1986_Siliconix_FET_Databook 1986 Siliconix FET Databook
User Manual: 1986_Siliconix_FET_Databook
Open the PDF directly: View PDF .
Page Count: 374
Download | |
Open PDF In Browser | View PDF |
January 1986 Small-Signal FET Data Book Siliconix Siliconix Incorporated reserves the right to make changes In the circUitry or specifications at any time without notice and assumes no responsibility for the use of any circuits described herein and makes no representations that they are free from patent infringement Warning Regarding Lile Support Applications Siliconix products are not sold for applications In any medical equipment Intended for use as a component of any life support system unless a specIfic written agreement pertaining to such Intended use IS excecuted between the manufacturer and Siliconix Such agreement will require the equipment manufacturer either to contract for additional reliability testing of the Slllconix parts and/or to commit to undertake such testing as a part of ItS manufactUring process In addition, such manufacturer must agree to indemnify and hold Siliconix harmless from any claims arising out of the use of the Slllconix parts In life support equipment . Stresses listed under "Absolute Maximum Ratings" may be applied (one at a time) to devices without resulting In permanent damage This is a stress rating only and not subject to production testing. Exposure to absolute maXimum rating conditions for extended periods may effect device reliability © 1986 Siliconix Incorporated Printed in U.S.A. Siliconix Introduction Design Alternatives Data Sheets Geometry Selector Guides Package Data Application Notes Worldwide Sales Offices Siliconix _ _ _ _, _ _, _ _ 7 Table of Contents Section 1. Introduction Small Signal FET ....................................................................... 1-1 Glossary of Terms and Abbreviations .................................................... 1-2 How to Use the Cross Reference ......................................................... 1-5 Cross Reference ........................................................................ 1-6 Product Information ....................................................................1-17 Hi-Rei Capabilities ......................................................................1-18 Process Option Flow Chart ..............................................................1-19 Additional Product Options for European Customers ...................................... 1-20 Die Process Information ................................................................1-21 Section 2. Design Alternatives The Source for FETs ..................... 2-1 Using JFETs as Front-End Devices for Op Amps ............................ 2-2 Compare Using JFETs as Front-End Devices ................................. 2-2 JFETs as Front-End Devices with a BiFET Op Amp ........................... 2-2 Using FETs as Analog Switches .......... 2-3 Using JFETs as Diodes ................... 2-3 FETs as Current Regulator ................ 2-4 Section 3. Data Sheets 2N3819 ................................. 3-1 2N3821 ................................. 3-2 2N3822 ................................. 3-2 2N3823 ................................. 3-2 2N3824 ................................. 3-3 2N3921 ................................. 3-4 2N3922 ................................. 3-4 2N3954 ................................. 3-5 2N3954A ................................ 3-5 2N3955 ................................. 3-5 2N3955A ................................ 3-5 2N3956 ................................. 3-6 2N3957 ................................. 3-6 2N3958 ................................. 3-6 2N3970 ................................. 3-7 2N3971 ................................. 3-7 2N3972 ................................. 3-7 2N4084 ................................. 3-4 2N4085 ................................. 3-4 2N4091 ................................. 3-8 2N4092 ................................. 3-8 2N4093 JAN TX ......................... 3-8 2N4117 ................................. 3-9 2N4117 A ................................ 3-9 2N4118 ................................. 3-9 2N4118A ................................ 3-9 2N4119 ................................. 3-9 2N4119A ................................ 3-9 2N4220 ................................3-10 2N4220A ...............................3-10 2N4221 ................................3-10 2N4221A ...............................3-10 2N4222 ................................3-10 2N4222A ...............................3-10 2 N4223 ................................3-11 2 N4224 ................................3-11 2N4338 ................................3-12 2N4339 ................................3-12 2N4340 ................................3-12 2N4341 ................................3-12 2N4391 ................................3-13 2N4392 ................................3-13 2N4393 ................................3-13 2N4416 ................................3-14 2N4416A ...............................3-14 2N4856 ................................3-15 2N4856A ...............................3-16 2N4857 ................................3-15 2N4857A ...............................3-16 2N4858 ................................3-15 2N4858A ...............................3-16 2N4859 ................................3-15 2N4859A ...............................3-16 2N4860 ................................3-15 2N4860A ...............................3-16 2N4861 JAN TX ........................3-15 2N4861A ...............................3-16 2N4867 ................................3-17 2N4867A ...............................3-17 2N4868 ................................3-17 2N4868A ...............................3-17 2N4869 ................................3-17 2N4869A ...............................3-17 2N5018 ................................3-18 2N5019 ................................3-18 2N5045 ................................3-19 Silicanix Table of Contents (Continued) Section 3. Data Sheets (Cont'dj 2N5046 2N5047 2N5114 2N5115 2N5116 2N5196 2N5197 2N5198 2N5199 2N5432 2N5433 2N5434 2N5452 2N5453 2N5454 2N5457 2N5458 2N5459 2N5460 2N5461 2N5462 2N5463 2N5464 2N5465 2N5484 2N5485 2N5486 2N5515 2N5516 2N5517 2N5518 2N5519 2N5520 2N5521 2N5522 2N5523 2N5524 2N5545 2N5546 2N5547 2N5564 2N5565 2N5566 2N5638 2N5639 2N5640 2N5902 2N5903 2N5904 2N5905 ................................3-19 ................................3-19 ................................3-20 ................................3-20 JAN TX ........................3-20 ................................3-21 ................................3-21 ................................3-21 ................................3-21 ................................3-22 ................................3-22 ................................3-22 ................................3-23 ................................3-23 ................................3-23 ................................3-24 ................................3-24 ................................3-24 ................................3-25 ................................3-25 ................................3-25 ................................3-25 ................................3-25 ................................3-25 ................................3-26 .............. " ................. 3-26 ................................3-26 ................................3-27 ................................3-27 ............................... :3-27 ................................3-27 ................................3-27 ................................3-27 ................................3-27 ................................3-27 ................................3-27 '................................3-27 ................................3-28 ................................3-28 ................................3-28 ................................3-29 ................................3-29 ................................3-29 ................................3-30 ................................3-30 ................................3-30 ................................3-31 ................................3-31 ................................3-31 ................................3-31 2N5906 ................................3-31 2N5907 ................................3-31 2N5908 ................................3-31 2N5909 ................................3-31 2N5911 ................................3-32 2N5912 ................................3-32 2N6905 ................................3-33 2N6906 ................................3-33 2N6907 ................................3-33 2N6908 ................................3-34 2N6909 ................................3-34 2N6910 ................................3-34 2N6911 ................................3-35 3N163 .................................3-36 3N164 .................................3-36 BF244A ................................3-37 BF244B ................................3-37 BF244C ................................3-37 BF245A ................................3-38 BF245B ................................3-38 BF245C ................................3-38 BF256LA ...............................3-39 BF256LB ...............................3-39 BF256LC ...............................3-39 CR022 through CR530 .................. 3-40 CRR0240 through CRR4300-2 ............ 3-41 DN5564 ................................3-43 DN5565 ................................3-43 DN5566 ................................3-43 DN5567 ................................3-44 DPAD1 .................................3-45 DPAD2 .................................3-45 DPAD5 .................................3-45 DPAD10 ................................ 3-45 DPAD20 ................................3-45 DPAD50 ................................3-45 DPAD100 ...............................3-45 FN4117 ................................3-46 FN4117A ...............................3-46 FN4118 ................................ 3-46 FN4118A ...............................3-46 FN4119 ................................3-46 FN4119A ...............................3-46 FN4392 ................................3-47 FN4393 ................................3-47 J105 ...................................3-48 J106 ...................................3-48 J107 ...................................3-48 J108 ...................................3-49 J109 ...................................3-49 Siliconix Table of Contents (Continued) Section 3. Data Sheets (Cont'd) J110 ...................................3-49 J111 ...................................3-50 J111A ..................................3-51 J112 " .................................3-50 J112A ..................................3-51 J113 ...................................3-50 J113A ..................................3-51 J174 ...................................3-52 J175 ...................................3-52 J176 ...................................3-52 J177 ...................................3-52 J201 ...................................3-53 J202 ...................................3-53 J203 ...................................3-53 J204 ...................................3-53 J210 ...................................3-54 J211 ...................................3-54 J212 ...................................3-54 J230 ...................................3-55 J231 ...................................3-55 J232 ...................................3-55 J270 ...................................3-56 J271 ...................................3-56 J300 ...................................3-57 J304 ...................................3-58 J305 ...................................3-58 J308 ...................................3-59 J309 ...................................3-59 J310 ...................................3-59 J500 ...................................3-60 J501 ...................................3-60 J502 ...................................3-60 J503 ...................................3-60 J504 ...................................3-60 J505 ...................................3-60 J506 ...................................3-61 J507 ...................................3-61 J508 ...................................3-61 J509 ...................................3-61 J510 ...................................3-61 J511 ...................................3-61 J552 ...................................3-62 J553 ...................................3-63 J554 ...................................3-63 J555 ...................................3-63 J556 ...................................3-63 J557 ...................................3-63 JPAD5 .................................3-64 JPAD10 ................................3-64 JPAD20 .............................. , .3-64 J PAD50 ................................3-64 JPAD100 ...............................3-64 JPAD200 ...............................3-64 JPAD500 ...............................3-64 JR135V ................................3-65 JR170V ................................3-65 JR200V ................................3-65 JR220V ................................3-65 JR240V ................................3-65 M440 ..................................3-66 M441 ..................................3-66 M5911 .................................3-67 M5912 .................................3-67 MFE823 ................................3-68 MPF102 ................................3-69 MPF108 ................................3-70 MPF109 ................................3-71 MPF111 ................................3-72 MPF112 ................................3-73 P1086 ..................................3-74 P1087 ..................................3-74 PAD1 ..................................3-75 PAD2 ..................................3-75 PAD5 ..................................3-75 PAD10 .................................3-75 PAD20 .................................3-75 PAD50 .................................3-75 PAD100 ................................3-75 PN4091 ................................3-76 PN4092 ................................3-76 PN4093 ................................3-76 PN4117 ................................3-77 PN4117A ...............................3-77 PN4118 ................................3-77 PN4118A ...............................3-77 PN4119 ................................3-77 PN4119A ...............................3-77 PN4120 ................................3-77 PN4120A ...............................3-77 PN4302 ................................3-78 PN4303 ................................3-78 PN4304 ................................3-78 PN4391 ................................3-79 PN4392 ................................3-79 PN4393 ................................3-79 PN4416 ................................3-80 PN5163 ................................3-81 SD210DE ...............................3-82 SD211DE ...............................3-84 SD212DE ...............................3-82 Siliconix Table of Contents (Continued) Section 3. Data Sheets (Cont'd) S02130E ...............................3-84 S02140E ...............................3-82 S02150E ...............................3-84 S02100 ................................3-86 S02110 ................................3-88 S02120 ................................3-88 S05000 ................................3-90 S05001 ................................3-90 S05002 ..........•.....................3-90 S05200 ................................3-95 S05400 ................................3-98 S05401 ................................3-98 S05402 ................................3-98 Si1800 ............................... 3-103 Si2400 ............................... 3-104 Si8901 ............................... 3-106 SSTlll .............................. 3-108 SST112 .............................. 3-108 SSTl13 .............................. 3-108 SST174 .............................. 3-109 SST175 .............................. 3-109 SST176 .............................. 3-109 SSTl77 .............................. 3-109 SST201 .............................. 3-110 SST202 .............................. 3-110 SST203 .............................. 3-110 SST204 .............................. 3-110 SST211 .............................. 3-111 SST213 .............................. 3-111 SST215 .............................. 3-111 SST308 .............................. SST309 .............................. SST310 .............................. SST404 .............................. SST405 .............................. SST406 .............................. SST4416 ............................. U200 ................................ U201 ................................ U202 ................................ U231 ................................ U232 ................................ U233 ................................ U234 ................................ U235 ................................ U257 ................................ U290 ................................ U291 ................................ U304 ................................ U305 ................................ 3-113 3-113 3-113 3-114 3-114 3-114 3-115 3-116 3-116 3-116 3-117 3-117 3-117 3-117 3-117 3-118 3-119 3-119 3-120 3-120 U306 ................................ 3-120 U308 ................................ 3-121 U309 ................................ 3-121 U310 ................................ 3-121 U311 ................................ 3-122 U320 ................................ 3-123 U321 ................................ 3-123 U322 ................................ 3-123 U350 ..........................•..... 3-124 U401 ................................ 3-125 U402 ................................ 3-125 U403 ................................ 3-125 U404 ................................ 3-125 U405 ................................ 3-125 U406 ................................ 3-125 U410 ................................ 3-126 U411 ................................ 3-126 U412 ................................ 3-126 U421 ................................ 3-127 U422 ................................ 3-127 U423 .........................•...... 3-127 U424 ................................ 3-127 U425 ................................ 3-127 U426 ................................ 3-127 U427 ................................ 3-128 U428 ................................ 3-128 U430 ................................ 3-129 U431 ................................ 3-129 U440 ................................ 3-130 U441 ................................ 3-130 U443 ................................ 3-130 U444 ................................ 3-130 U1897 ............................... 3-131 U1898 ............................... 3-131 U1899 ............................... 3-131 VCR2N ............................... 3-132 VCR3P ............................... 3-132 VCR4N ............................... 3-132 VCR7N ............................... 3-132 VCRllN ............................. 3-134 Section 4. Geometry Useful JFET Parameter Relationships .. " .4-1 OMCA ................................. 4-2 OMCB .................................. 4-2 MBN .................................. 4-4 MRA ................................... 4-6 NCB ................................... 4-8 NCL ................................. .4-11 Siliconix Table of Contents (Continued) Section 4. Geometry (Cont'd) NH ................................... .4-12 NIP ...................................4-15 NKL .................................. .4-17 NKM ................................. .4-18 NKO ..................................4-19 NNR ................................. .4-20 NNT ..................................4-22 NNZ ................................. .4-24 NPA ................................. .4-25 NQP ................................. .4-28 NRL ...................................4-30 NT ................................... .4-32 NVA ................................. .4-34 NZA ................................. .4-35 NZB ...................................4-35 NZF ...................................4-37 PSA .................................. .4-40 PSB ...................................4-40 PSC-B ................................ .4-42 VRMA ................................ .4-43 Section 5. Selector Guides Tips on Selecting the Right FET for Your Application ............................. 5-1 Application Selection Preferences ........ 5-2 Product Selector Guide .................. 5-3 Application Parameter Importance Guide .5-4 JFET Geometry Selector Guide .......... 5-7 Product Specifications .................. 5-10 Section 6. Package Data TO-18 TO-18 TO-52 TO-71 TO-72 TO-78 TO-92 TO-92 (2-pin) ........................... 6-1 (3-pin) ........................... 6-1 .................................. 6-1 .................................. 6-1 .................................. 6-2 .................................. 6-2 .................................. 6-2 Lead Form ........................ 6-2 TO-99 .................................. 6-2 TO-92 Taping Specifications ............. 6-3 SOT-23 ................................. 6-4 SOT143 ................................ 6-4 SOIC-8 pin ............................. 6-4 16-Lead DIP Plastic ...................... 6-5 16-Lead DIP Ceramic .................... 6-5 14-Lead SO Plastic ...................... 6-6 Section 7. Application Notes An Introduction to FETs ................. 7-1 FET Biasing ............................7-12 Composite Op Amp for High Performance ...................... 7-22 Applications for the Si1000 Series JFET Amplifier ..............................7-25 FETs for Video Amplifiers ............... 7-31 Audio-Frequency Noise Characteristics of Junction Fets ..........................7-39 Differential JFET Amplifier ..............7-47 Wideband UHF Amplifier with HighPerformance FETs ......................7-49 High-Performance FETs In Low-Noise VHF Oscillators .........................7-52 FETs in Balanced Mixers ................7-55 A New Current Limiter Extends Protection to 240V ......................7-65 The FET Constant Current Source .......7-71 Build a Precision Constant Current Source ......................... 7-73 FETs as Voltage-Controlled Resistors ....7-75 FETs as Analog Switches ...............7-84 DMOS FET Analog Switches and Switch Arrays .................................7-92 A High Performance Video Switch Using the SD5002 ........................... 7-100 A High Quality Audio Crosspoint Switch .................... 7-105 Section 8. Worldwide Sales Offices .... 8-1 Siliccnix Introduction __ Siliconix -;> Small Signal FEY Present Position: Siliconix specializes in offering a broad product line of Nand P Channel JFETs, N-Channel OMOS and N & P-Channel MOS products. Our packaging capabilities range from hermetically sealed metal cans, plastic TO-92 and surface mount packages to side braze type packages for switch arrays. These proucts are geared to offer design alternatives to our customers. We specialize in ultra low leakage, low noise, high gain/slew rate, low ROS(on), and high speed switching. Future Product Plans: Expanding the already broad FET product line will focus on the following new product areas: o High current, high voltage current regulator IF 10-100 rnA BV'" 100V o Series of depletion mode lateral OMOS devices for use in high gain amplification. o Surface mount additions will include SOT143 (4 leaded SO package) and S08 (8 leads). Silicanix 1-1 ut Glossary of Terms and Abbreviations --...o 1. Upper case letters indicate DC voltages and currents . --a 2. Lower case letters indicate AC voltages and currents. C f .a .a c:c "'a c a ut .E ..a>- ~ 'too o ut ut o ij 3. Subscripts can refer to the terminals used in the measurements, I.e., VG bol, i.e., tf = Fall Time, tr = Rise Time . = H Siliconix Gate Voltage; or simply help define the sym- 4. Triple subscripts are used for terminal references only. The first subSCript IS the object terminal. The second subSCript IS the common terminal. The third gives the condition of the remaining termlnal(s). S = Short, 0 = open and X = neither open nor short (refer to the test conditions). Example: BVGSS = Breakdown Voltage from gate to source with the drain shorted to the source. btg = Common-Gate Forward Susceptance Cgs = Gate- Source Capacitance bts = Common-Source Forward Susceptance Ciss = Common-Source Input Capacitance bigs = Common-Gate Input Susceptance Coss = Common-Source Output Capacitance biss = Common-Source Input Susceptance Crss = Common-Source Reverse Transfer CapacI- bOgS = Common-Gate Output Susceptance boss = Common-Source Output Susceptance brg = Common-Gate Reverse Susceptance b rs = Common-Source Reverse Susceptance BVOGO = Drain-Gate Breakdown Voltage with tance Source Open Csb = Source-Body Capacitance Csd = Source-Drain Capacitance Csgo = Source-Gate Capacitance 0 = Drain eN = Equivalent Short-Circuit Input Noise Voltage BVOSS = Drain-Source Breakdown Voltage with Gate Shorted BVSDX = Drain-Source Breakdown I(0ltage fm = Figure of Merit G = Gate 91g = Common-Gate Forward TransconductancE 91s = Common-Source Forward Transconduc- Tied to Reference Voltage BVG1SS = Gate 1-to-Sou rce Breakdown Voltage with Gate Shorted tance BVG2SS = Gate 2-to-Sou rce Breakdown Voltage with Gate Shorted gfso = Common·Source tance @VGS BVGSS Forward Transconduc· =0 = Gate-Source Breakdown Voltage with 9fs1/9fs2 Gate Shorted = Common-Source Forward Transconduc- tance Ratio BVSDS = Source-Drain Breakdown Voltage with Gate Shorted BVSGO = Source-Gate Breakdown Voltage with Cli9 = Common-Gate Input Conductance 9is = Common-Source Input Conductance 909 = Common- Gate 90S = Common-Source Output Conductance 90ss = Common-Source Output Conductance @ Source Open Cdb = Drain-Body Capacitance Cd90 = Drain-Gate Capacitance Cgb = Gate-Body Capacitance Cgd = Gate-Drain Capacitance 1-2 VGS gos1-gos2 Siliconix = Output Conductance 0 = Differential Output Conductance Glossary of Terms and Abbreviations (Cont'd) = Common-Gate Power Gain = Common-Source Power Gain 10(off) = Oraln Cutoff Current 10(on) = Drain ON Current lOGO = Drain-Gate Leakage lOSS = Saturation Orain Current with Gate Shorted IOSS1/IOSS2 = Saturation Orain Current Ratio = Forward Current Re (Vig) = Common-Gate Input Conductance Re (Vis) = Common-Gate Output Conductance Common-Source Output Conductance Re (Vos) = Re (V rg ) = Common-Gate Reverse Transconductance Re (V rs ) = S = Source td = Delay Time Id(off) = Turn-Off Delay Time Id(on) = Turn-On Delay Time Common-Source Reverse Transconductance = Common-Source Input Resistance = Fall Time = Gate Operating Current = Junction Temperature = Gate-to-Gate Leakage Current = Differential Gate Operating Currents loff = Turn-Off Time = Gate-to-Body Leakage Current with Gate Shorted ton = Turn-On Time = Lead Temperature = Gate Forward Current = Gate Reverse Current with Gate Shorted = Storage Temperature Tstg IG1SS = Gate 1-to-Source Leakage Current with = Body Voltage Gate Shorted = IG2SSR Gate 2-to-Source Leakage Current with Gate Shorted VBB = Body Supply Voltage Vo = Drain Voltage = Gate 1-to-Source Reverse Leakage Current VOO = Drain Supply Voltage = Gate 2-to-Source Reverse Leakage Current VDS(on) = Orain-Source ON Voltage = Equivalent Open-Circuit NOise Current Ip = Pinch-Off Current NF = NOise Figure = Continuous Power Dissipation = Peak Operatl ng Voltage = Gate Voltage = Gate Supply Voltage = IVGS1-VGS21 = Differential Gate-Source Voltage = POV Ll.IVgs1-Vgs21 = Drain-Source ON Resistance Ll. T Gate-Source Voltage Oifferentlal Gate-Source Voltage = Differential Gate-Source Voltage Change with Temperature VGS(f) = Gate-Source Forward Voltage = Common-Gate Forward Transconductance VGS(th) = Common-Source Forward Transconductance VGS(off) = Gate Source Cutoff Voltage rOS(on) = Re (Yfg) Re (Yfs) = Static Drain-Source ON Resistance Siliconix Gate Threshold Voltage 1-3 '" Glossary of Terms and Abbreviations (Cont'd) g .. ..-a ! .a .a C "'U C a '"E VG1S(off) = Gate 1 to Source Cutoff Voltage VG2S(off) = Gate 2 to Source Cutoff Voltage Vs = Source Voltage VSS = Sou rce Supply Voltage Zd = Dynamic Zk = Knee AC 0. = Current Temperature Coefficient °J-A = Junction to Ambient Thermal 0J-C =Junction to Case Thermal Impedance . .. ~ o t- a '"'"o i5 1-4 Siliconix Impedance Resistance Resistance "7 How to Use the Small-Signal FET Cross Reference The following examples illustrate how the FET Cross Reference and Index should be used: Case (1) Recommended replacement offered by Siliconix is identical to Industry Part Number. Industry Part Number Type and Classification Recommended Replacement 2N4391 N JFET 2N4391 Case (2) Recommended replacement offered by Siliconix is not identical to Industry Part Number. Industry Part Number Type and Classification Recommended Replacement 2N3457 N JFET 2N4338 The recommended replacement may be exact, tighter or looser on electrical characteristics, and may be a different package or pin-out. Data sheets for both parts should, if possible, be reviewed for a complete comparison. Type and classification abbreviations are described as follows: BF CR CRR (JFET Plastic) (Current Limited) (Current Limiter) o (Dual) OM N-Channel DMOS ON (Dual N-Channel Metal Can) DPAD (Dual Pico Ampere Diode) FN (N-Channel Metal Can) ENH JPAD JR N P PAD SO SI SST Siliconix (Enhancement-Mode Normally-Off) (Plastic Pico Ampere Diode) (Plastic High Voltage Diode) (N-Channel) (P-Channel) (Pico Ampere Diode) (N-Channel DMOS) (N-Channel FETs) (JFET in SOT-23 Plastic Package SOT-143 SOIC-8 Pin) II1II 1-5 Small-Signal FEY Cross Reference Industry Part Number Data Sheet Page Geometry Page Industry Part Number Type and Classification Recommended Replacement Data Sheet Page Geometry Page Type and Classification Recommended lN5283 lN5284 lN5285 lN5286 lN5287 CL CL CL CL CL N JFET N JFET N JFET N JFET N JFET CR022 CR024 CR027 CR030 CR033 2N3457 2N3458 2N3459 2N3460 2N3608 N JFET N JFET N JFET N JFET PMOS ENH 2N4338 2N434l 2N434l 2N4340 3N163 lN5288 lN5289 lN5290 lN529l lN5292 CL CL CL CL CL N JFET N JFET N JFET N JFET N JFET CR039 CR043 CR047 CR056 CR062 2N3684 2N3685 2N3686 2N3687 2N38l9 N JFET N JFET N JFET N JFET N JFET 2N4339 2N4339 2N4340 2N434l 2N38l9 lN5293 lN5294 lN5295 lN5296 lN5297 CL N JFET CL N JFET CL N JFET CL N JFET CL N JFET CR068 CR075 CR082 CR09l CR100 2N3820 2N382l 2N3822 2N3823 2N3824 P JFET N JFET N JFET N JFET N JFET J270 2N382l 2N3822 2N3823 2N3824 lN5298 lN5299 lN5300 lN530l lN5302 CL CL CL CL CL N JFET N JFET N JFET N JFET N JFET CRll0 CR120 CR130 CR140 CR150 2N392l 2N3922 2N3954 2N3954A 2N3955 o N JFET o N JFET o N JFET o N JFET ON JFET 2N392l 2N3922 2N3954 2N3954A 2N3955 lN5303 lN5304 lN5305 lN5306 lN5307 CL N JFET CL N JFET CL N JFET CL N JFET CL N JFET CR160 CR180 CR200 CR220 CR240 2N3955A 2N3956 2N3957 2N3958 2N3967 ON JFET ON JFET o N JFET ON JFET N JFET 2N3955A 2N3956 2N3957 2N3958 2N422l lN5308 lN5309 lN53l0 lN53ll lN53l2 CL N JFET CL N JFET CL N JFET CL N JFET CL N JFET CR270 CR300 CR330 CR360 CR390 2N3967A 2N3968 2N3968A 2N3969 2N3970 N JFET N JFET N JFET N JFET N JFET 2N422l 2N4339 2N4339 2N4339 2N3970 0 2N397l 2N3972 2N4084 2N4085 2i'1q091 N JFET N JFET ON JFET ON JFET i'I JFET 2N397l 2N3972 2N4084 2N4085 2i11q091 en 2N4091A 2N4092 2N4092A 2N4093 2N4093A N JFET N JFET N JFET N JFET N JFET 2N409l 2N4092 2N4092 2N4093 2N4093 N JFET N JFET N JFET N JFET N JFET N JFET PMOS ENH N JFET N JFET N JFET 2N4l17 2N4l17A 2N4ll8 2N4ll8A 2N4ll9 2N4ll9A 3N163 2N3822 2N4220 2N4220A Replacement ~ 0 0 10 as 'lil 0 t:ii U. "iii c:: Ol en lN53l3 lN53l4 2N3066 2N3067 2N30a8 CL N JFET CL N JFET N JFET N JFET N JFET CR430 CR470 2N4340 2N4338 2N433ii 2N3069 2N3070 2N307l 2N3084 2N3085 N JFET N JFET N JFET N JFET N JFET 2N434l 2N4339 2N4338 2N434l 2N434l 2N3086 2N3087 2N3088 2N3088A 2N3089 N JFET N JFET N JFET N JFET N JFET 2N434l 2N434l 2N4339 2N4339 2N4339 2N3089A 2N3365 2N3366 2N3367 2N3368 N JFET N JFET N JFET N JFET N JFET 2N4339 2N4340 2N4338 2N4338 2N434l 2N4l17 2N4l17A 2N4ll8 2N4ll8A 2N4ll9 2N4ll9A 2N4l20 2N4l39 2N4220 2N4220A 2N3369 2N3370 2N3436 2N3437 2N3438 N JFET N JFET N JFET N JFET N JFET 2N4340 2N4339 2N434l 2N434l 2N434l 2N422l 2N4221A 2N4222 2N4222A 2N4223 N JFET N JFET N JFET N JFET N JFET 2N422l 2N4221A 2N4222 2N4222A 2N4223 2N3452 2N3453 2N3454 2N3455 2N3456 N JFET N JFET N JFET N JFET N JFET 2N4340 2N4338 2N4338 2N4340 2N4338 2N4224 2N4267 2N4302 2N4303 2N4304 N JFET PMOS ENH N JFET NJFET NJFET 2N4224 3N163 PN4302-l8 PN4303-l8 PN4304-l8 1-6 ~ E en CD :E .9 Iii Qj a: Siliccnix ~ 0 0 10 as 'lil t:iiU. "iii c:: Ol ~ E en CD :E .9 Iii Qj a: :7 Small-Signal FET Cross Reference (Cont'd) Data Sheet Page Geometry Page Industry Part Number Type and Classillcalion Recommended Data Sheet Page Geometry Page Type and Classllicatlon Recommended Replacement 2N4338 2N4339 2N4340 2N4341 2N4352 N JFET N JFET N JFET N JFET PMOS ENH 2N4338 2N4339 2N4340 2N4341 3N163 2N5103 2N5104 2N5105 2N5114 2N5115 N JFET N JFET N JFET P JFET P JFET 2N4416 2N4416 2N4416 2N5114 2N5115 2N4382 2N4391 2N4392 2N4393 2N4416 P JFET N JFET N JFET N JFET N JFET 2N5115 2N4391 2N4392 2N4393 2N4416 2N5116 2N5158 2N5159 2N5196 2N5197 P JFET N JFET N JFET ON JFET ON JFET 2N5116 2N5434 2N5433 2N5196 2N5197 2N4416A 2N4445 2N4446 2N4447 2N4448 N JFET N JFET N JFET N JFET N JFET 2N4416A 2N5432 2N5433 2N5432 2N5433 2N5198 2N5199 2N5245 2N5246 2N5247 ON JFET ON JFET N JFET N JFET N JFE 2N519B 2N5199 PN4416 J305-18 J304-1B 2N4B56 2N4B56A 2N4856JAN 2N4856JANTX 2N4B56JANTXV N JFET NJFET N JFET N JFET N JFET 2N4856 2N4B56A 2N4B56JAN 2N4856JANTX 2N4856JANTXV 2N524B 2N5257 2N525B 2N5259 2N535B N JFET N JFET N JFET N JFET N JFET 2N54B6 2N5457 2N545B 2N5459 2N4340 2N4B57 2N4857A 2N4857JAN 2N4B57JANTX 2N4B57JANTXV N JFET N JFET N JFET N JFET N JFET 2N4B57 2N4B57A 2N4B57JAN 2N4B57JANTX 2N4857TANTXV 2N5359 2N5360 2N5361 2N5362 2N5363 N JFET N JFET N JFET N JFET N JFET 2N4340 2N4339 2N4339 2N4339 2N4222A 2N4858 2N4858A 2N4858JAN 2N4858JANTX 2N4858JANTXV N JFET NJFT N JFET N JFET N JFET 2N4858 2N4B5BA 2N4858JAN 2N4858JANTX 2N4858JANTXV 2N5364 2N5391 2N5392 2N5393 2N5394 N JFET N JFET N JFET N JFET N JFET 2N4224 2N4867A 2N486BA 2N4869A 2N4869A Cl 2N4859 2N4859A 2N4859JAN 2N4859JANTX 2N4859JANTXV N JFET N JFET N JFET N JFET N JFET 2N4859 2N4859A 2N4859JAN 2N4859JANTX 2N4859JANTXV N JFET N JFET N JFET N JFET N JFET 2N4B60 2N4860A 2N4860JAN 2N4860JANTX 2N4860JANTXV N JFET N JFET N JFET N JFET N JFET N JFET N JFET ON JFET ON JFET ON JFET 2N4869A 2N4869A J210 U312 2N5432 2N5433 2N5434 2N5452 2N5453 2N5454 i:i5 2N4860 2N4860A 2N4860JAN 2N4860JANTX 2N4860JANTXV 2N5395 2N5396 2N5397 2N5398 2N5432 2N5433 2N5434 2N5452 2N5453 2N5454 2N4B61 2N4861A 2N4861JAN 2N4861JANTX 2N4861JANTXV N JFET N JFET N JFET N JFET N JFET 2N4861 2N4B61A 2N4861 JAN 2N4861JANTX 2N4861JANTXV 2N5457 2N545B 2N5459 2N5460 2N5461 N JFET N JFET N JFET P JFET P JFET 2N5457 2N5458 2N5459 2N5460 2N5461 2N4867 2N4867A 2N4868 2N4868A 2N4869 N JFET N JFET N JFET N JFET N JFET 2N4867 2N4867A 2N4868 2N4868A 2N4869 2N5462 2N5463 2N5464 2N5465 2N5484 P JFET P JFET P JFET P JFET N JFET 2N5462 2N5463 2N5464 2N5465 2N54B4 2N4B69A 2N4977 2N4978 2N4979 2N501B N JFET N JFET N JFET N JFET P JFET 2N4869A 2N5432 2N5433 2N5434 2N5018 2N5485 2N5486 2N5515 2N5516 2N5517 N JFET N JFET ON JFET ON JFET o N JFET 2N54B5 2N54B6 2N5515 2N5516 2N5517 2N5019 2N5020 2N5045 2N5046 2N5047 P JFET P JFET ON JFET ON JFET ON JFET 2N5019 2N3329 2N5045 2N5046 2N5047 2N5518 2N5519 2N5520 2N5521 2N5522 ON JFET ON JFET o N JFET ON JFET o N JFET 2N5518 2N5519 2N5520 2N5521 2N5522 Induslry Pari Number ~ 0 0 m ttl 1ii Cl ti:i u. iii c: Cl i:i5 iii E en CD £; .9 ~ a: Siliconix Replacement ~ 0 0 m ttl 1ii Iiiu. iii c: Cl 'iii E en CD £; .9 Iii CD a: 1-7 Small-Signal FET Cross Reference (Cont'd) Industry Part Number Type and Classilicallon Recommended 2N5523 2N5524 2N5545 2N5546 2N5547 ON ON ON ON ON JFET JFET JFET JFET JFET 2N5549 2N5561 2N5562 2N5563 2N5564 Type and Classification 2N5523 2N5524 2N5545 2N5546 2N5547 3N145 3N146 3N155 3N155A 3N156 PMOS PMOS PMOS PMOS PMOS ENH ENH ENH ENH ENH 3N163 3N163 3N163 3N163 3N163 N JFET ON JFET ON JFET o N JFET ON JFET 2N4392 U401 U402 U404 2N5564 3N156A 3N157 3N157A 3N158 3N158A PMOS ENH PMOS ENH PMOS ENH PMOS ENH PMOS ENH 3Nl63 3N163 3N163 3N163 3N163 ON JFET 3N163 3N164 3N174 14T 142T PMOS ENH PMOS ENH PMOS ENH N JFET N JFET 3N163 3Nl64 3N163 2N3819 PN4392 158T 159T 100S 102M 102S N JFET N JFET N JFET N JFET N JFET PN4302 PN4416 PN4304 2N5486 PN4302 103M 103S 104M 105M 105U N JFET N JFET N JFET N JFET N JFET 2N5457 2N5459 2N5458 2N5459 2N4222 2N5565 2N5566 2N5592 2N5593 2N5594 NJFET N JFET N JFET 2N5565 2N5566 2N3822 2N3822 2N3822 2N5638 2N5639 2N5640 2N5647 2N5648 N JFET N JFET N JFET N JFET N JFET 2N5638 2N5639 2N5640 2N4117A 2N4117A 2N5649 2N5801 2N5802 2N5803 2N5902 N JFET N JFET N JFET N JFET o N JFET 2N4117A 2N4393 2N4393 2N4392 U421 2N5903 2N5904 2N5905 2N5906 2N5907 Data Sheet Page Industry Part Number Replacement o N JFET ON ON ON ON ON JFET JFET JFET JFET JFET Geometry Page ~ 0 0 I:D as 1ii C U422 U423 U421 U422 U423 u.. 'iii Iii iii t: Cl en Recommended Replacement 106M 107M 110U 115U 120U N JFET N JFET N JFET N JFET N JFET 2N5485 2N5486 2N4339 125U 130U 135U 155U 182:; N JFET N JFET N JFET N JFET N JFET 2N4339 2N4341 2N4339 2N4416 2N4391 183S 1975 1985 1995 200S N JFET N JFET N JFET N JFET N JFET 2N3823 2N4338 2N4340 2N4341 2N4392 2N4340 ON JFET ON JFET ON JFET ON JFET N JFET U423 U423 2N5911 2N5912 2N5950 2N5951 2N5952 2N5953 2N6451 N JFET N JFET N JFET N JFET N JFET PN4416 PN4416 J305 J305 2N4393 2N6452 2N6453 2N6454 2N6483 2N6484 N JFET N JFET N JFET ON JFET ON JFET 2N4393 2N4393 2N4393 U401 U402 200U 201S 202S 203S 204S N JFET N JFET N JFET N JFET N JFET 2N3824 2N4391 2N4392 2N3821 2N3821 2N6585 2N6568 2N6656 2N6657 2N6658 ON JFET N JFET V MOS N ENH V MOS N ENH V MOS N ENH U404 U290 2N6656 2N6657 2N6658 210U 231S 232S 233S 234S N JFET ON JFET ON JFET ON JFET ON JFET 2N4416 2N3954 2N3955 2N3956 2N3957 2N6659 2N6660 2N6661 2N6905 2N6906 V MOS N ENH V MOS N ENH V MOS N ENH ON JFET ON JFET 2N6659 2N6660 2N6661 2N6905 2N6906 235S 241U 250U 251U 703U ON JFET N JFET N JFET N JFET N JFET 2N3958 2N4869 2N4091 2N4392 2N4220 2N6907 2N6908 2N6909 2N6910 2N6911 ON JFET NJFET NJFET NJFET N JFET 2N6907 2N6908 2N6909 2N6910 2N6911 704U 705U 707U 714U 734U N JFET N JFET N JFET N JFET NJfET_ 2N4220 2N4224 2N4860 2N3822 2N4416 1-8 PN44i6 en ill :E .e iii 'Iii II: Siliconix Geometry Page ~ 0 0 I:D as 1ii C Iii u.. iii 2N5908 2N5909 2N5911 2N5912 2N5S4S E Data Sheet Page t: Cl en iii E en CD :E .e ~II: "7 Small-Signal FET Cross Reference (Cont'd) Industry Part Number Type and Classification Recommended Replacement Data Sheet Page Geometry Page Industry Part Number Type and Classillcalion Recommended Replacement 734EU 751U 752U 753U 754U N JFET N JFET N JFET N JFET N JFET PN4416 2N4340 2N4340 2N4341 2N4340 BC264 BC264A BC264B BC264C BC2640 N JFET N JFET N JFET N JFET N JFET PN4304 PN4302 PN4304 PN4304 PN4416 755U 756U 1227A 1278A 1279A N JFET N JFET N JFET N JFET N JFET 2N4341 2N4340 2N3822 2N3821 2N3821 BF244NB/C BF245NB/C BF410A BF410B BF410C N JFET o N JFET N JFET N JFET N JFET BF244NB/C BF245NB/C J201 J202 J203 1280A 1281A 1282A 1283A 1284A N JFET N JFET N JFET N JFET N JFET 2N4224 2N3822 2N4341 2N4340 2N4222 BF4100 BF010 BF011 BF012 BF013 N JFET N JFET N JFET N JFET N JFET J204 U401 U401 U402 U402 1285A 1286A 1325A 1714A 2000M N JFET N JFET N JFET N JFET N JFET 2N3821 2N4220 2N4222 2N4340 2N3823 BF014 BF015 BF016 BFR30 BFR31 N JFET N JFET N JFET N JFET N JFET U403 U405 U405 88T202 88T202 2001M 2078A 2079A 2080A 2081A N JFET o N JFET o N JFET o N JFET o N JFET 2N3823 2N3955 2N3955 2N5546 2N5546 BFR45 BF821 BF521A BF567 BF568 N JFET N JFET ON JFET N JFET N JFET 2N4416 2N5199 2N5199 2N3821 2N3823 2098A 2099A 2130U 2132U 2134U ON ON ON ON ON JFET JFET JFET JFET JFET 2N5545 2N5546 2N5452 2N3955 2N3956 2136U 2138U 2139U 2147U 2148U o N JFET ON JFET ON JFET ON JFET ON JFET 2N3957 2N3958 2N3958 2N3958 2N3958 2149U A5T3821 A5T3822 A5T3823 A5T3824 ON JFET N JFET N JFET N JFET N JFET 2N3958 J305 J305 PN4416 J302-18 A192 A0830 A0831 A0832 A0833 N JFET ON JFET ON JFET o N JFET ON JFET ON JFET ..:.: 0 0 CIJ<: 0 0 III <11 iii Cl tii u. (ij <: OJ ;n 'iii l1li E (/) Q) -=.s ... ~ a: 1-11 Small-Signal FEY Cross Reference (Cont'd) Data Sheet Page Type and Classification Recommended Replacement J1406 K2l0-l8 K2ll-l8 K2l2-l8 K300-l8 ON JFET N JFET N JFET N JFET N JFET U406 J2l0 J2ll J2l2 J2l0 Jl07-l8 Jl08 Jl08-l8 Jl09 Jl09-l8 K304-l8 K305-l8 K308-l8 K309-l8 K3l0-l8 N JFET N JFET N JFET NJFET N JFET J304 J305 J308 J309 J3l0 N JFET N JFET N JFET N JFET N JFET Jll0 Jll0-l8 Jlll Jlll-18 J112 KE3684 KE3685 KE3686 KE3687 KE3823 N JFET N JFET N JFET N JFET N JFET 2N434l 2N4340 2N4339 2N4338 J304-l8 Jll2-l8 Jl13 Jl13-l8 J174 J174-l8 N JFET N JFET N JFET P JFET P JFET Jll2-l8 Jl13 Jl13-l8 J174 J174-l8 KE3970 KE3971 KE3972 KE4091 KE4092 N JFET NJFET N JFET N JFET N JFET PN4391-l8 PN4392-l8 PN4393-18 PN439l-l8 PN4392-l8 J175 J175-l8 J176 J176-l8 Jl77 P JFET P JFET P JFET P JFET P JFET J175 J175-l8 J176 J176-l8 J177 KE4093 KE4220 KE4221 KE4222 KE4223 N JFET N JFET N JFET N JFET N JFET PN4393-1B 2N5457 2N5457 2N5459 J304-l8 Jl77-l8 J20l J20l-l8 J202 J202-l8 P JFET N JFET N JFET N JFET N JFET J177-l8 KE4224 KE4391 KE4392 KE4393 KE4416 N JFET N JFET N JFET N JFET N JFET J304-l8 PN439l-l8 PN4392-l8 PN4393-18 PN4416 J203 J203-l8 J204 J204-l8 J204 J204-18 (f) KE4856 KE4857 KE4858 KE4859 "'IU -E I\C"touu N JFET N JFET N JFET N JFET i~ JFET PN4391-18 PN4392-l8 PN4393-18 PN4391-18 J210 N JFET N JFET N JFET N JFET N JFET J211 J2l2 J230 J230-l8 J23l N JFET N JFET N JFET N JFET N JFET J2ll J212 J230 J230-18 J231 KE4861 KE51 03 KE51 04 KE5105 KK4416-18 N JFET N JFET NJFET NJFET NJFET PN4393-18 J305 J304 J306 PN4416 J23l-l8 J232 J232-l8 J270 J270-l8 N JFET N JFET N JFET P JFET P JFET J23l-18 J232 J232-l8 J270 J270-l8 LOF603 LOF604 LOF605 M163 M164 NJFET N JFET N JFET PMOS ENH PMOS ENH 2N4221A 2N4221A 2N4221A 3N163 3N164 J27l J271-l8 J300 J300NB/C/O J304 J305 J308 J309 J310 J401 P JFET P JFET N JFET N JFET N JFET N JFET N JFET N JFET N JFET ON JFET J271 J27l-18 J300 J300NB/C/O J304 J305 J308 J309 J310 U401 MEM520 MEM520G MEM561 MEM561G MEM806 PMOS PMOS PMOS PMOS PMOS 3N164 3Nl64 3N163 3N163 3N163 MEM806A MFE823 MFE2000 MFE2001 MFE2004 PMOS ENH PMOS ENH NJFET N JFET N JFET 3N163 MFE823 2N4416 2N4416 2N4093 J402 J403 J9l00 J1404 J1405 ON JFET ON JFET GLNFET ON JFET ON JFET U402 U403 J552 U404 U405 MFE2005 MFE2006 MFE2007 MFE2008 MFE2009 N JFET N JFET N JFET N JFET N JFET 2N4092 2N409l 2N4860 2N4859 2N4859 Induslry Part Number Type and Classification Jl05 Jl05-l8 Jl06 Jl06-l9 Jl07 N JFET N JFET N JFET N JFET N JFET Jl05 Jl05-l8 Jl06 Jl06-l8 Jl07 Jl07-l8 Jl08 Jl08-l8 Jl09 Jl09-l8 N JFET N JFET N JFET N JFET N JFET Jll0 JllO-l8 Jlll Jlll-18 Jll2 1-12 Recommended Replacement Geometry Page ..l<: 0 0 III ~ 0 Iii I.L 1ii c: 01 en 'ffi •., .. n E CD .s ~a:: Industry Part Number 1J'r-Anl"n Silicanix PN4392-1ii ENH ENH ENH ENH ENH Data Sheet Page Geometry Page ..l<: 0 0 III ~ 0 Iii I.L 1ii c: 01 en 'ffi E (f) :l) -E .s lD a:: Q) Small-Signal FEY Cross Reference (Cont'd) Industry Part Number Type and Classification Recommended Replacement Data Sheet Page Geometry Industry Page Part Number Type and Classification Recommended Replacement MFE2010 MFE2011 MFE2012 MFE2093 MFE2094 N JFET N JFET N JFET N JFET N JFET 2N5434 2N5433 2N5432 2N4338 2N4339 NF583 NF584 NF585 NF4302 NF4303 N JFET N JFET N JFET N JFET N JFET 2N5434 2N5433 2N4859 2N4302 2N4303 MFE2095 MK10 MMBF310 MMBF4391 MMBF4392 N JFET N JFET N JFET N JFET N JFET 2N4540 2N4416 55T310 SST113 SST112 NF4304 NF4445 NF4446 NF4447 NF4448 N JFET N JFET N JFET N JFET N JFET 2N4304 2N5432 2N5433 2N5432 2N5433 MMBF4393 MMBF4416 MMBF4860 MMBF5310 MMBF5457 N JFET N JFET N JFET N JFET N JFET SST111 5ST4416 5ST111/112 5ST310 S5T202 NF5163 NF5457 FN5458 NF5459 NF5484 N JFET N JFET N JFET N JFET N JFET 2N5163 2N5457 2N5458 2N5459 2N5484 MMBF5460 MMBF5484 MMBF5484 MMBF5486 MMBFU310 N JFET N JFET N JFET N JFET N JFET 55T5460 5ST202 SST5484 SST5486 55T310 NF5485 NF5486 NF5555 NF5638 NF5639 N JFET N JFET N JFET N JFET N JFET 2N5485 2N5486 2N5555 2N5638 2N5639 MMF1 MMF2 MMF3 MMF4 MMF5 D N JFET D N JFET D N JFET D N JFET D N JFET 2N3921 2N3921 2N3921 2N3921 2N3921 NF5640 NF5653 NF5654 PAD1 PAD2 N JFET N JFET N JFET PAD N JFET PAD N JFET 2N5640 2N5653 2N5654 PAD1 PAD2 MMF6 MMT3823 MPF102 MPF103 MPF104 D N JFET N JFET N JFET N JFET N JFET 2N3921 2N3823 MPF102 2N5457 2N5458 PAD5 PAD10 PAD20 PAD50 PAD100 PAD PAD PAD PAD PAD PAD5 PAD10 PAD20 PAD50 PAD100 MPF105 MPF106 MPF107 MPF108 MPF109 N JFET N JFET N JFET N JFET N JFET 2N5459 2N5485 2N5486 MPF108 MPF109 P1086 P1086-18 P1087 P1087-18 PN4091 P JFET P JFET P JFET P JFET N JFET P1086 P1086-18 P1087 P1087-18 PN4091 MPF111 MPF112 MPF256 MPF820 MPF970 N JFET N JFET N JFET N JFET P JFET MPF111 MPF112 J309 U310 J174 PN4092 PN4093 PN4117 PN4117A PN4118 N JFET N JFET N JFET N JFET N JFET PN4092 PN4093 PN4117 PN4117A PN4118 MPF971 MPF4391 MPF4392 MPF4393 NF500 P JFET N JFET N JFET N JFET N JFET J176 PN4391-18 PN4392-18 PN4393-18 2N4416 PN4118A PN4119 PN4119A PN4120 PN4120A N JFET N JFET N JFET N JFET N JFET PN4118A PN4119 PN4119A PN4120 PN4120A NF501 NF506 NF510 NF511 NF520 N JFET N JFET N JFET N JFET N JFET 2N4416 2N4416 2N4393 2N4393 2N4339 PN4302 PN4302-18 PN4303 PN4303-18 PN4304 N JFET N JFET N JFET N JFET N JFET PN4302 PN4302-18 PN4303 PN4303-18 PN4304 NF521 NF522 NF523 NF530 NF531 N JFET N JFET N JFET N JFET N JFET 2N4339 2N4339 2N4340 2N4341 2N4339 PN4304-18 PN4391 PN4391-18 PN4392 PN4392-18 N JFET N JFET N JFET N JFET N JFET PN4304-18 PN4391 PN4391-18 PN4392 PN4392-18 NF532 NF533 NF580 NF581 NF582 N JFET N JFET N JFET N JFET N JFET 2N4341 2N4339 2N5432 2N5432 2N5433 PN4393 PN4393-18 PN4416 PN5163 PF510 N JFET N JFET N JFET N JFET P JFET PN4393 PN4393-18 PN4416 PN5163 2N5018 -"'0 0 CO «l 1ii 0 t:u u. (ij c Ol en 'iii E en OJ -£ .9 ~ 'a:* Siliconix N JFET N JFET N JFET N JFET N JFET Data Sheet Paga Geometry Page -"'0 0 CO «l 1ii 0 t:u u. (ij c - Ol en (ij E en OJ -£ .9 Q; Q; a: 1-13 Small-Signal FET Cross Reference (Cont'd) Industry Part Number Type and Classification Recommended Replacement Data Sheet Page Geometry Page Industry Part Number Type and Classification Recommended Replacement PF511 8D210DE 8D2110E 8D2120E 802130E P JFET ON JFET ON JFET ON JFET ON JFET 2N5014 8D210DE 8D211DE 8D2120E 8D2130E 88T6909 88T6910 8U2078 8U2079 8U2098 N JFET N JFET ON JFET ON JFET ON JFET 88T6909 88T6910 U425 U425 2N5197 802140E 802150E 8il000 8il0l0 8il020 ON JFET ON JFET N JFET N JFET N JFET 8D2140E 8D2150E 2N6908 2N6909 2N6910 8U2098A 8U2098B 8U2099 8U:W99A 8U2365 ON ON ON ON ON 2N5197 2N5196 2N5197 2N5197 U401 8ill00 8i1800 8i2000 804091 804391 N JFET JFET Array N JFET N JFET N JFET 2N6911 811800 812000 88T4091 88T4391 8U2365A 8U2366 8U2366A 8U2367 8U2367A ON JFET ON JFET ON JFET ON JFET ON JFET U401 U402 U402 U403 U403 804416 88T111 88T112 88Tl13 88T174 N JFET N JFET NJFET N JFET P JFET 88T4416 88T111 88T112 88T113 88T174 8U2366 8U2368A 8U2369 8U2369A 8U2410 ON JFET ON JFET ON JFET o N JFET o N JFET U404 U404 U405 U405 U424 88T175 88T176 88T177 88T201 88T202 P JFET P JFET P JFET N JFET N JFET 8ST175 88T176 88T177 88T201 88T202 8U2411 8U2412 T05911 TD5911A T05912 ON JFET o N JFET ON JFET ON JFET D N JFET U425 U426 2N5911 2N5911 2N5912 88T203 88T204 88T211 88T213 88T215 N JFET N JFET N DM08 N OM08 N DM08 88T203 85T204 85T211 88T213 85T215 TD5912A TI514 TI825 TI826 TI827 D N JFET N JFET D N JFET D N JFET D N JFET 2N5912 2N4340 U401 U402 U404 58T308 85T309 88T31 0 88T405 85T406 N JFET N JFET N JFET D N JFET D N JFET 88T308 85T309 88T310 881405 88T406 TI841 TI858 TI859 TI573 TI874 N JFET N JFET N JFET N JFET N JFET 2N4859 J305-18 U1837 PN4391-18 88T41 0 88T411 88T412 88T4302 88T4303 D N JFET D N JFET ON JFET N JFET N JFET 85T410 58T411 88T412 85T4302 88T4303 TI875 TI888 TIX541 TIXS42 TN4117 N JFET N JFET N JFET N JFET N JFET PN4393-18 2N5486 2N4859 PN4393-18 2N4117 88T4304 88T4391 88T4392 88T4393 88T4416 N JFET N JFET N JFET N JFET N JFET 88T4304 88T4391 85T4392 88T4393 55T4416 TN4117A TN4118 TN4118A TN4119 TN4119A N JFET NJFET N JFET N JFET N JFET 2N4117A 2N4118 2N4118A 2N4119 2N4119A 58T4856 55T4857 55T4858 88T4859 85T4860 N JFET N JFET N JFET N JFET N JFET 58T4856 58T4857 58T4858 58T4859 58T4860 TN4338 TN4339 TN4340 TN4341 TP5114 N JFET N JFET N JFET N JFET P JFET 2N4338 2N4339 2N4340 2N4341 2N5114 58T5114 58T5115 58T5116 88T5484 55T5485 P JFET P JFET P JFET N JFET NJFET 55T5114 85T5115 5ST5116 58T5484 58T5485 TP5115 TP5116 U182 U183 U197 P JFET P JFET N JFET N JFET N JFET 2N5115 2N5116 2N4857 2N3824 2N4339 85T5486 58T5638 55T5639 55T5640 55T6908 N JFET N JFET N JFET N JFET N JFET 58T5486 58T5638 55T5639 5ST5640 55T6908 U198 U199 U200 U201 U202 N JFET N JFET N JFET N JFET N JFET 2N4340 2N4341 U200 U201 U202 1-14 .><: 0 0 [[l as 'Iii 0 IW u. "'iii c: Ol i:i5 ~ E C/) CD -=.9 ffi a; a:: Siliconix JFET JFET JFET JFET JFET PN4~92-1B Data Sheet Page Geometry Page .><: a 0 [[l ~ 0 I- w u. "'iii c: Ol i:i5 ~ E C/) CD £i .9 .... ~ a:: Small-Signal FET Cross Reference (Cont'd) Industry Type and Recommended Part Number Classification Replacement Data Sheet Page Geometry Page Industry Type and Part Number Classification Recommended Replacement Data Sheet Page Geometry Page U221 U222 U231 U232 U233 N JFET N JFET D N JFET D N JFET o N JFET 2N4391 2N4391 U231 U232 U233 U428 U430 U431 U440 U441 D N JFET D N JFET D N JFET D N JFET ON JFET U428 U430 U431 U440 U441 U234 U235 U240 U241 U242 D N JFET D N JFET N JFET N JFET N JFET U234 U235 2N5432 2N5433 2N5432 U443 U444 U508 U1177 U1178 D N JFET D N JFET N JFET N JFET N JFET U443 U444 CR030 2N4220A 2N3821 U243 U254 U255 U256 U257 N JFET N JFET N JFET N JFET D N JFET 2N5433 2N4859 2N4860 2N4861 U257 U1179 U1180 U1181 U1182 U1277 N JFET N JFET N JFET N JFET N JFET 2N3821 2N4221A 2N4220A 2N3821 2N4339 U273 U273A U274 U274A U275 N JFET N JFET N JFET N JFET N JFET 2N4118A 2N4118A 2N4119A 2N4119A 2N4119A U1278 U1279 U1280 U1281 U1282 N JFET N JFET N JFET N JFET N JFET 2N4339 2N4340 2N4339 2N3822 2N4341 U275A U280 U281 U282 U283 N JFET D N JFET D N JFET D N JFET D N JFET 2N4119A U231 U231 U232 U232 U1283 U1284 U1285 U1288 U1287 N JFET N JFET N JFET N JFET N JFET 2N4340 2N4341 2N4220 2N4341 2N4092 U284 U285 U290 U291 U295 D N JFET D N JFET N JFET N JFET N JFET U233 U234 U290 U291 U295 U1322 U1323 U1324 U1325 U1420 N JFET N JFET N JFET N JFET N JFET 2N4221A 2N4221A 2N4220A 2N4222 2N3821 Cl IW LL U1421 U1422 U1714 U1637E U1897 N JFET N JFET N JFET N JFET N JFET 2N3822 2N3822 2N4340 U1837 U1897 Ci5 U1897·18 U1897E U1898 U1898·18 . U1898E N JFET N JFET N JFET N JFET N JFET U1897·18 U1897·18 U1898 U1898·18 U1898·18 -" 0 0 II) > megohm input impedance; subpicoamp leakage; simple, two-leaded current sources and limiters; differential amplifiers with > > 100 volt/microsecond slewing while achieving picoamp input current; and protection diodes-Siliconix is the source. Siliconix offers awide variety of packages: the hermetically sealed metal can; plastic TO-92; surface-mount SOT-23, SOT-143, and SOIC; and also die/chip products. Our products include n- and Siliconix p-channel JFETs, enhancement-mode MOSFETs, and n-channel enhancementmode DMOS FETs - the broadest FET line in the world. Siliconix has specialized in offering highperformance products for high-performance designs. Our specialty has been to fill the gap which exists between the best ICs available in the industry and discrete devices. Siliconix began manufacturing smallsignal Field Effects Transistors 20 years ago. Our emphasis has been, and will continue to be, ultrahigh-performance devices. Our product line is the broadest FET line in the world, and our commitment to this technology has never waivered. Our manufacturing capacity ensures timely delivery on even the large volume run-rates. FET:f 8JV $;';COII;I 2-1 Using JFETs as'rontend dertlces tor a"AmllS By using alow-leakage, low-noise and high-gain dual JFET with a relatively inexpensive, general-purpose biFET op amp, overall circuit performance is far superior than by using the best biFET op amp available. With present technology, the biFET-op amp approach has Check out the Overall Circuit Performance circuit performance: NOise (10 Hz) Leakage Slew Rale certain compromises - either on low-leakage, low noise or high gain (slew rates). One or two of these performance characteristics will be compromised with the biFET. By using aFET as a"front-end" device, all three can be achieved. UsingOPA-lll Circuit Using U403 with OP-15 Circuit 33nVI-v'HZ 1 pA 2.9VI"S 20nV/-v'HZ 1pA 12V1"S < 10 nVI..(RZ U401-6, 2N6905-B, 2N5564-6 U421-6 2N5911-12 2N5564-6 Specific Device Performance Characteristics Low Noise (en) Low Leakage (IG) High Gain I (gfs) High Slew Rates < 1 pA > 7500 "mhos thru 450 MHz > 50 VI".5 Com"are +15V Using JfElS as front-End OPA·III GUARD De,,'ces ,'... I BiFETOpAmp 3~ '\ ~ lO~F 7 :J; TANT v+ I \, ~ CASE OUT 6 V- ~ [::/4 5M 1'2 l 10~F 2K TANT ~ -15v lOOK IDS ... __ _ JfElSas • ___A nuRI-eRD De"i. with a BifET +15V 10K ... +15V'" 10K -5V a" Am" Y21 GUARD 10~F I Y2 U403 lTANT 500~ 416 lOOK 5M 2-2 lOS Siliconix 2K Using FETs as Analog Switches JFETs and DMOS FETs offer flat oN-resistance, plus low ON-resistance in addition to ultrahigh-speed switching. Siliconix DMOS devices operate as high as 500 MHz. C.pmpare the discrete approach to the IC Device Technology approach where Slllcomx - DMOS SD210-15 performance makes the SD5000-2 difference: Switching time CMOS CD4016 FETS as Analog Switches Selector Guide Using JFETs as Diodes Compare traditional diodes to the Siliconix line of PAD - Pico Amp Diodes: Device SD210·15 SD5000 Jill J112 J113 2N4391 2N4392 2N4393 Jl05 Jl06 Jl07 J10B Jl09 Jll0 ros(on) Ins 45 ohms SOns 50 ohms Technology SWitchingt(on) ros(on) DMOS DMOS JFET JFET JFET JFET JFET JFET JFET JFET JFET JFET JFET JFET 1ns 1ns 7ns 7ns 7ns 15ns 15ns 15ns 15ns 15n5 15ns 4ns 4ns 4ns 45 ohms 45 ohms 30 ohms 500hms 1000hms 30 ohms 60 ohms l000hms 30hms 6 ohms Bohms Bohms 120hms lBohms JFETs make ultralow-Ieakage diodes by using the gate and the drain of the device. Devicel Technology Capacitance Breakdown Voltage Leakage 2ns 1.5pF 75 V 7-10nA lN457 lN484 300ns 1.5pF 70V 100pA JFETS PAD-l 250ns 20pF 45V 1pA Blpolar5 as diodes (lowest leakage) 200ns 30pF 30·60 V 1N914 (gold doped) lN4148 Switching Time (recovery time) - 4-5pA If speed IS critical. then the gold-doped diodes are the first choice If leakage IS important- choose the SllIcomx PAD-l series Siliconix 2-3 JFETs as low leakage Diolle Selector 6uille Leakage IR Breakdown BVR Reverse Breakdown VoHage Capacitance cR Device Number Type Package 1 pA 2 pA 5 pA 10 pA 20 pA 50 pA 100 pA -45 -45 -45 -35 -35 -35 -3S V V V V V V V 0.8pF 0.8pF 0.8pF 2.0pF 2.0pF 2.0pF 2.0pF DPAD1* DPAD2* DPADS* DPAD10' DPAD20' DPADSO' DPAD100' Modified TO-78 Modified TO-71 Modified TO-71 Modified TO-71 Modified TO-71 Modified TO-71 Modified TO-71 5 pA 10 pA 20 pA 50 pA 100 pA 200 pA 500 pA -35 -35 -35 -35 -35 -35 -35 V V V V V V V 2.0pF 2.0pF 2.0pF 2.0pF 2.0pF 2.0pF 20pF JPAD5 JPAD10 JPAD20 JPAD50 JPAD100 JPAD200 JPAD500 2-Leaded 2-Leaded 2-Leaded 2-Leaded 2-Leaded 2-Leaded 2-Leaded TO-92 TO-92 TO-92 TO-92 TO-92 TO-92 TO-92 1 pA 2 pA 5 pA 10 pA 20 pA 50 pA 100 pA -45 -45 -45 -35 -35 -35 -35 V V V V V V V o8pF o8pF PADl PAD2 PAD5 PAOlO PAD20 PAD50 PAD100 3-Leaded 3-Leaded 3-Leaded 3-Leaded 3-Leaded 3-Leaded 3-Leaded TO-18 TO-18 TO-18 TO-18 TO-18 TO-18 TO-18 08pF 2.0pF 2.0pF 20pF 20pF • D = Dual Diode FETS as Current Regulators Current Regulator Selector 6uille 2-4 Siliconix offers simple, two-leaded temperaturecompensated current regulators. The inherent design of the JFET produces devices where the current is insensitive to temperature changes and with atemperature coefficient better than 30.00ppm per degree c. The breakdown voltage of the devices are rated at 100 V, and they provide excellent constant current down to 1-2 V. The devices are selected in the 10% ranges from 100 ~A to 5.6 rnA for use in precise instrumentation. Part Number IF(mln) TOLERANCE % CR022 CR024 CR027 CR030 CR033 CR039 CR043 CR047 CR056 CR062 CR068 CR075 CR082 CR091 CR100 CRll0 CRl20 CRl30 CRl40 CRl50 CRl60 CR180 CR200 CR220 CR240 CR270 CR300 CR330 CR360 CR390 CR430 CR470 CR530 198 flA 216 ~A 243 ~A 270 flA 297 flA 351 flA 387 ~A 423 ~A 504 ~A 558 ~A 612 ~A 675 ~A 738 ~A 819 ~A 900 ~A 990 ~A 1.09mA 1.17mA 1.26mA 1.35mA 1.44mA 1.62mA 180mA 1.98mA 2.16mA 2.43mA 2.70mA 2.97mA 3.24mA 3.51 mA 3.87mA 4.23mA 4.nmA 10% 10% 10% 10% 10% 10% 10% 10% 10% 10% 10% 10% 10% 10% 10% 10% 10% 10% 10% 10% 10% 10% 10% 10% 10% 10% 10% 10% 10% 10% 10% 10% 10% Siliconix BV 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V Package jail 2-leaded devices) TO-18 TO-18 TO-18 TO-18 TO-18 TO-18 TO-18 TO-18 TO-18 TO·18 TO-18 TO·18 TO-18 to-18 TO-18 TO-18 TO-18 TO-18 TO-18 TO-18 TO-18 TO-18 TO-18 TO-18 TO-18 TO-18 TO-18 TO-18 TO-18 TO-18 TO-18 TO-18 TO-18 Data Sheets _ Siliconix n-channel JFET designed for • • • H Siliconix ------ Performance Curves NH NRL See SecHon 4 General Purpose Amplifiers • Analog Switching • BENEFITS • Low Cost III Specified at 100 MHz o Automatic Insertion Package iNOT RECOMMENDED FOR NEW DESIGNS. "ABSOLUTE MAXIMUM RATINGS (25°C) Drain-Gate Voltage ............................ 25 V Drain-Source Voltage .......................... 25 V Reverse Gate-Source Voltage ................. -25 V Gate Current ................................ 10 rnA Continuous Device Dissipation at (or Below) 25°C Free Air Temperature (Note 1) ................................. 200 mW Storage Temperature Range ........ -55°C to +150°C Lead Temperature (1/16" from Case for 10 seconds) .......... . 260°C Plastic TO-92 See Section 6 "D '4: G, C • C Bottom View • G *ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted) Characteristic 1 12 BVGSS Gate-Source Breakdown Voltage IGSS Gate Reverse Current loSS Saturation Drain Current I~ I I~ C VGS Gate-5ource Voltage 6 VGS(off) Gate-Source Cutoff Voltage 7 IYfs l 8 9 10 - D V N A M I C 11 IYo.1 Ciss Crss IYfsi Common-Source Forward Transfer Admittance V Test Conditions IG =-lI'A, VOS =0 nA -2 I'A 2 20 mA -0_5 -7_5 V VOS = 15 V,ID = 200 I'A -8 V VDS=15V,ID=2nA 2000 Admittance Common Source Input Capacitance Common Source Reverse Transfer Capacitance Common Source Forward Unit -2 Common Source Output Transfer Admittance Max -25 S I- T 3 A I- T 1- Min 6500 I'mho 50 I'mho 8 pF 4 pF 1600 I'mho * JEDEC registered data VGS = -15 V, VDS = 0 TA = 100'C VOS = 15 V, VGS = 0 (Note 2) VDS = 15 V, VGS =0 (Note 2) f = 1 kHz VDS=15V,VGS=0 f = 1 MHz VDS=15V,VGS=0 f=100MHz NH NRL NOTES: 1- Derate linearly to 125°C (free air temperature at a rate of 2 mW/"C)_ 2. Pulse tested pulse width = 100 ms, duty cvcle" 10%_ Siliconix 3-1 n-channel JFETs designed for • • • H Siliconix Performance Curves NRL See Section 4 Amplifiers • Small-Signal • Oscillators BENEFITS Operates from High Supply • Voltages BVGSS>50V *ABSOLUTE MAXIMUM RATINGS (25°C) Gate-Drain or Gate-Source Voltage (Note 1) Gate Current Total Device Dissipation at (or below) 25°C Free-Air Temperature (Note 2) Storage Temperature Range Lead Temperature (1/16" from case for 10 seconds) TO-72 See Section 6 -50 V 10 mA 300mW -65 to +200°C '4: 300°C G ~ c *ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted) CharacterIStiC , -2"3 .. - 5 S IGSS Gate Reverse Current T A T I BVGSS Gate Source Breakdown Voltage VGS(off) Gate·Source Cutoff Voltage C VGS Gate Source VoltaQe 2N3822 2N382' M,n M.x M," -0 , -05 nA -0 , -0 , -05 pA -50 -4 -30 7 - 8 Saturation Dram Current (Note 3) 9" Common Source FOIward Tran';tconductance (Note 3) IVIsI - Common Source Forward Transadmlttance Vas = 15 V.IO = 200pA -70 05 25 2 10 4 20 4500 30gp 6500 3,5OD 6,500 3000 3.200 9 0 90s 10 20 35 N A M C ISS Common Source Input Capacitance 6 6 6 11 1 C Crss Common Source Reverse Transfer Capacitance 2 2 2 NF NOIse Figure 5 5 6 200 200 200 - 12 VOS'" 15V,IO= 4OO IJ A rnA Vas = 15V, VGS=D f = 1 kHz ,umho 10 Y t"l00MHz VOS=15V,VGS=O pF dB VOS=15V,VGS"'0, Rgen::: 1 meg, BW = 5 Hz f = 10 Hz Equivalent Short Circuit Input en NOise Voltage nV v1'i1 VOS'" 15V,VGS=O,BW=5Hz NRL * JEDEC Registered Data. , NOTES: Due to symmetrical geometry, these umts may be operated With source and drain leads Interchanged 2. Derate linearly to 175°C free-air temperature at rate of 2 mWfC. 3 These parameters are measured dUring a 2 msec Interval 100 msec after d-c power IS applied, 3-2 f:: 1 kHz f::: 1 MHz ~ 13 I I '50°C VOS=15V.l0"'50IlA Common Source Output Conductance (Note 3) - -30 V, Vas = 0 VOS=15V,lo=05nA -4 1500 1500 =: V -2 -1 lOSS VGS IG=-lp.A,VOS=D -8 -6 -10 6 Test Conditions Max -0 , -50 -05 2N3823 Unit M,n Max Siliconix n-channel JFET designed for • • • H Siliconix Performance Curves NRL See Sedion 4 High Speed Commutators Choppers III III BENEFITS I nsertion Loss • Lowrds{on) < 250 n Ii) High Off-Isolation I D{off) < 0_1 nA *ABSOLUTE MAXIMUM RATINGS (25°C) Gate-Drain or Gate-Source Voltage (Note 1) Gate Current Total Device Dissipation at (or below) 25°C Free-Air Temperature (Note 2) Storage Temperature Range Lead Temperature (1/16" from case for 10 seconds) TO·72 See Section 6 -50V 10mA 300mW -65 to +200° C '4: 300°C G 0 ~ s *ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted) Mm Characteristic 1...2. S 2 T A 3 T I- I C 4 IGSS Gate Reverse Current BVGSS Gate-Source Breakdown Voltage ID(off) Drain Cutoff Current 'ds(on) Drain-Source ON Resistance C ISS Crss Max Umt -0.1 nA -0.1 IJA Test Conditions VGS = -30 V. VDS = 0 150°C 1- 5 D I- V 6 17 N A M I C -50 V IG = -lIJA. VDS = 0 0.1 nA 0.1 IJA 250 n VGS = 0 V. ID = 0 Common-Source Input Capacitance 6 pF VDS = 15 V. VGS = 0 Common-Source Reverse Transfer Capacitance 3 pF VGS = -8 V. VDS = 0 VDS = 15 V. VGS = -8 V 150°C f = 1 kHz f= 1 MHz NRL • JEDEC registered data. NOTES: 1. Due to symmetrical geometry. these units may be operated with source and drain leads Interchanged. 2. Derate linearly to 17SoC free-air temperature at rate of 2 rnWfC Silicanix 3-3 monolithic dual n-channel JFETs designed for • • • H Siliconix Performance Curves NNR See Section 4 • DiHerential Amplifiers BENEFITS Minimum System Error and Calibra• tion 5 mV Offset Maximum (2N3921) Amplifier Design • Simplifies Low Output Conductance TO-71 See Section 6 *ABSOLUTE MAXIMUM RATINGS (25°C) G1 Gate-Drain or Gate-Source Voltage ..............• -50 V Gate Current ............................... 50 rnA Total Device Dissipation (Derate 1.7 mW;oC to 200°C) ..•............ 300mW Storage Temperature Range •............. -65 to +200°C ~~ 81 S2 '2 o G, 0 3 5 02 0 6 0 G2 ., 2 0, G2 7 0' 0 .0 '• G, Bottom View l~ *ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted) Min Characteristic .2. IGSS Gate Reverse Current BVOGO Drain-Gate Breakdown Voltage 4"T -::-A VGS(offl VGS Gate-Source Cutoff Voltage Gate-5ource Voltage -"-c IG Gate Operatmg Current 2 ~s ~: b • ...l... 8 9 lOSS 9fs 100 gos l1 V CISS C rss 13M 9fs 1 gos 12": 14 _c 15 NF 16 1- M A T 1- C 18 H 17 IlA 1 Common-Source Output Conductance Common-Source Input Capacitance Common-Source Reverse Transfer Capacitance Common-Source Output Conductance 2N3921 0.95 Max 2N3922 Min Max Ilmho 5 5 10 25 1.0 0.95 1.0 d8 2N4OB4 Min 0.95 VOG = 10V,I0 = 700ilA 100·C VOS = 10V, VGS = 0 VOS=10V,VGS=1J 2 Min I 100·C 10 = lilA. IS = 0 VOS-l0V.10-lnA VOS - 10V,I0 = lOOIlA pF 20 Spot NOise Figure VGS=-30V. VOS=O "mho 1500 Common-Source Forward Transconductance Test Conditions pA nA mA 10 7500 35 18 6 1500 Common-Source Forward Transconductance (Note 1) Transconductance Ratio (Note 3) V -2.7 -250 • JEOEC registered data. NOTES: 1. Pulse test duration = 2 ms. 2. Measured at end points, TA and TB. 3. Assumes smaller value 10 numerator. 3-4 -1 -25 IVGS1-VGS2 1' aIVGS1-VGS2 1 Gate-Source Differential Voltage Change with Temperature aT (Note 21 91,1 nA -3 -0.2 Differential Gate-Source Voltage -gfs2 -1 50 Saturation Drain Current (Note 1) Characteristic Unit Max Max VOG = 10V.10 = 700llA VOS=10V,VGS 2N4085 Min Max Unit 15 15 mV 10 25 "vfc 1.0 - 1.0 0.95 0 1= I kHz 1 = 1 kHz f= 1 kHz, RG= 1 meg Test Conditions O·C VOG=10V, TA= 10 = 700llA TB = 100·C f = I kHz NNR Siliconix monolithic dual n-channel JFETs designed for • • • H Siliconix Performance Curves NQP See Section 4 BENEFITS Accuracy & Stability • HighOffset Less Than 5 mV (2N3954, 54A) and Medium Frequency • Low Differential Amplifiers Input • High Impedance Amplifiers Drift Less Than 5 fJ.VrC (2N3954A) Range • WideIG Dynamic Specified @ V DS =20 V • LowCissCapacitance <4 pF TO·71 See Section 6 ABSOLUTE MAXIMUM RATINGS (25°C) Any Case-To-Lead Voltage ...•.....•• " .•...•.. ±100 V Gate-Drain or Gate-Source Voltage •••••..•...••.• -50 V Gate Current. . . • . • . • . . • • . • • • • • • • • • . • . . . . . .• 50 mA Total Device Dissipation at (Each Side) ..••......... 250 mW 85°C Case Temperature (Both Sides) ............ 500 mW Power Derating (Each Side) •••••.•...••••• 2.86 mWrC (Both Sides) ••••.•••..••••• 4.3 mWrC Storage Temperature Range •••••..••.••• -65 to+200oC Lead Temperature (1/16" from case for 10 seconds) ••• 300°C G, ~~ 8, G2 82 '2 G~ G' 30 0 506 °2 0,2 0 ,0 07 02 5, [ 0, '1 Bottom View *ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted) CharacterIStic 1 2' 13 14 I5 IS 17" IS IGSS Gate Reverse Current BVGSS Gate·Source Breakdown Voltage Gate-Source Cutoff Voltage Gate-Source Forward Voltage s VGS(olll T A T VGS(II I C VGS l"i 110 IG Gate Operating Current lOSS Saturation Dram Current gls 1-+1IE. 0 13 y gas 1- N 14 A CISS I-M 15 I Crss -c Gate-Source Voltage Common-Source Forward Transconductance Common-Source Output Conductance 2N3954 Min Max -100 -600 -50 2N3954A M,n Max -100 -500 -50 -10 -1.0 -4.5 2.0 -42 -05 -4.0 -50 -250 05 50 1000 3000 1000 35 -05 05 1000 1000 2N3955 Max -100 -500 -50 Min 2N3955A Max -100 -500 -50 Min Unit VGS - -30 V, VOS=O VOS 0, IG =-I)1A VOS 20V, 10 = 1 nA V VOS= 0, !G..= 1 rnA VOS=20V pA VOS 20 V, nA 10 = 200)1A VOS-20V, rnA VGS=O -4.5 -1.0 -45 -1.0 20 -4.2 -40 -50 -250 50 3000 35 20 -42 -0.5 -40 -50 -250 05 50 1000 3000 1000 35 20 -4.2 0.5 -40 -50 -250 05 5.0 1000 3000 1000 .u mho VOS=20V, 35 VGS=O 40 -45 Common-Source Input Capacitance Common-Source Reverse Transfer Capacitance 40 40 4.0 12 12 12 1.2 pF 16 Cdgo Drain-Gate Capacitance 1.5 1.5 1.5 1.5 17 NF Common Source Spot NOise Figure 05 0.5 05 05 dB 10 10 10 10 nA - Differential Gate 18 IIG1- IG21 Current 1- M Saturation Dram Current 19 A IOSS1/10SS2 Rat'o (Note 11 -T Differential Gate-Source 20 C IVGS1-VGS21 Voltage _H Gate-Source Differential 21 I Voltage Change with 22"N t.IVGS1-VGS21 Temperature _G Transconductance RatiO 23 !lisl/9Is2 (Note II 0.95 1.0 095 50 08 1.0 097 10 1.0 0.95 5.0 0.4 0.5 097 Test Conditions pA nA 10 1.0 095 10.0 2.0 2.5 097 1.0 0.95 1.0 - 5.0 1.2 1.5 mV 10 - ITA-125C 10 50llA 10 200)1A TA-125C 1 1 kHz 1 200 MHz 1= 1 kHz IEII 1= 1 MHz VOG 10V, IS= 0 VOS 20V, VGS =0, RG = 10 Mn VOS 20V, 10 = 200)1A, VOS - 20 V VGS=O 1= 100 Hz T = 125°C VOS~20V, T = 25°C to -55°C 10=2001lA T-25 Cto 125 C 1= 1 kHz * JEDEC registered data NOTE: NQP 1. Assumes smaller value in numerator. Siliconix 3-5 .monolithic dual H Siliconix Performance Curves NQP See Section 4 n-channel JFETs designed for • • • • • BENEFITS Range • WideI G Dynamic Specified @ V DS = 20 V Low and Medium Frequency DiHerential Amplifiers High Input Impedance Amplifiers • LowCissCapacitance <4 pF TO·71 Sea Section 6 *ABSOLUTE MAXIMUM RATINGS (25°C) Any Lead-To-Case Voltage .................... ±100 V Gate:Orail1 OJ Gate·~ource Voltage ............•.. -50 V Gate Current ............................. " 50 rnA Total Device Dissipation at (Each Side) ............. 250 mW 85°C Case Temperature (Both Sides) ............ 500 mW Power Derating (Each Side) ................ 2.86 mWrC (Both Sides) .........•...... 4.3 mWrC Storage Temperature Range .............. -65 to +250°C Lead Temperature (1/16" from case for 10seconds) ... 300°C G, ~~ 8, G2 S2 Sz Dz G, 30 0'06 0, 20 ,0 l 07 G2 S, Bottom View 0, Gz " *ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted) Characteristic 1 2" --=3 4_ T5 5 A aT _I 7 C 8 -9 10 i~ I...E... 13 D I-V 14 N I-~ 15 I I-C 16 117 18 I- M 19 A I-T 20 C H '211 1_ N 22 G '23" Gate Reverse Current BVGSS Gate-Source tsreakdown Voltage -50 VGS(off) Gate-Source Cutoff Voltage -10 VGS(f) Gate-Source Forward Voltage VGS Gate-Source Voltage IG Gate Operating Current lOSS Saturation Drain Current IVI,I Min -0.5 0.5 Max -500 -50 -4.5 2N3958 MIn -100 -500 -1.0 Max pA -500 nA -50 -4.5 -1.0 -4.5 2.0 2.0 -4.2 -4.2 -4.2 -0.5 -4.0 -0.5 pA -250 -250 -250 nA rnA 5.0 0.5 5.0 1000 3000 1000 3000 Transconductance 1000 1000 1000 35 35 = 150'C VOS =OV,IG = 1 rnA VOS= 20V,I0 = 200!,A -50 1000 3000 Conductance IT VOS=20V,10=50!,A -4.0 -50 0.5 VGS=-30V, VDS=O VOS=20V,IO= 1 nA V -50 5.0 Test Conditions VDS=OV,IG=-l!,A 2.0 -4.0 Unit -100 Common-Source Forward Common-Source Output 9o, 2N3957 Max -100 IGSS VOS=20V,10=200!,A I T •. =125C , VO'S = 20 V, VGS = 0 f= 1 kHz 1= 200 MHz !,rnho 1= 1 kHz 35 VDS = 20 V, VGS = 0 CISS Common-Source Input Capacitance 4.0 40 40 Crss Common-Source Reverse Transfer Capacitance 1.2 1.2 1.2 Cdgo Drain-Gate Capacitance 1.5 1.5 1.5 NF Common-Source Spot NOise Figure 0.5 0.5 0.5 dB VOS = 20 V, VGS = OV, RG = 10M!), 1=100Hz IiGJ-iG21 Differential Gate Reverse Current 10 10 10 nA VOS = 20 V, 10 = 200!,A T = 125'C IOSS1/ IOSS2 Saturation Drain Current Ratio (Note 1) 1.0 - VDS=20V, VGS=O IvGS1-VGS2 Differential Gate-Source Voltage 1 1= 1 MHz 0.95 Gate-Source Voltage aIVGS1-VGS2 1 Differential Change With Temperature Transconductance Ratio (Note 1) 9f,l/91,2 *JEDEC registered data NOTE: 1. Assumes smaller value 3-6 2N3956 Moo In 0.95 1.0 0.90 1.0 0.85 15 20 25 4.0 6.0 8.0 5.0 7.5 10.0 10 0.90 1.0 0.85 1.0 pF VDG=10V,.IS=0 rnV VDS = 20V,ID = 200!,A T = 25'C to -55'C T = 25'C to 125'C 1= 1 kHz NQP numerator. Silicanix n-channel JFETs· designed for • • • H Siliconix Performance Curves NCB See Section 4 Switches • Analog Choppers • Amplifiers • BENEFITS I nsertion Loss • Low rOS(on) < 30 n (2N3970) Off-Isolation • Good IO(off) < 250 pA TO·18 See Section 6 *ABSOLUTE MAXIMUM RATINGS (25°C) Reverse Gate·Drain or Gate·Source Voltage ......... -40 V Gate Current ................................ 50 mA Total Device Dissipation at 25°C ~ase Temperature Derate Linearly at the Rate of 10 mWrC ........... 1.8 W Storage Temperature Range .............. -65 to +200°C Lead Temperature (1/16" from case for 60 seconds) ............... 300°C .~: G.C s D *ELECTRICAL CHARACTERISTICS (2S0C unless otherwise noted) Characteristic 1 2' '3 - BVGSS Gate Reverse Breakdown Voltage lOGO Dram Reverse Current 2N3970 M,n -40 4 ~ s T 6 A I- T 7 I 1- C 2N3972 2N3971 Max Min Max Min Max 250 250 250 pA 500 500 500 nA 250 250 250 pA 500 500 500 nA VOG = 20V, IS = 0 12 D V N 150°C 10(0ff) Drain Cutoff Current VGS(off) Gate-Source Cutoff Voltage -4 -10 -2 -5 -0.5 -3 V VOS=20V,10=lnA lOSS Saturation Drain Current (Pulsewidth 300 p.s, duty cycle'; 3%) 50 150 25 75 5 30 mA VOS = 20V, VGS = 0 VOS(on) Drain-Source ON Voltage V VGS=O rOS(on) Static Drain-Source ON ReSistance 30 60 100 12 VGS=O.lo=lmA rds(on) Drain-Source ON Resistance 30 60 100 12 CISS Common-Source Input Capacitance 25 25 25 Crss Common-Source Reverse Transfer Capacitance 6 6 6 td(on) Turn-On Oelay T,me 10 15 40 tr RlseT.me 10 15 40 toft Turn-Off Time 30 60 100 VOS=20V,VGS=-12V I 10= 15 1 111 14 IG = -1 p.A, VOS = 0 2 ITo I- Test Conditions V 8 1'9 113 Unit -40 -40 I 150°C IEII 5mA 10 = 10mA 110=2OmA f = 1 kHz VGS-O,IO=O VOS = 20 V, VGS = 0 pF f= 1 MHz VOS=O,VGS=-12V VOO = 10 V, VGS(on) = 0 15 1m 1- 17 S w ns 2N3970 2N3971 2N3972 RL VGS(oft) 10(on) 20mA 45012 -10V lOmA 85012 - 5 V 5mA 16K12 - 3 V VDD ~DD'VDSlDN' • JEOEC regIStered data. IO(ONj VIN S RC; .. son.. Siliconix VOUT NCB INPUT PULSE RISE TIME 025n. fALL TlME075ns PULSE WIOTH lOOn. PULSE RATE 550 pps SAMPLING SCOPE RlSETlME04nl INPUT RESISTANCE 10 M INPUT CAPACITANCE 1 5pF 3-7 H n-channel JFETs designed for . . . Siliconix Performance Curves NCB See Section 4 BENEFITS • • • • Analog Switches Commutators Choppers Integrator Reset Switch • Low I nsertion Loss High Accuracy in Test Systems rDS(on) < 30 n (2N4091) • High 'Off-Isolation ID(off) < 200 pA • High Speed trise < 10 ns (2N4091) • Short Sample and Hold Aperture Time Crss <5 pF *ABSOLUTE MAXIMUM RATINGS (25°C) Q TO-18 See Section 6 Reverse Gate-Drain or Gate-Source Voltage ......... -40 V Gate Current ............................... 10 rnA Total Device Dissipation at 25°C Case Temperature (Derate 10 mWrC) ....•.................... 1.8 W Storage Temperature Range .............. -55 to +200°C Lead Temperature (1/16" from case for 60 seconds) .............. 300°C .~: D S *ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted) Characteristic l~r- BVGSS Gate-Source Breakdown Voltage 'DGO Dram Reverse Current 2N4091 Min 2N4092 Max -40 Mon 2N4093 Max Min -40 Max -40 200 200 400 400 Unit 200 pA 400 nA 4 200 pA 5 400 nA rr- IS r- ...!.... ~ ~ 10 - S T A T I C 11 - IDloff) 400 VGSloff) IDSS Saturation Dram Current INote 1) 30 -10 -7 -1 8 15 V VDS=20V,ID= 1 nA mA VDS = 20V, VGS = 0 02 13 :i4 0.2 80 n VGS=O,ID=lmA 50 80 n VGS - O,ID = 0 16 16 5 5 5 Turn-ON Delay Time 15 15 20 Rise Time 10 20 40 Turn-OFF Time 40 60 BO 'DSlon) Static Drain-Source ON Resistance 30 50 16 D 'dslon) Olraln-Source ON Resistance 30 CISS Common-Source Input Capacitance 16 y N Crss Common-Source Reverse Transfer Capacitance 19 tdlon) I- S 20 W tr toff * JEDEC registered data i= 1 MHz VDS= 0, VGS = -20 V VDD = 3 V, VGSlon) = 0 ns 2N4091 2N4092 2N4093 ~ D S Siliconix 'Dlon) 6.6mA 4 2.5 INPUT PULSE RL VIN i= 1 kHz VDS = 20V, VGS = 0 pF VGSloff) -12V -8 -6 RL 425n 700 1120 NCB VDD NOTE: 1. Pulsewidth = 300 Ils, duty cycle';; 3%. 3-8 150°C riD = S.6mA 121 150°C ID =2 5 mA mA VGS=O Dram-Source ON Voltage 150°C I ID =4 V VDSlon) 0.2 -15 18 -5 VGS = - 8 V VGS=-12V nA -2 12 I~ VDS = 20 V pt\ 400 -5 150°C VGS=- SV nA 200 Gate-Source Cutoff Voltage IG = -lilA, VDS = 0 VGS = -20 V, IS = 0 pA 200 Dram Cutoff Current Test Conditions V RISE TIME VOUT SAMPLING SCOPE < 1 ns ;~t~ET~~~T~ ~ =~ PULSE DUTY CYCLE 10% PULSE GENERATOR IMPEDANCE son RISETIME04ns INPUT RESISTANCE 10 M INPUT CAPACITANCE 1 7 pf n-channel JFETs designed for • H Siliconix Performance Curves NT See Section 4 • • Input • Ultra-High Impedance Amplifiers BENEFITS • Low Power loSS < 90 p.A (2N4117) • Minimum Circuit Loading IGSS < 1 pA (2N4117A Series) Electrometers pH Meters Smoke Detectors Intrusion Alarms TO-72 See Section 6 *ABSOLUTE MAXIMUM RATINGS (25°C) Gate-Drain or Gate-Source Voltage (Note 1) .....•.. -40 V Gate-Current ............................... 50mA Total Device Dissipation (Derate 2 mWrC to 175°C) ................ 300mW Storage Temperature Range ............ _. -65 to +175°C Lead Temperature (1/16" from case for 10 seconds). " ........... 255°C "4: G ~ 0 ~ s *ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted) 2N4117/A FN4117/A Characteristic Min Gate Reverse Current 1 ::2 3 -4 5 -6 - IGSS S T A T I C 7 - IGSS 2N4117 Senes Only FN4117 Gate Reverse Current 2N4117A Series Only FN4117A -10 -10 -10 pA -25 -25 -25 nA -1 -1 -1 pA -2.5 -2.5 -25 nA -0.6 -1.8 -1 -3 -2 -6 Saturation Dram Current 0.03 0.09 0.015 008 0.24 0.20 060 210 80 250 100 330 (Note 2) FN4117A Common-Source Forward Transconductance (Note 2) 9 N gas Conductance Ciss Common-Source Input Capabltance -c 11 Unit C rss Common-Source Output Common-Source Reverse Transfer Capacitance -40 -40 -40 V 70 Test Conditions Max Gate·Source Cutoff Voltage gls I Min VGS(off) IDSS A M Max Gate-5ource Breakdown Voltage y 10 Min 2N4119 2N4119A BVGSS D 8 Max 2N4118 2N4118A VGS = -20 V. VDS = 0 VGS = -20 V. VDS = 0 5 10 3 3 3 1.5 1.5 1.5 150°C IG=-lI'A.VDS=O VDS = 10 V. ID = 1 nA mA VDS= 10V.VGS=0 f I'mho 3 150°C ~ 1 kHz VDS=1OV.VGS=0 pF 1= 1 MHz NT *JEDEC registered data. NOTES: 1. Due to symmetrical geometry. these Units may be operated with source and drain leads Interchanged. 2. This parameter IS measured dUring a 2 ms Interval 100 ms after power is applied. (Not a JEDEC condition.) Siliconix 3-9 n-channel JFETs designed for • • • H Siliconix Performance Curves NRUNPA See Section 4 Small-Signal Amplifiers • VHF Amplifiers • Oscillators • Mixers • BENEFITS • High Gain Low Receiver NOise Figure • *ABSOLUTE MAXIMUM RATINGS (25°C) TO-72 See Section 6 Gate-Drain or Gate-5ource Voltage (Note 1) ______ .. -30 V Gate Current ............................... 10 mA Drain Current 15 mA Total Device Dissipation at (or below) 25°C Free-Air Temperature ...................... , , " 300 mW Derate Linearly to 175°e Free-Air Temperature at Rate of2 mWre Storage Temperature Range, , . , , , . , , , , , . , -65 to +200o e Lead Temperature (1/16" from case for 10 seconds), , , , , , , .. , . , , . 3000 e .............................. '4: G ~ g D *ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted) Characteristic 2N4220, 2N4220A Min 1 2' -J -4' 5 - S T A T I C 6 7 8 9 - IGSS Gate Reverse Current ~vGSS Gate-Source Breakaown Voilage VGS(otf) Gate-Source Cutoff Voltage VGS Gate-Source Voltage lOSS Saturation Drain Current (Note 21 9fs 0 V N A M 10 I IVlsl Common-Source Forward Transconductance (Note 2) Common-Source Forward Transadmlttance Common-Source Output 2N4221, 2N4221A Min Max 2N4222, 2N4222A Max Min -0.1 -0.1 -0.1 nA -0.1 -0.1 -0.1 IlA -30 -3D -8 -2 -6 (2001 (2001 (5001 (5001 6 5 15 5000 2500 6000 -2.5 (501 (501 05 3 2 1000 4000 2000 -1 750 750 10 20 40 CISS 6 6 6 11 Crss Common-Source Reverse Transfer Capacitance 2 2 2 12 NF NOISe F,gure, Only 2N4220A, 2N4221A,2N4222A 2.5 2.5 2.5 -c - Conductance (Note 2) V (IlAI mA *JEDEC registered data. 150·C VOS= 15V,IO=0.1 nA VOS=15V,IO=( I VOS=15V,VGS=0 1= 1 kHz 1= 100 MHz VOS = 15 V, VGS = 0 pF dB 1=1 kHz 1= 1 MHz VOS-15V,VGS=0 Rgen = 1 meg 1= 100 Hz NRL/NPA NOTES: 1. Due to symmetrical geometry. these umts may be operated with source and drain leads interchanged. 2. These parameters are measured dUring a 2 msec Interval 100 msec after d-c power IS applied. 3-10 V I =-lOp.A, \/OS= IJ ILmho Common-Source Input Capacitance 90 s VGS=-15V,VOS=0 !G -5 -0.5 750 -30 -6 -4 Test Conditions Uniu Max Siliconix n-channel JFETs designed for • • • H Siliconix ------ Performance Curves NRL/NH See Section 4 • VHF Amplifiers • Mixers BENEFITS • LowNFNoise = 3 dB Typical @200 MHz • EasyC Tuning < 2 pF rss *ABSOLUTE MAXIMUM RATINGS (25°C) :::t MIlf TO-72 Sae Section 6 Gate-Drain or Gate-Source Voltage (Note 1) __ ...... -30 V Gate Current ............................... 10 mA Drain Current .............................. 20mA Total Device Dissipation at (or below) 25°C Free-Air Temperature (Note 2) .............. 300 mW Storage Temperature Range .............. '-65 to +200°C Lead Temperature ( 1/16" from case for 10 seconds) .............. 300°C I.! '4: G ~ ~ 0 *ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted) Characteristic 2N4223 Mm 1 ~ - 3 4 5 S T A T I C IGSS Gate Reverse Current 6VGSS Gate-Source Breakdown Voltage VGS(ott) Gate-Source Cutoff Voltage VGS Gate-Source Voltage - 7 lOSS Saturation Drain Current (Note 3) gt, Common-Source Forward Transconductance (Note 3) CISS Common-Source Input CapacItance (Output Shorted I 0 8 !- y N 9 10 C rss H IVIsI !- I 11 - 12 G H 1"'13 F R E 1- Q 14 Mm -0.25 -0.25 6 2N4224 Max nA -0.5 IlA -0.1 -6 -0.1 -6 (025) (0.5) (0.5) -10 -7 a -1.0 -7.5 V (0.3) (0.21 (02) (rnA) 3 18 2 20 3000 7000 2000 7500 rnA VOS = 15 v, 10 = ( ) VOS=15V,VGS=0 t = 1 kHz Ilmho 6 VOS=15V,VGS=0 t= 1 MHz pF 2 2 2700 150°C IG=-lO IlA,VOS=O V (nA) (03) 6 Test Conditions VGS=-20V,VOS=0 V (0.251 Transfer Capacitance Transadmmance -0.5 -~O -30 Common-Source Reverse Common-Source Forward Unit Max 1700 9 155 Common-Source Input Conductance (Output Shorted) 800 800 goss Common-Source Output Conductance (Input Shorted) 200 200 Gp , Small Signal Power Gain NF NOise Figure J,lmho VOS=ISV,VGS=O f = 200 MHz 10 dB 5 * JEDEC registered data. VOS=15V,VGS=O, Rgen = 1 K NRl./NH NOTES: 1. Due to symmetncal geometry, these units may be operated With source and drain leads Interchanged. 2. Derate linearly to 175Q C free-air temperature at rate of 2 mWfC 3. These parameters are measured dUring a 2 msec Interval 100 msec after d-c power IS applied. Siliconix 3-11 -- n-channel JFETs designed for • • • H Siliconix Performance CUIVeS NPA See SectIon 4 • Small-Signal Amplifiers • Choppers • Voltage-Controlled Resistors • LowNFNoise < 1 dB at 1 kHz Operation from Low Power Supply • Voltages *ABSOLUTE MAXIMUM RATINGS (25°C) Off-Isolation as a Switch • HighID(off) < 50 pA BENEFITS < 1 V (2N4338) VGS(off) Biasing Design with Tightly • Simple Specified Parameter Tolerances 3:1 lOSS. Vp. gfs Ranges Gate-Drain or Gate-Source Voltage (Note 1) ........ -SO V Gate Current ............................... SOmA Total Device Dissipation (Note 2) .............. 300 mW Storage Temperature Range .............. -65 to +200°C Maximum Operating Temperature ............... 17So C Lead Temperature (1/16" from case for 10 seconds) ............... 300°C TO·1S See Section 6 "4: G,C Ii *ELECTRICAL CHARACTERISTICS (25°C unless otherwise specified) Characteristic [....!. IGSS 2 [- 2N4338 Min Gate Reverse Current Gate-Source Breakdown Voltage 3 S BVGSS _T A Gate-Source Cutoff 4 T VGS(off) Voltaqe 2N4339 Max Min 2N4340 Ma. Min 2N4341 Ma. Min Ma. -0.1 -0.1 -0.1 -0.1 nA -0 I -0.1 -0.1 -0.1 IlA -so -50 -50 Test Conditions Unit VGS=-30V,VOS=0 -50 ,150'C IG=-1IlA,VOS=0 V -03 -I -0,6 -18 -I -3 -2 -6 VOS = IS V, 10 = 0.1 IlA ~I 5 C 10(off) Dram Cutoff Current lOSS Saturation Dram Current (Note 3) 6 7 - 8 Qfs 90S -0 9 V rds(on) _A N 10 A Ciss _M I II C Crss - 12 NF Common-Source Forward Transconductance (Note 3) Common-SouTce Output Conductance Dram-Source ON Resistance Common-Source Input 0.05 0.05 0.05 0.07 nA VOS= 15V (-5) (-5) (-5) (-10) (V) VGS= ( mA VOS = 15 V, VGS = 0 02 0.6 O.S 1.5 1.2 3.6 3 9 600 1800 800 2400 1300 3000 2000 4000 Ilmho VOS= 15V, VGS=O 5 IS 30 60 2500 1700 1500 800 7 7 7 7 Common-Source Reverse Transfer Capacitance 3 3 3 3 NOise Figure I I I I Capacitance f= I kHz ohm pF dB VOS=O, VGS=O VOS = 15 V, VGS = 0 f= I MHz VOS = IS V, VGS = 0 Rgen = I meg, BW = 200 Hz f = I kHz NPA * JEOEC registered data NOTES: 1. Due to symmetrical geometry. these units may be operated with source and drain leads interchanged. 2. Derate linearly to 175°C free·alr temperature at rate of 2 mwtC 3 These parameters are measured during a 2 msec Interval 125 msec (I DSSl and 625 msec (9fs) after d-c power IS applied. (Not a JEDEC conditIOn.) 3-12 ) SilicDnix n-channel JFETs designed for • • • H Siliconix Performance Curves NCB See Section 4 BENEFITS Low Insertion Loss, High Accuracy in • Test Systems rOS(on) < 30 n Switches • Analog • Commutators • Choppers • Integrator Reset Switch (2N4391) • No Offset or Error Voltages Generated by Closed Switch Purely Resistive High Isolation Resistance from Driver High Off-Isolation IO(off) < 100 pA High Speed tON < 20 ns • • *ABSOLUTE MAXIMUM RATINGS (25°C) Reverse Gate-Drain or Gate-Source Voltage ......... -40 V Gate Curre~t ................................ 50 mA Total Device Dissipation at 25°C Case Temperature (Derate 10 mWrC) .......................... 1.8 W Storage Temperature Range .............. -65 to +200°C Lead Temperature (1/16" from case for 60 seconds) ............... 300°C 1 2" -3 -4 IGSS Gate Reverse Current BVGSS Gate-Source Breakdown Voltage 2N4391 Mon 2N4392 Max Mon 2N4393 Max M,n -100 -100 -100 pA -200 -200 -200 nA 100 pA 200 nA -40 -40 -40 "5 ~ -:; "8 ~ -10 11 S T A T I c - 12 10(011) Dram Cutoff Current pA 200 nA VGS= -5 V VOS = 20 V Gate-Source Forward Voltage VGS(off) Gate-Source Cutoff Voltage -4 -10 -2 -5 -05 -3 lOSS Saturation Dram Current (Note 1) 50 150 25 75 5 30 1 1 1 0.4 VGS=-12V V Dram Source ON Voltage 'OS(on) StatIc Dram-Source ON ReSistance 30 60 100 0 V N rds(on) Dram-Source ON ReSistance 30 60 100 CISS Common-Source Input Capacitance 14 14 14 Crss Common-Source Reverse Transfer Capacitance td(on) Turn-ON Delay Time 15 t, 3.5 3.5 110 -6mA 1'0 -12 mA VGS = 0, 10 = 1 mA n n Rise Time Turn-OFF Delay Time 5 5 5 20 35 50 25 tl Fall Time 15 20 30 pF I VGS - I VGS-- 15 5 V 1= 1 MHz 7V -12 V VOO = 10 V, VGS(on) - 0 ns 2N4391 2N4392 2N4393 'O(on) 12mA 6 3 VDD 51 n * JEDEC registered data NOTE. 1 Pulse test required, pulse width'" 300 /lS, duty cycle ~ 3%. 1000pF PULSE o--i ': i:Kl! VIN SCOPE 51 n ~ Siliconix 1 kHz VOS=20V,VGS=0 VGS ldloff) I VGS-O, 10-0 3.5 15 150°C 110 = 3 mA VGS=O VOS=O ~ 23 S "24w 150°C VOS=20V,VGS=0 04 17 150°C VOS=20V,10=1 nA mA V VOS(on) VGS = -7 V IG = 1 mA, VOS = 0 0.4 14 15 16 ~ 20 21 IG = -1 !lAo VOS = 0 nA VGS(I) S I I150°C VGS=-20V.VOS=0 pA 100 200 D Test Conditions V 100 13 18 Umt Max .fl\ .~: *ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted) Characteristic Q TO·1S See Section 6 NCB lOOOpF f--VOUT D 1'"1 5m ~ RL VGS(off) -12V -7 -5 ~ RL=(~J-5tn Dlon) SAMPLI NG SCOPE RISE 'NPUT TIME 25°C) Storage Temperature Range Lead Temperature (1/16" from case for 10 seconds) Q TO-18 See Section 6 30V .50mA 500mW -65 to +200°C [\ .~: 300°C *ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted) I~ I~ 31 I~t I~T Moo BVGSS Gate-Source Breakdown Voltage IGSS Gate Reverse Current Dram Cutoff Current I-J~ VGS(off) Gate-Source Cutoff Voltage lOSS Saturation Drain Current (Note 2) I~ VGS(f) Forward Gate-Source Voltage I-jC 10 I~ Im~ 12, ~ 13 'I 15 17 30 Moo Dram-Source ON Voltage 2N5116 Max 30 Min V 500 500 pA 10 1.0 1.0 IlA -50P -10 -500 pA -1.0 IlA 5 10 3 6 1 4 -30 -90 -15 -50 -5 -25 ReSistance -1 -1 150 n 100' 150 n 25 25 27 Common·Source Reverse Transfer Capacitance 7 7 7 'd(on) Turn-ON Delay'Tlme 6 10 25 10 20 35 6 8 20 15 30 60 If Fall Time If= 1 kHz If= 1 MHz VOS - 0, VGS = 12 V (2N5114) VGS = 7 V 12N5115), VGS = 5 V (2N5116) 2N5114 10V VOO VGG ns RL RG .~ 15K 01pF V,N 41- 5'1 12K , ' iSAMPLING .,n 5,n SCOPE Siliconix 2N5115 6V 2N5116 6V 20V 12 V 8V 130n 910n 2000 n lOOn 220n 390 n -15 mA -7mA -3mA PSB RG , 3-20 pF VGS=O,IO=O VOS--15, VGS-O 10(on) :.JEDEC registered data NOTES: 1. Due to symmetrical geometry these Units may be operated With source and dram leads Interchanged. 2 Pulse Test PW 300 Ils, duty cycle""" 2 VGS=O,IO=-l rnA 100 Crss H VOS = -15 V (2N5115, 2N5116) IG = -1 rnA, VOS = 0 75 Common-Source Input Capacitance Rise Time VOS = -15 V, 10 = -1 nA VGS = 0, VOS = -18 V (2N5114) VGS = 0,10 = -15 rnA (2N5114) 10 = -7 rnA 12N5115), 10 = -3 rnA 12N5116) 75 CISS 150·C V -0.6 Dram-Source ON Turn·OFF Delay Time V -0.8 StatiC Drain-Source ON Id(o") VGS = 20V, VOS= 0 VOS = -15 V, VGS = 12 V (2N5114) VGS = 7 V (2N51151, 150·C VGS = 5 V (2N5115) rnA -13 'OS(on) 1r IG = lilA, VOS = 0 -1 'dslon) ReSistance Test Conditions Umt Max 30 500 -10 VOSlon) I , T ~r Max -500 10(off) ,A 2N5115 2N5114 Characteristic , INPUT PULSE SAMPLING SCOPE RISE TIME < 1 ns RISE TIME 0 4 ns FALL TIME < 1 ns INPUT RESISTANCE 10 Mn PULSE WIDTH 100 ns INPUT CAPACITANCE 1 5 pF REPETITION RATE 1 MHz monolithic dual n-channel JFETs designed for • • • • • BENEFITS Minimum System Error and Calibration S mV Maximum Offset (2NS196, 97) Low Drift sp'v;oc Maximum (2NS196) Simplifies Amplifier· Design Low Output Conductance • • • G, ., ., ~~ G, 0 32 G2 ~ UI G2 D, s~ ·2 VGS =-30V. Vos =0 1- 22 Ll.IVGS1-VGS2 1 Ll.T (Note 21 Gate-Source Differential Voltage Change With Temperature isos1-Sos2 1 IS0·C VOS = 20 V. 10 = 1 nA VOG =20V.10 =200~A 12S·C VOS=20V,VGS=0 VOS=20V.VGS-0 VOG - 20 V. 10 =200~A VOS-20V,VGS=0 VOG - 20 V, 10 =200~A 1= 1 kHz VOS=20V. VGS=O 1- 100 Hz, RG = 10 Mn 1=1 kHz 2NS19B Min Max 2NS199 Min Max S 5 5 S nA VOG - 20 V. 12S·C 10=2001'A Umt Test Conditions 095 1 0.9S 1 0.9S 1 o 9S 1 - VOS= 20V, VGS =OV 0.97 1 0.97 1 0.9S 1 o 9S 1 - 1= 1 kHz S S 10 IS S 10 20 40 rnV ~vfc 1 - 1= 1 MHz 2NS197 Min Max S Differential Output Conductance :8 IG=-I~A.VOS=O 2NS196 Min Max Differential Gate Current ), Test Conditions VRZ Saturation Drain Current Ratio 10SS1 (Note 11 IOSS2 Transconductance Ratio 91s1 -9"2 (Note 11 IVGS1-VGS2 1 Differential Gate-Source Voltage '2 G, Bottom View IIGI-IG2 1 10 20 40 1 1 1 p.mho VOG =20 V. TA = 2S·C ID=200~A TB = 12S·C TA - _SSDC TB = 2S·C 1=1 kHz NQP .. JEDEC registered data. NOTES: 1 Assumes smaller value in numerator 2 Measured at end pOints, T A and TB Siliconix ~ Z Z a , *ELECTRICAL CHARACTERISTICS (2S0C unless otherwise noted) Characteristic Min Max Umt 1 pA -2S Gate Reverse Current IGSS 1'2 -SO nA 13' S BVGSS Gate-5ource Breakdown Voltage -~O I"'i' T VGS(olll Gate-Source Cutoff Voltage -0.7 -4 V A 15 T Gate-5ource Voltage -02 -3.B I-=- I VGS -15 pA 6 C IG Gate Operating Current -IS nA 1'1 Saturation Dram Current 07 7 rnA lOSS Common-5ource Forward Transconductance 1000 4000 91s I~9 Common-Source Forward Transconductance 700 1600 91s pmho 1m 0 90S Common-Source Output Conductance 50 lli" y 90S Common-Source Output Conductance 4 I-=- N C ISS Common-Source Input Capacitance 6 I..g. A pF 13 M Common-Source Reverse Transfer Capacitance 2 I - I C'SS 14 C NF Spot NOise Figure o.s dB 1nV IS 20 Equivalent Short·CircUlt Input NOise Voltage en -0 'I -0 °2 ° 670 UI CO ·2 a 5 ~ Z UI TO·71 See .Section 6 Gate-Drain or Gate-Source Voltage .••.•••••.•..•• -SO V Gate Current ...•...••.......•...•..•...•.•. SOmA Device Dissipation (Each Side), T A = 85°C (Derate 2.56 mW;oC) ......•.•....•.•..••.. 250mW Total Device Dissipation, T A = 8SoC (Derate 4.3 mW;oC) ..•......•.•••.•....••• SOOmW Storage Temperature Range •..••..•.••..• -65 to +200°C - UI ~ Performance Curves NQP See Section 4 *ABSOLUTE MAXIMUM RATINGS (2S0C) 16 117 I-M A lB T 1- C 19 H I-I 20 N I_G 21 Z Siliconix DiHerential Amplifiers FEY Input Op Amps Characteristic ~ H 3-21 n-channel JFETs H Siliconix designed for • • • Performance .Curves NIP See Section 4 ON Resistance • Low Analog Switches • Commutators • Choppers Integrator Reset Capacitors • Low • Noise Audio Amplifiers BENEFITS Insertion Loss • LowrOS(on) < 5 n (2N5432) • Small Error in Measurement Systems VOS(on) < 50 mV (2N5432) High Off-Isolation 10(off) < 200 pA High Speed ~(on) <4ns Low Noise Audio-Frequency Amplification en < 2 nVIy'Hz at 1 kHz Typical • • • *ABSOLUTE MAXIMUM RATINGS (25°C) Reverse Gate-Orain or Gate-Source Voltage ......... -25 V Gate Current. .............................. 100 mA Drain Current .............................. 400 mA Total Device Dissipation at 25°C Free-Air Temperature (Note 1) ............... 300 mW Storage Temperature Range .............. -65 to +150°C Lead Temperature (1/16" from case for 10 seconds) ............... 300°C TO-52 See Saction 6 .~: G,C ~ s D *ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted) Characteristic 1 !- 2 1"3 :~5 AT IGSS Gate Reverse Current BVGSS Gate Source Breakdown Voltage iOloll) Dram Cutoff Current VGSloff) Gate-Source Cutoff Voltage lOSS Saturation Dram Current INote 2) rOSlon) Static Dram-Source ON Resistance VOSlon) Dram-Source ON Voltage 2N5432 Min 7 T I C 1"8 Ig 10 1- 0 11 rds(on) Dram-Source ON Resistance CISS I- Y N 12 Crss Common-Source Input Capacitance 13 114 S 115 w -16 Common-Source Reverse Transfer Capacitance Min I -200 -25 -4 Max -200 pA -200 -200 nA -25 200 200 pA 200 200 200 nA -9 -3 -4 -1 100 VGS=-15V.VOS=0 V 200 -10 Test Conditions Unit -200 -25 150 2 2N5434 Min Max -200 S 16" 1- 2N5433 Max 30 vOS=5V.vGS=-iOit V VOS=5V.10=3nA mA VOS=15V.VGS=0 7 10 ohm 50 70 100 mV 5 7 10 30 30 15 15 15 Id{on) Turn-ON Delay Time 4 4 4 Ir Rise Time 1 1 1 Id{olf) Turn-OF F Delay Time II Fan Time 6 6 6 30 30 30 150"C IG = -1 I'A. VOS = 0 5 30 I 150"C VGS=0.10=10mA ohm VGS-O.IO -0 1-1 kHz pF VOS=0.VGS=-10V 1= 1 MHz ns VOO=15V. 145 n (2N5432) VGS{on) = o. RL = 143 n (2N5433) VGS(olf) = -12 V. 140 n (2N5434) 10(on) = 10 mA NIP • JEOEC regIStered data. NOTES: 1. Derate linearly at the rate 01 2.3 mWi"C. 2. Pulse test reqUired pulsewldth 300 I's. duty cycle';; 3%. voo ~~.~~' o ~ RL - VIN VOUT RG S son -=- 3-22 Siliconix -:' INPUT PULSE RISE TIME 0 25 ns FALL TIME 075 ns PULSE WIDTH 200 ns PULSE RATE 550 pps SAMPLING SCOPE RISE TIME 0 4 ns INPUT RESISTANCE 10 M INPUT CAPACITANCE 1 5 pF monolithic dual n-channel JFETs H Siliconix designed for • • • Performance Curves NQP See Section 4 and Medium Frequency • Low DiHerential Amplifiers BENEFITS Minimum System Error and Calibra• tion *ABSOLUTE MAXIMUM RATINGS (25°C) Any Lead-To-Case Voltage _ ••.•.••••••••••.... ±100 V Gate-Drain or Gate-Source Voltage .•••.••....••• -50 V Gate Current .••.••.••••••••••••••••••••.... 50 rnA Total Device Dissipation at (Each Side) ............• 250 mW 85°C Case Temperature (Both Sides) ....•..•.... 500 mW Power Derating (Each Side) ••••••••••••.• 2.86 mWrC (Both Sides) ••••.•••.•••••• 4.3 mWrC Storage Temperature Range .•••••.•••••. -65 to +250°C Lead Temperature (1/16" from case for 10 seconds) ••. 300°C • 5 mV Offset Maximum (2N5452) Simplifies Amplifier Design Output Conductance Less that 1 J./mho TO·71 See Section 6 G, ~~ 8, Characteristic 12.. 1.3.. 3 S 1- TA 4 T 15" CI IGSS Gate Reverse Current BVGSS Gate-Source Breakdown Voltage VGS(of!l VGS Gate-Source Cutoff Voltage It I~ VGS(I) lOSS Gate-Source Voltage Gate-Source Forward Voltage Drain Saturation Current I~9 gl. Transconductance 90S Common-Source Output Conductance 11't 11't I;';" 12 0 y li4' I Ciss N I- A 13 M Crs, Cdgo 1- C 15 en 116 NF Common-Source Forward Common.source Input Capacitance Common-Source Reverse Transfer Capacitance D2 G, 30 0506 21 N 1_ G 22 " Bottom View (25a C unless otherwise noted) 2N5452 2N5453 2N5454 Umt Min Max Min Max Min Max -100 -100 -100 pA -200 -200 -200 nA -50 -50 -50 02 G2 " Test Conditions VGS=-30V, VOS=OV VOS= I • ITA=150C 0 V,IG =-IIlA -1 -4.5 -1 -4.5 -1 -4.5 V VOS =20 V, 10 =1 nA -0.2 -4.2 -0.2 -4.2 -0.2 -4.2 VOS =20V,Io =50llA 2 2 2 VOS=OV,IG=lmA 0.5 5.0 0.5 5.0 0.5 S.O mA VOS =20V, VGS =OV 1000 3000 1000 3000 1000 3000 1000 1000 1000 Ilmho VOS= 20V, VGS =0 V 3.0 3.0 3.0 VOS - 20 V,IO =200llA 1.0 1.0 1.0 4.0 4.0 4.0 VOS =20V, VGS =OV 1.2 1.2 1.2 pF 1= 1 kHz 1= 100 MHz 1= 1 MHz 1.5 1.5 VOG 20 20 !!Y. 20 VHz 0.5 dB VOS =20V, VGS =0 V 1= 1 kHz VDS=20V,VGS=OV, 1=100Hz Input Noi.e Voltage Common-Source Spot NOise Figure 0.5 0.5 0.95 1.0 0.95 1.0 0.97 5.0 0.4 0.5 1.0 10.0 0.8 1.0 0.97 1.0 0.25 0.25 0.95 1.0 0.95 15.0 2.0 2.5 1.0 NOTE: 1. Assumes smaller value 0.25 - =10V,IS=OV RG =10M!2 VOS =20V, VGS= OV mV VOS - - 1= 1 kHz 1.5 Gate-Source Voltage 100dB designed for • • • • • Differential Amplifiers • ABSOLUTE MAXIMUM RATINGS (25°C) TO·71 • Sea Section 6 Gate-Drain or Gate-Souce Voltage ............ -40 V Gate Current ...•.••....•....•...••.•.•••••.. 50 mA Device Dissipation (Each Side), TA = 85°C (Derate 2.0 mW/oC .....•......••..•.••••• 250 mW Total Device Dissipation T A = 85° C (Derate 3.0 mW/o C) ........•..•.....••••. 375 mW Storage Temperature Range ..•.••.. -65°C to +200°C Lead Temperature (1/16" from case for 30 seconds) ....••....• 300°C G, .. ~~ G2 ., '2 G, D, D:! 0' 06 ,0 20 01 G2 ,0 ., G!.2 Bottom View D, " *ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted) Min Characteristic 1..2. I~ IGSS I""; • I~ 12 6 BVGSS T A VGSlotfl T V,,< I e 17" 1-;'; I~ 0 V N A M I '13 I- e 14 '6 1,7 1'8 M A T e H I N 19 G 20 12' IG - -, ~A, VOS =0 VOS -2DV,IO -1 nA pA VOG = 20 V, 10 = 200~A -D2 -38 -'00 lOSS SaturatIon Dram Current INote 1) INote 1) "" 'f, Common-Source Forward Transconductance 90. Common-Source Output Conductance 90' CISS Common-Source Output Conductance Crss Common-Source Reverse Transfer Capacitance 'n Equivalent Short CirCUIt Input NOise Voltage INote 1) 05 -'00 75 1000 4000 500 1000 IOSS2 IVGS,-VGS2 1 Differential GateSource Voltage VGS = ·30 V, VOS = 0 125°C mA VOS = 20V, VGS - 0 VOS=20V,VGS=0 VOG=20V,10=200~A pmho , pF 5 30 '5 10 12N55'5-24 Ma. Mon '0 095 l>IVGS,-VGS2 1 Gate-Source Voltage Differential Dnft l>T (Note 3) , 095 Ma. Mon Ma. '0 10 , 095 , Mon 095 nV f - 1 kHz Unit Test Conditions Ma. Mon Ma. 10 10 nA VDG-20V. 10 = 200~A , - VOS= 20V, VGS= 0 mV , 090 '0 '5 '5 5 10 20 40 80 40 VDG=20V, 80 10 '" 1905 1-9052 1 9151 9h2 CMRR Differential Output Conductance Transconductance Ratio (Notes 1 and 2) Common Mode Rejection Ratio (Note 41 0' 0' 097 1 097 '00 '00 , 0' 095 , 0' 0' 095 , 0.90 , 12SoC TA::: 2SoC TB '" 125°C pvlc 20 -- f::: 10 Hz VOG =20V, 10 = 200~A .iif,' 5 10 f::: 1 MHz VDS '" 20 V, VGS '" 0 5 5 f= 1 kHz VOS - 20V, VGS - 0 VOG =20V, 10 -200~A 25 12N55'5-19 2N5520-24 150°C nA 2N5515,20 2N5516,2' 2N5511.22 2N5518,23 2N5519.24 Differential Gate Current Saturatlo'n Dram Current Ratio (Notes 1 and 2) Test Conditions '0 Common-Source Input Capacitance I- 1- V -4 Gate Operating Current lOSS, nA -07 Mo" ,- -250 Gate-Source Cutoff Voltage Gate Source Voltage IG IIG,-IG2 1 pA -40 Characteristic ,5 Umt Gate-Source Breakdown Voltage Common-Source Forward Transconductance 8 1'9 I"'iii Gate Reverse Current Max ·25D 200~A TA - -5SoC TB = 25°C pmho f= 1 kHz VDO - 10 to 20 V, • JEDEC registered data NOTES. 1 Pulse test required, pulsewldth ::: 300 ~s, duty cycle 2 Assumes smaller value In numerator dB 90 ID=200~A NQP 3 Measured at end pomts, T A and TB <:. 3%. l>VOO ) ,.1.VDD 4 CMRR::: 2010910 ( l>IVGS,-VGS21 Siliconix CI 10 V 3-27 monolithic dual n-channel JFETs H Siliconix Performance CurvesNCB/NZB See Section 4 designed for • • • • BENEFITS • • General Purpose DiHerential Amplifiers High Input Impedance IG< 5OpA. Minimum System Error and Calibration 5 mV Offset Maximum (2N5545) TO-71 *ABSOLUTE MAXIMUM RATINGS (25°C) Se. Section 6 Gate-Drain or Gate-Source Voltage •••.•. , ...• , .••• -50 V Gate Current .• , . . • . . . , . , . . • . . • . • . . . . . . • . . . . , 30 mA Device Dissipation (Each Side), TA = 25°C G, (Derate 1,67 mWrC) .. , ...••. , • . • . • . . • . . . . 250 mW ~~ 8, Total Device Dissipation, T A = 25°C 02 82 'z Dz (Derate 2.67 mWrC) ., . . . • • . . • . . . • . . . . . . . • 400 mW fo Storage Temperature Range •.. , .. , • . . . • . . -65 to +200°C 0' 02, 0, Lead T emperatLJ re o (1/16" from case for 30 seconds) . , •.• , .••••.•.• 300°C 670 62 a ' " '2 _aDz G, Bottom View 0, J\ 8, *ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted) Characteristic 1 12' 1'3 14' 15' 1'6 S T A BVGSS T VGS(off) I c IG lOSS 7 9fs 1'6 0 gos '9 'iii V -50 -0.5 Gate-Source Breakdown Voltage Gate-Source Cutoff Voltage Gate Operating Current Saturation Drain Current 0.5 1500 Common-Source Forward Transconductance Common-Source Output Conductance C1S5 Common-Source Input Capacitance N Crss A M NF 11 Common-Source Reverse Transier Capacitance .;..:.. -12 Min Gate Reverse Current IGSS I' 2N5545 Min Differential Gate Current 14 10SSl IOSS2 Saturation Drain Current 15 M IVGS1-VGS2 1 A T C H Il.IVGS1-VGS2 1 16 I Il.T N i- G 9fsl 17 9fs2 118 190s 1-9os21 - Ratio (Note 1) 0.95 2N5546 Max 5 Min 1 0.90 V pA mA Min 1 0.90 IG =-1 p.A, VOS=O VOS = 15 V.IO = 0.5 nA VOG = 15 V, 10 = 200 p.A VOS -15 V, VGS =0 f= 1 kHz pF dB nV v'HZ 1 Differential Gate-Source 5 10 15 5 10 15 10 20 40 Unit f= 1 MHz 2N5545 VOG=15V, 2N5546 10 = 200p.A 2N5545 2N5546 10 20 VOG=15V,10=200p.A - VOS=15V,VGS=0 mV VOG = 15V 40 VOG = 15V,I0 =200p.A Transconductance Ratio (Note 1) Differential Output Conductance 0.97 1 1 0.95 1 2 0.90 1 - i= 10 HZ, RG = 1 Mfl f= 10 Hz Test Conditions nA p.vfc Differential Drift (Note 2) L I TA= 150° VOS=15V,VGS=0 Voltage Gate-Source Voltage Test Conditions VGS=-30V.VOS=0 p.mho 2N5547 Max 5 Max 5 • JEOEC registered data. NOTES: TA=125°C 10 = 50p.A 10=200p.A TA = 25°C TB = 125°C TA = _55°C TB = 25°C f = 1 kHz 3 p.mho NCB/NZB 1 Assumes smaller value in numerator. 2. Measured at end pOints, TA and TB. 3-28 pA -4.5 -50 8 6000 25 6 2 180 200 IIG1-IG21 - nA Equivalent Short CirCUit Input Noise Voltage 13 - -150 Spot NOise Figure Characteristic - Unit 3.5 5 C en Max -100 Siliconix matched dual n-channel JFETs designed for • • • H Siliccnix Performance Curves NCB See Section 4 Differential • Wideband Amplifiers • Commutators BENEFITS Gain • High7500 Minimum 9fs • Specified Matching Characteristics ~mho *ABSOLUTE MAXIMUM RATINGS (25°C) TO·71 See Section 6 .......................... Gate-Gate Voltage ±80V Gate·Drain or Gate·Source Voltage .............. -40 V Gate Current ............................... 50mA Device Dissipation (Each Side), T A = 25°C (Derate 2.2 mW;oC) ....................... 325mW Total Device Dissipation, T A = 25°C (Derate 3.3 mW;oC) ..............•........ 650mW Storage Temperature Range .............. -65 to +200°C Lead Temperature (1/16" from case for 10 seconds) ............... 300°C G, ~~ 8, G2 52 82 o· 02 o. G, 30 0, 0 7 G2 20 Gt ,0 8, G2 Ii " Bottom View *ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted) Characteristic 1 2" 3" 4" 5" "6 "7" S T BVGSS A VGS(off) T I VGS(f) C lOSS 8 9" i'ON iT~ A 117 mA VOS=15V,VGS=0 100 n 10 = 1 mA, VGS - 0 7500 12,500 Common-Source Output Conductance Crss CISS Common-Source Reverse Transfer CapaCitance Common-Source Input Capacitance Spot NOise Figure 1.0 Equivalent Short CircUit Input NOIse Voltage 50 9f.2 pF 12 2N5565 Min Max M,n Max 095 1 0.95 1 0.95 1 5 10 20 10 25 50 Unit - 095 1 25 0.90 1 50 0.90 1 f= 1 MHz f - 10Hz, Rg = 1M f= 10 Hz v'Hz Max 10 VOG=15V,10=2mA dB nV 2N5566 *JEDEC registered data_ NOTES: 1. Pulse test required, pulse width 300 /JS, duty cycle 2. Assumes smaller value In numerator 3. Measured at ends POints, TA and TB. f= 1 kHz 3 Test Conditions VOS = 15 V, VGS = 0 mV I'VI Transconductance Ratio (Note. 1 and 2) f= 100 MHz Jlmho Min ~IVGS1-VGS21 Gate-Source Voltage DifferentIal Oroft (Note 3) ~T 9f.l f= 1 kHz 7000 45 2N5564 I I 150'C VOS=OV,IG = 2 mA 30 90. Differential Gate-Source Voltage VOS = 15 V,IO = 1 nA 1.0 9f. IVGS1-V GS2 1 V 5 Common-Source Forward Transconductance (Note 1) Saturation Drain Current Ratio (Note. 1 and 2) VGS=-20V, VOS=O IG=-lI'A,VOS=O -3 rOS(on) IOSS2 nA -40 -05 Gate-Source Voltage 10SSl Test Conditions pA -200 Characteristics 15 T -C H 16 I N G Unit Saturation Drain Current (Note 1) Static Dram Source ON Resistance 121 NF =C 13 en 14 -M Max -100 Gate-5ource Breakdown Voltage Gate-Source Cutoff Voltage 0 y Min Gate-Reverse Current IGSS 'c - TA = 25'C TB = 125'C VOS=15V,10=2mA TA = -55'C TB = 25'C f= 1 kHz NCB ~ 3%. Silicanix 3-29 -- n-channel JFETs designed for • • • H Siliconix Performance Curves NCB/NZB See Sedion 4 Switches • Analog Commutators • Choppers • BENEFITS Low Cost • Industry Package • AutomaticStandard I nsertion • Fast Switching Package • trise < 5 ns (2N5638) I nsertion Loss • LowrDS(on} < 30 n (2N5638) Short Sample • Crss <4 pFand Hold Aperture Time *~ABSOLUTE MAXIMUM RATINGS (25°C) Drain-Source Breakdown Voltage ................ 30V Drain-Gate Breakdown Voltage 30V Source-Gate Breakdown Voltage ................. 30V Forward Gate Current ........................ 10mA Total Device Dissipation at TLEAD = 25°e ...... 625mW Derate above 25°e 5.68 mWre Operating Junction Temperature Range ..... -65 to +135°e Storage Temperature Range .............. -65 to +150°C Lead Temperature (1/16" from case for 10 seconds) ............... 3000 e Plastic ................. TO-92 See Section 6 ................... o~: GD s c o c 0 Bottom View s G i*ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted) Characteristic 2N5638 Min - 1 BVGSS 2. s Gate-Source Breakdown Voltage 2N5639 Max Min -30 2N5640 Max Min -30 Unit -30 V -1.0 -1.0 -1.0 nA 3 T -1.0 -1.0 -1.0 IJA 4A 1.0 1.0 1.0 nA 10 1.0 1.0 Ill\, IGSS Gate Reverse Current Test Conditions Max IG=-101JA.VOS=0 VGS=-15V.VOS=0 TA = +10o"C VOS = 15 V. VGS = -12 V 12N5638) "GS = -8 V (2F\J5539}, '-'GS - -6'1 (21'J564C) ST 1 -C 10(011) Dram Cutoff Current "6 lOSS Saturation Dram Current - 7 VOSlon) Drain-Source ON Voltage 0.5 0.5 0.5 8 rOSlon) Static Oram-5ource ON Resistance 30 60 100 9 rdslon) Resistance 30 60 100 CIIS Common-Source Input Capacitance 10 10 10 C rss Common-Source Reverse Transfer Capacitance 4.0 4.0 4.0 Idlon) Turn-On Oelay Time 4.0 6.0 8.0 VOO=10V 1010nl=12 mA 12N563BIRL = BOO tr Rise Time 5.0 8.0 10 VGSlon)= 0 'Olon)= 6,mA 12NS6391 RL = 1.6k tdlo!!) Turn-OFF Delay Time 5.0 10 15 tl Fall Time 10 20 30 .1- 0 10 y I- N 11 12 1- ,ll S 14 W 115 . 50 25 5.0 mA VOS = 20 V, VGS = 0 INote 1) V VGS = 0,10 = 12 mA 12NS63B), - TA=I~COC 10 = 6 rnA 12N5639), 10 = 3 rnA 12N5640) Orain-5ource ON JEOEC regIStered data NOTE: n pF nsec 10 = 1 mA, VGS = 0 VGS=O,IO=O 1=1 kHz VGS = -12 V, VOS = 0 1= 1 MHz VGSloff)= -10 V '010nl=3 mA 12N5640) RL - VOD -lrDS(on! +501 '0 ~~~~:!k..t= VGS(on! ~9" 1 Pulse test PW .;; 300 f.JSec, duty cycle';; 3.0% --i -----vGsc••, 1-'.-1.1.::: "",,' ~~tr ~~:~TBJ 10% voo IcPU~C GENERATOR 10Kn{ ;_ ~ ~ n 12N563BI n 12N56391 RL =3.2k n 12N56401 NCB/NZB o 1J'F TO 50 OHM SCOPE B __ ,~OO1"FI TO 50 OHM SCOPE A SCOPE TEKTRONIX 561A OR EQUIVALENT 3-30 Siliconix , matched dual n-channel JFETs designed for • • • H Siliconix Performance Curves See Section 4 NT BENEFITS Matching Characteristics Specified • High Input Impedance Differential Amplifiers • High Input • Impedance Amplifiers • = 1 pA Max (2N5906-9) IG TO·78 See Section 6 ABSOLUTE MAXIMUM RATINGS (25°C) Gate-to-Gate Voltage ........................ ±80V Gate-Drain or Gate-Source Voltage ............... -40 V Gate Current ................................ 10 mA Device Dissipation (Each Side), T A = 25°C (Derate 3 mWrC) ........................ 367mW Total Device Dissipation, T A = 25°C (Derate 4 mWrC) ........................ 500mW Storage Temperature Range .........•.... -65 to + 200°C 0, ~~ s, c 0, 62 82 S2 J 0 50 D2 '0 06 G2 7 20 0, 10 °2 S, [ Bottom View ~\ *ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted) CharactenstlC 1-2. I~ I~ 4 S T A :5' ~ '6' I...! 9 1;;1'2 1_ 13 114 1_ IGSS Gate Reverse Current Gate-Source Breakdown Voltage -40 VGS'off) VGS Gate-Source Cutoff Voltage ·0.6 Gate Source Voltage IG Gate Operating Current lOSS Saturation Drain Current 9" Transconductance '0. Common-Source Output Conductdnce C ISS Common-Source Input Capacitance ens Common Source Reverse Transfer Capacitance 0 V N ~ I C 15 116 Transconductance '0' Common-Source Output Conductance 'n EqUivalent Short CIrCUIt Input NF Spot NOise Figure 17 "Gl-IG2' 1- IOSSl 19 I _ M IOSS2 A 9f51 20 T C 91s2 1- H I~I 1VGS1-VGS2' (Note 1) Transconductance RatiO (Note 1) Differential Gate-Source Voltage N 22 G 123 1'24 A1VGS,-VGS2' Gate-Source Voltage DIfferential Drift INote 21 AT 19os1-90s2 1 Differential Output Conductance pA -5 nA -45 V VDS .... 10 V. 10 - , nA VOG '" 10 V,IO;\O 30p.A -3 ·1 pA -3 -1 nA pA 500 70 260 70 250 3 3 , 5 50 pF '50 1 1 02 0' 3 1 f = 1 kHz VOS'" 10V, VGS = 0 f= 1 MHz j.Jmho f'" 1 kHz ~ VOS= 10V.VGS=O dB 2N5903.7 2N5904.8 2N5905.9 Mon Mon Mon M,n 095 097 Max Max Max 20 20 20 20 02 02 02 02 1 095 1 097 1 095 1 095 -- VOG::: lOV.IO::: 30llA 2N5902,6 Max 125"C 12SOC pmho 5 15 150 I I -4 30 50 VGS=-20V.VOS=0 IG--lpA.VOS=O 500 Differential Gate Current Saturation Dram Current RatiO -2 30 NOise Voltage Characteristic '18 -46 -4 -40 -06 Test Conditions Unit Max 5 Common-Source Forward "Is 2N5906-9 M,n -10 Common-Source Forward '10 Max -5 BVGSS C I, 2N6902-5 Mon , 0.95 1 095 1 , 5 5 10 15 5 10 20 40 URit nA - - 10 20 40 02 02 02 02 Test Conditions VOG=10V, 2N5902·5 10 =30I1A. 2N5906·9 TA"'25"C VOS=10V,VGS=O f = 1 kHz mV VOG::; lOV, TA- 2Soe T6 = 12SDC '0;:: 30pA /NtC 5 f - lOa Hz, RG = 10 M pmho TA = _55°C TB = 25"C f= 1 kHz • JEDEC regIstered data NOTES: 1. Assumes smaller value 1n numerator 2. Measured at end pOints, TA and TB Siliconix 3·31 matched dual n-channel JFETs designed for • • • -- • 0- H Siliconix Performance Curves NZf..D See Section 4 BENEFITS through 100 MHz • HighgfsGain > 5000 ~mho Wideband Differential Amplifiers 1ft Z ~ • Matching Characteristics Specified TO·78 See SectIon 6 ABSOLUTE MAXIMUM RATINGS (25°C) ........................ ±80V Gate·to·Gate Voltage Gate·Drain or Gate·Source Voltage ..........•... -25 V Gate Current ............................... 50 rnA Device Dissipation (Each Side), (Derate 3 mW;oC) .. 367mW Total Device Dissipation,(Derate 4 mW;oC) ....... 500mW Storage Temperature Range ...•........•. -65 to +200 0 c Lead Temperature (1/16" from case for 10 seconds) ............... 3000 C G, ~~ s, 8, c 405 30 G, G2 S2 °2 06 0 '0 0 G2 7 10 0, J ~, 0, 8, Bottom View [ *ELECTRICAL CHARACTERISTICS (250 unless otherwise noted) Min Characteristic 1 12" IGSS Gate Reverse Current S T A 15 T II BVGSS Gate·Source Breakdown Voltage VGS(off) Gate·Source Cutoff Voltage VGS Gate·Source Voltage IG Gate Operating Current I~ l"t 6 C 1- 7 lOSS 8 19 Iiii' 0 y I 112 N A 113 M I 14 C 'iT - - 15 (Note 1) -5 -4 -100 pA VOG = 10 V,IO = 5 mA -100 nA 7 40 10,000 10,000 90S Common-Source Output Conductance 100 90S Common~Source 150 Output Conductance Common-Suurct! input Capacitance Common-Source Reverse Transfer Capacitance 1.2 Equivalent Short Circuit Input NOise Voltage 20 Spot Noise Figure Differential Gate Current 17 IVGS1-V GS2 1 (Notes 1 and 2) Min 20 0.95 Differential Gate-Source Voltage 1 Max 20 095 1 10 15 20 40 20 0.95 1 * JEDEC registered data 1 f= 100 MHz f= 1 kHz f = 100 MHz pF VOG=10V.10=5mA nV f= 10kHz RG = lOOK dB Unit nA - f= 1 MHz f = 10 kHz VFiZ Tast Conditions VOG = 10 V. 10 = 5 mA TA = 125°C VOS= 10V, VGS=O mV 40 0.95 TA = 125°C f= 1 kHz /lvtc G Transconductance Ratio (Note 2) 2N5912 Max TA = 150°C VOS = 10 V, VGS = 0 V /lmho 1 aIVGS1-V GS2 1 Gate-Source Voltage Differential Orift (Note 3) aT -9fsl 9152 mA 5 Ciss Crss Saturation Drain Current Ratio - TA = 25°C TB = 125°C VOG = 10 V, 10 = 5 mA TA = _55°C TB = 25°C f= 1 kHz NZF-D NOTES: 1. Pulsewidth" 300 1lS. duty cycle" 3% 2_ Assumes smaller value In numerator. 3. Measured at end POints, T A and Ta. 3-32 VOS = 10 V. 10 = 1 nA 5000 Min VGS = -15 V. VOS = 0 V 5000 IIGHG21 21 -1 -0.3 Forward Transconductance en Test Conditions IG =-1 /lA, VOS=O Common-Source Forward Transconductance 10SS1 IOSS2 - nA 9fs ~ 19 Il -I 20 N -250 Common~Source 2N5911 A T C pA 9fs NF M -100 -25 Saturation Drain Current Characteristic -18 - Unit Max Silicanix monolithic dual n-channel JFETs Performance Curves NNR See Sedion 4 1 BVGSS - 2 IGSS 3 4 5 5 VGS(off) T A T VGSton) , C lOSS ~ 7 - - 8 9 10 11 0 Y N A M I C 12 - 13 14 15 ,M A Gate-Source Cutoff Voltage Min -35 50 -35 -50 Saturation Dram Current (Note 2) Gate Current (Note 11 9f. Common Source Forward Transconductance (Note 2) 9 0S Common-Source Output Conductance 05 100 Input 0, 20 -35 -3.0 -15 -02 100 05 -30 Test Conditions Vos = O"G pA VOS ~ O'VGS VOS V 100 VOS VG5 10V. =0 = 15V. rnA pA VOG -5 nA '0 = 200l'A 20 20 20 30 30 eN EqUivalent Short-Circuit Input NOise Voltage 15 15 15 CMRR Common-Mode Rejection RatiO INote 3) 5 Vos == 10V, VOG 10 nV 25 25 300,,5 duty cycle ~ 3% 3 CMRR '" 2010910 ~ Silicanix = 15V. ~ = 1 kHz f'" 1 MHz 15V. f =0 =:: dB VoG '" 10 to 20 V. 10 rnV VoG 6V AlV GS1 4 Measured at end pomts. TA' Te and TC VOS VG5 = 10 V. 10 = VoG = 10V. 10 = 200"A p'vrc 50 f 10 '" 200~A ,;Hi 95 10 - TA - 125"C VG5. 0 pF 95 = 200l'A 7000 30 =:: = 15 V, '0 = 1 nA VOG == 15 V, '0 -5 2000 = -15V -23 -5 7000 = -l~A V -5 2000 I G2\, ~ '2 Unit M.. Crss 1 Appro)umatelv doubles for every lOGe mcrease m TA 2 Pulse test duration S ,0 Bottom View 80 NOTES Z 0- 07 G2 '1 80 Gate-Source Voltage Dlfferentlal Drift (Note 4) N 06 -5 95 0- 02 o· G, 30 80 Differential Gate-Source Voltage = 82 Common Source Reverse Transfer Capacitance T C IVGSl - VG52' H I 6f\/G51 - VGS~ N 6r G 0- '2 2N690717A Min -23 05 8, #lmho Capacltdnce N Z G2 -5 7000 .2000 M.. ~~ -15 -02 -23 Voltage (on) Common-~aurce 2N6906/6A -15 -3.0 Gate-Source IG CISS 2N6905/5A Min Ma. -02 = TO·71 ABSOLUTE MAXIMUM RATINGS (25°C) G, Gate-Drain or Gate-Source Voltage ................... 35 V Forward Gate Current ............................. 10 mA Device Dissipation (each side) @ TA = 85°C derate 2.6 mW%OC ............... 300 mW Total Device Dissipation @ TA = 85°C) ................................. 500 mW Storage Temperature Range. '" ............ -65 to 200°C ELECTRICAL CHARACTERISTICS (@ 25°C unless otherwise noted) - 0CII BENEFITS • Minimum System Error and Calibration 5 mV Offset Maximum (2N6905) 95 dB Minimum CMRR (2N6905-07) • Low Drift with Temperature 10 p,vrc Maximum (2N6905) • Operates from Low Power Supply Voltages VGS(off) < 2.5 V • Simplified Amplifier Design Output Conductance < 2 p,mho • Low Noise en = 10 nVI v'Hz at 10Hz Typical Noise FEY Input • Low Amplifiers and Medium Frequency • Low Amplifiers Impedance Converters • Precision • AmplifiersInstrumentation • Comparators Gate-Source Breakdown Voltage erslon Gate Reverse Current (Note 11 Z Siliconix designed for • • • Charaderistic N H DO ~ 10 Hz = 200"A 200"A TA Ta TC =:: = 55"C. +25GC +125GC lVOD = 10V V GS2 1 3-33 -So n-channel JFET IE ---en... designed for. • • Siliconix Performance Curves NBB See Section 4 ... • Infra-red Detector Micropower Pre-amplifier Z • o BENEFITS • Reduced Component Count, Lower Circuitry Cost Input O,!,er Voltage Clamp by Two Built·in Diodes • Low Noise • Low Leakage 0-0 ~ • -- • o o ... - • Transducer Impedance Conve'rter Hearing Aid Pre-amplifier D G U; ABSOLUTE MAXIMUM RATINGS (25°C) Gate-Drain or Gate-Source Voltage . ......... -30V Gate-Current ................................. 10 mA Total Device Dissipation (25°C) ............. 300 mW Storage Temperature Range ........... -55 to 200°C Operating Temperature Range ......... -55 to 150°C Power Derating .......................... 2.4 mWrC Lead Temperature (10 seconds @ 1/16") •••.•••. 300°C ., 4th ~ -8 ---... I o en -0 Z ~ .~. * r--~~~ll S I II I [)llb : s : L__ J I I,I" I. r---1 I 'l ___ . ,l L_________ J 0 TO·72 11I 1---""'(.8-----1 ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted) 2N690B Characteristics Min BVGSS Gate·Source Breakdown Voltage (Note 1) IGSS Gate Reverse Current (Note 1) VGS(off) Gate Source Cutoff Voltage (Note 1) lOSS Saturation Drain Current (Note 1) 9ls Common~Source Forward Transconductance (Note 1) gos Common~Source Max 2N6909 Min Max -30 -30 Typ ~ -25 -0.3 -1.B 0.05 100 Typ 2N6910 Min Unit Max -30 Typ ~ -1 pA VG4 ~ 0 V. VOS ~ V IG pA VGS ~ -15V. VOS ~ OV. VG4 ~ OV 0V ~ -25 ~ -25 -0.6 -2.3 -0.9 -3.5 V VOS ~ 10 V. 10 ~ 1 nA. VG4 - 0 V 2.0 0.20 3.5 0.6 5.0 rnA VOS - 10 V. VGS - 0 V. VG4 - 0 V 3000 400 3500 1200 4000 - Output Conductance 50 (Note 1) Test Conditions 75 100 I"'mlio VUS - 15 V, VGS = 0 V. YG4 =0 V Ciss Common-Source Input Capacitance 5.0 5.0 5.0 pF VOS ~ 10V. VGS ~ 0 V. I ~ 1 MHz Crss Common-Source Reverse Transfer Capacitance (Note 1) 2.0 2,0 2.0 pF VOS ~ 10 V. VGS ~ 0 V. VG4 - 0 V. FREQ ~ 1 MHz en Equivalent Short CirCUit Input NOIse Voltage 25 .JHZ VGS(I) Gate-Source Forward Voltage (Note 1) ± 1.2 V IG - ±0.5 rnA. VOS - 0 V. V04 - 0 V :t10 pA VG4 dB VOS ~ 15 V. VGS ~ 0 V. RGEN ~ 1 MEG. F ~ 1 kHz IG4 NF Forward Gate Diodes Current (Note 2) Typ fo- 25 Typ ~ ± 1.2 ~ ±1 Noise Figure :t10 1.0 25 :t Typ ~ Typ ~ 1.2 ::t:10 Typ r---;:, 1.0 1.0 NOTES: 1. Measured when the gate lead is shorted to the 4th lead. i.e •• characteristIc olthe FET only (VG4 2. FOlWard diodes' current when a voltage Is applied between the gate and the 4th lead. Device Available in Surface Mount (SOT·l43)-Order Number 3·34 ~ SST690B. SST6909. SST6910 Siliconix nV VOS ~ 10V. VGS ~ OV. I ~ 10Hz ~ ±100 mV NBB ~ 0 V). n-channel JFET Amplifier H Siliconix Performance Curves NBB See Sedion 4 designed for • • • •• • • -_. --eft BENEFITS • Reduces Component Count, Lower Circuitry Cost • Input Over Voltage Clamp by Two Built-in Diodes • Monolithic Source Resistor • Low Noise • Low Leakage Infra-red Detector Micropower Pre-amplifier Transducer Impedance Converter Hearing Aid Pre-amplifier ~. G' :. 1 ! ABSOLUTE MAXIMUM RATINGS (25°C) Maximum Supply Voltage (VDD) .............. -30 V Gate Current ................................ 100 mA Total Device Dissipation (25°C) ............. 300 mW Storage Temperature Range ........... -55 to 200°C Operating Temperature Range.......... -55 to 150°C Power Derating .......................... 2.4 mWfC Lead Temperature (10 seconds @ 1116") ........ 300°C ~, o o r-----------,1 r ~i':' I I ,---, I : s : I ~-, n b '. ,---, I! 6 HiL __ J I 0 I ! G! I I"==-< ,--_. II IL __________ JI TO-12 !-11r.as-----! I l D! ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted) Characteristi~ Min Max Unit VGs(ope,) Gate-Source Voltage 0.15 2.8 V IO(oper) Drain Current 5.0 85 p.A "n Equivalent Short Circuit Input NOise Voltage 10 25 IG4 Forward Signal Current ±1 ±10 Av Source Follower Gain (AV) Z(m) Input Impedance Z(out) Output Impedance Vf Forward Voltage IG Gate Leakage NF 0.75 30 Current Typ = 20 V. VG4 = 0 V (Note 1) VOS = 10 V. VGS = 0 V FREQ = 100 Hz pA VGS = ±100 mV VN VOO = 10 V. FREQ 100 Gil VGS'" ±100 mV Kil VOO - 10 V. FREQ - 1 kHz. VG4 = 0 V (Note 1) 45 1 70 = 1 kHz IG = ±0.5 mAo VOS = 0 V, V04 = 0 V ±1.0 V 25 pA VOO - 15 V, VG4 = 0 V (Note 1) dB VOO = 15 V, VG4 = 0 V. RGEN = 1 Mil. F = 1 kHz 1 NOTE: 1. VG4 = 0 V, Test CondItion implies the gate and 4th lead are shorted. In 'V'HZ VOG 0.85 Noise Figure Device Available nV Test Conditions NBB Surface Mount (SOT 1431-0rder Number-SST6911 Siliconix 3-35 IEII z (II) H enhancement-type p-channel MOSFETs Perfonnance Curves MRA designed for ••• See Sedion 4 Siliconix Input Impedance • Ultra-High Amplifiers • • BENEFITS Rugged MOS Gate Minimizes Handling • Problems Eledrometers Smoke Detedors pH Meters Digital Switching Interfaces Analog Switching ± 125 V Transient Capability Gate-Leakage • LowTypically 0_02 pA Off-Isolation as a Switch • HighlOSS < 200 pA *ABSOLUTE MAXIMUM RATINGS (25°C) TO-72 See Section 6 Drain-Source or Gate-Source Voltage 3N 163 _..... -40 V Drain-Source or Gate-Source Voltage 3N 164 ...... -30 V Transient Gate-Source Voltage (Note 1) ......... ±125 V Drain Current ............................. -50 rnA Storage Temperature -65 to +200°C Operating Junction Temperature ......... -55 to +150°C Total Device Dissipation (Derate 3.0 mWrC to 150°C) .............. 375mW Lead Temperature 1/16" From Case For 10 Seconds .. 265°C ................. ~ JD Go---J~B 1. B.C D G *ELECTRICAL CHARACTERISTICS (25°C and VBS = 0 unless otherwise noted) Characteristic 3N163 Min IGSS Min Gate-Body Leakage Current ----s ----=-----f T A T ~I g C -----;0 ----;;-----;2 13 0 BVOSS Drain-Source Breakdown Voltage BVSOS Source-Dram Breakdown Voltage Gate Source Voltage VGS VGS 'h Gate-Source Threshold Voltage Drain Cutoff Current lOSS Source Cutoff Current ISOS 'O'onl ON Drain Current 14 N gos --;SA C ISS !_M Common-5ource Forward Transconductance l---;s 'd(onl Turn-ON Delay Time I~W 'r 'off RiseTime 20 -30 -30 -2.5 -2 -6.5 -5 -200 -400 -30 250 4,000 -SOO -30 300 1,000 4,000 2.5 2.5 0.7 0.7 3 3 12 24 50 VGS' -30 V, VOS' 0 V oA mA n jlmho TA -12UOC 10 =-101lA, VGS' 0 'S·-10IlA, "GO· VRO - 0 VOS' -15 V,IO' -0.5 mA VOS' Vr.S, '0' -101lA VOS' -15 V, VGS' 0 VSO· -20 V, VGO = 0, VOB VOS' -15 V, VGS - -10 V VGS' -20 V,IO =-1001lA VOS' -15 V, 10·-10mA NOTE: 1, Transient gate-source voltage JEDEC registered a. ±125 V. vlN 5011 d RG Siliconix c 0 f'l kHz pF VOS' -15 V,IO' -10 mA f= 1 MHz ns VOO=-15V 'O(onl '-10mA RG' RL = 1.5 kn MRA VDO *JEDEC registered data 3-36 TA'125"C pA 25~ 12 24 50 Turn-OFF Time -£.5 -5 -400 -3 250 Common-Source Input Capacitance Coss Crss 2,000 Common-Source Output Conductance Common-Source Reverse Transfer Capacitance Common-Source Output Capacitance I~S -5 rOS(an) Dram-Source ON Resistance 9fs -y 16 I i----;J C -40 -40 -3 -2 Test Conditions Unit VGS = -40 V, VOS' 0 -10 -26 4 -Ss Max -10 -25 ---!.. ----4 ----.2. 3N164 Max vOUT INPUT PULSE RISE TIME..:;; 2 ns PULSE WIDTH ~ 200 nl SAMPLING SCOPE t,<; 02ns CIN"'2rF RIN;>10Mn n-channel JFETs designed for • • • H Silicanix Performance Curves NH See Section 4 VHF/UHF Amplifiers • Oscillators • Mixers • BENEFITS • Wide Band High Yfs/Ciss Ratio Low Feedback Capacitance Crss = 0.85 pF Typical • • Selected I DSS and V GS Ranges ABSOLUTE MAXIMUM RATINGS (25°C) Drain-Gate Voltage ............................. 30 V Drain-Source Voltage ........................... 30 V Reverse Gate-Source Voltage ...................... 30 V Forward Gate Current ......................... 10 mA Continuous Device Dissipation at (or Below) 25°C Free Air Temperature (Note 1) ................................ 200 mW Storage Temperature Range ............ -55°C to +150°C Lead Temperature (1/16" from case for 10 seconds) ........ , ...... 260°C TO·92 See Section 6 • INSULATED CASE • INSENSITIVE TO LIGHT ,~: s G a l!) G 0 s 0 Bottom View ELECTRICAL CHARACTERISTICS (25°C) Characteristic 1 - BVGSS 2 IGSS Gate Reverse Current 3' -S lOSS Saturation Dram Current - ~I 7 - -9 - 10 11 - VGS 0 12 Y C rss _N 13 A 1 "14M -g,s Unit Test Conditions V IG = -1 j.lA, VOS = 0 nA VGS=-20V,VOS=0 25 rnA VOS = 15 V, VGS = 0 BF244A 2.0 6.5 rnA Selected Into Following BF244B Groups (Note 2) BF244C 6.0 15 rnA 12 25 rnA Corresponding to lOSS groups BF244A -{).4 -2.2 V BF244B -1.6 -3.8 V BF244C -3.2 -7.5 V -{l.5 -8 V 6.5 mrnho VGS(off) Gate·Source Cutoff Voltage gls Max -5 C B Typ -30 2 4 T 5 A lOSS -T Min Gate·Saurce Breakdown Voltage Small·Signal Comman·Source Forward Transconductance Common-Source Reverse Transfer Capacitance Input Resistance ' 15 C C ISS Common-Source Input Capacitance ""16 Coss Common-Source Output Capacitance 3 5.5 0.85 . pF VOS = 15 V,IO = 200j.lA VOS = 15 V,IO = 1Oj.lA VOS=15V,VGS=O,I=1 kHz VOS=20V, VGS=-1 V I 1= 100 MHz 25 kn 10 kn VOS = 20 V, V'GS =-1 V 4 pF VOS=20V,VGS=-1 V 1.6 pF VOS = 20V, VGS =-1 V NOTE: 1. Oerate linearly to 125°C Iree·aor temperature at the rate 01 2.5 mwtC. 2. Pulse test PW .. 300 j.lS, duty cycle .. 3%. Silicanix - VOS = 15 V, VGS = 0 I 1=200MHz NH 3-37 n-channel JFETs designed for • • • H Billcanix Performance Curves NH See Sedion 4 VHF/UHF Amplifiers • Oscillators • Mixers • BENEFITS • Wide Band High Yfs/Ciss Ratio Low Feedback Capacitance Crss = 0.85 pF Typical • • Selected I DSS and V GS Ranges ABSOLUTE MAXIMUM RATINGS (25°C) Drain·Gate Voltage ............................. 30 V Drain-Source Voltage ........................... 30 V Reverse Gate-Source Voltage ...................... 30 V Forward Gate Current ......................... 10 mA Continuous Device Dissipation at (or Below) 25°C Free Air Temperature (Note 1) ................................ 200 mW Storage Temperature Range ............ -55°C to +150°C Lead Temperature (1/16" from case for 10 seconds) ............... 260°C TO·92 See Section 6 • INSULATED CASE • INSENSITIVE TO LIGHT .~: Characteristic - Min BVGSS Gate-Source Breakdown Voltage 2 IGSS Gate Reverse Current iOSS Saturation Drain Current --;:I-=- S BF245A !~ T 5 A 1- T I~ 1---2.. 8 Ig lOSS I C VGS Selected Into Following BF245B Groups INote 21 BF245C Corresponding to lOSS groups 110 11 gfs 1-0 12 V Crss I- N 13 A 1 M g,s 114 Typ 15 C VGS = -20V. VOS =0 VOS = 15 V. VGS = 0 20 65 rnA 6.0 15 rnA 12 25 rnA -2.2 V V BF245C -3.2 -75 V -{)5 3 55 085 Common·Source Input Capacitance Common-Source Output Capacitance -8 V 65 mmho pF VOS= 15V. VGS =0 VOS=15V.IO=200 /lA VOS=15V.IO=IO/lA VOS = 15 V. VGS = O. f = 1 kHz VOS= 20V. VGS = 1V I f=100MHz 25 k!l 10 kH 4 pF VOS = 20 V. VGS = --1 V 16 pF VOS = 20 V. VGS = -1 V Input Resistance CISS Test Conditions IG = -1 /lA. VOS = 0 nA -3.8 Coss C rnA 16 Common-Source Reverse Transfer Capacitance C S 25 -{).4 Transconductance G -5 BF245A Smail-Signal Common-Source Forward DO 2 NOTE: 1. Derate linearly to 125°C free-air temperature at the rate of 2 5 mWrC 2. Pulse test PW " 300 /lS. duty cycle'" 3% 3-38 Unit V I-I ""16 Max -30 BF245B VGSloff) Gate·Source Cutoff Voltage D G Bottom View ELECTRICAL CHARACTERISTICS (25°C) 1 s Siliconix VOS=20V.VGS=-IV I f = 200 MHz I'JH n-channel JFETs designed for • • • m H "T1 Slllcanlx en en rl> Performance Curves NH See Sedion 4 • UHF Amplifiers • Mixers • Oscillators N m "'T1 N en BENEFITS • • en r- High Gain Gpg = 14 dB Typical at 800 MHz Selected lOSS Ranges m m "'T1 N en en ABSOLUTE MAXIMUM RATINGS r- Drain-Gate Voltage _............................ 30 V Drain-Source Voltage ........................... 30 V Reverse Gate-Source Voltage ...................... 30 V Forward Gate Current ......................... 50 mA Total Device Dissipation @ 25°C ................ 350 mW Derate above 25°C ...................... 3.5 mW/oC Storage Temperature Range .............. -65 to +150°C Lead Temperature (1/16" from case for 10 seconds) ............. , .260°C o TO-92 See Section 6 • INSULATED CASE • INSENSITIVE TO LIGHT o~: s DD Min Characteristic -2 3' -4 -5 6" -:; 8 - BVOGO Drain-Gate Breakdown Veltage S IGSS T VGSloffl A T lOSS I C lOSS 9fs 9 gos 0 y Ciss N 11 A Crss M 12 I flYfs) C Gpg 13 10 - - 14 NF Typ -5 -7.5 -0.5 Drain Current at Zero Gate Voltage INote 1) 3 12 V 18 mA 3 7 mA BF256LB 6 13 mA BF256LC 11 18 mA INote 1) Common-Source Output Conductance 4.5 5.5 VGS=-20V,VOS=0 VOS =15V,IO = 10nA - /lmho 4.5 pF 1.2 pF f=l MHz Capacitance Cutoff Frequencv INote 2) Test Conditions IG = -1 /lA, VOS = 0 mmho 50 Common-Source Reverse Transfer Common-Gate Neutralized Insertion e VOS=15V,VGS=0 f = 1 kHz Common-Source Input Capacitance Noise Figure nA BF256LA Common-Source Forward Transconductance Power Gain Unit V Gate-Reverse Current Gate-Source Cutoff Voltage Selected into Following Groups INote 1) Max -30 e Bottom View ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted) 1 S G 1000 MHz 14 d8 VOS = 10 V, RS = 47 n, f = 800 MHz 7.5 dB VOS = 15 V, RS = 47 n, f = 800 MHz NH NOTES: 1. Pulse test PW .. 300 /lS, duty cvcle .. 2%. 2. Frequency at which the real part of the forward transconductance falls 3 dB relative to the value at 1 kHz. Siliconix 3-39 H current regulator diodes Performance Curves designed for • • • NKL NKM NKO See Section 4 Siliconix Regulation • Current Limiting • Current • Biasing • Low Voltage References BENEFITS Simple Two Lead Current Source Current Insensitive to Temperature Changes Temperature Coefficient Better Than 3000 ppm/oC On All Devices • TO-18 Package for Improved Current Control Simplifies Floating Current Sources No Power Supplies Required 1V Operation • • • • ABSOLUTE MAXIMUM RATINGS (25°C) TO-18 (MODIFIED) See Section 6 ..................... Peak Operating Voltage 100 V Forward Current 20 mA Reverse Current .•••••••.•..•.••.•..••.•.•... 50 mA Thermal Resistance 8JC 100°C/W Power Dissipation at TC = 25°C 1.25 W Operating Junction Temperature -55 to +150°C Storage Temperature· .••••.•••••.•.. -55° to +200° C ............................ .................. ............ ..... a z. Symbol 'F' RegUlatorCUMnt Test Cortditlanl Un.. z. Dynamic ImpHlince Y,=Z5Y V,_25Y (Note') (Note 2) (mAl Mll .om Min M.. CR022 022 0198 0242 CnO.014 CR027 CR030 CR033 02. UJlb Ulb4 021 030 033 0243 0270 0297 CR039 CR043 CR047 CROS6 CR062 039 0.3 047 056 062 CR068 CR075 CR082 CR091 CRloo CR,,. M.. T,. " 038 33 29 26 21 , 0 10 10 10 10 100 087 075 056 047 20 18 16 13 115 0400 0335 0290 0240 0205 Min 0297 0330 0363 115 '0' 9' 85 78 275 235 195 '60 135 0351 0387 0423 0504 0559 0429 0473 0517 0616 0682 410 330 270 '90 155 69 6' 56 50 068 075 082 091 100 0612 0675 0738 0819 0900 0748 0825 0902 '001 1100 135 115 100 088 080 85 72 60 52 0990 '08 117 126 135 1210 132 143 '54 165 070 064 '059 054 051 38 33 CRl30 CRl40 CRtSO 110 120 130 140 150 CR160 CRt80 CR200 CR220 CR240 '60 180 200 220 240 '44 '62 176 198 220 242 264 0475 0420 0395 0370 0345 CR270 CR300 CR330 CR3SO CR390 270 300 330 360 390 297 330 363 396 429 CR4]O CR470 CR530 430 470 530 367 423 473 '77 563 ,80 198 216 243 270 297 32' 351 517 Peak OpentIng Voltage YF" 25Y Vf = 2SV INote4) -SS·C.;; TA..;" 25"C O"C~TA"';5O"C Y,=25V 2S·C ... TA ..::; 125"C MlnVottI Typ ppml"C TypppmrC Typ ppmt"C +2600 +2400 +2100 +1800 +1500 +'900 +1650 +1400 +1150 +950 +1220 051 055 '00 '00 '00 '00 '00 , 05 105 110 120 130 065 071 077 09' 100 '00 '00 '00 100 100 +1050 +800 +550 +50 -200 +800 +350 +'50 -250 -450 +150 0 -200 170 150 130 110 095 115 120 125 129 135 070 075 080 085 095 100 100 100 100 100 250 200 -25 -200 -425 -SO -375 -475 -550 -675 -825 25 22 0180 0155 0135 0115 0105 080 071 060 052 0'6 140 ,.5 150 155 160 115 125 130 135 100 '00 100 100 '00 -'50 -675 -1050 -1125 -1150 '00 095 088 080 075 0092 0074 006' 0052 0044 035 030 025 022 020 165 175 185 195 200 050 055 060 065 070 '00 100 100 100 100 1300 '000 425 125 875 650 250 0 -225 0320 0300 0280 0265 0255 068 060 056 052 048 0035 0029 0024 0020 0017 0'8 014 013 011 010 215 225 235 2SO 260 075 085 090 085 100 100 100 100 '00 100 -'50 -375 -650 -825 -925 -425 -550 -750 -8SO -900 0245 0235 0220 045 040 035 0014 0012 0010 009 008 005 275 290 310 110 "0 170 100 '00 '00 -1025 -1100 -1200 -1000 -1100 -1200 •• 44 32 D.' 0.6 .. , Pulse test-steady state currents may very Pulse test-steady state Impedances may vary Main Vf required to Insu,e IF > 08 IF1!mln) Max VF where IF < 1 1 IF1(maxlls guaranteed 3-40 G It: .. 11 IF1IMex) NOTES: 1 2 3 4 Temperature CoefficIent rrypals) • 0 M VoII. T,. T,. CR110 = 08 "11Mlnl (Note 3) MO 90 .0 70 60 50 Min I, VF=6V A ., POV VL KlMMllmpedancti lImltlngVoltqe C, CASE CATHODE ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted) Parameter ~ Siliconix 725 -150 -.00 -550 -925 -toOO -1200 -1300 -1250 -1225 +1050 +800 +600 +'50 • K L -500 -700 -9SO -1050 -1150 -1225 -1275 • K M 400 225 0 -225 -400 -600 -700 -875 -'-1100 000 -1200 -'-1400 300 •• 0 current regulator diodes designed for . . . H Silicanix • Current Regulation • Current Limiting BENEFITS • Simple Two Lead Current Source • Current Insensitive to Temperature Changes Temperature Coefficient Better Than O.15%/"C On All Devices • TO-18 Package for Improved Current Control • Simplifies Floating Current Sources No Power Supplies Required • Biasing • Low Voltage References ABSOLUTE MAXIMUM RATINGS (25°C) Peak Operating Voltage ...................... 100 V Forward Current. . . . . . . . . . . . . . . . . . . . . . . . . .. 20 mA Reverse Current ........................... 50 mA Thermal Resistance 8JC ..................... 100°C/W Power Dissipation atTc = 25°C ................ 1.25 W Operating Junction Temperature ........ -55 to +150°C Storage Temperature .................. -55 to +200°C TO-1B (MODIFIED) See Seclion 6 ANODE C, CASE CATHODE A ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted) Svmbol Parameter Test Conditions POV IFI Zd VL Peak Operating Voltage Regulator Current Dynamic Impedance Limiting Voltage IF = 1.1Fl(Max) VF= 25V VF= 25V IF = 0.8 I Fl(Min) (Note 1) (Note 2) (Note 3) (Note 4) Units Maximum Volts (mn) (rnA) Nom Min Max Min (V) TVp Max TVp 1.0 0.5 9.5 1.05 0.7 CRR0240 100 0.240 O.IBO 0.300 5 CRR0360 100 0.360 0.270 0.450 2.5 CRR0560 100 0560 0.420 0.700 12 6 1.30 1.1 CRROBOO 100 O.BOO 0.600 1.000 O.B 5.2 1.35 0.85 13 CRR1250 100 1.250 0.937 1.560 0.5 2.5 1.60 1.3 CRR1950 100 1.950 1.460 2.440 0.37 O.B 1.95 0.65 CRR2900 100 2.900 2.160 3.600 0.28 0.56 2.35 0.9 CRR4300 100 4.300 3.240 5.400 0.22 0.35 3.00 1.46 CRR0240-560 -NKL CRR080D-1250 - NKM CRR1950-4300 - NKO NOTES: 1. Max VF where IF< 1.11Fl (max) is guaranteed. 2. Pulse test - steady state current may vary. 3. Pulse test - steady state impedances may vary. 4. Min VF required to insure IF > 0.8 IF1 (min). Silicanix 3-41 - APPLICATIONS Parallel Operation The current-limiter diode is the electrical dual of the Zener diode. CR, ~+v,z;;- ITOTAL=ICR,+ICR2 , 1 = + Zd2 -v Current-Limiter Diode V-I Characteristic CR2 (When I, Zd1 Series Operation 12 -11 < 12, that is < 0.2 I,) EQUIVALENT CIRCUIT I, I, 1 c, Z. VOLTS POISICR1) < POALLOWED BV (FOR SERIES DEVICES) =BV,+ BV2 RS 1 SYMBOLS AND DEFINITIONS Rs A C Forward Current (Anode Positive) Current at a specified Test Voltage, VF Collector or Drain Hi-Z Load Resistors Constant-Current Timing Circuits Anode (Drain) Cathode (Source and Gate Shorted) POV 81 8 JC oJA Peak Operating Voltage Current Temperature Coefficient Thermal Resistance Junction to Case Thermal Resistance Junction to Ambient ZK Knee AC Impedance at specified VF. ZK should be as high as possible and is specified as a minimum. Dynamic Impedance at specified VF. Zd is specified as a minimum. Zd Emitter or Source Biasing + + ? ? Constant-Current Supply or Current-Limiting Element ~ e 9 Logic Circuit Pull-Up Current Source 0 T-'-------0 3-42 + 9 Siliconix matched dual n-channel JFETs designed for • • • H Siliconix Performance Curves NCB-D See Sedion 4 Differential • Wideband Amplifiers • Commutators BENEFITS High Gain 7500 tLmho Minimum gfs Specified Matching Characteristics • • ABSOLUTE MAXIMUM RATINGS (25°C) TO-71 .......................... See Section 6 ±80V Gate-Gate Voltage Gate-Drain or Gate-Source Voltage .....•..•••... -40 V Gate Current .....•.•••.•.••.•.•..•.•.....•.. 50 rnA Device Dissipation (Each Side), T A = 25°C (Derate 2.2 mW/oC) ..•...••..•....•.•.••.• 325mW Total Device Dissipation, T A = 25°C (Derate 3.3 mW/oC) •.••..•••••••.•.•.•..•. 650mW Storage Temperature Range •••.•..••....• -65 to +200°C Lead Temperature (1/16" from case for 10 seconds) ........•...... 300°C G, ~~ S, Gz 82 S2 .4. 02 0' 06 0 7 G2 20 0, ,0 G, 30 s, Bottom View " ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted) Characteristic 1 1'2 I~ 14 5' 6" 1" 8 g10 'iT i2 13 - S T A T 1 C IGSS Gate-Reverse Current BVGSS VGS(off) VGS(I) lOSS rOS(on) Gate-Source Breakdown Voltage 91. O V 90. N A Crss M C1SS 1 NF C ifn -40 -D.5 Gate-Source Cutoff Voltage pA nA V 2 5 Static Drain Source ON Resistance 7500 7000 Common-Source Forward Transconductance (Nol.') 3 Equivalent Short Circuit Input NOise Voltage DN6664 Min Max pF 12 1.0 50 DN5666 Min Max 1 0.95 1 0.9S 1 Unit - 10 20 mV 10 25 SO 10 25 50 1 0.90 Test Conditions VOS = 15 V, VGS =0 /IV! ·C VOS =15 V, 10 =2 mA 1 - 1= 1 kHz 1= 100 MHz 1= 1kHz 1= 1 MHz 1= 10 Hz, Rg =1M 1= 10Hz v11z 5 1 0.90 VOG=15V,lo=2mA dB nV ON6666 Mm Max I I 150·C IG=-l/1A,VOS=O VOS=15V,10-lnA VOS =0 V, IG =2 mA VOS=15V,VGS=0 10=1mA,VGS=0 65 Spot NOise Figure 09S n Test Conditions VGS' -20 V, VOS= 0 /lmho Common-Source Output Conductance 0.95 mA 50 100 12,500 Common-Source Reverse Transfer Capacitance Common·Source Input Capacitance Saturation Drain Current IOSS1 14 RaIla, (Nol.' 1and 2) -M IOSS2 A IVGS1-VGS2 1 Differential Gate·Source 15 T Voltage -C H AIVGS1-VGS2 1 Gate-5ource Voltage 16 1 Oill.r.nlial 0,,11 (Nol. 3) N AT G 91.1 Transconductance RatiO 17 (No I•• 1and 2) 91.2 Unit -3 Gate-Source Voltage Saturation Drain Current (Note 1) Characteristics - Max -100 -200 Min TA = 2S·C TB =12S·C TA =-S5·C TB = 2S·C 1= 1kHz NCB-O , NOTES: 1. Pulse test required, pulse width 300 J.lS. duty cycle <: 3%. 2 Assumes smaller value tn numerator. 3. Measured at ends POints, TA and Ta Silicanix 3-43 l1li H matched dual n-channel JFETs Siliconix designed for... Performance Curves NCB-D See Section 4 • Dual FEY BENEFITS • High Density • Matched Switch Resistance Constant rOS(on) with Signal • ABSOLUTE MAXIMUM RATINGS (2S0C) TO-71 See Section 6 Gate-Gate Voltage ............................. ±80 V Gate-Drain or Gate-Source Voltage ............... -40 V Gate Current ................................ 50 mA Device Dissipation (Each Side), T A = 25°C (Derate 2.2 mW;oC) ....................... 325 mW Total Device Dissipation, T A = 25°C (Derate 3.3 mW;oC) : ...................... 650 mW Storage Temperature Range ............ -65°C to +200°C Lead Temperature (1/16" from case for 10 seconds) ............... 300°C G, ~~ 8, G2 S2 '2 ., 20 D, J o'06 D2 G, 30 01 G2 ,0 02 D, " Bottom View ELECTRICAL CHARACTERISTICS (2S0C unless otherwise noted) I Characteristic 1 ~ - IGSS BVGSS Gate-Sou rce Breakdown Voltage -40 VGS(off) Gate·Source Cutoff Voltage -0.5 VGS(f) Gate-Source Voltage -Sc lOSS Saturation Drain Current (Note 1) ~ 8 ----g D Y N 10 _M A 11 T -C 12 H I I\I1!!X -100 -200 S 3 T A ----:- T 5 I ------;- Min Current Gate~Reverse 'J!'!it pA nA I Te:t Condition; VGS=-20V.VOS=0 I 15o"C IG = 1 I'A, VOS = 0 -3 V 2.0 5 mA 100 11 rOS(on) Static Drain Souroe ON Resistance Cgd Oraon-Gate Capacitance 7 Cgs Gare-5ource Capacitance 7 IOSSI IOSS2 Saturation Drain Current Ratio (Notes 1 and 2) IVGS1-VGS21 Differential Gate-Source Voltage 9fsl 9fs2 Transconductance Ratio (Notes 1 and 2) 0.9 0.9 pF VOS=15V,VGS=0 10= 1 mA,VGS=O VGS= -10V f= 1 MHz VOS= 10V 1 - 20 mV 1 VOS= 15V,10= 1 nA VOS=OV,IG=2mA 60 - VOS=15V,VGS=0 f = 1 kHz NCB-O NOTES: 1. Pulse test required, pulse width 300 I'S, duty cycle .. 3%. 2. Assumes smaller value in numerator. 3. Measured at end points, T A and TB. 3-44 I Silicanix dual • PICO ampere diodes designed for • • • H Siliconix --- BENEFITS • Very High Off-Isolation 1 pA Max (DPAD1) • High Isolation Between Diodes 20 Femto Amp Typical (DPAD1) • Matched Capacitances • Compact Packaging Circuits • Clipping Diode Switching • High • CircuitsImpedance Protection TO-71 (MODIFIED) (Pins 2 and 6 Removed) See Section 6 TO-7B (MODIFIED) (DPADI Only) See Section 6 ABSOLUTE MAXIMUM RATINGS (25°C) Forward Gate Current, Each Side ................ 50mA Total Device Dissipation @ T A = 25°C Derate 4.0 mW;oC to 125°C................. 400 mW Storage Temperature Range ............. -55 to +125°C Lead Temperature (1/16" from case for 10 seconds) '" ............300°C it ~ c, ~, fi A2 C2 ~'~ A1~,' A'~A2 o C, A2 C, BotlomVlew Bottom View (Alternate) ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted) CHARACTER ISTIC MIN TYP MAX UNIT TEST CONDITION - 21 -1 DPADI -2 DPAD2 3" -5 - ~S IR Reverse Current -10 5 T -A 6 T -I 7 C - 2.. 9 - 10 BVR Reverse Breakdown Voltage VF Forward Voltage Drop 11 D - Y CR 12 N 13 ~ -45 VR -50 DPAD50 -100 DPAD100 V 1.5 0.8 2.0 0.1 0.2 IR DPAD1, 2, 5 ~-II'A IF~ pF VR pF VR1 DPAD10. 20, 50, 100 1 mA ~ - DPAD10 DPAD20 -35 0.8 ~-20V -20 -120 Capacitance ICR1-CR2 1 Differential Capacitance DPAD5 pA DPAD1, 2, 5,10,20,50,100 -5 V, I ~ DPAD1, 2, 5 1 MHz DPAD10, 20, 50, 100 =VR2=-5V,I~ 1 MHz DPAD1, 2,5, 10,20,50,100 T APPLICATION Operational Amplifier Protection. I nput Differential Voltage limited to 0.8 V (typ) by DPADS 0 1 and O2 Common mode input voltage limited by DPADS 03 and 04 to ±15 V. 0, 03 '*' oit I:" ' t !_ . . v Typical sample and hold circuit with clipping. DPAD diodes reduce oflset voltages fed capacitively from the F ET switch gate. Silicanix IR<'~tl DPAD10 +15 V 04 -15V DPAD1 I en f t, DPADl 2N4393. CONTROL SIGNAL C j 2N4117A ~UT 3-45 n-channel JFETs designed for . . . H Siliconix Performance Curves NT See Section 4 • Ultra-High Input Impedance Amplifiers Electrometers pH Meters Smoke Detectors BENEFITS • Low Current IDSS < 0.15 mA (FN4117A) • Minimum Circuit Loading IGSS < 1 pA TO-72 *ABSOLUTE MAXIMUM RATINGS (25°C) See Section 6 Gate-Drain or Gate-Source Voltage (Note 1) .. _..... -40 V Gate-Current ... _. _.. _..... _. _. _. _. , ... _. . .. 50 mA Total Device Dissipation (Derate 2 mWrC to 175°C) ......... _. _... , 300 mW Storage Temperature Range. _. _. _...... _. -65 to +175°C Lead Temperature (1/16" from case for 10 seconds) ... _. __ .. _, . _. 255°C *ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted) Characteristic FN4117A Min Max Gate Reverse Current FN4118A Min Max FN4119A Min Max Unit -; -1 -1 pA -2.5 -2.5 -2.5 nA I....!... S IGSS 3 A BVGSS Gate-Source Breakdown Voltage VGS(off) Gate·Source Cutoff Voltage -0.6 -1.8 -1 -3 -2 -6 lOSS Saturation Drain Current (Note 2) 003 0.15 0.08 0.4 0.20 1.2 70 250 80 250 100 330 Test Conditions VGS=-20V,VOS=0 150·C 1~:Tr--------------------------r--;---;----r---r---r---r---r------------~---------1 -40 -40 -40 I~ T~~~-=~~~-=-=~~~-4---+--~--~--;_~;-__1 I'~ ~ 5 6 1-,7 I~ 8 D gfs i~a~~~~dSu~~:~~:(~:~d2) __ Common-Source Output C'SS Capacitance V IG=-Ip.A,VOS=O VOS=10V,lo=lnA rnA VOS= lOV,VGS=O yr-------------------~--~--_+--_r--_r--;_--;___1 Jlmho N Ar~s _____c_o_nd_u_ct_an_c_e____________-+__-+__-1____r-__r-__+-__;-__~ M I Common-Source Input 3 5 10 3 3 3 I~ C~------~~--------~~-+--~---r---r--;---~~ Common-Source Reverse Transfer 1.5 1.5 1.5 9 Crss Capacitance pF VOS=10V,VGS=0 f= 1 MHz NT ...JEDEC registered data. NOTES: 1. Due to symmetrical geometry. these units may be operated with source and drain leads interchanged. 2. This parameter is measured during a 2 ms Interval 100 ms after power IS applied. (Not a JEDEC condition.) 3-46 f ' l kHz Silicanix n-channel JFETs designed for • • • H Siliconix Performance Curves NCB See Section 4 BENEFITS Low Insertion Loss, High Accuracy in • Test Systems rON Switches • Analog Commutators • Choppers • Integrator Reset Switch • No Offset or Error Voltages Generated • by Closed Switch • • *ABSOLUTE MAXIMUM RATINGS (25°C) Purely Resistive High Isolation Resistance from Driver High Off-Isolation ID(off) < 100 pA High Speed tON < 20 ns Q TO-18 Reverse Gate-Drain or Gate-Source Voltage ___ ..... _-40 V Gate Current ............... _........... _.... 50 rnA Total Device Dissipation at 25°C Case Temperature (Derate 10 mW;oC) ..... , ____ .. _............. 1.8 W Storage Temperature Range. _... _........ --65 to +200°C Lead Temperature (1/16" from case for 60 seconds) ............... 300°C See Section 6 o~: o '"m -m '" ~ 5 *ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted) Characteristic '.....!.. 2 -3 -4 5 IGSS Gate Reverse Current 8VGSS Gate-Source Breakdown Voltage ~S ]T IDloff) Drain Cutoff Current I---, .A 81 T VGSlfi Gate-Source Forward Voltage Ig- 'Ic, VGSloff) Gate-Source Cutoff Voltage Saturation Dram Current 10 IDSS INot.1I ~ 1ii -:- FN4392 Ma. Mon -100 -200 -40 -2 25 100 200 1 -5 100 Dram Source ON Voltage 04 rOSlon) Static Dram-Source ON Resistance rds(on) Dram-Source ON Resistance ~ D Y N ~ 20 "'21 s 22 ' W 23 CISS Common-Source Input Capacitance 60 60 16 C rss Common-Source Reverse Transfer Capdcltance ~ - Umt -40 1 -3 -05 5 tdlon) t, tdloff) tf Turn-ON Delay Time Rise Time Turn-OFF Delay Time Fall Time VGS =-20 V. VDS =0 VDS =20 V VGS =-5 V 150·C IG =1mA, VDS =0 VOS =20 V. 10 =1 nA mA VOS =20 V, VGS =0 110 - 3 mA V VGS=O liD =6 mA IID-12mA n VGS O,llo=lmA n VGS O,IID 0 f =1kHz VDS =20 V. VGS =0 I VGS =- 5 V f = 1 MHz pF VGS - - 7V VOS =0 VGS--12V VOD - 10 V, VGS(on) - 0 VGS(off) 1010ni ns FN4392 6 -7 FN4393 3 -5 100 100 16 5 5 15 5 50 30 yoo 5111 NOTE' 1 Pulse test reqUired, pulse width = 300 jJS, duty cycle ~ 3% 1000pF PULSE 0-1 o~--r" VIN SCOPE 5112 -=- Silicanix 150·C IG=-lpA,VDS=O V 60 15 5 35 20 Test Conditions pA nA V pA nA pA nA 04 VDSlon) .g 18 FN4393 Ma. -100 -200 100 200 ~ 13 14 15 - Mon l' 5H! -=- IEII RL 16KU 32KH NCB 1000pF t---VOUT RL=(~)-51n D s1 -=- O(onl ONPUTPULSE RISE TIME< 05ns FALL TIME < 0 5 ns PULSE DUTY CYCLE 1% SAMPLING SCOPE RISE TIME 04 os INPUT RESISTANCE 50 n 3-47 .. .. • .,.. • .-.. ., n-channel JFETs -0 designed for • • • 0 ., Analog Switches H 0 1ft 0 Siliconix Performance Curves NVA See Section 4 BENEFITS • Very Low Insertion Loss rOS{on) < 3 n (J105) • No Offset or Error Voltages Generated by Closed Switch Purely Resistive High Isolation Resistance from Driver Choppers • Commutators TO-92 See Section 6 ABSOLUTE MAXIMUM RATINGS (25°C) Plastic .~: Gate-Drain or Gate-Source Voltage ............... - 25 V Gate Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 50 mA Total Device Dissipation at 25°C Ambient (Derate 3.27 mWfC) ...................... 360 mW Operating Temperature Range ............. -55 to 135°C Storage Temperature Range ............... -55 to 150°C Lead Temperature Range (1/16" from case for 10 seconds) .............. 300°C o G GD o o 0 o 0 Bottom View ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted) Characteristic Jl05 Jl06 "1111 Till IVidA 1 "25 T '3 _A -7 .J! Gate Reverse Current (Note 1) Gate-Source Cutoff Voltage -4.5 BVGSS Gate-5ource Breakdown Voltage -25 Drain Saturation Current (Note 2) 500 ~ -10 -3 nA -3 -2 -6 -0.5 25 -25 200 -4.5 100 V mA IO(off) Drain CU10ff Current (No1e 11 3 3 3 nA rOSlon) Dram Source ON ReSistance 3 6 8 CdQ(off) Dram Gate OFF Capacitance 35 35 35 Cooloffl Source Gate OFF Capacitance 35 35 35 160 160 160 9 0 Cdglonl V + N A Cso(onl -1211 Mill iy.., MdA Mill iyl' ividX -3 IGSS VGS(offl 4 T lOSS 51 5 C Jl07 1--'-":";"r--+-~'::"'-+-'~-T---1Uni1 ON Capacitance Fall Time NOTES: 1. Approximately doubles for every 10·C increase 2. Pulse 1est duration = 300 I'S; duty cycle ~ 3%. 3-48 VOS=5V.IO=I/lA VOS= 15V. VGS=OV VOS=5V.VGS=-lOV n VOS=OV,VGS=-10V Turn On Delay Time 15 15 15 1dlon I Rise Time 20 20 20 1r C ~--------~----------------+--+~+-~--;-~---r~r--r~ns Turn Off Delay Time 15 15 15 1dloff) 1f VOS = 0 V, VGS = -15 V f= 1 MHz pF Dram Gate plus Source Gate M 13 Test Conditions 20 20 20 VOS=VGS=OV SWitching Time Test Conditions Jl05 1.5V VOO VGS(offl -12V 50n RL Jl06 15V -7V 50n Jl07 15V -5V 50n NVA In TA. Siliconix n-channel JFETs designed for • • • Siliconix Performance Curves NIP See Sedion 4 • • Choppers • Commutators • Low Noise Audio Amplifiers Analog Switches -.... .... H BENEFITS Low Cost •. Automated Insertion Package Low Insertion, Loss rDS{on) < 8 n (Jl08) No Offset or Error Voltages Generated by Closed Switch Purely Resistive High Isolation Resistance from Driver Fast Switching td{on) + tr = 5 ns Typical Low Noise en = 6 nV/yHz at 10 Hz, Typ (J110) • • • • • i o -0 .... .... o -g Plastic ABSOLUTE MAXIMUM RATINGS (25°C) Gate-Drain or Gate-Source Voltage .............. , -25V Gate Current ..................... ' ........ 50mA Total Device Dissipation at 25°C Ambient (Derate 3.27 mWrC) ................... , .. 360 mW Operating Temperature Range ............. -55 to 135°C Storage Temperature Range ............. , .-55 to 150°C Lead Temperature Range (1 /16" from case for 10 seconds) . , ............ 30QoC TO·92 See Section 6 ,~: G GD s D S 0 D 0 Bottom View ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted) Jl0B Characteristic 1 12'5 1'3: 'GSS I~~ 7 IS 1- Gate-Source Breakdown Voltage lOSS Dram Saturation Current INote 2) ' 0 (011) 0 Min Typ -6 Max -3 -25 -25 BO 40 10 Dram-Gate Plus Source- UOit nA -4 -05 V 3 3 25 15 15 15 15 15 15 VOS=5V,10=1~A ~A rnA V OS -15V,V GS -OV nA V OS =5V,V GS =-10V !l VOS <; 0 1 V, VGS - OV vOS = OV, VGS = -10V pF 85 Gate ON Capacitance 85 85 Turn ON Delav Time 4 4 4 AlseTime 1 I 1 Turn OFF Delay Time Fall Time - Test Conditions V OS =OV,V GS =-15V V OS -OV,I G --l B Cdg(on! If Max -3 -2 3 Source-Gate OFF Capacitance + Typ 11 Csg(off! N C,g(on! I-A 10 M Id(on! Iii I I, I-c 12 'd(offi M,n -25 Dram Cutoff Current (Note 1) Drain-Source ON Reslstane Jll0 Jl09 Max -10 -3 Cdg(off! Dram-Gate OFF Capacitance 9 y 113 Gate Reverse Current (Note 1) BV GSS 'OS(on! Typ -3' V OS(of1) Gate-Source Cutoff Voltage I-T 17 Min n, 6 6 6 30 30 30 f= 1 MHz VOS = VGS = 0 SWltchmg Time Test Conditions Jl08 Jl09 Jl10 l,5V 1.5 V 15V VOO VGS(offi -12V 150n RL -7V -5V 150n 150n NIP NOTES: I, ApprOXimately doubles for every 10°C Increase In TA- 2 Pulse Test duration 300 jlS, duty cycle <; 3% Silicanix 3-49 n-channel FETs designed for • • • H Siliconix Performance Curves NCB See Section 4 • Analog Switches • Choppers • Commutators BENEFITS Low Cost • Automated Package • Low InsertionI nsertion Loss • rDS(on) < 30 n (J 111) No Offset or Error Voltages Generated • by Closed Switch ...Z•• • • .... ~ III - Purely Resistive High Isolation Resistance from Driver Fast Switching ~(on) + tr = 13 ns Typical Short Sample and Hold Aperture Time Cgd{off) < 5 pF Cgs(off) < 5 pF :::) (J ...Z III :::) o :e III ~ Plastic ABSOLUTE MAXIMUM RATINGS (25°C) TO·92 See Section 6 Gate-Drain or Gate-Source Voltage ............... -35V Gate Current .•.... _.......•...........•.... 50 mA Total Device Dissipation at 25°C Ambient (Derate 3.27 mWtC) . ..................... 360 mW Operating Temperature Range ............. -55 to 135°C Storage Temperature Range............... -55 to 150°C Lead Temperature Range (1/16" from case for 10 seconds) .............. 300°C G GO .~: 0 ~ =» en S s C o c Bottom View ELECTRiCAL CHARACTERISTICS (25"C unless otherwise noted) J112 J111 J113 Characteristic 1 --;- - 3 s T A T ....!.I ...:..C Test Conditions UNIT M,n Tvo Ma. M,n Tvo -1 Ma. M,n -1 IGSS VGSloff) Gate Source Cutoff Voltage -3 BVGSS Gate Source Breakdown Voltage 35 35 -35 lOSS Dram Saturation Current INote 2) 20 5 2 -10 Tvo Ma. -1 Gate Reverse Current (Note l' -1 nA -3 -5 VOS '" 0 V. VGS" -15 V VOS=5V,IO=1iJ.A V VOS = 0 V, IG = -1 iJ.A rnA VOS=15V.VGS=OV IDloU) Dram Cutoff Current (Note 1) -1 -1 -1 nA VOS = 5 V. VGS = -10 V 6 'OSlon) Dram Source ON Resistance 30 50 100 Cdg(offl Dram Gate OFF Capacitance 5 5 5 " Vos = 0 1 V. VGS = OV 1 B -0 Csgloffl Source Gate OFF Capacitance 5 5 5 V Cdglon) 28 28 28 Csgtonl Dram Gate Plus Source Gate ON Capacitance tdlan) Turn On Delay Time 1 1 7 t, Rise TIme 6 6 6 td(aff) Turn Off Delay Time 20 20 20 tf Fall Time 15 15 15 - 9 -;;;: _M 11 I -c ..E. 13 VOS"'OV,VGS=-10V 3-50 VDS=VGS=O ns NOTES: 1. Approximately doubles for every 10° C increase in T A. 2. Pulse Test duration 300 JlS; duty cycle .. 3%. f= 1 MHz OF Swltchmg Time Test Conditions J111 J112 lOV 10V VOD -1 V -12 V VGS(offl 800 Sl 1,600n RL NCB Siliconix J113 10V -5V 3,2oon n-channel JFETs designed for • • • Siliconix Performance Curves NCB See Section 4 Switches • Analog Choppers • Commutators • BENEFITS • Low Insertion Loss rOS(on) < 30 n (J111A) • High Off-Isolation 10(off) < 200 pA • No Error or Offset Voltages Generated by Closed Switch Purely Resistive ABSOLUTE MAXIMUM RATINGS (25°C) ...... ... ...c..... ~ c.. ...... c.. H ~ ~ TO·92 See Section 6 Gate-Drain or Gate-Source Voltage ............... -40 V Gate Current ................................ 50 mA Drain Current .............................. 400 mA Total Device Dissipation (25°C Free Air Temperature) ................ 350 mW Power Derating ............................... 3.27 mW/"C Storage Temperature Range ................ -55 to +150°C Operating Temperatufe .................... -55 to +135°C "~: INSULATED CASE • INSENSITIVE TO LIGHT GO Lead Temperature (1/16" from case for 10 seconds) ............... 300°C s D o D Bottom View 0 s G ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted) Characteristic 1 -; ~ - A ..2 IGSS Gate Reverse Current (Note 1) VGS(off) Gate-Source Cutoff Voltage BVGSS Gate·Source Breakdown Voltage 4 T lOSS I C I o (of!) 6 rOS(on) Saturation Drain Current (Note 2) 7 Cdg(off) ~ "'5 - 9 JlllA Min Max J112A Min Max -200 -5 -10 J113A Min Max -200 -2 -7 -200 -1 -40 -40 -40 30 15 8 Drain Cutoff Current (Note 1) Unit pA -5 Test Conditions VOS = 0, VGS =-15 V VOS = 5 V. 10 = 1 /lA V VOS = O. IG = -1 /lA mA VOS=15V.VGS=0 200 200 200 pA VOS=5V.VGS=-10V 30 50 80 n VOS"'O.l V. VGS=O Drain Gate OFF Capacitance 5 5 5 0 y Csg(off) Source·Gate OFF CapacItance 5 5 5 N Cdg(on) Dram Gate Plus Source Gate ON Capacitance 28 28 28 + Csg(on) Drain Source ON Resistance VOS = O. VGS = -10 V pF f= 1 MHz VOS = VGS = 0 NCB NOTES: 1. Approximately doubles for every 10°C increase m TA. 2. Pulse test duration = 300 /lS; duty cycle .. 3%. Siliconix 3-51 - - p-channel JFETs ..... ......... .. ., !:::... .. • ...,:!:- • ...........'"- • .,'" -0 .,~~an... H Siliconix Performance Curves PSA/PSB/PSC See Section 4 designed for • • • Analog Switches BENEFITS • Low Cost Iftl--. ..... ... • Simplifies Series-Shunt Switching when Combined with J113, its N-Channel Complement Low Insertion Loss rOS(on) < 85 n (J174) No Offset or Error Voltages Generated by Closed Switch Purely Resistive High Isolation Resistance from Driver Short Sample and Hold Aperture Time Csg(off) < 5.5 pF Cdg(off) < 5.5 pF Fast Switching td(on) + tr =7 ns Typical Choppers Commutators • • II > - • ::;) o ...Z III ::;) o :e III u :Ea= ::;) -'" • ABSOLUTE MAXIMUM RATINGS (25°C) Gate-Drain or Gate-Source Voltage (Note 1) ....•.... 30V Gate Current ..•.......................•...• 50 rnA Total Device Dissipation at 25°C Ambient (Derate 3.27 mW/C) ...................... 360 mW Operating Temperature Range ............. -55 to 135°C Storage Temperature Range ............... -55 to 150°C Lead Temperature Range (1/16" from case for 10 seconds) .............. 300°C Plastic TO·92 Sea Section 6 o~: sD G D a a Bottom View 0 ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted) Characteristics 1 2 VGs(off) 12 i 6 3 1 4 I 08 3-52 VOs = 0, VGs = 20 V VOs=-15V,lo=-10nA 30 -135 -7 -70 -20 mA VOs= -15V.VGs=0 -1 -1 -1 -1 nA VOs=-15V,VGs=10V 85 125 250 300 rl VGs = O. VOs = -0,1 V Drain-Gate OFF 30 30 -2 -35 -15 VOS=O,IG=I~A 30 Capacitance 5.5 55 5.5 55 Csg(off) Source-Gate OFF Capacitance 55 55 55 5.5 Drain-Gate Plus SourceGate ON Capacitance 32 32 32 32 VOs = O. VGs = 10 V f= 1 MHz pF TUrn On Delay Time 2 5 15 20 t, Rise Time 5 10 20 25 td(oltl Turn Off Delay Time 5 10 15 20 tf Fall Time 10 20 20 VOS = VGs= 0 ns NOTES: 1. Geometry Test Conditions V 113 nA 225 Cdg(offl 0 Cdg(onl 9 V + N Csg(on) I-A 10 M td(on) I:: C 10 Resistance 1- 1-, 5 Orain-Source ON 18 J177 1 1 Dram Cutoff Current (Note 2) 'Os(on) J176 Saturation Drain Current -20 (Note 3) Voltage l7 Voltage Gate-Source Breakdown 3 T BVGSS I_A 4 T 1055 I I- c 5 10(0111 6 Gate-Source Cutoff J175 Unit Gate Reverse Current iNuu:ii2j IGss 11_ s J174 Min Typ Ma. Min Typ Ma. Min Typ Ma. Min Typ Ma. IS symmetrical. Units may be operated With source and drain leads Interchanged. Siliconix 25 SWitching Time Test Conditions J175 J174 J176 JI77 -10V -6V -6 V -6V VOO 3V BV 6V VGs(off) 12V 560n 1.2Krl 5.6Krl 10Krl RL OV OV OV OV VGs(onl 2. Approximately doubles for every 100 e Increase," T A. 3. Pulse test duration := 300 tJ.s; duty cycle OS;;; 3%. PSA/PSBI PSC n-channel JFETs designed for • • • H Siliconix Performance Curves NPA See Section 4 • General Purpose Amplifiers BENEFITS • High Input Impedance IG = 10 pA Typical • Good for Low Power Supply Operation VGS(off) < 1.5V (J201) rn ... g~ CO -~ :< Plastic ABSOLUTE MAXIMUM RATINGS (25°C) II Gate-Drain or Gate-Source Voltage (Note 1) ....... -40 V Gate Current ............................... 50mA Total Device Dissipation at 25a C Ambient (Derate 3.27 mWrC) ...................... 360 mW Operating Temperature Range ............. -55 to 135a C Storage Temperature Range ............... -55 to 150a C Lead Temperature Range (1/16" from case for 10 seconds) .............. 300a C '4: en en ... ~ o . G GD D s s c D C ~ o w .. Bottom View ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted) J202 J201 CharacterIStic 1 IGSS -S 2 T Moo Gdle Reverse Current Gate Source Cutoff Voltage -03 3 T BVOSS Gate Source Breakdown Voltage -40 4 C IDSS Saturation Dram Current INote 3) 02 5 'G Gate Current (Note 2) -, - 6 _ 0 'Is y 7 N 'as -A -, 9 C 10 Transconductance (Note 3) Common Source Output Conductance Mon hp -15 J203 Max Mon Typ -100 -40 -OB Max M,n J204 Typ -100 -20 -100 Test Conditions Unit Ma. -100 pA -20 -03 VOS - D. VGS - -20 V VOS - 20 V. 10 '" 10 nA V -40 10 09 45 1,000 500 40 -10 -10 -25 -40 20 02 -10 -10 1,500 VOS" D. IG '" -1 pA 12 500 3 10 VOsc20V,VOS'0 pA VOG'" 20 V. 10 '" IOSSlmm) 1500 f:: 1 kHz 25 VDS 4 Crss Common·Source Reverse Transfer Capacitance I 1 I 1 en Equivalent Short Circuit Input NOIse Voltage 5 5 5 10 4 4 ~ 20V, VGS: a Siliconix - 4 pF NOTES: 1 Geometry IS symmetncal. Units may be operated With source and dram leads Interchanged 2 ApproXimately doubles for every 10°C Increase In T A 3 Pulse test duration = 2 ms II1II mA ,umho 1 35 Common Source Input Capacitance 8 M C1SS - Common Source Forward Max -100 (Note 2) VGS/offJ -A TVp nV ff, f : 1 MHz VOS ~ 10 V, VGS = 0 f: 1 kHz NPA 3-53 n-channel JFETs designed for • • • ..., • ..., ~ H Siliconix Performance Curves NZF See Section 4 General Purpose Amplifiers o BENEFITS • High!Its Gain = 7000 Jlmho Minimum ~ (J211,J212) Impedance • HighIGSSInput =100 pA Maximum Ciss = 5 pF Typical TO-92 See Section 6 ABSOLUTE MAXIMUM RATINGS (25°C) Plastic .............. ............................... .~: Gate-Drain or Gate-Source Voltage -25 V Gate Current 10mA Total Device Dissipation at 25° C Ambient (Derate 3.27 mWtC) .........•............ 360 mW Operating Temperature Range ............. -55 to 135°C Storage Temperature Range ............... -55 to 150°C Lead Temperature Range (1/16" from case for 10 seconds) .............. 300°C GD s o 0 0 0 s G Bottom View ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted) J210 Characteristic IGSS Min VGSloff) Gate-Source Cutoff Voltage Gate-Source Breakdown Voltage BVGSS lOSS Saturation Dram Current (Note 2 5C lG Gate Current (Note 1) 6 91s Common-Source Forward Transconductance (Note 2) 7 Y gas - 0 -N 8 A C,ss -M 9 I erss _C 10 "n J211 Max Typ MIn -100 Gate Reverse Current (Note 1) 1 S 2T A -T 4 I '3 Typ -1 -3 -25 J212 Max 15 -2.5 -45 20 -6 -4 40 15 -10 Unit pA V Test Conditions VOS=O,VGS=-15V VOS= 15V,IO= 1 nA VOS = 0, IG = -1 IlA rnA VOS = 15 V, VGS = 0 pA VOG=lOV,lo=lrnA 12,000 12,000 7,000 1= 1 kHz ~mho 150 Conductance Common-Source Input 200 200 Capacitance 4 4 4 Common-Source Reverse Transfer Capacitance 1 1 1 10 10 10 VOS: 15 V, VGS = 0 pF EqUivalent Short-Circuit Input NOise Voltage Ill! !'HZ 1= 1 MHz I--1= 1 kHz NZF NOTES: In TA. 2. Pulse test duratIon:;:: 2 ms. 3-54 -100 -10 12,000 6.000 Common-Source Output 1. ApprOXimately doubles for every lOGe mcrease Max -25 7 -10 4,000 Typ -100 -25 2 Min Siliconix n-channel JFETs designed for • • • ... ~ H Siliconix Performance Curves NPA See Section 4 W o ... ~ ... W and Sub-Audio • Audio Amplifiers BENEFITS Low Noise • Ultra en = 8 nV/v'Hz Typical at 10 Hz en = 2 nV1v'Hz Typical at 1 kHz TO·92 See Section 6 Plastic ABSOLUTE MAXIMUM RATINGS (25°C) "~: Gate-Drain or Gate-Source Voltage (Note 1) ........ -40V Gate Current ............................... 50 rnA Total Device Dissipation at 25°C Ambient (Derate 3.27 mW/"C) ...................... 360 mW Operating Temperature Range ............. -55 to 135°C Storage Temperature Range ........ , ...... -55 to 150°C Lead Temperature Range (1/16" from case for 10 seconds) , ... , ......... 300°C G GO 0 s S 0 o 0 Bottom View ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted) Characteristic 1 I- IGSS s 15 IG 6 91s 1-0 7 y 90S I_N 8 A CISS I_M 9 I C rss I_ C 10 en 111 Typ Gate Reverse Current Gate-Source Breakdown Voltage Saturation Drain Current (Note 3) Common-Source Output Conductance Common-Source Input Capacitance Common-Source Reverse J232 Typ Min -3 -05 -40 Max 3 -250 -5 -15 Max -250 Umt pA -6 -3' 6 3,500 1,500 VOS = 0, VGS = -30 V VOS=20V,IO= lilA VOS = O,IG = -lilA 5 -2 Test Conditions V -40 2 -2 1,000 Typ Min -40 0.7 Gate Current (Note 2) Common-Source Forward Transconductance (Note 3) J231 Max -250 (Note 2) Gate-Source Cutoff VGS(off) Voltage 2 T I-A 3 T BVGSS I-I 4 C lOSS J23D Min 10 -2 4,000 2,500 VOS=20V,VGS-O pA VOG = 10 V, 10 = 0.5 rnA 5,000 1= 1 kHz Ilrnho 1.5 3 6 4 4 4 VOS=20V,VGS=0 pF Transfer Capacitance 1 EqUivalent Short Circuit 8 Input Noise Voltage 2 1 30 8 IEII rnA 1= 1 MHz 1 30 2 NOTES: 1. Geometry is symmetrical. Unit may be operated with source and drain leads interchanged. 2. Approximately doubles for every 10°C Increase in TA. 3. Pulse test duration = 2 ms. Siliconix 8 2 30 .!!Y tIHz VOS = 10V, VGS =0 Hz -ff == 110kHz NPA 3-55 ----- p-channel JFETs designed for • • • H Siliconix Performance Curves PSA/PSB/PSC See Sedion 4 • General Purpose Amplifiers BENEFITS • Low Cost • Automatic Insertion Package • High Gain Amplifiers 9fs = 14,000 Mmho Typical (J271) • Low Noise en = 6 nVlJHi at 1 kHz Typical ...Z•• ... 1M -o~ :) ...Z i 1M ::) 1M ~ TO·92 See Secllon 6 ABSOLUTE MAXIMUM RATINGS (25°C) Plastic Gate·Dratn or Gate Source Voltage (Note 1) ....•.... 30 V Gate Current ..•........................... -50 rnA Total Device Dissipation at 25°C Ambient (Derate 3.27 mW/"C) ...................... 360 mW Operating Temperature Range ............. -55 to 135°C Storage Temperature Range ............... -55 to 150°C Lead Temperature Range (1/16" from case for 10 seconds) .............. 300°C .~: ~ ::) '" G s sD 0 G C o C Bottom View ELECTRICAL CHARACTERISTICS (25°C unleSs otherwise noted) J270 Characteristic 1 '2 -3' 4 5" S T A T I C 6 7 8 9 - IGSS Gate Reve ..e Current (Note 2) VGS(off) Gate-Source Cutoff Voltage 0.5 BVGSS Gate-Source Breakdown Voltage 30 lOSS Saturation Drain Current (Note 3) ·2 IG Gate Current (Note 2) gfs Common·Source Forward Transconductance (Note 3) 90s Common·Source Output Conductance 0 y Min N A Ciss M I Crss C 10 en Common..source Input Capacitance Typ J271 Max Min Typ 200 20 200 1.5 6,000 60 15,000 Test Conditions VOS=0,VGS=20V VOS = ·15 V, 10 = ·1 nA VOS=O,IG=lpA -50 ·6 15 pA V 30 -15 Unit 4.5 8,000 mA VOS=-15V, VGS=O pA VOG = -15 V, 10 = 10SS(min) 18,000 pmho 200 f = 1 kit.! 500 VOS = -15 V, VGS = 0 32 . 32 Common-Source Reverse Transfer Capacitance 4 4 EqUivalent Short·Circuit Input Noise Voltage 6 6 NOTES: 1. Geometry is symmetrical. Units may be operated with source and drain leads interchanged. 2. ApproxImately doubles for every 10°C increase In TA. 3. Pulse test duration = 2 ms. 3-56 Max Silicanix pF ...JJY.... 11HZ f= 1 MHz VOS=-10V, 10= 10SS(min) f= 1 kHz PSA/PSB/PSC n-channel JFETs designed for • • • H Siliconix ----- Performance Curves NZF See Section 4 VHF/UHF Amplifiers • Oscillators • Mixers • BENEFITS • • • High Power Gain 20-23 dB Typical at 100 MHz, Common-Source 17_5-20_5 dB Typical at 100 MHz, Common-Gate Low Noise Figure 1_3 dB Typical at 100 MHz High Dynamic Range Greater than 100 dB TO-92 Sea Section 6 ABSOLUTE MAXIMUM RATINGS (25°C) Plastic .~: Gate-Drain or Gate-Source Voltage . . . . . . . . . . . . . . . . -25 V Gate Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10mA Total Device Dissipation at 25°C Ambient (Derate 3.27 mW/"C). _ . . . . . . . . . . _ .. _ .. _ ... 360 mW Operating Temperature Range ....... _ .. _ .. -55 to 135°C Storage Temperatu re Range_ ... __ ... _ . _ . _ . -55 to 150°C Lead Temperature Range (1/16" from case for 10 seconds) .. _ . . . . . . . . . . . 300°C GO s 0 D 0 Bottom View D s G ELECTRICAL CHARACTERISTICS (25°C unless otherwise specified) Characteristic --.!. -2 S T Max Gate Reverse Current IGSS nA -0.1 IlA Gate·Source Breakdown Voltage -25 4 VGS(off) Gate·Source Cutoff Voltage (Note 1) -1.5 -7.0 IDSS Saturation Dram Current (Note 1, 2) 4 45 I :-c 5 6 0 y 9fs Common·Source Forward Transconductance (Note 1) 7 N gas Common·Source Output Conductance 200 Common-Source Reverse Transfer Capacitance 1.7 Common-Source Input Capacitance 5.5 A B M Crss _I 9 c Ciss Characteristic IDSS (Note 2) Saturation Drain Current VGS{off) Gate Source Cutoff Voltage J300A Min Max 4 -1.5 9 -3.0 J300B Min Max 7 -2.0 Test Conditions Unit -0.5 3 A BVGSS T !- - Min VGS=-15V, VDS=O TA= 125°C IG = -1IlA, VDS = 0 V VDS=10V,ID=1nA rnA VDS= 10V, VGS=O 4500 9000 J300C Min Max 15 12 25 -4.0 -2.5 -5.0 NOTES: 1. lOSS and VGSS(offl are selected into 5 range. and labeled according to above table. 2. Pulse test PW .; 300 JlS, duty cycle'; 3%. Siliconix Ilmho VDS= 10V, ID = 5 rnA, f= 1 kHz pF VDG= 10V, ID = 5 rnA, f= 1 MHz J300D Max ~Min 21 45 -3.5 -7.0 Unit Test Conditions rnA VDS=10V VGS=OV V VDS=10V ID=1nA NZF 3-57 - n-channel JFETs designed for • • • H Siliconix Performance Curves NH See Section 4 Amplifiers • VHF/UHF Oscillators • Mixers • BENEFITS for Operation at 100 • Characterized and 400 MHz • LowNFNoise = 1.7 dB Typical at 100 MHz TO-92 See Section 6 • Plastic .~: ABSOLUTE MAXIMUM RATINGS (25°C) Gate-Drain or Gate-Source Voltage ............... -30 V Gate Current ............................... lOrnA Total Device Dissipation at 25°C Ambient (Derate 3.27 mwtC). ..................... 360 mW Operating Temperature Range ............. -55 to 135°C Storage Temperature Range ............... -55 to 150°C Lead Temperature Range (1/16" from case for 10 seconds) .............. 300°C GO s D D D D BottomViaw s G ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted) Characteristic 1 S 12" T 13~ I-I 4 C 5 1- 6 0 V I- N - 7 A M 8 I C 9 IGSS Gate Reverse CUrrent (Note 1) VGS(off) Gate Source Cutoff Voltage BVGSS Gate Source Breakdown Voltage lOSS Saturation Drain Current INote 2) 9ts Transconductance (Note 21 90S Common-Source Output Transconductance C ISS Crss -14 -15 H I liS 119 120 I- I~ 15 4,500 Capacitance Common-Source Reverse Transfer Capacitance -100 -05 -3 -30 5 Cc.,.,mo!"-Scurce Input Max Untt pA V Test Conditions VOS = 0, VGS = -20 V VOS=15V,IO=1 nA VOS = 0, IG = -1 pA 1 8 mA VOS= 15V,VGS=0 7,500 3,000 t = 1 kHz pmho 50 50 VOS= 15V,VGS=0 3,5 3.5 0.85 0.85 pF f= 1 MHz 90ss boss Common-Source Output Susceptance 91ss Common-Source Input Conductance b,ss Common-Source Input Susceptance 7,500 Common-Source Power 20 Gam 11 NOise Figure 1.7 VOS=i5V,lo=5mA, f = 100 MHz (Single SIdeband) 3.8 RG = 1 Kn f = 400 MHz Gps 22 123' -6 -30 Q U E N C V Typ -100 -2 i- F 16 !- R 17 E Min Common-Source Output Conductance G H J305 Max 9f, Coss 12 13 Typ Common-Source Output Capacitance Common-Source Forward Transconductance 10 :iI Common-Source Forward J304 Mon NF 10 1.0 t= 100 MHz 3,000 4,200 f = 400 MHz 60 60 f= 100 MHz 800 f= 100 MHz f= 400 MHz 80 800 pmho 3,600 80 VOS = 15 V, VGS = a f= 400 MHz 800 2,000 f= 400 MHz f= 100 MHz 80 f= 100 MHz 2,000 f = 400 MHz f= 100 MHz VOS=15V,lo=5mA f= 400 MHz dB NOTES: NH 1. ApprOXimately doubles for every 10°C Increase 10 TA. 2. Pulse test duration = 2 ms. 3-58 Silicanix ------- n-channel JFETs designed for • • • • • • H Siliconix Performance Curves NZB See Section 4 BENEFITS Industry Standard Part In Low Cost Plastic Package High Power Gain 11 dB Typical at 450 MHz Common-Gate Low Noise 2.7 dB Typical at 450 MHz Wide Dynamic Range Greater than 100 dB Easily Matches to 75 n Input VHF/UHF Amplifiers Oscillators Mixers AB~OLUTE • • • • • MAXIMUM RATINGS (25°C) Drain-Gate Voltage ............................ 25 V Source-Gate Voltage. _......................... 25 V Forward Gate Current ........................ 10mA Total Device Dissipation at 25°C Ambient (Derate 3.27 mW/"C) ...................... 360 mW Operating Temperature Range ............. -55 to 135°C Storage Temperature Range............... -55 to 150°C Lead Temperature Range (1/16" from case for 10 seconds) .............. 300°C Plastic TO-92 See Section 6 ,~: lD S D o D Bottom View S ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted) Characteristic 1 BVGSS 112 SlOSS T 1-= A 4 T VGS(off) 1-' 5 e lOSS 16 VGS(f) Gate-Source Breakdown Voltage Of. 18 go. 1- D 9 ~ Gate-Source Cutoff Voltage Saturation Dram Current (Note 11 1- A 10 M gog 1- , 11 C Cgd 1eg• 12 113 'n ward Transconductance Common-Gate Output VGS =-15 V. VOS=O -10 .A -10 -40 -20 -65 V 12 60 12 30 24 60 rnA 10 V 10 B,OOO 17.000 10 10,000 8.000 17.000 250 250 250 13,000 12,000 150 100 150 25 18 25 50 43 50 Equivalent Short-CIrcuit Input NOise Voltage Transconductance Common-Source Output Conductance Common·Gate Power Gam at NOise Match 19 NF NOise Figure 20 Gpg 21 NF Common-Gate Power Gam at NOise Match NOise Figure pF 10 10 10 12 12 12 14 14 14 04 04 04 VOS = 0, 10 = 1 rnA 015 015 015 nV v'H. 10 = 10mA VOS = D, VGS=-10V VOS"10V. lo=10mA f"1 kHz f= 1 MHz f"100Hz mmho 16 16 16 15 15 15 11 11 11 27 27 27 VOS"'10V. IO"'10mA f-105MHz dB f "450 MHz NOTE. NZB 1 Pulse test PW 300 1'5, duty cycle" 3% Siliconix -- Vos = 10 V. VGS = a VOS" 10 V. /-Imhos 13,000 18 Common-Source Forward T '" +125°C Ves:; 10V,ID '" 1 nA w o 17,000 43 G pg - -10 nA -65 ~ IG =-1/JA. VOS=O -10 25 Common-Source Input Conductance ~ -10 -10 w o Test Condltlonl Unit V 50 RelY.sl 18 M.. 18 Common-Gate Input Conductance 17 F Re(yO$) TVp -25 43 Re(Ylg) -R Mon Gate-Source Capacitance 15 ~ M.. Gate-Dram Capacitance Re(yfs) 18 J310 -10 Output Conductance Conductance Mon -10 Common-Source Transconductance M.. JOOS TVp -25 Voltage 14 - TVp -25 Gate-Source Forward Common-Gate Forward 9ig Mon Gate Reverse Current Common-Source For- 7 J308 G 0 3-59 - H n-channel JFETs current regulator diodes Performance Curves NCL designed for. • • See Section 4 Siliconix • • • • o BENEFITS Current Regulation Current Limiting Biasing Linear Ramp and Staircase Generator • Low Cost • Simple Two Lead Current Source • Simplifies Floating Current Sources No Power Supplies Required • Good Operating Current Tolerance ±20% TO-92 (MODIFIED) See Section 8 1ft -t . ANODE ABSOLUTE MAXIMUM RATINGS (25°C) o ~ Peak Operating Voltage .......................... 50 V Forward Current ............................. 20 mA Reverse Current.............................. 50 mA Total Device Dissipation at 25°C Ambient (Derate 3.27 mW;oC) ...................... 360 mW Operating Temperature Range ............. -55 to 135°C Storage Temperature Range ............... -55 to 150°C Lead Temperature Range (1 /16" from case for 10 seconds) .............. 300°C o 1ft -t Plastic - CATHODE CO A c C A Bottom View ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted) J500 J501 J502 J503 J504 J505 Min 0.192 0.264 0.344 0.448 0.600 0.800 Nominal 0.240 0.330 0.430 0.560 0.750 1.000 Max 0.288 0.396 0.516 0.672 0.900 1.200 Characteristic ..2... 2 S T A T 4 I ,- C 5 - IFI Forward Current (Note 1) 3 - 16 7 1- I~ 9 D V N POV Peak Operating Voltage (Notes 1 and 2) Min 50 50 50 50 50 50 Max 1.2 13 15 1.7 1.9 2.1 Typ 08 0.9 1.1 1.2 1.4 1.5 VL LImIting Voltage (Note 3) Small·Signal DynamIc Impedance (Note 1l Min 4.0 22 15 12 0.8 05 ZFI Typ 8.0 6.0 4.4 3.4 2.5 1.9 CF Anode·Cathode CapacItance Typ 2 2 2 2 2 2 Unit mA VF = 25 V IF = 1.1 IFI (Max) V IF = 0.9 IFI (Min) Mn V F = 25 V. f = 1 kHz pF VF=25V.f=1 MHt NCL NOTES: 1. Pulse test duration = 2 ms. 2. MaxImum VF where IF < 1.1 IFI (Maxl is guaranteed 3. M,nomum VF required to Insure IF > 0.9 IFI(Min)· Current· Limiter Diode V·I Characteristic I. IF, VR I VL I., 3-60 Test Conditions Siliconix pov V. ~~--- n-channel JFETs current regulator diodes Performance Curves NCL designed for • • • See Section 4 Siliconix ---~~- • • • • ... o ... UI ANODE Plastic ~ o CO ... ~ ... o ... UI UI TO-92 (MODIFIED) See Secllon 6 Peak Operating Voltage .......................... 50 V Forward Current ............................. 20 mA Reverse Current .............................. 50 mA Total Device Dissipation at 25°C Ambient (Derate 3.27 mWtC) ...................... 360 mW Operating Temperature Range ............. -55 to 135°C Storage Temperature Range ............... -55 to 150°C Lead Temperature Range (1/16" from case for 10 seconds) .............. 300°C 0- 'I • Low Cost • Simple Two Lead Current Source • Simplifies Floating Current Sources No Power Supplies Required • Good Operating Current Tolerance ±20% ABSOLUTE MAXIMUM RATINGS (25°C) o UI BENEFITS Current Regulation Current Limiting Biasing Linear Ramp and Staircase Generator ... UI H UI CATHODE c cO A A C Bottom View ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted) Characteristic I....!. 2 I3 - 4 - 2 S T - J!. 9 Forward Current (Note 1) A T I C POV VL 6 7 IFI D y N ZFI CF Peak Operating Voltage INotes 1 and 21 JS06 JS07 JS08 JS09 JS10 JSll 24 29 3.8 3.0 3.6 4.7 43 S.6 Moo 1120 1.440 1.9 Nominal 1.400 1.800 24 Max 1.680 2.160 29 3.6 Min SO 50 SO 50 50 50 Max 2.5 2.8 31 3.5 39 4.2 Typ 1.8 20 2.2 2.5 28 3.0 Smail-Signal Dynamic Moo 033 02 ,02 0.15 015 012 Impedance INote 1I Typ 1.4 1.0 0.70 060 0.50 0.30 Anode-Cathode Capacitance Typ 2 2 2 2 2 2 Limiting Voltage (Note 3) NOTES 1 Pu Ise test du ration Test Conditions Unit mA VF = 25 V IF = 11 IFI IMaxl v IEII IF =091FI IM,"I M12 VF=25V,f= 1 kHz pF VF = 25 V, f = 1 MHz NCL = 2 ms Current· limiter Diode V-I CharacterIStic 2 MaXimum VF where IF < 1 1 IFHMax) IS guaranteed 3. Minimum VF required to Insure IF > 09 'FI(MIn) IF IF, VR I / VL pov VF R Silicanix 3-61 H n-channel JFETs current regulator diodes Performance Curves NKL, VRMA designed for • • • See Section 4 Siliconix ------ BENEFITS Regulation • Current Limiting • Current Biasing • Linear Ramp and Staircase • Generator • Low Cost • Simple Two Lead Current Source • Simplifies Floating Current Sources No Power Supplies Required TO-92 (MODIFIED) See Secllon 6 ABSoLuTE MAXIMUM RATINGS (25°C) ANODE Plastic ~ Peak Operating Voltage ......................... 100V Forward Current ............................. 20 mA Reverse Current.............................. 50 mA Total Device Dissipation (25°C Free Air Temperature) ....................... 350 mW Power Derating (to +125°C) ..................... 3.27 mW/oC Storage Temperatu re Range ............... -55 to 135°C Operating Temperature Range ............. -55 to 135°C Lead Temperature Range (1/16" from case for 10 seconds) .............. 300°C CATHODE cO A A C c Bottom View ELECTRICAL CHARACTERISTICS (25°C unless otherwise notprl) Characteristic 4 - 5 -6 -7 S T A T I IFl POV C Max Peak Operating Voltage (Notes 1 and 21 VL Limiting Voltage (Note 3) ZFl Smail-Signal DynamiC Impedance (Note 11 CF Anode-Cathode Capacitance 0 N Forward Current (Note 1) 250 700 200 - NOTES: 1 Pulse test duration VF = 100 V IJ.A VF = 25 V VF = 1.0 V IF = led IFI 100 1.1 1.0 (Max) ~ ---- IF = 09 IFI (Mini 15 44 2 M!! VF = 25 V. f = 1 kHz pF VF = 25 V. f = 1 MHz NKL, VRMA =' 2 ms 2. MaXimum VF where IF < 1 1 IF1(Max) IS guaranteed 3. MInimum VF required to Insure IF > 091FlIMm) 3-62 Test Conditions Untt V ~ V 9 Typical 770 1.2. -23 - Min . -- - Siliconix H current regulator diodes designed for • • • Siliconix Performance Curves NCL See Section 4 Regulation • Current Limiting • Current Biasing • Low • Voltage References BENEFITS • Simple Two Lead Current Source • In Low Cost Plastic Package • Simplifies Floating Current Sources No Power ~upplies Required TO-92 (MODIFIED) See Section 6 ABSOLUTE MAXIMUM RATINGS (25°C) Plastic Peak Operating Voltage .......................... 50 V Forward Current ............................. 20 mA Reverse Current.............................. 50 mA Total Device Dissipation at 25°C Ambient (Derate 3.27 mWtC). ..................... 360 mW Operating Temperature Range ............. -55 to 135°C Storage Temperature Range............... -55 to 150°C Lead Temperature Range (1/16" from case for 10 seconds) .............. 300°C ANODE ~ DC o A CATHODE c Bottom View A ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted) Dynamic Regulator Current Limiting Voltage VF=25V IF=0.8 IFllmin) IFF 1.1 Peak op Volt Impedance Knee Impedance IF NOM IF MIN IF MAX VL VL VOP 'ZD 'ZK Nominal rnA Min rnA Max mA Max Volts Typical IFIIMax) Min Volts Typical Megohms Typical Megohms J553 05 018 0.75 13 075 50 10 2 J554 10 0.6 16 1.75 055 50 1 1 J555 2.0 14 2.6 2.15 075 50 88 025 J556 30 2.4 38 2.6 075 50 6 014 J557 45 36 53 30 15 50 48 009 PART NUMBER NOTES: 1 Pulse test-steady state currents may vary. 2. Pulse test-steady state Impedance may vary. 3 Min VF reqUIred to IRsure IF>O 8 IFI Imin). 4 Max VF where 'F < 1 1 IF1(max) IS guaranteed. NCL Siliconix 3-63 High Impedance Diode Switching High Dynamic Range Log Amps High Isolation Protedion Circuits BENEFITS • Low Cost TO·92 (MODIFIED) See Section 6 Plastic ABSOLUTE MAXIMUM RATINGS (25°C) A Forward Current ............................ 10 mA Total Device Dissipation ........•.....•...... 360 mW Storage Temperature Range ............ -65°C to +135°C Lead Temperature (1/16" from case for 10 seconds) ............. 300°C * AO C C Bottom View ELECTRICAL CHARACTERISTICS (25°C) Min Typ Characteristic -5 JPAD10 -10 -- JPAD20 -20 JPAD50 -50 S T A T I C 1 IR Reverse Current (Note 1) JPAD100 -100 JPAD200 -200 3 0 V 4 N Unit pA -35 -BO BVR Breakdown Voltage (Reverse) VF Forward Voltage Drop 0.8 1.5 CR Capacitance 1.5 2.0 pF NOTE: 1. The JPAD type number denotes Its maximum reverse current value in pica amps. Devices with IR values intermediate to those shown are also available on request. 3-64 Test Conditions -500 JPAD500 -2 - Max JPAD5 Silicanix VR =-5 V. f = 1 MHz Preliminarv high voltage protection diode H Siliconix designed for. . . Performance Curves VRMA See Section 4 • High Impedance Diode Switching BENEFITS • Offers High Voltage Protection • Broad Current Range • High Dynamic Range Log Amps • High Isolation Protection Circuits TO-92 (MODIFIED) ABSOLUTE MAXIMUM RATINGS (25°C) See Secllon 6 Anode to Cathode Voltage JR135V ...................................... 135V JR170V ...................................... 170V JR200V ...................................... 200 V JR220V ...................................... 220V JR240V ...................................... 240V Forward Diode Current IF ........................ 20mA Reverse Diode Cu rrent IF ......................... 50 mA Power Dissipation PO .......................... 360mW (Derate 3.27mW/oC) Storage Temperature TSTG .............. -55°C to 150°C Operating Temperature TOp .............. -55°C to 135°C Plastic A * cD c A D c A Bottom View ELECTRICAL CHARACTERISTICS (25°C) Characteristic Min Typ Max JR135V 1 2 POV IF' IF2 Peak Operating Voltage' Forward Current Unit Test Conditions - 135 JR170V 170 JR200V 200 JR220V 220 JR240V 240 V 200 IF=1mA VF=2V 770 200 /J A 3 VL Limiting Current 4 ZD Dynamic Impedance 2 MQ 5 AIF/AT IF Temp Coefficient +0.6 %/oC 0.9 V VF= 100V 1= 0.8 IF' (min) VF=25V VF=2-100V TA = -20 to + 85°C VRMA NOTE: 1. Pulse test duration 2 ms. Silicanix 3-65 -I monolithic dual o I g Silicanix n-channel JFET designed for • • • • Hybrid Circuits Wideband Differential • Amplifiers • VHF/UHF Amplifiers Performance Curves NNZ See Sedion 4 TO·71 See Section 6 S2 02 fo 0, 0' 2 1 0 0 610 02 0, S, Bottom View 0, ~~ S, BENEFITS G2 52 • High Gain through 100 MHz gfs > 4500 Mmho • Low Insertion Loss • Tight Tracking ABSOLUTE MAXIMUM RATINGS (25 0 C) S2 ...~D2 Gate-Drain or Gate Source Voltage ................. -25 V Gate Current ........................................ 50 rnA 0, lA TO-71 = M440, M441 ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted) Characteristic 1 S 2T -A 3 T -I 4 C "5 6 - 0 Gate-Source Cutoff Voltage BVGSS Gate-Source Breakdown VOltage lOSS Saturation Dram Current (Note 2J IG Gate Current (Note 11 9fs 90s M CISS -~ 9 Typ Gate Reverse Current (Note 1) VGS(offl V 7 N -A 8 IGSS M440 Min Common·Source Forward Transconductance -6 -1 -25 Crss Common-Source Reverse Transfer Capacitance IVGS1-VGS21 Differential Gate-Source Voltage Typ Max -500 -6 -1 -25 6 30 6 -500 9.000 4.500 4.500 Unit pA V Test Conditions VOS=0.VGS=-15V VOS = 10 V, 10 = 1 nA VOS=O.IG=-I~A 30 rnA VOS= 10V,VGS=0 -500 pA VOG = 10 V. 10 = 5 rnA 9.000 f = 1 kH2 IJmho 200 Conductance Capacitance Min -500 Common-Source Output Common·Source Input M441 Max 200 VOG = 10 V. 10 = 5 rnA 50 50 12 12 f= 1 MHz pF M 10 A T 10 rnV VOG = 10 V. 10 = 5 rnA NNZ NOTES: 1. ApprOXimately doubtes for every 10°C Increase In TA 2. Pulse test duration = 300 IoIsec; duty cycle <;; 3%. 3-66 20 Siliconix monolithic dual n-channel JFETs H Silicanix designed for • • • Performance Curves NNZ See Section 4 • Hybrid Circuits DiHerential • Wideband Amplifiers • VHF/UHF Amplifiers • High Gain through 100 MHz gfs > 5000 J.!mho TO·78 • Low Insertion Loss See Section 6 • Tight Tracking BENEFITS G1 ~~ S1 ABSOLUTE MAXIMUM RATINGS (25 0 C) 5, 40' 30 06 0 '0 0 G, 01 Mm Ma. 1 ~ S 12 T 4 A IS T I- I 6 C 17 8 9 ';0 0 11 y 112 N A :13 M I- I 14 C IGSS Gate Reverse Current BVGSS Gate-Source Breakdown Voltage Unit -100 pA -250 nA VGS(off) Gate-Source Cutoff Voltage VGS Gate-Source Voltage IG Gate Operating Current lOSS Saturation Drain Current (Note 1) 91s Common-Source Forward Transconductance 5000 10,000 91s Common-Source Forward Transconductance 5000 10.000 90S Common-Source Output Conductance 100 90S Common-Source Output Conductance 150 -1 -5 -0 3 -4 nA 40 mA Common-Source Input Capacitance Common-Source Reverse Transfer Capacitance 12 en EqUivalent Short Circuit Input NOise Voltage 20 Spot NOise Figure 16 - 17 M 1- A I~ T C 19 H I- I N 20 G IIGl-IG2 1 Differential Gate Current 10SSl IOSS2 Saturation Dram Current RatiO (Notes 1 and 2) IVGS1-VGS2 1 Differential Gate-Source Voltage Min 20 095 ~IVGS1-VGS21 Gate-Source Voltage Differential Onft I Note 3) ~T 1 Ma. 20 095 1 10 15 20 40 pF 91s1 Transconductance RatiO (Note 2) 095 1 095 1 1= 100MHz 1=1 kHz VOG=10V.10=5mA nV Unit nA - 1= 1 MHz 1= 10kHz 1=10kHz RG = lOOK dB Test Conditions VOG = 10 V, 10 = 5 mA TA = 125°C VOS = 10 V. VGS = a mV 121 TA = 12SoC VOS=10V.VGS=OV v'FfZ 40 20 , I = 100 MHz /lV/oC (Guarantee-no test) TA = 150°C 1=1 kHz 1 MS912 Ma. VGS=-15V,VOS=0 /lmho 5 Min M5912 Test Conditions VOG=10V,10=5mA pA CISS Characteristic G, D, = M5911, VOS= 10V,10= 1 nA -100 7 MS911 TO-78 V -100 Crss NF I~o ~, IG = -1 /lA, VOS = a -25 1- 15 G, 7 10 5, Bottom View *ELECTRICAL CHARACTERISTICS (25 0 unless otherwise noted) Characteristic D, C Gate-Drain or Gate Source Voltage ................. -25 V Gate Current ........................................ 50 rnA G2 S2 - TA= 2S·C TB = 125°C VOG = 10 V, 10 = 5 mA TA = -S5°C TB = 2SoC f = 1 kHz 91s2 NNZ * JEDEC registered data NOTES: 1 Pulsewldth :s:;;; 300 /.lS, duty cycle :s:;;; 3% 2 Assumes smaller value 10 numerator 3 Measured at end pomts, T A and Ta Silicanix 3-67 - enhancement-type p-channel MOSFET designed for • • • • High-Input Impedance Amplifiers H Siliconix Performance Curves MRA See Section 4 BENEFITS • High Input Impedance IGSS = 30 Femto Amp Typical • High Gain gfs = 1000 j.tmho Minimum Smoke Detectors Electrometers pH Meters ABSOLUTE MAXIMUM RATINGS (25°C) Drain-Source Voltage ........................... 25 V Gate-Source Voltage ........................... ±10 V Drain Current ............................... 30 mA Total Device Dissipation at (Or Below) T A = 25°C (Derate 3 mW;oC to +150°C) ........ , ... , ... 375 mW Operating Junction Temperature ........... -55 to +150°C Storage Temperature .................... -65 to +200°C Lead Temperature (1/16" from case for 10 seconds) ............... 265°C TO-1S See Section 6 JD Go----J,s S,B.C ~ G D ELECTRICAL CHARACTERISTICS (25°C) Characteristic - 1 2 3 -4 -5 S T A T I C 6 0 y IN 7 A 1- M I 8 C Min IGSS Gate-Source Leakage Current BVOSS Drain-Source Breakdown Voltage -25 VGS Gate-Source Voltage -2.0 Max Unit -1.0 pA --6.0 -20 Test Conditions VGS=-10V,VOS=0 V 10 = -10 /lA, VGS = 0 V VOS =-10 V, 10 =-10/lA lOSS Orain Cutoff Current nA VOS=-10V,VGS=0 10(on) ON Drain Current -3.0 mA VOS =-10V, VGS=-10V 9fs Common-Source Forward Transconductance 1000 /lmhos Ciss Common-Source Input Capacitance 6.0 Crss Common-Source Reverse Transfer Capacitance 1.5 pF VOS =-10V, 10 = -2 mA, f = 1 kHz VOS =-10V, VGS= -10V, f= 1 MHz MRA 3-68 Siliconix n-channel JFET designed for • • • 3C H Siliconix Performance Curves NH/NRL See Section 4 VHF/UHF Amplifiers • Mixers • Oscillators • S "'G "ft B'ENEFITS Low Cost • Automatic Insertion Package • TO-92 See Section 6 ABSOLUTE MAXIMUM RATINGS (25°C) Plastic Drain-Gate Voltage __ ............. _ ............ 25 V Source-Gate Voltage .............. _ ............ 25 V Drain-Source Voltage ........................... 25 V Forward Gate Cu rrent ...... _...... _ .......... 10 mA Total Device Dissipation at 25°C Ambient (Derate 3.27 mWrC) .... __ ................ 360 mW Operating Temperature Range ............. -55 to 135°C Storage Temperature Range ......... _ ..... -55 to 150°C Lead Temperature Range (1/16" from case for 10 seconds) .............. 300°C ,~: G GO 0 o 0 • 0 Bottom View ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted) Characteristic Min 1 -2 - IGSS S 3 T BVGSS A T 4 I VGS(of!) C 5 lOSS -6 VGS 7 9f. 8 0 Re(yt.) - - N Re(yo,) - A 10 M I -C 11 - 12 Gate-Source Breakdown Voltage Unit -2.0 nA -2.0 p.A -25 Test Conditions VGS =-15 V, VOS = 0 TA = +100°C IG =-10p.A, VOS = 0 V Gate-Source Cutoff Voltage Saturation Drain Current Gate-Source Voltage Common-Source Forward Transconductance Common-Source Forward Transconductance -8.0 2.0 20 -{l.5 -7.5 2000 7500 VOS=15V,lo=2nA mA V - VOS = 15 V, V GS = 0 (Note 1) VOS=15V,IO=200p.A f = 1 kHz 1600 IJmhos y 9 Gate Reverse Current Max Common-Source Output Conductance Common-Source Input Re(Yi') Conductance Common-Source Input Ci" Crss Capacitance Common-Source Reverse Transfer Capacitance 200 f=100MHz VOS = 15V, VGS=O 800 7.0 pF f = 1 MHz 3.0 NOTE: 1. Pulse test PW = 300 p.s; duty cycle"; 3%. NH/NRL Siliconix 3-69 OQ o n-channel JFET a. :e designed for • • • H Siliconix I I. Performance Curves NH/NRL See Section 4 • VHF/UHF Amplifiers • Mixers • Oscillators BENEFITS • Low Cost • Automatic Insertion Package TO·92 See Section 6 ABSOLUTE MAXIMUM RATINGS (25°C) Plastic Drain·Gate Voltage ............................ 25 V Source·Gate Voltage ........................... 25 V Drain-Source Voltage ........................... 25 V Forward Gate Current ........................ 10 rnA Total Device Dissipation at 25°C Ambient (Derate 3.27 mW/"C) ...................... 360 mW Operating Temperature Range ............. -55 to 135°C Storage Temperature Range ............... -55 to 150°C Lead Temperature Range (1/16" from case for 10 seconds) . , " .... , ..... 300°C .~: G GO ,-s o 0 C S c Bottom View ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted) Characteristic 1 12 5 IGSS ,- T 3 A 6VGSS 1_ T 4 I VGS(off) '"5 c 6 7 12 -13 -14 --8.0 1.5 24 2000 7500 gos 10 M Re(Yis) I 11 -25 Common-Source Output Conductance 1- C nA I'A -{l.5 9fs 9 y Re(yos) N Unit -1.0 -1.0 Gate·Source Cutoff Voltage Saturation Drain Current I-A Max Gate-Source Breakdown Voltage Common-Source Forward Transconductance 18 Re(Yfs) 1_ 0 - Gate Reverse Current lOSS I- Min Common-Source Forward Transconductance V VGS=-15V,VoS=0 TA - +100°C iG=-10I'A,VOS=O VOS=15V,IO=10I'A mA VOS = 15 V, VGS = 0 (Note 1) f = 1 kHz 75 1600 Common-Source Output Conductance Common-Source Input Conductance I'mhos 200 f = 100 MHz VOS=15V,VGS=0 800 Ciss Common-Source Input Capacitance 6.5 Crss Common-Source Reverse Transfer Capacitance 2.5 NF Noise Figure pF 2.5 3.0 dB NOTE: 1. Pulse test, pulse width = 300 I'S, duty cycle';; 3%. 3-70 Test Conditions f = 1 MHz VOS = 15V, VGS=O, RG = 1M VOS = 15 V, VGS = 0, RG = lK n n f = 1 kHz f=100MHz NH/NRL Siliconix n-channel JFET designed for • • • ~ H Siliconix "1'1 ~ Performance Curves NRLJ NPAINH See Section 4 • General Purpose Amplifiers • Analog Switches " BENEFITS Low Cost • Automatic Insertion Package • TO-92 See Section 6 ABSOLUTE MAXIMUM RATINGS (25°C) Drain-Gate Voltage _______ . _.. _................ 25 V Source-Gate Voltage ........................... 25 V Drain-Source Voltage ........................... 25 V Forward Gate Current ................... _.... 10 mA Total Device Dissipation at 25° C Ambient (Derate 3.27 mWtC). .. _.................. 360 mW Operating Temperature Range ............. -55 to 135°C Storage Temperature Range ............... -55 to 150°C Lead Temperature Range (1/16" from case for 10 seconds) .............. 300°C Plastic '4: G GD D s s c D C Bottom View ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted) Characteristic 1 S IGSS I- T 2 A BVGSS I3 14 Gate Reverse Current Gate-Source Breakdown Voltage T I VGS(oll) Gate-Source Cutoll Voltage C IDSS Saturation Dram Current 5 9ls 1- D Min Common-Source Forward Transconductance -25 Typ Max Unit -0.01 -1.0 nA -60 V -0_2 -8_0 0_5 24 800 6000 Test Conditions VGS=-15V.VDS=0 VDS = 15 V.ID = 10l'A mA VDS = 15 V. VGS = 0 (Note 1) 1=1 kHz I'mho 6 Common-Source Output Y gos I- N 7 A CISS M II 8 C Crss Transfer Capacitance 19 NOise Figure NF Conductance Common-Source Input Capacitance 10 75 4_5 7.0 1.0 3.0 0.04 2.5 VDS = 15 V. VGS = 0 pF Common-Source Reverse - IG =-10I'A. VDS=O dB 1=1 MHz VDS = 15 V. VGS = O. RG = 1M n 1=1 kHz NRlINPA/NH NOTE: 1. Pulse test PW .; 630 ms. duty cycle'; 10%. Silicanix 3-71 -- designed n-channel JFET for .... ~ H I "" Siliconix Performance Curves 'NRU NPAINH See Sedion 4 ••• General Purpose Amplifiers • Analog Switches • BENEFITS Low Cost •• Automatic I nsertion Package TO-92 See Section 6 ABSOLUTE MAXIMUM RATINGS (25°C) Plastic Drain-Gate Voltage ............................ 20V Source-Gate Voltage ........................... 20V Drain-Source Voltage........................... 20V Forward Gate Current ....................... _. 10 mA Total Device Dissipation at 25°C Ambient (Derate 3.27 mWrC) ...................... 360 mW Operating Temperature Range ............. -55 to 135°C Storage Temperature Range ............... -55 to 150°C Lead Temperature Range (1/16" from case for 10 seconds) .............. 300°C '4: G GO D s s 0 D 0 Bottom View ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted) Characteristic 5 IGSS I- T 2 A BVGSS T I VGS(off) C lOSS 1 1"3 4" 5 - Y0 6 - AN 7 M I 8 C - Gate·Source Breakdown Voltage Gate·Source Cutoff Voltage Saturation Drain Current 9fs Common-Soutce Forward Transconductance gas Common-Source Output Conductance Ciss Common-Source I nput Capacitance Crss Min Gate-Reverse Current Common-Source Reverse Transfer Capacitance Typ Max Unit -.01 -100 nA -20 -0.5 -10.0 0.5 20 V Test Conditions VGS=-10V.VOS=0 IG=-lO"A.VOS=O VOS=10V,IO=1"A mA VOS = 10 V, VGS = 0 (Note 1) 500 10 f = 1 kHz "mho VOS=10V,VGS=0 4.5 pF f = 1 MHz 1.0 NRL/NPA/NH NOTE: 1. Pulse test PW .;; 630 msec, duty cycle';; 10%. 3-72 Siliconix n-channel JFET designed for • • • ~ H Siliconix Performance Curves NRL See Section 4 VHF/UHF Amplifiers • Mixers • Oscillators • -- ." '"II ~ BENEFITS Low Cost •• Automatic I nsertion Package TO·92 See Section 6 Plastic ABSOLUTE MAXIMUM RATINGS (25°C) Drain-Gate Voltage ............................ 25 V Source-Gate Voltage ........................... 25 V Drain-Source Voltage ........................... 25 V Forward Gate Current ........................ 10 mA Total Device Dissipation at 25°C Ambient (Derate 3.27 mWrC) ...................... 360 mW Operating Temperature Range ............. -55 to 135°C Storage Temperature Range ............... -55 to 150°C Lead Temperature Range (1/16" from case for 10 seconds) .............. 300°C o~: G 0 TD o D S D Bottom View ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted) Characteristic IGSS 1-2. 2 S BVGSS I- T 3 A T VGS(off) I- I 4 C 15 lOSS 9fs 6 Re(Yf.) 1- 0 7 Y C's. I- N 8 Crss Min Gate Reverse Current Gate-Source Breakdown Voltage Gate·Source Cutoff Voltage Saturation Drain Current Common·Source Forward Transconductance Common·Source Forward Transconductance Common-Source Input Capacitance Common-Source Reverse Transfer Capacitance Typ Max Unit -om -100 nA -25 Test Conditions VGS=-10V,VOS=0 IG =-10"A, VOS=O V -0.5 -10.0 1 25 1000 7500 VOS=10V,IO=1"A mA VOS = 10 V, VGS = 0, (Note 1) - f = 1 kHz "mho 800 f = 100 MHz VOS=10V,VGS=0 3.5 pF f = 1 MHz 0.85 NRL NOTE: 1. Pulse test PW = 300 I'S, duty cycle'; 3%. Siliconix 3-73 p-channel JFETs designed for • • • H Siliconix Performance Curves PSAJPSB/PSC See Sedion 4 Switches • Analog • Choppers • Commutators BENEFITS I nsertion Loss • LowrDS(on) = 75 n Maximum (P10S6) Offset or Error Voltages Generated • No by Closed Switch Purely Resistive ABSOLUTE MAXIMUM RATINGS (25°C) TO-92 See Se.tion 6 Gate-Dram or Gate-Source Voltage (Note 1) __ • __ .. _. 30V Gate Current .................... __ . _..... __ 50 mA Total Device Dissipation at 25°C Ambient (Derate 3.27 mW/"C). ........... __ . __ . ____ 360 mW Operating Temperature Range ____ . _... _... -55 to 135°C Storage Temperature Range..... _.. __ . _... -55 to 150°C Lead Temperature Range (1/16" from case for 10 seconds) ........... _. _300°C G .~: GD 5 0 o 0 5 0 Bottom View ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted) Pl0B6 Max Characteristic 1 - BVGSS --.2. - 4 - 65 -7 - S T 30 30 Gate Reverse Current * 10(0f!) Dram Cutoff Current lOGO Drain Reverse Current I c VGS(off) Gate-Source Cutoff Voltage lOSS 8 9 rOS(on) 10 rd,(on) 0 V Ciss 12 Crss N - 13 W - 15 I T C 14 Saturation Drain Current VOS(on) Oraln-Source ON Voltage 11 - Voltage Min 3 - IGSS Gate-Source Breakdown S 16 H Static Drain-Source ON Resistance Drain-Source ON Resistance Common-Source Input Capacitance Pl0S7 Max Min V 2 2 -10 -10 -0.5 -0.5 IJA 2 2 0.1 0.1 nA p.A 10 5 -5 -10 nA V mA V IG = 1 p.A, VOS = 0 VGS= 15V, VOS=O VOS =-15 V, VGS = 12 V (Pl086) VGS = 7 V (Pl087) VOG=-15V,IS=0 TA =85'C VOS=-20V,VGS=0 -0.5 VGS = 0,10 =-5 mA (Pl086),IO =-3 mA (Pl087) 75 150 n lo=-lmA,VGS=O 75 150 n 10=O,VGS=0 45 45 f = 1 kHz VOS =-15 V, VGS = 0 pF Common-Source Reverse Transfer Capacitance 10 TA=85'C VOS=-15V,10=-1 p.A -0.5 f = 1 MHz 10 VOS = 0, VGS = 12 V (P1OS6) VGS = 7 V (Pl087) VOO = -6 V, VGS(on) = 0 td(on) Turn-ON Oelay Time 15 15 tr Rise Time 20 75 VGS(of!) 10(on) RL td(of!) Turn-OFF Oelay Time 15 25 Pl0S6 12V -5mA 910n tf Fall Time 50 100 Pl087 7V -3mA 1.8Kn n, PSAIPSB/PSC NOTE: 1. Due to symmetrical geometry these units may be operated with source and drain leads interchanged. I 3-74 Test Conditions Unit SilicDnix low-leakage pi(o-amp H Siliconix iodes designed for • • • BENEFITS • Very High Off-Isolation 1 pA Max (PAD1) • • Diode Switching Impedance • High Protection Circuits Clipping Circuits Q TO-18 (MODIFIED) See Secllon 6 I1 ABSOLUTE MAXIMUM RATINGS (25°C) Forward Current ........................... 50mA Total Device Dissipation ..................... 300 mW Storage Temperature Range ............ -55°C to +125°C Lead Temperature (1/16" from case for 10 seconds) .............. 300°C ANODE CATHODE *. CATHODE (C... le.d for PAD1, 2, & 5 only) ANODE 0 - CATHODE o CASE Bottom View ELECTRICAL CHARACTERISTICS (2S·C unless otherwise noted) Characteristic 1 12 13 I-S I~ T 5 A 1ST I-I l-i C 19 110 11 D I-V 12 N Min Typ Max Unit Test Conditions -1 PADl -2 2 -5 IR -10 Reverse Current 5 pA PAOlO VR = -20 V -20 20 -50 50 -100 BYR Breakdown Voltage (Reverse) VF Forward Voltage Drop CR Capacitance -45 PAD100 -120 -35 PAD1, 2, 5 IR = -1/1A V 0.8 1.5 0.8 ~AD10 Oavt +15 V 04 pF VR=-5V,f=1 MHz 'R<'PAt ..... PADt I 8 1n 1" I -15V PAOlO, 20, 50,100 PAD1, 2, 5,10,20,50,100 IF = 5 rnA 2 D,"*" Dit I: ' l1li l t, PAD1 2N4393. CONTROL SIGNAL C j PAD1. 2. 5 PAOlO, 20, 50, 100 2N4111A t VOUT APPLICATION Operational Amplifier Protection. Input Differential Voltage limited to 0.8 V (typ) by PADS 01 and 02 Common mode input voltage limited by PADS 03 and 04 to ±15 V. Typical sample and hold circuit with clipping. PAD diodes reduce offset voltages fed capacitively from the FET switch gate. Siliconix 3-75 H n-channel JFETs designed for • • • Siliconix BENEFITS Switches • Analog • Commutators • Choppers • Integrator Reset Switch • Low Insertion Loss High Accuracy in Test Systems rDS(on) < 30 n (PN4091) • High Off-Isolation ID(off) < 200 pA High Speed trise < 10 ns (PN4091) • Short Sample and Hold Aperture Time Crss <5 pF • Plastic ABSOLUTE MAXIMUM RATINGS (25°C) TO·92 See Section 6 Reverse Gate-Drain or Gate-Source Voltage ......... -40 V Gate Current ............................... 10mA Total Device Dissipation at 25°C Ambient (Derate 3.27 mWrC) ...................... 360 mW Operating Temperature Range ............. -55 to 135°C Storage Temperature Range............... -55 to 150°C Lead Temperature Range (1/16" from case for 10 seconds) .............. 300°C o~: GO ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted) Characteristic 1 BVGSS 2" - lOGO ..2. Gate-Source Breakdown Voltage PN4091 Min PN4092 Max -40 Dram Reverse Current Min Max -40 -=. S T 1010fl) 9 T C pA 400 400 400 nA 200 pA 400 nA i11 1055 1- Saturation Dram Current INote 1) -10 30 nA -1 p.A. VOS -1 -5 8 15 V mA VOslon) 'it 0.2 Dram-Source ON Voltage VOs VOs ~ VOS = 20V, VGs V J Static Dram-Source ON ReSistance 30 50 80 11 VGs a'raln-Source ON Resistance 30 50 80 11 VGs = 0, 10 C1SS Common-Source Input Capacitance 16 16 16 Crss Common-Source Reverse Transfer Capacitance 5 5 5 tdlon) Turn-DN Oelay Time 15 15 20 Rise Time 10 20 40 Turn-OFF Time 40 60 80 N 19 pF ~ -21 toff 3-76 V,N ~ D Silicanix 0 mA 10=6.6mA ~ 0 f~ 1 kHz f~ 1 MHz VOs~20V, VGs~O VOs ~ 0, VGs = -20 V VOO ~ 3 V, VGslon) ~ 0 ns PN4091 PN4092 PN4093 1010ni 6.6mA 4 2.5 VGsloff) -12V -8 -6 RL 42511 700 1120 NCB Voo NOTE: 1. Pulsewldth = 300 p.s, duty cycle';;; 3%. 150°C 0, 10 = 1 mA -S 20 W t, ~ 10 =4 VGs=O 'dslon) 18 150°C 10 = 2.5 mA 'Oslon) I- V 150°C 20 V, 10 ~ 1 nA 16 0 150°C VGs~-12V 0.2 17 0 VGs ~ - 8 V ~'20V 115 1- ~ VGs = - 6 V 0.2 113 G VGS=-20V.IS=0 nA -7 12 I ~ ~A -2 s Test Conditions IG pA 400 -5 D Unit 200 400 Gate-Source Cutoff Voltage D 200 200 VGsloff) D V 200 I- I D 200 Dram Cutoff Current A 10 Max -40 -5 - R7 5 Bottom View PN4093 Min 4 ~ i Performance Curves NCB See Section 4 INPUT PULSE VOUT RISE TIME < 1 ns FALL TIME < 1 m PULSE WIDTH 1 ,.1 PULSE DUTY CYCLE 0;;; 10% PULSE GENERATOR IMPEDANCE SAMPLING SCOPE RISETIME04nl INPUT RESISTANCE 10 M INPUT CAPACITANCE 1 7 pF son n-channel JFETs .H Siliconix designed for • • • Performance Curves NT See Sedion 4 • Ultra-High Input Impedance Amplifiers BENEFITS ZZ ~~ 10"""1 J>J> ZZ "" -~~ o~ (X) ABSOLUTE MAXIMUM RATINGS (25°C) "" ZZ Reverse Gate-Drain or Gate-Source Voltage ......... -40 V Gate Current ............................... 10 rnA Total Device Dissipation at 25°C Ambient (Derate 3.27 mW;oC) ...................... 360 mW Operating Temperature Range ............. -55 to 135°C Storage Temperature Range ............... -55 to 150°C Lead Temperature Range (1/16" from case for 10 seconds) .............. 300°C TO·92 -~~ Plastic See Section 6 o~ (X) J>J> ,~: GO S C o c Bottom View ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted) CharacteristIC PN4117 PN4118 PN4ll9 PN4120 PN4117A PN4118A PN4119A PN412DA Umt Test ConditIOns Min Typ Max Min Typ Max Min Typ Max Min Typ Max 1 :- .~ S 3 4" - 5 6 T A T I C IGSS B Gate Reverse Current PN4117 Series Only -10 -20 pA -25 -25 -50 nA -1 -1 -1 -5 Gate-Source Breakdown Voltage VGSloffl Gate-Source Cutoff Voltage -06 -1 B -1 Saturation Dram Current 003 009 0.08 0.24 020 060 003 03 210 250 100 330 300 (Note 2) Common-Source Forward Transconductance (Note 2) 9 N _A M 10 I gos Common-Source Output Conductance C ISS Common-Source Input Capal::1tance -c Crss Common·Source Reverse Transfer Capacitance -25 -40 70 -25 -40 80 -25 -10 -40 -40 -3 -2 -6 nA I V -06 70 VGS = ·20 V. VOS = 0 VGS = -20 V. VOS = 0 10QoC IG=-lpA.VOS=O VOS-l0V.IO-l nA rnA VOS=10V.VGS=O ,umho 10 100°C pA BVGSS 9fs 11 -10 -25 IGS5 0 Y - -10 Gate Reverse Current PN4117A Senes Only lOSS --"" -~~ 10"""1 • Low Power lOSS < 90 J1.A (PN4117) • Minimum Circuit Loading I GSS < 1 pA (PN4117 A Series) Electrometers pH Meters Smoke Detectors ZZ "" f"" 1 kHz 20 VOS= IOV,VGS=O pF 15 15 15 f= 1 MHz 15 NT NOTES: 1. Due to symmetrical geometry. these units may be operated With source and drain leads interchanged. 2. This parameter is measured dUring a 2 ms Interval 100 ms after power IS applied. Siliconix 3-77 n-channel JFETs designed for • • • H Siliconix Performance Curves NPA, NH See SecHon 4 • General Purpose Amplifiers BENEFITS Low Cost • High Impedance • IG Input = 35 pA Typically • Lowen Noise = 5 nV1y'Hz Typically @ 1 kHz TO-92 See Section 6 ABSOLUTE MAXIMUM RATINGS (25°C) Plastic .~: ....... Gate-Drain or Gate-Source Voltage (Note 1) -30V Gate Current ............................... 50 rnA Total Device Dissipation at 25°C Ambient. (Derate 3.27 mWtC) . ..................... 360 mW Operating Temperature Range ............. -55 to 135°C Storage Temperature Range ............... -55 to 150°C Lead Temperature Range (1/16" from case for 10 seconds) .............. 300°C G GO D • • D D D Bottom View ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted) Characteristic 1 I- S 2 T 1- A T ! 4 I --2- I- e 5 6 IGSS Gate Reverse Current (Note 2) 8VGSS Gate-Source Breakdown Voltage VGS(otf) Gate-Source Cutoff Voltage lOSS Saturation Drain Current (Note 31 91s Transconductance (Note 31 90s Common-Source Output Conductance Crss Common-5ource Reverse Transfer Capacitance 17 18 I9 I10 D y N A M I C C1SS COG Common-Source Forward PN4302 Max Mon PN4303 Min Max Upit 1 -1 -1 nA 01 --0.1 --0.1 ~A -30 -30 5.0 1000 -30 -10 ~O -40 0.5 PN4304 Max Min 4.0 10 2000 0.5 15 V 11 12 Drain-Gate Capacitance IVlsl Common-Source Short Circuit Forward Transadmlttance ~A, TA = 85°C VOS = 0 VOS = 20 V,IO = 10 nA 1000 50 50 50 1=1 kHz 3 3 3 6 6 6 2 2 2 VOS=20V, VGS =0 1= 1 MHz Common-Source Input Capacl- NOise FIgure IG = -1 .umho tance NF VGS = -10V. VOS =0 rnA pF VOG= 10V, IS = a 1=140kHz dB VOS=10V, VGS =0 1=1 kHz, Rgen =10M!l ,umho VOS=20V, VGS =0 1= 10MHz l- - Tast Conditons 20 2.0 700 1400 (Note 3) 3.0 700 NPA, NH NOTES: 1. Geometry IS symmetrical. Units may be operated with source and drain leads Interchanged 2. ApprOXimately doubles for every 10°C Increase In TA' 3. Pulse test dUration = 2 ms 3-78 Silicanix n-channel JFETs designed for • • • H Siliconix Performance Curves NCB See Section 4 Switches • Analog • Commutators • Choppers BENEFITS • Low I nsertion Loss Offset or Error Voltages Generated • No by Closed Switch Purely Resistive High Isolation Resistance from Driver Plastic Low Cost • ABSOLUTE MAXIMUM RATINGS (25°C) 1'0·92 Reverse Gate·Drain or Gate·Source Voltage ....... , ,-40 V Forward Gate Current, , , , , , , ' , , ' , , , ' , , , , , , , , , , 50 mA Total Device Dissipation at 25° C Ambient (Derate 3.27 mW;oC), , , . , , , . , , , , . , , , , . , , , . 360 mW Operating Temperature Range. , . , , , . , , , , . ,-55 to 135°C Storage Temperature Range, , , , , , , , , , , , , . ,-55 to 150°C Lead Temperature Range (1/16" from case for 10 seconds) , , , , , , . , , , , . , ,300°C See Section 6 o~: G GO s D ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted) PN4391 Characteristic Mm 1----2.... IGSS Gate Reverse Current BVGSS Gate-Source Breakdown Voltage :~ Mox Mm -1 0 -200 -200 -200 --40 Test Conditions Ur1lt -10 --40 V --40 VGS = -20 V, VOS = 0 I VGS=-5V 200 :~ ~ 7 IO{off) 100°C IG""-l}J.A,VOS"'O 10 ~ D Max -10 nA 1---2. 3 Mm D Bottom View PN4393 PN4392 Mox S D 100'C 10 Drain Cutoff Current nA VOS = 20 V VGS=-7V 200 {ao°c -A '~T 9 !- 1....22.. 10 VGS=-12V 200 I e I~ VGS(offJ GaTe-Source Cutoff Voltage --4 -10 -2 -5 --05 lOSS Saturation Drain Current (Note 1) 50 150 25 100 5 12 -3 V 60 mA I~ VOS(on) Dram-Source ON Voltage rOS{on) Static Drain-Source ON ReSistance 04 14 I~ 30 100 rds(on) Drain-Source ON ReSistance 30 60 100 17 C ISS Common-Source Input Capacitance 16 16 16 1- 18 -D 19 V Crss td~on) Turn-ON Delay Time 22 tc Rise Time 1---;;- V VGS = 0 " " VGS=O, 10 pF VOS = 0 10 =: 3 mA 10 =: 6 mA =: IEII 1 mA f'" 1 kHz VGS = 0, VOS = 0 VOS=20V,VGS=0 VGs=:-5V 5 21 23 5 N 100'C 1 nA VOS=20V,VGS=0 5 Common-Source Reverse Transfer Capacitance =: lo"'12mA 60 16 I- 20 V, 10 04 1- I......:..':... =: 04 1- I- VOS VGS =: -7V f =: 1 MHz VGS=-12V 15 15 15 5 5 5 Voo ns S td(off} Turn-OFF Delay Time 20 35 50 W tf Fall Time 15 20 30 10 V, VGS(on) '" 0 lo(on) VGSloffl -12 V PN4391 12 mA -7 PN4392 6 PN4393 -5 3 =: RL BOOn 16K 32K NCB NDTE 1 Pulse test required, pulse Width =: 300 }.IS, duty cycle < 3% Siliconix 3-79 ... n-channel JFETs • -0 H •Z designed for • • • - • VHF Amplifiers Siliconix A. Performance Curves NH See Section 4 10() BENEFITS -3 • • LowN FNoise = 3 dB Typical at 400 MHz • WideHighBand 9fs/Ciss Ratio Mixers t- en en II >= :::) G IU t- Z :::) o ABSOLUTE MAXIMUM RATINGS (25°C) Plastic TO·92 See Section 6 Gate-Drain or Gate-Source Voltage ............... -30V Gate Current ............................... 10 mA Total Device Dissipation at 25°C Ambient (Derate 3.27 mWrC). ..................... 360 mW Operating Temperature Range ............. -55 to 135°C Storage Temperature Range ............... -55 to 150°C Lead Temperature Range (1/16" from case for 10 seconds) .............. 300°C ,~: GD :e D, 0 S 0 ~DG Bottom View IU U :! ~ :::) en Min Characteristic 1 12 -S T 3 A I-T IGSS Gate Reverse Current BVGSS Gate-Source Breakdown Voltage 1 4 C VGS(off) 15 6 D I-y -c 10 Saturation Drain Current (Note 1) 13 F -R 14 E _0 U 15 E I_N 16 C I-Y 17 VGS =-15 V, VDS = 0 V IG = -1 p.A. VDS = 0 V 5 15 4500 7500 VDS= 15V,ID= 1 nA mA p.mho f = 1 kHz 50 Common-Source Output Conductance VDS= 15V,VGS=OV Common-Source Reverse Transfer Capacitance 0.8 Common-Source Input Capacitance 4 Common-Source Output Capacitance 2 Characteristic -~ nA -6 Gate-Source Cutoff Voltage Common-Source Forward Transconductance 11 H 9 155 '"121 b l55 10 Test Conditions V IDSS Coss Unit -30 9fs 1-2.. N 90S B A erss -M 9 1 CISS Max 100 MHz M,n Max Common-Source Input Conductance Common-Source Input Susceptance pF 400 MHz Min Max f= 1 MHz Unit 100 1000 2500 10,000 9 0 55 Common-Source Output Conductance 75 100 boss Common·Source Output Susceptance 1000 4000 9fs Common·Source Forward Transconductance Gps Common·Source Power Gain NF NOise Figure Test Conditions p.mho VDS=15V,VGS=OV 4000 18 10 2 dB 4 VDS=15V,ID=5mA VDS = 15 V, ID = 5 mA, RG = lK NH NOTES: 1. Pulse test duration 3-80 = 300115 Siliconix n n-channel JFET designed for • • • H Siliconix "...Z VI 0W and Medium Frequency • Low Amplifiers BENEFITS • Low Cost TO·92 See Section 6 ABSOLUTE MAXIMUM RATINGS (25°C) Plastic Gate·Drain or Gate·Source Voltage ............... -25V Gate Current (FWD) ......................... 10 mA Total Device Dissipation at 25°C Ambient (Derate 3.27 mW/"C) ...................... 360 mW Operating Temperature Range ............. -55 to 135°C Storage Temperature Range ............... -55 to 150°C Lead Temperature Range (1/16" from case for 10 seconds) ........... " .300°C o~: GD s c D C S D G Bottom View *ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted) Characteristic -J, Gate Reverse Current "3 Gate-Source Breakdown Voltage 2 S IGSS T A BVGSS 4" i - 6 7 - VGS(off) 5 C VGS Saturation Drain Current rds(on) Drain-Source ON Resistance 9fs -9 D gos y 10 N 9fs -A 11 M Ciss I 12 C Crss - -13 - 14 Common.source Forward Transconductance -{l.S Common-Source Forward Common-Source Input Capacitance Unit nA p.A -25 -{l.4 1.0 2000 Test Conditions VGS=-15V,VOS=0 TA-85°C IG =-10 p.A, VOS = 0 -8.0 V -7.5 Common-Source Output Conductance Transconductance Max -10 Gate·Source Voltage loss 8 - Gate-Source Cutoff Voltage Min VOS=15V,IO=1p.A VOS = 15 V, 10 = 100 p.A 40 mA 500 n VOS = 15 V, VGS = 0 VGS=O,IO=O 9000 IEII f = 1 kHz 200 p.mho 1800 VOS=15V,VGS=0 20 f = 1 MHz pF Common-Source Reverse Transfer Capacitance 5.0 NF Common-Source Spot Noise Figure 3.0 eN Equivalent Short Circuit Input Noise Voltage 50 dB nV y'Hz RG=150kn VOS=15V,10=1 mA f = 1 kHz NBW = 150 Hz • JEOEC registered data Siliconix 3-81 III ~ ~ Q n-channel DMOS FE's Designed for Military and Industrial Applications • • '" • ~ • ~ Q • • III Q o • • ~ Q • • III '" Q '" High-Speed Switching Analog Switch Multiplexer Digital Switch A to D Converters D to A Converters Choppers Sample and Hold • Performance Cu'rves DMCB See Sedion 4 BENEFITS • Ultra low feedback capacitance (O.30pF) • High switching speeds «1 ns) • Gate can accept ± 40V TO-72 So. Soctlon & ABSOLUTE MAXIMUM RATINGS (DC) Drain Current .........•........................ 50mA Total Device Dissipation at 25DC Case Temperature ............................. 1.2W Storage Temperature Range ............. -650 to +2000 C Lead Temperature (1 116 H from case for 10 sec.). ..... 3000 C Operating Temperature Range ........ -55 0 to+150 o C G Orain-to-source +30 +10 +20 Vdc VSD Source-to-drain* +10 +10 +20 Vdc VOB Orain-to-substrate +30 +15 +25 Vdc VSB Source-to-substrate +15 +15 +25 Vdc VGS Gate-to-souice ±4O ±40 ~ ." ~~ Vdc VGB Gate-to-substrate ±40 ±40 ±40 Vdc VGO Gate-to-drain ±40 ±40 ±40 Vdc Typical Switching Waveform TEST CONDITIONS +5V- - - Switching 510 Rl -r----"'" foo% .JI VIN +voo S S0210 S0212 S0214 UNIT PARAMETER Vos TO SCOPE ~ ~ o 50% OV --.1" 110 % Input pulse td.lr<1ns Pulse width = 1oon8 Rep rate = 1MHz SWITCHING CHARACTERISTICS SAMPLING SCOPE tr(ns) td(ON)(ns) tr<360ps RIN=1MQ CIN =20pF VDD 1 10 5 15 1 RL Typ Max 680 680 1k 06 07 09 10 Typ Max 07 110 08 10 tOFF(ns) Typ 90 90 1 140 Max .• • -tOFF IS dependent on Rl and CL and does not depend on the device characteristics 3-82 Siliconix DC ELECTRICAL CHARACTERISTICS (TA = 25°C PARAMETER Breakdown voltage Orain-to-source SVOS 1 - unless otherwise specified,) TEST CONDITIONS SD210 SD212 SD214 UNIT Min Typ Max Min Typ Max Min Typ Max VGS=VSS=OV.IO=10!'A VGs=Vss=-5V.ls=10nA 30 35 25 10 10 25 20 2 SVSO Source-Io-drain VGo=Vso=-5V lo=10nA 10 10 20 "3 SVOS Orain-to-substrate 15 15 25 -4 VGS =OV. source OPEN lo=10nA SVSS Source-to-substrate VGS=OV. drain OPEN IS=10!'A 15 15 25 5 - 6 8 T A T I C 7"" ISO (OFF) Source-to-drain Gate IGSS -8 - Laakage current lOS (OFF) Orain-to-source 9 VGS=VSS=-5V VOS=+10V VOS=+2OV 1 VGO=VSO=-5V VSO=+10V VSO=+2OV 1 Threshold voltage VOS=VGS=VT.IS=l1'A VSS=OV ros(ON) Orain-to-source resistance lo=1.0mA. VSS=O VGS=+5V VGS=+10V VGS=+15V VGS=+20V VGS=+25V V 10 1 10 nA 10 10 1 1 VOS=VSS=OV VGS= ±40V VT 1 10 25 0.1 0.5 1.0 2.0 50 70 45 30 23 0.1 0.1 1.0 2.0 50 70 45 30 23 19 17 10 0.1 0.1 1.0 2.0 50 70 45 30 23 19 17 V Q 19 17 AC ELECTRICAL CHARACTERISTICS PARAMETER 10 11 U '13 14 gfs D y N A M I C Forward transconductance Small Signal Capacitancas (See capacitance model) TE8T CONDITIONS VOS=10V. VSs=OV lo=2OmA.f=lkHz 8D212 8D214 SD210 Min Typ Max Min Typ Max Min Typ Max 10 15 10 15 10 15 UNIT mmhos VOS=10V.f=lMHz VGS=VSS=-15V C(GS+GO+GIl) Gata node 2.4 3.5 2.4 3.5 2.4 3.5 C(GO+OB) Orain node 1.3 1.5 1.3 1.5 1.3 1.5 C(GS+SB) Source node 3.5 5.5 3.5 5.5 3.5 5.5 COG Reverse transfer 0.3 0.5 0.3 0.5 0.3 0.5 IEII pF DMCB Siliconix 3-83 n-channel DMOS FETs Designed for Military and Industrial Applications • • • • • • • • High-Speed Switching Analog Switch MUltiplexer Digital Switch A to D Converters D to A Converters Choppers Sample and Hold • • • Performance Curves DMCB See Sedion 4 BENEFITS • Ultra low feedback capacitance (O.30pF) • High switching speeds «1 ns) • Diode protected gate TO-72 SaeS.ctlon8 ABSOLUTE MAXIMUM RATINGS (OC) Drain Current ••••..••••••••.•.••••••••.•••..•.. 50mA Total Device Dissipation at 25°C Case Temperature ............................. 1.2W Storage Temperature Range ••...•••••••• -65° to +200°C Lead Temperature (1/16"fromcasefor 10sec.) •••••• 30QoC Operating Temperature Range •.••.... _55° to +150°C PARAMETER Vos VSO VOB VSB Orain-to-source Source-to-drain* Orain-to-substrate Source-to-substrate VGS Gate-to-source VGB Gate-to-substrate VGO Gate-to-drain S0211 SD213 SD21& +10 +20 +30 +10 +10 +20 +15 +25 +30 +15 +15 +25 -25 -15 -15 +25 +25 +30 -0.3 -0.3 -0.3 +25 -30 +25 +25 -15 +25 +30 -25 +30 UNIT Vdc Vdc Vdc Vdc Vdc Vdc Vdc Typical Switching Waveform TEST CONDITIONS +5V- - - - , - - - - - - , . ,-A50% I~% VIN Switching 10% OV TO SCOPE +Voo 510 VO:~DD----X~;. RL OV- - - Input pulse. td, tr <1 ns Pulse width = 100n5 Rep rate =1 MHz d.~ '1<10.:,:%_....:.10:':'%:1\ t,l~~FF SWITCHING CHARACTERISTICS SAMPLING SCOPE tr<360ps RIN =1 M2 CIN=20pF 90% tdION)(na) Voo I 5 10 15 trlns) 10FFlna) RL Typ Max Typ Max Typ 16BO 6BO lk 06 0.7 0.9 10 07 06 10 11.0 9.0 90 140 I Max -tOFF IS dependent on RL and CL and does not depend on the device characteristics. 3-84 Siliconix DC ELECTRICAL CHARACTERISTICS ITA = 25°C unless otherwise specified.) PARAMETER Breakdown voltage Orain-to-source BVDS 1 TEST CONDITIONS SD213 SD216 SD211 UNIT Min Typ Max Min Typ Max Min Typ Max VGS=VBS=OV,ID=10jIA VGS=VBS=-5V,ls=10nA 30 10 35 26 10 26 20 2 BVso Source-to-drain VGO=VBO=-6V ID=10nA 10 10 20 3 BVDB Orain-to-substrate 1!j 16 25 -4 VGB=OV, source OPEN ID=10nA BVSB Source-to-substrate VGB=OV, drain OPEN IS=10jIA 15 15 26 - Leakage current IDS (OFF) Drain-to-source 5 - 6 S T A T I C 1"" - ISD (OFF) Source-to-drain Gate IGBS 8 VT 9 rDs(ONI VGS=VBS=-5V VOS=+10V VDS=+2OV 1 VGO=VBO=-5V VSO=+10V VSO=+2OV 1 10 10 VDB=VSB=OV VGB=+25V VGB=+30V Threshold voltage VOS=VGS=VT,IS=ljIA VSB=OV Orain-to-source lo=I.0mA, VSB=O VGS=-+5V VGS=+10V VGS=+15V VGS=+2OV VGS=+26V resistance 1 26 V 10 1 10 1 10 nA 10 1 10 10 jIA 10 0.5 1.0 2.0 50 30 70 46 0.1 1.0 2.0 50 30 70 46 0.1 1.0 2.0 50 30 70 46 23 23 23 19 19 19 17 V Q AC ELECTRICAL CHARACTERISTICS PARAMETER 10 11 12 13 14 gfs D y N A M I C Forward transconductance Small Signal Capacitances (See capacitance model) TEST CONDITIONS VOS=10V, VSB=OV lo=20mA,f=lkHz SD211 SD213 SD215 Min Typ Max Min Typ Max Min Typ Max 10 15 10 15 10 UNIT mmhos 16 VOS=10V, f= lMHz VGS=VBS=-15V C(GS+GO+GB) Gate node 2.4 3.5 2.4 3.5 2.4 C(GO+OB) Orain node 1.3 1.5 1.3 1.5 1.3 1.5 C(GS+SBI Source node 3.5 5.5 3.5 5.5 3.5 5.5 COG Reverse transfer 0.3 0.5 0.3 0.5 0.3 0.5 -- 3.5 pF DMCB Silicanix 3-85 - n-channel D-MOS FETs o o H Siliconix C"4 Q en designed lor Military and Industrial Applications. Amplifiers •• VHF/UHF Mixers •• Oscillators High-Speed Switching Normally lIOn" Switch •• Analog! Digital Switch Multiplexer •• Low-Voltage Switch FEATURES • High Figure-of-Merit gfs/C • High Speed Switch « 1 Ins) • High Gain • Wide Dynamic Range-Input • Low Voltage Requirements Battery Operation BENEFITS • High Frequency Gain • High Speed Switching • Low Distortion = ~ TO·72 See Section 6 ABSOLUTE MAXIMUM RATINGS (OC) Drain Current .............................. 50 mA Total Device Dissipation at 25°C Case Temperature .......................... 1.2W Storage Temperature Range ........ -65° to +200°C Lead Temperature (1"16 from case for 10 sec.) ................ 300°C Operating Temperature Range ...... -55° to +150°C DC ELECTRICAL CHARACTERISTICS (TA 2 3 SVDS 'GSS VGS(offl 4 ~ 6 ----a 'D ~ l; V,N Vo 600 RL 510 /90% 50% 10% VOD I+- C-- 90% 50% '\10% 10%/ 'rl+- ov - - -_ TYP MAX 1.0 TYP MAX TYP 0.7 1.0 9.0 MAX TdlONI 90% Your RL -::;j I+- '0" 5 680 0.6 10 680 0.7 0.8 9.0 15 lk 0.9 1.0 14.0 'tOFF is dependent on RL and does not depend on the device characteristics. TYPICAL CHARACTERISTICS MAXIMUM POWER DISSIPATION .1 TEMPERATURE Z e. 1.000 g 900 i oS 800 z 700 0 j: :: 600 0; 500 I/) Q 400 w 300 0 200 a: ~ II. 150 13SW 0.. w (J 120 I' F'-SOUR1CE-Td-sueJTRATE IVse) VOLTS 10 Z ~ 105 5 I/) iiia: ~ ~ w (J a: r-- :::I 90 ~ ~ 60 0 I 30 10-'15 \ 7S 45 "'" ~ I/) 0 t- 100 zI 0 0 20 40 60 80 ;C 100 a: c TEMPERATURE('C) 3-92 DRAIN-TO-SOURCE RESISTANCE.s SOURCE-TO-SUBSTRATE AND GATE-TO-SOURCE VOLTAGE :::: Siliconix 15 r-DRAIN-TO-S URCE CURRENT • 5~ AMBIENT TEMPERATURE (T A) '25'C 0 0 4 8 12 16 20 GATE-TO- SOURCE VOLTAGE (VGS) VOLTS TYPICAL CHARACTERISTICS (Cont.) DRAIN-TO-SOURCE RESISTANCE va TEMPERATURE ~ e. < a. iL Ul 100 g 0 W 0 80 70 iii 60 z Iii W II: W 0 40 0 30 I 20 ~ 10 0 10M W 1M < I.: < W lOOk CJ ,.......r- ... < ~V II: < I I- 100 I 10 W 0 II: 0 50 25 75 1 ;;;) 100 lOOk < 1.:< "be§>" _ - - 30 ~~~ u'?J - c 15 10 = 10 nA 225 = 10 uA 225 '0 = 1 uA, VSB = 0 V = Vss =0 V. VGS =30 V 10 = 10 rnA. Vss = 0 V. VGS = 5 V 10 = 10 rnA. Vss = 0 V. VGS = 10 V 10 = 10 rnA. Vss = 0 V. VGS = 15 V 10 = 10 rnA. Vss = 0 V. VGS = 20 V 10 = 10 rnA. Vss = 0 V. VGS = 5 V Vos = 0 V. Vss = -55 V. VGS = 4 V See Figure 1, PLO ::. UNIT 25 V 01 1 20 50 75 Vos ros (on) Cgg LO,-L02 Capacitance av. 15 Vas::' VGS = VTH • Is ros (on) ReSistance Matching av, ::. Dram Open, VGe = III 0 = Vss = -5 V. Is = 10 nA = Vos = -5 V. 10 = 10 nA Source Open. VGS 'Gas Drain-Source "ON" ReSistance LIMITS MIN' TYP3 MAX uA 2 30 n 23 19 7 3, 44 pF 8 +17 dBm dB +35 MHz 200 NOTES: 1 Refer to PROCESS OPTION FLOWCHART for additional ,"formation 2 The algebraic convention whereby the most negative value IS a minimUm, and the most posItive value IS a maximum, IS used In thiS data sheet 3 TYPical values are for DESIGN AID ONLY, not guaranteed nor subject to production testmg APPLICATION HINTS Schematic of the baSIC commutation-type HF doublebalanced mixer using resonant-gate excitation Recom- mended reading is AN85-2 "A Commutation DoubleBalanced MOSFET Mixer of High Dynamic Range." -VGG so." THT 0" "Pll.~[1 °Il ° .J,. a " '-----v----/ LOW,PASS IMAGE TERMINATING FILTER (OPTIONAL) 1 L- ID(mAJ ~llq 'I ~ IJ / 1000 " T4·1 R l6vI !,2V L II 5000 T4·1 JL IDIV 1680 PF ~~ 0 ~. VJ // I / -5000 -5000 Figure 1 / 8V IEII / - ~ ov / /I /1." v IL!J / '/ VOS 0 l000/DIV (V) 5000 First and Third Quadrant I-E Characteristics Showing Effect 01 Gate Voltage Leading to large-Signal Overtoad Distortion. Figure 2 Siliconix 3-107 Small Signal -- JFETs for - designed •• -- • C") en !!! ('\4 en BENEFITS Analog Switches Choppers Commutators !!! Silicanix • Low Cost • Automated Insertion Package • Low Insertion Loss rDS(on) <300 (SST111) • No Offset or Error Voltages Generated by Closed Switch Purely Resistive High Isolation Resistance from Driver • Fast Switching td(on) + tr 13 ns Typical • Short Sample and Hold Aperture Time Cgd(off) <5 pF Cgs(off) <5 pF ••• t- H Performance Curve NCB See Section 4 t- t- en en = ABSOLUTE MAXIMUM RATINGS (25°C) Gate-Drain or Gate Source Voltage ........... -35 V Gate Current ................................. 50 mA Total Device Dissipation at 25°C Ambient (Derate 3.27 mWrC) .... . . . . . . . . . . . . . . . .. 360 mW Operating Temperature Range ......... -55 to 135°C Storage TempElrature Range ........... -55 to 150°C Lead Temperature Range (1116" from case for 10 seconds ............ 3000C .'=)- o~: + L 04 ~ :E -- ___ 29MAX 09S ~ G ~ ~ 0 e~ 5 TOP VIEW ~ +12 MAX 005MIN DIMENSIONS IN MILLIMETRES SOT-23 ELECTRICAL CHARACTERISTICS (2SOC unless otherwise noted) I Che!'e~er!~t!c I IGSS Gate-Reverse Current VGSloftl Gate-Source In+ offl Voltage I SST111 Min Max 1 BVGSS Gate-Source Breakdown Voltage lOSS Saturation Drain Current (Note 1) rOS lonl Drain-Source on Resistance gd~ 1,0ft)1 sg off) Drain-Gate off! Capacitance Source-Gate off Cdg 10n)/+ Orain-Gate on! Capacitance C loni" Source-Gate on sa -3 -10 I SST112 Min -1 Max I SST113 Min Max Unit I Test Conditions 1 nA -5 -3 V VOS - 5 V, 10 - 1 /LA V VOS - 0, IG - l/LA -35 -35 -35 20 5 2 VOS o V, VGS mA VOS - 15 V, VGS - 0 VOS - 0.1 V, VGS - 0 30 50 100 ohm 5 5 5 pf VOS = 0, VGS = -10 V, f = 1 MHz 28 28 pf VOS = VGS = 0, f = 1 MHz 28 NOTE: 1. Pulse test duration 3001-1-5; duty cycle .so3% ORDERING INFORMATION 3-108 Device Marking SST111 Cll SSTl12 C12 SSTl13 C13 15 V 1 Silicanix NCB Performance Curve PSAI PSB/PSC See Section 4 Small Signal JFETs BENEFITS • LowCost • Simplifies Series-Shunt Switching when Combined with SST113, Its N-Channel Complement • Low Insertion Loss rOS(on) <850 (SST174) • No Offset or Error Voltages Generated by Closed Switch Purely Resistive High Isolation Resistance from Driver • Short Sample and Hold Aperture Time Csg(off) 6.0 pF Typical Cdg(off) 6.0 pF Typical • Fast Switching td(on) + tr 7 ns Typical designed for • • • • • • H Silicanix Analog Switches Choppers Commutators ABSOLUTE MAXIMUM RATINGS (25°C) = Gate-Drain or Gate-Source Voltage (Note 1) ..... 30 V Gate Current ................................. 50 mA Total Device Dissipation at 25°C Ambient (Derate 3.27 mWrC) .. . . . . . . . . . . . . . . . . . .. 360 mW Operating Temperature Range ......... -55 to 135°C Storage Temperature Range ........... -55 to 150°C Lead Temperature Range (1/16" from case for 10 seconds) . . . . . .. . . ... 300°C ~ G D a--aJ 275MAX_, .. =1,5 2.MAX 04L._ + s 6 ~O'5 Id-- D ,:~1'2MAX TOP VIEW \ 005MlN DIMENSIONS IN MILLlMETRES ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted) SST174 Characteristic Min IGSS Gate-Reverse Current (Note 2) VGS (offl Cutoff Voltage BVGSS rOS(on) Gate-Source 5 Gate-Source 10 30 Breakdown Voltage -20 Static Drain-Source Max 6 3 30 -135 -7 -70 Capacitance r-1YE6 I Cdg(onl Csg(on) Drain-Gate on! Capacitance Source-Gate on ~ I TYP Device Marking SST174 574 SST175 575 SST17B 576 SSTl77 577 TYP 1 4 O.B Max -2 Test Conditions nA 2.25 V VOS = -15 V, 10 = -10 nA V VOS = 0, IG = 1 /LA VOS = 0, VGS = 20 V -20 rnA VOS = -15 V, VGS= 0 250 300 ohm VGS = 0, VOS = -0.1 V TYP ..!!!.. pi VOS - 0, VGS - 10 V, 1= 1 MHz ..!!!.. pi VOS = VGS = 0, f = 1 MHz -35 I Unit 1 30 6 32 SST1n Min 1 125 Source-Gate off ORDERING INFORMATION Max 30 Cdg(offl Csg(off) 32 SST176 Min 1 B5 ON Resistance Orain·Gate offl SST175 Min 1 Saturation Drain Current (Note 31 lOSS Max 6 I TYP 32 -1.5 6 32 - NOTES: PSAIPSB/PSC 1. Geometry is symmetrical. Units may be operated with source and drain leads interchanged. 2. Approximately doubles for every 10"C increase in TA. 3. Pulse test duration = 300/LSi duty cycle :G3% Silicanix 3-109 Small Signal JFETs Performance Curve NP See Sedion4 H Silicanix BENEFITS • High Input Impedance IG 5 pA Typical • Good for Low Power Supply Operation VGS (off) <1.5 V (SST201) designed for ... = • General Purpose Amplifiers ~: ABSOLUTE MAXIMUM RATINGS (25°C) Gate-Drain or Gate-Source Voltage (Note 1) ... -40 V Gate Current ................................. 50 mA Total Device Dissipation at 25°C (Derate 3.27 mW/oC) . . . . . . . . . . . . . . . . . . . .. 360 mW Operating Temperature Range ......... -55 to 135°C Storage Temperature Range ........... - 55 to 1500C Lead Temperature Range (1/16" from case for 10 seconds) ........... 3000C ·=~I.L 04 t .- _a ~095 29MAX 095 ~ o C~--=}2MAX TOP VIEW \ 005MIN DIMENSIONS IN MILLIMETRES SOT·23 ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted) SS1"201 Characteristic Min Gate Reverse Current (Note 2) VGS(off) Gate·Source Cutoff Voltage -0.3 BVGSS Gate·Source Breakdown Voltage -40 Saturation Drain 0.2 Current (Note 3) -1.5 1.0 IG Rt. Common·Source Forward TransconauC18nce \Note 3) 90S Common-Source Output Conductance I lYP 1.0 Ciss Common-Source Input Capacitance I lYP SST203 Min -0.8 -4 0.9 4.0 500 1000 4 1!iOO VOS = O. VGS = -20 V -2.0 V VOS = 20 V. 10 = 10nA V VOS = O. IG = l"A 3 I lYP 5 500 3.6 ~ I lYP ~ I lYP I lYP 4 -W5 2.0 4 I lYP 10 mA VOS = 20 V. VGS = 0 pA VOG = 20 V. 10 = 200 "A 3-110 Device Marking SST201 POl SST202 P02 SST203 P03 SST204 ~04 v. VGS = ~m!l0s VOS = 2U "mhos VOS = 20 V. VGS = O. f = 1 kHz O. f pf VOS = 20V. VGS = 0 nVl--./Fil. f= 1 kHz VOS - 10 V. VGS - O. f= 1 kHz = 1 kHz NPA NOTES: ORDERING INFORMATION Test Conditions nA I lYP 5 5 0.2 Unit 0.1 lYP I lYP 4 I lYP 20 ~ 5 5 Max -40 -40 4.6 SS1"204 Min -2.0 -10.0 -0.3 I lYP 5 Max 0.1 0.1 I lYP Noise Voltage Max -40 Gate Current en Min 0.1 IGSS lOSS SS1"202 Max 1. Geometry is symmetrical. Units may be operated with source and drain leads interchanged. 2. Approximately doubles for every 10"C increase In TA' 3. Puis. test duration = 2 ms. Silicanix n-channel DMOS FETs Designed for Military and Industrial Applications • • • • • • • • High-Speed Switching Analog Switch Multiplexer Digital Switch A to D Converters D to A Converters Choppers Sample and Hold ... Performance Curve DMCB See Section 4 BENEFITS • Ultra low feedback capacitance (0.30pF) • High switching speeds «1 ns) • Diode protected gate SOT-143 TOP VIEW ltr i GJ r~::::;-, I ABSOLUTE MAXIMUM RATINGS (OC) Drain Current .................................. 50mA Total Device Dissipation at 25°C Case Temperature ........................ 360mW Storage Temperature Range ......... -55° to +150°C Lead Temperature (1/16" from case for 10 sec.). ..... 300° C Operating Temperature Range . . . . . . . . __ 55° to +150 0 C I B II L~~ II f- rl I h I I ~ • 1... _ _ _ _ ...1 5 I 0 S J +10 +20 Vdc +10 +10 +20 Vdc +30 +15 +25 Vdc Source-to-substrate +15 +15 +25 Vdc Gate-to-source -15 +25 -15 +25 -25 +30 Vdc Gate-ta-substrate -0.3 +25 -0.3 +25 -0.3 +30 Vdc Gate-to-drain -30 +25 -15 +25 -25 +30 Vdc Drain~to·source +30 VSD Source-to-drain' VDB Drain-to-substrate VSB VGS VGB VGO GtJJ DC S0211 S0213 S0215 UNIT PARAMETER VDS - Typical Switching Waveform TEST CONDITIONS +5V - - - -r----~ 90 % TO SCOPE +voo 510 RL ,-A1 VIN Switching 50% 10% OV Input pulse td, tr< 1ns Pulse width lOOns Rep rate = 1MHz = SWITCHING CHARACTERISTICS SAMPLING SCOPE td(ON)(ns) tr<360ps RIN =1 MQ Voo 680 1 680 Typ 06 07 1k 09 RL CIN =20pF I *tOFF IS 10 5 15 Max 10 tr(ns) Typ Max 07 10 Typ OB 90 90 10 140 tOFF(ns) Max I dependent on AL and CL and does not aepend on the device characteristics Siliconix 3-111 DC ELECTRICAL CHARACTERISTICS (TA =25°C unless otherwise specified.) PARAMETER Breakdown voltage Orain-to-source BVOS 1 2 - ...... ... ~ en en - - SST215 SST213 SST211 UNIT Min Typ Max Min Typ Max Min Typ Max VGS=VBS=OV,IO=10,.A VGS=VBS=-5V, IS= 10nA 30 10 35 25 10 25 20 BVso Source-to-drain VGO=VBO=-5V lo=10nA 10 10 20 3 BVOB Orain-to-substrate VGB = OV, source OPEN lo=10nA 15 15 25 4 BVSB Source-to-substrate VGB =OV, drain OPEN IS = 10,.A 15 15 25 5 Leakage current lOS (OFF) Orain-to-source 25 V - - TEST CONDITIONS S T A T I C 6 7 ISO (OFF) Source-to-drain Gate IGBS 8 -9 VGS=VBS=-5V VOS=+10V VOS=+2OV 1 VGO=VBO=-5V VSO=+10V VSO=+20V 1 10 VOB=VSB=OV VGB=+25V VGB = +30 V VT Threshold voltage VOS=VGS=VT,IS=lI'A VSB=OV ros(ON) Drain-to-source resistance lo=1.0mA, VSB=O VGS=+5V VGS=+10V VGS=+15V VGS=+2OV VGS=+25V 1 10 10 1 1 10 1 10 nA 10 10 10 ,.A 10 0.5 1.0 2.0 50 30 75 50 0.1 1.0 2.0 50 30 75 50 0.1 1.0 2.0 50 30 75 23 23 23 19 19 19 17 V 50 Q AC ELECTRICAL CHARACTERISTICS PARAMETER 10 - gfs 0 y 11 12 - 13 -14 N Forward transconductance Small Signal Capacitances (See capacitance model) TEST CONDITIONS VOS = 10V, VSB = OV lo=2OmA, f= 1kHz SST215 SST211 SST213 Min Typ Max Min Typ Max Min Typ Max 9.0 15 9.0 9.0 15 15 mmhos VOS = 10V, f= 1 MHz VGS=VBS=-15V A C(GS+GO+GB) Gate node 2.4 3.5 2.4 3.5 2.4 3.5 Orain node 1.3 1.5 1.3 1.5 1.3 1.5 C(GS+SB) Source node 3.5 6.0 3.5 6.0 3.5 6.0 COG Reverse transfer 0.3 0.5 0.3 0.5 0.3 0.5 M I C C(GO+OB) UNIT pF DMCB ORDERING INFORMATION Device 3·112 Marking 55T211 011 55T213 013 55T215 015 Siliconix Small Signal Performance Curve NZB See Sedion 4 JFETs designed for. H Silicanix BENEFITS Industry Standard Part In Low Cost Plastic Package High Power Gain 11 dB Typical at 450 MHz Common-Gate • Low Noise 2.7 dB Typical at 450 MHz • Wide Dynamic Range Greater than 100 dB Easily Matches to 75 n Input • •• Amplifiers •• VHF/UHF Oscillators Mixers • • • <275MAX_ ~.~. "~: ~1 ABSOLUTE MAXIMUM RATINGS (25°C) ,.L __ Drain-Gate Voltage ............................. 25 V Source:Gate Voltage ........................... 25 V Forward Gate Current ........................ 10 mA Total Device Dissipation at 25°C Ambient (Derate 3.27 mWrC) ..................... 360 mW Operating Temperature Range ......... -55 to 135°C Storage Temperature Range ........... -55 to 1500C Lead Temperature Range (1/ 16" from case for 10 seconds) ............ 300°C r G 095 W I t4MAX s D cA;X TOPVIEW ~ t12MAX 005MIN DIMENSIONS IN MILLIMETRES 50T-23 ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted) 55T308 Characteristic Min IGSS Gate-Reverse Current BVGSS Breakdown Voltage -25 VGS(off) Gate-Source Cutoff Voltage -1 55T309 Min -1 Gate-Source Saturation Drain Current lOSS Max 12 (Note 1) gfs Common-Source Forward Transconductance NF Noise Figure Max -1 SO 8000 -1 12 -4 30 10000 ~ 2.7 Max -1 -25 -25 -S.5 55T310 Min -2 -S.5 24 SO 8000 ~ 2.7 ~ 2.7 Test Conditions Unit nA VGS ~ -15V, VOS ~ 0 = 1 p.A V VOS ~ 0, IG V VOS = 10 V, 10 = 1 nA rnA VOS = 10 V, VGS = 0 J.l.mhos VOS = 10 V, 10 = 10 rnA, f = 1 kHz dB VOS = 10 V, 10 = 10 rnA, f = 450 MHz NZB NOTE: 1. Pulse test PW 300 p.s; duty cycle .. 3% ORDERING INFORMATION Device Marking SST30a zoa SST309 Z09 SST310 Z10 Silicanix 3-113 l1li - monolithic dual n-channel JFETs H Silicanix Performance Curves NNR See Section 4 BENEFITS Minimum System Error and Calibration • 15 mV Offset Maximum (SST404) 95 dB Minimum CMRR (SST404) • Low Drift with Temperature 25 p'vr C Maximum (SST404) • Operates from Low Power Supply Voltages VGS(off) < 2.5V • Simplifies Amplifier Design Output Conductance < 2 p.mho Low Noise • en = 6 nVVHz at 10 Hz Typical designed for • • • • Noise FEY Input • Low Amplifiers and Me.dium Frequency • Low Amplifiers Impedance Converters • Precision • AmplifiersInstrumentation • Comparators ABSOLUTE MAXIMUM RATINGS (25°C) Gate-Drain or Gate-Source Voltage Forward Gate Current. Device Dissipation (each side) @TA = 85°C derate 2.6 mWtC Total Device Dissipation @TA = 85°C (derate 5 mwtC) Storage Temperature Range ORDERING INFORMATION 50V lOrnA Device 300mW Marking 55T404 404 55T405 405 55T406 406 500mW -65 to 200°C ELECTRICAL CHARACTERISTICS (@ 25°C unless otherwise noted) 404 M,n Mo, CharacterIstic 1 2 3 4 BVGSS T VOSlon) -5 05 B 8 'G Gate Current/Note 1) aVG! - G2 Gate-Gate Breakdown Voltage Common Source Forward Transconductance (Note 2) 9 - '" 10 - '0' 11 ~ ,- N -5 -25 -25 -5 2000 O. 100 05 VDG" 15 V, -15 -15 -15 pA -10 -10 -10 nA '0 = 200p.A V VOS=O.VGS=O IG=±lI1A ±50 '50 7000 2000 7000 20 2000 20 9fs 1000 2000 52 501C-8 PIN ~O' Dl 52 51 D2 C 02 1= 1 kHz 2000 1000 2000 f= 1 kHz Common-Source Output Conductance 20 Common-Source Input C ISS 1000 20 20 30 30 15 'N Equivalent Short CtrCUlt Input NOIse Voltage 20 20 20 CMRR Common Mode Rejection RatiO (Note 3) IVGSI - VGS21 Differential Gate-Source Voltage 15 20 Gate SourceVoltagp Differ en'~' ,)"ft \Note 4) 25 40 Capacitance VOG"'5V, 10'" 200IJA pF I- T I. Ves= IOV, VGS=O 20 30 ~ TA = 12SoC 7000 80 ~ 5, 02 VOS=15V,IO=lnA VOS=10V,VGS=Q 80 ,- 4~ "'UU -~:::; V, iO - 20Dj.lA mA 80 17 VOS=O,VGS=-30V 100 Common Source Reverse Transfer Capacitance I- pA -25 Crss 16 01 VOS= 0, 10 =-lIJA -23 -71 14 ,- Test Conditions V pmho Common Source Forward Transconductance 1 C 100 1-50 Common Source Output Conductance 12 A gas 13 -25 UnIt M" -50 -25 -23 Vc!t;:g;:: (on) (Note 21 -50 40B M,n V Gate Source Saturation Drain Current 5 C 'OSS .,-- Gate-Source Cutoff Voltage 405 Mo, M,n -25 (Note 1) S VGSloff) -, -50 Gate Reverse Current lOSS ~ Gate Source Breakdown Voltage 95 nV H, f= 1 MHz VOS'" 15V. VGS=O f'" 10Hz dB VOG = 10 to 20 V, '0 '" 200IJA 40 mV VOG = IOV, '0 = 200j.lA 80 /lvte 90 I ~ 61VGSI - VGS21 6T NOTES 1 Appro.lmately doubles for every 10 e Increase In TA 2 Pulse tes1 duration = 300J.ls,duty cycle" 3% Q 4 Measured at end POints. TA. 3-114 VOG"'lOV. 10 = 200JjA 3 eMRR=20IoQl0 Te and Te Silicanix T A" ~55"e. T6 = +25°e Te = +125"'e [~] .~VOD=10V GS1· GS2 NNR Small Signal H Siliconix JFETs Performance Curve NH See Sedion 4 designed for • • • •• BENEFITS Low Noise NF=3dB Typical at 400/MHz Wide Band High gfs/Ciss Ratio • VHF Amplifiers Mixers • ABSOLUTE MAXIMUM RATINGS (25° C) Gate-Drain or Gate-Source Voltage ..... , ..... -30 V Gate Current ................................. 10 mA Total Device Dissipation at 25°C Ambient (Derate 3.27 mWOC) ...................... 360 mW Operating Temperature Range ......... -55 to 135°C Storage Temperature Range •••• 0' • • • • • -55 to 150°C Lead Temperature Range (1/16" from case for 10 seconds) ............ 300°C (75MAX~I __ ,~: ooLttil"" W r 095 G 1--1 '4 MAX s 0 TOP VIEW ~A;X t12MAX ~ 005MIN DIMENSIONS IN MllUMETRES SOT-23 ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted) Characteristic IGSS Gate Reverse Current Min BVGSS Gate-Source Breakdown Voltage VGS(off) Gate-Source Cutoff Voltage lOSS Saturation Drain CUrrent (Note 1J 9fs Common-Source Forward Transconductance 90S Common-Source Output Conductance Max Unit 1.0 nA -30 -6 5 15 4500 7500 50 erss Common-Source Reverse Transfer Capacitance Ciss Common-Source Input Capacitance 4 Coss Common-Source Output Capacitance 2 9iss Common-Source Input Conductance biss Common-Source Input Susceptance 2000 BOOO 90ss Common-Source Output Conductance 45 60 boss Common-Source Output Susceptance 700 3000 9fs Common-Source Forward Transconductance G ps Common-Source Power Gain NF Noise FIgure 400 MHz TYP 700 VOS = 15 V. 10 = 1 nA Device SST4416 f = 1 kHz JLmho VOS = 15V. VGS = OV f= 1 MHz pF Unit IEII Test Conditions ",mho VOS = 15V. VGS = OV 5500 20 13 1 2.5 dB NOTE: ORDERING INFORMATION IG = 1 ",A. VOS = 0 V rnA O.B 100 MHz TYP 50 Characteristic V Test Conditions VGS = 15 V. VOS = 0 V VOS = 15 V. 10 = 5 rnA VOS= 15V.IO= 5mA,RG= 1 KG NH t. Pulse test duration = 300 "'S. Marking I H16 Silicanix 3-115 n-channel JFETs designed for • • • H Siliconix Performance Curves NCB See Section 4 Switches • Analog • Commutators • Choppers BENEFITS I nsertion Loss • LowrOS(on) < 50 on (U202) Off-Isolation • Good 10(off) < 1 nA TO-tS ABSOLUTE MAXIMUM RATINGS (25°C) See Section 6 Gate-Drain or Gate-Source Voltage ............... -30 V Gate Current .....•......................... SOmA Total Device Dissipation at 25°C Case Temperature (Derate 10 mWrC) ......................... 1.8W Storage Temperature Range .............. -65 to +200°C Lead Temperature ( 1/16" from case for 10 seconds) ............•. 300°C .~: j G.C \ 0 ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted) U200 Characteristic 1 1"2 -3 -4 - IGSS Gate Reverse Current BVGSS Gate-Source Breakdown Voltage VGS(off) Gate-Source Cutoff Voltage S T A T Min i 10(011) Dram Cutoff Current 6 lOSS Saturation Drain Current (Note 1) 7 rds(on) Draln-~ource 5 - C 8 - 0 Y C1SS 9 Crss N U201 Max 3 ON Resistance Common-Source Input Capacitance (Note 1) Common-Source Reverse Transfer Capacitance U202 Max 3-116 Max Unit -1 -I -I nA -1 -1 JlA -3 -1.5 -5 -3.5 -10 V 1 i 1 nA 1 1 1 JlA 25 15 75 30 Test Conditions VGS = -20 V, VOS = 0 -30 -30 I 150°C IG=-IJlA,VOS=O VOS = 20 V, 10 = 10 nA VOS = 10 V, VGS = -12 V 150 mA VOS = 20 V, VGS = 0 150 75 50 ohm VGS = 0,10 = 0 30 30 30 8 8 8 150°C f = 1 kHz VOS=20V,VGS=0 f= 1 MHz pF VOS=O VGS=-12V NCB NOTE: 1. Pu1se test required, pulsew,dth Min -1 -30 -0.5 Min = 300 Jlsec, duty cycle .;; 3%. Silicanix monolithic dual n-channel JFETs designed for • • • H Siliconix Performance Curves NQP See Section 4 • Differential Amplifiers BENEFITS • Good Matching Characteristics TO-71 See Section 6 ABSOLUTE MAXIMUM RATINGS (25°C) Gate-Drain or Gate-Source Voltage ______ ••••••••• -50 V G, Gate Current ••••••••••••••••••••••••••••••• 50mA Total Device Dissipation at 25°C (Derate 1.7 mW/oC to 200°C) ••••••••••••••• 300mW s, G, Lead Temperature 10 o· o. ,0 '0 °1 from case for S2 S2 Storage Temperature Range •••••••••••••• -65 to +200°C (1/16" ~~ 10 0, 0 7 G2 s, seconds) •....•••••.•••• 300°C G2 Gt., 0, Bottom View ~, ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted) Characteristic I-.!. 2 13' S 1'4 T A 15' T I -"- I 6 C Min IGSS Gate Reverse Current BVGSS VGS(o!fl VGS Gate-Source Breakdown Voltage Gate-Source Cutoff Voltage Gate-Source Voltage IG Gate Operating Current 7 lOSS Saturation Dram Current (Note 1) 8 91, Common-Source Forward Transconductance (Note 11 1- 19 0 915 1'iO V 9o, 1000 600 Common-Source Output Conductance Common-Source Output Conductance Common-Source Input Capacitance Common-Source Reverse Transfer Capacitance 1- EqUivalent Short CircUit Input Noise Voltage en Characteristic Unit pA -500 nA -4.5 -4.0 -50 0.5 1000 Common-Source Forward Transconductance (Note 1) N I "iT A 9o, M 112 I C1SS I~ c Crss 14 -50 -05 -0.3 Max -100 U232 Max U233 Max VGS=-30V. VOS=O V IG=-lI'A.VOS=O VOS=20V.10=1 nA pA VaG = 20 V. 10 = 200 I'A -250 5.0 5000 nA mA VOS = 20 V. VGS = 0 1600 35 10 6 2 I'mho 80 U231 Max Test Conditions U234 U235 Max Max 125·C VOS = 20V. VGS = 0 VOG = 20 V.IO = 200l'A VOS = 20 V. VGS = 0 VaG = 20 V.IO = 200l'A pF nV Test Conditions Differential Gate Current 10 10 10 10 10 nA VOG= 20V.10=200I'A 16 (loss 1-1OSS2) IOSSl Saturation Drain Current 5 5 5 10 15 % VOS=20V. VGS=O 5 10 15 20 25 mV 10 25 50 75 100 17 M iVGS1-VGS2 i 1- A T 18 C t>iv GS1-V GS2i I-H t>T 19 I N 1- G (91,1-91,2) 20 91,1 Voltage Gate-Source Voltage Oillerentlal Orilt (Note 2) --- Transconductance Match igo,l-9o,2 i Differential Output Conductance 121 Match (Note 1) Differential Gate-Source I'vtc 10 25 50 75 100 3 5 5 10 15 5 5 5 5 5 (Note 1) 1= 1 kHz 1= 100 Hz IIGl-IG2 i 1- 1= 100MHz 1= 1 MHz 15 1- 1= 1 kHz VOS= 20 V. VGS = 0 v'Hz Unit 150·C VaG = 20 V. 10 = 200 I'A 125·C TA = 25·C TB = 125·C TA=-55 C TB = 25·C % 1=1 kHz NOTES: 1. Pulse te,t required. pul,ewidth = 3001's. duty cycle';; 3%. 2. Measured at end point'. TA and TB. I'mho NQP SilicDnix 3-117 IBI matched dual n-channel JFET designed for • • • • H Siliconix Performance Curves NZP-D, NNZ See Section 4 . BENEFITS Wideband DiHerential Amplifiers • High Gain through 100 MHz 9fs = 4500 ",mho Minimum • Matching Characteristics Specified TO-7B So. Section 6 ABSOLUTE MAXIMUM RATINGS (25°C) Gate-Drain or Gate-Source Voltage ........•...... -25 V Gate Current ...•....•.................•.... 50mA Device Dissipation (Each Side). T A = 85°C (Derate 3.85 mWrC) .......•.•....•.....•. 250 mW Total Device Dissipation, T A = 85°C (Derate 7.7 mWrC) ........ '..........•.... 500 mW Storage Temperature Range .....••..•... -65 to + 200°C Lead Temperature (1/16" from case for 10 seconds) ...........•...300°C G, ~~ s, S:! c G1 G2 82 405 D2 sO 0& 0 0 G2 20 7 0, ,0 A ~, _I D, s, BottomViow ELECTRICAL CHARACTERISTICS (250 unless otherwise noted) Characteristic 1 "2 -3 "4 "5 S T A T I C 6 -; 8 -9 0 IGSS Gate Reverse Current BVGSS Gate-Source Breakdown Voltage VGS(off) Gate.source Cutoff Voltage lOSS Saturation Drain Current (Note 1) 10 Max Unit -100 pA -250 nA -25 -1 -5 5 40 4500 10,000 VOS=10V,lo=5mA 1= 1 kHz 4500 10,000 VoG = 10 V,lo = 5 mA 1= 100 MHz Common-Source Output Conductance 200 90S Common-Source Output Conductance 200 Common-Source Reverse Transfer Capacitance 1.2 12 en Equivalent Short Circuit Input Noise Voltage 30 13 M A T 14 !.oSSl loSS2 Saturation Drain Current Ratio (Notes 1 and 2) C IvGS1-VGS2 1 Differential Gate-Source Voltage H I 91s1 N 91$2 16 G 90s1-9os2 1 Transconductance Ratio (Note 2) 5 0.85 VoS = 10 V, 10 = 5 mA 1= 1 kHz 1= 100 MHz pF VoG= 10V,10= 5mA !JY VFiZ 1 100 0.85 JLmho 1= 1 MHz 1= 10kHz VoS = 10V, VGS = 0 mV VoG=10V.10=5mA 1 I- 1= 1 kHz Oifferential Output Conductance 20 JLmho NZF-D, NNZ NOTES: 1. Pulse test required. pulse width = 300 JLS, duty cycle .. 30%. 2. Assumes smaller value in numerator. 3-118 = 10 V, 10 = 1 nA VoS = 10V, VGS= 0 Common-Source r orward Transconductance Common-Source Input Capacitance 15 VoS mA I 15ttC IG=-lI'A,VoS=O Common-Source Forward Transconductance C1SS '- VGS=-15V.VoS=0 91s Cr•s - V Test Conditions 9fs V 90S N A M I'll ._ C Min SUiccnix n-channel JFETs designed for • • • c H Siliconix Performance Curves NVA See Section 4 Switches • Analog • Commutators • Choppers ~ ~ BENEFITS • Ultra-Low Insertion Loss rOS(on) <3.0n (U290) • High Off-Isolation 10(off) <1 nA 8c ABSOLUTE MAXIMUM RATINGS (25°C) TO·52 Sa. Section 6 Reverse Gate-Drain or Gate-Source Voltage ......... -30 V Gate Current .............................. 100mA Drain Current 1.5 A Total Device Dissipation at 25°C Free-Air Temperature (Note 1) ............... 500 mW Storage Temperature Range .............. -65 to +200°C Lead Temperature ( 1/16" from case for 10 seconds) .............. 300°C 11\ ............................... M .~: "I 0 ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted) Characteristic 1 - ,23 1-; S -5 '6 -; - T A T I C Gate Reverse Current BVGSS Gate-Source Breakdown Voltage VGS(off) Gate-Source Cutoff Voltage 10(off) 8 9 10 IGSS 0 U290 Min U291 Max Min Max -1 -1 nA -1 -1 J.lA -30 Dram Cutoff Current -10 -1.5 -4.5 nA 1 1 J.lA 30 70 mV VGS=O,10=10mA mA VOS=10V,VGS=0 lOSS (Note 2) rOS(on) Static Dram-Source ON Resistance 10 3.0 2 7 n VGS = 0 V,IO = 10 mA rds(on) Drain-Source ON ReSistance 1.0 3.0 2 7 n VGS=O,IO=O 500 200 CSGO Source-Gate OFF Capacitance 30 30 12 COGO Dram-Gate OFF Capacitance 30 30 CSG+COG Source Gate Plus Dram Gate On Capacitance 160 160 14 !d(on) Turh-ON Delay Time 15 15 15 i- 17 VOS = 5 V, VGS = -10 V Drain-Source ON Voltage 11 16 VOS = 15 V, 10 = 3 nA 1 VOS(on) Saturation Drain Current 150·C IG = -1 J.lA, VOS = 0 1 V N A M I 13 C - VGS = -15 V, VOS = 0 -30 V -4 Test Conditions Unit I 150·C f = 1 kHz VSG = 15 V, 10 = 0 pF VOG=15V,IS=0 VOS~O, f= 1 MHz VGS = 0 VOO = 1.5 V, 10(on) =:30 mA, RL = 50n, VGS(on) = 0 V, S tr Rise Time 20 20 W td(off) Turn·OFF Delay Time 15 15 V GS(off) = -12 V (U290) tf Fall Time 20 20 VGS(off) = - 7 V (U291) ns NVA NOTES: 1. Derate linearly at the rate of 4.0 mW/'C. 2. Pulse test required pulsewidth 300 J.ls, duty cycle <:; 3%. Siliconix 3-119 - p-channel JFETs designed for • • • H Siliconix Performance Curves PSA/PSB/PSC See Section 4 Switches • Analog • Commutators • Choppers BENEFITS I nsertion Loss • LowrDSlon) < 85 n (U304) Off-Isolation • HighID(off) < 500 pA ABSOLUTE MAXIMUM RATINGS (25°C) U TO-18 See Section 6 ;rr ~ Reverse Gate-Drain or Gate-Source Voltage (Note 1) .. 30V Gate Current ............................... 50mA Total Device Dissipation, Free-Air (Derate 2.8 mW/oC) ....................... 350mW Storage Temperature Range .............. -65 to +200°C Lead Temperature (1/16" from case for 60 seconds) . 300°C .~: ............ D G~C • ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted) Characteristic 1 12" 3' IGSS Gate Reverse Current BVGSS Gate-Source Breakdown Voltage ~ :: VGSlnffl Gate-Source Cutoff Voltage T 5 A T I VOS(on) Drain-Source ON Voltage lOSS SaturatIon Drain Current (Note 2) - 6' -7 -8 C U304 Min U305 Max U306 Max Min Max Unit 500 500 500 pA 10 1.0 1.0 p.A 30 5 Min 30 30 10 3 6 1 1 -30 -90 -15 -60 -5 125°C VDS - -15 V.ID = -1,.A -0.6 -0.8 I VGS = 20 V, VOS = 0 IG= 1 /lA, VOS=O V -1.3 Test Conditions VGS = 0, 10 = -15 mA (U304), 10 = -7 rnA (U305), 10 = -3 mA (U306) -25 mA VOS=-15V,VGS=0 -500 -500 -500 pA VOS = -15 V, VGS = 12 V (U304), VGS = 7 V (U305), 125"C VGS = 5 V (U306) I o(off) Drain Cutoff Current -1.0 -1.0 -1.0 p.A "9 'OS (on) Static Dram-Source ON Resistance B5 110 175 n VGS=OV,IO=-l mA 10 'ds(on) Drain-Source ON ReSistance 85 110 175 n VGS=OV,IO=O CISS Common-Source Input Capacitance 27 27 27 7 7 7 22: 12 0 Y N 13 S 14 15 W I T 1e Hc Crss Common-Source Reverse Transfer td(on) Turn-ON Delay Time 20 25 25 t, Rise Time 15 25 35 teI(off) Turn-OFF Delay Time 10 15 20 tf Fall Time 25 40 60 Capacitance pF VOS - 0, VGS = 12 V (U304) VGS = 7 V (U305), VGS = 5 V (U306) VOO ns VGSloff) RL VGS(on) 1010n) U304 -10V U305 -6V f= 1 MHz U306 -6V 12V 7V 5V 580n 743U 1800n 0 -15mA 0 -7 rnA 0 -3mA PSA/PSB/PSC NOTES: 1. Due to symmetrical geometry these Units may be operated with source and drain leads Interchanged. 2. Pulse test pulsewldth = 300 p.s, duty cycle .. 3%. 3-120 f = 1 kHz VOS=-15V,VGS=0 Siliconix n-channel JFETs designed for • • • H Siliconix Performance Curves NZB See Section 4 Amplifiers • VHF End High Sensitivity • Front Amplifiers Osci Ilators • Mixers • BENEFITS • I ndustry Standard • High Power Gain 16 dB at 105 MHz, Common-Gate 11 dB at 450 MHz, Common-Gate Low Noise 2.7 dB Noise Figure at 450 MHz • Wide Dynamic Range Greater than 100 dB • 75 n Input Match Common Gate • ABSOLUTE MAXIMUM RATINGS (25°C) TO·52 Gate-Drain or Gate-Source Voltage ............... -25 V Gate Current ............................... 20mA Total Power Dissipation at T A = 25°C 500mW Power Derating to 1500 C .................. 4.0 mWrC Storage Temperature Range .............. -65 to +[209"6 Lead Temperature (1/16" from case for 10 seconds) .............. 300°C See SectiDn 6 11 .......... .~: "' !H s 0 ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted) Characteristic 1...2. IGSS 2 I- S 3 4 T 15 T I C Voltage Gate-Source Cutoff Voltage 16 VGS(I) 7 1- gIg 0 y 8 gog 1_ N 9 IW 111 1..2.!. 13 1I~ A Cgd M Cgs I C -en I 11'7 118 1- Min U310 Typ Max -150 pA -150 -150 -150 nA -25 V VGS VOS = -15 V, =0 TA=125°C IG=-II'A,VOS=O -1.0 -4.0 -2.5 ~.O 12 60 12 30 24 60 mA VOS= 10V,VGS=0 1.0 V IG=10mA,VOS=0 Common-Gate Forward Transconductance (Note 1) 1.0 10 1.0 10 17 Common-Gate Output 10 17 VOS=10V, 10=10mA Drain-Gate Capacitance 2.5 2.5 2.5 Gate-Source Capacitance 5.0 5.0 5.0 Equivalent Short Circuit Input NOise Voltage 10 10 10 15 15 15 14 14 14 0.18 0.18 0.18 0.32 0.32 14 16 14 16 14 16 Gam (Note 2) 10 11 10 11 10 11 NOise Figure pF nV ~ VGS=-10V, 1= 1 MHz VOS=10V VOS = 10V, 10=10mA 1=100Hz 1= 105 MHz 1= 450 MHz 1=105MHz mmho 0.32 Common-Gate Power 19 1=1 kHz 250 .umho 250 Conductance VOS = 10 V, 10 = 1 nA mmho 17 250 90g Test Conditions Unit -150 -25 Gate-Source Forward Voltage Common-Gate Output Conductance NF Max ~.O (Note 1) Common-Gate Forward Transconductance E Gpg Q U309 Typ -1.0 SaturatIOn Drain Current gIg R Min -150 -25 H I~F 16 Gate-Source Breakdown VGS(oll) lOSS U308 Typ Max Gate Reverse Current BVGSS 1- A Min VOS=10V, 10=10mA 1= 450 MHz 1= 105MHz 1= 450 MHz 1.5 20 15 2.0 1.5 2.0 2.7 3.5 2.7 3.5 2.7 3.5 dB 1=105MHz 1= 450 MHz NZB NOTES: 1. Pulse test duration = 2 ms 2. Gain (Gpgl measured at optimum input noise match. Siliconix 3-121 n-channel JFET designed for • • • H Siliconix ----- Performance Curves NZB See Section 4 • VHF Amplifiers • Oscillators • Mixers BENEFITS • High Power Gain 16 dB Typ @ 105 MHz, CommonGate 11 dB Typ @ 450 MHz, CommonGate • Low Noise Figure 1.5 dB Typ@ 105 MHz 2.7 dB Typ @ 450 MHz • Wide Dynamic Range-Greater than 100 dB ABSOLUTE MAXIMUM RATINGS (25°C) TO-72 See Section 6 Gate-Drain or Gate-Source Voltage ............... -25 V Gate Current ............................... 10mA Total Device Dissipation (Derate 1.7 mWrC) ..... 300 mW Storage Temperature Range .............. -65 to +200°C Lead Temperature (1/16" from case for 10 seconds) 300°C o~: ............. ~ ~ ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted) Characteristic 1 12 1- S 3 T 1- A 4 T I-I 5 C IGSS Gate Reverse Current BVGSS Gate-Source Breakdown Voltage Min Typ Max pA -150 nA -25 -6 20 no Saturation Drain Current (Note 1) VGS(f) Gate·Source Forward Voltage 7 9fg Common-Gate Forward Transconductance (Note 1) B 0 gog Common-Gate Output Conductance Cgd Gate·Dral" Capacitance 2.5 Cgs Gate·Source Capacitance 5.0 -Y 9 N '10 150·C VOS= 10V,IO= 1 nA 1 10.000 "If!. VDS=1QV,'lGS=O V IG = 1 rnA, VOS = 0 17,000 pmho VOS = 10 V, 10 = 10 mA if = 1 kHz pF VOG= 10V,IO= 5mA if= 1 MHz 250 NZB NOTE: 1. Pulse test duration = 2 ms. 3-122 VGS=-15V.VOS=0 IG = -lpA, VOS = 0 -1 lOSS - Test Condition. V VGS(off) Gate-Source Cutoff Voltage 6 i- Unit -150 Siliconix - n-channel JFETs designed for • • • • • H Siliconix ----- - --- Performance Curves NIP See Section 4 VHF BuRer Amplifiers IF Amplifiers W N • • HighgfsGain = 120,000 ,umho Typical Wide Dynamic Range • • Low Intermodulation Distortion TO-39 c W N N ~ See Section 6 Gate·Drain or Gate·Source Voltage ................ -25 V Gate Current ............................... 100 rnA Total Device Dissipation (25°C Case Temperature) ...... 3 W Power Derating (to 150°C) .................. 24 mWrC Storage Temperature Range .............. -55 to +150°C Operating Temperature Range ............. -55 to +150°C Lead Temperature (1/16" from case for 10 seconds) ............... 300°C N o c BENEFITS ABSOLUTE MAXIMUM RATINGS (2S0C) cW l .~: s 0 ELECTRICAL CHARACTERISTICS (2S0C unless otherwise noted) Characteristic I 1- I~ sT I";4 15 I6 A T I e I] 8 1- U320 Min IGSS Gate Reverse Current (Note 1) VGSloffl BVGSS Gate-Source Cutoff Voltage Gate-Source Breakdown Voltage -25 lOSS Saturation Drain Current (Note 21 100 VGS(I) Gate-Source Forward Voltage 'OS(on) Drain-Source ON ReSistance 9fs Common-Source Forward Transconductance (Note 21 Typ -2 75 U322 U321 Max Min Typ Max Max -3 nA -0 5 -10 -0 5 -4 -0.5 pA -1 -3 -10 -25 80 250 200 700 rest Conditions Umt -3 500 Common-Source Input Typ -3 -25 120 M,n V mA I VGS=-15V VoS=OV ' IT = 100·C VoS-5V, 10= 1 mA IG=-lpA,VoS=OV VOS=15V,VGS-OV 1 1 1 V IG = 1 mA, VoS = a V 10 11 8 n VGS - 200 75 120 200 75 130 200 mmhos a V, 10 -10 mA VOS = 15 V, VGS = 0 V N 10 A 111 M I C1SS Cas Gate-Source Capacitance 12 12 12 VGS=-10V,10-0 I':':: Cgd Gate-Drain Capacitance 12 12 12 VGO=-10V,IS=0 13 -en EqUivalent Short CirCUit Input NOise Voltage 2 2 2 14 gig Common Gate Forward Transconductance 55 55 55 9 I- 112 e 115 1- Crss H I G g,g H Capacitance 30 30 30 Common-Source Reverse Transfer Capacitance 15 15 15 Commen-Gate Input Conductance 1-'-'- R GPS Common-Gate Output Conductance Power Gain (Note 3) * Ft NF Gam-Bandwidth (Note 4) NOise Figure (Note 3) 16 117 F E Q 909 56 56 56 05 0.5 05 9 400 2.5 pF nV ~ mmho 9 400 MHz 25 dB Silicanix VGS = -10 V, VOS = a V VOS = 5 V, 10 = 10 mA 1=1 kHz 1= 1 MHz 1=1 kHz VoG = 20 V, 10 = 25 mA 1= 50MHz dB 9 400 25 NOTES: 1. ApprOXimately doubles for every 10°C Increase," TA 2. Pulse test duration = 2 ms. 3. NOise figure ~SSB) and power gain measured In cIrcuIt shown," FIgure 1 4. Computed as 9fs/Crss. aV VOS= 15V,VGS=OV ValL= 20 V,!JL - 25 mA.11 = 30 MHz NIP 3-123 - H quad-ring demodulator designed for ... Performance Curves NZB See Section 4 Siliconix Double-Balanced Mixers • VHF • Analog Multipliers BENEFITS • • • • ABSOLUTE MAXIMUM RATINGS (25°C) High IMD Intercept Point Conversion Gain High 1 dB Compression Suitable for PC Board Construction Gate-Drain or Gate-Source Voltage .............. -25V Gate Current. . . . . . . .. . . . . . . . . . . ... . . . . . .. . . ... 25 mA Total Continuous Power Dissipation at (or Below) 25°C Free Air Temperature (Derate 8.0 mWrC to 150°C ................... . 1W Storage Temperature Range .......... . -65 to +150°C Lead Temperature (1/16" from case for 10 seconds) .............. 300°C PIN 2 0,. 04 ., Bottom View FEATURES • 4 Matched U310 JFETS • Low Turn-on Resistance • High Transductance Reference Application Note AN72-1 +VGS Ll,12_13"Hy Cl-001,.F C2 C1-o10",F C3 C4-30pF +VDD C5,C8-&8pF Contact factory for Application Note AN 73-4. ELECTRICAL CHARACTERISTICS (25'C unless otherwise noted) U350 Characteristic , IGSS 2 -S 3 T BVGSS -A T VGS{off) I C 5 VGS(f) • - • . 7 - • 0 y N A _M ~~ " ,. Voltage Gate-Source Cutoff Voltage -2 Test Conditions Unit nA VGS = -15V. VOS = 0 !,A (Note 1) -6 TA - ..L125G C IG = -1 p.A, VOS = 0 10 = 1 nA. Vas'" 10 V (Note 1) IG = 1 mA VOS "" 0 (Note 1) Voltage Dram Saturation Current 2. Common-Source Forward Transconductance '0 go, Common-Source Output Conductance Cg , Gate-Source Capacitance Cgd Dram Gate Capacitance Rds(on) Dram-Source ON ReSistance 60 ,. '50 rnA ." pF 50 90 " dB NOIse Figure lOSS/lOSS VOS"" 10 V, 10 = 10mA f = 1 kHz (Note 1) VGS"" -10V,IO - 0 VOO = -10V,IS (Conversion Gam) Saturation Drain Current RatiO VOS"" 15 V, VGS = 0 (Notes 1 and 2) mil 25 NF =0 C grsfgls 17 VGS = 0, 10 = 0 f= 1 kHz VOS - 20 V, VGS YzVOS(off). RO"" 1.700 n f = 100 MHz (Note 3) = 09 '0 VOS"" 15 V. VGS "" 0 (Note 2) VOS"" 15 V, 10 "" 1 nA gas/gas 09 '0 Common-Source Forward Transconductance 09 , 0 Differential Output Conductance 09 '0 VOS'" 15V, 10 '" 10 rnA Other gate terminal clamped to -8 V 2 Pulse test PW 300 ~sec DC "" 3% Siliconix f '" 1 kHz NZB NOTES 3-124 f"" 1 MHz (Note 1) Gate-Source Cutoff _H , -, Gate-Source Forward M '5 A VGS{off}IVGS(off) Voltage RatiO _T '6 Max -25 gls - TVp Gate Reverse Current Gate-Source Breakdown lOSS 12 H G, 13 F Min 3 See Figure 1 H monolithic dual n-channel JFETs designed for • • • Siliconix Performance Curves NNR See Section 4 Minimum System Error and Calibra• tion • • • • 5 mV Offset Maximum (U401) 95 dB Minimum CMRR (U401-04) Low Drift with Temperature 10 Ilvrc Maximum (U401. 02) Operates from Low Power Supply Voltages VGS(off) < 2.5 V Simplifies Amplifier Design Output Conductance < 2 Ilmho Low Noise en = 6 nV/y'Hz at 10 Hz Typical TO-71 ~p.:_oo. 0, 50V 10mA G2 51 U4Ql M,n BVGSS Gate-Source Breakdown Voltage 'GSS Gate AeverseCurrent INote 1) 3 VGSlcff) Gate Source Cutoff Voltage 4 ~ VGSlon) 1 12 1- I-~ I- I 5 C lOSS 1- I~ 'G 1- (Note 21 G~te·G~te Breakdown eVG, - G2 9 ", Common Source Forward Transconductance (Note 2) '., Common Source Output Conductance 110 1- 11 ~ I- N 12 ~ 1- 52 °1 ~ 17 ~ , U404 M.. Moo -50 -25 -50 -25 -5 "'X M,n -50 -5 -25 M,n "'X -50 -25 -2,5 U406 U405 M.. -25 -5 -25 -25 -5 UHlt Test Conditions V VOS=O,IG=-lIJ,A pA VOS=O. VGS=-30V -25 VOS=15V,'O .. lnA V -23 05 -23 -23 -23 -23 -23 VeG = 15 V, '0 = 200lJ,A 100 rnA VOS=10V,VGS=O -15 -15 -15 -15 -15 -15 pA VOG=15V. -10 -10 -10 -10 -10 -10 nA '0 = 200IJ,A V Ves = 0, VGS = O,IG" ±II1A 100 ±50 05 100 ±50 05 100 05 ±50 ±50 2000 7000 2000 7000 20 20 2000 100 7000 2000 20 05 100 ±50 7000 2000 05 ±50 7000 2000 7000 20 20 20 VOS'" 10V, VGS"'O I TA IEII "125~C f= 1 kHz I1mho gas 20 Common..source Input Capacitance 80 80 80 80 80 80 c", Common Source Reverse Transfer Capacitance 30 30 30 30 30 30 'N EqulvalentShort,Clrcult Input NOise Voltage 20 20 20 20 20 20 CMRR Common Mode RejectIOn RatiO (Note 3) IVGSI - VGS21 OlfferentlalGate-Source Voltage 1000 2000 1000 2000 1000 2000 1000 2000 1000 2000 1000 2000 f= 1 kHz I,-T 1- M,n -25 -5 G~~2 Bottom View Common Source Forward Transconductance 1- ,. Voltage -25 07 G2 ,0 Common Source Output Conductance 1 13 C CISS 15 -5 '0 5, U403 "'X ,,~. G, 30 0 506 °2 500mW -65 to 200°C gfs 114 -25 Gate CurrentlNote 11 8 Moo -50 -50 Gate-Source Voltage lonl Saturation Dram Current U402 M.. 52 300mW ELECTRICAL CHARACTERISTICS (@ 25°C unless otherwise noted) Characteristic 18 N A.lVGSl - VGS21 --I1-T-- Gate·Source Voltage Differ· entlal Onft(Note 4) - BENEFITS Noise FEY Input • Low Amplifiers and Medium Frequency • Low Amplifiers Impedance Converters • Precision • AmplifiersInstrumentation • Comparators ABSOLUTE MAXIMUM RATINGS (25°C) Gate-Drain or Gate-Source Voltage Forward Gate Current. Device Dissipation (each side) @ T A = 85° C derate 2.6 mW/" C Total Device Dissipation @ T A = 85°C (derate 5 mW/"C) Storage Temperature Range c ~ o 20 20 20 20 20 VeG = 15V, 10 = 200l1A pF 95 95 95 9S 90 nV h_ VeG = 10V, 10 = 200l1A 10 15 20 40 mV 10 10 25 25 40 80 "vfc [jilv::,~eGS2J f= 10Hz VOG = 10 to 20 V, 10" 2oo,..A 10 3 CMRR = 2010910 Ves= 15V, VGS=O dB 5 NOTES 1 ApprOXimately doubles for every 100 e Increase In TA 2 Pulse test duration" 3OOl1s, duty cycle" 3% f"'IMHz ,avoe '" 10 V VOG-IOV, 10 = 200J,lA T A = -55°C, TS· +25°C TC" +125°C NNR 4 Measured at and pOints, TA, Ta and TC 3-125 monolithic dual n-channel JFETs H .. designed for ••• ... Siliconix lit Performance Curves NQP See Section 4 ::) o ::) BENEFITS • FET Input Amplifiers • Low and Medium Frequency Amplifiers • Impedance Converters • Precision Instrumentation Amplifiers • Comparators • Low Cost • Minimum System ~rror and Calibration 10 mV Offset Maximum (U410) 70 dB Minimum CMRR (U410) • Low Drift with Temperature 10 IlV/"C Maximum (U410) • Simplifies Amplifier Design Low Output Conductance TO-71 See Section 6 ABSOLUTE MAXIMUM RATINGS (25°C) Gate-To-Gate Voltage _........................ ±40 V Gate-Drain or Gate-Source Voltage ............... -40 V Gate Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 50 mA Total Package Dissipation (25°C Free-Air) _...... _375 mW Power Derating ........................... 3.0 mW;oC Storage Temperature Range .............. -65 to +150°C Lead Temperature (1/16" from case for 10 seconds) .. 300°C G, 0' 02 J W ~ 7 0, ., ci,:D2 Bottom View . 0, " ELECTRICAL CHARACTERISTICS (2.5°C unless othilrwise noted) Characteristic 1 IGSS Gate Reverse Current (Note 1) VGS(off) Gate-Source Cutoff Voltage 12 1_ 5 T 3 A BVGSS I-T 4 I lOSS C -5 - U410 Min Gate-Source Voltage Min Typ U412 Max Min Typ "200 -35 -0.5 Max "200 Unit pA -35 -0.5 Test Conditions VOS = 0, VGS = -30 V VOS=20V,IO= 1 nA V -40 -40 -40 VnltAgp Gate Current (Note 1) -35 -0.5 Saturation Drain Current (Note 2) IG U411 Max "200 Gate-Source Breakdown VGS Typ 05 50 0.5 5.0 VOS = 0 V,IG = -lpA 0.5 "200 50 mA "200 pA -02 -3.0 V 4,000 1,000 4,000 1.000 4,000 1,200 1,200 1,200 "200 VOS = 20V. VGS= OV VOG = 20V,I0 = 200llA 6 7 9f. Ii !i'o loy 90. Common-Source Forward Transconductance -02 -3.0 1,000 600 Common-Source Output Conductance -N 11 ~ CISS -I 12 C C,.. -13 en ~ Common-Source Input Capacitance Common-Source Reverse Transfer Capacitance 600 600 20 20 20 5 5 5 45 45 4.5 12 1.2 1.2 VOS=20V.VGS=0 V ~mho VOS=20V,VGS=OV f= 1 MHz !lll. VOS = 20 V,IO = 200llA f'l00H- VOG = 20 V,IO = 200llA 50 50 50 10 20 40 mV 10 25 80 pVrC NOTES: 1. Approximately doubles for every lOoe Increase In TA 2. Pulse test duration = 300 /lSec, duty cycle'" 3%. 3. Measured at end potnts, T A and TB. 80 70 f = 1 kHz pF Differential Gate-Source Voltage 80 VOG = 20 V,IO = 200llA VOS= 20V. VGS - OV VOG = 20 V,IO = 200llA Equivalent Short-Circuit Input NOise Voltage lvGS1-VGS2) 14 -T alvGS1-VGS2 1 Gate-Source 15 ~ Differential Dnft (Note 3) AT f--I Common-Mode ReJection 16 ~ CMRA Ratio (Note 4) 3-126 -30 -0.2 vHZ dB VOG = 20V,I0 = 200llA TA = 25°C to TB = 85°C VOO = 10 V to VOO = 20 V 10 = 200IlA NQP 4 CMAR = 20log10 [ avOO d,aVOO = 10 V. .el.IvGS1-VGS2) Siliconix monolithic dual n-channel JFETs designed for H Performance Curves See Section 4 BENEFITS • • • Electrometers Impedance Converters Soo Section 6 Gate-to-Gate Voltage ......................... ±40 V Gate-Drain or Gate-Source Voltage ........... -40 V Gate Current .................•.•............ 10 mA Device Dissipation (Each Side). T A = 25°C (Derate 3,2 mW/oC to 150°C) ............. 400 mW Total Device Dissipation. T A = 25°C (Derate 6.0 mW/oC to 150°C) ....•........ 750 mW Storage Temperature Range ........ -65°C to +150°C G, ~~ 5, c G, T I-A 4 T I I---;-c U421-3 U424·6 Min Typ Max Min Typ Max I6 17 Gate-Source BreakdoWn Voltage -40 -60 -40 -60 BVG1G2 Gate-Gate Breakdown Voltage ±40 ±40 IGSS Gate Reverse Current (Note 1) VGS{off) Gate-Source Cutoff Voltage VGS Gate-Source Voltage lOSS Saturation Drain Current 60 0.5 500 -2.0 -0.4 -3.0 -1.8 -2.9 Test Conditions IG=-lIlA,VOS=O pA nA T = +25°C T = +125°C VGS = -20 V, VOS = 0 pA T=+2s"C T=+12SoC VOG = 10 V,IO = 30llA VOS = 10 V, 10 = 1 nA V 60 800 1500 300 50C gf, Common-Source Forward Transconductance go, Common-Source Output Conductance lla° 10 10 Ciss Common-Source Input Capacitance 3.0 3.0 300 0(', ~, G2 ' Bottom View 30 30 10 25 250 1000 °2 IG = -lilA, 10 = 0, IS = 0 10 -0.4 o~ Unit 8 19 I-V 11 N Crss I_A 12 M !If, I-I 13 C gos 1- ~o V Gate Operating Current (Note 1) 5, 4 05 5, BVGSS IG G2 82 0, '0 10 ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted) 1 I2 I3 S VOG = 10 V, 10 = 30llA VOS= 10V, VGS=O IlA VOS=10V,VGS=0 pF Common-Source Reverse Transfer Capacitance 1.5 120 f= 1 MHz 1.5 350 120 350 3.0 3.0 f= 1 kHz Illl Common-Source Output Conductance 14 en I15 Equivalent Short Circuit Input NOise Voltage NF Noise Figure 20 10 70 20 10 1.0 U421,4 Characteristic IEII f= 1 kHz Illl Common-Source Forward Transconductance 70 VOG = 10 V,lo = 30jlA nVA/Hz 1.0 U422,5 If d8 U423,6 = 10 Hz f= 10 Hz f= 1 kHz RG = 10M n Test Conditions Min Typ Max Min Typ Max Min Typ Max Unit 16 M IVGSl - VGS21 Differential Gate-Source Voltage I-A Differential Gate-Source Voltage 17 T IVGS1 - VGS21 liT Change With Temperature(Note 2) C I l a H CMRR Common Mode Rejection Ratio 90 {Note 3) NOTES. 1. Approximately doubles for every 1 ±0.1 volts, the VCR FET characteristic has noticeable curvature. This series of junction FETs is intended for applications where the drain-source voltage is a low-level a-c signal with no doc component. Thus the FET operating point will swing symmetrically around VOS = O. In the first quadrant, signal distortion depends on what extent the FET output characteristic deviates from a straight line or linear relation. Besides the linearity problem in the third quadrant, when VGS is near zero and vds > 0.5 volt rms, the gate-channel junction will become f.orward biased and cause additional curvature in the characteristic. Also, whenever the gate becomes forward biased due to any combination of VGS and vds, it ceases to be a high-impedance control terminal for the VCR. Fig. 3 presents a normalized plot of ros versus normalized VGS where VGS(off) is defined as that value of VGS at IO/IOSS = 0.001. The dynamic range of ros is shown as greater than 100:1. For best control of ros the normalized _VGS should lie between 0 and 0.8 VGS(off) because as 0 VGS"O 5 vc~!J"--~ ..... t-- , , 0 5 vGs·o ~" VCA'N t--I'i VCR4N --'\ vJAiN' , , " .lJJ ,,' 'dl!ONI ", III DRAIN-SOURCE ON RESISTANCE (ohm" - ", Fig. 4 Fig. 5 For further information on using FETs as voltage·variable resistors, consult Siliconix Application Note AN73·1. * L. Evans; "Biasing FETs for Zero OC Orift"; Electro Technology, August 1964. 3-133 ..z voltage-controlled H Silicanix ~ ~ resistor FETs designed for • • • Small Signal Attenuators • Filters • Amplifier Gain Control • Oscillator Amplitude Control • TO-71 See Section 6 G, ~~ S1 G2 S2 S2 ° D2 ° G2 G, 0 3 2' 6,0 D, ° 2, ABSOLUTE MAXIMUM RATING (25°C) s, Gate-Drain or Gate-Source Voltage ....... _......... 25 V Gate Current ................................ 10 mA Total Device Dissipation at T A = 25°C (Derate at 2.0 mW/oC to 175°C) .............. 300 mW Storage Temperature Range .............. -55 to +175°C 0' Bottom View ,A ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted) Characteristic VCR11N Min Max Unit -0 2 nA Test Conditions 1 IGSS Gate Reverse Current 2 BVGSS Gate-Source Breakdown Voltage 3 VGS(off) Gate-Source Cutoff Voltage -B -12 4 rds(on) Drain Source ON Resistance 100 200 5 Cd go Drain-Gate Capacitance B 6 Csgo Source-Gate Capacitance B VGS= -10V,ID= 0 7 rosml% rOsmax 95 1 VOS= 100mV rOSl - 200l! 95 1 VGSl =VGS2 r[>SI = 2kl! -25 Note 1 VGS1 3-134 V n pF VGS=-15V,VDS=0 IG = -lilA, VDS = 0 ID= lilA, VDS= 10V VGS= O,ID = 0 f = 1 kHz VGD=-10V,IS=0 f = 1 MHz NSH* + Control Voltage necessary to force rOS. to 200n or 21<0 'Contact factory for geometry information. Siliconix Geometry mill Siliconix c Useful JFET Parameter Relationships (Approximate) lc ""'II .... III Bulk & Junction Leakage Current vs Ambient Temperature On Resistance vs Ambient Temperature W 19 ~105~~~~~~+=~~~==~ >10"-4-~-+~f--+-4--f--+-?~ ~ r ~103f--4-~-+~f--+-4-~1/~__~ ~10'r-~~-+~r-~L'~--r-~-r-i a: 1 f--4-~-+-/-k--t--t--r-4-~-i a: B ~tj2~=l==l=tt=+=l:=j / 17 > ~ 15 ~ 13 ~ w > / g 09 a: 07 p 05 ~ ~ 10"JL-.L...L-L---1__L-.L...L-L---1--l -75 ...J -25 25 75 125 AMBIENT TEMPERATURE 03 -75 175 1.2 ," 08 a: 3 ~ 1/ 04 o2 -25 25 75 125 -75 175 AMBIENT TEMPERATURE (OCI (OC) .. ., f ..-. ii" " '" w 06 ;l a3 ~ 14 ~ 10 11 ~ _# ~ '3 ~ ~ 16 ~ ~ 10'1 ~ 10- 2 18 w " ~,o2f--4-~-+~f--+-47~-+--~ ~ Dram Current and Transconductance vs Ambient Temperature o~ 75 125 25 AMBIENT TEMPERATURE ("Cl* fit -. 175 -25 ~ -":J> ""a >< fit Typical rDS(on) vs Normalized Gate Source Cutoff Voltage Saturation Current vs Cutoff Voltage MAX MAX 14 " w o w> Z e 12 >0 j:::u o wCl ow 8 "';:: .... w 6 ..... "- o ~4! 4 o on z:O: Z "'- i!:'" '\. on~ 0:> " Z 0:> wZ "- ~ :'lon 10 o 0: ZO " 0 .... rOSlon) I-- -+- ~ ~ MIN -, 0 -08 -06 -04 -02 ~ !"- / ~ 0: " ~ \ ........ / / / / / /' it 1\ on on on 9 MIN MIN MAX -.3 LL ..- 1/ / o z o APPROXIMATE "ON" RESISTANCE VOS(offl (NORMALIZED) V a: I........ 0: / ~ 0: a V ~ .,? V MIN MAX VGS(off) CUTOFF VOLTAGE l1li Saturation Current vs ON Resistance MAX \\ \ ffia: a: \\. ~ <.J Z \ o ~ 0: ~ "- on on on "- ."-.. f'... ........ l'- ..... ........ 9 MIN I"""" MAX MIN rOSlon) ON RESISTANCE 'When 10> 5 X 102 Siliconix 4-1 H n-channel DMOS FEY designed for " " " • • 190MILS BACKSIDE - SUBSTRATE DIESIZE~190X Siliconix Ultra high speed switching High gain amphfication BENEFITS: • • TYPE Pf.CKAGE PRINCIPAL DEVICES Single TO-72 S02100E. S0211 OE S02120E. S02130E S02140E. S02150E Quad Dual 10 LlOe 16 Pm Side Braze S05000l, S050011 S050021 Dual 10 Line 16 Pin Plastic S05000N, S05001 N S05002N Surface Mount SO-14 S05400CY, S05401 CY S05402CY Ch,p/Wafer AvaJiable as above specifications ALL DIMENSIONS IN INCHES (ALL DIMENSIONS IN MILLIMETERS) 0004 0004 0004 0004 (0102) ;01021 (0"i021 ;0;0]) Switching speed < 1 ns Gain gfs > 10,000 "mhos DIESIZE=350XJ50MILS BACKSIDE ~ SUBSTRATE PERFORMANCE CURVES (25°C unless otherwise noted) Drain Current vs Drain to Source Voltage Dram to Source Resistance vs Gate to Source Voltage 80 r-:V-:-D-S~'-:-:,.-:-V,--,--,.--,----, 70~-1--_+--~-1-~~ E 100 Leakage vs Voltage r-"TT11Wn""T"""T---.-r--.----r-""T"---' 10-; , - , . - - , - - , - - , . - - , :£ 108~_~_-+ « ~ ~ < ~ u ~ ~ 30~-1--_+-i~~~1--~ 5l 20~-1--~~~~-1--~ "' ':116"111 o 2 VGS ~ 4 6 8 40~+-+-+-' "g ~ 5 J vds ~ l v 30 ~ z ~ ~ u 25 20 II VGS - 4V I vJs·lv '0 ...... 80 ,,6"I~ 60 "'~ I I I 12 16 40 Z VGS - 2 V VOS - ORAIN TO SOURCE VOLTAGE (VI 4-2 100 ~ Q 20 20 25 Forward Transconductance vs Drain Current u II 20 Dram to Source Resistance vs Temperature ~ ~ I,. I I VOLTAGE (VOLTS) u :i 10 VGS - GATE TO SOURCE VOLTAGE (VOLTS) VV ~ ,. 1/ ~ iJ " I"' ..... z 10 10 Q Dram Current vs Gate to Source Voltage V~S ~ 0 V 10 9~-+-~--~~-e~~ d 10 40 +-_~_-+ Q z GATE TO SOURCE VOLTAGE (VOLTS) 35 __ . ~ r-" '::. ~ -60 -20 V :::: ~~ ""k ;... ~ ~ ~ :::=:~r )0= SmA VBS - OV 20 60 '00 TEMPERATURE ( C) Siliconix 140 10 - DRAIN CURRENT (mAl PERFORMANCE CURVES (Cont'd) (25°C unless otherwise noted) Threshold Voltage vs Source to Substrate Voltage Threshold Voltage vs Temperature 25 3 VBS~-10V VBs~ 2 VaS"'_TV r- 1 VBS"'_O~ 10 = lilA I- -L f-+f-+r-r- ~ ~r- ~ 0 20 ~ 15 "~ 0 > 0 10 ~ 05 i= I" .... V 1/ V /' V V 10 -lj.1A VGS = Vos = Vth VGS = Vos '" Vth -60 20 20 60 TA =25 C 100 140 lao -10 TEMPERATURE [ C) SOURCE TO SUBSTRATE VOLTAGE (VOL IS) Capacitance vs Gate to Sou rce Voltage Common-Source Output Conductance vs Drain Current ............. 5 ........ 2 1 - "" - - Leakage vs Temperature VDSO lO::±-Vas = VGS F = 1 MHz CI(GSt S8) Ibo 8 5 1 t ~ JBI 12 GATE TO SOURCE VOLTAGE (VOL IS) I~ ~ 800 J"~ .J.Q~+·.:;)2 600 '//'t ':.I/' 40 0 ~ g ~ IDGII 10 , Z C(GS+GO+GB! C 1000 ~ j "z ~ I I I I - 14 TEMPERATURE ('C) 200 I- /~ /' ~~ --"!!~ ,.. ~ 0 12 16 20 10 - DRAIN CURRENT (mAl Siliconix 4-3 enhancement-type n-channel MOSFET designed for ••• 1 L---....f----+-l H Siliconix • Audio Amplifiers BENEFITS: • Analog Circuits • • Digital Switching Circuits Integrated Zener Clamp Protects the Gate • Commutating Circuits • Normally OFF TYPE PACKAGE PRINCIPAL DEVICES Single Single TO-72 Ml16 Ml16CHP Chip ALL WMEPoSIONS IN INCHES (ALL DIMENSIONS IN MILLIMFTEFIS' PERFORMANCE CURVES (25°C unless otherwise noted) Output Characteristics Transfer Characteristic 20 20 V BS '" 0 VGS'" lOV .§. 16 ~ ~_ => '2 ". '-' " f-VGS'" Vos Vss" 0 ..... " II 9V= / J .v /' 6V '" ,J 7V C I o Ii 3V 4V / SV V V '0 10 VGS - GATE-SOURCE VOL lAGE (VOllS) Vos - DRAIN-SOURCE VOLTAGE (VOL TS) Forward Transconductance vs Drain Current Low Voltage Output Characteristics 5000 a 2 +25~ Vss" 0 f= 1 kHz r--- ~ I vJsJ"t r- /' f-+--+-+--t-h --r--- ,/' ./ +125 C -- - 1-- ! - /' '/ " '"" '/ C I - 1-- 0' 2 " 6 8 10 - DRAIN Vos - DRAIN-SOURCE VOL lAGE (VOL is) 10 12 14 CURR~NT 16 18 20 (rnA) Output Conductance vs Drain Current Drain-Source ON State Resistance vs Gate-Source Bias -1-- - -- - ,-- +12S'C 1---1----- !'-V-+_+_+-_+___ _. __ _ '0 0~~2----C4----C~6-=.-:'':-0-':':2----:"4:--:'':-6-:':'.~20 '0 0~~2----C4C-6::-~.-:'0':---:':':-2-:':'4----:"6:-:'~.-"20· 10 - DRAIN CURRENT lmA) VGS - GATE-SOURCE VOLTAGE lVOL lSI 4-4 Siliconix PERFORMANCE CURVES (Cont'd) (25°C unless otherwise noted) Substrate Capacitance vs Voltage k-+- I! 1~H' +-++-+-+---j w "~ 0 16 I----'t'--+---i--I-+-+-+++--j ~ 121--\~__l-r~~~I-+-+-r.-+~ C,b ~ I. 0 12 ~~ Z ~o ~~ '-~ w 81-~~+-+--1---+-'--~~~~~ ~ ~ .~t==C"=!~::~$:~~Cd~bir-~ " I @ > 16 12 20 -I-YGs·Jos 10= lOIlA 16 > g u 5 - 20 2'r-'--r-r-'--r-~'--r-r-' ~w I. Gate Threshold Voltage vs Substrate Bias ./ V V 10 V / • L 6 • 2 0 -5 -10 -15 -20 Vas - SUBSTRATE-SOURCE BIAS (VOL IS) VSS/VOB - SDURCEIDAAIN·SUBSTRATE VOL lAGE (VOL lSI Gate Leakage Current vs Gate-Source Bias Gate Capacitance vs Voltage C,d /f--2 I- 12 16 1 20 o 10 15 20 25 30 VGS - GATE-SOURCE VOL TAGE (VOL lSI VGSIVGO - GATE-SOURCE/DRAIN VOL lAGE (VOL lSI Source-Drain Leakage Currents vs Voltage II1II Siliconix 4-5 enhancement-type !Khannel MOSFET H Siliconix designed for ••• • • Analog and Digital Switching General Purpose Amplifiers • Smoke Detectors BENEFITS: all dimensions In inches lall dlmensions in millimeters) TYPE Single Single Single • High Gata Trensientlfeltage BreakdDWn Eliminates Need for Gate Protective Diode Ultra-High Input Impedance • • Low Leakage Normally OFF • PACKAGE PRINCIPAL DEVICES TO-t8 TO-72 Chip MFE823 3N163-64 3N163~4CHP,MFE823CHP PERFORMANCE CURVES (25°C unless otherwise noted) Output Characteristics -so Vas 1-40 -16V 0: ::J -30 ....... r- I. "i5 ~ -10 l- V J ::'2J.= .... - t:::"!;J-: 1= A/ r- I V 8'!.= I;;;:; I;;;:; l ..... V 6"-= V ~io' - -12 VGS - GATE-SOURCE VOLTAGE (VOLTS) Low-Level Output Characteristics -'000 r'--r-"T:-:-r-r-'..-r-,.-,--, ¢ J -14V ...- - Ib -20 c P _~DS"VGS Ves=D ..... r- ~,.J.= l=I-- r- ffi0: ~ Transfer Characteristic VGS--20V 0 10 (on) - DRAIN ON CURRENT (rnA) Silicanix PERFORMANCE CURVES (Cont'd) (25°C unless otherwise noted) Drain-Source ON Resistance vs Gate-Source Voltage Low-Level ON Drain-Source Voltage vs Gate-Source Voltage lOOK ~ 25 o 'o-'~O~~ vSS-o_f-- ~ -- 10= lOrnA ID",OmA ~ 515 "- > w "5'" 1.0 "I z <1 TA"'+125 C !3 Q r-+-+-i' 'i2SjC '0 0 o -2 -4 -6 05 " I :g I > -2 -8 -10 -12 -14 -16 -18 -20 VGS - GATE-SOURCE VOLTAGE (VOL TSI / CISS 24 y ii:' 21 'z" 18 ~ 12 ~ ~ 15 ~ -8 -10 -12 -14 -16 -18 -20 Drain-Source Leakage Current vs Temperature Voltage 27 -4 -6 VGS - GATE-SOURCE VOLTAGE iVOL TS) Capacitance vs Gate-Source 30 10 I o ID(Off)-VGS-VBS-O.VDS=-20V~~ ISloft) - VGO = VsO" 0, VSD os -20 V ;....-t-r )7 v'os J-'S'V vas" O Coss 'i' I- ....- I I ,oHm,1 20 ISloff) MHz IOfof,t- I I 09 c", O. , f--'" I 03 -'2 I 16 00 20 VGS - GATE-SOURCE VOLTAGE (VOLTS) , 10 30 50 70 90 T-TEMPERATURE Siliconix 110 130 150 rei 4-7 III n-channel JFETs U H designed lor • Z • 1 "" • • • (Om; j Silicanix Analog Switches BENEFITS: Commutators • No Offset or Error Voltages Generated by Closed Switch. Purely Resistive. High Isolation Resistance From • High Off· Isolation IDloffl • High Speed tON Choppers Integrator Reset Switch Driver < 100 pA < 20 ns TYPE Single PACKAGE TO·18 Single TO·92 Dual Single TO·71 Chip Dual Chip 2N5566 Chip Set, DN5566 Chip Set On Resistance & Output Conductance vs GateSource Cutoff Voltage Gate Operating Current vs Drain Gate Voltage ALL DIMENSIONS IN INCHES /ALL DIMENSIONS IN MILLIMETERSI PRINCIPAL DEVICES 2N3970·72, 2N4091·93, 2N4391·93 2N4856·61, 2N4856A·61 A. FN4392,93 U200·01, VCR2N 2N5638·40, 2N5653·54, Jlll·13 PN4091 ,93 PN4391·93 Ul 897·99 2N5564·66, ON5564·66, ON5667 All of above single devices available In ch ip form PERFORMANCE CURVES (25°C unless otherwise noted) Drain Current & Transconductance vs Gate Source Voltage ~ 76~Lt.ll00 200 .ffi .s ~ ~ lOSS. Vos '" 20V. VGS = OV DIs VOS=l5V,VGS=OV VGSloffl. Vos = 10V. 10 = 11lA 0: 0: 1l I z ~ o Z o 100 ~ V V17 IY V V "1 I I- 17 o ./ ~ !il ~ ~ m " II: 45 ;I ~ > Pii 30 C 17,,0.... 15 ~ ~ 3" o ~ I- ~ 10= t- -5 -10V f')c 2 t-- ~ r- "'",k I - 9r S' 1/ rOSlon)' VGS I .... 100~A =0 '0 10j' jA J I ~~~ : ~5~ o VGSloff) - GATE·SOURCE CUTOFF VOLTAGE (VOLTS) 1000 100 /II \ i i Til IZ 10m~~ I-I S (fNI 20 -10 -5 '0 0 I g~:::~g~:~OV_ '=1MHz s n1f~1!!!V J E .sw ."" "" ."" JI 111111111 VGSloff)- -8 0 V • to.... ens 1"·8 I!: l- t-- I- a -12 V 0., -16 ·20 VOS - GATE-SOURCE VOL TAGE (VOLTS) 01 111111 111111111 111111 111111111 10 10 Transfer Characteristics 16o \ I ~~ -~Q o. l' ~ -2 -4 ~ 120 ~ 30 :::t DO o I .9 40 " -10 ""z :::t ~~~r ~~~ 'iIIIo, -8 40 z 0: -6 VOS = 20V 1 . Z VGS - GATE·SOURCE VOLTAGE (VOLTS) 4-8 Transfer Characteristics 1 1l ~~ 40 ,0 1 10 - ORAIN CURRENT (mAl VOS"20V !; \ ~ 120 0: ;..~~""~ il E ~ 0.1 50 160 !; 80 -6V Transfer Characteristics VOS = 20V Zi ! 200 1 VES(OFFI = -2V ...: 0, 11100 .1 Jlilll 10 - DRAIN CURRENT (mA) 200 a: c 100 30 ig f~~~kHr5~ 111111 I 11111111 :is 10 I!'$ '" VGS(off) = -2 0 V "0I 26 ,00 ~i 0 20 Transconductance vs Drain Current ~ 01 Z ~CISS ·4 z 111111111 VGS--50V ~ I'\. '" ,. Z 21,\ 4 Common·Source Output Conductance vs Drain Current '5 VOG - ORAIN GATE VOLTAGE (VOL lS) VGS(OFFI-GATE·SOURCE CUTOFF VOLTAGE (VOLTSI Common-Source Capacitances vs Gate-Source Voltage r- 2 m~ IGlon)@IO • _ JLLgos \ ~Z ~~ 50 II:~ I ..... I--"'V l- J-,,~ § 60 VGS(OFFI VOS = 'OV- I I I I 1.1 l- o. I I -~o'\r-6'o I ..... :::::;;; "'" Silicanix Q Q tS~~~ 9, 0 -2 -3 -1 -5 -4 VGS - GATE-50URCE VOLTAGE (VOLTS) ~~~. 20 ~~ 0: o ~~ \ 0 '--r--'~ ........ 05 ~ ~~ 10 I'. 15 20 VGS - GATE SOURCE VOLTAGE (VOLTS) 25 Z m PERFORMANCE CURVES (Cont'd) (25°C unless otherwise noted) Output Characteristic (V GS(off) = -1.5V) VGS=IO/~ 'I VGS·~3V / I.'! iff, I , V~ ...... I---" 02 f- - I- VG1S=05V - --IJ ~- VGS' -0 2~ 12 - ..:c:.1 11 J~ i--'" I. 00 f.v;t.,lov 5 2v r- VGS=1 4~j VGS",,6V as 04 V s= 16 12 i.--" 1-1""" 30 V 1/l- f- 1... b a: a: f/l/ ""z ~ V 10 e, i--" 9 r- BV 20 ;J- I vI '/ 1/ a: a: 1/, 1 / / r/, ""z ", 1//, ~ '/ a: e 9 4 , / VGS=-15V ....1 VGr-25V ~ J~ / 80 S 1/ a: / IiI 1/ il / /1 V / III if / ...... ~ /,; V A~ ~ I---" 00 01 v~s=-~v VGS I-O,8V r-- VGS=-10V :: VGs=-12V e ,s r- Is '/ /' " Z 1 r-I-- K ± = ~IF/~VF =I~VFI"F -J504 4 6 VFIV) - ~ '-- -- I-I-- 5 2 VFi 25V J501 o 50 10 (STEADY STATE)- J507/8 ~GOS 40 =10 (PULSED. DATA SHEETVALUEI== J511 / o 30 Typical Variation of 10 with Temperature Steady State and Pulsed Value Family Curves I-~Fl 20 VF - FORWARD VOl.T AGE (VOLTS) IF -LIMITER CURRENT (mAl 100 -50 10 -25 25 50 75 100 125 T - TEMPERATURE ("Cl Siliconix 4-11 ... n-channel JFET % H designed for • • • Z ALL DIMENSIONS IN IN6~:1} Silicanix • VHF/UHF Amplifi.rs • Oscillators • Mixers • Low Input Capacitance High Speed Switch BENEFITS: • Low Noise NF = 3 dB Tvpical @400 MHz TYPE Single Single PACKAGE TO-72 TO-92 Single Chip (ALL DIMENSIONS IN MILl/METERSI • Wid.band High 9fs/Ciss Ratio PRINCIPAL DEVICES 2N3966, ?N4416-16A, 2N3819, 2N4223-4, 2N5484-6, 2N5555, 2N5668-70, MPF102, MPF10B, MPFI12, PN4416, J304-5, MPF109, MPF111 All of the above devices PERFORMANCE CURVES (25°C unless otherwise noted) On Resistance & Output Conductance vs GateSource Cutoff Voltage ~ §. 400 Drain Current & Transconductance vs Gate Source Cutoff Voltage r--r~~~~~~----;---'40 _ U ~, Z 0 w ~ 300 1---+-\~r-""':r-"':-r--W'--l30 c ~~ ~ 8 ~200 20e; i ~ , ~ 100 ~ o 10 m 3 ! I 26 ,---.,.---.,.---.,.---.,.---.,.-..,.. 7 ! ~ 20 ~ ~ U Z :o 15 5 o 10 4 ~ 3 ~ 2 ~ 100 .,. Vas-GATE·SOURCE VOLTAGE IVOLTS) Output CharacterIStic (VGS(off) = -4.0V) ~ ~ 0' ! 32 ~ > ........... "- ., w U:;'-!'5~ IO=5mA 2. 24 ,. 12 " is Z I ,';f a o 10 15 15 Equivalent Input Noise Voltage vs Frequency 0 10 10 VOG-ORAIN GATE VOLTAGE IV} "~ VGS(off)0I-2V 20 25 30 ,0 Transconductance vs Drain Current ,K '00 'OK 100K f - FREQUENCY 1Hz) Vos - DRAIN-SOURCE VOLTAGE IVOLTSI '6 Transconductance Characteristics 7 VGS a V' VOG - 15V f - 1 kHz 1J VI- vGS,' .~ 5V l/ VGS , OV I 1 VGf '1 5v vGf 2 10v VGS 25V VGS 3 OV 6 ....... -2V ~ 5 VGSIOFFI = -35V '/ 12 vDS 16 20 DRAIN-SOURCE VOLTAGE jVOLTSI l\ r..... VOS= lSV '''1 kHz I' N, "- ~ I" r--..~r\.. 3 4 " _55°C ~+25°C I-f- ~125OC J~~ J".. ,,~ ~ , 2 4-12 o :s -~ \ ~,\VGS(offl· -4 v ~ B ·'2 01 mA o:-§ VGS= f-1kHz= w " ·B ~ Vas loffl-GATE-SOURCE CUTOFF VOLTAGE (VOLTSI §, ·4 9"" 'mA 100 ~ = 5 mA 3" ~ o ~ 0 , "" o ~ 10 ~ I-" '-'" -..:: ::::- w oS ~ § '000 I 0 ~ c Common-Source Output Conductance vs Drain-Source Voltage I ~ ~ Z Common Source Input Capacitance vs Gate-Source Voltage ~ ~~g:~~~v IGIONI@IO C[ 1000 ::D ~ ~ ~~os!ov ~ I ~ VGS(offl- GATE SOURCE CUTOFF VOLTAGE (VOLTS) I Gate Operating Current vs Drain- Gate Voltage ',0 ID-ORAIN CURRENT ImAI Silicanix '0 +25.C7. +12S·C .......... ., I' ·2 -3 I'~ ·4 ·5 VGS - GATE-SOURCE VOLTAGE (VOLTS) z PERFORMANCE CURVES (Cont'd) (25°C unless otherwise noted) Output Characteristic (VGS(off) = ~1.0V) Output Characteristic (VGS(off) = -2V) ,u 14 I/VGS=OV I I l/vGS--04v 1 _16 ".s >a:i I III 12 1/ I a: a: ::> r/, CJ z DB ;; VI. a: c ~ VV ,• 04 o ~GSi-T I- v .... o IGSI O I-' VGS=-12V ~ - - 04 02 VGS=-14V 04 08 1 2 1 6 o 2,0 VOS-DRAIN-SOURCE VOLTAGE (VOLTS) VGS-OI -12 / 'I hI 'III / V 01 ~ 0 .... -16 +125°C~ -20 9 JI), / 1 J. iiia: 1 1 ::> If r- z VGS=, a: I 92 00 10 VGS·O/. I '/ .s ~ ~ 06 12 ~ 04 ~ o I ,/ rl f/ II 1 / ffia: CJ 2 a: C I I 9 VGs'-16v VGS'O I II 1- 02 04 06 08 10 Vos - DRAIN SOURCE VOLTAGE (VOLTS) ,/ /' '1/ / ..... VGS= -1 2V 4 12 16 20 VDS - DRAIN SOURCE VOLTAGE (VOLTS) Siliconix fl.V IE. ..- 00 VDS TT / /I I. I 'II / 14v ' - VG~.tJ I /VGso-l OV I /VGso-15V I- - VG!= VGS'~OB~i~GS'-1 OV -16 Output Characteristic (VGS(off) = -4.0V) a: z ;; -12 -B -4 VGS -GATE-SOURCE VOLTAGE (VOLTS) I vGS=-'2V o 00 VGi·-J2V ::> VGs=-Dav 1// 20 - 5 ~GS!OV - I- VbS'-06V_ f- ...- 16 r-. VOS -lOV Output Characteristic (VGS(off) = -1.5V) /l CJ o I .9 02 I /VGS'-r v IJI a: ::> 1 ~os" ov VDS-DRAIN SOURCE VOLTAGE (VOLTS) vds. 02J I '\ 5-~0 ... VGS=12V VGS=14V =16V VGS=' BV GS=2.0V C Output Characteristic (V GS(off) = -1.5V) 4' 08 -5 1\ VGS 06V VGS OBV .... CJ ;; VOS-DRAIN·saURCE VOLTAGE (VOLTS) 10 -4 I VGS" 04V r a: ~ I VGS: 0 2V I VG'S--J 2V 05 -3 Common Source Reverse Feedback Capacitance vs Gate Source Voltage vGs=ol .s>- 1 -~GSh, rv ~J /' , """ -2 VGS - GATE-SOURCE VOLTAGE (VOL TSI 25 I -, .........IVGS=-OBV 0 VOS - DRAIN SOURCE VOLTAGE IVOLTS) ;; B 'VG~.j6V- I, / >- ::> -8 VGS._02:{+= , , , III V 55 C -1 -4 Output Characteristic (VGS(off) = -3.0V) VGS=-04V ;; Is; I/J t-- :~~~~c -5~0L"\ l\. .~ [.25°C ~ 10 02 "z 0t Q4V VGS= -05V o Output Characteristic (VGS(off) = -1.5V) -'~ a: ~GS; VGS= 1 "'-,,,'\\ I'\. i VIGS -0 IV a: 9 21\ II "z 06 ;; ~DS~ 15 v_ I I 6 \ VGS = -0 tV ~ 08 ::> lVGS=-10V Jl V !,o / ::l I Transfer Characteristics 20 II 12 ~GS'· -d6V l - I- 1/ ::c VGs=-20V I _--,1;-1 'fGS;-2t : VG f·- 3,oV 4 12 16 20 DRAIN SOURCE VOLTAGE (VOLTS) l1li 4-13 ::t Z PERFORMANCE CURVES (Cont'd) (25°C unless otherwise noted) Common-Source Input Admittance vs Frequency '00 ~VDS-16V !===vGS-o I b'!,.. Yls· ... +Jb,1 "' '0 ~ ... , £ i , g 200 300 400 600 8001000 f - FREQUENCV (MHz) -t-ttt b.. yos=aos+Jbos --'". 00 'DO 200 300 400 GOD BOO 1000 f - FREnUENCY (MHz) !"~ , E001100 200 300 400 600 BOO 1000 f - FREQUENCY (MHz) 5 Parameters 511 Common-Source vs Frequency ~ ~ 09 r---..... ~"" .......... 8 ~ ~ ~07 -50~ ~ 4~ ~ 061---+V -,4--'-I-+-H+H-30 g ~ .-" 100 200 300 500 700 m -10 1000 5 Parameters 522 Common-Source vs Frequency ' ~ ~. ~09 -401 ~ ~~ !iDS -30~ ~07 20- ~ ~~ !::ld4 1111111~:1 200 300 500 f - FREQUENCY (MHz) 4-14 Siliconix 09 VOS"'5V 08 VGS=O 60 50 "- • 3D \. 10 700 1000 :im" 7 , 80 70 OS 100 200 300 ~ 20'" , ~ , ZG=ZL=50n+Jo • .. 40, 600 f - FREQUENCY (MHzl f - FREQUENCY (MHz) 100 , , , , , 0 -90 -GO ----300 400 600 8001000 200 f - FREQUENCY {MHz} 5 Parameters 521 Common-Source vs Frequency -100 ~ ~~~: ~5 v +--+--+'-'!.'-+--hl1-H-80 ~ ~ 05 -b n -Uri r- I 0 100 ... ~ _~DSI:15V -VGS-O ~O"~~!!BI , i-""'-bh ~ 08 ZG = ZL .. 50 U+ 10 f-+-+\-'l.4-iH-i-70 m , 10 Y12 _ ~ ... ,0F====::C:::-TllrnTn- 110 y22 =~DS·'SV -VGS-O , ....- 10 ~ ICommon-source Output Admittance vs Frequency 0 -gfs ~c ! ~ '0 ~ Common-Source Reverse Transfer Admittance vs Frequency w 10 Yrs--grs-lbrs~V yfs" gil pJbfs ~ f( ./ 0 ~~~~:~5V "' ~ ~ i, Common-Source ForWI!!"Q -;Transfer Admittance vs Frequency 10o Y21 700 60 1000 n-channel JFET H designed lor • • • ALL DIMENSIONS IN INCHES /ALL DIMENSIONS INMILLlJ.lETERSJ Silicanix • Low ON Resistance Analog Switches BENEFITS: • • Low Insertion Loss Small Error in Meesurement Systems VOS(onl < 50 mV (2N54321 • High Off-Isolation IO(om • • High Speed td (on I < 4 ns Low Noise Audio-Freq Amplification eN < 2 nV l../Hz at 1 kHz • Commutators • • Choppers Integrator Reset Capacitors • Low Noise Audio Amplifiers TYPE PACKAGE Single Single Single TO-52 TO-92 Chip -"z < 200 pA PRINCIPAL DEVICES 2N5432-34 Jl0B-l0 All of the above devices PERFORMANCE CURVES (2S·C unless otherwise noted) . Drain ·Current &-i=o-i'wardTransconductance vs Gate Source Cutoff Voltage ~ 800 "DSJ. vds·. kv J. ffi TI.VGS~OV ~ 800 _ VGSloffl.'VD~~'OV 'D~'"A / i3 V ~ "y is ~ 200 ~ • 60 fl~. VOS= 10V lI VGri I 0 o ~ • 00 60 '0 'A- .. ~ ill '" -I ~- III ..:<: C 10sy .l. f.--' ~ I 200 Vl / ~ i'l J 1/ ~ ,..... 260 ~ / z c 400 L On Resistance & Output Conductance vs GateSource Cutoff Voltage ~ .6 10-10SS !!1 ge ~ '0 • 0Z -I n C 10 IO=1/o1A 2 "'- 0 o ! IO=200pA ~ , c: ~ ~ ] .0 f 1 100 0 ~ u 60 ./~ '0 10 16 ~ 20 26 30 VOG-DRAIN-GATE VOLTAGE (VOLTS) Equivalent Input Noise Voltage and Noise Current vs Frequency Common Source Input Capacitance vs Gate-Source Voltage eo D~'mA,ji IO=10mA VGS(off)-GATE-SOURCE CUTOFF VOLTAGE IVOLTS) w J ;! ~ ~S=10V 6 4 '00 ~I 10 I .00 ~"c •2bs ! \ g z !l !; c~ Common Source Reverse Feedback Capacitance vs Gate Source Voltage ~ reSlon): VGS" OV le""OmA ,/ w~ I~ .00 w VGS(off)-GATE-SOURCE CUTOFF VOLTAGE (VOLTS) ~ • ....... ..V"". 48 Dot: VOS· 10V u" f;l Gate Operating Current vs Drain-Gate Voltage ii' ~ I z !'oo~ 40 1\ \\ \ " /VOS~6V 0 D' f--.\.. 1. VD~P10V 00 -4 -8 -12 -16 VGS -GATE-SOURCE VOLTAGE (VOLTS) Transfer Characteristics VOS=20V <400 ~ !Z .i3 ~300 z a 200 1 u :J c Z c Olz \ \ "- c r-.. ~- - .. ~ t:::::~::"':===>J...mlllll....L.LlllIW • .-'· 1K 10K .OOK .00 -8 -12 -16 f- FREQUENCY 1Hz) Forward Transconductance vs Gate Source Voltage .80 ......... 120 VDS .. 20V f a 1 kHz b,. i'- t'..... 1\ \ \ , ~ ~ \ r\ 60 ~ " '" "'" -. . .." .. I- '\I" ~ o-'5~ !!1 I :=r 1 -4 10 g ill VGS-GATE-SOURCE VOLTAGE (VOLTS) I- I ~ ~~sl'oV o ~ \ :5 9,00 o IoS 600 oS .......... VOS=OV ,~ ...... VyDS~,6V YOs=OY 20 ~~ g 0' 0-14~ , o . -1 -2 -3 -4 -5 -6 VGS - GATE-SOURCE VOLTAGE (VOLTS) VGS - GATE-50URCE VOLTAGE (VOLTS) Siliconix 4-15 - I A. Z PERFORMANCE CURVES (Cont'd) (2S0C unless otherwise noted) Output Characteristic Output Characteristic (VGS(off) = -1.5V) 20 0 I VGS-O II 'f "~ E ,I"t- vtT ~ 10 ," :> ".;; '/ is, '/ r ~ 00 /' .... ,... ,... -- ~ 1<, 0 :> I< -VGS~-O 4V 1VGS·-O 1 5V t-" I< , ~ I~ 7V VG~='D~V - vJS"rV,- l - I- H~S"-:OBV O. 04 /h Ie 00 , 0 DB 50 .Ii 40 V E- ffi .. . 30 ." 20 -I- V V Q I 9'0 - -- - :> ~ i.- .... " E- VGS='O 2V .......... y.::; " Z 30 Q 20 . ;; VGS·-O 5V I I VGs=·Q 6V V 's=-O 7V ,. 40 !5 1 1 ~rOt I ~ "..- '2 10 ~::::: 0 VGS' _0'2V f-" IVGSI• Lv Vas= 04V E- '" VGS"}ov VGS=·1.6V 1,/ 0: 0: 0: ~ VGS=-20V V~6V ,... ;; 07V ,. VdS"-J5V rV "Uz 200 y/ ,YGS· ~ VGS -09V 12 "..- '/ ~ 300 VGS= _06V a !I " VGS -05V - 10 IVGs"o 400 f-" 0 VOS-DRAIN·SOURCE VOLTAGE (VOLTS) 08 Vas=O VGS" -'11\' I ..... ..- !? 20 I y VGS-'O 8V 00 ..- V 50 ~ IVG~_-O ~v 06 500 70 r-++O!V 04 v Output Characteristic (VGS(off) = -6.5V) (VGS(off) = -2V) 60 t:::t 02 Output Characteristic ~VGS OV ,... -- VGS'" VDS-DRAIN·SOURCE VOLTAGE IVOLTS) VOS-DRAiN.SOURCE VOLTAGE (VOLTS) Output Characteristic (V GS(off) = -1.5V) /' V .1':/ V~S=-12V 02 ....f~V - / // VGS"'-10V I- 00 VGt"2J- 1/ I. I VGS"'1V II 1/ V Vos-ORAIN·SOURCE VOlTAGE IVOLTSI I l- I "" C VGS -0 BV VGS~'O 'I 'I "z ;; VVGS"OV /YGs"-02V I I / I V II ~ - JGS--r 3V '00 vGS~1 - /,VGS--02V I, 'IV ./ Output Characteristic (VGS(off) = -6.5V) (VGS(off) = -2.0V) 100 VGS=·36V ~ ~ o VGS=·3.0V VGS=·40V G8=·46V o 4 B 12 16 20 VOS-DRAIN·SOURCE VOLTAGE (VOLTS) 20 VOS - DRAIN SOURCE VOLTAGE (VOLTS) Output Characteristic (VGS(off) = -9.0V) 'DO +_ I VGS"OY vGS;'r VGF"2y 'll V VGSi3V BO /,1 ,/ ~ /' V o o .. iQ 0.4 08 0•• ~ ~0: ... ;; Q w V '0 ~ ~ bIg Q ~ ~ w > 1 '0 ~ I 50 ; 70 100 f _ FREQUENCY (MHz) BOO 1 600 ~ .. ~ :;) 400 " Z ~ ~ 200 ~ .... --- V~ It ~ r/ .... V .... V ..... v:: ..- I-' - '0 VGS-O ~DDI= ,I5V I 1_ VGSIOFF) -'2V TA +2i c vGs--Io 80 VQSO-;Z ov =1= VGS--25V ~ ;:: I .0 2 ~ I< VGS--30V VGS--35V G8--40V VGS"-45V v,s~-i 0 =1 e VGS-·'5V I'.... 40 20 12 '6 20 4-16 r-.... 1~=J'mr ~ ~ - -20 ! 40 ~ -60 -80 '0 VGSIOFFI-GATE-SOURCE CUTOFF VOLTAGE IVI Siliconix T~ ='25°t ' '_ VtSTFF\ = ti- VGS{OrFI = -8SV I, .' VGSIOFF) = -55V 1'0.: ~ 20 1 -10 .'\ 30 o -40 200 100 VOO= 1$V ::J 1 o 50 t:: t? zI< ..... 70 f - FREQUENCV (MHz) Switching Turn-On Time vs Drain Current ;:: lo=36mA 1 I o VOS-DRAIN·SOURCE VOLTAGE WaLTS) - I I F:! r- - = 1 50 10 ~ Switching Turn-On vs Gate-Source Voltage VGS-5V I 0' w 0;: 200 VOS-DRAIN SOURCE VOLTAGE (VOLTS) Output Characteristic (VGS(off) = -9.0V) 10 w ~ 1.0 '0 .. .... . -gig if I VOG=20V lo-20mA ~ 0: JGS"~V I02 ~ '00 I- Et:J~ JJ.~ I. ~ w VOG-2DV I =20mA ~ ... VGS"6V I -; 1K E- 1l l- I ,... II/, '/ Reverse Transfer Admittance Common Gate vs Frequency i VGS"'4V /1 / fl. Forward Transfer Admittance Common Gate vs FrequenCY i 1K '" VGrOJFIJ o ~ t'-- -T I': b.:: t:-- IJ J 1 50 '0 '5 20 to-DRAIN CURRENT (mAl 25 n-channel JFET current regulator diode H Siliconix designed for • • • BENEFITS: • • Current Regulation Current Limiting • • Biasing Low Voltage References • • Simple Two Lead Current Source Current Insensitive to Temperature Changes. Temperature Coefficient Better Than O.15%rC On All Devices ALLDIMlNSIDNSININCHlS rALL DIMENSIONS IN MILLIMETERSI TYPE Smgle PACKAGE TO-IS (2-lead) Smgle Chip z p PRINCIPAL DEVICES CR022 Thru CR062 CRR0240 Thru CRROS60 All of above • TO·1S Package for Improved Current Control • Simplifies Floating Current Sources No Power Supplies Required PERFORMANCE CURVES (25°C unless otherwise noted) Knee Impedance vs Regulator Current Dynamic Impedance vs Regulator Current Limiting Voltage @ 0.8 IF vs Regulator Current 10 100 VF = 25V VF= 25V ~w ...iii u 2 ~0 ~ ....... 10 w '~" c 10 > ;!l i 'E" ~;; 2 ~ 10 c>I ~ DOl 0.1 ~-L-L~~~ 01 10 IF-REGULATOR CURRENT (mAl Temperature Coefficient -SSoC';;Tj';;2SoC vs Regulator Current u ~ 010 1--I-I-+++HtI--+-++++1ttI I 0.05 1~ 01 10 1---t-t-+-t+lMl---t-t+++1ttl i Thermal Resistance vs Power Dissipation 015 \--I-I-+++t+lt--+-++++tttI 010 1--t-:-f+++I+tI--+-t+H11tH ~ '- 1000 -OJ.:.:,_ ~ 0 05 I----t--J.-+-++tttf---+-++~H+I ~ -005 1---++-1I-ttl1t----jH+l+tttl 1-0 10 * i!! -0.15 1---t-tH--t+H+I---t-t+++1ttl 1---t-t-+-t+tttf----t--t+++1ttl 01 1.0 IF-REGULATOR CURRENT (mAl ~ -0.05 1--++HH+1t-H-++1l+tftl * -0 15 10 0.1 1.0 IF-REGULATOR CURRENT (mAl " '=1MHz 5 170 ~ 150 10 20 40 1 " I' i L SOD -- I CR043- I 300 400 IF !!>AI 500 600 o CR030 Y If-'GOS ZFl 200 - 400 06 .!!- 04 50 100 300 08 02 3D 200 Family Curves 110 VF - FORWARD VOL TAGE !VOL TSI 100 PD - POWER OISSIPATION (mW) "- ~ 130 I- 10 ABOVE TC - 25"c INFINITE HEATSINK o 10 ~ r-... 10 RDS vs IF Geometry: NKL 190 0, ~IER~~~~~~~~~ IN 1---+--t+++tttl---+-t+~H+I Capacitance vs Forward Voltage 5 1--:--- RANGE TA- 2S·C STILL AIR, CURRENT ' ~ -0.10 I---+-++++I-*I---+-++~H+I 0 ~- - -~~ --= w 25 :::±,.t; 0J-c 8w W II: 10 IF-REGULATOR CURRENT (mAl Temperature Coefficient 2SoC .;; Tj .;; 12SoC vs Regulator Current ~ 0.15 \---';I-H-t+tHt--If-VF = 25V ~ __~~WWULU 10 IF-REGULATOR CURRENT (mAl o (MHI = ~IF/~VF (!ll = ~VFI"F 4 ftCR022 6 10 VF(VI NOTE: IF. Regulator Current is specified under pulse conditions. In operation, final current will be a function of junction temperature. IF (steady state) = IF x [' + 01 (Tj - 25°C)] where 01 is the temperature coefficient of IF and TJ is the junction temperature. Tj may be found by Tj for all devices. = Tamb + 0j-aPO = Tcase + OJ-cPO. T' must not exceed l50°C.--'--or-'--is the derating factor 0j_ a 0j_ c Silicanix 4-17 ~ z n-channel JFET current regulator diode CATHODE IS BACKSIDE CONTACT ~ r 1_~'O030 i '00'" designed for • • ·• ·· ~~ IIIII1 1-:]'1 A ~ I-r'" I ~ (OJl40) (ALL DIMEr.lSIONS IN MILLIMETERSI . BENEFITS: Simple Two Lead Current Source Current Insensitive to Temperature Changes. Temperature Coefficient Better Than 0.15%1" C On All Devices TO·1B Package for Improved Current Control Simplifies Floating Current Sources No Power Supplies Required Current Regulation • Current limiting • Biasing low Voltage References SlOg Ie PACKAGE TO·18 (2-lead) PRINCIPAL DEVICES CR068 Thru CR150 CRR0800 Thru CRR1250 SlOg Ie Chip All of above TYPE i"43J ALL DIMENSIONS IN INCHES H Siliconix - - • • PERFORMANCE CURVES (25°C unless otherwise noted) Dynamic Impedance vs Regulator Current Knee Impedance vs Regulator Current 100 Limiting Voltage @ 0.8 IF vs Regulator Current 10 10 VF" 25V ;; VF"'6V ~ ~ w ~ w w u Z « U z 10 10 S "~ « S ~ iu 0 « i2 z 10 ~ I Ii: I iii V- 10 > z ;: w w ;; VF= 25 V ~0 ;; " 01 ;; :l I ~ > D1 u ~ ... ill 1 001 01 10 10 10 Temperature Coefficient -55°C ~ T J ~ 25°C vs Regulator Current Temperature Coefficient 25°C ~ Tj ~ 125°C vs Regulator Current Thermal Resistance vs ~... VF" 25 V u i.l 010 ~ 005 Power DIssipation 1000 VF= 25V 015 ~ ...u w DOS 0 8w 0 Ir I 0 ~ « _-+ ~ -010 ~ - ~-0151 II 01 ~I II 1111111 10 .!.. -0 15 1111111 10 ..... , f= 1 MHz 15 § ... 5 a r--.. 10 II: II: ::J 900 30 40 50 300 400 500 CR150 1.6 ", I III 12 " 3 Iii 1 DO CR120 CR~91 , 08 ::J "'i'--, 20 200 20 II: "\ II: I u 100 1.1 ~ '" ~'OOO 10:\ g \ 1100 w ~ 0 Family Output Characteristics 1200 20 • REGULATOR 2fi IN AROVF CIRCUIT BOARD TC - 2SOC INFINITE HEATSINK Po - POWER DISSIPATION (mW) RDS vs IF Capacitance vs Forward Voltage « ... .- IF - REGULATOR CURRENT {mAl 25 ~ 10 10 10 01 IF - REGULATOR CURRENT {mAl I! I i i ~= 25°C STILL AIR. CURRENT I .- ~ ',-, ---~- ----l +-;-r :- ~f~ ~- ·];~rt'1t-r~ ~ -~~- t~j --- ~ - RA~GE i: ~ -010 I --.~ 100 ~ "~ -005 ~ r!~. r- 1- z Ir ~ -005 --}jl- JI= I- c-- u u w 10 IF - REGULATOR CURRENT (rnA) 010 u 10 IF - REGULATOR CURRENT {mAl 015 *" 01 IF - REGULATOR CURRENT (mAl CROSB II 0 800 5 6 7 8 9 10 " 12 13 14 0 2 0 6 8 10 VF-FORWARD VOLTAGE IVOLTS) IF (mA) VF - FORWARD VOL TAGE (VOLTS) NOTE: IF. Regulator Current is specified under pulse conditions. In operation. final current will be a function of junction temperature. IF (steady state) = IF x [1 + 81 (Tj - 25°C)] where 81 is the temperature coefficient of IF and Tj is the Junction temperature. Tj may be found by TJ = Tamb for all devices. 4-18 + 8j-aPO = Tcase + 8j-cPD. Tj must not exceed 150'C.-.-1-or ~iS the derating factor 8J- a Siliconix J-C n-channel JFET current regulator diode Siliconix designed for • • • • Current Regulation BENEFITS: • Current Limiting • Simple Two Lead Current Source • • Biasing Low Voltage References • Current Insensitive to Temperature Changes. Temperature Coefficient Better Than 0.15%f C On All Devices • TO-18 Package for Improved Current Control • Simplifies Floating Current Sources No Power Supplies Required Single PACKAGE TO·1812-leadl PRINCIPAL DEVICES CRl60 Thru CR530 CRR1950 Thru CRR4300 Single ChID All of above TYPE ALLDIMENSION$ IN INCHES fAll DIMENSIONS IN MllllMETERSI z H S PERFORMANCE CURVES (25°C unless otherwise noted) Dynamic Impedance vs Regulator Current Knee Impedance vs Regulator Current Limiting Voltage @ 0.8 IF vs Regulator Current i 1 IF - REGULATOR CURRENT (mA) IF - REGULATOR CURRENT (mAl IF - REGULATOR CURRENT (mA) Temperature Coefficient -55°C';; Tj .;; 25°C vs Regulator Current Temperature Coefficient 25°C';; Tj .;; 125°C vs Regulator Current Thermal ReSistance vs Power DISSipation u ~ 0" .... ili 0'0 u ~ 0 o 010L,,_-'-.Li...LJ~,.Lo---'-_....J.lJ,0 '0 0' VF= 25V ~.... 15 0'0 IE 005 I -'6 -8 -'2 VGS-GATE-SOURCE VOLTAGE (VOLTS) ~55'~f --= !2 ,;, !2 VO"OV v VOIG"~V 005 mA 10 Z "~ I o~ -4 02mA= (;:/j 100 g I I y'VO~5V 4 ;;; 1-- r-v § ~ Common-Source Input Capacitance vs Gate-Source Voltage ... )!kVDS~5V ~ ~ 05mA ~1000 -2 5 f'llllllill 1\ ." VGS-GATE-50URCE CUTOFF VOLTAGE IVOLTS) Common Source Reverse Feedback Capacitance vs Gate Source Voltage Vos=O ~ ,.~ "1 Z VGSloffl VOS=10V1O=1JlA -05 •8 // //,., \ ~ I 0 15V VGS:: ov V VOS=15V ....... V 9 Vas" ov 500 >( / I 4-20 2N3921-2. 2N4084-5. 2N5045-7. 2N6905-7. U401-6. 2N5046CHP-47CHP. U403CHP-06CHP. 2N4085CHP. 2N6905-7CHP Chip rOS(on) 10 -= 100jJA ~ iiiII: 4 V V 0 ~ II: ~ Low Noise en = 6 nV/y'Hz at 10 Hz 1\'plcal 10000 "z lOSS -VOS=1ISV VGS=ov • PRINCIPAL DEVICES w 80 Simplifies Amplifier Design Output Conductance < 2 p.mho On Resistance & Output Cond ucta nce vs GateSource Cutoff Voltage Drain Current & Transconductance vs Gate Source Voltage iiiII: PACKAGE TO-71 • 1K 10K 100K I-FREQUENCV (Hzl Forward Transconductance vs Drain Current '0 JOG~ '5~ f- 55"{I fL ~ 'j 1 ~ VGSIOff)=~I~r;2/ U1;I:Hf +25°C II: II: ""z ~ I V~~;off) "'-2 'OV / ~ o I 9 l,,1li o -20 -16 Vi..?' j125jC- } ~~ I -12 -08 -04 Vas - GATE SOURCE VOLTAGE (VOLTS) Siliconix 05 VOG= 15V 0, "1' 1"1'1111 001 01 10 - DRAIN CURRENT (mA) 10 zz PERFORMANCE CURVES (Cont'd) (25°C unless otherwise noted) Output Characteristic (V GS(off) = -D.6V) 020 "~ f' ""c: ~ fil n " z * ~ ~ VGS:: rOSlon) '.' O. ~ D. ..Ii". 03 02 VGS (offl Vas = l0V I E 0 0 10 20 .. ......- I S [ e 30 ~ i " "~ " '"0 z, 0 0.1 ~ 001 0 6 10 ,. 2. 30 20 3' VOG -DRAIN-GATEVOLTAGE (VOLTS) e", 0 -4 -8 -12 -18 -20 VaG - DRAIN GATE VOLTAGE (VOLTS) CMRR vs Drain Current '20 ..1\ ~ I:D~30jJA 'GSS 10 "- 0 lK Equivalent I nput Noise Voltage vs Frequency i ~ II 1 u 30 0: 15 10 - DRAIN CURRENT (PAl Gate Operating Current vs Drain·Gate Voltage '""'" "~ III 100 10 100 e,u 0- VGSloff,'"' V VGS -GATE SOURCE VOLTAGE !VOLTS} iii0: "" ~ "u, 0- 1"14 -16 '" u VGSI~I.'1·2~ "u0 !'.;t\ 1 1 ii 2 IO=30 /AA f= 1 MHz 1 ....... ~ 0- r--..C\ r-... ~ ..... .a- ::0 0 I' I\. ;--. l. ""u I'... 25 10V '''1kHz VOS'" 1l r .. _55°C Capacitance vs Drain Gate Voltage 1\ 20 ,. w 110 Q Q i\ :;; z 0 :;; 1\ r-- ~30"A • 10 'iiri 100 lK 10K f - FREQUENCY IHzl ~ 90 is 80 a: a: .... !'-- 10 100 :;; ,ODK 1--- - - JJJ111,J1 tf CMRR = 20 log -6VDG -6VGS' - 2 10 00, 002 IIII I D.III DO. 01 02 10 ID DRAIN CURRENT (mA) BIll 1 I Silicanix 4-23 n-channel JFET 1 ·· i~ Etl 0023 (0584) • High Power Gain Oscillators • low Input Capacitance TYPE PACKAGE PRINCIPAL DEVICES Dual TO-78 TO-71 Chip 2N5911-12, U257 U443-u444 U440-41 Dual Dual ~ . BENEFITS: Mixers ,-o-rm; ~~ '~2J Siliconix High Frequency Amplifiers · (0;;;; (0 H designed for • . • . MS911CHP, MS912CHP, M440CHP, M441CHP ALlDIMEf - ~ ~~ VySlr"'1 V'IS o ~':Iml] 111 ~ ~ / ='G@'O w VOS 0 ~~ VGS >- 1 50 j'«~VOS'O ~ V ~ 'If " 10 Noise Voltage vs Frequency VGS-GATE-SOURCE VOLTAGE (VOLTS] VDS JJ 11/ 100 VOG - DRAIN-GATE VOLTAGE (VOLTS) ."- -16 VDS=15V 0.4 ~ <> C n 06 -06 ~ Z 0 ..g. rDS ~~~ Transfer Characteristics -08 n o ~ ,,- 'l 3 VGS-GATE-SOURCE VOLTAGE (VOLTS) -10 w .!:i... .. ". 6 ",- ~ ~ 4 I -12 C IO{on)@IO 26 !:: 6 YOS=6 - '0 ~ 1000 Common Source Input Capacitance vs Gate-Source Voltage w u o ./ '5 k:. /' 20 10000 '" T 0 VGSIOFF) GATE SOURCE CUTOFF VOLTAGE IVOLTS) "ii: o " >< V - , o o VGS (off]-GATE-SOURCE CUTOFF VOLTAGE (VOLTS) \ / i\. .;' loSS IV' \ IDSS,9ts VOS=20V VOs=OV :J = ,OV ID = , p.A VGSloff) VDS / / 4 II: 25 1500 ~ Gate Operating Current vs Drain-Gate Voltage ~ ~ -12 ~8 , g ~ 5 m :'i ,0"3 ~ 05 ~4 VGS - GATE-SOURCE VOLTAGE (VOLTS) 4-25 £f PERFORMANCE CURVES (Can't) (25°C unless otherwise noted) Z Output Characteristic Output Characteristic (VGS(off) = -o.5V) (VGS(off) = -o.5V) 02 I VGS~O II Y/ J II fl ;( 0.16 g iii ~ 012 a: ::> "~ 008 I I ~s·:-OT I--- II- ... v II Vr.s.= -0 30V 02 04 06 08 VGS=O • ~ ~Ol a: - II,L fl , 11'1 / 01V - II I VGS--1 4V - I- VG =-O3~_ V v IS"1051_ V 11 B a: c J I EaD4 '0 !J./,GS ~ -0 iv.! ::0 "~oo Vas e r- I.~ - VGS=-06V -I < 08 02 03 ~ v~s-I-o.~ ~ 06 02 04 05 12 tVGS~O.~ VGf=-"2V ...z ! i~ S~-! 4 a: 'I ~012 ::0 Ii " ~008 v 'I I ,9004 ~ 3.0 1/ a: a: 1/ 04 03 01 02 03 I I I r 17 +25"c +~5°~_ O.BV VGS= VGS- 1.0V VG$~- --- VOS-DRAIN·SOURCE VOLTAGE (VOLTS) •• 20 / 8 ~ - -5 />' 'Y v·4 tiC~w , & •. 2V ""-, V G =-1 BV 12 , -20"C_ VGs=-14V os 05 Transfer Characteristics Vas" -06 i.- ,910 04 Ves-DRAIN·SOURCE VOLTAGE (VOLTS) VGS" -04 """ c BV IVG~~_2 OV 02 o VGS" -02 v- ~ I V 0' .... "z 20 vos=-' 20 VOS=15V g 5=-16V .......... ,. ...... vJob 4.0 y ~ C . ~(;S~~06. VGS=-10V g :;,... Output Characteristic (VGS(off) = -2.3V) (VGS(off) = -2.3V) ....... ~/ VGS- -0 BV -OBV Ves-DRAIN·SOURCE VOLTAGE (VOLTS) Output Characteristic r<,016 r- VGS VGS=-36V V ~}Jov ~~ VGS·-05V """ Vas=-3 ov II-)'. VGS .. -04V C ... VGS--2 6V 'J VGS =-0 3V a: .9 V~S=-:2.0 ~_ rT /!/ ::> "~ 04 20 I/VGS~.I.~E VGk::·15V I I I a: 16 (VGS(off) = -4.2V) '0 g VOS-DRAIN-SOURCE VOLTAGE (VOLTS) 018 12 Output Characteristic VGS=-01V I 01 GS::-3 BV o VOS-DRAIN-SOURCE VOLTAGE (VOLTSI VGS=D ~ I VGS=-07V ~- o 20 Output Characteristic (VGS(off) = -1.0V) (VGS(off) = -1.0V) :ito 16 VGs=-3V o Vas-DRAIN·SOURCE VOLTAGE (VOLTS) Output Characteristic ° VGS::-Z BV ,. 12 10 VDS-DRAIN·SOURCE VOLTAGE (VOLTS) 02 \'GSL-2J VG$' -03OV -03 o VGS=-l BY ;' VGS= -02SV VGS" -025V VGS~O 1J}5V VGS~-' bv / r/ vGl- -b 1Vl vG~- j, ,J. vG~-j,2vl fo-"" I '1 'I ~ ...... VG~' j,05t II VGS" -0 zov I ~004 I IT 1 GS=O ~ls·~'~- I-- I-i..-- (VGS(off) = -4.2V) '0 1I I I VGS=-O Q5V C o 04 Output Characteristic +~5"C T7r " -4 -3 -2 -1 VGS - GATE-SOURCE VOL TAGE (VOLTS) Vos - DRAIN SOURCE VOLTAGE (VOL iSI Output Characteristic Output Characteristic (VGS(off) = -3.0V) (VGS(off) = -3.0V) , 0 V~s~~ rGS~OV I, 1~'~;f- IVqs"'-:o 1/ III II rL <08 £ ~ ~06 VGS"' -02V v~s ~I-o U, a: ::0 " "a: ~ '(f !:04 IltV WI C I ,902 V J.'/ 02 GS~·Tv I I I ~ C 06 08 10 Ves-DRAIN-SOURCE VOLTAGE (VOLTS) 4-26 4 1/ ""z 2 9 ~ o VOS-15V fo: 1 kHz 1400 ;,O"C=; bt I- +25"C V fo-"" tJ,L V JGSl2 O~ 12 '6 17~ Ves-DRAIN-SOURCE VOLTAGE (VOLTS) Siliconix '7 -10 -08 -06 !!; !'l 400 § ~25°~_ 200 )! +85°C'-04 800 ~;I 600 -,O"C/C;C 20 ~ li! Fe r7 VIGS~~2 6~ ~ 1200 0 1000 ;; +85"C vU.ol_ .... o '600 1 v~stJ. 1/'" I I 04 ~ a: a: VGS--05V I-o It: l- o 1V-f- 1 Transconductance Characteristics -02 VGS - GATE-50URCE VOLTAGE (VOLTS) !!! ~ z PERFORMANCE CURVES (Con't) (25°C unless otherwise noted) Transconductance Characteristics I VOS'" 15V , .. , KHz /' /I -20'S- '2·Y V V V K;. J Vl(.:' 'M~ ~?c If r ~ VI ~ A~ L Qi' -1.6 -1.2 //I ! ... I - VGS - GATE..$OURCE VOLTAGE (VOL TSI o o -2~C7 <...~ ~7 -I 500 3500;VOS-15V 1:1 1 kHz -2"CX " 1500 i! z 8 1000 Transconductance Characteristics 2800 Vos= 15V f"1kHz I Il A' il!. f- +8S"C L--' -24 -20 -1.6 -1.2 1500 +isa:g +25"C -2.8 ?ii "i! -I -20"C 1000 +8S"C I +8S"C- .N A".11 II 2500 2000 c: I I 3000 ~ +25°C 1 !§ ~ iL, 1 +BSoC ;;- ~ ~+25"C -08 2500 ~ 2000 ~ Transtonductance Characteristics 500 z ~ z "5 ~ ;;-08 -04 VGS - GATE-SOURCE VOLTAGE (VOL TSI -6 -5 -4 -3 -2 -1 i VGS - GATE-SOURCE VOLTAGE (VOLTS) l1li Silicanix 4-27 A. 8ACKSIDE .!UNCTION ISOLATED FAOM ACTIVE CClHTACTS G monolithic dual n-channel JFET Z H Siliconix designed for ••• • General Purpose Differential Amplifiers TYPE Dual PACKAGE TO-71 Dual Chip BENEFITS: • Low Cost • High Input Impedance PRI,NCIPAL DEVICES 2N3954-55. 2N3954A-55A. 2N3956-58. 2N5046-47. 2N5196-99. 2N5515-24. 2N5452-54 U231-35. U410-12 (06101 2N3955. 2N3966-58 2N5047. 2N5199 2N5454. U233-35 U411.12 ALL DIMENSIONS IN INCHES (ALL DIMENSIONS IN MILLIMETERS/ PERFORMANCE CURVES (25°C unless otherwise noted) Drain Current & Transconductar1Ce vs Gate-Source Cutoff Voltage - 10SS.9fs VOS '" lOV IVGS-OV- - ? 3 /.~ n" 0;:- V/ " I e~ 850 \ w 2 U ~ iiia: 750 " 850 p go, ~~ n:O u 1 ~ ;; " VGS(oJ) VOS = 10 V 10=1fJ.A , 3 VGS(off)- GATE-50URCE CUTOFF VOLTAGE (VOLTS) Gate Operating Current vs Drain Current ~ A 1\ ~S'o.' / --,-- Vos == tOO mV \ GS = ov I I A r\:GS(r'f)7:~ t= ;:v " "'v /1 a: 450 0 I c 1 'OSlo.J'\J I'-+- V 350 0 10 r I o 1/ \ a: 550 ~ VOS=20V VG5~,OV \ me iil // /. i:g "0 n:o w /10 , 5 - I-- ~", :0 ., 2 g"/V 1/ .,. On Resistance & Output Conductance vs GateSource Cutoff Voltage . ..8~ 2 g ~ ~ 2 ;;- o 1 -1 -2 -3 VGS(off)-GATE-SOURCE CUTOFF VOLTAGE (VOLTS) Common Source Reverse Feedback Capacitance vs Gate Source Voltage 10 25 ~ 3.6 .!! ~ 32 ~ 28 ; VOS -10V ~ c3 20 '"u '8 1'2 I 08 ur:! 04 k vcs-s V ~\\ VOS=10 "- / 8 10 12 14 , 16 ~~ VGS-GATE-SOURCE VOLTAGE (VOLTS) Common Source Output Admittance vs Drain-Source Voltage '00 11 .3 " ~ VGSloff)--33V 10 i :--F ~JJt"0~ I I11I I " I. IIII 1 o 10 t2 16 14 '0 100 'K 'OK lOOK f - FREQUENCY (Hz) Common Source Forward Transconductance vs Drain Current VOG" 15V f-1 kHz VGS(off) "'-33V '0 ~~~~~~~;;~~~~ 8", 5 ~ VGSloff) '" - 81 V 5o I g VGS(off)- -0 a1 v 0 ' _ __ I 0' o .i 10 15 20 25 'g~o'~~~O~,~-LUli~'~O-LLU~~ 30 VOS - DRAIN-50URCE VOL TAGE (VOLTS) 00' 0' 10 10 - DRAIN CURRENT (rnA) 4-28 i' 'O'200pA I"~l 'O~_ ~ '0 '0 i5 VGS-GATE-SOURCE VOLTAGE (VOLTS) if w " Common-Source Output Conductance vs Drain Current f - ' kHz ~ .3 '5 0 Vos=10 o "~ $ I 1 '\ l\. o ~... VDS=5 '\\ V o ~ ,r-.. w 24 VOs=O 50 20 ~ \ 40 Equivalent Input Noise Voltage vs Frequency Common Source Input Capacitance vs Gate-Source Voltage 40 u:- 30 20 VOG - ORAIN·GATE VOLTAGE (VOLTS) Siliconix '0 10 - DRAIN CURRENT (rnA) z PERFORMANCE CURVES (Cont'd) (25°C unless otherwise noted) Output Characteristic (VGS(off) = -1.0V) 0200 VGS=O li a-a 160 z I I VGS--03V l lI. 1/ 0: " U II '/ / f!J '/ i--"'r- ~ 0080 C Eo 040 , -- o 01 02 II / / I-' -f I 1/ /' !f// vr- fJJ VV !l~ VG' __ Lv I#. ;....03 04 05 01 VOS-DRAIN·SDURCE VOLTAGE (VOLTS) ~ i="" 06 ~ ~ " u z vLs.ll 20 I I I C( 16 0: C VGS= -O.4V 9 VGS= -O.5V I 02 VGS ~ '//11- " C ~ 02 a 04 05 E Ci a 02 C I .9 04 I I VGS·-02V-- VGS= 04V-- 3 " VGs=-06'li-f-- ;; VGS--OBv'-f-- Z vGs .. -oav 0: C VGS"-10V~b 9, vGs=-' 2V I VGS=-14V VGS=-10V ,. 20 4 o VOS-DRAIN-SOURCE VOLTAGE (VOLTS} B 12 VGS=-16V ,. 12 20 16 20 Vas-DRAIN. SOURCE VOLTAGE (VOLTSI VDS-DRAIN-SOURCE VOLIAGE (VOLTSI Transfer Characteristics Low VGS(off) ,0 08 VG~-ok==== :< , U VG~= ~6VI- / 0: 06 04 Vas-DRAIN-SOURCE VOLTAGE IVOLTS) ~ VGS"-04V 08 VG~=}.v VGk=-Jov E I I U Z VG~=).v f-'"i I ~ ~ VGS"'-02 ~12 - Output Characteristic (VGS(off) = -2.3V) I I ~ " r- l- VGS::-1.4V {fl.'/, V ~:/" V 0: ." VGS=-1.2V V I'll> 0' vcis--l2V 03 ,tt III- rJ V~~:jlB:V I r/. '/ 06 U ;; I I vris--lov -06 '2 1 . Z VGl--+-- r- V~S=~02~ v~s-I 03~_ I-::: ;; 02 VGs· ... r/vGs·.-o~v 08 0: VGS--OBV - VGS-O! Output Characteristic (VGS(off) = -1.5V) VGS" -0 tV a' 'a VOS-DRAIN-SOURCE VOLTAGE (VOLTS) Output Characteristic (V GS(off) = -1.0V) 08 VG~-~06V V vCli= ... 6V V-. a II I VGS=-05V ~ /' I ~GS~j2~±= I 1/ I I ~VGS·-04it- e- £) Output Characteristic (VGS(off) = -2.3V) VGS=O r-- I- VGS'"-04V ~ 0 120 05 V~S·~02~- :-- e- LLj ..s Output Characteristic (V GS(off) = -1.5V) Transfer Characteristics Medium V GS(off) Transfer Characteristics High VGS(off) 08 VDG=15V T=-55"c -..J VOG=15V T = +2S·C 1 1 T=+l25°C /J / ~ 06 T=-SSoC V 1 T+soii ,.'" C 04 02 W VOG"'lSV 6" T=+25°C '"'"::1 ... T<>+12S 0 Ci / ~ ~V g IT =+25"C 'j Z T= +12S"C W7 .- ::::::: :?' -16 -14 -12 -1.0 -08 -06 -04 -02 -40 -35 30 '-20~15 -10 25 05 VGS - GATE-SOURCE VOLTAGE (VOL TSI Transconductance Characteristics Transconductance Characteristics Low V GS(off) Medium V GS(off) "8 2000 1'500 ~ 4500 ~ C ~ ::o ~~ 1 i g 3000 "\ ~\J.T·+f5°C ...~ r----. .~ 500 I-- ~ 1500 T=~ ~ ~ 02 04 -06 -08 10 12 ii2 14 16 VGS - GATE-SOURCE VOLTAGE (VOL lSI 1 i ~ // )- , / ~ ~V ~F"'" -'5 00 VGS - GATE-SOURCE VOLTAGE {VOL TSI l1li CMRR vs Drain Current I '20 w 110 c 0 1\ 1\ 5z .......... !=-55°C 1000 f= 1 kHz w r\ -30 V 1 r--/ V~G' ,IS V 6000 f= 1 kHz w "8 1 V~G' ,~V 1 - 0 0 VGS - GATE-SOURCE VOLTAGE (VOLlSI / V :! "\ ). ~ z '00 :! :! 0 u 90 0 / ' T=-SS"C T= +25°C "'\ ~ i'- ~ "'I"'"" ~ I II: II: :! u 80 T"I'2Sor" 0 -05 -10 -15 -20 -25 -30 -35-40 VGS - GATE-SOURCE VOLTAGE (VOL lSI Siliconix 70 005 02 05 00' 002 IO-DRAIN CURRENT (rnA) a' , 0 4-29 ...I GATE ALSO BACKSIDE CONTACT ~ n-channel JFET SAND D AliI' SYMMETRICAL z H designed for • • • Siliconix • Small Signal Amplifiers BENEFITS: • VHF Amplifiers • • Oscillators Wide Input Dynamic Range High IG Breakpoint Voltage • • High Gain Low Insertion Loss Switches • Mixers • Switches TYPE Single ALL DIMENSIONS IN INCHES (ALL DIMENSIONS IN MILLIMETERSI PACKAGE TO-72 Single TO-92 Single Chip PRINCIPAL DEVICES 2N3821-4. 2N3921-22. 2N4220-2 2N4220A-2A.2N4223-24 2N3819.2N5457-9 MPF109. MPFlll, MPF102. MPF108, MPFl12 All of the above PERFORMANCE CURVES (25°C unless otherwise noted) On Resistance 8t Output Conductance vs Gate-Source Cutoff Voltage Drain Current & Transconductance vs Gate-Source Cutoff Voltage -- • V 4DD. • ./ -2 , Vos= 15V VGS= 0 gfs@lf""kHz VGS(off) @ 10 = 1 nA ./ -1 2 I 1/ -3 -4 -5 -6 -7 Output Characteristic (VGS(off) = -2.0V) -Lo.L.J- f- • -02V II 3 rf 2 , -J•• J- f- ~ V V-- -D6V ~ -10V -Dav -, 200 ~ili Co: 0 , , " ~ S .s>- 0 Z g ~ " ~Z "~ ., ~ 00 ;;; 0 0 .-3 ! 6 , , . 2 -01 V -02V -.'~-I- ~ -05V 04 ry ,. Vos - DRAIN SOURCE VOLTAGE (VOL lS) Transfer Characteristics Transfer Characteristic I I 2~ f-- ·x VOS=15V TA~-'8.lc ~ ·"·0 ." ""K' ,.J.;;-:: l'\. ~-4.·C . -4"~ -, ~'\ "I ~ -z. ~ -3. -4. Vas - GATE-SOURCE VOL lAGE (VOL TS) Leakage Currents vs Ambient Temperature Transconductance Characteristics -6 Transconductance Characteristics ~ 1'-.. ~ 7 1/ +85°C c • 75 100 T - TEMPERATURE ('C) 125 -1 150 VGS - GATE-SOURCE VOL lAGE (VOLTS) Siliconix ~ '\ / 50 - TA=+85°C "5·CI'-,.\ ~ ~;S-... IG 25 Vos= 15V f-lkH, V'2.·C \i'-.. k': 1'< '\- .... c I=-'GSS / I I 6000 ~ :gS:~DvGG~ 15-~~~ ~~50=1J~~ ~ -7 VGS - GATE-SOURCE VOLTAGE (VOLTS) ] t= -h3J V c VGS(OFFI-GATE SOURCE CUTOFF VOLTAGE IVOLTS) ,. V V- I- 6 0 ~2•• C ,. ~ <1 10 ~ ~z 100 . -000 4-30 l~ z", 20 Vas- DRAIN SOURCE VOLTAGE (VOL lS) 0 ~. 30 'l300 o:W CO 3 TA' -12V -14V -,• ~ I I I JGsL.L f- 0 e VGS- GATE SOURCE CUTOFF VOLTAGE (VOL TSI • w z" :;:s. 3000 I , I I I 0 0: I-- I/,OSS • 000 ~ "7 / 74 I-2 • Output Characteristic (VGS(off) = -O.BV) ~ -2 -3 -4 '" ~ -5 -6 -7 VGS - GATE SOURCE VOLTAGE (VOL IS) PERFORMANCE CURVES (Can't) (25°C unless otherwise noted) Equivalent Input Noise Voltage and Noise Current vs Frequency 10-14 100 1000 ,;:1 1 ~ 2 ~ 0 10 0 ~ . '",@iR "ID~ w ~ w ~ i5 z In@IO'"OlI0SS 1 ~'D·~·'1tl en@IO~ z I. 10 lK 100 100 .1 10 VGS(off! 10 ,.,.- ,-, - -3ZV I-I-H- \ VGS(offl :g 16 1'·-1·: -1ZV,= I I I 1 10-16 lOOK 10K ~~D~~.'5V VGS 0 f 1 kHz ~ ...2 ~ ;; " i; " ~ ~ "';' > Common-Source Output Admittance vs Drain Current S iii !l "c: ~ 10-15~ w :;" " Common-Source Output Admittance vs Drain-Source Voltage I 24 III1 0' 001 40 32 Vas - DRAIN-SOURCE VOLTAGE (VOL TSI 10 - CRAIN CURRENT (mAl f - FREQUENCV (Hz) Common-Source Capacitances vs Gate-Source Voltage I.s 5 Vos" 15V f=l MHz 1\ 1\ 10 VOS=15V V21 VGS-O 1:--9f5 z ~ U Z ~ I----b~ " , "~ 0'1.,..--'" Z ~ 1 ~" ;; :r - -4 ~ /' ~ ~ Q en, bl~ ~ ~ ..........c~ '" Vas'" 15V VGS=O .sw / ~ "- 10 ~ E w u _\ Common-Source Input Admittance vs Frequency Common-Source Forward Transadmittance vs Frequency 001 50 10 100 V 00 1 10 200 50 100 200 f - FREQUENCY (MHz) f - FREQUENCY (MHz) VGS- GATE-SOURCE VOLTAGE (VOLTS) Gate Operating Current vs Drain-Gate Voltage Common-Source Reverse Transfer Admittance vs Frequency -10 10 Y12 j VD. ~ ~ .sw ~ ~ "~ " ~-o.o1 ~ID"'mA o 10 15 20 ~ 25 30 'ON' Resistance vs Ambient Temperature 5 14 ~ J ~ ~ w > 2 u g 1 ~ e 1 "~ ;; " 1 " 001 10 ~ -'n 50 100 00 1 10 200 Drain Current and Transconductance vs Ambient Temperature 15 I I w 14 :- ;i 13 u 12 ~ 1/ 11 Vos"15V VGS"O "\ 9fs@f=1kHz "\ "\ ~ ~ 10 / "I......1"- 3 09 9fsANO losS ~ 08 w :3 07 07 "> 06 06 -55 -15 25 65 105 T - TEMPERATURE lOCI 200 Common-Source Forward Transconductance vs Drain Current 8 o5 100 f - FREaUENCY (MHz) V 9 50 f - FREQUENCY (MHz) > 10 gos~ 0 VGS=O 1 ~~,~ .,/ ~ ::" / 10= lDOjiA VoS=15V VGS=O Q ~ " VOG - DRAIN-GATE VOLTAGE (VOLTS) w 01 ~ ID"'OO~A- .oDD 1 :3 I - - I--b" ~ !i1 w u z ~ 1/ V22 I.s !l -0 1 10 15V VGS=O E 1-10 Common-Source Output Admittance vs Frequency 05 -55 145 10 - ORAIN CURRENT (mA) Siliconix -15 25 65 T- TEMPERATURE I l'\. I 1'\.1 105 145 rc) 4-31 - I GATE ALSO BACKSIDE CONTACT SAND D ARE SYMMETRICAL n-channel JFET H designed for • • • • Siliconix Ultra-High Input Impedance Amplifiers Electrometers BENEFITS: • Low Power lOSS < 90 IlA 12N41171 pH Meters Smoke Detectors TYPE ALL DIMENSIONS IN INCHES (ALL DIMENSIONS IN MILLIMETERSI High Input Impedance IG < 1 pA 12N5906-091 PRINCIPAL DEVICES 2N4117-9.2N4117A-9A. FN4117-18. FN4117A-18A. VCR7N PN4117 Thru PN4120 PN4117A Thru 4120A • Smgle PACKAGE 10-72 Songle TO-92 Dual Smgle TO-78 Chip All songles above. PERFORMANCE CURVES (25°C unless otherwise noted) On ReSistance & Output Conductance vs GateSource Cutoff Voltage' Drain Current and Transconductance vs Gate-Source Cutoff Voltage g ;c 05 9fs, lOSS VOS = 10V VGS" OV E ~ ~ 04 :J a: u _ ~ V- 03 a: l/' c oZ 02 !ia: /". V f-"'"" V ~ I/ 025!¥ ~ 16000 ~ ~ 12000 / ~ 1, ~r . V ~ 0 0 -1 VGSloff)' V010V IO=lp.A 1 -2 -3 -4 8000 ~ ~ 6000 m Q 4000 ~ ~ 005 01 on I w 8~ g~ 010 :J !;t ~ ... Z a 15 ~ ~ 10000 ~ i a VGS(off) - GATE-80URCE CUTOFF VOLTAGE (VOLTS) lIIIiS ~ ~ 100 '0- 1 1000 ;;;' , z !;l t; " ~ ~z ::" ~ 10 10-15 j; 100 ,. 10K I~GS(Offl =-1 v. 100 VGS(off) ~ ~, ili 10-16 lOOK ..... 10 01 ~ o 20 10 30 50 40 60 VOG -DRAIN GATE VOLTAGE (VOLTS) Leakage Currents vs Ambient Temperatu re _100~.L.~ 1 ~ V l]wft~'111 -3V 10 100 o 1000 25 50 76 100 125 150 Reverse Feedback Capacitance vs Gate Source Voltage Input Capacitance vs Gate-Source Voltage 036 0: ! f"'" 20 ~ 032 19 ~~ 5 028 l'lz "" ;: 0 10 ~ " ~ U t- ~ ~ , J 0 J 100 1000 prVos=ov I 17 01 10 - ORAIN CURRENT (~AI VOS=10V ,....... 18 l!, 10 'G55= 1== E &" 22 VGS(off) = -4 & V Vos.,20V f-lkHz u/ 1. 0 ~ I I OS =6V , - -- p<... "- '"S --.. r-- r-.... ~ t-- :-r-12 -16 VGS-GATE SOURCE VOLTAGE (VOLTS) 4-32 ?E ~ g'2! § T - TEMPERATURE (GCI !i is 2 10 - DRAIN CURRENT (,uA) 10 I 100 gila ~ Z 111111111 10 Common-Source Output Conductance vs Drain Current ~ 4 I illllill L f - FREQUENCY (Hzl C IDt'f ~ ~ ~ ,i' 10 6 1111 :J C ~ z, w ~~ Vas 10V f"l kHz w g g 6 n 1~~~A3~ lK Common-Sou rce Forward Transconductance vs Drain Current '3 "~ ill 10 J ~.~OI::~r- ~/f"'" !. Q I I '82000 ..... ~ 0 -1 -3 -2 -4 VGS(oll) _ GATE-SOURCE CUTOFF VOLTAGE (V) ur 14 w 12 I r"-.. ./ Equivalent Input Noise Voltage and Noise Current vs Frequency lK 90:" ~s(on) 1: w ~~ C" --t ~ 200fJA IG@IO===: g - V \ iii 10K 14 '" rDS(on,: ID = 100 mA VGS = OV gOS: VGS=OV 'z g ~ 14000 020::e Gate Operating Current vs Drain-Gate Voltage Siliconix \D~~OV \ I' " 1"24 I 020 J .::-. I"'-- ....... VOS=5V VOS=10V 1 -4 -8 -12 -16 VGS-GATE SOURCE VOLTAGE (VOLTS) ....z PERFORMANCE CURVES (Cont'd) (25°C unless otherwise noted) Output Characteristic (V GS(off) = -l.DV) 50 4" VGS=D .3 ~a: 30 '{II. " 20 ~V.v C 10 o 1-- ~ I E ,/ Wy u ~ 200 ,VGS'-O'V I VGS- -0 'Vi I. Z v~GS"'-03V /) :tV Vas'" -04V 40 -- 1 ... -02 I 06V 160 IEa: 12 0 a: a: f/ , / -06 -08 Ib / I E 0 o -010 V o 03V 1= I VG~5V ~ 80 C I E I , 2 08 VV ~ VGS= ~ a: a: u 02 V "z ;; a: c 0' I E 05V 07V I I /' ,/ ...- 20 '6 '2 Z I 04 ;; g VGS=-06V 00 " U I .. 40 16 # 0 ~ vf-'" ~/ ~ V- ~+v vds";~ ov 02 4 6 B 10 VOS-DRAIN.SQURCE VOLTAGE (VOLTS) 20 Output Characteristic (VGS(off) = -3.5V) 05 VGS=~ 02V VGS'" 120 Vo =·20V 03 VGS= VGS= I V 'I. v 1/ VGJ=-Jov ';';:11 1/1' '/ V ~Gs=-' SV ~ VDS-DRAIN-SOURCE VOLTAGE (VOLTS) I VGS=-04V 'I \; 1 1 1 :-"I'GS1''I" /, Output Characteristic (VGS(off) = -2.5V) VGS=-OlV / ~.,:ov £. l- Output Characteristic (V GS(off) = -l.DV) tGslo g l- / v;Gs~~~O sJ- Oi 160 ~r-15V ~ VOS-DRAIN-SOURCE VOLTAGE (VOLTSI 60 I I V- '/ 0 200 V~S"J _ // " u z ;; Vas'" cav -04 V V / c VGS"'-07V j~ I..- o VGS""-05V Vosg ~ g 1 ,..'1 Output Characteristic (VGS(off) = -3.5V) Output Characteristic (VGS(off) = -2.5V) V~I I- I--" I- - VG1=Josv L VGS=-10V / /' h , , VG~oJ 5V V' lGS l_015v ;""1 ,v VGls··,lov I VGS=-15V Lr- VGS=-20V VG~"215V VG1s=J ov I VGS'"·30V II 20 '6 12 Vos - DRAIN-SOURCE VOLTAGE (VOLTS) o o ·4 ·8 ·12 -16 -20 VDS-DRAIN-SOURCE VOLTAGE (VOLTS) VDS-DRAIN-SOURCE VOLTAGE (VOLTS) Transfer Characteristics Transfer Characteristics '00 JDs .,6v- « 80 .; ... .\ ,,-\ ~ a: 60 a: c "" I 920 ~ "z u ~ 40 ~ '..." "~ a -20"9 V ,~ /I 25°C BSoC 'P~/ / ~/::,.. 7' ~ '\ \ E 50 ~ ~ -06 -DB -10 -12 ~~ ~ I~ ~ "<:: !!;;:;.J.. -04 400 -08 ~1-2O°C 2S"C 8S o C z I'~ '" a~ i""'I -12 - f-t' C 1200 ~ E ~y. -, -'6 -3 -2 """ -4 -5 VGS - GATE-SOURCE VOLTAGE (VOLTS) Transconductance Characteristics Transconductance Characteristics Transconductance Charactenstics 20 0 tDs·,Lf= 1 kHz 0 '" ~ 40 ~ ~ 0 -02 -04 " ~ -06 IS::150 ~ ~ 100 ...C ~ ~ -10 -12 VGS - GATE-SOURCE VOL TAGE (VOLTS) I _~Ds!"olvI f= 1 kHz I'-... 1"~ Z ~ -08 ~ '" ~5; ~ \~ 7250 w 200 I ~ o I 8S·C II 600 VGS - GATE-SOURCE VOLTAGE (VOLTS) r--v-: 5Z '2 O~ V 7 ' -2~~.C I -:/ 85'C ~ O~ 7: ~ ~ 8 .......... ~ ............. ~ ... i X~ 100 ~ ...r:; 2OOC , 25°C lOV- VDS VGS - GATE-SOURCE VOLTAGE (VOLTS) 1 .. '6 ~ 1'\ ~ r- I I / '-l -04 .\ 150 Transfer Characteristics 800 ~DS~ 'O~_ 1\ 200 C ...... ~ -02 13 250 ~ I>< ~ k ".:\ I......... ~ I a -04 :it; 5Z ~ -'2 I 200 160 Z ~ 08 240 ~ 120 ~ ~ 50 I-- I-- ....... 1('"\ ~ i -20·C 2S"C 8S·C ~ 1/.... c? 1~ ." ., 80 " .'\'" '" ~ -'6 Vas - GATE-SOURCE VOL TAGE (VOLTS) Siliconix I i a f'lkH, 6 25;~"J_ 1--- r--... '\. ~"'" Vi r--. ........ I"- , "\ 40 ~ JDs 2,oL . -, ~Y.' ~ ~ '? K -2.. l1li -, -2 ...... !, ~ -4 '" ~ -5 VGS - GATE-SOURCE VOL TAGE (VOLTS) 4-33 n-channel JFET .H designed for • • • Analog Switches Commutators • Choppers Siliconix BENEFITS: • Vary Low Insertion Loss 'OSlon) < 2.5 Ohms IU290) • ALL DIMENSIONS IN INCHES (ALL DIMENSIONS IN MILUMETEI1S) High Off·lsolation TYPE PACKAGE PRINCIPAL DEVICES Single Single Single TO·52 TO·92 Chip U290·1 Jl05-7 U290CHP-l CHP, Jl05CHp·7CHP PERFORMANCE CURVES (25°C unless otherwise noted) Saturation Drain Current and Drain-Source 'ON' Resistance vs Gate-Source Cutoff Voltage ~ 20 ! 600 7 IOSS@VOS-10V ~ z" PULSE. TEST " 1 2f- ~~SI~ff} ~VDS = 10V 10= 10nA ~ o rOS(on) / Z 0B o ~ i I 45 o <"400 Z ~300 0: i3 250 ~2OD ~ in g:g 3 1l "-m 30 -t- r"-, fOS{on) @lIe" 1 rnA VGS=O I--" ~ ~_Irs I r"--I.£' V 4 0 I /6 I \! 0 1000 " 450 f- ~~GS=O ffi 1 6 Drain-Source Resistance vs Normalized Gate-Source Voltage Output Characteristic ~ ;350 h'C. 50 I~ ;..-::!-- 0 _10_20_30-40_50_60_70_80_90_100 l- I-" -02V !--I""" -D.4V ,.....--~ I ~ ~ -1.0V I I 10 ~ 09 0: OB !... 07 £E' '" V V _I--" 0010203040506070.80910 Leakage Currents vs Ambient Temperature Equivalent Input Noise Voltage vs vs Frequency 12 VOS=5V lo·,OmA ~ 10 ~ w iL \ ' ;; V I Z ~ VGS"2V [I I- ~ TRANSFER CAPACITANCE 12 VGS· 1V VGS" 3V II. 80 S " II ~100 ~ VGS-O r!1~~~V- 180 ~ lOOK Output Characteristic (VGS(offl = -7.5VI Common-Source.Capacitance vs Gate-Source Voltage 200 ~-1 0 10K lK f - FREQUENCY (Hz) -10 ~ 100 10 Leakage Current vs Drain·Gate Voltage 4-34 1 VGSIVGS (off) NORMALIZEO l:fnl ItJH11 > ,. 0: -ur; Ves - ORAIN-SOURCE VOL TAGE (VOLTS) Drain-Source 'ON' Resistance vs Ambient Temperature 10 = 1 mA i2w ~ - @ 100 > 12345678910 VGS(off) - GATE-SOURCE CUTOFF VOLTAGE (VOLTS) i"w fos(on) w " ;I VGS;!... 0150 ~'OO E,VGS@lVOS"'10V I=VGS(Off)@VOS"'10V I-lo-100nA ~ !;( -lVGS=5V I v JGs 16v o a 02 04 0.6 08 Vos - DRAIN-SOURCE VOLTAGE (VOLTS) 1.0 n-channel JFET designed for • • • • • VHF/UHF Amplifiers Front End High Sensitivity Amplifiers • Oscillators • Mixers • Wide Dynamic Range • 75 Ohm Input Match Common Gate Greater Than 100 dB Gate Operating Current vs Drain-Gate Voltage BENEFITS • Industry Standard • High Power Gain _ PACKAGE PRINCIPAL DEVICES Single TO-52 TO-72 U308-10 w '"" Chip '0 "''"E U4301,4350 J308CHP-l0CHP, TO-78 •... if-- '00 ~w U311 J308-10,2N5638-40 TO-92 ;.-- lJj ~ IGon@IO 1000 ~ /AU DIMENSIONSINMILLIMETERSI TYPE Z l> ........ Z N m N 10000 16 dB at 100 MHz, Common Gate 11 dB at 450 MHz, Common Gate Songle Single Dual Single Siliconix Low Noise 3 dB Noise Figure at 450 MHz • All DIMENSIONS IN INCHES H BENEFITS I ~~ IGSS '0 U308CHP-l0CHP, U311CHP Dual Chip U430CHP-1CHP .'7 0' o PERFORMANCE CURVES (25°C unless otherwise noted) On Resistance & Output Conductance vs Gate-Source Cutoff Voltage 90 I-- 60 200 ~ gos Vcs = 10V VGS" OV \ / i'-..V V c: 60 ::-J ~ ~ g 140 o i I"--. I-- o ~ rOSlon) "I 80 f-J-' g. 1 ! 00 4 VGSlollj-GATE-SOURCE CUTOFF VOLTAGE (VOLTSj '0 o 1 10 g 8 g "- ~ I I~ ~ J I So ~ I S! '/ / 6 /// il " 4 /I. 0: C ~ ~~ I S! 2 ~ ~ ~ C I S! DB 12 16 20 VOS-ORAIN-SOURCE VOLTAGE (VOLTS) o II . . . "1 1 1 ~-~BV ...... VV' f20 ~G~._,lov '2 12 16 20 1 ,. 1 VGS=O J !12v -I- Gs 1/ V V -- tsLL -I- Lliav J Gs : _DIBV VGS=-10V VGS=-12V o 20 Vas-DRAIN-SOURCE VOLTAGE (VOLTS) Siliconix IBI Vas"'-12V DB 2. -~Gi-+ V' f- 04 - VGS"'-06V Output Characteristic (VGS(off) = -1.7V) lJ,lv LGJ._,I.v VGS=-2SV 04 V / Vas-aRAIN-SOURCE VOLTAGE (VOLTS) I LsU,v Iv f- ""z 1 1 J; 100KHz ~Gslo 40 0: 0: V~-20V f/ 10KHz 1I.r So 1 1 1 1 1KHz 60 I- II f!I/ 100Hz Output Characteristic (VGS(off) = -3.0V) ;; VGS=-1 5V , / IZ i v~s= I-O~V_ VGS=-04V FREQUENCY (Hzl +_ re- /IVG :.-10V -,. ,J, - VGS-D.I_ ~,.... '1/ '2 4 1\ 10Hz VVGO·p VGS.-~ 5V 16 -'2 -B I 1 Vos= lOV 10= lOmA o I :----+- -4 '0 IIIIIIIII 2 Output Characteristic (VGS(off) = -3.0V) ~ o VGS-GATE-SQURCE VOLTAGE (VOLTS) l! -4 -8 -12 -16 VGS-GATE-SOURCE VOLTAGE (VOLTS) 0: 0: . f.,.( ~ Output Characteristic (VGS(off) = -1.7V) 6 o "" ~ 10 'o" i - ~ ~ /' 100 fREQUENCY (MHz) Output Admittance Common Gate -30 " 1 -Org ~ -50 ~ 090 ~ 086 1000 FREQUENCY (MHz) / E Z 600 fREQUENCY (MHz) ~ Reverse Reflection Coefficient Common Gate r-. I f VOG=10V ~ "em '" ~ -::2"" ~ 3•• w ril FREQUENCY (MHz) IS221 i V I / 100 :=e .§ !2 "'-1 I-" l ~ .; IS'21 'b 10 Reverse Transfer Admittance Common Gate ;; 80 i -b 4: 521 065 ~ ...., -- -40 / 070 'O=10mA w u -50 075 vos·tOV 1 VOG'" tOV Ie-lOrnA 15211 ......... Forward Transfer Admittance Common Source Forward Transfer Admittance Common Gate '... ..... ., ... 01 100 300 6DO FREQUENCY lMHz) Siliconix 1000 100 200 50. FREQUENCY (MHz) 1000 n-channel JFET H designed for • • • Siliconix • High Frequency Amplifiers BENEFITS: • • Mixers Oscillators • High Power Gain • Low Input Capacitance All DIMENSIONS IN III.CHES 1.41 L DIMENSIONS INMILLIWiTERSI TYPE PACKAGE PRINCIPAL DEVICES Single Dual Dual Single Dual TO-92 TO-78 TO-71 Chip Chip J300, J210-12 2N5911-12, U257 U443-U444 U440-41 J300, J210-2CHP 2N5912CHP,U257CHP U441CHP, U444CHP PERFORMANCE CURVES (25°C unless otherwise noted) On Resistance & Output Conductance vs GateSource Cutoff Voltage Drain Current and Transconductance vs Gate-Source Cutoff Voltage 350 '2 9fs& lOS VOS'" lav vGS",av Vv 9h/ // // ~ l\ros{onJ@lo=lmAvos=av 90s@VOS= laV, VGS= OV ,."z '0 "-i ~ 1 ~~ "I c:~ 5l;-;; ;j" «« ~~ Ira ]0: fl no lOSS ~~ 7 3 g. VGSloffl v~sorv- • ! 'nA I I I p.~V ~ V 150 1\ p ~ ~~ V 300 k Gate Operating Current vs Drain-Gate Voltage 250 / 200 ~ ~ 160 '00 90S V ~ 50 • VaS(off)-GATE-SOURCE CUTOFF VOLTAGE (VOLTS) g I!! z « ~ '00 10 @ JD-----t---ID~2mA -2 -3 "?i "I Z 0 "~ 5 '0 -4 -5 lOSS g. 52~ 3' ! 1° -1 1000 ;: 1> ..... 1VySI!,,11 v~so'tV 1'"1' -0 w -i '00 / ~~ 5 " "~ ~ c: 0 50 .-.. ~ 0, a -6 4 8 12 16 20 24 VDG-DRAIN-GATE VOLTAGE (VOlTSI VGS(offJ-GATE-SOURCE CUTOFF VOLTAGE (VOLTS I Common Source Input Capacitance vs Gate-Source Voltage Common Source Feedback Capacitance vs Gate-Source Voltage Equivalent Input Noise Voltage vs Frequency 100 \ I~ VOS"O .x. ...... f\:: vor VOS=5 p-- "'05"10 .... l.X ...... ,\ :;. OS ov ~ > ~ ~ ....... vo~o,ov ~ I ~ ....... ::--- h' t-- -4 -'6 -12 -8 -4 "5 12 w ~ .s>- I" ~ c -'0 "~ ~ '-:: "' >- 4 ~ 2 :il a: li! -2 --3 -4 -5 VGS - GATE SOURCE VOLTAGE (VOLTSJ I ~ 1\ r--, 6 « -5 '00 '0 -16 +12~ _+125• C =t:r 'i I""- ....... -, )'0 ~ ~ il !IIII gts@f=lkHz VOS"'15V 11111 8 I ~ :il ~ -3 -4 -5 I .£ I L Wi= 'O~A+--I 24mA~ // ~ 4 ~ ~ \~ VGS - GATE-SOURCE VOL TA(3E (VOLTS) Siliconix 100]( 16:nA 6 ~ ~ -2 ~ " 5 L 0 ~ " V- 'OK 'K f - FREQUENCY 1Hz! Forward Transconductance vs Drain Current ~~~;01tHZ -<;5,1:- I--- f- .:>U~+25'~_ +12S"C 1 '0 ...... -,5 ;; -, -12 Transconductance Characteristics Transfer Characteristics I -8 Vas-GATE-SOURCE VOLTAGE (VOLTSJ VGS-GATE-SOURCE VOLTAGE (VOLTSJ ~ 1~ 0' o "' z" ~ " .9 '0 w " VOS=5V Id' a 01 02 as '0 10 - DRAIN CURRENT (mAl 4-37 - PERFORMANCE CURVES (Cont'd) (25°C unless otherwise noted) Output Characteristic Output Characteristic Output Characteristic (VGS(off) = -a.8V) (VGS(off) = -a.8V) (VGS(off) = -S.OV) 1-1-~ 05 Vas· VG!'J.w' I /11 V I 0'2 I I i v~.'-oL I-t- ~ II: I 8 I '11/ i.- 008 ;; :!i ~GsL+ I 004 g 'I tlL .... I Vas--03V "- o 05 •o Output Characteristic (VGS(off) =-1.0V) (VGS(off) =-1.0V) GS- Vo." - ..IV 0160 I I I I -- fl L 0' / - - 10120 ...~ B I VOS,,-o4V z ;; I I vGs·-~fJV II. /' ~ o 05 1.0 Vas-DRAIN.SOURCE VOLTAGE (VOLTSI Output Characteristic (VGS(off) = -2.8V) (VGS(off) = -2.8V) I 081-~~~~~~~ I :c ..illoS . " u !! 2 ~I g, i.-'" 0.• .." ~'6 I Vi""" u I ,.. V" I g , Ylgs=g,gs+.bl9S 30D VOS=-2.0V •• ~ ~~ -- VOS=-2.6V o., 1000 m T--g,~,- ~ a: 2• ~ 100 -bn -~ 7" I 0.0 1 VOS-DRAIN-SOURCE VOLTAGE (VOLTS) Silicanix lo"'10mA !I . ,. BOD Reverse Transfer Admittance vs Frequency VG.'-"'sv VG~=-1.~V YtSS-UISS+Jb,ss COMMON GATE FREOUENCY (MHz) =-3.5V) VGJ=-1L Z ~10 VOS-DRAIN-SOURCE VOLTAGE (VOLTS) 4-38 V !Z Yo ".z!.v I ~f-"""" 0'100 ./ Voo-,OV 2• ."". VGS=-Z.ov COMMON SOURCE , 20 voJ=o 1 GS=-'.&V ./ 31---','7 r-- "-lav ,. . ,,............, 2' vos-'t - .!.'I / f/// 1/1/ / ' Ij:Y (VGS(off) , vO;'·-,.4V 12 I--- b= ... 6f==", 6 Output Characteristic I / /' 'I V 4 B ,2 16 20 VOS-DRAIN-SOURCE VOLTAGE (VOLTS) VOS"-1.0V =-12V Output Characteristic 3 VGS=-3 BV o Vo VOS-DRAIN-SOURCE VOLTAGE (VOLTS) 1,1 1/ vGs=-d 5V VGS=-30V VOG=10V lo-10mA VOS-DRAIN-SOURCE VOLTAGE (VOLTSI 4 VGS=-'sv VGS=-20V Input Admittance vs Frequency Vos,,-OGY 05 V~"~0'5~t I I I VGb"_,'.v o 2. Vos"-OGY Vo VOS"!'I JGS ~ _015V V I E ,/.,.,- (VGS(off) = -3.5V) '0 :o ,. ~ V.... Va =·2OV 0.26 "z u ,. VOS· -04Y I ...... 04 vds..lov Vas· -02Y I '.2 I-I-Hh"""If-::*"";:;"T:'':;:::-I f- I V 20 v,,~.ol oS "9 . ,.. Output Characteristic . -- VG~•.J. 26 VOS-ORAIN-SOURCE VOLTAGE (VOLTS) :c , .• I--I--+--hfl-A,~ ~ ~ ffi VGS",-04V • Vas=-3 BY 05 VOS-ORAIN-SOURCE VOLTAGE IVOLTS) a: a: Vas"-o sv •a I I i.-'" j~ •• 1. I I I 0040 Iw. I g, VQS=-30V! i---" (VGS(off) = -5.0V) Vas" -03V Vas"-0 7V 1//, V. V 2 3. ~o.U2V ..... :!i VOS"-05V IVI V V U I I v~s·-r·'v;- Output Characteristic Vos" -0 1V 0080 /' .:. ...... I V,Sj "...- JG)-oJvi " ~ VGS·-20~-1- J I ~ 3 Ie I I I VGS--0711 '/. !Z 08=-05 Output Characteristic lJ IL VGr-'j'V 4 oS 8 12 16 20 Vos-DRAIN-SOURCE VOLTAGE (VOLTS) 10 VDS-DRAIN.SOURCE VOLtAGE (VOLTSI 06 :c VGS,,-o4V Vas" -05V o Vos" lGsU,v ...... Z Vas--D3Y '/' - I Vv~s.~, °t+1I- VGS~OI I -'n ... . I .,~- 600 300 FREQUENCY (MHz) 1000 PERFORMANCE CURVES (Cont'd) (2S0C unless otherwise noted) Output Admittance vs Frequency Forward Transfer Admittance vs Frequency :g 10§~ VOG" lOV 10= lOrnA bogs and boss ! :::;\'l10~--!!II :l c Of, ~ ~ 90gSandgoss r'~'fll ~l= OO~O~O----~~~30~O~~~.O~O~~'UOOO FREQUENCY (MHz) FREaUENCY (MHz) Siliconix 4-39 I p-channel JFET GATE IS BACKSIOE CONTACT S ANO DARE SVMETFlICAL H designed for ••• • Analog Switches • Commutators • • • Choppers Integrator Reset Switch Low Insertion Loss in Switching Systems RON < 75 n 12N5114) • Short Sample and Hold Aperture Time Crss<7pF • High Off-Isolation 1010ff) < 500 pA PRINCIPAL DEVICES PACKAGE TO-18 TO-92 Chip TYPE Single Single Single ALL DIMENSIONS IN INCHES Siliconix BENEFITS: 2N5018-19. 2N5114-16. U304-6, VCR3P J174-7. J270-1. Pl086-87 2N5018CHP-19CHP.2N5114CHP-16CHP U304CHP-6CHP. Pl086CHP-87CHP J270CHP-271 CHP (ALL DIMENS/ONS IN MltL/METERSI PERFORMANCE CURVES (25°C unless otherwise noted) Output Characteristic (VGS(off) = +1_5VI VG~-+Lv~ - r- VGS=O i I I 1.... I 1 5 VGs=+04V ~ II: II: :> (J z II: II: I II, / 1 ~ c I(/J !! rJ I :> V 4 Z V- c I--" ~ ...... I /' !! vGi +J 8V Iii. o 1/ (J ~ VGS=+06V ,/ 1£ ...... o 10V 05V I I II II 'III !I V I srrvtt I VVGS V ~ " V i 15 ~(J ","" (J ! ~ 10 II: o I k i' 20 I I,V IO"'1,..A 3 8 On Resistance and Output Conductance vs Gate-Source Voltage 300 H go, rOS(on) r- If I o 1\ \ \ It ~./ VGS"''''' sV goo/, VGs:::+25V 20 10 @VOS=15VVGS=OV @IO= 7OO IlAVG=O !:i 1 ..... lOSS ./ VGS(off)=VOS=-10V VGS(offj-GATE-SOURCE CUTOFF VOLTAGE (VOLTS) VGS=+20V o 05V ./ / 20 vel=+1 0 v t'~- VOS-DRAIN-SOURCE VOLTAGE (VOLTS) V g: E ~ / I If ~~40 +09V 18 ..... I/, fl ".- -I- r- :> 025V ~j: II:W ,. - / 60 11: ~ S ....z =t 15V ! Z VGS"~ 12 /Of, II: 0_ G = +08V 8 80 Z ;; VGS"+ 0 6'+l r---t1: ;( 20 V~+20V / vGS-ov ,... l ~ 25 I I uts&IOSS@VOS"OSV Output Characteristic (VGS(off) = +3_0V} Output Characteristic (VGS(off) = +3_0VI VGS-+05V --- 4 100 VGS=+OV Ves-DRAIN-SOURCE VOLTAGE (VOLTS) VOS-DRAIN-SOURCE VOLTAGE (VOLTS) VGS=:O '" -- I I- :""1GS·~ 1Gs·~ l- I1-1-- V~ VGs.,+04V I-r-~GS=+1.0 ~ VGS=+10V ov Drain Current & Transconductance vs Gate-Source Cutoff Voltage Output Characteristic (VGS(offl =+1.5V) o VDS-DRAIN-SOURCE VOLTAGE (VOLTS) ./ 4 ~ ~ I rOS(on) J 6 B VGS-GATE-SOURCE CUTOFF VOLTAGE (VOLTSj Output Characteristic (VGS(offl = +5_0VI 05 50 -it J I I ~e/~ 4tt, ~.r- - r- 7'r-,:.,(j 'I s -- o ~ o .... l- VGS=+40V (J 25 r Z ~ ~ c I !! II /' 7' -- ;'GS~" ~v i-- r----tG~., ~v i;::;; VGS"'+20V i;::;; VGs=+26V t= 05=+40V VGS"'+30V VGs=+35V 10 o 10 VOS-DRAIN-SOURCE VOLTAGE (VOLTSj Siliconix 20 ~ <.. 4 o o ~ 8z o ./ 2 4 2 ~ " ...... - /' -1 o V V 12 16 VGS-GATE-SOURCE VOLTAGE (VOLTSj PERFORMANCE CURVES (Cont'd) (25°C unless otherwise noted) Output Characteristic (VGS(off) = +8.0V) '0 Output Characteristic (VGS(off) = +8.0V) '00 1 III VGS-+2V I Vas a Vos VGS-=+lV ~!- 1/ VGS=+3V -' II 1/1 :/ W! r/ 1/ v, V ~GS1'4vL V V I 1/ II, l::i: V [AV I I II::"'==: "f .§ Vas = -15V w ;t -8 0 u .§ 2 >- ~ ~ ~ "c °t" -40 "c, ~ -20 • 2 § "" 2 "">il r-... ~ " "" "11 ~ VGS - GATE SOURCE VOLTAGE {VOLTS) § ~ 16 ,. I< I ;Ii , , , u;' 2 o 20 VOS;.10 o -4 -8 '2 '6 10-13 VOS"'-10V lOSS = -9 a rnA @ MAX 10- 14 ~z C; c > AVG :!! 0 z 1'1. MIN 10- 15 " ,:: ..i ,. VGS - GATE-SOURce VOLTAGE (VOL lSI ~ ~ I 2 ~ n "" 6 ,,, I 2 ~ w B 4 ~.:>' Equivalent Input Noise Voltage and Noise Current vs Frequency 9fs@f-lkHz 0 VOS"'S VGS-GATE.SOURCE VOLTAGE (VOLTS) Vos -15V I' VOS"O B 'K 4 ~ rx ~ I Transconductance Characteristics -'00 1l ~ Vas-DRAIN-SOURCE VOLTAGE (VOLTS) Transfer Characteristics -6 2 !: 24 VOS"'+60V '0 VOS-DRAIN.SOURCE VOLTAGE (VOLTSI iii~ w u -~ I::;; "'==: t::: I '0 o it Eo 32 I- VOS"'+5 OV VGS::;'V o ~ l- I Vos""+1 ov Vos=+3 OV II I I V- fol 'LL f-"" 'L ~ r- r- VDS~+4 ov i::;: V l - f-f- VGS-'5V I--' !- Common Source Input Capacitance vs Gate-Source Voltage 10- 16 f - FREQUENCY (Hz) l1li Siliconix 4-41 m u en H p-channel JFET designed for ••• a. • • • • lip 10" l/JA 2 1055,91$ TYPE PACKAGE PRINCIPAL DEVICES TO-92 Chip TO-72 TO-1S 2N5460 -65 All of the above AVailable thru the factory Contact local sales office 9 6 , V ~ "1 V 0/ -12 ./ / / '/ 1 -2 o 0 IIOS VGS~ ~ ~ ~ u z - ~ VGS"'2511 VGs=30V -12 -20 -16 Vp V05=-15V IIOS ~ i.;' 'j VGS"r v VGS!ofl "4SV .... .... VG "'3SV ..... I' 1 1 vo§:,L - 2 - 4 -6 -8 -TO VOS - ORAIN TO SOURCE VOLTAGE (VI Output Characteristics Output Characteristics -2 r;~---,--~--~~--~~I00 ras VG "'25V 1 -8 IIOS - DRAIN TOSOURCE VOL lAGE (VI ON Resistance & Output Conductance vs Gate to Source Cutoff Voltage '" 'I. 2jj Y I I I VGS.20Vt.1:f , '1'1 ~ 0 VG =3511 ~~~~,-«V I II If ,/'/ z - 6 20V 1.00""" -, 0 -f ~ 511 1 OV ..'/ lip - GATE TO SOURCE CUTOFF VOLTAGE (V) g VG~= 1511 I"'"" -, I- 8 ~ ", -6 6 vos- - -8 V Output Characteristics -10 v~s=ov VGSlolt) =4511 -10 L 1105=-'511 IIOS= 0 Lowi n <15nV/$zat10kHz Low leakage < 10 pA at 30 V Output Characteristics lJS/ VDS~-15V • • Single Drain Current & Transconductance vs Gate to Source Cutoff Voltage -1 BENEFITS; Amplifiers Sample and hold Choppers Analog Switches ALL DIMENSIONS IN INCHES (ALL DIMENSIONS IN MILLIMETERSI , Silicanix , VGS(olll'" SV VGS" OV 0 ID~-100/JA 80 -2 0 . <" -400 r--r---H'-'I--..' ~ z ~-300r--+*.~~~-+-4__~+-r-~ / 6 F 2 / 8 vds., 2V '" vds . '" 4V Vas = 6V /' VGS M Bv V~"'10V 4 -0 - 10 lias - lip - GATE TO SOURCE CUTOFF VOLTAGE IV) DRAIN TO SOURCE VOL.TAGE IVI 10000 16 Noise Voltage vs Frequency 20 IG(Or'lt@ 10 sI 1000 ,Q 0 \~~ 1 ~ u z ~ U '5", f'.. ~ ION... , ~ u ~, -10 -20 -30 -40 so IIOG - DRAIN GATE VOLTAGE IV} 4-42 -60 - liDS = SV c,u C 5S _ _ _ r 0 0 ~ \,5 V 10 VGS - GAlE TO SOURCE VOLTAGE (V) Silicanix ~ "':;< ~ VOS"-5V Vos ~ ~ ~'5V Vos" r> •, ~ ........ ::: ::.- -:..-:.r-=:;,; j 1 ~ -20 Vos - DRAIN TO SOURCE VOLTAGE (V) Capacitance vs Gate to Source Voltage Gate Operating Current vs Drain-Gate Voltage - 12 12 2 0 ~ ~ ~ 0 > ~, ,~ 100 lK 10K F - FREQUENCY IHt) TOOK high voltage protection Cliode designed for ••• D 0020· (00508) A j ,~. -------t-----'-","-,. BENEFITS • Limiting Current • Voltage Protection • Voltage Oecoupling 1 • Series element • Two terminals • Simple to use • High breakdown voltage (JR24OV -240 volts) ALL DIMENSIONS IN II(CHES • Low Cost (ALL DIMENSIONS IN MILLIMETERS/ PRINCIPAL DEVICES PACKAGE TO·92 TYPE Single JR135V. JR170V, JR200V J R220V, J R240V PERFORMANCE CURVES (25°C unless otherwise specified) Dynamic Impedance Vs. Anode-Cathode Voltage at Temperature Output Characteristic .200 1 900 m ,..- a: a: U 600 ;i ~ - -.'" 300 ..... :Ii / i''c" C 80 120 160 200 240 o 280 o 50 i: -- 400 z . ~ iii '"Ca: 200 UI .. ~ . I c ;; -- ...... .......... .......... 150 75 100 '\ 155 iii ::; -15 ~ -35 \. {!:-55 -75 230 ,..= 200 250 I"\.. 240 250 250 270 2BO .25 '" 300 BV vs Temperature 280 '"'- 480 + 320 iii 260 ~ l- f- ~OS (MHI = .lIFI.lVF ZFl (II, = .lVFI.lIF I 0 0 ISO 290 BVAC-ANODE·CATHDDE VOLTAGE (VOLTS) r--. r-..... 240 IF=.m?' ............ r- 220 I"SO 25 '\ 300 .SO 25 I!! ~ .El .!!- 100 o +45 640 JR~V -- 300 -H;5 ::; Family Curves JJ I- " \.. 105 +85 ffi.. 800 = - ~r 0 "- 100 Free Air Temperature Dissipation Derating Curve ! 25·C :: \.. VAC-ANODE-CATHODE VOLTAGE (VOLTS) VAC-ANODE-CATHODE VOLTAGE (VOLTS) 500 \ ~ .25"':C N 40 \. -55·C -- ~ u 0 o ~ 51 C o ~ U Z Q I UI UI L /' UI 9 ~ a / k-fo""" /'- I- " 165 / ./ Breakdown Voltage Vs. Temperature I- -- I 4 TA-AMBIENTTEMPERATURE IOe) 10 6 VF(VI - 200 .80 -55 -35 0 25 45 65 85 105 125 TEMP rCI IF vs Temperature ./ 600 ..,./ VF _ 400 '" .El .!!- /' =20V ..,./ ........-::: ~ ,...... :::...-'/:: ~ ~ -:;::::;200 ,..... o o 25 50 75 100 125 TEMP ("CI Siliconix 4-43 "',, ' , , '. , I '.' '" """ Selector Guides _ .,' ,', .' Siliconix , ,', ' " > ' " :" ' :! Tips on Selecting the Right FET for Your Application 1 o ::I en -..~ CD The "Product Specification," a short form version of technical data, will provide you direct reference to Siliconix part numbers and a condensed version of technical specifications -. .. _. .. ::I ca :r IF YOU ARE NOT FAMILIAR WITH THE FET PARAMETERS YOU NEED: 1. Turn to page 5-4, "How to Choose the Correct FET for Your Application." Using this guide, determine the important FET parameters. 2. Next, turn to page 5·6, "JFET Geometry Selector Guide." Using this guide, choose the appropriate geometry. 3. Once you have chosen a geometry, turn to "Geometry Characteristics," section 4 of the catalog. Here you make the choice of a suitable part number. 4. Now that you have the part number, you will find complete electrical specifications of these products in the "Data Sheets," section 2 of the catalog. CD ;a ca:r ,. "II ~ ""I IF YOU ARE FAMILIAR WITH THE PARAMETERS YOU NEED: 1. Turn to the "Product Specifications," pages 5·9 through 5·18 to determine the proper part number(s). 2. Double-check your choices against the data sheets, and select the part most suited for your application. ~ C ""I :.. -. "D_. 'V 'V - .. o ::I l1li Siliconix 5-1 Small-Signal FET Application Selection Preference Additional Information " 't,-'" 100 MHz P S p P HF> 400 MHz Prrme General Purpose Amplifier P P Low Noise Amp (10 Hz anI p S S P S low Noise Amp> 50 MHz S P P p S P P P p p P P P P P P P P S S MIcrovolt AmplIfier P S P P P Low Leakage Diode P S P S P P P P S P P P P P Drfll Srngle Ended Inp Stag S Hrgh Slew Rate Diff Amp S S p Oscillator S P P Voltage Controlled Resistor S P P P P P Analogi Digital SWitch S Multiplexing P P P P P P P P P P P P P p p P P P S P P P S S P Choppers P P p Reed Relay Replacement P P S P p P p p S p S S P P S p p p p p p p p p p P p P P P P p P P P Sub pA Dual Drff Pair P Sample Hold P p S S S S Buffer Interface to CMOS Matched SWitch S Current limiter Current Source P P P P P P P P S P Low Leakage Dual Diode Hybrid Chips P P P S Active Filter S P P P P P P p P S P Electrometer Preamp < 1 5V (j PS8 PSCD NCl NKl NKM NKO OMCB iRMA HNZ MDN NBA DMCA/~ P P S P ., P P S AGC Amplifier P ~~~ ~ P Dual Dlff Parr Smoke Detector Input ...~ ~q)~ aDS' t ~~f t:;~tJ~~ P P P P High Frequency Mixer .J # ~~ '$!l.,"ljr l ? ll;f, '/;llli/l~'?", S ~J <0 <0 ~.t ,>e;~ ... ~ ~" ~ t'\I~"'''z 1'\1 !':i " rJl J' ~"'~t::l'?$§~"1- Popular Product Type ' ~~.§9 ~Cb..... ,~ nrc f ~ct' ~. ~ ~r Battery Operated Amp ~f; ~t J-. '" ~ f$.~dl'll p S LV P p P S p S p P S S P LV High Voltage Protection Diode p P P P P p P P S p Military Application As an option, Sillconlx offers all hermetically packaged product processed to MIL·STD·750. For Information, contact your local Sfltconlx Sales Office or Silicon IX, Incorporated direct. LV = Lrmlted 5-2 Silicanix P e:;. PfJme Choice S = Secondary (alternative) Choice Value P Small-Signal FET Product Selector Guide Application Detail Application Audio Buffer Oifferential High Input Impedance High Frequency AMPLIFIER FET Input Op Amp Low Oistortion Low noise (en). 9ls/gos Low IG. high 9ls Good matching VGS. 91s. lOSS. IG Very low IG (e.g .• MOSFET) Preamplilier Operate near 10ZO. high 91s/10 ratio High 9ls/Ciss ratio. NF Commutators Oigital Integrator Reset Sample and Hold Fast switching time ros/IO(off) switching efficiency LowC rss Fast switching time Current limiting Relerence Current Source Biasing Low goss. low VGS(off). high BVGSS VOLTAGE CONTROLLEO RESISTORS Gain Control Amplitude Stability Attenuators High VGS(off) for wide dynamic range and low distortion VHF RF parameters. NF. high 9fs/Ciss ratio. 10wCrss UHF Oouble Balanced Class A OSCILLATORS Class C ;9Is/gos ; l> VOS/l> VGS @Io;const ROS(on) VOS(on) 10(off) Switching Times ROS(on) vs. Capacitance 9ls 90S lOSS max Very low ROS(on). High lOSS Low Crss CONSTANT CURRENT SOURCE MIXERS Voltage amplilication lactor I' Unimportant FET Parameters Good matching VGS. 91s. lOSS. IG High VGS(off) compared to signal ampliWoe Low VGS(off) Lowen. in. low I" noise. 10wNF Analog Gates Choppers Major Tradeolls High 9ls/Ciss ratio. NF. RF parameters Low Supply Voltage Low Noise Video SWITCHES Important FET Parameters Required lOSS vs. BVGSS Matching characteristics Good 9fs at operating frequency Low Ciss lor VHF operation 9fs vs. Capacitance Siliconix Prelerred Parts 2N4339·40 2N4867·69 J230·32 J202·4 J30S-10 U308·10 2N5911·12 2N4117A·19A U401·6 U421·6 2N6905·7 2N6908·11 511000·20 511100 55T201·4 55T4416 55T30B·l0 S0210·15DE 5D5000 2N4091·3 2N4391·3 PN4391·3 Jl0S-l0 Jl05·7 U290·1 2N5432·4 2N4856·61 2N5114·16 91s. ROS(on). 10(011). VOS(on) switching times. RF para me· ters. capacitance CRR Series J50Hl J552 Any J·FET 9fs. BVGSS. lOSS VCR Series Any J·FET rOS(on) VOS(on) 10(off) U350 U430·1 U440·1·3·4 2N5911·12 U308·10 J30B·10 50210·15DE 5i8901 2N4416 PN4416 U308·10 J30B·10 5-3 - Small Signal FET Application/ Parameter Importance Guide !/iiJ;iiijlj/tiJ S' ~p KEY PARAMETERS \;:,. ~ Q;js, Low Current Amplifier Low Freq Amplilier < 100 Hz High Freq Amplilier > 100 MHz HF ;:: 400 MHz Prime General Purpose Amplilier Low Noise Amp (10 Hz en) Low Noise Amp> 50 MHz High Frequency Mixer Dual 0111 Pair AGC Amplilier Electrometer Preamp Microvolt Amplilier Low Leakege Diode Low Leakage Dual Diode Smoke Detector Input Battery Operated Amp < 1.5V Dill/Single Eneed Inp. Stag. High Slew Rate Diff Amp ----Active Iilter Oscillator Voltage Controled Resistor Hybrid Chips Analog/Digital Switch Multiplexing Choppers Reed Relay Replacement Sub pA Dual 0111 Pair Sample Hold Buffer I nterfaee to CMOS Matched Switch Current Limiter Current Source High Voltage Protection Diode , ....(!j Min. Max. 0 , , 0 0 , 0 Max. ~(!j.::!! Max. 0 '" ~(!j Min. Max. D (0) , , ~ '" ....Q Max. . /' I' I' I' 71* I' Min. , 0 D '/D , 0 , ~ !'.> 0,0 ~~Q~ Max. ? , (') , , , ? , Max. ? 0 0 , 0 0 , * (') , 0 · ? * 0 , , , , , , , 0 , ·, · .. '/' /' I' /* /' I' '/* 'I , , , 0 , '/ (') (') , , , , , Max. -..If Max. ? , ? G G G , ? ? D , · ? , · D D D D ? D D D ? ? D . ? · , D , , , . 0 , 0 0 r '/ 0 0/ 0 '/ 0/ , I' , (0) 0 ./ or 'r " 0 '/' ., 0 "/ - Indicates "Min" I' - Indicates "Max" D - Desired "nominal" limit - rarely critical (0) _ Indicates Parameter in Parenthesis G - Guaranteed by Ciss- C rss - 9,s- and device design Siliconix ? ? , , . 0 D 0 '/ ? , - Important FET Parameter - Required , ./ 0 ·, c.i~ Same as application area (') , 0 ~ ? ? (*) D 0<; b , G D ? q,~ . D D G 0 , Min. Max. ~ If §:' ~ :!::,f. \;:,. 0 ? - Important lor some applications 5-4 o:~ 0 , e' q,~ ~ 0 0 ·· · , · I' I' (') · 0 '/* ·, · , ~ Min. Max. I' IfR(!j g; ~ @I ...Q I' I' 0 0 , ....Q , , , w ~ ,~~ ';;/: D , 0 ~ .....Q ~(!j ~ ,..(!j ~ 10 (5i LIMIT ~ ~ , 0 Application Detail Application Audio AMPLIFIER Important FET Parameters Required Low IG. hIgh 91s Differential Good matching VGS. gls' lOSS. IG High Input Impedance Very low IG leg .• MOSFET) High Frequency High 9fs/C,ss ratio, NF, RF parameters FET Input Op Amp Good matching VGS. gls. lOSS. IG High VGSloff) compared to SIgnal ~ on Voltage amplification factor JJ. = gl,lgos ::r o o ROSlon) VOSlon) 10(011) Low VGSloff) IS Low Noise Lowen.Tn. low l/f nOlse,low NF ::r Preamplifier Operate near 10ZO. hIgh glsll 0 ratIo = l>VOS/l>VGS@ 10 = canst Video HIgh gls/C"s ratIo. NF Analog Gates Fast sWitching time Choppers 'OS/IOlofl) switching effiCIency Commutators LowC rss Digital Fast switching time CD n .. o ROSlon) vs Capacitance Integrator Reset Very low ROSlon). High lOSS Sample and Hold LowC rss ... Switching Times i... ... 91s 90S lOSS max ~ Current Limiting CONSTANT CURRENT SOURCE :z:: Low Supply Voltage amplitude SWITCHES Unimportant FET Paramete .. Low nOISe len I. gis/gas Buller Low Distortion Major Tradeoff. Reference Current Source Lowgoss.law VGSlaff)' hIgh BVGSS IDSS vs BVGSS 91s. ROSlon)' 1010ff). VOSlon) sWltchmg times, RF parameters capacitance BiaSing . ~ . i' C VOLTAGE CONTROLLED RESISTORS J> Gain Control Amplitude StabIlity High VGSloll) lor WIde dynamic range and low distortion "a gls· BVGSS. lOSS -"a_. "U Attenuatars ...o_. VHF MIXERS UHF Double Balanced ::a RF parameters, NF. high 9fs/Ciss ratio, lowC rss Matching characteristics 'DSlon) IDI VDSlon) IDlolf) OSCILLATORS Class A Good'9fs at operating frequency Class C Low C1SS for VHF operation Silicanix 91s vs Capaci tance 5-5 .= ~ ...2 Preferred Parts Basic Circuit" vp• voo - Rz RO f---o .,0-- ..to, Iii II. 30 I "..• Voo" 15 Vss = -15 MU MU 2K 330 330 2K 330 330 4.7K Cs RZ Rt n 20 82 R, E f es '::- Rs IV) NF 47 11 100 1 100 1 0 47 11 100 1 100 0 1 1 Source ~ ~ ~ ~ '00 mA Ro n (VI 5 8 8 lK 820 820 27K 15K 15K 0 15 15 3 6 8 8 5 ·0 5 25 5.5 11 AV 8·11 9 19 18·24 15 33 097 Follower 2N4339-40 2N4867·69 J230·32 J202·4 J308·10 U308-10 U401·6 U421·6 .". JFET Voltage Amplifier Stage Application Nota: TA70·2 .r.« !J on 2N4091·3 2N4391·3 PN4091·3 PN4391·3 J108·10 J105·7 U290·1 2N5432·4 SD210DE·215DE s ' y o : a, .!!.. 8 .c C E Q2 -16V Shunt·Resistor Analog Switch Application Note: AN73·5 Ioc e Ilf---=O a CRR Series J501·11 J552·7 40V .co 1Mt~. RS u: RS 2W Any J·FET h JR135V·240V SjlA101mA '---1~_--<) 29 Equivalent Circuit of a JFET Current Limiter Application Note: 0171·1 ~= V, 01: o,~ zcc v, V2 V2 0, ••, . .A. VCR Series Any J-FET VH Distortion Free Voltage Controlled Attenuato. (VCRI Application Note: AN73·1 U430-1 U44O-1-3-4 2N5911-12 U308-10 J308-10 2N4416 U350 S08901 Singl.Salanced VHF Balanced Mixer Application Note: AN72-1 v (*~T 2N4416 PN4416 U308·10 J308-10 'vo UHF Transmission Line Oscillator Application Note: 0173·2 *for further details see Application Notes, Index 5 5·6 Siliconix ""'1'1 JFET Geometry Selector Guide ~ fo :I ! ~ en -" CD CD o USEFUL JFET INFORMATION '"' Q = cqs + Cgd c_. Input Capacitance Q. CD COSS = Cds + Cgs + Cbd Output Capacitance CRSS = Cqd Reverse Feedback Capacitance 10Z = lOSS 9fso = K 2 (...Q&L) VGS(off) Variation of I(zero tc) with Gate Source Cutoff Voltage lOSS ---- Forward transconductance a. a function of lOSS and VGS(off) at zero gate-source voltage VGS(off) gf. = 9f.o(l- (K VGS ---I = 1.5 to 2.5; typically = 2 for N-channel junction F ET) Vanatlon of 9fs with gate bias VGS(off) gl. = VGS(off) = Variation of 9fs with dram current 91.0 VI 011 OSS 2 lOSS --- Gate-Source cutoff voltage in term. 01 lOSS and 91.0 9lso VOS ~ VGS(off) (~) 11, Drain voltage at which drain current saturates lOSS 1 rOS "" - Reciprocal relationship between drain-source resistance and forward transconductance. AcVGS(off) i.e, in the triode region curate when VOS 91s (V GS(0ff)12 rOS "" 10 = K = 1.5 to 2.5 < Variation of drain resistance in the triode region KlOSS [VGS(off) - VGS I lossh-~) 2 Variation of drain current with gate-source voltage. The square law transfer characteristic. VGS(off) 5-7 - CD '1J JFET Geometry Selector Guide (Cont'd) "!. N-Channel JFETs .-::t u .CD CD -en .. ~ CD E 0 CD "..,... l- II. ~ -' ~ -10 OJ "~ 0/'", -5 ~ 0 > It e -2 . u u a: -1 :> :> 0 -0.5 ~ -0.2 " v ~ ~... ~ .. ~ ~ ~.~ I i~r 1111 ~ : 1.0 0.1 IpSS - v W) m -0.1 0.01 IlH ~ 10 1000 100 SATU~ATION P~AIN CU~RENT ~ 'OS(ool- STATIC DRAIN·SOURCE ON RESISTANCE (OHMSI 140 ~ -10 ~ -5.0 It -2.0 '" g 10K (mA) ~ I'j- :Zw ~~ 100 gg so ~~ Le 6. 8~ -1.0 u a:~ 120 -0.5 ~~ lK 10 gil. - COMMON· SOURCE FORWARD TRANSCONDUCTANCE (.mhos) 4. i~ g! 3. 1 kHz a:w 00 10 kHz ~~ 0--' ilig 19Hz 100 Hz 20 = 68nV/JHi t:::::J i 10 I~! ~~;~zi~ii~i~ N z z 5-8 ~ § ~ -'w ~5 ::>z :ilS I'j i c:::::J enQVos·10V VGS-o I .1·. IIIIIII lK goo. - COMMON-SOURCE OUTPUT CONPUCTANCE ",mhoa) i LEGEND 100 40 2. aVGSS @ IG = -, .A VDS - 0 I 20 Of. @VOS = 10V VGS=O '5 10 40pF 1SOpF .i w C,...@VOS=1OV Vos=O m a:1'j n U ~I HqUpn~ Z Ii z Z ~ JFET Geometry Selector Guide (Cont'd) "II = o :I ..-<.. Ci) CD P-Channel JFETs CD ii) ~ 0 ~ w "~ 0 .,J 1 ::> 0.5 a: PSCB 1= " > 0.1 -0.1 lOSS - -10 -1.0 -100 0 w 0 a: ::> rOSton) @ '0 '" -10 p.Y ~ YGS = 0 VaS!oll) @ VOS ~ - 10 V 10:: -1 p.A SATURATION DRAIN CURRENT (rnA) 0.1 100 10 ~ 0;- W ""I PSCB I glao @ 10 0.1 ~ 0.1 9'80 - " > PSAlPSB Vos = -10 V VGS '" 0 I" 1 kHz VaS!oll) @ VOS ~ -1 OV lf- 0;- rOS(on) - STATIC DRAIN-SOURCE ON RESISTANCE (OHMS) " > 0.5 I- 10K lK 1 g 0 "I . " G 0 I- ::> PSAIPS B PSCB 1= :z ~ ~ a: 0.5 ~ ::> :z 0;- 1 II l:: ~ ::> 0 w 0 CD CD 0 0 I- PSAlPSB - 5 > > ~ ::> 0 w 0 CIt 10 "~ 5 0 lL 0 I- 0 ~ w 10 "~ 5 > "I ~ ~ 0 ~ w l:: 0 ii) ii) 10 = -1 1 Ci) C -. a. p.A 100 10 CD COMMON·SOURCE OUTPUT CONDUCTANCE (/-Lmhos) ii) ~ 0 ~ w ""~ 80 10 ,,~ 00 to?!! Ww ~ ~ ~ ::> 0 w 0 0.5 i=f-- :z ~ " PSCB g088 @ YOS = -10 V Vas'" 0 t = 1 kHz VaS!oll) @ VOS ~ -1 OV 10 = 1 p.A 0 > :;~ PSAlPSB a: i0;- ~~ 0.1 1 gOIl - 100 10 I 60 ~" if' I ::> "I Vos=O o~ > 0 lK ,,0 0> O:z >-;0 1-0 40 ~~ 10Hz 100Hz 60 1 kHz "'w 0" :x: " ...zO ~I~ I 10kHz = = = en@Vos=-10V VGS= 0 40 w> ~w ,,~ ~o 10 iil" ,,:;; - LEGEND 1-- ",I- 0 l- 80 BVGSS@IG= lilA w _ 5 "z 0 ... w::> 20 20 ~ f~C=~ iii~ 0 0 PSAlPSB PSCB PSAlPSB COMMON-SOURCE OUTPUT CONDUCTANCE (p.mhos) ~ 40 0 z VGS"O ;'! ...~ "~ w 0 ~ >-" Ww "'0 wz 0" 30 4 00 ~a: :ow O~ o~ ,0 1:1 2 ,J~ 0 0 I ~ - 6 "' ... ~~ z" 20 :0 :0 0 Cr1S@VOS=-10V VGS=O w ffiu:: "'"0 "0z - 8 C.u@VOs=-10V 0 n PSCB 0 PSAlPSB ~ PSCB Siliconix PSAlPSB 5-9 '!' N &FI-Channel Single FETs o ~n -ncn "'II l> -i Z C -r ' m !'l> " ;: ", m " m il' o :J )C' .... l> z 0 ~ "'II On 2N4117 2N4117A 2N4118 2N4118A 2N4119 2N4119A PN4117 PN4117A PN4118 PN4118A PN4119 PN4119A PN4120 FN4117 FN4117A FN4118 FN4118A FN4119 FN4119A FN4392 FN4393 N N 72 N N N N N N N N N N N N N N N N N N N 72 72 72 2N4220A 2N4221 A 2N4222 2N4338 2N4339 2N4340 2N4341 2N4B67 2N4B67A 2N4868 N N N N N N N N N N N N N N 72 72 72 2N4B6BA 2N4869 2N4B69A 511000· (2N6908i 511010(2N6909) 51102012N6910)' 511100· 12N6911) J230 J230·18 J231 J231·18 J232 72 72 92 92 92 92 92 92 92 72 72 72 72 72 72 18 18 ;:r" l> .... m xc;) x~~ -.m '", -l> c;) m -< .... '<0:1: ;:'" l>l> -"'II Gate 001 0.001 001 0.001 001 0001 0.01 0001 0.01 0.001 001 0001 :....~o Chnl - - . 0005 0.001 0005 0.001 0.005 0.001 01 01 0.1 0.1 72 72 72 72 72 01 0.1 01 0.1 0.1 0.1 01 0.25 0.25 025 0.25 025 0.25 0,025 N 72 0,025 N 72 0.025 - 18 18 18 lB 72 72 N 72 0025 N N N N N 92 92 92 92 92 025 025 025 025 025 r 0 - - - - - - - - "3 ccn OZ ~ Z ~~m < • ;:l>C l>Q-I X-I '-l> 00: 00: 0.0" 0.0" 02 02 003 0,03 008 008 02 0.2 0.2 003 003 0.08 008 0.2 0.2 25 5.0 05 2.0 50 0.2 05 12 JO 04 04 10 10 25 25 Max. Mm, 009 009 024 70 70 024 06 06 0.09 009 024 024 0.6 06 0.6 0.09 02 0.24 04 0.6 90 100 100 70 70 80 80 100 100 100 70 10 80 80 100 100 12 80 Max. 210 210 250 250 330 330 210 210 250 250 330 330 330 210 210 250 250 330 330 100 60 30 GO 1000 2000 15 06 15 36 90 12 12 30 30 75 75 2.0 2500 600 800 1300 2000 700 700 1000 1000 1300 1300 100 4000 5000 6000 1800 2400 3000 4000 2000 2000 3000 3000 4000 4000 3000 N ;:. n m Gate fl - 3 3 3 3 3 3 - - - - - - - 3 - - - - - 60 100 6 2.5 25 25 1'0 10 10 10 20 10 20 10 20 1M 1M 1M 1M 1M 1M 1M 3 3 - 6 6 7 1 7 7 25 25 25 25 25 25 5 10 -c;) l> Z n m o·!lo;: , m - -"< Chnl Max n. - NT .. NT NT NT NT NT NT NT NT NT NT NT NT NT NT NT NT NT NT NCB NCB . - 3K 3K 3K 3K 3K 3K 3K 3K 3K 3K 14 14 - NPA NPA NPA NPA NBA·A 30 3.5 400 3500 5 25 - 30 50 1200 4000 5 25 - - NBA-A 2.8 30 - 25 NBA·B 40 40 40 40 40 - 30 30 30 30 30 - - 30 30 50 5.0 60 - 1000 1000 1500 1500 2500 2500 2500 3000 3000 4000 I rr mo ~::-:: » G) m - NBA-A - - 1 NPA NPA NPA NPA NPA a _. n en CO J -m-n 0 ..... ... ." 0 0. ... C 0 en "0 (1) NPA NPA 2.3 30 30 60 60 10 m NPA NPA NPA 3.5 0.7 07 2.0 20 5.0 i'i NRL NRL NRL NPA - 25 0 m < ... -1 - - 3 &'m - .. iii .... 0 l>;:r xl>-i ,-Xl> '-c;) ~ m Z Min. "mcn ~ ~~~ .... -l> Z n m 0 •~~2 en -n- an' ........ ;:rm l> .... l> .xl>'" c;) 0 -mo en .... V:-OJJ 3Cl> l>" .... -"c m" Zl> r 0 ::-:: Z 0 en m 0 --. --. ~ 0 a..... _. 0 ::J en - N & P-Channel Single FEls ~ " -'I Z c 3: CD m o J sC' Cjl ....0. -"II "II Gate Chnl J232-18 J270-18 N P 92 92 0.25 0.2 - 2N3819 2N3823 2N4223 2N4224 2N4416 2N4416A 2N5484 2N5485 2N5486 2N5668 2N5669 2N5670 J210 J211 J212 J270 J271 J300 J304 J305 J308 J309 J310 MPF102 MPF108 MPF112 PN4416 U30B U309 U310 U311 U312 N N N N N N N N N N N N N N N P P N N N N N N N N N N N N N N N 92 2.0 0.5 0.25 0.5 0.1 0.1 1.0 1.0 10 2.0 2.0 2.0 0.1 01 0.1 0.2 02 0.5 0.1 0.1 1.0 1.0 1.0 2.0 1.0 100 1.0 015 0.15 0.15 015 0.1 Z ~ 72 72 72 72 72 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 52 52 52 72 52 Min. Min. Max. 6.0 2.0 40 30 5.0 2.0 10 15 2500 6000 4000 15000 8.0 B.O B.O 8.0 6.0 6.0 3.0 4.0 60 40 60 8.0 30 4.5 6.0 2.0 45 6.0 6.0 3.0 65 4.0 65 7.5 8.0 10 6.0 60 40 6.0 6.0 60 25 30 30 30 2.0 4.0 3.0 2.0 5.0 50 10 40 B.O 1.0 4.0 80 2.0 7.0 15 20 60 6.0 5.0 1.0 12 12 24 2.0 1.5 1.0 5.0 12 12 24 20 10 2000 3500 3000 2000 4500 4500 3000 3500 4000 1500 2000 3000 4000 7000 7000 6000 BOOO 4500 4500 3000 BODO 10000 BOOO 2000 2000 1000 4500 10000 10000 10000 10000 6000 6500 6500 7000 7500 30 35 25 25 25 25 25 25 25 25 25 30 30 25 30 30 25 25 25 25 25 25 30 25 25 25 25 25 20 20 lB 20 15 15 5.0 10 20 5.0 10 20 15 20 40 15 50 30 15 8.0 60 30 60 20 24 25 15 60 30 60 60 30 ;..~a - - - - - - - - - - - -n- ~?if(' - 1: oz -nUl 3Cl> l>,,-'I -"c m" z» I"" 0 ~~~ !)! -I::! Z n m 0 Z Max. 7500 7500 6000 7000 BOOO 6500 6500 7500 12000 12000 12000 15000 1BOOO 9000 7500 20000 20000 18000 7500 7500 7500 7500 20000 20000 lBOOO 20000 10000 3:»C »!2-'1 X-'l ;..» Z n m - ~m - - 5.5 7.5 7.5 7.5 7.0 65 Ul iii Gate - - - lK lK - - 2.0 2.0 3.0 2.0 20 25 2.5 25 lK lK lK lK lK lK lK lK - - - - - - 2.5 1M - - - - 40 7.5 75 75 75 50 20 lK - - - -Gl K'm llo o· 3: ::1m ... -'1 -'I » Z n m 2.5 5.0 - 3 " m fl. 30 B.O 6 6 6 4 4 5 5 5 7 7 70 en --z Z"o .."TI ~ iii ,,"~m ..ttl ~ < 3:- 0 »3:1"" .x»-'I x» -;..Gl - Chnl fl.. Max. - - - - - - - - - -"< Q 0 m < m n - • en _. NPA PS-A/B to NRL NRL NRL NRL - NH NH NH NH NH NH NH NH NZF NZF NZF PS·A/B PS·A/B NZF NH NH NZB NZB NZB NH NH NH NH NZB NZB NZB NZB NZF ::::J Q m "..... ::Il " l> s: "r "::Ilm (I) en "C CD 0-. _.0 -Il Q .... _. 0 ::::J en -0 0 ::::J .... .. - a. C{I ..... N & P-Channel Single FETs N .., » -I 2 c: s: III m -.- " " 2N3824 m ir oj 5(' 2N3970 2N3971 2N3972 2N4091 2N4092 2N4093 2N4391 2N4392, 2N4393* 2N4856 2N4856A 2N4857 2N4857A 2N4858 2N4858A 2N4859 2N4859A 2N4860 2N4860A 2N4861 2N4861A 2N5018 2N5019 2N5114 2N5115 2N5116 2N5432 2N5433 2N5434 2N5638 2N5639 " m }>)> -.., -I» ~ On ',0: -» CI m N N N N N N N N N N N N N N N N N N N N N N P P P P P N N N N N 72 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 lB 18 18 18 52 52 52 92 92 2 0 -<-I :Co:t S:.-" »-Im x»'" s:,o: »» XCI .:..m Gate 0.1 025 0.25 025 0.2 0.2 02 01 0.1 0.1 0.25 0.25 025 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 2.0 2.0 0.5 0.5 0.5 0.2 0.2 0.2 1.0 1.0 Chnl 0.1 025 0.25 0.25 0.2 0.2 0.2 0.1 0.1 0.1 0.25 025 0.25 025 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 10.0 10.0 0.5 05 0.5 0.2 0.2 0.2 1.0 1.0 .:..~~ ... 0 8.0 10 5.0 30 10 7.0 5.0 10 5.0 3.0 10 10 6.0 6.0 40 4.0 10 10 6.0 6.0 4.0 4.0 10 5.0 10 6.0 4.0 10 9.0 40 12 8.0 - l> 3:'" )ol> XCI :...m ." l> :D ~ Z c: i!: III m :D ~ 0' o :::J 5(' 2N5640 JI05 Jl05·18 JI06 JI06-18 JI07 JI07-18 Jl08 Jl08-18 JI09 Jl09-18 Jl10 JIIO·18 Jll1 J111-18 J112 J112-18 J113 J113-18 J174 J174-18 J175 J175-18 J176 J176-18 JI77 JI77-18 Pl086 P1OS6-18 Pl087 Pl087-18 PN4391 PN4391-18 PN4392 PN4392-18 PN4393 PN4393-18 -." ~l> -<~ :C:e:t ==r-:D l>~m Xl>'" ." 00 '", -l> CI m Gate Chnl rC N N N N N N N N N N N N N N N N N N N P P P P P P P P P P P P N N N N N N 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 1.0 3.0 3.0 30 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0' 3.0 1.0 1.0 1.0 10 10 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 2.0 2.0 20 20 1.0 1.0 1.0 10 1.0 10 1.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 10.0 10.0 100 100 1.0 10 1.0 10 1.0 1.0 6.0 10.0 10 6.0 6.0 4.5 45 10 10 6.0 6.0 4.0 4.0 10 10 5.0 5.0 3.0 3.0 10 10 6.0 6.0 4.0 4.0 2.25 2.25 10 10 50 50 10 10 50 50 30 3.0 Z 0 ~ :...~6 ~l> .Xl>'" CI C -me :E Z 30 25 25 25 25 25 25 25 25 25 25 25 25 35 35 35 35 35 35 30 30 30 30 30 30 30 30 30 30 30 30 40 40 40 40 40 40 ut02l -l> Z 0 m Z Max. Min. Max. - - - - - - - - - - - - - - - - - - - - - 100 100 60 60 25 25 20 20 - 150 150 ,00 100 60 60 - - - - ' x~ - - :n~rn 3:l>C: l>!:!~ - - -0- ~~~ a!ll e 5.0 500 500 200 200 100 100 80 80 40 40 10 10 20 20 5.0 5.0 20 2.0 20 20 7.0 7.0 2.0 2.0 1.5 1.5 10 10 50 50 50 50 25 25 50 50 zs~ -Zl> cz 3c:", 1: ~:! Min. en '" O~ -0'" 3 c: l> l>:D~ -:DC: m:D zl> - - - - - - :...l> Z 0 m 10 - :D m ", iii ~~m < ~ N l> 3:' 0 l>S:r- Z 0 m ?<~~ -:...CI ~m Gate n n.Max. - - - 100 30 3.0 60 6.0 8.0 80 80 8.0 12 12 18 18 30 30 50 50 100 100 85 85 125 125 - - - - - - - - - - - - - - - - 45 45 45 45 14 14 14 14 14 14 ... Chnl - - - - - - - - - - - - - - - - - - - - - - - - -CI !em lto o· 3: " m ~ -:D 250 250 300 300 75 75 150 150 30 30 60 60 100 100 < NCB NVA NVA NVA NVA NVA NVA NIP NIP NIP NIP NIP NIP NCB NCB NCB NCB NCB NCB PS-A/B PS-A/B PS-A/B PS-A/B PS-A/B PS-A/B PS-A/B PS-A/B PS-A/B PS-A/B PS-A/B PS-A/B NCB NCB NCB NCB NCB NCB 3 -en• 0 C m < nm -- (Q :::J 0 ." ....m en '0 ~ ::j 0 ::t m en 1/,0 0 ::t 0-g -g m :Jl en (I) 0 -_. ~ 0 0 ...._. 0 :::J en "'""' 0 0 ...... :::J 0- ~ C{I ..... N & P-Channel Single FETs "" -,... "U l> -i Z C " ;;: III m " m 0' oJ >C' 50210 50211 50212 50213 50214 50215 U200 U201 U202 U290 U291 U304 U305 U306 U1897 U1897-18 U1898 U1898·18 U1899 U1899·18 " m !'l> ;;:;< l>)> x Gl ,-m -"U Z Q ." N N N N N N N N N N N p P p N N N N N N -il> ';< -l> Gl 00 m 72 72 72 72 72 72 18 18 18 52 52 18 18 18 92 92 92 92 92 92 -<-i :<0:1: ;;:,..." l>-im xl>!i! !..~o ,... Gate Chnl 100 100 100 100 100 100 1.0 10 1.0 1.0 10 05 05 05 04 100 100 100 100 100 100 1.0 1.0 1.0 1.0 1.0 0.5 05 05 02 02 02 02 02 02 OA 04 04 04 04 :8~ -om 3Cl> a - -il> xl>;< . Gl a -mo :;. Z ~~2 30 30 10 10 20 20 30 30 30 30 30 30 30 30 40 40 40 40 40 40 z 10 10 10 10 10 10 3.0 15 30 500 200 30 15 50 30 30 15 15 8.0 80 ~l>C -l> Z 0 m 0 Min. -o- ~~~ a~1 m" zl> -i-i :0::0" 2.0 2.0 2.0 20 20 2.0 30 50 10 10 4.5 10 6.0 40 10 10 70 70 50 50 -Zl> "3 oz cm l>!2-i X-i !..l> Z Max. Min. Max~ - - - - - .. - - 25 75 150 - - - .. .. .. - - - - 90 60 25 - - - - - .- - .. - . .. - _. - - - 0 m 5.5 5.5 5.5 5.5 5.5 5.5 30 30 30 60 60 27 27 27 16 16 16 16 16 16 en --z Z"o ."T1 ~ Ui iii -i l> m '-~I!; - Chnl n, Max. -"< - 70 70 70 70 70 70 150 75 50 25 7.0 85 110 175 30 30 50 50 80 80 OMCB·B OMCB·A OMCB·B OMCB·A OMCB·B OMCB·A NCB NCB NCB NVA NVA PS·A/S PS-AiB PS·A/B NCB NCB NCB NCB NCB NCB n - - - - - - - - . - .. - .. .. .. .. .. .. .. .. - - .. .. "~-i m Gate - - o·~o;;: 0 -en_. Q f~ z l>;;:"" xl>-i Qm 3 "mm ;~m ;;:.N a< • am < 0m 0 (Q j - 0 -n ~~ 0 "U-I "U 0 mZ :::JJm t/)t/) ~ m ..... en "0 (I) _ 0 .... _.0 0. ...... _. Q :J en 0 0 ...... :J - a. ------------ N & P-Channel Single FEls ...l> :Il -i Z c: s::m m :Il m ir o J )C' 2N3821 2N3822 2N4220 2N4221 2N4222 2N5457 2N5458 2N5459 J201 J201·18 J202 J202·18 J203 J203·18 J204 J204·18 J270 J271·18 MPF109 MPFlll PN4302 PN4302·18 PN4303 PN4303-18 PN4304 PN4304·18 PN5163 z 0 ... ~ N N N N N N N N N N N N N N N N P P N N N N N N N N N ~~ ;;:;0: -00 ... -il> l>l> XCI .m - ';0: -l> CI m 72 72 72 72 72 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 Gate Chnl 0.1 0.1 0.1 0.1 0.1 1.0 10 1.0 01 0.1 01 01 01 0.1 0.1 0.1 02 02 - 1.0 100 10 1.0 10 1.0 1.0 1.0 10 - - - - - - - - - - -O::-i ,:c:0J: ;;:r-:Il l>-im xl>~ :...~o r- :;; 8.0 10 4.0 4.0 6.0 60 10.0 10 8.0 Z I 50 50 30 30 30 25 25 25 40 40 40 40 40 40 25 25 30 30 25 20 30 30 30 30 30 30 25 0.5 20 0.5 2.0 5.0 1.0 20 40 02 02 09 0.9 40 4.0 1.2 1.2 6.0 60 05 0.5 0.5 05 4.0 40 05 05 10 ~~~ ~~ aZ Min. zS'iS -0- 6(')1 m:ll zl> -i-i .0000:ll ;;:r-m l>-il> xl>;O: . ClC -mo C 40 6.0 40 6.0 8.0 6.0 70 8.0 15 15 40 4.0 10 10 20 2.0 45 45 ~~~ -o::m en '";;rO:ll O-i -Zl> "oz 3c: m -om 3C:l> - r- ! z 0 m Max. Mm. Max . 25 10 3.0 60 15 50 90 16 1.0 100 4.5 45 20 20 3.0 3.0 50 50 24 20 5.0 50 10 10 15 15 40.0 1500 3000 1000 2000 2500 1000 1500 2000 500 500 1000 1000 1500 1500 4500 6500 4000 5000 6000 5000 • 5500 6000 - - - - - - - 8000 8000 18000 18000 800 500 1000 1000 2000 2000 1000 1000 2000 6000 - 9000 ;;:l>C: l>£1-i X-i :...l> Z 0 m 6 6 6 6 6 7 7 7 50 50 50 5.0 50 50 50 50 - NO:: •~~m ;;:. 0 l>;;:rxl>-i :...~I!i om Gate n ~ 200 200 3.0 3.0 3.0 I 1M 1M 100M - - - - - - 3 :Il m m iii -i l> z 0 m ...,,~Cii W~ g. ~ Chnl n.Max. - - - - - - - - - - - 25 1M - - - 6 60 6 60 6 6.0 20 2.0 2.0 20 2.0 30 20 50.0 1M 1M 1M 1M 1M 1M - - - 70 ::I m ... -i -:Il - -< I NRL NRL NRL NRL NRL NRL NRL NRL NPA NPA NPA NPA NPA NPA NPA NPA PS·A/B PS·A/B NRL NRL NPA NPA NPA NPA NPA NPA - 0 m 0:: n m -a -en_.• c.o :l -a-n m ..... G) en "0 m Z m CD 0 » r ~ :0 "tI C :0 "tI 0 en m _._. ... -0 ..... 0 a_. 0 ::::J fn 0 :l Co ~ (]I ---- I C[I ...... N-Channel Dual FEls Ol "0 ~ " l> :II -I 2 C ;: III m :II 2N5196 2N5197 2N5198 2N5199 2N5545 2N5546 2N5547 m 0' o J )C' 2N6905 2N6906 2N6907 U401 U402 U403 U404 U405 U406 U421 U422 U423 U424 U425 U426 U427 ;>; l> CI '" Z ::j 51 - " N N N N N N N N N N N N N N N N N N N N N N N U42B N 2N5515 2N5516 2N5517 2N5518 2N5519 2N5520 2N5521 2N5522 2N5523 2N5524 2N6905 2N6906 2N6907 U401 U402 N N N N N N N N N N N N N N N 9 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 78 78 78 78 78 78 78 78 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 - .... !>l> "", ;:;>; l>l> XCI .m -=-Gate 0025 0025 0.025 0.025 01 01 01 0.Q15 0.Q15 0.015 0025 0025 0025 0025 0025 0.025 0001 0001 0001 0003 0003 0003 0.005 0.005 025 0.25 0.25 0.25 025 025 0.25 0.25 0.25 025 0.Q15 O.ot5 0.Q15 0.025 0.025 ~g~ -om 3Cl> '" l>:II-I -:II C ",:II 2l> :...~S xl>;>; . CI 0 -"'0 2 0 2 -<-I :'0:1: ;:.-:11 l>"'''' Xl> In .... 40 40 4.0 4.0 4.5 4.5 45 2.5 2.5 2.5 25 2.5 2.5 2.5 2.5 2.5 2_0 2.0 2_0 30 30 30 20 30 40 40 40 40 4.0 40 40 40 40 4.0 2.5 2.5 2.5 25 25 - ... l> :E Mm, 50 50 50 50 50 50 50 35 35 35 50 50 50 50 50 50 40 40 40 40 40 40 40 40 07 07 0.7 0.7 05 05 05 0.5 0.5 0.5 05 05 05 05 05 05 006 006 006 006 006 006 006 006 40 40 40 40 40 40 40 40 40 40 35 35 35 50 50 05 05 05 05 05 05 05 05 0.5 0.5 0.5 0.5 0.5 05 05 -0"... ." l> 2... g-o' ......0 :,;~~ l>_ ~i! 2 0 m Max. 70 70 70 7.0 8_0 8_0 80 10 10. 10 10 10 10 10 10 10 10 10 10 18 1S 18 18 L8 75 75 75 75 75 75 75 75 7.5 75 10 10 10 10 10 Mm. 1000 1000 1000 1000 1500 1500 1500 2000 2000 2000 2000 7000 2000 2000 2000 2000 300 300 300 300 300 300 250 250 1000 1000 1000 1000 1000 1000 1000 ... --2 2" 0 -2l> "3 ccn 02 MdX. - - - - - 1500 1500 1500 1500 1500 1500 - - - - 1000 - 1000 1000 2000 2000 2000 2000 200& - - - - X'" :...l> 2 0 m 60 60 60 60 6.0 60 60 8.0 8.0 8.0 SO 80 :")0 of) ao ::-;0 30 30 30 30 30 30 3.0 30 25 25 25 75 75 25 25 25 25 25 8.0 8.0 8.0 8_0 8.0 :n~Cii Cl." m In !! '" 20 20 20 20 200 200 200 15 15 15 20 20 70 20 20 20 10 10 10 10 10 10 - 30 30 30 30 30 15 15 15 15 15 15 15 15 20 20 Static Match [mV, Max.l 50 50 10 15 50 10 15 5 15 25 50 10 10 15 70 40 10 15 7b III 15 25 25 40 50 50 10 15 15 50 50 10 15 15 5 10 25 5.0 10 I'm g.~ ",. ...m -:II lit ... 0 .... 0 :...~~ -CI :To'" :r ;:' 0 l>;: .... xl>'" 3 20c -2-1 "3cc 0 ... :II !"~l~ en .. 00 :I: Temp Tracking ~Vf C 50 10 20 40 10 20 40 10 25 50 10 10 25 25 40 80 10 25 40 10 25 40 40 80 50 10 20 40 80 50 10 20 40 80 10 25 50 10 10 ' l> ;:2 l>0 X'" :... 50 50 50 50 25 25 25 - 20 2.0 20 20 20 20 05 05 05 10 10 10 30 50 10 10 10 10 10 10 10 10 10 10 m Nap Nap Nap Nap Nap Nap Nap NNR 20 20 NNA NNR -en I -. (Q ::J -m C r NN'" NNR NNR NNR NNA NNR NNR NNR NNT NNT NNT NNT NNT NNT NNT NNT - - (; -< Nap NOP NOP NOP Nap NOP Nap NOP Nap Nap NNR NNR NNA - 0 '"< C 0 :E r m l> "l> C) m -n -I en "tJ (I) 0-. .... -. 0 C .... -. 0 ::J (I) r 0 ~ Z 0 en m ",....... 0 0 ...... :J a. ~ ----- -------- N-Channel Dual FETs ." ~ ." ~ n ...'" z c: li: III m :II m 0' oj X' ~ 2 !! -r '" ~ }a~ m li:'" ~~ Cl ... -",c: -< ... - :ii: "0 r "T1 m :II :::J --n m ..... en -0 CD _. .... -. 0 G) m m Z :II l> r "0 c :II "0 0 en m 0 Q .... -. 0 :::J en ---. 0 0 :::J .... .. a. SWITCH - Product Specifications (Cont'd) Low Leakage Diodes Part Number Package (TO· I DPADI DPAD2 DPAD5 DPAD10 DPAD20 DPAD50 DPAD100 78 71 71 71 71 71 71 Dual Dual Dual Dual Dual Dual Dual JPAD5 JPAD10 JPAD20 92 92 !32 JPAD50 JPAD100 JPAD200 JPAD500 PADI PAD2 PAD5 PAOlO PAD20 PAD50 PAD100 Breakdown Reverse Current (pA, Max.) Diode Forward Voltage Drop Volts (Max.) Voltage (Volts) Mm. Max. 1 2 5 10 20 50 100 45 45 45 35 35 35 35 120 120 120 Smgle Smgle Smgle 5 10 20 35 35 35 - 92 92 92 92 Single Smgle Single Single 20 50 100 500 35 35 35 35 - 18 18 18 18 18 18 18 Smgle SlOg Ie 1 2 5 10 20 50 100 45 45 45 35 35 35 35 120 120 120 SIOgle Smgle Single Smgle Song Ie - - - - - Capacitance (pF, Max.) 1.5 1.5 1.5 15 1.5 1.5 1.5 08 0.8 0.8 2.0 2.0 2.0 2.0 1.5 1.5 1.5 2.0 2.0 20 15 15 15 1.5 20 2.0 20 2.0 1.5 15 1.5 15 15 1.5 1.5 0.8 08 0.8 2.0 20 2.0 2.0 Voltage Controlled Resistors Part Number N orP VCR2N VCR3P N P N P N \ J ...... nAfli VCR5P VCR7N Resistance (Channel n) Threshold Voltage (Volts) Breakdown Package (TO, ) Voltage (Volts, Min.) Min. Max. 18 72 HI 72 72 15 15 3.5 3.5 15 ~o ~.~ 15 15 3.5 2.5 Geometry Min. Max. 70 7.0 20 70 60 200 ,n ~nn 600 70 50 300 4000 900 8000 NCB PS'A/B NP/\ PS·A/B NT P-Channel MOSFETs Part Number 3N163 3N164 MFE823 9- 18 Package (TO· ) 72 72 18 Operating Modo ENH ENH ENH Threshold Voltage (Volts, Max.) Resistance 5.0 5.0 6.0 250 300 Channel (n.Max.1 - Leakage Channel On (mA) Min. Max. 5.0 3.0 30 30 30 Leakage Breakdown ChannolOff Voltage (nA,Max.1 (Volts, Max.1 - Siliconix - - 20 40 30 25 Input Capacitance (pF, Max.) 2.5 2.5 6.0 Reverse Capacitance Geometry (pF, Max.) 0.7 0.7 1.5 MRA MRA MRA Product Specifications (Cont'd) Current Regulator Diodes Part Number CR022 CR024 CR027 CR030 CR033 CR039 CR043 CR047 CR056 CR062 CR068 CR075 CR082 CR091 CR100 CR110 CR120 CR130 CR140 CR150 CR160 CR180 CR200 CR220 CR240 CR2'70 CR300 CR330 CR360 CR390 CR430 CR470 CR530 CRR0240 CRR0360 CRR0560 CRR0800 CRR1250 CRR1950 CRR2900 CRR4300 J500 J501 J502 J503 J504 J505 J506 J507 J508 J509 J510 J511 J552 J553 J554 J555 J556 J557 J9100 JRl35V JR170V JR200V JR220V JR240V Package ITO· ) 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 Forward Current ImA) 022 024 027 030 033 039 043 047 056 062 068 075 082 091 100 1 10 120 130 140 150 160 180 200 220 240 270 300 330 360 3.90 430 470 5.30 .24 .36 .56 80 195 195 290 430 024 0.33 043 0.56 075 1.00 140 1.80 240 3.00 360 4.70 0.05 ( 18,075) 106 ,1.6) (1.4 ·2.6) 124·38) (36·5.3) 0.05 0.200 0.200 0.200 0.200 0.200 Forward Current Tolerance 1%) 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 25 25 25 25 25 25 25 25 20 20 20 20 20 20 20 20 20 20 20 20 50 .. .. .. .. .. 50 .. .. .. - Limiting Voltage IVolts, Max.) Peak Operating Voltage IVolts, Max.) Dynamic Forward Impedance Capacitance IMn,Max.) IpF, typ) 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 13 10 90 80 6.6 41 3.3 27 19 1 55 1 35 1 15 100 088 080 070 064 058 054 051 0475 042 0395 037 0.345 032 030 0.28 0265 0255 0245 0235 0.20 .9 41 1.15 08 .54 .37 28 05 .. .. .. .. 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 135 170 200 220 240 5.0 30 20 14 1.0 06 04 025 025 020 020 0.15 20 10 10 88 .6 ,48 20 2.0 2.0 2.0 2.0 2.0 100 100 100 100 100 105 105 1 10 120 1.30 1 15 120 125 129 1 35 140 145 1.50 1 55 160 165 1 75 185 195 200 2 1~ 225 235 250 260 275 290 3.10 1.0 105 130 135 160 195 235 300 120 130 150 1 70 190 210 250 2.80 310 350 390 420 15 75 75 .75 .75 15 1.5 09 0.9 0.9 0.9 0.9 Siliconix Geometry .. NKL NKL NKL NKL NKL NKL NKL NKL NKL NKL NKM NKM NKM NKM NKM NKM NKM NKM NKM NKM NKO NKO NKO NKO NKO NKO NKO I'4KO NKO NKO NKO NKO NKO NKL NKL NKL NKL NKM NKM NKO NKO 2 2 2 2 2 2 2 2 2 2 2 2 2 NCL NCL NCL NCL NCL NCL NCL NCL NCL NCL NCL NCL NKL .. .. .. .. .. NCL NCL NCL NCL NCL NCL VRMA VRMA VRMA VRMA VRMA .. .. .. .. ,. .. , - .. ,. .. - - -.. .. .. .. .. .. - 2 .. .. .. - .. 5-19 Package Data __ Siliconix Package Data H At Siliconix' option, lead finish will be either Gold Siliconix Plate or Tin Plate. Electrical Characteristics are not affected. ." Q n ~ Q U2 ~ 0.178 ~ (452) 0.170 1 1r'270) 0500 MIN -Q.21QJ 1 ~ CD Q.jJlli. 0178 idJlfli 0.030 (452) ~ 1 0.030 0.100 (254) ~ (531) L 11- MIN lmg (432) 0230 0209 0.100 (254) (531) -iliiJ l TB~I:!~ TI~I~!~ Q.1..N:.t=! 0.209 C Q ~ Q 11- LEAOS I LLEADS Q.Ql!!. (0483) DIA 0019 (0483) OIA 0016 (0406) 0016 (0406) 45' BOTTOM VIEW TO-18 (2 PIN) 0150 CL81J. (292) Q.1llliJ 0175 1d5!.!il (445) idJlfli (452) g~~g JI~;~~l (JU;jj (432) 1 MIN BOTTOM VIEW IALTERNATE) 0.030 T8~IO::~ ,t .L...-L-IT':: o 230 0209 0100 &Ml IJi..!ldl (254) (53!) 15 31) LF- 1- I I.l.J.ZQl l ..,-_---''''''''' I V ~ 6 LEADS 0019 iA!l1l DIA 0.016 (406) /' 0.036 (1770) (0914) 45' 109141 _ _ _ 45 0048 0.050 (127) 0230 0209 ALL DIMENSIONS IN INCHES. IALL DIMENSIONS IN MILLIMETERS) 45' TO-18 (3 PIN) 0i15 0195 0178 ---- BOTTOM VIEW 0 BOTTOM VIEW BOTTOM VIEW TO-52 TO-71 Siliconix 6-1 - Package Data (Cont'd) !!.lliJO 0170 I.§..JJ1 14321 Il..W. 0178 '~j 14521 . 500112101 MIN T8 0165 0185 ~ ~ 0305 11151 rld 0030 1162/ MAX !!nl! 112101 0500 MIN 1 ~ 1 Jl At Siliconix' option, lead finish will be either Gold Plate or Tin Plate. Electrical Charac;teristics are not affected. -0040 11021 MAX !ill!!. 0209 15841 0.335 LMfI1 (531) I~==:l....J IF-.. . -- 7 LEADS ~~DIA 45' - BOTTOM VIEW BOTTOM VIEW TO-72 l TO-78 r l 11~0~) 0.200 0.180 (4511 MIN l===::d 0.045 0.055 11141 11401 5 !ill- 0305 I &..m (1151 ~J§J'~l -I rl::: tp=(508=) 0185 (410) TYP 0165 (1210) ~ MIN 0.100(254) 0.040 11 02) MAX I--- r-- !!.ill 0.335 Lb:d==r== • Insensitive To Light • Insuleted Case ~ t 18511 i-I 3 LEADS TO FIT INTOJI 0022 (05561 DlA HOLE "--- 0.125 .QJ§1 ALL DIMENSIONS IN INCHES 0.165 (4 191 (ALL DIMENSIONS IN MILLIMETERS I BOTTOM VIEW 0.040 11 02)--l INSULATOR MAX t- L8LE ADS 0019 0.016 ~DIA TO-92 BOTTOM VIEW TO-99 H 14.5721 0160 14.0641 .9:!!n. (381) l MAX --II SIDE VIEW rI (~;~~) g:~~g H.m MIN tF(5=08) l MAX L3LEADSTOFITINTO ~ DIA HOLE (0556) 9375 195251 NOM J -+ 0100 ~ I.- J i2540i MAX 0200~0010 (5 OBO ± 0 2541 DIA PIN CIRCLE TO-92 LEAD FORM (-181 6-2 1 _ 0017-00019 10432 04831 3 LEADS 0.125 13.18) ALL DIMENSIONS IN INCHES. 0.165 (4.19) BOTTOM VIEW (ALL DIMENSIONS IN MILLIMETERS) Order number (-18) suffix "fA -+ 0.185 (410) • Insensitive To Light • Insulated Case 0.050 11.2701 II =i===~ ]~b=d=F==:::I I80 k---+l I I TO-92 Device to TO-5 Pin Circle to standard part type Order number (-05) suffix to standard part type Siliconix 45' Package Data (Cont'd) ." Q At Siliconix' option, lead finish will be either Gold n Plate or Tin Plate. Electrical CharacterIStics are not affected. ~ a Ul CD TO-92 TAPING SPECIFICATIONS AND WINDING STYLES .. C Q Q Extraction force M10300gf ~ ., -p STYLES '" E.F.G,H.M (See below) P 12.7±0.5 Po 12.7±0.2 P, 3.85±0.5 P2 6.35±0.5 P3 6.35 18 ~6~ 6±1 W Wo .-----ffi- 00 -po-3 - Ho F F,-F 2 16±0.5 5 +08 02 ±0.3 4±0.2 Do 0.7±0.2 t ~h d R 0±1 0.50 ~g g~ dia. 0.8 W, 9±0.5 W2 Max. 0.5 a 45'-60' W3 Min. 4.5 L Max. 11 H 19.5±0.5 "c 0±0.5 All dimensions in millimeters. OPTlONJ OPTION 1 STYLEAISPREFERRED STYLE E IS A PAEFERRED STYLE ROUNOOUT DAAIN OFF FIRST ROUNDED SIDE OF mANSISTOR AND ADHESIVE TAPE VISIBLE STANDARD TAPE & REEL FLAT OUT GATE OFF FIRST OPTION 2 RQUNDEDSIDE ROUND OUT GATE OFF FIRST FLAT SIDE OF TRANSISTOR AND ADHESIVE TAPE VISIBLE ROUNDED SIDE OF TRANSISTOA AND ADHESIVE TAPE VISIBLE Note: Order information-TRX = option (Standard Si option = Option 1) If not deSignated option 1 will be chosen. Tape and ammopack available-contact factory. Siliconix 6-3 Package Data (Cont'd) At Siliconix' option, lead finish will be either Gold Plate or Tin Plate. Electrical Characteristics are not affected. 1--- +008 I 04 -0 03 '7±O.03~08±003 ~===t==:!:nl 'T 'T I!::::;=:::;======;=:::;: SOT-23 i.-04± 003 501-143 1 1 T 158 14 DOl 244 16 20J ~~J~ 050 ii21T J.- 0'8(45) 0'4(35) 030(77) 025(.64) 06' (, 55) 04911241 t .069 (175) 053('35) SOIC-8 PIN 6-4 Siliconix Package Data (Cont'd) " Q n At Sdiconix' option, lead finish will be either Gold Plate or Tin Plate. Electrical Characteristics are not affected. ~ Q CO (1) .. C a Q C 10 11 12 13 TOP VIEW ~~-----I t..31.! 1.20J 16 LEAD DUAL IN LINE PACKAGE (PLASTIC) 1;~-:1 8 0220 fZ§.Z1 (559) 10 11 12 13 TOPVIEW 1-----0 14 15 16 ~ ~ 0060 71 ~~~ 840 (21 34) MAX WTJfJ7tI~:oo, P9 ~ j L J I l gill: 19i: t !l...,023 .LMl 0014 (036) 0070 0030 _ 0100,254) 8se II _=,"", - I 0008 (20) _0320 IfLUl 0290 !7 37) I.LZ§J (076) 16 LEAD DUAL IN LINE PACKAGE (SI DE BRAZE) Siliconix 6-5 Package Data (Cont'd) At Siliconix' option, lead finish will be either Gold Plate or Tin Plate. Electrical CharacterIStics are not affected. ~ 14 13 033. ~ ii33i (874) _ _ _ _ _--I~ +---~ I 12 0150 ~r--n ~ ~4~~ ~6r-~' __ I 0060 (1 27)----+1 __ __ 0228 om ii244 @..!!l ~ "i' "r jill! ~l- Ir iJJ ( f 0007 (019) 000i i022i 14 LEAD SO (Y) (PLASTIC) 6-6 Siliconix (482),I 0205 (521) - , )~ ~~--l 0030 (077) L Application Notes _ Siliconix An Introduction to FETs INTRODUCTION The basic pnnciple of the field-effect transistor (FET) has been known since J .E. Lilenfeld's patent of 1925. The theoretical description of a FET made by Schockley in 1952 paved the way for development of a classic electronic device which provides the designer with the means by winch he can accomplish nearly every circuit functIOn. The field-effect transIstor earlier was known as a "unipolar" transistor, and the term refers to the fact that current IS transported by carriers of one polarity (majority). whereas in the conventional bipolar transistor earners of both polarities (majority and minority) are involved. This Application Note provides an insight into the nature of the FET, and touches briefly on its basic characteristics, terminology and parameters, and typical applications. The followmg list of FET applications indicates the versatility of the FET family: Amplifiers Small Signal Low Distortion High Gain Low Noise Selective D.C. High-Frequency Switches Chopper-type Analog Gate Commutator Current Limiters Voltage-Controlled Resistors Mixers Oscillators In fact, FET teclmology today allows a greater packaging density in large-scale integrated CIrcuits (LSI) than would ever be possible with bipolar deVIces. (Although there is no industry-accepted definitIOn of LSI, apparently when the equivalent circUIt of an IC contains more than 1,000 active elements (500 gates) or is "very complex", the end product may be called LSI. With a typical LSI chip measurmg less than 200 x 200 mIls; tius is highdensity packaging indeed.) The f3!mly tree of FET devices (FIgure I) may be divided into two main branches, junction FETs (JFETs) and Insulated Gate FETs (or MOSFETs, metal-oxide-silicon field-effect transistors). Junction FETs are inherently depletion-mode devices, and are available in both P- and N-Channel configurations. MOSFETs are available in both enhancement or depletion modes, and exist as both N- and P-Channel devices. The two main FET groups depend on dIfferent phenomena for their operation, and will be discussed separately. I I I I This very wide range of FET applications by no means implies that the device will replace the more widely-known bipolar transistor in every case. The simple fact is that FET characteristics - which are very different from those of bipolar devices - can often make possible the design of technically supenor (and sometimes cheaper) circuits. This comment applies not only to networks employing discrete devices and conventIOnal components such as resistors and capacitors, but also extends to both linear and digItal integrated circuits. I JUNCTION I DEPLETION I I P.CHA,NNEL I Siliconix I FIELD EFFECT TRANSISTORS I I I INSULATED GATE I I ENHANCE· MENT I I I N.CH~NNEL I I IP I - I CH~NNEL I I I I I N.CHANNELI FET Family Tree Figure 1 7-1 Junction FETs In its most elementary version, this transistor consists of a piece of high-resistivity semiconductor material (usually silicon) which constitutes a channel for the majority carrier flow. The magnitude of this current is controlled by a voltage applied to a gate, which is a reverse-biased PN junction formed along the channel. Implicit in this description is the fundamental difference between FET and bipolar devices: when the FET junction is reverse-biased the gate current is practically zero, whereas the base current of the bipolar transistor is always some value greater than zero. The FET is a high input resistance device, while the input resistance of the bipolar transistor is comparatively low. If the channel is doped with a donor impurity, N-type material is formed and the channel curr&nt will consist of electrons. If the channel is doped with an acceptor impurity, P-type material will be formed and the channel current will consist of holes. N-Channel devices have greater conductivity than P-Channel types, since electrons have higher mobility than do holes; thus NChannel FETs tend to be more efficient conductors than their P-Channel counterparts. Junction FETs are particularly suited to manufacture by modern planar epitaxial processes. Figure 2 shows this process in an idealized manner. First, N-type silicon is deposited ~ (A) P-type silicon substrate ~(B) N-type silicon laver deposited epitaxiallv ~(C) start isolation region Impurity diffused in to (0) More impurity diffused in to complete isolation and form N-tvpe channel (E) Final form taken bV FET: with N-type channel embedded in P-type substrate Idealized Manufacture of an N-Channel Junction FET Figure 2 7-2 epitaxially (single-crystal condensation surface) onto monocrystalline P-type silicon, so that crystal integrity is maintained. Then a layer of silicon dioxide is grown on the surface of the N-type layer, and the surface is etched so that an acceptor-type impurity can be diffused through into the silicon. The resulting cross-section is shown in Figure 2C, ~d demonstrates how a P-type annulus has been formed in the layer on N-type silicon. Figure 20 shows how a further sequence of oxide growth, etching, and diffusion can produce a channel of N-type material within the substrate. In addition to the channel material, a FET contains two ohmic (non-rectifying) contacts, the source and the drain. These are shown in Figure 2E. Since a symmetrical geometry is shown in the idealized FET chip, it is immaterial which contact is called the source and which is called the drain; the FET will conduct current equally well in either direction and the source and drain leads are usually interchangeable. (For certain FliT applications, such as amplifiers, an asymmetrical geometry is preferred for lower capacitance and improved frequency response. In these cases, the source and drain leads should not be interchanged.) Figure 2E also shows how the N-Channel is embedded in the P-type silicon substrate, so that the gate above the channel becomes part of this substrate. Figure 3 shows how the FET functions. If the gate is connected to the source, then the applied voltage (V OS) will appear between the gate and the drain. Since the PN junction is reverse-biased, little current will flow in the gate connection. The potential gradient established will form a depletion layer, where almost all the electrons present in the N-type channel will be swept away. The most depleted portion is in the high field between the gate and the drain, and the least-depleted area is between the gate and the source. Because the flow of current along the channelfrom the (positive) drain to the (negative) source is really a flow of free electrons from source to drai~ in the N-type silicon, the magnitude of this current will fall as more silicon becomes depleted of free electrons. There is a limit to the drain current (IO) which increased VOS can drive through the channel. This limiting current is known as lOSS (Drain-to-Source current with the gate Shorted to the source). Figure 3B shows the almost complete depletion of . the channel under these conditions. Figure 3C shows the output characteristics of an N-Channel JFET with the gate short-circuited to the source. The initial rise in In is related to the buildup of the depleti0!llayer as VOS increases. The curve approaches the level of the limiting current lOSS when In begins to be pinched off, The physical meaning of this term leads to one definition of pinch-off voltage, Vp, which is the value of VOS at which the maximum loSS flows. Siliconix The mechanisms of Figure 3 and 4 react together to provide a family of output characteristics as shown in Figure SA. The area below the pinchoff voltage locus is known as the triode or "below pinchoff' region; the area above pinchoff is often referred to as the pentode or saturation region. FET behavior in these regions is comparable to that of a power grid vacuum tube, and for this reason FETs operating in the saturation region may be used as excellent amplifiers. Note that in the "below pinchoff' region both VGS and VOS control the channel current, while in the saturation region VOS has little effect and VGS essentially controls 10 , DEPLETION LAYER (A) N-channel FET working below saturation (VGS = 0). (Depletion shown only In channel region). Figure SB relates the curves of Figure SA to the actual circuit arrangement, and shows the number of meters which may be connected to display the conditions relevant to any combination of VOS and V GS' Note that the direction of the arrow at the gate gives the direction of current flow for the forward·bias condition of the j unction. In practice, however, it is always reverse-biased. DEPLETION LAYER (B) N·channel FET working in saturation region (VGS = 0) /-IVDSI lOSS I I / C> SATURATION REGION/ = IVpl - IVGsl ABOVE PINCH-OFF ~I---- VGS = 0 I ! VDS-- '" (e) Idealized output characteristic for VGS = O. Figure 3 VDS-_ In Figure 4, consider the case where VOS = 0, and where a negative voltage VGS is applied to the gate. Again, a deple· tion layer has built up. If a small value of VOS were now applied, this depletion layer would limit the resultant chan· nel current to a value lower than would be the case for V GS = O. In fact, at a value of IVGSI ;;, IV pi the channel current would be almost entirely cut off. This cutoff voltage is referred to as the gate cutoff voltage, and may be expressed by the symbol Vp or by V GS(off)' Vp has been widely used in the past, but V GS(off) is now more commonly accepted since it eliminates the ambiguity between gate cut·off and drain pinch-off. V GS(off) and Vp, strictly speaking, are equal in magnitude but opposite in polarity. (A) Family of output characteristics for N-channel FET ID (Bl Circuit arrangement for N-channel FET Figure 5 N-channel FET Showing Depletion Due To Gate-Source Voltage (VDS = 0) Figure 4 The P·Channel FET works in precisely the same way as does the N-Channel FET. In manufacture, the planar process is essentially reversed, with the acceptor impurity diffused first onto N-type silicon, and the donor impurity diffused later to form a second N-type region and leave a P-type chan- Siliconix 7-3 - ne!. In the P-Channel FET, the channel current is due to hole movement, rather than to electron mobility. Consequently, all the applied polarities are reversed, along with their directions and the direction of current flow. Figure 6A shows the circuit arrangement for a P-Channel FET, and Figure 6B shows the output characteristics of the device. Note that the curves are shown in another quadrant than those of the NChannel FET, in order to stress the current directions and polarities involved. o Fir!-~~~~~~~~~ INSULATING LAYER SUBSTRATE (A) Idealized cross-section through an N-channel depletiontype MOSFET In summary, a junction FET consists essentially of a channel of semiconductor material along which a current may flow whose magnitude is a function of two voltages, VDS and VGS. When V DS is greater than Vp, the channel current is controlled largely by V GS alone, because V GS is applied to a reverse-biased junction. The resulting gate current is extremely small. (B) CirCUit arrangement for N-channel depletion MOSFET mA '4V '2V VGS= 0 -2V (A) Corcuit arrangement for P-channel FET -4V 12 VGS- 16 VOL T5 Vos-- Vos-_ Vp vGS(Off}=====:f::="'?~:I tel I Family of output characteristics for the 2N3631 N-channel depletion MOSFET Figure 7 i5 in a manner similar to the N-Channel junction FET when a voltage of the correct polarity is applied to the cha...~nel, as in Figure 7B. ~iL_.J,oss r---I VGS=O- ABOVE PINCH-OFF ¢ IQ BELOW PINCH-OFF 1-IVosl • IVpl - IVGsl (B) Familv of output characterIStics for P-channel FET Figure 6 MOSFETs The metal-oxide-silicon FET (MOSFET) depends for its operation on the fact that it is not actually necessary to form a semiconductor junction on the channel of a FET in order to achieve gate control of the channel current. Instead, a metallic gate may be simply isolated from the channel by a thin layer of silicon dioxide, as shown in Figure 7 A. Although the bottom of the insulating layer is in contact with the Ptype silicon substrate, the physical processes which occur at this interface dictate that free electrons will accumulate at the interface, spontaneously forming an N-type channel. Thus a conducting path exists between the diffused N-type source and drain regions. Further, the MOSFET will behave 7-4 Output characteristics of an N-Channel MOSFET are shown in Figure 7C. Because there is no junction involved, V GS can be reversed without engendering a gate current; the gate may be made either positive or negative with respect to the source. Under these circumstances, still more free electrons will be attracted to the channel region, and I D will become greater than I DSS. This mode of operation is represented by the higher members of the family of ourput characteristics. Because the application of a negative gate voltage causes the channel to be depleted of free electrons - thus reducing ID the device just described is called adep/etion-mode MOSFET. The foregoing has established that the depletion-mode MOSFET is a "normally-ON" device: when VGS = 0, a conducting path exists between source and drain. In many circuits a "normally-OFF" device would be useful, a condition which leads to the concept of an enhancement-mode MOSFET. In the latter device, an increasing voltage applied to the gate will enhance channel wnduction, and depletion will never occur, ID being zero when VGS =o. Siliconix A P-Channel enhancement-mode MOSFET is shown in Figure 8_ Here, an acceptor impurity has been diffused into an N-type substrate to form P-type source and drain regions_ No conducting channel exists between the source and the drain, because no matter how the drain-source voltage is applied one of the PN junctions will always be reverse-biased. On the other hand, if a negative voltage is applied to the gate, a field will be set up in such a direction as to attract holes into the upper layer of the substrate and produce a P-type channeL A family of output characteristics for a typical MOSFET is shown in Figure 8C. The idealized cross-section illustrated in Figure 8A may be used to show how the characteristics of Figure 8C come about. Refer to Figure 9 for an extension of this phenomenon. If a constant (negative) gate voltage, (V GS(K») is applied, then an essen tially-uniform P-Channel depletion layer will be induced, as in Figure 9A. If a negative drain voltage is applied, then current, In, will flow through the drain. As IVnsl increases, In also increases. However, the voltage between the drain and the gate decreases, so that the thickness of the channel at the drain end is reduced as in Figure 9B. Therefore, the relationship of In versus VnS will eventually reach a limiting value when Vns = VGS, and the channel becomes pinched off. This condition is shown in Figure 9C. Different values.of VGS give rise to limiting values of In; so that the characteristic family of output curves which was shown in Figure 8 is realized. Characteristics of depletionmode MOSFETs also come about for the same reason, except that members of the output characteristics family also exist for VGS values of zero or reversed polarity. The P-Channel enhancement-mode MOSFET is currently the most popular member of the FET family in current use, and is in fact the basic element in many LSI integrated circuits. LAYER 11 NG F=rLr::!!!!!!!!~~!i!!!!;,,1~ INSULA (A) SUBSTRATE (OR BODYI B CA) Idealized cross-section through a P-channel enhancement MOSFET '0 (8) (8) Circuit arrangement for P-channel enhancement MOSFET Vos-- VGS=-l v=========:,. -2V _ _ _ _ _ _ _ -4V--------6V------ - (C) ~ i5 -9V----(e) Family of output characteristics for a P-channel enhancement MOSFET Figure 8 Idealized approach of pinch-off, (A) VOS = 0, (8) lVoSI < IVGsl, (e) lVosl> IVGSI Figure 9 Silicanix 7-5 FET Characteristics Major parameters include: The FET enjoys certain inherent advantages over bipolar transistors because of the unique construction and method of operation of the field-effect device. These characteristics include: • No thermal runaway and negligible intermodulation • BV GSS - Gate-to-source breakdown voltage with the drain shorted to the source • gfs - Common-source forward transconductance • High input impedance at low frequencies • Cgs - Gate-source capacitance • Very high dynamic range (> 100 dB) • Cgd - Gate-drain capacitance • Zero temperature coefficient Q point • Junction capacitance independent of device current The transfer function of a FET approximates to a squarelaw response, and the second and higher-order derivatives of gm are near zero; thus strong second and negligible higherorder harmonics are produced. Intermodulation products are extremely low. The input impedance of a FET is simply the impedance of a reverse-biased PN junction, which is on the order of 10 10 to 10 12 .Q. In practice, the input impedance is limited by the value of the shunt gate resistor used in a self-bias commonsource circuit configuration. At RF frequencies, the input impedance drop is proportional to the square of the frequency; for example, in a 2N4416 FET, the input impedance would be 22K.Q at 100 MHz. Also, the input susceptance increases linearly with frequency, since it is a simple parasitic capacitance. The FET has very high dynamic range, in excess of 100 dB. Thus it can amplify very small signals because it produces very little noise, or it can amplify very large signals because it has negligible intermodulation distortion products. It also has a zero temperature coefficient bias point (zero TC point) at which changes in temperature do not change the quiescent operating point. Junction FET capacitances are more constant over wide current variation than are the same parameters in a bipolar device. This inherent stability allows high-frequency (VHF through L-band) oscillators to be built which are far more stable than oscillators using low-frequency crystals and multiplier stages. FET Terminology and Parameters Any introduction to the nature, behavior, and applications of field-effect transistors requires that certain questions be answered on FET electrical quantities and parameters - in particular, the most important parameters, and the means by which they can be measured. The following discussion will defme specific FET parameters and their associated subscript notations, and present basic test circuits and results. 7-6 • VGS(off) - Gate-source cutoff voltage • IGSS - Gate-to-source current with the drain shorted to the source • Lownoise • Low distortion products • I DSS - Drain current with the gate shorted to the source Special attention should be given to the subscript "s" because it has two different meanings and three possible uses. In FET notations, an "s" for the first or second subscript identifies the source terminal as a node point for voltage reference or current flow. However, when using triple subscript notation, an "s" for the third subscript does not refer to the FET source terminal. It is an abbreviation for "shorted", and signifies that all terminals not designated by the first two subscripts must be tied together and shorted to the common terminal, which is always the second subscript. Therefore, the term IGSS refers to the gate-source current with the drain tied to the source. Because of the typical low input and output admittance of the FET, four-pole admittance equations are commonly used to describe electrical characteristics of the FET: (1) \Vhel1 Y II , Y 21 , Y 12 and Y22 al~ u~fillta.l a~ Lh~ inpuL, reverse transfer, forward transconductance, and output admittances respectively, Equation 1 reduces to (2) For a three-lead FET, 11 usually corresponds to the gatesource terminal and 22 corresponds to the drain-source terminal(i.e., the device is connected in the common-source mode). Thus ii = Yis Vgs + Yrs vds io =Yfs (3) Vgs + Yos vds Here, the second subscript for the y parameters designates the source lead as the common or ground terminal. Siliconix 14.--.--r-,--r--,-- IOSS- Drain Current at Zero Gate Voltage (ID at VGS = 0) By itself, I DSS merely refers to the drain current that will flow for any applied VDS with the gate shorted to the source. However, when a particular value for VDS is given, equal to or greater than Vp (see Figure 10), IDSS indicates the drain saturation current at zero gate voltage. Some FET data sheets label IDSS for VDS greater than Vp as ID(on). lOSS Ves - DRAIN SOURCE VOL rAGE (VOL lS) I I FET 10 vs Vo Output Characteristics Figure 11 I The knee of the curve is important to the circuit designer because he must know what minimum VDS is needed to reach the pinch·off region with VGS = O. When appropriate bias voltage is applied to the gate, it will pinch off the chan· nel so that no drain current can flow; VDS has no effect until breakdown occurs. The specific amount of V GS that produces pinch.off is known as the gate·source cu toff voltage, I I I---SATURATION REGION---I I I I I Vp Ves - DRAIN SOURCE VOLTAGE VGS(off)· BVOGS VGS(off) Test Procedure FET Characteristic at V GS = 0 Figure 10 VGS( off) - Gate-Source Cutoff Voltage The resistance of a semiconductor channel is related to its physical dimensions by R = pL/ A, where p = resistivity L = length of the channel A = W x T = cross·sectional area of channel In the usual FET structure, Land Ware fixed by device geometry, while channel thickness T is the distance between the depletion layers. The position of the depletion layer can be varied either by the gate·source bias voltage or by the drain·source voltage. When T is reduced to zero by any com· bination of VGS and VDS, the depletion layers from the opposite sides come in contact, and the a-c or incremental channel resistance, rDS' approaches infinity. As earlier noted, this condition is referred to as "pinch-off' or "cutoff' because the channel current has been reduced to a very thin sheet, and current will no longer be conducted. Further increases in VDS (up to the junction reverse·bias breakdown) will cause little change in I D. Accordingly, the pinch.off region is also referred to as the pentode or "constant·cur· ren t" region. Although the magnitude of VGS(off) is equal to the pinch. off voltage, Vp, defined by the pinch·off knee in Figure 10, rapid curvature in the area makes it difficult to defme any precise point as Vp. Taking a second derivative ofVDS/I D would yield a peak corresponding to the inflection point at the knee, which approximates Vp. However, this IS not a Simple measurement for production quantities of deVIces. A better measure is to approach the cutoff point of the ID versus VGS characteristic. This is easier than trying to specify the location of the knee of the ID versus V DS output characteristic. A typical transfer characteristic I D versus VGS is shown in Figure 12. The curve can be closely approximated by VGS ) ~1 -VGS(off) --- ID=IDSS 14 \ 12 10 Siliconix (4) IDS~ SLOPE"'~=9fS ..WGS VOS=·5V \ -Vos ~VGS(off) 1\\ TA=-55C , \ ~TA=25C 06 4 In Figure 10, pinch.off occurs with VGS = O. In Figure 11, VGS controls the magnitude of the saturated ID' with in· creases in VGS resulting in lower values of constant ID' and smaller values of VDS necessary to reach the "knee" of the curve. The current scale in Figure II has been normalized to a specific value of I DSS. 2 - "'~ ,,~ 2~Tr151f1 04 DB ~ 12 ~ 16 20 VGS(off) 24 28 VGS - GATE-SOURCE VOLTAGE (VOLlS) Typical 10 vs VGS Transfer Characteristic Figure 12 7-7 Equation 4 and Figure 12 indicate that at VGS = VGS(off)' ID = O. In a practical device, this cannot be true because of leakage currents. If I D is reduced to less than 1 percent of I DSS, V GS will be within 10 percent of the VGS(off) value indicated by Equation 4. If I D is reduced to 0.1 percent of I DSS ' the indicated VGS(off) error will be reduced to about 3 percent. For a true indication of VGS(off)' and a realistic picture of the parameters of Figure 12, care must be taken that leakage currents do not result in an error in the VGS(off) reading. Typically, at room temperature, I percent ofI DSS is still well above leakage currents but is low enough to give a fairly accurate value of VGS( off)' IGSS - Gate-Source Cutoff Current The input gate of a P-Channel FET appears as a simple PN junction; thus the input doC input characteristic is analogous to a diode V-I curve, as is shown in Figure 14. BVGSS A typical circuit for measuring VGS(off) is shown in Figure 13. At V GS = 0, the value of I DSS can be measured. Then, byincreasingVGS until IDis 0.01 percent ofIDSS' the value of VGS(off) is obtained. From a production standpoint, it is more convenient to specify ID at some fixed value (such as I nA), rather than as a certain percentage of I DSS' Thus a pinchoff voltage specification may be given as indicated in Table I. 10 -10 30 20 40 VGS - GATE VOL TAGE (VOL TS) -1 P-Channel FET Input Gate Characteristic Figure 14 In the normal operating mode, with VGS positive for a PChannel device, the gate is reverse-biased to a voltage between zero and VGS(off)' This results in a doc gate·source resistance which is typically more than 100M n. The gate current is both voltage- and temperature-sensitive. Figure 15 shows this relationship for IGSS versus temperature and VGS' 104 r-~-"---'-="'--~""-T""--' IGSS IS NORMALIZED TO VALUE AT 103I-T_A_.+25_·c_A+N_D_V-+GS_o_30-jV_+_t----1>""/71 Circuit for Measuring VGS(OFFI Figure 13 I Vj~ 102 f---+-+--t---\--'-:>4c"£-¥---1 Table I Typical Pinch-Off Voltage SpeCification I I Characteristic VGSloffl Min I Max I Units 1 4 10 ~ , ~ I Gate-source pinch-off voltage of VOS =-5 V.IO =-lI'A : Volts ~~V_+----j Vos=o- .-0V;~ I I l¥rrllill a ~ 0 ~ ~ H ~ ~1~ TA - AMBIENT TEMPERATURE (OC) Another method which provides an indirect indication of the maximum value of VGS(off) is shown in Table II. The characteristic specified is ID(off)' whereas the parameter of interest is VGS =8 volts. The specification does say that the maximum VGS(off) is approximately 8 volts, but no provision is made for stating a minimum VGS(off)' as was done in Table I. Therefore, another test must be made if VGS(off) (min) is to be specified. Table II Indication of Maximum Vp Characteristic IOloffl Pmch·off drain current 7-8 Test Conditions VOS -12 V, V GS = 8 V = Moo Max Unit -10 I'A IGSS V5 Temperature Figure 15 If the gate-source junction becomes forward-biased, (negative voltage in a P-Channel device) or if VGS exceeds the reverse-bias breakdown for the junction, the input resistance will then become very low. The FET is normally operated with a slight reverse bias applied to the gate-source; hence a good measure of the doc input characteristic is to check the gate current at a value of gate-channel voltage that is below the junction breakdown rating. In device evaluation, there are three common measurements of gate current: IGDO' I GSO , and the combined measurement I GSS ' These measurement circuits are shown in Figure 16. SilicDnix The question is, should I GDO and IGSO be measured separately, or will one measurement of IGSS suffice? One thing is certain: IGSO + I GDO > IGSS, because the drain and the source are not completely isolated. They are, in fact, electrically connected via channel resistance. For most FETs, if VG is greater than VGS(off)' the difference between (IGSO + I GDO ) and IGSS is small; therefore, the measure· ment of IGSS is a realistic means of controlling both I GDO andI GSO · In a circuit, VGD may be biased between zero and BV GDS, while VGS will be between zero and VGS(off): therefore, IG is not necessarily the same as IGSS. BV GSS - Gate-Source Breakdown Voltage FET input terminals have been previously described as having NP or PN junctions, depending on the channel material. As such, the junction breakdown voltage is a necessary parameter. A useful equivalent circUlt for a FET is the distributed con· stant network shown in Figure 17, for a P·Channel FET. If an N-Channel device is being evaluated, the diodes would be reversed. In most applications, the gate·drain voltage is greater than the gate·source voltage; thus the gate·drain breakdown ratmg is most important. However, it is also pos· sible to consider the gate·source junction breakdown and the apparent drain-source breakdown (i.e., in Figure 17, when a high negative voltage is applied from drain to source, CRt will break down while CRn becomes forward·biased). Some device manufacturers use a BV GDO rating, which means they are only checking diode CRI. A better method is to use a BV GSS rating (gate·source breakdown with the drain shorted to the source), because it checks both CRI and CRn' in addition to exposing the weakest breakdown path along the entire gate·channel junction. The BV GSS test also allows the user to in terchange source and drain lead con· nections without worry about device breakdown ratings. Admittedly, a BV GSS test will reject some units which might pass a BV GDO test; the number rejected, however, will be insignificant compared to the advantage of providing symmetrical operatIOn. Test Procedures for BVGSS Junctions may break down softly or sharply;junctions with soft knee breakdown are undesirable. Without examining each individual unit on a curve tracer, devices with a soft knee may be eliminated by selecting a low current level for breakdown measurement (see Figure 18). GATE 0--...,..--'1+-.....- - 0 DRAIN CR" -----""'--0 SOURCE A Useful FET Equivalent Circuit Figure 17 Three Common Measurement of Gate Current Figure 16 SOFT KNEE (FAILING) - SHARP BREAKDOWN Examples of Soft Knee and Sharp Knee Breakdown Figure 18 Siliconix 7-9 gfs - Transconductance Transconductance, gfs' is a measure of the effect of gate voltage upon drain current: tJo gfs =LWGS ' VOS =constant Specifications for gfs are shown in Tables III and IV. Note that there is a difference in the test conditions specified for the N-Channe12N3823 and the P-ChanneI2N3329. The gate voltage for the 2N3823 is established as zero. This means that gfs is measured at ID = IDS S, as in Table III. (5) Table III 12N38231 Test Characteristic The interrelation of gfs to the parameters lOSS and VGS(OFF) should be noted. Equations 4, 6 and 7 describe the value of 10 and gfs in a FET for any value of VGS between zero and VGS(OFF). 9f. Small-signal commonsource forward transconductance Characteristic (7) where gfso is the value of gfs at VGS = 0 and IDSS is the value of ID at VGS =O. With these equations, the value of gfs can be calculated with a fair degree of accuracy (20 per· cent) ifI DSS and VGS(off) are known. Figure 19 shows normalized curves for I D and gfs as functions of VGS in a P-Channel FET. These curves were obtained from actual measurements on typical diffused channel FETs, such as the 2N2606. The curves agree very weJl with Equations 4 and 6 un til V GS( off) is approached. For these curves, VGS(off) was assumed to be the value of VGS where ID/IDSS =0.001. YI. Common-source forward transfer admittance Max Unit 3,500 6,500 .umho Test Conditions Mm Max Unit 20 "mho V OS =-10V, I D =-1mA 1=1 kHz The test conditions shown in Table IV specify a certain value for I D (-1 rnA for the 2N3329). This means that for each unit tested, VGS is adjusted until I D equals the specified value. The conditions specified in Table III simplify testing of the gfs parameter by eliminating the necessity of adjusting V GS' Figures 20 and 21 show typical test setups for the two methods. L 'V lkc 9fsfl]fs VOS= 15V, V GS = 0, 1=1 kHz Min Table IV (2N3329) (6) 210SS gfso =- VGS(off) Conditions -f--- T ~ i !~~~!~'D~/lD~"SS~~I~I~~ = 10-1 -VOS=-5V f=lkc FOR gl5 MEASUREMENTS Test Circuit for 9fs with VGS = 0 Figure 20 11_- VDS Normalized Curves for 10 and g15 as Functions of V GS Figure 19 The drain current of a JFET operating in the triode (below pinch-off) region can be accurately predicted by using Equation 8, where ~ )~ . VOS lo/tnode = lOSS V - - GS(off) 7-10 (8) Siliconix v Test Circuit for 915 with 10 Specified Figure 21 Junction FET Capacitances Associated with the junction between the gate and the channel of a FET is a capacitance whose value and geometric distribution are functions of the applied voltages VGS and V DS - Because of the complexity of dealing with such a distributed capacitance, a simplification is made so that two lumped capacitances, CgS and Cgd , exist between the gate and the source and drain, respectively. (A much smaller capacitance, Cds' also exists between tne drain and the source, stemming mainly from the device package; this header capacitance is small enough so that it can be ignored for most purposes.) Data sheets quote Cgs and Cgd (or other capacitances from which they may be derived) for specified operating conditions. Occasionally, graphs are included which show the variations of Cgs and Cgd as the result of changing conditions of V DS, VGS and temperature. If these data are not presented, an estimate of inter·electrode capacitance values may be made by assuming that these values vary inversely with the square root of the bias voltage. The temperature variations will be very small, because they depend on the -2.2 mV;oC change injunction potential difference. Assuming that the FET is properly biased - that is, that the doc conditions are met by the external circuitry - It is possible to construct an incremental equivalent circuit from which the small-signal or a-c performance may be predicted. Such an equivalent circuit is shown in Figure 22. ',d I Go-----~--~~--~ I D C,d >-- 1 Vas I '~II '" CO' >-- ': o~ (g;;;-) So-----_+------------------~----_+----~ NOTE The incremental channel current is given by the transconductance, gfs' multiplied by the incremental gate voltage. For the small signal, vgs ' this is manifested in the equivalent circuit by the current generator gfsvgs. Notice that the conventional direction of flow of this current is such that id flows into the FET, in a "positive" direction. Many circuits can be designed around the equivalent circuit for the junction FET. The actual values of gfs adn rds can be measured as previously mentioned; there remains only the requirement to establish the methods of determining Cgs and Cgd. First, assume that the FET is in operation and that the drain is connected to the source via a large capacitor, i.e., the drain and source are short-circuited to a-c. Under these circumstances, a capacitance measurement between the gate and the source will give Cgss (or Ciss) = Cgs + Cgd Second, assume that the gate and source are short-cirCUIted to a-c in a similar manner. A capacitance measurement between the drain and the source will now give Cdss (or Cos s) ~ Cgd (10) The alternative symbols C ISS and Coss simply refer to measurements made at the Illput (gate) and the output (drain) respectively. An alternative symbol for Cgel IS Crss , whIch refers to the "reverse" capacitance. In data sheets, It IS customalY to state (= Ciss) Cgss and Cdss (= Coss)· Crss IS often given III place of Coss because if Cds <{ Coss, which is usually the case, then C rss == Coss Equations (9) and (10) can be used III those instances where it is necessary to extract Cgs and Cgd, as in Cgs = Ciss - Cgd = Ciss - Crss s (9) (11) and Cgss" c1ss = Cgs + Cgd Coss" Cgd + Cds ~ Cgd = Cgd = Crss Crss Incremental Equivalent Circuit for the Junction FET Figure 22 The equivalent capacitance from the gate to the source, CgS ' is shunted by a very large input resistance, rgs ' with both of these parameters being characteristic of a reverse-biased junction. Similarly, the equivalent capacitance from the gate to the drain is shunted by the very large resistance rgd. (For most purposes, rgs and rgd may be neglected, and the gate impedance of the FET treated as pure capacitance). At the drain side of the equivalent circuit the small capacitance Cds - which stems from the header material- is shunted by the incremental channel resistance, rds. This resistance is capable of wide variations, depending on bias conditions. Since the equivalent circuit is fundamentally relevant to the pinch-off or saturated condition, rds will be on the order of megohms. (12) Remember that all capacitance measurements should be made at the same bias levels, since the capacitances are functions of applied voltages. To indicate the order of the capacitances to be found in a junction FET, consider the values given in the data sheet for the Silicolllx 1202 N-channel FET. They are given as Ciss (at VDS = 20 V and f = I MHz) = 5 pF max. and Crss (at VDS = 20 V and F = I MHz) = 2 pF max. Hence, at a drain-soUlce voltage of 20 V and a frequency of I MHz, Cgs = 5 - 2 = 3 pF maximum. Even though the FET is physically symmetrical, bias conditions have forced the capacitances to be unequal. Silicanix 7-11 - H Siliconix FET Biasing INTRODUCTION Engineers often design FET amplifiers that are unnecessarily sensitive to device characteristics because they may not be familiar with proper biasing methods. One way to obtain consistent circuit performance in spite of wide device variations is to use a combination of constantvoltage and self biasing. The combined circuit configuration turns out to be the same as that generally used with bipolar transistors, but its operation and design are quite different. Three Basic Circuits Vos iVOLTS) Let's examine three basic common-source circuits that can be used to establish a FET's operating point (Q-point) and then see how two of them can be combined to provide greatly improved performance. The three basic biasing schemes are: • Constant-voltage bias, which is most useful for rf and video amplifiers employing small dc drain resistors. Figure 1. A large dynamic range is provided by the operating point at VDsa = 15 V, loa = 0.39 mA and VGSa = -0.4 V. The output characteristics are for a typical 2N4339. The constant-voltage bias circuit (Figure 2) is analyzed by superimposing a line for VGG = constant on the transfer characteristic of the FET. • Constant-current bias, which is best suited to lowdrift dc amplifier applications such as source followers and source-coupled differential pairs. rt VOO RG -VGG 12 ":" CONSTANT ~~~ LOAD .B I -16 -1.2 Figure 2. Constant-voltage bias is maintained by'the V GG supply as shown on this typical 2N4339 transfer curve. Input signal eg moves the load line horizontally. Reprinted From ELECTRONIC DESIGN, May 24, 1970, June 7,1970. 7-12 OUTPUT " The Q-point established by the intersection of the load line and the VGS = -0.4 V output characteristic of Figure I provides a convenient starting point for the circuit comparison. The load line shows that a drain supply voltage, VOO ' of 30 V and a drain resistance, RO' of 39K n are being used. The quiescent drain-to-source voltage, VOSQ' is 15 V, allowing large signal excursions at the drain. Maximum input signal variations of ±0.2 V will produce output voltage swings of ±7.0 V - a voltage gain of 35. vos= 15V RO • Self bias (also called source bias or automatic bias), which is a somewhat universal scheme, particularly valuable for ac amplifiers. Siliconix The transfer characteristic is a plot of I D vs VGS for constant VDS. Since the curve doesn't change much with changes in VDS , it is quite useful in establishing operating bias points. In fact, it is probably more useful than the output characteristics because its curvature clearly warns of the distortion to be expected with large input signals. Furthermore, when a bias load line is superimposed, allowable signal excursions become evident and input voltage, gate-source signal voltage, and output signal current calculations may be made graphically. VOS .. 15V 12 DB /_-_~r---~~--~04 DC LOAD LINE -16 The heavy vertical line at VGS =-0.4 V establishes the Qpoint of Figure 1. No voltage is dropped across resistor RG because the gate current is essentially zero. RG serves mainly to isolate the input signal from the VGG supply. Excursions of the input signal, eg, combine in series with VGS so that they add algebraically to the fixed value of -0.4 V. The effect of signal variation is to instantaneously shift the bias line horizontally without changing its slope. The shifting bias line then develops the output signal current as shown in Figure 2. The constant-current bias approach (Figure 3) for establishing the Q·point of Figure 1 requires a 0.39-mA current source. For an ideal constant·current generator, input signal excursions merely shift the bias line horizontally and produce no resultant gate-source voltage excursion. This bias technique is therefore limited to source followers, sourcecoupled differential amplifiers, and to ac amplifiers where the source terminal is bypassed to ground at the signal frequency. Ff v OO VOS=15V RO eg Ro -=- OUTPUT ,:} -=- -: AC LOAD LINE -12 Figure 4. Partial bypassing of the current source (Figure 3) lowers the circuit gain by tilting the ac load line from the vertical. The capacitor drop subtracts from ego This will lower the gain of the amplifier because of signal degeneration at the source. The input signal, eg, is reduced by the drop across the capacitor: (I) It is clear from Figure 4 that the input signal only shifts the operating point by an amount equal to VgS ' the effective input signal. As the signal frequency is decreased, the slope of the ac bias line decreases, causing the effective input signal to approach zero. Self Bias Needs No Extra Supply The self-bias circuit (Figure 5) establishes the Q-point by applying the voltage dropped across the source resistor, RS, to the gate. Since no voltage is dropped across RS when I D = 0, the self-bias load line passes through the origin. Its slope is given by -I/RS. Therefore, the desired Q-point is established by setting -l/RS = IDQ/VGSQ. 12 ~ o DB i5 3' 1: +VO:UTPUT vos -15 v 12 'g RG -=- -1. RS -=- 08 'd --Lb---~' Figure 3. Constant-current bias fixes the output voltage for any RD. Hence, input signals cannot affect the output unless the current source is bypassed. If an ac ground is prOvided by a bypass capacitor across the current source, a vertical ac bias line will be established. Input signal variations will then translate the ac bias line horizontally, and signal development will proceed as with constant-voltage biasing (Figure 3). Should the bypass capacitor not provide a sufficiently low reactance at the signal frequency, the ac bias line will not be vertical. It will still intersect the transfer curve at the Qpoint but with a slope equal to -{l/Xc) = -wc (Figure 4). -16 -12 -08 _ o ! S~~~~I~N~C 04 -04 VGS IVOLTS) Figure 5. The self·bias load line passes through the origin with a slope -1/RS. Bypassing RS will steepen the slope and increase the gain of the circuit. Signal development is the same as in the case of the partially bypassed constant-current scheme except that the load line is a dc bias line. Signal degeneration is described by Equation 1 with Xc replaced by RS. The ac gain of the circuit can be increased by shunting RS with a bypass capacitor, as in the constant-current case. The ac load line then passes through the Q·point with a slope - (1/Zs) = -(we + I/RS). Siliconix 7-13 - The circuit is biased automatically at the desired Q-point, requires no extra power supply and provides a degree of current stabilization not possible with constant-voltage biasing. A fourth biasing method, combining the advantages of constant-current biasing and self biasing, is obtained by combining the constant-voltage circuit with the self-bias circuit (Figure 6). A principal advantage of this configuration is that an approximation may be made to constant-current bias without any additional power supply. The bias load line may be drawn through the selected Q-point and given any desired slope by properly choosing VG G' (The bias line intercepts the VGS axis at VGG .) The larger VGG is made, the larger RS will be and the better will be the approximation to constant-current biasing. Biasing for Device Variations The value of the combination-bias technique becomes apparent when one considers the normal production spread of device characteristics. The problem is illustrated in Figure 7 VGS=O 12 -02V 08 -04V 04 _Dav 1 E -D6V -10V -12V 10 40 50 VOS(VOlTSl +Voo +VOD 3IJ 20 +VOD 1.2 08 eo VGS=D 04 -02V QA c b -04V -D6V 10 20 30 40 50 Vos (VOLTS) VOS=15V Figure 7. The wide variations in device performance shown by this pair of output characteristics make clear the disadvantages of con· stant~voltage biasing. 12 -16 -12 -08 -04 VGS (VOLTS) +04 +08 +12 +16 VGG Figure 6. All three combination-bias circuits are equivalent. They add constant·voltage biasing to the self·bias circuit to establish a reasonably flat load line without sacrificing dynamic range. All three circuits in Figure 6 are equivalent. Circuit 6(a) requires an extra power supply. The need for an additional supply is avoided in 6(b) by deriving VGG from the drain supply. R 1 and R2 are simply a voltage divider. To maintain the high input impedance of the FET, Rl and R2 must both be very large. Very large resistors cannot always be found in the exact ratio needed to derive the desired VGG in every circuit application. Circuit 6(c) overcomes this problem by placing a large RG between the center point of the divider and the gate. This allows Rl and R2 to be small, without lowering the input impedance. One point of caution worth remembering is that as VGG is increased, Vs increases, and VDS decreases. Therefore with low VDD , there may be a Significant decrease in the allow· able output voltage swing. 7-14 where two limiting sets of output characteristics, representing the actual min-max spread of the Siliconix 2N4339, are presented. Limiting characteristics like these are not normally available. Even if they were, however, they'd be of little help in establishing operating points suitable for all devices with output characteristics lying between the two extremes. The problem is much more easily approached by llsiIlg the sct of lirrJting transfer chaiactelistil,..s of FigUltl 8. (See next page.) Attempting to establish suitable constant-voltage bias conditions for a production spread of devices is practical only for circuits with very small values of dc drain resistance - for example, circuits with inductive loads. As the constantvoltage bias plot of Figure 8 reveals, constant gate bias causes a significant difference in operating IDQ for the extreme limit devices. At VGS =-0.4 V, the range ofIDQ is 0.13 to 0.69 rnA, and VDS Q for a given RD will vary greatly for most resistance-loaded circuits. For the example of Figure 1, with RD = 39K n and VDD =30 V, VDSO varies from near saturation (5 V) to 25 V. An apparently excellent method of biasing is the constantcurrent method of Figure 3. Biasing in this manner fixes the operating drain current for all devices and sets VDS Q to VDD - IDQRL for any device in the production spread. VGS automatically finds a value to set the appropriate IDQ = constant for all devices. For the constant-current bias plot of Figure 8, with IDQ = 0.39 rnA, VGS would range from -0.11 to -0.67 V. Siliconix 15 15 VOS Vos= 15V 08 ".,e -12 -16 -DB -12 VOS= 15V -08 -04 VGS (VOLTS) VGG=04V VGS (VOLTS) ".,e 04 04 -16 15V 12 12 08 = 15 r-------------~~--_,_15 VOS=15V 12 08 ".,e 04 -16 -12 -08 -16 -04 +12 +16 VGS (VOLTS) VGS (VOLTS) Figure B. The advantages of combination biasing, when one is working with a spread of device characteristics, are made obvious by plotting the load lines for the various types of biasing on a pair of limiting transfer curves. Output characteristics are not needed as long as I DQ is chosen to be below the minimum I DSS . With RD = 39K n and VDD = 30 V, VDS Q is 14.8 V for all devices. The disadvantages of the constant-current method are that it allows no signal to be developed unless the current source is bypassed and, as we shall see, it lacks the flexibility to provide constant gain despite variations in the forward transconductance, gfs' of the devices. The self-bias scheme is a reasonable choice for single-ended de amplifiers and for ac amplifiers. In unbypassed or dc circuits, some compromise must be made between the gain loss due to current feedback degeneration and the advantage of current stabilization achieved with high RS. An appropriate choice of I DQ limits can be made by using the pair of limiting transfer curves. For example, for RS = lK n, the load line shown on the self-bias curve of Figure 8 is established. The maximum I Dis 0.52 rnA, and the minimum I D is 0.24 rnA. The operating range of VDS Q may be calculated for any value of VDD and RD. Clearly, for RD = 39K n, the maximum-limit device (device B) would operate with VDS Q = 9.8 V and the minimum-limit device (device A) would operate with VDSQ = 20.6 V. This results in fairly satisfactory operation for all devices. However, such a variation in IDQ imposes severe limitations on the circui t de sign. A better approach is illustrated by the combination-bias curve of Figure 8 with VGG = 1.2 V. The range ofIDQ for this bias condition is 0.25 rnA to 032 rnA. A similar minimum difference in I DQ could be achieved with RS = 6K n and VGG = 0, (a self-bias condition) but the operating points would be pushed toward the toe of the transfer characteristics and allowable signal input would be reduced. The upper load line allows Vgs = ± 1.8 V (limited by I DSSA)' while the lower line allows a Vgs of only ±0.7 V (limited by VCS( off)A)· (The subscript letters A and B refer to the minimum and maximum devices, respectively.) The combination circuit allows almost ideal operation over the full production spread of devices. Even with RD = 62K n, the VDSQ would range only between 10 and IS V. For this circuit, RD should be chosen to allow the largest output signal swing for I DQ midway between the two extremes of 0.25 and 0.32 rnA; namely 0.285 rnA. Setting the voltage drop across RD at one-half of (VDD 2VGS (off)typ) or 14 V, yields RD = (14 V/0.285 rnA) = 49Kn. It is helpful, in any design, to know the effect of tempera- ture variations on the transfer curves and transconductance characteristics. Ideally, minimum and maximum transfer characteristics would be plotted at three temperatures: above, below, and at room temperature. Then the design would take all types of variation into account. Siliconix 7-15 - Minimize the Gain Variations Leaving RS unbypassed helps reduce gain variations from device to device by providing degenerative current feedback. However, this method for minimizing gain variations is only effective when a substantial amount of gain is sacrificed. A better approach is to use the combination-bias technique with the bias ppint selected from the transfer and transconductance curves (Figure 9). ,---------:v::-o-s.::-:,::".:7 v".5 Step 5. Travel vertically up to the maximum limit transfer curve to find IDQB at VGSQB' This is IDQB "" 0.36 rnA. Step 6. Construct an RS bias line through points QA and QB on the transfer curves. The slope of the line is l/RS' and the intercept with the VGS axis is the required VGG . As Figure 9 demonstrates, it may be somewhat inconvenient to perform Step 6 graphically. An algebraic solution can then be employed instead. The source resistance is given by (2) and the bias voltage is VGG =RS IDQB + VGSQB (3) Care should be taken to maintain the proper algebraic signs in Equations 2 and 3. (For n-channel FETs, VGS is negative and I D is positive. For p-channel units, the signs are reversed.) If the transconductance cUrves of Figure 9 are not available, gfs can be determined by simply measuring the slope of the transfer curve at the desired operating point. Just place a straight-edge tangent to the curve at the Q-point and note the points at which it intercepts the ID and VGS axes. The slope and gfs are given by: slope = gfs = ID(intercept)/- VGS(intercept) Figure 9. Gain variations are minimized when the load line is de- signed to intersect the pair of limiting transfer curves (top) at points of equal gf. (bottom). As Figure 9 shows, it is possible to find an RS and a VGG that will set IDQA and IDQB to values so that gfsQ will be the same for both devices. The gfsQ of ~!! int('rmediat(' devices will be approximately equal to the limiting values. Thus, a constant, or nearly constant, stage gain is obtained even with a bypass capacitor. The design procedure is as follows: Step 1. Select a desired I DQA below I DSSA- A good value, allowing for temperature variations, is 60% ofl DSSA- This will allow for decreasing IDSS due to temperature variation and for reasonable signal excursions in load current. Step 2. Enter the transfer curves at I DQA "" 0.6 IDSSA (0.3 rnA) to find VGSQA' This VGSQA "" 0.2 V for the 2N4339. Step 3. Drop vertically at VGSQA to the minimum limit transconductance curve to find gfsQAThe value as read from the plot is approximately 1000 ILmho. Step 4. Travel across the gfs plot to the maximum curve to fmd VGSQB at the same value of gfs' This is VGSQB "" -0.7 V. 7-16 (4) In designing a constant-gain circuit, simply set the straightedge tangent to the transfer curve of device A at point QA and slide it, without changing its slope, until it is tangent to the curve of device B. The tangency point is QB' Designing Without Output Curves Although the transfer characteristic has been seen to be extremely valuable in designing a bias ciicuH, 1t cannot be used to graphically establish VDSQ ' However, if a set of output curves is not available, VDS Q can be determined or selected from the transfer curve by using the following procedure: Step 1. Establish RS and limiting values of I DQ , VGSQ and gfsQ from the transfer curve. Step 2. Establish VDD as available, but in no case greater than BVGSS nor less than several times VGS(off)' There are special cases where VDD will be below this limit, but in no case should instantaneous Vdg be allowed to fall below 2 x VGS(off) if minimum distortion is to be achieved. Step 3. Set VDS Q approximately midway between VDD and 2 x VGS(off); lower iflarge output signals will not be handled. Step 4. Select RD to give the appropriate VDSQ ' The formula is: RD = [(VDD - VDSQ)/0.5 IDQA + IDQBl -RS Silicanix (5) In the example of Figure 8, this procedure would have yielded VOSQ;(30-3)/2; 13.5 V and RO; (30 - 13.5)/0.5 (0.52 + 0.24) rnA - IK n ; 42.SK n. Step 5. By considering 10 circuits, which represent virutally every source-follower configuration, the designer can obtain consistent circuit performance despite wide device variations. There are two basic connections for source followers: with and without gate feedback. Each connection comes in several variations (Figure 10). Circuits 10(a) through 10Ce) have no gate feedback; their input impedances, therefore, are equal to RG. Circuits 10{f) through 10(k) employ feedback to their gates to increase the input impedance above RG. Check to ensure that with this R O' device B is not in a saturated condition - VOQB ; VOO - IOBQ Ro > 2VGS(0ff) + RS IOBQ· Decrease RO if this condition is not met. An alternate method, that selects Ro to provide a specified voltage gain, follows Steps I and 2 above and then proceeds as follows: Step 3. Step 4. Determine required stage gain, Av' and set RO ; Av/gfsQ· Calculate VOSQ to ensure that the criteria of Step 2 are not violated: VDSQ ; VDD - (RD + RS) IDQ Step 5. Before getting into the details of bias·circuit design, note several general observations that can be made about the circuits of Figure 10: • Circuits a, d and f can accept only positive and small negative signals, because these circuits have their source resistors connected to ground. The other circuits can handle large positive and negative signals limited only by the available supply voltages and device breakdown voltage. (6) • Circuits c, d, e, h, j, and k employ current sources to improve drain-current (In) stability and increase gain. If necessary, change I OQ ' VOD' Av and/or Rn to obtain an optimum compromise . •• • Circuits d, e and k employ FETs as current sources. In circuit d, Q2 must have a lower cut-off voltage, VGS(off)' and a lower zero gate·voltage drain current, InSS' than Ql. • Circuits e, g, h and k employ a source resistor, RS' which may be selected to set the quiescent output voltage equal to zero. FET SOURCE-FOLLOWER CIRCUITS Too little knowledge of biasing methods for FET amplifiers sometimes keeps engineers from making maximum use of FETs in circuit designs. The common-drain amplifier, or source follower, is a particularly valuable configuration; its high input impedance and low output impedance make it very useful for impedance transformations between FETs and bipolar transistors. +VOD +VOD AS +VOD -Vss -:.- b +VOD +VOD +VOD AG AS -Vss a • Circuits e and k use matched FETs. RS is selected to set In near the specified low-drift operating current. The input·output offset is zero. d c +VOD +VOD +VOD +VOD e - AS1 AS AG AG AS °2 AS2 -Vss -Vss h k Figure 10. Virtually every practical source-follower configuration is represented in this collection of ten circuits. The configurations in the top row do not employ gate feedback; the corresponding ones in the bottom raw do. Silicanix 7-17 Biasing Without Feedback is Simple The no-feedback circuits of Figure 10 (circuits IO(a) through IO(e) use simple biasing techniques (see the earlier article). Circuit IO(a) is a self-bias configuration; the voltage drop across RS biases the gate (which draws essentially zero current) through resistor RG' Since no gate-to-source voltage, VGS ' can be developed when In = 0, the self-bias load line passes through tpe origin (Figure II). For the 2N4339 FET, whose limiting transfer characteristics are used throughout this article, the quiescent drain current is seen to lie between about 0.25 and 0.55 rnA when a IK n source resistor is used. The quiescent output voltage lies between +0.25 and +0.55 V. Circuit IO(d) is similar to IO(c) except that the VGS =0 output characteristic of FET Q2 is used as a current source. As seen in Figure 13,02 does not supply constant current when its VnS gets very small. This technique should therefore be used only to bias FETs whose VGS(off) is Significantly higher than the equivalent VGS(off) of the current-source FET diode. r----------~15 VOS=15V 12 08 04 .--------::V-08-="""'5"'V,,'5 12 -16 -12 -08 -04 VGS !VOLTS) 08 Figure 13. FET 02 doesn't behave like an ideal current source when its VOS gets very small (Figure IOd). Therefore, 01 should have a significantly larger VGS(off) than 02 does. 04 -1.6 -12 -04 -D8 VGS (VOLTS) Figure 11. Self biasing (Figure IDa) uses the voltage dropped across the source resistor, RS to bias the gate. The load line passes through the origin and has a slope of -1/RS. A pair of matched FETs is-used in the circuit of Figure IO(e), one as a source follower and the other as a current source. The operating drain current (InQ) is set by RS2, as indicated by the load line of Figure 14. The drain current may be anywhere from 0.20 to 0.42 rnA, as shown by the limiting transfer characteristic intercepts; however, VGS I = VGS2 because the FETs are matched. r-------~-~rI5 VDS=15V 12 Circuit 100b) is another example of source-resistor biasing with a -VSS supply added. The advantage over circuit lO(a) is that the signal voltage can swing negative to approximately-VSS ' Two bias lines are shown in Figure 12, one for VSS = -15 V and the other VSS = -1.6 V. For the first case, the quiescent output voltage lies between +0.18 and +0.74 V. For the second, it lies between +0.3 and +0.82 V. 08 04 VGS (VOLTS) ,----------r '5 Figure 14. This load line is set by RS2 and 02 which acts as a current source (Figure IDe). If its components are properly matched, the circuit will have zero or near-zero offset. Ves" 15V 12 08 Since 1m = In2 and VGSI = VGS2, choosing RSI = RS2 will ensure that the voltage from point A to B equals the voltage point from point C to D (Figure IO(e». This source follower, therefore, exhibits zero or near-zero offset. If the FETs are temperature-matched at the operating In, the source follower will exhibit zero or near-zero temperature drift. C ~ 04 Rs=60K Rs" -1. -12 -08 -04 10K +04 VSS=-15V VSS=-16V +08 +12 +16 Biasing With Feedback Increases Zm VGSIVOLTSI Figure 12. Adding a VSS supply to the self-bias circuit (F igure 1Db) allows it to handle large negative signals. The load line's intercept with the VGs·axis is at VGS = -VSS. Bias lines are shown for VSS = -15 V and VSS = -1.6 V. The bias load line for circuit IO(c) is just a horizontal line (I n = constant). The quiescent output voltage is between +0.15 and 0.7 V for In =0.3 rnA. 7-18 Each of the feedback-type source followers (Figure 10(f) through 100k) ) is biased by a method similar to that used with the nonfeedback circuit above it. However, in each case, RG is returned to a point in the source circuit that provides almost unity feedback to the lower end of R G. If RS is chosen so that RG is returned to zero dc volts (except in circuit 10(f), then the input/output offset is zero. RI is usually much larger than RS' Siliconix Circuit 10(1) is useful principally for ac·coupled circuits. RS is usually much less than Rita provide near· unity feedback. The bias load line is set by RS (Figure IS). The output load line, however is determined by the sum of RS + R l' The feedback voltage VFB , measured at the junction of RS and R 1, is determined by the intercept of the RS + R 1 load line with the VGS axis. The quiescent output voltage is VFB - VGS' r--------------------,-15 12 oa <5 3" 1! RS + Rl "10K 04 AS + R, '" 10K ·16 -12 -04 ·OB <04 .oa "2 "6 circuit l(h) differs from that of Figure 10(g) (Figure 16) in that the load line is perfectly flat. In Figure 16 the load line is almost, but not quite, flat; it has a slope of -I/SOk. Circuit 1O(j) is similar to 10(h) except that the output is taken from the top of RS to reduce the output impedaI)ce. RS must be trimmed if the circuit is to work at all properly. In Figure 17, the constant·current load line represents a 0.3·mA current source, and the effect of a IK n source resistor is shown. The offset voltage is seen to lie between 0.2 and 0.75 V. The intercept of the RS load line and the VGS axis sets the voltage at the junction of RS and the cur· rent source (VFB ). For RS = IK n, VFB will be between -0.1 V and +0.45 V. Since VFB appears at the gate, it must be zero if the dc input impedance of the circuit is to be preserved. r-------------~~~_,_15 VOS"'15V VGS (VOL TS) Figure 15. The bias load line is set by RS but the output load line is determined by RS + Rl when gate feedback is employed (Figure lot). The feedback Vfb is determined by the intercept of the RS + Rl load line and the VGS axis. 12 In the circuit of Figure 10(g), RS can be trimmed to provide zero offset. As the curves show (Figure 16), RS will be between 670 ohms and 2.SK n. RS is much less than R 1. The source load line intercepts the VGS axis at VSS = -VGG=-IS V. 04 oa <5 3" 1! r-------------~V70-S-o~15~V~15 -1.6 -12 -08 -04 15-'03 rnA +04 +08 '12 "6 VGS (VOLTS) Figure 17. If Rs is not trimmed so that the load line passes through the origin, a voltage will appear at the gate causing a reduction in dc input impedance. The incremental input impedance will not be affected. This can be done by trimming RS, as shown dashed in Fig· ure 17. The biasing then becomes the same as for cir· cuit 100h). ·16 ·12 -DB -04 '04 VGS (VOLTS~ .oa '" "6 Figure 16. RS can be trimmed to provide zero offset at some point between 670 ohms and 2.5K (Figure 10g). The source load line n intercepts the VGS axis at VSS = VGG = -15 V. Note that this load line is not perfectly flat. It has a slope of -1/50K. because the current source is not perfect; it has a finite impedance. Circuit 10(h) is almost the same as 100g); the difference is that resistor RI is replaced by a current source. Since an ideal current source has infinite impedance, the bias curve of Biasing for circuit 10(k) is identical to that for circuit 1O(e) (Figure 14) except that feedback is added to raise the input impedance .•• REFERENCES (I) (2) Siliconix Sherwin, J.S., "How, Why and Where to Use FETs," Electronic Design,. May 17, 1966, p. 94. Sherwin, J.S., "Knowing the Cause Helps to Cure Distortion in FET Amplifiers," Electronics, Dec. 12,1966, pp. 99·105. 7-19 ta APPLICATIONS H Siliconix Amplifier Charts .c ......-.u For convenience this chart offers the designer circuit values for a variety of commonly used J-FET amplifiers . G) a. E Voo C fR~- Ro ~eo I 1.1'- " ---"1 R, RS ~ -::' *cs __ ..JI -::' Amplifier Design Chart (CS for 3 dB Point at 50 Hz) voo IVI AS 1m AI IMS11 A2 IMS11 Cs 100 AO eo Max I"FI (mAl 1m IVI AV VOO IVI AS Ikni A, R2 IMHI IMni VOO'15 VSS'-15 VOO = 15 VSS' -15 560 27K 100 33 10 3K 75K 11 100 lK lK 85 096 Follower 85 096 15 Follower 20 47 11 330 100 100 2K 47 11 VOD'" 15 4 7K 15 820 15 30 10 1M 45 510 1M 17 620 22 35 097 10 82 1M 120 36 06 22 50 02 35 18-24 20 82 1M 120 120 15 30 82 1M 120 180 15K 55 33 510 1M 11 097 VDD - -<.15 VSS' -15 Source Follower 15 2N4118 So .. rcc Follower 75 10 35 097 2N4119 12K 15 220 22K 35 lK 12 100 39K lK 12 100 56K 20 56 30 56 38 35 40-55 25 13 098 15 13 098 70 5"F" 35 at5V 70 150 240 10 3 330 17 17-23 20 68 300 27 18 30 68 300 68 45 VDO "" +15 510 VSS" -15 "ACAmpltfier 7-20 Source Follower 12 420 25 Source Follower AV 57 15 360 15K 20 75K eo Max IpKVI 120 270 27K J113 47K 45 100 220 Vee· 15 VSS'-15 45 1M 8-11 19 10 30 RO Ikni 100 330 VSS' -15 lK 820 330 1M 10 VOO '" +15 VSS' -15 330 30 10 097 J112 2K 10 20 25 Source Source 75K 100 I"AI 2N4117 J111 30 Cs Siliconix Source Follower 40 10 097 APPLICATIONS (Cont'd) :I=- H Siliconix 3 --....--- "U .,CD n :::r a :L 1ft ---I R, RS ~ Cs , ~--...I Amplifier Design Chart Voo RS Rl R2 Cs (V) 1m 1m 1m lpF) ImA) IKn) 100 RO .0 Max Ipk V) AV Voo RS Rl R2 Cs IV) 1m 1m 1m IpFI ImAI IKm 2N433B 1500 t--2-- 1M 30 15 5100 1M 36K 1M 1500 1M 5100 1M 2M t--2-30 t--2-- 30 36K 1M 1500 1M 5100 1M 36K 1M Voo = +15 lOOK VSS=-15 1M 45 o 25 30 25 5M 30 o I-E-8 2M 36 25 9·12 0.25 f-":;43:;;67+-..;1;.;5:-+-..;1;;;6:.;.2~4 20 20-30 0.12 f--;88;;;22+--:3;:;.0;-+-,1c:;0..:.1.:;0.~5 1.5 24·37 0.15 27 1.0 13·18.5 82 40 21.5·27 0.25 f-::i:8",2+--;2;:-:.5;.-+-..:3",2-;-4::;-t9 100 3.0 43·64 150 4.5 14.5-16 0.12 t---:1;;5",0+--:2;:;.5;-+--:3",8-;-,5::;-!4 200 1.5 40-50 0.15 82 5.0 37·52 270 0.12 10 680 15 30 28·31 015 120 7.0 54·76 0 9.0 098 ~ 042 1--;2:;;0+---;3;:;.0;-+--+,7.;:,7.~5 1M 9100 1M 6.8M 35 27K 1M 3M 25 ~~ 40 15 ~:~ 30 27K 1M 47 6.5 15·17 042 47 4.0 38·47 I--::SC:-l+-:4"'.S:--+--'4'"'0'"'.5C:-1 40 0 o 43 8.0 4.5 13M I - - 0 32 1--:4"'3+-:5"'.0:--+-""'4;-:0"'.4c:-1 3 35 68 4.5 53.60 68 40 49·52 75M 25 0.2 I-l-0:"'0+-:7'"'.0:--+--:6'"'6-:.7c:-1 0 1800 1M t--- 042 1--=7""5+--=5-;.0:--+--:5"'8.-:7"""'0 1M 9100 1M o 40 45 o 9100 1M 22M r--25 ~ 27K Voo = +15 VSS=-15 75K 1M 1M 12M 25 o 75 75 70 73.77 70 7.0 0.32 1-~6~8+--::6-:.5:--+--::5:::9.'::67-1 4 120 70 80.85 100 12 33 0.2 r.l-;;0~0+--;;5,.;0:--t;-;~6:=:5-~6~8 180 80 100·115 o 10 VOO-+15 VSS=-15 .0 Max Ipk VI AV 1200 1M 3900 1M 680 1M 1200 1M 3900 1M 20K 1M 680 1M 1200 1M 3900 1M 20K 2M 22K 1M 15 I-i~~.~rt-i~'i.~~+--;~1:i.~i;·~irl 65 6.8 2.0 9.10.5 r---265 12 60 9.5·10 39 7.0 7.5·8 r--!L- I-~~~H---;~;'j:~~-t--;~~t:~!~~ 40 04 r--L 60 ~.~ ~~:~~ 11 39 20 39.42 075 o 12 0.96 o ~~ 1 2N4341 15 23·25 100 68 022 45 ~~:~~ 9 0.32 1--;1",8+-:2",.0:--+--:1;-:7-:.1c:-1 30 25 26·28 22 1.0 16·18 0 2 1--::4~3+-;2;:;.0;-+--;2;;;8-:.3~0 ~ 1800 r--2- 1M 1--:2"'7"'0+--;5"'0:-+-7"'6"'.1"'0:::-1 5 2N4339 1800 RO 2N4340 ~300 0.15 f-l;;2",0+-+.14:-+--;:-:.:;2::<-J8 o 100 30 45 0.98 VOO=+15 VSS=-15 Siliconix 1000 1M 70 1200 1.2M 7.5M -SO 2000 1M 3.5 r.~~:~H~~rig~+-:3;::.!i-~~ r--!L70 2.7 ~:~ ~.~ 80 3.5 9.1 3.9 15 40 41 11·13 7.5·8 50 0.7 18 30 16·21 ~.~ 6i~ 22M 80 27 35 6.8 70 13 5.6M 50 0.7 30 9.0 28·35 o 1.9 o 135 094 1000 1M 1200 l.lM 2000 1M 15K 1M 33M 1000 1M ~ +0 1200 1M 2000 1M 15K 1M 10K 1M 15M :g g 7-21 - H Silicanix Composite Op Amp for High Performance For op amp applications requmng the best possible performance, consider a composite op amp that takes advantage of differing process technologies. A JFET dual can be combined with a Signetics NE5534 bipolar op amp for outstanding performance. Input bias current can be reduced, yet slew rate can be very high (20V / J.l.sec to 40V /Jlsec) and the circuit is unity·gain stable. Output swing is a minimum of ±12V into a 600 ohm load when operating from ±15V power supplies. This high output capability combined with a JFET input stage makes this an excellent amplifier for high·speed integrators, SAMPLE/ HOLD circuits, peak detectors, and log amplifiers. The input portion of the circuit is shown in Figure I. The NPN input stage of the NE5534 Ie op amp is biased into cut-off by connecting both inverting and non-inverting inputs to the negative rail. A JFET preamplifier input stage High Performance Op Amp Using The Siliconix 2N5912 v+(O--------~I~---------------e-~i~~~~~~~~~_:17========N=E5=5=3=4='=====, t R 2.SV Ce RD D 0.1BmA +- r---~ =:= I Re ___________-,~------------~~----~----~--~~--~-----J~-, , +-,~ -INo-.....+-..., +IN o------------J~----------' RD-1.37K v-cr----------~----~------~ 7-22 Re B Silicanix is then connected into the PNP second stage of the NE5534 and the currents that formerly flowed through the NE5534 NPN input pair are now diverted into the JFET input pair. Drain resistors RD effectively parallel the collector resistors RC from within the IC op amps and the JFET drain currents will then be the sum of the currents through RD and Rc. The voltage across the parallel combination of RD and RC is nominally 2.5V due to the internal biasing of the NE5534. Going directly into the second stage of the IC op amp ratherthan into the NE5534 NPN input stage has two distinct advantages: 1. Frequency response is better in that the phase shift of the bipolar input stage is avoided. A high-current JFET input stage, such as the 2N5912 when operated in the ImA to SmA drain current range, has excellent frequency response in comparison to an NPN stage operating in the 150MA to 200MA range. 2. The operating level at the JFET drains is only 2.5V below the positive supply rail, therefore the commonmode input range for the JFET input stage can be relatively high. The combination of low input bias current with high frequency response is useful for SAMPLE( HOLD circuits, high-speed integrators, photo-multiplier tube amplifiers, and high-speed data conversion circuits. Although more expensive than a single monolithic op amp, the combination of a JFET preamp with a bipolar IC second stage can provide substantially better performance than any monolithic alternatives. A Siliconix 2N5912 JFET dual was chosen for the input stage in this example because of its high operating current range, high gain, and excellent frequency response. The saturation drain current IDSS has a specified range of7mA to 40mA, but is typically lOrnA to 24mA. Gate source cutoff voltage VGS(off) is in the range of -I V to -5V with a typical value of approximately -2V to -4V. The 2N5912 characterization curves indicate that any drain current from ImA to 8mA will provide good performance, and 2mA was chosen for this application. The current diverted from the bipolar input stage to the JFET input stage is nominally 180MA on each side; therefore a drain current on each side of 1.82mA is needed from the drain resistors RD to make up a total drain current of 2.0mA. The drain resistor R D therefore needs to be approximately 2.5V(1.82mA, or 1370 ohms on each side. Gain of the JFET input stage can now be calculated. From the 2N5912 characterization curves, forward transconductance gfs will be in the range of 2.6mmhos to 5mmhos for units having IDSS of lOrnA to 24mA and when operated at a drain current of 2mA. The differential gain can be approximated by the product gfs RD. Using a center value of 4.3mmhos and 1230 ohms, (RD and RC in parallel), then the gain will be approximately 6.5, or I6dB. Total amplifier gain was found to closely approximate the gain curve for a 5534 being operated alone. The cascode configuration using two input pairs as shown has several advantages. Most importantly, the input gate current is dramatically reduced due to the lower drain-togate voltage on the input pair. In the cascode configuration, the gate-to-source voltage on the upper pair will be the drain-to-source voltage of the input pair even with the common-mode input variations. All of the common-mode swing is taken up by variations in VDS of the upper pair. Gate leakage of the input pair is primarily dependent on drain-to-gate voltage VDG, which will be a constant -2V GS in this cascode configuration. Drain-to-gate voltage on the input pair will be low, typically in the 3V to 6V range, which is well below the "IG breakpoint". From the characterization curves on the 2N5912, gate current leakage will be under 2pA for drain-to-gate voltages under 6V. The cascode configuration is very effective in reducing input bias current for JFET input stages. Another advantage of the cascode configuration is a reduction of input capacitance. The input pair drains are "bootstrapped"to the common source point and both must follow the gate Voltage. The effective capacitance from gate-to-drain and from gate-to-source is reduced. In addition, output conductance is reduced by the cascode configuration which also helps CM R. Adding the second JFET pair significantly improves both input bias current and common-mode rejection without degrading other parameters. The constant current source consisting of Q3 and Q4 primarily improves common-mode rejection and rejection of power supply variation. It also establishes the nominal operating voltage at the input (pins I and 8) of the 5534 op amp. The current will be a constant VBE( RE independent of fluctuations in power supply voltage or input voltage level. This current source has very high impedance, therefore common-mode inputs are heavily attenuated. Common-mode-rejection-ratio (CMRR) is very high due to the use of a constant current source, but can be further improved by matching of drain resistance. The parallel combination of RD and RC is the effective drain resistance for this design. The transconductance ratio between the two sides of the input pair also directly affects CMRR. The drain resistors should be well-matched to minimize the CMRR adjustment range since it also affects offset and drift. Each I % mismatch in drain resistance will cause approximately IIMV (OC of input offset voltage drift. CMRR can be readily trimmed to over 100dB. CMRR vs. frequency is excellent due to the use of the 2N5912, a wide-bandwidth FET, in a casco de configuration. A high performance op amp should also have good output characteristics, low noise, and high slew rate. The NE5534 op amp is rated for ±14V mimimum output swing into a 600 ohm load when operating from ±15V power supplies. Output resistance is typically 0.3 ohms. The Siliconix Siliconix 7-23 -- 2N5912 characterization curves show a typical equivalent input noise voltage of only IOnV/y'fIzat 10Hz. There is also a component of noise from the second stage, but its effect is divided by the input stage gain and its contribution is small. Input current noise of this composite op amp is very low due to the typical operating level of I pA input bias current. For slew rate, this circuit is capable of 50V / f.lsec when going negative. Positive slew rate is 50V / f.lsec without use of a compensation capacitor, but drops to 25V/ f.lsec with a 20pF compensation capacitor. Compensation capacitance will generally be needed only when driving capacitive loads. Even the lower value of slew rate, 7-24 25V / f.lsec, corresponds to a full-power (±IOV) frequency of 400KHz. While the vast majority of op amp applications can be satisfied through use of conventional I C op amps, there are applications in high-performance instrumentation systems that require superior performance. This composite op amp, which makes use of precision dual JFET input pairs and a high performance IC op amp, provides a unique combination of low input bias current, high CMR, low noise, excellent frequency response, and high output swing. Siliconix H Siliconix Applications for the Si1000 Series JFET Amplifier Doyle L. Slack INTRODUCTION The Sillconlx SI 1000 sene; " much more than a JFET, It IS a complete monolithic amplifier CirCUit featuring a low nOIse, low leakage J FET and two parallel diode; from the gate of the device to the substrate. An optional Internal source resistor may be connected between source and substrate to proVide a complete source follower amplifier In one ;mall package. This applicatIOn note will discuss the operation of the SI 1000 senes and Its uses and advantages. Also, several example applications CirCUits are meluded to show the SIIOOO senes' versatility as an Impedance matchmg circuit and/ or small signal amplifier. DEVICE OPERATION AND SPECIFICATIONS The SIIOOO series NBA geometry comes m two versIOns' the SIIOOO family and the SIIIOO The Si 1000 family (Si 1000, SIIOIO, S(1020) mcorporates the features of two of our more popular J FET products, producing a unique combination of low nOIse and low leakage Two parallel dIOdes are connected between the JFET gate and the substrate (which is tied to the fourth lead of the package) These dIOdes clip transient spikes and overvoltages, TO~~2 ___ 0, "<>-r I I I I r------------,I r---, I I 5 L____ j o COMMON TO~U!2---:, I I I I S I I L ____ ...J ~, o COMMO~ Si1100 Series I C I I :L __ ~: I I II I : Si1000 Series "<>-r- protecting the output of the CirCUit from sudden voltage fluctuation,. The SI 1100 has the same features as the SI 1000 but also Ineludes an internal resistor from source to substrate This resistor completes the source follower circuit and sets the output Impedance of the amplifier. Figure I shows the two CirCUits and their connectIOns to the leads of a TO-72 can. It also gives the pad layout and dimensions of the SI 1000 and SI 1100 die for use m hybnd circuit applications. The mternal source resistor m the SIlIOO supplies a complete source follower amplifier circuit with a typical Rs range 000 to 60 Kohms. However, If a source resistor outside of this range IS deSIred or a different type of amplifier that still provides input overvoltage protectIOn is needed, the Si 1000 senes without the source resistor should be used, since it allows more design fleXibility. Table I shows some of the more Important typical values for the Si 1000 series and SI 1100 deVICe, and Table 2 gives the differences between the parts m each of the two families. A transfer charactenstlc graph IS Ineluded in Figure 2to give an Idea of the operating range of the SIIOOO senes. COMMON I I I '.MILS - i---~ 0 I I : G I I L ___ J : L __________ J_ I• • ,. "'ILS I Figure 1. Schematic diagrams, lead connections, and die layout for the Si1000 series and Si1100 circuits. Siliconix 7-25 Table 1. Typical values for discussed parameters of the Si1000 family and the Si1100. snooo PARAMETER Family SillOO Oiode Leakage JFET Leakage <2pA -...--I{--o - TO 8 ohm LOAD 2.7n Il00nF Figure 4. Schematic diagram of an audio amplifier utilizing the Si1100 as a microphone preamplifier. Siliconix 7-27 But what If an even lower load impedance such as 50 ohmns from a transmISSIOn line is to be used? FIgure 5 shows how the output impedance of the source follower CIrCUIt can be lowered even more wIth the help of a bIpolar transistor. The reflected resistance through the base of the bipolar is paralleled with the effective output resistance of the Si 1000 cIrcuit to produce an output resistance of less than 60 ohms and a voltage gam of better than .95 V IV. This allows both the source and load to be optImally matched with virtually no sIgnal loss. +5VTO+10V 12K I I I 2.7K ____ .1 Figure 5. Schematic diagram of the bipolar assisted low output impedance source follower amplifier. The bipolar assisted source follower gives great flexibIlIty by allowing interface between any ultra hIgh Impedance source and a 50 ohm load with virtually no signal loss or noise insertion. Some examples of ultra high impedance transducers are electret microphones, input preamplifIers for hearing aids, accelerometers for military and industrial sensing, infrared sensors, and ion chambers such as those used for industnal radiatIOn exposure monitors. Another example of how the SIlIOO family could be used is given in Figure 6. Here, the Si 1100 series circuit input IS connected to a capacitive field sensor (as simple as a pIece of double sided circuit board). Any induced voltage change on the plates is fed to the input ofthe peak detector section of the op-amp cIrcuit. The Schmitt trigger monitors the voltage across the capacItor and changes its output state when the capacItor voltage crossed the 2.5 Volt tngger pomt. The output from the Schmitt trigger sWItches between 0 and 5 Volts and is microprocessor compatible for sensor applications such as computer-controlled mtruder alarms. 30K +5V I I I I IL _____ _ >"""--.;0 TTL OUT 30K 10K I Figure 6. Schematic diagram of the Si1100 proximity sensor. 7-28 62K Siliconix Another transducer mterface problem occur; when hIgh Imped- common source amplIfIer mode where low power or battery ance mea~urement network\) are connected to operational operatlOn.s Important F.gure 8 gIves a CIrcUlt that wIll operate In amplIfIer; for dIfferentIal mea,urement ThIS ean be ,olved by the the 10 to 20 mIcroamp range at a 12 Volt supply voltage. The c.rcuit m F.gure 7 Here a paJr ofSIIOOO ,ene, parl> ha, been u,ed dIode protection .s still available m thIS confIguratIOn. but the to mOnItor a high Impedance bndge for an mstrumentallon CIrcUlt voltage gam wIll be between 10 and 20, with extremely low amplif.er. Thi, cIrcuit allow, precIsIOn mea,urement at low mput power consumptIOn (approx.mately 250uW). Thb.s very deSIrable for remote or battery operation where mmlmum maintenance I.!o. s.gnal level; and easy 7eromg of the amplifIer output .mportant However. don't thmk that the SIIOOO fam.ly has to be used Just a, a ,ource follower. Another me of the SIIOOO ver;lOn IS In the +12V 390K 100nF o-II---*--i--+---+I lOOK IloollF Figure 7. Schematic diagram of the low signal SilDDD high impedance instrumentation amplifier. +6V +6V r------ I S.1100 lOOK 1M +12V +6V -12V - 100K I I I I I 1M L _____ _ Figure 8. Schematic diagram of the SilDDD series low power common source amplifier. Siliconix 7-29 CONCLUSION With Its low noise and low leakage combmatlOn, the SilOOO be converted to any sUItable amplifIer desIgn and still provIde senes amplifIer IS an ideal circUIt for Impedance matchmg. The SIIIOO senes CIrcUIts are dedIcated for use as source follower dIOde protectIon. There are many good reasons to include these amplIfIers. Although the SIIOOO senes has also been desIgned for source follower applIcatIOns, it is flexIble enough that It may easIly 7-30 devIces In your desIgns, such as small SIZe, outstandmg performance, and reasonable cost. These advantages make the SIIOOO senes preferable for numerous small sIgnal applicatIOns. .H Siliconix FETs for Video Amplifiers INTRODUCTION The field·effect transistor lends itself well to video amplifier applications. Gain bandwidth products in excess of 250 MHz may be easily achieved using simple one or two transistor circuits. DC input resistances in the tens of megohms range may also be easily achieved while input capacitances may be significantly reduced to less than I pF by well known circuit techniques. Video amplifiers have applications in communi· cations and pulse amplifying circuits and normally operate up to lOa MHz. For this analysis the gate source leakage resistance has been ignored due to its high value. Redrawing the input equivalent circuit as a simple parallel RC combination results in Behavior of FET Input Resistance Figure 2 A prime FET parameter, input impedance, has a large effect in determining the frequency response of a FET video am· plifier. It is not a simple RC network but one in which the real and imaginary parts are a function of frequency. The voltage generator source resistance Rg and the FET input impedance Zin form a frequency sensitive attenua· tion network. The larger the Rg, the worse will be the fre· quency response, and vice versa. Examining this in greater detail, consider the input equivalent circuit of a FET con· nected in the common source configuration, where where GI = Re IYin I = w 2 [TICI (l + w 2T22) + T2C2 (l + w 2 TI2)] 1- (w 2TIT2)2 + w 2 (T1 2 + T22) (1) and BI =Im 1Yinl Rgs and Rgd = bulk series gate resistance Cgs and Cgd = bulk series gate capacitance Goss = output conductance ..~ (2) where C,d A,d G = w[CI (I + w 2T22) + C2 (I + w 2TI2)] D A" C" ~ Figure 1 $ T) =CgdRgd 90s$ T2 = CgsRgs (3) The input resistance varies inversely with the square of the frequency (see Figures 3 and 4) while the input reactance is inversely proportional to the frequency (see Figure 3). Siliconix 7-31 - In common-source circuits, ltG, will typically fall to < 2K ohms at 100 MHz while C, remains substantially constant at 'east up to 1000 MHz. Figures 3 and 4 below exhibit these relationships_ +15V -rRo 5600 100~WI Figure 5 /' /' The 3-dB frequency w3 is given by: -j'Sljg'li+;blssl o ~O~O'-£_----'--:J=OO,---J---'--:6:::00:-'-'-'::'OOO (7) FREQUENCY {MHz} Figure 3 -+15V (8) 7 x 10- 12 X 560 W3 = 255 X 106 (9) l000n j-~oo o-,-.-~. --h •• 100KO y ¥1%2N5911/121 910 (10) The low frequency voltage gain for this configuration is given by: A _ gfsRD Y - 1 + gfsRS O'---L-LLW~~-'-~L-U~ , 10 100 FREQUENCV (MHz) (BI (AI f3 =39MHz Ay Figure 4 (11) = 4.9 (12) To maintain low input capacitance, and thus a high input impedance over a wide frequency range, feedback may be applied to most circuits. Such techniques are explored in "FET and Bipolar Cascade" section (page 5). The effect of Rg on the frequency response is shown in Figures 6, 9, 11, 13 where various amplifier configurations are investigated_ where Circuits tc Con~dcr Measured Performance Five video amplifier circuits are considered_ They are: Figure 6 shows the frequency response of the circuit. The low-frequency gain was measured at 4.5 and the 3-dB bandwidth at 44 MHz giving a gain bandwidth product of 197 MHz_ This compares with a calculated gain bandwidth of 191 MHz. Common-Source Configuration Shunt-Peaked Common-Source Configuration Source Follower Cascode Amplifier FET and Bipolar Cascade gfs = 15 mrnho when ID = 12 mA, the quiescent current RD=560n (13) RS=47 n (14) 14 ....,."T1111II1IIII11"'CTTrmr-rTmI""--jTU"'Urmrn Common-Source Circuit 1 1I1 ...... 12 H-t+tttt 11I111Itt-'Iod-tttiiP'oHttHtll-ttffi1ltl The circuit of Figure 5 features high input impedance and high voltage gain_ The drain resistor is set at 560 ohms to maintain good bandwidth which, with 50-ohm generator impedance, is determined primarily by the drain load components. These are: 10 R n =560n (4) CT =Cgd +Cn+Cs (5) Cgd = 2.0 pF, CD the YTVM probe, 2.0 pF, and Cs is circuit stray capacitance of 3 pF. CT = 2 + 2+ 3 = 7 pF (6) 7-32 Siliconix 1I ~!IU1 r- 11~~l5!!.1 10 100 FREQUENCV (MHz) Figure 6 1000 Effect of Increasing Generator Impedance If the generator resistance Rg is increased to 1K ohm, the input time constant of the FET is increased. The bandwidth of the amplifier is now determined primarily by the input time constant which consists of generator impedance (Rg = lK ohm) shunted by Cin (see Figure 7). The response of an input signal of frequency fo will then be boosted to an extent depending on the loaded Q of the tuned circuit; the loaded Q in turn is dependent on the unloaded Q of inductor L, Rg and the FET input resistance. Next consider shunt peaking in the drain circuit. In Figure 8 the inductor L is set to such a value that a low Q tuned circuit is formed; the resonating capacitance C is the parallel combination of Cgd plus stray and load capacitances. For a flat response, the LC circuit is tuned to the 3-dB frequency of the resistance loaded circuit of Figure 5. (See Appendix.) +1SV Figure 7 where = (5.9 x 3.5) + (0.6 x 10) + 3. Cin = 30 pF (15) (16) Figure 8 The required value of Lis: where T' R 2C Cgd = 3.5 pF (I 7) Cgs = 10 pF (18) The corresponding 3-d8 frequency is given by: (19) 109 30 x 10- 12 x 10 3 f3 (20) 30 =5.3 MHz = and for the circuit in Figure 8. (24) (25) = 0.78J.LH where 1 w3=--CinRg L (21) which agrees closely with the measured bandwidth as shown in Figure 6. RD= 560.11 (26) C = Cgd + CStray + CVTVM PROBE (27) C = 1.2 + 1.3 + 2.5 = 5 pF (28) Due to the low circuit Q (about 5), the value of L is not critical. The 3-dB bandwidth shown in Figure 9 now extends to 67 MHz giving a gain bandwidth product of: Shunt-Peaked Common-Source Circuit The frequency response of the resistance-loaded commonsource circuit may be significantly extended by shunt peaking at the gate and/or drain. Consider first the gate circuit. Here an inductor may be connected in shunt with the gate and set to such a value that it forms a tuned circuit with the FET input capacitance. The frequency of resonance is determined by: fo=----- (29) 67 x 4.2 = 281 MHz - (22) 21r-JLC;;; where FREOUENCY (MHz) (23) Siliconix Figure 9 7-33 When RS is bypassed by a 0.1 capacitor, the low frequency voltage gain is given simply by: which is near the measured value of 0.94. Measured perfor. mance is shown in Figure 11. The output resistance of this source follower is given by: (30) AV=gfsRD = 15 x 10- 3 x 560 (31) =8.4 (18.5 dB) (32) The gain bandwidth product tends to remain constant whether RS is bypassed or not and this effect is shown in Figure 9. I 1 Ro = gfs = 5 x 10-3 {34) = 200 n and in this circuit, Ro was measured at 165 ohms. The source follower is a useful versatile circuit which may be used as an impedance converter, level shifter, buffer stage, or as an input circuit to an op amp or feedback amplifier. 1 Source-Follower Circuit 2 1111 I A 1300 is used in the FET source·follower circuit, Figure 10, because of its low input capacitance and high gfs which remains high at the frequency range of interest. A source follower exhibits a high input impedance and low output impedance. The real part of the output impedance is the reciprocal of gfs which is independent of frequency up to about 600MHz. The input capacitance isC gd + C gs (1 - Ay) which, in this case, is approximately 1.5 pF maximum. The input capacitance is also independent of frequency and independent of load when the load is larger than the output resistance Ro. -1 IR~= lK :!! g Z. -2 w ~ -3 ,g -4 3 dB FREQUENCY Ag= lKU 3 dB FREQUENCY -6 01 Rg =50U 10 100 1000 FREQUENCY (MHd Figure 11 Cascode Circuit +12V The cascode circuit has applications as a buffer amplifier for use with high stability oscillators or in low level power amplifiers2 mainly due to its low reverse transfer characteristics. The advantages and considerations of this configuration, Figure 12, are similar to those listed for the common· source circuit. An extra advantage exists in the cascode circuit, namely the low input capacitance: I =:OOT -12V CD 11111 --= IV,HJ 25PF -:!::- Figure 10 The frequency response is dependent mainly on the gener· ator internal impedance. For example, when Rg is increased to lK ohm the bandv:idth fall:; to 80 ~,lHz. In this partkulai circuit, the low·frequency voltage gain is 0.94. Cin = Cgs + (1 - AV) Cdg (35) Cin = Ciss + Cgd (36) +15V 1KG The input resistance is proportional to 1/[2 as explained in the section, "Behavior of Input Resistance," and at some high frequency will go negative, particularly if the source resistor is large. For example, with the circuit in Figure 10, the input resistance is high at 10 MHz but in the negative resistance region at 100 MHz. However, when RS is 1000 ohms, the input resistance is real at this frequency. The voltage gain of a source follower is given by: Figure 12 (33) Thus Ay is almost independent of RS when RS is large. Using typical values for the 1300 (or 'h 2N5912) in Figure 10, the drain current is 3 rnA, gfs is 5 mmho and RS 4700 ohms, AV=0.96 7-34 where AV is the voltage gain from Q, gate to Q, drain which is essentially unity. Ciss for the U257 dual FET is 5 pF and Cdg is I pF, therefore Cin = 5 + 1 = 6 pF, excluding strays of 4 pF Thus Miller effect is minimized and a good gain bandwidth product is achieved. Siliconix Figure 13 shows cascode frequency response. The voltage gain at low frequency is 15 dB (x 5.6) and the bandwidth is 24.5 MHz with a generator impedance of 50 ohms. Gain bandwidth product is 137 MHz. The frequency response of this circuit is controlled by the output time constant if ft of the transistor is much greater than the amplifier bandwidth. In the circuit shown the a-c load is 2.5 pF. 28 r-TTTTnmr-rTTlrrmr-rrrmm 24 This produces an a-c voltage at the emitter whose amplitude is almost equal to that at the base. Thus at the FET, Vg ~ Vs ~ vd and all three signals are in phase. In this way Miller effect capacitance is largely eliminated. b-HtttfIH--t-ttlH+ttt-t-ttttlttl CONCLUSION The input resistance of a FET is inversely proportional to the frequency squared, while the input capacitance remains constant to at least 1000 MHz. 100 FREQUENCY (MHz) Figure 13 FET and Bipolar Cascade The FET and bipolar transistor combination of Figure 14 makes a good video amplifier because the FET input provides the voltage gain thus obtaining a superior gain bandwidth product. The feedback capacitor a-c couples the emitter to the drain. The a-c voltage at the gate is nearly equal to that at the source. This source voltage is doc coupled to the base. Several video amplifier configurations are considered. The common-source circuit is considered first: in the example, the low frequency gain is 4.5 and the 30-dB bandwidth 44 MHz (gain bandwidth 197 MHz). By shunt peaking in the drain circuit, gain bandwidth is increased to 260 MHz. The simple source-follower circuit gives a gain near unity with GBW almost 300 MHz and an output resistance of I/gfs' The cascode circuit features a low input capacitance and GBW of 137 MHz. The circuit featuring the best gain bandwidth is the FET and bipolar combination. A gain of II dB and bandwidth of 90 MHz is achieved. 12 0 L.Ut ....... l.'d' BOONTON 91CVTVM 6 62Kn 2200 27Kn 001 0 10 100 FREQUENCY!MHz) -12V Figure 14 Figure 15 Ell Silicanix 7-35 APPENDIX Selection of Video Amplifier Designs with Perfonnance Summary Note. All output voltages measured with Boonton 91C VTVM. Common Source Stage +15V RO Device Rg n RS RS RD Gain dB Bypassed n n cin BW GBW pF MHz MHz 44 40 5.0 3.5 197 300 2N4393 50 50 x 47560 47560 lK lK x 47560 47560 4.5 7.5 4.5 7.5 911K -91 lK 911K 91 lK 3.8 11.6 6.3 16.0 3.8 11.6 6.3 16.0 11.0 14.5 11.0 14.5 27.5 30.0 9.5 6.5 103 189 36 41 1201.5K 1201.5K 1201.5K 1201.5K 3.9 11.8 6.2 15.8 3.9 11.8 6.2 15.8 11.5 13 11.5 13 25 19 8 7 98 118 31 44 J300 50 Y, 50 2N5912 lK x lK x 2N4416 50 50 lK lK x x 13.0 17.5 13.0 17.5 22 26 Common-Source Circuit Cascode +lSV +15V 10Kn lKn ":" -15V Rg n 50 50 lK lK 7-36 RS Gain dB Bypassed x x 2.7 5.6 2.7 5.6 8.5 15 8.5 15 Cin BW GBW pF MHz MHz n 9 11.5 9 11.5 27 27 9.5 9.0 73 151 73 51 50 lK 50 lK Rg Siliconix L ~ 0 0 8 15 Gain dB 3.5 3.5 3.5 3.5 11 11 11 11 Cin BW GBW pF MHz MHz 2 2 2 2 20 11 37 17 70 38.5 130 60 Shunt-Peaked Common-Source Stage 2N4393 J300 (V,2N5911/12) +15V +15V ":" Rg n RS Bypassed Gain dB 4.2 7.5 4.2 7.5 12.5 17.5 12.5 17.5 BW GBW MHz MHz 66 54 6.0 3.5 277 405 25 26 Rg 50 50 x lK lK x RS n Bypassed 50 50 x Gain dB 3.9 6.3 11.8 16.0 BW GBW MHz MHz 67 67 262 421 2N4416 +15V ":" L n RS J.tH Bypassed 50 50 50 4 4 Rg x x 5 Gain dB 3.9 6.2 6.2 11.8 15.8 15.8 BW GBW MHz MHz 45 40 45 175 248 279 Common-Drain Common-Emitter Stage I lROn ":" Rg n RE Bypassed Gain (O.IIlFl dB Cin BW GBW pF MHz MHz 2.0 2.0 2.0 2.0 39 21 13 11 117 525 39 275 Rg 50 50 x lK lK x 3 25 3 25 9.5 28 9.5 28 Siliconix n 50 lK 25 F • Gain dB Cin pF BW GBW MHz MHz 15 15 1.0 1.0 32 15 5.6 5.6 179 84 7-37 Source-Follower Circuit +15V +15V Dual FET Rg n Gain 50 1K 0.92 0.92 C in Stray pF Total pF Ro BW GBW n MHz MHz 350 55 326 50 2.2 2.7 165 2.2 2.7 165 where R t = Rgs R2=Rgd =jw CI = Cgs (1) C2 = Cgd (2) ,n T CI C2 T (Input to Output! mV Gain BW GBW MHz MHz U257 50 2N5912 1K 100 0.98 70 69 100 0.98 15 14.7 U232 50 10 0.98 85 83 1K 10 0.98 13 12.7 Note. Ro - output resistance of the source follower. Derivation of Input Admittance Terms Offset (Max) Rg n The response below shows the "normal" 3·dB frequency without peaking - fl' It is now required to raise the response at f 1 by 3 dB to achieve a maximally flat response. Therefore, under these conditions the total impedance seen by the drain at f 1 must equal the impedance seen by the drain at fo ' Also at f 1, Xc = RV Substituting for Xc in Equation 5: o>--_-----'f (3) - W 2CI C2 (Rt + Rz) + s(CI + C2) fO FREQUENCY (4) (1- w2RIR2CIC2) + s(CIRI + C2R2) RL2+w 2L2 RL2 =( ,1-~L Derlvnticn of Shunt Peaki.ig forniula The equivalent circuit of the drain load is shown in the Figure below. The total impedance seen by the drain is given by: +1 (7) RL 2= 2wLRL (8) RL =2wL (9) RL 41T fl (10) L ~RL (6) ) RL2- 2wLRL + w 2L2 + RL 2 = RL 2 + w 2 L2 (5) n L 2 and ro -" fl 21TRLC RL2C ,:.L=-2-- (11) REFERENCES 1. Sherwin, I.S., "Liberate Your FET Amplifier," Electronic Design, May 1970. 2. Siliconix Application Tip, "FET Cascode Circuits Reduce Feedback Capacitance," August 1970. 7-38 Silicanix H Siliconix Audio-Frequency Noise Characteristics of Junction FETs Bruce Watson INTRODUCTION The purpose of this application note is to identify and characterize audio frequency noise in junction field-effect transistors_ Emphasis is placed on basic device characteristics rather than on end applications, since it is important for the circuit designer to know the salient noise behavior of the FET, and how those characteristics may be specified by production-oriented test parameters_ ~ctor, a source resistor RG, with a thermal noise voltage eT, is added to the circuit. A noise factor (F) may be defined as F= Total available output noise power Noise power at output due to thermal noise of RG or Defming FET Noise Figure For analysis, it is convenient to represent noise in a FET by assuming that an ideal noise-free device has two external noise sources, eN and I N- These noise sources are chosen to have the same output as would an actual noisy FET. An equivalent circuit is shown in Figure I. F= Noise power output due to RG + noise power output due to FET Noise power output due to RG or F =1 + Noise power output due to FET Noise power output due to RG or Gain X noise power of FET referred to input F=l+ Gain X noise power due to RG NOISE-FREE FET r- l 'N RG ~ 'T 11 L~ J I or RL 'N Noise power of FET referred to input F=I+ Noise power due to RG The thermal noise voltage across RG is(l) (1) Representing Noise in an Ideal FET Figure 1 where k = 1.380 x 10-23 JoulestK (Boltzmann's Constant), T = temperature in oK, and B = bandwidth in Hz_ Therefore noise power due to RG is A noise factor (F) is a Figure of Merit of a device with respect to the resistance of a generator. To calculate a noise Siliconix (2) 7-39 1&1 The noise power of the FET referred to the inpu t is (3) where RN ~ 0.67/gfs' the equivalent resistance for noise. The eN, except in the llf n region, closely approximates the equivalent thermal noise voltage of the channel resistance. In the so·called Ilfn region, eN is expressed as When expressions for the noise power of both the FET and RG are substituted, the noise factor becomes eN 2 +TN 2RG2 _ F-I + 4kTRGB (8) (4) where n varies between I and 2 and is device· and lot·oriented. A noise figure (NF) expressed in dB indicates the presence of added noise power from the FET or another active device. The noise figure is always given with reference to a standard, specifically the generator resistance RG: The characteristic bulge in eN in the Ilf n region has been observed to some extent in all junction FETs submitted to test. The breakpoint or corner frequency shown as f I in Figure 2 is lot- and device design-oriented, and varies from about 100 Hz to I kHz. (5) NF = 10 log 10 [F] The noise figure of the FET is (6) When junction FET noise is expressed in terms of the noise figure (NF), an inherent disadvantage arises in that the noise figure value is dependent upon the value of the generator resistance, RG' Therefore, the eN, TN method remains as the best way to quantitatively express the noise characteristics of the FET itself. Describing Junction FET Noise Characteristics As indicated in Equations (7) and (8), eN is inversely pro· portional to the square root of the transconductance of the FET (eN 0: l/ViiJ. eN can be lowered by a factor of llYN if N devices with matched electrical characteristics are connected parallel. For example, when N = 2 (9) let (10) and let Junction FET eN and TN characteristics are frequencydependent within the audio noise spectrum, and take a form as shown in Figure 2. (1 I) Thus, 1--. OR FLICKER EXCESS NOISE REGION II 0 ~ JOHNSON OR NYQUIST THERMAL NOISERECION GENERATOR RECOMBINA OR SHOT NOISE "ON REGION From Equation (7) , UllJJ BREAK eNI POINTS 'N SLOPES Ii 0 , '0 (12) , E",n t- f'llill JJ lDO 'K 'N = v'4kT(0.67/gfsl)B (13) , and '2 (14) II 10K f - FREQUENCY {Hz) Thus, Characteristics of Junction FET Noise Figure 2 (IS) eN, the equivalent short circuit input noise voltage (with the exception of the llf n region), is defined as(2) (7) 7-40 A second way to achieve low eN is to use a device with a large gate area. Empirically, eN is inversely proportional to the square of the gate area (eN 0: I/AG 2), independent of gfs' This large gate area philosophy has been followed in the Siliconix design of the Siliconix 2N4867 A FET, and noise performance of the device is discussed later in this Application Note_ A major advantage of this type of design is that eN is significantly lowered andlN also remains at a low value_ 1--:;,-;;--------1 I 15Ku I I 15K II The equivalent open-circuit input noise current, TN' with the exception of the shot noise region shown in Figure 2, is due to thermally-generated reverse current in the gate channel junction_ It is defined as I I I 10K 11 (16) where q = 1.602 x 10-19 coulomb (the magnitude of the electron charge), IG is the measured DC operating gate current in amperes, and B is bandwidth in Hz. The expression is accurate only when the measured gate current is the result of bulk device conductance. It is possible for the measured gate current to be due to conductance stemming from contamination across the leads of the semiconductor package. At higher frequencies, as in the shot noise region shown in Figure 2, TN can be approximated as being equal to the Nyquist then' 11 noise current generated by a resistor: (3) -=-I-=- I I L __ -~ _ SH~~~;:~~~~~~~~SRE I ~S~O:::E~~SJ Test Circuit to Measure Popcorn Noise Figure 3 The graph in Figure 4 shows "moderate" burst noise observed in a group of junction FET differential amplifiers which were measured in the test circuit. (17) x _13D~I~ where Rp is the real part of the gate-to-source input impedance. The breakpoint or corner frequency f2 in Figure 2 is lot- and device design-oriented and can vary from 5 kHz to 50 kHz. Another form of noise found in junction FETs is known as "popcorn" or burst noise; the term popcorn noise was originated in the hearing aid industry because of noise or level shifts which are present in input stages, and which resemble the sound of corn popping. Popcorn noise is a form of random burst input noise current which remains at the same amplitude, and which is confmed to frequencies of 10Hz or lower. The suitability of a FET device is dependent on the amplitude of the burst, its duration, and its repetition rate. The origins of popcorn noise are not completely identified, but are believed to be caused by intermittent contact in aluminum-silicon interfaces and by contamination in the oxidation processes. A test circuit to measure popcorn noise in differential junction FET amplifiers is shown in Figure 3. In practice, popcorn noise is evaluated on an engineering basis, and not on a production-line basis. No correlation between llf n noise at 10Hz and popcorn noise has yet been found in junction FETs_ However, if the amplitude of the burst is large and occurs frequently, then I/f n noise voltage (eN) is masked and difficult to evaluate at 10Hz. I 1. YLOTTlR TJE D4,V ' NOlsIEBURST I-- REFE~REO +0 INPJT ! f-#1 NOIS~ BURT- - STABLE DC Ul.VGs'llTi DRIFTONLY- #2 #3 TA - 25°C :]""'N -- ,.. NOISE BURSTS " ~NOISEI BURSTS and l/fl eN - - Popcorn Noise in Differential Amplifiers Figure 4 Operating Point Considerations Unlike bipolar transistors, where eN and TN characteristics vary directly with change in collector current (IC), similar characteristics in junction FETs will vary only slightly as drain current (I D) is varied. This is true so long as the FET is biased so that the drain-source voltage is greater than the pinch-off voltage (VDS > Vp or VGS(off»The eN in junction FETs will be lowest when the devices are operated at VGS = 0 (I D = I DSS), where transconductance (gfs) is at its highest value. This will be true only if device dissipation is maintained very low in relation to the total dissipation capability of the FET. Silicanix 7-41 __ The curves in Figure 5 illustrate changes in eN as the operating drain current (I D) is varied. Note that the lowest eN did not occur at VGS = 0, because of high power dissipation and a resultant rise in junction temperature at the operating point. ~ -'0 2N3B22 (NRL GEOMETRY) ~ =TA'" 25"C ~HIGHI.ITYPE 1 -10 >- iii ~ ~ i3 ~ lK -01 10 "BREAKPOIN~ ~ I g-OOl E= -001 =- ~ L O"'lmA '0 .....-r too 10 15 100p.A_ 20 25 3D VOG - DRAIN-GATE VOLTAGE (VOL lSI Gate Operating Current vs Drain~Gate Voltage Figure 7 ,~~~~~~~~~WW 10 100 lK -100 10K 1- FREQUENCY (Hz) Ci' .s eN Changes vs 10 Variations -10 ~ -'0 Figure 5 (NZ~~~g~~~RYI ~ ~TA-25·C HIGH gm/C lis TYPE 'rnA IG@IO E1G@lo=smA ~ ~ ilw The optimum (lowest) iN in depletion-mode junction FETs should occur at VGS = 0 QD = I DSS). In practice, very little change will be seen in iN when the operating point is changed, provided that the drain-gate voltage is maintained below the gate current (IG) breakpoint and power dissipation is kept at a low level. The curves in Figure 6 illustrate TN characteristics as a function of drain-gate voltage at points below, on, and above the IG breakpoint voltage. ~ -01 IG "BREAKPOINr' • -.0 !; , -00 , 'ass '0 '5 20 25 VOG - DRAIN·GATE VOLTAGE {VOL TSI Gate Currents vs Drain-Gate Voltage Figure 8 Characteristics of eN andTN at Low Temperature Three equations presented earlier ( (7), (16) and (17) ) show that eN andiN are temperature dependent. eN andiN are proportional to .,ff, and both will be reduced if the temperature is lowered. In Equation (16), TN is proportional to .jI(}; IG will halve for each temperature drop of 10 to UOC. eN is also proportional to v'RN, where RN ~ 0.67 igfs. Thus when gfs IS mcreased, which is typical of junction FETs operating at low temperature, eN will also lower. w!..u.......-..JI.WJL-.L.J.I.llWJL.....I...L..U.UW 10- 16 lOOK 'OK '00 '0 'K f - FREQUENCY (Hz) In Figure 9, gfs has been plotted vs temperature for a silicon junction FET, and the low temperature limitation caused by a dropoff in gfs is clearly shown. iN Characteristics as Function of Drain-Gate Voltage Figure 6 In circuit design, particular attention must be paid to draingate voltage (VDG) to minimize gate current (IG) under operating conditions. The critical drain-gate voltage (IG breakpoint voltage) can be anywhere from 8 to 40 V, depending on device design. (4) Gate operating current (IG) should not be considered equal to gate reverse current (IGSS) in linear amplifier applications. IGSS is only an indication of reverse-biased junction leakage under non-operating conditions. The Curves in Figures 7 and 8 show how IG breakpoint is related to basic device design. Device designs with a high gfs/Ciss ratio have low breakpoint voltages, typically at VDG = 10 V, whereas high /.I. devices (1.1. =fds . gfg). have much higher IG breakpoints, typically VDG =20- 30V. 7-42 SilicDnix 1E 8000 -' w u z ;! g e z e .~ 500. 4000 2N4416 lo-3mA r / 1'- SLOPE05VC~ r- " ~ l- e ~ ~ 2000 ~ ~ • i 100 200 T - TEMPERATURE (OK) gfs vs Temperature Figure 9 300 In connection with the plot of gfs vs temperature, note that the relationship can vary from approximately 0.2% to I % per degree C. The gfs slope depends upon the basic de· sign of the FET, and upon the proximity of the drain current operating point to I DZ , the zero temperature coefficient point. The major application for junction FETs at low temperature is in charge-sensitive amplifiers. (5) For best performance in this type of application, a high gfs/Ciss ratio is required. Recommended Siliconix FET types for such applications are the 2N4416 (NH geometry) and the U311 (NZA geometry). Test Measurements By definition, eN and iN are referred to the input of the device under test. To measure eN, the test circuit shown in Figure 10 will prove useful. An alternate method of performing the above test is to use a Quan-Tech Transistor Noise Analyzer consisting of a Model 2173 Control Unit and a Model 2181 Filter. The analyzer has provision for measuring eN and determining NF with various values of RG in FET and bipolar devices with selectable test conditions. The measuring system has a constant gain of 10,000. The analyzer records output noise at selected frequencies between 10Hz and 100 kHz in the device under test, with the scale shown as the actual output divided by 10,000. This is then the output noise referred to the input. The equivalent bandwidth for testing is I Hz. There are certain instances where the test circuit or the Transistor Noise Analyzer are not adequate to measure eN at certain frequencies oyer certain bandwidths in the I/f n region. The rms noise over a bandwidth from flow to f high , where there is a I/f n characteristic over the entire range, can be computed as +VOD eN = [eN knownj.[f . In known 0 1MH J csc lOOn 1 V,N I (~)jl/2n flow (18) Figure 11 represents this equation graphically. For example, eN known = 70 x 10'9 v/.,jHi at 10 Hz. How much noise is in the band from 4.5 to 5.5 Hz? The noise has a Ilfl characteristic over the entire range. Thus OUT 0) MOUNT 0 U T AND INPUT CIRCUITRY IN SHIELDED ENCLOSURE or Test Circuit to Measure eN Figure 10 (20) .!he following procedure should be used to make the eN test: 4.975 Hz is the mean center frequency where f mean = (flow' fhigh)1/2. 1. Set tunable fIlter to required flow and fhigh . Adjust oscillator to mean center frequency (fmean = [flow' fhighll/2). 2. Set Vosc to 100 mV with Switch I in positioneD I 102 ComputeVinl = 10' x - = 10'5V= IOIlV. 10 6 . Vout! 3. Measure Voutl ' Compute overall gam as Ay = - V ; = ml - 'NKNOWN 4. Set Switch I to position@and measure Vout2 ' Compute Vin2 , the equivalent short-circuit input I 'known noise voltage (eN), using Ay from Step 3. Vin 2 Vout2 - ~ = eN y . . m volts over bandWIdth flow to fhigh . Siliconix Computing rms Noise Over a Bandwidth Figure 11 7-43 TN measurements are difficult to implement at best. At frequencies below f2 in Figure 2,TN is assumed to have a constant level or "white" noise characteristic which may be correlated to gate current, I G. From Equation (16) IG is established as the measured bulk gate current. Because measured gate current (IG) is the result of all conductan~s at the gate, the resultant gate current and the computed iN due to bulk material can be assumed to be this value or less. The total equivalent input noise of the FET can be approximated by(6) (21) where eT 2 is the thermal noise of the generator resistance RG and eni 2 is the total noise referred to the input. This approximation assumes that the equivalent noise voltage and the current generators vary independently. Equation (21) implies that TN 2 can be calculated ifeN 2, eT 2 and total noise e ni2 are known. The difficulty here is that in MOS or junction FETs, the RG must be very large to detect the anticipated small value of TN' However, when RG is very large eT 2 is much greater than TN 2 . RG 2_ For example, over a 1 Hz bandwidth at 25"C, ifRG is equal to 100 Mn, then eT 2 = 4kTRG = 4 x 1.38 x 10-23 x 2.95 x 102 x 108 = 1.63 x 10-12 V/YHz. (22) or (27) When a 10 pF mica capacitor was used in the evaluation circuit (up to a frequency of 100 Hz) a correlation offrom 80 to 90% was obtained when compared to TN 2 computed from measured gate current readings. At frequencies above 100 Hz direct computation ofTN via the capacitor method becomes unwieldy because of the rapid decrease in capacitor reactance at these frequencies. In calculating TN at higher frequencies, an alternate method is to measure (Rp) the real part of the gate-source impedance of the FET. (7) When ~ is measured at various frequencies, the equivalent short-circuit input noise current ON) can be computed as a function of frequency (See Equation (17) ). A convenient instrument to measure Rp is the Hewlett-Packard Type 250A Rx meter or equivalent. The Type 250A Rx meter can measure Rp accurately up to 200K ohms. As is shown in Figure 12, this establishes the low frequency limit of 20 MHz for TN computed via direct measurement of Rp for the Siliconix FET Typ:..2N4117 A. For frequencies between 100 Hz and 20 MHz, iN must be extrapolated, as is shown in Figures 12 and 13. For FET types with lower Rp (such as the Siliconix 2N4393)TN c~ be computed down to 2 MHz, and hence extrapolated iN between 100 Hz and 100 kHz is more accurate. 10-12 Cij 1000K AnticipatedTN is ~ ~ ew TN "" 10-15 Amperes/v'HZ (23) e z "in 10-13 ~ lOOK I." ~ w ~ and ~ TN 2 = 10-30 Amperes/YHz. (24) Z 10- 14 ~ '.K .. 1 Thus ~ ~ " "'~ ., lK ,. , 10-15 lK f - FREQUENCY (MHz) (25) Low Frequency Limit for Calculated iN Figure 12 Therefore, TN 2 . RG 2 is much less than eT2 , which renders this method of finding TN impractical for most common MOS FETs or junction FETs. An improved method of measuring TN 2 is to substitute a low-loss mica capacitor for resistor RG. The mica capacitor by defmition does not have equivalent thermal noise voltage, and thus Equation (21) becomes ..LllUUL.Ll..IlillU 1.-1. 1000K (26) (where 7-44 Xc =capacitive reactance) Siliconix ,,, 1 Z (J f - FREQUENCY 1Hz) Extrapolated iN YS Frequency Figure 13 The following are representative eN, iN curves for Siliconix J-FET products. Of particular importance is the geometry which by its design governs the basic noise characteristics of product types derived from it. NCB NIP lK lK 10- 13 2N5434 INI GEOMETRY) Ii -" OS 15 2' , z 0 10- 14 100 ~ c 15 . 0 10 , ,if 1 10 10K 0 ~ ~ ~ 10- 15 , z 0 J1)-14 ~ 100 ~ ~ > g OS 0 ~ 0 0 m 2' Ii-" z l> > l" is EI ,if w 0 ~ 10- 15 10 " , ~ z 10- 16 lOOK l> 1 10 f - FREQUENCY (Hz) 100 lK 10K 10- 16 lOOK f - FREQUENCY (Hz) NPA NRL 10- 13 lK ~ lK 2' , z 0 OS 10- 14 w "~ ~ 0 0 > 0 10- 15 is , Z ,if I. S 10- 13 2N3821 (NRl GEOMETRY) VOS=10V 'OSS=106mA ~ OS ,,', TA=2S·C z 0 10- 14 ~ 100 0 15 ~ ~ 0 > 10- 15 10 0 ;; ;- is £1 ,if I. l> l" z , £1 10- 16 tOOK 10K f- FREQUENCY (Hz) 10-16 lOOK f - FREQUENCY (Hz) PSA NT 10- 13 ~ ,,', Z 0 ~w iii0 "~ ~ .. 0 > Z w 0 is 10- 15 ~ ,if ~ z , lK ,,', ~:;; Z 10- 14 -" w "~ ~ 0 Z > w 10- 15 0 is , z ~ ;; ~ ,if 1 10K ~ 0 10 100 lK 10K lOOK f - FREQUENCY (Hz) f - FREQUENCY 1Hz) FET Noise Characteristics by Geometry Figure 14 Siliconix 7-45 CONCLUSION Contemporary junction FETs have noise voltages (eN) equal to those found in low-noise bipolar transistors_ Each type of device has a different operating mechanism: the FET is voltage-actuated, while the bipolar transistor is currentactuated. Hence, FETs have an inherently lower noise current (iN) and are preferred over bipolar devices in most audio-frequency applications where low-noise performance is a design requirement. When bias points are properly selected, as described in this Application Note, the excellent low-noise characteristics of high gfs junction FETs can be realized. The curves shown in Figure 14 are representative ofeN and TN performance of Siliconix junction FETs. Of particular importance in these curves is the process geometry by which the basic design of the FET governs the noise characteristics of product types derived from it. Readers are invited to refer to the Siliconix FET catalog for full geometry performance data, and for specific part numbers stemming from the generic process geometries. In the measurement section of this Application Note, it was shown that direct eN measurements can readily be made. TN can be guaranteed at frequencies below 100 Hz by measuring the DC operating gate current (IG). When IG is 7-46 known, iN can be extrapolated from frequencies below 100 Hz to predict noise performance at frequencies to 100kHz. REFERENCES (1) Nyquist, H., "Thermal Agitation of Electric Charge in Conductors," Phys. Review 32 (1928), plIO. (2) Van der Ziel, A., "Thermal Noise in Field-Effect Transistors," Proceedings of the IRE, Vol. 50, August 1962, pp 1808-1812. (3) Fitchen, F.C. and Motchenbacher, C.D., LOW NOISE ELECTRONIC DESIGN, 1st Edition, John Wiley & Sons, New York, 1973, pp 103-107. (4) MacDonald, Charles L., "Behavior of FET Gate Current," Siliconix incorporated Application Note, April,1969. (5) Radeka, V., "Field-Effect Transistors in ChargeSensitive Amplifiers," National Academy of Sciences, National Research Council Publication 1184. (6) Op. cit., LOW NOISE ELECTRONIC pp 3Q.31. DESIGN, (7) Op. cit., LOW NOISE ELECTRONIC pp 103-107. DESIGN, Siliconix H Siliconix Differential JFET Amplifier Ted List The discrete JFET differential amplifier has many perfonnance advantages over its integrated circuit equivalent. In particular, the noise levels and input leakage currents can be significantly lower. Given adequate device characterization data, designing a discrete amplifier IS a simple two-step procedure. For example, the U40l,s a monolithic dual JFET used in low-noise JFET-input amplifiers, low-to-medium frequency amplifiers, precision instrumentation amplifiers and comparators. The device has an excellent offset voltage rating (5mV) and nonnally does not need thennal and offset adjustments in the circuit because the two JFETs are closely matched. The characteristics are guaranteed at 15V and 200,...A, Table I, and the equivalent input noise is specified at 20nV/!Hz maximum at 10Hz. Two steps are required to design a circuit with good gain and noise characteristics. Step I: Using the circuit shown in Figure I, assume ± 15V supplies are available (±V,). The source voltage Vs is set equal to zero so that 15V appears across the current-limiting diode, CRt. Since the JFETs are characterized and production tested at 200,...A, choose a current-limiting diode with a forward-current rating close to 400,...A (200,...A quiescent current in each JFET). The CR043 , for instance, is rated at 430,...A and operates well with a 15V drop across it. The remaining 15V is divided between the JFETs and the drain resistors. The 7.5V across the JFETs is more than sufficient for operation tn the saturation region. Step 2: Calculate the value of the drain resistors from their voltage drop (7.5V) and current (215,...A): RL , = RL2 = 7'%.215 = 34.884kfi The nearest standard 5% value to 34.88kfi is 36kfi; 33kfi could also be used. In summary. +V, = +15V -V, = -15V Q, and Q 2 = 'h U401 R L , = RL2 = 36kfi (3kfi optional) CR, CR043 = The amplifier characteristics are shown in Table 2. Table I - U401 Partial List of Parameters Parameters VGS(off) IG g,. g08 CRSS en VGS,-VGS2 a(vGS,-VGS2~aT Vos Vos Vos Vos Vos Vos Vos Vos ConditIon Limits = l5Vl o = lnA = l5Vl o = 200,...A = l5Vl o = 200,...A - 0.5 to - 2.5V -15pA 2t07mmhos 20,...mhos 3pF = l5Vl o = 200,...A = l5Vl o = 200,...A = l5VVGS = OV = 10Vl os =200,...A =10Vln = 200,...A Siliconix -- 20nV/IHZ 5mV 1O,...V/oC 7-47 Table 2 - Amplifier CharactenslIcs ~33 ~31kn <15pA ~5mV ~13mW Vt + ~ .~ RLt eot - ..... e02 ... ..... ~ ~CR1 • V1 - Figure 1 7-48 RL2 H Siliconix Wideband UHF Amplifier with High-Performance FETs Ed Oxner INTRODUCTION A new freedom in UHF amplifier design is possible with high-performance "Super FETs" such as the Siliconix U3l0 Junction FET. Typical advantages include a closely-matched 75 ohm input for extremely low return loss in cable systems, and high spurious response rejection with the 3rd order 1M intercept measured at +29 dBf 1) The amplifier circuit in Figure 1 is designed for 225 MHz center frequency, 1 dB bandwidth of 50 MHz, low input VSWR in a 75-ohm system, and 24 dB gain. Three stages of U310 FETs are used, in a straight forward design. Typical parameters are taken from the U310 data sheet: Additionally, the high common-gate forward transconductance of the U3l 0 (20,000 /1mho maximum) makes it possible to design an amplifier with wide bandwidth and good gain, since the figure of merit (gm/C) of the FET is 2.35 x 109 typical - higher than any other known UHF Junction .FET. Cl,C4,C7.Cg=68pF C2.CS = 500 pf C3,CG• Cs 01, Q, act = 1000 pF = S.hconlx U310 Forward Transconductance Input Admittance at 225 MHz Output Admittance at 225 MHz L1,L3,LS L2. L4 • L6 RFC1. RFC2 = 120 nHy R1. R2 =5HI l4mmhos 13 mmhos 4mmhos 0.27 mmhos 2.6 mmhos -- Vo = +20 V =222nHy '" 2 2 nHy Figure 1 Siliconix 7-49 Input match is simplified because the FET input (real) impedance is nearly 77 ohms. A coupling capacitor is used in the amplifier, rather than a tuned circuit, and thus the values may be determined: I Cs = wXs where: '" 68 pF RsRp Xp Three cascaded synchronous single-tuned stages are used to achieve the desired gain, and thus stage bandwidth and Q are determined:(2) Bandwidth of 3 Stages(3) = )2 1/3 -I Bandwidth of I Stage 75 x 77 = Xs =1T.85 = 488 n and Cp= 1.47 pF ( E; ) Ls I =-2=120 nHy =1.122 (I dB) giving w CT Figure 2 shows that the measured input VSWR in the 75ohm system indicated an available bandwidth considerably greater than that required for the amplifier design criteria. B/W (I dB) =98 MHz Q = 1.15 200 MHz 400 MHz Blanchard Chart (Inverted Circle Impedance Chart) Figure 2 7-50 Silicanix The computed voltage gain per stage is approximately gfs Rt / n or 2.22 (7 dB). Measured gain for all three stages is 24 dB. The U310 FET in the final stage operates at lOSS, and thus accounts for the higher measured gain. The gain/ bandwidth response of the amplifier is shown in Figure 3. With a FET output impedance of 3700 ohms shunted by approximately 2.5 pF (with 0.5 pF allowed for stray capacitance), the total parallel resistance necessary to obtain the desired bandwidth is: Q= wCRt The 3rd order spurious intercept point is plotted graphically in Figure 4.(4) The importance of a high intercept point becomes apparent in a crowded high-level area of the spectrum where signal purity is of utmost priority. R = 1.15 =330n t 1.415 x 109 x 2.5 x 10- 12 The tank circuit impedance appearing in shunt with the FET, is therefore calculated to be about 365 ohms. From this, the inductance is: REFERENCES R 365 L = - = - - =222nHy wQ w1.15 with a turns ratio of 2.3: 1 to match to 75 ohms. Since each stage is designed for 75 ohm input and output, three cascaded stages complete the amplifier design. 225 MHz 200 MHz (1) "Don't Guess the Spurious Level," ELECTRONIC DESIGN, February 1, 1967, pp. 70-73. (2) REFERENCE DATA FOR RADIO ENGINEERS, 4th ed., p. 242, ITT Corp., New York, N.Y. (3) Valley and Wallman, VACUUM TUBE AMPLIFIERS,MIT Rad. Lab. Series, Vol. 18, pp. 172-173. (4) Op. cit., "Don't Guess the Spurious Level." 250 MHz +40 B/W (1 dB) - 50 MHz INTERCEVOINT fo= 225 MHz +20 ~ ... 1dVV I / II V Ii G-24dB COMPRESSION 24 dB ~ 23 dB -20 -40 III -60 / Jrd ORDER INTERMODULATION '[RODUCT [ -60 -40 -20 +20 POWER IN IdBm) Figure 4 Figure 3 -Silicanix 7-51 H Silicanix High-Performance FETs In Low-Noise VHF Oscillators Ed Oxner Most communications receivers are limited in their dynamic range because of saturation in the early stages of RF amplifiers or mixers. However, some receiver designs are available which overcome this limitation by using parametric amplifiers and converters to achieve spectacular increases in dynamic range. There still remain certain limitations in dynamic range which cannot be remedied by parametric devices. In these cases, the problem lies in the heterodyning of noise sidebands which appear on the receiver local oscillator, entering the passband through strong interfering signals. Common Types of Noise Although noise is often difficult to characterize because of its random or nondeterministic nature, it is possible to differentiate various forms of noise through an understanding of the Gaussian distribution of noise about an RF carrier. Briefly stated, the three major forms of noise are (I) low-frequency noise (I/f); (2) thermal noise (4kTRB); and "shot" noise (in). Further, these types of noise can be identified from their relationship to the main RF carrier. For example, low-frequency noise predominates very close to the carrier, and falls to insignificant levels when it is displaced more than 250 Hz from the carrier. Low-frequency noise is associated with surface contamination and other irregularities, such as gate current leakage. Thermal noise plays the predominant role in the region from the I/f decay point to approximately 20 kHz from the carrier, and is commonly associated with equivalent resistance where the rms value of noise voltage of the Thevenin generator becomes the classic (4kTBR)~. Noise appearing beyond the 20 kHz is known as Shot noise, and is directly attributable to noise current. Because of the typically uniform distribution of shot noise it is also referred to as "white noise." Origins of Osclllator AM Noise _Althoug..h an oscillator tends to produce a wave that is nearly sinusoioal, there are other fluctuations pn"spnt_ When the energy in the frequency domain close to the carrier is observed on a spectrum analyzer, noise appears as a modulation phenomenon. This observation would be greatly enhanced if the noise contribution was coherent and consisted of discrete sideband frequencies. Without a doubt, the major component of AM noise is the contribution oflow-frequency noise (Iff). Both thermal and shot noise are relatively insignificant segments of AM noise when compared to I/f. A graph of AM noise vs frequency removed is shown in Figure I. -'OOr----r--~----~---r--------~--_r----~--~--~----~--_r------__, Ie· 760 MHz ; , I ;v/ -110 -'20 -r ~~?~iN;:iQ~~~~:RMON'CS : I I I ! i I I I 81W-10Hz Of . : NORMALIZED NOISE -130 -140 -15~'':'-DH-::-'--:50::'D~H-:-'--:-':-'kHl..,---'---..J.-'':Z~k'::H,.J....J-'"''''-''''''"'""'"3:-'k"':H'---'---:-'4:-:k":H'-'-.....-'-'.....--:_5~k":'H'=--......--'"u FREQUENCY (kHZ) AM Noise vs Frequency Removed from the Carrier Figure 1 7-52 Silicanix Design of a VHF Oscillator The important design considerations for best oscillator performance include using a FET with high forward transconductance, maintaining the gate at ground potential, and keeping a high unloaded tank Q. The high transconductance is necessary to reduce the effective noise resistance. The grounded gate reduces the noise voltage contributions to those of the gate leakage current and the series gate resistance. The high tank circuit Q serves as an effective filter for the sideband noise energy. The oscillator design is somewhat extraordinary for a circuit employing a FET. The FET chosen was the Siliconix U31O, which has a forward transconductance value higher than 18 mmho at zero bias (VGS = 0). The oscillator basically consists of two coaxial resonators, one for the FET source and the other for the drain. Oscillation is established by capacity coupling between the two resonators; output coupling is derived from the magnetic coupling which exists at the open ends of the resonators. Optimum resonator Q is achieved by designing the coaxial resonators for a characteristic impedance of 75 ohms. The oscillator circuit is shown in Figure 2, and construction details are shown in Figure 3 . CJ - 1 pF (SEE TEXT) .---f---f<») ~~~PUT C, 100pF ~ J:R::", *1'000 0 +Vo ' Oscillator Circuit Oscillator Construction Details Figure 2 Figure 3 The technique to establish the proper resonator length for the desired frequency is somewhat tricky, and requires a first-order approximation of the anticipated capacitive fringing which derives from both the FET and the feedback network. A short circuited coaxial transmission line is theoretically resonant at a quarter-wave length of the resonating frequency, except for the effects of fringe field capacitance. At resonance (I) If the fringe capacitance is known, Xc can be calculated as Xc = 1 wC (2) From this, the resonator length can be determined as Xc = tan III (3) In making these calculations, a Smith chart is invaluable, as is shown in the following illustration: Frequency of oscillation = 760 MHz FET bigs (from data sheet) = 16 mmbo Cgs = 3.4 pF Capacitance from bigs Allow for stray capacitance and Cs = 1.5 pF the feedback network 4.9'pF Thus Xc = j 0.57 (normalized to 75 n) Locate 0.57 on the Smith chart. The wavelength toward the load = 0.081 X. Since a wavelength at 760 MHz is 39.5 cm., then the resonator cavity length is simply 39.5 x 0.081 = 3.20 cm (1.26 inches) Silicanix (4) 7-53 - In the completed FET coaxial oscillator circuit, the output coupling loop consists of a single turn made fast to the cavity by the BNC flange and the FET itself. Although the feedback network appears somewhat crude, it can be replaced by a small trimmer capacitor for similar operation. Conclusions Measured performance of the oscillator is shown in Table IA; AM noise measurements in a 10 Hz bandwidth are shown in TableIB. TABLEIB AM Noise Measurement Frequency Displaced From Carrier TABLEIA Oscillator Measured Performance @ 25'C VD])(V) ID~mA) Pout (dBm) Frequency (MHz) +10 IS +6.6 725 +15 16.2 +15.2 742.7 +20 18.2 +18.3 754.7 +25 21 +20 762.9 50Hz 500Hz I kHz 5kHz dBc -130 -139 -143.5 -146 The Reike diagram shown in Figure 4 makes possible the accurate prediction of expected power output and operating frequency with the oscillator feeding directly into a mismatched load. Expansion of the Rllike diagram to show frequency vs transmission line length (in degrees) will allow prediction of the long-line effect on oscillator stability. Reike Diagram Figure 4 7-54 Siliconix H Siliconix FETs in Balanced Mixers Ed Oxner INTRODUCTION Initial evaluatiOn of the active FET mixer Will imply a disadvantage because of local oscillator dnve requirements; bipolar devices m low-level mixers require very little dnve power. However, m high-level mixing this disadvantage IS overcome in that drive requirements at such mixing levels are generally the same, no matter whether bipolar or FET devices are used. When high-performance, high-frequency junction field-effect transistors (JFETs) are used in the design of active balanced mixers, the resulting FET mixer circuit demonstrates clearly superior characteristics when compared to l!s popular passive counterpart employing hot-carrier diodes. Companson of several types of mixers is made in Table I. The advantages and disadvantages of senuconductor devices currently used in various mixer cirCUits are shown in Table II. Why FETs for Balanced Mixers? The performance pnoritles of modern communication systems have stnngent requuements for wide dynamiC range, suppression of mtermodulation products, and the effects of cross-modulation. All of the foregoing parameters must be conSidered before noise figure and gam are taken mto account. Why an Active Mixer? Active mixmg suggests lugh-Ievel ITIlxmg capability. High level nuxing m turn infers that active mIXers outperform passive mixer circuits in terms of wide dynamic range and large-Signal handling capability. Additionally, the active mixer offers unproved converSiOn efficiency over the passive mixer, permitting relaxation of the IF amplifier gain requirements and even possible eliminatiOn of the customary RF amplifier front end. Since FETs have inherent transfer charactenstics approximatmg a square-law response, their third-order intermodulatlon distortIOn products are generally much smaller than Table II Table I MIXER TYPE Charactenstic BandWidth Single-Ended Several DEVICE Single Double Balanced Balanced Decade Decade decades possible 0.5 025 Interport Isolation Little 10-20 dB >30dB Relative OdB Bipolar Low NOIse Figure High Gam High 1M Easy Overload Low D.C. Power Subject to Burnout Low NOise Figure High Power Handling High Burn-out Level High L.O Dnve Interface to I.F. Conversion Loss Low NOise Figure Optimum Conversion Gam not Conversion Gain Excellent 1M products Square Law CharacterIStic Excellent Overload High Burn-out Level possible at Optimum Square Law Response Level JFET +3 dB DISADVANTAGES TranSistor Diode 1.0 Relative 1M DenSity ADVANTAGES +6dB L.O. Power Dual-Gate MOS FET Siliconix Low 1M Distortion AGC Square Law Characteristic High L.O. Power High NOise Figure Poor Burnout Level Unstable 7-55 II1II those of bipolar transistors. Harmonic distortion and cross· modulation effects are third.order-dependent, and thus are greatly reduced when FETs are used in active balanced mixers. ahead an additional one-half of the IF cycle, FET "A" is again ON, but the noise component has advanced 1800 (wift) through the coupling structure, and is now "out of phase". The process continually repeats itself. A secondary advantage derives from available conversion gain, so that the FET mixer becomes simultaneously equivalent to both a demodulator and a preamplifier. The end result of this averaging (detection) is the cancellation of the noise which originated in the local oscillator, providing that the mixer balance is precise. (1) First Order Balanced Mixer Theory The analysis of the conversion of the signal to the IF passband is similar, but the signal is injected into the coupling structure at the equipotential tap. Thus at time t2' the signal vector (e s) is "out of phase" with the local oscillator vector, elo. The resulting envelope develops a cyclic progression at the IF rate, since the signal is "demodulated" by the mixing action of the FETs. Essential details of balanced mixer operation, including signal conversion and local oscillator noise rejection, are best illustrated by signal flow vector diagrams (Figure 1). I, A schematic of a prototype balanced mixer is shown in Figure 2. DeSign criteria, in order of priority, include the following: II,:;::J H'--..:..,..u....u---------f-- IF (1) Intermodulation and Cross-Modulation (2) (3) Conversion Gain Noise Figure FETe SIGNAL CONVERSION NOISE J\EJECTION A I Selecting the Proper FET Local Oscillator Injection (6) Designing the Input Transformer (7) Designing the IF Network Intermodulation and Cross-Modulation A basic aim in mixer design is to avoid the effects of intermodulation product distortion and crossmodulation. Part of the problem may be resolved by using a balanced mixer circuit. The active transfer function of the FET is represented by a voltage-controlled current source. For both crossmodulation and interrnodulation, the amount of distortion is proportional to the amplitude of the gate-source voltage. Since input power is proportional to input voltage, and inversely proportional to input impedance, the best FET 1M and cross-modulation performance is obtained in the commongate configuration where the impedance is lowest.(2) elo ~ lien I, _11_WfJ II Signal and Noise Vectors Figure' Energy conversion into the intermediate frequency (IF) passband is the major concern in mixer operation. In the following analysis, both the signal and noise vectors are shown progressing (rotating) at the IF rate (wift); the resulting wave occurs through vector addition. The analysis of local oscillator noise rejection (Figure 1) assumes, for simplicity of explanation, that noise is coherent. Thus at some point in time (t l ) the noise component (en) is "in phase" with the local oscillator vector (elo) and FET "A" (the rectifying element) is ON; the JFET mixer acts as a switch, with the local oscillator acting as the switch drive signal. One-half cycle later, at time t 2 , the signal flow is reversed for both the local oscillator vector and the noise component, FET "A" is OFF and FET "B" is ON. Moving 7-56 (4) (5) When JFETs are used as active mixer elements, it is important that the devices be operated in their square-law region. Operation in the FET square-law region will occur with the device in the depletion mode. Considerable distortion will result if the FET is operated in the enhancement mode (positive, for an N-channel FET); by analogy, the problems encountered are similar to those which arise when positive drive is placed on the grid of a vacuum tube. Square-law region operation emphasizes the importance of establishing proper drive levels for both quiescent bias and the local oscillator. The maximum conversion transconductance, gc' is achieved at about 80% of the FET gate cutoff voltage, VGS(off)' and amounts to about 25% of the forward transconductance, gfs' of the FET when used as an amplifier. Siliconix T, III III III III III III SIG C, 50nn ~ 4 50n OUTPUT IF C1. C5 - 01 "fd c2. C4- 1 - 10 pF C3 - 1000pF C6. ca - 30 pF C7. Cg - 68 pF C31 eTO -OlI1F LT. L2- 1 311Hy ===. °1.°2- U310 121 T1 0. U430 - RELCOM BT-9 Prototype Active Balanced Mixer Figure 2 Since conversion gam (or loss) must be considered, it common to equate voltage gain Av, as: IS load impedance is high, then distortion will develop. However, if proper steps are taken to prevent drain load distortion, the varactor effect will also be inhibited. (1) where gc is the conversion transconductance and RL is the FEr dram load. 15 criminately increasing the drain load resistance will adversely affect any design priority concerning distortion - particularly intermodulation product distortion. SOURCE INJECTED MIXER (L & SIGNAL) FREQ LO .. 120 MHz, POWER LO +17 dBm \ 14 An attempt to achieve maximum conversion gam by mdls- a \ 13 12 " '0 Distortion takes different forms in mIXers. Most obvIOUS is that distortion which will occur if the FEr is driven into the enhancement mode, as noted earlier. A more pernicious form is drain load distortion. And finally, there is the socalled "varactor effect." \ ~~~iNS:~;E~!:CHEl 1700 ohms 50DOohms - - \ \ INTERCEPT POINT \ .44 .40 .3. >32 \ \ "',0 .'2 ., .4 The most frequent cause of poor mixer performance stems from signal overloading in the drain circuit. Excessive drain load impedance degrades the intermodulation characteristics and produces unwanted crossmodulation signals.(3) A characteristic of the FEr balanced mixer is that the correct drain load impedance is inversely proportional to the value of the conversion transconductance. Figure 3 shows the improvemen t in IM characteristics obtained in the prototype mixer with the drain load impedance reduced to 1700 n from 5000 n. Specifically, the dynamic load line must be plotted so that the signal peaks of the instantaneous peak-topeak output voltage are not permitted to enter into the nonsaturated ("triode") region of the FEr. Suitable and unsuitable drain load lines are shown in Figure 4. Load impedance selection is quantified in Equations 18 through 20. Distortion from the "varactor effect" is of secondary importance, and arises from an excessive peak voltage signal swing, where the changing drain-to-sorce voltage can cause a change in parasitic capacitance, erss' and give rise to harmonics.(4) A FEr tends to be voltage-dependent when the drain voltage falls appreciably below 6 volts. If the source voltage (from the power supply) is also low and the drain Silicanix VGS Comparison of Mixer 1M Characteristics Figure 3 Plotting Drain Load Lines Figure 4 7-57 Conversion Gain Figure 5 shows plots of normalized conversion transconductance, gc/gfs versus normalized quiescent bias, VGS/ VGS( off), for different oscillator injections. In a FET, forward transconductance is defined as( 5) (2) -1- t- ~~~~':>:0 28 and conversion transconductance is defined as(6) dID(wi) c dVgs(wr) ! \ \ 2. (3) g =--- 1..-- I~ 24 ~ /,-16 ~ where wi = the intermediate frequency and wr = the signal frequency. 12 The effects of time-varying local oscillator voltage, V 2, and the much smaller signal voltage, V I, must be considered: Vgs = VI cos Wit + V2 cos w2t I o (4) / VLO = VG~(Off' - \ov VGSloffJ - LO=-,-_ V / X rv r-VLO" 0 8 VaS(off) v ~ ,\ \ ~ \ i\ VaSfoffl LO=-.- 02 04 06 DB 10 ~ I\. 1214 16 18 20 VGONGSloff) For square law operation(7) Normalized 9cl9f vs. VGl;N GS(off) (from "FET RF Mixer DeSign Technique", S.P. Kwok, WESCON Convention Record (1970) 8/1, p.2.) Figure 5 (5) V2 + VGS ';;;VGS(off) Drain current is approximately defined by (8) VGS] 2 ID =IDSS [ I - - - VGS(off) or (9) I ""gfso VGS(off) D 2 [1- ~l (6) Noise Figure 2 VGS(off) (7) or I gfso D"" 2VGS(off) (8) then (10) ID"" g[so 2VGS(off) (complex Taylor expansion) (9) which can be reduced to gfso ID(IF)""2V VIV2cos(wl-w2)t GS(off) (10) Like the common-gate FET amplifier, the common-gate FET balanced mixer is sensitive to generator resistance, R g.(1I) A change of a decade in Rg can produce a noise figure variation of as much as 3 dB. In the design of the prototype FET active balanced mixer, the generator resistance of the FETs is established by th~ hybrid coupling transformer. Two important cliteria for the FETs in the circuit are high forward transconductance, and a value of power-match source admittance, gigs' which closely matches the output admittance of the coupling transformer. In the common-gate configuration, match point~ fer optimum power gain and noise do not occur at the same value of generator resistance (Figure 6). Optimum noise match can only be achieved at the sacrifice of bandwidth. and the conversion transductance is (11) Equation II suggests that gc increases without limit as V 2 increases without limit. However, to avoid operation of the FET in the "triode" region, the peak-to-peak swing of V 2 should not exceed VGS( off)' Thus 2 V2 peak ';;;VGS(off) (12) GENERATOR RESISTANCE In} or V 7-58 k ~ VGS(off) 2 pea '" 2 (13) Silicanix Power Gain and Noise Matching Figure 6 How to Select the Proper FET Conversion efficiency is determined by conversion transconductance, gc' which in turn is directly related to such FET parameters are zero-bias saturation current, lOSS, and the gate cutoff voltage, VGS(off): lOSS gC=VGS(off)2 IV21 however, that conversion transconductance, gc' can never be more than 25% of forward transconductance. Thus as tradeoff considerations begin, the first sacrifice to be made will be the degree of achievable conversion gain. Intermodulation performance will follow with the third tradeoff being available noise figure. Table III lists a numbet of possible alternatives to the U310. (14) gfso Table III DEVICE TYPE TYPical ""-==-=-=-- (15) 2VGS(0ff) Equation 15 appears to indicate that FETs with high lOSS are to be preferred. However, lOSS and VGS(off) are related, and Figures 7 A and 7B show that devices from a family selected for high lOSS do not provide high conversion transconductance, but actually produce a lower value of gc' v Characteristic lOSS U310* 2N5912 2N441S* 14K SK 5K 2N3823 3.5K 40mA 15mA lOrnA lOrnA ·Similar devices are also available in plastic packages: U310 (J310) 2N4416 (2N5486. J304-18) Local Oscillator Injection / Low 1M distortion products and noise figure, plus best conversion gain, will be achieved if the voltage swing of the local oscillator across the gate-to-source junction is held to the values presented in Figure 5. VLO is expressed in terms of peak-to-peak voltage, while VGS(off) is a d.c. voltage. 2r-~-r-r~~t------+---+--4 Local oscillator injection can be made either through a bruteforce drive into the JFET source through the hybrid input transformer, or through a direct-coupled circuit to the JFET gates where less drive will be required for the desired voltage swing, Two circuits to obtain direct gate coupling are suggested in Figure 8. 'oss(mA.) a. 4r--r-r-r+-~+------+--~- '3L-~-5~LJ-LL'~.------2~.--~3.~4. IDSS (mAl b. -- Relationship of lOSS and VGS(offl Figure 7 GATES TIED IN PARALLEL L2 RESONATES WITH Cg a. Best mixer performance is achieved with "matched pairs" of JFETs. Basic considerations in selecting FETs for this application are gate cutoff voltage, VGS(off)' for good conversion transconductance, and zero-bias saturation current, lOSS' for dynamic range. A match to 10% is generally adequate. Among currently available devices, the Siliconix U310 and the dual U431 offer excellent performance in both categories; common-gate forward transconductance is 20,000 pmhos max at VOS = 10 V, ID = 10 rnA, and f= 1 kHz. There is, of course, the possibility that FET cost is a major consideration in evaluating the active balanced mixer approach - the familiar price/performance tradeoff. If this is the case, there are a number of other Siliconix FETs which will provide suitable alternatives to the U310. Remember, Siliconix GATES DRIVEN PUSH-PULL SOURCES TIED TOGETHER b. Alternate Forms of L.O. Injection Figure 8 7-59 - The source-injection method is used in the design of the present mixer to maintain the inherent stability of a common-gate circuit. A minor disadvantage with the dlrectdrive method is that the required gate-to-source voltage swing requires considerable local oscillator input power_ For source injection through the transformer. best mixer performance is obtained with a local oscillator drive level of +12 to +17 dBm across a 50-ohm load. ", " Conversely, direct coupling to the FET gates occurs at a higher impedance level and less local oscillator drive power is required. The functional tradeoff resulting when the gates are tied together is that shunt susceptance requires some form of conjugate matching, and thus brings about an undesirable reduction of instantaneous mixer bandwidth. " ", 4-Port Hybrid with Phase and Isolation Figure 9 Designing the Input Transfonner Five criteria are important to the design of the hybrid input coupling transformer for best mixer performance. The impedance transformer must (1) Consist of four single-ended terminals, for the local oscillator, the input signal and FETs A and B (2) Offer a match between either input to a symmetrical balanced load ' (3) Provide as much isolation as possible between the signal and local oscillator ports (Figure 9) (4) Maintain a differential phase of 1800 across the symmetrical balanced loads (5) Introduce the least possible amount of loss A transformer using ferrite cores and meeting these five requirements is derived from elementary transmis~ion-Iine theory (Figure 10). Transmission line transformers have a low-frequency cutoff determined by the falloff of primary reactance as frequency is decreased. This reactance is determined by the series inductance of the transmission line conductors. On the other hand, high-frequency performance is enhanced by minimizing the phYSical length of the transmissIOn line. Minimizing overall line length while mamtaining suitable reactance can be accomplished by using a high-permeability core material such as a ferrite. (12) The transformer constructed for the balanced FET mixer closely resembles the balanced 4-port unsymmetrical 1800 hybrid device described by Ruthroff.(l3) 2" :: == Hybrid Input Coupling Transfonner Figure 10 7-60 Siliconix =. '" Zo"2R Although Ruthroff does not discuss the method of determining the winding length ofbifilar Wife, a solution is offered by Pitzalis.(l4) The Pitzalis definitions for wire length are as follows (Figure 11): 7200n . max length = -f- - (mches) upper A 2R (16) ZR . nun length 20RL /) f =(1 + P Po lower (mches) -=- (17) a. where RL = the load impedance, p/Po = the relative permeability of the ferrite at the lower frequency, and n = a fractional wavelength determined by the amount of allowable phase error. Zo" 2 Zo OPTIMUM Zo = Zo OPTIMUM Zo= }Zo OPTIMUM Selection of the ferrite core material is determined mainly by performance requirements. A prime consideration for wide band performance is the temperature coeffiCient of the ferrite, which must have a low loss tangent over the required temperature range, i.e., high Q. 02 06 14 ,. LENGTH OF WIRE A (n) b. In addition, an important design factor involves the relative permeabihty of the core, since inductance of a conductor is proportional to the permeability of the surrounding medium.(1S) A high permeability material placed close to the transmission line conductors acts upon the external fringe field present, appreciably magnifying the inductance and providing a lower cutoff frequency. Power transferred from input to output is coupled directly through the dielectric medium separating the transmission hne condcutors; thus a relatively small cross-sectIOn of ferrite material can operate in an unsaturated state at impressively high power levels. For the FET balanced mixer, ferrite core material with a permeability of 40 provides satisfactory operation from 50 to 250 MHz. Figure 11 also demonstrates that a lower transmission line impedance, Zo, is to be preferred over a higher ZOo Both S().ohm and 10().ohm transmission lines are required for the mixer transformer; twisted pairs will provide satisfactory results. A characteristic impedance of 45 on is obtained from 3 turns-per-inch of Belden No. 24 AWG enamel wire, while 3~ turns-per-inch of No. 24 (7X32) Belden plastic covered wire provide Zo = 100 ohms. Each core is wound with 2 inches of the proper twisted pair, with min/max lengths calculated from Pitzalis' data (Formulae 16, 17). As with all broadband transformers, the coil has an inherent parasitic inductance which must be capacitor-compensated (C 2, C4, Figure 2).(16) A trim capacitor is required at the two input terminals, and is adjusted only once to optimize the differential phase shift across the symmetrical balanced FETs. Phase match of the hybrid structure may be tracked to within ±2 degrees (about 180°) to 250 MHz. Effective resistance transformation is useful from 50 to 550 MHz (Figure 12) - but phase track beyond 250 MHz may show too much deterioration. Toroid Coil Winding Data Figure 11 Designing the IF Network The IF network performs two important functions III the FET balanced mixer circuit. It provides for optimum match between the FETs and the IF amplifier, and it effectively bypasses the circuit RF components (signal and local oscillator). In network deSign, it is essential that the RF and local oscillator signals be sufficiently isolated from the intermediate frequency signal to maintain rejection levels of at least 20 dB. If thiS isolation IS not maintallled, conversion gain and noise figure are degraded. The simplest technique for design of the IF network is to use the well-known pi (11) match structure from each FET drain to a common balanced output transformer network. (17) This pi match technique is especially suitable for a narrow-band intermediate frequency output, serving three useful functions. First, it serves to achieve the proper drain load match between the FETs and the IF structure. Second, it provides the very necessary isolation of the intermediate frequency signal. And third, it serves as a simple filter to provide a monotonic decrease in Impedance as frequency departs from the IF center frequency, f o.(l8, 19) This third function, shown in Figure 13, prevents the drain load impedance from skyrocketing out of control and giving rise to distortion products. Selection of the dynamic drain impedance value in the IF network is a critical point in design of the structure. Intermodulation product distortion and crossmodulation will be Siliconix 7-61 ~ __ 50n - 200n Balun Figure 12 both affected by the instantaneous peak-to-peak output voltage of the FETs, if the value of the dynamic drain impedance allows these signal peaks to enter either the pinch-off voltage or breakdown voltage regions of the transistors'<20) If the impedance is too high, the dynamic range of the mixer will be severely limited; if the impedance is too low, useful conversion gain will be sacrificed. A first-order approximation to establish the proper load impedance may be obtained when For the U3lO FET, the optimum drain load impedance is established at slightly less than 2000 ohms, with sufficient local oscillator drive and gate bias determined from the conversion tran scond uctance curve in Figure 5. The output IF coupling structure is an 800-ohm CT to 50ohm trifilar-wound transformer (Relearn BT-9 or equivalent). The pi (n) match into this transformer provided a dynamic drain load impedance of 1700 ohms on each FET; excellent (18) t DISTORTION REGION where . = IDSS [1 v gs- ] 2 Id - - (19) VGS(oft) =======,,-,-,---,====='-' '. and (20) 7-62 Siliconix Pi hr' Match Filter Function Figure 13 1M performance was obtained. Value of operating Q was established at 10 as the best compromise to insure that the tolerance of the pi match components would permit the IF output to peak within the allowable bandwidth at the associated IF amplifier. A Q of more than 10 would result in a greatly restricted bandwidth, while a Q of less than 10 would result in excessively high capacitance, excessively low induc· tance, and unsatisfactory filter performance. Table IV 5()'250 MHz Mixer Performance Comparison JFET Characteristic IntermoduJatlon Intercept Point +32 dBm +28 dBm Dynamic Range 80dBt +8.5dBm +3dBm +1 dBmt +2.5 dB' -6dB +18 dB 7.2dB 6.5 dB 6.0dB Signal when the deSired Signal first expenences compression) ConverSion Gam Single~sldeband NOise Flgure@ 50MHz tEstlmated Insertion loss measurements on the IF network amounted to 3 dB in the center of the passband, while insertion loss on the hybrid assembly measured 1.2 dB. The network exhibited a Q of 10. Gain .and noise fIgures were measured over the full S(}'2S0 MHz bandwidth, with a single-sideband noise figure ranging from 7.2 dB at SO MHz to 8.6 dB at 2S0 MHz. Conversion gain was a flat +2.S dB. Two-tone third-order inter modulation is expressed in terms of the intercept point.(21) With two signals 300 kHz apart, the balanced mixer suppressed third-order products -89 dB with both signals at -10 dBm, representing an intercept point of+32 dBm. r. ";::< : Ih +12 dBmt 100dB (the level for an unwanted Tests of the operational prototype FET balanced mixer demonstrated that the active mixer has several characteris· tics superior to those of passive mixer counterparts. These comparisons are made in Table IV (measurements of all three mixers were made under laboratory conditIOns). m Bipolar 100dB Desensitization Level Mixer Performance Schottky 'If. ·Conservatlve minimum Figure 14 shows a comparison of third-order 1M products emanatmg from both the JFET balanced mixer and a typical low-level double-balanced diode mixer, under similar operating conditions. Noise figure and intercept point are shown at various bias and local oscillator drive levels in Figure IS. The performance of the active mixer is clearly supenor to that of the diode mixers, contributing overall system gain in areas critical to telecommunications practice, and reducing associated amplifier requirements. r . lIH "up .. J,9 -" t :-,- ~.".-" ~ JfET BALANCED MIXER - l&1li Comparison of 3rd Order 1M Products Figure 14 Silicanix 7-63 MEASURED PERFORMANCE SOURCE - INJECTEO MIXER L 0 POWER +17 dBm AND +22 dBm DRAIN LOAD IMPEDANCE 170on, 5000n 15 I 14 \ 13 12 11 ,. ?. \ 17K 6. \ 2. \ 24 " 2. ,. 12 VGS Noise Figure and, Intercept Point Performance Figure 15 CONCLUSION The reason for using the three-core bifilar transformer (Figure II A) in this tutorial article stemmed from the relative analytical simplicity of such a design. An alternative transformer is the single-core trifiJar-wound design. The definitions for wire lengths (Equations 16 and 17) are equally applicable to trifdar as they are for bifilar. (8) J. Watson, INTRODUCTION TO FIELD-EFFECT TRANSISTORS, Siliconix, Inc., Santa Clara, Ca., 95054 (I 970). p. 18. (9) Op. cit., ECOM.Q503-P005-G82I. (10) Op. cit., "Non-Linear Distortion and Mixing Processes in FETs," p. 2112. (II) Op. cit., "High-Frequency JFET Characterization." (12) O. Pitzalis and T. Couse, "Broadband Transformer Design for RF Transistor Power Amplifiers," ECOM2989, July 1968. Also in Proc. Electronic Component Conference (1968). REFERENCES (I) Pound, R.V., MICROWAVE MIXERS, MIT Rad. Lab. Series, Vol. 16, Figure 6.14, p. 274 (1948). (2) "High-Frequency JFET Characterization and Applications," J.B. Compton, DESIGN ELECTRONICS, March, 1970. (3) "The Solid State Receiver," W. Sabin, QST, July 1970, pp. 35-43. (4) Penfield, P., and Rafuse, R., VARACTOR APPLICATIONS, MIT Press, Cambridge, Mass., (1962), pp. 73ff. (5) "Non-Linear Distortion and Mixing Processes in FETS," J.S. Vogel, Proc. of IEEE, Vol. 55, No. 12 1967, pp. 2109-2116. (6) "UHF FET Mixer of High Dynamic Range," ECOM0503-P005-G821 (1969).(Available from U.S. Army) (7) Op cit., ECOM-0503-P005-G821. 7-64 (13) "Some Broadband Transformers," C.L. Ruthroff, Proc. IRE, Vol. 47, Aug. 1969, pp. 1337-1342 (Figure 7(b). (14) Op. cit., ECOM-2989, July 1968. (IS) Op. cit., ECOM 2989, p. 6. (16) Op. cit., ECOM 2989, p. 7. (17) ARRL HANDBOOK, American Radio Relay League, NeWington, Conn. (1970) p. 49. (18) "Reactive Loads - The Big Mixer Menace," P. Will, MICROWAVES, April 1971, pp. 38-42. (19) Op. cit., "The Solid State Receiver." (20) "Distortion in FET Amplifiers," J. Sherwin, ELECTRONICS, Dec. 12, 1966. (21) "Don't Guess The Spurious Level," F.C. McVay, ELECTRONIC DESIGN, Feb. 1,1967, pp. 70-73. Siliconix H Siliconix A New Current Limiter Extends Protection to 240V Ted List INTRODUCTION SIlicomx has developed a family of protective devices with ratings ranging from 135 volts to 240 volts. These are two terminal devices which provide active current control over a voltage range of (l.9V to 240V. Five parts are offered which provide protectIOn for the following maximum voltages: Part No. JR JR JR JR JR Peak Operating \bltage 135 170 200 220 240 135V 170V 200V 220V 240V volts volts volts volts volts signal levels below 0.6 volts, no additIOnal distortIOn is introduced. Power consumption is micro-watts, except In the protective mode where the dISsipatIOn IS the applied voltage multiplied by the limiting current. Because these are two-terminal devices, Installation into a PC board is simple, cost effective, and no additional CirCUitry or power supplies are needed. FUNCTIONAL DETAIL The current IS limited to a minimum of 160l'A at 0.9 volts and a maximum of ImA at the Peak Operating \bltage (POV). The series Impedance is a resistive 5Kll and at The eqUivalent cirCUit (shown in Fig. lc) IS a current generator With a resistor and capacitor in parallel. This differs from the classic constant-current diode in that it contains no external source resIStor. Voltage is developed across the channel-source resistance (VP/ Idss). c a) Symbol b) Schematic c) Equivalent FIGURE 1 High Voltage Protection Diode (current limiter) Siliconix 7-65 l !zw a: a: :::) U w C o ~ c ; a: fZ ~ I ~0~1I~~H-11-1-1-1-1-1-1-1-+-+++1-+-+-+-+-+-+-r-r1-~ II o I I 50 100 150 200 250 VAC ANODE - CATHODE VOLTAGE (VOLTS) FIGURE 2 JR135 Output Characteristics FIGURE 2 OUTPUT CHARACTERISTICS There is a difference between a current limiter and a current regulator. The difference involves both the intended usage and the current tolerance. The current regulator is mtended to be an accurate device providing a specific amount of current at a specific circuit location. Naturally, a nominal value and a tolerance are involved; typical maximum tolerances are 5%, 10%, 20% or 30%, and interchangibiiity and control of circuit parameters are the reasons for the tolerance. In contrast, the currenL iiInitel J~ a plutective uevice. Minimum and maximum limits of current are imposed, but the tolerance is much less Important. The JR 135, for example, has no nominal value but does have a 770!,A maximum value and a 200!,A minimum value. This equates to a nominal 485!,A ±58~,. The output characteristic is shown in Fig. 2 with the measured and typical parameters to show how device functions and how it is controlled. The first point of note is VL, the limiting voltage. This is 0.9 volts and is measured at 80% of IFI minimum. The other information provided by this measurement is the maXlffium insertion resistance. Applying Ohm's law, 0.9 volts divided by l60!,A (0.8 x 200t.) gives series impedance (resistive) of 5625 ohms. The device is measured for minimum current at 2.0 volts. The value is 200jLA minimum. This value defines one point on the line representing dynamic impedance. The dynamic 7-66 impedance IS a measure of control of current as voltage changes. A typical value of dynamic impedance is specified at 25 volts. The value is 2 meg ohms minimum. The current will change 0.5jLA per volt of voltage change. The next point of interest is at 100 volts. At 100 volts, both minimum and maximum currents are measured. Interestmgly enough, if we apply what we know about the parts, some trends then form: 1. Minimum value 200!,A at 25V plus 75 volts-timesO.5!'A shows a mmmum lOO-volt limit of 2371-'A. 2. Working backward from 77U!'A at IUOV gives maximum value at 2 volts of 733!'A and a band 533!,A wide instead of 570!,A. The remaining point of mterest is the POY. This is measured at lmA because the maximum allowable open line current in a telephone system is lmA, and this part was developed with the telephone market m mind. The breakdown characteristic of this device is softer than that of the J-Fet current regulator. APPLICATIONS The primary advantage of using this device is high POY. The JR series of devices offers applicatIOns for two types of needs: 1. Protection 2. Current Regulation Siliconix IR TO REST OF CIRCUIT VOLTAGE ACROSS Rin (VOLTS) FIGURE 3a Simple Series Protection iR TO REST OF CIRCUIT DIODE t go VOLTAGE ACROSS Rin (VOLTS) FIGURE 3b Series Protection With Shunt Diode IR eln • -IR ~ ~ • TO REST OF CIRCUIT },: + i r -=- VOLTAGE ACROSS Rin (VOLTS) FIGURE 3c Bipolar Series Protection iR eln • iR ~ ~ TO REST OF CIRCUIT • I·: 1 go - VOLTAGE ACROSS Rln (VOLTS) FIGURE 3d Series Regulators Increase Voltage Protection Siliconix 7-67 Protection Current Regulation FIg. 3 illustrates four variations on the Prot('ctive TIlt'me. A plot of the resultant voltage (VRL) and lin accompani('s each vanation. Comhined variations are possible. Another use of the high-voltage current hmiter is that of current regulator. TillS is a mutter of current tolerance. The JR Series current limit IS 200,.,A to 770,.,A measured at 100 volts. These parts are also measured at 2.0 volts with a single limit value of 200,.,A minimum. The maximum value is :3t;O')" of the minimum value. This does not make a good current regulator, but selection is possible. Fig. :3a depIcts the sImple ",'rips Iinlltpr. TIlt' voltag<' developt'd across Rin IS a fum·t IOn of tilt' resIstance of [{in. If Rin is large, the voltagp applied to Rin will be large. [fthe power dissipated in Hm and th" remainder of the input drcuit is too large, Pltllt'r the Rill must lw reducl'd or the voltage must b(' limited. Zenpr di()(lp, or forward-hIased diodl's will limit this voltage. A diode can be used to IhUlt til<' \"oltagp across Hill (Fig. 3b). The diode starts to limit at 0.(; or 0.7 volts, til!' samp as thp current limiter. Bipolar voltage protect ion (·an II(' pl·o\~ded by using backto-hack eurrent Iimitprs. (Fig. at"). T[lt' ,ame eonsideratrons apply as III Fig. :3a and :3b. Increased protection can be accomphshed by connecting the de~ees in seri('s. (Fig. :3d). The ultlluate circuit using:3 de~ces in series appl'ars in FIg. 4 Cl1 o Cl2 Cl3 Cl4 Cl5 Cl6 ~~~ ~ VGS(off} preferably VDG> 2 VGS(off) (17) 7-72 Siliconix "Biasing FETs for Zero DC Drift," Evans, L., Electrotechnology, August 1964. H Siliconix BUILD A PRECISION CONSTANT CURRENT SOURCE By John Grabeklis Thejunction field-effect transistor (J-FET) has been popular as a constant-current source (eeS) but was restricted in application because of its relatively low current and voltage ratings. Furthermore, the J-FET ees generally involved a tradeoff between lllgh current and low precision, or low current with somewhat improved preCISIOn; and temperature always played a critical role. to 100 rnA. This current is provided by the dual 15 V power supply which must also accommodate the ees reference current. The Circuit shown m Figure I can work into loads rangmg in voltage from -10 VDe to +50 V DC. Power dissipation IS a lumtmg factor at high currents and care must be taken in mountmg the MOSPOWER FET to a suitable heatsink. The MOSPOWER® FET, controlled by a low-cost op-amp resolves many of the former problems ofthe J-FET regulator. MOSPOWER FETs may be selected offering lllgh standoff voltages capable of handhng many amperes. Since precision control of current no longer depends solely upon the selection of the FET precision high-current regulation IS possible. Since It is impossible to deSign a ees with an output current lower than the lOSS of the MOSFET, care should be taken to use the lowest leakage MOSFET consistent with the deSired goals. Furthermore, the overall preciSIOn of the regulator depends upon using the lowest gate leakage current, lGSS, available. An adjustable ees using a MOSPOWEH FET and an opamp can have either a pOSitive or negative compliance voltage. A ees with negative compliance IS shown m Figure 1. Th establish a positive compliance voltage, the n-channel VN1206B is replaced by a p-channel VN1206B; ground is connected to point B instead of point A; and the currentsensmg resistor is connected to point e instead of point O. The output current range, using either the p-channel VN1008B or the n-channel VN1206B, extends from 10 p.A Combming the VN1206B and the VN1008B a dual bidirectional ees regulator can be assembled, as shown in Figure 2. By gangmg the switches, KI - K4, thiS design can be used to supply either a pOSitive or negative current. Current tracking between the two outputs, eel and ee2, depends upon the precision matching of Rl and R2. Accuracy depends upon the combmed gate leakage current, lGSS; the offset voltage and current of the op-amps; the tolerance and match of the resistors, RI and R2; and the accuracy of the reference voltage, VREF. Silicanix 7-73 - TABLE VALUE OF R (Fig. 1 & Fig. 2) ILoad (IL) Resistance (R) 10 J.lA 100 J.lA 1 rnA 10 rnA 100 rnA 1.5 M!l 150 K!l 15 K!l 1.5 Kn 150 Kll Power Rating V.W V.W V.W 'hW 3W D Precision Current Source Figure 1 (Note 1) -15 VOLTS Dual Precision Current Source Figure 2 (Note 1) NOTE: 1. All sWitches are shown for negative compliance. 7-74 Siliconix H Silicanix FETs As Voltage-Control/ed Resistors ,INTRODUCTION The Nature of VCRs A voltage-controlled resistor (VCR) may be defined as a three-terminal variable resistor where the resistance value between two of the terminals is controlled by a voltage potential applied to the third. A junction field-effect transistor (JFET) may be defined as a field-controlled majority carrier device where the conductance in the channel between the source and the drain is modulated by a transverse electric field. The field is controlled by a combination of gate-source bias voltage, VGS, and the net drain-source voltage, VOS. Figure 1 details typical operating characteristics of an NChannel JFET. Most amplification or sWitching operations of FETs occur in the constant-current (saturated) region, shown as Region II. A close inspection of Region I (the unsaturated or pre-pinchoff area) reveals that the effective slope indicative of conductance across the channel from drain to source is different for each value of gate-source bias voltage.(2) The slope is relatively constant over a range of applied drain voltages, so long as the gate voltage is also constant and the drain voltage is low. VOS" VGS - VGSIOffl--fLOCUSCURVE REGION Under certain operating conditions, the resistance of the drain-source channel is a function of the gate-source voltage alone and the JFET will behave as an almost pure ohmic resistor.(l) Maximum drain-source current, lOSS, and minimum resistance, rOS(on)' will exist when the gate-source voltage is equal to zero volts (V GS = 0). If the gate voltage is increased (negatively for N-Channel JFETs and positively for P-ChanlJ~_tl:le resistance will also increase. When the drain ciirr;nt is r;ctiiam to a point where the FET is no longer conductive, the maximum resistance is reached. The vo~tage at this point is referred to as the pinchoff or cutoff voltage and is symbolized by VGS = VGS(off). Thus the device functions as a voltage-controlled resistor. Siliconix 11_--r.~1--REGION II~ VGs"O ------~-~--------- SATURATION REGION - VoslVI Typical N-Channel JFET Operating Characteristics Figure 1 7-75 Resistance Properties of FETs The unique resistance-controlling properties of FETs can be deduced from Figure 2, which is an expanded-scale plot of the encircled area in the lower left-hand corner of Figure 1. The output characteristics all pass through the origin, near which they become almost straight lines so that the incremental value of channel resistance, rds' is essentially the same as that of d.c. resistance, rDS, and is a function of V GS.(3) Typical rDS curves for several Siliconix N-channel JFETs are plotted in Figure 4.( 4) the graphs are usefulin estimating IDS values at any given value of VGS. All quantities given in Figure 4 are for typical units, so some variation should be expected for the full range of production devices. It is therefor deisrable to convert Figure 4 to a ndrmalized plot. This 1MEG Figure 2 shows extension of the operating characteristics into the third quadrant for a typical N-Channel JFET. While such devices are normally operated with a positive drainsource voltage, small negative values of V DS are possible. This is because the gate-channel PN junction must be slightly forward-biased before any significant amount of gate current flows. The slope of the VGS bias line is equal to /:;IDj/:;V DS = IjrDS. This value is controlled by the amount of voltage applied to the gate. Minimum rDS, usually expressed as rDS(on)' occurs at VGS = 0 and is dictated by the geometry of the FET. A device with a channel of small cross-sectional area will exhibit a high rDS(on) and a low IDSS. Thus a FET with nigh IDSS should be chosen where design requirements indicate the need for a low rDS(on). ~ :2 100K / / I / .....-r / V / V /, ~ / /,./ V / / - vc;s"a voslO1v- -- c-- I-100 -1 -2 -3 -4 -5 -6 VGS - GATE·SOUACE VOLTAGE (V) Incremental Drain-Source Resistance for Typical N-Channel FETs Figure 4 has been done m Figure 5. The resistance IS normalized to its specific value at VGS = 0 V. The dynamic range of rDS is shown as greater than 100:1, although for best control of rDS a range of 10: 1 is normally used. N-Channel JFET Output Characteristic Enlarged Around VOS = 0 Figure 2 Figure 3 extends the rds characteristics of a FET to a comparison with the performance of 4 fixed resistors. Note the pronounced similarity between the two types of devices. Siliconix offers a family of FETs specifically intended for use as voltage-controlled resistors. The devices are available in both N-Channel and P-Channel configurations (Figures 6A and 6B) and have rDS( on) values ranging from 20 n to 4,000 n (Figure 7). Comparison of FET and Resistor Characteristics Figure 3 7-76 Siliconix =VOS VCR3P'\.~ 2 ~ ~ 5 l'--r-OVouT P·Channel VCR Photomultiplier Load. Required Low Photomulti· plier Anode Current (Usually < 1 "AI Implies that VC R will Always Perform in Linear Region Near Origin Figure 15 Cascaded VCR Attenuator Figure 11 ,----,--------__oVCC VIDEO OUTPUT ~-------__oVOUT V,N o-jH---+-I::. Wide Dynamic Range AGC Circuit. No Gain through FET with Voltage Controlled Variable Gain Amplifier. The Te. Attenuator Distortion Proportional to Input Signal Level Provides for Optimum Dynamic Linear Range Attenuation Figure 12 Figure 16 7-78 Siliconix Signal Distortion: Causes Reducing Signal Distortion Figure 17A repeats the FET output characteristic curves of Figure 2, to show that the bias lines bend down as VOS increases in a positive direction toward the pinch-off voltage of the FET. The bending of the bias lines results in a change in rDS, and hence the distortion encountered in VCR circuits; note that the distortion occurs in both the first and third quadrants. Distortion results because the channel depletion layer increases as VOS reduces the drain current, so that a pinch-off condition is reached when VOS =VGS - V GS(off). Figure l7B shows how the current has an opposite effect The majority of VCR applications require that signal distortion be kept to a minimum. Also, numerous applications require large signal handling capability. A simple feedback technique may be used to reduce distortion while permitting large signal handling capability; a small amount of drain signal is coupled to the gate through a resistor divider n-etwork, as shown in Figure 18. VCR LINEARIZATION VGS -0 VOUT -'1.5 V -25V - . .-'""T-_;:::---~tf~;::=:f= 10 -30V Figure 18 N-Channel JFET Output Characteristic Enlarged Around Figure 17A Vas = 0 The application of a part of the positive drain signal to the gate causes the channel depletion layer to decrease, with a corresponding increase in drain current. Increasing the drain current for a given drain voltage tends to linearize the V GS bias curves. On the negative half-cycle, a small negative voltage is coupled to the gate to reduce the amount of draingate forward bias. This in turn reduces the drain current and linearizes the bias lines. Now the channel resistance is dependent on the DC gate control voltage and not on the drain signal, unless the VDS = VGS - VGS( off) locus is approached. Resistors R2 and R3 in Figure 18 couple the drain signal to the gate; the resistor values are equal, so that symmetrical voltage-current characteristics are produced in both quadrants. The resistors must be sufficiently large to provide minimum loading to the circuit: >V---------~ (4) -V~--~---7J-V Typically, 470K n resistors will work well for most applications. RJ is selected so that the ratio of rDS(on) IIRL to [(rDS(on) II R0 + Rrl gives the desired output voltage, or: o 1 rOS(on) IIRL . (rOS(on) IIRL) + Rl DIODE CATHODE WHEN SIGNAL SWINGS NEGATIVE V,N VOUT (5) The feedback technique used in Figure 18 requires that the gate control voltage, VGG' be twice as large as V GS in Figure 17B for the same rDS value. Use of a floating supply between the resistor junction and the FET gate will overcome this problem. The circuit is shown in Figure 19, and allows the gate control voltage to be the same value as that voltage used without a feedback circuit, while preserving the advantages to be gained through the feedback technique. Figure17B in the third quadrant, rising negatively with an increasingly negative V DS. This is due to the forward conduction of the gate-to-channel junction when the drain signal exceeds the negative gate bias voltage. Appendix A to this Application Note is an analytical approximation of VCR FET distortion characteristics, both calculated and measured. SilicDnix 7-79 l1li , The forward-biased gate-drain PN junction may be seen at approximately -0.6 V, and bending of the bias curve is apparent in the third quadrant. The photo also demonstrates the comparison between a fixed resistor (the linear line superimposed on the bias curve) and the distortion apparent in the VCR without feedback compensation; the VCR signal is unusable with the indicated amount of distortion. ", V ,N Experimental Results In Figure 21, the same VCR7N FET is shown operating with the addition of the feedback resistors. Distortion has been reduced to less than 0.5%, and the characteristics of the VCR are now closely comparable to those of a fixed resistor. Figures 20 through 23 show low voltage output characteristic curves for a typical Siliconix N-Channel voltage-controlled resistor, VCR7N. Bias conditions are shown both with and without feedback. Figure 20 shows a two-volt peak-to-peak signal on the V GS = 0 V bias curve, with the VCR operating in the first and third quadrants. The VCR is operated without feedback. In Figures 22 and 23, the same VCR FET characteristics are shown, with VGS adjusted for higher rDS' No feedback network is employed in Figure 22, and measured distortion is greater than 8%. In Figure 23, the feedback resistors have been added and distortion has been reduced to less than 0.5%. Figure 19 <" .:1 _0 200 200 100 100 <" .:1 0 .E' ~ . 0 -100 -100 -200 -200 I -I I eol lTfl mil Ii! ,!! ~ II !. I ! I J IriIi II!;i ~ -1.0 -0.4 0 0.4 -1.0 1.0 I -0.4 VCR7N with No Feedback Figure 20 -0.4 0 I 1.0 0.4 VCR7N with Feedback Figure 21 -1.0 1.0 -0.4 0 0.4 Vos(V) Vos(V) VC R7N with Feedback Figure 23 VC R7N with No Feedback Figure 22 7-80 0.4 Vos(V) Vos (VI -1.0 0 Siliconix 1.0 Some degree of non-linearity will be experienced in both the first and third quadrants as VGS approaches the FET cut-off voltage. For this reason, it is important that the feedback resistors be of equal value so that the non-linearities likewise will be equal in both quadrants. Figure 24 shows a curve of distortion vs R2/R3, in both quadrants. It has also been shown that FETs with high pinch-off voltage require larger drain-to-source voltages to produce drain current saturation. Therefore, FETs with high V GS(off) will have a larger dynamic range in terms of applied signal amplitude, while maintaining a linear resistance. It is advautageous to select FETs with high V GS(off) (compatible with the desired rOS value) if large signal levels are to be encoun teredo ", '~' "2 R3 ,. ,, ,. , ~ APPENDIX A - From proceedings of the IEEE, October, 1968, pp. 1718-1719. VCR "",\o,'Os~."". Abstract - An analytical approximation of FET characteristics for positive and negative voltages is presented. The distortion in an application as a controlled attenuator is calculated, and a method of reducing distortion by a factor of more than 50 is described. fO'l'COS.,"" p.Ol\)o:;t~"., '2 ........ .... "G'3,. .." VGS=O '.0 ~ 0.2 04 06 08 10 25 20 15 R2/R 3 Controlled resistors are used in oscillators, controlled amplifiers, and attenuators.c 6,7) The possible control range is much larger for field-effect transistors (FET) than for other elements with comparable time constants (e.g., diodes). The signal-to-noise ratio is considerably improved. Distortion vs R2/R3 Figure 24 '0 Distortion resulting from changes in temperature are also minimized by the feedback resistor technique. rOS will change with temperature in an inverse manner to the behavior of FET drain current. Table I presents the result of VCR laboratory performance tests of distortion vs temperature. The VCR7N again was employed. Signal level was 2 V peakto-peak. Table I Temperature Without Feedback ros - 10 'oseO") I With Feedback fOCI ros .. rOSlonl +125 >13% <05% <05% + 25 >10% >5% <05% <05% - 55 39% 32% <05% <05% >6% 'OS rOSlon) rOS" 10 rOSlonl I Comparison Between Mathematical Approximation of FET Characacteristics (Solid Lines) and Measured Curves (Broken Lines) for a Typical N·Channel JFET Figure 25 SUMMARY This Application Note has presented a brief description of the use of junction field-effect transistors as voltage-controlled resistors, including details of operation, characteristics, limitations, and applications. The VCR is capable of operation as a symmetrical resistor with no DC bias voltage in the signal loop, an ideal characteristic for many applications. Where large signal-handling capability and minimum distortion are system requirements, the feedback neutralization technique for VCRs is an important tool in achieving either or both ends. Figure 25 shows idealized and real FET characteristics. In region A (above pinch-off) 10 is independent of V OS:(8) ID =IDSS ( VGS) 1- Vp 2 (1) Region B, where VOS < (V GS - Vp), is the so-called triode region. (In the following discussion all the signs (+, -) will be valid for N-Channel FETs.) The characteristics can be Silicanix 7-81 - approximated by a quadratic function, of which the maxi· mum and a second point (the origin) are known. The approxi· mation is where gDS is the differential conductance at the origin; when VGS = 0, then gDS = gDSS' The attenuation for the circuit of Figure 26(a) is ID=IDSS 1+ 21DSS = (Vp)2 ]_1 RgDS =[ (7) RgDSS VI + --~----~~~~--~~- 2RgDS VI ) 2Vp ( I + RgDS + 2Vp (I + RgDS) This is the same function that can be found by a simple analysis based on semiconductor theory. The less negative of the two voltages across the junction (VGS, VG D) controls the channel conductance. Under the condition that the FET is symmetrical (drain and source interchangeable), the fol· lowing consideration is true. If VGD were the controlling voltage and VDS < 0, I D < 0, then the characteristics would be the same as in the first quadrant: v, b I V2 Vos (., ", Since the controlling voltage for both regions (B and E) is VGS, V,o-~~----~---------oV2 (4) Substituting (4) into (3), we get (2); the same approxima· tion can be used in Band E. The limits of region E where (2) is valid are VGD = 0 and VGD = Vp. The characteristics in region D can be found from (1) with the same consider· ation: ID=-IDSS ( 1- VGS-VDS ) Vp 2 (5) The mathematical approximation is compared with the measured characteristic in Figure 25. In the regions C and F the junction is forward biased. The characteristics are depen· dent on the internal resistance of the gate voltage source since gate current flows. The FET as a controlled resistor works in region Band E. The higher the resistance, the more non·linear are the char· acteristics. For most applications this is undesirable. Based on the simple approximation (2), the relation between distor· tion, control range, and maximum to minimum attenuation will be described for a simple voltage divider [Figure 26(a)]. Most applications can be based on this simple example. The conductance in any point of region BorE is G DS =~ =- 2lDSS VDS Vp (1- VGS) Vp lDSS gDSSVDS - (Vp)2 VDS = gDS + 2Vp 7-82 (bl (al Controlled JFET Attenuator. (bl Controlled Attenuator with "Feedback" Making Characteristics Linear and Svmmetrical Figure 26 To reduce (7) to a more tractable form, the following in· equality is introduced: VI RgDSS 2Vp (1 + RgDS] 2 «I so that (7) can now be approximated by the expansion VI- - ( 1RgDSVI ) V=+ 2 I + gDSR 2Vp (1 + RgDS] 2 ... (8) Only the second harmonic will be considered for the distor· tion since the third is much smaller. For small distortion (d« I and RgDSS» 1), VI RgDSS d =---=---==---;: 41Vpl [I + RgDS] 2 (9) If V2 is held constant, (6) Silicanix (10) "'" There are several means of reducing distortion. By connecting two identical FETs in antiparallel or antiseries, nonlinearities can be cancelled out to a certain extent. A better linearization is possible by usmg one FET with "feedback". It has been shown above that the characteristics would be symmetrical if VGO were the control voltage in the third quadrant. By adding 0.5 VOS to the control voltage, the two voltage VGS and VGO interchange when VOS changes sign: ,":; JSf.) I-~--- ~ ~VGS(OIfI ...1 fA (b"; ~\ a • \ § 1% I V ~.:.--== ~2"OOlVGS(QfU i I • VGS = VH + 0.5 VDS i j ., 01% I • V2=OTVGS(off! ,........ •. . . . . ~ e jl n ~ then (13) used in (2) gives I ~ I ",. ...t 001';; o '" (14) V2 = 0 01 ~GS(Offl y (13) VGD = VH - 0.5 VDS o' VGSIVGS(offl Distortion as a Function of VGSIVGS(off) for Two Different V2/VGS(off)' la) Theoretical for Figure 26(a). Ib) Measured with Circuit of Figure 26Ia). Ie) Measured with Circuit of Figure 261b) Figure 27 Figure 27 shows a comparison of measured and calculated distortion. If VGS approaches Vp, the above restrictions are violated; the expression for the distortion can no longer be applied. If V DS < 0, VGS = 0, then the FEr works in regIOn F; the distortion will be higher than predicted. From (10) we get for a prescribed maximum distortion a maximum amplitude as a function of VGS: (11) V2max = 4d max IVp - VGSI For a given d max and V 2max the ratio of minimum to maximum attenuation is Amin 1 + RgDSS Amax = m = + V2max 1 RgDSS 4d max IVpl The resulting characteristic is linear and symmetrical in B and E. The improvement in distortion performance can be seen in Figure 27. A distortion of 12 percent for V 2 =0.1 Vp at VGS = 0.8 Vp is reduced through linearization to 0.1 percent. Figure 26(b) shows a possible circuit. The frequency range of the controlled signal must be much higher than that of the con trolling signal V H to keep the direct interference of V H on V 2 small. R3 is set for minimum distortion. If V 2 and VH are in the same frequency range, a high impedance amplifier must be used. V 2 is at the input; the output is connected to the FET gate. The amplification is approximately 0.5 (adjustable). The control voltage is introduced through a second input so that no direct interference with V 2 occurs. REFERENCES (1) J. Watson, INTRODUCTION TO FIELD-EFFECT TRANSISTORS, Siliconix, Inc. Santa Clara, Calif. 95054 (1970), p. 58. (2) "FETs As Voltage-Variable Resistors," Carl D. Todd, ELECTRONIC DESIGN, Sept. 13, 1965, pp.66-69. (3) Op. cit., AN INTRODUCTION TO FIELD-EFFECT TRANSISTORS, p. 22. (4) "FETs As Voltage-Controlled Resistors," Siliconix, inc., Santa Clara, Calif., 1966. (5) Op. cit., AN INTRODUCTION TO FIELD-EFFECT TRANSISTORS, p. 61. (6) W. Gosling, "Voltage Controlled Attenuators Using Field-Effect Transistors," IEEE Trans Audio, Vol. AU-13, pp. 112-120, Sept.-Oct., 1965. (7) J.S. Sherwin, "Voltage Controlled Resistors (FET)," Solid State Design, pp. 12-14, Aug. 1965. (8) L.J. Sevin, "Field-Effect Transistors," New York, McGraw-Hill, 1965. 4d max IVpl "'" (12) V2max valid only for m > 1. Note that the maximum distortion is reached only for minimum attenuation. Examples: dmax = 10 percent V2max = 0.001 Vp m = 400 d max = 1 percent V2max = 0.01 Vp m= 4 Although these relations are only first-order approximations, they give a good estimate of FEr attenuator characteristics_ The maximum amplitude is proportional to Vp. FETs with high Vp are desirable for attenuator applications. Unfortunately, the majority of commercially available FETs are made with low Vp for use in amplifiers. Siliconix 7-83 l1li H Siliconix FETs as Analog Switches INTRODUCTION The past has seen a pronounced growth of analog/digital systems which employ integrated circuits. One of the interface elements in such a system is the digitally-controlled analog switch. As more and more applications arise for the analog switch, especially in the areas of industrial processing and control, the question is often asked: "Which is the best switch for my application?" The sheer variety of applications precludes any pat answer to this question; however, the user of analog switches can gain valuable insight on the subject through an understanding of the nature of solid·state switches. Areas which require exploration include: (I) (2) Cross-sections for three types of N-channel FETs are shown in Figure I. GATE Igl SOURCE (~l DRAIN Igi N-CHANNEL DEPLETED WITH APPLICATION OF NEGATIVE GATE VOLTAGE (AI Basic factors affecting switch performance. Details of switch-driver circlIi! design. uATEIg,1 (3) Total switching characteristics of driver circuits and switches. (4) Characterization of the analog switch at high frequencies. SOURCE I§I DRAIN IQI BODY (!I GATE MOS-fET The intent of this Application Note is to consider (I) above, in detail, with minor attention to the other areas. (8) N-CHANNEl DEPLETED WITH APPLICATION OF NEGATIVE GATE VOLTAGE NEGATIVE BODY VOL lAGE ALSO DEPLETES THE CHANNEL Field-Effect Transistor Operation The field-effect transistor (FET) is in effect a conductor whose cross-sectional area may be varied by the application of appropriate voltages. When the conducting area (the chan· nel) is maximum, conductance is also maximum (minimum resistance). When the conducting area is minimum, conductance is minimum (maximum resistance). This phenomenon makes possible the use of FETs as analog switches. When conductance is maximum, the switch is in the ON state; when conductance is minimum, the switch is in the OFF state. In the ON state, an N-type channel contains N-type carriers; similarly, P-channel FETs contain P-type carriers. 7-84 GATE 191 METAL BODY f!.1 GATE MOS-fET (el Siliconix N-CHANNEL CREATED HERE WITH APPLICATION Of POSITIVE GATE VOLT AGE N·ehannol FET eross-Sections Figura 1 P-channel FET cross-sections are quite similar, except that the channel contains P-type carriers and the voltage polarities are reversed. Depletion-mode devices are shown in Figures IA and IB; these FET types have high channel conductance (are ON) with zero gate-channel voltage, and are characterized as "normally-ON" switches. An enhancementmode FET is shown in Figure 1C. This device requires that voltage be applied to the control gate to create a conducting channel - the ON state. Enhancement-mode FETs are said to be normally-OFF. For enhancement-mode devices, channel conductance (gOS) is a function of length (L), width (W), thickness (T), carrier mobility (P), and mobile carrier concentration (Nc): Note that the slopes (lIg0S/lIVGS) for all three types of N-channel FETs are constant and positive, while the slopes for the P-channel devices are constant and negative. N- and P-channel depletion-mode FETs are ON when VGS =0, while enhancement-mode devices of both types are OFF when VGS = O. Typically, the cut-off voltage, VGS(off)' is designed to fall in the 1-to-1O volt range, while the gate-to-source threshold voltage, VGS(th) - that amount of voltage applied to the point where the device begins to conduct - falls in the l-to-5 volt range. Figure 2 also demonstrates that gos is approximately a linear function of VGS , with zero gos occuring at VGS(off) or VGS(th), as follows: gDS Effective channel thickness and carrier concentration are functions of the electric field in the channel. Voltage on the control gate changes the field, and hence the channel conductance, gDS. The gate voltage is applied with respect to the channel (source or drain). In most devices, the function of the source and drain can be interchanged, because of symmetrical FET geometry. By convention, however, voltage is specified between gate and source, VGS. Figure 2 shows the variation of gos with VGS for both N- and P-channel devices. In all cases, gos = l/roS· (depletion) gDS = K2!VGS - VGS(off)! =K2!VCS - VCS(th)! (enhancement) For a given active area, a junction FET (JFET) will have a higher conductance slope than a MaS FET. Additionally, N-channel carriers have higher mobility than P-type carriers. Thus, all things being equal, N-type FETs have higher gos (= l/rDS) than P-type devices. If the active area of the device is increased to raise the gos level, three other FET parameters will also be increased: leakage, capacitance, and cost_ The design tradeoffs of these latter parameters are discussed in this Application Note. When a FET is used as an analog switch, the drain-to-source voltage, VOS' may be either positive or negative. In the OFF state, a typical switch may have VOS = ±20 V. In the ON state, current flows equally well from drain to source or from source to drain (the channel is a resistor). For most applications, the voltage across the switch will be small. N-CHANNEL P-CHANNEL , 'os . - os J-FET o£'OS ~G S o Vp (AI Vp Vas (D) MOS-FEY (DEPLETION TVPEI :l s: ~±~. 0 o 'os Vp 0 J Gcr1fi )... t B D--4-I MOS-FET (ENHANCEMENT TYPE) roo VOSlth) 0 (c) vGS - (E) (B) Channel Conductance vs Gate-Source Voltage Figure 2 Siliconix 'os v GS (F) 7-85 RS1O - VS1G -2- " I V, I 2 PORT NETWORK RL V2 (AI OFF (BI V S1G ON (CI I).C Equivalent Circuits Figure 3 OFF Condition Calculation DC Equivalent Circuits The perfect switch would have infinite resistance (zero conductance) when open and zero resistance (infinite conductance) when closed. While the FET is not a perfect switch, there are many applications where this deviation from perfection is unimportant. This statement can be justified by an analysis of the implications of the circuits shown in Figure 3. (I) I I = IS = I nA VSIG - V I = I I . RSIG = (I nA)(IO n) = 10 nV % Error in V I = (10-8 V) (102) 10 V = I x 10-7% 12=ID=lnA \ The general two-port network in Figure 3A couples the sig- (2) nal source, VSIG, to a resistive load, RV The network can be V2(ofO = 12RL = (I nA) (200K n) = -200 !LV characterized by its terminal voltages and currents, VI, V2, II, and 12. Figure 3B shows the equivalent circuit ofa FET (2 x 10-4)(102) % Error in V2(oft)* = 10 = 0.002% switch in the OFF state. In this condition, the "source" and "drain" are not connected to one another; however, two leakage current sources, IS and In, are present. The same device is shown in the ON state in Figure 3C. The following typical values are assumed for the circuit: ON Condition Calculation VSIG = 10 V (full scale) II =IS+ID- 12 IS V2 12 = RL =ID= I nA rDS = lOOn RL ~ VSIG RL + RSIG + rDS VSIG - V2 ~ (50 !LA) (I 10 n) = 5.5 mV =200Kn RSIG= Ion In the following calculations, leakage curren t (deviation from the state of a perfect switch) is expressed in terms of error percentage. 7-86 % Error in V2* = (5.5 x 1~~3)(102) *Referred to VSIG (full scale) Silicanix = 5.5 x 10-2 = 0.055% The foregoing calculations indicate that for all but the most critical applications the performance of the FET equivalent circuits in Figure 3 is a good approximation of the perfect switch. In particular, the OFF condition leakage currents contribute only a negligible portion of total error. The actual error currents of three different types of FET switches are shown in Figure 4. The measured error is much lower than the I nA (1000 pA) obtained from the sample calculations. These data are taken from aMOS FET, an N· channeIJFET, and a complementary MOS (CMOS) combination including a P-channel device and an N-channel device diffused onto the same substrate. The behavior of these FETs as elements of analog switching integrated cirCUIts will be dealt with in detail elsewhere in this Application Note. 110 _. f-"' 90 ~. WITH RESISTANCE MODULATION NO RESISTANCE MODULATION -100 % ERROR" , t Rl ~ ~ ..! V~ IV~ ='0) ~VDIVs=O) 100 turn Q2 ON and Q3 OFF, so that S] and G] are connected (VGS = 0 V) and QI is ON. If VGS is allowed to vary, gns (= l/rnS) will also vary. This variation in resistance appears as a source of error when the switch is ON, and the error is defined as resistance modulation. In Figure 6, the error percentage in the case of resistance modulation is greater than that which occurs when funs =O. ... ~;tl· ~. ~- -100 HL % eRROR" 1+ 'as 'os -+ &'OS Error Due to Switch ON Resistance (rOS) Figure 6 80 < -.!: 70 ~ 60 a: 0 - if rr 50 40 J 30 - 20 10 iGT ~' ~. ~. ~DGI72 -16 -12 -8 fI- ~I~~!!;;; -1.- DG200 -4 o 12 4 16 VOLTAGE IV) FET Switch Error Currents Figure 4 The JFET as a Switch A suitable driving circuit must be considered when assessing the performance of the JFET as a switch. Such a circuit is shown in Figure 5. ~ .::.r--o °1 s, +10V V,N G, VS1G " tl0V ON -20V I!=;= 0, ~ G, The suggested driving circuit of Figure 5 eliminates t>rnS at low frequencies. The typical positive supply voltage is + I 0 V and the typical negative supply voltage is -20 V. In order for VGS to change, current must flow through Q2, which is ON. There are only two possible current paths through Q2; (I), through Q3, which is OFF and subject only to variations in leakage current, or (2), into the gate of QI, which is also subject to leakage current. Since both paths through Q2 provide only negligible changes in VGS, their effect in the circuit may be ignored. As the switching frequency is increased, capacitive reactance will provide lower impedance paths, so that some degree of funs is possible. Thus two conditions contribute to t>rnS = 0 in the circuit. First, VSIG ~ VG I, due to the low impedance between these points. Second, the output impedance of Q3 (driver output) is very large when compared to the RON of Q2. When VIN is +10 volts, Q2 is OFF and Q3 is ON; G 1 is at -20 volts and Q] is OFF. In Figure 7, note that QI will remain OFF only so long as VS1G > (VGI - VGS(off)' VGS(off) is a negative voltage for an N-channel FET; thus the negative analog signal is limited by the VGS(off) of Q] and the negative supply (VG I ~ -20 V). The ON condition is also shown in Figure 7. gns is constant because with VG ] ~ VSIG imposed by the switch control circuit, VGS ~ O. ,os ros, 19"1 '- ~------------ 03 ON VG1 a!VS1G OFF VGl ------ \ \ -20V Vp JFET Switch Control Circuit Figure 5 -'0 Note that QI is an N-channel JFET, Q2 is an enhancementmode P-channel MOS FET, and Q3 is an enhancement-mode N-channel MOS FET. From Figure 2, VIN of -20 V will Siliconix VS1G \ -'5 > (VG1 - Vp) FOR DeVICE TO REMAIN Off -'0 -" E!! -20V '0 VSIGIVI Switch ON Condition Figure 7 7-87 -- The MOS FET as a Switch The CMOS Switch The P-channel enhancement-mode MaS FET is currently used in more applications than its N-channel counterpart. The consideration of MaS FET switch performance will thus center on P-channel devices. As noted previously, the typical PMOS switch circuit will exhibit a variation in ON conductance as the analog voltage is varied. This undesirable characteristic can be overcome by paralleling P- and N-channel FETs, as shown in Figure lOA. For the ON state, the N-channel gate is forced positive and the P-channel gate is forced negative. Figure lOB shows the combined conductance of the two FET switches. The integrated combination of N-channel and P-channel devices on a common substrate is referred to as complementary MaS (CMOS). The ON and OFF conditions of the MaS FET are analyzed in Figure 8. When the device is in the ON stage, note that the FET begins to tum ON when VSIG (VS or VO) becomes VGS(th) volts more positive than VG (= -20 V). +lDV B I_ANALOG VOLTAGE RANGE_ I s<>-:lir r I D 1 I I 1 1 1 G 1 1 1 ,# I"~ ,-4<:: lOS (-10V) -'0 -20 I I I CHANNEl-TO-BODY DIODE BECOMES FORWARD-BIASED (A) 1/ 1 +'0 , VS1GfVl 9 OS PMOS Channel Conductance ('OS) vs Signal VoltagB Figu,e 8 =- DOS OF CMOS fOS Figure 8 also indicates that at any given point along the gos vs VSIG curve, a unique value of gos will be obtained. Assume that a battery is inserted between the source and the gate, with the source clamped to the body as shown in Figure 9. ~B /B' ~~~~S~trD------~ °1 J;,ov~rf 1 -'5 -'0 .. -5 +'0 +'5 ...·SIG T_____________'________---'j"L ....V_SIG__ P-MOS I "Floating" Battery and Clamped Sou,ca Figure 9 N-MOS VG -15V +15V ON I VG +15V -15V OFF I I (B) A constant voltage between source and gate will produce a PARALLEL P-MOS AND'N-MOS (CMOS) constant value of gos vs VSIG , provided that the body-toOFF CONDITION source voltage is also constant. In a MaS FET, variation of DS 'os VG IN-TYPE)" -15V, the body-to-source voltage will also cause a modulation of VG (P-TYPE) • +1SV, gOS' To further complicate the picture, several MaS FETs /e, will have a common body when they are integrated on a single chip. Finally, the construction of a "floating battery" CHANNEL-TO-BODY circuit is difficult. Thus MOS FEr switch designers currently ~~;~N~~rL~-:"~DV DIODE OF f:- TYPE DEVICE FORWARD DEVICE FORWARD C?pe with the problem of L\.rOS by specifying rOS for a BIASED BIASED given switch at several points over the entire analog volt- -~~---r---.---+---;---r---,...t..= 10 15 --5 age range. -'0 , • o- -,. Referring to the switch in the OFF condition (VG = +10 V), it is apparent that no problem will exist until the source-tobody or drain-body diode becomes forward-biased. 7-88 Siliconix (C) Characteristics of CMOS Devices Figu,e10 The OFF condition for the CMOS deVIce wIll be main tamed so long as the channel-Io-body diodes do not become forward-biased, as shown in Figure IOC. The major advantages the CMOS construction technique makes to analog switching are: • Lower rOS vanation with analog signal characteristics, similar to the performance of a junction FET . • Analog signal range extends to + and - supply voltages. For instance, using the same ± 15 V supplies tYPIcal of operational amplifiers, the signal-handling capability of the syste111IS limited by the op amp, /lot by the slVllch. Summary of FET Switch Performance and Tradeoffs v-", "~ ~ 100 -- - u Z ~ in iii lon -15V 1!! TA=25C / / / / CMOS (DG2CO) cz: V~ ~..: <.,()~ / .." ,0+/ / 001% 01% '" Tolerable level of t.rOS and rOS Figure 12 r- JFET (OG181, 184, 187, 190) JFET !DGlao. 183, 186, la9} ~ / ALLOWABLE ERROR IN VL I 10 / // .#+ .. / 0001% CMOS (OG300 SEAIES) , ~ ----- .........JFET (DalB2, 185, 18a, 191) 0 .." ~lpMOS (oOll2) CMOS (OGlOl) ..,-- '"z I / ,-y . ,~ / V+ '" t15V '- g laOCH IOOH Figure II compares the performance of three ;wltch types wIth respect to IDS(on) vs VSIG' If one examInes the rDS charactenstlcs of the mtegrated sWltchlllg CIrcuits DG 172 and DG 181, thele may be a tendency to dIsmISS the DG 172 on the baSIS of Its apparent IIlfenor performance ,. The curves in Figure 12 define the maximum rOS (or &OS) which can exist for a given allowable error percentage with a fixed value of R L. Recall that in the circuit in Figure 3, a resistive load of 200K n was assumed. If it is also assumed that an error level of 0.1 % is tolerable, then rOS =200 n is the maximum allowable switch resistance. On the other hand, if settling time is not critical, then an RL of I megohm, yielding rOS = IK n is permissible. In situations where setthng time is indeed a design consideration, the circuits in Figure 13 will provide an overview of the exact nature of settling time for V2 (=V0 at turn-OFF and turn-ON. For a turn-ON SIgnal, CL charges through rOS' During turn-OFF, C'L dIscharges through RL' For a system error level of 0.1%, RL = 1000 rOS; therefore, the maximum settling time for V2 occurs during turn-OFF. 1 -lS -10 -5 10 15 V, Vo - ANALOG SIGNAL VOL rAGE (VOL lSI t Performance of Three F ET Switches Figure 11 In reality, the companson between the monolithIc DG 172 and the hybrid DG 181 is not clear-cut. Imtial Clfcuit design considerations must determine what degree of error can be tolerated by the application in terms of t.rOS and rOS' Once this error factor has been determined, the designer should contact a switch manufacturer for applications assistance in selecting the best switch for his purpose, in terms of both rDS and cost From thiS vlewpolllt, the slllgie-chlp DG 172 will perform creditably in applications where &OS and rOS error are not critical, and the device costs considerably less than the DGI81. V, sw 'os R, CD Cs OPEN SWITCH CAPACITANCE V, t To amplify the preceding point, consider the definition of the tolerable level of &OS and rOS' Siliconix - V, sw FCs 'os C~ ~ CLOSED SWITCH CAPACITANCE Switch Settling Time Equivalent Circuits Figure 13 (Cont'd) 7-89 I Switch Capacitance ..... v, V2 SW 'os ;: + *es eo "sTRAV The simplified representation of switch capacitance shown in Figure 13 can be used to provide a very good estimate of what problems (if any) will be caused by switch capacitance in a given application. OPEN SWITCH CONTAINING STRAY CAPACITANCE CL .. Co + eSTRAY V, V2 sil VSIG + 'os ;:~ eo ~ *es In general, the lower the switch capacitance the better the switching time and high-frequency isolation performance_ The subjects of switching time and high-frequency isolation are covered in other Application Notes in this series_ eSTRAY In general, capacitance is proportional to the active area in a FET chip, prior to bonding onto a header. Additional stray capacitances are introduced when the leads are brought out through the device package. Thus, as lower rOS (higher gOS) is required, the active area is generally increased to obtain that parameter. The increase in area leads to an increase in capacitance. The foregoing statements are true so long as one is dealing with a given device type. However, in transition from a JFET to a PMOS device, a significant difference will be observed in the active areas required for a given rOS. Figure 14 compares the area of a JFET (from the hybrid DG181 circuit) and the monolIthic PMOS circuit of all 4 switches of a OG 172. Note that the rDS for the JFET is approximately one-third that of the total PMOS device, while the active PMOS area is almost three times greater than that of the JFET. Yet the ratio ofPMOS·to-JFET capacitance is almost 2: I. For the single OG 172 switch the comparison to the JFET is a larger rDS( on) for the smaller area. CLOSED SWITCH CONTAINING STRAY CAPACITANCE Switch Settling Time Equivalent Circuits Figure 13 = Consider a switch with Cs Co = 3 pF, for an application requiring 0_1 % accuracy with 5 !Jsec settling time. A typical stray capacitance (C IN for an op amp) may be 6 to 7 pF. Therefore, CL =3 pF + 7 pF =10 pF. Resistance loads, RL' of lOOK n, 50K n, and 25K n are considered for the switch. The time required for an RC system to settle to within 0.1 % of its final value is 6.9 time constants (6.9 RC). Table 1 OGI72 (ALL 4 SWITCHESI MOS-FET (PMOSI shows the RL and rOS values necessary to satisfy a number of settling time specifications. From Table I, it is apparent that so long as R L .;;; 12K n, the desired settling time of 5 !Jsec will be achieved. TABLE I 25K 25 50K 50 ·72K 72 lOOK 100 10 10 10 10 tON (V21" (0.1% settling timel (nsecl tOFF (V 21" (0.1% settling timel 1.72 3.45 5.00 6.90 1.72 3.45 5.00 6.90 34.0 MILS (Jlsecl OG181 JFET l 12.9 MILS 'MaK imum R L for tset = 5 Jlsee ., Does not include delav times 1--14.4MILS-I If cost is a design constraint, it is wise to make a close analysis of actual system switch requirements. Too often, designers buy unnecessary performance capability. In Table I, the switch with rOS = 25 n costs nearly twice as much as does the switch with rOS = 50 n, yet either switch will meet the 5 !Jsec settling time specification. 7-90 !-13.7 MILs-l 'OS = 42.1l 'os=15.1l AREA = 489.6 MIL 2 AREA = 176.7 MIL2 Co = 10pF Co = 6pF Active Area Comparison of PMOS and JF ET Switches Figur.14 Siliconix J Switch Comparison A comparison between the characteristics of the three types of JFET switches is made in Table II. This Application Note has surveyed the characteristics of FET switches and their associated drivers. In considering the FET as an analog switch, discussion has largely centered on the devices themselves, including specific load problems and applicable driver circuits. Total switch performance is a function of the switch and the switch driver. Typically, high· performance switch drivers require numerous switching transistors. When discrete devices are considered, the total parts count will be high and the cost will be prohibitive. From the standpoint of cost, improved performance, and smaller size, the integrated circuit FET switch and driver is often the superior choice. TABLE II Switch Tvpe Analog Signal Range . 'OS LlrOS Leakage, 10 0 '15 PMOS (V.- VGS(th)) 1 MHz.) Low crosstalk High "Off" Isolation Excellent phase linearity High speed switching « 1 ns.) freedom from switch "popping" Small size Direct control by digital gates Use of DC coupling only The size of a complex audio switching array can be greatly reduced by using IC analog switches. The prototype array is an 8x2 stereo crosspoint switch mounted on a 4x7 inch board. Other switch configurations may be fabricated with little effect on the switch characteristics. This single board can replace a score of rotary switches and the bundles of audio cable often found in audio mixers. Furthermore, ground loop problems are reduced by eliminating the cable bundles. Siliconix SD5002s were chosen because of low "on" resistance, low switch capacitance, and very fast switching times. The National Semiconductor LF347 quad op-amp was chosen for its excellent audio characteristics in a quad package. 'I\vo LF347s are used in this switch providing a summing and output amplifier for each of four channels. The SD5002s are held "normally open" by biasing the switch gates to ground potential through 10K ohm resistors. For any switch configuration, the appropriate switch( es) are closed by biasing the appropriate gate(s) to the positive voltage supply. In this circuit pairs of switches are controlled together to affect the left and right channels of a stereo input simultaneously. This is accomplished simply by tying the applicable switch gates together and using a common bias resistor. The ability to directly interface the SD5002 gates to digital integrated circuits opens up immense opportunities to the design engineer for switch control. Silicanix 7-105 - SUMMING NODE FROM 7 OTHER SWITCHES LF347 CHANNEL 1 LEFT INPUT BUS SUMMING AMP Rio 7SK OUTPUT AMP RL CHANNEL 1 RIGHT INPUT BUS 0--1 ...1_NP-1U... T_N_O_D_E_-'\R"SIlr--;;r._ _O 51 S ~;~ TSK INPUT NODE D t I I "··.--::1::-21r.S;--o D 9 ."'. 7RSK S O)--Ir----~ RA75K I I+V)-o-::::' CHANNEL 2 I I '~::i: ~= I!. CHANNEL 2 LEFT INPUT 8US RIGHT INPUT BUS D I RL RL 11 G I L~~ - S~~~Ec:. ~~~;C~~~M RO Goon I SUBSTRATE I_V) __ J2 FIGURE 1 INPUTS RSS SWITCH ""'::-t---l~ --;-"IM.--1-INPUTS INPUT BUSSES S05002S SUMMING ~-I,--_---i~1 NODES LEFT RIGHT LEFT CHANNEL A OUTPUTS FIGURE 2 7-106 RIGHT CHANNEL B OUTPUTS Silicanix Figure 1 shows how a single SD5002 is configured as a 2xl stereo switch. Figure 2 shows how the circuit can be expanded into a switch matrix. Eight SD5002s are required to construct the 8x2 stereo matrix array. One RL is required for each channel input for termination while separate RSs are employed to feed the signal from the inputs to the various switches. An input bus is consequently formed at the junction of these resistors. The summing nodes are located at the inverting inputs of the summing amplifiers. The SD 5002 drains are connected to these summing nodes. A larger array will cause reduced system performance due to longer lead lengths and increased circuit capacitance. Nevertheless, large matricies can be configured with little performance compromise because of the low initial switch capacitance. RL's value should reflect the value of the source impedance. Deletion of RL will seriously degrade crosstalk and off isolation performance while lower values of RL will improve these specifications. RC may be adjusted for a wide range of system gain while a value of about 150K ohms will set the circuit to unity gain. RD sets the value of the output impedance and if the switch is to feed a high impedance load, RO should be included to maintain system performance. Electrolytic and mica capacitors are used on the circuit board for bypassing the two power supply voltages. Supply voltage bypassing will reduce both high and low frequency noise and help stabilize the system. The entire circuit should be well shielded particularly if it will be exposed to strong RF or power line fields. Conductors carrying high currents should be kept away from the circuit. Double sided PC board should be used creating a ground plain on the component side as an additional precautionary measure. Table 1 shows the switch performance of the 8x2 crosspoint configuration. RL was set to 10K ohms, reflecting the high impedance of the test oscillator's output. Regulated power supply voltages of plus and minus 9 to 15 volts may be used. The signal voltages should be kept under about 3.5 volts PTP to maintain switch performance. TABLE 1 Frequency Crosstalk "Off" Isolation %THD (Hz.) 50 100 200 500 IK 2K 5K 10K 20K 50K lOOK -74db. -74 -74 -74 -74 -73 -70 -67 -62 -55 -50 -75db. -75 -75 -75 -75 -74 -71 -68 -62 -55 -49 .006 .005 .004 .003 .003 .003 .003 .004 .006 .020 .045 Signal voltages: 3 volts P.T.P. supply voltages: + and - 12 volts -Siliconix 7-107 NOTES Siliconix Worldwide Sales Offices _ I Siliconix Worldwide Sales Offices United States CENTRAL Siliconix Incorporated 1327 Butterfield Rd., Suite 616 Downers Grove, IL 60515 (312) 960-0106 TWX: 910-695-3232 Siliconix Incorporated Two King James South, Suite 143 24650 Center Ridge Road Westlake, OH 44145 (216) 835-4470 TWX: 810-427-9258 Siliconix Incorporated 3310 Keller Springs Road Suite 120A Carrollton, TX 75006 (214) 385-4046/4047 TWX": 910-860-9262 EASTERN Sillconix Incorporated 31 Bailey Avenue Ridgefield, CT 06877 (203) 431-3535 TWX: 710-467-0660 Siliconlx Incorporated 395 Totten Pond Road Waltham, MA 02154 (617) 890-7180 tWX: 710-324-1783 Sillconlx Incorporated Cranes Roost Office Park 311 Whooping Loop Altamonte Springs, FL 3270' (305) 831-3644 tWX: 810-853-0320 NORTHWESTERN Siliconix Incorporated 2201 Laurelwood Road Santa Clara, CA 95054 (408) 988-8000 tWX": 910-338-0227 Sillconix Incorporated 309 Inverness Way, South SUite J Englewood, CO 80112 (303) 799-1575 tWX": 45-0228 SOUTHWESTERN Sillconlx Incorporated 17821 E. 17th Street Suite 240 Tustin, CA 92680 (714) 544-8378/7275 TWX: 910-595-2643 International European FRANCE Sillconix S.A_R.L. Centre Commercial de L'Echat Place de l'Europe 94019 Creteil Cedex Tel: (1) 43.77.07.87 TLX: Siliconix 230389F FAX: (1) 43.39.11.71 WEST GERMANY Sillconlx GmbH Johannesstrasse 27 0-7024 Filderstadt-l Postiach 1340 Tel: (0711) 702066 FAX: (0711) 7061 50 TLX: 7-2555533 FAR EAST HONG KONG Sillconix (H.K,) Ltd. 5th Floor Liven House 61-63 King Yip Street Kwun Tong, Kowloon TEL: 3-427151 TLX: 44449S1 LXHX JAPAN Nippon Sillconix Incorporated 1-1 Uchlsalwai-Cho 2-Chome Chiyoda-Ku, TokYO 100 TE[: (03) 506-3470 TLX: 23~2739 NSIXJ Siliconlx GmbH Klrchfeldstr. 4 0-8025 Unterhaching Munich Tel: 089-611-4091 TLX: 528305 SCANDINAVIA Siliconix. Sweden Ltd. Box 569 S17526 Jlirfalla Sweden TEL: (0) 758 12610 TLX: 16404 UNITED KINGDOM Sillconix Ltd. 3 London Road Newbury, Berks RG131JL TEL: ~0635130905 FAX: 0635 34805 TLX: 49357 ITALY Sillconix (Italy) Ltd. Via Vincenzo Monti 8 20123 Milano TEL: (02) 345 22 11 TLX: 331837 Silicanix 8-1 u.s. and Canadian Sales Representatives U.S. Sales Representatives ALABAMA Huntsville (35815) Rep Inc. P.O. Box 4889 11535 Gilleland Rd. (205) 881-9270 TWX: 810-776-2102 ARIZONA Tempe (85282) Quatra Associates, Inc. 4645 S. Lakeshore Drive Suite 1 (602) 820-7050 TWX: 910-950-1153 CONNECTICUT Cheshire (06410-0160) Scientific Components 1185 South Main Street (203) 272-2963 TWX: 710-455-2078 FLORIDA Altamonte Springs (32701) llemtronic Associates 657 Maitland Ave. (305) 831-8233 tWX: 810-854-0321 Ft. Lauderdale (33309) Semtronlc Associates 3471 Northwest 55th SI. (305) 731-2484 Clearwater (33516-2248) Semtronic Associates 1467 S. Missouri Ave. (813) 461-4675 GEORGIA lIIcker (30084) Rep Inc. 1944 Cooledge Road Suite 1 (404) 938-4358 TWX: 810-766-0822 ILLINOIS Des Plaines (60018) Electron Markeling Corp. 3158 Des Plaines Ave. Suite 109 (312) 298-2330 TWX: 910-233-0183 INDIANA Indianapolis (46240) Wilson Technical Sales, Inc. P.O. Box 40699 4021 W. 71st Street (317) 298-3345 tWX: 910-997-8120 IOWA Cedar Rapids (52403) Electromec Sales, Inc. 1500 2nd Ave. S.E. Suite 205 (319) 362-6413 tWX' 910-525-1342 KANSAS Overland Park (66207) PMR, Inc. 5760 W. 95th St. Suite 140 913) 381-0004 316) 684-4141 NEW YORK Endwell (13760) Tri-Tech ElectroniCS, Inc. 3215 E. Main Street (607) 754-1094 TWX: 510-252-0891 FayeHevllle (13066) Tri-Tech Electronics, Inc. 6836 E. Genesee Street (315) 446-2881 tWX: 710-541-0604 Fishkill (12524) Tn-Tech ~Iectromcs, Inc. 14 Westview Drive (914) 897-5611 1 MARYLAND Columbia (21046) E. Rochester (14445) Tri-Tech Electronics, Inc. 300 Main Street (716) 385-6500 tWX: 510-253-6356 Pro Rep 8310 GuiHord Rd. (301) 992-7460 TWX: 710-862-0862 Melville (11747) MASSACHUSETTS Melrose (02176) Pro Comp Sales One West Foster Street Suite 10 (617) 665-2340 TLX: 910-380-9030 MICHIGAN Brighton (48116) A. P. ASSOCIates 9903 Webber (313) 229-6550 TLX: 287310 (APAIUR) MINNESOTA Bumsville (55337) Electromec Sales Inc. 101 W. Burnsville Pkwy. (612) 894-8200 TWX: 910-576-0232 MISSOURI Si. i.ouis jii3i4iij PMR, Inc. 11710 Administration Dr. Suite 2 P.O. Box 28708 (314) 569-1220 TWX: 910-764-0881 NEW JERSEY Marlton (08053) B.G.R. Associates Evesham Commons 525 RI. 73 Suite 100 (609) 983-0200 TWX: 710-990-5086 Teaneck (07666) R. T. Reid Associates 705 Cedar Lane (201) 692-0200 twX: 71 0-990-5086 R. T. Reid Associates 20 Broadhollow Rd. Suite 3001 (516) 351-8833 TWX: 990-997-3030 NORTH CAROLINA Raleigh (27607) Rep Inc. 7406 F Chapel Hill Road (919) 851-3007 tWX: 810-726-2102 CharloHe (28212) Rep Inc. Independence Office Park 6407 Idlewild Rd., Ste. 226 (704) 563-5554 TWX: 810-726-2102 TLX: 821765 OHIO Cleveland (44143) Arthur H. Baler Company 16 Alpha Par k (216) 461-6161 tWX: 810-427-9278 Dayton (454141 Art~ur H. Baier Company 4940 Profit Way (513) 276-4128 twX: 810-459-1624 OKLAHOMA Tulsa (74145) MREP tompany 7966 East 41 st Street Suite 7E (918) 665-3562 OREGON Beaverton (97005) Blair Hirsh Co., Inc. 4855 SW Ridgecrest #211 (503) 641-1875 TENNESSEE JeHerson City (37760) Rep Inc. P.O. Box 728 113 So. Branner Ave. (615) 475-4105/9012/9013 TWX: 810-570-4203 TEXAS Dallas (75243) MREP Company 13405 Floyd Circle Suite 110 (214) 669-9706 Grapevine (76051) MREP Company P.O. Box 487 403 E. Wall (817) 481-7502/7503 & (817) 488-6583/6584 TWX: 910-350-5298 Missouri City (77459) MREP Company 1306 FM 1092 Suite 208 (713) 216-0798 Houston (77055) MREP Company 9440 Old Katy Road Suite 106 (713) 461-4197 Round Rock (78681) MREP Company 850 S. Great Oaks Blvd. Suite 120M (512) 244-6755 UTAH Sail Lake City (84115) Sage Sales 3349 South Main Street (801) 467-5451 TWX: 910-925-5153 w''!S!!!N!:TOP! Lynnwood (98036) Blair Hirsh Co., Inc. P.O. Box 2250 19410 36th Avenue West SUite 106 (206) 774-8151 tWX' 910-977-0131 WISCONSIN Wauwatosa (53226) Larsen Associates 10855 West Potter Road (414) 258-0529 TWX: 910-262-3160 canadian Sales Representatives Islington, Ontario IM9B6E3) !>ipe Thompson, Ltd. 5468 Dundas SI. W. Ste.206 (416) 236-2355 tWX: 610-492-4367 North Gower, Ontario Pipe Thomspon, Ltd. (613) 258-4067 8-2 Siliconix U.S. Distributors ALABAMA Huntsville (358051 Hamilton/Avnet #23 4940 Research Drive (205) 837-72tO TWX: 810-726-2162 Huntsville (35801) Marshall Industries 3313 Memorial Pkwy. (205) 881-9200 Huntsville (35805) Pioneer/Huntsville 4825 University Square (205) 837-9300 tWX: 810-726-2197 ARIZONA Phoenix (85023) Wyle laboratories-EMG 17855 N. Black Canyon Hwy. (602) 249-2232 tWX: 910-951-4282 Temp,e (85281) Hamllton/Avnet, #04 505 South Madison Dr. (602) 231-5100 twX: 910-950-0077 CALIFORNIA Anaheim (92807) Zeus West, Inc. 1130 Hawk Circle (714) 632-6880 TWX: 910-591-1696 Canoga Park (91304) Marshall Industries 8015 Deering Ave. (818) 999-5001 TWX: 910-494-4821 Chatsworth (91311) Hamllton/Avnet #48 9650 DeSoto Ave. (818) 700-6500 TWX: 910-321-3639 EI Segundo (90245) Wyle DIStributIOn ~roup 451 E. 124th Avenue (303) 457-9953 TWX. 910-936-0770 Irvine (92714) Wheatridge (80033) Marshall Industries 17321 Murphy Ave. (714) 660-0951 TWX' 910-595-1969 Irvine (92714) Wyle laboratorles-EMG 17872 Cowan Ave. (714) 863-9953 TWX. 910-595-1572 Milpitas (95035) Marshall Industries 336 los Caches (408) 943-4658 TWX: 910-339-9298 Ontario }91764) Hamilton Avnet #49 3002 E. 'G' Street (714) 989-8309 twX 910-321-2806 Reseda (91335) Jan Devices 6925 Canby, Bldg. 109 (213) 708-1100 TWX: 910-997-1130 Sacramento (95348) Hamilton/Avnet #35 4103 Northgate Blvd. (916) 920-3150 San Diego (921231 Hamilton/Avnet, #02 4545 Viewridge Ave. (619) 571-7510 TWX: 910-335-1216 San Diego (92123) Chatsworth (91311) Wyle Laboratories-EMG 9525 Chesapeake Drive (619) 565-9171 TWX: 910-335-1590 Costa Mesa (92626) Wyle Distribution Group 3000 Bowers Avenue (408) 727-2500 tWX: 910-379-6480 Avnet Electronics # 71 20501 Plummer (818) 700-2600 Avnet ElectrOniCs 350 McCormick Ave. (714) 754-6111 TWX: 910-595-1928 Costa Mesa (92626) Hamilton Electro Sales, #29 3170 Pullman Street (714) 641-4100 TWX: 910-595-2638 Culver City (90230) Hamilton Electro Sales, #01 10912 W. Washington Blvd. (213) 558-2121 or (714) 522-8200 TWX: 910-340-6364 Thornton (802411 Wyle laboratorles-EMG 124 Maryland Street (213) 322-8100 TWX: 910-348-7140 Santa Clara (95052) Sunnyvale (94086) Bell Industries 1161 No. Fairoaks Ave. (408) 734-8570 TWX. 910-339-9378 Sunnyvale (94086) Hamilton/Avnet #03 1175 Bordeaux Avenue (408) 743-3300 tWX: 910-339-9332 COLORADO Englewood (80111) Bell Industries 8155 W. 48th Avenue (303) 424-1985 tWX' 910-938-0393 CONNECTICUT Danbury (06810) Hamilton/Avnet, #21 Commerce Drive Commerce Park (203) 797-2800 TWX: 710-456-9974 Milford (06460) Falcon Electronics 5 Higgins Drive (203) 878-5272 TWX: 710-462-8407 Wallingford (06492) Marshall Industries 20 Sterling Drive Barnes Industrial Park (203) 265-3822 TWX: 910-997-5197 FLORIDA Altamonte Springs (32701) Pioneer Electronics 221 North Lake Blvd. (305) 834-9090 tWX: 810-850-0177 Deerfield Beach (33444) GEORGIA Norcross (30092) Hamilton/ Avnet, # 15 5825 Peachtree Corners E-D (404) 447-7500 TWX: 810-766-0432 Norcross (30093) Marshall Industries 4364B Shakelford Road (404) 923-5750 TWX: 810-766-3969 Norcross (30093) Pioneer Electronics 5835 "B" Peachtree Corner (404) 448-1711 ILLINOIS Bensenville (60106) Hamilton/Avnet, #10 1130 Thorndale Ave. (312) 860-7780 tWX: 910-227-0060 Elk Grove Village (60007) GBl/Goold Electronics 610 Bonnie lane (312) 593-3222 Elk Grove Village (60007) Pioneer/Chicago 1551 Carmen Orive (312) 437-9680 TWX: 910-222-1834 INDIANA Carmel (46032) HamiitonfAvnet, #28 485 Gradle Drive (317) 844-9333 TWX: 810-260-3966 Pioneer Electronics 674 S. Military Trail (305) 771-8377 twx: 510-955-9653 Indianapolis (46278) Ft. Lauderdale (33309) Indianapolis (46250) Hamilton/ Avnet, # 17 6801 N.W. 15th Way (305) 971-2900 TWX: 510-956-3097 St. Petersburg (33702) Hamilton/Avnet, #25 3197 Tech Drive No. (813) 576-3930 TWX: 810-863-0374 Winter Park (32792) Hamilton/ Avnet 6947 UniverSity Blvd. (305) 628-3888 TWX: 810-853-0322 Winter Park (32789) Milgray Electronics 1850 lee Avenue (305) 647-5747 Hamilton/Avnet, #06 8765 E. Orchard Road Suite 708 (303) 740-1000 TWX: 910-931-0510 Siliconix Marshall Industries 6990 Corporate Drive (317) 297-0483 Pioneer/Indiana 6408 Castleplace Drive (317) 849-7300 TWX: 810-260-1794 IOWA Cedar Rapids (52404) Hamilton/ Avnet 915 33rd Ave. SW (319) 362-4757 KANSAS Lenexa 166214) Marshall ndustries 8321 Melrose Drive (913) 492-3121 Overland Park (66215) Hamilton/Avnet, #58 9219 Quivlra Road (913) 888-8900 TWX: 910-743-0005 8-3 u.s. MARYLAND Columbia (210451 Hamilton/Avnet, #i2 6822 Oak Hall Lane (30~ 995-3500 (MD) (301 621-5410 (DC) TW : 710-862-1861 GailhersburQ (20760) Pioneer/Washington 9100 Gaither Road (301) 921-0660 TWX: 710-828-0545 Gaithersburg (20760) Marshall Industries 16760 Oakmont Avenue (301) 840-9450 TWX: 710-828-9748 MASSACHUSETIS Burlington (01803) Milgray Electronics 79 Terrace Hall Avenue (617) 272-6800 tWX: 510-225-3673 Burlington (01803) Marshall Industries 1 Wilshire Road (617) 272-8200 TWX: 710-332-6359 Woburn (019601 Hamilton/ Avnet Efectronics 100 Centennial Drive (617j531-7430 (Sales) (617 532-3701 (Admin.) MICHIGAN Grand Rapids (49508) Hamilton/Avnet, #67 2215 29th St. S.E. A5 (616) 243-8805 Livonia (48150) Hamilton/ Avnet, #66 32487 Schoolcraft (313) 522-4700 TWX: 910-997-5193 Livonia (48150) Pioneer/Michigan 13485 Stamford (313) 525-1800 tWX: 810-242-3271 MINNESOTA Minneapolis (55435) Industrial Components 5000 W. 78th St. (612) 831-2666 TWX: 910-576-3153 Minnetonka (55343) Hamilton/Avnet, #63 10300 Bren Road, East (612) 932-0600 TWX: 910-576-2720 Minnetonka (55343) PIOneer/Twin Cities 10203 Bren Road, East (612) 935-5444 TWX: 910-576-2738 Distributors (Cont'd) MISSOURI Earth City (63045) Hamilton/Avnet, #05 13743 Shoreline ct. (314) 344-1200 tWX: 910-762-0606 SI. Louis (63146) Franklin Electronics 11638 Page Service Drive (314) 993-5333 NEW HAMPSHIRE Manchester (03103) Hamilton/ Avnet 444 E. Industrial Park Dr. (603) 624-9400 NEW JERSEY Cherry Hill (08003) Hamllton/Avnet, #14 One Keystone Avenue (609) 424-0100 TWX: 710-940-0262 Fairfield (07006) Hamilton/ Avnet, # 19 10 Industrial Road (201) 575-3390 TWX: 710-734-4388 Fairfield (07006) Marshall Industries 101 Fairfield Road (201) 882-0320 TWX: 710-989-7052 Marshall Industries 102 Gaither Dr., Unit 2 (609) 234-91 00 (NJ~ (215) 627-1920 (PA TWX: 710-897-136 NEW MEXICO Albuquerque (87123) Bell Industries 11728 Linn N.E. (505) 292-2700 TWX. 910-989-0625 A!!!!!!;!!erq!!e (871 ~~) Hamilton/Avnet #22 2524 Baylor Drive S.E. (505) 765-1500 TWX: 910-989-0614 NEW YORK Buffalo (14202) Commack (11720) Falcon Electronics 2171 Jericho Turnpike (516) 462-6350 East Syracuse (13057) Hamilton/Avnet, #08 1600 Corporate Circle (315) 437-2642 TWX: 710-541-1560 Endwell (13760) Pioneer/Oayton 4433 Interpoint Blvd. (513) 236-9900 TWX: 810-459-1622 Haup,pauge (11788) Solon (44139) Hamllton/Avnet, #20 933 Motor Pkwy. (516) 231-9800 tWX: 510-224-6166 Hauppauge (11787) Marshall Industries 275 Oser Avenue (516) 273-2424 TWX: 510-220-1139 Port Chester Zeus Components, Inc. 100 Midland Ave. (914) 937-7400 tWX: 710-567-1248 Rochesler (14623) Hamilton/ Avnet, # 61 333 Metro Park (716) 475-9130 TWX: 510-253-5470 Rochester (14623) Marshall Industries 1260 Scottsville Road (716) 235-7620 tWX: 510-253-5526 Hamilton/Avnet, #j9 1065 Old Country Road (516) 997-6868 TWX: 510-221-0676 Woodbury (11797) Pioneer/Long Island 60 Crossways Park W. (516) 921-8700 TWX: 510-221-2184 NORTH CAROLINA Charlotte (28210) Ploneer/NC 9801-A Southern Pine Blvd. (704) 527-8188 TWX: 810-620-0366 Raleigh (27604) Hamilton/Avnet, #24 3510 Spring Forrest Road (919) 878-0819 TWX: 510-928-1836 OHIO Cleveland (44105) Summit Inc. 916 Main Street (716) 884-3450 TWX: 710-522-1692 Dayton (45424) Milgray Electronics, Inc. 77 Schmitt Blvd. (516) 420-9800 TWX: 510-225-3671 Westbury (115901 MI. Laurel (08057) Marshall Industries 10 Hooper Road (607) 754-1570 TWX: 510-252-0194 8-4 Farmingdale (11735) Pioneer/Cleveland 4800 E. 131s1 Street (216) 587-3600 TWX: 810-422-2210 Dayton (45459) Hamillon/Avnet, #64 954 Senate Drive (513) 433-0610 tWX: 810-439-6700 Dayton (45424) Marshall Industries 6212 Executive Blvd. (513) 236-8088 TWX: 810-459-1935 Marshall Industries 5905B Harper Rd. (216) 248-1788 TWX: 810-427-2701 Warrensville Heights (44128) liamilton/Avnet, #62 4588 Emery Industrial Pkwy (216) 831-3500 . tWX: 810-427-9452 Westerville (43081) Hamilton/ Avnet, # 79 777 Brooks Edge Blvd. (614) 882-7004 OKLAHOMA Tulsa (74129) Quality Components 9934 E. 21st Street S. (918) 664-8812 Tulsa (74129) Hamilton/ Avnet OREGON Hillsboro (971231 Wyle Laboratories-EMG 5289 N.E. Elam Young Parkway Bldg. E-l00 (503) 640-6000 tWX: 910-460-2203 Lake Oswego (97034) Hamillon/Avnet, #27 6024 S.W. Jean Road Bldg. C., Suite 10 (503) 635-8836 TWX: 910-455-8179 PENNSYLVANIA Horsham (19044) Pioneer Electronics 2f:ii1 r,ihr~lt~r Rn~ti (215) 674:400ij-TWX: 510-665-6778 Pittsburg (15222) Hamilton/ Avnet 2800 Liberty Avenue (412) 281-4150 Pittsburg (15238) Pioneer/Pittsburgh 259 Kappa Drive (412) 782-2300 TWX: 710-795-3122 TEXAS Addison (75001) Quality Components 4257 Kellway Circle (214) 733-4300 TWX: 910-860-5459 Austin (78758) Hamilton/Avnet, #26 1807A W. Braker Lane (512) 837-8911 TWX: 910-874-1319 Austin (78758) Wyle Distribution 2120-F W. Braker Lane (512) 834-9957 TLX: 834-0779 Siliconix U.S. Distributors (Cont'd) Austin (78758) Pioneer Electronics 9901 Burnet Road (512) 835-4000 TWX: 910-874-1323 Austin (78758) Quality Components 2427 Rutland Drive (512) 835-0220 TLl<: 324930 Dallas (75234) Pioneer Electronics 13710 Omega Road (214) 263-3168 TWX: 910-860-5563 Dallas (75240) Zeus Components 14001 Goldmark (214) 783-7010 Houston (77063) Hamilton/Avnet, #11 8750 Westpark (713) 975-3500 TWX: 910-881-5523 Houston (77036) UTAH Salt Lake City (84119) Pioneer 5853 Point West Dnve Irving (75062) Hamilton/ Avnet, # 16 2111 W. Walnut Hill Lane (214) 659-4151 TWX: 910-860-5929 Richardson (75083) Wyle DistributIOn 1810 N. Greenville Ave. (214) 235-9953 TWX: 310-378-7663 Richardson (75081) Zeus Components 1800 N. Glenville (214) 783-7010 TWX: 910-867-9422 Sugarland (77478) Quality Components 1005 Industrial Blvd. At Bournewood (713) 240-2255 TWX: 910-880-4893 WISCONSIN Milwaukee (53214) Hamilton/Avnet, #09 1585 West 2100 South (801) 972-2800 TWX. 910-925-4018 Marsh Electronics, Inc. 1563 South 101 st Street (414) 475-6000 TWX: 910-262-3321 Sail Lake City (84104) New Berlin (53151) Wyle Laboratones-EMG 1959 South 4130 West (801) 974-9953 WASHINGTON Bellevue (98005) Hamilton/Avnet, #07 14212 N.E. 21st Street (206) 453-5844 TWX: 910-443-2469 Bellevue (98005) Wyle Distribution Group 1750 132nd Avenue N.E. (206) 453-8300 TWX: 910-443-252G Hamilton/ Avnet, # 57 2975 Moorland Road (414) 784-4510 TWX: 910-262-1182 CHIP DISTRIBUTOR FLORIDA Orlando (32807) Chip Supply, Inc. 1607 Forsyth Road (305) 275-3810 TWX: 810-850-0103 Orlando (32817) Chip Supply, Inc. 7725 N. Orange Blossom Trail (305) 298-7100 Siliconix 8-5 canadian Distributors BRITISH COLUMBIA Burnaby (V5G 4J7t RAE Inaustrial Elec. td. 3455 Gardner Court (604) 291-8866 tWX: 610-929-3065 Tll(: 04-356533 ONTARIO Downsview (M3J 123) Future Electronics 82 51. Regis Crescent N. (416) 638-4771 tWX: 610-491-1470 8-6 Mississauga (L4V 1M5) Hamilton/Avnet, #59 6845 Redwood Drive (416) 677-7432 twx: 610-492-8867 Nepean CK2E 7L5) ALBERTA Calgary CT2E 6Z2) Hamilton/Avnet 2816 21st Street N.E. (403) 230-3586 Hamilton/Avnet, #60 2110 Colonade Road (613) 226-1700 tWX: 0534971 QUEBEC Pointe Claire (H9R 4C7) Future Elec. 237 Hymus Blvd. (514) 694-7710 TWX: 610-421-3251 SI. Laurent (H4S 1M2) Hamilton/Avnet, #65 2795 Rue Halpern (514) 335-1000 tWX: 610-421-3731 Ottawa (K2C 3P2) Future Elec. Baxter Centre 1050 Baxter Road (613) 820-8313 Siliconix European Representatives/Distributors AUSTRIA Ing. Ernst Sieiner Hummelgasse 14 A-1130 Vienna TEL: 0222/827474/0 TLX 135026 BELGIUM J P. Lemaire S A. Av. Limburg Stlrum 243 B-1810 Wemmel TEL: (02) 460-05-60 TLX: 24610 DENMARK Dltz Schweitzer A.S Vallensbaekvej 41, Postboks 5 DK-2600 Glostrup TEL: (02) 45-30-44 TLX 33527 FINLAND Instrumentarium Electronics PO. Box 64 SF 02631 Espoo 63 TEL (358)-0-5281 TLX 124426 HAVUL SF FAX (358) 524-986 FRANCE Almex 48 Rue de l.'Aubeplne B.P. 102 92164 Antony Cedex TEL' (1) 4 666-21-12 TLX: 250067 Alrodls 40 Rue Villion 69008 Lyon TEL: (7) 800-87-12 TLX: 380636 Baltzinger Sari B.P. 183 67042 Strasbourg Cedex TEL (88) 331852 TLX: 870952F I.T.T. Multicomposant 38 Avenue Henn Barbusse B P 124 9223 Bagneux Cedex TEL: (1) 4 664-16-10 TLX. 270763 GREECE SCAIB 80 Rue d'Arcuell 94523 Rungls Cedex TEL: (1) 4 687-12-13 TLX: 204-674F ITALY GERMANY Ditronic GmbH Julius-Hoelder Str. 42 7000 Stuttgart 70 TEL: (0711) 720010 TLX 7255638 EBV Elektronik GmbH Dberweg 6 0-8025 Unterhaching TEL' 089-61105-1 TLX: 524535 EBV Elektronlk GmbH Alexanderstrasse 42 7000 Stuttgart 1 TEL (0711) 247481 TLX 722271 EBV Elektronik GmbH Dstrasse 129 4000 Dusseldorf TEL' (0211) 84846/7 TLX' 8587267 EBV Elektronrk GmbH Kiebltzrain 18 3006 Burgwedel l/Hannover TEL: (05139) 5038 TLX: 923694 EBV Elektromk GmbH Schenckstr 99 6000 Frankfurt M 90 TEL: (069) 785037 TLX: 413590 Composants S A. Avenue Gustave Elffel B P. 81 33605 Pes sac Cedex TEL: (56) 36-4040 TLX: 550696F Ing. BUro Rainer Konig Konigsbergerstrasse 16A 1000 Berlin 45 TEL: 030-772-8009 TLX: 184-707 Composants S A. 55 Avenue LoUIS Broguet 31400 Toulouse TEL: (61) 20-82-38 TLX. 530957 Ing. BUro K.H Dreyer Albert Schweitzer-Ring 36 2000 Hamburg 70 TEL: (040J 669027 TLX: 216 484 Composants S.A 183 Route de Paris 86000 POltlers TEL' (49) 88-60-50 TLX: 591525 Ing. Buro K.H. Dreyer Flensburger Strasse 3 2380 SchleSWig TEL. (04621) 24055 TLX' 02-21334 Composants S.A. 57 Rue Manoir de Servlgne 21, Route de Lorient B.P. 3209 35013 Rennes Cedex TEL. (99) 54-01-53 TLX: 740311 Ultratronik GmbH Munchner Strasse 6 8031 Seefeld TEL: (08152) 7090 TLX. 05-26459 General Electronics Ltd 209 Thlvon Street Nikala, Plreaus GR-184-54 TEL: (1) 4904934 TLX: 212949 GELT GR Dott Ing. Giuseppe De Mico S.PA. 20060 Cassin a de Pecchl Via Vlttono Veneto 8 Milano TEL: (02) 9520551 TLX: 330869 FAX. (02) 9522227 NETHERLANDS Koning en Hartman Elektrotechniek BV 1 Energreweg 2627 AP Delft PO. Box 125 2600 AC Delft TEL: 15609906 TLX: 38250 FAX: 15619194 NORWAY A.S. Klell Bakke ~vre Raellngsvei 20 .0. Box 27 N-2001 Lrllesstr0m TEL: (02) 83-02-20 TLX: 19407 FAX: (02) 831455 PORTUGAL Telectra S A.R.L. Praceta Av Dr. Mario Moutinho, Lote 1258 1400 Lisboa TEL: (1) 616221 TLX: 12598 SPAIN Comerclal Espanola de Componentes S.A. Arzobispo Morcilio 24 Oflclna 5 Madnd 28029 TEL: (1) 733-7054/55 TLX. 47010 Redls Logar SA Lopez de Hoyos 78 DPDD, Madnd 28002 TEL. (1) 4113561 TLX 23967 FAX: (1) 4117423 Redis Logar SA Aragon 208-210 Barcelona 11 TEL: (3) 2549048 SWITZERLAND Abalec A.G Landstrasse 78 CH-8116 Wurenlos TEL: 01-730-0455 TLX: 59834 UNITED KINGDDM Abercorn Electromcs Ltd SUite 1A 17 Waterloo Place Edinburgh, Scotland EH1 3BG TEL. 031-557-4700 TLX: 727229 Barlec-Richfleld Ltd. Foundry Road, Horsham West Sussex RH13 5PX TEL: 0403-51881 TLX. 877222 Farnell Electromc Components Ltd Canal Road Leeds LS12 2TU TEL: 0532-636311 TLX' 55147 Hartech Ltd. 7 West Pallant Chichester West Sussex PO 191 TO TEL' 0243-773511 TLX: 86230 HB Electromcs Ltd. Lever Street Bolton BL3 6BS TEL: (0204) 386361 TLX: 63478 FAX: (0204) Macro-Marketing Ltd. Burnham Lane Slough, Berks TEL (06286) 4422 TLX: 847945 Semiconductor Specialists (UK) Ltd. Carroll House 159 High Street West Drayton Middlesex UB7 7XB TEL: (08954)445522/446415 TLX. 21958 YUGOSLAVIA Contact: Belram S.A. 83 Avenue des Mimosas 1150 Brussels, Belgium TEL: 734-33-32/734-26-19 TLX: 21790 SWEDEN Komponentbolaget NAXAB Box 4115 S-171-04 So Ina TEL. 08-985140 TLX: 17912 KDMP FAX: 08-7645451 Siliconix 8-7 Worldwide Sales Offices International Representatives/Distributors AUSTRALIA NSD Australia (A Division of HardieTrading Ltd.) 205 Middleborough Road Box Hill Victoria 3128 TEL: (03) 890-0970 TLX: M37857 BRAZIL Cosele Commerclo e Serviclos Electronicos Ltda. Rua da Consolacaco, 867 01310 Sao Paulo TEL: 255-1733 TLX: 1130869-CSEL-BR HONG KONG Array Electronics Ltd. Rm 2001 B Nam Fung Centre 264-298 Castle Peak Road Tseun Wan NT TEL: 0-424131 TLX: 37200 Array HK CABLE: ARRAYEL Atek Electronics Co. Ltd. RM.1302ArgyleCentre,Phasel 688 Nathan Road Mongkok Kowloon TEL: 3-916333/4 TWX: 37119 ATEK HX Century Electronic Products Co. Unitllll,ll/F,CenturyCentre 44-46 Hung To Rd. Kwun Tong Kowloon, Hong Kong TEL: 3-420101/2 TLX: 51226 CEPCO HX CABLE: CENTURYEPC CSD Central Systems Design Ltd. (for Gate Array Products) Onit 507-508 5/F Citicorp Glr. 18 Whitefield Rd. Causeway Bay Hong Kong TEL: 5-701181 TLX: 73990 CSDHX CABLE: 9994 HK FAX: 5-701354 Gibb, Livingston & Co. Ltd. Sungib Industrial Centre 53 Wong Chuk Hang Rd. Aberdeen, Hong Kong TEL: 5-558331 TLX: HX73470 CABLE: GIBB HONG KONG INDIA LATIN AMERICA Zenith Electronics 106, Millal Chambers Nariman Point Bombay 400021 TEL: 2029464 TLX: 2NTH Authorized U.S. Agent Fegu Electronics Inc. 2584 Wyandotte SI. Mtn. View, CA 94043 TEL: (415) 961-2380 TLX: 345599 ISRAEL Telsys Ltd. 12 Kehilat Venetsia SI. Tel Aviv TEL: (3) 494891 TLX: 032392 FAX: (3) 497407 INDONESIA Sinar Electnk Glodok Baru Blok C/120BB JL. Hayam Wuruk Jakarta-Barat Indonesia TEL: 623243 CABLE: LlONGKINYAMKO Intectra Inc. 2629 Terminal Blvd. Mt. View, CA 94043 TEL: (415) 967-8818 TLX: 345545 Intectra MNTV CABLE: INTECTRA MALAYSIA Carter Semiconductor (M) SON Berhad Jalan Lapangan Terbang, Ipon, Malaysia TEL: 514-033 TLX: MA44050 NEW ZEALAND S.T.C. (NZ) Ltd. P.O. Box 26064 10 Margot Street Epsom, Auckland 3 TEL: 500-019 TLX: NZ21888 PHILIPPINES Alexan Commercial 812 Elcano Street Binando Manila, Philippines TEL: 405-952 TLX: 27484 CEI PH SINGAPORE JAPAN Tomen Electronics Corporation 1-1 Uchisaiwai-Cho, 2-Chome Chiyoda-Ku, Tokyo 100 TEL: 81-3-506-3490 TLX: J-23548 KOREA A-Mee Trading Co., Ltd. Rm. 302 New Hanil Bldg. 156-1 Yumri-Dong Mapo-Ku Seoul TEL: 716-6883 TLX: 7176728 Carter Semiconductor (s) PTE Ltd. 07-03 Cuppage Centre 55 Cuppage Road Singapore 0922 R.O.S. TEL: 235-6653 TLX: 36443 CARSIN FAX: 7342449 SOUTH AFRICA Electrolink (PTY) Ltd. P.O. Box 1020 Capetown 8000 TEL: 215-350 Tlx, 527-7320 lAlWAN Don Business Corp. '6F, No. 33, Alley 24 Lane 251 Nanking East Road Sec. 5 Taipei, Taiwan TEL: 766-4515, 760-7801-3 TLX: 25641 DONBC CABLE: "DONBC" TAIPEI THAILAND Choakchai Electronic Supplies 128/22 Rhanon Atsadang BanQkok 2 Thailand TEL: 221-0432 TLX: 84809 CESLP T-H CABLE: SAHAPI PHAT Dynamic Supply Engineering R.O.P. 12 Soi Psana I Ekami Sukhumvit 63 Bangkok 10110 Thailand TEL: 392-8532 TLX: 8245 DYNASUP CABLE: DYNASUPPLY TURKEY TUrkelek Electronic Co. Ltd. Hatay Sokak No.8 Ankara TEL: (41) 18983 TLX: 42120 VENEZUELA P. Benavides S.R.L. Avilanas a Rio Edificio Rio Caribe, Local 9 Caracas TEL: 52-92-97 TLX: 21801 PBTH Buseok Electronics Rm. 423 Ga Yul Gm Dong Sewoon Sang GA Bldg. No. 116-4 Jangsa-Dong Chong Ro Ku Seoul R.O. Korea TEL: 265-5891 TLX: K28742 KPTRDCO Manufacturing Facilities lAlWAN Siliconix (Taiwan) Ltd Manlle Export Processing Zone Kaohsiung TEL: 3615101-4 TLX: 78571235 8-8 HONG KONG UNITED KINGDOM Siliconix \H.K.) Ltd. 5/6/7th Foors Liven House 61-63 King Yip Street Kwun Tong, Kowloon TEL: 3-427151 TLX: 4444951 LXHX Siliconix Ltd. Morriston, Swansea SA66NE TEL: (0792) 74681 TLX: 48191 FAX: (0792) 798401 Silicanix UNITED SlATES 2201 Laurelwood Road Santa Clara, CA 95054 TEL: (408) 988-8000 TLX: ~1 0-338-0227
Source Exif Data:
File Type : PDF File Type Extension : pdf MIME Type : application/pdf PDF Version : 1.3 Linearized : No XMP Toolkit : Adobe XMP Core 4.2.1-c041 52.342996, 2008/05/07-21:37:19 Create Date : 2017:06:29 16:27:25-08:00 Modify Date : 2017:06:29 17:13:36-07:00 Metadata Date : 2017:06:29 17:13:36-07:00 Producer : Adobe Acrobat 9.0 Paper Capture Plug-in Format : application/pdf Document ID : uuid:046f7f20-f7f8-944c-b89d-3c9ea6322750 Instance ID : uuid:c6fd0335-b06b-dc45-aa7a-d2cc2c619902 Page Layout : SinglePage Page Mode : UseNone Page Count : 374EXIF Metadata provided by EXIF.tools