC that occur during 1 horizontal time to construct a character address and transmit 6 character data and 2 dot data to the character generator. The oscillator operates only part of the horizontal time (when HP is "Low") where display is to be performed, to generate not only 5-bit shift register data but also the clock for the timing circuit and load sequentially 6-character 2.:dot data into the 5-bit shift register. H.SYNC pm Fig. 3 shows the timing chart of the 1 field immediately after data read. One character is divided into 7 parts with each part displayed during the 3 horizontal scan lines per field so that vertical size of one character is 21 horizontal scan lines high per field. During the display time, this operation repeats with each input of vertical sync signal applied to VSYNC pin. Fig. 4 shows the timing chart of 1 horizontal time during the display. One character is di~ided horizontally into 5 parts so that their signal outputs will be produced from the DouT pin. n. ....,'-f~,IL..~L-fIL.-~L-1I"--~L..-IL--IIL...-iL~iL-~L.-!'L.-~L..-!'-' ....-1L~ HP signal -1"\ ' , VSYNC pin ~~f--~~-~~~~4-~-~!-+--+-~~~~4-~-+--+-r--t~~~-1--i---- : , . I VPsignal ----,L-~-r-~~~4--4-+__+i-~-r-~~~--~-+-+-~-r-ii~-i--t-~--I I , I I I Oscillation interval DOUTpin __________~ 1 2 3 4 5 6 7 Fig. 3 HSYNCpin -1l~ HPs~al~ Display timing in 1 field (TP signal = "High") __________________________________________________________ ______________________________________________________________ oSCouTpin HC signal DOUT pin IIIIII arm 0 arm ann 0 mm arm 0 II~II~II~ Fig. 4 Display timing in 1 horizonal time (TP signal = "High") .--.--------SHARP----------- 975 LR3727 VTR Data Back CMOS LSI System Configuration • VDD (+5V) GND ;;-0 VDD or GND OSCIN,OSC OUT Horizontal sync signal CNT Vertical sync signal Start signal r VSYNC Output LR3727 START Set 10th digit of the year VDD Set last digit of the year Set 10th digit of the month Set last digit of the month Set lOth digit of the day Set last digit of the day '-'-"'-'~~-'---SHARP--------- 976 Phase Locked Loop Frequency Synthesizer CMOS LSI LR3652 • LR3652. Phase Locked Loop Frequency Synthesizer CMOS LSI Description • Pin Connections The LR3652 is a CMOS LSI designed for PLL frequency synthesizer AM/FM radios. It can be controlled directly by the Sharp 4-bit I-chip SM-4A or SM-5A microcomputers. GND Co Cl NC C2 • Features 1. Reference frequencies FM mode 2.25kHz, 2.5kHz, 12.5kHz, 25kHz, 50kHz AM mode 1kHz, 4.5kHz, 5kHz, 9kHz, 10kHz 2. Frequency division ratio: 113 - 11999 3. FM mode: pulse-swallow type 4. Charge-pump output port and an N-channel open drain transistor are contained for use in LPF amp. 5. 5-bit input ports 6. Time base: 3.6MHz crystal 7. Single power supply: + 3V 8. CMOS process 9. 22-pin dual-in-line package • NC C3 NC OSCoUT' 9 OSCIN FM AM PSC Top View Block Diagram 4 Lock Detector Programmable Divider Strobe FM Local OSC. Frequency Programmable Counter for Prescaler Control Prescaler Control AM Local OSC. Frequency 977 Phase Locked Loop Frequency Synthesizer CMOS LSI LR3652 __. - . - . - . - . - . - . - . - . - . - . - . - . - r........ -....... • Absolute Maximum Ratings Parameter Supply voltage External voltage Input voltage Current consumption Output current Operating temperature Storage temperature / Symbol V DD Vee V IN IDD lOUT Topr T st " Ratings -0.3-+6.0 -0.3-+18 -0.3-+6.0 ±10.0 ±2.0 -20-+60 -55-+125 Unit V V V rnA rnA V V Note 1 2 2,3 Note 1: Applies to DI. Dz pins. Note 2: The direction of flowing into the LSI is defined as positive, and flowing out of the LSI as negative. Note 3: Applies to output pins. • Operating Conditions Parameter Supply voltage External voltage Input voltage Oscillator frequency • Symbol V DD Vee V IN fose MIN. 2.7 0.0 0.0 3.6 TYP. 3.0 MAX. 3.3 15.0 V OD Unit V V V MHz Note 1 (VDD=3.0V, Ta=25"C) Electrical Characteristics Parameter Symbol Supply voltage V DD Current consumption IDD Input voltage Vm V IL 1111 Input current IlL fIN VOH1 VaLl V OH2 V OL2 VOll3 VOL3 Input frequency Output voltage VOll4 VOL4 ' Oscillator freq uency PSC delay time Note 4: Note 5: Note 6: Note 7: Note 8: Note 9: Note 10: Applies Applies Applies Applies Applies Applies Applies to to to to to to to fose TLH TilL Conditions fose= 3.6MHz FM or AM=3.0MHz, 0.3V p - p fose=3.6MHz, output pin open FM or AM=3.0MHz, 0.3V p - p MIN. TYP. MAX. Unit Note 2.7 3.0 3.3 V 4 2.5 5.0 rnA 4 V 5 pA 5 MHz 6 V 7 V 8 V 9 V 1 MHz 10 ns 8 3.0 0.4 1.0 -1.0 2.6 0.0 VIN=3.0V Sine wave VIN =0.3V p - p Connects to V DD at 100kO IOL = 100 pA IoH = -200 pA IOL = 200 pA IOlI =-200pA IOL =200 pA Vee =15Vat 100kO with G1 and G 2 grounded IOL = LOrnA, with (;1 and Gz grounded 3.0 2.6 0.0 2.6 0.0 2.6 0.0 14.80 0.0 3.0 0.4 3.0 0.4 3.0 0.4 14.95 15.00 0.4 3.6 V IN =3.0MHz, sine wave 0.5V p - p 300 300 Voo pin ST, Co, CI, C2, C3, pins AM, FM pins LK pin PSC pin CP, CPz pins OSCIN, OSCOUT pins ,-----------'SHARP---------------978 Phase Locked Loop Frequency Synthesizer CMOS LSI • How to Use Pins Programmable counter for counter range prescaler control .................. = 4 (1) OSCIN, OSCOUT (Crystal oscillation) If a prescaler with its frequency dividing ratio switchable between 1/40 and 1/44 is used: Mode ................................................... ·····.· ... ·················FM Channel space ····················································10OkHz Frequency dividing ratio.................................. 1/123 Count range of the counter for .................................. 4 prescaler OSC 1N OSCOUT GND Crystal 3.6MHz Co ST Co Cl C2 C3 1 MF Ml M2 Ma 2 P3l P3Z P33 P3' 3 P21 PZ2 P23 P2. 4 Pll PIZ PI3 P14 5 PI P2 P3 p, 6 "Low" "High" "Low" "High" Function With MF "Low" and "High", AM mode and FM mode respectively. For Ml - M3, refer to the other table. P31-P3' set the frequency dividing ratio for the 100's digit of the programmable counter. P21 - P2. set the frequency dividing ratio for the 10's digit of the programmable counter. PIl - PI. set the frequency dividing ratio for the l's digit of the programmable counter. PI- p, set the count range of programmable counter for pulse swallowing. Indicate the end of data input and data latch. Reference frequency (kHz) FM mode (MF"Higb") AM mode (MF"Low") MI Mz M3 "Low" "High" "Low" "High" "Low" "Low" "Low" "High" "High" "Low" "Low" "Low" "Low" "Low" "High" 2.25 2.50 12.50 25.00 50.00 1.0 4.5 5.0 9.0 10.0 FM mode 25kHz 1 2 3 4 Latch I" _:E !lIe: alE _Iii!! -I. Iii iii ;IIi i ColII~il I 1 1 I I I 1 I : I I 1 1 I 1 I i i 1 : 1 ; 1 I 111 I I ~ n 1 I Cl~ Cz~ e3 1 I ! 1 1 :~r-Jrl~ri~ LJ LJ ~ !-.J LJ I ST~ 1 1 .1 14 t;<;2t
Source Exif Data:File Type : PDF File Type Extension : pdf MIME Type : application/pdf PDF Version : 1.3 Linearized : No XMP Toolkit : Adobe XMP Core 4.2.1-c041 52.342996, 2008/05/07-21:37:19 Create Date : 2017:06:18 10:30:51-08:00 Modify Date : 2017:06:18 11:10:06-07:00 Metadata Date : 2017:06:18 11:10:06-07:00 Producer : Adobe Acrobat 9.0 Paper Capture Plug-in Format : application/pdf Document ID : uuid:2825c19a-fdb3-694e-b890-c6e48cc75ad8 Instance ID : uuid:9fc4665c-41cb-5f4e-a503-f563bbdc7686 Page Layout : SinglePage Page Mode : UseNone Page Count : 992EXIF Metadata provided by EXIF.tools