1986_Sharp_MOS_Semiconductor_Data_Book 1986 Sharp MOS Semiconductor Data Book

User Manual: 1986_Sharp_MOS_Semiconductor_Data_Book

Open the PDF directly: View PDF PDF.
Page Count: 992

Download1986_Sharp_MOS_Semiconductor_Data_Book 1986 Sharp MOS Semiconductor Data Book
Open PDF In BrowserView PDF
SHARP

1986

SEMICONDUCTOR DATA BOOK

SEMICONDUCTOR DATA BOOK
(MOS Edition)
General Information

11 ~

4-Bit 1-Chip Microcomputers ~
8-Bit 1-Chip Microcomputers

[!

8-Bit Microprocessor and Peripheral LSls ~
16-Bit Microprocessor and Peripheral LSls ~
Peripheral LSls for Microcomputers ~

[ZJ
Memories [!

Support Tools for Microcomputers

LSls for Telephone

~

MOS ICs/LSls

~

Preface

In recent years, the seemingly unlimited
progress seen in integrated circuits technology
has brought about phenomenal growth in electronic products for consumer and industrial
use. As electronics continues to expand -in the
future, we will direct our efforts at carefully
researching trends and supplying our customers with products that meet their needs and
contribute to the betterment of their way of
life.
We have now completed the "Sharp Semiconductor Data Book - - MOS Edition", which
we present to you here how.
This data book lists the microcomputers,
memories and MOS LSIs produced and sold by
Sharp, which have a wide range of applicability. We hope you will find this data book useful
and will contact Sharp if you have any questions.

The information contained in the databook isintended to be a general product description. Sharp
reserves the right to make change in specifications
at any time and without notice.
Sharp does not assume any responsibility for use
of any circuitry described; no circuit patent
licenses are implied.

CONTENTS·

1. General Information ................................................. ;. 1

Products Lineup ...........................•... ; .................... 2
Package Outline ....................................................

12

Quality Assurance ................................................. 25
2. 4-Bit I-Chip Microcomputers ..................................... 35
3. 8-Bit I-Chip Microcomputers .................................... 165
4. 8-Bit Microprocessor and Peripheral LSIs ........ · .......... ·209
5. I6-Bit Microprocessor and Peripheral LSIs ................... 313
6. Peripheral LSIs for Microcomputers ........ · .................... 459

7. Support Tools for Microcomputers .... · ........ · .. · ............ ·561

8. Memories .............................................................. 581
9. LSIs· for Telephone .................................................. 731
10. MOS ICs/LSIs ......................................................... 795

General Information

Products Lineup

.--.-...r.-..-.--.-..-.-..-..-..-..--.-..-..-..-..-..-...r
. .
.

Products Lineup
•

4-Bit 1-Chip Microcomputer
Model

Process

Cycle
ime. (f' s

Supply
voltage
(V)

ClnTent

colEUlllPlion InstrucTYP.(mA) lions
[operating]

ROM
(bit)

RAM
(bit)

Sub·
routine Package
nesting

SM-3A

10

-15

12

57

2268X8

128X4

2

60QFP

SM-100
SM-105
SM-ll0
SM-115
SM-111
SM-116

10
10
10
10
10
10

-9
-9
-9
-9
-9
-9

10
10
13
13
13
13

58
58
90
90
90
90

1134X8
1134X8
2032X9
2032.X9
4064X9
4064X9

64X4
64X4
128X4
128X4
192X4
192X4

2
2
6
6
6
6

28DIP
28DIP
60QFP
60QFP
60QFP
60QFP

SM-114

10

-9'

20

90

4064X9

192X4

6

60QFP

SM-120

10

-9

20

54

1536X8

64X4

2

44QFP

10

-5

32

100

3072X9 128X4t16

3

60QFP

SM-4A
SM-5A
SM-5L
SM-500
SM-510

6)1
61'
61
61
61

-3
-3
-3
-2
-3

0.05
0.05
0.05
0.02
0.06

54
51
51
52
49

2268X8
1827X8
1827X8
1197X8
2772X8

96X4
65X4
65X4
40X4
128X4

1
1
1
1
2

60QFP
60QFP
60QFP
48QFP
60QFP

SM-511

61

-3

0.04

55

4032X8

128X4

2

60QFP

SM-520

11

-5

1.5

93

3072X10 160X4+ l6X2

4

64DIP

SM-525

11

-5

0.6

93

3072X10 160X4+ 16X2

4

64DIP

SM-530

91.6

-1.5

0.012

49

2016X8

88X4

1

80QFP

SM-531

91.6

-1.5

0.01

45

1260X8

52X4

1

60QEP

16

-4.5

0.23

57

2016X8

128X4

60QFP

SM-550

1.6

3-5

1

94

1024X8

80X4

SM-555

3.3

3-5

1

94

1024X8

80X4

SM-551

1.6

3-5

1

94

2048X8

128X4

SM-556

3.3

3-5

1

94

2048X8

128X4

2
using
RAM
area
using
RAM
area
using
RAM
area
using
RAM
area

SM-200

SM-540

2

PMOS

NMOS

CMOS

Remarks
External RAM
expandable

8-bit A/D conversion
8-bit AID conversion
8-bit AID conversion
8-bit AID conversion
8-bit AID conversion
Remote control
signal receiver
External ROM
External ROM/REM
Automatic
display circuit
External RAM

Melody generator
circuit
External RAM
Automatic
display circuit
External RAM
Automatic
display circuit
Clock counter circuit
Melody generator
circuit
Clock counter circuit
Melody generator
circuit
Dot matrix

Page

36
40
40
44
44
49
49
54
59
64
69
74
79
84
89
93

98

103

108

113
118

48QFP

8-bit serial
110 function

123

48QFP

8·bit serial
I/O function

123

60QFP

8-bit serial
110 function

128

60QFP

8· bit serial
110 function

128

Products Lineup

.'-'--------------------------(Continued)
SM-552

L6

3-5

1

94

SM-557

3_3

3-5

1

94

SM-5E3

L6

3-5

1

97

SM-563

6_6

3-5

0-4

93

SM-572

2

3-5

1-5

93

using
RAM
area
using
4096X8 256X4 RAM
area
using
4096X8 256X4 RAM
area
using
4096X8 l28X4t32X4 RAM
area
2032X9 128X4
6

SM-578

2

3-5

1-5

94

4064X9

192X4

6

SM-579

2

3-5

1-5

94

6096X9

256X4

6

SM-590
SM-591

2
2

3-5
3-5

0_5
0_5

41
41

508X8
1016X8

32X4
56X4

4
4

CMOS

•

256X4

60QFP

8-bit serial
I/O function

133

60QFP

8-bit serial
I/O function

133

80QFP

8-bit serial
I/O function

138

64QFP

8-bit serial
I/O function

139

64QFP
64DIP
64QFP
64DIP
64QFP
20DIP
20DIP

8-bit AID conversion
8-bit AID conversion
8-bit Serial 110 function
8-bit AID conversion
8-bit serial 110 function
16DIP, 18DIP
16DIP, 18DIP

144
150
151
152
156

8-Bit 1-Chip Microcomputer
Model
LH0801
LH0802
LH0803
LH0811
LH0812
LH0813
LH0881

•

4096X8

Cycle time
MIN- (JLs)
1-5
1-5
1-5
1-5
1-5
1-5
1-5

Supply
voltage
(V)
5±5%
5±5%
5±5%
5+5%
5±5%
5±5%
5±5%

Current
consumption
MAX_(mA)
180
180
180
180
180
180
180

I/O
pins

ROM
(bit)

RAM
(bit)

Package

Remarks

Page

32
32
32
32
32
32
24

2,048X8
4,096X8
-

144X8
144X8
144X8
144X8
144X8
144X8
144X8

40DIP
64DIP
40PBP
40DIP
64DIP
40PBP
40DIP

Z8601MCU
Z8602MPD
Z8603MPE
Z8611MCU
Z8612MPD
Z8613MPE
Z8681MCU

166
180
182
184
186
189
191

I/O
pins

ROM
(bit)

RAM
(bit)

Package

Remarks

Page

8-Bit CMOS 1-Chip Microcomputer
Cycle time
MIN- (JLs)

Supply
voltage
(V)

SM-803

2.2

5±10%

32

4,096X8

144X8

SM-812

1

3-5

48

2,048X8

128X8

SM-813

1

3-5

48

4,096X8

192X8

LU810V1

1

3-5

48

Model

Current
consumption
MAX.(mA)

-

128X8

40DIP
44QFP
64DIP
64QFP
64QFP
64DIP
64QFP
64DIP

-

195

-

198

-

201

-

204

--------------SHARP -..-.---------.-.

3

.....,----------...

.~

ProduotsLineup'

.......................,......~

-~--,.-

•

a-Bit Microprocessor and Peripheral LSls

Function

MOdel

Process

Supply
voltage
(V)

LH0080
LH0080A
LH0080B
Parallel
LH0081
input/output
LH0081A
controller
LH0081B
t80082
Counter / Timer
.L80082A
controller
L80082B
L80083
DMA controller
LH0083A
L80084
LH0084A
LH0084B
LH0085
Serial input/output
LH0085A
controller
LH0085B
L80086
LH0086A
LH0086B
Floppy disk
LH0110
controller
LH0110A
LH5080
CPU
LH5080L
LH5080LM.
Parallel
LH5081
input/output
LH5081L
.controller
LH5081LM
LH5082
Counter /Timer
LH5082L
controller
LH5082LM
CPU

Current
consumption
MAX.(mA)
150
200
200

' NMOS

5±5%

NMOS

5±5%

100

NMOS

5±5%

120

NMOS

5±5%

150
200
100

NMOS

5±5%

100

100
NMOS
CMOS

CMOS

CMOS

5±5%
5±10%

5±10%

5±10%

.170
180
10(TYP.}

2(TYP.)

2.5(TYP.)

Clock
fequency
(MHz)
2.5
4
6
2.5
4
6
2.5
4
6
2.5
4
2.5
4
6
2.5
4
6
2.5
4
6
2.5
4
2.5
2.5
2.5
2.5
- 2.5
2.5
2.5
2.5
2.5

Package

40DIP

40DIP

28DIP
40DIP
40DIP

40DIP

40DIP

.

Remarks

Page

Z80 CPU
Z80A CPU
Z80B CPU
Z80 PIO
Z80A PIO
Z80B PIO
Z80 CTC
Z80A CTC
Z80B CTC
Z80 DMA
Z80A DMA
Z80 SIO/O
Z80A SIO/O
Z80B SIO/O
Z80 SIO/1
Z80A SIO/1
Z80B 510/1
Z80SI012
Z80A SIO/2
Z80B 510/2

210
210
210
235
235
235
245
245
245
255
255
270
270
270
270
270
270
270
270
270
279
279
296
296
296
302
302
302
307
307
307

~

40DIP
~

~

40DIP
~

44QFP
40DIP

-

44QFP

-

28DIP

-

44QFP

-

-~~-'----SI-iARP'---'-'-'----------

4

------------------------Products Lineup

•

16-Slt Microprocessor and Peripheral LSls

Function

Model

Process

Supply
voltage
(V)

CPU

Memory
control unit
Serial communication
controller
CounterITimer parallel
input/ output unit
FIFO input/output
interface unit
FIFO buffer unit and
Z-FIFO expander
Serial parallel
combination controller
GPIB controller
Multitask support
processor

Universal
peripheral
controller

LH8001
LH8001A
LH8002
LH8002A
LH8010
LH8010A
LH8030
LH8030A
LH8036
LH8036A
LH8038
LH8038A
LH8060
LH8071
LH8072
LH8073
LH8075
LH8090
LH809QA
LH8091
LH8091A
LH8092
LH8092A
LH8093
LH8093A
LH8094
LH8094A

Current
consumption
MAX.(mA)
320

NMOS

5±5%
320

NMOS

5±5%

300

NMOS

5±5%

250

NMOS

5±5%

200

NMOS

5±5%

200

NMOS

5±5%

200

Clock
fequency
(MHz)
4
6
4
6
4
6
4
6
4
6
4
6
4

Package

48DIP
40DIP
48DIP
40DIP
40DIP
40DIP
28DIP

Remarks
Z8001 CPU
Z8001A CPU
Z8002 CPU
Z8002A CPU
Z8010 MMU
Z8010A MMU
Z8030 SCC
Z8030A SCC
Z8036 CIO
Z8036A CIO
Z8038 FlO
Z8038A FlO

314
,314
314
314
332
332
342
342
356
356
377
377

Z8060 FIFO

396
402
413
421
423

NMOS

5±5%

250

4

40DIP

NMOS

5±5%

250

4

40DIP

----

NMOS

5±5%

250

4

40DIP

--

NMOS

5±5%

250

NMOS

5±5%

250
250
250
NMOS

5±5%
250

4
6
4
6
4
6
4
6
4
6

40DIP
64DIP
64DIP
40PBP
40PBP

Page

Z8090 UPC
Z8090A UPC
Z8091 ~:~f~~pment
Z8091A ~:~~~~pment
Z8092 ~:~i~~pment
Z8092A ~:~fi~pment
Z8093 ~~~t~~k
Z8093A ~::'JI:."~~k
Z8094 ~~~ff~~k
Z8094A ~~Ou'l':.:~k

434
434
451
451
453
453
455
455
457
457

5

Products Lineup

__

~~~""

•

__''_'':'''''''''''

~-II!IIf:_""""""""''''''

Peripheral LSls for Microcomputers
Function

Model

Process

Supply
voltage
(V)

Serial communication
controller
CounterITimer parallel
input/output unit
Serial parallel
combination controller
GPIB controller
Multitask support
processor

Universal
peripheral
controller
Key-encoder and
data transmitter receiver

*1
*2

LH8530
LH8530A
LH8536
LH8536A
LH8571
LH8572
LH8573
LH8575
LH8590
LH8590A
LH8591
LH8591A
LH8592
LH8592A
LH8593
LH8593A
LH8594
LH8594A
LH8661

,Current
Clock
consumption ,fequency
MAX.(mA)
(MHz)
4
250
6
4
200
6
250
4
4
250
250
4

NMOS

5±5%

NMOS

5±5%

NMOS
NMOS
NMOS

5±5%
5±5%
5±5%

NMds

5±5%

250

NMOS

5±5%

250

NMOS

5±5%

250

NMOS

5±5%

250

NMOS

5±5%

250

NMOS

5±5%

250

NMOS

5±5%

180

I

4
4
6
4
6
4
6
4
6
4
6
8

Package

40DIP
40DIP
40DIP
40DIP
40DIP
40DIP
.40DIP
64DIP
64DIP
40PBP
40PBP
40DIP

Remarks

Page

460
28030 SCC
, 28030A SCC 460
28036 CIO
.474
28036A CIO 474
-49,1
-502
-511

--

513

28090 UPC
28090A UPC
28091*1
28091A *1
28092*1
28092A *1
28093*2
28093A *2
28094*2
28094A *2

525
525
542
542
544
544
546
546
548
548

--

550

Development device
Protopack emulator

. ; Microcomputer Development Support System
Model
LH8DH11 0
LH8DH130
LH8DH140
LH8DH312
LH8DH321
LH8DH330
LH8DH340
LH8DH403
LU4DH200
LUXXXH2

Function
Development Support System SM-D-8000 n; SM Series 28, 280, Z8000 development device
Development Support System SM-D-8100; 28, 280, 28000 development device
Development Support System SM-D-8200; 28, 280, 28000 development device
280B In-circuit Emulator, for SM-D-8000 n
Z8 In-circuit Emulator n, Stand-alone type
28000 Evaluation Board, Stand-alone type
28000 In-circuit Emulator SM-E-8100, Stand-alone type
PROM Writer SM-E-8000 n
SM Series Emulator Device SME-20, Stand-alone type
SM Series Evaluation Board

Page
562
564
566
569
571
572
573
575
576
578

~~~----'-'---SHARP ---.-..-.------~---

6

Products Lineup
~~.-..-.~~.-..-..-..-..-.~.-..-..-.~.-.~

•

Mask ROM

Capacih
(bit)

32K

64K

96K

12SK

256K
512K
1M
102M

•

Model
LH2331
LH2331A
LH2332
LH2332A
LH2362B
LH2367
LH5366A
LH5366S
LH5367
LH5396
LH5396A
LH5396S
LH23126
LH53127
LH53129
LH53129A
LH23257
LH53256
LH53257
LH53512
LH531000
LH53012
Series

Process

NMOS

Bit
composition
(bit)

4,096XS

NMOS
S,192XS
CMOS

CMOS

12,2SSXS

NMOS
CMOS

16,3S4XS

NMOS
CMOS

32,76SXS

CMOS
CMOS

65,536XS
131,072 X8

CMOS

103,680X12

Process

Bit
composition
(bit)

Supply
Access
Power
Cycle time
time
voltage consumption Package
MIN.(ns)
MAX.(ns)
(V)
MAX.(mW)
450
450
350
350
5±5%
5S0
24DIP
450
450
350
350
250
250
S40
24DIP
5±5%
250
250
420
2SDIP
2,500
4,000
5±10%
30
6,000
12,000
44QFP
3±0.5V
3.5
450
750
5±5%
60
7,500
6,000
35
4.5±0.5V
44QFP
3,000
4,500
60
1S,000
10
15,000
3±0.4V
250
250
5±1O%
440
2SDIP
44
250
350
5±10%
2SDIP
6,000
7,500
4.5±O.5V
35
44QFP
2,500
3,500
5±1O%
SO
250
250
440
28DIP
44QFP
800
900
5±10%
55
250
250
165
2SDIP
3,000
4,400
5±IV
24S0P
9
2SDIP
SO
5
250

250

5

-.

Remarks

Page
5S2

582

r-s86
r-s86
590

"594
599

'602
605
60S

608

ill
615

rsl8

~
~
630

~

'638
642
646

40DIP

647

EPROM

Capacit)
(bit)

64K

12SK

256K

Model
LH5764j-20
LH5764j-25
LH5764j-30
LH5764j-45
LH57128]-20
LH57128]-25
LH57128]-30
LH57128j-45
LH57256]-20
LH57256]-25
LH57256]-30
LH57256]-45

CMOS

CMOS

CMOS

Access
Cycle time
time
MIN.(ns)
MAX.(ns)
-200
250
S,192XS
300
450
200
-250
16,3S4XS
300
-450
-200
250
32,76SXS
300
-450

Supply
voltage
(V)

Power
consumption Package
MAX.(mW)

5±10%

150

2SDIP
(Ceramic)

150

2SDIP
(Ceramic)

Remarks

Page
6"50

~
~
~
651

5±10%

~

. '651
~
652

5±10%

150

2SDIP
(Ceramic)

'652

rrnrrn-

7

•

.,
1K

2K

4K

16K

Model
LH5101-30
LH5101-45
LH5101
LH5101L3
LH5101S
LH5101W
LH5102
LH5102-8
LH5102W
LH2114L-20
LH5114-4
LH5104-4
LH5116-15
LH5116-20
LH5117-15
LH5117-20
LH5118-15
LH5118-20

r

.

.

-

,Bit
composition
(bit)

Supply
Power
Access
Cycle time
time
voltage
consumption Package
MIN.(ns)
(V)
MAX.(mW)
MAX;(ns)
300
300
140
5±10%
450
450
800
800
250X4
CMOS
5±5%
145
22DIP
650
650
3,000
3,500
3±OAV
45
800
800
5±10%
150
1,200
1,200
5±5%
145
512X4
CMOS
800
900
22DIP
1,200
1,200
150
5±10%
NMOS
200
200
400
1,024X4
5±10%
18DIP
CMOS
450
450
110
CMOS ' 4,096X 1
450
450
18DIP
5±.10%
85
150
150
200
200
150
150
2,048X8
220
24DIP
CMOS
5±10%
200
200
150
150
200
200

frocess

Remarks

118 pin CS
20 pin OE

Page
653
653
658
658
602
666
670
670
675
680
684
688
693

693

118 pin GE, ~
20 pin CEI 698
118 pin CE, 703
20 pin CEI 703

Dynamic RAM

Capacity
'(bit)

Model

LH2164-15
LH2164-20
64K
LH2164A-15
LH2164A-20
, LH2464-10
LH2464-12
LH2464-15
LH2465c10
LH2465-12
LH2465-15
LH21256-10
256K
LH21256-12
LH21256-15
LH21257-10
LH21257-12
LH21257-15
LH21258-10
LH21258-12
LH21258-15

8

.........._ _ _. ._ _

StaticRAM

Capacih
(bit)

•

.

~

~

'

Products ,Lineup
................_ _. ._ _................

Process

NMOS

NMOS

NMOS

Bit
composition
(bit)

Access
Cycle time
time
MIN.(ns)
MAX.(ns)
150
270
200
330
65,536X1
150
260
200
330
100
120
150
65,536X4
100
120
150
100
200
120
230
150
260
100
200
262,144X 1
120
230
150
260
,
100
200
120
230
150
260

Supply
voltage
(\1)

Power
consumption Package
MAX.(mW)
248
16DIP

5±10%
275

5±10%

267.5

5±10%

467.5
440
385
467.5
440
385
467.5
440
385

18DIP

' Remarks

Page

708
708
717
717
726
r-------'-Page mode 726
r-------'-726
726
r-------'-Nibble mode
~
726
728
r-------'-Page mode
728

rns
rmrns
rmc-m-728

16DIP

Nibble mode

728

Byte mode

.............................. ......................... .........................
Products Lineup

~

•

Tone Dialer

LR4087
LR4089

Power Operating Oscillating
Tone
supply current frequency Oscillater
Mute output
output
lvoltage(V) TYP.(mA) (MHz)
CMOS 3.5-10
1
Crystal bipolar output
Complementary
3.58
CMOS 3.0-10
1
3.58
Crystal bipolar output N-channel open drain

LR4091

CMOS

3.0-10

1

3.58

Crystal

bipolar output N-channel open drain

LR4092

CMOS

3.5-10

1

3.58

Crystal

bipolar output

Model

•

•

~

Process

Remarks

Op amplifier
output

Complementary

Package Page
16DIP
16DIP

732
735

18DIP

738

16DIP

741

Pulse Dialer
Model

Process

LR40981A
LR40982
LR40991
LR40992
LR40993
LR40994

CMOS
CMOS
CMOS
CMOS
CMOS
CMOS

Power Operating Oscillating
Make
supply current frequency Oscillator rate
r-roltage(V) MAX.(mA (kHz)
(%)
2.5-6
0.15
480
Ceramic
33/39
2.5-6
33/39
0.15
480
Ceramic
2.5-6
34/40
0.15
4
CR
34/40
2.5-6
4
CR
0.15
2.5-6
34/40
0.15
4
CR
2.5-6
34/40
0.15
4
CR

Pluse
ratio
(pps)
10
10
10/20
10/20

Pluse
Mute
output output

Positive
Negative
Negative
Negative
10/20 Negative
10120 Negative

Remarks

Negative
Negative
Positive
Negative
Negative Key signal
Negative Key. signal

Package Page
16DIP
16DIP
18DIP
18DIP
18DIP
18DIP

744
748
752
756
760
764

Pulse / Tone Dialer
Model

Process

Power Operating Oscillating
supply current frequency Oscillator
voltage(V) TYP.(mA) (MHz)

Make
rate
(%)

Pluse
Abbrevication
Redical
ratio
memory
function
(pps)
18 digits
18 digit last

.LR480lD

CMOS

2-6

2

3.58

Crystal

40

10/20

LR4802

CMOS

2-6

2

3.58

Crystal

32

10/20

LR4803

CMOS

2-6

2

3.58

Crystal

40

10/20

~

LR4804

CMOS

2-6

2

3.58

Crystal

.40

10120

LR4805

CMOS

2-6

1

3.58

Crystal

32

10120

LR4806B

CMOS

2...,.6

1

3.58

Crystal

33/37 10/20

X9 stations
18 digits

number
18 digit last

X9 stations
18 digits

number
18 digit last

X9 stations number
32 digit last'

---

numger
32 digit last

16 digits

number
32 digit last

X 20 stations

number·

Package Page

18DIP

768

18DIP

773

18DIP

778

20DIP

783

20DIP

788

28DIP

793

---~------SHARP~------~----

9

1

.---.....

.....,.-..........
·Products Lineup

•

..... ...............................

.-~~

.-

MOS Ie / LSI
F'unction

Driver

Clock/
TImer

LCD driver

Vacuum
fluorescent
display driver

10

Model
LH5010
LH5011
kH5010D
LH5011D
LH5012
LH5013
LH5012D
LH5013D
LR3428
LR3429
LR3464
LR3468

Process
CMOS
CMOS
CMOS
CMOS
CMOS
CMOS
CMOS
CMOS
CMOS
CMOS
CMOS
CMOS

LR3465

CMOS

LR3441

CMOS

LR3419

CMOS

LR3472

CMOS

LH5008

CMOS

LH5003

CMOS

LH5004

CMOS

LH5821

CMOS

LH5822

CMOS

LH5823

CMOS

LH5826

CMOS

LH5030
LH5031

CMOS
CMOS

LH5035A

CMOS

LH5036A

CMOS

LH5006A
LH5021A
LH5022
LR3691A
LR3692
LI2048

CMOS
CMOS
CMOS
CMOS
CMOS
PMOS

LH1001

PMOS

Features
6-circuit signal non-inversion type, INHIBIT input
6-circuit signal inversion type, INHIBIT input
7-circuit signal non-inve(sion type, INHIBIT input
7-circuit signal iIiversion.type, INHIBIT input
7-circuit signal non-inversion. type
7 -circuit signal inversion type
8-circuit signal ·non-inversion type,
8-circuit signal inversion type
Analog clock, alarm, oscillator: 4.19 MHz crystal
Analog clock, alarm, oscillator: 4.19 MHz crystal
Analog clock, alarm, oscillator : 32kHz crystal
Analog clock, alarm, oscillator: 32kHz crystal
Analog clock, melody generating function oscillator:
32kHz crystal
(Hour, min) LCD display, timecast, alarm, snooze function,
oscillator: 32kHz crystal
(Hour, min) Fluorescent display tube indication,
power failure display, oscillator 50/~0 Hz or 32kHz crystal
(Hour, min) Fluorescent display tube, 6-program-a-week
reservation, oscillator: 32kHz crystal
7-segment and 14-segment ·display, display RAM: 128 bits
5 X 7 -dot matrix display (master), display RAM:
240 bits, character generator: 125 types
5 X 7-dot matrix display (slave), display RAM:
320 bits, character generator: 128 types
Dot matrix display (master), display RAM:
1280 bits, common output: 20 lines, segment output: 44 lines
Dot matrix display (master), display RAM:
1280 bits, common output: 18 lines, segment output: 46 lines
Dot matrix display (master), display RA.M :
1280 bits, common output: 16 lines, segment output: 48 lines
Dot matrix display (slave), display RAM:
1280 bits, segment output: 64 lines
Dot matrix display (common), common output: 80' lines
Dot matrix display (common), common output;. 32 lines
Dot matrix display (segment), display RAM:
3200 bits, segment output: 80 lines
Dot matrix display (segment), display RAM:
3200 bits, segment output: 80 lines
Dot matrix display, common output or segment output: 40 lines
Dot matrix display, common output or segment output: 80 lines
Dot matrix display, common output or segment output: 80 lines
Dot matrix controller, max display capacity: 163,840 dots
Dot matrix controller, max display capacity: 640 X 256 dots
5 X 7-dot matrix display, character generator: 128 types
Grid drive, output voltage (MAX.): -50V,
output current (MAX.): 20mA

Package
16DIP.
16DIP
18DIP
18DIP
16DIP
16DIP
18DIP
18DIP
8DIP
8DIP
8DIP
8DIP

Page
908
·908
911
911
914
914
917
917
920
923
926
929

22DIP

932

48QFP

936

48QFP

94i

48QFP

945

60QFP

838

60QFP

899

60QFP

899

80QFP

879

80QFP

879

80QFP

879

80QFP

884

96QFP
44QFP

892
896

96QFP

889

96QFP

889

60QFP 866
100QFP 870
100QFP 870
60QFP 844
80QFP 853
60QFP 835
36QFP

905

.....---....---....------.......-.------------.....
Products Lineup

~--------•

MOS Ie / LSI (continued)
Function

High
voltage

Model

Process

LZI008AD

DMOS

LZI016AD

DMOS

LZI032AM

DMOS

LZll08AD

DMOS

LZ1116AD

DMOS

LZ1132AM

DMOS

LR3617
LR3727
LR3652

CMOS
CMOS
CMOS

LR3715M

CMOS

LU59001

CMOS

LR3461

CMOS

LR3462

CMOS

LR3681

CMOS

. LZ2020

CMOS

MOS

Audio &
Video

Remote
control
Voice
Synthesizer /
Melody
generator
CCD
Gate array

LZ92 Series

CMOS

Features
8-output, N-channel, output voltage (MAX.): 300V,
output current (TYP.): 35mA
16-output, N-channel, output voltage (MAX.): 250V,
output current (TYP.): 45mA
32-output, N-channel, output voltage (MAX.): 250V,
output current (TYP.): 45mA
8-output, P-channel, output voltage (MAX.): 300V,
output current (TYP.): 20mA
16-output, P-channel, output voltage (MAX.): 300V,
output current (TYP.): 30mA
32-output, P-channel, output voltage (MAX.): 300V,
output current (TYP.): 30mA
Up I down counter with LCD decoder driver
VTR data hack
PLL synthesizer for AM I FM radio
56-channel remote-controlled transmitter,
oscillator: 455 kHz ceramic
56-channel remote-controlled transmitter,
oscillator: 455 kHz ceramic
8-melody generation with accompaniment,
Electromagnetic speaker driver, CR oscillation
8-melody generation, piezo·electric drive, CR oscillation
Speech synthesizer, Waveform coding system,
Built-in 32K-bit data ROM, Base frequency: 4.19MHz
CCD image sensor, dynamic range (TYP.): 54dB,
Transfer efficiency more than 99.996%
Gate array, 300-5000 gates, 2.8ns/gate

Package

Page

18DIP

804

28DIP

807

44QFP

811

18DIP

815

28DIP

818

44QFP

821

48QFP
36QFP
22DIP

964
969
977

36QFP

952

20DIP

957

22DIP

824

18DIP

827

48DIP

831

24DIP
(Ceramic)

799

--

796

11

......

Package Outljoe
~.,

Package Outline (Unit: mm)
8

8DIP

5

14DIP

16DIP

12

16

9

.....-..-.....

.-..-..-.

-

...-.-............ ........
Package Outline

.-..-~

iSDIP

1 ;;==
;;

7.62 TVP.

20DIP

20

11

'~-~f:*)
1

24.5±o.25

10 :;;

+1

....

",

7.62TYP.

..;

22DIP

10.16 TYP .

13

_-_..................-

......-------_...........

PackageOuUine
.

......,.--.

.

-~

"

24DIP

CD
®
®

®
®
®
(J)

®

p~.54TYP.

0.5±O.1

Shrink
6.35±O.2
22.0±O.2S
7.62TYP.
3.45±O.2
4.2±O·2
P-i, 778 TYP.
0.46±O.1

Normal
Shrink
13.2±o.25
8.6±O.2
36.0±O·3
25.5±O..25
15.24 TYP: 10. 16 T¥P.
4.25±O.25
3.85±O.2
5.1 ±O.2
4.4±O.2
p-2.54T¥P. P-l, 778TYP.
O.5±O.1
(J)
O.46±O·1

28DIP

30DIP

Normal
13.2±o.2s
31.0±O·3
15.24TYP.
4.25±O·2
5.1±o.2

CD
®
®
®
®
®

Shrink
Normal
13.2±o.25
8.6±O.2
36.0±O.3
27.2±O.25
lS.24 TYP . 10. 16 TYP.
4.25±o.25
3.85±o.2
4.4±O.2
S.l ±O.2
p-2.54 TYP. P-l, 778 TYP.
O.46±O·1
(J) 0.5±O·1

3~ r"l t"J I'i fI t"J t"J ~ r"l r"l t"J t"J J'l r"1 ~6

--+-----$.

- 1----.

-$-

\-IV V V V V V

1

CD
®
®
®
®
®

I

e

I

! 'vi V V V V VL

®

15
~

@ (§)

~
-H

on

""
.,.;

1

P-

,~

~

,,"
~
~

~.-.------~--SHARP-.-.~~-.-.--

14

Package Outline
~.-..-..-.-..-..-.-..-.-~.-.-.--.-..-.-.

40DIP

21

42DIP

48DIP

15

P~kage. Outline
.
.
. - . - . - . - . - . . . . . , . - -..._ ..._~.-.:..._ _illr.. . . . ....,.IIiiIIIIiiiIif.....

640lP

64

33

42.0MAX.

:....-------------t~1

24 DIP (Ceramic)

I

24
_~

n

~L

13

J
-

Hjt:=chip ---+---

. 11 14.0TYI'·

12

~
M

.,;
+1

;2)

>=

N t..

~~~~~=t~

J
.

28 DIP(Ceramic)

16

O.25±o.05

\: 15.24TYP ·

~

.1

Package Outline

_________

~~~"",~~"",~....,....,.--r~....,

8.9 TYP .

40PBP
( Ceramic

Piggyback

40

21

)
~

c::i

'"0'

M

'"

~

+\

_

;;.

I

+1

to:
~
~ .,.:
........

20 '"0

0;

>-

ti. ';;,
~------------~--------------~~ ~
~ r--:
50.8±o.8

,

J~0~46±O.1

.,;
'"

...

+1

M

8S0P

JJ
-

-

-'"

r-

C>

-u;

:

II

~j

~

II.

0.15±o.05

14S0P

'::' --+-------'- '"~

6T1iirfIDriB

~~----~~----------~~

..,., '"

ci

~

~IIE 0.15±O.05

0

'"
.,;
""
o~ ....
o

17

16S0~

.

8

o

...

on on on

~irini$nririC ~
<00

o~

o

24S0P

IS.4

0 0.2

o
on

~-~

~ttl~:

~I

3

on

II eO.IS±O.05

:

32QFP

16.0±O"

O.8S±O.2
1.45±O.2
O.ITYP.

-------~---~-~SHARP,-~~-.--------

18

.....----

Package Outline
.-..-..-.~.-..-.~.-.~~~.-.~~~.-.

p-o.8 TYP•

36QFP

36 -0.38±o.1

0.15±o.o5

n7~-------' ~----

~

.,;
++1--E""'a::Il
N

o

..

0

~1=E=-88

<=>
cD
............

10.0±O.2

0.85±0.2
1.45±O.2

16.0±O.4

o.rrvp

44QFP

_liE

0.15-{l.tl5

J-.-

-

0.85-°·2
1.45- 0 . 2
16.0,,0.4

. . . - - . - - - - - , . . . . - - $ H A R p . - - - - - - - - - - -..........
19

Paokage, Outline

........--.~...,...,.-. . ..-..-.. . .....r.-...........~......_
48QFP
p-o.75 TYP ,

24

N

o

~

0
+i
<:> <:>

__ +I

~~

13

16.01: 0 .4

O.I TYP ,

60QFP
0.15 ±0.05

f

N

---111==~3-

,

~

0
~

o
""

00

-r-~

1.0±0.2
1.9±0.2 .

20.3±0 .•

20

O.FYP' '

....

.-..-..-.

.......-....................-........-..-..-........ Package Outline

.-..-.

64QFP

64-0.4±O.!

64

1

I

20.0±O.2

\

24.3±o..

.

O.9±O.2

I

,.

1. 95±o.2
-1'--1iE-O-.I ±o.os

-t6r;-fulunJ1tU1 rfilil~~

(21.9)._ _ _ _ _~-~

76QFP
P-O.8 T¥P.

I

--r'--,

I

22.0±0.4

O.I±O.!

21

p,i1~kage

Outline

80QFP

O.15±0.01

p-0.8 TYP.

~-----

+----I
1.25±0.2
18.0±0.2

2.4±0.2
O.1't:O.1

22.0±0.4

I"

80QFP

0.15±o.05

1'-0.8 TY I'·

I

20.0±0.2
, 24.3±0.4

0.9±O.,
1.95±0.2
0.1±0.1

_ _ ~~-----~-SHARP~------"--'----"""'-

22

......-..-.......-.................-.................-.......-.
Package Outline

.-..-..-.
96QFP

p-O.FYP'

O.15±O.05

"II" .
,

I

~---+----,
I
I

i

18.0±o.2
22.0±O.'

1.25±o.2
2.4±O.2
O.l±O.!

lOOQFP

23

44PLCC

;>1

6' ,

I,E

40

!" \

29

16.6.tO·2

(17.5)

DIP : Dual-In-Line Package
QFP : Quad Flat Package
SOP: Small-Outline Package
PBP : Piggyback Package
PLCC : Plastic-Leadless-Chip-Carrier

24

28

.....

.-.,.-.,.-.,

..... ..... ..... ..... ..... ..........

.-.,.-.,

.-.,

.-.,

.-.,

.-.,

Quality Assurance
.-.,

Quality Assurance
1.

Quality Assurance System

Sharp develops and manufactures a wide range
of consumer and industrial-use semiconductor products, including ICs and LSIs.
In recent years, the applications of ICs and LSIs
have expanded significantly, into fields where extremely high levels of quality are critical.
In response, Sharp has implemented a total quality assurance system that encompasses the entire
production process from planning to after-sales
service. This system ensures that reliability is a
priority in the planning and manufacturing stages,
and guarantees product quality through rigorous
reliability testing. We will introduce a part of
this system here.
Sharp's quality and reliability assurance activities are based on the following guidelines:
(1) All personnel should participate in quality
assurance by continually cultivating a higher
level of quality awareness.
(2) In the developmental stage of new products,
create designs that consider reliability in every respect.
(3) In addition to quality control in all manufacturing processes, all working environments,
materials, equipment, and measuring devices
should be carefully monitored to ensure quality and reliability from the very beginning of
the process.
(4) Confirm long-term reliability and obtain a
through understanding of practical limits
through reliability testing.
(5) Continually work to improve quality through
application of data from process inspections,
reliability testing, and market surveys.

2.

Quality and Reliability Control in New
Product Development

The development of new products begins with a
thorough understanding of the product specifications and quality that will satisfy the purpose for
which the product is intended and with developmental planning that carefully considers pricing,
quantity and the time of introduction to the market.
In the design stage, reliability is designed into
the product based on test data, process capability,
and field data, and experimental models are
made. These experimental models are referred to
as TS (technical samples), and are evaluated pri-

1 ;;=;:;
=

I--_ _ _ Evaluation of functions
and performance

I--_ _ _ Eva!uation of quality

and mass producibility

f----Evaluation of reliability

1 - - - - - Decision to mass
produce

Fig. 1

New Product Development Steps

marily for their ability to function and their performance.
Next, ES (engineering samples) are made and evaluated to determine whether the functions, performance and quality aimed for in the design stage
can be guaranteed under the existing manufacturing conditions. These ES are also evaluated in
quality and reliability tests to determine whether
their long-term reliability can be guaranteed.
After this, mass producibility is evaluated using
CS (commercial samples) obtained from a trial mass
production, and the decision to mass produce or
not is made. Fig. 1 shows the steps in the development of new products.

3.

Quality and Reliability Control in Mass
Production
(1 ) Quality Control of Materials

The quality and reliability of a product is
affected by its component materials as well as the
manufacturing processes and conditions.
The quality control of purchased component
. materials is ensured by material qualification and
inspection upon receipt.

.-....----~.------SHARP.---------~

25

........,.....,.... ..-.. .....

Q,uality Assurance

.....,.....,.....,

~-

Table 1
Material

Items

....,.....,

...........

.....,.....,.....,.....,

Examples of items considered in material approval

Wafers
Crystal growth method
,Crystal orientation
Doping
Oxygen content
Dislocation density
Diameter
Thickness
Parallelism
Specific resistance

Resins
Composition
Electrical characteristics
Thermal characteristics
Formability
Process characteristics
Reliability evaluation
Reliability characteris
tics
by elements used

Process

Lead frames
Composition
Electrical characteristics
Thermal characteristics
Physical characteristics
Appearance '
Dimensions
Processing a~cl,lracy
Plating characteristics
Process characteristics

.Bonding wire
Purity
Appearance
Dimensions
Strength
Elongation character-istics
Process characteristics

C

Control items

Purchase of material .

Silicon
wafers

Inspection upon receipt
,

Appearance, dimensions,
specific resistance

Eliminate items with incorrect dimensions;
scratches; and crystal defects and assure
resistance values.

Appearance, film thickness

Confirm the absence of pin
holes and assure film thickness.
Check the cleanliness of surfaces.

Oxidation

On line QC

Surface cleanliness

Photolithography
Visual inspection

On line QC

Development, etching

Check the suitability of development and
~tching.

Wire width

Control the wire width.

Electrical. characteristics

Eliminate items with unsuitable electrical
characteristics.

Appearance

Confirm the absence of breakage and
chips.

Appearance, bond strength

Check quality of die bond.

Appearance, tensile strength

Ch.eck position and shape of bond and
assure sufficient tensile strength.

Ion implantation
Chip electrical inspection
Dicing
Breakage screening
Die inspection

Die bonding
Die bonding inspection

Wire bonding
Wire bonding 'inspection

Fig .. 2

Example of process quality control

! '

.-----~-----SHARP,-~-.---.-.-..-.-

26

......-..-.......-.................-............-..-...........
Quality Assurance

.-..-..-.

Table 1 shows examples of material qualification
items. The inspections performed upon receipt of
materials use criteria compiled from the purchase
specifications and approval drawings, and employ
sampling inspection methods that conform with
MIL-STD-105D.
(2) Control of Manufacturing Environment
Environmental conditions in the manufacturing
process - such as temperature, humidity, and dust
- significantly affect the finished quality of semi·
conductor products.
Temperature is especially critical in maintaining
the accuracy of the measurement of electrical characteristics and the accuracy of various devices.
Humidity control is important for the prevention of
moisture penetration into a device and the prevention of static electricity. Temperature and humidity are thus strictly maintained at constant levels.
A dust-free environment is vital in the manufacture of refined semiconductor circuits, as dust can
be the critical determining factor in their quality
and reliability. Thus, the cleanliness of everything from air conditioning equipment to work benches to work clothes and office items is carefully
controlled.
Sharp is also concerned about creating an environment conducive to error-free high-precision
work, and so provides background music and interior colors appropriate for specific tasks.

agement.
We perform a final inspection of all finished products as well as further quality assurance inspections through sampling to fully ensure quality.
Detects found in these inspections are promptly
reported to the design and production sections, and
improvements made' in the processes to upgrade
our uniform quality capabilitieS.
Assembly process

Electrical
characteristics

All items

Appearance

All items

Eiectrical
characteristics,
Judge lot
appearance ' by sampling

-----------,
I

Reliability tests

Sampling

_ _ _ _ _ _ _ _ _ JI

(3) Control of Manufacturing Equipment and
Measuring Devices

Tremendous technological innovation and progress has been made in s~miconductors themselves
and in the processes and equipment by which they
are produced.
T,o achieve even higher levels of product uniformity and quality, Sharp is continually furthering the automation of its processes, strictly managing the maintenance of its manufacturing equipment,
and carefully monitoring the accuracy of all
measuring devices through daily and periodic inspections.
(4)

Process Quality Control and Product inspections

Shipment

Fig. 3

Product inspection system

Fig. 3 Shows the product inspection system.
Fig. 4 Shows an example of process quality
control.
(5)

Reliability Assurance

To guarantee the long·term reliability of our products, we periodically sample products and subject
them to reliability testing such as life tests and environmental tests.
In addition, reliability tests are performed
whenever process changes have been made.

Based on the fundamental concept of ensuring
quality and reliability throughout the manufacturing process, we check at each stage to determine
whether the prescribed characteristics are being
obtained and to prevent defective items from going
on to the next stage. We do this through strict
monitoring, inspection of all items, sampling inspections, and other standardized methods of man---...-..--.----SHARP-.--~-- ........ -

27

Q.uatity~sslM'anc'i.l·

.. ..r....__. .

,..-.r~~

~

.....~......-..r.~. .~..........__~..........

~~

SHARP
Manufacturing

Quality control

Quality assurance

Design '

Business, planning

Investigation
Development plan decision (New production planning

collferen~e)

sample/Engineering, sample

General evaluation (New product debut conference)
Pilot production

production go - ahead conference)

=
.~

""
o

"C

&::

Fig.4 (a) Quality assurance system (SHARP side)

28

_

_

-

.................... .............................. .....................
Customers

1

Design dept.

C

r

Confirmation of\.

Equipment
discussionS'

Parts

1

Quality Assurance

'

Manufacturing dept., Quality
dept. Assurance

Parts dept.

I

End user
Service dept.

)-~------------------~------~o~·----o
)

seleciion

specifications

0
(

Equipment
design

I

Design

sample

\..

r

\

r

\..

Purchase
specifications

}--(

Parts
approval

0
Speeificatjons
approval

)-

0

'\
./

r
\.

0

0

0

Mounting

approval

~

(

(

Sample
planning

)

Design review

• "\

r

../

\

Pilot
production

f

"\

\.

)

l

(

)

General evaluation

+

J'

Quality

\...

evaluation

"\

./

Process quality

1
Assembling

control

"\

J'
\.

r
\.

0

Sample
test

r

\..

Evaluation

/Analysis

Fig. 4

•

l.n s pections
/Aging

Reliability
evaluation

"\

./

)

"\
../

J'
\.

Operation

)

(b) Quality assurance system (User side)

.-.-.--.-----SHARP-----.-.---

29

Qua.lityAssurance

...............

..............r.....AIIiIIIIIir.............,___

~

.....,~...................... - .

Reliability Tests

4.

In addition to determining the extent to which
product reliability can be assured, the objectives of
reliability testing il1clude getting an understanding
of design limitations and the catastrophic failure
mode, and predicting reliability in the field.
The major categories of reliability testing are
durability tests, thermal environmental tests, and
mechanical test~. The standardized test .methods
used are those prescribed by official standards or
Table 2
Type

Durability
tests

Thermal
environmental
tests

Test item
High temperature
storage
High temperature
operation
High temperature,
high humidity
storage
High temperature,
high humidity
operation
Low temperature
storage
Temperature
cycling test
Heat shock test
Temperature and
humidity cycling
test
Solder heat
resistance
Shock test
Variable-frequency
vibration test
Pin strengeth

Mechanical
tests
Air-tightness
Salt spray test
'Solderability
Solvent resistance

30

associations such as the International Electronics
Commission (IEC), and the U. S. Military Specifications (MIL). Sharp standardizes
specifications to
conform with these standards.
Table 2 shows a representative reliability test.
Durability testing of semiconductor products
places the greatest emphasis on high temperature
operation tests. Priority in the testing of plastic
m'olded products is on high temperature, high
humidity storage (operation) tests.

all

Reliability test for semiconductor products

Test condition
T,tg(max.)
Top, (max.)
power supply voltage (max.)
.60t 90% RH
85t 85% RH
Pressure cooker at l20t and
2 atmospheres
60t 90% RH
85t 85% RH
T,tg(min.)
T,tg (max.)-T,tg (min.)
ot -lOOt (liquid)
-lOt to+65·C 90% RH

260t lOs
1,500G, 0.5 ms ±X, ±Y,±Z
20G, 20-2,000 Hz, X, Y, Z
Tensile strength : holds fixed load
for 10 seconds
Bending strength: bend once 90 iu
forward and reverse directions
(Load is determined based on piu
shape and the surface area of pin
section.)
' Test for minute leaks using helium
gas and large leaks using foaming.
Spray 5% salt solution
at Ta=35 t for 24 hours
230 tfor 5 seconds (with flux)
Dip in isopropanol and acetone fo
30 seconds at Ta=25t

Test objectives
Evaluate resistance to high temperatures in
longterm storage.
Evaluate resistance to long, term thermal and
electrical stress.
Evaluate resistance to high temperatures and
high humidity in long-term storage.

'Evaluate resistance to long-term thermal, humid,
ity and electrical stress.
Evaluate resistance to low temperatures in longterm storage.
Evaluate resistance to sudden extreme temperature changes.
Evaluate resistance to sudden extreme temperature changes.
Evaluate resistance to extreme temperature
changes at higgh humidity.
Evaluate resistance to thermal stress during
soldering.
Evaluate structural and mechanical resistance to
strong shocks.
Evaluate resistance to vibration during transport and use.
Evaluate resistance to mechanical stress applied
to pins.

Evaluate hermetic sealing.
Evaluate resistance to corrosion in salt spray
environment.
Evaluate solderability of pins.
Evaluate resistance to pitting.

Quality Assurance

.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.5.

offered and assure the products'long-life service,
please refer to this manual to help in designing systems that make best use of their capabilities.
(1) Maximum Ratings
It is generally known that the failure rate of
semiconductor products increases as the temperature increases. It is necessary, of course, that the
ambient temperature be within the maximum rated
temperature. Further it is desirable from the standpoint of reliability that the ambient temperature be
lowered as much as possible. The voltage, current,
and electric power used are also factors that significantly influence the life of semiconductor products. Voltage or current- that exceeds the rated
level may damaged, the semiconductor product;
even if applied only momentarily and the unit continues to operate properly, excessive voltage or
current will likely increase the failure rate.
Therefore, in actual circuit design, it is important that the semiconductor products used have a
certain degree of allowance with respect to the voltage, current and temperature. conditions under
which they will be used. The greater this allowance, the fewer the failures that will occur.
To keep failures to a minimum, the circuit should
be designed so that under all conditions to absolute
maximum, the ratings are not exceeded even

After-sales Service

If a product malfunctions after shipment, we
have the customer return the product for detailed
analysis. We also obtain complete information concerning conditions of use, frequency of occurrence,
and symptoms.
When the cause has been determined, we report
findings concerning the design, manufacturing process, or method of use to the departments concerned for preventive action against recurrence of
the malfunction. We then submit a report to the
customer.
This process of tracking the performance of our
products in actual use is an extremely effective
way to enhance product reliability. We direct a lot
of energy forwards its full imprementation.
Fig. 5 shows the routes through which accidents
and malfunctions outside of the company are handled, and Fig. 6 shows the procedures used in their
analysis.

6. Handling Precautions
All of the semiconductor products listed in this
data book were manufactured based on exacting
designs and under comprehensive quality control.
However, to take full advantage of the features

I

I

Complaint

: Reply
I
I

I

Report of
complaint

: Investigation
I report
I

I

,-

Quality assurance

I

Request for
corrective action

I
Report I
I

I

I Report
I

Request for
corrective action

I

I
I

I
I

I

Instructions
Manufacturing
Request for
corrective action

Fig. 5

--,

I

I

Design and
technology

Routes through which malfunctions
outside the company, are handled

----------------SHARP

.----.--~-----

31

quality Assurance

,....-r..... -................~-.,.-.-....... - .................................
momentarily and so that the maximum values for
any two' or more items are not achieved simultaneously. In addition, remember that the circuit
functions of semiconductor products are gua'ranteed' within the operating temperature'range (To.,)
of the absolute maximum ratings, but that storage
temperature (Tstg) is the range in a nonoperating
condition.
(2) Transportation and Storage
Semiconductor products are susceptible to high'
temperature and high humidity. Please store them
in a dry place as near to room temperature as
possible.
During shipping and storage, keep semiconductor products in the packaging they were delivered
in to prevent damage due to static electricity. If removed from tlIeir packaging, the terminals must be
shortcircuited with a conductive material or the entire units wrapped in aluminum foil. Also remember that nylon and plastic containers build up electrostatic charges easily and so should not be used
for storage or transportation.
Mechanical vibration and shock should also be
kept to a minimum.
(3) Assembly
When attached ,to printed, circuit boards, semiconductor products are removed from a conductive
container, so electrical equipment, work benches,
and operators must be grounded to protect the products fmm static electricity. It is good to use
grounded metal plating on the surf(ices of work
benches. Grounding metal rings and watch bands is
a convenient method for grounding operators. The
grounding of operators is required to prevent electric shock due to current leaks from electrical
equipment, so it must be performed through a resistance of 1 M
Working attire made of synthetic fabrics should
be avoided in favor of fabrics such as cotton that
do not easily generate static electricity.
Keeping the relative humidity in working areas
around 50% will 'also help to prevent the generation of static electricity.
Current leakage from electrical equipment is not
desirable from the standpoint of safety. All equipment'should therefore be, checked periodically for
, current leakage.
When forming the lead wires of semiconductor
products to be mounted, forceps or a similar tool

n.

32

that will prevent stress, frolll being applied to the
base of the wires should be used.
To prevent the input terminals of semicondudor
products on c()mpleted printed circuit boards from
becoming open during storage or transport, the terminals oilhe circuit board should be'shortcircuited
or the entire circuit board itself should be wrapped
in aluminum foil.
(4) Soldering and Cleaning
When using a soldering iron or solder bath, keep
the temperature below 260t the .time and within
10 seconds. If using a soldering'iron, use one with
no leakage from the soldering tip. An A class
soldering iron with an insulation resistance of less
than 10 Mil is recommended. When using a solder
bath, it should be grounded to prevent its having
an unstable electric potential.
Using a strongly acidic or alkaline flux for
soldering can cause corrosion of the lead wires. A
resin flux is ideal for this type of soldering.
To assure the reliability of a system, removal of
the flux used in soldering, is generally required.
Freon TE, a freon cleaning fluid, or difron solvent
S3-E is recommended for use as the cleaning fluid.
To prevent stress on semiconductor products
and circuit board w'hen using ultrasonic cleaning, a
cleaning method must be used that will shadow the
main unit from the vibrator and keep cleaning time
to less than 30 seconds.
(5) Adjustment and Tests
When the set is to be adjusted and tested upon
completion of the printed circuit board, the printed
circuit board must, be checked to ensure that there
are no solder bridges or cracks ,before the power is
turned on. Also, if the marked rated voltage and
~urrent are to be used, it is wise'to use a current
limiter.
Whenever a printed circuit board is to be removed or mounted on a socket, the power must be
turned off.
When testing with a probe, care must taken to
assure that the probe does to' come in contact with
other signals or the power supply. If the test location has been decided beforehand, it is wise to set
, up a specially designed test pin for testing.
When testing in high· and low temperatures, the
constant temperature bath must be groundeq and
measures taken to protect the set inside the bath
from static electricity.

Quality Assurance

Report

r--""]

'--- ....

Test is applied only to a hermetic sealed package.

Fig. Failure analysis procedure

33

4-Bit 1-Chip Microcomputers

[g

SM-3A

. PMOS 4-Bit 1-Chlp Microcomputer

SM-3A
•

PMOS 4-Bit I-Chip Microcomputer

Description

The SM-3A is a 4-bit single chip PMOS microcomputer with 2,268 bytes of ROM, and 128
words of RAM. It is well suited for low cost systems requiring many I/O control ports.

•

Pin Connections

KEa
KE2
KE,
AD ..

•

1

0

Features

1. PMOS process
2. ROM capacity 2,268 X 8 bits
3. RAM capacity 128 X 4 bits
4. Instructions 57
5. Subroutine nesting 2 levels
6. Input ports 8 bits
7. Output ports 37 bits
8. Input/Output ports 4 bits
9. On-chip clock generator circuit
10. High voltage outputs (-38V) 27 bits
11. Single power supply -15V (TYP.)
12. Instruction cycle lOps
1a. 60-pin quad-flat package

36

P

K~

Top View

PMOS 4-Bit 1-Chip Microcomputer

•

SM-3A

Block Diagram
Output Port

ROM

36x63x8
Frequency
Control
Clock

2

RAM

8x16x4

Output
Port

31

'----------------------yr---------------------Output Port
Symbol description
ALU
Acc
C
PB, PU,PM, PL
SC

:
:
:
:
:

Arithmetic logic unit
Accumulator
Carry F/F
Program counter
Stack register of program counter

RC
: Stack register of program counter
Bu, BM, BL : RAM address register
X
: Temporary register
S
: Flag F/F
DISP
: Display F/F

37

SM-3A

PMOS 4-Bit t-Chip Microcomputer

•

Pin Description

,.

Pin
KE j -KE 4
a, fJ, AK, 'TAB
DIO j -DI0 4
Rj -R 7
Rs -R 22
F j -F 4
ADI-AD IO

I/O
I
I
I/O
0
0
0

Type of circuit
Pull clown
Pull down
Complementary 3 states
Open drain
Open drain
Open drain
Open drain

IDF

0

Open drain

OD, R/W
T
ACL

0
I
I
0

Complementary
Pull down

ci

~2

Function_
Acc+--KEI-KE~

Possible to test 4 bits independently
Acc+--DIOj -DI0 4
Segment output or R register output
R register output
F j-F 4+--Acc
BL decode output or external RAM address output
Possible to set, reset and test by command
(Suitable for printer motor drive signal)
External RAM control output
For test (usually connected to VDD)
Auto clear
Synchronizing signal terminal
Frequency control terminal
Power source for external RAM connection
Power source for logic circuit

Complementary

VI, SYNC
Vs•
VDD, GND

•

Absolute Maximum Ratings
Parameter

Pin voltage
.

Operating temperature
Storage temperature
Note 1:
Note 2:
Note 3:

•

Symbol
VDD
Vs
VIN
VOUTI
VOUT2
Topr
T s ."

Rating
-20-+0.3
-20-+0.3
-20-+0.3
-20-+0.3
-40-+0.3
-10-+60
-55-+150

Parameter
Input voltage

Output voltage

Supply current
Cycle time

38

4:
5:
6:
7:
8:

Note
1
1
1
1,2
1,3

The maximum applicable voltage on any pin with respect to GND.
Applicable pins include: R/W, DIOI·DIO., OD, ADI-ADlO
Applicable pins include : RI-R2~, FI-F4, IDF

(V DD =-15.0V±10%, VN=-38V, Ta=,-10-+60"C)

Electrical Characteristics

Note
Note
Note
Note
Note

Unit
V
V
V
V
V
"C
"C

Applicable
Applicable
Applicable
Applicable
Applicable

pins
pins
pins
pins
pins

Symbol
VIHI
V1Ll
VIH2
VjL2
VOH!
VOLI
VOH2
VOL2
VOH3
VOL3
IDD
tc

Conditions

TYP.

VDD =-13.5V

MAX.
-10.0

-0.8
VDD =-13.5V
Io =-2mA
RL = 50k il connected to VN
Io =-8mA
RL=50kilconnected to VN
Io=-lmA
R,L =50kil connected to VDD
VDD =-15.0V

~, AK, TAB, KEI - KE.

ACL, Vc SYNC
RI- R7, FI"':F., IDF
Rs- R22
ADl- ADIO

MIN.
-2.5

-10.0
-2.0
VN+I
-3.5
VN+I
~L.O

VDD+l
-12
10

Unit
V
V
V
V
V
V
V
V
V
V
mA

f's

Note
4
5

6
7

8

SM-3A

PMOS 4-Bit 1-Chip Microcomputer

•
1.
2.
3.
4.
5.
6.
- 7.
8.
9.

•

Applications
Electronic cash register
Hard-Hold electronic calculator with printer
POS terminal
Electronic scale
Vending machine
Microwave oven controller
Electronic sewing machine
Controllers of game machines
Others electronic appliance controller~

System Configuration (for VTR program timer)
Control signals

For channel selection

Fluorescent tube display

Rl~------;---------------f

+15V

56kO

56kO

-20V

lOOkO

Key matrix

~'-'------SHARP-'-'---------

39

SM-1 00/SM-1 05

PMOS 4-Bit 1-Chip Microcomputer

SM-IOO/SM-I05
•

Description

•

PMOS 4-Bit I-Chip
Microcomputer

Pin Connections

The SM-100/SM-105 isa 4-bit single chip
PMOS microcomputer with 1,134 bytes of ROM;
and 64 words of RAM. It is well suited for low
cost systems requiring many I/O control ports.

•

Features

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.

PMOS process
ROM capacity 1,134X8 bits
RAM capacity 64 X 4 bits
Instructions 58
Subroutine nesting 2 levels
Input ports 4 bits
Output ports 17 bits
Input/Output ports 1 bit
On-chip clock generator circuit
High voltage outputs (-38V) 18 bits
(only SM-100)
11. Single power supply - 9V(TYP.)
12. Instruction cycle 10 ps
13. 28-pin dual-in-line package

------------~-SHARP------ ............ - - - -

40

SM-1 00/SM-1 05

PMOS 4-Bit 1-Chip Microcomputer

•

Block Diagram
ACL

Output
Port

Oscillator

Instruction

1 - - - - - - - - - - 1 Decoder

~---------v~-------~

Output Port
Symbol description
ALU : Arithmetic logic unit
Acc : Accumulator
ACL : Auto clear
C
: Carry F/F
PC : Program counter
SC : Stack register of Program counter

•

RC
DIV
CG
X
ADC
S

:
:
:
:
:
:

Stack register of program counter
Frequency divider
Clock generator
Temporary register
RAM address register
Flag F/F

Pin Description
Pin name
KE 1-KE 4
IDF
R1-R7
R8 -R 13
R14 -R 17
T
ACL
OSCIN, OSC OUT
V DD , GND

I/O
I
I/O
0
0
0
I
I

Pull
Mid
Mid
Mid
Mid

Circuit type
down
voltage * open drain
voltage * open drain
voltage * open drain
voltage * open drain

Function
Acc -KE 1-KE 4
Can be set, reset, and tested by instructions
Segment output or R register output
R register output
R14-R17-Acc or R register output
For test (Connected to V DD normally)
Auto clear
For clock oscillation
Power supply for logic circuit

* For SM-IOO

--.-.--.--.-..--SHARP . . . - - . - - - - - - - - - 41

.SM'-100/SM-1 05

PMOS4-Bit 1-Chip Microcomputer

•

Absolute Maximum Ratings
Parameter
Pin voltage
Operating temperature
Storage temperature
Note 1:
Note 2:
Note 3:

•

Symbol
Voo
VIN
VOUT
Topr
T S' 2

Ratings
-12-+0.3
-12-+0.3
-40-+0.3
-10-=--+50
-55-+150

Unit
V
V
V

Note
1
1,2
1,3

t
t

The .maximum .illm!icable voltage on any pin with respect to GND.
Apply to pins ACL, K,-K4, T, OSCIN, OSCOUT.
Apply to pins RI-RI7, !DF..

Recommended Operating Conditions
Parameter
Supply voltage
Oscillator frequency

•

Symbol
Voo
fosc

Ratings
-8.1--9.9
400 (TYP.)

Unit
V
kHz

(V oo =-9.0V±10%, V N=-38V, Ta=25·C)

Electrical Characteristics
Parameter

Input voltage

I SM-I00
I SM-I05
Output voltage

I SM-I00
I SM-I05
Current consumption
Oscillator frequency
Note
Note
Note
Note
Note

4:
5:
6:
7:
8:

Symbol
VIH1
VILl
VIH2
VIL2
VOH1

Conditions

MAX.

-0.8
Vo~+1

IouT =-lmA
Connect RL =50k'o' to VN

VOH2

IOtJT =-8mA

-1.0
V N+l
Voo +l
-1.0

10
400

[00

fose

Applied to pins KEI-KE~.
Applied to pins ACL, T, !DF.
Applied to pins Rl - R7, !DF.
Applied to pins R8-R17.
Reference oscillation: 10 ,us/cycle at 400 kHz
OSC 'N

Unit
V
V
V
V
V
V

Note
4
5

6

V
V N+.1
Voo +l

Connect RL =50k'o' to V N

OSC OUT

42

TYP.

Voo +l

VOLl

VOL2

MIN.
-1.8

V
rnA
kHz

7

8

PMOS 4-Bit 1-Chip Microcomputer

SM-110/SM-115

SM-II0/SM-115
•

Description

The SM-1I0/SM-1I5 isa 4-bit single chip
PMOS microcomputer with 2,032X9 bits of ROM,
128 words of RAM, and AID converter. It is well
suited for low cost systems requiring many I/O
control ports.

•

•

PMOS 4-Bit I-Chip
Microcomputer

Pin Connections
r-- . . .
~

I

p

Nm~U')tl:lZ.t--oom

........................

N N N N NIN 0 N N'N N N N N
41

31

Features

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.

PMOS process
ROM capacity 2,032 X 9 bits
RAM capacity 128 X 4 bits
Instructions 90
Subroutine nesting 6 levels
Input ports 11 bits
Output ports 35 bits
InputlOutput ports 4 bits
On-chip clock generator circuit
Interrupt function
External interrupt 1
Timer interrupt 1
11. 8 bits AID conversion
12. Internal divider (1/50 or 1160)
13. High voltage outputs
(-35V) 21bits (only SM-lIO)
14. Single power supply -9V (TYP.)
15. Instruction cycle lOps
16. 60-pin quad-flat package

~--'--------SHARP-----~--'-----

44

SM-100/SM-105

PMOS 4-:Bit 1-Chip Microcomputer

•

Applications
1. Various types of mechanical controllers for
video players, vending machines, etc.
2. Game machines

•

System Configuration (Video timer)
Sun

AM

MOD

Tue Wed Thu Fri Sat

n 0

PM I_I I_I

0
0

R14

Memory indicator

Rr5
R8

Power-on indicator

SM-Ioo/SM-I05

Clock Timer 50/60

----.-----.---~-SHARP --.-.~---.-.-.

43

PMOS 4-Bit 1-Chip Microcomputer

•

SM-110/SM-115

Block Diagram·
Input
Port

Input/Output
Port

~~/~

__

~

________

Output Port

~

__________

-JA~

______________________

~

Analog
Input
Port

Stack
Register
(6Ievels)

ROM
(2,032X9

Control
and Judge
Interrupt

RAM
(l28X4)

TF

CG

IF

HF
15i}--------------------------{:~

'-v--'VDD ACL
GND
Symbol description
ALU : Arithmetic logic unit
Acc : Accumulator
ACL : Auto clear
C
: Carry F/F

U

'--y----/2.5kHz
Input Port
Pulse Output
PC : Program counter
CG : Clock generator
DIV
: Divider
BM, BL : RAM address register

"-v---"

Oscillator
DA

X

CF

D/ A convert er
Temporary register
Comparater

45

PMOS .4-Bit l-Chip Microcomputer

•

SM-110/SM-1.15

Pin Description
Pin name
KE 1 -KE 4
KH
KI
KT
KC 1 -KC 4
P 1 -P 4
R1 -R 16

I/O
I
I
I
I
I
I/O
0
0

Z I - Z I4

0

T
ACL
F

I
I
0
0

QI-Q4

"'2+

Pull
Pull
Pull
Pull

Circuit type
down
down
down
down

Function
Acc +-KE 1 -KE 4
HF flag set on t ; reset by instruction
IF flag set on t ; reset by instruction
External timer signal input (50 or 60Hz)
Analog input or Acc +-KC 1 - KC 4
P 1 -P 4 +-Acc
Q1-Q4- Acc
R register output
Z register output
For test (Connected to V00 normally)
Auto clear
2.5 kHz pulse output (System clock· 100kHz)
Sync' signal output
For clock oscillation
AID conversion standard power supply
Power supply for logic circuit

Open drain
Mid voltage * operi drain
Mid voltage * open drain
Mid voltage * open drain

CLio CL 2
VR, AGND
Voo, GND

* For SM-llO, ZI pin only is high voltage
•

Absolute Maximum Ratings
Parameter
Pin voltage
Operating temperature
Storage temperature
Note
Note
Note
Note

•

Symbol
Voo
VIN
VOliTI
VOllT2
Topr
T$t~

Ratings
-12-+0.3
Voo -0.3-+0.3
Vj)j)-0.3-+0.3
-37-+0.3
-10-+70
-55-+150

Unit
V
V
V
V

Note
1
1,2
1,3
1,4

"C
"C

1: The maximum applicable voltage on any pin with respect to GND.
2: Applied to pins KHI-KEI, KCI-KCI, P,-P" Kl,-KIl, KT.
3: Applied to pins F, P,-P" Z,-Z,.
4: Applied to pins QI-Q" RI-RI6, z,.

Recommended Operating Conditions
Parameter
Supply yoltage
Reference voltage

Symbol
MIN.
-9.9
V[)o
VR
5/9 VDD -O.2

TYP.

MAX.
-8.1
-4.5

Unit
V
V

-~-""""---'-"SHARP-~------------

46

PMOS 4-Bit 1-Chip Microcomputer

•

SM-110/SM-115

(V oo =-9V±10%, VN (MAX.)=-35V, Ta=-10-70'C)

Electrical Characteristics
Parameter

Input voltage

I SM-110
Output voltage

I SM-110

Input current
Output current
Current consumption
Oscillator frequency

Symbol
VIIIl
VILl
VIII 2
VIL2
VOHl
VaLl
VOH2
VOL2
VOIU
VOH4
VOL4
lIIi
IR
IOL:)
100

AID conversion zero error
I

AID covers ion full scale error
AID conversion overall error

Reset time

MIN.
-2

tACL

TYP.

MAX.
Voo +2

-0.8
-4.5
Io =-10mA
Connect RL=50kO to VN •
Io=-lmA
Connect RL = 50k 0 to VN.
Io=-0.5mA
Io=-0.2mA
10= 10 /LA
VIN=OV
V R=-5V
Vo=Voo

-2.5
VN +l
-0.2
VN +l
-1
-1
180
900

Unit
V
V
V
V
V
V
V
V
V
V
V
/LA
/LA
/LA

13
400
VR=-5V
Vo[)=-9V
VR=-5V
V[)[)=-9V
VR =-5V
V[)[)=-9V
V R=-5V
V o[)=-9V
At power up

Voo +l
450
1200

-1

fosc

AID conversion linear error

Note 1:
Note 2:
Note 3:
Note 4:
Note 5:
Note 6:
Note 7:
Note 8:
Note 9:
Note 10:
Note 11:

Conditions

30

rnA
kHz

±3

LSB

±3

LSB

±3

LSB

±3

LSB

20

ms

Note
1
1
2
2
3
3
4
4
5
6
6
7
8
5
10
11

12

Applied to pins KE,-KE" P,-P" KI, KH, KT
__
Applied to pins KC,-KC1. (When used as a digital input), ACL.
Applied to pins RJ(;-R"
Applied to pins RR-R" Q,-Q" Z,.
Applied to pins PI-P" Z,,-Z,
Applied to pins F.
Applied to pins KE,-KEI, KI, KH, KT.
Applied to pins YR. (current flowing into ladder resistance for AID conversion).
Applied to pins R,b-R" P,-P" Q,-Q" Z,,-Z1.
Measured in no· load condition.
Externally connected to oscillation circuit.
CF : Ceramic oscillator
KBR-400B(made by Kyocera Corp.)
R, : 1MO
C,: 220pF,C,: 220pF

l,uF /16
ALCo---~------~

56kO

Note 12:

The time for reset of "Low" signal that is applied to the ACL terminal after supply voltage returns to rated level.

----.--------SHARP---~.--.----

47

SM..:nO/SM~f15
_ r i...~··~.....

PMOS 4-Bit1-Chip Microcomputer
. . . . . . . . ._

. . ._

. . . . . . .
. . - .
. . . . . . . .
....."
.......
. - . . - .
..................
:11.

•. Applications
1. Microwave oven controllers
2. Blood pressure monitors
3. Controllers for home appliances and audio
equipment

•

' System Configuration (Microwave oven controllers)
.Fluorescent tube display

III"

n ,-,

III'd/U
Vnn

r--~J.....;:.;;:::';'::'::""-:f--:::L-....::...-~----,Crystal 220 F

400kHz
P
CL11--1_--11---,

Key matrix

Q---

}-........-\zs
CL2 .........~~,tF--1--;

I

I
I

ACL tE-_-"V'.rv-~

I

}-.......-\Z14

SM-llO/SM-1l5

L----:-~KE4

\

'--------'--tKEJ
50/60Hz
signal --r--->I

V,," 1----.----<>---<> -9 V
GNDt---t----.
AGND

48

PMOS 4-Bit 1-Chip Microcomputer

SM-111/SM-116

SM-lll/SM ... 116
•

Description

The SM-lll1SM-116 is a 4-bit single chip
PMOS microcomputer with 4,064 X 9 bits of ROM,
192 words of RAM, and AID converter. It is well
suited for low cost systems requiring many 110
control ports.

•

•

PMOS 4-Bit I-Chip
Microcomputer

Pin Connections
r--. ...

N

~

..,.

It:!

~

Q

Z

t--

GO

0)

..............

::<:NNNNNN(,!lNNNNNNN
41

3

3

31

F·
KC, 7
KC,
KC 2
KC,"
VR 51

Features

1. PMOS process
2. ROM capacity 4,064 X 9 bits
3. RAM capacity 192 X 4 bits
4. Instructions 90
5. Subroutine nesting 6 levels
6. Input ports 11 bits
7. Output ports 35 bits
8. Input/Output ports 4 bits
9. On-chip clock generator circuit
10. Interrupt function
External interrupt 1
Timer interrupt 1
11. 8 bits AID conversion
12. Internal divider (1150 or 1160)
13. High voltage outputs (-35V) 21bits (only
SM-ll1)
14. Single power supply -9V (TYP.)
15. Instruction cycle 10 ps
16. 60-pins quad-flat package

I (62+

, CL2
1

2

3

4

5

6

7

8

91

~ ~ ~ ~ r:J cE c:.~ ~

(,!l

<

(,!l

11 1

3

4

5

aa a a ~Id<
Top View

- - - - - - - - - - S H A R P .-..---------~-----49

PMOS 4-Bit1-Chip Microcomputer

•

SM-t111SM-116

Block Diagram

Output Port
r -____~----~--~----~----~A~----------------------------~

Analog
Input
Port

Stack
Register
(6 levels)

Control
and Judge
Interrupt

RAM
(192X4)

TF
IF

HF

'-v---" 2.5kHz
Input Port
Symbol description
ALU : Arithmetic logic unit
Ace : Accumulator
ACL : Auto clear
C
: Carry F/F

50

Pulse, Output

PC ,: Program counter
CG : Clock generator
DIV
: Divider
BM, BL : RAM address register

'--y--'
Oscillator
DA

X
CF

D/ A converter
Temporary register
Comparater

PMOS 4-Bit 1-Chip Microcomputer

•

SM-111/SM-116

Pin Description
Pin name
KE 1 -KE 4
KH
KI
KT
KC 1 -KC 4
P j -P 4
Qj-Q4
R1 -R 16
ZI-ZI4
T
ACL
F

1>2+

110
I
I
I
I
I

110
0
0
0

Pull
Pull
Pull
Pull

Circuit type
down
down
down
down

Function
Acc -KE 1 -KE 4
HF flag set on t ; reset by instruction
IF flag set on t ; reset by instruction
External timer signal input (50 or 60Hz)
Analog input or Acc-KCj-KC j
P I -P 4 -Acc
QI-Qj-Acc
R register output
Z register output
For test (Connected to VI>I> normally)
Auto clear
2.5 kHz pulse output (System clock·100kHz)
Sync signal output
For clock oscillation
AID conversion standard power supply
Power supply for logic circuit

Open drain
Mid voltage * open drain
Mid voltage * open drain
Mid voltage * open drain

I
I

0
0

CLio CL 2
YR. AGND
VDI>. GND

* For SM-1l1, ZI pin only is high voltage.
•

Absolute Maximum Ratings
Parameter

Pin voltage
Operating temperature
Storage temperature
Note
Note
Note
Note

•

1:

2:
3:
4:

Symbol
VDI>
VIN
VOlITl
VOllT2
Topr
Tst~

Ratings
-12-+0.3
VDD -0.3-+0.3
VI>D-0.3-+0.3
-37-+0.3
-10-+70
-55-+150

Unit
V
V
V
V

Note
1
1,2
1,3
1,4

·c
t

The maximum applicable voltage on any pin with respect to GND.
Applied to pins KEI-KEI, KCI-KCI, PI-PI, Kl, KH, KT.
Applied to pins F, PI-PI, Z2-ZI.
Applied to pins QI-QI, RI-RI6, ZI.

Recommended Operating Conditions
Parameter
Supply voltage
Reference voltage

Symbol
MIN.
-9.9
VDI>
5/9 VDD -O.2
VR

TYP.

MAX.
-8.1
-4.5

Unit
V
V

---.-.-..-.--------SHARP - - - - - - - - - - - - 51

SM-111/SM-116

PMOS 4.:.Bit 1-Chip Microcomputer

•

(V DD =-9V±10%, VN (MAX.)=-35V, Ta=-.10-70·C)

Electrical Characteristics
Symbol

Parameter

Input voltage'

I SM·111
Output voltage

I SM·l11

Input current

VIlli
VII. I
VIm
V IL2
VOIII
VOL!
VOlI2
VOL"
VOIU
VOII.1
Vou
lIN
IR

Output current
Current consumption
Oscillator frequency

IoL:)
Ill[)

AID conversion zero error
AID coversion full scale error
AID conversion overall error

Reset time

MIN.
-2

t ACL

TYP.

MAX.
Vllll +2

-0.8
-4.5
Io =-10mA
Connect RL = 50kO to VN.
Io =-lmA
Connect RL = 50k 0 to V N.
Io=-0.5mA
Io=-0.2mA
Io =10,uA
VIN=OV
V R =-5V
VO=VDD

-2.5
V N+l
-2
V N+l
-1
1
180
900
13
400

V R =-5V
V Dn =-9V
V R =-5V
V"n= -9V
V R =-5V
VllI)=-9V
V R =-5V
V DD =-9V
. At power up

V1)[)+1
450
1200

-1

fosc

AID conversion linear error

Note 1:
Note 2:
Note 3:
Note 4:
Note 5:
Note 6:
Note 7:
Note 8:
Note 9:
Note 10:
Note 11:

Conditions

30

Unit
V
V
V
V
V
V
V
V
V
V
V
,uA
,uA
,uA
rnA
kHz

±3

LSB

±3

LSB

±3

LSB

±3

LSB

20

Applied to pins KE,-KEI, P,-P" KI, KH, KT
Applied tu pins KC,-KCI. (When used as a digital input), ACL.
Applied to pins R'6- R9
Applied to pins RR-RI, QI-QI, Z,.
Applied to pins PI-PI, ZII-ZI
Applied to pin F.
Applied to pins KEI-KEI, KI, KH, KT.
Applied to pin YR. (current flowing into ladder resistance for AID conversion).
Applied to pins Rlo-RI, P,-PI, Q,-QI, Z1I-Z,.
Measured in no· load condition.
Externally connected to oscillation circuit.
CF : Ceramic oscillator
KBR-400B(made by Kyocera Corp.)
Rf: 1MO
CI: 220pF,C2: 220pF

l,uF/16
ACL

0---+-----,
56kO

Note 12:

52

The time for reset of "Low" signal that is applied to the ACL terminal after supply voltage returns to rated level.

ms

Note
1
1
2
2
3
3
4
4
5

6
6
7
8
5
10
11

12

SM-114

PMOS 4-Bit 1';"Chip Microcomputer

SM-114
•

PMOS 4-Bit I-Chip Microcomputer

Description

•

Pin Connections

The SM-1l4 is a 4-bit single chip PMOS microcomputer with 4,064X9 bits of ROM, 192X4 bits
of RAM, 8-bit A/D converter, timer/counter and
remote control signal receiver.
It is best suited to controllers which measure
temperature and humidity of analog value from a
sensor.

•

Z14

Features
1.
2.
3.
4.
5.
6.
7.
8.
9.

PMOS process
ROM capacity 4,064 X 9 bits
RAM capacity 192X4 bits
Instructions 92
Subroutine nesting 6 levels
Input ports 8 bits
Output ports 17bits
Input/Output ports 24 bits
Timer/counter
7-bit 1
8-bit 1
10. Interrupt functions
External interrupt 1
Timer interrupt 2
11. 8-bit A/D conversion
12. Remote control signal receiver
13. Single power supply -9V(TYP.)
14. Instruction cycle 10 ps (TYP.)
15. 60-pin Quad-flat package

54

R20 '
AGND

SM-11~/SM-116

PMO$4-Bit 1-Chip Microcomputer

•

Appli~a:tions
1. Microwave oven controllers
2. Blood pressure monitors'
3. Controllers for home applia,nces and audio
equipment

•

System Configuration (Microwave oven controllers)
Fluorescent tube display

I I I / ' ,-,,-,I
LII "LlU
Vuu

Key matrix

0---

}-..e---\Zs
CL2r-+-~~~-+-,

I

I

I

ACL IE--.--IIM---'

I
I

}-+----\Z14

SM-lll /SM-116

'-------:---.>-IKE 4

lkO

VI>I)I---1'--~-o-9V

\

'---------~KEI

SO/60Hz

GNDf---+'-----.

signal----1o---+I
AGND
lOOkO

iOOkO

lOO'kO

53

'

PMOS 4-Bit 1-Chip Microcomputer

•

SM-114

Block Diagram

.

Input' Output Port

Output
Port ,

Input Port

Symbol description
ALV
A ....
ACL
C

CY
B

:
:
:
:
:
:

Arithmetic logic unit
Accumula tor
Auto clear
Carry F F
Over flow F F
RAM address register

PC
SR
SP
INT

CG

Program counter
Stack register of program counter
Stack pointer
Interrupt control unit
Clock generator

RCV
D/A
COMP
DIV

VR

Remote control unit
D A converter
Comparator
Divider
Reference Voltage

------~.--SHARP.-----~--.-..---

55

·SM-H4

PMOS.4-Bit 1-Chip Microcomputer

•

Pin Description
Pin name
KC o -KC:1
KL
KI, KH
KT
PO-P:l
QO-Q3
RO(;-R3:1
ZO-ZI5
F
TA,TB
ACL

110
I
I
I
I

Pull
Pull
Pull

110

Open drain/Pull down *

0
0
I
I
0

Open dra{n/Pull down *

~

Circuit type
down*
.
*
down.
down* •

.'

Pull down

CLl> CL 2
VR, AGND
Voo , GND

Function
Analog input or Acc-KCo-KC:l
For optical remote control circuit
IF, HF flag set on t
External timer signal input

!

PO""'P:l
RO, R1, R3-RAM
QO-Q:l
RO,R1,R3
Can be set, reset individually
Sound output
For test (Connected to VDD normally)
Auto clear
System clocj{ output
For clock oscillation
A/D coversion standard power supply
Power supply for logic circuit
Acc-

* Mask option

•

Absolute Maximum Ratings
Parameter
Pin voltage

. Operating temperature
Storage temperature
Note 1:

•

Symbol
Ratings
-12-+0.3
Voo
(Voo-0.3)-+0.3
VIN
VOllT (V 00-0.3)- +0.3
-10-+70
Topr
-50-+150
TSt2

Unit
V
V
V
·C

Note
1

"C

The maximum applicable voltage on any pin with respect to GND.

Recommended Operating Conditions
Parameter
Supply voltage
Reference voltage

56

Symbol
Voo
VR

MIN.
-9.9
-4.5 .

TYP.

MAX.
-8.1
5/9VDD-O.2

Unit
V
V

-.

PMOS 4-Bit 1-Chip Microcomputer

•

SM-114

(V ee =-9V±10%, Ta=-10-70'C)

Electrical Characteristics
Parameter

VIHI
VILl
VIII2
VIL2
VIII :l
VIL:l
VOH!
VaLl
VOH2
VOL2
Inll
IR

Input voltage

OutJ'Ut voltage

Input current
Current consumption
Oscillator frequency
AID conversion linear error
AID conversion zero error
AID conversion full scale error
Note
Note
Note
Note

1:
2:
3:
4:

Note 5:
Note 6:
Note 7:
Note 8:
Note 9:

Applied
Applied
Applied
Applied

Symbol

to
to
to
to

Conditions

MIN.
-1

Ratings
TYP.

MAX.
Voo +1

-2
Voo +1
-0.8
Voo +1
lo=-2mA
10=20 pA
Io =-2rnA
RL =50kO
VIN=OV
VR =-5V

-1
Voo +1 Voo +1.5
-1

100

fose
V R =-5V
VR =-5V
VR =-5V

Voo +1
180
500
20
400

900

±3
±3
±3

Unit
V'
V
V
V
V
V
V
V
V
V
pA
pA
rnA
kHz
LSB
LSB
LSB

Note
1
2

3
4
5

6
7
8
9

pins
pins
pins
pins

RO:l-ROo, RIa-RIo, R2:l-R20, R3:l-R30, POI-PO, Q:l-Qo
KI, KH, KL, KT
KC:.- Keo (when used as a digital input), ACL.
RO:l-ROo, Rl:!-RIo, R2:l-R20, R3:l-R30, POI-PO, Q:l-Qo, Z,,-Zo, F
(when an internal pull-down resistance is attached to R, P, Q, and Z)
Applied to pins RO:l-ROo, Rl:!-RIo, R2:l-R20, R3,,-R30, P,,-Po, Q:l-Qo, ZI'-ZO
(when an internal pull-down resistance is not attached).
Applied to pins RO,,-ROo, Rl:!-RIo, R2,,-R20, R3:I-R30, P,,-Po, Q,,-Qo, KI, KH, KL, KT
(when an internal pUll-down resistance is attached)
Applied to pin V. (current folwing into ladder resistance for AID conversion)
Measured in no-load condition_
Externally connected to oscillation circuit

Rr=lMO
CI = 220pF
C2=220pF

57

PMQS, 4-Bit 1-Chip Microcomputer

•

. SM-:-114

System Configuration (Controllers)

Control signals
, - -_ _~A

R33 -

R30 R23 -

Control signals
,

~

.R2o Zo

-

Z9

----:----1Rl,

ZlS.-------,

I

P3 k - - - - '

------I RIo
Control signals

P2i------'

....---.---IR0 3
I
--......c.--IRO o

Pli-------~

Po~-----~---'

KTt+--KI t - - - - } Sensor input 1

+-:--:---IQ3
I

KHk----

------IQo
KC 3
~ \

-------IF
Optical remote
control input o------IKL
, - - - - - - - 1 AGND
.------IGND
TB
TA V»»

To

KColE----

VDD

56k!l

C+-~- 1:~

,--1_M_!l-4_ _

220pF

58

}

I

Sensor input 2
(analog input)

SM-120

PMOS 4-Bit 1-Chip Microcomputer

SM-120
•

PMOS 4-Bit I-Chip Microcomputer

Description

•

Pin Connections

The SM-120 is a 4-bit single chip PMOS microcomputer with 1,536 bytes of ROM, 64 words of
RAM, and a 17-stage divider. It is well suited for
low cost systems requiring many 110 control ports.

•
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.

Features
PMOS process
ROM capacity 1,536 X 8 bits
RAM capacity 64 X 4 bits
Instructions 54
Subroutine nesting 2 levels
Input ports 9 bits
Output ports 26 bits
External ROM expandable (512 X 8 bits)
On-chip clock generator circuit
Internal 17-stage divider with reset (timer circuit)
Alarm sound generator circut
High voltage outputs (-38V) 19 bits
Single power supply -9V (TYP.)
Instruction cycle 10 p.s
44-pin quad-flat package

59

SM-120

PMOS 4-Bit 1-Chip Microcomputer

•

Block Diagram
Output 'Port

Output Port

~

__

___

~A

~

Port

Input Port

'--v-"

Voo

GND
Symbol description
ALU
Ace
ACL
PC

60

Arithmetic logic unit
Accumulator
Auto clear
Program counter

SRI, SR,

DIVo, DIVI, DIV2

CG
H,L

Stack register of program counter
Divider
Clock generator
RAM address register

PMOS 4-Bit 1-Chip Microcomputer

•

Pin Description
Pin
P IO -P I3
P 2O -P 23
PI
BIO -B I3
R

lIO
I
I
I

Type of circuit
down
down
down
down
down
down

0

0
0
0

Pull
Pull
Pull
Pull
Pull
Pull

So-5 7

0

Open drain

0 0-0 10
F
T
ACL
OSCIN, OSCOUT
VDD, GND

0
0
I
I

Open drain
Pull down
Pull down
Pull down

•

Function
Aee-PlO-PI3
Aec -P 20 - P 23
PI flag set by t, reset by command
BlO-BI3+-Ace
Possible to set, reset, or CE signal output
Possible to set and reset
Display segment signal output or internal ROM
data output
Display digit signal output
Alarm sound output
For test
Auto clear
Clock oscillation
Power source for logic circuit

Absolute Maximum Ratings
Parameter
Pin voltage

Operating temperature
Storage temperature
Note
Note
Note
Note

•

SM-120

1:
2:
3:
4:

Symbol
VDD
VIN
VOUTl
VOUTZ
Toor
TstQ

Rating
-20-+0.3
-20-+0.3
-20-+0.3
-40-+0.3
-10-+65
-55-+150

Unit
V
V
V
V

Note

1
1,2
1,3
1,4

"C
"C

The maximum applicable voltage on any pin with respect to GND.
Applicable to inputs
Applicable Pins BIO- Bt:l, a, aSCOlIT, R, F
Applica.ble Pins Do- DlO, SO-S7

Operating Conditions
P¥ameter
Supply voltage
Oscillator frequency
Note 5:

Symbol

Specified value

Unit

V DD

-8.1--9.9
300-800

V

fose

kHz

Note

5

Frequency supplied to aSCIN Pin.

61

......-.-....-:--,..-..-.-.-.-.-.-..-.-....... 'SM-120

PMOS4-Bit1-Chip Microcomputer
;~---

•

(V DD =-9.0±10%. V N=-36V, Ta=-10":"+65"C)

Electrical Characteristics
Symbol

Parameter

ViHl
V ILl
VIH2
V IL2
:IIHl
IILl
IIH2
IIL2
IIH3
IIL3
VOHl
VOLl
VOH2
VOL2
VOH3
VOL3
' V'OL3
VOH4

Input voltage

Input current

Output voltage

YOL4
Y'OL4
VOHS
VOLS
V'OLS,
IDD

Current consumption
Note
Note
Note
Note
Note
Note
Note
Note
Note
Note

6:
7:
8:
9:
10:
11:
12:
13:
14:
15:

Applicable
Applicable
Applicable
Applicable
Applicable
Applicable
Applicable
Applicable
Applicable
Applicable

Conditions

TYP.

MAX.
-7.0

-1.5
VIN=GND
VIN=V DD '
VIN='GND
VIN=VDD
VIN=GND
VIN=VDD
IoH =-6.0rnA
RL =50kO connected to V N
IoH =-2.0rnA
RL =50kO connected to V N
IOH=-0.5mA
IoL =50 pA
IoL =200pA
IoH =-1.0mA
IOL=50pA
IOL=200pA
IoH =-1.0rnA
IOL=100pA
IOL=300pA

pins PIO- PI3, P20- P':J
pins PI, ACL, aSCIN, T
pins PIO-PIS, P'O-P'3, PI, T
pin ACL
pin asclN ,
pins DIO-DI3
pins SO-S7
pins BIO- B13, F
pins R,
pin aSCOl1T

a

MIN.
-3.5

-7.0
200
-10.0
700
-10.0
5.0
-10.0
-2;5
V N+1.0
-2.0
V N+1.0
-3.0
V DD +1.5
V Do +3.0
-1.5
V Do +1.5
V Do +3.0
-1.5
V DD +1.5
V Do +3.0
20

Unit
V
V
V
V

pA
pA
pA
pA
pA
pA'
V
V
V
V
V
V
V
V
V
V
V
V
V
rnA

Note
6
7

8

9
10

11
12

14

15

PMOS 4-Bit 1-Chip Microcomputer

•

SM-120

Applications
1. VTR timer
2. Electronic home appliance controller
3. Game machine

•

System Configuration (for 5 X 7 dot matrix fluorescent display tube drive)

5 x 7 dot matrix fluorescent display tube

r-------------~--

--------------

lOkO
27kO
Power for display Crystal
-36V
524.288kHz -36V
2.2kO 470pF

27kO

IOkO
-36VO--"I/VIr-T

Sot---~+-+I Ao

~--+--IDo

SM-120

(
)

Ll2048
(Dot matrix driver)

\

I
I

I

I

--------6
Key matrix

---.-------SHARP.-.--...-.---63

-

-

.....----.
..... ....................,,----..........,.....
SM-200 NMOS 4-Bit I-Chip Microcomputer
~--

•

Description

The SM-200 is 4-bit single .chip NMOS microcomputer with 3,072X9 bits of ROM, 132 words of
RAM, automatic display circuit, and a 16-stage
divider. It is well suited for low cost systems reqlliring many 110 control ports.

SM:..200

•

Pin Connections
Q

22 r... d: rE d: ~ ~ rE ~ ~.:2~ ll~'
OSCIN"
SCOUT

7

CT

8

aD

•

Features

1. NMOS process
2. ROM capacity 3,072 X 9 bits
3. RAM capacity 128X4+ 16 bits
4. Instructions 100
5. Subroutine nesting 3 levels
6. Input ports 10 bits
7. Output ports 37 bits
8. Input/Output ports 4 bits
9. Enable 8 bits parallel input/output
10. Externally ROM/RAM expandable
11. External interrupt function
12. Internal 16-stage divider ·with reset
(timer circuit)
13. Serial interfaces 8 bits
14. On-chip clock generator circuit
15. Single power supply 5V (TYP.)
16. Instruction cycle 10 p.s
17. 60-pin quad-flat package

64

Top View

NMOS 4-Bit 1-Chip Microcomputer

•

SM-200

Pin Description
Pin
Ko-K 3

CT

I/O
I
I
I
I

P IO -P I3

I

P 2O -P 23

I/O

RW

0

OD

0

Eo-E 3
BIO -B I3
B20 -B 23
0 1 -0 3

0
0
0
0

Do-D l l

0

0 0 -0 7
F
INT
ACL
OSC IN, OSCOUT
VDD, GND

0
0
I
I

1.
h

•

Type of circuit
Pull down

Open
Pull down
Pull down for input

Function
ACCI-Ko-Ka
Set by t, reset of after test instruction execution
Internal clock period type, test possible
For pulse count per unit time
ACCI-PIO-PI3, Instruction code input for external
ROM
Acc2-P20-P2:j, Instruction code input for external
ROM data transter from/to RAM for external RAM
Set, reset by instruction; chip select for external ROM
Connected to RW pin for external RAM
Set, reset by instruction; Instruction code input for
external ROM; connected to OD pin for external RAM
Eo-E3-Accl
BlO-BI3-Accl
B2o-B23-AcC2
Set, reset by instruction
Display digit signal output; Address signal output for
external ROM, RAM
Display segment signal output
,
Alarm sound output
Set of INT F/F by t
Auto clear
Clock oscillation
Power supply for logic circuit

,

Pull down
Pull down

Absolute Maximum Ratings
Parameter
Pin voltage
Operating temperature
Storage temperature
Note 1:

•

Symbol
VDD
VIN
Topr
T st•

Ratings
-0.5-+7
-0.5-V DD +0.3
-10-+65
-55-+150

Unit
V
V

Note

1

"C
"C

The maximum applicable voltage on any pin with respect to Vss (GND)

Operating Conditions
Parameter
Supply voltage
Oscillator frequency

Symbol
VDD
fosc

Specified value
4.5-5.5
262.144

Unit
V
kHz

--------------SHARP---.---------66

SM... 200

NMOS 4-Bit 1-:-Chip Microcomputer

,...."~I1fIfIfIIII'....,,,..,~.,.,,,;•.•~~'-~"""~..tIIIIIIIII!IP....-.r~"""""""A!IIIIIIIIW

•

Block Diagram
Divided
Display Segment Output

Display Digit Output

r - __________

~A~

Osci- {
Bator
Pulse
Input

____________

~

46
47

Asynchronous
Input
Symbol description
ALU
Acc,. Acc2'
ACL
C
PC
SR,. SR2. SR3

:
:
:
:
:
:

Arithmetic logic unit
Accumulator
Auto dear
Carry F/F
Program counter
Stack register of program counter

CG
DIV
H.L
SD
DD
X.Y

:
:
:
:
:
:

Clock generator
Divider
RAM address r,!'gister
Segment decoder
Digit decoder
Temporary register

65

NMOS 4-Bit 1-Chip Microcomputer

•

(VI)I)=5V, Vss=GND, fosc =262kHz, Ta=25"C)

Electrical Characteristics
Parameter
Input voltage

Input current

Output voltage

Symbol
VIlli
VILI
VIII2
VIL2
11111
IlL I
11112
IIL2
1m3
11114
hL4
VOIll
V'OIll
VOLI
VOH2
V'01l2
VOL2
VOll3
V'OIl3
VOL3
VOll4
V'01l4
VOL4
VOIIS
V'OH5

Current consumption
Note 2:
Note 3:
Note 4:
Note
Note
Note
Note

•

SM-200

5:
6:
7:
8:

VOLS
VOH6
VOL6
VOH7
VOL7
VOH8
VOL8
100

Conditions

MIN.
2.4
0
2.4
0

VIN =5V
VIN=GND
VIN =5V
VIN=GND
VIII =5V

IOH=10pA
101l=0.2mA
I 10L I =0.15mA
IOIl-25pA
IOIl=0.6mA
I 101. I =0.25mA
1011 =10 pA
1011 = O.4mA
I 10L I =0.3mA
IOII=10pA
IOIl=0.3mA
I IOL I = 0.3mA

1011 =10 pA
IOH=0.3mA
I IOL I =50 pA
IOH=0.2mA
I IOL I =0.25mA
IOII=0.15mA
I IOL I =0.15mA
IOH=50pA
I IOL I =50 pA
Open all input and output" pins

Applicable pins PIO-PI3, h-]2, INT, CT, ACL, P20P23 in input mode, OD in input mode.
Applicable pins Ko- K3
Applicable pins PIO-PI3, Ko-K3, 11,]2, INT, P20-P23
in input mode, OD in input mode
Applicable pin CT
Applicable pin OSC IN
Applicable pin ACL
Applicable pins BIO-BI3, B20-B23, Eo-E3, 01-03

Note
Note
Note
Note
Note
Note
Note

9:

10:
11:

12:
13:
14:
15:

Applicable
Applicable
Applicable
Applicable
Applicable
Applicable
Applicable

TYP.

Unit
V
V
V
V

15
-1
1
-1
5
15

MAX.
5
0.5
5
0.6
50
-10
10
-10
25
50

32

5
5
0.5
5
5
0.5
5
5
0.5
5
5
0.5
5
5
0.5
5
0.5
5
0.5
5
0.5
56

V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
rnA

3.6
2.4
0
3.6
2.4
0
3.6
2.4
0
3.6
2.4
0
3.5
2.4
0
2.4
0
2.4
0
3.6
0

pA
pA
pA
pA
pA
pA
pA

Note
2
3
4
5
6

7

8

9

10

11

12
13
14
15

pins So- S7
pin RW
pin F
pins Do-[hlpin OD in output mode
pins P20-P23 in output mode
pin OSCOUT

Applications

1. General·purpose program timer
2. Controllers for electronic home appliances,
Audio equipment, Office machines
3. Door chime, Home security system
4. Hand-held calculator with printer
5. Cash register

6. Copy machine controller
7 . Vending Machine
8. Radio cassette tape recorder and PLL controller
9. TV remote control and channel controller

- - - - - - - - - S H A R P -----.-.---------.-..-.67

~I

;;;: ;;;:

•

"" _....,c::

}Key input

'<

MK output

3

~ ~;;;: >ri

I

I

~
~

.

I

I

I
I
I
I
I
I

cO'

d

~
o
::::J
...,

I o~

oo

:::0

FU output (2)
E2
(Output level reverses on each FU input)
EI I - - MT output

t----->-

I

I
I

en

CD

I
I

FU output
77r

DC
+ 5V

K3

Counter control
output

K2

KI

A

Eo
03

OD
INT

D9
DB

'"~.
g.

o

::::J

;;;:

c::::

~

....

s

B22

ON/OFF SQ

B21

r'l'1'

E.
'"'
-5'
~
....

B20

'0

oC/)

BI21MUTE
Bl1

BIO
(GND)
s,
il6 il6 D. il6 n, DI il6 Vss 80 81 82 83 8. 85 86

D,

Radio ON/OFF

'0-"

-...

~

"-

B23

SM·200

Dl1
Dlo

Melody output

01

VDD

RW
J2

JI
ACL

PC5 output

02

'I·~·'
en

-I
en

P L L shift register term inal

Cb

'og."'

....
2.
:;;
.:::!-.

I~

II
I
I
II
'I

I
I

U

SM-4A

CMOS 4:-Bit 1-Chip, Microcomputer

SM-4A
•

CMOS 4-Bit I-Chip Microcomputer

Description

The SM-4A is a 4-bit single chip CMOS microcomputer with 2,268 bytes of ROM, 96 words of
RAM, a 15-stage divider and 68-segment liquid
crystal driver circuits. It is well suited for applications of low power hand-held equipment with
many liquid crystal display segments.

•

•

Pin Connections
~~~~~~~~~~~:~::

0000000"0000000

Features

1. CMOS process
2. ROM capacity 2,268 X 8 bits
3. RAM cap~city 96 X 4 bits
4. Instructions 54
5. Subroutine nesting 1 level
6. Input ports 6 bits
7. Output ports 40 bits
8. Input/Output ports 4 bits
9. On-chip 50-stage divider with reset
(timer circuit)
. 10. External RAM driver (256 X 4 bits)
11. Direct LCD driver circuits (3V, 112 duty,
112 bias and 68 segments MAX.)
12. Standby mode (10 fJ-A current consumption)
13. Single power supply - 3V (TYP.)
14. Instruction cycle 61 fJ-S
15. 60-pin quad-flat package

1

2

3

4

....

M

N

......

5

0000:':

SSSS

6
~

7

I!

9

1

11 1

13

41

5'"''"'

N
~ ..,. z
r- ...
z:'::'::':U'

c:tl.Q

"

C/lU

o

~

N

Top View

- . - . - - - . - - - S H A R P ........ .-..---~---

69

CMds 4-Bit 1-Chip Microcomputer

..............................._
•

. SM-4A

.........,.............AIIIIiiIIIiF.....'...._ . ....""....

Block Diagram
Segment Output
r-___________________________________
________________________________
~A~

~

Segment
Output

Segment
Output

'---v--"
I/O Port
Symbol description
ALU
AI'c
ACL
C
Cx. CA. Pu. PL
Cs. SUo SL

70

:
:
:
:
:
:

'-v-'~

~~

Asynchronous Input Port
Input

Arithmetic logic unit
Accumulator
Auto clear
Carry F/F
Program counter
Stack register of program counter

Oscillator
BM. BL
DIV
PLA

Test

: RAM address register
: Frequency divider
: Programable logic array
CG
: Clock generator
WI-W,. Wl';...W. : Static shift·register

CMOS 4-Bit 1-Chip Microcomputer

•

Pin Description
Pin
K1 -K 4
a

110
I
I
I
110
0

f3
DIO I -DI0 4
Rl -R 4
01l-048
OSlo OS2

•

SM-4A

Function
Acc+-K l -K 4
Set by t, reset after test instruction execution
Input signal is held for 1 instruction, test possible
Acc-DIO I - DI0 4
Rl -R 4 +-Acc
Output of Wand W' registers' content; used for LCD
segment output
3-state level output possible, used for LCD common
output
For low voltage detection circuit
For test (usually connected to V00)
Auto clear
For clock oscillation
Power supply for LCD driver
Power supply for logic circuit

Type of circuit
Pull down
Pull down
Pull down
3-state output
Complementary

0

Hb H2

0

BA
Tlo T2
ACL
OSC lN , OSC OllT
VM
GND, Voo

I
I
I

Pull up

Absolute Maximum Ratings
Parameter
Pin voltage
Operating temperature
Storage temperature

Symbol
Voo
VM
VlN
T oDr
Tst2

Ratings
-,3.5-+0.3
-3.5-+0.3
V00-0.3- +0.3
-5-+55
-55-+150

Unit
V
V
V

Note
1

"C
"C

Note 1: The maximum applicable voltage on any pin witb respect to GND.

•

Operating Conditions
Parameter
Supply voltage
Supply voltage
Oscillator frequency

Symbol
Voo
VM
fose

Specified value
-3.2--2.6
Voo/2 (TYP.)
32.768 (TYP.)

Unit
V
V
kHz

/

'-'-~-----"'--'--SHARP -----..--,-~----..--~

71

CMOS 4-Bit 1-Chip Microcomputer

•

'SM-4A

(V oo =-3.2--2.6V, Ta=25"C)

Electrical Characteristics
Parameter

Symbol

Conditions

MIN.
-0.6

V UIl •
V ILl

Input voltage

Output voltage

Ou.tput curreBt
Current consumption

3:
4:
5:
6:
7:
8:

Applicable
Applicable
Applicable
Applicable
Applicable
Applicable

-0.3

Vmz
V IL2
VOHI
VOLl
VOH2
VOL2
VOII:l
VOL:l
VOA
VOB
Voc
Iso
ISIN
InA
Ins

pin ACL
pins 0'8-0ll, Osl, OS2
pins DIOI-DIO,
pins R2, R3, R,
pins HI, H2
pin RI

V nn +0.3
louT-50 pA to Voo
IOllT =5,uA to GND .
IOllT=50 pA to Vno
loUT = 30 pA to GND
IOUT=50 pA to Vnn
IOlIT=50 pA to GND
No load
Voo =-3.0V
V M =-1.5V
VOllT =-0.2V
VOllT=Vno+0.2V
In full- range operation
When system clock is stationary

-0.5
V nn +0.5
-0.5
Voo+0.5.
-0.5
Vnn +0.5
-0.3
-1.5
-2.7
100
100
50
10

'

/

72

MAX.
Voo+0.6

Note 2: Applicable pins KI, K2, K3, K" a, f3
Note
Note
Note
Note
Note
Note

TYP.

100
20

Unit
V
V
V
V
V
V
V
V
V
V
V
V
V
'pA
pA
pA
pA

Note
2
3

4
5
6

7

8

SM-4A

CMOS 4-Bit 1-Chip Microcomputer

•
1.
2.
3.
4.
5.
6.
7.
8.

•

Applications
Hand-held calculator with clock function
High-quality clock
Cash register
General-purpose timer
Electronic scale
Game machine
Vending machine
Controllers for electronic home appliances
and audio equipment

System Configuration (for radio PLL controller)

LCD
DC voltage cutout O.02JlF
r---:~~.....J._--:::--.......Ji...--'32. 768kHz 22 pF
Band selection
OSCOUTI--+----I

r~-~BA
Tape stop

GND~-~~~~Nr~~~_,

Various controls {

V y. J--+_---,

SM-4A

220kO
PLL latch
PLL shift register' clock
PLL shift register data
MUTE

DIal
DI0 2
DI0 3
DIO.

V[)~-~~~+-----'

O_33,uF
ACL
a

P

047-----;~

046---~
045---~

04'---~
043-----;~

O.2-----;~

038--~

.-.----------SHARP-.-.-------

73

.---....--.... ........
CMOS 4-Bit 1-Chip Microcomputer

.-- -.".-~

-....,

SM-SA
•

The SM-5A is a 4-bit single chip CMOS microcomputer with 1,827 bytes of ROM, 65 words of
RAM, a 15-stage divider and 72-segment liquid
crystal driver. circuit. It is well suited for applications of low power hand-held equipment with
many liquid crystal display segments.

•

Features
1.
2.
3.
4.
5.
6.
7.
8.
9.

10.
11.
12.
13.
14.

74

..

CMOS 4-Bit I-Chip Microcomputer

Description

CMOS process
ROM capacity 1,827 X 8 bits
RAM capacity 65 X 4 bits
Instructions 51
Subroutine nesting 1 level
Input ports 6 bits
Output ports 42 bits
On-chip 15-stage divider with reset·
(timer circuit)
Direct LCD driver circuit
(3V, 112 duty, 112 bias and 72 segments
MAX.)
On-chip crystal-controlled oscillator
(32.768kHz)
Standby mode (10 pA current consumption)
Single power supply -3V (TYP.)
Instruction cycle 61 ps
60-pin quad-flat package

....- ....-

/' SM-SA

•

Pin Connections

CMOS 4-Bit 1-Chip Microcomputer

•

SM-5A

Block Diagram
Segment ______________________
Output
r -____________________
--JA~

Segment
Output

fl

~

5

. Segment
Output

,)-------{23

~
Output
Port

'--v---'

~

Asynchronous Input Port
Input

Symbol description
ALU : Arithmetic logic unit
Acc : Accumulator
CG : Clock generator
ACL: Auto clear
DIV : Frequency divider
C
: Carry flag

CF
CA, CB, Pu, PL
Cs, Su, SL
WI-W4, WI' -W4'
BM,BL

22:)-------------'

'--v--'
Oscillator

:
:
:
:
:

Carry F/F
Program counter
Stack register of program counter
Static shift register
RAM address register

75

............... .. ...... .......... .. .... .. ..... ..........

CMOS 4-:-Bit 1-Chip MicrOComputer
-~

•

~

~

~

SM-5A

~

~

~

~

~

Pin Oescription
Pin
K1 -K 4
a ,{J
0 11 -0 48
OSI-0S4

I/O
I
I

H},H2

0

-

0

-

R1 -R 4

0

Tp
T}, T2
ACL
OSCIN, OSCOUT
VM
Voo• GND

I
I
I

•

Type of circuit
Pull down
Pull up

,

Function
Acc-K 1 -K 4
Independent test possible
Output of cont!!nts of Wand W' registers; used for out-'
,put oLLCD segment
3,-state, level output possible; used for LCD common
output
R 1 -R 4-Acc, R 1 --·,Control output or alarm sound
output
For test (usually open)
For test (usually connected to GND)
Auto clear
For clock oscillation
Power supply for LCD driver
Power supply for logic circuit

Absolute Maximum Ratings
Parameter
Pin voltage
Operating temperature
Storage temperature
Note 1:

•

Symbol
Voo
VM
VIN
Topr
To,,,

Rating
-3.5-+;0.3
-3.5-+0.3
VDo -0.3-+0.3
-5-+50
-55-+150

Unit
V
V
V

Note
1

'C
'C

The maximum applicable voltage on any pin with respect. to GND (GND=OV)

Operating Conditions
Parameter
Supply voltage
Supply voltage
Oscillator frequency

Symbol
Voo
VM
lose

Specified value
-3.3--2.7
Voo/2 (TYP.)
32.768 (TYP.)

Unit
V
V
kHz

....... -------~--SHARP'.-.----.-.--.--. ......... -

76

CMOS 4-Bit 1-Chip Microcomputer

•

SM-5A

(V oo =-3.0V±10%,GND=OV, Ta=25t)

Electrical Characteristics
Parameter
Input voltage

Input ,current

Output voltage

Current consumption
Oscillator start time
Note
Note
Note
Note
Note
Note
Note
Note

2:
3:
4:
5:
6:
7:

8:
9:

Symbol
VIH
VIL
IlHl
IlLl
IIH2
IlL2
VOHl
VOLl
VOH2
VOL2
VOA
VOB
Vc
lOA
Ios
Tosc

Applicable pins Kl, K2, K3, K4, a, fJ, ACL
Applicable pins Kl, K2, K3, K,
Applicable pins a, fJ
Applicable pins ~I,..QS'!......O~ OSI, all
Applicable pins RI, R2, R:l, RI
Applicable pins HI, H2
Mean current consumption at 32.768 kHz
Oscillating circuit constant

Conditions

MIN.
-0.6

TYP.

MAX.
Voo+0.6
15
1.5
1
1

VIN=OV
VIN =-3.0V
VIN=OV
V lN =-3.0V
IouT=30 pA to Voo
IouT= 10 pA to GND
IouT=100 pA to Voo
IouT= 100 pA to GND

-0.5
Voo+0.5
-0.5
-0.3
-1.8
-3.0

No load VM =-1.5V
In full-range operation
When system clock is stationary

-1.5
50
10
2

Voo+0.5
0
-1.2
-2.7
100
20
5

Unit
V
V

pA
pA
pA
pA
V
V
V
V
V
V
V

Note
2
3
4

5
6

7

pA
pA

8

s

9

~ -----VOH
----------VOA

------Voc
• Oscillator circuit

Oscillator circuit constant

Co=C G =15- 20.u F

---'--------SHARP------....-.-77

SM-SA

CMOS 4-Bit 1-Chip Microcomputer

•

Applications

1. Hand-held electronic calculator with clock
2.
3.
4.
5.
6.
7.
8.
9.

•

High-quality clock
Cash register
Hand-held electronic culculator with printer
pas terminal
Electronic scale
Game machine
Vending machine
Controller for electronic home appliances and
audio equipment

System Configuration (for LCD game machine)

AMI D·DD
U'UU

PM

LCD

DC voltage cutout O.02,uF
r---'-~-"------'--"""32.768kHz 20pF

0" OSConJ-....,..--i

Piezoelectric buzzer

=

Left

Right

-------~------SHARP----.-----

78

CMOS 4-Bit 1-Chip Microcomputer

SM-SL
•

CMOS 4-Bit I-Chip Microcomputer

Description

The SM-5L is a 4-bit single chip CMOS microcomputer with 1,827 bytes of ROM, 65 words of
RAM, a 15-stage divider and 72-segment liquid
crystal driver circuit. It is well suited for applications of low power hand-held equipment with
many liquid crystal display segments.

•

SM-5L

•

Pin Connections
~~;;"'MN_~

o

0 0 :.: :.: :.: :.: "

d Ie:. . uNz >>

'" <:!:I. ..:

Features

1. CMOS process
2. ROM capacity 1,827 X 8 bits
3. RAM capacity 65X4 bits
4. Instructions 51
5. Subroutine nesting 1 level
6. Input ports 6 bits
7. Output ports 42 bits
8. On-chip 15-stage divider with reset
(timer circuit)
9. Direct LCD driver circuit (3V, 112 duty, 112
bias and 72 segments MAX.)
10. On-chip crystal controlled oscillator
(32.768kHz)
11. Standby mode (2.5 pA current consumption)
12. Single power supply - 3V (TYP.)
13. Instruction cycle 61 ps
14. 60-pin quad-flat package

100 '"

ooooooozooooooo
....

..,

In

In

It)

IJ')

"

\CO

ID

t--

r--

l'-

I'-

Top View

79

CMOS 4-Bit ~1-Chip M i c r o c o m p u t e r ' SM:~5L

'

.....................................

.................,...........................

----~

•

Block Diagram
Segirient ______________________
Output
r -____________________
~A~

~

Segment
Output

~
Output
Port

'-----y--/ '--y---J

Symbol description
ALU : Arithmetic logic unit
Acc : Accumulator
CG : Clock generator
ACL : Auto clear
DIV : Frequency divider
C
: Carry F/F

80

'>--y-/
Oscillator

Asynchronous Input Port
Input

CA, CD, Pu, PL
Cs, Su, SL
WI-W4, WI' c--W.'
BM,BL

DDe

:
:
:
:
:

Program c.ounter
Stack register of program counter
Static shift resister
RAM address register
LCD supply voltage generator

CMOS 4-Bit 1-Chip Microcomputer

•

SM-5L

Pin Description
Pin
K1 -K 4

a,p

0 11 -0 48
OSI-0S4

0

HI> H2

0

-

-

RI -R 4

0

Tp
TI> T2
ACL
OSC IN , OSCOUT
VM
VDD , GND

I
I
I

•

Type of circuit
Pull down
Pull up

I/O
I
I

Function
Acc+-K 1 -K 4
Independent test possible '
Output of contents of Wand W' registers; used for output of LCD segment
3-state level output possible; usep for LCD common
output
R 1 - R4+- Ace, RI "'Control output or alarm sound
output
For test (usually open)
For test (usually connected to GND)
Auto clear
For clock oscillation
Power supply for LCD driver
Power supply for logic circuit

Absolute Maximum Ratings
Parameter
Pin voltage
Operating temperature
Storage temperature
Note 1:

'.

Symbol
VDD
VIN
Topr
Tst2

Rating
-3.5-+0.3
VDD -0.3-+0.3
-5-+50
-55-+150

Unit
V
V

Note
1

"C
"C

The maximum applicable voltage on any pin with respect to GND (GND=OV)

Operating Conditions'

Parameter
Supply voltage
Oscillator frequency

Symbol
V DD
fose

Specified value
-3.3--2.7
32.768 (TYP.)

Unit
V
kHz

-"'-''--~''''''''---SHARP'-~---~---

81

SM-5L

CMOS 4-Bit 1-Chip Microcomputer

•

(Voo= -3.0V± 10%, GND=OV, Ta='25°C)

Electrical Characteristics
Parameter
Input voltage

Input current

Output voltage

, ,

Symbol

MIN.

Conditions

V oo +0.6

IIH!

15

IIL2

1
3

IIH3
V OHl
V OLI

louT=30

VOH2

louT=100 pAtoVoo

V OL2

IOlJT=100

IOllT= 10

pA
pA

-0.5

to Voo

Voo+0.5
-0.5

pA
pA
pA
V

Voo+0.5
-0.3

V

2
3
4

5
6
7

V

-1.8

-1.2

V

-2.7

V

8

Voc
VM

C 1 =C 2 =0.1

-1.5

-1.2

V

9

100

In Full-range operation

50

100

When system clock is stationary

2.5

5

pA
pA

10

2

5

s

11

10

Note 2:
Note 3:
Note 4:
Note 5:
Note 6:
Note 7:
Note 8:
Note 9:
Note 10:
Note 11:

V

V

to GND

No load V M= -1.5V

Note

V

to GND

pA

Unit
V

V 1L

V OB

Oscillation start time

MAX.

-0.6

V IH

V OA

Current consumption

, TYP.

pF

-1.8

Tosc

Applicable pins KI- K" a, fJ, ACL
Applicable pins KI - K,
Applicable pins a, fJ
Applicable pin ACL
Applicable pins ~I --::QSI, Oi, (i = 1- 4, j = 1 - 8)
Applicable pins RI- RI
Applicable pins HI, H,
Applicable pin VM
Mean current consumption at 32.768kHz
Oscillating circuit constant Ce, CD= 15-22pF

• Waveform of Hlo H2
-

__________ V""

~ ------ Vo "

------ Vile

• Oscillation circuit, Intermediate potential
generator circuit

wJ'
er
:1:.,
'T2 PF "t2PF
lr

OSC"

Cc

OSCOt:T

1rlDi~1 1

pC

o.l ttF o.l tt

-----------SHARP - . - - - - - - - - - - -

82

CMOS 4-Bit 1-Chip Microcomputer

•

SM-5L

Applications

1. Digital watch
2. Game machine
3. Controller for electronic home appliances and
audio equipment
4. Hand -held electronic calculator with clock

•

System Configuration

LCD

~tt==~---------

I r-

DC voltage
.-t-±",-"""-1cutout O.02}lF

.--...J.._--....:.....-.1.---,Crys~al

22 pF

HI aj; (36 lines) aSCol'TH-l11---.

22 pF

ascI~ '--'---R~

H2

Rt

ACL
SM-5L

VDD

Key matrix

- - - - . -.......... ------SHARP--~-------83

SM-SOO

CMOS 4-Bit 1-Chip Microcomputer

. . . . .. - . -_ _ _ _ _ _ _. . . .. -. . . .. - . -___

SM-500
•

_ _............._r......

~_~

CMOS 4-Bit I-Chip Microcomputer

Description

The SM-500 is a 4-bit single chip CMOS micro,computer with 1,197 bytes of ROM, 40 words of.
RAM, a 15-stage divider and 40-segment liquid
crystal driver circuits. It is well suited for applications of low cost, low-power hand-held equipment
with liquid crystal display.

•

Pin Connections
Cl

86686~668666

a

3

O~2

ose""

•

Features

1. CMOS process
2. ROM capacity 1,197X8 bits
3. RAM capacity 40 X 4 bits
4. Instructions 52
5. Subroutine nesting 1 level
6. Input ports 6 bits
7. Output ports 26 bits
' 8. Input/Output ports 8 bits
9. On-cp.ip 15-stage divider with reset
(timer circuit)
10. Direct LCD driver circuit (3V, 112 duty, 112
bias and 56 segments MAX.)
11. On-chip crystal controlled oscillator
(32.768kHz)
12. Standby mode (3 pA current consumption)
13. Single power supply -3V (TYP.)
14. Instruction cycle 61 ps
15. 48-pin quad-flat package

84

VillI

K.

K.
K2

<5 <5

ci! c>: c>: Ii ~ I...
"

0>.

~

d
<

~

Top View

CMOS 4-Bit 1-Chip Microcomputer

•

SM-500

Block Diagram
Segment Output

ROM
(1,197 X8)

'---y-/

I/O Port

'--y--/

ACL

Common Output

Oscillator
Symbol description
ALU
: Arithmetic logic unit
Acc
: Accumulator
ACL
: Auto clear
C
: Carry F/F
CA, CB, Pu, PL : Program counter
C~, Su, SL
: Stack register of program counter
CG
: Clock generator
DIV
: Frequency divider

WI - W4, WI' - W4' : Static shift register
BM, BL
Bp

KF
Ks
S
K

: RAM address register
: Backplate signal generator circuit
: Hit F/F
: 4-bit F/F
: 4-hit F/F (status register)
: Key input F/F

-..-.---------SHARP----------85

CMOS 4-Bit 1-Chip Microcomputer

•

8M-500

Pin Description
Pin
K1 -K 4

a,f3

I/O
I
I

0 11 -0 41

I/O

. OSI-OS4

110

0 12 -0 46

0

HI> H2

0

R1 -R 4
T
ACL
OSCIN , OSCOUT
VM
Voo, GND

0
I
I

•

Type of circuit
Pull down
Pull up

Function
Acc+-K 1-K 4
Independent test possible
Output of contents of Wand W' registers or input/out·
put to/ from KF register
Output of contents of Wand W' registers or i.nput/out·
put to/from Ks register
Output of contents of Wand W' registers; Used for
LCD segment output
3·state level output possible; used for LCD common
output
R1-R 4-Acc
For test (usually connected to GND)
Auto clear
For clock oscillation
Power supply for LCD driver
Power supply for logic circuit

Pull up
Pull down

Absolute .Maximum Ratings
?arameter
Pin voltage
Operating temperature
Storage temperature

Symbol
Voo
VM
VIN
VOUT
T_
T stg

Rating
-4.0-+0.3
Voo -+0.3
VDD -0.3-+0.3
VDo -0.3-+0.3
-10-+70
-55-+150

Unit
V
V
V
V

Note
1

t
t

Note 1: The maximum applicable voltage on aity pin with respect to GND.

•

Operating Conditions
Parameter
Supply voltage
Oscillator frequency

Symbol
Voo
VM
fose

Specified value
-3.3--2.7
V00/2 (TYP.)
32.768 (TYP.)

Unit
V
V
kHz

'-'-~'---------SHARP

86

...--...--,.--------

CMQS 4-Bit1-Chip Microcomputer

SM-SOO

(Voo=-3.0V±10%, GND=OV, Ta=25'C)

Electrical Characteristics

•

Parameter
Input voltage

Input current

Output voltage

Output Current

Current consumption
Note
Note
Note
Note
Note
Note
Note
Note
Note
Note

Symbol
V IH
V1L
IHl
IH2
IL3
VOA
Vos
Voc
10HI
lOLl
IOH2
IOL2
103
104
lOA
los

Conditions

MIN.
-0.6

TYP.

Voo+0.6
15
3
1

V1N=OV
V1N=OV
VIN=Voo
-0.3
V M-0.3

No load VM=VOOI2
VoUT =-0.5V
VOUT=Voo+0.5V
VouT =-0.5V
VouT=Voo+0.5V
Vos=0.3V
Vos=0.5V
In full·range operation
When system clock is stationary

2: Applicable pins Kl-KI, a, p, ACL, 011-041, 051-0SI
3: Applicable pins Kl-K" 011-011, OSI-051
4: Applicable pin ACL
5: Applicable pins a, p
6: Applicable pins HI, H2
7: Applicable pins Oi, (i= 1-4, j=2-6)
8: Applicable pin Oll -041, OSI -051
9: Applicable pin Rl
10: Applicable pins Rz, R3, R,
11: Current consumption under no load conditions at fosc=32.768kHz

MAX.

V M+0.3
Voo+0.3

30
10
100
10
100
100
20
3

Unit
V
V

Note

pA
pA
pA

3
4
5

V
V
V

6

pA
pA
pA
pA
pA
pA
pA
pA

2

7

8
9
1-0
11

• H},H2 waveform

- IL
-u-J"C.--.====~=
U _______::::

Voc

• Oscillator circuit

c~fD~'"
Oscillator circuit constant
C"=C,,=22,,F

'-'-~-------""--'----SHARP ---~-----

87

.....

....,-.........,

.

...................--....,-......

OMOS 4-Bit l-Chip Microcomputer'
~-

•

. Applications

1. Digital watch
2. Game machine
3: pas terminal
4. Electronic scale
5. Controlle~ for electronic home appliances
and audio equipment

•

System Configuration (for digital watch)

R

12 H/24 H Cl-----i
KI~---------------'

K,!E-------------,

K31E-------,
1-----IOSC0 1:T
22pF
/3
R, R3 R. OSI OS2 a", 0 54

For
control

Mode switch

88

K.

CMOS 4-Bit 1-Chip Microcomputer

SM-510
•

CMOS 4-Bit I-Chip Microcomputer

Description

The SM-510 is a 4-bit single chip CMOS microcomputer with 2,772 bytes of ROM, 128 words of
RAM, a 15-stage divider and 132-segrnent liquid
crystal driver circuits. It is well suited for applications of low cost, low power hand-held equipment with liquid crystal display.

•

SM-510

•

Pin Connections
Q

~ :;~;.Q :..Q~:~:;..Q:~:
1

3

3

3

31

Features
L CMOS process

2. ROM capacity 2,772 X 8 bits
3_ RAM capacity 96X4+32X4 bits
4_ Instructions 49
5. Subroutine nesting 2 levels
6_ Input ports 6 bits
7_ Output ports 47 bits
8. On-chip 15-stage divider with reset
(timer circuit)
9. DirectLCD driver circuit (3V, 1/4 duty, 1/3
bias and 132 segments MAX.)
10. On-chip crystal controlled oscillator
(32.768kHz)
1 L Standby mode (10 pA current consumption)
12. Single power supply -3V (TYP_)
13. Instruction cycle 61 ps
14. 60-pin quad-flat package

~~-------SHARP"-------""'-~--""

89

CMOS 4-Bit 1-Chip Microcomputer

•

SM-510

Block Diagram
~

Seliment
________________________
~A~Output
________________________~

Display RAM
(32X4)

RAM
(96X4)

Segment
Output

Parallel
Output
Port

Test ' - - y - - / ACL Input
Parallel
Input
Port
Symbol description
ALU
: Arithmetic logic unit
Acc
: Accumulator
C
: Carry F/F
Pu, PM, PL : Program counter
Su, SM, SL : Stack register of program counter
Ru, RM, RL : Stack register of program counter
DIV
: Frequency divider

"---v-'

Voo

GND

W
BM, BL
Bp
H,L, Y
R
K
CG

'-v-'
Oscillator-

:
:
:
:
:
:
:

8-bit shift register
RAM address register
Backplate signal generator circuit
Hit F/F
2-bit F/F
Key input F/F
Clock Generator

- , - - - - - - - - - - - - - - S H A R P , - - . - . '......... ------------'"......-

90

CMOS 4-Bit 1-Chip Microcomputer

•

SM-510

Pin Description
Pin
K I -K 4
SA, PIN
aI-aIS, b I -b I6
bs

I/O
I
I

HI -H 4

0

SI- S8
Rr. R2
T
ACL
OSCIN, OSCOUT
Voo, GND

0
0

•

Type of circuit
Pull down
Pull up

Function
Acc-K I -K 4
Independent test possible
Output of contents of display RAM as LCD segment
signal
4-state level output possible; used for LCD common
output
Output of contents of W register
For piezo-electric buzzer direct drive
For Test (usually connected to V00)
Auto clear
For clock oscillation
Power supply for logic circuit

0

I
I

Pull down

Absolute Maximum Ratings
Parameter
Pin voltage
Operating temperature
Storage temperature

Symbol
Voo
VIN
T oDr
T st•

Rating
-3.5-+0.3
V oo -+0.3
0-+50
-55-+150

Unit
V
V
t
t

Note
1

Note 1: The maximum applicable voltage on any pin with respect to GND.

•

Operating Conditions
Parameter
Supply voltage
Oscillator frequency

•

Symbol
Voo
fose

Unit
V
kHz

Specified value
-3.2--2.6
32.768 (TYP.)

(V oo =-3V±10%, Ta=25t)

Electrical Characteristics
Parameter

Input voltage

Input current

Output voltage

Output current
Current consumption
Note
Note
Note
Note

2:
3:
4:
5:

Applicable pins KI - K., PIN
Applicable pins ACL, BA
Applicable pins KI - K,
Applicable pin PIN

Symbol
VIllI
V ILI
VIII2
V OL2
IIII
IlL
VOH
VOL
VOA
VOB
Voc
Voo
Iso
ISIN
lOA
los

Conditions

MIN.
-0.6

TYP.

MAX.
Voo+0.6

-0.3
3
3
-0.5

VIN=OV
VIN=VOO
IOlJT=50 pA to Voo
IOUT=5 pA to GND
V oo =-3.0V
No load
VouT=-0.2V
VouT=Voo+0.2V
In full-range operation
When system clock is stationary
Note
Note
Note
Note

Voo+0.3
15
15

6:
7:
8:
9:

-0.3
-1.3
-2.3
-3.0
100
100

0
-1.0
-2.0
-3.0

60
10

Voo+0.5
0
-0.7
-1.7
-2.7

Unit
V
V
V
V

Note

pA
pA

4
5

V
V
V
V
V
V

pA
pA
pA
pA

2
3

6

7

8

9

Applicable pins SI -S8
Applicable pins al-al6, bl-blG, b8, HI-H,
Applicable pins RI, R2
Current consumption when fosc is 32.768kHz (TYP.) and
- 3.0V of V DISP is applied

--~------SHARP'--~---~--

91

GMQS:4-Bit 1-Chip Microcomputer

•

AppHcations

1. Hand-held electronic calcuator with multi-digit
display and clock
2. High-quality clock:
3. Handy game machine'
4. Equipment that. need mUltiple LCD display segments

•

System Configuration (Hand-held electronic caleuator with clock)

LCD

DC voltage cutout

O.02.uF

08C Ol"T I---D+ 0.6
-1
VI>D+ 0.6
-2.5
V",,+0.6
-2.5
V"D+0.6
-0.6
VI>D+ 0.6
-0.6
V I)Jl+0.6
600
50
90
11.2
32.768

150

Unit

Note

V

12

V

13,

V

14

pA

15

V

16

V

17

V

18

V

19

V

20

V

21

V

22

V

23

pA
pA

24
25

kHz

26

kHz

27

Applied to pins ACL, a, fJ, PE, QI, DIO,- DIO I, MP,- MP I
Applied to pins KEI-KE,
Applied to pin Cf
Applied to pins a, fJ, QI, KEI-KEI, Dial-Dia" MPI-MPI, F2 (during floating condition)
Applied to pins To-T'l
Applied to pins S,-S"
Applied to pins FI, F:l, F5
Applied to pins RI - R6, Q2, F I
Applied to pins R,-RJO
Applied to pins MPI-MPI, F2
Applied to pins DIOI-DIO,
Applied to pin Rf
No·load condition
No·load condition, VOll= -3.5V, internal CG with externally attached capacitance C= 15pF
Internal circuit with externally attached CG
Circuit with externally attached crystal oscillator

C,

pJ'

r

C

R=82kO
C=15pF
• When a ceramic oscillator is used, the operating
voltage VDD is limited to -5.5 to -4.5V.
• Oscillation starting voltage becomes larger than the
CR oscillation.

Cl=330pF
C2=150pF
Rl=lMO
R2 =5600
Ceram ic oscillator : KB R , (made by Kyocera Corp.)

Rl=200kO
CG=lOpF
Co=33pF
Crystal: KF-38G
(made by Kyocera Corp.)

~'-''---'---SHARP------'-'~-'--~

106

SM-525

CMOS 4-Bit 1-Chip Microcomputer

•

System Configuration (for VTR timer)

M

8.2V

U~

Fluorescent tube display

~~---r~:f::~::~::~:;::~C:::::::::::~---------o-30V
IkO

IkO

SM-525
KE,

-

KE, DIO, - DIO, F, - F; MP, - MP.

s.... --~

S
....

OSCOCT
GND
OSC"

Crystal

32.768kHz

c: ___ S

""

"'...."

00

~

Input signals ' - y - I Input signals
Control signals

1000
lkO

+5V
Key matrix

lkO

'----y---'

Input signals

.----.-...-.------'--SHARP ----------....-.----107

•. SM~530

CMQS 4-Bit 1-Chip .Microcomputer

SM-530
•

CMOS 4-Bit I-Chip Microcomputer
•

Description

Pin Connections

The SM-530 is a 4-bit single chip CMOS microcOlI).puter with 2,016 bytes of ROM, 88 words of
RAM, melody generator circuit and 96-segment
LCD driver circuit. It is well suited for low cost,
low power systems with many LCD segments.

•

Features

1. CMOS process
2. ROM capacity 2,016X8 bits
3. RAM capacity 64 X 4 + 24 X 4 bits
4. Instructions 49
5. Subroutine nesting 1 level
6. Input ports 8 bits
7, Output ports !i8 bits
8. Timer/Counter
(On-chip 15-stage divider with reset, 10second counter and 11100-second counter)
9. Direct LCD driver circuit (3V, 112 duty, 112
bias and 96 segments MAX.)
10. On-chip crystal controlled oscillator
(32.768kHz)
11. Melody generator circuit
12. Standby mode (1.5 p.A current consumption)
13. Single power supply -1.5V (TYP.)
14. Instruction cycle 91.6 p.s
15. 80-pin quad-flat package

108

Top Vi~w

/

CMOS 4-Bit 1-Chip Microcomputer

•

SM-530

Block Diagram

~

Segment Output
______________________________
________________________________
~A~

~

Segment
Output
ROM
(2,016 X 8)
RAM'
(4X16x4)
Pu(5)

PL(6)

Parallel
Output
Port

Battery
Alarm

Melody
Output

Parallel
Input
Port

12

'--v-'
Oscillator
Symbol description
ALU :
Acc
:
ACL :
C
:
Pu. PL :
Su, SL :

Arithmetic logic unit
Accumulator
Auto clear
Carry F/F
Program counter
Stack register of program counter

DDC
DIV
CG
BA
BM, BL

:
:
:
:
:

LCD supply voltage generator
Frequency divider
Clock generator_
Battery alarm circuit
RAM address register

109

..............-.---.... .............-:-----..... -........
,

SM~530

CMOS 4-Bit 1-Chip Microcomputer

-~

•

PIn Description
Pin name
Kl -K 4
KE l -KE 4
OlO- 0 4B

I/O
I
I
0

. Hl -H 2

0

F l -F 4
Sl-S4
So
BA
Test
ACL
OSC1N, OSC OUT
Voo, Vee, DDC
VM,GND

0
0
0

•

I
I
I

Circuit type
Pull down
Pull down

Pull down
Pull down

Function
Acc -Kl-K,j
Acc - KEl - KE4
Display RAM contents output as LCD segment signals
Tri-value output capability;
used for LCD common output
F l -F 4 -Acc
Sl-S4 - Acc
Melody output
For Iiatter,y alarm
For test (Connected to Voo normally)
Auto clear
For clock oscillation
LCD driv~ power supply
Power supply for logic circuit

Absolute Maximum Ratings
Parameter
Pin voltage
Operating temperature
Storage temperature
Note 1:
Note 2:
Note 3:

•

Symbol
VM
Voo
VINl
V1N2
T oDr
T st•

Ratings
-2.0-+0.3
-4.0-+0.3
VM-0.3-+0.3
VoD -0.3-+0.3
-10-+60
-55'-+150

Unit
V
V
V

V

Note
1
1,2
1,3
1

t
t

The maximum applicable voltage on any pin with respect to GND.
Applied to pins Kl-Kl, KE1-KE1, Sl-S." Fl-FI, SO, Test, DDC, BA. ACL,
OSCIN, OSCollT
Applied to pins O;j(i= 1-4, j=O-B)HI, H2, Vc

Recommended Operating Conditions
Parameter
Supply voltage
Oscillation start voltage
Oscillator frequency

Symbol
VM
VOD
Vose
fose

Ratings
-1.2--1.8
-2.3--3.6
-1.4
32.768(TYP.)

Unit
V
V
V
kHz

-------~--SHARP.-.-.--·------

110

SM-S30

CMOS 4-Bit 1-Chip Microcomputer

•

(V M =-1.45-1.55V, V oo =-2.9--3.1V, Ta=25"C)

EI,ectrical Characteristics
Parameter
Input voltage
Input current
Boost output voltage

Output current

Current consumption
Oscillation start time
Note
Note
Note
Note
Note
Note
Note
Note
Note
Note
Note
Note
Note
Note

4:
5:
6:
7:
8:
9:
10:
11:
12:
13:
14:
15:
16:
17:

Symbol
V IH
V1L
IIHI
IIH2
V OO1
V OO2
10l
102
103
104
10HI
lOLl
IOH2
IOL2
IOH3
IOL3
105
100
los
Tosc

Conditions

V1N=OV
V1N=OV
VM =-1.55V, RL =5Mn
VM =-1.30V, RL =5Mn
Vos=0.5V
Vos=0.5V
Vos=0.5V
Vos=0.5V
VOLJT =-0.5V
VOllT =V M +0,5V
VOlJT =-0,5V
VOllT =V M +0.5V
VollT =-0,5V
VOllT =V M +0.5V
Vos=0.5V
During all operation
During system clock stop

MIN.
-0.5

TYP.

MAX.
VM +0.5
3
30
-2.80
-2.30

0.155
1.55

10
60
60
120
160
10
10
1.5
100
3
100
12
1.5
10

Unit
V
V

Note

pA
pA

5
6

V
V

7

pA
pA
pA
pA
pA
pA
pA
pA
pA
pA
pA
pA
pA
s

4

8
9
10
11
12
13
14
15
16
17

Applied to pins KI-K" KEI-KEI, Test, ACL, OSC'N
Applied to pins KI-K" KEI-KEI, ACL
Applied to pin Test
Applied to pin VDO
Applied to pins 0" (i= 1-4, j =O-B)
Applied to pins H" H,
Applied to pin DDC
Applied to pin Vc
Applied to pin SO
Applied to pins SI -S,
Applied to pin F I
Applied to pins F, - F I
Current consumption during 32.768kHz
Oscillation circuit constant, Cr;= 15pF, Cp=22pF

------------GND

~ ------- V"

--------V,,"
eH"H2 Waveform

Cc;=ISpF, C,,=22pF
e Oscillation circuit

e

Boost circuit

- - - - - - - - S H A R P - - - - - - -1". .-

j""

.....

.....

....................., ....,.....,

CMOS 4-8it 1-Chip Microcomputer

•

.............
..

......,~

Applications
1. Digital watch
2. Game machine
3. Digital clock
4. Controllers for home appliances and audio
equipment
5. Calculator with d9Ck

•

System Configuration Example (Caluculator watch)

.

Test

III

FJ

"
"8

F2

i:!0

F3

"...

F,

0
~

SO
R

Key matrix

112

................,.........

.

~.-.

..

'SM"':530

CMOS 4-Bit 1-Chip Microcomputer

SM-531

CMOS 4-Bit I-Chip Microcomputer
•

•

Description

The SM-531 is a 4-bit single chip CMOS microcomputer with 1,260 bytes of ROM, 52 words of
RAM, melody generator circuit and 80-segment
LCD driver circuit. It is well suited for low cost,
low power applications with many LCD segments_

•

Pin Connections
... z
~

uuQ~Qu

00

~""--MU)CJ)ZUCQU""_N

OOO:C:':oo,,<>Q>:':OO
1

3

3

3

31

Features
1.
2.
3.
4.
5.
6.
7.
8.

CMOS process
ROM capacity 1,260 X 8 bits
RAM capacity 32 X 4 + 20 X 4 bits
Instructions 45
Subroutine nesting 1 level
Input ports 6 bits
Output ports 42 bits
Timer/Counter
(On-chip 15-stage divider with reset, 1/100second counter)
9. Direct LCD driver circuit (3V, 1/2 duty, 112
bias and 80 segments MAX.)
10. On-chip crystal controlled cscillator
(32.768kHz)
11. Melody generator circuit
12. Standby mode (1.5 p.A current consumption)
13. Single power supply -1.5V (TYP.)
14. Instruction cycle 91.6 p.s
15. 60-pin quad-flat package

)

------------SHARP----..-,---113

CMOS 4-Bit 1-Chip

•

Microcomput~r

SM-531

Block Diagram

~

common{
Output

Segment Output
_____________________
____________________
A~

~

3

(2)----...r--"'L---~---...;;;..;...-------r----'

DDC

Segment
Output

ROM
(1.260xS)
RAM
(2X16X4)
PutS)

PL(6)

Parallel
Input
Port

\

Melody {
Output

9
'ID

'--v-'

VM

'-v--'

Test

Oscillator

GND
Symbol description
ALU
Acc
ACL
C
,Pu. PL

114

: Arithmetic logic unit
: Accumulator
: Auto clear
: Carry F/F
: Program counter

Suo SL
DDC
DIV
CG
BM. BL

:
:
:
:
:

Stack register of program counter
LCD supply voltage generator
Frequency divider
Clock generator
RAM address register

SM-531

CMOS 4-Bit 1-Chip Microcomputer

•

Pin Description
Pin name
K1 -K 4

•

KEh KE2
0 10 -0 49

110
I
I
0

Hh H2

0

SOh S02
Test
ACL
OSCIN, OSCO\JT
VDD , , Vee, DOC
V M, GND

0
I
I

Pul1 down

Function
Acc - K I -K 4
Acc - KEh KE2
Display RAM contents output as LCD segment signals
Tri·value output capability;
used for LCD common output
Melody output
For test (Connected to VM normal1y)
Auto clear
For clock oscillation
LCD driver power supply
Power supply for logic circuit

Absolute Maximum Ratings
Parameter

Pin voltage

Operating temperature
Storage temperature
Note 1:
Note 2:
Note 3:

•

Circuit type
Pul1 down
Pul1 down

Symbol
VM
VDD
V INI
V IN2
Toor
T st"

Ratings

-2.0-+0.3
-4.0-+0.3
V M -0.3-+0.3
VDo -0.3-+0.3
-10-+60
-55-+150

Unit
V
V
V
V

Note

1
1
1,2
1,3

"C
"C

The maximum applicable voltage on any pin with respect to GND.
Applied to pins KI-KI, KEI, KE" Sal, SO" Test, DOC, ACL, OSCIN, OSCQlTT
Applied to pins O,j(i= 1-4, j=O-9), HI, H" Vc

Recommended Operating Conditions
Parameter
Supply voltage
Oscillation start voltage
Oscillator frequency

Symbol
VM
Voo
Vase
fose

Ratings

-1.8-1.2
-3.6-2.3
-1.4
32.768 (TYP.)

Unit
V
V
V
kHz

Note

4

Note 4: Oscillation ciruit constant CG= 15pF, CD= 22pF
Oscillation start. time : within 10 seconds .

.-----------SHARp.-..--------....-.

115

CMOS4-Bit 1-Chip Microcomputer

•

(V M =-1.45--:-1.55V,

Electrical Characteristics
Parameter
Input voltage
Input current
Boost output voltage

Output current

Current consumption
Oscillation starting time
Note
Note
Note
Note
Note
Note
Note
Note
Note
Note
Note

5:
6:
7:
8:
9:
10:
11:
12:
13:
14:
15:

Symbol
VIH
VIL
IIHI
IIH2
VOOI
V002
101
102
103
104
105
100
los
Tosc

SM"531

Conditions

MIN.
-0.5

VIN=OV
VIN=OV
VM =-1.55V, RL-5MO
VM =-1.30V, RL =5MO
Vos=0.5V
Vns =0.5V
Vos=0.5V
Vos=0.5V
Vos=0.5V
During all operation
During system clock stop

Applied to pins KI-K" KEI, KE2" ACL, OSCIN
Applied to pins KI-K" KEI, KE2, ACL
Applied to pin Test
Applied to pin VOD
Applied to pins 0" (i= 1-4, j=0-9)
Applied to pins HI, H2
Applied to pin DOC
Applied to pin Vc
Applied to pins Sal, SO,
(::urrent consumption at 32.768kHz
Oscillation circuit constant CG=15pF, Co=22pF

TyP.

MAX.
VM +0.5
3
50
-2.80
-2.30

0.155
1.55

Ta=25"C)
Unit
V
V

Note

pA
pA

6
7

V
V

8

10
60
60
120
900
10
1.5
10

5

pA
pA
pApA
pA
pA
pA

9
10
II
12
13

s

15

14

• Hl,Hz Waveform
--------------GND

~---------

V~I

------------ VIlIl
• Oscillation circuit, Boost circuit

~---'--'---'-----SHARP

116

Voo=-2.~--3.1V;

.-------------,---

CMOS 4-Bit 1-Chip Microcomputer

•

SM-531

Applications
1. Digital watch
2. Game machine
3. Controllers for home appliances and audio
equipment
4. Calculator with clock

•

System Configuration (for melody alarm watch)

LCD

DC

voltage cutout

O.02,uF
~~--~--~~~--,

o

ij

(40Iines)

1/.1F

15pF

+

1.5 V

SM-531

V,,"
DDC
ACL

Vc

ACL

----------SHARP-------117

CMOS 4-Bit 1:"Chip Microcomputer

SM-S40
•

,

SM-S40

CMOS 4':'Bit I-Chip Microcomputer

Description

•

Pin Connections

The SM-540 is a 4-bit single chip CMOS microcomputer with 2,016 bytes of ROM, 128 words of
RAM, a 15-stage divider and a 256-segment liquid crystal driver circuit. It is well suited for
low power applications with 16 X 16 dot-matrix liquid crystal display_

•

Features

L CMOS process
2. ROM capacity 2,016 X 8 bits
3. RAM capacity 128 X 4 bits
4. Instructions 57
5. Subroutine nesting 2 levels
6. Input ports 6 bits
7. Output ports 55 bits
8. On-chip 15-stage divider with reset
(timer circuit)
9. Direct LCD driver circuit (4_5V; 1/8 duty,
113 bias and 256 segments MAX.)
10. On-chip clock generator circuit
1 L Standby mode (1 pA current consumption)
12. Single power supply -4_5V (TYP.)
13. Instruction cycle 16 ps
14. 60-pin quad-flat package

I

Vuu

5

ALM

-~-----~'---SHARP''''''-''''-'-'-~'-'-~

118

CMOS 4-Bit 1-Chip Microcomputer

•

SM-540

Block Diagram
Segment Output

ROM
(2,016X8)

Segment
Output

Backplate
Control

Common
Output

}-____~~I}-------~
Tone
Output
Oscillator

~

'--y-I

GND
Symbol description
ALU
Acc
C
P, PL
SCI, SC2

Segment
Driver

:
:
:
:
:

Arithmetic logic unit
Accumulator
Carry F/F
Program counter
Stack register of program counter

~--------'---SHARP

CG
DIV
BM, BL
S
X, SB

:
:
:
:
:

Clock generator
Frequency divider
RAM address register
Shift register
Temporary register

-----.-.-..-..-.-119

CMQS4-Bit 1-Chip Microcomputer

•

SM-S40

Pin Description
Circuit type

Pin name
K1-K 4

1/0
I

Ra

I/O

' Pull down

Rb

I/O

Pull down

al-al6
bl -bi6
H1-H s
SI-S4
RC
ALM
T
Sync
Rf

0

Vc

0

Function
Acc - K1 -K 4
R register output;
a F IF is\nput when R registerRa' is reset
R re~ister output;
f3 F IF is input when R register Rb is reset

0

Display RAM contents output as LCD segment signals

0
0
0
0

8·value output capability;used for LCD common output
S register output
R register output
For sound generator
For test (Connected to GND normally)
External clock input
System clock output
When system clock is running,
output at the same voltage as Vnn
LCD driver power supply
Power supply for logic circuit

I
I

Pull up

VDlSP
Vnn, GND

•

,

Absolute Maximum Ratings
Parameter
Pin voltage
Operating temperature
Storage temperature

Ratings
Symbol
'-5,,5-+0,3
Vnn
-5.5-+0,3
VDlSP
VIN .' VM -0.3-+0.3
-5-+50
Toor
-'-55-+150
Tst~

Unit
V
V
'V

Note
1
1,2
1

"C
"C

Note 1: The maximum applicable voltage on any pin with respect to GND,
Note 2: VDlSP;;;;;VDD

•

Recommended Operating Conditions
Parameter
Supply voltage
Oscillator frequency

Symbol
Vnn
VDlSP
fose

Ratings
-5,5-+4.0
-5,5-+-3.0
120(TYP.)

Unit
V
V
kHz

--'-'-"'-~-,--SHARP------'-'---""""'-

120

CMOS 4-Bit 1-Chip Microcomputer

•

SM-540

(V DD =-4.5V, Ta=25'C)

Electrical Characteristics
Parameter
Input voltage

Input current

Output voltage

Output current

Current consumption
Note
Note
Note
Note
Note
Note
Note
Note

3:
4:
5:
6:
7:
8:
9:
10:

Symbol
VIH
VIL
IIH!
IlL!
IIH2
IIL2
VOA
VOB
Voc
VOD
VOE
VOF
10Hi
lOLl
10112
IOL2
IOH3
IOL3
IOH4
IOL4
IDA
IDs

MIN.

Conditions

TYP.

MAX.
0.6

Unit
V
V

20
1.5
3.0
1.5

pA
pApA
pA

-0.97
-3.12
-4.3
-1.95
-2.15

V
V
V
V
V
V

VDD +0.6
VIN=OV
VIN =-4.5V
VIN=OV
VIN =-4.5V
No load condition VDISP = -4.5V
No load condition VDlsp =-4.5V
No load condition VDlSP = -4.5V
No load condition VDISP- -4.5V
No load condition VD1SP= -4.5V
No load condition VDISP= -4.5V
VouT =-0.5V
VOUT=VDD+0.5V
VOUT= -0.5V
VOUT=VDD+0.5V
VouT=-0.5V
VOUT=VDD+0.5V
VOlIT =-0.5V
VOUT=VDD+0.5V
During operation
During system clock stop

Applied to pins Kl- K" R" Rb
Applied to pins Kl- K,
Applied to pins R" Rb
Applied to pins HI-H8, al-aI6, bl-bl6
Applied to pins SI--S,
Applied to pin RC
Applied to pin ALM
fose= 120kHz(TYP.) and VDlSP= -4.5V

-0.2
-1.38
-3.53
-2.35
-2.55
40
2
100
2
100
5
100
100
230
1

---------

3
4
5

6

pA
pA
pA
pA
pA
pA
pA
pA
pA

7
5
8
9

-rz-- - - -~A

10

eal-as,bl-bs Waveform

e Hl-Hs Waveform

~

Note

- VOA

-------VOB

------ -Voc

------------- - VOIl

Vo.'

----- - VOE

------- - V OF

- - - - - - - - - - - VIlIl

e Clock from external input pin SYNC
. 50kHz-144kHz

121

SM-540

.CMOS 4-Bit 1-Chip Microcomputer

....

~"""""""'''''''''''''_ _' I11!11!1••_''''_ _~''''~''''''''''''.-..r

•

Application
1. Game machine

.•

System Configuration (for LCD game)

16 x 16 dot matrix
LCD

K2 t - - - {

Hs

K3~--{

SM-540

K,iE---{
S,I-----I
S21-------'

Vc

lOOkO

R,
ViliSI'

BOkO
Piezoelectric
buzzer

2SC45B

122

CMOS 4-Bit 1-Chip Microcomputer

SM-550/SM-555

SM-550/SM-555
•

Description

The SM-550/SM-555 are 4-bit single chip
CMOS microcomputers with 1,024 bytes of ROM,
80 words of RAM, a15 stage divider and an event
counter.
They has the advantages of high-speed instruc·
tion cycle of 1.6 ,us(SM-550)/3.3 ,us(SM-555), 5
different interrupts, subroutine stack in the RAM
area, and byte-by-byte data transfer capability.
They are well suited for low power application
systems with many control ports.

•

•

CMOS 4-Bit I-Chip
Microcomputer

Pin Connections
E-

~~C-:~~~~~tO~~~

0.. 0.. 0.. 0.. E-C-'o..o.. 0.. 0..0.. 0..
~

r

Features
1.
2.
3.
4.
5.
6.
7.
8.
9.

10.
11.
12.
13.
14.
15.

16.

CMOS process
ROM capacity 1,024 X 8 bits
RAM capacity 80 X 4 bits
Instructions 94
Subroutine nesting using RAM area
Input ports 4 bits
Output ports 8 bits
Input/Output ports 24 bits
Interrupt function
External interrupts 2
Internal interrupts 3
External ROM/RAM expandable
Timer/event counter
Serial interface 8 bits
Standby mode (10,uA current consumption)
Single power supply (2.7-5.5V)
Instruction cycle (MIN.)
1.6 ,us(SM-550)
3.3 ,us(SM-555)
48-pin quad-flat package

Top View

123

CMOS4-Bit 1""Chip Microcomputer

'.

Block Diagram

P
ROM
(1,024 X8l::

L

"'"

D

(:I
'1

Parallel

I/O

~)

Port

GND 7

Parallel
Output
Port

RESET 17

Parallel
I/O
Port

Symbol description
A,B
: Accumulators
ACL
: Auto clear circuit
ALU
: Arithmetic logic unit
CG
: Clo~k generator
DIV
: DivIder
H,L,D,E : General-purpose registers
IE
: Interrupt enable F /F
IFT,IFA,IFS
IFB,IFV : Interrupt requests
IME
: Interrupt mask enable F /F

124

Pl', PI.
PO - PB
PSW
RD, RE, RF
SB
SP
TC
TM

:
:
:
:
:
:
:
:

Program counters
Registers
Program status word regi'ster
Mode registers
Shift registers
Stack pointer
Count registers
Module registers

CMOS 4-Bit 1-Chip Microcomputer

•

Pin Description
Pin name
P7
PO, PI
P5,P8
P6
P4
P2,P3
INTA,INTB
TEST
RESET
~
CKj, CK z
OSC IN , OSCOUT
Voo , GND

•

Circuit type

Function

110
I

Pull up

4·bit parallel

110

Input-pull up

110 selectable by instruction

110
110
0
I
I
I
0

Input·pull up
Input-pull up

110 selectable using RF register
Serial interface input capability using RE register
4-bit parallel
Interrupt input
For test (Connected to GND normally)
Auto clear
System clock output
For system clock oscillation
For clock oscillation
Power supply for logic circuit

Pull up
Pull down
Pull up

Absolute Maximum Ratings
Parameter
Supply voltage
Input voltage
Output voltage
Output current
Operating temperature
Storage temperature
Note 1:
Note 2:

•

SM-550/SM-555

Symbol
Voo
VIN
VOUT
lOUT

Tope
T st "

Ratings
-0.3-+7.5
-0.3-V oo +0.3
-0.3-V oo +0.3
40
-20-+70
-55-+150

Unit
V
V
V
rnA
°C
°C

Note
1
1
1
2

The maximum applicable voltage on any pin with respect to GND.
Sum of current output from (or flowing into) output pin.

Recommended Operating Conditions
Parameter
Supply voltage
Crystal oscillator frequency
Basic clock
oscillator
frequency
Note 3:
Note 4:

Symbol
Voo
fose

SM-550

f

SM-555

f

Conditions

MIN.
2.7

-.

TYP.

MAX.
5.5

32.768
VDD =5V
VDD =3V
V[)[)=5V
V Do =3V

0.25
0.25
0.25
0.25

2.5
1
1.2
0.48

Unit
V
kHz

Note
3

MHz
4
MHz

Oscillation start time: within 10 seconds
Degree of fluctuation frequency: ± 30%
(tolerance of voltage fluctuation: ± 10%)

.....-.-.-..-.-------SHARP----------

125

SM-550/SM-555

CMQS 4-Bitt-Chip Microcomputer

(V DD =2.7-5.5V, Ta;=-20-+70"C)

Electrical Characteristics

•

Parameter

Symbol
VIHI
V ILI
V IH2
VIL2

Inptit voltage

Input current

lIN
10Hl
lOLl
IOH2
IOL2

Output current

IOH3
J

IOL3
lop

MIN.
0.7VDD
0
VDD -0.5
0
2
VIH=OV
IVoo =5.0V±10% 20
VOH =V DD -0.5V
50
VoL =0.5V
250
VOH =V DD -0.5V
100
500
VOL =0.5V
100
VOH =
V DD -0.5V IVoo =5.0V±10%
400
VoL =0.5V
0.5
IVoo =5.0V±10% 1.6
f=0.5 MHz, VDD =3.0V±10%
f=l MHz, V DD =5.0V±10%
Conditions

Current consumption
Standby
current

1ST
Note 1:
Note
Note
Note
Note

2:
3:
4:
5:

Note 6:
Note 7:
Note 8:

•

IVoo=3.0V±10%
IVoo=5.0V±10%

TYP.

MAX.
VDD
0.3VDD
VDD
0.5
200
200

Unit
V
V
V
V

,Note

pA

1

pA
pA
pA
pA
pA

1
2

3
4

5

mA
0.9
1
5
12
50

rnA

6
7

pA

I---

8

Applied to pins POO-P03, Plo-PI" P40-P43, P50-P53, P6o-P63, P8o-P83 (during input mode)
P7o-P73, INTA, INTB, RESET.
Applied to pins CK1, OSCIN, TEST.
Applied to pin CK2
Applied to pin '"
Applied to pins POO-P03, Plo-P13, P40-P43, P50-P53, P6o-P63,
P8o- P83 (during output mode)
P2o- P23, P30- P33
No·load, condition
No-load condition when crystal oscillation circuit is not operating. Connect OSCIN pin to GND.
No-load condition when crystal oscillation circuit is operating

Oscillation circuit
_ CKI

CK2

~
R

•

Clock oscillation circuit
External

The clock oscillation circuit is composed by connecting a resistance to the CKI and CK, pins. When
inputting an external' clock directly, input it
through CKI and leave CK2 open.
The system clock ( ~ ) used is the clock supplied
to CK, divided by 4.

126

R rCKI
fl,

1:J
CR oscillation

cIOCk-rl

Open

-tJ

External clock

SM-550/SM-555

CMOS 4-Bit 1-Chip Microcomputer

•

Applications
1. Controllers for various home appliances, audio equipment, office equipment, etc.
2. Vending machines

•

System Configuration (for mechanism controller)

+5V

~

u
Z
f-

::>

:>

U
Ul

0

Pulse input {

Control signals

INTA
INTB
P40
I
P43
POo
\
P0 3
Pl o
I
PI,

Z

-

-::<:
;;;u
0

~

U

Cl
Cl

>-

E-
o

I

14 13

£ ~ 0:Top View

------.-.----~--SHARP---~-~--

133

CMOS

•

4~Bit

t-Chip Microcomputer

SM-552/SM;.557

Block Diagram

P
L

D

Parallel
I/O
Port

ROM
(4, 096X81:: ," ~ )

RAM
(256X41:: '" r)

Parallel
Output
Port
OSC\\ 4
OSCo,"r 5

Parallel
I/O
Port

,
Parallel
Output Port
Symbol description
A,B
: Accumulators
ACL
: Auto clear circuit
ALU
: Arithmetic logic unit
CG
: Clock generator
DIV
: Divider
H,L,D,E : General-purpose registers
IE
: Interrupt enable F IF
IFT,IFA, IFS
IFB, IFV : Interrupt requests
IME
: Interrupt mask enable F IF

Pl', PL
PO-PB
PS W
RD,RE,RF
SB
SP
TC
TM

Parallel
I/O Port

:
:
:
:
:
:
:
:

Parallel
Input Port

Program counters
Registers
Program status word register
Mode registers
Shift registers
S tack point er
Count registers
Module registers

, . - . - - - - - - - - - S H A R P -~.-....-------.-.-134

'CMOS 4-Bit 1-Chip Microcomputer

•

SM-552/SM-557

Pin Description
Pin name
P7
PO,Pl
P5, P8
P6
P4
P9, PA, PB
P2,P3
INTA,INTB
TEST
RESET
~

Circuit type

Function

110
I

Pull up

4 -bit parallel

110

Input-pull up

110 selectable by instruction

110
I/O
110
0
I.
I
I
0

Input-pull up
Input-pull up
Input-pull up

I
110 selectable using RF register
Serial interface input capability using RE register
110 selectable by instruction
4-bit parallel
Interrupt input
For test (Connected to GND normally)
Auto clear
System clock output
For system clock oscillation
For clock oscillation
Power supply for logic circuit

Pull up
Pull down
Pull up

CK h CK 2
OSC IN , OSC OUT
Voo, GND

•

Absolute Maximum Ratings
Parameter
Supply voltage
Input voltage
Output voltage
Output current
Operating temperature
Storage temperature

Note 1:
· Note 2:

•

Symbol
Voo
VIN
VOUT
lOUT

Topr
TstK

Ratings
-0.3-+7.5
-0.3-V nn +0.3
-0.3-V no +0.3
40
-20-+70
-55-+150

Unit
V
V
V
rnA

Note
1
1
1
2

"C
·C

The maximum applicable voltage on any pin with respect to GND.
Sum of current output from (or flowing into) output pin.

Recommended Operating Conditic:ms
Parameter
Supply voltage
Crystal oscillator frequency
Basic clock
oscillator
frequency
Note 3:
Note 4:

Symbol
Voo
fose

SM-552

f

SM-557

f

MIN.
2.7

TYP.

MAX.
5.5

32.768
0.25
0.25
0.25
0.25

2.5
1
1.2
0.48

Unit
V
kHz

Note

MHz

r----

MHz

r--L
4

3
4.

VDD=5.0V
VDD=3.0V

135

CMOS 4;',Bit t-Chip M i c r o c , o m p u t e r S M - : 5 5 2 / S M - 5 5 7
'-1III!IIIIi~.II,I"...
, ......................~. . . . . . . . . . . . . . . . . . ..-...-.;~-"......_ , . " . . , . " , . "

•

E,lectrical Characteristics
Parameter

Input voltage

Input current

Symbol

lIN

lOLl

10112
IOL2
IOIl~1

Current consumption

Conditions

MIN.
0. 7Vuo
0
V DD .c:.0.5

VIlli
V ILt
'v III2
VIL2

10m

Output current

(V DD =2.7-5.5V, Ta=-2,0-+70t)
TYP.

0
VIN=OV

IVoo =5.0V±10%

VoIl =V Do -0.5V
VOL =0.5V
VoII =V oo -0.5V
VOL =Q.5V
VOII~

VDo -0.5V

I V",,=5.0V±10%

IOL3

VOL =0.5V

lop

f=0.5 MHzV Do =3.0V±10%
f=1 MHz V DD =5.0V±10%

1ST

Standby current

2
20
50
250
100'
500
100
400
0.5

I VoD =5.0V±10%

MAX.
V DD
0.3VDD
V DD
0.5
200
200

Unit
V
Vi
V
V

Note

pA

5

pA
pA
pA
/LA
pA

5

6

7

8
9

rnA

1.6
0.3
1
50
5

rnA

10

pA

~

11

Note 5: Applied to pins POo-PO" P1o-P13, P4o-P,43, P50-P53, P6o-P63, P8o-P83,
P90-P9, (during input mode) P7o-P73, INTA, INTB; RESET.
Note 6: Applied to pins CKI, OSC IN , TEST.
Note 7: 'Applied to pin CK 2
Note 8: Applied to pin '"
Note 9: Applied to pins POO-P03, P1o-P13, P4o-P43, P50-P53, P6o-P6"
P8o- P8, , P90- P9:1 , (during output mode)
PZo-PZ" P30-P3,; PAo-PA3, PBo-PB3
Note. 10: No·load condition
Note. 11: No-load condition when crystal oscillation circuit is operating
Note. 12: No-load condition when crystal oscillation circuit is not operating

•

Oscillation Circuit

CG=15pF, CD=22pF

•

Clock Oscillation Circuit

The clock osciUation circuit is composed by connecting a resistance to the CKI and CK, pins. When
inputting an external clock directly, input it
through CKI and leave CK2 open.
The system clock ( ¢ ) used is the clock supplied
to CK, divided by 4.

External

openi:j

C R oscillation

.---.----.-~------.-~SHARP

136

ciOCk-fi
External clock

- - - - - . - - - - . . - - ........

CMOS 4-Bit 1-Chip Microcomputer

•

SM-552/SM-557

Applications
1. Controllers for various home appliances, audio
equipment, office equipment, etc.
2. Vending machines

•

System Configuration (for mechanism controller)

+sv

PA3
\

INTA

Pulse input {

INTB
P4 0
\

P43
POo
\

Control signals

P03

..

-

SM -5521 SM -557

PA o
P93
\
P9 0
P83

Control signals

\

P80
P63

Plo

\

\

P6 0

} Input signals

Ph

.....-.~-.---- ........S H A . R P - - - - - - - - -

137

CMOS 4-Bit 1-Chip Microcomputer

S M- 5 E3
•

CMOS 4-Bit I-Chip ,Microcomputer

Description

The SM-5E3 is a 4-bit single chip CMOS microcomputer with 4,096 bytes of ROM, 256 words of
RAM, a 15 stage divider and an event counter. It
has the advantages of a high-speed instruction cycle of 1.6 ps, 5 different interrupts, subroutine
stack in the RAM area, and byte-by-byte data
transfer capability. It is well suited for low power application systems with many control ports.

•

Features
1.
2.
3.
4.
5.
6.
7.
8.
9.

SM-5E3

CMOS process
ROM capacity 4,096 X 8 bits
RAM capacity 256 X 4 bits
Instructions 99
Subroutine nesting using RAM area
Input ports 4 bits
Output ports. 16 bits
Input/Output ports. 48 bits
Interrupt function (External interrupts 2 and
internal interrupts 3)
10. External ROM/RAM expandable
11. Timer/event counter
12. Serial interface 8 bits
13. Standby mode (50 pA current consumption)
14. Single power supply (+2.7-+5.5V)
15. 1.6 ps instruction cycle (MIN.)
16. 80-pin quad-flat package

•

. Ph; Connections

P21 I
P22 2
P2, '

P3. •
P3, 5
P32 6
P33 7
P40 8
P41 9
P42 ,.
P4,lI
PSo 12
P5,13
PS2 14
P53 15
P60 "
P6,17
P62 18
P63 19
TEST
P70 21
P71 22
P72 23
P7" ,.

2.

Top View

- . - - - - - - - - - S H A R P . - . . . . - . - - . - - - - - - -.........

138

CMOS 4-Bit 1-Chip Microcomputer

SM-563
•

SM-563

CMOS 4-Bit I-Chip Microcomputer

Description

•

Pin Connections

The SM-563 is a 4-bit single chip CMOS microcompter with 4,096 bytes of ROM, 160 X 4 bits of
RAM, timer/event-counter and mUltiplex interrupt.
It is best suited to controllers of application systems to drive multi LCD segments.

•

Features

1. CMOS process
2. ROM capacity 4,096 X 8 bits
3. RAM capacity 160X4 bits
(including 32 X 4 bits for display)
4. Instructions 93
5. Subroutine nesting using RAM area
6. Input ports 4 bits
7. Input/Output ports 11 bits
8. Timer/event-counter
9. Interrupt functions 5
External interrupt
Serial 110 interrupt
Timer/event-counter interrupt
f. signal interrupt
Divider overflow interrupt
10. Serial interface 8 bits
11. Standby mode
12. Direct LCD driver circuits (1/4 duty, 113 bias
and 128 segments (MAX.))
13. Insturuction cycle 6.67 ps (MIN.)
14. Single power supply (2.7-5.5V)
15. 64-pin quad-flat package

Top View

--'---'---SHARP'--'---'--~--

139

CMOS 4-Bit 1-Chip Microcomputer

•

SM-563

Block Diagram

SP
ROM
(4,096XS)

RAM
(12SX4 )

Test

PU

RESET

Clock Output

Parallel
I/O
Port

H
D

PL

R4
R5
R6
R7
RD
RE
RF

2

Segment
Output

,
Common

Segment Output

Output
Symbol description
:
A,B
:
ACL
:
ALU
:
BR,DS
:
CG
:
DIV
:
D,E,H,L
:
HC
:
IE
IFA,IFB
IFS,IFT,IFV:

Accumulators

Auto clear
Arithmetic logic unit
Common signal control F/F
Clock generator
Divider
General-purpose registers
Common signal circuit

Interrupt enable F /F

: Interrupt mask enable F F
IME.
: Registers
PI-P3
Program counters
PL,PU
: Program status word register
PSW
R4- R7
: General- purpose registers
RD,RE,RF: Mode registers
SB
: Shift register
SP
: Stack pointer
TC
: Count register
: Module register
TM

Interrupt requests

-------~---SHARP-~-~-~---

140

SM-563

CMOS 4-Bit 1-Chip Microcomputer

•

Pin Description
Function
Acc +- PO O-P0 3
I/O selectable by instruction
I/O selectable individually
Sound output only when P2 3 pin is used for output
Serial interface input capability using RE register
Display RAM contents output as LCD segment signals
4·value output capability; used for LCD common output
For test (Connected to GND normally)
Auto clear
System clock output
For system clock oscillation
For clock oscillation
LCD driver power supply
Power supply for logic circuit

Circuit type

Pin name
PO O-P0 3
P1 0 -P1 3

I/O
I
I/O

Pull up
Pull up

P2 0 -P2 3

I/O

Pull up

P3 0 -P3 3
SO-S31
H1-H 4
TEST
RESET

I/O
0
0
I
I
0

Pull up

Pull down
Pull up

'"

CK[, CK 2
OSC'N. OSC OUT
Vos P• VOA• VOB
Voo• GND

•

'Absolute Maximum Ratings
Parameter
Supply voltage
Input voltage
Output voltage
Output current
Operating temperature
Storage temperature

Symbol
Voo
VosP
VIN
VOUT
lOUT

Toor
T sto

Ratings
-0.3-+7
-0.3-+7
-0.3-V oo +0.3
-0.3-V oo +0.3
20
-20-+70
-55-+150

Unit
V
V
V
V
rnA

Note
1
1
1
2

"C
"C

Note 1: The maximum applicable voltage on any pin with respect to GND.
Note 2: Sum of current output from (or flowing into) output pin.

•

(V nn =2.7-5.5V)

Recommended Operating Conditions
Parameter
Supply voltage

Symbol
Voo
VosP

Basic clock oscillator
frequency

f

Instruction cycle

t

Crystal oscillator frequency

Conditions

VnD=4.5~5.5V

VDD =4.5-5.5V

fosc

MIN.
2.7
2.7
250
250
6.6
2

TYP.

32.768

MAX.
5.5
Voo
600
2000
16
16

Unit
V
V

Note

kHz

3

/-,s
kHz

Note 3: Degree of fluctuation frequency: ±30%

• Oscillation circuit
CKI

CK2

~
R

CG=15pF. CD=22pF

....--.-~---------SHARP

------------------141

SM-:563

CMOS 4-Bit 1.-Chip Microcomputer

•

(Voo=2.7-5.5V, Ta=-20-+70t),

Electrical Characteristics
Parameter

Symbol
VIHI
V ILl
VIHZ
VILZ

Input voltage

Input cu'rrent

'IIH
IOHl
, lOLl
10HZ
IOLZ

Output current

IOH3
IOL3
Rc
Rs
VI
Vz
V3
V4
lop

Output impedance

Output voltage

Current consumption
Note
Note
Note
Note
Note

1ST

Conditions

f=600kHz, Voo=3.0V
Vosp=3.0V
Standby mode
Voo=3.0V

142

I

;

Applied to pins HI-HI
Applied to pins SO-S31
Applied to pins H2-Hl, So-S;"

No·load condition
No·load condition when bleader resistance is ON
No·load condition when bleader resistance is OFF

MAX.
Voo
0.3Vpo
Voo
0.5
200
200

250

Unit
V
V
V
V

Note

p.A

1

p.A
p.A
p.A
p.A

1
2

3
4

p.A
5
rnA

2.7
1.7
0.7
0

Vosp=3.0V
No·load

COA=lpF, COB=lpF
Note 9:
Note 10:
Note 11:

TYP.

5
10

1: Applied to pins POO-POI, RESET
Plo- Ph, P2o- P23, P30-P32 (during input mode)
2: Applied to pins CKl, Test, OSCIN
3: Applied to pin CK2
4: Applied to pins Plo- Ph (during output mode)
5: Applied to pins P2o- P23, P3o- P32 (during output mode)

Note 6:
Note 7:
Note 8:

MIN.

0.7Voo
0
Voo-0.5
0
20
V1N=OV
I VDD =4.5-5.5V
2
VOH =V DD -0.5V
50
250
VOL =0.5V
VoH =V oo -0.5V
5
VOL ;:0.5V
500
VOH =
400
Voo-0.5V I VDD =4.5-5.5V
100
1.6
VOL =0.5V
I VDD =4.5-5.5V
0.5

2
1
i

0.4
15

8

20
40
3
2.3
1.3
0.3
1.5
40
20

kn
kn
V
V
V
V
rnA
p.A

6
7

8
9
10
~
11

CMOS 4-Bit 1-Chip Microcomputer

•

Applications

•

The instruction cycle of the SM563. is fast and
the unit operates on little power, and therefore it is
ideal for use as a controller with a liquid crystal
display in a wide range of hand-held equipment
and home appliances.

•

SM-563

Applications Example

Portable devices, auto dialers, sphygmomano·
meters, thermometers, pulsemeters, radio controllers, cameras, home appliances, various timers,
VTR timers, home security system, pocket games

System Configuration
Key matrix

-.-------SHARP-------143

CMOS4-Bit 1-Chlp Microcomputer

5 M- 57 2
•

Description

.SM.;572

CMOS 4-Bit I..Chip MicrOC()mputer·

I

•

Pin Connections·

The SM-572 is a 4-bitsingle chip CMOS microcomputer with 2,032X9 bits of ROM, 128X4 bits
of RAM, 8 bits A/D converter and timer/counter.
It is best suited for applications requiring A/D
circuits.

•

Features

1. CMOS process
2. ROM capacity 2,032 X 9 bits
3. RAM capacity 128 X 4 bits·
4. Instructions 93
5. Subroutine nesting 6 levels
6. Input ports 8 bits
7. Output port . 1 bit
8. Input/Output ports 40 bits
9. Timer/counter
8-bit counters 2
10. Interrupt function
External interrupt 2
Timer interrupt 2
11. A/D converter 8 bits
Conversion time 32 ps(MIN.)
12. Single power supply (2.7-5.5V)
13. Instruction cycle 2 ps (MIN.)
14. 60-pin quad-flat package

....------,---SHARP"-~--------

144

CMOS 4-Bit 1-Chip Microcomputer

•

SM-572

Block Diagram

.

Input/Output Port

V,w
Val.
ROM

I 2,032 x9 )

Input
Port

MPX .

•

Input Output Port
Symbol description
ALU :
X
:
B
:
C
:
PC
:
SP
:
CG
:
MPX.:
A/D :

Arithmetic logic unit
X register
RAM address, register
Carry F/F
Program counter
Stack pointer
System clock generator
Multiplexer
A D convertor and Comparator unit

Ace
:
SR
RO,Rl,R2,R3:
DIV

Accumulator
Stack register
Latch
Divider

~'-'-'-----SHARP~'-''------'--'--

145

SM-572

CMos 4-Bit 1-Chip Microcomputer

•

Pin Description
Pin name
KC o -KC 3

110
I

KI, KH
KT,KL

I

ZO-ZI5

110

PO-P 3

1/0

QO-Q:l

110

RO,Rl,R2
F
T
ACL
.fOUT

Circuit type

3 states

110
0
I
I
0

Pull down
Pull down

CLl> CL 2
OSC IN , OSC OliT
VRH , VRL
Voo , GND

•

Function
Acc +- KC o - KC:l or AID conversion analog input
Acc +- KI, KH, KT, KL
KI ~ (IF flag set), KH +- (HF flag set),
KT +- (External timer signal input)
Z registor contents output;Can be tested individually
Reset ZF IF ",hen used as input pins
Acc - . PO-P:l
QO-Q:l +- Acc
Reset QF IF when used as input pins
RO, Rl, R2 +- Acc
Reset RF IF when used as input pins
Sound output or 1 bit output
For test (Connected to GND normally)
Auto clear
System clock output
For system clock oscillation
For clock oscillation
AID conversion standard power supply
Power supply for logic curcuit

Absolute Maximum Ratings
Parameter
Supply vo'tage
Input voltage
Output voltage
Output current *
Operating temperature
Storage temperature

Symbol
Vo~

VIN
VOUT
lOUT

T~pr

T".

Ratings
-0.3-+7.5
-0.3-V nn +0.3
-0.3-V nn +0.3
30
-10+70
-55+150

Unit
V
V
V
rnA

'C
'C

·Source current from output pin or sum of sync current.

•

Recommended Operating Conditions
Parameter
Supply voltage

Symbol
Vno

Ratings
2.7-5.5
4-0.2 (Voo=5V)
2-0.2 (Voo=3V)

Unit
V

System oscillator frequency

fCL

System clock frequency

fs

500-50 (VDD=5V)
250-50 (V DD =3V)

kHz

Timer clock frequency

fosc

32.768 (TYP.)

kHz

146

KfHz

CMOS 4-Bit 1-Chip Microcomputer

•

SM-572

(V oo =2.7-5.5V,.Ta=-20-+70"C)

Electrical Characteristics
Parameter

Symbol

Input voltage

Input current

Output current

lUll

V1N=Von

11112

V1N=Vnn

10111

VOII =V IlD -O.5V

lOll

Vou=0.5V

IOL2

VolI =0.5V

1011
10112

ACL input pulse width

t ACL

V Illl rise time for
the internal ACL operation

tV1l1l

IA

Current consumption

1ST

Note
Note
Note
Note
Note

1:
2:
3:
4:

5:

Note
Note
Note
Note
Note
Note
Note
Note

6:
7:
8:
9:
10:
11:
12:
13:

Conditions

VUII
V 1LI
V IJI2
V1L2
VDD =5.0V±10%
VDIl =3.0V±lO%
VDIl =5.0V±1O%
VDIl =3.0V±lO%
VDIl =5.0V±lO%
VDIl =3.0V±lO%
VDI)=5.0V±lO%
VDIl =5.0V±lO%

VOII =V IlIl -0.5V
VolI =0.5V
Vllo =5.0V±lO%
VDIl =3.0V±10%
VDIl =5.0V±lO%
VDD =3.0V±10%
VDIl =5.0V±lO%
fs=500kHz
VDD =73.0V±10%
VDD =5.0V±lO%
fs=100kHz
VDD =3.0V±lO%
VDD =5.0V±10%
OFF mode
VDD =3.0V±lO%
VDD =5.0V±10%
VDIl =3.0V±10%
VDD =5.0V±10%
Hold mode
VDD =3.0V±10%
VDD =5.0V±'10%
VDD =3.0V±lO%

MIN.
0.7Voo
0
Von -0.5
0
80
20
8
2
1
0.4
25
10
1
0.4
200
200
1

TYP.

MAX.

300
90
25
8

Voo
0.3Voo
Voo
0.5
800
300
100
35

50
1.5
1
0.5
0.3
5
3
50
30
400
100
600
200

Unit

Note

V

1

V

2

p.A

3

p.A

4

rnA

5,6

p.A

5

rnA

6

p.A

7

ps

13

ms

14

rnA

8

flA

9

p.A

10

p.A

11

p.A

12

,

Applied to pins KH;KL, KI, Pa-Po, Q3-QO, R03-ROo, R13-Rlo, R23-R20, R33-R32, KC:,-KCo
Applied to pins Z[5-Z0, CL[, OSCIN/KT, ACL
.
Applied to pins Q3-QO, R03-ROo, R1:J-Rlo, *R23-R20, *R3a-R30, *ZI5-Z0
Applied to pin ACL
Applied to pins Q3-QO, R03-ROo, Rl:l-Rlo, R23-R20, R33-R3o, Z15-Z0
(*Jf CMOS buffer is specified for mask option, Note 6 applies to these pins.)
Applied to pins P3- Po, F, fOliT
Applied to pin CL 2
No·load condition
When the OSC1N/KT pin is connected to GND and in no· load condition.
When the timer clock crystal oscillation circuit and timer 1 are operating and in no·load condition.
When the OSClN/KT pin is connected to GND and in no·load condition, f,= 100kHz
When the OSClN/KT pin is connected to GND and in no·load condition, f,=500kHz
tACL is the ACL input pulse width required to cause ACL to operate when Von has completely risen.

VDD _______~~~,----------VDD

W

GND

tVDD

ACL __________~VDD - O.5V
tACL
Note 14: tVDD is the power supply rise time necessary for the built·in ACL to operate (ACL input pin is connected to GND).

147

....................,.-...;
•

..............................-................
'SM";'S72

CMOS 4.,.Bit 1-Chip Microcomputer

~

Oscillation Circuit (values for referen'ce)
(a) System clock frequency generating circuit (example 1)
(1)

(2)

400kHzoscillation
Oscillator. KBR-400B : Made' by Kyocera
Rr=IMO
Corp.
Rd=5600
CI=330pF
C'2=330pF

2 MHz oscillation

C~LI
CL2 Oscillator KBR-2.0MS : Made by Kyocera
Rr

C2

I

[]

Rr=lMO

I

Corp.

Rd

Rd=8200
Cl =33pF

C2

C2 =33pF

'- (b) System clock frequency generating circuit (example 2)
R-fcLCharacteristics

VDD-fcL Characteristics

N
::t:

N

i1

2

Rr=lOkO

»

"~

--

g.

~ 0.5
§ 0.4

]

Rr=82kO

0.3

~

.,

"

2

.."».
.&
J:: 0.5
c

.~

\\

~ootv

\Joo=3

V

~\

1;;

=

. CL 2

110
110
110
110
110

Pull
Pull
Pull
Pull

I

Circuit type
down *1
down* 1
down/open drain * 2
down*1

Pull down

V DD , GND

Function
Acc - RO o-R0 3 , RO o-R0 3 <-- RAM
Ace - Rl o-R1 3 , Rl o-R1 3 <-- RAM
Acc - R2 o-R2 3 , R2 o -R2 3 <-- RAM
Acc - R3 0 -R3 3 , R3 0 -R3 3 <-- RAM
Auto clear
For system clock oscillation
Power supply for logic circuit

*1 Mask option; Open drain 110 or CMOS output selectable
* 2 Mask option

-----~.--.---....----SHARP -----.----~-­
(

153

CMOS 4-Bit 1-Chip Microcomp~ter

•

SM-590

Absolute Maximum Ratings
Parameter
Supply voltage
Input voltage
Output voltage
Source output current sum
Sync output current sum
Operating temperature
Storage temperature

•

Symbol
Ratings
-0.3-+7.5
Voo
-0.3-V oo +0.3
' VI
-0.3-V oo +0;3
Vo
120
:ZIoH
:ZIoL '
20
-10-+70
T@f
-55-+150
T stg

Unit
V
V
V
mA
mA
'C
'C

Recommended Operating Conditions
Parameter
Supply voltage
Command execution time

•

Symbol
Voo
tSYS

Conditions
3V±0.5V
5V±0.5V

MIN.
2.5
4
1

TYP.

MIN.

TYP.

MAX.
5.5
50
50

Unit
V

MAX.
50
50
6.3
6.3

Unit

/Ls

Clock Input Signal AC Characteristics
Parameter
Clock rise time
Clock fall time
Clock pulse width

Symbol
tr
tf
tL
tH

Conditions
Voo =2.5-5.5V
Voo =2.5-5.5V
Voo=5V±0.5V
Voo=3V±0.5V

0.08
0:45

ns
/LS'

Note: When external clock is input

•

(Voo=2.7V-5.5V. Ta=-10'C-+70'C)

Electrical Characteristics
Parameter

Input voltage

Input current

Symbol
Vun
V1LI
Vm2
V1L2
V1L3
e:.V 1
Imi
1m2
IAI

Current consumption

IA2
1ST

154

Conditions

MIN.
0.7Voo
0
Voo-0.5
0
Voo =5V±10%
0.7
1.1
Voo=5V±lQ%
15
Voo =3V±10%
VIN=VOO
V oo =5V±10%
70
Voo=3V±1O%
V1N=VOD
Voo=5V±1O%
tsys=2 f1S VDo =5V±10%
Voo =3V±10%
tSys= 10 f1s
Voo =5V±10%
Standby mode

TYP.

1.4
2
70
250
7
20
1
100
200
1

MAX.
Voo
,0.3V oo
Voo
0.5
2.1
3<.1

200
750
20
60
3
200
500
;, 2

Unit
V
V
V
V
V
V

Note

/LA

1

/LA

4:

1
2
3

mA
/LA
/LA

5

CMOS 4-Bit 1-Chip Microcomputer

SM-590

Output current
10 (MIN.)

~n

Pin

ROo
R0 1
R0 2
R0 3
RIo
Rl1
R12
R13
R20
R21
R22
R23
R3 0
R3 1
R3 2

CL 2/R3 3
Mask option
switch number

(Ta= -lO·C - +70·C)
IOH (rnA)
IOL (rnA)
Voo =5V±10% Voo=3V±10%
VoL=Oo4V
VoH =V oo -2V VOH =V OD -0.5V Voo =5V±10%
10
1
1.6
10
1
1.6
10
1
1.6
10
1
1.6
10
1
1.6
10
1
1.6
10
1
1.6
10
1
1.6
4
0.5
4
0.5
4
0.5
4
0.5
4
0.5
1.6
10
1
1.6
10
1
1.6
004
3
1
0.15
0.6

0.8
0.8

IOL (pA)
VOL =Oo4V
Voo =5V±10%
15
15
15
15
15
15
15
15
15
15
15
15
15
15

0.8

15

lIE

0.8
0.8
0.8
0.8
0.8
0.8
0.8
0.8

Note'
lIE

8
8
8
8
8
8
8
8
8
8
8
8
8
8
8

6
7

0.3

2

1

Note 1: Applied to pin ROo, ROI, RO" R03, RIo, Rh, Rh, Rh, R20, R2l, R2" R23, R30, R3l, R3,
. Note· 2: Applied to pins ACL, CL I
Note 3: Applied to pin R2, (when standby cancel signal is input)
t:. VI=VIH3-VIL3 (See the SM590 programming manual for details)
Note 4: Applied to pin ACL
Note 5: No-load condition
Note 6: When the contents of the R latch is output to the R3, pin_
Nate 7: When the clock input to the CLI pin is output from the R3, pin_
lIE: VDD=3V±1O%

155

SM-591

CMOS 4-Bit 1-Chip Microcomputer

SM-591
•

CMOS 4-Bit I-Chip Microcomputer
•

Description

Pin Connections

The SM-591 is a 4-bit single chip CMOS microcomputer with 1,016 bytes of ROM, 56X4 bits of
RAM.
It is best suited for use in a compact controller, a
system subcontroller and other various application
systems.

•

Features
1. CMOS process
2.
3.
4.
5.
6.

ROM capacity 1,016 X 8 bits
RAM capacity 56 X 4 bits
Instructions 41
Subroutine nesting 4 levels
Input/Output ports 15 bits (MAX.)
Available for use as lOrnA output port 10 bits
(MAX.) by mask option
(RO o-R0 3, R1 o-R1 3 , R3j, R3 2)
7. Standby mode
8. Single power supply (2.5 - 5.5V)
9. Instruction cycle 1 f.1S

ROo

1

10'~P~a-c-ka-g-e-'~I~/O~p-(o-rt-s-

16DIP
18DIP
20DIP

11 bits
13bits
15bits

RO" ,
R3,,/CL2 6

Top View

-'-'---'-'--SHARP~-------~-----

156

CMOS 4-Bit 1-Chip Microcomputer

•

SM-591

Block Diagram
Parallel I/O

Parallel Out/Oscillator Oscillator

, . -_ _ _ _ _ _ _ _ _ _.-J.4 _ _ _ _ _ _ _ _ _ _...,

Voo
RAM
(56X4)
ROM
(1016X8 )

ACL

Symbol description
A('(' : Accumulators
ALU : Arithmetic logic unit
: RAM address register
B
: .Carry F/F
C
: Clock generator
CG

•

GND

PC
RO-R3
SP
SR
X

: Program .counter
Register
: Stack pointer
: Stack register
: Temporary register

Pin Description
Pin name
RO o-R0 3
Rio-Ria
R2 o-R2 3
R3 o-R3 3
ACL
CLl> CL 2

I/O
I/O
I/O
I/O
I/O
I

Pull
Pull
Pull
Pull
Pull

Circuit type
down*l
down*l
down/open drain * 2
down* 1
down

V DD, GND

Function
Ace - ROo-RO:l , ROo-RO a +- RAM
Acc -Ri o-Ri 3 , Ri o-Ri 3 +- RAM
Acc - R2 o-R2 3 , R2 o-R2 3 +- RAM
Ace - R3 0 -R3 3 , R3 0 -R3 3 +- RAM
Auto clear
For system clock oscillation
Power supply for logic circuit

* 1 Mask option; Open drain 110 or CMOS output selectable

*2 Mask option

-.-----------SHARP.-..-.-------157

SM:.591

CMOS 4-Bit 1-Chip Microcomputer

•

Absolute Maximum Ratings

Parameter
Supply voltage
Input voltage
Output voltage
Source output current sum
_ Sync output current sum
Operating temperature
Storage temperature

•

Symbol
Voo
V,
Vo
-IIoHIIoL
Toor
T st•

Ratings
-0.3-+7.5
-0.3-V oo +0.3
-0.3-V oo +0.3
120
20
-10-+70
-55-+150

Unit
V
V
V
rnA
rnA
t
t

Recommended Operating Conditions
Parameter
Supply voltage
Command execution time

•

Symbol
Voo
Tsys

Conditions
3V±0.5V
5V±0.5V

MIN.
2.5
4
1

TYP.

MIN.

TYP.

MAX.
5.5
50
50

Unit
V

MAX.
50
50
6.3
6.3

Unit

ps

Clock Input Signal AC Characteristics
Parameter
Clock rise time
Clock fall time
Clock pulse width

Symbol
tr
t(
tL
tH

Conditions
Voo =2.5-5.5V
Voo =2.5-5.j'iV
Voo=5V±0.5V
Voo=3V±0.5V

0.08
0.45

ns
ps

Note: When external clock is input

•

(Voo=2.7V-5.5V, Ta=-10t-+70t)

Electrical Characteristics
Parameter

Input voltage

Input current

Symbol
Vnll
V'LI
VIII 2
V'L2
V'L3
6V,
Inll '
IIII2
IAI

Current consumption

IA2 '
1ST

158

Conditions

MIN.
0.7Voo
0
Voo-0.5
0
Voo =5V±10%
0.7
Voo =5V±10%
1.1
15
Voo =3V±10%
V'N=V OO
Voo =5V±10%
70
Voo =3V±10%
V'N=V OO
Voo =5V±10%
tsys=2 ps Voo =5V±10%
Voo =3V±10%
tSys= 10 pA
Voo =5V±10%
Standby mode

TYP.

1.4
2
70
250
7
20
1
100
200
1

MAX.
- Voo
0.3Voo
Voo
0.5
2.1
3.1
200
750
20
60
3
200
500
2

Unit
V
V
V
V
V
V

Note

pA

1

pA

4

1
2
3

rnA
pA
pA

5

CMOS 4-Bit 1-Chip Microcomputer

SM-591

Output current
10 (MIN.)

~

Pin

ROo
R0 1
R0 2
R0 3
RIo
Rl1
R12
R13
R20
R21
R22
R23
R3 0
R3 1
R3 2

CL 2 /R3 3
Mask option
switch number

IOH (rnA)

IOL (p. A)
VOL =O.4V

IOL (rnA)
VOL =O.4V

Voo =5V±10% Voo =3V±10%
VoH =V oo -2V VoH =V oo -O.5V Voo =5V±10%
10
1
1.6
1
10
1.6
1
1.6
10
10
1
1.6
10
1
1.6
10
1
1.6
10
1
1.6
10
1
1.6
4
0.5
4
0.5
4
0.5
4
0.5
4
0.5
1.6
10
1
1.6
10
1
1.6
3
0.4
1
0.15
0.6

liE
0.8
0.8
0.8
0.8
0.8
0.8
0.8
0.8

0.8
0.8
0.8
0.8
0.3

(Ta= -IO·C - +70·C)
Note

Voo =5V±10%
15
15
15
15
15
15
15
15
15
15
15
15
15
15

liE
8
8
8
8
8
8
8
8
8
8
8
8
8
8

15

8

2

6
7

1

Note 1: Applied to pins ROo, ROl, RO" R03, RIo, Rh, Rh, Rh, R2o, R21, R22, R23, R3o, R31, R32
Note 2: Applied to pins ACL, CL I
Note 3: Applied to pins R22 (when standby cancel signal is input)
!!. Vr=VIH3-VrL3 (see the SH59I programming manual for details)
Note 4: Applied to pin ACL
Note 5: No-load condition
Note 6: When the contents of the R latch is output to the R3 2 pin.
Note 7: When the clock input to the CLI pin is output from the R3, pin.

lIE: VDD =3V±10%

----....-......-.--------SHARP - - - - - - - - - - - - 159

DevetQpment Guide for 4-Bit 1-Chip Microcomputers (SM Series)
I

.

.

.

.

. ..

.

DeveJ6pmentguidefor.4-Bif 1-Chip
Microcomputers (SM Series)
(1)

Description

To facilita,te efficient product development using Sharp's SM series 4-bit, I-chip microcomputers, we have established a general development
procedure covering determination of specifications
to actual delivery of the microcomputer as shown
below.

(2)

Development Procedure

CD

Determination of specifications
Specifications for a product you intend to develop must be determined in such a way that the

functions required of the microcomputer are clear.
Specifications should be prepared by the user, but
consultation on SM series microcomputers will be
provided on request. In addition, a programming
manual is available for each microcomputer.
.
® Determining the microcomputer to be used
Select a microcomputer mos.t suitable for the product. After determining the model of microcomputer, we will work out a rough development schedule in consultation with the user.
® System design
Detailed specifications for the operation of the
SHARP.side.w~rk

End user side work

r1

Technical meeting/Determining
specifications

Creating checkout device

I

I

h

System' design

J

-~

Checker, checklist, circuit diagram of checker

t

Write programme/
assemble /debug

Program demonstration

I!t

Final check of
program

PLA designation

J
t

I
Program approval

ROM design drawing

I
I

TS evaluation/approval:

l

~

TS approval
ES evaluation/approval

I.

-l
TS manufacture/
forwarding

J

I

ES manufacture/
forwarding

I
ES approval
C S evaluation / approval :

+
CS man.ufacture/
I

L
CS approval

forwarding

~.
Mass production

Delivery of goods

160

l

I

J

X-----I
I
(Can be eliminated)
I

1------I
I

(Can be eliminated)

t.I ______

Development Guide for 4-Bit 1-Chip Microcompliters (SM Series)

--.-..---.-.-..-..-..-.-.-.-..-..-..-.microcOl~puter and its peripheral circuitry are determined of this stage. We recommend that the user
confer with Sharp's staff even if the user himself
under takes program development.
If Sharp is to carry out program development,
the user must prepare the specifications first. After consultation with Sharp, the user determines
the final specifications. The subsequent schedule
will then be settled after consultation with the
user.
@ Writing the program
A flow chart is worked out and based on it,
machine code is written. The mnemonic codes
used for coding are covered in the programming
manual or cross-assembler manual. After coding,
a source file is prepared using a computer editor.
Sharp's microcomputer development tools, the
SM-D-8000II or SM-D-80 system can be used for
this purpose. A microcomputer development system running under the CP/M (Digital Research Inc.)
operating system can also be used. For the preparation of source file, refer to the respective development systems' manuals (SM-D-8000II User's
Manual, for example).
® Assembler
The object file is created from the source file using the cross-assembler prepared for the development system.
There are a number of cross-assemblers available to meet the requirements of respective SM
series products. Please, contact us for details. .
® Debugging and program revision
After the object file has been created, the program must be debugged by operating the EVA board
or CPU unit while using the checker to monitor
program operatfon. If the program is not running
properly, it must be revised and re-qssembled until
a satisfactory object file is prepared. A number of
development tools are available to perform this
task efficiently.
(j) Final confirmation of program operation
The final confirmation of the program is included in the debugging work described in (2) ® if
program development was made by the user.
If Sharp undertook program development, three
copies of programming specifications are usually
presented to the user for final confirmation of
program operation one week before the ROM is
submitted. If no problem is found in the programming specifications, a copy of programming specifications shall be sent back to us bearing a signature of approval.
In the event that probelms are discovered in the
program at this time, the program will be revised

after consultating with the user.
PLA (Programmable Logic Array) assignments
If the program is developed by the user, the user
prepares the PLA assignments diagram which
should be submitted to Sharp about two weeks before the date on which the ROM is scheduled to be
submitted. The procedure for PLA assignment is
covered in the programming manual. Pre-printed
PLA assignment forms will be provided to the user
on request.
When the program is developed by Sharp, we
will make the PLA assignments.
®, ROM submission
If the program is developed by the user, the
ROM must be submitted in the form of either an
EPROM or diskettes. Along with the ROM , the
ROM map should also be submitted to make sure
that the correct data can be ,read from the ROM.
Whoever develops the program, it is impossible
to change the program after the ROM is submitted.
The final confirmation of program operation must
be extremely thorough.
®> TS (Technical Sample)
The TS is submitted to the user in a ceramic
package for performance evaluation as a trial model. If no problems are found, the user shall issue a
statement of performance approval. Note that' the
TS package is a ceramic type and differs from that
which will be mass produced.
@ ES (Engineering Sample)
After approval ofthe TS, the ES is prepared and
submitted to the user. The ES is normally contained in a plastic package the same shape as that
which will be mass produced.
After evaluating the performance of the ES, the
user shall issue performance approval, assuming
no problems are encountered. The ES may be skipped if desired.
@ CS (Commercial Sample)
After approval of the ES, the CS is prepared and
submitted to the User. The CS is the mass-production trial model so it is made in the same shape
and quality as that which will be mass prodl:lced.
After evaluating the performance of the CS, the
user shall issue performance approval, assuming
no problems are encountered. The CS may be skipped if desired.
@ Mass production
After approval of the CS, mass production is initiated. If the ES and/or CS is omitted, the user
shall advise us when to start mass production.

®

(3) Development Tools
To faciJ.itate program development for SM

161

@
2
==~

......

.......-....:--,.-..-

Development
Guide
for 4-BIt 1-Chip Microcomputers ,(SM Series)
.'
I
.~~~~~~~~~

~~

r-SM~W--~--~----------------~~
r---~-------------'

CPU

I

SM-D -8000 II

:

I
I
Floppy disk

ROM OK)

RAM (64K)

I
I
I
I
I
I
I

II

I

I
I

___________________________ JI

I
I

SIO

I
I
IL __________________ JI

PTP/PTR

Terminal printer
(Sharp writer, etc.)

series microcomputers, two kinds of development
tools are available: one which uses the SM-D8000II and one which uses the sharp MZ-80B
computer.
Development tools equipped with an RS232C interface running under the CP1M OS can also be
used.
CD SM-D-8000II system
This emulator consists of the keyboard, display
LED, PROM writer, and interfaces. Although it is
possible for the SME-20 to debug the prograin by
connecting the CPU unit or EVA board, more efficient debugging can be achieved by transferring
the object file through the SM-D-8000II and
RS232C interface.
For details, see the SM software package manual
and instruction manuals of the SM series,SMD-800011 and SME-20.
The SME-20 can be connected not only to the
SM-D-80001l, but to any development device
equipment with an RS232C interface.
@ SM-D-80 system
. The SM series development system can be configured by connecting the debugger unit and SM evalution board to the basic FDOS system (MZ-80B,
floppydisk, printer) of the commercial personal
computer MZ-80B. Various utility 'programs such
as a cross-assembler, debugger and editor which
operate under the control of the FDOS are provided as standard equipment to facilitate efficient
program debugging.

162

SM-series
evaluation board

Debugger unit

SM .evaluation
board

..........

Development Guide for 4-Bit 1-Chip Microcomputers (SM Series)
....,....,....,~....,....,~....,~~....,....,~~

~....,

Connector for PROM writer

----,
I

Power.

r------------------l

I
I

I

ROM (2K)

RAM (64K)

I
I

I
I
I
I
I
I
I
I
I

I
I

I

Expansion I/O
MZ-80B system
(FDOS)

L ___________ _

I
I

_____J

I
I

I
I
I
I

IL ____

I
I

Main body of debugger unit I
..---___.i..J---:-_ _-:--. _ _ _ _ ...lI

Floppy disk
SM -series
Printer

evaluation board

....--------SHARP-------163

a-Bit 1-Chip Microcomputers

LH0801

Z8-01 Microcomputer Unit

LHOSO 1 Z8-0! Microcomputer Unit
•

Description

•

Pin Connections

Compared to earlier single-chip microcomputers,
the Z8 offers faster execution; more efficient use of
memory, more sophisticated interrupt, input/output and bit-manipulation capabilities ; and easier
system expansion.
Under program control, the Z8 can be tailored to
the needs of its user. It can be configured as a
stand-alone microcomputer with 2K bytes of internal ROM, a traditional microprocessor that manages up to124K bytes of external memorY,or a parallel-processing element in a system with other
processors and peripheral controllers linked by the
Z-BUS. In all configurations, a large number of
pins remain available for 110.

•

Features

1. Complete single-chip microcomputer with internal ROM, RAM and 110
• RAM 124 bytes
• ROM 2K bytes
• 110 32 lines
2. On-chip two programmable 8-bit counter/timers, each with a 6-bit programmbre prescaler
3. Full-duplex UART
4. 144-byte register file
5; Register pointer so that short, fast instructions
can access any working register groups
6. Vectored, priority interrupts for 110, counter /
timers, and UART
7. Up to 62K bytes addressable external space
each for program and data memory
8. On':'chip oscillator
9. High speed instruction execution
• Working register operating time: 1.5 ps
• Average instruction execution time: 2.2 fJ.S
,; Maximum instruction execution time: 5.0 fJ.S
10. Low-power standby option which retains contents of general-purpose registers
11. Single + 5V power supply
12. All pins are TTL compatible

Top View

---.--.-----SHARP-----,~--...-.-,

166

Z8-01 Microcomputer Unit

•

LH0801

Block Diagram

System _
:ll
Clock

Serial and Parallel
I/O and Control

GND(OV)

Vte( +5V)

f"---., ~

}-------{ll}-------{

Machine Timing
&
Instruction Control

Port 3

ALU
UART

Flags
Program Memory
(2,048X8)

Counter/Timer

Register Pointer

Register File
(I24x8 )

Program Counter

Interrupt Control

Port 2

Port 0

Port 1

~-------vr--------

'---------vr ---------

I/O or

As-Als

I/O or AD o -AD 7

--~--~--SHARP'-~-''''''''-'--~

167

LH0801.

Z8-01 Microcomputer Unit

Pin Description

•

Pin
PO O-P0 7
Pl o -P1 7
P2 o-P2 7
P3 0 -P3 7

Meaning
Port
Port
Port
Port

-

•

Function
8-bit I/O port, programmable for I/O.
Programmable for I/O in btyes.
Programmable for I/O in bits.
P3 0 -P3 3 for input, P3 r P3 7 for output.
Active "Low", activated for external address memory
. transfer.
Active "Low", activated for external data memory
transfer.
Read at "High", Write at "Low".
Active "Low". Initializes.
Clock terminal pin.
Clock terminal pin.

I/O
I/O
I/O
I/O
I/O

0
1
2
3

0

AS

Address Strobe

DS

Data Strobe

0

R/W
RESET
XTALl
XTAL2

Read/Write
Reset
Clock 1
Clock 2

0
I
I

0

Absolute Maximum Ratings
Symbol
VIN
VOllT
Tops
T stg

Parameter
Input voltage
Output voltage
Operating temperature
Storage temperature

•

Ratings
-0.3-+7
-0.3-+7
0-+70
-65"':'+150

Unit
V
V
'C
'C
(Vee=5V±5%, Ta=0-+70'C)

DC Characteristics
Symbol

Parameter
Clock input high voltage

VeH

Clock input low voltage

VCL

Input high voltage
Input low voltage
Reset input high voltage
Reset input low volta,ge
Output high voltage
Output l~w voltage
Input leakage current
Output leakage current
Reset input current
Supply current
Supply current

VIR
VIL
VRH
VRL
VOH
VOL
IlL
IOL
IIR
Icc
IMM

Note 1:

[OH=

-100,u A and

[OL=

Conditions
Driven by external clock
oscillator
Driven by external clock
oscillator

IOII =-250pA
IOL=+2.0mA
OV:;;;:V IN :;;;:+5.25V
OV~VIN~+5.25V

MIN.

MAX.

Unit

3.8

Vee

V

-0.3

0.8

V

2.0
-0.3
3.8
-0.3
2.4

Vee
0.8
Vee
0.8

-10
-10

Vee=5.25V, VRL=OV

TYP.

Note

V
V
V
V
V

V

0.4
10
10
-50
180
10

1
1

pA
pA
pA
rnA
rnA

l.OmA as to Ao-All, MDS, SYNC, SCLK and [ACK in LH0802.

Vee

From output
under test

2.lkO
From output
ruDder test
o---~-~~~~

l8kO

1.5kO
;>CJ>-------...... ;'O>--+--CrystaI2
74LS04 ~CL-=15pF MAX.
' - - - -.....--'Crystall

lCL=15:PFMAX.

Test load 1

Test load 2

TTL external clock interface circuit

- - . . - . . - . . - - - - - - - - - S H A R P -~-.-.-.------

lEl8

Z8-01 Microcomputer Unit

•

LH0801

(Vcc=5V±5%, Ta=0-+70"C)

External I/O or Memory Read/Write
Symbol
TdA (AS)
TdAS (A)
TdAS (DI)
TwAS
TdA (DS)
TwDS
TdDS (DI)
ThDS (DI)
TdDS (A)
TdDS (AS)
TdR (AS)
TdDS (R)
TdDO (DS)
TdDS (DO)
TdW (AS)
TdDS (W)

Parameter
Address valid to AS t delay
AS t to address float delay
AS t to input data required
valid delay
AS t low width
Address float to DS ! delay
-

DS low width

I Read
I Write

DS! to input data required valid
Input data hold time
DS t to address active delay
DS t to AS! delay
Read valid to AS t delay
DS t to read not valid
Output data valid to DS! delay
DS t to output data not valid delay
Write valid to AS t delay
DS to write not valid delay

Conditions
Test load 1
Test load 1

MIN.
50
70

Test load 1
Test
Test
Test
Test
Test
Test
Test
Test
Test
Test
Test
Test
Test

load
load
load
load
load
load
load
load
load
load
load
load
load

1
1
1
1
1
1
1
1
1
1
1
1
1

MAX.

Unit
ns
ns

Note
2
2

360

ns

4

ns
ns
ns

2

80
0
250
160
200
0
80
70
50
60
50
80
50
60

ns
ns
ns
ns
ns
ns
ns
ns
ns
ns

3
3
4
2
2
2
2
2
2
2
2

Note 1:
Note 2:

All timing references use 2.0 V for a logic "I" and 0.8 V for a logic "0".
Delay times are for an input clock frequency of 8 MHz. If below this frequency, add the incremental clock period to the standard
delay time.
Note 3: DS lower width is for an input clock frequency of 8 MHz. If below this frequency, add 3 increments of clock period to the
standard. The width varies with execution command.
Note 4: These delay times show system memory access time with an 8·MHz QC unit. If below this frequency, add 4 increments of clock
period for TdAS (OIl or 3 increments of clock period for TdDS (OIl.

CLOCK
PORT 0,

DM
PORT 1

AS

DS

dTdRIAS'
_TdWIAS)

*"

TdDS(R)

TdDS(W)~

RiW

'-'-'--'-'-'--SHARP'--'-'-'-'--169

Z8-01 Microcomputer Unit

LH0801

Additional Timing Table

•

Symbol
TpC

Parameter
Input clock period

TrC, TfC

Clock input rise and fall times

TwC

Input clock width

TdSC (AS)
TdSY (DS)
TwSY

System clock input to AS delay
Command sync output to DS delay
Command sync output pulse width

(Vcc=5V±5%, Ta=O-+70'C)I:
Conditions
Driven by, external
clock oscillator
Driven by external
clock oscillator

MIN.
125

MAX.
1,000

Unit
ns

25

ns

Note

>

37

ns

200
160

ns
ns
ns

5
5,6
5,6

Note : All timing references use 2.0 V for a logic "1" and 0.8 V for a logic "0".
__
,
Note 5: Test load 1 is used when' SCLK and SYNC are outputt via port 3, aad test load 2 when SCLK and SYNC are direct-output with
64-pin version.
Note 6: With an 8 MHz QC unit. If below this frequency, add 2 increments of clock period.

CLOCK
SCLK
AS

Data input
sample

1--------1

Read cycle-=-1\-----\;-Write cycle

DS

r

t:TdSY (DS 1---+1

SYNC ~_,T_w_S_Y_____jt

•

(V cc =5V±5%, Ta=0-+70'C)

Handshake Timing
Symbol
TsOI (DA)
ThDA (OI)

,

Parameter
Data in setup time
Data in hold time

TwDA

Data available width

TdDAL (RY)

DAV! to RDY! delay

TdDAH (RY)
TdDO (DA)
TdRY (DA)

170

DAVt to RDY t delay
Data out to DA V ! delay
RDY to DAV t delay

Conditions

Input handshake
Test load 1
Input handshake
Test load 1
Output handshake
Test load 1
Input handshake
Test load 1
Output handshake
Test load 1
Test load 1
Test load 1

MIN.
0
230

MAX.

175
20

ns
175

ns
ns

0
150

ns
ns

0
50
0

Unit
ns
ns

205

ns
ns

Note

LH0801

Z8-01 Microcomputer Unit

DAV
(input)

TdDAL(RY)

RDY
(output)

Port read

Input handshake

DATA OUT

~

----~DO(DA)

Data out valid

DAV
(output)
RDY--------------~------~~~~--~
~---......---~

(input)

Output handshake

171

.z~-01 Microcomputer Unit

•

LH0801

Architecture
(1)

Address Spaces

(i) Program Memory
The 16-bit program
counter addresses 64K bytes of program memory
space. Program memory can be located in two areas
: one internal and the other external (Fig. 1). The
first 2048 bytes consist of on-chip mask-programmed ROM. At addresses 2048 and greater, the
Z8 executes external program memory fetches.
The first 12 bytes of program memory are reserved for the interrupt vectors. These locations'
contain six 16-bit vectors that correspond to the
six available interrupts.
(ii) Data Memory
The Z8 can address 62K
bytes of external data memory beginning at location 2048 (Fig. 2). External data memory may be
include with or separated from the external program memory space. OM, an optical I/O function
that can be programmed to appear on pin P3 4 , is
used to distinguish between data and program
memory space.
(iii) ,Register File
The 144-byte register
file includes four I/O port registers (RO-R3), 124
general-purpose registers (R4-R127) and 16 control and status registers (R240-R255). These registers are assigned the address locations shown in
Fig. 3.

Z8 instructions can access registers directly or
indirectly with an 8-bit address field. The Z8 also
'allows short' 4-bit register addressing using the
, Register Pointer (one of the control registers). In
the 4-bit mode, the register file is divided into nine
working-register groups, each occupying 16 contiguous locations. The Register Pointer addresses
the starting location of the active working-register
group'.
(iv) Stacks
Either the, internal register file
or the external data memory can be used for the
stack. A 16-bit Stack Pointer (R254 and R255) is
used for the external stack, which can reside anywhere in data memory between locations 2048 and
65535. An 8-bit Stack Pointer (R255) is used for
the internal stack that resides within the 124
general-purpose registers (R4-R127).

65,535

External data me,mory
65, 535
External ROM or RAM
2, 048

Location of firs t
On-chip ROM
byte ,of instructJon
'-....
executed after
f"'------ --- --- -------reset
12
11
IRQ5
IRQ5
10
IRQ4
9
IRQ4
8
IRQ3
7
Interrupt vector
IRQ3
6
(Lower byte)
IRQ2
5'"
IRQ2
,4 J!
IRQ1
r
3
Interrupt vecto
IRQ1
(Upper byte ) 2
IRQO
1
IRQO
0

Fig: 1

172

Program memory map

---------1

2,048 t-'

Not addressable
O~

Fig. 2

______________

~

Data memory map

Za-01 Microcomputer Unit

LOCATION
255 STACK POINTER(BITS 7-0)
254 STACK POINTER(BITS 15-8)
REGISTER POINTEIt
253
252 PROGRAM CONTROL FLAGS
INTERRUPT MASK REGISTER
251
250 INTERRUPT REQUEST REGISTER
249 INTERRUPT PRIORITY REGISTER
248
PORTS 0-1 MODE
PORT 3 MODE
247
PORT 2 MODE
246
TO PRES CALER
245
TIMER/COUNTER 0
244
T1 PRES CALER
243
TIMER /COUNTER I
242

241

TIMER MODE
SERIAL I/O

240

LH0801

IDENTIFIERS
Sl'L
SPH
RP
FLAGS
IMR
IRQ
IPR
POIM
P3M
P2M
PREO
TO
PREI
Tl

TMR
SIO

NOT
IMPLEMENTED

PORT
PORT
PORT
PORT

1
,0

3
2

I
0

000 0

~253

The upper nibble of the reg ister file address

>----+ provided by the register pointer specifies the
,active working-register group_

--1l

r--------,127

-.J

, l

r-Jl
1--

-f

The lower nibble

l 1-_ _ _ _ _ _ _ _-1 of the register

r

file address
SPECIFIED WORKING~ provided by the
REGISTER GROUP
instruction
points to the
specified
-I register'

__ll-________
f

P3
P2
PI
PO

Fig. 3 The register file
(2)

r7r6irsr4 I

l~
I_--::-:~:--.-_~I 240

t- - ,..

GENERAL- PURPOSE
REGISTERS

2

-..J:

r--.--ir
l

127

4
3

r--;--;:::==t--------., 255

I/O ports

The Z8 has 32 lines dedicated to input and output. These lines are grouped into four ports of
eight lines each and are configurable as input, output or address/data. Under software control, the
ports can be programmed to provide address outputs, timing, status signals, serial I/O, and parallel
I/O with or without handshake. All ports have active. pull-ups and pull-downs compatible with TTL
loads.
( i ) Port 1 can be programmed as a byt.e I/O
port or an address/data port for interfacing external memory.
Memory locations greater than 2048 are referenced through Port 1. To interface external memory, Port 1 must be programmed for the multiplexed Adress/Data mode. If more than 256 external locations are required, Port 0 must output the
additional lines.
(ii) Port 0 can be programmed as a nibble I/O
port, or as an address port for interfacing external
memory.
For external memory references, Port 0 can pro-

It--------t 15
r
--l r---iIOP;rts---- ~
Register file

Fig. 4 The register pointer
vide address bits AsAll (lower nibble) or As-A15
(lower and upper nibble) depending on the required
address space.
(iii) Port 2 bits can be programmed independently as input or output. The port is always available
for I/O operations. In addition, Port 2 can be configured to provide open-drain outputs.
(iv) Port 3 lines can be configured as I/O or
control lines. In either case, the direction of the
eight lines is fixed as four input (P3 0 -P3 3 ) and four
output (P3 4 -P3 7 ). For serial I/O, lines P3 0 and P3 7
are programmed as serial in and serial out respectively.
• handshake for Ports 0, 1 and 2 (DA V and
ROY)
•
four external interrupt request signals
(IRQo-IRQ3)
• timer input and output signals (TIN and TOUT)
• Data Memory Select (OM).
(3) Serial Input/Output
Port 3 lines P3 0 and P3 7 can be programmed as
serial I/O lines for full-duplex serial asynchronous

----.-~-"----SHARP-.-~--:-----

173

'Z8,...,01 Microcomputer Unit

Transmitted Oata (No Parity)

ISPjspl0710610sl04103102101100lSTI

T

I

LSTART BIT
EIGHT OATA BITS
TWO STOP BITS

Transmitted Oata (With Parity)

ISplSpl P 106105104103102101lDoiSTI

TI

I

LSTART BIT
SEVEN DATA BITS
OOD PARITY
TWO STOP BITS

I

Received Oata (No Parity)

IspI0710610sI0,10,,10210110oISTI

I

I

,

L.START BIT
EIGHT OATA BITS
ONE STOP BIT

Received Oata (With Parity)

ISpl pI0610sI0,10,,102101100ISTI

II

I

L.START BIT
SEVEN OAT A BITS
PARITY ERROR FLAG
ONE STOP BIT

Fig. 5 Serial data formats

LH0801

receiver/transmitter operation. The bit rate is con·
trolled by Counter/Timer' 0, with a maximum rate
of 62.5K b~ts/second.
The Z8 ~utomatically 'adds a start bit and two
stop bits to transmitted data (Fig. 5). Odd parity ,is
also available as an option.
'(4) Counter/Timer
The Z8 contains two 8-bit programmable counter/timers (To and T I ), each driven by its own 6-bit
programmable prescaler. The T I' prescaler can be
driven by internal or external clock sources;
however, the To prescaler is driven by the internal
clock bnly.
The counters can be start{!d, stopped, restarted
to continue, or restarted from the initial value. The
counters can also be programmed to stop upon
reaching zero (single-pass mode) or to automaticaily
reload the initial value and continue counting (modulo-n continuos mode). The counters, but not the
prescalers, can be read any time without disturbing
their value or count mode.
(5)

Interrupts

The Z8 allows six different interrupts from eight
sources: the four Port 3 lines P3 0 -P3 3, Serial In,
Serial Out, and the two counter/timers. These interrupts are both maskable and prioritized.
All Z8 interrupts are vectored. Polled interrupt
systems ,are also supported.

~-------'---SHARP~~-------.-Ir~

174

LH080t

Z8-01 Microcomputer Unit

•

Instruction Set Notation
(1)

Addressing modes

The following notation is used to describe the
addressing modes and instruction operations as
shown in the instr~ction summary.
IRR
Irr
X
DA
RA
1M

R
r
IR
Ir
RR

Indirect register pair or indirect
working-register pair address
Indirect working-register pair only
Indexed address
Direct address
Relative address
Immediate
Register or working-register address
Working-register address only
Indirect-register or indirect working-register address
Indirect working-register address only
Register pair or working register pair
address

(2) Symbols
The following symbols are used in describing the
instruction set.
dst
Destination location or contents
src
Source location or contents
cc
Condition code (see list)
@
Indirect address prefix
SP
Stack pointer (control registers 254-255)
PC
Program counter

FLAGS Flag register (control register 252)
Register pointer (control register 253)
RP
Interrupt mask register (control register
IMR
251)
Assignment of a value is indicated by the symbol
"+-". For example.
dst +- dst + src
indicates that the source data is added to the destination data and the result is stored in the destination location. The notation "addr (n)" is used to refer to bit "n° of a given location. For example,
dst (7) refers to bit 7 of the destination operand.
(3) Flags.
Control Register R252 contains the following six
flalSs :
C
Carry flag
Z
Zero flag
·S
Sign flag
V
Overflow flag
D
Decimal-adjust flag
H
Half-carry flag
Affected flags are indicated by :
o
Cleared to zero
1
Set to one
Set or cleared according to operation
Unaffected
X
Undefined
(4) Condition codes
See Table 1.

*

Table 1 Condition codes
Value
1000
0111
1111
0110
1110
1101
0101
0100
1100
0110
1110
1001
0001
1010
0010
1111
0111
1011
0011
0000

Mnemonic
C
NC
Z
NZ
PL
MI
OV
NOV
EQ
NE
GE
LT
GT
LE
UGE
ULT
UGT
ULE

Meaning
Always true
Carry
No carry
Zero
Not Zero
Plus
Minus
Overflow
No overflow
Equal
Not equal
Greater than or equal
Less than
Greater than
Less than or equal
Unsigned greater than or equal
Unsigned less than
Unsigned greater than
Unsigned less than or equal
Never true

......

Flags set

C=l
C=O
Z=l
Z=O
S=O
S=l
V=l
V=O
Z=l
Z=O
(S XOR V) =0
(S XOR V) =1
(Z OR (S XOR V)) =0
(Z OR (S XOR V)) =1
C=O
C=l
(C=O AND Z=O) = 1
(C OR Z) =1
......

-------------------SHARP - - - - - - - - - - - - - - - - 175

Z8-01

~icrocomputer

LH0801

Unit

Opcodemap

(5)

Lower Nibble (Hex)

o
o

6.5

3
4

5
6
CI)

e.
CI)

:0
.0

Z

Oi
0.

8

10.5

10.5

rio rz

rio Ir2

Hz. RI

1H z• RI

6.5

6.5

6.5

6.5

10.5

10.5

6.5

9
A

R,

JR,

6.5

INC

r]. Ir:!

Hz, RI

6.5

10.5

~

IR z• RI

A

B

C

o

E

6.5

12/10.5 12110.0

12/10.0

6.5

LD

LD

DJNZ

JR

LD

JP

INC

rJ. Hz

rz. RI

rt. RA

ce, RA

rJ, 1M

ce, DA

r,

6.5

6.5

F

~

10.5

10.5

r------

10.5

INC SUB SUB SUB SUB SUB SUB
R],IM IR],IM

rio Irz

H2. HI

6.5

6.5

10.5

10.5

10.5

JP

9

RhlM rRJ.IM

10.5

rl. r2

IR 2 •

RI

r------

10.5

SRP SBC SBC SBC SBC SBC SBC

lRRI

JM

ri. rz

R:h HI

IR2.RJ

R],IM

IRlolM

B.5

B.5

6.5

6.5

10.5

10.5

10.5

10.5

DA

DA

OR

OR

OR

OR

OR

OR

R,

JR,

rl. rz

rJ, Irz

Hz, H,

1H z, HI

10.5

10.5

6.5

6.5

10.5

10.5

rl.

Ir 2

~

R 1 ,IM IRIoIM
10.5

~

10.5

POP POP AND AND AND AND AND AND
R,

JR,

rl. rz

rl.Irz

Hz. RI

IRz• RI

R!,IM

IRIoIM

6.5

6.5

6.5

6.5

10.5

10.5

10.5

10.5

r------

COM COM TCM TCM TCM TCM TCM TCM
JR,

HI.IM IR!.IM

r., rz

rl.Irz

Hz. RI

IRhR\

6.5

6.5

10.5

10.5

10.5

10.5

PUSH PUSH TM

TM

TM

TM

TM

TM

Hz. RI

IH20 Rl

H],IM

IR1.IM

H,'

JR,

rl. rz

r], Irz

10.5

10.5

12.0

18.0

~

r--;;:,-

DEC""' DEC""' LDE LDEI
JR,

rt.Irrz

6.5

6.5

RL

R,

JR,

fz,Irf,

Ir2.lrr]

10,5

10.5

6.5

6.5

12.0

6.5

6.5

CLR

CLR
JR,

6.5

r----;u-

18.0

LDE LDEI

INCW INCW CP
JR,

01

Irl.IrfL

RL

r l . f2

CP
flo

6.5

EI
10.5

Ir2

6.5

10.5

CP

CP

R z• R t

lRz• RI

10.5

10.5

10.5

lO~5

CP

CP

XOR XOR

XOR XOR XOR XOR

1'10 1'2

R2• R\

rlt Ir2

12.0

IR 2 • RI

R"IM

Ir I. Irr2

6.5

6.5

12.0

18.0

SRA SRA LDC LOCI

rio x.
20.0

20.0

CALL'

CALL

LD

Ir2.lrr,

IRRI

DA

rlo x, RJ

6.5

6.5

10.5

10.5

10.5

RR

10.5

LD

LD

LD

LD

LD

R,

JR,

1'1.11'2

R 2 • Rl

IR z, RJ

RItIM

lRloIM

8.5

6.5

r---s:sSCF

~

CCF

~

10.5

LD

LD
11'\,

RCF

10.5

6.5

JR,

r---s:s-

R~

RR

R,

IRET

LD

1'1, Irrz

SWAP SWAP

r----w:o

10.5

JR,

r~. 11'1'1

RET

IR"IM

18.0

R,

IRI

~

R"IM lRhIM
]0.5
10.5

RRC RRC LDC LOCI

8.5

F

rz

6.5

6.1

R,

E

rl.

JR,

6.5

D

10.5

10.5

R,

R,

C

10.5

HI.IM lR),IM

B.O

RR,

B

8

7

RLC ADC ADC ADC ADC ADC ADC

6.5

HH,

0.

::J

6

JR,

10/12.1 12/14.1

7

6.5

6.5

5

4

R,

R,

)(

3

DEC DEC ADD ADD ADD ADD ADD ADO
RLC

2

2

NOP

Rz.IR I

r2

-=--------------------''---------~-------,--~~------------~-------------------~

Bytes per Instruction
Lower Opcode
Nibble

t

Execution
Cycles
Upper Opcode
Nibble
-

First

176

A

Operand

3

Pipeline Cycles

~---

Mnemonic

Second Operand

2

3

Legend:
R =8~Bit Address
r = 4 ~ Bit Address
R 1 or rJ = Dst Address
R2 or n = Src Address
Sequence:
Opcode, First Operand, Second Operand
Note: The blank areas are not defined.

Z8-02 Microcomputer Unit

(6)

Instruction Summary

I
and Operation I
Instruction

LH0801

Addr Mode

dst src
(Note 1)
ADC dst,src
dst<-dst + src + C
ADD dst,src
(Note 1)
dst <-dst + src
ANDdst,src
(Note 1)
dst<-dst AND src
CALL dst
DA
SP<-SP-2
IRR
@SP<-PC;PC<-dst
CCF
C<-NOTC
CLR dst
R
IR
dst<- 0
COM dst
R
. dst<-NOT dst
IR
CP dst,src
(Note 1)
dst<-src
DA dst
R
IR
dst<-DA dst
DEC dst
R
dst<-dst-l
IR
DECW dst
RR
dst<-dst-l
IR
DI
IMR(7)<-0
DJNZ r,dst
RA
r<-r-l
if r o PC<-PC + dst
Range: +127,-128
EI
IMR(7) <-1
INC dst
r
dst<-dst+l
R
IR
INCW dst
RR
dst<-dst+ 1
IR
IRET
FLAGS<-@SP; SP<-SP + 1
PC<-@SP;SP<-SP+2;IMR(7)<-1
JP cc,dst
DA
if cc is true
PC<-dst
IRR
JR cC,dst
RA
if cc is true,
PC <-PC + dst
Range: +127,-128
LD dst,src
1M
r
dst<-src
r
R
r
R

LDC dst,src
dst<-src
LDCI dst,src
dst<-src
r<-r + l;rr<-rr + 1
LDE dst,src
dst<-src

Instruction

'Opcode Byte Flags Affected
(Hex)
CZSVDH

FF

------

40

-**0--

POP dst
dst<-@SP
SP<-SP+ 1

R
IR

50
51

------

70

- - - - - -

50

-**0--

D6
D4

------

EF

* - - - - -

****--

PUSH src
SP<-SP - 1; @SP<-src
RCF
C<-O
RET
PC @SP;SP<-SP+ 2
RLdst ~ R
C
7 0
IR

90
91

****--

***X- -

RLCdst~R

10

****

-

- - - - -

-**

o- -

-***- -***-- - - -

-

-

-

- - - - -

9F

------

rE
r=O-F
20
21
AO
Al
BF

-***--

C

RR dst

IR

11

- - -

- - - - -

7 0

EO
E1

****

I@:[ii}J
R
C
7 0
IR

CO
Cl

****

3D

****1*

DF

1-----

R
IR

DO
D1

***0--

1M

31

------

C

RRC dst

SBC dst,src
dst<-dst - src - C
SCF
C<-l

(Note 1)

4£lCil?f--l

SUB dst,src
dst <-dst - src

(Note 1)

20

****1*

******

SWAPdst ~
7 4 3 0

R
IR
(Note 1)

FO
Fl

X**X--

TCM dst,src
(NOT dst) AND src
TM dst,src
(Note 1)
dst AND src

60

-**0--

70

-**0--

XOR dst,src
dst<-dst XOR src

BO

-**0--

------

------

82
92

AF

o- -

-***--

------

Irr
r

71

CF

SRP src
RP<-src

cD
c=O-F
30
cB
c=O-F

r
Irr

7 0

R
IR

4il L[ii)J IRR

SRA dst

X
r
Ir
r
R
IR
1M
1M
R
Irr
r
Irr
Ir

------

(Note 1)

Nap

r
X
r
Ir
R
R
R
IR
IR
r
Irr
Ir
Irr

Opcode Byte Flags Affected
(Hex)
CZSVDH

OR dst,src
dst<-dst OR src

****0*

rC
r8
r9
r=O-F
C7
D7
E3
F3
E4
E5
E6
E7
F5
C2
D2
C3
D3

src

83
93

00

rA
r=O-F

dst

Irr
It

****0*

40
41
00
01
80
81
8F

Addr Mode

LDEI dst,src
Ir
dst<-src
Irr
r<-r + 1; rr<-rr + 1

10

BO
Bl
60
61
AD

I

and OperationJ

------

(Note 1)

Note 1 These instructions have an identical set of addressing
modes, which are encoded for brevity. The first opcode nibble is
found in the instruction set table above. The second nibble is ex·
pressed symbolically by a 0 in this table, and its value is found
in the following table to the left of the applicable addressing mode
pair.

For example, to determine the opcode of an ADe instruction use
the addressing modes r (destination) and Ir (source). The result is
13

-----------

Addr Mode
dst

src

r
R
R
R
IR

r
Ir
R
IR
1M
1M

Lower
Opcode Nibble

i

-----------SHARP--------..-,

177

Z8~01

•

Microcomputer Unit

LH0801

Register
R244 (TO)
Counter/Timer 0 Register
(F4H: Read/Write)

R240 (510)
Serial I/O R:egister
(FOH: Read/Write)
-,

ID71 Dsl Dsl D.I D31 D2 rDll Do I

I~I~I~I~I~I~I~I~I

LTD INITIAL VALUE
(WHEN WRITTEN)
(RANGE: 1-256 DECIMAL
01-00 HEX)
To CURRENT VALUE
(WHEN READ)

[SERIAL DATA (Do=LSB)

R245 (PREO)
Prescaler 0 Register
(F5H: Write Only)

R241 (TMR)
Timer Mode Register
(FlH : Read/Write)

II

ID71 D61 Dsl D,I D31D21 DII Do'
TOUT

M~g:~~oo
To OUT=OI

Tl OUT = 10
INTERNAL CLOCK OUT =11,
T IN MODES
EXTERNAL =00
CLOCK INPUT
GA TE INPUT = 01
TRIGGER INPUT = 10
(NON-RETRIGGERABLE)
TRIGGER INPUT = 11
(RETRIGGERABLE)

LO=NO FUNCTION
I=LOAD To
O=DIS. ABLE To COUNT
I=ENABLE To COUNT
O=NO FUNCTION
'
I=LOAD Tl

LLCOUNT MODE
O=To SINGLE-PASS
1 = To MODULO-N
RESERVED

PRES CALER MODULO
(RANGE: 1-64 DECIMAL
,
01-00 HEX)

O=DISABLE Tl COUNT
I=ENABLE Tl COUNT

R242 (T1)
Counter Timer 1 Register
(F2H: Read/Write)

I~I~I~!~!~I~I~I~I
LTI INiTIAL VALUE
(WHEN WRITTEN)
(RANGE 1-256 DECIMAL 01-00 HEX)
TI CURRENT VALUE
(WHEN READ)

R243 (PRE1)
Prescaler 1 Register
(F3H: Write Only)

ID1 ! D61 Dsl D.I D31 D21 Dd Do'
I

COUNT MODE
O=TI SINGLE-PASS
I=Tl MODULO-N
CLOCK SOURCE
1 = Tl INTERNAL
O=Tl EXTERNAL TIMING INPUT
(TIN) MODE
PRESCALER MODULO
(RANGE: 1-64 DECIMAL
01-00 HEX)

178

ID71 D61 Dsl D" D31 D21 DII Do'

R246 (P2M)
Port 2 Mode Register
(F6H: Write Only)
I D11 D6! Dsl D.I D31 D21 Dl ! Do

I

Lp 20- P 27 I/O DEFINITION
o DEFINES BIT AS OUTPUT
1 DEFINES BIT AS INPUT

R247 (P3M)
Port 3 Mode Register
(F7H: Write Only)

1LL

ID11D61 DsID.ID31 D21 D

dDo]

L 0 PORT 2 PULL-UPS OPEN DRAIN
1 PORT 2 PULL-UPS ACTIVE
RESERVED
o P32=INPUT
P3s=OUTPUT
1 P32=DAV1i/RDYO P3s=,RDYO/DAVO
00 P 33 = INPUT
P 3. = OUTPUT
~np33=INPUT
P3.=DM
11 P33=DAVl/RDYl
P3.=RDYI/DAVI
o P31 = INPUT (TIN)
P3s=OUTPUT (TouT)
I P31 =DAV2/RDY2
P3s=RDY2/D AV2
o P 30 = INPUT
P 31 = OUTPUT
.
1 P30=SERIAL IN
P37 = SERIAL OUT
o PARITY OFF
1 PARITY ON

LH0801

Z8-01 Microcomputer Unit

...........................................................................................................
'
,

R252 (FLAGS)
Flag Register
(Feu: Read/Write)

R248 (P01M)
Port 0 and 1 Mode Register
(F8u: Write Only)

J

I~I~I~I~I~!~I~!~I

I D7! Ds! Ds! D.! Da! D2! DI! Do!

~

PO.-P07 MODE
OUTPUT =00
INPUT = 01 .
A12- Als = IX
EXTERNAL MEMORY
TIMING
NORMAL=O
EXTENDED = 1

Llll

&SER FLAG Fl
USER FLAG F2
HALF CARRY FLAG
DECIMAL ADJUST FLAG

C'POO-P03
MODE
LOO=OUTPUT
01=INPUT
IX = Aa- All
STACK SELECTION
0 = EXTERNAL
1 =INTERNAL
Plo-Ph MODE
00 = BYTE OUTPUT
01 = BYTE INPUT
10=ADo-AD7
11 = HIGH· IMPEDANCE ADo- AD7,
AS,DS, R/W,Aa-All,AwAls
IF SELECTED

OVERFLOW FLAG
SIGN FLAG
ZERO FLAG
CARRY FLAG

R253 (RP)
Register Pointer
(FDu: Read/Write)

R249 (lPRl
Interrupt Priority Register
(F9u: Write Only)

I D71 Dsl Dsl D.I D31 D21 DI I Dol

RESERVE~ !
INTERRUPT GROUP
A)
PRIORITY
IRQ3,IRQ5 PRIORITY ( GROUP
RESERVED =000
0= IRQ 5> IRQ 3 '---+--+-1=IRQ3>IRQ5
C > A > B=OOI
A > B > C =010
IRQO, IRQ2 PRIORITY (GROUP B)
0=IRQ2>IRQO
A > C > B=Ol1
1 =IRQO>IRQ2
B > C > A = 100
IRQl,IRQ4 PRIORITY (GROUP C)
C > B > A=10l
O=IRQl>IRQ4
B > A > C=110
I=IRQ4>IRQl
RESERVED=lll
R250 (IRQ)
Interrupt Request Register
(F Au: Read/Write)

1

R251 (lMR)
Interrupt Mask Register
(FBu: Read/Write)

l[

.ID7IDsIDs!D.IDaID21 DIIDol

rs

DON'T CARE
DON'T CARE

r4
REGISTER POINTER

R254 (SPH)
Stack Pointer
(FEu: Read/Write)
.

IRQO=P32 INPUT
IRQ 1 = P 33 INPUT
IRQ 2 = P 31 INPUT
IRQ3=P3o INPUT, SERIAL INPUT
IRQ4=To, SERIAL OUTPUT
IRQ5=TI
RESERVED

r7~1~
I
~LLDON'T
CARE
rs~
DON'T CARE

I~!~I~I~I~I~I~I~I
[STACK POINTER UPPER
BYTE (SPa-SPIs)

R255 (SPL)
Stack Pointer
(FFH : Read/Write)
I D71 Dsl Dsl D.I D3\ D21 DII Do

I

[1 ENABLES IRQO-IRQ5
(Do=IRQO)

RESERVED

[STACK POINTER LOWER
BYTE (SPO-SP7)

1 ENABLES INTERRUPTS

- - - - - - - - ' - - - - - - - S H A R P ----~.-.-.-..-.-.-179

'LH0802

Z8-02 Development Device

LH0802 ,Z8-02 Development Devic;:e, ' _
•

Description'

Th~ 64:-pin Z&,..02 is the development version of
the Z8-01 with internal mask-programmed ROM.
This device allows the user to build the prototype
systems in hardware with an actual device and to
deveiop the code that is eventually mask-programmed into the on-chip ROM of the Z8-0l.
TheZ8-02 is identical to the Z8-01 with the
following exceptions :
• The internal ROM has been removed.
• The ROM address lines and data lines are buffered and brought out to external pins.
• Control lines for the new memory have been
added.

•

Pin Connections

P30

P2,

RESET 6

IVW

P2,
P2,
P21
P20
P3,
P3,
Pis
PI,
PI,

PO,

PI,

PQ.

Pit

PO,
lACK 21

In

SYNC

Do
In

·Ao
Al
Ao
A,

An
AlO

A.
A,

A,

Top View

- . . . . - . - - - - - . - . - - S H A R P ~...-...-.~-- .......... - - - - - - - - '180

Z8-02 Development Device

•

LH0802

Block Diagram

.,
., ."
!~
. iii
.
System .... ~ rJl .,
.
Clock
~ .. ~
""""
~~~A «
.,Q

.~

Serial and Parallel
1/0 and Control
A

Vee( +5V)

GND(OV)
17

2

3

6

7

....

In
In

8

9

Port 3
Instruction Control

....

..."""
0
.,.'"

ALU

In

Flags

UART

:g

«

....

.,"E

Register Pointer

::e
Counter/Timer

....."
E

Register Fil e
(I24X8)
Program 'Counter

Po.

...

Interrupt
Acknowledge
Output

!

Interrupt Control

21

-:;;"

A

..".."
E

Po.

Port 0

Port 1

'-----yr---~

I/O or As-A,s

' - - - - vr

-----

I/O or AD o -AD 7

* 1 Program Memory Data
* 2 System Clock Output

* 3 Instruction Sync
•

Strobe Output

Output

Pin Description

The Z8-20 has 64 pins, 40 of which are the
same as those on the Z8-01. The remaining 24
pins are as follows.
Pin
Ao-A l l
Do-D 7
MDS
lACK
--

Meaning
Address Bus
Data Bus
Data Strobe
Interrupt Acknowledge

110
0
I

0
0

SYNC

Command Synchronization

0

SCLK

System Clock

0

Function
Address signal for internal ROM.
Data signal for internal ROM.
Active "Low". Internal ROM addresses are valid.
Active "High". Detects an interrupt.
Active "Low". For synchronizing the command
fetch cycle.
Internlll system clock. 1/2 of the external clock.

181

[!

?8-03 Protopack Emulator

LH0803
•

LH0803

Z8-03 Protopack Emulator

Description

The 28-03 (LH0803) is a ROMless version of
the standard 28-01, housed in a pin compatible
40-pin package.
The 28-03 carries a 24-pin socket for a direct
interface to program memory. 2716 type EPROM
can be used for program memory.
The 28-03 allows the user to build the prototype and pilot production units. When the final
program is established, the user can then switch
over to the 28-01.

•

Pin Connections

P36
XTAL2 2

P31

XTALl 3

P27
P26
P25

RESET
R!W

6

P24

7

P23
P22
P21

P35

P20
P33
P34
Ph
Pl6
PIs
Pl4
Pb
Pl2
PIt
Plo

Top View

.-..-.------SHARP---.------182

LH0803

Z8-03 Protopack Emulator

•

Block Diagram

S erial and Parallel
I/O and ~ontrol

GND(OV)

System t
Clock
:l
~p:;

r------{ll}----{

Port 3
Instruction Control
ALU

...e-"
"

0

UART

....
Ul
Ul

Flags

""
«""
...>.

.'"
......

Registe~ Pointer

E

::?l

E

Counter ITimer
Register File
(124XS)

Program Counter

...'"

0..

;;

Interrupt
Acknowledge
Output

.=i""
!

.

Interrupt Control

Q

....

.....'"
E

0..

Port 2

Port 0

Port 1

I/O or ADo - AD?

*1 Program Memory Data Strobe Output
*2 System Clock Output
* 3 Instruction Sync Out put
o : This
•

is equipped with ROM

Pin Description

The pins of the 28-03 are compatible with those
of the 28-01. For the pin description, refer back'
to the 28-01 explanation.

183

~

LH0811·

Z8::J 1 MicrOComputer Unit

LH0811
•

Z8-11 Microcomputer Unit

Description

Compared to earlier single-chip microcomputers,
the Z8 offers faster execution; more efficient use of
memory; more sophisticated interrupt, input/output and bit-manipulation c~pabilities ; and easier
system expansion.
Under program control, the Z8can be tailored to
the needs of user. It can be configured as a standalone microcomp·uter with 4K bytes of internal
ROM, a traditional microprocessor that manages up
to 120K bytes of external memory, or a parallelprocessing element in a system with other processors and peripheral controllers linked by the
Z-BUS. In all configurations, a large number of
pins remain available for I/O.

•

Features

1. Complete single-chip microcomputer with internal ROM, RAM and 110
• RAM 124 bytes
• ROM 4K bytes
• 110 32 lines
2. On-chip two programmable 8-bit counter/timers, each with a 6-bit programmable prescaler
3. Full-duplex UART
4. 144-byte register file
5. Register pointer so that short, fast instructions
can access any working register groups
6. Vectored, priority interrupts for 110, counter/
timers, and UART
7. Up to 60K bytes addressable external space
each for program and data memory
8. On-chip oscillator
9. High speed instruction execution
• Working register operating time: 1.5 ps
• Average instruction execution time: 2.2 ps
• Maximum instruction execution time: 5.0 ps
10. Low-power standby option which retains contents of general-purpose registers
11. Single + 5V power supply
12. All pins are TTL compatible

•

Pin Connections

XTAL2 2
XTALl 3

o

P36
P3l
P27
P26
P2s

RESET

6

P2.

R/W

7

P23
P22
P2l
P20

P3s
GND

11

P33

P32

P3.

POo

Ph

POI

P16

P02

PIs

P03

PI,

PO.

Pis

POs

Ph

P0 6

Pll

P07

Plo
Top View

~-""""'-------SHARP---'----'-'

184

LH08011

Z8-11 Microcomputer Unit

•

Block Diagram

"0
"0 cil....
!::
i::
''""
System ~ -,
"'oS" ! "'"...."
~-~ " Q" ..:
~

!
0;::

(fJ

Serial and Parallel
I 0 and Control

,

~

GND(OV)

Vee( +5V)

~

."

11

Machine Timing

Port 3

&
Instruction Control
ALU
Flags

UART

Program Memory
(4,096X 8)

Counter Ti mer

Register Pointer

Register File
(124XS)

Program Counter

Port 0

Port 1

Interrupt Control

Port 2

•

T

T

I/O or As-A15

I/O or ADo- AD7

Pin Description

The pins of the 28-11 are compatible with those
of the 28-01. For the pin description, refer back
to the 28-01 explanation.

----~-.--~......---SHARP.-.----.-.---

185

Z8...,1,2 Development Device

LH08·12
•

LH0812

Z8-12 Development Device

Description

•

Pin Connections

The 64-pin 28-12 is the development version of
the 28-11 with internal mask-programl\led ROM.
This device allows the user to build the prototype
systems in hardware with an actual device and to
develop the code that is eventually mask-programmed into the on-chip ROM of the 28-11.
The 28-12 is identical to the 28-11 with the
following exceptions :
• The internal ROM has been removed.
• The ROM address lines and data lines are buffered and brought out to external pins_
• Control lines for the new memory have been
added.

Top View

~~'--~'---SHARP---'-~-'-~"""'"

186

LH0812

Z8-12 Development Device

•

Block Diagram

"0
...
"0 Ul
...
Ul ''""
"...
~

!:

Serial and Parallel
I/O an1 Control

System
Clock
GND(OV)

Vcc(+5V)

~

"';
~

"--

"'" -0os
" 0:::"

~ 0:::

~

!os

0

-0
-0

...::

Port 3
Instruction Control
~

"
2-

ALU

"

0

UART

'"
"...'"

Flags

-0
-0

«:
»
...
0

S

Register Pointer

"
;;;:
S

Counter Timer
Register File

'"...

1124X81

p..

bJl

...0

Program Counter

0;
Q.

Interrupt
Acknowledge
O~tput

11

..:;
!
0'"

Interrupt Control

S

...'"
...0
p..

OJ)

Port 2

Port

a

Port 1

I/O or ADo-AD,

* 1 Program Memory Data Strobe
* 2 System Clock Output
* 3 Instruction Sync Output

Output

--------SHARP-------187

~

..........-..

Z8~12 Development Device

•

...... -....

....

-----..,.~

,

. - . - . -........-~--:.--.:

LH08t2

Pin Description

The 28-12 has 64 pins, 40 of which are the
same as those on the 28-11. The remaining 24
pins are as follows.
Pin
Ao-A l l
Do -D 7
MDS
lACK

--

188

Meaning
Address Bus·
Data,Bus
Data Strobe
Interrupt Acknowledge

110
0
I

0
0

SYNC

Command Synchronization

0

SCLK

System Clock

0

Function
Address signal for internal ROM
Data signal for inter.nal ROM.
Active "Low". Internal ROM addresses are valid.
Active "High". Detects an interrupt.
Active "Low". For synchronizing the command
fetch cycle.
Internal system clock. 112 of the external clock.

Z8-13 Protopack Emulator

LH0813
•

LH0813

Za-I3 Protopack Emulator

Description

The 28-13 (LH0813) is a ROMless version of
the standard 28-11, housed in a pin compatible
40-pin package.
The 28-13 carries a 24-pin socket for a direct
. interface to program memory. 2732 type EPROM
can be used for program memory.
The 28 -13 allows the user to build the prototype and pilot production units. When the final
program is established, the user can then switch
over to the 28-11.

•

Pin Connections

o

P36
P31
P2,
P26
P25

RESET

6

P2.

a

P23
P22
P21

P3s
P32

P3.

POo

Ph

POI

P16

POz

P1s

POs

Pl.
P13
P12

Ph
P07
Top View

I

"

189

ZS",'13 Protopack Emulator

•

LH0813

Block Diagram

Serial and Parallel
I/O and Control

"

Vee( +5V)

GND(OV)

System t
Clock
:l
~c::

,}-----~ }-------~111}_----~

Port 3
Instruction Control

1

:;
o
UART

 O - -.....-L;;>O-~---Crystal 2

74LS04 ;;;CI.=15 p FMAX.
'----~--

Crystal 1

ICI.=15 PF MAX.

Test load 1

•

AC Characteri~tics

The SM-803 is compatible with the 28-01 as to
the AC characteristics. Refer back to the 28-01
description.

•

New Functions

The SM-802 has two standby modes; HALT
and STOP.

TTL, external clock interface circuit

So there is no power consumption now. This mode
is cleared by a reset input, port 3 input, or timer
interrupt at a mask option (designated at the time
of ROM input).
(2) STOP mode·
The STOP mode is brought by decoding a STOP
instruction (FF6FH).

(1 ) HALT mode
The HALT mode is introduced by decoding a
HALT instruction (FF7F H). In this mode, the
oscillation circuit is kept in operation, but no system clock is internally supplied any more.

197

.........

........-:...,...,...,...,-.-

CMo.S 8-Bit 1-Chip Microcomputer
.~.-....,

SM-812
•

,

CMOS 8-Bit I-Chip Microcomputer
.

Description

The SM-812 is an 8-bit single chip CMOS micro·
€omputer with 2,048·byte of ROM, 128·byte of
RAM, timer/counter ,and multiplex interrupt capa·
bility.
It is best suited to high-function controllers due
to its single power supply and high-speed proces·
sing capability.

•

Features

1. CMOS process
2. ROM capacity 2,048 X 8 bits
3. RAM capacity 128 X 8 bits
4. 64-byte (MAX.) of address space
5. InstrudioJ?s 81
6. Subroutine nesting using RAM area
7. Output ports 32 bits
8. Input/Output ports 16 bits
9. Timer/counter
8 bit counter
2'
8 bit prescaler 1
10. Interrupt function
External interrupt
1
Serial 110 interrupt
1
Timer interrupts
2
Non-maskable interrupt 1
11. Serial interface 8 bits
12. Standby mode (HALT mode, STOP mode)
13. Single power supply (2.7-5.5V)
14. Instruction cycle 1 ps(MIN.)
15. 64-pin quad-flat package

198

SM-812

~...,.-....,~,

•

Pin Connections

WAIT

I

Ml

2

P3./SI
P31/SCK
P32!SO
P33/MRQ
P3./CN
P3s/T
P36/RD
P37/WR
NC
NC
PO./AD.
POJ/ADI
P02!AD2
P031 AD,
PO,I AD,
POsl ADs
PO,I AD,

3

'
s

'
7
8

•
IO

11
12
13
U

15

I'
17

18
19

Top View

SM-812

CMOS 8-Bit 1-Chip Microcomputer

•

Block Diagram

Output Ports and
External Address Bus

I/O Ports and
External Data Bus

-"

~

WAIT
Signal Input
Sync.
Clock Output

j

IIlO Ports

S ync... Reset
Clock Output

9

PC
SP

A
B
D
H

F
C
E
L

RAM
192XB

'

ROM
4096xB

11

IIO Ports

49

o

t--;;~~-+e--j

Prescaler

9

Interrupt Input
(non - maskable)

Interrupt Input

I

Output
Ports

P5

Oscillator

Symbol description
ADR
ALU
PC
SP
F·
A,B,C,D,E,H,L
INC/DEC

:
:
:
:
:
:
:

Address latch
Arithmetic logic unit
Program counter
Stack pointer
Flag register
General-purpose registers
Incrementer / decrementer

TM
:
TAC, TCB:
IE
:
IME
:
IFO-IF3 :
:
OSC
PO-P5
:

Ti'mer modular register
Timer counter
Interrupt enable F /F
Interrupt master enable F /F
Interrupt request register
System clock oscillator
Port register

199

OMOS8-Bit 1-0hip Microcomputer

•

SM-812

Pin Description
Pin
P4o~P47

P2 o/DB o
~P27/DB7

POol ADo
~P17/AD15

P3 0/S1
P3 1/SCK
P3 2 /S0
P3 3 /MRQ
P3 4 /CN
P3 5/T
P3 6 /RD
P3 7 /WR
P50~P57

--

110
110
Bidirectional

Circtit
Pull-up
Pull-up at input

0
Oil
O/Bidirectional

0
0
Oil
0
0
0
0

Pull-up at input
Pull-up at input

Pull -up at input

Pull-up

WAIT

I

Pull-up

INT
NMI
RESET
TEST

I
I
I
I

Pull·-l!P
Pull-up.
Pull-up

'" OUT. Ml
CK lo CK 2
VDD • GND

0

Function
Programmable for 110 in bits
External memory data bus
lIO in bytes
signal
BXternal memory address
Output in bytes
signal
Serial data input
Serial clock input/output
Serial data output
Memory request output
Output in bytes
Timer counter input
Counter signal output
Read signal output
Write signal output
Settablel resettable in bits
Used to prolong an access time for external memory
or to clear the standby mode.
Maskable interrupt request
Non·maskable interrupt request
Auto clear
For testing (usually connected to GND)
Synchronization clock output
For clock oscillator
Logic circ·uit power supply

----------SHARP...--.---------200

. CMOS 8-Bit 1-Chip Microcomputer

5 M- 813
•

CMOS a-Bit I-Chip Microcomputer

Description

The SM-813 is an 8-bit single chip CMOS microcomputer with 4,096-byte of ROM, 192-byte of
RAM, timer/counter and multiplex interrupt capability.
It is best suited to high-function controllers
due to its single power supply and high-speed processing capability.

•

Features
1.
2.
3.
4.
5.
6.
7.
9.

SM-813

CMOS process
ROM capacity 4,096 X 8 bits
RAM capacity 192 X 8 bits
64K-byte (MAX.) of address space
Instructions 81
Subroutine nesting using RAM area
Output ports 16 bits
Timer/counters
8-bit counters 2
8-bit prescaler 1
10. Interrupt function
External interrupt
1
Serial I/O interrupt
1
Timer interrupt
2
Non-maskable interrupt 1
11. Serial interface 8 bits
12. Standby mode (HALT mode, STOP mode)
13. Single power supply (2.7-5.5V)
14. Instruction cycle l!'-s (MIN.)
15. 64-pin quad-flat package

•

Pin Connections

WAIT 1
Ml '
P30/SI 3
P3'/SCK ,
P3';SO s
P3,/MRQ •
P3,/CN '
P3s/T 8
P3. 9
P3,1O
RD 11
WR 12
POD/ADD 13
PO,/AD, 14
PO,fAD, 15
P03/ AD, 16
PO,,/AD,17
POs/ADs 18
PO./AD. 19

43

Viln

" P40
" NC
40 P2,fDB,
39 P2./DB.
38 P2s/DBs
37 P2,/DB,
36 P2,/DB,
35 P2,fDB,
34 P2,/DB,
33 P20/DBo

Top View

201

.CMOS8-Bit1-Chip Microcomputer
___

.......... . . , . - :_ _

~_

•

~_~.

_______r.-_.._ _

SM ..813

BlOck Diagram
I/O Ports and
Output Ports and
External Data Bus
External Address
Bus
J. _ _ _ _ _ _""'
,------A------,

940

WAIT
Signal Input
Sync.
Clock Output

S ync. Reset 6
Clock Output

RAM
192XB

ROM
4096xB

l

~ Output

P5

I Ports

9

Interrupt Input
(non - maskable)

Interrupt Input

J

Oscillator

Symbol description
:
:
:
:
:
F
A,B,C,D,E,H,L :
:
INC/DEC
ADR
ALU
PC
SP

202

Address latch
Arithmetic logic unit
Program counter
Stack pointer
Flag register
General-purpose regi sters
Incrementer/decrementer

•

~'-'

TM
TAC, TCB
IE
IME
IF 0 - IF 3
OSC
PO - P 5

:. Timer modular register
: Timer cou~ten
: Interrupt enable F /F
: Interrupt master enable F /F
: Interrupt request register
: Sy!!tem clock oscillator
: Port register

CMOS 8-Bit 1-Chip Microcomputer

•

.~

SM-813

Pin Description
Pin
P4 o-P4 7
P2o/DBoP27/DB7
POo/ADo
-P1 7/AD 15
P3 0 /SI
P3 1 /SCK
P3 2 /SO
P3 3 /MRQ
P3 4 /CN
P3 5 /T
P3 s
P3 7
P5 0 -P5 7
RD
WR

--

I/O
I/O

Pull-up

Circtit

I/O

Pull-up at input

0
0/1
O/Bidirectional
0
0
0/1
0
0
0
0
0
0

Pull-up at input
Pull-up at input

Pull-up at input

Pull-up

WAIT

I

Pull-up

INT
NMI
RESET
TEST
"'OUT. Ml
CK h CK 2
VDD• GND

I
I
I
I
0

Pull-up
Pull-up
Pull-up

Function
Programmable for I/O in bits
External memory data bus
I/O in bytes
signal
External memory address
Output in bytes
signal
Serial data input
Serial clock input/output
Serial data output
Memory output
Output in bytes
Timer counter input
Counter signal output

Settablelresettable in bits
Read signal for external memory
Write signal for external memory
Used to prolong an access time for external memory
or to clear the standby mode.
Maskable interrupt request
Non-maskable interrupt request
Auto clear
For testing (usually connected to GND)
Synchronization clock output
For clock oscillation
Logic circuit power supply

-..-..-.----------SHARP.....-..--------203

.. LU8l0Vl

OMOS 8-Bit 1-Chip Microcomputer

LU81 0 V1 CMOS a-Bit I-Chip Microcomputer
•

Description

•

Pin Con.nections

LU810Vl, eliminating the internal ROM from
SM-812, is the ROM less version of SM-812 and it
uses Port 0 and Port 1 exclusively as the address
bus and Port 2 as the data bus. Other functions
are compatible with those of SM-812.
WAIT
Ml

•

I
2

Features
1. CMOS process
2. ROM capacity 128X 8 bits
3. 64K-byte (MAX.) of address space
4. Instructions 81
5. Subroutine nesting using ~AM area
6. Output ports 16 bits
7. Input/Output ports 8 bits
8. Timer 1counter
8-bit counters 2
8- bit prescaler 1
9. Interrupt function

" OBI

3:, DB.

Top View

External interrupt
1
Serial 1/0 interrupt
1
Timer interrupts
2
Non-maskable interrupt l '
10. Serial interface 8 bits
11. Standby mode (HALT mode, STOP mode)
12. Single power supply (2.7-5.5V)
13. Instruction cycle 1 ps(MIN.)
14. 64-pin quad-flat package

204.

LU810V1

CMOS 8-Bit 1-Chip Microcomputer

•

Block Diagram

Address Bus

Data Bus

A

,--------A----,

WAIT
Signal Input
Sync.
Clock Output
P3
Reset
, Sync.
Clock Output

!

fIIO p,,,,

U

~

RAM

"

192x8

Q

u'

l

2S

fIIO p""

49

Prescaler

GND

P5

Test

IO"'~'
Ports

9

Interrupt Input
(non -maskable)

Interrupt Input

Oscillator

Symbol description
:
:
:
PC
:
SP
F
:
A, B, C, D, E, H, L :
:
INC/DEC
ADR

ALU

Address latch
Arithmetic logic unit
Program counter
Stack pointer
Flag register
General-pupose registers
Incrementer / decrementer

--.-..-..-..-r'-'-~SHARP

TM
: Timer modular register
TAC, TCB: Timer counter
IE
: Interrupt enable F /F
IME
: Interrupt master enable F /F
IF 0 - IF 3 : Interrupt request' register
OSC
: System clock oscillator
: Port register
PO-' P5

---------------,205

~

.---..

---.-.-.-:---.....---

cMos 8-Bit 1-Chip Mjcrocomputer

.........
•

..............,............

Pin Description

Circtit

Pin
P4 o-P4 7

110
110

Pull up

DB o-DB 7

1/0

Pull up at input

AD o-AD 1s

0

, P3 0 /SI
P3 1 /SCK
P3 z /S0
P3 3 /MRQ
P3 4 /CN
P3 s /T
P3 6 /RD
P3 7 /WR

P5 0 -P5 7
--

Oil
Oil
0
0
Oil
0
0
0
0

"

Pull up at input
Pull up at input
/

Pull up at input
-,

Pull up

WAIT

I

Pull up

INT
NMI
RESET
TEST
1> OUT. Ml
CK h CK z
VDD• GND

I
I
I
I
0

Pull up
Pull up
Pull up

.

LU810V1

~---~---

Functioq
Programmable for 1/0 in bits
External memory data bus
I/O in bytes
signal
External,memoryaddress
Output in bytes
signal
Serial data input
Serial clock input! output
Serial data output
Memory request output
Output in bytes
Timer counter input
Counter signal output
Read signal output
Write signal output
Settablel resettable in bits
Used to prolong an access time for external memory
or to clear the standby mode.
Maskable interrupt request
Non-maskable interrupt request
Auto clear
For testing (usually connected to GND)
Synchronization clock output
For -clock oscillation
Logic circuit power supply

.....-.~~------SHARP~-~-------------

206

28 Series Ordering Information

.-..-..-...-,.-..-...-,.-...-,..-,..-,.-...-,---..-,.-.

Z8 Series Ordering Information
Below is discussed how to order the Z8 series
products.
Customers are requested to submit an EPROM or
paper tape as the ROM data media. The following
information should be attached in any form and
any means.
(1) ROM data media
(2) Specific data (chip select, marking, and
other information)
(3) Your company's name, your own name, and
stamp
(4) Ordering date
When submitting the ROM drawings, two sets of
ROM data media are also required together with a

list of ROM to see if the read-out data are correct.
With the ROM data media, we computer-aid·
ed-design a ROM masking magnetic tape and make
up EPROM or paper tapes, and their list, in order
to make sure the designed ROM data are correct.
These materials are then checked up by the customer for approval. If it is okay, we start masking
and make some technical evaluation samples (TS),
which are delivered to the customer. When the
samples are accepted, the customer will send us a
"TS Confirmation". By a mass-production order at
the moment or later, we will start producing the
product in large quantities.

SHARP

Client
t----+---~Business

dept .t--'--------,l>j

Project dept.

' - - - - - -......

t----+---~fiB3.u~s~in~e;ss;dde~PrttJ.-----------,

Business dept.

L-...;..:.-----+---~Business

dept..I------------jE---.J

Business dept.

Business dept.

....--------SHARP-------.-.

207

a-Bit Microprocessor
and Peripheral LSls

LH0080/LH0080A/LH0080B

Z80/Z80A/Z80B Central Processing Unit

-

LH0080/LH0080A/LH0080B
ZSOIZSOAlZSOB Central Processing Unit

•

Description

The Z80 product line is a complete set of microcomputer components, development system~ and
support software. The Z80 microcomputer component set includes all of the circuits necessary tp
bUild high-performance microcomputer systems
with virtually no other logic and a minimum num·
ber of low cost standard memory elements.
The LH0080 Z80 CPU (Z80 CPU for short below) i~ the third generation microprocessor implemented using an N-channel silicon-gate process.
The Z80 CPU is designed for using the standard
memory components, higher system throughput and
more efficient memory utilization. In addition, the
output signals of the Z80 CPU is decoded to control peripherals. The Z80 CPU requires only
single + 5V DC power supply and single phase
clock, theref~re it is easy for the Z80 CPU to Implement into a system.
The LH0080A Z80A and LH0080B Z80B CPU
are the high speed version which can operate at the
4MHz and 6MHz system clock, respectively.

•

Pin Connections

o

Top View

• , Features
1. 8-bit parallel processing single-chip microprocessor
2. N-'channel silicon-gate process
3. 158 instructions (The instruction of the 8080A
are included as a subset; 8080A software compatibility is maintained)
4. 22 registers
5. The capability of 3 modes maskable interrupt
and non-maskable interrupt
6. On-chip dynamic memory refresh counter
7. Instruction fetch cycle: 1.6ps(Z80), 1.0lPS
(Z80A), 0.67 ps(Z80B)
8. Single + 5V power supply and single phase
clock
9. All inputs and outputs fully TTL compatible
10. 40-pin dlial-in-line package

'--~~-----------SHARP -~---!.........-.--210

"

Z80/Z80AlZ80B Central Processing Unit

•

LH0080/LH0080A/LH0080B

Block Diagram
System Data
Bus
,

Halt State
Memory Request
Input/Output Request
Read
Write
Bus Acknowledge
Machine Cyclel
Refresh

Data Bus Interface

Instruction

Instructionrr-_ _ _---'

Decoder

Register 1-,...------,

ALU

Interrupt Request
Non- Maskable Interrupt
Wait
Bus Request
Reset

Address Bus Interface

V~~

GND System

C+5V) COy)

Clock

System Address Bus

211

LH0080/LHOO80A/LH0080B

Z80/Z80A/Z80B Central Processing Unit

•

Pin Description
Pin
Ao-A 15
. Do-D 7
-

Ml

MREQ

-10RQ

-

RD

-

WR

-RFSH

Data bus
Machin(t cycle one

3-state 0

liD request

3-state 0

Memory read

3-state 0

Memory write

3-state 0-

Halt state

0

Wait

I

--

Maskable interrupt
request

I

--

Non-maskable
interrupt request

I

Reset

I

Bus request

I

BUSAK

Bus acknowledge

O.

CLOCK

System clock

I

--

WAIT

INT

NMI

--RESET

--BUSRQ

---

System data bus
!

Memory request

0

HALT

System address bus

0

Refresh

--

Function

liD
3-state 0
{3idirectional
3-state

Meaning
Address bus

Active "Low". Indicates that the current machine cycle
is the OP .code fetch cycle of an instruction execution.
Active "Low''',- Indicates that the address bus holds a
valid address for a memory read or memory wri~e operation.
Active "Low". Indicates that the lower 8 bits of the
addres& bus holds a valid liD address' for an liD read
or write operation. Also generated concurrently with
Ml during an interrupt acknowledge cycle to indicate an
interrupt response.
Active "Low". Indicates that the CPU wants to read data
from memory or an liD device.
Active "L(')w". Indicates that the CPU data bus holds
valid data to be stored at the addressed memory or liD
location.
Active "Low". Indicates that the lower 7 bits of the_systern address bus can be used as a refresh address to the
system's dynamic memories. Tog~ther with MREQ at
"Low".
Active "Low". Indicates that a Halt instruction is being
executed. While halted, the CPU exe~utes NOPs to maintain memory refresh. The Halt state is cleared with RE- --SET, NMI, or INT (when allowed).
Active "Low". Indicates to the CPU that the addressed
memory or liD devices are not ready for a data transfer.
The CPU continues to enter a wait state as long as this
signal is acti ve.
Active "Low". Generated by liD devices. The CPU honors a request at the end of the current instruction if the
interrupt enable flip-flop is enabled.
Active "Low". Has a higher priority than INT. Always
recognized at the end of the current instruction, independent of the status of the interrupt enable flip-flop.
Automatically forces the Z80 CPU to restart at location
0066H.
Active "Low". Resets the int~rrupt enable flip-flop, the
program counter interrupt vector register and the memory refresh register, and sets the interrupt status to
Mode 0, in order to initialize the CPU.
Active "Low". Has a higher priority than NMI. Always
recognized at the end of the current machine cycle. Activated to allow a bus 11)aster other than the CPU to contro the system bus.
Active "Low". Indicates to the requesting device that the
external circuitry can control the system bus.
Inputs+5V single-phase clock.

--.----~--SHARP'---.--..--~.-..-.--

212 -

\.

I

'

"

•

Z80/Z80A/Z80B Central Processing Unit

•

LH0080/LH0080A/LH0080B

Absolute Maximum Ratings
Parameter
Input voltage
Output voltage
Operating temperature
Storage temperature

Symbol
VIN
VOllT
Topr '
T,tg

Ratings
-0.3-+7.0
-0.3-+7.0
0-+70
-65-+150

Unit
V
V
"C
"C

Standard Test Conditions

The characteristics below apply for the following standard test conditions, unless otherwise
noted. All voltages are referenced to GND (OV).
Positive current flows into the referenced pin.
All ac parameters assume a load capacitance of
100 pF. Add IOns delay for each 50. pF increase
in load up to a maximum of 200 pF for the data
bus and 100 pF for address and control lines.

•

(Vcc=5V±5%, Ta=0-+70"C)

DC Characteristics
Parameter
Clock input low voltage
Clock input high voltage
Input low voltage
Input high voltage
Output low voltage
Output high voltage

Symbol
VILC
V IHC
V1L
VIH
VOL
VOH

Conditions

IOL =1.8mA
IoH =-250,uA

consumption

Input leakage current
3-state output leakage
current in float

•

Icc

I ILl I
I ILEAK I

MAX.
0.45
Vcc+ 0.3
0.8

150
200
200
10

Unit
V
V
V
V
V
V
rnA
rnA
rnA
,uA

10

,uA

Vcc
0.4

Z80 CPU
,Z80A CPU
Z80B CPU

O::£VIN::£VCC
VOllT =O.4V -Vcc

(f=lMHz, Ta=25"C)

Capacitance
Parameter
Clock capacitance
Input capacitance
Output capacitance

TYP.

2.4
.-

Curre~t

MIN.
-0.3
Vcc- 0 .6
-0.3
2.0

Symbol
CCLOCK
CIN
COllT

Conditions
Unmeasured pins returned
I
to ground

MIN.

TYP.

MAX.
35
5
10

Unit
pF
pF
pF

--~--'----SHARP'-''---'----

213

Z80/Z80A/Z80B Central Processing Unit

•

LH0080/LH0080A/LH0080B
(Vcc=5V±5%, Ta=0-+70°C)

AC Characteristics
No.

Parameter

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

Clock cycle time
Clock pulse width (High)
Clock pulse width (Low)
Clock fall time
Clock rise time
Clock t to address valiC\ delay
Address valid to MREQ ~ delay
Clock ~ to MREQ ~ delay
Clock t to MREQ t delay
MREQ pulse width (High)
MREQ pulse width (Low)
Clock ~ to MREQ t delay
Clock ~ to RD ~ delay
Clock t to RD t delay
Data setup time to clock t
Data hold time from RD t
WAIT setup time to clock ~
WAIT hold time after clock ~
Clock t to M1 ~ delay
Clock t to M1 t delay
Clock t to RFSH ~ delay
Clock t to RFSH t delay
Clock ~ to RD t delay
Clock t to RD ~ delay
Data Setup to clock t during
M2 , M3 , M4 or M5 cycles
Address stable prior to IORQ ~
Clock t to IORQ ~ delay
Clock ~ to IORQ t delay
Data stable prior to WR ~
Clock ~ to WR ~ delay
WR pulse width
Clock ~ to WR t delay
Data stable prior to WR ~
Clock t to WR ~ delay
Data stable from WR t
Clock ~ to HALT t or ~
NMI pulse width
BUSREQ setup time to clock t
BUSREQ hold time after clock t
Clock t to BUSACK ~ delay
Clock ~ to BUSACK t delay
Clock t to data float delay
Clock t to control output float delay
----(MREQ, IORQ, RD, and WR)
Clock t to address float delay
MREQ t ,IORQ t, RD and WR t
to address hold time

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

t

280 CPU
MIN.
MAX.
400*
TcC
180*
TwCh
TwCl
180
2000
TfC
30
30
TrC
145
TdCr (A)
TdA (MREQf) 125 *
TdCf (MREQf)
100
TdCr (MREQr)
1QO
170*
TwMREQh
TwMREQ1
360*
TdCf (MREQr)
100
TdCf (RDf)
130
TdCr (RDr)
100
TsD (Cr)
50
ThD (RDr)
0
TsWAIT (Cf)
70
ThWAIT (Cf)
0
TdCr (Mlf)
130
TdCr (Mlr)
130
TdCr (RFSHf)
180
TdCr (RFSHr)
150
TdCf (RDr)
110
TdCr (RDf)
100
Symbol

TsD (Cf)
TdA (IORQf)
TdCr (IORQf)
TdCf (I0RQr)
TdDm (WRf)
TdCf (WRf)
TwWR
TdCf (WRr)
TdDi (WRf)
TdCr (WRf)
TdWRr (D)
TdCf (HALT)
TwNMI
TsBUSRQ (Cr)
ThBUSRQ (Cr)
TdCr (BUSAKf)
Tdef (BUSAKr)
TdCr (Dz)

60

280A CPU
MIN.
MAX.
250*
1l0*
110
2000
30
30
110
65*
85
85
110*
220*
85
95
85
35
0
70
0
100
100
130
.120
85
85
50

320*

280B CPU*
MIN.
MAX.
165*
65 *
2000
65
20
20
90
35 *
70
70
65*
135*
70
80
70
30
0
60
0
80
80
110
100
70
70
40

ns
us
ns
ns
ns
ns
ns
ns
ns
us
ns
us
ns
ns
ns
ns
ns
ns
ns
us
ns
ns
ns
ns
us

110*

180*

Unit

120
110
90

100
100
90

90
90
80

ns
ns
ns
ns
ns
us
ns
us
us
us
ns
us
ns
ns
us
us
ns

TdCr (CTz)

110

80

70

us

TdCr (Az)

110

90

80

ns

TdCTr (A)

90
110

75
85
80*

190*
90
100

80

80

65

300
80
80
0

70
-55*

60*

120*

70
135*

-10*

20*

160*

25 *
80

220*

360*

65
70

60
30*
260

300
80
50
0

80*

70
50
0

35 *

~

ns

Rising edge, ~ Falling edge

.....-.----------SHARP - - - - - - - - - - - - - - - 214

Z80/Z80A/Z80B Central Processing Unit

No.
46
47
48
49
50
51
52
53

Parameter

LH0080/LH0080A/LH0080B

Z80 CPU
MIN.
MAX.
TsRESET (Cr)
90
ThRESET (Cr)
0
TsINTf (Cr)
80
ThINTr (Cr)
0
TdMlf (I0RQf 920*
TdCf (IORQf)
110
TdCf (IORQr)
100
TdCf (0)
230
Symbol

RESET ! to clock t setup time
RESET from clock t hold time
INT to clock t setup time
INT from clock t hold time
M1 ! to IORQ ~ delay
Clock ~ to IORQ ~ delay
Clock t to IORQ t delay
Clock ~ to data valid delay

Z80A CPU
MIN.
MAX.
60
0
80
0
565*
85
85
150

All ac parameters assume a load capacitance of 100 pF. Add 10
p s delay for each 50 pF increase in load up to a maximum of 200
pF for the data bus and 100 pF for address and control lines.
• For clock periods other than the minimums shown in the table,
calculate parameters using the following expressions.
* All timings are preliminary and subject to change.

•

Z80B CPU*
MIN.
MAX.
60
0
70
0
365*
70
70
130

Unit
ns
ns
ns
ns
ns
ns
ns
ns

+5V
2.lkO

Footnotes to AC Characteristics
No.
1
2
7
10
11
26
29
31
33
35
45
50

Symbol
TeC
TwCh
TdA (MREQf)
TwMREQh
TwMREQl
TdA (IORQf)
TdO (WRf)
TwWR
TdO (WRf)
TdWRr (0)
TdCTr (A)
TdMIf (IORQf)

Z80
TwCh+TwCl+TrC+TfC
MAX.200ps
TwCh+TfC-75
TwCh+TfC-30
TcC-40
TcC-80
TeC-210
TeC-40
TwCI+TrC-180
TwCI + TrC - 80
TwCl+TrC-40
2TcC+TwCh+TfC-80

AC Test Conditions:
VIHC=Vcc-O.6V
VlH=2.0V
VIL=O.8V
VILC=0.45V

VOH=2.0V
VOL=O.8V

Z80A
TwCh + TwCI + TrC + TfC
MAX.200ps
TwCh+TfC-65
TwCh+TfC-20
TeC-30
TcC-70
TcC-170
TcC-30
TwCl +TrC-140
TwCl+TrC-70
TwCI+TrC-50
2TeC+TwCh+TfC-65

Z80B
TwCh + TwCl + TrC + TfC
MAX.200ps
TwCh+TfC-50
TwCh+TfC-20
TeC 30
TeC-55
TeC 140
TcC 30
TwCl+TrC:-140
TwCl+TrC 55
TwCl+TrC-50
2TeC+TwCh+TfC 50

FLOAT= ±O.5

- - - - - - - - - - - - - - - - - - - - - S H A R P ........ _ - - - . - . . - . _ -

215

.4.~O/Z80AlZ80B

CPU Timing

•

,L~OO80/LH0080A/LH.0080B

Central Processing Unit

(1.) Instruction Opcod~ Fetch

The Z80 CPU executes instructions by proceed-,
ing through a specific sequence of operations:
•
Memory read or write
.' 110 device read or write
.: Jnterrupt acknowledge
The basic clock per;iod is referred to as a T time
or cycle, ahti three or more T cycles make up a
machine cycle (MI, M2 or M3 for instance).
Machine cycles can be extended either by the CPU
automatically inserting one or more Wait states or
by the insertion of Dne or more Wait states by the
user.

The CPU places the contents of the Program
Counter (PC) on the addre~s bus at the start of the
. cycle (Fig. 1). Approximately one;-half clock cycle
lat~r, MREQ goes active.,WheQ active, RD indicate$
that the memory d~ta ca~ be enabled onto the CPU
data bus.
The CPU samples the WAIT input with the falling edge of clock state T,. During clock states T3
and Ti of an Ml cycle dynamic RAM refresh can
, occur while the CPU starts decoding and execu'ting
the instruction. When the Refresh Contro\signal
becomes active, refreshing of dynamic memory can
. take place.
'

CLOCK

Note:

Tw-~ait

cycle added when necessary for slow ancilliary devices.

Fig. 1 Instruction opcode fetch

(2)

Memory Read or Write Cycles

Fig. 2 shows the timing of memo!:L,fead or write
cycles other than~ opcode fetch (M 1) cycle.
The MREQ and RD signals functibn exactly as in
the fetch cycle. 1n a memory write cycle, MREQ
also becomes active when the address bus is stable.
The WR line is aj::tive when the data bus is stable,
so 'that it can be used directly as an R/W pulse to
most semiconductor memories.
•

,(3) Input or Output Cycles
Fig. 3 shows the timing for an 110 read or 110
write operation.
During 110 operations, the CPU automatically inserts a single wait state (T w). This extra wait state
allows sufficient time for an 110 port to decode the
address from the port address lines.

J

--~~----SI-tARP---------~2H5

"

Z80/Z80AlZ80B Central Processing Unit

l

LH0080/LH0080AlLH0080B

CLOCK

Ao-A15

MREQ

WAIT

RO

Read operation

{
~-r--cr--!--J

,/--'---~)"f--"" 1,-+--"\1

00-07

r----

1

WR

Write operation

00-07

Fig. 2

Memory read or write cycles

'-"---'--~'---SHARP-'-'----------

217

. LH0080/LH0080A/LH0080B ( .

ZSO/Z80AlZ80BCentral Processing Unit

"

T2

Tw·

Tw

.

'",

¥'

,

'"

T3

CLOCK

. {RD

I/O read operation

I/O write operation{

Do-D7
WR

Do-D7

--------~============:;~D[a~t~a~o~utL:======}
Note: Tw =One wait cycle automatically inserted by CPU.

Fig. 3 Input or output
(4)

Interrupt requesVacknowledge,cycle

The CPU samples the interrupt signal with the
rising edge of the last clock at the end of any instruction (Fig. 4). When an interrupt is accepted, a
special Ml cycle is generated. During this Ml cy-

cle, IORQ becomes active (instead of MREQ) to indicate that the interrupting device can place an 8-bit
vector on the data bus. The CPU automatically
adds two wait states to this cycle.

CLOCK

Notel: TL=Last state of previous instruction.
Note 2: Two wait cycles automatically inserted by CPU (*).

Fig. 4 Interrupt request/acknowledge cycle

218

LH0080/LH0080A/LH0080B

Z80/Z80AlZ80B Central Processing Unit

(5)

Non-maskable interrupt request cycle

NMI is sampled at the same time as the maskable
interrupt INT but has higher priority and cannot be
disabled under software control.
The subsequent timing is similar to that of a nor-

Last Mcycle

mal instruction fetch except that data put on the
bus by the memory is ignored. The CPU instead executes a restart (RST) operation and jumps to the
NMI service routine located at address 0066H
(Fig. 5).

------~~--------------------Ml------------------~

Last T time Tl

Ts

CLOCK

NMI

Ml

MREQ
RD

RFSH
'Although NMI is an asynchronous input, to guarantee its being
recognized on the following machine cycle, NMI's falling edge
must occur no later than rising edge of the clock cycle preceding
T LAST-

Fig. 15

(6)

Non-maskable interrupt request operation

Bus requesVacknowledge cycle

The CPU samples BUSREQ with the rising edge
of the last clock period of any machine cycle (Fig.
6). If BUSREQ is active, t~CPU sets its address,
data, and MREQ, IORQ; RD, and WR lines to a
high-impedance state with the rising edge of the
next clock pulse. At that time, any external device
can take control of these Iines,usually to transfer
data between memory and I/O devices.

(7)

Reset cycle

RESET must be active for at least three clock cycles for the CPU to properly accept it. As long as
RESET remains active, the address and data buses
float, and the co~trol outputs are inactive. Once
RESET goes inactive, three internal T cycles are
consumed before the CPU resumes normal processing operation. RESET clears the PC register, so
the first opcode fetch will be location 0000 (Fig. 8).

219

..........,..................,....

Z80/Z80A/Z80B C,entral Processing Unit
,~

,

'

......,......,......,-

............

LHQ080ltH0080AlLH0080B

.....,

CLOCK

BUSRQ

Ml

Unchanged
Note: TL=Last state of any M cycle.
Tx=An arbitrary clock c~c1e used by requesting device.

Fig. 6

Ml

Z-bus request/acknowledge cycle

",/E

"'1:'-

MI

MI

CLOCK

HALT
HAL T

r-t®

instruction received

~------------------------

NMI

Note: INT will also force a Halt exit.

Fig. 7

220

Halt acknowledge cycle

Z80/Z80AlZ80B Central Processing Unit

LH0080/LH0080A/LH0080B

CLOCK
RESET

Ml

============~~~~~~~7r-~f~--------------~
Il/IllI

\___

MREQ, ------______~~~~r-----~£rc--------------------~--------

RD, WR,

IORQ,RFSH,
BUSAK,
HALT

Fig. 8

Reset cycle

+5V
+5V

B

A

MI----I

74123
Q 1-------,1

)---- RESET

7408

151588

151588
Reset switch

RESET

Fig. 9

~~------------------

Reset circuit and timing diagram when M1 cycle has no wait state

221

LH0080/LH0080AlLH0080B

Z80/Z80A/Z80B Central Processing Unit

(Reference circuit>

RESET signal.
(2) A walt state in the Ml cycle
Input a RESET signal to start sampling this signal at the clock rising in the Ml cycle's T3 state.
~hen a 1 walt state occurs, this type of RESET signal can be generated by the circuit diagrammed in Fig. 10. In the circuit shown in Fig. 2,
no RESET signal is given during an interrupt acknowledge cycle.
•

The RAM contents may be adversely affected by
resetting the CPU while it is in operation.
To prevent this, a RESET signal should be input
in the following timings.
(1) No walt state in the M1 cycle
Input a RESET signal to start sampling this signal at the clock rising in the Ml cycle's T, state.
Fig. 9 shows a typical circuit generating such a

WAIT signal circle
WAIT
r--- -,---- -- - - ------------,
I
I
+5V
I
+5V·
I

+5V

I

7432

:+5V
I

MI

I
I
I

MREQ

B

I

A

I

CLOCK

74123

Q'-------'"-.....

RESET

7408
+5V.

IS1588

CLOCK
MI

MREQ

--J/

~'-_ _ _ _ _ _ _ _

\.....______-.J/

\1...-.,-_--1,
RESET

\~----Fig. 10 Reset circuit and timing diagram when
M1 cycle has a wait state

--.--.----...-.--SHARP

222

----~.-.-.-

Z80/Z80A/Z80B Central Processing Unit

•

CPU Registers
A Accumulator
B General Purpose
D General Purpose
H General Purpose

F Flag Register
C General Purpose
E General Purpose
L General Purpose

,

,

•

LH0080/LH0080A/LH0080B

F' Flag Register
C' General Purpose
E' General Purpose
L' General Purpose

A' Accumulator
B' General Purpose
D' General Purpose
H' General Purpose

.

8 bits
I Interrupt Vector
I
Index Register
IX
IY
Index Register
Stack pointer
SP
Program Counter
PC
16 bits

R Memory Refresh

.

Architecture

(1) CPU Registers
(i) Program Counter (PC)
The program
counter holds the 16 bits memory address of a cur~
rent instruction. The CPU fetches the contents
from memory address specified by the PC.
The PC feeds the data to the address line, automatically setting the PC value to + 1. When a program jump takes place, a new value is directly set to
the PC.
(ii) Stack Pointer (SP)
The stack pointer
holds the top 16-bit address of the stack with an
external RAM. An external file is based on LIFO
(Last- In, First-Out).
The data are transferred between a CPU-specified register and the stack by a PUSH or POP instruction. The last-pushed data are first popped
from the stack.
(iii) Index Register (IX & IV)
For index
mode addressing, there are independent index registers IX and IY, each of which holds 16-bit reference address.
In the index mode, the index registers are used to
designate the memory area for data input/output.
With an INDEX ADDRESSING instruction, an
effective address comes by adding a one-byte displacement to the register content. This displacement is an integral signed two's complement number
(iv) Interrupt Register (I)
The 280 CPU has
indirect subroutine call mode for any memory area
according to an interrupt. For this purpose, this
register stores the upper 8 bits of memory address
for vectored interrupt processing and the lower 8
bits for the interrupting device.

(.) Ref'esh Registe, IR)
Tb, built-in cefresh register provides user-transparent dynamic
memory refresh. Its lower 7 bits are automatically
incremented during each instruction fetch cycle.
While the CPU records a fetched instruction and
executes the instruction, the refresh register data
are placed on the address bus by a REFRESH control signal.
(vi) Accumulator and Flag Register (A & F)
The CPU has also two independent 8-bit accumulators in combination with two 8-bit flag registers.
The accumulators store an operand or the results of an 8-bit operation. The flag registers, on
the other hand, deal with the results of an 8-bit or
16-bit operation; for example, seeing if the result
is equal to 0 or not.
(Vii) General-Purpose Registers
There are
several pairs of general-purpose registers. In each
pair, they can be used separately or as a 16-bit
paired register. The paired registers are BC, DE,
HL, as well as Be' DE' HL'. Either of these sets can
work by an "Exchange" instruction at any time on
a program.
(2)

Arithmetic/Logical Unit (ALU)

An 8-bit arithmetic/logical operation instruction
is executed by the ALU inside the CPU. The ALU
connects to each register through the internal bus
for data transfer between them.

(3)

Instruction Register, CPU Control

Each instruction is read out of the memory, held
in the instruction register, and decoded. The con-

'-~'---'---SHARP'-''-------

223

14 ~

\

Z80/Z80A/Z80BCentral 'Processing Unit
LH0080/LH0080A/LH0080B
.......~.....,_ _................,............ . -...............-..r......._ _...............
/

trol unit controls this action and gives control signals necessary to read and write data from and to
the registers.
The,control unit also makes ALU control signal
and other external control signals.
(Interrupts: General Operation> The Z~W,CPU
accepts two interrupt input signals: NMI and INT_
The NMI is a non-maskable interrupt and has the
highest priority. INT is a lower priority interrupt
and it requires th,at interrupts be enabled in software in order to operate.

(1)

vice places an instruction on the data bus. This isa
Restart instruction or a Call instruction.
(ii) Mode 1 Interrupt Operation.
Mode 1
operation is very similar to that for the NML The
prir-cipal difference is that the Mode 1 interrupt
has a restart location of 0038H only.
,(iii) Mode 2 Interrupt Operation.
This interrupt 'mode has been designed to utilize most
effectively the capabilities of the Z80 microprocessor and its associated peripheral family. The
interrupting peripheral device selects the starting
address (16 bits) of the interrupt service routine. It
does this by placing an 8-bit vector on the data
bus during the interrupt acknowledge cycle. The
CPU forms a pointer using this byte as the lower
8-bits and the contents of the I register as the upper 8-bits. This points to an entry in a table of
addresses for interrupt service routines. The CPU
then jumps to the routine at that address.
All the Z80 peripheral devices have the interrupt priority circuit with a daisy-chain configuration. puring an interrupt acknowledge cycle, vectors are automatically fed. For more details, refer
to the Z80 PIO description. _

Non-Maskable Interrupt (NMi)

The non-maskable interrupt will be accepted at
all times by the CPU.
After recognition of the NMI signal, the CPU
jumps to restart location 0066H.

(2) Maskable Interrupt (INT)
The maskable interrupt, INT, has three prog-ram mabie response modes available.
(i) Mode 0, Interrupt Operation.
This
mode'is similar to the 8080Amicroprocessor interrupt service procedures. The interrupting de-

Table

~op::: :~::

t

_1;---ypOinte: b,'_S____,7_bi_ts

101

_ t'-___ From application device
I register contents

To the beg inning of service rotine

Fig. 1

Mode 2 interrupt diagram

- . . . . - . - - - - - - - S H A R p . - . . . . - . . - - - - - - .......... - 224

Z80/Z80A/Z80B Central Processing Unit

•

LH0080/LH0080A/LH0080B

Instruction Set
Table 1 8-bit load group

LD r, r
LD r, n

Symbolic
operation
,
r+-r
r+-n

LD r,(HL)
LD r, (IX+d)

r+- (HL)
r+- (IX+d)

LD r, (IY+d)

r+- (IY+d)

LD (HL), r
LD (IX+d), r

(HL)+-r
(IX + d)+-r

LD (IY+d), r

(IY+d)+-r

LD (HL), n

(HL)+-n

Mnemonic

,

HEX code
OP code
76 543 210 (Basic) C
,
01
r
r
40+
00 r 110
06+
+- n -+
01 r 110
46+
11 011 101
DD
01 r 110
46+
+- d -+
11 111 101
FD
01 r 110
46
+- d -+
01 110 r
70+
11 011 101
DD
01 110 r
70+
+- d -+
11 111 101
FD
01 110 r
70+
+- d -+
00 110 110
36
+- 0 -+

•
•
•
•

3

5

19

• ••• • •
• • • • • •

1
3

2
5

7
19

• ••• • •

3

5

19

2

3

10

4

5

19

• • • • • •

4

5

19

OA
1A
3A

• • • • • •
•••• ••
• • • • • •

1
1
3

2
2
4

7
7
13

02
12
32

• • •• • •
• • • • • •
• • • • • •

1
1
3

2
2
4

7
7
13

•

t

IFF

t

0

0

2

2

9

•

t

IFF

t

0

0

2

2

9

2

2

9

2

2

9

DD
36

LD (IY+d),

0

(IY + d)+-o

11
00
++00
00
00
++00
00
00
++11
01
11
01
11
01
11
01

FD
36

LD (BC), A
LD (DE), A
LD (00), A

(BC) +- A
(DE) +- A
(00) +- A

LD A,I

A +- I

LDA,R

A+-R

LDI,A

I +- A

LDR,A

R+-A

0

-+

0

-+

000 010
010 010
110 010
0

101
010
101
011
101
000
101
001

• •• • • •
• • • • • •

Comments

r,r
000
001
010
011
100
101
111

Reg.
B
C
D
E
H
L
A

-+

001 010
011 010
III 010

0

••
• •
••
• •

No. of No. of No. of
Bytes MCycles T States
1
1
4
2
2
7

• ••• • •

11 011 101
00 110 110
+d -+
+- 0
-+

0

•
•
•
•

H

7
19

(IX + d)+-n

A+- (BC)
A +- (DE)
A+- (00)

•
•
•
•

N

2
5

0

LD A, (BC)
LD A, (DE)
LD A, (00)

•
•
•
•

Flags
S

P/V

1
3

LD (IX+d),

111 101
110 110
d -+

Z

-+
-+

101
111
101
111
101

III
101
111

ED
57
ED
5F
ED
47
ED
4F

• • • •• • •
• • • • • •

Notes: r, r' means any of the registers A, B, C, D, E, H, L, IFF the content of the interrupt enable flip-flop, (IFF) is copied into the P/V flag_
Flags: C (carry), Z (zero), S (sign), P/V (parity/overflow), H (half carry), N (add/substract)_
: • =unchanged, O=reset, 1 =set, X=undefined.
: t set or reset according to the result of the operation.

-----~---SHARP-.----.-..---

225

\

.
LH0080/LH0080A/LH0080B

Z80/Z80A/Z80B Central Processing Unit

Table 2
OP code
HEX code
76 543 210 (Basic) C
00 ddO 001
01+
0 -+
0
11 011 101
DO
00 100 001
21
0
0
11 111 101
FD
00 100 001
21
0
n
00 101 016
2A
n
n
11 101 101
ED
01 dd1 011
4B+
+n
0
11 011 101
DD
00 101 010
2A
n
n
11 111 101
FD
00 101 010
2A

LD dd, nn

Symbolic
operation
dd ~nn

LD IX, nn

IX -

LD IY, 00

IY -00

10 HL, (00)

H +- (00+1)
L-(no)

10 dd, (00)

ddH +- (00+1)
ddL - (no)

10 IX, (no)

IXH +- (nn+ 1)
IXL - (nn)

LD IY, (nn)

IYH +- (on+1)
IYL - (rin)

10 (nn), HL

(nn+1) 4 - H 00 100
n
(nn) - L
n
(on+1) +- ddH 11 101
01 ddO
(nn) - ddL
n
n
(on+ l)+-IX~
11 011
(nn) +- IXL
00 100
n
n
(nn+ l)+-IYH
11 111
00 100
(nn) - IYL
n
n
SP -HL
11 111
11 011
SP - IX
11 111
11 111
SP - IY
11 111
(SP-2)+-qqL 11 qqO
(SP-1)+-qqH
(SP-2)+-IXL 11 011
(SP-1)+-IXH 11 100
(SP-2)+-IYL 11 111
(SP-l)+-IYH 11 100
qqH +- (SP+ 1) 11 qqO
qqL - (SP)
IXH+-(SP+ 1) 11 011
IXL +- (SP)
11 100
IYH'" (SP+1) 11 111
IYL - (SP) , 11 100

Mnemonic

10 (nn), dd

10 (nn), IX

10 (nn), IY

10 SP, HL
10 SP, IX
10 SP, IY
PUSH qq
PUSH IX
PUSH IY
POP qq
POP IX
POPIY
Notes:
Flags:

226

00

16-bit load group

---

No. of
N

H

• • • • • •

• • • • ••
• • • • ••

---.

.fl

.,.

Flags
pd S

• •
••
• • • • ••

-- -- --- --- --

----

Z

• • • • • •

No. of

No. of

Bytes M CyCles T States
3
10
3
4

4

14

4

4

14

3

5

16

4

6

20

4

6

20

4

6

20

3

5

16

4

6

20

010

22

101
011

ED
43+

• • • • • •
• • • • • •
• • • • ••

101
010

DD
22

• • • • ••

4

6

20

101
010

FD
22

• • • • • •

4

6

20

001
101
001
101
001
101

F9
DD
F9
FD
F9
C5+

1
2

1
2

6
10

2

2

10

1

3

11

101
101
101
101
001

DD
E5
FD
E5
Cl+

2

4

15

2

4

15

1

3·

10

101
001
101
001

DD
E1 .

2

4

14

2

4·

14

--

----

FD
E1

•
•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•
•

• •
• •
• •
••
.. •
••
• •
• •
• •

••
• •
••
••
• •
••
• •
• •
• •

Comments

dd
00
01
10
11

no : 2·byte oumber.
Lower byte just
after opcode.
Upper byte comes
next.

qq
00
01
10
11

dd is any of the register pairs BC, DE, HL, SP.
qq is any of the register pairs AF, BC, DE, HL.
(PAIR)H, (PAIR)L refer to high order and low order eight bits of the register pair respectively, e.g., BCL=C, AFH=A.
• =unchanged, O=reset, 1 =set, X=undefined, =set or reset according to the result of the operation

*

Reg.
BC
DE
HL
SP

Reg.
BC
DE
HL
AF

Z80/Z80A/Z80B Central Processing Unit

Table 3
Mnemonic
EX DE, HL
EX AF,AF'
EXX

EX (SP), HL
EX (SP), IX
EX (SP), IY
LDI

LDIR

LDD

LDDR

CPI

CPIR

CPD

CPDR

Symbolic
operation
DE-HL
AF-AF'

~~I'fj

IDE-DE'
\lIL
HL'
H ..... (SP+1)
L-(SP)
IXH ..... (SP+1)
IXL - (SP)
IYH ..... (SP+1)
IYL - (SP)
(DE) - (HL)
DE - DE+1
HL - HL+1
BC - BC-1
(DE) - (HL)
DE - DE+1
HL - HL+1
BC - BC-1
If BC=O end
(DE) - (HL)
DE - DE-1
HL - HL-1
BC - BC-1
(DE) - (HL)
DE -DE-1
HL - HL-l
BC - BC-1
If BC=O end
A- (HL)
HL ~ HL+1
BC - BC-1
A- (HL)
HL - HL+1
BC - BC-1
If A= (HL) or
BC=O end
A- (HL)
HL - HL-1
BC - BC-1
A- (HL)
HL - HL-1
BC - BC-1
If A= (HL) or
BC=O end

LH0080/LH0080A/LH0080B

Exchange, block transfer, block search groups

HEX code
OP code
76 543 210 (Basic) C
11 101 011
EB
00 001 000
08
11 011 001
D9

Z

Flags
S

P/V

N

H

••••••
••••••
• • • • • •

11 100 011

E3

11
11
11
11
11
10

011 101
100 011
111 101
100011
101 101
100 000

DD
E3
FD
E3
ED
AO

11 101 101
10 110 000

ED
BO

11 101 101
10 101 000

ED
A8

11 101 101
10 111 000

ED
B8

11 101 101
10 100 001

ED
Al

11 101 101
10 110 001

ED
B1

11 101 101
10 101 001

ED
A9

11 101 101
10 III 001

ED
B9

• • ••••
••••••
••••••

••

t

10
7
7
19

t
t
t

1
1
3

1
3
6

4
11
23

t

3

6

23

1
0
0

t

t

1*2
1
3
3

1*2
3
6
6

Note: V and P mean overflow and parity, respectively.
Flags: • = unchanged
O=reset
l=set
X=undefined
J = set or reset according to the 'result of the operation

.

7
19

Comments
r

000
001
010
011
100
101
111
Mnemonic
ADD
ADC
SUB
SBC
AND
OR
XOR
CP

Reg.
B
C
0
E
H
L

A
k
000
001
010
011
100
110
101
111

S=r, n, (HL),
(IX + d), (IY +d)
,
Mnemonic
INC
DEC

t
100
101

4*2
m=r, (HL),
11
(IX+d), (lY+d)
23
23
,.1: depends on s.
,.2: depends on m.

r

- - - . - -........... ----SHARP---~~--------~
228

LH0080/LH0080A/LH0080B

Z80/Z80A/Z80B Central Processing Unit
Table 5

General purpose arithmetic and CPU control groups

CPL

Symbolic
OP code
HEX code
76 543 210 (Basic) C
operation
Decimal
00 100 III
27
t
adjustment
(add/subtract)
A-A
00 101 111
2F

NEG

A-O-A

CCF
SCF
NOP
HALT
DI
EI
1M 0

C-C
C-1
No operation
CPU halted
IFF-O
IFF - 1
Set interrupt
mode 0
Set interrupt
mode 1
Set interrupt
mode 2

Mnemonic
DAA

1M 1
1M 2

11
01
00
00
00
01
11
11
11
01
11
01
11
01

101 101
000 100
111 111
110 111
000 000
110 110
110011
111 011
101 101
000 110
101 101
010 110
101 101
011 110

ED
44
3F
37
00
76
F3
FB
ED
46
ED
56
ED
5E

Z

t

Flags
S
P t

P/V

N

•

H

t

No. of No. of No. of
Comments
Bytes M Cycles T States
1
Decimal adjust
4
1
accumulator.

••••

1

1

1

1

4

t t

1

t

2

2

8

0
0

X
0

1
1
1
1
1
1
2

1
1
1
1
1
1
2

4
4
4
4
4
4

8

2

2

8

2

2

8

t
1

•

•
•
•
•
•
•

V

t

• •
••
••
• •
••
• •
• •
• •
• •

•

•
•
•
•
•
•
•
•

• •
••
••
••
• •
••
• •

Complement
accumulator
(one's complement).
Negate acc.
(two's complement).
Complement carry flag.
Set carry flag.

Interrupt not enable
Interrupt enable
Set interrupt mode.

Note : IFF indicates the interrupt enable flip· flop, CY indicates the carry f1ip·f1op.
Flags: • = unchanged, O=reset, 1 =set, X=undefined, , =set or reset according to the result of the operation

Table 6

ADD IX, pp

Symbolic
operation
HL-HL
+ss
HL-HL
+ss+C
HL-HL
-ss-C
IX-IX+pp

ADD IY, rr

IY -

Mnemonic
ADD HL, ss
ADC HL, ss
SBC HL, ss

INC ss
INC IX

ss IX -

INC IY

IY -

DEC ss
DEC IX

ss IX -

DECIY

IY -

16-bit arithmetic group

OP code
HEX code
76 543 210 (Basic) C
00 ssl 001
09+ t

11
01
11
01
11
00
IY+rr 11
00
ss+l 00
IX+l 11
00
IY+1 11
00
ss-l 00
IX-l 11
00
IY-l 11
00

101
ssl
101
ssO
011
pp1
111
rr1
ssO
011
100
111
100
ssl
011
101
III
101

101
010
101
010
101
001
101
001
011
101
011
101
011
011
101
011
101
011

ED
4A+
ED
42+
DD
09+
FD
09+
03+
DD
23
FD
23
OB+
DD
2B
FD
2B

Flags
S

Z

P/V

t t

V

t t

V

No. of No. of No. of
Bytes M Cycles T States
1
11
3

N
0

H
X

t

0

X

2

4

15

t

1

X

2

4

15

t

• • •

0

X

2

4

15

t

•
•
•
•
•
•
•

2

4,

15

•
•
•
•
•
•

• • •

Comments
ss
00
01
10

11

••
••••
• • • •
• • • •
0

X

• • • •
••••
• • • •

\

pp
00
01
10

1
2

1
2

6
10

2

2

10

1
2

1
2

6
10

rr
00
01
10

2

2

10

11

11

Reg.
BC
DE
HL
SP

Reg.
BC
DE
IX
SP

Reg.
BC
DE
IY
SP

Note: ss is any of the register pairs BC, DE, HL, SP.
pp is any of the register pairs BC, DE, IX, SP.
rr is any of the register pairs BC, DE, IY, SP.
Flags: • =unchanged, O=reset, 1 =set, X=undefinede, , =set or reset according to the result of the operation

229

zao/zaOA/zaOB Central Processing Unit
Table 7
Mnemonic

Symbolic
operation

LHooao/LHooaOA/LHooaoB

Rotate arid shift groups

HEX code
OP code
76 543 210 (Basic) C

Z

Flags
S

PlY

N

No. of No. of No. of
H ' Bytes MCycles T States

0

0

1

1

4

Rotate left circular
accumulator.

0

0

1

1

4

Rotate left
accumulator.

p

0

1

1

4

Rotate right circulart
accumulator.

0

0

1

1

4

Rotate right
accumulator.
Rotate left circular
register r.

RLCA

~
A

00 000 111

07

+

RLA

~
A

00 010 111

17

+

RRCA

~
A

00 001 111

OF

+

On

IF

+

CB
00+
CB
06+
DD
CB

+ t

p

t

0

0

2

2

,8

t t

p

t

0

0

2

4

15

t t

p

t

0

0

4

6

23

t t

p

t

0

0

4

6

23

+

0

0

RRA

Lii3=@lJ
A

R,LCr
RLC (HL)
RLC (IX+d)

~
r. (HL).
(IX+d).
(IY+d)

RLC (IY+d)

00
11
00
11
00
11
11
<-

00
11
11
<-

00

111

001 011
k
r
001 011
k 110
011 101
001 011
d .....
k 110
111 101
001 011
d
k 110

.....

06+
FD
CB

• • •
• ••
• ••
•••

,

Comments

r
000
001
010
011
100
101
111

Reg.
B
C
D
E
H
L
A

06+

RLm

~m

t +

p

RRC m

~
m

t +

p

+

0

0

RRm

LiBi=@J

+ +

P

+

0

0

m

'2*

2*

2
4
4

4
6
6

Mnemonic
RLC
RRC
RL
RR
8,* !
SLA
15
SRA
23
SRL
23

k
000
001
010
011
100
101
111

SLAm

~
m

t +

p

t

0

0

SRAm

~

t t

,P

t

0

0

m=r. (HL).
(IX+d). (IY+d).

SRL m

~
m

t t

p

t

0

0

* depends on m.

RLD

A~

RRD

A~

11 101 101
(HL) 01 101 111

(HL)

11 101 101
01 100 111

ED
6F

•

t

p

+

0

0

2

5

18

ED
67

•

t

p

t

0

0

2

5

18

Flags: • =unchanged
O=reset
l=set
X = undefined
t = set or reset according to the result of the operation

230

Rotate digit left and
right between the
accumulator and
location (HL).
The content of the
upper half of the
accumulator is un·
affected.

Z80/Z80AlZ80B Central Processing Unit

LH0080/LH0080AlLH0080B

Table 8 Bit set, reset and test group

BIT b, r

Symbolic
operation
Z +- rb

BIT b, (HL)

Z +- (HL)b

BIT b, (IUd)

Z +- (IX+d)b

BIT b, (IY+d)

Z +- (IY+d)b

Mnemonic

SET b, r

n+-1

SET b, (HL)

(HL)b +- 1

SET b, (IX+d)

(IX+d)b +- 1

SET b, (IY+d)

(IY+d)b +- 1

HEX code
OP code
76 543 210 (Basic) C
11 001 011
CB
01
r
40+
b
11 001 011
CB
01 b 110
46+
11 011 101
DD
11 001 011
CB
+- d .....
01 b 110
46+
11 111 101
FD
11 001 011
CB
+- d .....
01 b 110
46+
11 001 011
CB
r
a
b
11 001 011
CB
06+
a b 110
11 011 101
DD
11 001 011
CB
+- d .....
a b 110
06+
11 111 101
FD
11 001 011
CB
+- d
a b 110
06+

•
•
•
•

t

Flags
S
X X

N
0

H
1

t

X

X

0

1

2

3

12

t

X

X

0

1

4

5

20

t

X

X

0

1

4

5

20

Z

PlY

• • •• ••
• • • • ••
• • •• • •

• • •• • •

No. of No. of No. of
Bytes M Cycles T States
2
8
2

2

2

8

2

4

15

4

6

23

4

6

23

.....

RES b, m

fib +- 0

2*

2*

8*

2
4
4

4
6
6

15
23
23

Comments
r
000
001
010
011
100
101
111

Reg.
B
C
D
E
H
L
A

b
000
001
010
011
100
101
110
111

Bit Tested
0
1
2
3
4

Mnemonic
SET
RES

5
6
7

a
11
10

m=r, (HL),
(IX+d), (IY+d)
* depends on m

Note: The notation mb indicates bit b (0 to 7) or location ffi.
Flags: • = unchanged
o= reset
l=set
X=undefined
; = set or reset according to the result of the operation

-.....-.-------SHARP------------231

Z80/Z80Al~80B C~ntral processing Unit'

LH0080/LH0080AlLH0080B

Table 9 Jump group
OP code
HEX code
76 543 210 (Basic) C
11 000 011
C3
n -+
n -+
If condition cc
11 cc 010
C2+
is true PC ... nn,
n -+
otherwise conn -+
tinue
18
PC - PC+e 00 011 000
e-2 -+
If C=1
00 111 000
38
e-2
PC - PC+e
If C=O
continue
If C=O
00 110 000
30
e-2 -+
PC - PC+e
If C=1
continue
If Z=1
00 101 000
28
e-2 \ -+
PC - PC+e
IfZ=O
continue
If Z=O
00 100 000
20
e-2 -+
PC - PC+e
IfZ=1
continue
PC-HL
11 101 001
E9
PC -IX
11 011 101
DD
11 101 001
E9
11 III 101
PC -IY
FD
11 101 001
E9
10
If B - B-1 00 010 000
Bio
e-2 -+
PC - PC+l
If B=O
continue
Symbolic
operation
pc,- nn

Mnemonic
JP nn

• •

--

JR e

....

JR NC, e

...

••••••

....

JP (HL)
JP (IX)
JP (IY)
DJNZ, e

•
•
•
•

....

)

!

••••

• •• • • •

....

JR NZ, e

H

• • • • • •

....

JR Z, e

N

••• •• •
••••••

....

JR C, e

Flags
S

PIV

••••••

--

JP cc, nn

Z

•
•
•
•

•
•
•
•

•
•
•
•

•
•
•
•

•
•
•
•

No. of No. of No. of
Bytes M Cycles T States
3
10
3

3

3

10

3

3

10

2

3

12

2

3

12

2

2

7

2

3

12

2

2

7

2

3

12

2

2

7

2

3

12

2

2

7

1
2

1
2

4
8

2

2

8

2

-3

2

2

Comments
cc
000
001
010
011
100
101
110

III

Condition
NZ
Z
NC
C
PO
PE
P
M

NZ : non-zero
Z : zero
C: carry
PO : parity odd
PE : parity even
P: sign positive
M : sign negative

13

8

-Note: e represents the extension in the relative addressing mode.
e is a signed two's,complement number in the range -126.129>
e -2 in the opcode provides an effective address of pc+e as PC i,s incremented by 2 prior to the addition of e.
e itself is obtained from opcode position_
Flags: • = unchanged
O=reset
1=set
X=undefined
t =set or reset according to the result of the operation

<

~-------~--SHARP-"---'------

232

Z80/Z80AlZ80B Central Processing Unit

LH0080/LH0080A/LH0080B

Table 10 Call and return group
Mnemonic
CALL nn

CALL cc, nn

RET
RET cc

RET!
RETN

RST p

Symbolic
operation
(SP-1) .... PCH
(SP-2) .... PCL
PC -nn
If condition cc is
false continue,
otherwise same
as CALL nn
PCL - (SP)
PCH .... (SP+ 1)
If condition cc is
false continue,
otherwise same
as RET
Return from
interrupt
Return from
non· mask able
interrupt
(SP-l) +- PCH
(SP - 2) +- PCL
PCH - 0
PCL - P

OP code
HEX code
76 543 210 (Basic) C
11 001 101 CD
n -+
n -+
11 cc 100 C4+
n -+
n -+

Z

Flags
S

PlY

N

H

•••• ••

---

••••••

11 001 001

C9

11 cc 000

CO+

11
01
11
01

101
001
101
000

101
101
101
101

ED
4D
ED
45

11

t

111

C7+

••••••
••••••
• • • • ••
• • • • ••
• • • • ••

No. of No. of No. of
Bytes M Cycles T States·
3
17
5

3

5

17

3

3

10

1

3

10

1

'3

11

1

1

5

2

4

14

2

4

14

1

3

11

Comments

,
cc
000
001
010
011
100
101
110
111

Condition
NZ
Z
NC
C
PO
PE
P
M

r
000
001
010
011
100
101
110
111

p
OOH
08H
10H
18H
20H
28H
30H
38.

Flags: • = unchanged
O=reset
l=set
X = undefined
• = set or reset according to the result of the operation

'--''-~-----SHARP'-''---~----

233

zao/zaOA/zaOB Central Processing Unit

lHooaO/lHOOaOAllHOOaOB

Table 11 Input and output group

IN A, (n)

Symbolic
operation
A+- (n)

IN r, (C)

r +- (C)

INI

OUT (n),A

(HL) +- (C)
B +- B-1
HL +- HL+1
(HL) +- (C)
B +- B-1
HL +- HL+l
Repeat until
B=O
(HL) +- (C)
B +- B-1
HL +- HL-1
(HL) +- (C)
B +- B-1
HL +- HL-1
Repeat until
B=O
(n) +- A

OUT (C), r

(C) +- r

OUTI

(C) +- (HL)

Mnemonic

INIR

INO

IN OR

OTIR

OUTD

OTDR

B +- B-1
HL +- HL+l
(C) +- (HL)
B +- B-1
HL +- HL+l
Repeat until
B=O
(C) +- (HL)
B +- B-1
HL +- HL-l
(C) +- (HL)
B +-B-1
HL +- HL-l
Repeat until
B=O

OP code
HEX code
76 543 210 (Basic) C
11011 011
DB
+- n .....
11 101 101
ED
01 r 000 .40+
11 101 101
ED
X
10 100 010
A2
11 101 101
10 110 010

N

H

P

t

0

t

t
CD

X

X

1

X

2

1
@

X

X

1

X

2

P/V

t

• • • • • •

•

ED
B2

X

No. of No. of No. of
Comments
Bytes MCycles T States
n ..... Ao-A7
2
3
11
Aex ..... As-A15
12
2
3

Flags
S

Z

4

16

5

21

(If Bi'O)

2

4

16

(If B=O)

11 101 101
10 101 010

ED
AA

X

t
CD

X

X

1

X

2

11 101 101
10 111 010

ED
BA

X

1

X

X

1

X

2

4

16

5

21

C"'" Ao-A7
B ..... As-A15
r.
000
001
010
011
100
101
111

Reg.
B
C
0
E
H
L
A

(If Bf 0)

.

@

2

4

16

(If B=O)

11
+11
01
11
10

010 011
n .....
101 101
r 001
101 101
100 011

D3

11 101 101
10 110 011

ED
B3

ED
41+
ED
A3

• • • • • •
• • • • ••

n ..... (A·BUS)O-7
Aex ..... (A·BUS)S-15

2

3

11

2

3

12

4

16

C ..... Ao-A7

5

21

B ..... As-A15

X

t
CD

X

X

1

X

2

X

1

X

X

1

X

2

(If BfO)

@

2

4

16

(If B=O)

11 101 101
10 101 011

ED
AB

X

t
CD

X

X

1

X

2

11 101 101
10 111 011

ED
BB

X

1

X

X

1

X

2

4

16

5

21

(If Bfa)

@

2

4

16

(If B=O)

CDlf the result of B-1 is zero the Z flag is set, otherwise it is reset.
®Z flag is set upon instruction completion only.
Flags: • =unchanged
O=reset
l=set
X=undefined
l = set or reset according to the result of the operation
Note:

------~-.-.--SHARP -.-....,-----~.-.--

234

Z80/Z80A/Z80B Parallel -Input/Output Controller

LH0081.1LH0081A1LH0081 B

LH0081/LH0081A/LH0081B
Z801Z80AlZ80B Parallel Input/Output Controller
•

Description

The 280 product line is a complete set of microcomputer components, development systems and
support software. The 280 microcomputer component set includes all of the circuits necessary to
build high-performance microcomputer systems
with virtually no other logic and a minimum number of low cost standard memory elements.
The LH0081 280 PIO (280 PIO for short below)
is a programmable two port device which provides
TTL compatible interfacing between peripheral devices and the 280 CPU. The 280 CPU configures
280 PIO to interface with standard peripheral devices such as tape punchers, print~rs, keyboards,
etc.
The LH0081A 280A and LH0081B 280B PIO
are the high speed version which can opeate at the
4MHz and 6MHz system clock, respectively.

•

•

Pin Connections

D6

BfA SEL

6

Features
1. Two independent 8-bit bidirectional peripheral
interface ports with "handshake" data transfer
control
2. N-channel silicon -gate process
3. Anyone of the following four modes of operation may be selected.
• Byte output mode
• Byte input mode
• Byte bidirectional bus (available on Port A
only)
• Bit mode
4. Programmable interrupt
5. Vectored daisy chain priority interrupt logic
included
6. The port B outputs can drive Darlington transistors
7. All inputs and outputs fully TTL compatible
8. Single +5V power supply and single phase
clock
9. 40-pin dual-in-line package

Top View

235

Z80/Z80A/Z80B ParallellnputlOutput Controller

•

LH0081 ILH0081 AlLH0081B

Block Diagram

Internal
Control Logic

;:;

fr

"
::.
c.
..:;"
0

...:

u

System Data Bus

Port A
Data Bus

.

's.
0

~

....:I

0

Il.

-=fr

"
c.
..:;"

0

::.
'"

Port AlB Select

"

o:l

:::>
Il.
u

-=fr

Machine Cycle 1

"
::.
c.
..:;"
0

I/O

Port B
Data Bus

o:l

..

~

Interrupt

0

Control Logic

> >
'"+ 2Q
z
u
u
>

"

-'"
u
0

U

e

'"
'»"
Ul
~

~

Il.

BReady
B Strobe

..:;

''""or" '" 0-=
'" :c :c'"
0::
~
" ~"
~
:::s
oj

oj

.. ..
.E'" ..:;!.. !..
~

c.

:::s

~

c.

:::s

..:;

'-'-~-----SHARP-------'-

236

Z80/Z80AlZ80B Parallel Input/Output Controller

•

Pin Description
Pin
Do-D 7

-

B/A SEL

Meaning
Data bus

I/O
Bidirectional
3-state

Port B or A select

I

Control or data select

I

CE

Chip enable

I

CLOCK

System clock

I

-

C/D SEL
-

-

M1

-IORQ
RD
lEI
lEO
INT
Ao-A 7

---

Machine cycle one

Input/ output
request

I

I

Read cycle status
Interrupt enable in
Interrupt enable out
Interrupt request
Port A bus

I
I
0
Open drain, 0
Bidirectional
3-state

A STB

Port A strobe

I

A RDY

Port A ready

0

Bo-B 7

Port B bus

--

•

LH0081/LH0081A/LH0081B

Bidirectional
3-state

B STB

Port B strobe

I

B RDY

Port Bready

0

Function
System data bus.
Defines which port is accessed. A high selects port B,
and a low port A.
Defines the type of data transfer on the data bus. A high
selects control, and a low data.
Active "Low". A low enables the CPU to transmit and
receive control words and data.
Standard Z80 system clock used for internal synchro·
nization signals.
Active "Low". Indicates that the CPU is acknowledging
-an interrupt, when both M1 and IORQ are active.
Active "Low". Read operation when RD is active, and
write operation when it is not active. Indicates that the
CPU is acknowledging an interrupt, when both IORQ
and M1 are active.
Active "Low". Read operation when active.
Active "High". Forms a priority-interrupt daisy-chain.
Active "High". Forms a priority-interrupt daisy-chain.
Active- "Low". Active when requesting an interrupt.
Transfers information between port A and a peripheral
device.
Active "Low". Used as a handshake line for data transfer synchronization on port A. Not used in the bit control mode.
Active "High". Used as a handshake line for data transfer synchronization on port A. Not used in the bit control mode.
Transfers information between port B and a peripheral
device.
Active "Low". Used as a handshake line for data transfer synchronization on port B. Not used in the bit control mode.
Active "High". Used as a handshake line for data transfer synchronization on port B. Not used in the bit control mode.
-

Absolute Maximum Ratings
Parameter
Input voltage
Output voltage
Operating temperature
Storage temperature

Symbol
V IN
V OUT T oDr
T sto

Ratings
-0.3-+7
-0.3-+7
0-+70
-65-+150

Unit
V
V

·C
·C

237

Z80/ZS0A/Z80B Parallel Input/Output Controller

LH008t1LH0081AILH0081 B

•

(Vcc =5V±5%,'Ta=0-+70t)

DC Characteristiqs
Parameter
input low voltage
Clock input high voltage
Input low voltage
Input high voltage
Output low voltage
Output high voltage
Supply current
Input leakage current
3 state output! data
bus input leakage current
Darlington drive current
Clocl~

•

Symbol

Conditions

MLN.
-0.3
Vee- 0.6
-0.3
2.0

VILe
V IHe
VIL
VII'!
IOL =2mA
IoH = -250pA
VoH =1.5V

VOL

VOH
Icc
I ILl I

TYP.

2.4

O:;;;VIN~Vee

100
10

I Iz I

0:;;;V1N:;;;V ee

10

IOHD

REXT =390n

•

pA
rnA

(f=lMHz, Ta=25t)
Symbol

Conditions

CCLOCK
C1N
COUT

MIN.

. Parameter

TYP.

Unmeasured pins returne<1
to ground

MAX.
12
7
10

Unit
pF
pF
pF

(Vcc=5V±5%, Ta=0-+70t)

AC Characteristics
No.

Symbol

Z80
MIN.
400
170
170

PIO
MAX.
(Note 1)
2000
2000
30
30

Z80A
MIN.
250
105
105

PIO
Z80B PIO (Note 9)
MAX.
MIN.
MAX.
(Note 1) 165
(Note 1)
2000·
65
2000
2000
65
2000
20
30
20
30

Unit

TcC
TwCh
TwCl
TfC
TrC

17

IEI ~ to lEO ~ delay

TdlEI (IEOf)

190

130

120

ns

18

IEI t to lEO t delay
(After ED decode)

TdlEI (IEOr)

210

160

160

ns

6
7
8
9
10
11
12
13
14
15
16

238

TsCS (RI)
Th
TsRI (C)
TdRI (DO)

50

50

50

ns

0

0

0

ns

430

380

300

ns
ns

160

110

70

ns

115

TdRI (DOs)

115

70

Note

ns
ns
ns
ns
ns

Clock cycle time
Clock width (high)
Clock width (low)
Clock fall time
Clock rise time
CE, B/ A, C/O to RD, IORO ~
setup time
Any hold times for specified.
setup time
RD, IORQ to clock t setup time
RD, IORQ ~ to data out delay
RD, IORQ t to data out
float delay
Data in to clock t setup time
IORQ ~ to vector out delay
(INT ACK cycle)
M1 ~ to clock t setup time
M1 t to clock ~ setup time
(M1 cycle)
Ml ! to lEO ~ delay (interrupt
immediately preceding M1 ~ )
tEl to IORQ ~ setup time
(INT ACK cycle)

1
2
3
4
5

Unit
V
V
V
V
V
V
rnA

pA

-1.5

CapaCitance
Parameter
Clock capacitance
Input capacitance
Output capacitance

MAX.
0.45
Vee+ 0.3
0.8
5.5
0.4

6

2

50

50

40

ns

CL-50pF

TdIO (001)

340

160

120

ns

3

TsMl (Cr)

210

90

70

ns

TsMl (Cf)

0

0

0

ns

8

ns

5,7

ns

7

TsDI (C)

TdMI (lEO)
TsIEI (10)

.

300

140

100

190
140

100

5
C~=50pF

5

LH0081/LH0081A/LH0081B

Z80/Z80AlZ80B Parallel Input/Output Controller

Z80A PIO
MIN.
MAX.

MIN.

220

200

170

ns

TdC (RDYr) 200

190

170

ns

TdC (RDYf)
TwSTB

150
150

140
150

120
120

ns
ns

5
CL=50pF
5
4

TsSTB (C)

220

220

150

ns

5

ns

5

Parameter

Symbol

19

IORQ t to clock ! setup time
(to activate READY on next
clock cycle)

TelO(C)

20

Clock

21
22

Clock ! to READY ! delay
STROBE pulse width
STROBE t to clock ! setup
time (to activate READY on
next clock cycle)
IORQ t to PORT DATA stable
delay (Mode 0)
PORT OATA to STROBE t
setup time (mode 1)
STROBE ! to PORT OAT A
stable (mode 2)
STROBE t to PORT OAT A
float delay (mode 2)
PORT OAT A match to INT !
delay (mode 3)
STROBE t to INT ! delay

23

24
25
26
27
28
29

t Rising edge,
Note
Note
Note
Note
Note
Note
Note
Note
Note

1:
2:
3:
4:
5:
6:
7:
8:
9:

!

to READY

t

delay

Z80B PIO (Note 9)

Z80 PIO
MIN.
MAX.

No.

TdIO (PO)

200

TsPD (STB) 260
TdSTB (PO

230

160

180
230

MAX.

Unit

Note

ns

190
210

180

ns

5

CL=50pF

TdSTB (PDr)

200

180

160

ns

TdPD (INT)

540

490

430

ns

TdSTB (INT)

490

440

350

ns

~

Falling edge
TcC=TwCh+TwCI+TrC+TfC.
Increase TdRI (DO) by 10 ns for each 50 pF increase in load up to 200 pF max.
Increase TdIO (DOl) by IOns for each 50 pF, increase in load up to 200 pF max.
For Mode 2 : TwSTB>TsPD (STB).
Increase these values by 2 ns for each 10 pF increase in load up to 100 pF max.
TsCS (RI) may be reduced. However, the time subtracted from TsCS (RI) will be added to TdRI (DO).
2.5 TcC>(N-2) TdIEI (IEOf)+TdMI (IEO)+TsIEI (IO)+TTL buffer delay, if any.
Ml must be active for a minimum of two clock cycles to reset the PIa.
Z80B PIa numbers are preliminary and subject to change.

-------------SHARP-----.-........;...-239

-.,.-.-....

.............. -..
-

.•

.--

..........,...... ...

Z801Z80A/Z80B ParallellnputlOutput Controller'

.-

....

LH0081/LH0081A/LH0081 B
-.~....,~

AC Timing Chart

CLOCK
CE
B/A,C/O
RD,IORQ
OUT
Do-D,

{

.

IN
IORQ

Ml
lEI
lEO
READY
(ARDY or BRDY)
STROBE
(ASTB or B8TB)
Mode 0
Ao-A,

Mode 1
Mode 2
Mode 3

---"---~----SHARP---'-""""'~""""'------

240

Z80/Z80AlZ80B. Parallel Input/Output Controller

Programming

•
(1)

LH0081/LH0081A/LH0081B

(3) Interrupt control
The interrupt control words are as follows.

Interrupt vector read

An interrupting device needs giving an 8-bit interrupt vector to the CPU_ Using this vector, the
CPU forms an interrupt service routine address_
y

y

Indicates that the information
is interrupt control words

Effective in bit
control mode

Bit7 = 1:

(2)

Operation mode select

An operation mode is selected by writing data to
the 2-bit mode control register in the following
manner-

I~: I::(:ID~ IDrl :'1 ~I
'-y------'

'-----v------"

Mode Words

Indicates
Mode Words

Interrupt enable flag is set to enable an interrupt.
Bit7=O: Interrupt enable flag is reset to disable an interrupt.
Bit6-4: Defines interrupt conditions in the
bit mode. Ignored in other modes.
Bit3-0: Indicates interrupt control words.
If bit4 = I, the following control words are supposed to be written in the mask register.

X means they are not used

Mode
Byte output mode
Byte input mode
Bidirectional byte bus mode
Bit control mode

Ml

MO

0
0
1
1

0
1
0
1

In selecting the bit control mode, an input/output
direction should be set later.

Only the port data line with MB=O is monitored.
When the interrupt conditions are satisfied, an interrupt takes place.

Interrupt
enable

X

X

X

0

0

1

1

flag

'---...r----"
Not affected by
these -bits

Iio=l :Input ;

•

Interrupt control words

I10=O:Output

Timing

(1)

Output mode (Mode 0)

An output cycle is always started by the execution of an output instruction by the CPU_ The WR *
pulse from the CPU latches the data from the CPU
data bus into the selected port's output register.
The WR * pulse sets the Ready flag after a Lowgoing edge of CLK, indicating data is available.

Ready stays active until the positive edge of the
strobe line is received, indication that data was
taken by the peripheral. T~positive edge of the
strobe pulse generates an INT if the interrupt enable flipflop has been set and if this device has the
highest priority.

241

. Z80/Z80A/Z80B Parallel Input/Output Controller

. LHOb81/LH0081 AlLH0081 B

CLOCK

WR*

Port output

RDY
8TB

(2)

Input mode (Mode 1)

When STROBE goes Low, data is loaded into the
selected port iriput register. The next rising edge of
strobe activates INT, if Interrupt Enable is set and
this is the highest-priority requesting device. The
following falling edge of CLK resets Ready to an in·
active state, indicating that the input register is full

and cannot accept any mote data until the CPU
completes a rea~When a read is complete, the
positive edge of RD sets Ready at the next Lowgoing transition of CLK. At this time new data can
be loaded into the PIO.

CLOCK

Port input

RDY

RD"

(3)

Bidirectional mode (Mode 2)

This is a combination of Modes 0 and 1 using all
four handshake lines and the eight Port A I/O
lines. Port B must be set to the bit mode and its
inputs must be masked. The Port A handshake
lines are used for output control and the Port B
lines are used for input control. If interrupts occur,

242

Port A's vector will be used during port output and
Port B's will be used during port Input. Data is
allowed out onto the Port A bus only when- ASTB
·is Low: The rising edge of this strobe can be used
to latch the data into the peripheral.

Z80/Z80AlZ80B Parallel Input/Output Controller

LH0081/LH0081A/LH0081B

CLOCK

WR"

A RDY __________________-J

Port A data bus

------------C~~}t-~:1!~Q-+---

INT

B RDY

(4)

Bit mode (Mode 3)

The bit mode. does not utilize the handshake signals, and a normal port write or port read can be
executed at any time. When writing , the data is
latched into the output registers with the same timing as the output mode.
When reading the PIO, the data returned to the
CPU is composed of output register data from those
port data lines assigned as outputs and input regis-

ter data from those port data lines assigned as inputs. The input register contains data that was present immediately prior to the falling edge of RD. An
interrupt is generated if interrupts from the port
are enabled and the data on the port data lines
satisfy the logical equation defined by the 8-bit
mask and 2-bit mask control registers. However, if
Port A is programmed in bidirectional mode, Port B
does not issue an interrupt in bit mode and must
therefore be polled.

CLOCK
Port data bus

RD

L Data word 1 placed on bus
243

.-.-.--.........---..

Z80/Z80A/Z80B Parallel .Input/Output Controller

......,-....-

LH0081/LH0081 A/LH0081B

i

....,-----------~-

(5) Interrupt acknowledge timing.

During Ml time, peripheral Cflntroliers are inhibited from changing their interrupt enable status,
permitting the Interrupt Enable signal to ripp.le
through the daisy chain. The peripheral with lEI
High and lEO Low during INT ACK places a pre-

Last T state

programmed 8-bit interrupt vector on the data bus
at this time. lEO. is held Low until a Return From
Interrupt (RETI) instruction is executed by the·
CPU while lEI is High. The 2-byte RETI instruction is decoded internally by the PIO for this purpose.

Tw'

Tw'

T3

CLOCK

MI
lEO

lEI

(6)

Return from interrupt cycle

If a Z-:80 peripheral has no interrupt Pending
·and is not under service, then its IEO=1E1. If it has
an interrupt under service (i.e., it has already interrupted and received an interrupt acknowledge)
then its lEO is always Low, inhibiting lower priority devices from interrupting. If it has an interrupt
pending which has not yet been acknowledged, lEO
is Low unless an "ED" is decoded as the first byte
of a 2-byte opcode. In this case, lEO goes High until the next opcode byte is decoded, whereupon it

CLOCK

lEI
lEO

244

goes Low again. If the second byte of the opcode
was a "40", then the opcode was an RET! instruction.
After an "ED" opcode is decoded, only the
peripheral device which has interrupted and is currently under service has its lEI High and its lEO
Low. This device is the highest-priority device in the
daisy chain that has received an interrupt acknowledge. All other· peripherals have lEI = lEO. If the
next opcode byte decoded is "40". this peripheral device resets its "interrupt under service" condition.

LH0082/LH0082A1LH0082B

Z80/Z80A/Z,80B Counter Timer Circuit

LH0082/LH0082A/LH0082B

Z801Z80AlZ80B Counter Timer Circuit
•

Description

"

•

The Z80 product line is a complete set of microcomputer components, development systems and
support software. The 280 microcomputer component set includes all of the circuits necessary to
build high- performance microcomputer systems
with virtually no other logic and a minimum number of low cost standard memory elements.
The LH0082 280 eTe (Z80 eTe for short below) is a programmable, four channel device that
provides counting and timing functions for the Z80
epu. The Z80 epu configures the 280 eTC's four
independent channels to operate under various
modes and conditions as required.
The LH0082A 280A and LH0082B Z80B eTe
are the high speed version which can operate at the
4MHz and 6MHz system clock, respectively.

Pin Connections

o

ZC/TOo

7

Top View

•

Features

1. Four independent programmable 8-bit counterl16-bit timer channels
2. N-channel silicon gate process
3. Each channel may be selected to operate in
either a counter mode or timer mode
4. Programmable interrupts on counter or timer
states
5. When the down-counter reaches the zero count
the eTe reloads its time constant automatically
and continues it's channel operation
6. Readable down counter
7. Selectable 16 or 256 clock prescaler for each
timer channels
'8. Selectable positive or negative trigger may initiate timer or counter operation
9. Three channels have Ze/TO outputs capable of
driving Darlington transistors
10. Vectored daisy chain priority interrupt logic
included
11. Single +5V power supply and single phase
clock
12. All inputs and outputs fully TTL compatible
1,3. 28-pin dual-in-line package

·----.-..--~---SHARP

.......... - - - . - - - - 245

_-_.........

.._..._._----------_.....-....

LH0082/LH0082A1LH0082B

Z80/Z80AlZ80B Counter Timer Circuit

•

Bl.ock ,Diagra~

Zero Count/
Timeout Output
Clock/Trigger
Input
Internal
Control Logic

System
Data
Bus

Zero Count/
Ti meout Output
Clock/Trigger
Input

Zero Count/
Timeout Output
Clock/Trigger
Input

Clock/Trigger
Input

tIII

., > ><:>

t:>::

U)

-.,.,"

...
C,)

0

;:; G
uu z a
+

>

"

III

.=i

<1'

;jS

t:>::

!III

~

.,......"

'"

 (n·2) TdlEI (lEaf) + TdMI (lEO) + TsIEI (10) + TTL buffer delay, if any.
[B] RESET must be active for a minimum of 3 clock cycles.
Notel: TcC=TwCh+TwCl+TrC+TfC.
Note 2 : Increase delay by 10 ns for each 50 pF increase in loading, 200 pF maximum for data lines, and 100 pF for control lines.
Note 3 : Increase delay by 2 ns for each 10 pF increase in loading, 100 pF maximum.
Note 4 : Timer mode.
Note 5 : Counter mode.
*: All timings are preliminary and subject to change.

--~--'-'--SHARP''''''---------

248

LH0082/LH0082A/LH0082B

Z80/Z80A/Z80B Counter Timer Circuit

•

AC Timing Chart

®

r

I'---CD---..
~ ®

CLOCK
r

... ;:q)

~ "~n~_r~
)l

CSo, CSI

-CE

J

IE-@~

IORQ

Read

](

1--(1)- ~ -®
'\.

~

L

\.
®~

-RO

r-®

®-~

¥
®- ~

'\.
®--iE---

00-07

i-@ f-J

fE--@~

X

CSo, CS,

write

X

k-ev-- ~

-CE

"\L.

¥
.....-4 ®

~'ll

IORQ

/

®--k--oo

)l

Do-Oj

-®

.....-..f- ®
}(

I-@--"'~

-{

Inter
acknowl edge

MI

~@ h

-IORQ

@f
,

I
I

00-07

-

INT

--®l~

I-©
,..".1.
CLK/TRGo-3

(Counter mode)
CLK/TRGo-3
(Timer mode)
ZCITOo-2

=

I

----'

~@

lb.$"

@~@---I

:i

\L

/

@

--1 re-@~

-@+/

f..:--@

lEO

lEI

~

®l =:-I

i-----@

---J

k-~

~@-r

@\.

~

.

~49

t:801Z80AIZ80B Counter Timer Circuit

'LH0082/LH0082A/LHOO82B

Programming

•

(1) Operation mocie select
To select a channel operating mode, write a channel control word having bit 0 changed to 1 in the
channel control register.
D7
Interrupt
enable

Ds

Ds

Prescaler
Mode value

D.
eLK/

D3

D2

Dl

Trigger Time
TRO
mode constant
Reset
edge
mode
selection

Do
1

D3 and Ds are used i~ timer mode only.
• Bit 7 = 0: Disables a channel interrupt.
• Bit 7 = 1: Enables a channel interrupt each
time the down-counter counts down to zero.
No interrupt is produced even with bit 7 as 1,
after the counter has counted down to zero
with bit 7 as O.
• Bit 6 = 0: Selects the timer mode, having the
prescaler output as the down-counter clock.
The timer's period comes in te. P. TC. Where
te represents system clock period, P has 16
or 256 (divisional scale by the prescaler), and
TC means an 8-bit programmable time constant (max. 256).
• Bit 6 = 1: Selects the counter mode, having the
external clock (CLK input) signal as the downcounter clock. The prescaler is not used.
• Bit 5 = 0: ,Used for the timer mode only. The
'prescaler divides the system clock into 16 sections.
.Bit 5 = 1: Used for the timer mode only. The
prescaler divides the system clock into 256
sections.
• Bit 4 = 0: Starts the timer operation at the trigger input falling edge in the timer mode. In the
counter mode, the down-counter comes on at
the clock input rising edge.
• Bit 4 = 1: Starts the timer operation at the trigger input rising edge in the timer mode. In the
counter mode, the down-counter comes on at
the clock input rising edge.
• Bit 3 = 0: Effective in the timer mode only.
With bit 1=1, the timer starts at the rising
edge of the machine cycle T2 which is next to
the write cycle of a time constant. With bit
1 =0, the timer starts at the rising edge of the
machine cycle Tl which is next to the write cycle of this control information .
• Bit 3 = 1: Effective in the timer mode only. The
timer starts by an external trigger input that
is given after the rising of the machine cycle
T2 next to the write cycle of a time constant.

250

•

•

•
•

The operation starts at the second clock rising
if the trigger input meets the set-up time, and
at the third clock rising if It does not. If an external trigger input is given before writing a
time c,onstant the' condition of bit 3 = 0 is
caused.
Bit 2 = 0: Indicates that there is no time constant written after the channel control word.
This bit cannot be 0 for the channel control
word to be immediately given when the channel is reset.
Bit 2 = 1: Indicates that there is a time constant
written after the channel control word. When
a time constant is written during a downcounter operation, the new constant is set into
the time constant register. But the counter
keeps on counting. Once the counter counts
zero, the new constant is available to use.
Bit 1 = 0: The channel acts as a down-counter.
Bit 1 = 1: Stops the operation as a down-counter. With bit 2 = 1, the operation restarts after
a time contant is written.
With bit 2 = 0, the channel does not act until a
hew control word is given.

(2)

Time constant programming

An 8-bit time constant is written into the time
constant register, following the channel control
word with bit 2 = 1. "00" (hexadecimal) indicates
the time constant 256.
Do
07
Os
Os
0,
TC7

(3)

I TCs I TCs

lTC,

TCa

TC2

TCI

TCo

Interrupt vector programming

If the Z-80 CTC has one or more interrupts enabled, it can supply interrupt vectors to the Z-80
CPU. To do so, the Z-80 CTC must be pre-programmed with the most-significant five bits of the
interrupt vector. Programming consists of writing
a vector word to the 110 port corresponding to the
Z-80 CTC Channel O. Note that Do of the v~ctor
word'is always zero, to distinguish the vector from
a channel control word. Dl arid D2 are not used in
programming the vector word. These bits are sup- ,
plied by the interrupt logic to identify the channel
requesting interrupt service with a unique interrupt vector. Channel 0 has the highest priority.

Z80/Z80AlZ80B Counter Timer Circuit

D6
V6

Dz
0
0
1
1

•

D,
0
1
0
1

D,

Ds
Vs

D3

Dz

V3

v,

D,

LH0082/LH0082A1LH0082B

and CSo selects the channel to be read. Ml must be
High to distinguish this cycle from an interrupt
acknowledge. No additional wait states are allowed.
(3) Interrupt acknowledge timing
Fig. 3 shows interrupt acknowledge timing. After an interrupt request~e Z-80 CPU sends an
interrupt acknowledge (Ml and IORQ). All channels are inhibited from changing their interrupt request status when Ml is ~tive-about two clock
cycles earlier than IORQ. RD is High to distinguish
this cycle from an instruction fetch.
The CTC interrupt logic determines the highest
priority channel requesting an interrupt. If the
CTC interrupt enable input. (lEI) is High, the high·
est proiority interrupting channel within the CTC
places its interrupt vector on the data bus when
IORQ goes Low. Two wait states (TWA) are automatically inserted at this time to allow the daisy
chain to stabilize. Additional wait states may be
added.
(4) Return from interrupt cycle
If a Z-80 peripheral has no interrupt pending
and is not under service, then its lEO = lEI. If it has
an interrupt under service (i.e.,it has already interrupted and received an interrupt acknowledge)
then its lEO is always Low, inhibiting lower priority devices from interrupting. If it has an interrupt
pending which has not yet been acknowledged, lEO
is Low unless an "ED" is decoded as the first byte
of a 2-byte opcode. In this case, lEO goes High until the next opcode byte is decoded, whereupon it
goes Low again. If the second byte of the opcode

Do
Vo

Channel
0
1
2
3

Timing

(1) Write cycle timing
Fig. 1 shows write cycle timing for loading control, time constant or vector words.
The CTC does not have a write signal input, so it
generates one internally when the read (RD) input
is High during T,. During T, IORQ and CE inputs
are Low. Ml must be High to distinguish a write
cycle from an interrupt acknowledge. A 2-bit binary code at inputs CSt and CSo selects the channel
to be addressed, and the word being written is
placed on the Z-80 data bus. The data word is
latched into the appropriate register with the rising edge of clock cycle T3.
(2) Read cycle timing
Fig. 2 shows read cycle timing. This cycle reads
the contents of a down-counter without disturbing
the count.
During clock cycle T2, the Z-80 CPU initiates a
read cycle by driving the following inputs Low: RD,
IORQ, and CEo A 2-bit binary code at inputs CSt

Tl

CLOCK
~

ru ~ ~rurL
T2

T3

X

Channel address

X

\

IORQ

I

RD
Ml

Input

I

I

I

Fig. 1 Write cycle timing
---~"'-'-----SHARP--'-----'-

251

LHOO82/LH0082A/LH0082B,

Z801Z80A/Z80B Counter Timer Cifc:uit

was a "4D," then the opcode was an RETI instruc~
tion.
After an' "ED" opcode is decoded, only the
peripheral device which 'has interrupted and is
currently under service has its IEI High and its
, lEO Low. This device is the highest-priority device

in the daisy chain that has received an interrupt
acknowledge. All other perjpherals have IEI' '" lEO. '
If the next opcode byte decoded is "4D", this
peripheral device resets its "interrupt under service" condition.

CLOCK

Channel address

Ml

0 0 -0 7

Output

Fig_ 2 Read cycle timing

Last T
state

CLOCK

---01

Tl

T2

Tw·

T.

n-l\....J ~ rL ~ ~ ~ ru
11

\

IORQ

- ---- ----

--- --- J

L ----

lEI

- ""\

,....-

II

It

Ml

lEO

Tg

Tw·

--

--~

-,

--- --- ~-U
r----

-h

Vector

I

00- 0 7

I

Fig. 3

Interrupt acknowledge timing

. - - . - - - - - - - - - - - $ H A R P . - - - - - . - . . - . .......... ~---­
25,2
\

LH0082/LH0082A/LH0082B

Z80/Z80AlZ80B Counter Timer Circuit

Tl

T.

Tl

T2

T2

T3

Fig. 4

Return from interrupt cycle

T3

T.

Tl

CLOCK
Ml
RD
Do-D7
lEI
lEO

CD

Daisy chain prior to interrupt
During service

®

When Channel 2 requests interrupt and receives ackno~ledge.
During service

,®

When Channell requests interrupt and receives acknow ledge.
In this case, Channel 2 service is discontinued temporarily.

®

When Channell service is completed and RETI instruction is executed.
In this case, Channel 2 service is restarted.

®

When Channel 2 service is ~ompleted and RETI instruction is executed.

Fig. 5

Daisy-chain interrupt service

253

LH0082/LH0082A/LH0082B

Z80/Z80A/Z80B Counter Timer Circuit

(5)

(6) Counter operation/timer operation

Daisy-chain interrupt service

In the counter mode, the CLK/TRG pulse input
decrements the down-counter. The trigger is asynchronous, but the count is synchronized with CLK.
For the decrement to occur on the next rising edge
of CLK, the trigger edge must precede CLK bya
minimum lead time. In the timer mode, a CLK/TRG
pulse input starts the timer on the second succeeding rising edge of CLK. The trigger pulse is asynchronous, and it must have a minimun width. A
minimun lead time (210 ns) is required between the
active edge of the CLK/TRG and the next rising
edge of CLK to enable the prescaler on the following clock edge.

Fig. 5 shows a typical nested interrupt order
with the CTC. Channel 2 first requests an inter·
rupt to be serviced. If the higher-priority Channel
1 requests an interrupt while Channel 2 is in service, the Channel 2 service is interrupted and
Channell is serviced instead. Now the Channell
service routine has been completely executed, an
RETI instruction can be given to indicate that
Channel 1 has been serviced. At this moment,
Channel 2 will be in service again.

CLOCK

CLK

~

L

/

\

Counter mode
Down counter

I

ZC/TO

/

\

Zero count

\

CLOCK

TRG

/

Prescaler

Fig. 6

254

\

I

Start operatig

Counter operation/timer operation

Timer mode

Z80/Z80A Direct Memory Access

LH0083/LH0083A

LH0083/LH0083A
•

Description

•

ZSOIZSOA
Direct Memory Access

Pin Connections

The Z80 product line is a complete set of microcomputer components, development systems and
support software. The Z80 microcomputer component set includes all o'{ the circuits necessary to
build high-performance microcomputer systems
with virtually no other logic and a minimum number of low cost standard memory elements.
The LH0083 Z80 DMA (Z80 DMA for short below) is a powerful and versatile device for controlling and processing of data transfers. Its basic
function of managing CPU-independent transfers
between two ports is augmented by an array of features that optimize transfer speed and control with
little or no external logic in systems using an 8-or
16-bit data bus and a 16"'bit address bus.
Transfers can be done between any two ports
(source and destination), including memory-to-I10,
memory-to-memory, and I10-to-I10. Dual port
addresses are automatically generated for each
transaction and may be either fixed or incrementing/
decrementing. In addition, bitmaskable byte searches
can be performed either concurrently with transfers
or as an operation in itself.
The LH0083A Z80A DMA is a high speed version which can operate at the 4MHz system clock.

BAO 13
BAI 14
BUSRQ 15

CE/WAIT

Top View

•

Features

1. Transfers, searches and search/transfers in
byte-at-a-time, burst or continuous modes
2. Cycle length and edge timing can be programmed
3. Dual port addresses generated for memoryto-JlO, memory-to-memory, or I10-to-I10 operations Adderess may be fixed or automatically incremented/decremented
4. Next-operation loading without disturbing current operations via buffered starting-address

5.
6.
7.
8.
9.
10.

registers and an entire previous seQuence can
be repeated, automatically
Extensive programmability of functions CPU
can read complete channel status
Vectored daisy chain priority interrupt logic
Single + 5V power supply and single phase
clock
TTL-compatible inputs and outputs
40-pin dual-in-line package
N-channel silicon-gate process

.-.-----,---SHARP----------

255

l

..........,.....................................................................Z-80/Z80A Direct Memory Access

LH0083/LH0083A

,

•

Block Diagram
•...:0:.::;

;; ;; u"
0

l/')

+
u
u

:>

0

-'"
E

'"

>.
Ul

7

Bus Acknowlege In
Bus Acknowlege Out
Interrupt 'Request
Interrupt Enable In
Interrupt Enable Out

Interrupt
'and Bus
Priority
Logic

-Plllse
, Logic

Byte
COllnter

Port A
Address

System
Address
Bus

Syste'm Data Bus

Machine ,Cycle 1
I/O ReqQest
Memory Request
Read

256

Bus
Control
Logic

Control
and
Status
Registers

Byte
Match
Logic

Port B
Address

,

Z80/Z80A Direct Memory Access

•

LH0083/LH0083A

Pin Description
Ao-A'5

Pin

Meaning
Address bus

Do -D 7

Data bus

--

BAI

--

BAO

BUSRQ

110
3-state 0
Bidirectional
3-state

Bus acknowledge in

I

Bus acknowledge out

0

Bus request

Open drain, 0

CE/WAIT

Chip enable

I

CLOCK

System clock

I

Machine cycle one

I

---

-

Ml

-IORQ

Input/output request

Bidirectional
3-state

Function
System address bus.
System data bus.
Active "low". Used to form a bus priority- interrupt
daisy-chain.
Active "low". U sed to form a bus priority- interrupt
daisy-chain.
Active "low". Active when controlling the bus.
Active "low". Acts as CE when the CPU accesses the
DAM, and as WAIT when the DAM is the bus master.
Standard 280 system clock used for internal synchro·
nization signals.
Active "low". Indicates that CPU is acknowledging an in·
-terrupt, when both Ml and IORQ are active.
Active "low". Transmits and receives data from the CPU
as an input line. Acts as 10RQ for another device as an
output line. Indicates that the CPU is acknowledging an
-interrupt, when both IORQ and Ml are active.
Active "low". Requests a transfer from or to memory
with the DMA as a bus master.
Active "high". Used to form a priority-interrupt
,
daisy-chain.
Active "low". Used to form a priority-interrupt
daisy-chain.
Active "low". Active when requesting an interrupt. Can
also generate pulses.
Active "low". Reads data from the CPU as an input line.
Acts as RD for another device as an output line.
Active "low". Writes data from the CPU as an input line.
Acts as WR for another device as an output line.
With the DMA as a bus master, starts DMA operation
when active, and stops it when not active.
-

-MREQ

3-state 0

lEI

Interrupt enable in

I

lEO

Interrupt enable out

0

----

INT/PULSE
-

RD

-

-

Memory request

Interrupt request/pulse
Read

WR

Write

RDY

Ready

Open drain, 0
Bidirectional
3-state
Bidirectional
3-state
I

----------SHARP-.--..-.-----

257

Z80/Z80A ,Direct Memory Access

•

LH 0083/LH0083A

Absolute Maximum Ratings
Parameter
Input voltage
Output voltage
Operating temperature
Storage temperature

•

Symbol
VIN
VOUT

T oDe
Tstg

Ratings
-0.3-+7
-0.3-+7
0-+70
-65-+150

Unit
V
V
·C
·C

(Vce=5V±5%, Ta=0-+70·C)

DC Characteristics
Clock
Clock
Input
Input

Parameter
input low voltage
input high voltage
low voltage
high voltage

Symbol

Output low voltage

VOL

Output high voltage

Vall

Current
consumption

I Z80 DMA

I Z80A DMA

Input leakage current
3 -state output leakage current
3-state output leakage current
Data bus leakage current in
input mode

•

Conditions

VILe
VIlle
VIL
VIII

Icc

I ILl I
I lLOII I
I lLOL I
I ILD I

IOL =3.2mA for BUSREQ
IOL =2.0 mA-for all others
IoH =-250pA
t,=400ns
tc= 250ns

MIN.
-0.3
Vee- 0 .6
-0.3
2.0

O~VIN~Vee

VouT=2.4V
VOllT =O.4V

-

MAX.
0.45
5.5
0.8
5.5

Unit
V
V
V
V

0.4

V

150
200
10
10
10

V
mA
mA
pA
pA
pA

10

pA

2.4

-

OV~VIN~VCC

(f=IMHz, Ta=25·C)

Capacitance
Parameter
Clock capacitance
Input capacitance
Output capacitance

TYP.

Symbol

!

CCLOCK
CIN
COUT

Conditions
;Unmeasured pins returned
to ground

MIN.

TYP.

MAX.
35
5
10

Unit
pF
pF
pF

-~------SHARP-------'-

258

Z80/Z80A Direct Memory Access

•

LH0083/LH0083A

AC Characteristics
(1) Acting as CPU peripheral (inactive state)
No.
1
2
3
4
5
6
7
8
9
10
II
12
13
14

15
16
17
18
19
20
21
22

Parameter
Clock cycle time
Clock width (high)
Clock width (low)
Clock rise time
Clock fall time
Hold time for any specified setup time
IORQ, WR, CE ! to clock t setup time
RD ! to data output delay
Data in to clock t setup (WR or Ml)
IORQ ! to data out delay (INT A cycle)
RD t to data float delay (output buffer disable)
lEI! to IORQ ! setup (INT A cycle)
lEI t to lEO t delay
lEI! to lEO ! delay
Ml ! to lEO ! delay
(interrupt just prior to Ml ! )
Ml ! to clock t setup
MIt to clock ! setup
RD ! to clock t setup (Ml cycle)
Interrupt cause to INT ! delay
(INT generated only when DMA is inactive)
BAI t to BAO t delay
BAI ~ to BAO ~ delay
RDY active to clock t setup time

Symbol
TcC
TwCh
TwCl
TrC
TfC
Th
TsC(Cr)
TdDO(RDf)
TsWM(Cr)
TdCf(DO)
TdRD(D2)
TsIEI(IORQ)
TdIEOr(lElr)
T dIEOf(IElf)

280 DMA
MIN.
MAX.
400
4000
170
2000
170
2000
30
30
0
280
500
50
340
160
140
210
190

TdMl(IEO)
TsMlf(Cr)
TsMlr(Cf)
TsRD(Cr)

280A DMA
MIN.
MAX.
250
4000
110
2000
2000
110
30
30
0
145
380
50
160
110
140
160
130
190

300
210
20
240

90
-10
115

Unit
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns

Tdl(INT)

500

500

ns

TdBAlr(BAOr)
TdBAIf(BAOf)
TsRDY(Cr)

200
200

150
150

ns
ns
ns

150

100

Note : t Rising edge, ! Falling edge.
Note 1: Negative minimum setup values mean that the first-mentioned event can come after the second-mentioned event.

--~'--""-'--SHARP'--------

259

.......- ....... ............,..............-.. ........

Z80/Z80A~ Direct Memory Access

---.--.

~

CLK
CE. IORQ. WR.

RD

MI
lEI

lEO
INT
Interrupt state

I

_________F@).JI
-----+I----~
.

:: ~1~---(-@~)----;d~---RDY

~-@
~
_
Inactive

Acting as CPU peripheral (Inactive state)

260 .

......

,... LH0083/LH0083A"

..-.-..

~

Z80/Z80A Direct Memory Access.

LH0083/LH0083A

(2)

Acting as bus controller (active state)

No.

Parameter

Symbol

1
2
3
4
5
6
7
8

Clock cycle time
Clock width (high) .
Clock width (low)
Clock rise time
Clock fall time
Address output delay
Clock t to address float delay
Address to MREQ ~ setup (memory cycle)
Address stable to IORQ, RD, WR ~ setup
(110 cycle)
RD, WR t to addr. stable delay
RD, WR t to addr. float delay
Clock ~ to data out delay
Clock t to data float delay (write cycle)
Data in to clock t setup
.(read cycle when rising edge ·ends read)
Data in to clock ~ setup
(read cycle when falling edge ends read)
Data out to WR ! setup (memory clcle)
Data out to WR ~ setup (110 cycle)
WR t to data out hold time
Hold time for any specified setup time
Clock! to MREQ ! delay
Clock t to MREQ t delay
Clock ~ to MREQ t delay
MREQ low pulse width
MREQ high pulse width
Clock t to IORQ ! delay
Clock t to IORQ t delay
Clock! to IORQ t delay
Clock t to RD ~ delay
Clock! to RD ~ delay
Clock t to RD t delay
Clock ~ to RD t delay
Clock t to WR ~ delay
Clock ~ to WR ~ delay
Clock t to WR t delay
Clock ~ to WR t delay
WR Low pulse width
WAIT to clock ~ setup
Clock t to BUSREQ delay
Clock t to IORQ, MREQ, RD, WR float delay

TcC
TwCh
TwCl
TrC
TfC
TdA
TdC(AZ)
TsA(MREQ)

9
*10
*11
12
*13
14
15
*16
17
*18
19
20
21
22
23
*24
25
26
*27
28
29
30
31
32
33
34
35
36
37
38
39
Note
Note
, Note
Note
Note

:
1:
2:
3:
4:

(Vco=5V±5%, Ta=0-+70"C)
Z80 DMA
MIN.
MAX.
400
180
2000
180
2000
30
30
145
110
(21+(5)-75

Z80A DMA
MAX.
MIN.
250
110
2000
110
2000
30
30
110
90
(2)+(5)-75

Unit
ns
ns
ns
ns
ns
ns
ns
ns

TsA(IRW)

(1)-80

(1)-70

ns

TdRW(A)
TdRW(AZ)
TdCf(DO)
TdCr(Dz)

(3)+(4)-40
(3)+(4)-60

(3)+(41-50
(3)+(4)-45

ns
ns
ns
ns

230
90

150
90

TsDI(Cf)

50

35

ns

TsDO(WfM)

60

50

ns

4 ==
;;

TsDO(WPI)
TsDO(WPI)
TdWr(DO)
Th
TdCf(Mf)
TdCf(Mr)
TdCf(Mr)
TwMI
TwMh
TdCr(If)
TdCr(lr)
TdCr(Ir)
TdCr(Rf)
TdCr(Rf)
TdCr(Rr)
TdCr(Rr)
TdCr(Wf)
TdCf(Wf)
TdCr(Wr)
TdCf(Wr)
TwWl
TsWA(Cf)
TdCr(B)
TdCr(lz)

(1)-210
100
(31+(4)-80
0

(1)-170

100
(3)+(4)-70
0
100
100
100

(1)-40
(2)+(51-30

85
85
85
(1)-30
(21+(3)-20

90
100
110
100
130
100
110
80
90
100
100
(1)-40
70

75
85
85
85
95
'85
85
65
80
80
80
(1)-30
70

150
100

100
80

ns
us
us
fis
ns
us
ns
ns
ns
us
ns
us
ns
ns
ns
us
ns
ns
us
us
ns
us
us
ns

t Rising edge. ~ Falling edge
Numbers in parentheses are other parameter numbers in this table; their values should be substituted in equations.
All equations imply DMA default (standard) timing.
Data must be enabled onto data bus when RD is active.
Asterisk (*) before parameter number means the parameter is not illustrated in the AC Timing Diagrams.

26f

=

Lti0083/ LH0083A

Z8Q/Z80A Direct Memory Access

..-,,-,,-,,,,,,,,,,,

..~---;.,.~""",,,--,,,,,,,,,,,,,,-,-,-,,,,,,

'CLK;

DO-D7{ Input
Output

--~~--#-~---4+-----+---~

RD
WR

BUSR

Acting as bus controller (active state)

•

Prpgramming

The Z-80 DMA has two programmable fundamental states_
• an enabled state, in which it can gain control
of the system buses and direct the transfer
of data between ports, and
• a disabled state, in which it can initiate neither
bus requests nor data'transfers. When the
DMA is powered up or reset by any means,
it is automatically placed into the disabled
state.

(1)

Reading

The Read Registers (RRO-RR6) are read by the
CPU by addressing the DMA as an 110 port using
an Input instruction. The readable bytes contain
DMA status, byte-counter values, and port addresses since the last DMA reset. The registers are always read in a fixed sequence beginning with RRO
and. ending with RR6.

•

Read Register 0

T~O
O~I
t L: =D.MAS;;~:: ::~RED

D7 D6 D5 D. D3 D2 Dl Do

I Xlix

I

XI

I

L O = READY ACTIVE
.
O=INTERRUPT PENDING
O=MATCH FOUND
.
O=END OF BLOCK
~--------------INTERRUPT PENDING

•

Read Register 1

~I~I~I~~I~I~I~~I~~' BYTE COUNTER
(LOW BYTE)

•

Read Register 2

r--"TI__I'--"-I-TI'--I'--"-I--'--'1 'BYTE

CO UNT E R
(HIGH BYTE)

•

Read Register 3

,....-...--r--r-,---rr-r-...,.."

PORT A AD DRES S

L-..,I--'-.....l..~~~J..-~-' COUNTER (LOW BYTE)

•

Read Register 4
1 I 1
1

I-.l-...I....-'---'---I__"--...L.......I

PORT A ADDRESS
COUNTER (HIG H B YT E)

.-,------------.--..-SHARP-----.-.,.-.-.-.-.--

262

Z80/Z80A Direct Memory Access

•

Read Register 5

•

r-r--r---r-~"-""T'"""--' PO RT B AD D RE S S
COUNTER (LOW BYTE)

I

•

LH0083/LH0083A

Wr.ite Register 2

D, D6 Ds D. D3 D2 D, Do'
I 0 I I I I I 0 I 0 I 0 [ BASE REGISTER
BYTE
O=PORT B IS MEMORY
l=PORT B IS I/O
o =PORT B ADDRESS DECREMENTS
1 =PORT B ADDRESS INCREMENTS
o
=PORT B ADDRESS VARIABLE
1
=PORT B ADDRESS FIXED

1

I

Read Register 6

I PORT B ADDRESS
L..-...L.........L-~......L--J_J..-............. COUNTER (HIGH BY1IE)
(2) Writing
Control or command bytes are written into one
or more of the Write Register groups (WRO-WR6)
by first writing to the base register byte in that
group. All groups have base registers and most
groups have additional associated registers. The
associated registers in a group are sequentially
accessed by first writing a byte to the base register
containing register-group identification and pointer bits (I, s) to one or more of that base register's
associated registers.
•
Write Register 0

~-r-'-r--r--r--'-'---.-..,

bo

J=CYCLE LENGTH=4
l=CYCLE LENGTH =3
1 O=CYCLE LENGTH=2
1 1 =DO NOT USE
O=IORQ ENDS 112 CYCLE EARLY
0= MREQ ENDS 1/2 CYCLE EARLY
0= RD ENDS 112 CYCLE EARLY
0= WR ENDS 1/2 CYCLE EARLY

•

Write Register 3
D, D6 Dj D. D3 D2 D, Do BASE
I I I I I 0 I 0 [ REGISTER

D, D6 Ds D. D3 D2 D, Do
[ 0
I I I I [ BASE REGISTER BYTE
DO NOT USE
b0 61= TRANSFER

I 1 I

Jl

I

I

I

I

I

•

[ PORT A STARTING ADDRESS

I

I

I

I

I

1 J PORT A STARTING ADDRESS

I

I

I

I

I

J BLOCK LENGTH
(LOW BYTE)

[ BLOCK LENGTH

(HIGH BYTE)

Write Register 1

D, D6 Ds D. D3 D2 D, Do
I I I
1 I 0 I 0 I BASE REGISTER BYTE

I0 I

I

b=PORT
l=PORT
o =PORT A
1 =PORT A
= PORT A
=PORT A

o
1

I

I

I

I

A IS MEMORY
A IS I/O
ADDRESS DECREMENTS
ADDRESS INCREMENTS
ADDRESS VARIABLE
ADDRESS FIXED

[ J

b

o
1
1

BYTE
ON
MATCH

[

I

I

I

I

I

I

I

I MASK BYTE
(0= COMPARE)

[

I

I

I

I

I

I

I

[MATCH
BYTE

(LOW BYTE)
(HIGH BYTE)

I

1
l=STOP

DMA ENABLE =1
INTERRUPT ENABLE=l

1 0= SEARCH
1 1= SEARCH/TRANSFER
O=PORT B --->PORT A
l=PORT A--->PORT B

I

PORT B VARIABLE

L..-,-..J..,.....L---'---L..,..-J-.-.L..,-..J..,...J TIMING BYTE

~?~1t i'f-lJABLE

J=CYCLE LENGTH=4
l=CLCLE LENGTH =3
O=CYCLE LENGTH =2
l=DO NOT USE

O=IORQ ENDS 112 CYCLE EARLY
O=MREQ ENDS 112 CYCI;E EARLY
O=RD ENDS 112 CYCLE EARLY
O=WR ENDS 112 CYCLE EARLY

•

Write Register 4
D, D6 Ds D. D3 D2 D, Do
0 1 I BASE
1 1
REGISTER
BYTE
BY TE=

ll1 J

b b
1
0
1

CONTINU OUS= 0
BU RST= 1
DO NOT PROG RAM= 1

L

[

[

I

I

I

I

I

~

I

PORT B STARTING
ADDRESS (LOW BYTE)'

I PORT B STARTING

ADDRESS (fiG" BYTE)

0

j

j

INTERRUPT CONTROL BYTE

1=INTERRUPT ON
INTERRU PT
MATCH
ON R DY=l
l=INT ERRUPT AT
STATUS AF FECTS
EN D OF BLOCK
VE CTOR=l
l=PULSE GENERATED
[
I I I I I I r [ PULSE CONTROL
BYTE
INTERRUPT
[
[
I I
VECTOR'
I
I
VECTOR IS AUTOMATICALLY { 0 o = INTERRUPT ON RDY
ON MATCH
MODIFIED AS SHOWN
9 1o == INTERRUPT
INTERRUPT ON END
ONLY IF" STATUS
1
OF BLOCK
AFFECTS VECTOR" BIT IS SET i
1 = INTERRUPT ON MATCH
AND END OF BLOCK

!

263

.---....--AIIIIIIiII'-............
. Z80/Z80A Direc.t. Memory Ac.cess

. . ....-

LH0083/L:H0083A

-~-~-

•

~

Write -Register 5

....:...&..---I.-r-....,..~...,L...;.......~~

BASE REGIS TER
BYTE
O=REApy ACTIVE LOW /
'. 1 == READY ACTIVE HIGH
O'=CE ONLY
l=CE!WAIT MULTIPLEXED
STOP RESTART ON END
O=STOP ON END OF BLOCK
l=AUTO REPEAT ON END ,QF BLOCK

•

Write Register 6

D7 D6 Ds D. D3 D2 DJ Do
I1I I I I I I1I1
C3

I

I

I

I

I

1

0

0

0

0

0

0

0

1

I BASE

REGISTER BYTE

INTERRUPT LINE RESET, INTERRUPT REQUEST AND BUS REQUEST DISABLE,
INTERNAL READY STATE CLEAR, CE MULTIPLEX DISABLE, AUTOMATIC REPEAT
STOP
PORT A TIMING TOZ80 STANDARD TIMING

C7

1

CB

10010

PORT B TIMING TO ZIlO STANDARD TIMING

CF

1

0

BOTH PORTS START ADDRESS LOAD, BYTE CaNTER CLEAR

0

1

1

D3

1

0

1

0

0

ADDRESS CONTINU):': FROM CURRENT VALUE, BYTE COUNTER CLEAR

AB

o

1

0

1

0

INTERRUPT ENABLE

AF

o

1

011

INTERRUPT DISABLE

A3

o
o
o
o
o
o

1

0

0

0

0

0

0

1

INTERRUPT CIRCUIT RESET AND DISABLE (SAME AS RETI) , INTERNAL READY
STATE CLEAR
DMA ENABLE} EFFECTIVE FOR ALL SECTIONS BUT INTERRUPT.

87
83
A7
BF
B3
88
B7
BB

o
o
o

0

0

0

0

DMA DISABLE NOT ALL FUNCTIONS RESETTABLE, HOWEVER

1

0

0

1

READ SEQUENCE START FOR 1ST REGISTER DESIGNATED BY READ MASTER
REGISTER
.
STATUS REGISTER READ SETUP. FROM STATUS REGISTER FOR NEXT READ

1·1

1

1

1

1

0

0

0

0

1

0

1

101

ENABLE AFTER RETI. BUS REQUEST ONLY AFTER RETI EXECUTION

1

1

READ MASK FOLLOWS

I 0 I

1

I

INTERNAL READY STATE TO BE FORCEDLY CLEAR OF "RDY" PIN (USED. FOR
DMA BETWEEN MEMORIES NEEDING NO RDY SIGNAL. NOT OPERATIVE IN "BYTE
.MODE")
REINITIALIZE. END-OF-BLOCK BIT CLEAR

0

I

I

II

I

! I READ MASK (I=ENABLE)

STATUS BYTE
BYTE COUNTER
1 1'-------BYTE
COUNTER
fL'_ _ _

L _L_-_-_-_-_-=--=--=--=--=--=PORT
L_ _ _ _ _ _ _ _ PORT
PORT
'-----------PORT

264

A
A
B
B

(LOW 'BYTE)
(HIGH BYTE)
ADDRESS 1LOW BYTE)
ADDRESS HIGH BYTE)
ADDRESS LOW BYTE)
ADDRESS HIGH BYTE)

Z80/Z80A Direct Memory Access

•

Timing

(1) Inactive state timing (DMA as CPU
.

Peripheral)

In its disabled or inactive state, the DMA is
addressed by the CPU as an I/O peripheral for
write and read (control and status) operations.
Write timing is illustrated in Fig. 1.
Reading of the DMA's status byte, byte counter
or port address counters is illustrated in Fig. 2.

(2) Active state timing (DMA as BUS

. LH0083/LH0083A

wait cycle between T2 and T3. If the CE/WAIT line
is programmed to act as aWAIT line during the
DMA's active state, it is sampled on the falling edge
of Tz for memory tr~nsactions a~d the falling edge
of Tw for I/O transactions. If CE/W AIT is Low
during this time another T -cycle is added, during
which the CE/W AIT line will again be sampled.
The duration of transactions can thus be indefinitely extended.

CLOCK~

Controller)
(i)

Default read and write cycles

By default, and after reset, the DMA's timing of
read and write operations is exactly the same as
the Z-80 CPU's timing of read and write cycles for
men:lOry and 110 peripherals, with one exception:
during a read cycle, data is latched on the falling
edge of T3 and held on the data bus across the
boundary between read and write cycles, through
th'e end of the following write cycle.
Fig. 3 illustrates the timing for memory to-I/O
port transfers and Fig. 4 illustrates IIO-to-memory
transfers. Memory-to-memory and I/O-to-I/O
transfer timings are simply permutations of these
diagrams.
The default timing uses three T -cycles for memory. transactions and four T -cycles for 110 transactions, which include one automatically inserted

W:Q
Do-D7

-hLd::::::
-+-++---+-.. .cb

Fig. 1

CPU-DMA write cycle timing

Fig. 2

CPU-DMA Iread cycle timing

.---'---.---SHARP....--.--.--.-.~--

265

LH00J33!LH0083A

Z60!Z80A Dire.ct Memory Access
.................
....,.....__....,_ _ _....,.-r.__...

__

-.:~....,.-

I+-- Memory
TJ

.' CLOCK

-'--

Read

n-~

I/O Write
' Tw

. . . ~ ~r-Lr-~ L

T2

X

Tz

Tl

T3

,....

T3

L

X

MREQ

\

I

RD

\

J

Read {

IORQ
: Write

{

r

~

1\

_
WR

rr--

\

Do-D7

l)-

\

-- ---- ·7 r- ---- ---- --- 7 ..,- ---- r-... ---1---- -'
-- ---""1---- --\

\

oJ

Fig. 3 Transfer from memory to 1/0 device

Memory Write

I/O Read
Tl

CLOCK

Tw

T3

Tl

Tz

--;0

T3

- rLlLr- ~n- ~r--~~
- X
X
I'X
-

_ {IORQ
,Read .-

RD

T2

'

\

I

\

I

~

l}\

MREQ
Write { _
WR

CE/WAIT

-- ----

----

-- --- ---_. J \

----

\

I

I\..W
------- --T \:
---

Fig. 4 Transfer from 1/0 device to memory

~_.

Z80/Z80A Direct Memory Access

(ii) Variable cycle and edge timing
The
Z-80 DMA's default operation-cycle length for the
source (read) port and destination (write) port can
be independently programmed. This variable-cycle
feature allows read or write cycles consisting of
two, three or four T-cycles (more if Wait cycles
are inserted), thereby increasing or decreasing the
speed of all signals generated by the DMA. ~ddi­
tion, the trailing edges of the IORQ, MREQ, RD and
WR signals can be independently terminated
one-half cycle early. Fig. 5 illustrates this.
In the variable-cycle mode. unlike default timing,
IORQ comes active one-half cycle before MREQ,
RD and WR. CE/W AIT can be used to extend only
the 3 or 4 T-cycle variable memory cycles and
only the 4-cycle variable 110 cycle. The CE/W AIT
line is sampled at the falling edge of T2 for 3-or.
4-cycle memory cycles, and at the falling edge of
T3 for 4-cycle 110 cycles.
During transfers, data is latched~ the clock
edge causing the rising edge of RD and held
through the end of the write cycle.
(iii) Bus requests
Fig. 6 illustrates the bus
request and acceptance timing. The RDY line,
which may be programmed active High or Low, is
sampled on every rising edge of CLK.
If it is found to be active, and if the bus is not in
use by any other device, the following rising edge
of CLK drives BUSREQ low. After receiving BUSREQ the CPU acknowledges on the BAI input
either directly or through a multiple-DMA daisy
chain. When a Low is detected on BAI for two consecutive rising edges of CLK, the DMA will begin
transferring data on the next rising edge of CLK.
(iv) Bus release byte-at-a-time
In Byte at
a Time mode. BUSREQ is brought High on the rising edge of CLK prior to the end of each read cycle
(search-only) or write cycle (transfer and transferl
search) as illustrated in Fig. 7. This is done regardless of the state of RDY.
The next bus request fo!:.l!!e next byte will come
after both BUSREQ and BAI have returned High.
(v) Bus release at end of block
In Burst
and Continuous modes, an end of block causes
BUSREQ to go High usually on the same rising
edge of CLK in which the DMA completes the
transfer of the data block (Fig. 8). The last byte in
the block is transferred even if RDY goes inactive
before completion of the last byte transfer.
(vi) Bus release on not ready
In Burst
mode, when RDY goes inactive it causes BUSREQ
to go High on the next rising edge of CLK after the
completion of its current byte operation (Fig. 9).
The action on BUSREQ is thus somewhat delayed

LH0083/LH0083A

from action on the RDY line. The DMA always
completes its current byte operation in an orderly
fashion before releasing the bus.
By contrast, BUSREQ is not released in Continuous mode when RDY goes inactive.
Instead, the DMA idles after completing the current
byte operation, awaiting an active RDY ~ain.
(vii) Bus release on match
If the DMA is
programmed to stop on match in Burst or Continuous modes, a match causes BUSREQ to go inactive on the next DMA operation, i.e., at the end of
the next read in a search or at the end of the following write in a transfer (Fig. 10). Due to the
pipelining scheme, matches are determined while
the next DMA read or write is being performed.
The RDY line can go inactive after the matching
operation begins without affecting this bus-release
timing.
(Viii) Interrupts
Timings for interrupt acknowledge and return from interrupt are the same
as timings for these in other Z-80 peripherals. (Refer to the Z80 PIO.)
Interrupt on RDY (interrupt before requesting
bus) does not directly affect the BUSREQ line. Instead, the interrupt service routine must handle
this by issuing the following commands.
a. Enable after return from interrupt (RETI)
(Command code 87H)
b. Enable DMA (Command code 87H)
c. An RETI instruction

-.-.-----.-.--SHARP..-......-------

267

Z80/Z80A Direct Memory Access

LH0083lLH0083A

-...r.-_......_ ..- I r - . - . - . - . - . -_ _..._-.:,..-.-.-

CLOCK
Ao-AIS

MREQ

- -

"""\r--.J1'- __ _

-...J,----I-'

~r

T-,--r-T
,, - - I
I

I

RD, WR

,
,
.L_..I_

L._.L_

I

'

~YCLE ~ CYCLE

• 2 CYClE 3
EARLY END EARLY END

'
EARLY END

Fig. 5 Variable cycle and edge timing

CLOCK

-INACTIVE
-B-U-SR-Q-

==~::_j-rt-----1'"'". --t I---+_+-_-+__+-__
I

BAl

__ J I

DMA
INACTIVE

Fig. 6

CLOCK

Bus request and acknowledgement

~~.

_ _ _ _ _ _ _ _ _ _ __

BUSRQ-HI
I
I
I

BAI

DMA
ACTIVE

Fig. 7

268

DMA
ACTIVE

I

i I"'D'M.A

--+-

INACTIVE

Bus clear (byte mode)

Z80lZ80A Direct Memory Access

CLOCK

LH0083lLH0083A

---ILnY

ACTIVE
RDY INACTIVE

L

LAST BYTE
OPERATION--i.......-DMA INACTIVE
BLOCK

r - IN
Fig. 8

End of block bus clear (burst, continuous mode)

ACTIVE
RDY INACTIVE

~.~_ _ _-I-_ _ _ _ _ __

BUSRQ
'- CURRENT BYTE
iOPERATION

Fig. 9

RDY

DMA INACTIVE

No READY bus clear (burst mode)

INACTIVE

BUSRQ --~I-.----i~'~-~I~B~Y~T~E~n~+~l~R~E~A~D~~
BYTE n - + I N MATCH FOUN
READ IN
ON BYTE n

Fig. 10

DMA INACTIVE

Mating bus clear (burst, continuous mode)

------~-----SHARP .. . . . - . - . - . - - - - - -

269

................ -........... -........-..... - . - . . -.........................
l80/l80A/l80B Serial Input/Output Controller

LH0084/84A!84B/85/85A/85B/86/86A/86B

LH0084/LH0084A/LH0084B .
LH0085/ LH0085A/LH0085B Z80/Z80A--:---

Read cycle timing

T2

Tw

T3

T\

CLOCK

CE

Channel address

IORQ
RD
Ml

DAtA

X

Input

Fig. 3 Write cycle timing

278

X

LH011 O/LH011 OA

Floppy Disk Controller

LH0 11 0/ LH0 110A Floppy Disk Controller
•

Description

•

Pin Connections

The LHOllO is a micro-program controlled
Floppy Disk Controller (FDC) designed as one of
the Z80 peripherals.
The LHOllO is fabricated with N-channel sili·
con-gate process technology, and packaged in a
40-pin dual-in-line package.
The LHOllO provides a TTL compatible inter·
face and requires a single + 5V power supply.

06
07
INT

MUXS
ROY
lOX

WP/TRo
VFO

•

Features

1. Can be connected directly to the Z80 CPU bus
• Daisy chain interrupt signal
• Interrupt vector output
• Recognition of the Z80 CPU RETI instruc·
tion
2. DMA or program controlled data transfers
3. Separate clocks for system control and FDD
control.
4. Can be connected to other microprocessors
5. IBM format compatible
• Single-sided, Dual-sided (FM)
Dual-sided double-density (MFM)
• FM: 128,256,512 bytes/sector
MFM: 256, 512,1024 bytes/sector
• 8, 15, 26 sectors/track
6. Can control minifloppies (change the 2MHz
FCLK to a 1MHz clock)
7. Can control 2 dual-sided double-density floppy
disk drives (4 single-sided drives)
8. A wealth of commands including VERIFY
command
*Can be specified as head load or head unload
9. A wealth of error status indicators available
during command processing
10. CRC generation and checking (X16+X12+X5+ 1)
11. Deleted data address mark (DDAM) processing
capabilities
12. Multi -sector processing capabilities
13. Signals generated for adjusting write data
under MFM recording
14. Inner track processing capabilities
15. Stepping speed, head load time and head unload
time after command processing' are program·
mabie

LCT/DIR 11
RS2

lEO
ORQ

FRISTP
RSo

PSL

CLOCK 15
WOA

WG
RRO
IORQ

FCLK

WOW

21 GNO
Top View

16. Interrupt enable and disable are programmable
17. Window inversion is programmable
18. Input/Output is TTL compatible (except for
clocks)

--'--'~--'--"-SHARP . - . - - - - - - - - - - -

279

,

• I'l
.1 ~
I9

N

00
.0

1

to

I

0"

()

7'

I
I

I
I
I

I
en

I

»
N
'C

/1

L

I
I
I
I
I
I'

C"lUl
o CIl

C"l"l
0"0

C

-""~
""'-'"

~C"l

S"

co
....

9

I\)

3
::;;: :0
:0 :0

Write

0

Unit Select .....
Head Load 00
H~ad Select 
Signal ~elect ::
Wmdow'"
Read Raw Data l:l

0

Machine Cycle IRead
Chip Enable
I/O Request

.,. .,.:0

:0

System Data Bus

~ :0

:0 :0

CJ1

CJ1

::;;:

:0
:0 :0
0'>

en

::;;:

:os::
0-'
s::;;0

...,:0
Interrupt Enable In
Data Request
I~terrupt Enable Out
Interrupt Request

..
'I::l

"i

0

"i

9

....
<>

..,....

<:
"" "0z

+
C11

<:

<:>

<:

I;
I

I

I
I
h
I
~
I~

Floppy Disk Controller

•

LH011 O/LH011 OA

Pin Description
Meaning

Pin
Do-D 7

Data bus

110
Bidirectional
3-state

Register select

I

Ml

Machine cycle 1

I

RD

Read cycle

I

Chip enable

I

IORQ

110 request

I

CLOCK

System clock

I

FDC clock

I

lEI

Interrupt enable input

I

IEO
INT

Interrupt enable output.
Interrupt request

DRQ

Data request to DMA

0

Multiplex

0

WP/TRo

Write protect/track zero

I

FLT/TS

Fault/2-side disk

I

FR/STP

Fault reset/step

0

LCT/DIR

Low current/direction

0

RDY

Ready

I

IDX

Index

I

HDS

Head select

0

HDL
US
WG
WDA
RRD

Head load
Unit select
Writing gate
Write data
Read data

0
0
0
0
I

WDW

Window

I

RSo-RS2
-

-

CE

--

FCLK

MUXS

0
Open-drain 0

Function
System data bus
Used to select FDC internal register (RRO-RR6, WROWR7).
Active low. Produced by ANDing Ml and RESET' of
CPU. Active Ml with IORQ causes interrupt.
Active low. Read operations proceed when active.
Active low. Command or data transactions with CPU
,
possible when active.
Active low. Active RD designates read operation; inactive RD designates write operation.
-Interrupt occurs when IORQ and Ml are simultaneously
active.
Standard Z80 system clock is used as internal sync
signal.
2-MHz clock is used for synchronizing FDD control signal(l-MHz clock for mini-floppy control).
Active high. Used to form interrupt priority arbitration
loop circuit (daisy chain).
Active high. Used with IEI to form daisy chain.
Active low. Active when placing interrupt request.
Active high. Data request signal for transactions between FDC and DMA.
Multiplexer select signal.
Active high. WP signal at high MUXS, indicating that
mounted diskette is write-protected. TRo signal at low
MUXS, indicating that the head is positioned at track O.
Active high. FL T signal at high MUXS, indicating fault
status of FDD. TS signal at low MUXS, indicating that
2-side disk is mounted.
Active high. FR signal at high MUXS, resetting fault status of FDD. STP signal at low MUXS, indicating seek.
Active high. Connected to FDD low current input and
direction input. Denotes LCT signal except when seek
command is in effect, becoming high when head selects a
cylinder above track 44. DIR signal during seek command, becoming high when seek direction is toward disk
center (from perimeter).
Active high. FDD ready signal
Active high. Indicates the physical starting point on the
disk track.
With double-sided FDD, low HDS selects head 0 ; high
HDS selects head 1. With single-sided FDD, HDS can be
used as FDD select signal.
Active high. Puts the FDD head in load state.
Active high. Selects FDD unit.
Active high. Write command to FDD.
Active high. Serial data transferred to FDD.
Active high. Serial data from FDD.
Released by VFO circuit, used in separating RRD data
and clock.

------------------SHARP - - - - - - - - - - - -

281

LH011 O/LH011 OA

Floppy Disk Controller

110
0,

Meaning
VFO control,

Pin'
VFO

Function
Active high. Advises lock timing'to VFO'circuit.
Active high. Write correction signal in MFM mode, instructing external write-correction circuit to delay
WDA. Maintains active status in FM mode.
Active high. Write-cortectionsigTIal in MEM mode, in·
structing external write· correction circuit to accelerate
WDA. Maintains active status in FM mode.

,

PSL

Pre·shift

0

P~E

Pre·shift early

0

*Resetting FOC FOC has no reset terminal, but by maintaining Ml at low for more than 2-c1ock lengths when both IORQ and RD,are high,
the FOC's intern~1 reset flag is set and FDC reset is in effect. Reset status can be released by making access to an FOC register.

•

Absolute Maximum Ratings
Parameter
Input voltage
'Output voltage
Operating temperature
Storage temperature

•

Syoibol
VIN
VOUT
T oDr
T st•

Ratings
-0.3-+7
-0.3-+7
0-+70
-55-+150

Unit
V
V
t
t

(V cc =5V±5%, Ta=0-+70t)

DC Characteristics
Parameter
Clock input low voltage
Clock input high voltage
Input low voltage
Input high voltage
Output low voltage
Output high voltage
Input leakage current
Data bus 110 leakage current
Supply current

•

Symbol
VCL
VCH
VIL
VIH
VOL
VOH
I ILl I
I Iz I
Icc

Conditions

MIN.
-0.3'
Vee-0.6
-0.3
2.0

IOL=2.0mA
IOH =-250pA
OsVINsV CC

10
10
170
180

O~VIN~VCC

I LHOllO

I

MAX.
0.45
Vee + 0.3
0.8
Vee
0.4

2.4

LHOllOA

Unit
V
V
V
V
V
V
pA
pA
rnA

(f=IMHz, Ta=25t)

Capacitance
Parameter
Clock input capacitance
Input capacitance
Output capacitance
Input/Output capacitance

TYP.

Symbol
CCLOCK
CIN
COUT

Conditions

MIN.

All pins except the one to be
tested should be grounded.

CliO

MAX.
10
7
10
12

Unit
pF
pF
pF
pF

\

'-~~--------"""SHARP -.-..-.----.-.-~

282

I

Floppy Disk Controller

•

AC Characteristics

(1)

CPU interface
No.
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

LH011 O/LH011 OA

(V cc =5V±5%, Ta"",0-+70t)
Parameter

Clock period
Clock pulse width, high
Clock pulse width, low
Clock rise time
Clock fall time
Hold time
Setup time to clock t under read/write cycle.
Delay time from RD J, to data output under
read cycle.
Data setup time to clock t under write/M1
cycle.
Delay time from 10RQ J, to data output
(interrupt cycle).
Delay time to bus floating.
lEI setup time to IORQ J, (interrupt cycle).
Delay time from lEI t to lEO t.
Delay time from lEI J, to lEO J,
Delay time from M1 J, to lEO J,
(at interrupt before M1 J,)
M1 J, setup time to clock t under INTA/M1
cycle.
RD J, setup time to clock t under read/M1
cycle.
Delay time from FCLK J, to INT output
10RQ J, setup time to clock t under 110
cycle.

Symbol
TcC
TwCh
TwCl
TfC
TrC
Th
TsCE(C)

LH0110
MIN.
MAX.
400
111
170
2000
170
2000
0
30
0
30
0
240

TdRI(DO)
TsDI(C)

500
50

TdIO(DIO)
TdRI(DOs)
TslEl(IO)
TdIEI(JEOr)
TdlEl(IEOf)

LH0110A
MIN.
MAX.
250
111
105
2000
105
2000
0
30
0
30
0
145
380

160

ns

160

ns

110

210
190

160
130

ns
ns
ns
ns

300

190

ns

200

TdMl(IEO)

ns
ns
ns
ns
ns
ns
ns

ns

50
340

Unit

140

TsMl(Cr)

210

90

ns

TsRI(C)

240

115

ns

TdC(INT)
Ts(IO)

300
240

300
115

ns
ns

(1) TcC=TwCh+TwCI +TfC+TrC.
t indicates rising edge, l l~dicates failing edge.

. . - . - . . - ., -.. - - . - . - - S H A R P
. ---------283

LH011 OlLH011 OA

Floppy Disk Coi:Jtroller

(2)

FDD interface
Parameter

No.

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
t

,

FDC clock period, standard floppy disk
FDC clock period, mini-floppy disk
FDC clock pulse width, high
FDC clock pulse width, low
FDC clock rise time
FDC clock fall time
Delay time from FDC clock t
Delay time from FDC clock t
(FDC clock !, in the case of MFM)
Write data pulse width, MFM
Write data pulse width, FM
Step pulse width
Step period
Fault reset pulse width
Delay time from clock t to fulfill IORQ
;
setup time
Data request period, MFM
Data request period, FM
Index pulse width
Read data pulse width
WDW setup time to read data
WDW hold time from read data
Window cycle time, MFM
Window cycle time, FM
Delay time from FDC clock ! to VFO

indicates rising edge,

!

Symbol

LHOllO/LHOllOA
MIN.
TYP.
MAX.

500
1000

TcFC
TwFCh
TwFCI
TfFC
TrFC
TdPS(FC}l

Unit
ns
ns
ns
ns
ns
ns
ns

220
220
30
30
280
.•.

170

TdWDA(FC)

250
500
12

.TwWDA
TwSTP
TcSTP
TwFR.

TcWDW
.•.

TdVFO(FC)

f1.S

ms

12

f1S

230

TdDRQ(FC)

TwIDX
TwRRD
TsWDW(RRD)
ThWDW(RRD)

ns
ns

1

16
32

TcDRQ

ns

ns
f1.S
f1.S

50
100
100
100

f1.S

ns
ns
ns

1
2

. f1.S
f1.S

150

ns

indicates falling edge.

~--.-......-----SHARP -----.--:--------~.-

284

LH011 O/LH011 OA

Floppy Disk Controller

•

AC Timing Diagram
"High" "Low"

Timing test level : CLOCK Vcc-O.6V
OUTPUT
2.0V
, INPUT
2.0V
FLOAT
..:IV

0.45V
O.8V
O.8V
O.5V

CLOCK

CE
RSo-RS2
IORQ

RD

--+--1t
I

----------------'h

®~

i

J

F
!

~---

~--@-

lEI
iEO----+@'---

lEO

-.---------SHARP---------285

-

.

:

Floppy Disk Controller
'_ _ _. . . .a._a._ _

~

t,

LH011 O/LH011 OA
....................-....,._ _....._

FCLK

PSL,PSE

WDA

VFO

DRQ

CLOCK
~--®'--.;..j

WDW

RRD

286

Floppy Disk Controller

•

LH011 O/LH011 OA

Internal Structure

•

The FDC consists of a CPU bus interface,· internal control circuit (microprogram controlled), interrupt control circuit and floppy disk drive (FDD)
control circuit. The interrupt control circuit arbitrates device priority and produces interrupt vectors.
The FDC has the registers:
• Two 8-bit data registers (RRO, WRO)
• Six 8-bit status registers (RRl, RR6)
• Seven 8-bit control registers (WRI-WR7)

FDC Registers
(1)

FDC readout registers

Among the seven FDC readout registers RRORR6, RR3 and RR4 are cleared at the beginning of
each command. The registers have the functions
listed in Table 1.
Table 1

FDC readout register functions

Register
RRO
PRI
RR2
PR3
RR4
PR5
PR6

Function
Data buffer
Control status
DMA control status; FDD control status
Error status, A
Error status, B
Physical track address
Sector address

• Read Register 0 (RRO)

I~I~I~I~I~I~I~I~I

~I- - - - - - B u f f e r register for latching data readout from FDD
• Read Register 1 (RR1)

I D7 I

Ds

I Ds I D. I Ds I Dz I Dl I Do I

~

Head selection }
Unit selection
Correspond to D7-Ds of WR3
Status selection
Deleted data address mark (DDAM) detection
(cleared at beginning of each command)
Seek (remains "l"during command execution)
Error B (ORed bits of RR4)
Error A (ORed bits of RR3)
Command end (set by reading RRl)

• Read Register 2 (RR2)

I D7 I Ds I Ds I D. I Ds I D2 I Dl I Do I

~

DRQ
HDL
MUXS
FLT/TS
WP/TRo

(indicate the status of FDD coutrol signals)

IDX
RDY
FDC ready (remains "0" during command execution)

-~-------SHARP--'-'-""-'------287

Floppy Disk. Controller

. LH011 O/LH011 OA

• Read Register 3 (RR3)

I

D7

I D6 I D5 I

D4

I D3 I

Dz

I

D1

I

Do

I

L Mis~ing data transfer (no data transfer between DRQs)
Mis~ing DAM receptio~

(no DAM reception after ID and sync field

dete~tion)

Missing sync field reception (no sync field reception
within stated bytes after ID detection)
Seek error/i1iconsistency error (TRo=O.after stated number of step pulses sent
by SEEK ZERO command; inconsistency of data dete~ted by VERIFY command)
Write error (FLT=l after writing i\lto FDD)
Fault error (FriD fault status when initiating WRITE.
WRITE WITH DDAM or WRITE ID command)
Write protect error (write-protected status when initiating WRITE.
WRITE WITH DDAM or WRITE ID command)
Not-Ready error (FDD not ready at c~mmand initiation.)

• Read Register 4 (RR4)

I

D7

I

D6

I

Ds

I

D4

I

D3

I

Dz

I

D1

I

Do

I

~

CRC error (data field)
CRC error (ID field)
DDAM error (DDAM detected by READ command)
Undefined record length'(ID field data size is not defined.)
Side error (inconsistent side data in ID field)
Address error (track data in ID field inconsistent with WR4)
Defective track (track data in 10 field is FFH)
Missing ID detection (target 10 remains undetected after 5 lOX receptions)

• Read Register 5 (RR5)

' - - - - - - - Current physical track address .
' - - - - - - - . , - - - - - - - U n u s e d (0)

• Read Register 6 (RR6)
I~I~I~I~I~I~I~I~I

IL-____ Sector address following access
' - - - - - - - - - - - - U n u s e d CO)

Table 2

(2)

FDC writing registers

Among the eight registers WRO-WR7 written in
by CPU, WRl, WR3, WR5 and WR6 do not accept
writing when FDC is busy. Tte registers have the
functions listed in Table 2.

288

Register
WRO
WRI
WR2
·WR3
WR4
WR5
WR6
WR7

FDC write register functions
Function
Data buffer
Command designation
Time setting
Number·of·sectors designation and pin control
Logical track address
Physical track address
Sector address
Interrupt vector

LH011 O/LH011 OA

Floppy Disk Controller

Write Register 0 (WRO)

Write Register S (WRS)

I D7 I D6 1 Ds 1 D.I

I~I~I~I~I~I~I~I~I

[

D3 1 D2 1 D, 1 Do 1
Buffer register for data sent to FFD

L

LSector address to be
accessed (same as RR6)
Urjused

Write Register 1 (WR1)
Write Register 7 (WR7)

L FDC

command
Window inversion (inversion prevented by "0")
Index count (index pulse'count after command
completion until head unloading : 0 for 2 pulses
; 1 for 5 pulses)

I~I~I~I~I~I~I~I~I
[ Interrupt vector (read out at INT A)

MFM/FM
-EIIDI interrupt enable flag

•

Commands

Write Register 2 (WR2)

(1)

L

CD

I D7 1 D6 1 Ds

1 D4 1 D31 D2 1 D, 1 Do 1
[Step rate time
(N ms for value N; 20 ms
for value N=O)

Head load time (4M ms for value M; 64 ms for
value M=O)
(time length is doubled for mini -floppy disk)

Write Register 3 (WR3)

[Number of sectors for
continuous access

HDS
L-------US

}

,

(FDD signal control)

~----------MUXS

Write Register 4 (WR4)

[Track address (seek track address
under SEEK command; track address
in ID field in other commands)
Unused

Write Register S (WRS)

(same as RR5)
Unused

Brief description

SEEK ZERO (0000/1)
Draw the head up to track 00. With command
having LSB=O, task is excuted while retaining the
head unload status; with LSB= 1, it is excuted
while retaining the head load status.
® SEEK (0010/1)
Move the head to specified track. With LSB=O,
task is execused while retaining the head unload
status; with LSB= 1, it is executed while retaining
head load status.
® READ (0100)
Read data from specified sector and transfer
each byte in data section to main system. When
data address mark is DDAM, operation is terminated as DDAM error.
e!) READ DDAM (0101)
Same as READ command, except that address
DAM causes DDAM error, while DDAM does not
cause error.
(§) READ BOTH (0110)
Same as READ command, except that address
mark DDAM does not cause error.
® READ CRC (0111)
Same as READ BOTH, except that data is not
transferred to main system.
(J) VERIFY (1000)
Compare each byte in data section read out from
a specified sector with the corresponding byte of
data received from main system.
® READ ID (1001)
Read out data in ID section of specified track and
transfer each byte to main system.
® WRITE (1010)
Write each byte of data received from main system into specified sector.

-----......-------SHARP--.-.....I.---------289

LH011 O/LH011 OA

Floppy Disk Controller'

WRITE 1D1 26 sectors/track (FM: 12.8 bytes/
sector; MFM: 256 bytes/se(!tor)
WRITE 1D2 15 sectors/track (FM: 256 bytes/
sector; MFM: 512 bytes/sector)
WRITE 1D3 8 sectors/track (FM: 512 bytes/sector; MFM: 1024 bytes/sector)
~ RESET STATUS (1111)
Initialize floppy disk drives.

@ WRITE WITH DDAM (1011).
Same as WRITE command, except that DDAM
and not DAM is written as address mark.
@ WRITE 1D1 (1100) \
@ WRITE 1D2 (1101)
@ WRITE 1D3 (1110)
Write initialization (ID section) and gaps of specified track. In this command, data section is filled
with gaps.
(2)

Commands and error status register A

::s::

Error status
Not-reaDB7
dy-error
Write proDB6
tect error
DB5 Fault error
DB4 Write error
Seek error
DB3
Inconsistencyerror
Missing
DB2 sync field
reception
Missing
DBI DAM
reception
Missing
DBD data
transfer

READ READ
DDAM BOTH

WRITE WRITE
RESET
READ
READ
VERIFY
WRITE WITH
ID
STATUS
eRe
ID
DDAM 1,2,3

SEEK
ZERO

SEEK

READ

X

0

0

0'

0

0

0

0

0

0

0

X

X

X

X

X

X

X

X

X

0

0

0

X

X

·X

X

X

X

X
X

X

X

0
0

0
0

0
0

0

X
X

X
X

X

X
X

X
X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

0

X

X

X

X

X

X

X

0

0

0

0

0

X

X

X

X

X

X

X

0

0 ..

0

0

0

X

X

X

X

X

X

X

0

0

0

X

0

0

0

0

0

X

X

(~) Commands and error status register B

~

Error status
Missing ID
DB7
detection .
DB6 Defect track
Address
DB5
error
DB4 Side error
Undefined
DB3 record
length
,DDAM
DB2
error
eRe error
DBI
(ID field)
eRe error
DBD
(data field)

WRITE WRITE
RESET
READ
READ
WRITE WITH
VERIFY
ID
eRe
ID
STATUS
DDAM 1,2,3

SEEK
ZERO

SEEK

READ

X

X

0

0

0

0

0

0

0

0

X

X

X

X

0

0

0

0

0

X

0

0

X

X

X

X

0

0

0

0

0

X

0

0

X

X

X

X

0

0

0

0

0

X

0

0

X

X

X

X

-0

0

0

0

0

X

0

0

X

X

X

X

0

0

X

X

X

X

X

X

X

X

X

X

0

0

0

0

0

Or

0

0

X

X

X

X

0

0

0

0

0

X

X

X

X

X

READ READ
DDAM BOTH

--------SHARP-------290

Floppy

•

Dis~

LH011 O/LH011 OA

Controller

CPU Interface Timing
(1)

(3)

FDC write cycle

RSo
RS2

Interrupt acknowledge cycle

MI

-,L_ _ _ _ _ _r----

lEI

====-===_1

I

I

CE
MI,RD--------------~-----------

r::

Do-D7 ______~I~_______________

Do-D7--------------~c::J~------­
Vector

(2)

(4)

FDC read cycle

CLOCK

Interrupt return cycle

CLOCK

MI

____________c=

~

~~~

__

r--~

__

~----

RD
----~CJ~------~~~-----

MI

==:::':.::.-_-:.J"r-------------ED

lEI

,'-_____-Jr---

lEO

4D

----------------------~,---

Do -D 7 - - - - - - - - - - - - - - - -__<::::)---Data

---------~------SHARP ---~-.-------291

!

.-.-.-~-.-~-~

•

.--.....

..... .....

Flbppy Disk Controller

~

LH011 O/LH011 OA

~.-:

FDD Interface Timing

. (1)

READ, READ DDAM, READ BOTH, READ CYC, VERIFY, READ 10 command timing

-------1H)~J__-

,~
=::::~------~~

Command termination-:----r--

..lo......-------!H

-!~---

~---------~Jj

l~j---

.j)J--'-

('

11

--'---..A.---------it}

:) 1 - - - -

!

5~Falls if next command
No head load walt time needed if preceedmg command was
is not issued within a
certain time span.
a read/write command.

.

. f

.

.

--L1,:::;SL:yn:,:;;c.J.,.1~ID;U...I_--r.;ls;;,:YD;;;;;c.J.,.1---\rl~:_--l._-..JI.;;s~YD:::..cIL.o:1;:;:D. J,I_ _
Gap

(2)

Data section

. Gap

PSL and PSE timing
FCLK
WDA

-1l
D

n
C

D

n

C

D

C

D

C

~
D

PSL
PSE
MFM mode
FCLK
WDA
PSL
PSE

J CI
High

n
D

n

C

D

11.:..C

FM mode

- - - - - - . . . . . - - . - - . . . - . - - S H A R P -.-.--~-,-.--

292

Floppy Disk Controller

LH011 O/LH01.1 OA

(3) WRITE 101, WRITE 102, WRITE 103 command timing

~--------~n~------~i~~(--'------.....-.l!l
{~'r--~Com~~i~

Jl

T---------------~\~\------------~5~rj- - - - -

\~j

----J''----------ll!

Falls if next command
(
(I-----(~~ •
•
d ·th·
. 'C IS not I.SSU~ WI ID
- - - -__r......c::;NLo head load wait time needed if preceeding command was
a read/write command.
r a certam hme span.
f
5~~f-I
_ _ _ _ _--11
Jl
i~fj...___

X
X

~t::::to---=

Valid

~~

Valid

U

ID

II

gap

Gap Sync

1t::::tD==

lJ

ISync I I

)1

Gal!

ID

(4) WRITE, WRITE WITH OOAM command timing

US
HDS

=:::x

II

r{

::::::x'--------l(\}-.---------\11(----1.J
If-f--C-o-m-m-a-nd-te-r-m-in-a-ti-on-:::C~--------

MUXS _____

RDY

::J~~--------{ljf---------j~!-----

LCT

_ _ _J\...X

HDL

--------i}~

~(..

If---\~alls If next command
No head load wait time needed if preceeding command was ~is not issued within
(head/write command.
a certain time span.

!

~l-l- - - - -

VFO

------I.

WG

--------------~~~~------il(~-----

WDA

PSE
PSL

.

------------~~========~r\~~·====
-----~~~----~I~~----....L..--L...-~.I-~.I-..LI--tH
Sync ID ,
.
Gap

I

\ Data section
Sync

Gap

Sync ID

.--.-.-----SHARP-.--------

293

LH0110lLH0110A

Floppy Disk Controlle,r

(5)

RESET STATUS command timing

MUXS

:.:.J

L..:'
TYP.

FR.

-J 12ps l+rlL._'_---:._

FLT
DIR'

HDL

(6) SEEK ZERO command timing
MUXS:-1~

____________~~______~r::

STP
TY .

12ps
15}ls for 20ms seek rate time

HDL

__-LI____________________~~~------------

DIR

::t~

TRO

------------------------~l~

____________________

~ij~----------

(7) SEEK command timing
MUXS~~_ _ _ _ _ _ _ _~!~---Lr-:
STP

c:::::J

,

'

!----ITY~
12ps 15}ls for 20ms seek rate time

HDL

__-LI____________________~:----~------

J

DIR

RDY

294

.;,.j

~
)

LH011 O/LH011 OA

Floppy Disk Controller

•

System Configuration
Low current
LCT/DIR
Dire ction
MUXS

!

FR/STP

----WP/TR o

Multiplexer

FLT/TS

LHOIIO
FOC

-

Fault reset

-

Write protect

-

--

Step

Track zero
Fault

....- 2-side disk

US

Unit select

HDS

Head select

HDL

Head load

WG

Writing gate

IDX

Index

RDY

Ready

RRD

Read data

WDW

VFO circuit

VFO

6

PSL
PSE
WDA

~

MFM

~
Delay
circuit

Write data

CJ2MHz

FCLK
Oscillator

(lMHz fo r mini -floppy disk)

.-.----~~-SHARP~-.----------.-,

295

--............

.....

Z80 CMOS Central Processing Unit

~

-

-~-

LH5080/LH5080L/LH5080LM
zao
CMOS Central Processing Unit

•

Description

The LH50BO is 2BO CPU fabricated with CMOS
silicon-gate process technology and is fully compatible with the conventional NMOS 2BO CPU
(LHOOBO).
The LH50BO is designed with CMOS fully static
circuits and so provides low power consumption
and wide range power supply voltage operation. '
The LH5080LlLH5080LM provides power save
mode controlled by software. '

•

Features

1. 2BO CMOS CPU
2. Fully compatible with the NMOS 2BO CPU
(LHOOBO)
3. 15B instructions
4. 22 registers
5. 3 modes of maskable interrupt and a nonmaskable interrupt
6. Instruction fetch cycle 1.6 flS
7. Single + 5V power supply and single phase
clock
B. All inputs and outputs except clock input fully
TTL compatible
9. Fully static operation (DC-2.5MHz)
10. Low power consumption
11. Power save mode (LH50BOLlLH50BOLM)
12. 40-pin dual-in-line package
(LH50BO/LH5080L)
13. 44-pin quad-flat package (LH50BOLM)

Note: The l80 CMOS CPU (LH5080/LH5080LlLH5080LM) is
compatible with the l80 NMOS CPU (LH0080). So there is
no descrip.tion here about the pins, CPU registers,
architecture, interrupts, basic timings, and instruction, sets.
Refer back to the l80 NMOS CPU described earlier.'
,

29p

-

... .. ......- . -...-,..-..............

.-

LH5080/LH5080LlLH5080LM

•

Pin Connections
LH5080/LH5080L

o

Z80 CMOS Central Processing Unit

•

LH5080/LH5080L/LH5080LM

Block Diagram
System Data Bus
A

Halt State
Memory Request
Data Bus Interface

Input /Output Request
Read
Write
Bus Acknowledge
Machine Cycle 1
Refresh
Interrupt Request

CPU
Timing
Control

Instruction
Decoder

Inst.
Reg.

ALU

Register Array

Non Maskable Interrupt
Wait
Bus Request
Reset
Address Logic

a~d

Buffer

System Address Bus

297

Z80 CMOS Central Processing Unit

, ,.-..-.-.-.:__,._..

LH5080/LM50BOLlLH5080LM

....__,._.......-....................i.r.....r.--

~

•

Absolute Maximum Ratings
Parameter
Input voltage
Output voltage

Symbol
VIN
VOUT,

Ratings
-0.3-+7
-0.3-+7

Unit
V
V

Operating'temperature

Topr

0-+70

t

Storage temperature

T s ,"

-65-+150

t

•

(Vee=5V±10%, Ta=0-+70t)

DC Characteristics
Parameter
Clock input low voltage
Clock input high voltage
Input low voltage
Input high voltage
Output low voltage
Output high voltage
Current conswnption
Input leakage current
3·state output leakage current
3·state output leakage current
Data bus leakage current
Current conswnption in PS
mode (LH50BOL/LH50BOLM)

Symbol
VILC
V IHC
VIL
VIH
VOL
VOH
Icc
I ILl I
IILOH I
I ILOL I
I ILD I
leeps

Conditions

IOL=1.BmA
IOH=-250 pA
(Note)
VIN=OV, Vee
VouT=Vee
VOUT=OV

MIN.
-0.3
Vee- 0.6
-0.3
2.4

TYP.

MAX.
0.45
Vcc+ 0.3

Note

1
2
2

10

pA
pA
pA
pA

150

pA

O.B
Vee
0.4

2.4
10
10
10

10

O~VIN~Vee

VIH=;,OV, Vee
Output pin open

Unit
V
V
V
V
V
V
mA

50

Note: TcC=400ns, Vn.=O.~ VIH=Vcc-OAV, output pin open.
Notel: The INT , WAIT, NMI and (BUSRQ) pins are arranged as shown below. Note 2: The Ao-A3 pins are arranged as shown below.

Note 1 and 2: The Do- D7 pins are arranged as shown ,below.~

•

(f=1MHz, Ta=25t)

Capacitance
Symbol
CeLocK
CIN
COUT

298

Parameter
Clock capacitance
Input capacitance
Output capacitance

MAX.
5
6
10

Unit
pF
pF
pF

Unmeasured pins returned
to ground

Z80 CMOS Central Processing Unit

•

AC Characteristics
No.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

t

Parameter
Clock cycle time
Clock pulse width (high)
Clock pulse width (low)
Clock fall time
Clock rise time
Clock t to address valid delay
Address valid to MREQ ~ delay
Clock ~ to MREQ ~ delay
Clock t to MREQ t delay
MREQ pulse width (high)
MREQ pulse width (low)
Clock ~ to MREQ t delay
Clock ~ to RD ~ delay
Clock t to RD t delay
Data setup time to clock t
Data hold time after RD t
WAIT setup time to clock ~
WAIT hold time after clock ~
Clock t to M1 ~ delay
Clock t to M1 t delay
Clock t to RFSH ~ delay
Clock t to RFSH t delay
Clock ~ to RD t delay
Clock t to RD ~ delay
Data setup to clock t during
M2, M3, M4 or Ms cycles
Address stable prior to IORQ ~
Clock t to IORQ ~ delay
Clock ~ to IORQ t delay
Data stable prior to WR ~ (memory cycle)
Clock ~ to WR ~ delay
WR pulse width
Clock ~ to WR t delay
Data stable prior to WR ~ (110 cycle)
Clock t to WR ~ delay
Data stable from WR t
Clock ~ to HALT t
NM1 pulse width
BUSREQ setup time to clock t
BUSREQ hold time after clock t
Clock t to BUSACK ! delay
Clock ! to BUSACK t delay
Clock t data float delay
Clock t to control output float
----delay (MREQ, IORQ, RD, and WR)

LH5080/LH5080LlLH5080LM

(Vcc=5V±10%, Ta=0-+70·C)
Symbol
TcC
TwCh
TwCl
TfC
TrC
TdCr (A)
TdA (MREQf)
TdCf (MREQf)
TdCr (MREQr)
TwMREQh
TwMREQ1
TdCf (MREQr)
TdCf (RDf)
TdCr (RDr)
TsD (Cr)
ThD (RDr)
TsWAIT (Cf)
ThWAIT (Cf)
TdCr (Mlf)
TdCr (M1r)
TdCr (RFSHf)
TdCr (RFSHr)
TdCf (RDr)
TdCr (RDf)
TsD (Cf)
TdA (IORQf)
TdCr (IORQf)
TdCf (IORQr)
TdDm (WRf)
TdCf (WRf)
TwWR
TdCf (WRr)
TdDi (WRf)
TdCr (WRf)
TdWRr (D)
TdCf (HALT)
TwNMI
TsBUSRQ (Cr)
ThBUSRQ (Cr)
TdCr (BUSAKf)
TdCf (BUSAKr)
TdCr (Dz)
TdCr (CTz)

MIN.
400*
180*
180

MAX.

30
30
145
125*
100
100
170*
360*
100
130
100
50
15
70
15
130
130
180
150
110
100

Unit
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
np
ns
ns
ns
ns
ns

60
320*

120
110_
90

ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns

110

ns

90
110
190*
90
360*
100
20*
80
120*
300
80
80
15

Rising edge, ~ Falling edge .

.....--.-.-.--.---SH~RP-------.-.

299

LH5080/LH5080L/LH5080LM

Z80'CMOS Central Processing Unit

No.
44
45
46
47
4S
49
50
51
52
53

Parameter
Clock t to address float delay
MREQ t ,IORQ t, RD t, and
WR t to address hold timE:
RESET to clock t setup time
Clock t to RESET hold time
INT to clock t setup time
Clock t to INT hold time
M1 ! to IORQ ! delay
Clock ! to IOR~ ! delay
Clock t to IORQ t delay
Clock ! to data valid delay

Symbol
TdCr (Az)

MIN.

Unit
ns

TdCTr (A)

160*

ns'

TsRESET (Cr)
ThRESET (Cr)
TsINTf (Cr)
ThINTr (Cr)
TdMIf (IORQf)
TdCf (IORQf)
TdCf (IORQr)
TdCf (D)

90
15
SO
15
920*

os
ns
' ns
ns
ns
ns
ns
ns

MAX.
110

110
100
230

t Rising edge, ! Falling edge
• For clock periods other than the minimums shown in the table, calculate parameters using the expressions in, the table on
the following page.
'
.. All timings are preliminary and subject to change.

Footnotes to AC Characteristics
No.
1
2
7
10
11
26
29
31
33
35
45
50

Symbol
TcC
TwCh
TdA (MREQf)
TwMREQh
TwMREQl
TdA (IORQf)
TdD (WRf)
TwWR
TdD (WRf)
TdWRr (D)
TdCTr (A)
TdMlf (IO~Qf)

Formula
TwCh+TwCl+TrC+TfC
MAX. 2001's
TwCh+TfC-75
TwCh+TfC-30
TcC-40
TcC-SO
TcC-210
TcC-40
TwCI+TrC-1S0
TwCl+TrC-SO
TwCI+TrC-40
2TcC+TwCh+TfC-SO

AC Test Conditions
e Input voltage amplitude: 004 V to 2.8V

e Input judge level: 0.8V and 2.0V

e Input signal rise and fall time : IOns

eOutput judge level: 0.8V and 2.0V

eClock input voltage amplitude: OAV to

eOutput load: ITTL+ 100 pF

Vcc-0.6V

Output Pins Measuring Circuit

Output pin o-.......~t-----1Ie-~

CR,
CR 3
CR.

CRI-CR<: IN914 or eguivalent
CI: 50pF for all pins

---.------,~--SH~RP.--,.-----~--

300

.........

Z80 CMOS Central Processing Unit

•

Power Save Function

The LH5080L/LH5080LM features the power
save (PS) function. After a HALT instruction has
been executed, the internal clock signal is automatically cut off to bring the CPU into the halt mode.
(1) PS mode setting
With a HALT instruction executed, the PS mode
will be automatically established. In this mode, the
internal clock signal is cut off to save the power
consumed for the clock signal operation. Cutting an
external clock signal does not give any problem inside, therefore, in this mode. To cut off the external
clock, it is possible to utilize the rise timing of a
HALT signal output. It should be noted, however,
that this timing cannot be used to restart the external clock.
In the PS mode, the bus request (BUSRQ) is not
accepted and the memory refresh is not done,
either.

LH5080/LH5080L/LH5080LM

is then cleared and the reset just as before is
carried out.
(ii) Clearing with NMI: Input the NMI signal
(edge trigger) to clear the PS mode and to carry out the instruction next to the HALT. Now
the non-maskable interrupt processing routine
will be introduced.
(iii) Clearing with INT: Input the INT signal
(level trigger) regardless of which state the interrupt enable flag is in. The PS mode is now
cleared and the HALT instruction executed. If
the interrupt enable flag is set up and the INT
signal is "Low' at the clock pulse rise timing
in the last clock cycle of the HALT instruction,
the mask able interrupt processing routine will
be introduced as the next machine cycle.
CLOCK

HALT~
PS·,

~~--Ml---------------------

RESET

CLOCK

.

...:===~~~~~~~~-r---

Ml

* PS is internal signal, and not output externally.
PS· _+--+~+--+...J

Halt clear by NMI INT

* PSis internal signal, and not output externally.
PS mode setting

CLOCK
HALT

(2)

PS mode clear

The PS mode is cleared by any of the following;
reset (RESET), non-maskable interrupt (NMI) and
maskable interrupt (INT).
When the external clock is shut down in the PS
mode, a stable clock signal must be input before
clearing the PS mode.
(i) Clearing with RESET: Input the RESET signal for more than 3 clock cycles. The PS mode

PS·
NMI
INT

* PS is internal signal, and not output externally.
PS mode clear by MI signal

------------SHARP .-.-..---------301

zao. CMOS Parallel 1/0 Controller
LH5081 fLH5081 L/LH5081 LM
,;.tI!IIIIIII'.-..-.....
......-..-..-..-,..-..- ..- -...... - . - . .....,~

LH5081/LH5081L/LH5081LM
zao CMOS Parallel 110 Controller
•

Description

The LH5081 is Z80 PIOfabricated with.CMOS
silicon gate prQ(;ess techrlOlogy and is fully compatible with the conventional NMOS Z80 PIO
(LH0081).
The LH5081 is designed with CMOS fully static
circuits and so provides low power consumption
and wide range power supply voltage operation.
The LH5081L1LH5081LM provides power save
mode controlled by softwave.
-

•

Pin Connections
LH5081/LH5081L

CE 4
C/D SEL 5
BIA SEL 6

Features

1. Z80 CMOS PIO
2. Fully compatible with NMOS Z80 PIO
(LH0081)
3. Tow independent 8-bit bidirectional peripheral
interface ports with handshake data transfer
control
4. 4 programmable operating modes
• Byte input mode
• Byte output mode
• Byte bidirectional bus mode (Port A only)
• Byte control mode
5. Programmable interrupt on peripheral status
conditions
6. Vectored daisy chain priority interrupt
7. Darlington transistor drive capability (port B
output)
8. All inputs and outputs except clock input fully
TTL compatible
9. Single +5V power supply and single phase
clock
10. Fully static operation (DC-Z.5MHz)
11. Low power consumption
12. Power save mode (LH5081L1LH5081LM)
13. Status read mode (LH5081L1LH5081LM)
14. 40-pin dual-in-line package
(LH5081/LH5081L)
15. 44-pin quad-flat package (LH5081LM)
Note: The Z80 CMOS CPU (LH5081/LH5081L) is compatible
•
with the Z80 NMOS PIO (LH0081). So there is no descrip·
tion here about the pins, programming, and basic timings
waveforms. Refer back to the Z8.0 NMOS PIO described
earlier.

302

•

Top View

LH5081LM

1

Top View

2

3

I~I~ ~

Z80 CMOS Parallel 1/0 Controller

•

LH5081/LH5081 L/LH5081 LM

Block Diagram

Internal
Control Logic
Port A
Input!
Output

System
Data
Bus

Port A
Data Bus

CPU
Bus
Input!
Output
Logic

Port A!B Select
Command/Data
Select
Chip Enable
Macbine Cycle 1
I!O Request
Read

Port B
Input!
Output

Port B
Data Bus

~

Interrupt
Control Logic

:; > ....u0
It)

= u

+

Q

.,;;

(.!)

u

z

.e

...

'Vi
CIl

..'". .s. ..'"
.'" ::c... ::c..
0

<:I'

..
..'" .
'"
!
.s !. ...'"
p::

Q.

r.z:I
Q.

....

r.z:I
Q.

!

.s

----~-.-----SHARP ----.----------~

303

LH5081 ILH5081 LlLH5081 LM

Z80 CMOS Pataltel 1/0 Unit'

•

Absolute Maximum Ratings
Parameter
Supply voltage
Input voltage
Output voltage
Operating temperature
Storage temperature

•

Symbol
Vcc
VIN
VOUT
Topr
Ts".

Ratings
-0.3-7.0
-0.3-Vcc +0.3
-0.3-Vcc +0.3
0-+70
-65-+150

Unit
V
V
V
t
t

(Vcc=5V±10%, Ta=0-+70t)

DC Characteristics
Parameter
Clock input low voltage
Clock input high voltage
Input low voltage
Input high voltage
Output low voltage
Output high voltage
Current consumption
Input leakage current
3-state output leakage current
3-state output leakage current
Data bus leakage current input
Darlington drive current
Current consumption in PS
mode (LH5081L/LH5081LM)

Symbol
VILC
VIHC
VIL
V IH
VOL

Conditions

MIN.
-0.3
Vcc- O.G
-0.6
2.2

10HD,

10L =2inA
IOH=-1.6mA
10H= -250 1'A
(Note)
VIN=OV, Vcc
VOUT=VCC
VOUT=OV
oS::VIN S::VCC
V OH = 1.5V, Port only

Iccps

Output pin open, VIN=OV, VCC

VOH
Icc

I ILl I
I lLOH I
I lLOL I
I ILD I

TYP.

MAX.
0.45
Vcc+ 0.3
0.8
Vcc+ 0. 3
0.4

2.4
Vee -D.4V
2

6
10
10
10'
10

-1.5
1

100

Note TcC=400ns, VIL=OAV, VIH=VCC-O.4V, output pin open.
Note 1: The A STB and B STG pins are arranged as shown below. • The INT pin is arraged as shown below.

Note 2: The Ao-A7 and Bo-B7 pins are arranged as shown below.

•

Parameter
Clock capacitance
Input capacitance
Output capacitance

304

""ID-'
L

Interruput request

(f=lMHz, Ta=25t)

Capacitance
Symbol
CCLOCK
CIN
COUT

Conditions
Unmeasured pins returned
to ground

-Note

pA
I'A
I'A
I'A

1
2
2

rnA

-

,.,,,,,,,,,, ,,1m••

Unit
V
V
V
V
V
V
V
rnA

MAX.
7
7
10

Unit
pF
pF
pF

pA

Z80 CMOS Parallel I/O Controller

•

LH5081 ILH5081 L/LH5081 LM

AC Characteristics
No.
1
2
3
4
5
6
7
8
9
10
11
12
13
14

(V cc =5V±10%, Ta=0-+70t)

16

Parameter
Clock cycle time
Clock width (high)
Clock width (low)
Clock fall time
Clock rise time
CE, BfA, CfD to RD, 10RQ ~ setup time
Any hold times for specified setup time
RD, 10RQ to clock t setup time
RD, 10RQ ~ to data output delay
RD, 10RQ t to data output float delay
Data in to clock t setup time
10RQ ~ to data o_ut delay (INT ACK cycle)
M1 ~ to clock t setup time
Ml t to clock ~ setup time (Ml cycle)
Ml ~ to lEO ~ delay
(interrupt immediately preceding MI l)
lEI to 10RQ ~ setup time (INT ACK cycle)

17

lEI

18

lEI t to lEO t delay (after ED decode)
10RQ t to clock ~ setup time
(to activate READY on next clock cycle)

15

19

l

to lEO ~ delay

t

20

Clock ~ to READY

21
22

Clock ~ to READY l delay
STROBE pulse width
STROBE t to clock ~ setup time
(to activate READY on next clock cycle)
10RQ t to PORT DATA stable delay (mode 0)
PORT DATA to STROBE t setup time
(mode 1)
STROBE ~ to PORT DATA stable (mode 2)
STROBE t to PORT DATA float delay
(mode 2)
PORT DATA match to INT l delay (mode 3)
STROBE t to INT ~ delay

23
24
25
26
27
28
29

delay

Symbol
TcC
TwCh
TwCI
TfC
TrC
TsCS (RI)
Th
TsRI (C)
TdRI (DO)
TdRI (DOs)
TsDI (C)
TdlO (DOl)
TsMI (Cr)
TsMI (Cf)

MIN.
400
170
170

30
30
50
15
115
430
160
50
340
210
0

TdMI (lEO)
TsIEI (10)

MAX.
(Note l)

300
140

Unit
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns

Note

6

2

CL =50pF
3
8

ns

5,7

ns

7
5

TdlEI (IEOf)

190

ns

TdlEI (lEOr)

210

ns

CL =50pF
5

TcIO(C)

220

ns

TdC (RDYr)

200

ns

TdC (RDYf)
TwSTB

150
150

ns
ns

5
CL =50pF
5
4

TsSTB (C)

220

ns

5

ns

5

TdlO (PD)
TsPD (STB)

200

ns

260

TdSTB (PD)

230

ns

5

TdSTB (PDr)

200

ns

CL =50pF

TdPD (INT)
TdSTB (INT)

540
490

ns
ns

t Rising edge, ~ Falling edge
Note 1: TcC=TwCh+TwCl+TrC+TtC.
Note 2 : Increase TdRI (DO) by 10 ns for each 50 pF increase in load up to 200 pF max.
Note 3 : Increase TdIO (001) by 10 ns for each 50 pF, increase in loading up to 200 pF max.
Note 4 : For Mode 2 : TwSTB>TsPD (STB).
Note 5 : Increase these values by 2 ns for each 10 pF increase in loading up to 100 pF max.
Note 6 : TsCS (RI) may be reduced. However, the time substracted from TsCS (RI) will be added to TdRI (DO).
Note 7 : 2.5 TcC > (N·2) TdIEI (IEOf)+TdM1 (IEO)+TsIEI (10) + TTL Buffer Delay, if any.
Note 8 : M1 must be active for a minimum of two clock cycles to reset the PIO.
AC Test Conditions:
• Input voltage amplitude: OAV to 2.8V
• Clock input voltage amplitude: OAV to Vcc-O.6V
• Input signal rise and fall time : IOns
• Input judge level: O.8V and 2.0V
• Output judge level: O.8V and 2.0V
• Output load: ITTL+ lOOpF (unless otherwise specified)
------~.--.----SHARP

. - . - - . - . - . . - - ......... 305

LH5081 ILH5081 LlLH5081 LM

Z80 CMOS Parallel I/O Controller

•

Power Save and Status Information
Read Function

Un1ike the LH00811LH5081, the LH5081Ll
LH5081LM has the power save (l:'S) and status information read functions.
(1 ) Power save function
(i) PS mode setting
When the CPU
(LH5080LlLH5080LM) has executed an HALT instruction in the PS mode, the LH5081LlLH5081LM
reads this HALT instruction to automatically go
into the-PS mode. Now the internal clock signal is
cut off. Therefore, cutting an external clock input
gives no problem inside in this mode.

Data--------~r---~~---+---------

PS'

----------------~
PS mode set timing

Bits

Ml
ps'

(ii) PS mode clear
The. PS mode is cleared
by detecting the fall of the Ml signal. When the external clock is off in the PS mode, however, a stable
clock signal must be input before clearing the PS
mode.
When the CPU (LH50~OLlLH5080LM) is
cleared from the PS mode and comes into the next
fetch cycle, therefore, the LH5081LlLH5081LM is
also cleared from itsPS mode at ~he fall of the first
Ml signal in this cycle.
The PS mode clearing can be done by issuing an
interrupt request.
Set up the interrupt generate conditions in Mode
3 of the LH5081LlLH50S1LM. By this, an interrupt request (INT) is issued even in the PS mode,
the CPU (LH5080LlLH5080LM) is cleared from
the PS mode, and thus LH5081LlLH5081LM is
also cleared.
(2) Status information read
Under the following conditions, the mode setup
bits and handshake signals of Port A and Port B
are read from the data bus during the read cycle.
See the chart below.
Conditions: CE = "Low"~RD = "Low", IORQ
"Low", C/D = "High", BI A = X (undefined)

Return to original state

* PSis internal signal and not output externally.
PS mode clear timing

7

6

5

4

3

2

1

0

IAMIIAMOjARD\jASTIlI BMII BMO~RDYjilSTBI .

I

~most

~he

two bits of
Uppermost two bits of tbe
B port mode co~t~ol reglstor
Aport mode control registor
(Set mode bIts)
(Set mode bits)

LH5081/LH5081 LM status information words

306

Z80 CMOS Counter Timer Circuit

LH5082/LH5082L1LH5082LM

LH5082/LH5082L/LH5082LM
zao
CMOS Counter Timer Circuit

•

Description

The LH5082 is 280 CTC fabricated with CMOS
silicon-gate process technology and is fully compatible with the conventional NMOS 280 CTC
(LH0082).
The LH5082 is designed with CMOS fully static
circuits and so provides low power consumption
and wide range power supply voltage operation.
The LH5082L1LH5082LM provides power save
mode controlled by software.

•

•

Pin Connections
LH5082/LH5082L

o

Features

1. 280 CMOS CTC
2. Fully compatible with the NMOS 280 CTC
(LH0082)
3. 4 independent programmable 8-bit counter/
16-bit timer channels
4. Selectable counter/timer mode for each channel
5. Programmable interrupt triggered by counter/
timer
6. Downcounters !;eloaded automatically at zero
count
7. Readable downcounters
8. Selectablp. 16 or 256 prescaler (timer mode)
9. Selectable positive or negative triggers for timer
and selectable positive or negative clock edge
for counter
10. 2C/TO outputs of three channels capable of
driving Darlington transistors
11. Vectored and daisy chain piority interrupt
12. Single + 5V power supply and. single phase
clock
13. All inputs and outputs except clock input fully
TTL compatible
14. Fully static operation (DC-2.5MHz)
15. Low power consumption
16. Power save mode (LH5082L1LH5082LM)
17. 28-pin dual-in-line package
(LH50821LH5082L) .
18. 44-pin quad-flat package (LH5082LM)

Top View

o

"

U
Z

Top View

Note: The Z80 CMOS CTC (LH50821LH5082L/LH5082LM) is
compatible with the Z80 NMOS CTC (LH0082)_ So there is
no description here about the pins, programming, and basic
timing waveform. Refer back to the Z80 NMOS CTC described earlier.
-~--------SHARP--'-''--'-'------

307

LH5082~LH5082L/LH5082LM

Z80 CMOS Counter Timer Circuit·

•

Block Diagram

Zero Count/
Timeout 0
Clock/Trigger 0
Internal
Control
Logic

System'
Data
Bus

Zero Count/
Timeout 1
Clock/Trigger

CPU Bus
Input/
Output
Logic

Zero Count/
Timeout 2

Channel {
Select

Clock/Trigger 2

Machine Cycle 1

Interrupt
Logic

I/O Request

Clock/Trigger 3

_
~

'"
'"

III

~

S
> >
c:> "' ....
+ ~~.l
LI)

u zu)u
~ t!l

_ c=

~ t;

...

Q)

-

§": ~O
....

_::1

t & t~

t:i

!~]~!~
,.!;~

.-.-.----.....,.-.--SHARP-.-.------308

Z80 CMOS Counter Timer Circuit

•

Absolute Maximum Ratings
Parameter
Supply voltage
Input voltage
Output voltage
Operating temperature
Storage temperature

•

LH5082/LH5082L/LH5082LM

Symbol
Vee
VIN
VOUT
ToDr
TstQ

Ratings
-0.3-+7.0
-0.3-Vee +0.3
-0.3-Vee +0:3
0-+70
-65-+150

Unit
V
V
V
t
t

(Vee =5V±10%, Ta=0-+70t)

DC Characteristics
Parameter
Clock input low voltage
Clock input high voltage
Input low voltage
Input high voltage
Output low voltage
Output high voltage
Current consumption
Input leakage current
3-state output leakage current
3 -state output leakage current

Symbol
VILe
V IHe
V IL
. V LH
VOl.
VOH

I Icc I
I ILl I
I ILOH I
I IIOL I

Darlington drive current

IOHD

Current consumption in PS
mode (LH5082L1LH5082LM)

Iccps

Conditions

IOL =2mA
IoH =-1.6mA
IoH = -250pA
(Note)
VIN=OV, Vee
VouT=Vee
VOUT=OV
V()H=1.5V
AppIicated to ZC/TOo-ZCIT0 2

MIN.
-0.3
Vee- 0.6
-0.3
2.2

TYP.

MAX.
0.45
Vee+ 0.3
0.8
Vee
0.4

2.4
Vcc--:OAV
2.5

8
10
10
10

-1.5

Output pin open, VIN=OV, Vee

Unit
V
V
V
V
V
V
V
rnA
pA
pA
pA

Note

1

rnA
1

100

pA

Note: TcC=400ns, TcCTR=l p.s, VIL=O.4V, VIH=Vee-O.4V, output pin open.
Notel: The CLK/TRGo-CLK/TGa pins arranged as shown below.

•

(f=lMHz, Ta=25t)

Capacitance
Parameter
Clock capacitance
Input capacitance
Output capacitance

Symbol
CeLOeK
CIN
COUT

Conditions
Unmeasured pins returned
to ground

MAX.
5
5
10

Unit
pF
pF
pF

309

LH5082/LH5082L1LH5082LM

280 GMOS Counter Timer Circuit

•

(V cc =5V±10%, Ta;;=0-+70"C)

AC Characteristics
No.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

21
22
23
24
25
26
27
28
29
30

Para!lleter
Clock cycle time
Clock width (high)
Clock width (low)
Clock Jail time
Clock rise time
All hold times
CS to clock t setup time
CE to clock _t setup time
IORQ ~ to clock t setup time_
RD ~ clock t setup time
Clock t to data out delay
Clock ~ to data out float delay
Data In to clock t setup time
Ml to clock t setup time
Ml ~ to lEO ~ delay
(interrupt immediately preceding Ml)
IORQ ~ to data out delay (INT A cycle)
lEI ~ to lEO ~ delay
lEI t to lEO t delay (after ED decode)
Clock t to INT ~ delay
- CLK/TRG t to INT ~ delay
(tsCTR (C) satisfied)
CLK/TRG t to INT ~- delay
(tsCTR (C) not satisfied)
CLK/TR9 cycle time
CLK/TRG rise time
CLK/TRG fall time
CLK/TRG width (low)
CLK/TRG width (high)
CLK/TRG t to clocl~ t setup time for
immediate count
CLK/TRG t to clock t setup time for
enabling of prescaler on following clock
Clock t to ZC/TO t delay
Clock t to ZC/TO ~ delay
lEI setup time to 10RQ ~ (INT A cycle)

Symbol
TcC
TwCh
TwCl
TfC
TrC
Th
TsCS (C)
TsCE (C)
TsIO (C)
TsRD (C)
TdC (DO)
TdC (DOz)
TsDI (C)
TsMI (C)

t

MIN.
400
170
170

MAX.
(Note 1)

30
30
15
250
200
250
240
240
230
60
210

Unit
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns

Note

2

TdMI (lEO)

300

ns

3

TdIO (001)
TdIEI (IEOf)
TdlEI (IEOr)
TdC(INT)

340
190
220

TcCt200

ns
ns
ns
ns

2
3
3
4

TdCLK (INT)

TcCt230

ns

5

TdCLK (INT)

2TcCt530

ns

5
5

TcCTR
TrCTR
TfCTR
TwCTRI
TwCTRh

2TcC

200
200

ns
ns
ns
ns
ns

TsCTR (Cs)

300

ns

5

TsCTR (Ct)

210

ns

4

TdC (ZC/TOr)
TdC(ZCITOf)
TsIEI (10)

50
50

260
190
140

ns
ns
ns

t Rising edge, ! Falling edge
IAI 2.5 TcC>(n-2) TdIEI (IEOf)+TdMI (lEO) +TsIEI (IO)+TTL buffer delay, if any:
IBI RESET must be active for minimum of 3 clock cycles
Note1: TcC=TwCh+TwCI+TrC+TfC.
Note 2 : Increase delay by 10 ns for each 50 pF increase in loading, 200 pI" maximum for data lines, and 100 pF for control lines.
Note 3 : Increase delay by 2 ns for each 10 pF increase in loading, 100 pF maximum.
Note 4 : Timer mode.
Note 5 : Counter mode.
All timing are preliminary and subject to change.

*

-~~-'--'---SHARP'-''-----'-~-

310

Z80 CMOS Counter Timer Circuit

AC Test Conditions
• Input voltage amplitude: 0.4 V to 2.S V
• Clock input voltage amplitude: 0.4 V to
Vcc-0.6V
• Input signal rise and fall time: IOns
• Input judge level: O.S V and 2.0 V
• Output judge level: O.S V and 2.0 V
.Output load: ITTL + 100 pF (unless otherwise specified)

•

Power Save Function

The LH50S2L1LH50S2LM has the power save
(PS) function.
(1) PS mode setting
When the CPU (LH50S0LlLH50S0LM) has executed a HALT instruction, the LH5082L/LH5082 LM

LH5082/LH5082L/LH5082LM

reads this HALT instruction to autmatically go into
the PS mode. In this mode, the internal clock
signal is cut off. The external clock may be off duro
ing the PS mode.
About the external clock stop, the same is true as
the power-saving CPU (LH50S0LlLH5080LM).

(2) PS mode clear
The PS mode is cleared by the fall of M1 signal
or the RESET signal.
When the external clock is off the PS mode,
however, a stable clock signal must be input before
clearing the PS mode.
Once cleared from the PS mode, the power-saving CPU (LH5080LlLH50S0LM) comes into the
next fetch cycle. At the time when the first M1 signal during this cycle falls, the LH5082L1LH5082LM
is also cleared from the PS mode.
CLOCK

CLOCK

RESET~

Ml

PS'

RD

. I
Reset state same as LH5082

* PS is an internal signal and not output externally.

Date

PS mode clear by RESET signal

_ _ _ _ _ _ _ _ _..:r Power save

state

* PS is an internal signal and not output externally.
PS mode set timing

CLOCK
Ml
PS'

~
~'----Return to original state

* PS is an internal signal and not output externally.
PS mode clear by MI signal

-----------SHARP-...-...-~-.---.-

311

16-Bit Microprocessor
and Peripheral LSls

ZS001 IZS001 AlZS002/ZS002A Central Processing Unit

LHS001 IS001 A/S002/S002A

LH8001/LH8001A/LH8002/LH8002A

zaoo IIZSOO IAlZSOO2lZS002A. Central Processing Unit
•

. Description

LH800i, Z8001 CPU and LH8002, Z8002 CPU
are advanced 16-bit microprocessor that spans a
wide variety of applications ranging from simple
stand..,alone computers to complexparallel-proces.sing unit. Essentially Z8000 CPU is a monolithic
minicomputer central processing unit.
The LH8001A Z8001A and LH8002A Z8002A
CPU are the high speed version which can operate
at 6MHz system clock.

•

•

Pin Connections

r------:----;::=====::----:L--:H=-SO--:Ol::-:;-=-LH=S=OO=-lA:i

Features

1. Regular, easy-to-use architecture
2. Instruction set more powerful than many minicomputers
3. Directly addresses 8M bytes
4. Eight user-selectable addressing modes
5. Seven data types that ra~ge from bits to 32-bit
l<;mg words and word strings
6. System and Normal operating modes
7. Separate code, data and stack spaces
8. Sophisticated interrupt structure
9. Resource-sharing capabilities 'for multiprocessing
systems
10. Multi-programming support
11. Compiler support
12. Memory management and protection provided
by Z8010 Memory Management Unit
13. 32-bit operations, including signed mUltiply
and divide
14. Z-BUS compatible

Top View

LH8002lS002A

Top View

.-......-.--------SHARP .-..-....----------

314

•

I
I
I
I
I
I
I

,

m

0"

0

'"0
ii"

CQ

;

3

Flags
Address
IData

Address St robe

I

Date Strobe
Memory Request

»
N

Bus Acknowledge

'0

I

I

I
I
I
I
I
....
I

Bus Request

I~

Multi- Micro In
Multi- Micro Out
Non- Maskable Interrupt
Segment
Number

Segment Trap
Non- Vector Interrupt
Vector Interrupt
System Clock
Control
Register

11 36
Vee GND

w

01,

II
Ii
III i
Ii

----.

U1

11111111

I~
I

h
II
II

ZSQ(H IZ8001 A/Z8002/Za002A Central, Processing Unit LH8001 lLH8001 A/LH8002/LH8002A

•

Pin Description
Meaning

Pin
ADo -AD I5

BUSAK

Bus acknowledge

0

RESET

Reset

I

Non-maskable interrupt

I

Vectored interrupt
Non-vectored
Interrupt
Stop

I
I

Active "Low". Requests a non-vectored interrupt.

I

WAIT

Wait

I

Ml
Mo
CLOCK

Multi-micro I
Multi-micro 0
System clock

I
0
I

Active "Low". For single-step instruction execution.
Active "Low". For synchronizing with a peripheral
device.
Active "Low". Forms a resource-request dai&y chain.
Active "Low". Forms a resource-request daisy chain.
Single-phase clock.

0
0
0
0
0
0
0

MREQ
ST o-ST 3
N/S

Address strobe
Data strobe
Read/write
Byte/word
Memory request
Status
Normal/system mode

3-state
3-state
3-state
3-state
3-state
3-state
3-state

SNo-SNs

Segment number

3-state 0

R/W
B/W

SEGT
BUSRQ

---

-NMI
VI

-NVI

STOP
--

Segment trap

I

' Bus request

I

Absolute Maximum Ratings
Parameter
Input voltage
Output voltage
Operating temperature
Storage temperature

"~

3-state

/

MUltiplexed system address and data bus.
Active ~Low". Addresses,are valid.
Active "Low". Data are valid.
Read at "High". Write at "Low".
Byte at "High". Word at "Low".
Active "Low". For memory access.
Specifies CPU status.
Normal mode at "High", System mode at "Low".
Designates segments to be accessed (for 28001 CPU
only).
Active "Low". Detects a segmentation trap from the
28010 MMU.
Active "Low". Requests the bus line.
Active "Low". Indicates the relinquished control of the
bus.
Active "Low", Resets the Z8000 CPU.
Active "Low". High-to-low transition not interrupted
non-maskable.
Active "Low". Requests a vectored interrupt.

AS
DS

•

Addressl data' bus

Function

lIO

Bidirectional

.

316

Symbol
V IN
V OUT

T01>t
- T st •

Ratings
-0.3-+7.0
-0.3-+7.0
0-+70
-65-+150

Unit
V
V

t
t

Z8001 IZ8001 A/Z8002/Z8002A Central Processing Unit LH8001 ILH8001 AlLH8002/LH8002A
.-.-.-~.-.-~.-~~~.-~~~.-~.-

•

(Vcc=5V±5%, Ta=0-+70t)

DC Characteristics
Parameter

Symbol

Clock input high voltage

VCH

Clock input low voltage

VCL

Input high voltage
Input low voltage
Output high voltage
Output low voltage
Input leakage current
Output leakage current
Current consumption

•

VIH
V IL
VOH
VOL
I IlL I
I IOL I
Icc

MIN.

Conditions
Driven by external clock
oscillator
Driven by external clock
oscillator

MAX.

Vcc-004 Vcc+ 0.3

Unit
V

-0.3

0045

V

2.0,
-0.3

Vcc+ 0.3
0.8

V
V
V
V

204

IOH = -250 fLA
IOL=+2.0mA
Oo4:S::V IN :S::204V

004
10
10
300

Oo4~VouT~204V

fLA
fLA

rnA

AC Characteristics

Number

Symbol

1
2
3
4
5

TcC
TwCh
TwCI
TfC
TrC

6

TdC (SNv)

7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
,30
31
32
33
34
35

TdC (SNn)
TdC (Bz)
TdC (A)
TdC (Az)
TdA (DR)
TsDI (C)
TdDS (A)
TdC(DW)
ThDR (DS)
TdDW (DS)
TdA (MR)
TdC (MR)
TwMRh
TdMR (A)
TdDW (DSW)
TdMR (DR)
TdC (MR)
TdC (ASf)
TdA (AS)
TdC (ASr)
TdAS (DR)
TdDS (AS)
TwAS
TdAS (A)
TdAz (DSR)
TdAS (DSR)
TdDSR (DR)
TdC (DSr)
TdDS (DW)

Parameter
Clock cycle time
Clock width (high)
Clock width (low)
Clock fall time
Clock rise time
Clock t to segment number valid
(50 pF load)
Clock t to segment number not valid
Clock t to bus float
Clock t to address valid
Clock t to address float
Address valid to read data required valid
Read data to clock ! setup time
DS t to address active
Clock t to write data valid
Read data to DS t hold time
Write data valid to DS t delay
Address valid to MREQ ! delay
Clock ! to MREQ ! delay
MREQ width (high)
MREQ ! to address not active
Write data valid to DS ! (write) delay
MREQ ! to read data required valid
Clock ! MREQ t delay
Clock t to AS ! delay
Address valid to AS t delay
Clock ! to AS t delay
AS t to read data required valid
DS t to AS ! delay
AS width (low)
AS t to address not active delay
Address float to DS (read) ! delay
AS t to DS (read) ! delay
DS (read) ! to read data required valid
Clock ! to DS t delay
DS t to write data not valid

'-'--~----SHARP

LH800JlLH8002(4MHz)
MIN.
MAX.
250
2000
105
2000
105
2000
20
20

LH800IA/LH8002A(6MHz)
MIN.
MAX.
165
2000
70
2000
2000
70
10
15

130
20

110
10

65
100
65
475*
30
80*

55
75
55
305
20
45*

100

75
0
195*
35*

0
295*
55*
80
210*
70*
55*
375*

70
135*
35*
35*
230*

80
80

60
60
35*

55*
90

80
220*
35*
55*
45'*
0
55*
130*

360*
70*
85*
70* ,
0
80*
205*
70
75*

65
45

Unit
ns
ns
ns'
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns

----.----..----

317

-----------------Z8001 IZ8001 A/Z8002/Z80Q2A Central Processing, Unit LH8001lLH8001 A/LH8002/LH8002A

Number

Symb01

36
37
38
39
40
41
42
43
44
45

TdA (DSR)
TdC (DSR)
TwDSR
TdC (DSW)
TwDSW
TdDSI (OI)
TdC(DSf)
TwDS
TdAS (DSA)
TdC (DSA)

46

TdDSA (DR)

47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69

TdC (S)
TdS (AS)
TsR (C)
ThR (C)
TwNMI
TsNMI (C)
TsVI (C)
ThVI (C)
TsSGT (C)
ThSGT (C)
TsMI (C)
ThMI (C)
TdC (MO)
TsSTP (C)
ThSTP (C)
TsW (C)
ThW (C)
TsBRQ (C)
ThBRQ (C)
TdC (BAKr)
TdC (BAKi)
TwA
TdDS (S)

Note:

Parameter
Address valid to DS (read) l delay
Clock t to DS (read) l delay
DS (read) width (low)
Clock l to DS (write) l delay
DS (write) width (low)
DS (liD)
to read data required valid
Clock l to DS (II 0) l delay
DS (II 0) width (low)
AS t to DS (acknowledge) l delay
Clock t to DS (acknowledge) l delay
DS (acknowledge) l to read data
required delay
Clock t to status valid delay
Status valid to AS t delay
RESET to clock t setup time
RESET to clock t hold time
NMI width (low)
NMI to clock t setup time
VI, NVI to clock t setup time
VI, NVI to clock t hold time
SEGT to clock t setup time
SEGT to clock t hold time
MI to clock t setup time
MI to clock t hold time
Clock t to MO delay
STOP to clock l setup time
STOP to clock l. hold time
WAIT to clock l setup time
WAIT to clock l hold time
BUSREQ to clock t setup time
BUSREQ to clock t hold time
Clock t to BUSACK t delay
Clock t to BUSACK l delay
Address valid width
DS t to STATUS not valid

r

LH800IA/LH8002A(6MHz)
MIN.
MAX.

110*

180*
12,0
275* '

85
185*

95

80
110*
210*

185*
330*
120
410*
1065*

90
255*
690*

120

85
295*

455*
110
50*
180
0
100
140
110
20
70
0
180
0

85

120

85
100
0
30
10
80
10

100
100
150*
80*

75
75
95*
55*

ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns

30*
70
0
70
70
50
20
55
0'
140
0

140
0
50
10
90
10

Unit

ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
'ns
ns
ns
ns

t Rising, ! Falling, ( I) 2TcC + TwCh - 130ns

* Clock-cycle-time-dependent characteristics.

------~~----SHARP

318

LH800IlLH8002(4MHz)
MIN:
MAX.

-.--...-.---------

Z8001 IZ8001 AlZ8002/Z8002A Central Processing Unit LH8001 ILH8001 A/LH8002/LH8002A
.-..-.----.-..-.~.-.------.-.~--.-..-.--.-.

•

Composite AC Timing Diagram

RESET

--~X~~~~~')50~
______________,. ~4~ r-'~

~

NMI

:>i

VI,NVI
-

K53)a 1i54

SEGT

=

This composite timing diagram
does not show actual timing sequences.
Refer to this diagram only for the detailed
timing relationships of individual edges.
Use the preceding illustrations as an
explanation of the various timing sequences.

~. ~

BUSRQ

~.
BUSAK __________~JI--~

CLOCK

)

WkiJr---\"'------'.
,-

V7\

~~~~

SNo-SN6

I'
~

r----. I

.J~. ~

____~rGr,9~~--~~~~

ADDRESS

----+-.r;><1:=t====1=~~
J

{

A",-AD"

DATA IN

.

IE-I

DATA OUT

:i~--

~~

~

~f~

'='

"'f--®- 'l
:> I@ f ~~_)
:""~f--~ ~ .J--t------t---+--+,j--+"'""'K...lr"--

I_~

MREQ

L
II.rg\.
f'-----J I'V-

~
~

,-

~

lfijO)\

-=.

'C/

~@1'r-tk--+-+.(J

I",,......,H-+-tl'==t---+----t-........ lt"l
t@;r-;-.o--t+-t--t{I~.zm-_ _-i

--~--+-l~ ~v~ ~-o ~IE-t-L""-f{I~33}---I' ~ ~

AS

MEMORY
./
READ
--

1-

N.,
I='
I~~,~~~+=+=~;+==::l
'\I!!!

IQI

~

MEMORY
~
WRITE
-'
DS
INPUT /
OUTPUT

~

',v

;g ~f@-l

"""J<-+_--~+_+_--+-_, ~
~

-'

INTERRUP~

T --j

f-~I
f-@-'4 -.IM'!I...."

~

~Y'

.J--_

~/"I .... - - -...

.~m

~

-@-

.JI' .. ~
. J . r-_

r.---

ACKNOWLEDGE
-"!!:J.'-1(!:;lI-1
..
...---}
STo-STg
READ/WRIfE---....
)<
NORMAL/SYSTEM
~------------------------------~I
BYTE/WORD

-~'-'--'-'--SHARP---'-'--~-"--"'"

319

Z8001 IZ8001 AlZ80021Z8002A Central' Processing Unit LH8001 ILH8001 AlLH8002/LH8002A

•

Register Organization

The 28000 CPU is a register-oriented machine
that offers sixteen 16-bit general-purpose registers and a set of special system registers.
(1) General-purpose register
All general-purpose registers can be used as
but" one as index registers or
accumulators and all
../
memory pointers.
Register flexibility is created by grouping and
overlapping multiple registers (Fig. 1 and 2). For
byte operations, the first eight 16-bit registers
(RO ... R7) are treated a~ sixteen 8-bit registers
(RLO, RHO, ..., RL7, RH7). The sixteen 16-bit reg~
isters are grouped in pairs (RRO ... RR14) to form
32-bit long-word registers. Similarly, the register
set is grouped in quadruples (RQO ... RQ12) to
form 64-bit registers.
(2) Specific -purpose register
The 28000 CUP has the following specific-purpose registers.
• Refresh counter
•
Program status register
•
Program status area pointer
The refresh counter can be used to automatically
refresh dynamic memory. The refresh counter register consists of a 9-bit row counter, a 6-bit rate

RRO{

RR2{

RR4{
RR6{
RRS{

Ro~17====R=H=0===0*!=7==R=L=0==~0
I

RHI

i

RHO

Rol7

RROf
RR2,

RR4{

RR6{
{
RR8
RRIO

=~I

RHl
RH2

R31

RH3

R41

RH4

R51

RH5

R61

RH6

R71

RH7

01 }

I

RL2

RQO

"" RL3

i
I

}R~

RIA
RL5

I

RL6

!

RL7

{ RIOI
Rlli

}R~

RR12{ RI21
.
Rl3

{ R141
RR14 Rl5
R15

RQl2
SYSTEM STACK POINTER
NORMAL STACK POINTER

Fig. 2 Z8002 general-purpose register

I

ROW

9 S
I

I

I

I

I

I

o

I

Fig. 3 Refresh counter
counter and an enable bit (Fig. 3).
This group of status registers contains the program counter, flags and control words. When an interrupt or trap occurs, the entire" group is saved
"and a new program status group is loaded.
Fig. 4 illustrates how the program status groups
.of the 28001 and 28002 differ.

RRIO{RIO :=1= = = = = = = = = = = 9

Rll~l.=======~

RR12{ ::: ==============:
:=1

Fig. 1 Z8001 general-purpose register

II

RLl

0

RATE

=:~I==================~

R14'
SYSTEM STACK POINTER (SEG.NO.)
R14
NORMAL
STACK POINTER (SEG.NO.)
RRl4 {
"
R15'
SYSTEM STACK POINTER (OFFSET)
Rl5 NORMAL STACK POINTER (OFFSET)

RLO

RsI15
R91

RLl

R2~1==~R=H=2==~!===R=L=2==~
R3~L====R=H=3==~i==~R~L~3==~
R4~1====R=H=4===*i===§RL~4~==9
R5~1==~R=H=5==ii==RL=5==~
R6~1====R=H~6===\~I==~R§L~6==~
R7~1====R=H=7==~===R=L=7==~

01 7

RQI2

Z8001 IZ8001 AlZ8002/Z8002A Central Processing Unit LH8001 ILH8001 AlLH8002/LH8002A

Z8001 Program Status R-egisters
~

0

I0 ISfGIj'Ef 1 CRC" CRC,jFLAGI

Fig. 2 An SDLC loop

SDLC/HDLC/X.25 "INFORMATION

Fig. 1 Some Z-SCC protocols

•

SOLe Loop Mode

The Z-SCC supports SDLC Loop mode in addition to normal SDLC. In an SDLC Loop, there is a
primary controller station that manages the message traffic flow on the loop and any number of
secondary stations. In SDLC Loop mode, the Z-SCC
performs the functions of a secondary station while
a Z-SCC operating in regular SDLC mode can act
as a controller (Fig. 2).
A secondary station in an SDLC Loop is always
listening to the messages being sent around the
loop, and in fact must pass these messages to the
rest of the loop by retransmitting them with a
one-bit-time delay. The secondary station can
place its own message on the loop only at specific
times. The con,troller signals that .secondary stations may transmit messages by sending a special character, called an EOP (End Of Poll), around the loop.
The EOP character is the bit pattern 1111111 0.
Because of zero insertion during messages, this bit
pattern is unique and easily recognized.
When a secondary station has a message to
transmit and recognizes an EOP on the line, it
chages the last binary 1 of the EOP to a 0 before
transmission. This has the effect of turning the
EOP into a flag sequence. The secondary station
now places its message on the loop and terminates
the message with an EOP. Any secondary stations
further down the loop with messages to transmit
can then append thier messages to the message of
'the first secondary station by the same process.

350

•. Data Encoding
The Z-SCC may be programmed to encode and
decode the serial data in four different ways (Fig.
3). In NRZ encoding, a 1 is represented by a High
level and a 0 is represented by a Low level. In
NRZI encoding, a 1 is represented by no change in
level and a 0 is represented by a change in level. In
FM1 (more properly, bi-phase mark) a transition
occurs at the beginning of every bit cell. A 1 is represented by an additional translation at the center
of the bit cell and a 0 is represented by no additional transition at the center of the bit cell. FMO
(bi-phase space), a transition occurs at the beginning of every bit cell. A 0 is represented by an
additional transition at the center of the bit cell,
and a 1 is represented by no additional transition
at the center of the bit cell. In addition to these four
methods, the Z-SCC can be used to decode Manchester (bi-phase level). data by using the DPLL in
the FM mode and programming the receiver for
NRZ d~ta. Manchester encoding always produces a
transition at the center of the bit cell. If the transition is 0 to 1, the bit is a O. If the transition is 1 to '
0, the bit is a 1.
DATA --''--_-''-,
NRZ
NRZI
FMl
FM
MANCHESTER

Fig. 3

Data encoding methods

Z8030/Z8030A Serial Communications Controller

•

Auto Echo and Local Loopback

The Z-SCC is capable of automatically echoing
everything it receives. This feature is useful mainly in Asynchronous modes, but works in Synchronous and SDLC modes as well. In Auto Echo mode,
TxD is RxD. Auto Echo mode can be used with
NRZI or FM encoding with no additional delay, because the data stream is not decoded before retransmission. In Auto Echo mode, the CTS input is
ignored as a transmitter. enable (although transitions on this input can still cause interrupts if
programmed to do so). In this mode, the transmitter
is actually bypassed and the programmer is responsible for disabling transmitter interrupts and
WAIT /REQUEST on transmit.
The Z-SCC is also capable of Local Loopback . In
this mode TxD is RxD, just as in Auto Echo mode.
However, in Local Loopback mode, the internal
data is tied to the internal receive data and RxD is
ignored (except to be echoed out via TxD). The CTS
and DCD inputs are also ignored as transmit and
receive enables. However, transitions on these inputs can still cause interrupts. Local Loopback
works in Asynchronous, Synchronous and SDLC
modes with NRZ, NRZI or FM coding of the data
stream.

•

Baud Rate Generator

Each channel in the Z-SCC contains a programmable band rate generator. Each generator consists
of two 8-bit time constant registers that form a
16-bit time constant, a 16-bit down counter, and a
flip-flop on the output producing a square wave.
On startup, the flip-flop on the output is set in a
High state, the value in the time constant register is
loaded into the counter, and the counter starts
counting down. The output of the baud rate generator toggles upon reaching 0, the value in the time
constant register is loaded into the counter, and the
process is repeated. The time constant may be
changed at any time, but the new value does not
take effect until the next load of the counter.
The output of the baud rate generator may be

LH8030/LH8030A

used as either the transmit clock, the recieve clock,
or both. It can also drive the Digital Phase-Locked
Loop (see next section).
If the receive clock or transmit clock is not programmed to come from the TRxC pin, the output of
the baud rate generator may be echoed out via the
TRxC pin.
The following formula relates the time constant
to the baud rate (the baud rate is in bits/second
and the BR clock period is in seconds) :

1

baud rate

•

= 2 (time constant + 2) X (BR clock period)

Digital Phase-Locked Loop

The Z-SCC contains a Digital Phase-Locked
Loop (DPLL) to recover clock information from a
data stream with NRZI or FM encodling. The DPLL
is driven by a clock that is nominally 32 (NRZI) or
16 (FM) times the data rate. The DPLL uses this
clock, along with the data stream, to construct a
clock for the data. This clock may then be used as
the Z-SCC receive clock, the transmit clock, or
both.
For NRZI encoding, the DPLL counts the 32x
clock to create nominal bit times. As the 32x clock
is counted, the DPLL is searching the incoming
data stream for edges (either 1 to 0 or 0 to 1).
Whenever an edge is detected, the DPLL makes a
count adjustment (during the next counting cycle),
producing a terminal count closer to the center of
the bit cell.
For FM encoding, the DPLL still counts from 0
to 31, but with a cycle corresponding to two bit
times. When the DPLL is locked, the clock edges in
. the data stream should occur between counts 15
and 16 and between counts 31 and O. The DPLL
looks for edges only during a time centered on the
15 to 16 counting transition.
The 32x clock for the DPLL can be programmed
to come from either the RTxC input or the output of.
the baud rate generator. The DPLL output may be
programmed to be echoed out of the Z-SCC via the
TRxC pin (if this pin is not being used as an input).

------------SHARP---.-----351

Z803QJZ8030A Serial Communications Controller

•

LH8030/LH8030A

Read Registers
Read Register 10 .

Read Register 0 .
~~~-r~~-r~~'-~~RxCHARACTER

AVAILABLE
ZERO COUNT
Tx BUFFER EMPTY
DCD
SYNC/HUNT
CTS
Tx UNDERRUN /EOM·
BREAK/ABORT

Read Register 1

o
LOOP SENDING

o
TWO CLOCKS MISSING
ONE CLOCK MISSING

Read Register 12

I D7 I D6 I Ds I D. I D3 I D, I DJ I Do
ALL SENT
RESIDUE CODE 2
RESIDUE CODE 1
RESIDUE CODE 0
PARITY ERROR
Rx OVERRUN ERROR
CRC/FRAMING ERROR
END OF FRAME (SDLC)

Read Register 2

I~I~I~I~I~I~I~I~I
[INTERRUPT VECTOR'
• MODIFIED IN B CHANNEL

Read Register 3*

o

o

CHANNEL B
EXT/STAT IP'
CHANNEL B Tx IP'
CHANNEL B Rx II"
CHANNEL A EXT/STAT IP'
CHANNEL A Tx IP'
CHANNEL A Rx IP'

[

I

LOWER BYTE OF
TIME CONSTANT

Read Register 13

1~lllilllil~I~I~I~I~1
[UPPER BYTE OF
TIME CONSTANT

Read Register 15

o
o
DCDIE
SYNC/HUNT IE
CTS IE
Tx UNDER RUN / EOM IE
BREAK/ABORT IE

• ALWAYS 0 IN B CHANNEL

'-'---~---SHARP-'------'---

352

Z8030/Z8030A Serial Communications Controller

•

LH8030/LH8030A

Write Register 2

Write Registers
Write Register 0

1071 061 051 0./ 03/ 02/ 01/ Do /

1I

NULL CODE
NULL CODE
SELECT SHIrr LEFT MODE'
SELECT SHIFT RIGHT MODE'

0
0

0

1
1

0
1

1

~--------------Vs
~--------------------V7

NULL CODE
NULL CODE
RESET EX T/STATUS INTERRUPTS
SEND ABO RT
ENABLE IN T ON NEXT Rx CHARACTER
RESET Tx I NT PENDING
ERROR RES ET
Write Register 3
RESET HIG HEST IUS

0
1
0
1
0
1
0
1

NULL CODE
RESET Rx CRC CHECKE R
RESET Tx CRC GENERA TOR
RESET Tx UNDERRUN / EOM LATCH

I I

/ 071 061 051 04/ 031 02 / 01 Do

II~

'B CHANNEL ONLY

0
0
1
1

0
1
0
1

Rx
Rx
Rx
Rx

I 07 I061 051 0.1 031 021 01 I Do I

~
1
1

0
1
0
1

5
7
6
8

Rx ENABLE
SYNC CHARACTER LOAD INHIBIT
ADDRESS SEARCH MODE (SDLC) ~
Rx CRC HUNT
ENABLE
ENTER
MODE
AUTO ENABLE

BITS /CHARACTER
BITS /CHARACTER
BITS /CHARACTER
BITS /CHARACTER

Write Register 4

Write Register 1

0
0

INTERRUPT
VECTOR

~------------------V6

o

0
0
1
1
0
0
1
1

0
0
0
0
1
1
1
1

~~~

I

I 071 061 051 04/ 03/ 021 01 I Do I

1I

EXT INT ENABLE
Tx INT ENABLE
PARITY IS SPECIAL
CONDITION

0
0
1
1

Rx INT DISA BLE
Rx INT ON FI RST CHARACTER
OR SPECIAL CONDITION
INT ON ALL Rx CHARACTERS
OR SPECIAL CONDITION
Rx INT ON SPE CIAL CONDITION ONLY

WAIT /0 MA REQUEST ON
RECEI VE/TRANSMIT
WAIT /0 MA REQUEST
FUNCT ION
WAIT /0 MA REQUEST
ENABLE

0
0
1
1
0
0
1
1

0
1
0
1

0
1
0
1

0
1
0
1

ENABLE
~PARITY
PARITY EVEN/ODD
SYNC MODES ENABLE
1 STOP BIT/CHARACTER
1112 STO P BITS/CHARACTER
2 STOP BITS/CHARACTER

8 BIT SYNC CH ARACTER
16 BIT SYNC C HARACTER
SDLC MODE (01 111110 FLAG)
EXTERNAL SY NC MODE

xl CLOCK MODE
x16 CLOCK MODE
x32 CLOCK MODE
x64 CLOCK MODE

. . . . - . - - - - - - - - - - - - S H A R P ...--~--.-------

353

5

===_"

..........

.......................... ..........................

Z8030/Z8030A Serial Communications Controller
~~
.

- LH8030lLH8030A

~....,

~

.

~

Write Register 5

I D71 Dsl Ds I D.I D31 D2 I Dl I Do I

I~
0
0

0

1
1

0

1
1

Tx
Tx
Tx
Tx

Tx CRC ENABLE
RTS
SDLC/CRC 16
Ti ENABLE
SEND BREAK

5 BITS (OR LESS )/CHARACTER

7 BITS/CHARAC TER
6 BITS /CHARAC TER
8 BITS /CHARAC TER
DTR

Wrl!e Register 6

I D7! Dsl Dsl D.I D31 D21 Dl I Dol

SYNC7
SYNCl
SYNC7
SYNC3
ADR7
ADR7

FFJ~~~

SYNCs
SYNCs
SNNCs
SYNC2
ADRs
ADRs

SYNCs
SYNCs
SYNCs
SYNCl
ADRs
ADRs

SYNC.
SYNC.
SYNC.
SYNCo
ADR.
ADR.

SYNC3
SYNC3
SYNC3

1
ADR3

x

SYNC2
SYNC2
SYNC2

1
ADR2

x

SYNCl
SYNCl
SYNCl

1
ADRl

x

SYNCo
S'yNCo
SYNCo

1
ADRo

x

MONOSYNC, 8 BITS
MONOSYNC, 6 BITS
BISYNC, 16 BITS
BISYNC, 12 BITS
SDLC ADDRESS, 8 BITS
SDLC ADDRESS, 4 BITS

Write Register 7

ID71 Dsl Dsl D.I D31 D21 Dl I Do I

SYNC7
SYNCs
SYNCls
SYNCll
0

354

F,J~~~

I

SYNCs
SYNC.
SYNC14
SYNClO

SYNCs
SYNC3
SYNCls
SYNCg

SYNC.
SYNC2
SYNCl2
SYNCs

SYNC3
SYNCl
SYNCll
SYNC7

SYNC2
SYNCo
SYNClo
SYNCs

SYNCl

SYNCo

X

X

SYNCg
SYNCs

SYNCs
SYNC.

1

1

1

1

1

1

o

MONOSYNC, 8 BITS
MONOSYNC, 6 BITS
BISYNC, 16 BITS
BISYNC, 12 BITS
SDLC,FLAG

Z8030/Z8030A Serial Communications Controller

LH8030/LH8030A

Write Register 12

Write Register 9

I D71 D61 D51 D41 D31 D21 D, I Dol

I~
0
0
1
1

0
1
0
1

VIS
NV
DLC
MIE
STATUS HIGH/STATUS LOW

I

LOWER
BYTE OF
TC4 TIME
L---------------TC5 CONSTANT
L-_________________ TC6

o

NO RESET
CHANNEL RESET B
CHANNEL RESET A
FORCE HARDWARE RE SET

I I LL=~TgCC:3'

L---------------------TC7

Write Register 13

I D71 D61 D51 D41 D31 D21

D,

Write Register 10

II II

I D71 D61 D51 D41 D31 D21 DI I Dol

I~
0
0
1
1

0
1
0
1

6 BIT /8 BIT SYNC
LOOP MODE
ABORT/ FLAG ON UNDERRUN
MARK/FLAG-IDLE
GO ACTIVE ON POLL

NRZ
NRZI
FMI (TRANSITION =1)
FMO (TRANSITION =0)

Write Register 14

ID71 D61 D51 D41 D31 D21 D, I Do I

I~

Write Register 11

I]

TIUC OUT=XTAL OUTPUT
TIUC OUT=TRANSMIT CLOCK
TIUC OUT=GTGENERATOR OUTPUT
TIUC OUT= DPLL OUTPUT

TRxC 0/1

0
0
1
1
0
0
1
1

0
1
0
1

0
1
0
1

TRANSMIT
TRANSMIT
TRANSMIT
TRANSMIT

RECEIVE
RECEIVE
RECEIVE
RECEIVE

CL OCK=RTxC PIN
CL OCK=TRxC PIN
CL OCK= BR GENERATOR OUTPUT
CL OCK=DPLL OUTPUT

CLOCK = RTxC PIN
CLOCK = TRxC PIN
CLOCK = BR GENERATOR OUTPUT
CLOCK = DPLL OUTPUT
RTxC XTAL/NO XTAL

Lm ~~~~"oF

TC'2 TIME
L--------------TC 13 CONSTANT
'------------------- TC 14
'---------------------- TC 15

CRC PRESET I/O

ID71 D6 ID51 D41 D3 ID21 D, IDo I

I Dol

0
0
0
0
1
1
1
1

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

BR GENERATOR ENABLE
BR GENERATOR SOURCE
DTR/REQUEST FUNCTION
AUTO ECHOLOCAL LOOPBACK

NULL COMMAND
ENTER SEARCH MODE
RESET MISSING C LOCK
DISABLE DPLL
SET SOURCE=BR GENERATOR
SET SOURCE = --C
RTx
SET FM MODE
SET NRZI MODE

Write Register 15

ID71 D6[ D5[ D4[ D3[ D2[ D, [ Do [

I I ~:ERO COUNT IE
~DCDIE
SYNC!HUNT IE
'----------------CTS IE
' - - - - - - - - - - - - - - Tx UNDERRUN/EOM IE
L--------'-----BREAK/ABORT IE

.--..-------SHARP---------

355

Z8036/Z8036ACounter/Timer and Parallel 1/0 Unit

LH8036/LH8036A

LH8036/lH8036A

-Z8036/Z8036A Counter/Timer and Parallel I/O Unit
•

Description

The Z8036 Z-CIO Counter/Timer ~nd Parallel
. 110 elemeniis ,a general-purpose peripheral circuit, satisfying most counter/timer and parallel 110
needs encountered in system designs. This versatile device contains three 110 ports and three counter/timers. Many progra\llmable options tailor its
configuration to specific applications. The use of
the device is simplified by making all internal registers (command, status, and data) readable and'
(except for status bits) writable. In addition, each
'register is given its own unique address so that it
can be accessed directly-no special sequential operations are required. The Z-CIO is directly
Z-Bus compatible.

•

•

Pin Connections

o

' Features

1. Two independent 8-bit, double-buffered,
bidirectional 110 ports plus a 4-bit speci,dpurpose 110, port. 110 ports feature programmable polarity, programmable direction
(Bit mode), "pulse catchers," and programmable opendrain outputs
2. Four handshake modes, including 3-Wire (like
.
the IEEE-488)
3. REQUEST /W AIT signal for high-speed data
transfer
4. Flexible pattern-recognition logic, programmable as a 16-vector interrupt controller
5. Three independent 16-bit counter/timers with
up to four external access lines per counter/
timer (count input, output, gate, and trigger),
and three output duty cycles (pulsed, one-shot,
and s'quarewave), programmable as retriggerable or nonretriggerable.
6. Easy to use since all registers are read/write
and directly addressable.

356

Top View

Z8036/Z8036A Counter/Timer and Parallel I/O Uni.t

•

LH8036/LH8036A

Block Diagram

Interrupt Enable In
Int erupt Enabl e Out
Interrupt Request C24l--f
Interrupt Acknowledge

Address/Data
Bus

Data Strobe
Read/Write
Address Strobe 3
Chip Select {

•

Pin Description
Pin
AD o-AD 7
AS
-

DS

Meaning
Address/ data bus
Address strobe

I/O
Bidirectional
3-state
I

Data strobe

I

R/W

Read/write

I

CSo
CS 1

Chip select 0
Chip select 1

I
I

-

-INT

Interrupt request

Open-drain

Interrupt acknowledge

I

lEI

Interrupt enable in

I

lEO

Interrupt enable out

0

INTACK

PAo-PA 7

Port A I/O lines

PBo-PB 7

Port B I/O lines

PC O-PC 3

Port C I/O lines

PCLK

Clock

Bidirectional
3-state
Bidirectional
3-state
Bidirectional
3-state
I

Function
MUltiplexed system address/data bus.
Active low. AS determines address while low.
Active low. DS providies timing for data transfer
while low.
R/W indicates that the CPU is reading froln (high) or
writing to (low) the Z-CIO.
Active low. Chip select signal
Active high. Chip select signal
Active low. INT is pulled low when the Z·CIO
requests on interrupt.
Active low. INT ACK indicates that an Interrupt
acknowledge cycle is in progress.
Acvtive high. lEI is used to form an interrupt daisy
chain that determines the priority order of interrupts.
Active high. lEO is used to form an interrupt daisy
chain that determines the priority order of interrupts.
These eight I/O lines transfer information between the
Z·CIO's port A and external devices.
These eight I/O lines transfer information between the
Z-CIO's port B and external devices.
These four I/O lines transfer information between the ZCIO's port C and external devices.
Single-phase clock, need not be same as CPU clock.

Note: When AS and DS are detected "Low" at the same time, the Z-CIO is reset.

-.-------SHARP--------~-357

---___....._. . . ,. . . . . . . . .

. . ......,------.----

za036/Z8036A CQunter/Timer and Parallel. 1/0 Unit

LH8036/LH8036A

~~-,..-I':-

•

Absolute Maximum Ratings
Parameter
Input voltage
Output voltage
Operating temperature
Storage temperature
Note. 1:

Symbol
VIN
VOUT

Ratings
-0.3-+7.0
-0.3-+7.0
0-+70
-65-+150

T=
Tilic

Unit
V
V
"C
"C

Note
1
1

The maximum applicable voltage on any pin with respect to GND.

+5V

From output under test

+5V

1R
I
.

~'2kO

. ,
From output under test

I 25

50pF

~A

lSOPF

Standard test load

•

Open drain test load
(V cc =5V±5%, Ta=0-+70"C)

DC Characteristics
Parameter
Input high voltage
Input low voltage
Output high voltage

Symbol
VIH
VIL
VOH

Output low voltage

VOL

Input leakage current
Output leakage current
Supply current

.!

I IlL I
I IOL I

Conditions

,
IoH =-250,uA
IOL=+2.0mA
IOL=+3.2mA
0.4";;:V IN ";;:2.4V
0.4 ~VouT~2.4V

MAX.
Vcc+ 0.3
0.8
0.4
0.5
10.0
10.0
250

Unit
V
V
V
V
V
,uA
,uA
mA

(f=lMHz, Ta=0-+70"C)
Symbol
CIN
CO\!L

CliO

Conditions
Unmeasured pins
returned to ground

....-..-..-.-~-.-.--SHARP

358

MIN.
2.0
-0.3
2.4

Icc

Capacitance

Parameter
Input capacitance
Output capacitance'
Bidirectional capacitance

i

T.2kO

MIN.

MAX.
10.
15
20

Unit
pF
pF
pF

-..-.-..--------

Z8036/Z8036A Counter/Timer and Parallel I/O Unit

•

Ui8036/LH8036A

AC Characteristics
(1)

Interface timing

No.

Symbol

Parameter

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

TwAS
TsA (AS)
ThA (AS)
TsA (OS)
TsCSO (AS)
ThCSO (AS)
TdAS (OS)
TsCSI (OS)
TsRWR (OS)
TsRWW (OS)
TwOS
TsOW (OSf)
TdOS (ORV)
TdOSf (OR)
ThOW (OS)
TdOSr (OR)
TdOS (ORz)
ThRW (OS)
ThCSI (OS)
TdOS (AS)
Trc

22

TdPM (INT)

AS low width
Address to AS f setup time
Address to AS f hold time
Address to OS ! setup time
CS o to AS f setup time
CS o to AS f hold time
AS f to OS ! delay
CS 1 to OS ! setup time
R/W (read) to OS ! setup time
R/W (write) to OS ! setup time
OS low width
Write data to OS ! setup time
OS (read) ! to address data bus driven
OS ! to read data valid delay
Write data to DS f hold time
OS f to read data not valid delay
OS f to read data float delay
R/W to OS f hold time
CS 1 to OS f hold time
OS f to AS ! delay
Valid access recovery time
Pattern match to INT delay (bit port)

23

TdACK (INT)

24

TdCI (INT)

25

TdPC (INT)

PCLK to INT delay (Timer mode)

26
27
28
29

TdAS (I NT)
TsIA (AS)
ThIA (AS)
TsAS (OSA)

30

TdOSA (OR)

31
32
33
34
35
36

TwOSA
TdAS (lEO)
TdlEI (lEO)
TslEI (OSA)
ThlEI (OSA)
TdOSA (INT)

AS to INT delay
INT ACK to AS f setup time
INT ACK to AS f hold time
AS f to OS (acknowledge) ! setup time
OS (acknowledge) ! to read data
valid delay
OS (acknowledge) low width
AS f to lEO ! delay (INT ACK cycle)
lEI to lEO delay
lEO to OS (acknowledge) ! setup time
lEI to OS (acknowledge) t hold time
OS (acknowledge) ! to INT t delay

LH8036
MIN.
MAX.
70
2000
30
50
130
0
60
60
100
100
0
390
30
0
250
30
0
70
55
55
50
1000

ACKIN to INT delay
(Port with handshake)
Counter input to INT delay
(Counter mode)
-

LH8036A
MIN.
MAX.
50
2000
10
30
100
0
40
40
80
80
0
250
20
0
180
20
0
45
40
40
25
650

1

1

4

4

1

1

1

1

0
250
350

0
250
250
250

390

180
250
250
100

350
150
100
100

70
70
600

600

Unit
ns
ns
ns
ns
ns
ns
ns
ns
ns

Note

1
1
1
1
1
1

ns
ns
ns
ns
ns
ns
ns
ns
ns
lAs cycle
+ns
lAS cycle
+ns
lAs cycle
+ns
lAs cycle
+ns
ns
ns
ns
ns

2

3

4

5

ns
ns
ns
ns
ns
ns
ns

5
5
5

Note: • t " indicates a rising edge -and •. ! .. a falling edge.
Note 1: Parameter does not apply to Interrupt Acknowledge transactions.
Nate 2: Float delay is measured to the time when the output has changed 0.5 V from steady state with minimum ac load and maximum de
load.
Note 3: This is the delay from DS t of one CIa access to DS ! of another CIa access.
Note 4: The delay is from DAV ! for 3-Wire Input Handshake. The delay is from DAC t for 3-Wire Output Handshake. One additional
AS cycle is required for ports in the Single Buffered mode.
Note 5: The parameters for the devices in any particular daisy chain must meet the following constraint: the delay from AS t to DS !
must be greater than the sum of TdAS (lEO) for the highest priority peripheral, TsIEI (DSA) for the lowest priority peripheral, and
TdlEI (lEO) for each peripheral separating them in the chain.

359

Z8036/Z8036A Counter I Timer and Parallel 1/0 'Unit

LH8036lLH8036A

AS

R/W
Read
R/W
Write

-----++----4l'..,.-t------t-'-------

DS
Address

ADo - AD7

Z-CIO Write

\. Z-CIO Read

CPI,J interface timing

P~ttern

Blt~rt

match input

~
input
_ _ _ _match
___
_ _ _ _ _ _ _ _ _ _ _ _ _ _ __
~~

r:==-@--

----'----.

Counter input

PCLK

INT

Interrupt timing

360

Z8036/Z8036A Counter/Timer and Parallel 110 Unit

___

LH8036/LH8036A

---'XUndefined)>-----@-~

Vector)

lEI

lEO

Interrupt acknowledge timing
(2)

Handshake timing

No.

Symbol

Parameter

1

TsDI (ACK)

2

ThDi (ACK)

3
4
5
6
7
8
9

10

TdACKf(RFD)
TwACKI
TwACKh
TdRFDr(ACK)
TsDO (DAV)
TdDA Vf (ACK)
ThDO (ACK)
TdACK (DAV)

11

ThDi (RFD)

12

TdRFDf(ACK)

13

TdACKr(RFD)

14

TdDAVr (ACK)

15

TdACK (DAV)

16

TdDA Vif (DAC)

17

ThDi (DAC)

18

TdDACOr(DA V)

19

TdDA VIr (DAC)

Data input to ACKIN ~ setup time
Data input to ACKIN ~ hold
time-strobed handshake
ACKIN ~ to RFD ~ delay
ACKIN low width-strobed handshake
AGKIN high width-strobed handshake
RFD t to ACKIN ~ delay
Data out to DA V ~ setup time
DA V ~ to ACKIN ~ delay
Data out to ACKIN ~ hold time
ACKIN ~ to DA V t delay
Data input to RFD ~ hold
time-interlocked handshake
RFD ~ to ACKIN t
delay-interlocked handshake
ACKIN t (DAV t) to RFD t
delay-interlocked and 3-wire handshake
DA V t to ACKIN t (RFD t)
delay-interlocked and 3-wire handshake
ACKIN t (RFD t) to DAV ~
delay-interlocked and 3-wire handshake
DAV ~ to DACt
delay-input 3-wire handshake
Data input to DAC t hold
time-3-wire handshake
DAC t to DAV t
delay-input 3-wire handshake
DAV t to DAC ~
delay-input 3-wire handshake

LH8036
MIN.
MAX.
0

LH8036A
MIN.
MAX.
0

Unit

Note

ns
ns

0

0

0
25
0
1
1

0
20
0
1
1

ns
ns
ns
ns
ns
ns
AS cycle
[As cycle

0

0

ns

0

0

ns

0

0

ns

0

0

ns

0

0

ns

0

0

ns

0

0

ns

0

0

ns

0

0

ns

1

361

Z8036/Z8036A Counter/Timer and Parallel I/O Unit

No.

SymboL

LH8036/LH8036A

LH8036
MIN.
MAX.

Parameter

20

TdDA VOf (DAC)

21

ThDO (DAC)

"
22

TdDAClr (DA V)

23

TdDA VOr(DAC)

DAV! toDAC t
delay-output 3-wire handshake
Data output to DAC t hold
time-3-wire handshake
DAC t to DAV t
delay-output 3-wire handshake
DAV t to DAC !
delay-output 3-wire handshake

LH8036A
MIN.
MAX.

Unit

0

0

ns

1

1

AS cycl€

1

1

\As CyclE

0

0

ns

Note

Note 1: This time can be extended through the use of the deskew timers.

I--'--®

Data

ACKIN
Input (Input)
RFD--------------~

(Output)

Data

==x:~valid ®J:5=®==I

Output ACKIN
(Input)

data

;

® ~~

\

'-----

DAV - - - (Output)

Strobe handshake
Data

Input

ACKIN
(In"ut)

RFD

(Output)

Data

Output

ACKIN
(Input)

DAV
(Output)

Interlock handshake

'-'--~-~--SHARP-'-'-'--'-""'-""",

362

Z8036/Z8036A Counter/Timer and Parallel I/O Unit

LH8036/LH8036A

Data
DAV
(Input)
Input

RFD
(Output)
DAC
(Output)

Data
DAC
(Input)
Output

RFD
(Input)
DAV
(Output)

3-Wire handshake
(3)
No.
1
2
3
4
5
6
7
8

Counter/timer timing
Symbol

10

TcPC
TwPCh
TwPCl
TfPC
TrPC
TcCI
TClh
TwCIl
TfCI
TrCI

11

TsTI (PC)

12

TsTI (CI)

13

TwTI

14

TsGI (PC)

15

TsGI (CI)

16

ThGI (PC)

17

ThGI (CI)

18

TdPC (CO)

19

TdCI (CO)

9

Parameter
PCLK cycle time
PCLK high width
PCLK low width
PCLK fall time
PCLK rise time
Counter input cycle time
Counter input high width
Counter input low width
Counter input fall time
Counter input rise time
Trigger input to PCLKt
setup time (Timer mode)
Trigger input to counter input ~
setup time (Counter mode)
Trigger input pulse"width (High or Low)
Gate input to PCLK ~
setup time (Timer mode)
Gate input to counter input !
setup time (Counter mode)
Gate input to PCLK !
hold time (Timer mode)
Gate input to counter input !
hold time (Counter mode)
PCLK to counter output delay
(Timer mode)
Counter input to counter output delay
(Counter mode)

LH8036
MIN.
MAX.
250
4000
2000
105
105
2000
20
20
500
230
230
20
20

LH8036A
MIN.
MAX.
165
4000
2000
70
70
2000
10
15
330
150
150
15
15

Unit

Note

ns
ns
ns
ns
ns
ns
ns
ns
ns
ns

1

ns

2

ns

2

ns
ns

2

ns

2

ns

2

ns

2

ns
ns

Note 1: PCLK is only used with the counter/timers (in Timer mode), the "deskew timers, and the REQUEST/WAIT logic. If these functions
are not used, the PCLK input can be held low.
Note 2: These parameters must be met to guarantee that trigger or gate are valid for the next counter/timer cycle.

363

Z8036/Z8036A .counter/Timer and Parallel 110 Unit

LH8036/LH8036A

PCLK

PCLK/2 internal

Counter input

Trigger input

Gate input

Counter output

-------1'
_ _ _ _ _- . J

---------------~
Counter/timer timing

(4)

REQUEST/WAIT timing

No.

Symbol
DS ~
DS ~
PCLK
PCLK

4
5

TdACK (REQ)

ACKIN ~ to REQ f delay

6

TdACK (WAIT)

ACKIN ~ to WAIT

- 3

Note 1:

The Delay is from DAV

--

t

LH8036A
MIN.
MAX.

Unit
ns
ns
ns
ns
AScyc1es+
PCLK
cyc1es+ns
PCLK
cyc1es+ns

delay

! for the 3-wire input handshake_ Delay from DAC t for 3-wire handshake output mode.

REQUEST/WAIT

364

LH8036
MIN.
MAX.

to REQ ~ delay
to W AlT ~ delay
~ to REQ t delay
~ to WAIT f delay

TdDS
TdDS
TdPC
TdPC

I
2

(REQ)
(WAIT)
(REQ)
(WAIT)

Parameter

tim~ng

Note

1

Z8036/Z8036A Counter/Timer and Parallel I/O Unit

(5)

LH8036/LH8036A

Reset timing

No.

Symbol

Parameter

1
2

TdDSQ (AS)
TdASQ (DS)

3

TwRES

Delay from DS t to AS ! for no reset
Delay from AS t to DS ! for no reset
Minimum width of AS and DS both
low for reset

Reset internal

LH8036
MAX.
MIN.
40
50

LH8036A
MAX.
MIN.
15
30

250

170

____________________

Unit

Note

ns
ns
ns

~r

Reset timing
(6)
No.

Miscellaneous port timing
Symbol

1
2
3
4

Trl
Tfl
Twl's
TwPM

5

TsPMD

6

ThPMD

Parameter
Any input rise time
Any input fall time
1 's catcher high width
Pattern match input valid (Bit port)
Data latched on pattern match
setup time (Bit port)
Data latched on patter,n match
hold time (Bit port)

LH8036
MIN.
MAX.
100
100
250
750
0
1000

LH8036A
MIN.
MAX.
100
100
170
500

Unit
ns
ns
ns
ns

0

ns

650

ns

Note

1

Note 1: If the input is programmed inverting, a low-going pulse of the same width will be detected.

Any input

1's catcher input

--------'

Pattern match input _ _ _ _--::-:--..J

@'iE---+;.---

Data to be latched to - - - - - ' " \ J.-'--------~
pattern match

r-----

Miccellaneous port timing
handshake, they provide 16 input or output bits
•
Functional Description
with the data direction programmable on a bit-(1) 1/0 port operations
by- bit basis. Port B also provides access for
Of the Z-CIO's three 110 ports, two (Ports A and
Counter/Timers 1 and 2. In all configurations,
B) are general-purpose, and the third (Port C) is a
Ports A and B can be programmed to recognize
special-purpose 4:-bit port. Ports A and B can be
specific data patterns and to generate interrupts
configured as input, output or bidirectional ports
when the pattern is encountered.
with handshake (Four different handshakes are
The four bits of Port C provide the handshake
available.). They can also be linked to form a siglines for Ports A and B when required. A REnal 16-bit port. If they are not used as ports with
QUEST /W AIT line can also be provided so that
~....-.-...-----SHARP---'--------

365

- Z8036/Z8036ACounter/Timer and Parallel 1/0 Unit

Z-CIO transfers can be synchronized with DMAs
or CPUs. Any Port C bits not used for handshake
or REQUEST/WAIT can be used as input or output bits (individually data direction programmable)
or external access lines for Counter/Timer3. Port
C does not contain any pattern-recognition logic. It
is, however, capable orbit-addressable writes.
With this feature, any combination of bit can be set
and/or cleared while the other bits remain undisturbed without first reading the register.
(2) Bit port operations
In bit port operations, the port's Data Direction
register specifies the direction of data flow for
each bit. A 1 specifies an input bit, and a 0 specifies an output bit. If bits are used as I/O bits for a
counter/timer, they should be set as input or output, as required.
The Data Path Polarity register provides the
capability of inverting the data path. A 1 specifies
inverting, and a 0 specifies noninverting. All discussions of the port operations assume that the
path is noninverting.
The value returned when readin~ an input bit reflects the state of the input just prior to the read. A
1 's catcher can be inserted into the input data path
by programming a 1 to the corresponding bit position of the port's Special 110 Control register.
When a 1 is detected at the 1 's catcher input, its
output is set to a 1 until it is cleared. The 1 's
catcher is cleared by writing a 0 to the bit. In all
other cases, attempted writes to input bits are
ignored.
When Ports A and B include output bits, reading
the Data register returns the value being output.
Reads of Port C return the state of the pin. Outputs
can be specified as open-drain by writing a 1 to
the corresponding bit of the port's Special I/O Control register. Port C has' the additional feature of
bit-addressable writes. When writing to Port C, the
four most significant bits are used as a write protect mask for the least significant bits (0-4, 1-5,
2-6, and 3-7). If the write protect bit is written
with a 1, the state of the corresponding output bit
r
is not changed.
(3) Ports with handshake operation
Ports A and B can be specified as 8-bit input,
output, or bidirectional ports with handshake. The
Z-CIO provides four different handshakes for its
ports : Interlocked, Strobed, Pulsed, and 3-Wire.
When specified as a port with handshake, th~
transfer of data into and out of the port' and interrupt generation is under control of the handshake

366

LH8036/LH8036A

logic. Port C provides the handshake lines as
shown in Table 1. Any Port C lines not used for
handshake can be used as simple I/O lines or as
access lines for Counter/Timer 3.
When Ports A and B are configured as ports
with handshake, they are double-buffered. This
allows for more relaxed interrupt service routine
response time. A second byte can be input to or
output from the port before the interrupt for the
first -byte is serviced. Normally, the Interrupt
Pending (IP) bit is set and an interrupt is generated
when data is shifted into the Input register (input
port) or out of the Output register (output port).
For input and output ports, the IP is automatically
cleared when the data is read or written. In
bidirectional ports, IP is cleared only by command.
When the Interrupt on Two Bytes (ITB) control bit
is set to 1, interrupts are generated only when two
bytes of data are available to be read or written.
This allows a minimum of 16 bits of information to
be transferred on each interrupt. With ITB set, the
IP is not automatically cleared until the second
byte of data is read or written.
When the Single Buffer (SB) bit is set to 1, the
port acts as if it is only single-bufferd. This is useful if the handshake line must be stopped on a
byte-by-byte basis.
Ports A and B can be linked to form a 16-bit
port by programming a 1 in the Port Link Control
(PLC) bit. In this mode, only Port A's Handshake
Specification and Command and Status registers
are used. Port B must be specified as a bit port.
When linked, only Port A has pattern-match capability. Port B's pattern-match capability must be
disabled. Also, when the ports are linked, Port B's
Data register must be read or written before Port
A's.
When a port is specified as a port with handshake, the type of port it is (input, output, or bidrectional) determines the direction of data flow.
The data direction for the bidirectional port is determined by a bit in Port C (Table 1). In all cases,
the contents of the Data Direction register are
ignored. The contents of the Special I/O Control
register apply only to output bits (3-state Of
open -drain). Inputs may not have 1 's catchers ;
therefore. those bits in the Special I/O Control register are ignored. Port C lines used for handshake
should be programmed as inputs. The handshak~
specification overrides Port C's Data Direction register for bits that must be outputs. The contents of
Port C's Data Path Polarity register still apply.

Z8036/Z8036A Counter/Timer and Parallel I/O Unit

LH8036(LH8036A

Table 1. Port C bit utilization
Port AlB Configuration
Ports A and B : Bit ports
Port A : Input or output port
(Interlocked, strobed, or pulsed
handshake) *
Port B : Input or output port
(Interlocked, strobed, or pulsed
handshake) *
Port A or B : Input port (3·wire
handshake)
Port A or B : Output port (3·wire
handshake)
Port A or B : Bidirectional port
(Interlocked or strobed handshake)

PC3
Bit I/O
--

RFD or DA V (0)

PC2
Bit I/O

--

ACKIN (I)

PC.
Bit I/O
-REQUEST IW AIT
or Bit I/O

--

REQUEST IW AIT
or Bit I/O
RFD (0)

--

DAV(O)

RFD or DA V (0)

Bit 110
--

DAV(I)
DAC (I)

--

ACKIN(I)

--

FD or DAV (0)
REQUESTlW AIT
or Bit 110
REQUEST IW AIT
or Bit 110
REQUEST IW AIT
or Bit 110

PCo
Bit I/O
Bit I/O

-ACKIN (I)

DAC(O)
RFD (I)
--

INIOUT

*Both ports A and B can he specified input or output with interlocked, strobed, or pulsed handshake at the same time if neither uses RE·
QUESTlW AlT.

(4) Interlocked handshake
In the Interlocked Handshake mode, the action of
the Z-CIO must be acknowledged by the external
device before the next action can take place. Fig. 1
shows timing for Interlocked Handshake. An output
port does not indicate that new data is available
until the external device indicates it is ready for
the data. Similarly, an input port does not indicate
that it is ready for new data until the data source
indicates that the previous of the data is no loger
available, thereby acknowledging the input port's
acceptance of the last byte. This allows the Z-CIO
to interface directly to the port of a Z8 microcomputer, a UPC, an FlO, an FIFO, or to another
Z-CIO port with no external logic.
A 4-bit deskew timer can be inserted in the Data
Available (DA V) output for output ports. As data is
transferred to the Buffer register, the deskew timer
is triggered. After the number of PCLK cycles specified by the deskew timer time constant pi use one,
DA V is allowed to go Low. The deskew timer
therefore guarantees that the output data is valid
for a specified minimum amount of time before
DA Vgoes Low. Deskew timers are available for
output ports independent of the type of handshake
employed.
(5) Strobed handshake
In the Strobed Handshake mode, data is "strobed"
into or out of the port by the external logic. The falling
edge of the Acknowledge Input (ACKIN) strobes data
into or out of the port Fig. 1 shows timing for the
Strobed Handshake. In contrast to the Interlocked
Handshake, the signal indicating the port is ready for
another data transfer operates independently of the
ACKIN input It is up to the external logic to ensure

that data overflows or underflows do not occur.

INPUT HANDSHAKE
DATA

=x

VALID

XI..________

ACKIN

RFD
DATA LATCHED IN
BUFFER REGISTER

DATA MOVED
TO INPUT
REGISTER

INTERLOCKED
HANDSHAKE

OUTPUT HANDSHAKE
DATA
ACKIN

DAV
BUFFER REGISTER
"EMPTIED"

NEXT BYTE
DESKEW TIME

.,-----

\

STROBED HANDSHAKE

NEXT BYTE SHIFTED FROM OUTPUT
REGISTER TO BUFFER REGISTER

Fig. 1 Interlocked and strobed handshakes

(6) 3-wire handshake
The 3-Wire Handshake is designed for the situation in which one output port is communicating
with many input ports simultaneously. It is essen·
tially the same as the Interlocked Handshake, except that two signals are used to indicate if an in-

------------SHARP-----..-......---367.

.

,

-

.....- ............... ..........

Z8036/Z8936A Counter/Timer and ParalleVIIQUnit

-~

_.-:

put port is ready for new data or if it has accepted
the present data. In the 3-Wire Handshake (Fig. 2),
~he rising edge of one status line indicates that the
port is read'y for data, and the rising edge of
another status line indicates that the data has been
accepted. With the 3-Wire Handshake, the output
lines of many input ports can be bussed together
with open-drain drivers; the output port knows
when all the ports have accepted the data and are
ready. This is the same handshake as is used on
the IEEE-488 bus. Because this handshake requires'three lines, only one port (either A or B) can
be a 3-Wire Handshake port at a time. The 3-Wire
Handshake is not available in the bidirectional
mode. Because the port's direction can be changed
under software control, however, bidirectional
IEEE-488-type transfers can be performed.
INPUT HANDSHAKE
DATA ~_______________
DAV
INPUT
RFD -~~
OUTPUT
DAC
OUTPUT

'-------+---J DATA SHIFTED
TO INPUT REGISTER
DATA LATCHED I
IN BUFFER REGISTER

OUTPUT HANDSHAKE
piA T A _ _ _ _ _ _ _

_ _BYTE
___
NEXT

-JI,~

RFD
INPUT __________J
DAC
INPUT

LAST ONE

DAV
OUTPUT
BUFFER REGISTER
"EMPTIED"

NEXT BYTE SHIFTED FROM OUTPUT
REGISTER TO,BUFFER REGI~TER

Fig. 2 3-wire handshake
(7) Pulsed handshake
The Pulsed Handshake (Fig. 3) is designed to interface to mechanical-type devices that require
data to be held for long periods of time and need
relatively wide pulses to gate the data into or out of
the device. The logic is the same as the Interlocked
Handshake mode, except that an internal counter /
timer is linked to the handshake logic. If the port is
specified in the input mode, the timer is inserted in
the' ACKIN path,. The external ACKIN input trig-

..........

' LH8036/LR8036A

~-

INPUT PORT

ACKiN
cEXT~ERNAL)
,

ACKIN

TRIGGER COI!mR

INPUT

~(INTERNAL)

,QUTPlIT

CIT 3

• ,

r~l
.J

L

.

I

-

'

OUTPUT PORT

TRIGGER COUNTER

INPlIT

OlITPlIT

DAV

CIT 3

Fig. 3 Pulse handshake
gers the timer and its output used as the Interlocked Handshake's normal acknowledge input. If the
port is an outP\1t port, the timer is placed in the
Data Available (DAV) output path. The timer is
triggered when the ilOrmal Interlocked Handshake
DA V output goes Low and the timer output is used
as the actual DAV output. The counter/timer maintains all of its normal capabilities. This handshake
is not available to bidirectional ports.
(8) REQUEST/WAIT line operation
Port C can be programmed to provide a status
signal output in addition to the normal handshake
lines for either Port A or B when used as a port
with handshake. The additional signal is either a
REQUEST or WAIT signal. The REQUEST signal
indicates when a port is ready to perform a data
transfer via the Z-Bus. It is intended for use with a
DMA -type device. The WAIT signal provides synchronization for transfers with a CPU. Three bits
in the Port Handshake Specification register provide controls for the REQUEST /W AIT logic. Because the extra Port C line is used, only one port
can be specified asa port with a handshake and a
REQUEST /W AIT line. The other port must be a
bit port.
Operation of the REQUEST line is modified by
the state of the port's Interrupt on Two Bytes (ITB)
control bit. When ITB is 0, the REQUEST line goes
active as soon as the Z-CIO is ready for a data
transfer. If ITB is 1, REQUEST does not go active
until two bytes can be transferred. REQUEST
stays active as long as a byte is available to be
read or written.
The SPECIAL REQUEST function is reserved
for use with bidirectional ports only., In this case,
the REQUEST line indicates the status of the register not being used in the data path at that time. If
the IN/OUT line is High, the REQUEST line is '
High when the Output register is empty. If IN/OUT
is Low, the REQUEST line is High when the Input

. - - . - - - - - - - - - - S H A R P ---~----..-.-.-368

Z8036/Z8036A Counter/Timer and Parallel I/O Unit

register is full.
(9) Pattern-recognition logic operation
Both Ports A and B can be programmed to generate interrupts when a specific pattern is recognized
at the port. The pattern-recognition logic is independent of the port application, thereby allowing
the port to recognize patterns in all of its configurations. The pattern can be independently specified for each bit as 1, 0, rising edge, falling edge,
or any transition. Individual bits may be masked
off. A pattern-match is defined as the simultaneous
satisfaction of all non masked bit specifications in
the AND mode or the satisfaction of any nonmasked bit specifications in either of the OR or
OR-Priority Encoded Vector modes.
The pattern specified in the Pattern Definition
register assumes that the data path is programmed
to be non inverting. If an input bit in the data path
is programmed to be inverting, the pattern detected
is the opposite of the one specified. Output bits
used in the pattern-match logic are internally sampled before the invert/noninvert logic.
(10) Bit port pattern-recognition operations
During bit port operations, pattern-recognition
may be performed on all bits, including those used
as I/O for the counter/timers. The input to the pattern-recognition logic follows the value at the pins
(through the invert/noninvert logic) in all cases except for simple inputs with 1 '1) catchers. In this
case, the output of the 1 's catcher is used. When
operating in the AND or OR mode, it is the transition from a nomatch to a match state that causes
the interrupt. In the "OR" mode, if a second match
occurs before the first match goes away, it does not
cause an interrupt. Since a match condition only
lasts a short time when edges are specified, care
must be taken to avoid losing a match condition. Bit
ports specified in the OR-Priority Encoded Vector
mode generate interrupts as long as any match
state exists. A transition from a no-match to a
match state is not required.
The pattern-recognition logic of bit ports operates in two basic modes: Transparent and Latched.
When the Latch on Pattern Match (LPM) bit is set
to 0 (Transparent mode), the interrupt indicates
that a specified pattern has occurred, but a read of
the Data register does not necessarily indicate the
state of the port at the time the interrupt was
generated. In the Latched mode (LPM = 1), the
state of all the port inputs at the time the interrupt
was generated is latched in the input register and
held until IP is cleared. In all cases, the PMF indicates the state of the port at the time it is read.
If a match occurs while IP is already set, an

LH8036/LH8036A

error condition exists. If the Interrupt On Error bit
(IOE) is 0, the match is ignored. However, if IOE is
1, after the first IP is cleared, it is automatically
set to 1 along with the Interrupt Error (ERR). flag.
Matches occurring while ERR is set are ignored.
ERR is cleared when the corresponding IP is
.
cleared.
When a pattern-match is pressent in the ORPriority Encoded Vector mode, IP is set to 1. The
IP cannot be cleared until a match is no longer present. If the interrupt vector is allowed to include
status, the vector returned during Interrupt Acknowledge indicates the highest priority bit matching its specification at the time of the Acknowledge
cycle. Bit 7 is the highest priority and bit 0 is the
lowest. The bit initially causing the interrupt may
not be the one indicated by the vector if a higher
priority bit matches before the Acknowledge. Once
the Acknowledge cycle is initiated, the vector is
frozen until the corresponding IP is cleared. Where
inputs that cause interrupts might change before
the interrupt is serviced, the 1 's catcher can be
used to hold the value. Because a no-match to
match transition is not required, the source of the
interrupt must be cleared before IP is cleared or
else a second interrupt is generated. No error detection is performed in this mode and the Interrupt
On Error bit should be set to O.
(11) Ports with handshake patternrecognition operation
In this mode, the handshake logic normally controls the setting of IP and, therefore, the generation
of interrupt requests. The pattern-match logic controls the Pattern Match Flag (PMF). The data is
compared with the match pattern when it is shifted
from the Buffer register to the Input register (input
port) or when it is shifted from the Output register
to the Buffer register (output port). The patternmatch logic can override the handshake logic in
certain situations. If the port is programmed to interrupt when two bytes of data are available to be
read or written, but the first byte matches the specified pattern, the pattern-recognition logic sets IP
and generates an interrupt. While PMF is set, IP
cannot be cleared by reading or writing the data
registers. IP must be cleared by command. The input register is not emptied while IP is set, nor is
the output register filled until IP is cleared.
If the Interrupt on Match Only (IMO) bit is set,
IP is set only when the data matches the pattern.
This is useful in DMA-type applications when interrupts are required only after a block of data is
transferred.

----.--.---SHARP---~---~.-.-r--

369

Z8036/Z8036A Countertfimer and Parallel 110 Unit

(12) Counter/timer operation
the three independent 16-bit counter/timers
consist of a presettable 16-bit down counter, a
16-bit Time Constant register, a I6-bit Current
Counter register,art 8-bit Mode Specification register, an 8-bit Command and Status register, and
the associated control logic that links these registers.
The flexibility of the counter/timers is enhanced
by the provision of up,to four lines per counter /
timer (counter input, gate input, trigger input, and
counter/timer output) for direct external control
and status. Counter/Timer l's external I/O lines
are provided by the four most significant bits of
Port B. Counter/Timer 2's are provided by the
four least significant bits of Port B. Counter/Timer
3's external I/O lines are provided by the four bits
of Port C. The utilization of these lines (Table 2) is
programmable on a bit-by-bit basis via the Counter /Timer Mode Specification registers.
When external counter/timer I/O lines are to be
used, the associated port lines must be vacant and
programmed in the proper data direction. Lines
used for counter/timer I/O have the same characteristics as simple input lines. They can be specified as inverting or noninverting ; they can be read
and used with the pattern-recognition logic. They
can also include the 1 's catcher input.
Counter/Timers 1 and 2 can be be linked internally in three different ways. Counter/Timer 1 's output (inverted) can be uS'ed as Counter/Timer 2's
trigger, gate, or counter input. When linked, the
Table 2 Counter/timer external access
Function
Counter/timer output
Counter input
Trigger input
Gate input

'C/T!
PB4
PB5
PB6
PB7

C/T 2
PBO
PBl
PB2
PB3

C/T 3

peo
PCl
PC2
PC3

counter/timers have the same capabilities as when
used separately. The only restriction is that when
Counter/Timer 1 drives Counter/Timer 2's count
input, Counter/Timer 2 must be programmed with
its external count input disabled.
There are three duty cycles available for the tim'
er/counter output: pulse, one-short, and square
-wave. Fig. 4 shows the counter/timer waveforms.
When tte Pulse mode is specified, the output goes
High for one clock cycle, beginning when the down-counter leaves the count of 1. In the One-Shot
mode, the output goes High when the counter/timer
is triggered and and goes Low when the ddwn-

LH8036/LH8036A

'counter reaches O. When the square -wave output
duty cycle is spec-ified, the counter/timer goes
through two full sequences for each -cycle. The initial trigger causes the down-counter to be loaded
and the normal countdown sequence to begin. If a 1
count is detected on the down-counter's clocking
edge, the output goes High and the time constant
value is reloaded. On the clocking edge, when both
the down-counter and the output are 1 's, the output
is pulled back Low.
The Countinuous/Single Cycle (elSe) bit in the
Mode Specification register controls operation of
the down-counter when it reaches terminal count.
If C/SC is 0 when a terminal count is reached, the
'countdown sequence stops. If the C/SC bit is 1
each time the countdown counter reaches 1, the
next cycle causes the time constant value to be reloaded. The time constant value may be changed by
the CPU, and on reload, the new time constant
value is loaded.
Counter/timer operations require loading the
time constant value in the Time Constant register
and initiating the countdown sequence by loading
the down-counter with the time constant value.
The Time Constant register is accessed as two
8-bit registers. The registers are readable as well
as writable, and the access order is irrelevant. A 0
in the Time Constant register' specifies a time constant of 65,536. The down-counter is loaded in
one of three ways :
(1) By writing a 1 to the Trigger Command Bit
(TCB : write-only),
(2) On the rising edge of the external trigger input, or,
(3) For Counter/Timer 2 only" on the rising
edge of Counter/Timer l's internal output if
the counters are linked via the trigger input.
Once the down-counter is loaded, the countdown
sequence continues toward terminal count as long
as all the counter/timers' hardware and software
gate inputs are High. If any of the gate inputs goes
Low (0), the countdown halts. It resumes when all
gate inputs ate 1 again.
The reaction to triggers occurring during a
countdown sequence is determined by the state of
the Retrigger Enable Bit (REB) in the Mode Specification register. If REB is 0, retriggers are ignored
and the countdown continues normally. If REB is 1,
each'trigger causes the down-counter to be reloaded and the count-down sequence starts over
again. If the output is programmed in the Square
-Wave mode, retrigger causes the sequence to start
over from the initial load of the time constant.

------~-----SHARP-.-.--~.---.-.

370

LH8036/LH8036A

Z8036/Z8036A Counter/Timer and Parallel I/O Unit

The rate at which the down-countor counts is
determined by the mode of the counter/timer. In
the Timer mode (the External Count Enable IECE]
bit is 0), the down-counter is clocked internally by
a signal that is half the frequency of the PCLK input to the chip. In the Counter mode (ECE is 1), the
down-counter is decremented on the rising edge of
the counter/timer's counter input.
Each time the counter reaches terminal count, its
Interrupt Pending (IP) bit is set to 1, and if interrupts are enabled (IE= 1), an interrupt is generated. If a terminal count occurs while IP is already
set, an internal error flag is set. As soon as IP is
cleared, it is forced to a 1 along with the Interrupt
Error (ERR) flag. Errors that occur after the internal flag is set are ignored.
The state of the down-counter can determined in
two ways:
PCLK/20R
COUNTER INPUT

By reading the contents of the down-counter
via the Current Count register, or
(2) By testing the Count In Progress (CIP) status bit in the Command Status register.
The CIP status bit is set when the down-counter
is loaded; it is reset when the down-counter reaches
O. The Current Count register is a 16-bit register,
accessible as two 8-bit registers, which mirrors
the contents of the down-counter. This register can
be read anytime. However, reading the register is
asynchronous to the counter's counting, and the
value returned is valid only if the counter is stopped. The down-counter can be reliably read "on
the fly" by the first writing of a 1 to the Read
Counter Control (RCC) bit in the counter/timer's
Command and Status register. This freezes the
value in the Current Count register until a read of
the least significant byte is performed.
(1)

~~

TRIGGER~

U

GATE

fI

1 TC ITC-1ITC-1I TC- 21 .. ·1.1
PULSE OUTPUT

TC
I OaR

I

------------1r~
[J

ONE SHOT
OUTPUT - - - - '
SQUARE WAVE OUTPUT
FIRST HALF _ _ _ _ _ _ _ _ _ _

--j;c~1

_ _--l

SQUARE WAVE OUTPUT-----------------jfff------,
SECOND HALF
'----

Fig. 4

Counter/timer waveforms

..--.~------SHARP----------

371

Z8036/Z8036A Gounter/Timer and Parallel I/O. Unit

•

LH8036/LH8036A

Internal Registers

The followings' illustrate the contents of the Registers and, in addition, give to register address
summary

• Maste~ Interrupt C.ontrol Register (MICR)
Address : 000000
(Read/Write)

l:

II

107 1 06 1 Os 1041 03 1 Dd 011 Do I

MASTERINTERRUPT~
ENABLE (MIE)

1

DISABLE LOWER CHAIN (DLC)
NO VECTOR (NV)

COUNTER/TIMERS VECTOR
INCLUDES STATUS (CT VIS)

PORT A VECTOR INCLUDES------"
STATUS (PA VIS)

•

LRESET

L'RIGHT JUSTIFIED ADDRESSES
O=SHIFT LEFT (Ao from ADl)
I=RIGHT JUSTIFY (Ao from ADo)

'-------PORT B VECTOR INCLUDES
STATUS (PB VIS)

Master Configuration Control Register (MCCR)
Address: 000001
(Read/Write)
107106/051 D41 031021011 Dol

oj

PORT
ENABLE (PBE)

I

I

---CCOUNTERITIMER LINK
CONTROLS (LC)
LCI LCO
0
0 COUNTER/TIMERS INDEPENDENT
0
1 CIT 1's OUTPUT GATES CIT 2
0 CIT 1'8 OUTPUT TRIGGERS CIT 1
1
l I C I T l's OUTPUT IS CIT 2's
COUNT INPUT

COUNTER/TIMER 1
ENABLE (CTIE)
COUNTER/TIMER 2
ENABLE (CT2E)
PORT C AND COUNTER/------"
TIMER 3 ENABLE
(PCE AND CT3E)

•

'------PORTA ENABLE (PAE)
'-------PORT LINK CONTROL (PLC)
O=PORTS A AND B OPERATE INDEPENDENT
I=PORTS A AND B ARE LINKED

Port Mode Specification Registers (PMSR)
Addresses: 100000 Port A
101000 Port B
(Read/Write)

I

L

1071 D61 Os 1D41 D31 D21 01 Do 1
PORT
SEL~CTS

TYPE~
(PTS)

PTSI PTSO

o
o
1
1

0

1
0
1

BIT PORT
INPUT PORT
OUTPUT PORT
BIDIRECTIONAL
PORT

INTERRUPT ON TWO------'
BYTES (ITB)
SINGLE BUFFERED--------'--"
MODE (SB)

LLATCH ON PATTERN MATCH (LPM)
(BIT MODE)
DESKEW TIMER ENABLE (DTE)
(HANDSHAKE MODES)
.
PATTERN MODE SPECIFIC~TION
BITS (PMS)
PMSI PMSO
- 0 - --0- DISABLE PATTERN MATCH
o
1
"AND" MODE
1
0
"OR" MODE
1
1
"OR PRIORITY ENCODED
VECTOR" MODE

'------INTERRUPT ON MATCH ONLY elMO)

--.-.-----------SHARP ---....-.--------

372

Z8036/Z8036A Counter/Timer and Parallel I/O Unit

•

LH8036/LH8036A

Port Handshake Specification Registers (PHSR)
Addresses: 100001 Port A
101001 Port B
(Read/Write)
! D7! D61 D5! D.I Da! D2! D,
HANDSHAKE TYPE

SPECIFICATION~

LDESKW TIME SPECIFICATION
BITS
SPECIFIES THE MSB's OF
DESKEW TIMER TIME CONSTANT
LSB IS FORCED 1.

BiTS (HST)
HSTl HSTO

o
o

0
1

1
1

0
1

IDol

INTERLOCKED HANDSHAKE
STROBED HANDSHAKE
PULSED HANDSHAKE
THREE WIRE HANDSHAKE

REQUEST/WAIT SPECIFICATION-----'
BITS (RWS)
RWS2 RWSI RWSO FUNCTION
- 0 - --0- --0- REQUEST WAIT DISABLED
o
0
1
OUTPUT WAIT
o
1
1
INPUT WAIT
1
0
0
SPECIAL REQUEST
1
0
1
OUTPUT REQUEST
1
1
1
INPUT REQUEST

•

Port Command and Status Registers (PCSR)

Addresses: 001000 Port A
001001 Port B
(Read/Partial Write)
! D71 D6! D5! D4! Da! D21 Dl ! Dol
INTERRUPT UNDER
SERVICE (IUS)
INTERRUPT ENABLE {IE}
INTERRUPT PENDING {IP}
IUS, IE, AND IP ARE WRITTEN USING
THE F:0LLOWING CODE:
NULL CODE
CLEAR IP & IUS
SET IUS
CLEAR IUS
SET IP
CLEAR IP
SET IE
CLEAR IE

~

jJ
I

I
I

I
I

I

I

I

I

I

II

0
0
0
0
1
1
1
1

0
0
1
1
0
0

1
1

INTERRUPT ON ERROR (IOE)
PATTERN MATCH FLAG (PMF)
(READ ONLY)
INPUT REGISTER FULL (IRF)
(READ ONLY)
OUTPUT REGISTER EMPTY (ORE)
(READ ONLY)

0
1
0
1
0
1
0
1

INTERRUPT ERROR (ERR)
(READ ONLY)

-----------........,.-----.--SHARP~---------

373

.............................. .....

Z8036/Z8036A Counter/TImer and Parallel I/O Unit
,

•

~

Data Path Polarity Registers (DPPR)

LH8036/LH8036A

~~~

•

~

Special 1/0 Control Registers (SIOCR)

Addresses: 100010 Port A
101010 Port B
000101 Port C (4 LSBs only)
(Read/W rite)

Adclresses: 100100 Port A
101100 Port B
000111 Port C (4 LSBs only)
(Read/W~ite)

1~1~1~1~1~I~t~I~1

I~I~I~I~I~I~I~I~I

I

I

DATA PATH POLARITY (DPP)
0= NON -INVERTING
1 = INVERTING

•

..... .....

..........

~~

SPECIAL INPUT /OUTPUT (SIO)
0= NORMAL INPUT OR OUTPUT
1 = OUTPUT WITH OPEN DRAIN OR
INPUT WITH I's CATCHER

Data Direction Registers (DDR)

•

Port Data Registers (PDR)
Addresses: 001101 Port A
001110 Port B
(Read/Write)

Addresses: 100011 Port A
101011 Port B
ooono Port C (4 LSBs only)
(Read/Write)

I~I~I~I~I~I~I~I~I
•

DATA DIRECTION (DD)
0= OUTPUT BIT
1 = INPUT BIT

•

•

Address: 001111
(Read/Write)

4 MSBs
0= WRITING OF CORRESPONDING LSS ENABLED
1 = WRITING OF CORRESPONDING LSS INHIBITED
(READ RETURNS 1)

Pattern Polarity Registers (PPR)

Addresses: 100101 Port A
101101 Port B
(Read/Write)

ID71 D61 D51 D41 D31 Dzi D, IDo I
I

Pattern Transition Registers (PTR)

Addresses: 100110 Port A
101110 Port B
(Read/Write)

ID71 D61 Dsl D41 D31 Dzi D, IDo I

PM
O·

o
1
1
1
1

•

374

PT
0
1
0
0
1
1

PP PATTERN SPECIFICATION
X BIT MASKED OFF
X ANY TRANSITION
0 ZERO
lONE
0 ONE-TO-ZERO TRANSITION (\.)
1 ZERO-TO-ONE TRANSITION (,i')

Pattern Mask Registers (PMR)

Addresses: 100111 Port A
101111 Port B
(Read/Write)

-

Port C Data Register (PCDR)

I~I~I~I~I~I~I~I~I
I

........ ------~ .......... -SHARP . - . - . - - - - - - - - - - - -

LH8036/LH8036A

Z8036/Z8036A Counter/Timer and Parallel I/O Unit

•

Counter/Timer Command and Status Registers (CTCSR)
Addresses 0 0 1 0 1 0 Counter /Timer 1

o 0 1 0 1 1 Counter /Timer 2
o 0 1 1 0 0 Counter/Timer 3
(Read/Partial Write)

I~I~I~I~I~I~I~I~I

II

(IUS)-.J~

Interrupt under service
(Read/Write)
Interrupt enable (IE) - (Read/Write)
Interrupt pending (IP)
(Read/Write)
IUS, IE, IP are written using the following code
OOO=Null code
001 = Clear IP & IU S
010=Set IUS
011=ClearlUS
100 = Set IP
101 = Clear IP
110 = Set IE
111 = Clear IE

•

' • "'","" (CIP)
LCooo
(Read only)
Trigger command bit (TCB)
(Write only. Read returns 0)
Gate command bit (GCB)
(Read/Write)
Read counter control (RCC)
(Read/Set only cleared by reading CCR Ls)

' - - - - - - - - Interrupt error (ERR)
(Read only)

Counter/Timer Mode Specification Registers (CTMSR)
Addresses 0 1 1 1 0 0 Counter /Timer 1

o1
o1

1 1 0 1 Counter /Timer 2
1 1 1 0 Counter /Timer 3

(Read/Write)

C~H"OOM
,mg" ,,''(C/SC)~
External output enable (EOE)

I

I

II

I

External count enable (ECE)
External trigger enable (ETE)
External gate enable (EGE)

•

L

0.".,
,.".,.,. ,.,.,"
00 = Pulse output
.
01 = One -shot output
10 = Sq'uarew ave output
11 = Do not specify
Retrigger enable bit (REB)

Counter/Timer Current Count Registers (CTCCR)
Address 0 1 0 0 0 0 Counter/Timer 1's MSB

o 1 0 0 0 1 Counter/Timer l's LSB
o 1 0 0 1 0 Counter /Timer 2's MSB
o 1 0 0 1 1 Counter/Timer 2's LSB
o 1 0 1 0 0 Counter /Timer 3's MSB
o 1 0 1 0 1 Counter/Timer 3's LSB
(Read only)

I

I

D71 Dol Dsl D41 D31 D,I Dl Do I D71 Dol Dsl D41 D31 Dzi Dl I Do

Most significante byte---_--'f

I

----Least significant byte

,--I

375

L.,H8036/LH8036A

Z.8036/Z8036A Gounter/Timer and Parallel. I/O Unit

•

Counter/Timer Time Constant Registers (CTTCR)

Addresses: 010110 Counter/Timer
010111 ·Counter/Timer
011000 Counter/Timer
011001 Counter/Timer
011010 Counter/Timer
011011 Counter/Timer
(Read/Write)

MOST

1's MSB
1's LSB
2;s MSB
2's LSB
3's MSB
3's LSB

I~I~I~I~I~I~I~I~I~I~I~I~I~I~I~I~I
SIGNIFICANT------.JI
L-I--~--LEAST
BYTE

•

Interrupt Vector Register (lVR)

SIGNIFICANT
BYTE

•

Counter/Timer Status
D2
0
.0
1
1

Addresses: 000010 Port A
000011 Port B
000100 Counter /Timers
(Read/Write)

D1
0
1
0

C/T3
C/T2
C/Tl
Error

I~I~I~I~I~I~I~I~I
I

INTERRUPT VECTOR

•

Port Vector Status

(1)

P encoded vector mode

X(X

(2)

X

Number of highest priority
bit with a watch

All other modes

ORE IRF PMF
o 0 0

Normal
Error

•

Current Vector Register (CVR)

Address: 011111
(Read Only)

I~I~I~I~I~I~I~I~I
I

INTERRUPT V~CTOR BASED
ON HIGHEST PRIORITY
UNMASKED IP.
IF NO INTERRUPT PENDING
ALL 1'8 OUTPUT.

~----------SHARP-~-----3.76

Z8038/Z8038A FlO Input/Output Interface Unit

LH8038/LH8038A

LH8038/LH8038A Z80381Z8038A FlO

I~putl
Output Interface Umt

•

Description

The LH8038 Z8038 FlO provides an asynchronous 128 byte FIFO buffer between two CPUs or
between a CPU and a peripheral device_ This buffer interface expands to a 16-bit or wider data
path and expands in depth to add as many FIFOs
(and an additional LH8038) as are needed.
The LH8038 manages data transfers by assuming Z-BUS, non-Z-BUS microprocessor (a generalized microprocessor interface), Interlocked 2-Wire
,Handshake, and 3-Wire Handshake operating modes.
These modes interface dissimilar CPUs or CPUs
and peripherals running under differing speeds or
protocols, allowing asynchronous data transactions
and improving I/O overhead by as much as two
orders of magnitude.
The LH8038 supports the Z-BUS interrupt protocols, generating seven sources of interrupts upon
any of the following events: a write to a message
register, change in data direction, pattern match,
status match, over/underflow error, buffer full and
buffer empty status. Each interrupt source can be
enabled or disabled, and can also place an interrupt vector on the port address/data lines.
The LH8038A Z8038A 1"10 is the high speed
version which can operate at 6MHz system clock.

•

Features
1. 128-byte FIFO buffer provides asynchronous
bidirectional CPU/CPU or CPU/peripheral interface, expandable to any width in byte increments by use of multiple FIOs.
2. Interlocked 2-Wire or 3-Wire Handshake logic
port mode; Z-BUS or non-Z-BUS interface.
3. Pattern-recognition logic stops DMA transfers
and/or interrupts CPU; preset byte count can
initiate variable-length DMA transfers.

•

Pin Connections

o

+5V

[AJ

rnJ
~

mJ
ffi]

[f]
[Q]

llil

rn

rn

00

OJ
02

~

03

O.
05
0&
07

GNO

Mo
Top View

4. Seven sources of vectored/nonvectored interrupt which include pattern-match, byte count,
empty or full buffer status; a dedicated "mailbox" register with interrupt capability provides CPU/CPU communication.
5. REQUEST /W AIT lines control high-speed
data transfers.
6. All functions are software controlled via directly
addressable read/write registers.

377

Z8038/z8038A FlO Input/Output Interface Unit

•

LH8038/LH8038A

Block Diagram

Pattern
Match
Logic

Data Bus

Data
Buff~r
Register

Status Logic
and Registers

Pattern
Match
Logic

Data
Buffer
Register

128X8
FIFO Buffer

Data Bus

Port 1 Side I Port 2 Side
I

I

:-~------SHARP

378

....------...-.-----------

Z8038/Z8038A FlO Input/Output Interface Unit

•

LH8038/LH8038A

Pin Description
(1)

Pins common to both ports 1 and 2

Pin
Mo
Ml

(2)

Pin signal
Mo
Ml

Meaning
Multimicro output
Multimicro input

I/O
0
I

Function
Ml and Mo program Port 1 side
CPU interface

Z-bus low byte mode

Pin

Pin signal

Meaning

Do-D 7

AD o-AD 7

Address/ data bus

-----

I/O
Bidirectional
3-state

REQ/WAIT

Request/wait

0

DMASTB

DMA strobe

I

Data strobe

I

Read/write

I

Chip select

I

AS

Address strobe

I

G

INTACK

Interrupt acknowledge

I

H

lEO

Interrupt enable output

0

I

lEI

Interrupt enable input

I

Interrupt request

0

A
B

-

C
D

DS

-

R/W

-

CS

E
F

J

-

-

INT

Function
Multiplexed bidirectional bus, Z-BUS compatible
Active low. open-drain output with WAITselected ;
REQUEST line for DMA transfer; WAIT line for
data transfers to and from CPU.
Active low. Provides timing for data transfer to and
from the FIFO buffer.
Active low. Provides timing for data transfer to or
fn?m Z·FIO.
Active high signals CPU to head from Z-FIO ; active
Low signals CPU to write to Z-FIO.
Active low. Enables Z-FIO. Latched on the rising
edge of AS.
Active low. Addresses. CS and INT ACK are sampled
while AS is Low.
Active low. Latched on the rising edge of AS.
Active high. Sends interrupt enable to lower priority
device lEI pin.
Active high. Receives interrupt enable from higher
priority device lEI pin.
Active low, open-drain output.
Interrupt request signal to CPU.

(3) Z-bus high byte mode
Pin

Pin signal

Meaning

Do-D 7

ADo-;-AD7

Address/ data bus

A
B
C
D
E
F

G-J

-----

I/O
Bidirectional
3-state I

REQ/WAIT

Request/wait

0

DMASTB

DMA strobe

I

Data strobe

I

Read/write

I

Chip select

I

AS

Address strobl·

I

Ao-Aa

Address bits

I

-

DS
-

R/W
-

CS

-

Function
Multiplexed bidirectional bus, Z-BUS compatible.
Active low, open-drain output when WAIT selected;
REQUEST line for DMA transfer; WAIT line for
data transfers to and from CPU.
Active low. Strobes DMA data to and from the FIFO
buffer.
Active low. Provides timing for data transfer to or
from Z-FIO.
Active high signals CPU to read from Z-FIO ; active
low signal CPU to write to Z-FIO.
Active low. Enables Z-FIO. Latched on the rising
edge of AS
Active low. Addresses, CS and INT ACK are sampled
while AS is low.
Active high. Specify Z=FIO internal registers.

379

LH8038/LH8038A

l8038/Z8038A FlO Input/Output Inter:tace Unit

(4)

Non-Z-bus mode

Pin

Pin signal

Meaning

Do -D 7

Do-D 7

Data bus

-----

110
Bidirectional
3-state

REQ/WAIT

Req uestl wait

0

B
C
D
E

DACK
RD
WR
CE

DMA acknowledge
Read
Write
Chip select

I
I
I
I

F

C/D

Controll data

I

G

INTACK

Interrupt acknowledge

I

H

lEO

Interrupt enable output

0

I

lEI

Interrupt enable input

I

Interrupt

0

I/O
Bidirectional
3-state

A

-

-

J

(5)

INT

Pin signal

Meaning

Do -D 7

Do-D 7

Data bus

A

RFD/DAV

--

Ready for datal
data available

0
~:

---

ACKIN

--

Acknowledge input

I

Data availablel
data accepted

I

Full

0

B

DAV/DAC

C

FULL

C

DAC/RFD

Data acceptedl
ready for data

110

D

EMPTY

Empty

0

CLEAR

Clear

110

F

DATA DIR

Data direction

I/O

G
H

INo
OUT l

Input
Output

I
0

OE

Output enable

0

OUTa

Output

0

E

I

J

Bidirectional data bus.
Active low, open-drain output when WAIT is selected ; REQUEST line for DMA transfer; WAIT line
for data transfer to and from CPU.
Active low. DMA acknowledge signal.
Active low. Timing signal for reading.
Active low. Timing signal for writing.
Active low. Signal that is used to select Z-FIO.
Active high identifies control byte on Do-D7, active
low identifies data byte on Do- D7
Active low. acknowledges an interrupt.
Active high. Sends interrupt enable to lower priority
device IEI pin.
Active high. Receives interrupt enable from higher
priority device lEO signal.
Active low, open drain. Signals Z-FIO interrupt to
CPU.

Port 2-1/0 port mode

Pin

B

Function

---

-

Function
Bidirectional data bus.
For input handshake, RFD (active High) signals that
Z-FIO is ready to receive data. For output handshake,
DA V (active Low) signals that output data is valid
Active low. Signals that input data is valid in the case
of input handshake or that output data is received by
peripherals in the case of output handshake.
For input handshake, DA V (active low) signals that
input data is valid. For output handshake, DAC (active high) signals that listener has received data.
Active high, open drain. Signals that FIFO buffer is
full.
Both active high. For input handshake, DAC (an output) signals that data has been received from talker.
For output handshake, RFD (an input) signals that
the listeners are ready for data.
Active high, open drain. Signals that FIFO buffer is
empty.
Active low. Can clear data from FIFO buffer in the
case of input.
Data direction is controllable for input. Active high
signals data input to ports 2 ; Low signals data output from Port 2.
Input line to bit 0 (Do) of control register 3.
Output line from bit (D l ) of control register 3.
Actiye low. When low, enables bus drivers. When
high, floats bus drivers at high inpedance .
. Output line from bit 3 (D3) of control register 3_

---.-.------SHARP------------380

Z8038/Z8038A FlO Input/OLitput Interface Unit

•

LH8038/LH8038A

Absolute Maximum Ratings
Parameter
Input voltage *
Output voltage *
Operating temperature
Storage temperature
Note

Symbol
V IN
VOUT
Top,
' T s'"

Ratings
-0.3-+7
-0.3-+7
0-+70
-6S-+1S0

Unit
V
V
"C
"C

The maximum applicable voltage on any pin with respect to GND.

+5V

+5V

2.2kn
From test output

0--..-+-1......

From test output

i

12.2k!l

r

50PF

Standard test load

•

Parameter
Input high voltage
Input low voltage
Output high voltage

Symbol
VlH
V IL
VOH

Output low voltage

VOL

I IIIL I
IloL I
ILM
Icc

Conditions

Ion =-2S0,uA
IOL =+2mA
IOL=+3.2mA

O

PORT 3

<8>

Z80 bus

I/O
Z80
} HANDSHAKE
SIGNALS

MEMORY

Z-bus

Z80 bus

Fig. 1 CPU to CPU configuration

•

Fig. 2 CPU to 110 configuration

CPU Interface

The LH8038 is designed to work with both
Z-bus and non-Z-bus-type CPUs on both Port 1
and Port 2. The Z-bus configuration interfaces
CPUs with time·multiplexed address and data in·
formation on the same pins. The Z8001, Z8002,
and Z8 are examples of this type of CPU. The AS
(Address Strobe) pin is used to latch the address
and chip select information sent out by the CPU.
The RIW (Read/Write) pin and the DS (Data
Strobe) pin are used for timing reads and writes
from the CPU to the LH8038 (Fig. 3 and 4).

Address valid

ADo-AD,

The non-Z-bus configuration is used for CPUs
where the address and data buses are separate. An
Example of this type of CPU is the Z80. The RD
(Read) and WR (Write) pins are used to time reads
and writes from the CPU to the FlO (Fig. 5 and 6).
The C/O (Cantrall Data) ~n is used to directly ac·
cess the FIFO buffer JC/D = Low) and to access
the other register (C/D = High).

To CPU

--<'-_....1)>-----«'-_....1)>----

AS

CS~

R/W
DS

,

:J
,'-_ _ _....J/

Fig. 3 Z-bus read cycle timing

389

LH8038/LH8038A

2-8038/Z8038A' FlO Input/Output Interface Unit·

Addre.ss valid

ADo-AD7

--cJ-<

Data from CPU

}--

AS~
CS

''-__--II

DS
Fig. 4

c/n

Z-bus write cycle timing

:==x

x:=

(ToCPU~

\I.-_ _ _ _ _ _ _-JI

CE

\1.-_ _ _ _-J1

RD

Fig. 5

Non-Z-bus read cycle timing

X

c/n
Do- D7

\

CE
WR

Fig. 6

•

<

From CPU

,

)

x==
I

I

Non-Z-bus write cycle timing

CPU-CPU Operation

(1) DMA operation
The LH8038 is particularly well suited to work
with a DMA in both Z-bus and non-Z-bus modes. A d~ta transfer between the LH8038 and system memory can take place durring every machin~
cycle on both sides of the LH8038 simultaneously.
(2) Message registers
Two CPUs can communicate through a dedicated
"mailbox" register without involving the 128 X 8
bit FIFO buffer. This mailbox approach is useful
for the transferring control parameters between
the interfacing devices on either side of the
LH8038 without using the FIFO buffer.
(3) Direction of data transfer operation
The Data Direction bit controls the direction of
data transfer in the FIFO buffer. This bit reads
correctly when read by either port's CPU. For example, if Port l's CPU reads Ii 0 (CPU output) in
its Data Direction bit, then Port 2's CPU reads a 1
(input to CPU) in its Data Direction bit.

390

c

\

R/W

•

CPU to I/O Operation

When Port 2 is programmed in the Interlocked
2-Wire Handshake mode or the 3-Wire Handshake
mode, and Port 1 is programmed in Z-bus or
non-Z-bus Microprocessor mode, the LH8038 interfaces a CPU and a peripheral device.
(1) Interlocked 2-wire handshake
In the Interlocked Handshake, the action of the
LH8038 must be acknowledged by the other half of
the handshake before the next action can take
place. In output mode, Port 2 does not indicate that
new data is available until the external device indicates it is ready for the data. Similarly, in input
mode, Port 2 does not indicate that it is ready for
new data until the data source (external device) indicates that the previous byte of the data is no longer available, thereby acknowledging Port 2's
acceptance of the last byte by Port 2's Ready for
Data Signal (RFD -+ High).

Z8038/Z8038A FlO Input/Output Interface Unit

(2) 3-wire handshake
The 3-Wire Handshake is designed for applications in which one output port is communicating
with many input ports simultaneously. It is essentially the same as the Interlocked Handshack, except that two signals are used to indicate that an
input port is ready for new data or that it has
accepted the present data. With 3- Wire Handshake, these lines (RFD, DAC) of many input ports
can be bussed together with open-drain drivers
and the output port knows when all of the ports are
ready and have accepted the data. This handshake
is the same handshake used in the in IEEE-488 Instruments. Since the port's direction can be changed
under software control, bidirectional IEEE-488-type
transfers can be performed.
(3) Data direction control
In CPU -to- I/O mode, the direction of data transfer can be controlled by the CPU side (Port 1)
under software control. The data direction can also
be determined by hardware control by defining the

LH8038/LH8038A

Data Direction pin of Port 2 as an input (Control
Register 3, bit 5 = 1).
For cascading purposes, the Data Direction pin
can also be defied as an output (Control Register 3,
bit 5 = 0) pin which reflects the current state of
the Data Direction bit. It can then be used to control the direction of data transfer for other
LH8038s or for external logic.

•

Programming

The programming of the LH 8038 is greatly simplified by the efficient grouping of the various operation modes in the control registers. Since all of
the control registers are read/write, the need for
maintaining thier image in system memory is eliminated. Also, the read/write feature of the registers aides in system debugging.
Each side of the LH 8038 has 16 registers. All
16 registers are used by the Port 1 side ;

Table 1 Z-FIO register address summary
Non-Z-bus
Z-bus high
Z-bus low

IRJA=O
RJA=l

Register
Control Register 0
Control Register 1
Interrupt Status Register 0
Interrupt Status Register 1
Interrupt Status Register 2
Interrupt Status Register 3
Interrupt Vector Register
Byte Count Register
Byte Count Comparsion
Register
Control Register 2 *
Control Register 3
Message Output Register
Message Input Register

Pattern Match Register
Pattern Mask Register
Data Buffer Register

x

D2
A2
AD3
AD2

D,
A,
AD2
AD,

Do
Ao
AD,
ADo

0

0
1
0
1

X

X

0
0
1
1
0
0
1
1

0
1
0
1

0
0
0
0

0
0
0
1
1
1
1

X

1

0

0

0

X

X

1
1
1
1
1
1
1

0
0
0

0
1
1
0
0
1
1

1
0
1
0
1
0
1

X

DT D4
ADT AD 5
ADTAD4
X
X
X
X
X
X
X

X
X
X
X
X
X

D3
A3
AD4
AD"
0
0
0
0

1
1
1
1

ADo

X
X
X
X
X
X
X

X
X
X
X
X
X

= Don't Care bit (0, 1)

* Register is only

0

Port 1 side

---.--.------~-SHARP---------

391

Z80S.8/Z8038A FlO Input/Output Interface Unit

•

LH8038/Lhl8038A

Control Register 0
Address:, 0000
(Read/Write)

I D7 I D6 I D51 D41 D3 I' D2 I DI I Do I
E~ABLED

J

(MIE)J
1
1 = INTERRUPTS
1 = DISABLE LOWER DAISY CHAIN (DLC)
1 = NO VECTOR ON INTERRUPT ( N V ) '

I'---r
Lin

I L I ~ RESET

.

' - 1 = RT.JUST.ADDRESS (RJA)
(BI) (Bo)·
}
o0 01 == NON-Z-BUS
Z-BUS CPU
,PROGRAMS
CPU
PORT 2 MODE
1 0 = 3-WIRE HS I/O
'
1 1 = INTERLOCKED HS

1 = VECTOR INCLUDES STATUS (VIS)
.
·READ-ONLY FROM
· PORT 2 SIDE

•

Control Register 1
Address: 0001
(Read/Write)

I D71 D61 D51 D41D31 D21 DI IDol
J

I

(MUST BE PROGRAMMED 0)
NOT USED
1 = FREEZE STATUS REGISTER COUNT
1 = MESSAGE MAILBOX REGISTER FULL·

JU

REQUEST/WAIT ENABLED
~L= 01 == WAIT
1 = REQUEST

1 = MESSAGE MAILBOX REGISTER UNDER
SERVICE·

1 = START DMA ON BYTE COUNT
1 = STOP DMA ON PATTERN MATCH

• READ-ONL Y BITS

•

Control Register 2*
Address: 1001

I D71 D61 Dsl D41 D31 D21 DI I Do I

(Read/Write)

I L L1 = PORT 2 SIDE ENABLED

BITS 2-7 NOT USED
MUST BE PROGRAMMED 0

1 = PORT 2 SIDE ENABLE HANDSHAKE
·THIS REGISTER READS ALL
O'S FROM PORT 2 SIDE

•

Control Register 3
Address: 1010
(Read/Write)

I D7 I D6 I D5 I D4 I D3 I D2 I DI I Do I
o~ PORT 1510E CONTROL S

CLEARJ·I

1 = PORT 2 SIDE CONTROLS
'
0= CLEAR FIFO BUFFER
0= PORT 1 SIDE CONTROLS
1 = PORT 2 SIDE CONTROLS

• READ-ONL Y BITS
··ONLY WHEN PORT 2 IS AN I/O PORT

392

I

I

1

I

Lpo RT 2SlOE-INPUT LINE· (PIN 33)"
PORT 2 SIDE-OUTPUT LINE (PIN 32)··
NOT USED (MUST BE PROGRAMMED 0)
PORT 2 SIDE-OUTPUT LINE (PIN 30)··
DATA DIRECTION BIT
1 = INPUT TO CPU
0= OUTPUT FROM CPU

ZS03S/ZS03SA FlO Input/Output Interface Unit

•

LHS03S/LHS03SA

Interrupt Status Register 0
Address: 0010

(Read/Write)

I D7 ID6 I D5 I D4 I D3 I D2 I DJ I Do I
MESSAGE INTERRUPT UNDER SERVICE (IUS}j
MESSAGE INTERRUPT ENABLE (IE)
:
MESSAGE INTERRUPT PENDING (IP):
IUS, IE, AND IP ARE WRITTEN USIN
THE FOLLOWING COMMAND:
NULL CODE 0
CLEAR IP & IUS 0
SET IUS 0
CLEAR IUS 0
SET IP 1
CLEARIP 1
SET IE 1
CLEAR IE 1

GI

•

II

[

•

NOT USED
(MUST BE PROGRAMMED 0)

:

I
0
0

1
1
0
0
1
1

I

0

1
0
1
0
1
0
1

Interrupt Status Register 1
Address: 0011

(Read/Write)

I D7 I D6 1 D5 1 D41 D31 D21 DJ 1 Do I
C~NGE

DATA
"''''''ON
UNDER
SERVI<::E (IUS)

'NTER'"",.J:
DATA DIRECTION CHANGE INTERRUPT
'
ENABLE (IE)
:
DATA DIRECTION CHANGE INTERRUPT:
PENDING (Ip)
NOT USED:
(MUST BE PROGRAMMED 0 )
IUS, IE, AND IP ARE WRITTEN USING
THE FOLLOWING COMMAND:

NULL CODE
CLEAR IP & IUS
SET IUS
CLEAR IUS
SET IP
CLEARIP
SET IE
CLEAR IE

I
0
0
0
0

1
1
1

1

I I I I I I
:
:
:

,
:

I I

0
0
1
1
0
0
1
1

•
:
::
.'

0

1
0

1
0
1
0
1

II

0
0
0
0
1
1
1
1

0
0
1
1
0
0
1
1

PATTERN MATCH INTERRUPT
PENDING (I P)
PATTERN MATCH INTERRUPT
ENABLED IE)
PATTARN MATCH INTERRUPT
UNDER SERVICE (IUS)
US, IE, AND IP ARE WRITTEN USING
HE FOLLOWING ,COMMAND:

I~
0
1
0
1
0
1
0
1

L, ~ PATTERN NATC' FLAG·

NULL CODE
CLEAR IP & IUS
SET IUS
CLEAR IUS
SET IP
CLEAR IP
SET IE
CLEAR IE

*READ-ONL Y BITS

393

.. LH8038/LH8038A

Z8038/Z8038A FIO.lnput/Output Interface Unit

•

Interrupt Status Register 2

Address: 0100 (Read/Write)

lliER~
I t t~~~

~tdJ

BYTE COUNT COMPARE INTERRUPT UNDER
SERVICE (IUS ) ,
BYTE COUNT COMPARE INTERRUPT ENABLE (IE);
BYTE COUNT COMPARE INTERRUPT PENDING (IP):
,I
OVERFLOW ERROR
IUS,IE,AND IP ARE WRITTEN USIN
GI
THE FOLLOWING COMMAND:

.

:

.

NULL CODE
CLEAR IP & IUS
SET IUS
CLEAR IUS
SET IP
CLEARIP
SET IE
CLEAR IE

:

0
0
0
0
1
1
1
1

,

:

:

I
0
0

I
0
1
0
1
0
1
0
1

1
1
0
0

1
1

0
0
0
0
1
1
1
1

'

UNDERFLOW ERROR·
OR INTERRUPT PENDING (ID)
: ERR OR INTERRUPT ENABLED (IE)
R INTERRUPT UNDER SERVICE (IUS)
E,AND IP ARE WRITTEN USING
FOLLOWING COMMAND:

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

NU LL CODE
CL EAR IP & IUS
SE T IUS
CL EAR IUS
SE TIP
CL EARIP
SE TIE
CL EARlE

·READ-ONLY BITS

•

Interrupt Status Register 3

Address: 0101 (Read/Write)

~ER

I D7 I Ds I D5 I D. r D3 I D2 I Dl I Do I

IIUSl~

FUll mTERRDPr
SERVICE
FULL INTERRUPT ENABLE (IE);
FULL INTERRUPT PENDING (IP):
.
BUFFER FULL":
IUS, IE, AND IP ARE WRITTEN USI
THE FOLLOWING COMMAND
NULL CODE
CLEAR IP & IUS
SET IUS
CLEAR IUS
SET IP
CLARIP
SET IE
CLEAR IE
·READ-ONLY BITS

394

IIIIIL
:
:,
::

~GI I
0
0
0
0
0
1
1
1
1

0
1
1
0
0
1
1

I
0
1
0
1
0
1
0
1

:
,
:
::

.

I

0
0
0
0
1
1
1
1

I

0
0
1
1
0
0
1
1

I
0
1.
0
1
0
1
0
1

LBUFFER EMPTY·
EMPTY INTERRUPT PENDING (IP)
EMPTY INTERRUPT ENABLE (IE)
EMPTY INTERRUPT UNDER SERVICE (IUS)
IUS,IE,AND IP ARE WRITTEN USING
THE FOLLOWING COMMAND:
NULL CODE
CLEAR IP & IUS
SET IUS
CLEAR IUS
SET IP
CLEARIP
SETIE
CLEAR IE

Z8038/Z8038A FlO Input/Output Interface Unit

•

LH8038/LH8038A

Interrupt Vector Register
Address: 0110 (Read/Write)

I D7 I D6 I Ds I D. I D3 I D2 I Dl I Do I

~

I I I I
VECTOR STATUS

•

NOINTERRU PTS PENDING
BU FFER EMPTY
B UFFER FULL
OVER/UNDER FLOW ERROR
BYTE C OUNT MATCH
PAT TERN MATCH
DATA DIREC TION CHANGE
MAILB OX MESSAGE

Byte Count Register

Address: 0111 (Read Only)

I D7 I D61

Ds I D.I D3

•

I D2 I Dl I Do I

I D7 I D6 I Ds I D, I D3 I D2 I Dl I Do I

1
1

0

1
1
1
1

0
0

0

1
1

0

1
1
1
1

Pattern Match Register

I D7 I D6 I Ds I D. I D31 D2 I Dl I Do I

I I I I I I I I
STORES BYTE COMPARED WITH
BYTE IN DATA BUFFER REGISTER

•

I D7 I D6 I Ds I D. I D3 I D, I Dl I Do I

I I I I I I I I

CONTAINS VALUE COMPARED TO BYTE COUNT
REGISTER TO ISSUE INTERRUPTS ON MATCH
(BIT 7 ALWAYS 0.)

IF SET,BITS

I D7 I D6 I Ds I D.

I D3 I D2 I Dl I Do I

I I I I I I I I
STORES MESSAGE SENT TO MESSAGE
IN REGISTER ON OPPOSITE PORT OF FlO

Message Input Register

0~7

MASK BITS

0~7

IN PATTERN MATCH REGISTER.
MATCH OCCURS WHEN ALL
BITS AGREE.

NON~MASKED

Message Output Register

Address: 1011 (Read/Write)

Pattern Mask Register

Address: 1110 (Read/Write)

I I I I I I I I

•

0

Byte Count Comparison Register

Address: 1000 (Read/Write)

•

0
0

Address: 1101 (Read/Write)

REFLECTS NUMBER OF BYTES IN BUFFER

•

0
0
0
0

•

Data Buffer Register
Address: 1111 (Read/Write)

I D7 I D6 I Dsl D. I D3 I D2 I Dl I Do I

I I II I I I I
CONTAINS THE BYTE TRANSFERRED
TO OR FROM FIFO BUFFER RAM

Address: 1100 (Read Only)

I D7 I D6 I Ds I D. I D3 I D2 I Dl I Do I

I I I I I I I I
STORES MESSAGE RECEIVED FROM MESSAGE
OUT REGISTER ON OPPOSITE PORT OF CPU

-~------SHARP---------

395

LH8060

za060FIFO Buffer Unit and Expander

LH8060

Z8060 FIFO Buffer Unit and ·Expander

•

,.Description
The LH8060 First-In, First-Out (FIFO) buffer
unit consists of a 128-bit-by-8-bit memory,
bidirectional data transfer and handshake logic. The
structure of the FIFO unit is similar to that of other
available buffer units. LH8060 is a general-purpose unit; its handshake logic is compatible with that·
of other members of Z8, Z8000 family and Z8500
family.

•

Pin Connections
RFD/DAVA

I

ACKINA

2

FULL 3
EMPTY

0
A

B

4

OEA
DOH
DIH

D2B

•

Features
1. Bidirectional, asynchronous data transfer capability
2. Large 128-bit-by-8-bit buffer memory
3. Two-'wire, interlocked handshake protocol
4. 3-state data outputs
5. Wire-ORing of empty and full output for sensing of multiple-unit buffers
6. Connects any number of LH8060 in series to
form buffer of any desired length
7. Connects any number of LH8060 in parallel to
form buffer of any desired width

•

Top Vie.w

Block Diagram

Data Bus A

Ready-for· Datal
DataAvaiiable

Data
Buffer
A

Control

Logic

396

GND

128X8
RAM
Buffer
Memory I---.J\J Data
Buffer
B

Data Bus B

Z8060 FIFO Buffer Unit and Expander

•

Pin Description
Pin
Do -D 7
---

ACKIN

110
Bidirectional
3-state

Meaning
Data bus

Acknowledge input

I

Ready·for·data/data valid

0

Clear

I

DIR AlB

Data direction

I

EMPTY

Empty

0

Full

0

Output enable

I

--

RFD/DAV

--CLEAR

-

FULL

---OEA,OE B

•

LH8060

Function
Bidirectional data bus.
Active low.
Input handshake indicates that input data is valid; out·
put handshake indicates that output data has been reo
ceive by peripherals
Input handshake indicates RFD (active High) : Z-FIFO is
ready to receive data. Output handshake indicates DA V
(active low) : Output data is valid.
Active low.
When set to low, this line causes all to be cleared from
the FIFO buffer.
This line allows control of the input data direction.
When high, data is to be inputted through port B, when
low, data is to be intputted through port A.
Active high, open -drain. Indicates that the FIFO buffer
is empty
Active high, open -drain. Indicates that the FIFO buffer
is full.
Active low.
OE A, when high, causes the bus drive~or port A to
float to a high impedance level input. OE B controls the
bus drivers for port B in the same manner as OE A con·
troIs those for port A

Absolute Maximum Ratings
Parameter
Input voltage
Output voltage
Operating temperature
Storage temperature

Ratings
-0.3-+7
-0.3-+7
0-+70
-65-+150

Symbol

VIN
VOUT
Topr

T~

Unit

V
V
"C
"C

Note
1
1

Note 1: The maximum applicable voltage on any pin with respect to GND.

+SV

+SV

2S0pA
From output o----1>--,.,~...
under test

F_

"0'""

under test

Standerd test load

~

o--f

2.2kn

r

SOPF

Open-drain test load

'-~-------'--SHARP--'-----~~

397

Z8060 FIFO Buffer Unit and Expander

•

(Vcc=5V±5%, ra=0~+70"C)

DC Characteristics
Parameter
Input high voltage
Input low voltage
Output high voltage
Output low voltage
Input'leakage current
Output leakage current
Current consumption

•

Symbol
VIH
VIL
VOH
VOL
1IlL I
I IOL I
Icc

Conditions

IOH = -250 f1A
IOL = + 2mA, IOL = + 3.2mA
OA:S::VIN <2AV

•

MIN.
2
-0.3
204

TYP.

MAX.
Vcc +0.3
0.8

004,0.5
10
10
200

OA~VouT<2AV

(f=lMHz, Ta=0-+70"C)

Capacitance
Parameter
Input capacitance
Output capacitance
Bidirectional capacitance

Symbol
CIN
COUT

MIN.

Conditions
Unmeasurred pins retured
to ground

CliO

Unit
pF
pF
pF

MAX.
10
15
20

AC Characteristics
(1)

/

LH8060

Parameter
Input rise time
Input fall time

(2)

, (f=IMHz, Ta=0-+70"C)

Input pin
Symbol
tr
tf

Conditions

MAX.
100
100

Unit
ns
ns

2-wire interlocked handshake timing

No.
1
2
3
4
5
6
7
8
9
10
11
12

Symbol
TsDI (ACK)
TdACKf (RFD) .
TdRFDr (ACK)
TsDO (DAV)
TdDAVf (ACK)
ThDO (ACK)
TdACK (DAV)
ThDI (RFD)
TdRFDf (ACK)
TdACKr (RFD)
TdDAVr (ACK)
TdACKr (DA V)

13

TdACKINf (EMPTY)

14

TdACKINf (FULL)

15
16
17
18
19

ACKIN Clock Rate
TdACKINf (DAVQ
TwCLR
TdOE (DO)
TdOE (DRZ)

Parameter
Data input to ACKIN ~ to setup time
ACKIN ~ to RFD ~ delay
RFD t to ACKIN t delay
Data out to DA V t set'up time
DA V t ACKIN t delay
Data out from ACKIN t hold time
ACKIN t to DA V t delay
Data input from RFD t hold time
RFD ~ to ACKIN t delay
ACKIN t to RFD t delay
DA V t to ACKIN t delay
ACKIN t to DA V t delay
(Input) ACKIF t to EMPTY t delay,
(Output) ACKIN ~ to EMPTY ~ delay
(Input) ACKIN t to FULL t delay,
(Output) ACKIN ~ to FULL t delay
(Input or Output)
ACKIN t to DA V ~ delay
CLEAR "Low" hold.tiine to reset Z-FIFO
OE ~ to data bus driven delay
OE t to data bus float delay

Note: All timing references assume 2.0 V for a logic 1 and 0.8 V for a logic 0

398

MIN.

MIN.
0
0
25

0
0
0
0
0
0

MAX.

Unit
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns

1.0
700
0

MHz
ns
ns
ns
ns

Unit
V
V
V
V
p.A
p.A
rnA

LH8060

Z8060 FIFO Buffer Unit and Expander

•

AC Timing Diagram

DATA

RFD

EMPTY

FULL
Input timing

DATA

EMPTY
FULL
Output timing

DAV

Time from ACKIN! to DAV !

CLEAR
INPUT

\11"-------_®_....JI}/

OE

DATA OUT
Output enable and clear

.-.-.-.--.-.-..--SHARP -..-...----------

399

LH8060

Z8060:FIFO Buffer Unit and Expander

•

Interlocked 2-Wire Handshake

The LH8060 uses interlocked handshake operations for data trasfer. In interlocked handshake operation, the action must be acknowledged by the
other half of the handshake before the nextactton
can occur. The following describs the handshake
timing in input and output modes.
(1) Input mode
,.
In an Input Handshake mode, RFD (output) and
ACKIN (input) are used as the handshake control
lines. Unless the FIFO buffer is full, RFD is set
High and signals to the peripherals involved that
the FIFO buffer is ready to receive data. When the
acknowledge signal ACKIN from the external device is set Low, the LH8060 takes the input data
into the buffer and sets RFD Low to signal to the
peripherals that the input signal has been received.
This process is repeated until the FIFO is full,
RFD is kept low.

DATA IN

=x

Valid data X:::==::XValid dataL

This contorol feature allows the LH8060, with
no external logic, to directly interface with port of:
eZ8
'
eZ-CIO
ez-uPC
eZ-FIO
e Another FIFO

•. Resetting and Clearing the FI FO
The CLEAR input signal is used to reset and clear
the LH8060 FIFO. A Low level on this input clears
all data from the FIFO buffer and disallows any
data transfer.

•

Bidirectional Transfer Control

The LH8060 has bidirectional data transfer
capability ~nder control of the DIR AlB input.
When DIR AlB is set Low, data transfers are made
from Port A to Port B.
Setting DIR AlB High reverses the handshake
assignments and the direction of transfer.

ACKIN-

Table 1 Bidirectional control function table

RFD

-

DATA OUTJ Valid data C=X:Valid data><=::
ACKIN
DAV--"""""' - -_ _oJ

Fig. 2 2-wire interlocked handshake timing
(output)

0
1

•

Output mode
~,output handshake mode, DA V (output) and
ACKIN are used as the control lines. If the LH8060
has data in the FIFO buffer and if ACKIN is high
(indicating that the external device is ready to receive data), it sets DA V Low to signal to the external device that the output data is available.
.When the external device sets ACKIN low to indicate that it has received the data, LH8060 sets
DA V back to a high level. In response, the external
device sets ACKIN high to request the LH8060 for
the next data. This process repeats till the FIFO
buffer becomes empty. when it becomes empty,
DAVis kept high.

Port B
handshake
Output
Input

transfer
A to B
Bto A

Empty and Full Operation

The EMPTY and FULL. output lines can be
wire-ORed with the EMPTY and FULL lines of
other LH8060s and LH8038s. This capability enables the user to determine the emptylfull status of
a buffer consisting of multiple FIFOs, FIOs, or a
combination of both.

•
(2)

Port A
handshake
Input
Output

DIR AlB

Fig. 1 2-wire interlocked handshake timing
(input)

Interconnection EXl;I.mple

Fig. 3 illustrates a simplified block diagram
showing the manner iIi which LH8060s can be interconnected to extend an LH8038 buffer.
Table 2 Signals EMPTY and FULL operation
table
Number of
bytes in. FIFO

0

1-127
128

EMPTY

FULL

High
Low
Low

Low
Low
High

----....-~.-.---.---SHARP,-.-.-.- ......... - - - - - - - -

400.

LH8060

Z8060 FIFO Buffer Unit and Expander

•

Output Enable Operation

Table 3

The FIFO provides a separate Output Enable
(OE) signal for each port of the buffer. An OE output is valid only when its port is in the Output
Handshake mode. The control of this output function is sh~n in Table 3-Signal OE operates with
lines DIR AlB.

DIR AlB

DEA

Output control function table
DEA

0

X

0

0

X

1

1

0

X

1

1

X

Note:

Function
Disable port A output
Enable port B output .
Disable port A output
Enable port B output
Enable port A output
Disable port B output
Disable port A output
Disable port B output

X=Don't care

SYSTEM FULL

FULL
EMPTY
DATA
A BUS"

PORT 2
of
Z8038

V

I
EMPTY

FULL

"-

1'\

K

v/

~

-

'"

ACKINA

FULL

EMPTY

/

K=>

DATA BUS

LH8060
FIFO

LH8060
FIFO

---

R FD/DAV

DATA BUS

SYSTEM EMPTY

I

--

---

RFD/DAVB

ACKINA

RFD/DAVs

HANDSHAKE
} SIGNALS
ACKIN

OE

CLEAR

RFD/DAVA

Dr

OEB

OEA
CLEAR

RFD/DAVA

ACKINB

DIR AlB

1

nr

ACKINs

OEB

OEA
CLEAR

1

OUTPUT CONTROL

DIR AlB
SYSTEM CLEAR
SYSTEM DIRECTION

DA TA DIR

Fig. 3

Connection diagram

401

LH8071

Serial Parallel Combination Controller

LH8071
•

Serial Parallel Combination Controller

Description'

The LH8071 (SPCC71) is a peripheral device for
general purpose microcomputers, with control
functions for RS232C interface and Centronics interface, within a single LSI chip.
The LH8071 pr<;>vides a serial port for transferring data in asynchronous mode and also an 8-bit
parallel port with handshaking function as a Centronics interface.
The LH8071 has 24 commands for controlling
these ports. The commands not only control the operation of RS232C terminal units and printers, but
handle various utilities (e.g., code conversion) necessary for these units. Accordingly, the CPU needs
. merely to specify an operation through the command, thus significantly reducing the CPU's load in
handling 110 units through the program, and eventually reducing the amount of memory needed for
storing the program.
The LH8071 controls the peripheral unit control
lines (e.g., RTS and CTS of RS232C interface)
according to the status of the units, instead of by
software control from the CPU. Consequently, the
system designer can configure the interface merely
by connecting buffer devices and connectors.
In conclusion, the LH8071 not only easily implements the RS232C interface and Centronics interface, but achieves superior performance and space
reduction.

•

•

Pin Connections

o

RxD
TxD
DTR
CTS
DCD
RTS
SLCT
INPUT PRIME
FAULT
ACKNLG

WAIT

DATA STROBE

AD7

DATAs

AD6

DATA7

AD5

DATA6

AD.

DATA5

AD3

DATA.

AD2

DATA3

ADI

DATA2

ADo

DATAl
Top View

Features

1. Asynchronous data transfer serial port
• RS232C interface can easily' be realized
• Programmable data: format and Baud rate
,
2. Printer control parallel port
• Centronics interface can easily be realized
3. Data transfer and conversion functions by command
• 24 commands
4. Data conversion function
• Serial-parallel conversion
• Binary-ASCII conversion
• Intel hex, format acceptable for data input!
output

402

5. 128-byte data transfer buffer
• Useful for the serial port and parallel port
6. Z-bus interface
7. 40-pin dual-in-line package
8. Single + 5V power supply

Serial Parallel Combination Controller

•

LH8071

Block Diagram

Data Bus

Address! Data Bus

"'"
·2
o

Address Strobe

Internal
Control Logic

9

Interruput Request 5
Interruput Acknow ledge 6
Interruput Enable In 4
Interruput Enable Out 3

!;

'"
u"

Buffer

128
Bytes

-~----"'-'---SHARP'-'---'---'----

403

Seriat Parallel 'Combination Controller

•

LH8071

Pin Description
Pin
AD o -AD 7

AS

Meaning

lIO
Bidirectional
3 state

Address/ data bus
Address strobe

I

Data strobe

I

R/W

Read/write

I

CS
WAIT

Chip select
Wait

-

DS

Function
Multiplexedsystem address/data bus as address.
Active low. Fetch iiiformation on address/data bus as
address.
Active low. Transact information on address/data bus
as data.
High at reading. Output contents of internal register
onto address/data bus; Low at writing. Fetch data on
address/ data bus.
Active low. Chip selection signal
Active low, open-drain. Used to synchronize with CPU.
Active low, open-drain. Indicate interrupt request to
CPU.
Active low. Indicate interrupt acknowledge cycle.
Active high. Used to form interrupt priority arbitration
loop circuit (daisy chain).
Active high. Used to form daisy chain.
Output data
Active low. Indicate settlement of data.
Active high. Indicate printer in operation.
Active high. Acknowledge signal from printer.
Active low. Indicate printer inoperable.
Active low. Printer initializing signal.
Active low. Printer selection signal.
Receiving data line.
Transmitting data line.
Active low. Indicate readiness for data transmission.
Active low. Indicate data transmission is possible.
Active low. Data transmission request signal.
Active low. Indicate data reception is possible.
Single-phase clock, need not be same as CPU clock.

-

Interrupt request

INTACK

Interrupt acknowledge

I

lEI

Interrupt enable input

I

lEO

Interrupt enable output
Output data
Data strobe
Busy
Acknowledge
Fault
Prime input
Select
Recei ved data
Transmitted data
Transmission request
Transmission enable
Data terminal ready
Reception enable
Clock

a
a
a

--

INT

DATAI-DATA g
DATA STROBE
BUSY
ACKNLG
FAULT
INPUT PRIME
SLCT
RxD
TxD
RTS
CTS
DTR
DCD
PCLK

•

I

a
a

I
I
I

a
I
I

a
a
I

a
I
I

Absolute Maximum Ratings
Parameter
Input voltage *
Output voltage *
Operating temperature
Storage temperature

*

Symbol
V IN
VOliT
Toor
T st•

Unit
V
V

Ratings

-0.3-+7
-0.3-+7
0-+70
-65-+150

The maximum applicable voltage on any pin except for

VBB

"C
"C

with respect to GND.

+5V
2.2kO

"""I--"

Output terminal o---1~....
under test

Standard tellt load

- - - - - - - - - - - - - - - - - - - - - S H A R P - . . . . - , - ........ . - . - - - - -

404

·Serial Parallel Combination Controller

•

(Vcc=5V±5%. Ta=0-+70"C)

DC Characteristics
Symbol
VCH
VCL
VIH
V IL
VOH
VOL
I IlL I
I 10L I
Icc

Parameter
Clock input high voltage
Clock input low voltage
Input high voltage
Input low voltage
Output high voltage
Output low voltage
Input leakage current
Output leakage current
Current consumption

•

LH8071

Conditions

MIN.
2.4
-0.3
2
-0.3
2.4

10H= -250 pA
10L =2mA
0:5::V IN :5::5.25V

TYP.

MAX.
Vcc
0.8
Vcc
0.8
0.4
10
10
250

0~VIN~5.25V

Unit
V
V
V

V
V
V
pA
pA
rnA

AC Characteristics
(Vcc=5V±5%. Ta=0-+70"C)

(1) CPU interface timing
No.
1
2
3
4
5
6
7
8
9
10

Symbol
TrC
TwCh
TfC
TwCl
TpC
TsCS(AS)
ThCS(AS)
TsA(AS)
ThA(AS)
TwAS

11

TdDS(DR)

12

TdDS(DRz)

13
14
15

TdAS(DS)
TdDS(AS)
ThDW(DS)

16

TdDS(DR)

17
18
19
20
21
22
23
24

TdAz(DS)
TwOS
TsRWR(DS)
TsRWW(OS)
TsDW(OSf)
TdAS(W)
ThWR(OS)
TsDR(W)

Parameter
Clock rise time
DSClock pulse high width
Clock fall time
Clock pulse low width
Clock period
CS setup time to AS t
CS hold time from AS t
Address setup time to AS t
Address hold time from AS t
AS low pulse width
Delay time from OS t to invalid
readout data
Delay time from DS t to readout
data floating
Delay time from AS t to OS ~
Delay time from OS t to AS ~
Written data hold time from OS t
Delay time from OS ~ to readout
data settlement
Delay time from address floating to DS
OS low pulse width
R/W high (read) setup time to OS ~
R/W low (write) setup time to OS !
Written data setup time to OS l
Delay time from AS t to WAIT !
R/W hold time from OS t
Time from valid readout data to WAIT

MIN.

MAX.
20

105
20
105
250
0
60
30
50
70

!

ns

2

2095

ns
ns
ns

1

ns

3

1.95

t

1
1
1
1

70

0
390
100
0
30
60
0

Note

51~
I~

-

ns

0

60
50
30

Unit
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns

ns
ns
ns
ns
ns
ns
ns
ns

t indicates rising edge. ~ indicates falling edge. The reference voltage levels for timing measurement are 2.0 volts for
'high'; O.S volts for 'low'.
Note 1: This does not apply to the interrupt acknowledge operation.
Note 2: The Max. value of TdAS (DS) does not apply to the interrupt acknowledge operation,
Note 3: The delay time depends on the status of LHS071 at the time of access by CPU.

405

I

I

L:.H8071

Serial Parallel Combination Controller

PCLK

ADo-AD7
CPU (read)
AS

R/W
(write)

R/W
(read)

ADo-AD7
CPU (write) ----.....f"l-t~..;...",,-~).---~=_+_----...:f,-

CPU interface timing

(2)
No.

Interrupt acknowledge timing

25
26

Symbol
TsIA(AS)
ThIA(AS)

27

TdAS(DSA)

28

TdDSA(DR)

29
30
31
32
33
34

TwDSA
TdAS(IEO)
TdIEIf(IEO)
TsIEI(DSA)
TdDS(INT)
ThIEI(DS)

Parameter
INT ACK setup time to AS t
INT ACK low hold time from AS t
Delay time from AS t to DS ~
(acknowledge)
Delay time from DS ~ (acknowledge)
to vector settlement
DS (acknowledge) low pulse width
Delay time from AS t to lEO
Delay time from IEI to lEO
lEI setup time to DS ~ (acknowledge)
Delay time from DS ~ to INT
lEI hold time from DS t

MIN.

0
250

MAX.

Unit
ns
ns

940

ns

360
475
290
120
150
500
100

Note

ns
ns
ns
ns
ns
ns
ns

Interrupt acknowledge timing
---'-~~------SHARP----'-----'---

406

LH8071

Serial Parallel Combination Controller

(3)

Reset timing

No.

Symbol

35

TdRDQ(AS)

36

TdWRQ(DS)

37

TwRES

Note 4:

Parameter
Delay time from DS t
(for suppressing reset) to AS ~
Delay time from AS t
(for suppressing reset) to DS ~
Minimum low width of AS and DS
(for setting)

MIN.

MAX.

Unit

Note

40

ns

50

ns

250

ns

4

MAX.

Unit

Note

19000

ns

5

MIN.

MAX.

18000

Unit
ns

Note

13000

The internal reset signal lags by 112 to 2 clocks behind external reset conditions.

Reset timing

(4) Serial port timing
No.

Symbol

38

TdTxC(TxD)

Parameter
Delay time from sending clock transition
to output data transition

MIN.

Note 5: Applies to all baud rates (110-9800 B) serial port timing

TxC

/

TxD

Serial port timing

(5)
No.

Parallel port timing

39

Symbol
TdACK(D)

40

TdD(DSTR)

41

TwDSTR

Parameter
Time from ACKNLG ~ to data output
Time from data output to
DATA STROBE ~
DATA STROBE pulse width

6000

ns

6000

ns

ACKNLG
DATAl
\

. DATAs
DATA STROBK

Parallel port timing

----------SHARP--.--------~

407

Sericil Parallel Combination Controller

•

LH8071

Registers

Table 1

The LH8071 has the following registers which
can be accessed externally (from CPU).
e Master interrupt control register (MIC)
e Data indirect address register (DIND)
eData status command registers (DSCO, DSCl,
DSC2, DSC3, DSC4, DSC5 and DSC8)
Table 1 shows the register addresses assigned to
these registers.
The master interrupt control register (MIC) is
used to control the interrupt operation (see Fig. 2).
Writing into the MIC register falls into two
groups.
Group 2 uses the write code shown in Table 2.
DSC31 D71 D6

I D51

D41 D31 D21 D1

[

-~-~-~-~

Register adpress

Register Register address
X XOOOOOX
DSCO
X X00001 X
DSC1
X XOO010X
DSC2
XXOOO11X
DSC3
X ):(00100 X
DSC4

Register Register address
XX00101X
DSC5
X X01000X
DSC8
X X10101X
DIND
X X11110X
MIC

Note: A15- A6 is decoded and applied to cs, so that the location in
the input/output address space is determined. Bits marked by 'x'
are underfined.

I Dol
Co 1 Buffer area over
1 0 Input characters are other than 0-F
(Intel format only) ,

1 1 Check - sum error
0 1 Printer not select

,

1 0 Printer paper empty
(requires external circuit)
1 1 Printer fault
L -_ _ _ _ _ _ _

Transter error

' - - - - - - - - - - Limit error
' - - - - - - - - - - - - Parity error
'---------~----Illegal command

Fig. 1 Error flag (DSC3)

MIC

I IE I IUS I IP I

IDLC I ICST I

TTT

T

~Command execution start

Lower chaining prohibited
_
' - - - - - - - - - - - Interrupt holding
' - - - - - - - - - - - - - Interrupt under service
Interrupt enabled

Fi'g. 2 Master interrupt control register
Table 2 MIC register write code
D7
0
0
0
,0
1

1
1
1

408

Group 2
D6
0
0
1
1
0
0

1
1

1

0
0

1
Do
X
0
0
0
0
0

0

0

0

1

0

0

D5
0
1
0
1
0

Group
D2
X
0
0
I

0

Function
Writing to Do and D2
Reset IP (D5) and IUS (D6)
Set IUS (D6)
Reset IUS (D6)
Set IP (D5)
Reset IP (D5)
Set IE (D7)
Reset IE (D7)

LH8071

Serial Parallel Combination Controller

•

°

Programming

mand. Command is used in specifying serial data
format using DSC2 (Fig. 3).
The result of command execution is indicated on
DSCO and DSC3. DSC3 indicates error status as
show in Fig. 1. DSC8 is used as a buffer register
after command 22 or 23 is executed.
Tables 3 and 4 show command functions versus
registers.

Use the registers, DSCO, DSCl, DSC2, DSC3,
DSC4, DSC5, and DSC8, to specify operation mode.
The 24 types of commands are made valid by first
writing a value corresponding to the desired com·
mand number into DSCO, then setting the CST bit
on MIC. The registers DSCl, DSC2, DSC4, and
DSC5 are used to specify parameters for each comOSC2

1

I 07 I 061 051 041 031 021 OJ I 00 I
-,---,

LPu'"m'"
o : even parity
1 : odd parity
Number of data bits
o : 7 bits
1 : 8 bits

' - - - - - - - B a u d rate (see Note)
o 0 0 : nOB

o 0 1 : 150 B
010:300B
011:600B
1 0 0 : 1200B
lOl:2400B
110:4800B
111:9600B
Number of stop bits of transmission
o : 1 stop bit
1 : 2 stop bit
L -_ _ _ _ _ _ _ _ _ _ _ Interrupt mode
L -_ _ _ _ _ _ _ _ _

o : Interrupt

L -_ _ _ _ _ _ _ _ _ _ _ _

Note:

enabled
1 : Interrupt disabled
Echo back

o : Echo back mode

Baud rate at PCLK = 4.0MHz

1 : Echo back disable

Fig. 3

Serial data format (DSC2)

.-----.---~--SHARP.-..-..-~.----

409

Serial Parallel Combination Controller

Table 3

~

Code
DSCO

0

OOH

1

01 H

2

02 H

Number of
putput byte

3

03 H

Number of
putput byte

4

04 H

5

05 H

Number of
bytes of
block transfer

6

06 H

Number of
putput byte!

7

07 H

Number of
putput byte!

Cornman

DSCI

LH8071

Command function and writing register contents

Parameter
DSC4
DSC2
Transfer
format and
operating mode

DSC5

Output serial-input data
to Centronics printer until
the stop character arrives
Output seriaI-input data
to Centronics printer.

Load address Load address
high order byte (low order byte)

Output buffer area
contents to serial port
in Intel format.
Read Intel format data on
serial port and store in
buffer area.
Initialize block transfer
between master CPU and
buffer
Output data in buffer area
via serial port.
Output data in buffer area
to printer.

-,
.".

8

08 H

Number of
output byte!

9

09 H

Number of
output byte!

10

OA H

Number of
output byte!

11

OB H

12

OCH

13

OD H

14

OE H

15

OFH

Number of
output byte

Output
starting
address
Output
starting
address
Output
starting
address
Output
starting
address

Display
Display
address
address
(High order) (Low order)

Display
Display
address
address
(High order) (Low order)

Number of
Output
input bytes character

Output
character

Number of
putput byte!

Load
address

Remarks

Sepcify transfer format .
and operating mode.

Stop
character

Output
starting
address
Output
starting
address

. Function

Load
address

Convert binary data in
buffer area into ASCII and
area.
Convert binary data in
buffer area into ASCII and
output via serial port.
Convert binary data in
buffer area into ASCII,
and output to printer.
Convert binary data in
buffer area into ASCII,
and output to printer.
Read ASCII data on serial
port, and store in buffer
area.
Read Intel format data on
serial port and store in
buffer area.
Read ASCII data on serial
port until arrival of CR
eode.
Convert data in buffer
area into Intel format and
output via serial port.

Stop character is
specified by DSC2.
Operation stops
upon detection of
Control C (hex 03).
Address information
of data is appended.

\

Operation stops
upon detection of
Control C (hex 03).
Operation stops
upon detection
of Control C (hex
03).

Address information
of data is appended.

Address information
of data is appended.

Used when reader is
connected to serial
port.
After CR reception,
CR and LF codes are
sent out via
serial port.
Used when a puncher is connected to
serial port.

- - - - . - . . . - - - - - - ! ? H A R P .-~------------410

Serial Parallel Combination Controller

Comman

~

Code
DSCO

16

10 H

17

llH

18

12H

19

13 H

20

14H

21

15 H

22

16 H
.,

23

17H

DSCI

Parameter
DSC2
DSC4

Number of
Output
input bytes character

Number of
putput bytes

Output
starting
address

LH8071

DSC5

Function
Read binary data on serial
port into buffer area for
storage.
Output data in buffer
area via serial ports.

Output null codes via
serial port.
Output EOF in Intel
format ( :OOOOOOOlFF)
via serial port.
Output null codes via
serial port.
Output EOF in Intel
format ( :OOOOOOOlFF)
via serial port.
Read I-byte data on serial
port.
Output data written in
DSC8 by CPU via serial
port.

Remarks
Used when a reader
is connected to serial
port.
Used when a puncher
is connected to serial
port. Operation stops
upon detection of
hex 03.
256 null codes
outputted.

Used when a puncher
is connected to serial
port.
Used when a puncher
is connected to serial
port.
Data is stored in
DSC8.
Data needs to be set
in DSC8 prior to execution (high order
byte)

--------------SHARP .---------------..
411

Serial Parallel Combination Controller

Table 4

LH8071

Register contents after command execution (readout register)
Parameter

OOH
01 H
02 H
03 H

Code
DSCO
2*
80 H
81H
82H
83 H

3*
C;OH
CI H
C2 H
C3 H

4

04 H

84 H

C4 H

5
6
7
8
9
10
11
12

05 H
06 H
07 H
08 H
09 H
OA H
OB H
OC H

. S5 H
86 H
87 H
88 H
89 H
8AH
8B H
8C H

C5 H
C6H
C7 H
C8 H
C9 H
CA H
CB H
CC H

13

OD H

8D H

CD H

14

OE H

8E H

CE H

Error status

15
16
17
18
19
20
21
22
23

OF H
10 H
llH
12H
13 H
14H
15 H
16 H
17H

8F H
90 H
91H
92Ii
93 H
94 H
95 H
96 H
97 11

CF H
DOH
DIH
D2H
D3 H
D4H
D5 H
D6 H
D7H

Error
Error
Error
Error
Error
Error
Error
Error
Error

'S
Command
0
1
2
3

Note 1

Note 2
Note 3

412

1*

*:
*:
*:

DSCI

DSC2
Error
Error
Error
Error
Number of inputted
bytes pluse hex 20

status
status
status
status

DSC5

flag
Hag
flag
flag

Error status flag
Error
Error
Error
Error
Error
Error
Error
Error

Number of inputted
bytes plus hex 20

DSC4

DSC3

Load address
Load address
(High order byte) (Low order byte)

status flag
status flag
status flag
status fl'ag
status flag
status flag
status flag
status flag
Load Adress
Load address
(High order byte) (Low order byte)
Number of inputteq
flag
byte pulse hex 20
flag
flag
flag
flag
flag
flag
flag
flag
flag

Error status flag

status
status
status
status
status
status
status
status
status

1
V,alue before command execution (command code value)
Value upon normal completion of command execution.
2
3
Value upon abnormal completion (error) of command execution.
These are common to all commands.
.
For error status flag value, see Fig. l.
If FAULT input becomes low (printer error) during command execution, LH8071 suspends operation until FAULT returns to high
(error recovery). At this time, DSCO has bit 6 set and bit 7 reset.

Serial Parallel Combination Controller

LH8072
•

LH8072

Serial Parallel Combination Controller

Description

•

Pin Connections

The LH80n (SPCCn) is a peripheral device for
general purpose microcomputer systems to perform
asynchronous serial data transfers and control of
Centronics compatible printers.
It supports full duplex asynchronous serial data
transfers. The transfer conditions such as the baud
rate and character length can be set by the
program. Further, it is equipped with a control I/O
terminal for simple organization of the various types
of modem interfaces. The Receive Buffer has a double buffer structure so that the master CPU can easily perform reading and writing of data.
A printer control I/O terminal is available for
easy connection to any printer which is Centronics
compatible. A handshake line and control for
other I/O lines is supported. A 128-byte printer
data buffer memory having an FIFO structure is
provided within the LH80n. Efficient use of the
printer unit by the master CPU is made possible
with this buffer.
In this way, the LH80n peripheral device for
Z8000 family, was developed to efficiently perform
serial data transfer and printer output control
within a compact pacil:age. It is suitable for use in
small systems such as personal computers which
use printer units, RS232C terminal units and modem units.

•

o

TxD
DTR
CTS
DCD

INTACK
DS

R/W

6

RTS
NC
INPUT PRIME

AS

BUSY

CS

FAULT

GND
WAIT

ACKNLG
DATA STROBE

AD,

DATA,

AD6

DATA,

AD;

DATA"

AD,

DATA"

AD3

DATA.

AD,

DATA:.

AD!

DATA,

ADo

DATA.

Top View

Features
1. Asynchronous Full Duplex Data Transfer
• Character length of 5""8 bits
· 1 or 2 stop bits
· No parity bit or odd/even parity
• F.alse start bit or rejection (rejects spike
noise in the mark line to prevent malfunction.)
• Full duplex
• Transmit buffer has double buffer structure.
• Receive buffer has FIFO structure.
• Error detection function, Parity error detection, Framing error detection, and Overrun
error detection
· Baud rates: 75, 110, 150,300,600,1200,
2400, 4800 baud selectable
2. Centronics Compatible Printer Control

RxD

3.

4.
5.
6.

· Furnishes printer interface signals compatible with Centronics specifications
· Built-in handshake function for data output
· Internal buffer: 128-byte FIFO structure
• Error detection: Printer fault error/Paper
empty error
Vector Interrupt
· Able to generate an interrupt on various
condition such as Transmit Buffer empty,
validity of received character, and printer
Output Buffer empty.
• Interrupt vectors for Transmit, Receive,
Printer and Error detection can be set individually.
Single + 5V power supply
Z-bus interface
40-pin dual-in-line package

..-.-----.--....-SHARP-------·-.-~--

413

LH8072

Serial Parallel Combination Controller

•

Block Diagram

Data Bus
Interface

Address! Data Bus

Address Strobe 9
Data Strobe 7
Chip Select 10
Read!Write 8
Wait 12

Interrupt Request
Interrupt Acknowledge
Interrupt Enable In
Interrupt Enable Out

Internal
Control Logic

Print
FIFO
128 Bytes

Data Bus

ERR
MSR
CTLTxS
RxS
PRS
TxB
RxB
PRB

6

---------SHARP
414

-.....---....-.~----.-

Serial Parallel Combination Controller

•

Pin Description
Pin
ADo-AD?
-

AS

Signal
Address/ data blls

110
Bidirectional

3-state

Address strobe

I

Data strobe

I

R/W

Read /write

I

CS
WAIT
INT

Chip select
wait

I
0

Interrupt request

0

INTACK

Interrupt acknowledge

I

lEI

Interrupt enable input

I

lEO
DATAI-DATA s
DATA STROBE
BUSY
ACKNLG
FAULT
INPUT PRIME
RxD
TxD
RTS
CTS
DTR
DCD
PCLK

Interrupt enable output
Output data
Data strobe
Busy
Acknowledge
Fault
Prime input
Receivived data
Transmitted data
Transmission request
Transmission enable
Data terminal ready
Reception enable
Clock

0
0
0
I
I
I
0
I
0
0
I
0
I
I

-

DS
-

•

LH8072

Function
Multiplexed system address/data bus
Active low. Fetch information on address/data bus as
address.
Active low. Transact information on address/data bus
as data.
High at reading. Output contents of internal register
onto address/data bus; Low at writing. Fetch data on
address/data bus.
Active low. Chip selection signal
Active low, open·drain. Used to synchronize with CPU.
Active low, open-drain. Indicate interrupt request to
. CPU.
Active low. Indicate interrupt acknowledge cycle.
Active high. Used to form interupt priority arbitration
loop circuit (daisy chain).
Active high. Used to form daisy chain.
Output data
Active low. Indicate settlement of data.
Active high. Indicate printer in operation.
Active high. Acknowledge signal from printer.
Active low. Indicate printer inoperable.
Active low. Printer initializing signal.
Receiving data line.
Transmitting data line.
Active low. Indicate readiness for data transmission.
Active low. Indicate data transmission is possible.
Active low. Data transmission request signal.
Active low. Indicate data reception is possible.
Signal·phase clock; need not be same as CPU clock.

Absolute Maximum Ratings
Parameter
Input voltage *
Output voltage *
Operating temperature
Storage temperature

Symbol
VIN
VOUT
Topr
Tst~

Ratings
-0.3-+0.7
-0.3-+0.7
0-+70
-65-+150

*The maximum applicable voltage on any pin with respect to GND.

Unit
V
V

t
t

+5V

2.2kO
Output terminal o---+--~r-MI--'"
under test

Standard test load

415

/

Serial Parallel Combination Controller

tH8072

DC Characteristics

•

Parometer
Clock input high voltage
Clock input low voltage
Input high voltage,
Input low voltage
Output high voltage
Output low voltage
Input leakage current
Output leakage current
Current consumption

•

(Vee=5V±5%, Ta=0-+70"C)
Symbol
VeH
VeL
VlH
VIL
VOH
VOL
I IlL I
I IOL I
Icc

Condition,

MIN.
2.4
-0.3
2.0
-0.3
2.4

IoH =-250 pA
IOL=+2.0mA

MAX.
Vee
0.8
Vee
0.8

Unit
V
V
V
V
V
V
pA
pA
mA

0.4
10
10
250

0~VIN~5.25V

, 0~VIN~5.25V

Note

AC Characteristics
(1) 'CPU interface timing
No.
1
2
3
4
5
6
7
8
9
10

Symbol
TrC
TwCh
TfC
TwCI
TpC
TsCS (AS)
ThCS (AS)
TsA (AS)
ThA (AS)
TwAS

11

TdDS (DR)

12

TdDS (DRz)

i3
14
15

TdAS (DS)
TdDS (AS)
ThDW (DS)

16
17
18
19
20
21
22
23
24

I

/

TdDS (DR)
TdAz (DS)
TwDS
TsRWR (DS)
TsRWW (DS)
TsDW (DSf)
TdAS (W)
ThRW (DS)
TsDR (W)

Parameter
Clock rise time
Clock pulse width, high
Clock fall time
Clock pulse width, low
Clock period ,
CS setup time to AS t
CS hold time from AS t
Address setup time to AS t
Address hold time from AS t
AS low pulse width
Delay time from DS t to invalid
readout data
Delay time from DS t to readout
data fioating
Delay time from AS t to DS !
Delay time from DS t to AS !,
Written data hold time from DS t
Delay time from DS ! to readout
data settlement
Delay time from address floating to DS
DS low pulse width
R/W high (read) setup time to DS !
R/W low (write) setup time to DS !
Written data setup time to DS !
Delay time from AS t to WAIT !
R/W hold time from DS t
Time from vaild readout data to WAIT

MIN.

MAX.
20

105
20
105
250
0
60
30
50
70

Note

1
1
1
1

fiS

ns

0
70
60
50
30

Unit
ns
ns
ns
ns
ns
ns,
ns
ns
ns

2095

ns

2

ns
fiS

ns

1
3

0
390
100
,
0
30
195
60
0

ns
ns
ns
ns
ns
ns
ns
ns

f indicates rising edge, ! indicates falling edge. The reference voltage levels for timing measurement are 2.0 volts
'high' ; 0:8 volt for 'low'.
Note1: This does not apply to the interupt acknowledge operation.
Note 2: The Max. value of TdAS (DS) does not apply to the interrUpt acknowledge operation.
Note 3: The 'delay time depends on the status of LH8072 at the time of access by CPU.

. . . - - - - - - - - - - - - - - - - S H A R P - - - - - - - - - - - - - ..........- -

416

Serial Parallel Combination Controller

LH8072

PCLK

ADo-AD7
CPU (read)

DS
R/W
(write)

R/W

(read) _ _ _---::,---++-_--'

ADo-AD7
CPU (write)

CPU interface timing

(2)
No.

Interrupt acknowledge timing

25
26

Symbol
TsIA (AS)
ThIA (AS)

27

TdAS (DSA)

28

TdDSA (DR)

29
30
31
32
33
34

TwDSA
TdAS (lEO)
TdIElf (lEO)
TsIEI (DSA)
TdDS (INT)·
ThlEI (DS)

Parameter
INT ACK setup time to AS t
INT ACK low hold time from AS t
Delay time from AS t to DS ~
(acknowledge)
Delay time from D~ ~
(acknowledgge) to vector settlement
DS (acknowledgge) low pulse width
Delay time from AS t to lEO
Delay time from lEI to lEO
lEI setup time to DS ~ (acknowledge)
Delay time from DS ~ to INT
lEI hold time from DS t

0
250

Unit
ns
ns

940

ns

MIN.

MAX.

360
475
290
120
150
500
100

Note

ns
ns
ns
ns
ns
ns
ns

Interrupt acknowledge timing
-'-~~-~--SHARP'--'-"-'-------

417

LH8072

Serial Parallel Combination Controller

(3) Serial port timing
No.

Symbol

38

TdTxC (TxD)

Parameter
Delay time from sending clock transition
to output data transistion

MIN.

MAX.

Unit

Note

35000

ns

4

MAX.

Unit
ns

Note

Note 4:· Applies to all baud rates (75-4800 B)
TxC

/

TxD

Serial port timing

(4)

Parallel port timing

No.
39

Symbol
TaACK (D)

40

TdD (DSTR)

41

TwDSTR

MIN.
24000

Parameter
Time from ACKNLG l to data output
Time from data output to
DATA STROBE l
DAT A STROBE pulse width

6500

ns

6500

ns

,

\

AKCNLG
DATAl
I
DATAs
DATA STROBE

Parallel port timing

•

Registers

The LH80n uses 64 bytes in the system input!
output address space. Within this area, 14 bytes
are assigned to the I-byte registers (including data
buffer, status, register, control register, etc.) which
can directly be accessed by master CPU.
Table 1 lists the registers used for data transaction with the maser CPU and their addresses.

Table 1
Address
X XOOOOOX
XXOOO01X
X XOO010X
X XOOOllX
X X00100X
XX00101X
X XOOllOX
XXOOlllX
X XOIOOOX
XXOIOOIX
X X01010X
X XOIOll X
X XOllOOX
X X 11l10X

Register input/output address
Register
Error status register(ERR)
Mode setting register (MSR)
Control register (CTL)
Transmission status register (TxS)
Reception status register (RxS)
Printer status register (PRS)
Transmission buffer (TxB)
Reception buffer (RxB)
Printer buffer (PRB)
Transmission interrupt vector
register (Tx V)
Reception interrupt vector register
(RxV)
Printer interrupt vector register
(PRV)
Error interrupt vector register (ERV)
Master interrupt control register
(MIC)

Note: AIs-A6 is decoded and applied to CS, so that the location
in the input/output address space is determined. Bits
marked by 'x' are undefined .

....-.-----------SHARP---------.-.
418

LH8072

Serial Parallel Combination Controller

•

Programming

Note: Registers marked by. can be set or revised even
during the operation of LH8072.

The LH80n has 14 read/write registers which
can be accessed directly by the master CPU.
(1) Initialization
The device is initialized in accordance with the
following procedure.
(1) Following power-on reset, or master reset
by software, set the mode register is programmed for character format, baud rate,
stop bit and parity mode. Subsequently data
required by control register· and interrupt
vector registers· (transmission, reception
and printer error interrupt vector registers)
is programmed.
(2) Clear the error status register.
(3) Wait until the data transfer enable bit in the
master interrupt control register is set to
"I", making the LH80n operable.
In case interrupt is used, the above polling operation is unnecessary. When transmission, reception and printer output become enable, interupt request is forwarded to the master CPU, indicating
that the LH80n has become operable.

(2) Data inpuVoutput
Data transfer between LH80n and CPU is carried out in accordance with the following procedure.
(1) Poll the status registers (transmission, reception and printer status register) and wait
until they become "1". In case interrupt
(transmission, reception and printer interrupt) is used, interrupt occurs as soon as
the value of each status register becomes
"I", and polling is not necessary.
(2) After the status register has been set to "I"
(or after interrupt has occurred), begin data
transfer via the buffers (transmission, reception and printer buffers).
(3) Clear the status register. If the above operation is implemented using an interrupt
routine, the interrupt-under-service (IUS)
bit must be reset immediately before the end
of each interupt routine.

I D7 I D61 D5 I D. I D3 I D2 I D, I Do I

II

I L~:;:,~=

L -_ _ _ _ _ _ _ _

Frammg error
Overrun error
Printer fault

' - - - - - - - - - - - Paper out
' - - - - - - - - - - - - - Unused
' - - - - - - - - - - - - - - - Master reset

Fig. 1

Error status register (ERR)

I D7 I D6 I D5 I D.I D3 I D2 I D, I Do I

m
o
1
1

0
0
0
0
1
1
1
1

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

1
0
1

5
6
7
8

bits / character
bits / character
bits / character
bits / character

75B
nOB
150B
300B
600B
1200B
2400B
4800B

Stop-bit-2/Stop-bit -1
Odd -parity/Even -parity
With - parity/Without -parity

Fig. 2

Mode setting register (MSR)

'-~--'------SHARP--'----------~

419

LH8072

Serial Parallel Combination Controller

I Drl DG I Ds I D.I D31,D21 DI I Do I

I DrlDGI DsID.1 D31 Dzi DI I Do I

~

I"L=~~~,
~Transmission

IL-.---,----Reception
.
Fig. 8

enabled
Reception enabled
Printer o~tput ,enabled'
'----------Transmission interrupt enabled
'-----------Reception interrupt enabled
' - - - - - - - - - - - - P r i n t e r interrupt enabled

Fig. 3

I<------printer output data

Fig. 9

Control register (CTL)

I Dr
LTransmission buffer empty

Printer buffer (PRB)

I DGI Ds I D4 I D3 I Dzi DI I Do I

I

--------0

~.

Fig. 4

Reception buffer (RxB)

I Drl D61 Dsl D. I D3 I Dzi DI I Do I

I Dr I DG I Ds I D4 I D3 I Dz I D I I Do I

I

data

.

L-.---Transmission interrupt vector

Transmission status register (TxS)

Fig. 10 Transmission Interrupt vector register
I Dr I DGI Dsl D41 D31 Dzi Dd

Dol

(TxV)

I Drl D6 I Dsl ~41 D31 Dz I DI I Do'

I

LReception character valid
'-----0

Fig. 5

~1----RecePtion interrupt vector

Reception status register (RxS)
Fig. 11

I Dr I D6 I Ds I D41 D31 Dz I DI I Do ,

, I

Reception interrupt vector register (RxV)

I Drl D61 Dsl D41 D31 Dzi

Lprinter buffer empty

DI I

Dol

~'--------o

Fig. 6

I'-----Printer interrupt vector

Printer status re~ister (PRS)

Fig, 12

I Dr I D61 Dsl D41 D31 Dzi Dl I Dol

Printer interrupt register (PRV)

I Dr I D61 Dsl D41 D3 I Dz I DI I Do "

I

L-I------·Transmission data

'-----~-Error

Fig. 7 Transmission buffer (TxB)

Fig. 13

interrupt vector

Error interrupt vector register (ERV)

. I D7 I D61 Dsl D41 D31 D2 I DI I Do I
enable(MlE)~

Master interrupt Atreadmg±u
Interrupt under service(IUS)
I '
. Interrupt pending(IP)
:I
:'
,
:
:
:
At writing

!

:

0
0
1
1
1
0
1
0
1 ' 1
1
1

0

l

0
0
0
0

Fig. 14

420

1
0

1
0
1
0
1

I

' .
~L"
',""0 at wrItmg
..
~ U~defmedat readm,g:
.

DIsabled lower chaIning (DLC)
Data transfer enable ( reading only )
Undefined at reading/"O" at writing

Writing to Do, DI, Dz, D3 and D4
Reset IP a~d IUS
Set IUS
Reset IUS
Set IP
Reset IP
Set MIE
Reset MIE

Master interrupt control register (MIC)

LH8073

General Purpose Interface Bus Controller

LH8073
•

General Purpose Interface Bus Controller

Description

The LH8073 (GPIB73) is a microcomputer peripheral device used to control interface buses conforming to IEEE Std. 488-1978* (will be termed
simply "GPIB") The GPIB is used extensively as a
linkage bus between data gathering instrumentation
devices and a microcomputer system.
The LH8073 incorporates three functions of
talker, listener and controller, all integrated in one
chip. Using this device, the GPIB interface can be
provided for various instrumentation equipment,
personal computers and office computers.
The LH8073 is applicable to a CPU bus where
address and data are multiplexed. There is a complementary device LH8573 which is applicable for
a CPU bus where address and data are not multiplexed.

•

Pin Connections
+5V

1

40

SRQ/REN IN

PCLK

2

39

REN/SRQ OT

lEO

3

lNT

5

lNTACK

6

DS

7

R/W

8

WAIT

12

*Note : The standard disclosed in IEEE Std.
488-1978 "IEEE Standard Digital Interface for Programmable Instrumentation"
issued by IEEE, U.S.A.

Top View

•

Features
1. Built-in talker, listener and controller. Talker
function, listener function and controller function are integrated in one chip.
2. Built-in buffer memory. Talker or listener can
use 160-byte on-chip buffer.
3. EOI automatic transmission. Upon detection of
the last byte of or EOS in talker mode, EOI signal is transmitted automatically.
4. EOS automatic detection. Upon reception of
EOS in listener mode, the CPU is informed.
5. Built-in timer. The bus time-out period for
handshaking can be set by the on-chip timer in
the range of 200 p.s -12 ms at 50 p.s interval.
6. Interrupt function. Daisy-chain type interrupt
arbitration facility is provided, allowing vectored interrupt to CPU.
7. Z-bus interface.

421

LH8073

General Purpose Interface Bus Controller

Block Diagram

•

Address/
Data Bus

GPm
Bus

Da~

ir
I

l

IFC IN
IFC OT
SRQ/RENIN
9 REN/SRQOT
CONTI

Data Strobe
Read/Write'
Address Strobe
Chip Select
Wait

Interrupt Enable Out
Interrupt Enable In
Interrupt Request
Interrupt Acknowledge

TE

3
4
5
6

ATN
DAV
NDAC
NRFD
EOI

CONT2

+5V 1
PCLK 2
GND

,

,

--~------SHARP'-''''''-'-'''''''-'---

422

Multi Task Support Processor

LH8075
•

Multi Task Support Processor

Description

The LH8075 (MTSP 7 5 ) is the stand alone type
multitask support processor providing multitask
capabilities for any simple microcomputer system.
The concept of this multitask processing is similar
to a conventional real time OS (operating system).
The devices perform task management (creating,
deleting, etc.) independently of the master CPU, and
carry out multi task processing for systems bus
with arbitrary CPU architectures merely by connecting to the system bus.
User's programs are scheduled on a priority or
time-sliced basis. Tasks are switched by an interrupt caused by the LH8075, and commands are
given to the LH8075 by writing parameters and
command numbers in the specified register in the
LH8075.

•

LH8075

Features
1. Task management
· Up to eight tasks can be controlled concurrently. By using the task creating and deleting technique, a maximum of 255 tasks can
be handled.
· Tasks can be controlled on a priority basis by
the assignment of 255 priority levels.
2. Inter-task communication
· Inter-task communication is possible using the
"mail box" provided within the LH8075.
· Inter-task synchronization is possible using
the "mail box".
3. Built-in timer
· Timers with ranges from lOms to 255 hours
can be used for time-sliced processes and
checking I/O wait time.
• These times can be set independently for each
task.
4. Bulit-in clock. Time (hours, minutes and
seconds) can be set and read out.
5. 20-bit general-purpose I/O port
· Two 8-bit ports operable in bit input/output
• 2-bit input ports and 2-bit output ports.
· Tasks can be resumed using the 2-bit input
ports.
6. Memory assignment
• Working memory areas can be assigned to
each task.

•

Pin Connections

a

P30
P33
P27
P26
P2s

INTACK

6

P2.
P23
P2,
P2l
P20
P3l

WAIT

P3,

AD7

Pb

AD6

Ph

ADs'

Ph

AD.

Pl.

AD3

PI:.

AD,

PI.

AD!

PIl

ADo

Plo
Top View

--------..-.---SHARP ------.--..-.---423

Multi, Task Support Processor

•

, LH8075

Block Diagram

Port 1
Data Bus
Address! Data Bus

TeBl

Data Strobe
Read! W ri te
Address Strobe
Chip Select

Internal
Control Logic

MBXl

7
8

Port .2
Data Bus

9
10

I nterrupt Request
Interrupt Acknowledge
Interrupt Enable Out
Interrupt Enable In

0
6
3
4

SPB2

•

Pin Description
Pin
AD o-AD 7
-

AS

Meaning
Address/ data bus

I/O
Bidirectional
3-state

Address strobe

I

Data strobe

I

R/W

Read/write

I

CS
WAIT

Chip select
Wait

I
0

Interrupt request

0

IN TACK

Interrupt acknowledge

I

lEI

Interrupt enable input

I

lEO
Pl o-P1 7
P2 o-P2 7
P3 0 -P3 3
PCLK

Interrupt enable output
I/O port lines
I/O port lines
I/O port lines
Clock

0
110
I/O
110
I

-

DS
-

-INt

424

Function
Multiplexed system address/data bus.
Active low. Fetch information on address!data ,bus as
address.
Active low. Transact information on address/data bus
as data.
High at reading. Output contents of internal register on
address/ data bus ; Low at writing.
Fetch data on address/data bus.
Active low. Chip selection signal
Active low, open-drain. Used to synchronize CPU.
Active low, open·drain. Indicate interrupt request to
CPU.
Active low. Indicate interrupt acknowledge cycle
Active high. Used to form interrupt priority arbitration
loop circuit (daisy chain).
Active high. Used to form daisy chain.
Parallel input/output
Parallel input/output
Parallel input/output
Single· phase clock, need not be same as CPU clock.

Multi Task Support Processor

•

LH8075

+SV

Absolute Maximum Ratings
Parameter
Input voltage
Output voltage
Operating temperature
Storage temperature

•

Symbol

VIN
VOUT

:r

opr

T"2 .

Ratings
-0.3-+7
-0.3-+7
0-+70
-65-+150

2.2kO

V

Output pin
under test o--~-'--I~'"

V
"C
"C

SOpF

Standard test load 1

I

(Vee=5V±5%, GND=OV, Ta=0-+70"C)

DC Characteristics
Parameter
Clock input high voltage
Clock input low voltage
Input high voltage
Input low voltage
Output low voltage
Output low voltage
Inptt leakage current
Output leakage current
Current consumption

•

Unit

Symbol
VeH
VeL
VIH •
V IL
VOH
VOL
I IlL I
I IOL I
lee

Conditions

MIN.
2.4
-0.3
2
-0.3
2.4

IoH =-250,uA
IOL =2mA

MAX.
Vee
0.8
Vee
0.8
0.4
10
10
250

0~VIN~5.25V

0;;;;V IN ;;;;5.25V

Unit
V
V
V
V
V
V
,uA
,uA
rnA

AC Characteristics'

(1)

Master CPU interface timing

No.
1
2
3
4
5
6
7
8
9
10

Symbol
TrC
TwCh
TfC
TwCl
TpC
TsCS (AS)
ThCS (AS)
TsA (AS)
ThA (AS)
TwAS

11

TdDS (DR)

12

TdDS (DRz)

13
14
15

TdAS (DS)
TdDS (AS)
ThDW (DS)

16

TdDS (DR)

17
18
19
20
21
22
23
24

TdAz (DS)
TwDS
TsRWR (DS)
TsRWW (DS)
TsDW (DSf)
TdAS(W)
ThRW (DS)
TsDR (W)

Parameter
Clock rise time
Clock pulse width, high
Clock fall time
Clock pulse width, low
Clock period
CS setup time to AS t
CS hold time from AS t
Address setup time to AS t
Address hold time from AS t
AS low pulse width
Delay time from DS t to invalid
readout data
Delay time from DS t to readout
data floating
Delay time from AS t to DS l
Delay time from DS t to AS l
Written data hold time from DS f
Delay time from DS l to readout data
settlement
Delay time from address floating to DS
DS low pulse width
R/W high (read) setup time to DS l
R/W low (write) setup time to DS l
Written data setup time to DS l
Delay time from AS t to WAIT l
R/W hold time from DS t
Time from valid readout data to WAIT

MIN.

MAX.
20

105
20
105
250
0
60
30
50
70

l

ns

2

2095

ns
ns
ns

1

ns

3

195

t

1
1
1
1

70

0
390
100
0
30
60
0

Note

ns

0

60
50
30

Unit
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns

ns
ns
ns
ns
ns
ns
ns
ns

The reference voltage levels for timing measurement are 2.0 volts for 'high' ; O.S volt for ·Iow'. All output paramaters are
measured under the stated load conditions.
Note 1: This does not apply to the interrupt acknowledge operation.
Note 2: The Max. value of TdAS (DS) does not to the interrupt acknowledge operation.
Note 3: The delay time depends on the status of LHS075 at the time of access by master CPU.

425

Multi Task Support Processor

LH8075

PCLK

ADo-AD7
Master CPU
(read)
AS

R/W
(writ!!)

R/W
(read)

ADo-AD7
Master CPU
(write)

WAIT

Master CPU interface timing

'-'~~----~-SHARP

426

.-..-.-.-.-.------

................... -............. -....... - . - . -....... - . - . -......
Multi Task Support Processor

LH8075

.-~

I

(2)

Interrupt acknowledge timing

No.

25
26

Symbol
TsIA (AS)
ThlA (AS)

27

TdAS (DSA)

28

TdDSA (DR)

29
30
31
32
33
34

TwDSA
TdAS (lEO)
TdIEif (lEO)
TsIEI (DSA)
TdDS (INT)
ThIEl (DS)

Parameter
INT ACK setup time to AS t
INT ACK low hold time from AS t
Delay time from AS t to DS !
(acknowledge)
Delay time from DS !
(acknowledge) to vector settlement
DS (acknowledge low pulse width
Delay time from AS t to lEO
Delay time from lEI to lEO
lEI setup time to DS ! (acknowledge)
Delay time from DS ! to INT t
IEI hold time from DS t

0
250

Unit
ns
ns

940

ns

MIN.

MAX.

360
475
290
120
150
500
100

ns
ns
ns
ns
ns
ns
ns

Interrupt acknowledge timing

(3)

Reset timing

No.

Symbol

1

TdRDQ (WR)

2

TdWRQ (RD)

3

TwRES

Parameter Delay time from DS t
(for suppressing reset) to AS !
Delay time from AS t
(for suppressing reset) to DS !
Minimum low width of AS and DS
(for resetting)

MIN.

MAX.

Unit

40

ns

50

ns

250

ns

Note

1

Note 1: The internal reset signal lags 112 to 2 clocks behind external reset conditions.

Reset timing

~--------------SHA.RP

------------.-....
427

Ml..\lti :Task Support Processor

(4)
No.
1
2
3

LH8075

Handshaking timing
Parameter

Symbol
TsDI (DA)
ThDA(DI)
TwDA

MIN.
0
230
175
20
0

Data setup time
Data hold time
DAV width

--

4

TdDAL(RY)

Delay, time from DA V low to RDY

5

TdDAH(RY)

Delay time from DAV high to RDY

6
7

TdDO(DA)
TdRY(DA)

Delay time from data output to ,DA V
Delay time from RDY to DA V

MAX.

175

--

150
0
50
0

205

Unit
ns
ns'
ns
ns
ns
ns
ns
ns
ns

. Note 1: Input handshaking
Note 2: Measured under the stated load conditions.
Note 3: Output handshaking
Data input
DAV input
RDYoutput
'---''--_ _ _ _ _..;;r

Port read

Input handshaking timing

Data output
,DAVoutput

__~>t

:--r

Valid output data

-®--I

Port

om.

1

1I--@~~
! \ >or?I®J. . .~. . .-

RDY input

.....

__ ...

Serial port timing

•

Basic Specifications
Table 1

LH8075 basic spec,ifications
Performance

Parameter

Task control function
Number of tasks registered
Number of tasks controlled
simultaneously
Priority level
Mail box
Unit clock
Scheduling
Memory allo,cation
Clock function
Parallel data input/output function

428

Max. 255; task number: hex 01-FF
Max. 8
Max. 255; priority level: hex 01-FF
Max. 5; mail box number: hex 01-05
10 ms
Priority order or time division; Task is switched by interrupt from LH8075.
User's RAM is segmented in units of hex 100 bytes; Arbitrary area ranging
hex OOOO-FFFF' can be controlled.
Time (hour, minute, second) setting and readout
Two '8-bit I/O ports and 'one 4-bit I/O port

Note

1,2
1,2
2,3
1,2
2,3
2
2

LH8075

Multi Task Support Processor

•

Teble 2

Registers

The LH8075 has the following registers which
can be accessed externally (from CPU).
(1) Task control
CPIO (Command parameter register)
This register writes the writing parameter previous to command writing. The readout parameter
is placed in CPIO upon completion of command execution.
CNST(Commandl status register)
This register is used to write a command. Execution information of executed command is placed
in CNST upon completion of command execution.
SPN1, SPN2 (New task stack pointer registers)
At occurrence of interrupt for task switching,
execution starting address information for the new
task is placed 'in this register.
SPB1, SPB2 (Old task stack pointer registers)
At occurrence of interrupt for task switching,
execution end address information for the executed
task is written in this register.
MIC (Master CPU interrupt control register)
Interrupt related parameters including interrupt
enable (IE), interrupt pending (IP) and interruptunder-service (IUS) bits are set or reset in this
register.
(2) 1/0 ports
P1D, P2P, P3D (port 1, 2, 3 data registers)
These registers are used to transact data via
port 1, port 2, and port 3.
Table 2 lists the register addresses.

Register address

Register

Address

PID

XXOOO01X
X XOO010X

P2D
P3D

X XOOOllX

CNST
SPN1
SPN2

X XOOllOX
X XOOlll X
X X01000X

SPB1

X X01001X

SPB2

X X01010X

CPIO
MIC

X X 10101 X
X X11110X

Note 1: Bits marked by 'x' may be either '0' or '1'.
Note 2: LH8075 uses 64 input/output address locations.

~
TIMR
PEND

.

~

~

T~

{.SM

~~~~ ~__~

~~g~T

~

TSPO
TCRT

TOEL ~

TOEL

GD

(1)

Task in execution releases CPU.

(2)

0

o

o

TSPO

(Wait)

./

~TOEL

Higher ranking ta,sk becomes ready.
Time-up by time division
TNXT

Fig. 1 Task status
MIC

I D, I 061 051 0.1 031 021 01 I 00 I
-~--~TTT L Undefined at reading/"O" at writing
~isabled

_

lower chaining (OLC)

o (unused)
Non -vector (NV)
\ - - - - - - - - - - I n t e r r u p t pending (IP)
! - - + - - - - - - - - - Interrupt under service (IUS)
,!----'--+----------Interrupt enable (IE)

,

At writing· :,
0
0
0
0
1
1
1
1

0
0
1
1
0
0
1
1

0
1
0

1
0
1
0
1

Writing to 02 and O.
Reset IP and IUS
Set IUS
Reset IUS
Set IP
Reset IP
Set IE
IP, IUS and IE bits are set or reset' by writing in
Reset IE
these codes_

*:

Fig. 2

MIC bit configuration

....-...-----.-...---SHARP~---..-.-..--

429

Multi Task Support Processor

•

LH8075

Programming

The following describes the task control procedure using LH8075.
(1) Initialization
(1) The LH8075eauses interrupt for task switching
'However, in order to process, a separate interrupt processing routine must be prepared.
(2) Each task is provided with a stack area.

Table 3
Order
1
2
3
4
5

Item
Vector
RAM table

6
7

Task starting address and initial values for all registers are written at the top of each stack area.
(3) LH8075 is initialized. Table 3 lists the initialization information to be written in LH8075.
(4) When necessary, the clock is set and the
port mode is specified.
(5) Initialization completed. To transfer control
from the initialization routine to a task, the task execution command (TSTR) must be executed.

System information registered at initialization
Contents
LH8075 interrupt vector for task switching
User RAM start address (high order byte)
User RAM end address (high order byte)
Task number (hex 01-FF)
Priority level (hex 01 - FF)
Task
Task stack pointer (high order or low order byte)
1
Task stack pointer (low order or high order byte

Task table
4n
4n+1
4n+2
4n+3

Task
n

(2) Command execution
Table 4 lists the commands of LH8075, and
Table 5 lists the command execution information.
In writing commands into LH8075 the following
data entry procedure applies.
(1) Write parameters needed in writing command into CPIO in the order shown in Table 4.
Commands with blank parameter field in Table 4
do not require writing
(2) Write the command number in CNST.
(3) It is necessary to confirm the completion of
command execution by polling D7 in CNST (D 7 becomes "I" upon completion of command execution).

430

Task number (hex 01-FF)
Priority level (hex 01 - FF)
Task stack pointer (high order or low order byte)
Task stack pointer (low order or high order byte)

For commands without readout parameter, procedure is completed and the following procedures are
unnecessary. Commands with readout parameter
(CGET, MALC and PEND) further require the following procedures.
(4) When D6=1 in CNST (indicating the readout
parameter is prepared in CPIO), parameter is read
out from ePIO.
(5) Upon completion of parameter readout,
PRME command must be executed to notify
LH8075 of the parameter readout completion.
(6) Wait until CNST D7 becomes "I" to confirm
the completion of command execution.

Multi Task Support Processor

LH8075

Table 4 Command table
No.
OOH
OlH

Command name
INIT
TSTR

02 H

TCRT

Function
LH8075 initialization
Termination of LH8075
initialination and start of
task execution
Task creation

03 H
04 H
05 H

TDEL
TRSM
TSPD

Task deletion
Task resumption
Task suspension

06 H

TPRI

Task priority change

07 11

TSLI

Task time-slicing process

08 H

TNXK

09 H

TIMR

Swapping of task during
time-sliced execution
Timer setting

OAII

CSET

Clock setting

OBII

CGET

Clock readout

OCII

MALC

Memory allocation

0011
OEII

MREL
POST

Memory release
Message transmission

OFII

PEND

Message reception

10H

PMOO

Port mode setting

PRME

End of parameter readout

1111

Note 1:
Note 2:
Note 3:

Writing parameter
1. Total number of tasks

Readout parameter

1. Task number
2. Priority level
3. SP (high order or low
order byte)
4. SP (low order or high
order byte)
1. Task number
1. Task number
1. Task number
2. control switch
1.
2.
1.
2.
3.

Remarks

See
paragraph(1)

Task number
New priority
Priority
Time base
Count

See
paragraph(2)

1. control code
2. Count

See
paragraph(3)

1. Hour
2. Minute
3. Second

1. Number of memory
blocks required
1. Mail box number
2. Message data 1
3. Message data 2
4. Message data 3
5. Message data 4
I.-Mail box number

1.
2.
3.
1.

Hour
Minute
Second
Allocated memory
address

*
*
See
paragraph(4)

1.
2.
3.
4.

Message
Message
Message
Message

data
data
data
data

1
2
3
4

1. Port-l mode
2. Port-2 mode
3. Port-3 mode

*
See
paragraph(5)

*'

Commands marked by require PRME command execution at parameter readout completion.
Numerals given in 'writing parameter' and 'readout parameter' indicate the order of writing and reading.
Numerals in 'remarks' indicate the reference number of supplementary explanation .

.------..-.--SHARP.-..-.-.-..-.---

431

. LH8075

MultiTask Support Prcx:iessor·

Table 5
Command
name
IN IT
0
OOH
1
2

TSTR

02 H

TCRT

Normal termination
Task number or priority setting error
Double specification of same task
number
3 Total number of tasks equal to o or
larger than 8, Initialized information
error, RAM table error
0 Normal termination
3 Initial information not yet set

0
1
2

3
03 H

04 H

TDEL

TRSM

0
1
2
4
0
1
2
4

5
05H

TSPD

0
1
2
3
5

•

Command
name
TPRI
06 H
0
1
2
07 H
TSLI
0
1
5
08 H TNXT 0
09 H TIMR 0
1

Code

Execution

Code

01 H

Command el(ecution information

Normal termination
Ta~k number or priority setting error
Already created
Control tasks more than 8
Normal termination
Task number error
Specified task not yet created
Specify self
Normal termination
Task number error
Specified task not yet created
Specify self
Specification of task in ready s,tatus
Normal termination
Task number or control switch number error
Specified task not yet created
Control switch setting error
Specification· of task ill halt staus

OA H

CSET

OB H
OC H

CGET
MALC

OD H

MREL

OE H

POST

OF H

PEND

10 H

PMOD
PRME

11H

Execution
Normal termination
Task number or priority setting error
Specified task not yet created
Normal termination .

Ptiority error or data error
Cancellation without setting
Normal termination
Normal termination
Data error
5 Cancellation without setting
8 Resuming by TRSM
0 Normal termination
1 Data error
0 Normal termination
0 Normal termination
6 Allocation disabled
0 Normal termination
5 Memory not yet allocated
0 Normal termination
1 Mail box number error or message
data error
7 Mail box busy
0 Normal termination
1 Mail box number error
8 TRSM command issued by other task
or time out
0 Normal termination
0 Normal termination

Supplement for writing parameter
(1) 2. Controi switch

I 07 1061 05 1O. 103 102 10, 100 1
IL-------Control switch
o : Bring to complete stop
1 : Halt until external event 1 (fall of P 3,)
2 : Halt until external event 2 (fall of P 30)

(2)

2.

Time base

1071 06 1Ds 1o. 103 1D2 10, 1Do I
1
...- - - - - - T i m e base

o : Hour
1 : Minute
2 : Second
3 : 1/100 second
4 or above : Cancellation

432

_-_..

..... - . -..... -..... -...

Multi Task Support Processor

.-.-.(3)

LH8075

:.-...-...-...-...-...-

1. Control code

0: Hour
1 : Minute
2 : Second
3 : 1/100 second
4 or above : Cancellation
' - - - - - - - - Unused
' - - - - - - - - - - - - W a i t switch
0: Wait
1 : Time out period setting only

2.

Count

I 0, I 06 I Os I o. I 03 I 02 I01 I 00 I
LI------Count (Count multiplied by time base
becomes setup time)

(4)

2.

Only in message data I, '0' is not allowed.

(5)

1.

Port-1 mode

Ir-0-,""T,-0-6

0-s-',""'0-."T,-0-3...-,o-,""T,-O-IT",0-0"""',

T",

...
I - - - - - - P o r t - l bit I/O definition
(1 for input; 0 for output)

2.

Port-2 mode

Ir o-,""T,-0-6T"10-s-'l-o-."T,-03-,ro-,""T,-o-IT"lo-o-',
LI------Port-2 bit I/O definition
(1 for input; 0 for output)

3.

Port-3 mode
IrO-i""T,-O-6T"I-os-'I-0-."TI-O-alr 0-,""T1-0-1T"10-o"",

~~~~TTTLP~'" p.,h-,.n/"oo-'_
Port 1 : Push -pull/open -drain
P31 : External event 1 input
P 30 : External event 2 input
' - - - - - - - - Port -1 handshaking

( P31=OAVI/ROYl)
P32=ROYI/OAVI
' - - - - - - - - - - - Port -2 handshaking
( P30=OAV2/ROY2)
P33 = ROY2/0AV2
'------------Unused

--,-------SHARP-.....-,--------433

........... -.............................. -.......... ................. .
LH8090/LH8090A
Z8090/Z8090A Universal Peripheral Controller

.-.-

LH8090/LH8090A

~
,

,

za0901Z8090A Universal
Peripheral Controller

•

Description

The LH8090 Universal Peripheral Controller
(UPC) is an intelligent peripheral controller: for c\istributed processing applications. The LH8090
unburdens the host processor by assuming tasks
traditionally done by the host (or by added hardware), such as performing arithmetic; translating
or formatting data, and controlling I/O devices.
Based on the 28 microcomputer architecture and
instruction set, the LH8090 contains 2K bytes of
internal program ROM, a 256-byte register file,
three 8-bitI/0 ports, and two counter/timers.
The LH8090 offers fast execution time; an effective use of memory; and sophisticated interrupt, 1/
0, and bit manipulation. Using a powerful and extensive instruction set combined with an efficient
internal addressing scheme, the LH8090 speeds
program execution and efficiently packs program
code into the on-chip ROM.

•

Features

1. Complete slave microcomputer, for distributed
processing 2- bus use
2. Unmatched power of 28 architecture and instruction set
3. Three prpgrammable I/O ports, two with optional 2-Wire Handshake'
4. Six levels of priority interrupts from eight
sources: six from external sources and two
from internal sources
5. Two programmable 8-bit counter/timers each
with a 6-bit prescaler. Counter/Timer TO is
driven by an internal source, and Counter/
Timer Tl can be driven by internal or external
sources. Both counter/timers are independent of program execution
6. 256-byte register file, accessible. by both the
master CPU and LH8090, as allocated in the
LH8090 program
7. 2K bytes of on-chip ROM for efficiency and
versatility

434

•

Pin Connections

o
IEOI P37 3
IEIIP30 4
INT IP35

P31
P3.
P27
P2.

5

iN'l'ACK I P32 6

P2.

DS

7

P23

R/W

8

P22
P21
P20

WAIT

P3.

AD7
AD.

Pl.

AD5

PIs

AD.

Pl.

AD3

PIa

AD2

P12

AD1
ADo

Plo
Top View

LH8090/{'H8090A

Z8090/Z8090A Universal Peripheral Controller

•

Block Diagram

Program
Memory
2KX8

Address/
Data Bus

Read.' Write
Address Strobe
Chip Select
Wait

Port 1

8
9

IRP
l'ort2
Register
File
256X8

15=

•

Pin Description
Pin
ADo-AD 7

Meaning
. Address data bus

I/O
Bidirectional

Address strobe

I

Data strobe

I

R/W

Read/write

I

CS

Chip select

I

Wait

0

I/O port lines
I/O port lines
I/O port lines

I/O
I/O
I/O

-

AS

-

DS
-

-WAIT

Pl o-P1 7
P2 o-P2 7
P3 0 -P3 7
PCKL

Clock

I

Function
Multiplexed system address/data bus .
Active low. Causes information on the address/data bus
to be fatched as address
Active low. Causes information on the address/data bus
to be sent/received as data
A high level indicates a read cycle : Data is output from
the internal register to the address/data bus. A low
level indicates a write cycle : Data is fetched from the
address/ data bus.
Active low, Chip select signal.
Active low, open-drain. For synchronizaion with the
CPU.
Parallel I/O
Parallel I/O
Parallel I/O (4-bit input, 4-bit output)
Signal-phase clock, not need to be related to the CPU
clock.

-~'-'---""'--SHARP'-'-'--~----

435

Z8090/Z8090A Universal Peripheral Controller

__Nl_._'-'-''-'-:''_''__

'-'-:''-~

•

~''''''~

Absolute Maximum Ratings

Parameter
Input voltage·
Output voltage·
Operating temperature

Symbol
VIN
VOUT
Topr
Tstg

Storage temperature

*

LH8090/LH8090A
___

Ratings
-0.3-+7.0
-0.3-+7.6
0-+70
-65-+150

Unit
V
V
°C
°C

The maximum applicable voltage on any pin except for VBB, with respect to GNO.

•

Standared Test Conditions
The characteristics below apply for the following standard test conditions, unless otherwise
noted. All volta~es are referenced to GND. Positive
current flows into the reference pin. Standard con·
ditions are as followes .

4.75V~Vcc~5.25V

Vss=GND=OV
O°C::;;;Ta;£ +70°C

+5V

+5V

2.2kO

18kO
From output O----, and MR/W/IACK of the device for 64-pin development, IOH=100 Il A and

10L

Unit Note
V
V
V
V
V
1
V
1

pA
pA
rnA
1mA

---------SHARP-----.--------'.436

Z8090/Z8090A Universal Peripheral Controller

•

AC Characteristics

(1)

Master CPU interface timing

No.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

Symbol
TrC
TwCh
TfC
TwC1
TpC
TsCS(AS)
ThCS(AS)
TsA(AS)
ThA(AS)
TwAS
TdOS(OR)
TdOs(ORz)
TdAS(OS)
TdOS(AS)
ThOW(OS)
TdOS(OR)
TdAz(OS)
TwOS
TsRWR(OS)
TsRWW(OS)
TsOW(OSf)
TdAS(W)
ThRW(OS)
TsOR(W)

Parameter
Clock rise time
Clock high width
Clock fall time
Clock low width
Clock period
to AS t setup time
CS to AS t hold time
Address to AS t setup time
Address to AS t hold time
AS low width
OS t to read data not valid
OS t to read data float delay
AS t OS ~ delay
OS t AS ~ delay
Write data to OS t hold time
OS ~ to read data valid delay
Address float to OS delay
OS low width
R/W(read) to OS ~ setup time
R/W(write) to OS ~ setup time
W rite data to OS ~ setup time
AS t to W AIT ~ valid delay
R/W to OS t hold time
Read data valid to WAIT t

cs

LH8090/LH8090A

LH8090
MIN.
MAX.
20
105
1855
20
105
1855
250
2000
0
60
30
50
70
0
70
2095
60
50
30

LH8090A
MIN.
MAX.
15
70
1855
10
70
1855
165
2000
0
40
10
30
50
0
45
40
2095
35
20

0
390
100
0
30

0
250
80
0
20
195

60
0

ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns

1
1
1
1

2

1
3

us

160
40
0

Unit Note

ns
ns
ns
ns

Note : The timing characteristics given reference 2.0V as High and O.8V as Low.
All output AC parameters use test load l.
Note 1:

Parameter does apply to interrupt acknowledge transactions.

Note 2:

The maximum value for TdAS (DS) does not apply to interrupt acknowledge transcations.

Note 3:

This parameter is dependent on the state of UPC at the time of master CPU access.

'-~--------SHARP----~------

437

Z8090/Z8090A Universal Peripheral Controller

PCLK

ADo-AD7
MASTER CUP
READ
AS

R/W
(WRITE)
R/W
(READ)
ADo-AD7
MASTER CPU
WRITE
WAIT

Master CPU interface timing

438

. LH8090/LH8090A

Z8090/Z8090A Universal Peripheral Controller

(2)

LH8090/LH8090A

Interrupt acknowledge timing
Parameter

No.

Symbol

25
26
27
28
29
30
31
32
33
34

TsIA(AS)
ThIA(AS)
TdAS(DSA)
TdDSA(DR)
TwDSA
TdAS(IEO)
TdIElf(IEO)
TsIEI(DSA)
TdDS(INT)
ThlEI(DS)

INTACK to AS t setup time
INTACK to AS t hold time
AS t to DS ! (acknowledge) delay
DS ! (acknowledge) to read data valid delay
DS ! (acknowledge) low width
AS t to lEO delay
lEI to lEO delay
lEI to DS ! (acknowledge) setup time
DS ! to INT delay
lEI to DS t hold time

ADo-AD7

=:x

Undefined

LH8090
MIK
MAX.
0
250
940
360
475
290
120
150
500
100

LH8090A
MIN.
MAX.
0
250
200
180
250
250
100
120
500
100

Unit
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns

)>-------- "f-----J

INTACK

lEI
lEO

Interrupt acknowledge timing

439

Z8090/Z80gpA ~niver5al Peripheral Controller

(3)
No.

LH8090/LH8090A

Handshake timing

1
2
3

TsDi(DA)
ThDA(DI)
TwDA

Data in setup time
Data in hold time
Data available width

4

TdDAL(RY)

Data available low to ready delay time

5

TdDAH(RY)

Data available high to ready delay time

6

TdDO(DA)
TdRY(DA)

Data out to data available delay time
Ready to data available delay time

7

Note 1: Input handshake

LH8090
LH8090A
MIN.
MAX.. MIN.
MAX.
0
0
230
230
175
175
20
175
20
175
0
0
.150
150
0
0
50
50
0
205
205
0

Parameter

Symbol

Note 2: Test load 1

Unit

Note

ns
.ns
ns
ns
ns
ns
ns
ns
ns

1,2
1,2
2,3
1,2
2,3
2
2

Note 3: ·Output handshake

DATA IN
DAV INPUT
RDY OUTPUT

Port read

Input handshake timing

DATA OUT

r

-~t=®

Data out valid

DAV OUTPUT
RDY INPUT

\

\

~--@---->.:\,~

"
Output handshake timing

----~.-.----.---SHARP

440

.--.-.---.----

Z8090/Z8090AUniversai

•

Pe~ipheral

Controller

Functional Description
(1) Address space
On the 40-pin UPC, all address space is committed to on-chip memory. There are 2048 bytes
of mask programmed ROM and 256 bytes of
register file. I/O is memory-mapped to three
registers in the register file. Only the Protopack
version of the UPC can access external program
memory. See the section entitled "Special Configurations" for a complete description of the
Protopack version.
Program memory: Fig. 1 is a map of the 2K
on-chip program ROM. The first 12 bytes of
program memory are reserved for the LH8590
interrupt vectors. In the RAM version addresses OCH through 2FH are reserved for on-chip
ROM.
Register file: This 256-byte file includes
three I/O port registers (1-3H), 234 generalpurpose registers (6H-EFH), and 19 control,
Status and special I/O registers (OH,4H,5H and
FO-FFH). The functions and mnemonics assigned
to these register address locations are shown in
Fig. 1. Of the 256 UPC registers, 19 can be directly accessed by the master CPU; the others
are accessed indirectly via the ·block transfer
mechanism.
The I/O port and control registers are included in the register file without differentiation. This allows any UPC instruction to process I/O or control information, thereby eliminating the need for special I/O :and control in2047

LH8090/LH8090A

structions. All general-purpose registers can
function as accumulators, address pointers, or
index registers. In instruction execution, the
. registers are read when are defined as sources
and written when defined as destinations.
UPC instructions may access registers directly or indirectly using an 8-bit address mode or
a 4-bit address mode and a Register Pointet.
For the 4-bit addressing mode, the file is divided into 16 working register groups, each
occupying 16 contiguous locations (Fig. 3). The
Register Pointer (RP) addresses the starting
point of the active working. register group, and
the 4-bit register designator supplied by the instruction specifies the register within the group.
Any instruction altering the contents of the register file can also alter the Register Pointer. The
UPC inst~uction set has a special Set Register
LOCATION

:~AGS~

FDH

REGISTER POINTER
FCH
PROGRAM CONTROL FLAGS
FBH UPC INTERRUPT MASK REGISTER IMR
FAH
IRQ
UPC INTERRUPT REQUEST REGISTER
IPR
F9H
UPC INTERRUPT PRIORITY REGISTER
PIM
F8H
PORT 1 MODE
F7H

PORT 3 MODE
PORT 2 MODE

F6H
F5H
F4H
F3H
F2H
FI H

USER
ROM

IDENTIFIER
(UPC Side)
SP
STACK POINTER
MIC
MASTER CUP INTERRUPT CONTROL

FOH
EFH

ToPRESCALER
TIMER/COUNTER 0
T,PRESCALER
TIMER/COUNTER 1
TIMER MODE
MASTER CPU INTERRUPT VECTOR REG.

12 ~~~~HPlD °lFn\SftE~};ll OF INSTRUCTION
11
IRQ 5 LOWER BYTE
IRQ 5 UPPER BYTE
10
9
8

IRQ 4 LOWER BYTE
IRQ 4 UPPE R BYTE

7
6

IRQ 3 LOWER BYTE

5
4
3
2

IRQ 3 UPPER BYTE
IRQ 2 LOWER BYTE

J

IRQ 2
IRQ I
IRQ I
IRQ 0

UPPE R
LOWER
UPPER
LOWER

BYTE
BYTE
BYTE
BYTE

0

IRQO UPPER BYTE

Fig 1 Program memory map

P3M
P2M
PREO
TO
PREI
T1
TMR
MIV

GENERAL-PURPOSE
REGISTERS

DATA INDIRECTION REGISTER

DlND
LC

LIMIT COUNT REGISTER
PORT 3
PORT 2

P3
P2

PORT I

PI

DATA TRANSFER CONTROL REGISTER

Fig 2

DTC

Register file organization

-----------SHARP----.---------441

~

LH8090/LH8090A

Z8090/Z8090A Universal Peripheral Controller

r-

1-...,,0

011 1

I

o 000

7 5 H (01110101)

FDH
FOH
EFH
EOH
DFH
DOH
CFH
COH
BFH
BOH
AFH
AOH
9FH'
90H
8FH
80H

~
70H

6FH
60H
5FH
50 H
4FH
40H
3FH
30H
2FH
20 H
IFH
10 H
OFH

downs, compatible with TTL loads. In addition,
Port 1 and Port 2 may be configured as opendrain
outputs. Data in each port can be .known by reading
a corresponding Port Mode register in the same
way as acc~ssing the register.
Port 1: Individual bits of port 1 can be confi·
gured as input or output. This port can also be
programmed as 110 Handshake Line. This port is
accessed as general register 1H. It is written by
specifying address 1H as the destination of any instruction used to store data in the output registers.
The port is read by specifying address 1H as the
source of an instruction.
Port 2: lndividual bits of Port 2 can be confi- .
gured as inputs or outputs. This port is accessed as
general register 2H, and its functions and methods
of programming are the same as those or Port 1.
Port 3: This port can be configured as 1/0 or
control lines. Port 3 is accessed as general register
3H. The directions of the eight data lines are fixed.
Four lines, P30 through P33, are inputs, and the
. other four, P3. through P37, are outputs. The control fun~tions performed by Port 3 are listed in
Table 1.
Table 1

0

Function

'1: The 4-bit register pointer provides the upper nibble of the
register file address for the 4-bit address mode.
'2: The lower nibble of the register file address (010 1) is pro·
vided by the instruction.

Fig. 3

Pointer (SRP) instruction for iiIitializing or altering the pointer contents.
Stacks: An 8-bit stack Pointer (SP), register
R255. is used for addressing the stack, residing
within the 234 general-purpose regisgers. address
location 6H through EFH.
PUSH and POP instructions can save and restore
any register in the register file on the stack. During
CALL instructions, the Program Counter is automatically saved on the stack. During UPC interrupt
cycles, the Program Counter and the Flag register
are automatically saved on the stack. The RET and
IRET instructions pop the saved values of the
Program Counter and Flag register.
(2) Ports
The LH8090 has 24 lines dedicated to input and
output. These are grouped into three ports eight
lines each and can be configured under software
control as inputs, outputs or special control sig·
nals.
They can be programmed to provide Parallel 110
with or without handshake and timing signals.
All outputs can have active pullups and pull·

442

Handshake

Register pointer mechanism

UPC Interrupt
Request *
Counter ITimer

Master CPU

Port 3 control functions
Line
P31
P33
P3.
P36
P30
P3,
P33
P3,
P36
P35
P32
P30
P37

110
I
I
0
0
I
I
I
I
0
0
I
I
0

signal
DAV2/RDY,
-DAVdRDY,
-RDYdDAV,
-RDYzlDAV2
IRQ3
IRQ,
IRQ,
TIN
TOUT
INT
--INTACK
lEI
lEO

*

P3o. P3" and P33 can always be used as upe interrupt reo
quest inputs, regardless of the configuration programmed.

(3) Counter/timers
The LH8090 contains two 8-bit programmable
counter/timers, each driven by an internal 6-bit
programmable prescaler.
The T1 prescaler can' be driven by internal or
external clock sources. The TO prescaler is driven
by an internal clock source. Both counter Itimers
operate independently of the processor instruction
sequence to relieve the program from time-critical
oPerations like event counting or elapsed-time calculation.

Z8090/Z8090A Universal Peripheral Controller

The counters can be started, stopped, restarted
to continue, or restarted from the initial value.,
They can be programmed to stop upon reaching
end-of-count (Single-Pass mode) or to automatical·
ly reload the initial value and continue counting
(Modulo-n Continuous mode).
(4) Interrupts
The LH8090 allows six interrupts from eight
different sources as follows:
• Port 3 lines P3o, P31, and P33.
• The master CPU (3).
• The two counter/timers.
These interrupts can be masked and globally enabled or disabled. The order of their priority can
be specified. All interrupts are vectored.
Table 2 lists the LH8090's interrupt sources,
their types, and their vector locations in program
ROM.
The LH8090 also supports polled systems.
To acommodate a polled structure, any or all of
the interrupt inputs can be masked and the interrupt request register polled to determine which of

LH8090/LH8090A

the interrupt request needs service.
(5) Master CPU register file access
There are two ways in which the master CPU
can access the LH8590 register file: direct access
and block access.
Direst Access: Three LH8090 registers - the
Data transfer Control, the Master Interrupt Vector,
and the Master Interrupt Control - are mapped
directly into the master CPU address space.
The registers can directly be accessed in 16
bytes.
Block Access: The masteJ;" CPU may be transmit or receive blocks of data via address X X X
10101 (X X 10101 X for shift address). When the
master CPU accesses this address, the LH8090
register pointed to by the Data Indirection register
(DIND) is read or written.
The number of bytes is set in the Limit Count
register (LC). The LH8090 controls everything in
the block transfer and is therefore allowed to protect itself from master CPU errors.

Table 2 Interrupt types, sources, and vector locations
, Name
IRQO
IRQl
IRQ2
IRQ3
IRQ4
IRQ5

Source
EOM, XERR, LERR
DAVl, IRQl
-DA V2, IRQ2, TIN
IRQ3, lEI
TO
T1

Vector Location
0,

1

2, 3
4, 5
6,
8,
10,

7

9
11

Comments
Internal (RO Bits 0, I, 2)
External (P33) ! edge triggerd
External (P31) ! edge triggerd
External (P3o) ! edge triggerd
Internal
Internal

443

Z8090lZ8090A

•

IMR

Instruction

(1 ) Addressing modes
The following notation is used to describe the
addressing modes and instrucion operations.
IRR
Indirect register pair or indirect work·
ing-register pair address
Indirect working-register pair only
Irr
Indexed address
X
Direct address
DA
Relative address
RA
Immediate
1M
Register or working-register address
R
Working-register address only
r
Indirect-register or indirect workingIR
register address
Ir
Indirect working-register address only
RR
Register pair or working-register pair
address
(2) . Symbol
dst
Destination location or contents
Source location or contents
src
Condition code (see list)
cc
@
Indirect address prefix'
PC
Program Counter
SP
Stack Pointer (control register FFH)
FLAGS Flag register (control register FCH)
RP
Register Pointer (control register FDH)
Table 3
Value
1000
0111
1111
0110
1110
1101
0101
0100
1100
0110
1110
1001
0001
1010
0010
1111
0111
1011
0011
0000

LH8090lLH8090A

Universal Peripheral Controller

Mnemonic
C
NC
2
NZ
PL
MI
OV
NOV
EQ
NE
GE
LT
GT
LE
UGE
ULT
UGT
ULE

Interrupt mask register (control register FBH)
Assignment of a value is, indicated by the sym'
bol "+-n. For example.
dst +- dst + src
indicates that the source data is added to the destination data and the result is stored in the destination location. The notation "addr(n)" is used to
refer to bit "nn of a given location. For example.
dst (7)
refers to bit 7 of the destination operand.
(3) Flags
.
Control Register FCH contains the following six flags:

C
Carry flag
Z
Zero flag
S
Sign flag
V
Overflow flag
D
Decimal-adjust flag
H
Half-carry flag
Affected flags are indicated by:
o Cleared to zero
1
Set to one
Set or clear.ed according to operation
Unaffected
X
Undefined
(4) Condition codes

*

Table 3.

shows condition codes.

Condition codes

Meaning
Always true
Carry
No carry
Zero
Not zero
Plus
Minus
Overflow
No overflow
Equal
Not equal
Greater than or equal
Less than
Greater than
Less than or equal
Unsigned greater than or equal
Unsigned less than
Unsigned greater than
Unsigned less than or equal
Never true

Flags set

.........
C=l
C=O
Z=l
Z=O
S=O
S=l
V=l
V=O
Z=l
2=0
(S XOR V)=O
(S XOR V)=l
[2 OR(S XOR V)) =0
[2 OR(S XOR V)) = 1
C=O
C=l
(C=O AND 2=0)= 1
(C OR 2)=1

.........

-~--------.-.....-SHARP---.------

444

?:8090/Z8090A Universal Peripheral Controller

LH8090/LH8090A

(5) Opcode Map
Lower Nibble (Hex)

o
6.5

6.5

o

DEC

2

2

3

4

5

6

7

6.5

6.5

10.5

10.5

10.5

10.5

8

DEC ADD ADD ADD ADD ADD ADD

R.

IR.

TI, T2

fl,ITZ

Rz. R\

IRz, RI

RI.IM

IR,.IM

6.5

6.5

6.5

6.5

10.5

10.5

10.5

10.5

RLC

RLC

ADC ADC ADC ADC ADC
n,

R.

IR.

fl, T2

Rz. RI

IRz. RI

R •• IM

6.5

6.5

6.5

10.5

10.5

10.5

10.5

INC

INC

SUB

SUB

SUB

SUB

SUB

SUB
IR •• IM

R.

IR.

T],TZ

T\,IT2

Rz. RI

IR 2• R,

RI.IM

6.1

6.5

6.5

10.5

10.5

10.5

10.5

JP

SRP

SBC

SBC

SBC

SBC

SBC

SBC

IRRI

1M

Tt, IT!

Rz. RI

IRz, RI

RI.IM

IR •• IM

8.5

8.5

6.5

6.5

10.5

10.5

10.5

10.5

4

DA

DA

OR

OR

OR

OR

OR

OR

R.

IR.

TI,T2

TIoIT2

Rz, RI

IRz. R,

R •• IM

lRI.IM

.= 5

10.5

10.5

6.5

6.5

10.5

10.5

10.5

10.5

POP

POP

III

R.

IR.

r"r2

TI.IT2

.Q

6.5

6.5

6.5

6.5

xIII
:c

::::l

T2

C

o

6.5

6.5

12110.5

12110.0

6.5

12110.0

6.5

LD

LD

DJNZ

JR

LD

JP

INC

r"IM

ce, DA

"

flo

Rz

f2. RI

TI.

RA

ce, RA

F

E

I---

I
I---

I---

I---

I---

AND AND AND AND AND AND
Rz. RI . IR2• Rl
10.5

10.5

RI.IM

IR •• IM

10.5

10.5

I---

COM COM TCM TCM TCM TCM TCM TCM

Z 6
Gi
Q.
Q.

n,

B

IRI.IM

H.n

3

A

ADC

6.5

IT!

9

R.

JR.

TI,T2

fI, IT!

R2. RI

IR2. R\

R1. IM

10112.1

12114.1

6.5

6.5

10.5

10.5

10.5

10.5

TM

TM

TM

TM

TM

TM

TI,T2

TIoIT!

Rz• R,

RI.1M

IR\.IM

PUSH PUSH

7

8
9

R,

IR,

lO,:}

10.3

12.0

lOEI

IrT2

In. lIT!

RR.

IR.

6,5

6.5

12.0

18.0

RL

RL

lOE

LDEI

R.

IR •

T2,lrrl

Irz.lrrl

w.;)

10.;)

INCW INCW

A
B

0
E

6.1

01
I--6.1

EI
I--14,0

6.5

6.5

10.5

10.5

10.5

CP

CP

CP

CP

CP

CP

Rt.IM

IR1. 1M

10.5

IR.

n.T2

n.lr!

R2. R,

IR z• RI

6.5

6.5

6,5

6.5

10.5

10.5

CLR

CLR

XOR

XOR

XOR

XOR

XOR

XOR

IR2. RI

R],IM

IR!, 1M

IR.

TI,T2

6,5

6.5

RRC

RRC

R.

JR.

6.5

6.5

12.0
TI,lrn

12.0

SRA

SRA

n.lr!

R2. RI

IS.O

6.5

RCF

Tl,

20.0

x,

R2

20.0

10.5

CALL

LD

DA

f2, X, RI

R.

JR.

In.ITT\

IRR,

6.5

6.5

6.5

10.5

10.5

10.5

10.5

RR

RR

LD

LD

LD

LD

LD

lRz. RI

RJ,IM

IR!, 1M

R2• RI

R.

IR.

T\,In

8,5

8.5

6.5

10.5

LD

LD

lrl,TZ

Rz,IR,

R.

IR.

IRET

I---

10.5

LDC lOCI CALL"
f2.Irf!

~

LD

ITI,lrr!

18.0

RET

10.5

10.5

LDC LOCI

SWAP SWAP

F

I---

RR.

R.

C

RI

I---

18.0

DECW DECW LDE
T\,

IR 2•

IR1.IM

I--6.5

SCF
-

6.5

CCF
-

6.0

NOP

~--------~------~~------~--------~~----------~----------~~~

Bytes per
Instruction

3

2

Lower Opcode Nibble
Execution

Upper
Opcode

Cycles

Nibble~

First

A

Operand

Pipeline

Cycles

4 - - Mnemonic

2

3

Legend:
R = 8-Bit Address
r = 4 - Bit Address
Rl or n = Dst Address
R2 or r2 = Src Address
Sequence:
Opcode. First Operand. Second Operand
Note: The blank areas are not defined.

Second Operand

----.-------.---SHARP - - - - - - - - - - - . - . . .

445

Z8090/Z8090A 'Universal Peripheral Controller

LH8090/LH8090A

Instruction Summary
Instruction
and
Operation

I
I

ADC dst, src
dst....dst + src + C
ADD dst, src
dst ....dst + src
AND dst, src
dst ....dst AND src
CALL dst
SP....SP-2
@SP.... PC· PC ....dst
CCF
C.... NOT C
CLR dst
dst....O
COM dst
dst....NOT dst
CP dst, src
dst....src
DA dst
dst ....DA dst
DEC dst
dst.... dst-l
DECWdst
dst....dst-l

Addr. mode
dst src
(Note 1)
(Note 1)

00

****0*

(Note 1)

50

-**0--

D6
D4

------

EF

*---

R
IR
R
IR
(Note 1)

BO
Bl
60
61
AD

------

R
IR
R
IR
RR
IR

40
41
00
01
80
81
8F

***X--

RA

rA
r=O-F

DA
IRR

01

IMR(7) .... 0
DJNZ r,dst
r .... r-l
if r+O PC .... PC+dst
Range; + 127--128
EI
IMR(7) .... 1
INC dst
dst....dst+ 1

Opcode Flags Affected
(Hex) CZSVDH
10
****·0*

9F

-

-**0-****--

Instruction
and
Oparatlon

I
I

LDEI dst, src
dst....src
r .... r+ 1; rr ....rr+ 1
NOP
OR dst, src
dst.... dst OR src
POP dst
dst....@SP
SP....SP+l
PUSH src
Sp....SP-l· @SP ....src
RCF
C.... O
PET
PC ....@Sp· Sp....SP+2
4RL dst

------

R
IR

-**0--

------

70

71
CF

0

RR dst

4947

RRC dst

----

AF

~7 O~

----

FF
40
50
51

R
IR

R
IR

RLC dst

-

(Note 1)

O~

~7

-***--***--

Addr. mode
Opcode Flags Affected
(Hex) CZSVDH
dst src
Ir
Irr·
83
Irr
Ir
93

--

90
91

****--

R
IR

10

****--

O~

R
IR

EO
El

****

~7 O~

R
IR

CO
Cl

****

3D

****1*

DF

1

DO
Dl

* * * 0

31

------

2D

****1*

FO
Fl

X* *X--

sec dst, src
dst....dst - src - C
SCF
C.... l

(Note 1)

11

~

r
R
IR
RR
IR

INCW dst
dst....dst+ 1
IRET
FLAGS ....@SP;SP....SP+ 1
PC ....@Sp·SP ....SP+2;IMR(7).... 1
DA
JP cc, dst
if cc is true
PC ....dst
IRR
RA
JR cc, dst
if cc is true,
PC .... PC+dst
Range: +127--128
r
LD dst, src
1M
dst ....src
r
R
R
r

LDC dst, src
dst....src
LOCI dst, src
dst-src
r-r+ l' rr-rr+ 1
LDE dst, src
dst-src

446

r
X
r
Ir
R
R
R
IR
IR
r
Irr
Ir
Irr
r
Irr

X
r
Ir
r

R
IR
1M
1M
R
Irr
r
Irr
r
Irr
r

rE
-***-r=O-F
20
21
AO
-***-Al
BF
******
cD
c=O-F
30
cB
c=O-F

------

rC
r8
r9
r=O-F
C7
D7
E3
F3
E4
E5
E6
E7
F5
C2
D2
C3
D3

------

82
92

L,g ell t P

SRA dst

1M

SRP src
RP ....src
SUB dst, src
dst.... dst - src
SWAP dst
TCM dst,src

(Note 1)

~

I(NOT ds!) AND src
------

TM dst,src
dst AND src
XOR dst,src
dst.... dst XOR src

-----------

(Note 1)

60

* * 0

(Note 1)

70

* * 0

(Note 1)

BO

-**0--

Note 1: These instructions have an identical set of' addressing
modes, which are encoded for brevity. The first opcode nibble is
found in the instruction set table above. The second nibble is ex·
pressed symbolically by a 0 in this table, and its value is found
in the following table to the left of the applicable addressing
mode paie.
For example, to determine the opcode of an ADC instruction
using the addressing modes r (destination) and Ir (source) is 13.

Addr Mode

------

R
IR

dst
r
r
R
R
R
IR

src
r
Ir
R
IR
1M
1M

Lower
Opcode Nibble

!2J
11I
Ii]

lID
[ill
[Z]

Z8090/Z8090A Universal Periph~Hal Controller

•

LH8090/LH8090A

Register
RO (DTC)

upe Register Address (Hex): 00

I D7 I D61

D51 D,I D31 D21 DI I Dol

I

I/O REGISTER POINTER
ORP)I
_ _ _ _ _ _(_E_D_X---..J).
DISABLE DATA TRANSFER=O'
ENABLE DATA TRNSFER=1
NO TRANSFER ERROR =0
(XERR)
TRANSFER ERROR = 1

I(EOM) . 0=I=END OF MESSAGE

(LERR)

O=NO LIMIT ERROR
1 = LIMIT ERROR

R4 (LC)

R5 (DIND)

upe Register Address (Hex): 04

upe Register Address (Hex): 05

I D7 I D6 I Dsl D,I

I D71

D31 D21 DJ I Do I

<-I-

Ds! D51 D,I D31 D21 Dd Dol

_ _ _ _ LIMIT COUNT VALUE
(RANGE:0-255 DECIMAL
00- FF HEX)

LINDIRECTION ADDRESS
(Do= LSB)

R240 (MIV)

upe Register Address (Hex): f1

I D7 I D61 D5 I D4 I D31 D2 I DI I Do I
VECTOR DATA (Do = LSB)

I

R241 (TMR)

upe register address (Hex): Fl

I D71 D61

I

TOUT MODES=::::J
RESERVED = 00
To OUT = 01
TJ OUT = 10
INTERNAL CLOCK OUT = 11
TIN MODES - - - - - - '
EXTERNAL CLOCK INPUT = 00
GATE INPUT =01
TRIGG ER INPUT = 10
(NON -RETRIGGERABLE)
TRIGGER INPUT = 11
(RETRIGGERABLE)

R242 (T1)
Counter/Timer 1 Register

upe Register Address (Hex): F2

FU~CTION

O = NO
1 = LOAD To

C O = DISABLE To COUNT
1 = ENABLE To COUNT
0 = NO FUNCTION
1 = LOAD TI
' - - -_ _ _ 0 = DISABLE TI COUNT
1 = ENABLE TI COUNT

R243 (PRE1)

upe Register Address (Hex): F3

I D71 D61 D5 1 D41

I D71 D61 D51 D41 D31 D21 DIlDo I
C=:TI INITIAL VALUE
(RANGE: 1-2 5 6 DECIMAL
01-00 HEX)

L

D5 I D41 D31 D2 I DI I Do I

l

D31 D21 DIlDo 1
LCOUNT MODE

0 = TI SINGLE PASS
1 = TI MODULO· N
CLOCK SOURCE
0 = EXTERNAL TIMING IN
(TIN) MODE
1 = TI INTERNAL

'---------PRESCALER MODULO
(RANGE: 1-64 DECIMAL
01-00 HEX)

.-----.----------SHARP - - - - - . - . - - - - - -

447

LH8090/LH8090A

Z8090/Z8090A Uhh,ersal Peripheral Controller

R245 (PREO)
Prescaler 0 Register
UPC Register .Address (Hex): F5

R244 (TO)
Counter/Timer 0 Register
UPC Register Address (Hex): F 4
1 071 061 Dsl 04 1 03 1 02

I 01 I Do I

1 07

'
L

I 061 Os I 041 031 02 I 0 1 I Do I

C=To INITIAL VALUE
(RANGE: 1-256 DECIMAL

I

01-00 HEX)

COUNT MODE
O=To SINGLE-PASS
1 = To MODULO· N
RESERVED

'-------PRESCALER MODULO
(RANGE: 1-64 DECIMAL

R246 (P2M)
Port 2 Mode Register
UPC Register Address (Hex): F6

01-00 HEX)

I 07 I 06 I Os I 04 I 031 02 I 01 I Do I
L

P20- P27 I/O DEFINITION
BIT AS OUTPUT
1 DEFINES BIT AS INPUT

o DEFINES

R247 (P3M)
Port 3 Mode Register
UPC Register Address (Hex): F7

I 07 I 061 Os I 041 03 I 02 I 01 I Do I

LS

Lo PORT 2 PULL-UPS OPEN DRAIN
1 PORT 2 PULL-UPS ACTIVE

o PORT

I PULL-UPS OPEN DRAIN
1 PORT I PULL-UPS ACTIVE

o P3S =

OUTPUT
I P3S = INT
RESERVED

o P33= INPUT
I P3F DAV1/RDYI
'-----0 P31= INPUT (TIN)

I Pl!= DAV2/RDY2
~-------'OP30=INPUT

I P30 = lEI

P34 = OUTPUT
P34 = ROY l/DA V I
P36 = OUTPUT (TOUT)
P36 = RDY2/DAV2
P37 = OUTPUT
P37 = IEO

L----------OP32=INPUT
I P3F INTACK

R248 (P1 M)
Port 1 Mode Register
UPC Register Address (Hex): F5
1 07

I 061 05 I 04 I 031 021 01 I Do I
I'----Plo-Ph I/O DEFINITION
o DEFINES BIT AS OUTPUT
I DEFINES BIT AS INPUT

.-.---.---------$HARP----------448

Z8090/Z8090A Universal Peripheral Controller

LH8090/LH8090A

R249 (lPR)
Interrupt Priority Register

upe Register Address (Hex): F9 (write only)
1 D71 D61 D51 D.I D31 D21 Dl I Do

I

RESERVED~
IRQl,IRQ4 PRIORITY (GROUP C)
o =IRQl>IRQ4
INTERRUPT GROUP PRIORITY--+---'----t------'
I =IRQ4>IRQI
RESERVED=OOO
C>A>B=OOI
~---IRQO,IRQ2 PRIORITY (GROUP B)
A>B>C=OIO
o =IRQ2>IRQO
A>C>B=OII
1 =IRQO>IRQ2
B>C>A=IOO
~-------IRQ3,IRQ5 PRIORITY (GROUP A)
C>B>A=lOI
o =IRQ5>IRQ3
B>A>C=IIO
1 =IRQ3>IRQ5
RESERVED =111
R250 (IRQ)
Interrupt Request Register

R251 (lMR)

.Interrupt Mask Register
upe Register Address (Hex): FB

upe Register Address (Hex): FA

I D7 I D6 I D5 I D.I D3 I D2 I Dl I Do I

Uk~

I D71 D61 D5 I D.I D3 I D2 I DJ I Do

I I

IRQO=MASTER CPU
COMMUNICATIONS

QI=P3, INPUT
Q2=P31 INPUT
Q3=P3, INPUT
IR Q4=To
IR Q5=Tt
RESERVED

I

I~
L I1 ENAIlLES
ENABLES

!ROO
IRQI
IRQ2
IRQ3
IRQ4
IRQ5

1 ENABLES
1 ENABLES
~-----1 ENABLES
' - - - - - - - - 1 ENABLES
' - - - - - - - - - RESERVED
' - - - - - - - - - - - - - 1 ENABLES INTERRUPTS

R252 (FLAGS)
Flag Register

R253 (RP)
Register Pointer

upe Register Address (Hex): Fe

upe Register Address (Hex): FD

I D71 D61 D5 I D.I

D31 D21 Dt! Do

LS
I

I

I D71 D61 D51 D.I

LUSER FLAG Fl
FLAG F2
HALF CARRY FLAG
DECIMAL ADJUST FLAG
'-------OVERFLOW FLAG
~-------SIGN FLAG
~--------ZEROFLAG .
'------------CARRYFRAG

~USER

I

D31 D21 DJ I Do

I

LDON'T CARE

~.-------REGISTER

(r.-n)

-----~--.---SHARP--.-.---~----

449

B

Z8090/Z8090A Universal Peripheral Controller

LH8090/LH8090A

R~54 (MIC)
Master CPU Interrupt Control Register

UPC Register Address (Hex): FE

I D71 D6 I Dsl D41 Dal D21 DI I Dol
o INTERRUPT REQUEST DISABLEDJ
o INTERRUPT REQUEST ENABLED
o NO INTERRUPT UNDER SERVICE

~I

II L:

;NO OF MESSAGE
ENABLE WHEN WRITE
1 WAIT DISABLE WHEN WRITE

o WAIT

1 INTERRUPT UNDER SERVICE

o ENABLE

o NO

MASTER CPU INTERRUPT. PENDING
1 MASTER CPU INTERRUPT PENDING
o VECTOR OUTPUT - - - - - - '
1 NO VECTOR OUTPUT

LOWER CHAIN

1 DISABLE LOWER CHAIN

' - - - - - - - 0 DISABLE DATA TRANSFER
1 ENABLE DATA TRANSFER

R255 (SP)
Stack Pointer

UPC Register Address (Hex): FF

I D7 I D61 Ds I D. I Da I D2 I DI I Do I
II-----STACK POINTER

Table 4.
OOH
04 H
05 H
FO H
FIH
F2H
F3 H
F4H
F5 H
F6 H
F7H

Control Register
Data transfer control register
Limit count register
Data indirection register
Interrupt vector register
Timer mode
Tl register
T 1 prescaler
TO register
TO prescaler
Port 2 mode
port 3 mode

port 1 mode
Interrupt priority
Interrupt request
Interrupt mask
Flag register
Register pointer
Master CPU interrupt control
register
FFH Stack pointer

F8 H
F9 H
FAH
EBH
FC H
FDH
FEH

Note:

Control register reset conditions

D7 D6 Ds D4 D3 D2 DI Do
X
X
X
X
0 0 0 0
Not defined
Not defined
Not defined
0 0 0 0 0 0 0 0
Not defined
X
X
X
X
X
X
0 0
Not defined
X
X
X
X
X
0 Q
X
1 1 1 1 1 1 1 1
1 0 0
0 0 0 0 X

1

1

X

X

0

X

0

0

1

1 1 1
Not defined
0 0 0 0
X X X X
Not defined
Not defined
0 0 0 0

Comments
Disable data transfer from master CPU

Stops TO and T1
Single-pass mode

1

1

Single-pass mode external clock source
Port 2 lines defined as inputs
Port 1. 2 open drain output
P3 s = INT
P3 o• P3 10 P3 2. P3 3 defined as' input
P3 4• P3 6• P3 7 defined as output
Port 1 lines defined as inputs

0
X

0
X

Reset interrupt request
Interrupts disabled

0

0

Master CPU interrupt disabled: wait
enable when write: lower chain enabled

Not defined

X means not defined.

---------.-.-..--SHARP -....--....-..-----

450

Z8091/Z8091 A Development Device

LH8091/LH8091 A

LH8091/LH8091A ~~:;:~;!DeViCe
•

Description

The 64-pin LH8091 is the development version
of LH8090 (Z8090) UPC with internal maskprogrammed ROM. This device allows the user to
the prototype systems in hardware without an
actual device and to develop the code that is eventually mask-programmed into the on-chip ROM of
the LH8090.
The LH8091 is identical to the LH8090 with the
following exceptions.
• The internal ROM has been removed .
• The ROM address lines and data lines are buffered and brought out to external pins.
• Control lines for the memory have been added.
The LH8091A is the high speed version which
can operate at 6MHz system clock.

•

Pin Connections
+5V

1

PCLK

2

Top View

451

Z8091fZ8091 A

•

Development Device

LH8091/LH8091A

Block Diagram
Program Memory Address Output

,

Address/Data
Bus

I/O

Address Strobe 9
Data Strobe 7
Read/W rite 8
Chip Select 10

I/O

Interrupt Request 5
Interrupt Acknowledge 6
Interrupt Enable In
Interrupt Enable
Out

Interrupt Acknowledge
Output/Memory Read

•

24)---------------'----------'

Pin Description

LH8091 has the same functions as those of a 40-pin device LH8090, and the functions of the additional 24
pins are as follows.
Meaning
Program memory address
Program data
Interrupt acknowledge
Imemory read.

I/O
0
I

MAS

Memory address strobe

0

MDS

Memory data strobe

0

Synchronization

0

Symbol
Ao'- All
Do -D 7
IACK/MR

0

-~

--

SYNC

Function
Used for the access to the external memory of 4K bytes.
Reads the data through these lines from the external memory.
Active high. This signal becomes high during interrupt or in·
struction fetch cycle of LH8591.
Active low. This signal is output every memory fetch cycle
for the interface with the external ROM.
Active low. This signal becomes low during instruction fetch
cycle or write cycle.
Active low. This signaJ becomes low at the clock cycle just
before Op-code fetching.

-------------SHARP,....-.-..-------452

Z8092/Z8092A Development Device

LH8092/LH8092A

LH8092/LH8092A
•

Description

•

The 64-pin LH8092 is the development version
of LH8090 (Z8090 UPC) with internal maskprogrammed ROM. This device allows the user to
the prototype systems in hardware with an actual
device and to develop the code that is eventually
mask-programmed into the on-chip ROM of the
LH8090.
The LH8092 is identical to the LH8090 with the
following exceptions.
• The internal ROM has been removed (But
there are 36 bytes of internal ROM for a bootstrap program) .
• The ROM address lines and data lines are buffered and brought out to external pins.
• Control lines for the memory have been added.
The LH8092A is the high speed version which
can operate at 6MHz system clock.

Z80921Z8092A
Development Device

Pin Connections
+5V 1
PCLK 2
P37/IEO 3
P3o/IEI •
P35/INT 5
P3,fINT ACK 6

5

P2.
P23
P22

Top View

.-----~--.-.--SHARP

--.------------453

Z8092/Z8092A Development Device

•

LH8092/LH8092A

Block Diagran

.

Program Memory Address Output

Address/Data
Bus

I/O

Address Strobe 9
Data Strobe 7
Read/Write 8
Chip Select 0
Wait 11

I/O

Interrupt Request 5

o

Interrupt Acknowledge 6

Interrupt Enable In
Interrupt Enable
Out

Interrl!!t Acknowledg 241}-------~--------------'
Memory/Read/ ' -_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _--'
&~ti~~t

•

Pin Description
LH8092 has the same functions as those of a 40-pin device LH8090, and the functions of additional 24
pins are' as follows.
Symbol
Ao-Au

Meaning
Program memory address

I/O

00-07

Program data

I

LACK

Interrupt acknowledge

0

MAS

Memory address strobe

0

Memory data strobe

0

MR/W

Memory read/write

0

SYNC

Synchronization

0

-MOS
-

0

Function
Used for the access to the external memory of 4K bytes.
Reads for data through these lines from the external memory.
And it is possible to write into an external RAM through
these lines.
Active high. This signal is always active during interrupt cycle of LH8092.
Active low. This signal is output every memory feich cyclefor
interfacing with the external RAM.
Active low. This signal is outptt eyery memory fetch cycle for
cycle or write cycle.
This signal is high during instruction fetching by LH8092,
or low while writing into the external memory.
Active low. This signal becomes low during clock cycle just
before OP code fetching.

- - - - - - - - - - - - - - S H A R P - - - . - - - - - , - - - - - - - ........
454

LH8093/LH8093A

Z8093/Z8093A Protopack Emulator

LH8093/ LH809 3A ~:::1!093A
•

Description

The LH8093 (28093) is a ROMless version of
the standard LH8090, housed in a pin compatible
40-pin package.
The LH8093 carries a 40-pin soket for a direct
interface to program memory. 2716 type EPROM
can be used for program memory.
The LH8093 allows the user to build the prototype and pilot production units. When the final
program is established, the user can then switch
over the LH8090.
The LH8093A is the high speed version which
can operate at 6MHz system clock.

•

Protopack

Pin Connections

o

P31
P36

P37/IEO

3

P27

P30/IEI

4

P26

P3s/INT

5

P2s

P32/INTACK

6

P2.
P23
P22
P21
P33
P3.
Ph
PIs
PIs
Pl.
Pb
Ph
Ph

ADo
Top View

455

Z8093/ZS093A Protopack Emulator

LH8093/LH8093A

Block Diagram

•

*1*2*3'

Address/Data
Bus

Address Strobe
Data Strobe
Read/Write
Chip. Select

Program Data Input Program Memory Address Output
"
•

I/O

9
7
8
10

I/O

Interrupt Request
Interrupt Acknowledge

Interrupt Enable In
Interrupt Enable
Out

*1 Program Memory Data Strobe Output
*2 System Clock Output
*3 Instruction Sync Output

o : This

•

is equipped with ROM

Pin Description
LH8093 pins are compatible with those of LH8090. For pin descriptions of LH8093, refer to those of
LH8090.

456

Z8094/Z8094A Protopack Emulator

LH8094/LH8094A

LH8094/LH8094A ~~=094AProtopaCk
• . Description
The LH8094 (28094) is a RAM version (16K
bits RAM) of the standard LH8090, housed in a pin
compatible 40-pin package.
The LH8094 carries a 24-pin soket for a direct
interface to program memory, and has 36 bytes of
internal ROM for a bootstrap program.
The LH8094 allows the user to build the prototYPe and when the final program is established,
the user can then switch over the LH8090.
The LH8094A is the high speed version which
can operate at 6MHz system clock.

•

Pin Connections

o

P31
P36

P37/IEO

3

P2,

P30/IEI

4

P26

P35/INT 5
P32/INT ACK 6

P25
P2.
P23
P2,
P21
P33
P3.
PI6
PIs
Pl.
PIa
PI,
Ph

ADo
Top View

457

/

.Z8094/Z8094A· Protopack Emulator

•

LH8094/LH8094A

Block Diagram
Program Data Input

Program Memory Address Output

*1*2*3,~-----'~----~"r--------~'~--------~

Address/Data
Bus

Address Strobe 9
Data Strobe 7
Read/Write 8
Chip Select 10

Interrupt Request
Interrupt Acknowledge
Interrupt Enable In
Interrupt Enable
Out

*1 Program Memory Data Strobe Output
*2 System Clock Output
*3 Instruction Sync Output

C : This is equipped with RAM

•

Pin Description
LH8094 pins are compatible with those of LH8090. For pin descriptions of LH8094, refer to those of
LH8090.

458

Peripheral LSls for Microcomputers

!-H 85301 LH 8530A

Z8530/Z8530A Serial Communications Controller

LH8530/LH8530A
Z8S301Z8S30A Serial Communications Controller
•

Description

The LH8530 Z8530 SCC Serial Communications
Controller is a dual-channel, multi-protocol data
communications peripheral designed for use with
conventional non-multiplexed buses. The LH8530
functions as a serial-to-parallel, parallel-to-serial
converter controller. The LH8530 can be softwareconfigured to satisfy a wide variety of serial communications applications. The device contains a
variety of new, sophisticated internal functions including on-chip baud rate generators, Digital
Phase- Locked Loops, and crystal oscillators that
dramatically reduce the need for external logic.
The LH8530 handles asynchronous formats,
Synchronous byte-oriented protocols such as IBM
Bisync, and Synchronous bit-oriented protocols
such as HDLC and IBM SDLC. This versatile device supports virtually any serial date transfer application (cassette, disk tape drives, etc).
The device can generate and check CRC codes in
any Synchronous mode and can be programmed to
check data integrity in various modes. The
LH8530 also has facilities for modem controls in
both channels. In applications where these controls
are not needed, the modem controls can be used for
general-purpose I/O.
The daisy-chain interrupt hierarchy is also supported by the LH8530.
The LH8530 is packaged in a 40-pin ceramic
DIP and uses a single+ 5V power supply.
The LH8530A Z8530A SCC is the high speed
version which can operate at 6MHz system clock.

•

Features
1. Two independent, 0 to 1.5M bit/second, fullduplex channels, each with a separate crystal
oscillator, baud rate generator, and Digital
Phase-Locked Loop for clock recovery.
2. Multi-protocol operation under program control; programmable for NRZ, NRZI, or FM data
encoding.
3. Asychronous mode with five to eight bits and
one, one and one-half, or two stop bits per

•

Pin Connections

0

On

02
O.

06
RO
WR

AlB
INTACK

8

+5V 9
W/REQA

CE

o/e
GNO

SYNCA

W/REQB

RTxCA

SYNCB

RxOA
TRxCA
TxOA
OTR/REQA

RTxCB
RxllB
TRxCB
TxllB

RTSA

IlTR/R};qB

CTSA

RTSB

DCDA

CTSB

PCLK
Top View

character; programmable clock factor, break
detection and generation; parity, overrun, and
framing error detection.
4. Synchronous mode with internal or external
character synchronization on one or two synchronous characters and CRC generation and
checking with CRC-16 or CRC-CCITT preset
to either Is or Os.
5. SDLC/HDLC mode with comprehensive framelevel control, automatic zero insertion and deletion. I-field residue handling, abort generation and detection, CRC generation and checking, and SDLC Loop mode operation.
6. Local Loopback and Auto Echo modes.

----------$HARP-----~-.-.--

460

Z8530/Z8530A Serial Communications Controller

•

LH8530/LH8530A

Block Diagram

Serial Data
Baud Rate
Generator

A

11

Synchronization

Wait/Request
16 Data Terminal
Ready /Request
17 Request To Send

10

Data Bus

18

Clear to Send

23 Request To Send

Data Terminal
Ready / Request
30 Wait/Request

24

Synchronization

Baud Rate
Generator
B

Channel Clock
Serial Data

...

"o

U

461

.-..---..

.............................,..... ..........,.....
Z8530/Z8530A Serial Communications Controller
~

•

..........,

LH8530/LH853t>A

--~

Pin Description
Pin

Function
""

I

Channel select signal.

Chip enable

I

Active low. Enables the CPU to transmit ,and 'receive
command and data when low.

Clear to send

I

Active low. Enables the respective transmitters.

D/C

Datal control select

I

This signal defines the type of information on the data
bus. High means data; Low indicates a command.

--

DCDA
DCDB

Data carrier detect

I

Active low. Enables the respective receivers.

Do-D 7

Data bus

-

CE

CTSA
CTSB
-

Bidirectional
3-state

System data bus.

INTACK

Interrupt acknowledge

I

RD
RXDA
RXDB
RTXCA
RTXCB
RTSA
-RTSB
SYNCA
--SYNCB
TXDA
TXDB'
TRXCA
TRXCB
WR

Read

I

Active low. These outputs follow the state programmed
into the DTR bit.
Active high. lEI is used to form a daisy chain that deter·
mines the interrupt priority order.
Active high. lEO is used to form a daisy chain that de·
termines the interrupt priority order.
Active low, open·drain. Indicates an interrupt request to
the CPU.
Active low. This signal indicates an active interrupt
acknowledge cycle.
Active .low. This signal indicates a read operation.

Receive data

I

Active high. These are receive data lines.

Receive/transmit clocks

I

Active low. These are communication clock lines.

Req uest to send

0

Active low. Goes high after the transmitter is empty.

Synchronization

1/0

Data terminal
ready I request

0

lEI

Interrupt enable input

I

lEO

Interrupt enable output

0

DTI3/REQA
DTR/REQB

-INT

Interrupt request

---

Open-drain

Transmitl receive clocks

PCLK

Active high. These are transmit data lines.
These are communication clocks.

1/0

Write

W/REQB

Active low. Indicates that a synchronization pattern has
been recognized.

0

Transmit data

--W/REQA
---

•

'I/O

Meaning
Channel AI
Channel B select

AlB

I

Open-drain

Waitl request
Clock

I

+5V

Absolute Maximum Ratings
Parameter
Input voltage
Output voltage

Active low. This signal indicates a write operation.
Active low. Operate as request lines when the DMA is
the bus master or as wait lines when the CPU is the bus
master.
Single-phase clock. It does not have to be the CPU clock.,

Symbol
VIN
VOUT

-0.3~+7

-0.3-+7

Unit
V
V

Operating temperature

Topr

0-+70

·C

Storage temperature

T st•

-65-+150

t

Ratings

From output
under test 0--.-.-114-..

+5V

From output
under test

o--{

2.2kO

J;5OpF

Open-drain test load

462

Z8530/Z8530A

•

Serial Communications Controller

LH8530/LH8530A

(Vcc=5V±5%, Ta=0-+70"C )

DC Characteristics
Parameter
Input high voltage
Input low voltage
Output high voltage
Output low voltage
Input leakage current
Output leakage current
Current consumption

•

Symbol
VlH
VIL
VOH
VOL
I hL I
I IOL I
Icc

Conditions

MIN.
2
-0.3
2.4

IOH=-250pA
IOL=+2mA
0.4 ;;;; VIN ;;;; 2.4V·
0.4 ;;;; VOUT ;;;; 2.4V

Unit
V
V
V
V
pA
pA
rnA

0.4
10
10
250

( f= IMHz. Ta=O- +70"C )

Capacitance
Parameter
Input capacitance
Output capacitance
Bidirectional
capacitance

MAX.
Vcc+0.3
0.8

Symbol
CIN
"COUT

Conditions

MIN.

Unmeasured Pins Returned to Ground

CliO

•

AC Characteristics

(1)

CPU interface timing, interrupt timing, and interrupt acknowledge timing

No.

Symbol

Parameter

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

TwPCl
TwPCh
TfPC
TrPC
TcPC
TsA(WR)
ThA(WR)
TsA(RD)
ThA(RD)
TsIA(pC)
TsIAi(WR)
ThIA(WR)
TsIAi(RD)
ThIA(RD)
ThIA(PC)
TsCEl(WR)
ThCE(WR)
TsCEh(WR)
TsCEl(RD)
ThCE(RD)
TsCEh(RD)
TwRDl
TdRD(DRA)
TdRDr(DR)
TdRDf(DR)
TdRD(DRz)
TdA(DR)
TwWRI
TsDW(WR)

PCLK low width
PCLK high width
PCLK fall time
PCLK rise time
PCLK cycle time
Address to WR l setup time
Address to WR t hold time
Address to RD l setup time
Address to RD t hold time
INT ACK to PCLK t setup time
INT ACK to WR l setup time
INT ACK to WR t hold time
INT ACK to RD l setup time
INT ACK to RD t hold time
INT ACK to PCLK t hold time
CE low to WR l setup time
CE to WR t hold time
, CE high to WR l setup time
CE low to RD l setup time
CE to RD t hold time
CE high to RD l setup time
RD low width
RD l to read data active delay
RD t to read data not valid delay
RD ! to read data valid delay
RD t to read data float delay
Address required valid to read data valid delay
WR low width
Write data to WR ! setup time

LH8530
MIN.
MAX.
105 2000
105 2000
20
20
250 4000
80
0
80
0
0
200
0
200
0
100
0
0
100
0
0
100
390
0
0
250
70
590
390
0

MAX.
10
15

Unit
pF
pF

20

pF

LH8530A
MIN.
MAX.
70
1000
70 1000
10
15
165
2000
80
0
80
0
0
.200
0
200
0
100
0
0
70
0
0
70
250
0
0
180
45
420
250
0

Unit

Note

ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns

1
1

i
1
1
1

2

.-.--.-----SHARP--..-r---~.-.~-..

463

.Z85~O/Z8530A

Serial Communications Controller

No.

Symbol

30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

ThDW(WR)
TdWR(W)
TdRD(W)
TdWRf(REQ)
TdRDf(REQ)
TdWRr(REQ)
TdRDr(REQ)
TdPC(INT)
TdIAi(RD)
TwRDA
TdRDA(DR)
TsIEI(RDA)
ThIEI(RDA)
TdIEI(IEO)
TdPC(IEO)
TdRDA(INT)
TdRD(WRQ)
TdWRQ(RD)'
TwRES
Trc

48
49
Note
Note
Note
Note
Note

1:
2:
3:
4:
5:

LH8530/LH8530A

LH8530
MIN.
MAX.
0
240
240
240
240

Parameter
W rite data to WR t hold time
WR ! to wait valid delay
RD! to wait valid delay
WR ! to W IREQ not valid delay
RD ~ to W IREQ not valid delay
WR t to DTR/REQ not valid delay
RD t to DTR/REQ not valid delay
PCLK ! to INT valid delay
INT ACK to RD ! (acknowledge) delay
RD (acknowledge) width
RD ! (acknowledge) to read data valid delay
IEI to RD ! (acknowledge) setup time
IEI to RD t (acknowledge) hold time
IEI to IEO delay time
PCLK t to lEO delay
RD ~ to INT inactive delay
RD t to WR ~delay for no reset
WR t to RD ! delay for no reset
WR and RD coincident low for reset
Valid access recovery time

5Tcl'Ct300
5TcPCt300
500
285
190
120
0
120
250
500
30
30
250

6TcPCt200

LH8530A
Unit· Note
MIN.
MAX.
0
ns
200 ns
4
200 ns
4
200 ns
200 ns
5TcPCt250 ns
5TcPCt250 ns
4
500 ns
ns
5
250
ns
180 ns
100
ns
0
ns
100 ns
250 ns
4
500 ns
15
ns
ns
30
250
ns·
6TcPCt 130
ns
3

Parameter does not apply to Interrupt Acknowledge transactions.
Float delay is defined as the time required for a ±O.5V change in the output with a maximum DC load and minimum AC load.
Parameter applies only between transactions involving the SCC.
Open·drain output, measured with open·drain test load.
Parameter is system dependent. For any SCC in the daisy chain, TdlAi (RD) must be greater than the sum of TdPC (lEO) for the
highest priority device in the daisy chain, TslEI (RDA) for the SCC, and TdlEIf (lEO) for each device separating them in the daisy
chain.

PCLK
A/B,D/C-J'~~+-____~__-4__________~~~~~~______

INTACK

W/REQ (WAIT)
W/REQ (REQUEST) ________
DTR/REQ (REQUEST) ________

~--~~-J

~

____

~~~

__

~

__

~--J

Read and write timing

. . . . . - . - - - - - - - - - - - - S H A R P -----~---~----

464

Z8530lZ8530A Serial Communications Controller

LH8530/LH8530A

PCLK
IN TACK ________~=t~:3~~~------~~~::==~:::
RD

IEI __~~~__~~~.~~________~.~______lEO

-------"'F-

INT __________________________- J

Interrupt acknowledge timing

Reset timing

Cycle timing

(2)

System timing

No.

Symbol

1
2
3

TdRxC(REQ)
TdRxC(W)
TdRxC(SY)
TdRxC(INT)
TdTxC(REQ)
TdTxC(W)
TdTxC(DRQ)
TdTxC(INT)
TdSx(INT)
TdExT(INT)

4

5
6
7
8
9
10
Note 1:
Note 2:
Note 3:

Parameter
RxC t to W IREQ valid delay
RxC t to wait inactive delay
RxC t to SYNC valid delay
RxC t to INT valid delay
TxC ~ to W IREQ valid delay
TxC ~ to wait inactive delay
TxC ~ to DTR/REQ valid delay
TxC ~ to INT valid delay
SYNC transition to INT valid delay
DCD or CTS transition to INT valid delay

LH8530
MIN. -MAX.
8
12
12
8
4
7
10
16
5
8
5
8
4
7
10
6
2
6
2
6

LH8530A
MIN.
MAX.
8
12
8
12
4
7
10
16
5
8
5
8
4
7
6
10
2
6
2
6

Unit

Note

TcPC
TcPC
TcPC
TcPC
TcPC
TcPC
TcPC
TcPC
TcPC
TcPC

2
1,2
2
1,2
3
1,3
3
1,3
1

1

Open·drain output, measured with open·drain test load.
RxC is RTxC or TRxC, whichever is supplying the receive clock.
TxC is TRxC or RTxC, whichever is supplying the transmit clock.

----.-----~---SHARP--.-.-------

465

Z8530/Z8530A Serial Communication Controller

LH8530/lH8530A

RTxC, TRxC {RECEIVE)
W/REQ (REQUEST)
W/REQ (WAIT)
SYNC (OUTPUT)

====::::I:=~

INT
RTxC, TRxC (TRANSMIT)
W/REQ (REQUEST)
W/REQ (WAIT)
DTR/REQ(REQUEST)

CTS'DCD@'
SYNC (INPUT)

:

--+-----I:.C£~________________
INT
~~~'

System timing

(3) General timing
No.

Symbol

1
2
3
4
5
6
7
8
9
10

TdPC(REQ)
TdPC(W)
TsRXC(PC)
TsRXD(RXCr)
ThRXD(RXCr)
TsRXD(RXCf)
rhRXD(RXCf)
TsSY(RXC)
ThSY(RXC)
TsTXC(PC)
TdTXCf(TXD)
TdTXCr(TXD)
TdTXD(TRX)
TwRTXh
TwRTXI
TcRTX
TcRTXX
TwTRXh
TwTRXI
TcTRX
TwEXT
TwSY

11
12
13
14
15
16
17
18
19
20
21
22

Parameter
PCLK l to W IREQ valid delay
PCLK l to wait inactive delay
RxC t to PCLK t setup time (PCLK 7 4 case only)
RxD to RxC t setup time (Xl mode)
RxD to RxC t hold time (Xl mode)
RxD to RxC l setup time (Xl mode)
RxD to RxC l hold time (Xl mode)
SYNC to RxC t setup time
SYNC to RxC t hold time
TxC L to PCLK t setup time
TxC l to TxD delay (Xl mode)
TxC t to TxD delay (Xl mode)
TxD to TRxC delay (send clock echo)
RTxC high width
RTxC low width
RTxC cycle time
Crystal oscillator period
TRxC high width
TRxC low width
TRxC cycle time
DCD or CTS pulse width
SYNC pulse width

LH8530
MIN.
MAX.
250
350
80
0
150
0
150
-200

3TcPC+200

LH8530A
MIN.
MAX.
250
350
70
0
150
0
150
-200

3TcPC+200

0

0
300
300
200

180
180
400
250
180
180
400
200
200

1000

300
300
200
180
180
400
250
180
180
400
200
200

1000

Unit
ns
ns
ns.
ns
ns
ns
n~

ns
ns
ns
ns
ns
ns
ns'
ns
ns
ns
ngns
ns
ns
ns

Note

1,4
1
1
1,5
1,5
1
1
2,4
2
2,5
6

6
6
3
,3
6
6

~'---~'-'---SHARP .-~-.....-.-----.-.--

466

Z8530/Z8530A Serial Communications Controller

LH8530/LH8530A

Note 1:

RxC is RTxC or TRxC. whichever is supplying the receive clock.

Note 2:

TxC is TRxC or RTxC. whichever is supplying the transmit clock.

Note 3:

Both RTxC and SYNC have 30 pF capacitors to ground connected to them.

Note 4:

Parameter applies only if the data rate is one· fourth the PCLK rate. In all other cases. no phase relationship between RxC and

Note 5:

Parameter applies only to FM encoding/decoding.

Note 6:

Parameter applies only for transmitter and receiver; DPLL and baud rate generator timing requirements are identical to chip PCLK

PCLK or TxC and PCLK is required.

requirements.

PCLK
W /REQ (REQUEST)

Vi /REQ(WAIT) _ _ _ _-=:-~-------'.
RTxC, TRxC(RECEIVE) _ _ _..."...,.....J['1
. RxD ____~~~~~~-~~~--~-------SYNC (EXTERNAL)

----J~--~r---~'~-----------------

TRxC, RTxC (TRANSMIT)
.
-----j
TxD ~@==-:ii 1<""---"';'-~-.I

TR.C

'-_ ____

.

(OU:E~ ESj,,----.~ ---J~
CTS,DCD

SYNC (INPUT)

~ ~

1-

~ ~

1~------­

-------........., i-@--i k=@~
, i--@----I i:=@~
General timing

~~....-.--------SHARP-.---.-.-.---

467

................._-_............................................._,._.......................
ZS,5301Z8530A Serial Communications Contr.oIler

,

•

Data Communications Capabilities

The LH85'30 provides two independ~nt fullduplex
channels programmable for use in any common
Asyncl1ronous or Synchron~)Us data communication
protocol. Fig. 1 illustrates th~se protocols.

START
PARITY

1

l~TOP

LH8530/LH8530A

first secondary station by the same process. Any
secondary stations without messages to send merely
echo the incoming messages and are prohibited from
placing messages on the loop (except upon recognizing an EOP).
SDLC Loop mode is a programmable option in the
LH8530. NRZ, NRZI, and FM coding may all be used
in SDLC Loop mode.

lli&ilJ

::":M'"="A":::R':':KI::"N:-::G:-IW@[]jl@illjr-DA
....r-Ar"T"I"Ij
II
LINE
ASYNCHRONOUS
I SYNC IDATA I
::
IDATAI CRe, I CRC, I
MONOSYNC
~IS-:-Y-NC~I-SY-N-C-rID~A....T....:1\TI~:; IDATAI CRC, I CRC, I

-----

. CONTROLLER

SIGNAL~YNC

~:~~I-:::DA~T~A~I....c~R~C~d....C-:::RC~,~I

EXTERNAL SYNC
Ir.:F=-LA-:-G=-I""AD--DR--ESS-.!~INFqRM.1 CRC, I CRc,lFLAGI
SDLC/HDLC/X.25

Fig. 1 Some see protocols
Fig. 2 An SOLe loop

•

SDLC Loop Mode

The LH8530 supports SDLC Loop mode in addition to normal SDLC. In an SDLC Loop, there is a
primary controller station that manages the message
traffic flow on the loop and any number of secondary
stations. In SDLC Loop mode, the LH8530 performs the functions of a secondary station while an
LH8530 operating in regula~ SDLC mode can act as
a controller (Fig. 2).
A secondary station in an SDLC Loop is alway
listening to the messages being sent a~ound the loop,
and in· fact must pass these messages to the rest of
the loop by retransmitting them with a one-bit-time
delay. The secondary station can place its own message on the loop only at specific times. The controller signals that secondary stations' may transmit
messages by sending a special character, called an
EOP (En,d Of Poll), around the loop. The EOP character is the bit pattern 11111110. Because of zero
insertion during messages, this bit pattern is unique
.
and easily recognized.
When a secondary station has a message to transmit and recognizes an EOP on the line, it changes
the last binary 1 of the EOP to a 0 before transmission. This has the effect of turning the EOP
into a flag sequence. The secondary station now
places its message on. Hie 10QP and terminates the
message with an EOP. Any secondary stations
further down the lO\Jp with Ijlessages to transmit can
then append their messages to the message of the

468

•

Data Encoding

Tile LH8530 may be programmed to encode and
decode the serial data in four different ways
(Fig. 3). In NRZ encoding, a 1 is represented by a
High level and a 0 is represented by a Low level. In
NRZI encoding, a 1 is represented by no change in
level and a 0 is represented by a change in level. In
FMi (more properly, bi-phase mark), a transition
occurs at the beginning of every bit cell. A 1 is represented by an additional transition at the center of
the bit cell and a 0 is represented by no additional
transition at the center of the bit cell. In FMO (biphase space), a transition occurs at the beginning of
every bit cell. A 0 is represented by an additional
transition at the center of the bit cell, and a 1 is represented, by no additional transition at the center of
the bit cell. In addition to these four methods, the
LH8530 can be used to decode Manchester (bi-phase
level) data by using the DPLL in the FM mode and
programming the receiver for NRZ data. Manchester encoding always produces a transition at the
center of the bit cell. If the transition is 0 to 1, the
bit is a o. If the transition is 1 to 0, the bit is a 1.

............... ...............- .....

.....

Z8530/Z8530A Serial Communications Controller

~~~

~~.....,~

DA T A -...:.'-----'''----.
NRZ
~______~

o

NRZI
FMl

FMO
MAN-

CHESTER
Fig. 3

•

Data encoding methods

Auto Echo and Local Loopback

The LH8530 is capable of automatically echoing
everything it receives. This feature is useful
mainly in Asynchronous modes, but works in Synchronous and SDLC modes as well. In Auto Echo
mode, TxD is RxD. Auto Echo mode can be used
with NRZI or FM encoding with no additional delay, because the data stream is not decoded before
retransmission. In Auto Echo mode, the CTS input is ignored as a transmitter enable (although
transitions on this input can still cause interrupts
if programmed to do so). In this mode, the transmitter is actually bypassed and the programmer is
responsible for disabling transmitter interrupts
and WAIT IREQUEST on transmit.
The LH8530 is also capable of local loopback.
In this mode TxD is RxD, just as in Auto Echo
mode. However, in Local Loopback mode; the internal transmit data is tied to the internal receive
data and RxD is ignored (except to be echoed out
via TxD). The CTS and DCD inputs are also
ignored as transmit and receive enables. However,
transitions on these inputs can still cause inter·
rupts. Local Loopback works in Asynchronous,
Synchronous and SDLC modes with NRZ, NRZI or
FM coding of the data stream.

•

Baud Rate Generator

Each channel in the LH8530 contains a programmable baud rate generator. Each generator
consists of two 8·bit time constant registers that
form a 16·bit time constant, a 16·bit down counter, and a flip· flop on the output producing a
square wave. On startup, the flip-flop on the output is set in a High state, the value in the time constant register is loaded into the counter, and the
counter starts counting down. The output of the
baud rate generator toggles upon reaching 0, the
value in the time constant register is loaded into
the counter, and the process is repeated. The

~

LH8530/LH8530A

~

time constant may be changed at any time , but the
new value does not take effect until the next load
of the counter.
The output of the baud rate generator may be
used as either the transmit clock, the receive clock,
or both. It can also drive the Digital PhaseLocked Loop (see next section).
If the receive clock or transmit clock is not
programmed to come from the TRxC pin, the out·
put of the baud rate generator may be echoed out
via the TRxC pin.
The following formula relates the time constant
to the baud rate (the baud rate is in bitsl second
and the BR clock period is in seconds).
baud rate

•

1
2(time constant +2) X(BR clock period)

Digital phase-Locked Loop

The LH8530 contains a Digital Phase-Locked
Loop (DPLL) to recover clock information from a
data stream with NRZI or FM encoding. The
DPLL is driven by a clock that is nominally 32
(NRZI) or 16 (FM) times the data rate. The DPLL
uses this clock, along with the data stream, to construct a clock for the data. This clock may then
be used as the SCC receive clock, the transmit
clock, or both.
For NRZI encoding, the DPLL counts the 32X
clock 60 create nominal bit times. As the 32X
clock is counted, the DPLL is searching the incom·
ing data stream for edges (either 1 to 0 or 0 to 1).
Whenever an edge is detected, the DPLL makes a
count adjustment (during the next counting cycle),
producing a terminal count closer to the center of
the bit cell.
For FM encoding, the DPLL still counts from 0
to 31, but with a cycle corresponding to two bit
times. When the DPLL is locked, the clock edges
in the data stream should occur between counts 15
and 16 and between counts 31 and O. The DPLL
looks for edges only during a time centered on the
15 to 16 counting transition.
The 32X clock for the DPLL can be programmed
to come from either the RTxC input or the output
of the baud rate generator. The DPLL output may
be programmed to be enchoed out of the LH8530
via the TRxC pin (if this pin is not being used as
an input).

...--....-.------SHARP--------

469

Z8530/Z8530ASeriai Communicatipns· Controller

•

LH8530/LH8530A

Read Regi/sters

• Read Register 0

• Read Register

Rx CHARACTER
AVAILABLE
ZERO COUNT
Tx BUFFER EMPTY
DCD
SYNC/HUNT
CTS
Tx UNDERRUN /EOM
BREAK/ABORT

• Read Register 1

to

o
LOOP SENDING

o
TWO CLOCKS MISSING
ONE CLOCK MISSING

• Read Register 12

I~I~I~I~I~I~I~I~I
RESIDUE CODE 0
RESIDUE CODE 1
RESIDUE CODE 2
PARITY ERROR
Rx OVERRUN ERROR
CRC/FRAMING ERROR
END OF FRAME (SDLC)

• Read Register 2

ID7 ID6 1 Ds 1 D. 1 D3 1 D2 1 DIlDo 1
[

INTERRUPT VECTOR"

[

LOWER BYTE OF
TIME CONSTANT

• Read Register 13

I D71 D6 1 Ds I D. I D3 I D2 I DII Do I
[UPPER BYTE OF
TIME CONSTANT

"MODIFIED IN CHANNEL B

• Read Register 3·

CHANNEL B
EXT/STAT Ip·
CHANNEL B Tx IP"
CHANNEL B Rx Ip·
CHANNEL A EXT/STAT IP"
CHANNEL A Tx Ip·
CHANNEL A Rx Ip·

o

• Read Register 15

o
o

ZERO COUNT IE

DCD IE
SYNC/HUNT IE
CTS IE
TxUNDERRUN/EOMIE
BREAK/ABORT IE

·ALWAYS 0 IN CHANNEL B

--------SHARP-------470

.28530/Z8530A Serial Communications Controller

•

LH8530/LH8530A

Write Registers

• Write Register 0
D7

D6

D5

D.

D3

• Write Register 2
D2

Dl

Do

0

0
0
1
1
0
0
1
1
0
0

0
1
0
1
0
1
0

0
0
0
1
1
1
1
0
0
0
0
1
1
1
1

0
0
0
0

0
0

1

0
0
1

1
1
1

0
0
1
1

0
1

0
0

1
1

1

0
1
0
1
0
1

0
1

1
1

0
0

1

0
1

0
1

0
1

1

0

1

1

I~I~I~I~I~I~I~I~I
REGISTER 0
REGISTER 1
REGISTER 2
REGISTER 3
REGISTER 4
REGISTER 5
REGISTER 6
REGISTER 7
REGISTER 8
REGISTER 9
REGISTER 10
REGISTER 11
SEGISTER 12
REGISTER 13
REGISTER 14
REGISTER 15

[INTERRUPT
VECTOR

• Write Register 3

*

NULL CODE
POINT HIGH
RESET EXT /STAT INTERRUPTS
SEND ABOR T (SDLc)
ENABLE INT ON NEXT Rx CHARACTER
RESET TxIN T PENDING
ERROR RES ET
RESET HIG HEST IUS

NULL CODE
RESET Rx CRC CHECKE R
RESET Tx CRC GENERA TOR
RESET Tx UNDERRUN/E OM LATCH

Rx ENABLE
SYNC CHARACTER LOAD INHIBIT
ADDRESS SEARCH MODE (SDLC)
Rx CRC ENABLE
ENTER HUNT MODE
AUTO ENABLES

o
o

0

1
1

0
1

1

Rx
Rx
Rx
Rx

5 BITS/CHARACTER
7 BITS/CHARACTER

6 BITS/CHARACTER
8 BITS/CHARACTER

• Write Register 4

·WITH POINT HIGH COMMAND (D 5D.D3=00I)
D7

D6

D5

D.

0
0
1
1
0
0
1
1

0
1
0
1

D2

1

1

0
0
1
1

0
1
0
1

Dl

I Do I

L Lp

• Write Register 1

EXT INT ENABLE
Tx INT ENABLE
PARITY IS SPECIAL CONDITION
o 0 Rx INT DISABLE
o
~R I§lJ'A~'i'AtI~~~8fi.1~~CTER
I-"--t-"-O"WRT SO::E~h.LL RCOCNHD1~tocNTERS
1
1 Rx!NT ON SPECIAL CONDITION
L.....:O....L.....::.....JONLY
WAIT/DMA REQUEST ON RECEIVE/TRANSMIT
WAIT/DMA REQUEST FUNCTION
WAIT/DMA REQUEST ENABLE

D3

0
1
0
1

ARITY ENABLE
PARIT Y EVEN/ODD
SYNC MO DES ENABLE
1 STOP BIT /CHARACTER
11/2 STOP BITS/CHARACTER
2 STOP BITS/CHARACTER

8 BIT SYNC CHA RACTER
16 BIT SYNC CH ARACTER
SDLC MODE (011 11110 FLAG)
EXTERNAL SYN C MODE

Xl CLOCK MODE
x16 CLOCK MODE
X32 CLOCK MODE
X64 CLOCK MODE

-~-~----SHARP'-'---------'

471

,LH8530/LH8530A

Z85.30/Z8530A Serial Communications Controller

•

Write Register 5

Tx CRC ENASLE
RTS
SDLC/CRC·16
Tx ENABLE
SEND BREAK
Tx 5 BITS (OR LEssl/CHARACTER
~-+-7-I
1---:'--+-7-1 Tx 7 BITS/CHARACTER
1, 0 Tx 6 BITS/CHARACTER
1
1 Tx 8 BITS/CHARACTER
DTR

Write Register 6

ID,I"' I D'~' ID~", ID, ID.I
I
. SYNC 7
SYNC!
SYNC7
SYNC3
ADR7
ADR7

•

SYNC,
SYNCo
SYNCs
SYNC2
ADRs
ADRs

I

SYNCs
SYNCs
SYNCs
SYNC!
ADRs
ADRs

I I

SYNC.
SYNC.
SYNC.
S.YNCo
ADR.
ADR.

I I

I

I

SYNC3
SYNC3
SYNC3
1
ADR3

SYNC2
SYNC2
SYNC2
1
ADR2

x

x

SYNC!
SYNC!
SYNC!
1
ADRI

x

1

SYNCo MONOSYNC, 8 BITS
SYNCo MONOSYNC, 6 BITS
SYNCo BISYNC, 16 BITS
BISYNC, 12 BITS
1
ADRo SDLC,8 BITS
x SDLC,4 BITS
(ADDRESS RUN)

Write Register 7

ID, ID.I D'~:, for the data. Similarly, an input port does not
indicate that it is ready for new data until the data
source indicates that the previous byte of the data
is no longer available, thereby acknowledging the
. input port's acceptance of the last byte. This allows
the LH8536 to interface directly to the port of a Z8
microcomputer, a UPC, an FlO, an FIFO, or to
another CIO port with no external logic.
i A 4·bit deskew timer can be inserted in the Data
Available (DA V) output for output ports.
The deskew timer guan,mtees that the output
data is valid for a specified minimum amount of
time.
, Deskew timers are available for output ports in·
dependent of the type of handshake employed.
(5) Strobed handshake.
In the Strobed handshake, mode, data is "strobed~'
into or out of the port by the external logic. Fig. 1
shows timing for the Strobed handshake. IN contrast
to the Interlocked handshake, the signal indicating
the port is ready for another data transfer operates
independently of the ACKIN input. It is up to the external logic to ensure that data oyerflows or under·
flows do not occur.

PCo
Bit 110

Bit 110

DAC(O)
RFD(I)

-IN/OUT(I/O)

at'the same time if RFQUESTlW AlT.

INPUT HANDSHAKE
DATA ~~______________
ACKIN
(INPUT)
STROBED HAND j
RFD ---t-"o<:::\ SHAKE-Y--- -.,.--(OUTPUT)
DATA MOVEDINTERLOCKED
DATA LATCHED TO INPUT
HANDSHAKE
IN BUFFER
REGISTER
REGISTER
OUTPUT HANDSHAKE
DA fA

---1

ACKIN
(INPUT)

NEXT BYTE

DESKEW TIME

Jfr----

DAV
,
(OUTPUT)
BUFFER NEXT BYTE
HANDSHAKE
REGISTER SHIFTED FROM
"EMPTIED" OUTPUT REGISTER TO
BUFFER REGISTER

LSTROBED

Fig.1

Interlocked and strobed handshakes

~.-----....--.-SHARP-.---------

483

Z8536/Z8535ACounter/Timer and Parallel 1/0 Unit .

(6) 3-wlre handsha~e .
.
The 3-wire handshake is designed for the ~itua- '
tion in which one output port' is communicating'
with many input ports simultaneously. It is essen:
tially the' same as the lnterlocked handshake, except that two signals are used to indicate if an input.
port is ready for new data or if it has accepted the
'present data (Fig. 2). With the 3-wire handshake,
the output lines of many input ports can be bussed
together with open-drain drivers; the output port
knows when all the ports have accepted the data
and are ready. This is the same handshake as is
used on the IEEE-488 bus. Because this handshake
requires three lines, only one port (either A or B)
can be a 3:wire handshake port at a time. The 3wire handshake is not available for the bidirectional
mode. Because the port's direction can be changed
under software control, however, bidirectional IEEE488·type transfers can be performed.
INPUT HANDSHAKE
DATA ~~____________
DAV
(INPUT)
RFD ---'-+1""'(OUTPUT)
~ ____+-__.J
DAC
(OUTPUT)

DATA SHIFTED
TO INPUT
REGISTER

OUTPUT, HANDSHAKE
DATA ____________~,~N~E~X~T~B_Y~T_E_
RFD
(INPUT) --:--:-:::-=-:::~---J
DAC
(INPUT)
DAV
(OUTPUT)
NEXT BYTE
BUFFER REGISTER SHIFTED FROM
OUTPUT REGISTER TO
"EMPTIED"
BUFFER REGISTER

Fig.2

3-wire handshake

(7) Pulsed handshake
The Pulsed handshake (Fig. 3) is designed to interface to mechanical-type devices that require
data to be held for long periods of time and need
relatively wjde pulses to gate the data into or out
of the device. The logic is the same as the Inter·
locked handshake mode, except that an internal

. LH85361LH8q36A

. counter/timer is linked to /the handshake logic.
The counter/timer maintjlins all of its n:ormal
capabilities. This handshake is not available for
bidirectional ports.
INPUT PORT
ACKIN

ACKIN

OUTPUT PORT
__

DA V

~TRIGGER
'

INPUr

_

Fig. 3

COUNTER~ _ ' _
. D AV

OUTPUT

C/T3

.

.

Pulse handshake

(8) Pattern-recognition logic operation
Both Ports A and B can be programmed to
generate interrupts when a specific pattern is recognized at the port. The pattern:recognition logic
is indePendent of the port application, thereby
allowing the port to recognize patterns in all of its
configurations.. The pattern can be independently
specified for each bit as 1, 0, rising edge, falling
edge, or any transition. Individual bits may be
masked off.
(9) Bit port pattern-recognition operations
During bit port 'operations, pattern-recognition
may be performed on all bits, including those used
as 110 for the counter/timers.
The pattern-recognition logic of bit ports operates in two basic modes: transparent and latched.
In transparent mode, the interrupt indicates that a
specified pattern has occurred~ but a read of the
Data register does not necessarily indicate that
state of the port' at the time the interrupt was
, generated. In the Latched mode, the state of all the
port inputs at the time the interrupt was generated
is latched in the input register and held until IP is
cleared.
(10) Counter/timer operation
The three independent 16-bit counter/timers
consist of a presettable Hi-bit down counter, a 16'
bit Time Constant register, a 16-bitCurrent Counter register, an 8·bit Mode Specification register,
an ,8-bit Command and Status register, and the
associated control logic that links these registers.
The flexibility of the counter/timers is enhanced
by ,the provision of up to four lines per counter/
timer (counter input, gate input,. trigger input, and
counter/timer output) for direct external control
and status. Counter/Timer l's external I/O lines are

-------I------SHARP,--~.---~--

484

Z8536/Z8536A

Couner/Timer and Parallel 1/0 Unit

2's trigger, gate, or counter input.
When linked, the counter/timers have the same
capabilities as when used separately. The only restriction is that when Counter/Timer 1 drives
Counter 2's count input, Counter/Timer 2 must be
programmed with its external count input disabled.
There are three duty cycles available for the
timer / counter output: pulse, one-shot, and squarewave. Fig. 4 shows the counter/timer waveforms.
Counter/timer operations require loading the
time constant value in the Time Constant register
and initiating the countdown sequence by loading
the down-counter with the time constant value.
The Time Constant register is accessed as two 8bit registers. The registers are readable as well as
writable, and the access order is irrelevant.
Once the down-counter is loaded, the countdown
sequence continues toward terminal count as long
as all the counter/timers' hardware and software
gate inputs are High. If any of the gate inputs Low
(0), the countdown halts. It resumes when all gate
inputs are 1 again.

provided by the four most significant bits of port B.
Counter/Timer 2's are provided by the four least
significant bits of Port B. Counter/Timer 3's external
110 lines are provided by the four bits of Port C. The
utilization of these lines (Table 2) is programmable
on a bit-by·bit basis via the Counter/Timer Mode
Specification registers.
Table 2 Counter/timer external access
Function
Counter ITimer Output
Counter Input
Trigger Input
Gate Input

CIT!
PB4
PB5
PBG
PB7

C/T2
PBo
PBI
PB2
PB3

LH8536/LH8536A

C/T3
PCo
PCI
PC2
PC3

Lines used for counter/timer 110 have the same
characteristics as simple input lines, they can be
specified as inverting or noninverting; they can be
read and used with the pattern· recognition logic.
They can also include the 1 's catcher input.
Counter/Timers 1 and 2 can be linked inter·
nally in three different ways. Counter/Timer l's
output (inverted) can be used as Counter/Timer.

PCLK/2aR~~

caUNTERINPUT

.

TRIGGER ~
GATE

-------,

L-J

fI
TC

! TC / TC-l/TC-l!TC-2/ .... I I !
PULSE OUTPUT

all

r-l
--------Irr------J
'-,I

ONE SHOT OUTPUT

SQUARE WAVE OUTPUT
(FIRST HALF) - - - - - - - - - - - - - 1 ( 1 1 - 1_ _.....J
SQUARE WAVE OUTPUT - - - - - - - - - - - - - - - f f l f f - - - - - - ,
(SECOND HALF)

Fig.4

Counter/timer waveforms

485

,

,

,

,"

,

".

,

\

,

LH8536/LH8536A'

Z8636/4853SA C.ount~r/Timer and Parallel 1/0,Unit

•

Internal Registers
The followings, illustrate the contents of the
registers and, In addition, given to register,
address summary.
•
Master Interrupt Control Register (MICR)
AIIdress : 000000
(Read/Write)

I'~I~I~I~I~I~I~I~I
MASTERmTERRUPT~
ENABLE (MfE)
DISABLE LOWER CHAIN (DLC)

I I

NO VECTOR (NV)

I LL=
,

PORT A VECTOR INCLUDES
STATUS (PA VIS)
PORT B VECTOR INCLUDES _ _ _ _ _----'
STATUS (PB VIS)

•

ILRESET
LRIGHT JUSTiFIED ADDRESSES
0= Si-lIFT LEFT (Ao from AD!)
1 = RIGHT JUSTIFY(Ao from ADo)
COUNTER/TIMERS VECTOR
INCLUDESSTATUS(CT VIS)

Master Configuration Control Register (MCCR)
Address: 000001
( Read/Write)

dJj

I

I D( I D61 D51 D.I D31 D2ID! I Do COUNTER/TIMER

\

PORT B ENABLE (PBE).J

~ LINK CONTROLS (LC)
LCI LCO
- 0 -0- COUNTER/TIMERS INDEPENDENT
0
1 CIT l's OUTPUT GATES CIT 2
1
0 CIT 1> OUTPUT TRIGGE~S CIT 2
,1 CIT 1 s OUTPUT IS CIT 2 s
COUNT INPUT
PORT A ENABLE (PAE)
PORT LINK CONTROL (PLC)
0= PORT,S A AND B OPERATE INDEPENDENTLY
1 = PORTS A AND B ARE LINKED

COUNTER/TfMER 1 ENABLE (CT,IE),
COUNTER/TIMER 2 ENABLE (CT2E)
PORT C AND COUNTER/TIMER 3 ENABLE
(PCE AND CT3E)

•

Port Mode Specification Register (PMSR)
Addresses: 1100000 Port A
101000 Port B
(Read/Write)

1L

I~I~I~I~I~I~I~I~I

PORT TYPE
PTS 1 PTS 0 SELECTS {PT
o 0 BIT PORT
o 1 INPUT PORT
1
0 OUTPUT PORT
1
1 BIDIRECTIONA L PORT
INTERRUPT ON TWO BYTES '(ITB)
SINGLE BUFFERED MODE (S B)
INTERRUPT ON MATCH ,ONL Y IMO)

~J

.

LATCH ON PATTERN MATCH (LPM)
BIT MODE)
DESKEW TIMER ENABLE (DTE)
HANDSHAKE MODES)
PATT:ERN MODE SPECIFICATION BITS (PMS)
PMSI
P MS'O
--DISABLE
PATTERN MATCH
0
0
"AND"MODE
1
0
"OR" MODE
1
1
1
" OR PRIORITY ENCODED
1
VECTOR" MODE

,

~~~~~,~'-~SHARP~~~--'-""""'-----

486

Z8536/Z8536A Counter/Timer and Parallel I/O Unit

•

LH8536/LH8536A

Port Handshake Specflcation Registers (PHSR)
'Addressess : 100001 Port A
101001 Port B

----'-T

(ReadIWrite)

I~I~I~I~I~I~I~I~I

HANDSHAKE TYPE
SPECIFICATION BITS (HTS)----.J
HTSO
HTSI
-o
o INTERLOCKED HANDSHAKE
o
1 STROBED HANDSHAKE
1
o PULSED HANDSHAKE
1
1 THREE-WIRE HANDSHAKE

DESKEW TIME SPECIFICATION
L---BlTS
SPECIFIES THE MSB's OF
DESKEW TIMER TIME CONSTANT.
LSB IS FORCED 1.
REQUEST/WAIT SPECIFICATION BIT(RWS)
RWS 2 RWS 1 RWS 0
FUNCTION
..
--0- --0- -O-REQUESTIWAIT DISABLED

o
o

•

I

1
1

0
1
0
0

1

1

1
1
0
1

OUTPUT WAIT
INPUT WAIT
SPECIAL REQUEST
OUTPUT REQUEST
INPUT REQUEST

Port Command and Status Registers (PCSR)
Addresses: 001000 Por A
001001 Por B
(Read/Partial Write)

.

I

II

D71 D61 Dsl D.I D31 D21Dl Do

INTERRUPT UNDER

I

SERVICE (IUS)--"
INTERRUPT ENABLE (IE)
• INTERRUPT PENDING (Ip)
IUS. IE·, AND IP ARE WRITTEN
USING THE FOLLOWING CODE:

I I III

NULL CODE

0

0

0

CLEAR IP & IUS

0

0

1

SETIUS

0

1

0

CLEAR IUS

0

1

1

SET IP

1

0

o·

CLEARIP

1

0

.1

SET IE

1

~

0

CLEAR IE

1

1

1

L,NTERRUPT ON ERROR (IOE)
PATTERN MATCH FLAG (PMF)
(READ ONLY)
.
INPUT REGISTER FULL (IRF)
(READ ONLY)
OUTPUT REGISTER EMPTY (ORE)
(READ ONLY)
'-------INTERRUPT ERROR (ERR)
(READ ONLY)

.
\ .
~'-~--'-----SHARP'----'-'---""--

487

---.....

........... -

Z8~6iz8536A6dunt~r/Timer and
~

•

Data Path Polarity Registers (DPPR)

_

..... ...............

...,............-.

Parallel' I/O Unit

ilH8536/lH8536A

Special 1/0 Contr.ol Registers (SIOCR)

•

Addresses: 100010 Port A
Addresses: 100100 Port A
101100 Port B

101010 Port B
000101 Port C (4 LS B

s only)

00Q111 Port C (4 LSBs only)

(Read;Write)

(Read/Write)

I~I~I~I~I~I~I~I~I
I.

1~1~1~1~1~1~1~1~1

,

i

DATA PATH POLARITY (DPP)
0= NON-INVERTING
1 = INVERTING

SPECIAL INPUT/OUTPUT (SIO)
0= NORMAL INPUT OR OUT PUr
. 1 = OUTPUT WITH OPEN DRAIN -OR
INPUT WITH I's CATCHER

•
•

Port Data Registers (PDR)
Addresses: 001101 Port A"
001110 Port B"
(Read/Write)

Data Direction Registers (DDR)

Addresses: 100011 Port A
101011 Port B
000110 Port C (4 LSBs only)
( Read/Write)

•

Port C Data Registers (PC DR)
Address: 001111"
( Read/Write)

I

DATA DIRECTION (DD)
0= OUTPUT BIT
1 = INPUT BIT
"These registers can be addressed directly.
4 MSBs
WRITING OF CORRESPONDING LSB ENABLED
1 = WRITING OF CORRSPONDING LSB INHIBITED
(READ RETURNS 1)

o=
•

Pattern Polarity Registers (PPR)
Addresses :·100101 Port A
101101 Port B
(Read/Write)

•

I D71 Dol Dsl D41 D31 D,I 011 Do

I

1

Pattern Transition Registers (PTR)
Addresses: 100110 Port A
101110 PortB
(Read/Write)

•

PM PT PP PATTERN SPECIFICATJ4)N
0
X BIT MASKED OFF
o 1 X ANY TRANSITION

o

o
o

.1
1

Pattern Mask Registers (PMR)
Addresses: 100111 Port A.
101111 Port B
( R ead/W rite)

1
1

0

(iERO

lONE
0 ONE TO ZERO TRANSITION(~)
1 ZERO-TO-ONE TRANSITION (l')

I~I~I~I~I~I~I~I~I
·LI____

-------~SHARP-.-------.-. ........... -~

488

Z8536/Z8536A Counter/Timer and Parallel I/O Unit

•

LH8536/LH8536A

Counter/Timer Command Status Registers (CTCSR)
Addresses: 001010 Counter/Timer 1
001011 Counter/Timer 2,
001100 Counter/Timer 3
( ead/Partial Write)

I~I~I~I~I~I~I~I~I

INTERRUPT
UNDER
SERVICE
(IUS) ~I

~ COUNT IN

INTERRUPT ENABLE (IE)-.
INTERRUPT PENDING (IP)
IUS, IE, AND IP ARE WRITTEN
USING THE FOLLOWING CODE:
NULL CODE
CLEAR IP & IUS
SET IUS
CLEAR IUS
SET IP
CLEARIP
SET IE
CLEAR IE

•

0
0
0
0
1
1
1
1

0
0
1
1
0
0
1
1

.

0
1
0
1
0
1
0
1

~

PROGRESS (CIP)
(READ ONLY)
TRIGGER COMMAND BIT (TCB)
(WRITE ONLY READ RETURNS 0)
GATE COMMAND BIT (GCB)

' - - - - - - READ COUNTER CONTROL (RCC)
(READ/SET ONLY CLEARED BY READING CCR LSB)
' - - - - - - - - - INTERRUPT ERROR (ERR)
(READ ONLY)

CounterlTimer Mode Specifications Registers (CTMSR)
Addresses: 011100 Counter/Timer 1
011101 Counter/Timer 2
Counter/Timer 3
(Read/Write)

.

I~I~I~I~I~I~I~I~I

J

JI

CONTINUOUS SINGLE CYCLE (C/SC)
EXTERNAL OUTPUT ENABLE (EOE)
EXTERNAL COUNT ENABLE (ECE)
EXTERNAL TRIGGER ENABLE (ETE)
EXTERNAL GATE ENABLE (EGE)

•

1\

---,-OUTPUT DUTY CYCLE
L....SELECTS (DCS)
DCS 1 DCSO
0
0
PULSE OUTPUT
0
lONE-SHOT 0lJ TPUT
1
0
SQUARE-WAVE OUTPUT
l I D O NOT SPECIFY
RETRIGGER ENABLE BIT (REB)

CounterlTimer Current Count Registers (CTCCR)
Addresses: 010000 Counter/Timer
010001 Counter/Timer
010010 Counter/Timer
010011 Counter/Timer
010100 Counter/Timer
010101 Counter/Timer
(Read Only)

l's
l's
2' s
2' s
3' s
3' s

MSB
LSB
MSB
LSB
MSB
LSB

I~I~I~I~I~I~I~I~I~I~I~I~I~I~I~I~I
MOST SIGNIFICANT BYTE-------'I

IL-----LEAST SIGNIFICANT BYTE

489

Z85361Z8536A
Counter1Timer and Parallel 110 Unit
,

LH8536/LH85.36A

• C6unterITimer Time Constant Registers (CiTCR)
Addresses: 010110
010111
011000
011001
. 011010
011011

Counter/Timer l's MSB
Counter/Timer l's LSB
Co~nt~r/Timel' 2' s MSB
Counter/Timer 2' s LSB
Counter/Timer 3' s MSB
Counter/Timer 3' s LSB

(Read/Write)

I

D71 D61 D51 D.I D31 D21 DII Do I D71 D61 D51 D41 D31 D21 DI I Do I

MOST SIGNIFICANT BYTE

I

• Interrupt Vector Register (lVR)
Addresses: 000010 Port A
000011 Port B
000100 Counter/Timers
(Read/Write)

I~I~I~I~I~I~I~I~I

L-,--LEAST SH;NIFICAi-n

• Counter/Timer Status
• D2

0
0

1
1

01
0
0

C/T3
C/T2
CITI

1

Error

1

..

I
INTERRUPT VECTOR

• Port Vector Status
(1)

x
(2)

Priority Encoded Vector Mode

X X

All Other Mode

ORE IRF PMF
o 0 0

490

Number of highest priority bit with a match

Normal
Error

• Current yector Register (CVR)

.Address : 011111
(Read only)

10 71 0 61 D51 D41 031 021 DilDo
I

I

INTERRUPT VECTOR BASED
ON HIGTEST PRIORITY
UNMASKED IP.
IF .NO INTERRUPT PENDING.
ALL 1's OUTPUT.

BYT~

Serial Parallel Combination Controller

LH8571
•

Serial Parallel Combination Controller

Description

The LH8571 (SPCC71) is a peripheral interface
device for general purpose microcomputer systems
with two main control functions for an RS232C interface and Centronics interface, all within a single
LSI chip.
The LH8571 provides a serial port for transferring data in asynchronous mode-and an 8-bit parallel port with handshaking function as a Centronics
interface.
The LH8571 has 24 commands for controlling
these ports. The commands not oI?ly control the operation of RS23.2C teminal units and printers, but
handle various utilities (e.g.,code conversion) necessary for these units. Accordingly, the CPU needs
merely to specity an operation through the commands, thus significantly reducing the CPU's load
in handling 110 units through the program, and
eventually reducing the amount of memory needed
for storing the program.
The LH8571 controls the peripheral unit control
lines (e.g.,RTS and CTS of RS232C interface)
according to the status oj the units, instead of by
software control from the CPU. Consequently, the
system designer can configure the interface merely
by connecting buffer devices and connectors.

•

LH8571

•

Pin Connections
-+5V
PCLK

2

o

RxD
TxD
DTR
CTS

INTACK

6

RD

7

DCD
RTS
SLCT
INPUT PRIME
BUSY

CS
GND
WAIT

FAULT
ACKNLG
DATA STROBE

_ DB7

DATAs

DB6

DATA7

DB5

DATA6

DB.

DATAs

DBa

DATA.

DB2

DATAa

DBI

DATA2

DBo

DATAl

Top View

Features
1. Asynchronous data transfer serial port
• RS232C interface can easily be realized.
2. Printer control parallel port
• Centronics interface can easily be realized.
3. Data transfer and conversion functions by command.
• 24 commands.
4. Data conversion function .
• Serial parallel conversion.
• Binary-ASCII conversion.
• Intel hex, format acceptable for data input/
output.
,
5. 128-byte data transfer bufter.
• Useful for the serial port and parallel port.
6. Non-multiplexed bus interface.
7. 40-pin dual-in-line package.
8. Single + 5V power s~pply.

491

, LH8571

Serial Parallel Combination Controller

•

Block Diagram

Data Bus

Data Bus

Internal
Control Logic
Chip

Interrupt Request
Interrupt Acknowledge
Interrupt Enable In
Interrupt Enable Out

492

5
6

4
3

Buffer

128

Bytes

LH8571

Serial Parallel Combination Controller

•

Pin Description
Meaning

Pin
DBo-DB7
AID
RD
WR
CS
WAIT

-INT

•

Data bus
Address/ data select
Read
write
Chip select
Wait
, Interrupt request

lIO
Bidirectional
3-state
I
I
I
I
0

0

INTACK

Interrupt acknowledge

I

IEI

Interrupt enable input

I

lEO
DATA1-DATA g
DATA STROBE
BUSY
ACKNLG
FAULT
INPUT PRIME
SLCT
RxD
TxD
RTS
CTS
DTR
DCD
PCLK

Interrupt enable output
Output data
Data strobe
Busy
Acknowledge
Fault
Prime input
Select
Received data
Transmitted data
Transmission request
Transmission enable
Data'terminal ready
Reception enable
Clock

0
0
0
I
I
I

0
I
I
0
0
I
0
I
I

Function
System data bus
Address/ data select signal
Active low. Indicate the system in read operation.
Active low. Indicate the system in write operation
Active low. Chip selection signal
Active low, open-drain. Used to synchronize with CPU.
Active low, open-drain. Indicate interrupt request to
input.
Active low. Indicate interrupt acknowledge cycle.
Active high. Used to form interrupt priority arbitration
loop circuit (daisy chain).
Active high. Used to form daisy chain.
Output data
Active low. Indicate settlement of data.
Active high. Indicate printer in operation.
Active high. Acknowledge signal from printer.
Active low. Indicate printer inoperable.
Active low. Printer initializing signal.
Active low. Printer selection signal.
Receiving data line.
Transmitting data line.
Active low. Indicate readiness for dflta transmission.
Active low. Indicate data transmission is possible.
Active low. Data transmission request signal.
Active low. Indicate data reception is possible.
Single-phase clock. Need not be same as CPU clock.

Absolute Maximum Ratings
Parameter
Input voltage *
Output voltage *
Operating temperature
Storage temperature

Symbol
VIN
VOUT
Topr
Tstg

Ratings
-0.3-+7
-0.3-+7
0-+70
-65-+150

Unit
V
V

"C
"C

* The maximum applicable voltage on any pin with respect to GND.
+5V

From output
under test

Standard test load

---------~--.---SHARP

---.------.-,
493

LH8571

Serial Parallel Combination Controller

•

DC Characteristics
Parameter
Clock input high voltage
Clock input low voltage
Input high voltage
Input low voltage
Output high voltage
Output low voltage
Input leakage curreot
Output leakage current
Current consumption

•
(1)
No.
1
2
3
4
5
6
7
8
9
10

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

(Vee=5V±5%, Ta=0-+70t)
Test Conditions

Symbol
VeH
VCL
VlH

VIL
VOH
VOL

I IIL
IloL
Ice

I
I

IOH=-250,..A
IOL=2mA
0;;;; VIN;;;;5.25V
0;;;; VIN;;;;5.25V

AC Characteristics
CPU interface timing
Symbol
TrC
TwCh
TfC
TwCI
TpC
TsAlD(WR)
TsAlD(RD)
ThAlD(WR)
ThAlD(RD)
TsCSf(WR)
TsCSf(RD)
TsCSr(WR)
TsCSr(RD)
ThCS(WR)
ThCS(RD)
TsDI(WR)
Tw(WR)
Tw(RD)
ThWR(DI)
TdRD(DI)
ThRD(DI)
TdRD(DIz)
TdRD(DBA)
TdWR(W)
TdRD(W)
TdDI(W)

Parameter
Clock rise time
Clock pulse width, high
Clock fall time
Clock pulse width, low
Clock period
AID setup time to WR ~
AID setup time to RD ~
AID hold time from WR t
AID hold time from RD t
CS low setup time to WR ~
CS low setup time to RD ~
CS high setup time to WR ~
CS high setup time to RD ~
CS low hold time from WR t
CS low hold time from RD t
Written data setup time to WR ~
WR pulse width
RD pulse width
W ritteo data hold time from WR t
Delay time from RD ~ to valid data
Written data hold time from RD t
Delay time from RD t to data bus floating
Delay time from RD ~ to readout data settlement
Delay time from WR ~ to W AIT ~
Delay time from RD ~ to W AIT ~
Delay time from valid data to WAIT t

Note : All AC output characteristics are based on the stated load conditions.
Note 1: The delay time depends on the device status at the time of access by CPU.

494

MIN.
2.4
-0.3
2
-0.3
2.4

MAX.
Vee
'0.8
Vee
0.8
0.4
10
10
250

Unit
V
V
V

V
V
V
,..A
,..A
mA

(Vee=5V±5%, Ta=0-+70t)
MIN.

MAX.
20

105
20
105
250
80
80
30
30
0
0
60
60
0
0
0
390
390
0
0
70
0
150
150
0

Uoit
ns
ns
ns
os
ns
ns
os
ns
os
os
os
ns
ns
ns
ns
ns
ns
ns
ns
os
ns
ns
os
ns
ns
ns

Note

1

Serial Parallel Combination Controller

LH8571

PCLK

AID

DB o -DB 7
Write

----------+-----~~-I~

DB o-DB 7
Read

~~--_+--""fI1

CPU interface timing
(2)

Interrupt acknowledge timing

No.

27
28
29
30
31
32
33
34
35
Note 2:

Parameter

Symbol

INT ACK low setup time to RD

TsACK(RD)
TdRD(DI)

MIN.

!

Delay time from RD ! to valid vector
lNT ACK low hold time from RD t

ThRD(ACK)
ThIEI(RD)

255
0
100
255

IEI hold time from RD t
RD (Acknowledge) low pulse width

TwRDI
TdIEI(IEO)
TdACK(IEO)
TdADKr(IEO)

150

! to

lEO

Delay time from lNT ACK hoIEO

!
t

Unit

Note

ns

2

ns
ns
ns
ns

120

Delay time from IEI to lEO
IEl setup time to RD !
Delay time from INT ACK

TslEl(RD)

MAX.

90

250
250

ns
ns
ns
ns

Interrupt arbitration loop circuit (daisy chain) is not used.

Vector

I--@

\

INTACK

@i- f-

-

)

I

~@~

-®j

@--..

f--- @-

-K

lEI
rE-@~

lEO

1(

I---@l----oo

\

~.

7

Interrupt acknowledge timing
---.-.----~--SHARP

--.---------------495

, LH8Sn

Serial Parallel Combination Controller

(3)

Reset timing
Symbol
TdRDQ(WR)
TdWRQ(RD)

No.

36
37
38 TwRES

,

.Parameter

MIN.

Delay time from,RD t (for suppressing reset) to WR
Delay time from WR t (for suppressing reset) to, RD
Minimum low width of WR and RD(for resetting)

l
l

MAX.

40
' 50
250

Unit
ns
ns
ns

Note

3

Note 3: The internal reset signal lags by 1/2 to 2 clocks behind external reset conditions.

Reset timing
(4)

Serial port timing

No.
Symbol
39 TdTxC(T"xD)

Note 4:

Note,

Parameter
Delay time from sending clock transition to output data transition

4

Applies to all baud raets (110·9800 B)

k

TxC /

TxD

I

===========@=~-----------Serial port timing

(5)
No.

Parallel port timing
Symbol

40 TdACK (D)
41 TdD(DSTR)
42 TwDSTR

Parameter
Delay from ACKNLG l to data output
Delay from data output to DATA STROBE
DATA STROBE pulse width

MIN.

l

ACKNLG
DATAl

K

\

DATA.

"'"
"-"

DATA STROBE

,

~

f-@- f--@...
Parallel port timing

496

'MAX.

13000 18000
6000
6000

Unit
ns
ns
ns

Note

Serial Parallel Combination Controller

•

LH8571

Table 1 Register address

Register

The
can be
•
•
•

LH8571 has the following registers which
accessed externally (from CPU).
Master interrupt control register (MIC)
Data indirect register (DIND)
Data status command registers (DSCO,
DSCl, DSC2, DSC3, DSC4, DSC5 and
DSC8)

Register
DSCO
DSCI
DSC2
DSC3
DSC4
DSC5.
DSC8
DIND
MIC

Register address
X X XOOOOO
X X XOOOOI
X X XOOOI0
X X X 00011
X X XOOI00
X X XOOI0l
X X XOI000
X X X 10101
XXXI1110

Note: A7-A, is decoded and applied to CS, so that the location in the input/output address space is determined.
Bits marked by 'x' are undefined.

DSC31 D71 D61 Ds I D.I D3 I D21 DJ I Do I

-,-,-,---,- L

01 Buffer overflow
1 0 Input characters are other than 0 - F .
(Intel format only)
11 Check -sum error (Intel format only)
1 Printer unselect

o

1 0 Printer paper out Cexternal" circuit required)
11 Printer fault

T ransf er error
Limit error
Parity error
I llegal command

Fig. 1

Error flag (DSC3)

Table 2 MIC register write code

The master interrupt control register (MIC) is
used to control the interrupt operation (see Fig.
2). Writing into the MIC register falls into two
groups. Group 2 uses the write code shown in
Table 2.

Group
D7 D6
0 0
0 0
0 1
0 1
1 0
1 0
1 1
1 1

2 . G~oup 1
Ds D2 Do
0 X X
1 0 0
0 0 0
1 0 0
0 0 0
1 0 0
0 0 0
1 0 0

Function
Writing to Do and D2
Reset IP CDs) and IUS CD 6 )
Set IUS CD 6)
Reset IUS CD 6 )
Set IP CDs)
Reset IP CDs)
Set IE (D7)
Reset IE CD 7)

497

LH8571

Serial Parallel Combination Controller·

1TT.

MIC L::::II=E:-,-II=U=sl~I=P:-LI_J.-...-"§==L=CJ...1~IC=S-:TI

T

~Command execution start
Lower chaining prohibited
L - - - - - - - - - - I n t e r r u p t holding
Interrupt under service
Interrupt enabled

Fig.2

Master interrupt control register

•

Programming
Use the registers, DSCO, DSCl, DSC2, DSC3,
DSC4, DSC5, and DSC8, to specify operation mode.
The 24 types of commands are made valid by first
writing a value corresponding to the desired command number into DSCO, then setting the CST bit
on MIC. The registers DSCl, DSC2, DSC4, and
DSC5 are used to specify parameters f()r each command. Command is used inspecifying serial data

format using DSC2 (Fig. 3).
The result of command execution is indicated on
DSCO and DSC3. DSC3 indicates error status as
shown in Fig. 1. DSC8 is used as a buffer register
after command 22 or 23 is executed.
Tables 3 and 4 show command functions versus
registers.

°

T

ooc21~1~1~1~1~1~1~1~1
- - -:,-r-

T.

Parity mode
o :Even parity
1 : Odd parity
Number of data bits
o : 7 bits
1 : 8 bits

'-----~---

Baud rate (see Note)
000 : 1l0B
001 : 150B
010 : 300B
011 : 600B
100 : 1200B
101 : 2400B
110 : 4800B
111:9600B

' - - - - - - - - - - - - N u m b e r of stop bits of transmission
o : 1 bit
1 : 2 bits
' - - - - - - - - - - - - - I n t e r r u p t mode
o : Interrupt enabled
1 : Interrupt disabled
' - - - - - - - - - - - - - - - E c h o back
o : Echo back mode
1 : Echo back disabled
Note: The baud rate described above is for PCLK=4.0MHz

Fig. 3

498

Serial data format (DSC2)

LH8571

Serial Parallel Combination Controller

Table 3

Command function and writing register contents

~

Code
DSCO

0

OOH

1

01H

2

02H

Number of
output bytes

3

03H

Number of
output bytes

4

04H

5

05H

Number of
bytes of block
transfer

6

06H

Number of
output bytes

Output starting
address

7

07H

Number of
output bytes

Output starting
address

8

08H

Number of
output bytes

Output starting
address

9

09H

Number of
output bytes

Output starting
address

10

OAH

Number of
output bytes

Output starting
address

11

OBH

Number of
output bytes

Output starting
address

12

OCH

Number of
iutput bytes

Nunber of
output bytes

13

ODH

Command

DSCI

Parameter
DSC4
DSC2
Transfer for·
mat and oper·
ating mode
Stop character

DSC5

Function

Remarks

Specify transfer format
and operating mode.

Output serial·input data to
Stop character is spe·
Centronics printer until
cified by DSC2.
the stop character arrives.
Operaion stops upon de·
Output serial·input data to
tection of Control C (hex
Centronics printer.
03).
Output buffer area con·
Load address Load address
Address information
tents to serial port in Intel
(high order byte) (low order byte)
of data is appended.
format
Read Intel format data on
serial port and store in
buffer area.
Initialize block transfer
between master CPU and
buffer area.
Operation stops upon de·
Output data in buffer area
tection of Control C (hex
via serial port.
03).
Operation stops upon de·
Output data in buffer
tectiOD of Control C (hex
area to printer
03).
Convert binary data
in buffer area into
ASCII and output via
serial port.
Convert binary data
Display address Display address in buffer area into Address information
(high order)
(low order)
ASCII and output via of data is appended.
serial port.
Convert binary data
in buffer area into
ASCII, and output to
printer.
Convert binary data
Display address Display address in buffer area into Address information
(high order)
(low order)
ASCII, and output to of data is appended.
printer.
Read ASCII data on se·
rial port and store in
buffer area.
Read Intel format data Used when a reader
on serial port and store is connected to serial
in buffer area.
port.

.-....-------SHARP-.-~~-----

499

Serial Parallel Combination Controller

~

Code
DSCO

14

OEH

15

OFH

Number of
output bytes

16

10H

Number of
input bytes

17

11H

Number of
output bytes

IS

12H

19

13H

20

14H

21

15H

22

I6H

23

17H

Command

DSCI

Parameter
DSC4
DSC2

LH8571

DSC5

Function

Read ASCII data on serial
port until arrival of CR
code.
Convert data in buffer
Load address Load address area into Intel format,
(low order byte) (high order byte) and output via serial
port.
Read binary data on
Output character
serial 'port into buffer
area for storage.
Output data in buifer area
,
via serial ports.
Output starting
address

Output character

Remarks
After CR reception, CR
and LF codes are sent
out via serial port.
Used when a puncher is
connected to serial port.

Used when a reader
is connected to serial
port.
Used when a puncher is
connected to serial port.
Opertion stops upon detec·
tion of hex 03.
Output null codes via 256 null codes out·
serial port.
putted.
Output EOF in Intel for·
mat ( : 00000001 FF) via
serial port.
Used when a puncher
Output null codes via
is connected to serial
serial port.
port.
Output EOF in Intel for· Used when a puncher
mat ( : 00000001 FF) via is connected to serial
serial port.
port.
Read I-byte data on Data is stored in
serial port.
DSCS.
Output data written Data needs to be set
in DSCS by CPU via in DSCS prior to exserial port.
ecution.

--.-.--------SHARP----.-.-.-.---

500

Serial Parallel Combination Controller

Table 4

~
Cornman
0
1
2
3

Register contents after command execution (readout register)
Parameter

Code
DSCO

1*

LH8571

DSCI

DSC3\

DSC2

00
01
02
03

2*
80
81
82
83

3*
COH
Cl~
C2~
C3H

4

04

84

C4H

5
6
7
8
9
10
11
12

05
06
07
08
09
OA
OB
OC

85
86
87
88
89
8A
8B
8C

C5H
C6H
C7~
C8.H
C9H
CA~
CB~
CCH

13

OD

8D

CDH

14

OE

8E

CEH

Error status

15
16
17
18
19
20
21
22
23

OF
10
11
12
13
14
15
16
17

8F
90
91
92
93
94
95
96
97

CFA
DOH
DIH
D2H
D3H
D4H
D5H
D6H
D7H

Error
Error
Error
Error
Error
Error
Error
Error
Error

Note 1:

Note 2:

1

*:

3

*:

Error
Error
Error
Error
Number of bytes
input+20H

status
status
status
status

Value before command execution (command
code value)
2 *: Value upon normal completion of command ex·
ecution.

DSC5

Load address
(high order byte)

Load address
(low order byte)

Load address
(high order byte)
Number of bytes
flag·
input+20H
flag
flag
flag
flag
flag
flag
flag
flag
flag

Load address
(low order byte)

flag
flag
flag
flag

Error status flag
Error
Error
Error
Error
Error
Error
Error
Error

Number of bytes
input+20H

DSC4

status
status
status
status
status
status
status
status

flag
flag
flag
flag
flag
flag
flag
flag

Error status flag

Note 3:

status
status
status
status
status
status
status
status
status

If FAULT input becomes low (printer error) during
command execution, LH8571 suspends operation un·
til FAULT returns to high (error recovery). At this
time, DSCO has bit 6 set and bit 7 reset.

Value upon abnormal completion (error) of
command execution.
These are common to all commands.
For error status flag value, see Fig.I.

501

LH8572
•

The LH8572 (SPCC72) is a peripheral device
for general purpose microcomputer systems to perform asynchronous serial data tansfers and control of Centronics compatible printers.
It supports full duplex asynchronous serial data
transfers. The transfer conditions such as the
baud rate and character length can be set by the
program. Further, it is equipped with a control 1/
o terminal for simple organization of the various
types of modem interfaces. The Receive Buffer
has a double buffer structure so that the master
CPU can easily perform reading and writing of
data.
A printer control 1/0 terminal is available for
easy connection to any printer which is Centronics
compatible. A handshake line and control for other
I/O lines is supported. A 128-byte printer data
buffer memory having an· FIFO structure is provided within the LH8572. Efficient use of the
printer unit by the master CPU is made possible
with this buffer.
hi this way, the LH8572 peripheral device for
general-purpose microcomputers, was developed to
efficiently perform serial data transfer and printer
output control within a compact package. It is
suitable for use in small systems such as personal
computers which use printer units, RS232C terminal units and modem units.

Features
1. Asynchronous Full Duplex Data Transfer
• Character length of 5 to 8 bits
• 1 or 2 stop bits
• No parity bit or oddleven parity
• False start bit or rejection (rejects spike
noise in the mark line to prevent malfunction.)
• Full duplex
• Transmit buffer has double structure.
.; Receive buffer has FIFO structure.
• Error detection function, Parity error detection, Framing error detection, and Overrun
error detection
• Baud rates: 75, 110, 150, 300, 600, 1200,
2400, 4800 baud selectable

502

LH8572·

.....,.-.

.-..

Serial Parallel Combination Controller

. Description

•

_.... __

...

Serial Parallel Combination Controller

.-..-..-..-..-..-..-.....,.-:...,.

•

Pin Connections

o

RxD
TxD
DTR
CTS
OCD
RTS
NC
INPUT PRIME
BUSY

CS
GND

WAIT

FAULT
ACKNLG
DATA STROBE

DB,

DATAs

DB6

DATA,

DB5

DATAs

DB4

DATA5

DB3

DATA4

DB2

DATA3

DB!

DATA2

DBo

DATA!
Top View

.2. Centronics Compatible Printer Control
.
• Furnishes printer interface signals compatible with Centronics specifications
• Built-in handshake fUnction for data output
• Internal buffer: 128-byte FIFO structure
• Error detection: Printr fault error/Paper
empty error
3. Vector Interrupt'
• Able to generate an interrupt on various
conditions such as Transmit Buffer empty,
validity of received character, and Printer
Output Buffer empty.
• Interrupt vectors for Transmit, Receive,
Printer and Error detection can be set individually.
4. Non-multiplexed bus interface
5. 40-pin dual-in-line package

Serial Parallel Combination Controller

•

LH8572

Block Diagram

Internal
Control Logic

Data Bus

Data Bus

ERR

MSR
CTL
Print
FIFO
128Bytes

Chip

TxS
RxS
PRS

ECW LDE LOEI
RL

INCW INCW

XOR

XOR

R"IM IR"IM
10,5
10,5

----w:o

rt. Ira
18,0

R"R,

IR"R,

R"IM IR"IM
10,5

~

CLR

XOR

R,
6,5

IR,
6,5

rl. r,
12,0

RRC

RRC

LOC LOCI

R,
6,5

IR,
6,5

Irra Jr. , IrTI
12,0
18,0

SRA LDC LDCI

R,
6,5

IR,
6,5

R;

. IR,

CP

CP

CP

XOR

XOR

ra.Irf. Ira ,ITT!
6,5

LO

SWAP SWAP

lrll

CP

IRET

XOR

RCF

R
10,5

f •• X,

d~'~L"

20,0

CALL
DA
10,5

IRR,

10,5

10,5

LD

R"R,

LD

LD

6,5

IR"R,
10,5

LO

LO

Irll Ta

R"IR,

f ••

10,5

LO

t

SRA

IR,
8,5

14.0
RET

IR" R,
10,5

CLR

R,
8,5

10,5

R"R,
10,5

rl. Ta

RR

EI

r •• Irz
6,5

IR,
6,5

RR

6T
ro,5

CP

Tl

01

10,5

CP
6,5

6T

~

SCF

LD
ra.x, R
10,5

-

6,5

CCF

LD

R"IM IR.. IM

----a.o
NOP

~------------------~~------------------~~----~----~------------'~'~--------

Bytes per
Instruction

2

3

Lower opcode nibble

Execution cycles

1

Pipeline cycles

2

3

Legend:
R = 8-Bit Address
r = 4-Bit Address,
R1 or r 1 = Dst address
R2 or r2 = Src Address
Sequence:
Opcode, First Operand, Second Operand .

Upper opcode _ _ A
. nibble

Note: The blank areas are, not defined.
First operand

Second operand

"2·byte instrliction; fatch cycle appears as a 3·byte instruction,

--~-~-----,'--SHAAP

536

- - - - .......... -.--..-..r-~

Z8590/Z8590A Universal Peripheral Controller

LH8590/LH8590A

(6) Instruction summary
Instruction

I Addr. mode
and
Operation I
dst src
(Note 1)
AOC dst, src
dst-dst+src+C
ADD dst, src
(Note 1)
dst-dst + src
AND dst, src
(Note 1)
dst-dst AND src
CALL dst
DA
SP-SP-2
IRR
@SP-PC; PC-dst
CCF
C-NOT C
R
CLR dst
dst-O
IR
COM dst
R
dst-NOT dst
IR
CP dst, src
(Note 1)
dst-src
OA dst
R
dst-DA dst
IR
DEC dst
R
dst-dst-l
IR
RR
OECW dst
dst-dst-l
IR
01

IMR171-0
OJNZ r,dst
r+-r-l
if r+O PC-PC+dst
Range' +127--128
EI
IMR(7)-1
INC dst
dst-dst+ 1

RA

R
IR
RR
IR

INCW dst
dst-dst+l
IRET
FLAGS-@SP;SP-SP+ 1
PC-@SP'SP-SP + 2'IM~(7)-1
JP cc, dst
DA
if cc is true
PC-dst
IRR
JR cc, dst
RA
if cc is true,
PC-PC+dst
Ranl!e: +127--128
LO dst, src
1M
r
dst-src
r
R
R
r

LOC dst, src
dst-src
LOCI dst, src
dst-src
r-r+ 1; rr-rr+ 1
LOE dst, src
dst-src

r
Irr

Byte
(Hex)

10

X
r
Ir
r
R
IR
1M
1M
R
Irr
r
Irr
r
Irr
r

Flags Affected
CZSVOH
****0*

00

****0*

50

-**0--

D6
D4

------

EF

*-----

BO
Bl
60
61
AO
40
41
00
01
80
81
8F
rA
r=O-F

r

r
X
r
Ir
R
R
R
IR
IR
r
Irr
Ir
Irr

Opcode

-**0-****--

Inst~~~ron

I Addr. mode
Operation I
dst src
LOEI dst, src
Ir
Irr
dst-src
Irr
Ir
r-r + l' rr-rr + 1
NOP
(Note 1)
OR dst, src
dst-dst OR src
POP dst
R
dst-@SP
IR
SP-SP+l
R
PUSH src
SP-SP-l; @SP-src
IR
RCF
C-O
RET
PC-@SP; SP-SP+2
R
RL dst
IR
RLC dst

-***--***--

Flags Affected
CZSVOH

83
93

-----

FF
40

------

50
51

------

-**0--

70
71

CF

0
-

AF

****--

'~7 o~ IR

R

10
11

****--

RR dst

l.ru ~

ql

R
IR

EO
El

****--

RRC dst

4::D-I7 0~

R
IR

CO
Cl

****--

7

-----------

------

rE
r=O-F
20
21
AO
Al
BF

-***--

SRA dst

-***--

SRP src
RP-src
SUB dst, src
dst-dst - src

******

cD
c=O-F
30
cB
c=O-F

------

rC
r8
r9
r=O-F
C7
D7
E3
F3
E4
E5
E6
E7
F5
C2
D2
C3
D3

------

------

(Note 1)

SBC dst, src
dst-dst-src-C
SCF
C-l

9F

82
92

Byte
(Hex)

90
91

~

* * * X--

Opcode

4:£Jr111

, SWAP dst

-----------

****1*

DF

1-----

of IRR

DO
Dl

***0--

1M

31

------

20

****1*

FO
Fl

X**X--

(Note 1)

60

-**0--

(Note 1)

70

-**0--

(Note 1)

BO

-**0--

(Note 1)

~

TCM dst,src
NOT dst) AND src
TM dst,src
dst AND src
XOR dst,src
dst-dst XOR src

R
IR

Note 1: These instructions have an identical set of addressing
modes, which are encoded for brevity. The first opcode nibble is
found in the instruction set table above. The second nibble is expressed symbolically by a 0 in this table, and its value is found
in the following table to the left of the applicable addressing
mode pair.
For example, to determine the opcode of an ADC instruction
using the addressing modes r (destination) and Ir (source) is 13.

Lower

Addr Mode

------

30

dst
r

src
r

Opcode Nibble
[2]

r
R

Ir

[ill
[i]

R

R
IR

R
IR

1M
1M

lID
lID
ill

~-------SHARP----------------

537

Z8590/Z8590A Universal Peripheral Controller.

•

'. LH8590/LH8590A

Register
RO (DTC)
Date Transfer Control Regist~r

UPC register address (Hex): 00

I D7 I Da I Ds I D4 I D3 I D2 I Dl I Do I
(EOM) 0

(IRP) 1

I/O register pointer = 1

1 =:End of message

Disable data transfer =O _ _ _ _~(E=D:::X~):...J
(LERR)

Enable data transfer= 1

o =No

limit error
1 =Limit error

No transfer error= O_ _ _ _ _----oc(X""E=R:,.:.R"")c..J
Transfer error= 1

R4 (LC)
limit Count Register'

R5 (DIND)
Date Indirect Register

UPC register address (Hex): 04

UPC register address (Hex): 05

I D7 IDa' I Ds ID4 ID3 ID2 IDl IDo I

I~I~I~I~I~I~I~I~I

,-I-----Indirection address
(Do=LSB)

,-I- - - - L i m i t count value
(range: 0-255 decimal OO-FF Hex)

R240 (MIV)
Master CPU Interrupt Vector Register

UPC register address (Hex): FO

I~I~I~I~I~I~I~I~I
LI------Vector data (Do=LSB)

R241 (TMR)
Timer Mode Register

UPC register address (Hex): F 1

T OUT modes
Reserved= 00
Toout=OI
Tl out = 10
Internal clock out = 11

:=J

TIN I!lodes - - - - - '
External clock input = 00
Gate input = 01
Trigger input(non-retriggerable) = 10
Trigger input (retriggerable) = 11

538

L.o

=No function
1 =Load To

- 0 =Disable To count
1 =Enable To count
' - - - - - 0 =No function
1 =Load Tl
' - - - - - - - 0 =Disable Tl count
1 =Enable Tl count

Z8590/Z8590A Universal Peripheral Controller

LH8590/LH8590A

R242 (T1)
CounterlTimer 1 Register

R245 (PREO)
Prescilier 0 Register

UPC register address (Hex): F2

UPC register address (Hex): F5

I~I~I~I~I~I~I~I~I
COUNT MODE
0= To SINNGLE-PASS
I=ToMODULO-N
RESERVED
'--------PRESCALER MODULO
(RANGE: 1-64 DECIMAL
01-00 HEX)

LTI INITIAL VALUE
(RANGE: 1-.258 DECIMAL
01-00 HEX)

R243 (PRE1)
Prescaler 1 Register

R246 (P2M)
Port 2 Mode Register

UPC register address (Hex): F3

UPC register address (Hex): F6

I~I~I~I~I~I~I~I~I
COUNT MODE
0= TI SINGLE PASS
1 = Tl MODULO· N
CLOCK SOURCE
o = EXTERNAL TIMING INPUT
(TlN)MODE
1 = Tl INTERNAL
' - - - - - - - - PRES CALER MODULO
(RANGE: }-64 DECIMAL
01-00 HEX)

I
P2o-P27 I/O DEFINITION
o DEFINES BIT AS OUTPUT
1 DEFINES BIT AS INPUT

R244 (TO)
Counter/Timer 0 Register

UPC register address (Hex): F 4

I~I~I~I~I~I~I~I~I
L I - - - - - T o INITIAL VALUE
(RANGE: 1-258 DECIMAL
Oi-OO HEX)

R247 (P3M)
Port 3 Mode Register

UPC register address (Hex): F7

I D71 D61 Ds]

Dd DdD 2 ~ DI

I Do I

L

o PORT

2 PULL-UPS
1 PORT 2 PULL-UPS
o PORT 1 PULL-UPS
1 PORT 1 PULL-UPS
o P3s= OUTPUT
1 P35= INT
RESERVED
o P33=INPUT
1 P33= DAVl!RDYI
o P31= INPUT (TIN)
1 P 31 = DA V2!RDY2
o P30= INPUT
1 P3D = lEI
o P32=INPUT
1 P32=INTACK

OPEN DRAIN
ACTIVE
OPEN DRAIN
ACTIVE

P3. = OUTPUT
P 3. = RDYI!DA VI
P 36 = OUTPUT (T OUT)
P 36 = RDY2!DAV2
P37= OUTPUT
P37= lEO

-.----------SHARP.....-..------.-.--

539

...........-....-..--------.-w.....--------Z859O'/Z859O'A Universal Peripheral Controller

LH859O'/LH8590A

I

R248 (PIM)
Port 1 Mode Register
upe register address (Hex): F8

1~1~1~1~1~1~1~1~1
1'-------P1ocPb I/O DEFINITION
o DEFINES BIT AS OUTPUT
1 DEFINES BIT AS INPUT

, R249 (IPR)
Interrupt Priority Register
upe register address (Hex): F9 (Write Only)

I D7 I D6 I Ds I D.
RESERVED

D3

I D2 I Dl I Do I

I

:J

1 = IRQ4 >IRQl

INTERRUPT GROUP PRIORIT Y
RESERVED = 00 0
C>A>B=OO 1
A>B>C=Ol 0
A>C>B=Ol 1
B>C>A=100
C >B >A =101
B >A >C =110
RESERVED = 111

IRQO, IRQ2 PRIORITY (GROUP B)

o = IRQ2 >IRQO

1 = IRQO > IRQ2
IRQ3, IRQ5 PRIORITY (GROUP A)
IRQ5 > IRQ3
1 = IRQ3 > IRQ5

o=

R252 (FLAGS)
Flag Ftegister

R250 (IRQ)
Interrupt Request .Register
upe register address (Hex): FA

I D7

D6

IRQl, IRQ4 PRIORITY (GROUP C)

o = IRQl >IRQ4

)

upe register address (Hex): Fe

I Ds I D. I D3 I D2 I D, I Do I
I

IRQO

= MASTER CPU

COMMUNICTAIONS

'- IRQ1 = P33 INPUT
- I R Q 2 = P3, INPUT
IRQ3 = P30 INPUT
IRQ4 = To
IRQ5 =T,
RES ERVED

USER FLAG Fl
USER FLAG F2
HALF CARRY FLAG
DE;CIMAL ADJUST FLAG
' - - - - - OVERFLOW FLAG
' - - - - - - SIGN FLAG
' - - - - - - - ZERO FLAG
'---------CARRYFLAG

R251 (IMR)
Interrupt Mask Register
upe register address (Hex): FB

R253 (RP)
Register Pointer

upe register address (Hex): FD

I~I~I~I~I~I~I~I~I

I D7 I D6 I Ds I D4 I D3 I D2 I D, I Do I

~~
,

ENABLES
ENABLES
1 ENABLES
1 ENABLES
1 ENABLES
1 ENABLES
R ESERVED
1 ENABLES

I

IRQO
IRQ1
IRQ2
IRQ3
IRQ4
IRQ5

I'-'..- - - - - - - - R E--DONT
CARE
GISTER
,-I

POINTER
(rrn)

INTERRUPTS

.

-.--.--.-.-.-----SHARP ------.-.-------540'

LH8590/LH8590A

Z8590/Z8590A Universal Peripheral Cotroller

R254 (MIC)
Master CPU Interrupt Control Register

UPC register address (Hex): FE

o INTERRUPT

0-

REQUEST DISABLED
1 INTERRUPT REQUEST ENABLED

1 END OF MESSAGE

o WAIT ENABLE

o NO INTERRUPT

WHEN WRITE
1 WAIT DISABLE WHEN WRITE

UNDER SERVICE
1 INTERRUPT UNDER SERVICE

o NO

' - - - - 0 ENABLE LOWER CHAIN
1 DISABLE LOWER CHAIN

MASTER CPU INTERRUPT PENDING
1 MASTER CPU INTERRUPT PENDING

o VECTOR

OUTPUT
1 NO VECTOR OUTPUT

L . . - - - - - O DISABLE DATA TRANSFER

1 ENABLE DATA TRANSFER

R255 (SP)
Stack Pointer

UPC register address (Hex): FF

I~I~I~I~I~I~I~I~I
C=STACK POINTER (SPO-SP7)

.-.--.-----SHARP-~--~--.-

541

LH8591'1LH8591A

Z8591/Z8591 A Development Device

LH8591/LH8591A
•

Description

The 64 pinLH8591 (Z8591) is the development
version of LH8590 Z8590 UPC with internal
mask-programmed RqM. This device allows user
to prototype the system in hardware with an actual
device and to develop the code that is eventually
mask-programmed into the on-chip ROM of the
LH8590.
The LH8591 is identical to the LH8590 with the
following exceptions.
• The internal ROM has been removed.
• The ROM address lines and data lines are buffered and brought out to external pins.
• Control lines for the new memory have been
added.
The LH8591A is the high speed version which
can operate at 6MHz system clock.

•

Z8S911Z8S91A
Development Device

Pin Connections
+5V
PCLK

P3,/IEO
P3o/IEI
P35/INT
P32/INT ACK

1

2
3

4

6

RD,
WRs

A/D

9

Ph
4

MDS

23

IACK,RD

24

PI.

Top View

542

Z8591/Z8591 A Development Device

•

LH8591/LH8591 A

Block Diagram

Data Bus

I/O

I/O

Interrupt Request 5
Interrupt Acknowledge 6
Interrupt Enable In
Interrupt

•

Pin Description
LH8591 has the same functions as those of a 40-pin device LH8590, and the functions of the additional
24 pins are as follows:
Pin
AD-All
Do-D 7
IACK/MR

-MAS

--

MDS

--

SYNC

Meaning
Program memory address
Program data
Interrupt acknowledge
Imemory read

lIO
0
I

0

Memory address strobe

0

Memory data strobe

0

Synchronization

0

Function
Used for the access to the external memory of 4 K bytes.
Reads the data through these lines from the external memory.
Active high. This signal becomes high during interrupt or in·
struction fetch cycle of LH8591.
Active low. This signal is output every memory fetch cycle
for the interface with the external ROM.
Active low. This signal becomes low during instruction fetch
cycle or write cycle.
Active low. This signal becomes low at the clock cycle just
before Op-code fetching.

----~--.-------SHARP--~--------

543

LH8592iLH8592A

Z8592/Z8592A Development Device

LH8592/LH8592A
•

Description

The 64 pin LH8592 (Z8592) is the development
version of LH8590 Z8590 UPC with internal
mask-programmed ROM. This device allows user
to prototype the system in hardware with an actual
device and to develop the code that is eventually
mask-programmed into the on-chip ROM of the
LH8590.
The LH8592 is identical to the LH8590 with the
following exceptions.
• The internal ROM has been removed. (But
there are 36 bytes internal ROM for a bootstrap program).
• The ROM address lines and data lines are buffered and brought out to external pins .
• Contorl lines for the new memory have been
added.
The LH8592A is the high speed version which
can operate at 6MHz system clock.

•

Z85921Z8592A
Development Device

Pin Connections
+5V

1

PCLK

2

P37/IEO
P30!IEI
P35/INT

3

MDS
MR/W flACK

4
5

23

24

Top View

......... :-.-.--.-.~-SHARP--.-.-.-----544

Z8592/Z8592A Development Device

•

LH8592/LH8592A

Block Diagram

Data Bus

I/O

1/0
Chip

Interrupt Request 5
Interrupt Acknowledge 6
Interrupt Enable In 4
Interrupt Enable Out 3

+5V
PCLK

1}-------------~
2}---------------~

GND171}-----------------~~

Interrupt Acknowledge
Output

24)--------------------~

•

Pin Description
LH8592 has the same functions as those of a 40-pin device LH8590, and the functions of additional 24
pins are as follows:
Pin
Ao-A 11
Do-D 7

Meaning
Program memory address
Program data

I/O
0

lACK

Interrupt acknowledge

0

MAS

Memory address strobe

0

MDS

Memory data strobe

0

Memory re,ad/write

0

Synchronization

0

-

MR/W

---SYNC

I

Function
Used for the access to the external memory of 4K bytes.
Reads/writes the data through these lines from the external memory.
Active high. This signal is always active during interrupt cycle of
LH8092.
Active low. This signal is output every memory fetch cycle for interfacing with the external RAM.
Active low. This signal becomes low during instruction fetch cycle
or write cycle.
This signal is high during instruction fetching by LH8592, or low
while writing into the external memory.
Active low. This signal becomes low during clock cycle just before
Op- code fetching.

-----.-.---------SHARP . - . - - - - - - - - - 545

lH8593iLH8593A

Z8593/Z8593A Protopack Emulator

LH8'593/ LH859 3A, ~~~a:!593A
•

Description

TheLH8593 (Z8593) is a ROM less version of
the standard LH8590 (Z8590) housed in a pin
compatible 40 pin package.
The LH8593 carries a 24-pin soket for a direct
interface to program memory. 2716 type EPROM
can be used- for program memory.
The -LH8593 allows the user to build the prototype and pilot production units. When the final
program is established, the user can then switch
over the LH8590.
The LH8593A is the high speed version which
can operate at 6MHz system clock.

•

Protopack

Pin Connections

o
P37/IEO

3

P30/lEI

4

I;'3;/lNT

5

P32/INTACK

6

DBo
Top View

546

LH8593/LH8593A

Z8593/Z8593A Protopack Emulator

•

Block Diagram
Program Data Input Program Memory Address Output

*1*2*3r

' "

'

Data Bus

I/O

I/O
Chip

Interrupt Request 5
Interrupt Acknowledge 6
Interrupt Enable In
Int errupl Enable OUI

*1
*2
*3

Program Memory Data Strobe Output
System Clock Output
Instruction Sync Output
~ : This is equipped witch ROM.

•

Pin Description
LH8593 pins are compatible with those of LH8590 . For pin description, refer to those of LH8590.

.-..-.-.--.---SHARP------~-~--

547

~8594/Z8594A

Protopack Emul;:ltor

LH8594/LH8594A

LH8594/LH8594A ~:=5S:A Protopack
•

De.scription

The. LH8594(Z8594)is a RAM version (16K bits
RAM) of the standard LH8590, housed in a pin
compatible 40 pin package.
The LH8594 carries a 24-pin soket for a direct
interface to program memory, and has 36 bytes of
internal ROM for a bootstrap program.
This device allows the user to build the prototype, and when the final program is established,
the user can then switch over the LH8590.
The LH8594A is the high speed version which
can operate at 6MHz system clock.

•

. Pin Connections

0

P36

P37/IEO

3

P27

P30/lEI

4

P26

P35! INT

5

P25

P32/INTACK

6

P2.
P23
P22
P2,
P33
P3.
Ph
PIs

Top View

548

LH8594/LH8594A

Z8594/Z8594A Protopack Emulator

•

Block Diagram
Program Data Input Program Memory Address Output

*1*2*3'

•

If

•

Data Bus

Interrupt Request 5
Interrupt Acknowledge 6
Interrupt Enable In
Interrupt Enable Out

* 1 Program Memory Data Strobe Output
* 2 System Clock Output
* 3 Instruction Sync Output
e : This is equipped with RAM.
•

Pin Description
LH8594 pins are compatible with those of LH8590.

For pin description, refer to those of LH8590.

------------------SHARP - - - - - - - - - - - - - - - 549

LH8661

Key"'encoder and Data Transmitter/Receiver

LH8661
•

I

Key-encoder and Data TransmitterlReceiver

Description

The LH8.661 is a high performance and multipurpose interface LSI which has functions such as
signal encoding from key matrix circuit, serial data
transmission/receiving and parallel data input/
output.
The LH8661 can be operated on one of the following five modes:
• Encodes a key matrix signal, and outputs the
data to a serial port (Mode 1).
• Encodes a key matrix signal, and outputs the
data to a parallel port (Mode 2).
• Encodes a key matrix signal, and outputs the
data to both serial and parallel ports (Mode 3).
• Encodes a key matrix signal, and outputs the
data to serial port, concurrently, serial input
data is converted to parallel and output to a parallel port (Mode 4).
• Parallel input data is converted to serial and output to a serial port (key scanning function is
sleep)(Mode 5).

•

Pin Connections
RTS
XTAL2

2

XTALI

3

0

CTS
SLCT
INPUT' PRIME
FAULT

RESET

6

BUSY

NC

7

KSO,

NC

9

KSO"
KS02
KSO,

DS/RQ

DCD
ACK/RD

12

DTR

DATAl

KSIs -

DATA2

KSI7
KSI6
KSI5

DATA.
DATA5

I

KSI.

DATA6

KS13

DATA7

KSI2

DATAs

•

Features
1. Key encoding
• 102 keys compatible with JIS ASCII array can
be encoded.
• Selectable encoding (compatible with ]IS
6220-1976 information exchange-code) or
no·encoding (native code).
• Encoded data can be transferred in serial or
output in parallel (mono/bi-modes available)
2. Serial data communication
• Encoded· key data can be transferred in asynchronous serial mode.
• Serial port can be used as an RS232C interface by attaching buffers.
• Selectable data format (data 7/8, parity, stop
bit 112).
• Selectable baud rate (110, 150, 300, 600,
1200, 2400, 4800, 9600, 19200).
3. Parallel data input/output
• Encoded key data can be output to a parallel
port in parallel.
• Parallel port can be used as a printer interface
compatible with Centronics by attaching buff-

Top View-

ers.
4. Serial/parallel data conversion
• This device can be used as a serial/parallel
data converter with/without a matrix key
board.
5. Data buffers 80 bytes X 1 or 40 bytes X 2.
6. On-chip crystal oscillator circuit.
7. Single+5V power supply
8. 40-pln dual-in-line package

-----------..--..-.--SHARP .....--.-.-----....-.--

550

LH8661

Key-encoder and Data Trahsmitter/Receiver

•

Block Diagram

Key

In -

Scan

Data
Parallel
Data

I/O
Logic
and
Control
Mode
Registers
Buffer
80
Byte
Encoder

Vee

Buffer
Pointer

1

GND
In~ernal

Control

Logic

~-------'-'--SHARP

_ _ _ _ _ _ _ _ _ _ _--.r
551

Key-encoder and Date Transmitter/Receiver

•

LH8661

. Pin Description
Pin
KSI 1 -KSI 8
KS0 1 -KS0 4
DATA 1 -DATA 8

-DS/RQ

--ACKIRD
BUSY

--FAULT

INPUT PRIME

SLCT
RxD
TxD
RTS
CTS
DTR
DCD
RESET
XTAL 1
XTAL 2

•

Meaning
Key scan input
Key scan output

I/O
I
0
Bidirectional
3-State

Data bus
Data strobel request

0

Acknowledge/read

I

Busy

Bidirectional

Fault

Bidirectional

Prime input

Bidirectional

Select

Bidirectional

Received data
Transmitted data
Transmission request
Transmission enable
Data terminal ready
Reception enable
Reset input
Crystal

I
0
0
I
0
I
I
Bidirectional

Function
Active low. Key scan data signal input
Key matrix scanning signal output
System data bus
Active low. Data strobe signal when mode 1 to 4 is
selected; request signal when mode 5 is selected.
Falling edge active. Acknowledge signal when mode 1 to
4 is selected; read signal when mode 5 is selected.
Active high. Indicate printer busy (input) when mode 1
to 4 is selected; indicate data buffer full (output) when
mode 5 is selected.
Active low. Indicate printer disable (input) when mode
1 to 4 is selected; indicate data buffer full when mode 5
is selected.
Active low. Output printer initialization signal when in
mode 1 to 4; input data buffer pointer initialization signal when in mode 5.
Active high. Input printer select signal when in mode 1
to 4; indicate that parallel data output is available to device when in mode 5.
Receiving data line.
Transmitting data line.
Active Low. Indicate readiness of data transmission.
Active Low. Indicate data transmission enabled.
Active Low. Data transmission request signal.
Active Low. Indicate data reception enabled.
Active Low initialization input.
7.3728 MHz crystal oscillator connected.

Absolute Maximum Ratings
Parameter
Input voltage
Output voltage
Operating temperature
Storage temperature

•

Symbol
VIN
VOUT
Topr
Tstg

Ratings
-0.3-+7·0
-0.3-+7.0
0-+70
-65-+150

Unit
V
V

'C
'C
(Vcc=5V±5%, Ta=0-+70"C)

DC Characteristics
Parameter
Clock input high voltage
Clock input low voltage'
Input high voltage
Input low voltage
Reset input high voltage
Reset input low voltage
Output high voltage
Output low voltage
Input leakage current
Output leakage current
Reset input current
Supply current

Conditions
Symbol
Driven by external clock.
VCH
Driven by external clock.
VeL
VIH
VIL
VRH
VRL
VOH
IOH= :-250,uA
VOL .IoL=2mA
0;£ VIN;£ +5.25V
IIL
0;£ VIN;£ +5.25V'
IOL
Vee=5.25V, VRI,=OV
IIR
lee

/

MIN.
3.8
-0.3
2.0
-0.3
3.8
-0.3
2.4
-10
-10

MAX.
Vee
0.8
Vee
0.8
Vee
0.8
0.4
10
10
-50
180

Unit
V
V
V
V
V
V
V
V
,uA
,uA
,uA
mA

Note

----~------SHARP.-----.--.-;...-

552

LH8661

Key-encoder and Data Transmitter/Receiver

Vee

Vee

Vee
2.1kO

From output
under test

18kO

From output
under test

Vee

1.5kO
:>O~.......-J .Xl~>:--O

74LS04

Test load 2

Test load 1

•

Crystal 2
15pF MAX.
L----o--o Crystal 1
;;;
15pF MAX.

External C. G. circuit

AC Characteristics
(1) Serial port timing
( i ) Reception
No.
Time from DCD

(Vee = 5 V ±5%. OSC freq. = 7.3728 MHz. Ta = 0 to +70°C)
Parameter
to DTR signal output

DCD

Symbol
Tb DCD(DIR)

Note

\

DTR

~

RxD

f-e---CD-

(ii)
No.

®
®

Transmission

(Vee

Parameter
Time from RTS ! to CTS signal acknowledge
Time from RTS ! to data (TxD) output

=

5 V ±5%. OSC freq.
Symbol
Td RTS(CTS)
Td RTS(TxD)

=

7.3728 MHz. Ta

=

MIN.
2.7
25

Unit
p.s
p.s

0 to +70°C)
Note

~

\

,

--®...;

®

----'--.-----------SHARP - . - - - - - - . - - . - . - 553

Key-encoder and Data Transmitter/Receiver

(2) Parallel port timing
(i)' Input
No.

CD
@

®
@

(Vcc=5 V ±5%, OSC freq.=7.3728 MHz,Ta=O to+70°C)

Parameter
INPUT PRIME pulse width
Time from INPUT PRIME t to RQ signal output
RQ pulse width .
Data settlement time from RD ~

INPUT PRIME
RQ

DATA1-DATA s

No.

®
®
(j)

®

Symbol
Tw IP
Td IP (RQ)
TwRQ
Tr RD (D)

MIN.
7.0

MAX.
13.8

4.3
16

Unit
ps
ps
ps
ps

Note

:
-~
~

~
' @ ' - - - -

- ------Jx{S@-j
I

~---------------------­

------------------

RD

(ii)

LH8661

Output

(Vcc=5 V±5%, OSC freq. =7.3728 MHz, Ta=O to+70°C)

Parameter
Time from INPUT PRIME t to ACK ~
Time from ACK ~ to data output
Time from data to DS ~
DS pulse width

Symbol
TdIP(ACK)
TdACK(D)
TdD(DS)
TwDS

,

MIN.
5.0
23
5.4
2.6

MAX.

Unit
ps
ps
ps
ps

Note

INPUT PRIME

DATAl -DATAs

•

________-+____- J

Operation Mode Setting
The LH8661 is available in five operation modes which are obtained by combining the key data'
encode, parallel data transfer, and serial data
transfer functions (Fig_I). An Operation mode is
selected with mode switches (MODEI-MODE4)
which control the scan signal, SCANl, and key
scan input signals, KSI 5 -KSI8 .
•
Key Matrix Configuration
The key matrix consists of key scan input signals (KSIl-KSI s) and scan signals (SCAN l -SCAN l6 ).
The matrix requires status control circuit (switches plus diodes) in addition to the maximum 102

554

types of keyboard switches.
The status control circuit should consist of operation mode selector, transmit data format selector, and baud rate selector. The LH8661's operation mode is selected by these settings.
The compatible keyboard types, their configuration and status control switches on the key matrix
and shown in Fig. 3. Conformity of key data to the
1IS code requires the key arrangement shown in
Fig. 2. The status control circuit should consist of
the SCAN 1 -SCAN 2 and key scan input signals
(KSIl-KSI s). (Note. Shaded sections in the fig. are
not usable.)

Key-encoder and Data Transmitter/Receiver

m===lfi]] RS232C
~:

LH8661

Parallel 'output

RS232C

IlOI~I~
..--,.Q.

LH8661

lIII11 1Il\

•
i .Q.
serialoutputd :

LH8661

']}

\~

{}

1-=

~

.Serial outpu/4t •
':1! ;" II "

Keyboard
(i) Operation mode 1

]o!;/~~
Printer with

~

Centronics interface

Keyboard
(iv) Operation mode 4

-~:===;;;;=~--I~~ Serial output

D rn 0:=<)\
~

LH8661

I~

Parallel output
Centronics interface

(v) Operation mode 5

(ii) Operation mode 2

m===lfi]] RS232C

~O=<)CiLH8~~1 iJD=O~~

I..(J.
is I P arall~1 L::-----:---'
j_II\~utPut
@. ~ ~
Centronics interface

Serial !tput

Keyboard
(iii) Oyeration mode 3

Fig. 1

Description of device operation modes

9

SK 2

SP

SK 3
SK 4

+

SK 6

5

EXT

Control
key

r--

SK 5

6

*

SK 7

7

/

SKs

A

+

Notel: A, B and C are local scan blocks
Note 2 : Shaded sections in the diagram are not usable

Fig. 2

c

-I

Alphanumeric sectioni2j-KANA
.
(S I)
sectIon
(SO)

Key types and key arrangement

-~------SHARP-~-----'-

555

J

LH8661

Key'-encoder Data Transmitter/Receiver

•

Keyboard Matrix
(2) Transmit character codes
The LH8661 can encode key data into]IS or native codes. Fig. 4 shows the transmit character
codes that conform to the ]IS C 6220-1976 Information Exchanging Codes. Fig. 5 shows the native transmit character codes. The following figure
shows typical combinations of keyface symbols in
the alphanumeric and Kana sections of a key.

(1) Key types and arrangement
The LH8661 is capable of encoding data from
up to 102 types of keys arranged on a key matrix
which consists of key scan input signals. KSI1-KSIs•
and scan signals. SCAN 3 -SCAN 16 . The 102 types of
keys are divided into the following two blocks:
CD Data key block: Consists of 96 keys
arranged on the matrix composed of scan signals
SCAN 5 -SCAN 16 and key scan input signals
KSI1-KSI s . When the ]IS code system is selected
(code select switch at OFF). key data is encoded
into the transmit character codes shown in Fig. 5.
In this case the key arrangement shown in Fig. 3
is required. When the native code system is
selected (code select switch at ON). key data is en·
coded into the transmit character codes as shown
in Fig. 6.
® Control key block: Consists of six keys on
the matrix which is composed of scan lines
RCAN 3 -SCAN 4 and key scan input signals
KSI1-KSI s . These keys are used to control data
key encoding and key scanning. The shaded portion of the control key block shown in Fig. 2 is not
usable.

/

Alphanumeric section

b5

0

0
0
0

b.

0

1

b 3 _b 2 b 1 b o Coil
Row 0

1

I

/

/

/

. ;/
/@
:;I

Fig. 3 Keyface symbols
(3) Key entry operations
The LH8661 supports the following key entry
features:
• Key contact bounce time of approx. 5 ms.
• Two-key rollover an(l N-key lockout.
• Typamatic capability
If any data key other than those listed below is

0- 0

0

0

0
1
0

0
1

1

1

1

0
0

0

1
0

2

1

3

4

5

5P 0

IB

P

6

0
1
1

1
7

1

1

1

1

1

1

1

1

0
0
0

0
0

0

0

1

1

1

1
0

1
1

0

1

1
0
1

0

1

1

0

1

D

E

F

0

0

0

1

1

1

A

Q a

.b.

CD @
® @

0

0

1

0

2

..!

8 9 A B C
P SK16 SK1 5P - 9
q
SK 2 ,
7' -T

2

B

R

b

r

SK3

r

-1

.:/

;t

@ @

0

0
1
1

1

1
0

3 ETX

:11=

3

C

5

c

5

?

T

-t

® ® i

d

t

SK4 J
SK 5 ,

;r:

~

1

5

e

u

SK 6

>t

T

~

0

f
g

=

1

6
7

V

0

8

.:t-

:I (j) @
'7 ® @
I) ® @

1

9

/

JL-

0

A

/,

l;

0

0

0

0
0
0 1
0 1
1 0
1 0
1

0

1

0
1
1

1

1
1 1
1 1

0
0
1
1
0
0
1

0

0

4

$ 4 D T
% 5 E U
& 6 F V
7 G W
(
8 H X
B5
) 9
HTAB
I Y
: J Z
LF
ESC +
; K [

1

1

B

0

0
1
0

C

1

F 51

0

1
1

D CR

.

*

-

E 50

/

~ KANA section

(50)

0

1

)/

r-----:-, /

(51)
b7 0
b6 0

E

,

h
i

X

y

SK 7 '7 7J
SK 8 7 :fSK 9 -{ 7
SKIO
Ir

j

Z

SK11

W

L

¥

=

M

1 m

>

N

1\

n

? 0

-

0

I

I

'"

::J

-\" @ @

®

®
®

E5C+C(43H)
E5C+D(44H)
E5C+H(48H)

5K 17

E5C+E(45H)

@

5K18

E5C+J (4AH)

@

5K19

E5C+K(4BH)

;I-

~

~

I'l

@ @

-\'

Y

7

'7

@ @

}

SKI3

:J.

A_

......

:-- @ @

>I<

SK15

"

-I!

DEL

')

'?

.~

E5C(1BH)+A(41H)
E5C+B(42 H)

HOME

SK12
SK 14

t

(~)'

I

k

<

.,

:;I

,.

. @®
'@ @

Fig. 4 Transmit character codes (1) •.• J IS codes
---~--------~-SHARP-'-"'-'-------""-'---

556

Key-encoder and Data Transmitter/Receiver

b3
b2
b1
bo
b, b6 b 5 b4
0
1

0

1 0

0
1

0

0

0

1 0

0
1

0
1

0
1

0
1

1
1
1

LH8661

'0

0

0

0

1

1

1

1

.1

1

1

1

1

1

1

1

0

0
0

0

0

1

1

1

1

1

1

1

1

0

1

0
0

0

1

1

0

1

A

B

C

D

E

F

p @

WJJ)

J v@

E

H

0

0

1

1

0

1

0

1

0
0

4

5

6

7

8

9

0

EXT

->

7

/

SKa

SK 16

SKIs

7'-\",

SK I4

6

CoIl
Row

0

0

0

1

1

ENTER

<-

6

*

SK 7

1 0

2

RETURN

~

5

-

SK6

1

1

0 0
0
1

1

0

3
4

5

6

i

4

LF

HOME

3

BS

SKI9

HTAB

ESC

SKIs

+

SKs

SK4

2

SP

1

9

SK3

SKI3
SK I2

SK 11

8(

&
;t

10

.J:

1

1

7

DEL

SKI7

0

T

.,
@

[ j r

'"

3:j:1: 7

SKI

SKg

-

/

=l'

"
®

--® u -j-®

*
'7

•

1 '@ 9 )
:I

3

I

--

Y

~

-

z ':/
X

.~

@.

it

@

(j]) C

'/

J:l

® ] .b.IJ V I:::@

D @

S

0

iv

?
® / ;t..

G ®

11

>

11

¥ I@ T (j) F

2 @ 0

;;r

-1

A

I

8

-(

R @

0

4$? A ® y
"'?

7

1

-t

%

5

7

SK

-iz

-t'

"

SK2

~

.:::L

®

*
:@
'r

B (j])

;+@ N

v

::::I

~

@

@ A 7® L IJ@ M@
'£:

o '7® Q;$ICD

K @ ,
/

<
,*'

Note: b 7 =1 when KANA key is ON, b7 =O when off.

Fig. 5

Transmit character codes (2)... Native codes

pressed and held for more than 1 second when the
lIS code sytem is selected, the corresponding
transmit character code is repeatedly entered at a
frequency of approx. 20 Hz. When the native code
system is selected, all the 96 data keys are effective for the auto repeat function.

IJ2EkJ [ESk] I BS I ILF I IHTABI I RETURN I
I ENTER II ETXI
The above control keys are not effective for the
auto repeat function.

•

Serial Data Transfer

The LH8661 transmits serial data via RS232C
interface when in modes 1, 3, or 5. It can transmit
and receive serial data when in mode 4_

The serial data format can be selected from 7
bits with parity, 7 bits with no parity (b 7 fixed at
'0'), and 8 bits with no parity. Selection is executed with bit 7 or 8 and with parity switch (see
description of transfer data format setting).
Fig. 6 shows the serial data format.
(1) Transmit mode
The LH8661 automatically adds one start bit
and two stop bits to transmit data. It holds TxD at
high to maintain mark status between characters.
(2) Receive mode
Receive data must have one start bit, eight data
bits, and at least one stop bit. While the receiver
has a two-stage buffer, data will not be protected
in the event of an overrun.

~-'-'-'-----SHARP-'-'------

557

..........

......................... .........................

Key':'encoder and bata Transmitter/Receiver
~~

LH8661

~~

~

~

Transmitted data (No parity)

T
.

1-

Start bitT·
' - - - - 8 data bits
' - - - - - - - - - - - - 2 stop bits

Transmitted data (With parity)

ISP ISP I P I b6 I bs I b. I b3 I b2 I bl I bo IST I

TT
.

L

start bitT

' 7 data bIts

L - - - - - - - - - - O d d parity

' - - - - - - , - - - - , - - - - - 2 stop bits

Reception data (No parity)

I bs I b. I b3 I b2 I bl I bo IST I
-r

I

T

Start bit
L _ _ _ _ _ 8 data bits
1 stop bit

Reception data (With parity)

I SP I P I b6 I bs I b. I b3 I b2 I b, I bo IST I

TT

I

StaJ;:t
- - - - 7 data bits
' - - - - - - - - - - - - O d d parity
' - - - - - - - - - - - - 1 stop bit
_

L.

Fig. 6 Serial data format

•

Parallel Data Transfer

When in modes 2, 3, and 4, the LH8661 can
transfer parallel data to a printer having Centronics interface. When in mode 5, it can receive parallel data through Centronics interface.
(1) Centronics interface (parallel data transmission)
The LH8661 maintains INPUT PRIME at low
for a given time period after being reset. The
attached printer usually uses this ~ignal to initialize its internal circuitry. The LH8661 then tests
the SLCT and FA UL T inputs to see whether or
not the printer is ready for operation. When transmitting data, the device also tests for BUSY signals from the printer. When signal is at high, the
printer is busy printing and the device waits for
the printer to become ready. When the printer returns to the ready status, it resets the BUSY sig-

) nal to low and sets the ACKNLG signal at high.
Seeing that the ACK signal (inverse of ACKLNG)
is set to active low, the LH8661 transmits print
data. It then sets the DS signal to low a given time
period after completing data transmission. The
printer uses the DS signal to read the data on the
data bus (DATA1-DATAs),and prints it.
The data transmission timing is shown in Fig. 7.
(2) Parallel data reception
When the LH8661 is placed in mode 5, the {larallel data port becomes a Centronics input port.
Input data received through this port can be \,lUt·
put in serial form after being subject to parallel-.
to-serial conversion. The control signal SLCT is
set to high when the LH8661 settles in mode 5.
In receiving parallel data, the INPUT PRIME
signal must be set to low for a given time period.

~'-'------SHARP---'----'-"---'-

558

Key-encoder and Data Transmitter/Receiver

LH8661

INPUT PRIME (output)-V

\~----------------------------------------------

BUSY (input)
ACK (input)

-'X. .___

DA TAl -DAT As (output) _ _ _ _ _ _ _ _ _

D_a_ta_se_tt_led
_ _ __

DS (output)

Fig. 7

Parallel port output timing

INPUT PRIME (input) ~
BUSY (output)

\'-----------------------

RQ (output)

-'X'-___

DAT Al -DAT As (input) _ _ _ _ _ _ _ _ _ _

D_at_a_s_et_tl_ed_ _ _ __

RD (input)

Fig. 8

Parallel port input timing

Receiving this low transition signal, the LHB661
responds by initializing the data buffer pointer
and setting both the BUSY and RQ signals to low.
Seeing that the ACKLNG signal is set to high,
the data output device outputs data, then sets the
DAT A STROBE signal to low after a given time
period. The LHB661 uses this signal to read data
off the data bus (DAT AI-DAT A8). The LHB661
then sets the RQ signal to low to repeat data read
operation until the data buffer becomes full.
When the data buffer becomes full, the LHB661
activates the BUSY and F AUL T signals to inform
the output device. The parallel port input timing is
shown in Fig. B.

•

Data Buffer

The LHB661 has a built-in BO-byte RAM for
data buffer, which is used to hold key entry data,
serial input data or parallel input data.
When the device is in mode 1, 2, or 3, the full

BO-byte length of the buffer is used to hold key
entry data. When the device is in mode 4, the buffer is divided into a 40-byte segment to hold key
entu data and another 40-byte segment to hold
serial input data. When in mode 5, the full
BO-byte length of the buffer is used to hold parallel input data.
When the buffer becomes full, the LHB661 behaves as follows:
• No longer writes key entry data into the buffer.
• During serial data input, sets the DTR signal to
high to indicate buffer-full status to the data:
output device (having RS-232C interface). The
LHB661 accepts no serial data transferred
while the DTR is at high.
• During parallel data input, activates the BUSY
--and F AUL T signals to indicate buffer-full status to the parallel data output device. The
LHB661 outputs no RQ signal while the BUSY
and F AUL T signals are active.

- - - - - - - - - - - - - - - - S H A R P -.-..-.....-.--~-

559

Support Tools for Micrcomputers

Development Support System SM-D-8000 IT

LH8DH110

LH8 DH 11 0 Development Support System SM-D-8000 II
•

Description
This system operates under control of the floppy
disk operating system (FDOS), and incorporates
software for developing Z80 application programs.
The software includes a relocatable macro assembler, a text editor, and a debugger. The system
facilitates Z80 software development ap.d minimizes developing time. In addition, program developing software for Z8, Z8000 and SM series
can also be used in this system. The system can
also be an aid for developing Z80A and Z8 systems by connecting the In-circuit Emulator (Z80A
or Z8) to the system. In conjunction with a PROM
writer, the system writers EPROMs directly further reducing developing time.
•

Features
1. Z80A CPU (clock frequency>: 4MHz)
2. RAM: 64K bytes
3. Two double-sided double-density floppy disk
drives in standard (capacity: 2M bytes)
2ports
4. -RS232C
20mA curren loop 1port
(shared with RS232C port)

•

Baud rate 110-19200B
(9 levels selective)
5. Optional hardware
PROM writer
Z81Z80B In-circuit Emulator etc.

Block Diagram
Protect SW .
F'DO
PRO SW
RS232C

RS232C

l.
MAIN CPU borad

SUB CPU board

system bus

FDJ'

POWER SW

562

Development Support System SM-D-8000 IT

•

LH8DH110

Software Organization

Control
processor

SM-D-8000II
Operating
system

Language
processor

----i[ Resident

monitor
Command line interpreter

-r

Resident software
ZOO (standard)

Cross software
(option)

Utilities
(option)

-E

~

High-level
language (option)

-l

--i

Text editor
Relocatable macro assembler
Linker
Librarian
Symbolic debugger
System generator
SM series software package
for I-chip microcomputer
Z8 cross-assemhler development
Z-UPC cross-assembler
Z8000 software package

PROM programmer
Z80B in-circuit emulator debugger
Z8in-circuit emulator de1:iugger

~ASCAL
FORTH
FORTRAN
COBOL
BASIC

CP/M is a registered trade mark of Digital Research Inc.

7

--.---.---SHARP....-..---~---

563

...............,.....,..........

Development Support System SM-D-a100
,

.......

......,.~.....,.....,.....,....,.....,

LH8-DH130
•

Development $upport

LH8DH136
,

.....,.....,.....,~

Syste~

SM-D-8100

Description

This system in based on the Z8001 CPU and
operates under control of the floppy disk operating
system (SM-DOS8100). The system provides a
standard set of software for developing Z8000
programs. There include C compiler, relocatable
macro assembler, text editor and linker for cost
effective software development. The SM-D-8100
consists of main unit and a floppy disk'drive
unit. The main unit is provided with four RS232C
ports so that the system can be connected to other,
devices. The system has 256K-byte of RAM for
flexible upgrading in the future.

•

Features
1. Z8001 CPU (clock frequency: 4MHz)
2. RAM: 256K bytes (1 parity bit per 8-bit)
3. Two double-sided double-density floppy disk
drives in standard (separate unit), (Capacity:
2M bytes)
4. Four RS232C ports Baud rate: 110-19200B
, (9 levels selective for each port)
5. Centronics parallel output port
6. High-grade language, C compiler in standard
7. Optional hardware:
SM-E-8100 In-circuit Emulator

------------SHARP---------.-...... ----564

Development Support System SM-D-8100

•

LH8DH130

Block Diagram

Z8001
CPU

MH

1-_-:---' ~::--------I ZBI Bus
Buffer. 1-'----11',

L-_~=====L_ _~4~M~H~z~------_4BCLK

ZBi Bus
Buffer

,+12V
-12V

'+

5V
'-T-r-...,-,r--r-r-"T""T'......
___ ___ ___ ..J, GND--...----r-;--.....

L...-._--I

•

Disk Drive
(FD 0 )

Disk Drive
(FDI)

AC 100 V

Software Organization
.---Control processor (standard)
Resident monitor
Lcommand line interpreter (CLI)
t--- Language processor
Resident software (Z8000) (Standard)
C compiler
Text editor
Relocatable macro assembler
SM-D-8100
Linker
Operating system t-librarian
(SM - DOS 8100)
Debugger
Translator (Z80-+Z8000) (Standard)
PASCAL (under development)
,
Floating point arithmetic routines (under development)
Cross software (Option)
,
Z80 cross assembler (Development planned)
Z8 cross assembler (Development planned)
Z - UPC cross assembler (Development planned)

I-

E

"--Utility (Option)
LGeneral-purpose OS (Pianned)

.-.....----------SHARP---~-~.-.-----

565

De,v.elopment Support System SM-D-820.O

LH8DH140
•

Development Support System SM-D-8200

Description

LH8DH140 is a microcomputer system using the
28001CPU. It is used as the microcomputer development support device or as the general-purpose
microcomputer system, with the SM- UX8000 gener
ai-purpose operating system mounted; which is based
on the system of Bell Laboratories.

•

Features
1. Main memory function
• 768K byte RAM
• 1 parity bit for each 8 bits
• Memory management function
2. Supplementary memory function
• Hard disc drive: 1
Winchester type, 8 inch, 20M bytes
• Floppy disc drive: 1
for back up of hard disc equipment
double-side double-density, 8-inch, 1M
bytes
3. I/O interface
• Serial I/O interface: 4 ports
RS232C compatible
Baud rate: 110-9600 for each port
• Parallel I/O interface: I-port
Centro nice compatible
4. Optional hardware
·28000 in-circuit emulator (SM-E-8100)
• 28000 evaluation board
• 28 in-circuit emulator

566

LH8DH140

Development Support System SM-D-8200

LH8DH140

.....................................................................................
•

Block Diagram

AC100V

::[)=I ~

,,r - - - ,

Power Supply

,,

- - -- Main Board Slot 0- - - ----,

I

RAM
512K Bytes

:

with Parity

Internal Bus

I I

I J '

I

~ ~ ~
"" "" ""

'+ "I

~
Z

,

L ____________

r - - - - - - - - - - - - --Main Board Slot 1

1

~Oo~

:

, r--:,

Clock

~

ROMmn

~8;~1

,

1--1,--'
Buffer ~

Memory-Bus
Buffer_

1

+ '"

ZBI
Bus

32K Bytes

1

,
I

--------'

- --- -- ---l

I
' - - Z8010 Memory RAM MMU
-Bus 256K Bytes

nr

with Parity

!

ZBI Bus

r-t--

I

OSC_
'Hz
,
, ~

Internal Bus

:
1

1
f--r--I
'I

,

4MHz BCLK
16MHz MCLK

r---------------

Main Board Slot 2 - - - - - - - - - ,

&~

~

III
~

N

L_'--_-_-_-_-_-_-_-_-_-_-_-_-_-_-_...::..;.._'--_-_-_-_--_--_-_L--.....l J
1

Control
ROM
8K Bytes

.-_ _ _...,J ~1l-----1 Hard
,

Disk

:

Drive

.--,------J---l ~I----; Control

W

Buffer
RAM
2K Bytes

I

1

rr-

I

.-.!-

DMA

I

~ ~~~e~us

I

'-----I-nt-'ernal Bus

1

:

1

1
1
,

I

1
1

Z80A CPU

1
L_____________

1

_ _________ ,
J

r - - - - - - - - - - - - - Main Board Slot 3- - - - - - - - - - - ,

--t

r;----l

r-ttr--i

Floppy
Disk Drive Control

,
I
1

I

r----1

~

DMA

Internal Bus

'
:
ZBI Bus
Buffer

II
L- - - - - - -.i.j - - - - -.u -J:±. -.ll----,.t..±. - - - - - - I

,
,

Z 8036 CIO
Centronix
Interface

Z 8030 X 2
RS232C Interface

Centronix Parallel Output

Floppy
Disk Drive

RS232C Ports

7

1
t----t--

_I

1--;--1----'

, ZBI is the

1 Trademark
-1

of Zilog_ Inc_
HD-10F

Hard Disk Drive

I

Power Supply

u
q
AClOOV

567

Development Support System SM-D-8200

•

LH8DH140

Software Organization
Kernel
Shell
System utilities

User access control
File managment
Status display
System maintenance
Program run control

SM-UX8000
Operating system

Software development tools
Languages

,

Assembler (For Z800l)
C compiler (For Z800l)
C source beautifying program: cb
C program checker:lint
Spreadsheet interpreter
FORTRAN 77 compiler (option)

:

Text processing

1__ Text editor:ed
Fstream editor:sed
Programming support

~
:

,

Debugger:

adb
Loader
SCCS (Source code control system)
Program maintenance program

Cross software

L

Z8 cross software

r=..= Z80 cross software

!

.-.-.----~--SHARP-------------

568

Z80B In-Circuit Emulator

LH8DH312
•

LH8DH312

Z80B In-Circuit Emulator

Description

This is an SM-D-8000 II option, which provides
emulation functions for Z80B systems. The emulator operates under the control of FDOS. It
facilitates debugging and reduces development time
and costs.

•

Features

1. Support Z80B (6MHz) system
2. Real-time emulation
3. User system memory: 64K bytes
4. User 110 port: 256 ports
5. Memory address mapping function (unit:4K
bytes)
6. Hardware break point: 2
(with 16-bit counter)
7. User system RAM: 64K-byte static RAM
8. In-circuit emulator debugger
9. Execution modes of user program
(i) Real-time
(ii) 1 step (number of steps can be set)
(iii) Trace
(iv) Snapshot
10. Program can be change at mnemonic.
11. I/O device if the user system can read the
RETI instruction in the user RAM.
12. All the interrupts (NMI,mode 0,1,2) can be
used by the user.

---~------SHARP--~~---~

569

LH.8DH312.

Z80B>ln-Circuit Emulator

•

Block Diagram
~------------------------------I

Address Bus

Adress Bus

:==:::;~====~

I===~>t~
Z80B
CPU

Data Bus
- Control
Bus

I Head Board

:

~SI/l.~I--"140Pin
Plug

'"

c6

I

9 Clock Selectabl,e

Fla Cable~

I
I

I Clock Circuit I._S_W_J CPU Unit
Main Board
--------------------------------,
I
_

I

I

I
I

I
I

I

I

I
I
I

.,

"

'--'-'--1'-1-t

I

!
.=i

I
I

I

I·
I
I

I

ROM

I

I
~--------------------------------~---------~

570

Z8 In-Circuit Emulator

n

LH8DH321

LH8DH321

Z8 In-Circuit Emulator

II

•

Description
Z8 in-circuit emulator II (LH8DH321) is a device which has the function to support the development of the Z8 MCU 8-bit single-chip microcomputer (4Kbytes internal ROM: LH0811/LH0813, 2K
bytes internal ROM: LH0801/LH0803)_ Software
developed by the host computer can be downloaded
via RS232C into this emulator for program debug
purposes.
Prototype Z8 application systems under development and developed systems can be emulated on
the real time basis.
By debugging the user system while emulating,
the development term of the user system or maintenance period becomes shorter.

•

1.
2.

3.
4.
5.

•

Features
Usable for 4K and 2K bytes internal ROM
Stand-alone type: load the program from the
host computer, and save the program to the
host computer after debugging.
Mapping RAM can be designated for memory
area both of program and data.
User program in the external ROM can be
transferred to the mapping RAM.
Possess line assembler and reverse assembler,
making debugging effective.

6. Break point possessing 8-bit break counter can
be set: up to 4096 in the internal ROM (up to
2048 in the 2K internal ROM) 1 in the external ROM/RAM.
7. Step and trace of user program can be executed.
8. Contents of user program and register can be
displayed and changed.
9. 110 ports and register files can all be executed
by the user.

Block Diagram

Z8
Data r-....L.--,
Bus
Z80A

CPU

J1

J2

Terminal Host

571

~

7

~=

LH8DH330

Z8000 Evaluation Board

LH8DH330
•

Z8000 .Evaluation Board.

Description

This board is designed for evaluating application
systems .using the Z8000 I6-bit microprocessor.
It is also available for a development system due
to the emulation function.

•

Features
1. User RAM: 32K bytes
2. Monitor ROM : 8K bytes
3. Break point :- I point
4. Support for debugging Z800I CPU Z8002
, CPU programs
5. In-circuit emulation functions
6. Object program execution : Real time, single
step, and trace
7. Connection with SM-D-BOOO IT /SM-D-8100
via RS232C interface

•

Block· Diagram
Segment

Z8001
Z8002
CPU

7

Address/Data

16

Control

7

Status

12

User's Connecter

16

Console
SM-D-8000 II

572

LHSDH340

ZSOOOln-circuit Emulator SM-E-S100

LH8DH340
•

ZSOOO In-circuit Emulator SM-E-SIOO

Description

The SM-E-8100 supports the development of
28000 systems based on either the 28001 or
28002. A developed program loaded in the user's
system memory or, the emulator memory (user RAM
area) can be executed in real time. The SM-E8100 can emulate not only programs supplied from
a host equipped with RS232C ports such as the
SM-D-8000 II or SM-D-8100 but can also operate as a stand alone system.

•

Features
1.
2.
3.
4.

Emulation for both 28001 and 28002
All I/O ports opened for the user
User-opened RAM: 32K bytes (e~pandable)
Hardware,break points (status, N/S, R/W, B/W
available)
5. Break point counter (16-bit) available
6. Program execution : Real time, single step,
trace, and snap shot
7. Down load and up load from a host computer
8. Built-in debugger (with 32 commands)

573

LH8DH340

Z8000 In ...Circuit Emulator SM-E-8100

•

Block Diagram

Option

r:-----::;]

I

Changeable

:

I
I
I

I

I
1--:-:---:---11

Z8000

1

CPU

"""7-<3"7'~1
_J

Control
Circuit

...

2

'j3

~

574

...

Break
Register

2
,·e
0

::;;

Break
Counter

Mem,ory
by User's
32 K Bytes

LH8DH403

PROM Writer

LH8DH403
•

PROM Writer

Description

This equipment operates under control of
SM-D-8000 II, FDOS. The control program is supplied on the floppy disk. The equipment writes
programs that have been developed by using
SM-D-8000 II into EPROMs directly, thereby reducing developing time.

•

Features
1. Applicable EPROM 2732A, 2764, 27128, and
equivalents
2. Either mnemonic or spelled-out commands
acceptable
3. Data management in file from
4. LED indication during command execution

•

Block Diagram
SM-D-8000 II

PROM Writer Unit

1-------

I---------------~~----I

I
I
Address
Bus
Buffer

Address Bus

I
I
I

" I
I
I

Add~!s

Bus

h====~
Buffer

Data

Data Bus

II
1..::
__
'L-

I

Drive
Signal

Data

Bus

1,--------,
I
Control
I

Bus

I

Buffer

I

I~

_ _~

IL _____ _
Buffer Board

__ JI

--....,I

PROM

Bus
Buffer

Console

II

IC
Socket

I

I

I
I

Control Bus

PIO

,------L.L..--,
Drive Circuit

I

Cable

I

I

I
I

I

I

I

IL _____________________ I
~

+21 V

+sv

DC
Power

Supply

AC 100 V

575

LU4DH200

8M Series Emulator 8ME-20

LU4DH200
•

SM Series Emulator SME;:;20

Description

The LU4DH200 is an emulator designed to support the development of programs for the SM series
of 4-bit single-chip microcomputers. It consists
of a data input and control key board, LED for display data, PROM writer and interface enabling·
programs can also be dev~loped in ,RAM by using
the RS232Cto connect it to SM-D-8000 II which
supports a cross-assembler and other software to
facilitate program debugging.

•

Features
1. PROM writer (2716, 2732) in standard
2. RS232C 1 port
Baud rate 150-19200B
(8 levels selective)
·3. Paper tape reader interface;Paper tape puncher interface in standard
4. Support all functions of SM series by altering
PROM for PLA
5. Function of the emulator
• Execute/halt program
• Display/change data
• One step operation
• Execute start point of CPU
• Repair address

576

SM Series Emulator SME-20

•

LU4DH200

System Configuration

The SME-20 can be connected through the RS
232C to the SM-D-8000 II to allow efficient prog·
ram debugging.
It can also be connected to other support tools
which run under the CP1M operating system and
equipped with an RS-232C interface.

Host computer

¢==>

L......_ _ _- - I

RS232C

Emulator
(SME-20)

L!======::!J
URS232C

SM evaluation
board

,-----------------,
SM-D-8000II

r----------------------------,
SME-20
Working
RAM

Floppy Disk
(containing the editor,
cross assembler, etc.)
ROM (1 K)

RAM (64 K)

________________________ -1

RS232C
SIO

~

PTP/PTR

L ________________

Terminal Unit
(Sharp Writer, etc.)

SM Series
Evaluation
Board

.-~------SHARP----.-----

577

LUXXXH2

SM Series Evaluation Board

LUXXXH2
•

SM Series Evaluation Board

Description

There are designed for evaluating the SM series
of 4-bit 1-chip microcomputers. The boards are
functionally and electrically equivalent to the mask
ROM version.
Programs can be developed either at the EPROM
level, or when used with any of the SM series support tools (SM-D-80, SM-D-8000 IT ) programs
can be developed at the RAM level.

•

Features
l. System debug with EPROM
2. Debug at RAM base in conjunction with support tool(SM- 0-80, SM- 0-8000 IT)
3. Function of the evaluation board
• Hold function
• One- step function
• Auto-stop function
• Display of the program counter
• Display of accumlator and carry F IF
• Display of RAM address, the register and
memory
• Display of instruction code
• PLA set function

---.-.......------SHARP-.-.-------578

LUXXXH2

SM Series Evaluation Board

•

Block Diagram

-~
-11-.===;;;::;-

I

* Crystal

Memory
Display
Circuit

asc

Circuit

Vc (-5V)

GND (OV)

Break
Address
Setting
Circuit

l!:
I

Programming
(2716,2732 or
equivalent)

~

'---~~­

Instruction
Display
Circuit
Control Board

Evaluation Card

•

SM Series Evaluation Board
Control board

The evaluation board consists of two printed circuit boards: the control board and the evaluation
card (on which the evaluation chip and EPROM
socket installed).
Evaluation chip

Evaluation card
(LUXXXH4)

-~-----'------SHARP-'---'-'---

579

Memories

NMOS 32768-Bit Mask Programmable Read Only. Memory

LH2331 ILH2331 A

lH2331/LH2331A

NMOS 32768-Bit Mask Programmable Read Only Memory
•

•

Description

Pin Connections

The LH2331/LH23-31A are fully static mask
programmable ROMs organized as 4,096-wordby-8-bit by using silicon~gate NMOS process technology.

•

o

Features
1.
2.
3.
4.
5.
6.

4,096-word-by-8-bit organization
Single + 5V power supply
Fully static operation (no cloS;k required)
All inputs and outputs TTL compatible
Three-state outputs
Access time (MAX.)
LH2331 : 450ns, LH233iA : 350ns
7. Power-down function
8. 24-pin dual-in-line package (pin compatible
with i 2732 type EPROM)

•

Top View

Block Diagram
Data Output
~

Output Enable

Al\dress Input

32.768
Cell Matrix

---~'-------"--SHARP-~-----""--'

582

NMOS 32768-Bit Mask Programmable Read Only Memory

•

LH2331 ILH2331 A

Absolute Maximum Ratings
Parameter
Pin voltage *
Operating temperature
Storage temperature

Symbol
VIN
Topr
T st "

Ratings

-.0.3-+7 ..0
0-+7.0
-55-+15.0

Unit
V
"C
"C

*Application voltage on any input pin with respect to ground.
•

Parameter
Output low voltage
Output high voltage
Input low voltage
Input high voltage
Input leakage current
Output leakage current
Chip enabled power
supply current
Chip disabled power
supply current

•

(Vcc=5V±l.o%, Ta=.o-+7.o"C)

DC Characteristics
Symbol
VOL
V OH
VII.
V IH

I ILl I
I lLO I

Conditions
IOI.=2 ..omA
IoH = 2.0.0 p.A

Access time
Chip enable setup time
Output enable time
Output hold time
Chip turn-off time

TYP.

2.4
.0.8

D";:VIN";:V CC
CE:;;;; 2V, D::£VouT::£V cc

IccI
Icc2

MAX.
.0.4

2..0

-

CE:;;;;2V

Unit
V
V
V
V

1.0
1.0

p.A
f'A

11.0

rnA

5.0

rnA

(Vcc=5V±l.o%, Ta=D-+7.o"C)

AC Characteristics
Parameter

MIN.

Symbol

MIN.

MAX.

MIN.

45.0
45.0
12.0

t ACC

teE
toE
tOH
tDF

LH2331
TYP.

.0
.0

1.0.0

LH2331A
TYP.
MAX.
35.0
35.0

12.0
.0
.0

1.0.0

Unit
ns
ns
ns
ns
ns

Test conditions o(AC characteristics
• Input voltage amplitude········································ .. · + 0.4 - + 2.8V
• Input rising/falling time ··········································10ns
• Input threshold level ·······························,··············1.5V
• Output threshold level .. ··········································· 0.8V and 2.0V
• Output load condition .. ············································ 1TTL + 100pF

•

(f=IMHz, Ta=25"C)

Capacitance
Parameter
Input capacitance
Output capacitance

Symbol
CIN
COUT

Conditions
VIN=.oV
VouT=DV

MIN.

TYP.

MAX.
15
15

Unit
pF
pF

'-'-~--"--'--SHARP ----------~--------

583

. NMOS 327.68-Bit Mask Programmable.Read Only Memory

•

Timing

Diagram

CE

(High impedance)

584

LH2331 ILH2331 A

NMOS 3276e-Bit Mask Programmable Read Only Memory

•

LH2331/LH2331A

Electrical Characteristics Curves (Vcc=5V, Ta=25"C unless otherwise specified)
Access time vs. supply voltage

].

Access time vs. ambient temperature

.,..:

1.4,..---,----,----,-----,
Ta=700e

.

..

.~ 1 . 2 1 - - - - + - - - - + - - - - f - - - - I
1;;

;;

~r--.

P:::
u

~

.,
"
<:"
to

III

.,..
.::
].,

1.2

u
u

1.0

1.0 I-----+-==~_+---I_-__I

.,

'5

0.8

to
to

0.6
4.5

5.0

6.0

5.5

Supply voltage Vcc

-- ---

<:

80

N

U

G 60

....u

..

<:

-5

I-- ICCI

N

U

~ 60

~

~ 40

e'"

Icc2

~

j

20

III

0

4.0

<:

4.5

5.0

Supply voltage Vcc

5.5

...,.

1.4

.,'"
.,8-"
.,~

6.0

Ta=700e

.,..:

1.4

.,

-

Icc2

Vcc=4.5 V

.~
os

1;;

;; 1.2

P:::

P:::

'"
.j

.j

V

"'u

u

1.0

~

~

V

./

0.8

S

0

0.6
4.0

1.0

j

""
i 0.8
s=

Itl

r---,-

IcC!

CE to output delay vs. ambient temperature
os
>

.::

r----

100
25
75
50
Ambient temperature Ta (T)

0

<:

;; 1.2

...
..:.,

20

>

(V)

CE to output delay vs. supply voltage

.,..:

--

..

40

~

..

r--- I----

....9

..::-

"8-

80

~

~

~

50
75
25
Ambient temperature Ta (Oe)

Average supply current vs. ambient
temperature

f.----

.::i

o

(V)

Average supply current vs. supply voltage

e:::

0.8

.,
"
<:"

0.6
4.0

-5

~

.j

~

V
~

P:::

.,

:3

1.4
.. Vcc=4.5 \r

I ~u 0.6
4.5

5:5
5.0
Supply voltage Vcc (V)

6.0

o

25
50
75
100
Ambient temperature Ta ee)

585

NMOS 32768-Bit Mask Programmable Read Only Memory

LH2332/LH2332A

LH2332/LH2332A
NMOS 32768-Bit Mask Programmable Read Only Memory
•

Description

•

Pin Connections

The LH23321LH2332A are fully static mask
programmable. ROMs organized as 4,096 -wordby-S-bit by using silicon-gate NMOS process technology.

•

o

Features
1. 4,096-word-by-S-bit organization

Single + 5V power supply
Fully static operation (no clock required)
All inputs and outputs TTL compatible
Three-state outputs
Access time (MAX.)
LH2332 : 450ns, LH2332A : 350ns
7. Programmable chip selects (CS1/CS lo CSz/CS z)
S. 24-pin dual-in-line package (JEDEC standard
pin configuration)
2.
3.
4.
5.
6.

•

Top View

Block Diagram

Data Output
~

Address Input

32.768
Cell Matrix

----------SHARP-------------586

NMOS 32768-Bit Mask Programmable Read Only MemOry

•

LH2332/LH2332A

Absolute Maximum Ratings
Parameter
Supply voltage *
Input voltage *
Output voltage *
Operating temperature
Storage temperature

Symbol
Vee
VIN
VOUT
Top,
T stg

Ratings
-0.3-+7.0
-0.3-+7.0
-0.3-+7.0
0-+70
-55-+150

Unit
V
V
V
·C
·C

* The maximum applicable voltage on any pin with respect to GND.
•

Parameter
Supply voltage
Input voltage

•

Input leakage current
Output leakage current
Current consumption

-

Symbol
Vee
V IL
VIH

MIN.
4.75

TYP.
5

MAX.
5.25
0.8

2.0

Unit
V
V
V

(Vee=5V±5%, Ta=0-+70·C)

DC Characteristics
Parameter
Input low voltage
Input high voltage
Output low voltage
Output high voltage

•

(Ta=0-+70·C)

Recommended Operating Conditions

AC Characteristics
Parameter
Access time
Output hold time
Chip enable setup time
Chi p turn -off time

Symbol
VIL
VIH
VOL
VOH
I ILl I
I ILO I
Icc

Conditions

MIN.

TYP.

MAX.
0.8

2.0
IOL =2.0mA
IoH = 200 p.A

0.4
2.4

O~VIN~Vce

10
10
110

CS~2V, O~VouT~Vee

Unit
V
V
V
V
p.A
p.A
rnA

(Vee=5V±5%, Ta=0-+70·C)
Symbol
tAce
tClH

MIN.

MAX.
450

0

teE

tDF

TYP.

0

350
150

Unit
ns
ns
ns
ns

Test conditions of AC characteristics
•
Input voltage amplitude··········································· + 0.4 - + 2.8V
• Input rising/failing time···········································l0ns
•
Input threshold level·· ......................................... ····1.5V
• Output threshold level·································· ........... 0.8V and 2.0V
• Output load condition·············································· 1TTL + 100pF

•

-

(f=IMHz, Ta=25·C)

Capacitance
Parameter
Input capacitance
Output capacitance

Symbol
CIN
COUT

Conditions
VIN=OV
VOUT=OV

MIN.

TYP.

MAX.
15
15

Unit
pF
pF

587

~NlOS 32768-Bit Mask Programmable Read Only Memory

•

Timing

Diagram·

cs

Valid data
(High impedance)

588

.LH.2332/LH2332A

LH2332/LH2332A

NMOS 32768-Bit Mask Programmable Read Only Memory

•

Electrical Characteristics Curves (Vcc=5V, Ta=25t unless otherwise specified)
Access time vs. ambient temperature

Access time vs. supply voltage
1.4r---..,.....--...,----,---__,

1.4

Ta=70'C

.a.

Vee=4.75 V

>

//

.~ 1 . 2 1 - - - + - - - - + - - - + - - - \
10

Q;

Il:::

tl 1.01-.=......+---+--~==:::::J
:;

.§
:; 0 . 8 1 - - - + - - - - + - - - + - - - \

V

.~"

O.s

(Il
(Il

:l

V

~

~

..:""
0.6"::-_~~-~-!-::----=-=--~
4.0

4.5

5.0

Supply voltage

5.5

Vee

..:"
0.6
0

6.0

50.
25
75
Ambient temperature Ta (OC)

(V)

Average supply current vs.
supply voltage

Average supply current vs.
ambient temperature
so

SOr---~--~--_,_--__,

--

I--- I---

..:

~

60~--+_--~--_+--~

~

100

u

.....u

.,...
.
"
b"
§'
'"

60

r---

0;

40

(Il

201---+---~--_+--_;

...~.,

.
"

~

..:>

..:>

O~-~~-~~-~_!_::_-~
4.0
4.5
5.0
5.5
6.0

Supply voltage Vee

o

(V)

Input voltage vs. supply voltage

:>
:x:
:>

."..

100

2.0r---.,...---..,.....--...,-----,

2::

1.7

1.7

~
:x:

:>

1.4

VIH(MIN.)

.g:,
i

VIL(MAX.)

.::0

-..

1.4 ~VlH(MIN.J
VILCMAX.)

>

>.

=

.=;'"

75
25
50
Ambient temperature Ta ('C)

Input voltage vs. ambient temperature

2.0

2::
,.,

20

1.1

....."'"

O.S
4.0

4.5

5.0

Supply voltage

Vee

5.5
(V)

6.0

1.1

O.S !-_~:!=---=-=----=---~

o

25

50

75

Ambient temperature Ta

100

('C)

589

NMOS 65536-Bit Mask Programmable Read'Oniy Memory

LH2362B

NMOS 6SS36-Bit Mask ProQrammable Read

Only Memory

•

Description
The LH2362B is a fully static mask programmable ROM organized as 8,192-word-by-8-bit by
using silicon-gate NMOS process technology.

•

LH2362B

•

Pin Connections

o

Features
1. 8,192-word-by-8-bit organization
2. Single +5V power supply
3. Fully static operation (no clock required)
4. All inputs and outputs TTL compatible
5. Three-state outputs
6. Access time (MAX.) : 250ns
7. 24-pin dual-in-line package UEDEC standard
pin configuration)
Top View

•

Block Diagram
Data Output
,A

Control
Signal
Generator

1!32X8

Column Address Decoder

Address
Input

.,.,
....,

."
."

<:
~

o
!X:.

590

65,536(256 X 32 X 8)
Cell Matrix

NMOS 65536-Bit Mask Programmable Read Only Memory

•

Absolute Maximum Ratings
Parameter
Supply voltage *
Input voltage *
Output voltage *
Operating temperature
Storage temperature

Symbol
Vcc
VIN
VOUT
Toor
T st•

Ratings
-0.3-+7.0
-0.3-+7.0
-0.3-+7.0
0-+70
-55-+150

* The maximum applicable voltage,on any pin with respect to GND.
•

Input voltage

Symbol
Vcc
V1L
VIH

MIN.
4.75

TYP.
5

MAX.
5.25
0.8

2.0

Unit
V
V
V

DC Characteristics
Parameter
Input low voltage
Input high voltage
Output low voltage
0fltput high voltage
Input leakage current
Output leakage current
Current consumption

•

Unit
V
V
V
'C
'C

Recommended Operating Conditions
Parameter
Supply voltage

•

LH2362B

AC Characteristics
Parameter
Access time
Chip enable setup time
Chip turn-off time
Output hold time

(Vcc=5V±5%, Ta=0-+70'C)
Symbol
V1L
VIH
VOL
VOH
I ILl I
I ILO I
Icc

Conditions

MIN.

TYP.

MAX.
0.8

2.0
IOL=2.0mA
IOH=200pA
VIN=OV-Vcc
CS~2V, VOUT=OV-Vcc

0.4
2.4
10
10
160

Unit
V
V
V
,V
pA
p.A

rnA

(Vcc=5V±5%, Ta=0-+70"C)
Symbol
t ACC
tCE
tDF
tOH

MIN.

TYP.

MAX.
250
100
100

0

Unit
ns
ns
ns
ns

Test conditions of AC characteristics
• Input voltage amplitude ........................................... + 0.4 - + 2.BV
• Input rising/falling time ··········································10ns
• Input threshold level································· ............. 1.5V
• Output threshold level· .. ··························· .. ············· O.BV and 2.0V
• Output load condition ·············································1 TTL+ 100pF

•

(f=lMHz, Ta=25'C)

Capacitance
Parameter
Input capacitance
Output capacitance

Symbol
CIN
COUT

Conditions
V1N=OV
VOUT=OV

MIN.

TYP.

MAX.
16
13

Unit
pF
pF

591

NMOS 65536-Bit Mask Programmable Read Only Memory

•

Timing

Diagram

Ao-A12
~--tACC--~

(High impedance)

•

Chip Select

L
H

592

DouT (Data output)
High impedance

Valid data

LH2362B

NMOS 65536-Bit Mask Programmable Read Only Memory

LH2362B

Electrical Characteristics Curves (Ta = 25 "C unless otherwise specified)

•

Access time vs. ambient temperature

Access time vs. supply voltage
1.4
0;-

.
.,..

1.4
0;-

.

Ta=70·C

oS

.,..
.:::
.;.,

1.2

.:::
.;.,

---

Il::

1.0

u
u

.-- ~

;;

.,

]

1.2

V
~

Il::

f--

u
u

1.0

",-

;;

V

.,

]
.,..,'"'"

0.8

.,..,''""

Vcc=4.5V

oS

..,

0.8

..,

...::

...::

0.6

4.0

4.5
5.0
Supply voltage Vee

5.5

0.6

6.0

o

(V)

Supply current during operation vs.
supply voltage

< 100 .----,.-----.-----,------,
-5

50
75
100
25
Ambient temperature Ta ("C)

Supply current during operation vs.
ambient temperature
...:: 100

-5
Vee=5.0V

90~--+---1----~----~

.~

...
rv

80~--1------+----~------;

.S

.g

il
~

ii

1
~

70r-----4------+----~----~

60L---~--~--~~-~

4.0

4.5

5.0

Supply voltage Vee

5.5

6.0

.~

~

60 0

25

~

50

f'.
100

75
("C)

Chip enable time vs. ambient temperature
~

.,..

.~
os
0;
Il::

1.2

./

1.0

L

1.2

~ 1.0

/""

/

/

.~

oE

~ 0.8
il

., 0.8

:g
il

.9U 0.6
4.0

Vee=4.5V

.,

.,

""

1

70

1.4

0;
Il::

~

~

0;-

Ta=70·C

oS

il

Ambient temperature Ta

1.4
0;-

-ii

"-

(V)

Chip enable time vs. supply voltage

...,.
.

"'-f'....

-

~
~

.9-

""

U

4.5

5.0

Supplyvoltage Vee

5.5
(V)

6.0

0.6

o

25

50

Ambient temperature Ta

75

100

("C)

- - - - - - - - - . . - S H A R P - - - - - - ............ - -

593

'LH2367

NMOS 65536-Bit Mask Programmable Read Only Memory

LH2367
•

. NMOS 65536-Bit Mask Prograinmable Read Only
Memory

Description

•

Pin Connections

The LH2367 is a fully static mask programmable
ROM organized as 8,192-word-by-8-bit by using
silicon-gate NMOS process technology.

•

o

Features
1.
2.
3.
4.
5.
6.
7.
8.

8,192-word-by-8-bit organization
Single + 5V power supply
Fully static operation (no clock required)
All inputs and outputs TTL compatible
Three-state output
Access time (MAX.) : 250ns
Programmable chip select (CS h CS 2)
28-pin dua:I-in-line package
Top View

•

Block Diagram

.

Data Output

Address Input

65,536(256X32X8)
Cell Matrix

594

LH2367

NMOS 65536-Bit Mask Programmable Read Only Memory

•

Absolute Maximum Ratings
Parameter
Applied voltage *
Operating temperature
Storage temperature

Symbol
V
Toor
T stu

Ratings
-0.3-+7.0
0-+70
-55-+150

Unit
V
t
t

* The maximum applicable voltage on any pin with respect to GND.
•

Recommended Operating Conditions
Parameter
Supply voltage
Input voltage

•

Symbol
Vcc
V1L
VlH

MIN.
4.75
-0.5
2.0

TYP.
5

MAX.
5.25
0.8
Vcc

Unit
V
V
V

(Vcc=5V±5%, Ta=0-+70t)

DC Characteristics
Parameter
Input low voltage
In put high voltage
Output low voltage
Output high voltage
Input leakage current
Output leakage current
Chip enabled power supply
current
Chip disabled power supply
current

Symbol
V1L
VlH
VOL
VOH
I ILl I

I ILO I

Conditions

MIN.
-0.5
2.0

IoL =2mA
IOH = 200,uA
VIN=OV-Vcc
VOUT=OV-Vcc
(In non· selection mode)

MAX.
0.8
Vcc
0.4

0.01

10

Unit
V
V
V
V
,uA

0.01

10

,uA

50

80

rnA

20

40

rnA

2.4

ICCI
IcC2

TYP.

Note

Note: CE;;;:; 2.0V (Non·active) or CSt or CS. is non-active (CE type chip select)

•

(Vcc=5V±5%, Ta=0-+70t)

AC Characteristics
Parameter
Access time
Chip enable time (from CE)
Chip enable time (from CS)
Output enable time (from OE)
Output enable time (from CS)
Output turn-off time (from CE)
Output turn-off time (from CS)
Output turn-off time (from OE)
Output hold time

Symbol
tAcc
tCE!
tCE2
tOE!
tOE2
tOFl
tOF2
t OF3
toH

MIN.

0

TYP.

MAX.
250
250
250
100
100
100
100
100

Unit
ns
ns
ns
ns
ns
ns
ns
ns
ns

Test conditions of AC characteristics
• Input voltage amplitude
................................. +OAV and +2.8V
• Input rising/falling time ·······················;··················10ns
• Input threshold level··········· .................................. ·1.5V
• Output threshold level··········· ................................. O.8V and 2.0V
• Output load condition ............................................. lTTL + 100pF

595

NMOS.65536-Bit Mask Programmable Read Only Memory

Timing

•

Diagram

(1) Type1 (CS1/CS2 is CE function type)

Ao-AI2

tCEI

CE

cs· 1

tCE2

OE

(High impedance)

*

1 CS is the logical product of CS 1 and CS 2

(2) Type2 (CS1/CS2 is OE function type)

t----tCE----'"'i

cs· 1

(High impedance)

*

596

1 CS is the logical product of CS 1 and CS 2

Valid data

LH2367

LH2367

NMOS .65536-Bit Mask Programmable Read Only Memory

•

Chip Select
OE
X
X
H
L

*1
*2

cr

CS*l

H
X
X
L

X
L
X
H

Mode
Non-select, power down

*2
Output non-select
Read

DouT

CS is high only when the CSl pin and the CSz pin are active at the same time and is low at
all other times. (Non·connection pins are continuously active.)
Chip select input CSl and CSz can be programmed into 2 types depending on the ROM pat·
tern (see timing chart).

Type
(1) CE function type
(2) OE function type

•

Do-D7

High impedance
High impedance
High impedance

Function of CSl pin and CSz pin
Functions at same time as CE pin; when CS = low, non-select power-down mode
Functions at same time as OE pin; when CS = low, output non· select mode

Electrical Characteristics Curves (Vcc=5V, Ta=25"C unless otherwise specified)
Access time vs. supply voltage

Access time vs. ambient temperature
1.4

1.4

".a.
>

.!=
....'"
..!!

Ta=70°C

'"

'-'
'-'
j

.~'"

1.0

I'---

'"

--

"*
'-'
'-'

1.0

j

.~'" 0.8

0.8

V

./"

V

/

~

III
III

III
III

"'"

"..,'"

<

Vcc=4.5V

co
>

1.2
.!=
....

1.2

~

".a

OJ

<

0.6

4.0

4.5

5.5

5.0

Supply voltage

Vee

0.6

6.0

(V)

o

25

50

75

Ambient temperature

Supply current during operation vs.
supply voltage

100
(OC)

Supply current during operation vs.
ambient temperature
<

120

Ta

120

~
'-'

.§
10...

~

100

OIl

.9

.g
i...

90

j

80

'-'

~

~

::i 110

/

/

110

.§
10...

~

~

~

100

~

""
~

8

00

4.0

4.5

5.0

Supply. voltage Vee

5.5
(V)

6.0

25

50

Ambient temperature

75
Ta

100
(OC)

597

NMOS 65536-Bit Mask Programmable

Read Only Memory

Chip enable time vs. supply voltage

.,..=

1.4

.

Ta=70·C

.,:-

.i::
'OJ

.s

1

-

-

0.6
4.0

4.5

5.0

Supply voltage Vee

598

.

5.5
(V)

6.0

1.4
Vee=4.5V

.,:-

/

1.2

e

.;
u

...
.,
:3

~.,c
.....S<
U

0.8

.S<
....

U

.,..=
E.,

p:;

~ 1.0

Chip enable time vs. ambient temperature

.i::

1.2

.Ql

LH2367

1.0

V

~

'/

0.8

0.6

o

25

50

75

Ambient temperature Ta

100
(·C)

CMOS 65536-Bit Mask Programmable Read Only Memory

LH5366A
•

CMOS 65536-Bit Mask Programmable Read
Only Memory

Description
The LH5336A is a mask programmable ROM
organized as 8,192-word-by-8-bit by using CMOS
process technology.

•

•

LH5366A

•

Pin Connections
u

z

Features
1. 8,192-word-by-8-bit organization
2. Single + 5V power supply
3. Low power consumption
4. Edge enabled operation (CEl, CE,)
5. Three-state outputs
6. Access time (MAX.) : 2.5 ps
7. Programmable chip select
8. Selectable byte or digit output
9. 44-piJ;l quad-flat package

Top View

Block Diagram

Address Input

65,536 (256X32X8)
Cell Matrix

~----------~v~-----------J

Data Output

599

CMOS 65536-Bit Mask Programmable Read Only Memory

•

LH5366A

Absolute Maximum Ratings
Parameter
Supply voltage *
Input voltage *
Output voltage *
Operating temperature
Storage temperature

Symbol
Vcc
VIN
VOUT
T oDc
Ts'o

Ratings
-0.3-+7.0
-0.3-+7.0
-0.3-+7.0
0-+60
-55-+150

Unit
V
V
V

'c
·C

* The maximum applicable voltage on any pin with respect to GND.
•

Recommended Operating Conditions
Ratings
4.5-5.5

Parameter
Supply voltage

•

Unit
V

(V cc =5V±10%. Ta=0-+60·C)

DC Characteristics
Parameter
Input high voltage
Input low voltage
Output high voltage
Output low voltage
Input leakage current
Output leakage current
Chip enabled power
supply current
Chip disabled power
supply current
Note 1:

•

Symbol
VIH
V1L
VOH
VOL
I ILl I
I lLO I

Conditions

MIN.
-0.3
Vcc -1.0

IOH = 100 pA
IOL =1.6mA
VIN=OV-Vcc
In non·selection mode

TYP.

Note

1.0
1.0

Unit
V
V
V
V
pA
pA

5

rnA

1

5

pA

0.4

IcC!
Icc2

MAX.
0.8
Vcc
2.4

C3 • VIN=0.2V or Vcc-0.2V

Average current at cycle time of 4,u s with output open and input set to OV or V cc.

AC Characteristics
Parameter
Address setup time
Chip enable setup time
Chip enable precharge time
Chip turn·off time (CE)
Chip turn·off time (CS)
Cycle time

Symbol
tAs
tCE
tD

tDFI
tDF2
[CYC

MIN.
1

TYP.

MAX.
2.5

1.5
1.5
1.5
4.0

Unit
ps
ps
f.1s
f.1s
f.1s
f.1s

Test conditions of AC Characteristics
• Input voltage amplitude·· ......................................... + 0.8V --- Vcc-1.0V
• Input rising/falling time· ......................................... 20ns
• Input threshold level··· ......................................... ··1.5V
• Output threshold level············································ 0.4 V and 2.4 V
• Output load condition ·········· .... ·······························10pF

--~--.----SHARP-.-.------

600

LH5366A

CMOS 65536-Bit Mask Programmable Read Only Memory

•

Timing Diagram

CE
CS
(High impedance)

•

Electrical Characteristics Curves (Vcc=5V, Ta=25"C unless otherwise specified)
Access time vs. supply voltage
1.4

".

Access time vs. ambient temperature
1.4

Ta=60'C

>
Q)

.~

>

1.2

Q)

~

-:0

Ql
p::
u
u

1.0

.~

~

Ql
p::

~

Q)

.~ 0.8

u
u

~

rn
rn

j

Q)

.~ 0.8
rn

"

..::" 0.6

0.6
4.0

4.5
5.0
5.5
Supply voltage Vee (V)

6.0

75
Ta

100
("C)

2.5

-.S
2.0

~

cQ)

1.5

bCo

~

Co

=
.....'on"
>
..::'"

50

..::

-.S

Ul

25

Average supply current vs. ambient
temperature

2.5

"

o

Ambient temperature

..::

..=

V

V

Q)

Average supply current vs. supply
voltage

.;:;

1.0

/'

Ul

Q)

u

1.2

-:0

j

..::""

Vee =4.5 V

".
..E!

..E!

V

/

I

tl 2.01-----+---+---+----1

V

......

~

~

1.5 ~==:j::==t:::::::i:~=-~

1

1.0

~

1.01-----+---+----+----;

~
>

0.5
4.0

5.0

4.5

Supplyvoltage Vee

5.5

(V)

6.0

~

..:: 0.5 '--_ _..L-_ _- ' -_ _~---'o
25
50
75
100

Ambient temperature Ta

('C)

~'-'-------SHARP'-'-"-----~

601

CMOS 65536-Bit Mask Programmable Read Only Memory

LH5366S

CMOS 65536-Bit Mask Programmable Read
Only Memory

•

Description
The LH5366S is a mask programmable .ROM
organized as 8,192-word-by-8-bit by using CMOS
process technology.

•

•

Pin Connections

Features
1. 8,192-word-by-8-bit organization
2. Single + 3V power supply
3. Low power consumption
4. Edge enabled operation (CEl> CE 2 )
5. Three -state outputs
6. Access time (MAX.) : 6 ps
7. Programmable chip select
8. Selectable byte or digit output
9. 44-pin quad-flat package

•

LH5366S

Top View

Block Diagram

65,536 (256X32X8)

Cell Matrix
Address Input

~----------~vr----------~I.
Data Output

'--'-~--'-'--SHARP -.--.-.~-------

602

LH5366S

CMOS 65536-Bit Mask Programmable Read Only Memory

•

Absolute Maximum Ratings
Parameter
Supply voltage *
Input voltage *
Output voltage *
Operating temperature
Storage temperature

Symbol
Vcc
VIN
VOUT
T oDr
T stg

Ratings
-0.3-+5.0
-0.3-+5.0
-0.3-+5.0
0-+60
-55-+150

Unit
V
V
V
"C
"C

* The maximum appl\cable voltage on any pin with respect to GND.
•

Recommended Operating Conditions
Ratings
2.5-3.5

Parameter
Supply voltage

•

(V cc=3.0V, Ta=O- +60"C)

DC Characteristics
Parameter
Input high voltage
Input low voltage
Output high voltage
Output low voltage
Input leakage current
Output leakage current
Chip enabled power
supply current
Chip disabled power
supply current
Note 1:

•

Unit
V

Symbol
VIH
VIL
VOH
VOL
I ILl I
I Iw I

Conditions

MIN.
Vcc- 0.6

TYP.

Note

0.5
1.0
1.0

Unit
V
V
V
V
p.A
p.A

1.0

rnA

1

5.0

p.A

0.6
IOH =50 p.A
IOL=50p.A
VIN=OV-Vcc
In non· selection mode

Vcc- 0.5

IcCl
Icc2

MAX.

Cs, VIN=0.2V or Vcc-0.2V

Average current at cycle time of 12,us with output open and input set to OV or Vce.

AC Characteristics
Parameter
Address setup time
Chip enable setup time
Chip enable precharge time
Chip turn-off time (CE)
Chip turn-off time (CS)
Cycle time

(Vcc =2.5-3.5V, Ta=0-+60"C)
Symbol
tAS

MIN.
1

teE
to
tDFl
tDF2
tCYC

TYP.

MAX.
6

6
1.5
1.5
12

Unit
p.s
p.s
p.s
p.s
p.s
p.s

Test conditions of AC characteristics
• Input voltage amplitude···········································+O.5V-Vcc-O.5V
• Input- rising/falling time········· ................................. 20ns
• Input threshold level .. ············· ....................•........... O.3V
• Output threshold level .. ···· ....................................... Vcc- O.3V
• Output load condition .. ············································ 10pF

603

CMOS 65536-Bit Mask Programmable Read Only Memory

•

LH5366S

Timing Diagram

Ao-A12

CE
CS

(High impedance)

•

Electrical Characteristics Curves (Vcc=5V, Ta=25t unless otherwise specified)
Access time vs. ambient temperature

Access time vs. supply voltage
1.4

Ta=60°C

".a.,..

~

co

.i: 1.2

p::
u
u

1.0

.;;
]

.,
"
<"

~

.~

\

0.8

Ul
Ul

0.6
2.0

1.2

.i:

,

.,

"...,

Vee=2.5 V

.aco

\

~.,

1.4

1.0

u
u

.;;

.,

'\

]

0.8

.,
"
<"

0.6

~

2.5
3.0
3.5
Supply voltage Vee (V)

4.0

o

50

100

75

(OC)

Average supply current vs.
ambient temperature
0.8.-----.-----;----,.--.---,

<

<

-5

-5
u

0.6

~
t:

0.4

0.61----+---+---+-----1

u
u

...,"...

.....u

......

B

...-

1

0.2

~.,

-----

~

...-

...

.,"
.l:>

..,.,...

2.5

3.0

0.4

0.2

co

.

<
Supply voltage Vee

.

~

Ul

0
2.0

604

25

Ambient temperature Ta

0.8

..

V

Ul
Ul

Average supply current vs.
supply voltage

<

~

3.5

(V)

4.0

o

25

50

75

Ambient temperature Ta

100

eC)

CMOS 65536-Bit Mask Programmable Read Only Memory

LH5367

CMOS SSS3S-Bit Mask Programmable Read
Only Memory

•

Description
The LH5367 is a mask programmable ROM
organized as 8,192-word-by-8-bit by using sili·
con-gate CMOS process technology.

•
1.
2.
3.
4.
5.
6.
7.
8.

LH5367

•

Pin Connections
00 cE

u u

Features
8,192-word-by-8-bit organization
Single +5V power supply
Low power consumption
Edge enabled operation (CEl. CE 2 )
Three-state outputs
Access time (MAX.) : 450ns
Programmable chip select
44-pin quad-flat package
Top View

•

Block Diagram

Address Input

65,536 (256X32X8)
Cell Matrix

y

Data Output

---~-------SHA.RP------"""""-

605

LH5367

CMOS 65536-8it Mask Programmable Read Only Memory

•

Absolute Maximum Ratings
Parameter
Supply voltage *
Input voltage *
Output voltage *
Operating temperature
Storage temperature

Symbol
Vcc
VIN
VOUT
Topr
TSIJl

Ratings
-0.3-+7.0
-0.3-+7.0
-0.3-+7.0
0-+60
-55-+150

Unit
V
V
V
t
t

* The maximum applicable voltage on any pin with respect to GND.

•

Recommended Operating Conditions
Ratings
4.75-5.25

Parameter
Supply voltage

•

Unit
V
(Vcc=5V±5%, Ta=0-+60t)

DC Characteristics
Parameter
Input high voltage
Input low voltage
Output high voltage
Output low voltage
Input leakage current
Output leakage current
Chip enabled power
supply current
Chip disabled power
supply current

Symbol
VIH
V1L
VOH
VOL
I ILl I
I lLO I

Conditions

IOH=100pA
IOL =1.6mA
VIN=OV-Vcc
In non-selection mode

. TYP.
MIN.
Vcc -1.0
-0.3
2.4

Icc!
Icc2

Cs , VIN=0.2V or Vcc-0.2V

Note 1: Average current at cycle time of 750ns with output open and input set to OV or Vcc_

•

AC Characteristics
Parameter
Address setup time
Chip enable setup time
Chip enable precharge time
Chip turn-off time (CE)
Chip turn-off time (CS)
Cycle time

Symbol
tAs
teE
tp
tDFl
tDF2
teyC

MIN.
50

TYP.

MAX.
450

300
·300
300
750

Unit
ns
ns
ns
ns
ns
ns

Test conditions of AC characteristics
• Input voltage amplitude .......................................... +0.8V-Vcc -1.0V
• Input rising/falling time · ............................ · ............ 10ns
• Input threshold level" ............................................ 1.5V
• Output threshold level· .......................... · .... ·: .......... ·OAV and 2AV
• Output load condition ........ · ...... · .............. · .............. ·10pF

•

Timing Diagram
Ao-A12

CE
CS
(High impedance)

606

MAX.
Vcc
0.8

Unit
V

Note

V

0.4
1.0
1.0

V
V
pA
pA

14

mA

5.0

pA

1

CMOS 65536-Bit Mask Programmable Read Only Memory

•

LH5367

Electrical Characteristics Curves (Vcc=5V, Ta=25"C unless otherwise specified)
Access time vs. supply voltage

.,

Access time vs. ambient temperature

].

Ta=60'e

.

.

~ 1.2
.,

.::
~~

1.0

Ol

i".......
...........

!

.,

oS

~

,

tl 1.0

!

.,

:a
til
til

.,"'"'

.,
..:""

0.8

..:""

6.0

5.0

&l

e

.g:

75

100

ee)

,V

/

/

./

/

V
./

..:
5

/

u
u

...

&l
t: 4.51----+---+---+----1

e
b

~

.
~

..:

..:

4.0

5.01----+---+---+----1

~

5.0

Supply voltage Vee

4.01---+---+---+-----1

3.S'-_ _..i-_ _..I.-_ _-:!::-_ _:-!

o

6.0

25

50

75

Ambient temperature Ta

(V)

100
('e)

Input voltage vs. ambient temperature

Input voltage vs. supply voltage
2.0

2:-

50

5.5.-----r----r---~-----,

5.0

3.0

25

Average supply current vs.
ambient temperature

6.0

.,..

~

Ambient temperature Ta

Average supply current vs.
supply voltage

~

o

(V)

Supply voltage Vee

~ 4.0

~

~

0.8

0.6

4.0

-.

Vee =4.75 V

.~
1;j 1.2

~

u
u

1.4

2.0,.---'T"""--....- - - , - - - - - ,

2:1.7

d 1.7

d

:>

23

:>

:>

23

:> 1.4

.,

.
.:::

VIH(MIN.)

1.

VIL

~

1.0

j

~

0.8

4.0

4.5

Supply voltage

1.0

u
u
j

---

oE'"

5.0

/

0.6

5.5

o

25

75

50

Ambient temperature

(V)

Vee

V

0.8

''""
"'"
<:"

Q)

0.6
3.5

/

~

Q)

of
''""
"
<:"

1.2

Q)

~

u
u

Vcc=4.0V

v.:

'\.

>

Q)

.~

1.4

Ta=60"e

v.:

Ta

100
("e)

Supply current during operation vs.
ambient temperature

Supply current during operation vs.
supply voltage
4

4

Vcc=5.0 V
tl'= 1.5,us

tl'= 1.5,us
3

3
LH5396A(tcYc ~4.0

o~

~J\.

- ~I

2

11-~

2

-

. . ",,7.5I1- S )
LH5396(tc\C _ _

LJ396(tcY cJ7 .5 ,uS ) -

I...i

...
=

"

o

3.5

4.0

5.0

4.5

Supply voltage

Vee

5.5

j

o

U)

0.4

C
:z: 4.5

.---V--

o

:>

'~"

.±::

~
"§,

...--...--

C
.-1

0.3

0

:>

.,

--

'"

"0 0.2

3.0

>

-"=

..s

:.a

"[ 1.5

'"

0.1

o
4.0

4.5

Supply voltage

5.0
Vee

(V)

5.5

3.5

----

:---

0-=

o-=
3.5

100

("e)

I oL =1.6mA

~

o

75
Ta

Output low voltage vs. supply voltage

6:0
= -lOO,uA

50

Ambient temperature

Output high voltage vs. supply voltage
IOH

25

(V)

4.0

4.5

Supply voltage

5.0
Vee

5.5

(V)

----------SHARP-------611

CMOS 98304-Bit Mas~ Programmable Read Only Memory

LH5396S
•

LH5396S

CMOS 98304-Bit Mask Programmable Read
Only Memory

Description

•

Pin Connections

The LH5396S is a ma~k programmable ROM
organized as 12,288-word-by-8-bit by using silicon-gate CMOS process technology.

•

Features
1.
2.
3.
4.
5.
6.
7.
8.
9.

•

12,288-word-by-8- bit organization
Single + 3V power supply
Low power consumption
Edge enabled operation (CEl. CEz)
Three-state ,outputs
Access time (MAX.) : 15 ps
Programmable chip select
Byte/digit output select
44-pin quad-flat package

Block Diagram

Control
Circuit

Address Input

.-----.-.--SHARP--------,,--612

CMOS 98304-Bit Mask Programmable Read Only Memory

•

lH5396S

Absolute Maximum Ratings
Parameter
Supply voltage *
Input voltage *
Output voltage *
Operating temperature
Storage temperature

Symbol
Vee
VIN
VOUT
Top,
Tst2

Ratings
-0.3-+5.0
-0.3-+5.0
-0.3-+5.0
0-+60
-55-+150

Unit
V
V
V
"C
"C

* The maximum applicable voltage on any pin with respect to GND.
\

•

Recommended Operating Conditions
Parameter
Supply voltage
Input voltage
Operating temperature

•

Symbol
MIN.
2.6
Vee
-0.3
VIL
VIH Vee -0.5
Top,
0

TYP.
3

MAX.
3.4
0.5
Vee
60

Unit
V

V
"C

(V ee =+2.6-+3.4V, Ta=0-+60"C)

DC Characteristics
Parameter
Input low voltage
Input high voltage
Output low voltage
Output high voltage
Input leakage current
Output leakage current
Chip enabled power
supply current
Chip disabled power
supply current

Symbol
VIL
VIH
VOL
VOH
I ILl I

I ILO I

Conditions

MIN.
-0.3
Vee- 0.5

IOL=300pA
IOH=30pA
VIN=OV or Vee
In non· selection mode:
VOUT=OV or Vee

TYP.

MAX.
0.5
Vee
0.3
1.0

Unit
V
V
V
V
pA

1.0

pA

2.0

mA

1

2.0

pA

2

Vee- 0.3

0.8

IcC!
Iee2

Note

Note 1: Average current at cycle time of 18 p. s with output open and input set to OV or Vee.
Note 2: In chip selection mode: VIN=O.2V or VIN=Vcc-O.2V

•

AC Characteristics
(Vee=+2.6V-+3.4V,
Ta=0-+60"C)
,
Parameter
Address setup time
Chip enable setup time
Chip enable precharge time
Chip turn·off time (CE)
Chip turn·off time (CS)
Cycle time

Symbol
t AS
teE
tp
tDFl
tDF2
teYe

MIN.
2.0

TYP.

MAX.

Unit
p.s

15
3.0

p.s
p.s

3.0
3.0
10,000

p.s
p.s
p.s

Test conditions of AC characteristics
• Input voltage amplitude .......................................... +0.5V-V cc -0.5V
• Input rising/falling time ·········································20ns
• Input threshold level········································ .. · .. Vcc /2
• Output threshold level··········································· 0.3V and Vcc-0.3V
• Output load condition·· ............................................ Non loading

613

CMOS 98304-Bit Mask Programmable Read Only Memory

LH5396S

(f=IMHz, Ta=25t)

Capacitance

•

Symbol
CIN
COUT

Parameter
Input capacitance
Output capacitance

•

Conditions
V1N=OV
VOUT=OV

MIN.

TYP.

Timing Diagram

)K
tcvc

f-<-tAS

CE

J
I---tCE-

CS

I

tp

~

tDF2

~

,I

f-;;--t D F l -

///h

(High impedance)

•

Valid data

",~

Chip Select
CS O/CSO-CS 3 /CS 3
In selection mode

In non-selection mode

•

CE I

CE 2

L
L
H
H

H
L
L
H

X

X

Do-D7
DOUT

Mode
Read

High impedance

Non-selection

Byte/Digit Output Select
LlU

BID

L
L
H
H

L
H
L
H

614

D7
D7
D7
D7
D7

D6
D6
Ds
D6
D6

D5
D5
D5
D5
D5

Data output pins
D4
D3
D3
D4
D4
D3
D3
D4
D7
D4

D2
D2
D2
D2
D6

Dl
DI
DI
DI
D5

Do
Do
Do
Do
D4

MAX.
15
15

Unit
pF
pF

LH23126

NMOS 131072-Bit Mask Programmable Read Only Memory

LH23126

NMOS 131072-Bit Mask Programmable Read
Only Memory

•

Description
The LH23126 is a fully static mask programmable ROM organized as 16,384-word-by-8-bit by
using NMOS process technology.

•

Pin Connections

o

27 CSI/CSI/NC
Al3

As

A9

All

•
1.
2.
3.
4.
5.
6.
7.
8.
9.

•

Features
16,384-word- by-8-bit organization
Single + 5V power supply
Fully static operation (no clock required)
All inputs and outputs TTL compatible
Three-state outputs
Access time (MAX.) : 250ns
Programmab.1e chip select
Programmable output enable
28- pin dual-in-line package

OE/OE
CSo/CSo

Top View

Block Diagram
Data Output
J.

-.

-e

0

C; ~

Output Buffers

C
~ Q)~
o ._

Utllc.:l

~

.,.''""

"0
"0

Column Address Decoder

..:
c '"
E
..

..::t::
o

=

Uo:l

Address Input

'.,'""

.,''""
'"

"0

:;:

~
~~

o

=

O::o:l

<0

'" .,
:g"
..:
"0

u),.o

~

0

131,072(256X64X 8)
Cell Matrix

~

...... 0::0

615

LH~.3126

NMO.S 131072-Bit Mask Programmable Read Only Memory

Ab~olute Maximum t:latings

•

Parameter
Supply voltage *
Input voltage *
Operating temperature
Storage temperature

*
•

Symbol
Vcc
VIN
Topr
TsUr

Ratings
-0.3-+7.0
-0.3-+7.0
0-+70
-55-+150

Unit
V
V
t
t

The maximum applicable vol,tage on any pin with respect to GND.

Recommended Operating Conditions
Parameter
Supply voltage
Input voltage

•

Symbol
Vcc
V1L
V lH

MIN.
4.5

TYP.
5

MAX.
5.5
O.S

Unit
V
V

V

2.2

(Vcc=5V±1O%, Ta=0-+70t)

DC Characteristics
Parameter
Symbol
Input low voltage
V1L
Input high voltage
VlH
Output low voltage
VOL
Output high voltage
VOH
Input leakage current
I ILl I
Output leakage current
I ILO I
IDuring operation Icc I
Current
consumption
I During standby Icc2

•

AC Characteristics
Parameter
Read cycle time
Access time
Chip enable time
Output enable time
Chip select time
Output select time
Output turn·off time (from CS)
Output turn·off time (from OE)
Output hold time

Conditions

MIN.
-0.3
2.2

IOL=3.2mA
IoH =-400 f'A
VIN=OV-Vcc
VOUT=O-VCC during standby
CSsO.SV,

CS~2.2V

TYP.

MAX.
O.S
Vcc
0.4

2.4
10
10
SO
40

Unit
V
V
V
V
pA
pA
rnA
rnA

(Vcc=5V±10%, Ta=0-+70t)
Symbol
t RC
t ACC
tCE
tOE
tcs
tos
tDFl
tDF2

MIN.
250

toiI

10

TYP.

MAX.
250
250
100

10
10
70
70

Unit
ns
ns
ns
ns
ns
ns
ns
ns
ns

Conditions for measurement of AC characteristics
• Input voltage amplitude ................................... +OA-+2AV
• Input rising/falling time ................................... 20ns
• Input decision level ·········································1.5V
• Output dicision level················,······················· O.BV and 2.0V
• Output load condition··········· <........................... 1TTL + 100pF

---~~~-~--SHARP---------------.-

616

NMOS 131 072-Bit Mask Programmable Read Only Memory

•

LH23126

Timing Diagram

Ao-A!3

tRC

{

~I

tACC
tCE

CS*!
tcs

OE*2

Do-D7
(High impedance)

*1 CS is the reverse polarity of CS
CS/CS is the logical product of CS/CSo and CS/CS/NC
*2 OE is the reverse polarity of OE

•

Chip Select
CS/CS"
H/L

LlH

OE/OE

00-07

H/L

DouT

LlH

High impedance

Mode
Operating
Operating
Standby

----.--~---SHARP--.-.-.--.--

617

CMOS 131072-Bit Mask Programmable

LH53127
•

'Rea~

CMOS l3l072-Bit Mask Programmable Read
Only Memory

Description

The LH53127 is a mask programmable ROM
organized as 16,384-word-by-8-bit by using
poly-crystal silicon-gate CMOS process technology.

•

•

Pin Connections
CS!/CSI

Features

1. 16,384-word-by-8-bit organization
2. Single +5V power supply
3. Low power consumption.
4. Edge enabled operation
5. All inputs and outputs TTL compatible
. 6. Three-state outputs
7. Access time (MAX.) : 250ns
8. Programmable .chip select
9. 28-pin dual-in-fine package

•

LH53127

Only Memory.

I

0

Vee

A;

CSo/CSo
AI3

As

As

As

A.

A.

All

A3

)E

A2

Al

CE

Ao

D7
D6

DI
D.
GND
Top View

Block Diagram
Data Output

"
Control
Signal
Generator

1!32XB

Col'1mn Address Decoder

Address
Input

.,
.,.,...

:g

65,536(256X32XB)

Cell Matrix

..:

,.

Q

e<::

-----------------SHARP
618

.------.-.~----

LH53127

CMOS 131 072-Bit Mask Programmable Read Only Memory

•

Absolute Maximum Ratings
Parameter
Supply voltage *
Input voltage *
Output voltage *
Operating temperature
Storage temperature

*
•

Ratings
-0.3-+7.0
-0.3-V ee +0.3
-0.3-Vee +0.3
0-+70
-55-+150

Unit
V
V
V
'C
'C

The maximum applicable voltage on any pin with respect to GND.

Recommended Operating Conditions
Parameter
Supply voltage
Input voltage

•

Symbol
Vee
VIN
VOUT
Topr
T st•

Symbol
Vee
V1L
VIH

MIN.
4.5

TYP.
5

MAX.
5.5
0.8

2.2

Unit
V
V

DC Characteristics
Parameter
Input low voltage
Input high voltage
Output low voltage
Output high voltage
Input leakage current
Output leakage current
Current consumption
Current consumption
during standby

(Vee=5V±10%, Ta=0-+70'C)
Symbol
V1L
VIH
VOL
VOH
I ILl I
I lLO I
IcC!
Iee2

Conditions

MIN.
-0.3
2.2

IOL=2.0mA
IoH =-1.0mA
VJN=OV-Vee

TYP.

1.0
1.0
8
1

Unit
V
V
V
V
pA
pA
mA
mA

30

pA

2.4

ISB

MAX.
0.8
Vee
0.4

CE=Vee, V1N=OV or Vee

Note

1
2
3

Notel: During high impedance output, CE=2.2V or OE=2.2V, VOUT=OV-Vee
Note 2: During operation, input amplitude is OV or Vee, teYe=350 ns and output pin is open.
Note 3: During chip non-select, input amplitude is OV or Vee, teye=350 ns, and output pin is open.

•

AC Characteristics
Symbol
Parameter
Cycle time
teye
Access time from CE
teE
Access time from CS/CS
tes
Access time from OE
tOE
Address setup time (from CE)
t ASE
Address setup time (from CS)
tASS
CE precharge time
t pE
CS/CS precharge time
t ps
Data off delay time from CE
toFl
Data off delay time from CS/CS toF2
Data off delay time from OE
toF3

(Vee =5V±10%, Ta=0-+70'C)
MIN.
350

TYP.

MAX.
250
250
100

0
0
100
100
0
0
0

100
100
100

Unit
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns

619

.................................................,......................
CMOS 131072-Bit Mask Programmable Read Only'Memory

,

LH53121

~....,---..,

Conditions for measurement of AC characteristics
• Input voltage frequency··················,············:···· OAV -2AV
• Input rise/falI' time .......................................... IOns
• Input decision level ............ · ............................ 1.5V
• Output decisipn level ............................... ; ....... O.8V and 2.0V
• Output load condition ............ · .................. · .... · .. 1 TTL+ 100pF
Address input requires that it should be defined' during an active period.

•

Capacitance
Parameter

Symbol

Input capacitance
Output capacitance

•

CrN
COUT

Conditions

MIN.

Ratings
TYP.

MAX.

10
10

VrN=OV
VOUT=OV

Unit
pF
pF

Timing Diagram
(1)

When the CE input is used as the clock
(The chip is selected by the input of CSo/CSo• CS 1 ICS,.)
t---------tCYC-------~

Ao-At3

OE

Do-D,

(2)

----------------------~~K

When the CS input is used as the clock (9E~VIL(MAX.))
~------tCYC------__I

CSo/CSo

Chip select
CSt/CSt

Ao-At3

OE

--------SHARP.......,~-----....--,

620

CMOS 131072-Bit Mask Programmable. Read Only Memory

•

LH53127

Chip Select
IT
L

cSo/CSQ, CS,/CSISelect
Non-select

H

DE
L
H
X
X

Do-D7
Valid data output
High impedance

Mode
Read
Output non -select
Non-select
Standby

~---'---'---SHARP---'-'-"'-------

621

LH53129

CMOS 131072-Bit Mask Programmable Read Only Memory

LH53129

CMOS 131072-Bit Mask Programmable Read
Only Memory

•

Description
The LH53129 is a mask programmable ROM
organized as 16,384-word-by-8-bitby using silicon-gate CMOS process technology_

•
L
2.
3.
4.
5.
6.
7.
8.
9.

•

.
Pin Connections
uu

I~I~ I~I~

::Je.8ooci).ci)r.i)u

zz.;z;)CQ>uuuuz

Features
16,384-word-by-8-bit organization
Single +4.5V power supply
Low power consumption
Edge enabled operation (CE l. CE z)
Three-state outputs
Access time (MAX.) : 6 ps
Programmable chip select
Byte/digit output select
44-pin quad -flat package

•

Top View

Block Diagram

Chip Enable {

Cbi,

S.I~; {

l~
,

Circuit

Address Input

622

CMOS 131072-Bit Mask Programmable Read Only Memory

•

Absolute Maximum Ratings
Parameter
Supply voltage *
Input voltage *
Output voltage *
Operating temperature
Storage temperature

Symbol
Vee
VIN
VOUT
T oDr
T s '"

Ratings
-0.3-+7.0
-0.3-+7.0
-0.3-+7.0
0-+60
-55-+150

Unit
V
V
V
"C
"C

* The maximum applicable voltage on any pin with respect to GND.

•

Recommended Operating Conditions
Parameter
Supply voltage
Input voltage
Operating temperature

•

Symbol
Vee
VIL
VIH
T oDr

MIN.
4.0
-0.3
Vee -1.0
0

TYP.
4.5

MAX.
5.0
0.8
Vee
60

Unit
V
V
"C
(Vee=4.5V±10%, Ta=0-+60"C)

DC Characteristics
Parameter
Input low voltage
Input high voltage
Output low voltage
Output high voltage
Input leakage current
Output leakage current
Chip enabled power
supply current
Chip disabled power
supply current
Note 1:

•

LH53129

Symbol
V IL
VIH
VOL
VOH
I ILl I

I ILO I

Conditions

MIN.
-0.3
Vee -1.0

IOL =1.6mA
IOH=100fLA
VIN=OV-Vee
In non -selection,
VOUT=OV-Vee

MAX.
0.8
Vee
0.4

2.4

3

leCl
lee2

TYP.

CS, VIN=0.2V or Vee-0.2V

Unit
V
V
V
V

1.0

fLA

1.0

fLA

7

rnA

5.0

fLA

Note

1

Average current at cycle time of 7.5,.,s with output open and input set to OV or Vee.

(Vee=4.5V±10%, Ta=0-+60"C)

AC Characteristics
Parameter
Address setup time
Chip enable setup time
Chip enable precharge time
Chip turn-off time (CE)
Chip turn-off time (CS)
Cycle time

Symbol
t AS
teE
to
tDFl
tDF2
tcYe

MIN.
1

TYP.

MAX.
6

1.5

7.5

1.5
1.5
10,000

Unit

fLS
fLS
fLs
fLS
fLs
fLs

Test conditions of AC characteristics
• Input voltage amplitude·· .. ······································· +0.8V-Vcc -1.0V
• Input rising/falling time···· ...................................... 20ns
• Input threshold level··· ........................................... 1.5V
• Output threshold level············································ 0.4 V and 2.4 V
• Output load condition ............................................. 10pF

•

(f=lMHz, Ta=25"C)

Capacitance
Parameter
Input capacitance
Output capacitance

Symbol
CIN
COUT

Conditions
VIN=OV
VOUT=OV

MIN.

TYP.

MAX.
15
15

Unit
pF
pF

-----------SHARP--------623

CMOS 131072-Bit Mask Programmable Read Only Memory'

•

lH53129

Timing Diagram

CE
CS

(High impedance)

•

Chip Select
CS O/CS O-CS 3/CS 3

L
L

In selection mode

In non-selection mode

•

CE 1 .

CE 2
H
L
L

H
H

II

X

X

Do D7
DOUT

Mode
Read

High impedance

Non-selection

Byte/Digit Output Select
LlU

BID

L
L

L

H

H
H

H

624

L

D7
D7
D7
D7
D7

D6
D6
D6
D6
D6

D5
D5
D5
D5
D5

Data output pins
D4
D3
D4
D3
D4
D3
D4
D3
D4
D7

D2
D2
D2
D2
D6

D1
D1
D1
D1
D5

Do
Do
Do
Do
D4

CMOS 131072-Bit Mask Programmable Read Only Memory

•

LH53129

Electrical Characteristics Curves (Ta=25"C unless otherwise specified)
Normalized chip-enable delay time
supply voltage
1.4

1.4

,

.,.,
II

~

u
u

1.0

'"

u

.:t::

0.8

u

<:

.II

t:.
u
.:t::'"
.;;'"

~ r---

1.0

4.0

5.0
4.5
Supply voltage Vee (V)

V

/'
,

0.8

0.6
5.5

o

25

50

Ambient temperature

4

<:

....

3

75

100

Ta

('C)

Supply current during operation vs.
ambient temperature
4

~
G
u

tcye =7.5 /JS
tl'=1.5/Js

g

....

/

0.0

Supply current during operation vs.
supply voltage
~

/

1n

0.6
3.5

Vee =4.0 V

1.2

"

~

'"
.;;

Normalized chip-enable delay time vs . .
ambient temperatur~

Ta=60'C

;; 1.2

?:

VS.

Vee=5.0V
tcye =7.5 /JS
tl'=1.5/Js
3

.~

......

--

"go

/

~

~

...'"
.g

2

.S:

.....
~

...

..,"

~

""

§'
4.0

4.5

5.0

Supply voltage Vee

Output high voltage

VS.

5.5

ient temperature

0.4

6.0

25

(V)

?:

IOL=1.6 rnA

0.3

~

:i
..c:

i

~

1

1.5

=

o

0
3.5

4.0

4.5

Supply voltage Vee

5.0
(V)

5.5

0

3.5

4.0

4.5

Supply voltage Vee

5.0

5.5

(V)

.-----.-------SHARP·~.-.----~-.-.

625

LH53129A

CMOS 131072-Bit Mask Programmable Read Only Memory

LH53129A
•

CMOS 131072-Bit Mask Progiammable
Read Only Memory
.

Description

•

Pin Connections

. The LH53129A is a mask programmable ROM
lorganized as 16,384-word-by-8-bit by using silicon-gate CMOS process technology.

•

Features
1.
2.
3.
4.
5.
6.
7.
8.
9.

16,384-word-by-8-bit organization
Single +5V power supply
Low power consumption
Edge enabled operation (CEl> CE z)
Three-state outputs
Access time (MAX.) : 2.5 ps
Programmable chip select
Byte/digit output select
44-pin quad-flat package

•

u

u

z

Z

Block Diagram
Data Output
~

Chip Enable { 18

8JVCC
5 GND

Chip Select { 24

LlU
9 B/D

30

L/U.B/D
Control
Circuit

Address Input

626

Top View

CMOS 131 072-Bit Mask Programmable Read Only Memory

•

LH53129A

Absolute Maximum Ratings
Parameter
Supply voltage *
Input voltage *
Output voltage *
Operating temperature
Storage temperature

Symbol
Vcc
VIN
VOUT
Topr
T st "

Ratings
-0.3-+7.0
-0.3-+7.0
-0.3-+7.0
-5-+55
-55-+150

Unit
V
V
V
·C
·C

* The maximum applicable voltage on any pin with respect to GND.
•

Recommended Operating Conditions
Parameter
Supply voltage
In put voltage
Operating temperature

•

Symbol
Vcc
VIL
V IH
T oDr

MIN.
4.5
-0.3
Vcc -1.0
-5

TYP.
5

MAX.
5.5
0.8
Vcc
55

Symbol
V IL
VIH

Input leakage current

VOL
VOH
I ILl I

Output leakage current

I lLO I

Chip enabled power
supply current
Chip disabled power
supply current

V
·C

(V cc =4.5V+5V±10%, Ta=-5-+55·C)

DC Characteristics
Parameter
Input low voltage
Input high voltage
Output low voltage
Output high voltage

Unit
V

Conditions

MIN.
-0.3
Vcc -1.0

IOL =1.6mA
IOH= 100 flA
VIN=OV-Vcc
In non-selection mode,
VOUT=OV-Vcc

MAX.
0.8
Vcc
0.4

2.4

7

IccI
Icc2

TYP.

CS, VIN=0.2V or Vcc-O.2V

Unit
V
V
V
V

1.0

f'A

1.0

flA

14

rnA

5.0

flA

Note

1

Note 1: Average current at cycle time of 4.0 p's with output open and input set to OV or Vee.

•

AC Characteristics(Vcc=5V±10%, Ta=-'-5-+55·C)
Parameter
Address setup time
Chip enable setup time
Chip enable precharge time
Chip turn-off time (CE)
Chip turn-off time (CS)
Cycle time

Symbol
tAS
tCE
tD
tDFI
tDF2
tcYC

MIN.
1

TYP.

MAX.

Unit
f'S

2.5

f'S
f'S

1.5
1.5
10,000

f's
f's
fls

1.5

Test conditions of AC characteristics
• Input voltage amplitude ........................................... +O.8V - Vcc-1.0V
• Input rising/falling time··· ...... ·· .... · .... ··· ............ ······· 20ns
• Input threshold level ............................................. ·1.5V
• Output threshold level ............................................ OAV and 2AV
• Output load condition'" .......................................... lOpF

---------------$HARP-------627

CMOS 131072-Bit Mask Programmable' Read Only Memory

•

LH53129A

- (f ko lMHz, Ta=25"C)

Capacitance
Parameter
Input capacitance
Output capacitance

•

Symbol
CIN
COUT

Conditions
V[N=OV
Va T=OV

MIN.

TYP.

Timing Diagram

tCYC

I--tAS

J

~r---t

CE

r

J---tCE-----I

CS

I---tOF1-

,,',/,

/.

(Highim pedance) .

•

Valid data

Chip Select
CS O/CS O -CS 3 /CS 3
In selection mode

L
L

In non-selection mode

H
H
X

•

CE 2
H

CE 1

L
L

H
X

Do 0 7
DOUT

Mode
Read

High impedance

Non-selection

Byte/Digit Output Select
LlU

BID

L
L

L

H

H
H

H

628

L

07
07
07
07
07

06
06
06
06
06

.

Os
Os
Os
Os
Os

Data output pins
03
04
03
04
04
03
04
03
07
04

O2
O2
O2
O2

01
01
01
01

06

Os

Do
Do
Do
Do
04

'%"

. MAX.
15
15

Unit
pF
pF

CMOS 131072-Bit Mask Programmable Read Only Memory

•

LH53129A

Electrical Characteristics Curves (Ta=25"C unless otherwise specified)
Normalized chip-enable delay time vs.
supply voltage
1.4

:>

1.4

Ta=60'C

1.2

"-

0

.n
II

u
u

:> 1.0

1.2

~

'"

0.8

0.6
4.0

4.5

1n
N

.
!:
II

------r-

5.0

.;:"'

.;:"'

G

./

go 3.0
.~

0.6

o

25

75

50

100

Ta

('C)

Supply current during operation vs.
ambient temperature
6.0 r-------,-----.----,
Vee=5.5V
G
teyc=4.0.us
..:i
tp=1.5.us
4.51===~===*==_t_----1

./

.,

0.8

-<
-5

..:i 4.5
-:0...

~

Ambient temperature

t eye =4.0.us
tl' =1.5.us

.§

~

(V)

Supply current during operation vs.
supply voltage

-5

1.0

~

"-

6.0

5.5

Supply voltage Vee

<" 6.0

Vee=4.5 V

U

u

<
.;:'"

Normalized chip-enable delay time vs.
ambient temperature

~

~

.§
-:0
~

""o
.~

30r---+----r---+--~

.

.g

.g

~ 1.5

~ 1.51----+----r---+--~

1i

1i

...

...

..e;.

..e;.

~

r/l

0

IS:

4.0

4.5

5.0

Supply voltage Vee

5.5

6.0

~

I

(V)

Ambient temperature Ta

Output high voltage vs. supply voltage
10H=0.4 mA

4.5

..,........ V"

........ ~

('C)

Output .low voltage vs. supply voltage

6.0

~'"
.,

0~--2~5~-~5~0---7=5~-~100

0.4

V

IOL=1.6 rnA

C
..J

0.3

0

:>

..,.

:'if

,;:: 3.0

.

,;:: 0.2

..

o

-

0

:;
..c

..s

~ 1.5

~ 0.1
:;

~

:;

o

,.,..

0

o

4.0

O~_~~_~~

4.5

5.0

Supply voltage Vee

5.5
(V)

6.0

4.0

4.5

_ _~____~

5.0

Supply voltage . Vec

5.5

6.0

(V)

.-.----------SHARP----.---629

NMOS 262144-Bit Mask Programmable Read Only Memory

LH23257

NMOS 262144-Bit Mask Programmable Read

·Only Memory

•

Description
The LH23257 is a fully static mask programmable ROM organized as 32,768-word-by-8-bit by
using silicon-gate CMOS process technology.

•

•

Pin Connections

0
A7
A6
A5
A.

Features
1. 32,768-word-by-8-bit organization
2. Single + 5V power supply
3. Fully static operation (No clock required)
4. All input and output TTL compatible
5. Three-state outputs.
6. Access time (MAX.) : 250ns
7. ~rogrammable chip select
8. Programmable output enable
9. 28-pin dual-in-line package

•

LH23257

A3
A2
AI

AI3

AM
A9
All
OE OE

cs

CS

Do

01

0;

02
Top View

Block Diagram
Data Output

"

Output Buffers

Address Input

262,144 Cell Matrix

630

Vee

A"

LH23257

NMOS 262144-BitMask Programmable Read Only Memory

•

Absolute Maximum Ratings
Parameter
Supply voltage *
Input voltage *
Output voltage *
Operating temperature
Storage temperature

*
•

Vcc
VIN
VOUT
Topr
Tst~

Unit
V
V
V
'C
'C

Recommended Operating Conditions

Input voltage

Symbol
Vcc
V IL
VlH

MIN.
4.5
-0.3
2.2

TYP.
5

MAX.
5.5
O.S
Vcc

Unit
V
V
V

(Vcc=5V±10%, Ta=0-+70·C)

DC Characteristics
Parameter
Symbol
Input low voltage
VIL
Input high voltage
VlH
Output low voltage
VOL
Output high voltage
VOH
Input leakage current
I ILl I
Output leakage current
I ILO I
Current
during operation
ICCl
consumption
I during standby Icc2

I

•

Ratings
-0.3-+7.0
-0.3-+7.0
-0.3-+7.0
0-+70
-55-+150

The maximum applicable voltage on any pin with respect to GND.

Parametet:
Supply voltage

•

Symbol

Conditions

MIN.
-0.3
2.2

IOL=3.2mA
IoH = -400,u A
VlN =0-5.5V
VouT =0-5.5V during standby
IouT=OmA
CS~O.SV, CS;;;;2.2V

TYP.

MAX.
O.S
Vcc
0.4

2.4
10
10
SO
45

Unit
V
V
V
V
,uA
p.A
rnA
rnA

AC Characteristics (Vcc=5V±1O%, Ta=0-+70'C)
Parameter
Read cycle time
Access time
Chip enable time
Output enable time
Chip select time
Output select time
Output turn-off time (from CS)
Output turn-off time (from OE)
Output hold time

Symbol
t RC
t ACC
tCE
tOE
tcs
tos
tDF!
tDF2
tOH

MIN.
250

TYP.

MAX.
250
250
100

10
10
70
70
10

Unit
ns
ns
ns
ns
ns
ns
ns
ns
ns

Conditions for measurement of AC characteristics
• Input voltage frequency .................................... + 0.4 - + 2.4 V
• Input rise/fall time .......................................... 20ns
• Input decision level ....................................... "1.5V
• Output decision level ....................................... O.BV, 2.0V
• Output load .................................................. ·1 TTL+ 100pF

631

NMOS 262144-Bit Mask Programmable Rea~ Only Memory

•

(f=1MHz, Ta=25'C)

Pin Capacitance
Parameter
Input capacitance
Output capacitance

•

LH232.57

Symbol
CIN
COUT

MIN.

Conditions
V1N=OV
VOUT=OV

TYP.

8
12

Timing Diagram
tRC

~

~t\
I - - tOH

tACC
tCE

\

tDFl

tcs

"(-

tOE-

~ VII
(High impedance)

•

~\\

ro- tDF2
Valid data

Chip Select
CS/CS
LlH
H/L

632

OE/OE
LlH
H/L

Output
High impedance
DOUT

Current consumption
Standby
Operating

MAX.

-I) ) )

Unit
pF
pF

NMOS 262144-Bit Mask Programmable Read Only Memory

•

LH23257

Electrical Characteristics Curves (Vcc=5V, Ta=25"C unless otherwise specified)
Access time vs. supply voltage

.,

1.4

.::'"

1.2

Access time vs. ambient temperature

.,.a
...

~

..

.::'"

Ql
P:::

1.0

.~'" 0.8

''""
'"
"
..::"

V

0.6
4.0

v---

---

u
u
~

5.5
4.5
5.0
Supply voltage Vee CV)

0.6

6.0

tcYc=250ns

~ 60
.§

60

.--

40

1;j

V

....

"go

.ff

5.0

Supply voltage Vee

5.5

25

100

75
("C)

2.0

E::
:: 1.7

1.2

:>

VlH

;;'"
1.0

~1.4

.

.±::

'B

o

~

'"c
"

50

Input voltage vs. supply voltage

1.4

"

.0

r--

Ambient temperature Ta

~

"'
B

~ t:.........

6.0

.::'"
Ql

40

CV)

Output enable time vs. supply voltage

1;j

100

COC)

teYe=250ns
Vee=5.5V

1

.g

...

75
50
25
Ambient temperature Ta

Supply current during operation vs.

u

4.5

~

ambient temperature

.Ii;

.,.a

o

..:: 80
~

c
.~

go

~

~

0.8

'"
""'"
..::"

80

u

1.0

"
.~

supply voltage

~

1.2

'"
~

Supply current during operation vs.

~

Vee=4.5V

]

1;j

u
u
~

1.4

VIL

ILl

0.8

i-;;
0

0.6
4.0

4.5

5.0
5.5
Supply voltage Vee CV)

6.0

0.8
4.0

4.5

5.0

Supply voltage Vee

5.5

6.0

CV)

- . . - . - - - - - - S H A R P - - - - - . - . - - .......
633

CMOS

2~2144-Bit

Mask Programmable Read Only.Memory

LH5325·6
.•

LH53256

CMOS 262144-Bit Mask Programmable Read
Only Memory
•

Description

Pin Connections

The LH53256 is a mask programmable ROM
organized as 32,768-word-by-8-bit by using silicon-gate CMOS process technology.

•

Features
1.
2.
3.
4.
5.
6.
7.
8.
9.

32,768-word-by-8-bit organization
Single + 5V power supply
Low power consumption_
Edge enable operation (CEl> CE 2)
Three-state outputs
Access time (MAX.) : 800ns
Programmable chip select
Bytel digit output select
44-pin quad-flat package

•

Top View

Block Diagram

262,144 (512X64X8)_
Cell Matrix
Address Input

~----------~y~----------~

Data Output

----------SHARP---------634

LH53256

CMOS 262144-Bit Mask Programmable Read Only Memory

•

Absolute Maximum Ratings
Parameter
Pin voltage *
Operating temperature
Storage temperature

Symbol
VIN
,Topr
T stg

Ratings
-0.3-+7.0
0-+60
-55-+150

Unit
V
"C
"C

* The maximum application voltage on any pin with respect to GND.
•

Parameter
Input low voltage
Input high voltage
Output low voltage
Output high voltage
Input leakage current
Output leakage current
Chip enabled power
supply current
Chip disabled power
supply current
Input capacitance
Output capacitance
Note
Note
Note
Note

•

(Vcc=5.0V±10%, Ta=0-+60"C)

DC Characteristics
Symbol
V;L
VIH
VOL
VOH
I ILl I
I Iw I

Conditions

MIN.
-0.3
Vcc -O.4

Note

1.0
1.0

Unit
V
V
V
V
pA
pA

Icc!

10

mA

2

Icc2

50

pA

3

CIN
COUT

5
10

pF
pF

4
4

IOL=2.0mA
IoH =-1.0mA
VIN=OV-Vcc

TYP.

MAX.
0.6
Vcc
0.4

2.4

1

1: CE I =Vcc-O.2V or CE2=O.2V or OE=Vcc-O.2V, VOUT=OV-Vcc
2: ~t amplitude: O.4V-Vcc-O.4V, tcYc=900ns, output open
3: CE1=VCC-O.2V, CE2=O.2V
4: Ta=25t:, f= IMHz

AC Characteristics (Vcc=5.0V± 10%, Ta=0-+60"C)
Parameter
Chip enable setup time
Output enable time
Address setup time
Address hold time
Chip turn·off time (CE)
Chip turn-off time (OE)
Chip enable precharge time
Cycle ,time

Symbol
tCE
tOE
t AS
tAH
tDFl
tDF2
to
tcYC

MIN.

TYP.

MAX.
800
100

30
100
100
100
100
900

Unit
ns
ns
ns
ns
ns
ns
ns
ns

Test conditions of AC characteristics
•
Input voltage amplitude .........................•................ +O.4V-V cc -O.4V
•
Input rising/falling time ......................................... 20ns
•
Input threshold level ··············································1.5V
•
Output threshold level ..•......................................... 0.4 V and 2.4 V
•
Output load condition ............................................. 10pF

635

............,...............--...-:...-.........................
CMOS 262144-Bit Mask Programmable Read Only Memory

.............

~

• . Timing Diagram
A o -A 14
CSo/CSo-CS 3 /CS 3
L/U, BID

Input transition

(High impedance)
1-------tCYC----~~

•

Chip Select
Do-D 7
DOUT

CE 2

OE

CS2/CSO -CS 3/CS 3

Mode

L

H

0
1

In selection mode

Read

In non-seleCtion mode

Non-selection

L
H
H

L
L
H

CE 1

•

X
X

High impedance

X

Standby

X

Byte/Digit Output Select
L/U

BID

L
L
H
H

L
H
L
H

636

07

06

05

D7
D7
D7
07

D6
D6
06
D6

05
D5
D5
05

Data output pins
03
04
03
D4
D4
D4
04

D3
D3
07

D2

01

Do

D2
O2
D2
06

D1
D1
. D1
05

Do
Do
Do
04

LH53256

LH53256

CMOS 262144-Bit Mask Programmable Read Only Memory

•

Electrical Characteristics Curves (Ta=25t unless otherwise specified)
Normalized chip-enable delay time vs.
supply voltage

Normalized chip-enable delay time vs.
ambient temperature

1.4

1.4

Ta=60'C

~

>
<=

V cc=4.5V

....

1.2

"-

u;
II

tl

e 1.0

1.2

~

'"

<.)

U
'tn
C'O

~

~

~ 0.8

0.6
4.0

.
!:
II

--

'"

<.)

~

'"

~

5.5

6.0

6

---

4

~.

~

.,/
6

4

2

2

Vcc=5.5 V
tcyc=900 DS
tp =100 ns

o

4.0

4.5

5.5

5.0

Supply voltage

V cc

o

6.0

(V)

IOH=-1.0mA
IOL=4mA
Ta=75'C

4.5

0

>

.",..,.. I-""

.--' ~

25

50

Ambient temperature

75
Ta

100
("C)

Input voltage vs. supply voltage

Output voltage vs. supply voltage
~VOH

e
:=

2.4 r--------,------r---,
Ta=O'C(VlH)
Ta=60'C(VILl

1.8

>

.;

::l

>

0

..'"

25
50
75
100
Ambient temperature Ta' ('C)

8
tcyc =900 DS
tl'=100DS

>

/

Supply current during operation vs.
ambient temperature

8

0:

o

(V)

Supply current during operation vs.
supply voltage

e

~

/

0.8

0.6
5.0

4.5

Supply voltage Vee

6.0

1.0

3.0

'~"

1.2

;!:O

;!:O
0

0

'"

:;'" 1.5

i

0.6

.....c

.fr

=

0

o

4.0

VOL
5.5
5.0
4.5
Supply voltage Vee (V)

6.0

0
4.0

4.5

5.0

Supply voltage Vce

5.5

6.0

(V)

-----·-~.-----SHARP-.----------

637

- LH53257

CMOS 262144-Bit Mask Programmable Read Only Memory

LH53257
•

CMOS 262144-Bit Mask Programmable Read·
Only Memory

Description

The LH53257 is a fully static mask programmable ROM organized as 32,768-word-by-8-bit by
using polycrystal silicon-gate CMOS process technology.

•
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.

Features
32,768-word-by-8-bit organization
Single +5V power supply
Low power consumption
Fully static operation (No clock required)
All input and output TTL compatible
Three-state outputs
Access time (MAX.) : 250ns
Programmable chip select
Programmable output enable
28-pin dual-in-line package

•

•

Pin Connections

0
A7
A6
A,
A,
A3
A2
Al
An
DI

Top View

Data Output

638

CS CS

Dz

r - - -________~A~_ _~_ _~--~

Input

OE OE

Do

Block Diagram

Address

Vee

AI,
AI3
As
Ao
All

Cell Matrix
(32,76SXS)

LH53257

CMOS 262144-Bit Mask Programmable Read Only Memory

•

Absolute MaXimum Ratings
Parameter
Supply voltage *
Input voltage *
Output voltage *
Operating temperature
Storage temperature

Symbol
Vee
VIN
VOUT
Toor
T st•

Ratings
-0.3-+7.0
-0.3-+7.0
-0.3":'+7.0
0-+70
-55-+150

Unit
V
V
V
"C
"C

*The maximum applicable voltage on any pin with respect to GND.
•

Recommended Operating Conditions
Parameter
Supply voltage
Input voltage

•

Symbol
Vee
VIL
VlH

MIN.
4.5
-0.3
2.2

TYP.
5

MAX.
5.5
0.8
Vee

Unit
V
V
V

(V ee =5V±10%, Ta=0-+70"C)

DC Characteristics
Parameter
Input low v~ltage
Input high voltage
Output low voltage
Output high voltage
Input leakage current
Output leakage current
Current
consumption

'.

IDuring operation
I During standby

Symbol
VIL
VlH
VOL
VOH
I ILl I

I lLO I
Icc
ISB

Conditions

MIN.
-0.3
2.2

10L =1.6mA
IOH=-200 pA
V IN =0-5.5V
CS=0.8V, CS=2.2V,
VoUT =0-5.5V
10uT=OmA
CS";:0.2V, CS~Vee-0.2V

TYP.

MAX.
0.8
Vee
0.4
10

Unit
V
V
V
V
pA

10

pA

30
30

rnA
pA

2.4

AC Characteristics (Vcc =5V±10%, Ta=0-+70"C)

Parameter
Read cycle time
Access time
Chip enable time
Output enable time
Chip select time
Output select time
Output turn·off time (from CS)
Output turn·off time (from OE)
Output hold time

Symbol
t RC
tAce
tCE
toE
tcs
tos
tDFl
tDF2
tOH

MIN.
250

TYP.

MAX.
250
250
100

10
10
100
100
10

Unit
ns
ns
ns
ns
ns
ns
ns
ns
ns

Conditions for measurement of AC characteristics
• Input voltage frequency width····························· ······0.8 - 2.2V
• Input rise/fall time ................................................. 20ms
• Input decision level··· ............................................• ·1.5V
• Output decision level····················· .......................... 0.8V and 2.2V
• Output load .. ·························································1 TTL+ 100pF

---------SHARP-----.-.-.--639

CMOS 262144-:Bit Mask

•

Programmabl~

LH53257

Read Only Memory

(f=IMHz,Ta=25'C)

Pin Capacitance
Parameter
Input capacitance
Output capacitance

•

Symbol
CIN
CIN

Conditions
VIN-OV
VOUT=OV

MIN.

rip.

10
10

Timfng Diagram

Ao-Au

=x1-:_~-_-_-_-_~-_-_~t_RC~~~~~~~~~~

. .-_. . . I-.01----tACC----''"I

I-o,""-----tcE-----""I

,e

tcs

OE

(High impedance)

•

Chip Select
CS/CS

L/H
H/L

640

OE/OE
X'
LlH

H/L

Output
High impedance
Output

Power consumption
During standby
During operation

MAX.

~-.,;..-+.;;:.:...--_

Unit
pF
pF

LH53257

CMOS 262144-8it Mask Programmable Read Only Memorx

•

Electrical Characteristics Curves (Vcc=5V, Ta=25"C unless otherwise specified)·
Access time vs. supply voltage

Access time vs. ambient temperature
1.4

1.4
~

.
.,..

~

...,.

~
.~

1.2

"-

'"

].,

p::
u
u

1.0

.;;

.,

'Srn

.,rn
...:""

.~

...

~

0.8

1.2

;;
p::

-----

u
u

-

1.0

~

.;;

.,
.!
.,rnrn

~

~

O.I!

...:""

0.6
4.0

4.5
5.0
5.5
Supply voltage Vee CV)

0.6

6.0

o

25

50

75

Ambient temperature Ta

100
C·C)

Supply current during operation vs.
ambient temperature

Supply current during operation vs.
supply voltage
12

12.-----------.-----~----~

tnc=250ns
9

,/

V

tcye=250ns
Vee=5.5V

/

u

..::;

Vee=4.5V

~

9~~~,-----+-----~----~

/

.S...
.,.

go

./'

-T'----I--_..J

61----+-----+-----/----1

.rr.

.g

.

~

31----+-----+-----/----1

8

~

4.5

5.0

5.5

6.0

~

{fl

°0~--~25~-~5~0----~75~--~100

Supply voltage Vee CV)

Ambient temperature Ta

~

.,.

~

2.0

1.4

.~

...

;; 1.2

e
2'"

.,

...,

2:
;;'"

r-...

1.0

·s.,

~

C·C)

Input voltage vs. supply voltage

Output enable time vs.
supply voltage

0.8

""'"

::

:>

~

.,

~

'=

~
.;::

.
0

J

1.1

~

0

0.6
4.0

4.5
5.0
5.5
Supply voltage Vee (V)

6.0

0.8'--____-'-____--'-____--'____- - J
4.0
4.5
5.0
5.5
6.0
Supply voltage Vee

CV)

~.-~-----SHARP-.------------

641

. CMOS 524288-Bit Mask Prograf!1mable Read Only Memory

LH53512

CMOS 524288-Bit Mask Progrartunable Read
Only Memory
•

•

Description
The LH53512 is a mask programmable ROM
organized as 65,536-word-by-B-bit by using silicon-gate CMOS process technology.

•
1.
2.
3.
4.
5.
6.
7.
B.

Pin Connections

Features
65,536-word-by-B-bit organization
Single +5V power supply
Low power consumption
Edge enabled operation
Three-state outputs
Access time (MAX.) : 3.0 ps
Programmable chip select
24-pin small-outline package
Top View

•

Block Diagram
10

Address Input / Data Output

9
8
7
6
5

Low
Address I--r- X
Decoder
Latch

'4'

-

65,536 X8
Cell Matrix

3
8

8
~

~.

High
Address
Latch

Y

.1

l

Chip Select

{~.~
T

Chip
Select
PLA

~
16

Low Address
Read Signal

Decoder

Y Selecter

Output
Buffer

Output Latch /
Output Mode Select

1

~

4
High Address
Read Signal

~

Output
Control

I

U

Byte/Digit
S elect

I

1

GND

18 Vee

Output
Enable

,------...-. ....... . - - - - - S H A R P . - . - . - - - - - - 642

CMOS 524288-Bit Mask Programmable Read Only Memory

•

Absolute Maximum Ratings
Parameter
Supply voltage *
Input voltage *
Output voltage *
Operating temperature
Storage temperature

Symbol
Vcc
VIN
VOUT
Topr

Tst2

Ratings
-0.3-+7.0
-0.3-+7.0
-0.3-+7.0
-5-+55
-55-+150

Unit
V
V
V
"C
"C

* The maximum applicable voltage on any pin with respect to GND.

•

(Ta=25"C)

Recommended Operating Conditions
Parameter
Supply voltage
Input voltage

•

LH53512

Symbol
MIN.
4.0
Vcc
-0.3
V1L
Vcc -1.0
VIH

TYP.
5.0

MAX.
6.0
0.8
Vcc

Unit
V
V
V

(V ee =5.0V±20%, Ta=-5-+55"C)

DC Characteristics
Parameter
Input low voltage
Input high voltage
Output low voltage
Output high voltage
Input leakage current
Output leakage current
Chip enable power supply
current
Chip disabled power supply
current

Symbol
V1L
VIH
VOL
VOH
I ILl I
I ILO I
ICCI
Icc2

Conditions

IOL=0.5mA
IOH =-0.5mA

MIN.
-0.3
Vec -1.0

TYP.

MAX.
0.8
Vcc
0.4
1.0
1.0
1,500
500

Unit
V
V
V
V
pA
pA
pA
pA

3.0

pA

Vcc -0.8

ICC3

Note

1

1
·2

a

.

Note 1: Input leakage current (except A/Do_7): VIN=OV-Vcc
110 leakage current (A/Do-7): VIN/OUT=OV-Vcc
CSI=0.2V, CSI=Vcc-0.2V or OE=0.2V, OE=Vcc-0.2V
Note 2: tcyc=4.4 ,.,s, Vcc=5.5V, output open, VIN= +0.4-+5.1 V
Note 3: tCyc= 15 ,.,S, Vcc=5.5V, output open, VIN=+0.4-+5.1 V
Note 4: CS1=0.2V, CS1=Vcc-0.2V

643

CMOS 524288-Bit Mask·Programmable Read Only Memory

•

LH53512

AC Characteristics (V cc =5:0V±20%, Ta=-5-+55'C)
Parameter
Low.er ·address setup timeLower address hold time
Higher address setup time
Higher address hold time
CS hold time (non· selection)
CS setup time
BID setup time
BID hold time
LAS pulse width
HAS pulse width
HAS access time
OE access time
AID open setup time
OE to data out delay
OE to pulse width
CSI data off delay
OE to data Qff delay
OE LAS delay
BID OE setup time
BID OE hold time
Cycle time (8-bit output mode)
Cycle time (4-bit output mode)

Symbol
tSLA
tHLA
tSHA
tHHA
tHC
tsc
tSB
tHB
tWL
tWH
tHAS
tOE
tFO
taD
two
tcF
tOF
taL
tSBO
tHBO
tcYCl
t CYC2

MIN.
0
200
0
200
0
200
0
200
500
500

TYP.

MAX.

3,000
1,000
0
0
0
0
0
200
200
200
4,400
580

200
200

Unit
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns

Test conditions of AC characteristics
• Input voltage amplitude ........................................... +OAV -Vcc-OAV
• Input risingifalling time························ ................... 20ns
• Input threshold level .. ·· .. ············ .. ····· .. · .......... ··· ...... 1.5V
• Output threshold level .. ······ .. ···· .. ····· .. ·· .... ·· .... ···· .... ··OAV and Vee -O.8V
• Output load condition .......................... ·· ...... · ...... · .... l00pF

•

(f=IMHz, Ta=25'C)

Capacitance
Parameter
Input capacitance
Output capacitance

644

Symbol
CIN
COUT

Conditions
VIN=OV
VOUT=OV

MIN.

TYP.

MAX.
10
10

Unit
pF
pF

CMOS 524288-Bit Mask Programmable Read Only Memory

•

Timing

LH53512

Diagram

a-bit output mode

4-bit output mode

* DOUT=Do::-3 at B/D=O
repetition.
D4 - 7 at B/D= 1

Arbitrary order of output and number of output

645

,LH531 000

CMOS 1048576-Bit Mask Programmable Read Only Memory

LH531000

CMOS I048576-Bit Mask Programmable
Read Only Memory

•
Description
/ The LH531000 is a mask programmable ROM
organized as 131,072-wOl:d-by-B-bit by using
silicon-gate CMOS process technology.

Features
131,072-word-by-B-bit organization
Single+5V power supply
Low power consumption
Fully static operation
Automatic power down mode
All input and output TTL compatible
Three-state outputs
Access time (MAX.) : 250ns (normal mode)
BOns (nibble mode)
9. Programmable chip select
CS type 20pin = CS/~
OE type 20pin = OE/OE
10. 2B-pin dual-in-line package

•

Pin Connections

•

1.
2.
3.
4.
5.
6.
7.
B.

•

20

CS/CS/CE/CE

Top View

Block Diagram
Data Output
~~----~~~--------~

D7 Ds Ds D4 Da D2 DI Do'

CS/CS/OE/OE

20

Address
Input

1,048,576(131,072 X 8)
Cell Matrix

646

................ -........... -...... - . - . -...... - . -....................
CMOS 1244160-Bit Mask Programmable Read
Only Memory for "kanji" Characters Generation

LH53012 Series

I NEW I
CMOS 12441S0-Bit Mask
Programmable Read Only Memory for "kanji" Characters Generation

LH53012 Series
•

Description

LH530101 - 4 are mask ROMs for "kanji"
characters generation which memorize a total of
6834 characters of non-"kanji" and "kanji". It is
able to input the first and second bytes of JIS ~kan·
ji" code and a character is composed of 24 X 24
dots prescribed in lIS C 6226-1983

•

Pin Connections

.---------------------------------~

Vee

0

NC
NC
Y7
Y6
Y5
y,

•

Y3

Features

1. 4 chips in a set
Non-"kanji"(524 characters) + First standard
"kanji"(2965 characters) : LH530101 +
LH530102 Second standard "kanji"(3388 char·
acters) : LH530103 + LH530104
2. Row scanning method
3. 103,680-word-by-12-bit organization
4. Single + 5V power supply
5. Low power consumption
6. Fully static operation (no clock required)
7. Three-state outputs
8. Access time (MAX.) : 250ns
9. Involved the error correcting. circuit
10. 40-pin dual-in-line packge

y,

D5
GND

CSI
OE
NC
NC
D11
D",
D9
DB
D7
Top View

647

CMQS,124416-:-Bit Mask Programmable Read
OnJy Memory for "kanji" Characters Generation

.-........,....,...
•

...........

LH53012 Series

-.-.-.-..-.-.-.-

Block Diagram

30

Chip
Select {
Input

Chip
Select
Buffer

Output
Enable
Buffer

Enable

,...---'..........., Ao

Row

Decoder

Address
Buffers

Character
Address
Input

Sense
Amp.
Column
Decoder

Memory
Arrey

ECC

Output .
Buffers

Output

-----..--.-~.---SHARP,.- ........... -~.-.~--

648

Ordering Procedure of Mask ROM

.....

~~~.-~~.-~

.-.-~.-~~~~~

Mask ROM Ordering Procedure
The ordering procedure for mask ROMs is de·
scribed below along the mask ROM development
flow chart.
ROM data from the user should be submitted in
the form of an EPROM or on paper tape. At the
same time, the fo\1owing information should be provided.
(1) Type of media on which ROM data is provided
(2) Specified items (chip select, markings)
(3) Corporate name, person in charge, signature
(4) Date of order
When submitting the ROM, two sets of ROM data
media and ROM print-outs must be submitted to
make sure that correct data can be read from the

ROM.
After the ROM data is received, we use a CAD
system to create a magnetic tape to prepare the
ROM mask, and create a new EPROM or paper tape
and their print-outs for comparison to make sure
that the CAD-processed ROM data is correct.
After the user verifies that there are no problems with the results, we start preparing the mask
and the TS (technical sample) and submit these to
the user for evaluation.
If there are no problems with the TS, the user
submits the "Mask ROM TS Certification" to us.
We can begin mass production immediately or
shortly thereafter according to instructions given
by the user.

Mask ROM Development Flow Chart
Client

SHARP

EPROM or
paper tape

Mask ROM delivery

/+----+-------------1

Mass production start

---------.-.....-SHARP-.-.-,--------

649

CMOS 65536-Bit Electrically Programmable ROM

LH5764J
•

LH5764J

CMOS 65536-Bit Electrically Programmable
ROM

Description

•

Pin Connections

The LH5764] is a CMOS UV ERASABLE and
electrically programmable read only memory organized as 8,192-word-by-8-bit. It is especially well
suited for application where rapid turn-around
and/or bit pattern experimentation, and low-power
consumption and fast access time are important.

•

Features
1. 8,192-word-by-8- bit organization
2. Access Time (MAX.)
LH5764]-20 : 200ns
LH5764]-25 : 250ns
LH5764]-30 : 300ns
LH5764]-45 : 450ns
3. Single +5V power supply
4. Programming power supply: + 12.5V ± 40%
Programming pulse width : 1 ms/byte
5. Power consumption (MAX.) : 150m W (operation)
0.55mW (standby)

•

6.
7.
8.
9.

Fully static operation
Input and output TTL compatible
Pin compatible with i2764
28-pin dual-in-line package (Ceramic)

Block Diagram

65,536
Row Cell Array
Address Input

'" ...
ec .'". '"0
=
'Ii '"0

_'"0"
0'"0 '"

u

r---.

'" ~

l:3 1.0

:;

.!'"
OJ
OJ

'"

.~
co
Qi

1.2

~

~

0.8

l:3 1.0

:;

~

'"

/

.!'"
~ 0.8

0.6
4.0

4.5

5.0

5.5

Supply voltage

Vee

0.6

6.0

o

(V)

100
("e)

40

...:

5

G 30

N

<.)
<.)

~

30

>-<

c
..'::s"

C
20

is:

::s
OJ

co

75
Ta

...:

5

..'"

50

Average supply current vs.
ambient temperature

40

b"

25

Ambient temperature

Average supply current vs.
supply voltage

::s

/

...:""

...:""

..'"

1/

v

V

10

...:'"

~

>

----

~

~

4.5

r--

Q.

§OJ

g:,

.
co

,

10

...:'"

>

o
4.0

20

b"

5.0

5.5

SupplyvoItage Vee

o

6.0

(V)

----

25

50

Ambient temperature

...
100

75
Ta

("e)

Input voltage vs. ambient temperature

Input voltage vs. sup·ply voltage

2.0 ..-----..-----,----,---~

2.0

~
.... 1.5

;;
;;'"

V IH

-

i5

:>

VIL

'" 1.0

~

!
g

.:::
~

'[ 0.51---+----+----+----1

'[ 0.5

..s

o

4.0

.a
4.5

5.0

Supply voltage

5.5
Vee

(V)

6.0

o

25

50

Ambient temperature

75
Ta

100
("C)

657

CMOS 1024-Bit Sta~'ic Random Access Memory

LH51 01 iLH51 01 L3

LH510'1/LH5101L3
CMOS I024-Bit Static Random Access Memory
•

.•

Description

Pin Connections

The LH5101/LH5101L3 are fully static RAMs
organized as 256-word-by-4-bitby using silicon-gate CMOS process technology.

o
•

Features
1.
2.
3.
4.
5.
6.

256-word-by-4-bit organization
Single +5V power supply
Fully static operation
All inputs and outputs TTL compatible
Three-state outputs
Access time (MAX.)
LH5101 : 800ns, LH5101L3 : 650ns
7. Data can be held on +2V supply voltage
8. Low power supply current at standby mode
9. 22-pin dual-in-line package

•

Top View

Block Diagram

Chip Enable Input { 1

191)---L~

Data Output

Read/Write Input

Do<,

r.,.. { :

Output Disable 18

'--.r---I
Address Input

.-..-...-.....~----SHARP

658

----------------

. CMOS 1024-Bit Static Random Access Memory

•

LH51 01 ILH51 01 L3

Absolute Maximum Ratings
Parameter
Supply voltage *
Input voltage *
Output voltage *
Operating temperature
Storage temperature

Symbol
Vcc
VIN
VOUT
Topr
T=

Ratings
-0.3-+7.0
-0.3-V cc +0.3
-0.3-V cc +0.3
0-+70
-55-+150

*The maximum applicable voltage on any pin with respect to GND.
•

Unit
V
V
V
"C
"C

(V cc =5V±5%, Ta=0-+70"C)

DC Characteristics
Parameter
Input low voltage
Input high voltage
Output low voltage
Output high voltage
Input current'
Output leakage current

Symbol
V1l
VIH
Val
VOH
I ILl I
I lLO I

Current consumption 1

IcC!

Current consumption 2

Iccz

Chip disabled current
consumption

Iccl

•

Conditions

MIN.
0.3
2.2

Iol =2.0mA
IOH =-1.0mA
0;&V1N;&V CC
0;&V1N;&V CC, CEI=2.2V
Output open, VIN=Vcc
CE 1 ;&0.65V
Output open, VIN=2.2V
CE I :S:0.65V
I LH5101
CE z ;&0.2V
I LH5101L3

TYP.

MAX.
0.65
Vcc
0.4
1.0
1.0

Unit
V
V
V
V
pA
pA

9

22

mA

13

27

mA

100
200

pA

2.4

AC Characteristics
(1)

(V cc=5V± 10%, Ta=O- +70"C)

Read cycle
Parameter

Cycle time
Access time
Chip enable time 1
Chip enable time 2
Output enable time
Chip turn-off time
Data hold time from address
Data hold time from CE I

Symbol
tRc
t ACC
teal
te02
too
tOF
tOHI
tOHZ

MIN.
800

LH5101
TYP.

MAX.
800
800
850
350
200

0
0
0

Cycle time
Access time
Chip enable time 1
Chip enable time 2
Data setup time
Data hold time
Pulse width
Recovery time
Input enable time

0
0
0

LH5101L3
TYP.
MAX.
650
600
700
350
150

Unit
ns
ns
ns
ns
ns
ns
ns
ns

(V cc=5V± 10%, Ta=O- +70"C)

(2) Write cycle
Parameter

MIN.
650

Symbol
twc
tAW
tcwI
tew2
tow
tOH
twp
tWR
tos

MIN.
800
200
600
600
400
100
400
50
200

LH5101
TYP.

MAX.

MIN.
650
150
550
550
400
100
400
50
150

LH5101L3
MAX.
TYP.

Unit
ns
ns
ns
ns
ns
ns
ns
ns
ns

659

. CMOS 1024.:Bif Static Random Access Memory·

LH51 01 ILH5101 L3 .

Test conditions of AC characteristics
• Input voltage amplitude .. ·· ....................................... + 0.65 - + 2.2V
• Input ri~ing/falling time········ .................................. 20ns
• Timing reference level··· .. ········································ L5V
• Output load condition .. ·················;··························1 TTL+ 100pF

•

(f=1MHz, Ta=25t)

Capacitance'
Parameter
Input capacitance
Output capacitance

•

Symbol
CIN

C~UT

Conditions
VIN=OV
VOUT=OV

MIN.

TYP.

6
15

**

Symbol

Conditions

VDR

VeE2~0.2V

lee DR
teDR
tR

VeE2~0.2V,

Unit
pF
pF

(Ta=0-+70t)

Low-Voltage Data Hold Characteristics
Parameter
Supply voltage for data
hold
Supply current for data hold
Chip turn:off time
Operation recovery time **

MAX.
10
20

MIN.

TYP.

MAX.

2.0

V
20

VDR=2.0V

Unit

pA
ns
ns

0
tRe

In data hold mode, all input/output pins are put below VD •.
tRC : Read cycle time

---------- ........ ~--~-SHARP -------...~---~

660

I

LH5101/LH5101 L3

CMOS 1024-Bit Static Random Access Memory

•

Timing

Diagram

(1 ) Read cycle
t-'--------tRC--------I

t---+--tC02:----I

OD
(in I/O common mode)

For'data input/output separation, OD is made low. In read cycle, R/~ is made high.

(2) Write cycle
~-----~tWC:--------~

_ _ _1-_--. J----·tCWl--.......j

eE,

I--+---t-tCW2:-------;~

Oh-DI.
f----tDW'-----!~

___-+~,~---:tw~--~~~~~----

R/W

In 110 common mode, OD is high during the write period. For data input/output separation, OD may be either high or low.

(3) Low-voltage data hold

Supply voltage

i.~--

~~~~~~:~----

'b

________________ __

V,,-------VIH::£:t:'~

O.2V---

--

OV----

~

-

------------

---

---

. - - - - - - . - . - - S H A R P .-......-,--_.-.....-._---

661

CMOS 1024-Bit Static Random Access Memory

LH5101S
•

LH5101S

CMOS l024-Bit Static Random Access Memory
•

Description

Pin Connections

The LH5101S is a fully static RAM organized as
256-word-by-4-bit by using silicon-gate CMOS
process technology.

•

Features
1. 256-word-by-4-bit organization
2.
3.
4.
5.
6.
7.
8.

Single + 3V power supply
Fully static operation
All inputs and outputs TTL compatible
Three-state outputs
Access time (MAX.) : 3.0 ps
Data can be held on +2V supply voltage
Low power supply current at standby mode
10 pA (MAX.)
9. 22- pin dual-in-line package

•

Top View

_Block Diagram

Chip' Enable Input {
Read/Write Input

19!>t==L~X~--'
Data Output

0

Do<, I"., { ':

Output Disable 18

'-v--'

Address Input

662

CMOS 1024-Bit Static Random Access Memory

•

LH5101S

Absolute Maximum Ratings
Parameter
Supply voltage *
Input voltage *
Output voltage *
Operating temperature
Storage temperature

Symbol
Vee
VIN
VOUT
Topr
T.t ..

Ratings
-0.3-+7.0
-0.3-V ee +0.3
-0.3-Vee +0.3
-10-+60
-55-+150

Unit
V
V
V
'C
'C

*The maximum applicable voltage on any pin with respect to GND.
•

(V ee =2.6-3.4V, Ta=-10-+60'C)

DC Characteristics
Parameter
Input low voltage
Input high voltage
Output low voltage
Output high voltage
Input current
Output leakage current

Symbol
VIL
VIH
VOL
VOH
I III I
I lLO I

Current consumption 1

IcC!

Current consumption 2

lee2

Chip disabled current
consumption

leeL

•

Conditions,

MIN.
-0.3
Vee- 0.6

IOL =500 pA
IOH=-30pA

TYP.

MAX.
0.6
Vee
0.3

Unit
V
V
V
V

1.0
1.0

pA

5

11

rnA

8

13

rnA

10

pA

Vee- 0.6

OS::VIN~Vee

OS::VINS::V ee, CE I =Vee- 0.6
Output open, VIH = Vee,
CE I S::0.6V
Output open, VIN=2.2V
CEI~0.6V

O~VIN~Vee, CE2~0.2V

p.A

AC Characteristics

(1)

Read cycle

Parameter
Cycle time
Access time
Chip enable time
Address enable time
Output enable time
Chip turn-off time
Data hold time from address
Data hold time from CE I
Adress enable delay time

(2)

Write cycle

Parameter
Cycle time
Access time
Chip enable time 1
Chip enable time 2
Data setup time
Data hold time
Pulse width
Recove'ry time
Input enable time
Address enable delay time

(V ee =2.6-3.4V, Ta=-10-+60'C)
Symbol
t Re
t Aee
teo
t AEO
too
tOF
tOHl
toH2
toH3
tAEI
tAE2

MIN.
3.5

TYP.

MAX.
3.0
3.0
2.9
1.3
750

0
0

Unit

ps
ps
ps
ps
ps
ns
ns

0

ns

0.1
0.5

ps
p.s

(V ee =2.6-3.4V, Ta=-10-+60'C)
Symbol
twe
tAW
tewl
tAEW
tow
tDH
twp
tWR
tDs
tAE3
tAE4

MIN.
3.5
750
2.2
2.1
1.5
370
1.5
180
750
0.1
0.5

TYP.

MAX.

Unit

p.s
ns

p.s
p.s
p.s
ns

ps
ns
ns

p.s

-'-'-~--'--SHARP'-~~~----'--

663

CMOS 1024-Bit Static Random Access Memory

LH5101S

Test conditions of AC characteristics
• Input voltage amplitude· .. ··· .. ····················· .. ········ .... + 0.65 - + 2.2V
• Input risinglfaliing time .......................................... 10ns
• Timing reference level .......................................... "1.5V
• Output load condition ............................................ ·1 TTL+ 100pF

•

(fc=lMHz, Ta=25"C)

Capacitance
Symbol

Parameter
Input capacitance
Output capacitance

•

CIN
COUT

Conditions

MIN.

VOUT=OV

Symbol
V OR
IccoR
tCOR
tR

Conditions
VCE2 S:O.2V
VCE2 S:O.2V, VOR-2.0V

•

Timing
(1)

MIN.
2.0

t RC
tRe: Read cycle time

Diagram

Read cycle
~--------------tRC--~--------~

AE

OD
(in

I/O

common mode)

For data input/ output separation, OD is made low_

664

TYP.

MAX.
5

0

**In data hold mode, all input/output pins are put below VDR_

MAX.
10
20

Unit
pF
pF

(Ta= -10- +60·C)

Low-Voltage Data Hold Characteristics
Parameter
Supply voltage for data hold
Supply current for data hold
Chip turn-off time
Operation recovery time **

TYP.
6
15

VIN=OV

Unit
V

pA
ns
ns

LH5101S

CMOS 1024-Bit Static Random Access Memory

(2)

Write cycle
twe
Ao-A7
tew!
eE!

AE
tAt..W

tDH
DI!-DI.
tDW
tw

R/W

In 110 common mode, OD is made high during the write period. For data input/output separation, OD may be either high or low.

(3)

Low-voltage data hold

Supply voltage ,Vee
2.60V

VD.

AE

V 1H
O.2V
OV

-------}=:.=~'~~":~------

--------

'"b

~~~------------------~
--- ------ -

---

---

-----------------------------

Address enable (AE) may be high normally, but in this case, the address input level must strictly be below VIL and above VIH in.
clusive of noise spikes. Use of AE in such a timing relationship that the AE input is included inside the address input as shown
in the timing chart is fairly recommended.

665

LH5101W

CMOS 1024-Bit Static Random Access Memory

LH5101W
•

CMOS I024-Bit Static Random Access
Memory
•

Description

Pin Connections

The LH5101W is a fully static RAM organized
as 256-word-by-4-bit by using silicon-gate CMOS
process technology.

o
•

Features
1.
2.
3.
4.
5.
6.
7.
8.

256-word-by-4-bit organization
Single ,+ 5\1 power supply
Fully static operation
All inputs and outputs TTL compatible
Three-.state outputs
Access time (MAX.) : 800ns
Data can be held on +2V supply voltage
Low power supply current at standby mode
100 pA (MAX.)
9. 22-pin dual-in-line package

•

Top View

Block Diagram

Chip Enable Input{ 19iH-_ _L";Y->--"---'
Data Output

Output Disable

8

----~--.--,------SHARP ....-..-.~.-.------

666

CMOS 1024-Bit Static Random Access Memory

•

LH5101W

Absolute Maximum Ratings
Parameter
Supply voltage·
Input voltage
Output voltage·
Operating temperature
Storage temperature

•

Symbol
Vcc
VIN
VOUT
T=
T","-

Ratings
-0.3-+7.0
-0.3-Vcc +0.3
-0.3-Vcc +0.3
0-+70
-55-+150

Unit
V
V
V
'C
'C

*The maximum applicable voltage on any pin with respect to GND.
•

(V cc =5V±10%, Ta=0-+70'C)

DC Characteristics
Parameter
Input low voltage
Input high voltage
Output low voltage
Output high voltage
Input current
Output leakage current

Symbol
V1L
VIH
VOL
VOH
I ILl I

Current consumption 1

IcC!

Current consumption 2

Icc2

Chip disabled current
consumption

ICCL

•

IILO I

Conditions

MIN.
0.3
2.2

IOL=0.2mA
IoH =-1.0mA
0:5:V1N :5:Vcc
0:5:V1N :5:VCC , CE I -2.2V
Output open, VIN=Vcc,
CE 1;;;;0.65V
Output open, VIN=2.2V,
CE I :5:0.65V

TYP.

MAX.
0.65
Vcc
0.4
1.0
1.0

Unit
V
V
V
V
p.A
p.A

9

22

mA

13

27

mA

100

p.A

2.4

-

0;;;;V1N;;;;VCC, CE 2 ;;;;0.2V

AC Characteristics
(1)

(V cc =5V±10%, Ta=0-+70'C)

Read cycle

Parameter
Cycle time
Access time
Chip enable tillie 1
Chip enable time 2
Output enable time
Chip turn-off time
Data hold time from address
Data hold time from CE I

Symbol
t RC
tAcc
teOI
tC02
toD
tDF
toHl
tOH2

(2) Write cycle
Parameter
Cycle time
Access time
Chip enable time 1
Chip enable time 2
Data setup time
Data hold time
Pulse width
Recovery time
Input enable time

MIN.
800

TYP.

MAX.
800
800
850
350
200

0
0

Unit
ns
ns
ns
ns
ns
ns
ns
ns

B

(Vcc=5V±10%, Ta=0-+70'C)
Symbol
twc
tAW
tcwi
tCW2
tow
tOH
twp
tWR
tos

MIN.
800
200
600
600
400
100
400
50
200

TYP.

MAX.

Unit
ns
ns
ns
ns
ns
ns
ns
ns
ns

Test conditions of AC characteristics
• Input voltage amplitude .......................... ·· .............. · +O.65-+2.2V
• Input risingifalling time ................................ · ........ ·10ns
• Timing reference level ............................................ 1.5V
• Output load condition .................. · .......................... 1TTL + 100pF

667

CMOS t024-Bit Static Random Access Memory
LH5101W
............... - ............ - ......_ _ _ _ _ _ _ _r.._..:_ _ _,.._.
•

(f=IMH~,

Capacitance
Parameter
Input capacitance
Output capacitance

•

Symbol
CIN
COUT

Conditions
VIN=OV
VOUT=OV

MIN.

TYP.
3.5

9

Symbol
VDR
IccDR
tCDR
til

Conditions
VCE2~0.2V
VCE2~O.2V,

**In data hold mode, all input/output pins are put below
me : Read cycle time

668

MIN.
2.0

12

TYP.

MAX.

5

VDR=2.0V
0
t RC

VOR.

6

Unit
pF
pF

(Ta=0-+70'C)

Low-Voltage Data Hold Characteristics
Parameter
Supply voltage for data hold
Supply current for data hold
Chip turn-off time
Operation recovery time **

MAX.

Ta=25'C)

Unit
V
pA
ns
ns

CMOS 1024-Bit Static Random Access Memory

•

Timing
(1)

LH5101W

Diagram

Read cycle
i-------tRC----------l

tCOI

t---+---tcoz-----I
too

00
(in I/O common mode)
tOF

i---tACC

DOl-DO.

For data input/output separation, OD is mode low, In read cycle, R/W is mode high.

(2) Write cycle
I-------twc----------.~

___+-__... ro<-----tcwl----t

CE z
I-+----tcwz---------;~

00
(in I/O common mode)

tOH

011-01.
I----tow----<*;;-.-

R/W

---~--,~-----twp

r-----~----

In 110 common mode, OD is made high during the write period. For data input/output separation, OD may be either high or low.

(3)

Low-voltage data hold
Supply voltage Vee
4.5V
VD.

CEz

VIH
O.2V
OV

=== __ ~~r~:·~~"-·:~~;;-u-­

~~~-----------------~
--- -

-------------- ---

.-.-----------SHARP .-.-.-----------

669

CMOS 2048-Bit Static Random Access Memory

LH51 02/LH.51 02-8-

LH5102/LH5102-8
CMOS 2048-Bit Static Random Access Memory
•

•

Description

Pin Connections

The LH5102lLH5102-B are fully static RAMs
organized as 512-word-by-4-bit by using metalgate CMOS process technology.
Vee

AI
R/W

•

Features
1. 512-word- by-4-bit organization

Single + 5V power supply
Low power consumption
Data can be held on + 2V supply voltage
All inputs and outputs TTL compatible
Three-state outputs
Fully static operation
Pin compatible with SHARP LH5101 or Intel
5101 (except Pin 19)
9. Access time (MAX.)
LH5102-B: BOOns, LH5102 : 1,200ns
10. 22-pin dual-in-line package
2.
3.
4.
5.
6.
7.
B.

•

Top View

Block Diagram

Chip Select Input Qll:J+------,

Read/Write Input

u

Data Input { ;

Output Disable

'!'8=~;:::=~~:2~=j2f~~~

f(:

5i}-(:6)-o{7)----'

~

Address Input.

670

CMOS 2048-Bit Static Random Access Memory

•

LH51 02/LH51 02-8

Absolute Maximum Ratings
Parameter
Supply voltage *
Input voltage *
Output voltage *
Operating temperature
Storage temperature

Symbol
Vcc
VIN
VOUT
T oDr
Tst2

Ratings
-0.3-+7.0
-0.3-V cc +0.3
-0.3-V cc +0.3
0-+70
-55-+150

Unit
V
V
V
t
t

*The maximum applicable voltage on any pin with respect to GND.
•

Parameter
Supply voltage
Input voltage

•

Symbol
Vcc
VIL
VIH

MIN.
4.75
-0.3
2.2

TYP.
5

MAX.
5.25
0.65
Vcc

Unit
V
V
V
(V cc =5V±10%, Ta=0-+70t)

DC Characteristics
Parameter
Input low voltage
Input high voltage
Output low voltage
Output high voltage
Input current
Output leakage current
Current consumption
Chip disable current
consumption

•

(Ta=0-+70t)

Recommended Operating Conditions

Symbol
VIL
VIH
VOL
VOH
I ILl I
I ILO I
IcC!
Icc2
IccL

MIN.
-0.3
2.2

Conditions

IOL=2.0mA
IoH --1.0mA
VIN=O or Vcc
CS~0.2V, VOUT=OV or Vcc
Output open, VIN - VCC
Output open, VIN = 2.2V

TYP.

MAX.
0.65
Vcc
0.4
7.0
1.0
22
27

Unit
V
V
V
V
pA
pA
rnA
rnA

200

pA

2.4

3
13

CS~0.2V

(Vcc=5V±5%, Ta=0-+70t)

AC Characteristics
Parameter

Unit

Read cycle

Cycle time
Access time
Chip enable time
Output enable time
Chip turn·off time
Data hold time

t RC
t ACC

1,200

900

teo
taD
tDF
toH

0
0

twc
tAW
tDW
tDH
twp
tWR
t DS

900
150
-200
70
650
100
150

800
800
400
200

0
0

1,200
1,200
500
250

ns
ns
ns
ns
ns
ns

Write cycle

Cycle time
Access time
Data setup time
Data hold time
Pulse width
Recovery time
Input enable time

1,200
300
0
100
400
200
250

ns
ns
ns
ns
ns
ns
ns

Test conditions of AC characteristics
• Input vqltage amplitude··········· ................................ + 0.65 - + 2.2V
• Input rising/falling time .......................................... 20ns
• Timing reference level······ ...................................... 1.5V
• Output load condition ········································ .. · .. 1TTL+ 100pF

671

CMOS 2048-Bit Static Random Access Memory

•

LH51021LH5102-8

(Ta=O-+70'C)

Low-Voltage Data Hold Characteristics
Parameter
Supply voltage for data hold
Supply current for data hold
Chip turn·off time
Operation recovery time **

Symbol
VDR
IccDR
tCDR
tR

Condition-s
Vcs~0.2V

MIN.
2.0

TYP.

Vcs";::0.2V. VDR=2.0V

MAX.

Unit
V

40

pA
ns
ns

0
t RC

**In data hold mode, all input/output pins are put below VD•. tRe: Read cycle time. -

•

(f=IMHz, Ta=25'C)

Capacitance
Parameter
Input capacitance
Output capacitance

672

Symbol
CIN
COUT

Conditions
VIN=OV
VOUT=OV

MIN.

TYP.
6

15

MAX.
10
20

Unit
pF
pF

CMOS 2048-Bit Static Random Access Memory

•

Timing
(1)

LH5102/LH51'02-8

Diagram

Read cycle
tRe

'V

'V
JI\

Ao- As

JI\

..... tOHr---

cs

~

teo

I

tOD-

OD ( Note 1)
(in I/O common mode)

I
J

----- -----tAee
----'V
_________ JI\
-----

I--tDFValid data

----

Notel: For data input/output separation, OD is made low.

(2) Write cycle
twe

Ao-As

cs

W

V--

JI\

.JIL-

,

l/
~

OD ( Note 2)
(in I/O common mode)

)

1"-V
tDH

i--=+

I---tos-

------ ----'V
------ ____ .11\tow

,V- ---~~- ----

Valid data

~

twp

'\

R/W

U

1\
I------tAW_

i--twR-

Note 2 : tn I/O common mode, OD is made high during the write period. For data input! output separation, OD may be either high
or low.

(3) Low-voltage data hold

Supply voltage

.

CS

---

'r

,~~n-----J ~~~~~ ~"~---1
.

Vo.--------teoR

~~~:::::::~~=====~======;
OV---

-

-

-

---

---'----.-..---SHARP . - . - . - - - - - - - -

673

LH51 02/LH51 02-8

CMOS 2048-81t Static Random Access Memory

•

Electrical Characteristics Curves (Vcc=5V, Ta=25"C unless otherwise specified)
Access time vs. supply voltage
1.4

"...,.

1.2

].,
Il::
u
u

1.0

.j

.,

.~

'.,'""
"
<:"

1.4

Ta=700e

..=

.::

Access time vs. ambient temperature

0.8

Vee=4.75 V

\

"'"

~

u

j

1.0

....--'

.,

~

V

V

V

/

.~

'" 0.8

~

<:"
0.6
4.0

0.6
5.5
4.5
5.0
Supply voltage Vee (V)

6.0

Current consumption vs. supply voltage

o

75
25
50
Ambient temperature Ta

100

coe)

Current consumption vs. ambient
temperature

5.0

5.0

<:
6

~

-

4.0

tl

13.0

~

§

i"

2.0

....-- ~

-

~

-

4.0

~

3.0

u
u

~§
"
~
"l3

l3"
1.0
4.0

2.0

1.0
4.5
5.0
5.5
Supply voltage Vee (V)

6.0

Input voltage vs. supply voltage

o

50

100

75

re)

Input voltage vs. ambient temperature
2.5

2:

2:

:: 2.0

2.0r---+---

>

., 1.5 i-----+----+---+----I
~

.:!::

1

~

0.5!";:-_ _:'-:-_ _:::-::-_ _-="="_ _-:'
4.0
4.5
5.0
5.5
6.0
Supply voltage Vee

(V)

-

V1L(MAX.)

:;

1.0 ......."----+----+---+----1

-

V1H(MIN.)

>.," 1.5

>

J

25

r--

Ambient temperature Ta

2 . 5 . - - - . , - - - . . . , - - -....- - ,

>;:;

r--

u

u

..I

--- ---

.§

11.0
0.5

o

25

50

100

75

Ambient temperature Ta

ee)

-~-~----SHARP--------~-~-~

674

CMOS 2048-Bit Static Random Access Memory

LH5102W

LH5102W

CMOS 2048-Bit Static Random· Access
Memory

•

Description
The LH5102W is a fully static RAM organized
as 512-word-by-4-bit by using metal-gate CMOS
process technology.

•

Pin Connections

o

Vee

A.
R!W
As

•

Features
512-word-by-4-bit organization
Single + 5V power supply
Low power consumption
Data can be held on + 2V supply voltage
All inputs and outputs TTL compatible
Three-state outputs
Fully static operation
Pin compatible with SHARP LH5101 or Intel
5101 (except Pin-19)
9. Access time (MAX.) : 1,200ns
10. 22-pin dual-in-line.package
1.
2.
3.
4.
5.
6.
7.
8.

•

Top View

Block Diagram

:J-----iRow

Row

!r-_-.....Buffers

Decoders

l--_-;of.Address.t==~Address

Chip Select Input 1 7 ' ) - + - - - - - - - ,

00----1 Input
l}----..... Data

.3}----..;o-j Control

Output Disable 181}----C>O-------L..J

~--------------------------~5~6

7~------~

'-----r---"
Address Input

--------------SHARP----------675

CMOS 2048-Bit Static Random Access Memory

•

lH51{)2W

Absolute Maximum Ratings
Parameter
Supply voltage *
Input voltage *
Output voltage *
Operating temperature
Storage temperature

-

Ratings
-0..3-+7.0.
-D.3- Vee+ D.3
-0.3 Vec +0.3
-20.-+70
-55 +150.

Symbol
Vee
VIN
,VOUT
Toor
T st•

*The maximum applicable voltage on any pin with respect to GND.
•

Unit
V
V
V
.'C
'C

Recommended Operating Conditions
Parameter
Supply voltage
Input voltage

•

Symbol

MIN.
4.0.
-0..3
2.2

Vee
V1L
V IH

TYP.
5

MAX.
5.5
0..65
Vee

Unit
V
V
V

(V ee =5V±10%, Ta=-2D-+70'C)

D'C Characteristics
Parameter
Input low voltage
Input high voltage
Output low voltage
Output high voltage
Input current
Output leakage current
Current consumption
Chip disabled current
consumption

•

Symbol
V1L
ViH
VOL
VOH
I ILl I
I Iw I
IcCl
Iec2

MIN.
0..3
2.2

IOL -2.DmA
IoH =-1.DmA
V1N-DV or Vee
CS~0.2V, VOUT-OV or Vee
Output open, V IN - Vee
Output open, VIN=2.2V

rCeL

CS;a;0.2V

I Symbol I
t Re
t Aee
teo
taD
tDF
tOH
twe
tAW
tDW
tDH
twp
tWR
t DS

MIN.

I

TYP.

I MAX. I

Unit

1.2
1.2
50.0.
250.

ps
j.lS
ps
ns
ns
ns

1.2

0.
0.
1.2
30.0.

6
10.0.
40.0.
20.0.
250

j.lS

ns
ns
ns
ns
ns
ns

Test conditions of AC characteristics
• Input voltage aIp.plitude···················· .. ····················· +0.65-+2.2V
• Input rising/falling time' ......................................... 20ns
• Timing reference lE\vel ............................................ 1.5V
• Output load condition ......................'....................... 1TTL + 100pF

676

TYP.

MAX.
0..65

7.0.
' 1.0
22
27

Unit
V
V
V
V
,pA
pA
rnA
rnA

20.0.

pA

Vee
0..4

2.4

(Vee=5V± 10%, Ta=-2D-+7D'C)

AC Characteristics

Parameter
Read cycle
Cycle time
Access time
Chip enable time
Output enable time
Chip turn·off time
Data hold time
Write cycle
Cycle time
Access time
Data setup time
Data hold time
Pulse width
Recovery time
Input enable time

Conditions

3
13

LH5102W

CMOS 2048-Bit Static Random Access Memory

•

. (Ta=-20-+70'C)

Low-Voltage Data Hold Characteristics
Parameter
Supply voltage for data hold
Supply current for data hold
Chip turn-off time
Operation recovery time **

Symbol
VOR
IccoR
tCOR
tR

Conditions
Vcs";;0.2V
Vcs~0.2V, VOR=2.0V

MIN.
2.0

TYP.

MAX.

Unit
V

40

pA
ns
ns

0
tRc

** In data hold mode, all input/output pins are put below VDR. tRC : Read cycle time
•

(f=IMHz, Ta=25'C)

Capacitance
Parameter
Input capacitance
Output capacitance

Symbol
CIN
COUT

Conditions
VIN=OV
VOUT=OV

MIN.

TYP.

6
15

MAX.
10
20

Unit
pF
pF

B

677

LH51.02W

CMOS 2048-Bit Static Random Access Memory

•

Timing

Diagram

(1). Read cycle

Ao-As

cs
J---1I----tco---..-i
OD (Note 1)
(in I/O common mode)

DO,-DO.

Valid d!lta

Notel: For data input/output separation, OD is made low.

(2) Write cycle
J---------twc------------~~

cs
OD (Note 2)
(in I/O common mode)
tDH

_ _~f_--!::::::j""----twp------lr_-.......,r_-R/W

Note 2 : In 110 common mode, OD is made high during the write period. For data input/output separation, OD may
be either high or low.

(3) Low-voltage data hold

_1m~:-_h:"_'~~=-l

8"",1, ........¥l'l'--·

VOR--------

cs

678

V[H~~~-----------------~~
O.2V---

--

ov--- -

-

-

-

-

-

--

--

---

-

-

---

---

LH5102W

CMOS 2048-Bit Static Random Access Memory

•

Electrical Characteristics Curves (Vcc=5V, Ta=25°C unless otherwise specified)
Access time vs. supply voltage
1.4

Ta=70'C

\

~

0.8

..,
0.6
4.0

...,

1.4

Vee=4.5V

/

>

:J..,'"

«:

.,
..El

.,
.~

Access time vs. ambient temperature

4.5

.~

1.2

.,

~
~

'""

5.0

5.5
Supply voltage Vee (V)

u
u

1.0

."!

,../

.,

,,/'

V

V

.~ 0.8

.,..,''""
..,

«:
6.0

0.6
-20

0

20

40

60

80

Ambient temperature Ta

Current consumption vs. supply voltage

100

('C)

Current consumption vs. ambient
temperature

5.0

5.0

«:

~

8 4.0

G

.....
.§

~ 3.0

"'"
~

i...

2.0

~

u

-

........ ~

-

~

.§



>==

:5

VIH(MIN.)

:5

:>

>

.,
:.::

-

1.5
VIL(MAX.)

0

>

:; 1.0

....."""
0.5 ~----:-"=--~7--~-=----:!
4.0
4.5
5.0
5.5
6.0
Supply voltage Vee

(V)

0.5
-20

0204060
Ambient temperature Ta

80

100

('C)

------------$HARP---------679

NMOS· 4096-Bit Static Random Access Memory

LH2114L-20
•

LH2114L-20

NMOS 4096-Bit Static Random
Access Memory
•

Description

Pin Connections

The LH2114L-20 is a fully static RAM organized as 1024-word-by-4-bit by using silicon-gate
NMOS process technology_

o
•

Features
1. 1,024-word-by-4-bit organization
2. Single + 5V power supply
3. Fully static oper~tion (no refresh or clockrequired)
4. All inputs and outputs TTL compatible
5. Three-state outputs.
6. Access time (MAX.) : ,200ns
7. 18-pin dual-in-line package

•

Top View

Block Diagram

Address Input

'"
"...'"
)-----------~~==~ ~ ...~
c "

)-----------c~=====1 ]o 8"

)--_ _ _--{:(~==~

M emory Array
64 Rows
64 Columns

U I=l

Row

I/O

Circuits '

Row Address
Decoders

T

Address Input

680

LH2114L-20

NMOS 4096-Bit Static Random Access Memory

•

Absolute Maximum Ratings
Parameter
Supply voltage *
Input voltage *
Output voltage *
Operating temperature
Storage temperature

Symbol
Vcc
VIN
VOUT
Topr
T.tK

Ratings
-0.5-+7.0
-0.5-+7.0
-0.5-+7.0
0-+70
-55-+150

Unit
V
V
V
t
t

*The maximum applicable voltage on any pin with respect to GND.
•

Parameter
Input low voltage
Input high voltage
Output low voltage
Output high voltage
Input leakage current
Output leakage current
Current consumption

•

(V cc =5V±10%, Ta=0-+70t)

DC Characteristics
Symbol
VIL
VIH
VOL
VOH
I ILl I
I ILO I
Icc

TYP.

MAX.
0.8

2.0
IoL =2mA
IoH =-lmA
VIN=OV or Vcc
CS=V IH, VI/0 =0.4V or Vcc
VIN =5.5V,IlIo=OmA

0.4
2.4

Unit
V
V
V
V

10

~A

10

pA
mA

70

AC Characteristics
(1) Read cycle

i

MIN.

Conditions

Parameter
Cycle time
Access time
Chip enable time
Chip select time
Output turn·off time
Output hold time

(Vcc=5V± 10%, Ta=0-+70t)
Symbol
tRc
t ACC
tCE
tcs
tOF
toH

(2) Write cycle
Parameter
Cycle time
Access time
Pulse width
Recovery time
Data setup time
Output turn·off time
Data hold time

MIN.
200

TYP.

MAX.
200
80

10
70
20

Unit
ns
ns
ns
ns
ns
ns

(Vcc=5V±1O%, Ta=0-+70t)
Symbol
twc
tAW
twp
tWR
tow
tOF
tOH

MIN.
200
15
170
15
100

TYP.

MAX.

70
0

Unit
ns
ns
ns
ns
ns
ns
ns

Conditions for measurment of AC characteristics
• Input signal level .. ·········································· +OA-+2AV
• Input signal rise/fall time ·································10ns
• Time measurement level .................................. ·1.5V
• Output load condition····································· .. 1TTL + 100pF

681

NMOS 4096-Bit Static Random Access Memory

•

LH211.4L-20

Pin Capacitance
Parameter
Input capacitance
Input/output capacitance

•

(f=lMHz, Ta=25'C)
Symbol
CIN
CliO

MIN.

Conditions
VIN=OV
VI/O=OV

TYP.
2
4.5

Timing Diagram
(1)

Read cycle

i--------tRC-------'"'i
i-----tACC--_

(Note) WE is "High"

(2)

Write cycle

Ao-Ag

CS

682

1

tire

tAIr

,. 3

MAX.
5

10

Unit
pF
pF

NMOS 4096-Bit Static Random Access Memory

•

LH2114L-20

Electrical Characteristics Curves (Vcc=5V, Ta=25t unless otherwise specified)
Access time vs. supply voltage

Access time vs. ambient temperature
1.2

1.2

V

~

~

..eco

..

~

..

\

.:::'"
~

1.1

<.>
<.>

1.0

~

j

]'"

.,.,
..,..,'"

0.9

.:::'"

"'"

1.1

~

/
/'

~

"""'-

--

<.>
<.>

1.0

j

]'"

.....
..,..,'"

/'

./

0.9

...:

...:

0.8
4.0

4.5

5.0

Supply voltage Vee

0.8

6.0

5.5

50

c

40

.E:>

~

V

~

V

<.l

~

-.

V
./

40

.,"
.'..'co""
...:

30

OIl

20 0

6.0

5.5
4.5
5.0
Supply voltage Vee (V)

25

50

"

75

100
(,C)

Input voltage vs. ambient temperature

2.5

2.5

2.0

2.0
:c

:5

.'"

~

Ambient.temperature Ta

>
;;.-

~

Co

Input voltage vs. supply voltage

..J

..........

'"
..,"

.E:>
Co

30

20
4.0

50

c

,/

~

?::

100
('G)

60

...:

..
:f
..'..'""
...:

75

...:

~

il

50

Average supply current vs.
ambient temperature

60

-..'"

25

Ambient temperature Ta

Average supply current vs.
supply voltage

<.>

o

(V)

VII!:--

1.5

~

OIl

.

.±:

i

:; 1.0
Co
.E
0.5
4.0

VlH
VIL

~

VIL

0

> 1.5
1.0

.E

4.5

5.0

Supply voltage Vee

5.5
(V)

6.0

50
75
25
100
Ambient temperature Ta ('C)

683

--------_....... .. ....- ..................- CMOS 4096""Bit Static Random Access Memory:'

.- .-

LH5114-4
•

LH5114-4

-

CMOS 4096. . Bit Static Random
Access
.
Memory
.'
\

•

Description

Pin Connections

The LH5114-4 is a fully static RAM organized
as 1024-word-by-4-bit by using silicon-gate
CMOS process technology.

o
•

Features
1. 1,024-word-by-4-bit organization
2. Single + 5V power supply
3. Fully static operation
4. All inputs and outputs TTL compatible
5. Three-state outputs
6. Access time (MAX.) : 450ns
7. Data can be held on + 2V supply voltage
8. Supply current at standby mode 10 ~A
(MAX.) on + 2V supply voltage
9. 18-pin dual-in-line package

•

Top View

Block Diagram

Memory Array
32 Rows
128 Columns

Chip Select Input ~

....--..

'fY=)

Write Input lO~-+~_~f---------rHH-t-----'

~----------------~~~~~~--------~
'----v--'

Address Input

684

LH5114-4

CMOS 4096-Bit Static Random Access Memory

•

Absolute Maximum Ratings
Parameter
Supply voltage *
Input voltage *
Output voltage *
Operating temperature
Storage temperature

Symbol

Ratings
-0.3-+7.0
-0.3-V ee +0.3
-0.3-V ee +0.3
0-+70
-55-+150

Vee
VIN
VOUT
T oDr
Tst~

Unit
V
V
V
"C
"C

*The maximum applicable voltage on any pin with respect to GND.
•

Recommended Operating Conditions
Parameter
Supply voltage

Symbol

Input voltage
Operating temperature

•

TYP.
5

MAX.
5.5
0.65
Vee
70

Unit
V
V
V
"C
(V ee =5V±10%, Ta=0-+70"C)

DC Characteristics
Parameter
Input low voltage
Input high voltage
Output low voltage
Output high voltage
Input leakage current
Output leakage current
Current consumption
Chip disabled current
consumption

•

MIN.
4.5
-0.3
2.2
0

Vee
V1L
VIH
Toor

Symbol
V1L
VIH
VOL
VOH
I ILl I
I lLO I
Icc

Conditions

IOL=2mA
IoH =-lmA
V1N=OV or Vee
CSS;:V IH • VIIO =O.4V or Vee
CS;;;;;0.65V. VIN=Vee=5.5V
CS;;;;;Vee,O;;;;;VIN;;;;;Vee

IeeL

TYP.

MAX.
0.65

1.0
1.0
15

Unit
V
V
V
V
pA
pA
rnA

100

pA

Vee
0.4

2.4

6

(V ee =5V±10%, Ta=0-+70"C)

AC Characteristics

Parameter
Read cycle
Cycle time
Access time
Chip enable time
Data hold time
Chip turn·off time
Write cycle
Cycle time
Chip select time
Chip select hold time
Access time
Address setup time
Pulse width
Recovery time
Data setup time
Data hold time

MIN.
-0.3
2.2

t

Symbol

t

MIN.

t Re
tAee
teo
tOH
tOF

450

twe
lew
teH
tAW
t AS
twp
tWR
tow
tOH

450
400
20
350
100
250
70
250
50

t

TYP.

t

MAX.

450
500
0
150

t

Unit
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns

Test conditions of AC characteristics
• Input voltage amplitude ........................................... +0.65- +2.2V
• Input rising/falling time .......................................... IOns
• Timing reference level .......... · ................................. 1.5V
• Output load condition· ............................................ 1TTL + 100pF
.---.-~.---SHARP.-----.---

685

CMOS 4096-Bit Static Random Access Memory

•

LH5114-4

Low-Voltage Data Hold Characteristics
Parameter
Supply voltage for data hold

Symbol

Conditions

-

2.2V~VCC(PD ~Vcc

CS voltage for data hold

VCC(CS)

Supply current for data hold
Chip turn-off time
Operation recovery time

Icc PD
ts,PD)
tRPD

VIN=Vcc=2.0V

Symbol
CIN

Conditions
VIN=OV
VIIO=OV

•

MIN.
2.0
2.2
VCCPD

VCC(PD)
2.0V~VcgpQt~2.2V

TYP.

0.5

MAX.

10

Unit
V
V
V

pA
ns
ns

tRC
tRc

Capacitance
Parameter
Input capacitance
Output capacitance

•

CliO

MIN.

TYP.

MAX.
15
35

Timing Diagram
(1)

Read cycle

CS
1/01-1/0.
(Data output)

(2)

Write cycle
twc
tCH

tcw

cs \ \ \ '\

-J- / / / / / /
tAW
tAS ~ \

WE
1/01-1/0.

I

(D ata input)

(3)

'k.

tWR_
twp

«E

Low-voltage data hold

5V

VCC(PD)

OV

tDW
Fixed data

"I .. tDH~

»

Unit
pF
pF

LH5114-4

CMOS 4096-Bit Static Random Access Memory

•

Electrical Characteristics Curves (Vcc=5V. Ta=25"C unless otherwise specified)
Access time vs. supply voltage
1.4

Access time vs. ambient temperature
1.4

Ta=70'C

Vee =4.5 V

~

.

..3

>

.,/'

.~ 1.2

-............
tl 1.0

III

r---........

~

~

-............

III

.§

.,
~
..:"

:; 0.8

0.6
4.0

./
./

]

4.5

5.0

Supply voltage

~ 1.0

"-

5.5
Vee

V

III

.5

:; 0.8

.,.,
..:""

0.6

6.0

o

(V)

25

50

75

Ambient temperature Ta

100
('C)

Average supply' current vs.

Average supply current vs. ambient

supply voltage

temperature

20

20

..:
.5
tl 15

......

~...

e

10

1
;,

...

5

III

>

..:

u

15

".,......

10

~

o

-- ---

4.0

4.5

~

""

~

..,. r----- r--

~

8:

.,
.,"
>

..:

5.0

5.5

Supply voltage Vee

o

6.0

...

III

.,

~

1.0

.:::0

1>

I

-

:>
1.0

eC)

-

Vw
VIL

::

::

:>

r---

= 1.5 ....

:>

:>

100

75

2.0

G
1.5

50

r--

Input voltage vs. ambient temperature

2.0.----,-----r---...,----,

G

25

---

Ambi~nt temperature Ta

(V)

Input voltage vs. supply voltage

=

5

...

>

"S

0.5

.s"'"

o~--~-~~--~--~
4.0
4.5
5.0
5.5
6.0
Supply voltage

Vee

(V)

0.5

o

25

50

Ambient temperature

75
Ta

100
('C)

---.-----SHARP-...-.------~

687

................ -.....

........... ................-....,.....

CMOS'4096-Bit Static Random Access Memory

" "'LH5104-4

~.-~....,

LH5104-4
,•

.-'

CMOS 4096-Bit Static Random Access
Memory
"

Description

•

Pin Connections

The LH5104-4 is a fully static ~AM organized
as 4,096-word-by-l-bit by using silicon-gate
CMOS process technology.

o
•

Features
1. 4,096-word-by-l-bit organization
2. Single +5V power supply
3. Fully static operation (no refresh or clock reo
quired)
4. All inputs and outpu~s TTL compatible
5. Three-state outputs
6. Access time (MAX.) : 450ns
7. Data can be held on + 2V supply voltage
8. Supply current at standby mode 10 pA on
+ 2V supply voltage (MAX.)
9. l8-pin duai-in-line package

•

Top View

Block Diagram

Row
Address
Decoders

Data Input 1ll}--i-----1----:~-11>-------1

l---i>-----i.7 Data Output

Chip Select Input 10!}--;~---==:;J:J_ _ _.J
Write Input

688

8)....;~:±~J---------++-H-+++--...J

CMOS.4096-Bit Static Random Access Memory

•

LH51 04-4

Absolute Maximum Ratings
Parameter
Supply voltage *
Input voltage *
Output voltage *
Operating temperature
Storage temperature

Symbol
Vee
V IN
V OUT
TQI>r
T~

Ratings
-0.3-+7.0
0.3 Vee+ 0.3
-0.3 Vee+ 0.3
0-+70
-55 +150

Unit
V
V
V
"C
"C

*The maximum applicable voltage on any pin with respect to GND.
•

(Vee =5V±10%, Ta=0-+70"C)

DC Characteristics
Parameter
Input low voltage
Input high voltage
Output low voltage
Output high voltage
Input leakage current
Output leakage current

Symbol
VIL
VIH
VOL
VOH
I ILl I
I Iw I

Current consumption

Icc

Chip disabled current
consumption

IeeL

•

Conditions

MIN.

TYP.

MAX.
0.65

1.0
1.0

Unit
V
V
V
V
pA
pA

15

rnA

50

pA

2.2
IOL -3.2mA
IOH ImA
VIN OV or Vee open
CS- VIH, VOUT OAV or Vee open
CS- VIN , Output open
VIN =V ee =5.5V
CS~Vee,

004
204

VIN=OV or Vee

7

AC Characteristics
(1)

(V ee =5V±10%, Ta=0-+70·C)

Read cycle

Parameter
Cycle time
Acc·ess time
Chip enable time 1
Data hold time from address
Chip turn-off time
Output enable time

Symbol
t Re
t Aee
teo
taH
tOF
ta~

(2) Write cycle
Parameter
Cycle time
Chip select time
Access time
Address setup time
Pulse width
Recovery time
Data setup time
Data hold time
Output disable setup time
Output enable setup time

MIN.
450

TYP.

MAX.
450
450

30
120
20

Unit
ns
ns
ns
ns·
ns
ns

(V ee =5V±10%, Ta=0-+70"C)
Symbol
twe
tew
tAW
t AS
twp
tWR
tow
tOH
twz
tow

MIN.
450
320
340
120
200
90
200
300

TYP.

MAX.

110
0

Unit
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns

Test conditions of AC characteristics
• Input voltage amplitude··················· ........................ + 0.65 - + 2.2V
• Input rising/falling time ··········································10ns
• Timing reference level· .......................................... ·1.5V
• Output load condition ................. ····························1 TTL+ 100pF
.-.-----~--.....-.--SHARP .-.~--.--.-.--

689

LH51 04-4

CMOS 4096.;.Bit Static Random Access Memory

•

(f=lMHz, Ta=25"C)

Capacitance
Parameter
Input capacitance
Output capacita~ce

•

Symbol.
CIN
COUT

Conditions
YIN=OY
YOUT=OY

MIN.

TYP.

-

CS v:oltage for data hold

Supply current for data hold
Chip turn·off time
Operation recovery time

YI
Icc PD
tS(pD
tR PD)

Conditions
2.2Y';;:YccPD ';;:Ycc
2.0Y~YCC(PD)~2.2Y

Unit
pF
pF

(Ta=0-+70·C)

Low-Voltage Data Hold Characteristics
Parameter
Symbol
Supply voltage for data holding YCCPD

MAX.
6
15

MIN.
2.0
2.2
YCC(PD)

YIN =Y cc =2.0Y

TYP.

Unit
Y
Y

0.2
t RC
tRc

MAX.

10

flA
ns
ns

'-~-------SHARP~-----'----

690

CMOS 4096-Bit Static Random Access Memory

•

Timing
(1)

LH51 04-4

Diagram

Read cycle

tRC

"V

\V

11\

1\

tOH

tACC

~

tc

cs

\\\\

,'/////1///

~
tou

DOUT

-

tDF

V L II
1\-"'.1'--

Valid data

\

"

\
/J

(2) Write cycle

fE-------twc:--------t

WE

DOUT

(3)

Low-voltage data hold

4.5V

VCC(PD)

OV _~C:.:::S:",-......J

691

CMOS 4096-Bit Static Random Access Memory

•

Electrical Characteristics Curves (Vcc=5V, Ta=25"C unless otherwise specified)
Access time vs. supply voltage

.,.a

1.4

10
;;

1.2

~

Il:::

($ 1.0

;;
.~'"
Ul
Ul

0.8

'"
<""
0.6

1.4

Ta=700e

...

.=:'"

Access time vs. ambient temperature

4.0

...

""

4.5

-............

~
.!!l
'"
Il:::

1.2

u
u

1.0

;;

~

.~'"
Ul
Ul

5.5
Supply voltage Vee (V)

6.0

15

u

......u

10

1

--------,

Ul

.-

5

..

<'"

o

4.0

4.5

~

5.5

5.0

Supply voltage Vee

2.0

G

..

...'"

1.0

..

~

i
..s

----

1.5

>
>

o

25
50
75
100
Ambient temperature Ta (Oe)

~
'ill.

~

4.0

C
.,

...

""

i
.'".."

~

r--

5

..'"

----

~~

<

o

25

50

75

---

100
(Oe)

Ambient temperature Ta

Input voltage .vs. ambient temperature
2.0

G

...

1.5

>

..

>

..'"

1.0

---

--- -

VIH

~L

!

..

'0

1
4.5

10

Ul

6.0

0.5

o

15

(V)

Input voltage vs. supply voltage

...

,

<
3

C

.'."

/

20

<

""

/

Average supply current vs. ambient
temperature

3

..'"

/'

0.8

0.6

5.0

20

u

V

/

"'"
<"

Average supply current vs. supply
voltage

......u

Vee=4.5 V

~

5.0

Supply voltage Vee

5.5
(V)

0.0

0.5

0

25

50

100

75

Ambient temperature Ta

ee)

-----~--~----SHARP.-.-.--.-----

692

CMOS 16384-Bit Static Random Access Memory

LH5116-15/LH5116-20

LH5116-15/LH5116-20

CMOS 16384-Bit Static Random Access Memory
•

Description
The LH5116-15/LH5116-20 are fully static
RAMs organized as 2,04S-word-by-S-bit by using
silicon-gate CMOS process technology_

•

•

Pin Connections

o

Features
2,04S-word-by-S-bit organization
Single +5V power supply
Fully static operation
All inputs and outputs TTL compatible
Three-state outputs
Access time (MAX.)
LH5116-15: 150ns, LH5116-20 : 200ns
7. Supply current at standby mode 10 pA
(MAX.) on + 2V supply voltage
S. 24-pin- dual-in-line package

L
2_
3_
4.
5.
6.

•

Top View

Block Diagram

~VCC
Memory- Array
128 Rows
128 Columns

~GND

Column
Address Buffers

Write In put,$l

}-

Chip Select 18~-t--tL:::8:=:::::
Output Enable 20
)}-----+-11-+--+--------'

1

L---~====~~--------~~r-----------------------~
Address Input

693

LH5116-15/LH5116-20

CMOS 16384-Bit Static Random Access Memory

Absolute Maximum Ratings

•

Parameter
Supply voltage *
Input voltage *
Operating temperature
Storage temperature

Symbol
Vcc
VIN
T OPT
T stg

Ratings
-0.3-+7.0
-0.3-Vcc +0.3
0-+70
-55-+150

Unit
V
V
'C
'C

*The maximum applicahle voltage on any pin with respect to GND.

•

(Vcc=5V±10%. Ta=0-+70'C)

DC Characteristics
Parameter
Input low voltage
Input high voltage
Output low voltage
Output high voltage
Input leakage current
Output leakage current
Current consumption
Current consumption
during standby

Symbol
V1L
VlH
VOL
VOH
I ILl I
I ILO I
ICCI
Icc2
ICCL

MIN.
-0.3
2.2

Conditions

IOL=2.1mA
IoH =-1.0mA
VIN=OV. Vcc
CS=V lH• Vl/o=OV-Vcc
Il/o=OmA (OE=Vccl
Il/o=OmA (OE=V lH )
CS=V cc. all other input pins=
OV-Vcc

TYP.

MAX.
0.8
Vcc+ 0.3
0.4
1.0
1.0
30
40

Unit
V
V
V
V
pA
pA
rnA
rnA

10

pA

2.4

15
25

Note

1
2

Notel: CS=OV; all other input pins=Vcc
Note 2: CS=VIL; all other input pins=VIH

•

AC Characteristics
(1)

Read cycle .
Parameter

Cycle time
Access time
Chip enable time
Chip select time
Output enable time
Output select time
Output turn-off time (from CE 2)
Output turn-off time (from CEll
Data hold time

(Vcc=5V±10%. Ta=0-+70'C)
Symbol
tRc
t ACC
teE
tcs
tOE
tos
tOFl
tOF2
tOH

MIN.
150

LH5116-15
TYP.
MAX.

LH5116-20
TYP.
MAX.

150
150
15

200
200
20
100

75
15
0

0

40
40

15

(2) Write cycle

20
0
0
20

60
60

Unit
ns
ns
ns
ns
ns
ns
ns
ns
ns

(Vcc =5V±10%. Ta=0-70'C)

Parameter

Symbol

Cycle time
Chip select time
Access time
Address setup time
Pulse width
Recovery time
Output turn-off time (from OE)
Data setup time
Data hold time
Output turn-off hold time
(from WE)
Output turn-off time (from OE)

twc
tcw
' tAw
tAs
twp
tWR
tOFl
tow
tOH
tow
tOF2

MIN.
150
110
110
0
110
20

LH5117-15
TYP.
MAX.

MIN.
200
135
135
5
140
35

LH5117-20
TYP.
MAX.

Unit

70
10

80 .
10

ns
ns
ns
as
ns
ns
ns
ns
ns

15

20

ns

40

40

--~-'---~--SHARP

694

MIN.
200

60

60

ns

---.-.-----------

LHS116-1S/LHS116-20

CMOS 16384-Bit Static Random Access Memory

Conditions for measurement of AC characteristics
• Input voltage amplitude ........................................... +0.8- + 2.2V
• Input signal rise/fall time ................ ························10ns
• Time measurement level ····································· .... ·1.5V
• Output load condition ............................................. 1TTL + 100pF

•

Low Supply Voltage Data Hold Characteristics: (Vee =5V±10%, Ta=0-70'C)
Parameter
Data hold supply
voltage
Data hold supply
current
CS setup time
CS hold time

•

Symbol

Conditions

VeeDR

VCs"=Vee, VIN=OV or Vee

IecDR

Vee=Ves=2.0V,
VIN=OV or Vee

MIN.

MAX.

2.0

t Re
tRe

tSDR
tRDR

Unit
V

10

pA
ns
ns

(f=lMHz, Ta=25'C)

Capacitance
Parameter
Input capacitance
Input! output capacitance

•

TYP.

Symbol
CIN
CliO

Conditions
VIN=OV
VlIO=OV
~

MIN.

TYP.

MAX.
5

8

Unit
pF
pF

Timing Diagram
(1)

Read cycle

----tRc-----ti--...j

~:::::::-t-Ac-C~~--~--~---~.-,~~-tO-H----------cs

1------tCE----~"'"

I/O}-I/Os

~--.------SHARP.-----~.-.-~.---

695

.....

....

CMOS.16384-Bit Static Random Access Memory
~

(2)

~.-~~.-~

.-~

LH5116-15/LH5116-20

---.-~

Write cycle (Note 3)
~-----------twc----------~

Ao-AIO
1--------tAW -------+-~;o.j

cs

Note 3:· WE must be high when there is a change in Ao-Alo.
Note 4: When CS and WE are alLlow at the same time, write occurs during the. period twP.
Note 5: tWR is the time from the rise of CS or WE, whichever is first, to the end of the write cycle.
Note 6: During this period the input/output pin is in an output condition, so input with a phase reversed from
that of the output is not permitted.
Note 7: If CS should drop at the same time as WE or later, the output buffer is maintained at high impedance.
Note 8: OE is maintained at "L" level.
Note

9: DOUT outputs data with the same phase as the input data of this write cycle.

Note 10 : If CS is low during this period, the input/output pin is in the output condition. During this condition, a
data input signal with a phase opposite that of the output is not permitted.

(3)

Low supply voltage data hold

~-----;;+<-------

Data hold time

-----~ofE_=:.::...~

5.0V
4.5V
VIH

VCCDR
VIL

GND

696

--------------------------------

CMOS 16384-Bit Static Random Access Memory

•

LH5116-15/LH5116-20

Electrical Characteristics .Curves (Vcc=5V, Ta=25"C unless otherwise specified)
Access time vs. supply voltage

.,.e

Access time vs. ambient temperature

.,.e

1.2

...,.

1.1

.~

1;;

Ql

~
1.0

u
u

""~

.j

.,
.!
.,

1.2

..

.,..

.~

~

1.1

Il::

u
u 1.0

~ ...........

.,
.!
.,

0.9

C/l
C/l

C/l
C/l

/

V

0.9

..:""

..:""

0.8
4.0

4.5

5.0

Supply voltage Vee

5.5

0.8

6.0

o

CV)

25

50

75

Ambient temperature Ta

Average supply current 1 vs.
supply voltage

100

C·C)

Average supply current 1 vs.
ambient temperature

25

25

..:
-!

..:
-!

~

20

u

......u

-.,""
""
"

i
".,
...,.
.."
..:
C/l

15

/
,/

u

.;:;

/'

/

20

C
.,

"

""

b"

15

is:

.'..""
"
C/l

10

-- ---

r-- t---

10

..

..:'"
5
4.0

4.5'

5.0

Supply voltage Vee

5.5

25

6.0

CV)

75

100

C·C)

Input voltage vs. ambien! temperature
2.5

2.5

2:

2:

"

50

Ambient temperature Ta

Input voltage vs. supply voltage

2.0

".,

2.0

>

>

>=

.,OIl

~

.j

./

.
.::

1.5

$-=

1.0

..

0

0.5
4.0

---

~

4.5

~

5.0

Supply voltage Vee

~

>

-

.::0

'"~

VIL

5.5

CV)

1.5

VlH

..

$-=
6.0

VIL

1.0

0.5

o

25

50

75

Ambient temperature Ta

100
(·C)

--------SHARP-~-.-----

697

.........,.........,.....,.....,-

CMOS 16384-Bit Static Random Access Memory
.

LH5117 .:.15/LH5117-20

.-..-......,.....,.-.~

-.....,,.....,

LH5117-15/LH5117-20

CMOS 16384-Bit Static Random Access rtlemory
•

, •

Description

Pin Connections

The LH5117-15/LH5117-20 are f.ully static
RAMs organized as 2,048-word-by-8-bit by using silicon-gate CMOS process technology.

•

o

Features
1. 2,048-word-by-8-bit organization
2. Single +5V power supply
3. Fully static operation
4. All inputs and outputs TTL compatible
5. Three-state outputs
6. Access time (MAX.)
LH5117-15: 150ns, LH5117-20: 200ns
7. Supply current at standby mode 10 pA (MAX.)
on + 2V supply voltage
8. 24-pin dual-in-line package

•

Top View

Block Diagram

--lvcc

~GND

Memory Array
128 Rows
128 Columns

.~~______~~~r-~---------~,~

Data I/O

:ro
¥s

-ui

~

!

r---,

~

'is

Sense Amp.

L---->.
I

.

~

O r :
:::::---->-+-I+t+h
t
t
~
Column
Address Buffers

Write Input~
Chip Enable

::::---

'y-

{~r-jH~=8;:::::~)}-____-+--+--l_+-______--'

L--=====::::.-_.....:..__

--{4

5

6

.7~}----------------l

~

Address Input

698

hIII ~I>-+-+-f-h

Column Decoders

'-r-

f

~

.5il~~
L-k
~

CMOS 16384-Bit Static Random Access Memory

•

Absolute Maximum Ratings
Parameter
Supply voltage
Input voltage
Operating temperature
Storage temperature

•

Symbol
Vcc
VIN
ToDr
Tstg

Ratings
-0.3-+7.0
-0.3-V cc +0.3
0-+70
-55-+150

Unit
V
V
"C
"C

(V cc =5V±10%. Ta=0-+70"C)

DC Characteristics
Parameter
Input low voltage
Input high voltage
Output low voltage
Output high voltage
Input leakage current
Output leakage current
Current consumption
Current consumption
during standby
Notel:
Note 2:

•

LHS117-1S/LHS117-20

Symbol
V1L
VIH
VOL
VOH
I ILl I
I Iw I
Iccl
Icc2
ICCL

Conditions

MIN.
-0.3
2.2

ICL=2.1mA
IoH =-1.0mA
VIN=OV-Vcc
CS2=V IH • VIIO=OV-Vcc
IIIo=OmA (CEl=Vcd
IIIo=OmA (CE I =V IH )
CE 2=V cc. all other input
pins=OV-Vcc

MAX.
0.8
Vcc+ 0.3
0.4
1.0
1.0
30'
40

Unit
V
V
V
V
pA
pA
rnA
rnA

10

pA

2.4

15
25

Note

1
2

CE2=QV; all other input pins=Vcc
CE2=VIL; all other input pins=VIH

AC Characteristics
(1) Read cycle
Parameter
Cycle time
Access time
Chip enable time
Chip select time
Output enable time
Output select time
Output turn·off time (from CE 2)
Output turn·off time (from CEll
Data hold time

(2)

TYP.

(Vcc=5V±10%. Ta=0-+70"C)
Symbol
tRC
t ACC
tCE
tcs
tOE
tos
tDFl
tDF2
toH

MIN.
150

LH5117-15
TYP.
MAX.

MIN.
200

200
200

150
150
15

20
75

15
0
0
15

LH5117-20
TYP.
MAX.

40
40

Write cycle

100
20
0
0
20

60
60

Unit
ns
ns
ns
ns
ns
ns
ns
ns
ns

(Vcc =5V±10%. Ta=0-70"C)

Parameter

Symbol

Cycle time
Chip select time
Access time
Address setup time
Pulse width
Recovery time
Output turn-off time (from WE)
Data setup time
Data hold time
Output turn-off hold time
(from WE)

twc
tcw
tAW
tAS
twp
tWR
tDF
tDW
tDH

tow

MIN.
150
110
110
0
110
20

LH5117-15
TYP.
MAX.

MIN.
200
135
135
5
140
35

LH5117-20
TYP.
MAX.

Unit

70
10

80
10

ns
' ns
ns
ns
ns
ns
ns
ns
ns

15

20

ns

40

---~"""-'--'-'--SHARP

60

------.-.----.-.

699

CMOS 16384-Bit Static Random Acce~s Memory

LH5H7-15/LH5117;.20

Conditions for measurement of AC characteristics
• Input voltage frequency width .: ............................... + 0.8 - + 2.2V
• . Input signal rise/fall time
.··············,··················10ns
• Time measurement level
·························:·······1.5V
• Output load conditions
······· .. ·····················:··1 TTL+ 100pF

•

. Low Supply Voltage Da~a Hold Characteristics
Parameter"

(Vcc =5V±10%. Ta=0-70"C)

Symbol

Conditions

MIN.

Data hold' supply voltage

VCCDR

V~E2=VCC. VIN=OV or Vcc

2.0

Data hold supply voltage

IccDR

VCC=VCE2=2.0V.
VIN=OV or Vcc

CS setup time
CS hold time

tSDR
tRDR

•

MAX.

Unit
V

10

pA
ns
ns

t RC

t RC

(f=1MHz. Ta=25"C)

Capacitance
Parameter
Input capacitan<;e
Input! output capacitance

•

TYP.

Symbol
CIN
CliO

Conditions
VIN=OV
VlIO=OV

MIN.

TYP.

MAX.
5

8

Unit
pF
pF

Timing Diagram
(l)

Readicycle

1-------tRC-----~~

~:= =-=-=-=- t-AC-C-=-=- =- =- =- =- . . .;-~;!-ci-tO-H-----

CE2

~----tCE----_3>oj

-.----------,-SHARP----.---~~.---

700

CMOS 16384-Bit Static Random Access Memory

LH5117-15/LH5117-20

(2) Write cycle (Note 3)/
~----------twc----------~~

~---------tAW--------~~~

14--+--- tcw (Note 7) --------;~

Note 3 : WE must be high when there is a change in Ao-AlO.
Note 4 : When CE2, CEI, and WE are all low at the same time, write occurs during the period twP.
Note 5 : tWR is the time from the rise of CE2 and CEI or WE, whichever is first, to the end of the write cycle.
Note 6 : During this period the input/output pin is in an output condition, so input with a phase reversed from that of
the output is not permitted.
Note 7 : If CE2 or CEI should drop at the same time as WE or later, the output buffer is maintained at high impedance.
Note 8 : Dour outputs data with the same phase as the input data of this write cycle.
Note 9 : If both CEI and CE2 are low during this period, the input/output pin is in the output condition.

(3) Low supply voltage data hold

5.0V
4.5V
VIH

VCCDR
VIL

GND

--------------------------------

-----------SHARP----.-.-.----701

OMOS 16384-Bit Static Random Access Memory

LH5117-15/LH5117-20

Electrical Characteristics Curves (Vcc=5V, Ta=25°C unless otherwise sp~ified)

•

Access time vs. supply voltage

.,

Access time vs ..ambient temperature

.,

1.2

.,.

,...

..e
III

.:=

..e

...

1.1

III

~
<.l
<.l

III

1.0

<

.,.,

~

<.l
<.l

1.0

.,.,
<""

0.9

III

<""
0.8

4.0

4.5

5.0

Supply voltage

5.5

Vee

0.8

6.0

CV)

<

C'C)

<

20

<.l
<.l

....

15

10

"...,

~

~

~

...'"
...

...'",.
III

III

20

III

b"
.,~

15

10

- --

r----

--

III

<

<
5
4.0

4.5

5.0

Supply voltage Vee

5.5

25

6.0

50

Input voltage vs. supply voltage

~

100

75

Ambient temperature Ta

CV)

C'C)

Input voltage vs. ambient temperature

2.5,-----r----.,---,----....,

2.5

~

:::l 2 . 0 1 - - - - t - - - + - - - + - - _ j

:>

:::l 2.0

:>

=

VIH

:>

1.51----t---+--==;;;;;;o-+~=-_j

~

.:::
~

11.01---+---+----+-----j

0.5 L-_ _I-_--:-I-_--:-I.:-_~
4.0
4.5
5.0
5.5
6.0
Supply voltage V cc

702

100

75

-.§.
/

III

50

25

-.§.

....
b"
...,g;
..,.g:,

25

Average supply current 1 vs.
ambient temperature

25

i..

o

Ambient temperature Ta

Average supply current 1 vs.
supply voltage

<.l

/

V

.,

.!j

III

....<.l

/'

:!

~

0.9

V

./

1.1

~

I'"

III

]

.:=

"~

]

..

1.2

(V)

-

-VIH
r-VIL

25

50

75

Ambient temperature Ta

100

C'C)

CMOS 16384-Bit Static Random Access Memory

LH5118-15/LH5118-20

LH5118-15/LH5118-20
CMOS 16384-Bit Static Random Access Memory
.
•

•

Description

Pin Connections

The LH5118-15/LH5118-20 are fully static
RAMs organized as 2,048-word-by-8-bit by using silicon-gate CMOS process technology.

•

o

Features
1.
2.
3.
4.
5.
6.

2,048-word -by- 8- bit organization
Single +5V power supply
Fully static operation
All inputs and outputs TTL compatible
Three-state outputs
Access time (MAX.)
LH5118-15: 150ns, LH5118-20: 200ns
7. Supply current at standby mode 10 pA (MAX.)
on + 2V supply voltage
8. 24-pin dual-in-line package

•

Top View

Block Diagram

Memory Array
128 Rows
128 Columns

"0

!::c

Data I/O

o

U

L~===~::!.:"'::"'::::'::'-_-<4

5

6

7 } - - - - - - - -_ _ _ _....I

\ Addresvs Input

J

~.-.-------SHARP--.------

703

lH5H8-15/LH5118-20

CMOS:16384..;Bit Static Random Access Memory

•

Abs.olute Maximum Ratings
Parameter
Supply voltage
Input voltage
Operating temperature
Storage temperature

•

Symbol
Vcc
VIN
Toor
T st•

Ratil).gs
-0.3-:-+7.0
-0.3-Vcc +0.3
0-+70
-55-+150

Unit
V
V
"C
"C
(Vcc=5V± 10%. Ta=O- +70"C)

DC Characteristics
Parameter
Input low voltage
Input high voltage
Output low voltage
Output high voltage
Input leakage current
Output leakage current

Symbol
V1L
VIH
VOL
VOH
I ILl 1

I Iw I

Current consumption

ICCI
Icc2

Current consumption
during standby

IccL

Conditions

MIN.
-0.3
2.2

ICL=2.1mA
IoH =-1.0mA
VJN=OV-Vcc
CE 2=V IH or CE I =V IH •
Vl/O=OV-Vcc
Il/o=OmA (WE=Vccl
Il/o=OmA (WE=V1Ll
CE 2 and CE I = Vcc. all other
input pins=OV-Vcc

TYP.

MAX.
O.B
Vcc+ 0.3
0.4
1.0

Unit
V
V
V
V
pA

1.0

pA

30
40

rnA
rnA

10

pA

2.4

15
25

Note 1: CE2=CEl=OV; all other pins=Vcc
Note 2: CE2=CEl=VIL; all other pins=VIH

•

AC Characteristics
(1)

Parameter
Cycle time
Access time
Chip enable time
Chip select time
Output enable time
Output select time
Output turn-off time (from CE 2)
Output turn-off time (from CEll
Data hold time(from address)

(2)

(Vcc =5V±10%. Ta=0-+70"C)

Read cycle
Symbol
tRc
tACC
tCE
tcs
tOE
tos
tOFl
tOF2
tOH

LH511B-15
TYP.
MAX.

MIN.
200

150
150
15
15
0

6

LH511B-20
TYP.
MAX.
200
200

20
150
40
40 .

15

200
20
0
0
20

60
60

Unit
ns
ns
ns
'ns
ns
ns
ns
ns
ns

(V cc= 5V± 10%. Ta=0-70"C)

Write cycle
Parameter

Symbol

Cycle time
Chip select time
Access time
Address setup time
Pulse width
Recovery time
Output turn-off time (from WE)
. Data setup time
Data hold time
Output turn-off hold
time (froni WE)

twc
tcw
tAW
tAS
twp
tWR
t
tow
tOH

704

MIN.
150

tow

MIN.
150
110
110
0
110
20

LH511B-15
TYP.
MAX.

MIN.
200
135
135
5
140
35

LH511B-20
,MAX.
TYP.

Unit

70
10

BO
10

ns
ns
ns
ns
ns
ns
ns
ns
ns

15

20

ns

40

60

Note

1
2

LHS118-1S/LHS118-20

CMOS 16384-Bit Static Random Access Memory

Conditions for measurement of AC characteristics
• Input voltage amplitude········ .. ································· +O.8-+2.2V
• Input signal rise/fall time .. ········· ·····························10ns
• Time measurement level· .. ·······································1.5V
• Output load condition············································· 1TTL + 100pF

•

Parameter

•

Symbol

Conditions

MIN.

Data hold supply voltage

VeeDR

Vcrz=Vee• VIN=OV or Vee

Z.O

Data hold supply current

IeeDR

Vec=VeE2=Z.OV.
VIN=OV or Vee

CS setup time
CS hold time

tSDR
tRDR

TYP.

MAX.

Unit
V

10

p.A
ns
ns

tRe
t Re

(f=lMHz. Ta=Z5"C)

Capacitance
Parameter
Input capacitance
Input/output capacitance

•

(V ee =5V±10%. Ta=0-70"C)

Low Supply Voltage Data Hold Characteristics

Symbol
C IN
CliO

Conditions
VIN=OV
VIIO=OV

MIN.

. TYP.

MAX.
5

8

Unit
pF
pF

Timing Diagram
(1) Read cycle

t-----tRc----\k--l
A.-AI.

~=-=- =- =- =- :. .-t-A-C - - - - - - - -l>.-I.......;{f-tO-H----o!
iE------tCE----~

iE----tcs-----i

~_r±_----r_~~

1/01-1/0.

705

/

CMOS 16384-Btt Static Random Access Memory

LH5118-15/LH5118-20'

(2) Write cycle (Note 3)

~------------twe----------~~

Note 3 : WE must be high when there is a change in AD-AID.
Note 4 : When CE2, CEI, and WE are all low at the same time, write occurs during the period twP.
Note 5 : tWR is the time from the rise of CE2 and CEI or WE, whichever is first, to the end of the write cycle.
Note 6 : During this period, the input/output pin is in an output condition, so input with a phase reversed from that of
the output is not permitted.
Note 7 : If CE2 or CEI should drop at the same time as WE or later, the output buffer is maintained at high impedance.
Note 8 : DOUT outputs data with the same phase as the input data of this write cycle.
Note 9 : If both CEI and CE2 are low during this period, the input/output pin is in the output condition. During
this condition, a data input signal with a phase opposite that of the output is not permitted.

(3)

Low supply voltage data hold

5.0V
4.5V
VlH
Vee DR

VIL

GND

'--~-~'-----SHARP"-""--'-'--~---

706

CMOS 16384-Bit Static Random Access Memory

•

LH5118-15/LH5118-20

Electrical Characteristics Curves (Vcc=5V, Ta=,25°C unless otherwise specified)
Access time vs. supply voltage

.,..e
...,.

.

.~

1.1

P:::
u
u

j

.,
.,.,
.,
..:""
]

.,..e

1.2

Ql

1.0

0.9

0.8
4.0

Access time vs. ambient temperature
1.2

..

"-

""
4.5

.,..
.~
..!S
.,

1.1

u

1.0

L

~

5.0

Supply voltage Vee

u

,/

j

.,

""

]

.,.,

.,
..:""

0.9

0.8

6.0

5.5

o

(V)

G 20

C
.,
15

10

/'

V

v

G 20

V

.,.

15

"
.Q
§:
.,os

10

C

.

..:"

5
4.5

5.0

6.0

5.5

o

25

50

75

100

(·C)

Input voltage vs. ambient temperature
2.0

C
1.5

2.0

'"

~

1.0

-- ----

--- -

;;-==

4.5

5.0

Supply voltage Vee

VIL
1.0

"~

.::co

..

VIL

:; 0.5

""

......c

c
......

0.5
4.0

VlH

;;-

VlH

1.5

"~

i

r--- r--

Ambient temperature Ta

Input voltage vs. supply voltage

..

5

(V)

2.5

==
;;-

'""'"

os

.."..

Supply voltage Vee

...
:>

-- --

..:i

.

4.0

C

100

(·C)

..:
5

..:i

.,
.,..""
..:

75

25

25

"
.Q
.,""os""

5Q

Average supply current 1 vs.
ambient temperature

..:
5

os

25

Ambient temperature Ta

Average supply current 1 vs.
supply voltage

..

/'

V

P:::

V

5.5
(V)

6.0

0

75
50
25
Ambient temperature Ta (·e)

100

707

NMOS6.5536-Bit Dynamic Random Access Memory

LH21.64-15/LH2164-20

LH2164-15/LH2164-20

NMOS 65536-Bit Dynamic Random Access Memory
•

Description

•

Pin Connections

The LH2164 is a dynamic RAM organized as
65,536-word-by-1-bit by using high-performance
depletion load, n-channel double-poly silicon-gate
MOS technology.

o
•

Features

1. 65,536-word-by-1-bit organization
2. Access time (MAX.)
LH2164-15: 150ns, LH2164-20 : 200ns
3. Cycle time (MIN.)
LH2164-15: 270ns, LH2164-20 : 330ns
4. Power supply: +5V±10%
5. Power dissipation (MAX.) : 248mW(operation)
: 28mW(standby)
6. All inputs and outputs TTL compatible
7. Address and input date latch capability. __
8. Three-state outputs date controlled by CAS
and not latched at the end of cycle
9. Common 110 capability using the early-write
mode
10. Read/modify/write, page-mode, RAS-only refresh, and hidden ~efresh capabilities
11. Built-in gated CAS function
12. Built-in biasing-voltage generator circuit for
high-output board
13. 2 ms refresh period, 128 cycle refresh
14. 16-pin dual-in-line package

Top View

------.-~-~---SHA~P-.-- ....... - . . . . - . . - -

708

NMOS 65536-Bit Dynamic Random Access Memory

•

LH2164-15/LH2164-20

Block Diagram

;;.,

''""

{Row

addres~.I.mn addrs. ~
-tWCR

I !WC~

\l--

~

twp

~--

X

tCWL
/

tRWL
-t'DHValid data

K

tDHR
High impedance
DOUT

(3)

Read write and read modify write cycles

tRWC
tRAS

~

tAR

1

tCSH
tRSH
tCAS

f-o---- t RCD---;---'"

/

\. \.
tA~ ~

-~ow

tASC

.-1"4-

-t~X

addres!x'

J

teAH

t---

Column address

~

~tCWL-

-tRWL-

-I

tRWD
.
k---tCAC-----

Navigation menu