1987_Fairchild_Linear_Data_Book 1987 Fairchild Linear Data Book

User Manual: 1987_Fairchild_Linear_Data_Book

Open the PDF directly: View PDF PDF.
Page Count: 1154

Download1987_Fairchild_Linear_Data_Book 1987 Fairchild Linear Data Book
Open PDF In BrowserView PDF
$9.95
F=AIRCHILD
A Schlumberger Company

1987

Linear Division

FAIRCHILD

Linear Data Book

A Schlumberger Company

1987 MAR 02
1987

Linear Division

Linear Division
313 Fairchild Drive. Mountain V_. CA 94043
(415) 962·4011 TWX MVLD

Introduction

The Linear Data Book includes the standard linear product
line plus our new Winchester Disk Drive circuits and
CLASIC™ standard cells. For ease of reference linear
products are organized by sections. For example, Operational Amplifiers, Voltage Regulators and Special Functions,
which includes Digital Signal Processing products such as
the pA212 Single Chip Modem.
Technical information and basic product specifications,
presented in data sheet form, include maximum ratings,
electrical characteristics, performance curves, and packaging information. For many products, typical applications and
test circuits are also included.
Package codes, included on each data sheet, indicate the
specific package(s) offered for the product. Detailed packaging information, listed by package code, is included in a
separate section. This section includes the new Surface
Mount Devices (SMD), such as the Small Outline integrated Circuit (SOIC) packages.
A section on Aerospace and Defense precedes the Hi-Rei
data sheets, which are organized in the same order as
Standard ReI. These data sheets indicate the conformance
to MIL-STD-883 and reference identical commercial data
sheets for more complete information.
Section 1 has an alpha-numeric product listing of all
Fairchild device numbers in the book. An explanation of
the part numbering system appears in the "Ordering Information" portion of Section 1. In addition, there is an industry cross reference keying Fairchild Linear Products to
direct replacement and function equivalents offered by major linear products manufacturers.
Other sections include information on Thermal Considerations and Quality. As added assistance, addresses and
phone numbers of worldwide Field Sales Offices and Authorized Distributors have been listed.
Information on any commercial or Hi-Rei linear product
may be obtained from a local sales office or by
contacting:
Fairchild Linear Products
Marketing Department MS 4-370
313 Fairchild Drive
Mt. View, CA. 94039
The specifications included in this data book are as current and correct as could reasonably be determined at
time of printing. Any errors noted by users, whether involving content or omissions can be directed to Linear Marketing at the above address.

iii

Table of Contents

Section 1

Alpha Numeric Index ......................... .1-3
Industry Cross Reference Guide ........ 1-11
Ordering Information ........................ 1·17

Section 7

Operational Amplifiers

MA101A, MA201A, MA301A ....................................7-3
MA101, MA201 .................................................. 7-11

Section 2

MA108/A, MA208/A, MA30B/A .............................. 7-14

Thermal Considerations ......................2-3

MA124, MA224, MA324, MA2902 ............................ 7-22

Section 3

MA1458, MA1558 ............................................... 7-27

Testing, Quality and Reliability ............ .3-3

MA 148, MA248, MA34B ........................................ 7-33
MA3303, MA3403, MA3503 ................................... 7-40

Section 4

CLASIC™ ......................................... .4-3

MA4136 ........................................................... 7-50
MA709 ............................................................ 7-58

Section 5

Disk Drives

MA714 ............................................................ 7-67

pA24H80 ...........................................................5-3

MA715 ............................................................ 7-80

MA2460, MA2461 .................................................5-5

MA725 ............................................................ 7-88

pA2470 ........................................................... 5-13

MA741 .......................................................... 7-100

pA248X, MA248XR Series ................................... 5-23

MA747 .......................................................... 7-109

MA2480 ........................................................... 5-33

MA748 .......................................................... 7-118

pA2490 ........................................................... 5-36

MA759, MA77000 ............................................. 7-128

MA2580 ........................................................... 5-51

MA771 .......................................................... 7-140
MA772 .......................................................... 7-148

Section 6

Voltage Regulators

MA774 .......................................................... 7-155

MA105, MA305, MA305A, MA376 .............................6-3

MA776 .......................................................... 7-162

MA117, MA217, MA317 ........................................ 6-10

MA798 .......................................................... 7-172

MA138, MA238, MA338 ........................................ 6-16
MA 150, MA250, MA350 ........................................ 6-23

Section 8

MA 1524A, MA2524A, MA3524A ............................. 6-36

Comparators

MA111, MA311 ....................................................8-3

MA431A .......................................................... 6-42

MA139, MA239, MA339, MA2901, MA3302 ................ 8-11

MA494 ............................................................ 6-48

MA6685 ........................................................... 8-21

MA723 ............................................................ 6-55

MA6687 ...................................................•....... 8-30

MA78G, MA79G ................................................. 6-63

MA685 ............................................................ 8-32

MA78LOO Series ................................................ 6-72

MA687, MA687A ................................................ 8-42

MA78MG, MA79MG ............................................ 6-81

MA710 ............................................................ 8-44

MA78MOO Series ............................................... 6-91

MA711 ............................................................ 8-51

MA78S40 ....................................................... 6-103

MA760 ............................................................ 8-56

MA7800 Series ................................................ 6-111
MA79MOO Series ............................................. 6-126

Section 9

MA7900 Series ................................................ 6-135

Interface

MA1488 ..................................•..........................9-3
MA1489, MA1489A ...............................................9-7
MA26LS31 ....................................................... 9-11

v

Table of Contents

Section 9

Interface (Cont.)

pA556 ................................ :; ........................ 11·28
pA592 .......................................................... 11·34

1AA26LS32 ....................................................... 9·14
pA3486 ........................................................... 9·17

pA733 .......................................................... 11·39

pA3467 ...............•............•.•..............·.............. 9·21

pA7392 ......................................................... 11-45

pA55107A, pA75107A, pA75107B, pA75108B ......... 9·25

FSP100 ......................................................... 11·51

pA55110A, pA75110A ........................................ 9-34

F2224, F2212 ................................................. 11·63

pA75150 ................................................... ;·..... 9·40

F30S54, F30S57 ............................................. 11-64

pA75154 .................................. ; .......•.............. 9-45

F30S64, F30S67 ............................................. 11·76

pA75450/60170 Series .........•.................•....•...... 9·52

F3054, F3057 ................................................. 11·89

pA75491, pA75492 ....................................... , .... 9·68

pAV22 ......................................................... 11·102

pA9614 ........................................................... 9·72

1AA212A, pA212AT .................... '...................... 11·103

pA9615 ........................................................... 9·79

pA212K ..................•.................................... 11·115

pA96172, pA96174 ............................................ 9-87
pA96173, pA96175 ............................................ 9·92

Section 12

Aerospece and Defense .................. 12·3

Section 13

HI-Rei Voltage Regulators

pA96176 ......................................................... 9·97
pA96177, pA96178 .......................................... 9·105
pA9636A ....................................................... 9·113

pA10SQB ........................................................ 13·3

pA9637A ....................................................... 9·118

pA109QB ........................................................ 13·7

pA9638 ......................................................... 9·122

pA117HQB .................................................... 13·11

pA9639A ....................................................... 9·126

pA117KQB .................................................... 13·15

pA9640 (1AA26S10) .......................................... 9·130

pA138QB ...................................................... 13-19

pA9643 ......................................................... 9·135

pA 150QB ...................................................... 13·20

pA9645 (pA3245) ............................................ 9·139

pA431QB ...................................................... 13·21

pA9665, pA9666, pA9667, pA9668 ..................... 9·143

pA494QB ...................................................... 13-22

pA9679 ......................................................... 9·149

,iA723QB ...................................................... 13-23
pA78M05QB .................................................. 13-27

Section 10

Data Acquisition

pA78M06QB .................................................. 13-31

DAC08 ............................................................ 10·3

pA78M08QB .................................................. 13·35

DAC1408/1508 Series ...................................... 10·12

pA78M12QB .................................................. 13-39

pA565........................................................... 10-17

,iA78M1SQB .................................................. 13-43

pA571 .......................................................... 10·25

pA78M24QB .................................................. 13·47

pA9650 ......................................................... 10·34

pA78S400B ................................................... 13·51
pA7805QB ..................................................... 13·55

SectIon 11

Special Functions

pA7812QB ..................................................... 13·59

1AA2240 .................................... , ...................... 11·3

pA7815QB ..................................................... 13·63

pA3046, pA3086 ............................................. 11·13

pA79M05QB .................................................. 13·67

pA3680 ......................................................... 11·19

pA79M08QB .................................................. 13·71

pA555 .......................................................... 11·22

pA79M12QB .................................................. 13·75

vi

Table of Contents

Section 13

Section 15

Hi-Rei Voltage Regulators (Cont.)

Hi-Rei Comparators

j.tA79M150B .................................................. 13-79

1/A1110B ........................................................ 15-3

j.tA79050B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 13-83

1/A1390B ........................................................ 15-7

j.tA79120B ..................................................... 13-87

1/A21110B ..................................................... 15-11

j.tA79150B ..................................................... 13-91

1/A7100B ...................................................... 15-15

j.tA 1524AOB ................................................... 13-95

1/A7110B ...................................................... 15-19

I/A7600B
Section 14

...................................................... 15-23

Hi-Rei Operational Amplifiers
Section 16

j.tA101AOB ...................................................... 14-3

Hi-Rei Interface

j.tA1010B ........................................................ 14-7

1/A55107AOB ................................................... 16-3

j.tA108AOB .................................................... 14-11

1/A55110AOB ................................................... 16-7

j.tA1080B ...................................................... 14-15

1/A55452BOB ................................................. 16-11

j.tA1100B ...................................................... 14-19

1/A96140B ....................................................• 16-15

j.tA1240B ...................................................... 14-23

1/A96150B ..................................................... 16-19

j.tA 1480B ...................................................... 14-27

1/A9616HOB ..................................................• 16-23

j.tA15580B ..................................................... 14-31

1/A96220B .................................•................... 16-27

j.tA2101AOB ................................................... 14-35

1/A96240B ...........•........................................• 16-31

j.tA21 01 OB ..................................................... 14-39

1/A96250B ..........................................•.......... 16-35

j.tA2108AOB ................................................... 14-43

j.tA96270B ..................................................... 16-39

j.tA21080B ..................................................... 14-47

1/A9636AOB ................................................... 16-43

j.tA41360B . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 14-51

1/A9637AOB ................................................... 16-47

j.tA7020B ...................................................... 14-55

1/A96380B .•................................................... 16-51

1/A709AOB .................................................... 14-59

1/A9639AOB ................................................... 16-55

1/A7090B ..............................•....................... 14-63

1/A96670B .•..............•.................................... 16-59

1/A7140B ...................................................... 14-67

1/A26LS310B ................................................. 16-63

1/A7150B ....................................•................. 14-71

1/A26LS320B ................................................. 16-64

1/A725AOB .................................................... 14-75
1/A7250B ....................................•................. 14-79

Section 17

1/A741AOB .................................................... 14-83

Hi-Rei Data Acquisition

1/A571S0B ...................................................... 17-3

1/A7410B ...................................................... 14-87
1/A747AOB .................................................... 14-91

Section 18

Hi-Rei Special Functions

1/A7470B ...................................................... 14-95

1/A30450B ....................................................... 18-3

1/A7590B ...................................................... 14-99

1/A5550B ........................................................ 18-7

1/A771BOB .................................................... 14-103

1/A7330B ...................................................... 18-11

j.tA772BOB ................................................... 14-107
1/A774BOB ................................................... 14-111

Section 19

Package Outlines ........................... 19-3

Section 20

Sales Offices and Distributors .......... 20-3

1/A7760B ..•.................................................. 14-115

vii

Alpha Numeric Index

FAIRCHILD
A Schlumberger Company

Device

Description

Page

Device

Description

Page

flA24H80FC
flA24H80RC
!lA24H80SC
!lA24H80TC
!lA26LS31DC
flA26LS31 DMQB
flA26LS31 LMQB
IlA26LS31PC
IlA26LS32DC
IlA26LS32DMQB
!lA26LS32LMQB
IlA26LS32PC
!lA78GU1C
IlA78L05ASC
IlA78L05AWC
!lA78L05AWV
IlA78L09AWC
IlA78L09AWV
IlA78L 12AWC
/lA78L 12AWV
/lA78L15AWC
/lA78L 15AWV
J.LA 78L62A WC
J.LA78L62AWV
/lA78L82AWC
J.LA78L82AWV
J.LA78M05HC
,uA78M05HM
/lA78M05HMQB
J.LA 78M05LMQB
,uA78M05UC
J.LA78M06HC
!lA78M06HM
IlA78M06HMQB
!lA78M06UC
!lA78M08HC
!lA78M08HM
!lA78M08HMQB
flA78M08UC
flA78M12HC
flA78M12HM
flA78M12HMQB
!lA78M12LMQB
!lA78M12UC
!lA78M15HC
IlA78M15HM
IlA78M15HMQB
IlA78M15LMQB
IlA78M15UC
IlA78M24HC
IlA78M24HM
!lA78M24HMQB
/lA78M24UC

Disk Drives
Disk Drives
Disk Drives
Disk Drives
Interface
Hi-Rei Interface
Hi-Rei Interface
Interface
Interface
Hi-Rei Interface
Hi-Rei Interface
Interface
Voltage Regulators
Voltage Regulators
Voltage Regulators
Voltage Regulators
Voltage Regulators
Voltage Regulators
Voltage Regulators
Voltage Regulators
Voltage Regulators
Voltage Regulators
Voltage Regulators
Voltage Regulators
Voltage Regulators
Voltage Regulators
Voltage Regulators
Voltage Regulators
Hi-Rei Voltage Regulators
Hi-Rei Voltage Regulators
Voltage Regulators
Voltage Regulators
Voltage Regulators
Hi-Rei Voltage Regulators
Voltage Regulators
Voltage Regulators
Voltage Regulators
Hi-Rei Voltage Regulators
Voltage Regulators
Voltage Regulators
Voltage Regulators
Hi-Rei Voltage Regulators
Hi-Rei Voltage Regulators
Voltage Regulators
Voltage Regulators
Voltage Regulators
Hi-Rei Voltage Regulators
Hi-Rei Voltage Regulators
Voltage Regulators
Voltage Regulators
Voltage Regulators
Hi-Rei Voltage Regulators
Voltage Regulators

5-3
5-3
5-3
5-3
9-11
16-63
16-63
9-11
9-14
16-64
16-64
9-14
6-63
6-72
6-72
6-72
6-72
6-72
6-72
6-72
6-72
6-72
6-72
6-72
6-72
6-72
6-91
6-91
13-27
13-27
6-91
6-91
6-91
13-31
6-91
6-91
6-91
13-35
6-91
6-91
6-91
13-39
13-39
6-91
6-91
6-91
13-43
13-43
6-91
6-91
6-91
13-47
6-91

flA78MGU1C
flA78S40DC
flA78S40DM
flA78S40DMQB
flA78S40PC
flA78S40PV
flA79GU1C
IlA79M05AHC
IlA79M05AUC
IlA79M05HM
IlA79M05HMQB
IlA79M05LMQB
!lA79M08AHC
IlA79M08AUC
IlA79M08HM
IlA79M08HMQB
IlA79M12AHC
IlA79M12AUC
IlA79M12HM
IlA79M12HMQB
IlA79M12LMQB
IlA79M15AHC
!lA79M15AUC
IlA79M15HM
IlA79M15HMQB
IlA79M15LMQB
IlA79MGU1C
IlA101ADMQB
IlA 101AFMQB
IlA101AHM
IlA101AHMQB
IlA101DMQB
IlA101FMQB
IlA101HM
IlA101HMQB
IlA105HM
IlA105HMQB
IlA 108ADMQB
IlA 108AFMQB
IlA108AHM
IlA 108AHMQB
!lA108DMQB
!lA108FMQB
IlA108HM
IlA108HMQB
!lA109HMQB
J.LA 109KMQB
!lA110HMQB
!lA111DMQB
IlA111FMQB
IlA111HM
!lA111HMQB
!lA111RMQB

Voltage Regulators
Voltage Regulators
Voltage Regulators
Hi-Rei Voltage Regulators
Voltage Regulators
Voltage Regulators
Voltage Regulators
Voltage Regulators
Voltage Regulators
Voltage Regulators
Hi-Rei Voltage Regulators
Hi-Rei Voltage Regulators
Voltage Regulators
Voltage Regulators
Voltage Regulators
Hi-Rei Voltage Regulators
Voltage Regulators
Voltage Regulators
Voltage Regulators
Hi-Rei Voltage Regulators
Hi-Rei Voltage Regulators
Voltage Regulators
Voltage Regulators
Voltage Regulators
Hi-Rei Voltage Regulators
Hi-Rei Voltage Regulators
Voltage Regulators
Hi-Rei Operational Amplifiers
Hi-Rei Operational Amplifiers
Operational Amplifiers
Hi-Rei Operational Amplifiers
Hi-Rei Operational Amplifiers
Hi-Rei Operational Amplifiers
Operational Amplifiers
Hi-Rei Operational Amplifiers
Voltage Regulators
Hi-Rei Voltage Regulators
Hi-Rei Operational Amplifiers
Hi-Rei Operational Amplifiers
Operational Amplifiers
Hi-Rei Operational Amplifiers
Hi-Rei Operational Amplifiers
Hi-Rei Operational Amplifiers
Operational Amplifiers
Hi-Rei Operational Amplifiers
Hi-Rei Voltage Regulators
Hi-Rei Voltage Regulators
Hi-Rei Operational Amplifiers
Hi-Rei Comparators
Hi-Rei Comparators
Comparators
Hi-Rei Comparators
Hi-Rei Comparators

6-81
6-103
6-103
13-51
6-103
6-103
6-63
6-126
6-126
6-126
13-67
13-67
6-126
6-126
6-126
13-71
6-126
6-126
6-126
13-75
13-75
6-126
6-126
6-126
13-79
13-79
6-81
14-3
14-3
7-3
14-3
14-7
14-7
7-11
14-7
6-3
13-3
14-11
14-11
7-14
14-11
14-15
14-15
7-14
14-15
13-7
13-7
14-19
15-3
15-3
8-3
15-3
15-3

1-3

Alpha Numeric Index

Device

Description

Page

Device

Description

Page

/lA117HMQB
/lA117KM
/lA117KMQB
/lA124DM
/lA124DMQB
/lA124FMQB
/lA124LMQB
/lA138KM
/lA138KMQB
/lA139DM
1.lA139DMQB
I.lA 139FMQB
I.lA 139LMQB
/lA148DM
/lA148DMQB
/lA150KM
/lA150KMQB
1.lA201AHV
1.lA201HC
1.lA201TC
1.lA208AHV
/lA208HV
1.lA212ADC
/lA212ADV
1.lA212APC
1.lA212ATDC
1.lA212ATDV
/lA212ATPC
/lA212ATQC
/lA217KV
/lA217UV
/lA224DV
/lA224PV
/lA238KV
1.lA239DV
1.lA239PV
1.lA239SV
1.lA248DV
1.lA248PV
1.lA250KV
1.lA301AHC
1.lA301ASC
1.lA301ATC
1.lA305AHC
1.lA305HC
/lA308AHC
/lA308ASC
1.lA308ATC
1.lA308HC
1.lA308SC
1.lA308TC
1.lA311HC
1.lA311SC

Hi-Rei Voltage Regulators
Voltage Regulators
Hi-Rei Voltage Regulators
Operational Amplifiers
Hi-Rei Operational Amplifiers
Hi-Rei Operational Amplifiers
Hi-Rei Operational Amplifiers
Voltage Regulators
Hi-Rei Voltage Regulators
Comparators
Hi-Rei Comparators
Hi-Rei Comparators
Hi-Rei Comparators
Operational Amplifiers
Hi-Rei Operational Amplifiers
Voltage Regulators
Hi-Rei Voltage Regulators
Operational Amplifiers
Operational Amplifiers
Operational Amplifiers
Operational Amplifiers
Operational Amplifiers
Special Functions
Special Functions
Special Functions
Special Functions
Special Functions
Special Functions
Special Functions
Voltage Regulators
Voltage Regulators
Operational Amplifiers
Operational Amplifiers
Voltage Regulators
Comparators
Comparators
Comparators
Operational Amplifiers
Operational Amplifiers
Voltage Regulators
Operational Amplifiers
Operational Amplifiers
Operational Amplifiers
Voltage Regulators
Voltage Regulators
Operational Amplifiers
Operational Amplifiers
Operational Amplifiers
Operational Amplifiers
Operational Amplifiers
Operational Amplifiers
Comparators
Comparators

13-11
6-10
13-15
7-22
14-23
14-23
14-23
6-16
13-19
8-11
15-7
15-7
15-7
7-33
14-27
6-23
13-20
7-3
7-11
7-11
7-14
7-14
11-103
11-103
11-103
11-103
11-103
11-103
11-103
6-10
6-10
7-22
7-22
6-16
8-11
8-11
8-11
7-33
7-33
6-23
7-3
7-3
7-3
6-3
6-3
7-14
7-14
7-14
7-14
7-14
7-14
8-3
8-3

/lA311TC
/lA317KC
/lA317UC
/lA324DC
/lA324PC
/lA324SC
/lA338KC
/lA338UC
/lA339DC
1.lA339PC
1.lA339SC
/lA348DC
1.lA348PC
1.lA350KC
1.lA350UC
1.lA376TC
1.lA431ASC
/lA431AWC
/lA431AWV
/lA431LMQB
/lA431RMQB
/lA494DC
/lA494DMQB
/lA494LMQB
/lA494PC
1.lA494PV
1.lA555HMQB
1.lA555RMQB
1.lA555SC
1.lA555TC
1.lA556PC
1.lA565JJC
1.lA565KJC
/lA565SJM
/lA565TJM
1.lA571JJC
/lA571KJC
/lA571SDMQB
/lA571SJM
/lA592DC
/lA592DM
1.lA592PC
1.lA592SC
1.lA592TC
/lA685DM
/lA685DV
/lA685HM
/lA685HV
1.lA685PV
1.lA685SV
1.lA687ADM
1.lA687ADV
/lA687APV

Comparators
Voltage Regulators
Voltage Regulators
Operational Amplifiers
Operational Amplifiers
Operational Amplifiers
Voltage Regulators
Voltage Regulators
Comparators
Comparators
Comparators
Operational Amplifiers
Operational Amplifiers
Voltage Regulators
Voltage Regulators
Voltage Regulators
Voltage Regulators
Voltage Regulators
Voltage Regulators
Hi-Rei Voltage Regulators
Hi-Rei Voltage Regulators
Voltage Regulators
Hi-Rei Voltage Regulators
Hi-Rei Voltage Regulators
Voltage Regulators
Voltage Regulators
Hi-Rei Special Functions
Hi-Rei Special Functions
Special Functions
Special Functions
Special Functions
Data Acquisition
Data Acquisition
Data Acquisition
Data Acquisition
Data Acquisition
Data Acquisition
Hi-Rei Data Acquisition
Data Acquisition
Special Functions
Special Functions
Special Functions
Special Functions
Special Functions
Comparators
Comparators
Comparators
Comparators
Comparators
Comparators
Comparators
Comparators
Comparators

8-3
6-10
6-10
7-22
7-22
7-22
6-16
6-16
8-11
8-11
8-11
7-33
7-33
6-23
6-23
6-3
6-42
6-42
6-42
13-21
13-21
6-48
13-22
13-22
6-48
6-48
18-7
18-7
11-22
11-22
11-28
10-17
10-17
10-17
10-17
10-25
10-25
17-3
10-25
11-34
11-34
11-34
11-34
11-34
8-32
8-32
8-32
8-32
8-32
8-32
8-42
8-42
8-42

1-4

Alpha Numeric Index

Device

Description

Page

Device

Description

Page

jlA687DM
jlA687DV
jlA687PV
jlA702DMQB
MA702FMQB
jlA702HMQB
MA709ADMQB
MA709AFMQB
MA709AHM
MA709AHMQB
jlA709DMQB
jlA709FMQB
jlA709HC
jlA709HM
jlA709HMQB
jlA709PC
jlA709SC
jlA709TC
jlA710DC
jlA710DM
jlA710DMQB
jlA710FMQB
jlA710HC
jlA710HM
jlA710HMQB
jlA710PC
jlA711DC
jlA711DM
jlA711DMQB
jlA711FMQB
jlA711HC
jlA711HM
jlA711HMQB
jlA711PC
jlA714AHM
jlA714EHC
jlA714HC
jlA714HM
jlA714HMQB
MA714LHC
jlA714LSC
jlA714LTC
jlA714SC
jlA714TC
jlA715HC
jlA715HM
jlA715DM
jlA715DC
jlA715HMQB
jlA723DC
jlA723DM
jlA723DMQB
jlA723HC

Comparators
Comparators
Comparators
Hi-Rei Operational Amplifiers
Hi-Rei Operational Amplifiers
Hi-Rei Operational Amplifiers
Hi-Rei Operational Amplifiers
Hi-Rei Operational Amplifiers
Operational Amplifiers
Hi-Rei Operational Amplifiers
Hi-Rei Operational Amplifiers
Hi-Rei Operational Amplifiers
Operational Amplifiers
Operational Amplifiers
Hi-Rei Operational Amplifiers
Operational Amplifiers
Operational Amplifiers
Operational Amplifiers
Comparators
Comparators
Hi-Rei Comparators
Hi-Rei Comparators
Comparators
Comparators
Hi-Rei Comparators
Comparators
Comparators
Comparators
Hi-Rei Comparators
Hi-Rei Comparators
Comparators
Comparators
Hi-Rei Operational Amplifiers
Comparators
Operational Amplifiers
Operational Amplifiers
Operational Amplifiers
Operational Amplifiers
Hi-Rei Operational Amplifiers
Operational Amplifiers
Operational Amplifiers
Operational Amplifiers
Operational Amplifiers
Operational Amplifiers
Operational Amplifiers
Operational Amplifiers
Operational Amplifiers
Operational Amplifiers
Hi-Rei Operational Amplifiers
Voltage Regulators
Voltage Regulators
Hi-Rei Voltage Regulators
Voltage Regulators

8-42
8-42
8-42
14-55
14-55
14-55
14-59
14-59
7-58
14-59
14-63
14-63
7-58
7-58
14-63
7-58
7-58
7-58
8-44
8-44
15-15
15-15
8-44
8-44
15-15
8-44
8-51
8-51
15-19
15-19
8-51
8-51
15-19
8-51
7-67
7-67
7-67
7-67
14-67
7-67
7-67
7-67
7-67
7-67
7-80
7-80
7-80
7-80
14-71
6-55
6-55
13-23
6-55

jlA723HM
jlA723HMQB
jlA723LMQB
jlA723PC
MA723SC
jlA725AHM
jlA725AHMQB
jlA725EHC
jlA725HC
MA725HM
jlA725HMQB
jlA725TC
MA733DC
jlA733DM
MA733DMQB
jlA733FMQB
jlA733HC
jlA733HM
MA733HMQB
MA733PC
jlA733SC
jlA741ADMQB
jlA741AFMQB
jlA741AHM
jlA741AHMQB

Voltage Regulators
Hi-Rei Voltage Regulators
Hi-Rei Voltage Regulators
Voltage Regulators
Voltage Regulators
Operational Amplifiers
Hi-Rei Operational Amplifiers
Operational Amplifiers
Operational Amplifiers
Operational Amplifiers
Hi-Rei Operational Amplifiers
Operational Amplifiers
Special Functions
Special Functions
Hi-Rei Special Functions
Hi-Rei Special Functions
Special Functions
Special Functions
Hi-Rei Special Functions
Special Functions
Special Functions
Hi-Rei Operational Amplifiers
Hi-Rei Operational Amplifiers
Operational Amplifiers
Hi-Rei Operational Amplifiers
Operational Amplifiers
Hi-Rei Operational Amplifiers
Hi-Rei Operational Amplifiers
Operational Amplifiers
Operational Amplifiers
Operational Amplifiers
Hi-Rei Operational Amplifiers
Operational Amplifiers
Operational Amplifiers
Hi-Rei Operational Amplifiers
Operational Amplifiers
Operational Amplifiers
Hi-Rei Operational Amplifiers
Operational Amplifiers
Operational Amplifiers
Operational Amplifiers
Hi-Rei Operational Amplifiers
Hi-Rei Operational Amplifiers
Operational Amplifiers
Hi-Rei Operational Amplifiers
Operational Amplifiers
Operational Amplifiers
Hi-Rei Operational Amplifiers
Operational. Amplifiers
Operational Amplifiers
Hi-Rei Operational Amplifiers
Operational Amplifiers
Operational Amplifiers

6-55
13-23
13-23
6-55
6-55
7-88
14-75
7-88
7-88
7-88
14-79
7-88
11-39
11-39
18-11
18-11
11-39
11-39
18-11
11-39
11-39
14-83
14-83
7-100
14-83
7-100
14-83
14-87
7-100
7-100
7-100
14-87
7-100
7-100
14-87
7-100
7-100
14-87
7-100
7-100
7-109
14-91
14-91
7-109
14-91
7-109
7-109
14-95
7-109
7-109
14-95
7-109
7-109

jlA741 ARM
jlA741ARMQB
jlA741DMQB
jlA741EHC
jlA741ERC

jlA741 ETC
jlA741FMQB
jlA741HC
jlA741HM
jlA741HMQB
jlA741RC
jlA741RM
jlA741RMQB
jlA741SC
jlA741TC
jlA747ADM
jlA747ADMQB
jlA747AFMQB
jlA747AHM
jlA747AHMQB
jlA747DC
jlA747DM
MA747DMQB
jlA747EDC
jlA747EHC
jlA747FMQB
MA747HC
MA747HM

1-5
---------.~

Alpha Numeric Index

Device

Description

Page

Device

Description

Page

pA747HMQB
pA747PC
pA747SC
pA748HC
pA748HM
pA748RC
pA748SC
pA748TC
pA759HC
pA759HM
pA759HMQB
pA759U1C
pA760DC
pA760DM
pA760DMQB
pA760HC
pA760HM
pA760HMQB
pA760RC
pA760RM
pA771ARC
pA771ARM
pA771ASC
pA771ATC
pA771BHMQB
pA771BRC
pA771BRM
pA771BRMQB
pA771BSC
pA771BTC
pA771LRC
pA771LSC
pA771LTC
pA771RC
pA771SC
pA771TC
pA772ARC
pA772ARM
pA772ASC
pA772ATC
pA772BHMQB
pA772BRC
pA772BRM
pA772BRMQB
pA772BSC
pA772BTC
pA772LRC
pA772LSC
pA772LTC
pA772RC
pA772SC
pA772TC
pA774BDC

Hi-Rei Operational Amplifiers
Operational Amplifiers
Operational Amplifiers
Operational Amplifiers
Operational Amplifiers
Operational Amplifiers
Operational Amplifiers
Operational Amplifiers
Operational Amplifiers
Operational Amplifiers
Hi-Rei Operational Amplifiers
Operational Amplifiers
Comparators
Comparators
Hi-Rei .Comparators
Comparators
Comparators
Hi-Rei Comparators
Comparators
Comparators
Operational Amplifiers
Operational Amplifiers
Operational Amplifiers
Operational Amplifiers
Hi-Rei Operational Amplifiers
Operational Amplifiers
Operational Amplifiers
Hi-Rei Operational Amplifiers
Operational Amplifiers
Operational Amplifiers
Operational Amplifiers
Operational Amplifiers
Operational Amplifiers
Operational Amplifiers
Operational Amplifiers
Operational Amplifiers
Operational Amplifiers
Operational Amplifiers
Operational Amplifiers
Operational Amplifiers
Hi-Rei Operational Amplifiers
Operational Amplifiers
Operational Amplifiers
Hi-Rei Operational Amplifiers
Operational Amplifiers
Operational Amplifiers
Operational Amplifiers
Operational Amplifiers
Operational Amplifiers
Operational Amplifiers
Operational AmplifierS
Operational Amplifiers
Operational Amplifiers

14-95
7-109
7-109
7-118
7-118
7-118
7-118
7-118
7-128
7-128
14-99
7-128
8-56
8-56
15-23
8-56
8-56
15-23
8-56
8-56
7-140
7-140
7-140
7-140
14-103
7-140
7-140
14-103
7-140
7-140
7-140
7-140
7-140
7-140
7-140
7-140
7-148
7-148
7-148
7-148
14-107
7-148
7-148
14-107
7-148
7-148
7-148
7-148
7-148
7-148
7-148
7-148
7-155

pA774BDM
pA774BDMQB
pA774BPC
pA774DC
pA774DM
pA774LDC
pA774LPC
pA774PC
pA774SC
pA776HC
pA776HM
pA776HMQB
pA776TC
pA798SC
pA798TC
pA1458CHC
pA1458CRC
pA1458CTC
pA1458HC
pA1458RC
pA1458SC
pA1458TC
pA1488DC
pA1488PC
pA1488SC
pA1489ADC
pA1489APC
pA1489DC
pA1489PC
pA1489SC
pA1524ADM
pA 1524ADMQB
pA1558HM
pA1558HMQB
pA1558RM
pA1558RMQB
pA2101ADMQB
pA2101DMQB
pA2108ADMQB
pA2108DMQB
pA2111DMQB
F2212DC
F2212PC
F2212QC
F2224DC
F2224PC
F2224QC
pA2240DC
pA2240PC
pA2460DC
pA2460QC
pA2461DC
pA2461QC

Operational Amplifiers
Hi-Rei Operational Amplifiers
Operational Amplifiers
Operational Amplifiers
Operational Amplifiers
Operational Amplifiers
Operational Amplifiers
Operational Amplifiers
Operational Amplifiers
Operational Amplifiers
Operational Amplifiers
Hi-Rei Operational Amplifiers
Operational Amplifiers
Operational Amplifiers
Operational Amplifiers
Operational Amplifiers
Operational Amplifiers
Operational Amplifiers
Operational Amplifiers
Operational Amplifiers
Operational Amplifiers
Operational Amplifiers
Interface
Interface
Interface
Interface
Interface
Interface
Interface
Interface
Voltage Regulators
Hi-Rei Voltage Regulators
Operational Amplifiers
Hi-Rei Operational Amplifiers
Operational Amplifiers
Hi-Rei Operational Amplifiers
Hi-Rei Operational Amplifiers
Hi-Rei Operational Amplifiers
Hi-Rei Operational Amplifiers
Hi-Rei Operational Amplifiers
Hi-Rei Comparators
Special Functions
Special Functions
Special Functions
Special Functions
Special Functions
Special Functions
Special Functions
Special Functions
Disk Drives
Disk Drives
Disk Drives
Disk Drives

7-155
14-111
7-155
7-155
7-155
7-155
7-155
7-155
7-155
7-162
7-162
14-115
7-162
7-172
7-172
7-27
7-27
7-27
7-27
7-27
7-27
7-27
9-3
9-3
9-3
9-7
9-7
9-7
9-7
9-7
6-36
13-95
7-27
14-31
7-27
14-31
14-35
14-39
14-43
14-47
15-11
11-63
11-63
11-63
11-63
11-63
11-63
11-3
11-3
5-5
5-5
5-5
5-5

1-6

•

Alpha Numeric Index

Device

Description

Page

Device

Description

Page

IlA2470DC
IlA2480FC
/lA2480TC
/lA2482DC
IlA2482RDC
/lA2484DC
/lA2484FC
/lA2484GC
/lA2484RDC
/lA2484RFC
/lA2484RGC
/lA2485DC
/lA2485FC
/lA2485GC
/lA2485RDC
/lA2485RFC
/lA2485RGC
/lA2486DC
/lA2486QC
/lA2486RDC
/lA2486RQC
/lA2488GC
/lA2488QC
/lA2488RGC
/lA2488RQC
/lA2490DC
/lA249OQC
/lA2524ADV
/lA2524APV
/lA2580DC
/lA2580FC
!lA2580SC
/lA2901DV
/lA2901PV
/lA2902PV
/lA3045DMQB
/lA3046PC
/lA3046SC
/lA3086DV
/lA3086PV
/lA3086SV
/lA3302DV
/lA3302PV
/lA3302SV
/lA3303DV
/lA3303PV
/lA3403DC
/lA3403PC
/lA3403SC
IlA3486DC
/lA3486PC
/lA3487DC
/lA3487PC

Disk Drives
Disk Drives
Disk Drives
Disk Drives
Disk Drives
Disk Drives
Disk Drives
Disk Drives
Disk Drives
Disk Drives
Disk Drives
Disk Drives
Disk Drives
Disk Drives
Disk Drives
Disk Drives
Disk Drives
Disk Drives
Disk Drives
Disk Drives
Disk Drives
Disk Drives
Disk Drives
Disk Drives
Disk Drives
Disk Drives
Disk Drives
Voltage Regulators
Voltage Regulators
Disk Drives
Disk Drives
Disk Drives
Comparators
Comparators
Operational Amplifiers
Hi-Rei Special Functions
Special Functions
Special Functions
Special Functions
Special Functions
Special Functions
Comparators
Comparators
Comparators
Operational Amplifiers
Operational Amplifiers
Operational Amplifiers
Operational Amplifiers
Operational Amplifiers
Interface
Interface
Interface
Interface

5-13
5-33
5-33
5-24
5-24
5-24
5-24
5-23
5-24
5-24
5-23
5-24
5-25
5-25
5-24
5-25
5-25
5-25
5-25
5-25
5-25
5-26
5-26
5-26
5-26
5-36
5-37
6-36
6-36
5-51
5-51
5-51
8-11
8-11
7-22
18-3
11-13
11-13
11-13
11-13
11-13
8-11
8-11
8-11
7-40
7-40
7-40
7-40
7-40
9-17
9-17
9-21
9-21

/lA3503DM
/lA3524ADC
/lA3524APC
/lA3680DV
/lA3680PV
/lA3680SV
/lA4136DC
/lA4136DMQB
/lA4136PC
/lA4136SC
/lA6685DM
/lA6685DV
/lA6685HM
/lA6685HV
/lA6685PV
/lA6685SV
/lA6687DM
/lA6687DV
/lA6687PV
/lA7392DV
/lA7392PV
/lA7805KC
/lA7805KM
/lA7805KMQB
/lA7805UC2
/lA7805UC
/lA7806KC
/lA7806KM
/lA7806UC
/lA7808KC
/lA7808KM
/lA7808UC
/lA7812KC
/lA7812KM
/lA7812KMQB
/lA7812UC2
/lA7812UC
/lA7815KC
/lA7815KM
/lA7815KMQB
/lA7815UC
/lA7818KC
/lA7818KM
/lA7818UC
/lA7824KC
/lA7824KM
/lA7824UC
/lA7885UC
/lA7905KC
/lA7905KM
/lA7905KMQB
/lA7905UC
/lA7908KC

Operational Amplifiers
Voltage Regulators
Voltage Regulators
Special Functions
Special Functions
Special Functions
Operational Amplifiers
Hi-Rei Operational Amplifiers
Operational Amplifiers
Operational Amplifiers
Comparators
Comparators
Comparators
Comparators
Comparators
Comparators
Comparators
Comparators
Comparators
Special Functions
Special Functions
Voltage Regulators
Voltage Regulators
Hi-Rei Voltage Regulators
Voltage Regulators
Voltage Regulators
Voltage Regulators
Voltage Regulators
Voltage Regulators
Voltage Regulators
Voltage Regulators
Voltage Regulators
Voltage Regulators
Voltage Regulators
Hi-Rei Voltage Regulators
Voltage Regulators
Voltage Regulators
Voltage Regulators
Voltage Regulators
Hi-Rei Voltage Regulators
Voltage Regulators
Voltage Regulators
Voltage Regulators
Voltage Regulators
Voltage Regulators
Voltage Regulators
Voltage Regulators
Voltage Regulators
Voltage Regulators
Voltage Regulators
Hi-Rei Voltage Regulators
Voltage Regulators
Voltage Regulators

7-40
6-36
6-36
11-19
11-19
11-19
7-50
14-51
7-50
7-50
8-21
8-21
8-21
8-21
8-21
8-21
8-30
8-30
8-30
11-45
11-45
6-111
6-111
13-55
6-111
6-111
6-111
6-111
6-111
6-111
6-111
6-111
6-111
6-111
13-59
6-111
6-111
6-111
6-111
13-63
6-111
6-111
6-111
6-111
6-111
6-111
6-111
6-111
6-135
6-135
13-83
6-135
6-135

1-7

Alpha Numeric Index

Device

Description

pA7908KM
Voltage Regulators
pA7908UC
Voltage Regulators
IlA7912KC
Voltage Regulators
pA7912KM
Voltage Regulators
pA7912KMQB
Hi-Rei Voltage Regulators
pA7912UC
Voltage Regulators
pA7915KC
Voltage Regulators
pA7915KM
Voltage Regulators
pA7915KMQB
Hi-Rei Voltage Regulators
pA7915UC
Voltage Regulators
pA9614DC
Interface
pA9614DM
Interface
pA9614DMQB
Hi-Rei Interface
pA9614FMQB
Hi-Rei .Interface
1lA9614LMQB
Hi-Rei Interface
pA9614PC
Interface
pA9615DC
Interface
pA9615DM
Interface
pA9615DMQB
Hi-Rei Interface
pA9615FMQB
Hi-Rei Interface
pA9615LMQB
Hi-Rei Interface
pA9615PC
Interface
pA9616HDMQB Hi-Rei Interface
pA9616HLMQB Hi-Rei Interface
pA9622DMQB
Hi-Rei Interface
pA9622FMQB
Hi-Rei Interface
pA9622LMQB
Hi-Rei Interface
pA9624DMQB
Hi-Rei Interface
pA9624FMQB
Hi-Rei .Interface
pA9625DMQB
Hi-Rei Interface
pA9625FMQB
Hi-Rei Interface
pA9627DMQB
Hi-Rei Interface
pA9636ARC
Interface
pA9636ARM
Interface
pA9636ARMQB Hi-Rei Interface
pA9636ATC
Interface
pA9637ARC
Interface
pA9637ARM
Interface
IlA9637ARMQB Hi-Rei Interface
pA9637ASC
Interface
pA9637ATC
Interface
pA9638RC
Interface
pA9638RM
Interface
pA9638RMQB
Hi-Rei Interface
pA9638SC
Interface
pA9638TC
Interface
pA9639ARMQB Hi-Rei Interface
pA9639ATC
Interface
1lA9640DC(26S10) Interface
1lA9640DM(26S10) Interface
IlA9640PC(26S10) Interface
1lA9643TC
Interface
pA9645DC(3245) Interface

Page

Device

Description

Page

6-135
6-135
6-135
6-135
13-87
6'135
6-135
6-135
13-91
6-135
9-72
9-72
16-15
16-15
16-15
9-72
9-79
9-79
16-19
16-19
16-19
9-79
16-23
16-23
16-27
16-27
16-27
16-31
16-31
16-35
16-35
16-39
9-113
9-113
16-43
9-113
9-118
9-118
16-47
9-118
9-118
9-122
9-122
16-51
9-122
9-122
16-55
9-126
9-130
9-130
9-130
9-135
9-139

pA9645PC(3245)
pA9665DC
pA9665PC
pA9666DC
pA9666DM
pA9666PC
pA9667DC
pA9667DM
pA9667DMQB
1lA9667PC
IlA9668DC
1lA9668DM
pA9668PC
1lA9679TC
IlA55107ADM
pA55107ADMQB
1lA55110ADM
1lA55110ADMQB
1lA55452BRMQB
pA75107ADC
pA75107APC
1lA75107ASC
pA75107BDC
pA75107BPC
pA75107BSC
pA75108BPC
pA75108BSC
1lA75110ADC
pA75110APC
1lA75110ASC
pA751SOPC
pA75150RC
pA75150SC
pA75150TC
pA75154DC
pA75154PC
pA75450DC
pA75450PC
1lA75451RC
pA7S451SC
pA75451TC
1lA75452SC
pA75452TC
pA75453RC
pA75453SC
pA75453TC
pA75461TC
pA75462TC
pA75471TC
pA75472TC

Interface
Interface
Interface
Interface
Interface
Interface
Interface
Interface
Hi-Rei Interface
Interface
Interface
Interface
Interface
Interface
Interface
Hi-Rei Interface
Interface
Hi-Rei Interface
Hi-Rei Interface
Interface
Interface
Interface
Interface
Interface
Interface
Interface
Interface
Interface
Interface
Interface
Interface
Interface
Interface
Interface
Interface
Interface
Interface
Interface
Interface
Interface
Interface
Interface
Interface
Interface
Interface
Interface
Interface
Interface
Interface
Interface
Interface
Interface
Operational Amplifiers

9-139
9-143
9-143
9-143
9-143
9-143
9-143
9-143
16-59
9-143
9-143
9-143
9-143
9-149
9-25
16-3
9-34
16-7
16-11
9-25
9-25
9-25
9-25
9-25
9-25
9-25
9-25
9-34
9-34
9-34
9-40
9-40
9-40
9-40
9-45
9-45
9-53
9-53
9-56
9-56
9-56
9-59
9-59
9-62
9-62
9-62
9-56
9-59
9-56
9-59
9-68
9-68
7-128

pA75491PC
1lA75492PC
1lA77000U1C

1-8

•

Alpha Numeric Index

Device

Description

Page

Device

Description

/lA96172DC
/lA96172PC
/lA96173DC
/lA96173PC
/lA96174DC
/lA96174PC
/lA96175DC
/lA96175PC
/lA96176RC
/lA96176TC
/lA96177RC
/lA96177TC
/lA96178RC
/lA96178TC
/lA96501DC
/lA96502DC
/lA96503DC
/lAV22DC
/lAV22PC
/lAV22QC
DAC08CDC
DAC08CPC
DAC08DM
DAC08EDC
DAC08EPC
DAC1408ADC
DAC1408APC
DAC1408BDC
DAC1408BPC
DAC1408CDC
DAC1408CPC
DAC1508DM
F30S54DC
F30S57DC
F30S64DC
F30S67DC

Interface
Interface
Interface
Interface
Interface
Interface
Interface
Interface
Interface
Interface
Interface
Interface
Interface
Interface
Data Acquisition
Data Acquisition
Data Acquisition
Special Functions
Special Functions
Special Functions
Data Acquisition
Data Acquisition
Data Acquisition
Data Acquisition
Data Acquisition
Data Acquisition
Data Acquisition
Data Acquisition
Data Acquisition
Data Acquisition
Data Acquisition
Data Acquisition
Special Functions
Special Functions
Special Functions
Special Functions

9-87
9-87
9-92
9-92
9-87
9-87
9-92
9-92
9-97
9-97
9-105
9-105
9-105
9-105
10-34
10-34
10-34
11-102
11-102
11-102
10-3
10-3
10-3
10-3
10-3
10-12
10-12
10-12
10-12
10-12
10-12
10-12
11-64
11-64
11-76
11-76

F3054DC
F3057DC
FSP100DC
FSP100LC
10101
10102
10103
10104
10108
10201
10304
10403
10404
10701
10702
10703
10704
10706
10707
10708
10802
10901
11001
11004
11005
11201
11301
11302
11305
11501
11502
11503
11505
11506
11507

11-89
Special Functions
Special Functions
11-89
Special Functions
11-51
Special Functions
11-51
JAN Hi-Rei Operational Amplifiers14-83
JAN Hi-Rei Operational Amplifiers14-91
JAN Hi-Rei Operational Amplifiers14-3
JAN Hi-Rei Operational Amplifiers 14-11
JAN Hi-Rei Operational Amplifiers14-31
JAN Hi-Rei Voltage Regulators 13-23
JAN Hi-Rei Comparators
15-3
JAN Hi-Rei Interface
16-15
JAN Hi-Rei Interface
16-19
JAN Hi-Rei Voltage Regulators 13-7
JAN Hi-Rei Voltage Regulators 13-27
JAN Hi-Rei Voltage Regulators 13-39
JAN Hi-Rei Voltage Regulators 13-43
JAN Hi-Rei Voltage Regulators 13-55
JAN Hi-Rei Voltage Regulators 13-59
JAN Hi-Rei Voltage Regulators 13-63
JAN Hi-Rei Special Functions
18-3
JAN Hi-Rei Special Functions
18-7
JAN Hi-Rei Operational Amplifiers14-27
JAN Hi-Rei Operational Amplifiers14-51
JAN Hi-Rei Operational Amplifiers14-23
JAN Hi-Rei Comparators
15-7
JAN Hi-Rei Comparators
15-15
JAN Hi-Rei Comparators
15-19
JAN Hi-Rei Comparators
15-11
JAN Hi-Rei Voltage Regulators 13-67
JAN Hi-Rei Voltage Regulators 13-75
JAN Hi-Rei Voltage Regulators 13-79
JAN Hi-Rei Voltage Regulators 13-83
JAN Hi-Rei Voltage Regulators 13-87
JAN Hi-Rei Voltage Regulators 13-91

1-9

Page

Industry
Cross Reference Guide

F=AIRCHILO
A Schlumberger Company

Part
Number

Fairchild
Equivalent

AMD
715DC
715HC
715DM
715HM
723DC
723DM
723HC
723HM
723PC
725HC
725HM
733DC
733DM
733HC
733HM
741FM
741HC
741HM
741AFM
741AHM
741EHC
747DC
747DM
747HC
747HM
747PC
747ADM
747AHM
747EDC
747EHC
748HC
74BHM
AM1408L6
AM1408L7
AM1408LB
AM1508L8
AM26LS31DM
AM26LS31PC
AM26LS31DC
AM26LS32DC
AM26LS32PC
AM6685DL
AM6685DM
AM66B5HL
AM6685HM
AM6685LL
AM6687DL
AM6687DM

pA715DC
pA715HC
pA715DM
pA715HM
pA723DC
pA723DM
pA723HC
IlA723HM
pA723PC
pA725HC
pA725HM
IlA733DC
pA733DM
pA733HC
IlA733HM
pA741FM
pA741HC
pA741HM
pA741AFM
pA741AHM
pA741EHC
pA747DC
pA747DM
pA747HC
pA747HM
pA747PC
pA747ADM
pA747AHM
IlA747EDC
pA747EHC
pA74BHC
IlA74BHM
DAC1408ADC
DAC1408BDC
DAC140BCDC
DAC1508DM
pA26LS31DM
pA26LS31PC
pA26LS31DC
pA26LS32DC
pA26LS32PC
pA6685DV
IlA66B5DM
pA6685HV
pA6685HM
pA66B5SV
pA6687DV
pA6687DM

Part
Number

Fairchild
Equivalent

AMD (Cont.)
AM6B5DL
AM6B5DM
AM6B5HL
AM6B5HM
AM6B5LL
AM6B7DL
AM6B7DL
AM6B7DM
DAC-08CQ
DAC-OBEQ
LM101H
LM101AH
LM105H
LM108AH
LMlllH
LM124D
LM139D
LM201H
LM201AH
LM20BAH
LM224D
LM301AH
MC14BBL
MC14B9L
SN75107BJ
SN75107BN
SN75110J
SN75110N
SN75450BJ
SN75450BN

pA6B5DV
pA6B5DM
pA6B5HV
pA6B5HM
pA6B5SV
pA6B7DM
pA6B7DV
pA6B7DM
DACOBCDC
DAC08EDC
pAl01HM
pAl01AHM
pAl05HM
IlAl0BAHM
pAlllHM
pA124DM
pA139DM
pA201HC
pA201AHV
pA20BAHV
pA224DV
pA301AHC
pA14BBSC
pA14B9SC
pA75107BDC
pA75107BPC
IlA75110DC
pA75110PC
IlA75450BDC
pA75450BPC

INTERSIL
ICL10BLNTY
ICL741CHSPA
ICL741 MHSTY
LM101AH
LM105H
LM10BH
LM10BAH
LMlllH
LM124J
LM301AH
LM301AN
LM305H
LM308H
LM308AH
LM30BAN
NE555N

pAl0BHM
IlA741TC
pA741HM
pAl01AHM
pAl05HM
pAl0BHM
pAl08AHM
pAlllHM
pA124DM
pA301AHC
pA301ATC
pA305HC
pA30BHC
pA30BAHC
IlA30BATC
pA555TC

*Note
Not exact package replacement

1-11

Part
Number
INTERSIL (Cont.)
NE556N
pA723DC
pA723DM
pA723HC
pA723HM
pA723PC
pA733HC
pA733HM
pA741FM
pA741HC
pA741HM
pA741TC
pA74BHC
pA74BHM
pA74BTC
. MOTOROLA
AM26LS31DC
AM26LS31PC
AM26LS32DC
AM26LS32PC
DACOBEP
DACOBPC
LM101AH
LM105HM
LM108H
LM10BAH
LMlllH
LMlllJ-B
LMl17K
LM124J
LM139J
LM201AH
LM20BAH
LM217K
LM224J
LM239J
LM301AH
LM301AN
LM30BAH
LM30BAN
LM311H
LM311J-8
LM311N
LM317K
LM317T
LM324J
LM339J

Fairchild
Equivalent

pA556PC
pA723DC
pA723DM
pA723HC
pA723HM
pA723PC
pA733HC
pA733HM
pA741FM
pA741HC
pA741HM
pA741TC
pA748HC
pA74BHM
pA748TC

pA26LS31DC
IlA26LS31PC
pA26LS32DC
pA26LS32PC
DAC08EPC
DAC08CPC
pAl01AHM
pAl05HM
pAl08HM
pAl08AHM
IlAll1HM
pAl11RM
pA117KM
pA124DM
pA139DM
pA201AHV
pA208AHM
IlA217UV
pA224DV
IlA239DC
pA301AHC
IlA301ATC
pA308AHC
pA308ATC
IlA311HC
pA311RC
IlA311TC
pA317KC
pA317UC
IlA324DC
IlA339DC

•

Industry
Cross Reference Guide

Part
Number

Fairchild
Equivalent

MOTOROLA (Cont.)
LM348J
MA348 DC
LM348N
MA348PC
LM350K
MA350KC
LM350T
MA350UC
LM710CH
MA710HC
LM711CH
MA711HC
LM723CH
MA723HC
LM723CJ
MA723DC
LM741CH
MA741HC
LM741CN
MA741TC
LM2901N
MA2901PC
MC1408L7
DAC1408EDC
MC1408L8
DAC1408ADC
DAC1408CPC
MC1408P6
MC1408P7
DAC1408BPC
MC1408P8
DAC1408APC
MC1411P
MA9665PC
MC1412P
MA9666PC
MC1413P
MA9667PC
MC1416P
MA9668PC
p.A555TC
MC1455P1
MC1458CG
p.A1458CHC
MC1458CP1
MA1458CTC
MC1458CU
p.A1458CRC
MC1458G
MA1458HC
MC1458P1
MA1458TC
MC1458U
MA1458RC
MC1488L
MA1488DC
MC1488P
MA1488PC
MC1489L
MA1489DC
MC1489P
MA1489PC
MC1489AL
p.A1489ADC
MC1489AP
MA1489APC
DAC1508DM
MC1508L8
MC1558G
MA1558HM
MC1558U
MA1558RM
MC1709AG
MA709AHM
MC1709CP1
MA709TC
MC1709CP2
MA709PC
MC1709G
p.A709HM
MC1710CG
p.A710HC
MC1710CL
MA710DC
MC1710CP
MA710PC
MC1710G
MA710HM
MC1710L
MA710DM
MC1711CG
MA711HC
MC1711CL
MA711DC
MC1711CP
p.A711PC

Part
Number

Fairchild
Equivalent

MOTOROLA (Cont.)
MC1711G
MC1711 L
MC1723CG
MC1723CL
MC1723CP
MC1723G
MC1723L
MC1733G
MC1733L
MC1733CG
MC1733CL
MC1741CG
MC1741CP1
MC1741CU
MC1741G
MC1747CG
MC1747CL
MC1747CP2
MC1747G
MC1747L
MC1748CG
MC1748CP1
MC1748G
MC1776CG
MC1776CP1
MC1776G
MC3303P
MC3386P
MC3403L
MC3403P
MC3440AP
MC3443P
MC3456P
MC3458P1
MC3486CL
MC3486CN
MC3487CL
MC3487CN
MC3488AP
MC3558U
MC55107L
MC685B
MC75107L
MC75107P
MC75108CL
MC75108CP
MC75491P
MC75492P

p.A711HM
p.A711DM
MA723HC
MA723DC
p.A723PC
MA723HM
MA723DM
MA733HM
MA733DM
MA733HC
p.A733DC
p.A741HC
p.A741TC
p.A741RC
MA741HM
MA747HC
MA747DC
MA747PC
MA747HM
p.A747DM
MA748HC
p.A748TC
p.A748HM
MA776HC
MA776TC
p.A776HM
MA3303PV
MA3086PC
p.A3403DC
MA3403PC
p.A9640PC
MA9640PC
p.A556PC
MA798TC
p.A3486DC
p.A3486PC
MA3487DC
MA3487PC
p.A9636AT
p.A798TC
MA55107ADM
MA685HM
MA75107ADC
p.A75107APC
MA75108ADC
MA75108BPC
MA75491PC
p.A75492PC

·Note
Not exact package replacement

1-12

Part
Number

Fairchild
Equivalent

MOTOROLA (Cont.)
MC7805K
MC7805CK
MC7805CT
MC7812K
MC7812CK
MC7812CT
MC7815K
MC7815CK
MC7815CT
MC7818K
MC7818CK
MC7818CT
MC7824K
MC7824CK
MC7824CT
MC78L05ACP
MC78L12ACP
MC78L15ACP
MC78M05CG
MC78M05CT
MC78M06CG
MC78M06CT
MC78M08CG
MC78M08CT
MC78M12CG
MC78M12CT
MC78M15CT
MC78M24CT
MC7905CK
MC7905CT
MC7908CK
MC7908CT
MC7912CK
MC7912CT
MC7915CK
MC7915CT
NE592N
SE592F
SN75451BP
SN75452BP
SN75453BP
TL431CLP
TL494CJ
TL494CN
MA710HC
MA711HC
MA723DC
p.A723HC

MA7805KM
MA7805KC
MA7805UC
MA7812KM
MA7812KC
MA7812UC
MA7815KM
p.A7815KC
MA7815UC
p.A7818KM
p.A7818KC
p.A7818UC
p.A7824KM
MA7824KC
MA7824UC
MA78L05AWC
MA78L12AWC
MA78L15AWC
p.A78M05HC
p.A78M05UC
MA78M06HC
MA78M06UC
MA78M08HC
MA78M08UC
p.A78M12HC
p.A78M12UC
MA78M15UC
MA78M24UC
MA7905KC
MA7905UC
MA7908KC
p.A7908UC
p.A7912KC
MA7912UC
MA7915KC
p.A7915UC
MA592PC
MA592DM
p.A75451BTC
MA75452BTC
MA75453BTC
MA4131AWC
p.A494DC
p.A494PC
p.A710HC
p.A711 HC
MA723DC
MA723HC

Industry
Cross Reference Guide

Part
Number

Fairchild
Equivalent

MOTOROLA (Con!.)
IlA723PC
IlA723PC
IlA741HC
IlA741 HC
IlA741TC
1lA741TC
NATIONAL
COP431I
C0494M
DS1488J
DS1488N
DS1489AJ
DS1489AN
DS1489J
DS1489N
DS26LS31C
DS26LS31M
DS26LS32C
DS26LS32M
DS3486J
DS3486N
DS75107J
DS75107N
DS75108J
DS75108N
DS75150J-8
DS75150N
DS75154J
DS75154N
DS75450J
DS75450N
DS75491N
LF351A
LF351B
LF351
LF351 N
LF353A
LF353B
LF353
LF353N
LF374B
LF374
LM101AH
LM105H
LM108AH
LM108H
LM110H/883
LM111H
LM117H/883
LM124J

1lA431AWC
1lA494DC
IlA1488DC
IlA1488PC
IlA1489ADC
IlA1489APC
IlA1489DC
IlA1489PC
IlA26LS31 PC
IlA26LS31DC
IlA26LS32PC
IlA26LS32DC
IlA3486DC
IlA3486PC
IlA751 07 ADC
IlA75107APC
IlA75108ADC
IlA751 08APC
IlA75150SC
1lA75150PC
IlA75154DC
IlA75154PC
IlA75450DC
IlA75450PC
IlA75491PC
IlA771 A
IlA771B
IlA771
IlA771TC
IlA772A
IlA772B
IlA772
IlA772TC
IlA774B
IlA774
IlA101AHM
IlA105HM
1lA108AHM
IlA108HM
IlA110HMOB
IlA111HM
IlA117HMOB
IlA124DM

Fairchild
Equivalent

Part
Number
NATIONAL (Con!.)
LM139J
LM140K-5.0
LM140K-12
LM140K-15
LM201AH
LM208H
LM208AH
LM21 01 AD/883
1lA2108AD/833
1lA2108D/883
LH2111 D/883
LM224J
LM239J
LM301AH
LM301AN
LM305H
LM305AH
LM308AN
LM311J-8
LM311N
LM317K
LM317T
LM324J
LM324N
LM339J
LM339N
LM340K-5.0
LM340T-5.0
LM340K-6.0
LM340K-8.0
LM340K-12
LM340T-12
LM340K-15
LM340T-15
LM340K-18
LM340K-24
LM348J
LM348N
LM350K
LM3501
LM555CN
LM556CN
LM592JD
LM592D
LM709H
LM709CH
LM709CN
LM709CN-8

1lA139DM
1lA7805KM
IlA7812KM
1lA7815KM
IlA201AHM
IlA208HM
IlA208AHM
IlA21 01 ADMOB
IlA2108ADMOB
IlA2108DMOB
1lA2111 DMOB
IlA224DV
IlA239DC
IlA301AHC
IlA301ATC
1lA305HC
1lA305AHC
1lA308ATC
1lA311RC
1lA311TC
IlA317KC
1lA317UC
IlA324DC
IlA324PC
1lA339DC
1lA339PC
1lA7805KC
1lA7805UC
1lA7806KC
1lA7808KC
IlA7812KC
IlA7812UC
IlA7815KC
IlA7815UC
IlA7818KC
IlA7824KC
IlA348DC
1lA348PC
IlA350KC
IlA350UC
1lA555TC
1lA556PC
IlA592DM
IlA592D
IlA709HM
IlA709HC
IlA709PC
JlA709TC

*Note
Not exact package replacement

1-13

Part
Number
NATIONAL (Con!.)
LM710H
LM710CH
LM710CN
LM711H
LM711CH
LM711CN
LM723H
LM723J
LM723CH
LM723CJ
LM723CN
LM725H
LM725CH
LM725CN
LM733H
LM733CH
LM733CN
LM741H
LM741AH
LM741CH
LM741CJ
LM741CN
LM747H
LM747J
LM747AH
LM747AJ
LM747CH
LM747CJ
LM747CN
LM747EH
LM747EJ
LM748H
LM748CJ
LM748CH
LM748CN
LM760CH
LM1458H
LM1458J
LM1458N
LM1558H
LM1558J
LM2901N
LM2901J
LM3086N
LM3302J
LM3302N
LM7805CK
LM7805CT

Fairchild
Equivalent

1lA710HM
1lA710HC
1lA710PC
1lA711 HM
IlA711 HC
IlA711PC
IlA723HM
IlA723DM
IlA723HC
IlA723DC
1lA723PC
1l725HM
IlA725HC
IlA725TC
1lA733HM
1lA733HC
1lA733 PC
1lA741 HM
1lA741AHM
1lA741 HC
1lA741RC
IlA741TC
IlA747HM
IlA747DM
1lA747AHM
IlA747ADM
IlA747HC
1lA747DC
1lA747PC
IlA747EHC
1lA747EDC
1lA748HM
1lA748RC
1lA748HC
1lA748TC
1lA760HC
JlA1458HC
IlA1458RC
1lA1458TC
1lA1558HM
1lA1558RM
1lA2901PC
1lA2901DC
1lA3086PC
1lA3302DC
JlA3302PC
IlA7805KC
1lA7805UC

Industry
Cross Reference Guide

Part
Number

Fairchild
Equivalent

NATIONAL (Cont.)
LM7812CK
LM7812CT
LM7815CK
LM7815CT
LM78L05ACZ
LM78L12ACZ
LM78L15ACZ
LM78M05CP
LM78M12CP
LM78M15CP
LM7905CK
LM7905CT
LM7912CK
LM7912CT
LM7915CK
LM7915CT
LM7905CH
LM7912CH
LM7915CH
MC1508-8

/lA7812KC
/lA7812UC
/lA7815KC
/lA7815UC
/lA78L05AWC
/lA78L 12AWC
/lA 78L15AWC
J.LA78M05UC
/lA78M12UC
/lA78M15UC
/lA7905KC
J.LA7905UC
/lA7912KC
/lA7912UC
J.LA7915KC
J.LA7915UC
J.LA79M05AHC
J.LA79M12AHC
J.LA79M15AHC
DAC1508DM

PMI
DAC-08C
DAC-08E
DAC1408A-6
DAC1408A-7
DAC1408A-8
DAC1508A-8
OP-07J
OP-07CJ
OP-07EJ
PM108J
PM108AJ
PM139AY
PM139Y
PM208J
PM208AJ
PM339Y
PM339AY
PM725J
PM725CJ
PM725CP
PM741J
PM741CJ
PM741CZ
PM1458J
PM1458Z
PM1558J

DAC08CDC
DAC08EDC
DAC1408CPC
DAC1408BPC
DAC1408APC
DAC1508DM
J.LA714HM
J.LA714HC
J.LA714EHC
J.LA108HM
J.LA108AHM
J.LA139ADM
J.LA139DM
J.LA208HV
/lA208AHV
J.LA339DC
/lA339ADC
/lA725HM
/lA725HC
/lA725TC
/lA741HM
/lA741HC
/lA741RC
J.LA1458HC
/lA1458RC
/lA1558HM

Part
Number

Fairchild
Equivalent

Part
Number

Fairchild
Equivalent

SIGNETICS (Con!.)

PMI (Con!.)
PM1558Z
PM4136Y
PM4136CY

J.LA1558RM
/lA4136PC
/lA4136DC

SIGNETICS
LM101AH
LM111H
LM124F
LM139AF
LM201AN
LM224N
LM224F
LM301AN
LM324N
LM324F
LM339N
LM339F
LM2901F
LM2901N
MC1458FE
MC1458H
MC1458N
MC1488N
MC1488F
MC1489N
MC1489F
MC1489AN
MC1489AF
MC1558H
MC1558FE
MC3302N
MC3302F
MC3403CF
MC3403CN
NE5501
NE555D
NE555N
NE555N
NE556N
NE571F
NE592D
NE592F
SE592F
NE592N
NE592N8
SE555FE
ULN2001N
ULN2003F

/lA101AHM
/lA111HM
/lA124DM
/lA139ADM
/lA201AHM
/lA224PV
/lA224DV
/lA301ATC
J.LA324PC
/lA324DC
/lA339PC
J.LA339DC
J.LA2901DC
J.LA2901PC
/lA1458RC
/lA1458HC
/lA1458TC
/lA1488PC
/lA1488DC
/lA1489PC
/lA1489DC
/lA1489APC
/lA1489ADC
/lA1558HM
/lA1558RM
/lA3302PC
/lA3302DC
/lA3403DC
/lA3403PC
/lA9665PC
J.LA555SC
J.LA555TC
J.LA555PC
/lA556PC
/lA571JJC
/lA592SC
/lA592DC
/lA592DM
J.LA592PC
J.LA592TC
J.LA555RM
/lA9665PC
/lA9667DC

·Note
Not exact package replacement

1-14

ULN2003N
ULN2004F
ULN2004N
/lA723F
/lA723H
/lA723CD
/lA723CF
/lA723CH
/lA723CN
/lA733F
/lA733H
/lA733CF
/lA733CH
/lA733CN
/lA741 FE
/lA741CFE
/lA741CN
J.LA747F
J.LA747CF
J.LA747CN

J.LA9667 PC
J.LA9668 DC
/lA9668PC
J.LA723DM
J.LA723HM
J.LA723SC
J.LA723DC
J.LA723HC
/lA723PC
/lA733DM
/lA733HM
/lA733DC
J.LA733HC
J.LA733PC
J.LA741RM
J.LA741RC
J.LA741TC
J.LA747DM
J.LA747DC
J.LA747 PC

SILICON
GENERAL
SG101A
SG105T
SG111T
SG117K
SG124J
SG217P
SG224J
SG224N
SG301AM
SG301AT
SG305T
SG305AT
SG311M
SG311T
SG317K
SG317P
SG324J
SG324N
SG555M
SG556N
SG710J
SG710T
SG710CN
SG710CT
SG711J

/lA101AHM
J.LA105HM
/lA111 HM
/lA117KM
/lA124DM
/lA217UV
/lA224DV
/lA224PV
J.LA301ATC
J.LA301AHC
J.LA305HC
/lA305AHC
/lA311TC
/lA311 HC
/lA317KC
J.LA317UC
J.LA324DC
/lA324PC
/lA555TC
/lA556PC
J.LA710DM
J.LA71 OHM
J.LA710PC
/lA710HC
/lA711DM

•

Industry
Cross Reference Guide

Part
Number

Fairchild
Equivalent

SILICON
GENERAL (Cont.)
SG711T
SG711CJ
SG711CN
SG711CT
SG723CJ
SG723CT
SG723J
SG723T
SG723CN
SG733J
SG733T
SG733CJ
SG733CN
SG733CT
SG741F
SG741T
SG741CM
SG747J
SG747T
SG747CJ
SG747CN
SG747CT
SG748T
SG748CM
SG748CT
SG1488J
SG1489AJ
SG1558T
SG2001J
SG2002J
SG2003J
SG3086J
SG3086N
SG3302J
SG3302N
SG75450BJ
SE75450BN
SG7805K
SG7805CK
SG7805CP
SG7808K
SG7808CK
SG7808CP
SG7812K
SG7812CK
SG7812CP
SG7815K

Part
Number

Fairchild
Equivalent

SILICON
GENERAL (Cont.)
J.lA711HM
J.lA711DC
J.lA711PC
J.lA711HC
J.lA723DC
J.lA723HC
J.lA723DM
J.lA723HM
J.lA723PC
J.lA733DM
J.lA733HM
J.LA733DC
J.lA733PC
J.lA733HC
J.LA741FM
J.LA741HM
J.lA741TC
J.LA747DM
J.LA747HM
J.lA747DC
J.LA747 PC
J.LA747HC
J.LA748HM
J.lA748TC
J.LA748HC
J.lA1488DC
J.lA1489ADC
J.lA1558HM
J.lA9665PC
J.lA9666DC
J.LA9667DC
J.lA3086DC
J.lA3086PC
J.LA3302DC
J.lA3302PC
J.LA75450BDC
J.LA75450BPC
J.lA7805KM
J.lA7805KC
J.lA7805UC
J.lA7808KM
J.lA7808KC
J.lA7808UC
J.lA7812KM
J.lA7812KC
J.lA7812UC
J.lA7815KM

SG7815CK
SG7815CP
SG7818K
SG7818CK
SG7818CP
SG7824K
SG7824CK
SG7824CP
SG7905K
SG7905CK
SG7905CP
SG7908K
SG7908CK
SG7908CP
SG7912K
SG7912CK
SG7912CP
SG7915K
SG7915CK
SG7915CP
SG75450BCN
SG75451BCM
SG75451BCY
SG75452BCM
SG75453BCM
SG75453BCY
SG75461CM
SG75462CM

SILICON SYSTEMS
J.LA2482RDC
J.lA2484RDC
J.lA2486RDC

TEXAS
INSTRUMENTS
AM26S10CJ
AM26S10CN
TC101AJ
LM105L
LM124J
LM139J
LM148J
TC201AJG
LM348J
LM348N
LM376P

J.lA9640DC
J.lA9640PC
J.lA101AHM
J.lA105HM
J.lA124DM
J.lA139DM
J.lA148DM
J.lA201AHV
J.lA348DC
J.lA348PC
J.lA376TC

"Note
Not exact package replacement

1-15

Fairchild
Equivalent

TEXAS
INSTRUMENTS (Cont.)
J.LA7815KC
J.lA7815UC
J.lA7818KM
J.lA7818KC
J.LA7818UC
J.lA7824KM
J.lA7824KC
J.LA7824UC
J.lA7905KM
J.LA7905KC
J.LA7905UC
J.LA7908KM
J.lA7908KC
J.lA7908UC
J.lA7912KM
J.lA7912KC
J.lA7912UC
J.lA7915KM
J.lA7915KC
J.lA7915UC
J.LA75450BPC
J.lA75451BTC
J.lA75451BRC
J.LA75452BTC
J.lA75453BTC
J.lA75453BRC
J.lA75461TC
J.lA75462TC

SS1117-2
SS1117-4
SS1117-6

Part
Number

MC1558JG
NE555P
NE556N
RC4136D
RC4136J
RC4136N
SA555D
SA555P
SE556N
SN55107AJ
SN55110AJ
SN75107AJ
SN75107AN
SN75107BJ
SN75107BN
SN75108BN
SN75110AJ
SN75110AN
SN75114J
SN75114N
SN75115J
SN75115N
SN75150N
SN75150P
SN75154J
SN75154N
SN75188J
SN75188N
SN75189J
SN75189N
SN75189AJ
SN75189AN
SN75450BN
SN75451BJG
SN75451BP
SN75452BP
SN75453BJG
SN75453BP
SN75461P
SN75462P
SN75471P
SN75472P
SN75491N
SN75492N
TLC555MJG
TLC555CD
TLC555CP

J.lA1558RM
J.lA555TC
J.lA556PC
J.lA4136SC
J.lA4136DC
J.LA4136PC
J.LA555SC
J.lA555TC
J.LA556PC
J.lA55107ADM
J.lA55110ADM
J.lA75107ADC
J.lA75107APC
J.lA75107BDC
J.lA75107BPC
J.lA75108BPC
J.lA75110ADC
J.lA75110APC
J.lA9614DC
J.lA9614PC
J.lA9615DC
J.lA9615PC
J.LA75150PC
J.lA75150TC
J.lA75154DC
J.lA75154PC
J.lA1488DC
J.lA1488PC
J.lA1489DC
J.LA1489PC
J.lA1489ADC
J.lA1489APC
J.LA75450BPC
J.LA75451 BRC
J.lA75451BTC
J.lA75452BTC
J.lA75453BRC
J.lA75453BTC
J.lA75461TC
J.lA75462TC
J.lA75471TC
J.lA75472TC
J.LA75491PC
J.lA75492PC
J.lA555RM
J.LA555SC
J.lA555TC

Industry
Cross Reference Guide

Part
Number

Fairchild
Equivalent

Part
Number

Fairchild
Equivalent

Part
Number

Fairchild
Equivalent

TEXAS
INSTRUMENTS (Cont.)

TEXAS
INSTRUMENTS (Cont.)

TEXAS
INSTRUMENTS (Cont.)

TL071ACO
TL071ACP
TL071 BCD
TL071BCP
TL071CD
TL071CP
TL071MJGB
TL072ACD
TL072ACP
TL072BCD
TL072BCP
TL072CD
TL072CP
TL072MJGB
TL074ACN
TL074CN
TL074MJB
TL081ACJG
TL081ACP
TL081 BCJG
TL081BCP
TL081CJG
TL081CP
TL431CLP
TL494CN
TL494CJ
TL494MJ
ULN2001AN
ULN2002AJ
ULN2002AN
ULN2003AJ

ULN2003AN
ULN2004AJ
ULN2004AN
/1A709MJ
/1A709MU
/1A709AMJ
/1A709AMU
/1A709CP
I1A710CJ
I1A710CN
/1A710MJ
/1A711CJ
/1A711CN
/1A711 MJ
/1A711MV
/1A723CJ
/1A723CN
/1A723MJ
/1A733CJ
I1A733CN
/1A733MJ
/1A741CJG
I1A741CD
I1A741CP
/1A741MJ
/1A741MJG
/1A741MU
/1A747C
/1A747CN
/1A747MJ
I1A748CP

I1A2240CJ
/1A2240CN
/1A7805CKC
/1A7808CKC
/1A7812CKC
/1A7815CKC
/1A7818CKC
/1A7824CKC
/1A7885CKC
/1A78L05CLP
I1A78L12CLP
I1A 78L15CLP
/1A78M05CKC
/1A 78M06CKC
/1A78M08CKC
/1A78M12CKC
/1A78M15CKC
/1A78M24CKC
/1A7905CKC
I1A7908CKC
/1A7912CKC
/1A7915CKC
/1A79M05CKC
/1A79M08CKC
/1A79M12CKC
/1A 79M 15CKC
I1A9637AC
9614CJ
9614CN
9615CJ
9615CN

/1A771 BSC
/1A771 BTC
/1A771ASC
/1A771ATC
/1A771SC
/1A771TC
/1A771 BRMOB
/1A772BSC
I1A772BTC
I1A772ASC
/1A772ATC
/1A772SC
/1A772TC
/1A772BRMOB
/1A774BPC
/1A774PC
/1A774BDMOB
/1A771 BRC
I1A771BTC
I1A771 ARC
/1A771ATC
/1A77LRC
I1A77LTC
11A431AWC
/1A494PC
/1A494DC
/1A494DM
/1A9665PC
/1A9666DC
/1A9666PC
/1A9667DC

/1A9667PC
/1A9668DC
/1A9668PC
/1A709DM
/1A709FM
I1A709ADM
/1A709AFM
/1A709TC
/1A710DC
/1A710PC
/1A710DM
I1A711 PC
I1A711PC
/1A711DM
/1A711 FM

I1A723DC
/1A723PC
/1A723DM
/1A733DC
I1A733PC
/1A733DM
/1A741RC
/1A741SC
/1A741TC
/1A741DM
/1A741RM
/1A741FM
/1A747DC
/1A747PC
/1A747DM
/1A748TC

*Note
Not exact package replacement

1-16

/1A2240DC
/1A2240PC
I1A7805UC
I1A7808UC
/1A7812UC
/1A7815UC
/1A7818UC
/1A7824UC
I1A7885UC
/1A78L05AWC
/1A78L12AWC
/1A78L15AWC
I1A78M05UC
I1A78M06UC
/1A78M08UC
/1A78M12UC
/1A78M15UC
/1A78M24UC
/1A7905UC
/1A7908UC
/1A7912UC
/1A7915UC
/1A79M05AUC
/1A79M08AUC
/1A79M12AUC
/1A79M15AUC
/1A9637RC
I1A9614DC
/1A9614PC
/1A9615DC
/1A9615PC

Ordering Information

F=AIRCHILO
A Schlumberger Company

Standard ReI. and Hi-ReI. Ordering Code

Device Identification

Three basic units of information are contained in the ordering code.
J.LA741
T
C

All Fairchild standard
catalog linear circuits
will be marked as
shown in the following
example.

Device Type

PackageType

Temperature Range

Device Type

~A7100C

of Data Code

JAN Part Ordering Code*

This group of alpha numeric characters defines the device
including functional and electrical characteristics, alpha suffixes are added to further delineate electrical options.

l

J

M 385101

101 01 B G

c

JAN Designator
Cannot be marketed with "J"
unless qualified on Part I
or Part II of the QPL
General +--_ _ _ _ _ _--'
Procurement Spec
Refers to Detail Spec +--_ _ _ _--'
101 Op Amps
102 Voltage Regulators
103 Comparators
104 Interface
106 Voltage Followers
107 Positive Fixed Voltage Regulators
108 Transistor Arrays
109 Timers
110 Quad Op Amps
112 Voltage Comparator
113 D to A Converter
115 Negative Fixed Voltage Regulators
117 Positive Adjustable Voltage Regulators
118 Negative Adjustable Voltage Regulators
119 Low Power, Low Noise, Bi-Fet Op Amps
Defines Device Type +--_ _ _ _ _ _ _-'

Package Type
One alpha suffix represents the basic package style.
D = Dual In-Line (Hermetic, Ceramic)
F = Flatpak (Hermetic)
G = Flatpak (Brazed)
H = Metal package
J = Dual In-Line (Side Brazed)
K = Metal Power Package (TO-3)
L = LCC Leadless Ceramic Chip Carrier
P = Dual In-Line (Molded)
= PLCC Plastic Leaded Chip Carrier
R = 8 Lead Dual In-Line (Hermetic, Ceramic)
S = SOIC Small Outline Integrated Circuits
T = 8 Lead Dual In-Line (Molded)
U = Power Package (Molded, TO-220)
W = Molded Package (TO-92 Outline)

o

Different outlines exist within each package style to accommodate various die sizes and number of leads. Specific dimensions for each package can be found in the
Package Outline section of this catalog, listed by online
code. These specific codes are referenced on each data
sheet.

Processing Level +--_ _ _ _ _ _ _ _ _ _---'
S
B

Temperature Range

Package Type +--_ _ _ _ _ _ _ _ _ _ _ _ _--'
A 14-lead 1/4 x 1/4 Flatpak
B 14-lead 114 x Flatpak
C 14-lead 114 x 3/4 Dip
D 14-lead 1/4 x 3/8 Flatpak
E 16-lead 114 x 718 Dip
F 16-lead 1/4 x 3/8 Flatpak
G 8-lead Can
H la-lead 114 x 114 Flatpak
I la-lead Can
J 24-lead 1/2 x 1 1/4 Dip
K 24-lead 3/8 x 5/8 Flatpak
L 24-lead 3/8 x 112 Flatpak
X 3-lead TO-5 Can
Y 2-lead TO-3 Can
Z 24-lead 114 x 3/8 Flatpak
Z 20 Terminal LCC
Lead Finish +--_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _--'
A Hot Solder Dip
B Tin Plate
C Gold Plate
X Any Finish Above

One alpha suffix represents one of the following three basic temperature grades in common use. Exact values and
conditions are specified on the device data sheets.
C = Commercial
O°C to + 70°C
M = Extended
-55°C to + 125°C
v = Industrial
-25°C to +85°C
-40°C to +85°C

aB/883 Processing
A two alpha suffix of OB indicates conformance to Class
"B" process requirements of MIL-STD-883 to Fairchild MIL
temperature range data sheet electricals.

Examples
J.LA 741 FM This number code indicates a J.LA741 Operational Amplifier in a flatpak with military temperature rating capability.
J.LA725EHC This number code indicates a J.LA725 Instrumentation Operational Amplifier, electrical option E, in a
metal package with a commercial temperature rating capability.

• See Section 12 Aerospace & Defense

1-17

Thermal Considerations

FAIRCHILD
A Schlumberger Company

Thermal Management

{}JA = {}JC

An effective and safe performance of various IC or transistor packages is attained by proper heat removal and maintenance of their junction temperatures below the specified
maximum values. In order to achieve efficient thermal
management, the user must rely upon important parameters, provided by the manufacturer (junction-to-ambient and
junction-to-case thermal resistances and maximum operating junction temperature).

+ {}CS + {}SA

TJ-TC

Tc-Ts

Ts-TA

Po

Po

Po

=---+---+--TJ - TA

= - - (OC/W)

Po
Where
Po

= Power dissipation

Measurements

Thermal resistance is considered as the temperature gradient between two reference pOints in the package or the
total system, per unit of power dissipation through the device encapsulated in the package, under steady state conditions. It is expressed as {}xy, in degrees centigrade per
Watt (OC/W) - where X and Yare the two reference
pOints.

Substrate or isolation diode method is used to determine
the device junction temperature, TJ. The other reference
temperatures are measured using thermocouples attached
to required points. There are standard procedures available
for {}JA and {}JC measurements, details of which could be
referred from MIL-STD-883 Method 1012, SEMI-STD Document #1341 and 1342.

Equations
A simple thermal circuit for a semiconductor device in
equilibrium is shown in Figure 1. The reference pOints in
this case are
J - Device junction
C - Package case
S-Heat sink
A-Ambient

The package thermal characterization is best performed
using 'Test Chips'. The chip specification conforms to
SEMI-STD NO. G 32-86. These chips consist of transistors
or resistor strips (as the heat source) covering 85 percent
of the active device area. Temperature sensing diodes and
associated metallization runs are electrically isolated from
the heat source. Such a test chip is considered a basic
cell. Heat dissipating through a large size chip could be
simulated by using an array of such basic cells. The device, and thus the package, is heated while being powered. The diode forward voltage (VF) is simultaneously
monitored using an independent low current source. TJ is
determined from a VF vs TJ calibration curve. This very
reliable thermal resistance data could be correlated with
the die size (= heat dissipating area).

Figure 1 Simplified Thermal Circuit
...-_ _ _
-_
: : : - - - - . TJ JUNCTION TEMPERATURE
POWER (PI

9JC JUNCTION·TO·CASE
THERMAL RESISTANCE
TC CASE TEMPERATURE

HEAT
SOURCE

lies

CASE·TO·SINK
THERMAL RESISTANCE

TS SINK TEMPERATURE

The thermal resistance measurement of specific device
plus package combination differs from the above described
test chip method. In this case, a substrate diode is selected for determining TJ. Special electrical equipment is required for pulsing power in the forward direction of the
device under test while measuring voltage drop across the
substrate diode in between the pulses. This measurement
technique has its shortcomings, since it is more prone to
experimental errors.

BsA SINK·TO·AMBIENT
THERMAL RESISTANCE
' - - - - - -_ _..... TA AMBIENT TEMPERATURE

The power dissipation, which is analogous to current flow
in electrical terms, is caused by a heat source similar to a
voltage source. Temperature is analogous to voltage potential and thermal resistance to ohmic resistance. The
junction-to-ambient thermal resistance, {}JA, is then expressed as a sum of thermal resistances in series, as
shown:

In order to maintain the junction temperature below a specific level, at times it is necessary to use an external heat
sink. The following is devoted to selection of proper heat
sinks, with special relevance to voltage regulators.

2-3

Thermal Considerations

TJ Max- TA

8JA(tol) = 8JC + 8c s + 8SA =

Thermal Considerations Using Voltage Regulators
as an Example

-=...:.="-.....:..;

Po

Case-to-sink and sink-to-ambient thermal resistance information on commercially available heat sinks is normally
provided by the heat sink manufacturer. A summary of
some commercially available heat sinks is shown in Table
1. However, if a chassis or other conventional surface is
used as a heat sink, Figure 2 can be used as a guide to
estimate the required surface area.

Heat Sink Requirements
When is a heat sink necessary, and what type of a heat
sink should one use? The answers to these questions depend on reliability and cost requirements. Heat sinking is
necessary to keep the operating junction temperature (TJ)
of the regulator below the specified maximum value. Since
semiconductor reliability improves as operating junction
temperature is lowered, a reliability/cost compromise is
usually made in the device design.

How to Choose a Heat Sink - Example
Determine the heat sink required for a regulator which has
the following system requirements:

Thermal characteristics of voltage regulator chips and
packages determine that some form of heat sinking is
mandatory whenever the power disSipation exceeds the
following.

Operating
Maximum
Maximum
Maximum

0.67 W for the TO-39 package
0.69 W for the TO-92 package
1.56 W for the Mini Batwing and Power Watt (similar to
TO-202) packages
1.8 W for the TO-220 package
2.8 W for the TO-3 package

ambient temperature range: O°C to 60°C
junction temperature: 125°C
output current: 800 mA
input to output differential: 10 V

The TO-220 package is sufficient (lower cost, better thermal resistance).
8JC = 5°C/W maximum (from data sheet)
TJ-TA
8JA(tol) = 8JC + 8cs + 8SA = ---p[)"
125-60
8cs + 8sA = - - - - 5 = 3.13°C/W
0.8 x 10

at 25°C ambient or lower power levels at ambients above
25°C.
To choose or design a heat sink, the designer must determine the following regulator parameters.

Assuming 8cs = 0.13°C/W then 8SA = 3°C/W
Figure 2 Heat Sink Material Selection Guide

Po Max - Maximum· power dissipation: (VI - Va) 10 + VI IQ
TA - Ambient temperature the regulator will encounter during operation.
TJ Max - Maximum operating junction temperature, specified by the manufacturer.
8Jc, 8JA - Junction-to-case and junction-to-ambient thermal
resistance values, also specified by the regulator manufacturer.
8c s -'- Case-to-heat sink thermal resistance which, for large
packages, can range from about 0.2°C/W to about
1°C/W depending on the quality of the contact between the package and the heat sink.
8SA - Heat sink-to-ambient thermal resistance, specified by
heat sink manufacturer.

, SURFACE AREA
{BOTH SIDES OF THE HEAT SINK}
SQUARE INCHES

11II111II~lIIiII~lilllillIllII'llIIpl~ 1/i/llllllillIlIIlIllllllllIlllIlIllIlIlllIIl.~" "11111111111
3

4

:

3/32"

7

6
8

8JA

5

44

3

3 2

2.;·5

2

5

4
5

3
4

2 1.5
2.5
3

1

1
2

I

I

7

5
6

4
6

3
4

2.6
3.5

2
2.5 2

3

lilIlIIlIiIUlllllilhlllllllilllllljllllllllll!lllljI!/i1iil
1lIlIllIlIllIlIliiii/ililliillliiii 1I II I I I I I I 1 I I I II
77

3/32"

~...;.;;"---'-'

65

III Ii 1111111111/1111111111111111111 III I I I I I I I II I ill
7

THICKNESS

405060 80

1IIIIIIIIiI""IIIIII"IiIIl"lliilllllll!II!1 I I:

3/32"

PD Max =

6
6

7

3/'S"

TJMax-TA

76

7

3/32"

Maximum permissible dissipation without a heat sink is determined by

202530

1"11/1 111 1"11111111'1111111111111111"111111"1111"11111 I !

THICKNESS

3/'."

15

luuhliiluuhlillilUlilill!lilll! III II IIi! II I I I I I I I ! I Ii I

3;16"

THICKNESS

8 10

/1111/1111/1111111111111111111111111111111111/111111111111111111 I I I 1I II

3/16"
THICKNESS

6 6

66

55

4

4

;.5

32 . 5 2.6 2 2

!ililil "I Ii II 1111 III I II I III II! II II!I I 1111 I II I II ill

COPPER;

HORIZONTALLY.
MOUNTED

COPPER,

VERTICALLY MOUNTED

ALUMINUM.
HORIZONTAllYMOUNTED

ALUMINUM,
VERTICAllY MOUNTED

THERMAL RESISTANCE IN °CjW

If the device dissipation Po exceeds this figure, a heat
sink is necessary. The total required thermal resistance
may then be calculated.

To determine either area required or thermal resistance of a given area,

draw a vertical line between the lop (or area) line down
interest_

2-4

10

the malerial of

Thermal Considerations

This thermal resistance value can be achieved by using
either 22 square inches of 3/16 inch thick vertically
mounted aluminum (Figure 2) or a commercial heat sink
(Table 1).

In some applications, especially with negative regulators, it
is desirable to electrically insulate the regulator case from
the heat sink. Hardware kits for this purpose are commer·
cially available for such packages as the TO·3 and TO·
220. They generally consist of a 0.003 to 0.005 inch thick
piece of mica or bonded fiberglass to electrically isolate
the two surfaces, yet provide a thermal path between
them. As expected, the thermal resistance will increase
but, as in the direct metal·to·metal jOint, some improve·
ment can be realized by using thermal lubricant on each
side of the mica.

Tips for Better Regulator Heat Sinking
Avoid placing heat·dissipating components such as power
resistors next to regulators.
When using low dissipation packages such as TO·5,
TO·39, and TQ.92, keep lead lengths to a minimum and
use the largest possible area of the printed board traces
or mounting hardware to provide a heat dissipation path
for the regulator.

If the regulator is mounted on a heat sink with fins, the
most efficient heat transfer takes place when the fin is in
a vertical plane, as this type of mounting forces the heat
transfer from fin to air in a combination of radiation and
convection.

When using larger packages, be sure the heat sink sur·
face is flat and free from ridges or high spots. Check the
regulator package for burrs or peened·over corners. Re·
gardless of the smoothness and flatness of the package
and heat sink contact, air pockets between them are un·
avoidable unless a lubricant is used. Therefore, for good
thermal conduction, use a thin layer of thermal lubricant
such as Dow Corning DC·340, General Electric 662 or
Thermacote by Thermalloy.

If it is necessary to bend any of the regulator leads, han·
die them carefully to avoid straining the package. Further·
more, lead bending should be restricted since repeated
bending will fatigue and eventually break the leads.

Table 1 Heat Sink Selection Guide
This list is only representative. No attempt has been made to provide a complete list of all heat sink manufacturers. All
values are typical as given by manufacturer or as determined from characteristic curves supplied by manufacturer.

DBA Approx. ("C/W)
To-3 Packages
0.4 (9" length)
0.4 - 0.5 (6" length)
0.56-3.0
0.6 (7.5" length)
0.7-1.2 (5-5.5"
length)
1.0 - 5.4 (3" length)

1.9
2.1
2.3-4.7
4.2
4.5
4.8-7.5
5-6
5-10

Manufacturer3 and Type

DSA Approx. (OC/W)

5.6
5.9 -10
6
6.4
6.5-7.5
8
8.1
8.8
9.5
9.5-10.5
9.8 -13.9
10
11

Thermalloy (Extruded)
6590 Series
Thermalloy (Extruded)
6660, 6560 Series
Wakefield 400 Series
Thermalloy (Extruded)
6470 Series
Thermalloy (Extruded) 6423,
6443, 6441, 6450 Series
Thermalloy (Extruded)
6427, 6500, 6123, 6401,
6403, 6421, 6463, 6176,
6129, 6141, 6169, 6135,
6442 Series
IERC E2 Series (Extruded)
IERC E1, E3 Series (Extruded)
Wakefield 600 Series
IERC HP3 Series
Staver V3·5·2
Thermalloy 6001 Series
IERC HP3 Series
Thermalloy 6013 Series

Manufacturer3 and Type
Staver V3·3·2
Wakefield 680 Series
Wakefield 390 Series
Staver V3·7·224
IERC UP Series
Staver V1·5
Staver V3·5
Staver V3·7·96
Staver V3·3
IERC LA Series
Wakefield 630 Series
Staver V1·3
Thermalloy 6103, 6117 Series

TO·220 Packages (See Note 1)
4.2
IERC HP3 Series
5- 6
IERC HP1 Series
6.4
Staver V3· 7·225
6.5 - 7.5
IERC VP Series
7.1
Thermalloy 6070 Series
8.1
Staver V3·5
8.8
Staver V3· 7·96
9.5
Staver V3·3

2·5

Thermal Considerations

Table 1 Heat Sink Selection Guide (Cont.)
BSA Approx. ("C/W)

Manufacturer3 and Type

10
12.5 -14.2
13
15
15.1-17.2
16
18
19
20
20
25

Thermalloy 6032, 6034 Series
Staver V4·3·192
Staver V5·1
Thermalloy 6030 Series
Staver V4-3-128
Thermalloy 6072, 6106 Series
Thermalloy 6038, 6107 Series
IERC PB Series
Staver V6-2
Thermalloy 6025 Series
IERC PA Series

TO·92 Packages
30
46
50
57
65-5
72
85

Staver F2-7
Staver F5-7A, F5-8-1
IERC RUR Series
Staver F5-7D
IERC RU Series
Staver F1-7
Thermalloy 2224 Series

TO-S and
12
12 - 16
15
22
22
24
25
26-30
27-83
28

T~39

BSA Approx. (OC/W)
34
35
39
41
42
42-65
46
50
50-55
53
55
56
58
60
68
72

Manufacturer3 and Type
Thermalloy 2228 Series
IERC Clip Mount Thermal Link
Thermalloy 2215 Series
Thermalloy 2205 Series
Staver F5-5A
Wakefield 296 Series
Staver F6-5, F6-5L
Thermalloy 2225 Series
IERC Fan Tops
Thermalloy 2211 Series
Thermalloy 2210 Series
Thermalloy 1129 Series
Thermalloy 2230, 2235 Series
Thermalloy 2226 Series
Staver F1-5
Thermalloy 1115 Series

Power Watt (similar to TO-202)
Packages (See Note 2)
12.5 -14.2
Staver V4-3-192
13
Thermalloy 6063 Series
Staver V5-1
13
15.1-17.2
Staver V4-3-128
19
Thermalloy 6106 Series
Staver V6-2
20
24
Thermalloy 6047 Series
25
Thermalloy 6107 Series
37
IERC PA1-7CB with PVC-1B
Clip
40-42
Staver F7-3
Staver F7-2
40-43
42
IERC PA2-7CB with PVC-1B
Clip
42-44
Staver F7-1

Packages
Thermalloy 1101, 1103 Series
Wakefield 260-5 Series
Staver V3A-5
Thermalloy
1116,1121, 1123 Series
Thermalloy
1130,1131, 1132 Series
Staver F5-5C
Thermalloy 2227 Series
IERC Thermal Links
Wakefield 200 Series
Staver F5-5B

Notes
1. Most TQ-3 heat sinks can also be used with TO-220 packages with
appropriate hole patterns.
2. Most TO-220 heat sinks can be used with the Power Watt package.
3. IERC: 135 W. Magnolia Blvd., Burbank, CA 91502
. Staver Co., Inc.: 41-51 N. Saxon Ave., Bay Shore, N.Y. 11706
Thermalloy Inc.: 2021 W. Valley View Lane, Dallas, TX 75234
Wakefield Engineering, Inc.: Audubon Rd., Wakefield, MA 01880

2-6

Testing, Quality and
Reliability

FAIRCHILD
A Schlumberger Company

c. Periodic sample testing at temperature extremes is done
by Quality Assurance on outgoing material to ensure
compliance.

Testing
For proper interpretation and understanding of published
data sheet parameters, one must understand the philosophy used by Fairchild in testing its linear products.

Quality and Reliability
It is the policy of Fairchild Semiconductor Corporation that
every employee be committed to pursuing excellence by
producing zero defect products and services in conformance with customer requirements. Prevention, detection,
and control methodologies are applied throughout the manufacturing and administrative processes to strive for zero
defects and continual quality improvement.

All Fairchild products are tested during various phases of
the manufacturing process to ensure the shipment to the
customer of a reliable product that meets or exceeds the
guaranteed specifications. Fairchild tests its finished products, at room ambient, with automated equipment that operates at relatively high speeds. It is not unusual to
perform more than a hundred tests on a simple product;
each test normally takes a few milliseconds and testing of
one device is normally completed in a matter of a few
hundred milliseconds. Parameter variations due to internal
heating of the device are minimized during factory testing.
During normal operation of the device, the effects of the
internal heating on the device performance must be kept
in mind by the user as well as the person performing incoming testing in the laboratory. Internal power dissipation
and thermal resistance numbers supplied in each data
sheet will be helpful in determining temperature rise due
to internal heating.

Specific programs for quality improvement include, but are
not limited to, the following:
• Quality training. A formal nationally-recognized
program Involving all engineering and management
personnel. Operators are formally trained and
certified for all production operations.
• Statistical Process Control (SPC). A formal program
of characterization and control limit setting.
• Electrostatic Damage (ESD) control and
measurement. A program to contain the effects of
ambient static and to reduce device sensitivity.
• Design control. A program to assure adequate rules
and Implementation, process control, and
demonstrated conformance of processes, materials,
and products.
• Measurement. In-process and outgoing attributes.
Reconciliation of internal versus customer results.
• Reliability hazard prevention. In-process monitors for
the prevention of hazards such as moisture,
pinholes, step coverage, contamination, and
passivation integrity.
• Reliability monitor. OutgOing reliability as measured
by operating life In dry and moisture environments
and other stress tests.

Except for Aerospace and Defense products or customers
that specifically request it, normally no temperature testing
is done on production devices. How does Fairchild then
guarantee the parameters it specifies over the temperature
extremes? We do this by thorough characterization of the
product. Prior to release to production of a new product,
or a product modification, a representative sample from
three production runs is tested in temperature chambers
over the operating temperature range of the device. This
characterization testing, normally done on automated testers, is supplemented by bench testing and covers all of
the "guaranteed", "typical", as well as parameters not
normally specified on the product data sheet. The results
of this characterization are thoroughly analyzed and from
them, the "minimum", "typical" and "maximum" data
sheet values are determined. In addition, room temperature
guardbands are established and yield enhancements are
identified. The characterization is an on-going process and
normally the correlation between room temperature and
operating temperature extremes are very good. Product integrity and compliance to data sheet parameters are
checked periodically by Quality Asssurance by sample testing outgoing material at temperature extremes.

For continual product improvement the Linear division
maintains failure analysis capability, return material system,
and specification review to provide customer assistance
and to focus factory actions for response to fitness for
use issues. The failure analysis laboratory contains fundamental tools for optical and electrical definitions, for decapsulation, for specimen preparation, for SEM, EDAX, and
electrical microprobe. Expert diagnosiS is provided by internal personnel and augmented with outside consultation.

In summary then:
a. Production testing is done at high speeds and normally
at room temperature only.
b. Compliance to temperature specifications is accomplished through on-going characterization and room temperature guardbands.

Reliability is product performance in time, stress, and environment. The science of reliability is to define those attributes and controls necessary to assure and improve time/
stress/environment performance. Finished product reliability
is measured periodically to assure conformance with life

3-3

Testing, Quality and Reliability

requirements, and data is available quarterly for operating
life and moisture life attributes.

wafer is processed with automated die preparation that includes saw and pick and place.

Quality is performance now, conformance to specification,
and fitness for use. Basic elements of the linear division
quality system are controlled documents and in-process inspections. Outgoing quality is measured for all lots to assure conformance to specification, and data is available
monthly for electrical, visual, and mechanical attributes.

The die (or chip) itself is assembled with automated die
attach and wire bond, molded, and finished with automated handling at trim, form, test, and lead scan operations.
In-process controls assure die attach, wire bond, molding,
trim, and form. Emphasis on automation has reduced variability and enhances our ability to control quality and reliability.

Commercial Product Flow
Wafer fab must begin with controlled raw materials such
as silicon, gasses, and chemicals. Post alloy sample probes
and other monitors assure built-in quality. Automated electrical testing is performed at wafer level. The fabricated

Finished product is inspected on a lot basis for electrical,
visual, and mechanical parameters. Records are maintained
for all inspections,and deviations from conformance are
reviewed monthly for trend analysis and corrective improvements. Accept number for all inspections is zero.

3-4

,

~

~

"'

't"

"

"

,

"
~

"

~

r"
~

''''

"

"
M

&::

~" 15

":"

'" ~~

"'

"
","

~

16

=

,
\ ! J , '

'

~

17

CLASIC™

F=AIRCHILD
A Schlumberger Company

Selecting a Design Entry Level

Standard Cell Design with Fairchild CLASIC
Approach
Introduction
The Fairchild CLASIC (Customizable Linear Applications
Specific Integrated Circuits) approach brings to the systems designer a level of sophistication that will enable
VlSI solutions requiring analog and mixed analog/digital
functions to be integrated cost effectively. The CLASIC
approach offers:
• Bipolar and CMOS Technologies
• Standard Cell and Array Methodologies
• Customer CAD Tools That Allow Design and
Simulation with Higher Level Building Blocks
By offering a cell library of pre-designed commonly identified function blocks such as op amps, comparators,
DAC's, VCO, Pll, gates, flip flops, counters, etc., and
CAD tools to combine them, the CLASIC system considerably reduces the time and the risks associated with VlSI
designs. The designers task is somewhat more complicated, but similar to designing a printed circuit board using
standard IC's. Most importantly, however, with the CLASIC
approach the customer can select the level of design participation desired. At the lowest level the customer can
simply provide a functional description of the desired design and a CLASIC applications engineer will translate this
into a standard cell schematic. As the user gains experience and confidence with the CLASIC approach, any level
of design up through layout can be accomplished with the
appropriate CAD tools at the users location if desired. The
user has a choice of options best suited to his needs and
experience.

• Peak Detectors
• PLL
• Programmable Current Sources
• VCO's
• Wave Generators
• Zero Crossing (Detectors)
.555 Timer

The Cell Library
There are presently over 150 cells in the CLASIC library
covering a broad range of linear and digital function with
additional cells being added on a continual basis. The following is a partial list of the type of cells available:

-

Digital
• Gates
• Flip Flops
• One Shots
.• Edge Detectors
• MUX's
• Counters
• Registers
• Decoders
• Delay Cells
• Drivers
• Translators (ECL/TTL)

Linear
• Amplifiers

Op Amps, General Purpose
Op Amps, Low Offset
Op Amps, Programmable
Norton Amp
AGC Amp
Video Amp
Control Amp
ECL Output
• Comparators
TTL Output
General Purpose
• Data Converters A/D
D/A
• Line Drivers/Receivers 422
485

The linear performance offered by Bipolar CLASIC cells is
based on NPN fl of 2.5 GHz and PNP fl of 40 MHz. The
logic cells are based on high performance ECl offering
gate delays of 1.5 ns at fanout of 3 and 0 flip flop toggle
frequencies better than 100 MHz.

4-3

CLASIC™

The CMOS cell library is presently based on a: 3 micron
double poly process providing offset voltages of less than
5 mV, unity gain BW· of 2 MHz, gate delays of 5 ns at
fan out of 3 and D flip flop toggle frequencies at better
than 50 MHz. A new generation of cells is presently in
design for a 2 micron CMOS double poly process which
will provide gate delays of 1.5 ns and D flip flop toggle
frequencies better than 200 MHz.

A CLASIC software package for VAX mainframe systems
will also be offered. If desired, customers can also work
through Fairtech centers which are a worldwide design
center network.
In any case, the starting point for the customer is to describe the required system function in terms of the
CLASIC cells. Where a requirement is not met with an
existing cell, either the customer can create a new cell by
using the macro level components such as transistors, resistors and capacitors which are available and described in
the library or the special requirements can be described to
Fairchild's CLASIC applications engineers who can deSign
the cell for incorporation into the IC design. New cells are
being continually added to the library to serve the vast
majority of the customers needs.

CLASIC CAD
An important feature of the CLASIC system is to provide
comprehensive CAE packages for PC's, workstations and
mainframes. USing these software tools the customer can
perform all of the design steps from schematic capture to
circuit simulation and verification in their own laboratory.

Figure 1 Data Separator/Encoder Block Diagram - A CLASIC Example

--

PRE-COMPENSATION

Vee

At FOUND

GND

2"

2'

RZ
WRITE

READ WRITE
GATE GATE

DATA

ADDRESS
MARK
ENABLE

_-+---1

t--+---r-::~:-l

READ/REF ...
CLOCK

WRITE
~--;-- MISSING

CLOCK
NRZ DATA
L-_+-_______-+__ WRITE
L----~-------_;--WRITECLOCK

·~-------------r--------1---GATE

RZ READ
DATA
REFERENCE
OSCILLATOR
(IF)

--t-l-..r-::~:--'

--t........L.::.:::...J
DELAY
RESISTOR

DELAY
CAPACITOR

ADDRESS
MARK
FOUND

FAST SLOW
--CHARGE PUMP

+
FILTER

vco
CAPACITOR

EO"'''''''

4-4

CLASIC™

CLASIC CAD I (PC Based)
•
•
•
•
•
•

Step 3:

Fairchild Cell Libraries
Schematic Capture
Simulation Software
Net List Post Processor
Test Generation
Documentation
- Installation Manual
- Design Applications Manual
- Simulation Manual

Step 4:
Step 5:
Step 6:
Step 7:

CLASIC CAD II (Workstation Based)
For those customers who own or plan to purchase one of
the popular workstations, CLASIC cell libraries with simulation models will be offered.

Run simulation on schematic from Step 2.
Redesign and/or reselect cells as appropriate
to achieve desired performance. If breadboarding is desired for critical areas, kit parts
of various standard cells are available in
packaged form. This permits breadboarding to
be accomplished with relative ease and accuracy.
Auto route and place run on desired CAD
tool.
Layout verification run on desired CAD tool.
Mask generation.
Wafer Fabrication.

CLASIC CAD III (VAX based)
The CAD system used internally by the CLASIC groups
which includes complete capability from cell schematic
through layout verification, can be made available for
those customers desiring this level of performance.
Design Example:
Task: To design a disk drive data separator/encoder
decoder on a single chip. Original design required 25 IC packages plus numerous discretes.
Approach: Use CLASIC Standard Cell Methodology.
Step 1: Translate system level functional diagram into
standard cell schematic. Create new cells if
required. See Figure 1. Search cell library for
required functions.
Step 2: Perform Schematic Capture on desired CAD
tool. Net list generation

Step 8:
Step 9:

Assemble/Test (Fast turnaround prototype assembly; 1 day service).
Evaluate prototypes.

Fairchild can perform all the steps outlined 1 through 9,
however with entry level CAD tools steps 1 through 3 can
be achieved by the customer with minimal training and investment resulting in rapid payback and improved communications and efficiency.

4-5

CLASIC™

Available Packages:
set from attachment

No. of PhIs

8
14
16
20
24
28
32
40
44
68
132

Plastic Dip

SOIC

•
•
•
••
•
•

•
•
•

Side Brazed
&
Ceramic Dip

•
•
•
•
•
•
•
•

4-6

PLCC

•
•
•
•

LCC

•
•
•
•
•
•
•

Flat Pak

•
•
•
•
•
•

<

<

,

18

J,lA24H80
Winchester Disk
Servo Preamplifier

F=AIRCHILO
A Schlumberger Company

Linear Division Disk Drives

Description

Connection Diagram
8-Lead DIP and 50-8 Package
(Top View)

The !lA24H80 provides termination, gain, and impedance
buffering for the servo read head in Winchester disk
drives. It is a differential input, differential output design
with fixed gain of approximately 100. The bandwidth is
guaranteed greater than 30 MHz.
The internal design of the !lA24H80 is optimized for low
input noise voltage to allow its use in low input signal
level applications. It is offered in 8-lead DIP, 10-lead flatpak, or SO-8 package suitable for surface mounting.
•
•
•
•

Low Input Noise Voltage
Wide Power Supply Range (8.0 V To 13 V)
Internal Damping Resistors (1.3 kil)
Direct Replacement For SSI 101A, With Improved
Performance

Device Code
!lA24H80RC
!lA24H80SC
!lA24H80TC

Absolute Maximum Ratings
Storage Temperature Range
Ceramic DIP and Flatpak
Molded DIP and SO-8
Operating Temperature Range
Lead Temperature
Ceramic DIP and Flatpak
(soldering, 60 s)
Molded DIP and SO-8
(soldering, 10 s)
Internal Power Dissipation 1, 2
8L-Ceramic DIP
8L-Molded DIP
SO-8
10L-Flatpak
Supply Voltage
Output Voltage
Differential Input Voltage

-65'C to +175'C
-65'C to + 150'C
O'C to 70'C

+IN

NC

-IN

v+

NC

-OUT

v-

+ OUT

Package Code
6T
KC
9T

Package Description
Ceramic DIP
Molded Surface Mount
Molded DIP

Connection Diagram
10-Lead Flatpak
(Top View)

300'C

•

.-------,10

•

+IN

265'C
1.30 W
0.93 W
0.81 W
0.79 W
15 V
15 V
± 1.0 V

NC

v+

-IN
NC

-OUT

v-

+ OUT

NC

NC

Order Information
Device Code

Notes
1. TJ Max = 150·C for the Molded DIP and 50-8, and 175·C for the
Ceramic DIP and Flatpak.
2. Ratings apply to ambient temperature at 25·C. Above this temperature,
derate the BL-Ceramic DIP at B.7 mWrC, the BL-Molded DIP at
7.5 mWrC, the SO-B at 6.5 mWrC. and the Flatpak at 5.3 mWrC.

!lA24H80FC

Package Code
3F

Package Description
Flatpak

Description of Lead Functions
Name

5-3

Description of Functions

V+

Positive Differential Supply with respect
to V-

V-

Negative Differential Supply with respect
to V+

+IN

Positive Differential Input

-IN

Negative Differential Input

+OUT

Positive Differential Output

-OUT

Negative Differential Output

NC

No connection

MA24H80

Electrical Characteristics TA = 25°C, Vee = 8.0 V to 13.2 V, unless otherwise specified.
Symbol

Condition

Characteristic
Gain (differential)4

G

BW

Bandwidth (3.0 dB)2

n,
n,

Rp= 130
Vee = 12 V
TA = O·C to 70·C

70

VI = 0.5 mVp _ p

30

65

1040

1300

RI

Input Resistance
Input Capacitance

VI

Input Dynamic Range (differential)

Rp = 130

n,

Is

Supply Current

Vee = 12 V

Output Offset (differential)

Rp = 130

Vn

Equivalent Input Noise2, 3

Rs=O

PSRR

Power Supply Rejection Ratio 1

Rs = 0

AG/AV

Gain Sensitivity (Supply)

Rp = 130

AG/AT

Gain Sensitivity (Temp)

Rp= 130

CMR

Common Mode Rejection 1 (Input)

f= 5.0 MHz

n,
n,

Notes
1. Tested at DC, guaranteed at frequency

2. Guaranteed, but not tested in production
3. Equivalent input noise (additional specification):
MAX

UNIT

4
1.0

jJ.V

100

Max

CONDITION
BW-15MHz2
BW=15MHz2

nV/v'Hz

Typical Applications
v+

SERVO
HEAD

ROC!

v-

ROC!

-=

Note.
1. Leads shown for B-Iead DIP.
2. Roq is equivalent load resistance.
3. Rp. RL' Roq
RL +ROq
4. G - 0.77 Rp
Where Rp = value from Note 3 (aboVe) in ohms.

5-4

n,

Vee = 12 V

130
MHz
1560

f = 5.0 MHz

n,
n,

mVp _ p

n
1.5

BW=4.0 MHz
55

25

rnA

200

mV

2.0

jlV

70

dB
±0.5

AVec = ± 10%
TA=25·C to 70·C

-0.1
60

n
pF

3.0
20

Rs = 0

Unit

120

3.0

AVo

3
0.85

Typ

80

CI

TYP

Min

Vcc= 12 V

Rp= 130

75

%/V
%rC

dB

JIA2460 • JIA2461

FAIRCHILD

Servo Control Chips

A Schlumberger Company

Linear Division Disk Drives

Description

Connection Diagram
28-Lead DIP (Top View)

The 1lA2460 and !.lA2461 provide the analog signal processing required between a drive resident microprocessor
and the servo power amplifier for Winchester disk closed
loop head positioning. The !.lA2460 and 1lA2461 receive
quadrature position signals from the servo channel; and
from these, derive actual head seek velocity as well as
position-mode off-track error. In the seek mode, the Digital
to Analog Converter (DAC) is used to command velocity,
while actual velocity is obtained by differentiating the quadrature position signals provided at V1 for external processing. The velocity signal (V2), obtained by integrating the
motor current, is also available for extra damping, if desired. Further, the DAC may be used for detenting the
head off-track for any purpose such as thermal compensation or soft-error retrys.

..

DO

v+

27

D.

DIRECTION INIOUT

D2

CLOCK IN

D3

D4

os
DO

VELOCITV2

VELOCITY 1

D7

LATCH ENABLE

POSITION OUT

SEEK/FOLLOW

ANALOGSW

TR'

ANALOGSW

17

TR.

•
•
•
•
•
•
•
•

Microprocessor Compatible Interface
Quadrature DI-Blt Compatible
On Board DAC
Velocity V1 Derived From Position Signal
Velocity V2 Derived From Motor Current
Quarter-Track-Crosslng Signal Outputs
Minimal External Components
Compatible With 1lA2470 Demodulator

I

QUAD

POSmON SIGNALS

'5
ANALOG COMMON

GND

Order Information
Device Code
1lA2460DC
1lA2461DC

Absolute Maximum Ratings
Storage Temperature Range
Ceramic DIP
PLCC
Operating Temperature Range
Lead Temperature
Ceramic DIP (soldering, 60 5)
PLCC (soldering, 10 s)
Internal Power Dissipation 1, 2
28L-Ceramic DIP
28L-PLCC
Supply Voltage
Analog Common Voltage
All inputs

QIN

16 N IN

TAO

Package Description

Package Code
FM
FM

Ceramic DIP
Ceramic DIP

Connection Diagram
28-Lead PLCC (Top View)

-65°C to + 175°C
-65°C to + 150°C
O°C to 70°C

~. ~

.. '" II8
II S Ci 8 >+ ",Ii'
iSiS

aoo°c
265°C
D4

2.50 W.
1.a9 W.
15 V Max
8.0 V Max
V supply Max

•

0

3

••

.. .
IT

DACOUT

DO

MOTOR CUR-

DO

MOTOR CUR +

117

VELOCITY 2

LATCH ENABLE

VELOCITY 1

SEEKIFOLLOW

POSmONOUT

Notes
1. TJ Max = 150·C for the PLCC, and 175·C for the Ceramic DIP.
2. Ratings apply to ambient temperature at 25·C. Above this temperature,
derate the 28L·Ceramic DIP at 16.7 mWI"C, and the 28L·PLCC at
11.2 mWI"C.

TAO

ANALOGSW

••

'3

~ ~

•• ••
pz;;
 Q (for j.lA2460)
TTL signal whose frequency is 2 times N (or Q) (for j.lA2461).

12

Track 21 (TR1)

TTL signal indicating N > Q (for j.lA2460)
TTL signal whose frequency is 4 times N (or Q) (for j.lA2461).

13

Track 20 (TRO)

TTL Signal whose frequency is 8 times N (or Q).

18

Analog Switch

19

Analog Switch

Motor current sense input to motor current integrator.

Outputs

Analog switch to be used externally for changing from seek to follow.

20

Position Output

Analog Signal representing sensed off track amplitude

21

Velocity 1

Analog output representing velocity processed from position Signals Nand Q.

22

Velocity 2

Analog output representing the integral of motor current.

25

DAC Output

Used to command velocity and position.

5·6

Figure 1 Head Actuator Control System

SYSTEM CLOCK
TO DATA SEPERATOR

JJ.A2470

SERVO
HEAD

POSmON
DEMODULATOR

DRIVE
INTERFACE

1LA2460
CONTROL
CIRCUIT

MOTOR CURRENT
SENSE RESISTOR

Figure 2 Block Diagram

N
QUADRATURE
POSlnON
SIGNALS
DACOUT
Q

POSITION
OUT

CLOCK IN

ANALOG
SWITCH

N -N

+

SEEK/FOLLOW

-

} MOTOR
CURRENT
SENSE
IN

VELOCITY 2
V+
N
ANLGCOM

VELOCITY 1
Q

GND

5-7

MA2460 • MA2461

Functional Description

The input signals Nand Q are quadrature quasi triangular
waveforms with amplitudes of ± 2.5 V nominal referenced
to Analog Common. The periods of the input signals are
subdivided by internal comparators and logic and sent to
the Track Crossing outputs To, T1, and T2. The relationship of these outputs to the inputs Nand Q is shown in
Figure 3a (for pA2460) and Figure 3b (for pA2461).

Figure 2 shows a block diagram of the j.tA2460/ j.tA2461

Servo Controller.
Power Supply And Reference Requirements
The j.tA2460/ j.tA2461 is designed to operate from a single
supply of 10 V to 12 V. Also required is a reference voltage of 5.0 V called Analog Common which serves two
functions; all analog signals will be referenced to this voltage and in addition the internal DAC will use it to set full
scale.

Note that different servo patterns may yield different numbers of track centerlines for each period of the quadrature
signal pair. The relationship of To, T1, and T2 to Nand Q
is independent of track centerlines, leaving the correct interpretations to the microcontroller.

A clock signal must be provided as a reference for the
internal switched capacitor position differentiator and motor
current integrator. The clock signal should be a sine or
square wave between Analog Common and ground at a
maximum frequency of 4.0 MHz.

DAC
The DAC is an 8-bit, buffered input, voltage output digital
to analog converter. The output voltage with an input code
of all zeros is equal to Analog Common. Full scale is
equal to Analog Common ± 2.35 V. The polarity depends
on the Direction In Signal; Direction In High will result in a
positive DAC output.

All digital inputs and outputs are TTL compatible levels
referenced to ground.
Input Signals And Track Crossing Outputs
The input format selected for position feedback is consistent with a large class of sensors that generate two cyclical output signals displaced in space phase by 90 degrees
(quadrature signal pairs). These sensors include resolvers,
inducto-syns, optical encoders, and most importantly, servo
demodulators designed for rigid disk head position sensing.

Figure 3a

The DAC enable line when high will cause the DAC's input buffer to become transparent, i.e. input data will affect
the output voltage immediately. When DAC enable is
brought low the data present on the input lines will be
latched and any further changes to the input data will not
change the output voltage. The DAC functions in both
Seek and Follow Mode. During Seek Mode the DAC outFigure 3b

Track Crossing Outputs (for /lA2460)

RADIAL

t<-!-+-+-7f-H-+*+-H--'I.:----"""7I-

~-+~~~-+~~~~----~_ HEAD
POSITION

TO

TO

Tl

Tl

T2

T2

TO

Track Crossing Outputs (for /lA2461)

0101010101010101

TO

0101010101010101

Tlllllll00000000ll

T1

0011001100110011

T21100000000111111

T2

0000111100001111

5-8

RADIAL
HEAD

POSITION

J,LA2460 •

~A2461

direction indicated by DIRECTION IN/OUT. Figure 4 shows
typical seek operation.

put is used as a velocity reference. In Follow Mode the
DAC output can be summed into the position reference
signal to offset the heads from track center.

Position Output
When the 1lA2460/1lA2461 is set to Seek Mode the signal
from Position Output lead is shown in Figure 5. This signal
is made by switching the position inputs, (N and 0)
through an inverter if required, (N" and 0) to the output
using the track crossing signals. It can be used, if desired,
to interpolate between DAC steps by attenuating it and
summing it with the DAC output.

Analog Switch
An uncommitted single pole single throw analog switch
with an ON resistance of approximately 100 .n is provided.
This switch is ON during Follow Mode.
Mode Select
The two major intended operating modes for the !lA2460
are controlled by the microcontroller via the SEEK/FOLLOW input. Mode Select input high enables Seek Mode,
low enables Track Follow Mode.

Track Follow Mode is entered when the heads are near
the end of a seek, usually within one half to one track
away from the target track centerline. The final setting to
the track center is done by the position loop.

SEEK, when asserted by the microcontroller along with
DIRECTION and a non-zero VELOCITY value as inputs,
causes the actuator system to accelerate in the requested
direction. During the ensuing motion, the actuator system
will come under velocity feedback control. The velocity
feedback signal is created by differentiation of the quadrature position signals and, additionally, by integration of motor current.

When the device is switched to Follow Mode, the position
input signal (N, N, 0 or 0) that is currently selected to
the output is latched and the Position Out Signal follows
the selected position input signal until the device is
switched back to Seek Mode. This implies that the switch
to Follow Mode must not be made until the signal that
will be the correct Position error signal for the target track
is present at the output. If track centers are defined as
the zero crossings of both Nand 0 this means that the
switch to Follow Mode must be made less than one-half
track away from the target track. (This is with respect to a
convention of 4 track per encoder cycle, so switching
must be done within 90° of the period of N or 0).

FOLLOW, the negation of SEEK, changes the feedback
loop to a track-following or position mode. Position servos
are typically second order systems and without loop compensation are potentially unstable. External components
are used, along with the 1lA2460, to achieve stable track
following performance. Velocity information (V1) is made
available as an output in this mode as an aid in stabilizing
certain loops. If non-zero data is supplied to the velocity
latches in this mode, it will result in a track offset in the

Figure 5 Position Output During Seek Mode

Figure 4 Typical Seek

DACOUT
NAND Q INPUTS

VELDCITY
VI

COIL
CURRENT

ACCELERATE

CONSTANT
VELOCITY
SEEK

POsmON OUTPUT

DECELERATE
TRACK FOLLOW

5-9

MA2460 • MA2461

Velocity Outputs
There are two analog signal outputs representing velocity.
The first (V1) is derived by differentiating the position input
signals. The entire differentiator is on-chip, using switched
capacitor techniques and requires no external components.

grees and negative. if Q is leading N. This block functions
during both Seek and Follow modes.
The second velocity output is obtained by integrating a
voltage proportional to the current in the motor using the
following function:

The transfer function of the differentiator is:
dv/dt (out)=V (+lin--lin)x2x10-4 f (clock) Hz.
Vo = dv/dt (input) x 14.3/f (clock) Hz
The motor current integrator output is clamped to Analog
Common during Follow Mode and is released at the initiation of a seek.

As an example; a 10kHz triangular signal pair into Nand
Q of 6.0 V peak-to-peak amplitude (dv/dt = 120 kv/sec)
would result in a velocity voltage output of 1.716 volts
referenced to Analog Common with. a clock of 1.0 MHz.
The polarity will be ·positive if N is leading Q by 90 de-

Figure 6 shows a typical application set up for the Servo
Control chip.

Figure 6 Typical Application Setup
DACOUT

r-

PORT 1

8-SlTS

L-

PORT 2

L

ERROR
SIGNAL

IlA2460

MICROCONTROLLER

I

SWITCH
MATRIX

VEL 1
VEL 2

DACIN

POSOUT

3-Brrs

TRKOUT
DACEN

SWl

siF

SW2

DIR

POSlnoN
DEMODULATOR

CURRENT SENSE

SERVO IN

VOICE COIL
MOTOR

5-10

MA2460 • MA2461

1JA2460, 1JA2461
Electrical Characteristics TA = O°C to 70°C, Vee = 12 V, fclk = 2.0 MHz, Analog Common = 5.0 V, unless
otherwise specified.
Symbol

Digital I/O

Characteristic

Condition

Input Voltage HIGH

DAC

Typ

Output Voltage HIGH

IOH=40 pA

Input Load Current

VI = 0 V to Vee

Input Comparator
Reference Level

2.5

Input Impedance

15

20

Linearity1

-1

V

+1

LSB

kil

bits

Monotonicity Guaranteed
7.25

7.35

7.45

Direction In Low

2.55

2.65

2.75

Zero Scale Voltage

V

5.0
±10

Settling Time2 • 4

To

Y2

LSB All bits ON or OFF

Input Voltage Range

1.0
15

On Resistance

VCM=O V to 12 V

Off Leakage3
Output Voltage Swing

RL = 15K Follow Mode

Voltage Gain

RL = 15K

~
V1

9.0
20
100

200

il

2.0

100

nA

9.0

V

0.9

1.1

1.0

-

±20

mV

9.0

V

±20

mV

+15

5-11

V
kil

1.0

Output Offset Voltage
Output Voltage Swing

mV
[J.s

Input Impedance

Output Offset Voltage

rnA

Direction In High

Output Offset Voltage

Velocity Outputs

0.2
3.0

8.0

Differential Nonlinearity

Position Output

V

2.4

2.0

Full Scale Output Voltage

Analog Switch

Unit

0.8

0.45

IOL =2.5 rnA

Resolution

Position Inputs

Max

2.0

Output Voltage LOW

Clock Input

Min

Input Voltage LOW

IlA2460 • 1lA2461

1lA2460, 1lA2461 (Cont.)
Electrical Characteristics TA

= O°C to 70°C, Vee
otherwise specified.

Symbol

= 12

V, fClk = 2.0 MHz, Analog Common

Characteristic

Condition

Positive Supply

Vcc= 13.2 V

Iss

Negative Supply

Vcc = 13.2 V

lAC

Analog Common I

V1 - Differentiator

Linearity

fclk

V2 - Integrator

Linearity

fclk

Icc

Min

= 5.0

V, unless

Typ

Max

Unit

10

15

mA

-15

-10

-2.0

0

mA
+2.0

mA

= 1.0 MHz to 4.0 MHz;
fN/Q ..; 10kHz

0.25

%

= 1.0 MHz to 4.0 MHz

1.0

%

Notes
1. DAC Unearity is a function of the Clock frequency; Unearity at 1.0 MHz
is typically ± b LSB.
2. DAC Settling TIme is approx 5.0 /lS, plus a delay of maximum
32 x Clock period i.e., 5 + 32 /lS at Clock = 1.0 MHz Minimum could be
5.0 /lS.
3. Equivalent to 50 Mn.
4. Guaranteed, 'but not tested in production.

5-12

~A2470

FAIRCHILD
A Schlumberger Company

Winchester Disk
Position Demodulator

Preliminary

Linear Division Disk Drives

Description

Connection Diagram
28-Lead DIP
(Top View)

The 1lA2470 is a monolithic analog/digital integrated circuit
which decodes a quadrature di-bit pattern from the dedicated servo surface of a disk file into head position, track
data and timing components. The 1lA2470 accepts this signal after it has been amplified by a 1lA2480 type of
preamp and processes the various components for input
to a 1lA2460 type servo controller. These three circuits
and their external components form a disk servo control
system for closed loop applications.

TAKCLK

Vcc,

PRE·SCALER USB
PRE-SCALER LSB
SYNCTlUING
VCO TUNING VOLTAGE

• Quadrature Position Signals
• Programmable Charge And Discharge In Peak
Detectors
• Sync Lock By PLL With Lock Detection Output
• NRZ Track Data And Clock Output
• Band Gap 5.0 V Reference Provided
• AGC Amplifier With 36 dB Range
• Servo Frame Rates To 400 kHz
• Compatible With j.lA2480 Servo Preamp And j.lA2460
Servo Control Chip
• Standard 5.0 V And 12 V Power Supplies

VCOCAP1
VCOCAP2
STORAGE CAP 1
STORAGE CAP 2
CLKOUT

ANALOG REF

CHRG PUMP CUR
CHRG MAGNITUDE

COMPOUT

PLLLOCKED

CHRGCUR

GND

DlSCHRGCUR

Absolute Maximum Ratings
Storage Temperature Range
Operating Temperature Range
Lead Temperature
Ceramic DIP (soldering, SO s)
Internal Power Dissipation 1, 2
28L-Ceramic DIP
Supply Voltage, VCC1
Supply Voltage, VCC2

-S5°C to + 175°C
O°C to +70°C

Order Information
Device Code

300°C

1lA2470DC

2.50 W
S.O V
15 V

Not..
1. TJ Max = 175°C.
2. Ratings apply to ambient temperature at 25°C. Above this temperature,
derate at 16.7 mWI"C.

5-13

Package Code
FM

Package Description
Ceramic DIP

JlA2470

Block Diagram
CHARGE
PUMP
CURRENT

BALANCE
BYPASS
AGC
COMP,'

- tCOMPOSITE IN 2 - tCOMPOSITE IN 1

Vee,
VCC2

GROUND

-

-

AGC
MP2
C1

COMPOSITE
OUT

SYNC
nMlNG

,
I

I1
AGC
AMPLIFIER

COMP

CHARGE
MAGjlTUOE

SIG

J
SYNC

SYNC
SEPARATOR

ANALOG
REF

-

CHARGE
PUMP

PUMP
DOWN

1

rr-

0

t-

SYNC
PLLLOCK
DETECTOR

U.
W

'"

VCO

WINOOW
LOCKEO

I

!

DATA
DEMODULATOR

I
TR!CK TRicK
CLOCK DATA

VCOCAPI
VCOCAP2
VCOTUNING
VOLTAGE

0

WINDOWS

~

-

t-t-t-- -

'0"

DATA

-H

>

o

w z
VI >
w VI

'"

5V
REGULATOR

0

>
AGC

i--

~

CAr 1

UP

PHASE
DETECTOR

0-

PLLLOCKED

STORAGE
CAP 2

STORAGE

I

WINDOWS

POSITION
DEMODULATOR

CLOCK OUT

..J

0

I
DIVIDER
DECODER

DIV
CLK

PRE-SCALER

I

Jp jp

OUT OUT
DISCHARGE CHARGE
CURRENT CURRENT

5-14

PRE-SCAJR
LSB

P!E-SCALER
MSB

J.LA2470

Description Of Lead Functions
Lead

I

Name

Function

Input Signals

Pre-scaler LSB
Pre-scaler MSB

Programs the Pre-scaler for VCO frequency relative to the frame rate. Divide ratios
of 32, 64, 96, and 128 are available. Inputs are TTL levels.

5

VCO Tuning Voltage

Voltage input sets the VCO Current.

11

Charge Pump Current

Voltage input sets the current level into the Loop Filter.

2
3

14

Ground

18

VCC2

12 V supply input.

25
26

Composite IN 1
Composite IN 2

Composite signal inputs.

28

VCC1

5.0 V supply input.

1

Track Clock OUT

Clock output derived from the Sync signal. Used as reference for Track Data; TTL.

10

Clock OUT

VCO output; TTL.

13

PLL Locked

Logic high when PLL is locked; TTL.

17

Composite OUT

AGC Amplifier output.

19

Analog Reference

5.0 V reference output. Used as reference for Nand Q outputs.

20

QP OUT

Quadrature position output.

Outputs

21

NP OUT

Normal position output.

27

Track Data

NRZ data from missing Sync pulses; TTL.

External Components

4

Sync Timing

Oneshot timing RC network. Sets length of window used in Sync Separator.

6-7

VCO Capacitor

VCO Timing Capacitor. Sets VCO center frequency.

8-9

Storage capacitor

PLL Loop Filter.

12

Charge Magnitude

Oneshot timing RC network. Sets length of current pulse out of the Phase
Detector.

15

Peak Detector
Discharge Current

Resistor to Ground. Sets the internal peak detector discharge current.

16

Peak Detector
Charge Current

Resistor to Ground. Sets the internal peak detector charge current.

21

Balance Bypass

Bypass capacitor for the offset cancelling circuit in the AGC Amplifier. Sets the
low frequency roll off of the Amplifier.

23

AGC 1

Loop Filter capacitor for AGC Amplifier.

24

AGC 2

Bypass Capacitor for AGC Amplifier.

5-15

MA2470

Theory Of Operation

pulse in the stream. Sync separator timing is shown in
Figure 3.

The purpose of the /lA2470 is to demodulate both analog
and digital information from the composite servo .signal as
shown in figure 1. This signal contains the digital signals
Data and Sync and the analog quadrature di-bit signals N,
N, Q, and Q.

TRACK DATA DEMODULATOR The track data encoding
flip-flop changes state whenever there is a data pulse
present producing NRZ data for the user.

Data The track data is presented as NRZ with a companion clock signal for latch control. The track data is decoded· from the first pulse in each servo cell. This data
permits identification of index position, guardband etc. The
codes and schemes are entirely at the user's option as
no decoding is done on-chip.

Sync The sync pulse is the one
is always present in every frame
pulse is used to synchronize the
the rest of the information in the

PHASE LOCK LOOP When a disk sync pulse is sensed
by the Sync Separator, the PLL compares the phase of
disk sync with the phase of a reference sync pulse
generated by the window decoder. Refer to Figure 4 and
5. Every other sync pulse from the Sync Separator causes
the window decoder counter to preset. This forces the
decoder into phase alignment with the disk sync. Starting
from a known condition allows a phase comparison to be
made on the next frame by comparing the trailing edges
of the reference sync with the disk sync pulses and
outputing a correction signal to the charge pump to
increase or decrease the veo frequency to correct the
phase error. On the next frame the cycle is repeated.

pulse in the frame which
on every track. This
PLL and makes decoding
frame possible.

Quadrature Position Signals The four position pulses are
analog signals whose amplitude encodes the position of
the disk file heads with respect to the data track centers.
Nand Q are in a quadrature relationship, i.e. when Nand
N are equal in magnitude the difference between Q and Q
is at maximum and vice versa. Equal magnitudes of Nand
N represent odd tracks and Q and Q the even tracks.

LOCK DETECTOR When the frequency and phase of the
veo are correct, the trailing edge of the sync pulse will
coincide with the trailing edge of count 4 from the
counter/decoder. The decoder generates a window from
the end of count 3 to the end of count 5, so that the
sync edge will ideally fall in the middle. Whenever the
sync falls inside the window four consecutive times, lock
is detected and the lock Signal goes true. In order for the
lock signal to be reset the sync pulse must be outside the
window for four consecutive frames.

AGC Amplifier The 1lA2470 AGe Amplifier is a fully differential design with a typical bandwidth of 20 MHz and active offset cancelling. The composite signal input level
must be between 30 mV and 300 mV to be within the
Amplifier's active AGe range. The offset cancelling circuit
requires an external filter capacitor which provides control
of the low frequency response. An external capacitor is
used to control the AGe bandwidth. The AGe Amplifier
output amplitude is typically 3.5 Vp-p and is available at
an output lead on the device for monitoring.

POSITION DEMODULATOR Figure 6 shows the position
signals as a function of servo head position. The Position
Demodulator consists of four digitally enabled peak
detectors, two summing amplifiers and a precision band
gap reference. Each of the four peak detectors is enabled
by the window decoder during one of the position pulses
as shown in Figure 7. The N pOSition output is derived by
taking the difference between the first two peak detector
outputs. The Q output is similarly obtained from the
second pair. The outputs are referenced to the 5 V
reference which is available as an output to be used as
an analog baseline. The charging and discharging slew
rates in the peak detectors are programmable by external
resistors. The charging slew rate is associated with
acquisition of the peak and the discharge slew rate
controls the droop rate between peaks.

Sync Separator The Sync Separator shown in Figure 2
operates on the composite signal as it appears at the output of the AGe Amplifier. The hystereSiS comparator has
thresholds of +0.7 V and 0 V and produces pulses whose
trailing edges are at the zero crossings of the composite
signal. The trailing edges of these pulses trigger the oneshot. The output of the oneshot is AND-gated with the
pulse stream from the hysteresis comparator to produce
the sync pulse. The pulse length from the oneshot should
only be long enough to enclose the sync bit as the next

5-16

J,.LA2470

Figure 1 Composite Servo Signal

Figure 2 Sync Separator

TRACK
CLOCK
MONOSHOT
COMPOSITE SIGNAL
FROMAGC

HYSTERSIS
COMPARATOR

NRZ
TRACK

AMPLIFIER

DATA

SYNC TO
PHASE
DETECTOR

~:~ ~II~~O~~ =Jl...~_____________---J
SYNC WINDOW

..:1I=-_____________--'

Figure 3 Sync Separator Timing
DATA

SYNC

POSITION

COMPOSITE
SIGNAL

CO~~!~~~~~ ~ ;-----u-,L._
.._ _

MONOSHOT - - - - (

!

___Ir---

Ur--------------------------

SYNCTO-----,

PHASE

DETECTOR

5-17

J.LA2470

Figure 4 Phase Lock Loop Block Diagram

Figure 5

veo

Fast/Slow Timing Diagram
PRESET

PRESET

COMPARE

SYNC

PRESET

REF SYNC

PUMP UP

PUMPOOWN

veo SLOW

PRESET

~~

COMPARE

PRESET

~

U

PRESET

REF SYNC

PUMP UP

PUMP DOWN

veOFAST

5-18

fJ.A2470

Figure 6 Magnetized Pattern of Quadrature Oi-Bit Servo Signal and Read Signal
SERVO HEAD
GAP POSITION

r-DATA PULSE
-SYNC PULSE
,-NPULSE

I I

fNPULSE
Q PULSE

j
N NS SN NS S

N NS S

N NS S

r'rQPULSE

N NS SN NS S

A
N NS SN NS S

N NS S

N NS S

I

N NS SN NS S

V

V 1/

A

V

JlJJ
N NS SN NS S

N NS S

N NS S

I

N NS SN NS S

VV

N NS SN NS S

111\

V\I

N NS SN NS S

N NS S

N NS S

I

I

I

Position Pulse
N

N
COMPOSITE
SERVO
SIGNAL

I
I

I
I

Iii
--Ir-l. .-li___+-______

WINDOW 1 _ _ _ _ _ _ _

WINDOW 2

--______________

iI

A A
V V

N NS SN NS S

MAGNETIC PATTERN

Figure 7

A

VV

A

V

/I /1

I

N NS SN NS S

N NS S

N NS S

1\

VV

1\/1
VI/

A A 1\
\I v v \I

/1/\

AA

I

,L-________

,----,
~,

5-19

READ SIGNAL

VV

/I 1\/1

V VI/

-----I

J,LA2470

Figure 8 PLL Synchronizing Event
WINDOW
DECODER

SYNC
WINDOW

WINDOW 1

WINDOW 2

WINDOW 3

L

WINDOW 4

SYNCP
SYNC
SEPARATOR

n

~

:-'-,

-AJ\;

Jl
Y

DATA

AGC
AMPLIFIER

I

:

r--,

r--,

~

~

,, ,,
,. .... "'1

'

I

fI

,

~

Y

Y

PLL SYNCHRONIZING EVENT
Mayor may not be present. Width varies.

May be present at any amplitude (from zero to sync pulse amplitude)
I'A2470 TIMING DIAGRAM when Loop is locked.

MA2470

Electrical Characteristics TA = 25°C, VCC2 = 12 V, VCC1 = 5.0 V, unless otherwise specified.
Characteristic

Condition

Units

AGC Amplifier
Max Voltage Gain

Input Freq = 1.0 MHz

46

AGC Range

Input Freq = 1.0 MHz

40

dB

15

MHz

Frequency Response
Input Voltage Range

30

Output Voltage

dB

300

mV

5.0

Vp_p

5.0

Vp_p

Nand Q Outputs
Output Voltage

RL

=

20K

Output Impedance
Output Offset Voltage

100

n

20

mV

Voltage Reference
Output Voltage

V

Output Current

mA

5-20

/-LA2470

J.LA2470 (Cont.)
Electrical Characteristics TA = 25°C, VCC2 = 12 V, VCC1 = 5.0 V, unless otherwise specified.
Characteristic

Condition

VCO

Max Frequency

Cvco = 20 pF

Tuning Range
Digital Outputs

(R pull-up = 2.0K to Vee>

VOL

0.4

V

Rise Time

O.B to 2.4 V

20

ns

Fall Time

2.4 to O.B V

5.0

ns

Vcc 1

140

mA

VCC2

12

mA

Supply Current

Program Voltage vs
Charge Pump Current

Capicator Value vs
Sync Pulse Demodulator And
Charge Pump Oneshot Pulse
Length

Control Voltage vs
VCO Frequency
Q.4

V
/

V

V
50

/

V

>
I

..
!

0

!;!

150

OUTPUT CURRENT -

200
mA

250

-Q.4

~

0.8

b
:z:

40

V

U)

w
Z
0

1.0

1.2

NORMALIZEO VCO FREQUENCY - MHz

5-21

/

60

~

V
1/
1/
0.&

'/

I

g

V
-0.2

X
VR=12K

80

II:

/

~

...~

:>

...

"-

/

..,

/

100

V

0.2

w

/

100

'/

/

1.4

/

20

/
o

o

/'
R = 24K

./

"

200

;'

V
400

&00

PULSE LENGTH - ns

800

1000

IlA2470

Test Circuit (Note 2)

•

(NOTE 1)

TRK ClK

TRK DATA

PRE-SCl lSB

COMP IN 2

-=-------I SYNC TIMING

COMPIN 1

VCO TUN VOL

AG COMP2

VCO CAP 1

AGCOMP1

5.0 v -...........-'\IIAr.....

.u A2470

C2
0.5

Jl

~F

510

VCO CAP 2

n

O.~"~F-~~AOA°r-~---~~~---i
(NOTE 1)

UV

VCC1

PRE-SCl MSB

N OUT

STOR CAP 1

SAL SYPS

STOR CAP 2

QOUT

ClK OUT

VREF OUT

f---IN

q

NOUT

1.0"F~
QOUT
VREFOUT

5.1 kO
~OV-~~--t------------__i

750n

CHG PMP CUR

VCC2

CHG PMPMAG

COMPOUT

24kO

(NOTE 1)

Pll lOCKED

CHRG CUR

GND

DISCH CUR

12 V

~
-=-

COMP
OUT
20kO
2OOkO

Notes
1. Open coilector digital outputs
2. C1 - 33 pF
C2 -100 pF
C3=15 pF
Values are for a frame frequency of 150 kHz.
Scale linearly for other frame notes.

5-22

-=-

IlA248X • IlA248XR Series
Winchester Disk
Read/Write Preamplifiers

FAIRCHILD
A Schlumberger Company

Linear Division Disk Drives

Description

Connection Diagram
24·Lead Flatpak
(Top View)

The J.LA248X/ J.LA248XR Series High Performance Read/
Write Preamplifiers are intended for use in Winchester disk
drives which employ center tapped ferrite or manganesezinc read/write heads. The circuit can interface with up to
eight read/write heads which makes it ideal for multi-platter disk drive designs. Designed to reside in the Head/
Disk Assembly (HDA) of Winchester disk drives, the Read/
Write Preamplifiers provide termination, gain, and output
buffering for the disk heads as well as switched write current. Certain write fault conditions are detected and reported to protect recording integrity. The parts are available
with internal damping resistor (J.LA248XR) and without internal damping resistor. (J.LA248X)
•
•
•
•
•
•
•
•
•

Wide Bandwidth, High Gain, Low Noise
Up To Eight Read/Write Channels
Internal Write Fault Condition Detection
5.0 V & 12 V Power Supply Voltages
Independent Read & Write Data Lines
TTL Control And Data Logic Levels
Externally Programmable Write Current
Available With Internal Damping Resistor
Compatible With 551 117 Family

cs

HSO

GNO

HS1

HOX

WDI

HOY

VDD1

H1X

v DD2

H1Y

veT

H2X

H3X

H2Y

H3Y

Aiw

Ne

we

Ne

ROX

WUS

ROY

vee

Order Information
Device Code

Package Code
FR
FR

J.LA2484GC
J.LA2484RGC

Package Description
Brazed Flatpak
Brazed Flatpak

Input Voltages

Absolute Maximum Ratings

Head Select (HSO, HS1, HS2)
Write Current (WC) Voltage in
read and idle modes. (Write
mode must be current limited
to -70 mAl
Chip Select (CS)
Read/Write (R/W)

Storage Temperature Range
-65°C to + 175°C
Ceramic
-65°C to + 150°C
Plastic
Operating Junction Temperature Range 25°C to 135°C
Lead Temperature
Ceramic (soldering, 60 s)
300°C
265°C
Plastic (soldering, 10 s)
Internal Power Dissipation,l, 2
28L-Ceramic DIP
2.50 W
24L-Ceramic DIP
1.95 W
18L-Ceramic DIP
1.58 W
32L-Brazed Flatpak
1.88 W
24L-Brazed Flatpak
0.97 W
24L-Ceramic Flatpak
0.90 W
44L-PLCC
1.92 W
1.39 W
28L-PLCC
Supply Voltage, VCCI
6.0 V
15 V
Supply Voltage, VCC2
Write Current (IWC)
70 mA

Part Selection
Device Code
J.LA2482X
J.LA2484X
J.LA2485X
J.LA2486X
J.LA2488X

Notes
1. TJ Max - 150°C for the Plastic, and 175°C for the Ceramic.
2. Ratings apply to ambient temperature at 25°C. Above this temperature,
derate the 28L~Ceramic DIP at 16.7 mW/oC the 24L~Ceramic DIP at
13 mW/oC, the 18L·Ceramic DIP at 10.5 mwrc, the 32L·Brazed
Flatpak at 12.5 mwrc, the 24L·Brazed Flatpack at 6.5 mwrc, the
24L Ceramic Flatpak at 6.0 mW/oC, the 44L·PLCC at 15.3 mW/oC, and
the 28L·PLCC at 11.2 mW/oC.

5-23

Channels
2
4
5
6

8

-0.4 V to VCCI +0.3 V

-0.3 V to VCCI +0.3 V
-0.4 V to VCCI +0.3 V
-0.4 V to VCCI +0.3 V

J.LA248X • J.LA248XR Series

Connection Diagram
24-Lead DIP
(Top View)

Connection Diagram
18-Lead DIP
(Top View)

24

cs
GND

18

HSO

cs

HSI

GND

WDI

HC

VDD1
V"""

HOX

HSO

HIX

vco,
vco•

HOX
HOY

VCT

H1Y

VCT

R/W

HIX
H1Y

HOY

H2X

H3X

WC

H2Y

H3Y

RDX
RDY

R/W
WC
RDX

wus

RDY

Vee

Order Information
Device Code
j.iA2482DC
j.iA2482RDC

Order Information
Device Code
j.iA2484DC
j.iA2484RDC

Vcc

NC

Package Code
7L
7L

Package Description

FU
FU

24

cs

HSO

GND

HSI

HOX

HSO

GND

HSI

HOY

WDI

HOX

WDI

HIX

VCC2

HOY

VDD1

HIX

V...

H1Y

VCT

H2X

H3X

H2Y

H3Y

R/Vi

HC

WC

NC

RDX

WUS

RDY

Vcc

Package Description
Ceramic DIP
Ceramic DIP

Connection Diagram
24-Lead DIP
(Top View)

Ceramic DIP
Ceramic DIP

Connection Diagram
24-Lead Cerpak
(Top View)
Ci

Package Code

H1Y

VCT

H2X

H4X

H2Y

H4Y

RiW

H3X

WC

H3Y

RDX

wus

ADY

Veef

Order Information
Device Code
j.iA2484FC
j.iA2484RFC

Package Code
FN
FN

Package Description
Ceramic Flatpak
Ceramic Flatpak

Order Information
Device Code
j.iA2485DC
j.iA2485RDC

5-24

Package Code
7L
7L

Package Description
Ceramic DIP
Ceramic DIP

MA248X • MA248XR Series

Connection Diagram
24-Lead Cerpak
(Top View)

Connection Diagram
28-Lead DIP
(Top View)

cs

HSO

GNO

HSI

HOX

HS2

28

HOY

WOI

HIX

VDD1

H1Y

VCT

HOX

H2X

H4X

HOY

H2Y

H4Y

Riw

H3X

GNO

HIX

WC

H3Y

H1Y

ROX

wus

H2X

ROY

Vee

Order Information
Device Code Package Code

Package Description

MA2485FC
MA2485RFC

Ceramic Flatpak
Ceramic Flatpak

FN
FN

HSI

HSO

H5Y

H2Y

H4X

R/Vi

H4Y

WC

H3X

NC

H3Y

ROX

WUS

ROY

Vee

Connection Diagram
28-Lead PLCC (Top View)

3

HOY

2

1

28

27

26

Order Information
Device Code Package Code

Package Description

MA2486DC
MA2486RDC

Ceramic DIP
Ceramic DIP

FM
FM

VDQ1

Connection Diagram
24-Lead Flatpak
(Top View)

HIX

V....

H1Y

VCT

H2X

H5X

H2V

H5Y

CS

HSO

R/;;;;

H4X

GNO

HSI

WC

H4Y

HOX

HS2

HOY

WOI

HIX

VDD1

H1Y

VCT

12

13

14

"

)(

>
Q

Z

Q

a:

II:

15

u

:Ii

16

17

18



)(

::>
~

2 2

Order Information
Device Code Package Code
/lA2486QC

KH

MA2486RQC

KH

Package Description
Plastic Leaded Chip
Carrier
Plastic Leaded Chip
Carrier

H2X

H4X

H2Y

H4Y

R/W

H3X

wc

H3Y

ROX

WUS

ROY

Vee

Order Information
Device Code Package Code
MA2485GC
/lA2485RGC

5-25

FR
FR

Package Description
Brazed Flatpak
Brazed Flatpak

MA248X • MA248XR Series

Functional Description

Connection Diagram
44·Lead PLCC (Top View)

Ne

7

S

5

4

3

2

1

44

43

42

In the Write mode, the /lA248X//lA248XR Series accepts
TTL compatible write data pulses on the WDI lead. On
the falling edge of each write data pulse, a current transition is made in the selected head. Head selection is accomplished via TTL input signals: HSO, HS1, HS2 (see
Table 2). Internal circuitry senses the following conditions:

V DD1

41

VD02
VCT

HOX

HOY

11

35

H6Y

~X

•

H~

H1Y

13

HSY

H2X

H4X

H2Y
H7X

1.
2.
3.
4.
5.

H6X

Absence of data transitions.
Open circuit head connection.
Absence of write current.
Short circuit head connection.
Idle or read mode.

H4Y

Any or all of the above conditions would result in a high
level on the write unsafe (WUS) output signal.

16

H7Y

2!l

H3Y

During read operations, the /lA284X amplifies the differential voltages appearing across the selected R/W head lead
and applies the amplified signal differentially to data lines
RDX and ROY.

Order Information
Device Code

Package Code

/lA2488QC

KI

/lA2488RQC

KI

Package Description
Plastic Leaded Chip
Carrier
Plastic Leaded Chip
Carrier

Connection Diagram
32·Lead Flatpak
(Top View)
HSI

32

HS2

HSO

31

WOI

cs

30

GND

29

VD01
VDD2

HOX

28

VCT

HOY

27

H6X

HIX

26

H6Y

H1Y

25

H5X

H2X

24

H5Y

H2Y

10

23

H4X

H7X

11

22

H4Y

H7Y

12

21

H3X

R/W

13

20

H3Y

WC

14

19

WUS

ROX

15

1.

NC

ROY

16

17

Vee

Order Information
Device Code

Package Code

/lA2488GC
/lA2488RGC

FS
FS

Package Description
Brazed Flatpak
Brazed Flatpak

5-26

J.lA248X • J.lA248XR Series

Description of Lead Functions
Lead

Name

Description of Functions

CS

Chip Select

Chip Select High disables the read/write function of the device and
forces idle mode. (TTL)

R/W

Read/Write Select

A Logic High places the devices in read mode and a Logic Low forces
write mode. Refer to Table 1. (TTL)

HOX, Y
through H7X, Y

Read/Write Head
Connections

The J.LA2488 has eight pairs of read/write connections. The X and Y
phases are made consistent with the read output, RDX and RDY,
phases. (Differential)

RDX, Y

Read Data Outputs

The chip has one pair of read data outputs which is multiplexed to the
appropriate head connections. (Differential)

HSO through HS2

Head Select Inputs

The eight read/write heads are addressed with the head select inputs.
Refer to Table 2. (TTL)

WC

Write Current Input

This lead sets the current level for the write mode. An external resistor is
connected from this lead to ground, and write current is determined by
the value of this resistor divided into the write current constant K, which
is typically 140 V.

WDI

Write Data Input

The write data input toggles the write current between the X and Y
selected head connections. Write current is switched on the negative
edge of WDI. The initial direction for write current is the X side of the
switch and is set upon entering read or idle mode. (TTL)

VDD2

Resistor Center Tap

In some versions (determined by lead availability) of the J.LA248X series,
a resistor may be connected between RCT and VDD1 to reduce internal
power dissipation. If this resistor is not used, RCT must be connected
externally to VDD1.

VCT

Center Tap Voltage

The center tap output provides bias voltage for the head inputs in read
and write mode. It should be connected to the center tap of the read/
write heads.

WUS

Write Unsafe

A high logic level at the write unsafe output indicates a fault condition
during write. Write unsafe will also be high during read and idle mode.
(Open collector)

5-27

tlA248X • tlA248XR Series

Table 2 Head Select Inputs

Table 1 Read/Write Select
Operating Modes

Head Selection

Chip Select CS

Read/Write R/W

Mode

HSO

HS1

HS2

Head Selected 1

1

X

Idle
Read
Write

0
1
0
1
0
1
0
1

0
0
1

0
0
0
0
1
1

0
1
2
3
4
5

o
o

1

o

1
0
0

6

7

Note
1. If selected head is beyond the capacity of the /lA248X model, the open input
condition on the selected input will be reported as an unsafe level at the WUS
oulput.

Block Diagram (Typical, J.LA248X)
VCT

>--

H C~P h
SELECT

WDI

WRITE
SELECT

I

R/W

READ EN

RDX

I

ROY

POST READ
AMPUFIER

HSO

HSI
HS2

WUS

I

HEAD
SELECT

I
I

WRITE EN

I
I

UNSAFE
CIRCUIT
DETECTOR

1J

HOX

I

I

~

HEAD 0
DIFFERENTIAL
READ
AMPLIFIERS
AND
WRITE
CURRENT
SWITCHES

I

HEAD 1

H1V
H2X

HEAD 2

H2Y

H3X
HEAD3
H3Y

(5 CHANNELS)

I

CURRENT
DRIVER

t-

HOY

HIX

H4X

HEAD4

H4Y

I

1

WC

5-28

MA248X • MA248XR Series

Absolute Maximum Ratings All voltages referenced to GND
Symbol

Characteristic

Value

Unit

-0.3 to + 14

V

VOO2

-0.3 to + 14

V

Vee

-0.3 to +6.0

V

VOOl

DC Supply Voltage

Vin

Digital Input Voltage Range

-0.3 to Vee +0.3

V

VH

Head Port Voltage Range

-0.3 to VOD +0.3

V

Vwus

WUS Port Voltage Range

-0.3 to + 14

V

Iw

Write Current

10

Output Current

RDX, RDY

60

rnA

-10

mA

VCT

-60

WUS

+12

Recommended Operating Conditions
Value

Unit

12 ± 10%

V

VOO2

6.5 to VOOl

V

Vee

5.0 ± 10%

V

5.0 to 15

/lH

500 to 2000

Symbol
VOOl

Characteristic
DC Supply Voltage

Lh

Head Inductance

RD

Damping Resistor (External)

RCT

RCT Resistor

90 ± 5.0% (1'2 watt)

n
n

Iw

Write Current

25 to 50

rnA

10

RDX, RDY Output Current

o to

IlA

5-29

100

J.LA248X • J.LA248XR Series

DC Characteristics 25°C ';;;TJ';;; 125°C Voo 1 = 12 V, Vee = 5.0 V, unless otherwise specified.
Symbol

Icc

IDD

Pc

VIL
VIH

Characteristic

Supply Current

Supply Current

Power Consumption

Digital
Inputs:

Read/Idle Mode

25

Write Mode

30

Idle Mode

25

Read Mode

50

Write Mode

30+lw

= 125°C

TJ

Idle Mode

400

Read Mode

600

Write Mode,
Iw=50 rnA,
RCT=90 n

850

Write Mode,
Iw=50 rnA,
RCT=O n

1050

-0.3

0.8

Input Voltage HIGH

2.0

Vee + 0.3

IIH

rnA

mW

V
V

VIL - 0.8 V

Input Current HIGH

VIH =2.0 V

100

/lA

IOL =8.0 rnA

0.5

V

VOH =5.0 V

100

/lA

WUS Output

Center Tap Voltage

-0.4

rnA

Input Current LOW

IOH
VCT

Unit

Max

Input Voltage LOW

IlL

VOL

Min

Condition

rnA

Read Mode

4.0 (typ)

V

Write Mode

6.0 (typ)

V

Write Characteristics VOOl = 12 V, Vee = 5.0, Iw = 45 rnA, Lh = 10 J.lH, f(Oata) = 5.0 MHz, CL (ROX,
ROY) .;;; 20 pF, Ro EXT = 750 n or Ro INT, unless otherwise specified.
Characteristic

Condition

Write Current Range

Min

Max

Unit

rnA

10

50

Write Current Constant "K"

133

147

Differential Head Voltage Swing

5.7

V
V (pk)

Unselected Diff. Head Current

2.0

rnA (pk)

Differential Output Capacitance

15

pF

Differential Output· Resistance

WDI Transition Frequency

Without Internal Resistors

10K

With Internal Resistors

538

WUS= LOW

Iwe to Head Current Gain

5-30

n
1.0K

400 (typ)

kHz

18 (typ)

rnA/rnA

MA248X • MA248XR Series

Read Characteristics VDD1 = 12 V, Vee = 5.0 V, Lh = 10 MH, f (Data) = 5.0 MHz, CL (RDX, RDY)
(Vin is referenced to VeT)' RD EXT = 750
Characteristic

n

<

20 pF,
or RD INT, unless otherwise specified.
Min

Max

Unit

80

120

VIV

-2.0

+2.0

mV

Condition

Differential Voltage Gain

Yin = 1.0 mVp. p at 300 kHz
RL (RDX), RL (ROY) = 1.0 kQ

Dynamic Range

Input Voltage, VI, Where Gain Falls by 10%.
Yin = VI + 0.5 mVp_p at 300 kHz

Bandwidth (-3db)

I Zs 1<5.0 Q, Yin = 1.0 mVp _ p

30

MHz

Input Noise Voltage

BW = 15 MHz, Lh = 0, Rh = 0

2.1

nV/YHZ

Differential Input Capacitance

f = 5.0 MHz

23

pF

Differential Input Resistance

f = 5.0 MHz

I Without Internal Resistors
I With Internal Resistors

Q

2K
440

850

Input Bias Current

45

IJA

Common Mode Rejection Ratio

VCM=VCT+100 mVp _ p at 5.0 MHz

50

Power Supply Rejection Ratio

100 mVp _ p at 5.0 MHz on V001, V002, or VCC

45

db

Channel Separation

Unselected Channels: Yin = 100 mVp _ p at
5.0 MHz and Selected Channel: Yin = 0 mVp _ p

45

db

Output Offset Voltage

-480

+480

5.0

7.0

V

35

Q

1070

Q

Common Mode Output Voltage
Single Ended Output Resistance

db

f = 5.0 MHz

Internal Damping Resistor

560

mV

Switching Characteristics VDD1 = 12 V, Vee = 5.0 V, TJ = 25°C, Iw = 45 rnA, Lh = 10 MH, f (Data)
RD EXT = 750
Symbol

n

= 5.0

MHz,

or RD INT, unless otherwise specified.

Characteristic

Condition

Min

Max

Unit

IJS

R/W to Write

Delay to 90% of Write Current

1.0

R/W to Read

Delay to 90% of 100 mV 10 MHz Read Signal
Envelope or to 90% Decay of Write Current

1.0

CS to Select

Delay to 90% of Write Current or to 90% of
100 mV 10 MHz Read Signal Envelope

1.0

CS to Unselect

Delay to 90% Decay of Write Current

1.0

HSO
HS1
HS2

to any Head

Delay to 90% of 100 mV to 10 MHz Read
Signal Envelope

1.0

IJS

WUS

Safe to Unsafe - TD1

Iw= 50 mA

8.0

IJS

Unsafe to Safe - TD2

Iw=20 mA

1.0

Prop. Delay - TD3, TD4

Lh = 0 IJH, Rh = 0 Q
From 50% Points

25

Asymmetry

WDI has 50% Duty Cycle and
1 ns Rise/Fall Time

Rise/Fall Time

10% - 90% Points

R/W

CS

Head
Current

1.6

5-31

2
20

IJs

nS

•

J.LA248X • J.LA248XR Series

Figure

Head Current Timing

DIFFERENnAL

HEAD CURRENT

figure 2a

Unsafe to Safe Timing

' -_ _ _ DATA

VWD

Vwus - - - - - - -

=

'-------

LOAD CAPACITANCE 20 pF
PULL UP RESISTOR = 1.0 kQ

Figure 2b Safe to Unsafe Timing
HEAD OVERSHOOT
VOLTAGE

(VH1o VH2)

1---'.'=1
2.0V

--LO-A-OCA-PAC-ITANCE =20pF
PULL UP RESISTOR

=1.ok2

5-32

MA2480

FAIRCHIL.D

Winchester Disk
Servo Preamplifier

A Schlumberger Company

Linear Division Disk Drives

Description

Connection Diagram
8-Lead DIP
(Top View)

The fJA2480 provides termination, gain, and impedance
buffering for the servo read head in Winchester disk
drives. It is a differential input, differential output design
with fixed gain of approximately 100. The bandwidth is
guaranteed greater than 10 MHz.
The internal design of the f.lA2480 is optimized for low
input noise voltage to allow its use in low input signal
level applications. It is offered in 8-lead DI P (plastic) or
10-lead flatpak.

•
•
•
•

Low Input Noise Voltage
Wide Power Supply Range (8.0 V To 13 V)
Internal Damping Resistors (1.0 kil)
Functionally Compatible with SSI 101

Ne

-IN

v+

Ne

-OUT

v-

+OUT

Order Information

Absolute Maximum Ratings
Storage Temperature Range
Flatpak
Molded DIP
Operating Temperature Range
Lead Temperature
Flatpak (soldering, 60 s)
Molded DIP (soldering, 10 s)
Internal Power Dissipation 1, 2
8L-Molded DIP
10L-Flatpak
Supply Voltage
Output Voltage
Differential Input Voltage

+IN

Device Code
fJA2480TG

-65°C to + 175°G
-65°C to + 150 0 G
OOG to 70°C

Package Code
9T

Package Description
Molded DIP

Connection Diagram
10-Lead Flatpak
(Top View)

0.93 W
0.79 W
15 V
15 V
± 1.0 V

•

+IN

Ne
v+

-IN

Notes
1. TJ Max -150"C for the Molded DIP, and 175"C for the Flatpak.
2. Ratings apply to ambient temperature at 25"C. Above this temperature,
derate the 10L·Flatpak at 5.3 mWrC, and the 8L-Molded DIP at
7.5 mWrC.

Ne

-OUT

v-

+ OUT

Ne

Ne

Order Information
Device Code
f.lA2480FC

5-33

Package Code
3F

Package Description
Flatpak

J1A2480

Equivalent Circuit
v+

+OUT

-OUT

a9

a24

R6
240Q

a6
R1
9kQ

R2
4.3kQ

a2S

R7

+IN

R4
500
-IN

R8

Q

-4-----+----'

R14
250Q

~----+-----~------~----------~------------~--------+-~------+--vEQOO710F

5-34

J,LA2480

Electrical Characteristics TA = 25°C, (V+)-(V-) =8.0 V to 13.2 V, unless otherwise specified.
Symbol

G

Characteristic

Condition

Gain (differential)

Min

Rp= 130 n, Vce= 12 V

92

Rp=130 n, Vee=12 V,

80

Typ

115

Max

Unit

138
150

TA = O·C to 70·C
VI = 2.0 mVp _ p

BW

Bandwidth (3.0 dB)

RI

Input Resistance

CI

Input Capacitance

VI

Input Dynamic Range (differential)

Rp = 130 n, Vee = 12 V

Is

Supply Current

Vee = 12 V

10

30

800

1000

MHz
1200

n
pF

3.0

mVp _ p

3.0
30

40

mA

600

mV

t:No

Output Offset (differential)

Rs=On,Rp=130n

Vn

Equivalent Input Noise

BW = 4.0 MHz, Rs = 0 n

PSRR

Power Supply Rejection Ratio

Rs = 0 n, f < 5.0 MHz

t::.GIt::.V

Gain Sensitivity (Supply)

t::. Vcc=±10%, Rp=130 n

± 1.3

%IV

t::.GIt::.T

Gain Sensitivity (Temp)

TA = 25·C to 70·C, Rp = 130 n

-0.2

%fOC

CMR

Common Mode Rejection (Input)

f< 5.0 MHz

Typical Applications
v...

SERVO
HEAD

R..

R..

V-

Notes
1. Leads shown for 8·lead DIP.
2. Req is equivalent load resistance.

3. Rp- RL • Req
RL'" Reo
4. G=.88 Rp
Where Rp = value from Note 3 (above) In ohms.

5-35

1.5
50

55

65

70

10

/lV
dB

dB

JIA2490

F=AIRCHILD

MFM/2,7 Data Separatorl
Encoder-Decoder

A Schlumberger Company

Linear Division Disk Drives

Description

Connection Diagram
28-Lead DIP
(Top View)

The 1lA2490 Data Separator/Encoder-Decoder chip provides a convenient, high performance means of converting
MFM or 2,7 encoded data derived from magnetic media to
an NRZ digital bit stream. Also included is an MFM or 2,7
encoder which converts NRZ data to MFM or 2,7 encoded
. serial formal suitable for recording on magnetic media. The
1lA2490 provides both MFM and 2,7 modes of operation
selectable with a select pen.

NRZ WRITE DATA

ADDRESS MARK ENABLE

WRrTECLOCK

WRITE GATE

28
WRITE MISSING CLOCK

RZ WRITE DATA

25
PRE-COMPENSAllON 2'

NRZ READ DATA

The Data Separator chip provides the complete oscillator
synchronization and data decode function required on controllers in the ST506 format, and disk drives in the ESDI
format. The chip also allows selectable precompensation
for those drives that may require it.

M

GATE (NOTE 1)

ADDRESS MARK FOUND

23

FILTER +
(NOTE 1)
FlLTER(NOTE 11

22

8

Yee
DELAY CAPACITOR
(NOTE 1)
AI FOUND

•
•
•
•
•

Data Rates To 25 Mbps
ESDI And ST506 Compatible Signal Definitions
Can Be Used In Drive. Or ControJler
Selectable MFM Or 2,7 Encoding/Decoding
Internal Generation/Detection Of MFM And 2,7
Address Marks
• Internal Write Precompensatlon With Externally
Programmed Value

yeo CAP1 (NOTE 1)
yeo CAP2 (NOTE 11
GROUND

20

1.

CHARGE PUMP SLOW (NOTE 11
CHARGE PUMP FAST (NOTE 11

18

NC

DELAY RESISTOR (NOTE 1)

READ REF CLOCK
RZ READ DATA
READ GATE

REFERENCE OSCILLATOR
MFM (2,7) SELECT

Absolute Maximum Ratings
Storage Temperature Range
Ceramic DIP
PLCC
Operating Temperature Range
Lead Temperature
Ceramic DIP (soldering, 60 s)
PLCC (soldering, 10 s)
Internal Power Dissipation1, 2
28L-Ceramic DIP
44L-PLCC
Supply Voltage
TTL Inputs
Output Voltage

Note
1. Passive compensation node.

-65·C to + 175·C
-65·C to + 150·C
O·C to +70·C

Order Information
Device Code
1lA2490DC

300·C
265·C
2.50 W
1.92 W
6.0 V
6.0 V
6.0 V

NolM
1. TJ Max -150·C for the PLCC, and 175·C for the Ceramic DIP.
2. Ratings apply to ambient temperature at 25·C. Above this temperature,
derate the Ceramic DIP at 16.7 mWrC, and the PLCC at 15.3 mWI·C.

5-36

Package Code
FM

Package Description
Ceramic DIP

MA2490

Connection Diagram
44-Lead PLCC
(Top View)

NC

7

•

5

4

:I

a

1

44

43

42

41

VCOCAP'
VCOCAP'
NC

FILTER + ,
FlLTER- ,

NC

VCCD

11

VCCA

1:1

GNDA

VCCD

13

GND.

DELAY CAPACITOR
A1FOUND

,.

CHARGE PUMP SLOW'
CHARGE PUMP FAST'

NC
NC

GND.

NC

"

NC

axt1710F

Note
1. Passive compensation node.

Order Information
Device Code
j.lA2490QC

Package Code
KI

Package DescrlpUon
Plastic Leaded Chip
Carrier

5-37

MA2490

Description of Lead Functions
Name

Description of Functions

Input Leads - All inputs are TTL

Address Mark Enable

This lead has two functions depending on the state of the WRITE GATE input lead.
If ADDRESS MARK ENABLE is enabled (LOW) and WRITE GATE IS DISABLED
(HIGH), then the 1lA2490 will go into an address mark search mode. The address
mark is the DC erased gap. If ADDRESS MARK ENABLE is enabled (LOW) and
WRITE GATE is enabled (LOW), then the 1lA2490 will not allow the RZ WRITE
DATA output to change state. This allows the writing of DC erased gaps (address
marks).

Write Gate

When enabled (LOW) this lead will allow the 1lA2490 to output encoded RZ data on
the Write Data lead. Its function is tabulated as shown:
Address Mark Enable

Write Gate

Resultant Function

Enabled
Enabled
Disabled
Disabled

Enabled
Disabled
Enabled
Disabled

Write DC Erased Gap
Search for DC Erased Gap
Write RZ Data
Disabled

(LOW)
(LOW)
(HIGH)
(HIGH)

(LOW)
(HIGH)
(LOW)
(HIGH)

RZ Read Data

This lead receives the encoded RZ data pulses from the Read Channel in the disk
drive. This input is what the phase lock loop (PLL) locks up to when decoding read
data, and is also what will restart the internal VCO clock after READ GATE switches
from HIGH to LOW.

Read Gate

When enabled (LOW) this lead will allow the 1lA2490 to lock up to and read RZ
data from the disk. When this lead changes states, the internal VCO clock is turned
off. When this lead changes from HIGH to LOW (enabled), the first RZ READ DATA
INPUT will restart the internal VCO clock. When this lead changes from LOW to
HIGH (disabled), the first REFERENCE OSCILLATOR input pulse will restart the
internal VCO clock.

MFM/2,7 Select

This lead allows the user to select the desired code. A TTL low selects MFM and a
TTL high selects the 2,7 code.

Reference Oscillator

This is the reference clock input that the 1lA2490 phase lock loop syncs to when in
the write mode and the idle state. This input also restarts the VCO clock after
READ GATE switches from LOW to HIGH. The frequency of the reference oscillator
should be the same as the data rate. During write, the WRITE CLOCK input must
be phase locked to the signal on this lead.

Precompensation 2°

When this lead is enabled (HIGH) and PRECOMPENSATION 21 lead is disabled
(LOW), the precompensation value will be 5% of the 2f clock period.

Precompensation 21

When this lead is enabled (HIGH) and PRECOMPENSATION 2° lead is disabled
(LOW), the precompensation value will be 10% of the 2f clock period. If both
PRECOMPENSATION 2° and PRECOMPENSATION 21 leads are enabled (HIGH), the
precompensation value will result in a 15% correction of 2f clock period.

Write Missing Clock

This lead receives the signal (active low) from the controller to drop the clock pulse
out of bit 6 in the MFM "A 1" pattern. This lead should be enabled (LOW) only
when the "A1" pattern is present at the NRZ WRITE DATA input.

Write Clock

This lead receives the clock from the controller which clocks the NRZ WRITE DATA
(lead 28) input.

5-38

J.lA2490

Description of Lead Functions (Cont.)
Name

Description of Functions

Input Leads - All inputs are TTL (Cont.)
NRZ Write Data

This lead receives NRZ data from the controller along with WRITE CLOCK, for
encoding and subsequent writing on the disk. Data is valid at the rising edge of
WRITE CLOCK. This input assumes "Os" are a TTL low level.

Output Leads - All outputs are TTL
RZ Write Data

This lead is the RZ write data output to be written on the disk. This output is active
low. It is clocked out with the PLL oscillator (which is locked to the REFERENCE
OSCILLATOR).

NRZ Read Data

This lead is the NRZ decoded data output to the controller. This output assumes
"Os" are a TTL low level. NRZ Read Data is valid at the rising edge of Read/
Reference Clock.

Address Mark Found

A negative pulse output on this lead will indicate the presence of a DC erased gap.
If the 1lA2490 is able to count 16 clock intervals without a flux change being sensed
from the disk, then a "zero" will be clocked out at the first rising edge of a flux
change and will last for one clock period. The address mark Signal will occur at the
beginning of the sync field since that is usually where the first flux change occurs
after the DC gap.

"A1" Found

A negative pulse at this lead indicates that a missing clock has been found in the
MFM code. This pulse lasts for one VCO clock period and is associated with the
missing clock that was written in the "A1" pattern.

Read/Reference Clock

This lead will output the reference oscillator when READ GATE is disabled (HIGH),
or the internal J.LA2490 clock when READ GATE is enabled (LOW) and 16
consecutive zeros have been decoded (in sync field). This allows the phase lock
loop to lock up to the incoming RZ READ DATA before switching the READ/
REFERENCE CLOCK output from the REFERENCE OSCILLATOR INPUT to the
internal PLL's oscillator.

External Connection Leads
Filter

+

Filter -

This lead is the output of the charge pump and one of the differential inputs to the
veo. A negative pulse here will increase the veo frequency.
This lead is the output of the charge pump and the other (differential) input to the
VCO. A negative pulse here will decrease the VCO frequency.
This lead is the + 5.0 V supply -

DIP only.

Vee
VeeA

This lead is the

VCCD

This lead is the + 5.0 V supply for digital circuitry - PLCC only.

Delay Capacitor

The external capacitor that sets the delay time of the RZ READ DATA to one half
of a clock (VCO) period is attached here. Varying the capacitor value will vary the
centering of the incoming data in its phase-error window. The other side of the
capacitor should be tied to the + 5.0 V supply.

Delay Resistor

An external resistor tied from this lead to GROUND will set the delay time (in
conjunction with the capacitor on lead 9) of the internal delay network. A variable
resistor can be used to accurately adjust the centering of the phase margin window.

+ 5.0 V supply for analog circuitry - PLCC only.

5-39

•

J.LA2490

Description of Lead Functions (Cont.)
Name

Description of Functions

External Connection Leads (Cont.)
Charge Pump Fast

An external resistor from this lead to ground will determine the current that is added
to the CHARGE PUMP SLOW current that will be used by the charge pump to drive
the filter. This current is switched in, only during the sync fields, to decrease the
sync-up time of the phase lock loop. It is turned off when 16 consecutive zeros
have been decoded in the sync field, indicating a proper phase lock to data.

Charge Pump Slow

An external resistor from this lead to ground sets the operating current in the
Charge Pump for normal data reading. This current is always ON. The CHARGE
PUMP FAST and CHARGE PUMP SLOW current values are selected in conjunction
with the FILTER + and FILTER - component values to insure proper stability of the
phase lock loop during its operation.

Ground

This lead is the GROUND return for the chip - DIP only.

.Ground A

This lead is the GROUND return for the analog circuit on the chip - PLCC only.

Ground D

This lead is the GROUND return for the digital circuit on the chip - PLCC only.

VCO Cap 1

One side of the VCO frequency-setting capacitor connects to this lead. A negative
sloping transition on this lead corresponds to an "up" level of the VCO clock. The
other side of the capacitor connects to lead 23.

VCO Cap 2

One side of the VCO frequency-setting capacitor connects to this lead. A negative
sloping transition on this lead corresponds to an "up" level of the VCO clock. The
other side of the capacitor connects to VCO CAP 1 lead. This lead can be
connected to GATE lead if an in-phase start up is desired during the sync-up mode.

Gate

This lead can be tied to the adjacent veo CAP 2 lead for an in-phase start up of
the VCo. The internal CLOCK GENERATOR (see block description) will always turn
off the internal VCO clock when the READ GATE changes state. The VCO will
continue to free-run unless this lead is connected to VCO CAP 2 lead. The in-phase
start up can be used in those situations where a servo clock is available for
accurate frequency prediction of the anticipated incoming RZ READ DATA stream.

5-40

MA2490

Detailed Block Description

phase error between the occurrence of an incoming pulse
(from the SWITCH block) and the phase lock loop's oscillator (VCO). One output will control charge-up current to
the filter and the other output will control the discharge
current to the filter.

The following description gives a brief outline of the
blocks contained in the block diagram of the j.lA2490 Data
Separator. See Figure 1.
SWITCH - Connects either incoming read data (from the
disk drive read electronics) or a reference oscillator to the
phase lock loop for synchronizing the phase lock loop's
oscillator (VCO). When not reading data the SWITCH
block connects the reference oscillator to the PLO's input.

SINGLE SHOT DELAY - Provides a delay to allow the
phase detector to set up for a phase comparison between
incoming pulses and the phase lock loop's oscillator. The
timing of this delay should be one half the VCO's clock
period (quarter of the data rate) to assure a properly centered pulse in the Phase Lock Window. This delay circuit
has absolutely no effect on the Data Window and the
Data pulse phase relationships. The rising edges of the
Delayed Data pulse and the VCO clock pulse are inherently in phase at the phase detector input, no matter how
much the delay circuit is delaying the data. Since the Data
Window is set by inverting the VCO clock waveform, the

PHASE DETECTOR - Has two modes of operation - harmonic for read mode and non-harmonic for write and idle
mode. In the harmonic mode, the phase detector is enabled by the rising edge .of the incoming pulse. In the
non-harmonic mode, the phase detector is constantly enabled. The phase detector generates pulses to control the
CHARGE PUMP. The pulse width will correspond to the
Figure 1 Block Diagram

---

PRE-COMPENSATION

Vee

A. FOUNO

GND

20

2'

RZ

READ WRITE
GATE GATE

WRITE
DATA

AOORESS
MARK
ENABLE

--+---1

NRZ~~~ --+--Il-=~::~t---------+t-=~~:J
f--~-~r-::'::-l

READ/REF ....
CLOCK

WRITE

i+---j-- MISSING
CLOCK
NRZ

'--+--------t-- WRITE DATA
'----+---------j-- WRITE CLOCK
L-------------~r_-------i_-GATE

RZ READ
DATA
REFERENCE
OSCILLATOR

_-+_~~-:~=---,

--t. . . . . L.::::::..J

(IF)

DELAY
RESISTOR

DELAY
CAPACITOR

ADDRESS
MARK
FOUND

FAST SLOW
-.-

CHARGE PUMP

5-41

+
FILTER

VCO
CAP.

VCO
CAPz

MA2490

Delayed Data input will always be centered in the Data
Window.

enable all internal clocks. This provides the capability for
an in-phase start up for PLL. See Figure 2.

CHARGE PUMP - Provides either a charging or discharging current, as directed by the phase comparator, to the
externally connected loop filter. The value of the current is
internally switched between CHARGE PUMP FAST (a high
current) and CHARGE PUMP SLOW (a low current). The
higher current is used in the "sync-up" mode during the
reading of sync-fields, and the lower current is used during
reading data or ID fields.

CONTROL LOGIC - Decodes the input control lines from
the controller to provide internal control Signals to the
j.tA2490. It indicates to the rest of the chip when reading
or writing is being requested, and whether the MFM or 2,7
code is being used. During WRITE, it also presets the encoders to an encoded zero pattern.
READ/WRITE CONTROL - This block controls the switching of the 1lA2490 between READ and WRITE modes of
operation.

VCO - The Voltage Controlled Oscillator generates a continuous stream of clock pulses at a frequency rate that is
determined by the input voltage provided from the chargepump/filter combination, and an externally connected capacitor. The VCO output is. continually being phase
compared .to the pulse stream selected by the SWITCH
block. The input controlling voltage to the VCO is caused
to vary in such a way as to maintain phase lock with the
input pulses.

MFM & 2,7 ENCODER - This block is controlled by the
MFM/2,7 select lead. The MFM/2,7 select input will cause
incoming WRITE DATA IN to be encoded into either MFM
format or 2,7 format before it is clocked out as NRZ
WRITE DATA.

16 BIT REGISTER - The incoming data stream for both
read and write functions is shifted into this register for
processing purposes. During sync-up time this register is
used to count the number of incoming zeros to insure
proper synchronization to the RZ READ DATA. During
WRITE this register is used to enable precompensation
time-shifts at the appropriate time in the write data stream.
DC erased gaps in the RZ READ DATA stream are also
detected by using this shift register.

CLOCK GENERATOR - Provides the output of the VCO
to the rest of the Chip. The output of the CLOCK GENERATOR switches off at a change of state of the READ
GATE input, and turns back on at the first occurrence of
the RZ READ DATA (if READ GATE is enabled), or the
REFERENCE OSCILLATOR (if READ GATE is disabled).
The GATE lead can be tied to the VCO CAP lead to start
the VCO in-phase with incoming RZ DATA or REFERENCE OSCILLATOR.

ADDRESS MARK DECODE - During read mode, when address mark enable is active this block finds DC erased
gaps in the incoming bit-stream that are at least 16 bits
wide. A signal is sent to the controller to indicate a gap
has been found (ADDRESS MARK FOUND).

ZERO PHASE START UP - This block turns off all internal clocks whenever the READ GATE input changes state,
and also toggles the GATE lead. This lead can be tied to
one of the VCO capaCitor leads to turn off the VCO at
the same time. The first incoming bit that is to be fed into
the phase lock oscillator (RZ READ DATA for READ
GATE enabled, the REFERENCE OSCILLATOR for READ
GATE disabled) will disable the gate function and allow
the VCO to start in-phase with the incoming data, and. will

MISSING CLOCK DECODER (MFM) -Immediately following the sync-field in an MFM encoded bit stream there is
a pattern written that is not allowed in the MFM encode
process. The byte written is generally "A1," and the
CLOCK transition that should have occurred on the sixth
bit is not written. On read-back this missing CLOCK bit is

Figure 2 In-Phase Start up Timing for GATE Output Tied to Lead 23 (VCO CAP)
READGA11:
(INPUT)

________

READ DATAl
REF CLOCK

~

(INPUT)

~x~

__________________________

__________________

~n~~~

GATE
(OUTPUT)

INTERNAL CLOCK

5-42

}lA2490

detected by the Missing Clock Decoder and a pulse is
generated. This pulse is used for timing alignment in the
controller.

signals and levels. When utilized within the drive, the interface becomes compatible with ESDI (Enhanced Small Disk
Interface) the proposed industry standard for higher capacity drive.

PHASE UP - This block lines up the ~2490's clock with
the WRITE CLOCK input to assure proper phasing to
clock out the WRITE DATA. The WRITE CLOCK input
must be synchronized with the REFERENCE OSCILLATOR.

Operation of the ~2490 is dependent on the format in
which the sectors of the disk are written. The principal
requirement is the provision of an adequately long synchronization field prior to valid data. For the ~490, this
field must contain an all "zeros" (NRZ) data pattern for a
minimum of 32 data bit intervals (NRZ) between assertion
of READ GATE and the beginning of valid data (including
address marks). Such a format as is suggested in the
ST506 interface specifications is suitable. With the exception of the provision for leading "address marks," the format suggested in ESDI interface documents is also
suitable.

MFM & 2,7 DECODER - Translates the encoded RZ
READ DATA into decoded NRZ DATA OUT before sending it on to the controller. The CONTROL LOGIC block
will determine if the MFM decode or 2,7 decode algorithm
is to be used.
MISSING CLOCK GENERATOR (MFM) -In MFM
this block allows the CLOCK transition in the 6th
the ID byte" A1" to be stripped out before being
as write data to the disk. This block is controlled
controller.

mode,
bit of
sent out
by the

Read
When not writing, the internal PLL remains phase and frequency locked to the REFERENCE OSCILLATOR input until the READ GATE input is asserted by the controller.
When ADDRESS MARK enable is asserted without asserting READ GATE or WRITE GATE, the ~2490 looks for
the DC erased gap which should be at least 16 bits long.
After detecting 16 bits of DC erased gap, a pulse appears
at ADDRESS MARK FOUND lead at the first flux transition
on the READ DATA lead. This pulse disappears with the
arrival of the second pulse on the READ DATA lead. It is
assumed, that this flux transition is the first bit of the encoded zero sync-field. ADDRESS MARK ENABLE should
be disabled at this point and READ GATE should be asserted. ADDRESS MARK ENABLE and READ GATE
should not be asserted at the same time.

DIGITAL PRECOMP - Four values of precompensation delays can be selected through two digital inputs. The precompensation written is dependent on the bit position in
the write data stream. Its purpose is to cause a bit to be
written early or late to offset the effects of bit-crowding
(peak shifting) of closely spaced flux transitions on the
disk. The four values of precompensation allowed are selectable between 0%, 5%, 10% and 15% of the VCO
clock period.
ANALOG PRE-COMP - Works with the Digital Precomp
block to actually inject the early or late write-time for a
given WRITE DATA transition.

Functional Description

As discussed before, assertion of READ GATE is presumed to occur during the PLO sync portion of the track
format. At the assertion of READ GATE, the PLL changes
to phase lock mode. It enters a "fast acquisition" mode

The ~2490 can reside in either the disk controller or the
drive itself. When it resides in the controller, the interface
signals are compatible with the industry standard ST506

Figure 3 READ/REF Clock Output Timing During Read Sync-up at the Time 16 Zeros Have Been
Decoded in the Preamble Sync Field.
R~GA~

-,~

___________________________________________________

REFOSC
(INPUT)

(INTERNAL IF CLOCK)

READ/REFCLOCK
(OUTPUT)

5-43

J,LA2490

and attempts to lock on to the incoming MFM (or 2,7) RZ
READ DATA pulses using pattern sensitive phase discrimination and fast loop dynamics. The j.lA2490 makes the
important assumption that the pattern written in this field
represents encoded zero data bits.

WRITE CLOCK following the assertion of WRITE GATE.
Prior to clocking out the first encoded data bit, an encoded zero pattern (preset internally) is clocked out for an
integral number of WRITE CLOCK intervals (aSSOCiated
with internal processing, 7 clock periods for MFM and 9
clock periods for 2,7). See Figure 4.

When lock is achieved and 16 successive zero data bits
have been decoded, the internal PLL switches to "slow
track" mode in preparation for encountering the unique address mark byte. NRZ READ DATA OUT lead (which was
high until now) switches to the decoded output pattern
and READ/REFERENCE CLOCK output is switched from
the READ/REFERENCE CLOCK to the PLL's clock. See
Figure 3.

The alignment of encoded RZ WRITE DATA pulses with
respect to the internal VCO clock is modified by the
j.lA2490 according to precompensation rilles shown in Table 1a. The amount of precompensation is one of four
values (including zero) set by the state of the two PRECOMPENSATION SELECT inputs. The actual precompensation value is given in Table 1b as a percent of the
oscillator period. The percentages are ± 0%, ± 5%, ± 10%,
and ± 15% of the 2f clock.

For MFM, the address mark is fixed internally as "A1"
(HEX) or 10100001 where the clock pulse associated with
bit 6 is not present. "A1" FOUND, a pulse from the
j.lA2490 to the controller, is asserted at the rise of the
VCO CLOCK associated with bit 6 of the address mark
byte and is reset at the fall of the VCO CLOCK.

For MFM, unique address mark bytes may be written by
supplying an NRZ data stream representing "A1" (HEX)
and asserting the WRITE MISSING CLOCK line at the fall
of WRITE CLOCK for bit 1. See Figure 5. WRITE MISSING CLOCK must be negated at the fall of WRITE
CLOCK for bit 8 of the "A 1" byte. This suppresses the
normal "clock" transition for bit cell 6. The assertion or
deassertion of WRITE MISSING CLOCK line does not
have to be synchronous with the WRITE CLOCK. The level of WRITE MISSING CLOCK SIGNAL does not have any
effect on the operation of j.lA2490 in 2,7 mode.

NRZ DATA OUT and CLOCK are supplied continuously
thereafter by the j.lA2490 until negation of the READ
GATE signal by the controller. At that point the PLL is
resynchronized with the REFERENCE OSCILLATOR and
the reference clock is presented at the READ/REFERENCE output.

Writing proceeds continuously until negation of WRITE
GATE. Only the transitions (or lack thereof) associated
with the WRITE DATA bit valid at the last rise of WRITE
CLOCK will be written. Note that because of the aforementioned internal processing delays the writing of the last
flux transitions will occur seven clock intervals for MFM (or
nine clock intervals for 2,7) after the negation of WRITE
GATE. Null bits appended to the controller write data
stream allow for the finite turn-off time of write current.

Write
Write operations are begun at the assertion of WRITE
GATE by the controller. The PLL remains phase and frequency locked to the REFERENCE OSCILLATOR input all
the time during the WRITE MODE. WRITE CLOCK must
be synchronized to the READ/REFERENCE CLOCK and
the jitter should be less than ± Y4 of a period for reliable
data transfer. The internal clock will be realigned to the
write clock to assure reliable data transfer. WRITE DATA
is sampled for processing on the first rising edge of
Figure 4 Write Data Transfer Timing
WRITE CLOCK

WRITE DATA

(INPUT)
WRITE GATE

(INPUT)

I~--------------~------------I+f..--INTERNALLY PRESET ENCODED ZERO PATTERN

ENCODED WRITE DATA

HZ WRITE DATA

(MFM OUTPUT)

5-44

MA2490

Figure 5 Missing Clock Generation
BIT POSITION

6

o

"AlII DATA

WRITE MISSING CLOCK

-,

I~.

________________

r

~

ENCODED PATTERN

ENCODED PATTERN
WITH DROPPED CLOCK
CDCDCDCDCDCDCDCD
C = CLOCK TIME POSITION
D - DATA TIME POSmON

Recommended Operating Conditions
Symbol

Condition

Characteristic

Vcc

Supply Voltage

Min

Typ

Max

Unit

4.75

5.0

5.25

V

Vcc = 5.0 V

Icc

Supply Current

200

TA

Ambient Temperature

fOATA

Input Data Rate

TREF

Reference Oscillator Clock Period

40

WREF

Width of Reference Oscillator Clock

10

TWFO

Width of Encoded RZ Data Pulse

0

25

mA
70

C

25

Mbps
ns
ns

Y2T
ref

TRZO

Pulse Width of RZ Read Data

10

5-45

ns

JLA2490

Electrical Characteristics TA = 25°C, Vee = 5.0 V, unless otherwise specified.
DC Characteristics
Symbol

Characteristic

Condition

Min

Typ

Vee - 2.0

Vee - 1.6

VOH

Output Voltage HIGH

Vee = Min, IOH = Max

VOL

Output Voltage LOW

Vee = Min, IOL = Max

IIH

Input Current HIGH

VIH

V

80

IlL

Input Current LOW

VIL = 0.4 V

195

IOH

Output Current HIGH

IOL

Output Current LOW

VIH

Input Voltage HIGH

VIL

Input Voltage LOW

= 2.7

Max

Unit

0.5

V

V

!1A
!1A
!1A

-800
10

JJA
V

2.0
0.8

V

AC Characteristics
Condition

Min

Max

Unit

TLock R

Positive input
transitions after Read
Gate· goes LOW

Gate not connected to VCO
capacitor

32

TBD

Ref
Clock
Period

TLock w

Positive input after
Read Gate goes HIGH
until PLL locks to
reference oscillator

Gate not connected to VCO
capacitor

16

TBD

Ref
Clock
Period

Decode MFM

Number of clock cycles
required until output
RZin NRZ out

MFM

1

Ref
Clock
Period

Decode 2,7

Number of clock cycles
required until output

(2,7)

5

Ref
Clock
Period

Encode MFM

Number of clock cycles
accompanying input
data to encoded write
data NRZin RZout

MFM

7

Ref
Clock
Period

Encode 2,7

Number of clock cycles
accompanying input
data to encoded
write data

(2,7)

9

Ref
Clock
Period

KI

Charge Pump and
Filter Gain

n = number of VCO
cycles between
Data Bits,
MFM: 1";;n";;3
2,7: 2";;n";;7

Symbol

Characteristic

Typ

Slow

5
21TnGjR eps

Fast

5
21TnC,Reps

VControl

II

Rep!

±400

Differential Voltage
Swing of Charge Pump

5-46

Amps!
radian

mV

MA2490

Electrical Characteristics (Cont.) T A = 25°C, Vee = 5.0 V, unless otherwise specified.
AC Characteristics
Symbol

Characteristic

Condition

Min

Typ

Measured from filter output

Unit

Max

Kyco

VCO Gain Constant

fMAX YCO

Maximum VCO
Frequency

fyeo

VCO Center Frequency
Tolerance

±30

fTEMPCO

VCO Center Frequency
Temperature Coefficient

-5

Radians/
sec-volt

0.5 "-'Vco
70

MHz
%
%/oC

External Component Selection
Symbol

Characteristic

Min

Capacitor1

Typ

Max

Unit

kn
kn

Cyeo

VCO Frequency Set

Rcps

Charge Pump Slow Resistor

0.7

5.0

50

RCPF

Charge Pump Fast Resistor

0.7

5.0

50

Css

Delay Capacitor2

Rss

Delay Current Setting Resistor2

Notes
1. cvco -1/(2K) (fveo)
2. Delay TIme = Tveo/2

5.0

pF

10
0.1

Components

pF

kn

1.5

= (O.673)RssC..

Table 1a Precompensation Patterns
2,7 Precompensatlon Patterns
Past

MFM Precompensation Patterns

Present

Future

Past

Present

Future

+3

+2

+1

Write Bit

-1

-2

-3

+2

+1

Write Bit

-1

-2

0
1
1
0

0
0
0
0

0
0
0
0

ON TIME
ON TIME
EARLY
LATE

0
0
0
0

0
0
0
0

0

0
1
1
0

0
0
0
0

ON TIME
ON TIME
EARLY
LATE

0
0
0
0

0
1
0
1

1

0
1

5-47

1lA2490

path as possible to the chip supply or ground. The chip
itself should be we" decoupled with the decoupling capacitors placed close to the chip. A" leads on the timing and
filter components should be kept as short as possible.

Table 1b PrecompensaUon Values
Precomp. MSB

Value LSB

BIt Interval Shift %
Of 2f Clock

0
0
1
1

0
1
0
1

±O%
±5%
±10%
±15%

A good ground plane should be used in the vicinity of the
Data Separator Chip. Digital signals should be kept away
from the vicinity of the Chip. Wire wrap configurations
should be avoided for best performance. A" filter capacitors and single shot delay capacitors should be connected
to the Vee lead.

Table 2 2,7 Code Pattern
Data
A

B

0
0
1
1
1
1
1

1
0
1
0
0
1
1

C

Code
D

8

7

6

5

1
0

0
1
0
0
1
0
0

1
0
0
0
0
0
0

0
0
0
1
0
1
0

0
0
1
0
1
0
0

1
0
1
0
0

4

VCO CapacItor
3

2

&0

40

0
0
0
0

0
0
0
1
0

VCO
Freq
MHz

25
20
15
10
5

50
40
30
20
10

CYCO
VCO cap
12
18
25
39
85

pF
pF
pF
pF
pF

-

\

0
0

Ca.
Delay
Cap

R..
Delay
Res

10
12
16
24
49

1.5
1.5
1.5
1.5
1.5

pF
pF
pF
pF
pF

1
CVCD - 2000 Ivco

1\
0
0

I\"

I'

r---.

10

Table 3 Tabulated Values for VCO and SIngle Shot
Data
Rate
Mbps

\
\

20

40

-

~

100

80

&0

veo CAPACITOR-pF

kn
kn
kn
kn
kn

Delay Circuit Values
&0

40

Recommended Charge Pump and Filter Component
Values for 10 Mbps OperatIon.
Cj - 0.47 /IF
RI == 220 n
Rep! = 5.1 kn
Cp = 0.0047 /IF
Reps = 5.1 kn

~

II

I
30
~
zUI
:::I

..51
a:

Layout PreoauUons
A careful layout is required when attaching the critical timing components to the Data Separator. Connect the VCO
capacitor and the Single Shot capacitor as close to the
chip as possible. This will help cut down on the amount
of noise picked up from other switching components nearby on the board that will affect the timing. The filter com~
ponents should also be placed as close to the chip as
the layout wi" allow, with the returns making as short a

20

0

g

\

\

C

1

~~ .......

10

o
o

_

ss - (1.34811vco Ass
'1\ \
\
\
1\
\ \ ~.
I\. ~""""-O~~
~"4!'''''' r-....

r-

10

20

30

Css-pF

5-48

--

40

so

JlA2490

Figure 6

ST506
~---------------------INDEX------------------------~

t--------------------DRIVE SELECTED

ENCDDED WRITE DATA
ENCDDED READ DATA

-------------------+1

1J.A2490
NRZ WRITE DATA
DATA
NRZ WRITE CLOCK
SEPARATOR
ADDRESS MARK ENABLE
AND
ENCODER I+------READ GATE ------I
WRITE GATE-----i
PRE·COMP.ENSATION VALUE
PRE·CDMPENSATION VALUE

DRIVE

CONTROLLER

~-----INDEX-----~

CR0431DF

5-49

MA2490

Figure 7

ESDI
\-----------DRIVESELECTED----------+I
~-----------------------INDEX----------------------~

NRZ WRITE DATA

ENCDDED WRITE DATA
ENCDDED READ DATA
PRE-COMPENSATION VALUE
PRE-COMPENSATION VALUE

ADDRESS MARK ENABLE
ADDRESS MARK FOUND

CONTROLLER

READ GATE
WRITE GATE
WRITE FAULT

DRIVE

1+------- STEP --------------I
DIRECTION
TRACK ZERO
~------INDEX

--------+I

DRIVE SELECT 2

Typical Hook-up Diagram
Vee

Vee

-=-

Rss

L

Reps

-=-

~

eveo

1:'f f '1p
V

Repf

REFERENCE
OSCILLATOR

READ REFERENCE
CLOCK
READ GATE

RZREADDATA
NRZ READ DATA
RZ WRITE DATA

WRITE CLOCK
NRZ WRITE DATA

A1 FOUND

WRITE GATE

WRITE
MISSING CLOCK

ADDRESS MARK
ENABLE
ADDRESS MARK
FOUND

GND

Vee

MFM(2,7)
SELECT

PRE-COMPENSATION
VALUE

5-50

J.LA2580
Winchester Disk
Servo Preamplifier

FAIRCHIL.D
A Schlumberger Company

Preliminary

Linear Division Disk Drives

Description

Connection Diagram
8-Lead DIP and 50-8 Package
(Top View)

The !lA2580 provides termination, gain, and impedance
buffering for the thin film servo read head in Winchester
disk drives. It is a differential output design with fixed gain
of approximately 250. The bandwidth is guaranteed greater
than 30 MHz.
The internal design of the /.lA2580 is optimized for low
input noise voltage to allow its use in low input signal
level applications. It is offered in 8-lead ceramic DIP,
10-lead Flatpak, and an SO-8 package suitable for surface
mounting.

• Low Input Noise Voltage, Typ 0.5 nV/YHz
• Wide Power Supply Range (8_0 V to 13 V)
• Internal Damping Resistors (1.0 kQ)

NC

-IN

V+

NC

-OUT

v-

+ OUT

Order Information

Absolute Maximum Ratings
Storage Temperature Range
Ceramic DIP and Flatpak
SO-8
Operating Temperature Range
Lead Temperature
Ceramic DIP and Flatpak
(soldering, 60 s)
SO-8 (soldering, 10 s)
Internal Power Dissipation 1, 2
8L-Ceramic DIP
10L-Flatpak
SO-8
Supply Voltage
Output Voltage
Differential Input Voltage

+IN

Device Code
-65°C to + 175°C
-65°C to + 150°C
O°C to 70°C

Package Code

Package Description

6T
KC

Ceramic DIP
Molded Surface Mount

!lA2580DC
!lA2580SC

Connection Diagram
10-Lead Flatpak
(Top View)

•

+IN

1.30 W
0.79 W
0.81 W
15 V
15 V
± 1.0 V

NC

- IN

V+

NC

-OUT

V-

+ OUT

NC

NC

Notes
1. TJ Max = 150·C for the 50-8. and 175·C for the Ceramic DIP and
Flatpak.
2. Ratings apply to ambient temperature at 25·C. Above this temperature,
derate the 8L-Ceramic DIP at 8.7 mW rc, the 10L-Flatpak at
5.3 mWrC, and the SO-8 at 6.5 mWrC.

Order Information
Device Code
/.lA2580FC

Package Code
3F

Package Description
Flatpak

Description Of Lead Functions
Name

Description of Functions

+IN
-IN
NC

Positive Differential Input
Negative Differential Input

V-

Negative Differential Supply with respect to Vcc.
Positive Differential Output
Negative Differential Output
Positive Differential Supply with respect to Vcc
No Connection

+OUT
-OUT
V+
NC

5-51

MA2580

1lA2580
Electrical Characteristics TA=25 C, (V+)-(V-) =8.0 to 13.2 V, unless otherwise specified.
Symbol

Condition

Characteristic

n,

Min

Max

Unit

Rp=100

BW

Bandwidth (3 dB)

VI = 0.5 mVp.p

RI

Input Resistance

300

n

CI

Input CapaCitance

35

pF

n,

(V+)-(V-) = 12 V

Typ

Gain (differential)

G

250
30

VI

Input Dynamic Range (Differential)

Rp=100

Is

Supply Current

(V+)-(V-) = 12 V

tiNo

Output Offset (Differential)

Rs = 0, Rp = 100

Vn
PSRR

(V+)-(V-) = 12 V
28

n

600

Equivalent Input Noise

BW=4.0 MHz

Power Supply Rejection Ratio

Rs = 0, f = 5.0 MHz

50

IlGIV

Gain Sensitivity (Supply)

11 (V+)-(V-) ±10%, Rp=100

IlG/T

Gain Sensitivity (Temp)

TA = 25°C to 70°C, Rp = 100

CMR

Common Mode Rejection (Input)

f = 5.0 MHz

Typical Application (Notes 1-4)
V+

SERVO

HEAD

REO

V-

65

Reo

0'"''''''

Notes
1. Leads shown for B-leed DIP.
2. Rea is equivalent loed resist""(l8.
RL • Rea

3. R p - - RL + Rea

4. G-2.5 Rp
Where Rp - value from Note 3 (above) in ohms.

5-52

MHz

1.0

mV pop

40

mA

600

mV
nV/YHz

0.6
65

n

0.90
0.5

n

0.16
60

70

dB
%IV
°fi,I"C
dB

""
,

',"

'

"

"

"
'"

18

MA 105 • MA30S
MA30SA • MA376
Voltage Regulators

FAIRCHILD
A Schlumberger Company

Linear Division Voltage Regulators

Description

Connection Diagram
a-Lead Metal Package
(Top View)

The pA 105/305/305A/376 are monolithic positive voltage
regulators constructed using the Fairchild Planar Epitaxial
process. Applications for these devices include both linear
and switching regulator circuits with output voltages greattlr
than 4.5 V. These devices will not oscillate when confronted with varying resistive and reactive loads and will start
reliably regardless of the load within the ratings of the circuit. They also feature fast response to both load and line
transients. Used independently, the pA105/305 will supply
12 mA, the pA305A, 45 mA and pA376, 25 mAo The
pA 105 is specified for the extended temperature range of
-55°C to + 125°C. The pA305/376/305A are specified for
O°C to +70°C operation. The pA105/305/305A are in an
8-lead TO-5 package and the pA376 is available in the
space and cost saving DIP.

REG
OUT

BOOSTER

FEEDBACK

OUT

COMMON

Lead 4 connected to case.

• Low Standby Current Drain
• Adjustable Output Voltage From 4.5 To 40 V
• High Output Currents Exceeding 10 A With External
Components
• Load Regulation Better Than 0.1%, Full Load With
Current-Limiting
• DC Line Regulation Guaranteed At 0.03%/V
• Ripple Rejection Of 0.01%/V
• Available In Extended Temperature Range

Order Information
Device Code
pA105HM
pA305HC
pA305AHC

Package Code
5W
5W
5W

Package Description
Metal
Metal
Metal

Connection Diagram
a-Lead DIP
(Top View)

Absolute Maximum Ratings
Storage Temperature Range
Metal Can
Molded DIP
Operating Temperature Range
Extended (pA 105)
Commercial (pA205,
pA305A, pA376)
Lead Temperature
Metal Can (soldering, 60 s)
Molded DIP (soldering, 10 s)
Internal Power Dissipation 1,2
8L-Metal Can
8L-Molded DIP
Input Voltage
pA 105, pA305A
pA305, pA376
Input/Output Voltage Differential

-65°C to + 175°C
-65°C to + 150°C

CURRENT
LIMIT

REG OUT

BOOSTER

COMP
SHUTOOWN

OUT

-55°C to +125°C

UNREGIN

COMMON

1.00 W
0.93 W

FEEDBACK

REF BYPASS

Order Information
Device Code
pA376TC

50 V
40 V
40V

Notes
1. TJ Max = 1.50°C for the Molded DIP, and 175°C for the Metal Can.
2. Ratings apply to ambient temperature at 25°C. Above this temperature,
derate the 8L·Metal Can at 6.7 mWrC, and the 8L·Molded DIP at 7.5
mWrC.

6-3

Package Code
9T

Package Description
Molded DIP

p.A 105 • p.A30S
p.A30SA • p.A376

Equivalent Circuit

.------_t_-------......- -......-

UNREGULATED IN

R10
600Q

BOOSTER OUT

+-w.........l - - - CURRENT LIMIT
~---

REGULATED OUT

+-__,._---- ~~~~nON

::I--+-t---4-- FEEDBACK
.......- - t - - - + - - - + - - - - REFERENCE BYPASS

.......~-~-~-------+--~------COM~
EQOO620F

~105

Electrical Characteristics TA = 25°C unless otherwise speeified 1
Symbol

Characteristic

Condition

Min

Typ

Max

Unit

VIR

Input Voltage Range

8.5

50

V

VOR

Output Voltage Range

4.5

40

V

VI-VO

Input/Output Voltage Differential

VR LINE

Line Regulation

VR LOAD

Load Regulation2

3.0

30

VI-VO < 5.0 V

0.025

0.06

VI-VO> 5.0 V

0.015

0.03

TA = 25°C

0.02

0.05

TA = 125°C

0.03

0.1

TA=-55°C

0.03

0.1

0.003

0.02

0.3

1.0

1.7

1.81

O 0.1 f.LF

0.002

TA=25°C,

6-4

225

300

V
%/V

%

%/V
%
V
%

375

mV

IlA 105 • IlA305
IlA305A • IlA376

/JA 105 (Cont.)
Electrical Characteristics TA
Symbol

=

25°C unless otherwise specified 1

Characteristic

Condition

ISCD

Standby Current Drain

VI = 50 V

S

Long Term Stability of FBSV

TJ=125°C

Min

ITA = 25°C For End Point
Measurement

Typ

Max

Unit

0.8

2.0

mA

0.1

1.0

%/1000
hrs

Typ

Max

/JA305A
Electrical Characteristics T A = 25°C unless otherwise specified 1
Symbol

Characteristic

Condition

Min

Unit

VIR

Input Voltage Range

8.5

50

V

VOR

Output Voltage Range

4.5

40

V

VI-VO

Input/Output Voltage Differential

VR LINE

Line Regulation

VR LOAD

Load Regulation

3.0

30

VI-Vo<5.0 V

0.025

0.06

VI - Vo > 5.0 V

0.Q15

0.03

O 0.1 IlF
TA = 25°C,

0.4
0.02

0.005

10Hz < f < 10kHz I CREF = 0

n,

0.03
0.003

V
%/V

225

ITA = 25°C For End Point
Measurements

300

375

mV

0.8

2.0

mA

0.1

1.0

%/1000
hrs

/JA305
Electrical Characteristics TA = 25°C unless otherwise specified 1
Symbol

Characteristic

Condition

Min

Typ

Max

Unit

VIR

Input Voltage Range

8.5

40

V

VOR

Output Voltage Range

4.5

30

V

VI-VO

Input/Output Voltage Differential

3.0

30

VR LINE

Line Regulation

VI-Vo<5.0 V

0.025

0.06

VI-VO > 5.0 V

0.015

0.03

V
%/V

/JA 105 • /JA305
/JA305A • /JA376

JlA305 (Cont.)
Electrical Characteristics TA = 25°C unless otherwise specified 1
Symbol
VR LOAD

Characteristic

Condition

Load Regulation 2

O~

IL ~ 12 mA

Min

Rsc = 10
Rsc = 15
Rsc = 10

tNI/!:No

Ripple Rejection

CREF = 10 !.IF, f = 120 Hz

Ts

Temperature Stability" of FBSV

O°C ~ T A ~

FBSV

Feedback Sense Voltage

No

Noise

Typ

Max

Unit

T A = 25°C

0.02

0.05

%

T A = 70°C

0.03

0.1

T A = O°C

0.03

0.1

0.003

0.02

0.3

1.0

1.7

1.81

+ 70°C
1.63

I

10Hz ~ f ~ 10kHz CREF = 0
ICREF

n,

VCLS

Current Limit Sense VoltageS

ISCD

Standby Current Drain

VI =40 V

S

Long Term Stability of FBSV

TJ = 125°C

JlA376
Electrical Characteristics O°C
Symbol

n,
n,
n,

~

Rsc = 10
Vo=O V

> 0.1

0.005

%
V
%

0.002

!.IF
225

T A = 25°C

%/V

ITA = 25°C For End Point
Measurements

300

375

mV

0.8

2.0

mA

0.1

1.0

%/1000
hrs

TA .;;; 70°C

Characteristic

Condition

Min

Typ

Max

Unit

VIR

Input Voltage Range

9.0

40

V

5.0

37

V

VOR

Output Voltage Range

VI-VO

Input/Output Voltage Differential

VR LINE

Line Regulation

VR LOAD

Load Regulation

3.0

O°C

~TA ~

0~IL~25

0.03
70°C
mA

Rsc=O
Ripple Rejection

VCLS

Current Limit Sense Voltage

ISCD

Standby Current Drain

VREF

Reference Voltage

V
%/V

0.1
Rsc = 0
Rsc= 0

!:J.VI/!:No

30

TA = 25°C

n,
n,
n,

TA = 25°C

0.2

TA = 70°C

0.5

TA = O°C

0.5

f = 120 Hz, TA = 25°C

0.1

%/V

2.5

mA

1.80

V

360
VIN = 30 V, TA = 25°C
1.60

1.72

%

mV

Notes
1. These specifications apply for input and output voltages within the
ranges given, and for a divider impedance seen by the feedback
terminal of 2.0 kn, unless otherwise specified. The load and line
regulation specifications are for constant junction temperature.
Temperature drift effects must be taken into account separately when
the unit is operating under conditions of high dissipation.
2. The output currents given, as well as the load regulation, can be
increased by the addition of external transistors. The improvement factor

will be roughly equal to the composite current gain of the added
transistors.
3. With no external pass transistor.
4. Temperature stability is defined as the percentage change in output
voltage for a thermal variation from room temperature to either
temperature extreme,

6-6

IlA 105 • IlA305
IlA305A • IlA376

Typical Performance Curves

1
~

~
~

'.0

....~,.:::... ...... T1 = ,Joc
0.0'

-~ •••.•....••.••....••

•••••••

~-f---r--+·-···-··~·~.~..-.. ~T~
0.02

~

~-f---r--+----4---+..-"..•..,j.---+---I

........

TA:::: -55°C

5

........

5o O.031--+--+--+--l--+--+----~-i

-RSr

Short Circuit Current vs
Temperature

Current-Limiting Characteristics

Load Regulation

~ll ~

0.6

I:;
I:;

0
w 0.4
>

~w

iw

t!'~ : ~

ru

,---

O,

Rs~ =

0.04 0~-.l-.....J,-....I..-...1'O,-..L-,.LS-..L----l
20

00

'r

a;
a;
:>

-

~}--

.........

...0a;

30

0

en

'0

..

40

r....

t--....
. . . . r--. W"f...""" .........
Rr=I20~ r--. ~ r--....

20

-75 -50 -25

OUTPUT CURRENT-mA

LOAD CURRENT-mA

Rsc = 10 Q

f' t--.,!'sc = 'S"

:J:

Q

20

....

t::

:>
u
a;

!
!

'0

.........

30

u

i l - 'fi- II :
~t- ~+, -

0.2

a;

..

I

::

0

..

.

E

"~
>

'--;f- -

1\

>
I
w 0.8

25

50

75

100 125 150

TEMPERATURE-oC
PC09060F

I

~ -0.021---+-"1"',"":"+''-"-,"'"'!'~::t-~~I--±=--I
~

'\ \.

\ ' •••••TA--SSOC

,,

~

.~.
g -O.06I--+--+--+H--+---Hr---+----i:--1

~

"~
!i:J
...z

1 t--+:--!

a:
a;

-0.081---t-t-1-+c+--I-tiTA= 126°C \

'r--...
..........

.........

2.2

o

2.0
25

50

75

100 125 150

~

~

1'-..

0.0 2

r---....:

\

,

Standby Current Drain vs
Input Voltage

~

g;
~o.oo 2

I- CREF = 10 /-t F

1

f;3!o

1jHZI

0.00

100

'.2,---,---r-....,-...,...-,.---.--,----,

'0

125

1 ,.,\-.....j--+-+---l---+--+-kod
~

I
EF

-

"~

~o.ooS

75

..

0.05

w 0.0

/"

""";;;::::
20

'0

5

~

OUTPUT VOLTAGE-V

=

~

V

TEMPERATURE-OC

2.4

Yo 10V
TA=25°C_

~

....V

so

......

,

-'.
YoI= 4.SY-

25

........

illa;

Supply Voltage Rejection vs
Input/Output Voltage Differential
o.

8

6

~

.......

TEMPERATURE-oC

Minimum Input Voltage vs
Temperature

50-25

I"--. I'....

u

-75 -50 -25

- 75

.......

:>

0.2

V

\

~ 2.8
I
w
~ 2.6

w 0.3

LOAD CURRENT-mA

./

3.0

0.5

w
en
zw 0.4
en

~=wc,

RlIl1';'=2~kQ
Rl=l.11 Yo

I I

lo~5.0mA-

>

\

~

>
I
w

0

....

III -0.04 ~T-A.j.=-,..-+o-c-'.\cT.--+----4t---+-",,"+--l
~

3.2

0.6

J

ROr 'j"-

"Y':-..

if.

Optimum Divider Resistance
Values

Current Limit Sense Voltage vs
Temperature

Load Regulation

20

=0 p.F

1l~

TA

.......

L--1__-b~.~'+.__~~t-=~25~O~C~~~__~

0.9

.

= -ssoc ......................... .

'.0 I

I .·6

INPUT/OUTPUT VOLTAGE OIFFeRENTlAL-V

6-7

W

J..-f-t

i{'" ••.•.••.••..

TA = 125"C
............................

.......

O··,l:O-.L-20L-L--30
L..L--'
..L..L-.J
..
INPUT VOlTAGE-V

•

IlA 105 • IlA305
IlA305A • IlA376

Typical Performance Curves (Cont.)
Regulator Dropout Voltage

Minimum Output Voltage vs
Temperature

Transient Response
~'-"-'--'I--'R-SC-=~'0-Q'

4.5

>
I
w

....
.~... ••••

...... ......r . ·

IL = 2omA=+-_f--l

······~

·~

••• ~L=10mA­

-=.. P',,*""'""I

•••• ..... ··J,o:r·;:•••
IL =5.0mA

!l"g

..

/

4.0

3.5

V
,/

!;
....
:>
0

....v

3.0

••••••••

""'::75=---±50=--""2'=5-+--:!25=-"'50!::---:O75"-"'100~""'!'25

2.5

-75

-so

TEMPERATURE-oC

0

~

1~.Y....
=r4
1-_-f-_-+_OUT6~~:~~~AGE

-401--+--+--1--+--+---1

w

"
~

g

I

/'

-

25

-25

50

75

100

~

~

1.00

1-+--t.....I-+-+-+"'I"t..--k--+-l

\

fA

.

~
ffi

g....

0.751-+---+-t-+----I-+--*~,-j""':.+----1
TA = 25"C--:-

~O

TA = ere
0.50 f-+----I-+-+----I-+--I+-+--i-<-+--l

ID

3~ 0.251-+----1-+-+----1-+-*+-:-++---1

"'

§

10

30

0

> 1.70
0

j$ 1.65
1.60

I....
i

15

25

20

30

/'

1/

V
10

l

Minimum Input Voltage vs
Temperature

I.

IO:1i6 5.0mA-

Vo

7.3

'"
15

'"f-"

~

J..-

~ 5.0Iv_

40

20

25

.............

0.300

::J

-

10.250

o

CJ

6.9

g

6.8

~

6.7

'"

6.6

j$

I

Iis:
,/

V

0

_ _ CL.= O/-tF

!l"
0

........ CL=l.o'~F

w

...... V

400

I

>

!;

l!:

LOAD

If......r .

:>
0

25

50

70

AMBIENT TEMPERATURE-"C

-400

6.4

25

50

70

AMBIENT TEMPERATURE_oC

6 .. 8

av, = 5.0 vVo = 10V

DEVIATION

I

w -40

6.5

0.200

~

'O~~~~T VOL~AGE_

0

/'

35

Rsc = 10 Q

1\

LINE

z

7.0

fo-

30

I

>

E

7.1

!

-

Vo=5.0V

Transient Response

7.2

......

~-

INPUT YOLTAGE-V

OUTPUT CURRENT-rnA

Current Limit Sense Voltage vs
Temperature

.1

Vo = 10 V

1.75

z

LOAD CURRENT-rnA

_......

1.95

1.80

II:

1.50

20

_LI25"~

1.90

1.55

l""- I'---

~~o ~~

Standby Current Drain vs
Input Voltage

E

= 70"c-1-1

~

au 0.350

= 10 Q
:

-400~0-~-~'~0-~--2=0~-~~3~0

125

1.95

g

::~

INPUT VOLTAGE

Current Limiting Characteristics

'i

j$

Rsc

I--+'~-O..-A...-~.t--+-...-..-...+.~O =J'.~.~ ....

2.00

~ OAOO

CL = 0 f.l-F

••••••. CL = 1.0 J.tF

400

TEMPERATURE-OC

Load Regulation

>

Vo •••:=.

-';"~"F;;;;;f~-t'l

_

~

Typical Performance Curves for IlA376

10

~

LINE

I

/

/

1--+--+--II---tIlV, = 5.0V-

:e

0

I

I
Rsc = 10 Q
= 20mA
INL = 1.0mA
Vo = 10V

'FL

l\...... ......... 1.. ......
INPUT. VOLTAGE

I

I

10

20
TIME-p.s

30

MA 105 • MA305
MA305A • MA376

Typical Performance Curves for J.IA376 (Cont.)
Regulator Dropout Voltage

3.0

'2.3 r--r-,r--r--r-r-...,---,--,--r-.

v'o ,; .0J

12.21--+-I-I+--+-1--t- Rsc = 10 Q-

'2.• 1--+-I-I-l--+-1-+-+-+-+-l
IL=20mA
>

~
~

12.01-+-1-+\\-+-1-+-+-+--+-l
11.9I---F=i""'''I-..1O.r-=-+-r-....-II-+--+-+--l

~ l1.81---t.=I:::-:+-+-I-~""'::-+--+-i

i

.....

1··-;;...::····....

11.7
11.6 -

IL"" lOrnA

I .= 5.0 mA

11.5

Supply Voltages Rejection vs
Input/Output Voltage Differential

Optimum Divider Resistance

R.I= J.11 lvoikQJ--

2.8

R2=~

ell

2.7

~

2. 6

z

2.5

is

.........

2.9

I

•.••••••••

".

11.4 1--+-1-+-+-+-+--+-+--+-1

~

'"
g

2.3

'\

•
5

>0.015
~

'0

15

\
"\

r-...
l- t-

iil 0.010

20

25

30

OUTPUT VOLTAGE-V

TEMPERATURE-OC

TA

Ct!Ef : ~2:FHZ_

t

'{.

r---t--

2.0

11.3 L--'--'--'-2-5-'--'----:SO'--'--7=-'=0-.L-....I

~0.025

\

2.2
2.

1°1':1 L
, , ~.'

Vo= 1.72 x (R2+ 1)-

vo' =.~ v '
= 25°C -

f30
:!O,020

m 2.4
a:

'

1

-'-

35

'0

.5

20

25

30

INPUTfOUTPUT VOLTAGE DIFFERENTIAL
PC12040F

Typical Applications
Basic Positive Regulator With Current-Limiting
RSC

R.

V'---"""1>---(:)

R2

lOS <:c

V~Esr;E

mA

6-9

J.lA 117 • J.lA217 • J.lA317
3-Terminal Positive
Adjustable Regulators

FAIRCHILD
A Schlumberger Company

Linear Division Voltage Regulators

Connection Diagram
TO-3 Package
(Top View)

Description
The !iA 117/ !iA217 / !iA317 are adjustable 3-terminal positive
voltage regulators capable of supplying in excess of 1.5 A
over an output voltage range of 1.2 V to 37 V. They are
exceptionally easy to use and require only two external
resistors to set the output voltage. Further, they employ
internal current-limiting, thermal shutdown and safe-area
compensation, making them essentially blowout proof.

(C~~:~2
IN

o

The IJ.A 117 series serves a wide variety of applications including local, on-card regulation. They also make an especially simple adjustable switching regulator, and a
programmable output regulator; or by connecting a fixed
resistor between the adjustment and output, the !iA 117 series can be used as a precision current regulator.

0
10
ADJ

Order Information
Device Code

• Output Current In Excess Of 1.5 A In TO-3 And
TO-220 Packages
• Output Adjustable Between 1.2 V And 37 V
• Internal Thermal Overload Protection
• Internal Short Circuit Current-Limiting Constant
Temperature
• Output Transistor Safe-Area Compensation
• Floating Operation For High Voltage Applications
• Standard 3-Terminal Transistor Packages
• Available In Extended Temperature Range

Package Code

!iA117KM
!iA217KV
!iA317KC

HJ
HJ
HJ

Package Description
Metal
Metal
Metal

Connection Diagram
TO-220 Package
(Top View)

Absolute Maximum Ratings
Storage Temperature Range
TO-3 Metal Can
TO-220 Package
Operating Junction Temperature Range
Extended (!iA117)
Industrial (!iA217)
Commercial (!iA317)
Lead Temperature
TO-3 Metal Can (soldering, 60 s)
TO-220 Package (soldering, 10 s)
Power Dissipation
Input/Output Voltage Differential

-65°C to +175°C
-65°C to + 150°C
Lead 3 connected to case.

-55°C to +150°C
-40°C to + 150°C
O°C to + 150°C

Order Information
Device Code
!iA217UV
!iA317UC

300°C
265°C
Internally Limited
40 V

6-10

Package Code

GH
GH

Package Description
Molded Power Pack
Molded Power Pack

Equivalent Circuit
V,
310 Q

310Q

230Q

120Q

5.6 kQ

6.3 V

125kQ
12AkQ

5.0 pF

135Q

5102

200Q

13 kQ

6.8 kQ
6.3 V

6.3 V
30 pF
105Q
3.6kQ S.8kQ

~

190Q

S.lkQ
110Q

12.5 kQ

4Q

0.1 Q
Vo
ADJUST

J,LA 117 • J,LA217 • J,LA317

Electrical Characteristics TJ = -55°C to + 150°C for the J..I.A 117, -40°C to + 125°C for the J..I.A217, and O°C to
+125°C for the J..LA317; VI-Vo=5.0 V; 10=0.5 A; IMax=1.5 A; PMax=20 W;
unless otherwise specified.
~117/217

Symbol
VR LINE

VR LOAD

Condition 1

Characteristic
Line Regulation 1,5

Load Regulation 1

Min

Typ

Max

TA = 25°C; 3.0 V5.0 V

0.1

0.3

0.1

0.5

%Vo

10 mA< 10< IMax

Vo<5.0 V

20

50

20

70

mV

Vo>5.0 V

0.3

1.0

0.3

1.5

%Vo

50

100

50

100

!.LA

0.2

5.0

0.2

5.0

!.LA

1.25

1.30

1.25

1.30

V

Adjustment Lead
Current

Llladi

Adjustment Lead
Current Change

2.5 V25 V.

6-12

O/OVo
10

mA

A

%Vo
dB

80
0.3

1.0

%/1000
hrs

J,tA117· J,tA217· J,tA317

Typical Performance Curves
Load Regulation
0.4
VI
VO

0.2

Adjustment Lead Current

Current Limit

10

= 15V
= 10V

1 .1.

;I!

~

IL=O.5A

~

IL=I.SA-

() -0.2

r- r-r-..

W

~ -0.4

.........

g

...

~ -0."

/

,

TJ = 25"C

~

.........

1
I
IiW
a:
a:
u

"0

.- ,~:-..

'"

i~

TJ

f- TJ, 15

-0.8
-1.0
-75

o 0
50

25

0

25

50

75

o

100 125 150

10

2.5

!;~
.. z

......

2.0

.. 0

ZW

-to

~

>

i'--.

~

l"1.5

i=
L

i'--.

0

25

~

~~ 1.240

1.0 A

- <'
IL

.::::

=500mA

~

P>-

r---. r-...
i 200 lmA I""-- I'....
50

75

.

W

..

40

~

20

o

0

25

50

75

100

3.0

"...

2.5

W

z

2.0

W

1.5

"

1.0

R

~

80

~
a:

...

60

=

1

I
15

20

25

OUTPUT VOLTAGE-V

r--

T(= 150"C

-

30

35

0.01

,/

If::: r:::::. v

1"-

TJ = 25"C

10

20

30

40

Ripple Rejection vs
Frequency
100
Cadi

.

80

/

III

~

~

Cacti

I

= 10JLF

z

0

i3W

~THbJ~l!,

TJ

.
~

-.....

............

-WiTHOUT~

40

1'\
\
['\,.\

1.0

10

IL
VI
Vo
TJ

= 500 mA
= 15V
= 10V
= 25°C

\"'-

"'-

20

OUTPUT CURRENT-A

6-13

//"

= 10 JLF

0:

=
=
= 25°7111
0.1

60

OJ

a:

40

o

;;: ~

INPUT/OUTPUT
VOLTAGE DIFFERENTIAL-V

VI = 15V
_~O
10V
20
f
120 Hz

IL
500 mA
f == 120 Hz
TJ == 25"C

= -55°C / /
/ ~
~ ".

I\,

o 11
o

125 150

100

u

0:

10

TJ

120

W
..J

VO =5.0V

o

4.0

0.5

iz

WITHOUT Cadj

75 100 125 150

35

a:
a:
u

5

III

"-

50

4.5

W

U
UI

80

OJ
a:
~

~z

I"- ........

Ripple Rejection vs
Output Current

......

25

E

130

60

0

JUNCTION TEMPERATURE_oC

"

1.220
-75 -50 -25

Cadi! 10p..J-

I
z

§

-75 -50 -25

JUNCTION TEMPERATURE_oC

Ripple Rejection vs
Output Voltage

III

/

40

35

40

.

..........

JUNCTION TEMPERATURE-oC

100

45

5.0

1,.230

100 125 150

V

V

V

. Minimum Operating Current

ffi

.........

iomj

IL

1.0
-75 -50 -25

,'.250

.....- V

IL=1.5A

:---- ,""-'L =
t- c:::- ~

... w

0

W

= 100 mV

-......

50

UI

1.260
AVO

~!l;

,- -

30

_f-- l-

55

Z

Temperature Stability

3.0

"a:
OW

20

60

INPUT/OUTPUT
VOLTAGE OIFFERENTIAL-V

Dropout Voltage

.!.

~

W

..J

-......

JUNCTION TEMPERATURE-"C

>

= _55°C

.~

7~

l-

..
...
.....
a.

65

10

'-.
100

1K

10K

100K

FREQUENCY -Hz

1M

10M

J.LA 117 • J.LA217 • J.LA317

Typical Performance Curves (Cont.)
Output Impedance

Load Transient Response

Line Transient Response

10 I

.0

~~~:~g~

f--- IL =

1.5
CL :: 0 p.F; WITHOUT Cadj

500 rnA

r--- TJ = 2S-C
I

0

/

I

V

/

5
0

~

L

I L

I

./

=

Cadi = 10 p~-::

-----100

\

Ct.=

1K

I

I

10K

lOOK

~~

1. 0

!:;~

O. 5

>~

'" '"'"

~(,)

0

10

o

/

-2.0
-3.0

30

40

.5

ft-~

1\

"

II

CL

/

1\1

= 0 ~F; WITHOUT Cadi
V, = 15V
Vo :: 10 V I-'NL = 50mA
TJ = 25"C

1
il

0

I \

I-

I-1\, 'L I--

\
10

30

40

Basic Circuit Operation
The JlA 117 is a 3-terminal floating regulator. In operation,
the JlA 117 develops and maintains a nominal 1.25 V reference (VREF) between its output and adjustment terminals.
This reference voltage is converted to a programming current (Iprog) by R1 (see Figure 1), and this constant current
flows through R2 to ground. The regulated output voltage
is given by:

Typ
OJC

Max
OJC

Typ
OJA

Max
OJA

°C/W

°C/W

°C/W

°C/W

2.3

3.5

35

5.0

40

Vo

=

VREF ( 1 +

:~ ) + ladj

R2

(2)

Since the current from the adjustment terminal (ladj) represents an error term in equation 2, the JlA 117 was deSigned to control ladj to less than 0 V and keep it
constant. To do this, all quiescent operating current is returned to the output terminal. This imposes the requirement for a minimum load current. If the load current is
less than this minimum, the output voltage will rise.
Since the JLA 117 is a floating regulator, it is only the voltage differential across the circuit which is important to performance, and operation at high voltages with respect to
ground is possible.

Co
1.0#

R2

CI is required if regulator is located an appreciable distance from power
supply filter.

Vo = 1.25 V ( 1 +

~~ -1 .0
"c

I

20

Vo

AD.lUST

I

0

n
CL - 1.0 p.F; Cadi - 10 JLF

TIME-J.C.s

Standard Application

~F

~Q

... 1;(

1.0

.5

Typical Applications

0.1

">
~~

..

.0

1M

TO-220 (JlA317)

C,

10~F

Q

Design Considerations
To calculate the maximum junction temperature or heat
sink required, the following thermal resistance values
should be used:

TO-3

c...1 =

1,'- - -

FREQUENCY-Hz

Package

1.0~F;

-1.o - r-- Vo = 10V
IL =50mA
2S C
~> -1.5 - 1-- TJ

/
/

"-

(\

5

WITHOUT Cadi

10· 3
10

w

:~ ) + ladj

R2

(1 )

Since ladj is controlled to less than 100 pA, the error associated with this
term is negligible in most applications.

6-14

J1A 117 • J1A217 • J1A317

Figure

Basic Circuit Configuration

t

VI

Although the J1.A 117 is stable with no output capacitance,
like any feedback circuit, certain values of external capacitance can cause excessive ringing. An output capacitance
(Co) in the form of a 1.0 J1.F tantalum or 25 J1.F aluminum
electrolytic capacitor on the output swamps this effect and
insures stability.

Vo

+
R1

VREF

~

\

IlpROO

________~t

Vo

Protection Diodes
When external capacitors are used with any IC regulator it
is sometimes necessary to add protection diodes to prevent the capacitors from discharging through low current
points into the regulator.

--+ladJ

VRel

= 1.25

R2

V Typical

Figure 2 shows the J1.A 117 with the recommended protection diodes for output voltages in excess of 25 V or high
capacitance values (Co> 25 J1.F, Cadi> 10 J1.F). Diode D1
prevents Co from discharging through the IC during an input short circuit. Diode D2 protects against capacitor Cadi
discharging through the IC during an output short circuit.
The combination of diodes D1 and D2 prevents Cadi from
discharging through the IC during an input short circuit.

Load Regulation
The J1.A 117 is capable of providing extremely good load
regulation, but a few precautions are needed to obtain
maximum performance. For best performance, the programming resistor (R1) should be connected as close to
the regulator as possible to minimize line drops which effectively appear in series with the reference, thereby degrading regulation. The ground end of R2 can be returned
near the load ground to provide remote ground sensing
and improve load regulation.

Figure 2 Voltage Regulator with Protection Diodes
01
1N4002

External Capacitors
A 0.1 J1.F disc or 1.0 J1.F tantalum input bypass capacitor
(CI) is recommended to reduce the sensitivity to input line
impedance.

Vo

R1

D2
1N4002

+

The adjustment terminal may be bypassed to ground to
improve ripple rejection. This capacitor (Cadi) prevents ripple from being amplified as the output voltage is increased. A 10 J1.F capacitor should improve ripple rejection
about 15 dB at 120 Hz in a 10 V application.

ADJUST

R2

6-15

Co

t----------<>------1
Cadj

IlA 138 • IlA238 • IlA338
5-Amp Positive
Adjustable Regulators

FAIRCHILD
A Schlumberger Company

Linear Division Voltage Regulators

Description

Connection Diagram
TO-3 Package
(Top View)

The J,LA 1381 J,LA2381 J.LA338 are adjustable 3-terminal positive
voltage regulators capable of supplying in excess of 5.0 A
over a 1.2 V to 32 V output range. They are exceptionally
easy to use and require only two resistors to set the output voltage.

IN

(C~Q2

A unique feature of the J.LA 138 family is time dependent
current-limiting. The current limit circuity allows peak currents of up to 12 A to be drawn from the regulator for
short periods of time. This allows the J.LA 138 family to be
used with heavy transient loads and speeds start up under
full-load conditions. Under sustained loading conditions, the
current limit decreases to a safe value protecting the regulator. Also included on the chip are thermal overload protection and safe-area protection for the power transistor.
Overload protection remains functional even if the adjustment lead is accidentally disconnected.

o

ADJ

Order Information
Device Code

Package Code

J.LA 138KM
J.LA238KV
J,LA338KC

The J.LA 1381 J.LA2381 J,LA338 are packaged in standard TO-3
transistor packages. The J.LA338 is also available in standard TO-220 transistor packages.

•
•
•
•
•
•
•
•
•
•
•

0
1

FT
FT
FT

Package Description
Metal
Metal
Metal

Connection Diagram
TO-220 Package
(Top View)

Guaranteed 7.0 A Peak Output Current
Guaranteed 5.0 A Output Current
Output Adjustable Between 1.2 V and 32 V
Load Regulation Typically 0.1 %
Line Regulation Typically 0.005%/V
Internal Thermal Overload Protection
Internal Short Circuit Current-Limiting
Output Transistor Safe-Area Compensation
Floating Operation for High Voltage Applications
Standard TO-3 and TO-220 Transistor Packages
Available in Extended Temperature Range

Lead 3 connected to case.

Order Information

Absolute Maximum Ratings

Device Code

Storage Temperature Range
TO-3 Metal Can
TO-220 Package
Operating Junction Temperature Range
Extended (J.LA138)
Industrial (J,LA238)
Commercial (J.LA338)
Lead Temperature
TO-3 Metal Can (soldering, 60 s)
TO-220 Package (soldering, 10 s)
Power Dissipation
Input/Output Voltage Differential

J.LA338UC
-65°C to + 175°C
-65°C to 150°C
-55°C to +150°C
-40°C to + 150°C
O°C to + 150°C
300°C
265°C
Internally Limited
35 V

6-16

Package Code
GH

Package Description
Molded Power Pack

Equivalent Circuit
r---~~------~------~------~--------~--~----------------------------------~------------~----~---~

R26
0.03

L--1---~L-------L---~--L---L---l---l---l---l-__L-------t------J-----J__-------------=======~==~===~
L--------------------------------------------ADJ
~

-..)

~
......
Co)

CO

•

~
N
Co)

CO

•

~
Co)
Co)

CO

•

IlA 138 • IlA238 • IlA338

Electrical Characteristics Unless otherwise specified, these specifications apply: -55°C';;;; TJ';;;; + 150°C for the
~A138, -25°C';;;;TJ';;;;+150°C for ~A238 and 0°C';;;;TJ';;;;+125°C for the M338,
VI- Vo = 5.0 V and 10 = 2.5 A. Although power dissipation is internally limited, these
specifications are applicable for power dissipation up to 50 W, for TO-3; 25 W for
TO-220
J.lA138/J.lA238
Symbol

Characteristic

Conditions

VREF

Reference Voltage 3

3.0 V<'VI-Vo<'35 V,
10 mA<.lo<.5.0 A,
P <.50 W, TA = 25°C

VR LINE

Line Regulation 1

TA = 25°C,
3.0 V<'VI-Vo<.35 V

VR LOAD

Load Regulation 1

J.lA338

Min

Typ

Max

Min

Typ

Max

Units

1.19

1.24

1.29

1.19

1.24

1.29

V

0.005

0.Q1

0.005

0.03

%/V

%IV

0.02

0.04

0.02

0.06

TA = 25°C,
10 mA<.lo<.5.0 A

Vo<.5.0 V

5.0

15

5.0

25

mV

Vo~5.0

0.1

0.3

0.1

0.5

%Vo

10 mA <'10 <.5.0 A

Vo<.5.0 V

20

30

20

50

mV

~5.0

0.3

0.6

0.3

1.0

%Vo

0.002

0.01

0.002

0.02

%/W

3.0 V<'VI-Vo<'35 V

Vo
VRTH

Thermal Regulation

Pulse = 20 ms

VDO

Dropout Voltage4

IL <.5.0 A, VI
TA = 25°C

ladi

Adjustment Lead
Current

dladi

Adjustment Lead
Current Change

Ts

~

7.0 V

V

V

3.0

3.0

V

45

100

45

100

J.lA

10 mA<'IL<'5.0 A
3.0 V<'VI-Vo<'35 V

0.2

5.0

0.2

5.0

!LA

Temperature
Stability

TMin <.TJ <.TMax

1.0

IL Min

Minimum Load
Current

VI-Vo=35 V

3.5

IL

Current Limit

VI-Vo<'10 V

5.0

8.0

5.0

0.5 ms Peak

7.0

12

7.0

VI-Vo=30 V
No

Noise

TA = 25°C
10 Hz<'f<'10 kHz

dVI/dVO

Ripple Rejection

Vo = 10 V,
f = 120 Hz

Long Term Stability2

S

I Without Cadi
I Cadi = 10 J.lF

T A = 25°C for Endpoint
Measurements

5.0

3.5

10

8.0

mA
A

12

1.0

1.0

0.003

0.003

%Vo

60

%Vo

60
60

%

1.0

75
0.3

60
1.0

75
0.3

dB
1.0

%/1000
hrs

Notes
1. Regulation is measured at constant junction temperature. Changes in
output voltage due to heating effects are taken into account sepatately

3. Selected devices with tightened tolerance reference voltage available.

4. Minimum VI- Vo at aoe ~ TJ ~ + 125°C is 3.0 V and at
-55·C ';;;TJ';;; + 150·C is 3.2 V.

by thermal regulation.
2. Since Long Term Stability cannot be measured on each device before
shipment, this specification is an engineering estimate of average

stability from lot to lot.

6-18

JlA 138 • JlA238 • JlA338

Typical Performance Curves
Line Transient Response

Load Transient Response

I

O.6

CL:;:;; D~F, C.dJ

= Op.F

/CL = 1.0 p.F, Cadi

0

= 10 J.l.F

VI

-0.2

""

II

0.0

~

10

VI = 15V
Vo
10V
INI..
100 mA

=
=

TJ

6.0

4.0

~
~

30

20

2.0

0

V

-

-6.0

-'§
o

2.

~ -0.2 ~-+-+--I-+-l---+-+--I--j

~0-0.3 1---+-+--+-+-1---1--+--+--;

i\
\

I
10

-0.4 '----'---'--'--'--'--'---'----'---'
-75 -so -25
25 50 75 100 125 150

30

20

TEMPERATURE-oC

-

~

10'

V,
Vo
IL
T,

3.0

~

r- f-.-

Ii

I-2.0

~

0

1!;

1.0

Output Impedance

!:No= 100mV

1 3.0
~ffi

-

Dropout Voltage

0

r .....

-

~-+-t--+-t--+-+--+-+---

~
~~ -0.1 IL-.f.~f~~*;:::::f::::t:::::3;::.:::r-l

TlME-p,S

Thermal Regulation

0

= 25~C

Ii

I-

TIME-J.LS

0

~ ~1

"1\..

J.

-4.0

I
I

0

2.0

~~

!:iii
".- V l
I
I!: iti- 20 I-- tfiCL= 1.0~F,C." = 10~F_ 8°
.
I
I

VO:;:;; lOY
-0.4 ....-IL = 50 mA
TJ :;:;; 250C
0

.5

">
~I

I

r---r-r---r-r--r-,--r-,-,

0.2

CL=OJ.l.F.Cadj=DJ,tFn

w

.4
2

Load Regulation

4.0

15V
10V
2.0 A
25°C

I-

~ tr- r~~
r- r-

c.., = O"F

1

I"""-

./

1/

1.0
-75

40

-so

-25

0

25

50

75

100

II

10-3

125 150

10

100

TEMPERATURE-"C

Adjustment Current

ffi
:I

55

V

50

II)

:::0

35
-75

V

,/

~

I

/

-so

lOOK

Minimum Operating Current

25

..-

50

75

100

125

150

1.23
-75

/

~

,/

L.o
1 :if
~ \: .... ...
"F

/

I--I--T, =

125"C

TJ :;:;; 2S0C,.-"

•.••

~

~

a:: 1.24

TEMPERATURE-DC

..z. 1#'

~ao

VV

i

I

-25

,/'
126

~> 1.25

/

45

40

....-, /

/

l-

d
c

I
10K

1.27

I

II:
II:
:::0
0

1K
FREQUENCY-Hz

Temperature Stability

60

!Zw

c..,-l0~F

VI = lOY
Vo = 5.0 V

0

"1

'/

IL=5.0A

-25

25

75

TEMPERATURE-OC

6-19

125

1.0

.... T'I- 55

o

o

10

20

30

INPUT/OUTPUT DlFFERENTlAL-V

40

IlA 138 • IlA238 • IlA338

Typical Performance Curves (Cent.)
Current Limit
12

Current Limit

r-IOli

.r'ta. "" 1.0A

~~

10
INL-S.OA

8.0

c
I

= 3.0 A

8.0

III

IEIII

::> 6.0

::> 6.0

'NL

a:
a:

a:
a:

"

I

\

::> 4.0
0

2.0

V, -10V
Vo = S.OV
TJ

=

25°C

1.0

10

o

100

IiIII
iil
a:

..

~

,

§

10

~

15

~

--

c.., "" 1D/J-F

~

VlaVO = 5.0 V
IL=2.0A
f
120 Hz
Tad)
2S"C

0.1

.,...
I
0

z

g
iil
a:

~

W

~

20

~

OUTPUT VOLTAGE-V

20

~

=20V

1

L

II

1.0

1
10

100

TlME-ms

Ripple Rejection
80

80

Cad)

80

Codl

.,...

= 10PP
1

= OPP

....

V

60

I
z

0:::

~

l-

r...

:1
Cadi

i"-

~

1

= 10"F

\..

0

r'\

40
Cad)

a:

40

= O"F,

~
~

20

=
=

M

v,-VO

V,-VQ

o

"

~

~

o

-"

2.0

~

~

Ripple Rejection

40

o

'" ~~iV:
~,-VT r -

f-

"'-

20

4.0

I

TJtI2S"~

........

~

U

6.0

"

!;

100

,

80

"

'"-

III

i::>

,\

~"

8.0

'NL -0 A

INPUT/OUTPUT DtFFERENTlAL-V

Ripple Rejection

80

~

....--INL = 1.0 A

I
o

nME-ms

100

C

INL = ioOA

\

I-

0.1

I
0

"\ ~Yt
,

-

10

~'
~-INL= 3.0,A

I-

o

z

.........
,

= 25°C

~-INL=OA

::>

2.0

.,...

TJ

"..

4.0

12

PEAK CURRENT LIMIT
DC CURRENT LIMIT

~~~

~

j

~

-

~~~

10

c

Current Limit

12

o

V,
Vo
f
TJ

lSV
10V
120 Hz
2S"C

20

\..
v,
Vo
IL
TJ

1.0

0.1

OUTPUT CURRENT-A

6-20

10

'\

lSV
10V
2.0 A
25°C
100

1K

FREQUENCY-Hz

10 K

lOOK

IlA 138 • IlA238 • IlA338

formance, and operation at high voltages with respect to
ground is possible.

Design Considerations
To calculate the maximum junction temperature or heat
sink required, the following thermal resistance values
should be used:
Typ
eJC
°C/W

Package

Max
eJC
°C/W

Typ
eJA
°C/W

Max
eJA
°C/W

TO-3

1.0

35

TO-220

3.5

40

Po Max =

TJ Max- TA
eJC + eCA

Load Regulation
The !LA 138 is capable of providing excellent load regulation, but a few precautions are needed to obtain maximum
performance. For best performance, the programming resistor (R1) should be connected as close to the regulator as •
possible to minimize line drops which effectively appear in
•
series with the reference, thereby degrading regulation.
The ground end of R2 can be returned near the load
ground to provide remote ground sensing and improve
load regulation.

TJ Max TA
or ---:--eJA

Figure 1 Basic Circuit Configuration

eCA = ecs + eSA (Without heat sink)
Solving for TJ:
TJ=TA+PO (eJC+ eCA) or
= TA + POeJA (Without heat sink)

V,

(+R1

Vo
--o;;;;-~VREF

r

L::-__
'-+t"PROG Vo
Where:
TJ
TA
Po
eJA
eJc
eCA
eCS
eSA

= Junction Temperature
= Ambient Temperature

= Power

R2

1

Dissipation

= Junction-to-Ambient Thermal Resistance

= Junction-to-Case

Thermal Resistance

= Case-to-Ambient Thermal Resistance
= Case-to-Heat Sink Thermal Resistance
= Heat Sink-to-Ambient Thermal Resistance

Figure 2 Voltage Regulator with Protection Diodes

Typical Applications
Basic Circuit Operation
The I1A 138 is a 3-terminal floating regulator. In operation,
the !LA 138 develops and maintains a nominal 1.25 V reference (VREF) between its output and adjustment terminals.
This reference voltage is converted to a programming current (lprog) by R1 (see Figure 1), and this constant current
flows through R2 to ground. The regulated output voltage
is given by:

Vo = VREF( 1 +

:~) + ladiR2

+
Co

(1)

External Capacitors
A 0.1 !LF disc or 1.0 !LF tantalum input bypass capacitor
(CI) is recommended to reduce the sensitivity to input line
impedance.

Since the current from the adjustment terminal (Iadj) represents an error term in equation 1, the I1A 138 was designed to minimize ladi and make it constant with line and
load changes. To do this, all quiescent operating current is
returned to the output terminal. This imposes the requirement for a minimum load current. If the load current is
less than this minimum, the output voltage will rise.

The adjustment terminal may be bypassed to ground to
improve ripple rejection. This capacitor (Cadi) prevents ripple from being amplified as the output voltage is increased. A 10 !LF capacitor should improve ripple rejection
by 15 dB at 120 Hz in a 10 V application.

Since the I1A 138 is a floating regulator, it is only the voltage differential across the circuit which is important to per-

6-21

IlA 138 • IlA238 • IlA338

Figure 2 shows the J.LA 138 with the recommended protection diodes for output voltages in excess of 25 V or high
capaCitance values (Co> 25 J.lF, Cadi> 10 J.lF).

Although the J.lA 138 is stable with no output capacitance,
like any feedback circuit, certain values of external capacitance can cause excessive ringing. An output capacitance
(Co) in the form of a 1.0 J.lF tantalum or 25 J.lF aluminum
electrolytic capacitor on the output swamps this effect and
insures stability.

Diode D1 prevents Co from discharging through the IC
during an input short circuit Diode D2 protects against capaCitor Cadi discharging through the IC during an output
short circuit. The combination of diodes D1 and D2 prevents Cadi from discharging through the IC during an input
short circuit.

Protection Diodes
When external capaCitors are used with any IC regulator it
is sometimes necessary to add protection diodes to prevent the capacitors from discharging through low current
points into the regulator.
Figure 3a

Figure 3b

Adjustable Regulator with Improved Ripple
Rejection

High Stability 10 V Regulator

15~ --,.--1
Rl

V,

2.0kQ
5%

01
lN4002
(NOTE 2)

C3

+ Cl

1.0~F

10 ~F

R2
1.5 kQ
1%

LM329B

+

(NOTE 1)

R3
2S7Q

1%

Figure 4 Adjustable Current Regulator
Figure 5 Simple 12 V Battery Charger

Rl

t--'\O."'24"'Q_...._ _ _

~A _ 5.0 A

R Q
...._ _ _ _. , 0.1

v,

(NOTE 4)

Rl
120Q

-=-12 V

R2

2.4 kQ

R3

120 Q

V-5.0 V TO -10 V

Notes
1. Solid tantalum.
2. Discharges Cl if output is shorted to ground.
3. Rl ~ 240 12 for LM138 and LM238.

(R2)

4. As - sets output impedance of charger Zo = Rs 1 + Use of Rs allows low charging rates with fully
Rl
charged battery.
5. The 1000 IlF is recommended to filter out input transients.

6-22

1
-=

J.lA 150 • J.lA250 • J.lA350
3-Amp Positive
Adjustable Regulators

FAIRCHILO
A Schlumberger Company

Linear Division Voltage Regulators

Description

Connection Diagram
TO-3 Package
(Top View)

The !lA 150/ MA250lJ,LA350 are adjustable 3-terminal positive
voltage regulators capable of supplying in excess of 3.0 A
over a 1.2 V to 33 V output range. They are exceptionally
easy to use and require only two external resistors to set
the output voltage.

(C~S~T~2
IN

A unique feature of the MA 150 family is time dependent
current-limiting. The current limit circuitry allows peak currents of up to 6.0 A to be drawn from the regulator for
short periods of time. This allows the !lA 150 family to be
used with heavy transient loads and speeds start up under
full load conditions. Under sustained loading conditions, the
current limit decreases to a safe value protecting the regulator. Also included on the chip are thermal overload protection and safe-area protection for the power transistor.
Overload protection remains functional even if the adjustment lead is accidentally disconnected.

o

ADJ

Order Information
Device Code

FT
FT
FT

Package Description
Metal
Metal
Metal

Connection Diagram
TO-220 Package
(Top View)

Guaranteed 3.0 A Output Current
Output Adjustable Between 1_2 V and 33 V
Load Regulation Typically 0.1 %
Line Regulation Typically 0.005%/V
Internal Thermal Overload Protection
Internal Short Circuit Current-Limiting
Output Transistor Safe-Area Compensation
Floating Operation for High Voltage Applications
Standard TO-3 and TO-220 Transistor Packages
Available in Extended Temperature Range

Lead 3 connected to case

Order Information

Absolute Maximum Ratings
Storage Temperature Range
TO-3 Metal Can
TO-220 Package
Operating Junction Temperature Range
Extended (MA 150)
Industrial (MA250)
Commercial (MA350)
Lead Temperature
TO-3 Metal Can (soldering, 60 s)
TO-220 Package (soldering, 10 s)
Power Dissipation
Input/Output Voltage Differential

Package Code

MA150KM
MA250KV
MA350KC

The MA 150/MA250/ !lA350 are packaged in standard TO-3
transistor packages. The MA350 is also available in standard TO-220 transistor packages.

•
•
•
•
•
•
•
•
•
•

0
10

Device Code
MA350UC

-65°C to + 175°C
-65°C to + 150°C
-55°C to + 150°C
-25°C to + 150°C
O°C to + 150°C
300°C
265°C
Internally Limited
35 V

6-23

Package Code
GH

Package Description
Molded Power Pack

Equivalent Circuit
.---~-----r----~------~----~--~----------~--------------r----------'---r---~

llImiLLf:UJ~~~==----~==-=-=:~
R9

RIO

R12

180

4.1 k

72

RI3
5.lk

RI4

12 k

R26

0.03

<»

'"

.j>.

$.
......
c.n
c

•

$.
N
c.n
C

•

$.
Co)

c.n
c

IlA 150 • IlA250 • IlA350

J..IA150/J..lA250
Electrical Characteristics Unless otherwise specified, these specifications apply -55°e;:;;;;; T J ;:;;;;; + 1500 e for the
J..IA 150, -25°e;:;;;;; TJ ;:;;;;; + 150 0 e for the J..IA250, and ooe;:;;;;; TJ;:;;;;; + 1500 e for the
J..IA350, VI- Va = 5.0 V and 10 = 1.5 A. Although power dissipation is internally
limited, these specifications are applicable for power dissipation up to 30 W, for
TO-3; 25 W for TO-220.
Symbol

Characteristic

Min

Conditions

Max

Units

1.30

V

TA = 25°C
3.0 V
u

~

---

-1.0
-7S

0
-2S

2S

75

TEMPERATURE-OC

6-27

12S

10

20

TlME-p.s

30

40

IlA 150 • IlA250 • IlA350

Typical Performance Curves (Cont.)
Adjustment Current

Dropout Voltage

Temperature Stability

65

1.26

60
C

.--

E

~w

II:
II:

"u....
z

55
50

w

45

d

40

i!
gs

'"

",

!

.......

1.25

"~

> 1.24

/'

V

/

V

V

V

V

I
a:

"

1.23

1.0

r.-+-+-+---+-t--r-I---t--l

35
1.22

30
-75

-25

75

25

-75

125

-25

25

75

125

-75

-25

25

75

TEMPERATURE-OC

TEMPERATURE-"C

TEMPERATURE-OC

Ripple Rejection
100

80

...

-

.I J

~C.dJ=10p.F

CD

J
~

'-....

80

u

w

Cadj

iil

II:

.

w

-

= OJ.lF

40

it
iE

Vl~VO

f

o

= 5.0 V

= 500 mA
= 120 Ml

20 r--1L

!'J=2r
o

~

10

15

~

~

M

~

OUTPUT VOLTAGE-V

Design Considerations

Solving for TJ:
TJ = TA + po(eJC + eCA) or
= T A + poeJA (Without heat sink)

To calculate the maximum junction temperature or heat
sink required, the following thermal resistance values
should be used:

Package

Typ

Max

eJC
°C/W

eJC
°C/W

TO-3
TO-220
Po Max =

3.0
TJ Max- TA
eJC

eCA = ecs

+ eCA

or

Typ
eJA

Max
eJA

°C/W

°C/W

Where:
TJ
TA
Po

= Junction Temperature
= Ambient Temperature
= Power Dissipation

1.5

35

eJC

e JA

= Junction-to-Ambient

4.0

40

eCA
eCS
eSA

=
=
=
=

TJ Max TA

-=-=~--'-'

eJA

+ eSA (Without heat sink)

6-28

Thermal Resistance
Junction-to-Case Thermal Resistance
Case-to-Ambient Thermal Resistance
Case-to-Heat Sink Thermal Resistance
Heat Sink-to-Ambient Thermal Resistance

125

p-A 150 • p-A250 • p-A350

Typical Applications
In operation, the !lA150 develops a nominal 1.25 V reference voltage, VREF, between the output and adjustment
terminal. The reference voltage is impressed across program resistor R1 and, since the voltage is constant, a
constant current 11 then flows through the output set resistor R2, giving an output voltage of (Figure 1)
Vo

= VREF

(

1+

:~) + ladjR2

Figure 1 Basic Circuit Configuration
V,

r

(1)
Vo= V.Edl + ~) I.dl R2

Since the 50 !lA current from the adjustment terminal represents an error term, the /JA 150 was designed to minimize ladj and make it very constant with line and load
changes. To do this, all quiescent operating current is returned to the output establishing a minimum load current
requirement. If there is insufficient load on the output, the
output will rise.

r

Although the /JA 150 is stable with no output capacitors,
like any feedback circuit, certain values of external capacitance can cause excessive ringing. This occurs with values
between 500 pF and 5000 pF. A 1.0 /JF solid tantalum (or
25 /JF aluminum electrolytic) on the output swamps this
effect and insures stability.

External Capacitors
An input bypass capacitor is recommended. A 0.1 /JF disc
or 1.0 /JF solid tantalum on the input is suitable input bypassing for almost all applications. The device is more
sensitive to the absence of input bypassing when adjustment or output capacitors are used, but the above values
will eliminate the possibility of problems.

Load Regulation
The /JA 150 is capable of providing extremely good load
regulation but a few precautions are needed to obtain
maximum performance. The current set resistor connected
between the adjustment terminal and the output terminal
should be tied directly to the output of
(usually 240
the regulator rather than near the load. This eliminates
line' drops from appearing effectively in series with the reference and degrading regulation. For example, a 15 V regulator with 0.05
resistance between the regulator and
load will have a load regulation due to line resistance of
0.05 n x 1L. If the set resistor is connected near the load
the effective line resistance will be 0.05
(1 + R2/R1) or
in this case, 11.5 times worse.

n)

The adjustment terminal can be bypassed to ground on
the !lA150 to improve ripple rejection. This bypass capacitor prevents ripple from being amplified as the output voltage is increased. With a 10 /JF bypass capacitor 88 dB
ripple rejection is obtainable at any output level. Increases
over 10 /JF do not appreciably improve the ripple rejection
at frequencies above 120 Hz. If the bypass capacitor is
used, it is sometimes necessary to include protection diodes to prevent the capacitor from discharging through internal low current paths and damaging the device.

n

n

Figure 2 shows the effect of resistance between the reguset resistor.
lator and 240

n

In general, the best type of capacitor to use is solid tantalum. Solid tantalum capacitors have low impedance even
at high frequencies. Depending upon capacitor construction, it takes about 25 /JF in aluminum electrolytic to equal
1.0 /Jf: solid tantalum at high frequencies. Ceramic capacitors are also good at high frequencies, but some types
have a large decrease in capacitance at frequencies
around 0.5 MHz. For this reason, 0.01 /JF disc may seem
to work better than a 0.1 /JF disc as a bypass.

With the TO-3 package, it is easy to minimize the resistance from the case to the set resistor, by using two separate leads to the case. The ground of R2 can be
returned near the ground of the load to provide remote
ground sensing and improve load regulation.

6-29

IlA 150 • IlA250 • IlA350

Figure 2

Protection Diodes
When external capacitors are used with any IC regulator it
is sometimes necessary to add protection diodes to prevent the capacitors from discharging through low current
points into the regulator. Most 10 fJ.F capacitors have low
enough internal series resistance to deliver 20 A spikes
when shorted. Although the surge is short, there is
enough energy to damage parts of the IC.

Voltage Regulator with Line Resistance in
Output Lead

V,

R2

When an output capacitor is connected to a regulator and
the input is shorted, the output capacitor will discharge
into the output of the regulator. The discharge current depends on the value of the capacitor, the output voltage of
the regulator, and the rate of decrease of VI. In the
fJ.A 150, this discharge path is through a large junction that
is able to sustain 25 A surge with no problem. This is not
true of other types of positive regulators. For output capacitors of 25 fJ.F or less, there is no need to use diodes.

Figure 3

Voltage Regulator with Protection Diodes
01
lN4002

The bypass capacitor on the adjustment terminal can discharge through a low current junction. Discharge occurs
when either the input or output is shorted. Internal to the
JJ.A 150 is a 50 n resistor which limits the peak discharge
current. No protection is needed for output voltages of
25 V or less and 10 fJ.F capacitance. Figure 3 shows a
JJ.A 150 with protection diodes included for use with outputs
greater than 25 V and high values of output capacitance.

I-_......-+-_-Vo

V,

Cl

Vo = 1.25 V ( 1 +

R2

iii) I.dj R2
01 PROTECTS AGAINST Cl
02 PROTECTS AGAINST C2

Typical Applications
Temperature Controller

Light Controller

~~------------'--Vo

Rl
1.2 kQ

HEATER

R2
80Q

6-30

JJ.A 150 • JJ.A250 • JJ.A350

Typical Applications (Cant.)
Precision Power Regulator with Low Temperature
Coefficient

Slow Turn-On 15 V Regulator

V,
V,

Adjustable Regulator with
Improved Ripple Rejection

High Stability 10 V Regulator

15~-.....- - i
V, -

R1
2.0kQ
5.0%

.....- - i
R1
240Q

01
1N4003

+

R2
1.5 kQ

1.0%

(NOTE 3)

C3
1.0"F
(NOTE 2)

R3

2.67 Q
1.0%

Notes
1. Adjust for 3.75 V across RI
2. Solid Tantalum
3. Discharge CI if output is shorted to ground

6-31

JlA 150 • JlA250 • JlA350

Typical Applications (Cont.)
5 V Logic Regulator with
Electronic Shutdown (Note 2)

Digitally Selected Outputs

v,

t----~Vo

V, 7.0 V - 35 V

C2

0.1

~F

1.0 kl>

r-+--'VItv- TTL

o to 30 V Regulator

AC Voltage Regulator

V, _ _ _- - I

I - -.......- - V o

35V

1201>

v.....
r\.

R2

6 V.....

3A

rv

12

2.0kl>

'V

4002

1.2V
120\1

R3
6802

-10V

Notes
1. Sets maximum Vo
2. Min output '" 1.2 V

6-32

4882

IlA 150 • IlA250 • IlA350

Typical Applications (Cont.)
5.0 A Constant Voltage/Constant Current Regulator

R3

R2
250kQ

36V

0.2
5W

Rl
33

t-1----------t-----------r------1--+~r__~~~-30V
+

C3

10~F
I
"::" (NOTE 1)

R6
240Q
R5
330kQ

-6.0 V TO -15 V

R7
220
RB
B.OkQ
VOLTAGE
ADJUST ";"

12 V Battery Charger

T012V
BATTERY

Noles
1. Solid tantalum
2. Lights in constant current mode

6-33

IlA 150 • IlA250 • IlA350

Typical Applications (Cont.)

Adjustable Current Regulator

1.2 V - 20 V Regulator with
Minimum Program Current

3.0 A Current Regulator

Rl

1-...0.,,3,..2_---

~TO 3.0 A
1--,....-~1)

v,----I

v,

R2
20kQ

R3
120Q

CR03440F

v-5.0 V TO -18 V

Precision Current Limiter

Tracking Pre-Regulator

,-+ ~ ~~"-M-'

Vo

II,
R3
120Q

R4
1.0 kQ

CR03460F

Noles
1. Minimum load current 4.0 mA
2. 0.4';;Rl';;120 n

6-34

OUT
ADJUST

p.A 150 • p.A250 • p.A350

Typical Applications (Cont.)
Adjusting Multiple On-Card Regulators with Single Control (Note 1)

Simple 12 V Battery Charger
RS

Vo

0.211

Vo

110

(NOTE 3)

(NOTE 2)

(NOTE 2)

IN4802

+

R2

2Akll

Adjustable 10 A Regulator

Current Limited 6.0 V Charger

V,

,

CR03501F

110

9.OV",aov

+

1000"F

1.1 kll

(NOTE 4)

10011
4.5VTO 25 V
1.011
(NOTES)

5.0kll

5.0kll

Notes
1. All outputs within ± 100 mV
2. Minimum load -10 mA
(
A2 )
3. As - sels output impedance of charger Zo = As 1 +Use of As allows low charging rates with fully
AI
charged battery.
4. 1000 IJ.F is recommended to filter out any input transients.
5. Sets peak current (2 A to 0.3 f!)

6-35

p.A 1524A • p.A2524A • p.A3524A
Advanced
Pulse Width Modulators

FAIRCHILD
A Schlumberger Company

Linear Division Voltage Regulators

Description

Connection Diagram
16-Lead DIP
(Top View)

The p.A 1524A family of regulating PWM ICs have been designed to retain the same highly versatile architecture of
the industry standard UC1524 (SG1524) while offering substantial improvements to many of its limitations. The
p.A1524A family is lead compatible with "non-A" models
and in most existing applications can be directly interchanged with no effect on power supply performance. Using the p.A1524A family, however, frees the designer from
many concerns which typically had required additional circuitry to solve.

16

ERROR AMP -IN

+SVVREF

ERROR AMP +IN

+VIN

OSC/SVNC

The p.A1524A family includes a precise 5.0 V reference
trimmed to ± 1% accuracy, eliminating the need for potentiometer adjustments; an error amplifier with an input range
which includes 5.0 V, eliminating the need for a reference
divider; a current sense amplifier useful in either the
ground or power supply output lines; and a pair of 60 V,
200 mA uncommitted transistor switches which greatly enhance output versatility.

CUR LIM AMP +IN

COLLECTOR B

CUR LIM AMP -IN

COLLECTOR A

R,.

EMITTER A

Cor

SHUTDOWN

GND

An additional feature of the p.A 1524A family is an undervoltage lockout circuit which disables all the internal circuitry except the reference, until the input voltage has
risen to the turn-on threshold. This holds standby current
low until turn-on, greatly simplifying the design of low power, off-line supplies. The turn-on circuit has approximately
300 mV of hysteresis for jitter-free activation.

EMlTTERB

COMPENSATION
c001390F

Order Information
Device Code
p.A1524ADM
p.A2524ADV
p.A2524APV
p.A3524APC
p.A3524ADC

Other product enhancements within the p.A1524A family
design include a PWM latch which insures freedom from
multiple pulsing within a period, even in noisy environments; logic to eliminate double pulsing on a single output;
and a 300 ns external shutdown capability. The oscillator
circuit of the p.A 1524A family is usable beyond 500 kHz
and is now easier to synchronize with an external clock
pulse.

•
•
•
•
•
•
•
•

The p.A 1524A is packaged, in a hermetic 16-lead DIP and
rated for operation from -55·C to + 125·C. The p.A2524A
and p.A3524A are available in either ceramic or plastic
packages and are rated for operation from -25·C to
+ 85·C and O·C to 70·C respectively.

•
•
•
•
•

6-36

Package Code
78
78
98
98
78

Package Description
Ceramic DIP
Ceramic DIP
Molded DIP
Molded DIP
Ceramic DIP

Fully Interchangeable With Standard 1524 Families
PreCision Reference Internally Trimmed To ± 1%
High Performance Current Limit Function
Under Voltage Lockout With Hysteristic Turn-On
Start-Up Supply Current Less Than 4.0 mA
Output Current To 200 mA
60 V Output Capability
Wide Common Mode Input Range For Both Error
And Current Limit Amplifiers
PWM Latch Ensures Single Pulse Per Period
Double Pulse Suppression Logic
300 ns Shutdown Through PWM Latch
Guaranteed Frequency Accuracy
Available In Extended Temperature Range

p.A 1524A • p.A2524A • p.A3524A

Absolute Maximum Ratings
Storage Temperature Range
Ceramic DIP
Molded DIP
Operating Temperature Range
Extended (IIA1524A)
Industrial (1IA2524A)
Commercial (1IA3524A)
Lead Temperature
Ceramic DIP (soldering, 60 s)
Molded DIP (soldering, 10 s)

Internal Power Dissipation 1,2
16L-Ceramic DIP
16L-Molded DIP
Supply Voltage
Collector Supply Voltage
Output Current (Each Output)
Reference Output Current
Oscillator Charging Current

-65·C to +175·C
-65·C to + 150·C
-55·C to +125·C
-25·C to +85·C
O·C to +70·C
300·C
265·C

Notes
1. TJ Max - IS0·C for the Molded DIP, and 17S·C for the Ceramic DIP.
2. Ratings apply to ambient temperature at 2S·C. Above this temperature,
derate the 16L-Ceramic DIP at 10 mwrc, and the 16L-Molded DIP at
8.3 mwrc.

Equivalent Circuit

1--------- YRE.

VIN-------~----------~

osc------,

POWER TO

INTERNAL
CIRCUITRY

COMP------~
-IN
1.0K2

+IN

~~~~~-----------------~~WN

10K2

f""

-IN

Power Dissipation at TA = +2S·C ........................................... 1000 mW
Derate above + SO·C ....................................................... 10 mW
Power Dissipation at Tc = + 2S·C ........................................... 2000 mW
Derate for Case Temperature above + 2S·C .......................... 16 mW

rc

rc

6-37

GNO

1.50 W
1.04 W
40 V
60 V
200 rnA
50 rnA
5.0 rnA

IJA 1524A • 1lA2524A • 1lA3524A

1lA1524, 1lA2524A, 1lA3524A
Electrical Characteristics T A = -55°C to
O°C to

+ 125°C

+ 70°C

for the iJA.1524A, -25°C to + 85°C for the iJA.2524A, and
for the iJA.3524A, VI = Vc = 20 V, unless otherwise specified.
j.lA3524A

j.lA 1524A/j.lA2524A
Symbol

Characteristic

Conditions

I

I

Max

Min

40

8.0

7.5

8.5

5.5

V

2.5

V to 40 V

6.0

Min

Typ

I Typ

I

Max

Unit

Turn-on Characteristics

Vo

Input Voltage

Operating Range after
Turn-on

Turn-on Threshold

8.0
5.5

Turn-on Current

VI

Operating Current

VI

= 6.0
= 8.0

Turn-on Hysteresis1

40

V

7.5

8.5

V

4.0

2.5

4.0

mA

10

6.0

10

mA

0.3

0.3

V

Reference Section

= 25°C
= 10 V to
IL = 0 mA to

Vo

Output Voltage

TJ

VR LINE

Line Regulation

VI

4.90

V

5.0

5.05

5.0

5.10

10

20

10

30

mV

5.0

50

5.0

50

mV

Temperature
Stability1

Over Operating Range

20

50

20

50

mV

los

Output Short Circuit
Current

VREF = 0 V, TJ

= 25°C

80

100

80

100

mA

No

Noise 1

10 Hz';;;f';;;10 kHz,
TJ = 25°C

VR LOAD

Load Regulation

4.95
40 V

Long Term Stability1
Oscillator Section RT = 2700 n,

Initial Accuracy

TJ

= 125°C,

Cr = 0.01 mF,
TJ = 25°C

20 mA

40

1000 Hrs

20

50

43

45

/lVrms

20

50

mV

43

47

kHz

unless otherwise specified
41

Temperature
Stability1

Over Operating
Temperature Range

Minimum Frequency

TJ = 25°C, RT
CT = 0.1 mF

= 150

kn,

Maximum Frequency

TJ = 25°C, RT
CT = 470 pF

= 2.0

kn.

Output Amplitude 1

TJ

Output Pulse Width 1

TJ

= 25°C
= 25°C

TJ

= 25°C

39

2.0

Ramp Peak
Ramp Valley

40

2.0
140

500

%

120
500

Hz
kHz

3.5

3.5

V

0.5

0.5

/lS

3.3

3.5

3.7

3.3

3.5

3.7

V

0.6

0.75

0.9

0.6

0.75

0.9

V

Error Amplifier Section VCM = 2.5 V. unless otherwise specified.

VIO(EA)

Input Offset Voltage

0.5

5.0

2.0

10

mV

liB

Input Bias Current

1.0

5.0

1.0

10

110

Input Offset Current

.05

1.0

0.5

1.0

/.LA
/.LA

6-38

MA 1524A • MA2524A • MA3524A

JlA1524, JlA2524A, JlA3524A (Cont.)
Electrical Characteristics TA = -55°C to + 125°C for the JlA 1524A, -25°C to + 85°C for the JlA2524A, and

O°C to +70°C for the JlA3524A, VI

= Vc = 20

V, unless otherwise specified.

IlA 1524A1IlA2524A
Symbol

Characteristic

Conditions

Min

Typ

Max

!lA3524A
Min

Typ

Max

Unit

CMR

Common Mode
Rejection

VCM=1.S V to S.S V

60

7S

60

7S

dB

PSRR

Power Supply
Rejection Ratio

VI = 10 V to 40 V

SO

60

SO

60

dB

Output Swing

Minimum Total Range

O.S

Open Loop Voltage
Gain

!lVo = 1.0 V to 4.0 V,
RL ;;'10 MQ

72

80

60

80

dB

Gain Bandwidth 1

TJ=2Soc, Av=O dB

1.0

3.0

1.0

3.0

MHz

DC
Transconductance 1, 2

TJ = 2SoC,
30 kQ < RL < 1.0 MQ

1.6

mho

S.O

O.S

1.6

S.O

V

Current Limit Amplifier Lead S = 0 V, unless otherwise specified.

VIO

Input Offset Voltage

TJ = 2SoC, E/A Set for
maximum output

190

VIO

Input Offset Voltage

Over Operating
Temperature Range

180

lis

Input Bias Current

CMR

Common Mode
Rejection

VLead 5 = -0.2 V
to +S.S V

SO

60

SO

60

dB

PSRR

Power Supply
Rejection Ratio

VI = 10 V to 40 V

SO

60

SO

60

dB

Output Swing

Minimum Total Range

O.S

Open Loop Voltage
Gain

Vo= 1.0 V to 4.0 V,
RL ;;'10 MQ

70

Delay Time 1

Lead 4 to Lead 9,
!l VI = 300 mV

200

-1.0

210

180

220

170

-10

S.O
80

200

-1.0

O.S
70

300

220

mV

230

mV

-10

!lA

S.O

V

80

dB

300

ns

80

V

Output Section (Each Output)

!lA

VCE

Collector Emitter
Voltage

Ic = 100

60

80

SO

ICE

Collector Leakage
Current

VCE = SO V

0.1

20

0.1

20

!lA

VCE Sat

Saturation Voltage

Ic= 20 mA

0.2

0.4

0.2

0.4

V

Ic=100 mA

1.0

1.S

1.0

1.S

Ic= 200 mA

2.0

2.7

2.0

2.S

VE

Emitter Output
Voltage

IE = SO mA

t,

Rise Time 1

TJ = 2SoC, R = 2.0 kQ

tf

Fall Time 1

TJ = 2SoC, R = 2.0 kQ

17

6-39

18

17

18

V

1S0

1S0

ns

SO

SO

ns

JJ.A 1524A • JJ.A2524A • JJ.A3524A

J.LA 1524, J.LA2524A, IlA3524A (Cont.)
Electrical Characteristics TA = -55°C to + 125°C for the p.A 1524A, -25°C to + 85°C for the IlA2524A, and
O°C to + 70°C for the IlA3524A, VI = Vc = 20 V, unless otherwise specified.
~A3524A

MA1524A/~A2524A

Symbol

Characteristic

Conditions

Min

Typ

Max

Min

Max

Unit

TJ = 25°C,
Lead 9 to Output

350

350

ns

Shutdown Delay1

TJ = 25°C,
Lead 10 to Output

300

300

ns

Shutdown Threshold

TJ = 25°C, Rc = 2.0 k.l1

0.6

0.7

1.0

0.6

Notes
1" These parameters are guaranteed by design but not 100% tested in
production.
2. DC transconductance (gM) relates to DC open loop voltage gain
according to the following equation: Av = 9M RL where RL is the
resistance from lead 9 to ground. The minimum 9M specification is used
to calculate minimum Av when the error amplifier output is loaded.

Open Loop Test Circuit (Note 1, 2)
+Vc

2.0 kQ

lW
COLLECTOR A

f - f - -......-

COLLECTOR B

f-......- - - B O

,u.A1524A

SYNC

EMITTER A

ERROR AMP

CURRENT LIMIT
EMITTER B

2.0 kQ

RT

0.1

Typ

Comparator Delay 1

10kQ

0.1

CT
EIACONTROl

10kQ

2.0 kQ

'----t--... ~1.0 kQ

Cl CONTROL

Notes
1. The !lA1524A should be able to be tested in any 1524 test circuit with
two possible exceptions.
a. The higher gain bandwidth of the current limit amplifier in the
pA 1524A may cause oscillations in an uncompensated 1524 test

circuit.
b. The effect of the shutdown, lead 10, cannot be seen at the
compensation terminal, lead 9; but must be observed at the outputs.
2. The circuit will allow all pA 1524A functions to be evaluated.

6-40

Ao

0.7

1.0

V

J1A 1524A • J1A2524A • J1A3524A

Typical Performance Curves
Supply Current vs
Voltage

Error Amplifier Voltage Gain vs
Frequency

10
1

.

E

~

a:
a:

--

I

T~ -

III

55·1:_
2S·C

TJ

1,

!zw

14

"
:;
Ul
W

o

/
o I
o

Y

10

0

TJ ,'2S·C

1
60

40

0-

0
0

-i

I

z

W

0-

0

CIO

1
40

30

20

20

RL

1.0M2

RL

300 kQ

RL

100 kQ

RL

30 kQ

= 20 V
= 2S·C r-

V,
TJ

1"\

1'-

>

1

NOTE: OUTPUTS OFF, RT =

~

w

"~

?

a

a

"

_

80

"I
z

Pulse Width Modulator
Transfer Function

1'1'-

J I

SUPPLY VOLTAGE-V

f

~~--~~-t--~~--+-~

30

I-----t----t.

!2.
w

"
LEAD 9 TO GROUND. VALUES
~
f-BELOW 30 kQ WILL BEGIN TO ~
LIMIT THE MAXIMUM DUTY CYCLE.

100

I

!Ii!

r- R~ IS I~PEbANCE FROM

50

.

1K

10 K

100 K

K:

20 f---+--+--:~+--~f---j

1,0

f---t-J'-7"',

1M
PWM INPUT VOLTAGE (LEAD 9)-V

FREQUENCY-Hz

Oscillator Frequency vs
Timing Components

Output Dead Times vs
Timing Capacitor Value

Output Saturation Voltage

10
V,
TJ

.......

20V
2S·C

5.0

c''> I, 1
c~'"

0

~

I

''>
''>
o 101),
''>
C~
''>

~~

.......

w
::E
>=

.
0

w

0
t-

::>

...::>
0-

'00",

10

1

20

>

...::>I
...::>

0.5

INPUT AHEAD 4

>

...::>I
0-

~

20

50

100

Shutdown Delay From PWM
Comparator - Lead 9

,. ,.,Ir"

:1/.1",

I. 1 .!..I

10

I

TIMING CAPACITOR-nF

>

15

...::>

10

J

TlErhb

0.2

VIN == 20 V, TJ == 25°C

0.1

LEAD 2
TO LEAD 16
LEAD 5 GROUNDED

J, = ~o vi
RL
TJ

::>
0-

OUTPUT COLLECTOR CURRENT-mA

Turn-Off Delay From
Shutdown - Lead 10

1

20

I
t-

0

I',

0

=

OSC OUTPUT
NOTE: DEAD TIME
PULSE WIDTH PLUS
1 ,OUTPUT DELAY

1

100

~48~ ~ '/. '/
/50%

0-

~

0.1
50

OUTPIUT ~T LEAD 9
VERDRIVE:
5%

~

a:

..... 1-'

0.2 -

Current Limit Amplifier Delay

'"'I'

"i!

Q

1.0

TIMING RESlSTOR-kQ

-

>
I
w

2.0

0

1 1

100

V,-20V
RT = 2700
TJ == 25"C

= 2.0 kQ= 2S·C _

-I 1 1

OUTPUT AT
LEAD 12 OR 131

>

...::>I
...::>
0-

VI

...I

::>

4
3
2

INPUT AT
LEAD ,9

...::>
I

0-

0-

~

>

f- NOTE: MINIMUM INPUT PULSE WIDTH TO LATCH IS 200 ns

~

OUTPUT AT
LEAD 12 OR 13

t-t-i

J

DELAY TIME-~s

6-41

1

1

1

I I I

INPUT AT 1
LEAD 10 1

1

1

1

1

_ NOTE: MINIMUM INPUT PULSE WIDTH _
T~ LATCH IS 200 ns

1
DELAY TlME-,u.s

1

20V

TJ == 25°C

r-- I--H

0,5

1

=

RL == 2.0 kQ

10

0

1.0

>

1

20
15

DELAYTIME-""

tlA431A
Adjustable Precision Zener
Shunt Regulator

FAIRCHILD
A Schlumberger Company

Linear Division Voltage Regulators

Connection Diagram
TO-92 Package
(Top View)

Description
The J.IA431 A is a 3-terminal adjustable shunt regulator with
guaranteed temperature stability over the entire temperature range of operation. The output voltage may be set at
any level greater than 2.5 V (VREF) up to 36 V merely by
selecting two external resistors that act as a voltage divided network. Due to the sharp turn-on characteristics this
device is an excellent replacement for many zener diode
applications.

• Average Temperature Coefficient 50 ppmrC
• Temperature Compensated For Operation Over The
Full Temperature Range
• Programmable Output Voltage
• Fast Turn-On Response
• Low Output Noise

ANODE

Order Information
Device Code

Absolute Maximum Ratings
Storage Temperature Range
Operating Temperature Range
Industrial (J.IA431AV)
Commercial (J.IA431AC)
Lead Temperature
TO-92 Package/SO-8
(soldering, 1Q s)
Internal Power Dissipation 1,2
TO-92 Package
SO-8 Package
Cathode Voltage
Continuous Cathode Current
Reference Voltage
Reference Input Current
Operating Conditions
Cathode Voltage
Cathode Current

Package Code

J.IA431AWC
p.A431AWV

EI
EI

Package Description
Molded
Molded

-65°C to + 15QoC

Connection Diagram
SO-8 Package
(Top View)

-40°C to +85°C
QOC to +70°C

265°C
0.78 W
0.81 W
37 V
-10 mA to
+150 mA
-0.5 V
10 mA
Min
Max
37 V
VREF
1.0 mA 100 mA

Order Information

Notes
1. TJMax=150°C.
2. Ratings apply to ambient temperature at 25°C. Above this temperature,
derate the TO·92 at 6.2 mW rc, and the 50-8 at 6.5 mW rc.

Device Code
J.IA431ASC

6-42

Package Code
KC

Package Description
Molded Surface Mount

J.lA431 A

Equivalent Circuit
r-________________________________~--~~--~--_4~-~~~HODE

•

R3

2.SkO

RS

Rl
3.30

6400

~

____________~~----------~~------------~--~~-~~~E

DC Test Circuits
Figure 1 Test Circuit For Vz = VREF

Figure 2 Test Circuit For Vz
IN -"'VIIv--t-- Vz

Rl

""'"' liz

--t
R2

Figure 3 Test Circuit For Off-State Current

Note
Vz

= VREF

(1 + Rl/R2) + IREF· Rl

6-43

> VREF

J1A431A

J.lA431 A
Electrical Characteristics TA = 25°C unless otherwise specified.
Symbol

Characteristic

Condition

Min

Typ

Max

Unit

2.440

2.495

2.550

V

8.0

17

Vz from VREF to 10 V

-1.4

-2.7

Vz from 10 V to 36 V

-1.0

-2.0

2.0

4.0

/JA

Rl = 10 kil, R2 = 00,
11=10 mA,
TA = Full Range, Fig. 2

0.4

1.2

iJ.A

Minimum Cathode Current
for Regulation

Vz = VREF, Fig. 1

0.4

1.0

mA

IZ(OFF)

Off-State Current

Vz = 36 V, VREF = 0 V, Fig. 3

0.3

1.0

iJ.A

rz

Dynamic Output
Impedance 2

Vz = VREF,
Frequency = 0 Hz, Fig. 1

.75

il

VREF

Reference Voltage

Vz = VREF, II = 10 mA, Fig. 1

VDEV

Deviation of Reference
Input Voltage Over
Temperature 1

Vz = VREF, II = 10 mA,
TA = full range, Fig. 1

dVREF

Ratio of the Change in
Reference Voltage to the
Change in Cathode
Voltage

Iz = 10 mA,
Fig. 2

IREF

Reference Input Current

Rl = 10 kil, R2 =
II = 10 mA, Fig. 2

oc IREF

Deviation of Reference
Input Current over
Temperature

IZ(MIN)

dVz

00,

Notes

mV

mVIV

ex: VREF can be positive or negative depending on whether the slope is
positive or negative.

1. Deviation of reference input voltage, VDEV. is defined as the maximum
variation of the reference input voltage over the full temperature range.

Example: VOEV

= 8.0

mY. VREF

8.0 mV ]10

[

= 2495

mY, T2 - T,

= 70"C,

slope is positive

6

2495 mV
ox VREF =

'7O'C

=

+ 46 ppml"C

2. The dynamic output impedance, rz, is defined as:
AVz

rz=Alz

T.

When the device is programmed with two external resistors, R1 and R2,
(see Figure 2), the dynamic output impedance of the overall circuit, rz,
is defined as:

TEMPERATURE

The average temperature coefficient of the reference input voltage,
is defined as:

VOEV
]10
[
± VREF (at 25"C)

0:

VREF,

rz = AV z '" [rz 1 +
Alz

6

T2 T,
Where:
T2 - T, = full temperature change.

6-44

~
]
R2

MA431A

Typical Performance Curves
Input Current vs Vz

Thermal Information

Input Current vs Vz

1000
TA "" 25°C

Vz =

I

VREF

500

/
/

IzMlN

I

I
100

o

V

o

/

i'..

500

1 100 1----+--+-+--+--11---;

~

~

i

"""

I

5O~--t---~---t--~----t-~

;
100

1.0

70

25

3.0

2.0

CATHODE YOLTAGE-V

85

125
CATHODE VOLTAGE-V

TEMPERATURE-OC
PC01361F

Dynamic Impedance vs
Frequency
15
TA = ZSOC

liz = """"

'~"
U

10

~

l

~

z
~

5.0

/

I
I
J

~
l.okll

SOil

tlz=10mA

./

o

1.OK

10K

1.0M

lOOK

10 M

FREQUENCY-Hz

Stability Boundary Conditions
100
90

~
I

80
70

!i
w

60

:>

so

II:
II:

u

w
Q
0

~

u

A
B
C
D

VKA = 5VATIK =:I 10mA
VItA = 10 V AT IK = 10 rnA
VKA = 15 V ATI. = 10 mA

1

(NOTE 1)

A

20

10 pF

STABLE

1\
,I 1/

STABLE

30

o

B
C

40

10

Note
1. The areas under the curves represent ccnditions that may cause the
device to oscillate. For curves B, C, and D, R2 and V+ were adjusted
to establish the initial VKA and I. ccndltlons with CL = O. V+ and CL
were then adjusted to determine the ranges of stability.

1

VKA· VREF

Ih I

TA - 25°C

100 pF

~

r; / / r-2.....: \\

1
1000 pF

0.01 "F

0.1 "F

1 "F

10 "F

LOAD CAPACITANCE

6-45

IlA431A

Typical Characteristics
Test Circuit for Curves B, C, And D Below

Test Circuit For Curve A Below

Rl

+I. 150

=

10kQ

+

+

Cl

Cl

Q

v+

VREF

R2

Typical Applications
Single Supply Comparator With
Temperature Compensated
Threshold

Shunt Regulator

v+
v+--~~-,--------~------~----Vo

Rl
VREF +----+-=i~

R2

I
I

+----OUT

1

T
I

IN -"""'----i-'iil~

I
I
lint

~

2.5 V --~-----<~-----GND

Output Control of a Three
Terminal Fixed Regulator

Series Regulator
v+--~~-----------------------,

v+-----..,
30Q

IN
~A7805

OUTt----_---Vo
Rl

R2

Vo

= VREF (1

+~)

VOMlN=VREF+SV

6-46

MA431A

Typical Applications (Cont.)
Higher Current Shunt Regulator

Yv--<,....--.....

V+ - .....

--""""1~-

Crow Bar
Vo

V+

~-~--~--~-----Vo

R1
R1

R2

R2

Over Voltage/Under Voltage
Protection Circuit

Voltage Monitor
V+ - .....- - - - - -.....-w\o---.....----,

V+---1~----t---1~---'

R1B
R1B

R1A

R1A

R2B

R2A

R2B

R2A

LOW UMIT "" VREF

(1 + ~)+
VBE
R2B
I,

HIGH UMIT "" VREF ~

VREF ( 1 +

R1B)
R2B

HIGH UMIT ~ VREF ( 1 +

R1A)
R2A

LOW UMIT

Fi1A)

+ RiA

It:

LED ON WHEN

~~~ 

r I - .-/

-4.0

o

~

-20

- 12V

=5.0V_

= 40mA
= 25"C

Q~

a" ~~ "-

"8~.~~
.0"1 i""::
t--..

> 0.6
w
~
w

,.

UI

I::

0

:J

-'

!zW

~

0.7

0:
0:

0.5

--

CUIII/£IVT

20

so

~

0.4

~

~

'0.3
15

25

35

-so

45

::; -O.11-+....,I-+-t-+--t-t-+....,---i

40

-20

o

100

-0·:':5-:.0-'----:5.':-0--'-,-:'5~-'---:2:':5-.L--:3':-5--'-45:'.

140

INPUT/OUTPUT VOLTAGE OIFFERENTlAl-V

Output Impedance vs
Frequency

Line Transient Response

0.2

6.0

.0

4.0

f-Vo
f-v,

INPUT VOLTAGE

I

0.1

-t--0.1

-

-

...I

v, = 12 V
= 5.0 V

I---TA = 25"C

= 1.0 mA TO IL = 50 mA

5.0

15

25

CL

!
I;

-2.0 >

..
I;

= 1.0 ~F

,/

I!::::> 0.'

~

v, = 12V
f----vo = 5.0 V
1.0mA
'
L == 25°C
I--TA

c."

50mA

w

0

'-'

25·C

'L

1.0

~

OQ

.i!!

"~

~U~OLTAGE r - f-

l"-

Rsc=OQ

'L

~
z

>
I
w

-0.2 I---Vo

-0.3
-5.0

01

/

5.0 V
12V

Roc
_TA

2.0

I

r-.....

o

C!

-

W
Z

JUNcnON TEMPERATURE-DC

Load Regulation vs
Input/Output Voltage Differential

~
~
0:

=1.0mA

Rsc=OQ

5.0

~

IL

0

TIME-~s

~

= 5.0 V

1--+....,f-+--+-+--+-t-+-t--;

!B0:

i"

lisc~,o" t-~ I---

0.•

~

i'-.. r--

:::>

-30

Vo

I-+-+-t-+-+-Hlisc = Oil TAo = 2S"C
0.21-+""'I-+-t-+--t-,AV = 3.0V -

ot~

>

~

1'--

Line Regulation vs
Input/Output Voltage Differential

0

4.0

Rsc=OQ

35

0.01
100

-6.0

-4.0
-5.0

45

5.0

15

25

35

45

10 K

1K

100K

1 M

FREQUENCY-Hz

INPUT/OUTPUT VOLTAGE DlFFERENTIAL-V

Typical Performance Curves for fJ.A723
Maximum Load Current vs
Input/Output Voltage Differential
200

~Jl
Jw l RTH::::< 15O"C/W
PSTANDBV

1SO

= 60 rnA

(NO HEAT SINK)

r120

.
~

g

80

40

o

TA

~

10

~r-"""'~·C
...... ?4=!.

t---

-

'~ :::...
.......

... -0.15

~

I

~

:l

!BII:
Q

g

40

INPUT/OUTPUT VOLTAGE OIFFERENTIAL-V

50

o

20

60

OUTPUT CURRENT-mA

6-59

so

= ~ ...~ l - I-- r-

~

r~~·C
r--..~~'7;->

-0.15

-0.25

100

I
I

~·C

t- v,Vo = 5.0 V
= 12V

l40

7,

I'

-0.1

-0.2

Vo = 5.0 V
=12 V
Rsc=OQ

t"" ~

-0.05

I--V,
-0.2

30

~

g

"- ...... r-.....
20

I
I
IIIII!!~

7~ = '~.C

-0.1

= 125"C

"'4..
o

"

-0.05

S
I\, TA = 2SoC

\

~ I;::::-

~

\

:::>

0
0

0.05

-

\

0:
0:

Load Regulation Characteristics
With Current-Limiting

0.05

1

i

Load Regulation Characteristics
Without Current-Limiting

o

Rsc=10Q

5.0

10

15

20

OUTPUT CURRENT-mA

25

30

1lA723

Typical Performance Curves for 1lA723
Load Regulation Characteristics
With Current-Limiting
0.1

....... ~

i

f-

-~\
..\ -';,
•

~

~n t-~

-Q.4

o

20

0.0

=

Ico

S

~

\

~... -0.3

1.0

"'\

"'\

~

~

,,~

~
;-0.2

5.Q

~ o.a

~~

~ -0.1

1.2

Vo
VREF, _
I'L =OmA

viJov I-V, = 12V
Rsc =-102

Standby Current Drain vs
Input Voltage

Current-Limiting Characteristics

~

Q.6

~

t- -

.. r-~

,;'1-- I-• I-- I--

II r-II

~'-~

o
o

20

I

81~

"n

t- Vo=5.0V~R!: ~~~

Q.2

100

80
80
40
OUTPUT CURRENT- mA

3.0

I--

ell-- I--

u

m

/

= -SSoC

TA'" 25°C

~c

'"

1.0

o
o

100

80

:..--

./ ,.....

~

I

80

40

2.0

Q

'"

TA

./'

:::>

w Q.4

!.

..~
..

10

20

30

40

50

INPUT VOLTAGE-Y

OUTPUT CURRENT-mA

Typical Performance Curves for 1lA723C
Maximum Load Current vs
Input/Output Voltage Differential

Load Regulation Characteristics
Without Current-Limiting

Current-Limiting Characteristics
1.2

h 1-

'TJuL.', ....

Ant= 1WC/W

~::~E-

180

t:r

(NOHEATSIfjK)

\ 1\

-

~

...........
r-..;;

1\
.\
\i\.
TA=7O"'C

o

10

X~
20

30

TA,

.....

liZ'

o.c

T.~2S·c- _

8

r-...~
.......

,;'

,;'

,;'r- I-

" I-- t" " de~ tl
t-

" "

r--.. T.-25·C
IT

o

---

f - vo=5.QV

-

'-- v, = 12V

V, = 12Y

-0.2
40

50

f-t sc

o

I1

Yo

0

20

o
40

80

100

80

-lAse

o

= 5.0 V

i 10 12

20

40

80

100

80

OUTPUT CURRENT-mA

OUTPUT CURRENT-mA

INPUT/OUTPUT VOLTAGE DlFFERENTIAL-V

POQII570F

Maximum Load Current vs
Input/Output Voltage Differential

~J.l)I28"b rAnt - I1t"C/W
180

PSTANDBY

n

= 60 mW

DlPPilCKAGE

Load Regulation Characteristics With
Current-Limiting

5.Q

o. 1
V,

.... ~

\

........

I'

...........

\

40

\ " ~~...,.
r>]"'{...
f- ·i~c

o
o

10

20

30

1

I I
I I

T.

~

I"40

IM'UT/OUTPUT VOLTAGE DlFFERENTIAL-V

-0.2
50

o

o.J -

~
2S·C f;::
~~

I

~~ t"<;

I I
I I
10

20

OUTPUT CURRENT-rnA

6-60

'L=OmA-

= 12V

R"F -1'Oll -

l-

30

l v.~

Vo

Vo=5.0~_

r-

(NOHEAT_)

Standby Current Drain vs
Input Voltage

i~

0.0

!i

2.0

.,~

TA

=25°C

~ ;;..:

~V

A=~

TA = 70·C

-

f-

1.0

o
o

10

20

30

INPUT YOlTAGE-V

40

50

IlA723

Typical Applications
Figure 1 Basic Low Voltage Regulator
(Vo = 2.0 V to 7.0 V)

Figure 2 Basic High Voltage Regulator
(Vo = 7.0 V to 37 V)
V,

V,

V+
V+

Vc

Vc
VAEF

OUT

OUT
VAEF

Rsc

R3

J.'A723

CL I-~--,\N"v""__ ~~~ULATED

R1

CSI-----4

CR.F

r

R3

C1
100 pF

C1
100pF

R2

Typical Performance
Regulated Output Voltage
Line Regulation (AV 1= 3.0 V)
Load Regulation (AIL = 50 mAl

R1

1NV

NJ.

R2

Typical Performance
Regulated Output Voltage
Line Regulation (AVI = 3.0 V)
Load Regulation (AIL = 50 mAl

+5.0 V
0.5 mV
1.5 mV

+15 V
1.5 mV
4.5 mV

R, R2
A3 = - - for minimum temperature drift.
R, + R2

R,R2

R3 = R1 + R2 for minimum temperature drift.

R3 may be eliminated for minimum component count.

Figure 3 Negative Voltage Regulator (Note 1)
V,

Figure 4 Positive Voltage Regulator (External NPN
Pass Transistor)
V,

,...---f---I

RS
2.0kQ

VR.F
Vz
JiA723

Q1
2N4898

CL

Rsc

R4
3.0 kQ

R3
3.0kQ

1----j.--1r

CS

R1

V-

REGULATED
OUT

C1
100pF

R1

+-........

L-_ _....._--j_ _ _ _ _ _ _

REGULATED

R2

OUT

Typical Performance
Regulated Output Voltage
Line Regulation (AV1 = 3.0 V)
Load Regulation (AIL = 100 mAl

Typical Performance
Regulated Output voltage
Line Regulation (AVI = 3.0 V)
Load Regulation (AIL = 1.0 A)

-15 V
1 mV
2 mV

Note
1. For metal can applications where Vz is required, an external 6.2 V
Zener diode should be connected in series with Va.

6-61

+15 V
1.5 mV
15 mV

JlA723

Typical Applications (Cont.)
Figure 5

Positive Voltage Regulator (External PNP
Pass Transistor)

Figure 6

Foldback Current-Limiting
V,

V,

v+
R3
60Q

V+

Vc

Rse
30 Q

OUT

VREF

Q1
2N4898

Ve

REGULATED
OUT

R3

2.7kQ
VREF

OUT

,.A723

Rt

CL
R4
5.6 kQ

IJ.A723
R1

CL

Rse

CS

R2

INV 1--4----4-.... ~~~ULATED

N.I.

R2

-=-

Typical Performance
Regulated Output Voltage
Line Regulation (~VI = 3.0 V)
Load Regulation (~IL = 10 mAl
Short Circuit Current

-=-

Typical Performance
Regulated Output Voltage
Line Regulation (.::~.vl = 3.0 V)
Load Regulation (~IL = 1.0 A)
Figure 7

+5.0 V
0.5 mV
5.0 mV

Figure 8

Remote Shutdown Regulator with CurrentLimiting (Note 1)

Output Voltage Adjust

Rt

V,
Pt

V+

_

Vc
Rse

VREF

OUT

""+-"",- ~~~ULATED

~""""1-WIr-.....

R2
"A723

R1

CL
CS

NJ.

R2

INV

1:--'V'.tv-Q1'l._"",,~
R'

CCSL
LDGICIN

2.0 kQ

-=-

-=-

Typical Performance
Regulated Output Voltage
Line Regulation (~VI = 3.0 V)
Load Regulation (~IL = 50 mAl

+5.0 V
0.5 mV
1.5 mV

Note
1. Current limit transistor may be used for shutdown if current limiting is
not required. Add diode if vo> to v.

6·62

~ON'INVERTING

+5.0 V
0.5 mV
1.0 mV
20 mA

JiA78G • JiA79G
4-Terminal Adjustable
Voltage Regulators

FAIRCHILD
A Schlumberger Company

Linear Division Voltage Regulators

Description

Connection Diagram
4-Lead TO-202 Package
(Top View)

The /lA78G and /lA79G are 4-terminal adjustable voltage
regulators. They are designed to deliver continuous load
currents of up to 1.0 A with a maximum input voltage of
+40 V for the positive regulator /lA78G and -40 V for the
negative regulator /lA79G. Output current capability can be
increased to greater than 1.0 A through use of one or
more external transistors. The output voltage range of the
/lA78G positive voltage regulator is +5 V to +30 V and
the output voltage range of the negative /lA79G is -30 V
to -2.2 V. For systems requiring both a positive and negative, the /lA78G and /1A79G are excellent for use as a
dual tracking regulator with appropriate external circuitry.
These 4-terminal voltage regulators are constructed using
the Fairchild Planar process.

•
•
•
•
•
•

IN

2

1==:

Heat sink tabs connected to common through device substrate.

Order Information
Device Code

Package Code

/1A78GU1C

Package Description

8Z

Power Watt

Connection Diagram
4-Lead TO-202 Package
(Top View)

~r-

0

O°C to 150°C
265°C
Internally Limited

IN

3

IN
OUT

:;:=;=
CO NT

2

-

COMM
1

Heat sink tabs connected to input through device substrate. Not
recommended for direct electrical connection.

+40 V
-40 V

Order Information

Control Lead Voltage
/lA78G
/lA79G

COMM

COMM

Absolute Maximum Ratings

/lA78G
/1A79G

OUT

3-

0

Output Current In Excess Of 1 A
/lA78G Positive Output +5 To +30 V
/lA79G Negative Output -30 To -2.2 V
Internal Thermal Overload Protection
Internal Short Circuit Protection
Output Transistor Safe-Area Protection

Storage Temperature Range
Operating Junction
Temperature Range
Lead Temperature (soldering, 10 s)
Power Dissipation
Input Voltage

CO NT

-~

o V-10 V
(Vo-20 V) 

•. 5

;!:

-....

...

200

-25

0

25

50

Load Transient Response

~

110=

I

~

!:
III

-!.."..:.!1ItA

~

-

2

.

1

• w!Z
i

LOAD CURRENT

I

~

o

f-

- I-

OUTPUT VOLTAGE
DEVIATION

,/

100 125 150 175

JUNCTION TEMPERATURE _ °C

-1

• ••

3.

20

TIME-.l'1

4.

6

a...
-

I'

-1

-2

"
15

os

20

30

OUTPUT VOLTAGE - V

100

Q

~

.

,

•

's~~

Ripple Rejection vs Frequency

1 I
1 1

".V

iii

"T"--

~"'" -

75

85

1000

800

.~o = ~%OF Vo

-75 - 50

~ 1>

w

80
600

VI=1OV

t- ?ROPOUT CONDITIONS

•

"-

~

>

SOo

lo.~

1.•

::>

0.

- - -~ t:- r-.
-.

10 ~

,

7•

OUTPUT CURRENT - rnA

r-.

I"--.

\

75

I

;;;

3.

r-.... r-....

50 75 100 125 150 175

0.

25

--- --_IO~

25

80

-7.5

J.lA780

~

0

Ripple Rejection vs
Output Voltage

2.5

...

-25

JUNCTION TEMPERATURE _ °C

8

Dropout Voltage vs
Junction Temperature vs Frequency

!'-..",

Vo=5.0Y
10 = SOOmA

-so

i""l"'-. ......

Vo=5.0V

INPUT VOLTAGE - V

>
I

Vi = 10Y

•

V

20

"-

1.•

35

Differential Control Voltage vs
Output Current
lit

8
~

l!:Z

INPUT VOLTAGE - V

10 = SOOmA
Vo = 5.0 V

6

15

V

w

...
~

1\

::> 1.5

...u0

0.5

12

~
g

2..

u

Differential Control Voltage vs
Input Voltage
~I ,.

..

!Zw

0

~
'~ ~

,.

I

_

t~

0.5

•

~

~

~ t

'!'

/

•

~,

'-': ~

'{i

2.5

--- -

~-..

I 2.

3..

5V

IL = 20mA
TJ = WC

-

. •
~

Control Current vs
Junction Temperature

50

80

'II

••

-.

I

z

0

tw

80

..
~

40

OJ

!'i

2.

VI

= 8VT018V

Yo = 5.0Y

•••

'0 = 500 rnA
TJ =25"C

'00

1.0K

10K

.OOK

FREQUENCY - Hz
PCl1860F

6-67

J-lA78G • J.LA79G

Typical Performance Curves for J.!A79G
Line Transient Response
for MA78G

..

>

e

Peak Output Current vs
Input/Output Differential Voltage

I

20

3.0

15

2.5

z

0

..iZ
C

3()

C

10

10

5

!;

...zI

7

.

~

DEVIATION

!:j

...
...=>

..

• i

!

10 = 500 mA

Vo = s.ov
-20

o

10

12

I
II:

' ".
,~

~

...

6?K'"

~

~

TIME-~I

15

Y

•.5

/



I" I'-- !'.l"

0.5

o

...zI

~,,""

rll

0

-,.

.e

,

1.•

-

-10

0

~

2.0

a:
a: 1.5
=>

...~

OUTPUT VOLTAGE

>

..

Vo=5.0Y
TJ=WC
10

zo

"~
...=>

1.5

INPUT VOLTAGE

I

!i

Quiescent Current vs
Input Voltage

•o

30

10

15

20

25

30

3S

40

INPUT VOLTAGE - V

PC11690F

Control Current vs
Junction Temperature

Differential Control Voltage vs
Input Voltage

r--. r-.. .........

1••

>

e

0.9

.

I -2.0

0.8

1\

1.

I 0.7

...

"~
~

Z 0.8
w
a:

=> 0.5

...z
0



....

\

II:

Differential Control Voltage vs
Output Current

10

=500 mA
=25°C
100

1.0K
FREQUENCY- Hz

10K

100K

fJA 78G • fJA 79G

Typical Performance Curves for /-lA79G (Cent.)
Load Transient Response

>

>
I

E

II

z
o

~

~

"~

1

0

~

...zI

"w

"~

-5

..

VI =10 v
VO,=5'jV

0

30

40

-10

>
I

~

j!!

r- r-

1\

0

-5.0

g
...

~

!!;

V
0
10 = 500 mA

r-vl' =

JOV

20

OUTPUT VOLTAGEDEVIATION

A

g

...::>
...::>

-1

10

\

w

w

-15

1\

:;

"
g

-, o

J

z

0

co
co
::>
u

-

-

INPUT VOLTAGE

I

.

I~PU1 VO~TAGf \

OUT~UT
~OLJAGE
DEVIATION

j!!

g
~
S

Line Transient Response

20

50

I
40

60

80

100

TIME -/-IS

TIME -#-18

Test Circuits

Design Considerations

J.LA78G Test Circuit

The /lA78G and /lA79G Adjustable Voltage Regulators
have an output voltage which varies from VCONT to typically
OUT

VI

IN

Rl

CONTROL
COMM

I~

0.33 "F

COMM

R1 + R2
VI -2.0 V by Vo = VCONT - - R2

Vo

pA78G

r--

The nominal reference in the /lA78G is 5.0 V and /lA79G
is -2.23 V. If we allow 1.0 mA to flow in the control
string to eliminate bias current effects, we can make
R2 = 5.0 kn in the IJA78G. Then, the output voltage is;
Vo = (R1 + R2) V, where R1 and R2 are in kns.

0.1
R2
10

..L
CR05650F

VO=

Example:

(RI:2R2) VOONT

VOONT

Nominal = 5.0 V

By proper wiring of the feedback resistors, load regulation
of the device can be improved significantly.

/-lA79G Test Circuit 2
OUT
IN

- VI

"A79G
CONTROL
COMM

2.0 "F

1~

-Vo

-

Both /lA78G and /lA79G regulators have thermal overload
protection from excessive power, internal short circuit protection which limits each circuit's maximum current, and
output transistor safe-area protection for reducing the output current as the voltage across each pass transistor is
increased.

Rl

I .•
R2

10

COMM

..L

Vo = (

If R2 = 5.0 kn and R1 = 10 kn then
Vo = 15 V nominal, for the /lA78G
R2 = 2.2 kn and R1 = 12.8 kn then
Vo = -15.2 nominal, for the /lA79G

RI:2 R2) VeoNT

Nominal = -2.23 V
Recommended R2 current "" 1.0 rnA
:. R2 = 5.0 k.l1 (1lA78G)
R2 = 2.2 k.l1 (1lA79G)
VOONT

6-69

•

fJ.A78G • fJ.A79G

Typical Applications For p.A78G (Note 1)

Although the internal power dissipation is limited, the junction temperature must be kept below the maximum specified temperature in order to meet data sheet specifications. To calculate the maximum junction temperature or
heat sink required, the following thermal resistance values
should be used:
Max
Typ
Max
Typ

°C/W

°C/W

°C/W

Bypassing of the input and output (0.33 pF and 0.1 pF,
respectively) is necessary.

Basic Positive Regulator
iJA78G

OUT

°C/W

 5.0 A) (Note 2)

V,- 2.0
0.125 IN. LEAD LENGTH
FROM PC BOARD.
__-:-:WITH 72"'C/W.1'EAT SINK

~

I\.

I

0.4 IN. LEAD LENGTH
FROM PC BOARD.

0.02
r

0.01

25

50

75

'R
rEr

100

II:

f=
r-

125

::>

~
150

j:;
::>

o.

8.0

~1nJ.-

-

'0_ 7OtnA.

r- I-r- r- ~40mA
rI-1.5
r--....I.

'0== 1.0 mA

i-=

"'""

1.0

l. I,5.0.!.V
r-Yo::
J
-1 25
6.0

~AJL05I_

I 1

>

::>
0

AMBIENT TEMPERATURE-"C

Note
Other

~
w

.....

~Ib.

~ 0.05
w

j

......
IS

0.125 IN. LEAD LENGTH
FROM PC BOARD.
FREE AIR

r- f--

Dropout Characteristics

2.5

I

5.0
~

Dropout Voltage vs
Junction Temperature

10=1.0mA-~

I

w

"~
0

>

~

5

~~

4.0

~

"-' 10 = 100 mA

2.0

lo=40mA

0.5

1!:

DROPOUTS CONDmON$

o
o

A~o = ;""0%1 Of'
25

yo

50

I

I
75

100

JUNCTION TEMPERATURE-"C

IlA 78LOO Series devices have similar curves.

6-77

125

2.0

4.0

6.0

INPUT VOLTAGE-V

8.0

10

JlA78LOO Series

Typical Performance Curves (Cont.)
Quiescent Current vs
Input Voltage

4.2

7.0
i-~O= 500 V
Il =40mA
6.0 i-TJ =:we

4.0
E

I--- l- f-"

>-

zw

()

!fl

3.0

'--.....",-

r--... -.....

::>

()

!Zw

3.4

a~

3.2

2.8
15

10

20

25

30

1'0

o

i 40 r
25

20

~~L~5

INPUT VOLTAGE

10

200

o i:!
>

OUTPUT VOLTAGE
DEVIATION

g

.....

i

I I I I VI I

::>

>-

6-100
-200

>
I
~

i!i

Q

w 100

r

o

2.0

I I
4.0

I

I 11-

6.0

8,0

100

125

o

10

.......

8.0VT018V
5.0 V
100mA

25°C
100

1.0 K

10K

100K

FREQUENCY-Hz

>

3.0

Ii

2.0

~

1.0

~
~

i!i

~~78Js

1
LOAD CURRENT

g

200
100

r-r-

_ OUTPUT VOLTAGE
DEVIATION

r

~

0-1.0

10 - 100 rnA (RESISTIVE LOAD)

r- IVOj 5

TJ

75

50

4.0

1

300

0

"~

I-Y'Vo
1-'0

-

Load Transient Response

Line Transient Response
400

20

AMBIENT TEMPERATURE_oC

INPUT VOLTAGE-V

Ii
ill

\

3.0 ,--Vo= 5.0 V

-

40

'\.

VI = 10V

1
5.0

I
z

.......

()

I

'E

60

a: 3.6
a:

6
2.0

80

!Z
w

l-

4.0

3.8

I

--

5.0

a:
a:

()

J7~~

J78LL

-..... ........

C

E

::>

100

}'A78L05 _

c

~
w

Ripple Rejection vs
Frequency

Quiescent Current vs
Temperature

--

10

i-V' = 10V

Yo = 5.0 V

-2.0
12

o

10

20

l1ME-I'S

30

40

50

80

TIME-.us

Design Considerations
The MA 78L series regulators have thermal overload protection from excessive power, internal short-circuit protection
which limits each circuit's maximum current, and output
transistor safe-area protection for reducing the output current as the voltage across each pass transistor is increased.

Package
TO-92

160

160

Thermal Considerations
The TO-92 molded package manufactured by Fairchild is
capable of unusually high power dissipation due to the
lead frame design. However, its thermal capabilities are
generally overlooked because of a lack of understanding
of the thermal paths from the semiconductor junction to
ambient temperature. While thermal resistance is normally
specified for the device mounted 1 cm above an infinite
heat sink, very little has been mentioned of the options
available to improve on the conservatively rated thermal
capability.

Although the internal power dissipation is limited, the junction temperature must be kept below the maximum specified temperature (125°C) in order to meet data sheet
specifications. To calculate the maximum junction temperature or heat sink required, the following thermal resistance
values should be used:

6-78

JJ.A 78LOO Series

An expl~lfiation of the thermal paths of the TO-92 will allow the designer to determine the thermal stress he is
applying in any given application.

ed case. The heat sink effectively replaces the eCA
(Figure 2) and the new thermal resistance, e' JA, equals
145°C/W (assuming 0.125 inch lead length).

The TO-92 Package
The TO-92 package thermal paths are complex. In addition
to the path through the molding compound to ambient
temperature, there is another path through the leads, in
parallel with the case path, to ambient temperature, as
shown in Figure 1.

The net change of 15°C/W increases the allowable power
diSSipation to 0.86 W with a minimal inserted cost. A still
further decrease in JA could be achieved by using a heat
sink rated at 46°C/W, such as the Staver FS-7A. Also, if •
the case sinking does not provide an adequate reduction
•
in total eJA, the other external thermal resistance, eLA,
may be reduced by shortening the lead length from package base to mounting medium. However, one point must
be kept in mind. The lead thermal path includes a thermal
resistance, eSA, from the leads at the mounting point to
ambient, that is, the mounting medium. eLA is then equal
to e LS + eSA. The new model is shown in Figure 2.

e

The total thermal resistance in this model is then:
(1 )

Where:
eJc = thermal resistance of the case between the
regulator die and a point on the case directly
above the die location.
= thermal resistance between the case and air at
ambient temperature.
= thermal resistance from regulator die through
the input lead to a point 1/16 inch below the
regulator case.
= total thermal resistance of the input/output
ground leads to ambient temperature.
= junction to ambient thermal resistance.

In the case of a socket, eSA could be as high as
270°C/W, thus causing a net increase in (JJA and a consequent decrease in the maximum dissipation capability.
Shortening the lead length may return the net (JJA to the
original value, but lead sinking would not be accomplished.
In those cases where the regulator is inserted into a copper clad printed circuit board, it is advantageous to have a
maximum area of copper at the entry points of the leads.
While it would be desirable to rigorously define the effect
of PC board copper, the real world variables are too great
to allow anything more than a few general observations.

Figure 1 TO-92 Thermal Equivalent Circuit
TJ

The best analogy for PC board copper is to compare it
with parallel resistors. Beyond some pOint, additional resistors are not significantly effective; beyond some point, additional copper area is not effective.

t

Pe(WATTS)

Figure 2 TO-92 Thermal Equivalent Circuit
(Lead at Other Than Ambient Temperature)

HCA

TA

'-----*---1:111-----1
Methods of Heat Sinking
With two external thermal resistances in each leg of a
parallel network available to the circuit designer as variables, he can choose the method of heat sinking most
applicable to his particular situation. To demonstrate, consider the effect of placing a small 72°C/W flag type heat
sink, such as the Staver F1-7D-2, on the /lA78LXX mold-

tPE(WATTS)

TA

L...---~o-----fllll----"""

6-79

JLA78LOO Series

High Dissipation Applications

As an example, consider a 15 V regulator with a supply
voltage of 30 ± 5.0 V, required to supply a maximum load
current of 30 mAo IQ is 4.3 mA, and minimum load current
is to be 10 mAo
R1 =

25-15-28
-="240.n
30 + 4.3
34.3

(6)

VI = 35 - (30 + 4.3) 0.24 = 35 - 8.2 = 26.8 V
R1
240 Q
V,-"",,_ _

---

PD Max = (26.8 -15) 30 + 26.8 (4.3)
= 354 + 115
= 470 mW, which permit operation up to 70 0 e
in most applications.

Vo

~

C1

C2

0.33 "F

0.1 J.LF

It

10 _ 30 mA

RL

Line regulation of this circuit is typically 110 mV for an
input range of 25 - 35 V at a constant load current;
i.e. 11 mV IV.

CROO181F

Load regulation = constant VI load regulation
(7)
(typically 10 mV, 10 - 30 mA III
+ (11 mVIV) x 0.24 x 20 mA
(typically 53 mV)
= 63 mV for a load current change of
20 mA at a constant VI of 30 V.

When it is necessary to operate a !lA78LOO regulator with
a large input! output differential voltage, the addition of series resistor R1 will extend the output current range of the
device by sharing the total power dissipation between R1
and the regulator.
VI Min-VO-2.0 V

R1 = ....:..::.:.:::.:..---'=---IL Max + IQ

(3)

Typical Applications

where:

IN---r'-l
C1
0.33 fJ.F

IQ is the regulator quiescent current.

(NOTE 2)

~_---OUT

C2
0.1 J.LF
' - - - - - -..... (NOTE 2)

Regulator power dissipation at maximum input voltage and
maximum load current is now
(4)

Notes
1. To specify an output voltage. substitute voltage value for "00".
2. Bypass capacitors are recommended for optimum stability and transient

where:

response and should be located as close as possible to the regulator.

The presence of R1 will affect load regulation according to
the equation:
Load regulation (at constant VI)
= load regulation (at constant VI)
+ line regulation (mV per V)
x (RI) x (.:lILl.

(5)

6-80

JlA78MG • JlA79MG

FAIRCHILD

4-Terminal Adjustable
Voltage Regulators

A Schlumberger Company

Linear Division Voltage Regulators

Connection Diagram
1lA78MG Power Watt
(Top View)

Description
The 1lA78MG and 1lA79MG are 4-terminal adjustable voltage regulators. They are designed to deliver continuous
load currents of up to SOO mA with a maximum input voltage of +40 V for the positive regulator 1lA78MG and
-40 V for the negative regulator 1lA79MG. Output current
capability can be increased to greater than 10 A through
use of one or more external transistors. The output voltage range of the 1lA78MG positive voltage regulator is s.o
V to 30 V and the output voltage range of the negative
1lA79MG is -30 to -2.2 V. For systems requiring both a
positive and negative, the 1lA78MG and 1lA79MG are excellent for use as a dual tracking regulator. These 4-terminal voltage regulators are constructed using the Fairchild
Planar process.

CONT

o

4t:::::;:;:==
OUT

COUM

Heat sink tabs connected to input through device substrate. Not
recommended for direct electrical connection.

Order Information
•
•
•
•
•
•

Output Current In Excess Of 0.5 A
1lA78MG Positive Output Voltage +5.0 To +30 V
1lA79MG Negative Output Voltage -30 V To -2.2 V
Internal Thermal Overload Protection
Internal Short Circuit Current Protection
Output Transistor Safe-Area Protection

Device Code
1lA78MGU1C

Package Code
8Z

Connection Diagram
pA79MG Power Watt
(Top View)

Absolute Maximum Ratings
Storage Temperature Range
Operating Junction Temperature
Range
Lead Temperature (soldering, 10 s)
Internal Power Dissipation
Input Voltage
1lA78MGC
1lA79MGC
Control Lead Voltage
1lA78MGC
1lA79MGC

Package Description
Molded Power Pack

IN

-6S0C to + 1S0°C

0

O°C to 1S0°C
26SoC
Internally Limited

OUT
CONT
COUU

IN
CDOO1fJ1F

+40 V
-40 V

Heat sink tabs connected to input through device substrate. Not
recommended for direct electricel connection.

o V<.V+ <'Vo
Vcr <'-V<'O V

Order Information
Device Code
1lA79MGU1C

6-81

Package Code
8Z

Package Description
Molded Power Pack

~A78MG

Equivalent Circuit
r----.--------------~------------~~------~~--~------~----IN

R11
O.6kO
R5

~~~--------+_--~~--------4-------4-----0UT

3.3kO

~------~-------------------------------CONTROL

R6
2.7 kO
01
R1

1 kO

R7

500 0

~--~~--~--~~--~~--~------~~--~--~~-------------------COMMON

~79MG

Equivalent Circuit (Note 1)

r---1-----------~~------~--------_1------------~--------------------_1--------~~----------COMMON

R2

Uk

l-------------------~--------_+-----------CONTROL

R23
4k

OUT

R22
0.1 k

R13

0.2 k

~--~--~------~--~--~--~--------------_4--_4--_4

Note
1. Resistor values in

n

unless otherwise noted.

6-82

________________4_--------4_----IN

J.LA78MG • J.LA79MG

J.lA78MGC
Electrical Characteristics O°C <: TA <: 125°C for J.lA78MGC, VI = 10 V, 10 = 350 rnA, CI = 0.33 J.lF, Co = 0.1 J.lF,
Test Circuit 1, unless otherwise specified.
Symbol

Condition 1,3

Characteristic

Min

Typ

Max

Unit

VIR

Input Voltage Range

TJ = 25°C

7.5

40

V

VOR

Output Voltage Range

VI =Vo + 5.0 V

5.0

30

V

Vo

Output Voltage Tolerance

Vo+3.0 V- ..........

V

!i1M

'=".c

2

00

3.0

I

.-

a:

5

Control Current vs
Temperature

Quiescent Current vs
Input Voltage

PQI1501F

Differential Control Voltage vs
Output Current

Differential Control Voltage vs
Input Voltage

••

~

10 = SOD rnA
VO=i.DY

'0

I

/

I

I

/
,/

TJ "12I"C

o.

10

15

/

•
r-.... ..........

I

-a.•

i!I!I

-5.0

e•
1-'·'·

10

..........

-1.

..........

21

-20.0
200

20

1;, ..

'~

\

\

...

400

I\.
TJ-25"C

100

1000

5
• 0

~ t- r-

5

~

Ripple Rejection vs
Frequency

21

75

~

1Of-1+IH-+-++tI-+-++++-++lI+F>.d

a:

~f-I+IH-+-++tI-+-++++-++lH+-1

~

~ko~

I"'- f::: l"'t- ~

50

20

21

30

VI
Yo

= 10 V
= 5.GY

3
LOAO CURRENT

I

i

II:

1

l- I--

OUTPUT VOLTAGE

DEVIATION

l/
20

:~ ==1:': yTO 18 V

I\..

1

10"" 500 mA

DROPOUT CONDITIONS
!JoVo= 5'fo OF Yo

•

15

Load Transient Response

!Il 101-1-:::!::±t;J::::+-f-j.~:I-++tt-+t1*-f
'0"" 500 InA.

IO~ri ....

o

,.

OUTPUT YOLTAOe - Y

mA

•
ot-""'" r-rt.....
r- l"'- I"'I"'-

'\

10

OUTPUT CUARENT -

Dropout Voltage vs
Junction Temperature

~
lo-200.mA

..........

-17.5

20

!-....

I

~::::

INPUT VOLTAGE - V

......

85

VI =10V
Vo=5.0V

I

/

Ripple Rejection vs
Output Voltage

TJ'" 25"C
100

125

JUNCTION TEMPERATURE _·C

150

·,0

-2
100

10 k

1k
FREQUENCY -

100 Ie,

PC01551F

6-85

o

••

20

~

30
TIME -

Hz

50

10

pi
PC01581F

MA78MG • MA79MG

Typical Performance Curves For 1lA78MG (Cant.)
Line Transient Response
>

E

I

.

I

I

I
I

INPUT VOLTAGE

30

zo

I
!
I

z

1

>

0

~ zo

...~

10

"
~
>

."
0"

- - I-

OUTPUT VOLTAGE

DEVIATION

I

+-r ,

~

i!!

II-

...I

1

-'o=50~ml

-10

-zo

-rOj"!",
o

10
12

10
TIME -~.

P001571F

Typical Performance Curves For 1lA79MG
Peak Output Current vs
Input/Output Differential Voltage

Quiescent Current vs
Input Voltage

BOO

-1.5

700

c

BOO

10"" -2.0 A

~

......

I

I-

0:

u

300

"
S
0 '00

ill

'§
1\

\

fA -o.s

15

20

25

"
30

-.0
~

I
I

r-.. ........ ........

-

B

J

-8.0

'\

O.4

10

- 15

20

-25

-30

-35

-40

3

~

....... ~

r--- .....

VI =10V
Vo = -5.0 V

o
o

..... ~

' I =f"JnAJ
25

50

75

100

125

Ripple Rejection vs
Output Voltage
80

VI =10Y
Yo =LOY

.,,/

3.0

1. /
,/
'
1.V

~c,

~;.-'"

V

70

.....

aD

0

~o~

' ' ' '...

1""" ......

50

..........

0

-10

-1.

-5.0

lOUT

=-.

A

YOUT "'-5.0Y

-10

0
-15

INPUT VOLTAGE - V

-25

150

JUNCTION TEMPERATURE- °C

Differential Control Voltage vs
Output Current

II

"

~

I :...

4.0

'" " ""-

~o

I O.5 ....

ffi0:

I'

INPUT VOLTAGE-V

~

I"""'"~'C

·4.0

0.8

~

1

INPUT/OUTPUT DIFFERENTIAL - V

Differential Control Voltage vs
Input Voltage

/

I

~

\

V

./V

ffi

OOC 
I

o

/lYo"" 5% OF Jo

0.4

10001-n,-"-n,-"-n,-,,,,.,....,

'~500IhA

I-

1. 0

Ripple Rejection vs
Frequency

Load Transient Response

40

50

TIME-IAI

:+H-+-++t+-+-++It-l

10 ' 200 mA
TJ '2S·C ,

10

100

Ik

10 k

100 k

FREQUENCY - Hz
PC01661F

Typical Performance Curve For J.tA78MG and J.lA79MG
Worst Case Power Dissipation vs
Ambient Temperature

Line Transient Response

.

100
50

~

INPUT VOLTAGE

I

z

!
'"

~
§!

I

>
I

0

-5

\

vo"sr

!

LIMITS FOR C GRADE-

......

I~FINiTE ~EA~ SIN~

10

!!o 3.0
2.0

a: 1.0

!

"

10 =200 mA

z0

30
20

;: 5.0 ;;;;;; ~
~~
"'< 2QoC/W "lis ~ 700
4.0

.
." ;a
..

!j

DEVIAnON

I

. ..

-10~

OUTPUT VOLTAGE

..

~
o

;;0

i\

,...

-s

,

-15

0

0.5
0.'
0.3
0.2

-

~

y-....j.

k- ~ r--

r- 1-0 "d",L i ' ..... 1'... 1\
-~"o\"

~

I""-

8JC "" 12°CJW

80
TIME-IJS

100

0.1
25

50

75

100

125

150

AMBIENT TEMPERATURE _ °C

Design Considerations

Example:

The !LA78MG and !LA79MG variable voltage regulators
have an output voltage which varies from VCONT to
typically
VI -2.0 V by Vo = VCONT

\\

I\.~

PO(MAX} = 7.5 W

(R1 + R2)
R2

If R2 = 5.0 kQ and R1 = 10 kQ then
Vo = 15 V nominal, for the !LA78MG;
R2 = 2.2 kQ and R1 = 12.8 kQ then
Vo = -15.2 V nominal, for the !LA79MG.

By proper wiring of the feedback resistors, load regulation
of the devices can be improved significantly.

The nominal reference in the !LA78MG is 5.0 V and
IlA79MG is -2.23 V. If we allow 1.0 mA to flow in the
control string to eliminate bias current effects, we can
make R2 = 5 kQ in the !LA78MG. The output voltage is
then: Vo = (R1 + R2) Volts, where R1 and R2 are in kQs.

Both !LA78MG and j.tA79MG regulators have thermal overload protection from excessive power, internal short circuit
protection which limits each circuit's maximum current, and
output transistor safe-area protection for reducing the

6-87

1lA78MG ellA79MG

Basic Positive Regulator

output current as the voltage across each pass transistor
is increased.

OUT

Although the internal power dissipation is limited, the junction temperature must be kept below the maximum specified temperature in order to meet data sheet
specifications. To calculate the maximum junction temperature or heat sink required, the following thermal resistance
values should be used:

>V,o-_-~

0.33

~F

+Vo

IN,.A78MG

R1

CONTROL
COMMON

0.1

~F

R2

-::CROO191F

Typical
IJJC

Package

8.0

Power Watt

Typical
IJJA
12.0

70

Vo - VCONT (

75

R1 + R2)

"""Fi2

Positive 5.0 V to 30 V Adjustable Regulator

TJ Max- TA
POMax- B
B or
JC+ CA

OUT

TJ Max- TA

B

0.33

(Without a heat sink)

+Vo

~A78MG

+VI

IN
CONTROL
COMMON

~F

0.1 p.F

Skll

JA

IJCA = Bcs + BSA
Solving for TJ:
TJ = TA + Po(IJJc + BcAl or
TA + POIJJA (Without heat sink)
Where
= Junction Temperature
TJ
= Ambient Temperature
TA
= Power Dissipation
Po
IJJC = Junction-to-case thermal resistance
IJCA = Case-to-ambient thermal resistance
IJcs = Case-to-heat sink thermal resistance
IJsA = Heat sink-to-ambient thermal resistance
BJA = Junction-to-ambient thermal resistance

Positive 5.0 V to 30 V Adjustable Regulator 10> 1.5 A
Q11>1.SA_

...---""

R1

2N6124

OUT I-(0",1",)_ _
VR Max(Jl + 1)

-10

Max

If load is not ground raferenced, connect reverse biased diodes from
outputs to ground.

Output Waveform

.,

Typical Applications for MA79MG (Note 1)

~

Bypass capacitors are recommended for stable operation
of the 1lA79MG over the input voltage and output current
ranges. Output bypass capacitors will improve the transient
response of the regulator.

,,/:::"1

The bypass capacitors, (2.0 j.lF on the input, 1.0 j.lF on
the output) should be ceramic or solid tantalum which
have good high frequency characteristics. If aluminum electrolytics are used, their values should be 10 j.lF or larger.
The bypass capacitors should be mounted with the shortest leads, and if possible, directly across the regulator terminals.

OV----------

Nole
1. All resistor values in ohms.

6-89

MA78MG • MA79MG

Typical Applications for #lA79MG (Note 1) (Cont.)

Negative High Current Voltage Regulator External
Series Pass

Negative High Current Short Circuit Protected
Regulator
Rac

Q1

-Vo
Rl

In

=--.,.-+-f

-VI-~M+____

H~--+-""'--Vo
lo~

R2

Rl
1.0 IJ.F

#lA78MG Test Circuit 1
Rl =

iJVBE(OI)

V,

IN

.A7IMG

Basic Negative Regulator

-VI

2.0.F

OUT
.A7IMO
IN
CONTROL
COMMON

Rl

CONTROL

O.I.F

0.33 .F

-Vo

R2

Rl
1.0.F
R2

Rl

+ R2)

Vo= ( ~

R1

Vo

OUT

IR Max({l) -10 Max

VCONT

VCONT Nominally = 5 V

+ R2)

VO--VCONT ( ~

#lA79MG Test Circuit 2
-30 V to -2.2 V Adjustable Regulator

--

1-1~_-t--Vo

IN

-VI

CONTROL
COMM

It
R1

+ R2)

VCONT

VCONT Nominally = -2.23 V

Recommended R2 current'" 1 rnA
:.R2 = 5 kn (pA78MG)
R2 - 2.2 kn (pA79MG)

6-90

-

*1
R2

10

1Vo= ( ~

Rl

.A78MG

F

Nate
1. All resistor values in ohms.

-Vo

OUT

JlA78MOO Series
3-Terminal Positive
Voltage Regulators

F=AIRCHILD
A Schlumberger Company

Linear Division Voltage Regulators

Description
The pA78MOO series of 3-terminal medium current positive
voltage regulators is constructed using the Fairchild Planar
Epitaxial process. These regulators employ internal currentlimiting, thermal shutdown and safe-area compensation
making them essentially indestructible. If adequate heat
sinking is provided, they can deliver in excess of 0.5 A
output current. They are intended as fixed voltage regulators in a wide range of applications including local (oncard) regulation for elimination of noise and distribution
problems associated with single-point regulation. In addition
to use as fixed voltage regulators, these devices can be
used with external components to obtain adjustable output
voltages and currents.

Connection Diagram
TO-39 Package
(Top View)

•
•
•
•
•
•
•

Order Information
Device Code Package Code
pA78M05HM
FC
pA78M06HM
FC
pA78M08HM
FC
pA78M12HM
FC
pA78M15HM
FC
pA78M24HM
FC
pA78M05HC
FC
pA78M06HC
FC
pA78M08HC
FC
pA78M12HC
FC
pA78M15HC
FC
pA78M24HC
FC

COMMON
OUT

Lead 3 connected to case.

Output Current In Excess Of 0.5 A
No External Components
Internal Thermal Overload Protection
Internal Short Circuit Current-Limiting
Output Transistor Safe-Area Compensation
Available In JEDEC TO-220 And TO-39 Packages
Output Voltages Of 5 V. 6 V. 8 V. 12 V. 15 V. And
24 V
• Available In Extended Temperature Range
Absolute Maximum Ratings
Storage Temperature Range
TO-39 Metal Can
TO-220 Package
Operating Junction Temperature Range
Extended (pA78MOOM)
Commercial (pA78MOOC)
Lead Temperature
TO-39 Metal Can (soldering, 60 s)
TO-220 Package (soldering, 60 s)
Power Dissipation
Input Voltage
5.0 V to 15 V
24 V

-65'C to + 175'C
-65'C to + 150'C
-55'C to + 150'C
O'C to +150'C

Package Description
Metal
Metal
Metal
Metal
Metal
Metal
Metal
Metal
Metal
Metal
Metal
Metal

Connection Diagram
TO-220 Package
(Top View)

300'C
265'C
Internally Limited
35 V
40 V

"""""'F
Lead 3 connected to case.

Order Information
Device Code Package Code
pA78M05UC
GH
pA78M06UC
GH
pA78M08UC
GH
pA78M12UC
GH
pA78M15UC
GH
pA78M24UC
GH

6-91

Package Description
Molded Power Pack
Molded Power Pack
Molded Power Pack
Molded Power Pack
Molded Power Pack
Molded Power Pack

MA78MOO Series

Equivalent Circuit
IN

Q12

Rn
0.6 Q

R5
3.3kQ

OUT

A6
2.7 kQ
D1

R7

500Q

'--_~

___

~

_ _ _-+_ _ _

1lA78M05
Electrical Characteristics -55°C:;;;; TA:;;;; 125°C, VI
otherwise specified.

VR

LINE

VR LOAD

Output Voltage

TJ = 25°C

Line Regulation

TJ = 25°C

Load Regulation

TJ = 25°C

~

_ _ _ COMMON

V, 10 = 350 rnA, CI = 0.33 /IF, Co
Min

= 0.1

/IF, unless

Typ

Max

5.0

5.2

V

7.0 V"';;;; V, ..,;;;; 25 V,
10 = 200 rnA

3.0

50

rnV

8.0 V"';;;;V,"';;;;20 V,
10= 200 rnA

1.0

25

5.0 rnA"';;;; 10"';;;;500 rnA

20

50

5.0 rnA"';;;; 10"';;;;200 rnA

10

25

4.8

Vo

Output Voltage

8.0 V "';;;;V,"';;;;20 V,
5.0 rnA"';;;; 10 ..,;;;; 350 rnA

10

Quiescent Current

TJ = 25°C

Ala

Quiescent
Current Change

I with
I with

___

Condition 1

Characteristic

Symbol
Vo

= 10

~_-6--_~

4.7
4.5

V

7.0

rnA
rnA

8.0 V"';;;; VI ..,;;;; 25 V, 10 = 200 rnA

0.8

load

5.0 rnA"';;;; 10 ..,;;;; 350 rnA

0.5

Noise

T A = 25°C, 10Hz"';;;; f

..,;;;; 100 kHz

AV,/AVo

Ripple Rejection

f = 2400 Hz, 10 = 125 rnA, TJ = 25°C

Voo

Dropout Voltage

TA = 25°C

8.0
62

6-92

40

80
2.0

rnV

5.3

line

No

Unit

MVNo
dB

2.5

V

J,LA78MOO Series

~78M05 (Cont.)
Electrical Characteristics -55°C";; T A ";; 125°C, VI
otherwise specified.

Symbol

= 10

V, 10 = 350 rnA, CI = 0.33 p.F, Co = 0.1 IJ.F, unless
Condition 1

Characteristic

los

Output Short Circuit Current

TJ = 25°C, VI = 35 V

Ipk

Peak Output Current

TJ = 25°C

!:No/ AT

Average Temperature
Coefficient of Output Voltage

10= 5.0 rnA

~78M05C

Electrical Characteristics O°C";; TA ..;; 125°C, VI
otherwise specified.
Symbol

= 10

Output Voltage

TJ = 25°C

VR LINE

Line Regulation

TJ = 25°C

Load Regulation

Vo

Output Voltage

0.5

TJ = 25°C

Typ

Max

Unit

300

600

rnA

0.7

1.4

A

0.4

rnvrc/
Vo

I -55°C ";TA"; +25°C
I + 25°C ";TA"; + 125°C
V, 10 = 350 rnA, CI

= 0.33

Condltlon 1

Characteristic

Vo

VR LOAD

Min

0.3

IJ.F, Co = 0.1 IJ.F, unless
Min

Typ

Max

5.0

5.2

V

7.0 V";VI";25 V,
10=200 rnA

3.0

100

mV

8.0 V..; VI ..; 20 V,
10=200 rnA

1.0

50

5.0 rnA"; 10 ..; 500 rnA

20

100

5.0 rnA"; 10 ..; 200 rnA

10

50

4.8

7.0 V..; VI ..; 20 V,
5.0 rnA"; 10 ..; 350 rnA

4.75

TJ = 25°C

mV

5.25

V

8.0

rnA

0.8

rnA

la

Quiescent Current

Ala

Quiescent
Current Change

No

Noise

TA=25°C, 10 Hz";f";100 kHz

AVI/AVo

Ripple Rejection

f = 2400 Hz, 10 = 125 rnA, TJ = 25°C

VDO

Dropout Voltage

TA = 25°C

2.0

V

los

Output Short Circuit Current

TJ = 25°C, VI = 35 V

300

rnA

Ipk

Peak Output Current

TJ = 25°C

700

rnA

AVo/AT

Average Temperature
Coefficient of Output Voltage

10=5.0 rnA

1.0

rnvrc

I with line
I with load

4.5

Unit

8.0 V"; VI ..; 25 V, 10 = 200 rnA
5.0 rnA"; 10 ..; 350 rnA

6·93

0.5

62

40

p.V

80

dB

~78MOO

J.LA78M06
Electrical Characteristics -55°C.s;; TA .s;; 125°C, VI
otherwise specified.
Symbol

= 11

V,

10

= 350

Series

rnA, CI

= 0.33

Condition 1

Typ

Max

6.0

6.25

8.0 V ";;V,";;25 V,
10=200 mA

5.0

60

9.0 V..;; V, ..;; 20 V,
10=200 mA

1.5

30

5.0 mA";;lo";;500 mA

20

60

Characteristic

Vo

Output Voltage

TJ = 25°C

VR L'NE

Line Regulation

TJ = 25°C

IlF, Co = 0.1 IlF, unless

Min
,5.75

VR LOAD

Load Regulation

TJ = 25°C

Vo

Output Voltage

9.0 V";;V,";;21 V,
5.0 mA";;lo";;350 mA

IQ

Quiescent Current

~IQ

Quiescent
Current Change

5.0 mA";;lo";;200 mA

4.5

mV

30
6.3

V

7.0

mA

0.8

mA

5.0 mA";;lo";;350 mA

0.5

No

Noise

TA=25°C, 10 Hz";;f";;100 kHz

Ripple Rejection

f = 2400 Hz, 10 = 125 mA, TJ = 25°C

Voo

Dropout Voltage

TA=25°C

los

Output Short Circuit Current

TJ = 25°C, V,=35 V

IPk

Peak Output Current

TJ = 25°C

~Vo/~T

Average Temperature
Coefficient of Output Voltage

10=5.0 mA

J.LA78M06C
Electrical Characteristics O°C.s;; TA .s;; 125°C, VI
otherwise specified.

= 11

8.0

Vo

Output Voltage

TJ = 25°C

VR UNE

Line Regulation

TJ = 25°C

59

0.5

V,

10

= 350

rnA, CI

= 0.33

40

IlVlVo

80

dB

2.0

2.5

V

300

600

mA

0.7

1.4

A

0.4

mVrCI

0.3

Vo

I -55°C ";;TA";; + 25°C
I +25°C ";;TA";; + 125°C

Condltlon 1

Characteristic

IlF, Co = 0.1 IlF unless
Min
5.75

Typ

Max

Unit

6.0

6.25

V

8.0 V";;V,";;25 V,
10=200 mA

5.0

100

mV

9.0 V ";;V,";;20 V.
10=200 mA

1.5

50

5.0 mA";;lo";;500 mA

20

120

VR LOAD

Load Regulation

TJ = 25°C

Vo

Output Voltage

8.0 V..;; V, ..;; 21 V.
5.0 mA";;lo";;350 mA

IQ

Quiescent Current

~IQ

Quiescent
Current Change

5.0 mA";;lo";;200 mA

10
5.7
4.5

mV

60
6.3

V

8.0

mA

9.0 V ";;V,";;25 V. 10 = 200 mA

0.8

mA

5.0 mA";;lo";;350 mA

0.5

TJ = 25°C

I with line
I with load

V
mV

9.0 V..;; V, ..;; 25 V, 10 = 200 mA

TJ = 25°C

I with line
I with load

~V,/~Vo

Symbol

10
5.7

, .. Unit

6-94

MA78MOO Series

/-IA78M06C (Cont.)
Electrical Characteristics O°C ~ T A ~ 125°C, VI

= 11

V, 10 = 350 rnA, CI

= 0.33

/-IF, Co

= 0.1

/-IF unless

otherwise specified.
Symbol

Condition 1

Characteristic

No

Noise

TA = 25°C, 10Hz ~ f

~

Min

Typ

100 kHz

Unit

MV

80

dB

!lVI/!lVO

Ripple Rejection

f = 2400 Hz, 10 = 125 rnA, TJ = 25°C

VDO

Dropout Voltage

TA = 25°C

2.0

V

los

Output Short Circuit Current

TJ = 25°C, VI = 35 V

270

rnA

IPk

Peak Output Current

TJ = 25°C

700

mA

!lVo/!lT

Average Temperature
Coefficient of Output Voltage

10= 5.0 mA

0.5

mV/oC

/JA78M08
Electrical Characteristics -55°C ~ T A ~ 125°C, VI

= 14

V, 10 = 350 rnA, CI

59

Max

45

= 0.33

/-IF, Co

= 0.1

/-IF, unless

otherwise specified.
Symbol

Vo
VR

LINE

VR LOAD

Condition 1

Characteristic

Output Voltage

TJ = 25°C

Line Regulation

TJ = 25°C

Load Regulation

TJ = 25°C

Min

Typ

Max

8.0

8.3

V

10.5 V~VI~25 V,
10= 200 mA

6.0

60

mV

11 V~VI~20 V,
10=200 mA

2.0

30

7.7

5.0

mA~lo~500

mA

25

80

5.0

mA~lo~200

mA

10

40

Vo

Output Voltage

11.5 V~VI~23 V,
5.0 mA~lo~350 mA

la

Quiescent Current

TJ = 25°C

!lla

Quiescent
Current Change

No

Noise

TA = 25°C, 10Hz ~ f

!lVI/!lVO

Ripple Rejection

f = 2400 Hz, 10 = 125 mA, TJ = 25°C

VDO

Dropout Voltage

TA = 25°C

los

Output Short Circuit Current

TJ = 25°C, VI = 35 V

Ipk

Peak Output Current

TJ = 25°C

!lVo/!lT

Average Temperature
Coefficient of Output Voltage

10= 5.0 mA

I with line
I with load

11.5
5.0

7.6
4.6

V~VI~25

V, 10=200 mA

mA~lo~350

100 kHz

8.0
56

0.5

I -55°C ~ TA ~ +25°C
I +25°C ~TA ~ +125°C

6-95

mV

8.4

V

7.0

mA

0.8

mA

0.5

mA
~

Unit

40

80

MVNo
dB

2.0

2.5

V

300

600

mA

0.7

1.4

A

0.4

mV/oC

0.3

MA78MOO Series

MA78M08C
Electrical Characteristics 0°C

12V
-UmA

.......

~'2.04

.......

".0

0.1
26

50

i

,

.
"

S

......
.......

ia!

11 ...

-so

-25

0

25

50

75 100 125 150 175

-

1.0

I-- r-~J

~

i

II:
II:

-so

4.8

e-

4.7

~

.......

I, 1~~~~
i
~
L I l~

0.'

~

20
26
30
INPUT/OUTPUT VOLTAGE OIFFERENTIAL-V
U

150

10

15

-25 0

TJ =125OCI

~ ='oomA--.
_____

25

10

r-

=

~"'" f_1o;-:!mA

o

75 100 125 150 175

4.3

I!V

~

~

II

o

2.0

0

4.1

4.G

8.0

6.0

10

100 r-T-rr......,r-T"TT1r--rr-TTTTr-T-r"TTT-'

8Om:l~~
i:H-+tH-++HH-++t+-+-++++--l

i

"

M 4,'

5

= 100 mA

I !/

INPUT VOLTAGE-V

J.nl

I

e:r

Ripple Rejection vs
Frequency

Vil
I
Vo = 5.0 V
Io = 200 rnA

II

V~

"""
~ ~ r---,o

/

2.0

50

4.5

~

"'"

10 "20"",:::::-

i--

Jni

_~o.l5.oJ

4.6

G 4A

!i:w

20

V,

= a.ov TO 18 '-V+++t+-+-HtH
r

L
H'-t-Ht-+-t-H+-l
I 111 "F I 1Ii

Vo=5.0V

_\'0T :: 200
mA
25

4.0

o~~~~~~-L~-L-LLU~

10

15

20

25

30

35

INPUT VOLTAGE-V

-75 -50 -25

0

25

50

75 100 125 150 175

AMBIENT TEMPERATURE-"C

I-IA78MOO

Series devices have similar curves,

6-101

10

100

1.0 K

10 K

100 K

FREQUENCY-Hz
PC120SOF

Note
Other

fi.:~

':,,,~,

Dropout Characteristics
a.o

r-..:

f-~~~~~~~S
o ...1.1 1 i
75

~~-

1/

3.0
5.0

"'f::::.

~

~

'\

Quiescent Current vs
Temperature

::OCmA

".....

..til-

,. ...... ~

,,~""c

JUNClION TEMPERATURE-OC

Quiescent Current vs
Input Voltage

5.0

0,6

...... r--;: ~
~"'" -

-

0.5

JUNClION TEMPERATURE-OC

r+.Jo .IUIV

iG

.............

J ....

~-

I"'-- ......

.::::: ~

0

~

75

r-

15

11.88

11.80

125

100

-- --

• .0

II:

~11.96

0.8

10.4

'.5

w 1.5

0 '1 .92

75

~

- r- r- \ \

•

1.0

PC01841F

II:

"

r\1\

.

AMBIENT TEMPERATURE-"C

~i78l.

=

-10

~~

Dropout Voltage vs
Junction Temperature

-v! = ~.v'
Yo

12.12

..... ~

f\.\.~-

8JC -S.OIJC/W
"" .... ~7.5w··1

150

Output Voltage vs
Junction Temperature
12.1'

~""'9Ir~

CI.2

AMBIENT TEMPERATURE-"C

12.20

.

~

S
-10 -TJ"UOC
o

I:

"
10

10

0.0

20

>

J.
~

~1.0

~

ij

~
!i

S

I

-20

o

r--

OUTPUT VOLTAGE
DEYlA110N

0

1.0

l"-

V

0-1.0

j

2.0

'.0

e.o

4.0

-2.0
10

12

o

10

20

Design Considerations
The 1lA78MOO fixed voltage regulator series has thermaloverload protection from excessive power, internal short
circuit protection which limits the circuit's maximum current,
and output transistor safe-area compensation for reducing
the output short circuit current as the voltage across the
pass transistor is increased.
Although the. internal power dissipation is limited, the junction temperature must be kept below the maximum specified temperature (150·C for 1lA78MOO; 125·C for
1lA78MOOC) in order to meet data sheet specifications. To
calculate the maximum junction temperature or heat sink
required, the following thermal resistance values should be
used:
Max
(lJC

Typ

Package

Typ
(lJC

(lJA

Max
(lJA

TO-39
TO-220

18
3.0

25
5.0

120
60

140
40

TJ Max-TA
Po MAX = "
"
or
vJC + "CA
TJMax-TA

="

.JJA

30

40

50

80

TlME-~

TlME-II-_

(lCA

.J..ri,.,L

I

I

LOAD CURRENT

5

10 -6ODmA,
5.0 V

-vo

c--y.Vo=S.DV
=10V

Where:
TJ
= Junction Temperature
= Ambient Temperature
TA
= Power Dissipation
Po
(lJC = Junction to case thermal resistance
(lCA = Case-to-ambient thermal resistance
(lcs = Case-to-heat sink to resistance
(lSA = Heat sink-to-ambient thermal resistance
(lJA = Junction-to-ambient thermal resistance

Typical Applications
Fixed Output Regulator
IN -Wlr-t--t
0.33 p.F
(NOTE 2)

1"-_--- OUT
+

0.1 p.F
(NOTE 2)

Notes
1. To specify an output voltage, substitute voltage value for "XX".
2. Bypass capaCitors are recommended for optimum stability and transient
response and should be located as close as possible to the regulator.

(Without a heat Sink)

= (lcs + (lSA

Solving for TJ:
TJ = TA + Po«(lJC + (lCA) or
= TA + Po (lJA (Without a heat sink)

6-102

J,lA78S40
Universal Switching
Regulator Subsystem

FAIRCHILD
A Schlumberger Company

Linear Division Voltage Regulators

Description

Connection Diagram
16-Lead DIP
(Top View)

The MA78S40 is a monolithic regulator subsystem consisting of all the active building blocks necessary for switching
regulator systems. The device consists of a temperature
compensated voltage reference, a duty-cycle controllable
oscillator with an active current limit circuit, an error amplifier, high current, high voltage output switch, a power diode and an uncommitted operational amplifier. The device
can drive external NPN or PNP transistors when currents
in excess of 1.5 A or voltages in excess of 40 V are
required. The device can be used for step-down, step-up
or inverting switching regulators as well as for series pass
regulators. It features wide supply voltage range, low
standby power dissipation, high efficiency and low drift. It
is useful for any stand-alone, low part count switching system and works extremely well in battery operated systems.

16
DIODE
CATHODE

SWITCH
COLLECTOR

DIODE
ANODE

DRIVER
COLLECTOR

SWITCH
EMmER

v,

OPAMPOUT

OPAMP
SUPPLY

• Step-Up, Step-Down or Inverting Switching
Regulators
• Output Adjustable From 1.25 V to 40 V
• Peak Currents To 1.5 A Without External Transistors
• Operation From 2.5 V to 40 V Input
• Low Standby Current Drain
• 80 dB Line And Load Regulation
• High Gain, High Current, Independent OP AMP
• Pulse Width Modulation With No Double Pulsing

TIMING CAPACITOR

OPAMP +IN

GND

OPAMP -IN

COMPARATOR -IN

REFERENCE
VOLTAGE

COMPARATOR +IN
CD01400F

Order Information
Device Code

Package Code

MA78S40DM
MA78S40PV
MA78S40DC
MA78S40PC

Package Description

78
98
78
98

Ceramic DIP
Molded DIP
Ceramic DIP
Molded DIP

Block Diagram
COMPARATOR COMPARATOR
+IN -IN
nMING
GROUND CAPACITOR

r--

Ipk
SENSE

V,N

_1__ __1 ___ _

DRIVER
COLLECTOR

SWITCH
COLLECTOR

--,

I
I
I
I
I
I

I

I
I

I
I
I

1...--_--.

I

I
I~";;;';;;;~

L __
REFERENCE OP AMP
VOLTAGE
-IN

OP AMP
+IN

•

IpK SENSE

OP AMP
SUPPLY

OP AMP
OUT

6-103

--Fi-J

SWITCH
EMITTER

DIODE
ANODE

DIODE
CATHODE

MA78S40

Absolute Maximum Ratings
Storage Temperature Range
Ceramic DIP
Molded DIP
Operating Temperature Range
Extended (J,LA 78S40M)
Industrial (J,LA78S40V)
Commercial (J,LA78S40C)
Lead Temperature
Ceramic DIP (soldering, 60 s)
Molded DIP (soldering, 10 s)
Internal Power Dissipation 1,2
16L-Ceramic DIP
16L-Molded DIP
Input Voltage from V+ to VInput Voltage from V+ Op Amp to V-

-65°C to + 175°C
-65°C to + 150°C
-55°C to + 125°C
-40°C to + 125°C
O°C to +70°C
300°C
265°C
1.50 W
1.04 W
40 V
40 V

Common Mode Input Range
(Error Amplifier and Op Amp)
Differential Input Voltage 3
Output Short Circuit Duration
(Op Amp)
Current from VREF
Voltage from Switch
Collectors to GND
Voltage from Switch
Emitters to GND
Voltage from Switch
Collectors to Emitter
Voltage from Power Diode to GND
Reverse Power Diode Voltage
Current through Power Switch
Current through Power Diode

-0.3 to V+
±30 V
Indefinite
10 mA
40 V
40 V
40 V
40 V
40 V
1.5 A
1.5 A

Notes
1. T J Max

= 150·C for the Molded DIP, and 175·C for the Ceramic DIP.
2. Ratings apply to ambient temperature at 25·C. Above this temperature,
derate the 16l-Ceramic DIP at 10 mWrC, and the 16l-Molded DIP at
8.3 mWrC.

3. For supply voltages less than 30 V. the absolute maximum voltage is
equal to the supply voltage.

Functional Description
The ,uA78S40 is a variable frequency, variable duty cycle
device. The initial switching frequency is set by the timing
capacitor. 1 The initial duty cycle is 6:1. This switching frequency and duty cycle can be modified by two mechanisms - the current limit circuitry (Ipk sense) and the
comparator.
The comparator modifies the OFF time. When the output
voltage is correct, the comparator output is in the HIGH
state and has no effect on the circuit operation. If the
output voltage is too high then the comparator output
goes LOW. In the LOW state the comparator inhibits the
turn-on of the output stage switching transistors. As long
as the comparator is LOW the system is in OFF time. As
the output current rises the OFF time decreases. As the
output current nears its maximum the OFF time approaches its minimum value. The comparator can inhibit
several ON cycles, one ON cycle or any portion of an ON
cycle. Once the ON cycle has begun the comparator cannot inhibit until the beginning of the next ON cycle.
The current limit modifies the ON time. The current limit is
activated when a 300 mV potential appears between lead
13 (Vcel and lead 14 (lPk)' This potential is intended to
result when designed for peak current flows through Rsc.
When the peak current is reached the current limit is
turned on. The current limit circuitry provides for a quick
end to ON time and the immediate start of OFF time.

Generally the oscillator is free running but the current limit
action tends to reset the timing cycle.
Increasing load results in more current limited ON time
and less OFF time. The switching frequency increases with
load current.
VFD is the forward voltage drop across
diode. It is listed on the data sheet as
1.5 V maximum. If an external diode is
forward voltage drop must be used for

the internal power
1.25 V typical,
used, then its own
VFD.

VSAT is the voltage across the switch element (output
transistors 01 and 02) when the switch is closed or ON.
This is listed on the data sheet as output saturation voltage.
Output saturation voltage 1 - defined as the switching element voltage for 02 and 01 in the Darlington configuration with collectors tied together. This applies to Figure 1,
the step down mode.
Output saturation voltage 2 - switching element voltage for
01 only when used as a transistor switch. This applies to
Figure 2, the step up mode.
For the inverting mode, Figure 3, the saturation voltage of
the external transistor should be used for VSAT.

Note

1. Oscillator frequency is set by a single external capacitor and may be
varied over a range of 100 Hz to 100 kHz.

6-104

MA78S40

J.tA78S40
Electrical Characteristics TA = Operating temperature range, VI
specified.
Symbol

Characteristic

= 5.0

V, VOp Amp

= 5.0

V, unless otherwise

Condition

Unit

General Characteristics
IcC

Icc

Supply Current
(Op Amp Disconnected)

VI = 5.0 V

1.8

3.5

mA

VI =40 V

2.3

5.0

mA

Supply Current
(Op Amp Connected)

VI = 5.0 V

4.0

mA

VI = 40 V

5.5

mA

Reference Section
VREF

Reference Voltage 1

IREF = 1.0 mA

VR LINE

Reference Voltage Line
Regulation

VI = 3.0 V to VI = 40 V, IREF = 1.0 mA,
TA = 25°C

VR LOAD Reference Voltage Load
Regulation

Extend -55°C < TA < +125°C,
Comm 0 < TA < + 70°C,
Indus -40°C < TA < + 85°C

1.180

IREF=1.0 mA to IREF=10 mA, TA=25°C

1.245

1.310

V

0.04

0.2

mV/v

0.2

0.5

mV/mA

Oscillator Section
ICHG

Charging Current

VI = 5.0 V, TA = 25°C

20

50

p.A

ICHG

Charging Current

VI=40 V, TA=25°C

20

70

p.A

IDISCHG

Discharge Current

VI = 5.0 V, TA = 25°C

150

250

p.A

IDISCHG

Discharge Current

VI = 40 V, TA = 25°C

150

350

f.l.A

Vosc

Oscillator Voltage Swing

VI = 5.0 V, TA = 25°C

ton/toff

Ratio of Chargel
Discharge Time

0.5

V

6.0

f.l.s/f.l.s

Current Limit Section
VCLS

Current Limit Sense Voltage

mV

Output Switch Section
VSAT 1

Output Saturation Voltage 1

Isw = 1.0 A, Figure 1

1.1

1.3

V

VSAT 2
hFE

Output Saturation Voltage 2

Isw = 1.0 A, Figure 2

0.45

0.7

V

Output Transistor Current Gain

Ic=1.0 A, VCE=5.0 V, TA = 25°C

70

IL

Output Leakage Current

Vo=40 V, TA=25°C

10

nA

Power Diode

IDR

Forward Voltage Drop

ID = 1.0 A

V

Diode Leakage Current

VD = 40 V, TA = 25°C

nA

Comparator
VIO

Input Offset Voltage

VCM = VREF

1.5

15

mV

liB

Input Bias Current

VCM = VREF

35

200

nA

110

Input Offset Current

VCM = VREF

5.0

75

nA

6-105

t-tA78S40

j.lA78S40 (Cont.)
Electrical Characteristics TA = Operating temperature range, VI
specified.
Symbol

Characteristic

= 5.0

V, VOp Amp

Condition

= 5.0

V, unless otherwise

Min

Typ

0

VCM

Common Mode Voltage Range

TA

= 25°C

PSRR

Power Supply Rejection Ratio

VI = 3.0 V to 40 V, TA = 25°C

70

Max

Unit

V1-2

V

96

dB

Output Operational Amplifier

VIO

Input Offset Voltage

VCM= 2.5 V

4.0

15

mV
nA

liB

Input Bias Current

VCM = 2.5 V

30

200

110

Input Offset Current

VCM= 2.5 V

5.0

75

Avs+

Voltage Gain +

RL = 2.0 kn to GND; Vo = 1.0 V to 2.5 V,
TA = 25°C

25

250

V/mV

Avs-

Voltage Gain-

RL = 2.0 kn to V+ (Op Amp)
Vo = 1.0 V to 2.5 V, T A = 25°C

25

250

V/mV

VCM

Common Mode Voltage Range

TA = 25°C

CMR

Common Mode Rejection

VCM = 0 V to 3.0 V, TA = 25°C

76

100

dB

PSRR

Power Supply Rejection Ratio

V+ Op Amp = 3.0 to 40 V, TA = 25°C

76

100

dB

10+

Output Source Current

TA = 25°C

75

150

mA

10-

Output Sink Current

TA = 25°C

10

35

mA

SR

Slew Rate

TA = 25°C

0.6

VIIlS

VOL

Output Voltage LOW

IL = -5.0 mA, T A = 25°C

VOH

Output Voltage HIGH

IL = 50 mA, T A = 25°C

0

Note
1. Selected devices with tightened tolerance reference voltage available.

6-106

Vcc-2

1.0
V+OP
Amp
-3.0 V

nA

V

V
V

MA78S40

Design Formulas
CHARACTERISTIC

STEP-DOWN

STEP-UP

INVERTING

-ton

VO+VD

Vo +VD-VI

IVol+VD

toff

VI-VSAT-VO

VI- VSAT

VI-VSAT

(ton + toff) Max

-

1

-

CT

4 X 10- 5 ton

4 X 10- 5 ton

Ipk

2 10 Max

ton + toff

210M

1

JJ.s

fMin

fMin

0 _ _-

ax

4 X 10- 5 ton

210 Max

ton + toff
0 ___

toff

JJ.F

A

toff

LMin

(VI-VSAT-VO)
I
ton Max
pk

(VI-VSAT)
- 1 - - ton Max
pk

(VI-VSAT)
- 1 - - ton Max
pk

JJ.H

Rse

0.33/lpk

0.33/lpk

0.33/lpk

n

Ipk (ton + toff)

10
""--

8 Vripple

Vripple

Note
VSAT ~
~

-

fMin

Co

Vo

1

UNIT

Saturation voltage of the switching element
Forward voltage of the flyback diode

6-107

10
0

ton

""--

VriPple

0

ton

JJ.F

JIA78S40

Figure

Figure 2

Typical Step-Down Operational Performance
(TA = 25°C)
Rsc

V,
25V

=

L

Rsc

V,
10V

0.33 Q

Typical Step-Up Operational Performance
(TA 25°C)
3OOI'H

0.332

""'

Cy
0.01 JJ.F

~

--,

V,N
IBlAS- - - -

I
I
I

I
I
I

I

I

I

I
I

I

I
I
I
I
I
I

t----["

Ql

I
I

I

I
I
I
I
I

I""

Cy

OSCILLATOR

I
I

J
~1,214

I
I

~

I
I

\

10= 100 mA
8.0 V < VI < 18 V
5.0 mA

i
8

........

~

r--..

r-V'

I

1 1 1

i

0

25

50

75

8.0

100 125 150 175

100

75

125

1

6.0

4.0

~

4.0

g

• .0

o

1.0

I

o

~
m
.."

I'

2.0

4.0

r':

DA

6.0

INPUT VOLTAGE-V

-

8.0

15

2.0

:-- r-

20

~

I""-' r::::: ~

1.5

L I
0.4

j

~~

1.6

2.0

2.4

-r- ~"'A.
~
"'A.
r- ~~

-75

-so

-2S

0

2S

so

7S 100 125 lSO 175

JUNcnON TEMPERATURE-oC

4.6

JnJs

VI = 10V

-Vo=5.DV
10 = 500mA

JAJ.-

--

f-

"""

J78.&~-

Quiescent Current vs
Junction Temperature

~O ~ s.~ V 1
-~J :~.~

V

30

f- DROPOUT CONDmONS
!J.Vo = 5.0% OF Vo

o
1.2

25

r- I- ~~A.

;:-

~
l! 0.5

~

0.8

~

~ l-

I07~~

........

S 1.0

0

I-

f- f-

V

II

i

I ../..

10

........

>

/

-

~O=100mA~~ '" I~ Joo JA -

I

2.0

5.0

f-

Dropout Voltage vs
Junction Temperature

II
= lOY
Yo = S.OY
-TJ = 25°C

""'c

I" '.so;

"

l'...

INPUT/OUTPUT DlFFERENTlAL-Y

1

_y,

"

I Ie
I

ZI

o
o

5.0

t

~
t

o

w

-LJ", i'/"h
/

I'

2.5

'.0

I

~

~

n

1.0

OUTPUT CURRENT-A

JAJ.-

-TJ =25'C

1.5

150

Quiescent Current vs
Input Voltage

~o 25.D~

.....
~
,,~ ~
""<'$:"....... :::--, ""-

0

I"

= 150"C

JnJs

~

...........
=19V

Vo

-so -25

."

5a.

I

't*"~~

0.5

5

....... ~

'1 .9

o

',\

"!'§
.......

Dropout Characteristics

..
5

(.)

=65' C/W
50

JUNCnON TEMPERATURE-"C

g

........

"

i" ',\

>

12.0

-75

"!'§

......

)

},If--.

2.0

w

II!
II!

5.0

1

~

~

Hs:::: 7$oC/..,

~TS
r--:!."IC
1

~

6.0

,l781k-

= 12V
11.8f-1o =.DrnA

>

'.'c:-",

Current·Limiting Characteristics

".2

I!i

'''.~ s ..,.......

•

~~nJs

1

1

AMBIENT TEMPERATURE-DC

Output Voltage vs
Junction Temperature

~ 1~

2.5

= 5.0"C/W

AMBIENT TEMPERATURE_DC

,

3.0

= 0 C/W

r-

W 1.0

'\'

........

--

r--

20

II!

D.' r-- .Je =5.0' C/W
0.2 r-- .JA = 65' C/W
TJ MAX = 150"C "I
0.1
25

UMIT FOR "A78OOC -

50

40
30

= OC/W

10 i--

-

100

f--

40

30

Peak Output Current vs
Input/Output Voltage Differential

Worst Case Power Dissipation vs
Ambient Temperature (TO·220)

l10

3."

5.0

10

15

20

25

INPUT VOLTAGE-V

6-122

30

35

• .6
-75 -50 -25

0

25

50

75 100 125 150 175

JUNcnON TEMPERATURE_oC

IlA7800 Series

Typical Performance Curves (Cont.)
Ripple Rejection vs
Frequency

Line Transient Response

100

40

,1J.1.k

F

80

!

60

0

"

u

w
OJ
a:

r4

~

10

g

a:

r,YI

20

Yo

r-~

z::::

I

1-10 rTJ =25'C I

==c

10 • ... mA

mA

10

ryo
-20

100

1.0K

10K

100 K

o

=S.oy

2.0

4.0

~

=5.0 y

10

JnJ.

I

r.-:-'I "'10Y

~

I

g

o

L

1.0

r- -r- OU~~:~AGE

~

I\..

I

Ct..

= S.GY
250C
=OjA-f
II<

1111

1
~

10 = 20mA

I
~

V

I

,19,=500mA

0-1.0

-2.0

1.

10

J~

V,I ~ 1~~1I
Yo
TA

1.0

S

,"

'.0

LOAD CURRENT

~ '.0

8.0

Output Impedance vs
Frequency

Load Transient Response
4.0

6.0

nME-JA-S

FREQUENCY-Hz

Yo

i

DEVlAT10N

0

o

1010

20

30

40

50

60

TIUE-f.4.

•10

100

'K

10K

FREQUENCY-Hz

Note
The other p.A7800 series devices have similar curves.

DC Parameter Test Circuit

0.1 JLF

Vo

6-123

~

~
'.0 g

OUTPUT VOLTAGE

8.0 V TO 18 V

=5.0 V

"
10

~

40

20

"~ni..

I
INPUT VOLTAGE

lOOK

.11

tlA7800 Series

Design Considerations

Typical Applications

The !1A7800 fixed voltage regulator series has thermal
overload protection from excessive power dissipation, internal short circuit protection which limits the regulator's maximum current, and output transistor safe-area compensation
for reducing the output current as the voltage across the
pass transistor is increased.
Although the internal power dissipation is limited, the junction temperature must be kept below the maximum specified temperature (150°C for Jl.A7800, 125°C for Jl.A7800C)
in order to meet data sheet specifications. To calculate
the maximum junction temperature or heat sink required,
the following thermal resistance values should be used:

Package

Typ IiJC
°C/W

Max IiJC
°C/W

Typ IiJA
°C/W

Max IiJA
°C/W

TO-3

3.5

5.5

35

40

TO-220

3.0

5.0

40

60

Fixed Output Regulator

v,----_-I

I-_---vo

0.33 p.F

Notes
1. To specify an output voltage, substitute voltage value for "'XX."'
2. Bypass capacitors are recommended for optimum stability and transient

response. and should be located as close as possible to the regulator.

High Input Voltage Circuits
I-O-.....---vo

'--__+-__-+

0.1 p.F
(NOTE 2)

TJMax-TA
Po Max =" +" . or
"JC "CA

v, _ _-""\

TJ MaxTA
= - - , , - (Without heat sink)
"JA

~"",,--vo

0.1 ;.tF

IiCA = lics + liSA
Solving for TJ:
TJ=TA+Po(IiJc+licAl or
= TA + POIiJA (Without heat sink)
Where:
TJ
TA
Po
IiJC
IiCA
lics
liSA
IiJA

High Current Voltage Regulator
= Junction Temperature
= Ambient Temperature
= Power Dissipation
= Junction-to-case thermal resistance
= Case-to-ambient thermal resistance
= Case-to-heat sink to thermal resistance
= Heat sink-to-ambient thermal resistance
= Junction-to-ambient thermal resistance

v,-_----=>·

13(01)

~

10

Max

IREG Max

R1 = ~ =
IREG

6-124

13(01)VSE(Q1)
(13 + 1) -10 Max

IREG Max

I1A 7800 Series

Dual Supply Operational Amplifier Supply
(±15 V@1.0 A)
·20I~ ---1r--t

J.=4r---....------~~~ v

1----,.--1
GND--.~~-~~~-~~~-~_.-----GND

lN4001 DR
EQUIVALENT

I---+---....-----~:ir v

High Output Current, Short Circuit Protected
Roc
I N -.....---.-""'~.....""'
Q2

2N6124

I--+_.-DUT
Rl
0.1 "F

3.02

0.8

Rsc=ISC

R1 =

iNBE(Q1)
IREG Max (~+ 1) -10 Max

Positive and Negative Regulator

6·125

JlA 79MOO Series
3-Terminal Negative
Voltage Regulators

FAIRCHIL.D
A Schlumberger Company

Linear Division Voltage Regulators

Description
The }.LA79MOO series of 3-Terminal Medium Current Negative Voltage Regulators are constructed using the Fairchild
Planar Epitaxial process. These regulators employ internal
current-limiting, thermal shutdown, and safe-area compensation making them essentially indestructible. If adequate
heat sinking is provided, they can deliver up to 0.5 A output current. They are intended as fixed voltage regulators
in a wide range of applications including local (on-card)
regulation for elimination of noise and distribution problems
associated with single-point regulation. In addition to use
as fixed voltage regulators, these devices can be used
with external components to obtain adjustable output voltages and currents.

Connection Diagram
TO-39 Package
(Top View)

•
•
•
•
•
•

Order Information
Device Code Package Code
MA79M05HM
FC
MA79M08HM
FC
MA79M12HM
FC
MA79M15HM
FC
MA79M05AHC
FC
MA79M08AHC
FC
MA79M12AHC
FC
MA79M15AHC
FC

Output Current In Excess Of 0.5 A
Internal Thermal Overload Protection
Internal Short Circuit Current-Limiting
Output Transistor Safe-Area Compensation
Available In JEDEC TO-220 And TO-39 Packages
Output Voltages Of -5 V, -8 V, -12 V, and -15 V

Absolute Maximum Ratings
Storage Temperature Range
TO-39 Metal Can
TO-220 Package
Operating Junction Temperature Range
Extended (MA79MOOM)
Commercial (MA79MOOAC)
Lead Temperature
TO-39 Metal Can (soldering, 60 s)
TO-220 Package (soldering, 60 s)
Power Dissipation
Input Voltage
-5.0 V to -15 V

-65°C to + 175°C
-65°C to + 150°C
-55°C to + 150°C
O°C to + 150°C

IN

OUT

Lead 3 connected to case.

Package Description
Metal
Metal
Metal
Metal
Metal
Metal
Metal
Metal

Connection Diagram
TO-220 Package
(Top View)

300°C
265°C
Internally Limited

::;('"
rOUT

~I :~Ii

-35 V

\..

\..COMMON

IN

Lead 3 connected to case.

Order Information
Device Code
Package Code
MA79M05AUC
GH
MA79M08AUC
GH
MA79M12AUC
GH
MA79M15AUC
GH

6-126

Package Description
Molded Power Pack
Molded Power Pack
Molded Power Pack
Molded Power Pack

I1A79MOO Series

Equivalent Circuit
r-----~----------~------~--~------------~------------~--------._--~-COMMON

R25
4.5 k
TO 6.3 k

R20

17.2 k

6.4k

4.0k

R24
1.7 k
TO 18 k

.....-w~---_J
-12 V end-24 V
R5

OPTIONS

420

•

R23

I
I
I
I

.---+--f-------....l

OUT

Ql

R22
0.1

R30
200

R6

800

R13
0.2

IN

IlA79M05H
Electrical Characteristics -55°C';;; TA';;; 125°C, V, = -10 V, 10 = 350 rnA, C, = 2.0 IlF, Co = 1.0 IlF, unless
otherwise specified. 1,2
Symbol

Output Voltage

Vo
VR

LINE

VR LOAD

TJ = 25°C

Load Regulation

Output Voltage

10

Quiescent Current

L\lo

Quiescent Current
Change
Noise

Min

Typ

Max

-5.2

-5.0

-4.8

l-25 V';;'V,';;'-7.0 V

7.0

50

1-18 V';;'VI';;'-8.0 V

TJ = 25°C

Line Regulation

Vo

No

Condition 3

Characteristic

3.0

30

TJ = 25°C, 5.0 rnA';;' 10';;' 500 rnA

75

100

TJ = 25°C, 5.0 rnA';;' 10';;' 350 rnA

50

-25 V';;'VI';;'-7.0 V,
5.0 rnA';;' 10';;'350 rnA, PD';;'4.0 W
TJ = 25°C

I with line
I with load

-5.25

-4.75

V
rnV

rnV

V

2.0

rnA

-25 V.;;, VI';;'-8.0 V

0.4

rnA

5.0 rnA';;' 10';;'350 rnA

0.4

TA = 25°C, 10 Hz';;'t';;'100 kHz

6-127

1.0

Unit

25

80

MVNo

J.lA 79MOO Series

1lA79M05H (Cont.)
Electrical Characteristics -55°C';;; TA .;;; 125°C, VI
otherwise specified. 1,2
Symbol

= -10

V, 10 = 350 rnA, CI

= 2.0

Condition 3

Characteristic

Min

Ripple Rejection

f = 2400 Hz, 10 = 125 mA, TJ = 25°C

Voo

Dropout Voltage

TJ = 25°C

los

Output Short Circuit Current

TJ = 25°C, VI = -35 V

Ipk

Peak Output Current

VI-Vo=10 V, TJ=25°C

f1Vo/f1T

Average Temperature Coefficient
of Output Voltage

10 = 5.0 mA, O°C < TA < 125°C

f1VI/t:No

1lA79M05AC
Electrical Characteristics -O°C';;; TA .;;; 125°C, VI
otherwise specified. 1,2
Symbol

= -10

V, 10 = 350 rnA, CI

= 2.0

Max

J.!F, Co

0.65

= 1.0

2.3

A

1.4

A

0.3

my/oCt
Vo

J.!F, unless

Typ

Max

-5.0

-4.8

1-25 V  0.20
I
w

Co
"
....
"a

.

"j'MAX =7.• W

Output Voltage vs
Junction Temperature

g

700

··C/I\<

. . . . . . . ~If~.l

AMBIENT TEMPERATURE-"C

"~

' " HEAT
SINK

~

I

2.0

0.2

~-'---'-...JL......I.....L...J._L.-'---'-....J

0.1

0.15

~""C/

is
a:
w 0.5
;t

w 0 .•

~
Co

~

"'j..;::

800

"INFINITE

. . . -ko"sJ,

5.0
4.0
;t 3.0

Peak Output Current vs
Input/Output Voltage Differential

10 K

100 K

NOMINAL OUTPUT VOlTAGE-V

MA 79MOO Series

Typical Performance Curves (Cont.)
Line Transient Response

Output Impedance vs
Frequency

Load Transient Response
2.0

3.0

101
INPUT VOLTAGE

-15

1\

L

>

~

,

>

r
0

OUTP1

DEVIAnoN

V

g

,

>

~
I-~I

o

80

Co

= 25p.F

il~MINMTI

§-1.0

-2.
40
60
TlME-p..

= 1.01LF

SOUD TANTAWM

ou~uJ
VOL~AGE- t DEVIATION

"~

i!!

I
5.o r~O =200mA
Vo = 5.0 V
20

Co

1.0

w

-5.0 ~

\i

LOAD CURRENT

~

~

\

1.0

2.0

Iii

-10 ~
vJLTAGE- l - I--

10 - 100 MA
Vo= -5.0 V
TJ = 25°C

= lOY

Vf =f Ov ,
30

40

50

10- 10

Design Considerations

The safe-area protection network may cause the device to
latch-up if the output is shorted and the regulator is operating with high input voltages. This mode of operation will
not damage the device. However, power (input voltage or
the load) must be interrupted momentarily for the device
to recover from the latched condition.
Although the internal power dissipation is limited, the junction temperature must be kept below the maximum specified temperature (150°C for /lA79MOO, 125°C for
/lA79MOOC and /lA7900MAC) in order to meet data sheet
specifications. To calculate the maximum junction temperature or heat sink required, the following thermal resistance
values should be used:

Package
TO-39

18.0

25

120

140

TO-220

3.0

5.0

60

40

TJ Max- TA
POMAX = 8 + 8
or
JC
CA

100

1.0K 10K lOOK 1.0M 10M 100M
FREQUENCY-Hz

TlME-,us

The /l79MOO fixed voltage regulator series have thermaloverload protection from excessive power, internal shortcircuit protection which limits the circuit's maximum current,
and output transistor safe-area compensation for reducing
the output current as the voltage across the pass transistor is increased.

111111111

2

20

10

100

Solving for TJ:
TJ=TA+PO (8Jc+8cA) or
= TA + P0 8JA (Without a heat sink)
Where:
TJ
TA
Po
8JC
8CA
8cs
8sA
8JA

= Junction Temperature
= Ambient Temperature
= Power Dissipation
= Junction-to-case thermal resistance
= Case-to-ambient thermal resistance
= Case-to-heat sink thermal resistance
= Heat sink-to-ambient thermal resistance
= Junction-to-ambient thermal resistance

Typical Applications
Bypass capacitors are necessary for stable operation of
the/lA79MOO series of regulators over the input voltage
and output current ranges. Output bypass capacitors will
improve the transient response of the regulator.
The bypass capacitors, (2.0 /IF on the input, 1.0 /IF on
the output) should be ceramic or solid tantalum which
have good high frequency characteristics. If aluminum electrolytics are used, their values should be 10 /IF or larger.
The bypass capacitors should be mounted with the shortest leads, and if possible, directly across the regulator terminals.

Fixed Output Regulator Test Circuit
(1 )

V,--_9_---i
2.0"F

TJ Max - TA (Without a heat sink)
8JA
8CA = 8cs + 8SA

6-134

I---+--Vo
1.0p.F

IlA7900 Series
3-Terminal Negative
Voltage Regulators

F=AIRCHILD
A Schlumberger Company

Linear Division Voltage Regulators

Description
The jJ.A7900 series of monolithic 3-terminal negative regulators is manufactured using the Fairchild Planar Epitaxial
process. These negative regulators are intended as complements to the popular jJ.A7800 series of positive voltage
regulators, and they are available in voltage options from
-5.0 V to -15 V. The jJ.A7900 series employ internal current-limiting, thermal shutdown, and safe-area compensation, making them virtually indestructible.
•
•
•
•
•
•

Connection Diagram
To-3 Package
(Top View)

Output Current In Excess Of 1.0 A
Internal Thermal Overload Protection
Internal Short Circuit Current-Limiting
Output Transistor Safe-Area Compensation
Available In JEDEC TO-220 And TO-3 Packages
Output Voltages of -5 V, -8 V, -12 V, and -15 V

Order Information

-55'C to + 150'C
O'C to +150'C

Device Code
jJ.A7905KM
jJ.A7908KM
jJ.A7912KM
jJ.A7915KM
jJ.A7905KC
jJ.A7908KC
jJ.A7912KC
jJ.A7915KC

300'C
265'C
Internally Limited

Connection Diagram
TO-220 Package
(Top View)

Absolute Maximum Ratings
Storage Temperature Range
TO-3 Metal Can
TO-220 Package
Operating Junction Temperature Range
Extended (jJ.A7900M)
Commercial (jJ.A7900C)
Lead Temperature
TO-3 Metal (soldering, 60 s)
TO-220 Package (soldering, 10 s)
Power Dissipation
Input Voltage
-5 V to -15 V

-65'C to + 175'C
-65'C to + 150'C

Package Code
HJ
HJ
HJ
HJ
HJ
HJ
HJ
HJ

Package Description
Metal
Metal
Metal
Metal
Metal
Metal
Metal
Metal

rOUT

-35 V

~I :I~;
~~IN

Note
1. The convention for Negative Regulators is the Algebraic value. thus -15
is less then -10 V.

"

\.....IN

' - - COMMON

Lead 3 connected to case.

Order Information
Device Code
jJ.A7905UC
jJ.A7908UC
jJ.A7912UC
jJ.A7915UC

6-135

Package Code
GH
GH
GH
GH

Package Description
Molded Power Pack
Molded Power Pack
Molded Power Pack
Molded Power Pack

J.lA7900 Series

Equivalent Circuit
r-----~--------------~~--------_1~_1------------------._----------------._----------._----._-COMMON

R2
1.4kQ

R25

R23
4.0kQ

4.5 kQ

T06.3kQ

I
I

R24
1.7 kQ

I
R4
2.2 kQ

TO 18kQ

1_12 V AND
I -15V
I OPTIONS

.-J/ ~I--I---~._

OUT

R5
420Q

01

020

Rlg
5.3 kQ

C3
3 pF
R16
4.7kQ

R14
2.3kQ
R17
3.0kQ

R21
17 kQ

R30
200Q

R22
O.04Q

R13
O.05Q

IN

6·136

J.LA 7900 Series

1-!A7905

< <

Electrical Characteristics -55°C TA 125°C, VI = -10 V, 10 = 500 rnA, CI = 2.0 j.lF, Co = 1.0 j.lF, unless
otherwise specified.
Symbol

Vo
VR

LINE

VR LOAD

Conditlon 1

Characteristic

Output Voltage

TJ

Line Regulation

TJ

Load Regulation

TJ

= 25°C
= 25°C
= 25°C

Min

3.0

50

-2.0 V';;;VI';;;-12 V

1.0

25

15

100

5.0

25

5.0 rnA';;; 10 .;;; 1.5 A

Vo

Output Voltage

10

Quiescent Current

ala

Quiescent Current
Change

No

Noise

TA = 25°C, 10Hz';;; 1.;;; 100 kHz

aVI/aVo

Ripple Rejection

1 = 2400 Hz, 10 = 350 rnA, TJ

VDO

Dropout Voltage

10 = 1.0 A, TJ

Ipk

Peak Output Current

TJ

aVo/aT

Average Temperature Coefficient 01
Output Voltage

los

Output Short Circuit Current

j.lA7905C

-8.0 V';;;VI';;;-20 V
5.0 rnA';;; 10 .;;; 1.0 A
p';;;15 W

-4.70

= 25°C

IWith load

1.0

5.0 rnA';;; 10 .;;; 1.0 A

= 25°C
10 = 5.0 rnA,

mV

V

2.0

rnA

1.3

rnA

0.5

= 25°C

25

80

pVIVo

54

60
1.1

2.3

1.3

2.1

3.3

A

0.3

mVioClVo

1.2

A

= 25°C

-55°C';;; TA';;; 125°C

VI = -35 V, TJ

V
mV

-5.30

-8.0 V';;;VI';;;-25 V

Iwith line

Unit

Max

-7.0 V ';;;VI';;;-25 V

250 rnA';;; 10 .;;; 750 rnA

TJ

Typ

-4.8 -5.0 -5.2

= 25°C

dB
V

< <

Electrical Characteristics O°C TA 125°C, VI = -10 V, 10 = 500 rnA, CI = 2.0 j.lF, Co = 1.0 j.lF, unless
otherwise specified.
Symbol

Vo
VR

LINE

VR LOAD

Condltion 1

Characteristic

Output Voltage

TJ

Line Regulation

TJ

= 25°C
= 25°C

Min

Typ

Max

-4.8

-5.0

-5.2

V

-7.0 V';;;VI';;;-25 V

3.0

100

mV

-8.0 V';;; VI';;;-12 V

1.0

50

15

100

5.0

50

TJ = 25°C 5.0 rnA';;; 10';;; 1.5 A

Load Regulation

250 rnA';;; 10';;;750 rnA
Vo

-7.0 V';;;VI';;;-20 V,
5.0 rnA';;; 10';;; 1.0 A,
p';;; 15 W

Output Voltage

= 25°C

-4.75

-5.25

Unit

mV

V

10

Quiescent Current

TJ

2.0

rnA

ala

Quiescent Current
Change

IWith line

-7.0 V';;;VI';;;-25 V

1.3

rnA

IWith load

5.0 mA';;;lo';;;1.0 A

0.5

No

Noise

TA

= 25°C,

1.0

10 Hz';;;I';;;100 kHz

6-137

125

IlV

J.lA 7900 Series

1lA7905C (Cont.)
Electrical Characteristics O°C

~ T A ~ 125°C, VI
otherwise specified.

Symbol

= -10

V, 10 = 500 rnA, C I = 2.0 IlF, Co= 1.0 IlF, unless
Condition 1

Characteristic

!lVlI tNo

Ripple Rejection

VDO

Dropout Voltage

IPk

Peak Output Current

!:Nol LlT

Average Temperature
Coefficient of Output Voltage

10 = 5.0 mA, OOG";; TA";; 125°C

IlA7908
Electrical Characteristics

Min

Typ

54

Max

Unit

60

dB

10=1.0 A, TJ = 25°C

1.1

V

TJ = 25°C

2.1

A

0.4

mV/oC

f = 2400 Hz, 10 = 350 mA, TJ = 25°C

-55°C~TA~125°C, VI=-14 V, 10=500

rnA, CI=2.0 IlF, Co=1.0 IlF, unless

otherwise specified.
Symbol

Condition 1

Characteristic

Min

Typ

Max

-7.7

-8.0

-8.3

6.0

80

Vo

Output Voltage

TJ = 25°C

VA

Line Regulation

TJ = 25°C -10.5 V";;VI";;-25 V
-11 V";; VI ..;; -17 V

2.0

40

Load Regulation

TJ = 25°C 5.0 mA";; 10";; 1.5 A

12

100

4.0

40

LINE

VA LOAD

250 mA";;lo";;750 mA
Vo

Output Voltage

-11.5 V";;VI";;-23 V,
5.0 mA";; 10";; 1.0 A,
p";;15 W

la

Quiescent Current

Llla

Quiescent Current
Change

-7.6

TJ = 25°C

Unit
V
mV

mV

-8.4

1.0

V

2.0

mA

[with line

-11.5 V";;VI";;-25 V

1.0

mA

[with load

5.0 mA";; 10 ..;; 1.0 A

0.5

No

Noise

TA=25°C, 10 Hz";;f";;100 kHz

LlVI/LlVo

Ripple Rejection

f = 2400 Hz, VI = -13 V
10 = 350 mA, TJ = 25°C

VDO

Dropout Voltage

10=1.0 A, TJ

IPk

Peak Output Current

TJ

LlVoILlT

Average Temperature
Coefficient of Output Voltage

los

Output Short Circuit Current

= 25°C
= 25°C
10 = 5.0 mA, -55°C";; TA";; 125°C

VI

25

80

pVlVo

54

60
1.1

2.3

1.3

2.1

3.3

A

0.3

mV/oClVo

1.2

A

= -35 V, TJ = 25°C

dB
V

1lA7908C
Electrical Characteristics O°C ~ T A ~ 125°C, VI = -14 V, 10 = 500 rnA, C I = 2.0 IlF, Co = 1.0 IlF, unless
otherwise specified.
Symbol
Vo

Condition 1

Characteristic
Output Voltage

TJ = 25°C

6-138

Min

Typ

Max

Unit

-7.7

-8.0

-8.3

V

#-LA 7900 Series

1lA7908C (Cont.)

Electrical Characteristics O°C';;;; TA .;;;; 125°C, V, = -14 V, 10 = 500 mA, C, = 2.0 IlF, Co = 1.0 IlF, unless
otherwise specified.
Symbol

VR

LINE

VR LOAD

Condltlon 1

Characteristic

Line Regulation

TJ = 25°C

Load Regulation

TJ = 25°C

Min

Typ

Max

Unit

160

rnV

-10.5 V":V,":-25 V

6.0

-11 V":V,":-17 V

2.0

80

5.0 rnA": 10 ..: 1.5 A

12

160

250 rnA": 10 ..: 750 rnA

4.0

80

Vo

Output Voltage

-10.5 V":V,":-23 V,
5.0 rnA": 10": 1.0 A,
p": 15 W

10

Quiescent Current

TJ = 25°C

dlo

Quiescent Current
Change

-7.6

-8.4

1.0

rnV

V

2.0

rnA
rnA

Iwith line

-10.5 V..: V,":-25 V

1.0

Iwith load

5.0 rnA": 10": 1.0 A

0.5
200

/lV

60

dB

1.1

V

No

Noise

TA = 25°C, 10 Hz":f": 100 kHz

dV,/dVo

Ripple Rejection

f = 2400 Hz, V, = -13 V,
10 = 350 rnA, TJ = 25°C

VDO

Dropout Voltage

10 = 1.0 A, TJ = 25°C

Ipk

Peak Output Current

TJ = 25°C

2.1

A

dVo/dT

Average Ternperature
Coefficient of Output Voltage

10 = 5.0 rnA, O°C": TA ..: 125°C

0.6

rnV/oC

54

1lA7912

Electrical Characteristics -55°C';;;;TA';;;;125°C, V,=-19 V, 10=500 mA, C,=2.0 IlF, Co=1.0 IlF, unless
otherwise specified.
Symbol

Condltlon 1

Characteristic

Output Voltage

TJ = 25°C

VR

Line Regulation

TJ = 25°C -14.5 V":V,":-30 V

Load Regulation

TJ = 25°C 5.0 rnA": 10": 1.5 rnA

LINE

Min

10

-16 V ":V,":-22 V
VR LOAD

Typ

Max

-11.5 -12.0 -12.5

Vo

250 rnA": 10 ..: 750 rnA
Vo

Output Voltage

-15.5 V ":V,":-27 V,
5.0 rnA": 10 ..: 1.0 A,
p": 15 W

10

Quiescent Current

TJ = 25°C

dlO

Quiescent Current
Change

120

3.0

60

12

120

4.0

60

-11.4

-12.6

1.5

1.0

5.0 rnA": 10 ..: 1.0 A

0.5

Noise

TA=25°C, 10 Hz":f":100 kHz
f=2400 Hz, V,=-17 V,
10 = 350 rnA, TJ = 25°C

6-139

25
54

60

V

rnA

-15 V ":V,":-30 V

Ripple Rejection

rnV

rnA

IWith load

No

V
rnV

3.0

Iwith line

dV,/dVo

Unit

80

/lVlVo
dB

MA7900 Series

~7912 (Cont.)

Electrical Characteristics -55°C';;;; T A';;;; 125°C, V,
otherwise specified.
Symbol
Voo

= -19

V, 10 = 500 rnA, C, = 2.0 fJF, Co = 1.0 fJF, unless

Condition 1

Characteristic
Dropout Voltage

10 -1.0 A, TJ

'Pk

Peak Output Current

TJ = 25°C

t.Volt.T

Average Temperature
Coefficient of Output Voltage

10 = 5.0 rnA, -55°C";; TA";; 150°C

los

Output Short Circuit Current

VI

= -35

Min

= 25°C
1.3

V, TJ

Typ

Max

1.1

2.3

Unit
V

2.1

3.3

A

0.3 mVrClVo

= 25°C

A

1.2

~7912C

Electrical Characteristics 0°C';;;;TA';;;;125°C, V,=-19 V, 10=500 rnA, C,=2.0 fJF, Co=1.0 fJF, unless
otherwise specified.
Symbol

Condition 1

Characteristic

Vo

Output Voltage

VR LINE

Line Regulation

= 25°C
TJ = 25°C

VR LOAD

Load Regulation

TJ

= 25°C

Min

Typ

Max

-11.5 -12.0 -12.5

TJ

-14.5 V";;VI";;-30 V

10

-16 V";;VI";;-22 V

3.0

120

5.0 rnA";;

12

240

4.0

120

'0 . ; 1.5 A

250 rnA";; '0";;750 rnA
Vo

Output Voltage

-14.5 V";;VI";;-27 V,
5.0 rnA";; '0 ..;; 1.0 A,
p";;15 W

10

Quiescent Current

TJ

t.lo

Quiescent Current
Change

-11.4

240

-12.6

= 25°C

1.5

1.0

5.0 rnA";; '0 ..;; 1.0 A

0.5

t.Vl/t.Vo

Ripple Rejection

f = 2400 Hz, VI = -17 V,
10 = 350 rnA, TJ = 25°C

Voo

Dropout Voltage

10 = 1.0 A, TJ

Ipk

Peak Output Current

TJ

t.Volt.T

Average Temperature
Coefficient of Output Voltage

10 = 5.0 rnA, O°C";; TA";; 125°C

V

rnA

-14.5 V";;VI";;-30 V

TA=25°C, 10 Hz";;f";;100 kHz

mV

rnA

lwith line

Noise

V
mV

3.0

lwith load

No

Unit

300

p.V

60

dB

1.1

V

54

= 25°C

= 25°C

2.1

A

0.8

mVrC

Note8
1. All characteristics except noise voltage and ripple rejection ratio are measured using pulse techniques (tw .;; 10 ms, duty cycle .;; 5%). Output voltage changes due to
changes in internal temperature must be taken into account separately.

~7915

Electrical Characteristics -55°C';;;; TA .;;;; 125°C, V, = -23 V, 10 = 500 rnA, C, = 2.0 fJF, Co = 1.0 fJF, unless
otherwise specified.
Symbol
Vo

Condltion 1

Characteristic
Output Voltage

TJ

= 25°C

6-140

Min

Typ

Max

Unit

-14.4

-15.0

-15.6

V

J.1A 7900 Series

!lA7915 (Cont.)
Electrical Characteristics -55°C ~ T A ~ 125°C, VI

= -23

V, 10

= 500

mA, CI

= 2.0

IJ.F, Co

= 1.0

IJ.F, unless

otherwise specified.
Symbol

VR

LINE

Condition 1

Characteristic

Line Regulation

TJ = 25°C

Min

Typ

11

150

3.0

75

5.0 mA

150

Dropout Voltage vs
Junction Temperature

> 0.20

!;
!;

I~m """"-

I

0

PC09390F

PC09400F

"~

~~~,~~

0.5

9JC

50

l-

~""'t-~ l""I...... ~ 1""-"

'n

r--- '\ l\

AMBIENT TEMPERATURE-"C

AMBIENT TEMPERATURE-GC

r-...

I
I...... ~tr-..
L '-::--. t

0.

.00

Peak Output Current vs
Input/Output Voltage Differential

f-

= 5.0C/W
o.2 r-- 'JA = "'C/W
1
PDMAX = 15Wf

75

50

-0_-

.0

II:

I-- 8JC - 5.S"CJW
I--- 8JA = 45·C/W
Po MAX = 15Wr
25

1 UMIT FOR ~A79OOC

50
40
30
20 INFINITE HEAT SINK

i 3:8

3.0 I:;;:
1---"0 "eA.r SINK
2.0

II:

Worst Case Power Dissipation vs
Ambient Temperature (TO-220)

...

__

......

r

cw~

/O~7.0A

~

c-

~
~~
'0",

...... ~~"
'o",~ ...... ........
"'-4

DROPOUT CONDInONsL

",5%IFVi

- 75 -50 -25

0

25

50

V~= -"5 V

L

,../

IE '.0
l'J
f3

ii

~

'.5

I'

Vo = -5.0 V

0.5

t"...

75 100 125 150 175

JUNCTION TEMPERATURE_oC

6-142

~

2.0

0

o

~

w

~

~

~

INPUT VOLTAGE-V

30

~

40

1lA7900 Series

Typical Performance Curves (Cont.)
Quiescent Current vs
Temperature

'00

VO~5.0IV_

Vo=

r-;.;

-'2 V AND ~,s

r---

..........

'00

I II

v,1
10 = 500mA

~

Ripple Rejection vs
Output Voltages

Ripple Rejection vs
Frequency

r-UL\UJUL
i'I~li

~

t- f0-

1111

r-

Vo

"-Hd~:t.t.!'lS:

= -5.0 V AND -8.0 Y

-

ii ·.

'

,,

.......

-lVa

80

"

= 5.0 V AND -8.0 V - r-.
AY, =10Vp _ p
200mA

-76 -150 -2S 0

TJ

o

2S 150 75 '00 '26'SO '76

r
~

10

>

0

~

~

I

I

IN VOLTAGE

4.0

20

,.

> a.o

~
~

I
OUT VOLTAGE
DeVIATION

10

10K

'OOK

I!i

2.0

'.0

I
OUT VOLTAGE
"

.

E

~

w
a:
a:

w
a:
a:

-'.00

DEVIAnON

~

18

20

22

24

10 = 100mA
Yo= -5.0 V

'0'

~

0

1.0

~

16

TJ'" 25"C

LOAD CURRENT

2.0

14

Output Impedance vs
Frequency

I I I I
I I I I

V, = 'OV
Vo=5.0V

12

NOMINAL OUTPuT VOLTAGE-V

~

10'

Co'" 1.o,."F

SOUOTANTALUll

G

Q

V

-2.0

Co = 25#'F
ALUIIINUIl

9 110"1

0-1.0

=500mA

Vo=5.DV

-ao

4.0 8.0 8.0 10

Load Transient Response

Ii

0-1 0

1.oK
FREQUENCY-Hz

Line Transient Response

.

= 200mA

o

100

AMBIENT TEMPERATURE-"C

= '20 Hz

r'o
10

=250C

10

r.1.

20 I-TJ = 25"C
AV, =10Vp _ p

1-10 =
11.3

-

-3.0

02.04.01.08.01012
nllE-~

-2.G

o

10

20

30

40

50

10-2

60

10

100

1.oK 10K 100K 1.0M 10M
FREQUENCY-Hz

nME-""

Design Considerations
The !!A7900 fixed voltage regulator series has thermal
overload protection from excessive power dissipation, internal short circuit protection which limits the circuit's maximum current, and output transistor safe-area compensation
for reducing the output current as the voltage across the
pass transistor is increased.

Typ
8JC

Max
8JC

Typ
8JA

Max
8JA

·C/W

·C/W

·C/W

·C/W

TO-3

3.5

5.5

40

35

TO-220

3.0

5.0

60

40

Package

TJ MaxTA
or - - 8JC + 8CA
8JA
8CA = 8cs + 8SA (Without heat sink)

Although the internal power dissipation is limited, the junction temperature must be kept below the maximum specified temperature (150·C for !!A7900, 125·C for !!A7900C)
in order to meet data sheet specifications. To calculate
the maximum junction temperature or heat sink required,
the following thermal resistance values should be used:

Po Max =

TJ Max-TA

Solving for TJ:
TJ = TA + Po (8JC + 8cAl or
= TA + P08JA (Without heat sink)

6-143

100M

p.A7900 Series

Where:
= Junction Temperature
TJ
TA = Ambient Temperature
= Power Dissipation
Po
8JA = Junction-to-Ambient Thermal Resistance
8JC = Junction-to-Case Thermal Resistance
8CA = Case-to-Ambient Thermal Resistance
8cs = Case-to-Heat Sink Thermal Resistance
8sA = Heat Sink-ta-Ambient Thermal Resistance

Output Current HIGH, Foldback Current-Limited

V,__.--.,....w......--+"\.

~------.--Vo

l.o"F

CF".",,.

Typical Applications
Bypass capacitors are necessary for stable operation of
the p.A7900 series of regulators over the input voltage and
output current ranges. Output bypass capacitors will improve the transient response of the regulator.
The bypass capacitors, (2.0 IlF on the input, 1.0 IlF on
the output) should be ceramic or solid tantalum which
have good high frequency characteristics. If aluminum electrolytics are used, their values should be 10 !IF or larger.
The bypass capaCitors should be mounted with the shortest leads, and if possible, directly across the regulator terminals.
Fixed Output Regulator

v, -__.-"--1

Output Current HIGH, Short Circuit Protected
r=~~---~-Vo

RSC

= VSE(Q2)

los
Operational Amplifier Supply (± 15 V at 1.0 A)

t-:--.,.------1P"------- ~~~ V

~~--Vo
1.0,..F

GND----.,....+---~~~----~__.--~~------GND

lN40010R
EQUIVALENT

CA03711lF

t=-----+------<~--- ~~ V

High Current Voltage Regulator
V,--t--"\.

~~'-------__'--Vo

6-144

IlA 101A ellA201A ellA301A
General Purpose
Operational Amplifiers

I=AIRCHILO
A Schlumberger Company

Linear Division Operational Amplifiers

Description

Connection Diagram
8-Lead Metal Package
(Top View)

The j.lA101A, j.LA201A, and j.lA301A are general purpose
monolithic operational amplifiers constructed using the
Fairchild Planar Epitaxial process. These integrated circuits
are intended for applications requiring low input offset voltage or low input offset current. The accuracy of long interval integrators, timers, and sample-and-hold circuits is
improved due to the low drift and low bias currents of the
j.lA 101 A, j.LA201 A, or j.LA301 A. Frequency response may be
matched to the individual circuit need with one external
capacitor. The absence of latch up coupled with internal
short circuit protection make the j.lA 101 A, j.LA201 A and
j.LA301 A virtually foolproof.

FREQ
COMP

v•
•
•
•
e

Low Offset Current And Voltage
Low Offset Current Drift
Low Bias Current
Short Circuit Protected
Low Power Consumption

Lead 4 connected to case.

Order Information
Device Code
j.lA101AHM
j.LA201 AHV
j.LA301 AHC

Absolute Maximum Ratings
Storage Temperature Range
Metal Can
Molded DIP and 50-8
Operating Temperature Range
Extended (j.lA101AM)
Industrial (j.lA201 AV)
Commercial (j.LA301AC)
Lead Temperature
Metal Can (soldering, 60 s)
Molded DIP and 50-8
(soldering, 10 s)
Internal Power Dissipation 1, 2
8L-Metal Can
8L-Molded DIP

50-8
Supply Voltage
j.LA 101 A, j.LA201 A
j.lA301A
Differential Input Voltage
Input Voltage3
Output Short Circuit Duration4

-65°C to + 175°C
-65°C to + 150°C

Package Code
5W
5W
5W

Package Description
Metal
Metal
Metal

Connection Diagram
8-Lead DIP and SO-8 Package
(Top View)

-55°C to + 125°C
-25°C to +85°C
O°C to +70°C

FREQ

300°C

- OFFSET NULL/
FREQCOMP

265°C

-IN

v+

+IN

OUT

1.00 W
0.93 W
0.81 W

COMP

+ OFFSET
NULL

v-

±22 V
± 18 V
±30 V
± 15 V
Indefinite

Order Information
Device Code
j.LA301ASC
j.lA301ATC

Notes
1. TJ Max = 150·C for the Molded DIP and SO·8, and 175·C for the Metal
Can.
2. Ratings apply to ambient temperature at 25·C. Above this temperature,
derate the 8L·Metal Can at 6.7 mWrC. the 8L-Molded DIP at
7.5 mwrc and the SO-8 at 6.5 mW/·C.
3. For supply voltage less than ± 15 V. the absolute maximum input
voltage is equal to the supply voltage.
4. Short circuit may be ground or either supply. pA 101 A and pA201 A
ratings apply to + 125°C case temperature or + 75°C ambient

temperature. pA301A ratings apply for case temperatures to 70·C.

7-3

Package Code
KC

9T

Package Description
Molded Surface Mount
Molded DIP

JlA 101A· JlA201A· JlA301A

Equivalent Circuit
-OFFSET
NULL!
FREQ COMP

FREQ
COMP

r---------~------~--r_--;_------~--------------~----v+

R11
25 fl

'----f--......-OUT

~--~~~~~--~~------------~------

__________-4__~__~_____~

R4

2SOfl

+ OFFSET NULL

7-4

J-lA 101A· J-lA201A· J-lA301A

J.lA101A, J.lA201A and J.lA301A
Electrical Characteristics T A = 25°C, ± 5.0 V « Vee « ± 20 V for the J.LA 101 A and J.LA201 A,
±5.0 V«Vcc«±15 V for the J.LA301A, unless otherwise specified.

J.lA 101A, J.lA201A
Symbol

Characteristic

Condition

Min

Typ

Max

J.lA301A
Min

Typ

Max

Unit

VIO

Input Offset Voltage

0.7

2.0

2.0

7.5

mV

110

Input Offset Current

1.5

10

3.0

50

nA

liS

Input Bias Current

30

75

70

250

nA

ZI

Input Impedance

Icc

Supply Current

Rs <50 k.l1

1.5

0.5

4.0
1.8

Vcc=±20 V

Large Signal Voltage Gain

Vcc=±15 V,
Vo =±10 V, RL>2.0 k.l1

50

M.I1
rnA

1.8

VCC=±15V
Avs

2.0

3.0

160

25

3.0
V/mV

160

The following specifications apply over the range of -55°C2.0 k.l1

25

VOP

Output Voltage Swing

VCC=±15V IRL=10k.l1

±12

±14

±12

±14

I RL = 2.0 k.l1

±10

±13

±10

±13

Vcc=±20 V

10
30

±12

Vcc=±15V

7-5

96

70

96

15

dB
V/mV
V

MA 101A • MA201A • MA301A

Typical Performance Curves
Input Voltage Range vs
Supply Voltage (1lA101A and 201A)
zo

Output Swing vs
Supply Voltage (1lA101A and 201A)
20

-55·C:Si TA:S 125°C

8

21-t--

8/

V

~~v/
+.\~

;t>'f';'

O·C

S

Voltage Gain vs
Supply Voltage (1lA301A)
100

8

......

V
./

~t."""

, ~.
/1

5

1/

5

.......

:;...

~

_\Io'j'l!'

78

0

1.

70

••

10
SUPPLYYOLTAGE- ±V

SUPPLVVOLTAQE- ;t;Y

180

I

'20

~-+--~ ~~~-+~~~1'5Q

I

80

~

80

r--+---r--t-~~~~+-~80 ~

g

r-+--r~~~~~~'5

~

i

1\

GAIN

20
0

f-

r\

Vcc=±15V
TA : 25°C
C1-30pF
C2 "" 300 pF

-20
1

FREQUENCY - Hz

TA = 25°C

I\..

•

i'\.PH~E

r"\ N-

40

i5

~

'\ ~ 1\ 1/

Vcc=±15V

f-- r.....

225

I

~

10

100

1.0K

10K

7-6

/

~~
GAIIN>-

~

~

100K1.0M 10M

FREQUENCY - Hz

.5

Open Loop Frequency Response
(1lA101A, 201A, and 301A)

TWO POLE
PHASE

~

SUPPLYVOLTAGE- ::tV

'20
,'00

-

.0

5

Open Loop Frequency Response
(1lA101A, 201A, and 301A)

Open Loop Frequency Response
(1lA101A, 201A, and 301A)

~,~010

-

oIo~>-Il
~010"'~~

./

~
10

......

~010"'~
~ 1/ V

0

............
o

O·C::s lAS 70·e

lAS; 70·e

...... ~
......

20

15

10

SUPPLYVOLTAOE- ±V

94

..,-

~

5

Output Swing vs
Supply Voltage (1lA301A)
zo

~ 18
~ 12

70

20

SUPPLYVOLTAGE- ::tV

w

V

./

g

15

O·C:5 TA:5 70°C

~

"'~'*'
~'<;;-

III

78

10

Input Voltage Range vs
Supply Voltage (1lA301A)

zo

88

;:'!82

0

zo

15

SUPPLYVOLTAOE- ,±y

!E

I

~

5~

10

94

z

I---

V~);··#

0

~

."

./

5

·v ""

g~

-SSoc S TA:$ 125°C

-66°C:5 TA:5 125°e

--

V

Voltage Gain vs Supply Voltage
(1lA101A and 201A)

0
FEE~ FOR~ARD

-20
10

100

loOK

10K

"

lOOK 1.0M

FREQUENCY - Hz

180

..t::

.35

Q

90

~

~
I

·si

10M 100M

MA101A· MA201A· MA301A

Typical Performance Curves for 1lA101A, 1lA201A, and 1lA301A (Cent.)
Large Signal Frequency Response

Large Signal Frequency Response

TA
12

I

"~

>

8

~

1\

C, • 30 F\

o
1.0K

it
III

i'. . . . .

100 K

1.0 M

> 12

I

"itz
~

TWO POLE

---

o

FREQUENCY -

FEED FORWARD

......

100 K,

10K

FREQUENCY - Hz

1\

8

S

1\

10M

1\

~

III

I

SINGLE POLE

...... 110K

8

TA ::: 25"C

\

\
\

I

\

S
o

12

!i

C1=3OpF
C2 = 300 pF

1\

+I

\C1 =3pF

!

veJ =I~I,~ Iv

TA :::; 25°C

= 25°C

\

+1

18

VCC=:t1SV

vcl.I±ljJv
>

Large Signal Frequency Response

18

18

1.0 M

o

r-_
10M

1.0 M

100 K

Hz

FREQUENCY -

Hz
PC04391F

Voltage Follower Pulse Response

Voltage Follower Pulse Response

Voltage Follower Pulse Response

0

10

10

OUTPUT

r-

>
I

!i
~w

i\

2

N /

"; -2

I

~ -4

I

\

j--

-6

!I

-

>
I

!w

OUTPUT

,..--

!\
1\

0

IIINPUT

~
~ -4

I

-8

-8

-10

-10

o ro

~

30

~

TIME

M

H

ro

=

1
I

...6

!i1.5
w

FEED FORWARD

~

~

~

~

~

~

--- --

TA =

30

~

T~'-$~

~

:---

iil
0.5

-

......,..yA = 25°C
TA

-

'\

~

5

-- 1\

vee ='

'"

20

15

SUPPLY VOLTAGE -

7-7

±15V

~

>'

>'

tl

(;

cl

10

~

>'
~-

~- rei
"

= 125"C

80
15

SUPPLYVOLTAGE- ±V

ro

H

Current Limiting

;:-.......:

V

~

V _

TIME- #oil

Jssoc
~

10

~

15

r;r: 25"C

5

o ro

~

#oil

Voltage Gain vs Supply Voltage

1---"""1

~~C:::; =2io~5

-8

120

~ 1.0

o

10

TIME -

2.5

2.0

r

-10

-.us

Supply Voltage Current vs
Supply Voltage

I

Vcc=±15V
TA 25"C
C1 =3OpF

- ..,

o

I

TWOPOLE

300
j=l

~

INPUT

OUTPUT

I
I

SINGLE POLE

-8

- - IT- t

H

I \

~ -2

I

\

-

~

IA.

I

0

- r- I-

r

INPUT

±V

o

o

15
20
10
OUTPUT CURRENT - mA

cl

25

30

p.A101A· p.A201A· p.A301A

Typical Performance Curves for
Input Current vs Temperature
and ~201A)

~101A, ~201A,

(~301A

50

00

BlM' r-.

80

l"- t--....

t-- r

to--

B1AS

r- r-

'"

20

...

•

.

0
.......
8

r-....

OFFSET

.~

l - I-.

TA·25·C

r-r-

OFFSET

2

25

0

25

50

75

100

•10

10-'

0

-to

"

....

8

1
0
-75

•

........

!?>2

Input Noise Voltage vs Frequency

80

10

3

(Cent.)

Input Current vs Temperature
only)

(~101A

0

~301A

and

20

125

80

40

80

TEMPERATURE - ·C

1.oK

100

100K

10K

FREQUENCY - Hz

TEMPERATURE. _ °C

PCQ4481F

Input Noise Current vs Frequency
(~101A and ~201A)

Input Noise Current vs Frequency
(~301A)

Common Mode Rejection vs
Frequency
120

10-24

Rs.lldl

TA =25°C
~

"

1'\
I"

[\

t-100

10k

1.Ok

100k

10-26
10

FREQUENCY -

-~

I'"
,
0

Avs

,

/

2

10

100

1.0 K

10 K

FREQUENCY -

100 K 1.0 M
Hz

10M

Avs - 1000

/'
'-./

10-3

=1

/
I'--'"

10

100

,,/

/

SINGLE POLE

COMPENSATION

~~ ~~Jt

IOi+ 5mA
1.0 K

10 K

FREQUENCY -

7-8

Hz

100

1.0 K

-

I
100 K

1.0 M

r

VCMS±1V

10 K

FREQUENCY - Hz

Hz

Closed Loop Output Impedance
vs Frequency

Supply Rejection vs Frequency
100

100K

10K

1.OK

100

FREQUENCY - Hz

20
10

"

~±10V

100 K

1.0 M

pA101A· pA201A· pA301A

Compensation Circuits (Note 2)

Typical Applications (Note 2)

Single Pole Compensation

Fast Voltage Follower

R2

Vo

V,

Power Bandwidth: 15 kHz
Slew Rate: 1 VI P.s

Inverting Amplifier With Balancing Circuit
Rl

R2

IN--~~~----~V-----~

Two Pole Compensation
R2

>::...........---OUT

Rl

R4
5.1 Mn

-V,--~V-""":..j

>""-'.....--

R3

Vo

Cl
30 pF

Voltage Comparator For Driving Or DTL Integrated
Circuits

R,C

s
c,>----

IN

R, + R2

Cs

~

OUT

30 pF

C2~10

C,

Feed Forward Compensation
C2

Notes
1. May be zero or equal to parallel combination of Rl and R2 for
minimum offset.
2. All lead numbers shown refer to 8-lead metal package.

R2

Rl

V,---'V'.",....-----t
Vo

R3

C,
150 pF

7-9

p.A 101A· p.A201A· p.A301A

Typical Applications (Cont.) (Note 2)
Low Frequency Square Wave Generator

Practical Differentiator

Rl

C2

lMe
R2

,-__+ ___

(Note 1)

~~~

IMPEDANCE

Cl

>'-'-JVW.,...."'-t-- g~MPED
D1,6.2V
D2,6.2V

Circuit For Operating Without A Negative Supply
R1

R2

1

1

I

v,

----,------,r

'...!'-----4-R3

Notes
I. Adjust C, for frequency
2. All lead numbers shown refer to 8-lead metal package

7-10

fh

~ 21TRI CI

fc

< fh < funity

1
- 21TR2C2

gain

}.LA 101 • }.LA20 1
General Purpose
Operational Amplifiers

FAIRCHILD
A Schlumberger Company

Linear Division Operational Amplifiers

Description

Connection Diagram
8-Lead Metal Package
(Top View)

The IlA101 and IlA201 are general purpose monolithic operational amplifiers constructed using the Fairchild Planar
Epitaxial process. They are intended for a wide range of
analog applications where tailoring of frequency characteristics is desirable. The IlA101 and IlA201 compensate
easily with a single external component. High common
mode voltage range and absence of latch up make the
IlA 101 and IlA201 ideal for use as voltage followers. The
high gain and wide range of operating voltages provide
superior performance in integrator, summing amplifier, and
general feedback applications. The IlA 101 and 1lA201 are
short circuit protected and have the same lead configuration as the popular 1lA741 , IlA748 and IlA709.

FREQ
COMP

v-

• Short Circuit Protection
• Offset Voltage Null Capability
• Large Common Mode And Differential Voltage
Ranges
• Low Power Consumption
• No Latch Up

Lead 4 connected to case.

Order Information
Device Code

Absolute Maximum Ratings
Storage Temperature Range
Metal Can
Molded DIP
Operating Temperature Range I
Extended (IlA 101 M)
Commercial (IlA201 C)
Lead Temperature
Metal Can (soldering, 60 s)
Molded DIP (soldering, 10 s)
Internal Power Dissipation 2, 3
8L-Metal Can
8L-Molded DIP
Supply Voltage
Differential Input Voltage
Input Voltage4

5W
5W

Package Description
Metal
Metal

Connection Diagram
8-Lead DIP
(Top View)

-65°C to + 175°C
-65°C to + 150°C
-55°C to + 125°C
O°C to +70°C

FREQ
COMP

- OFFSET NULL!
FREQCOMP

v+

-IN

300°C
265°C
1.00
0.93
±22
±30
± 15

Package Code

1lA101HM
1lA201HC

OUT

+IN

W
W
V

+ OFFSET

v-

NULL

V

V

Order Information
Device Code

Notes
I. Short circuit may be to ground or either supply. The IlA 101 ratings
apply to + 125·C case temperature or + 75·C ambient temperature. The
1lA201 ratings apply to case temperatures up to + 70·C.
2. TJ Max ~ 150·C for the Molded OIP, and 175·C for the Metal Can.
3. Ratings apply to ambient temperature at 25·C. Above this temperature,
derate the BL·Metal Can at 6.7 mW rc, and the BL-Molded DIP at
7.5 mWrC.
4. For supply voltages less than ± 15 V, the absolute maximum input
voltage is equal to the supply voltage.

1lA201TC

7-11

Package Code
9T

Package Description
Molded DIP

Equivalent Circuit
-OFFSET
NULL!
FREQ COMP

FREQ
COMP

r----------1--------.--+----+-------~--------------~------v+
-IN

--+---------Ir-------I..'

+ IN

--+------1:'
Rl1
25

n

~__1f_--OUT

R8

1kn

L-~~~---+--__~~----__----~----------------~--~--~---vR4
250 n

+ OFFSET NULL

7-12

IlA101 ellA201

MA101 and MA201
Electrical Characteristics TA = 25°C, ±5.0 V2.0

50

kn

The following specifications apply over the range of -55°C < TA <

160

20

3.0
V/mV

150

+ 125°C for /.IA 101, and O°C < TA < + 70°C for /.IA201.

kn
n
kn

VIO

Input Offset Voltage

Rs<50

!:Nlo/AT

Input Offset Voltage
Temperature Sensitivity

Rs<50

110

Input Offset Current

TA=TA Min

10

200

50

400

TA=TAMax

100

500

150

750

AIIO/ AT

Input Offset Current
Temperature Sensitivity

liB

Input Bias Current

Rs<50

6.0

10

3.0

10.0

25°C < T A < T A Max

0.01

0.1

0.01

0.3

TA Min 2.0 kn

VoP

Output Voltage Swing

Vee=±15 V

kn

70

90

±12

kn

70

I RL =10 kn
I RL = 2.0 kn

7-13

25

nA
nA/oC

/.IA
mA

65

90

dB

90

dB

±12
90

mV
/.IV/oC

6.0

6.0

Supply Current

nA

kn

400

3.0

Vee=±15V
Avs

Typ

70

V

15

V/mV

±12

±14

±12

±14

±10

±13

±10

±13

V

/lA 1081A • /lA2081 A • /lA3081 A
Super Beta
Operational Amplifiers

FAIRCHILD
A Schlumberger Company

Linear Division Operational Amplifiers

Description

Connection Diagram
8-Lead Metal Package
(Top View)

The p.A 108 Super Beta Operational Amplifier series is constructed using the Fairchild Planar Epitaxial process. High
input impedance, low noise, low input offsets, and low
temperature drifts are made possible through use of super
beta processing, making the device suitable for applications requiring high accuracy and low drift performance.
The pA 108 series is specially selected for extremely low
offset voltage and drift, and high common mode rejection,
giving superior performance in applications where offset
nulling is undesirable. Increased slew rate without performance compromise is available through use of feed forward compensation techniques, maximizing performance in
high speed sample-and-hold circuits and precision high
speed summing amplifiers. The wide supply range and excellent supply voltage rejection assure maximum flexibility
in voltage follower, summing, and general feedback applications.

•
•
•
•
•

FREQ

COMP2

vLead 4 connected to case.

Order Information
Device Code
/JA108HM
pA108AHM
pA208HV
pA208AHV
pA308HC
pA308AHC

Guaranteed Low Input Offset Characteristics
High Input Impedance
Low Offset Current
Low Bias Current
Operation Over Wide Supply Range

Absolute Maximum Ratings
Storage Temperature Range
Metal Can
Molded DIP and SO-8
Operating Temperature Range
Extended (pA 108AM, pA 108M)
Industrial (pA208AV, pA108V)
Commercial (pA308AC, pA308C)
Lead Temperature
Metal Can (soldering, 60 s)
Molded DIP and SO-8
(soldering, 10 s)
Internal Power Dissipation 1. 2
8L-Metal Can
8L-Molded DIP
SO-8
Supply Voltage
pA 1081 A, pA2081 A
pA308/A
Differential Input Current 3
Input Voltage4
Output Short Circuit DurationS

-65°C to + 175°C
-65°C to + 150°C

Package Code
5W
5W
5W
5W
5W
5W

Package Description
Metal
Metal
Metal
Metal
Metal
Metal

Connection Diagram
8-Lead DIP and SO-8 Package
(Top View)

-55°C to +125°C
-25°C to + 85°C
O°C to +70°C

8

FREQ

CQMPI

300°C
265°C
1.00 W
0.93 W
0.81 W
±20 V
±18 V
±10 mA
±15 V
Indefinite

FREQ

CQMP2

-IN

v+

+IN

OUT

v-

NC

Order Information
Device Code
pA308SC
/JA308TC
pA308ASG
pA308ATG

Notes
1. TJ Max -150'C for the Molded DIP and SO-B, and 175'C for the Metal
Can.
2. Ratings apply to ambient temperature at 25°C. Above this temperature.
derate the BL-Metal Can at 6.7 mWI'C. the BL-Molded DIP at
7.5 mWI'C. and the SO-B at 6.5 mWI'C.
3. The inputs are shunted with back-to-back diodes for overvoltage
protection. Therefore, excessive current will flow if a differential input
voltage in excess of 1.0 V is applied between the inputs unless
adequate limiting resistance is used.

Package Code
KG
9T
KG
9T

4. For supply voltages less than
voltage is equal to the supply
5. Short circuit may be to either
operation up to the maximum

7-14

Package Description
Molded Surface Mount
Molded DIP
Molded Surface Mount
Molded DIP

± 15 V. the absolute maximum input
voltage.
supply or ground. Rating applies to
operating temperature range.

p.A 108! A • p.A208!A • p.A308! A

Equivalent Circuit
FREQ

FREO

COMP 1

COMP'

r-----------.-----i---~--~------~--~--~--------------------~----------y+
RS
20 Idl

R4

201dl

R6
101dl

R7

10 kG

r -.....-'lM---1rOUT

019

-IN

020
R13
201dl
TIN

Rl
o kG

RIO
3200
RIS
6Q kG

R17
5000

RIS
1 kn

y-

7-15

J.1A 1OSI A • J.1A20S1 A • J.1A30S1 A

pA108/A and pA208/A
Electrical Characteristics ± 5.0 V

< Vee < ± 20

V. TA = 25°C. unless otherwise specified.

IlAl08A
!lA208A

Symbol

Characteristic

Condition

Min

IlA108
IlA208

Typ

Max

Typ

Max

Unit

VIO

Input Offset Voltage

0.3

0.5

0.7

2.0

mV

110

Input Offset Current

0.05

0.2

0.05

0.2

nA

0.8

2.0

0.8

2.0

liS

Input Bias Current

ZI

Input Impedance

lee

Supply Current

Vee=±20 V

Avs

Large Signal Voltage
Gain

Vee=±15 V.
Vo=±10 V. RL>10 n

30

70
.03

80

Via

Input Offset Voltage

eNlo/AT

Input Offset Voltage
Temperature Sensitivity

110

Input Offset Current

Alia/AT

Input Offset Current
Temperature Sensitivity

liS

Input Bias Current

lee

Supply Current

CMR

Common Mode
Rejection

30
0.6

300

The following specifications apply over the range of -55°C < TA < + 125°C for the
for the pA208/ A. unless otherwise specified.

Min

0.3
50

!lA108/ A.

Vee = ±20 V. TA = 125°C

5.0

3.0

96

0.8

3.0
0.4

110

Vee=±15V

Power Supply Rejection
Ratio

Vee = ±5.0 V to ±20 V

96

Avs

Large Signal Voltage
Gain

Vee=±15 V.
Vo=±10 V. RL>10 n

40

VoP

Output Voltage Swing

Vee = ± 15 V. RL = 10 kn

< Vee < ± 15

±13

0.5

0.15
85

± 13.5

Input Voltage Range

PSRR

pA308/A
Electrical Characteristics T A = 25°C. ± 5.0 V

2.5

0.15

80

mV

15

IlV/oC

0.4

nA

2.5

pAloC

3.0

nA

0.4

mA

100

dB

96

dB

V

±13

VlmV
±14

V

V. unless otherwise specified.

Min

Condition

3.0

25
±14

mA
V/mV

±13.5
110

!lA308A

Characteristic

0.6

and -25°C < TA < + 85°C

0.4
0.5

nA
Mn

300

1.0
1.0

VIR

Symbol

70

IlA308

Typ

Max

Min

Typ

Max

Unit

Via

Input Offset Voltage

0.3

0.5

2.0

7.5

mV

110

Input Offset Current

0.2

1.0

0.2

1.0

nA

liS

Input Bias Current

1.5

7.0

1.5

7.0

ZI

Input Impedance

10

7-16

40

10

40

nA
Mn

/lA 1081 A • /lA2081 A • /lA3081 A

J.lA308! A (Cont.)
Electrical Characteristics T A = 25°C, ± 5.0 V < Vee

< ± 15

V, unless otherwise specified.
j.LA308

J.lA308A
Symbol

Characteristic

Condition

Min

Icc

Supply Current

Vee=±15V

Avs

Large Signal Voltage
Gain

Vee = ± 15 V,
Vo=±10 V, RL;;;'10

Typ

Max

0.3

0.8

80

n

300

Min

25

Typ

Max

0.3

0.8

300

Unit
mA
V/mV

The following specifications apply over the range of O°C';; TA .;; + 70°C
VIO

Input Offset Voltage

t:Nlo/toT

Input Offset Voltage
Temperature Sensitivity

110

Input Offset Current

tollo/ toT

Input Offset Current
Temperature Sensitivity

liS

Input Bias Current

CMR

Common Mode
Rejection

VIR

Input Voltage Range

Vee=±15V

PSRR

Power Supply Rejection
Ratio

Vee=±5.0 V to ±18 V

96

Avs

Large Signal Voltage
Gain

Vee=±15V,
Vo=±10 V, RL;;;'lO

60

VOP

Output Voltage Swing

Vee=±15 V,

0.73
1.0

5.0

6.0

1.5
2.0

10

2.0

10
96

110

80

mV

30

j.LV/oC

1.5

nA

10

pA/oC

10

nA

100

± 13.5

± 13.5

kn
RL=10 kn

10

110

80

V
96

15

±13

±13

±14

dB

dB
V/mV

±14

V

Typical Performance Curves for J.lA108 Series
Input Noise Voltage vs Frequency

Open Loop Frequency Response
120

1000
~

100"'"

400

~
:.;

Z

i

w 100

'"

0
z

po

~

i!<

~

Rs-l.0M

I

I

Rs

lOOK

l-

80

-

~ 60

Mi' 80
c, _ 30pF-

--,""

~

~~ol
'q;

IIJ
Cs

;.o~"

"-

40

I,
10
10

:

II
100

1.0K
FREQUENCY - Hz

20

~
o

0

PHASE ___

GAIN _ _

i
10K

g

= 100pF

...

.0",

Q,

Rs ;:;; 0

,

fi!'-I

'J-

o
40

1~r---;----r----r---;----'

I C'=13PF~

.......

~

g

Supply Rejection vs Frequency

c,

;...,
-'/

"'"" " \

'"

135 ~

~

90

4S

1

10

100

1.0 K

=

30pF~ ~.

10 K 100 K 1.0 M 10 M

FREQUENCY - Hz

7-17

~

~

-20

lOOK

I

~

-~oo~~'~~-K--~'O~K--'~OO~K---'.~O~M--'~OM
fREQUENCY - Hz

JlA 1081 A • JlA2081 A • JlA3081 A

Typical Performance Curves for J.l.A 108 Series (Cant.)
Closed Loop Output Impedance vs
Frequency
103

/

102

"I
w
~

/

100

~

10-

l000,Cf

I

Vee
TA

30pF

10- 2

1.0 K

10 K

6

>
I

~

= :t

=

Ct

::>

I

1\

~
w

= 3pF

0

15 v-

Cf=

25°C

II

o
1.0 K

g -4

10 K

!j

1/

1\
-c-'

6
~

Hz

J

/ OUTPUT

/

I

!

-2

3OP~

INPUT I

i\

0

~

\

f-

100 K 1.0 M 10M

FREQUENCY -

\

---1--

>-

"z

.5

1

100

= 25°C

TA

"z

'i· mj

...J
lD

\

12

I

'Av .1,C,. 30pF

/

,

10

I III

Vcc=±15V

~

=
=
\,'"
V I)

Av

!

,...

~

I

~ "; ~

10,

~

~
",

Voltage Follower Pulse
Response

Large Signal Frequency
Response

Ycc=±15V
TA

-8

t-

-1 0

- 20 0

1.0 M

100 K

:=

25°C

_~' .~30
20

40

60

TIME -

FREQUENCY - Hz

j

80 100 120 140 160 180
~s

Typical Performance Curves for J.l.A108/A, and J.l.A208/A (Unless otherwise specified)
Input Currents vs Temperature

!Z

~

I
w

......b-,

,0

~oa..v,

r'-!~AS ~208

.5
0.25

r-::>

~

.
!

~

~

iz

0.20
0.1 5

~

0.1 0 ........

~

v

10

1.0

~

0
-55 -35

-15

5

25

45

65

85

III

1~~J.A

105 125

111

100 K

Voltage Gain vs
Supply Voltage (pA 108)

I

110

z

"."
w

!:; 100
0
>

,...L"""

-....-

1.0 M

10M

~125'C

15

20

o
o

10M

100M

Supply Current vs
Supply Voltage (f.lA 108)

\

\

= 125°C

500

1.
I 400
f-

I T

15a:

TIA • j5'C

"

TAi-r II

iil

~300

7-18

~
100

II
OUTPUT CURRENT -

/

~200 V

5

90

1.0 M

INPUTAESISTANCE-Q

c

10

0
100 K

100M

n

2f/20rAII ~5'Ct TAl s 18f;C

600

TA

SUPPLYVOLTAGE- ±Y

lO8Jl08A: - 55°C::s TA:S 125°C

I

Vcc=±1SV

0

c

~~

,.

......

.........

\

V
5

~

-\08I:zoa
10

TA:S 125°C

2i8J2~1:u5'cl TAtlIf

~

~5OC

"t::"t·

ffi
t:

5

c. = 0

f = 100Hz

III

~
a:

Output Swing vs
Output Current (IlA 108)

120

=

<

7
V.

V

/

INPUT RESISTANCE -

TEMPERATURE - 'C

TA

",.

1081108A: - 55°C

g O.1

-..!..,0&A/10& OFFSET 20&Al208

'"

r-,081208

o

8

~

1.oK

:; 100

..

~
I

Maximum Drift Error

Maximum Offset Error

2.0

--

--

0
10
± rnA

.fA. "" I_ 55°C

Tl

=25'C
TA

1~'C

=

15

SUPPLY VOLTAGE- ±V

20

IlA 1081A • p.A2081A • p.A3081A

Typical Performance Curves for IlA3081 A (Unless otherwise specified)
Input Current vs Temperature

> 1000
E

3

2r-1

T;

I

-

~

i

BIAS

"'r--

>

.........

,..l!EF~

0.1 6

Ii
i!E

100

V
/

10 -MAXIMUM

10

30

20

40

60

TEMPERATURE -

80

10

80

120

110

z

>

,/
100

UlM

10M

100M
INPUT RESISTANCE - 0

Supply Current vs Supply Voltage

Output Swing vs Output Current
16

>

7

~.~26°:"~.C

10

I

TA = 70°C

V

V
T!T= ~oc
-r
V

I

400

vcc l- ±\sv

....... .......

1"'=SO·~

--

I II

INPUT RESISTANCE - 0

C, =0
f = 100Hz

...
:c

1.0
100 K

·C

Voltage Gain vs Supply Voltage

~

i-'

-~YPICAL
"wi

0

"w

V

/

r--

0.1 0

I

=IJJc_

w

0

........

Maximum Drift Error (!lA308)

Maximum Offset Error (!lA308)

4

~

350

~

\

.." ~

'"

...... ~

-

T.

_!.c.1

TA=ioc
T.

7O°C

/'

t-= toc

60
90

20

16

10

5

SUPPLY VOLTAGE - ±

v

o

o

o

6

OUTPUT CURRENT -

Standard Compensation Circuits
R2

R2

Rl

Rl

-IN -""''''"""........

-IN-OM"......H
OUT

R3
+IN -""''''"""--I

R3

+IN

c, (NOTE 1)
Note

1. CF ;;>30 (

1 +1

~

)

7-19

-w\,---I

10

15

SUPPLY VOLTAGE-

± mA

OUT

20

"v

J.l.A 1081A • J.l.A2081 A • J.l.A3081 A

Feed Forward Compensation
Higher Slew Rate and
Wider Bandwidth

Guarding
Extra care must be taken in the assembly of printed circuit boards to take full advantage of the low input currents of the p.A 108 amplifier. Boards must be thoroughly
cleaned with TCE or alcohol and blown dry with compressed air. After cleaning, the boards should be coated
with epoxy or silicone rubber to prevent contamination.
Even with properly cleaned and coated boards, leakage
currents may cause trouble at 125°C, particularly since the
input leads are adjacent to leads that are at supply potentials. This leakage can be significantly reduced by using
guarding to lower the voltage difference between the inputs and adjacent metal runs. Input guarding of the 8-lead
TO-99 package is accomplished by using a 10-lead circle,
with the leads of the device formed so that the holes
adjacent to the inputs are empty when it is inserted in the
board. The guard, which is a conductive ring surrounding
the inputs, is connected to a low impedance point that is
at approximately the same voltage as the inputs. Leakage
currents from high voltage leads are then absorbed by the
guard.
The lead configuration of the dual-in-line package is designed to facilitate guarding, since the leads adjacent to
the inputs are not used (this is different from the standard
1-/A741 and p.A101A lead configuration).

Standard Feed Forward
C2
RI
5pF
10 Idl
IN .....W\'"""""~--It~-....,

OUT

Open Loop Frequency Response

..
z
..3

120

I

~
"
~

-.....

"'

100
80

"-

40

9

20

0

z

r0

"- '\

-

80

.

I

,

I

FEE~ FOR~ARD CO},PENSATION /

I

."

'\

,

STANDARD'
r-COMPENSATION

"

'\V

I

10

100

-{HASE

)."'"

\..

""

I
I

-20

I 80

\..GAlN

"' I'\..

1""-..'0

1.0 K 10 K 100 K 1.0 M 10 M

FREQUENCY - Hz

Feed Forward Compensation for Decoupling Load Capacitance
R2
Rs> 101cO
lOOIdl
IN~~~-1~--~~-~~---~
10pFI-Ij

>'......

......-OUT

~~_

Note

'------4-----+

CL
75 pF

to O.OI.F

CR01201F

7-20

p.A 1081 A • p.A2081 A • p.A3081 A

Inverting Amplifier
Rl

Board Layout for Input Guarding
With Metal Package

R2

IN--~~1-------~~--------'

COMPENSATION

OUT

R - R,IIR 2 (muol be low impedance)

Follower
BOTTOM VIEW
CA01240F

OUT
IN

----*r---I

Non-Inverting Amplifier
R2

OUT

Nole
1. Use to compensate for large source resistances.

7-21

JiA 124 • JiA224 • JiA324 • JiA2902
Quad
Operational Amplifiers

FAIRCHILD
A Schlumberger Company

Linear Division Operational Amplifiers

Description

Connection Diagram
14-Lead DIP and 50-14 Package
(Top View)

The /1A 124 series of quad operational amplifiers consists
of four independent high gain, internally frequency compensated operational amplifiers designed to operate from a
single power supply or dual power supplies over a wide
range of voltages. The common mode input range includes
the negative supply, thereby eliminating the necessity for
external biasing components in many applications. The output voltage range also includes the negative power supply
voltage. They are constructed using the Fairchild Planar
Epitaxial process.

OUT A

-IN A

-IN D

+IN A

+IN 0

y+

• Input Common Mode Voltage Range Includes Ground
Or Negative Supply
• Output Voltage Can Swing To Ground Or Negative
Supply
• Four Internally Compensated Operational Amplifiers
In A Single Package
• Wide Power Supply Range; Single Supply Of 3.0 V
to 30 V, Dual Supply of ± 1.5 V to ± 16 V
• Power Drain Suitable For Battery Operation

y- OR GND

+IN B

+IN C

-IN B

-IN C

OUT C

OUT B

Order Information
Device Code
/1A124DM
/1A224DV
/1A224PV
/1A324DC
/1A324PC
/1A324SC
/1A2902PV

Absolute Maximum Ratings
Storage Temperature Range
Ceramic DIP
-65°C to + 175°C
Molded DIP and SO-14
-65°C to +150°C
Operating Temperature Range
Extended (/1A 124M)
-55°C to +125°C
Automotive (/1A2902V)
-40°C to +85°C
Industrial (/1A224V)
-25°C to + 85°C
Commercial (/1A324C)
O°C to +70°C
Lead Temperature
Ceramic DIP (soldering, 60 s)
300°C
Molded DIP and SO-14
(soldering, 10 s)
265°C
Internal Power Dissipation 1, 2
14L-Ceramic DIP
1.36 W
14L-Molded DIP
1.04 W
SO-14
0.93 W
Supply Voltage Between V + and V- 32 V
Differential Input Voltage 3
32 V
Input Voltage3
-0.3 V
(V-) to V+
Notes
1. TJ Max ~ 150·C for the Molded DIP and 80-14, and 175·C for the
Ceramic DIP.
2. Ratings apply to ambient temperature at 25°C. Above this temperature
derate the 14L-Ceramic DIP at 9.1 mWrC, the 14L-Molded DIP at
8.3 mWrC, and the 80-14 at 7.5 mWrC.
3. The input common mode voltage or either input signal voltage should
not be allowed to go negative by more than 0.3 V. The upper end of
the common mode voltage range is Vee -1.5 V, but either or both
inputs can go to + 32 V without damage (+ 26 V for iJA2902).
4. Short circuits from the output to Vee can cause excessive heating and
eventual destruction. Destructive disSipation can result from simultaneous

shorts on all amplifiers.

7-22

Package Code
6A
6A
9A
6A
9A
KD
9A

Package Description
Ceramic DIP
Ceramic DIP
Molded DIP
Ceramic DIP
Molded DIP
Molded Surface Mount
Molded DIP

IlA 124 • IlA224 • IlA324 • IlA2902

Equivalent Circuit (1/4 of Circuit)
-IN

+IN

OUT

v+

BIAS COMMON TO
ALL FOUR CHANNELS

,.-- - ------ - - ------ ------

v- orGND
EQ00790F

p.A 124, p.A224 and p.A324
Electrical Characteristics T A = 25°C, V +

= 5.0

V, V -

= GND,

unless otherwise specified.

J.LA 124/A224
Symbol

Characteristic

Via

Input Offset Voltage

110

Input Offset Current

liB

Input Bias Current

Condition

Min

V + = 5.0 V to 30 V
VCM=O V to (V-)-1.5 V,
Vo",,1.4 V, Rs~50 n

CMR

Common Mode Rejection

Rs~10

kn

70

VIR

Input Voltage Range

V+ =30 V

0

PSRR

Power Supply Rejection
Ratio

los

Output Short Circuit
Current1

10+

Output Source Current

VID = 1.0 V, V + = 15 V

20

10-

Output Sink Current

VID = -1.0 V, V +
VID

= 15 V
= -1.0 V, Vo = 200 mV
V + = 15 V, RL;;' 2.0 kn

50

Avs

Large Signal Voltage
Gain

CS

Channel Separation

65

Typ

Max

Typ

Max

Unit

2.0

5.0

2.0

7.0

mV

3.0

30

5.0

50

nA

45

150

45

250

85

7-23

Min

65
28.5

100
40

1.0 kHz ~ f ~ 20 kHz,
(Input Referenced )

J-IA324

70
28.5

0
65

60

100
40

nA
dB
V
dB

60

mA

40

20

40

mA

10

20

10

20

mA

12

50

12

50

p.A

100

25

100

V/mV

-120

dB

-120

JJ.A 124 • JJ.A224 • JJ.A324 • JJ.A2902

J,LA 124, J,LA224 and J,LA324 (Cont.)
Electrical Characteristics TA = 25°C, V + = 5.0 V, V - = GND, unless otherwise specified.
iJA 1241 A224
Symbol

Characteristic

Condition

Min

I

Typ

I

iJA324

I

Min

Max

Typ

I

Max

Unit

The following specifications apply over the range of -55°C";;;TA";;;+125°C for the J..lA124; -25°C";;;TA";;;+85°C for the
iJA224; and the O°C";;; TA ,,;;; + 70°C for the J..LA324.
Via

Input Offset Voltage

LlVlolLlT

Input Offset Voltage
Temperature Sensitivity

110

Input Offset Current

LlllolLlT

Input Offset Current
Temperature Sensitivity

10

liB

Input Bias Current

40

Icc

Supply Current

V + = 5.0 V to 30 V,
VCM = 0 V to V - = 2.0 V,
Vo :::C1.4 V, Rs";;;50 il

7.0

9.0

7.0

7.0
100

Va = 0 V, RL =

00

V + = 30 V, Va = 0 V,
RL = 00

J..lVrC

150
10

nA
pArC

500

nA

0.7

1.2

mA

1.5

3.0

300

50

0.7

1.2

1.5

3.0
28

mV

VIR

Input Voltage Range

V+ =30 V

10+

Output Source Current

Via =

+ 1.0 V, V + = 15 V

10

20

10

20

mA

10-

Output Sink Current

Vlo=-1.0 V, V+ =15 V

5.0

8.0

5.0

8.0

mA

Avs

Large Signal Voltage
Gain

V + = 15 V, RL ;<>2.0 kil

25

VOH

Output Voltage HIGH

V + = 30 V, RL = 10 kil

27

V + = 30 V, RL = 2.0 kil

26

VOL

Output Voltage LOW

V+ =5.0 V, RL=10 kil

0

28

0

15
28

V

V/mV

27

28

V

26
5.0

20

5.0

20

mV

J.LA2902
Electrical Characteristics TA = 25°C, V + = 5.0 V, V - = GND, unless otherwise specified.
Symbol

Characteristic

Via

Input Offset Voltage

110

Input Offset Current

Condition

Min

V + = 5.0 V to 26 V,
VCM = 0 V to (V-) -1.5 V,
Vo::::'1.4 V, Rs";;;50 il

liB

Input Bias Current

CMR

Common Mode Rejection

Rs";;; 10 kil

50

VIR

Input Voltage Range

Vcc= 26 V

0

PSRR

Power Supply Rejection Ratio

los

Output Short Circuit Current 1

50

Typ

Max

Unit

2.0

7.0

mV

5.0

50

nA

45

250

70
24.5
100
40

7·24

nA
dB
V
dB

60

mA

JlA 124 • JlA224 • JlA324 • JlA2902

J1A2902 (Cont.)
Electrical Characteristics T A = 25°C, V + = 5.0 V, V - = GND, unless otherwise specified.
Symbol
10+

Characteristic

Output Source Current

Condition

Min

VID = + 1.0 V, V + = 15 V

20

Typ

Max

Unit

40
rnA

= 15

10-

Output Sink Current

VID=-1.0 V, V+

V

10

20

rnA

Avs

Large Signal Voltage Gain

V+ =15 V, RL;;;'2.0 kn

15

100

V/mV

CS

Channel Separation

1.0 kHz < f < 20 kHz,
Input Referenced

-120

dB

The following specifications apply over the operating temperature range of -40°C < TA < + 85°C
V + = 5.0 V to 26 V,
VCM = 0 V to V - = 2.0 V,
Vo""-1.4 V, Rs<50 n

VIO

Input Offset Voltage

10

LlVlol LlT

Input Offset Voltage
Temperature Sensitivity

7.0

110

Input Offset Current

45

Lliiol LlT

Input Offset Current
Temperature Sensitivity

mV

p.V/oC
200

nA
pA/oC

10

liB

Input Bias Current

Icc

Supply Current

Vo = 0 V, RL =

VIR

Input Voltage Range

V+ =26 V

10+

Output Source Current

V ID = + 1.0 V, V + = 15 V

10

20

rnA

10-

Output Sink Current

V ID

V, V + = 15 V

5.0

8.0

rnA

Avs

Large Signal Voltage Gain

V+ = 15 V, RL;;;' 2.0 kn

15

100

V/mV

VOH

Output Voltage HIGH

= 2.0 kn
= 10 kn
RL = 10 kn

22

V+

Output Voltage LOW

= -1.0

V, Vo = 0 V, RL

= 26

V, RL

V+ = 5.0 V,

= 00

50

500

nA

0.7

1.2

rnA

1.5

3.0

rnA

24

V

0

V + = 26 V, RL
V+

VOL

= 26

00

Notes
1. Short circuits from the output to Vee can cause excessive heating and
eventual destruction. Destructive dissipation can result from simultaneous
shorts on all amplifiers.

7-25

23

V
24
5.0

100

mV

p.A 124 • p.A224 • p.A324 • p.A2902

Typical Performance Curves
Open Loop Frequency Response
120

."

vc~='i~v

100

-fo...

I

~

80

co

"'~
...~

TA

..... ......

80

.......

t......

~

§
...iii0

= 25°C

.......

20

.......

t......
-20

10

1.0

UK

100

10K

100M

100K

FREQUENCY - Hz

Output Characteristics Current
Sourcing

,.
I
,.+

1111 I 1111 I

I.

f-

I

,.

~

,....9-

..
I

..

~

i
~

:::I

I

Tiifr

OUTPUT SOURCE CURRENT -

20

10

S
0

0

5.0

I'.r-

-5.0

10

0.1

0.01

0.1

V

1111 I

1
0.001

:::I

aoe

Rl.=10kO

15

~

!:i

>

........

TA ""'

I

0

INDEPENDENT OF V+

Vcc=±16V

1\

IS

10+

~

Output Voltage vs Frequency
30

UII

:.~~

e

I

Output Characteristics Current
Sinking

1.0 K

100
mA

Output Swing vs
Supply Voltage

OUTPUT SINK CURRENT -

Input Bias Current vs
Temperature

~

100K

1.0M

Input Bias Current vs
Supply Voltage

400

T. = 211'C_

10K

FREQUENCY - Hz

mA

V.!,=I±

1~V

180

/

1-,...
/

V

"

r-

/
oo '2.0

4.0 6.0 1.0 10

12

SUPPLY VOLTAGE

14 16

-±v

18

20

0

0
-75 -55 -35 -IS 5.0 3

45 65

TEMPERATURE

7-26

_oc

85 105 13

o

2.0 4.0 S.O 8.0 10 12

14

SUPPLY VOLTAGE - ±V

'6

18

20

IlA 1458 • IlA 1558

I=AIRCHIL.O

Dual Internally Compensated
Operational Amplifiers

A Schlumberger Company

Linear Division Operational Amplifiers

Description

Connection Diagram
8-Lead Metal Package
(Top View)

The J.lA 1458, J.lA 1558 are a monolithic pair of internally
frequency compensated high performance amplifiers constructed using the Fairchild Planar Epitaxial process. They
are intended for a wide range of analog applications
where board space or weight are important. High common
mode voltage range and absence of latch up make the
J.lA 1458, J.LA 1558 ideal for use as voltage followers. The
high gain and wide range of operating voltage provide superior performance in integrator, summing amplifier and
general feedback applications.
The J.lA 1458, J.lA 1558 are short circuit protected and require no external components for frequency compensation.
The internal 6.0 db/octave roll off ensures stability in
closed loop applications. For single amplifier performance,
see the J.LA 741 data sheet.
The Fairchild J.lA1458, J.lA1558 slew rate has been improved to 0.8/ J.lS typical.

v+

vLead 4 connected to case.

Order Information
Device Code

Package Code

J.lA1458HC
J.lA1458CHC
J.lA1558HM

• No Frequency Compensation Required
• Short Circuit Protection
• Large Common Mode And Differential Voltage
Ranges
• Low Power Consumption
• No Latch Up
• Mini-Dip Package

5W
5W
5W

Package Description
Metal
Metal
Metal

Connection Diagram
8-Lead DIP and 50-8 Package
(Top View)

Absolute Maximum Ratings
Storage Temperature Range
Metal Can and Ceramic DIP
Molded DIP and SO-8
Operating Temperature Range
Extended (J.LA 1558M)
Commercial (J.lA 1458C)
Lead Temperature
Metal Can and Ceramic DIP
(soldering, 60 s)
Molded DIP and SO-8
(soldering, 10 s)
Internal Power Dissipation I, 2
8L-Metal Can
8L-Ceramic DIP
BL-Molded DIP
SO-8
Supply Voltage
J.LA1558
J.LA1458
Differential Input Voltage
Common Mode Input Swing 3
Output Short Circuit Duration 4

v+

-65°C to + 175°C
-65°C to + 150°C

OUTS

-INB

-55°C to + 125°C
O°C to +70°C

+INB

300°C

Order Information

265°C
1.00
1.30
0.93
0.81

Device Code
J.lA1458RC
J.lA1458SC
J.LA1458TC
J.lA1458CRC
J.LA1458CTC
J.lA1558RM

W
W
W

W

±22 V
± 18 V
±30 V
±15 V
Indefinite

Package Code
6T
KC
9T
6T
9T
6T

Package Description
Ceramic DIP
Molded Surface Mount
Molded DIP
Ceramic DIP
Molded DIP
Ceramic DIP

B.7 mWrC, the BL·Molded DIP at 7.5 mWrC, and the SO·B at
6.5 mWrC.
3. For supply voltages less than ± tS V, the absolute maximum input
voltage is equal to the supply voltage.
4. Short circuit may be to ground or either supply. Rating applies to

Notes
1. TJ Max = IS0·C for the Molded DIP and SO·B, and 17S·C for the Metal
Can and Ceramic DIP.
2. Ratings apply to ambient temperature at 2S·C. Above this temperature,
derate the BL·Metal Can at 6.7 mW rc, the BL-Ceramic DIP at

+ 125°C case temperature or 70°C ambient temperature.

7-27

p.A 1458 • p.A 1558

Equivalent Circuit (112 of Circuit)
;-~--------~------~---------1----~-------------------'--V+

OUT
+IN

-IN

----+---+-----1f-....I

Rl
1 kO

R3
5OkO

RZ
lkO

L-____~--_4----~------~----~

____

Rll
5OkO
L_--~~~~_____+--~L_~~V-

7-28

I1A 1458 • I1A 1558

~A1458 and ~A1458C
Electrical Characteristics TA = 25°C, Vee = ± 15 V, unless otherwise specified.

!.LA1458C

!.LA1458
Symbol

Characteristic

VIO

Input Offset Voltage

110

Input Offset Current

liB

Input Bias Current

21

Input Impedance

Icc

Supply Current

Pc

Power Consumption

CMR

Common Mode Rejection

VIR

Input Voltage Range

PSRR

Power Supply Rejection Ratio

Condition

Min

Rs<10 kil

0.3

Vo=O V

Typ

Max

Typ

Max

Unit

2.0

6.0

2.0

10

mV

0.03

0.2

0.03

0.3

!.LA

0.2

0.5

0.2

0.7

!.LA

1.0
2.3

5.6

2.3

8.0

mA

70

170

70

240

mW

70

90

60

90

±13

± 11

±13

30

los

Output Short Circuit Current
Large Signal Voltage Gain

Vo=±10 V, RL;;;'2.0 kD

VOP

Output Voltage Swing

RL=10kil

fc

Unity Gain Crossover
Frequency

SR

Slew Rate

150

dB
V

30

20

!.LVIV

20

mA

20

100

20

100

V/mV

±12

±14

± 11

±14

V

1.1

1.1

MHz

0.8

0.8

V/!.Ls

Av = 1.0

The following specifications apply for O°C < TA <

MD

1.0

±12
Rs<10 kil

Avs

Min

+ 70°C

VIO

Input Offset Voltage

Rs<10 kD

7.5

tlVloltlT

Input Offset Voltage
Temperature Sensitivity

Rs= 50 il

110

Input Offset Current

0.3

0.4

!.LA

liB

Input Bias Current

0.8

1.0

!.LA

12

15

Avs

Large Signal Voltage Gain

Vo=±10 V, RL;;;'2.0 kil

VOP

Output Voltage Swing

RL = 2.0 kD

7-29

±13

!.LVloC

15

15

15
±10

±9.0

mV

V/mV
±13

V

JIA 1458 • JIA 1558

/lA1558
Electrical Characteristics T A = 25°C, Vee = ± 15 V, unless otherwise specified.

J.LA 1558
Symbol

VIO

Characteristic

Input Offset Voltage

110

Input Offset Current

liB

Input Bias Current

ZI

Input Impedance

Icc

Supply Current

Pc

Power Consumption

CMR

Common Mode Rejection

VIR

Input Voltage Range

PSRR

Power Supply Rejection Ratio

los

Output Short Circuit Current

Condition

Min

Rs": 10 kn

0.3

Vo=O V

Avs

Large Signal Voltage Gain

Vo=±10 V, RL>2.0 kn

Output Voltage Swing

RL = 10 kn

fc

Unity Gain Crossover Frequency

SR

Slew Rate

Max

Unit

1.0

5.0

0.03

0.2

IlA

0.2

0.5

!lA

mV

Mn

1.0
2.3

5.0

mA

70

150

mW

70

90

±12

±13
30

Rs":10 kn

VOP

Typ

dB
V
150

IlVN

20

mA

50

200

VlmV

±12

±14

V

1.1

MHz

0.8

V/IlS

Av = 1.0

The following specifications apply for -55°C": TA": + 125°C
6.0

VIO

Input Offset Voltage

Rs":10 kn

tJ.VloltJ.T

Input Offset Voltage Temperature
Sensitivity

Rs=50 n

110

Input Offset Current

0.5

liB

Input Bias Current

1.5

Avs

Large Signal Voltage Gain

Vo=±10 V, RL>2.0 kn

VOP

Output Voltage Swing

RL =2.0 kn

7-30

!lA
!lA
V/mV

25
±10

mV
IlV/oC

15

±13

V

JlA 1458 • JlA 1558

Typical Performance Curves TA = 25°C, Vee
Voltage Gain vs
Supply Voltage

115

z
C

110

"w
"~ 100
..

95

g

90

o

.ffi

28

./'

-

V

.;-

24

I
w

20

"~

,/'"

0

>

..
I-

=>

12

I-

=> 8.0

85
80
3.0

6.0

9.0

12

18

15

.,

o
10

m

100

70
50

C

"w
!i

~

60

!j

..
g
..
0

>

zw

;t

40

2

20

I'"

..

i'..

0

-20
10

40
30

z

20

1.0

I

E

"-

100

1.0K

Ii:
iii
z

100 K

Hz

LOAD RESISTANCE -

1.4

r-

Yo

0

1.'

~

./

~

/'

10

E

I
w 0.8

0
z

7.0
a: 5.0
4.0
~
0 3.0

"'- \

..

1.0
2.0

0.6

l-

=>

l-

=>

0.4

0

0.2

2.0

Hz

1.0

.

//

0

..

n

Output Noise vs
Source Resistance

0

10K lOOK 1.0M 10M

FREQUENCY -

r--.
10 K

1.0 K

Power Consumption vs
Supply Voltage

100
80

100

FREQUENCY -

120

I

I II I II I II

tv

Open Loop Frequency
Response

..

RL = 2 k
r-VOLTAGE FOLLOWER
±15 V SUPPLIES
THO < 5%

4.0

SUPPLY VOLTAGE-

Z

1\

18

0

o

Output Voltage Swing vs
Load Resistance

32

105

g

V, unless otherwise specified

Power Bandwidth (Large Signal
Swing vs Frequency)

120

tI

= ± 15

6.0

10

18

14

22
SOURCE RESISTANCE -

SUPPLY VOlTAGE-± V

Typical Applications
Quadrature Oscillator

High Impedance, High Gain Inverting Amplifier
Y+

.2
190 kU
1%

f = 21r

7-31

J

1
C2 R2 C3 R3 (R1 C1

C1

= R2

C2)

:r:~~~

pF

n

J1A 1458 • J1A 1558

Typical Applications (Cont.)
CompressorIExpander Amplifiers
Dl

R
RZ
10 kO

D3

R
+15 V

R
COMPRESSOR

R4

EXPANDER

10 kO
>'':l:''"___~_DO_UT_ _ _ -..:(IN>-4_..,;;;,yy_....,_
......-lF"

R

D4

Notes
Maximum compression expansion ratio - R,/R (10 kn> R >0)
Diodes 01 through 04 are matched F06666 or equivalent

Analog Multiplier
+15 V
AMPLIFIER
CURRENT SOURCE
lN9638
R2

20 kll
1%
Rl

20 kll
1%

Eo

E"
RS

-15

v

5 kn
1%

R4

R3

15 kll
1%

20 kll
1%

-=EXPANDER

COMPRESSOR

-=
-15 V

ZERO ADJUST

+15 V

Note
1. Matched to 0.1%
Eo - 100 EI1 X E'2

7-32

EXPANDER
OUT

J.1.A 148 • J.1.A248 • J.1.A348

FAIRCHILD

Quad
Operational Amplifiers

A Schlumberger Company

Linear Division Operational Amplifiers

Description

Connection Diagram
14·Lead DIP
(Top View)

The JJA 148 series is a true quad JJA741. It consists of
four independent, high gain, internally frequency compensated, low power operational amplifiers which have been
designed to provide functional characteristics identical to
those of the familiar JJA741 operational amplifier. In addition, the total supply current for all four amplifiers is comparable to the supply current of a single JJA741 type
operational amplifier.
Other features include input offset currents and input bias
currents which are much less than those of a standard
JJA 741. Also, excellent isolation between amplifiers has
been achieved by independently biasing each amplifier and
using layout techniques which minimize thermal coupling.

OUT A
-IN A

-IN D

+IN A
y+

•
•
•
•
•
•
•
•

JJA741 Op Amp Operating Characteristics
Low Supply Current Drain
Class AB Output Stage - No Crossover Distortion
Lead Compatible With The JJA324 & JJA3403
Low Input Offset Voltage -1.0 mV Typically
Low Input Offset Current - 4.0 nA Typically
Low Input Bias Current - 30 nA Typically
Gain Bandwidth Product For JJA148 (Unity Galn)1.0 MHz Typically
• High Degree Of Isolation Between Ampllflers120 dB Typically
• Overload Protection For Inputs And Outputs

y-

+IN B

+IN C

-IN B

-IN C

OUT B

OUT C

Order Information
Device Code
JJA148DM
JJA248DV
JJA248PV
JJA348DC
JJA348PC

Package Code
6A
6A
9A
6A
9A

Package Description
Ceramic DIP
Ceramic DIP
Molded DIP
Ceramic DIP
Molded DIP

Absolute Maximum Ratings
Storage Temperature Range
Ceramic DIP
Molded DIP
Operating Temperature Range
Extended (JJA 148M)
Industrial (JJA248V)
Commercial (JJA348C)
Lead Temperature
Ceramic DIP (soldering, 60 s)
Molded DIP (soldering, 10 s)
Internal Power Dissipation 1,2
14L-Molded DIP
14L-Ceramic DIP
Supply Voltage
JJA148
JJA248, JJA348
Differential Input Voltage
JJA148
JJA248, IlA348
Input Voltage
JJA148
JJA248, JJA348
Output Short Circuit Duration 3

-65°C to + 175°C
-65°C to +150°C
-55°C to + 125°C
-25°C to +85°C
O°C to +70°C
300°C
265°C
1.04 W
1.36 W
±22 V
±18 V
Notes
1. TJ Max = 150'C for the Molded DIP, and 175'C for the Ceramic DIP.
2. Ratings apply to ambient temperature at 25'C. Above this temperature,
derate the 14-Lead Molded DIP at 8.3 mWI'C, and the 14-Lead
Ceramic DIP at 9.1 mWI'C.
3. Any of the amplHier outputs can be shorted to ground indefinitely;
however, more than one should not be simultaneously shorted as the
maximum junction temperature will be exceeded.

±44 V
±36 V
±22 V
±18 V
Indefinite

7-33

JlA 148 • JlA248 • JlA348

Equivalent Circuit (1/4 of Circuit)
~------------------.-----------~~~-------------.--v+

R6

-IN

+IN

18

n

OUT

R7

V+

22n

+-----+-1: Q7

R3

SOKn

~--~~~--~

__

R4
3.4K

n

~------~--+----------4--~----~--~--~~V-

D

= CIIOSSUNDER
EOO0061F

7-34

IlA 148 • IlA248 • IlA348

pA148
Electrical Characteristics TA = 25°C, Vee = ± 15 V, unless otherwise specified.
DC Characteristics
Symbol

Characteristic

Via

Input Offset Voltage

110

Input Offset Current

liB

Input Bias Current

ZI

Input Impedance

Condition

Min

Typ

Max

0.8

Unit

5.0

mV

4

25

nA

30

100

1.0

Rs<10 kn

2.5

nA
Mn

3.6

rnA

Icc

Supply Current (Total)

2.4

los

Output Short Circuit Current

25

rnA

160

V/mV

Avs

Large Signal Voltage Gain

Vo=±10 V, RL;;;'2.0 kn

CS

Channel Separation

1.0 Hz

Phase Margin

SR

Slew Rate

Av

=

7-35

IlA 148 • IlA248 • J.LA348

!.LA248
Electrical Characteristics T A = 25°C. Vee

= ± 15

V. unless otherwise specified.

DC Characteristics
Symbol

Characteristic

Via

Input Offset Voltage

110

Input Offset Current

lis

Input Bias Current

ZI

Input Impedance

Condition

Min

Typ

Max

1.0

Rs';;; 10 kU

0.8

Unit

6.0

mV

4

50

nA

30

200

2.5

nA
MU

Icc

Supply Current (Total)

2.4

los

Output Short Circuit Current

25

mA

Avs

Large Signal Voltage Gain

Vo=±10 V. RL;;;'2.0 kU

160

V/mV

CS

Channel Separation

1.0 Hz';;; f .;;; 20 kHz
(Input Referred)

25

4.5

-120

mA

dB

The following specifications apply over the range of -25°C';;; TA .;;; + 65°C.
Via

Input Offset Voltage

110

Input Offset Current

Rs';;;10 kU

7.5

mV

125

nA

500

lis

Input Bias Current

CMR

Common Mode Rejection

VIR

Input Voltage Range

PSRR

Power Supply Rejection
Ratio

Rs';;; 10 kU

77

Avs

Large Signal Voltage Gain

Va = ± 10 V. RL ;;;'2.0 kU

15

VoP

Output Voltage Swing

RL = 10 kU

±12

±13

RL = 2.0 kU

±10

±12

70

Rs';;; 10 kU

90

±12

nA
dB
V

96

dB
V/mV
V

AC Characteristics

BW

Bandwidth

1.0

MHz

rt>

Phase Margin

Av= 1.0

60

degrees

SR

Slew Rate

Av = 1.0

0.5

V/J.IS

7-36

J.1A 148 • J.1A248 • J.1A348

J.lA348
Electrical Characteristics TA

=

25°C, Vee

=

± 15 V, unless otherwise specified.

DC Characterisitcs
Symbol

Characteristic

Via

Input Offset Voltage

110

Input Offset Current

118

Input Bias Current

ZI

Input Impedance

Condition
Rs~

Min

10 kil

Typ

Max

1.0

0.8

Unit

6.0

mV

4

50

nA

30

200

2.5

nA
Mil

Icc

Supply Current (Total)

2.4

los

Output Short Circuit Current

25

mA

Avs

Large Signal Voltage Gain

Vo=±10 V, RL;;'2.0 kil

160

V/mV

CS

Channel Separation

1.0 Hz~f~20 kHz
(Input Referred)

-120

dB

25

4.5

mA

The following specifications apply over the range of O°C ~ TA ~ + 70°C.
Via

Input Offset Voltage

110

Input Offset Current

Rs~10 kil

lis

Input Bias Current

CMR

Common Mode Rejection

VIR

Input Voltage Range

PSRR

Power Supply Rejection
Ratio

Rs~

Avs

Large Signal Voltage Gain

Vo=±10 V, RL;;'2.0 kil

VoP

Output Voltage Swing

RL = 10 kil

±12

±13

RL = 2.0 kil

±10

±12

7.5

mV

100

nA

400
Rs~

10 kil

70

90

±12
10 kil

77

nA
dB
V

96

15

dB
V/mV
V

AC Characteristics

BW

Bandwidth

rt>

Phase Margin

SR

Slew Rate

1.0

MHz

Av = 1.0

60

degrees

Av = 1.0

0.5

V/J1-s

7-37

•

p.A 148 • p.A248 • p.A348

Typical Performance Curves
Positive Common Mode Input
Voltage Limit vs Supply Voltage
20
-55 0

..
....
:>

J~ 1 J
TA

01

~t::

15

/

z!!

0..1

:lw
:10
oc
U!:i
wo
~>

10

/

!::

..

on

0

5

5

/

/

~120

~

;;
z

\

80
60

10

~

MEAN NOISE VOLTAGE

o

10

100

FREQUENCY -

1.0

i

0.6

1.0K

II
II

0

>
I

"'i>v,

;;

~

0.2 :I

/

81

-15

:I!::

+25O.C~

z:l

0:::;

I~

~5

tLL

w

z

-5
-5

-20
V

>
I
w

Ii

a

vJ=±!v
RL=2k

/

Av=·'

TA=25°C -

\

\

I

... .,.

10

/

\
?'

>

v,

10

100

10

0

0

0

-1 00

10

10
160

120

TIME

I

0

\
~io--

80

-15

Vo

10

[\

!:i '!io--

40

-10

Inverting Large Signal
Pulse Response

~

TIME -~.

/7

NEGATIVE SUPPLY VOLTS -

Av = 1
RL ~ 2 K

~

"..:: ~5°lc

0

0
10K

~

hV

-10

5>

TA "" 25°C

/

+125O~ ~

i!!
w>

Hz

~
<-

.......

:>

Vo

10

1\
\

h

......

:I 8;'!

0.4 Z

Large Signal Pulse Response

Ycc=±15V
TA = 25"e
Av = 1

I
I

I
I

20

V

Small Signal Pulse Response
Vo

1

0.8 ~

MEAN NOISE CURRENT

20

15

100

1.2

a:

~ 40

:I

-20

1.6

1 .4 ~

I
III 100

~~

POSITIVE SUPPL Y VOLTS -

0

'±;~ U

vee' =
TA "" 25"C

~140

1/

z

;;;>

160

;~

+125 o

Negative Common Mode Input
Voltage Limit vs Supply Voltage

Input Noise Voltage and Noise
Current vs Frequency

v,

o

200

20

40

60

-~.

80 100 120 140 160 180 200
TIME -

p8

PC/),2981F

Supply Current vs
Power Supply Voltage

Input Bias Current vs
Ambient Temperature

Output Voltage Swing vs
Supply Voltage

80

50

1

70

>
I
~

I
~

80

!

:i

50

ID

30

80

25

0

/

: ,.....

C,........-

""""-:L..--' ?
-55"

~ ~ ~ ~C
f-""
o

o

10

15

SUPPLY VOLTAGE - ±V

--

a~
~

~ ~ Vcc.,.±20V cc=±15Vr--~
.....
R~.(.
Vcc=±10V
-. r--.
--,:::~~._
20 vee ±5r
_
~f=::=i

40

l

10
20

0
-55 -35

15

25

45

65

TEMPERATURE _ "C

7-38

85

105 125

TA "" 25°C
40

i

30

~

20

..

0
1

V

~

~

*

V

V

V
V

V

0

10

15

SUPPLY VOLTAGE

20

-±V

25

IlA 148 • IlA248 • 1lA348

Typical Performance Curves (Cont.)
Output Voltage vs
Source Current

Output Voltage vs
Sink Current
-15

15

>
I

VCC=±15V

I
~

0

~ ~ ..........·c
25'~

\\ss.c
1\

~

5

'"

125"C

o

VCC=~'SV

'\

e

I

~

i'\,r\

10

!;

Output Impedance vs
Frequency

o

10

I

+~OC\
20

"

OUTPUT SOURCE CURRENT -

os

Q

I

i

~

I

125"e

o

o

30

10

mAo

11

20

OUTPUT SINK CURRENT -

21

30

mA

FREQUENCY -

Hz

FC03030F

CMR vs Frequency

Gain and Phase vs Frequency

110
80

r-...

70

3

30

i

'"

r-...

"-

10

100 K 1.0 K

10 K

FREQUENCY -

I

-5

3

-10

"

-15
-20

"

-25

i\..

-10
10

10

r-...
i\..

Iso

15

Vcc"'±1SV
TA ... 25"C
t--

"

'8

20

I

i\..

"''''''''F
Gain Bandwidth vs
Temperature

100 K
Hz

1.0 M 10 M

-30
-35
0.1

100
Vcc=±15V
90
TA = 25"C
80

Llll

~

IIIII

"

PHASE

IBw

II

so Ii!

~

60

~

\

10kO

40
r'\.GAIN

f1>l:

30
20

2.0k~\

.

Vcc=±15V

70

:l

f

10
10

0.5

FREQUENCY -

'w"I

MHz

z

~

~~45~-_~U~~'~25=-~U7-~5S~5S=-~105=-~~
TEMPERATURE - "C

"""""

7-39

I

10

"\

.

0:

PC03010F

MA3303 • MA3403 • MA3503
Quad

F=AIRCHILD
A Schlumberger Company

Operational Amplifiers
Linear Division Operational Amplifiers

Description

Connection Diagram
14-Lead DIP and S~14 Package
(Top View)

The pASSOS, pAS40S, and pAS50S are monolithic quad
operational amplifiers consisting of four independent high
gain, internally frequency compensated, operational amplifiers designed to operate from a single power supply or
dual power supplies over a wide range of voltages. The
common mode input range includes the negative supply,
thereby eliminating the necessity for external biasing components in many applications. They are constructed using
the Fairchild Planar Epitaxial process.

OUT A
-IN A
+IN 0

+IN A

v+

• Input Common Mode Voltage Range Includes Ground
Or Negative Supply
• Output Voltage Can Swing To Ground Or Negative
Supply
• Four Internally Compensated Operational Amplifiers
In A Single Package
• Wide Power Supply Range Single Supply Of 3.0 V
To 36 V Dual Supply Of ± 1.5 To ± 18 V
• Class AB Output Stage For Minimal Crossover
Distortion
• Short Circuit Protected Outputs
• High Open Loop Gain 200K Typically
• pA741 Operational Amplifier Type Performance

v·

+IN B
-IN C

-IN B

OUT C

OUT B

Order Information
Device Code
pASSOSDV
pASSOSPV
pAS40SDC
pA340SPC
pAS40SSC
pAS50SDM

Absolute Maximum Ratings
5torage Temperature Range
-65·C to + 175·C
Ceramic DIP
-65·C to + 150·C
Molded DIP and 50-14
Operating Temperature Range
-55·C to + 125·C
Extended (pAS50SM)
-40·C to + 85·C
Industrial (pASSOSV)
O·C to +70·C
Commercial (pAS40SC)
Lead Temperature
SOO·C
Ceramic DIP (soldering, 60 s)
Molded DIP and 50-14
265·C
(soldering, 10 s)
Internal Power Disisipation l , 2
1.S6 W
14L-Ceramic DIP
14L-Molded DIP
1.04 W
50-14
0.9S W
Supply Voltage Between V + and V- S6 V
±SO V
Differential Input Voltage3
Input Voltage (V _1)3
-O.S V (V-) to V+
Notes
I. TJ Max = 150·C for the Molded DIP and 80-14, and 175·C for the
Ceramic DIP.
2. Ratings apply' to ambient temperature at 25·C. Above this temperature,
derate the 14L·Ceramic DIP at 9.1 mW/·C, the 14L·Molded DIP at
B.3 mWrC, and the 80·14 at 7.5 mWrC.
3. For supply voltage less than 30 V between V + and V -, the absolute
maximum input voltage is equal to the supply voltage.

7-40

Package Code

Package Description

6A
9A
6A
9A
KD
6A

Ceramic DIP
Molded DIP
Ceramic DIP
Molded DIP
Molded Surface Mount
Ceramic DIP

~3303 • J.LA3403 • ~3503

Equivalent Circuit (1/4 of Circuit)
OUT

~------------~----------'-----~~------'------+-1------~--V+

+IN

-1------------++------.

-IN

7-41

MA3303 • MA3403 • MA3503

MA3303 and MA3403
Electrical Characteristics TA = 25°C, Vee = ± 15 V, unless otherwise specified.
~3403

~3303

Symbol

Characteristic

Condition

Min

Typ

Max

Typ

Min

Max

Unit

VIO

Input Offset Voltage

2.0

8.0

2.0

8.0

mV

110

Input Offset Current

30

75

30

50

nA

118

Input Bias Current

200

500

200

500

nA

ZI

Input Impedance

Icc

Supply Current

Vo = 0 V, RL =

CMR

Common Mode Rejection

Rs";10 kn

VIR

Input Voltage Range

PSRR

Power Supply Rejection
Ratio

los

Output Short Circuit Current
(Per Amplifier) 1

Avs

Large Signal Voltage Gain

Vo=±10 V,
RL >2.0 kn

VOP

Output Voltage Swing

TR

Transient
Response

0.3

1.0
2.8

00

0.3
7.0

MS1

1.0
2.8

7.0

mA

70

90

70

90

dB

+12
to
V-

+12.5
to
V-

+13
to
V-

+13.5
to
V-

V

30

150

p.VIV

±10

±30

±45

mA

200

20

200

12.5

±12

+13.5

12

±10

±13

30

150

±10

±30

±45

20

RL = 10 kS1

±12

RL =2.0 kS1

±10

V/mV
V

Rise timet Vo=50 mY,
Fall time
Av = 1.0, RL = 10 kS1

0.3

0.3

p.s

Overshoot Vo=50 mY,
Av = 1.0, RL = 10 kS1

5.0

5.0

%

BW

Bandwidth

Vo=50 mY,
Av = 1.0, RL = 10 kS1

1.0

1.0

MHz

SR

Slew Rate

VI=-10 V to +10 V,
Av = 1.0

0.6

0.6

V/IJ.S

The following speCifications apply for -40·C"; TA ..; + 85·C for the p.A3303, and O·C"; TA ..; + 70·C for the p.A3403.
VIO

Input Offset Voltage

10

110

10

10

I1VlolfH Input Offset Voltage
Temperature Sensitivity
Input Offset Current

250

11110/I1T Input Offset Current
Temperature Sensitivity

200

50

50

118

Input Bias Current

Avs

Large Signal Voltage Gain

Vo=±10 V,
RL>2.0 kS1

15

1000
15

VOP

Output Voltage Swing

RL =2.0 kS1

±10

±10

7-42

mV

p'vrc

10

nA
pArC

800

nA
VlmV
V

/-LA3303 • /-LA3403 • /-LA3503

IlA3303 and 1lA3403 (Cont.)
Electrical Characteristics T A = 25°C, V + = 5.0 V, V - = Gnd, unless otherwise specified.
/lA3303
Symbol

VIO

Characteristic

Typ

Max

Typ

Min

B.O

Input Offset Voltage

110

Input Offset Current

lis

Input Bias Current

Icc

Supply Current

PSRR

Power Supply Rejection
Ratio

Avs

Large Signal Voltage Gain

VoP

Output Voltage SWing 2

2.5

RL > 2.0 kg

20

RL = 10 kg
~30

V,

Unit

B.O

mV

nA

75

30

50

500

200

500

nA

7.0

2.5

7.0

rnA

150

/lVN

20

200

3.3

3.3

(V+)
-2.0

(V+)
-2.0

1.0 Hz ~ f ~ 20 kHz
(Input Referenced)

Channel Separation

Max

2.0

150

5.0 V~V+
RL = 10 kg
CS

Min

Condition

/lA3403

200

V/rnV
V

-120

-120

dB

IlA3503
Electrical Characteristics TA = 25°C, Vee = ± 15 V, unless otherwise specified.
!lA3S03
Symbol

Characteristic

Condition

Min

Typ

Max

Unit

Via

Input Offset Voltage

2.0

5.0

mV

110

Input Offset Current

30

50

nA

liS

Input Bias Current

200

500

ZI

Input Impedance

0.3

Icc

Supply Current

Va = 0, RL =

CMR

Common Mode Rejection

Rs~lO

VIR

Input Voltage Range

PSRR

Power Supply Rejection Ratio

los

2.B

00

kg

Output Short Circuit Current
(Per Amplifier) 1

rnA

90

dB

+13
to
V-

+13.5
to
V-

V

30

150

/lVN

±10

±30

±45

rnA

Avs

Large Signal Voltage Gain

Vo=±10 V, RL>2.0 kg

50

200

Output Voltage Swing

RL = 10 kg

±12

± 13.5

RL = 2.0 kg

±10

±13

Transient
Response

4.0

70

VOP
TR

nA
Mg

1.0

V/mV
V

IRise time

Va = 50 mY, Av = 1.0, RL = 10 kg

0.3

JOvershoot

Vo=50 mY, Av=1.0, RL=10 kg

5.0

%

/lS

BW

Bandwidth

Va = 50 mY, Av = 1.0, RL = 10 kg

1.0

MHz

SR

Slew Rate

VI=-10 V to +10 V, Av=1.0

0.6

V//ls

7-43

1lA3303 • 1lA3403 • J,LA3503

A" +

1lA3503

Electrical Characteristics -55°C" T

125°C, Vee = ± 15 V, unless otherwise specified.
/lA3503

Symbol

Characteristic

VIO

Input Offset Voltage

!lVIO!!IT

Input Offset Voltage
Temperature Sensitivity

110

Input Offset Current

!lllo! !IT

Input Offset Current
Temperature Sensitivity

Condition

Min

Typ

Max
6.0

200

Input Bias Current

Avs

Vo=±10 V, RL~2.0 kfl

VOP

Output Voltage Swing

RL=2.0 kfl

nA
pArC

50

Large Signal Voltage Gain

mV

IlVloC

10

liB

Unit

1200
25

nA
V!mV

±10

V

The following specifications apply for T A = 25°C, V + = + 5.0 V, V- = GND.
VIO

Input Offset Voltage

2.0

5.0

mV

110

Input Offset Current

30

50

nA

liB

Input Bias Current

200

500

nA

Icc

Supply Current

PSRR

Power Supply Rejection
Ratio

2.5

Avs

Large Signal Voltage Gain

RL~2.0 kfl

20

VOP

Output Voltage SWing2

RL=10 kfl

3.3

5.0 V<"V+ <"30 V, RL=10 kfl
CS

Channel Separation

1.0 Hz <" f <" 20 kHz (Input Referenced)

Notes
1. Not to exceed maximum package power dissipation.
2. Output will swing to ground.

7-44

200

4.0

mA

150

IlVIV
V!mV
V

(V+)
-2.0
-120

dB

J,LA3303 • J,LA3403 • J,LA3503

Typical Performance Curves
Open Loop Frequency Response

:c

"..
"~

80

>

40

Output Voltage vs Frequency

VCC"" ±1S V
TA

1100
I

z

Sine Wave Response

30

120

Av = 100

"" 25°C

~ III 1/\ 1\ If\ [
~

d

80

..
g
...
0

.I

IV V hl IV \J

i!:

0

~

20

z

III

0

r. r.

.::

.~

g
~~

1

\

5

10
5.0

-......

o

Hz

r-

-5 .0
T.OK

SO

= 25°C
"" 10 kU

TA
AL

20

I

NOTE: CI... AS output ltage produce.
dl,tortlonl... line wave

- 20 1!-'.o,u.LI..:l'O,...uw..,I-!;:IIO,..u.ll,:-:.o~K:f-'JIL'~O:-:K!-"-"'IOO±-!K;'l':,:-:!.O M
FREQUENCY -

r.

r..

r.;

lee 1= Wv

.

~./DIV

10 K

1.0 M

100 K

FREQUENCY -

Hz

PC02591F

Output Swing vs
Supply Voltage

Input Bias Current vs
Temperature

40

t='2.·L

Input Bias Current vs
Supply Voltage
180

4110

Vel

=

~'5 J-

~

~

..
.". 20
I

.is

30

./

z

...
..

r-

'/

0

>

:>

/'

10

.

~

...

..

!; 160
!

/

:>

"

u

'-.

"~

'10

::i:>

a:

/

0

,I

oQ

2.0 4.0 8.0 8.0 1Q

12

SUPPLY VOLTAGE -

14

tv

16

18 20

150

o

-75 -55 -35 -15 5.0 25

45

TEMPERATURE _

7-45

65
0

C

85 105 125

o

2.0 4.0 6.0 8.0 10

12

14

16

SUPPLY VOLTAGE-:!:Y

18

20

J,LA3303 • J,LA3403 • J,LA3503

Typical Applications

Wein Bridge Oscillator
50 kll
r-----~~-----t--vo

Multiple Feedback Bandpass Filter

10 kll

-t

VREF ....- " " '............

VREF =

c

+V+

R

fo = center frequency

fo
BW ~ Bandwidth
R in kU
C in I'F

~

1
- - for fo ~ 1 kHz
21TRC
R~16 kn
C ~ 0.Q1 I'F

Comparator With Hysteresis

Q~~<10
BW

C1

R2
Q

~C2~~

R1

3

VAEF-""',...............

v,---------f'

R1 ~ R2 ~ 1J
R3 = 9Q2_1
Use scaling factors in these expressions.

HYSTERESIS

VOHEifL
I
VOL

Vo

Vo

VIL

IVIH

I
VAEF

If source impedance is high or varies, filter may be preceded with
voltage follower buffer to stabilize filter parameters.

Design example:
given: Q ~ 5, fo ~ 1 kHz
Let R1 - R2 ~ 10 kn
then R3 ~ 9(5)2 - 10
R3~215

5

C~-~

3

kn

1.6 nF

7-46

J..lA3303 • J..lA3403 • J..lA3503

Typical Applications (Cant.)
High Impedance Differential Amplifier

AC Coupled Inverting Amplifier

R6

RI

100 kn
Vl

Rl
C, 10 kn

'f

R3

Co

R4

+

Cl

11
10 kn

R2
l001cQ

V+

10.uFJ,

1\ 1\""
o

\J

RS

2Vp_p

T

V2

R7

Rt

AY~Fi1

Ay

~

10 (as shown)

Your ~ C(1 + a + b)(V2 - V1)
R2

R6

R5

R7

- '" R1

~

R2~

Voltage Reference
tor

best CMRR

V+

R4
R5

R6 ( 1 +
2R1
-)
R5
R3

Gain~-

R2

10kO

~C(1

+a+b)
Rl

10kO

AC Coupled Non-Inverting Amplifier
AFOO380F

V - -R1
-- (
0- R1 + R2

=2 as shown )
V+

Ground Referencing A
Differential Input Signal

Rl

1MO

va

R2

Ay~ 1 +Fi1

Ay

~

+
VR

11 (as shown)

R2

1Mn
R4
1Mn

+VCM
R3
1M!}

7-47

MA3303 • MA3403 • MA3503

Typical Applications (Cont.)
Voltage Controlled Oscillator

RI
100 kll

n...r

+Vco - ......"..""'......- - - - -.....-4

(NOTE 1)

51 kll

OUT 1

R2

50 kll

/'.A
OUT 2

Function Generator
VAEF

=

i

TRIANGLE WAVE
OUT

Vee

R2
300kll

,---'\IIoI\t--......-SQUARE WAVE
OUT
R3
75kU

VAEF

c

RI
IOOkll

Rf
(NOTE 2)

L---'--VREF

Pulse Generator

Vo

+

SL..rL

Note
1. Wide Control Voltage Range:
OV';;'Vco';;'2 (V+-1.5 V)
R1 + R2
R2R1
2. f = - - - if R3=--4CRIR1
R2 + R1

7-48

J,LA3303 • MA3403 • MA3503

Typical Applications (Cent.)
Bi-Quad Filter
A
R

C

C1

V,

R2

--jf-1.........Nv-.......-I

VREF

R1

RZ
C1
f--NOTCH OUT

VREF

BW
Q-10
where
TBP - Center Frequency Gain
TN - Bandpass Notch Gain

Rl-QR
Rl
R2-TBP

R3 -TNR2
Cl-l0 C
Example:

10 -1000 Hz
BW-l00 Hz
T BP - l

TN-l
R-160 kS1
Rl =1.6 MS1
R2-1.6 MS1
R3-1.6 MS1
C -0.001 p.F

7-49

J.lA4136
Quad
Operational Amplifier

I=AIRCHILD
A Schlumberger Company

Linear Products Operational Amplifiers

Description

Connection Diagram
14-Lead DIP and 80-14 Package
(Top View)

The j.lA4136 Monolithic Quad Operational Amplifier consists
of four independent high gain, internally frequency compensated operational amplifiers. The specifically designed
low noise input transistors allow the j.lA4136 to be used in
low noise signal proceSSing applications such as audio
preamplifiers and signal conditioners. It is constructed using the Fairchild Planar Epitaxial process. The simplified
output stage completely eliminates .crossover distortion under any load conditions, has large source and sink capacity, and is short circuit protected. A novel current source
stabilizes output parameters over a wide power supply
voltage range.

-INA
+INA

Unity Gain Bandwidth - 3.0 MHz Typically
Continuous Short Circuit Protection
No Frequency Compensation Required
No Latch Up
Large Common Mode and Differential Voltage
Ranges
• pA741 Operational Amplifier Type Performance
• Parameter Tracking Over Temperature Range
• Gain and Phase Match Between Amplifiers

•
•
•
•
•

OUT A

OUT 0

OUTB

y+

+INB

OUTC

-IN B

+INC

y-

-INC

Order Information
Device Code
j.lA4136DC
j.lA4136PC
j.lA4136SC

Absolute Maximum Ratings
Storage Temperature Range
Ceramic DIP
Molded DIP and SO-14
Operating Temperature Range
Lead Temperature
Ceramic DIP (soldering, 60 s)
Molded DIP and SO-14
(soldering, 10 s)
Internal Power Disisipation 1, 2
14L-Ceramic DIP
14L-Molded DIP
SO-14
Supply Voltage
Differential Input Voltage3
Input Voltage 1
Output Short Circuit Duration4

-IN 0

-65°C to + 175°C
-65°C to + 150°C
O°C to +70°C
300°C
265°C
1.36 W
1.04 W
0.93 W
±18 V
±30 V
±15 V
Indefinite

Notes
1. TJ Max = 150·C for the Molded DIP and SO-14, and 175·C for the
Ceramic DIP.
2. Rating apply to ambient temperature at 25·C. Above this temperature,
derate tha 14L·Ceramic DIP at 9.1 mWrC, the 14L·Molded DIP at B.3
mWrC, and tha SO-14 at 7.5 mWrC.
3. For supply voltage less than ± 15 V, tha absolute maximum input
voltage is equal to the supply voltage.
4. Short circuit may be to ground, one amplifier only.

7-50

Package Code
6A
9A
KD

Package Description
Ceramic DIP
Molded DIP
Molded Surface Mount

J.lA4136

Equivalent Circuit (1 /4 of Circuit)
v.--------_4~----------~--_4~--------------~------~--__,
R1
B.7 k

05:.----------~--_f~~--------------~r__1--~

+----.----~r 011
R6
50

RB
100

+--~~-+_--+----OUT

-IN
+IN

R7
50

----t------+---'
014

R9
6.B k
R5
50 k

v-----~--

__

~--_+------~

__--------______

_+----4_------~

Nole
1. All resistor values are in ohms.

7-51

____~----J

J.lA4136

IlA4136
Electrical Characteristics TA = 25°C, Vee
Symbol

= ± 15

V, unless otherwise specified.
Condition

Characteristic

Min

Max

Unit

0.5

6.0

mV
nA

Typ

VIO

Input Offset Voltage

110

Input Offset Current

5.0

200

lis

Input Bias Current

40

500

ZI

Input Impedance

Pc
CMR

Common Mode Rejection

VIR
PSRR

Rs<10 kU

0.3

210

Power Consumption
Rs< 10 kU

70
±12

Input Voltage Range

340

mW
dB

90
±14

V
150

Power Supply Rejection Ratio

Rs< 10 kU

Avs

Large Signal Voltage Gain

RL;;.o2.0 kU, Vo=±10 V

20

300

V/mV

VOP

Output Voltage Swing

RL = 10 kU

±12

±14

V

RL =2.0 kU

±10

±13

TR
BW

Transient
Response

I Rise time
I Overshoot

Bandwidth

30

nA
MU

5.0

VI = 20 mY, RL = 2.0 kU,
CL = 100 pF, Av = 1.0

0.13

Av = 1.0

pV!V

/.LS

5.0

%

3.0

MHz

1.0

V//.LS
dB

SR

Slew Rate

RL = 2.0 kU, Av = 1.0

CS

Channel Separation

f = 10 kHz, Rs = 1.0 kU,
Open Loop

105

f = 10kHz, Rs = 1.0 kU
Av= 100

105

The following specifications apply over the range of - 55°C < TA < + 125°C for /.LA4136; O°C < TA < + 70°C for 1.LA4136C
VIO

Input Offset Voltage

7.5

mV

110

Input Offset Current

300

nA

lIB

Input Bias Current

800

nA

Pc

Power Consumption

TA=TAMax

180

300

mW

400

Large Signal Voltage Gain

TA = TA Min
RL;;.o2.0 kU, Vo=±10 V

240

Avs
VOP

Output Voltage Swing

Rs<10 kU

RL =2.0 kU
Vcc=±15 V

7-52

15
±10

V/mV
V

fJ.A4136

Typical Performance Curves
Input Bias Current vs
Temperature
100

Vee
~

Input Offset Current vs
Temperature
25

1 J
±1S

J

=[ :t15

Vee

':l

80

Common Mode Range vs
Supply Voltage
>
I
w

20

"~

15

"~

...z

..13~

60

'"

"'

40

iii

...

~

!

--

..

w

w

::>
()

I--

t;;

10

~

0

...

......

~

20

~

o

0
10

20

30

40

50

TEMPERATURE _

60

70

40

Z

20

§
~

()

40

50

60

70
SUPPLY VOLTAGE -

°C

-20
1.OK

I 220

g

..,.

W

o

100

E

z

~

~

~ 400

!:i

""","
10

~

I

Z

"r\.

1

Vee
240

j 600

"-

10K

FREQUENCY -

~

±15

J

- r-

r--

()

180

~

~

~
160
0
10

20

30

40

50

60

70

10

TEMPERATURE _ °C

>

26 Vee
TA

I

4

>
I

"~

2

2

"z

~

2

!;

18

~...
::>

~

6
1

o

14

~

12

"
~

"

25°C

/

0
8
0.1

30

40

50
0

60

70

C

Output Voltage Swing vs
Frequency
0
Vee:: :t15 V
= 25°C
= 2 kH

6 TA

R,
2

4

0

~

o

=:

-

.,.

J±1~.1

20

TEMPERATURE _

Output Voltage Swing vs
Load Resistance
28

;tV

..

200

lOOK 1.0M 10M

o

200

'"0z

-!!k...""2kn

§

Hz

Typical Output Voltage vs
Supply Voltage

SUPPLY VOLT AGE -

::>

1-

g

"f:V

Power Consumption vs
Temperature

1"5 V

Vee =

'r\.

g

30

,.'o"

Open Loop Voltage Gain vs
Temperature

r--

80

60

20

w

o

o

'oz"

800

~

~

10

TEMPERATURE _

120

~

-- --

°c

Open Loop Voltage Gain vs
Frequency

.. 100

o

~

0

II

6

2

II

\

8

'\

4

J

0
1.0
LOAD RESISTANCE -

7-53

10
kH

......
100

1.0K

10K

FREQUENCY -

100K
Hz

1.0M

p.A4136

Typical Performance Curves (Cont.)
Quiescent Current vs
Supply Voltage

Voltage Follower Large Signal
Pulse Response

Transient Response
8

0

,

Vee == :t15 V
8 TA = 25°C

10

TA ='2S"C

I

6

~

0

I

>

.
t-

E

Z

W

""""

0:

::>

I

~

"ffi
"ffl

::>

o

..,

•

1

I

8

0

12
SUPPLY VOLTAGE -

15

-4
-0.25

18

r~O% RISE

Vcc=±lSV
TA == 25° C
RL == 2 kH
CL =:: 100 pF

TIME

0.25

0.50

TIME -

:tV

Input Noise Voltage vs Frequency

0

0.75

1.0

-. -

-4

10

1.25

I 100

z

i

0:

::>

I'-

"

w 1.0

'"oz

Distortion vs
Frequency (Vo

=

0

;::

R,

0.5

Av
f

Rs

'"
==
::;:
=

'z"I

2 k

40 dB
1 kHz

1 kn

0

;::

Q

"i,.

..
0

l:

0
t-

'"0

0.'

I

0.3

ot-

0.2
0.1

",.i

...
..
0

~

~

100 K

0 .•

....-

)

O!=;t:;t:::t:t::t:t:~u
o 1,0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10
OUTPUT VOLTAGE-V

:I:

=1 Vrms)

Vee '" 230 V
RIAA COMPENSATION

0.5
0.4
0.3
0.2

\

~

t0
t-

O. 1

./

o
10

100

80
60

.li

40

"

0

loOK
FREQUENCY -

7-54

10 K
Hz

10

100

I.OK
FREQUENCY -

Hz

0:

0:

0
t-

!!!

10 K

o.7

0.7r-.,--.--,-.--r-,-y-..,..,.-"
Vee =- :t15 V
0 .•

1.0K

FREQUENCY -

Distortion vs Output Voltage
(f 1 kHz)

...... r-,

25°C

0
100

Hz

--

:I:

till jOldi
10

40

w

Vee -' _r15 V
~ 25°C
Rs -;;; 100 k

1.0

'z"I

~

TA

0.1
FREQUENCY -

'"

J.m..lvLIJL,L
=
TA

o

..ffi

30
~s

Channel Separation
140

10

___

20
TIME -

I~

I

L

-8

120

i

if

~s

Input Noise Current vs Frequency

i1~HH~~-+~-+~~~++H-+-~+;

,,,
,, 1\
,,
\
,,
,

-1 0

100

~

-

1/

2

!;
o

r-

2

2

~

I

4

~

~g

I

2

~--

,, i/
,,

4

w

90%

lOOK

10 K
Hz

100 K

JlA4136

Typical Applications (Note 1)
400 Hz Lowpass Butterworth Active Filter
10k

620Q

20 k

820 Cl

IN~~-;I~~~~~'-------------~~----------------~------------~~--------,---OUT
0.33pF

1k

1k

-I
I.

I
I
MI38

_____
0.33pF

1.62 k

1k

1k

O.33pF

Differential Input Instrumentation Amplifier With
High Common Mode Rejection

I
I
+

OUT
R3
10k
1%
A

R4
45k
1%
R6
10 k
0.1%
(NOTE 2)

V

~.!!!f,+~)
R2\
R3

Notes
1. All resistor values are in ohms
2. Matching determines CMRR

RI

R7

~

R4

R2=R5
R6= R7

100 k
0.1%
(NOTE 2)

7-55

13.2k

IlA4 136

Typical Applications (Cont.) (Note 1)
Analog Multiplier/Divider
. - - - -.....-0-16 V
10k
10k

El E2

Eo= - -

10k

E,

10k

10 k

10k

10k

10 k

kHz Bandpass Active Filter
v+

120 k

v+

r-.IVI~-t--t-Vo

390k
39k

0.01 pF

820n

620k

J.

10PF

100 k

lOOk

v+

Note
1. All resistor values are in ohms

7-56

tJA4136

Typical Applications (Cont.) (Note 1)
Full-Wave Rectifier And Averaging Filter
20 k

20 k

2.6 k

r -____________JV1%~--------------r_~1A%A-~~~,__~T
4.71'F
~c~~~+~~~~

______~~____-,

4.71'F

CAL

4.7"F

10k
1%

6.1 k
10k

Notch Filter Using The !1A4136 As A Gyrator

Multiple Aperture Window Discriminator

R2

V,

30k

V.
IN
Q,

V3 < VI < V4

Q,==]~--------~
R4

v,-If---i
Notch Frequency vs Capacitor
10k

V'------i

:I!
'1k

liZ

I"'

w

a

I'.

w

II:

:.....

a:: 100

r-..

~

w

(J

10
0.0001

0.001

0.01

0.1

Note
1. All resistor values are in ohms

1.0

CAPACITOR - "F

7-57

11A709
High Performance
Operational Amplifier

FAIRCHIL.D
A Schlumberger Company

Linear Division Operational Amplifiers

Description

Connection Diagram
8-Lead Metal Package
(Top View)

The p.A709 is a monolithic high gain operational amplifier
constructed using the Fairchild Planar Epitaxial process. It
features low offset, high input impedance, large input common mode range, high output swing under load, and low
power consumption. The device displays exceptional temperature stability and will operate over a wide range of
supply voltages with little performance degradation. The
amplifier is intended for use in DC servo systems, high
impedance analog computers, low level instrumentation applications, and for the generation of special linear and
nonlinear transfer functions.

IN FREQ COMP 2

-IN

OUT

v-

Connection Diagram
8-Lead DIP and 50-8 Package
(Top View)

Lead 4 connected to case

Order Information
IN FREQ
COMP1

IN FREQ
COMP2

-IN

y+

+IN

OUT

y-

Device Code
p.A709AHM
p.A709HM
p.A709HG

~A709TG

p.A709SG

Package Code
9T
KG

Package Description
Metal
Metal
Metal

Connection Diagram
14-Lead DIP
(Top View)

OUTFREQ
COMP

NC

Order Information
Device Code

Package Code
5W
5W
5W

Package Description
Molded DIP
Molded Surface Mount

NC
NC

NC
12
IN FREQ
COMP1

IN FREQ
COMP2

-IN

v+

+IN

OUT

vNC

OUT FREQ
COMP

NC
CD00741F

Order Information
Device Code
p.A709PG

7-58

Package Code
9A

Package Description
Molded DIP

fJ.A709

Internal Power Dissipation I, 2
8L-Metal Can
8L-Molded DIP
SO-8
14L-Molded DIP
Supply Voltage
Differential Input Voltage
Input Voltage
Output Short Circuit Duration

Absolute Maximum Ratings
Storage Temperature Range
Metal Can
Molded DIP and SO-8
Operating Temperature Range
Extended (/lA709AM, /lA709M)
Commercial (/lA709C)
Lead Temperature
Metal Can (soldering, 60 s)
Molded DIP and SO-8
(soldering, 1Os)

-65°C to + 175°C
-65°C to + 150°C
-55°C to + 125°C
O°C to +70°C
300°C
265°C

Notes
1. TJ Max ~ IS0·C for the Molded DIP and SO-8, and 17S·C for the Metal
Can.
2. Ratings apply to ambient temperature at 25°C. Above this temperature,
derate the 8L-Metal Can at 6.7 mWrC, the 8L-Molded DIP at
7.5 mWrC, the SO-8 at 6.5 mWrC, and the 14L-Molded DIP at
8.3 mWrC.

Equivalent Circuit
IN FREO
COMPI

IN FREO
COMP2

~--------.----4-------------+--------~--~--------~----~--V+

R7
1 kfl

06

05

R15
30 kll

OUT
R8
3.6 kll

R9
10kll
OUT FREO
COMP

-IN

RIO
18 kfl
-IN

Q1

013

Rl1

Rl3

2,4 lUI

7511

~-----------4--------------~---+--V-

7-59

1.00 W
0.93 W
0.81 W
1.04 W
± 18 V
±5.0 V
± 10 V
5.0 s

pA709

~709A and MA709
Electrical Characteristics T A = 25°C, ± 9.0 V

« Vee « ± 15

V, unless otherwise specified.
/lA709A

Symbol

Characteristic

Condition

Min

kn

Typ

/lA709
Max

Min

Max

Unit

0.6

2.0

Typ
1.0

5.0

mV

10

50

50

200

nA

100

200

200

500

VIO

Input Offset Voltage

110

Input Offset Current

118

Input Bias Current

ZI

Input Impedance

Icc

Supply Current

VCC=±15V

2.5

3.6

2.7

5.5

mA

Pc

Power Consumption

Vcc=±15 V

75

10S

SO

165

mW

TR

Transient Response

Vcc=±15 V
VI =20 mV
RL =2.0 kn
C1 = 5.0 nF
Av = 1.0

0.3

1.5

0.3

1.0

/lS

Overshoot R2 = 50 n
CL<100 pF
R1 = 1.5 kn
C2 = 200 pF
Av = 1.0

10

30

10

30

%

..

Rs<10

350

Rise time

700

150

nA

kn

400

The follOWing specifications apply over the range of -55°C to + 125°C for the !1A709A and !1A709 .
VIO

Input Offset Voltage

AVIO/AT

Input Offset Voltage
Temperature Sensitivity

110

Input Offset Current

AIIO/AT

Input Offset Current
Temperature Sensitivity

kn
Rs= 50 n
Rs<10 kn

1.S

10

3.0

4.8

25

6.0

TA = +125°C

3.5

50

20

200

TA = -55°C

40

250

100

500

TA = +25°C to
+125°C

0.08

0.5

TA = +25°C to
-55°C

0.45

2.S

TA = -55°C

300

600

2.1

3.0
4.5

3.0

Rs<10

6.0

mV
/lV/DC
nA
nArC

116

Input Bias Current

AIlS/AT

Input Bias Current Temperature
Sensitivity

TA = +125°C
TA = -55°C

2.7

ZI

Input Impedance

TA =-55°C

S5

170

40

100

kn

CMR

Common Mode Rejection

Rs<10

SO

110

70

90

db

VIR

Input Voltage Range

VCC=±15V

±8.0

±10

±S.O

±10

PSRR

Power Supply Rejection Ratio

Rs<10

Avs

Large Signal Voltage Gain

VCC=±15V
RL ;;;'2.0 kn
Vo=±10V

25

VOP

Output Voltage Swing

Vcc=±15 V
RL = 10 kn

±12

VCC=±15V
RL = 2.0 kn

±10

kn
kn

40

7-60

500

1500

nA
nA/oC

100

V

50

150

/lV/v

25

45

70

V/mV

±14

±12

±14

±13

±10

±13

70

V

IlA709

J,lA709A and J,lA709 (Cont.)
Electrical Characteristics T A = 25°C, ± 9.0 V

~ Vee ~ ± 15 V, unless otherwise specified.

J.lA709

/lA709A
Symbol

Icc

Min

Typ

Max

TA = ± 125°C

2.1

3.0

TA = -55°C

2.7

4.5

Characteristic

Condition

Supply Current

Min

Typ

Max

Unit

mA

J,lA709C
Electrical Characteristics T A = 25°C, Vee = ± 15 V, unless otherwise specified.
J.lA709C
Symbol

Characteristic

VIO

Input Offset Voltage

110

Condition

Rs";;;10

Min

kn

Typ

Max

Unit

2.0

7.5

mV

Input Offset Current

100

500

nA

lis

Input Bias Current

300

1500

ZI

Input Impedance

Icc

Supply Current

Vcc=±15V

2.7

6.66

mA

Pc

Power Consumption

Vcc=±15V

80

200

mW

CMR

Common Mode Rejection

Rs";;;10

VIR

Input Voltage Range

VCC=±15V

PSRR

Power Supply Rejection Ratio

Rs";;; 10

TR

Transient Response

50

kn

65

90

±8.0

±10

kn

50

nA

kn

250

dB
V
200

J.lVIV

Rise time

Vcc=±15V
VI =20 mV
RL = 2.0 kn
C1 = 5.0 nF
Av = 1.0

0.3

J.IS

Overshoot

R2 = 50 n
CL = 100 pF
R1 = 1.5 kn
C2 = 200 pF
Av = 1.0

10

%

The following specifications apply over the range of O°C to + 70°C.

kn

VIO

Input Offset Voltage

Rs";;; 10

10.0

mV

110

Input Offset Current

TA = O°C

750

nA

lis

Input Bias Current

TA = O°C

2000

ZI

Input Impedance

TA = O°C

Avs

Large Signal Voltage Gain

VCC=±15V

VOP

Output Voltage Swing

nA

35

80

kn

15

45

V/mV

Vcc=±15 V
RL = 10 kn

±12

±14

V

Vcc=±15 V
RL = 2.0 kn

±10

±13

V

RL~2.0

kn

Vo=±10V

7-61

pA709

Typical Performance Curves for p.A709A
Voltage Gain vs
Supply Voltage

Output Voltage Swing vs
Supply Voltage

7.
>

E

>:

RL2:2kH
I
-55°e:::; TA s +125°C

60

.
"
~

w

"~

40

0

30

zw

2.

..
9
..

g

0

1/
i-""

I

I.

,

...'"~-

fo-I-

1. 9

I

11

~

I
12

11

~

,
,

1iM

,/

14

13

VCC~±15VI

10

T, -

I
I

rfJ

-ss·c ......' ~

>
I 5 .•
w

9--

~o:~
1!
~

E

I

TA - 2SCl C

~

"w

I

02 OA 0.6 0.8

~
9

10

13

12

11

14

•

15

.. "
30

z
w
c

20

.......

"

:---.

-

r-....

I

26

"~

24

...

".....
,."c

~

Vc~"19V
I

10
-60

28

>

~Y

r-- ~~:t72'"

20

20

---

I
60

100

TEMPERATURE _

TA

/'
/

22

/

20

~

18

..~

14

., ,.

/

/

12
10
0.1

140

60

(Ie

I-

--

11

40

I

!:

-J.e1s T~ s l'25!e

10

70

..g
9
..
0

I

c

o

>

I
I
TA -125°C

,

-

5.0

12

~

~

.:t~t'-

!J

-15
-1.0 -0,8 -0.6 -0.4 -0.2

~

~

Voltage Gain vs Temperature

~

-10

10

...,11,...11 ,:;

_r-

SUPPLY VOLTAGE -

g

0

~
.;

15

I

~
...
5" -5.0

15

±V

,~

I
I

RL~lOknl

_

~,.~

I- - - ~I'~~''''\

>:-

Voltage Transfer Characteristics
15

~I'c

20

~
o

I

SUPPLY VOLTAGE -

I
I

I 25

,/

'YI I
:,...I I

I

>

L

l~~

I

30

V

I

I I
I I .J

Input Common Mode Voltage
Range vs Supply Voltage

~

9

10

11

12

13

SUPPLY VOLTAGE -

7-62

14
~V

15

\

1""'-

10

o

80

i\

20

-60

-20

20

......
60

TEMPERATURE _

100
(I

C

140

IlA709

Typical Performance Curves for pA709A (Cont.)
Common Mode Rejection Ratio vs
Temperature
11

'II

•
~

I

~

~

108

-

.....

r--..

1/

Vee ""±15V

3.0
2.0

i

....... ~

I
~

Z

V
/'

1.0

~
I

./

~

w '06

i

~

z

8 '0
•

-60

.0

-20

60

,

O.
-60

'.0

'00

!

V

•

,..
,.. -

....

t....

r-OVERLooT

:.L ..........

'.0

-

0

w 0 .•

5

w 0.'
a:
0.'

90

..
0

A

;::

70

50

()

a:

~
0

..

RISETIMf

I
O.S

1.0

1.5

2.0

•

./

./V'

30

V'

r--

TIME- ....s

~

,.

11

c

'00

'40

~

10

w

~
~

1.0

I

I--"

'0

0

!ca:

o('t~G~
V

./

'0 9

2.5

V-

,/

:I

:l

U)

Z
0

~

60

_vLLUsv
-TA-2S°C

,/
I

20

'00

V

r-TF'SOC -

~

-20

Slew Rate vs Closed Loop
Gain Using Recommended
Compensation Networks

TA == 25"C

z

I
I
f-

-50

TEMPERATURE _

110

vcc~I±,sv

I

:l

'40

'00
"C

Power Consumption vs
Supply Voltage

'-

0.8

60

TEMPERATURE -

Transient Response

50

40

.0

-20

TEMPERATURE _ °C

I"'--

50

8

0,3

o.

104

"

70

:I

m
o.5
a:

8:I

r- .........

80

z

~

~

~

90

5.0

RS~1o~n

Q 110

!ca:

Power Consumption vs
Temperature

Input Resistance vs
Temperature

,.

'3

,,

o.

's

'0

±v

SUPPLY VOLTAGE -

'00

'000

CLOSED LOOP VOLTAGE GAIN
PC05010F

Power Consumption vs
Supply Voltage (!lA709 and j.lA709C)
110

Voltage Transfer Characteristics
(!lA709 and j.lA709C)
s

LV

TA'" 25°C

,/
it

E

90

f

70

,/

:I
::>

vV'

U)

z

0

50

()

a:
w

..~

0

~"'V

I

z

1--"1-""

30

./
./

./

,/

I s.0

~
g

0

~

~

"'"

I

~

TA -125"C

fJ--II
'I

TA - 25"C

TA- -5S",?~1

>

"'~

~~\G~

V

I I

RL ==10kfl

,.

- r/I

I I

Vcc=±,svl

Input Bias Current vs
Temperature (!lA709 and !lA709C)

!Z

'I.
10

9

'0

11

,.

'3

SUPPLY VOLTAGE - =.V

,.

-'5
'5

"

-1.0 -0.8 0.6 -0.4 -0.2

~

o.6

~

o.

i

O.

a

I

0

Vee"'::t15 V

'\ o.8

J
II

-5. 0

0

•

""

O
0

0.2 0.4 0.6 0,8

INPUT VOLTAGE -

7-63

mY

1.0

~

•
60

-

t-

.0

20

60

TEMPERATURE - "C

'00

'40

MA709

Typical Performance Curves for p.A709 and p.A709C (Cont.)
Input Offset Current vs
Temperature

Input Resistance vs
Temperature

200

1.0

z

u

~

'"~

" "-

80

II:

.......

40

o

-20

-60

.i

r--.

20

60

-

100

~

0.2

"

L

o
-20

-60

140

20

>
J

"iz

=

J

/'

24

....'"
S
..'"" ,.
...
:>

>

/'

26

~

/

22

I

1/

20

0

~

18

w

""'"
~

I

"~

/

12

0.2

0.•

15

I-

10

~,

~

""", r:::-

--

~

9

10

117s

-r-

w 0.6

~

91-

o.7
O.5

125
10

11

12

13

SUPPLY VOLTAGE - :!.V

14

15

I
I
f-

0.4

II:

13

12

11

14

~

~

I
0.5

9

r-±L JveJ

$

±1~ V

~

......

w

IIEsPo

3

fj.- r- r-..

~

1.2

~

~

\.OO~6

0.8

II:

J-"

""

~t-~
~..¥

A

.- ~C~
'S~o
~tE I (00

"'8
'1"'0", l -

T' 'Ot",
17 _

0.4

o
11

12

13

7-64

14

15

~

~o,,?- I -

1.6

SUPPLY VOLTAGE - ::tV

2.5

Frequency Characteristics vs
Temperature

::~,,"OIH\OT"

10

2.0

1.5

1.0
TIME-J,ls

±V

sJIHR"TE

~ 'CiosiO
I
I

Vee ='±15V
e-TA= 25"C-

-

~ISE TIMjE

15

2.0

1

150

9

~

1

l-

c

I

0

TA "" 25°C

-r--

140

100
0

~

l!;

I

25c C

J

60

L .........

0.8

0.2

1.3

~200

20

OVERlHOOT

1.0

~:>

Frequency Characteristics vs
Supply Voltage

~225

-

5.0

1.5

TA=

~

f- - f-

I',-~\.~
~I'~~Z~(\

SUPPLY VOLTAGE -

250

.
i

20

kO

Input Bias Current vs
Supply Voltage

~

1.2

as

10

LOAD RESISTANCE -

-20

Transient Response

I

O°C:5 TA '$ +70°1

o

10

0.1

40

TEMPERATURE _

...

14

-

1.4

30

25°C

r-- l- I -

60

20
-60

140

Output Voltage Swing vs
Supply Voltage

Veej±\5~

TA

100

60

-l- i--

80

TEMPERATURE _ °C

Output Voltage Swing vs
Load Resistance
28

;8
i.

,/

TEMPERATURE _ °C

30

ii:

....... V

0.4

=;t15V

100

J

~

/

I!

ti

..i

/

J

w
u 0.6

120

~

L

i

zW

~

Vee

Vee'" ±12 V
0.8

J

II:
II:

120

VCC=±1SV

~ 160

..
:>

Power Consumption vs
Temperature

-80

-20

20

60

TEMPERATURE _ °C

100

140

MA709

Typical Performance Curves for fJA709 and fJA709C (Cont.)
Voltage Gain vs
Supply Voltage (j.LA709C)
15

aoc:s: TA $:

E

,1,
-t-70°C

R,

;;;
I

e

10

~¢~ ~

"
~"
w

:,.-- f"""

0

>

Q.

i--"
VV

~
~

50

"~

I~

>

0

9

9
~
0

z

W

Q.

0

11

""

I

:ri
w

";!g

V

40

12

13

14

15

"

~

:,.-- ......

",\..,,,,\l~

-,

- i - t9

6. 0

10

11

12

~~

--

i--'"

2.0

8

13

SUPPLY VOLTAGE -

SUPPLY VOLTAGE - ±V

4.0

Z

o
~

...- ......

8.0

w

V
30
20

o:c ~ TAI$ +~o'~

10

~
a:

"'7

10
10

,/

~

0

0

9

I

.I~~;:.-

"w

:,.--

V

1 _I 1

I

Q.

o

~ 2 kll

-55°C $ TA:::; +125°C

60

Input Common Mode Voltage
Range vs Supply Voltage
12

70

RLI~2Ikn I

>

z

Voltage Gain vs
Supply Voltage (j.LA709)

14

0

15

10

-r.V

11

12

13

14

15

SUPPLY VOLTAGE - :!:.V
PCQ5121F

Frequency Compensation Curves For All Types
Open Loop Frequency
Response For Various Values
Of Compensation

Frequency Response For
Various Closed Loop Gains

z

~
~

Output Voltage Swing vs
Frequency For Various
Values Of Compensation
>
I

28H..I+H-+..I+H~:+++

z

"~

24

~

20

Q.

I;;
o
~

9

6
'7

8.0

~

4.0

~
~

o

16

12

Q.

z
o

i!!

Co

~.OLK""'.!.J..JC-...J'-1....l..1..L""'--'-.J...J..'-'-W.ll...,...10 M
FREOUENCY - Hz

FREQUENCY - Hz

7-65

FREQUENCY - Hz

IJ.A709

Test Circuits
Transient Response Circuit

Frequency Compensation Circuit

10kO
R2(Nole 1)

CROla6(lF

Protection Circuits
Output Short Circuit Protection

Input Breakdown Protection
Rl

Rl
200n

D1

R2
CROl380F

CR01390F

Latch Up Protection
R2

Supply Over Voltage Protection
v+

Dl
Rl

EO

CRQl400F

Note
1. Use R2 = 50 n when the amplifier is
operated with capacitive loading.

7·66

J.lA714
Precision
Operational Amplifier

FAIRCHILD
A Schlumberger Company

Linear Division Operational Amplifiers

Description

Connection Diagram
8-Lead Metal Package
(Top View)

The IlA714 is a monolithic instrumentation operational amplifier constructed using the Fairchild Planar Epitaxial process. It is intended for precise, low level signal amplification applications where low noise, low drift and accurate
closed loop gain are required. The offset null capability,
low power consumption, very high voltage gain as well as
wide power supply voltage range provide superior performance for a wide range of instrumentation applications.

-OFFSET
NULL

-IN

•
•
•
•
•
•
•
•
•

Low Offset Voltage - 75 IlV
Low Offset Voltage Drift-l.0 Ilvrc Typically
Low Bias Current - ± 2.6 nA
Low Input Noise Current - 0.12 pAl VHi
at 1.0 kHz Typically
High Open Loop Gain - 500 K Typically
Low Input Offset Current - 2.8 nA
High Common Mode Rejection - 110 dB
Wide Power Supply Range - ± 3.0 To ± 22 V
Plug-In Replacement For Op-07

vLead 4 connected to case.

Order Information
Device Code

Package Code

/lA714HM
/lA714HC
tJA714EHC
/lA714LHC

Absolute Maximum Ratings
Storage Temperature Range
Metal Can
Molded DIP and SO-8
Operating Temperature Range
Extended (/lA714M)
Commercial
(IlA714C, /lA714EC, IlA714LC)
Lead Temperature
Metal Can (soldering, 60 s)
Molded DIP and SO-8
(soldering, 10 s)
Internal Power Dissapation l , 2
8L-Metal Can
8L-Molded DIP
SO-8
Supply Voltage
IlA714, IlA714C, /lA714E
IlA714L
Differential Input Voltage
Input Voltage 3
IlA714, IlA714C, /lA714E
IlA714L

>--':'VOUT

-65°C to +175°C
-65°C to + 150°C

5W
5W
5W
5W

Package Description
Metal
Metal
Metal
Metal

Connection Diagram
8·Lead DIP and SO-8 Package
(Top View)

-55°C to +125°C
O°C to +70°C

-OF1'SET

300°C

NULL

V+

265°C

OUT

1.00 W
0.93 W
0.81 W

NC

±22 V
± 18 V
±30 V

Order Information
Device Code
/lA714SG
/lA714TC
IlA714LSC
/lA714LTG

±22 V
± 18 V

Notes
I. TJ Max ~ 150°C for the Molded DIP and 50·8, and 175°C for the Metal
Can.
2. Ratings apply to ambient temperature at 25°C. Above this temperature,
derate the BL·Metal Can at 6.7 mWrC, the 8L-Molded DIP at
7.5 mW/oC, and the 50-8 at 6.5 mWrC.
3. For supply voltage less than ± 22 V, the absolute maximum input
voltage is equal to the supply voltage.

7-67

Package Code
KC
9T
KG
9T

Package Description
Molded
Molded
Molded
Molded

Surface Mount
DIP
Surface Mount
DIP

JIA714

Equivalent Circuit
r-------_,--------~----t_--_,------~~------~----_t----_t----t_--~v+

+

OF:~~~

__ -OF:~~~ __
R2A (NOTE 1)

RIA

030t...,~.....,--+_+------+----_;----i::'-

029
C2

J,......019

'7
~

034,..r

016

C3

R9

C4

f"-f-OUT

R23

R24

R17

R18
RS

R19

R25

RIS

~~--~--~----------~~--~--~~----~v-

Note
1. R2A and R2B are electronically adjusted on chip at the factory for
minimum offset voltage

7-68

MA714

J..LA714
Electrical Characteristics TA = 25°C, Vee = ± 15 V
Characteristic

Symbol

Condition

Min

Typ

Via

Input Offset Voltage

Rs=50 n,
VCM = 0 V

30

S

Long Term Input Offset
Voltage Stability

Rs= 50 n,
VCM =0 V

0.2

Input Offset Voltage Adjustment Range

Ro= 20 kn

110

Input Offset Current

VCM =0 V
VCM =0 V

Via

adj

lis

Input Bias Current

ZI

Input Impedance

Pc

Power Consumption

1.0

3.0

60

4.0

6.0

Power Supply Rejection Ratio

Vce=±3.0 V to
±18V, Rs=50n

Ays

Large Signal Voltage Gain

nA
nA
Mn

Vce = ±3.0 V,
Vo=O V

Input Voltage Range

mW

110

126

± 13.0

±14.0

V

100

110

dB

RL;;'2.0 kn,
Vo=±10 V

200

500

V/mV

RL ;;'500 n,
Vo=±0.5 V
Vce=±3.0 V

150

500

RL = 10 kn

± 12.5

± 13.0

RL =2.0 kn

± 12.0

± 12.8

RL=1.0 kn

± 10.5

± 12.0

VCM=±13 V,
Rs= 50 n

BW

Bandwidth

Ay= 1.0

SR

Slew Rate

en

in

2.8

120

PSRR

/J.V

mV

0.4

75

VIR

Unit

/J.V/mo

Vo=O V

Common Mode Rejection

Output Voltage Swing

75

±4.0

20

CMR

VoP

Max

dB

V

0.6

MHz

RL = 2.0 kn,
Ay = 1.0

0.17

V//J.s

Input Noise Voltage

0.1 Hz to 1.0 kHz

0.35

0.6

/J.Vp-p

Input Noise Voltage Density

fo = 10 Hz

10.3

18.0

nV/YHZ

fo = 100 Hz

10.0

13.0

fo = 1000 Hz

9.6

11.0

Input Noise Current

0.1 Hz to 1.0 kHz

Input Noise Current Density

fo = 10 Hz

0.32

0.80

fo = 100 Hz

0.14

0.23

fo = 1000 Hz

0.12

0.17

7-69

14

pA p-p
pA/YHZ

JlA714

J.IA714 (Cont.)
Electrical Characteristics TA = 25°C, Vee = ± 15 V
Symbol

Characteristic

Condition

Unit

The foilowing specifications apply for Vec = ± 15 V, -55°C";; TA ,,;; + 125°C
VIO

Input Offset Voltage

AVlo/AT

Input Offset Voltage
Temperature Sensitivity1

Rs= 50 n,
VCM =0 V

60

200

Jl.V

Without
External Trim

Rs=50 n,
VCM=O V

0.3

1.3

Jl.V/oC

With
External Trim

Ro= 20 kn,
Rs=50 n

0.3

1.3

110

Input Offset Current

VCM=O V

1.2

5.6

nA

Allo/AT

Input Offset
Current Temperature Sensitivity1

VCM=O V

8.0

50

pAloC

liB

Input Bias Current

VCM =0 V

2.0

6.0

nA

AIIB/AT

Input Bias
Current Temperature Sensitivity1

VCM=O V

13

50

pArC

CMR

Common Mode Rejection

VCM=±13 V,
Rs=50 n

VIR

Input Voltage Range

PSRR

Power Supply Rejection Ratio

Vcc = ±3.0 V to
±18 V, Rs=50 n

Avs

Large Signal Voltage Gain

VOP

Output Voltage Swing

J.IA714E
Electrical Characteristics TA
Symbol

= 25°C,

Vee

= ± 15

106

123

dB

± 13.0

± 13.5

V

94

106

dB

RL#2.0 kn,
Vo=±10V

150

400

VlmV

RL = 2.0 kn

±12.0

±12.6

Min

Typ

V

V

Characteristic

Condition

Max

Input Offset Voltage

Rs=50 n,
VCM =0 V

30

S

Long Term Input Offset
Voltage Stability

Rs=50 n,
VCM =0 V

0.3

Input Offset Voltage Adjustment Range

Ro=20 kn

110

Input Offset Current

VCM =0 V

0.5

3.8

nA

liB

Input Bias Current

VCM =0 V

1.2

4.0

nA

ZI

Input Impedance

Pc

Power Consumption

VIO

adj

CMR

Common Mode Rejection

75

Unit

VIO

Jl.V/mo

±4.0

15

mV

50

Mn

Vo=O V

75

120

Vcc=±3.0 V,
Vo=O V

4.0

6.0

VCM = ±13 V,
Rs= 50 n

7-70

106

123

Jl.V

mW

dB

J.lA714

f..LA714E (Cont.)
Electrical Characteristics TA = 25°C, Vee = ± 15 V
Symbol

Characteristic

Condition

Min

Typ

± 13.0

± 14.0

V

94

107

dB

RL;;;'2.0 kn,
Vo=±10 V

200

500

V/mV

RL ;;;'500 51,
Vo=±0.5 V
Vcc=±3.0 V

150

500

RL=10 kn

± 12.5

± 13.0

RL = 2.0 kn

± 12.0

± 12.8

RL =1.0kn

± 10.5

± 12.0

VIR

Input Voltage Range

PSRR

Power Supply Rejection Ratio

Vcc = ±3.0 V to
± 18 V, Rs = 50 51

Avs

Large Signal Voltage Gain

VOP

Output Voltage Swing

Max

Unit

V

BW

Bandwidth

Av = 1.0

0.6

MHz

SR

Slew Rate

RL =2.0 kn,
Av = 1.0

0.17

V/p.s

en

Input Noise Voltage 1

0.1 Hz to 1.0 kHz

0.35

0.6

p.V p-p

Input Noise Voltage Density 1

fo=10 Hz

10.3

18.0

nV/YHz

fo=100 Hz

10.0

13.0

fo = 1000 Hz

9.6

11.0

in

Input Noise Current 1

0.1 Hz to 1.0 kHz

Input Noise Current Density 1

14

30

pA p-p

fo=10 Hz

0.32

0.80

pA/YHz

fo=100 Hz

0.14

0.23

fo = 1000 Hz

0.12

0.17

The following specifications apply for Vcc = ± 15 V, O°C
VIO

Input Offset Voltage

t:Nloll:.T

Input Offset Voltage
Temperature Sensitivity 1

~ TA ~

70·C
45

Rs = 50 51, VCM = 0
V

130

Without
External Trim

Rs=50 51,
VCM = 0 V

0.3

1.3

With
External Trim

Ro=20 kn,
Rs= 5051

0.3

1.3

p.V

p'vrc

110

Input Offset Current

VCM =0 V

0.9

5.3

nA

1:.1 101 I:.T

Input Offset
Current Temperature Sensitivity1

VCM =0 V

8.0

35

pA/oe

118

Input Bias Current

VCM =0 V

1.5

5.5

nA

1:.1 18 II:.T

Input Bias
Current Temperature Sensitivity1

VCM =0 V

13

35

pA/·e

CMR

Common Mode Rejection

VCM=±13 V,
Rs = 5051

7-71

103

123

dB

MA714

MA714E (Cont.)

Electrical Characteristics TA = 25°C, Vee = ± 15 V
Symbol

Characteristic

Condition

VIR

Input Voltage Range

PSRR

Power Supply Rejection Ratio

Vcc = ±3.0 V to
± 18 V, Rs = 50 n

Avs

Large Signal Voltage Gain

RL;;;'2.0 kn,
Vo=±10V

VOP

Output Voltage Swing

RL = 2.0 kn

Min

Typ

± 13.0

± 13.5

V

90

104

dB

180

450

V/mV

± 12.0

± 12.6

Min

Typ

Max

Unit

V

MA714C

Electrical Characteristics TA = 25°C, Vee = 15 V
Symbol

Characteristic

Condition

Max

Unit

VIO

Input Offset Voltage

Rs = 50 n,
VCM =0 V

60

150

/lV

S

Long Term Input Offset
Voltage Stability

Rs = 50 n,
VCM = 0 V

0.4

2.0

/lV/mo

VIO adi

Input Offset Voltage Adjustment Range

Ro= 20 kn

110

Input Offset Current

VCM = 0 V

118

Input Bias Current

VCM = 0 V

ZI

Input Impedance

Pc

Power Consumption

8.0

6.0

1.8

7.0

33
150

Vcc= ±3.0 V,
Vo= 0 V

4.0

8.0

VIR

Input Voltage Range

PSRR

Power Supply Rejection Ratio

Vcc=±3.0 V to
±18 V, Rs=50 n

Avs

Large Signal Voltage Gain

nA
nA
Mn

80

Common Mode Rejection

Output Voltage Swing

mV

0.8

Vo=O V

CMR

VOP

±4.0

mW

100

120

± 13.0

± 14.0

V

90

104

dB

RL;;;'2.0 kn,
Vo=±10 V

120

400

V/mV

RL;;;'500 n,
Vo=±0.5 V
Vcc=±3.0 V

100

400

RL = 10 kn

± 12.0

± 13.0

RL = 2.0 kn

± 11.5

± 12.8

VCM=±13 V,
Rs=50n

RL = 1.0 kn
BW

Bandwidth

Av = 1.0

SR

Slew Rate

RL = 2.0 kn,
Av = 1.0

7-72

dB

V

± 12.0
0.6

MHz

0.17

V//ls

J.LA714

I-lA714C (Cont.)

Electrical Characteristics TA
Symbol

en

in

= 25°C,

Vee

= 15

V

Characteristic

Condition

Min

Typ

Max

Unit

Input Noise Voltage 1

0.1 Hz to 1.0 kHz

0.38

0.65

pVp-p

Input Noise Voltage Density1

fo=10 Hz

10.5

20.0

nV/YHZ

fo=100 Hz

10.2

13.5

fo = 1000 Hz

9.8

11.5

Input Noise Current1

0.1 Hz to 1.0 kHz

0.15

35

,Np-p

Input Noise Current Density1

fo=10 Hz

0.35

0.90

pAlYHZ

fo=100 Hz

0.15

0.27

fo = 1000 Hz

0.13

0.18

Rs= 50 n,
VCM =0 V

85

250

fJ.V

Without
External Trim

Rs=50 n,
VCM =0 V

0.5

1.8

fJ.V/oC

With
External Trim

Ro= 20 kn,
Rs=50 n

0.4

1.6

The following specifications apply for Vcc = ± 15 V, O°C';;; TA < 70°C
VIO

Input Offset Voltage

I).Vloll).T

Input Offset Voltage
Temperature Sensitivity1

110

Input Offset Current

VCM =0 V

1.6

8.0

nA

1).1 101 I).T

Input Offset
Current Temperature Sensitivity 1

VCM =0 V

12

50

pArC

liS

Input Bias Current

VCM = 0 V

2.2

9.0

nA

I).lls//).T

Input Bias
Current Temperature Sensitivity1

VCM=O V

18

50

pAloC

CMR

Common Mode Rejection

VCM = ±13 V,
Rs=50 n

VIR

Input Voltage Range

PSRR

Power Supply Rejection Ratio

Vcc = ± 3.0 V to
±18 V, Rs=50 n

Avs

Large Signal Voltage Gain

RL ;;. 2.0 kn,
Vo=±10V

VOP

Output Voltage Swing

RL = 2.0 kn

7-73

97

120

± 13.0

± 13.5

V

86

100

dB

100

400

V/mV

± 11.0

± 12.6

dB

V

JjA714

1lA714L

Electrical Characteristics TA
Symbol

= 25°C.

Vee

= ± 15

V

Characteristic

Condition

Min

Typ

Max

Unit

VIO

Input Offset Voltage

Rs=50 il.
VCM =0 V

100

250

MV

S

Long Term Input Offset
Voltage Stability

Rs= 50 il.
VCM =0 V

0.5

3.0

pV/mo

±4.0

mV

Input Offset Voltage Adjustment Range

Ro=20 kil

110

Input Offset Current

VCM =0 V

5.0

20

nA

lis

Input Bias Current

VCM = 0 V

6.0

30

nA

ZI

Input Impedance

Pc

Power Consumption

mW

VIO

adj

CMR

Common Mode Rejection

8.0

33
100

180

VCC = ±3.0 V.
Vo=O V

5.0

12

VCM=±13 V.
Rs=50 il

100

120

± 13.0

± 14.0

V

90

104

dB
V/mV

VIR

Input Voltage Range

PSRR

Power Supply Rejection Ratio

Vcc = ± 3.0 V to
±18V.Rs=50il

Avs

Large Signal Voltage Gain

RL>2.0 kil.
Vo = ±10 V

100

300

RL>500 il.
Vo=±0.5 V
Vcc= ±3.0 V

50

150

RL = 10 kil

± 12.0

± 13.0

RL = 2.0 kil

± 11.0

± 12.8

VOP

Output Voltage Swing

RL = 1.0 kil

dB

V

± 12.0
0.6

MHz

0.17

V/MS

0.5

MV p-p

fo = 10 Hz

10.5

nV/v'Hz

fo = 100 Hz

10.2

fo = 1000 Hz

9.8

BW

Bandwidth

Av = 1.0

SR

Slew Rate

RL = 2.0 kil.
Av = 1.0

en

Input Noise Voltage 1

0.1 Hz to 1.0 kHz

Input Noise Voltage Density1

in

Mil

Vo=O V

Input Noise Current 1

0.1 Hz to 1.0 kHz

0.15

pA p-p

Input Noise Current Density 1

fo = 10 Hz

0.35

pAlv'Hz

fo = 100 Hz

0.15

fo = 1000 Hz

0.13

7-74

J.lA714

~A714L (Cont.)
Electrical Characteristics O°C ~ T A ~ + 70°C, Vee = ± 15 V

Symbol

Characteristic

VIO

Input Offset Voltage

AVIO/AT

Input Offset Voltage
Temperature Sensitivity 1

Condition

Min

Typ

Rs=n, VCM=O V
Without
External Trim

Rs=50 n,
VCM =0 V

1.0

With
External Trim

Ro= 20 kn,
Rs= 50 n

1.3

Max

Unit

400

/lV

3.0

/lV/oC

110

Input Offset Current

VCM =0 V

8.0

40

nA

AIIO/AT

Input Offset
Current Temperature Sensitivity1

VCM =0 V

20

100

pArC

liB

Input Bias Current

VCM = 0 V

15

60

nA

AIIB/AT

Input Bias
Current Temperature Sensitivity1

VCM=O V

35

150

pArC

CMR

Common Mode Rejection

VCM=±13V,
Rs=50 n

94

120

dB

VIR

Input Voltage Range

± 13.0

±13.5

V

PSRR

Power Supply Rejection Ratio

VCC = ±3.0 V to
± 18 V, Rs = 50 n

83

100

dB

Avs

Large Signal Voltage Gain

RL~2.0 kn,
Vo=±10 V

80

400

V/mV

VOP

Output Voltage Swing

RL =2.0 kn

± 10.0

±12.6

Note

1. Parameter is not 100% tested; 90% of the units meet this specification.

7-75

V

t.£A714

Typical Performance Curves
Untrimmed Offset Voltage vs
Temperature
>

90

'"
I

>

w

70

>

60

/

0

..Iii
it

50

II.

40

0

w

=>

:;l

30

I!!=>

20

>

...
0

..

i

NULLING POT: 20 kG
I
I

""!:;

k'

f.../

"'- "'-...

0

16
VIO TRIMMED TO < 5.0 /LV

I
W

V~A714C

Ycc- ±15V
R = 1000

""!:;

30

'"

/

90

JLA714~ ~A714

.....
..

0

l.P V

0

w

:3

10

w

!:i

.....5

10

"

100

50

" JotA,714

/

- ,uA714C

~

w

12

'~714E

~ 20

;!

-50

Offset Voltage Stability vs
Time

Trimmed Offset Voltage vs
Temperature

II cy

/

...
"...

~

I!

g

'1 '(I'

-8

1

100

2

3

4

5

6

7

8

9 10 11 12

TIME - MONTHS

Warm-Up Drift
25

800

~
I
w

25

~

20

~

I

z

C

-

600

~

~

~~t:&'TINE

-16
50

Offset Voltage Change Due to
Thermal Shock

p.A714

g
.
S
z

...-h ~t~&"l.~NE
-4

-12

1000

"w

~~t~&'TINE

P't:': ~~t~&"l.~NE-

:c
:t

t::

TEMPERATURE - DC

Voltage Gain vs Temperature

O.2j1.V/mo

I/TRENDLINE

I

W

~

1\ yID @, /(J)
~~\ I;, ~

50

TEMPERATURE - DC

'S
:-

~~:rimL~NE

.

>

...-r--

400

i.

I

-50

"

50

100

20

~

15

j1.A714C""
1
"71 4E,

If
!I;

15

...=>

..

10

10

i:
i:

Y

:r

0

-20

0

":c~

DEVICE IMMERSED
IN700COILBATH
20

40

60

60

100

"

TIME - SECONDS

TEMPERATURE - "C

?

u:. ;....-

w

":I!

0

w

Iii

w
z

200

TA'" 26°e

"~

!:i

i:
i:

Vee :'.,,5V

~

"'-

..-.A714

TIME AFTER POWER SUPPLY TURN-ON - MINUTES
PC05620F

Maximum Error vs
Source Resistance

Maximum Error vs
Source Resistance
> 1.0

1.0

'S

=
=

..
I

0.8

(j)

i:

g
Q

w
a: 0.6
a:
w
w
a:
a: 0.4
0
a:
a:
w
=> 0.2

..

'~"
"'"

~

1

V/l
"""~
1.0

I.

Vee: !,5V
-55°C ... TA

~ o.8

if

o
0.1

" ~A714E
• ~A714
• ,uA714C

=e

E

Vee
:15V
TA 25°C

...=>

Maximum Error vs
Source Resistance

100

MATCHED OR UNMATCHED SOURCE RESISTANCE - k!l

::s;

125°C

i:

g
fiJ

0.6

II:

a:

$a: 0.4
l!ia:

a:
w

p.A714

:E 0.2

i

;

o
0.1

1.0

i

-V
I.

/

/

Vee

g
Q

/
l/
V/
----

0.6

o

0.4

~

0.2

ffi

100

i

J.lA714C
,u.A714E

o

0.1

I

I

0.8

w
a:
a:

$

= :t15V

O"C.;;; TA';;; 7€rC

1.0

a:
a:

MATCHED OR UNMATCHED SOURCE RESISTANCE - kfl

7·76

1.2

I

1.0

-

10

100

MATCHED OR UNMATCHED SOURCE RESISTANCE - kO

J.lA714

Typical Performance Curves (Cont.)
Input Bias Current vs
Temperature

Input Bias Current vs
Differential Input Voltage
~

= :t:115V

Vee

30

illII:

20

I

a:

:>

<.>

V01FF ,,;;: 1.0 V
lis""' 3.0 nA (jj.A714)
"" 7.0 nA (;.LA714C)

r-

10

I

'"

III

~

I-

:>

~ -10

V

/

-20

~

V

-10

~

50

20

-20

TEMPERATURE _ "C

,

:::E

~

>

r-10

W

is

z

I

Rs = 0

I-

:>

:

!!!

10

a
'"~

i.O

11 0

--,

100

0.11
0.1

,.

oe

'i

!

1.0

"w
"~

TA

10

100

FREQUENCY - Hz

i\~

r'\~
10

800

> 400
o.

,

g
illo.

I

",

-r--

/'

200

1K

r- ..........

I

~

,u.A714

r'\.

III

,

100K

Open Loop Frequency Response
120

600

10K

t.OK

100

FREQUENCY - Hz

80

"

w

51

......,

!:i
0

~~;5:~5V

r'\.

40

>

o.

0

g

"-

_

'\.
~

zw

o.

\

0

0

~
1.0

i

,

90

60
1.0

100

=25"C

0

~

0
50
0.1

10

~A~'4

-

z
:;;

~

0

Q

1'\

70

, III

i

0

0

o.

III
'i:

!g 100

~

U~I= ~,~J
TA = 25 C

"ilrn

110

,,

1000

"r--r\

90

I:

*-r

BANOWIDTH - kHz

#L A714C

100

50

80

~

~AU~lJ

,,/

iJ.A714E

TEMPERATURE - "C

f-++r.,--+-ri+t7',+--+-H+-I

f=

1000

~~

-so

30

Voltage Gain vs Supply Voltage

JHJ4

~

CMR vs Frequency

'/

z

PSRR vs Frequency

a:
a:

20

120

w

FREQUENCY - Hz

U)

:>

./

II
II

100

120

'\

o.
!!! 0.5

!I

+-r:t:::l

TArTl1

1.0
1.0

",

1.0

I-

~A714

I!

J,tA714
Vee - +15V

o.

III

10

,/

1\

~A714

t;;

~
0

Vee = :t:15V
TA = 25°C

0

U)

"

!!!
Ia:
w
>
!!!

<.>

130

100

."

-10

Input Wideband Noise vs
Bandwidth (0.1 Hz to
Frequency Indicated)

RS! llRS 2 L2~ j~1::
THERMAL
NOISE OF SO~fF
~ISTORS INCLUOjD
~
EXCLUDE9

~'i;

w

~
!!!

a: 1.5

:>

DIFFERENTIAL INPUT VOLTAGE

Input NOise Voltage vs
Frequency
1000

vJ = ~lsv

2.0

30

--30

-30

100

!Zw
II:

III
l-

Z
50

§

!!

10

-a,

U)

<.>

/

/

~ -20

2.5

,

I-

z
w
a:

L'/

o.

!!!

"A71~ ~~

r- -

/

..

E

/

!!

,~

30

= ±15V

Vee

TA = 25"C
I-

"'-.,

Input Offset Current vs
Temperature

I
10K

o
o

-40
::,:5

T10

:!;15

SUPPLY VOLTAGE - V

7-77

:!;20

0.1

1.0

10

100

1.0K 10K 100K 1.0M 10M

FREQUENCY - Hz

J.lA714

Typical Performance Curves (Cont.)
Frequency Response For
Various Closed Loop Gains

'",

100

~

80

;;;
I

Z

:c

80

~

40

""'

!i!
&
9
fil

28
Vee

TA

= .z15V

=:we

p.A714

>

...'"'"
e
,.
"..'"'"
I

t-

"~"'

~~

gu
100

1.0K

10K

lOOK

1.0M

Vee = ±15V
TA = 25°C

>

I

I

1\

"

o

10M

V

I

30

...

2.

Iil
5

li:o
ill

0

o

20

40

TOTAL SUPPLY YOLTAGE, V+ to y- - v

II
II

Vee = ::t15V
TA=25"C

,\

~~
......... ~

60

20

I--

•

®

r-- ""'1"

i( i i i

cDv, (LEAD3)::>: -10 mY, Yo = +15 V
LE D3) +10 V' Vi =
5V

®V

-i

TIME FROM OUTPUT BEING SHORTED - MINUTES

7-78

0.1

1.0
LOAD RESISTOR TO GROUND - kO

p.A714

u
liE
u

/

10

-

1
L

1.0

1000

35

=:we

>=

Ie

100

Short Circuit Current vs Time

~

..
I8
..;:

NEGATIVE SWING

o
10

1

FREQUENCY - kHz

r-p.A714

100

VI= :t10mV
TA = 25"C

0

1000

E

III
pbs,LJ JJ.Jl

~~:t15~

10

I

12

.."......

Power Consumption vs
Supply Voltage

•

,.

-

I

FREQUENCY - Hz

rTA

20

:JI

~714

!i!

"\
10

24

-

20

-\.

20

Output Voltage vs
Load Resistance

Maximum Undistorted Output
vs Frequency

10

IlA714

Test Circuits
Offset Voltage Test Circuit

Optional Offset Nulling Circuit

200k!!

Ro
20kll

>-Ol-..--V+

Vo

VIO=

OUT

4~
v-

Low Frequency Noise Test Circuit
+15V

2.5M!!

Vo
Input Referred Noise ~ 25,000

7-79

MA715
High Speed
Operational Amplifier

FAIRCHILD
A Schlumberger Company

Linear Division Operational Amplifiers

Description

Connection Diagram
10-Lead Metal Package
(Top View)

The ~A715 is a high speed, high gain, monolithic operational amplifier constructed using the Fairchild Planar Epitrudal process. It is intended for use in a wide range of
applications where fast signal acquisition or wide bandwidth is required. The ~A715 features fast settling time,
high slew rate, low offsets, and high output swing for
large signal applications. In addition, the device displays
excellent temperature stability and will operate over a wide
range of supply voltages. The ~A715 is ideally suited for
use in AID and 01 A converters, active filters, deflection
amplifiers, video amplifiers, phase-locked loops, multiplexed
analog gates, precision comparators, sample-and-holds,
and general feedback applications requiring DC wide bandwidth operation.

COMP1A

vlead 5 connected to case.

• High Slew Rate -100 V/~
(Inverting, Av = 1) Typically
• Fast Settling Time - 800 ns Typically
• Wide Bandwidth - 65 MHz Typically
• Wide Operating Supply Range
• Wide Input Voltage Ranges

Order Information
Device Code

5X
5X

~A715HC

-65°C to +175°C
-55°C to +125°C
O°C to +70°C

300°C
1.07
1.36
± 18
± 15
± 15

Package Description
Metal
Metal

Connection Diagram
14-Lead DIP
(Top View)

Absolute Maximum Ratings
Storage Temperature Range
Operating Temperature Range
Extended (~A715M)
Commercial (jJA715C)
Lead Temperature
Metal Can and Ceramic DIP
(soldering, 60 s)
Internal Power Dissipation 1, 2
10L-Metal Can
14L-Ceramic DIP
Supply Voltage
Differential Input Voltage
Input Voltage3

Package Code

~A715HM

COMP1A

COMP 2B

COMP lB

y+

CASCOOE

COMP 2A

W

-IN

OUT

+IN

y-

NC

NC

NC

NC

W
V
V
V

Notes
1. TJ Max = 175°C.
2. Ratings apply to ambient temperature at 25°C. Above this temperature,
derate the 10l-Metal Can at 7.1 mWrC, and the 14l-Ceramic OIP at
9.1 mWrC.
3. For supply voltages less than ± 15 V, the absolute maximum input
voltage is equal to the supply voltage.

Order Information
Device Code
jJA715DM
jJA715DC

7-80

Package Code
6A
6A

Package Description
Ceramic DIP
Ceramic DIP

J.LA715

Equivalent Circuit
r---------~-------.----------._----------~----~~----~----~~----~--v+
R24
10 kO

lkll

R7
COMP1A

400n

R20
50 II

COMP1B
15pF

OUT

R2

R1

R27

400n

-IN

son

+IN

4000

R22

3OO11

R23
3 kit

R25

750

-+____+-____________________-+____-+____-+____

L-__

7-81

~--v-

j.lA715 and !lA715C
Electrical Characteristics TA = 25°C, Vee = ± 15 V, unless otherwise specified.
MA715
Symbol

Characteristic

VIO

Input Offset Voltage

110

Input Offset Current

Condition

Min

Rs';; 10 kil

Typ

MA715C
Max

Unit

2.0

Max

5.0

Min

Typ

2.0

7.5

mV

70

250

70

250

nA

400

750

400

1500

liS

Input Bias Current

ZI

Input Impedance

1.0

1.0

Mil

Ro

Output Resistance

75

75

il

nA

Icc

Supply Current

5.5

7.0

5.5

10

mA

Pc

Power Consumption

165

210

165

300

mW

VIR

Input Voltage Range

Avs

Large Signal Voltage Gain

RL ;;. 2.0 kil,
Vo=±10V

V

Settling Time

Vo

TR

Transient
Response

SR

IRise time
IOvershoot

Slew Rate

= ± 5.0

±10

±12

±10

±12

15

30

10

30

V
V/mV

V, Av = 1.0

800

VI = 400 mV, Av = 1.0

30

60

30

75

25

40

25

50

Av= 100

800

70

70

38

Av= 10
Av = 1.0 (non-inverting)

15

Av = 1.0 (inverting)

ns
ns
%
V/p.s

38

18

10

100

18
100

The following specifications apply over the range of -55°C';; TA';; + 125°C for the p.A715, and O°C';; TA .;; + 70°C for the
p.A715C.
VIO

Input Offset Voltage

Rs';; 10 kil

7.5

10

mV

110

Input Offset Current

TA=TAMax

250

250

nA

TA=TAMin

800

750

TA=TAMax

750

1500

TA=TAMin

4.0

7.5

lis

Input Bias Current

CMR

Common Mode Rejection

Rs';; 10 kil

74

PSRR

Power Supply Rejection
Ratio

Rs';; 10 kil

Avs

Large Signal Voltage Gain

RL ;;. 2.0 kil,
Vo=±10V

10

VOP

Output Voltage Swing

RL = 2.0 kil

±10

45

Note

1. TA - 2S·C only.

7-82

74 1

92

92 1
45 1

300
8

±13

±10

nA

db
400 1

p.VIV
V/mV

±13

V

J.lA715

Typical Performance Curves for IlA715 and IlA715C
Voltage Gain vs
Temperature (MA7l5)

Supply Voltage Rejection Ratio
vs Temperature (MA7l5)

50

'E
:-

v~c
="'5~
RL =2kO ' -

40

I

z

C
w 30

" 1"~

..g
..

g

-

ti

140

0

120

-r- t-...

~
'"w
;;J

20

"~

g

10

0

.

I\.

~

80

40

:>

20

Ii

'"
'"

"-

60

I-

15

v~c = .,5V_

-

RL

= 10kO

-.

"

:--...

w

"-

10

il

!!l

.......

r-.

'"

,.

40

-40

20

100

~

g:

25

v~c
=1 "'5~
Rs :S10kO'-

,,.

1
0 160

'z"

0

zw

200

~

Slew Rate vs
Temperature (I.lA7l5)

-40

120

TEMPERATURE _ cC

,.

40

-40

120

,.

40
TEMPERATURE _

TeMPERATURE _ °C

c

120

C

PC04610F

Common Mode Rejection Ratio
vs Temperature (pA7l5)
11 0

Voltage Gain vs
Temperature (pA7l5C)

v:x,
=''''5~
Rs~10kO'-

'Il
I

Q 100

Ii

RL=2kO

90

~

8

g

70

0

"

w

r--..

/

..g
..

g

-

30

40

40

80

TEMPERATURE _

cC

20

30

40

50

110

=

Vee
~15V
RL = 10kH

vdc= "j5V

18
I

Rs S10kO

25
20
w

ul

-

2100

~

r--

15
10

-

'z"
~
;;J
l!:'"

90

-

r-

,.

~

z
o

~

70

8
o

60

0102030405060
TEMPERATURE _

cc

70

............
.......... r-..,

~

40

~

20

010203040
TEMPERATURE _

7-83

50

cc

o

o

10

20

30

-40

TEMPERATURE _

Ii

'~"

70

60

Common Mode Rejection Ratio
vs Temperature (pA7l5C)

35
30

10

TEMPERATURE _ °C

Slew Rate vs
Temperature (pA7l5C)

I'..
60

;;J

~
00

120

~

g
10

0
60

ti

'"z
'"

20

0

zw

~~=1:k~V-

I

o ,.

"~

j

8

Ii

100

~

-

40

~

r-.

I-"'"

8'"

..

'E
:-

VC~ = .'~V

I

'"

~

50

Supply Voltage Rejection Ratio
vs Temperature (MA715C)

60

70

50

"c

60

70

I1A715

Typical Performance Curves for j.iA715 and j.iA715C
Frequency Response For Open
Loop Gains (Note 1)
120

Frequency Response for
Closed Loop Gains
80

=

~

100

:c

Z

80

~

60

"w
g

..
S
..

ill

:;::::

"

40

"I

'w"

~-

"";"-r-,

'"

~

.."
§

40

['\1'\

20

:c

IIII

r-..

10K

I

!'"

...
..."

..

"0
"
~
0
to;
~"

z

w

1.0M

lOOK

z
0
;:

60

Iia:

r\

It
II

GAIN 1

II

20

I

15

"~

0

.....

40

GAIN 100

\

w
-'

1\

~ -240

0.01

to

0.1

\

-400
0.001

10

0.01

"

1.0

20

10

50

MHz

6.0
VCC"" ±15 V
TA "" 2S"C

5.0

>
I

4.0

w

I

'~"

1\
\

I
II

1.0

Large Signal Pulse Response
for Gain 10

\

I

0.1
FREQUENCY -

Vee = ±15 V
TA = 25°C

'I\.

3.0
2.0

0

z

0
:>!
:>!
0

m -80

-320

I-

:>

0
:>!

=
=

Vee
:t15V
TA 25"C
NOCOMP

'\

-160

GAIN 10

0

>

100M

10

> 4.0
I
w

;oJ

10M

Hz

S
~

I I

5.0

"

1.0M

r...

6.0

VC~I~ :t15V
TA 25"C
""; lCOMP

lOOK

10K

Open Loop Phase vs
Frequency

Unity Gain Large Signal Pulse
Response

M
a:
w

1.0K

FREQUENCY -

RL = 10kn1: =25"C

kHz

=

80

o

SOM

FREQUENCV - MHz

Common Mode Rejection Ratio
vs Frequency

0

10M

Hz

Vcc- .:t15V

25

0.001

100

20

0

o

~
I

\

40

0

30

FREQUENCY -

.
S
.

.\

0

Output Swing vs Frequency for
Closed Loop Gains

>

"

80

>

FREQUENCY -

Hz

Supply Voltage Rejection Ratio
vs Frequency

"w
<
'"
!:;

IIII
IIII

-20
1.0K

-~.o':-:'KWJ."'--::1O~K..J.J.'-::100::-:K,.u-'-:'1.~OM:,:-,-.u...='0::-M';->-~50·M

80

I

GAI~\

w

Vdc;

±15V
TA=25"C
NOCOMP

Z

IIII

9
"

1'\['\

FREQUENCY -

G~,'~\oci

['\

G~'~ \0

>
Q

w

.."

IIII

0

r\

20

0

=250C

TA

GAIN 1000

60

~

'14
~I

'k~o~

0

Z

OJ

100

tc~~ l,dv'

1111

Vee
:t15V
TA'" 25°C

Voltage Gain vs Frequency

I
I

3.0

g

~
o

2.0

\

to

\

0

0

-1.0
0.01

0.1

1.0
FREQUENCY -

10
kHz

100

500

o

400

800
TIME -

1200
AS

Note
1. See "Non-Inverting Compensation Components Value Table" for Closed Loop Gain values.

7-84

1500

-t0

200

400

600

800 1000 1200 1400 1600

TIME-ns

MA715

Typical Performance Curves for j.LA715 and j.LA715C (Cont.)
Large Signal Pulse Response
for Gain 100
6.0

24

100
Vee = :t15V
RL = 10kG TA = 25°C

Vee'" :r15 V
TA:=: 25"C

5.0

>

I

I

4.0

80

~

w

"~

3.0

>
::>

2.0

I

..
0

.

/

80

~

w

w

~

Ii:

0

...
...::>

Slew Rate vs
Supply Voltage

Slew Rate vs
Closed Loop Voltage Gain

'"

~

1.0

-1.0

\
o

200

400

600

800

/'

40

o

2.0

TA

Il
o J. it
o

~ RISoj TIME

50

150

-4.0

It..

y

-6.0
200

250

300

350

-400

-400

400

TIME-ns

Voltage Follower (Note 1)

22

v

~~N==2::mv -

\
\\

1

'O%

100

18

VC~= "'~V

~ -2.0

~

14

Small Signal Pulse Response
Inverting Unity Gain

~
o

10

SUPPLY VOLTAGE -

= 250C

I
~

200

100

6

f-~=I"'5IV

>

IV

I'
,/

o
o

100

Inverting Unity Gain Large
Signal Pulse Response

v~ = "'~V

90%"~

12

~

10

1

VIN = 400niV TA = 25c C

II \

V

/

CLOSED LOOP VOLTAGE GAIN

Voltage Follower Transient
Response

500

16

~

~

/

20

1000 1200 1400 1600

700

I-- T,I=..l·c
RL = 10kG
I-- NOCOMP

",..

TIME- ns

600

20

800

1200

I\IJ

IV

1600

180

Voltage Offset Null Circuit (Note 1)

480

320

TIME-ns

TIME-ns

High Slew Rate Circuit (Note 1)

y+

5kH

V+
FD100

50kH
OUT

+

5

7

~lr.onF

-15 V
2.5kfl

y-

Note
1. Lead numbers apply to metal package.

7-85

JiA715

Non-Inverting Compensation Components Values

Frequency Compensation Circuit
C1

Closed
Loop
Gain

C1

1000

C2

C3

10 pF

100

50 pF

250 pF

10 (Note)

100 pF

500 pF

1000 pF

1

500 pF

2000 pF

1000 pF

Note
For gain 10, compensation may be simplified by removing C2, C3 and adding a
200 pF capacitor (C4) between lead 7 and 10.
Note
lead numbers apply to metal package.

Suggested Values of Compensation Capacitors vs
Closed Loop Voltage Gain
Vee

%1000

C3

= ±15V

C2

\

I

w

(J

Z

i$

13

if

~ 100

".

c>. .... ....c,
.....

I-

c.

CLOSED LOOP VOlTAGE GAIN

Layout Instructions

Large source resistances may also give rise to the same
problem and this may be decreased by the addition of a
capaCitance across the feedback resistance. A value of
around 50 pF for unity gain configuration and around
3,0 pF for gain 10 should be adequate.
Latch Up - This may occur when the amplifier is used as
a voltage follower. The inclusion of a diode between leads
6 and 2 with the cathode toward lead 2 is the recommended preventive measure.

Layout - The layout should be such that stray capacitance
is minimal.
Supplies - The supplies should be adequately bypassed.
Use of 0.1 fJ.F high quality ceramic capacitors is recommended.
Ringing - Excessive ringing (long acquisition time) may occur with large capacitive loads. This may be reduced by
isolating the capacitive load with a resistance of 100 n.

7-86

JlA715

Typical Applications
Wide Bank Video Amplifier
Drive Capability With 75 .n Coax Cable

,.

+20 V

VIDEO OUTPUT
TO 75 !l COAX

7Sfl

""'\
fl

-10

I

o dB =

z

~

"

\

255 mVpfI:- pice
5~

pk- pitt

-20

7500

10k!!

\

-30

75 !l

r--Sikii-'

NOISE OUT'" 2 mV RMS
'. pk _ ~k SIG/R~S NOISE, " 42 dB

..... ....

-40

0.'

FREQUENCY -

100

10

1.0
MHz

I
I""
1

L _____ --l
EQUIVALENT CIRCUIT

FOR IMAGE ORTHICON
51 kH

-20V

High Speed Integrator
SOpF

20

10 kO

10 kO

15

I

10
./NPUT /

>
I

~o~

\

1\

-s
-10

I

\

/
~

\

/

5.0 k!l

.L

IN
OUT

°r !,
p

s
-20

•

1.0

2.0

s.onF

+15 V

\

2.5k!l
3.0

4.0

soon

5.0

-15 V

TIME-J.(s

Note
All lead numbers shown refer to metal package.

7-87

IlA725
Instrumentation
Operational Amplifier

F=AIRCHILD
A Schlumberger Company

Linear Division Operational Amplifiers

Connection Diagram
8-Lead Metal Package
(Top View)

Description
The p.A725 is a monolithic instrumentation operational amplifier constructed using the Fairchild Planar Epitaxial process. It is intended for precise, low level signal
amplification applications where low noise, low drift, and
accurate closed loop gain are required. The offset null capability, low power consumption, very high voltage gain as
well as wide power supply voltage range provide superior
performance for a wide range of instrumentation applications. The p.A725 is lead compatible with the popular
p.A741 operational amplifier.

-OFFSET
NULL

• Low Input Noise Current- 0.15 pAlYHz
At 1.0 kHz Typically
• High Open Loop Gain - 3,000,000 Typically
• Low Input Offset Current - 2.0 nA typically
• Low Input Voltage Drift - 0.6 p.V
typically
• High Common Mode Rejectlon-120 dB
• High Input Voltage Range-±14 V Typically
• Wide Power SUpply Range - ± 3.0, V To ± 22 V
• Offset Null Capability

v-

rc

Order Information
Device Code
p.A725HM
p.A725HC
p.A725AHM
p.A725EHC

Absolute Maximum Ratings
Storage Temperature Range
Metal Can
Molded DIP
Operating Temperature Range
Extended (p.A725AM, p.A725M)
Commercial (p.A725EC, p.A725C)
Lead Temperature
Metal Can (soldering, 60 s)
Molded DIP (soldering, 10 s)
Internal Power Dissipation 1, 2
8L-Metal Can
8L-Molded DIP
Supply Voltage
Differential Input Voltage
Input Voltage3
Voltage Between Offset Null and V+

, COO",."

Lead 4 connected 10 case.

-65·C to + 175·C
-65·C to + 150·C

Package Code
5W
5W
5W
5W

Package Description
Metal
Metal
Metal
Metal

Connection Diagram
8-Lead DIP
(Top View)

-55·C to + 125·C
O·C to +70·C
300·C
265·C

+OFFSET 1
NULL

1.00 W
0.93 W
±22 V
±5.0 V
±22 V
±0.5 V

-OFFSET
NULL

-IN

V+

+IN

OUT

v-

FREQ

caMP

Order Information

Notes
1. TJ Max -150°C for the Molded DIP, and 175°C for the Metal Can.
2. Ratings apply 10 ambient temperature at 25°C. Above this temperature.
derate the 8L-Metal Can at 6.7 mWrC. and the BL-Molded DIP at
7.5 mWrC.
3. For supply voltsges less than ± 22 V, the absolute maximum input
voltage is equal 10 the supply voltsge.

Device Code
p.A725TC

7-88

Package Code
9T

Package Description
Molded DIP

Equivalent Circuit

tI
R2A

+ OFFSET

I

10kn

+

-'W'v-

NULL

"
R2B
10 kll

t

R3

RlO

29 k!l

300 !l

t

V+

-OFFSET
NULL

100 k!!

R1A

EXTERNAL

42 kll

R16

25 n
+IN

-£

01

OUT
-.J

cD
co
-IN

--+--------'
R19
4.5 k!l

016

>

R6
RS
5.1 k!l <> 2.4 kll

R18

R12

R13

5.1 kn

1 kn

150 II

R14
300 !~

~--------------~----~----~--~-------+---+---4----------~--~----4-------~--v-

fJ.A725

JJ.A725A/E and J.lA725
Electrical Characteristics TA = 25°C, Vee = ± 15 V, unless otherwise specified.
pA.725A1E
Symbol

Characteristic

Vlo

Input Offset Voltage
(Without external trim)

110

Input Offset Current

lis

Input Bias Current

ZI

Input Impedance

Pc

Power Consumption

Condition

Typ

Min

Rs<10 kn

pA.725A1pA.725

80

Max

Unit

0.5

0.5

1.0

mV

5.0

2.0

20

nA

42

100

1.5
120

80

nA
Mn

120

mW

6.0
120

130

± 13.5

±14

Common Mode
Rejection

VIR

Input Voltage Range

PSRR

Power Supply Rejection
Ratio

Rs< 10 kn

Avs

Large Signal Voltage
Gain

RL;;o.2.0 kn,
Vo=±10V

1000

VOP

Output Voltage Swing

RL = 10 kn
RL = 2.0 kn

in

Rs<10 kn

Typ

150

CMR

Input Noise Current

Min

75

Vcc=±3.0 V

en

Max

1.5

pA.725E

Input Noise Voltage

pA.725

2.0

110

120

± 13.5

±14

5.0

2.0

dB
V
10

INIV

1000

3000

V/mV

± 12.5

±12

±13.5

V

±10

±10

± 13.5

3000

fo = 10 Hz

15

15

15

fo = 100 Hz

9.0

12

9.0

fo = 1.0 kHz

8.0

12

8.0

fo = 10 Hz

1.0

1.2

1.0

fo = 100 Hz

0.3

0.6

0.3

fo = 1.0 kHz

0.15

0.25

0.15

The following specifications apply over the range of O°C < TA <
and pA.725.
Input Offset Voltage
(Without external trim)

Rs < 10 kn

0.75

.£lVlo/.£lT

Input Offset Voltage
Temperature Sensitivity
(Without external trim)

Rs = 50 n

2.0

.£lVlo/.£lT

Input Offset Voltage
Temperature Sensitivity
(With external trim)

Rs=50 n

0.6

110

Input Offset Current

TA=TAMax
5.0

7-90

pAlYHz

+ 70°C for /JA 725E, - 55°C < TA < + 125°C for /JA 725A

VIO

TA=TAMin

V
nV/YHz

2.0

2.0

1.5

mV

5.0

/JV/ o C

0.6

/Jvre

4.0

1.2

20

18

7.5

40

nA

IlA725

Jl.A725A/E and Jl.A725 (Cont.)
Electrical Characteristics Vee=±15 V.
and Jl.A725.

O°C~TA~+70°C for Jl.A725E. -55°C~TA~+125°C for

IlA725A/E
Symbol

Characteristic

Condition

Min

Typ

Jl.A725A

IlA725
Max

Typ

Min

Max

Unit

pA/oC

dllO/dT

Input Offset Current
Temperature Sensitivity

118

Input Bias Current

CMR

Common Mode
Rejection

Rs~lO kil

PSRR

Power Supply Rejection
Ratio

Rs~lO

Avs

Large Signal Voltage
Gain

RL;;;'2.0 kil.
TA=TAMax

1000

1000

V/mV

RL;;;'2.0 kil.
TA = TA Min

500

250

V/mV

RL = 2.0 kil

±10

±10

V

35
TA=TAMax

Output Voltage Swing

35

70

20

100

80

200

180

TA = TA Min

VOP

90

110

kil

nA
nA

100

dB
20

8.0

IlVN

Jl.A725C
Electrical Characteristics T A = 25°C. Vee = ± 15 V. unless otherwise specified.
Symbol

Characteristic

VIO

Input Offset Voltage
(Without external trim)

110

Input Offset Current

118

Input Bias Current

en

Input Noise Voltage

Condition

Input Noise Current

Typ

0.5

to = 10 Hz

to=
in

Min

Rs~ 10 kil

mV

2.0

35

nA

42

125

9.0

to = 1.0 kHz

8.0

to = 10 Hz

1.0

to = 100 Hz

0.3

to = 1.0 kHz

0.15

Input Impedance

VIR

Input Voltage Range

Avs

Large Signal Voltage Gain

RL ;;"2.0 kil.
Vo=±10V

CMR

Common Mode Rejection

Rs~10

kil

PSRR

Power Supply Rejection Ratio

Rs~lO

kil

VOP

Output Voltage Swing

RL = 10 kil

±12

± 13.5

RL = 2.0 kil

±10

± 13.5

pAlYHz

1.5

Mil

± 13.5

±14

V

250

3000

V/mV

94

120
2.0

80

7-91

nA

nV/YHz

15

100 Hz

Power Consumption

Unit

2.5

ZI

Pc

Max

dB
35

IlVN
V

150

mW

p.A725

/lA725C (Cont.)

Electrical Characteristics QOC';;; T A .;;; + 7QoC, Vee = ± 15 V, unless otherwise specified.
Symbol

Characteristic

Condition

Min

Typ

Max

Unit

VIO

Input Offset Voltage
(Without external trim)

Rs';;;10

kn

t:.Vlol t:.T

Input Offset Voltage Temperature
Sensitivity (Without external trim)

Rs=50

n

2.0

pV 1°C

t:.Vlolt:.T

Input Offset Voltage Temperature
Sensitivity (With external trim)

Rs= 50

n

0.6

pV/oC

110

Input Offset Current

TA=TAMax

1.2

35

TA=TA Min

4.0

50

t:.IIOI t:.T

Input Offset Current Temperature
Sensitivity

liB

Input Bias Current

3.5

TA=TAMax

125

TA = TA Min

250

Avs

Large Signal Voltage Gain

RL>2.0

Common Mode Rejection

Rs';;; 10

PSRR

Power Supply Rejection Ratio

Rs';;; 10

VoP

Output Voltage Swing

RL = 2.0

7-92

kn
kn
kn
kn

nA
V/mV

125

±10

nA
pArC

10

CMR

mV

115

dB

20

/lVIV
V

pA725

Typical Performance Curves
Voltage Gain vs Temperature For
Supply Voltages For p.A725/A
140

.......l-I-'"

ID

z

~

"'"
~

.

g

~z

~

..

:::. 100

Vee - :15V

I

Vee = :t10Y

--r-

I 120

Untrimmed Input Offset Voltage
vs Temperature For p.A725/A
1.0

.1 'LII"
"c<;""'?

...

Change In Trimmed Input Offset
Voltage vs Temperature For p.A725/A

Vee

I

±5V

AL

O!:

~

2 ItO

100

o

i-

:

~~~ :,,~s.~ 25 J

50

-

0

V

..

! -so
!
co

..

... V

~

0.8

~

0.4

~!

20

100

80

140

20

-20

-60

100

60

...... 1"'"

0.2

o

140

-60

-20

Voltage Gain vs Temperature for
Supply Voltages For p.A725C/E

20

140

100

60

TEMPEAATURE _ ·C

TEMPERATURE - ·C

TEMPERATURE _ °C

V

i--""

........ ........

o

U

-20

........

g

!-100

80
-80

Vee= :t15V

0.8

I

./

I--'"

~

80

'r!

0

Trimmed Input Offset Voltage vs
Temperature For p.A725C/E

Untrimmed Input Offset Voltage
vs Temperature For p.A725C/E

140

1.0
Vee = :t2DY

i

Vee

I

..~
~
..g
9
..

= :t15V
±10V_

Vee

z 120

Vee - :t:15V

f--

-

Yos:s S"Vat2S°C

-- -

Vee - :t5V

o~ r-

100

0

z

AL:it: 2kO

80

o

20

10

30

40

50

60

10

70

·c

TEMPERATURE -

20

30

40

50

TEMPERATURE -

60

70

Vee

= :t15V

0.8

I

'"

~
~

.

!;
!

80

0

'r!

--

0.8

f0- r-OA

f-- ~

0..2

0

10

20

·c

30

40

50

60

70

TEMPERATURE - °C

"""70'
Input Offset Current vs
Temperature For p.A725/A

Input Bias Current vs
Temperature For p.A725/A

Input Offset Current vs
Temperature For p.A725C/E

100

8

~

7

vJ, = ±15V

\
\

r\

3[""'--.

l"-

2

I"-20

20

100

·c

140

0

10

"

-

...........

1

60

TEMPERATURE _

&.

1\..'" ~

4

1

o

~

5

\

-60

,

Vee = .:t1SV

5

20

30

~
Vee =

20

:t10~~ ~

Vee

40

50

60

70

TEMPERATURE - ·C

0

-80

-20

20

= :t5V

.......

100

60

TEMPERATURE "",.9OF

7-93

Vee= :t20V
~vcc=:t15V

·c

140

MA725

Typical Performance Curves for all Types (Cont.)
Input Bias Current vs
Temperature !1A725C/E

Power Supply Rejection
Ratio vs Temperature

Common Mode Rejection
Ratio vs Temperature

."

100

10
Vee

= :1:15V

VCC=::t15V

6 120~-=r=p.,..-t-I-+-+-I=r-j
~z

9 1001-+--+-1-+-+-+-1-+-+-1

~

~ ~20V
:----+:-:3
~
cc

r-r t
=

0

~

Vee = :t15V

~

o

801-+-+-+-+--1--!--+-1-+-I

:&

OV

z
~

Vcc= ±5V

~

80~~-+-+--+~-~-+-~~-;

8
10

30

20

50

40

80

o

70

-60

TEMPERATURE _ "'C

vccl = l'5J

."
.
0:

0
0
:&

1 I
1 1

.

80

20

80

,00

140

"

AVCL! 10000

iffi
1

AVCL - 1000

0.01

z

0
:&
:&
0

TA = 25"'C

~

;;J

1
VC~ = .sv

1.0

I

z

;:: 100

1

t.

.. o.
~
g
.
9

z

l

-20

~

120

0

Vcc== :t10V

RL O!! 2k!l

140.--.,..---..,---,---r--,---,
TA = 25°C

0:

I

I

.."
I

1 1

o

60

40

!"
Q

15

10

5

TEMPERATURE _oc

20

AVCL

= 100

0.001
1,0

10

100

1.0 K

10 K

100 K

1.0 M

SOURCE RESISTANCE- 11

SUPPLY VOLTAGE - :tV

Stabilization Time of Input
Offset Voltage From
Power Turn-On

Input Offset Voltage Drift vs
Time

Common Mode Input Voltage
Range vs Supply Voltage

100

60

DC Closed Loop Voltage Gain
Error vs Source Resistance

Common Mode Rejection Ratio
vs Supply Voltage

= ::t20V

20

TEMPERATURE _ °C

TEMPERATURE _ °C

Output Voltage Swing vs
Temperature
Vee

20

i--

50
TA! 25°C

,/

V

:0;.

.."s

/
8

....
...."
.
."

0

.,......
>

/V

i!!
i!!

:I:

15

SUPPL V VOLTAGE -

20

:tv

"

~

PREVIOUS VIO :::; 1 p,V

-

g

30

tij

20

!2...

o
!;

..

20

10

1\

i!!

.

i!!
10 ~ r-

Z

10

Vee == ± 15 V
TA == 25"C

.. 30

we

VIO~20p.YATt=O

0

,/

./
0

I

YCC=±1SV
TA =

40

~E

"~
"

0

i"10N

:I:

/'
200

400

600

TlME-HRS

7-94

800

1000

TIME FROM POWER APPLICATION - MIN

MA725

Typical Performance Curves for all Types (Cont.)
Change In Input Offset Voltage
Due to Thermal Shock vs Time

Input Noise Current vs
Frequency

Input Noise Voltage vs
Frequency

.

lit"

10'" r-rrrr-'-TTTr-r-rTTT-r-r"TT"

Vee

N

:I:

,

>

1 10'"

g

;!;
;!;

w

a:
a: 1....
I,
i3w

10-n

W

."..

!II

!II

fi lOw

0
Z

11
w 10.

a:

a:

"'0"
'z"

0

"
'" -10

1_

Z

tAPPLY

10""

80

20

TIME FROM HEAT APPLICATION -

100

'"

10'"

'"
10

100

lOOK

10 K

1.0 K

Narrow Band Spot Noise Figure
Contours

!

g

10

.."

/'
10Hz

~

i

1.0

1

I-

~

!II
0

z

I--

Il'I"znir

o. 1
100

1.0 K

100

~
~

10

10

± 15 vt=~=fI\VCL = 1
Vee
TA = 25°C

=f1

EXTE~~~;EC~~L~~:EMIOE

~o

'"6z

1/

1()2

>

PEAK-To-PEAK

~

10

5

1
10

1.0 K

10 K

FReQUENCY - Hz

100 K

~t'l,

'~~~
~ f$:~

10

,,<>~

,<>

~

5

1111

1/
100

V

!zw

IIX

&1
1.0 M

/

POWER SUPPLY
RIPPLE VOLTAGE

a:
5

10mV

V

IJ J

10 2

8:

~

&1

I I I

~

IV
100mV

~

-

/

1
1

/

FREQUENCY - Hz

7-95

/
'-

~

~<--,

Y~
/IA
"r.y
100

10

1\

o
100

1.0 K

10 K

SOURCE RESISTANCE - 0

FREQ COMPENSATIONrr-Vcc = ± 15 v--j-ti Avec = 1
f-I--- T A = 25"C

W

;!;

!Ew

,

w

10V

w

10'

1()4

Equivalent Input Ripple Voltage
Due to Power Supply Ripple vs
Frequency

I II'FREQ COMPENSATION

g

10'
FREQUENCY - Hz

=

1

w
"

I

I III

10'

I)

Equivalent Input Noise Voltage
Due to External Common Mode
Noise vs Frequency
10'

'5

TA = 25°C
f = 1kHz

1\

.......

~~'?rtH ....111

10

100 K

10 K

SOURCE RESISTANCE -

Hz

vJl LI

\

\

""u:w

,/

10Hz-10kHz

'"5z

100 K

10 K

1.0 K

1

w

100kHz

I

100

10

a:

w

e'"

10

12

25°C

a:

w

10"'

,.

Q

~

10"'

Noise Figure vs Source
Resistance

100

.5

!'..

.

FREQUENCY -

{ = vW.J.v
=
1

.......

FREQUENCY - Hz

S

Broadband Noise for Various
Bandwidths

TA

.

i5

w

0

-20

"lilz'"

'"

:I:

:t:15V

25'C

ffi

w

"!:;'"

TA

1.0K

-I"""'"
100 K

flA725

Typical Performance Curves for all Types (Cont.)

Power Consumption vs
Temperature
160

........

140

~
I

z

2
l;:

100

~

80

i-

"

8

0

~

40

-- -

Open Loop Frequency Response
For Values of Compensation

a:

-- -

00

±20V

..".
~
.gg
z

~-

J10J-

20

-20

R1 == 10kn C1

80

I III

60

"
;!

40

..

~

§
c

~

20

R1 = 470 C1

-Rl '= 27rl
R2

-:=

r-

= .01p.F
= .05,F

I

JJ, = .JS,F

10'

I III
I III
I I II

"\.

1

o

1
10
H~

10'

10'

1
10'

CLOSED LOOP VOLTAGE GAIN

Output Voltage Swing vs
Frequency

Slew Rate vs Closed Loop Gain

Vee == ±15V
TA == 25°C

R2 = ail? C2 == .02J.1F

-20

100

10

FREQUENCY -

I
I
I

=="Vcc= ±1SV
10

..........

..........

~I

"

w

"'

270 n C2 :::; .0015/iF

f-Rl l= ,~

0

J,

I-R~

0:

"c

= .001 jtF

1 I

I III

"

-

100

R2_

100

SOpF

I T

R1 == 4700 C1

~

-=

'Ii
1 .OK~

Z

~

Frequency Response for Various
Closed Loop Gains

!1j
I

10K

/

.,.

1.0K

140

100

60

TEMPERATURE _

~'
",-C2

"

f3~

z

rT

-

C>

~

o

Vee - ±5V

0
-60

.'"

10

!g
I

vcd=

0

lOOK

100.

Rl =

':::'::"6 =

120

Values for Suggested
Compensation Networks vs
Various Closed Loop Voltage
Gains

:
~

"' "'
r-..... ......

o. 1

'V

10

10

10'

10

FREQUENCY -

FREQUENCY - Hz

Compensation Component Values
Cl
(J.lF)

V

I

0.0

10'

Rl

1.0

,/

800

> .....-..,....-vo

E
I

90%

w

I

;400

g
~

150 pF

~O.,/-1F

I'
Vee

10·

!;

o

= ::r1SV

TA=2S0C -

V

RL

= 2 kU

C,= l~rAT =1100

RljETljE

-400
TIME-I-'s

Typical Applications
Precision Amplifier AVCL = 1000
SOMn

500kn
500kn

10kn

90kn
~~----EO

Characteristics
Av= 1000=60 dB
DC Gain Error = 0.05%
Bandwidth = 1 kHz for -0.05% error
Diff. Input Res. = 1 Mfl
Typical amplifying capability
e n =10 MV on VCM=I.0 V
Caution: Minimize Stray Capacitance

Active Filter -

Band Pass With 60 dB Gain

Active Filter Frequency Response

C,
100

Av= (AV' DC)(2+¥C')(

R3

1

)

R3 + Rs + i27rloC3
80

I

t!
I

z

~

fI\

Rx=Ry

w

g

I

60

~

Eo

I

11

&..fo=

40

211'RxC)I..;c;iCx

Q =

1
1/2 ..;c;iCx

VI\
II

20

'{DC GAIN
R)l+R y +R4
Av. DC = 1 + --R-S-to X 10-2

fo X 10-1

10

Tl=2S0 C

foX10

NORMALIZED FREQUENCY

Lead numbers are shown for metal package only.

7-97

fo X 102

J.LA725

Typical Applications (Cont.)
Photodiode Amplifier (Note 2)
R4

C1

100 !l (NOTE 1)
~_N......-l0,000

t-""7.;:-::;-"""M.--~....,r--"""",,,f.kl~l-l,ooo
:;'~~E
T I~SELECT

~U

R3
10
10
lOOkU
(NOTE 1)
(NOTE 1) CALIBRATE

':"

R14
100 n
(NOTE 1)
-15 V
DC GAINS ~ 10,000; 1,000; 100; AND 10
BANDWIDTH ~ DETERMINED BY VALUE OF Cl
AF00541F

Thermocouple Amplifier (Note 2)

± 100 V Common Mode Range Differential Amplifier
(Note 2)

Cl

SOOpF
Rl
SOkn

R2

R3

5 kll

511 kO
(NDTE 1)
R4

>'-1-W'w-.....- OUT

REFERENCE
THERMOCOUPLE

R4
5 kH

IN

2000
C2
lOOpF

-::R7

R3
511 kH

(NOTE 1)

RBI :

pF

510n

SDk!!

I; = II 'or be.' CMR

+
>~...,...--OUT

Rl = R4

-::-

R2=R5
Gain

39!!

= RI + ( : ' )

5 kll

DC GAIN = 1000
BANDWIDTH =DC TO 540 Hz
EQUIVALENT INPUT NOISE = 0.24 pVrms

-::-

Notes
1. Indicates ± 1% metal film resistors recommended for temperature
stability.
2. Lead numbers are shown for metal package only.

7-98

IlA725

Typical Applications (Cont.)
Instrumentation Amplifier With High Common Mode Rejection (Note 1)
R2
10 kU

39

n
Rl
47 kil

AS

100

k!)

OUT

IN
270

R3
10 kfl

n

R5

10 kll
39

n

R7
lOOk£!

-=

R1

R3

R6

R4

- =-

for best CMRR

R3=R4

R1 =R6=10 R3
R6
Gain=R7

Note
1. Lead numbers are shown for metal package only.

7-99

MA741

FAIRCHILD

Operational Amplifier

A Schlumberger Company

Linear Division Operational Amplifiers

Description
The !LA741 is a high performance monolithic operational
amplifier constructed using the Fairchild Planar Epitaxial
process. It is intended for a wide range of analog applications. High common mode voltage range and absence of
latch up tendencies make the !LA741 ideal for use as a
voltage follower. The high gain and wide range of operating voltage provide superior performance in integrator,
summing amplifier, and general feedback applications.

Connection Diagram
8-Lead Metal Package
(Top View)
NC

>-~OOUT

-IN

•
•
•
•

No Frequency Compensation Required
Short Circuit Protection
Offset Voltage Null Capability
Large Common Mode And Differential Voltage
Ranges
• Low Power Consumption
• No Latch Up

vLead 4 connected to case.

Order Information

Absolute Maximum Ratings

Device Code

Storage Temperature Range
Metal Can and Ceramic DIP
Molded DIP and SO-8
Operating Temperature Range
Extended (!LA741 AM, !LA741M)
Commercial (!LA741EC, !LA741C)
Lead Temperature
Metal Can and Ceramic DIP
(soldering, 60 s)
Molded DIP and SO-8
(soldering, 10 s)
Internal Power Dissipation 1, 2
8L-Metal Can
8L-Molded DIP
8L-Ceramic DIP
SO-8
Supply Voltage
!LA741 A, !LA741 , !LA741E
!LA741C
Differential Input Voltage
Input Voltage 3
Output Short Circuit Duration 4

!LA741HM
!LA741 HC
!LA741AHM
!LA741EHC

-65°C to + 175°C
-65°C to + 150°C
-55°C to + 125°C
O°C to +70°C

mwrc.

Package Description
Metal
Metal
Metal
Metal

300°C
265°C
1.00
0.93
1.30
0.81

+OFF$ET
NULL

NC

-IN

v+

+IN

OUT

W
W
W
W

v-

±22 V
± 18 V
±30 V
± 15 V
Indefinite

-OFFSET
NULL

Order Information
Device Code
!LA741RM
!LA741RC
!LA741SC
!LA741TC
!LA741 ARM
!LA741 ERC
!LA741 ETC

Can and Ceramic DIP.
2. Ratings apply to ambient temperature at 25°C. Above this temperature,
derate the BL-Metal Can at 6.7
the BL-Molded DIP at
7.5 mW/oC. the BL-Ceramic DIP at B.7
and the SO-B at

mwrc.

5W
5W
5W
5W

Connection Diagram
8-Lead DIP and 50-8 Package
(Top View)

Notes
1. T J M., = 150°C for the Molded DIP and SO-B. and 175°C for the Metal

6.5

Package Code

mwrc.

3. For supply voltages less than ± 15 V. the absolute maximum input
voltage is equal to the supply voltage.
4. Short circuit may be to ground or either supply. Rating applies to 12S C
case temperature or 75°C ambient temperature.
D

7-100

Package Code
6T
6T
KC
9T
6T
6T
9T

Package Description
Ceramic DIP
Ceramic DIP
Molded Surface Mount
Molded DIP
Ceramic DIP
Ceramic DIP
Molded DIP

J.LA741

Equivalent Circuit
-IN

~~--------~----.---------~------------.---~-----------------------t--V+



•

is2

4/
•

~

2

o

15

20

/v

c

w

"

/'

/

10

"~

SUPPLY VOLTAGE -

- 55 C:s TA:OS: 125°C

12

r!

/

20

>;-

85

4

II:

I-

V

95

3. f- RL".kO
- 550(: 5" TA:S 12SCC
3.

..
/'
,.
/
'
.."''""
/'
" /'
":;..'" V
:0

~

i

>
I
 36 t-- RL1"'kO
DOC:s TA:S 7O"C
I

/

70

,.

40

105

!B

Input Common Mode Voltage
Range vs Supply Voltage
for IJA741C/E

Output Voltage Swing vs
Supply Voltage for !lA741C/E

Voltage Gain vs
Supply Voltage for !lA741C/E

\.
10

100

1.0K 10K

FREQUENCY -

lOOK 1.0M 10M
Hz

J,LA741

Typical Performance Curves (Cont.)
Frequency Characteristics vs
Supply Voltage for MA741C/E

Voltage Follower Large Signal
Pulse Response for MA741C/E

Voltage Offset Null Circuit
for MA741C/E

y-8~~-+~--+--r-+--r-~-+-4

SUPPLY VOLTAGE -

±V

Power Consumption vs
Supply Voltage

106
TA =

;.

60

U

40

'"
;.

..

!

20

.

§ 10

V

~

V"

o

5

3

~102

//

II:

0

~""0

/

/

 26
I

"z~

22

~

20

l-

I.

":I

16

::>
0

'l-

0

':"

"~

I--

.,..

0.5

1.0

Vee
+15
TA - 2S C
Q

V=

I
W

"

~ 10-15

o

>

w

610- 16
Z

w

a:

«

5 10-1

7

U>

~

::E

10~18

10

100

lOOK

10K

1.OK
FREQUENCY -

Hz

Hz

!' 100

.
::>

10- 23

,/

10

10.100 kHz

~

.......

,/

ffia:

,

10-10 kHz

~

~ 10- 2

It. k~' ....V

w
a:
w

.o

~

::>
10-2 5

z

....

Z

:I

«
o

I-

10-26

10

100

I-

10K

1.0K
FREQUENCY -

100K

O. 1

100

lOOK

10K

1.OK

Hz

SOURCE RESISTANCE -

fl

Input Impedance vs
Temperature for IlA741/A

Input Bias Current vs
Temperature for IlA741/A

100

200

Short Circuit Current vs
Temperature for IlA741/A
35

V~e =1±15~

Vee = :t15V

«

50

1

i

150

ilia:

a

e

-

30

I

I-

~
~

100

U>

«

iii
50

0

i'-

-60

r-20

....

-20

i
100

60

TEMPERATURE -

"C

-,.0

I

10.0

V

5.0

".-

25

::>

'"

.........

'"

u

l-

S
u

a:

20

.........

r-..

U
I-

a:

..

---

0

:r

1.0
-60

I'

Z

il!a:

V

3.0

30

I-

....-

~

a:

~

vt=

I-

w

;!;

Q

~
I

.!

U>

"

~OO~~u-~I.O~K~~~IO~K~~~I=OO~K~~-'~"OM

,

o

Vee - :1:15
TA - 2S C

Broadband Noise for Various
Bandwidths

I 10-2 2

o

16~~H-~~HK~~-H+-~~H+~

FREQUENCY -

IZ
W

(I)

~

kD

10- 2

~

a

2.~~H-~4-~~~-H+-~~Ht~

10

5.0

2.0

Input Noise Current vs
Frequency

a:
a:

5

~ 4~rtH--r-rrH~~HH~~~~-H+-~
I"LOAD RESISTANCE -

.

10-1

~ ·~rtH--r-rrH~~rH~i-i-Ht-1

0.2

10-13

.
s:
l:

-

6 12~~H-~~HK~~~+-~~H+~

10

• /

TA=25°C

~ 2o~~H-~~~~I4H\-H+-~4-Ht~
o
\

/

12

_=ro~

32

~ 2.~~H-~~~~~-H+-~~Ht~

I

I.

H+++-++++t-+-H ~~e ~ ±I,~J -

z

l.I'

0.1

:t

,or-rrn-~~n;-,-,-n~;-"OT-'

> 36
I
CI

2.

Input Noise Voltage vs
Frequency

Output Voltage Swing vs
Frequency

-20

20

60

TEMPERATURE _

7-107

100
0

c

,.0

......

15

10
-60

-20

20

60

TEMPERATURE _ "C

100

"0

•

J.1.A741

Typical Performance Curves (Cont.)
Input Offset Current vs
Temperature for /lA7411A

Frequency Characteristics vs
Temperature for /lA741/A

Power Consumption vS
Temperature for /lA741/A

14

J,5V

vcc'=
~ 12

1.4

I

120
Vee

~

Vee

o
~
~

W
0:

~

8

\

"....
~

6

'-...

o
....
~

;;

z
o'"

r- r-

o
-60

-20

20

.J ~
~r-

:t:15V

80

~~

,

:3

,,~ f'

r-- r--.... A;;J...!
I
~ P' c~

;;

r--- ......

r- r-

.......

"ffi60

-

~

-

1.\\""

~ 1.0

~

;-

a:
0.8

SLEW RATE

Oo.~

8"."",.,~

I I"""
I

40
0.6
100

60

TEMPERATURE -

w

r-

z

z

=

1.2

1'00

.... 10

I

= :t20V

E

I

-20

140

20

Input Bias Current vs
Temperature for /lA741C/E

100

60

TEMPERATURE _

°C

140

10

20

60

100

TEMPERATURE _

<>

-

I-- Vee = ::t: 15V
Vee

7.0

= ±15V

~ 80

c:

....

ffi
0:

Ii

60

0:

::>

"'"
iii
"
....

40

;;

20

..

- - r--

::>

o

o

20

30

40

50

I--

60

z

o

10

~80

..

40

50

60

o

70

""'"-

= :t:20V

r-- I---

:3

"- ........

$

l""'-

~

"> 1.00
~

I".

........

50
0

C

60

70

~

a:
0.95

60

70

/'

/
,/

-

"
::::--

~

V

SLEW RATE

0..~"

~

~01

~;'l-c
":-c.-:-

20
18

0

50

"c

Vc~ = "'~V
..........

w

26

H24

60

40

40

1.05

Ii:

30

30

Frequency Characteristics vs
Temperature for /lA741C/E
1.10

~ 22

20

20

TEMPERATURE -

i§ i'-u

TEMPERATURE _

10

I 28

70

10

o

°C

Short Circuit Current vs
Temperature for /lA741C/E

"a:w
~

30

30

lE
::>

'"~

20

~

-....

---

"'-

1

TEMPERATURE -

100

= ::!::15V

~ 2.0

70

Power Consumption vs
Temperature for /lA741C/E

Vee

"-

5

1.0
10

Vee

3.0

TEMPERATURE _ °C

~ 90
I

r-....

f-"

lE
I 5.0

140

c

Input Offset Current vs
Temperature for /lA741C/E

Input Impedance vs
Temperature for /lA741C/E

100

-20

~O

°C

0.90
10

20

30

40

TEMPERATURE -

7-108

50
"C

60

70

o

10

20

30

40

TEMPERATURE _

50

"c

~

60

70

JlA747
Dual
Operational Amplifier

FAIRCHILD
A Schlumberger Company

Linear Division Operational Amplifiers
Description
The IlA747 contains a pair of high performance monolithic
operational amplifiers constructed using the Fairchild Planar
Epitaxial process. They are intended for a wide range of
analog applications where board space or weight are important. High common mode voltage range and absence
of latch up make the JJ.A747 ideal for use as a voltage
follower. The high gain and wide range of operating voltage provide superior performance in integrator, summing
amplifier, and general feedback applications. The IlA747 is
short circuit protected and requires no external components for frequency compensation. The internal 6 dB/octave roll-off insures stability in closed loop applications.
For single amplifier performance, see J-IA741 data sheet.

Connection Diagram
10-Lead Metal Package
(Top View)
NC

vLead 5 connected to case.

•
•
•
•

No Frequency Compensation Required
Short Circuit Protection
Offset Voltage Null Capability
Large Common Mode And Differential Voltage
Ranges
• Low Power Consumption
• No Latch Up

Absolute Maximum Ratings
Storage Temperature Range
Metal Can and Ceramic DIP
Molded DIP and SO-14
Operating Temperature Range
Extended (IlA747AM, JJ.A747M)
Commercial (IlA747EC, IlA747C)
Lead Temperature
Metal Can and Ceramic DIP
(soldering, 60 s)
Molded DIP and SO-14
(soldering, 10 s)
Internal Power Dissipation 1, 2
10L-Metal Can
14L-Ceramic DIP
14L-Molded DIP
SO-14
Supply Voltage
IlA747A, IlA747
IlA747E, IlA747C
Differential Input Voltage
Input Voltage3
Voltage Between Offset Null and VOutput Short Circuit Duration 4

Order Information
Device Code
Package Code

Package Description

IlA747HM
JJ.A747HC
IlA747AHM
IlA747EHC

Metal
Metal
Metal
Metal

5X
5X
5X
5X

Connection Diagram
14-Lead DIP and 50-14 Package
(Top View)

-65°C to + 175°C
-65°C to + 150°C
-55°C to + 125°C
O°C to +70°C

-IN A
V+ A

+IN A

300°C

-OFfSET

265°C
1.07
1.36
1.04
0.93

OUT A

NULL A

NC

y-

-OFFSET

W
W
W
W

OUT B

NULL B

V+ B

+IN B

+OFFSET

-IN B

±22 V
± 18 V
±30 V
± 15 V
±0.5 V
Indefinite

NULL B

Order Information
Package Code
Device Code
JJ.A747DM
JJ.A747 DC
IlA747PC
JJ.A747SC
IlA747ADM
JJ.A747EDC

Notes
1. TJ Max-150"C for the Molded DIP and 50-14, and 175"C for the Metal
Can Ceramic DIP.
2. Ratings apply to ambient temperature at 25°C. Above this temperature,
derate the 10l-Metal Can at 7.1 mW/oC, the 14l-Ceramic DIP at
9.1 mWrC, the 14l-Molded DIP at 8.3 mWrC, and the 50-14 at
7.5 mWrC.
3. For supply voltages less than ± 15 V, the absolute maximum input
voltage is equal to the supply voltage.

6A
6A
9A
KD
6A
6A

Package Description
Ceramic DIP
Ceramic DIP
Molded DIP
Molded Surface Mount
Ceramic DIP
Ceramic DIP

4. Short circuit may be to ground or either supply. Rating applies to 125°C
case temperature or 75°C ambient temperature.

7-109

JlA747

Equivalent Circuit (112 of circuit)
-IN

~~-------i-----1~--------~----------~---'----------------------~--V+

R6

+IN

27

n
OUT

R7

22

+QFFSET
NULL

-OFFSET
NULL

v + A is internally connected to V + B.

7-110

n

p.A747

~A747 and ~747C
Electrical Characteristics TA = 25°C, Vcc = ± 15 V, unless otherwise specified.

jlA747C

IlA747
Symbol

Input Offset Voltage

V,o
V,o

Characteristic

adj

Condition

Min

Rs';;10 kn

Typ

Max

1.0

5.0

Min

±15

Input Offset Voltage
Adjustment Range

Typ

Max

1.0

6.0

±15

Input Offset Current

20

200

20

200

I'B

Input Bias Current

80

500

60

500

Z,

Input Impedance

Icc

Supply Current

Pc

Power Consumption

PSRR

Power Supply Rejection
Ratio

Vcc~±5.0

los

Output Short Circuit Current
Large Signal Voltage Gain

RL;o.2.0 kn, Vo~±10 V

TR

Transient
Response

V, ~ 50 mY, RL ~ 2.0 kn,
CL ~ 100 pF, Av ~ 1.0

BW

I Overshoot

SR

Slew Rate
Channel Separation

2.0

RL ~ 2.0 kn, Av ~ 1.0

nA
nA
Mn

3.4

5.6

3.9

5.6

rnA

100

170

100

170

mW

30

150
30

150

IlVN

25
50

Bandwidth

CS

0.3

V to ±16 V

Avs

IRise time

2.0

mV
mV

1'0

0.3

Unit

25

rnA

200

V/mV

0.3

0.3

I1S

5.0

5.0

%

1.0

1.0

MHz

0.5

0.5

V/IlS

120

120

dB

200

25

The following specifications apply over the range of -55·C';;TA';;+125·C for jlA747, 0·C';;TA';;70·C for jlA747C
V,o

Input Offset Voltage

Rs';;10 kn

1'0

Input Offset Current

O·C';;TA ';;70·C

1.0

TA~+125·C

TA
I'B

Input Bias Current

~

-55·C

~

+125·C

TA ~ -55·C
Supply Current

~

+125·C

TA ~ -55·C
Power Consumption

200

85

500

0.03

0.5

0.3

1.5

3.0

5.0

4.0

6.6

90

150

120

200

O·C ';;TA';; 70·C
TA~+125·C
TA~-55·C

1.0

7.5

mV

7.0

300

nA

30

800

4.0

6.6

rnA

120

200

mW

CMR

Common Mode Rejection

VIR

Input Voltage Range

PSRR

Power Supply Rejection
Ratio

Avs

Large Signal Voltage Gain

RL;o.2.0 kn, Vo~±10 V

VOP

Output Voltage Swing

RL

~

10 kn

±12

±14

±12

±14

RL

~

2.0 kn

±10

±13

±10

±13

Rs';;10 kn

70

90

70

90

±12

±13

±12

±13

30
Vcc~±5.0

7-111

dB
V

150

I1VN

V to ±16 V

30
25

nA
jlA

O·C ';;TA';; 70·C
TA

Pc

7.0

O·C ';;TA';; 70·C
TA

Icc

6.0

15

150
V/mV
V

IlA747

~A747A and ~747E
Electrical Characteristics TA = 25°C, ± 5.0 V < Vcc < ± 20 V, unless otherwise specified.

Symbol

VIO
VIO

adj

Characteristic

Condition

Input Offset Voltage

Rs";;;50 Q

Input Offset Voltage Adjustment
Range

Vee=±20 V

Min

Typ

Max

Unit

0.8

3.0

mV

10

mV

110

Input Offset Current

3.0

118

Input Bias Current

30

ZI

Input Impedance

Vee=±20V

1.0

Power Consumption

Vee = ±20 V

Common Mode Rejection

Vee=±20 V, VI=±15 V, Rs=50 Q

PSRR

Power Supply Rejection Ratio

Vee = + 10 V, -20 V to Vee = +20 V, -10 V,
Rs=50 Q

los

Output Short Circuit Current

AyS

Large Signal Voltage Gain

TR

Transient Response

BW

Bandwidth

SR

Slew Rate

I Rise time
I Overshoot

80

mW

50

INN
mA

dB

pA747A

10

25

40

I1A747E

10

25

35

Vee=±20 V, RL>2.0 kQ, Vo=±15 V

50
0.25

0.8

6.0

20

VI =50 mV, RL = 2.0 kQ, CL = 100 pF
Ay = 1.0

VI=±10 V, Ay=1

nA

300

95
15

nA

MQ

6.0
160

Pc
CMR

30
80

V/mV

/1S

%

0.437

1.5

MHz

0.3

0.7

VI/1s

The following specifications apply over the range of -55°C";;; TA";;; + 125°C for pA747A, O°C";;; TA ,,;;; + 70°C for pA747E.
VIO

Input Offset Voltage

LlVlol LlT

Input Offset Voltage Temperature
Sensitivity

110

Input Offset Current

118

Input Bias Current

LlIIOI LlT

Input Offset Current Temperature
Sensitivity

pA747E

/1A747A

ZI

Input Impedance

Vee = ± 20 V

Pc

Power Consumption

Vee = ±20 V

Output Short Circuit Current

Avs

Large Signal Voltage Gain

VOP

Output Voltage Swing

Channel Separation

/1VI'C

70

nA
nA

TA = 25°C to 70°C

0.2

nAloC

TA = O°C to 25°C

0.5

TA = 25°C to 125°C

0.2

TA = -55°C to + 25°C

0.5
MQ

0.5
pA747A

I -55°C
I + 125°C

330

330

Vee=±20 V, RL>2.0 kQ, Vo=±15 V

Vee=±20 V

Vee=±20 V

7-112

mW

270

10

Vee=±5 V, RL>2.0 kQ, Vo=±2.0 V

CS

mV

15

210

pA747E
los

4.0

I RL=10 kQ
I RL =2.0 kQ

32

40

mA
V/mV

10
±16

V

±15
100

dB

I1A747

Typical Performance Curves for J.lA747A and J.lA747
Input Bias Current vs
Temperature

100

200

~

rJz

'"

100

i

U>

'"

iii

I'-..

I-

;!;

30

50

-

"
~

r- r- I-

o
-50

I-

20

-20

-

5.0

~
I-

u

~

I:
o
ili

"-

" I" ,

20

15

10

.0

20

"-

25

I-

",

-60

60

100

-60

140

-20

20

1.'
Vee

Vee = ±20V

l-

"~5V

I
~I~

it

10

ffi
a:

o

t:

a:

"u
~

~

'\

.."
I-

-

......... ........

80

U>

8
........

;!;

IS

..

60

~

r- r-

">~
...>

........

1.0

~a:

r-

",..9

,,~ 9i

....

w

i'"'--

z

"'-

~

1.'

I .......

0.8

~

:;-

~J}
SLEW RATE
........ ,,~""
'7

1

c~

OOI>~
44
"'l>~~

I

40

o
-60

-20

20

60

-50

140

100

-20

Input Bias Current vs
Temperature For /1A747C/E

80

I--- Vee = ,,'5V

...
ffi

"
U>

60

'"

40

;!;

20

-

iii

.."
I-

-

'--- i--

o

010203040
TEMPERATURE -

506070

"c

,.c:I

5.0

i~

3. 0

!;

;i;

-

7.0

,.....

I-"'"'

0.6
-60

f~"

I

-20

20

60

140

100

TEMPERATURE _ "C

"C

-

10

Vee:;:: ;t15V

a:
a:
u

140

100

60

Input Impedance vs
Temperature For /1A747C/E

100

~

20

TEMPERATURE _

TEMPERATURE _ °C

140

"C

Frequency Characteristics vs
Temperature

120

E
I 100
Z

100

50

TEMPERATURE _

°C

Power Consumption vs
Temperature

vlc =1"'5~

12

~I--

"

U

TEMPERATURE _

Input Offset Current vs
Temperature

!!i

./

3.0

TEMPERATURE _ "C

14

V

~

V

1.0
140

100

60

10

30

!Z
::!

I

a:

.."

~
I

i

...a:z
U

35

V~c= ~'5~

50

Vee '" ±15V

150

I-

"

Short Circuit Current vs
Temperature

Input Impedance vs
Temperature

Input Offset Current vs
Temperature For /1A747C/E

...Vee"" ±15V

.............

r-....

---

:--

2.0
1

1.0

o

10

20

30

40

SO

TEMPERATURE _ "C

7-113

60

70

o
o

10

20

30

40

TEMPERATURE -

SO
"C

60

70

pA747

Typical Performance Curves (Cont.)
Power Consumption vs
Temperature For pA.747C/E

Short Circuit Current vs
Temperature For /JA747C/E
30

100

~

.......

z

,.

~

~
~

o

80

70

~

a:

20

30

40

50

60

0

10

20

30

40

50

80

70

40

TEMPERATURE _ °C

/

C

160

/

Ii:

/'

:>

80

0

a:

~

o

70

0.951--t--t--t----1f-~

TEMPERATURE -

./

40

L

=e

'~"

V

104

~

/

10

15

102
10

,
1.0

20

-45

'" '"

10

100

1.0K

w

'" '"

10K

FREQUENCY -

Input Offset Current vs
Supply Voltage

tOOK

TA

0

\

a:
a:
:>

...0w

3.0

100

1.0K

10K

-

r-

..
."

Vee

'Ii

1JZ

~

I-

0

10

15

SUPPLY VOLTAGE -

20
tV

c:
I
w 400

. .z
.... ..
... .
. "
0

l-

I-

~

300

w
a:

1

lOOK

10K
100

= ±1SV

= 25°C

500

0

0

C,

;!;

1.0

I
w

z

i!O

~ 2.0

1.0M 10M

600

TA

10

i"

lOOK
Hz

Output Resistance vs
Frequency
100

1.0M

I-

5

10

FREQUENCY -

Hz

c:

V

-180
1.0

f - ZI

4.0

W

r"-13 5

~
IZ

\

-90

:z:

Input Impedance and Input
Capacitance vs Frequency

l25 C

= 25°C

TA

..

1.0M 10M

10M

5.0

~

vc~= :t1~V

1\

TA = 25°C

0

±v

SUPPLY VOLTAGE -

I'"

'j$"

g
8. .
~

10-

5

vcJ=%I!v_

r---.,

W 103

,,/
o

105

"c

Open Loop Phase Response
vs Frequency

106

l25

I

0

20

Open Loop Frequency Response

Q 120

..

..

r--... .........
.........

"c

z

z

22

18
10

TA

0

i'-- r-...

0

0

:t

200

..,.

24

S

Power Consumption vs
Supply Voltage

e

0

l-

0

TEMPERATURE -

~

26

...a:

o

1.05 k:----1f----1f----1f--+

............

...a:z

a:
:>

60

50

28

I

-- -

r--r--r--r---,,---,---,,--,.

1.10

I-

r--

a:

~

.e

= ±20V

Vee
90

I

o

Frequency Characteristics vs
Temperature For pA.747C/E

0

II

~ 200

:>

I-

;!;

0

100

0.1
t.OK

100 K

10K

FREQUENCY -

7-114

Hz

100M

100

1.0 K

10K

FREQUENCY -

100 K

Hz

1.0M

IlA747

Typical Performance Curves (Cont.)
Output Voltage Swing vs
Load Resistance
28

>
I

26

"

24

Z

...~:>
...:>

22

~

16

..
..
...6
.
0

t:"

Vee ~ ,,\sJ

_r-r-

TA = 2S°C

Input Noise Voltage Density vs
Frequency

Output Voltage Swing vs
Frequency

..-

40

>
I

f"

RL

10-1 3

~lJL

Vee'.

3S

Vee _ :t15

= 10kO

TA=25"C

N

w

20

"

~10-15

1\

I

o

>

\

I

W

~10-16

g

14

I

12

Z
~'O-17

'"

w

10
8
0.1

/
0.2

0.5

1.0

2.0

5.0

LOAD RESISTANCE -

kO

Vee

::t:15

TA=WC

110-22

V=

,

!&

5\0:

:lI

is

Z 10-24

~
"
~
'" •

...

10 kHz

10 I

llH~

~Ul

.,.,. V-

..

=
TA=OSOC ' -

\.

70

\.

..
50

\.

40

~
~

30

~

20

i\.

\.

8'" o
10

O.1
100

1.0 K

Hz

lOOK

10 K

SOURCE RESISTANCE -

1.0

10

n

100

1.0K

10K

lOOK 1.0M 10M

FREQUENCY -

Voltage Follower Large Signal
Pulse Response For /JA747/C

Transient Response For p.A747/C

Hz

Frequency Characteristics vs
Supply Voltage For p.A7471C
1.4

28

Vee

=- z15 V

TA

TAo == 2S"C

24

= 25°C

AL = 2 kO

CL
20

,.

10

g
lOOK

10K

1.0 K

100

FREQUENCV -

...I

~

~
oz

10-2

,.

-

m

Z

>E

..

1/

0:

°10-25

10

!c

"'"

10 _ 100 kHz

100K

V~ ±l~V

90

Q 80

10

o

~

100

100

~- e

;:) 10-23

10K
Hz

Common Mode Rejection Ratio
vs and Frequency p.A747/C

I

0:
0:

1.0K

100

FREQUENCY -

~

i

10

Hz

Broadband Noise for Various
Bandwidths

I

10-18

l.oM

lOOK

10K

1.0K

FREQUENCY -

10-21

!

......

0
100

10

Input Noise Current Density vs
Frequency

o

v~

;10-14

V

18

TA=~

%

_

~

= 100 pF

1.'

..

J
/

"~

J

0

....... -.

INPUT

>
:>

11

:>

0

10%

I - - ~erMe
0.5

w

OUTPUT

w

:>

~

~

\
\

... 1--

~N"E
_!.
I'~~~
"'\O~"
s\.~'"
6~"O

>=

........ ..l..

-4

~"""le"7

w
> 1.0

-

S
w

~\.OO'

0:

I--

0.8

G"

--~

-8
1.0

TIME

-I'_

1.5

2.0

'.5

-10
-10

0

10

20

30 40

50

TIME -

j.I.'

7-115

60

70

80

90

O. 6

5

10

2D

15

SUPPLY VOLTAGE -

±V

IlA747

Test Circuits
Voltage Offset Null Circuit

Transient Response Test Circuit

>-~"""'~--Vo

RL

t

V-

Typical Applications
Quadrature Oscillator

C2
820 pF
1%

Tracking Positive and Negative
Voltage References

C3
820 pF
1%

SINE
OUT

01

R4
12 kO

02

f-15V

R2
190kll
1%
-15 V

, ~ --:2:-~-J"'C"'2';'R"'2"'C""3R"'3~ (R1Cl ~ R2C2)

1

NEGATIVE
REGULATED
OUT
-12 V
1L!5 5 mA
SOURCE
OR SINK

R3
180 kll

Rl
'90 kll
1%

v-

Cl
820 pF
1%

Rl
10 kll

AI +A2

Positive Output

= VOl x~

Negative Output

7-116

= - Positive

Output x

A6

AS

iJA747

Analog Multiplier
.,.-15 V
CURRENT SOURCE
R2
20 kU

AMPLIFIER

1~.

1% (NOTE 2)

R14
25.8 kO

R12
12 kO
1%
(NOTE 2)

+15 V

..,..15 V

Eo

-15 V

R3
20 kll
1%

R5
5 kO
1%

25.8 k!l
1"10

--I,

R4
15 kll
1%

-15 V

R15

E, 2

(NOTE 2)

R7
150 kll

R10
150 kll
ZERO ADJUST

-15 V

+15 V

Compressor/Expander Amplifiers (Note 1)
D1 (NDTE 3)

R

R2
10 kH

~

D2

R5

R

1 kH

D3

CDMPRESSOR
IN
EXPANDER
IN

-=
COMPRESSOR

f\7
EXPANDER
OUT

R

fu-

R6
1 kll

-=

EXPANDER

Notes
1. Maximum Compression Expansion Ratio = RIR (10 kn > R ;;. 0)
2. Matched 10 0.1% Eo = 100 Ell X E'2
3. Diodes D1 through D4 are matched FD666 or Equivalent

7-117

J.lA748
Operational Amplifier

F=AIRCHILO
A Schlumberger Company

Linear Division Operational Amplifiers

Description
The p.A748 is a high performance monolithic operational
amplifier constructed using the Fairchild Planar Epitaxial
process. It is intended for a wide range of analog applications where tailoring of frequency characteristics is desirable. High common mode voltage range and absence of
latch up make the p.A748 ideal for use as a voltage follower. The high gain and wide range of operating voltages
provide superior performance in integrator, summing amplifier, and general feedback applications. The p.A748 is
short circuit protected and has the same lead configuration
as the popular p.A741 operational amplifier. Unity gain frequency compensation is achieved by means of a single
30 pF capacitor.

Connection Diagram
8-Lead Metal Package
(Top View)
FREQ
COMP

vLead 4 connected to case.

• Short Circuit Protection
• Offset Voltage Null Capability
• Large Common Mode And Differential Voltage
Ranges
• Low Power Consumption
• No Latch Up
Absolute Maximum Ratings
Storage Temperature Range
Metal Can and Ceramic DIP
Molded DIP and SO-8
Operating Temperature Range
Extended (p.A748M)
Commercial (p.A748C)
Lead Temperature
Metal Can and Ceramic DIP
(soldering, 60 s)
Molded DIP and SO-8
(soldering, 10 s)
Internal Power Dissipation I, 2
8L-Metal Can
8L-Molded DIP
8L-Ceramic DIP
SO-8
Supply Voltage
Differential Input Voltage
Input Voltage 3
Output Short Circuit Duration 4

-65°C to + 175°C
-65°C to + 150°C

Order Information
Device Code Package Code

Package Description

p.A748HM
p.A748HC

Metal
Metal

5W
5W

Connection Diagram
8-Lead DIP and 50-8 Package
(Top View)

-55°C to + 125°C
O°C to +70°C

- OFFSET NULLI
FREQCOMP

FREQ
COMP

-IN

v+

+IN

OUT

+ OFFSET

v-

1.00 W
0.93 W
1.30 W
0.81 W
±22 V
±30 V
± 15 V
Indefinite

NULL

Order Information
Device Code Package Code

Package Description

p.A748RC
p.A748SC
pA748TC

Ceramic DIP
Molded Surface Mount
Molded DIP

Notes
I. TJ Max = 150"C for the Molded DIP and SO·8, and 175"C for the Metal
Can and Ceramic DIP
2. Ratings apply to ambient temperature at 25'C. Above this temperature,
derate the 8L-Metal Can at 6.7 mWI"C, the 8L-Molded DIP at
7.5 mWI"C, the 8L-Ceramic DIP at 8.7 mWI"C, and the SO-8 at

6.5 mWrC.
3. For supply voltages less than ± 15 V, the absolute maximum input
voltage is equal to the supply voltage.
4. Short circuit may be to ground or either supply. Rating applies to 125"C
case temperature or + 75°C ambient temperature.

7-118

6T
KC
9T

fJ.A748

Equivalent Circuit
- IN

- OFFSET NULL IFREQ COMP

FREQ COMP

vt

+IN
R6

27H

OUT

+ OFFSET NULL
V+

R1
1kn

7-119

f.1A748

J-IA748
Electrical Characteristics TA
Symbol

= 25°C,

Vee

= ± 15

V, Ce

= 30

Characteristic

Via

Input Offset Voltage

Via adj

Input Offset Voltage Adjustment
Range

pF, unless otherwise specified.

Condition

Min

Rs';; 10 kn

Typ

Max

1.0

5.0

±15

Unit

mV
mV

110

Input Offset Current

20

200

lis

Input Bias Current

80

500

ZI

Input Impedance

Icc

Supply Current

1.9

2.8

rnA

Pc

Power Consumption

60

85

mW

0.3

los

Output Short Circuit Current

Avs

Large Signal Voltage Gain

TR

Transient Response

SR

Slew Rate

I Rise time
IOvershoot

RL ;;;'2.0 kn, Vo=±10 V

50

VI = 20 mY, Cc = 30 pF,
RL = 2.0 kn, CL = 100 pF, Av = 1.0
RL = 2.0 kn, Av

= 1.0

RL = 2.0 ·kn, Cc = 3.5 pF, Av = 10

2.0

nA
nA
Mn

25

rnA

150

V/mV

0.3

iJ.s

5.0

%

0.5

V/J-Is

5.5

The following specifications apply for -55°C';; TA';; 125°C
Via

Input Offset Voltage

Rs';; 10 kn

1.0

6.0

mV

110

Input Offset Current

TA=TAMax

10

200

nA

TA = TA Min

50

500

lis

Input Bias Current

TA=TA Max

0.03

0.5

TA=TAMin

0.3

1.5

Icc

Pc

Supply Current

Power Consumption

TA=TAMax

1.5

2.5

TA=TA Min

2.0

3.3

TA=TAMax

45

75

TA=TA Min

60

100

CMR

Common Mode Rejection

Rs';; 10 kn

VIR

Input Voltage Range

PSRR

Power Supply Rejection Ratio

Rs';; 10 kn

Avs

Large Signal Voltage Gain

RL;;;'2.0 kn, Vo=±10 V

VOP

Output Swing

RL=10 kn

±12

±14

RL = 2.0 kn

±10

±13

7-120

70

90

±12

±13
30

25

iJ.A
rnA

mW

dB
V
150

iJ.VN
V/mV
V

fJA748

IlA748C
Electrical Characteristics TA
Symbol

= 25°C,

Vee

= ± 15

V, Ce

= 30

Characteristic

VIO

Input Offset Voltage

110

Input Offset Current

pF, unless otherwise specified.

Condition

Min

Rs< 10 kn

Typ

Max

Unit

2.0

6.0

mV

20

200

nA

80

500

liB

Input Bias Current

ZI

Input Impedance

Icc

Supply Current

1.9

2.8

mA

Pc

Power Consumption

60

85

mW

los

Output Short Circuit Current

25

mA

0.3

Avs

Large Signal Voltage Gain

TR

Transient Response

SR

I Rise time
IOvershoot

Slew Rate

2.0

nA
Mn

150

V/mV

VI = 20 mY, Cc = 30 pF,
RL = 2.0 kn, CL = 100 pF, Av = 1.0

0.3

/J.s

5.0

%

RL = 2.0 kn, Av = 1.0

0.5

V//J.s

RL;;'2.0 kn, Vo=±10 V

20

The following specifications apply for O°C < TA < 70°C
VIO

Input Offset Voltage

Rs<10 kn

110

Input Offset Current

TA=TAMax

300

nA

TA = TA Min

800

/J. A
mA

IcC

Supply Current

Pc

Power Consumption

2.0

7.5

TA=TAMax

1.5

2.5

TA = TA Min

2.0

3.3

TA =TA Max

45

75

TA = TA Min

60

100

CMR

Common Mode Rejection

VIR

Input Voltage Range

PSRR

Power Supply Rejection Ratio

Rs<10 kn

Avs

Large Signal Voltage Gain

RL;;'2.0 kn, Vo=±10 V

VOP

Output Voltage Swing

RL=10 kn

±12

±14

RL = 2.0 kn

±10

±13

Rs < 10 kn

7-121

mV

mW

70

90

dB

±12

±13

V

30
15

150

/J.VIV
V/mV
V

f.1A748

Typical Performance Curves for p.A748
Input Bias Current vs
Temperature

Short Circuit Current vs
Temperature

Input Impedance vs
Temperature

300

Vee

10.0

~ ±1~V

35

vcd ~±~v

/ 'V

5.0

\

1i
....

200

iii

1\

Z

w

a:
a:

"

III

.."
....

~

....

i'-- r--.

~

o

-so

1.0

20

i

t--..

--

so

20

100

TEMPERATURE _

<>

a:
a:

0.5

Vcc '=±15V

'" .....

" "-

25

"0t::
"()0a:

'/

~

100

!

140

c

Power Consumption vs
Temperature

50

40r---.---~--.----r---r---'

-20

c

0

I

80

Vee = ±15 V

VJc~±1'V

r-RL-="

1i
I

....z

~

e

30

ffi

w

a:
a:

"t;
0

~
".

a
II:

20

~
~-

....

~

10

0

•

,.

10

r-

20

-20

a:

i3

t-

...........

so

20

50

~

40

30

-so

140

100
<>

Z
0
0

-20

c

--

~

so

20

TEMPERATURE _

100
<>

30

40

50

TEMPERATURE _ °C

70

IVee =IX1. V

1

5.0

I-

I

V

- Ii :
60

1.0

140

c

Short Circuit Current vs
Temperature for IlA748C

7.0

w
a:
a:

"
"li
t::

20

...... r-........

26

...........

24

"'-

()

I-

a:

/'"
10

28

0

/'"
/'

o

30

Z

/V

V
20

r-

32

2.0

40

10

......

Vee - ±15 V

r-- I--

o

1- r-

a:
w

Input Impedance vs
Temperature for 1lA748C

iI

80

o

"

10

ffia: 120 t-...

80

In

10

Vee -:!:15V

i~

~

:Ii

TEMPERATURE _

200

"

0

-

I ......

SUPPLY VOLTAGE - -z.V

Input Bias Current vs
Temperature for IlA748C

~

z

30

o
-so

20

70

I

22

0

l:
In

30

40

TEMPERATURE _

7-122

50
<>

C

60

70

20

18

o

10

20

30

'"
40

TEMPERATURE _

..........

50
<>

C

~

60

70

f..LA748

Typical Performance Curves for I-IA748 and I-IA748C (Cont.)
Input Offset Current vs Supply
Voltage for J,lA748C

Input Offset Current vs
Temperature for J,lA748C

Power Consumption vs
Temperature for J,lA748C
so

50
Vee"" ±.15 V

...z 301---'/--+--+--+--+-""
w

a;
a;

:>
0

i...
:>

ffi

a;
a;
:>
0

20

~
...l!;:>

0

..

~
I

..

10

3:

3:

15

~

--

20

20

o

I

~

I'..."

105

w

0

;/

100
95

..

V

"..

:>

V

/

.."'"
...
'"
.."
w

20

16

so
60

0
0

40

~

~

V

16

./'

./

20

o

>
+1

I
w

/

V
/'

~

!
~
~

!

./

5

10

15

SUPPLY VOLTAGE -

20

:tv

50
0

60

70

c

TA =125oC

'a;~"

12

~

10

/"""

/'

/
'/

/

w

0
0

/

/

:E

z

0

1/

:E
:E
0
0

10

o

20

15

20

15

10

5

±v

SUPPLY VOLTAGE -

±v

Frequency Characteristics vs
Supply Voltage
1.4

TA= 25°C

±15V
25°C

Vee
TA
24

/

V

1.2

w

!O

20

w

> 1.0

1

~

16

I

2

J
0.2

J

s\.I'-'"

~s£

,,~I'-

b=

-r--

..\Q~"

~",Q

~.oo~"·

0:

8
0.1

N4.V

S1EN}-

...

:>

o

..

40

14

g""

V

Output Voltage Swing vs Load
Resistance

/

30

I!

/

5

I

20

Input Common Mode Voltage
Range vs Supply Voltage

28

E

w

24

>

100

10

TEMPERATURE _

./

SUPPLY VOLTAGE -

TA = 25°C
RL=oo

a;

30 o

70

£

o

120

iilz

60

./

±V

Power Consumption vs Supply
Voltage

:E

50

c

0

w

12

....

40

32

.;

SUPPLY VOLTAGE -

I
z

30

40

16

:>
0

80

Q

20

~

85

~

10

r--

50

w

-RL=2kU

>

I

-- -

60 b

a;

..

~

TA= 25°C

RL = 2 ktl

~ 110

g

0
0

40
C

§z

iilz

r-

Output Voltage Swing vs
Supply Voltage

TA-25 C

~

f

:E

TEMPERATURE _

115

!;l
!:i

z

10

~y

Voltage Gain vs
Supply Voltage

70

I

30

o

10

SUPPLY VOLTAGE -

=.

Vee L±15V
RL

40

0.8

osl'-Q

0.6

0.5

1.0

2.0

LOAD RESISTANCE -

7-123

5.0
kO

10

10

15

SUPPLY VOLTAGE -

20
±V

J.1A748

Typical Performance Curves for I1A748 and !1A748C (Cont.)
Frequency Characteristics vs
Temperature for J.lA748
1.'

-

w

'3

~
w
>

1.10

~cc ~ ±1J v

1.2

!:i

Lv

0.8

~

I'--.. r--... ~ JLEWIRAiE
II
~ P' c~

1.0

iil
a:

Vee = ±15 V

~('~

'i>\-t;;,~

0.6
-60

(Oo..~

60

100

TEMPERATURE _

0

3

~
~ 1.00

~

I

--¥I

~

...~"

" ......
:::::-

~
~

~ol

10

20

30

40

50

TEMPERATURE _

C

0

60

70

c

FREQUENCY -

10-22

V

10-100 kHz

10-23

~

W 10-24

10-1 kHz.........

~

Veel~ ±15 ~

TA

•••••••••• "

Rs

i

10

loOK

100

FREQUENCY -

lOOK

10K

RL=2kfl
Cc=30pF

".
~
••••••• 1 " -

..... \

~~~--+-~---r~t.-~.--i

-30

\

--60

'\

RL=2kn
Cc=3pF

...•..•...

m
a: -90
m
c

RL = 2 kO

Cc""30pF

~ -120

TA

~

Rs

=500

25°C

>
I

-

~.

J"

I!I-I
~~ : ~ok~

.

II

"...
"

'\

0

24

l!

~

FREOUENCY -

Hz

60

9z

40

0

~

..

w

.....

o
106

80

>;-

·180

lOS

100

Z

6

-210
104

.""
~
.g
I

\cc ~ 30 PF\

'"~
103

,.---,.--,--,-..,.--,-..,.--,

ID

\CC:=3pF

,.

Hz

Open loop Frequency Response
for RL;;' 10 kil
1~

32

107

1.0 K

10 K

100 K
FREQUENCY -

7-124

\

'--....L_..L...-...l_...L._..L...-'_-'
10
102
103
104
105
106
107
FREQUENCY -

II vL'±U~

c.

~

102

n

z

"
~

-150

10

100 K

Output Voltage Swing vs
Frequency

i\
1

10 K

40

v~ ~±lJv

"\

.....
-~

1.0 K

SOURCE RESISTANCE -

Hz

Open Loop Phase Response vs
Frequency

.~

1
100

25°C_

=SOl

40r--r-~r--I~8~'~~~_+---1

Go

§

I

,.,..",

~

~ 80r--r--4b,-,~,~.~,,-+-~-+---1

~

V

10--25

~

i

~

100

~ wr--I-~~~~.~~~'-~-'R'~.2"kn~
~
":;'"
Cc=3pF

10-10 kHz

Z

::&

""=-

120 ...---'r--'~--'~-'~-'~..,.~-'

_Y~C-+15Y

-TA ->soC

i

Hz

Open loop frequency Response
for RL = 2 kil

Broadband Noise for Various
Bandwidths

a
'"~

'"
~,. 10-171-f.+1+-++H+-+-++t+--+-+-+++-I

1ft(

0.9 0

100

l-rtff""f...t:Ii+t-t-t+tt-t--Htt-i

10-161-f.+1+-++H+-+-++t+-+-+-+++-I

"o

~+'1<0

140

+15 V

10-1S

w

~

>soc

~ 10-141--++++-++H4-1-1-+1-+--+--+-H+-I

g

I

~0J.

1O-13...-,....,.,.,---r-r-rrr-,-,...,.,..,..-..,.-..,.-rrr-,

I
w

S~EWRATE

/'

7"

0:

10-21

Vee
TA

"'~

...........

0.95

Input Noise Current vs
frequency

~

~~

f<-""

1.05

10"''f~''
I I

-20

Input Noise Voltage vs
Frequency

Frequency Characteristics vs
Temperature for JJA748C

.....
100M
Hz

10 M
FREQUENCY -

Hz

MA748

Typical Performance Curves for JlA748 and JlA748C (Cont.)
Frequency Response for Various
Closed Loop Gains
120

!/lI

Vee I; ±IS

Compensation Capacitance vs
Closed Loop Voltage Gain
so

t

~~<>k71-

TA
RL

100

Input Impedance and Input
Capacitance vs Frequency

'&

Z

~

w

10

S!

g
0

9
0

III

I

Cc=1pF

~ 60

..

'&

2,

80

--~

Cc =]2 pF
40

ce;3~ ~

20

90

cc",1 3OPF
100

1.0K

10K

FREQUENCY -

C,
11: 100 K I-t-+H-++t+t-t-t-+tt--t-+i-t+-t 1.0

!;

"'

-20
10

"r!z

1\

~PFj ~\.

Cc;

~

K

I
w

"z~
~

."

!ion

2.0

z

0

z

FREQUENCY -

At. =2kU

\

\

"

NO OVERSHOOT
(CL:51OO pF)

"-

"-"'

L

~

1.0

~

.......",

0.5
010

20

30

40

Transient Response Test Circuit

~

506070

CLOSED LOOP VOLTAGE GAIN -

Hz

+15 V

TA = 25"C

2()O/o OVERSHOOT

~

"

Vee

\.

(el::; 20 pF)

1.0M

100 K

Hz

10

5.0

:I!
0

10M

Voltage Follower Transient
Response (Gain of 1)

~
...
0

!

0.1

lOOK 1.0M

w

20

dB

Voltage Follower Large Signal
Pulse Response
10

28

Vee::: ±15 V

TA ; 2S"C

24
20
90%

~

I

...

K

16

~~4-----~------Vo

12

I

;.
i'

w

~

>

...
....

:>

11

-

>
I

"0~

I

'o5

1/221'

RL

V,

Vee::c ±15 v
eL =

:>
-6

RL ::: 2 k!l

R,ser ME - r -

-2

0

TA =25°C

100 pF

V

"-

r

OU~PUk~

,I

INPUT/

=r-- cr !",

"

Cc=30pF

['y

:I

;,

<10

..

3

-10
0.5

1.0

1.5

2.5

2.0

TIME -

TIME -).JS

Output Resistance vs Frequency

Common Mode Rejection Ratio vs
Frequency

600

100

Vee

=

±15 v

!/l

TA =25"C

0

I

~

z

0

w 400
0

~

I

90

z

;::

80

\.

70

\.

60

id so

300

a:

.......

/

:> 200
:>

;;J
a:

l!l0

\

40

:I!

30

0

20

0
0

10

\.

z

0

100

''""

0
100

1.0 K

10 K

FREOUENCY - Hz

100 K

l.oM

.1

Vee =±15VTA =25"C
CL =30pF_

~

I

500

~

-

RL =2kO

C'SiPi-

10

100

1.0 K

10 K

100 K 1.0M 10 M

FREQUENCY _ Hz

7-125

~s

\
~

JlA748

Test Circuits
Feed Forward Compensation

Large Signal Feed Forward
Transient Response
10

10 kll

r-~CC~±I~V
RL
;10

7.5

=10pF
r-~L "'25°C
TA

r

10 kll

>--<....._p--Vo
\
3.0 kll
-2.5

150 pF

o

2

RESPONSE TIME -,.s

Voltage Offset Null Circuit
Suggested
y+

10 Mil

Alternate

y-

5.1 Mil

25 kll

7-126

J.lA748

Typical Applications
Pulse Width Modulator
Rl

R2

~~'V _-'l00'MkO,..-......_ _ _ _ _ _...
l00WkO~
+15 V -15 V

,---+--Vo
R3
C1

0.47

~F

10 kO

J.

R'

100 k!l
01
6.2V

RS

100 !l

02
6.2 V

Practical Dlfferentiator

Circuit for Operating the j.tA748 Without a Negative
Supply

C2

Rl

R2

R2

+15 v -15 V

+ZOV

V,

>8'--_-VO

R3

1

Ie = 211' R2 C1
1

Ih

=

211' Rl Cl

fc

< fh < funity

211' R2 C2

gain

7-127

p.A759 • p.A77000

FAIRCHILD

Power
Operational Amplifiers

A Schlumberger Company

Linear Division Operational Amplifiers

Description
The pA759 and pA77000 are high performance monolithic
operational amplifiers constructed using the Fairchild Planar
Epitaxial process. The pA759 provides 325 mA and the
pA 77000 provides 250 mA output current and feature
small signal characteristics better than the fJA741. The
amplifiers are designed to operate from a single or dual
power supply with the input common mode range including
the negative supply. The high gain and high output power
provide superior performance whenever an operational amplifier is needed. The pA759 and pA77000 employ internal
current limiting, thermal shutdown, and safe-area compensation making them essentially indestructible. These amplifiers are intended for a wide range of applications
including voltage regulators, audio amplifiers, servo amplifiers, and power drivers.

• Output Current
p.A759 - 325 mA Minimum
p.A77000 - 250 mA Minimum
• Internal Short Circuit Current Limiting
• Internal Thermal Overload Protection
• Internal Output Transistors Safe-Area Protection
• Input Common Mode Voltage Range Includes Ground
Or Negative Supply

Connection Diagram
8-Lead Metal Package
(Top View)
NC

vLead 4 connected to case.

Order Information
Device Code
fJA759HM
fJA759HC

Package Code
5W
5W

Package Description
Metal
Metal

Connection Diagram
TO-202 Package
(Top View)

Absolute Maximum Ratings
Storage Temperature Range
Metal Can
Power Watt
Operating Junction Temperature Range
Extended (pA759M)
Commercial (pA759C, pA77000C)
Lead Temperature
Metal Can (soldering, 60 s)
Power Watt (soldering, 10 s)
Internal Power Dissipation 1
Supply Voltage
Differential Input Voltage
Input Voltage2

-65°C to + 175°C
-65°C to + 150°C
-55 to + 150°C
O°C to + 125°C

Order Information
Device Code
fJA759U1C
fJA77000U1C

Internally Limited
±18 V
30 V
± 15 V

Notes
1. Although the internal power dissipation is limited. the junction
temperature must be kept below the maximum specified temperature in
order to meet data sheet specifications. To calculate the maximum
junction temperature or heat sink required, use the thermal resistance

values which follow the Electrical Characteristics Table.
2. For a supply voltage less than 30 V between V+ and V-. the absolute
maximum input voltage is equal to the supply voltage.

7-128

Package Code
8Z
8Z

Package Description
Power Watt
Power Watt

p.A759 • p.A77000

Equivalent Circuit

-IN
+IN--~--~-----+-----4---4--------~

-OFFSET
NULL

+ OFFSET
NULL

Note
All resistor values in ohms.

--------------_-.=,"".;;.-;'---------------...---7-129

J.LA759 • J.LA77000

p.A759

Electrical Characteristics TJ = 25°C. Vee = ± 15 V. unless otherwise specified.
Symbol

Characteristic

Condition

Min

Typ

Max

Unit

VIO

Input Offset Voltage

1.0

3.0

mV

110

Input Offset Current

5.0

30

nA

liB

Input Bias Current

50

150

nA

Rs<:10 kil

ZI

Input Impedance

Icc

Supply Current

0.25

VIR

Input Voltage Range

los

Output Short Circuit Current

IVcc-vo1=30 V

10 PEAK

Peak Output Current

3.0 V<:lvcc-vo1<:10 V

1.5
12

+13
to V-

Avs

Large Signal Voltage Gain

TR

Transient Response

I Rise time
I Overshoot

RL>50 il. Vo=±10 V

±325
50

RL = 50 il. Av = 1.0

Mil
18

mA

+13
to V-

V

±200

mA

±500

mA

200

V/mV

300

ns

5.0

%

SR

Slew Rate

RL = 50 il. Av = 1.0

0.6

Vlp.s

BW

Bandwidth

Av= 1.0

1.0

MHz

The foliowing specifications apply for -55°C <: TJ <: + 150°C
VIO

Input Offset Voltage

110

Input Offset Current

Rs<:10 kil

4.5

mV

60

nA

liB

Input Bias Current

CMR

Common Mode Rejection

Rs<:10 kil

80

100

dB

PSRR

Power Supply Rejection Ratio

Rs<:10 kil

80

100

dB

25

200

V/mV

±10

± 12.5

300

Avs

Large Signal Voltage Gain

RL>50 il. Vo=±10 V

VOP

Output Voltage Swing

RL =50 il

7-130

nA

V

fJ.A759 • fJ.A77000

IlA759C
Electrical Characteristics TJ = 25°C, Vee = ± 15 V, unless otherwise specified.
Symbol

Characteristic

VIO

Input Offset Voltage

110

Condition

Min

Typ

Max

Unit

1.0

6.0

mV

Input Offset Current

5.0

50

nA

lis

Input Bias Current

50

250

ZI

Input Impedance

Icc

Supply Current

VIR

Input Voltage Range

Rs";; 10 kn

1.5

+13
to V-

+13
to V-

V

±200

mA

12

los

Output Short Circuit Current

IVcc-vo1=30 V

10 PEAK

Peak Output Current

3.0 v,,;;lvcc-vok10 V

Avs

Large Signal Voltage Gain

RL > 50 n, Vo = ± 10 V

TR

Transient Response

I
I

Rise time

nA

0.25

Mn
18

mA

±325

±500

25

200

V/mV

300

ns

RL = 50 n, Av = 1.0

Overshoot

mA

10

%

SR

Slew Rate

RL = 50 n, Av = 1.0

0.5

V//ls

BW

Bandwidth

Av = 1.0

1.0

MHz

The following specifications apply for 0°";; TJ";; + 125°C
VIO

Input Offset Voltage

110

Input Offset Current

lis

Input Bias Current

CMR

Common Mode Rejection

Rs";;10 kn

7.5

mV

100

nA

400
Rs";; 10 kn

70

100

nA
dB

PSRR

Power Supply Rejection Ratio

Rs";;10 kn

80

100

dB

Avs

Large Signal Voltage Gain

RL>50 n, Vo=±10 V

25

200

V/mV

VOP

Output Voltage Swing

RL = 50 n

±10

± 12.5

7-131

V

IlA759 • IlA77000

1JA77000
Electrical Characteristics TJ = 25°C, Vee =
Symbol

± 15

V, unless otherwise specified.

Characteristic

VIO

Input Offset Voltage

110

Input Offset Current

lis

Input Bias Current

ZI

Input Impedance

Condition

Min

Rs';;;l0 kn

Icc

Supply Current

VIR

Input Voltage Range

los

Output Short Circuit Current

IVcc-v01=30 V

Typ

mV

5.0

50

nA

50

250

1.5

+13
to V-

+13
to V-

V

±200

mA

18

mA

±400
200

V/mV

= 1.0

300

ns

10

%

= 1.0

0.5

VI/1s

1.0

MHz

3.0 V.;;;lvce-vol.;;;lO V

Large Signal Voltage Gain

RL;;'50 n, Vo=±10 V

TR

Transient Response

SR

Slew Rate

RL

BW

Bandwidth

Av = 1.0

n, Av

Mn

25

Peak Output Current

= 50

nA

0.25

±250

10 PEAK
Avs

RL = 50 n, Av

Unit

8.0

12

I Rise time
I Overshoot

Max

1.0

mA

The following specifications apply for 0·';;; TJ .;;; + 125°C
VIO

Input Offset Voltage

Rs';;;10 kn

10

mV

110
lis

Input Offset Current

100

nA

Input Bias Current

400

CMR

Common Mode Rejection

Rs';;; 10 kn

70

100

nA
dB

PSRR

Power Supply Rejection. Ratio

Rs';;;l0 kn

80

100

dB

Avs

Large Signal Voltage Gain

RL;;'50 n, Vo=±10 V

25

200

V/mV

VOP

Output Voltage Swing

RL = 50 n

±10

± 12.5

7-132

V

tJ.A759 • tJ.A7700a

Package

Typ

Max

Typ

Max

Mounting Hints

IiJC
°C/W

IiJC
°C/W

IiJA
°C/W

IiJA
°C/W

Metal Can Package (/lA759HChIA759HM)
The /lA75[) in the S·Lead TO·99 metal can package must
be used with a heat sink. With ± 15 V power supplies, the
!lA759 can dissipate up to 540 mW in its quiescent (no
load) state. This w0U1d result in a 100°C rise in ohip temperature to 125°C (assuming a 25°C ambient temperature).
In order to avoid this problem, it is advisable to use either
a slip on or stud mount heat sink with this package. If a
stud mount heat sink is used, it may be necessary to use
insulating washers between the stud and the chassis because the case of the !lA759 is internally connected to
the negative power supply terminal.

Power Watt (U1)

S.O

12

75

SO

Metal Can (H)

30

40

120

150

TJMax-TA
POMax= Ii
or
JC + IiCA
=

TJMax-TA

(Without a heat sink)

IiJA
IiCA = lics + liSA

Power Watt Package (!lA7""1C//lA77000U1C)
The !lA759U1C and !lA77000U1C are designed to be attached by the tab to a heat sink. This heat sink can be
either one of the many heat sinks which are commercially
available, a piece of metal such as the equipment chassis,
or a suitable amount of copper foil as on a double sided
PC board. The important thing to remember is that the
negative power supply connection to the op amp must be
made through the tab. Furthermore, adequate heat sinking
must be provided to keep the chip temperature below
125 C under worst case load and ambient temperature
conditions.

Solving TJ:
TJ = TA + PD(IiJC + IiCA) or
= TA + POIiJA (Without a heat sink)
Where:
TJ
=
TA =
PD
=
IiJA =
IiJC =
IiCA =
lics =
liSA =

Junction Temperature
Ambient Temperature
Power Dissipation
Junction to ambient thermal resistance
Junction to case thermal resistance
Case to ambient thermal resistance
Case to heat sink thermal resistance
Heat sink to ambient thermal resistance

Q

Typical Performance Curves
Frequency Response For Various
Closed Loop Gains
100

.....

~
C

90

80
70

"w

80

.g

40

"~
0

>

....

.,0w

- ,
"

100
90

'll

"\

~

I\.

50

"w
"~

\

"'

30

..
..

10

g

u

"'

-10
101

102

103

104

r-

'\
80 ."'-.
70

80

I
I

"\.

"\. \

50

./'

\

40

105

FREQUENCY·Hz

\.

,

1\
106

>

30

§

20

z
w

10

0

0

Output Voltage vs Frequency

/~AIN

I\.

0

.\

20

100

Open Loop vs
Frequency Response

\

"\.

'"

-10
107

100

101

1()2

103

104

80

105

60
40
20

>'t.

25

i!lc
!:i0

20

E

"

...>

50

10

-40

"I'
10'

107

103

104
FREQUENCY·Hz

FREQUENCY-Hz

$
7-133

~

-20

\.

106

AL = SOO
TA = 25°C

30

140

100

\,

v~cl ~\!v

160

PHA.k- 120

"'-

3'

180

105

10'

p.A759 • p.A77000

Typical Performance Curves (Cont.)
Output Voltage vs
Load Resistance

II

30

>'t.

Vee = :t15V

~~- is'C

25

IIIc

~

>

....
i....

"0

20
15

/I

II,

i

//\

Vi

TJ;,lsor

V

I I

10

/
II

-2
-4

Vee = :t15V

10

1000

20

40

~O

30

30

40

50

20

I

10

I

25"f

-6

100

'E

\

I

=

RL SOO
TAl;

/

RISE TIME 0.22

Il.

km
0.2

60

0.4

0.6

0.8

1.0

1.2

1.4

TlME-",_

TIME-""

LOAD RESISTANCE-O

AL .. SOO

~~~~-

90%

1\
I \

INPUT ....

I

50

~

OUTPUT

Vee - :t15V

r,

80

~

/

,,-:

\,

10

Voltage Follower Transient
Response

Voltage Follower Large Signal
Pulse Response

f'CO,251OF

Total Harmonic Distortion vs
Power Output

Total Harmonic Distortion vs
Frequency
10

10

Vee = :15V
RL = SOO

~

Vee = :18V (320)

2O""_p

~

I I

I

Vee III :t12V(160,80)
f= 1kHz,

1.0

1.0

0.1

I

f-

If-

.0

:;!

....

Av

III:

20dB

-1~1= J..I

"

I
II
1
I I

RL
80

-

160
.01

.001
.01 .02

103

,

/

320

e
III I I

Vc6 ~ ~j5V
TA-WC

I

Av= 1

0.1

103

I

~....

yj

Input Noise Voltage vs
Frequency

.05 0.1 0.2

0.5 1.0

2

5

100

10

10'

POWER OUTPUT·W

FREQUENCY-Hz

FREQUENCY-Hz

"""'''''''
Noise Current vs Frequency

,
Vee

III:

±15V

TA-we

~

ILl

~

700

c

E

i

800

800

10

..... 100

!iw
I

r-.....

800

PowItr supply-single 36 V
Temperature TJ = 2SOC

,

500

B

!:: 400

c

..........

,

r--.....

..........

........
..........

u

I'-..

I'i

300

.

200

~:I:

500

5

400

....

300

0

200

a:
a:
:>
u

,
..........

~
:>

"c
~

--

V

E

:>

10-

Peak Output Current vs
Output Voltage

Short Circuit Current vs
Junction Temperature

./
/'

V

100

100

•,

102

103

FREQUENCY·Hz

-so

so

100

JUNCnoN TEMPERATURE - °C

7-134

lSO

12

18

24

OUTPUT VOLTAGE.V

30

36

J1A759· J1A77000

Offset Null Circuit

Paralleling p.A759 Power Op Amps

V, --'VIIV-_-f
0.50

Vo

0.50

Audio Applications
Low Cost Phono Amplifier
C2
10pF
R3

25k

,~~~t}~
1-=
CARTRIDGE

.1
":'"

-=

-=

Headphone Amplifier

v,
25k
1,.F

180pF
22k
10k

2.2k

Note
1. All resistor values in ohms.

7·135

Speaker
Impedance
(ohms)

Output
Power
(watts)

Min
Supply
(volts)

(volts)

4
8
16
32

.18
.36
.72
1.44

9
12
15
25

2.4
4.8
9.6
19.2

Vop.p

JiA759 • JiA77000

Bi-Directional Intercom System Using
the /lA759 Power Op Amp
+12 V

2k

+

10~

+12V

160

-12V

TONE
CONTROL
(OP1'lONAL)

Features
Circuit Simplicity
1 Watt of Audio Output
Duplex operation with only one two-wire cable as
interconnect.
Note
1. All resistor values in ohms.

7-136

IlA759 • IlA77000

High Slew Rate Power OP Ampl Audio Amp

AG Servo Amplifier - Bridge Type
C

5k

50k

v, ----;iil-""I\i-.,.----w..-,
+28 V

300

10pF
10 k

+28 V

t - - - - Vo

5.1 k

V,-'VV'....-........

-"""I'¥-..,...--I

PO(MAX) (8 0) - 18 W

5.1 k

2 PHASE
SERVOMOTOR

-13V

~0.47"F
10k

Features
High Slew Rate 9 V/IlS
High 3 dB Power Bandwidth 85 kHz
18 Watts Output Power Into an 8
Load.
Low Distortion-.2%, 10 VRMS, 1 kHz Into 8

n

Features
Gain of 10
Use of 1lA759 Means Simple Inexpensive Circuit

n

Design Consideration
Av>10

Design Considerations
325 mA Max Output Current

Servo Applications
DC Servo Amplifiers
5k

50 k

V,

1
Features
Circuit Simplicity
One Chip Means Excellent Reliability
Design Considerations
10<325 mA
Note
1. All resistor values in ohms.

7-137

IlA759 • IlA77000

Regulator Applications
Adjustable Dual Tracking Regulator

+y,--------------,
+7Y to +35 Y
+Yo
1 "F

5.6 k
1%

GND

2k
2"F
1 "F
-V,

IN

!'A79MG

-7Yto-35V

5.6 k
1%

25k
OUT

-Yo

Features
Wide Output Voltage Range (± 2.2 to ± 30 V)
Excellent Load Regulation AVo < ± 5 mV for
Alo = ±0.2 A
Excellent Line Regulation AVo < ±2 mV for AVI = 10 V
Note
1. All resistor values in ohms.

7·138

p.A759 • p.A77000

Regulator Applications (Cont.)
10 Amp -12 Volt Regulator

15-2~IV_"""'_ _" " " ' - - - - - - - '
R1

12
Q1
2N2907
Q2

_125

o

I"F

r-I

R2

1~9300

I

I
I

-=2k

I
--.J
Q4

2N2612
R4

0.03 !l

12k

Vo- 12V

RS
Uk

R6

3k

Features
Excellent Load and Line Regulation
Excellent Temperature Coefficient-Depends
Largely on Tempco of the Reference Zener
Note
1. All resistor values in ohms.

7-139

p,A771
Operational Amplifier

F=AIRCHIa...D
A Schlumberger Company

Linear Division Operational Amplifiers

Description
This monolithic JFET Input Operational Amplifier incorporates well matched ion implanted JFETs on the same chip
with standard bipolar transistors. The key features of this
op amp are low input bias current in the sub nanoamp
range plus high slew rate (13 V / p.s typically) and wide
bandwidth (3.0 MHz typically).

•
•
•
•

Connection Diagram
8-Lead DIP and SO-8 Package
(Top View)

+OFFSET
NULL

-IN

Low Input Bias Current - 200 pA
Low Input Offset Current - 100 pA
High Slew Rate - 13 V I p.s Typically
Wide Bandwidth - 3.0 MHz Typically

Absolute

Maximum

+IN

v-

Ratings

Storage Temperature. Range
Ceramic DIP
Molded DIP and SO-8
Operating Temperature Range
Extended (pA771 AM, pA771BM)
Commercial (pA771C, pAn1AC,
pA771BC, pA77tLC)
Lead Temperature
Ceramic DIP (soldering, 60 8)
Molded DIP and S0-8
(soldering, lOs)
Internal Power Di8sipation 1,2
8l,..CeramiC DIP
8L-Molded DIP
SO-8
Supply VeI1age
Differential Inrt Voltage
Input Voltage
Output.ShortCircuit Duration

OUT
-OFFSET
NULL

CDOO761F

-65·C to + 175·C
-65·C to + 150°C
~55·C

to + 125°C

O·C to +70·C
300°C
265°C
1.30 W
0.93 W
0.81 W
±18 V
30 V
±16 V
Indefinite

Order Information
Device Code
MA771RC
MA771SC
pA771TC
pA771ARM
pA771ARC
pA771ASC
pA771ATC
pA771BRM
pA771BRC
pA771BSC
pA771BTC
MA771LRC
pA771LSC
pA771 LTC

Notft

1. TJ _=150"C lor the MOldlld OIPai"ld so.e, and 17SoC for the
CeiarI1ie OIP.
2 . Rltlingsapplyto .ambl$t11:1!1tnperalure4t25°C•. AbOve this temperature,
detatethe 8L·Qeramic 011> at fn rrNVN;,. the SL-Moided DIP at
7.5.mwrC~andtheSO-8 at6.5mWrC.
3. unless0th9/Wise speCified theab.soIut& maximum negative input voltage
1$ equal to tht\ negative powersupptyvOltage:.

, we
7-140

Package Code
6T
KC
9T
6T
6T
KC
9T
6T
6T
KC
9T
6T
KC
9T

Package Description
Ceramic DIP
Molded Surface Mount
Molded DIP
Ceramic DIP
Ceramic DIP
Molded Surface Mount
Molded DIP
Ceramic DIP
Ceramic DIP
Molded Surface Mount
Molded DIP
Ceramic DIP
Molded Surface Mount
Molded DIP

IlA771

Equivalent Circuit
r---------------~----------~~~--------~----------------------.-----~----~v+

J6

R5

OUT

Q24

R8

R18

~-4____~--t_~--~~~~--~~--~------~~--------------~-----+--~v- OFFSET NULL

+ OFFSET NULL

7-141

IlA771

MA771 and MA771L

Electrical Characteristics T A = 25°C, Vee = ± 15 V, unless otherwise specified.
DC Characteristics
p.A771

Symbol

Characteristic

Condition

Via

Input Offset Voltage

110

Input Offset Current1

VCM=O V, TJ=25°C

liB

Input Bias Current1

VCM = 0 V, TJ = 25°C

21

Input Impedance

Icc

Supply Current

los

Output Short Circuit
Current

Avs

Large Signal Voltage
Gain

Min

Typ

VCM = 0 V, Rs = 50 n

50

p.A771L

Max

Unit

10.0

15.0

mV

100

100

pA

200

pA

Max

Min

200

Typ

50

1012

1012
2.8

2.8

25
Va = ± 10 V, RL > 2.0 kn

50

100

n

50

mA

25

mA

100

V/mV

The following specifications apply for O°C';;;; TA .;;;; + 70°C, Vcc = ± 15 V
Via

Input Offset Voltage

VCM = 0 V, Rs = 50 n

/lVlo//lT

Input Offset Voltage
Temperature Sensitivity

Rs=50n

110

Input Offset Current1

VCM =0 V

4.0

4.0

liB

Input Bias Current1

VCM =0 V

8.0

8.0

nA

3.0

3.0

mA

20

13
10

10

mV
/lVrC
nA

Icc

Supply Current

CMR

Common Mode Rejection

VIR

Input Voltage Range

PSRR

Power Supply Rejection
Ratio

Vcc=±10 V to ±18 V,
Rs=50n

70

70

dB

Avs

Large Signal Voltage
Gain

Vo=±10 V, RL>2.0 kn

25

25

V/mV

VoP

Output Voltage Swing

RL = 10 kn

±12

±12

RL = 2.0 kn

±10

±10

VCM = ± 11 V, Rs = 50 n

70
± 11

7-142

70
+15
-12

± 11

dB
+15
-12

V

V

f.lA771

MA771A and MA771B
Electrical Characteristics TA = 25 DC, Vee = ± 15 V, unless otherwise specified.
DC Characteristics
IlA771 A
Symbol

Characteristic

Condition

Via

Input Offset Voltage

VCM = 0 V, Rs = 50

110

Input Offset Current 1

VCM = 0 V, TJ = 25°C

Current 1

lis

Input Bias

ZI

Input Impedance

Icc

Supply Current

los

Output Short Circuit
Current

Avs

Large Signal Voltage
Gain

Min

Typ

n
50

VCM = 0 V, TJ = 25°C

IlA771B
Max

Max

Unit

2.0

Min

5.0

mV

50

50

pA

100

pA

2.8

mA

100

Typ

50

2.8
25
Vo=±10 V, RL;;'2.0

kn

50

n

10 12

1012

100

50

25

mA

100

V/mV

The following specifications apply for 0°C2.0 kn

50

50

V/mV

VOP

Output Voltage Swing

RL = 10 kn

±12

±12

RL = 2.0 kn

±10

±10

50

100

50

1012

1012
2.S

± 11

The following specifications apply for -55°C

< TA < + 125°C,

± 11

+15
-12

n

+15
-12

V

V

VCC = ± 15 V

VIO

Input Offset Voltage

VCM = 0 V, Rs = 50 n

~Vlo/~T

Input Offset Voltage
Temperature Sensitivity

Rs=50 n

S.O

110

Input Offset Current 1

VCM =0 V

20

20

nA

liS

Input Bias Current1

VCM = 0 V

50

50

nA

3.4

rnA

5.0
10

mV
JlVo IC

10

Icc

Supply Current

CMR

Common Mode Rejection

VCM=±11 V, Rs=50 n

SO

SO

dB

PSRR

Power Supply Rejection
Ratio

Vcc=±10 V to ±1S V,
Rs = 50 n

SO

SO

dB

Avs

Large Signal Voltage
Gain

Vo = ± 10 V, RL>2.0 kn

25

25

V/mV

VOP

Output Voltage Swing

RL = 10 kn

±12

±12

RL = 2.0 kn

±10

±10

3.4

7·144

V

p.A771

J.LA771 (Cant.)

Electrical Characteristics TA

= 25°C,

= ± 15

Vee

V, unless otherwise specified.

AC Characteristics
All Grades
Symbol

Characteristic

Condition

Min

Typ

Max

Unit

BW

Bandwidth

(Figure 2) Av = -10

3.0

SR

MHz

Slew Rate

(Figure 1)

13

V//ls

en

Input Noise Voltage

Rs = 100 [2, f = 1000 Hz

16

nV/YHz

in

Input Noise Current

f = 1000 Hz

0.01

pA/YHz

Note
operation the junction temperature rises above the ambient temperature
as a result of internal power dissipation, Po· T J =TA + 8JA PO where 8JA
is the thermal resistance from junction to ambient. Use of a heat sink is
recommended if input bias current is to be kept to a minimum.

1. The input bias currents are junction leakage currents which
approximately double for every 1aoc increase in the junction
temperature, TJ. Due to limited production test time, the input bias
currents measured are correlated to junction temperature. In normal

Typical Performance Curves
Output Voltage Swing vs
Load Resistance

140

0
Vee I", :l:15V
TA = 25°C

~ 25

/
II

>

C>

z

20

~

15

V

"I 100 h

o

.
>

0

~
'"
~

o

~

g

S
z

&

./

5

O.S

0.1

5.0

1.0

OUTPUT LOAD·

10

32

12

::I

f\
100 K

1.0M

"'

'"

~180 ~

'-,
"\
10

100

"'" 2.

..

5

'"

4

~

3

V

'"C>

<

2

~

1

z

10M

•

-75

/

.

....~" ,
.
>

7
i7

0

o

o

20

15

10

Hz

SUPPLY VOLTAGE •

±v

Slew Rate vs Temperature

7

III

v

z

!j;

::I

1.0K 10K 100K 1.0M 10M 100M
~

'"a:C>

~135 ~

11:

20

8a:

<

0

FREQUENCY - Hz

"'

~

.

~

10 K

~'"'1-"

',"

...g

,.
1.0 K

\'"Q

::l

25

20

o

"-9.

·90

Gain Bandwidth Product vs
Temperature
!;!

RL = 1OkO
TA = 25°C

~ 24

::I

"'

FREQUENCY

v~J lUv

28

....'"

60

n

Maximum Undistorted Output vs
Frequency

z
!j;

PHASE

"-

·20
1.0

0

C>

"'~

80

0.
>

·45

.. 4.

/

~

!;

. 3.

III

I

!:;

>

40

120

C>

'"~

Output Voltage Swing vs
Supply Voltage

Open Loop Frequency Response

v.!c = ~'5V

20

..... 1'-..

"-

r-.........
.........

.........

~50

~25

"'" r---..

t--.... I

25

r- t--

SO

TEMPERATURE -"C

7-145

75

100

10

125

5
-75

-so

-25

25

"'" f""-.... ....

50

TEMPERATURE-OC

75

100

125

p.A771

Typical Performance Curves (Cont.)
Input Bias Current vs
Case Temperature

Small Signal Pulse Response
70

Vee

>

E

"~

0

>

30
20

0

10

(\

90%/ T
V I

40

....
i....

100M

TA = 25"C

50

,;,

=

±15V
RL= 20
CL = 100pF

60

L

::>

10% /

r--

r5
a:

50

~

m 100

i

~

100

125

150

175

",V

-

15

E

>

w

g

~~
~#
o~

:&

z

~~

&Ci

5

o

o

10

15

SUPPl y VOLTAGE - ±V

20

~ 4.0
a:

§
o

o
'!;!

It

5

/

0

50

75

100

125

o

!i

sz

.........

3.0

-

r-

~ 2.0

::>

"'1.•
-so

-25

25

50

TEMPERATURE·OC

7-146

75

o

-1
TIME AFTER POWER SUPPLY TURN-ON _ MINUTES

1 5.•

100
:&
:&

o

V / '"

0

..'"

150

u"/ /

z
0 10
:&
:&
0

'!;!

~

V

0
:&

25

v,!, = ;,5V

w

w

0

V

,/

/'

Supply Current vs Temperature

20

>
w

/'

/

CASE TEMPERATURE - °C

Maximum Common Mode Input
Voltage vs Supply Voltage

C

V

V

TIME Mn.

""~

1 '50

'"

10K

a:

,I
75

G

ij 1.0K

RISEn'ME = 60 os

vc~ = .},5V

TAo = 25 e

/

....

1.0

25

200

Vc~ = .,',5V

l100K

j/

-10
-25

Bias Current Warm up Change

100

125

JlA771

Test Circuit
Input Offset Voltage Null Circuit

v-

Typical Applications
Figure 1 Unity Gain Amplifier

Figure 2 Gain-of-10 Inverting Amplifier
lOkI!

1 kl!

V,-W..------1
V,
RL
2 kll

RL
2kU

O'I01t31F

7-147

iJ.A772
Dual
Operational Amplifier

FAIRCHIL.D
A Schlumberger Company

Linear Division Operational Amplifiers

Description
This monolithic JFET Input operational amplifier incorporates well matched ion implanted JFETs on the same chip
with standard bipolar transistors. The key features of this
op amp are low input bias current in the sub nanoamp
range plus high slew rate (13 V/ IlS typically) and wide
bandwidth (3.0 MHz typically).
•
•
•
•

Connection Diagram
8-Lead DIP and SO-8 Package
(Top View)

v+
aUTB

Low Input Bias Current - 200 pA
Low Input Offset Current - 100 pA
High Slew Rate-13 V/jJ.S Typically
Wide Bandwidth - 3.0 MHz Typically

+INA

-INB
+INS

Absolute Maximum Ratings
Storage Temperature Range
Ceramic DIP
Molded DIP and SO-8
Operating Temperature Range
Extended (IlA772AM, p.A772BM)
Commercial (p.A772C, p.A772AC,
p.A772BC, p.A772LC)
Lead Temperature
Ceramic DIP (soldering, 60 s)
Molded DIP and SO-8
(soldering, 10 s)
Internal Power Dissipation 1. 2
8L-Ceramic DIP
8L-Molded DIP
SO-8
Supply Voltage
Differential Input Voltage
Input VoltageS
Output Short Circuit Duration

-65°C to + 175°C
-65°C to + 150°C
- 55°C to + 125°C
O°C to +70°C
300°C
265°C
1.30 W
0.93 W
0.81 W
±18 V
30 V
±16 V
Indefinite

Order Information
Device Code
p.A772RC
p.A772SC
p.A772TC
p.A772ARM
p.A772ARC
p.A772ASC
p.A772ATC
p.A772BRM
p.A772BRC
p.A772BSC
p.A772BTC
IlA772LRC
IlA772LSC
IlA772LTC

Notes
1. TJ Max = IS0·C for the Molded DIP and SO·B. and 17S·C for the
Ceramic DIP.
2. Ratings apply to ambient temperature at 2S·C. Above this temperature,
derate the Bl-Ceramic DIP at B.7 mWrC, the Bl-Molded DIP at
7.5 mWrC, and the SO-B at 6.5 mWrC.
S. Unless otherwise specified the absolute maximum negative input voltage
is equal to the negative power supply voltage.

7-148

Package Code
6T
KC
9T
6T
6T
KC
9T
6T
6T
KC
9T
6T
KC
9T

Package Description
Ceramic DIP
Molded Surface Mount
Molded DIP
Ceramic DIP
Ceramic DIP
Molded Surface Mount
Molded DIP
Ceramic DIP
Ceramic DIP
Molded Surface Mount
Molded DIP
Ceramic DIP
Molded Surface Mount
Molded DIP

IlA772

Equivalent Circuit (112 of Circuit)
r---------------~----------~~._--------~----------------------._----~----~v+

Rl

R2

r-~~~-----------r-Q3

J6

RS

R16

L-~~--~~--~--~--~------~~--_4--------+_--------------_+------~--4_v-

7-149

IlA772

~772 and MA772L
Electrical Characteristics T A = 25°C, Vee = ± 15 V, unless otherwise specified.

DC Characteristics
iJ.A772L

J.LA772
Symbol

Characteristic

Condition

Min

Typ

Max

Min

Typ

Max

Unit

VIO

Input Offset Voltage

VCM = 0 V, Rs = 50 Q

10.0

15.0

mV

110

Input Offset Current1

VCM = 0 V, TJ = 25°C

100

100

pA

lis

Input Bias Current1

VCM=O V, TJ=25°C

200

pA

2.8

mA

ZI

Input Impedance

Icc

Supply Current
(Per Amplifier)

los

Output Short Circuit
Current

Avs

Large Signal Voltage
Gain

50

200

50

10 12

10 12
2.8

25
Vo=±10 V, RL~2.0 kQ

50

100

50

Q

25

mA

100

V/mV

The following specifications apply for Vcc = ± 15 V, O°C ~ TA ~ + 70°C
VIO

Input Offset Voltage

VCM = 0 V, Rs= 50 Q

13

20

!;,.VloI!;,.T

Input Offset Voltage
Temperature Sensitivity

Rs=50 Q

110

Input Offset Current1

VCM = 0 V

4.0

VCM =0 V

8.0

8.0

nA

3.0

3.0

mA

10

mV

iJ.V/oC

10
4.0

nA

lis

Input Bias Current 1

Icc

Supply Current
(Per Amplifier)

CMR

Common Mode
Rejection

VIR

Input Voltage Range

PSRR

Power Supply Rejection
Ratio

Vcc=±10 V to ±18 V,
Rs=50 Q

70

70

dB

Avs

Large Signal Voltage
Gain

Vo = ± 10 V, RL~2.0 kQ

25

25

V/mV

VOP

Output Voltage Swing

RL = 10 kQ

±12

±12

RL = 2.0 kQ

±10

±10

VCM = ± 11 V, Rs = 50 Q

70
± 11

7-150

70
+15
-12

± 11

dB
+15
-12

V

V

pA772

MA772A and MA772B
Electrical Characteristics TA = 25°C, Vee = ± 15 V, unless otherwise specified.
DC Characteristics
JiA772B

JiA772A

Symbol
Via

Characteristic

Condition

Input Offset Voltage

VCM = 0 V, Rs = 50

Current 1

110

Input Offset

liB

Input Bias Current 1

ZI

Input Impedance

Icc

Supply Current
(Per Amplifier)

los

Output Short Circuit
Current

Avs

Large Signal Voltage
Gain

Min

Typ

kn

Max

Min

Typ

2.0
50

VCM = 0 V, TJ = 25°C
50

VCM = 0 V, TJ = 25°C

50

100

2.8

50

mV

50

pA

100

pA

n
2.8

25

kn

Unit

5.0

10 12

1012

Vo=±10 V, RL;;'2.0

Max

100

50

mA

25

mA

100

V/mV

The following specifications apply for O°C < TA < + 70°C, Vcc = ± 15 V

n

Via

Input Offset Voltage

VCM = 0 V, Rs = 50

iJ.VloliJ.T

Input Offset Voltage
Temperature Sensitivity

Rs= 50

110

Input Offset Current1

VCM =0 V

2.0

2.0

nA

liB

Input Bias Current1

VCM =0 V

4.0

4.0

nA

Icc

Supply Current
(Per Amplifier)

3.0

3.0

mA

CMR

Common Mode
Rejection

VIR

Input Voltage Range

PSRR

Power Supply Rejection
Ratio

Rs=50
± 18 V

Avs

Large Signal Voltage
Gain

Vo=±10V, RL;;' 2.0

VoP

Output Voltage Swing

RL = 10

Rs=50

4.0

n

n,

VCM=±11 V

80
± 11

RL = 2.0

n,

7.0

10

Vcc=±10 V to

kn

kn
kn

7-151

dB

80
+15
-12

± 11

mV
JiV/oC

10

+15
-12

V

80

80

dB

25

25

V/mV

±12

±12

±10

±10

V

J.lA772

J.LA712AM and J.LA712BM

Electrical Characteristics TA = 25°C, Vee = ± 15 V, unless otherwise specified.
DC Characteristics
JlA772BM

J..LA772AM
Symbol

Characteristic

Condition

VIO

Input Offset Voltage

VCM = 0 V, Rs = 50 .11

110

Input Offset Current 1

VCM = 0 V, TJ = 25°C

liS

Input Bias Current1

VCM = 0 V, TJ = 25°C

ZI

Input Impedance

Icc

Supply Current
(Per Amplifier)

VIR

Input Voltage Range

Min

Typ

Max

Min

Typ

2.0
50
50

100

Unit

5.0

mV

50

pA

50

100

pA

2.8

rnA

.11

10 12

1012
2.8

± 11 V, Rs = 50 .11

Max

+11

+15

+11

+15

-11

-12

-11

-12

V

80

80

dB

Vcc=±10 V to ±18 V,
Rs = 50 .11

80

80

dB

large Signal Voltage
Gain

Vo=±10 V, RL;;;' 2.0 k.l1

50

50

V/mV

Output Voltage Swing

RL = 10 k.l1

±12

±12

RL = 2.0 k.l1

±10

±10

CMR

Common Mode
Rejection

VCM =

PSRR

Power Supply Rejection
Ratio

Avs
VOP

V

The following specifications apply for Vcc = ± 15 V, -55°C <; TA <; 125°C
Via

Input Offset Voltage

VCM = 0 V, Rs <; 50 .11

LiVia/LiT

Input Offset Voltage
Temperature Sensitivity

Rs = 50 .11

110

Input Offset Current 1

VCM = 0 V

20

20

liS

Input Bias Current 1

VCM= 0 V

50

50

nA

Icc

Supply Current
(Per Amplifier)

3.4

3.4

rnA

CMR

Common Mode
Rejection

VCM = ± 11 V, Rs = 50 .11

80

80

dB

PSRR

Power Supply Rejection
Ratio

Vcc=±10 V to ±18 V,
Rs = 50 .11

80

80

dB

Avs

large Signal Voltage
Gain

Vo=±10 V, RL;;;' 2.0 k.l1

25

25

V/mV

VOP

Output Voltage Swing

RL = 10 k.l1

±12

±12

RL = 2.0 k.l1

±10

±10

5.0

8.0

7-152

mV
JlVo/C

10

10

nA

V

MA772

Electrical Characteristics (Cont.) Vee = ± 15 V, TA = 25°C
AC Characteristics
All Grades
Symbol

Characteristic

Typ

Min

Condition

Max

Unit

3.0

BW

Bandwidth

(Figure 2) Av

-10

SR

Slew Rate

(Figure 1)

13

V/l1s

en

Input Noise Voltage

Rs = 100 .11, f = 1000 Hz

16

nV/YHz

in

Input Noise Current

f = 1000 Hz

0.01

pA/YHz

=

MHz

Note
1. The input bias currents are junction leakage currents which
approximately double for every 1DOC increase in the junction
temperature, TJ. Due to limited production test time, the input bias
currents measured are correlated to junction temperature. In normal

operation the junction temperature rises above the ambient temperature
as a result of internal power dissipation, Po. TJ = TA + 8JAPO where 8JA
is the thermal resistance from junction to ambient. Use of a heat sink is
recommended if input bias current is to be kept to a minimum.

Typical Performance Curves
Output Voltage Swing vs
Load Resistance
30

Vee l=

..

TA

:

~'5~

=25°C

z

I

20

~

-

,r

25

Cl

Output Voltage Swing vs
Supply Voltage

.
~

/

120

III

I 100

30

z

~

w

10

~g

~

~
....

./
5.0

1.0

OUTPUT LOAD·

RL
TA

i,

=1QkO
=25"C

....

g
g

16

e~
"

12

1.0M

~

10M

,

~'"1-"

w

-180 ~

~

20

IE

'r-...

1.0

10

100

"

1.0K 10K 100K 1.0M 10M 100M
FREQUENCY - Hz

Slew Rate vs Temperature

.
5

v~ = ~'5V

20

"'-.

4

.........

3

r-.....

1

o

-75

-50

-25

25

50

TEMPERATURE- QC

7-153

75

100

"

..........
........

------

!z

[\
100 K

40

"'0.

7

~

z

FREQUENCY - Hz

..

,

"'

~

25

~ 24

10 K

20

15

10

Gain Bandwidth Product vs
Temperature

>

1.0K

" ...

SUPPLY VOLTAGE -:tV

~ 20

o

60

*

10

v~J lUv

28

PHASE

-20

n

Maximum Undistorted Output vs
Frequency
32

g
z

,I'

0
0.5

0.1

;!

§

L/

10

::>

o

w

·45

~

Cl

/

o

~

80

~

V

20

....

/

::>

o

~

/

Cl

15

;

i
....
'"
~
....
::>
o

140

~

w

Cl

Open Loop Frequency Response

40

..........

. . . 1"---

10

125

~

5

75

·50

25

25

50

TEMPERATURE- °C

75

100

125

IlA772

Typical Performance Curves (Cont.)
Input Bias Current vs
Case Temperature

Small Signal Pulse Response
Vee

0

..

0

S

30

...>

=

:t:15V

RL=2fl
CL = 100pF
TA = 25°C

0

"~

1.0M

f\

/

~ 20

10

f-

/

~100
'.0

0

/'

V

!;

.. '0
!

J

V

/"/'
~ I--'"
o

-1 0

-25

25

50

75
TIME

100

125

150

= 25°C

1 150

/

10K

G1.0K

,I

VC~ = %1'5 V

TA

...

ffi

II:
II:

RISETJME == SOns

10~/V'

vo:, = "I'5V

t100K

r--

90%1 T
V I

!;
o

Bias Current Warm up Change
200

0

175

25

50

75

100

125

-1

CASE TEMPERATURE _ (Ie

~".

3

4

7

TIME AFTER POWER SUPPLY TURN-ON _ MINUTES
PC02911F

Maximum Common Mode Input
Voltage vs Supply Voltage

."
.~

.
.

15

v"/
ff-'"

:
150
>

/

0

~~
fP

'"
''o""
...

~ 10

V /

5

5

/

in

~

o

o

~

Z

"'!§II: 3.0

100

~,.

()

15.0

0

'"
'"
u
...'"

<\~+.-

.qoq.

~= ~'5V

~

V

o
o

~

Supply Current vs Temperature

20

4.0

u

.
.g
0

~ 2.0

>

:>

;:

...........

(I)

-

---I--..

1.0

z

10

15

20

SUPPLY VOLTAGE - ±V

0

-so

-25

25

50

75

100

125

TEMPERATURE -"C

Typical Applications
Figure 2 Gain-of-10 Inverting Amplifier

Figure 1 Unity Gain Amplifier

'Ok!!

, k!!

V,--¥./Ir......_-I
V,
Cl

Al

100 pF

2 kH

Al

2k!!

7-154

JlA774
Quad

FAIRCHILD
A Schlumberger Company

Operational Amplifier
Linear Division Operational Amplifiers

Description

Connection Diagram
4-Lead DIP and 50-14 Package
(Top View)

This monolithic JFET Input Operational Amplifier incorporates well matched ion implanted JFET on the same chip
with standard bipolar transistors. The key features of this
op amp are low input bias current in the sub nanoamp
range plus high slew rate (13 V I IlS typically) and wide
bandwidth (3.0 MHz typically).

•
•
•
•

OUT A

Low Input Bias Current - 200 pA
Low Input Offset Current -100 pA
High Slew Rate-13 VIIlS Typically
Wide Bandwidth - 3.0 MHz Typically

-IN A

-IN 0

+IN A

+IN 0

v-

v+
+IN B

+IN C

-IN B

-IN C

Absolute Maximum Ratings
Storage Temperature Range
Ceramic DIP
Molded DIP and SO-14
Operating Temperature Range
Extended (J1A774M, IlA774BM)
Commercial (J1A774C, IlA774BC,
IlA774LC)
Lead Temperature
Ceramic DIP (soldering, 60 s)
Molded DIP and SO-14
(soldering 10 s)
Internal Power Dissipation 1, 2
14L-Ceramic DIP
14L-Molded DIP
SO-14
Supply Voltage
Differential Input Voltage
Input Voltage 3
Output Short Circuit Duration

-65°C to + 175°C
-65°C to + 150°C

OUT C

Order Information
Device Code
IlA774DM
I.lA774DC
IlA774PC
IlA774SC
IlA774BDM
IlA774BDC
IlA774BPC
IlA774LDC
IlA774LPC

1.36 W
1.04 W
0.93 W
± 18 V
30 V
± 16 V
Indefinite

NOles
1. TJ Max ~ 150·C for the Molded DIP and 50-14, and 175·C for the
Ceramic DIP.
2. Ratings apply to ambient temperature at 25°C. Above this temperature,
derate the 14L-Ceramic DIP at 9.1
the 14L-Molded DIP at
8.3
and the 50-14 at 7.5 mwrc.
3. Unless otherwise specified the absolute maximum negative input voltage
is equal to the negative power supply voltage.

mwrc,

mwrc,

7-155

Package Code
7A
7A
9A
KD
7A
7A
9A
7A
9A

Package Description
Ceramic DIP
Ceramic DIP
Molded DIP
Molded Surface Mount
Ceramic DIP
Ceramic DIP
Molded DIP
Ceramic DIP
Molded DIP

p.A774

Equivalent Circuit (1/4 of Circuit)
r---------------~----------~~._--------~----------------------~----~----~v+

Rl

R2

r-~~~-----------r-Q3
J6

RS

R16

~~~--~~--_4--~~__~----~~+_--_+--------~----------------+_------+_

7-156

__

~v-

J.l.A774

J1A774, J1A774L
Electrical Characteristics TA = 25°C, Vee = ± 15 V, unless otherwise specified.
DC Characteristics
MA774L

J.LA774

Symbol

Characteristic

Condition

Input Offset Voltage

VCM = 0 V, Rs=50

110

Input Offset Current 1

VCM = 0 V, TJ = 25°C
VCM = 0 V, TJ = 25°C

liB
ZI

Input Impedance

Icc

Supply Current
(Per Amplifier)

los

Output Short Circuit
Current

Avs

Large Signal Voltage
Gain

Typ

n

VIO

Input Bias Current 1

Min

50

Max

Unit

10.0

15.0

mV

100

100

pA

200

pA

2.8

mA

Max

Min

200

Typ

50

1012
2.8
25
Vo=±10 V, RL=2.0

kn

50

n

10 12

100

50

25

mA

100

V/mV

The following specifications apply for O°C < TA < + 70°C, Vcc = ± 15 V
VIO

Input Offset Voltage

VCM = 0 V, Rs = 50

!::Nlol LlT

Input Offset Voltage
Temperature Sensitivity

Rs = 50

110

Input Offset Current1

VCM =0 V

Current 1

n

13

n

20

10

liB

Input Bias

Icc

Supply Current
(Per Amplifier)

CMR

Common Mode
Rejection

VIR

Input Voltage Range

PSRR

Power Supply Rejection
Ratio

Vcc=±10 V to ±18 V, Rs=50

Avs

Large Signal Voltage
Gain

Vo=±10 V, RL>2.0

VOP

Output Voltage Swing

RL = 10

VCM =0 V

VCM = ± 11 V, Rs = 50

n

70
± 11

kn

kn
RL = 2.0 kn

7-157

n

4.0

nA

8.0

8.0

nA

3.0

3.0

mA

70
+15
-12

MV/oC

10
4.0

mV

± 11

dB
+15
-12

V

70

70

dB

25

25

V/mV

±12

±12

±10

±10

V

p.A774

JJ.A774A, JJ.A774B
Electrical Characteristics TA = 25°C, Vee = ± 15 V, unless otherwise specified.
DC Characteristics

IJA774A
Symbol

Characteristic

Condition

V,o

Input Offset Voltage

VCM = 0 V, Rs = 50

kn

1'0

Input Offset Current1

VCM = 0 V, TJ = 25°C

I'B

Input Bias Current 1

VCM=O V, TJ=25°C

Z,

Input Impedance

Icc

Supply Current
(Per Amplifier)

los

Output Short Circuit
Current

Avs

Large Signal Voltage
Gain

Min

Typ

IJA774B
Max

Min

Typ

2.0
50
50

100

50

1012

25

The following specifications apply for Vcc

= ± 15

V, O°C < TA

kn

50

mV

50

pA

100

pA

2.8

mA

n

50

25

mA

100

V/mV

< + 70°C
4.0

Input Offset Voltage

VCM = 0 V, Rs = 50

LlV,ol LlT

Input Offset Voltage
Temperature Sensitivity

Rs =50

1'0

Input Offset Current 1

VCM = 0 V

I'B

Input Bias Current1

VCM=O V

Icc

Supply Current
(Per Amplifier)

CMR

Common Mode
Rejection

VIR

Input Voltage Range

PSRR

Power Supply Rejection
Ratio

Vcc=±10 V to ±18 V, Rs=50

Avs

Large Signal Voltage
Gain

Vo=±10 V, RL~2.0

VoP

Output Voltage Swing

RL = 10

n

7.0

10

n

80

kn

kn
kn

7-158

n

2.0

nA

4.0

4.0

nA

3.0

3.0

mA

80
+15
-12

mV
IJV/oC

10
2.0

± 11

RL = 2.0

100

n

V,o

VCM=±11 V, Rs=50

Unit

5.0

10 12
2.8

Vo=±10 V, RL~2.0

Max

± 11

dB
+15
-12

V

80

80

dB

25

25

V/mV

±12

±12

V

±10

±10

IlA774

/JA774AM, /JA774BM
Electrical Characteristics T A = 25°C, Vee

= ± 15

V, unless otherwise specified.

DC Characteristics
iJ.A774AM
Symbol

Characteristic

Condition

Min

Typ

iJ.A774BM

Max

Min

Max

Unit

VIO

Input Offset Voltage

VCM = 0 V, Rs = 50 Q

2.0

5.0

mV

110

Input Offset Current1

VCM = 0 V, TJ = 25°C

50

50

pA

lis

Input Bias Current 1

VCM = 0 V, TJ = 25°C

100

pA

ZI

Input Impedance

Icc

Supply Current
(Per Amplifier)

2.8

mA

VIR

Input Voltage Range

CMR

Common Mode
Rejection

VCM = ± 11 V, Rs = 50 Q

80

80

dB

PSRR

Power Supply Rejection
Ratio

Vcc = ± 10 V to ± 18 V, Rs = 50 Q

80

80

dB

Avs

Large Signal Voltage
Gain

Vo=±10V, RL > 2.0 kQ

50

50

V/mV

VOP

Output Voltage Swing

RL = 10 kQ

±12

±12

RL =2.0 kQ

±10

±10

50

100

Typ

50
1012

1012
2.8
± 11

± 11

+15
-12

Q

+15
-12

V

V

The following specifications apply for -55°C';;; TA';;; + 125°C, VCC = ± 15 V
Input Offset Voltage

VCM=O V, Rs';;;50 Q

Input Offset Voltage
Temperature Sensitivity

Rs =50 Q

110

Input Offset Current 1

VCM =0 V

lis

Input Bias Current 1

VCM = 0 V

Icc

Supply Current
(Per Amplifier)

3.4

CMR

Common Mode
Rejection

VCM=±11 V, Rs=50 Q

80

80

dB

PSRR

Power Supply Rejection
Ratio

Vcc=±10 V to ±18 V, Rs=50 Q

80

80

dB

Avs

Large Signal Voltage
Gain

Vo=±10 V, RL>2.0 kQ

25

25

VlmV

VOP

Output Voltage Swing

RL = 10 kQ

±12

±12

RL = 2.0 kQ

±10

±10

VIO
aVlo/aT

5.0

8.0

mV
iJ.vo/C

20

20

nA

50

50

nA

3.4

mA

10

7-159

10

V

IlA774

Electrical Characteristics (Cont.) TA = 25°C, Vee = ± 15 V
AC Characteristics
All Grades
Symbol

Characteristic

Condition

BW

Bandwidth

(Figure 2) Av = -10

SR

Slew Rate

(Figure 1)

en

Input Noise Voltage

Rs = 100

in

Input Noise Current

f= 1000 Hz

n,

Min

Typ

Unit

Max

3.0

MHz

13

V//ls

16

nV/YHz

0.01

pA/YHz

f = 1000 Hz

Note

operation the junction temperature rises above the ambient temperature
as a result of internal power dissipation, Po. TJ = TA + 8JAPo where (JJA
is the thermal resistance from junction to ambient. Use of a heat sink is
recommended if input bias current is to be kept to a minimum.

1. The input bias currents are junction leakage currents which
approximately double for every 1COC increase in the junction
temperature, TJ. Due to limited production test time, the input bias
currents measured are correlated to junction temperature. In normal

Typical Performance Curves
Output Voltage Swing vs
Load Resistance
30

Vee l=
TA

A

I.. 25
>

"i
Z

'"

140

;'5~

= 25°C

120

/'

II

20

~

/

I 100

~

>

..

h

~

15

!j

50

..

40

g

10

~

!/

;)

I-

~

/

;)

0

PHASE

'\

0.5

0.1

~'-",

5.0

1.0

-20
1.0

10

I
I-

g
8

• 20

i

z

I

~ 12

I-

;)

o

"'z

1\

~

o
lOOk
FREQUENCY - Hz

il:

I-

/

K
10
I-

V

;)

\
100

V

g
o

1.0K 10K 100K 1.0M 10M 100M

0

5

1.0M

V~c = ~'5V

10M

"-~

I"-

~

3

--

.........

2

r-- :---.

.......

i'-..

....... --....--.

10

1

0
-75

·50

·25

25

50

TEMPERATURE·OC

7-160

20

Slew Rate vs Temperature

20

..........

15

10

SUPPLY VOLTAGE· ±V

6

::c 4

16

I-

10k

;

0.

i

AL == 10kO
TA=WC

~ 24

1.0k

~ 20

-180 ~

"10

/

25

>

'"

"

Gain Bandwidth Product vs
Temperature

V~c J lUv

28

~

FREQUENCY - Hz

Maximum Undistorted Output vs
Frequency
32

"'

~

20

V

"z

1-"

OUTPUT LOAD - 0

"i

"'

""-9,

o

o

.

I..
> 30

-45

~

0.

l-

I-

40

80

~

0.

""
S

Output Voltage Swing vs
Supply Voltage

Open Loop Frequency
Response

75

100

125

-

5

75

50

25

25

50

TEMPERATURE·OC

75

100

125

p.A774

Typical Performance Curves (Cont.)
Input Bias Current vs
Case Temperature

Small Signal Pulse Response
70

CL
TA

~ 50

= 100pF
=25"C

~

S
>

30

"

20
10

~

h

/

0-

o

1.0M

0-

e::

~

60na

I
i.

5

!

100
10

1.0
-10
-25

25

50

75

100

125

150

-75

175

/

...
"
.S

15

.d/
10'"

z

,p4'

10

:IE
:IE

."

15~

g

/

:IE

z

~~f(,

100

:IE
:IE

~t;

0

>
>=

~

~~
~

:IE
0

..

V

0

o

".>

V /

5

;;

.

5

/

0

o

o

/~

-

/

V

-so

-25

25

50

75

100

o

125

-1

~

lilz
10

4

TIME AFTER POWER SUPPLY TURN-ON -

Supply Current vs Temperature

20

0

/

CASE TEMPERATURE - DC

0-

>

/'

V

TIME -ns

Maximum Common Mode Input
Voltage vs Supply Voltage

= we

1 150

/V

51.0K

RISETIME

10'1//

/

~ 10K
a:
a:

V I

YC~ = ,."5Y
TA

1100 K

........

90%f ~

.. 40

200

yo:, = ,.',5Y

Vee = :t15V
RL = 20

60

Bias Current Warm Up Change

20

15

SUPPL y VOLTAGE - ±V

0

,J, = ,.'15Y

t 5.0
~

4.0

::l

.........

!Po

..""
~

-

t-

2. 0

'"I. 0

·50

-25

25

so

75

100

125

TEMPERATURE - "C

Typical Applications
Figure 1 Unity Gain Amplifier

Figure 2 Gain·of·10 Inverting Amplifier
10kH

CL
'00 pF

AL

AL

2 kll

2kn

-::-

7-161

6
MINUTES

J.lA776

FAIRCHILD

Multi-Purpose Programmable
Operational Amplifier

A Schlumberger Company

Linear Division Operational Amplifiers

Description
The pA776 Programmable Operational Amplifier is constructed using the Fairchild Planar Epitaxial process. High
input impedance, low supply currents, and low input noise
over a wide range of operating supply voltages coupled
with programmable electrical characteristics result in an extremely versatile amplifier for use in high accuracy, low
power consumption analog applications. Input noise voltage
and current, power consumption, and input current can be
optimized by a single resistor or current source that sets
the chip quiescent current for nano watt power consumption or for characteristics similar to the pA741. Internal frequency compensation, absence of latch up, high slew rate
and short circuit current protection assure ease of use in
long time integrators, active filters, and sample and hold
circuits.

•
•
•
•
•
•
•
•
•
•

Micropower Consumption
± 1.2 V To ± 18 V Operation
No Frequency Compensation Required
Low Input Bias Currents
Wide Programming Range
High Slew Rate
Low Noise
Short Circuit Protection
Offset Null Capability
No Latch Up

Connection Diagram
8-Lead Metal Package
(Top View)
ISET

-IN

vlead 4 connected to case.

Order Information
Device Code
pA776HM
J.!A776HC

Package Code
5W
5W

Package Description
Metal
Metal

Connection Diagram
8-Lead DIP
(Top View)

-OFFSET
NULL

Absolute Maximum Ratings
Storage Temperature Range
Metal Can
Molded DIP
Operating Temperature Range
Extended (pA776M)
Commercial (pA776C)
Lead Temperature
Metal Can (soldering, 60 s)
Molded DIP (soldering, 10 s)
Internal Power Dissipation " 2
8L-Metal Can
8L-Molded DIP
Supply Voltage
Differential Input Voltage
Input Voltage 3
Voltage Between Offset Null and VOutput Short Circuit Duration 4
ISET (Maximum Current at ISET)
VSET (Maximum Voltage to
Ground at ISET)

>-"':';0 OUT

-65°C to + 175°C
-65°C to +150°C

-IN

v+

+IN

OUT

v-

-55°C to +125°C
O°C to +70°C

ISET

+OFFSET
NULL

Order Information
Device Code
1.00 W
0.93 W
± 18 V
±30 V
± 15 V
±0.5 V
Indefinite

pA776TC

Package Code
9T

Package Description
Molded DIP

500 pA
(V+ -2.0 V)
5.0 kQ
VOP

180

12

3.0
200

MQ

5.0

0.75

Vo=±10 V, RL>75 kQ

mV

18

VI = 20 mV, RL = 5.0 kQ,
CL = 100 pF, Av= 1.0

1.6

0.35

0

10

%

RL = 5.0 kQ, Av = 1.0

0.1

0.8

V/J.ls

J.ls

The following specifications apply -55°C < TA < + 125°C
VIO

Input Offset Voltage

Rs< 10 kQ

6.0

6.0

mV

110

Input Offset Current

TA = +125°C

5.0

15

nA

lis

Input Bias Current

20

120

Icc

Supply Current

30

200

J.IA

0.9

6.0

mW

TA=-55°C

10

40

TA = +125°C

7.5

50

TA =-55°C

Pc

Power Consumption

CMR

Common Mode Rejection

VIR

Input Voltage Range

PSRR

Power Supply Rejection Ratio

Rs< 10 kQ

Avs

Large Signal Voltage Gain

Vo=±10 V, RL >75 kQ

100

75

VOP

Output Voltage Swing

RL = 75 kQ

±10

±10

Rs< 10 kQ

70

70

90

±10

7-164

dB

90

±10
25

150

nA

V
25

150

J.lV/v
V/mV

V

J1A776

IlA776

Electrical Characteristics T A = 25°C, Vee

= ± 3.0

V, unless otherwise specified.
ISET = 1.51lA

Symbol

Characteristic

Condition

Min

Typ

Max

2.0

5.0

ISET = 15J.LA

Min

Typ

Max

Unit

2.0

5.0

mV

Via

Input Offset Voltage

Via adi

Input Offset Voltage Adjustment
Range

9.0

110

Input Offset Current

0.7

3.0

2.0

15

nA

lis

Input Bias Current

2.0

7.5

15

50

nA

ZI

Input Impedance

50

Icc

Supply Current

13

20

130

160

Pc

Power Consumption

78

120

780

960

los

Output Short Circuit Current

Avs

Large Signal Voltage Gain

Rs < 10 kS1

18

5.0

3.0
Vo=±1.0 V, RL:;;'75 kS1

50

SR

Transient Response

I Rise time
I Overshoot

Slew Rate

RL = 5.0 kS1, Av = 1.0

J.LA
IlW
mA

5.0

V/mV
50

VI = 20 mV, RL = 5.0 kS1,
CL=100 pF, Av=1.0

MS1

200

Vo=±1.0 V, RL:;;'5.0 kS1
TR

mV

200

3.0

0.6

0

5

0.03

0.35

IlS
%

VIIlS

The following specifications apply -55°C < TA < + 125°C
Via

Input Offset Voltage

Rs< 10 kS1

6.0

110

Input Offset Current

TA = +125°C
TA = -55°C

liS

Input Bias Current

Icc

Supply Current

TA = +125°C
TA =-55°C

Pc

Power Consumption

CMR

Common Mode Rejection

VIR

Input Voltage Range

PSRR

Power Supply Rejection Ratio

Rs<10 kS1

Avs

Large Signal Voltage Gain

Va = ± 1.0 V, RL:;;'75 kS1

Rs<10 kS1

70

Output Voltage Swing

mV

5.0

15

nA

10

40

nA

7.5

50

nA

20

120

25

180

150

1080

86

70

± 1.0

86

25

150

V
25

25

RL = 5.0 kS1

7-165

150

IlVN
V/mV

25
±2.0 ±2.4

RL = 75 kS1

J.LA
IlW
dB

± 1.0

Va = ± 1.0 V, RL:;;'5.0 kS1
VoP

6.0

V
± 1.9

±2.1

IlA776

!lA77SC
Electrical Characteristics TA = 25°C, Vee

= ± 15

V, unless otherwise specified.
ISET = 1.5/lA

Symbol

Characteristic

Condition

Min

Typ

Max

2.0

6.0

ISET = 15/lA
Min

Typ

Max

Unit

2.0

6.0

mV

VIO

Input Offset Voltage

VIO

Input Offset Voltage Adjustment
Range

9.0

110

Input Offset Current

0.7

6.0

2.0

25

nA

lis

Input Bias Current

2.0

10

15

50

nA

30

160

adj

Rs< 10 kn

ZI

Input Impedance

50

Icc

Supply Current

20

Pc

Power Consumption

los

Output Short Circuit Current

Avs

Large Signal Voltage Gain

18

5.0

0.9
3.0
Vo = ± 10 V, RL>75 kU

50

Output Voltage Swing

RL = 75 kU

±12

SR

Transient Response

I Rise time
I Overshoot

Slew Rate

/1A

5.7

mW

12

mA
V/mV

50

400

±10

±13

±14

V

RL = 5.0 kn
TR

Mn
190

400

Vo= ± 10 V, RL>5.0 kU
VOP

mV

VI = 20 mV, RL > 5.0 kU,
CL=100 pF, Av=1.0

1.6

0.35

0

10

%

RL = 5.0 kn, Av = 1.0

0.1

0.8

VI/1s

/1S

The following specifications apply O°C < TA < + 70°C
VIO

Input Offset Voltage

Rs<10 kU

7.5

7.5

mV

110

Input Offset Current

TA = 70°C

6.0

25

nA

TA = O°C

10

40

lis

Input Bias Current

TA = 70°C

10

50

TA = O°C

20

100

35

200

/1A

1.05

6.0

mW

Icc

Supply Current

Pc

Power Consumption

CMR

Common Mode Rejection

VIR

Input Voltage Range

PSRR

Power Supply Rejection Ratio

Rs<1O kU

Avs

Large Signal Voltage Gain

Vo=±10 V, RL >75 kU

VOP

Output Voltage Swing

RL = 75 kU

Rs<10 kU

70

90

70

±10

7-166

dB

90

±10
25

200

V
25

50

50

±10

±10

nA

200

/1VIV
V/mV

V

IlA776

!lA77SC
Electrical Characteristics TA = 25°C, Vee = ± 3.0 V, unless otherwise specified.
ISET = 1.51lA
Symbol

Characteristic

Input Offset Voltage

Via

Condition

Min

Rs < 10 kn

Typ

Max

2.0

6.0

Input Offset Voltage Adjustment
Range

9.0

110

Input Offset Current

0.7

6.0
10

Via

adj

ISET = 151lA
Min

Typ

Max

Unit

2.0

6.0

mV

18

mV

2.0

25

15

50

nA

liB

Input Bias Current

2.0

ZI

Input Impedance

50

Icc

Supply Current

13

20

130

170

IlA

Pc

Power Consumption

78

120

780

1020

IlW

los

Output Short Circuit Current

3.0

Avs

Large Signal Voltage Gain

Va = ± 1.0 V, RL # 75 kn

25

5.0

5.0

SR

Transient Response

I Rise time
LOvershoot

200

Slew Rate

25

VI = 20 mV, RL # 5.0 kn,
CL = 100 pF, Av = 1.0
RL = 5.0 kn, Av = 1.0

mA

VlmV

Va = ± 1.0 V, RL # 5.0 kn
TR

nA
Mn

200

3.0

0.6

0

5

0.03

0.35

IlS
%

VIlIS

The following specifications apply O°C < T A < + 70°C
Via

Input Offset Voltage

Rs< 10 kn

7.5

7.5

mV

110

Input Offset Current

TA = 70°C

6.0

25

nA

TA = O°C

10

40

liB

Input Bias Current

TA = 70°C

10

50

TA = O°C

20

100

Icc

Supply Current

Pc

Power Consumption

CMR

Common Mode Rejection

VIR

Input Voltage Range

PSRR

Power Supply Rejection Ratio

Rs< 10 kn

Avs

Large Signal Voltage Gain

Vo=±1.0 V, RL#75 kn

VoP

Output Voltage Swing

Rs< 10 kn

70

25

180

IlA

150

1080

IlW

86

70

± 1.0

RL = 5.0 kn

7-167

200

dB
V

25

25

Vo =±1.0 V, RL # 5.0 kn
RL = 75 kn

86

±1.0
25

nA

200

IlVN
VlmV

25
±2.0 ±2.4

V
±2.0 ±2.1

pA776

Typical Performance Curves for J,1A776 and J,1A776C
Input Bias Current vs
Set Current
100

Input Bias Current vs
Temperature

Input Offset Current vs
Temperature

30

f-~1 ~12s.~ I III ,

'±3.0'V

$

t- ±3.0 V =:; Vee s; ±1, v

'.!

1/

0

IZ
W

V

'"

"'"
:/

,.

1

iii

"'- ........
'" ISET"'" 15 p.A

12

".!5

/
V

O. 1

0.1

0.01

"'-

I-

1SET CURRENT -

o

-60

100

10

-

'\

C- -

~cc ~ ±1~ v

20

o

100

60

TEMPERATURE _

c

~seT=15pA

rr- JJs~- c- f-

i-

~ '-

-20

$

"'i-

........

'

/J.A

'+3.0'V

\
\.
\

u

/

~CC l ±1~ v

24

-60

140

-20

20

60

100

140

TEMPERATURE _ "C

C

PC03981F

Change in Input Offset Voltage
vs Set Current
0

Change in Input Offset Voltage
vs Temperature (Unnulled)

~l
=~'c' '"
±3.0 V S Vee:5; ±1S v

300

~

200

~

100

t;

r"-

..!;

!5
!

~

-300

W

"~

w

"

-500

'"
"".

10-15

0

.

1/

z

10- 16

W

::E

(.) -300

o

100

10

-20

-60

10- 14

.;2(15ET'- "A)±:::
±3.~ v ~cc
J-

~,

1.5'

I

$' ±1.

$

W

TA "'" 25"C

10- 15

g

.
o

e~2(ISE! I

- 1S ,llA)

W

"-

z

.

~ 10- 16

!'..

"~
~
::E

r---..

"10-1 7
10

I I I
In2(lsET

=.

i

10-2S~

FREQUENCY -

10K
Hz

10-17
0.01

140

r= ..
o
w

SET CURRENT -

...l'!,

iii

100

,

10-26

'"

I-

~

ffi

10-27

'"
"'"o
::E
::E
"

w

z

ilZ

w

W

."

10-27
100 K

~::E

."

10

r\.

W

U

.

10-28

10-29

~

f-Htt-+++t+!;.o :5~;CC < :t18 V
~f

W

::E

100

jJ.A

Optimum Source Resistor for
Minimum Noise vs Set Current

'"~ '"
r--

10

0.1

Input Noise Current vs
Set Current

'"
"'" U"'"

~

1.0K

100

U

15 I-IA}

in2(ISET - 1.5 ,uA)

100

60

20

TEMPERATURE _ "C

Input Noise Voltage and Current
vs Frequency

"~

10-14

:I:

SET CURRENT - /loA

~

+18 V

>
w

/'

V

<:::

0

V

-100

±3.0 v < Vee
t
1 kHz
10-13 r-~~1-~+t~r =1Hz

w

/'

~ -20 0 /

~

,
".~

V

0

TA
25"C
10-"~~Bj~[[=~

~>

ISET = 15 IlA

w

0

0

vL =1±ls~_

I 400

I,

!;1

500

~

Input Noise Voltage vs
Set Current

f

- 1 Hz
- 1 kHz

0.01

0.1

10

SET CURRENT -

7-168

jJ.A

~
o

, ,

10-30

"-

1

100

"O. 1
0.01

0.1
SET CURRENT -

10
/loA

100

JlA776

Typical Performance Curves for !lA776 and !lA776C (Cont.)
Output Voltage Swing vs
Load Resistance
30

'z"

TA

25°C

~

24

~

V

..
":I '2
.
"~
I-

:J

18

'YII,·Y

/

0

I

I

g

-

~

I-

:J

o

I I
100 K

1 M

,.

500

'"
'~"

400

z
;;:
w

..gg
..ffi

300
200

0

100

:v

o

= 15 IlA
RL.=5::~

-

.,.... V

,......

.....

io

~
z

I'

'"
±9

±6

±12

::,:15

±18

...- ~SET

RL=75k!l

0

0

0

-60

-20

20

60

1,000

140

'00

800

-/

g

.
g
ffi..

600

~

400
200

-60

-20

150

~

o-r-

;:

RL=75kfl

"a:z
\

~

"--

a:
a:
:J
u

...
>~

90

~

'"

60

100

140

10

0
0.1

:: ;;.0

:5;~cc

+18 V
w

~

/

1

ISET = 1.5;.;A

Vee

0

Vee

0
-20

20

-+:15~

±3.0

o
>
t;

V

~

TEMPERATURE _

LL

"C

/

200

I

/

~

w

'"z
0.Q1

V

40 0

~

::-

140

J50C l'2~OC I

~

vl'tsgle 1.0 il l<:

:J:
U

0.1

10
SET CURRENT -

7-169

IJ.A

100

-

Vee"" ±15 V
InitialOffsel

0

"

v

100

- ----

o

O. 1

60

100

ilA

Thermal Response Of Input
Offset Voltage To Step Change
Of Case Temperature
~ 80 0

<

10
SET CURRENT -

1000

V

-60

20

~

:r

0

:J

~a:

'"a:

1-3.0 V-

Ve

$ 18 V

30

'" 600

-

±3.0 v ~ Vee
I-+-H+--+-H_T,'A = 25°C

>-

:J

12

ffi

100
JlA

0

;:
u

Standby Supply Current vs
Set Current

. . ,5 v

Vee

40

TEMPERATURE _ °C

1 J.-I.

ISET = 15 J.lA

~~

20

TEMPERATURE _ °C

Supply Current vs Temperature

SET CURRENT -

Power Supply Rejection Ratio vs
Set Current

"'-;:ET~15"A'
RL=stn I
"-

w

-

10
ISET -

0

I 1,200

= 1.5 JJ.A- ~

1.0K
0.1

V

VCC=:t15V

z
;;:

'"
~'"

10K

;;:

,.

,

/'

o

E

rlSET

Vee - ±3.0 v

:::E: 100 K

I-

> 1.400

-

V/ . /

..

Voltage Gain vs Temperature

Vcc=±3.0V

I

E

#

8

Vee - ±15

oa:

ISET = 1.5 J.lA
RL = 5 k!l

r;r

1.0M

:J

~V

/,

~

I

I

t;

V

SUPPLY VOLTAGE -

Voltage Gain vs Temperature

600

4-

12

n

LOAD RESISTANCE -

>

6

I-

I I

I I

10 K

1.0 K

20

"'~"

Vee ..co ;±:3.0 V
1.5 MA < ISET < 15 iJA

-

o

~.~~J.L7~ ~!~SET ~ 15 >LAy'

w

I

:J:

~

AL = 5 kfl

4

'~z"

-

A

J

_III

6
I-

>
I

=

C:::T~I ~~oc I

N

ISET ="5 /lA

8

Vee = j:15 V

I-

:J

TA=2S"C

Vee = ±15 V
ISET
15 p.A

K-

10 M

2

-"- ...d-t1"f

~

Gain Bandwidth Product vs
Set Current

Output Voltage Swing vs
Supply Voltage

-20

20

40

60

TIME FROM HEAT APPLICATION -

80
s

pA776

Typical Performance Curves for pA776 and pA776C (Cont.)
Stabilization Time Of Input Offset
Voltage From Power On

Input Offset Voltage Drift vs Time
::. 100

~
I

w

i--'"
-10

V
1/

g
>

-20

~

..

-30

tu

Vee'"" :t15
TA

-40

=:

Initial

v

w

"

..
I-

::>

16

I-

::>
0

/

I
I

I--

800

600

1000

"

I

.>

1.0M
Vee = ±3

"

vV'

0:

I:!

II 1

lOOK

"

I I liET to V~

-II if" ti GjD

0.5

1.0

1.5

2.0

2.5

Vs

1.5 I1A

± 1.5 V

Mn
3.6 Mn
7.5 Mn
20 Mn
1.7

10K
0.1

10
seT CURRENT -

100

p.A

ISET Equations

(V + )-0.7 - (V -)

ISET
15

IlA

kn
360 kn
750 kn
2.0 Mn
170

0.01

Y
Vee

ISET = -'---'----'--'RSET
where:
RSET is connected to V(V + )-0.7
ISET = -'---'--RSET
where:
RSET is connected to ground.

Note
The iJA776 may be operated with RSET
connected to ground or V-

7-170

0.00 1
0.01

/

±3.a v

V

V
1/
10

0.1
seT CURRENT -

Hr.

Vcc- +15 V

l-

I

Quiescent Current Setting Resistor
(ISET to V-)

± 15 V

"

0:

~
w

TIME -Ill

±6.0 V

400

'00

0

I-

.

I

10 M

±15
ISET= 15 IJ.A
RL = 5 kfl
CL '" 100 pF

~8

±3.0 V

I

.0

Set Current vs Set Resistor

v

Vee =

o. 1

~

TIME -

1
-0.5

w

:

/

+15 Y

;0

Min

v----

40

3'

V-

100 M

48

"!:;<

40

o

56

E

II

U ov

Voltage Follower Transient
Response (Unity Gain)

Vee

TREND IlIN~

i!!
i!!

0l'set IV01jge 11.0 IV

1

1

60

23456789

~

>

80

~
~

/

::>

i!!

TA 'j125 C
O

o

J

t;

~

~
>

10

~ee" ±18 V

w
"

V

Slew Rate vs Set Current

IJ.A

100

JlA776

Biasing Circuits
Voltage Offset Null Circuit

Resistor Biasing

v-

Va

RSET

v-

-::-

FET Current Source Biasing
RSET Connected to Ground

v+

Va

RSET

v-

v-

Transient Response Test Circuit

RSET Connected to V-

"Recommended for supply voltages less than ± 6 V.

Transistor Current Source Biasing

. A - - - Va

v-

7-171

IlA798
Dual
Operational Amplifier

FAIRCHIL.D
A Schlumberger Company

Linear Division Operational Amplifiers

Description

Connection Diagram
8-Lead DIP and 50-8 Package
(Top View)

The pA798 consists of a monolithic pair of independent,
high gain, internally frequency compensated operational
amplifiers designed to operate from a single power supply
or dual power supplies over a wide range of voltages. The
common mode input range includes the negative supply,
thereby eliminating the necessity for external biasing components in many applications. The output voltage range
also includes the negative power supply voltage. The
J.l.A798 is constructed using the Fairchild Planar Epitaxial
process.
• Input Common Mode Voltage Range Includes Ground
Or Negative Supply
• Output Voltage Can Swing Near Ground Or Negative
Supply
• Internally Compensated
• Wide Power Supply Range Single Supply Of 3.0 V
To 36 V Dual Supply of ± 1.5 V To ± 18 V
• Class AB Output Stage For Minimal Crossover
Distortion
• Short Circuit Protected Output
• High Open Loop Gain - 200 k Typ
• Exceeds J.l.A1458 Type Performance
• Operation Specified At ± 15 V And +5.0 V Power
Supplies
• High Output Current Sink Capability
0.8 mA At Vo 400 mV Typ

v+
-IN A
+IN A

-IN B

v-

+IN B

Order Information
Device Code
pA798SC
J.l.A798TC

=

Absolute Maximum Ratings
Storage Temperature Range
Operating Temperature Range
Lead Temperature
(soldering, 10 s)
Internal Power Dissipation 1. 2
8L-Molded DIP
SO-8
Supply Voltage Between V+ and VDifferential Input Voltage
Input Voltage 3
Output Short Circuit Duration 4

OUT B

-65°C to + 150°C
O°C to +70°C

0.93 W
0.81 W
36 V
±30 V
-0.3 V (V-) to V+
Indefinite

Noles
1. TJ Max = 150°C.
2. Ratings apply to ambient temperature at 25°C. Above this temperature,
derate the Molded DIP at 7.5 mW/'C. and the SO-8 at 6.5 mW/'C.
3. For supply voltage less than 30 V between V+ and V -, the absolute
maximum input voltage is equal to the supply voltage.
4. Indefinite on shorts to ground or V - supply. Shorts to v+ supply may
result in power dissipation exceeding the absolute maximum rating.

7-172

Package Code

Package Description

KC
9T

Molded Surface Mount
Molded DIP

JJ-A798

Equivalent Circuit (112 of circuit shown)
v+----------------------~----------------------~r_------~--------~--------_,

C1
5 pF
-IN

v---~-+----+_----~----+_--r_----+-4-----------+-----+---+-----+---+-~

'IN

Note
1. All resistor values in ohm.

7-173

J1A798

IlA798
Electrical Characteristics TA = 25°C, Vee = ± 15 V, unless otherwise specified.
Symbol

Characteristic

V,o

Input Offset Voltage

1'0

Input Offset Current

Condition

Min

Typ

2.0

I'B

Input Bias Current

Z,

Input Impedance

Ro

Output Resistance

Icc

Supply Current

Vo = 0, RL =

CMR

Common Mode Rejection

Rs<:10 kil

VIR

Input Voltage Range

PSRR

Power Supply Rejection Ratio

Positive

los

Output Short Circuit Current1 •2

Vo=-15 V, V,o=1.0 V

(Per Amplifier)

Vo=Gnd, V,o=-1.0 V

Avs

Large Signal Voltage Gain

Vo=±10 V, RL=2.0 kil

VoP

Output Voltage Swing

RL = 10 kil
RL = 2.0 kil

TR

Transient Response

0.3

Max

mV

10

50

nA

50

250

1.0

2.0

nA
Mil

800
00

Unit

6.0

il
4.0

mA

70

90

dB

+13
to V-

+13.5
to V-

V

Negative

30

150

/JVIV

30

150

30

45

10

70

85

20

200

V/mV

±13

±14

V

±12

± 13.5

10

mA

Rise Time

Vo=50 mV,
Av = 1.0, RL = 10 kil

0.3

Fall Time

Vo= 50 mV,
Av = 1.0, RL = 10 kil

0.3

Overshoot

Vo=50 mV
Av=1.0, RL=10 kil

20

%

/Js

BW

Bandwidth

Vo = 50 mV, Av = 1.0,
RL = 10 kil

1.0

MHz

SR

Slew Rate

V, = -10 V to + 10 V,
Av = 1.0

0.6

V//Js

CS

Channel Separation

f = 1.0 kHz to 20 kHz
(Input Referenced)

-120

dB

The following specifications apply for O°C <: TA <: + 70°C
V'O

Input Offset Voltage

AV,ol AT

Input Offset Voltage Temperature
Sensitivity

1'0

Input Offset Current

AI,ol AT

Input Offset Current Temperature
Sensitivity

I'B

Input Bias Current

7.5
10

/JVfOC
200

nA
pAloC

50
400

7-174

mV

nA

IlA798

/lA798 (Cont.)
Electrical Characteristics TA
Symbol

= 25°C,

Vee

= ± 15

V, unless otherwise specified.

Characteristic

Min

Condition

Avs

Large Signal Voltage Gain

RL=2.0 kn, Vo=±10 V

VOP

Output Voltage Swing

RL = 2.0 kn

Typ

Max

15

Unit

V/mV

±10

V

The following specifications apply for TA = 25°C, V + = 5.0 V, V-=GND
Via

Input Offset Voltage

2.0

7.5

mV

110

Input Offset Current

10

50

nA

liB

Input Bias Current

80

250

Avs

Large Signal Voltage Gain

PSRR

Power Supply Rejection Ratio

VOP

Output Voltage SWing 3

RL ;;;"2.0 kn

Output Sink Current

Icc

Supply Current

200

RL = 10 kn

4.0
~30

Vo= 200 mV,
V ID = 1.0 V

V

1. Not to exceed maximum package power dissipation.

2. Indefinite on shorts to ground or v- supply. Shorts to v+ supply may
result in power dissipation exceeding the absolute maximum rating.

3. Output will swing to ground.

7-175

pVIV
Vp . p

(V+)
-1.5
0.35

mA
2.0

Notes

nA
V/mV

150

5.0 V~V+
RL = 10 kn
10-

20

4.0

mA

IlA798

Typical Performance Curves
Sinewave Response

Output Voltage vs Frequency
AVI

'\

fA

"

=

'2°rTTrr,-;nrT-n~rT~,-rm~~~

t--

~100f-+~~tH~~ff-rt~-t-Mtrt~~
I

vLUJ
251-++-t-t--t-H+f'OkO

,i,.

RL =
TA
25°C

Ifl f'

Open Loop Frequency Response

30r--rTTr--r~-rrr-;--,,-n--'

=

Vee'" :t1SY
TA

~ 8°f-+~-t-tH~~ff-rt~-t-Htf-t~~

"
w

~

IV IV V IV \

60

~ 40rt~~~rt-HTI-rt~~Htr+~~

t;

9

r-

h

..........

Ir-

* o~~~++ffiH1#rrmrrH~
-2~.'=o.ll"-:',o,-J-t.LL",!,OO,.wlL,.':-O:-!-K"'""=,-:fO"'KllJ.,':O':-O:fK.ill,~.O M

-5.0 L-...J....J...J-l-....J.._"--''-'-'--:-':-''''''''...J....u..-:-,
1.0 K

10 K

100 K

FREQUENCY -

Output Swing vs Supply Voltage
40

1.0M

FREQUENCY -

Hz

Input Bias Current vs Temperature
'00

I
TA -

20~~~~rt-HTI-rt~-t-Ht~~~

z

h

50 ,us/DIY

1

25~C

Vee

~

Hz

Input Bias Current vs
Supply Voltage

80

I

= ±15V

~

> 30
I
w

I 15

...

"

Z

... 50

rr:

il!a:

z

w

Z
<
rr:

'"G 50

w 20

"
0
...>
.."...

= 25°C

<
!;;

V

'0

r-,...

iii

~

a

....

~

iii 40

~

~ 25

1/

"0

r-

~

V

~

/
o

o

!

o
2.0 4.0 6.0

8.0 10

12

SUPPLY VOLTAGE -

14

16

±V

18

20

0

-75 -55 -35 -15 5.0

25

45

65

TEMPERATURE _ °C

7-176

85 105 125

o

2.0 4.0 6.0 8.0

10

12

14

SUPPLY VOLTAGE -

16

±V

18

20

/J.A798

Typical Applications
Multiple Feedback Bandpass Filter

Wein Bridge Oscillator
&OK
r------JVY~------t--Yo

10 k
YREf

+
VREF

1_-10 J.lF

1

C

VREF O;::iV+

t.

to = center frequency
t.

R

C

BW = Bandwidth
A in kil
C in "F
fo

1
fo = - - for fo

0--<10
BW

21TAC

o

Cl-C2-3

= 1.0 kHz
A=16 kil
C= 0,01 "F

High Impedance Differential Amplifier
Al - A2 = 1]
R3 = 902-1 Use scaling factors in these expressions.

R'
V1

If source impedance is high or varies, filter may be preceded
with voltage follower buffer to stabilize filter parameters.

" ' -....--Yo

Design example:
given: 0 - 5, fo = 1.0 kHz
Let Al =A2-10 kil
then A3 - 9(5)2 -10
A3-215 kil

R3

5
C=:;=1.6 "F

R4

Comparator With Hysteresis

RS

R2

YOH

HYSTERESIS

~y.,,0t:ffi
I

R1

VREF ---'lM__..........

-----

V,-----..f

va
R7

Vo

VOL
V!L

I

AF00691F

VIH

VO=C (1 +a+b)(V2-Vl)

Afooe81F

-

VAEF

A2
A5

A6
'" -

A7

for best CMAA

Al - A4
A2= AS
A6

Gain

Al
H - Al + A2 (VOH VOL)
Al + A2

A2Al

4CA,Al

A2 + Rl

2Al

-Ai (1 +Fi3) =C (1 +8 +b)

Note
1. All resistor values in ohms.

f - - - - if A 3 - - - -

7-177

I1A798

Typical Applications (Cont.)
Pulse Generator

Vo

R3
100 k

RS
100 k

+0

n II
....J L..J L-

Function Generator
VREF

1

=-

2

TRIANGLE WAVE
OUT

v+

R2

r-_ _...J3VOOVVk_ _....,~_~~~ARE WAVE
R3

VAEF

75 k

R1
100 k

c
Rt

' - - -....-VREF
AF00661F

Note
1. All resistor values are in ohms.

7-178

J.lA 111 • J.lA311
Voltage Comparators

FAIRCHILD
A Schlumberger Company

Linear Division Comparators

Connection Diagram
8-Lead Metal Package
(Top View)

Description
The MA 111 and MA311 are monolithic, low input current
voltage comparators, each constructed using the Fairchild
Planar Epitaxial process. The MA 111 series operates from
the single 5.0 V integrated circuit logic supply to the standard ± 15 V operational amplifier supplies. The MA 111 series is intended for a wide range of applications including
driving lamps or relays and switching voltages up to 50 V
at currents as high as 50 mA. The output stage is compatible with RTL, DTL, TTL and MOS logic. The input
stage current can be raised to increase input slew rate.

V+

• Low Input Bias Current 100 nA Max (MA111), 250 nA
Max (MA311)
• Low Input Offset Current 10 nA Max (MA 111), 50 nA
Max (MA311)
• Differential Input Voltage ± 30 V
• Power Supply Voltage Single 5.0 V Supply To ± 15 V
• Offset Voltage Null Capability
• Strobe Capability

V-

Lead 4 connected to case

Order Information
Device Code

Package Code
5W
5W

MA111HM
!J.A311 HC

Absolute Maximum Ratings 1
Storage Temperature Range
Metal Can
Molded DIP and SO-8
Operating Temperature Range
Extended (MA 111 M)
Commercial (MA311 C)
Lead Temperature
Metal Can (soldering, 60 s)
Molded DIP and SO-8
(soldering, 10 s)
Internal Power Dissipation 2, 3
8L-Metal Can
8L-Molded DIP
SO-8
Voltage between V+ and VOutput to V(MA111)
(MA311)
Ground to VDifferential Input Voltage
Input Voltage
Output Short Circuit Duration

BALANCE!
STROBE

+IN

Package Description
Metal
Metal

Connection Diagram
8-Lead DIP and SO-8 Package
(Top View)

-65°C to + 175°C
-65°C to + 150°C
-55°C to + 125°C
O°C to 70°C

GND

300°C
+IN

265°C

BALANCEI

-IN

STROBE

1.00 W
0.93 W
0.81 W
36 V
50 V
40 V
30 V
±30 V
± 15 V
10 s

Order Information
Device Code
!J.A311TC
MA311SC

Notes
1. This rating applies for ± 15 V supplies. The positive input voltage limit is
30 V above the negative supply. The negative input voltage limit is
equal to the negative supply voltage or 30 V below the positive supply,
whichever is less.
2. TJ Ma, ~ 150°C for the Molded DIP and SO-B, and 175°C for the Metal

Can.
3. Ratings apply to ambient temperature at 25°C. Above this temperature,
derate the BL-Metal Can at 6.7 mwrc, the BL-Molded DIP at
7.5 mW/oC, and the SO-B at 6.5 mW/oC.

8-3

Package Code
9T
KC

Package Description
Molded DIP
Molded Surface Mount

•

Equivalent Circuit
BALANCE

BALANCE! STROBE

r---~---.~~--r---+---~----~------~---'-----------------'-----W

+IN

>-+--_OUT

-IN ---1--1((

RU
130Q
Q15

R12
600Q

R13
4Q

'-----t---------GND
v-

pA111

Electrical Characteristics TA = 25°C, Vee
Symbol

Characteristic

= ± 15

V, unless otherwise specified. 1
Condition

Min

Typ

Max

Unit

VIO

Input Offset Voltage 2

0.7

3.0

mV

110

Input Offset Current2

4.0

10

nA

liB

Input Bias Current

60

100

nA

Rs';;;50 kn

Avs

Large Signal Voltage Gain

200

tpD

Response Time3

200

VSAT

Saturation Voltage

10(ST)

Strobe On Current

ICEX

Output Leakage Current

VI .;;; -5.0 mV, 10L = 50 mA

0.75

V/mV
ns
1.5

mA

3.0
VI;;' 5.0 mV, Vo = 35 V

0.2

V

10

nA

4.0

mV

20

nA

150

nA

The following specifications apply for -55°C';;; TA';;; + 125°C.
VIO

Input Offset Voltage 2

110

Input Offset Current2

liB

Input Bias Current

VIR

Input Voltage Range

VSAT

Saturation Voltage

Rs';;;50 kn

±14
V+ ;;'4.5 V, V- = 0 V,
VI .;;; -6.0 mV, 10L';;; 8.0 mA

8-4

0.23

V
0.4

V

lolA 111 (Cont.)
Electrical Characteristics -55·C"; TA"; + 125·C. Vee = ± 15 V. unless otherwise specified. 1
Symbol

Typ

Max

0.1

0.5

p.A

TA = 25·C

5.1

6.0

rnA

= 25·C

4.1

5.0

rnA

Typ

Max

Unit

2.0

7.5

rnV
nA

Characteristic

Min

Condition

ICEX

Output Leakage Current

VI ;;"5.0 rnV. Vo

1+

Positive Supply Current

1-

Negative Supply Current

TA

= 35

V

Unit

1oIA311
Electrical Characteristics TA = 25·C. Vee = ± 15 V. unless otherwise specified. 1
Symbol
VIO

Condition

Characteristic
Input Offset Voltage2

Rs";;;;50 k!l

Min

110

Input Offset Current2

6.0

50

liB

Input Bias Current

100

250

200

Avs

Large Signal Voltage Gain

tpo

Response Tirne3

VSAT

Saturation Voltage

lo(sn

Strobe On Current

ICEX

Output Leakage Current

ns

200
VI";;;;-10 rnV. 10 = 50 rnA

0.75

1.5

0.2

V
rnA

3.0
VI;;"10 rnV. Vo=35 V

nA
V/rnV

50

nA

10

rnV

70

nA

300

nA

The following specifications apply for O·C";;;; TA .,;;;; + 70·C.
VIO

Input Offset Voltage2

110

Input Offset Current2

liB

Input Bias Current

VIR

Input Voltage Range

VSAT

Saturation Voltage

V+ ;;.. 4.5 V. V- = 2.25 V.
VI";;;;-10 rnV. 10L ";;;;8.0 rnA

1+

Positive Supply Current

1-

Negative Supply Current

Rs";;;;50 k!l

±14

V

0.23

0.4

V

TA = 25°C

5.1

7.5

rnA

TA = 25°C

4.1

5.0

rnA

Notes
1. The offset voltage, offset current and bias current specifications apply
for any supply voltage from a single 5.0 V supply to ± 15 V supplies.
2. The offset voltages and offset currents given are the maximum values
required to drive the output within a volt of either supply with a 1.0 mA
load. Thus, these parameters define an error band and take into
account the worst case effects of voltage gain and input impedance.
3. The response time spec~ied is for a 100 mV input step with 5.0 mV
overdrive.

8-5

Typical Performance Curves for p.A 111
Input Bias Current vs
Temperature

Input Offset Current vs
Temperature

...

30

Vc~. t1~V-

25

45

o

-55 -35

105 125

85

-15

-

"-

NORMAL

25

45

V+

>
I

85

85

Ifilil voi+ti

105 125

.,
~

..g'"
'"

i

50

..

I

s-

o

-16

12
-12
-8
-4
DIFFERENTIAL INPUT VOLTAGE - V

18

o.a

....

L
. ..-: ;y
r-T." -we
1>' /"
//

....
.L
0.1

..

o

2S

65

85

oc

30

40

I

eoc:o

J

I\.
'\

-0.'

'-

I--

0.'

1.0

DIFFERENTIAL INPUT VOLTAGE -

mY

Leakage Current vs
Temperature
10-7

Vee = t15 v

Vee = ±15v:;;r=

;..'

i
::::::",

'

OUTPUT CURRENT - rnA

-1.0

105 125

= 30V

~'\

FOLLOWER
OUTPUT

R~.

4S

10

.

-r-... r-

0

-55 -35 -15

---

.~
;

25

45

6S

Note
1. Leads 5, 6 and 8 are shorted.

8-6

85 105 125

.........

10-8

/'
V, = 15V

./

~ 10-10

10-11

5

TEMPERATURE - OC

Vo,'OV/'

10-8

!Z

POSlTI":':'PPLY -

~

I ~::I;;;:~ I'"""'
r-- r-- NEGATIVE
SUPPLYr-- r-- r- I (tTHr- I-- I--

~ f"<;T•• :we
10

EMITTER
10

7~

i'--

..-

o

-55 -35 -15

Vee

TA = 250C

I
I
II

I\.

~20

o

V-

""'"

A;..'

-

--

!;

'-- .....

f

I

~
g30

~

Supply Current vs
Temperature

+•. ~",

v, = sov ht..

~

:!. ..

-1

I

RL= 1 kQ

w'40

-1.0

TEMPERATURE -

Saturation Voltage vs
Output Current

'-NObMAL1Oun!uT

>

D.2

•

0

Output Voltage vs
Differential Input Voltage

~FE~~ED_f.?

0.'

it

1M

INPUT RESISTANCE -

::;

r0-

100 K

"K

etC

S PPLY VD :rAG

o.,

,./

1.0

Common Mode Limits vs
Temperature

I TA,=WC
JccUl'~

r

RAISED (NOTE 1)

........ ......

TEMPERATURE -

Input Bias Current vs
Differential Input Voltage
110

.........

-

oc

TEMPERATURE -

150

"-

......

65

":'

10

"

NORMAL

-15

c',

~

".......

-55 -35

oo~

vee' • 'l~V

~,

RAISED (NOTE 1)

o

Offset Voltage vs
Input Resistance

i--"':
25

45

.

85

TEMPERATURE - OC

105

125

#lA 111 • #lA311

Typical Performance Curves for 1lA311
Input Bias Current vs
Temperature

20

500

RAISEiI
(NOTE 1

I

~300

r- t--

i

~

i
i

i200

r-

r- r-

-

V

iITrrtlsl'rn

01020
30
40
TEMPERATURE -

5060

100K

70

oc

T = 25"C

80
Vee·30V
TA = 250C

REFERRED TO
YVO~ AGES
50

-0.

i
i
i

~

o

-16

-12 -8
-4
•
12
DIFFERENTIAL INPUT VOLTAGE - V

16

:!,::...

... ~

f--

EMITTER
FOLLOWER
OUTPUT

A

II
II
\.

'\.

RL=8DDO:

I

0.2

v

I

-

::;

u

T

I

(

.. -1

0

T

NORMAL OUTPUT
AL" 1 kO
V1 = 40V

>
I -1 .0

...

n

Output Voltage vs
Differential Input Voltage

8UPP

•

10M

1M

INPUT RESISTANCE -

v+

Jcc l• ~15~_

/

TYPICAL

Common Mode Limits vs
Temperature

Input Bias Current vs
Differential Input Voltage

MIAXIMUM

NORMAL

o

010203040506070
TEMPERATURE - "C

200

~

TA= 250C

10

D

225

ve!,= .Jv(NOTE 1)

o

NORMAL

100

r--....

~
I

~

i

r-....

v":'=.Jv-

t-- t--

~400

Offset Voltage vs
Input Resistance

Input Offset Current vs
Temperature

T

-

10

20
30
40
TEMPERATURE -

-1.0

ere

\.

T

T

o

70

50

1

-0.5

"

1.0

DIFFERENTIAL INPUT VOLTAGE - mV

PC'''••' '

Supply Current vs
Temperature

Saturation Voltage vs
Output Current
o.a
T. .

a\~:-

0.7

~

./

Leakage Current vs
Temperature

0

FOumrr

V

rr-

/'
./

1/

-

I

10

~~W J. - f---

OUTPUT

~M!-

NEGATIVE SUPPl.YIOUTTHlj-

20

30

OUTPUT CURRENT - ....

40

= 40V

..... ,;"

I

10-1

INPUT VI

50

o

f---

Note
1. Leads 5. 6 and 8 are shorted.

8-7

&0

70

15 Y

~

10-11

01020
30
40
50
TEMPERATURE - "C

:I

•

0.1
D

Vo

c

./

V

FYcc' mv

Vcc ."15V
8

~

25

35

4S

15

TEMPERATURE - 'C

15

75

Typical Applications
Offset Null Circuit

Strobe Circuit

Zero Crossing Detector
Driving MOS Logic (Note 3)

Increasing Input Stage
Current (Note 1)
r-1......--V+
TTL

STROBE
V+=5.0V
1.01cll

7

TOMOS
R3 LOGIC
10 k

OFFSET BALANCING

STROBING ":::

"""""'"

CR02210F

Adjustable Low Voltage
Reference Supply

Negative Peak Detector
+lSV

Vo

Digital Transmission Isolator (Note 3)
v+ =s.ov

I

v+=5.0Y

(:= ~ ~)
FCD820

RS
5k
21 8

31""1~

Positive Peak Detector
R3

3.,-1

+15 V

100
Rl

FROM

TTL
GATE

Notes
1) Increases typical common mode slew rete from 7.0 VI /IS to 1B VI /IS.
2) Solid Tantalum.

3) All resistor values in ohms.

8-8

R2
SDk

o.01~::

RS
1k

R4
lk

• 4

TTL
OUT

MA 111 • MA311

Typical Applications (Cont.)

Relay Driver with Strobe
Y,

Strobing of Both Input
And Output Stages (Note 1)
FROM D/A NETWORK

TTL
STROBE

Rl
1 kO

TTL STROBE

Switching Power Amplifier
Precision Photodiode Comparator

IN

Rl

Rl
10 kO

'--""'--""'''---'''''--'-+5.0
Y
3.9kO
~FPT100

R3
1 kO

R2
lOOk{)

OUT

3
R3

TTL
OUT

100

Cl
0.1 JJ.F

Notes
1. Typical input current is 50 pA with inputs strobed off.
2. Absorbs inductive kickback of relay and protects Ie from severe voltage
transients on VI line.
3. R2 sets the comparison level. At comparison, the photodiode has less
than 5.0 mV across it, decreasing leakages by an order of magnitude.

8-9

to

'---+-==.....-v-

Switching Power Amplifier
V+

Q2.~

1112

2N61~
112
6200

OUT

I

6200

1

R11
6200

I
I

300 k!l
RS

RS

5'00

39kO

1

h

R13

3OOkO
R9
39kO

R14
5100

R8
15 kO

~--~------------~-----t--------~~----~~-----------------------t---4--~A---IN
J,.Cl
To.22,J1

R7

~~------------~----~-----4~------~---------------------------------4------~A---REFERENCE
15 kO

8-10

p.A 139 • p.A239 • p.A339
p.A290 1 • p.A3302

F=AIRCHILO
A Schlumberger Company

Quad Comparators
Linear Division Comparators

Description

Connection Diagram
14-Lead DIP and 50-14 Package
(Top View)

The pA 139 series consists of four independent precision
voltage comparators designed specifically to operate from
a single power supply. Operation from split power supplies
is also possible and the low power supply current drain is
independent of the supply voltage range. Darlington connected PNP input stages allow the input common mode
voltage to include ground.

,.
OUTB

OUTC

OUT A

OUT 0

• Single Supply Operation + 2.0 V To + 36 V
• Dual Supply Operation ± 1.0 V To ± 18 V
• Allow Comparison Of Voltages Near
Ground Potential
• Low Current Drain 800 /lA Typ
• Compatible With All Forms Of Logic
• Low Input Bias Current 25 nA Typ
• Low Input Offset Current ± 5.0 nA Typ
• Low Offset Voltage ± 2.0 mV

V+

Absolute Maximum Ratings
Storage Temperature Range
Ceramic DIP
Molded DIP and SO-14
Operating Temperature Range
Extended (pA 139M)
Automotive (pA2901V, pA3302V)
Industrial (pA239V)
Commercial (pA339C)
Lead Temperature
Ceramic DIP (soldering, 60 s)
Molded DIP and SO-14
(soldering, 10 s)
Internal Power Dissipation 1. 2
14L-Ceramic DIP
14L-Molded DIP
SO-14
Supply Voltage
pA 139 Series/ pA2901
pA3302

Differential Input Voltage
pA 139 Series/ pA2901
pA3302

Output Short Circuit to GND 3
Input Current (VI < -0.3 V)4

-65°C to + 175°C
-65°C to + 150°C

V-orGNO

-INA

+IND

+INA

-IN 0

-IN B

+INC

+INB

-INC

Order Information
Device Code
pA139DM
pA239DV
pA239PV
pA239SV
pA339DC
pA339PC
pA339SC
pA2901DV
pA2901PV
pA3302DV
pA3302PV
pA3302SV

-55°C to +125°C
-40°C to +85°C
-25°C to +85°C
O°C to 70°C
300°C
265°C
1.36 W
1.04 W
0.93 W

Package Code
6A
6A
9A
KD
6A
9A
KD
6A
9A
6A
9A
KD

Package Description

Ceramic DIP
Ceramic DIP
Molded DIP
Molded Surface Mount
Ceramic DIP
Molded DIP
Molded Surface Mount
Ceramic DIP
Molded DIP
Ceramic DIP
Molded DIP
Molded Surface Mount

36Vor±18V
28 V or ±14 V
36 V
28 V
Indefinite
50 mA

Notes
1. TJ Max ~ 150'C for the Molded DIP and SO·14. and 175'C for the
Ceramic DIP.
2. Ratings apply to ambient temperature at 25'C. Above this temperature,
derate the 14L-Ceramic DIP at 9.1 mWI'C, the 14L·Molded DIP at
8.3 mW I'C, and the SO-14 at 7.5 mW I'C.
3. Short circuits from the output to V+ can cause excessive heating and
eventual destruction. The maximum output current is approximately
20 mA independent of the magnitude of v+.

4. This input current will exist only when the voltage at any of the input
leads is driven negative. It is due to the collector base junction of the
input PNP transistors becoming forward biased and thereby acting as
input diode clamps. In addition to diode action, there is also lateral NPN
parasitic transistor action on the Ie chip. This transistor action can
cause the output voltages of the comparators to go to the v+ voltage
level or to ground for a large overdrive, for the time duration that an
input is driven negative. This is not destructive and normal output states
will re-establish when the input voltage, which is negative, again returns
to a value greater than -0.3 V.

8-11

MA 139 • MA239 • MA339
MA2901 • MA3302

Equivalent Circuit
V+

+IN----1C
- I N - - - - - - - / - - - - - - 1 -_ _ _---I

.----OUT

y- or GNO

IlA 139, 1.lA239, 1.lA339

Electrical Characteristics TA

= 25°C,

V+

= 5.0

V, unless otherwise specified.
!lA139

Symbol

Characteristic

Condition

VIO

Input Offset Voltage 5

liB

Input Bias Current 1

11+ or 11- with Output
in Linear Range
(11+) - (11-)

Min

Typ

!lA239, J,lA339
Max

Min

Typ

Max

Unit

±2.0

±5.0

±2.0

±5.0

mV

25

100

25

250

nA

±50

nA

(V+)-1.5

V

110

Input Offset Current

VIR

Input Common Mode
Voltage Range2

±5.0

Icc

Supply Current

RL = 00 on all
Comparators

0.8

Avs

Large Signal Voltage
Gain

RL;;;'15 kn,
V+ =15 V (To
Support Large Vo
Swing)

200

200

V/mV

tpD1

Large Signal
Response Time

VI = TTL Logic Swing,
VREF = 1.4 V,
VRL = 5.0 V,
RL = 5.1 kn

300

300

ns

tpD2

Response Time 3

VRL = 5.0 V,
RL = 5.1 kn

1.3

1.3

J,lS

8-12

±25
(V+)-1.5

0

2.0

±5.0
0
0.8

2.0

mA

p.A 139 • MA239 • p.A339
MA2901 • p.A3302

J.(A139, MA239, J.(A339 (Cont.)
Electrical Characteristics TA = 25°C, V+ = 5.0 V, unless otherwise specified.
pA139
Symbol

Characteristic

Condition

IOL

Output Sink Current

VI- ;;;'1.0 V,
VI+ = 0 V,
Vo< 1.5 V

VSAT

Saturation Voltage

VI- ;;;'1.0 V,
VI+ = 0 V,
iOL <4.0 rnA

ICEX

Output Leakage
Current

VI+ ;;;'1.0 V,
VI- =0 V,
Vo=30 V

Min

6.0

Typ

IlA239, pA339
Max

16

250

Min

6.0

400

Typ

250

200

Unit

Max

16

rnA

400

rnV

200

nA

The following specifications apply for -55°C < TA < + 125°C for the IlA 139, -25°C < TA < + 85°C for the 1lA239 and
O°C < TA < + 70°C for the 1lA339.
VIO

Input Offset VoltageS

110

Input Offset Current

(II+)-(Ij-)

118

Input Bias Current

11+ or 11- with Output
in Linear Range
0

9.0

9.0

rnV

± 100

±150

nA

300

400

nA

VIR

Input Voltage Range

VSAT

Saturation Voltage

VI- ;;;'1.0 V,
VI+ =0 V,
10L <4.0 rnA

700

700

rnV

ICEX

Output Leakage
Current

VI+ ;;;'1.0 V,
VI- =0 V,
Vo=30 V

1.0

1.0

IlA

VIO

Differential Input
Voltage4

Keep all VI's;;;' 0 V
(or V-, if used)

36

36

V

8-13

(V+)-2.0

0

(V+)-2.0

V

JlA 139 • JlA239 • JlA339
JlA2901 • JlA3302

J,!A2901, J,!A3302
Electrical Characteristics TA = 25°C, V+ = 5.0 V, unless otherwise specified.
1lA2901
Symbol

Characteristic

Condition

VIO

Input Offset Voltage5

118

Input Bias Current1

11+ or 11- with Output
in Linear Range

110

Input Offset Current

(11+)-(11-)

VIR

Input Common Mode
Voltage Range2

Icc

Supply Current

Avs

Large Signal Voltage
Gain

Min

Typ

RL = co, V+ = 30 V
RL~15 kn,

25

Max

Min

Typ

Max

Unit

±2.0

±7.0

±3.0

±2.0

mV

25

250

25

500

nA

±S.O

±50

±S.O

± 100

nA

(V+)-1.5

V

0
RL = co on all
Comparators

1lA3302

(V+)-1.5
0.8

2.0

1.0

2.5

100

0
0.8

2.0

2.0

mA

30

V/mV

300

300

ns

1.3

1.3

j.lS

16

mA

V+ = 15 V (To
Support Large Vo
Swing)

tpD1

Large Signal
Response Time

VI = TTL Logic Swing,
VREF = 1.4 V,
VRL = 5.0 V,
RL = 5.1 kn

tpD2

Response Time3

VRL = 5.0 V,
RL = 5.1 kn

10L

Output Sink Current

VI- ~1.0 V,
VI+ =0 V,
Vo~1.5 V

VSAT

Saturation Voltage

VI- ~1.0 V,
VI+ =0 V,
10L ~4.0 mA

400

ICEX

Output Leakage
Current

VI+ ~1.0 V,
VI- =0 V,
Vo= 30 V

200

6.0

8-14

16

2.0

250

SOO

mV

200

nA

IlA 139 - IlA239 - IlA339
IlA2901 -IlA3302

1lA2901, 1lA3302 (Cont.)
Electrical Characteristics -40°C';;;; T A';;;; + 85°C, V+ = 5.0 V, unless otherwise specified.
1lA2901

Symbol

Characteristic

Condition

Via

Input Offset VoltageS

110

Input Offset Current

(II+)-(Id

liB

Input Bias Current

11+ or 11- with Output
in Linear Range

Min

Typ
9.0

VIR

Input Voltage Range

VSAT

Saturation Voltage

VI- ;;;;'1.0 V,
VI+ =0 V,
10L <4.0 rnA

ICEX

Output Leakage
Current

VID

Differential Input
Voltage4

1lA3302

Min

Max
15

Typ

Max

Unit
40

mV

50

200

300

nA

200

500

1000

nA

(V+)-2.0

0

0

(V+)-2.0

V

700

700

mV

VI+ ;;;;'1.0 V,
VI- =0 V,
Vo= 30 V

1.0

1.0

p.A

Keep all VI's;;;;' 0 V
(or V-, if used)

V+

V+

V

400

Notes
1. The direction of the input current is out of the IC due to the PNP input
stage. This current is essentially constant, independent of the state of
the output so no loading change exists on the reference or input lines.
2. The input common mode voltage or either input signal voltage should
not be allowed to go negative by more than 0.3 V. The upper end of
the common mode voltage range is (V+) - 1.5 V, but either or both
inputs can go to + 30 V without damage.
3. The response time specified is for a 100 mV input step with 5.0 mV
overdrive. For larger overdrive signals 300 ns can be obtained, see
typical periormance curves segment.
4. Positive excursions of input voltage may exceed the power supply level.
As long as the other voltage remains within the common mode range,
comparator will provide a proper output state. The low input voltage
state must not be less than -0.3 V or 0.3 V below the magnitude of
the negative power supply, if used.
5. At output switch pOint, Vo= 1.4 V, Rs = 0 fl with V+ from 5.0 V; and
over the full input common mode range 0 V to V+ -1.5 V.
6. For input signals that exceed Vee. only the overdriven comparator is
affected. With a 5.0 V supply, VI should be limited to 25 V maximum
and a limiting resistor should be used on all inputs that might exceed
the positive supply.

8-15

pA 139 • pA239 • MA339
MA2901 • MA3302

Typical Performance Curves for 1lA139, 1lA239, 11339
Supply Current
1.0

",

0.8

I

..

o.a

/"

a:
a:

::>

u

~
o.
o.

--I--

1
Ii

Input Bias Current

f'

TA = -wc

i

o

i

80

~

_T~=

~
~

-

20

I
RLa ..

o

10

Z
0

~

l

""

20

10

I-

::>

rrTAo *12&OC

S

-

0.001
40

30

SUPPLY VOLTAGE - V

SUPPLY VOLTAGE - V

,

0

5.0 mY ,.. INPUT OVERDRIVE

2Om~

100mV
.0

"

'~'~Vo

.

\

0

_

-

...

"

Response Time for Various Input
Overdrives - Positive Transition
;

6.0

g

~
!;

o

n

'" ""

4.G

3.0
2.0

5mV

l20mv

II

I

I

.0

J 1

0

1.0
TIME -"s

1.5

I
1
+5.0 V

""

TYi

I

2.0

o.s

-

...

~

v. -

1-

r- r-Yi - 0.5

I

INPUT OVERDRIVE,.. 100 mY

IV s.o
I!

Vo

I I
1.0
TlME-"s

8-16

1.5

~~

/~ '/

:%

0.G1

"TA = 25'C

,/

0.1

1.0

10

OUTPUT SINK CURRENT - mA

PCOe9OOF

Response Time for Various Input
Overdrives - Negative Transition

~~

0.G1

0

'"

~

0. ~A=-55OC

0.1

3

"-

~Tr1i

o
o

40

30

20

TA=12SOC~

~

I-

-"t=11'c-

1.0

~

-SS'C

~40 _T~"J

;;.J:.j
I

G.2

.."

c

1"_
Tt=~

,.

>
I

RI(eY) .. 10· Q

l

,V

0.'

10

VI(JMI' Jv

...J.
1
TA" o-i:-

---

Output Saturation Voltage

80

2.0

....

100

J.lA 139 • J.lA239 • J.lA339
J.lA290 1 • J.lA3302

Typical Performance Curves for 1lA2901, IlA3302
Supply Current
RL =

k--"

GO

1.2

E

Iiw

......T.

=-4C)OC

TA

1.0

/"

.. ......'"
..
~ 0.8

I

.......
....... ~

......

0.8

~ ~oocl
TA =

8.0 r--r--.--r---rs.o-m-Y....=-ITNPUT---r-ove-rRD-R"TIVE---r

w

s.o

3.0

II

2Om~
1-:-:-+--tt--tl-+-+Y'~+5.0Y
5.1 kfl-

Yo _

2.0

0

100 mY

.0

~

!:i

4.0
3.G

g

§

-

~ ~~+-4-~~~I-:-:-+-1--r-+-1

~!:i

~r

~

~ -100 1-+--+-+-+-+-+-+ TAr

!

~

u
TlME-,uS

u

i

U

2.0
.0

'E

~

s.o

I

g
!;

~

0

n

r

"- ~

ISmY

120 mY

I I
IJ J

I

II

I +5.0 V

V, -

+

-SO-100

_

~'~

~

rTie -

Vo-

-

-

I I I

I
0.5

1.0
TIME -p.S

8-17

1.5

~
V
~

/

a

0.01

r

0.1

~ K:"
~

'TA=OOC

riC

1.0

10

OUTPUT SINK CURRENT - mA

I

6.o INPUT OVERDRIVE .. 100 mY

i

0~+-4-~~~1-:-:-~~-r-+~

I
~

40

30

20

"·C, f\... ~V

/

0.01

::>

Response Time for Various Input
Overdrives - Positive Transition

i

I

.....

!;

0

SUPPLY YOLTAGE - Y

~

4 .0

r-

..~

~~

T.=85"C
TA.

0.1

0.001
10

V

Response Time for Various Input
Overdrives - Negative Transition

!;
!;

o
o

40

30

SUPPLY VOLTAGE -

g

I

i

85

20

~

-

---T T-

-

z

0

ooc

Td:.:
Tj=85 -

r--

1..-:

1.0

g

....-t ...~-

......

V 10

'E

>

"~

::>

.

=-4O"e

w

...........

'"'"::>
u

"~

10

80

"...

c

I

Output Saturation Voltage

Input Bias Current

2.0

?"

100

MA 139 • MA239 • MA339
MA2901 • MA3302

Application Information

Typical Applications (V+

The pA 139 series are high gain, wide bandwidth devices
which, like most comparators, can easily oscillate if the
output lead is inadvertently allowed to capacitively couple
to the inputs via stray capacitance. This shows up only
during the output voltage transition intervals as the comparator changes states. Power supply bypassing is not required to solve this problem. Standard PC board layout is
helpful as it reduces stray input! output coupling. Reducing
the input resistors to < 10 kn reduces the feedback signal
levels and finally, adding even a small amount (1.0 V to
10 mY) of positive feedback (hysteresis) causes such a
rapid transition that oscillations due to stray feedback are
not possible. Simply socketing the Ie and attaching resistors to the leads will cause input! output oscillations during
the small transition intervals unless hysteresis is used. If
the input signal is a pulse waveform, with relatively fast
rise and fall times, hysteresis is not required.

=15 V)

AND Gate
V+

39kQ

3.0kQ

A

B

C
V:::r

"::"

"0·"1"

OR Gate
V+

All leads of any unused comparators should be grounded.
The bias network of the pA 139 series establishes a drain
current which is independent of the magnitude of the power supply voltage over the range of 2.0 V to 30 V.

3.0kQ

200kQ

A

It is usually unnecessary to use a bypass capacitor across
the power supply line.

B

C

V;=r

The differential input voltage may be larger than V+ without damaging the device. Protection should be provided to
prevent the input voltages from going more negative than
-0.3 V (at 25°C). An input clamp diode can be used as
shown in the applications segment of this data sheet.

"::"

"0·"1"'

f=A-B·C

Monostable Multivibrator

The output of the pA 139 series is the uncommitted collector of grounded emitter NPN output transistor. Many collectors can be tied together to provide wired OR output
function. An output pull-up resistor can be connected to
any available power supply within the permitted supply
voltage range. There is no restriction on this voltage due
to the magnitude of the voltage which is applied to the
V+ terminal of the pA139 package. The output can also
be used as a simple SP/ST switch to ground (when a pull
up resistor is not used). The amount of current which the
output device can sink is limited by the drive available
(which is independent of V+) and the ~ of this device.
When the maximum current limit is reached (approximately
16 rnA), the output transistor will come out of saturation
and the output voltage will rise very rapidly. The output
saturation voltage is limited by the approximately 60 n
saturation resistance of the output transistor. The low offset voltage of the output transistor (1.0 mY) allows the
output to clamp essentially to ground level for small load
currents.

ol
to -It-..,---.-........-t
l00pF

;:J""E o

PW
---V+
1mB _
_

to It

lN914
Vo

o.o01F

1.0MQ

8-18

p.A 139 • p.A239 • MA339
MA2901 • MA3302

Typical Applications (V+

= 15

V) (Cont.)
Monostable Multivlbrator with Input Lock Out

Bistable Multivibrator

V.

V·

100kO

15kO
51kO

v:::n..

S

.Ii:.15 V
R

v::::n..

1OOkO

.'"

100kO
0

--IE

<4 V
1,..
0

-::-

Vo

1OOkO

Vo

240kO
62 kO

-=CA"",F

Squarewave Oscillator

Time Delay Generator

V·

V.

4.3kO
1OOkO

10kO

15 kO

200

3.0 kO

10kO

V;::r
'. ..
51 kO
INPUT GATING
SIGNAL
1OkO

Ve,

3.0 kO

1OOkO

10MO

10kO

V;:n..
_
to
"'+VI-+

V;:r

V.

10 12

aOkO
51 kO

v+
•

----------.,.-~-

10 kO

V.

v;:r

~ct V2

I
"

-.12

..

v,

Vo
100kO

V.·-..:.Wlr-..........---'\/V'._--I

V.,

10 "

f4
51kO

~_

8-19

CR02370F

IlA 139 • IlA239 • IlA339
IlA2901 • IlA3302

Typical Applications (V+

=15 V) (Cont.)

Large Fan-In AND Gate (Note 1)

Pulse Generator
V+

V+

Dl
lN914
R1 (NOTE 4)

l.oUO
R2
100 leO

V::r

VO(NOTE 3)

"0· "I"

l.oUO

(NOTE 2)

Wired-OR Outputs
V+

Vo

Notes
1) All resistor values in ohms.
2) All diodes 1N914.

3) Vo=A-e-c-o
4) For large ratios 01 Rl/R2. 01 can be omitted.

8-20

15 kO

/lASS8S
Ultra Fast
Single Latched Comparator

FAIRCHIL.D
A Schlumberger Company

Linear Division Comparators

Connection Diagram
10-Lead Metal Package
(Top View)

Description
The !lA6685 is an ultra fast single voltage comparator
manufactured with an advanced high speed bipolar process that makes possible very short propagation delays
(2.7 ns) with excellent matching characteristics. The comparator has differential analog inputs and complementary
logic outputs compatible with most forms of ECL. The output current capability is adequate for driving terminated
50 n transmission lines. The low input offsets and short
delays make this comparator especially suitable for high
speed precision analog to digital processing.

GND1

+IN

-IN O:~t-:,..~---:;-4:J Q OUT

The !lA6685 is lead compatible with the AM6685 and
functionally compatible with AD9685 and SP9685.

•
•
•
•
•
•

~~----::OQOUT

v-

2.7 ns Typical Propagation Delay
Complementary ECl Outputs
50 n line Driving Capability
Built-In Latch
Typical Output Skew 0.2 ns
Propagation Delay Constant With Overdrive

Order Information
Device Code
!lA6685HM
!lA6685HV

Package Code
5X
5X

Package Description
Metal
Metal

Connection Diagram
16-Lead DIP
(Top View)

Connection Diagram
50-14 Package
(Top View)

16
GND1

14

GND2

Q OUT

NC

v+

NC

+IN

NC

-IN

NC

OUT

GND2

Q

GNDI

NC

v+

v-

+IN

LATCH ENABLE

NC

NC

-IN

NC

NC

Q OUT

LATCH ENABLE

Q OUT

NC

NC

v-

NC
CD00961F

Order Information
Device Code
!lA6685SV

Package Code

Package Description

KD

Molded Surface Mount

Order Information
Device Code
!lA6685DM
!lA6685DV
!lA6685PV

8-21

Package Code
68
68
98

Package Description
Ceramic DIP
Ceramic DIP
Molded DIP

J.LA6685

Absolute Maximum Ratings
Storage Temperature Range
Metal Can and Ceramic DIP
Molded DIP and SO-14
Operating Temperature Range
Extended (!lA6685M)
Industrial (!lA6685V)
Lead Temperature
Metal Can and Ceramic DIP
(soldering, 60 s)
Molded DIP and SO-14
(soldering, 10 s)

Internal Power Dissipation 1, 2
10L-Metal Can
16L-Ceramic DIP
16L-Molded DIP
SO-14
Positive Supply Voltage
Negative Supply Voltage
Input Voltage
Differential Input Voltage
Output Current
Minimum Operating Voltage (V+ to V - )

-65°C to + 175°C
-65°C to + 150°C
-55°C to + 125°C
-30°C to + 85°C

300°C

1.07 W
1.50 W
1.04 W
0.93
+7.0 V
-7.0 V
!4.0 V
!6.0 V
30 mA
9.7 V

265°C

Notes
1. TJ Max = 150·C for the Molded DIP and 80·14, and 175·C for the Metal
Can and Ceramic DIP.
2. Ratings apply to ambient temperature at 25·C. Above this temperature,
derate the 10l-Metal Can at 7.1 mWrC, the 16l-Ceramic DIP at
10 mWrC, the 16l-Molded DIP at 6.3 mWrC, and the 80-14 at
7.5 mWrC.

Equivalent Circuit
V+--~--~--------~----------T---~~--~--------~--~--'

~------~~--~--+---~r-~r-r----+--~----+-T---~----~----------GND2

-IN

GN01

Q

V-------~

____

~--------~----~----------_4

______________ ______________
~

~

EQOO360F

8-22

MA6685

1lA6685V, 1lA6685M
Electrical Characteristics Over recommended operating temperature and supply voltage ranges, unless
otherwise specified.
DC Characteristics
/lA6685M

"A6685V
Symbol
V,O

Condltlon 1

Characteristic
Input Offset Voltage

Rs < 100
Rs<100

n,
n
n

Min

T A = 25°C

-3.0

Typ

Max

0.3

-3.5

Min

+3.0

-2.0

+3.5

-3.0

Typ
0.3

Max
+2.0

"vrc

Average Temperature
Coefficient of Input
Offset Voltage

Rs<100

1'0

Input Offset Current2

25°C < TA < TA Max

-1.0

0.2

+1.0

-1.0

0.2

+1.0

TA=TA Min

-1.3

0.3

+1.3

-1.6

0.3

+1.6

liB

Input Bias Current

VCM

Common Mode Voltage Range

CMR

Common Mode Rejection

4.0

25°C

I-

t-t-t-t-t-t--t--t--H

Yr= -S.2V

°O~~~l00~~200f--L~~~~-~L-~~SOO

0.2

'PD

-"-~-~

TIME-ns

5

~

%

e

~

;

1"- ......

-4.0

-4.S
~

~m

-4.6

TEMPERATURE-"C

-4.8

-5.0

-5.2

-5.4

-5.6 -5.8

NEGATIVE SUPPLY VOLTAGE-V
PC06550F

Positive Common Mode Limit vs
Positive Supply Voltage

-0.6

4.5

-0.7

>

I -0.9

§ -1.0

............

!:l
~
~

~ ......

-

5.6

5.8

6.0

6.2

6.4

POsmVE SUPPLY VOLTAGE-V

6.8

~ -1.0

!:l
~

5Q. -1.6

~ -1.7

VOL

-1.5

-1.9

-1.9

-M-~-15

5

~

~

~

TEMPERATURE-oC

8-24

H

~

VOH

1-0.8

-1.8

-2.0

2.S

I

-0.8

>

-1.6

lS
-1.7

r-'""

5.4

..... ~

-0.6
-0.7

~

J
v'!--

-0.8

...... r-'""

Output Levels vs
Negative Supply Voltage

Output Levels vs Temperature

m

-r-..

-;:'r-..

r-_

-2.0
-4.6 -4.8

-S.O

-5.2

-5.4

-5.6

NEGATIVE SUPPLY VOLTAGE-V

-5.&

MA668S

Typical Performance Curves (Cont.) TA = 25°C, V+ = 6.0 V, V - = -5.2 V, Vr = -2.0 V, RL = 50 n, and
switching characteristics are for Vin = 100 mV, VOD = 10 mV, unless
otherwise specified.
Output Levels vs DC Loading

Supply Currents vs Temperature

-0.6
/2002

'\ J

-0.8

.1

r r- -!";...

>

~ -0.9

II

!i -1.0
~
g

1/502

-

..L
/

I
,2002

-1.6

J

5i!: -1.7

1/ 502

LOAD~
FOR

/

VOL

/

-1.9

o

12

16

20

~

~

II:
II:

.8

e

25

~

20

28

e;.

25

I

1-

::>

"
....
::>

ffi

e;.

10

I

6.0

6.2

6.4

.......

............

o

1.

12

!Zw

10

!Zw

10

~

~

1Mm

§

.."~
::>

l.I

..

::>

a;

o
-3

1\1
1/\

...

V"
-4

/1--'

'\

-2

-1

COMMON MODe VOLTAGE-V

o

-150

~v
-100

J

V
1\

"r-....

- 50

50

100

DIFFERENTIAL INPUT VOLTAGE-mY

8-25

-4.6

-4.8

-5.0

-5.2

-5.4

-5.6

NEGATIVE SUPPLY VOLTAGE-V

NON-INVERTING IN

1',

II:
II:

::>

.

~

5

INVERTING IN

12

II:
II:

-5.8

.....

,....

..

14

1.

a;

.."

16

I

-5.6

10

~

Input Current vs
Differential Input Voltage

16

-5.4

12

~

r- r- r-

TEMPERATURE-oC

I.

-5.2

a;

POSITIVE SUPPLY VOLTAGE-V

Input Bias Current vs
Common Mode Voltage

-5.0

::>

-~-~-~

6.8

---

_~f-

II:
II:

o
5.8

,~

,....~

....

Input Bias Current vs
Negative Supply Voltage

!Zw

.......

.... ~ ....

NEGATIVE SUPPLY VOLTAGE-V

12

a;

5.6

10
-4.6 -4.8

~m

M

16

~

15

"..:!
'~"

~

I.

.."~
..

,~

10
5.4

I

~

15

16

::>

~

.... ~ I--"

20

I.

II:
II:

20

~

5

Input Bias Current vs Temperature

!Z
w

II:
II:

::>

TEMPERATURE-"C

30

I

II:
II:

::>

15

-~-~-~

32

1-

!Zw

10

24

25

I

~

l - I---

Supply Currents vs
Positive Supply Voltage

E

E

."
..

1+

LOAD CURRENT-mA

e

-

I

~

Yr= -2.0V

'~ i--

-1.8

-2.0

30

30

\

-0.7

!;

Supply Currents vs
Negative Supply Voltage

150

-5.8

•

MA6685

Typical Applications (TA = 25°C)
High Speed Window Detector

+VREF

--T----I

IN

"-

OUT

50Q

+VREF

r

~

OJT

2oJmVl~iv.

/f

[\

-VREF

"-VREF

--T-----of
50Q

IN~mvt'v.

V

50Q

10ns/div.

-2.0V

High Speed Sampling

IN

LATCH
ENABLE

~

~Q--~--~--- OUT

IN
50Q

OUT
LATCH ENABLE
(Sample Rate = 100 MHz)

IJ [1 (
IJ IJ J

-2.0V

V\,
"\
\

if

-

/

\

(

\

\
5ns/div.

8-26

J .... IJ

(

5OOmV/dlv.

100mVldlv.

SOOmV/div.

MA6685

Measurement Of Propagation Delay
+6.0V

V+

~D

'LL

INPUT
FROM PULSE
GENERATOR

50Q
COAX CABLE

~

O.1iJ.F

HIGH SPEED
SCOPE PROBES

GND

tt::51.2".
(10%-90%)

5.0kQ

V'-----.M---t---<>I
50Q

50Q

50Q

-2.0V
-5.2V

Propagation delays tpo + (0 output) and tpo - (Q output)
are measured with input signal conditions of a 100 mV
step with an overdrive of 10 mV (the overdrive is the voltage in excess of that needed to bring the output to the
center of its dynamic range). Offset is compensated for by
adjusting VI until outputs are in the linear region while the
Pulse Generator is disconnected. VI is then increased in
the positive direction so inverting input changes by 10 mV,
i.e. the overdrive condition. Propagation delays are then
measured with actual input pulse condition of + 110 mV to
o V swing, with a tpo + or tpo - reading taken between
the + 10 mV level of the input pulse and the 50% point
of the outputs.

over the devices. If the IlA6685 is operated without air
flow, the change in electrical characteristics due to the increased die temperature must be taken into account.

Interconnection Techniques
All high speed Eel circuits require that special precautions
be taken for optimum system performance. The 1lA6685 is
particularly critical because it features very high gain
(60 dB) at very high frequencies (100 MHz). A ground
plane must be provided for a good, low inductance,
ground current return path. The impedance at the inputs
should be as low as possible and lead lengths as short
as practical. It is preferable to solder the device directly to
the printed circuit board instead of using a socket. Open
wiring on the outputs should be limited to less than one
inch, since severe ringing occurs beyond this length. For
longer lengths, the printed circuit interconnections become
microstrip transmission lines when backed up by a ground
plane, with a characteristic impedance of 50 to 150 n.
Reflections will occur unless the line is terminated in its
characteristic impedance. The termination resistors normally
go to -2.0 V, but a Thevenin equivalent to V- can be
used at some increase in power. Best results are usually
obtained with the terminating resistor at the end of the
driven line. The lower impedance lines are more suitable
for driving capacitive loads. The supply voltages should be
decoupled with RF capaCitors connected to the ground
plane as close to the device supply leads as possible.

Thermal Considerations
To achieve the high speed of the IlA6685, a certain
amount of power must be dissipated as heat. This increases the temperature of the die relative to the ambient
temperature. In order to be compatible with Eel III and
Eel 10,000, which normally use air flow as a means of
package cooling, the 1lA6685 characteristics are specified
when the device has an air flow across the package of
500 linear feet per minute or greater. Thus, even though
different Eel circuits on a printed circuit board may have
different power dissipations, all will have the same input
and output levels, etc. provided each sees the same air
flow and air temperature. This eases deSign, since the
only change in characteristics between devices is due to
the increase in ambient temperature of the air passing

8-27

J1A6685

Timing Diagram

Key To Timing Diagram
WAVEFORM

INPUTS

OUTPUTS

LATCH

ENABLE

MUST BE
STEADY

OIFFERENTIAL
INPUT
VOLTAGE

Q

MAY CHANGE
FROM HTOL

OUT

Q OUT

-- -----~~1----------~~:)'= 5~/.

WILLSE
STEADY

WIUBe
CHANGING
FROM HTOL

MAY CHANGE
FROM L TOH

WILL BE

DON'TeARE;
ANY CHANGE
PERMITTED

CHANGING;
STATE
UNKNOWN

CHANGING

FROM l TOH

Note
The set up and hold times are a measure of the time required for an input
signal to propagate through the first stage of the comparator to reach the
latching circuitry. Input signal changes occurring before ts will be detected
and held; those occurring after th will not be detected. Changes between ts
and th mayor may not be detected.

Definition Of Terms
VIO

Input Offset Voltage - That voltage which must
be applied between the two input terminals through
two equal resistances to obtain zero voltage
between the two outputs.

.lVlo/.lT Average Temperature Coefficient Of Input Offset
Voltage - The ratio of the change in input offset
voltage over the operating temperature range to the
temperature range.
Input Offset Current - The difference between
the currents into the two input terminals when there
is zero voltage between the two outputs.
Input Bias Current currents.

VOH

Output Voltage HIGH - The logic HIGH output
voltage with an external pull-down resistor returned
to a negative supply.

VOL

Output Voltage LOW The logic LOW output
voltage with an external pull-down resistor returned
to a negative supply.

1+

Positive Supply Current - The current required
from the positive supply to operate the comparator.

1-

Negative Supply Current - The current required
from the negative supply to operate the comparator.
Power Consumption - The power dissipated by
the comparator with both outputs terminated in 50 n
to -2.0 V.

The average of the two input

Switching Terms (see Timing Diagram)

Input Resistance - The resistance looking into
either input terminal with the other grounded.

tpD+

Input To Output HIGH Delay - The propagation
delay measured from the time the input signal
crosses the input offset voltage to the 50% point of
an output LOW to HIGH transition.

tPD-

Input To Output LOW Delay - The propagation
delay measured from the time the input Signal
crosses the input offset voltage to the 50% point of
an output HIGH to LOW transition.

tpD+(E)

Latch Enable To Output HIGH Delay The
propagation delay measured from the 50% point of
the Latch Enable Signal LOW to HIGH transition to
the 50% point of an output LOW to HIGH transition.

Input Capacitance - The capacitance looking into
either input terminal with the other grounded.

VCM

Common Mode Voltage Range - The range of
voltages on the input terminals for which the offset
and propagation delay specifications apply.

CMR

Common Mode Rejection - The ratio of the input
voltage range to the peak-to-peak change in input
offset voltage over this range.

PSRR

Power Supply Rejection Ratio - The ratio of the
change in input offset voltage to the change in power
supply voltages producing it.

8-28

MA6685

tpO-(E)

Latch Enable To Output LOW Delay The
propagation delay measured from the 50% point of
the Latch Enable signal HIGH to LOW transition to
the 50% point of an output HIGH to LOW transition.

ts

Minimum Set up Time The minimum time
before the negative transition of the Latch Enable
signal that an input signal change must be present in
order to be acquired and held at the outputs.

tpw(E)

Minimum Latch Enable Pulse Width The
minimum time that the Latch Enable signal must be
HIGH in order to acquire and hold an input signal
change.

Other Symbols
TA

Output load terminating
voltage
Rs Input source resistance RL Output load resistance
Yin Input pulse amplitude
Vee Supply voltages
V+ Positive supply voltage Voo Input overdrive
Frequency
V- Negative supply voltage f

Minimum Hold Time - The minimum time after
the negative transition of the Latch Enable signal
that the input signal must remain unchanged in order
to be acquired and held at the outputs.

8-29

Ambient temperature

VT

•

J,LA6687
Ultra Fast
Voltage Comparators

FAIRCHILD
A Schlumberger Company

Linear Division Comparators

Description

Connection Diagram
16-Lead DIP
(Top View)

The /lA6687 is an ultra fast dual voltage comparator manufactured with an advanced high speed bipolar process
that makes possible very short propagation delays (2.7 ns)
with excellent matching characteristics. These comparators
have differential analog inputs and complementary logic
outputs compatible with most forms of ECl. The output
current capability is adequate for driving terminated 50
transmission lines. The low input offsets and short delays
make these comparators especially suitable for high speed
precision analog-to-digital processing.

16

n

Separate latch functions are provided to allow each comparator to be independently used in a sample and hold
mode. The latch function inputs are designed to be driven
from the complementary outputs of a standard ECl gate.
If latch enable is HIGH and latch enable is LOW, the
comparator functions normally. When latch enable is driven
lOW and latch enable is driven HIGH, the comparator
outputs are locked in their existing logical states. Should
the latch function not be used, latch enable must be connected to ground.

Q OUT B

Q OUT

A

Q OUT

GND A

GNDB

B

LATCH ENABLE A

LATCH ENABLE B

LATCH ENABLE A

LATCH ENABLE B

v-

The /lA6687 is lead compatible with the AM6687 and with
the AD9687 and SP9687.

v+

-IN A

-IN B

+INA

+ IN B

Order Information
Device Code
j.lA6687DM
j.lA6687DV
/lA6687PV

• 2.7 ns Typical Propagation Delay At 10 mV
Overdrive
• Complementary ECl Outputs
• 50 n line Driving Capability
• 1.0 ns Latch Set up Time

Absolute Maximum Ratings
Storage Temperature Range
Ceramic DIP
Molded DIP
Operating Temperature Range
Extended (/lA6687M)
Industrial (/lA6687V)
lead Temperature
Ceramic DIP (soldering, 60 s)
Molded DIP (soldering, 10 s)
Internal Power Dissipation I, 2
16l-Ceramic DIP
16l-Molded DIP
Positive Supply Voltage
Negative Supply Voltage
Input Voltage
Differential Input Voltage
Output Current

Q OUT A

-65°C to + 175°C
-65°C to + 150°C
-55°C to + 125°C
-30°C to + 85°C

1.50 W
1.04 W
+7.0 V
-7.0 V
!4.0 V
!6.0 V
30 mA

Notes
1. TJ Max = IS0·C for the Molded DIP and 17S·C for the Ceramic DIP.
2. Ratings apply to ambient temperature at 2S·C. Above this temperature,
derate the 16L·Ceramic DIP at 10 mWrC, and the 16L-Molded DIP at

8.3 mWrC.

8-30

Package Code
68
68
98

Package Description
Ceramic DIP
Ceramic DIP
Molded DIP

JlA6687

Electrical Characteristics Over the recommended operating temperature and supply voltage ranges, unless
otherwise specified.
DC Characteristics
JlA6687V
Symbol

Condition 1

Characteristic
Input Offset Voltage

VIO

110

Input Offset Current2
Input Bias Current

lis
VCM

Input Common Mode Range

CMR

Common Mode Rejection

Max.

Min.

Max.

-2.0

+2.0

-3.0

+3.0

-3.0

+3.0

-10

+10

-10

+10

JlV;oC

25°C 

1-0.2

;-

...g~-1.0
-1.2
-1.4

-1.6
-4.6

-4.8

-5.0

-5.2

-5.4

2
-4

-5.6 -5.8

NEGATIVE SUPPLY VOLTAGE-V

-1

.1
r- POSrrWEOOMMoNMODEUMrr

~

3.$

I--

I
-4.0

5

~

%

"~1~~

TEMPERATURE-oC

2

4

6

~

\
\

t--... J
8

wnw

~

-so

~

60

......

u

~

-40

-70

~

Positive Common Mode Limit vs
Positive Supply Voltage

I

:E
:::i

1'-- .......

4.0

w

c

0
:E

1'-- ......

§
-$-~-~

o

!\

t:

~ -3.5

NEGATIVE COMMON MODE UMrr

I
1I

5

;-..-

I

4.$

-3.0

g
-3.$

\
\

GOUT

-: ~

>

w

i

10 :;

TlME-ns

-2.5

.J.

i"

-2

Negative Common Mode Limit vs
Negative Supply Voltage

4.0

~

-3

-\

COMMON MODE VOLTAGE-V

Common Mode Limits vs
Temperature

t

-1~

i"..

I

~
~-O.8

2~L-L-L-L-~L-~~~~~

10

i"..

/
I\.. ./

./

~ -0.6

'-

i"..

1/

z

0
:E
:E

1"-......
...... r--.,

-4.0

I

0

""" .....

3.$

..... "'"

.....

..........

"w
E 3.0

.....

I!!CL
-4.5
-4.6

-4.8

-5.0

-5.2

-5.4

-5.6 -S.B

NEGATIVE SUPPlY VOLTAGE-V

8-36

2.$
5.4

5.6

5.8

6.0

6.2

6.4

POSmVE SUPPLY VOLTAGE-V

6.8

U

Typical Performance Curves (Cant.) TA = 25°C, V+ = 6.0 V, V- = -5.2 V, Vr = -2.0 V, RL = 50 n, and
switching characteristics are for Yin = 100 mY, VOD = 5.0 mY, unless
otherwise specified.
Output Levels vs
Negative Supply Voltage

Output Levels vs Temperature
-0.6
-0.7

-

I-

.I ,.....
vo.!!.--

-0.8

>

I -0.9

_I-"""

w
~ -1.0

-0.6

-0.7

-0.7

-0.8

-0.8

I -0.9

~ -1.0
g

!;; -1.6

-1.6

g

I!:

5 -1.7

VOL

-1.7

-1.8

-1.8

-1.9

-1.9

-2.0

-2.0

-"-~-15

5

~

~

~

~

~

m

r-_ r-

-4.8

I

20

::>

...
::>

15



..

~

12

!Zw

10

a;
a;

.......

-4.B

r- t-

0;

o
-M-~-~

-5.0

-5.2

-5.4

-5.6

5

~

~

-

M M

TEMPERATURE-OC

32

Il

-5.8

5.'

5.6

~

0;

6.0

6.2

6.'

6.8

16

1
I
!Zw

-

-

..
!;;

5.8

POSITIVE SUPPLY VOLTAGE-V

,.

u

o

1~m

28

Input Bias Current vs
Common Mode Voltage

::>

r--..

24

I

Input Bias Current vs
Negative Supply Voltage

,.

10

20

10

-4.6

16

12

16

-- -

Supply Currents vs
Positive Supply Voltage

1-1-

1-- I-r--

15

,.
......

12

NEGAnVE SUPPLY VOLTAGE-V

Input Bias Current vs Temperature

::>

o

.... 1--" ....

,~

I-'"'

TEMPERATURE- OC

a;
a;

I

LOAD CURRENT -mA

10

10

Vr=-2.0V

VOL

...... f--' ....

::;

1+

u

-5.8

-

~g~D~

J

25

u

u

~

-S.6

/S02

30

!Zw
a;
a;

::;

""I

-5.4

Supply Currents vs
Negative Supply Voltage

""EI

25

ffi

!Zw

-5.2

r-!~r:- .i.
,/

...... ~

-1.9

30

I

i

-5.0

,L

-1.8

t-r--

-2.0

-4.6

30

::>

""""f-,.....

o

-

,2002 /S02

-1.6
-1.7

NEGATiVe SUPPLY VOLTAGE-V

Supply Currents vs Temperature

a;
a;

..5

!;;

VOL

1

TEMPERATURE- "C

~

r

II

:i -1.0
!:i
g

1

[2002

'J

w

!:i

g

1\

>
I -0.9

VOH

>

!:i

~

Output Levels vs DC Loading

-0.6

-4.6

a;
a;

12
10

::>
0

~



/,

-ssoc

I

w

"~

2.0

~

1.0

..S!

...-:

rl-)
IJ/
III
:g

0

-aD

-1.0

r---..

Z

TA = 25°C

>

I

1500

S!

3.0

"w
"~

1500

V

"X

./

./

V

1000 V

/'

V

~

,,-I.r
~rV ,,- _-~$>"
.... / -

,V

V

500

1300
-50

5.0

2000

S!

\

1400

1.0

z

C

\

w

"~

...1S\'"

;;;

\.

~

,V

2500

"' '\

I 1600

I

r-T.I =25'~

v- = -S.OY

~
TA = lZSOC

3000

V.I"2~

1700

~I (~

-1.0
-5.0

Voltage Gain vs
Supply Voltages

-20

20

60

100

140

12

11

10

13

14

POSITIVE SUPPLY VOLTAGE - V

TEMPERATURE _ °C

INPUT VOLTAGE - mY

"""."
Input Bias Current vs
Temperature

Input Offset Current vs
Temperature

50

2.0

v. ~ 12~

Y+ '.

V-=-6.0V

1
II!

i

V+ = 12V
v- = -7.0V
-5.0 V S VCM $: +5.0Y

'--

I-

I

I

30

§

"~

12~

v- = -6.GY

'\

1

40

I

!i

Common Mode Rejection Ratio vs
Temperature

"

20

i'\

~

.........

10

r--. .......

o

i

r- r-

o

o

-50

-20

20

r- .......

\

() 1.0

50

100

140

-50

-20

.......

""

20

i'
~

.........

Power Consumption vs
Temperature

100

60

TEMPERATURE -

TEMPERATURE - OC

100

r-.....

i'.

94
140

3.5

4.0

= -6.DV

3.0

I.....

................

./

50

....e~+J.!l!..~m.L
-::::: ~~""'A£

i'-

.........

20

100

140

oc

Output Voltage Levels vs
Temperature

J.=
\2V~_
v-

v- = -6.0Y

-20

TEMPERATURE -

Output Sink Current vs
Temperature

v. ~ 12~

-50

oc

~+=\2V'

v- = -6.0 V -

SHOlO

.......

~~

i'.
0
NEGATIVE OUTPUT LEVEL
75
-10

-20

20
50
100
TEMPERATURE _ °C

-1.0

1.0
140

-50

-20

20

50

TEMPERATURE _ °C

8-48

100

140

-50

I

-20

20

50

TEMPERATURE _ °C

100

140

MA710

Typical Performance Curves for 11A710 (Cont.)
Response Time for
Response Time for
Various Input Overdrives
Various Input Overdrives
>

4.0

I

3.0

W

~

2.0

~

.Jm~
I I

,II

10mY

V1

/~ i'-~.o ~v

,~

.0

~

>
I

3.0

!:j

2.0

~

'\r-..~
\

1.0

~

°r -

1

5

-1 .0

i

~

I

/IV

0

Common Mode Pulse Response

4.0

r\

o -IOiV

lot

"

WI
g~

~5.0mV

:I ..

~g

i'

I

W

100

!:i
~

so

!;i

~> or- r-

20

40

60

80

Y+= 12V
V- = -B.OV
TA = 2SOC

0

0
0

0

100

20

120

40

60

80

100

40

>
I

=OO,? ......

T.~JC, ~ /

r-- '.0

0

.>

.
....

W

";!

I

....
::>
0

'I

3.0

5.0

20

30

40

0

50

60

30

o
o

~

~

b-.

1.0

20

30

40

SO

TEMPERATURE - OC

60

"

~

!

70

14

V+:c 12V
v- .. -7.0Y
-5.0VSVCM:55.DV

98

-

I-

-

r-- I--

Ul
W

'" t"'--.

o
10

13

'""'""-

0:

o

l - t----.

102

I

~

~

'""'""- r-

f-

I.

11

Vi
0:

~

0:

o
t;

~~

0100

::>

0

-~ ~
~~

Common Mode Rejection Ratio vs
Temperature

I

::>

I-

POSITIVE SUPPLY VOLTAGE _ V

-6.DY

ffi
0:

~

V

10

70

vL,.J_
v- =

-6.0 V

1

10

~ ./' /
,/

400
10

..

v+=I.v

40

~

i!

~ 1200

TEMPERATURE _ °C

v-:;:;

"....

V~
..

1600

600

o

-I

JP .--

-I-

~

........

Input Offset Current vs
Temperature

50

en
20 t--..
iii

2000

~

..........

mY

Input Bias Current vs
Temperature

!

.........

1400

1200

1.0

,..,- ~ !--

z

1300

INPUT VOLTAGE -

1
I
....z

r--.....

~:= ~~.~v-

-1.0

-3.0

T~= 25~

'400

~I

~

A
-1.0
-5.D

2800

........

ISO

Voltage Gain vs
Supply Voltages

y- = -6.0V

'""'""-

1500

~

J

1.0

::>

I

z

TA'" 70"C

1//

l"-

,'0

80

V.'. 12V 1. _

-

~

..fI '-....

W

"~

1600

-

TIME-n.

1700

TA

Vo

~

120

Typical Performance Curves for JJA710C
Voltage Gain vs
Ambient Temperature
Voltage Transfer Characteristic
4.0

J.lA710

-

TIME-nl

TIME -nl

3.0

SOCl

r- 'VCM

o- r

0

I

50Cl

r-- r-

e-

Tj=ri

!

V- -6.0 V
A =25"C-

.0

-1.~r- 20mV

vLI,• V
v- =-6.0 V

0

~

i

2.0

I

'l!

W
0:
0:

J+== j.v ~_

!> 3-0

2.0 mY

iz
.....

010203040506070
TEMPERATURE -

8-49

oc

0
:I
:I
0

0

96

..
9.

0

10

20

30

40

so

TEMPERATURE _ °C

80

70

J,LA71 0

Typical Performance Curves for j.LA710C (Cont.)
Power Consumption vs
Temperature

Output Voltage Levels vs
Temperature

Output Sink Current vs
Temperature

4.0

'00

V!=.2J
-6.0 V-

V.'=.2V',_
v-:: -B.OY

v-=

~
I

~

~

90

8

85

I

-

3.0

~_

2.,

a
'"~

o

10

20

30

40

50

60

-

>
I

..

"~
~

~

4.0

,I

3.0

2Jm~

2.0

10mV

.0
0

o _..0

/~

1/11 V '"

......

v-"'"

~
100

~

50

~

i

·rr

0

10

1=("J
20

40

60
TIME

-ft.

80

100

1-1-

120

2•0

> •.0

7-

V-:: -6.0Y

0

a

1-1-1-

LOGJ~ THR~SHOLJ VOLTAGE- -

1.0

NEGATIVE OUTPUT LEVEL

..

> 4 •0
I
~ 3.0

I

2.0

0

'.5

20

30

so

40

60

I ..

O~i"r
- Of-- 20mV

1,\ i'
K
1\
~V

~r\

-..0

70

100

g

50

i

0

8-50

80

70

L

0

i'

-

500

- - 2.0 - -

500

0-

TA = 250C

60

60

Y-=-S.oV
VA=25°C._

S.OmV

V- =-B.OV -

TIME -n8

50

J.= kv ,_

0

>
=> ..
I!:~

.. ,

40

40

2.0mV

V+ = 12V

20

30

Common Mode Pulse Response

I

!:i

20

TEMPERATURE - OC

~

i

10

°C

Response Time for
Various Input Overdrives

2.0~V f--+-

y-:: -6.GV

POSIT',E ourUT LjVEL

>
~

5

TEMPERATURE -

vL 1'2 V 1-1-

I
~

......

V!=.2J,,_

o

70

,/

i/ll
po..,

-

I

,

~

I-- I---

~

TEMPERATURE _ °C

Response Time for
Various Input Overdrives

I

>

2.0

O~

80

75

'I

,

95

3.0

100

120

5!:i
g

.......

"A~

Vo

-

I-

VCM

,

•.0
0
40

80
TIME-ns

.20

.60

IlA711
Dual High Speed
Differential Comparator

FAIRCHILD
A Schlumberger Company

Linear Division Comparators

Description

Connection Diagram
10-Lead Metal Package
(Top View)

The I1A711 is a dual high speed differential comparator
featuring high accuracy, fast response times, large input
voltage range, low power consumption and compatibility
with practically all integrated logic forms. When used as a
sense amplifier, the threshold voltage can be adjusted
over a wide range, almost independent of the integrated
circuit characteristics. Independent strobing of each comparator channel is provided, and pulse stretching on the
output is easily accomplished. Other applications of the
dual comparator include a window discriminator in pulse
height detectors and a double ended limit detector for automatic Go/No-Go test equipment. The I1A711, which is
similar to the pA710 differential comparator, is constructed
using the Fairchild Planar Epitaxial process.
•
•
•
•

V+

V-

Lead 5 connected to case

Fast Response Time - 40 ns Typical
5.0 mV Maximum Offset Voltage
10 I1A Maximum Offset Current
Independent Comparator Strobing

Order Information
Device Code
pA711HM
pA711HC

Absolute Maximum Ratings
Storage Temperature Range
Metal Can and Ceramic DIP
Molded DIP
Operating Temperature Range
Extended (pA 711 M)
Commercial (pA711C)
Lead Temperature
Metal Can and Ceramic DIP
(soldering, SO s)
Molded DIP (soldering, 10 s)
Internal Power Dissipation 1, 2
10L-Metal Can
14L-Ceramic DIP
14L-Molded DIP
Positive Supply Voltage
Negative Supply Voltage
Peak Output Current
Differential Input Voltage
Input Voltage
Strobe Voltage

Package Code
5X
5X

Package Description
Metal
Metal

Connection Diagram
14-Lead DIP
(Top View)

-S5°C to + 175°C
-S5°C to + 150°C

14

-55°C to +125°C
O°C to 70°C

NC

1.07 W
1.3S W
1.04 W
+14 V
-7.0 V
50 mA
±5.0 V
±7.0 V
o V to +S.O V

NC

-INA

STROBE A

+INA

GND

v+

v+IN B

OUT

-INB

STROBE B

NC

NC

c001061F

Notes
I. TJ Max -ISO·C for the Molded DIP, and 17S·C for the Metal Can and
Ceramic DIP.
2. Ratings apply to ambient temperature at 2S·C. Above this temperature,
derate the IOl·Metal Can at 7.1 mW·C, the 14l·Ceramic DIP at
9.1 mW·C, and the 14l·Molded DIP at 8.3 mW·C.

Order Information
Device Code
I1A711DM
pA711DC
I1A711 PC

8-51

Package Code
SA
SA
9A

Package Description
Ceramic DIP
Ceramic DIP
Molded DIP

I1A711

Equivalent Circuit
STROBE A

STROBE B

.---_4r_--------------~----~----~----~----~------------_4r_--~---v+
R4
4.3 kG

04
6.2 V

R1S
4.3kO

R14
4.3 kQ

06

018
R2

R12

9100

9100
R13
910n

R1
910 n

02
6.2 V

-INA

-IN B
GNO

+INA

+INB

R7
S.DS kO

R9

1200

R8
2400

R10

1200

L-----------------~~--------------------~------

_______V-

J.lA711
Electrical Characteristics T A = 25°C, V+ = 12 V, V- = -6.0 V, unless otherwise specified.
Symbol

VIO

Characteristic

Input Offset Voltage

Condition

Vo=1.4 V, Rs<200
Vo=1.4 V, Rs<200

110

Input Offset Current

lis

Input Bias Current

Avs

Large Signal Voltage Gain

tpD

Response

Time 1

tSTRL

Strobe Release Time

VIR

Input Voltage Range

n,
n

Min

VCM=O V

Vo=1.4 V

750

V- =-7.0 V

Typ

Max

Unit

1.0

3.5

mV

1.0

5.0

0.5

10.0

IJ.A

25

75

p.A

1500

VIV

40

ns

12

ns

± 5.0

V

±5.0

VIDR

Differential Input Voltage Range

Ro

Output Resistance

VOH

Output Voltage HIGH

VI ;;'10 mV

VOH

Loaded Output Voltage HIGH

VI ;;'10 mY, 10H = 5.0 mA

2.5

3.5

VOL

Output Voltage LOW

VI ;;'10 mV

-1.0

-0.5

VO(ST)

Strobed Output Level

VST<0.3 V

-1.0

V

n

200

8-52

4.5

5.0

V
V

0

V

0

V

JiA711

J.l.A711 (Cont.)
Electrical Characteristics T A = 25°C, V+ = 12 V, V- = -6.0 V, unless otherwise specified.
Symbol

Characteristic

Min

Condition

Typ

Max

Unit

10L

Output Sink Current

VI;;;' 10 mY, Vo;;;'O V

10(ST)

Strobe Current

VST = 100 mV

1.2

1+

Positive Supply Current

Vo = GND, Inverting Input = 5.0 mV

8.6

mA

1-

Negative Supply Current

Vo = GND, Inverting Input = 5.0 mV

3.9

mA

Pc

Power Consumption

The following specifications apply for -55°C

0.5

0.8

130
~

VIO

Input Offset Voltage2

110

Input Offset Current

liB

Input Bias Current

AVIO/ AT

Temperature Coefficient of Input
Offset Voltage

Avs

Large Signal Voltage Gain

mA
2.5

mA

200

mW

4.5

mV

6.0

mV

20

pA

TA ~ + 125°C
Rs ~ 200
Rs~200

n,
n

VCM = 0 V

150

!lA
!lV/DC

5.0
500

VIV

J.l.A711C
Electrical Characteristics T A = 25°C, V+ = 12 V, V- = -6.0 V, unless otherwise specified.
Symbol

VIO

Condition 1

Characteristic

Input Offset Voltage

Vo = +1.4 V, Rs~200
Vo=+1.4 V, Rs~200

110

Input Offset Current

liB

Input Bias Current

Avs

Large Signal Voltage Gain

tpD

Response Time 1

n,
n

Min

VCM=O V

Vo=+1.4 V

700

Typ

Max

Unit

1.0

5.0

mV

1.0

7.5

mV

0.5

15

!lA

25

100

1500
40

ns

12

ns

tSTRL

Strobe Release Time

VIR

Input Voltage Range

VIDR

Differential Input Voltage Range

Ro

Output Resistance

VOH

Output Voltage HIGH

VI;;;'lO mV

VOH

Loaded Output Voltage HIGH

VI ;;;'10 mY, 10H = 5.0 mA

2.5

3.5

VOL

Output Voltage LOW

VI;;;'lO mV

-1.0

-0.5

VO(ST)

Strobed Output Level

VST~0.3

-1.0

10L

Output Sink Current

VI;;;' 10 mY, Vo;;;'GND

10(ST)

Strobe Current

VST = 100 mV

1.2

1+

Positive Supply Current

Vo = GND, Inverting Input = 10 mV

8.6

V- =-7.0 V

±5.0

V

±5.0

V

n

200

V

8-53

4.5

0.5

!lA
VIV

5.0

V

0

V

0

V

V

0.8

mA
2.5

mA
mA

IlA711

p.A711C (Cont.)
Electrical Characteristics TA = 25°C, V+
Symbol

= 12

V, V-

= -6.0

Characteristic

1-

Negative Supply Current

Pc

Power Consumption

V, unless otherwise specified.
Min

Condition'

Typ

Max

Unit

230

mW

6.0

mV

10

mV

25

pA

3.9

Vo=GNO, Inverting Input = 10 mV

130

mA

The following specifications apply for O·C < TA < 70·C
Input Offset Voltage2

VIO

Rs<200
Rs <200

110

Input Offset Current

liB

Input Bias Current

fl.Vlo/fl.T

Temperature Coefficient of Input
Offset Voltage

Avs

Large Signal Voltage Gain

n,
n

VCM=O V

150

pA

/J.vrc

5.0
500

VIV

Notes
1. The response time specified is for a 100 mV step input with 5.0 mV
overdrive.

2. The input offset voltage is specified for a logic threshold as follows:
JJA711: 1.8 V at -55·C, 1.4 Vat + 25·C, 1.0 V at + 125·C
jJA711C: 1.5 V at O·C, 1.4 V at 25·C, 1.2 V at 70·C

Typical Performance Curves
Voltage Transfer
Characteristic p.A 711
5.0
4.0

>
I
OJ

"~
...~
:>

3.0

V+= 12Y
V- -&.OV

=

Voltage Transfer
Characteristic p.A711C
5.0

I
I

~

1 11
TA

lB.

=12S"C ....

>
I

r1L

III1
/I,

2.0

4.0

'II

TA = _55°C

I

.......T. = 25°C

Ii

~ 1.0

-3.0

-1.0

3.0

TA

1.0

3.0

5.0

INPUT VOLTAGE - mY

= ooc

II.
'fI1
i"A 'I...
IH~

2.0

VI

~

TA

-

>

~
~

...

~

i 7~C

TA = 250C

-3.0

-1.0

8-54

1. 0
0

J_ J,
yjV

'.

1~m~ jll il

II

'I

..< 5.~~V
?

KJ.omv

-1.0

I

1.0

INPUT VOLTAGE - mV
PCQ7200F

4. 0
3. 0

~
OJ

"~
g
-1.0
-5.0

5. 0

g 2-o

.4
II

1.0

0

VI
-1.0
-5.0

"~
~
...
:>

5

HI

:>
0

OJ

I
J
.L L

I-V.=12V
V-=-&.ov

Response Time for
Various Input Overdrives

3.0

5.0

~

i!<

V+

100

= 12V

V- = -6.0V
TA = 25°C

50
0

I
20

40

60

80

TIME -ns

100

120

p.A711

Typical Performance Curves (Cont.)
Voltage Gain vs
Temperature
1700

>

""

~

I

2800

"'\

1600

1500

i...

TAl.

J+.12V v-, -6.0V

2400

V

>

~ 2000

" "'\

I

~

...

~ 1400

"~

1,\

!:l

~

~

1"'\

1300

1600
1200

I\.
-20

20

800

100

140

V

1>0"

/p

V

-

y-·-6.0Y

TA

T

= 25Ge

CL

...'i

4.0

"~
0

_ _ 5.1kO

2.0

>

...
:::l

~

0

-,

_6.0y-f-f-

l~ c~1

fI

f- f-

....
......
~'::.~
t'--..

!;

~

"

40-

./

/

-2.0

10

"C

.....

~Yo

6.0

.....

,,'~~
".V~
..- V

400

60

TEMPERATURE -

/

alc

I-I,.....- V

;I.

Z

"'\

1200
-60

Output Pulse Stretching
With Capacitive Loading

Voltage Gain vs
Supply Voltages

13

12

11

100

14

300
200
TIME -ns

POSITIVE SUPPLY VOLTAGE - V

400

500

PC07240F

Common Mode Pulse Response

~
!> a 0

I II 1

::I" 1.0 f-

r

00

of-'
.f-

>
!; I 2. 0 -

.

~

0

'$.40

$I
~

E,

~

I

1 I

i
~

I
120

80

40

'\

'\
30

()

Vo

I I I I

J

y+ ~ 12~
y-. -6.0 V

\

TA'25"C

500

!;~ 1.0

0g

50

= 12V

v-. -6.0V

,

... I 2.0

g~
z!:l

V+

Strobe Release Time for
Various Input Overdrives

Input Bias Current vs
Temperature

160

........

10

-60

-

-20

20

60

100

140

~

V+ 12ly
y-. -6.0 V

I
z

o

f

~

130

l- I-

r... I'-...

I-"

()

I
120
-60

-20

20

60

~

100

1.0
0

2.0

~

1.0

140

TEMPERATURE - "C

8-55

§

i-""

/

vi. \2VI
y-. -6.0V
TA= 250C

I
5.omv....,

!;

Power Consumption vs
Temperature

~

a0

>
I

g

PC01210F

~

g

~

TEMPERATURE - "C

140

~

;! 2. 0

!

......

o

TIME -ns

"-

20

>
I

-1.0

-.

'i ~

2.omV

&V
10

OmV
1.omyL f-

20
TIME

30

-ns

40

50

p.A760

FAIRCHILD

High Speed
Differential Comparator

A Schlumberger Company

Linear Division Comparators

Description

Connection Diagram
8-Lead Metal Package
(Top View)

The pA7S0 is a differential voltage comparator offering
considerable speed improvement over the pA710 family
and operates from symmetric supplies of ± 4.5 V to
± S.5 V. The pA7S0 can be used in high speed analog-todigital conversion systems and as a zero crossing detector
in disc file and tape amplifiers. The pA7S0 output features
balanced rise and fall times for minimum skew and close
matching between the complementary outputs. The outputs
are TTL compatible with a minimum sink capability of two
gate loads.
•
•
•
•
•

V+

Guaranteed High Speed - 25 ns Max
Guaranteed Delay Matching On Both Outputs
Complementary TTL Compatible Outputs
High Sensitivity
Standard Supply Voltages

V-

Lead 4 connected to case

Order Information
Device Code
pA7S0HM
pA7S0HC

Connection Diagram
14-Lead DIP
(Top View)

Ne

Ne

Ne

Ne

V+

Ne

V+

IN2

OUT 1

IN2

OUT 1

INI

OUT 2

INI

OUT 2

v-

ONO

Ne

Ne

V-

Order Information
Device Code
pA7S0RM
pA7S0RC

Order Information
Package Code
SA
SA

OND
COO'09OF

CD01080f

Device Code
pA7S0DM
pA7S0DC

Package Description
Metal
Metal

Connection Diagram
8-Lead DIP
(Top View)

14

Ne

Package Code
5W
5W

Package Description
Ceramic DIP
Ceramic DIP

8-5S

Package Code
ST
ST

Package Description
Ceramic DIP
Ceramic DIP

IlA760

Absolute Maximum Ratings
Storage Temperature Range
Metal Can and Ceramic DIP
Molded DIP
Operating Temperature Range
Extended (MA760M)
Commercial (!1A760C)
Lead Temperature
Metal Can and Ceramic DIP
(soldering, 60 s)
Molded DIP (soldering, 10 s)

Internal Power Dissipation l , 2
8L-Metal Can
14L-Ceramic DIP
8L-Ceramic DIP
Positive Supply Voltage
Negative Supply Voltage
Peak Output Current
Differential Input Voltage
Input Voltage

-65°C to + 175°C
-65°C to + 150°C
-55°C to + 125°C
O°C to 70°C

1.00 W
1.36 W
1.30 W
+8.0 V
-8.0 V
10 mA
±5.0 V
V+ >VI >V-

300°C
265°C

Notes
I. TJ Max - 175°C.
2. Ratings apply to ambient temperature at 25°C. Above this temperature,
derate the SL-Metal Can at 6.7 mW'oC, the 14L-Ceramic DIP at
9.1 mwrc, and the SL-Ceramic DIP at S.7 mW'oC.

Equivalent Circuit
.-~----~------~----~--------------------~
R2

Rl

--~

RIS
SkO

1k0

1 kO

__

__

---------4~--~~----------~--V+

R16

6200

Rll
1050 0

OUT 1

~

INI

IN 2

__--------+-----+-~--------~----~--GND

----1----1
1-_________________ OUT 2

R3

R5

R7

350 0

3500

3500

Rl'
3500

L-----~------+_----~~----~----~~----~------------------------------------vEQ00420F

8-57

J.lA760

IlA760
Electrical Characteristics Vee = ± 4.5 V to ± 6.5 V, T A = -55°C to + 125°C, T A = 25°C for typical figures,
unless otherwise specified.
Symbol

Condition

Characteristic
Rs~200

Min

n

Ty~

Max

Unit

VIO

Input Offset Voltage

1.0

6.0

mV

110

Input Offset Current

0.5

7.5

pA

liB

Input Bias Current

8.0

60

pA

Ro

Output Resistance (either output)

Vo= VOH

tpo

Response Time

TA = 25°C1

30

ns

18

TA=25°C2

25
16

(Note 3)
~tpo

n

100

ns

Response Time Difference
between Outputs 1
(tpo of +VI1)-(tpO of -VI2)

TA = 25°C

(tpo of + V12) - (tpo of - V11)

TA = 25°C

5.0

(tpo of + VII) - (tpo of + V12)

TA = 25°C

7.5

5.0

7.5

(tpo of -VI1) - (tpo of -VI2)

TA = 25°C

RI

Input Resistance

f = 1.0 MHz

12

CI

Input Capacitance

f = 1.0 MHz

8.0

pF

3.0

pV/oC

2.0

nArC

n,

~Vlo/~T

Average Temperature Coefficient of
Input Offset Voltage

Rs = 50

~llo/~T

Average Temperature Coefficient of
Input Offset Current

TA = 25°C to 125°C

VIR

Input Voltage Range

Vee=±6.5 V

VIOR

Differential Input Voltage Range

VOH

Output Voltage HIGH (either
output)

TA = -55°C to + 125°C

7.0

TA = + 25°C to -55°C

o mA ~ 10H ~ 5.0

±4.0

mA

kn

±4.5

V

±5,0

V

2.4

3.2

V

2.4

3.0

Vee = +5.0 V
10H = 80 pA, Vee = ± 4.5 V

0.25

0.4

V

Vee = ±6.5 V

18

32

mA

Vee=±6.5 V

9.0

16

mA

VOL

Output Voltage LOW (either
output)

10L =3.2 mA

1+

Positive Supply Current

1-

Negative Supply Current

Notes
1. Response time measured from the 50% point of a 30 mVp-p 10 MHz
sinusoidal input to the 50% point of the output.
2. Response time measured from the 50% point of a 2.0 V POp 10 MHz
sinusoidal input to the 50% point of the output.
3. Response time measured from the start of a 100 mV input step with
5.0 mV overdrive to the time when the output crosses the logic
threshold.

8-58

J.1A760

/JA760C

Electrical Characteristics Vee = ± 4.5 V to ± 6.5 V, TA = O°C to 70°C, TA = 25°C for typical figures, unless
otherwise specified.
Symbol

Characteristic

Condition

Min

n

Typ

Max

Unit

VIO

Input Offset Voltage

1.0

6.0

mV

110

Input Offset Current

0.5

7.5

MA

8.0

60

MA

30

ns

Rs<200

118

Input Bias Current

Ro

Output Resistance (either output)

VO=VOH

tpD

Response Time

TA = 25°C '
TA = 25°C2

18

(Note 3)

16

dtpD

n

100

25

ns

Response Time Difference
between Outputs 1
(tpD of +Vll) - (tpD of -VI2)

TA = 25°C

5.0

(tpD of +VI2)-(tpD of -VII)

TA = 25°C

5.0

(tpD of + VII) - (tPD of + V12)

TA = 25°C

10
10

(tpD of -VII) - (tPD of -VI2)

TA = 25°C

RI

Input Resistance

f= 1.0 MHz

12

kn

CI

Input Capacitance

f= 1.0 MHz

8.0

pF

dVIO/dT

Average Temperature Coefficient of
Input Offset Voltage

Rs = 50

3.0

MV/oC

diIO/dT

Average Temperature Coefficient of
Input Offset Current

TA = 25°C to 70°C

5.0

nA/oC

VIR

Input Voltage Range

Vce = ±6.5 V

VIDR

Differential Input Voltage Range

VOH

Output Voltage HIGH (either
output)

n,

TA = O°C to 70°C

10

TA = 25°C to O°C
±4.0

±4.5

V

±5.0

V
V

o mA
I

>
I

Vee- t5Y

w

TA = 25°e -

";!
~

2OmV..,
2

I•

,.mV-'!

1

~

g

50

~

i

~

2

~~=~o~V

3

Vcc=tSV
10 MHz SINE WAYE INPUTS
TAo = 25°C

_

~ V2jV

20mV

!

~5mv

1

I
w

,.mV" ~

•"..

~

I
100

~

o

~

~

40

4

~

~ -5mV
~ 2mV

Response Time vs
Input Voltage

e
10

15

20

25

30

35

i

Ipd-

!w

~

-- '''- --

.,z

2

I
~ 100
~

•

1

30

13II:

I
I

20

I
I

50

•

I.
10

TIME-M

15

20

25

30

35

1

12

INPUT VOLTAGE - mVp•p

TIME - ns

Response Time vs
Input Voltage

I.

2

Voltage Transfer Characteristic

Voltage Transfer Characteristic

30

Vee = tSV

Ycc=t5V
10 MHz SINE WAVE INPUTS

TAo = 25°e
~

I

f"'...

20

...-

I"'---.

w

:IE

.,..

'

Z

0

W

I--+-I--+_/-,:!-/I-

. r-

;::

.,w

:

>
I
w

vJ =tiD v

"~

g

-

~

10

5o

II:

1

/I!

•

10

20

50

100 200

500 1000 2000

INPUT VOLTAGE -

Voltage Gain vs
Supply Voltage

~~2==~=_~,==~~---L--L--L--J
INPUT VOLTAGE - mY

mV

Voltage Gain vs
Temperature

Input Bias Current vs
Temperature
12

8000

TA = 25°C
4000

8000

~

7000

~

-

,,/

I 8000

~5000

~4000
3000

2000

/'

Vee

vcc=t5V

.........

1

"I'...

V ...

!

i:!>

I

VJ

~2~==~_I~~'~Z'..~!~-L--~-L~

INPUT VOLTAGE - mVp•p

iii

I/P

"....-

...zI

,

........

W

'"'"

~

".,~

r'\.

= t6.5 V

I'...

II:

"'

...
"!I:

/

L

t4.S

I. I,

2000

ts.o

u.s

t6.0

SUPPLY VOLTAGE - V

t6.S

....

-2.

20

50

TEMPERATURE _ °C

8-60

100

14.

•

-50

-2.

2.

50

TEMPERATURE _ °C

100

14.

pA760

Typical Performance Curves (Cont.)
Input Offset Current vs
Temperature
'.0

.,
e~

\

0.8

30

Vee = tI.sv

,

w

:>

!

!w

'\

:>

u

"

0.0

'''-

-r-

I

II>
W

a:

'0

V~H @'IO ='5.0 ~A

-

,
I
~

L,.....- li-"" 1-1-""

r- :-- r'''-

II>

0.2

Vee = t5Y

>

20

z
2 '5

.......

-

25

2

w
a: 0.0
a:

...

:~ ~±::::~=~,!Hz

~

z

Iii
~
0

Output Voltage Levels vs
Temperature

Response Time vs
Temperature

~/CTI1"£

Votr"'Oe
~
VOL @ ISINK

-20

20

60
'00
TEMPERATURE - OC

25

w

:E

w
!!
a:

20

80

'00

-eo

'40

20

I

l-

I

25

,

15

'0

~

'0

,

5

10

CAPACITIVE LOAD -

50

'00

200

pi'

I

20

!

I

,

o

I

'00

'40

oc

Vee

10

Y

8-61

'2

10

~

!!iu

i..
:>

~

50

CAPACITIVE LOAD - pF

Common Mode Range vs
Supply Voltage

,

Iiw

e

100 200

= t6.SV

=25"C _
L,.....-f-"-TA

.0

a:

-

PC;07420F

SUPPLY VOLTAGE -

= 3.2 mA

80

18

Vee = t5Vi
= 250C

2

20

Input Bias Current vs
Differential Input Voltage
TA

'5

o

-20

TEMPERATURE -

30

= t5V
TA = 250C
Vee

;::

-20

Fall Time vs
Capacitive Load

30

,

-eo

TEMPERATURE - "c

Rise Time vs
Capacitive Load

2

o

5

140

.,.,.- -r,;;;
!/

,/

<

I'."

" "- .......

I,..

20

40

r80

--80

DIFFERENnAL INPUT VOLTAGE - mY

'00

p.A760

Typical Applications (Note 1)

Line Receiver With High Common Mode Range
R.

.....---.,

Fast Positive Peak Detector

IN -.iV'~-""IIr---~:.j ~"'--'---- OUT
Rl
PI

FD888

IN -""">IV-------.,..,L~--- OUT
RS

JL
-Ifso ...

Common mode range

= ±4)( ~

Differential input sensitivity

V

= 5 x ~ mV

p, must be adjusted for optimum common mode rejection.
For As = 200 0
Common "mode range = t16 V
Sensitivity 20 mV

Level Detector with Hysteresis

=

100kn

High Speed 3·Bit AID Converter

j

IN

Msa

Q.7SV

Zero Crossing Detector (Note 2)

R3

Icon

V+

FD888

IN

5.0k
1.2SV

-_--I . . .;.,..--I)I-.....

-~f_....._+.:.j ~......- - - OUT

R4

loon
~.::...-.....-OUT

1.7SV

so

RS

loon

2.25 V

Total delay = 30 ns

= 300 Hz to 3.0 MHz
Minimum input voltage = 20 mVp-p

R6

Input frequency

loon

""""OF
Not. .

2.75 V

1. Lead numbers shown are for Metal Package only.
2. All resistor values in ohms.

loon

R7

3.25 V

son

R8

350n

+5.0 V

Input voltage range = 3.5 V
Typical conversion speed = 30 ns
CFlO2..aoF

8-62

MA1488

FAIRCHILO

RS-232C
Quad Line Driver

A Schlumberger Company

Linear Division Interface Products

Description

Connection Diagram
14-Lead DIP and 50-14 Package
(Top View)

The /JA 1488 is an EIA RS-232C specified quad line driver.
This device is used to interface data terminals with data
communications equipment. The /JA 1488 is a lead-for -lead
replacement of the MC1488.

v•
•
•
•

Current Limited Output - ± 10 rnA Typical
Power-Off Source Impedance 300
Minimum
Simple Slew Rate Control With External CapaCitor
Flexible Operating Supply Range

n

IN 01

OUT A

Absolute Maximum Ratings
Storage Temperature Range
Ceramic DIP
Molded DIP and SO-14
Operating Temperature Range
Lead Temperature
Ceramic DIP (soldering, 60 s)
Molded DIP and SO-14
(soldering, 10 s)
Internal Power Dissipation " 2
14L-Ceramic DIP
14L-Molded DIP
SO-14
Supply Voltage
Input Voltage Range
Output Signal Voltage

v+

IN A

IN 02

IN81

OUTO

INB2

INC'

OUTB

-65°C to + 175°C
-65°C to + 150°C
O°C to +70°C

INC2

GND

OUTC

Order Information
Device Code

Package Code

Package Description

6A
9A
KD

Ceramic DIP
Molded DIP
Molded Surface Mount

/JA1488DC
/JA1488PC
/JA1488SC

1.36 W
1.04 W
0.93 W
± 15 V
-15V to +7.0V
± 15 V

Note
1. TJ Max ~ 175°C for the Ceramic DIP, and 150°C for the Molded DIP and
50-14.
2. Ratings apply to ambient temperature at 25°C. Above this temperature,
derate the 14L-Ceramic DIP at 9.1 mW 1°C, the 14L-Molded DIP at
8.3 mwrc, and the 50·14 at 7.5 mW/oC.

Equivalent Circuit (1/4 of Circuit)
v+----~----------~----~----.

05

R5

300n
+---_+--.-'VV',,--OUT

07

09

GNO~

R8

v---------~~

__ ________
~

9-3

70 !l
~~

JJ.A1488

~A1488

Electrical Characteristics
DC Characteristics Vee = ± 9.0 V ± 1 %, TA = O°C to 70°C, unless otherwise specified.
Symbol

Characteristic

Condition

Figure

IlL

Input Current LOW

VIL = 0 V

1

IIH

Input Current HIGH

VIH = 5.0 V

1

VOH

Output Voltage HIGH

VIL = 0.8 V, RL = 3.0 kn
Vee = ±9.0 V

2

Min

1.0
6.0

7.0

9.0

10.5

-6.0

-7.0

VIL = 0.8 V, RL = 3.0 kn
Vee=±13.2 V
VOL

Output Voltage LOW

VIH = 1.9 V, RL = 3.0 kn
Vee = ±9.0 V

2

VIH = 1.9 V, RL = 3.0 kn
Vee=±13.2 V

Typ

Max

Unit

1.6

mA

10

p.A
V

V

-9.0 -10.5

los+

Positive Output Short Circuit Current 1

VIL = 0.8 V

3

-6.0

-10

-12

mA

los-

Negative Output Short Circuit Current 1

VIH = 1.9 V

3

+6.0

+10

+12

mA

Ro

Output Resistance

Vee = 0 V, Va = ± 2.0 V

4

300

1+

Positive Supply Current

RL = 00
VIH = 1.9 V, V+ = 9.0 V

5

VIL = 0.8 V, V+ = 9.0 V

1-

Negative Supply Current

n
mA
15

20

4.5

6.0

VIH=1.9 V, V+ =12 V

19

25

VIL =0.8 V, V+ = 12 V

5.5

7.0

VIH=1.9 V, V+ =15 V

34

VIL = 0.8 V, V+ = 15 V

12

RL = 00
VIH = 1.9 V, V - = -9.0 V

5

-13

VIL = 0.8 V, V - = -9.0 V
VIH = 1.9 V, V - = -12 V

Pe

Power Consumption

-18

-17

mA

-15

p.A

-23

mA

VIL=0.8 V, V- =-12 V

-15

p.A

VIH=1.9 V, V- =-15 V

-34

mA

VIL = 0.8 V, V - = -15 V

-2.5

mA

Vee=±9.0 V

333

mW

Vee=±12 V

576

AC Characteristics Vee = ± 9.0 V ± 1 %, T A = 25°C
Symbol
tpLH

Characteristic
Propagation Delay Time

Condition
RL = 3.0 kn, CL = 15 pF

Figure
6

tpHL
t,

Fall Time

t,

Rise Time

RL = 3.0 kn, CL = 15 pF

Note
1. Maximum package power dissipation may be exceeded if all outputs are shorted simultaneously.

9-4

6

Min

Typ

Max

Unit

220

350

ns

70

175

ns

70

75

ns

55

100

ns

IlA1488

Typical Performance Curves
Transfer Characteristics vs
Supply Voltage
12

>
I

6.0

w

~"

~
vcci

Output Voltage and Current Limiting
Characteristics
20

I

12 v
rr- Vee +9V
r- VCr"16V
+

~
I
....
~

12

I\- t-\

4.0

!z

~

~\

---

\ 1\~ \.o"o.J::'.~}-

:J

>

r-- r---..

1\

a:
a:

0

....

(,)

't~

:J

1=:J
0

-6.0

-12

~

I

I

I

I

0.8

0.4

-4.0

o~

3 kH

o

1.9
-12

I

-20
1.2

1.•

2.0

,.

'l.

"

v

Vcc=±9V

-aD

-:-

r--

,.

1\
i\

100

\

w

a:

;0

~

II.

'"

10

4.0

v'--Dyvo1\1\

I

V-

-25

75
TEMPERATURE _

<>

c

125

1.0
1.0

10

CL

100
CAPACITANCE -

9-5

1\
1000
pF

~
~
~

6.0 1--+-+--V++-~-+-f9-.0-V+-+--I---l

v,'·~V _ ~_
o.~
V-=-9.oV

~-aor---f-+-+--I--+--f--I--1

!5

e:

:J

o

TEMPERATURE _

t(

8.0

0
-75

\
~

8 .•

I

!i
II.

iil

0.8

12

I

w

>

-=

los

Output Slew Rate vs
Load Capacitance
1000

0

"\..

OUTPUT VOLTAGE - V

Supply Voltage vs Maximum
Operating Temperature

"~

\

V

v,

INPUT VOLTAGE-V

>

Short Circuit Output Current vs
Temperature

10,000

0

c

I1A1488

DC Test Circuits
Figure 1 Input Current

Figure 4 Output Resistance (Power-off)

+ 9 V -9 V
14

10

12

13
10

III

t

it

1

I'H
+5V

Figure 5 Supply Currents
V+

Figure 2 Output Voltage
v+

y-

1.9 V

~

1.9 V

14

lVIH

v,Hb
3 kll

12
12

~

O.BV

O.BV

V-

Figure 6 AC Test Circuit and Voltage Waveforms
Figure 3 Output Short Circuit Current
+9V

V, -O-}-3.'-'-r,----vo
r

-9V

14

'SPF

-=-

-=-

~

~ ~~
12

CL

RL

+3.0V+l'SV

v,

11

~
tPHL

--.

O.BV

V o - - -....

-

~-----OV

' -_ _ _r - - - I ,

tr and tf are measured 10% to 90%

9-6

p.A 1489 • p.A 1489A
RS-232C
Quad Line Receivers

FAIRCHILO
A Schlumberger Company

Linear Division Interface Products

Description

Connection Diagram
14-Lead DIP and 50-14 Package
(Top View)

The /lA 1489 and the /lA 1489A are EIA RS-232C specified
quad line receivers. These devices are used to interface
data terminals with data communications equipment. The
/lA 1489 and /lA 1489A are lead-for-Iead replacements of
the MC1489 and MC1489A respectively.
•
•
•
•

INA
RESPONSE
CONTROL A

Input Resistance 3.0 kS1 To 7.0 kS1
Input Signal Range ± 30 V
Input Threshold HystereSiS Built-In
Response Control
a) Logic Threshold Shifting
b) Input Noise Filtering

RESPONSE
CONTROL D

OUT A

IN B
RESPONSE
CONTROL B
RESPONSE
CONTROL C

OUTS

Absolute Maximum Ratings
Storage Temperature Range
Ceramic DIP
Molded DIP and 80-14
Operating Temperature Range
Lead Temperature
Ceramic DIP (soldering, 60 s)
Molded DIP and SO-14
(soldering, 10 s)
Internal Power Dissipation 1. 2
14L-Ceramic DIP
14L-Molded DIP
SO-14
Supply Voltage
Input Voltage Range
Output Load Current

IND
12

GND

OUTC

-65°C to + 175°C
-65°C to + 150°C
O°C to +70°C

Order Information
300°C

Device Code

Package Code

Package Description

6A
9A
KD
6A
9A

Ceramic DIP
Molded DIP
Molded Surface Mount
Ceramic DIP
Molded DIP

J.LA1489DC
/lA1489PC
/lA 1489SC
/lA 1489ADC
/lA1489APC

265°C
1.36 W
1.04 W
0.93 W
10 V
±30 V
20 mA

Note
1. TJ Ma, ~ 175·C for the Ceramic DIP. and 150·C for the Molded DIP and
50·14.
2. Ratings apply to ambient temperature at 25°C. Above this temperature,
derate the 14L-Ceramic DIP at 9.1 mW/·C. the 14L-Molded DIP at
8.3
and the 50-14 at 7.5

mwrc.

mwrc.

Equivalent Circuit (1/4 of circuit)

, - - - _ -....-vcc
9 kll

5 kll

1.6 kll
OUT

3.55 kll

L--~~---~~~~-~--GND

9-7

•

IlA 1489 • IlA 1489A

~1489, ~1489A

Electrical Characteristics
DC Characteristics Vee = 5.0 V ± 1.0%, response control lead is open, TA = O·C to 70·C, unless otherwise specified.
Symbol

Characteristic

IIH

Input Current HIGH

IlL

Input Current LOW

Condition
VIH = 25 V

Figure

3.6

1

-3.6

VIL = -25 V

VOH

Input Turn-on Threshold
Voltage

TA = 25·C,
VOL <0.45 V

j.LA1489

Input Turn-off Threshold
Voltage

TA = 25·C,
VOH ;;;'2.5 V,
10H =-0.5 mA

j.tA1489

Output Voltage HIGH

Max

Unit

8.3

mA

-8.3

mA

-0.43

VIL = -3.0 V

VTH-

Typ

0.43

VIH = 3.0 V

VTH+

Min

1

2

j.tA1489A
2

j.LA1489A

VIH = 0.75 V, 10H = -0.5 mA

1.0
1.75

1.5
1.95

0.75

1.25

0.75

0.8

1.25

2.6

4.0

5.0

2

0.2

0.45

3

3.0

2

V

2.25
V

V

Input Open Circuit, 10H = -0.5 mA
VOL

Output Voltage LOW

los

Output Short Circuit Current

lee

Supply Current

VIH = 5.0 V

4

20

26

mA

Pe

Power Consumption

VIH = 5.0 V

4

100

130

mW

VIL = 3.0 V, 10L = 10 mA

V
mA

AC Characteristics Vee = 5.0 V ± 1.0%, TA = 25·C
Symbol
tpLH

Condition

Characteristic
Propagation Delay Time

tpHL
t,

Rise Time

t/

Fall Time

kn
RL = 390 n
RL = 3.9 kn
RL =390 n
RL = 3.9

9-8

Figure

Min

Typ

5

25

5

10

Max

Unit

85

ns

25

50

ns

120

175

ns

20

ns

Typical Performance Curves

6.0

V

I

Ii

2.0

w

/'

a;
a;

::I

.."
I-

V

/'

-2.0

/'

!!O

"~

g

1.6

90

1.2

-

-5.0

3.0

~

0

15

5.0

..
I-

::I

::I

0

2.0
1.0

r-

-1.0
-3.0

_~T

VJlI1

:!l
a;

-60

~A1489

,.,41489
",A1489A

I-

~

i!!

I
I

o

r---- V,lH f.I

:t

I

OA

V,HL

1.0

:t

o
120

.0

°c

o

4.0

8.0

SUPPLY VOLTAGE -

-=- VTH

8.0
RT = 5.0 kn
YTH=5.0Y

3.0

6.0

RT = 11 kO
VTH",,-5.0Y

[/RT""

•

5.0

>

I

4.0

w

"~

3.0

0

>

I-

::I

2.0

YIH~--

~

::I

0

1.0

.A1

V,LHI

=11 kO

INPUT VOLTAGE - V

--'"

-

-1.0
-3.0

~

...

6.0

3.0
INPUT VOLTAGE -

V

Test Circuits
Figure

Input Current

Figure 2 Output Voltage and Input Threshold Voltage

+ 5.0 V

V,

12

V

/.LA 1489A Input Threshold
Voltage Adjustment

1....
'-/r-III
13k:'
VTi =5.i V
i""C"Y I 1 I
RT =

~HL

TEMPERATURE _

RT

V,HL

~

0

I-

90

;-

25

Y

~V'i'"

w

>

0

>

.uA 1489A

lr" I I I

RT - 5.0 kn
VTH = 5.0 V

"~

w

"~

a;

!!O

/.lA1489 Input Threshold
Voltage Adjustment

4.0

I

-I"'-

lI-

INPUT VOLTAGE - V

>
I

>

/J.Al489 V'LH

..

Y

-15

5.0

V'HL pA1489A

1'.....'''',4B9.q ~"

::I

V,

6.0

6.0

I I I

:t 0.8

,/

-10
-25

I
w

2.D

.,:tw

./

::I

>

2.0

-

2.4

10

C
E

Input Threshold Voltage vs
Supply Voltage

Input Threshold Voltage vs
Temperature

Input Current vs Input Voltage

VIHL

I

14

V,LH

V,HlO
OPEN 0

V,LH + 5.0 V

- 5.0 V

14

10
12
10

L...----'.:,:3t._..,.,,_J"

12

13

9-9

11

JlA 1489 • JlA 1489A

Test Circuits (Cent.)
Figure 4 Supply Current

Figure 3 Output Short Circuit Current

Vee

Vee

ICC

14

14

--lOS

10

10

12
12
13

11
13

11

Figure 5 AC Test Circuit and Voltage Waveforms
T

5.0 V

~:OV

1\0%
~I '--~--tP-LH-(NOTE
»---4----~~------Vo

V,

Figure 6 Response Control Node

R (NOTE 5)

RESPONSE NODE

Vo

V,
1/4 J,lA1489A

Notes
1. All diodes FDSOO or equivalent.
2. CT ~ 15 pF ~ total parasitic capacitance,
which includes probe and jig capacitance.
3, tr and tf measured 10% to 90%.
4. Capacitor is for noise filtering.
5. Resistor is for threshold shifting.

9-10

3)

JJ.A26LS31
Quad High Speed
Differential Line Driver

F=AIRCHILO
A Schlumberger Company

Linear Division Interface Products

Description

Connection Diagram
16-Lead DIP
(Top View)

The I.lA26LS31 is a quad differential line driver designed
for digital data transmission over balanced lines. The
1.lA26LS31 meets all the requirements of EIA Standard
RS-422 and Federal Standard 1020. It is designed to provide unipolar differential drive to twisted-pair or parallel-wire
transmission lines.
The circuit provides an enable and disable function common to all four drivers. The 1.lA26LS31 features three-state
outputs and logical OR-ed complementary enable inputs.
The inputs are all LS compatible and are all one unit
load.

OUTAi

INO

OUTA2

OUTD1

ENABLE

OUT02

OUTB2

ENABLE

OUTBi

OUTC2

INB

OUTC1

The I.lA26LS31 offers optimum performance when used
with the 1.lA26LS32 Quad Differential Line Receiver.

•
•
•
•
•
•
•
•
•
•

Output Skew - 2_0 ns Typical
Input To Output Delay - 12 ns
Operation From Single + 5_0 V Supply
16-Lead Ceramic And Molded DIP Package
Outputs Won't Load Line When Vcc = 0 V
Four Line Drivers In One Package For Maximum
Package Density
Output Short Circuit Protection
Complementary Outputs
Meets The Requirements Of EIA Standard RS-422
High Output Drive Capability For 100
Terminated
Transmission Lines

GND

INC

Order Information

n

Device Code

Package Code

I.lA26LS31DC
I.lA26LS31PC

78
98

Package Description
Ceramic DIP
Molded DIP

Function Table (Each Driver)

Absolute Maximum Ratings
Storage Temperature Range
Ceramic DIP
Molded DIP
Operating Temperature Range
Lead Temperature
Ceramic DIP (soldering, 60 s)
Molded DIP (soldering, 10 s)
Internal Power Dissipation 1,2
16L-Ceramic DIP
16L-Molded DIP
Supply Voltage3
Input Voltage
Output Voltage

+s.ov

INA

Outputs
-65°C to + 175°C
-65°C to + 150°C
O°C to +70°C

Input

Enable

y

Z

H
L

H
H
L

H
L

L
H

Z

Z

X
H = High level
l= low level
X = Immaterial
Z = High Impedance (off)

1.50 W
1.04 W
7.0 V
7.0 V
5.5 V

Logic Symbol

Notes
1. TJ Max = 150'C for the Molded DIP, and 175'C for the Ceramic DIP.
2. Ratings apply to ambient temperatures at 25'C. Above this temperature,
derate the 16l-Ceramic DIP at 10 mWI'C, and the 16l-Molded DIP at
8.3 mWI'C.
3. All voltages are with respect to network ground terminals.

GND

Vee

D2

D1

C2

C1

B2
OUTPUTS

9-11

81

A2

Ai

J,lA26LS31

J.lA26LS31
Electrical Characteristics
Symbol

ooe < TA < 70 oe,

4.75 V < Vee < 5.25 V, unless otherwise specificied.

Characteristic

Condition

Typl

2.5

3.2

Max

Unit

V

Output Voltage HIGH

Vee = Min, IOH =-20 rnA

VOL

Output Voltage LOW

Vee = Min, 10L = 20 rnA

V,H

Input Voltage HIGH

Vee = Min

V,L

Input Voltage LOW

Vee = Max

I,L

Input Current LOW

Vee = Max, V, = 0.4 V

I'H

Input Current HIGH

Vee = Max, V, = 2.7 V

0.5

20

IlA

I'R

Input Reverse Current

Vee = Max, V, = 7.0 V

0.001

0.1

rnA

loz

Off State (High Impedance)
Output Current

Vee = Max

IVo=2.5 V

0.5

20

I1A

IVo=0.5 V

0.5

-20

V'c

Input Clamp Voltage

Vee = Min, I, = -18 rnA

los

Output Short Circuit

Vee = Max

0.32

0.5
0.8

-0.20

-30

V
V

2.0
-0.36

V
rnA

-0.8

-1.5

V

-60

-150

rnA

Icc

Supply Current

Vee = Max, All Outputs Disabled

60

80

rnA

IplH

Input 10 Output

Vee = 5.0 V, TA = 25°C,
Load = Note 2

12

20

ns

tpHL

Input 10 Output

Vee = 5.0 V, TA = 25°C,
Load = Note 2

12

20

ns

SKEW

Output to Output

Vee = 5.0 V, TA = 25°C,
Load = Note 2

2.0

6.0

ns

tLZ

Enable to Output

Vee = 5.0 V, TA = 25°C,
CL = 10 pF

23

35

ns

tHZ

Enable to Output

Vee = 5.0 V, TA = 25°C,
CL = 10 pF

17

30

ns

tZl

Enable to Output

Vee = 5.0 V, TA = 25°C,
Load = Note 2

35

45

ns

tZH

Enable to Output

Vee = 5.0 V, TA = 25°C,
Load = Note 2

30

40

ns

Noles
1.
2.

Min

VOH

All typical values are Vee = 5.0 V, TA = 25"e
eL = 30 pF, V, = 1.3 V to Vo = 1.3 V, VPULSE
load Test Circuit for Three-State Outputs)

= 0 V to +3.0 V (See Ae

9-12

MA26LS31

AC Load Test Circuit for Three-State Outputs
TEST
POINT

FROM OUTPUT
UNDER TEST

Propagation Delay (Notes 1 and 3)

Vee

INPUT
TRANSmON

___-r~--r---~7'St,~
t~n I
Rt
750

OUT

Enable and Disable Times (Notes 2 and 3)
Enable

Disable
3V

ENABLE
INPUT

•

OV
OUTPUT
NORMALLY
LOW

~t.5V

OUTPUT
NORMALLY
HIGH

~t.5V

Notes
1. Diagram shown for Enable Low. Switches S1 and S2 open.
2. S1 and S2 of Load Circuit are closed except where shown.
3. Pulse Generator for all Pulses: Rate < 1.0 MHz, 20 = 50 n,
tr ~6.0 ns, tf <6.0 ns.
4. CL includes probe and jig capacitance.

Typical Application
DATA
IN

RT

SHIELD OR COMMON GROUND RETURN

9-13

DATA
OUT

J,LA26LS32
Quad Differential
Line Receiver

FAIRCHILO
A Schlumberger Company

Linear Division Interface Products

Description

Connection Diagram
16-Lead DIP (Top View)

The !lA26LS32 is a quad differential line receiver designed
to meet the requirements of EIA Standards RS-422 and
RS-423, and Federal Standards 1020 and 1030 for balanced and unbalanced digital data transmission.

1

The device features an input sensitivity of 200 mV over
the input range of ± 7.0 V. The MA26LS32 provides an
enable function common to all four receivers and threestate outputs with 8.0 mA sink capability. Also, a fail-safe
input/ output relationship keeps the outputs high when the
inputs are open.

-INA

Vec

+INA

-INB

OUTA

+INB

OUTC

The !lA26LS32 offers optimum performance when used
with the !lA26LS31 Quad Differential Line Driver.
• Input Voltage Range Of ± 7.0 V (Differential Or
Common Mode) ± 0.2 V Sensitivity Over The Input
Voltage Range
• Meets All The Requirements Of EIA Standards
RS-422 And RS-423
• Input Impedance (15K Typical)
• 30 mV Input Hysteresis
• Operation From Single + 5.0 V Supply
• Fail-Safe Input/Output Relationship. Output Always
High When Inputs Are Open.
• Three-State Drive, With Choice Of Complementary
Output Enables, For Receiving Directly Onto A Data
Bus.
• Propagation Delay 17 ns Typical
• Advanced Low Power Schottky processing
• 100% Reliability Assurance Screening To
MIL-STD-883 Requirements.

8.3

mwrc.

mwrc,

OUTO

-INC

+IND

GNO

-INO

Device Code

Package Code

!lA26LS32DC
MA26LS32PC

7B
9B

Package Description
Ceramic DIP
Molded DIP

Function Table (Each Receiver)
Differential Inputs

E

V

VID;;;.oO.2 V

H

X

H
H

< 0.2

V

X

X

L

H

X

X

L

H

X

X

L

L
L

H

Z

L

H ~ High Level
L ~ Low Level

300°C
265°C

Outputs

E

VID<-0.2 V

-6SOC to + 175°C
-6SoC to + 150°C
O°C to +70°C

Enables

A-B

-0.2 V < VID

x

?
?

= Immaterial

X ~ High Impedance (off)

? = Indeterminate

Logic Symbol
1.S0 W
1.04 W
7.0 V
±25 V
±25 V
7.0 V
SO mA

INPUTS

ENiiLE

ENABLE

" D2

01

C2

C1

82

81

A2

41

~,c1c1c1rY

Notes
1. TJ Max~ 150"C for the Molded DIP, and 175"C for the Ceramic DIP.
2. Ratings apply to ambient temperature at 25°C. Above this temperature,

derate the 16L·Ceramic DIP at 10

+INC

Order Information

Absolute Maximum Ratings
Storage Temperature Range
Ceramic DIP
Molded DIP
Operating Temperature Range
Lead Temperature
Ceramic DIP (soldering, 60 s)
Molded DIP (soldering, 10 5)
Internal Power Dissipation 1, 2
16L-Ceramic DIP
16L-Molded DIP
Supply Voltage 3
Common Mode Voltage Range
Differential Input Voltage
Enable Voltage
Output Sink Current

OUTB

ENABLE

GND

and the 16L·Molded DIP at

3. All voltages are with respect to network ground terminal.

9-14

Vee

OUTPUT

OUTPUT

o

C

OUTPUT
8

OUTPUT

A

J-lA26 LS32

IlA26 LS32
Electrical Characteristics
Symbol

ooe

«

TA

«

70 oe, 4.75 V

«

Characteristic

«

Vee

5.25 V, unless otherwise specified.

Conditions

Min

Typ

Max

Units

-0.2

±0.06

+0.2

V

VTH

Differential Input Voltage

-7.0 V0.2 V

H

H

H

?

-0.2 V

< VIO < 0.2

Vlo<-0.2 V

H

L

X

L

Z

H = High Level
L = Low Level
? = Indeterminate
X = Immaterial
Z = High Impedance (off)

Noles
1. TJ Max ~ 150°C for the Molded DIP, and 175°C for the Ceramic DIP.
2. Ratings apply to ambient temperature at 25°C. Above this temperature,

derate the 16L-Ceramic OIP at 10 mwrc. and the 16L-Malded DIP at
8.3 mwrc.
3. All voltages are with respect to network ground terminal.

9-17

V

J,lA3486

Block Diagram
DIFFERENTIAL
INPUTS

THREE-STATE
CONTROL
INPUT

OllTPUT

Y

Recommended Operating Conditions
Symbol

Value

Unit

Vee

Supply Voltage

Characteristic

4_75 to 5.25

V

VeM

Input Common Mode Voltage Range

-7.0 to +7.0

V

VIO

Input Differential Voltage Range

6.0

V

TA

Operating Temperature

o to

+70

°C

1-lA3486
Electrical Characteristics Over recommended operating temperature and supply voltage ranges, unless
otherwise specified.
Symbol

Characteristic

Condition

VIH

Input Voltage HIGH

VIL

Input Voltage LOW

Three-State Control

VTH(O)

Differential Input Threshold Voltage 5

-7.0 V~Vle~7.0 V,
VIH =2.0 V

Min

Three-State Control

10 =-0.4 mA,
VOH;;;'2.7 V
10=8.0 mA,
VOL ~0.5 V

liS

Input Bias Current

HIGH 4

VOH

Output Voltage

VOL

Output Voltage LOW

Vee=O V or 5.25 V,
Other inputs at 0 V

Max

V
0.8

V

0.2

V

-3.25

VI =-3.0 V

-1.50

VI = +3.0 V

+1.50

VI = +10 V

+3.25

10 = 8.0 mA,
VIO= 0.4 V

Unit

-0.2

VI =-10 V

-7.0 V~VeM~7.0 V, 10 =-0.4 mA,
VIH =2.0 V
VIO = 0.4 V

9-18

Typ1

2.0

2.7

mA

V
0.5

I1A3486

j.lA3486 (Cont.)
Electrical Characteristics Over recommended operating temperature and supply voltage ranges, unless
otherwise specified.
Symbol

loz

Characteristic

Output Third State Leakage Current

Condition

Min

Typt

Max

VI(D) = + 3.0 V, VIL = 0.8 V,
Vo = 0.5 V

-40

V'(D) = -3.0 V, VIL = 0.8 V,
Vo=2.7 V

40

los

Output Short Circuit Current3

V'(D) = 3.0 V, VIH= 2.0 V,
Vo=O V

I,L

Input Current LOW

Three-State Control VIL = 0.5 V

I'H

Input Current HIGH

-15

Unit

J,lA

-100

mA

-100

I1A

I1A
Three-State Control VIH = 2.7 V
Three-State Control V,H = 5.25 V

20
100
-1.5

VIC

Input Clamp Diode Voltage
(Three-State Control)

Three-State Control Ilc=-10mA

Icc

Supply Current

VIL = 0 V

V

85

mA

Typt

Max

Unit

Switching Characteristics Vcc = 5.0 V, TA = 25°C
Symbol

Characteristic

Propagation Delay Time
Differential

Condition

Min

Inputs to Outputs

tpHL(D)

Output HIGH to LOW

16

35

ns

tpLH(D)

Output LOW to HIGH

16

30

ns

tpLZ

Control to Output
Output LOW to Third State

24

35

ns

tpHZ

Output HIGH to Third State

16

35

ns

tpZH

Output Third State to HIGH

16

30

ns

tPZL

Output Third State to LOW

16

30

ns

Propagation Delay Time

Notes
1. All currents into device leads are shown as positive, out of device leads
are negative. All voltages referenced to ground unless otherwise noted.
2. Typical values are TA ~ 25°C, Vcc ~ 5.0 V. and V'c ~ 0 V.
3. Only one output at a time should be shorted.
4. Refer to EtA RS-422/3 for exact conditions. Input balance and VOH/VOL
levels are tested Simultaneously for worst case.
5. Differential input threshold voltage and guaranteed output levels are
tested simultaneously for worst case.

9-19

J,lA3486

Parameter Measurement Information
Figure 1 Propagation Delay Differential Input to Output
TO SCOPE
(INPUT)

TOSCOPE
(OUTPUT)

INPUT~.SV
1.SV
3.0V
ov
tPLH(~~H

tpLH(:F_ €)

PULSE
GENERATOR
(Note 1)

I
+1.5V

OUTPUT

CL =15 PF

1.3V

1.3V

VOL
-------------------OV

(N..,2)

+2.0V

Figure 2 Propagation Delay Three-State Control Input to Output
TO SCOPE
(INPUT)
3-STATE
CONTROL

TO SCOPE
(OUTPUT)

PULSE
GENERATOR
(NolO 1)

SW1
2.OkO
o--+S.OV
DIFFERENTIAL
INPUTS

CL=1SpF
(N..,2)

I

5.0kO

3.0V

3.0V

IN

_____J_-,-___

' - - - - - - ' - - - - - OV

OV

SW1CLOSED

~
SW2 CLOSED

--~1.3V

OUT

O.SV

VOL
OV

~
HSW2CLOSED
~
'PZH

IN

1.SV

'PZL

3.0V

1.SV

- - - - - OV
SW10PEN

CLOSED
ZLSW2 OPEN

VOH

OUT

3.0V

IN~'SV
--tipS~~

1.SV

OUT

1.SV

---OV

/
--'

\.SV

~5.0V-V.E
VOL

- - - - - - - - - - - - - - - - - - - OV

Notes
1. The input pulse is supplied by a generator having the following
characteristics: PRR = 1.0 MHz, 50% duty cycle, tTLH = tTHL = 6.0 ns
(10% to 90%), Zo = 50 n.

2. CL includes probe and jig cpacitance.
3. All diodes are IN916 or equivalent.

9-20

MA3487

FAIRCHILD

RS-422 Quad Line Driver
With Three-State Outputs

A Schlumberger Company

linear Division Interface Products

Connection Diagram
16-Lead DIP
(Top View)

Description
Fairchild's RS-422 Quad line Driver features four independent driver chains which comply with EIA Standards for
the electrical characteristics of balanced voltages digital interface circuits. The outputs are three-state structures
which are forced to a high impedance state when the appropriate output control lead reaches a logic zero condition. All input leads are PNP buffered to minimize input
loading for either logic one or logic zero inputs. In addition, internal circuitry assures a high impedance output
state during the transition between power-up and powerdown.

•
•
•
•
•
•
•
•

A/B
CONTROL
C/O
CONTROL

Four Independent Driver Chains
Three-State Outputs
PNP High Impedance Inputs
Fast Propagation Time
TTL Compatible
Single 5.0 V Supply Voltage
Output Rise And Falls Times Less Than 20 ns
Lead Compatible And Interchangeable With MC3487
And DS3487

COOO451F

Order Information
Device Code

Absolute Maximum Ratings
Storage Temperature Range
Ceramic DIP
Molded DIP
Operating Temperature Range
Lead Temperature
Ceramic DIP (soldering, 60 s)
Molded DIP (soldering, 10 s)
Internal Power Dissipation 1,2
16L-Ceramic DIP
16L-Plastic DIP
Supply Voltage 3
Input Voltage

Package Code

!lA3487DC
IlA3487PC

78
98

Package Description
Ceramic DIP
Molded DIP

-65°C to +175°C
-65°C to + 150°C
O°C to +70°C

Function Table (Each Driver)
300°C
265°C

Outputs

1.50 W
1.04 W
8.0 V
5.5 V

Input

Enable

y

Z

H
L
X

H
H
L

H
L

L
H

Z

Z

H = High Level
L= Low Level
X = Immaterial
Z = High Impedance (off)

Notes
1. TJ Max = 150"C for the Molded DIP. and 175"C for the Ceramic DIP.
2. Ratings apply to ambient temperature at 25"C. Above this temperature,
derate the 16L·Ceramic DIP at 10 mWrC, and the 16L·Molded DIP at
8.3 mWrC.
3. All voltages are with respect to network ground terminal.

9-21

tlA3487

Block Diagram
NON·INVERTING
INPlIT

OllTPUTS
INVERTING

/.lA3487
Electrical Characteristics 4.75 V .;;; Vee';;; 5.25 V, TA = DoC to 70°C, unless otherwise specified.
Symbol

V,L

Characteristic

Condition

Min

Input Voltage LOW

Typ1

Max

Unit

0.8

V

J.IA
J.IA

V,H

Input Voltage HIGH

I'L

Input Current LOW

V,L = 0.5 V

-400

I'H

Input Current HIGH

V,H = 2.7 V

+50

V,H = 5.5 V

+ 100

V,C

Input Clamp Voltage

1,=-18mA

-1.5

V

VOL

Output Voltage LOW

10L =48 mA

0.5

V

VOH

Output Voltage HIGH

10H =-20 mA

2.5

los

Output Short Circuit Current3

V,H = 2.0 V

-40

loz

Output Leakage Current Hi·Z State

10L(off)

V

V
-140

mA

V,L = 0.5 V, V,L (z) = 0.8 V

+100

J1.A

V,H = 2.7 V, C'L (z) = 0.8 V

+100

Output Leakage Current

VOH=6.0 V, Vee=O V

+ 100

Power Off

VOL = -0.25 V, Vee = 0 V

-100

Vos·Vos

Output Offset
Voltage Difference 2

Voo

Output Differential Voltage 2

tNoo

Output Differential
Voltage Change

leex

Supply Current4

Icc

2.0

±OA
2.0

Control Leads Gnd
Control Leads 2.0 V

9·22

J.IA
V
V

±OA

V

105

mA

85

mA

MA3487

IlA3487 (Cont.)
Electrical Characteristics
Switching Characteristics Vee

= 5.0

V, TA

= 25°C
Max

Unit

Propagation Delay Times

High to Low Input

20

ns

Low to High Input

20

ns

Output Transition
Times - Differential

High to Low Input

20

ns

Low to High Input

20

ns

Propagation Delay
Control to Output

RL

Symbol

Characteristic

tpHL

Condition

tpLH
tTHL
tTLH

Typ

CL = 50 pF

25

ns

RL = 200, CL = 50 pF

25

ns

tpZH(E)

RL = 00, CL = 50 pF

30

ns

tpZL(E)

RL

30

ns

tpHZ(E)
tpLZ(E)

= 200,

Min

= 200,

CL

= 50

pF

Notes
1. Typical values are TA~25'e, Vcc~5.0 V
2. See EIA Specification RS-422 for exact test conditions
3. Only one output may be shorted at a time
4. Circuit in three-state condition

Parameter Measurement Information
Figure 1 Three-State Enable Test Circuit and Waveforms
TO SCOPE 3.0V or GND
IN
INPUT

TO SCOPE
OUT
OPEN FOR
INVERTING
OUTPUT

tPZH(E)

TEST ONLY

2000

NON-INVERTING
OUTPUT
CONTROL

~~~~ATOR

...n..

o---.I'>N-- +5Y

r

CL =5O PF
(Note 2)

-=-1.OkO

500

OPEN FOR
tpZl.(E)

(Note I)

TEST ONLY

CR00961F

~'5V

CONTROL
INPUT

'PHZ(E)

OUT

OUT

~v

-~

aov

3.0V
CONTROL
INPUT

1,.5V

OY
tPZl.(E)-

VOH

IpZH(E)~1.5V

OUT
VOL
OV

OV
VOH

'\ 1.5V

OUT


¢.
I

I-

~
:!:

L!J 1

-4.0 f--+-I7'7*,~"77'*,~"---+---l

INPUT -

9-27

H

Lor H H

w

The input protection diodes are useful in certain party-line
systems which may have multiple V + power supplies and,
in which case, may be operated with some of the V +
supplies turned off. In such a system, if a supply is turned
off and allowed to go to ground, the equivalent input circuit connected to that supply would be as follows:

Indeterminate

L

-------+---------'
>

H

L

Recommended Combinations of
Input Voltage for Line Receivers

+IN

Output

Lor H Lor H H

< VIO < 25

B Version

-IN

S

G

A-B

Vlo;;;'25 mV

B-TO-GROUND VOLTAGE - V

L

•

~A55107A· ~A75107A
~A75107B· ~A75108B

pA55107A, pA75107A, pA75107B
Electrical Characteristics Over recommended operatin~ temperature range with V+ = Max and V- = Max,

unless otherwise specified. 1,
DC Characteristics
Symbol

Characteristic

Min

Condition

IIH

Input Current HIGH

VOIFF = 0.5 V, VCM = -3.0 V to +3.0 V

IlL

Input Current LOW

VOIFF = -2.0 V, VCM = -3.0 V to +3.0 V

IIH(G)

Gate Input Current HIGH

Typ
30

Max

Unit

75

IlA

-10

/lA

V(G) =2.4 V

40

IlA

V(G) = V+

1.0

mA

-1.6

mA

IIL(G)

Gate Input Current LOW

V(G) = 0.4 V

IIH(ST)

Strobe Input Current HIGH

V(ST) = 2.4 V

80

/lA

V(ST) =V+

2.0

mA

-3.2

mA

IIL(ST)

Strobe Input Current LOW

VOH

Output Voltage HIGH

10H = -400 /lA,
VCM = -3.0 V to +3.0 V

Vcc= Min

VOL

Output Voltage LOW

10L = 16 mA,
VCM = -3.0 V to +3.0 V

Vcc= Min

los

Output Short Circuit Current2

Vo=O V

1+

Positive Supply Current

Vo = VOH, 10H = 0 V, TA = 25°C

18

1-

Negative Supply Current

Vo = VOH, 10H = 0 V, TA = 25°C

-8.4

V(ST) = 0.4 V
2.4

V
0.4

V

-70

mA

30

mA

-15

mA

Typ

Max

Unit

17

25

ns

tpHL(O)

17

25

ns

tpLH(S)

10

15

ns

tpHL(S)

10

15

ns

AC Characteristics Vcc = ± 5.0 V, RL = 390
Symbol
tpLH(O)

n,

-18

CL = 50 pF, TA = 25°C. (See Test Circuit)

Characteristic

Condition

Min

Propagation Delay Time

J..IA75108B
DC Characteristics
Symbol

Characteristic

Condition

Min

Typ

Max

Unit

IIH

Input Current HIGH

VOIFF = 0.5 V, VCM = -3.0 V to + 3.0 V

IlL

Input Current LOW

VOIFF = -2.0 V, VCM = -3.0 V to +3.0 V

IIH(G)

Gate Input Current HIGH

V(G) = 2.4 V

IIL(G)

Gate Input Current LOW

V(G) = 0.4 V

IIH(ST)

Strobe Input Current HIGH

V(ST) = 2.4 V

80

/lA

V(ST) = V+

2.0

mA

30

75
-10
40

V(G)=V+

9-28

/lA
/lA
/lA

1.0

mA

-1.6

mA

MA55107A· MA75107A
MA75107B· MA75108B

J..IA75108B (Cont.)
Electrical Characteristics Over recommended operatin~ temperature range with V+
unless otherwise specified. 1 ,
Symbol

Characteristic

Condition

= Max

and VTyp

Min

= Max,
Max

Unit

-3.2

mA

IIL(ST)

Strobe Input Current LOW

V(ST) = 0.4 V

VOL

Output Voltage LOW

IOL = 16 mA,
VeM =-3.0 V to +3.0 V

Vee = Min

0.4

V

IOH

Output Current HIGH

Vo=V+

Vce = Min

250

pA

1+

Positive Supply Current

VO=VOH' IOH = 0 V, TA = 25°C

18

30

mA

1-

Negative Supply Current

VO=VOH' IOH = 0 V, TA = 25°C

-8.4

-15

mA

AC Characteristics Vce = ± 5.0 V, RL = 390
Symbol

n,

CL = 15 pF, TA = 25°C. (See Test Circuit)

Characteristic

Min

Condition

Typ

tpLH(D)

Max

19

Propagation Delay Time

Unit

25

ns

tpHL(D)

19

25

ns

tpLH(S)

13

20

ns

tpHL(S)

13

20

ns

Notes
I. For ,.,A551 07A guaranteed supply voltage range is ± 4.5 V to ± 5.5 V
and operating temperature range is -55°C
I 4.0

~

g~

100

~7l1089

5.0

}lA7J,08B I

JNVER~ING

-

_I INiuTS

~
I

x

I

"
;:

~A55107A/B

I'A75107A/B

I-

a:

I I

"
~

o
- 40

",A75107A/B

~ ",A75108B+1

20

10

10

20

30

40

--- --!
~

~

1
~:~~:~:~B"I

0

I

20

~

IT

:.-15

..
.."
~

...........

25°C

DIFFERENTIAL INPUT VOLTAGE - mY

a:

a:
::>

40

o
30

20

Z
W

ii

N - 10

TA

..

I

l-

VcC"'-'-S.ov

1.0

I
I

~
I-

()

I

I

o

Vcc=..!:5.0V

25

80

~

3.0

2.0

30
YcC"'::5.0V

10N.I~VER~ING

~'NPu7

I-

~

High Logic Level
Supply Current vs
Ambient Temperature

Input Current HIGH
Into 1A or 2A vs
Ambient Temperature

Output Voltage vs
Differential Input Voltage

0

~

~

TEMPERATURE - °C

9-29

n

00

_

I

10

I

'i

75

100

5.0

o
75

-50

25

0

25

SO

TEMPERATURE _ °C

125

J.LA55107A· MA75107A
MA75107B· MA75108B

Typical Performance Curves (Cont.)
ILA55107A, !LA75107A/B Propagation
Delay Time (Differential Inputs) vs
Ambient Temperature

120

40

Vee
Vee =:t 5.0 v

~

w

l-

1(

iif
a
z

0

15

..

10

0

~A75107A/B

20 -.tPl.H(O)

!i

"if

100

30
25

RJ390L

~
~

I~ , / '

80

~

...-t

tPHL(DI

RLLJn

~

40

if
0
If

o
~

0

25

~

~

~

m

75

CL=50pF

30

~

if
0
If

I

J II---

25

50

75

,/'

"'~75108~.A
tPLH(S)

15

_p> k::
10 r--~~\..\S)
~

_

20

z

0

I

!i

15

..

10

"if

T

5.0

o

~

V

0

~"'(S)

II:

~

0

25

~

~

-

tpHllS)

5.0

,uA75107A/B

H

-~

100

125

m m

75

50

-25

25

----200mV

+IN~~

OUT

~

-4--tp

--+---+---5j""",1

,.........

I
I

Voltage Waveforms

STROBE OR
STROBE
COMMON

~ I>-

50

TEMPERATURE _ "C

_ _ _-OV

2--1

aov

VOL

9-30

!i

15

0

10

I

I-R!E:=:::::,
e3J"~

... ~A7S108B""1

I

~

l'
RL

Rl-- 1950 !!

25

50

TEMPERATURE -

o

TEMPERATURE _ "C

20

I

75

100

,
3900 11

5.0

25

~

,/

20

iif
a
z

I

If

30

w

30

25

I

Vee""..!: 5.0 V
CL ~ 15 pF

0

:IE

1=

25

z

0

./

HI-'"'

VCC=±5.0V
RL=390B
CL=15pF

35

:I

a

1(

40
VCC"'±S.ov

Rl=3900

35

~

~

!LA55107A, ILA75107A/B Propagation
Delay Time (Strobe Inputs) vs
Ambient Temperature

40

w

w

TEMPERATURE _ "C

!LA75108B Propagation
Delay Time (Strobe Inputs) vs
Ambient Temperature

w

V

f--

25

TEMPERATURE - <>C

1=

35

- -il
--

TI
50

40

~J5108l-l

20 r-RL l J n

5.0
~

II

60

Z
0

II:

~

= ± 5.0 V

CL=15pF

35 -RL=390U
CL=50pF

w

ILA75108B Propagation
Delay Time HIGH-to-LOW level vs
Ambient Temperature

!LA75108B Propagation Delay
Time LOW-to-HIGH Level vs
Ambient Temperature

125

75
"C

100

125

MA55107A· MA75107A
MA75107B • MA75108B

AC Test Circuit
OUTPUT
MA55107A

DIFFERENTIAL
INPUT

~A75107A/B

(NOTE 4)

390 II

-1
STROBE
COMMON STROBE B

$TROBEA

OUTPUT

751088

son

STROBE
INPUT
(NOTE 2)

-: (NOTE 3)

-:

V+=+5.0V

Notes
1. The pulse generators have the following characteristics:

t, ~ t, ~ 10 ± 5.0 ns, tPl ~ 500 ns, PRR ~ 1.0 MHz, tp2 ~ 1.0 p.s,
PRR ~ 500 kHz, Zo ~ 50 n.
2. Strobe input pulse is applied to Strobe A when inputs AI - A2 are being
tested; to common Strobe when inputs Al-A2 or Bl- 92 are being
tested; and to Strobe 9 when inputs Bl - B2 are being tested.
3. CL includes probe and jig capacitance.

4. All diodes are 1N916.

Basic Balanced-Line Transmission System
p

+
("ASSn5110A)

DATA
INPUT
INA1

(,.A55n5107A)

TWISTED-PAIR OR EQUIVALENT
TRANSMISSION LINE
Zo = 2 RT

'NA2
INHIBIT
INHA
INH COMMON

r
CL

STROBE
A

·1

9-31

RECEIVER

STROBE
COMMON

•

MA55107A· MA75107A
MA75107B· MA75108B

Data-Bus or Party-Line System

RT

DATA
INPUT

+

p

!

!

TWIsteD-PAIR LINE
P

STROBE
COMMON

RT

DRIVER 1

+

!

AT

AT

DRIVER 3

DRIVER 2

INAl
INA2
INHIBIT

INHA
INH

COMMON

Application
The J.tA55107A, J.tA75107A dual line circuits are designed
specifically for use in high speed data transmission systems that utilize balanced, terminated transmission lines
such as twisted-pair lines. The system operates in the balanced mode, so that noise induced on one line is also
induced on the other. The noise appears common mode
at the receiver input terminals where it is rejected. The
ground connection between the line driver and receiver is
not part of the signal circuit so that system performance
is not affected by circulating ground currents.

as 25 mV (or less). For normal line resistances, data may
be recovered from lines of several thousand feet in length.
Line termination resistors (RT) are required only at the extreme ends of the line. For short lines, termination resistors at the receiver only may prove adequate. The signal
amplitude will then be approximately:
VOIFF "'" 10(on) • RT

The strobe feature of the receivers and the inhibit feature
of the drivers allow the J.tA55107A, J.tA75107A dual line
circuits to be used in data-bus or party-line systems. In
these applications, several drivers and receivers may share
a common transmission line. An enabled driver transmits
data to all enabled receivers on the line while other drivers and receivers are disabled. Data is thus time multiplexed on the transmission line. The J.tA551 07 A, J.tA 75107 A
device specifications allow widely varying thermal and electrical environments at the various driver and receiver locations. The data-bus system offers maximum performance
at minimum cost.

The unique driver output circuit allows terminated transmission lines to be driven at normal line impedances. High
speed system operation is ensured since line reflections
are virtually eliminated when terminated lines are used.
Cross-talk is minimized by low signal amplitudes and low
line impedances.
The typical data delay in a system is approximately
(30 + 1.3L) ns, where L is the distance in feet separating
the driver and receiver. This delay includes one gate delay
in both the driver and receiver.
Data is impressed on the balanced-line system by unbalancing the line voltages with the driver output current. The
driven line is selected by appropriate driver input logic levels. The voltage difference is approximately:
V0 1FF "'" 112

10(on) • RT

(2)

The J.tA55107A, J.tA75107A dual line circuits may also be
used in unbalanced or single line systems. Although these
systems do not offer the same performance as balanced
systems for long lines, they are adequate for very short
lines where environment noise is not severe.
The receiver threshold level is established by applying a
DC reference voltage to one receiver input terminal. The
signal from the transmission line is applied to the remaining input. The reference voltage should be optimized so

(1)

High series line resistance will cause degradation of the
signal. The receivers, however, will detect signals as low

9-32

J,LA55107A· J,LA75107A
J,LA75107B • J,LA75108B

tionately. Input sensitivity, input Impedance and delay times
will be adversely affected.

that signal swing is symmetrical about it for maximum
noise margin. The reference voltage should be in the
range of -3.0 V to +3.0 V. It can be provided by a voltage supply or by a voltage divider from an available supply voltage.

The p.A75108B line receivers feature an open-collector-output circuit that can be connected in the DOT-OR logic
configuration with other p.A75108B outputs. This allows a
level of logic to be implemented without additional logic
delay.

Unbalanced or Single-Line Systems

INPUT~

VRE'-Y-

Increasing Common Mode Input Voltage Range of
Receiver

~OUTPUT
STROBES

R1

R2

Precautions in the Use of J..IA55107A, J..IA75107A
and J..IA75108B Dual Line Receivers
The following precaution should be observed when using
or testing j.LA551 07 A, p.A 75107A line circuits.

R2
R1

When only one receiver in a package is being used, at
least one of the differential inputs of the unused receiver
should be terminated at some voltage between -3.0 V
and + 3.0 V, preferably at ground. Failure to do so will
cause improper operation of the unit being used because
of common bias circuitry for the current sources of the
two receivers.

Cfl01900F

p.A75108B Wired-OR Output Connections

The p.A55107A, j.LA75107A and j.LA75108B line receivers
feature a common mode input voltage range of ± 3.0 V.
This satisfies the requirements for all but the noisiest system applications. For these severe noise environments, the
common mode range can be extended by the use of external input attenuators. Common mode input voltages can
in this way be reduced to ± 3.0 V at the receiver input
terminals. Differential data signals will be reduced propor-

~r=::::3JO-P~-OUTPUT

9-33

J,LA55110A • J,LA75110A
Dual Line Drivers

FAIRCHILD
A Schlumberger Company

Linear Division Interface Products

Description

Connection Diagram
14-Lead DIP and 50-14 Package
(Top View)

The J.lA55110AlJJA75110A have improved output current
regulation with supply voltage and temperature variations.
The higher current outputs allow data to be transmitted
over longer lines. These drivers offer optimum performance
when used with the J.lA55107A, JJA75107A, JJA75107B, and
J.lA75108B line receivers.

INA1

INA2
INHA

These drivers feature independent channels with common
voltage supply and ground terminals. The significant difference between the two drivers is in the output current
specification. The driver circuits feature a constant output
current that is switched to either of two output terminals
by the appropriate logic levels at the input terminals. The
output current can be switched off (inhibited) by LOW logic levels on the inhibit inputs.

INH9
IN 91
IN B2

GND

Order Information
The inhibit feature is provided so the circuits can be used
in party line or data bus applications. A strobe or inhibitor,
common to both drivers, is included for increased driver
logic versatility. The output current in the inhibited mode,
10(0If), is specified so that minimum line loading is induced
when the driver is used in a party line system with other
drivers. The output impedance of the driver in the inhibited
mode is very high; the output impedance of output transistor is biased to cutoff.

Inputs
Outputs
C

D

Al/Bl

A2/B2

X

X

L

X

OFF

OFF

X

X

X

L

Ol-F

OFF

L

X

H

H

ON

OFF

X

L

H

H

ON

OFF

H

H

H

H

OFF

ON

Package Description
Ceramic DIP
Ceramic DIP
Molded DIP
Molded Surface Mount

-65°C to + 175°C
-65°C to + 150°C
-55°C to +125°C
O°C to +70°C
300°C
265°C
1.36 W
1.04 W
0.93 W
±7.0 V
5.5 V
-5.0 V to 12 V

Noles
1. TJ Max - 175°C for the Ceramic DIP, and 150°C for the Molded DIP and
80-14.

Inhibitor

B

6A
6A
9A
KD

Storage Temperature Range
Ceramic DIP
Molded DIP and SO-14
Operating Temperature Range
Extended (JJA55110A)
Commercial (JJA75110A)
Lead Temperature
Ceramic DIP (soldering, 60 s)
Molded DIP and SO-14
(soldering, 10 s)
Internal Power Dissipation 1, 2
14L-Ceramic DIP
14L-Molded DIP
SO-14
Supply Voltage 3
Input Voltage (any input)
Output Voltage (any output)

Function Table

A

Package Code

JJA55110ADM
JJA75110ADC
JJA75110APC
JJA75110ASC

Absolute Maximum Ratings

• No Output Transients On Power-Up Or Down
• Improved Stability Over Supply Voltage And
Temperature Ranges
• Constant Current, High Impedance Outputs
• High Speed 15 ns
• Standard Supply Voltages
• Inhibitor Available For Driver Selection
• High Common Mode Output Voltage Range
(-3.0 V to 10 V)
• TTL Input Compatibility
• Extended Temperature Range

Logic

Device Code

2. Ratings apply to ambient temperature at 25°C. Above this temperature,
derate the 14L-Ceramic DIP at 9.1 mwrc, the 14L-Molded DIP at 8.3
mWI'C, and the 80-14 at 7.5 mWrC.
3. Voltage values are with respect to network ground terminal.

H - HIGH, L - LOW, X - Don't Care

9-34

Equivalent Circuit

Rl.

R2
6OOl!

Rl
2.2 k!l

,...-.03

O.

850"

I

-

I

"

INA2

2~ 08

OUTAl

850"

01
IN AI

V

550"

OS
3.5 kn

~Q4
......
~

01

~~ ZI

• t' Z2

o;-.t

02

OUTA2

Vas

......

O~

Vas
702

~ ~D9

R7
4 kn

~03

os
4kO

y-

GN0

y,
R9
1.2 kfl

08
2 kO

n~
J.

011
1.3kn

~

i~

010

n

R21
2.5 k!l

01S

r

Val.

011........

tI
2kU
013

,~

Q114

' " Z4

v---

01."

l

7 os

lY'

-

INH

8Ol!

70S

r

.".

COMMON

y,

4-

V

to Z3

~..

R10
1 kH

01.
3700

R10S

Rl09

2 kn

1.2 kll

n~
•

4Rl11
1.3kU

......

01'

018

017

01S

1 kO

5 kO

1 kU

. 1-'"

~~ ZI03

V 0109

r

019

011

All0 r / " 0
1 kn

R113
2 kll

~~ ZS

r-

...... 011S

70104
011

R112
3700 !I

'"'

)

011r-

~

'(,;

07

01S

RIS

12 k!l

Y-

.".

r-y,

~

0101
2.2kU

R114

0105

800"

sson

3.5 kU

Rl03

0104

850"

8500

I:

)

IN 81

......
0101

I

-

0102

0103........

OUTS1

~~ Z101

it' ZI02

V
......0106 010~

r.. 0102
INS.

70103
~ 013

~

01.

OUTB2

......0105

V 0104

,.--

0101

[

R107

0106

4 k!l

4 k!l

Y- _ > - - .".

o

= CROSSUNDER

9-35

I

8O!l

MA55110A· MA75110A

Recommended Operating Conditions 1
J.LA75110A

J.LA55110A
Symbol

Characteristic

V+

Positive Supply Voltage

V-

Negative Supply Voltage

VeM+

Positive Common Mode Voltage

VeM-

Negative Common Mode Voltage

TA

Operating Temperature

Min

Typ

Max

Typ

Min

Max

Unit
V

4.5

5.0

5.5

4.75

5.0

5.25

-4.5

-5.0

-5.5

-4.75

-5.0

-5.25

V

10

0

10

V

-3.0

0

125

0

0
0
-55

25

25

-3.0

V

70

°C

MA55110A, MA75110A
Electrical Characteristics Over recommended operating temperature range, unless otherwise specified.
DC Characteristics
Symbol

Condition 2

Characteristic

Min

Typ3

Max

Unit
V

VIH

Input Voltage HIGH

2.0

VIL

Input Voltage LOW

VIC

Input Clamp Voltage

Vce = Min, II = -12 mA

10(on)

On-State
Output Current

Vce = Max, Vo = 10 V

10(011)

Off-State Output Current

Vee = Min, Vo=10 V

100

J.LA

II

Input Current
At Maximum
Input Voltage

A,BorC
Inputs

Vee = Max, VI = 5.5 V

1.0

mA

IIH

Input Current HIGH

A,BorC
Input

IlL

Input Current LOW

A, B or C
Inputs

I+(on)

Positive Supply Current
With Driver Enabled

I-(on)

Negative Supply Current
With Driver Enabled

1+(011)

Positive Supply Current
With Driver Inhibited

I-(off)

Negative Supply Current
With Driver Inhibited

0.8

Vee = Min, Vo = -3.0 V

6.5

-0.9

-1.5

12

15

V
V
mA

12

2.0

D Input
Vee = Max, VI = 2.4 V

40

Vee = Max, VI = 0.4 V

-3.0

J.LA

80

D Input

mA

-6.0

D Input
Vee = Max,
A & B Inputs at 0.4 V,
C & D Inputs at 2.0 V

Vee = Max,
A, B, C, & D Inputs
at 0.4 V

9-36

23

35

mA

-34

-50

mA

21

mA

-17

mA

J..LA55110A· J..LA75110A

~55110A, IlA75110A (Cont.)
Electrical Characteristics

AC Characteristics Vcc

= ± 5.0

Symbol
tpLH

V, T A

= 25°C

Characteristic

Condition

Propagation Delay Time, LOW to HIGH

tpHL

Propagation Delay Time, HIGH to LOW

tpLH

Propagation Delay Time, LOW to HIGH

tpHL

Propagation Delay Time, HIGH to LOW

CL = 40 pF,
RL = 50 n
See Test
Circuit

Notes
1. When using only one channel of the line drivers, the other channel
should be inhibited and/or its outputs grounded.
2. For conditions shown as Min or Max, use appropriate value specified
under recommended operating conditions.
3. All typical values are Vee ~ ± 5.0 V, TA ~ 25"C

AC Test Circuit

;:-.....,.-......-OUTPUT 2

'---t-.....,.-OUTPUT 1

o

___'*___

I,.L

l-=-

RL

50n

TO OTHER CHANNEL -JI

Notes
1. The pulse generators have the following characteristics:
tr ~ tf ~ 10 ±5.0 ns, twl ~ 500 ns, PRR ~ 1.0 MHz,
tW2 ~ 1.0 ,"S, PRR ~ 500 kHz, Zo ~ 50 n.
2. CL includes probe and jig capacitance.
3. For simplicity, only one channel and the inhibitor connections are shown.

9-37

From
(Input)

To
(Output)

A or B

1 or 2

Cor D

1 or 2

Min

Typ

Max

Unit

9.0

15

ns

9.0

15

ns

16

25

ns

13

25

ns

pA55110A • pA75110A

AC Waveforms

'-___--JI\'"--~~~~~~~~::

LOGIC
INPUT
10R2

1..----lw2----I~1
3V

INHIBITOR
INPUT
OR
INHIBITOR
COMMON

50%

'--------------'.4---- 0V

OUT
2

,.~Ifi_------

__------------__--------OFF

OUT
1
'"-__~J.~--------------------ON

Typical Applications
Simplex Operation
p
DATA

IN

•+

DATA OUT

INHIBIT
RO/2

SHIELD OR COMMON GROUND RETURN

9-38

MA55110A • MA75110A

Typical Applications (Cont.)
Half-Duplex Operation
PORT
ENABLES

'--L-"'-PORT
ENABLES

OATA
IN

OATA
IN

SHIELD OR
COMMON GROUNO
RETURN
OATA
OUT

DATA

OUT

Notes
1. All drivers are jtA75110A or jtA55110A. Receivers are jtA75107A or
jtA75108B. Twisted-pair or coaxial transmission line should be used for
minimum noise and cross talk.
2. When only one driver in a package is being used, the outputs of the
other driver should either be grounded or inhibited to reduce power
dissipation.

9-39

•

MA75150
RS-232C

I=AIRCHILD
A Schlumberger Company

Dual Line Driver
Linear Division Interface Products

Description

Connection Diagram
14-Lead DIP
(Top View)

The pA75150 is a monolithic dual line driver designed to
satisfy the requirements of the standard interface between
data terminal equipment and data communication equipment as defined by EIA Standard RS-232C. A rate of 20K
bps can be transmitted with a full 2500 pF load. Other
applications are in data transmission systems using relatively short single lines, in level translators, and for driving
MOS devices. The logic input is compatible with most TTL
and DTL families. Operation is from + 12 V and -12 V
power supplies.

NC

STROBE
INA
INB

GND

• Withstands Sustained Output Short Circuit To Any
Low Impedance Voltage Between -25 V And + 25 V
• 2.0 IJS Max Transition Time Through The + 3.0 V To
-3.0 V Transition Region Under Full 2500 pF Load
• Inputs Compatible With Most TTL And DTL Families
• Common Strobe Input
• Inverting Output
• Slew Rate Can Be Controlled With An External
Capacitor At The Output
• Standard Supply Voltages ± 12 V

NC
NC
CDOO88OF

Order Information
Device Code
pA75150PC

Absolute Maximum Ratings
Storage Temperature Range
Ceramic DIP
Molded DIP and S0-8
Operating Temperature Range
Lead Temperature
Ceramic DIP (soldering, 60 s)
Molded DIP and SO-8
(soldering, 10 s)
Internal Power Dissipation 1, 2
14L-Molded DIP
8L-Ceramic DIP
8L-Molded DIP
SO-8
Supply Voltage
Input Voltage3
Applied Output Voltage3

Package Code
9A

Package Description
Molded DIP

Connection Diagram
8-Lead DIP and SO-8 Package
(Top View)

-65·C to +175·C
-65·C to +150·C
O·C to +70·C
300·C

v+

STROBE
IN A L

265·C
1.04 W
1.30 W
0.93 W
0.81 W
±15 V
15 V
±25 V

r-r,--"

OUT A

INB

OUTB

GND

v-

Order Information
Device Code
pA75150RC
pA75150TC
pA75150SC

Notes
1. TJ Max = 175·C for the Ceramic DIP, and 150·C for the Molded DIP and
80·14.
2. Ratings apply to ambient temperature at 25·C. Above this temperature,
derate the 14L-Ceramic DIP at 9.1 mWrC, the 14L·Molded DIP at 8.3
mWrC, and the SO-14 at 7.5 mWrC.
3. Voltage values are with respect to network ground.

9-40

Package Code
6T
9T
KC

Package Description
Ceramic DIP
Molded DIP
Molded Surface Mount

MA75150

Equivalent Circuit (1/2 of Circuit)
y+------------1_-----------.------~----1_------------__,
R2
15kn

R1

111U1

01
IN

----------tCt--+

~OBE--------~C~~
07

09
OUT

011
GNO------------~--~--~

012
013
014

Note
Component values shown are nominal.

y------------------------------------+--------~----~~

Recommended Operating Conditions
Symbol

Characteristics

V+

Positive Supply Voltage

V-

Negative Supply Voltage

VI

Input Voltage

Vo

Applied Output Voltage

TA

Operating Temperature

Typ

Min

Unit

10.8

12

13.2

-10.8

-12

-13.2

V

5.5

V

0

0

9-41

Max

25

V

±15

V

70

·C

MA75150

J.lA75150
Electrical Characteristics TA = 0 to 70°C, unless otherwise specified. 1
DC Characteristics
Symbol

VIH

Characteristic

Condition

Input Voltage HIGH

Figure

1

VIL

Input Voltage LOW

VOH

Output Voltage HIGH

V+ =10.8 V, V- =-13.2 V,
VIL = 0.8 V, RL = 3.0 kil to 7.0 kil

2

VOL

Output Voltage LOW

Vee = ± 10.8 V, VIH = 2.0 V,
RL = 3.0 kil to 7.0 kil

1

IIH

Input Current HIGH

Vee = ± 13.2 V,
VI = 2.4 V

IlL
los

Input Current LOW
Output Short
Circuit Current

Min

5.0

Data Input

Vee = ± 13.2 V,
VI = 0.4

Strobe Input

Vee=±13.2V

Vo= 25 V

3
3

I-H

Negative Supply
Current HIGH

I+L

Positive Supply
Current LOW

I-L

Negative Supply
Current LOW

V
V

-5.0

V
J.l.A

1.0

10

2.0

20

-1.0

-1.6

-2.0

-3.2

2.0

4

mA
mA

-3.0

Vo=-25 V

15

Va = 0 V, VI = 3.0 V
Positive Supply
Current HIGH

8.0
-8.0

Strobe Input

Unit

V

2

Data Input

Max

0.8

-15

Vo = 0 V, VI = 0 V
I+H

Typ2

2.0

Vee = ± 13.2 V,
VI = 3.0 V, RL = 3.0 kil,
TA = 25°C

5

Vee=±13.2 V
VI = 3.0 V, RL = 3.0 kil,
TA = 25°C

5

10

22

mA

-1.0

-10

mA

8.0

17

mA

-9.0

-20

mA

AC Characteristics Vee = ± 12 V, TA = 25°C.
Symbol

Figure

Min

Typ2

Max

Unit

CL = 2500 pF,
RL = 3.0 kil to 7.0 kil

6

0.2

1.4

2.0

J.l.S

0.2

1.5

2.0

J.l.S

CL = 15 pF, RL = 7.0 kil

6

40

ns

20

ns

CL = 15 pF, RL = 7.0 kil

6

60

ns

45

ns

Condition

Characteristic

tTLH

Transition Time, Output LOW to HIGH

tTHL

Transition Time, Output HIGH to LOW

tTLH

Transition Time, Output LOW to HIGH

tTHL

Transition Time, Output HIGH to LOW

tpLH

Propagation Delay Time,
Output LOW to HIGH

tpHL

Propagation Delay Time,
Output HIGH to LOW

Notes
1. The algebraic convention where the most positive (least negative) limit is
designated as maximum is used in this data sheet for logic levels only,

e.g., when -5.0 V is the maximum, the typical value is a more negative
voltage.
2. All typical values are at Vee - ± 12 V. TA - 25"e.

9-42

MA75150

Typical Performance Curves
Typical Output Current vs
Applied Output Voltage
20

15

~
I
I-

z

'"::I
"::I....

10
5.0

II:
II:

V, =

-5.0

0

-10

--

::/::. ,

-

·15
20
-25

-

2.lv

I

,

·20 -15 -10 -5.0

-

I-

,-

I--

......

::I

_~cJJv
TA=25'C {

-Rl-7kH

I

I

..... RL ;=:3kH_

l.J

•

VIIO.4~
0

5.0

10

15

20

25

APPLIED OUTPUT VOLTAGE - V

Test Circuits
Figure 2 VIL. VOH (Note 1)

Figure 1 VIH. VOL

Figure 4 los

Figure 3 IIH. IlL
v+

~

IIH
v, -

.-

v-

l---l,
ffD-e+
r

NOTE

2

III

II

I

I
L

I
J

--l--

OPEN

Notes
1. Each input is tested separately.
2. When testing I,H. the other input is at 3.0 V; when testing I,L. the other
input is open.
3. los is tested for both input conditions at each of the specified output
conditions.

9-43

MA75150

Figure 6 Switching Characteristics

Figure 5 I+H' LH, I+L' LL (Note 1)
v+
I+H. I+L

~I

v-

It

3.0 V

"~
L_-r-_J

r

~~~:[==)o--t>--+-~---'---OUT

Okll

CA017QOF

Noles
1. Arrows indicate actual direction of current flow. Current into a terminal is
a positive value.
2. The pulse generator has the following characteristics: duty cycle -< 50%,
Zo~50

V+

I-H. I-L

n.

3. CL includes probe and jig capacitance.

Voltage Waveforms
I

I

~~10ns

....c:"l90:::.::-Y.----':;:90::::.'~.=!iL
::: -

t- - - - - - - -

3.0

V

I
I

IN

I

_"",.,;1:,:;O',;:;V'J):

:

~.:.11l'::;~:::..._ _ _ _ _ ov

:..---50 1 - ' $ - - -.....1: I
I.-tPHL~

'..... tPLH-.1

I
I

I

-----------~I

I
I

OUT

~3.0V

I
-3.0V

I

I

r;"";:"'-'"---"';;;;;"';';"F-+---

VOL

tTLHI~

9-44

MA75154
RS-232C

FAIRCHILD
A Schlumberger Company

Quad Line Receiver
Linear Division Interface Products

Description

Connection Diagram
16-Lead DIP
(Top View)

The /.IA75154 is a monolithic quad line receiver designed
to satisfy the requirements of the standard interface between data terminal equipment and data communication
equipment as defined by EIA Standard RS-232C. Other applications are for relatively short, single line, point-to-point
data transmission and for level translators. Operation is
normally from a single 5.0 V supply; however, a built-in
option allows operation from a 12 V supply without the
use of additional components. The output is compatible
with most TTL and DTL circuits when either supply voltage
is used.

~r

VCC2

Veel

CONTROLS

14

A

In normal operation, the threshold control terminals are
connected to the VCC1 terminal, lead 15, even if power is
being supplied via the alternate VCC2 terminal, lead 16.
This provides a wide hysteresis loop which is the difference between the positive-going and negative-going threshold voltages. In this mode of operation, if the input voltage
goes to zero, the output voltage will remain LOW or HIGH
as determined by the previous input.

THRESHOLD
CONTROL D

INA

OUT A

IN B

OUT B

INC

OUT C

IN D

CUT 0

GND

R1

Order Information
Device Code

For fail-safe operation, the threshold control terminals are
open. This reduces the hysteresis loop by causing the negative-going threshold voltage to be above zero. The positive-going threshold voltage remains above zero as it is
unaffected by the disposition of the threshold terminals. In
the fail-safe mode, if the input voltage goes to zero or an
open circuit condition, the output will go HIGH regardless
of the previous input condition.

1.IA75154DC
1.IA75154PC

Package Code

68
98

Package Description
Ceramic DIP
Molded DIP

Absolute Maximum Ratings
Storage Temperature Range
Ceramic DIP
Molded DIP
Operating Temperature Range
Lead Temperature
Ceramic DIP (soldering, 60 s)
Molded DIP (soldering, 10 s)
Internal Power Dissipation 1, 2
16L-Ceramic DIP
16L-Molded DIP
Supply Voltage (Lead 15)3
Alternate Supply Voltage (Lead 16)3
Input Voltage 3

• Input Resistance - 3.0 kn To 7.0 kn Over Full
RS-232C Voltage Range
• Input Threshold Adjustable To Meet Fail-Safe
Requirements Without Using External Components
• Built-In Hysteresis For Increased Noise Immunity
• Inverting Output Compatible With DTL Or TTL
• Output With Active Pull-Up For Symmetrical
Switching Speeds
• Standard Supply Voltages - 5.0 V Or 12 V

-65°C to + 175°C
-65°C to + 150°C
O°C to +70°C
300°C
265°C
1.50 W
1.04 W
7.0 V
14 V
±25 V

Notes

1. T J Max~ 175·C for the Ceramic DIP, and 150·C for the Molded DIP.
2. Ratings apply to ambient temperature at 25°C. Above this temperature,
derate the 16L-Ceramic DIP at 10 mwrc, and the 16L·Molded DIP at
8.3 mWrC.

3. Voltage values are with respect to network ground terminal.

9-45

MA75154

,---,

Equivalent Circuit (Note 1)

---------1

COMMON TO 4 CIRCUITS

Vee2 -+---"""1~---'
(NOTE 2)

1 OF 4 RECEIVERS

I

5 kn

I

3.2kH

1.6 kn

1.6 kU

200!l

1.4 k!l

I

I

V C C 1 - + - - -.....

I
I
I
OUT

I
4.2

.....____+-+~

k~l

R1-+-~~

I

GNO-~------~

1 kU

I

I

L _________ ~
Notes
1. Component values shown are normal.
2. When using Vee" Vee2 may be left open or shorted to Vee,. When
using Vee2, Vee, must be left open or connected to the threshold
control leads.

Recommended Operating Conditions
Symbol

Characteristic

Typ

Min

Max

Unit

VCCl

Supply Voltage

4.5

5

5.5

V

VCC2

Supply Voltage

10.8

12

13.2

V

±15

V

VI

Input Voltage

N

Normalized Fan Out from
Each Output

TA

Operating Temperature

10
0

9-46

25

70

°C

MA75154

JlA75154

Electrical Characteristics TA

=

0 to 70 0 e unless otherwise specified. 3

DC Characteristics
Symbol

Characteristic

Condition

Figure

VIH

Input Voltage HIGH

1

VIL

Input Voltage LOW

1

VTH+

Positive-Going
Threshold Voltage

Normal Operation

1

Negative-Going
Threshold Voltage

(VTH+) (VTH-)

Hysteresis

VOH

Output Voltage HIGH

10H =-400 /J.A

1

VOL

Output Voltage LOW

10l = 16 mA

1

RI

Input Resistance

f,VI = -25 V to -14 V

2

Normal Operation

1

Fail-Safe Operation
Normal Operation

Max

Unit

-3.0

V
V

3.0

Fail-Safe Operation

VTH-

Typ2

Min

1

V

0.8

2.2

3.0

0.8

2.2

3.0

-3.0

-1.1

0

0.8

1.4

3.0

0.8

3.3

6.0

0

0.8

2.2

Fail-Safe Operation

2.4

3.5

V

V

V

0.23

0.4

V

3.0

5.0

7.0

kn

f,VI = -14 V to -3.0 V

3.0

5.0

7.0

f,VI = -3.0 V to +3.0 V

3.0

6.0

f,VI = 3.0 V to 14 V

3.0

5.0

7.0
7.0

f,VI = 14 V to 25 V

3.0

5.0

11=0 mA

3

0

0.2

2.0

V

los

Output Short Circuit CurrentI

VCCI = 5.5 V, VI = -5 V

4

-10

-20

-40

mA

ICCI

Supply Current from VCCI

VCCI = 5.5 V, T A = 25°C

5

20

35

mA

ICC2

Supply Current from VCC2

VCC2 = 13.2 V,
TA = 25°C

23

40

mA

Max

Unit

VI (open)

Input Open Circuit Voltage

AC Characteristics VCCI = 5.0 V, TA = 25°C
Symbol

Characteristic

tpLH

Propagation Delay Time, LOW-to-HIGH

tpHL

Condition
CL = 50 pF, RL = 390

Figure

n

Min

Typ
22

ns

Propagation Delay Time, HIGH-to-LOW

20

ns

tTLH

Transition Time, LOW-to-HIGH

9.0

ns

tTHL

Transition Time, HIGH-to-LOW

6.0

ns

Notes
I. Not more than one output should be shorted at a time.
2. All typical values are at V, ~ 5.0 V, TA ~ 25°C.
3. The algebraic convention where the most positive (least negative) limit is
designated as maximum is used in this data sheet for logic and
threshold levels only, e.g., when -3.0 V is the maximum, the minimum
limit is a more negative voltage.

9-47

6

IlA75154

Typical Characteristics
Output Voltage vs Input Voltage (Note 1)
4.0

-"
Vee,

=5.0 V

TA= 25°C

> 3.0
I

~

NORMAL
OPERATION

~

~

I

2.0

/!

r-

FAIL-SAFE
OPERATION

VrH-

VTH-

u

"

f..
VTH+

"
1.0
/I

',',

/!

o
-2S

"

- 4.0

- 3.0

-2.0

-1.0

0

1.0

2.0

3.0

4.0

INPUT VOLTAGE-V

Note
1. For normal operation, the threshold controls are connected to
fail-safe operation, the threshold controls are open.

Vcc,.

For

DC Test Circuits

s.svo

013.2 V

Note
1. Arrows indicate actual direction of current flow. Current into a terminal is
a positive value.

9-48

"

2S

J,LA75154

DC Test Circuits (Cont.)
Test Table
Test

In

T

VOH

Open

Open

IOH

4.5 V

VOH

Open

Open

IOH

Open

10.8 V

VTH+ Min.
VTH- Min (fail-safe)

VOH

0.8 V

Open

IOH

5.5 V

Open

VOH

0.8 V

Open

IOH

Open

13.2 V

VTH- Min (normal)

VOH

Note 1

Lead 15

IOH

5.5 V and TH

Open

VOH

Note 1

Lead 15

IOH

TH

13.2 V

VIL Max.
VTH- Min (normal)

VOH

-3.0 V

Lead 15

IOH

5.5 V and TH

Open

VOH

-3.0 V

Lead 15

IOH

TH

13.2 V

VIH Min. VTH+ Max.
VTH- Max (fail-safe)

VOL

3.0 V

Open

IOL

4.5 V

Open

VOL

3.0 V

Open

IOL

Open

10.8 V
Open

Measure

Open circuit input
(fail-safe)

VIH Min.
VTH+ Max (normal)
VTH- Max (normal)

Out

VCC1

VCC2

Open

VOL

3.0 V

Lead 15

IOL

4.5 V and TH

VOL

3.0 V

Lead 15

IOL

TH

10.8 V

VOL

Note 2

Lead 15

IOL

5.5 V and TH

Open

VOL

Note 2

Lead 15

IOL

TH

13.2 V

Notes
1. Momentarily apply -5.0 V. then 0.8 V.
2. Momentarily apply 5.0 V. then ground.

Figure 2

Test Table

RI

Op::~vo (::PEN
.L
-=

I,

0

I: -

0
15

~IIN
V,

16

Vee, VCC2 -

TH

OPEN
---.1
"I
OUT

I

I OPEN
I

L __ - T --. _J
GND

9-49

VCC2

Open

Open

GND

Open

Open

Open

Open

Open

1
-=

VCC1

5.0 V

Lead 15

TH and 5.0 V

Open

GND

GND

Open

Open

Open

12 V

Open

Open

GND

Lead 15

TH

12 V

Lead 15

TH

GND

Lead 15

TH

Open

IlA75154

DC Test Circuits (Cont.)

Figure 4

los (Note 1)
OPEN

Figure 3

V1(open)

5'5V:J0_10--0 3,2
1

5.5 V

OPEN

OPEN

Veel

VCC2

R1

_k.-16_~

I

v
OUT/

-5.0 V

/
15
16
- - Vq:1 VCC2 - -

Rl

~IOS

I

GND

OUT/

+ 1

1

-.-l

/

L __ -T- __ J

OPEN

><>---=-='-+-I

VI(OPEN)L

---T---

~

J

-OPEN

Figure 5

Icc (Note 2)

5'5V)C:~E-IICC~13'2V

GND

t

OPEN

Test Table

TH

VCC1

rTi
I ::

VCC2

Open

5.5 V

Open

Lead 15

5.5 V

Open

Open

Open

13.2 V

Lead 15

TH

13.2 V

5.0 V

-

t

Vee1 VCC2

OPEN

-~II
R1

.><:>-_-""ou~T-r-1-OPEN

Notes
1. Each output is tested separately.
2. All four line receivers are tested simultaneously. Arrows indicate actual
direction of current flow. Current into a terminal is a positive value,

9-50

MA75154

AC Test Circuit
5.0 V

IN

OPEN

j--TH
PULSE
GENERATOR
(NOTE 1)

_

OPEN

15_~_~_
VCC1

VCC2

OUT

R1

liN

'I

RL

=

390 11

oUTI

I

I

L----T----J

I

CL == 50 pF
(NOTE 2)

GND

•

Voltage Waveforms

Notes
1. The pulse generator has the following characteristics:
tw ~ 200 ns, duty cycle';; 20%, Zo ~ 50 n.
2. C L includes probe and jig capacitance.
3. All diodes are 1N3064.

9-51

J.lA75450/60/70 Series

F=AIRCHILO

Dual Peripheral Drivers

A Schlumberger Company

Linear Division Interface Products

Description

The JJA75400 series offers flexibility in designing high
speed logic buffers, power drivers, lamp drivers, line drivers, MOS drivers, clock drivers, and memory drivers.

The JJA75400 series of devices are dual high speed general purpose interface drivers that convert TTL and DTL
logic levels to high current drive capability. The JJA75450
features two TTL NAND gates and two uncommitted transistors. The JJA 75451, JJA 75452, and JJA 75453 feature two
standard series 74 TTL gates in AND, NAND and OR
configurations respectively, driving the base of two high
voltage, high current, uncommitted collector output transistors.

•
•
•
•
•

No Latch·Up Up To 55 V
High Output Current Capability
TTL Or DTL Input Compatibility
Input Clamp Diodes
5.0 V Supply Voltage

Absolute Maximum Ratings
JJA75451
JJA75452
JJA75453
JJA75450
Storage Temperature Range 1
Ceramic DIP

JJA75461
JJA75462
JJA75471
JJA75472

-65°C to +175°C

-65°C to + 175°C

-65°C to + 150°C

-65°C to + 150°C

Operating Temperature Range

O°C to +70°C

O°C to +70°C

Lead Temperature
Ceramic DIP (soldering, 60 s)

300°C

300°C

265°C

265°C

Molded DIP and SO-8

Molded DIP and SO-8 (soldering, 10 s)
Internal Power Dissipation 2 , 3
14L-Ceramic DIP

1.36 W

14L-Molded DIP

1.04 W

8L-Ceramic DIP

1.30 W

8L-Molded DIP

0.93 W

SO-8

0.81 W

Supply Voltage 4

7.0 V

Input Voltage4

5.5 V

5.5 V

Inter-emitter Voltage5

5.5 V

5.5 V

Vcc to Substrate Voltage 9

35 V

Collector to Substrate Voltage 9

35 V

Collector to Base Voltage

35 V

Collector to Emitter Voltage6

30 V

Emitter to Base Voltage
Output Voltage4 and 7

5.0 V

Continuous Collector Current8

300 mA

7.0 V

Table 2
300 mA

Continuous Output Current8
Notes
1. 1lA75452 is Molded DIP and 50-8 only.
2. TJ Max -175·C for the Ceramic DIP, and 150·C for the Molded DIP.
3. Ratings apply to ambient temperature at 25·C. Above this temperature,
derate the 14L-Ceramic DIP at 9.1 mW/·C, the 14L-Molded DIP at 8.3
mWrC, the 8L-Ceramic DIP at 8.7 mWrC, and the 8L-Molded DIP at

5. This is the voltage between two emitters of a mulitiple emitter input
transistor.
6. This value applies when the base-emitter resistance (RBE) is equal to or
less than 500 n.
7. This is the maximum Yoltage which should be applied to any output
when it is in the off state.
S. Both halves of these dual circuits may conduct rated current
simultaneously.
9. For the !lA75450 only, the substrate (Lead 8), must always be at the
most negative device voltage for proper operation.

7.5 mWrC.
4. Voltage values are with respect to network ground terminal unless
otherwise specified.

9-52

IlA75450/60/70 Series

Test Table 1 Operating Temperature Range and Supply Voltage Range
Symbol

Characteristic

TA

Operating Temperature

Vee

Supply Voltage

!1A75000 Series

O°C to 70°C
+4.75 V to +5.25 V

Test Table 2

VOH
Vs

!1A75471
!1A75472

!1A7545X

!1A75461
J1A75462

Maximum Output

30 V

35 V

80

Maximum, Latch-up

20

V

30 V

55

Symbol

Characteristic

V
V

Equivalent Circuit

J.tA75450

Dual Positive AND Peripheral Drivers

..---;---T"-......- - - - v c c

Connection Diagram
14-Lead DIP
(Top View)

1.6k

4k

130

1E
GATE
INA

1B

1C

1B
SUB
G

1C

4k

1E

1.6 k

130

GNO

2C
OUT

Logic Function

B

Positive Logic: Z = XY (gate only)
Z = XY (gate and transistor)

IN

-+--i--+

2B
2E

Order Information
Device Code
J.tA75450DC
J.tA75450PC

Package Code
6A

9A

~~-~--~-~~--------GNO

Package Description
Ceramic DIP
Molded DIP

All resistor values in ohms

9-53

J.lA75450/60/70 Series

IlA75450
Electrical Characteristics Over recommended operating temperature and supply voltage ranges, (use Test
Table 1), unless otherwise indicated.
DC Characteristics
TTL Gates
Symbol

Characteristic

Test
Figure

Condition

Min

Typl

Max

Unit
V

VIH

Input Voltage HIGH

1

VIL

Input Voltage LOW

2

0.8

V

VIC

Input Clamp Diode Voltage

Vcc = Min, II = -12 mA

3

-1.5

V

VOH

Output Voltage HIGH

Vcc = Min, Vil = 0.8 V,
10H = -400 /lA

2

VOL

Output Voltage LOW

Vcc = Min, VIH = 2.0 V,
10L = 16 mA

1

II

Input Current at
Maximum Input
Voltage

Input A

Vcc = Max, VI = 5.5 V

4

Input Current HIGH

Input A

IIH

2.0

2.4

3.3
0.22

Input G
Vcc = Max, VI = 2.4 V

4

0.4

V

1.0

mA

2.0

mA

40

!lA

80

Input G
Input A

V

Vcc = Max, VI = 0.4 V

-1.6

3

IlL

Input Current LOW

los

Input G
Output Short Circuit Current2

Vcc = Max

5

ICCH

Supply Current HIGH

Vcc = Max, VI = 0 V

6

ICCl

Supply Current LOW

Vcc = Max, VI = 5.0 V

mA

-3.2
-18

-55

mA

2.0

4.0

mA

6.0

11

Output Transistors (Note 4)
Symbol

Characteristic

Condition

Min

V

5.0

V

V(BR)CER

Collector to Base
Breakdown Voltage

Ic = 100 /lA, RBE = 500

V(BR)EBO

Emitter to Base
Breakdown Voltage

IE=100 /lA, Ic=O!lA

hFE

Static Forward Current
Transfer Rati0 3

VCE = 3.0 V, Ic = 100 mA, TA = 25°C

25

VCE = 3.0 V, Ic = 300 mA, T A = 25°C

30

VCE = 3.0 V, Ic = 100 mA

20

VCE = 3.0 V, Ic = 300 mA

25

VSE(sat)
VCE(sat)

Collector to Emitter Saturation
Voltage 3

18 = 10 mA, Ic = 100 mA

0.85

1.0

IB = 30 mA, Ic = 300 mA

1.05

1.2

IB=10 mA, Ic=100 mA

0.25

0.4

IB = 30 mA, Ic = 300 mA

0.5

0.7

9-54

Unit

30

Ic=100 /lA, IE=O /lA

Base to Emitter Voltage3

Max

V

Collector to Base
Breakdown Voltage

.n

Typl

35

V(BR)CBO

V
V

IlA75450/60/70 Series

fJA75450 (Cont.)
Electrical Characteristics Over recommended operating temperature and supply voltage ranges, (use Test
Table 1), unless otherwise indicated.
AC Characteristics Vcc = 5.0 V, TA = 25°C
TTL Gates

Symbol

Characteristic

tPLH

Propagation Delay Time,
LOW to HIGH

tpHL

Propagation Delay Time,
HIGH to LOW

Condition

CL = 15 pF, RL = 400

n

Test
Figure

J.lA75450B
Min

12

Typ

Max

Unit

12

22

ns

8.0

15

ns

Typ

Max

Unit

8.0

15

ns

12

20

Output Transistors
Symbol

Condition 3

Characteristic

Test
Figure

Min

td

Delay Time

tr

Rise Time

ts

Storage Time

7.0

15

ns

tf

Fall Time

6.0

15

ns

Typ

Max

Unit

20

30

ns

20

30

ns
ns

Ic = 200 mA, VSE(off) = -1.0 V,
IS(I) = 20 mA, IS(2) = -40 mA,
CL=15 pF, RL=50

13

n

ns

--"--,"

Gates and Transistors Combined
Symbol

Condition

Characteristic

Ic= 200 mA,
CL=15 pF,
RL = 50 n

Test
Figure

Min

tpLH

Propagation Delay Time, LOW to HIGH

tpHL

Propagation Delay Time, HIGH to LOW

tTLH

Transition Time, LOW to HIGH

7.0

12

tTHL

Transition Time, HIGH to LOW

9.0

15

VOH

HIGH Level Output Voltage After
Switching

VI =20 V,
Ic"'300 mA,
RSE = 500 n

Notes
1. All typical values are at Vee ~ 5.0 v. TA ~ 25°C.
2. Not more than one output should be shorted at a time.

3. These parameters must be measured using the pulse techniques.
tw = 300 J.lS, duty cycle < 2%.
4. Voltage and current values shown are nominal; exact values vary slightly

with transistor parameter.

9-55

14

15

VI-6.5

ns
mV

•

J-lA75450/60/70 Series

Truth Table

~75451, ~75461, ~75471

Dual Positive AND Peripheral Drivers

Output

Inputs

Connection Diagram
8-Lead DIP and 50-8 Package
(Top View)

IN A1 LJ-----,

Vee

INA2

IN B2

OUT A

INB1

GND

n-+----'

Device Code

OUT B

Package Code

Package Description

6T
KC
9T
9T
9T

Ceramic DIP
Molded Surface Mount
Molded DIP
Molded DIP
Molded DIP

Equivalent Circuit (1/2 of Circuit)

,---_-_-----vcc
4k

1.6k

130

OUTPUT

INPUTS

L
L

L

H

H
H

L

L
L
L

H

H

H = HIGH Level, L

Order Information
1lA75451RC
1lA75451SC
MA75451TC
MA75461TC
1lA75471TC

X

y

{_+-_..
t--~--~~---+-*--~--GND

Notes
Component values shown are nominal.
All resistor values in ohms.

9-56

= LOW

Level

Z
(on
(on
(on
(off

state)
state)
state)
state)

MA75450/60/70 Series

IlA75451
Electrical Characteristics Over recommended operating temperature and supply voltage ranges, (use Test
Table 1), unless otherwise indicated.
DC Characteristics

Symbol

Characteristic

Condition

Test
Figure

!1A75451
Min

Typ1

Max

2.0

Unit

VIH

Input Voltage HIGH

7

VIL

Input Voltage LOW

7

0.8

V

VCD

Input Clamp
Diode Voltage

Vcc= Min,
11=-12mA

8

-1.5

V

10H

Output Current HIGH 2

Vcc= Min,
VIH = 2.0 V

7

100

p.A

VOL

Output Voltage LOW

Vcc= Min,
VIL = 0.8 V,
10L = 100 mA

7

0.25

0.4

V

0.5

0.7

Vcc= Min,
VIL = 0.8 V,
10L = 300 mA

V

II

Input Current at Maximum
Input Voltage

Vcc = Max,
VI = 5.5 V

9

1.0

mA

IIH

Input Current HIGH

Vcc= Max,
VI = 2.4 V

9

40

p.A

IlL

Input Current LOW

Vcc= Max,
VI = 0.4 V

8

-1.0

-1.6

mA

ICCH

Supply Current HIGH

Vcc = Max,
VI = 5.0 V

10

7.0

11

mA

ICCL

Supply Current LOW

Vcc= Max,
VI=O V

52

65

mA

Typ

Max

18

25

ns

25

25

ns
ns

AC Characteristics Vcc = 5.0 V, TA = 25°C
Symbol

Characteristic

tpLH

Propagation Delay Time, LOW
to HIGH

tpHL

Propagation Delay Time, HIGH
to LOW

Condition
10"'200 mA,
CL = 15 pF,
RL = 50

Test
Figure

Min

14

n

tTLH

Transition Time, LOW to HIGH

5.0

8.0

tTHL

Transition Time, HIGH to LOW

7.0

12

VOH

HIGH Level Output Voltage After
Switching 3

10"'300 mA

9-57

15

VI-6.5

Unit

ns
mV

•

jlA75450/S0/70 Series

1lA75461, 1lA75471
Electrical Characteristics Over recommended operating temperature and supply voltage ranges, (use Test
Table 1), unless otherwise indicated.
DC Characteristics
~75461

Test
Figure

Min

VIH

Input Voltage HIGH

7

2.0

VIL

Input Voltage LOW

7

VIC

Input Clamp
Diode Voltage

Vce= Min,
11=-12mA

8

10H

Output Current HIGH 2

Vee = Min,
VIH = 2.0 V

7

VOL

Output Voltage LOW

Vee = Min,
VIL = 0.8 V,
10L = 100 mA

7

Symbol

Characteristic

Condition

Typl

IlA75471
Max

Typl

Min

-1.2

Unit
V

0.8
-1.5

-1.2

100

Vee = Min,
VIL = 0.8 V,
10L = 300 mA

Max

2.0
0.8

V

-1.5

V

100

IlA

V

0.16

0.4

0.16

0.4

0.35

0.7

0.35

0.7

II

Input Current at Maximum
Input Voltage

Vee = Max,
VI = 5.5 V

9

1.0

1.0

mA

IIH

Input Current HIGH

Vee = Max,
VI = 2.4 V

9

40

40

IlA

IlL

Input Current LOW

Vee = Max,
VI = 0.4 V

8

ICCH

Supply Current HIGH

Vce= Max,
VI = 5.0 V

10

ICCL

Supply Current LOW

Vcc= Max,
VI=O V

-1.0

-1.6

-1.0

-1.6

mA

8.0

11

8.0

11

mA

61

76

61

76

mA

AC Characteristics Vcc = 5.0 V, TA = 25°C

Symbol

Characteristic

Condition

Test
Figure

~75471

IlA75461
Min

Typ

Max

Typ

Max

Unit

35

55

35

55

ns

25

40

25

40

ns
ns

Min

tpLH

Propagation Delay Time, LOW
to HIGH

tpHL

Propagation Delay Time, HIGH
to LOW

tTLH

Transition Time, LOW to HIGH

8

20

8.0

20

tTHL

Transition Time, HIGH to LOW

10

20

10

20

VOH

HIGH Level Output Voltage
After Switching 3

10""200 mA,
CL=15pF,
RL = 50 n

10""300 mA

Notes
1. All typical values are at Vee = 5.0 V, TA = 25°C.
2. VOH = 30 V for pA75451 , 35 V for I'A75461, 80 V for pA75471.
3. V, = 20 V for pA75451, 30 V for I'A75461, 55 V for I'A75471.

9-58

14

15

V!-10

VI-18

ns
mV

JIA75450/60/70 Series

Truth Table

f.lA75452, f.lA75462, f.lA75472
Dual Positive NAND Peripheral Driver

Inputs

Connection Diagram
8-Lead DIP and 80-8 Package
(Top View)

Output

2
L
L
H
H

INAI

L
H
L
H

H - HIGH Level. L - LOW Level
INA2

OUT A

GND

Order Information
Device Code

Package Code

J.lA75452SC
J.lA75452TC
J.LA75462TC
J.lA75472TC

Package Description
Molded
Molded
Molded
Molded

KC
9T
9T
9T

Surface Mount
DIP
DIP
DIP

Equivalent Circuit (112 of Circuit)

r--_.-----.--......- - -vcc
4kn

1.6kn

1.6 kn

130n

UTPUT

INPUTS[_+-~

Notes
Component values shown are nominal.
All resistor values in ohms.

9-59

H
H
H
L

(off
(off
(off
(on

state)
state)
state)
state)

~A75450/60/70

Series

pA75452
Electrical Characteristics Over recommended operating temperature and supply voltage ranges, (use Test

Table 1), unless otherwise indicated.
DC Characteristics

J,LA75452B

Test
Figure

Min

VIH

Input Voltage HIGH

7

2.0

Vil

Input Voltage LOW

7

0.8

V

VIC

Input Clamp
Diode Voltage

Vcc= Min,
11=-12 rnA

8

-1.5

V

10H

Output Current HIGH 2

Vcc= Min,
Vil = 0.8 V

7

100

JlA

VOL

Output Voltage LOW

Vcc = Min,
VIH = 2.0 V,
10l = 100 rnA

7

0.25

0.4

V

0.5

0.7

Symbol

Characteristic

Condition

Vcc= Min,
VIH = 2.0 V,
10l = 300 rnA

Typ1

Max

Unit
V

II

Input Current at Maximum
Input Voltage

Vcc= Max,
VI = 5.5 V

9

1.0

rnA

IIH

Input Current HIGH

Vcc= Max,
VI = 2.4 V

9

40

JJ.A

III

Input Current LOW

Vcc= Max,
VI = 0.4 V

8

-1.0

-1.6

rnA

ICCH

Supply Current HIGH

Vcc= Max,
VI =0 V

10

11

14

rnA

ICCl

Supply Current LOW

Vcc= Max,
VI = 5.0 V

56

71

rnA

Typ

Max

25

35

ns

22

35

ns
ns

J.LA75452
AC Characteristics Vcc = 5.0 V, TA = 25°C
Symbol

Characteristic

Condition

Test
Figure

Min

tplH

Propagation Delay Time, LOW
to HIGH

tpHl

Propagation Delay Time, HIGH
to LOW

tTlH

Transition Time, LOW to HIGH

5.0

8.0

tTHl

Transition Time, HIGH to LOW

7.0

12

VOH

HIGH Level Output Voltage After
Switching 3

10"'200 rnA,
Cl=15pF,
Rl = 50 .n

10"'300 rnA

9-60

14

15

VI-6.5

Unit

ns
mV

MA75450/60/70 Series

iJ.A75462! iJ.A75472
Electrical Characteristics Over recommended operating temperature and supply voltage ranges, (use Test
Table 1), unless otherwise indicated.
DC Characteristics

Symbol

Characteristic

Condition

IlA75462

Test
Figure

Min
2.0

VIH

Input Voltage HIGH

7

VIL

Input Voltage LOW

7

VCD

Input Clamp
Diode Voltage

Vcc= Min,
11=-12 mA

8

10H

Output Current HIGH 2

Vcc= Min,
VIL = 0.8 V

7

VOL

Output Voltage LOW

Vcc= Min,
V1H =2.0 V,
10L = 100 mA

7

Typ1

IlA75472
Max

Typ1

Min

Unit
V

0.8
-1.2

-1.5

-1.2

100

Vcc= Min,
VIH =2.0 V,
10L = 300 mA

Max

2.0
0.8

V

-1.5

V

100

!-LA
V

0.16

0.4

0.16

0.4

0.35

0.7

0.35

0.7

..

-----

,.

II

Input Current at Maximum
Input Voltage

Vcc= Max,
VI =5.5 V

9

1.0

1.0

mA

IIH

Input Current HIGH

Vcc= Max,
VI = 2.4 V

9

40

40

IlA

IlL

Input Current LOW

Vcc= Max,
VI = 0.4 V

8

-1.0

-1.6

-1.0

-1.6

mA

ICCH

Supply Current HIGH

Vcc= Max,
VI=O V

10

13

17

13

17

mA

ICCL

Supply Current LOW

Vcc= Max,
VI = 5.0 V

65

76

65

76

mA

Typ

Max

Unit

65

ns

AC Characteristics Vcc = 5.0 V, T A = 25°C

Symbol

Characteristic

Condition

Test
Figure

!lA75472

!lA75462
Min

Typ

Max

Min

50

65

45

40

50

30

50

ns

Transition Time, LOW to HIGH

12

25

13

25

ns

Transition Time, HIGH to LOW

15

20

10

20

tpLH

Propagation Delay Time, LOW
to HIGH

tpHL

Propagation Delay Time, HIGH
to LOW

tTLH
tTHL
VOH

HIGH Level Output Voltage
After Switching 3

10""200 mA,
CL=15pF,
RL = 50

14

.n

10""300 mA

Notes
1. All typical values are at Vee = 5.0 V, TA = 25"C.
2. VOH = 30 V for ",,75452, 35 V for ",,75462, 80 V for ",,75472.
3. Vs = 20 V for ",,75452, 30 V for ",,75462 and 55 V for ",,75472.

9-61

15

VI-10

VI-18

ns
mV

IlA75450/S0/70 Series

Truth Table

J.lA75453
Dual Positive OR Peripheral Drivers

Inputs

Connection Diagram
8·Lead DIP and 50·8 Package
(Top View)

INA1

Vee

IN A2

IN 92

OUT A

IN 81

GND

2
L
L
H
H
H

~

OUT B

Device Code

Package Code

Package Description

6T
KG
9T

Ceramic DIP
Molded Surface Mount
Molded DIP

Equivalent Circuit (112 of Circuit)
r-------~--------~-----.--------""""VCC

1k

500

~----~----~--------------__~-4----~'GND

Notes
Component values shown are nominal.
All resistor values in ohms.

9-62

L
H
L
H

HIGH Level, L ~ LOW Level

Order Information
pA75453RG
pA75453SG
pA75453TG

Output

L
H
H
H

(on
(off
(off
(off

state)
state)
state)
state)

JlA75450/60/70 Series

MA75453
Electrical Characteristics Over recommended operating temperature and supply voltage ranges, (use Test
Table 1), unless otherwise indicated.
DC Characteristics
Symbol

Characteristic

Condition

Test
Figure

Min

2.0

Typl

Max

Unit

VIH

Input Voltage HIGH

7

VIL

Input Voltage LOW

7

0.8

V

V

VIC

Input Clamp Diode Voltage

Vcc = Min, II = -12 mA

8

-1.5

V

10H

Output Current HIGH

Vcc = Min, VOH = 30 V,
VIH = 2.0 V

7

100

MA

VOL

Output Voltage LOW

Vcc = Min, VIL = 0.8 V,
10L = 100 mA

7

0.25

0.4

V

0.5

0.7

Vcc = Min, VIL = 0.8 V,
IOL = 300 mA
II

Input Current at Maximum Input
Voltage

Vcc = Max, VI = 5.5 V

9

1.0

IIH

Input Current HIGH

Vcc = Max, VI = 2.4 V

9

IlL

Input Current LOW

Vcc = Max, VI = 0.4 V

8

-1.0

ICCH

Supply Current HIGH

Vcc = Max, VI = 5.0 V

11

ICCL

Supply Current LOW

Vcc = Max, VI = 0 V

mA

40

IlA

-1.6

mA

8.0

11

mA

54

68

mA

Typ

Max

Unit

18

25

ns

16

25

ns
ns

AC Characteristics Vcc = 5.0 V, TA = 25°C

Symbol

Characteristic

Condition

Test
Figure

MA75453
Min

tpLH

Propagation Delay Time, LOW to
HIGH

tpHL

Propagation Delay Time, HIGH to
LOW

tTLH

Transition Time, LOW to HIGH

5.0

8.0

tTHL

Transition Time, HIGH to LOW

7.0

12

VOH

HIGH Level Output Voltage After
Switching

10""200 mA,
CL = 15 pF,
RL = 50

14

n

VI = 20 V,
10""300 mA

Notes
1. All typical values are at Vee - 5.0 V, TA - 25°C.

9-63

15

VI -6.5

ns
mV

•

JIA75450/60/70 Series

Characteristics Measurement Information
DC Test Circuits (Note 1)
Figure 1 VIH. VOL (Note 2)

Figure 4

Vee

Vee

10L

V,H

I.. IIH (Note 3)

VI-----f --,

--'=~[)~-T"""::·==-'

OPEN

t

I

t

Figure 5

CR00370F

los (Note 5)
Vee

Figure 2 Vil. VOH (Note 3)
Vee

~
V,L

VOH

1t

-=

Figure 6

ICCH. ICCl (Note 6)

V'-"""'1--r""\.

OPEN

Figure 3 VIC. III (Notes 3 and 4)
4.5 V

---====
..,!Lj

VI _ _ _ _

'lfT
! 1

Vee

--"1.._'

OPEN

Figure 7 VIH. Vil. 10H. VOL (Note 3)

CROO390F

V,H
VOL

Notes
1. Arrows indicate actual direction of current flow. Current into a terminal is
a positive value.
2. Both inputs are tested simultaneously.
3. Each input is tested separately.
4. When testing V'c, input not under test is open.
5. Eaeh gate is tested separately.
6. Both gates are tested simultaneously.

1
9-64

-=

t

MA75450/60/70 Series

Characteristics Measurement Information (Cont.)

Figure 9

110 IIH (Note 1)
Vee

DC Test Circuits (Note 5)
ii, hH

Test Table 2

V,

Input
Under
Test

Other
Input

Apply

Measure

f.lA754X1

VIH
VIL

VIH
Vee

VOH
IOL

IOH
VOL

f.lA754X2

VIH
VIL

VIH
Vee

IOL
VOH

VOL
IOH

/JA754X3

VIH
VIL

GND
VIL

VOH
IOL

IOH
VOL

Circuit

Figure 8

-A,B

Output
B,A

Figure 10
(Note 4)

CIRCUIT y
UNDER
TEST

OPEN

ICCH' ICCl for AND, NAND Circuits

VIC, III (Note 1)

Vec

OPEN

ICCH • •ICCL

Vee

4.5V----....,

r

V,--t--+--r-,

CIRCUIT Y
UNDER

B,A

OPEN

TEST

I ___
L

Figure 11
Notes
1. Each input is tested separately.
2. When lesting I'L J.lA75400, Ihe inpul not under test is grounded. For all
other circuits it is at 4.5 V.
3. When testing VIC. input not under test is open.
4. Both gates are tested simultaneously.
5. Arrows indicate actual direction of current flow. Current into a terminal is
a position value.

II

ICCH' ICCl for OR, NOR Circuits (Note 4)

VI----+~I""'_

I

L ___

9·65

1

I
I
I

J

J1A75450/S0/70 Series

Characteristics Measurement Information (Cont.)
Switching Characteristics
Figure 12

Propagation Delay Times, Each Gate
()lA75450 Only)
INPUT

OUTPUT

5V

90%

I

rl
10%

1/

r

......---O.5~s

IPLH_

1. The pulse generator has the following characteristics:
PAR -1.0 MHz, Zo '" 50 n.
2. CL includes probe and jig capacitance.
3. All diodes are FD777.

90%

3V

1.5 V

~O%1 - - - - - 0 V

--

I_IPHL

v

~.:

OUTPUT _ _ _ _.J

Notes

r"10ns

Figure 13 Switching Times, Each Transistor
(IlA75450 Only)
-1 V

INPUT

10 V

1 kn

+--.....--1-0UTPUT
O.1pF

62

INPUT

son

n

d«

-----.90~~~,~+-------3V

Rl.=500

CL = 15 pF
(Note 2)

OUTPUT-_~=

Notes
1. The pulse generator has the following characteristics:
duty cycle .;; 1%, Zo '" 50 n.
2. CL includes probe and jig capacitance.

9-66

~i'~",~_o_%_______

~-i-

0 V

~_________ ~
I /~10~~~'----

MA75450/60/70 Series

Characteristics Measurement Information (Cant.)
Switching Characteristics
Figure 14 Switching Times of Complete Drivers
INPUT

2.4 V

-I

'OV

INPUT

r-~5 ns

lJtt:~10ns

~1:VI

3V

1.5 V
_10_"'_______.,;,10;. '4;.;."'-I+________

,A75451

p.A75450

p.A75453

0V

---

INPUT

1:: :90:: -'"__0_.5_"

so: 1:lf-~1-0n_s

--3

1.5V
~10~"'~

V

______ OV

0.4 V

Notes

tPLHltc'" VOH

OUTPUT---~~

1. The pulse generator has the following characteristics:
PRR = 1.0 MHz, Zo '" 50 n.
2. When testing IlA75450, connect output Y to transistor base with a
500 n resistor to ground.
3. CL includes probe and jig capacitance.

....._______ 50'" I---VOL
..,;,10~"';;",(

trLH-j

I-

WFOO100F

Figure 15 Latch-up Test of Complete Drivers
Vee = 2OVto 55V
(T.ble 2)

I

rS5n.

V

1

-2r{%

INPUT

'.5

~:~::~

JlA75453

' - -........-..-'OUTPUT

r::,on.

3V

1.5v

'0%
1
.;.:'O%;;;..._ _ _ _ _ _ _ _ _ _.....;;~_r.:_+.

-------0 v

1 - - - - - - -40 ....
' ~_ _ _ _ _~.~I

INPUT:jt.-';,.,t: "":,. .5_n·______...,~=_f_s'_on_.--3V
p.A7S452

10
CL=15pF
(Note 3)

0.4 V

l1t

OUTPUT

Notes
1. The pulse generator has the following characteristics:
PRR = 12.5 kHz, Zo '" 50 n.
2. When testing !lA75450, connect output Y to transistor base with a
500 n resistor from there to ground, and ground the substrate terminal.
3. CL includes probe and jig capacitance.

9-67

1.5 V

~~'·..

"~...;,;;.O%;::..,_ _ _ _'OV

J-lA75491 • J.LA75492

FAIRCHILD

MOS To LED Segment
And Digit Drivers

A Schlumberger Company

Linear Division Interface Products

Description

Connection Diagram
14-Lead DIP
(Top View)

The JJA75491 LED Quad Segment Digit Driver interfaces
MOS signals to common cathode LED displays. High output current capability makes the device ideal for use in
time multiplex systems using the segment address or digit
scan method of driving LEDs to minimize the number of
drivers required.
The JJA75492 Hex LED/Lamp Driver converts MOS signals
to high output currents for LED display digit select or lamp
select. The high output current capability makes this device ideal for use in time multiplex systems using the segment address or digit scan method of driving LEDs to
minimize the number of drivers required.

IE

4E

lC

4C

Yss

GND

1lA75491
• 50 mA Source Or Sink Capability
• Low Input Currents For MOS Compatibility
• Low Standby Power
• Four High Gain Darlington Circuits

2C

3C

2E

3E

IN 3

1lA75492
• 250 mA Sink Capability
• MOS Compatible Inputs
• Low Standby Power
• Six High Gain Darlington Circuits

Order Information
Device Code

Package Code

JJA75491 PC

9A

Package Description
Molded DIP

Connection Diagram
14-Lead DIP
(Top View)

Absolute Maximum Ratings
Storage Temperature Range
Operating Temperature Range
Lead Temperature
Molded DIP (soldering, 10 s)
Internal Power Dissipation 1,2
Supply Voltage
Input Voltage3
Collector (Output) Voltage 4
Collector (Output) to Input Voltage
Emitter to Ground Voltage
(VI;;;' 5.0 V) JJA75491
Emitter to Input Voltage JJA75491
Continuous Collector Current
JJA75491
JJA75492
Collector Output Current
(all collectors) JJA75492

IN4

INI

-65°C to +150°C
O°C to +70°C
265°C
1.04 W
10 V
-5.0 V to Vss
10 V
10 V

lC

2C

IN2

10 V
5.0 V

GND

50 mA
250 mA

IN3

3C

600 mA
4C

Notes
1. T.J Ma)l' = 150°C.
2. Ratings apply to ambient temperature at 2S'C. Above this temperature,
derate at 8.3 mW/'C.
3. The input is the only device terminal which may be negative with
respect to ground.
4. Voltage values are with respect to network ground terminal unless

Order Information
Device Code
JJA75492PC

otherwise noted.

9-68

Package Code
9A

Package Description
Molded DIP

J.LA75491 • J.LA75492

Equivalent Circuit (1/3 of /lA75492)

Equivalent Circuit (1/2 of /lA75491)
COLLECTOR

IN

-t:

OUT

COLLECTOR

4kn

4kO
IN-_r-'No
___

4.4kO

4.4 kH

IN--P-'Nor-t-I:..

6 kn

7 kU

7 kH

7kn

6 kn

EMITTER

430

430 !l

7kO

n

Vss--4O------+--....

vss-->-----f---f-.....---.,KI--I
GND

OUT

IN

GND

EMITTER

Truth Tables

/lA75492

/lA75491
OUTPUTS

INPUTS

OUTPUTS 1C-6C

L

H

H

L

INPUTS
1E-4E
L

1C-4C

L

H

H

/lA75491
Electrical Characteristics Vss = 10 V, TA =

H

H = HIGH Level, L = LOW Level

L

ooe

to 70 oe, unless otherwise specified.

DC Characteristics
Symbol
VCEL

ICH

Typ

Max

VI = 8.5 V through 1.0 kn,
10L = 50 mA, VE = 5.0 V,
TA = 25°C

Condition

0.9

1.2

V

VI = 8.5 V through 1.0 kn,
10L = 50 mA, VE = 5.0 V

0.9

1.5

V

p.A

Characteristic
LOW Level Collector
to Emitter Voltage

Collector Current HIGH

Min

VCH=10V

VE = 0 V,
VI = 0.7 V

100

VCH = 10 V

VE = 0 V,
II = 40 p.A

100

10L = 20 mA

II

Input Current at Maximum
Input Voltage

VI = 10 V

IER

Reverse Biased
Emitter Current

Ic = 0 V, VI = 0 V, VE = 5.0 V

Iss

Supply Current

9-69

2.0

Unit

3.3

mA

100

p.A

1.0

mA

J,LA75491 • J,LA75492

JlA75491 (Cont.)
Electrical Characteristics
AC Characteristics Vss = 7.5 V, TA = 25°C
Symbol
tpHL

Characteristic
Propagation Delay Time

tpLH

Min

Condition
RL = 200 .11, VIH = 4.5 V
CL = 15 pF, VE = 0 V

Typ

Max

Unit

20

ns

100

ns

J.tA75492
Electrical Characteristics Vss = 10 V, TA = O°C to 70°C, unless otherwise specified.
DC Characteristics
Symbol
VOL

IOH

Characteristic
Output Voltage LOW

Output Current HIGH

II

Input Current at Maximum
Input Voltage

Iss

Supply Current

Typ

Max

VI = 6.5 V through 1.0 kn,
IOL = 250 mA, TA = 25°C

Condition

Min

0.9

1.2

VI = 6.5 V through 1.0 kn,
IOL = 250 mA

0.9

1.5

VOH=10V

11=40 pA

200

VOH=10 V

VI = 0.5 V

200

VI= 10 V

IOL = 20 mA

2.0

Unit
V

JJ.A

3.3

mA

1.0

mA

Max

Unit

AC Characteristics Vss = 7.5 V, TA = 25°C
Symbol
tpHL

Characteristic
Propagation Delay Time

tpLH

Condition
RL = 39 .11, VI = 7.5 V
CL = 15 pF

Test Circuit and Waveforms
7.5 V

PULSE
GENERATOR
(NOTE 1)

1 kH

I--'V"""'-i

>C>--'-_-Vo

Notes
1. The pulse generator has the following characteristics:
PRR - 100 kHz. tw - 1.0 jlS, Zo - 50 n.
2. CL includes probe and jig capacitance.

9-70

Min

Typ
30

ns

300

ns

IlA75491 -IlA75492

Typical Applications
Interfacing Between MOS Calculator Circuit and
LED Multi-Digit Display
This example of time multiplexing the individual digits in a
visible display minimizes display circuitry. Up to twelve dig,

I
I

I

its of a 7-segment display plus decimal point may be displayed using only three J.lA75491 and two J.lA75492
drivers.

'v,

_ _ .1. _ _ _ ,

1.

I
I
~--~-------------------------------,

v,

I

I

RL

I

I
I

[2DF4---

1.

I
I
I
I
I
I

RL

Vss

-,

-------

I

1

I

I
I .A75491

I

QUAD
SEGMENT
I DRIVER
I (3 PACKAGES)

I
I

I

I

I

I
..J

I

I

~A~~

_____ _
"::" GND

II
II

v~

LI

II

I I

I- 0I

I- 0I

I- 0
I

_______ _

I

II

II

~

I
_I
e

I I

II

I_ .I

I
I
-0

--,

J..

I
I
I

011

I,u.A75492

I HEX DIGIT
I

I
I

I

_______ .......J
"::" GND

9-71

?2R~~~~AGES)

IlA9614
Dual Differential
Line Driver

FAIRCHIL.D
A Schlumberger Company

Linear Division Interface Products

Description

Connection Diagram
16-Lead DIP
(Top View)

The pA9614 is a TTL compatible dual differential line driver. It is designed to drive transmission lines either differentially or single ended, back matched or terminated. The
outputs are similar to TIL, with the active pull-up and the
pull-down split and brought out to adjacent leads. This allows multiplex operation (wired-OR) at the driving site in
either the single ended mode via the uncommitted collector, or in the differential mode by use of the active pullups on one side and the uncommitted collectors on the
other (See Applications). The active pull-up is short circuit
protected and offers a low output impedance to allow
back matching. The two pairs of outputs are complementary, providing NAND and AND functions of the inputs and
adding greater flexibility. The input and output levels are
TTL compatible with clamp diodes provided at both input
and output to handle line transients.

ACTive

ACTive

Max

OUTA2

OUTBI

OUTB2

IN Al

ACTIve
PULL-UP 92

INA2

INB3

INA3

INB2

GNO

IN 81

Order Information
Device Code

Package Code

68
68
98

pA9614DM
pA9614DC
pA9614PC

Absolute Maximum Ratings

Note
1. TJ

PUli-UPBl

PULL·UPA2

Single 5.0 V Supply
TTL Compatible Inputs
Output Short Circuit Protection
Input Clamp Diodes
Output Clamp Diodes For Termination Of Line
Transients
• Complementary Outputs For NANDI AND Operation
• Uncommitted Collector Outputs For Wired-OR
Application
• Extended Temperature Range

Package Description
Ceramic DIP
Ceramic DIP
Molded DIP

Truth Table

-65°C to + 175°C
-65°C to + 150°C

INPUTS

-55°C to + 125°C
O°C to +70°C

1.50
1.04
-0.7
-0.5

OUT Al

ACTIVE

•
•
•
•
•

Storage Temperature Range
Ceramic DIP
Molded DIP
Operating Temperature Range
Extended (pA9614M)
Commercial (pA9614C)
Lead Temperature
Ceramic DIP (soldering, 60 s)
Molded DIP (soldering, 10 s)
Internal Power Dissipation 1.2
16L-Ceramic DIP
16L-Molded DIP
Vcc Lead Potential to Ground Lead
Input Voltage
Voltage Supplied to Outputs
(Open Collectors)

Vcc

PULL-UP Al

W
W
V to +7.0 V
V to +5.5 V

-0.5 V to +12 V

-175°C for the Ceramic DIP. and 150°C for the Molded DIP.

2. Ratings apply to ambient temperature at 25°C. Above this temperature,
derate the 16L·Ceramic DIP at 10 mwrc. and 16L·Molded DIP at
8.3 mwrc.

9-72

OUTPUTS

3

2

1

1

2

L

L

L

H

L

L

L

H

H

L

L

H

L

H

L

L

H

H

H

L

H

L

L

H

L

H

L

H

H

L

H

H

L

H

L

H

H

H

L

H

JlA9614

Equivalent Circuit (112 of circuit)
r-~r-_1r-_1~-----t------~--~--~------t---------_1r-_1~---------t----t-----Vcc

R19
540

Q25

01

+-----i:.Q24

C4

03

R22
4k

ACTIVE

PULL-UP 2-----...--...-----1
R23
10

OUT 2 - - - -......--.

ACTIVE

C3

'-------4~---+----PULL-UP 1

. - - -......--OUT1
R1

R16

4k

1.6k

04
R21
1k

INPUTS

U----------+-------.------'

} b~HER

.;I---==-,7--...~_1~------------------------. DRIVER

GND

Note
All resistor values in ohms.

9-73

J.LA9614

MA9614

Electrical Characteristics Vee = 5.0 V±10%, TA=-55°C to +125°C, unless otherwise specified.
-55°C
Symbol

Characteristic

Condition

Min

+25°C

Max

Min

Typ

Min

400

Max

Unit

400

mV

Output Voltage LOW

10L =40 mA
Vcc = 4.5 V

VOH1

Output Voltage HIGH

10H =-10 mA,
Vec = 4.5 V

2.4

2.4

3.2

2.4

V

IOH = -20 mA,
Vcc=4.5 V

2.0

2.0

2.6

2.0

V

-40

-90

-120

10

100

200

IJ.A

-1.10

-1.60

-1.60

mA

35

60

100

IJ.A

1.3

0.8

0.8

V

los

Output Short Circuit
Current

Vo=O V
Vcc = 5.5 V

ICEX

Output Leakage Current

VCEX = 12.0 V
Vcc = 5.5 V

IlL

Input Current LOW

VI = 0.4 V
Vec = 5.5 V

IIH

Input Current HIGH

VI = 4.5 V
Vec = 5.5 V

VIL

Input Voltage LOW

Vec = 5.5 V

VIH

Input Voltage HIGH

200

Max

VOL

VOH2

400

+ 125°C

-1.60

0.8
2.0

Vcc=4.5 V

2.0

1.5

mA

2.0

-0.8

-1.5

V
V

Voc

Clamp Output
Voltage LOW

lac =-40 mA
Vcc = 5.5 V

Icc

Supply Current

Inputs = 0 V
Vcc = 5.5 V

34

50

mA

IMax

Supply Current

Inputs = 0 V
VMax = 7.0 V

46

65

mA

tpLH

Turn-Off Time

14

20

ns

tpHL

Turn-On Time

CL = 30 pF
Vcc = 5.0 V
(See AC Circuit)
VM = 1.5 V

18

20

ns

VIC

Input Clamp
Diode Voltage

-1.0

-1.5

V

Vcc = 4.5 V
Ilc=-12 mA

9-74

J.lA9614

J1A9614C
Electrical Characteristics Vee = 5.0 V ± 5%, TA =

ooe

to 70

oe,

unless otherwise specified.
25°C

O°C
Symbol

Characteristic

Condition

Min

Max

Min

200

70°C
Max

Min

450

Max

450

Unit

VOL

Output Voltage LOW

10L = 40 mA
Vcc = 4.75 V

VOH1

Output Voltage HIGH

10H =-10 mA,
Vce = 4.75 V

2.4

2.4

3.2

2.4

V

10H = -40 mA,
Vcc = 4.75 V

2.0

2.0

2.6

2.0

V

-40

-90

-120

10

100

200

J.lA

-1.10 -1.60

-1.60

mA

100

JJ.A

0.8

V

VOH2

450

Typ

mV

los

Output Short Circuit
Current

Vo=O V
Vcc = 5.25 V

ICEX

Output Leakage Current

VCEX = 5.25 V
Vcc = 5.25 V

IlL

Input Current LOW

VI = 0.45 V
Vcc = 5.25 V

IIH

Input Current HIGH

VI = 4.5 V
Vcc = 5.25 V

VIL

Input Voltage LOW

Vcc = 5.25 V

VIH

Input Voltage HIGH

Vec = 4.75 V

Voc

Clamp Output
Voltage LOW

loc =-40 mA
Vee = 5.25 V

-0.8

-1.5

Icc

Supply Current

Inputs = 0 V
Vec = 5.25 V

33

50

mA

IMax

Supply Current

Inputs = 0 V
VMax = 7.0 V

46

70

mA

tpLH

Turn-Off Time

14

30

ns

tpHL

Turn-On Time

CL = 30 pF
Vcc = 5.0 V
(See AC Circuit)
VM=1.5 V

18

30

ns

VIC

Input Clamp
Diode Voltage

-1.0

-1.5

V

-1.60

0.8
2.0

Vee = 4.75 V
Ilc=-12 mA

9-75

2.0

35

60

1.3

0.8

1.5

mA

2.0

V
V

MA9614

Typical Performance Curves
Active Pull-Down Output Current
LOW vs Output Voltage LOW
100

.

~

~

60

~

20

~

~

ij'

"

0.1

3.5

t%/'

3.0

!

~

~

40

Logic Levels vs
Ambient Temperature

~

VCC"" 5.5 V

Vee-S.oy

a
o

l~

0

I

i

TA-25"C

Active Pull-Up Output Current
HIGH vs Output Voltage HIGH

2.5

-

VC~=5'0V

-

f-

VdH=NbLd..D

g"

~ 2.0

Vcc-4.SV

"-

~ 1.S

!;
01.0

0.2

0.3

0.4

0.5

0.6

0.7

-100 !--'---;',.;:"O-'--::'::--"--:3"'.0,--'----,J4.0

0.5

VOL

o

I

-80

20

OUTPUT VOLTAGE LOW-V

so

140

Supply Current vs
Operating Frequency

Supply Current vs
Temperature

80

I

20

AMBIENT TEMPERATURE- C C

OUTPUT VOLTAGE HIGH- V

Supply Current vs
Supply Voltage

0

at IOL 40mA

40

NO LOAD
TA""25"C

vcJ=5.!V

//

0

I

vcc=toy_

CL=30pF

OUTPUTS OPEN

80

~ 35
I

II

~~



~
0

o

ft,;::f-'

1.0

0

20

so

140

o

5.0

10

3.0

-

Vcc-S.5V
Vee = 5.0 V
Vcc-- 4.5 V

2.0

1.01---1--+-"--+--+-+--1

o
100

AMBIENT TEMPERATURE- "C

4.0

>

T -55"C

~

Z
0

efi
li'
0

TA

>

S

2.0

5.0r--r--,--.,--Y--,r--r--,

5.0

30

1.0

Transfer Characteristics vs
Supply Voltage

T -125"C

!
I

0.5

FREQUENCY-MHz

Transfer Characteristics vs
Temperature

40

0.2

0.5

1.0

1.5

2.0

2.5

INPUT VOLTAGE-V

9-76

3.0

3.5

°0~~0.~S"1~.0~!'~.S'-~2~.o'-~2~.S-~3.~0-~3.5
INPUT VOLTAGE-V

MA9614

AC Test Circuit and Waveforms
Vee

Vee

I

I

I

H'PLH

_%_(_A)__

IPHL

-J~rM------------~

Input Pulse
Frequency ~ 500 kHz
Amplitude ~ 3.0 ±0.1 V
Pulse Width ~ 110 ± 10 ns
tr =tf<5.0 ns

Typical Applications
Differential Mode Expansion Multiplex Operation

1-1-..--------TWISTEO.PAIR

p

10

I

LlNE---------.j~

SHIELD DR COMMON GROUND CONNECTION

11

Only one driver is enabled at one time

Expand by tying NAND active pull-down outputs together and by tying AND
active pull~up outputs together. The drivers can be inhibited by taking one
input to ground.

9-77

100"

4 3

MA9614

Typical Applications (Cont.)
Simplex -

Differential Operation

5:~VCC"'16~ I·____T_W_'S_~...,~_~_P_AI_R_I
t
i
1
42

1I2.A9614

DATA
INPUTS

__

£

SHIELD OR COMMON GROUND
CONNECTION
P

See pA9615 data sheet for operation of pA9615

Typical Reflection Diagram
200

1M

2

vJc s.Jv
TA=25"C

A:o~ S~A.Je du}pu~ DLvl~E

120

CHARACTERISTICS

i-"

/

f

/

HIGH STATE OUTPUT DEVICE
iiiTEt'y',S
-200

-

I I I

I
-2

_I - -

_ _ _ _I t > r . ; v c c
T

3

10

OUTPUT VOLTAGE-V

See pA9621 data sheet for usage of reflection diagram

9-78

2

1I~9615r.=oC OATA

7

1

OUTPUT

6

£

4

3

see 9615 DATA SHEET FOR OPERATION OF 9615

iL A9615
Dual Differential
Line Receiver

FAIRCHILD
A Schlumberger Company

Linear Division Interface Products

Description

Connection Diagram
16-Lead DIP
(Top View)

The MA9615 is a dual differential line receiver designed to
receive differential digital data from transmission lines and
operate over the extended and industrial temperature
ranges using a single 5.0 V supply. It can receive differential data in the presence of high level (± 15 V) common
mode voltages and deliver undisturbed TTL logic to the
output.

OUT A

ACTIVE 2
PULL-UP A 3
STROBE A

RESPA

The response time can be controlled by use of an external capacitor. A strobe and a 130 Q terminating resistor
are provided at the inputs. The output has an uncommitted collector with an active pull-up available on an adjacent lead to allow either wired-OR or active pull-up TTL
output configuration.

+INA

RA
-INA

GNO

• TTL Compatible Output
• High Common Mode Voltage Range
• Choice Of An Uncommitted Collector Or Active
Pull-Up
• Strobe
• Extended Temperature Range
• Single 5_0 V Supply Voltages
• Frequency Response Control
• 130 Q Terminating Resistor

Order Information
Device Code
MA9615DM
MA9615DC
MA9615PC

Absolute Maximum Ratings
Storage Temperature Range
Ceramic DIP
Molded DIP
Operating Temperature Range
Extended (MA9615M)
Commercial (MA9615C)
Lead Temperature
Ceramic DIP (soldering. 60 s)
Molded DIP (soldering. 10 s)
Internal Power Dissipation 1,2
16L-Ceramic DIP
16L-Molded DIP
Vcc Lead Potential to Ground Lead
Input Voltage Referred to Ground
Voltage Applied to Outputs for High
Output State without Active Pull-up
Voltage Applied to Strobe

-65°C to + 175°C
-65°C to + 150°C
-55°C to + 125°C
O°C to +70°C

1.50
1.04
-0.5
±20

-INB

W
W
V to +7.0 V
V

-0.5 V to +13.2 V
-0.5 V to +5.5 V

Note
1. TJ M., ~ 175°C for the Ceramic DIP, and 150°C for the Molded DIP.
2. Ratings apply to ambient temperature at 25°C. Above this temperature,
derate the 16L·Ceramic DIP at 10 mW
and the 16L·Molded DIP at
8.3 mW/oC.

rc,

9-79

Package Code

68
68
98

Package Description
Ceramic DIP
Ceramic DIP
Molded DIP

tLA9615

Equivalent Circuit (1/2 of Circuit)
Vee

RESP

STROBE

R1B

R4

R11

R5

1.64 kO

1.skU

1.64kH

R22
2.0 k!l

1.8kn

R19

R24

80 n

013

900n
R
Rl
13011

R2

R3

8.36 k!~

8.36 ktl
ACTIVE
PULL·UP

+IN

r--------,
I Vee
I
I
I
I
I
I

-IN

R7
7.0k!!

R6
7.0kH

R1S
2.5 kH

Rl'
2.5 kO

R27

3.0 k!l

R16

R17

soon

500!!

L,

Q15

RB

3000

Rl0
132 il

R9

lOOn

GND

R25

100 !l

R29
10 k!!

OUT
R20

2.5 ktl

R28
100 III

I _______
L

02

R26

90!!

I
I
..JI

- - - = COMMON TO BOTH CHANNELS

9·80

TO
OTHER
RECEIVER

R21
1.0 kn

-=
-=

MA9615

MA9615

Electrical Characteristics Vee = 5.0 V ± 10%, TA = -55°C to

+ 125°C, unless otherwise specified.

T = -55°C
Symbol

Characteristic

Condition 1

VOL

Output Voltage LOW

Vee = 4.5 V,
Va = (Note 2),
10L = 15.0 rnA,
VOIFF = 0.5 V

VOH

Output Voltage HIGH

Vee = 4.5 V,
Va = (Note 2),
10H = -5.0 rnA,
VOIFF = -0.5 V

leEx

Output Leakage
Current

Vee = 4.5 V,
VeEx = 12 V,
VOIFF = Vee

los

Output Short Circuit
Current

Vee = 5.5 V,
Vos=O V2 ,
VOIFF = -0.5 V

II

Input Current

Vee = 5.5 V,
VI = 0.4 V,
Other input = 5.5 V

II(ST)

Strobe Input Current

Vee=5.5 V,
VI = 0.4 V,
VOIFF = 0.5 V

II(R.C)

Response Control
Input Current

Vee = 5.5 V,
VI(R.e) = 0.4 V,
VOIFF = 0.5 V

VeM

Common Mode
Voltage

Vee = 5.0 V,
VOIFF = 1.0 V

IR(ST)

Strobe Input
Leakage Current

Vee = 4.5 V,
VR = 4.5 V,
VOIFF = -0.5 V

RI

Input Resistance

Vee = 5.0 V,
VI(R) = 1.0 V,
+ Input = GND

VTH

Differential Input
Threshold Voltage 3

Vee = 5.0 V
VeM =0 V

Min

Max

T= 25°C
Min

0.40

2.2

Typ
0.18

2.4

T = +125°C
Max

Min

0.40

3.2

-0.9

-15

Vee = 5.0 V ± 10%,
-15 V

2.0

0

1.0

~

-1--~0V'

~:!:~

~

~ 3.0

II

t:

<

~
o

I!::>

-0.2

-20

-10

-

>
I
w

"~

>

...:>

•

I!::>

S:

0

Vee

I

V'~-

-

3.0

>'

r-

;:;-

>' >',

"~

OJ

OJ

~-

j$

3.0

I!::>

o
o

0.2

~

2.0

Vee 1o 5.5

o

-=-

4.0

v

Vee

5.0

Vee

4.5 V

2.0

3.0

~

I

"eI
...Z

!L

I

2.0

/

a:
a:

.....

-4.0

VOIFF "" 2.0 V

\1

vcc;ov
5.0

0

5.0

15

COMMON MODE VOLTAGE - V

9-84

V

I'

;:;

15

/

:>
0

VDIFF .,.., - 2.0 V

:> -2.0

25

4.0

Vee 5.0 V
UNTESTED INPUT ~ 0 V
TA = 25°C

w

o
4.0

'I

1.0

TA = 25<>C

1.0

3.0

~

Input Current vs Input Voltage

o

STROBE INPUT VOLTAGE - V

c

STROBE INPUT VOLTAGE - V

6.0

ve~ - 5!5 V

8J

2.0

OA

I!::>

" " "

1.0

0.2

3.0

~ 2.0

>' ;;' >'
" " "

~

<>

0

o

g

1\

2.0

140

100

1.0

--

w
"

l"\

1.0

60

20

Vee - 5.0

Vee0 4.5V

0

...:>>

8J

" " "

2.0

4.0

0

0

TA ° 1250c
5.0

>
I 4.0
w

4.0

>
I

3.0

20

0.5 V

6.0

I Vee

'.

5.0

~ 5.0 V

r-...
i--

4.5 V
15 rnA

IOl

VOfFF

Strobe Input/Output Transfer
Characteristics vs Vee

Output Voltage vs
Common Mode Voltage

5.0

-

(vee

1-

INPUT VOLTAGE - V

6.0

...:>>
....:>

I

5.0

-0.4

0.2

Strobe Input/Output Transfer
Characteristic vs Ambient
Temperature

0

-50

o
0.1

VOL

AMBIENT TEMPERATURE -

~

INPUT VOLTAGE - V

"~

-40

-30

6.0

0

- 0.1

1.0

0
60

1.0

o

1.5

0.5 -

o
o

1.0

>
I
w 4.0

2.0

~

g
5

Vee l 5.0

o ~,

II

2.5

f
w

=
VOIFF '" 0.5 V

OUTPUT CURRENT HIGH - rnA

~~

0

-

a

-fI4.5 V
-~ HVOH
IOH 5.0 rnA

~

!:;

Input/Output Transfer
Characteristics vs Temperature

TA""25"C

I.....

I

r- I-- ~e~s.sv

"fw r--..
"~

20

V'~-

I

2.0

3.0

>

7.0

>

_

~

I I I v~e

-.,

~ 4.0

~ o

I
:z:

mA

Input/Output Transfer
Characteristics vs Vee
6.0

>

I'-...
4.0
3.0

Vee - 5.5 V

I

TA = 2S"C

TA _125°C

o

Output Voltage HIGH vs
Ambient Temperature

Output Voltage HIGH vs
Output Current HIGH

25

-6.0
-25

/

/
-15

-5.0

0

5.0

INPUT VOLTAGE - V

15

25

MA9615

Typical Performance Curves for IlA9615 and IlA9615C (Cont.)

70

WITL AcJVE PU~L-UP I

...

15

'"'"
u

:>

\

40

-INPUTS"" 0

.~

~

10

o

o

V

1.0

V

v

I

Z

V

70

60

60

50

so

Vee"" S.OV
Vj=-3VT03V

..~

40

':>"

u 30

~SS-oV

/

o. 20

:>

..e
.....'"

\<. .V

30

70
TA "" 25°C

60 r-CONNECTEO TO ACTIV.
PULL-oOiN\ ONLY
I
E 50
+
INPUTS = Vee
I

.

Switching Time vs
Ambient Temperature

Supply Current vs
Ambient Temperature

Supply Current vs Supply Voltage

Vee

~

o.
o.

il

- INjUTS .., Vee

+

20

S.sy- -

INPU~

Jee

rpur =o,v
0

";:

--

~

-

......
30
20

1

Cl=30~

40

Z

-

IPL~

RL=3.9kn

V

I---V V

..-

.L -

V
tpHL

RL=390n-

[L 0130

p]

-

10

10

WITH REilsTORI PULL-r p

o
2.0

3.0

4.0

5.0

SUPPLY VOLTAGE -

6.0

-60

7.0

-20

0

20

60

-20

140

100

TEMPERATURE _ cC

V

0

20

60

100

TEMPERATURE _ °C

Switching Time Test Circuit and Waveforms (Note 1)
Figure 1

~+3.0V

Vee

~~

V,
)0----<....--1-.....- Vo

v,

~-UV

.:~\r f:~~;;

RL

~
_ _ _ _~'.5V

STROBE

Note
1. Use V, or

Vi.

ground other input.

Figure 2
+INA=t>---o-INA

OUT A

-

Notes
1. For tpHL measurement RL = 390 n
2. For tpHL measurement RL ~ 3.9 kn
3. For input pulse: Width ~ 100 ns ± 10 ns,
t r• tf =
5.0 ns
PRR ~ 500 kHz
4. CL = 30 pF including probe and jig capacitance
5. Response control open, maximum scocket capacitance = 5.0 pF

<

VERTICAL"" 2.0 VlOIV. HORIZONTAL = 50 ns/DlV.

Photograph of a !lA9615 switching differential data in the presence of
high common mode noise.

9-85

140

J1A9615

Typical Applications
Figure 3 Standard Usage
DRIVER SYSTEM

RECEIVER SYSTEM
LINE

....:;..=~....I=:::j:==<'l==:::j:~....

....

Figure 4

H

_"A_9_61_5_...

Frequency Response Control

Frequency Response as a
Function of Capacitance

-t>---t-o-

10M

~~~~J

CONTROL PIN

TTL LOGIC

vc~H.hv

TA = 25°C
100M

CR

N

:r

I 100K

>-

"zw
::>
0

Notes

w

CR > 0.01 p.F may cause slowing of rise and fall times of the output.
Due to the mechanism of induction of differential noise, the
use of the response control is not normally needed.

10 K

0:

"-

to

K

100
0.001

.....
0.01

0.1
CAPACITANCE -

9-86

1.0
MF

10

MA96172· MA96174

FAIRCHILO

Quad Differential
Line Drivers

A Schlumberger Company

Linear Division Interface Products

Connection Diagram
16-Lead DIP
(Top View)

Description
The pA96172 and pA96174 are high speed quad differential line drivers designed to meet EIA Standard RS-485.
The devices have three-state outputs and are optimized
for balanced multipoint data bus transmission at rates up
to 10 Mbps. The drivers have wide positive and negative
common mode range for multipoint applications in noisy
environments. Positive and negative current-limiting is provided which protects the drivers from line fault conditions
over a + 12 V to -7.0 V common mode range. A thermal
shutdown feature is also provided and occurs at junction
temperature of approximately 160°C. The pA96172 features an active high and active low Enable, common to all
four drivers. The pA96174 features separate active high
Enables for each driver pair. Compatible RS;485 receivers,
transceivers, and repeaters are also offered by Fairchild
and are designed to provide optimum bus performance.
The respective device types are pA96173/96175,
pA96176, and pA96177 /96178.

IIA96172

•
•
•
•
•
•

Meets EIA Standard RS-485 And RS-422A
Monotonic Differential Output Switching
Transmission Rate To 10 Mbs
Three-State Outputs
Designed For Multipoint Bus Transmission
Common Mode Output Voltage Range: -7.0 V To
+12 V
• Operates From Single + 5.0 V Supply
• Thermal Shutdown Protection
• pA96172196174 Are Lead And Function Compatible
with the SN75172175174 or the AM26LS31/MC3487
respectively

•

I'A96174

Function Table (Each Driver) J.LA96172
Input
A
H
L
H
L
X

Enables

Outputs

E

E

y

Z

H
H
X
X
L

X
X
L
L
H

H
L
H
L

L
H
L
H

Z

Z

Order Information
Device Code
pA96172DC
pA96172PC
pA96174DC
pA96174PC

Function Table (Each Driver) J.LA96174
Outputs
Input

Enable

Y

Z

H
L
X

H
H
L

H
L
Z

L
H
Z

H - High Level
L = Low Level

X = Immaterial
Z - High Impedance (off)

9-87

Package Code
78
98
78
98

Package Description
Ceramic DIP
Molded DIP
Ceramic DIP
Molded DIP

~96172· ~96174

Absolute Maximum Ratings
Storage Temperature Range
Ceramic DIP
Molded DIP
Operating Temperature Range
Lead Temperature
Ceramic DIP (soldering, 60 s)
Molded DIP (soldering, 10 s)
Internal Power Dissipation l , 2
16L-Ceramic DIP
16L-Molded DIP
Supply Voltage3
Enable Input Voltage

-65·C to + 175·C
-65·C to +150·C
O·C to +70·C
300·C
265·C
1.50 W
1.04 W
7.0 V
5.5 V

Note.
1. TJ Max = 150'C for the Molded DIP, and 17S'C for the Ceramic DIP.
2. Ratings apply to ambient temperature at 2S'C. Above this temperature,
derate the 16L·Ceramic DIP at 10 mW/'C, and the 16L·Molded DIP at
8.3 mWI'C,
3. All voltages are with respect to network ground terminal.

Recommended Operating Conditions
Symbol

Min

Characteristic

4.75

Supply Voltage

Vcc

Typ
5.0

-7.01

Max

Unit

5.25

V

+ 12.0

V

Voc

Common Mode Output Voltage

IOH

Output Current HIGH

-60

mA

IOL

Output Current LOW

60

mA

TA

Operating Temperature

70

·C

0

25

Note
1. The algebraic convention, where tha less positive (more negative) limit is
deSignated minimum, is used in this data sheet for common moda input
voltage and threshold voltage levels only.

1lA96172, 1lA96174

Electrical Characteristics Over recommended temperature and supply voltage ranges, unless otherwise
specified.
Symbol

Condition

Characteristic

Min

Typl

2.0

Input Voltage HIGH
Input Voltage LOW

VOH

Output Voltage HIGH

IOH=-20mA

3.1

VOL

Output Voltage LOW

IOL =20mA

0.8

VIC

Input Clamp Voltage

11=-18 mA

IVODll

Differential Output Voltage

10=0 mA

IVOD21

Differential Output Voltage

RL = 54 n, Fig. 1a
RL = 100 n, Fig. 1b

Change in Magnitude of Differential
Output Voltage 2

0.8

RL = 54 nor 100 n, Fig. 1b

9-88

V
V
V

-1.5
6.0
1.5
2.0

Unit
V

VIH
VIL

.lIVODI

Max

V
V

V

2.0
2.3

V
±0.2

V

MA96172· MA96174

~96172, ~96174

(Cont.)
Electrical Characteristics Over recommended temperature and supply voltage ranges, unless otherwise
specified.
Symbol

Characteristic

Condition

Voc

Common Mode Output Voltage3

AIVocl

Change in Magnitude of Common Mode
Output Voltage2

10

Output Current with Power off

Vcc=O V, Vo=-7.0 V to 12 V

loz

High Impedance State Output Current

Vo=-7.0 V to 12 V

IIH

Input Current HIGH

Min

Typl

Max

Unit

3.0

V

±0.2

V

± 100

pA

±200

pA

VI = 2.7 V

20

pA

±50

IlL

Input Current LOW

VI =0.5 V

-100

pA

los

Short Circuit Output Current

Vo=-7.0V

-250

mA

Vo=O V

-150

Icc

Vo=Vcc

150

Vo= 12 V

250

Supply Current (all drivers)

I Outputs Enabled
I Outputs Disabled

No load

50

70

50

60

mA

Switching Characteristics Vee = 5.0 V, TA = 25°C
Symbol

Characteristic

too

Differential Output Delay Time

Condition

Typ

Max

Unit

15

25

ns

15

25

ns

12

20

ns

12

20

ns

Fig. 4

30

45

ns

Fig. 5

30

45

ns

Fig. 4

25

35

ns

Fig. 5

30

45

ns

RL = 60

n,

Fig. 2

RL = 27

n,

Fig. 3

tTO

Differential Output Transition Time

tpLH

Propagation Delay Time,
Low-to-High Level Output

tpHL

Propagation Delay Time, High-to-Low
Level Output

tPZH

Output Enable Time to High Level

RL = 110

tPZL

Output Enable Time to Low Level

RL = 110

tpHZ

Output Disable Time from High Level

RL = 110

tpLZ

Output Disable Time from Low Level

RL = 110

Notes
1. All typical values are Vee = 5.0 V and TA = 25°C.
2. '" IVool and "'IVael are the changes in magnitude of Voo and Voe
respectively, that occur when the input is changed from a high level to
a low level.
3. In EIA Standard RS-422A and RS·485, Vae, which is the average of the
two output voltages with respect to ground, is called output offset
voltages, Vas.

9-89

n,
n,
n,
n,

Min

J,tA96172· J,tA96174

Parameter Measurement Information
Figure 1a Differential Output Voltage with Varying
Common Mode Voltage

Figure 1b Differential and Common Mode Output
Voltage

3750

_~~+f~···
-=-

(NoIe31

CROOe21F

Figure 2 Differential Output Delay and Transition Times

Figure 3 Propagation Delay Times
,-------~-----3V

2.3Y

IN

r----------l
I

I

GENERATOR
~11

500

OV

RL-270

~>tI~~~1:
OUT

I:

y

OUT

1

_

IL________ I
IY

-=-

e::.::

z
OUT

~
1J>i.H

2.3V

VOL
YOH

2.3V

--YOL

Figure 4 tPZH and tpHZ
, -______,--------3V
IN

,-__

GENERATOR

+-~--L-

VOH

OUT

~11

VOFF:::OV

CR0C871F

9-90

MA96172· MA96174

Parameter Measurement Information (Cant.)
Figure 5

tPZL

and

tpLZ
5V

r---------l
11&.-11011
'I,I
......>-:1~~:>----,.J:'-'our
OVor 3V -+----1

"Ji '~:

.-.~-:-'V

r-------~-_r~!-~~

5V

I
Il __________ JI

GENERATOR
SOil
(N.... 1)

our

2.3V

tVOI.

-=

O.5V

3V
(Note 4)

Notes
I. The input pulse is supplied by a generator having the following
characteristics: PRR = 1.0 MHz, duty cycle = 50%, t,"; 5.0 ns,
t, ..; 5.0 ns, Zo - 50 fl.
2. CL includes probe and jig capacitance.
3. !lA96172 with active high and active low Enables is shown here.
!lA96174 has active high Enable only.
4. To test the aclive low Enable E of !lA96172, ground E and apply an
inverted waveform to E. !lA96174 has active high Enable only.

Typical Application
1/41/A18172

~~--~--~----~-----------------------~----~~----~,
~~~;--+~--+---------------------+-~~-;~--~

1/4pA861n

1/411A98175

UP TO 32

ORIVER/RECEIVER
PAIRS

AFOO13OF

Note
The line length should be terminated at both ends in its characteristic
impedance.

Stub lengths off the main line should be kept as short as possible.

9-91

J.lA96173 • J.lA96175
Quad Differential
Line Receivers

FAIRCHILD
A Schlumberger Company

Linear Division Interface Products

Description

Connection Diagram
16-Lead DIP
(Top View)

The 1lA96173 and 1lA96175 are high speed quad differential line receivers designed to meet EIA Standard RS-485.
The devices have three-state outputs and are optimized
for balanced multipoint data bus transmission at rates up
to 10 Mbps. The receivers feature high input impedance,
input hysteresis for increased noise immunity, and input
sensitivity of 200 mV over a common mode input voltage
range of -12 V to +12 V. The receivers are therefore
suitable for multipoint applications in noisy environments.
The 1lA96173 features an active high and active low Enable, common to all four receivers. The 1lA96175 features
separate active high Enables for each receiver pair. Compatible RS-485 drivers, transceivers, and repeaters are also
offered by Fairchild and are designed to provide optimum
bus performance. The respective device types are
1lA96172/96174, 1lA96176 and 1lA96177/96178.
•
•
•
•
•
•
•
•
•
•

"A98173

Meets EIA Stsndard RS-485, RS-422A, RS-423A
Designed For Multipoint Bus Applications
Three-State Outputs
Common Mode Input Voltage Range: -12 V To
+12 V
Operates From Single + 5.0 V Supply
Input Sensitivity Of ± 200 mV Over Common Mode
Range
Input Hysteresis Of 50 mV Typical
High Input Impedance
Fall-Safe Input/Output Features Drive Output HIGH
When Input Is Open
1lA96173/96175 Are Lead And Function Compatible
With SN75173175175 Or The AM26LS32/MC3486
Respectively.

I'A98175

Function Table (Each Receiver) 1oIA96173
Differential Inputs
A-B

Enables

Outputs

E

E

V

H
X

X
L

H
H

-0.2 V < VIO < 0.2 V

H
X

X
L

?
?

Vlo<-0.2 V

H
X

X
L

L
L

X

L

H

Z

VIO

> 0.2

V

Order Information
Device Code

Package Code

1lA96173DC
1lA96173PC
1lA96175DC
1lA96175PC

78
98
78
98

Package Description
Ceramic DIP
Molded DIP
Ceramic DIP
Molded DIP

Function Table (Each Receiver) 1oIA96175

H = High Level
L- Low Level
? - Indeterminate
X - Immaterial
Z = High Impedance (off)

9-92

Differential Inputs
A-B

Enable

Output
y

Vlo;;;'0.2 V

H

H

-0.2 V < VIC < 0.2 V

H

?

Vlo";;-0.2 V

H

L

X

L

Z

MA96173· MA96175

Absolute Maximum Ratings
Storage Temperature Range
Ceramic DIP
Molded DIP
Operating Temperature Range
Lead Temperature
Ceramic DIP (soldering, 60 s)
Molded DIP (soldering, 10 s)
Internal Power Dissipation 1,2
16L-Ceramic DIP
16L-Molded DIP
Supply Voltage3
Input Voltage, A or B Inputs
Differential Input Voltage
Enable Input Voltage
Low Level Output Current

-65°C to + 175°C
-65°C to + 150°C
O°C to +70°C
300°C
265°C
1.50 W
1.04 W
7.0 V
±25 V
±25 V
7.0 V
50 mA

•

Notes
2.

TJ Me> ~ 150·C for the Molded DIP, and 17S·C for the Ceramic DIP.
Ratings apply to ambient temperature at 2S·C. Above this temperature,
derate the 16l-Ceramic DIP at 10 mWrC, and the 16l-Molded DIP at

3.

All voltages are with respect to network ground terminal.

1.

8.3 mWrC.

Recommended Operating Conditions
Max

Unit

5.25

V

Common Mode Input Voltage

_12 1

+12

V

Differential Input Voltage2

-12

+12

V

-400

p.A

16

mA

70

°C

Symbol

Min

Characteristic
Supply Voltage

4.75

VCM
VID

Vcc

10H

Output Current HIGH

10l

Output Current LOW

TA

Operating Temperature

0

Typ
5.0

25

Notes
1. The algebraic convention, where the less positive (more negative) limit is

designated minimum, is used in this data sheet for common mode input

voltage and threshold voltage levels only.
2. Differential input! output bus voltage is measured at the noninverting
terminal A with respect to the inverting terminal B.

J,lA96173, J,lA96175
Electrical Characteristics Over recommended temperature, common mode input voltage, and supply voltage
ranges, unless otherwise specified.
Symbol

Characteristic

Condition

VTH

Differential-Input
High Threshold Voltage

Vo = 2.7 V, 10 = -0.4 mA

VTL

Differential-Input
Low Threshold Voltage

Vo = 0.5 V, 10 = 16 mA

VT+ -VT_

Hysteresis3

VCM =0 V

VIH

Enable Input Voltage HIGH

Min

Max
0.2

_0.2 2

Unit
V
V

50
2.0

9-93

Typl

mV
V

MA96173· MA96175

J,lA96173, J,lA96175 (Cont.)
Electrical Characteristics Over recommended temperature, common mode input voltage, and supply voltage
ranges, unless otherwise specified.
Symbol

Characteristic

Condition

VIL

Enable Input Voltage LOW

VIC

Enable Input Clamp Voltage

VOH

Output Voltage HIGH

VIO= 200 mY, 10H = -400 IlA

VOL

Output Voltage LOW

Vlo=-200 mV

Min

Typl

11=-18mA

Max

Unit

0.8

V

-1.5

V

2.7

V

IIOL = 8.0 mA

0.45

V

110L = 16 mA

0.50

loz

High-Impedance State Output

Vo = 0.4 V to 2.4 V

II

Line Input Current4

Other Input = 0 V

I
I

VI = 12 V

±20

IlA

1.0

mA

-0.8

VI = -7.0 V

IIH

Enable Input Current HIGH

VIH = 2.7 V

20

IlL

Enable Input Current LOW

VIL = 0.4 V

-100

AI

Input Aesistance

los

Short Circuit Output Current

Icc

Supply Current

!1A
k.l1

12
-15

IlA

-85

mA

75

mA

Typ

Max

Unit

15

25

ns

15

25

ns

22

ns

Outputs Disabled

Switching Characteristics Vcc = 5.0 V, T A = 25°C
Symbol

Characteristic

Condition

VIO = -2.5 V to 2.5 V,
CL = 15 pF, Fig. 1

Min

tpLH

Propagation Delay Time,
Low to High Level Output

tpHL

Propagation Delay Time,
High to Low Level Output

tpZH

Output Enable Time to High Level

CL = 15 pF, Fig. 2

15

tPZL

Output Enable Time to Low Level

CL = 15 pF, Fig. 3

15

22

ns

tpHZ

Output Disable Time from High Level

CL = 5.0 pF, Fig. 2

14

30

ns

tpLZ

Output Disable Time from Low Level

CL = 5.0 pF, Fig. 3

24

40

ns

Notes
1. All Typical values are at Vee - 5.0 V, TA - 25°C.
2. The algebraic convention, where the less positive (more negative) limit is
designated minimum, is used in this data sheet for common mode input

voltage and threshold voltage levels only.
3. Hysteresis is the difference between the positive-going input threshold

voltage, VT+. and the negative·going input threshold voltage. V-r-.
4. Refer to EIA standard RS·485 for exact conditions.

9-94

J.LA96173· J.LA96175

Parameter Measurement Information
Figure 1 tpLH. tpHL (Note 3)

>--:----,-- OUT

IN

:1" }s;-

U'
-2.5V

L

~

----VOH

OUT

1.3V

1.3V

VOL
CA00891F

Figure 2 tpHZ. tPZH (Note 3)

CR00901F

Figure 3 tPZL. tpLZ (Note 3)
Vee

Notes

1. The inpul pulse is supplied by a generalor having Ihe following
characterislics: PRR - 1.0 MHz, 50% duty cycle, t,..;;; 6.0 ns, If';;; 6.0 ns,
Zo=50n.
2. CL includes probe and jig capacilance.
3. pA96173 wilh active high and aclive low Enables is shown here.
pA96175 has active high Enable only.
4. All diodes are 1N916 or equivalent.
5. To lesl the active low Enable E of pA96173, ground E and apply an
inverted inpul waveform to E. pA96175 has active high Enable only.

9-95

MA96173· MA96175

Typical Application
114..-74

114..-72

~----r-~--~---------------------T---~~r---~
~~-r+-~~~r--------------------+--r-+~~--~

114jJA96175

114pA81173
UP TO 32
DRIVERlRECEIVER
PAIRS

Note
The line length should be terminated at both ends in its characteristic impedance.
Stub lengths off the main line should be kept as short as possible.

9-96

J.lA96176

FAIRCHIL.D

Differential Bus Transceiver

A Schlumberger Company

Linear Division Interface Products

Description

Connection Diagram
8-Lead DIP
(Top View)

The J.lA96176 Differential Bus Transceiver is a monolithic
integrated circuit designed for bidirectional data communication on balanced multipoint bus transmission lines. The
transceiver meets EIA Standard RS-485 as well as
RS-422A.

7 B} IN/OUT

The J.lA96176 combines a three-state differential line driver
and a differential input line receiver, both of which operate
from a single 5.0 V power supply. The driver and receiver
have an active Enable that can be externally connected to
function as a direction control. The driver differential outputs and the receiver differential inputs are internally connected to form differential input/output (I/O) bus ports that
are designed to offer minimum loading to the bus whenever the driver is disabled or when Vee = 0 V. These ports
feature wide positive and negative common mode voltage
ranges making the device suitable for multipoint applications in noisy environments.

6

Package Code

Package Description

6T
9T

Ceramic DIP
Molded DIP

Function Table (Driver)
Differential
Inputs

The J.lA96176 can be used in transmission line applications
employing the J.LA96172 and the J.LA96174 quad differential
line drivers and the J.LA96173 and J.lA96175 quad differential line receivers.

•
•
•
•
•
•
•
•

BUS PORT

Order Information
Device Code
J.LA96176RC
J.LA96176TC

The driver is designed to handle loads up to 60 mA of
sink or source current. The driver features positive and
negative current-limiting a.nd thermal shutdown for protection from line fault conditions. Thermal shutdown is designed to occur at junction temperature of approximately
160°C. The receiver features a typical input impedance of
12 kn, an input sensitivity of ± 200 mV, and a typical input hysteresis of 50 mY.

•
•
•
•
•
•

A

Outputs

D

Enable
DE

A

B

H
L
X

H
H
L

H
L
Z

L
H
Z

Function Table (Receiver)

Bidirectional Transceiver
Meets EIA Standard RS-422A And RS-485
Designed For Multipoint Transmission
Three-State Driver And Receiver Enables
Individual Driver And Receiver Enables
Wide Positive And Negative Input/Output Bus
Voltage Ranges
Driver Output Capability ± 60mA Maximum
Thermal Shutdown Protection
Driver Positive And Negative Current-Limiting
High Impedance Receiver Input
Receiver Input Sensitivity Of ± 200 mV
Receiver Input Hysteresis Of 50 mV Typical
Operates From Single 5.0 V Supply
Low Power Requirements

Differential Inputs
A-B

Enable
RE

Output

VID;;;'0.2 V
-0.2 V < VID < 0.2 V
VID<-0.2 V
X

L
L
L
H

H
?
L

H = High Level
L = Low Level
? = Indeterminate
X = Immaterial
Z = High Impedance (off)

9-97

R

Z

MA96176

Absolute Maximum Ratings
Storage Temperature Range
Ceramic DIP
Molded DIP
Operating Temperature Range
Lead Temperature
Ceramic DIP (soldering, 60 s)
Molded DIP (soldering, 10 s)
Internal Power Dissipation 1, 2
8L-Ceramic DIP
8L-Molded DIP
Supply Voltage 3
Differential Input Voltage
Enable Input Voltage
Notes
1. TJ Max

~

-65°C to + 175°C
-65°C to + 150°C
O°C to +70°C

1.30 W
0.93 W
7.0 V
±25 V
5.5 V

150·C for the Molded DIP, and 175·C for the Ceramic DIP.

2. Ratings apply to ambient temperature at 25°C. Above this temperature,

derate the 8L-Ceramic DIP at 8.7 mWrC, and the 8L-Molded DIP at
7.5 mwrc.
1. All voltage values, except differential input/output bus voltage, are with
respect to network ground terminal.

Recommended Operating Conditions
Symbol
VCC

Characteristic
Supply Voltage

Min

Typ

Max

Unit

4.75

5.0

5.25

V

12

V

_7.0 1

VI or VCM

Voltage at any Bus Terminal (Separately or Common Mode)

VID

Differential Input Voltage 2

±12

V

IOH

Output Current HIGH

-60

mA

IOL

Output Current LOW

TA

Operating Temperature

Driver
Receiver
Driver
Receiver

voltage and threshold voltage levels only.
2. Differential input! output bus voltage is measured at the noninverting
terminal A with respect to the inverting terminal B.

9-98

J.LA

60

mA

16
0

Notes
1. The algebraic convention, where the less positive (more negative) limit is
designated minimum, is used in this data sheet for common mode input

-400

25

70

°C

J.lA96176

I.lA96176

Electrical Characteristics Over recommended temperature, common mode input voltage, and supply voltage
ranges, unless otherwise specified.
Driver Section
Symbol
VIH

Characteristic

Condition

Input Voltage HIGH

Min

Typ1

Max

2.0

V

Vil

Input Voltage LOW

VOH

Output Voltage HIGH

IOH =-20mA

VOL

Output Voltage LOW

10l =20mA

VIC

Input Clamp Voltage

11=-18 mA

IVOD11

Differential Output Voltage

10= 0 mA

IVOD21

Differential Output Voltage

Rl = 100

2.0

2.25

Rl = 54

1.5

2.0

"'IVODI

Change in Magnitude of
Differential Output Voltage 2

Voc

Common Mode Output Voltage3

"'IVocl

Change in Magnitude of
Common Mode Output Voltage 2

10

Output Current4
(Includes Receiver II)

Output Disabled

Input Current HIGH

VI = 2.4 V

20

IIH

0.8

Rl = 54

n

V

0.85

V

6.0

or 100

n,

Fig. 1

IVo=12V
IVo = -7.0

V

3.1

-1.5

n, Fig. 1
n, Fig. 2

Unit

V
V
V

±0.2

V

3.0

V

±0.2

V

1.0

mA

-0.8
J.l.A

III

Input Current LOW

VI =0.4 V

-100

JJ.A

los

Short Circuit Output Current

Vo=-7.0V

-250

mA

Vo=O V

-150

Icc

Supply Current

Vo=Vcc

150

Vo = 12 V

250

I Outputs Enabled
I Outputs Disabled

No Load

9-99

35
40

mA

•

MA96176

~A96176 (Cont.)
Electrical Characteristics Over recommended temperature, common mode input voltage, and supply voltage
ranges, unless otherwise specified.

Drive Switching Characteristics Vcc = 5 V, TA = 25°C
Symbol

Characteristic

Condition

Min

Typ

Max

Unit

too

Differential Output Delay Time

RL = 60 n, Fig. 4

15

25

ns

tTD

Differential Output Transition Time

RL = 60 n, Fig. 4

15

25

ns

tpLH

Propagation Delay Time,
Low-to-High Level Output

RL = 27 n, Fig. 5

12

20

ns

tpHL

Propagation Delay Time,
High-to-Low Level Output

RL = 27 n, Fig. 5

12

20

ns

tpZH

Output Enable Time to High Level

RL = 110 n, Fig. 6

25

35

ns

tpzL

Output Enable Time to Low Level

RL = 110 n, Fig. 7

25

35

ns

tpHZ

Output Disable Time from High Level

RL = 110 n, Fig. 6

20

25

ns

tpLZ

Output Disable Time from Low Level

RL = 110 n, Fig. 7

29

35

ns

Typ1

Max

Unit

Receiver Section
Symbol

Characteristic

Condition

Min

VTH

Differential Input High
Threshold Voltage

Vo = 2.7 V, 10 = -0.4 mA

VTL

Differential Input Low
Threshold Voltage

Vo = 0.5 V, 10 = 8.0 mA

VT+ -VT_

Hysteresis6

VCM = 0 V

VIH

Enable Input Voltage HIGH

VIL

Enable Input Voltage LOW

VIC

Enable Input Clamp Voltage

11=-18 mA

VOH

Output Voltage HIGH

VIO = 200 mY, 10H = -400 pA, Fig. 3

VOL

Output Voltage LOW

VIO = -200 mY, Fig. 3

0.2
-0.2 5

V
50

mV

2.0

loz

High Impedance State Output

Vo = 0.4 V to 2.4 V

II

Line Input Current?

Other Input = 0 V

IIH

Enable Input Current HIGH

VIH =2.7 V

IlL

Enable Input Current LOW

VIL

RI

Input Resistance

los

Short Circuit Output Current

Icc

Supply Current (total package)

= 0.4

V
0.8

V

-1.5

V

2.7

V

I 10L = 8.0 mA

0.45

IIOL=16 mA

0.50
/lA

I VI = 12 V

1.0

mA

I VI =-7.0 V

0.8
20
-100
12
-15

IOutputs Enabled
IOutputs Disabled

9-100

V

±20

V

No Load

V

pA

/lA
kn

-85

mA

40

mA

!-LA96176

Receiver Switching Characteristics Vee = 5.0 V, TA = 25°C
Symbol

Typ

Max

Unit

16

25

ns

16

25

ns

CL = 15 pF, Fig. 9

15

22

ns

15

22

ns

CL = 5.0 pF, Fig. 9

14

30

ns

24

40

ns

Characteristic

Condition

tpLH

Propagation Delay Time,
Low-to-High Level Output

VID = 0 V to 3.0 V
CL = 15 pF, Fig. 8

tpHL

Propagation Delay Time,
High-to-Low Level Output

tPZH

Output Enable Time to High Level

tPZL

Output Enable Time to Low Level

tpHZ

Output Disable Time from High Level

tpLZ

Output Disable Time from Low Level

Min

Notes
1. All typical values are at Vee = 5.0 V and TA = 25'C.
2. "IVool and "lVoel are the changes in magnHude of Voo and Voe,
respectively, that occur when the input is changed from a high level to
a low level.
3. In EIA Standard RS-422A and RS-485, Voe, which is the average of the
two output voltages wHh respect to GND, is called output offset voltage,

•

Vos·
4. This applies for both power-on and power-off. Refer to EIA Standard
RS-485 for exact conditions.
5. The algebraic convention, where the less positive (more negative) limit is

designated minimum, is used in this data sheet for common mode input
voltage and threshold voltage levels only.
6. Hysteresis is the difference between the positive-going input threshold
voltage, VT + , and the negative-going input threshold voltage, VT - .
7. This applies for both power-on and power-off. Refer to EIA Standard
RS-485 for exact conditions.

Parameter Measurement Information
Figure 2 Driver VOD with Varying Common Mode
Voltage

Figure 1 Driver VOD and Voc

~~
(Note 3)

t

3750

-7Vto +12V

3750

Figure 3 Receiver VOH and VOL

v~rl'>-I

ov=:1 ntlot..
J 't

(+)

Gt
9-101

MA96176

Parameter Measurement Information (Cont.)
Figure 4 Driver Differential Output Delay and Transition Times
IN
GENERATOR

500

(Note 1)

OUT

Figure 5 Driver Propagation Times
IN

2.3V
RL=270

y
OUT

---0---,--'-- OUT
GENERATOR
(Note 1)

500

Z

3V

OUT

Figure 6 Driver Enable and Disable Times (tpZH. tpHZ)
--":>-"1'-~- OUT

OVor3V

IN
RL= 1100

d.5V

1.J

J,9
toHz

PZH

GENERATOR

500
OUT

(Note 1)

.

-.:..L

3V

ov
VOH

0.5V

2.3V

VOFF~

Figure 7

Driver Enable and Disable Times (tpZL. tpLZ)
5V
3V

RL= 1100

---0---,.....-

IN
OUT

~ ov
1.5V

l.5V

~
PZL

OUT

tpLZ

2.3V

5V
0.5V

-rVOL

9-102

OV

MA96176

Parameter Measurement Information (Cont.)
Figure 8 Receiver Propagation Delay Times
IN

OUT

:1:.5V

1'1

tJ.v

3V

ov

l:ev~
VOL

OV--------------~
CFI01061F

Figure 9 Receiver Enable and Disable Times
81

I.5V

52

O---5V

GENERATOR
~1)

~
1JozH

IN

OUT

tnL

3V 81101.5V

1.5V

OV

52 OPEN
S3CLOSED

IN

---(:E V~

£L
""'"

I.5V

~
D.5V

OUT

3V

SI1D-1.5V

S2 CLOSED
OV S30PEN

;:-.:;r-~4.5V
OUT

- - OV

IN

~
1.5V

~

----I'
toLz

3V SI1D1.5V
IN

52 CLOSED
OV S3CLOSED

V~

OUT

---~I.3V

VOL

V

~
:J=\=~1.3V
1.5V

3

SI1D-l.5V

S2CLOSED
OV S3CLOSED

o.sV

VOl.
Wf'00481F

Notes
1. The input pulse is supplied by a generalor having the following
characteristics: PRR - 1.0 MHz, 50% duty cycle, t," 6.0 ns, tf" 6.0 ns,
Zo- 50 n.
2. CL includes probe and stray capacitance.
3. ",,96176 Driver enable is Active-High
4. All diodes are 1N916 or equivalent.

9-103

J,lA96176

Typical Application
~A96176

~A96176

~----~~----r--------------------~--~~--

__~

/,--,-+-~~~~-------------------~~~--~--~~

UP TO 32
TRANSCEIVERS

Note
The line length should be terminated at both ends of its characteristic impedance.
Stub lengths off the main line should be kept as short as possible.

9-104

J.LA96177 • J.LA96178
Differential Bus Repeaters

FAIRCHILD
A Schlumberger Company

Linear Division Interface Products
Description
The JlA96177 and JLA96178 Differential Bus Repeaters are
monolithic integrated devices each designed for one-way
data communications on multipoint bus transmission lines.
These devices are designed for balanced transmission bus
line applications and meet EIA Standard RS-485 and
RS-422A. Each device is designed to improve the performance of the data communication over long bus lines.
The JLA96177 and JLA96178 are identical except for the
Enable inputs, which are complementary. The JLA96177 is
an active high Enable. The JlA96178 is an active low Enable. These complementary Enables allow the devices to
be used in pairs for bidirectional communication.

Connection Diagram
8-Lead DIP
(Top View)
IJA96177

SA}BUS
IN

Jo--.r" B

BUS
} OUT

The JlA96177 and JLA96178 feature positive and negative
current limiting and three-state outputs for the receiver and
driver. The receiver features high input impedance, input
hysteresis for increased noise immunity, and input sensitivity of 200 mV over a common mode input voltage range
of -12 V to + 12 V. The driver features thermal shutdown
for protection from line fault conditions. Thermal shutdown
is designed to occur at a junction temperature of approximately 160'C. The driver is designed to drive current
loads up to 60 mA maximum.

~A96178

y .........- - ,

6

Order Information
Device Code
Package Code
JLA96177RC
6T
JLA96177TC
9T
JLA96178RC
6T
JLA96178TC
9T

• Meets EIA Standard RS-422A And RS-485
• Designed For Multipoint Transmission On Long Bus
Lines In Noisy Environments
• Three-State Outputs
• Bus Voltage Range -7.0 V To 12 V
• Positive And Negative Current Limiting
• Driver Output Capability ± 60 mA Max
• Driver Thermal Shutdown Protection
• Receiver Input High Impedance
• Receiver Input Sensitivity Of ± 200 mV
• Receiver Input Hysteresis Of 50 mV Typical
• Operates From Single 5.0 V Supply
• Low Power Requirements

Vlo~0.2 V
-0.2 V < VIO < 0.2 V
VID';;;;-0.2 V
X

T

H
H
H
L

H
?
L
Z

Differential Inputs
A-B
VIO~0.2 V
-0.2 V < VID < 0.2 V
Vlo';;;;-0.2 V
X
H = High Level
L = Low Level
? = Indeterminate
X = Immaterial
Z = High Impedance (off)

Outputs
Y
Z
H
?
L
Z

OUT

Package Description
Ceramic DIP
Molded DIP
Ceramic DIP
Molded DIP

Function Table JLA96178

Function Table JlA96177
Enable
E

Z} BUS

......."'-_-;<1 Y

The IlA96177 and IlA96178 are designed for optimum performance when used on transmission buses employing the
IlA96172 and IlA96174 differential line drivers, JLA96173
and JLA96175 differential line receivers, or IlA96176 differential bus transceiver.

Differential Inputs
A-B

S A } BUS
B
IN

L
?
H
Z

9-105

Enable

E

T

L
L
L
H

H
?
L
Z

Outputs
Y
Z
H
?
L
Z

L
?
H
Z

tlA96177 • tlA96178

Absolute Maximum Ratings
Storage Temperature Range
Ceramic DIP
Molded DIP
Operating Temperature Range
Lead Temperature
Ceramic DIP (soldering, 60 s)
Molded DIP (soldering, 10 s)
Internal Power Dissipation 1,2
8L-Ceramic DIP
8L-Molded DIP
Supply VoltageS
Input Voltage

-65°C to + 175°C
-65°C to + 150°C
O°C to +70°C

1.30 W
0.93 W
7.0 V
5.5 V

Notes
1. TJ Max = 150·C for the Molded DIP, and 175°C for the Ceramic DIP.
2. Ratings apply to ambient temperature at 25°C. Above this temperature,
derate the 8L·Ceramic DIP at 8.7 mWrC, and the 8L-Molded DIP at
7.5 mWrC.
3. All voltage values are with respect to network ground terminal.

Recommended Operating Conditions
Symbol

Min

Characteristic

Vcc

Supply Voltage

VI or VCM

Voltage at any Bus Terminal (Separately
or Common mode)

VID

Differential Input Voltage2

IOH

Output Current HIGH

IOL

Output Current LOW

Typ

4.75

5.0

_7.0 1

Driver

Units

5.25

V

12

V

±12

V

-60

mA

-400

!1A

Driver

60

mA

Receiver

16

Receiver

TA

Max

Operating Temperature

0

Notes
1. The algebraic convention, where the less positive (more negative) limit is
designated minimum, is used -in this data sheet for common mode input

voltage and threshold voltage levels only.
2. Differential input! output bus voltage is measured at the noninverting
terminal A with respect to the inverting terminal B.

9-106

25

70

°C

MA96177 • MA96178

IlA96177, IlA96178
Electrical Characteristics Over recommended temperature, common mode input voltage, and supply voltage
ranges, unless otherwise specified.
Driver Section
Symbol

Characteristic

Condition

Min

Typl

VIH

Input Voltage HIGH

VIL

Input Voltage LOW

VIC

Input Clamp Voltage

11=-18 rnA

IVODll

Differential Output Voltage

10= 0 rnA

IVOD21

Differential Output Voltage

RL = 100

2.0

2.25

RL = 54

1.5

2.0

Max

2.0

V
0.8

V

-1.5

V

6.0

n Fig. 2
n Fig. 1
n or 100 n,

Change in Magnitude of Differential
Output Voltage 2

Voc

Common Mode Output Voltage 3

~IVocl

Change in Magnitude of Common Mode
Output Voltage 2

10

Output Current with Power off

Vcc=O V, Vo=-7.0 V to 12 V

loz

High Impedance State Output Current

Vo=-7.0 V to 12 V

IIH

Input Current HIGH

VI = 2.7 V

20

IlL

Input Current LOW

VI = 0.5 V

los

Short Circuit Output Current

Fig.l

±0.2

V

3.0

V

±0.2

V

±100

IlA

±200

-100

!lA
!lA
!lA

Vo=-7.0 V

-250

rnA

Vo=O V

-150

Vo=Vcc

150

±50

Vo = 12 V
Icc

Supply Current

V
V

~IVODI

RL = 54

Unit

No Load

9-107

250

IOutputs
IOutputs

Enabled

35

Disabled

40

rnA

•

MA96177 • MA96178

jJA96177, tlA96178 (Cont.)
Electrical Characteristics Over recommended temperature, common mode input voltage, and supply voltage

ranges, unless otherwise specified.
Drive Switching Characteristics Vcc = 5.0 V, TA = 25°C
Typ

Max

Unit

15

25

ns

RL = 60 n, Fig. 4

15

25

ns

RL = 27 n, Fig. 5

12

20

ns

Propagation Delay Time,
High-to-Low Level Output

RL = 27 n, Fig. 5

12

20

ns

tPZH

Output Enable Time to High Level

RL = 110 n, Fig. 6

25

45

ns

tPZL

Output Enable Time to Low Level

RL = 110 n, Fig. 7

25

40

ns

tpHz

Output Disable Time from High Level

RL = 110 n, Fig. 6

20

25

ns

tpLZ

Output Disable Time from Low Level

RL = 110 n, Fig. 7

29

35

ns

Symbol

Characteristic

Condition

too

Differential Output Delay Time

RL

tTD

Differential Output Transition Time

tpLH

Propagation Delay Time,
Low-to-High Level Output

tpHL

= 60

Min

n, Fig. 4

Receiver Section
Symbol

Characteristic

Condition

Min

Typ1

Max Unit

VTH

Differential Input High Threshold Voltage

Vo = 2.7 V, 10 = -0.4 mA

VTL

Differential Input Low Threshold Voltage

Vo = 0.5 V, 10 = 8.0 mA

0.2

VT+-VT_

Hysteresis6

VIH

Enable Input Voltage HIGH

VIL

Enable Input Voltage LOW

VIC

Enable Input Clamp Voltage

11=-18 mA

VOH

High Level Output Voltage

VID = 200 mY, 10H = -400 pA, Fig. 3

VOL

Low Level Output Voltage

VIO = -200 mY, Fig. 3 jlOL = 8.0 mA

loz

High-Impedance State Output

Va = 0.4 V

-360

Vo=2.4 V

20

-0.2 5

V
50

VCM = 0 V

Line Input Currentl

V

Other Input = 0 V

Enable Input Current HIGH

VIH = 2.7 V

IlL

Enable Input Current LOW

VIL = 0.4 V

RI

Input Resistance

los

Short Circuit Output Current

Icc

Supply Current (total package)

0.8

V

-1.5

V

0.45

V

2.7

V

0.50

1.0

JVI = 12 V

pA

mA

-0.8

IVI = -7.0 V
IIH

mV

2.0

jlOL = 16 mA

II

V

20
-100

p.A

pA

~~-

12
-15
No Load

9-108

kn
-85

mA

I Outputs Enabled

35

mA

IOutputs Disabled

40

MA96177 • MA96178

JJA96177, J.!A96178 (Cont.)
Electrical Characteristics Over recommended temperature, common mode input voltage, and supply voltage
ranges, unless otherwise specified.
Receiver Switching Characteristics Vcc = 5.0 V, TA = 25°C
Symbol

Characteristic

tpLH

Propagation Delay Time,
Low-to-High Level Output

tpHL

Propagation Delay Time,
High-to-Low Level Output

Min

Condition
VID = 0 V to 3.0 V
CL = 15 pF, Fig. 8

tPZH

Output Enable Time to High Level

tPZL

Output Enable Time to Low Level

tpHZ

Output Disable Time from High Level

tpLZ

Output Disable Time from Low Level

CL

CL

= 15 pF, Fig.

9

= 5.0 pF, Fig.

9

Typ

Max

Unit

16

25

ns

16

25

ns

15

22

ns

15

22

ns

14

30

ns

24

40

ns

Notes
1. 1. All typical values are at Vee - 5.0 V and TA - 25"C.
2. Dol Vao I and Dol Vae I are the changes in magnitude of Vao and Vae,
respectively, that occur when the input is changed from a high level to
a low level.
3. In EIA Standard RS-422A and RS-485, Vae, which is the average of the
two output voltages with respect to GND, is called output offset voltage.
Vos·
4. The algebraic convention, where the less positive (more negative) limit is
designated minimum, is used in this data sheet for common mode input
voltage and threshold voltage levels only.
5. Hysteresis is the difference between the positive-going input threshold
voltage, VT+ and the negative-going input threshold voltage, VT_.
6. Refer to EIA Standard RS-485 for exact conditions.

Parameter Measurement Information
Figure 2

Figure 1 Driver VOD2 and Voc

Driver VOD2 with Varying Common Mode
Voltage
3750

~
'----'--------'

-7Vto +12V

Voc

RL

~

CROO130F

Figure 3

ENABLED
(_3)

Receiver VOH and VOL

V'Drf'>-/
OV~ I6tIOL
J 't

(+)

t

IOH

(-)

9-109

3750

•

J.lA96177 • J.lA96178

Parameter Measurement Information (Cont.)
Figure 4 Driver Differential Output Delay and Transition Times
IN
GENERATOR
(Note 1)

OUT

Figure 5 Drive Propagation Times
IN

2.3 V
RL=271l
--<~....,..+--

y
OUT

OUT

GENERATOR
(Note 1)

ENABLED
(Nota3)

Z
OUT

Figure 6 Driver Enable and Disable Times (tpZH. tpHZ)
'-o-_-oSl
--C>-T-~- OUT

OVor3V

IN
RL=110n

GENERATOR

d.

sv

1.j

~
ZH

SOil

(Note 1)

OUT

3V
OV

tPHZ

2.3V

~VOH
O.SV
VOFF"=OV

Figure 7 Driver Enable and Disable Times (tpZlo tpLZl
SV
RL= looll

-"'0--,"'+-

OUT

9-110

f.lA96177 • f.lA96178

Parameter Measurement Information (Cont.)
Figure 8 Receiver Propagation Delay Times

IN

~'5V

I.]

LH

OUT

3V
OV

~

IPH~

1.3V

VOH

1.3V

VOL

ENABLED - - - - - - - - '
(NoI.3)

Figure 9 Receiver Enable and Disable Times
S2
o--SV

(~A96177)

IPZH

(~A96177)~
IN

I.SV

(~A96178)

~

3V Sllol.SV
S20PEN
OV 53 CLOSED

IN

(~A96178)

tpZL

~
1.5V

VOH

I.SV

~

OUT.J

VOL

- - OV

( A96177)

~

IN

IpLl

IpHZ

~ 3V Sllol.SV

~I~ L -

SIIo-I.5V
S2CLOSED
OV 53 OPEN

~i=-~4.5V

PZH

OUT

3V

(~A96177)~ 3V Silo -1.SV
IN
(~A96178)

S2CLOSED

(~A96178) l : : :IpHZ
f = t 1 . 5 V ::H 53 CLOSED

1.5V

:F\=

S2CLOSED
OV 53CLOSED

PLZ

--~1.3V

OUT

OUT
--~1.3V

O.5V

VOL

Notes
I. The input pulse is supplied by a generator having the following
characteristics: PRR = 1.0 MHz, duty cycle::::::50%, tr ~ 6.0 ns, tf'::::;;; 6.0 n5,
Zo ~ 50 [2.
2. CL includes probe and stray capacitance.
3. !lA96178 Enable is active low, !lA96177 Enable is active high.
4. All diodes are 1N916 or equivalent.

9-111

MA96177 • MA96178

Typical Application

Note
The line length should be terminated at both ends in its characteristic
impedance.

Stub lengths off the main line should be kept as short .as possible.

9-112

JlA9636A
RS-423 Dual Programmable
Slew Rate Line Driver

FAIRCHIL.D
A Schlumberger Company

Linear Division Interface Products

Connection Diagram
8-Lead DIP
(Top View)

Description
The I1A9636A is a TTL/CMOS compatible, dual, single
ended line driver which has been specifically designed to
satisfy the requirements of EIA Standard RS-423.
The I1A9636A is suitable for use in digital data transmission systems where signal wave shaping is desired. The
output slew rates are jointly controlled by a single external
resistor connected between the wave shaping control lead
(WS) and ground. This eliminates any need for external
filtering of the output signals. Output voltage levels and
slew rates are independent of power supply variations.
Current-limiting is provided in both output states. The
I1A9636A is designed for nominal power supplies of
± 12 V.

WAVESHAPE
CONTROL
INA

OUT A

INB

OUTB

v-

GND

Order Information

Inputs are TTL compatible with input current loading low
enough (1/10 UL) to be also compatible with CMOS logic.
Clamp diodes are provided on the inputs to limit transients
below ground.
•
•
•
•
•

V+

Device Code

Package Code

!1A9636ARM
!1A9636ARC
!1A9636ATC

6T
6T
9T

Package Description
Ceramic DIP
Ceramic DIP
Molded DIP

Programmable Slew Rate Limiting
Meets EIA Standard RS-423
Commercial Or Extended Temperature Range
Output Short Circuit Protection
TTL And CMOS Compatible Inputs

Absolute Maximum Ratings
Storage Temperature Range
Ceramic DIP
Molded DIP
Operating Temperature Range
Extended (I1A9636AM)
Commercial (!1A9636AC)
Lead Temperature
Ceramic DIP (soldering, 60 s)
Molded DIP (soldering, 10 s)
Internal Power Dissipation 1,2
8L-Ceramic DIP
8L-Molded DIP
V+ Lead Potential to Ground Lead
V - Lead Potential to Ground Lead
V+ Lead Potential to V- Lead
Output Potential to Ground Lead
Output Source Current
Output Sink Current

-65°C to + 175°C
-65°C to + 150°C
-55°C to +125°C
O°C to +70°C

1.30 W
0.93 W
V-to+15V
+0.5 V to -15 V
o V to +30 V
± 15 V
-150 mA
150 mA

Notes
1. T J Max ~ 175·C for the Ceramic DIP, and 150·C for the Molded DIP.
2. Ratings apply to ambient temperature at 25°C. Above this temperature,
derate the 8L·Ceramic DIP at S.7 mWI"C, and the SL·Molded DIP at
7.5 mW/·C.

.iL
9-113

IlA9636A

Equivalent Circuit
r---------------~

TO
OTHER

CHANNEL

TO
OTHER

CHANNEL

I

WSCIN

I
I
I
I

R18

[

4COn

~~

R7

CU6

08

I
I

026"'a.,1

L.o"015

~

I
I 022~~
I
• t'021
I
I
027
I
I
I
I
R17
I
8.58kn
I
I
I
I
I
I

~

h:-

"Q28

~
~

W

[f

U10

~il-015

t016

~~017

I
I
I
I
I ~ il- 02O
I
I
I
I
I

K~

~~

~ ~018

~

,..

TO
OTHER
CHANNEL

:;122
TO

020 .........

OTHER
CHANNEL

;

,

500 n

lOOn

013

~

f- ~10

-

'~

,.--<

,..,.

R5

~ OUT

Rl
7I

'''02

I"

R19

V 011

R4

Cl

'--

~01
~02
[ ~CU3
r--

,.......,
'Cu9

V016

.""
"

R6
2.53 k!l

R6

R9

25kH

910 H

a..
,.....017

V 018

'I
v-

o
-

~

R2
61

701

V019

R15
10 kO

'~03

1;;0

L _______________ .J
-

09'"

'7014

R13
lOkI!
R14

"

>-012·

70

V03

~

~~011

,.......,~
CUii' ,......

R12

"

,

05

08'"

,.....012

GNO

~..

CU5

~

~

I
I

I

TO
OTHER
CHANNEL

032

Q6

*-4::

TO
OTHER
CHANNEL

IN

= COMMON TO BOTH CHANNELS

= CROSSUNOER

9-114

MA9636A

Recommended Operating Conditions
!lA9636A
Characteristic

Symbol
V+

Positive Supply Voltage

V-

Negative Supply Voltage

TA

Operating Temperature

Rws

Wave Shaping Resistance

Min

IlA9636AC

Typ

Max

Min

Typ

Max

Unit

10.8

12

13.2

10.8

12

13.2

-13.2

-12

-10.8

-13.2

-12

-10.8

V

70

·C

1000

kil

-55

25

10

125

0

500

10

25

V

/-LA9636A
Electrical Characteristics Over recommended operating temperature, supply voltage and wave shaping
resistance ranges unless otherwise specified.
DC Characteristics
Symbol
VOHI

Characteristic
Output Voltage HIGH

Condition
RL to GND (RL = 00)

VOH2

RL to GND (RL = 3.0 kil)

VOH3

RL to GND (RL

Min

Typ

Max

Unit

5.0

5.6

6.0

V

5.0

5.6

6.0

V

4.0

5.5

6.0

V

RL to GND (RL = 00)

-6.0

-5.7

-5.0

V

VOL2

RL to GND (RL = 3.0 kil)

-6.0

-5.6

-5.0

V

VOL3

RL to GND (RL = 450 il)

-6.0

-5.4

-4.0

V

25

50

il

-150

-60

-15

rnA

15

60

150

rnA

+100

!lA

VOL1

Output Voltage LOW

= 450

Ro

Output Resistance

450 il";';RL

los+

Output Short Circuit Current1

Vo=O V, VI=O V

il)

Vo = 0 V, VI = 2.0 V

losICEX

Output Leakage Current

Vo = ± 6.0 V, Power-Off

-100

VIH

Input Voltage HIGH

VIL

Input Voltage LOW

VIC

Input Clamp Diode Voltage

11= 15 rnA

-1.5

-1.1

IlL

Input Current LOW

VI = 0.4 V

-80

-16

IIH

Input Current HIGH

VI = 2.4 V

1.0

10

VI = 5.5 V

10

100

13

18

2.0

V
0.8

1+

Positive Supply Current

Vcc=±12 V, RL=oo,
Rws = 100 kil, VI = 0 V

1-

Negative Supply Current

Vcc=±12 V, RL=oo,
Rws = 100 kil, VI = 0 V

Notes
1. Only one output should be shorted at a time.

9-115

-18

-13

V
V
!lA
p.A

mA
rnA

J.lA9636A

J.(A9636A (Cont.)
Electrical Characteristics Over recommended operating temperature, supply voltage and wave shaping
resistance ranges unless otherwise specified.
AC Characteristics Vcc=±12 V±10%, TA = 25°C, see AC Test Circuit
Symbol

Characteristic

Condition
Rws = 10

Fall Time

tj

Typ

Max

0.8

1.1

1.4

8.0

11

14

Min

kn
Rws = 100 kn
Rws = 500 kn
Rws = 1000 kn
Rws = 10 kn
Rws = 100 kn
Rws = 500 kn
Rws = 1000 kn

Rise Time

t,

40

55

70

80

110

140

0.8

1.1

1.4

8.0

11

14

40

55

70

80

110

140

Unit
J.lS

J.lS

Typical Performance Curves
Input/Output Transfer
Characteristic vs Temperature

Yle~L2~ -

200

Rl~450ll

150

Rws"'" 100kn

>
I

6.0

!i

4.0

...

~

g

i

125"C

2-0
70"e

0

-2.0

-

I J

-55°C

Y~e ~I± 12'y

rRws = 100 ktl

,..

fl - f-.

-55°C

~

2S°C

f-

-200
1.2

0.6

I-J:o;.

TA=25"C

1I
~
II:

30

20
V, =2V

10

a
~ ~:
o

0
0
0

/v,-OY

lLl

125"C

-40

-50

1.8

1.6

125"C

VCC=±12V
Aws= 100k{l-

0

-30

-55°C

-6.0

~H

I"'"

~

-150

25"C

1/

DOC

50

r-U
II

2S°C

-4.0

OA

Output Current vs Output Voltage
(Power On)

Input Current vs Input Voltage

-1.0

INPUT VOLTAGE - V

0

1.0 2.0

3.0 4.0 5.0 6.0 7.0

-

10 8.0 6.0 4.0 2.0

INPUT VOLTAGE - V

0

j,./

2.0 4.0 6.0 8.0

10

OUTPUT VOLTAGE - V
PC06101F

Output Current vs Output Voltage
(Power Off)
100

1/

60

..

~

tz...

VCC=y,""DV

60 I - FD600 DIODE CONNECTED
IN SERIES WITH Vee PIN

40
20

}

II:

a:

::>

"5

-20

Supply Current vs Temperature

I

r

..e
.....

20

Z

10

0:
0:

..".

LOGIC
JlY'~O- ~

V, == 1

A~OG'C
VI=1
1-

_"'LOGIC_
V, '" 0

en

-60

-30

so

-40

-100
-10 -8.0 -6.0 -4.0 -2.0

0

2.0 4.0

OUTPUT VOLTAGE - V

6.0 8.0 10

-55

,

25

::i
if

r-

II:

125

100

0°'2.±!

IIII
2S°C

7ooe" 125"C

Q

~

TEMPERATURE _ °C

~

10

oV

~

1.
10 K 20 K 50 K 100 K 300 K 1.0 M

3.0 M

WAVE SHAPING RESISTANCE PC06121F

9-116

I

~

r-

I I
11

70

'1
;::

1t~OG'C

1+

~ -10

::> -20

0

55°C

jWS'1 'OOOll -

30

I

1000

Jee ~I± 12'y

40

::>

1= -40
::>

Transition Time vs Rws

II

J..lA9636A

AC Test Circuit and Waveforms
+12V

V,--.....- - t

I'>o--.....- -.....-Vo
450!l

SUI

CL

30pf

-12V

V,
Amplitude: 3.0 V
Offset: 0 V
Pulse Width: 500 IlS
PRR: 1.0 kHz
tr=tf~10 ns

Note
el includes jig and probe capacitance

RS-423

System Application
V+

V-

Note
1. Use Fairchild's 1N4448.

9-117

IlA9637A
Dual Differential
Line Receiver

FAIRCHILD
A

Schlumbe~$ler

Company

Linear Division Interface Products

Description
The 1lA9637A is a Schottky dual differential line receiver
which has been specifically designed to satisfy the requirements of EIA Standards RS-422 and RS-423. In addition,
the 1lA9637A satisfies the requirements of MIL-STD 188114 and is compatible with the International Standard
CCITT recommendations. The 1lA9637A is suitable for use
as a line receiver in digital data systems, using either single ended or differential, unipolar or bipolar transmission. It
requires a single 5.0 V power supply and has Schottky
TTL compatible outputs. The 1lA9637A has an operational
input common mode range of ± 7.0 V either differentially
or to ground.

•
•
•
•
•
•
•
•
•

Dual Channels
Single 5.0 V Supply
Satisfies EIA Standards RS-422 And RS-423
Built-In ± 35 mV Hysteresis
High Common Mode Range
High Input Impedance
TTL Compatible Output
Schottky TechnolC)gy
Extended Temperature Range

Connection Diagram
8-Lead DIP and 50-8 Package
(Top View)

+IN A
-INA

OUTB

+IN B

GNO

-IN B

Order Information
Device Code
1lA9637ARM
1lA9637ARC

1lA9637ATC
1lA9637ASC

Absolute Maximum Ratings
Storage Temperature Range
Ceramic DIP
Molded DIP
Operating Temperature Range
Extended (1lA9637 AM)
Commercial (1lA9637 AC)
Lead Temperature
Ceramic DIP (soldering, 30 s)
Molded DIP and SO Package
(soldering, 10 s)
Internal Power Dissipation 1. 2
8L-Ceramic DIP
8L-Molded DIP
SO-8
Vcc Lead Potential to Ground
Input Potential to Ground
Differential Input Voltage
Output Potential to Ground
Output Sink Current

Vee
OUT A

-65°C to +175°C
-65°C to + 150°C
-55°C to +125°C
O°C to +70°C
300°C
265°C
1.30 W
0.93 W
0.81 W
-0.5 V to 7.0 V
± 15 V
± 15 V
-0.5 V to +5.5 V
50 mA

Notes
1. TJ Max = 17S·C for Ihe Ceramic DIP. and IS0·C for Ihe Molded DIP.
2. Ralings apply 10 ambienl lemperalure al 2S·C. Above Ihis temperature.
derale Ihe 8L-Ceramic DIP al 8.7 mWrC. Ihe 8L-Molded DIP al 7.5
mWrC. and Ihe SO-8 al 6.5 mWrC.

9-118

Package Code
6T
6T
9T
KC

Package Description
Ceramic DIP
Ceramic DIP
Molded DIP
Molded Surface Mount

MA9637A

Equivalent Circuit
r---------.-------~~-----_.------_.-_.-------~----~c

R7
RS

R24

R14

R15

R23

as

02

Rll

Cl
5 pF

-IN

---~W-

__...

R3

Vee

OUT

•

- I N - -.....~W-_-+---I_--_+

R19

RS

GNO

Recommended Operating Conditions
f,lA9637A

Symbol

Characteristic

Vee

Supply Voltage

TA

Operating Temperature

f,lA9637AC

Min

Typ

Max

Min

Typ

Max

Unit

4.5

5.0

5.5

4.75

5.0

5.25

V

-55

25

125

0

25

70

·C

9-119

tLA9637A

,uA9637A

Electrical Characteristics Over recommended operating temperature and supply voltage ranges, unless
otherwise specified.
DC Characteristics
Symbol

Characteristic

Condition 1

Min

Typ2

Max

Unit

VTH

Differential Input
Threshold Voltage 3

-7.0 V

VCM

.;;;

+7.0 V

-0.2

+0.2

V

VTH(R)

Differential Input
Threshold Voltage4

-7.0 V .;;; VCM

.;;;

+7.0 V

-0.4

+0.4

V

II

Input CurrentS

3.25

mA

.;;;

1.1

VI = 10 V, 0 V .;;; Vcc .;;; +5.5 V
VI=-10 V, 0 V .;;; Vcc .;;; +5.5 V

VOL

Output Voltage LOW

10L = 20 mA, Vcc = Min

VOH

Output Voltage HIGH

IOH=-1.0 mA, Vcc=Min

los

Output Short Circuit Current6

Va = 0 V, Vcc = Max

Icc

Supply Current

Vcc = Max, VI+ = 0.5 V,
VI- =GND

VHYST

Input Hysteresis

VCM =

± 7.0

-3.25

-1.6
0.35

0.5

V
V

2.5

3.5

-40

-75

-100

mA

35

50

mA
mV

70

V (See Curves)

AC Characteristics Vcc = 5.0 V, TA = 25°C
Symbol

Characteristic

Condition

Min

Typ

Max

Unit

tpLH

Propagation Delay Time
Low to High

See AC Test Circuit

15

25

ns

tpHL

Propagation Delay Time
High to Low

See AC Test Circuit

13

25

ns

n

Notes
1. Use MiniMax values specified in recommended operating conditions.

2. Typical limits are at Vee = S.O V and TA = 2S·C.
3. VO'FF (Differential Input Voltage) = (V,+) - (V,-). VeM (Common Mode
Input Voltage) = V,+ or V,-.

4. 500
± 1% in series with inputs.
5. The input not under test is tied to ground.

6. Only one output should be shorted at a time.

Typical Input/Output Transfer Characteristics
Vee" 5.25 V

I

w

"~
g

!:;
0.
l-

S

il

I

,.
I~::-:

I
I
I

:I

>
I

I
I

I:

I

:

"i!....
g
...

I

!:;
o

I

I

I

I:

I VCM
I

1

I
I

== +7 V

I:

I

~

V--" I
lr---~r+lr-~---HI~----~
VCM - 0

I~

I

w

VeM"!7V

VCM" OV--"

I
I

I

I
I

II

II

o

-100

'NPUT VOLTAGE-mV

50

INPUT VOLTAGE-mV

9-120

100

JlA9637A

AC Test Circuit and Waveforms
Vee = s.ov

Vee = s.ov

Vo

+O.5V
392

v,

n
V,
-o.SV

51 !)

C,

15 pF

3.92 kn

Notes
CL includes jig and probe capacitance.
All diodes are FD700 or equivalent.

V,
Amplitude: 1.0 V
Offset: 0.5 V
Pulse Width: 100 ns
PRR: 5.0 MHz
tr=tf N ' - - -...

Rl4

Rl5

~---..,.--+--.
Rll

Vee
OUT

Rl

-IN----J>N'---~---~--_+
R2

R6

O~ ~----_+--~~

RS

Rl9

GNO

Recommended Operating Conditions
Characteristic

Symbol
Vee

Supply Voltage

TA

Operating Temperature

9-127

Min

Typ

Max

4.75

5.0

5.25

Unit
V

0

25

70

°C

MA9639A

pA9639A
Electrical Characteristics Over recommended operating temperature and supply voltage ranges, unless
otherwise specified.
DC Characteristics

Condition 1

Typ2

Max

Unit

VTH

Differential Input
Threshold Voltage3

-7.0 V------.. OTHER

RECEIVERS

R20

-

-

c::J

~ COMMON CIRCUITRY

~ CROSSUNDER

I
I
I
I
I

I
-.J

I
L
__
-

TO ONE
OTHER
RECEIVER

"

9-131

J,LA9640(26510)

Recommended Operating Conditions
Extended 4
Symbol

Characteristic

Min

Typ

Commercial 5
Max

Min

Typ

Max

Unit

Vee

Supply Voltage

4.50

5.0

5.5

4.75

5.0

5.25

V

TA

Operating Temperature

-55

25

125

0

25

70

°C

1lA9640(26S10)

Electrical Characteristics Over recommended operating temperature and supply voltage ranges, unless
otherwise specified.
DC Characteristics
Symbol

Condition 1

Characteristic

Min

Typ2

Extended 4

2.5

3.4

Comm 5

2.7

3.4

Max

Output Voltage HIGH
(Receiver Outputs)

Vee = Min,
IOH=-1.0 mA,
VI = VIL or VIH

VOL

Output Voltage LOW
(Receiver Outputs)

Vee = Min, 10L = 20 mA,
VI = VIL or VIH

VIH

Input Voltage HIGH
(Except Bus)

Guaranteed Input Logic HIGH
for All Inputs

VIL

Input Voltage LOW
(Except Bus)

Guaranteed Input Logie LOW
for All Inputs

Vie

Input Clamp Voltage
(Except Bus)

Vee = Min, 11=-18 mA

IlL

Input Current LOW

Vee = Max,
VI = 0.4 V
Vee = Max,
VI=2.7 V

ENABLE

20

DATA

30

VOH

IIH

Input Current HIGH

Vee
los

lee

-= Max,

Unit

V

0.5

V
V

2.0
0.8

V

-1.2

V

ENABLE

-0.36

mA

DATA

-0.54

VI = 5.5 V

IlA

100
Extended4

-20

-55

Comm 5

-18

-60

Output Short Circuit
Current (Except Bus)3

Vee = Max

Supply Current

Vee = Max, VI = VIH, Enable = GND

45

70

mA

mA

AC Characteristics Vee = 5.0 V, TA = 25°C
Symbol

Condition6

Characteristic

Min

Typ2

Max

Rs=50 n,
Cs =50 pF

10

15

14

18

Bus to Receiver Out

Rs = 50 n, RL = 280 n,
Cs = 50 pF, CL = 15 pF

10

15

Ir

Rise Time Bus

If

Fall Time Bus

Rs = 50 n,
CB = 50 pF

tpD

Data Input to Bus
Enable Input 10 Bus

9-132

Unit

ns

4.0

10

ns

2.0

4.0

ns

IlA9640(26S10)

J.lA9640(26S10) (Cont.)
Electrical Characteristics Over recommended operating temperature and supply voltage ranges, unless
otherwise specified.
Bus Input/Output Characteristics
Symbol
VOL

Vcc= Min

Extended 4

Comm s

ICEX (ON)

Bus Leakage Current

Cl

0.42

0.7

IOL = 100 mA

0.51

0.8

p.A

2.4

V

Comm s

2.0

2.25

Extended4
Comm s

Vee

(NOTE 2)

5 PF

-=- (NOTE')

BUS
TEST
POINT

Note
I. Includes probe and jig capacitance.
2. All Diodes 1N916 or equivalent.

9-133

p.A

100

Rl
280 {}

I'

IOL = 70 mA

V

2.0

Figure 1 AC Test Circuit

-=-

0.5

Unit

Extended4

Notes
1. For conditions shown as Min or Max, use the appropriate value specified
under Electrical Characteristics for the applicable device type.
2. Typical limits are at Vee - S.O V, TA - 2SoC ambient and maximum
loading.
3. Not more than one output should be shorted at a time. Duration of the
short circuit test should not exceed one second.
4. Extended temperature range, ceramic DIP.
5. Commercial temperature range, ceramic or molded DIP.
6. CB and CL include probe and jig capacitance.

I

0.8

0.33

100

Bus Enable = 2.4 V,
Vcc= Min

RECEIVER
OUT

0.51

IOL = 40 mA

Vo=4.5 V

Receiver Input
Threshold LOW

TEST
POINT

IOL = 100 mA

Comm s

Bus Enable = 2.4 V,
VCC= Max

0F

0.7

200

Vo=4.5 V, VCc=O V

CS

0.42

-50

Bus Leakage Current

50

IOL = 70 mA

Vo= 4.5 V

Receiver Input
Threshold HIGH

(NOTE')

0.5

Extended 4

ICEX (OFF)

Vee

Max

0.33

Min

Vo= 0.8 V

Vcc= Max

VTH+

VTH-

Typ2

IOL =40 mA

Condition 1

Characteristic
Output Voltage LOW

1.6

2.0

1.75

2.0

V

J.LA9640(26S 10)

Figure 2

Waveforms

p.A9640
, INPUT

ENABLE
INPUT

BUS
TEST
POINT

t f

. ~ f ~,~ {
'PH'

~

RECEIVEROUT _ _ _ _
TEST POINT

_t_;;:

j
'i_v
~ fW ~ {___==~"

r- -1

\l

"'

'PHL

t-'PLH

_!vr~~~~\

T-

I ____~":HV

"

~----' - - - - - V O L
CR01781F

9-134

J..lA9643
Dual TTL To MOS/CCD

I=AIRCHIL.O
A Schlumberger Company

Driver
Linear Division Interface Products

Description

Connection Diagram
8-Lead DIP
(Top View)

The /JA9643 is a dual positive logic "AND" TTL-to-MOS
driver. The 1JA9643 is a functional replacement for the
SN75322 with one important exception: the two external
PNP transistors are no longer needed for operation. The
1JA9643 is also a functional replacement for the 75363
with the important exception that the VCC3 supply is not
needed. The lead connections normally used for the external PNP transistors are purposely not internally connected
to the 1JA9643.

INA
E
IN B

GND

• Satisfies CCD Memory And Delay Line Requirements
• Dual Positive Logic TTL To MOS Driver
• Operates From Standard Bipolar And MOS Supply
Voltages
• High Speed Switching
• TTL And DTL Compatible Inputs
• Separate Drivers Address Inputs With Common
Strobe
• VOH And VOL Compatible With Popular MOS RAMs
• Does Not Require External PNP Transistors Or VCC3
• VOH Minimum Is VCC2-0.5 V

Order Information
Device Code
1JA9643TC

Package Description
Molded DIP

Truth Table
INPUT

Absolute Maximum Ratings
Storage Temperature Range
Operating Temperature Range
Lead Temperature
Molded DIP (soldering, 10 s)
Internal Power Dissipation 1, 2
Supply Voltage Range of VCCI 3
Supply Voltage Range of VCC2
Input Voltage
Inter-Input Voltage4

Package Code
9T

-65°C to + 150°C
O°C to +70°C
265°C
0.93 W
-0.5 V to +7.0 V
-0.5 V to +15 V
5.5 V
5.5 V

Notes
I. TJ Max-ISO'C
2. Ratings apply to ambient temperature at 2S·C. Above this temperature,
derate at 7.5 mWrC.
3. Voltage values are with respect to network ground terminals unless
otherwise noted.
4. This rating applies between any two inputs of anyone of the gates.

9-135

ENABLE

OUTPUT

L

L

L

L

H

L

H

L

L

H

H

H

MA9643

Equivalent Circuit (1/2 of Circuit)

At

VCC1

10kn
01~

Cl

R3

Rl

lkn

3kn

R2

+--.---I----1--t' Q14

1.5kU

03

t---------i:OS·

07
OUT
011

02

Rll

eoOn

o

CROSSUNDER

R4

soon
014

GNO
EOOO27OF

Recommended Operating Conditions
Symbol

Characteristic

Min

Typ

Max

Unit

Vce1

Supply Voltage

4.75

5.0

5.25

VCC2

Supply Voltage

11.4

12

12.6

V

TA

Operating Temperature

0

25

70

·C

V

me
1lA9643

J.LA9643
Electrical Characteristics Over recommended operating temperature and VCC1, VCC2 ranges, unless otherwise
specified.
DC Characteristics
Symbol

Characteristic

Condition

Typ1

Min

Max

VIH

Input Voltage HIGH

VIL

Input Voltage LOW

2.0

VOH

Output Voltage HIGH

IOH = -400 p.A

VOL

Output Voltage LOW

IOL = 10 mA

0.4

0.5

IOL = 1.0 mA

0.2

0.3

VCC2- 0.5

Input Current at Maximum
Input Voltage

VCC1 = 5.25 V, VCC2 = 11.4 V
VI =5.25 V

IIH

Input Current HIGH

VI =2.4 V

IlL

Input Current LOW

V
0.8

II

VI =0.4 V

Unit

V
V

VCC2- 0.2

V

0.1

mA

A Inputs

40

p.A

E Inputs

80

A Inputs

-0.5

E Inputs

-1.0

mA

ICC1(L)

Supply Current from VCC1
All Outputs LOW

VCC1 = 5.25 V,
VCC2 = 12.6 V

15

19

mA

ICC2(L)

Supply Current from VCC2
All Outputs LOW

VCC1 = 5.25 V,
VCC2 = 12.6 V

5.5

9.5

mA

ICC1(H)

Supply Current from VCC1
All Outputs HIGH

VCC1 = 5.25 V,
VCC2 = 12.6 V

9.0

13

mA

ICC2(H)

Supply Current from VCC2
All Outputs HIGH

VCC1 = 5.25 V,
VCC2 = 12.6 V

5.5

9.5

mA

AC Characteristics VCC1 = 5.0 V, VCC2 = 12 V, TA = 25°C
Symbol

Characteristic

tDLH

Delay Time

tDHL

Delay Time

tTLH

Rise Time

tTHL

Fall Time

tTLH

Rise Time

tTHL

Fall Time

tPLHA_
tpLHB
tPHLA_
tpHLB

Skew between outputs
A and B

Condition
CL =300 pF

CL =300 pF

RSERIES = 0

RSERIES = 10

n

CL =300 pF

.(

Min

Typ

1. All typical values are at vcc, = 5.0 V. V= = 12.0 V, and TA - 2SoC
unless otherwise noted.

9-137

Unit

5.0

9.0

17

ns

5.0

9.0

17

ns

6.0

11

17

ns

6.0

11

17

ns

8.0

14

20

ns

8.0

14

20

ns

0.5

Note

Max

ns

MA9643

AC Test Circuit and Waveforms

v,-_...r--

2.4 V - - " " L_ _.....""",_.---vo

1-<10ns

I

v,----1

.....:---VON

CFI01760F

Notea
Tha pulse generator has the following characteristics:

PRR -1.0 MHz,

Zo -

50

n

CL includes probe and jig capacitance.

9·138

J.LA9645(3245)
Quad TTL To MOS/CCD
Driver

FAIRCHILD
A Schlumberger Company

Linear Division Interface Products

Description
The j.lA9645(3245) is a high speed driver intended to be
used as a clock (high level) driver for 18 or 22·lead dy·
namic NMOS RAMs. It also satisfies the non·overlapping
2·phase clock drive requirements for CCD memories like
the F464 (64K) RAM.

Connection Diagram
16-Lead DIP
(Top View)

Vee1

VCC2

The circuit is designed to operate on nominal + 5.0 V and
+ 12 V power supplies and contains input and output
clamp diodes to minimize line reflections.

ourD

our A

INO

INA

The device features two common enable inputs, a refresh
select input and a clock control input. Internal gating
structure is organized so that all four drivers may be de·
activated for standby operation, or a single driver may be
activated for read/write operation or all four drivers may
be activated for refresh operation.

C

E,

R

E2

INC

INB

The j.lA9645(3245) is a lead for lead replacement of the
Intel 3245 Quad TTL·to·MOS Driver, with substantially reo
duced DC power dissipation.

our a

OUTC

OND

•
•
•
•

NC

Interchangeable With Intel 3245
Four High Speed, High Current Drivers
Control Logic Optimized For MOS RAMs
Satisfies CCD Memory And Delay Line Drive
Requirements
• TTL And DTL Compatible Inputs
• High Voltage Schottky Technology

Device Code
Package Code
j.lA9645DC(3245)
7B
j.lA9645PC(3245)
9B

Absolute Maximum Ratings

Truth Table

Storage Temperature Range
Ceramic DIP
Molded DIP
Operating Temperature Range
Lead Temperature
Ceramic DIP (soldering, 60 s)
Molded DIP (soldering, 10 s)
Internal Power Dissipation 1,2
16L·Ceramic DIP
16L·Molded DIP
Supply Voltage, VCC1
Supply Voltage, VCC2
All Input Voltages
Outputs For Clock Driver
Temperature Under Bias

Order Information
Package Description
Ceramic DIP
Molded DIP

Inputs

-65·C to + 175·C
-65·C to + 150·C
O·C to +70·C
300·C
26!?·C
1.50 W
1.04 W
-0.5 V to +7.0 V
-0.5 V to + 14.0 V
-1.0 V to V-1.0 V to
(V-) +1.0 V
-10·C to +70·C

Control

Address

C

E2

E1

INPUT

REFRESH

H

X

X
X
X

H

X
X

X
X

X
X
X

X
X
X

X

L
L

L
L

L
L

H
L

X

X

L

H- HIGH

L=LOW
Don't Care

X=

Notes

1. TJ Max -175'C for the CeramiC DIP, and 150'C for the Molded DIP.
2. Ratings apply to ambient temperature at 25·C. Above this temperature,
derate the 16L-Ceramic DIP at 10 mWrC, and the 16L-Molded DIP at
8.3 mWrC.

9·139

H

Output

H

L
L
L
L
H
H

J.LA9645(3245)

Equivalent Circuit
Vcc,

I

vi

A4
SkU

·'if
ii

71IOn

At
10lcH

......

~tD12

~

t--

"02

t

C1

10;'"

""'05

"....

""'014

"....

':"

~~D7

R14

SIUI

R15
5kn

'--

R11
300n

R18
SkU

~1U1

.:

~

~D13

r-:tI

va;-

i~~"

~ ~DI ~ ~D10

10k.l1

~
N

~~
150n

D8~

Q6

ii.

"018

D4!

......

R7
200"

~

ii,

R10
1.5k"

"017

"1

iDS

GNO

~

OUT8

!tiB

INC

INO

I

I
....;-.-

OUTC

~

OUTD

I

I

I

9-140

!t,11
""'012
.,....,.

R13

......::

.~

III
1.5 kn

~

C

1

R3

R
K~

RI
4kn

.......

OUT
A

j~D14
""011
.,....,.
':"

MA9645(3245)

Logic Diagram
!,

I!o

OUT A

INA

OUTS
INII

OUTe
INe

OUT 0
INiI

ii
C

1lA9645(3245)

Electrical Characteristics VCCl = 5.0 V ± 5%, VCC2 = 12 V ± 5%, TA = Doe to 70 oe, unless otherwise
specified.
DC Characteristics
Symbol

Characteristic

Condition

Typ

Input Load Current, IN (A,B,C,D)

VF = 0.45 V

Max
-0.25

Unit

IFD
IFE

Input Load Current, R, C, E1, E2

VF = 0.45 V

-1.0

rnA

IRD

Data Input Leakage Current

VR= 5.0 V

10

IRE

Enable Input Leakage Current

VR =5.0 V

40

iJ.A
iJ.A

VOL

Output Voltage LOW
Output Voltage HIGH

0.45

IOL = 5.0 mA, VIH = 2.0 V
IOL=-5.0 mA

VOH

Min

IOH = -1.0 mA, VIL = 0.8 V

VIL

Input Voltage LOW, All Inputs
Input Voltage HIGH, All Inputs

V

-1.0
V

VccrO.5O

IOH = 5.0 mA
VIH

rnA

VCC2 +1.0
0.8
2.0

V
V

I+H

Positive Supply Current HIGH

VCCl =5.25 V

13

20

I-H

Negative Supply Current HIGH

VCC2= 12.6 V

14

20

mA

PC(H)

Power Consumption HIGH

All Outputs HIGH

248

357

mW

Power Per Channel

mA

62

90

mW

I+L

Positive Supply Current LOW

VCCl = 5.25 V

27

35

rnA

I-L

Negative Supply Current LOW

VCC2 = 12.6 V

12

15

mA

PC(L)

Power Consumption LOW

All Outputs LOW

296

373

mW

74

94

mW

Power Per Channel

9-141

~9645(3245)

1LA9645(3245) (Cont.)
Electrical Characteristics VCC1 = 5.0 V ± 5%, VCC2 = 12 V ± 5%, TA = O°C to 70°C, unless otherwise
specified.
AC Characteristics
Symbol
t-( +)

Characteristic
Input to Output Delay

RSERIES

=0

Delay Plus Rise Time

RSERIES=O

t+(-)

Input to Output Delay

RSERIES=O

tOFt

Delay Plus Fall Time

RSERIES= 0

tT

Output Transition Time

RSERIES = 20

tOR2

Delay Plus Rise Time

RSERIES = 20

tOF2

Delay Plus Fall Time

RSERIES = 20

tORt

Mint

Condition

T yp2,4

5.0
3.0

n
n
n

10

11
18
7.0
18
13
27
24

Max3

ns

32

AC Test Circuit and Waveforms

3V~\

"K"'u_v____--'
1. - ____ _

GND _ _

v_ -

WF00111F

Note
AC Test Conditions:
Input Pulse Amplitude - 3.0 V
Input Pulse Rise and Fall Times

= 5.0

ns Between 1.0 V and 2.0 V

9-142

ns
ns

32
20
38
38

Notes
1. CL=150 pF
2. CL - 200 pF
3. CL = 250 pF
4. Typical values are measured at TA - 25°C

CROOe11F

Unit

ns
ns
ns
ns

IlA9665 • IlA9666
IlA9667 • IlA9668
High Current/Voltage
Darlington Drivers

FAIRCHILD
A Schlumberger Company

Linear Division Interface Products

Description

Connection Diagram
16-Lead DIP
(Top View)

The #lA9665, #lA9666, #lA9667, and #lA9668 are comprised
of seven high voltage, high current NPN Darlington transistor pairs. All units feature common emitter, open collector
outputs. To maximize their effectiveness, these units contain suppression diodes for inductive loads and appropriate
emitter base resistors for leakage.

INA
INS

The #lA9665 is a general purpose array which may be
used with DTL, TTL, PMOS, CMOS, etc. Input current limiting is done by connecting an appropriate discrete resistor
to each input.

INC
IND
INE
INF

The #lA9666 version does away with the need for any external discrete resistors, since each unit has a resistor and
a Zener diode in series with the input. The #lA9666 was
specifically designed for direct interface from PMOS logic
(operating at supply voltages from 14 V to 25 V) to solenoids or relays.

INO

OUTG

OND

COMMON

Order Information
Device Code

The #lA9667 has a series base resistor to each Darlington
pair, thus allowing operation directly with TTL or CMOS
operating at supply voltages of 5.0 V.

#lA9665DC
#lA9665PC
#lA9666DM
#lA9666DC
#lA9666PC
#lA9667DM
#lA9667DC
#lA9667PC
#lA9668DM
#lA9668DC
#lA9668PC

The #lA9668 has an appropriate input resistor to allow direct operation from CMOS or PMOS outputs operating
from supply voltages of 6.0 V to 15 V.
The #lA9665, #lA9666, #lA9667, and #lA9668 offer solutions
to a great many interface needs, including solenoids, relays, lamps, small motors, and LEDs. Applications requiring
sink currents beyond the capability of a single output may
be accommodated by paralleling the outputs.
•
•
•
•
•
•
•

Seven High Gain Darlington Pairs
High Output Voltage (VCE = 50 V)
High Output Current (Ic 350 mAl
DTL, TTL, PMOS, CMOS Compatible
Suppression Diodes For Inductive Loads
2 Watt Molded DIP On Copper Lead Frame
Extended Temperature Range

=

9-143

Package Code

68
98
68
68
98
68
68
98
68
68
98

Package Description
Ceramic DIP
Molded DIP
Ceramic DIP
Ceramic DiP
Molded DIP
Ceramic DIP
Ceramic DIP
Molded DIP
Ceramic DIP
Ceramic DIP
Molded DIP

J.{A9665 • IlA9666 • IlA9667 • IlA9668

Absolute Maximum Ratings
Storage Temperature Range
Ceramic DIP
Molded DIP
Operating Temperature Range
Extended (!lA96661718M)
Commercial (!lA9665/6/7/8C)
Lead Temperature
Ceramic DIP (soldering, 60 s)
Molded DIP (soldering, 10 s)
Internal Power Dissipation 1, 2
16L-Ceramic DIP
16L-Molded DIP
Input Voltage
Output Voltage
Emitter-Base Voltage
Continuous Collector Current
Continuous Base Current

-65·C to +175·C
-65·C to +150·C
-55·C to +125·C
O·G to +70·C
300·G
265·G
1.50 W
1.04 W
30 V
55 V
6.0 V
500 mA
25 mA

Notes
1. TJ Max -175'C for the Ceramic DIP, and 150'C for the Molded DIP.
2. Ratings apply to ambient temperature at 25'C. Above this temperature,
derate the 16L-Ceramic DIP at 10 mWI'C, and the 16L-Molded DIP at
8.3 mW/'C.
3. Under normal operating conditions, these units will sustain 350 rnA per
output with VCE(Sat) = 1.6 V at 70'C with a pulse width of 20 ms and a
duty cycle of 30%.

Equivalent Circuits
1lA9667

1lA9665

COMMON

COMMON

,---....~-=-- OUT

2.7kn

.----....~-=-- OUT

iii

1lA9666

1lA9668
CO.aN

COMMON

, - - -.....___-=--OUT

. - - - -....- - - O U T
10-5 kll

E000351F

9-144

MA9665 • MA9666 • MA9667 • MA9668

/lA9665/617/8
Electrical Characteristics TA = 25°C, unless otherwise specified.
Symbol
ICEX

Output Leakage Current

TA = 70°C for Commercial
VCE = 50 V
VCE = 50 V, VI = 6.0 V
VCE = 50 V, VI = 1.0 V

VCE(Sat)

Test
Figure

Conditions 1

Characteristic

pA9666
pA9668

Max
100

1b

500

1b
2

1.25

1.6

Ic = 200 rnA, 18 = 350 pA

2

1.1

1.3

Input Current

VI = 17 V

2

0.9

1.1

3

0.85

1.3

VI =3.85 V

pA9666
pA9667

3

0.93

1.35

VI = 5.0 V

!lA9668

3

0.35

0.5

VI = 12 V

3

1.0

1.45

4

Input Current2

TA = 70°C for Commercial
Ic = 500 pA

VI(ON)

Input Voltage3

VCE = 2.0 V, Ic = 300 rnA

65
13
2.4

VCE = 2.0 V, Ic = 250 rnA

5

2.7

VCE = 2.0 V, Ic = 300 mA

5

3.0

pA9668

5

5.0

VCE = 2.0 V, Ic = 200 mA

5

6:0

VeE = 2.0 V, Ie = 275 rnA

5

7.0

VeE = 2.0 V, Ic = 350 mA

5

VeE = 2.0 V, Ic = 350 mA

pA9665

2

pA

V

mA

pA

5

VCE = 2.0 V, Ic = 125 mA

DC Forward Current
Transfer Ratio

pA9666
pA9667

50

5

VCE = 2.0 V, Ic = 200 rnA

Unit

500

Ic = 350 mA, 18 = 500 pA

II(OFF)

hFE

Typ

Collector-Emitter
Saturation Voltage

Ic = 100 mA, 18 = 250 pA
II(ON)

Min

1a

V

8.0
1000

CI

Input Capacitance

15

30

pF

tpLH

Turn-On Delay

0.5 VI to 0.5 Vo

1.0

5.0

iJ.S

tpHL

Turn-Off Delay

0.5 VI to 0.5 Vo

1.0

5.0

iJ.S

IR

Clamp Diode
Leakage Current

VR = 50 V

6

50

pA

VF

Clamp Diode Forward
Voltage

IF=350 mA

7

2.0

V

Notes
1. All limits stated apply to the complete Darlington series except es
specified for a single device type.
2. The I'(OFF) current lim" guaranteed against partial turn-on of the output.
3. The V'(ON) voltage limit guarantees a minimum output sink current per
the spec~ied test conditions.

9-145

1.7

MA9665 • MA9666 • MA9667 • MA9668

Typical Performance Curves
Collector Current vs
Saturation Voltage

Collector Current vs Input Current

IJCO

,-

400
TYPICAL
(2 PARALLELED DEVICES)

-!

TYPICAL

I
I

TYPICAL
(SINGLE DEVlCE)-

,
'

I,

o

I

1.0

I

,,

MAX/

I

Z

1.5

1.0

:::>
;!;

0.5

E

ffi

i

a

/ '

~

1.0

5

~0.5 ./'

,/.'
3.0

./

I

/,

"

o
2.0

oC 1.5

V ,

w

:::>

~o

s.o

6.0

7.0

a.o

V

V
","

,/
TYP
, "

o
5.0

9.0

INPUT YOLTAGta - v

Peak Collector Current va
Duty Cycle arid Number of
Outputs (Molded package)

""

6.0

7.0

8.0

9.0

10

11

12

INPUT VOLTAGE - V

Peak Collector Current vs
Duty Cycle and Number of
Outpl,lts (Ceramic Package)

.

E'

I

~300I--H--\--,H-"*""---+'~-I----l
~
~

~ 2ODr---~~~~~~~~--~

~

~
DUTY CYCLE - "10

.."

1.0

0.5

,

/

V

..'

..

.

TY:~ ~'

~'

DUTY CYCLE - %

9·146

12

14

16

18

20

22

INPUT VOLTAGE - V

~

TYP,

/ ,

E

600

2.0

V ~'
,

/

,

o
400

1lA9668 Input Current vs
Input Voltage

2.5

2.0

~
z

INPUT CURRENT -

1lA9667 Input Current vs
Input Volt!lge

.
..
...
...."

iB
-

20D

SATURATION VOLTAGE - V

'"

I

,'1

o
o

1.5

V

""V/

/

~ 1.5

V

I

/UMIT

MA)

I

I

V

"

0.5

I

/

---/-. ~'
I

o

,,

2.0

V
MAXI

I

I

1lA9666 Input Current vs
Input Voltage

24

26

JlA9665 • JlA9666 • JlA9667 • JlA9668

Test Circuits
Figure 1a

Figure 1b

Figure 2

OPEN +50V

OPEN+50V

~~r"
Figure 3

OPEN

'ifIT"

Figure 4
OPEN

OPEN +50V

rr'mA

vi"':'"

-=

Figure 6

Figure 7
+50V

,-

~
~

"

OPEN

-!Of

iF

9-147

#+

t

t
-:-

Figure 5
OPEN

rffi

Ie

l-:-v

eE

:-:-

t

tlA9665 • tlA9666 • tlA9667 • tlA9668

Typical Applications
Buffer for Higher Current Loads

PMOS to Load
V,

II:!

V,

V2
16

16

15

15

14

14

13

l

"A9666

13

12

~9667

12
11
10

PMOS
OUTPUT

-=
TTL

-=

OUTPUT

TTL to Load
V,

V2

16
15
14
13
~9668

~~

10

1

CMOS
OUTPUT

-=

12

-=

-=

9-148

-=

t~

IlA9679
Differential Bus Repeater

FAIRCHILD
A Schlumberger Company

Linear Division Interface Products

Description

Connection Diagram
8-Lead DIP
(Top View)

The J.lA9679 Differential Bus Repeater is a monolithic integrated circuit designed for bidirectional data communication
on balanced bus transmission lines. The repeater meets
EIA Standard RS-422A.
The J.lA9679 combines a three-state differential line driver
and a differential input line receiver, both of which operate
from a single 5.0 volt power supply. The driver and receiver are operated from a single enable lead. When one device is active, the other device is disabled. This feature
allows for complete isolation of the driver from the receiver function.
The driver is designed to handle loads up to 60 mA of
sink or source current. The driver features positive and
negative current limiting and thermal shutdown protection
for line fault conditions. Thermal shutdown is designed to
occur at a junction temperature of "" 160°C. The receiver
features a typical input impedance of 12 kU, an input sensitivity of ± 200 mV and a typical input hysteresis of
50 mV.

•
•
•
•
•
•
•
•
•
•
•

T

B

E

z

GND

y

Package Code

J.lA9679TC

9T

Package Description
Molded DIP

Function Table Receiver
Differential Inputs

Enable Output

Driver

A-B

E

T

VID;;' 0.2 V

L

H

Z

-0.2 V <; VID

< 0.2

L

?

Z

VID<;-0.2 V

V

L

L

Z

X

H

Z

See Function
Table Driver

Function Table Driver

Absolute Maximum Ratings

Driver Input

-65°C to + 150°C
O°C to +70°C
265°C
0.93 W
7.0 V
5.5 V

= 150"C.

2. Ratings apply to ambient temperature at 25°C. Above this temperature,
derate at 7.5 mWrC.
3. AU voltage values are with respect to network ground terminal.

9-149

Enable

Output

Receiver

A-B

E

y

H

H

H

L

Z

L

H

L

H

Z

H = High Level
L = Low Level
? = Indeterminate
X = Immaterial
Z = High Impedance (off)

Notes

1. TJ Max

A

Order Information
Device Code

Meets EIA Standard RS-422A
Three-State Control
Common Enable For Isolation
Driver Output Capability ± 60 mA
Thermal Shutdown Protection
Positive And Negative Current Limiting
High Impedance Receiver Input
Receiver Input Sensitivity Of ± 200 mV
Receiver Input Hysteresis Of 50 mV Typical
Operates From Single 5.0 V Supply
Low Power Requirements

Storage Temperature Range
Operating Temperature Range
Lead Temperature
Molded DIP (soldering, 10 s)
Internal Power Dissipation I, 2
Supply Voltage 3
Input Voltage

Vcc

Z

J-lA9679

Recommended Operating Conditions
Symbol

Characteristic

Min

Typ

Max

Units

V

Vcc

Supply Voltage

VID

Differential Input Voltage 1

10H

Output Current HIGH

Driver

-400

p.A

10L

Output Current LOW

Driver

60

mA

Receiver

16

4.75

5.0

5.25

Receiver

Operating Temperature

TA

0

25

±12

V

-60

mA

70

°C

Note
1. The algebraic convention where the less positive (more negative) limit is
designated minimum is used in this data sheet for common mode input

voltage and threshold voltage levels only.

j.lA9679
Electrical Characteristics Over recommended operating temperature and supply voltage ranges, unless
otherwise specified.
Driver Section
Symbol

Characteristic

Condition

VIH

Input Voltage HIGH

VIL

Input Voltage LOW

VIC

Input Clamp Voltage

11=-18mA

I VOD11

Differential Output Voltage

10=0 V
RL=100

Typ1

Max

2.0

.n

IVOD21

Differential Output Voltage

.-I

ov~

n!IOL
J 'i

(+)

!

lOti

(-)

9·152

3750

JlA9679

Parameter Measurement Information (Cont.)
Figure 4 Driver Differential Output Delay and Transition Times
IN
GENERATOR
(Note 1)

son

J:'SV

!no

1.]

3V
OV

!no

"""",....,90%=...--

~ 2.SV

OIlT

Figure 5 Drive Propagation Times
IN

2.3V
RL=27n
~>-"""'''''''-OUT

y

OIlT

GENERATOR
(Note 1)

ENABLED
(Note 3)

Figure 6

Z

OIlT

Driver Enable and Disable Times (tpZH. tpHZ)
, -_ _.oSI

---C>--r---t--

OVor3V

OIlT
IN

RL= 110n
GENERATOR
(Note 1)

d. 'j
J.9
sv
H

son
OIlT

3V
OV

..... ..:..L-VOH

2.3V

O.SV
VOFF""'OV

Figure 7

Driver Enable and Disable Times (tpZL. tpLZ)
sv
RL= loon

IN

~>-"""'''''''-OUT

d.

sv

3V

ov

~r
OUT

l.j

-1IpLZr/SV

~SV

t

9-153

VOL

}.tA9679

Parameter Measurement Information (Cont.)
Figure 8 Receiver Propagation Delay Times

-d.

5V

IN

1.)

3V
OV

~:
~

OUT

1.3V

ENABLED _ _ _ _ _ _ _...J

VOH

1.3V

VOL

(Note 3)

Figure 9 Receiver Enable and Disable Times
51
o--5V

IPZH

.
-cE

IPZL

(1IA9679)~.
INPUT
1.5V

((lA9679)~

3V S1t01.5V

INPUT

S2 OPEN
S3CLOSED

OV
VOH

--.I

INPUT

1.5V

~
PHZ

O.5V

OUTPUT

IPLZ

IpHZ

_9~3V

~~~4.5V
~VOL

OUTPUT

- - OV

("'-7 )

S2 CL05ED

OV S30PEN

1.5V

OUTPUT

3V 5110 -1.5V

1.5V

("A9679)~
<-.

S1101.5V

S2 CLOSED

INPUT.l

3V 511o-1.5V

1.5 V

52 CL.OSED

\

OV S3CLOSED

OV S3 CLOSED
PLZ

~

--~1.3V

VOH
OUTPUT

--~1.3V

O.5Y

VOL

Notes
1. The input pulse is supplied by a generator having the following
characteristics: PRR = 1.0 MHz, duty cycle"'50%, t,';; 6.0 ns, tf';; 6.0 ns,
Zo=50n.
2. CL includes probe and stray capaCitance.
3. ,.A96178 Enable is active low, ,.A96177 Enable is active high.
4. All diodes are 1N916 or equivalent.

9-154

OAC08
8-Bit Multiplying
01 A Converter

FAIRCHIL.D
A Schlumberger Company

Linear Division Data Acquisition

Description

Connection Diagram
16-Lead DIP
(Top View)

The DAC08 is an 8-bit multiplying digital-to-analog converter constructed using the Fairchild Planar Epitaxial process.
Advanced circuit design achieves very high speed performance with outstanding applications capability and low
cost.

• Fast Settling Time To 1/2 LSB 85 ns
• Full Scale Current Prematched To ± 1 LSB
• Direct Interface To TTL, CMOS, ECL, HTL, PMOS,
DTL
• Linearity To ± 0.19% Max Over Temperature Range
• High Output Compliance -10 V To +18 V
• True And Complemented Outputs
• Wide Range Multiplying Capability
• Low Full Scale Current Drift + 10 ppml"C TYP
• Wide Power Supply Range ± 4.5 V To ± 18 V
• Low Power Consumption 33 mW at ± 5 V
• External Compensation For Max Bandwidth
• Low Cost

Absolute Maximum Ratings
Storage Temperature Range
Ceramic DIP
Molded DIP
Operating Temperature Range
Extended (DAC08M)
Commercial (DAC08C)
Lead Temperature
Ceramic DIP (soldering, 60 s)
Molded DIP (soldering, lOs)
Internal Power Dissipation 1. 2
16L-Ceramic DIP
16L-Molded DIP
V+ to VLogic Inputs
VLC

Reference
Reference
Voltage
Reference

Inputs (V14' V15)
Input Differential
(V14, V15)
Input Current IREF (14)

-65°C to + 175°C
-65°C to + 150°C

Order Information
Device Code

-55°C to +125°C
O°C to 70°C

DAC08DM
DAC08EDC
DAC08EPC
DAC08CDC
DAC08CPC

300°C
265°C
1.50 W
1.04 W
36 V
V- to (V-) + 36 V
V- to V+
V- to V+
± 18 V
5.0 mA

Notes

1. TJ Max

= 150°C

for the Molded DIP, and 175°C for the Ceramic DIP.

2. Ratings apply to ambient temperature at 25°C. Above this temperature,

derate the 16L·Molded DIP at 8.3 mwrc, the 16L·Ceramic DIP at
10 mW/oC.

10-3

Package Code
78
78
98
78
98

Package Description
Ceramic DIP
Ceramic DIP
Molded DIP
Ceramic DIP
Molded DIP

•

DAC08

Block Diagram
LSB
B8

MSB

V+

COMP

61

B2

B3

B4

B5

B7

B6

V-

DAC08, DAC08E, and DAC08C
Electrical Characteristics TA = O°C to 70°C for the DAC08E and DAC08C, -55°C to + 125°C for the DAC08;
Vee = ± 15 V, IREF = 2.0 mA. Output characteristics refer to both lOUT and lOUT.
Symbol

Characteristic

Min

Condition

Typ

Max

RESO

Resolution

B.O

B.O

B.O

MONO

Monotonicity

B.O

B.O

B.O

NL

Nonlinearity

ts

tpLH

Settling Time

Propagation Delay

DACOB, DACOBE

±0.19

DACOBC

±0.39

To ± h LSB, all bits
switched, ON or OFF
TA = 25°C
TA = 25°C

tpHL

I

B5

135

B5

150

Each bit

35

60

All bits switched

35

60

DACOB

I DACOBE/C

±10

TCIFS

Full Scale Temperature
Coefficient

Vac

Output Voltage Compliance

Full scale current change
Ra > 20 mil

IFS4

Full Scale Current

VREF = 10.000 V, R14 , R15 = 5.000 kil,
TA = 25°C

IFSS

Full Scale Symmetry

IFs4 -I Fs2

Izs
IFSR

Zero Scale Current
Output Current Range

VIL

Logic Input Voltage LOW

VIH

Logic Input Voltage HIGH

IlL

Logic Input Current LOW

< 1,12

LSB,

-10

Unit
bits
bits

% FS
ns

ns
ppmrC

+1B

V

1.990

2.Q40

mA

DACOB/E

± 1.0

±B.O

pA

DACOBC

±2.0

±16

DACOB/E

0.2

2.0

DACOBC

0.2

4.0

1.940

p.A
mA

R14. 15 = 5.000 kil
VREF = + 15.000 V, V- = -10 V

2.1

VREF=+25.000 V, V-=-12 V

4.2

VLC = 0 V

O.B

V

-10

p.A

2.0
VLC=O V, VI=-10 V to +O.B V

10-4

-2.0

DAcoa

DAC08 Series (Cant.)
Electrical Characteristics TA = O°C to 70°C for the DAC08E and DAC08C, -55°C to + 125°C for the DAC08;
Vee = ± 15 V, IREF = 2.0 rnA. Output characteristics refer to both lOUT and lOUT.
Symbol

Characteristic

Min

Condition

IIH

Logic Input Current HIGH

VI=+2.0 V to +18 V

VIS

Logic Input Swing

V- =-15 V

VTHR

Logic Threshold Range

Vee=±15 V

115

Reference Input Bias
Current

dl/dt

Reference Current Slew
Rate

PSSIFS+

Power Supply Sensitivity

Typ

pA

-10

+18

V

-10

+13.5

V

-3.0

pA

4.0

8.0

V+ = +4.5 V to + 18 V,
IREF = 1.000 mA

0.01

0.002

0.01

Vee = ± 5.0 V, IREF = 1.000 mA

11+

V+ = +5.0 V, IREF = 2.000 mA,
V- = -15 V

I1+

Vee=±15 V, IREF = 2.000 mA

1Power Consumption

Pc

mAillS

0.0003

V- = -4.5 V to -18 V,
IREF = 1.000 mA
Power Supply Current

Unit

10

-1.0

PSSIFS1+

Max

0.002

2.3

3.8

-4.3

-5.8

2.4

3.8

-6.4

-7.8

2.5

3.8

-6.4

-7.8

33

48

V+ = +5.0 V, V- =-15 V,
IREF = 2.000 mA

108

136

Vee = ± 15 V, IREF = 2.000 mA

135

174

Vee = ± 5.0 V, IREF = 1.000 mA

%/%

mA

•

mW

Typical Performance Curves
Full Scale Current vs
Reference Current

Reference Input
Frequency Response

5.0

e-

TA

4.0

~
I

...z
w
'"'":J
0
...:J
...
:J

..

3.0

2.0

/

0

1.0

V
°°

SMALL SIGNAL
VI = 50 mVp-p
CENTERED AT 200 mY

=T"'N Tb TJAX

ALL BITS "HIGH"

;I

/

V

V

V

..

VI

I

...
~

v- = -15V

~

l'LlMITFOR

1-

/

- = j"0J-

'"

2.0

3.0

REFERENCE CURRENT -

4.0

5.0

mA

~

LARGE SIGNAL
VI = 2.0 Vp-p
CENTERED AT 1.0 V

-6

-10

t

-I'

C-VR'i = i V'tf = 15

0.1

0.2

0.5

FREQUENCY -

Note
1. Positive common mode range is always (V +) -1.5 V

10-5

MHz

2.0
1.6

VL'S IV
v- =

I

II

-S.O

v
IREF = 2.0mA

~ 1.2

o

\
2.0

ffi
§'"
o

:J

\

r

2.4

....

\

1.0

ALL BITS "ON"

V~ = -IJV

I

~

R14 = R15 = 1.0 kO
!-RL~500n

TA = TMIN TO TUAX

2.•

\

II
ALL BITS "ON"

1.0

"

-2

!50

w
>

3.2

-

./ \

III

LIMIT FOR

Reference AMP Common Mode
Range (Note 1)

5.0

0.8

IREF = 1.0 mA_

I

I I

0.4
10

°

~

IREF = 0.2 mA-

4

~

4

6

ro

t-r--

N

REFERENCE COMMON MODE VOLTAGE -

U

V

DAC08

Typical Performance Curves (Cont.)
Output Current vs Output Voltage
(Output Voltage Compliance)
3.2

~

2.4

I-

2.0

I

Z

V-·-15V

1.6

!:;

1.'

0

0.8

.."S"

II

[

w

II:
II:

16

I

v_J-S.O~

1.6

1.'
E
u

IREF

~

= 1.0 mA

r-...

14

~

I

-50

50

~

ALL BITS "HIGH" OR "LOW"

II

0.6

~

IAr'I2.°j'

~- ~
~- r - -":I-

8:
i

->

0.4
0.'

I-

Z

II:
II:

4.0

,
'A,""I ·O j
IREF
2.0

""

,-

=O.2mA

4.0

-4.0

,-

.. -15V

8.0
IREF

= 2.0mA

5.0

W

4.0

~ 3.0

."
8:

,.

B4

,.

Y+=+1SY

'.0
1.0

I

011

-1'

B3

I

,-

~

B'

V~

8.0

I
f il :lI:

150

oc

Supply Current vs
Temperature

7.0
Bl

100

8.0

Z

0

50
TEMPERATURE -

I-

II:
II:

!:;

-4.0

ALL B'TS "H'GH" OR "LOW"

20

"

o

o

.....0

-8.0

-1'

-16

NEGAnVE SUPPLY VOLTAGE -

LOGIC INPUT VOLTAGE - V

V

-20

-50

50
TEMPERATURE -

100

150

oc

Supply Current vs
Positive Supply Voltage
8.0
ALL BITS "HIGH" OR "LOW"
1-

~ 8.0

I
ffi

~

4.0

~

~..

,.

Note
1. B1 through B8 have identical transfer characteristics. Bits are fully
switched, with less than 1/2 LSB error. At less than ± 100 mV from
actual threshold, these switching pOints are guaranteed to lie between
0.8 and 2.0 V over the operating temperature range (VLe - 0.0 V).

2.0

o
o

4.0

8.0

12

16

POSITIVE SUPPLY VOLTAGE -

20

V

10-6

-

re~"..g~~TVC~:~:~~· GRAPH.) -

-50

8.0

IAE~' 2.6mA

1.0

=-15 V

4.0

oc

Supply Current vs
Negative Supply Voltage

w 0.8
I-

RANGE FOR V-

-12

150

100

TEMPERATURE -

I-

."""

or-

-&.0

1.'

~

8.

J.eRJ'SS'~LE ~uJ.n. tOL~AGE I
IREF:52.0 mA

0.4

18

Bit Transfer
Characteristics (Note 1)

" f-

i!

~

0.8

OUTPUT VOLTAGE - V

1.4

~

!--

o.ZmA
10

r-...

I

o

r-

I= I

IREF

>

,;

I

0.4

r-...

Vr·,5V
IIA'i' 2.imA

I

20

2.0

I

TA = TMIN TO TMAX
ALL BITS "ON"

2.8

Output Voltage Compliance vs
Temperature

VTH-VLC vs
Temperature

DAC08

Test Circuits
Figure 1 Settling Time Measurement
FOR TURN-ON, VL " 2.7 V

+SV

Yt.

FOR TURN-OFF, VL = 0.1 V

0.11-1F

1kOJ

J50~
+0.4 V

>--....- ....""""""-+---4

~~

PRO:?::
-0.4 v

R15

0.1

~J+15V

-15 V

Typical Applications
Figure 2 Basic Positive Reference Operation
MSB
LSB
B1 B2 B3 B4B5B6 B7BB

-

1
FS ""

RREF

x

255
256

IO+Io=IFS
For all logic states

IREF

VREF+

+YR..

14

RAEF

(R14)

10

DAC08
VAEF-

10

15

Yt.c

COMP
Cc

0.1 pF

For fixed reference, TTL operation,
typical values are:
VREF = +10.000 V
RREF

13

R15

-=

+VREF

=5.000 k

R15 "" RREF

Cc = 0.01 ,uF
VLe " 0 V (GROUND)

V+

10-7

DAC08

Typical Applications (Cont.)
Figure 3

Recommended Full Scale Adjustment Circuit

Figure 4

LOWT.C.
4.5kn

r-""",_-i14

--

, - -......-"""'_--114
IREF'" 2 mA

"'10 V

Basic Negative Reference Operation

DACOS

DACOS
R15
-VREF--'VI_-I15

50 kCl~--"~TlV!.-_-I15
POT
~5kO

Note
RREF sets IFs; R15 is for bias current cancellation.

Figure 5

Basic Unipolar Negative Operation
MSB

LSB

Bl B2 B3 B4 B5 B6 B7 B8

Eo

10

IREF
= 2.000 mA

14

DAC08

iii

5.000 kCl

-=

EO
B1

B2

B3

B4

B5

B6

B7

Full Scale
Full Scale - LSB

iO

B8

10 mA

Eo

Eo

1
0

1.992
1.984

.000
.008

-9.960
-9.920

.000
- .040

mA

Half Scale + LSB
Half Scale
Half Scale - LSB

1
1
0

0
0
1

0
0
1

0
0
1

0
0

0
0
1

0
0
1

1
0

1.008
1.000
.992

.984
.992
1.000

-5.040
-5.000
-4.960

-4.920
-4.960
-5.000

Zero Scale + LSB
Zero Scale

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
0

.008
.000

1.984
1.992

- .040
.000

-9.920
-9.960

10-8

DAC08

Typical Applications (Cont.)
Figure 6 High Noise Immunity Current To Voltage Conversion
Bl B2 B3 B4 B5 BI B7 BI

5k!l

IREF

=2mA
5kCl
+10Y

VAEF+
10

DACOI
VREF-

V+

Eo

10
v-

ec

VLC

5 kCl

5 kCl

C\,;:,.
-::-

ECY

':'

+15V -15V

':'

Provides isolation from ground loops
Symmetrical ± 10 V output
Useful within systems between boards
True complementary/differential current transmission
High speed analog signal transmission
B1

B2

B3

B4

B5

B6

B7

Pos Full Scale
Pos Full Scale - LSB
(+) Zero Scale

B8

Eo

1
0

+9.920
+9.840

1
0

0

0

0

0

0
1

0

0

H Zero Scale

+0.040
-0.040

Neg Full Scale + LSB
Neg Full Scale

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
0

-9.840
-9.920

Figure 7 Basic Bipolar Output Operation
10.000

IREF
= 2.000 mA =0;: 1.

DACOI

•

v

10.000 kCl

10

Eo

10 Eo

10.000 kCl

2
CflOV41F

B1

B2

B3

B4

B5

B6

B7

Pos Full Scale
Pos Full Scale - LSB
Zero Scale + LSB
Zero Scale
Zero Scale - LSB

1
0

Neg Full Scale + LSB
Neg Full Scale

0
0

B8

Eo

Eo

1
0

- 9.920
- 9.840

+10.000
+ 9.920

0
0

0
0

0
0

0
0

0
0

0
0
1

1
0
1

- 0.080
0.000
+ 0.080

+ 0.160
+ 0.080
0.000

0
0

0
0

0
0

0
0

0
0

0
0

1
0

+ 9.920
+10.000

- 9.840
- 9.920

10-9

•

DAC08

Typical Applications (Cont.)
Figure 8

Positive Low Impedance Output Operation

DAC08

For complementary output (operation as negative logic DAe).
connect inverting input of Op-Amp to 10 (Lead 2); connect 10 (Lead 4)
to ground.

Figure 9

Negative Low Impedance Output Operation

DACOS

IFS ....

~IREF

For complementary output (operation as negative logic DAC),
connect inverting input of Op-Amp to 10 (Lead 2); connect 10 (Lead 4)
to ground.

Figure 10 Pulsed Reference Operation
+VAEF
I

ovJl...

I
~RREF
I

R,

I

OPTIONAL RESISTOR
FOR OFFSET INPUTS

-U-

14
REQ

Rp

DAC08

~200

..n..

TYPICAL VALUES:

R, =5kO
i-V. = 10V

10

":"

":"

":'

NO CAP

10-10

DAcoa

Typical Applications (Cont.)
Figure 11

Accommodating Bipolar References
+VREF

V,~

tF

+VAEF~W.....--;14

~WIr-""-I14

-Do-

A,

II~

DACOS

DACOS
A15 (OPTIONAL) 15

HIGH INPUT---.
IMPEDANCE
RREF "" R15

f,---15_ - - - I I

+VAEF must be above peak positive swing of VI
IREF ~ peak negative swing of II

Figure 12 Interfacing With Various Logic Families
TTL, DTL

YrH = 1.4 V

YrN =VLC + 1.4V
15 V CMOS, HTL, HNIL
YrH = 7.5 V
12VTO
15V
15 V

DAC08

10kO

PMOS

YrH=OV

•

1N4148

9.1kO

VLe
6.2 V

10 kO

ZENER

-5 V TO -10 V

10kO ECl
YrH' -1.29 V

10VCMOS
YrH = s.o v

DACOS

10V
6.2kO
VLe
VLe
3.6 kO

1N4148

r~1"F

3.9kO

1 kO

CR02840F

-5.2 V
CI'10285OF

Note
Do not exceed negative logic input range of DAC

10-11

OAC 14081 1508 Series
8-Bit Multiplying
01 A Converters

FAIRCHILD
A Schlumberger Company

Linear Division Data Acquisition

Description
The DAC1408/1508 Series are mOnolithic B-bit multiplying
digital-to-analog converters constructed using the Fairchild
Planar Epitaxial process. It is designed for use where the
output current is a linear product of an B-bit digital word
and an analog input vqltage. The DAC1408/150B Series
are lead-for-Iead replacements for the MC 140B and SSS
140B devices.

Connection Diagram
16-Lead DIP
(Top View)
16
NC

• Relative Accuracy ±0.19"1o Error Maximum DAC1408A
• 7 And 6-Blt Accuracy Available DAC1408B,
DAC1408C
• Fast Settling Time To 112 LSB - 85 ns
• Non-Inverting Digital Inputs are TTL And CMOS
Compatible
• Output Voltage Swing +0.5 V to -5.0 V
• High-speed Multiplying Input Slew Rate 4.0 mA//.ls
• Standard Supply Voltages +5.0 V And -5.0 V To
-15 V
• Low Full Scale Current Drift + 10 ppmrC Typically
• Low Power Consumption 33 mW at ± 5 V
• Low Cost

Absolute Maximum Ratings
Storage Temperature Range
Ceramic DIP
Molded DIP
Operating Temperature Range
Extended (DAC1508M)
Commercial (DAC140BC)
Lead Temperature
Ceramic DIP (soldering. 60 s)
Molded DIP (soldering. 10 s)
Internal Power Dissipation 1, 2
16L-Ceramic DIP
16L-Molded DIP
V+

VDigital Input Voltage (5 Vto 12 V)
Applied Output Voltage
Reference Current (114)
Reference Amplifier Inputs (V14. V1S)

COMP

GND

VREF-

v-

VREF+

v+

lOUT

(MSB) Al

A8(LSB)

A2

A7

A3

A6

A4

AS

Order Information
-65°C to + 175°C
-65°C to + 150°C
-55°C to + 125°C
O°C to +70°C

1.50 W
1.04 W
5.5 V
-16.5 V
5.5 V
0.5 V to -5.2 V
5.0 mA
5.5 V. -16.5 V

Device Code
DAC140BADC
DAC140BAPC
DAC140B8DC
DAC14088PC
DAC1408CDC
DAC1408CPC
DAC1508DM

Package Code
78
98
78
98
78
98
78

Package Description
Ceramic DIP
Molded DIP
Ceramic DIP
Molded DIP
Ceramic DIP
Molded DIP
Ceramic DIP

Equivalent Circuit
Al

A2

A3

A4

AS

AS

A7

A8

GND

Notes

VR ...

1. TJ Max = 1S0·C for the Molded DIP, and 17S·C for the Ceramic DIP.
2. Ratings apply to ambient temperature at 2S·C. Above this temperature,
derate the 16L·Molded DIP at 8.3 mW rc, the 16L-Ceramic DIP at
10 mwrC.

-i-.-------,
V+
REFERENCE
CURRENT
AMPUFIER

VREF--+---I

COMP

-V-

CURRENT SOURCE PAIR

10-12

DAC1408/1508 Series

DAC1408/1508 Series
Electrical Characteristics T A = O°C to 70°C for the DAC1408, -55°C to + 125°C for the DAC1508;
V+ = +5.0 V, V- = -15 V, VREF/R14 = 2.0 mA. All digital inputs at HIGH logic level.
Symbol
E,

Max

Unit

DAC140SAlDAC150S

± 0.19

%

DAC140SB 1

±0.39

DAC140SC1

±0.7S

Characteristic

Min

Condition

Relative Accuracy (Error Relative
to Full Scale 10)

Y2

ts

Settling Time to Within
(Includes tpLH)

LSB

tpLH. tpHL

Propagation Delay

TClo

Output Full Scale Current Drift

VIH

Logic Input Voltage HIGH

VIL

Logic Input Voltage LOW

Typ

TA = 25°C2

S5

135

ns

TA = 25°C

30

100

ns

±20

ppm 1°C

2.0

V
O.S

IIH

Logic Input Current HIGH

VIH = 5.0 V

0

0.04

IlL

Logic Input Current LOW

VIL = O.S V

-0.4

-O.S

115

Reference Input Bias Current

-1.0

-5.0

pA

lOR

Output Current Range

mA

V- =-5.0 V

0

2.0

2.1

V- = -6.0 to -15 V

0

2.0

4.2

1.9

1.99

2.1

mA

4.0

pA

-0.55,
+0.4

V

10

Output Current

VREF = 2.000 V, R14 = 1.0

10 Min

Output Current

All bits LOW

Voc

Output Voltage Compliance

E,~0.19%

at

kn

0
V- =-5.0 V

TA = 25°C
V- below -10 V

dl/dt

Reference Current Slew Rate

PSRR (-)

Output Current Supply Sensitivity

1+

Supply Current

-5.0,
+0.5
4.0

Power Supply Voltage Range

Power Consumption

2.7

pAN

+22

mA

-7.5

-13

+4.5

+5.0

+5.5

-4.5

-15

-16.5

All bits LOW, V- = -5.0 V

105

170
305

TA = 25°C

VRPc

mAlps

+13.5

0.5
All bits LOW

1VR+

mA

All bits LOW. V- = -15 V

190

All bits HIGH, V- = -5.0 V

90

All bits HIGH, V- = -15 V

160

Notes
1. All current switches are tested to guarantee at least 50% of rated
output current.
2. All bits switched.

10-13

V

mW

•

DAC1408/1508 Series

Test Circuits
Figure 1 Notation Definitions
Typical values: R14

~

R15

~

1k

VREF ~ .20 V

Co 15 pF
V1 and 11 apply to inputs A1 thru AS
The resistor tied to lead 15 is to temperature compensate the bias
current and may not be necessary for all applications.
10

~ K [-~. ~'L + -'iF-' ~:
+~+~+R+Ml
32
64
128 256

~----------~-~~TPUT
RL

where K

~

VFI'l't

and An • "1" if An is at HIGH level
An • "0" if An is at LOW level

Figure 2 Relative Accuracy Test Circuit
MSB
A1

A2
A3

12-BIT
D/A
0 TO 10 V OUTPUT
CONVERTER
AS
(±o.o2%
A6 ERROR MAX)
SkO
A7

I

A4

..--ro-

..-

A8
A9A10A11A12

5OkO

LSBllll
VREf"'2V

1000

--~

1

1/

WO.1'#~

/zA714

r

R14
9500
MSB 14

13

5

-::-

6
7
8

8-BIT
COUNTER

•

DAC1408
SERIES

~

10
11

12

LSBofffII

1.0kO

-

c

V-

-= ":;"

10-14

ERROR
(1V.1%)

DAC1408/1508 Series

Test Circuits (Cent.)
Figure 3 Transient Response and Settling Time
V+

V,

1.4 V

+2..0 V
14

tf =

1.01<0

15

It::; 10 ne

0.1 pF-

USE RL TO GND FOR
TURN OFF
MEASUREMENT

V,
DAC1408
1 '0"'"

SERIES

~::~~;;T~IME
(ALL BITS SWITCHES
LOW TO HIGH)

10

11

SETTLING TIME
FOR FIGURE 1

16

1. = 300 na TYPICAL

Vo

TO t1i2 LBS

12
TRANSIENT
RESPONSE

-~If-............- - -...... 15 pF 1_co';; 25 pF

5.1 0 ....

0.1 pF-

"'"

V-

Applications
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

Tracking al d Converters
Successive Approximation aId Converters
2 112 Digit Panel Meters and DVMs
Waveform Synthesis
Sample and Hold
Peak Detector
Programmable Gain and Attenuation
CRT Character Generation
Audio Digitizing and Decoding
Programmable Power Supplies
Analog-Digital Multiplication
Digital-Digital Multiplication
Analog-Digital Division
Digital Addition and Subtraction
Speech Compression and Expansion
Stepping Motor Drive

10-15

DAC1408/1508 Series

Applications (Cont.)

Figure 5

Negative VREF
V+

Figure 4 Positive VREF
V+

RI4

~

RI4

~

RIS

.,.....

RIS

+VREF

AI
A2

14

S
6

-=

A3

AI

DACI408
SERIES

A2

A4

A3
A4

AS
A6 10

AS
A6 10

A8 12

A7 II

A7 II

C

A8 12
y-

V-

Figure 6

Use with Current-to-Voltage Converting OP AMP
VREF

V+
MSB
5
AI

Theoretical YO

= 2.0 VdC

RI4 = RI5 • 1.0 kQ
Ro = 5.0 kQ

YREF

t'1,-,4_-",,,,,_--VREF
RI4

A2

A5

A6

SERIES

A7
A8

10

A3

A4

A6

A7

AS

J

Adjust VREF R14 or Ra so that Va with all digital inputs at HIGH
level is equal to 9.961 Volts.

DACI408

AS

A2

+"32+ &\+ 128+ 2ss-

A3
A4

[AI

Va· Ri4(Ro) 2+4+8+16

2V

Va • Ti( (5 k)

RO

[,

1
1
1
2" + "4
+ "8 + 16

'1

11

12

1
1
1
+32+64+128+256
Vo

• 10 V

~~~

V-

10-16

= 9.961

V

,uA565
Digital to Analog Converter

FAIRCHILD
A Schlumberger Company

Linear Division Data Acquisition

Description
The J.LA565 is a fast 12-bit digital-to-analog converter combined with a high stability voltage reference on a single
monolithic chip. The J.LA565 chip uses 12 precision, high
speed bipolar current steering switches, control amplifier,
laser-trimmed thin film resistor network, and buried zener
voltage reference to produce a high accuracy analog output current.

Connection Diagram
24-Lead DIP
(Top View)

NC
NC
V+

The internally buried zener reference is laser-trimmed to
10 V with a ± 1% maximum error. The reference voltage
is available externally and can supply up to 1.5 mA beyond that required for the reference and bipolar offset resistors.

REF OUT (+10 V ± 1%)
ANALOG COM
REFERENCE IN

VBIPOLAR OFFSET IN

The chip also contains additional SiCr thin film resistors
which can be used either with an external op amp to provide a precision voltage output or as input resistors for a
successive approximation AID converter. The resistors are
matched to the internal ladder network to guarantee a low
gain temperature coefficient and are laser-trimmed for minimum full scale and bipolar offset errors.

DAC OUT

13
BIT 12 (lSB) IN

The J.LA565 is available in four performance grades. The
J,LA565J and J,LA565K are specified for use over the 0 to
70°C temperature range, and the J,LA565S and J.LA565T are
specified for the -55°C to + 125°C range.

Order Information
Device Code
Package Code
J.LA565SJM
J.LA565TJM
J.LA565JJC
J.LA565KJC

•
•
•
•
•
•

Single Chip Construction
Very High Speed, Settles To 1/2 LSB In 200 ns
Full Scale Switching Time - 30 ns
High Stability Buried Zener Reference On Chip
Monotonicity Guaranteed Over Temperature
Linearity Guaranteed Over Temperature - 112 LSB
Max (J,lA565K)
• Low Power, 225 mW Including Reference

10-17

7R
7R
7R
7R

Package Description
Ceramic (Side Brazed)
Ceramic (Side Brazed)
Ceramic (Side Brazed)
Ceramic (Side Brazed)

•

J.LA565

Absolute Maximum Ratings
Storage Temperature Range
Operating Temperature Range
Extended (/JA565M)
Commercial (1JA565C)
Lead Temperature
Ceramic (Side Brazed)
(soldering, 60s)
Internal Power Dissipation 1, 2
24L-Ceramic (Side Brazed)
V+ to Digital Common
V- to Digital Common

Analog Common to Digital Common
Voltage on DAC Output (Lead 9)
Digital Inputs (Leads 13 to 24) to
Digital Common
Ref In to Analog Common
Bipolar Offset to Analog Common
10 V Span R to Analog Common
20 V Span R to Analog Common
Ref Out

-55°C to +125°C
O°C to +70°C

2.50 W
OVto+18V
o V to -18 V

Notes
1. TH!ax=175"C.
2. Ratings apply to ambient temperature at 25"C. Above this temperature,
derate at 16.7 mWrC.

Block Diagram
REF OUT

BIPOLAR OFFSET IN

V+

,.A56S
9.95 kO

20VSPAN
5kO
10 V SPAN

19.95kO
REF IN
5kO

--

CAC

10

ANALOG
COMMON

10 = 4

lit

IREF

)I

8kO

CODE

.".

CODE INPUT

V-

DIGITAL
COMMON
"::"

MSB

INPUT BITS 1-12

10-18

~

LSB

DAC
OUT

± 1.0 V
-3.0 V to +12 V
-1.0 V to +7.0 V
± 12 V
± 12 V
± 12 V
± 12 V
Indefinite Short
to either Common
Momentary Short
to V+

MA565S/J and MA565T/K

Electrical Characteristics TA=+25°C, V+ =+15 V, V-=-15 V, unless otherwise specified. 1
!lA565T/K 1

IlA565S/J 1
Symbol

Characteristic

Units

Condition
Min

VIH
VIL
IIH
IlL

Data Input
Voltage

Logic "1"

Bit ON

Logic "0"

Bit OFF

Data Input
Current

Logic "1"

Bit ON

Logic "0"

Bit OFF

Unipolar

All bits ON (Fig 1)

RESO

Resolution

IFS

Output
Current

Typ

2.0

5.5

Min

Typ

2.0

0.8
120

Bipolar

Output Resistance
(exclusive of span
resistors)

IlS

Output
Offset

All bits ON or OFF
(Fig 2)

Max

5.5
0.8
120

260

35

75

35

75
12

Bits

-2.0

-2.4

-1.6

-2.0

-2.4

mA

± 0.8

± 1.0

± 1.2

± 0.8

± 1.0

± 1.2

6.0

8.0

10

6.0

8.0

10

-1.6

Unipolar

(Fig 1)

0.01

0.05

0.01

0.02

Bipolar

R2 = 50 n fixed
(Fig 2)

0.05

0.15

0.05

0.1

Co

Output Capacitance

Voe

Output Compliance
Voltage

EA

Accuracy (error relative
to full scale)
TA

to

Min

-1.5

IMax

to TA

+10

± 1,14

±h

± 1,18

± 1,14

(0.012)

(0.003)

(0.006)

:r4

± 1,14

± 1,12

(0.018)

(0.006)

(0.012)

:r4

± 1,14

± 1,12

(0.012)

± 1,12

Differential Nonlinearity
TA

Min

to TA

Max

+10

(0.006)

± 1,12

Max

-1.5

±
±

IlA

kn

% of FS

pF

25

25
IMin

V

260

12

Ro

DNL

Max

V
LSB
% of FS

LSB
% of FS

LSB

Monotonicity
Guaranteed

Monotonicity
Guaranteed

TCllS

Temperature Coefficient
of Unipolar Zero

TA

Min

to TA

Max

1.0

2.0

1.0

2.0

ppm/oC

TCllS

Temperature Coefficient
of Bipolar Zero

TA

Min

to TA

Max

5.0

10

5.0

10

ppmrC

TCIFS

Temperature Coefficient
of Gain (Full Scale)

TA

Min

to TA

Max

15

30

10

20

ppm/oC

TCONL

Temperature Coefficient
of Differential Nonlinearity

TA

Min

to TA

Max

2.0

ts

Settling Time to h LSB

All Bits ON-to-OFF
or OFF-to-ON

200

10-19

ppmrC

2.0
400

200

400

ns

•

J.LA565

IlA565S/J and IlA565T/K (Cant.)
Electrical Characteristics TA= +25°C, V+ = + 15 V, V- = -15 V, unless otherwise specified. 1
1lA565S/J 1
Symbol

Characteristic

Units
Min

tpLH

Full Scale Transition

tpHL

1+

Power Requirements

IPSSIFS

POR

Power Supply Sensitivity

Typ

Typ

Min

30

15

30

90% to 10%
Delay plus Fall
Time

30

50

30

50

V+ =+13.5 V to
+16.5 V

3.0

5.0

3.0

5.0

V- = -13.5 V to
-16.5 V

-12

-18

-12

-18

V+ =+15 V,
± 10%

3.0

10

3.0

10

V- =-15 V,
± 10%

15

25

15

25

o to

o to

+5.0

-2.5 to +2.5

o to

-10 to +10

V

± 0.25

± 0.1

± 0.25

% of FS

± 0.05

± 0.15

± 0.05

± 0.1

± 0.25

Izs Rl

Bipolar Zero
Adjustment Range

± 0.15

± 0.15

Current (avail. for
external loads)

IREF
Pc

V

± 0.1

± 0.25

Voltage

V

+ 10

-10 to +10
Gain Error with
Fixed 50 IJ.
Resistor for R2

Gain Adjustment
Range

Reference Output

V

15

20

25

15

20

25

9.90

10.00

10.10

9.90

10.00

10.10

1.5

2.5

1.5

2.5

Power Consumption

225

Note
1. TA Min and TA Max are aoc and 70 0 e for J and K grade, and -55°C to
+ 125°C for Sand T grade.

10-20

ppm of
FS/%

-5.0 to +5.0

IFS R2

VREF

mA

-5.0 to +5.0

Bipolar Zero Error
with Fixed 50 IJ.
Resistor for R1

Reference Input
Impedance

ns

V

+5.0

-2.5 to +2.5

+ 10

Izs Rl

ZI

Max

15

Programmable Output
Range

External Adjustments

Max

10% to 90%
Delay plus Rise
Time

o to

IFS R2

1lA565T/K 1

Condition

345

225

kIJ.
V
mA

345

mW

MA565

Typical Performance Curve

Typical Applications

Typical Negative Compliance Range vs
Negative Supply

Buffered Voltage
The standard current-to-voltage conversion connections using an operational amplifier are shown in Figure 1 with the
preferred trimming techniques. If a low offset operational
amplifier (1lA714L, 1lA725A) is used, excellent performance
can be obtained in many situations without trimming (an
op amp with less than 0.5 mV max offset voltage should
be used to keep offset errors below 1,12 LSB). If a 50 n
fixed resistor is substituted for the 100
trimmer, typically
the unipolar zero will be within ± 1,12 LSB (plus op amp
offset), and full scale accuracy will be within 0.1 % (0.25%
max). Substituting a 50 n resistor for the 100 n bipolar
offset trimmer will give a bipolar zero error typically within
±2 LSB (0.05%).

n

Y ~
/(=-2mA
10 = 0 mA

The 1lA771 is recommended for buffered voltage output
applications which require a settling time to ± 1,12 LSB of
two microseconds. The feedback capacitor is shown with
the optimum value for each application; this capacitor is
required to compensate for the 25 pF DAC output capacitance.

16.5 V

13.5 V
NEGATIVE SUPPLY -

v-

Figure 1 0 V to + 10 V Unipolar Voltage Output
+15 V

+15 V
V+

BIPOLAR
OFFSETIN 8

9.95kO

-=

,-_+11'--,20 V SPAN

-=-

SkQ

10
5 kO
DAC

-

10

10 = 41{ IREF x CODe

DAC
8kO OUT

2.4kO

CODE INPUT

V-

-15V

DIGITAL
COMMON
(NOTE 1)

12

-=

MSB - - - - - - - -__
.. LSB

Note 1
Digital and analog common must have a common current return path.
*See typical applications continued for proper connections.

10-21

•

pA565

This unipolar configuration (Figure 1) will provide a unipolar
+ 10 V output range. In this mode, the bipolar terminal, lead 8, should be grounded if not used for trimming.

Please note that it is not necessary to trim the op amp to
obtain full accuracy at room temperature. In most bipolar
situations, an op amp trim is unnecessary unless the untrimmed offset drift of the op amp is excessive.

o to

Step I, Zero Adjust
Turn all bits OFF and adjust zero trimmer, R1, until the
output reads 0.000 volts (1 LSB = 2.44 mY). In most cases this trim is not needed, but lead 8 should then be
connected to lead 5.

The /lA565 can also be easily configured for a unipolar
to + [) V range or ± 2.5 V and ± 10 V bipolar ranges
by using the additional 5 kil application resistor provided
at the 20 V span R terminal, lead 11. For a 5 V span (0
to + 5 or ± 2.5), the two 5 kil resistors are used in parallel by shorting lead 11 to lead 9 and connecting lead 10
to the op amp output and the bipolar offset either to
ground for unipolar or to REF OUT for the bipolar range.
For the ± 10 V range (20 V span) use the 5 kil resistors
in series by connecting only lead 11 to the op amp output
and the bipolar offset connected as shown. The ± 10 V
option is shown in Figure 3.

oV

Step II, Gain Adjust
Turn all bits ON and adjust 100 il gain trimmer, R2, until
the output is 9.9976 V. (Full scale is adjusted to 1 LSB
less than nominal full scale of 10.000 V.) If a 10.2375 V
full scale is desired (exactly 2.5 mY/bit), insert a 120 il
resistor in series with the gain resistor at lead 10 to the
op amp output.
Figure 2 bipolar configuration, will provide a bipolar output
voltage from -5.000 V to +4.9976 V, with positive full
scale occurring with all bits ON (all "1"s).

Internal/External Reference Use
The /.lA565 has an internal low-noise buried zener diode
reference which is trimmed for absolute accuracy and temperature coefficient. This reference is buffered and optimized for use in a high speed DAC and will give
long-term stability equal or superior to the best discrete
zener reference diodes. The performance of the /lA565 is
specified with the internal reference driving the DAC since
all trimming and testing (especially for full scale and bipolar) are done in this configuration.

Step I, Offset Adjust
Turn OFF all bits. Adjust 100 il trimmer R1, to give
-5.000 V output.
Step II, Gain Adjust
Turn ON all bits, adjust 100 il gain trimmer, R2, to give a
reading of +4.9976 V.
Figure 2 ± 5 V Bipolar Voltage Output

REf OUT

Rl
100 II

+15 V
V+
3

BIPOLAR
OfFSET IN 8

"A565
R2
lOO11

11

9.95kll
5 kll

10

DAC
10

=4 w IREF., CODE

CODE INPUT

DIGITAL
COMMON
V(NOTE 1)
-15 V

12

-=-

..

MSB -

10-22

LSB

20V SPAN

-=-

10VSPAN

MA565

circuit is shown in Figure 4. The input line can be modelled as a 30 kU resistance connected to -0.7 V rail.

The JlA565 can be used with an external reference, but
may not have sufficient trim range to accommodate a reference which does not match the internal reference.

Application of Analog and Digital Commons
The J.LA565 brings out separate analog and digital grounds
to allow optimum connections for low noise and high
speed performance. The two ground lines can be separated by up to 200 mV without any loss in performance.
There may be some loss in linearity beyond that level. Up
to ± 1.0 V can be tolerated between the ground lines without damage to the device. If the JlA565 is to be used in
a system in which the two grounds will be ultimately connected at some distance from the device, it is recommended that parallel back-to-back diodes be connected
between the ground lines near the device to prevent a
fault condition.

The internal reference has sufficient buffering to drive external circuitry in addition to the reference currents required for the DAC (typically 0.5 mA to REF IN and
1.0 mA to BIPOLAR OFFSET IN, if used). A minimum of
1.5 mA is available for driving external circuits. The reference is typically trimmed to ± 0.2%, then tested and guaranteed to ± 1.0% max error. The temperature coefficient is
comparable to that of the full scale TC for a particular
grade.

Digital Input Considerations
The J.LA565 uses a standard positive true straight binary
code for unipolar outputs (all" 1"s give full scale output),
and an offset binary code for bipolar output ranges. In the
bipolar mode, with all "0" s on the inputs, the output will
go to negative full scale; with 100... 00 (only the MSB
on), the output will be 0.00 V; with all "1 "s, the output
will go to positive full scale.

The analog common at lead 5 is the ground reference
point for the internal reference and is thus the "high quality" ground for the J.LA565: it should be connected directly
to the analog reference point of the system. The digital
common at lead 12 can be connected to the most convenient ground reference point; analog power return is preferred, but digital ground is acceptable. If digital common
contains high frequency noise beyond 200 mY, this noise
may feed through the converter, so that some caution will
be required in applying these grounds.

The threshold of the digital input circuitry is set at 1.4 V
and does not vary with supply voltage. The input lines can
interface with any type of 5 V logic, TTL/DTL or CMOS,
and have sufficiently low input currents to interface easily
with unbuffered CMOS logiC. The configuration of the input

Figure 3 ± 10 V Bipolar Voltage Output

+15 V
Y+

Rl
1000
BIPOLAR
OFFSET IN

3

R2

8

lOY

11

9.95 kO

1000

20YSPAN

5kO
+-_-¥10:"'10Y SPAN

5 kO
DAC

10

=4

II

IREF

DAC
OUT
II

81<0

CODE

2.41<0
CODE INPUT

7
DIGITAL 12
Y_ COMMON
-15 Y (NOTE 1) ":"

MSB

- - - - - - - - - <..~

10-23

LSB

•

iJA565

Output Voltage Compliance
The 1JA565 has a typical output compliance range from
-2 V to + 10 V. The current-steering output stages will be
unaffected by changes in the output terminal voltage over
that range. However, there is an equivalent output impedance of 8k in parallel with 25 pF at the output terminal
which produces an equivalent error current if the voltage
deviates from analog common. This is a linear effect
which does not change with input code. Operation beyond
the compliance limits may cause either output stage saturation or breakdown which results in nonlinear performance. Compliance limits are not affected by the positive
power supply, but are a function of output current and
negative supply.

Figure 4 Equivalent Digital Input Circuit

DIGITAL INPUTS
(LEADS 13 TO' 24)

I

r.".

SPF

DIGITAL...!
COMMON

30kQ
'" -0.7 V
TO LOGIC

'"
CR02500F

10-24

J,lA571
Analog to Digital Converter

FAIRCHIL.D
A Schlumberger Company

Linear Division Data Acquisition

Description

Connection Diagram
18-Lead DIP
(Top View)

The MA571 is a 10-bit successive approximation AID converter consisting of a DAC, voltage reference, clock, comparator, successive approximation register and output
buffers - all fabricated on a single chip. No external components are required to perform a full accuracy 10-bit conversion in 25 J.Ls.

18

BIT 10LSB
17 "'DA"":rAMR""ETlAD"'Y
18
DIGITAL COM
15
BIPOLAR OFFSET
14
ANALOG COM

BIT 8
BIT 7

The device offers true 10-bit accuracy and exhibits no
missing codes over its entire operating temperature range.

BIT 6
BIT 5

Operation is guaranteed with -1 5 V and + 5 V to + 15 V
supplies. The device will also operate with a -12 V supply.

BIT4
BIT 3
BIT 2

Operating on supplies of + 5 V to ± 15 V, the MA571 will
accept analog inputs of 0 V to + 10 V unipolar, or ± 5 V
bipolar, externally selectable. As the BLANK and
CONVERT input is driven LOW, the 3-state outputs will be
open and a conversion starts. Upon completion of the
conversion, the DATA READY line will go LOW and the
data will appear at the output. Pulling the BLANK and
CONVERT input HIGH blanks the outputs and readies the
device for the next conversion. The J.LA571 executes a
true 10-bit conversion with no missing codes in approximately 25 J.Ls.

V+

MSB BIT 1

Order InfC?rmation
Device Code
J.LA571SJM
MA571JJC
J.LA571KJC

Package Code

Package Description

FD
FD
FD

Ceramic (Side Brazed)
Ceramic (Side Brazed)
Ceramic (Side Brazed)

Absolute Maximum Ratings
Storage Temperature Range
Operating Temperature Range
Extended (MA571 M)
Commercial (MA571C)
Lead Temperature
Ceramic (Side Brazed)
(soldering, 60 s)
Internal Power Dissipation 1, 2
18L-Ceramic (Side Brazed)
V+ to Digital Common
V- to Digital Common
Analog Common to Digital Common
Analog Input to Analog Common
Control Inputs
Digital Outputs (Blank Mode)

The J.LA571 is available in two versions for the O·C to
+ 70·C temperature range, the J.LA571 J and K. The
J.LA571S guarantees lO-bit accuracy and no missing codes
from -55·C to + 125·C. All three grades are packaged in
an 18-lead ceramic side brazed package.
•
•
•
•
•
•

Complete AID Converter With Reference And Clock
Fast Successive Approximation Conversion - 25 J.LS
No Missing Codes Over Temperature
Digital Multiplexing - 3-State Outputs
18-Lead Ceramic Side Brazed Package
Low Cost Monolithic Construction

-65·C to + 175·C
-55·C to + 125·C
O·C to +70·C

300·C
1.74 W
+7 V
-16.5 V
±1 V
± 15 V
o to V+
o to V+

o to
o to

Notes
1. TJ Max~ 17S"C.
2. Ratings apply to ambient temperature at 2S"C. Above this temperature,
derate at 11.6 mWrC.

10-25

•

IlA571

Block Diagram
DIGITAL

V+

V-

COMMON

I

I

I

BU(

(C!IilV)

'[

I

...

B+C

I-

SIeO

~

ANALOG IN

I-

,

1'"

~
~

~

-*" ..-

10-BIT
CURRENT
OUTPUT
DAC

+

COMPARAT,A

f-

lO-BIT
SAA

~

r-----'
I

I

f-

!NT
I
I CLOCK
IL _____ JI

- -----

--~

f-

1
I

I

TEMPERATURE COMPENSATED
BURIED ZENER REFERENCE
AND DAC CONTROL

L....

~

~

~

t

DATA
OUTPUTS

L
....

fBIPOLAR
OFFSET

BIT 1

L
......

~

....

ANALOG
COMMON

MSB

t

'L
......
'L

LSB

BIT 10

3-STATE
BUFFERS

I
DATAREADV
EOO0451F

10·26

J.lA571

~571J

and IlA571K

Electrical Characteristics TA = 25°C, TA Min = O°C, TA Max = 70°C, V+ = + 5.0 V, V- = -15 V, all voltages
measured with respect to digital common, unless otherwise specified.
/.lA571J
Symbol

Characteristic

Min

Condition

Typ

/.lA571K
Max

Min

Typ

Max

10

10

Resolution

EA

Relative Accuracy 1

VFS

Full Scale Calibration 2

Vzs

Unipolar Offset

± 1.0

±Y2

Bipolar Offset

± 1.0

±Y2

TA

Min

to TA

± 1.0

Max

Differential Nonlinearity

TCvzs

Temperature Coefficient
of Unipolar Offset

25°C to TA

Temperature Coefficient
of Bipolar Offset

25°C to TA

Temperature Coefficient
of Full Scale Calibration

25°C to TA Min or TA Max,
with 15 n. Resistor or
50 n. Trimmer

TCVFS

PSRR

Power
Supply
Rejection
Ratio

CMOS Pos
Supply

±13.5

TTL Pos
Supply

+4.5

Negative
Supply

-16.5

9.0

Max

Min

Min

or TA

or TA

Max

Max

V~V+ ~+16.5

V~V+ ~5.5

10
± 1.0

44

22

±2.0

± 1.0

44

22

±4.0

±2.0

88

44
± 1.0

V

3.0

5.0

±2.0

± 1.0

±2.0

± 1.0

LSB
ppm/oC
LSB
ppml"C
LSB

7.0

3.0

7.0

kn.

10

0

10

V

-5.0

+5.0

-5.0

+5.0

5.0

Analog Input Impedance

VIR

Analog
Input
Ranges

Unipolar

Output
Coding

Unipolar

Positive True
Binary

Positive True
Binary

Bipolar

Positive True
Offset Binary

Positive True
Offset Binary

OC

LSB
ppm/oC

0

ZI

Bipolar

LSB

Bits

±2.0

V

V

V~V+ ~-13.5

LSB

10

10
TA Min to TA

LSB

±Y2
±2.0

±2.0

With 15 n. Resistor in
Series with Analog Input

DNL

TCvzs

±Y2

± 1.0

Units
Bits

RESO

IOL

Output Sink Current

Va = 0.4 V Max,
TA Min to TA Max

3.2

3.2

mA

10H

Output Source Current3
(Bit Outputs)

Va = 2.4 V Min,
TA Min to TA Max

0.5

0.5

mA

BC IIH

Output Leakage When
Blanked

±40

10-27

±40

/.lA

•

MA571

J.LA571J and J.LA571K (Cont.)
Electrical Characteristics TA = 25°C, TA Min = O°C, TA Max = 70°C, V+ = + 5.0 V, V- = -15 V, all voltages
measured with respect to digital common, unless otherwise specified.
J.lA571J
Symbol

BC IlL

Characteristic

Blank & Convert Input

Condition

Min

Typ

o VOOOO:~I:fmxs
yvvOOOOO

1'lt:/IX._ _ _....;~y

CRO~620F

•

10-33

MA9650

FAIRCHILD

4-Bit Current Source

A Schlumberger Company

Linear Division Data Acquisition

Description
The !1A9650 is a high speed 4-bit precision current
source, intended for use in DI A and AID converters with
up to 12-bit accuracy. It is constructed on a single silicon
chip, using the Fairchild Planar Epitaxial process and consists of a reference transistor and four logic operated precision current sources connected to a single output
summing line. Logic inputs are fully TTL compatible under
all temperature and supply conditions. A clamp circuit is
provided to prevent turn-on latch up on the reference input.
•
•
•
•

Connection Diagram
16-Lead DIP
(Top View)
16
V+

MSB OUT

BIT 2 OUT

BIT 3 OUT

200 ns Settling Time (12 ± 1/2 LSB)
Variable Bit Currents
Reference Compensation
TTL Compatible

VREF2

LSB OUT

Absolute Maximum Ratings
Storage Temperature Range
Operating Temperature Range
Lead Temperature
Ceramic DIP (soldering, 60 s)
Internal Power Dissipation 1. 2
16L-Ceramic DIP
Logic Input Voltage
V+

VMSB Current
VREF Inputs
Output (VREF voltage ;;;. -7.0 V)

-65°C to + 175°C
O°C to +70°C

lOUT

IREF

300°C
1.50 W
+5.5 V
+7 V
-18 V
2.0 mA
+7 V to V+18 V to VREF

Notes
1. TJ MAX = 175"C.
2. Ratings apply to ambient temperature at 25"C. Above this temperature,
derate the 16L-Ceramic DIP at 10 mW"C.

Order Information
Device Code

Package Code

!1A96501 DC
!1A96502DC
IlA96503DC

6B
6B
6B

Package Description
Ceramic DIP
Ceramic DIP
Ceramic DIP

Truth Table
Logic
Input

Nominal
Output
Current (mA)

Logic
Input

Nominal
Output
Current (mA)

0000
0001
0010
0011
0100
0101
0110
0111

1.875
1.750
1.625
1.500
1.375
1.250
1.125
1.000

1000
1001
1010
1011
1100
1101
1110
1111

0.875
0.750
0.625
0.500
0.375
0.250
0.125
0.000

I-IA9650 Kits Required to Build DI A-AID
Converters
Temperature Range
O°C to +70°C

Type And No. of Unit
96501C

96502C

96503C

0
0
1

0
1
1

2
2
1

Accuracy to:
8 Bits
10 Bits
12 Bits

10-34

J,tA9650

Equivalent Circuit
BIf3
IN

LS8

IN

BIT 2

MS8

IN

IN

vAl
SIlO

A3
12110

03

A4
1110

AS
8110

04
AI

A2
2.5 110

3.3 110

AI
1110

...

AIO

2AkCl

2.3 kCl

All
2.5 110

Q2
lOUT

I...

GND

... (1.2)

L-~-----;------+-~-----;r-----~-+------t-----~--~~~4---~r-V

A14
120

L-----4-----~----+-----~~--_+------~----t_----~~--_+------_+----~--+-v-

LSB
OUT

BITS
OUT

BIT 2
OUT

10-35

USB
OUT

AEF
OUT

J,lA9650

~A96501C· ~A96502C· ~A96503C

Electrical Characteristics TA = 25°C, V+ = 5.0 V, V- = -15 V, unless otherwise specified.
Symbol
EA

IFSER

PSCIFS

Characteristic
Accuracy

Full Scale Output Current Error

Power Supply Coefficient of
Full Scale Output Current

VSE

VSE Range

hFE

hFE of Reference Transistor

Zo

Output Impedance

Condition
(J.tA9650 1C)

Min

Typ

-

Max

Unit

±0.01

% of
IFS

(J.tA96502C)

±0.05

(J.tA96503C)

±0.2

(IlA96501C)

±0.1

(J.tA96502C)

±0.2

(IlA96503C)

±0.4

(J.tA9650 1C)

±0.003

(J.tA96502C, J.tA96503C)

± 0.012
620

%

%IV

mV

1000
All Bits On

5.0

Mn

The following specifications apply for O°C";;; T A ,,;;; 70°C
EA

IFSER

Accuracy

Full Scale Output Current Error

(IlA96501C)

±0.025

(MA96502C)

±0.1

(J.tA96503C)

±0.3

(IlA96501C)

0.2

(IlA96502C)

0.3

(J.tA96503C)

0.6

% of
IFS

%

PSSIFS

Power Supply Sensitivity of
Full Scale Output Current

(IlA96501C)

±0.006

(J.tA96502C, J.tA96503C)

±0.024

VIL

Input Voltage LOW

Each Bit On

VIH

Input Voltage HIGH

Each Bit Off

IlL

Input Current LOW

VIL = 0.4 V

-1.6

IIH

Input Current HIGH

VIH = 2.4 V

40

J.tA

10

Output Current

Bit 1 (MSB)

2.0

mA

0.8
2.0

10

Vo

Output Current

Output Voltage

Bit 2

0.5

1.0

Bit 3

0.25

0.5

0.125

0.25

(IlA96501C)

5.0

250

(J.tA96502C, J.tA96503C)

5.0

500

All Bits Off

Reference Current

mA

nA

Feeding Op Amp Summing Junction
Resistive Load

IR

V
V

1.0

Bit 4 (LSB)

%IV

Using Compensation Transistor

10-36

0
-4.0

V
V+

1.0

mA

MA9650

1-/A96501C 'IlA96502C '1-/A96503C (Cont.)
Electrical Characteristics TA = 25°C, V+
Symbol

5.0 V, V-

=

Characteristic

-15 V, unless otherwise specified.

=

Condition

Min

Typ

Max

± 1.0

Current

Unit

±2.2

mA

IVR

VREF

ILiM

Reference Limit Current

VREF=

75

mA

1+

Positive Supply Current

(pA96501 C, pA96502C)

8.0

mA

(pA96503C)

10

1-

Negative Supply Current

20

0 V

(pA96501C, pA96502C)

-11

(pA96503C)

-15

mA

Typical Performance Curves
Switching Time vs
MSB Current (50% In to 10% Out)

Settling Time vs
Load Resistance (0 to FSI Output
± 1'2 LSB)

Output Current Settling Time vs
MSB Current (0 to FSI Output
± 1'2 LSB)

1.0

175

70
SUMMING JUNCTION LOAD

r-~:= ~:~

80

TA= :l5"C

---

~

1 onA IISB CURRENT
r-V+=5.0V

BUMMING JUNCTION LOAD
150 _~+. 5.0 V
V-=-15V
TA = 2$OC

t
I
!:It

I

25

o

o
1••

1.0

2.0

1.8

1.4

Input Logic Threshold Voltage vs
Ambient Temperature
2.00

"-

>
I 1.50

~~

1.25

gl.oo
I~

~

1.305

~ 1.300

~

1.295

1.285

0.25
-75

1.280
0

25

50

10

Full Scale Output Current Drift vs
Ambient Temperature

75

AMBIENT TEMPERATURE-'C

100

125

M~B

IlonA
CJRREJ..
-Y+_ 5.0Y
v-= -15 V

----

i--

l/
/

4.5
-14

,...

I--

V

/

11.280

o.so

T"1 1O PfRL I

~

~

I"-

TLnl2 Eo/LSBI_

! .....

o.ooa

>

V ./

LOAD RESISTANCE-lin

TAo II 2f5OC

'r--...
-25

2.0

•

v: V

~~

o
o

1.310

0.75

-50

1.•

1.315

v-= -15V

"

1.8

/

~

0.2

Input Logic Threshold Voltage vs
Supply Voltage

v+=s.ov

'r--...

~
.7

/'

MSB CURRENT-onA

MSB CURRENT -mA

1.75

v#

0.8

~G.4

... IT

10

1A

I'

;:

BIT

1.0

~ :2

V-a -15 V
0.8 r-TA= :l5"C

V

5.0
-15
SUPPLY VOLTAGE-V

10-37

5.5
-18

-O.ooa

-75 -50

-25

25

50

75

AMBIENT TEMPERATURE-"C

100

125

jJA9650

Typical DC Test Circuit (Note 1)
BIT INPUTS
V·
LSB

7
12

3

R8
100 k ±O.1%

51

R9

52

2 MSB

PRECISION
VOLTMETER

~A9650

8 11

13

14

ZERO
ADJUST

15 5

I

_--.J
R5
10k

R4
80 k

R3
R2
40k 20k

5M
5k

-=-

R1
10k

5k
V-

(NOTE 2)

-=-

Notes

1. All resistor values in ohms.
2. Required resistor ratio tolerances of R1- R5 to test the various grades
are as follows: io---~_IcIP

0 ~

V

OUT
_

'---1:; ~

Cora ,.------

1/48002~~~

oJ----------.........-SERIALDATA

L-...

..-+--4---1-------+------'

1/4~n

CLOCK

1/r_
.....

"

y

EOAoA,A.

""_

HIT ADDRESSABLE LATCH

C01234567

LJ

~~~--------------~~ l:~~LEL

+-~~-+~

10V
VR£F

FULO.ADJ

____________________

__ OUT

~_____

~~-+~~4-+_--------------------+_----MSB

""728
312

5k

--LSB

ak

~
""m

2 _

aa

~
~

4:0.1 pF

J

30pF

1000

FDmf ::S~FDm
~

-=-

T

2k

ANALOG
INPUT

V

J,

10-40

220 k

-15 V

5k

Note.
1. All resistor values in ohms.
2. Digital GND indicated by
Analog GND indicated by

15k

100k

1k

--=-

IlA224 0
Programmable
Timer/Counter

FAIRCHILD
A Schlumberger Company

Linear Division Special Functions

Connection Diagram
16-Lead DIP
(Top View)

Description
The IJA2240 Programmable Timer/Counter is a monolithic
controller capable of producing accurate microsecond to
five day time delays. Long delays, up to three years, can
easily be generated by cascading two timers. The timer
consists of a time-base oscillator, programmable 8-bit
counter and control· flip-flop. An external resistor capacitor
(RC) network sets the oscillator frequency and allows delay times from 1 RC to 255 RC to be selected. In the
astable mode of operation, 255 frequencies or pulse patterns can be generated from a single RC network. These
frequencies or pulse patterns can also easily be synchronized to an external. signal. The trigger, reset and outputs
are all TTL and DTL compatible for easy interface with
digital systems. The timer's high accuracy and versatility in
producing a wide range of time delays makes it ideal as a
direct replacement for mechanical or electromechanical devices.

00

Vee

o.

REGULATOR

our

TlIlE-BASE

our

RESISTORI

CAPACrroR IN
MODULATION

IN
TRIGGER

IN
RESET

•
•
•
•
•
•
•
•

Accurate Timing From Microseconds To Days
Programmable Delays From 1 RC To 255 RC
TTL, DTL And CMOS Compatible Outputs
Timing Directly Proportional To RC Time Constant
High Accuracy
External Sync And Modulation Capability
Wide Supply Voltage Range
Excellent Supply Voltage Rejection

GND

Order Information
Device Code
!lA2240DC
!lA2240PC

Absolute Maximum Ratings
Storage Temperature Range
Ceramic DIP
Molded DIP
Operating Temperature Range
Lead Temperature
Ceramic DIP (soldering, 60 s)
Molded DIP (soldering, 10 s)
Internal Power Dissipation 1, 2
16L-Ceramic DIP
16L-Molded DIP
Supply Voltage
Output Current
Output Voltage
Regulator Output Current

-65°C to + 175°C
-65°C to + 150°C
O°C to 70°C
300°C
265°C
1.50 W
1.04 W
18 V
10 mA
18 V
5.0 mA

Notes
1. TJ Max -150·C for the Molded DIP, and 175·C for the Ceramic DIP.
2. Ratings apply to ambient temperature at 25·C. Above this temperature,
derate the 16l-Ceramic DIP at 10 mW'·C, and the 16l-Molded DIP at
8.3 mWrC.

11-3

Package Code
78
98

Package Description
Ceramic DIP
Molded DIP

•

J.LA2240

Block Diagram
v~-t~-----------------------.----,
RI
5kCl

R

M~~ -t-+------1
R2
8.59 kQ

RESET

L...---1__ TRIGGER IN

GND

TB OUT

O.

O.

0,28

I~------------~~------------~a~I~"~---------C~~;R----------a.I~"r---~a~I~~g~
..

~A2240C

Electrical Characteristics TA = 25°C, Vee = 5.0 V, R = 10 k.Q, C = 0.1
Symbol

Characteristic

~F,

unless otherwise specified.

Condition

Unit

General Characteristic
Vee

Supply Voltage

For Vee <;;;4.5 V, Short Lead 15 to
Lead 16

Icc

Supply
Current

Vee = 5.0 V, VTR = 0 V, VRS = 5.0 V
Vee = 15 V, VTR = 0 V, VRS = 5.0 V

Total Circuit

4.0

Counter Only
VREG

Regulator Output

15

V

4.0

7.0

rnA

13

18

1.5

I
I

Measured at Lead 15

Vee=5.0 V

3.9

4.4

Vee = 15 V

5.8

6.3

6.8

3.5

5.0

V

Time-Base
tAee

Timing Accuracy 1

VRS = 0, VTR = 5.0 V

Lltl LlT

Temperature Drift

O°C <;;; TJ <;;; 75°C

Lltl LlV

Supply Drift

Vee ~ 8.0 V (See Performance Curves)

fMax

Max Frequency

R = 1.0 kQ, C = 0.007 /.IF

VMOD

Modulation Voltage Level

Measured at Lead 12

RT

Recommended Range of
Timing Components Timing
Resistor

I Vee = 5.0 V
IVee = 15 V
I Vee = 5.0 V
IVee = 15 V

(See Performance Curves)

11-4

200

%
ppmfOC

80
0.08

0.3

130
2.80

3.50

%/V
kHz

4.20

V

10.5
0.001

10

MQ

MA2240

IlA2240C (Cont.)
Electrical Characteristics TA = 25°C, Vee = 5.0 V, R = 10 kS1, C = 0.1 IlF, unless otherwise specified.
Symbol
CT

Characteristic

Condition

Timing Capacitor

Min

Typ

0.01

Max

Unit

1000

J.l.F

Trigger/Reset Controls
VTR

Trigger Threshold

Measured at Lead 11, VRS = 0 V

1.4

ITR

Trigger Current

VRS = 0 V, VTR = 2.0 V

10

JJ.A

ZT

Trigger Impedance

25

kS1

Time2

tRSPT

Trigger Response

VRS

Reset Threshold

Measured at Lead 10, VTR = 0 V
VTR = 0 V, VRS = 2.0 V

IR

Reset Current

ZR

Reset Impedance

tRSPT

Reset Response Time2

2.0

1.0
1.4

V

J.l.s
2.0

V

10

JJ.A

25

kS1

0.8

J.l.S

1.5

MHz

20

kS1

Counter
TRMax

Max Toggle Rate

ZI

Input Impedance

VTH

Input Threshold

tr

Output Rise Time

Measured at Lead 14
VRS = 0 V, VTR = 5.0 V

1.0
Measured at Leads 1 through 8
RL = 3.0 kS1, CL = 10 pF

tf

Fall Time

10-

Sink Current

VOL <0.4 V

ICEX

Leakage Current

VOH=15 V

1.4

V

180

ns

180
2.0

4.0
0.01

Notes
1. Timing error solely introduced by 1lA2240 measured as % of ideal
time·base period of T - RC.
2. Propagation delay from application of trigger (or reset) input to
corresponding state change in counter output at Lead 1.

11-5

mA
15

J.l.A

J,LA2240

Typical Performance Curves
Supply Current vs
Supply Voltage in Reset Condition
16

10M,--r-;

,/

I

ffi

a
'"

/

/

6

~

~

1.0M

./

~ 12

il!

/

4

V
1.0K

o
o

10

12

14

16

18

100

SUPPLY VOLTAGE - V
•

POOa090F

Minimum Trigger/Retrigger Timing
vs Timing Capacitor

Time-Base Period Drift vs
Supply Voltage

3.0

100~R~=-'0~M~Q-r---r--70~~~

3.0
750C

250C

!!.

;F.

%

~

I

I 2.5

....

e

a
a

~

w

O"C

.

~ 2.0
::>
W

1.5

w

2.0

...........

\

ii:
~
w

750C

.......

:E

.~

1.0

0

~

0:

"....a:

1000

TIMING CAPACITOR - p.F

Minimum Trigger Pulse Width vs
Trigger and Reset Amplitude

CI

Time-Base Period vs
External RC

Recommended Range of
Timing Component Values

;:: 10
0:

W

~

~
co

25·C-

w

:E

;::

O·C

"....S!

-

0:

C = 0.1 ""

-

w 1.0

R = 10kO

~1.0

'"
0:

r---

W

"S!....
0:

MINIMUM TRIGGER DELAY
A _ _ TIME SUBSEQUENT TO
APPLICATION OF POWER
MINIMUM RETRIGGER

:E
::>
:E

Z
1.0
1.0

iii

-2.0

1.5

2.0

2.5

10

4

3.0

SUPPLY VOLTAGE -

TRIGGER OR RESET AMPLITUDE - V

Normalized Change in Time-Base
Period vs Modulation Voltage

12

I

a

"

a

~
a:

o

:;l

:E 1.0
0:
0

Y

Z

0.5

V

...............

w

/

:E

;::

...0

-1.0

"~:r:

-2.0

-3.0

1

MOOULAnON VOLTAGE -

R=~

"

o

V

i

~=1kn

w

./

o

1.0

~

...............

co

25

50

75

TEMPERATURE - OC

11-6

100

Yee!,5Y
;F.

1.0

.'"

/

!j!

10
jJ.F

2.0

~

Yee 5 V
C =0.1 IJ.F

ii:
~
w

Yee=51

;:: 1.5

1.0

Time-Base Period vs
Temperature

0

z
i

RESET INPUT

0.1

TIMING CAPACITOR -

2.0
;F.

B - - TIME SUBSEQUENT TO A

.01
0.01

V

Time-Base Period vs
Temperature

2."

2.0

14

"

100

illt=

...o

-1.0

--

c=

j' ""

-~

R=10M~

w

i'"

-2.0

" -3.0

o

25

50

TEMPERATURE _

75
0

C

100

J,tA2240

Functional Description
(Figure 1 and Block Diagram)
When power is applied to the jAA2240 with no trigger or
reset inputs, the circuit starts with all outputs HIGH. Application of a positive going trigger pulse to trigger lead 11,
initiates the timing cycle. The trigger input activates the
time-base oscillator, enables the counter section and sets
the counter outputs LOW. The time-base oscillator generates timing pulses with a period T = 1 RG. These clock
pulses are counted by the binary counter section. The timing sequence is completed when a positive going reset
pulse is applied to Reset, lead 10.

In most timing applications, one or more of the counter
outputs are connected to the reset terminal with S1
closed (Figure 3). The circuit starts timing when a trigger
is applied and automatically resets itself to complete the
timing cycle when a programmed count is completed. If
none of the counter outputs are connected back to the
reset terminal (switch S1 open), the circuit operates in an
astable or free running mode, following a trigger input.

Once triggered, the circuit is immune from additional trigger inputs until the timing cycle is completed or a reset
input is applied. If both the reset and trigger are activated
simultaneously, the trigger takes precedence.

Reset (R) (lead 10) sets all outputs HIGH.

Important Operating Information
Ground connection is lead 9.

Trigger (TRIG) (lead 11) sets all outputs LOW.
Time-base output (TBO) (lead 14) can be disabled by
bringing the RG input (lead 13) LOW via a 1.0 kn resistor.

Figure 2 gives the timing sequence of output waveforms

at various circuit terminals, subsequent to a trigger input.
When the circuit is in a reset state, both the time-base
and the counter sections are disabled and all the counter
outputs are HIGH.

Normal TBO (lead 14) is a negative going pulse greater
than 500 ns.

Figure 1 Logic Symbol
13

11

Figure 3

12

TRIG
VREG

Basic Circuit Connection
for Timing Applications
Monostable: S1 Closed
Astable: S1 Open

15

r----------------,-----~c

10

RL
10kO

R

1412345678

0.01 "F

C

Vee = Lead 16
GND = Lead 9

J

TRIGGER

JL

J

13

12

RC

MOD

11 TRIG

Figure 2 Timing Diagram of Output Waveforms

~n

I-~..u_-------

_____

..L..._

hnnnnnnnnnnnr""
1j.JUUUUlJUUlJlJl.Uo..L..J
........~....................

h

I

I

I

I

I

15

20 kO

47kO

LEAD 11

~'~BASE
LEAD 14

I

tLn.n..n..n..n._1
b

VREG

JL

TRIGGER
IIN

I I" III"" I" "II" III "

h

pA2240
RESET

'I_I_I
---I

~~~NTER

LEAD 1

1 T < To < 255 T
WHERE T RC

=

LEAD 2

TRIGGER

-I"LLEAD 3

~

-I To I-

LEAD 4

LEAD 5

11-7

•

J.LA2240

Note: Under the conditions of high supply voltages
(Vee> 7.0 V) and low values of timing capacitor
(CT < 0.1 MF), the pulse width of TBO may be too narrow
to trigger the counter section. Thi~ can be corrected by
connecting a 600 pF capacitor from TBO (lead 14) to
ground (lead 9).

The time-base can be synchronized by setting T to be an
integer multiple of the sync pulse period (Ts). This can be
done by choosing the timing components Rand C at lead
13 such that:

Reset (lead 10) stops the time-base oscillator.

where:

T = RC = (Ts/m)

m is an integer, 1.0';;; m';;; 10

Outputs (0 0 ... 0128) (leads 1 - 8) sink 2.0 mA current
with VOL';;; 0.4 V.

Figure 5 gives the typical pull-in range for harmonic synchronization for various values of harmonic modulus, m.
For m < 10, typical pull-in range is greater than ± 4% of
time-base frequency.

For use with external clock, minimum clock pulse amplitude should be 3.0 V, with greater than 1.0 MS pulse duration.

Circuit Controls

RC Terminal (lead 13)
The time-base period T is determined by the external RG
network connected to RC, lead 13. When the time-base is
triggered, the waveform at lead 13 is an exponential ramp
with a period T= 1 RG.

Counter Outputs (00 •.• 0128, leads 1 thru 8)
The binary counter outputs are buffered open collector
type stages, as shown in the block diagram. Each output
is capable of sinking 2.0 mA at 0.4 V VOL. In the reset
condition, all the counter outputs are HIGH or in the nonconducting state. Following a trigger input, the outputs
change state in accordance with the timing diagram of
Figure 2. The counter outputs can be used individually, or
can be connected together in a wired-OR configuration, as
described in the programming segment of this data sheet.

Time·Base Output (TBO, lead 14)
The time-base output is an open-collector type stage as
shown in the block diagram, and requires a 20 kn pull-up
resistor to lead 15 for proper circuit operation. In the reset
state, the time-base output is HIGH. After triggering, it produces a negative going pulse train with a period T = RG,
as shown in the diagram of Figure 2. The time-base output is internally connected to the binary counter section
and can also serve as the input for the external clock
Signal when the circuit is operated with an external time
base. The counter section triggers on the negative going
edge of the timing or clock pulses generated at TBO, lead
14. The trigger threshold for the counter section is

Reset and Trigger Inputs (R and TRIG, 10 and 11)
The circuit is reset or triggered with positive going control
pulses applied to leads 10 and 11 respectively. The
threshold level for these controls is approximately two diode drops ("'" 1.4 V) above ground. Minimum pulse widths
for reset and trigger inputs are shown in the Performance
Curves. Once triggered, the circuit is immune to additional
trigger inputs until the end of the timing cycle.

Figure 5 Typical Pull·ln Range for
Harmonic Synchronization

Modulation and Sync Input (MOD, lead 12)
The oscillator time-base period (T) can be modulated by
applying a DC voltage to MOD, lead 12 (see Performance
Curves). The time-base oscillator can be synchronized to
an external clock by applying a sync pulse to MOD, lead
12, as shown in Figure 4. Recommended sync pulse
widths and amplitudes are also given.

t 20

~

Figure 4 Operation with External Sync Signal
T•

o

..........

..J /4-0.3 T < T. < 0.8 T

=3\...
JLJ[ --L

~

0.1~

SYNC --;
IN

12

,.,42240

5.1 kO

I--Ts--j

o
o

11-8

i'--.r-..,

r---

10
RATIO OF TIME-BASE PERIOD TO
SYNC-PULSE PERIOD - Trrs

12

MA2240

Monostable Operation

'" + 1.4 V. The counter section can be disabled by clamping the voltage level at lead 14 to ground.

Precision Timing
In precision timing applications, the IlA2240 is used in its
monostable or self-resetting mode. The generalized circuit
connection for this application is shown in Figure 3. The
output is normally HIGH and goes LOW following a trigger
input. It remains LOW for the time duration (To) and then
returns to the HIGH state. The duration of the timing cycle
To is given as:

When using high supply voltages (Vee> 7.0 V) and a
small value timing capacitor (Or < 0.1 IlF), the pulse width
at TBO lead 14 may be too narrow to trigger the counter
section. This can be corrected by connecting a 600 pF
capacitor from lead 14 to ground.

Regular Output (VREG. lead 15)
The regulator output VREG is used internally to drive the
binary counter and the control logiC. This terminal can
also be used as a supply to additional 1lA2240 circuits
when several timer circuits are cascaded (see Figure 6) to
minimize power dissipation. For circuit operation with an
external clock, VREG can be used as the Vee input terminal to power down the internal time-base and reduce power dissipation. When supply voltages less than 4.5 V are
used with the internal time-base, lead 15 should be shorted to lead 16.
Figure 6

TO = nT= NRC
where T = RC is the time-base period as set by the
choice of timing components at RC lead 13 (see Performance Curves) and n is an integer in the range of
1 < n < 255 as determined by the combination of counter
outputs (00 ... 0128), leads 1 through 8, connected to the
output bus.

Low Power Operation of Cascaded Timers
Vee

Vee

R

Vee
RL

47 kO

30ko

i}

J

TRIGGER

.J'1..

L

I

TRIG

MOD

RC

,.A2240 #1
RESET ~r- R

Jl..

I

I

RC

MOD

TRIG

TBO 00 02 04

VAEG

a, 0,6032064 0128

11111 IllY

-

,.A2240 #2

Ii
Iii

r-

VAEG

r-

R

Tao 00 02 04 080160320640,28

I
OUT

150kO

Vee = Lead 16
GND = Lead 9

11-9

IlA2240

Counter Output Programming
The binary counter outputs, 0 0 ... 0 128 , leads 1 through 8
are open collector type stages and can be shorted together to a common pull-up resistor to form a wired-OR connection; the combined output will be LOW as long as any
one of the outputs is LOW. The time delays associated
with each counter output can be added together. This is
done by Simply shorting the outputs together to form a
common output bus as shown in Figure 3. For example, if
only lead 6 is connected to the output and the rest left
open, the total duration of the timing cycle, To, is 32 T.
Similarly, if leads 1, 5, and 6 are shorted to the output
bus, the total time delay is To = (1 + 16 + 32) T = 49 T. In
this manner, by proper choice of counter terminals connected to the output bus, the timing cycle can be programmed to be 1 T ~ To ~ 255 T.

In cascaded operation, the time-base section of Unit 2 can
be powered down to reduce power consumption by using
the circuit connection of Figure 6. In this case, the Vee
terminal (lead 16) of Unit 2 is left open, and the second
unit is powered from the regulator output of Unit 1 by
connecting the VREG (lead 15) of both units together.
Astable Operation
The J.lA2240 can be operated in its astable or free running
mode by disconnecting the reset terminal (lead 10) from
the counter outputs. Two typical circuits are shown in Figures 8 and 9. The circuit in Figure 8 operates in its free
running mode with external trigger and reset signals. It
starts counting and timing following a trigger input until an
external reset pulse is applied. Upon application of a positive going reset signal to lead 10, the circuit reverts back
to its reset state. This circuit is essentially the same as
that of Figure 3 with the feedback switch 81 open.

Ultra Long· Time Delay Application
Two /1A2240 units can be cascaded as shown in Figure 7
to generate extremely long time delays. Total timing cycle
of two cascaded units can be programmed from To = 256
RC to To = 65,536 RC in 256 discrete steps by selectively
shorting one or more of the counter outputs from Unit 2
to the output bus. In this application, the reset and the
trigger terminals of both units are tied together and the
Unit 2 time base is disabled. Normally, the output is HIGH
when the system is reset. On triggering, the output goes
LOW where it remains for a total of (256)2 or 65,536 cycles of the time-base oscillator.

The circuit of Figure 9 is deSigned for continuous operation. It self triggers automatically when the power supply is
turned on, and continues to operate in its free running
mode indefinitely. In astable or free running operation,
each of the counter outputs can be used individually as
synchronized oscillators, or they can be interconnected to
generate complex pulse patterns.

Figure 7 Cascaded Operation for Long Delays
Vee

Vee

Vee

RL

47 kO

R

10 kO

C
1 kO

MOD

RC

RC

TRIGGER

Jl...

",,2240 #2

REmrr--~~--+-------------------+---~~~~~~~~+-+-~----~--OUT

Jl...

47 kO

Vee = Lead 16
GND = Lead 9

11-10

MA2240

Binary Pattern Generation
In astable operation, as shown in Figure 8, the output of
the j.lA2240 appears as a complex pulse pattern. The
waveform of the output pulse train can be determined directly from the timing diagram of Figure 2 which shows
the phase relations between the counter outputs. Figures
10 and 11 show some of the complex pulse patterns that
can be generated. The pulse pattern repeats itself at a
rate equal to the period of the highest counter bit connected to the common output bus. The minimum pulse
width contained in the pulse train is determined by the
lowest counter bit connected to the output.

Figure 9

Free Running or
Continuous Operation (Note 1)

Vee

Vee

10 kll

Vee
RL
10 kll

R

C

0.01 pF

J

J
TRIG

RC

MOD
....2240

0.047pF

Figure 8 Operation with Trigger
and Reset Inputs (Note 1)

r---------....- - Vee
RL
10 kll

R

C

J:

~

TRIGGER

J1..

CR02970F

0.01 pF

RC

Figure 10 Binary Pulse Patterns Obtained
by Shorting Various Counter Outputs

MOD

TRIG

A. 2 LEAD PATTERNS

.JUUUUL
I1IlIlI"L-.JlIl
T

....2240
RESET

~!-I3T

J1..

= RC

-ITt-

1--8T--f-rr-/

LEADS 1 AND 2 SHORTED
B. 3 LEAD PATTERN

JULJlJl

rrn""---_

3T~5T+I ~1.:::==;21;:T·':-=-=-=-=-="::"'i"1

LEADS " 3, AND 5 SHORTED

Note
1. Vee = Lead 16
GND = Lead 9

11 -11

Figure 11
Vee

Continuous Free run Operation Examples of Output
vee

RC

MOD

-lRC\-

RC WAVEFOR"

n"E-8ASEOUTPUT

(h OUTPUT

rYYYYYY1/ /fYYYYYYY1
I I I I I I 1/ /

IIIIIIII

ruuu// LIU1.S1S

II-______

~~-lRCIIn____

I.

256RC

~~
..

I

.IlSLj
j----fiSL
I..
.1
256RC

j"'F,'~t//~
I--256RC

Vee'" Lead 16
GND:; Lead 9

..

I

F=L/j~
I..

~1

256RC

11-12

}1A3046 • J,LA3086
General Purpose
Transistor Arrays

FAIRCHILD
A Schlumberger Company

Linear Division Special Functions

Description

Connection Diagram
14-Lead DIP and 50-14 Package
(Top View)

The J.lA3046 and /.lA3086 are general purpose transistor
arrays. Each contains a differentially connected pair and
three individually isolated transistors. Each part is designed
for general purpose, low power applications for consumer
and industrial applications.

•
•
•
•

Low Input Offset Voltage
Wideband Operation
Low Noise
Matched Differential Amplifier

Absolute Maximum Ratings
Storage Temperature Range
Ceramic DIP
Molded DIP and SO-14
Operating Temperature Range
/.lA3046
/.lA3086
Lead Temperature
Ceramic DIP (soldering, 60 s)
Molded DIP and SO-14
(soldering, 10 s)
Internal Power DisSipation 1, 2
14L-Ceramic DIP
14L-Molded DIP
SO-14
Collector-to-Emitter Voltage
Collector-to-Base Voltage
Collector-to-Substrate Voltage 3
Emitter-to-Base Voltage
Collector Current

(Each Transistor)
-65°C to + 175°C
-65°C to +150°C
O°C to +70°C
-40°C to +85°C

C1

C5

Bl

E5
SUBSTRATE

El,2

B5

B2

C4

C2

E4

B3

B4

E3

C3

Order Information
Device Code

1.36 W
1.04 W
0.93 W
15 V
20 V
20 V
5.0 V
50 mA

Package Code

Package Description

9A
KD
6A
9A
KD

Molded DIP
Molded Surface Mount
Ceramic DIP
Molded DIP
Molded Surface Mount

/.lA3046PC
/.lA3046SC
/.lA3086DV
/.lA3086PV
/.lA3086SV

Equivalent Circuit
E5

Notes
1. TJ Max = 150°C for the Molded DIP and SO-14. and 175°C for the
Ceramic DIP.
2. Ratings apply to ambient temperature at 25°C. Above this temperature.
derate the 14L-Ceramic DIP at 9.1 mWfOC. The 14L·Molded DIP at
8.3 mW/oC, and the SO-14 at 7,5 mW/oC.
3. Substrate must be connected to the most negative voltage to maintain

C5

SUBSTRATE 85

C4

E4

B4

C3

B3

E3

04

normal operation.

Cl

11-13

Bl

E1,2

B2

C2

MA3046 • MA3086

IlA3046
Electrical Characteristics TA = 25°C unless otherwise specified.
Symbol

Characteristic

Condition

Min

Typ

Max

Unit

V(SR)CSO

Collector-to-Base Breakdown
Voltage

Ic=10 /lA, IE=O

20

60

V

V(SR)CEO

Collector-to-Emitter Breakdown
Voltage

Ic = 1.0 rnA, Is = 0

15

24

V

V(SR)CIO

Collector-to-Substrate Breakdown
Voltage

Ic=10

/lA,

Ic=O

20

60

V

V(SR)ESO

Emitter-to-Base Breakdown
Voltage

IE= 10

/lA,

Ic=O

5.0

7.0

V

Icso

Collector Cutofl Current

VCS = 10 V, IE=O

0.002

40

nA

ICEO

Collector Cutoff Current

VCE = 10 V, Is=O

See
Curve

0.5

/lA

hIe

Static Forward Current-Transfer
Ratio (Static Beta)

VCE = 3.0 V

AIIO

Input Oflset Current for Matched
Pair 0 1 and 02 I hOI - 11021

VCE = 3.0 V, Ic = 1.0 rnA

VSE

Base-to-Emitter Voltage

VCE = 3.0 V

100

Ic=10 rnA
Ic = 1.0 rnA
Ic = 10

/lA

40

100
54
0.3

IE = 1.0 rnA

0.715

IE= 10 rnA

0.800

/lA
V

AVSE

Magnitude of Input Offset
Voltage for Differential Pair
IVSEI - VSE21

VCE = 3.0 V, Ic = 1.0 rnA

0.45

5.0

mV

AVSE

Magnitude of Input Offset
Voltage for Isolated Transistors
IVSE3- VSE41, IVSE4- VSESI,
IVSES - VSE31

VCE = 3.0 V, Ic = 1.0 rnA

0.45

5.0

mV

AVSE/AT

Temperature Coefficient of Baseto-Emitter Voltage

VCE = 3.0 V, Ic = 1.0 rnA

-1.9

mVloC

VCE(Sat)

Collector-to-Emitter Saturation
Voltage

Is = 1.0 rnA, Ic = 10 rnA

0.23

V

IAVlol/AT

Temperature Coefficient of
Magnitude of Input-Offset Voltage

VCE=3.0 V, Ic= 1.0 rnA

1.1

/lVloC

NF

Low Frequency Noise Figure

1= 1.0 kHz, VCE = 3.0 V,
Ic = 100 /lA, Rs = 1.0 kfl

3.25

dB

11-14

I1A3046 • I1A3086

J.LA3086
Electrical Characteristics TA = 25°C unless otherwise specified.
Symbol

Characteristic

Condition

Min

Typ

Max

Unit

V(BR)CBO

Collector-to-Base Breakdown
Voltage

Ic=10 !lA, IE=O

20

60

V

V(BR)CEO

Collector-to-Emitter Breakdown
Voltage

Ic = 1.0 mA, IB = 0

15

24

V

V(BR)CIO

Collector-to-Substrate Breakdown
Voltage

Ic = 10 !lA, Ic = 0

20

60

V

V(BR)EBO

Emitter-to-Base Breakdown
Voltage

IE = 10

!lA, Ic = 0

5.0

7.0

V

ICBO

Collector Cutoff Current

VCB = 10 V, IE = 0

0.002

100

nA

ICEO

Collector Cutoff Current

VCE = 10V,IB=0

See
Curve

5.0

!lA

hie

Static Forward Current Transfer
Ratio (Static Beta)

VCE = 3.0 V

Ic=10 mA
Ic = 1.0 mA
Ic = 10 !lA

~IIO

Input Offset Current for Matched
Pair 01 and 02 11101 - 11021

VCE = 3.0 V, Ic = 1.0 mA

VBE

Base-to-Emitter Voltage

VCE = 3.0 V

100
40

100
54
0.3

IE = 1.0 mA

0.715

IE = 10 mA

0.800

!lA
V

~VBE

Magnitude of Input Offset
Voltage for Differential Pair
IVBE1- VBE21

VCE = 3.0 V, Ic = 1.0 mA

0.45

mV

~VBE

Magnitude of Input Offset
Voltage for Isolated Transistors
IVBE3- VBE41, IVBE4- VBE51,
IVBE5 - VBE31

VCE = 3.0 V, Ic = 1.0 mA

0.45

mV

~VBE/~T

Temperature Coefficient of Baseto-Emitter Voltage

VCE

-1.9

mY/DC

VCE(sat)

Collector-to-Emitter Saturation
Voltage

IB = 1.0 rnA, Ic = 10 rnA

0.23

V

I~Vlol/~T

Temperature Coefficient of
Magnitude of Input-Offset Voltage

VCE = 3.0 V, Ic = 1.0 rnA

1.1

!lVrC

NF

Low Frequency Noise Figure

f = 1.0 kHz, VCE = 3.0 V,
Ic = 100 !lA, Rs = 1.0 kS"l

3.25

dB

=

3.0 V, Ic = 1.0 rnA

11-15

•

MA3046 • MA3086

MA3046 and ~A3086
Electrical Characteristics T A = 25°C unless otherwise specified.
Symbol

Characteristic

Condition

Unit

Low Frequency, Small Signal Equivalent Circuit Characteristics
hIe

Forward Current Transfer
Ratio

hie

Short Circuit Input
Resistance

hoe

Open Circuit Output
Conductance

h,e

Open Circuit Reverse
Voltage Transfer Ratio

Yle

Admittance Characteristics:
Forward Transfer Admittance

110

f = 1.0 kHz, VCE = 3.0 V, Ic = 1.0 rnA

3.5

kS1

15.6

J..Imho

1.8 x 10- 4
31 - j1.5

f= 1.0 MHz, VCE=3.0 V, Ic= 1.0 rnA

0.3

+ jO.04

0.001

+ jO.03

Vie

Input Admittance

Yoe

Output Admittance

Y,e

Reverse Transfer Admittance

fT

Gain Bandwidth Product

VCE = 3.0 V, Ic = 3.0 rnA

500

MHz

0.6

pF

0.58

pF

2.8

pF

See
Curve

CEs

Emitter-to-Base Capacitance

VES = 3.0 V, IE = 0

CCS

Collector-to-Base
Capacitance

VCS = 3.0 V, Ic = 0

CCI

Collector-to-Substrate
Capacitance

Vcs = 3.0 V, Ic = 0

300

Typical Performance Curves

20

JOE=I3.JJ
-Rs =500n
=25°C

T.

15

20

,

l/~y~~

~.#j

~~

~

-

"~

'""-f-

Vdo='3.~V

-

As

TA

I.~

= 1000 n

.l~("I, -' f-----1

=2SOC

15

R~7

/

~'f

10

/

"~

lk~""
.-/

O.OS

0.1

0.2

COLLl!CTOR CURRENT -

0.5
rnA

,---JOE!
3.h J
,---!,s = 10 k!l
TA
I

a::

~

-

/

1.0

o

0.01

0.02

0.05

0.1

~,
~<:i

o~
/'

11-16

1.0

---=

0.01

0.02

/'"

/
-(kHz

./

o
0.5
rnA

V

V

V

0.2

/

Il-.~

/ , kHz

COLLECTOR CURRENT -

~,,-->~
:----

Q~'I'

10

/"

J:""

25<'C

15

10 kHz

0.02

25

~'ii

10';;;;

00.01

30

20

V

Q4?

~Q

~

10

Noise Figure vs
Collector Current

Noise Figure vs
Collector Current

Noise Figure vs
Collector Current

.......--r-

0.05

0.1

0.2

COLLECTOR CURRENT -

10kHz-

0.5
mA

1.0

J.lA3046 • J.lA3086

Typical Performance Curves (Cont.)
Forward Transfer Admittance vs
Frequency

I

.

Input Admittance vs
Frequency
COMM~~MITTER ClRC~IT,BA

N-E~lr E CIRCUIT, BASE I~~

C

1 30
w

IN.

r-T"VeE-• aOy
we

T• • WC YCE= aoY .. _
",,-!c = '.DmA

I - !If.

Output Admittance vs
Frequency

• '.DmA

-I

0:"

~~

20

.. !i!
~ iJ

10

~w

...

8 -20

0.1 0.2

0.5 1.0 2.0

'.0

5.0 10

20

50 100 200

'l!

"Z

-1.S

I"

~

8

0

10
20
50
FREQUENCY - MHz

100

'20

a: 110

I
~

f-~l.l Uv
"'~C

T

/

90

V

0:

a

80

o

V

0:

J0:

70

~

"

!i

Iii

"ty

'00

..

50

"

\,

hFE11
hFE2

.0

0.8

0.5 1.0

2.0

EMITTER CURRENT - mA

"l5V_ f--

'0

""II:

-

VeE

'0- 3

~

:::t

V

5V

10- 2

8
50

25

10-3

75

'00

o

'25

25

~~

!

0.5

5.0

10

D.'-75

VeE

=3V

100

'25

Static Base-to-Emitter Voltage and
Input Offset Voltage vs
Emitter Current
FOR DIFFERENTIAL PAIR AND

_ .... RED ISOLATED TRA~SISTORS7
VeE

~~~

e"

0.6

75

0.8

w

2

50

AMBIENT TEMPERATURE _ °C

0.9

~

= 10V

U 10-1

Base-to-Emitter Voltage Characteristic
vs Temperature for Each Transistor

6:;;

50 100 200

,Q2 ~18"0

~

I 0.8

0

~

0.05 0.1 0.2

zW

0:
0:

'DV

10-2

>

OR IhFE1
""E2[

V

0.01 0.02

,.,

10 20

Collector-to-Emitter Cutoff Current
vs Temperature for Each
Transistor

..

Vee'" 15

10-4 0

200

...,"'''''

s.o

I

~ 0.7

!

0.5 1.0 2.0

FREQUENCY - MHz

AMBIENT TEMPERATURE _ °C

Static Forward Current Transfer
and Beta Ratio for Transistors
01, 02 vs Emitter Current
o

0.1 0.2

11

~

"a:

0

!i0:

o

50 100 200

Vol"

r-IE"'O

i
~
II: ,0-,

_b.

" -2.0 ,

'0

I

,l.

-0.5

-1.0

g

5.0 10 20

..

LESS THAN 500 MHz

w"
O:z

0.5 1.0 2.0

Collector-to-Base Cutoff Current vs
Temperature for Each Transistor

"0:

Ilio
>w

/
/

FREQUENCY - MHz

1 1
= '.0 mA
.1, .( '+J..~cQUENCIES
g,. IS SMALL AT

Ii!~
lib

""
~~

0.1 0.2

MHz

i-~CE= '.0 V

0:"

W ..

o

~~M=M2~"tMITT~R CIRCUIT, BASE INjouT
Ic

V

'.L

Reverse Transfer Admittance vs
Frequency

0.5

I

I

/""

V

FREQUENCY -

I
w

.../

V

'"'

-10

E
E

we

Ie .'.0

II'

\.

--.

i:!

j

...

Vee-aOy

TA ".

,/

\.

0

i"

COMMON-EMITTER CIRCUIT, BASE INPUT

h

I~

~~

fo'

= 3.0 v

VeE

_ TA = 25'C

/

V
f--

I

,/

/

~ 8:~

~~"~

~~~~

-50

-25

25

50

75

AMBIENT TEMPERATURE _ °c

11-17

"

100

125

INPUT OFFSET VOLTAGE

0.'
0.01 0.02

II
0.05 0.1 0.2

"./

II
0.5 1.0

2.0

EMITTER CURRENT -

mA

o

5.0 10

MA3046 • MA3086

Typical Performance Curves (Cont.)
Input Offset Current for
Matched Transistor Pair
Q1, Q2 vs Collector Current

Input Offset Voltage for Differential
Pair and Paired Isolated Transistors
vs Ambient Temperature

..

0

10
5.0

VeE = 3.0 V
TA = 250C

>

~

2.0

~

1.0

i

0.5

E

I

o~

..

i

I

/

at:i

3.0

~
~
o

v~ = 3.~V
V

2-0

'00

~~ V

-

VCE=3.0V hie = 110

..,.
0:
W

w

i

0.1

o

./

0.05

~

!

-

0.05 0.1 0.2
0.5 1.0 2.0
COllECTOR CURRENT - InA

5.0 10

-

~ f.-

0.50

f"'"'j

0.'5

o

-75

IE

-50

-25

25

800

i

400

I

v..: = 3.~V

0
:l
Q

0

800

II:

./

l:

:;

..
Q

Z

C

~

"

V

f

200

o
o

9
COLLECTOR CURRENT -

50

75

AMBIENT TEMPERATURE _ °C

TAo = 250C

..
.

~::.

I/t.~

.......

"w
Q

N

iI,.

'.0

./~

0:

0

Z

i'..V
V

""\:;~

10

rnA

11-18

100

125

h"
h ..

h ••

v;...

Gain Bandwidth Product vs
Collector Current

i

I III.

if

PCOS300F

1000

10

l.!

0.02
0.01
0.01 0.02

}

~A ~~~~:: ~:a~'0-4 AT1m~=
h
hoe = 15.6 ~mho
II!

In

> 0.75

0.2

Normalized h Parameters vs
Collector Current

0.1
0.01 0.02

hi'

0.05 0.1 0.2

0.5 1.0 2.0

COLLECTOR CURRENT -

mA

5.0 10

J1A3680
Quad Telephone
Relay Driver

FAIRCHILD
A Schlumberger Company

Linear Division Special Functions

Description
The MA3680 Relay Driver is a monolithic integrated circuit
designed to interface -48 V relays to TTL or other logic
systems in telephony applications. The device has a
50 mA source capability and operates from -48 V battery
power. The quad configuration increases board density in
typical line card applications. Since there can be considerable noise and IR drop between logic ground and battery
ground, these drivers are designed to operate with a high
common mode range (± 20 V referenced to battery
ground). Also, each driver has common mode range separate from the other drivers in the package. Low differential
input current (typically 100 MA) draws low power from the
driving circuit. Differential inputs permit either inverting or
non-inverting operation. A clamp network is incorporated in
the driver outputs, eliminating the need for an external
network to quench the high voltage inductive backswing
caused when the relay is turned off. A fail-safe feature is
incorporated to insure that the driver will be off in the
VI + input or both inputs are open. Standby power (driver
off) is very low, typically 50 MW per driver.
•
•
•
•
•
•
•

-48 V Battery Operation
50 rnA Output Capability
TTl/CMOS Compatible Comparator Input
High Common Mode Input Voltage Range
Very Low Input Current
Fail-Safe Disconnect Feature
Built-In Output Clamp Diode

Connection Diagram
14-Lead DIP and SO-14 Package
(Top View)

+IN A

BATGND

-IN A

our A

-IN B

our B

+IN B

our C

+IN C

our D

-IN C

BAT NEG

-IN D

+IN 0

Order Information
Device Code
J.LA3680DV
J.LA3680PV
J.LA3680SV

Package Code
6A
9A
KD

Package Description
Ceramic DIP
Molded DIP
Molded Surface Mount

Absolute Maximum Ratings 1
Storage Temperature Range
Ceramic DIP
Molded DIP and SO-14
Operating Temperature Range
Lead Temperature
Ceramic DIP (soldering, 60 5)
Molded DIP and SO-Package
(soldering, 10 s)
Internal Power Dissipation 2, 3
14L-Ceramic DIP
14L-Molded DIP
SO-14
Differential Input Voltage
Output Current (LL';;; 5.0 H)
Output Current (RLl
BAT NEG
Input Voltage
(BAT NEG ;;;'-50 V)

-65°C to + 175°C
-65°C to + 150°C
-25°C to +85°C
300°C
265°C
1.36 W
1.04 W
0.93 W
±20 V
50 rnA
100 rnA
Max
+0.5 V
+20 V

Min
-70 V
BAT NEG
-0.5 V

Notes
1. All voltages are with respect to BAT GND.
2. TJ Max = IS0·C for the Molded DIP and SO-14, and 17S·C for the
Ceramic DIP.

3. Ratings apply to ambient temperature at 2S·C. Above this temperature,
derate the 14L-Ceramic DIP at 9.1 mWrC, the 14L-Molded DIP at
8.3 mW'·C, and the 50-14 at 7.5 mWrC.

11-19

MA3680

Recommended Operating Conditions
Max

Unit

-60

-10

V

-10

+10

V

+2

+10

V

Logic Off Voltage (VI+-VI-)

-10

+0.8

V

Temperature Range

-25

+85

°C

Characteristic

Min

Battery Voltage (BAT NEG)
Input Voltage
Logic On Voltage (VI+-VI-)

Electrical Characteristics Over Recommended Operating Conditions unless otherwise specified. TA = 25°C,
BAT NEG = -52 V.
Symbol

Characteristic

VIH

Logic "1" Differential Input Voltage

VIL

Logic "0" Differential Input Voltage

IINH

Logic "1" Input Current

IINL

Logic "0" Input Current

Conditions

Min

Typ

1.3
0.8

Max

2.0

40

100

VI+ = 7.0 V, VI- = 0 V

375

1000

+0.01

+5.0

VI+ =-7.0 V, VI- =0 V

-100

-1.0

V
V

1.3

VI+ = 2.0 V, VI- = 0 V

VI+ = 0.4 V, VI- = 0 V

Unit

JJA
JJA

VOL

Output ON Voltage

IOL =-50 rnA

-2.1

-1.6

V

IOFF

Output Leakage

Vo = BAT NEG

-100

-2.0

IFS

Fail-Safe Output Leakage

Vo = BAT NEG (Inputs open)

-100

-2.0

-100

-2.0

JJA
JJA
JJA

-1.2

-0.9

ILC

Output Clamp Leakage Current

Vo=BAT GND

Vc

Output Clamp Voltage

ICLAMP = -50 rnA, Referenced to BAT NEG

Vp

Positive Output Clamp Voltage

ICLAMP = +50 rnA, Referenced to BAT GND

IB(ON)

Supply Current

All Drivers On

-4.4

-2.0

IB(OFF)

Supply Current

All Drivers Off

-100

-1.0

tpLH

Propagation Delay, Output
Low-to-High

L = 1.0 H, RL = 1.0 kn

1.0

10

J.LS

tpHL

Propagation Delay, Output
High-to-Low

L = 1.0 H, RL = 1.0 kn

1.0

10

J.LS

11-20

0.9

V
1.2

V
rnA

JJA

MA3680

Equivalent Circuit (1/4 of circuit)

DC Test Circuit

At

_IN --"t-~W\r----,

A4
Dt

D4

-IN--t-----,~r

>-~-------

- - - - - .,

r ~~-,
1tva L_:_-.J

D5

'::'

I
-52 V
BAT NEG

OUT

D3

L-__~~~~______~__________________~___

::~

I

I

L ____ .J

•

9 BAT NEG

AC Test Circuit and Waveforms

-52 V

Typical Applications
+5.0 V

r --l-~

74XXI

I

L=tH

I __ I~_--,
I

I
I

I

)0--------'-1

-52 V

-48 V
CRO"""

CR03040F

11-21

J.LA555
Single Timing Circuit

FAIRCHILD
A Schlumberger Company

Linear Division Special Functions

Description
The J.lA555 Timing Circuit is a very stable controller for
producing accurate time delays or oscillations. In the time
delay mode, the delay time is precisely controlled by one
external resistor and one capacitor; in the oscillator mode,
the frequency and duty cycle are both accurately controlled with two external resistors and one capacitor. By
applying a trigger signal, the timing cycle is started and an
internal flip-flop is set, immunizing the circuit from any further trigger signals. To interrupt the timing cycle a reset
signal is applied ending the time-out.

Connection Diagram
8-Lead DIP and 50-8 Package
(Top View)

TRIGGER

DISCHARGE

OUT

THRESHOLD

The output, which is capable of sinking or sourcing
200 mA, is compatible with TTL circuits and can drive relays or indicator lamps.
•
•
•
•

•
•
•
•

Timing Control, J.lS To Hours
Astable Or Monostable Operating Modes
Adjustable Duty Cycle
200 rnA Sink or Source Output Current
TTL Output Drive Capability
Temperature Stability Of 0.005% Per °C Typ
Normally On Or Normally Off Output
Direct Replacement For SE555INE555

CONTROL
VOLTAGE

RESET

Order Information
Device Code
J.LA555TC
J.lA555SC

Absolute Maximum Ratings
Storage Temperature Range
Operating Temperature Range
Lead Temperature (soldering, 10 s)
Internal Power Dissipation 1, 2
8L-Molded DIP
SO-8
Supply Voltage

vee

GND

-65°C to + 150°C
O°C to +70°C
265°C
0.93 W
0.81 W
+18 V

Notes
1. TJ Max -150°C.
2. Ratings apply to ambient temperature at 25°C. Above this temperature,
derate the 8L-Molded DIP at 7.5 mWrC, and SO-8 at 6.5 mWrC.

11-22

Package Code

Package Description

9T
KC

Molded DIP
Molded Surface Mount

J,LA555

Block Diagram
Vcc--+....5.0kO

THRESHOLD
CONTROL
VOLTAGE

DISCHARGE

--++-1
R

FLIP-FLOP
5.0 kO

TRIGGER

-++-1

Q

S INHIBITI
RESET

-~I""-T"- OUT

5.0 kO

RESET

_+_________..J
GND

Equivalent Circuit (Note 1)
CONTROL
VOLTAGE

VCC-~~---~~-----'-~~-----~-----~---1~-----1---~----+-----~

THRESHOLD
OUT

TRIGGER-------+----iJ

RESET

---------i:-'

DISCHARGE-----,

GND' _ _ _-4_~~~-------4---4--~~------4--------4---4-------J

Note
1. All resistor values in ohms.

11-23

JlA555

/JA555
Electrical Characteristics TA = 25°C, V+ = +5.0 V to +15 V, unless otherwise specified.
Symbol

Characteristic

Vee

Supply Voltage

Icc

Supply Current 1

tD

Timing
Error

Initial Acc\.lracy
Drift with Temperature

Condition

Min

VTR

Threshold Voltage

Trigger Voltage

Max

Unit

16

V

3.0

6.0

mA

Vee = 15 V, RL=oo
LOW State

10

15

RI = 2.0 kS1 to 100 kS1
C = 0.1 IlF

1.0

%

50

ppm/DC

0.1

%V

Vee = 5.0 V, RL =

00

Drift with Supply Voltage

VTH

Typ

4.5

Vee = 5.0 V

2.6

3.33

4.0

Vee=15 V

9.0

10

11

Vee = 15 V

4.0

5.0

6.0

Vee = 5.0 V

1.1

1.67

2.2

0.5

5.0

V

V

ITR

Trigger Current

VR

Reset Voltage

0.7

1.0

V

IR

Reset Current

0.1

1.5

mA

ITH

Threshold Current2

0.1

0.25

!lA

Vev

Control Voltage Level

VOL

VOH

Output Voltage LOW

Output Voltage HIGH

0.4

Vee=15 V

9.0

10

11

Vee = 5.0 V

2.6

3.33

4.0

Vee=15 V, 10-=10 mA

0.1

0.25

10- = 50 mA, Vee = 15 V

0.4

0.75

10- = 100 mA, Vee = 15 V

2.0

2.5

10- = 200 mA, Vee = 15 V

2.5

3.5

Vee = 5.0 V, 10- = 8.0 mA

0.3

10- = 5.0 mA, Vee = 5.0 V

0.25

10+ = 200 mA, Vee = 15 V

11.0

12.5

10+ = 100 mA, Vee = 15 V

12.75

13.3

Vee = 5.0 V, 10+ = 100 mA

2.75

Rise Time of Output

100

tf

Fall Time of Output

100

IDIS

Discharge Leakage Current

20

11-24

V

V

0.35

V

3.3

tr

Notes
1. Supply Current is typically 1.0 mA less when output is HIGH.
2. This will determine the maximum value of R1 + R2. For 15 V operation,
the maximum total R = 10 Mil.

IlA

ns
ns
100

nA

MA555

Typical Performance Curves
Minimum Pulse Width Required
for Triggering
150

2.0

10

125
~

4: 8.0

I

l:

....
e
i

...

w

oJ

E

100

~
15

'"

50

Z

li

T;

I

...-...- ~

:>

:IE
:>

25

"u 4.0

f..-

~

~

.....

~

~

~....1•• ,O·j

~

V
./

!:;

§l1.0

..50.6

50.8

....

0.4

o

5.0

0.4

10

TA

>

=250C

1.0

I

"~
'"'
>

SUPPLY VOLTAGE -

-

=S.OV

V

~

~ 0.1

0.01

1.0

5.0

50

10

TA = 25°C /

~
S 1.000
e

1.0

•

./

V
i
5.0

10

SINK CURRENT -

50

100

rnA

Propagation Delay vs
Voltage Level of Trigger Pulse

1.015

~ol--r--+--+--+--+--jL-I--~

1.010

\

--

\

N

::;

---I

- 1.005

o. 1

~

5

SINK CURRENT -

1.015

"'i='"

:>

t--t-+-t-t/-=-...-!::......-t-H+--l

SINK CURRENT-mA

Delay Time vs
Supply Voltage

J

~

o
>
....

O.O~'::.0---L.-l.....L5:'.0:--:",0:--'-LJ...,5':0-~,00

100

100

(

1,. 0

w

o

./

50

>
1.01--II-H+-+-+-++I1--I

>

e

10

Vee = 15, V

~"

k..-'

0.1

1'5 v

5.0

0

o

t:;

s

Output Voltage LOW vs
Output Sink Current

>

0

I ,cct

SOURCE CURRENT - mA

Vee::: 10 V

~

r-5.0

o1.0

15

Output Voltage LOW vs
Output Sink Current
Vee

a:

~ 1.2

./

2.0

0.3

....-

TA = 25°C

>
11.4
w

0.2
0.2

10

:e

1.8
1.6

ijl

Output Voltage LOW vs
Output Sink Current

:>

V

V

LOWEST VOLTAGE LEVEL OF TRIGGER PULSE - x Vee

......

=2~'C V V

./

./

/

6.0

a:
a:

'/!f>'C ....-

0.1

~

Output Voltage HIGH vs
Output Source Current

Total Supply Current vs
Supply Voltage

~

i=

>- 1.005

~

--

o

-- r-

S 200 1 - - + - + - 1 - - + - - ) 9 ; 4 - + - - 1

-

~

oz

150

a:

"~

100

z

if

~ 1.000

::;

~ 0.995

o

!
I

l - i"- t--

o

Z

0.990

0.990

0.985

0.985

10
SUPPLY VOLTAGE -

15
V

20

fi

I--t~;.j-"""'+--f--+-+-+---j

50

-50

-25

25

50

75

AMBIENT TEMPERATURE -

11-25

100
~C

i 25
LOWEST VOLTAGE LEVEL OF TRIGGER PULSE- x Vee

J..LA555

Typical Applications

Figure 1 Monostable Mode
~C=~OVT015V----------------~---------,

Monostable Operation
In the monostable mode, the timer functions as a one
shot. Referring to Figure 1 the external capacitor is initially
held discharged by a transistor inside the timer.

Rl

RESET---

When a negative trigger pulse is applied to lead 2, the
flip-flop is set, releasing the short circuit across the external capacitor and driving the output HIGH. The voltage
across the capacitor increases exponentially with the time
constant T = R1 C1. When the voltage across the capacitor
equals
Vee, the comparator resets the flip-flop which
then discharges the capacitor rapidly and drives the output
to its LOW state. Figure 2 shows the actual waveforms
generated in this mode of operation.

TRIGGER
;,tA555

:r3

The circuit triggers on a negative going input signal when
the level reaches h Vee. Once triggered, the circuit remains in this state until the set time elapsed, even if it is
triggered again during this interval. The duration of the
output HIGH state is given by t = 1.1 R1C1 and is easily
determined by Figure 3. Notice that since the charge rate
and the threshold level of the comparator are both directly
proportional to supply voltage, the timing interval is independent of supply. Applying a negative pulse simultaneously to the Reset terminal (lead 4) and the trigger terminal
(lead 2) during the timing cycle discharges the external
capacitor and causes the cycle to start over. The timing
cycle now starts on the positive edge of the reset pulse.
During the time the reset pulse is applied, the output is
driven to its LOW state.

r
Figure 2 Monostable Waveform
t = 01 ms/DIV

INPUT"" 2.0 V/DIV

I-

OUTPUT VOLTAGE

=::

l J

~

II

'/

- ir-f

5.0 V/OIV

I--

/

ir-f LI-- J

CAPACITOR VOLTAGE - 2.0 VIOl V

When Reset is not used, it should be tied HIGH to avoid
any possibility of false triggering.

R1 = 9.1 kil, C1

=:

0.01 i'F. RL '" 1.0 kJl

Figure 3 Time Delay vs R1 and C1
100 r---,---.,.----.--..,.,..-..-r--,
10r---+---+---~~~~-+~~

0.01

I+--W---h''---H<---I7<--+--~

1.0
TIME DELAY

11-26

10

CONTROL
YOLTAGE
0.01 "F

JlA555

Astable Operation
When the circuit is connected as shown in Figure 4 (leads
2 and 6 connected) it triggers itself and free runs as a
multivibrator. The external capacitor charges through R1
and R2 and discharges through R2 only. Thus the duty
cycle may be precisely set by the ratio of these two resistors.

Figure 4

Astable Mode

~c=~OVT015V------------------~~---------,

Rl

OUT------i

In the astable mode of operation, C1 charges and discharges between h Vee and 5'3 Vee. As in the triggered
mode, the charge and discharge times and therefore frequency are independent of the supply voltage.

R2

CONTROL
VOLTAGE

Figure 5 shows actual waveforms generated in this mode
of operation.

0.01

~F

I

The charge time (output HIGH) is given by:

Figure 5 Astable Waveform

tl = 0.693 (R1 + R2) C1

-

t - 0.5 milDlY

and the discharge time (output LOW) by:

t2

= 0.693 (R2) C1

OUTPUT VOLTAGE

5.0 VIDIV

I I I I

Thus the total period T is given by:
T = tl + t2 = 0.693 (R1 + 2R2) C1

/ V ~ ~ / \Y~

The frequency of OSCillation IS then;

'"

1.44
f=-=----T (R1 + 2R2) C1

CAPACITOR VOLTAGE = 1.0 VIOIV

Rl = R2 = 4.8 ko, Cl = 0.1 "F, RL = 1 kO

and may be easily found by Figure 6.
The duty cycle is given by:

Figure 6

R2

DC=---

Free Running Frequency vs
R1, R2, and C1

R1 + 2R2

"fw

1.0

(J

Z

;!

~

0.1

"

(J

0.01

FREE RUNNING FREQUENCY -Hz

11-27

•

JlA556
Dual Timing Circuits

FAIRCHILD
A Schlumberger Company

Linear Division Special Functions

Description
The J.LA556 Timing Circuits are very stable controllers for
producing accurate time delays or oscillations. In the time
delay mode, the delay time is precisely controlled by one
external resistor and one capacitor; in the oscillator mode,
the frequency and duty cycle are both accurately controlled with two external resistors and one capacitor. By
applying a trigger signal, the timing cycle is started and an
internal flip-flop is set, immunizing the circuit from any further trigger Signals. To interrupt the timing cycle a reset
signal is applied, ending the time-out.

Connection Diagram
14-Lead DIP
(Top View)

DISCHARGE

THRESHOLD

DISCHARGE

CONTROL
VOLTAGE

THRESHOLD

The output, which is capable of sinking or sourcing
200 mA, is compatible with TTL circuits and can drive relays or indicator lamps.

RESET

OUT

The J.LA556 Dual Timing Circuit is a pair of J.LA555s for
use in sequential timing or applications requiring multiple
timers.

•
•
•
•
•
•
•

Timing Control, JIS To Hours
Astable Or Monostable Operating Modes
Adjustable Duty Cycle
200 mA Sink Or Source Output Current
TTL Output Drive Capability
Temperature Stability Of 0.005% Per °c Typ
Normally On Or Normally Off Output

TRIGGER

GND

RESET

OUT

TRIGGER

Order Information
Device Code
J.LA556PC

Absolute Maximum Ratings
Storage Temperature Range
Operating Temperature Range
Lead Temperature (soldering, 10 s)
Internal Power Dissipation 1, 2
Supply Voltage

CONTROL
VOLTAGE

-65°C to + 150°C
O·C to +70°C
265°C
1.04 W
+18 V

Notes
1. TJ Max = 150·C.
2. Ratings apply to ambient temperature at 25°C. Above this temperature,

derate at 8.3 mwrc.

11-28

Package Code
9A

Package Description
Molded DIP

MA556

(112

Block Diagram

of circuit)

Vcc--+....S.OkO
THRESHOLD
CONTROL
VOLTAGE

DISCHARGE

-++-1
R
FUP-FLOP
S.OkO

TRIGGER

-++--f

Q

S INHIBITI
RESET

-"""1, ....-,..-- OUT

5.0 kO

RESET

_+_________....1
GND

Equivalent Circuit (';2 of circuit) (Note 1)
CONTROL
VOLTAGE
VCC-~~_---~-----~~~-----~_---~-~----p--~--~---,

THRESHOLD
OUT

TRIGGER--------Ir---~

RESET - - - - - i : '
DISCHARGE----,

Note
1. All resistor values in ohms.

11-29

tlA556

pA556
Electrical Characteristics TA = 25°C, V+ = + 5.0 V to + 15 V, unless otherwise specified.
Symbol

Condition

Characteristic
Supply Voltage

lee

Supply Current (Total) 1

Vee = 5.0 V, RL =
Vee = 15 V, RL =
LOW State

to

Timing Error
(Monostable)

Min

Initial Accuracy
Drift with Temperature

00
00

teH, DIS

Initial Accuracy
Drift with Temperature

ITH

Threshold Current2

VTR

Trigger Voltage

ITR

Trigger Current

VR

Reset Voltage

IR

Reset Current

Vev

Control Voltage Level

VOL

VOH

V

6.0

12

mA

20

28
%

R 1 , R2 = 2.0 kn to 100 kn
C = 0.1 J..IF

2.25

%

150

ppmfOC

50

ppm/oC

0.1

%V

%V

0.3

Threshold Voltage

Vee = 5.0 V

2.6

3.33

4.0

Vee=15 V

9.0

10

11

30

250

nA

Vee = 15 V

4.0

5.0

6.0

V

Vee = 5.0 V

1.3

1.67

2.0

0.5

5.0

0.4
0.1

Output Voltage LOW

Output Voltage HIGH

V

10

11

2.6

3.33

4.0

10- = 10 mA, Vee = 15 V

0.1

0.25

10- = 50 mA, Vee = 15 V

0.4

0.75
2.75

10- = 100 mA, Vee = 15 V

2.0

10- = 200 mA, Vee = 15 V

2.5

3.5

10- = 5.0 mA, Vee = 5.0 V

0.25

0.35

Vee = 5.0 V, 10+ = 100 mA

12.5

2.75

V

3.3

Rise Time of Output

100

tf

Fall Time of Output

100

lOIS

Discharge Leakage Current

Ato

Matching
Characteristics

ns
ns

20

100

0.1

2.0

±10

Drift with Supply Voltage

0.2

Notes
1. Supply current when output is HIGH is typically 1.0 mA less.
2. This will determine the maximum value of R1 + R2 for 15 V operation.

The maximum total R = 10 Mil.
3. Matching characteristics refer to the difference between performance
characteristics of each timer section.

11-30

V

12.75 13.3

t,

Initial Timing Accuracy

V
mA

9.0

11

J..IA

1.5

Vee = 5.0 V

Vee = 15 V, 10+ = 100 mA

V

1.0

Vee=15 V

Vee = 15 V, 10+ = 200 mA

Timing Drift with Temperature

Unit

16

0.75

Drift with Supply Voltage
VTH

Max

Rl = 2.0 kn to 100 kn
C = 0.1 J..IF

Drift with Supply Voltage
Timing Error
(Astable)

Typ

4.5

Vcc

nA
%
ppmfOC

0.5

%V

J-tA556

Typical Performance Curves
Minimum Pulse Width
Required for Triggering

Total Supply Current vs
Supply Voltage

150

20

125
~

16

I

...c

:t 100

ffi

i

w
~ 75
:>
:>

:IE

50

Z

i

25

f.-

00

a

.iil

~ 8.0

~

~ P""

12

a:
a:

?!>'C l.-V ..-- ~
~
"{,. ;:. 10°,....
k;:::

..

:IE

/'
TA = 25'C/'
/'

V

Output Voltage HIGH vs
Output Source Current
2.0

vV
1/

1.8

1.6

CI 1.2

V

V

g~ 1.0

...
~ 0.8
5 0. 6

/'

4.0

0.4

0.2 ;-5.0

o

0.4

0.3

0.2

0.1

LOWEST VOLTAGE LEVEL OF TRIGGER PULSE -

10
SUPPLY VOLTAGE - V

5.0

II Vee

Output Voltage LOW vs
Output Sink Current

o

15

TA = 250C

,.-

~
~

.....

0.01

1.0

~

50

0.1

"
0.01
1.0

mA

•

..........

TA = 25°C

.,/'

5.0

10

SINK CURRENT -

50

100

mA

Propagation Delay vs
Voltage Level of Trigger Pulse

Delay Time vs
Ambient Temperature
1.015

1.010

1.01 0

C 1,000

~

o

SINK CURRENT -

w

:!l

...

:>

O.O~'::.0---'--l.....J.5:'-.0:--:"0:--'_L-L5::0,--7.'00

100

1.01 5

c

>

.....-

o

5.0
10
SINK CURRENT-mA

j

o

:>

Delay Time vs
Supply Voltage

>- 1,005

100

{

I 1.0
w

~ 0.1 f-_f-+T_At-~+-25.'...C""V"'---f_H+_--l

~

:>

w

50

>

1.0f--+-+-H--\--\-+-ffl---\

~
o
>

":l

10

Vee == 15 V

>

g

,.

5.0

Output Voltage LOW vs
Output Sink Current

Vee"" 10 V

I

"~

0.1

YC1~ ,15 V

10

>
I 1.0
w

.

~

SOURCE CURRENT - mA

Output Voltage LOW vs
Output Sink Current
Vee = S.OV

...
...

I

1.0

10

:>
0

TA = 25°C

>
I 1.4
w

\

-

\

~

1'---

:l:Ii 0.99 5

250~-r--+--+--+--+--~-4--~

~

2

"~

>- 1.005

--

C

~ 1.000

--r-- r--

- -r-

::;

~ 0.995
a:

a:

o
z

o

z
0.990

0.990

0.98 5

0.985

10
SUPPLY VOLTAGE -

15
V

20

I
~
w

200 t---+-+-f--+-~4-+--l

~

150

c

ii

"If: 100 I--f:::;;:;..j-""'+--+--+-+-+---I
~

50

-50

-25

25

50

75

AMBIENT TEMPERATURE _

_ _ _ _ _ _ _ _ _ _ _ _.c,·
11-31

100

ec

125

0.4
LOWEST VOLTAGE LEVEL OF TRIGGER PULSE-. Vee

MA556

Typical Applications

Figure 1 Monostable Mode
~C=~OVT015V----------------~---------,

Monostable Operation
In the monostable mode, the timer functions as a one
shot. Referring to Figure 1 the external capacitor is initially
held discharged by a transistor inside the timer.

14

When a negative trigger pulse is applied to lead 6, the
flip-flop is set, releasing the short circuit across the external capacitor and drives the output HIGH. The voltage
across the capacitor, increases exponentially with the time
constant T = R1C1. When the voltage across the capacitor
equals :r3 Vee, the comparator resets the flip-flop which
then discharges the capacitor rapidly and drives the output
to its LOW state. Figure 2 shows the actual waveforms
generated in this mode of operation.
The circuit triggers on a negative going input Signal when
the level reaches h Vee. Once triggered, the circuit remains in this state until the set time has elapsed, even if
it is triggered again during this interval. The duration of
the output HIGH state is given by t = 1.1 R1C1 and is
easily determined by Figure 3. Notice that since the
charge rate and the threshold level of the comparator are
both directly proportional to supply voltage, the timing interval is independent of supply. Applying a negative pulse
simultaneously to the Reset terminal (lead 4) and the trigger terminal (lead 6) during the timing cycle discharges
the external capacitor and causes the cycle to start over.
The timing cycle now starts on the positive edge of the
reset pulse. During the time the reset pulse is applied, the
output is driven to its LOW state.

R.

RESET---

TRIGGER
1/2/JA5S6

OUT

r

CONTROL
YOLTAGE
0.01 p.f
CAOQ521F

Figure 2

Monostable Waveform
t

= 0.1

mS/DIV

INPUT = 2.0 VlDIV

I-

OUTPUT VOLTAGE = 5.0 V/DIV

J

V

'11

I--

W

/
f-- ..J

CAPACITOR VOLTAGE

When Reset is not used, it should be tied HIGH to avoid
any possibility of false triggering.

/
-li

2.0 V/DIV

Rl = 9.1 k!l. C1 = 0.01 J.lF, Rl = 1.0 kll

Figure 3 Time Delay vs R1 and C1
l00r---~--,---~---r,r-~~~

.

~

~ 1.0

<.>

z

~

..1l

~ 0.1

0.0'

f+--+,.<---J7

\

0.2

100K

01

100M

10M
FREQUENCY - Hz

10K

1M

J

I

-0.2

10

o

II ~ GAIN 1
'/

0

D 1.0

~I /

GAIN 2--'"

0.8

:.J

\

S

~ 20

8:E

1.2

>

..~

..... r-..,

=

Vee t6 V
TA = 25°C
RL= 1 kO

1.4

"z 5.0

so

o

1.8

~~v

veU
TA = :WC
RL=1kfl

,:. &.0

r-..,

70

Pulse Response

7.0

5

10

50 100

-0.,
-15 -10 -5

500 1000

0

5 10 15
TIME-ns

FREQUENCY - MHz

20 25

30 35

PC07730F

Differential Overdrive
Recovery Time
70

.~V

veA=
TA =:WC
I GAN2

..
.ffi40

260
1

/

:Eso
;:

V

8:l3O
~

!!i2O
ffi
is 10

1.6

00

20 40

GAIN 2
TA = 250C
RL=1kO
Vee = taV

1.4

7

1.2

>

..

l/

/"

- I -. /

I

1.0

"~

0.8

~

Q.6

5

0.4

S

II

0.2

1

Z 1.05

~

1&1

~

= £ev

'\ ........ ~+ r-- l ~
\

t-......

0

5

10 15

0.'

60
100
TEMPERATURE - ·c

!~

-0.4_15 -10 -5

0

5

10 15

TIME-

20

25 30 35

na

Voltage Gain vs
Supply Voltage

III

40

TAI.U~c
~~ III
~ ~irc

~
~30
~

..fi

020

10

-10

=25°C

1.4

T~YriC

~ ~loc

IT~I= 12~

Ii
140

TA= 125D C

TA

;.-. TA= 7O"C

j

D.2

20 25 30 35

Vcc=tBV
RL-1 leO

~ 0

\
20

:-&l

rj

0

'II

;

\
-20

-- ,

-0.2

-0.4
-15 -10 -5

z
~

2\

0.65
0.80
-80

0.6

TlME-n.

\.\;

w

"

TA = -55"C

..5

ISO

> 0.90

TA = 00

0.8

...:::>

60
Ve

gUS

5..

..

~

Gain vs Frequency
vs Temperature

\

1.00

RL=1kCl

1.2

>
1 1.0
:.J

.J

GAIN 2
Vee = ±6V

1.4

-0.2
80 100 120 140 160 180 200

60

Voltage Gain vs
Temperature

~ 1.10

1.8

~

'/

0

/

Vee = ±6V
Vee = ±3V

DIFFERENTIAL INPUT VOLTAGE - mV

1.15

Pulse Response vs
Temperature

Pulse Response vs
Supply Voltage

1

5

10
so 100
FREQUENCY - MHz

11-37

I

jJ

5001000

TA·25·C

~I

1.3

12

.

:

1.0

~

0.9

..g
~

Ii

0.8
0.7

~ 0.6
0.5

f"'"

~ 1.1

I-

GJ.,....

'll-" I-" p-

~ ~ ~~"/
/

~

...... .-

V

,/

V

0. 4 3
SUPPLY VOLTAGE - tV

MA592

Typical Performance Curves (Cont.)
Output Voltage and Current Swing
vs Supply Voltage

Voltage Gain Adjust Circuit

Voltage Gain vs RADJ
lOGO

7.0
TAI=

J.c

D.2,.F

T
T

~

i..;'

~

#:¥
~

V

.

~ ~ '"

P"

I
·z

':'

Rod,

...

~

10

~

"

:..I

§!

...
~Z
...a:

1.0

"

0.1

I

"

.ot

8.0

5.0
6.0
7.0
SUPPLY VOLTAGE - +Y

4.0

...........

100

~

D.2 .F

~v."

Vee = tlV
1= 100 11Hz
TA = 25'C

>

1

10

lK

100

10K

100K

1M

RodI- n

PC07671F

PC07810F

Output Voltage Swing vs
Load Resistance
7.0

we

J8.0

I

~ 5.0

V-

~a.o

{

80

...I

70

~

80

§!

50

:..I

6z

!i2.0

...

I!

L.o

ii!

;!;

.....
500 1 K

LOAD RESISTANCE -

TAD

B

5K 10K

n

~24

30

20

12

01 2 1 0

100

lK

BOURCE RESISTANCE -

'/
,/

I'
./

8

~

18

5

18

a::!

17

i

18

~

,.

...... .......

.......

...... ~

15

!/

20

i

MHz

I'

./

I

18

=1

40

TA= 25"C

E

we

I

28

!

20

I

Supply Current vs
Supply Voltage

!i

Vee. t8V

VCC'- t8V

10

50 100 200

10

21

G~IN~III

90

...

g

0

100

Vee = t6V

TAo-

!... 4.0

Supply Current vs
Temperature

Input Noise Voltage vs
Source Resistance

/
3
SUPPLY VOLTAGE - tY

11-38

n

10K

14
-80

-20

20

80

TEMPERATURE - 'C

100

140

p.A733
Differential Video
Amplifier

FAIRCHILD
A Schlumberger Company

Linear Division Special Functions

Description
The IlA733 is a monolithic two-stage differential input, differential output video amplifier constructed using the
Fairchild Planar Epitaxial process. Internal series shunt
feedback is used to obtain wide bandwidth, low phase distortion, and excellent gain stability. Emitter follower outputs
enable the device to drive capacitive loads and all stages
are current source biased to obtain high power supply and
common mode rejection ratios. It offers fixed gains of 10,
100 or 400 without external components, and adjustable
gains from 10 to 400 by the use of a single external resistor. No external frequency compensation components
are required for any gain option. The device is particularly
useful in magnetic tape or disc file systems using phase
or NRZ encoding and in high speed thin film or plated
wire memories. Other applications include general purpose
video and pulse amplifiers where wide bandwidth, low
phase shift, and excellent gain stability are required.

Connection Diagram
10-Lead Metal Package
(Top View)

vNote
Pin 5 connected to case.

Order Information
Device Code

•
•
•
•

120 MHz Bandwidth Typ
250 kf2 Input Resistance Typ
Selectable Gains Of 10, 100, And 400
No Frequency Compensation Required

Absolute Maximum Ratings
Storage Temperature Range
Metal Can and Ceramic DIP
Molded DIP and SO-14
Operating Temperature Range
Extended (1lA733M)
Commercial (1lA733C)
Lead Temperature
Metal Can and Ceramic DIP
(soldering, 60 s)
Molded DIP and SO-14
(soldering, 10 s)
Internal Power Dissipation " 2
10L-Metal Can
14L-Ceramic DIP
14L-Molded DIP
SO-14
Supply Voltage
Differential Input Voltage
Common Mode Input Voltage
Output Current

Package Code

1lA733HM
1lA733HC

5X
5X

Package Description
Metal
Metal

Connection Diagram
14-Lead DIP and 50-14 Package
(Top View)

-65°C to +175°C
-65°C to + 150°C

14

-55°C to + 125°C
O°C to +70°C

1.07 W
1.36 W
1.04 W
0.93 W
±S.O V
±5.0 V
±6.0 V
10 mA

IN2

INt

NC

Ne

G..

G...

G.

a".

v-

v+

Ne

Ne
OUTt

OUT 2

COO124OF

Order Information
Device Code

Notes
1. TJ Max -150°C for the Molded DIP, and 175°C for the Metal can and
Ceramic DIP.
2. Ratings apply to ambient temperature at 25°C. Above this temperature,
derate the 10l-Metal Can at 7.1 mWrC, the 14l-Ceramic DIP at
9.1 mWrC, the 14l-Molded DIP at 8.3 mWrC, and the 50-14 at
7.5 mWrC.

1lA733DM
1lA733DC
1lA733PC
1lA733SC

11-39

Package Code

Package Description

6A
6A
9A
KD

Ceramic DIP
Ceramic DIP
Molded DIP
Molded Surface Mount

•

pA.733

Equivalent Circuit
V+

IN1

+--+-O'UT1

UT2

R14
400Cl

V-

~733 and ~733C
Electrical Characteristics TA = 25°C, Vee = ± 6.0 V unless otherwise specified.

p.A733
Symbol
Avo

BW

Condltlon 1

Characteristic
Differential Voltage Gain

Bandwidth

Rs=50

n

,-

t,

tpo

ZI

Risetime

Propagation Delay

Input Impedance

Input Capacitance
Input Offset Current

Max

Min

Typ

Max

Unit
V/V

Gain 1

300

400

500

250

400

600

90

100

110

80

100

120

Gain 3

9.0

10

11

8.0

10

12

Gain 1

40

40

Gain 2

90

90

Gain 3

120

120

Rs=50 n,
Vo = 1.0 Vp_p

Gain 1

10.5

10.5

Gain 2

4.5

Gain 3

2.5

2.5

Rs=50 n,
Vo = 1.0 Vp_p

Gain 1

7.5

7.5

Gain 2

6.0

Gain 3

3.6

Gain 1
Gain 3

110

Typ

Gain 2

Gain 2

CI

p.A733C

Min

Gain 2

4.5

10

6.0

ns
12
ns
10

3.6

4.0
20

kn

4.0
10

30
250

30
250

2.0
0.4

11-40

10

MHz

2.0
3.0

0.4

pF
5.0

pA

#J,A733

/.IA733 and 1.IA733C (Cant.)

Electrical Characteristics T A = 25°C, Vee =

± 6.0

V unless otherwise specified.
p.A733

Symbol

Condition!

Characteristic

liB

Input Bias Current

en

Input Noise Voltage

Min

Input Voltage Range

CMR

Common Mode Rejection

VCM

PSRR

Supply Voltage Rejection
Ratio

tJ.Vcc = ± 0.5 V, Gain 2

Vos

Output Offset Voltage

= ± 1.0

V, Gain 2

Typ

Max

9.0

20

Min

12

Rs=50 n,
BW = 1.0 kHz to 10 MHz

VIR

p.A733C
Typ

Max

9.0

30

Unit

IJA.

12

IlVrms

± 1.0

± 1.0

60

86

60

86

dB

50

70

50

70

dB

V

Gain 1

0.6

1.5

0.6

1.5

Gain 2 and Gain 3

0.35

1.0

0.35

1.5

2.9

3.4

2.9

3.4

VOCM

Output Common Mode
Voltage

2.4

2.4

V

V

VOP

Output Voltage Swing

3.0

4.0

3.0

4.0

Vp-p

10-

Output Sink Current

2.5

3.6

2.5

3.6

rnA

Ro

Output Resistance

20

Icc

Supply Current

18

20
24

18

n
24

rnA

The following specifications apply over the range of -55·C";;TA";;125·C for 1JA.733 and 0·C";;TA";;70·C for 1JA.733C.

Avo

Differential Voltage Gain

Gain 1

200

600

250

600

Gain 2

80

120

80

120

Gain 3

8.0

12

8.0

12

Gain 2

8.0

ZI

Input Impedance

8.0

110

Input Offset Current

5.0

6.0

liB

Input Bias Current

40

40

VIV

kn

IJA.
IJA.

VIR

Input Voltage Range

±1.0

±1.0

V

CMR

Common Mode Rejection

50

50

dB

PSRR

Power Supply
Rejection Ratio

50

50

dB

Vos

Output Offset Voltage

Gain 1

1.5

1.5

Gain 2 and Gain 3

1.2

1.5

VOP

Output Swing

2.5

2.8

10-

Output Sink Current

2.2

2.5

Icc

Supply Current

27

Note.
1. Gain Select leads G'A and G'8 connected together for Gain 1.
2. Gain Select leads G2A and G28 connected together for Gain 2.
3. All Gain Select leads open for Gain 3.

11-41

V

Vp.p
27

rnA
rnA

JlA733

Typical Performance Curves
Phase Shift vs
Frequency

Phase Shift vs
Frequency

I'-

.."'II!

"'

-5

S

"-

I

..5

-15

I..

-20

-25

N

""

.....
-3SO
10

Vee.

I

1

5

.0
30

~

I
8

1.4

II!. " 1 00

1.2

I 5.0

i:
:!I

vc~1J~v
TAo ="J5OC

~

r-...

!;

.....

500 1000

RL = 1 kQ

1.0

"'

0.8

Gl'N

~

0..

:>

0..

:>

0.2

Q

\

Vcc=tBY

Gl'N

....

~

2.0

~

20

50 100

TA = 25°C

>
I

"~

..0

gt.o

'"

10

FREQUENCY - MHz

1.6

,:.
~

5

500 1000

Pulse Response

.. 8.0

70

~
l~

'\

f-

10
50 100
FREQUENCY - MHz

t6V

TA. 25°C

i

f-

.r

7.0

80

i

.......

GAIN 3

Output Voltage Swing vs
Frequency

GAIN ~I_

90

\

~~
~i

-300

•

100

GAIN 2

G>

Common Mode Rejection Ratio vs
Frequency

2

1\

~

FREQUENCY - MHz.

III

TA= 25"C
GAIN 1

1\

• •

o

Vee ~_~_I V

=

~\

r--..

-10

Q

-so

&0

Vee = t6V
TAo soc

f::: ~t--

GAIN 2

YCC' t6_ IITAO:; 2SOC

Voltage Gain vs
Frequency

r

.......

I

...<:

I

'GAIN

/

J

01.0
-0.2

10

o

10K

100K

0,

1M
10M
FAEQUENCY - Hz

100M

5

so

10

FREQUENCY -

100

-0.4
-15 -10 -5

500 1000

5101520253035
TIMe-ne

MHz
PC07900F

PC07880F

PC07910F

I

Differential Overdrive
Recovery Time

Pulse Response vs
Supply Voltage
1.8

70

7'
/'

I

., ,so

..
1540
;:

8II!

V

30

~

/

/,V

1

20

010

r-r- V

00

20

V

40 10 80 100 120 140 160 180 200
DIFFERENnAL INPUT VOLTAGE - mY

TA- 25'C-

1.4

Vcc=tlY
TA - 2SOC

80

GAIN 2

GAIN.

oJN21.

2

Pulse Response vs
Temperature

R

1.2

>

I

1.0

""'~

0.8

...
S
~

0.1

:>

0.'

0

0..

Vcc=tBV

II
I

VCf" fllV

j

vcc ..

§

0.8

!j
~

0.6

t3V

'/

S
I!:

il

1

Vee" t8_ VAL= 1 kO

I

1.0
TA= 0

TA= -55°C

C

rm~.

r ~\

-I

v..

Q.4

j

•

0.

TA = 1250C

TAo = 25°C
TA'" 7()I'C

I

0

-0.2
-0.,
-15 -10 -5

1.'
1.'

= 1 k!l

-0.2

0

5 10 15
TIME-ni

11-42

20

2S

30 35

-0.

•

-15 -10

-5

0

5

10

15

TIME-ns

20

25

30

35

1lA733

Typical Performance Curves (Cont.)
Voltage Gain vs
Temperature
1.15

~

,

\

1.1 0

1&1

!

~

Vee = tay

1-

1.0

-I-

~

1-

_\
'\ ....... ~'I'..

\

~

\

0.85
0.90
-60

I- 0"111 3

~

~ -~

0.8

'"2:

0.7

II!

0.8

\

-

20

20
TEMPERATURE - OC

L...- ~

au

~

0.5

100

25~C

V

'" ~ ""'J,,'J...!o.o
~ ~~

I-

....... j--..

~ 0.90

II!

1.2

1

z1.1

~Na-

0.05

T••

l.a

.-

1 , .05

3

Voltage Gain vs
Supply Voltage

Gain vs Frequency vs
Temperature

7

1/

/

'/

140
FREQUENCY -

SUPPLY VOLTAGE - tY

MHz

"."'OF

7.0

Gain vs Frequency vs
Supply Voltage

Output Voltage Swing vs
Load Resistance

Output Voltage and Current
Swing vs Supply Voltage

7.0

T.I.Jc

GAINZ

TAo = ZS-C

~~:~

::;..-

~

TAo

'II
z

./

./

a

40

~

30

'"

V

~

20

'\

~

10

~

i

~4~~

Z

If

Vee-tlV

ii

.......
7.0
5.0
8.0
SUPPLY VOLTAGE - tV

8.0

ZSOC

Ycc=:!:8Y

Z

4.0

II:

50

1

./

1/ ~ . /

•

80

Vcc=t8V

50 100 aGO

500 1 K

V,Cj{3V
-10

5K 10K

1

LOAD RESISTANCE - 0

5

10
80 100
FREQUENCY - MHz

500 1000

""'' oaF
Input Noise Voltage vs
Source Resistance

Voltage Gain Adjust Circuit

Voltage Gain vs Rad)

100

1000

Vcc= tlV

oAINJ 111_

vcc·tev

~~==~~C"Hz-

u~

0

I
0

V

0,2,.,.F

-

~

10

o

1

TA = HOC

~

1

z

iii

"'"

~

i

100

\,

~
~

II:

I

i'...
10

5 10

50100

5001K

10 K

"""""

SOURCE RESISTANCE - (}

11-43

r""
10

100

1K
Rul-Q

10K

#J,A733

Typical Performance Curves (Cont.)
Input Impedance vs'
Temperature

Supply Current vs
Supply Voltage

Supply Current vs
Temperature

.

..

70

GAIN 2
Vee = t6V

28

v~=t~V

TA-

20

24

'/
./
/'
/'

/

./

1/

/'

V

o

-60

r--..

V
V

i'

V
V

... V

10

............

1/

12

-20

.

15

20
100
TEMPERATURE _ °C

,.-eo

140

-20

./

.

20
100
TEMPERATURE _ °C

140

Oscillator Frequency for Various Capacitor Values
107

r--.... ..........
~
1 leO

r--'
6200

c

pA733>

Lf/"

1

~

___ MEASURED

"""

CALCULATED/

I--T-I

~

ru

~

...
..........

1=1IT

I =

I I

.......
~

1

2(R1 • R2)CLn

[AIr --'!!.L -1]
A1 +R2

''''3.4 x 103c
'0;00

1K

10K

100K

1M

FREQUENCY - Hz

11-44

3

SUPPLY VOLTAGE - tV

Typical Applications

10S

/

8

"

10M

25~

JJ,A7392
DC Motor Speed
Control Circuit

I=AIRCHILD
A Schlumberger Company

Linear Division Special Functions

Description
The p.A7392 is designed for precision, closed loop, motor
speed control systems. It regulates the speed of capstan
drive motors in automotive and portable tape players and
is useful in a variety of industrial and military control applications, e.g., floppy disc drive systems and data cartridge
drive systems. The device is constructed using the
Fairchild Planar Epitaxial process.

Connection Diagram
14-Lead DIP
(Top View)
+MOTOR

STALL TIMER

DRIVE IN
-MOTOR

HlC

DRIVE IN

The p.A7392 compares actual motor speed to an externally
presettable reference voltage. The motor speed is determined by frequency to voltage conversion of the input signal provided by the tachometer generator. The result of
the comparison controls the duty cycle of the pulse width
modulated switching motor drive output stage to close the
system's negative feedback loop.

-TACH IN

OUT EMITTeR

GND

MOTOR DRIVE
OUT
CLAMPING DIDOE

+TACH IN

V+

PULSEnMING

Thermal and over voltage shutdown are included for selfprotection, and a stall-timer feature allows the motor to be
protected from burn out during extended mechanical jams.
•
•
•
•

Precision Performance
High Current Performance
Wide Range Tachometer Input
Thermal Shutdown, Over Voltage And Stall
Protection
• Internal Regulator
• Wide Supply Voltage Range 6.3 V To 16 V

REGULATOR
OUT

PULSE OUT

"",....
Order Information
Device Code
p.A7392DV
p.A7392PV

Package Code
6A
9A

Package Description
Ceramic DIP
Molded DIP

Absolute Maximum Ratings
Storage Temperature Range
Ceramic DIP
Molded DIP
Operating Temperature Range
Lead Temperature
Ceramic DIP (soldering, 60 s)
Molded DIP (soldering, 10 s)
Internal Power Dissipation 1 - 3
14L-Ceramic DIP
14L-Molded DIP
Supply Voltage (V+), V9,
Vl0, Vll

Regulator Output Current, 18
Voltage Applied to Lead 6
(Tachometer Pulse Timing)

-65·C to + 175·C
-65·C to + 150·C
-40·C to + 85·C
300·C
265·C
1.36 W
1.04 W
24 V
15 rnA
7.0 V

Voltage Applied Between Leads 3
and 5 (Tachometer Inputs)
Continuous Current through
Leads 11 and 12 Motor Drive
Output ON
Repetitive Surge Current through
Leads 11 and 12 (Motor Drive ON)
Repetitive Surge Current through
Leads 10 and 11 (Motor Drive OFF)

± 6.0 V

0.3 A
1.0 A
0.3 A

Notes
1. TJ Max = 150'C for the Molded DIP, and 17S'C for the Ceramic DIP.
2. Ratings apply to ambient temperature at 25'C. Above this temperature,
derate the 14L·Ceramic DiP at 9.1 mW/'C, the 14L·Molded DIP at
B.3 mWI"C.
3. Internally UmHed.

11-45

pA7392

Block Diagram
SUPPLY

r - - 1 r -....- -....- VOLTAGE
V+

1

SPEED
ADJUST

PULSE TIMING

TACHOMETER
INPUTS

~

PULSE

MOTOR
DRIVER
INPUTS

V+

OUTPUT

CLAMPING
DIODE

./LJLf

I

I

REGULATOR

OUTPUT

PROTECTIVE
CIRCUITS
VOLTAGE REGULATOR

SECTION

L---T--------------------------+
IL_______________ I

STALL TIMER

~

~
_________

~

EQ(J0540F

11-46

MA7392

IlA7392
Electrical Characteristics TA = 25·C, V+
Symbol

= 14.5

V, unless otherwise specified.

Characteristic

Unit

Condition

Voltage Regulator Section (Test Circuit 1)
Icc

Supply Current

VReg

Regulator Output Voltage

LlNEReg

Regulator Output Line
Regulation (~Va)

V+ = 10 V to 16 V
V+ = 6.3 V to 16 V

Regulator Output Load
Regulation (~Va)

la from 10 rnA to 0

40

mV

2.4

V

LOADReg

Excluding Current into Lead 11
4.5

7.5

10

rnA

5.0

5.5

V

6.0

20

mV

12

50

Frequency to Voltage Converter Section (Test Circuit 2)
VIN

Tachometer (-) Input Bias
Voltage

liN

Tachometer (+) Input Bias
Current

Vs=Va

VOIFF

Tachometer Input Positive
Threshold

(Vs-Va)

VHY

Tachometer Input Hysteresis

1.0

10

!1A

10

25

50

mVp. p

20

50

100

mVp•p

300

500

n

50

55

%Va

R

Pulse Timing ON Resistance

VTH

Pulse Timing Switch Threshold

tr

Output Pulse Rise Time

It

Output Pulse Fall Time

VSat.LOW

Pulse Output LOW Saturation
(V7)

0.13

0.25

V

VSat.HI

Pulse Output HIGH Saturation
(Va- V7)

0.12

0.2

V

ISource

Pulse Output HIGH Source
Current

V7 = 1.0 V

-260

-180

SVS

Frequency-to-Voltage Conversion
Supply Voltage Stabilityl

VFV = 0.25 Va2
V + = 10 V to 16 V

0.1

%

TS

Frequency-to-Voltage Conversion
Temperature Stabilitya

VFV = 0.25 Va2
TA = -40·C to + 85°C

0.3

%

V6 = 1.0 V
45

0.3

jl.S

0.1

-340

jI.S

!1A

Motor Drive Section
VIO

Input Offset Voltage

liS

Input Bias Current

CMR

Common Mode Range

0.1

VSAT

Motor Drive Output Saturation

111

ILEAK

Motor Drive Output Leakage

10

Flyback Diode Leakage

20

mV

10

!1A

2.5

V

2.0

V

V 11 = V1 0 = 16 V

5.0

V10 = 16 V, Vll = 0 V

30

!1A
!1A

0.8
= 300 rnA

11-47

1.3

J.LA7392

~7392 (Cont.)
Electrical Characteristics TA = 25°C, V+

Symbol

= 14.5

V, unless otherwise specified.

Characteristic

Condition

Flyback Diode Clamp Voltage

VD

Min

111 = 300 mA
Motor Drive Output OFF

Typ

Max

Unit

1.1

1.3

V

Protective Circuits
J-TOC

Thermal Shutdown
Junction Temperature4

Over Voltage

Overvoltage Shutdown4

18

VTH

Stall Timer Threshold Voltage 5

2.5

ITH

Stall Timer Threshold Current5

°C

160

V

24

21
2.9

3.5

V

0.3

3.0

JJ.A

Notes
1. Frequency·to·voltage conversion, supply voltage stabilny is defined as:
VFV(16 V) _ VFV(10 V)
V.(16 V)

+ VFV(14.5

V.(10 V)

V) x 100%

V.(14.5 V)

2. VFV is the integrated DC output voltage from the pulse generator
(Lelld 7)
3. Frequency-Io-voltage conversion temperature stability is defined as:
VFV(8S0C) _ VFv(-40·C)
V8(8S°C)

V8(-40°C)

+ VFv(2S·C) x 100%
V8(2S°C)

4. Motor Drive circuitry is disabled when these limits are exceeded. If the
condition continues for the duration set by the external stall timer
components, the circuit is latched off until reset by temporarily opening
the power suppty input tine.
S. If stall timer protection is not required, tead 14 should be grounded.

Typical Performance Curves
Overvoltage Shutdown Voltage vs
Junction Temperature

Stall Timer Threshold Voltage vs
Junction Temperature

Stall Timer Threshold Current vs
Junction Temperature
0.8

25

v. " 14.Jv

"---- r--

"" "'-

~
u

i

125

·c

150

-50

-25

25

50

j!:

i'-..
75

ffi

"

100

JUNCTION TEMPERATURE -

11-48

0.8

1\

0.5
0..

\

\.
r"....

a:

2.0

25
50
75 100
JUNCTION TEMPERATURE _

t 0.7

!Z...

"

V+I: 14. V

1.

125

+c

!!

0.2

.

0.1

......
~

150

0.3

0

-so

-25

""

25

"-

50

r- I-7S

100

JUNCTION TEMPERATURE _ °C

125

150

IlA7392

Typical Performance Curves (Cont.)

2

T,I= .Joe

SA

T.'= 2~oe

>

'0

"'"~
§!
....

I
I

I

I

I

11

/

o

12

16

SUPPLY VOLTAGE -

3

l'i

2

~

II

o

V

i

I

I

I

I

1

J

I

i

1

!
12

16

SUPPLY VOLTAGE -

V

1./

'"

V

V
V

u

"'4.7

I

!

.......

5.'

5
I!: 5.0
ila:: ••9
g

I

I

o

24

~

I

,
~

20

'"5.2

,

II

:l

I

,

I

4

it
5

!(

!

,

I

I

o

!

!

v+'= ".Iv

>5.3

15

i....-' I-""

o

Regulator Output Voltage vs
Junction Temperature

Regulator Output Voltage vs
Supply Voltage

Supply Current vs
Supply Voltage

20

24

U

-60

-25

V

25
50
75 100 125
JUNcnON TEMPERATURE - DC

150

PCD11370F

Flyback Diode Current (D3) vs
Flyback Diode Voltage

Tachometer Input Hysteresis vs
Junction Temperature
58

800

v;=,Jv

v+

1

--

....... ..,.

!ii

1

500

u 400

~

g300

I

~200
~

""'00

o

42

-60

-25

25
50
75 100
JUNCTION TEMPERATURE -

oe

125

150

o

/

FLYBACK DIODE VOLTAGE - V

>

"M
!i!j
1.42

§!

/

!:! '.36

ii:
Q

1.34

I!i

1.32

./

V

V

.,- V

V

1.30
-50

-25

25

50

75

100

/
/

125

/

/
/

/

Motor Drive Output ON Voltage vs
Ambient Temperature
'M

! 1. •
~ 1.3.
il

V+
TJ = TA = .DC

1 600

V

"...,...

/

=114.S J

J

=1 14•5
TJ = TA = 2SOC

700

./

Motor Drive Output ON Current vs
Motor Drive Output ON Voltage

150

11-49

/
/
MOTOR DRIVE OUTPUT ON VOLTAGE - V

tJA7392

Test Circuits
Test Circuit

Test Circuit 2
20 kO

TACH INPUT
VOLTAGES

14
13

100 0
14

12
10 kO

13

11

0.1 pE

12

100 0
10
TACH
INPUT
VOLTAGE
ADJUST

11

V=G.3V...
'NOM = 1000 Hz

L-____________DC

10

~~~

100 kO

REGULATOR VOLTAGE

+
-=-14.5 V

(INTEGRATED
FREQ-TO-VOLTAGE
CONVERTER
OUTPUT VOLTAGE)
PULSE

PULSE

x

t--------------<~-TIMING

OUTPUT--------~

VOLTAGE

00025 p,F

Typical Application Using MagnetiC Tachometer
33OkO

ch

RS
9.1 kO

SPEED
ADJUST
100 kCl

10kO
O.Ol"F

A-

I

2kO

1

141-

2

13

"hfll
*
1
3

4

"::"

r--- 5

RF
l00kO

,6
7

:r

F

Cp

H~
"::"
Rp
100 kCl

11

"::"

l°h
9

sf-

I

I
I
I
I
I

(:>

Typical comp onent values:

•

CP=4~PF
Cp'DCpto 1000 C de endin
system requirements

on

Cs:: 2 X stal~~me-out
AMotor 2:: 5

n

11-50

1

100 kO

10VT016V

5 "F

TACHOME TER
(I = NOMI NAL
TACHOME TER
FREQUEN CY)

VOLTAGE

FSP100
Programmable Digital Filter

FAIRCHILD
A Schlumberger Company

Preliminary

Advanced Signal Processing Division

Description

Connection Diagram
(Top View)

The Fairchild FSP100 is a device optimized for use in one
dimensional data stream processing. It efficiently implements both recursive and non-recursive filter structures. It
has, on-chip, all the functions necessary to perform most
common filter primitives in a Single instruction. The advanced architecture has separate data and instruction
paths to avoid input-output bottlenecks, and utilizes a high
performance crosspoint switch to efficiently route data between the processing elements. A transparent pipeline allows simultaneous instruction fetch, execution and data
input/output. The serial data path permits variable data
word lengths between 20 and 32-bits, which allows efficient single-chip implementations that have not been possible with previous single chip digital signal processors.

REsET
IDLE

The FSP100 uses an external byte-wide program memory
for maximum design flexibility without compromising performance. Multiprocessing is straightforward because the
FSP100 is directly cascadeable.

RESERVED

OPSO

FLAG

OPRQ

PA7

INRQ

PA6

INCK

PA5

INSD

PA'

INOR

PA3

HOLD

PA2

OPCK

Voo

GNO

PAl

ClK

PAO

OPOR

PB2

NOT USED

PBl

NOT USED

The FSP100 instruction set implements familiar digital signal processing primitives such as Pole-pairs, Zeros, Peak
Detectors and Oscillators.
The FSP100 comes with a comprehensive software support system, including an assembler and a simulator, which
runs under the UNIX', VMS" and MS-DOS operating systems. A hardware development system which allows real
time verification of applications software completes the
support package.

NXT

PBO

OVER

07

SIGN

06

DO

05

01

D.

02

03

Order Information
Device Code

Package Code

Package Description

FSP100DC
FSP100LC

Consult Factory
Consult Factory

40-Lead Ceramic DIP
44-Lead LCC

• Requires No External Synchronization Between
Input/Output Clocks and Processor Clocks
• Optional Data Input and Output Formats and Word
Lengths
• External Program Memory for Maximum Design
Flexibility
• On-Chip Data Memory for Storing State Variables
• Complete Software and Hardware Support Package
for Design Development
• Single-Phase 16 MHz Processor Clock Frequency
• Single-Phase 10 MHz Data Input and Output Clock
Frequency
• 40-Lead Ceramic DIP and 44-Lead LCC Packages
• TTL- and CMOS-Compatible Input/Outputs
• Fu" Performance Over -55°C to + 125°C Operating
Temperature Range
• 2-Micron CMOS Process

• Single-Chip Programmable Digital Filter
• Programmed in the Language of Filter Designers (in
Terms of Poles and Zeros)
• Programmable Internal Data Word Lengths Between
20 and 32-Bits
• Executes Complete Filter Functions in a Single
Instruction Cycle
• Triple Multiplier-Accumulator Provides 3 Million
Multiplies Per Second
• Sample Rates up to 200 KHz for Single-Chip
Applications
• Simply Cascade Processors with no Intermediate
Logic for Higher Sample Rates
• Separate Data and Instruction Paths On- and OffChip
• Separate Processor and Data Input/Output Clocks
for Ease of System Design

#< A trademark of AT&T
**A trademark of Digital Equipment Corporation

11-51

FSP100

Logic Symbol
PROGRAM
AODRESS

PROGRAM
DATA BUS

00·07

OATA
INPUT
PORT

INDR

OPDR

INRQ

OPRQ

FSP100

INCK

OPCK
OPSD

PROGRAM
CONTROL

IDLE
CONTROL

I

DATA
OUTPUT
PORT

PROCESSOR
CONTROL
+POWER/CLOCK

Architecture
General Description
The data path contains all of the components necessary
to execute a two·pole filter section with a single instruc·
tion:
• A triple multiplier·adder.
• An editing unit which modifies the result from the triple
multiplier to obtain saturation and other non·linear
effects.
• Scratch pad registers.
• An accumulator with extension bits and scaler.
• A sequential access memory with two data channels for
state variable storage.
• A crosspoint switch for passing data between the
blocks.
• An input and an output interface, which can synchronize
the chip with the input and/or output data rate.
The control path is
thus eliminating the
program sequencer
is also provided for
quencer, if desired.
path are:

totally independent of the data path,
need for pipeline flushing. A simple
is provided on·chip, but a clock output
use with an external program se·
The major elements of the control

• A program sequencer, providing branching and looping.
• An instruction decoder for configuring the crosspoint
switch.

Triple Multiplier-Adder
Most of the arithmetic unit consists of a triple multiplieradder. During each instruction cycle, it forms the sum of
products:
R = Xg • Gamma + Xa • Alpha + Xb • Beta
The X's are Signal data streams emerging from the crosspoint switch. Alpha, Beta and Gamma are coefficients. Alpha is in the range -2 to +2. Beta is in the range -1 to
+ 1. Gamma is normally a power of two scaling factor in
the range of -2 to +2, but it is possible to feed Signal
data to the Gamma coefficient input to effect the signalby-signal multiplications required for modulation, veo's and
time-varying filters.
Normally the multiplier rounds the final sum·of·products.
However, recursive filtering instructions may invoke random
switching between rounding and truncation in order to de·
feat limit cycles.
The triple multiplier includes a fast carry chain. This fast
carry chain provides an overflow and sign output in ad·
vance of the serial data output, in order to control the
saturation and non·linear function logic in the editing unit.
The triple multiplier uses Booth encoders operating directly
on the incoming data bit-pairs. These Booth encoders can
also perform non-linear functions. Signals from the control
section can cause the input data streams to be masked
to zero or inverted as they enter the arithmetic unit, to
provide half or full wave rectification or a sign·dependent
gain.

• A bus for distributing the instruction bytes for local
decoding.

11·52

FSP100

Figure 1 Block Diagram
INSTRUCTION BUS

-...

z ...

-

f~

:Zz

00
a:U
U

ADDRESS COUNTERS

DATA MEMORY

~
I-~
I--

-

H
~

0VA.N

SCRATCH REGISTERS

REGISTER FILE

r-IPSO

OPSD

---

ACCUMULATOR SCALER

RI

FAST CARRY CHAIN

r--

~ ::cU

,.--

~

EOITING UNIT

1

r--!!-

~

INSTRUCTION DECODER

i

-- ..
--

~ ...a:w
>

~ !

..
Q

'"z ~ z
~ ...
5
,.!!- '":I'"
..L '"'"
a:

..

TRIPLE MULTIPLIER
WITH ADDER

I-- 00-07

Q

U

t
INPUT INTERFACE

2.

OUTPUT INTERFACE

-!-

t

t

t

INSTRUCTION SEQUENCER

BYTE COUNTER

____ PO-P7

~FO-F2

"---

unit: one for the filter output, and the other for the new
state variable value_

Editing Unit
The primary function of the editing unit is to saturate the
result from the multiplier to prevent overflow osciiiations in
recursive filters_

Scratch Pad Registers
The scratch pad registers are a group of six variablelength registers_ Two registers serve as working stores;
each one is connected between a crosspoint switch output
and input The use of these registers is determined by the
FUNCTION code_

The saturation logic consists of a multiplexer which can
select between the multiplier output, + 1, -1 or 0_ A control PLA sets the switches according to the FUNCTION
code and the sign/overflow flags, to achieve either saturation or the more complex behavior required for the other
non-linear operators_

A dual-port connects another crosspoint switch output and
input four-word register file_ This register file is directly addressable by an instruction field_ It can be used to store
intermediate results for more complex filter topologies.

Another function of the editing unit is to provide some
commonly used, computationally simple filter zeros_ This
function allows execution of some biquadratic sections in a
single instruction cycle_ When this function is used, the
output of the filter is different than the new value of the
state variable (which needs to be stored in the data memory)_ There are, therefore, two outputs from the editing

Accumulator
An accumulator is also connected to an output from the
crosspoint switch. It is used primarily for implementing FIR
and parallel IIR summing nodes. It has six extension bits

11-53

FSP100

which permit accumulation of up to 64 values without the
risk of overflow. The accumulator output is connected to a
crosspoint switch input via a power-of-four scaling circuit,
the scaling factor being determined by the SETUP instruction.
Data Memory
The data memory is organized as a 64-column, 32-row array of 2-port, 3-transistor RAM cells. It functions logically
as an adjustable length shift register, with two data channels each two bits wide. The length of the "shift register"
is set up during initialization.

The rows are written sequentially. Each row receives 16
bits from each of four input bit streams (two data channels) for an effective register length of a multiple of 32
bits per channel. Adjustable length shift registers on the
input increase the length resolution to four bits per channel.
The serial access memory restricts operation to algorithms
in which the data flows in an ordered stream, such as
filters and correlators. However, this memory organization
can efficiently store data of arbitrary word length. Also, the
instruction word does not require a memory address field.
Input and Output
The input! output data is single bit wide serial with four
possible arithmetic formats. It may be either most- or
least-significant bit first. The input and output word lengths
are independent both of each other and of the internal
word length.

Associated with both the input and output port are two
handshake lines; one indicates that the external device is
ready, the other that the FSP100 is ready. The FSP100
can suppress its ready signal until the external device is
ready, thus enabling the processor to directly control the
transfer.
The input and output ports each have their own clock.
These clocks may be asynchronous with respect to each
other and with respect to the processor clock. The interface logic is deSigned to have an arbitrarily low error rate
without reducing the interface throughput.
While the processor is waiting for an external device to
become ready, the I/O interface stops the execution of
the program. Execution resumes upon completion of the
I/O transfer. The processor thus synchronizes itself to the
sample rate of the rest of the system.

data transfers for one instruction cycle to take place simultaneously, with no contention, at effective data rates up
to 240M bits per second.
The crosspoint switch is double-buffered, so that it may be
set up for the next instruction during the execution of the
current instruction. The connection pattern determines the
signal processing algorithm.
Program Sequencer
The program sequencer is built around an eight bit instruction counter and a three-bit byte counter. The byte counter
addresses the eight bytes of one instruction. To avoid the
need for a branch address field in the program counter,
the branch address is loaded with the SETUP instruction
into the label register. The program sequencer also contains a loop counter and loop control logic. The branch
logic can perform unconditional branches and conditional
branches depending on the state of the "Flag" pin.
Instruction Decoder
Instruction decoding is performed by two PLA's operating
on the function code. One PLA generates the crosspoint
switch configuration; the other controls the non-linear functions in the editing unit. The remainder of the instruction
word is decoded locally by the small control sections associated with each data path component.
Pipelining
The FSP100 incorporates instruction-level pipelining to
eliminate time lost in many processors fetching the next
instruction from memory and storing the results of the previous instruction back into memory.

The following Table 1 depicts this action. Time slot T3 is
typical. The result of instruction N is stored in memory.
Instruction N + 1 is executed within the FSP100 and the
64 bits of the instruction N + 2 are fetched from the external memory. During the time slot T4 the progress of each
instruction advances. Instruction N + 1's results are stored
back in memory. Instruction N + 2 is executed within the
FSP100 and instruction N + 3 is fetched from external
memory.
Pipelining continues in this fashion without conflict since
the time to either fetch an instruction or store a result is
always less than or equal to the time required by the
FSP100 to execute an instruction.

Crosspoint Switch
The crosspoint switch replaces the data busses of more
conventional architectures. It enables all the necessary

11-54

FSP100

Signal Processing Functions

Table 1 Pipelining

The following list presents the functions selectable by the
FUNCTION code. Those functions that require more than
one instruction cycle are implemented as two separate instructions. The software support package allows these
multiple instruction sequences to be coded as a single instruction. The list does not include functions for testing,
initialization and control, because the user does not usually
code these functions directly.

TIME PERIODS

INST. N

T1

T2

T3

FETCH

EXECUTE

STORE

FETCH

EXECUTE

STORE

FETCH

EXECUTE

STORE

FETCH

EXECUTE

INST. N+1
INST. N+2

T4

INST. N+3

Name

T5

T6

STORE

Number of Instructions

Function

Filter Poles:
POLES
CPOLES
APOLES
RPOLE
RPOLES

1
2
2
1

2

Direct form pole-pair
State-space pole-pair
Adaptive pole-pair
Real pole with well-defined gain
Two independent real poles with well-defined gain

Filter Zeros:
ZERO
ZEROS
NOTCH
FIR

Real zero with well-defined gain
Direct form zero pair
Adaptive notch
Two taps of an FIR

Combined Poles and Zeros:
POLEP
POLEN
POLEZERO
BIO
BIOR
BIOU
BlOT
BIOPP
BIOPN
BIONN
LAD DR

1
1

1
2
2
2
3
1
1

2

Real pole with well-defined gain; zero at Z = + 1
Real pole with well-defined gain; zero at Z = -1
Real pole and zero
Direct form second order section
Second order section for parallel forms
Second order section with zeros in unit circle
Transposed form second order section
Direct form second order section, zeros at Z = + 1
Direct form second order section, zeros at Z = ± 1
Direct form second order section, zeros at Z = -1
Ladder form filter section

Miscellaneous Linear Functions:
GAIN
SUM
INTEGS

Gain and offset
Weighted sum of two signals
Resettable integrator

Signal Generators:
RAMP
EXPVCO
SINEGEN
RANDY
PULSE
PULSERT

Ramp/sawtooth generator
Exponential ramplVCO
Sinewave oscillator
Pseudo random noise
Pulse generator
Retriggerable pulse generator

11-55

•

FSP100

Name

Number of Instructions

Function

Point Non-Linearities:
BREAKPT
SDGAIN
SDOFF
SDLEVEL
SDSRC
CCLIP
SUBIZ
SUBIT
LIMIT
MAXVAL
MINVAL
RESTORE

Breakpoint (for piecewise linear functions)
Sign dependent gain
Sign dependent offset
Sign dependent level
Sign dependent source
Center clipping
Substitute zero inside window
Substitute data inside window
Limiting function (like saturation)
Maximum of two signals
Minimum of two signals
Restore sign removed by absolute value

Non-Linearities with State:
SAMPLE
PEAKHOLD
LEVELDET
ZCROSS

Sample and hold
Tracks and holds peaks
Comparator with hysteresis
Zero crossing detector

Housekeeping:
GETMEM
PUTMEM
LOADB
LOADC
LOADBC

Recover state variables
Save value to memory
Load B register
Load C register
Load Band C register

Notes
Instruction names are preliminary.

"Well-defined" means that the gain coefficient is not restricted to a power of 2.

Table 2 Instruction Format

Table 2.1

......-- bytes 0 .• 3 - . . . . . - - . bytes 4 .. 7 - - .
FUNC + microcode fields

II

Multiplier coeftts

SETUP + microcode fields

II

Setup parameters

INIT

~

Default Microcode Format - All Function Codes Except INIT

- - - - - - - - - - - - - bytes 0 ...3 - - - - - - - - - - - - -..

2+2

I

defines fixed operating MODE parameters

""co"'"

4+1 -

Y-output/Pi-load

Temp file r/w addresses
Temp register source select
Accumulator control
Source nonlinearity
Source data for FUNC to operate on
Sequence control - Next, Jump, Loop, Flag
Instruction function code - e9 POLES or PEAK DETECT

11-56

It of bits used

I
Gamma coelnt

FSP100

Table 2.2 Coefficient Format (all Function
Codes Except INIT And SETUP)

Table 2.3 SETUP Parameter Format (only Applies For
SETUP Function Code)
_ - - - - - - - b y t•• 4 ...7 - - - - - - -_

_ - - -_ _ byt•• 4 ...7 _ _ _ _ _•

~

...
I,L_A_B_E_L.....I....,N,-L_O_O_p-.JI.,.R_E_S--.JII....rA_S_C_A_L...t..,P_R_U_P_D_A_T_E...JI

I

I

8+4

16

16 -

I
Range -1 .•. <+1

I

I

Range -2 ...<+2

I

I

1

3

8 -

I

I

l,ogram update addr••• byte

# of bits used

# of bits used

Accumulator output scaling
Reserved for future use

'nltlal value for loop counter
Jump address for branch instructions

Table 2.4

Special INIT Instruction Format

- - - - - - - - - - - - - - - - b y t•• O...3 - - - - - - - - - - - - - - _ . -

~
6

2

j

1

4 -

#ofbUsused

I

!nput upsampling

Passive (active) mode
Data direction
Dither duty cycle

1

Operating wordlenglh
Memory cycle force
Immediate/delayed mode
Reserved for future use
Memory length parameter
NEXT sequence code
INIT function code

- - - - - - - - - - - - - - - - - - - - - b y t e s 4 ... 7 - - - - - - - - - - - - - - - - - - - -__

4

I

4

8

4

1

I

I

1 -

• of bits used

IInvert Magnitude Bits

Invert Sign Bit
Invert Magnitude Bits

I

Invert Sign Bit
Reserved for future use

Output subsampling factor

Reserved for future use
Passive (active) mode
Data direction
Input injection position
Y output wordlength
X input wordlength

Noles
The XFORMAT field operates on the incoming data stream AFTER it has
entered the PDF and it has been subject to the XMODE data direction
field. Thus, it regards the Most Significant bit of incoming data as the sign
bit and the remaining bits as the magnitude bits.

The YFORMAT field operates on the outgoing data stream while it is still
in the internal two's complement format. Thus, it regards the Most
Significant bit of internal data as the sign bit and the remaining bits as the
magnitude bits. The data is still subject to bit reversing as specified in the
YMODE data direction field.

11-57

FSP100

Signal Descriptions
Name

110

VCC
GND
INCK
INDR
INRQ
INSD
OPCK
OPDR
OPRQ
OPSD
RESET
HOLD
IDLE
ClK
OVER
SIGN
NXT
FLAG
PAO-?
PBO-2
DO-?

I
I
I
I

0
I
I
I

0
0
I
I

0

H/L

H
H
H
H
H
H
H
H
l
H
H

I

0
0
0
I

0
0
I

H
H
H
H
H
H
H

Description
Power
Power
Input clock
Input device ready
Input request
Input serial data
Output clock
Output device ready
Output request
Output serial data
Reset
Force processor wait
Indicates forced processor wait
Processor clock
Overflow
Sign
External sequencer clock
Flag (branch control)
Program word address (tri-state)
Program byte address (tri-state)
Program byte input

Program Memory Operation
The FSPi00 is designed to operate with an external program memory with no impact on the data throughput. To
achieve this, a separate instruction bus is utilized with
dedicated address and data lines. Internally, a 64-bit instruction word is used, but it is time-multiplexed into eight
bytes.
The ii-bit program address bus can address a total of
256 instructions with the least significant three bits addressing both the eight bytes of the current instruction and
the eight most significant bits of the program counter. This
configuration means that, when using a byte-wide memory,
no additional external interface logic is required.
Figure 2 illustrates the typical configuration of an FSPi00
and its program memory, in this case a 1 K x 8-bit PROM.
A timing diagram follOWS.

Data Input/Output Operation
The FSPi00 has a dedicated data input-output port that
allows maximum utilization of the processor while requiring
a minimum of external logic. To achieve this, dedicated
input and output channels are available that can be asynchronous from the CPU and each other in a variety of
configurations, according to external requirements. Further,
to simplify multiprocessor systems, the ports are configured
such that processors can be directly tied output to input
with no additional logic.

The operation of the two ports is largely
the exception of the data pin itself. Both
one bit wide, and come with a variety of
pendently configure each channel. These
follows:

the same with
ports are serial,
options to indeoptions are as

Clock Frequency: This determines the rate at which the
bits are serially clocked into and out of the data pins. It is
individually selectable for each channel and need not be
synchronous with the CPU clock.
Data Word Length: The input-output ports can operate
with any data word length from 8 up to 32 bits in increments of 2 bits. Further, this word length does not have
to be the same as that used internally; the FSPi00 automatically adjusts for the value selected.
Data Format: This indicates the arithmetic format of the
external serial data stream. The options for the incoming
arithmetic format are two's complement, inverted two's
complement, offset binary and inverted offset binary. The
FSP100 will automatically convert between the format
specified and its' own internal two's complement format.
Data Direction: This determines the direction in which the
bits are passed into and out of the data pins. The data
can be either least- or most- significant-bit first. The
FSP100 automatically adjusts for this choice internally.

11-58

FSP100

Figure 2

FSP100 With External Program Memory

Yoo

F93451
A3-As

PAOPA6

Ao-A2 01-08

PA7

PBOPB2

POOP07

FSP-100

Program Memory Timing Diagram (20-Bit Operation)
I,

10

CPU CLOCK

I

PROGRAM BYTE

fpc:.~~;:~ LINES

_ _P_R_O_G_RA_M_BYT_E_7-+1_.II"_ _ _ _B_YT_E_0_-+_JX,-_ _B_Y_TE_l_ __

---l

PROGRAM

fp,!~~;;:' LINES
PROGRAM MEMORY

g~i:~~NES

PC n

.JX

I

--I

Ipc -

PC (n+l)
I'A -

____

(00-07)

:::j

ISETUP

I--

~,.---:"---:R~O"'D-O---C
l---- 'MA =:::.j

I R007

NOTE: tMA =65 ns @ 16 MHz (Typical)
t PC = 25 ns Typical @ 30pF Loading

Handshake Mode: This determines whether the FSP100
behaves as a master or slave during the input and output
handshake operation. The two modes are called "ACTIVE" and "PASSIVE" mode. In active mode, the FSP100
determines when the transfer begins. In passive mode, the
FSP100 waits until the device ready line goes high before
beginning a transfer.
Figure 3 shows a typical data path configuration for a cascaded pair of FSP100s being driven by a standard A-D
input and D-A output. Input and Output timing diagrams
follow.

11-59

FSP100

Figure 3 Dual Processor Configuration with Analog Input and Output

ANALOG TO
DIGITAL
SUBSYSTEM

STATUS

PASSIVE

-

*

[

Voo

*

PASSIVE

*

ACTIVE

OPDR

INRQ

OPDR

INDR FSP100 OPRQ
OPSD
INSD

INDR

FSP100 0PRQ
OPSD

OPCK

INCK

INRQ

SERIAL DATA

ACTIVE

INCK

INSD

I

CLK

*
ENABLE

OPCK

DIGITAL TO
ANALOG
SUBSYSTEM

SERIAL DATA

~

* HAND SHAKE MODE
Data Input Timing/Handshake Timing ("n" Bit Data)
ACTIVE/FSP100 READY
INCK

INRQ

_-+-,i/
-0 L

\1...._ _ _ __

IROAR

INDR

INSD

---ii,

DON'T CARE OCr--BI-T-O-"'X

,----------------r

-------------------~\
!

X'-_ _-I

BtT 1

:BIT(n-l)

X~__~B~IT~n~_JX~__~D~O~N_'T_C~A_R~E~___

--If--t,OL
ACTIVE/NOT READY AND PASSIVE/NOT READY
INCK

tNRQ

tNDR

__-,I

INSD

_ _ ___iX~_ _ _ _ _ _ _ _
BI_T_O_ _ _ _ _ _ ___iX

,,------------------------------------BIT 1

--------------"'\

\

!

8 ___

B
__'__
T_n___E ' T CARE

PASSIVE/READY
INCK

~

INRQ

\~--

INDR

INSD

,--------

I
________
D_O_N_'T_C_A_R_E_ _ _ _ _-'X

BIT 0

X

BIT 1

----------~-------~\ !
: BIT (n-l)

X~_B_I_T_n_ _ _ _ __
WFOO57QF

11-60

FSP100

Data Output Timing ("n" Bit Data)
ACTIVE/FSP100 READY
OPCK

OPRQ

,-----

~
I
- - - - I !--tROAR

I\---------------------~

OPDR - - - - - - - ' /

-+'IX

OPSD _ _ _ _ _ _ _B_I_T_O_ _ _ _

BIT t

--l ~IOSD

X

x:

BIT 2

,~-------------\

BI~

BIT n

Xr-UN-D-E-F-IN-E-D

ACTIVE/NOT READY AND PASSIVE/NOT READY
OPCK

--l

!--tROANR
OPRQ ____________________________~I

OPDR

-.I

f

_~(---~,~_ _

,---------------------------------

,,

--------------~

J

OPSD ____U_N_D_E_F_IN_E_D_ _

-'X~_________B_IT__O____________~x:: BI~~___BI_T_n___~D

PASSIVE/READY
OPCK

OPRQ ________________________- - J

J

(~(---~',-_ _

I
OPSD

,

--------------~

OPOR ___________________________________~I

)

::::==J(~________________B_IT_O_________________...x::BI~----B-I-T-n-----------

PFD Reset Operation
CPU CLOCK
(ClK)

RESET

PROGRAM COUNTER
(PAO-PA7)

TRI-STATE

BYTE COUNTER
(PBO-PB2)

TRI-STATE

PROGRAM DATA
(00-07)

DON'T CARE

ADDRESS

DON'T CARE

DON'T CARE

NEXT

1 - - - - - - TAESET-------!
NOTE: TRESET must be the greater time period of 25 CPU clock cycles of three (3) Input Data Clock cycles.

11-61

•

FSP100

Absolute Maximum Ratings 1
Symbol

Characteristic

VDD

Supply Voltage

VI

Input Voltage

II

dc Input Current

TSTG

Storage Temperature
Ceramic Package
Plastic Package

TA

TL

Range

Unit

-0.5 to +6.0

V

-0.5 to VDD +0.5

V

±20

mA
°C

-65 to + 150
-40 to +125

Ambient Temperature
Under Bias2
Commercial/Industrial

°C
-40 to +70

Lead Temperature (Soldering, 10 s)

300

°C

Electrical Characteristics Voo = 5.0 V ± 0.25 V, 0 to 70 0 e
Symbol

Characteristic

Conditions

Min

Max

Unit

VIH

Input HIGH Voltage CMOS Input
TTL Input

Guaranteed Input HIGH Voltage

3.5
2.0

VDD
VDD

V

VIL

Input LOW Voltage CMOS Input
TTL Input

Guaranteed Input LOW Voltage

-0.5
-0.5

1.5
0.8

V
V

VOH

Output HIGH Voltage

70°C, VDD

V

VDD

-0.05

V

VOL

Output LOW Voltage

70°C,

V

liN

Input Leakage Current

VIN

loz

Three-State Output Leakage
Current

= 4.5
VDD = 4.5

= VDD or GND
VOUT = VDD or GND

0.1

V

-10

10

p.A

-10

10

p.A

CIN

Input Capacitance

Excluding Package

5.0

pF

COUT

Output Capacitance

Excluding Package

5.0

pF

Notes
1. Stresses greater than those listed under Absolute Maximum Ranges may
cause permanent damage to the device. This is a stress rating only;
operation of the device at any condition above those indicated in the

operational sections of these specifications is not implied. Exposure to
absolute maximum rating conditions for extended periods may affect
device reliability.
2. Junction temperature may not exceed ambient temperature by more than
20·C.

11-62

F2224· F2212
2400/1200/600/300 bps
Full Duplex Modem

FAIRCHILO
A Schlumberger Company

Advance Information, June 1986

Advanced Signal Processing Division

Description

Connection Diagram
28-Lead DIP
(Top View)

The F2224 and F2212 are single-chip full-duplex modem
circuits, operating at 2400 (F2224 only), 1200, 600 and
0-300 bps. The F2224 is compatible with the CCITI V.22
bis modem specification, and both chips are compatible
with V.22B, Bell 212A, Bell 103, V.21, V.23 and Bell 202.
The ICs perform all signal processing functions, and feature both a parallel microprocessor interface with integral
UART and an alternate four line serial control and separate data interface.

Voo

Vss

GND
NC
XTL1

The F2212, under control of a host processor or dedicated microcontroller, provides a complete low-cost solution
to data transmission at speeds up to 1200 bps and is pin
for pin and functionally compatible with the F2224, which
provides an upgrade path to 2400 bps operation, with minimal changes to existing firmware. Handshaking protocols
are included on-chip, which will reduce control-processor
firmware requirements.

XTL2
BCLK
RXIN
TX01
TX02
IN1
IN2

An on-chip hybrid simplifies connection to the telephone
network and uncommitted I/O lines are provided for DAA
control and RS232 implementation if required. DTMF dialing and call progress tone detection are included.

oun
OUT2

• V_22 bis (F2224 Only), V.22B, 212A, 103, V.21, V.23
And Bell 202 Compatible
• V.23 And 202 Modes Have Selectable 75 Or 150 bps
Backward Channels
• Performs All Signal Processing Functions
• Parallel J.l.P Interface With Integral UART
• Alternate Serial Control And Data Interface
• Register Control Of Modem And UART Operation
• DTMF Tone Generation And Call Progress Tone
Detection For Smart Dialer Applications
• 1300 Hz Calling Tone Generator On Chip
• On-Chip Hybrid And Programmable 1/0 For DAA
Control And RS232 Implementation
• Very Few External Components Required
• Low Power Dissipation And A Very Low Power
Standby Mode
• 28-Lead Ceramic DIP, Plastic DIP And Surface Mount
Packages

Order Information
Device Code
F2224DC
F2224PC
F2224QC
F2212DC
F2212PC
F2212QC

11-63

Package Code

Package Description

FM

Ceramic DIP
Molded DIP
Molded Surface Mount
Ceramic DIP
Molded DIP
Molded Surface Mount

FM

•

F=AIRCHILO
A Schlumberger Company

F30S54/F30S57
Monolithic Serial Interface
CMOS CODEC/FILTER

Preliminary

Advanced Signal Processing Division

Description
The F30S54, F30S57 family consists of Jl-Iaw and A-law
monolithic PCM CODEC/FILTERS utilizing the AID and
0/ A conversion architecture shown in Figure 1, and a serial PCM interface. The F30S54, F30S57 operate in the
synchronous mode only and are pin compatible with the
F3054 and F3057 respectively. The devices are fabricated
using Fairchild's advanced Double Poly Silicon-Gate CMOS
process.

Connection Diagram
(Top View)

The transmit portion of each device consists of an input
gain adjust amplifier, an active RC pre-filter, a switchedcapacitor band-pass filter, and a compressing encoder with
auto-zero circuitry. The active RC pre-filter eliminates very
high frequency noise, and the switched-capacitor filter rejects signals below 200 Hz and above 3400 Hz. The compressing encoder samples the filtered signal and encodes
it in the compressed Jl-Iaw and A-law PCM format. The
receive portion of each device consists of an expanding
decoder, which reconstructs the analog signal from the
compressed Jl-Iaw or A-law code, a low-pass filter which
corrects for the sin x/x response of the decoder output
and rejects signals above 3400 Hz and is followed by a
single-ended power amplifier capable of driving low impedance loads. The devices require a 1.536 MHz, 1.544 MHz
or 2.048 MHz master clock and an 8 kHz frame sync
pulse. The timing of the frame sync pulses and PCM data
is compatible with both industry· standard formats.

16

v••

VFxt+

GND

VFxl-

VFRO

GS.

vee

TSx

NC

FS

DR

Ox

CLKSEL

NC

PDN

Order Information
Device Code
Package Code
F30S54DC
FW
F30S57DC
FW

• Pin Compatible with F3054, F3057
• Complete Codec and Filtering System Including:
• Transmit High-Pass and Low-Pass Filtering
• Receive Low-Pass Filter with Sin X/X Correction
• Active RC Noise Filters
• Jl-Law or A-Law Compatible Coder and Decoder
• Internal Precision Voltage Reference
• Serial 110 Interface
• Internal Auto-Zero Circuitry
• Jl-Law, 16 Pin - F30S54
• A-Law, 16 Pin - F30S57
• Meets or Exceeds all D3/D4 and CCITT
Specifications
• ± 5 V Operation
• Low Operating Power-Typically 40 mW
• Power-Down Standby Mode - Typically 1.7 mW
• Automatic Power-Down
• TTL or CMOS Compatible Digital Interfaces
• Maximizes Line Interlace Card Circuit Density

11-64

MCLK

Package Description
Ceramic DIP
Ceramic DIP

F30S54/F30S57

Figure 1 Block Diagram
R,
GSx
------------------------------------------------------ -----~
I
I
I

I
I
I
I

I
I
I
I

I
I
I

I

ANAL~ _-'V'VI/1F..x_' ....-..!.-f

RC

ACllVE
FILlER

I
I
I
I
I

SWITCHED
CAPACITOR
BAND-PASS

FILlER

I

I
I

I

AID

VOLTAGE
REFERENCE

XMT
REGISTER

CONTROL
LOGIC

Dx

COMPARATOR
POWER
AMPLIFIER

VFRO

SWITCHED

-----,c-<

ReV

CAPACITOR
LOW-PASS

REGISTER

RLlER

llMNG AND CONTROL
+5V

-SV

Vee

Va.

GND

MCLK

11-65

PDN

CLKSEL

FS

DR

F30S54/F30S57

Pin Description
Pin No.

Function

Name

1
2
3
4
5
6
7

VBB
GND
VFRO
Vee
N.C.
DR
CLKSEL

8
9
10
11
12

PDN
MCLK
N.C.
Dx
FS

13
14
15
16

TSx
GSx
VFxl VFxl +

Negative power supply pin. VB B = -5.0 V ± 5%.
Ground. All Signals are referenced to this pin.
Analog output of the receive filter.
Positive power supply pin. Vee = + 5.0 V ± 5%.
No internal connection.
Receive data input. PCM data is shifted into DR following the FS leading edge.
Logic input which selects either 1.536 MHz/1.544 MHz or 2.048 MHz for master clock.
MCLK is used for both transmit and receive directions (see Table 1).
Power Down. The device is powered up when PDN is held low.
Master clock. Must be 1.536 MHz, 1.544 MHz or 2.048 MHz.
No internal connection.
The 3-state PCM data output which is enabled by FS.
Frame sync pulse input which enables MCLK to shift out the PCM data on Dx.
FS is an 8 kHz pulse train; see Figures 2 and 3 for timing details.
Open drain output which pulses low during the encoder time slot.
Analog output of the transmit input amplifier. Used to externally set gain.
Inverting input of the transmit input amplifier.
Non-inverting input of the transmit input amplifier.

Functional Description
Power-Up
When power is first applied, power-on reset circuitry initializes the device and places it into the power-down mode.
All non-essential circuits are deactivated and the Dx and
VFRO outputs are put in high impedance states. To power-up the device, a logical low level must be applied to
the PDN pin and FS pulses must be present. Thus, two
power-down control modes are available. The first is to
pull the PDN pin high; the second is to hold the FS input
continuously low - the device will power-down approximately 2 ms after the last FS pulse. Power-up will occur
on the first FS pulse. The 3-state PCM data output, Dx,
will remain in the high impedance state until the second
FS pulse.

Synchronous Operation
Synchronous operation requires only one masterclock for
both the transmit and receive directions. Table 1 indicates
the frequencies which can be selected, depending on the
state of CLKSEL. For 1.544 MHz operation, the device automatically compensates for the 193rd clock pulse each
frame.
Table 1 Selection of Master Clock Frequencies
Master Clock
Frequency Selected
CLKSEL

11-66

F30S57

F30S54

o

1.536 MHz or
1.544 MHz

2.048 MHz

1 (or Open
Circuit)

2.048 MHz

1.536 MHz or
1.544 MHz

F30S54/F30S57

Functional Description (Cont.)

gains in excess of 20 dB across the audio passband to
be realized. The op amp drives a unity-gain filter consisting of an RC active pre-filter, followed by an eighth order
switched-capacitor bandpass filter clocked at 128 kHz. The
output of this filter directly drives the encoder sample-andhold circuit. The A/D is of compressing type according to
!.I-law (F30S54) or A-law (F30S57) coding conventions. A
precision voltage reference is trimmed in manufacturing to
provide an input overload level (tMAX) of nominally 2.5 V
peak (see table of Transmission Characteristics). The FS
frame sync pulse controls the sampling of the filter output,
and then the successive-approximation encoding cycle begins after the decode cycle. The 8-bit code is then loaded
into a buffer and shifted out through Dx at the next FS
pulse. The total encoding delay will be approximately
165 !.Is (due to the transmit filter) plus 125 !.IS (due to
encoding delay), which total 290 !.Is. Any offset voltage
due to the filters or comparator is cancelled by sign bit
integration.

Short Frame Sync Operation
The device can utilize either a short frame sync pulse or
a long frame sync pulse. Upon power initialization, the device assumes a short frame mode. In this mode, the
frame sync pulse, FS, must be one MCLK period long,
with timing relationships specified in Figure 2. With FS
high during a falling edge of MCLK, the next rising edge
of MCLK enables the Dx 3-state output buffer, which will
output the sign bit. The following seven rising edges clock
out the remaining seven bits, and the next falling edge
disables the Dx output. The corresponding eight falling
edges of the same clock pulses will clock in the receive
data.
Long Frame Sync Operation
To use the long frame sync mode, the frame sync pulse,
FS, must be three or more MCLK periods long, with timing
relationships specified in Figure 3. Based on the sync, FS,
the device will sense whether short or long frame sync
pulses are being used. The Dx 3-state output buffer is
enabled with the rising edge of FS or the rising edge of
MCLK, whichever comes later, and the first bit clocked out
is the sign bit. The following seven MCLK rising edges
clock out the remaining seven bits. The Dx output is disabled by the eighth falling edge of MCLK, or by FS going
low, whichever comes later. Provided the frame sync FS is
greater than three MCLK periods, the Dx output will be
enabled for eight MCLK periods, independent of the actual
length of the FS pulse.

Receive Section
The receive section consists of an expanding DAC which
drives a fifth order switched-capacitor low pass filter
clocked at 128 kHz. The decoder is A-law (F30S57) or
•
!.I-law (F30S54) and the 5th order low pass filter corrects
for the sin x/x attenuation due to the 8 kHz sample/hold.
The filter is then followed by a power amplifier capable of
driving a 600 n load to a level of 7.2 dBm. The receive
section is· unity gain. Upon the occurrence of FS the data
at the DR input is clocked in on the falling edge of the
next eight MCLK periods. At the end of the time slot, the
decoding cycle begins, and 10 !.IS later the decoder DAC
output is updated. The total decoder delay is approximately 10 !.IS (decoder update) plus 110 !.IS (filter delay) plus
62.5 !.IS (Y2 frame), which gives approximately 180 !.Is).

Transmit Section
The transmit section input is an operational amplifier with
provision for gain adjustment using two external resistors,
see Figure 1. The low noise and wide bandwidth allow

11-67

F30S54/F30S57

Absolute Maximum Ratings
Vee to GND
VSS to GND
Voltage at any Analog Input
or Output

Voltage at any Digital Input
or Output

7.0 V
-7.0 V

Operating Temperature Range
Storage Temperature Range
Lead Temperature
(Soldering, 10 seconds)

Vee + 0.3 V to
Vss-0.3 V

Vee+0.3 V to
GND-0.3 V
-25°C to + 125°C
-65°C to + 150°C
300°C

Electrical Characteristics Unless otherwise noted: Vee = 5.0 V ± 5%, Vaa - 5.0 V ± 5%, GND = 0 V, TA = O°C
to 70°C; typical characteristics specified at Vee = 5.0 V, Vaa = -5.0 V, TA = 25°C; all
signals are referenced to GND.
Symbol

Characteristic

Condition

Unit

Operating Current
leeO

Power-Down Current

0.3

1.5

rnA

IssO

Power-Down Current

0.03

0.3

rnA

lee1

Active Current

4.0

7.0

rnA

Iss1

Active Current

4.0

7.0

rnA

0.6

V

0.4
0.4

V
V

10

p.A

Digital Interface
VIL

Input Low Voltage

VIH

Input High Voltage

VOL

Output Low Voltage

VOH

Output High Voltage

Dx, IH = -3.2 rnA

IlL

Input Low Current

GND .;;; VIN .;;; VIL, All Digital Inputs

-10

IIH

Input High Current

VIH .;;; VIN .;;; Vee

-10

10

p.A

102

Output Current in High
Impedance State

Dx, GND';;;Vo';;;Vee

-10

10

iJ.A

200

2.2

V

*IL=3.2 rnA
T x, IL = 3.2 rnA, Open Drain
2.4

V

Analog Interface With Transmit Amplifier Input
IIXA

Input Leakage Current

-2.5 V';;;V';;; +2.5 V, VFxl + or VFxl-

-200

RIXA

Input Resistance

-2.5 V';;; V';;; +2.5 V, VFxl + or VFxl-

10

RoXA

Output Resistance

Closed Loop, Unit Gain

RLXA

Load Resistance

GSx

CLXA

Load Capacitance

GSx

VoXA

Output Dynamic Range

GSx, RL ;;;>10 kn

±2.8

V

AvXA

Voltage Gain

VFxl + to GS x

5000

VIV

1.0

3.0

10

n
kn

50

1.0

nA
Mn

pF

FuXA

Unity Gain Bandwidth

VosXA

Offset Voltage

-20

20

VeMXA

Common-Mode Voltage

-2.5

2.5

CMRRXA

Common-Mode Rejection Ratio

60

dB

PSRRXA

Power Supply Rejection Ratio

60

dB

Analog Interface With Receive Amplifier Output
RoRF

Output Resistance

Pin VFRO

RLRF

Load Resistance

VFRO = ± 2.5 V

11-68

2.0

MHz
mV
V

F30S54/F30S57

Electrical Characteristics (Cont.) Unless otherwise noted: Vee = 5.0 V ± 5%, Vss - 5.0 V ± 5%, GND = 0 V,
TA = O°C to 70°C; typical characteristics specified at Vee = 5.0 V, Vss = -5.0 V,
TA = 25°C; all signals are referenced to GND.
Symbol

Characteristic

Condition

CLRF

Load Capacitance

VFRO to GND

VOSRO

Output DC Offset Voltage

VFRO to GND

Min

Typ

-200

Max

Unit

25

pF

200

mV

Timing Specifications

-

1/tpM

Frequency of Master Clock

tWMH

Width of Master Clock High

160

tWML

Width of Master Clock Low

160

tRM

Rise Time of Master Clock

50

ns

tFM

Fall Time of Master Clock

50

ns

tHMF

Holding Time from Master
Clock Low to Frame Sync

Long Frame Only

0

ns

tHOLO

Holding Time from Master
Clock High to Frame Sync

Short Frame Only

0

ns

tSFM

Set-Up Time from Frame Sync
to Master Clock Low

Long Frame Only

80

ns

tOMO

Delay Time from MCLK High to
Data Valid

Load = 150 pF plus 2 LSTTL Loads

txop

Delay Time to TSx Low

Load

tozc

Delay Time from MCLK Low to
Data Output Disabled

tOZF

Delay Time to Valid Data from
FS or MCLK, Whichever
Comes Later

tSOM

Set-Up Time from DR Valid to
MCLK Low

50

ns

tHMO

Hold Time from MCLK Low to
DR Invalid

50

ns

tSF

Set-Up time from FS to MCLK
Low

Short Frame Sync Pulse (1 or 2 Clock
Periods Long) (Note 1)

50

ns

tHF

Hold Time from MCLK Low to
FS

Short Frame Sync Pulse (1 or 2 Clock
Periods Long) (Note 1)

100

ns

tHMFI

Hold Time from 3rd Period of
Master Clock Low to Frame
Sync FS

Long Frame Sync Pulse (from 3 to 8
Clock Periods Long)

100

ns

Note
short frame sync timing,

For

FS

Depends on the CLKSEL Pin

= 150

1.536
1.544
2.048

0

pF plus 2 LSTTL Loads

CL = 0 pF to 150 pF

must go high while the Master Clock is high,

11-69

MHz
MHz
MHz
ns
ns

180

ns

140

ns

50

165

ns

20

165

ns

F30S54/F30S57

Transmission Characteristics Unless otherwise specified: T A = ooe to 70 oe, Vee = 5.0 V ± 5%, VBB = -5.0 V
± 5%, GND = 0 V, f = 1.02 kHz, VIN = 0 dBmO, transmit input amplifier
connected for unity-gain non-inverting.
Symbol

Unit

Condition

Characteristic

Amplitude Response

Absolute Levels

Vrms

Nominal 0 dBmO Level is 4 dBm
(600 n)
o dBmO
F30S54
F30S57

tMAX

Max Overload Level

F30S54 (3.17 dBmO)
F30S57 (3.14 dBmO)

GXA

Transmit Gain, Absolute

TA = 25°C, Vcc = 5 V, VBB = -5 V
Input at GSx = 0 dBmO at 1020 Hz

GXR

Transmit Gain, Relative to GXA

f = 16 Hz
f = 50 Hz
f = 60 Hz
f = 200 Hz
f = 300 Hz - 3000 Hz
f = 3300 Hz
f = 3400 Hz
f = 4000 Hz
f = 4600 Hz and Up, Measure
Response from 0 Hz to 4000 Hz

GXAT

Absolute Transmit Gain
Variation with Temperature

TA = O°C to 70°C

GXAV

Absolute Transmit Gain
Variation with Supply Voltage

Vce = 5 V ± 5%, VBB = -5 V ± 5%

GXRL

Transmit Gain Variations with
Level

Sinusoidal Test Method
Reference Level = -10 dBmO
VFxl + = -40 dBmO to + 3 dBmO
VFxl + = -50 dBmO to -40 dBmO
VFxl + = -55 dBmO to -50 dBmO

1.2276
1.2276
2.501
2.492
-0.15

VPK
VPK
0.15

dB

-40
-30
-26
-0.1
0.15
0.05
0
-14
-32

dB
dB
dB
dB
dB
dB
dB
dB
dB

±0.1

dB

±0.05

dB

-0.2
-0.4
-1.2

0.2
0.4
1.2

dB
dB
dB

-1.8
-0.15
-0.35
-0.7

GRA

Receive Gain, Absolute

TA = 25°C, Vee = 5 V, VBB = -5 V
Input = Digital Code Sequence for
o dBmO Signal at 1020 Hz

-0.15

0.15

dB

GRR

Receive Gain, Relative to GRA

f
f
f
f

-0.15
-0.35
-0.7

0.15
0.05
0
-14

dB
dB
dB
dB

GRAT

Absolute Receive Gain Variation
with Temperature

TA = O°C to 70°C

±0.1

dB

GRAV

Absolute Receive Gain Variation
with Supply Voltage

Vee = 5 V ± 5%, VBB = -5 V ± 5%

±0.05

dB

GRRL

Receive Gain Variations with
Level

Sinusoidal Test Method; Reference
Input PCM Code Corresponds to an
Ideally Encoded-10 dBmO Signal
PCM Level = -40 dBmO to +3 dBmO
PCM Level = -50 dBmO to -40 dBmO
PCM Level = -55 dBmO to -50 dBmO

-0.2
-0.4
-1.2

0.2
0.4
1.2

dB
dB
dB

-2.5

2.5

V

VRo

Receive Output Drive Level

=
=
=
=

0 Hz
3300
3400
4000

RL = 600

to 3000 Hz
Hz
Hz
Hz

n

11-70

F30S54/F30S57

Transmission Characteristics (Cont.) Unless otherwise specified: TA = O·C to 70·C, Vee = 5.0 V ± 5%,
Vss = -5.0 V ± 5%, GND = 0 V, f = 1.02 kHz, VIN = 0 dBmO, transmit input
amplifier connected for unity-gain non-inverting.
Symbol

Characteristic

Unit

Condition

Envelope Delay Distortion With Frequency
DXA

Transmit Delay, Absolute

f=1600 Hz

290

315

IlS

DXR

Transmit Delay, Relative to DXA

f = 500 Hz - 600 Hz
f=600 Hz-800 Hz
f = 800 Hz-1000 Hz
f = 1000 Hz -1600 Hz
f = 1600 Hz - 2600 Hz
f = 2600 Hz - 2800 Hz
f = 2800 Hz - 3000 Hz

195
120
50
20
55
80
130

220
145
75
40
75
105
155

IlS
IlS
IlS
IlS
IlS
IlS
IlS

DRA

Receive Delay, Absolute

1=1600 Hz

180

DRR

Receive Delay, Relative to DRA

f
f
f
f
f

=
=
=
=
=

500 Hz - 1000 Hz
1000 Hz -1600 Hz
1600 Hz - 2600 Hz
2600 Hz - 2800 Hz
2800 Hz - 3000 Hz

-40
-30

200

Ils

-25
-20
70
100
145

90
125
175

IlS
IlS
IlS
IJ.S
IlS
dBrn

Noise

co

Nxe

Transmit Noise, C Message
Weighted

F30S54 VFxl + = 0 V

12

15

Nxp

Transmit Noise, P Message
Weighted

F30S57 VFxl + = 0 V

-74

-69
(Note 1)

NRC

Receive Noise, C Message
Weighted

F30S54 PCM Code Equals Alternating
Positive and Negative Zero

NRP

Receive Noise, P Message
Weighted

F30S57 PCM Code Equals Positive
Zero

NRS

Noise, Single Frequency

1 = 0 kHz to 100 kHz, Loop Around
Measurement, VFxl + = 0 Vrms

PPSRx

Positive Power Supply
Rejection, Transmit

VFxl + = 0 Vrms,
Vee = 5.0 Voe + 100 mVrms
1 = 0 kHz - 50 kHz

40

dBC

NPSRx

Negative Power Supply
Rejection, Transmit

VFxl + = 0 Vrms,
VB B = -5.0 Voe + 100 mVrms
1 = 0 kHz - 50 kHz

40

dBC

PPSRR

Positive Power Supply
Rejection, Receive

PCM Code Equals Positive Zero
Vee = 5.0 Voe + 100 mVrms
1=0 Hz-4000 Hz
1 = 4 kHz - 25 kHz
1 = 25 kHz - 50 kHz

40
40
36

dBC
dB
dB

PCM Code Equals Positive Zero
VBB = -5.0 Voe + 100 mVrms
1 = 0 Hz-4000 Hz
1 = 4 kHz - 25 kHz
1 = 25 kHz - 50 kHz

40
40
36

dBC
dB
dB

NPSRR

Negative Power Supply
Rejection, Receive

11-71

dBmOp
dBrnCo

8.0

11

-82

-79

dBmOp

-53

dBmO

F30S54/F30S57

Transmission Characteristics (Cont.) Unless otherwise specified: TA = O°C to 70°C, Vee = 5.0 V ± 5%,
Vss = -5.0 V ± 5%, GND = 0 V, f = 1.02 kHz, VIN = 0 dBmO, transmit input
amplifier connected for unity-gain non-inverting.
Symbol
SOS

Characteristic
Spurious Out-ot-Band Signals at
the Channel Output

Condition

Typ

Min

Unit

Max

Loop Around Measurement, 0 dBmO,
300 Hz - 3400 Hz Input Applied to
VFxl +, Measure Individual Image
Signals at VFRO
4600 Hz - 7600 Hz
7600 Hz - 8400 Hz
8400 Hz - 100,000 Hz

-32
-40
-32

dB
dB
dB

Distortion
STDx
STDR

Signal to Total Distortion
Transmit or Receive
Half-Channel

SFDx

Single Frequency Distortion,
Transmit

-46

dB

SFDR

Single Frequency Distortion,
Receive

-46

dB

IMD

Intermodulation Distortion

Loop Around Measurement,
VFxl + = -4 dBmO to -21 dBmO,
Two Frequencies in the Range
300 Hz - 3400 Hz

-41

dB

Transmit to Receive Crosstalk,
o dBmO Transmit Level

f = 300 Hz - 3400 Hz
DR = Steady PCM Code

-75

dB

Receive to Transmit Crosstalk,
Receive Level

f = 300 Hz - 3400 Hz, VFxl =

-70

dB

Sinusoidal Test Method
Level = 3.0 dBmO
= 0 dBmO to -30 dBmO
= -40 dBmO XMT
RCV
= -55 dBmO XMT
RCV

33
36
29
30
14
15

dBC
dBC
dBC
dBC
dBC
dBC

Crosstalk
CTX_R
CTR_X

o dBmO

-90

oV

-90

(Note 2)

Notes
1. Measured by extrapolation from the distortion test result.
2. CT R-X is measured with a - 40 dBmO activating signal applied at VFxl + .

Encoding Format At Ox
F30S54
Il-Law
VIN (at GSx) = + Full-Scale
VIN (at GSx) = 0 V
VIN (at GSx) = - Full-Scale

1 0

F30S57
A·Law
(Includes Even Bit Inversion)

0

0

0

0

0

0

1

0

1

0

1

0

1

0

1
1

1
1

1
1

1
1

1
1

1

1

1
1

1
0

1
1

0
0

1
1

0
0

1
1

0
0

1
1

0 0

0

0

0

0

0

0

0

0

1

0

1

0

1

0

[~

11-72

Figure 2 Timing Diagrams Short Frame Sync Timing
TS.

MCLK

FS

OR

D.

Figure 3

,

(X2){

X

X

XiX

>8--

Long Frame Sync Timing

TSx
MCLK

.:..

FS

'"

"TI

DR

Ox

I" I

¢(

"'--__, I"
1

X

1'...._ __

flI.,,"--- ~ .

,'....-----"

>¢

),

"

"

"

,~

'\....:-oL

W

o

en
C1'I

01:1......

"TI
W

o

en
C1'I
.....

F30S54/F30S57

Applications Information

T-Pad Attenuator

I
I

I

Z1i

R2

I
I
I

II

iZ2

800n

I
I
I

L_____ _ ___..1

R1

=Z1 (N2+'
)_ 2V Z1 ,Z2 (~)
~-1
tf2-1

R2=2V Z1 ,Z2

All ground connections to each device should meet at a
common point as close as possible to the GND pin. This
minimizes the interaction of ground return currents flowing
through a common bus impedance. 0.1 /-IF supply decoupiing capacitors should be connected from this common
ground point to Vee and Vss.
For best performance, the ground point of each CODECI
FILTER on a card should be connected to a common
card ground in star formation, rather than via a ground
bus. This common ground point should be decoupled to
Vee and Vss with 10 /-IF capacitors.

10

>-_300wn'v--:I_-. -,..;'
. V'.-...-""j-r--_-"';""-,...-_'+I_,':V2

Power Supplies
While the pins of the F30S54 family are well protected
against electrical misuse, it is recommended that the standard CMOS practice be followed, ensuring that ground is
connected to the device before any other connections are
made. In applications where the printed circuit board may
be plugged into a "hot" socket with power and clocks
already present, an extra long ground pin in the connector
should be used.

Wh

ere

N-V
-

(;.J

POWERIN

POWER OUT

and

s=~
Also: Z= VZSco Zoe
Where Zsc = Impedance with short clrcuH termination
and Zoe = impedance with open circuit termination

1T-Pad Attenuator
,....-----------,
300n

Receive Gain Adjustment
For applications where a F30S54 family CODEC/FILTER
receive output must drive a 600
load, but a peak swing
lower than ± 2.5 V is required, the receive gain can be
easily adjusted by inserting a matched T-pad or 1T-pad at
the output. Table II lists the required resistor values for
600
terminations. As these are generally non-standard
values, the equations can be used to compute the attenuation of the closest practical set of resistors. It may be
necessary to use unequal values for the R1 or R4 arms
of the attenuators to achieve a precise attenuation. Generally it is tolerable to allow a small deviation of the input
impedance from nominal while still maintaining a good return loss. For example a 30 dB return loss against 600
is obtained if the output impedance of the attenuator is in
the range 282 n to 319 n (assuming a perfect transformer).

I

R3

I

R-'4M~,...R4-+1Z2-'

>---'\M-Z1-l1-......

n

I
I
I

I

I
,

L__________ J

n

R3=V¥(~;1)
R3=Z1(~)
tt2-2NS+ 1

n

11-74

"0

1:"1/2

600n

F30S54/F30S57

Applications Information (Cont.)
Table II. Attentuator Tables for Z1
(All Values in Q)

dB

R1

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0
10
11
12
13
14
15
16
18
20

1.7
3.5
5.2
6.9
8.5
10.4
12.1
13.8
15.5
17.3
34.4
51.3
68
84
100
115
179
143
156
168
180
190
200
210
218
233
246

Figure 4

=Z2 =300

Q

R2

R3

R4

26k
13k
6.7k
6.5k
5.2k
4.4k
3.7k
3.3k
2.9k
2.6k
1.3k
850
650
494
402
380
284
244
211
184
161
142
125
110
98
77
61

3.5
6.9
10.4
13.8
17.3
21.3
24.2
27.7
31.1
34.6
70
107
144
183
224
269
317
370
427
490
550
635
720
816
924
i.17k
1.5k

52k
26k
17.4k
13k
10.5k
8.7k
7.5k
6.5k
5.8k
5.2k
2.6k
1.8k
1.3k
1.1k
900
785
698
630
527
535
500
473
450
430

•

413

386

I

366

Typical Synchronous Application

-sv

V,,

VFxl +

GNO

VFx l -

FROMSlIC

*O.,"F

-&

*O.,"F

+5V

Vee

TO sue

VFRO

-----------

GSx
F30S54
F30S57

~

R2

~

ANALOG INTERFACE

----------------- -----------.

DIGITAL INTERF ACE

FS

Fs

Ox
5VorGND

PON

CLKSEL

BCLK

PON

MCLK

:I

MCLK
(2.048 MHz/ 1.544 MHz/1.536 MHz)

. =20 x log (01+02) ; (R1+ R2) > 10K!!

Note 1: XMITgaln

~

11-75

F=AIRCHILO
A Schlumberger Company

F30S64/F30S67
Monolithic Serial Interface
CMOS CODEC/FILTER

Preliminary

Advanced Signal Processing Division

Description

Connection Diagram
(Top View)

The F30S64, F30S67 family consists of !.I-law and A-law
monolithic PCM CODEC/FILTERS utilizing the AID and
D/ A conversion architecture shown in Figure 1, and a serial PCM interface. The F30S64, F30S67 operate in the
synchronous mode only and are pin compatible with the
TP3064 and TP3067 respectively. Similar to the F30S54
and F30S57, these devices feature an additional Receive
Power Amplifier to provide push-pull balanced output drive
capability. The receive gain can be adjusted by means of
two external resistors for an output level of up to ± 6.6 V
across a balanced 600
load. Also included is an analog
loopback switch and TSx output. The devices are fabricated using Fairchild's advanced Double Poly Silicon-Gate
CMOS process.

20
VPO+
GND

vpoVPI
VFnO

.n

The transmit portion of each device consists of an input
gain adjust amplifier, an active RC pre-filter, a switchedcapacitor band-pass filter, and a compressing encoder with
auto-zero circuitry. The active RC pre-filter eliminates very
high frequency noise, and the switched-capacitor filter rejects Signals below 200 Hz and above 3400 Hz. The compressing encoder samples the filtered Signal and encodes
it in the compressed !.I-law or A-law PCM format.

VB.

VFxl+
VFxlGSx
ANLB

Vee

TSx

NC

FS

DR

Ox

CLKSEL
PDN

NC
MCLK

Order Information
Device Code
F30S64DC
F30S67DC

Package Code
FL
FL

Package Description
Ceramic DIP
Ceramic DIP

The receive portion of each device consists of an expanding decoder, a switched-capacitor low-pass filter, and two
power amplifiers. The decoder reconstructs the analog signal from the compressed !.I-law or A-law code, and the
low-pass filter corrects for the sin x/x response of the
decoder output. The two power amplifiers are in a bridged
configuration and are capable of driving low impedance
loads.
The devices require a 1.536 MHz, 1.544 MHz or
2.048 MHz master clock and an 8 kHz frame sync pulse.
The timing of the frame sync pulses and PCM data is
compatible with both industry standard formats.
• Pin Compatible with TP3064, TP3067
• Complete Codec and Filtering System Including:
• Transmit High-Pass and Low-Pass Filtering
• Receive Low-Pass Filter with Sin X/X Correction
• Receive Push-Pull Power Amplifier
• Analog Loopback
• Active RC Noise Filters
• !.I-Law or A-Law Compatible Coder and Decoder
• Internal Precision Voltage Reference
• Serial I/O Interface
• Internal Auto-Zero Circuitry
• !.I-Law, 20 Pin - F30S64
• A-Law, 20 Pin - F30S67
• Meets or Exceeds all 03/04 and CCITT
Specifications
• ± 5 V Operation

•
•
•
•
•

11-76

Low Operating Power - Typically 45 mW
Power-Down Standby Mode - Typically 1.7 mW
AutomatiC Power-Down
TTL or CMOS Compatible Digital Interfaces
Maximizes Line Interface Card Circuit Density

F30S64/F30S67

Figure 1 Block Diagram

!

ANALOG
LOOPBACK

-----

GSx

--~--------------------------------------------------- ---l

/

I
I

/

/

I
I
I
I
I
I
I
I
I
I

/

R

I
I

RC
ACTIVE
FILTER

SWITCHED
CAPACITOR
BAND-PASS
FILTER

AID
CONTROL
LOGIC

VOLTAGE
REFERENCE

VPO

XUT
REGISTER

Ox

RCV
REGISTER

DR

R.
COMPARATOR

VPI

A4
VFRO

TIMING AND CONTROL

+5V

-SV

Vee

Va.

:

---------+---+----1 ----------!~!~-~~~~------- ----- ----- ----- ____J
eND

MCLK

11-77

PDN

CLKSEL

FS

F30S64/F30S67

Pin Description
Pin No.

Function

Name

1
2
3
4

VPO+
GND
VPOVPI

5
6
7
8
9

VFRO
Vee
N.C.
DR
CLKSEL

10
11
12
13
14

PDN
MCLK
N.C.
Dx
FS

15
16

TSX
ANLB

17
18
19
20

GSx
VFxl VFxl +
Vss

The non-inverted output of the receive power amplifier.
Ground. All signals are referenced to this pin.
The inverted output of the receive power amplifier.
Inverting input to the receive power amplifier. Also powers down both amplifiers
when connected to Vss.
Analog output of the receive filter.
Positive power supply pin. Vee = + 5 V ± 5%.
No internal connection.
Receive data input. PCM data is shifted into DR following the FS leading edge.
Logic input which selects either 1.536 MHz, 1.544 MHz or 2.048 MHz for master
clock. MCLK is used for both transmit and receive directions (See Table 1).
Power down. The device is powered up when PDN is held low.
Master clock. Must be 1.536 MHz, 1.544 MHz or 2.048 MHz.
No internal connection.
The 3-state PCM data output which is enabled by FS.
Frame sync pulse input which enables MCLK to shift out the PCM data on Dx and
shift in data on DR. FS is an 8 kHz pulse train, see Figures 2 and 3 for timing
details.
Open drain output which pulses low during the encoder time slot.
Analog Loopback control input. Must be set to logic '0' for normal operation. When
pulled to logiC '1', the transmit filter input is disconnected from the output of the
transmit preamplifier and connected to the VPO + output of the receive power
amplifier.
Analog output of the transmit input amplifier. Used to externally set gain.
Inverting input of the transmit input amplifier.
Non-inverting input of the transmit input amplifier.
Negative power supply pin. Vss = -5 V + 5%.

Functional Description
Power-Up
When power is first applied, power-on reset circuitry initializes the device and places it into the power-down mode.
All non-essential circuits are deactivated and the Dx and
VFRO outputs are put in high impedance states. To power-up the device, a logical low level must be applied to
the PDN pin and FS pulses must be present. Thus, two
power-down control modes are available. The first is to
pull the PDN pin high; the second is to hold the FS input
continuously low - the device will power-down approximately 2 ms after the last FS pulse. Power-up will occur
on the first FS pulse. The 3-state PCM data output, Dx,
will remain in the high impedance state until the second
FS pulse.

Synchronous Operation
Synchronous operation requires only one master clock for
both the transmit and receive directions. Table 1 indicates
the frequencies which can be selected, depending on the
state of CLKSEL. For 1.544 MHz operation, the device automatically compensates for the 193rd clock pulse each
frame.
Table 1. Selection of Master Clock Frequencies
Master Clock
Frequency Selected
CLKSEL

11-78

F30S67

F30S64

o

1.536 MHz or
1.544 MHz

2.048 MHz

1 (or Open
Circuit)

2.048 MHz

1.536 MHz or
1.544 MHz

F30S64/F30S67

Functional Description (Cont.)
Short Frame Sync Operation
The device can utilize either a short frame sync pulse or
a long frame sync pulse. Upon power initialization, the device assumes a short frame mode. In this mode, the
frame sync pulse, FS, must be one MCLK period long,
with timing relationships specified in Figure 2. With FS
high during a falling edge of MCLK, the next rising edge
of MCLK enables the Dx 3-state output buffer, which will
output the sign bit. The following seven rising edges clock
out the remaining seven bits, and the next falling edge
disables the Dx output. The corresponding eight falling
edges of the same clock pulses will clock in the receive
data.
Long Frame Sync Operation
To use the long frame sync mode, the frame sync pulse,
FS, must be three or more MCLK periods long, with timing
relationships specified in Figure 3. Based on the sync, FS,
the device will sense whether short or long frame sync
pulses are being used. The Dx 3-state output buffer is
enabled with the rising edge of FS or the rising edge of
MCLK, whichever comes later, and the first bit clocked out
is the sign bit. The following seven MCLK rising edges
clock out the remaining seven bits. The Dx output is disabled by the eighth falling edge of MCLK, or by FS going
low, whichever comes later. Provided the frame sync FS is
greater than three MCLK periods, the Dx output will be
enabled for eight MCLK periods, independent of the actual
length of the FS pulse.
Transmit Section
The transmit section input is an operational amplifier with
provision for gain adjustment using two external resistors,
see Figure 1. The low noise and wide bandwidth allow
gains in excess of 20 dB across the audio passband to
be realized. The op amp drives a unity-gain filter consisting of an RC active pre-filter, followed by an eighth order
switched-capacitor bandpass filter clocked at 128 kHz. The
output of this filter directly drives the encoder sample-andhold circuit. The AID is of compressing type according to
/-I-law (F30S64) of A-law (F30S67) coding conventions. A
precision voltage reference is trimmed in manufacturing to
provide an input overload level (tMAX) of nominally 2.5 V
peak (see table of Transmission Characteristics). The FS

frame sync pulse controls the sampling of the filter output,
and then the successive-approximation encoding cycle begins after the decode cycle. The 8-bit code is then loaded
into a buffer and shifted out through Dx at the next FS
pulse. The total encoding delay will be approximately
165 /-IS (due to the transmit filter) plus 125 p.s (due to
encoding delay), which totals 290 p.s. Any offset voltage
due to the filters or comparator is cancelled by sign bit
integration.
Receive Section
The receive section consists of an expanding DAC which
drives a fifth order switched-capacitor low pass filter
clocked at 128 kHz. The decoder is A-law (F30S67) or
/-I-law (F30S64) and the 5th order low pass filter corrects
for the sin x/x attenuation due to the 8 kHz sample/hold.
The filter is then followed by a 2nd order RC active postfilter with its output at VFRO. The receive section is unitygain, but gain can be added by using the power
amplifiers. Upon the occurrence of FS the data at the DR
input is clocked in on the falling edge of the next eight
MCLK periods. At the end of the time slot, the decoding
cycle begins, and 10 p.s later the decoder DAC output is
updated. The total decoder delay is -10 p.s (decoder update) plus 110 p.s (filter delay) plus 62.5 /-IS (1'2 frame),
which gives approximately 180 p.s.
Receive Power Amplifiers
Two inverting mode power amplifiers are provided for directly driving a matched line interface transformer. The
gain of the first power amplifier can be adjusted to boost
the ± 2.5 V peak output signal from the receive filter up to
± 3.3 V peak into an unbalanced 300 .Q load, or ± 4.0 V
into an unbalanced 15 k.Q load. The second power amplifier is internally connected in unity-gain inverting mode to
give 6 dB of Signal gain for balanced loads.
Maximum power transfer to a 600 .Q subscriber line termination is obtained by differentially driving a balanced transformer with a \12:1 turns ration, as shown in Figure 4. A
total peak power of 15.6 dBm can be delivered to the
load plus termination.
Both power amplifiers can be powered down independently
from the PDN input by connecting the VPI input to Vee,
saving approximately 8 mW of power.

11-79

•

F30S64/F30S67

Absolute Maximum Ratings
Vcc to GND
VBB to GND
Voltage at any Analog Input
or Output

Voltage at any Digital Input
or Output

7.0 V
-7.0 V

Vcc + 0.3 V to
GND-0.3 V
-25°C to +125°C
-65°C to + 150°C

Operating Temperature Range
Storage Temperature Range
Lead Temperature
(Soldering, 10 seconds)

Vcc+0.3 V to
Vss-0.3 V

Electrical Characteristics Unless otherwise noted: Vee = 5.0 V± 5%, VBB - 5.0 V± 5%, GND = 0 V, TA = DoC to
70°C; typical characteristics specified at Vee = 5.0 V, VBB = -5.0 V, TA = 25°C; all
signals are referenced to GND.
Symbol

Unit

Condition

Characteristic

Operating Current

ICCO

Power-Down Current

0.3

1.5

mA

IBBO

Power-Down Current

0.03

0.3

mA

Icc1

Active Current

Power Amplifier Active, VPI = 0 V

4.3

7.0

mA

IBB1

Active Current

Power Amplifier Active, VPI = 0 V

4.3

7.0

mA

0.6

V

Digital Interface

VIL

Input Low Voltage

VIH

Input High Voltage

VOL

Output Low Voltage

VOH

Output High Voltage

Ox, IH

IlL

Input Low Current

GND ~ VIN

IIH

Input High Current

loz

Output Current in High
Impedance State

2.2

V

Ox, IL = 3.2 mA
TSx, IL = 3.2 mA,Open Drain

= -3.2
~

0.4
0.4
2.4

mA

V
V
V

-10

10

VIH ~ VIN ~ Vcc

-10

10

J.LA

Ox, GND~Vo~Vcc

-10

10

JlA

V, VFxl+ or VFxl-

-200

200

+ 2.5 V, VFxl+ or VFxl-

10

VIL, All Digital Inputs

J.LA

Analog Interface With Transmit Input Amplifier
V~V~+2.5

IIXA

Input Leakage Current

-2.5

RIXA

Input Resistance

-2.5 V ~ V

RoXA

Output Resistance

Closed Loop, Unity Gain

RLXA

Load Resistance

GSx

CLXA

Load Capacitance

GSx

~

nA
MSl

1.0

3.0

10

Sl
kSl

50

pF

VoXA

Output Dynamic Range

GSx, RL ;;;'10 kSl

±2.8

V

AvXA

Voltage Gain

VFxl+ to GSx

5000

VIV

1.0

2.0

MHz

FuXA

Unity Gain Bandwidth

VosXA

Offset Voltage

-20

20

mV

XCMXA

Common-Mode Voltage

-2.5

2.5

V

CMRRXA

Common-Mode Rejection
Ratio

60

11-80

dB

F30S64/F30S67

Electrical Characteristics (Cont.) Unless otherwise noted: Vee = 5.0 V± 5%, VBB - 5.0 V± 5%, GND = 0 V,
TA = DoC to 70°C; typical characteristics specified at Vee = 5.0 V, VBB = -5.0 V,
T A = 25°C; all signals are referenced to GND.
Symbol
PSRRXA

Characteristic

Condition

Power Supply Rejection
Ratio

Min

Typ

Max

60

Unit
dB

Analog Interface With Receive Amplifier Output
RoRF

Output Resistance

Pin VFRO

RLRF

Load Resistance

VFRO= ±2.5 V

CLRF

Load Capacitance

VFRO to GND

VOSRO

Output DC Offset Voltage

VFRO to GND

1.0

3.0

10

n
kn

500

pF

-200

200

mV

-100

100

nA

Analog Interface With Power Amplifiers
IPI

Input Leakage Current

-1.0 V ~ VPI

~

1.0 V

-1.0 V ~ VPI

~

1.0 V

RIPI

Input Resistance

VIOS

Input Offset Voltage

ROP

Output Resistance

10

Mn

-25
Inverting Unity-Gain at VPO+ or VPO-

Fe

Unity-Gain Bandwidth

Open Loop (VPO-)

CLP

Load Capacitance

RL>1500 n
RL =600 n
RL =300 n

GAp+

Gain, VPO- to VPO+

RL = 300 n VPO+ to GND
Level at VPO- = 1.77 Vrms
(+3 dBmO)

PSRRp

Power Supply Rejection of
Vee or Vss

25
1.0

n
kHz

400
100
500
1000

1 VPO+

or
VPO- to
GND

mV

-1.0

pF
pF
pF
V/V

VPO - Connected to VPI

o kHz-4 kHz
o kHz-50 kHz

60
36

dB
dB

Timing Specifications
lItpM

Frequency of Master Clock

Depends on the CLKSEL Pin

tWMH

Width of Master Clock High

160

ns

tWML

Width of Master Clock Low

160

ns

tRM

Rise Time of Master Clock

50

ns

tFM

Fall Time of Master Clock

50

ns

tHMF

Holding Time from Master
Clock Low to Frame Sync

Long Frame Only

0

ns

tHOLD

Holding Time from Master
Clock High to Frame Sync

Short Frame Only

0

ns

tSFM

Set-Up Time from Frame
Sync to Master Clock Low

Long Frame Only

80

ns

11-81

1.536
1.544
2.048

MHz
MHz
MHz

F30S64/F30S67

Electrical Characteristics (Cont.) Unless otherwise noted: Vee = 5.0 V± 5%, Vss - 5.0 V± 5%, GND = 0 V,
TA = O°C to 70°C; typical characteristics specified at Vee = 5.0 V, Vss = -5.0 V,
TA = 25°C; all signals are referenced to GND.
Symbol

Characteristic

Condition

Min

Typ

Max

Unit

tDMD

Delay Time from MCLK High
to Data Valid

Load

= 150

pF plus 2 LSTTL Loads

tXDP

Delay Time to TSx Low

Load

= 150

pF plus 2 LSTTL Loads

tDze

Delay Time from MCLK Low
to Data Output Disabled

tDZF

Delay Time to Valid Data
from FS or MCLK,
Whichever Comes Later

tSDM

Set-Up Time from DR Valid
to MCLK Low

50

ns

tHMD

Hold Time from MCLK Low
to DR Invalid

50

ns

tSF

Set-Up time from FS to
MCLK Low

Short Frame Sync Pulse (1 or 2 Clock
Periods Long) (Note 1)

50

ns

tHF

Hold Time from MCLK Low
to FS

Short Frame Sync Pulse (1 or 2 Clock
Periods Long) (Note 1)

100

ns

tHMFI

Hold Time from 3rd Period of
Master Clock Low to Frame
Sync FS

Long Frame Sync Pulse (from 3 to 8
Clock Periods Long)

100

ns

CL

=0

pF to 150 pF

Note
For short frame sync timing, FS must go high while the Master Clock is high.

11-82

0

180

ns

140

ns

50

165

ns

20

165

ns

Figure 2 Timing Diagram Short Frame Sync Timing
TSx

MCLK

FS

DR
Ox

Figure 3 Timing Diagram Long Frame Sync Timing
TSX

MCLK

ex,

FS

w

."

DR

Co)

o
en

I'

fJ)
Ox

\."

1

X

'i

),

"

"

"

''----L

~

......

."
Co)

o
en

fJ)

......

•

F30S64/F30S67

Transmission Characteristics Unless otherwise specified: TA = ooe to 70 oe, Vee = 5.0 V ± 5%, VBB = -5.0
V ± 5%, GND = 0 V, f = 1.02 kHz, VIN = 0 dBmO, transmit input amplifier
connected for unity-gain non-inverting.
Symbol

Characteristic

Unit

Condition

Amplitude Response

Absolute Levels

Nominal 0 dBmO Level is 4 dBm
(600 .12)
o dBmO
F30S64
F30S67
Max Overload Level
F30S64 (3.17 dBmO)
F30S67 (3.14 dBmO)

tMAX

GXA

Transmit Gain, Absolute

TA = 25°C, Vee = 5 V, Vss = -5 V
Input at GSx = 0 dBmO at 1020 Hz

GXR

Transmit Gain, Relative to
GXA

f = 16 Hz
f=50 Hz
f = 60 Hz
f=200Hz
f = 300 Hz - 3000 Hz
f= 3300 Hz
f= 3400 Hz
f = 4000 Hz
f = 4600 Hz and Up, Measure
Response from 0 Hz to 4000 Hz

ooe

GXAT

Absolute Transmit Gain
Variation with Temperature

TA =

GXAV

Absolute Transmit Gain
Variation with Supply Voltage

Vee = 5 V ± 5%, Vss = -5 V ± 5%

GXRL

Transmit Gain Variations with
Level

Sinusoidal Test Method
Reference Level = -10 dBmO
VFxl+ = -40 dBmO to +3 dBmO
VFxl+ = -50 dBmO to -40 dBmO
VFxl+ = -55 dBmO to -50 dBmO

Receive Gain, Absolute

TA = 25°C, Vee = 5 V, Vss = -5 V
Input = Digital Code Sequence for
o dBmO Signal at 1020 Hz

GRR

Receive Gain, Relative to
GRA

f=
f=
f=
f=

GRAT

Absolute Receive Gain
Variation with Temperature

TA = O°C to 70°C

GRAV

Absolute Receive Gain
Variation with Supply Voltage

Vee=5 V±5%, Vss=-5 V±5%

to 3000 Hz
Hz
Hz
Hz

11-84

Vrms
Vrms

2.501
2.492

VPK
VPK
0.15

dB

-40
-30
-26
-0.1
0.15
0.05
0
-14
-32

dB
dB
dB
dB
dB
dB
dB
dB
dB

±O.1

dB

±0.05

dB

-0.2
-0.4
-1.2

0.2
0.4
1.2

dB
dB
dB

-0.15

0.15

dB

-0.15
-0.35
-0.7

0.15
0.05
0
-14

dB
dB
dB
dB

±O.1

dB

±0.05

dB

-1.8
-0.15
-0.35
-0.7

to 70°C

GRA

0 Hz
3300
3400
4000

-0.15

1.2276
1.2276

F30S64/F30S67

Transmission Characteristics (Cant.) Unless otherwise specified: TA = O°C to 70°C, Vee = 5.0 V ± 5%,
Vss = -5.0 V ± 5%, GND = 0 V, f = 1.02 kHz, VIN = 0 dBmO, transmit input
amplifier connected for unity-gain non-inverting.
Symbol
GRRL

VRo

Characteristic
Receive Gain Variations with
Level

Receive Filter Output at
VFRO

Condition

Min

Typ

Max

Unit

Sinusoidal Test Method; Reference
Input PCM Code Corresponds to an
Ideally Encoded -10 dBmO Signal
PCM Level = -40 dBmO to + 3 dBmO
PCM Level = -50 dBmO to -40 dBmO
PCM Level = -55 dBmO to -50 dBmO

-0.2
-0.4
-1.2

0.2
0.4
1.2

dB
dB
dB

RL = 10 kQ

-2.5

2.5

V

Envelope Delay Distortion With Frequency
DXA

Transmit Delay, Absolute

f=1600 Hz

290

315

J.ls

DXR

Transmit Delay, Relative to
DXA

f = 500 Hz - 600 Hz
f=600 Hz-800 Hz
f = 800 Hz - 1000 Hz
f = 1000 Hz -1600 Hz
f = 1600 Hz - 2600 Hz
f = 2600 Hz - 2800 Hz
f = 2800 Hz - 3000 Hz

195
120
50
20
55
80
130

220
145
75
40
75
105
155

J.ls
J.lS
J.lS
J.lS
J.lS
J.lS
J.lS

DRA

Receive Delay, Absolute

f=1600 Hz

180

DRR

Receive Delay, Relative to
DRA

f = 500 Hz -1000 Hz

f
f
f
f

= 1000 Hz-1600 Hz

-40
-30

= 1600 Hz - 2600 Hz
= 2600 Hz - 2800 Hz

= 2800 Hz - 3000 Hz

200

J.lS

-25
-20
70
100
145

90
125
175

J.lS
J.lS
J.lS
J.lS
J.ls

Noise
Nxe

Transmit Noise, C Message
Weighted

F30S64 VFxl+ = 0 V

12

15

dBrnCO

Nxp

Transmit Noise, P Message
Weighted

F30S67 VFxl+ = 0 V

-74

-69
(Note 1)

dBmOp

NRe

Receive Noise, C Message
Weighted

F30S64 PCM Code Equals
Alternating Positive and Negative Zero

NRP

Receive Noise, P Message
Weighted

F30S67 PCM Code Equals
Positive Zero

NRS

Noise, Single Frequency

f = 0 kHz to 100 kHz, Loop Around
Measurement, VFxl+ = 0 Vrms

PPSRx

Positive Power Supply
Rejection, Transmit

VFxl+ = 0 Vrms,
Vee = 5.0 Vac + 100 mVrms
f = 0 kHz - 50 kHz

40

dBC

NPSRx

Negative Power Supply
Rejection, Transmit

VFxl+ = 0 Vrms,
VBB = -5.0 Vae + 100 mVrms
f = 0 kHz - 50 kHz

40

dBC

11-85

8.0

-82

11

dBrnCO

-79

dBmOp

-53

dBmO

F30S64/F30S67

Transmission Characteristics (Cont.) Unless otherwise specified: TA = O°C to 70°C, Vee = 5.0 V ± 5%,
Vss = -5.0 V ± 5%, GND = 0 V, f = 1.02 kHz, VIN = 0 dBmO, transmit input

amplifier connected for unity-gain non-inverting.
Symbol

PPSRR

NPSRR

SOS

Characteristic

Positive Power Supply
Rejection, Receive

Negative Power Supply
Rejection, Receive

Spurious Out-of-Band Signals
at the Channel Output

Condition

Min

Typ

Max

Unit

PCM Code Equals Positive Zero
Vee = 5.0 Voc + 100 mVrms
f=O Hz-4000 Hz
f=4 kHz-25 kHz
f=25 kHz-50 kHz

40
40
36

dBC
dB
dB

PCM Code Equals Positive Zero
VBB = -5.0 Voc + 100 mVrms
f=O Hz-4000 Hz
f=4 kHz-25 kHz
f=25 kHz-50 kHz

40
40
36

dBC
dB
dB

Loop Around Measurement, 0 dBmO,
300 Hz - 3400 Hz Input Applied to
VFxl+, Measure Individual Image
Signals at VFRO
4600 Hz - 7600 Hz
7600 Hz - 8400 Hz
8400 Hz - 100,000 Hz

-32
-40
-32

dB
dB
dB

Distortion

STDx
STDR

Signal to Total Distortion
Transmit or Receive
Half-Channel

SFDx

Single Frequency Distortion,
Transmit

-46

dB

SFDR

Single Frequency Distortion,
Receive

-46

dB

IMD

Intermodulation Distortion

Loop Around Measurement,
VFxl+ = -4 dBmO to -21 dBmO,
Two Frequencies in the Range
300 Hz - 3400 Hz

-41

dB

CTx.R

Transmit to Receive
Crosstalk, 0 dBmO Transmit
Level

f = 300 Hz-3400 Hz
DR = Steady PCM Code

-90

-75

dB

CTR.X

Receive to Transmit
Crosstalk, 0 dBmO Receive
Level

f = 300 Hz - 3400 Hz, VFxl = 0 V

-90

-70
(Note 2)

dB

Sinusoidal Test Method
Level = 3.0 dBmO
= 0 dBmO to -30 dBmO
= -40 dBmO XMT
RCV
= -55 dBmO XMT
RCV

33
36
29
30
14
15

dBC
dBC
dBC
dBC
dBC
dBC

Crosstalk

11-86

F30S64/F30S67

Transmission Characteristics (Cont.) Unless otherwise specified: TA = O°C to 70°C, Vee = 5.0 V ± 5%,
Vss = -5.0 V ± 5%, GND = 0 V, f = 1.02 kHz, VIN = 0 dBmO, transmit input
amplifier connected for unity-gain non-inverting.
Symbol

Characteristic

Condition

Unit

Power Amplifiers
VOL

S/Dp

Maximum 0 dBmO Level for
Better than ± 0.1 dB Linearity
Over the Range -10 dBmO
to +3 dBmO

Balanced Load, RL Connected
Between VPO+ and VPORL = 600 n
RL = 1200 n
RL = 30 kn

3.3
3.5
4.0

Vrms
Vrms
Vrms

Signal/Distortion

RL = 600 n, 0 dBmO

50

dB

Notes
1. Measured by extrapolation from the distortion test result.
2. eT R.X is measured with a -40 dBmO activating signal applied at VFxl+.

Encoding Format At Ox
F30S64
J.L-Law
VIN (at GSx) = + Full-Scale
VIN (at GSx) = 0 V
VIN (at GSx) = - Full-Scale

[

F30S67
A-Law
(Includes Even Bit Inversion)

1

0

0

0

0

0

0

0

1

0

1

0

1

0

1

0

1
0

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
0

1
1

0
0

1
1

0
0

1
1

0
0

1
1

0

0

0

0

0

0

0

0

0

0

1

0

1

0

1

0

Applications Information

All ground connections to each device should meet at a
common pOint as close as possible to the GND pin. This
minimizes the interaction of ground return currents flowing
through a common bus impedance. 0.1 J.LF supply decoupiing capacitors should be connected from this common
ground point to Vee and VBB.

Power Supplies
While the pins of the F30S60 family are well protected
against electrical misuse, it is recommended that the standard CMOS practice be followed, ensuring that ground is
connected to the device before any other connections are
made In applications where the printed circuit board may
be plugged into a "hot" socket with power and clocks
already present, an extra long ground pin in the connector
should be used.

For best performance, the ground point of each CODEC/
FILTER on a card should be connected to a common
card ground in star formation, rather than via a ground
bus. This common ground point should be decoupled to
Vee and VBB with 10 J.LF capacitors.

11-87

•

F30S64/F30S67

Figure 4 Typical Synchronous Application

300

R3

R1

R4

ANALOG
LOOPBACK

TSx
CLKSEL

FS

DR

Dx
MCLK

PDN

Note 1: Transmit gain

= 20

Note 2: Receive gain

= 20 x

x log (R1;2R2 ),(R1 +R2)?: 10k!}
log (2 ~4R3 ) • R42! 10k!}

11-88

F3054/F3057
Monolithic Serial Interface
CMOS CODEC/FILTER

FAIRCHILD
A Schlumberger Company

Advanced Signal Processing Division

Description

Connection Diagram
(Top View)

The F3054, F3057 family consists of /l-Iaw and A-law
monolithic PCM CODEC/FILTERS utilizing the AID and
DI A conversion architecture shown in Figure 1, and a serial PCM interface. The devices are fabricated using
Fairchild's advanced Double-Poly Silicon Gate CMOS process.

16

The transmit portion of each device consists of an input
gain adjust amplifier, an active RC pre-filter, a switchedcapacitor band-pass filter, and a compressing encoder with
auto-zero circuitry. The active RC pre-filter eliminates very
high frequency noise, and the switched-capacitor filter rejects signals below 200 Hz and above 3400 Hz. The compressing encoder samples the filtered signal and encodes
it in the compressed /l-Iaw or A-law PCM format. The receive portion of each device consists of an expanding decoder, which reconstructs the analog signal from the
compressed /l-Iaw or A-law code, a low-pass filter which
corrects for the sin xIx response of the decoder output
and rejects signals above 3400 Hz and is followed by a
single-ended power amplifier capable of driving low impedance loads. The devices require two 1.536 MHz,
1.544 MHz or 2.048 MHz transmit and receive master
clocks, which may be asynchronous, transmit and receive
bit clocks, which may vary from 64 kHz to 2.048 MHz,
and transmit and receive frame sync pulses. The timing of
the frame sync pulses and PCM data is compatible with
both industry standard formats.

v••

VFxl+

GND

VFx l -

VFRO

GSx

Vee

TSx

FSR

FSx

DR

Ox

BCLKRI

BLCKx

CLKSEL

MCLKRi

MCLKx

PDN

Order Information
Device Code
F3054DC
F3057DC

• Complete Codec and Filtering System Including:
• Transmit High-Pass and Low-Pass Filtering
• Receive Low-Pass Filter With Sin XIX Correction
• Active RC Noise Filter
• /l-Law or A-Law Compatible Coder and Decoder
• Internal Precision Voltage Reference
• Serial 1/0 Interface
• Internal Auto-Zero Circuitry
• /l-Law, 16 Pin-F3054
• A-Law, 16 Pin - F3057
• Meets or Exceeds All 03/04 and CCITT
Specifications
• ± 5.0 V Operation
• Low Operating Power - Typically 60 mW
• Power-Down Standby Mode - Typically 3.0 mW
• Automatic Power-Down
• TTL or CMOS Compatible Digital Interfaces
• Maximizes Line Interface Card Circuit Density

11-89

Package Code
FW
FW

Package Description
Ceramic DIP
Ceramic DIP

F3054/F3057

Figure 1 Block Diagram
RF
GS,

r------------------------------------------------------------------

II
I
I

I

I
I

I
I

~~~~'-~-+l--;

RC

I

AC1lVE
FILla!

VFx l +

XMT

VOLTAGE

REGISTER

REFERENCE

DE

TIMING AND CONTROL

L-----~i:--~i:---}------------~~~~~~~~----------~---i-----1--------Vee

Vaa

GND

MCLKx MCLKA' BCLKx BCLKA'
PDN
CLKSEL

11-90

FSA

FSx

Ox

F3054/F3057

Pin Description
Pin No.

Function

Name

1

2
3
4
5
6
7

8

MClKR/PDN

9

MClKx

10

BClKx

11
12

Ox
FSX

13
14
15
16

TSX
GSX
VFxlVFxl+

Negative power supply pin. VBB = -5 V ± 5%.
Ground. All signals are referenced to this pin.
Analog output of the receive filter.
Positive power supply pin. Vee = +5 V ± 5%.
Receive frame sync pulse which enables BClKR to shift PCM data into DR. FSR is
an 8 kHz pulse train. See Figures 2 and 3 for timing details.
Receive data input. PCM data is shifted into OR following the FSR leading edge.
The bit clock which shifts data into DR after FSR leading edge. May vary from
64 kHz to 2.048 MHz, but must be synchronous with MCKlR. Alternatively, may be
a logic input which selects either 1.536 MHz/1.544 MHz or 2.048 MHz for master
clock in synchronous mode and BClKx is used for both transmit and receive
directions (see Table 1).
Receive master clock. Must be 1.536 MHz, 1.544 MHz or 2.048 MHz. When
MClKR is connected continuously low, MClKx is selected for all internal timing.
When MClKR is connected continuously high, the device is powered down.
Transmit master clock. Must be 1.536 MHz, 1.544 MHz or 2.048 MHz. May be
asynchronous with MClKR.
The bit clock which shifts out the PCM data on Dx. May vary from 64 kHz to
2.048 MHz, but must be synchronous with MClKx.
The 3-state PCM data output which is enabled by FSx.
Transmit frame sync pulse input which enables BClKx to shift out the PCM data
on Ox. FSx is an 8 kHz pulse train; see Figures 2 and 3 for timing details.
Open drain output which pulses low during the encoder time slot.
Analog output of the transmit input amplifier. Used to externally set gain.
Inverting input of the transmit input amplifier.
Non-inverting input of the transmit input amplifier.

Functional Description

Synchronous Operation
For synchronous operation, the same master clock and bit
clock should be used for both the transmit and receive
directions. In this mode, a clock must be applied to
MClKx and the MClKR/PDN pin can be used as a power-down control. A low level on MClKR/PON powers up
the device and a high level powers down the device. In
either case, MClKx will be selected as the master clock
for both the transmit and receive circuits. A bit clock must
also be applied to BClKx and the BClKR/ClKSEl can be
used to select the proper internal divider for a master
clock of 1.536 MHz, 1.544 MHz or 2.048 MHz. For
1.544 MHz operation, the device automatically compensates for the 193rd clock pulse each frame.

Power-Up
When power is first applied, power-on reset circuitry initializes the device and places it into the power-down mode.
All non-essential circuits are deactivated and the Dx and
VFRO outputs are put in high impedance states. To power-up the device, a logical low level or clock must be applied to the MClKR/PDN pin and FSx and/or FSR pulses
must be present. Thus, two power-down control modes are
available. The first is to pull the MClKR/PON pin high; the
second is to hold both FSx and FSR inputs continuously
low - the device will power-down approximately 2 ms after
the last FSx or FSR pulse. Power-up will occur on the first
FSx or FSR pulse. The 3-state PCM data output, Ox, will
remain in the high impedance state until the second FSx
pulse.

11-91

•

F3054/F3057

Functional Description (Cont.)
With a fixed level on the BClKR/ClKSEl pin, BClKx will
be selected as the bit clock for both the transmit and
receive directions. Table 1 indicates the frequencies of operation which can be selected, depending on the state of
BClKR/ClKSEL. In this synchronous mode, the bit clock,
BClKx, may be from 64 kHz to 2.048 MHz, but must be
synchronous with MClKx.
Each FSx pulse begins the encoding cycle and the PCM
data from the previous encode cycle is shifted out of the
enabled Ox output on the positive edge of BClKx. After 8
bit clock periods, the 3-state Ox output is returned to a
high impedance state. With an FSR pulse, PCM data is
latched via the DR input on the negative edge of BClKx
(or BClKR if running). FSx and FSR must be synchronous
with MClKx/R.
Table 1 Selection of Master Clock Frequencies
Master Clock
Frequency Selected
BCLKR/CLKSEL

F3057

Clocked

2.048 MHz

0

1.536 MHz or
1.544 MHz
2.048 MHz

1 (or Open
Circuit)

F3054
1.536 MHz or
1.544 MHz
2.048 MHz
1.536 MHz or
1.544 MHz

Asynchronous Operation
For asynchronous operation, separate transmit and receive
clocks may be applied. MClKx and MClKR must be
2.048 MHz for the F3057, and 1.536 MHz or 1.544 MHz
for the F3054 and need not be synchronous. For best
transmission performance, however, MClKR should be synchronous with MClKx, which is easily achieved by applying only static logic levels to the MClKR/PON pin. This
will automatically connect MClKx to all internal MClKR
functions (see Pin Description). For 1.544 MHz operation,
the device automatically compensates for the 193rd clock
pulse each frame. FSx starts each encoding cycle and
must be synchronous with MClKx and BClKx. FSR starts
each decoding cycle and must be synchronous with
BClKR, which must be a clock. The logic levels shown in
Table 1 are not valid for asynchronous operation. BClKx
and BClKR may operate from 64 kHz to 2.048 MHz.
Short Frame Sync Operation
The device can utilize either a short frame sync pulse or
a long frame sync pulse. Upon power initialization, the device assumes a short frame mode. In this mode, both

frame sync pulses, FSx and FSR, must be one bit clock
period long, with timing relationships specified in Figure 2.
With FSx high during a falling edge of BClKx, the next
riSing edge of BClKx enables the Ox 3-state output buffer,
which will output the sign bit. The following seven rising
edges clock out the remaining seven bits, and the next
falling edge disables the Ox output. With FSR high during
a falling edge of BClKR (BClKx in synchronous mode),
the next falling edge of BClKR latches in the sign bit.
The following seven falling edges latch in the seven remaining bits. Both devices may utilize the short frame
sync pulse in synchronous or asynchronous operating
mode.
Long Frame Sync Operation
To use the long frame sync mode, both the frame sync
pulses, FSx and FSR, must be three or more bit clock
periods long, with timing relationships specified in Figure 3.
Based on the transmit frame sync, FSx, the device will
sense whether short or long frame sync pulses are being
used. For 64 kHz operation, the frame sync pulse must be
kept low for a minimum of 160 ns. The Ox 3-state output
buffer is enabled with the rising edge of FSx or the rising
edge of BClKx, whichever comes later, and the first bit
clocked out is the sign bit. The following seven BClKx
rising edges clock out the remaining seven bits. The Ox
output is disabled by the falling BClKx edge following the
eighth rising edge, or by FSx going low, whichever comes
later. A rising edge on the receive frame sync pulse, FSR,
will cause the PCM data at DR to be latched in on the
next eight falling edge of BClKR (BClKx in synchronous
mode). Both devices may utilize the long frame sync pulse
in synchronous or asynchronous mode.
Transmit Section
The transmit section input is an operational amplifier with
provision for gain adjustment using two external resistors,
see Figure 4. The low noise and wide bandwidth allow
gains in excess of 20 dB across the audio passband to
be realized. The op amp drives a unity-gain filter consisting of an RC active pre-filter, followed by an eighth order
switched-capacitor bandpass filter clocked at 128 kHz. The
output of this filter directly drives the encoder sample-andhold circuit. The AID is of compressing type according to
/-L-Iaw (F3054) or A-law (F3057) coding conventions. A precision voltage reference is trimmed in manufacturing to
provide an input overload (tMAX) of nominally 2.5 V peak
(see table of Transmission Characteristics). The FSx frame
sync pulse controls the sampling of the filter output, and
then the successive-approximation encoding cycle begins.
The 8-bit code is then loaded into a buffer and shifted out
through Ox at the next FSx pulse. The total encoding delay will be approximately 165 /-LS (due to the transmit filter)
plus 125 /-LS (due to encoding delay), which total 290 /-Ls.

11-92

F3054/F3057

Any offset voltage due to the filters or comparator is cancelled by sign bit integration.
Receive Section
The receive section consists of an expanding DAC which
drives a fifth order switched-capacitor low pass filter
clocked at 128 kHz. The decoder is A-law (F3057) or
M-Iaw (F3054) and the 5th order low pass filter corrects
for the sin x/x attenuation due to the 8 kHz sample/hold.
The filter is then followed by a power amplifier capable of

driving a 600 il load to a level of 7.2 dBm. The receive
section is unity-gain. Upon the occurrence of FSA. the
data at the DA input is clocked in on the falling edge of
the next eight BClKA (BClKx> periods. At the end of the
decoder time slot. the decoding cycle begins. and 10 MS
later the decoder DAC output is updated. The total decoder delay is -10 MS (decoder update) plus 110 MS (filter
delay) plus 62.5 MS (Y2 frame). which gives approximately
180 MS.

Absolute Maximum Ratings
Vee to GND
Vss to GND
Voltage at any Analog Input
or Output

Voltage at any Digital Input
or Output

7.0 V
-7.0 V
Vee + 0.3 V to
Vss-0.3 V

Vcc+0.3 V to
GND-0.3 V
-25°C to +125°C
-65°C to + 150°C

Operating Temperature Range
Storage Temperature Range
lead Temperature
(Soldering. 10 seconds)

300°C

Electrical Characteristics Unless otherwise noted: Vee = 5.0 V ± 5%. Vaa - 5.0 V ± 5%. GND = 0 V. TA = O°C
to 70°C; typical characteristics specified at Vee = 5.0 V. Vaa = -5.0 V. TA = 25°C; all
signals are referenced to GND.
Symbol

Characteristic

Conditions

Operating Current
leeO

Power-Down Current

0.5

1.5

rnA

IssO

Power-Down Current

0.05

0.3

rnA

lee1

Active Current

6.0

9.0

rnA

Iss1

Active Current

6.0

9.0

rnA

0.6

V

Digital Interface
VIL

Input low Voltage

VIH

Input High Voltage

VOL

Output low Voltage

Ox. IL = 3.2 rnA
TSx. IL = 3.2 rnA. Open Drain

VOH

Output High Voltage

Ox. IH = -3.2 rnA

2.2

V
0.4
0.4

2.4

V
V
V

IlL

Input low Current

GND ..;; VIN ..;; VIL. All Digital Inputs

-10

10

IIH

Input High Current

VIH ";;VIN ";;Vee

-10

10

loz

Output Current in High
Impedance State

Ox. GND";; Vo";; Vee

-10

10

MA
MA
MA

200

nA

Analog Interface With Transmit Input Amplifier
IIXA

Input leakage Current

-2.5 V";;V";;+2.5 V.
VFxl + or VFxl-

-200

RIXA

Input Resistance

-2.5 V";;V";;+2.5 V.
VFxl + or VFxl-

10

RoXA

Output Resistance

Closed loop. Unity Gain

11-93

Mil
1.0

3.0

il

F3054/F3057

Electrical Characteristics (Cont.) Unless otherwise noted: Vee = 5.0 V ± 5%, Vss - 5.0 V ± 5%, GND = 0 V,
TA = DoC to 70°C; typical characteristics specified at Vee = 5.0 V, Vss = -5.0 V,
T A = 25°C; all signals are referenced to GND.
Symbol

Characteristic

Conditions

Min

Typ

Max

RLXA

load Resistance

GSx

CLXA

load Capacitance

GSx

VoXA

Output Dynamic Range

GSx, RL;;" 10 kn

±2.8

AvXA

Voltage Gain

VFxl + to GS x

5000

FuXA

Unity Gain Bandwidth

VosXA

Offset Voltage

-20

20

VCMXA

Common-Mode Voltage

-2.5

2.5.

10

kn
50

1.0

Unit

pF
V
VIV

2.0

MHz
mV
V

CMRRXA Common-Mode Rejection Ratio

60

dB

PSRRXA

60

dB

Power Supply Rejection Ratio

Analog Interface With Receive Amplifier Output

RORF

Output Resistance

Pin VFRO
VFRO= ±2.5 V

RLRF

load Resistance

CLRF

load Capacitance

VOSRO

Output DC Offset Voltage

1.0

3.0

n

500

pF

200

mV

600

n

-200

Timing Specifications

Frequency of Master Clocks

Depends on the Device Used and
the BClKR/ClKSEl Pin
MClKx and MClKR

tWMH

Width of Master Clock High

MClKx and MClKR

160

ns

tWML

Width of Master Clock low

MClKx and MClKR

160

ns

tRM

Rise Time of Master Clock

MClKx and MClKR

50

ns

tFM

Fall Time of Master Clock

MClKx and MClKR

50

ns

tSBFM

Set-Up Time from BClKx High
(and FSx in long Frame Sync
Mode) to MClKx Falling Edge

First Bit Clock after the leading
Edge of FSx

1/tpM

1.536
1.544
2.048

MHz
MHz
MHz

100

ns

tpB

Period of Bit Clock

tWBH

Width of Bit Clock High

tWBL

Width of Bit Clock low

tRB

Rise Time of Bit Clock

tFB

Fall Time of Bit Clock

tHBF

Holding Time from Bit Clock
low to Frame Sync

long Frame Only

0

ns

tHOLD

Holding Time from Bit Clock
High to Frame Sync

Short Frame Only

0

ns

485

= 2.2 V
= 0.6 V
tps = 488 ns
tpB = 488 ns
VIH

160

VIL

160

11-94

488

15,725

ns
ns
ns

50

ns

50

ns

F3054/F3057

± 5%, Vaa - 5.0 V ± 5%, GND = 0 V,
T A = O°C to 70°C; typical characteristics specified at Vee = 5.0 V, Vaa = -5.0 V,
T A = 25°C; all signals are referenced to GND.

Electrical Characteristics (Cont.) Unless otherwise noted: Vee = 5.0 V

Symbol

Characteristic

Conditions

Min

Typ

Max

80

Unit

tSFB

Set-Up Time from Frame Sync
to Bit Clock Low

Long Frame Only

tDBD

Delay Time from BCLKx High
to Data Valid

Load = 150 pF plus 2 LSTTL
Loads

tXDP

Delay Time to TSx Low

Load = 150 pF plus 2 LSTTL
Loads

tDZC

Delay Time from BCLKx Low to
Data Output Disabled

tDZF

Delay Time to Valid Data from
FSx or BCLKx, Whichever
Comes Later

tSDB

Set-Up Time from DR Valid to
BCLKR/X Low

50

ns

tHBD

Hold Time from BCLKR/X Low to
DR Invalid

50

ns

tSF

Set-Up time from FSX/R to
BCLKx/R Low

Short Frame Sync Pulse (1 or 2
Bit Clock Periods Long)(Note 1)

50

ns

tHF

Hold Time from BCLK)4!R Low
to FSX/R

Short Frame Sync Pulse (1 or 2
Bit Clock Periods Long)(Note 1)

100

ns

tHBFl

Hold Time from 3rd Period of
Bit Clock Low to Frame Sync
(FSx or FSR)

Long Frame Sync Pulse (from 3
to 8 Clock Periods Long)

100

ns

tWFL

Minimum Width of the Frame
Sync Pulse (Low Level)

64K Bitls Operating Mode

160

ns

CL = 0 pF to 150 pF

Note
1. For short frame sync timing, FSx and FSR must go high while their respective bH clocks are high.

11-95

ns
180

ns

140

ns

50

165

ns

20

165

ns

0

F3054/F3057

Figure 2 Timing Diagram Short Frame Sync Timing

BLCKX

FSx

-------«~~X\__

r---:~.
_IX'__........_ ....X'__-'X,....'-==:X'-__
~

Figure 3 Timing Diagram Long Frame Sync Timing

--IICLKx

FSx

IICLKa

~

-

11-96

F3054/F3057

Transmission Characteristics Unless otherwise specified: TA = O·G to 70·G, Vee = 5.0 V ± 5%,
Vee = -5.0 V ± 5%, GND = 0 V, f = 1.02 kHz, VIN = 0 dBmO, transmit input
amplifier connected for unity-gain non-inverting.
Symbol

Characteristic

Unit

Conditions

Amplitude Response

Absolute Levels

Nominal 0 dBmO Level is 4.0 dBm
(600 il)
o dBmO
F3054
F3057
Max Overload Level
F3054 (3.17 dBmO)
F3057 (3.14 dBmO)

tMAX

GXA

Transmit Gain, Absolute

TA = 25·C, Vce = 5 V, VBB = -5 V
Input at GSx = o dBmO at 1020 Hz

GXR

Transmit Gain,
Relative to GXA

1 = 16 Hz
1= 50 Hz
1 = 60 Hz
1 = 200 Hz
1 = 300 Hz - 3000 Hz
1 = 3300 Hz
1 = 3400 Hz
1= 4000 Hz
1 = 4600 Hz and Up, Measure
Response Irom 0 Hz to 4000 Hz

GXAT

Absolute Transmit Gain
Variation with Temperature

TA = O°C to 70·C

GXAV

Absolute Transmit Gain
Variation with Supply
Voltage

Vee = 5 V ± 5%, VBB = -5 V ± 5%

GXRL

Transmit Gain Variations
with Level

Sinusoidal Test Method
Relerence Level = -10 dBmO
VFxl + = -40 dBmO to +3 dBmO
VFxl + = -50 dBmO to -40 dBmO
VFxl + = -55 dBmO to -50 dBmO

1.2276
1.2276

Vrms
Vrms

2.501
2.492

VPK
VPK

-0.15

-1.8
-0.15
-0.35
-0.7

±0.1

0.15

dB

-40
-30
-26
-0.1
0.15
0.05
0
-14
-32

dB
dB
dB
dB
dB
dB
dB
dB
dB

dB
±0.05

dB

-0.2
-0.4
-1.2

0.2
0.4
1.2

dB
dB
dB

GRA

Receive Gain, Absolute

TA = 25·C, Vee = 5 V, VBB = -5 V
Input = Digital Code Sequence for
o dBmO Signal at 1020 Hz

-0.15

0.15

dB

GRR

Receive Gain, Relative to
GRA

1=0 Hz
1= 3300
1= 3400
1= 4000

-0.15
-0.35
-0.7

0.15
0.05
0
-14

dB
dB
dB
dB

GRAT

Absolute Receive Gain
Variation with Temperature

TA = O·C to 70·C

±0.1

dB

GRAV

Absolute Receive Gain
Variation with Supply
Voltage

Vee = 5 V ± 5%, VBB = -5 V ± 5%

±0.05

dB

to 3000 Hz
Hz
Hz
Hz

11-97

•

F3054/F3057

Transmission Characteristics (Cant.) Unless otherwise specified: TA = O°C to 70°C, Vee = 5.0 V ± 5%,
VBB = -5.0 V ± 5%, GND = 0 V, f = 1.02 kHz, VIN = 0 dBmO, transmit input
amplifier connected for unity-gain non-inverting.
Symbol
GRRL

VRO

Characteristic
Receive Gain Variations
with Level

Receive Output Drive
Level

Conditions

Min

Typ

Max

Unit

Sinusoidal Test Method; Relerence
Input PCM Code Corresponds to an
Ideally Encoded -10 dBmO Signal
PCM Level = -40 dBmO to + 3 dBmO
PCM Level = -50 dBmO to -40 dBmO
PCM Level = -55 dBmO to -50 dBmO

-0.2
-0.4
-1.2

0.2
0.4
1.2

dB
dB
dB

RL = 600 Q

-2.5

2.5

V

Envelope Delay Distortion With Frequency
DXA

Transmit Delay, Absolute

1 = 1600 Hz

290

315

IlS

DXR

Transmit Delay,
Relative to DXA

1=500 Hz-600 Hz
1 = 600 Hz - 800 Hz
1 = 800 Hz - 1000 Hz
1 = 1000 Hz -1600 Hz
1 = 1600 Hz - 2600 Hz
1 = 2600 Hz - 2800 Hz
1 = 2800 Hz - 3000 Hz

195
120
50
20
55
80
130

220
145
75
40
75
105
155

IlS
IlS
IlS
IlS
IlS
IlS
IlS

DRA

Receive Delay, Absolute

1= 1600 Hz

180

DRR

Receive Delay,
Relative to DRA

1=
1=
1=
1=
1=

500 Hz - 1000 Hz
1000 Hz-1600 Hz
1600 Hz - 2600 Hz
2600 Hz - 2800 Hz
2800 Hz - 3000 Hz

-40
-30

200

IlS

-25
-20
70
100
145

90
125
175

IlS
IlS
IlS
IlS
IlS

Noise
Nxe

Transmit Noise,
C Message Weighted

F3054 VFxl + = 0 V

12

15

dBrnCO

Nxp

Transmit Noise,
P Message Weighted

F3057 VFxl + = 0 V

-74

-69
(Note 1)

dBmOp

NRe

Receive Noise,
C Message Weighted

F3054 PCM Code
Equals Alternating Positive and
Negative Zero

8.0

11

dBrnCO

NRP

Receive Noise,
P Message Weighted

F3057 PCM Code Equals
Positive Zero

-82

-79

dBmOp

NRS

Noise, Single Frequency

1 = 0 kHz to 100 kHz, Loop Around
Measurement, VFxl + = 0 Vrms

-53

dBmO

PPSRx

Positive Power Supply
Rejection, Transmit

VFxl + = 0 Vrms
Vec = 5.0 Voe + 100 mVrms
1 = 0 kHz - 50 kHz

40

dBC

NPSRx

Negative Power Supply
Rejection, Transmit

VFxl + = 0 Vms,
VBB = -5.0 Voe + 100 mVrms
1 = 0 kHz - 50 kHz

40

dBC

11-98

F3054/F3057

Transmission Characteristics (Cont.) Unless otherwise specified: TA = O°C to 70°C, Vee = 5.0 V ± 5%,
VBB = -5.0 V ± 5%, GND = 0 V, f = 1.02 kHz, VIN = 0 dBmO, transmit input
amplifier connected for unity-gain non-inverting.
Symbol

PPSRR

NPSRR

SOS

Characteristic

Positive Power Supply
Rejection, Receive

Negative Power Supply
Rejection, Receive

Spurious Out-of-Band
Signals at the Channel
Output

Conditions

Min

Typ

Max

Unit

PCM Code Equals Positive Zero
Vcc = 5.0 Voc + 100 mVrms
f = 0 Hz - 4000 Hz
f = 4 kHz - 25 kHz
f = 25 kHz - 50 kHz

40
40
36

dBC
dB
dB

PCM Code Equals Positive Zero
VBB = -5.0 Voc + 100 mVrms
f = 0 Hz - 4000 Hz
f=4 kHz-25 kHz
f = 25 kHz - 50 kHz

40
40
36

dBC
dB
dB

Loop Around Measurement, 0 dBmO,
300 Hz - 3400 Hz Input Applied to
VFxl +, Measure Individual Image
Signals at VFRO
4600 Hz - 7600 Hz
7600 Hz - 8400 Hz
8400 Hz - 100,000 Hz

-32
-40
-32

dB
dB
dB

Distortion

STDx
STDR

Signal to Total Distortion
Transmit or Receive
Half-Channel

Sinusoidal Test Method Level
=3.0 dBmO
= 0 dBmO to -30 dBmO
= -40 dBmO XMT
RCV
= -55 dBmO XMT
RCV

SFDx

Single Frequency
Distortion, Transmit

-46

dB

SFDR

Single Frequency
Distortion, Receive

-46

dB

IMD

Intermodulation Distortion

Loop Around Measurement,
VFxl + = -4 dBmO to -21 dBmO,
Two Frequencies in the Range
300 Hz - 3400 Hz

-41

dB

Transmit to Receive
Crosstalk, 0 dBmO
Transmit Level

f = 300 Hz - 3400 Hz
DR = Steady PCM Code

-90

-75

dB

Receive to Transmit
Crosstalk, 0 dBmO
Receive Level

f = 300 Hz - 3400 Hz, VFxl = 0 V

-90

-70
(Note 2)

dB

33
36
29
30
14
15

dBC
dBC
dBC
dBC
dBC
dBC

Crosstalk

CTX_R

CTR_X

Notes
1. Measured by extrapolation from the distortion test result.

2. CT A.X is measured with a -40 dBmO activating signal applied at VFxl + .

11-99

F3054/F3057

Encoding Format At Ox
F3054
Il-Law

F3057
A-Law
(Includes Even Bit Inversion)

VIN (at GSx) = + Full-Scale

1

0

0

0

0

0

0

0

1

0

1

0

1

0

1

0

VIN (at GSx) = 0 V

1
0

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
0

1
1

0
0

1
1

0
0

1
1

0
0

1
1

0

0

0

0

0

0

0

0

0

0

1

0

1

0

1

0

VIN (at GSx) = -Full-Scale

[

Applications Information

T -Pad Attenuator

I
I

I

z1i

R2

I
I
I

iZ2"

l_____ _ ___ J

R1=Z1 ("'+')-2YZ1.Z2
N2_1
R2=2V Z1 ,Z2 (N~')

All ground connections to each device should meet at a
common pOint as close as possible to the GND pin. This
minimizes the interaction of ground return currents flowing
through a common bus impedance. 0.1 IlF supply decoupiing capacitors should be connected from this common
ground point to Vee and Vss.
For best performance, the ground point of each CODECI
FILTER on a card should be connected to a common
card ground in star formation, rather than via a ground
bus. This common ground point should be decoupled to
Vee and Vss with 10 IlF capacitors.

10

>--'11300"'!!Ir-...!.I_-..J-v;1",-_-...-_-"-,,,;,,-_-+1_-,1 :V2

Power Supplies
While the pins of the F3054 family are well protected
against electrical misuse, it is recommended that the standard CMOS practice be followed, ensuring that ground is
connected to the device before any other connections are
made. In applications where the printed circuit board may
be plugged into a "hot" socket with power and clocks
already present, an extra long ground pin in the connector
should be used.

Where N

soon

I
I
I

(~)
~-1

V

=

POWER IN

POWER OUT

and

s=~
Also:' Z= yZSC'

Zoe

=Impedance with shon circuit termination
and Zoe =Impedance with open circuit termination

Where Zsc

1T-Pad Attenuator

,-----------,
R3
I

300!! I

110

1:V2
W
">--'lNY-Z1-+!--R4 Ir-- 10Kn

11-101

IlAV22
1200 bps
Full Duplex Modem

I=AIRCHILO
A Schlumberger Company

Advance Information May 1986

Advanced Signal Processing Division

Description

Connection Diagram
28-Lead Dip
(Top View)

The pAV22 1200 bps full duplex modes I.C. is fabricated
in Fairchild's advanced Double-Poly Silicon-Gate CMOS
process. The monolithic I.C. performs all the signal processing functions required of a CCITT V.22, alternative 8
compatible modem. Handshaking protocols, dialing control
and mode control functions can be handled by a general
purpose, single chip J.lC. The pAV22, J.lC and several components to perform the telephone line interface and control provide a high performance, cost effective and
ultra-low power solution for V.22-compatible modem designs.

SLIM

The modem chip performs the modulation, demodulation,
filtering and certain control and self-test functions required
for a CCITT V.22-compatible modem, as well as additional
enhancements. 80th 550 Hz and 1800 Hz guard tones
and notch filters and DTMF tone generator are on-chip.
Switched-capacitor filters provide channel isolation, spectral
shaping and fixed compromise equalization. A novel
switched-capacitor modulator and a digital coherent demodulator provide 1200 DPSK operation.

Voo

LIM

27

Vss

RXIN

26

AGNO

DOT

25

TXO

ETC

24

alA.

SYNC

23

TXSQ

EDET

22

SCT

HS

21

MOD1

SCRM

20

MOD2

TXD

10

19

TEST

XTL2

11

18

DGND

XTL1

17

HSK2

SCR

16

HSK1

RXD

15

RLST

The receive filter and energy detector may be configured
for call progress tone detection (dialtone, busy, ringback,
voice) providing the front end for a smart dialer.

Order Information
• Functions as a CCITT V.22-compatible modem
• Interfaces to Single Chip J.lC Which Handles
Handshaking Protocols and Mode Control Functions
• DTMF Tone Generation and Call Progress Tone
Detection for Smart Dialer Applications
• 1300 Hz Calling Tone Generator On Chip
• Pin and function compatible with the J.lA212A
• On Chip Oscillator Uses 3.6864 MHz Crystal
• Few External Components Required
• Operates from +5 and -5 Volt Supplies
• Low Operating Power: 35 mW Typical
• 550 Hz and 1200 Hz guard tones and notch filters
are on-chip

Device Code
pAV22DC
pAV22PC
J.lAV22QC
*Consult Factory

Absolute Maximum Ratings
Voo to DGND or AGND
Vss to DGND or AGND
Voltage at any Input
Voltage at any Digital Output
Voltage at any Analog Output
Operating Temperature Range
Storage Temperature Range
Lead Temperature (soldering, 10
seconds)

7.0 V
-7.0 V
Voo + 0.3 to
Vss -0.3 V
Voo + 0.3 V to
DGND -0.3V
Voo + 0.3 V to
Vss -0.3 V
O°C to 70°C
-65°C to + 150°C

11-102

Package Code
FM

Package Description
Ceramic DIP
Molded DIP
Molded Surface Mount

MA212A· MA212AT
1200/300 bps
Full Duplex Modem

FAIRCHILD
A Schlumberger Company

Advanced Signal Processing Division

Description

Connection Diagram
28-Lead Dip
(Top View)

The IlA212A and the IlA212AT 1200 bps modem circuits
are fabricated in Fairchild's advanced Double-Poly SiliconGate CMOS process. Either monolithic chip performs all
signal processing functions required for a Bell 212A/1 03
compatible modem. Dialing, handshaking protocols, and
mode control functions can be provided by a general purpose single-chip IlC. The IlA212A or IlA212AT and IlC;
along with several components to handle the control and
telephone line interfaces, provide a high performance,
cost-effective solution for an intelligent Bell 212A-compatible modem design.

SUM

Either modem chip performs the modulation, demodulation,
filtering and certain control and self-test functions required
for a Bell 212A-compatible modem, as well as additional
functional enhancements. Switched capacitor filters provide
channel isolation, spectral shaping and fixed compromise
equalization for both high and low speed modes.
A novel switched-capacitor modulator and a digital coherent demodulator provide 1200 bps QPSK operation while a
separate digital FSK modulator and demodulator handle
the 0-300 bps requirement. The /lA212AT includes an integral DTMF tone generator on-chip. The IlA212A without
DTMF generator, is cost optimal for answer-only applications or if an external dialer is present. The IlA212A and
J.!A212AT are otherwise pin and firmware compatible. Existing IlA212A applications can be easily upgraded to the
J.!A212AT with minor software changes (see technical bulletin M-1 appended.) The receive filter and energy detector
may be configured for call progress tone detection (dialtone, busy, ringback, voice), providing the front end for a
smart dialer on either the J.!A212A or J.!A212AT.
• Functions as 212A and 103 Compatible Modem
• Performs all Signal Processing Functions
• Interfaces to Single Chip IlC Which Handles
Handshaking Protocols and Mode Control Functions
• DTMF Tone Generation (!lA212AT)
• IlA212A is Pin and Firmware Compatible with the
!lA212AT for Easy Upgrade
• Call Progress Tone Detection for Smart Dialer
Applications
• On Chip OSCillator Uses Standard 3.6864 MHz Crystal
• Few External Components Required
• Industrial Temperature Range Option (-40°C to
+85°C)
• Operates from +5 and -5 Volt Supplies
• Low Operating Power: 35 mW Typical
• 28-Lead Ceramic DIP, 28-Lead Plastic DIP, and
28-Lead Surface Mount Packages
• A IlA212A DeSigner's Kit Is Available

Voo

LIM

27

Vss

RXIN

26

AGNO

DOT

25

TXO

ETC

24

oiA

SYNC

23

TXSQ

EOET

22

SCT

HS

21

MOD1

SCRM

20

MOO2

TXO

10

XTL2

11

XTL1

12

17

HSK2

SCR

13

16

HSK1

RXO

14

15

RLST

19

TEST

DGNO

Order Information
Type

Temperature
Range

Code Package

IlA212ATDC o to +70°C
IlA212ATDV -40°C to +85°C
J.!A212ATPC o to +70°C
J.!A212ATQC o to +70°C
IlA212ADC
IlA212ADV
IlA212APC

o to + 70°C
-40°C to + 85°C
o to + 70°C

FM 28-Lead Ceramic DIP
FM 28-Lead Ceramic DIP
28-Lead Molded DIP
28-Lead Molded
Surface Mount
FM 28-Lead Ceramic DIP
FM 28-Lead Ceramic DIP
28-Lead Molded DIP

'Consult Factory

Absolute Maximum Ratings
VDD to DGND or AGND
Vss to DGND or AGND
Voltage at any Input
Voltage at any Digital Output
Voltage at any Analog Output
Operating Temperature Range
Storage Temperature Range
Lead Temperature (soldering, 10 s)

11-103

7.0 V
-7.0 V
VDD + 0.3 to
Vss -0.3 V
VDD + 0.3 V to
DGND -0.3 V
VDD + 0.3 V to
Vss -0.3 V
O°C to 70°C
-65°C to + 150°C
300°C

•

J.lA212A • J.lA212AT

Pin No.
28

Pin Description
Positive power supply VDD = + 5 V
VDD

26

Pin No.
21
20

Pin Description
MOD1
Selects character length (ASYNC) or
TX clock (SYNC). In ASYNC mode,
MOD2
selects 8, 9, 10 or 11 bit character
length; in SYNC mode, selects internal, external or recovered RCV
clock as XMTR data clock source.
Active only if HS = 1. (See Table 1)
(Note)

AGND

Analog Ground

18

DGND

Digital Ground

27

Vss

Negative power supply Vss = -5 V

3

RXIN

Line signal to modem. From active
or passive Hybrid output.

25

TXO

Line signal from modem. To active
or passive Hybrid input.

10

TXD

XMIT Data. Serial data from host.
Disconnected when in digital loop.

24

O/A

Orig/answer Mode Select. Assigns
channels to XMTRS/RCVRS.
1 = Originate mode, 0 = Answer
mode. (Note)

14

RXD

RCVD Data. Serial data to host, Intern ally clamped to mark (= 1)
when modem is in digital loop or
EDET is inactive (= 1).

23

TXSQ

Squelch XMTRS in date mode.
XMTRS off; 1 = turns on
XMTR selected by HS pin.
iJA212AT: In dialer mode, 0 = DTMF
generator OFF/call progress detection. 1 = DTMF generator ON.
iJA212A: In dialer mode call progress detection only. TXSQ must be
set to O.

22

SCT

Serial Clock Transmit. 1200 Hz
clock providing XMTR timing in
SYNC mode. SCT source (INT.,
EXT., SLAVE) selected by MOD1,
MOD2 pins. TXD changes on negative edge, sampled on positive
edge. Internal clock provided in
ASYNC mode.

5

ETC

9

SCRM

Scrambler. "0" disables scrambler
and descrambler for testing purposes.

12
11

XTL1
XTL2

Frequency control. 3.6864 MHz
XTAL oscillator, operating parallel
mode. Provides timing, sample
clocks and L.O.'s.

External Transmit Clock. 1200 Hz
external clock providing XMTR timing in SYNC mode, selected by
MOD1, MOD2 pins. TXD changes
on negative edge, sampled on positive edge. Provided on SCT pin if
selected.

13

SCR

Serial Clock Receive. In SYNC
mode, 1200 Hz bit clock recovered
from RCVD Signal. May be pin-selected (MOD1, MOD2) as local
transmit clock (SLAVE mode); provided on SCT pin if selected. RXD
changes on negative edge, sampled
on positive edge. Undefined in ASYNC mode.

7

EDET

Energy Detect. In data mode,
EDET = 0 if valid signal above
threshold is present for 155 ± 50
ms, EDET = 1 if signal below
threshold for > 17 ± 7 ms. In dialer
mode, follows on/off variations of
call-progress tones, when TXSQ = 0

o = Both

8

HS

Selects modem speed. 1 selects
1200 bps. 0 selects 300 bps. (Note)

6

SYNC

Selects CHAR ASYNC or BIT SYNC
mode. 1 = ASYNC mode: enables
XMIT & RCV buffers, sets character
length according to MOD1, MOD2
pins. 0 = SYNC mode: disables buffers, selects TX clock source according to MOD1, MOD2 pins.
Active only if HS = 1.

Note
For IlA212AT in dialer mode, a/A, HS, MOD1 and MOD2 select the DTMF
to be generated (see Table 2).

11-104

J-LA212A • J-LA212AT

Pin No.
15

2

Pin Description
RLST
Remote Loop Status, used in RDL
mode. Responding modem: sets
RLST = 0 upon receipt of unscrambled mark for 154 - 231 ms. initiating modem: asserts RLST = 0 upon
receipt of scrambled mark for
231 - 308 ms. (See Table 3).
SLIM

Soft Limiter Output. Connect external 0.033 J.lF capacitor here.

LIM

Comparator input. Connected external 0.033 J.lF capacitor here.

4

19
16
17

by MOD1 and MOD2 internal, external or derived from the
recovered received data. A scrambler preceeds encoding
to ensure that the line spectrum is sufficiently distributed
to avoid interference with the in-band supervisory singlefrequency signaling system employed in most Bell System
toll trunks. The randomized spectrum also facilitates timing
recovery in the receiver. The scrambler is characterized by
the following recursive equation:
Yi = Xi EB Yi-14 EB Yi-17

If HS = 1, forces a 1200 bps dotting
pattern on the transmit path, for use
when programming the 212AT high
speed self-test mode. Both RCV
and XMIT paths are in SYNC mode
during dotting transmission, overriding the setting of SYNC, and of
HSK1, HSK2. If HS = 0, DOT forces
a 155 bps dotting pattern for use in
lowspeed self-test mode. 1 = Normal
Path, 0 = Dotting.
TEST
HSK1,
HSK2

When the TEST pin is inactive
(high), HSK1 and HSK2 select one
of four transmit conditions, for use
when programming the Handshake
sequences. (See Table 1). When
TEST is active (low), the HSK1 and
HSK2 pins select one of three test
conditions, or, alternatively, the dialer mode used for call progress tone
detection and DTMF tone generation, J.lA212AT only.

where Xi is the scrambler input bit at time i. Yi is the
scrambler output bit at time i and EB denotes the XOR
operation.
212A-type modems achieve full-duplex 1200 bps operation
by encoding transmitted data by bit-pairs (dibits), thereby
halving the apparent data rate. The resultant reduced
spectral width allows both frequency channels to coexist in
a limited bandwidth telephone channel with practical levels
of filtering. The four unique dibits thus obtained are graycoded and differentially phase modulated onto a carrier at
either 1200 Hz (originate mode) or 2400 Hz (answer
mode). Each dibit is encoded as a phase change relative
to the phase of the preceding signal dibit element:
Dibit

Phase Shift (deg)

00
01

+90

11

-90
180

10

Functional Description*
Refer to Figure 1.

Transmitter
The transmitter consists of high-speed and low-speed modulators, a transmit buffer and scrambler, and a transmit
filter and line driver. In high-speed asynchronous mode,
transmit data from the Data Terminal Equipment enters the
transmit buffer, which synchronizes the data to the internal
1200 bps clock. Data which is underspeed relative to 1200
bps periodically has the last stop bit sampled twice resulting in an added stop bit. Similarly, overspeed input data
periodically has unsampled - and therefore deleted - stop
bits. The MOD1 and MOD2 pins choose 8, 9, 10 or 11 bit
character lengths. In synchronous mode the transmit buffer
is disabled. The transmitter clock source may be chosen

o

At the receiver, the dibits are decoded and the bits are
reassembled in the correct sequence. The left-hand digit
of the dibit is the one occurring first in the data stream as
it enters the modulator after the scrambler. The lowspeed
transmitter generates phase-coherent FSK using one of
two programmable tone generators. Answer mode mark
(2225 Hz) is also utilized as answer tone in both low and
high speed operation.
In Dialer mode, both tone generators are employed to
generate DTMF tone pairs. The summed modulator outputs
drive a lowpass filter which serves as a fixed compromise
amplitude and delay equalizer for the phone line and reduces output harmonic energy well below maximum specified levels. The filter output drives an output buffer
amplifier with low output impedance. The buffer provides
700 mVrms in data mode, for a nominal -9 dBm level at
the line, assuming 2 dB loss in the data access arrangement.

* For additional information contact sales office for Applications Note ASP-1
"Theory of Operation-IlA212A" and Technical Bulletins M1, M3 & M4.

11-105

•

JlA212A· JlA212AT

mode the descrambler output is identically the received
data, while in asynchronous mode the descrambler output
stream is selectively processed by the receive buffer. Underspeed data presented to the transmitting modem passes essentially unchanged through the receive buffer.
Overspeed data, which had stop bits deleted at the transmitter, has those stop bits reinserted by the receive buffer.
(Generally, stop bit lengths will be elastic). The receive
buffer output is then presented to the receive data pin
(RXD) at a nominal intracharacter rate of 1219.05 bps.

DTMF Tone Generation
The ~212AT includes on-chip DTMF generation, using
two programmable tone generators. Dialer mode must be
selected on TEST, HSK1 and HSK2 for DTMF dialing. The
a/A, HS, MOD1 and MOD2 pins are used to select the
required digit according to the encoding scheme shown in
Table 2, and the tones are turned on and off by the logic
level on TXSO. The generated tones meet the applicable
CCITT and EIA requirement for tone dialing. DTMF output
levels are 1.0 Vrms (low group) and 1.25 Vrms (high
group).
Receiver
The received signal from the line-connection circuitry passes through a lowpass filter which performs anti-aliasing
and compromise amplitude and delay equalization of the
incoming signal. Depending upon mode selection (originate/answer) the following mixer either passes or down
converts the signal to the 1200 Hz bandpass filter. In analog loopback mode, the receiver originate and answer
mode assignments are inverted, which forces the receiver
to operate in the transmitter frequency band. The 1200 Hz
bandpass filter passes the desired received signal while
attenuating the adjacent transmitted signal component reflected from the line (talker echo). The chosen passband
shape converts the spectrum of the received high-speed
signal to 100% raised cosine to minimize intersymbol interference in the recovered data. Following the filter is a soft
limiter and a signal energy detector. An external capacitor
is used to eliminate offset between the soft limiter output
and the following limiter.
The energy detector provides a digital indication that energy is present within the filter passband at a level above a
preset threshold. Approximately 3 dB of hysteresis is provided between on and off levels to stabilize the detector
output. In dialer mode, the detector output is used to provide logic level indication of the presence of call progress
tones.
The limiter output drives the OPSK demodulator and the
carrier and clock recovery phase-locked loops. The low
speed FSK demodulator shares part of the clock recovery
loop. The OPSK demodulator and carrier loop form a digital coherent detector. This technique offers a 2 dB advantage in error performance compared to a differential
demodulator. The demodulator output are in-phase (I) and
quadrature (0) binary Signals which together represent the
recovered dibit stream. The dibit decoder circuit utilizes the
recovered clock signal to convert this dibit stream to serial
data at 1200 bps.
The recovered bit stream is then descrambled, using the
inverse of the transmit scrambler algorithm. In synchronous

Master Clock/Oscillator/Divider Chain
The I.lA212A or I.lA212AT may be controlled by either a
quartz crystal operating in parallel mode or by an external
signal source at 3.6864 MHz. The crystal should be connected between XTL 1 and XTL2 pins, with a 30 pF capacitor from each pin to digital ground (see Figure 1).
Crystal requirements; Rs < 150 ohms, CL = 18 pF, parallel
mode, tolerance (accuracy, temp, aging) less than ± 75
ppm. An external TTL drive may be applied to the XTL2
pin, with XTL 1 grounded. Internal divider chains provide
the timing Signals required for modulation, demodulation,
filtering, buffering, encoding/decoding, energy detection and
remote digital loopback. Timing for line connect and disconnect sequences (handshaking) derives from the host
controller, ensuring maximum applications flexibility.

Control Considerations
The host controller, whether a dedicated microcontroller or
a digital interface, controls the ~212A or I.lA212AT as
well as the line connect circuit and other IC's. On-Chip
timing and logiC circuitry has been specifically designed to
simplify the development of control firmware.

Operating and Test Modes
Table 1 indicates the operating and test modes defined by
the eight control pins. The ~212A and ~212AT (together with the host controller) supports analog loopback, and
local and remote digital loopback modes. Analog loopback
forces the receiver to the transmitter channel. The controller forces the line control circuit on-hook but continues to
monitor the ring indicator. This mode is available for lowspeed, highspeed synchronous and highspeed asynchronous operation. In local digital loop, the modem I.C.
isolates the interface, slaves the transmit clock to SCR
(high-speed mode), and loops received data back to the
transmitter. In remote digital loop, local digital loop is initiated in the far-end modem by request of the near-end
modem, if the far-end modem is so enabled. The I.lA212A
and I.lA212AT includes the handshake sequences required
for this mode; the controller merely monitors RLST and
controls remote loopback according to Table 3. Remote
loop is only available in high-speed mode.

11-106

Figure 1 Block Diagram
.0331JF
SLIM I

EOET

SCR

LIM

RECEIVE FILTER

,-------------------------------------1

:
I

RXIN

:

BALANCED
ANTI_ALIAS

I

I

~~:

r:::;:-l

r'\

I AANnp.&~~ I :

1_,

I.

SCRM

3.6864 MHz

30"

~

RLST

D

30pF T

1---+--_--+1->

XTL1

(OGNO)

~

0

.....

RXC

ETC
SCT

•

I

,.

TXO

AGNO DGND

Voo

Txsa

Vss

'I'A212AT only

•

O/A

HSKl

HSK2

TEST

i.

DOT

MOD1 MOD2 SYNC

HS

TXO

JiA212A· JiA212AT

Answer Tone In this mode, 2225 Hz answer tone is
transmitted provided TXSQ is inactive high
( = 1). Receive speed is selected as normal
with the HS pin. This permits the speed of
the originating modem to be determined
while answer tone is continuously
transmitted.
Force
Continuous
Mark

Disconnects TXD pin from the transmitter
and forces the signal internally to a mark
(logic 1).

Force
Continuous
Space

Disconnects TXD pin from the transmitter
and forces the signal internally to a space
(logic 0).

Analog Loop Receiver is forced to the transmitter
channel. With modem on-hook
(disconnected from line) signal from TXO is
reflected through hybrid to RXIN.
Local Digital
Loop

Internally connects RXD to TXD and SCR
to SCT. Transmitted data (TXD) and clock
(ETC) are ignored. SCR and SCT are
provided. RXD is forced to 1.

Remote
Digital
Loop

Initiating modem: If RDL is initiated
(TEST = 0, HSK1 = 1, HSK2 = 0), TXD is
isolated, RXD is clamped to a 1 and
unscrambled mark is transmitted. When
high speed scrambled dotting pattern is
detected, scrambled mark is transmitted. At
this point, upon receipt of scrambled mark,
RLST is set to O.
Responding modem: Upon receipt of
unscrambled mark when in data mode
(TEST = HSK1 = HSK2 = 1), RLST is set to
O. Upon detecting this the controller
responds by setting TEST and HSK2 to 0,
and the modem I.e. isolates TXD, clamps
RXD to 1, and transmits a 1200 bps
scrambled dotting pattern. At this pOint,
upon receipt of a scrambled mark signal,
the modem I.C. internally loops RCVR data
and clock to the XMTR, and sets RLST
back to 1. (See Table 3)

Dialer Mode

The IlA212AT provides DTMF tone
generation and energy indication at EDET
pin to identify call progress tones, i.e. dial,
busy and ringback. The DTMF digit is
selected by the levels on 0/1\, HS. MOD1
and MOD2 according to Table 2. Tone
generation is turned on and off by the
level on TXSQ. 1 = on, 0 = off. The
J.lA212A provides call progress indication
only. TXSQ must be set to O.

11-108

J-lA212A· J-lA212AT

Electrical Characteristics Unless otherwise noted: VDD = 5.0 V ± 5%, Vss = -5.0 V ± 5%, DGND = AGND = 0
V, TA = O°C to 70°C, typical characteristics specified at VDD = 5.0 V, Vss = -5.0 V,
TA = 25°C; all digital signals are referenced to DGND, all analog signals are
referenced to AGND.
Table 1 Operating and Test Modes
DOT
0
1
1
1
1
1
1
1
1
1
1

HS

SYNC

-

X

-

1
1
1
1
1
1
1

-

-

-

1
1
1
1
1

1
0
X
1

MOD1

X

MOD2

TEST

HSK1

HSK2

X

1
1
1
1
1
1
1
1
1
1
1
0
0
0

-

1
0
0
1
1
1
1
1
1
1
1
0
1
1

1
0
1
0
1
1
1
1
1
1
1
1
1
0

-

-

0
0

0
1

0
0

-

-

-

1
1
1
1
0
0
0

0
0
1
1
1
1
0

0
1
1
0
1
0
1

-

-

-

-

X
X
X
X

X
X
X
X

X
X
X
X

-

-

-

Key:
SCT - TX Buffer and PSK Modulator Clock
SCR - Receive Clock
ETC - External Clock Input

SCT

Dotting Pattern (155 or 1200 bps)
Answer Tone
Force Continuous Mark
Force Continuous Space
ASYNC, 8 Bit
ASYNC, 9 Bit
ASYNC, 10 Bit
ASYNC, 11 Bit
SYNC, Internal
SYNC, Slave
SYNC, External
Analog Loop
Local Digital Loop
Response to Far End Request for RDL
Low Speed Mode
Dialer Mode, Note 1
Remote Digital Loop Initiate

INT
X
X
X
INT
INT
INT
INT
INT
SCR
ETC
ETC
SCR
SCR
X
X
X

INT - Internal 1200 Hz Clock
x - Don't Care
- - Set as appropriate for desired operating condition.

Table 2 DTMF Encoding 2 (J.LA212AT only)

O/A

HS

MOD1

MOD2

DTMF Digit

0
0
0
0
0
0
0
0

0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1

0
0

0
1
0
1
0
1
0
1
0
1
0
1
0
1
0

0
1
2
3

1
0
0
1
1
0
0
1
1
0
0
1
1

Description

4
5
6
7
8
9

#
A
B
C

0

Notes
1. DTMF digit is selected according to Table 2 for the jlI\212AT. 'i'XSQ
enables the tone generator: 1 = ON, 0 = OFF. TXSQ = 0 allows energy
detection of call progress tone in both the jlI\212A and jlI\212AT.
2. For DTMF to operate dialer mode must be asserted. Trn, HSKI and
HSK2 must be = O.

11-109

JIA212A • JIA212AT

Table 3 Remote Digital Loopback (RDL) Command Sequences
Modem Action

Controller Action

TEST

HSK1

HSK2

RLST

1

1

1

1

0

1

0

1

0

1

0

0

1

1

1

0

0

1

0

0

0

1

0

1

1
1

1
1

l'
1

0
1

Data Mode
Initiate RDL:
Disable scrambler
Disconnect TXD
Force 1 on RXD
Transmit unscrambled mark (U.M.)

"INITIATE RDL"

Recognize Dotting for 231 - 308 ms
Enable scrambler
Transmit scrambled mark (S.M.)
Recognize S.M. for 231 - 308 ms
Connect TXD
Unclamp RXD
"RDL ESTABLISHED"
Response to far end request:
U.M. recognized for 154 - 231 ms
"RDL REQUESTED"

"RDL RESPONSE OK"

Disconnect TXD
Force 1 on RXD
Force Sync Slave Mode
Transmit Dotting
S.M. recognized
Internally loop Receiver to Transmitter
"RDL ESTABLISHED"
Terminate RDL:
Reset to Data Mode
"TEST

~

HSKl

~

HSK2

~

1

TXSQ active 80 ms

may be asserted at anytime after

'"RDL ESTABLISHED··

and before terminating.

Energy Detector
Symbol

Characteristic

Condition

Vthon
Vthoff

OfflOn Threshold
OnlOff Threshold

Voltage Level at RXIN
Pin In Data Mode

ton
toff

Energy Detect Time
Data Mode
Loss of Energy Detect Time

at EDET Pin

Vthon
Vthon
Vthon

Dialer Mode
OfflOn Threshold Dialtone
OfflOn Threshold Busy/Ringback

ton

Energy Detect
(Detecting Call
Energy Detect
(Detecting Call

toff

in the Dialer Mode
Progress Tones)
in the Dialer Mode
Progress Tones)

Min

11-110

Max

6.5
5.2
105
10

Voltage Level at RXIN
Pin in Dialer Mode
At EDET Pin

Typ

155
17

Units
mV rms

205
24

10
4.6

ms
ms
mVrms

25

30

35

ms

30

36

42

ms

J.LA212A • J.LA212AT

System Performance
Symbol
BER

Characteristic

Condition

Min

= -30 dBm
= -44 dBm

Bit Error Rate: SNR required for
BER = 10- 5 @ 1200 bps on a
3002-CO line, with 5 kHz white noise
referred to 3 KHz. Figures shown are
for originate mode. (Note: Pline values
assume 4 dB net gain from line to
RXIN)

Pline
Pline

Telegraph Distortion

Back-to-Back, 300 bps
(Low Speed Mode)

Typ

Max

Units

13
14

dB
dB

10

% Peak

Figure 2 Bit Error Rate vs Signal-to-Noise Ratio
10-2 , . . - - - - , - - - , - - - , - - - , - - - , - - - ,

I
PIN :::;:-30dBm

I
10- 3 t----1~r__1~\-1-_t-_t-_t

w

!;;
a:
a:

~

10-41--t-----1/--'\-/t--\-t---t----I

ill

...iii
10-' f--j---t-+t-+--'ct--\-t----I

10-' ' - - - - - - - , ' - - ' - - - - , . ' - - : ' ' - - ' - - - '

'6

4
SIGNAL TO NOISE RATIO (SNR) -

dB

Note
SER measured in synchronous mode, using an AEA S3A channel simulator.

Analog Line Interface
Symbol
Vline
Vlenh
Vlenl
VTXSQ
Pext
Vee

Characteristic
Output Level at TXO:
Output Level at TXO:
Output Level at TXO:
Output level at TXO:
Extraneous frequency
DTMF power.
Output Offset at TXO

Condition

Data Mode
DTMF HIGH Group
DTMF LOW Group
output relative to

Min

Typ

Max

Units

-20

Vrms
Vrms
Vrms
mVrms
dB

0.7
1.1
0.9
0.5
Any DTMF digit

5.0

11-111

mV

/-LA212A· /-LA212AT

Masterclock Input
Symbol

Characteristic

Fclock
Tolclk
Vexth

Clock Frequency
Clock Frequency Tolerance
External Clock Input HIGH

Vextl

External Clock Input LOW

Condition

Min

Typ

Max

3.6864
-.01
4.5

XTL2 driven and XTL 1
grounded
XTL2 driven and XTL 1
grounded

Units

MHz
+.01

%

V
0.5

V

Digital Interface
Symbol

Characteristic

VIL
VIH
VOL
VOH
IL

Input Voltage LOW
Input Voltage HIGH
Output Voltage LOW
Output Voltage HIGH
Input Current LOW

IIH
100

Input Current HIGH
Operating Current

Iss

Operating Current

Condition

Min

Typ

Max

0.6
2.2
IL =2.0 mA
IL =-2.0 mA
DGND ,,;; VIN ,,;; VIL.
All Digital Inputs
VIH ,,;; VIN ,,;; Voo
Voo = 5.0 V
No Analog Signals
Vss = -5.0 V
No Analog Signals

0.6
3.0
-100
-50

Units

V
V
V
V
/lA

4.3

10

p.A
mA

-2.7

-5.0

mA

Transmit Buffer (Character Asynchronous Mode)
Symbol

Characteristic

Ltxchar

Input Character Length

Rtxchar
Lbreak

Intracharacter Signaling Rate
Input Break Sequence Length

Condition

Start bit + data
bits + stop bit
At TXD pin
At TXD pin

11-112

Min

Typ

8
1170
23

1200

Max

Units

11

bits

1212

bps
bits

J.lA212A • J.lA212AT

Receive Buffer (Character Asynchronous Mode) Carrier Frequencies and Signaling Rates
Symbol

Characteristic

Condition

Min

Typ

Max

Units

Rtxehar
Fexr (ORIG)
Fexr (ANS)
Baud

Intracharacter Signaling Rate
HS Cxr Freq. (Orig. Mode)
HS Cxr Freq. (Ans. Mode)
Dibit Rate

At RXD pin
Unmodulated Carrier
Unmodulated Carrier
High Speed Mode

1219.05
1200
2400
600

bps
Hz
Hz
Baud

Fmark (ORIG)
Fspaee (ORIG)

Mark Frequency Originate Mode (1270)
Space Frequency Originate Mode (1070)

Low Speed Mode
Low Speed Mode

1269.42
1066.67

Hz
Hz

Fmark (ANS)

Low Speed Mode

2226.09

Hz

Fspace (ANS)

Mark Frequency
Answer Mode/Answer Tone (2225)
Space Frequency Answer Mode (2025)

Low Speed Mode

2021.05

Hz

Ftonl

DTMF Low Frequency Tone Group

Dialer Mode

698.2
771.9
853.3
942.3

Hz

Ftonh

DTMF High Frequency Tone Group

Dialer Mode

1209.4
1335.7
1476.9
1634.0

Hz

Tol

Tolerance of all above
Frequencies/Data Rates
Data Rate

Low Speed Mode

bps

11-113

-0.01
0

+0.01
300

%

bps

•

DTMF Dialing, the
J,lA212A and J,lA212AT

FAIRCHILD
A Schlumberger Company

Technical Bulletin M-1

April 1986

Garry Shapiro, Advanced Signal Processing Division

The /lA212A-the world's first and lowest power 1200/
300 b/s single-chip modem - will be joined, at about midyear, by the /lA212AT. The second in a series of Fairchild
modem IC products, the /lA212AT is pin-compatible with
the /lA212A with the addition of an integral DTMF tone
generator. This Bulletin summarizes factors to be considered in current /lA212A-based modem designs for migration to the /lA212AT.

DTMF Access
The /lA212AT DTMF tone generator is accessed via the
Dialer mode, which is asserted by setting
TEST = HSK1 = HSK2 = O. In the /lA212A, Dialer mode offers only call-progress tone detection, but, in the
/lA212AT, both call-progress tone detection and DTMF
tone generation are provided. The DTMF output is enabled
by TXSQ = 1 and disabled by TXSQ = 0; EDET should be
ignored when DTMF tones are being generated. See
Table 1.1.
Table 1.1. Dialer Mode
TXSQ

J,tA212A

/lA212AT

o

Call-progress
Call-progress

Call-progress
DTMF generation

DTMF Tone-Pair Selection
The /lA212AT employs 4 pins (O/A, HS, MOD1, and
MOD2) to generate 1 each of the 4 LOW and 4 HIGH
group DTMF tones; nominal tone frequencies are shown in
Table 1.2. Table 1.3 displays the DTMF Encoding matrix.

Therefore, if Data mode output power to a 600 n load is
-9 dBm, tone output power is -7 dBm (Low group) and
-5 dBm (HIGH group). These levels, as well as harmonic
and out-of-band energy values conform to the requirements of EIA RS-496.

p.A212AT Design-In Considerations
The /lA212A and /lA212AT are pin-compatible and functionally identical for all modes except DTMF tone generation. The /lA212AT can therefore replace the /lA212A in
all current and future designs, provided that the following
considerations are observed:
• Ensure Proper Control Of The TXSQ Pin When In
Dialer Mode. See Table 1.1.
• Provide /lController Lines For The a/A, HS, MOD1
And MOD2 Pins, if any are not presently provided.
• Plan For Replacement Of The Present Tone Dialing
Scheme. Current /lA212A designs with DTMF dialing
often employ a dialer chip or a DAC. Ensure that
downstream removal of such parts will not affect the
design.
• Allow ROM Space. Since DTMF control code replaces
the previous scheme, this should not usually be a
problem.
Table 1.3 DTMF Encoding Matrix
(TEST HSK1 HSK2 0, TXSQ 1)

=

=

=

=

a/A

HIS

MOD1

MOD2

DTMF Digit

0

0

0
0

0
1
0
1

0
1
2
3

0
0

0
1
0
1

4
5
6
7

0
0

0
1
0
1

8
9

Table 1.2 Tone Frequencies (Hz)
Low Group
F (Nom.)
697
770
852
941

High Group

F (Act.)

F (Nom.)

698.2
771.9
853.3
942.3

1209
1336
1477
1633

0

F (Act.)
1209.4
1335.7
1476.9
1634.0

0

Output Characteristics
0
0

Table 1.4 summarizes nominal output levels at the TXO
pin for Data mode, and for the DTMF Low and High tone
groups. Absolute values and values relative to Data mode
are shown.

Mode
Data
DTMF Low
DTMF High

Vtxo(rms)

Relative (dB)

0.70
0.88
1.11

+2

o
+4

11-114

0
1
0

#
A
B
C
D

FAIRCHILD
A Schlumberger Company

IlA212K
1200/300 bps Full Duplex
Modem Designer's Kit
Advanced Signal Processing Division

Description
The /lA212K Designer's Kit supports the Fairchild /lA212A
modem. The purpose of the kit is essentially threefold:
• To provide a convenient means of demonstrating the
capabilities, features and performance of the /lA212Athe world's first single-chip 212A modem IC.
• To facilitate the design of applications-specific control
firmware for the /lA212A.
• To provide a FCC registered DAA design reference and
Hybrid design support.
The Designer's Kit includes the following materials:
1. The j.tA212A Modem Board is a 1200/300 b/s, fullduplex, originate/answer, stand alone "smart" 212A modem board. Compatible with the Hayes Smartmodem
1200™ command set, Demo Board supports features not
found on Smartmodem™, including call progress tone detection (in addition to audio line monitoring) and support of
the Remote Loopback test mode. Demo Board showcases
all features and modes of the /lA212A IC, except the use
of 8 and 9 bit asynchronous characters, which are incompatible with the Hayes "AT" protocol. Synchronous operation is available, and is particularly useful for bit error rate
testing. All modes and options are via software control.
Demo Board operates with received line signals from -45
to > -10 dBm, and transmits at a nominal -10 dBm into
load.
a 600

n

2. The j.tA212A Designer's Manual
a. Overview and Hardware. This part summarizes features,
interface requirements (power, control, telephone line), and
modem architecture. It enables the user to quickly go online and to become familiar with modem operation.
b. pA212A Modem Demonstration Program (Ver. 1.27).
This is an extensive discussion of Demo Board control
firmware, and is primarily intended to assist designers developing firmware for /lA212A-based products. It is presented within the framework of the familiar Hayes
Smartmodem 1200™ command set, and may be considered a superset of that de-facto industry standard. Although written for the 6801 microcontroller, the
organization and modularization of the code are applicable
to most of the microcontrollers currently available.

3. To Assist Hardware and Firmware Development
a. a circuit schematic diagram and parts list
b. Technical Bulletin M3: DAAIHybrid Design Programs for
the pA212A
c. a 5.25" floppy disk containing 6801 source listings and
utilities. Object listings are also available to those requiring
them.
Consult your local Fairtech™ Center, Salesoffice or Advanced Signal Processing Division for further details, reference materials and information regarding new modem and
design support products.

Figure 1 #lA212K

11-115

Aerospace and Defense
Processing

FAIRCHIL.D
A Schlumberger Company

Aerospace and Defense Processing

ing, test methods, laboratory suitability, product assurance
program, and personnel training. Facilities and documentation are audited by DESC prior to certification and periodically thereafter.

Processing to MIL-M-38510 and MIL-STD-883 is performed
by a totally dedicated Business Unit within the Linear Division of Fairchild to serve the unique Linear components
requirements of our various military customers. Fairchild
Linear has been committed to the Linear Hi Rei program
for many years and intends to continue to maintain a
leadership position in that market segment.

Fairchild Linear maintains a very active MIL-M-38510 Qualified Products List (QPL) Program and has maintained a
leadership position in the total number of Linear QPL's for
many years.

The Aerospace and Defense program offers four levels of
processing flows as noted below. These flows would normally satisfy a majority of customer requirements.

An outline of the JM35810 Class "B" flow is given in
Figure 1.

DESC Selected Item Drawings

• Jan-Level "8" - Full compliance to MIL-M-38510 Jan
program and QPL listings as published by Defense
Electronics Supply Center.

DESC Selected Item Drawings or Military Drawings provide
and industry standard specification in compliance with
Class "B" requirements for devices that are not JAN qualified. These products are dual marked with the DESC Military Drawing Number as well as the industry standard
device number.

• Military (DESC) Drawing - Conformance to Class "8"
process requirements to DESC selected item
drawings.

Linear "Q8" Flow (MIL-STD-883 Class "8")
Fairchild's "QB" process flow can fill customer needs
when a desired product is not available on JAN QPL or
when system requirements call for a cost effective but reliable alternative to the full JAN program. The product is
processed to MIL-STD-883 methods as specified in Figure
1. Electrical testing is performed to Fairchild Standard
Schematic as defined on the data sheets.

• "Q8" Flow - Conformance to Class "8" process
requirements of MIL-STD-883 to Fairchild MIL
temperature range data sheet electricals.
• "QS" Flow - Conformance to Class "S" process
requirements of MIL-STD-883 to Fairchild MIL
temperature range data sheet electricals and
including wafer lot acceptance per Figure 3A.
JAN Qualified (MIL-M-38510) Class "8" Program
The JAN Program offers the customer a standard of product processing, quality and reliability that is well documented by the manufacturer and monitored by the Defense
Electronics Supply Center (DESC) of the U.S. Government.
The products are manufactured in the U.S. in a government certified facility to the requirements of MIL-M-38510
and individual product specifications as called out in the
MIL-M-38510 "Slash Sheets". The DESC certification is
based on standardized documentation for design, process-

"QS" Flow
Fairchild Linear offers a capability to fulfill basic processing
requirements of Class "S" at wafer fabrication, assembly,
environmental screening and test/finish on selected popular devices. It is our intent to standardize the processing
of Class "S" products to the "QS" flow shown in Figures
3A, 38, and 3C so that customer requirements for Class
"S" can be accommodated. Fairchild does not currently
hold a Class "S" certification from DESC.

12-3

•

Aerospace and Defense Processing

Figure 1 "08" and JAN Class "8" Process Flow
Description

I
Internal Visual

"OB" Flow
MIL-STD-883
Test Method
and Description

JAN Class "B" Flow
MIL-STD-883
Test Method
and Description

2010 Condo B

2010 Condo B

1008 Condo C
(note 1)

1008 Condo B
(note 1)

1010 Condo C

1010 Condo C

I
Stabilization Bake

I
Temperature Cycling

I
Constant Acceleration
(Centrifuge)

I
Interim (Pre Burn-In)
Electrical Parameters

2001 Condo E

2001 Condo

y 1 Orientation only

y 1 Orientation only

(note 2)

(note 2)

Per Applicable Test Spec.

Per Applicable Device
Specification (Slash Sheet)

1015, 160 Hrs. at 125°C or
Per Table 1 of Method 1015

1015, 160 Hrs. at 125°C or
Per Table 1 of Method 1015

Per Applicable Test Spec.

Per Applicable Device
Specification (Slash Sheet)

5%

5%

Per Applicable Test Spec.

Per Applicable Device
Specification (Slash Sheet)

1014

1014

5005 Groups A, B, C and D
Limits and Conditions Per
Applicable Linear "OB"
Data Sheet

5005 Groups A, B, C and D
Limits and Conditions Per
Applicable Device Specification
(Slash Sheet)

2009

2009

I
Burn-In Test

I
Interim (Post Burn-In)
Electrical Parameters

I
Percent Defective
Allowable (PDA)
Calculation

I
Final Electrical Test

I
Seal (Hermiticity)

I
Ouality Conformance
Inspection

I
External Visual
Notes:
1, Defines minimum time and temperature, greater temperature and/or
longer time used for some packages types.

2. Or lower G levels as allowed for larger packages per MIL-STD-883.
Method 5004.

12-4

Aerospace and Defense Processing

Figure 2

JAN Part Numbering System

J M

385101 101 01 B G C

__
~

JAN Designator
Cannot be market with "J"

General

unless qualified on Part I

Spec

Procurement

or Part II of the QPL

T1~-=------

Refers to Detail Spec
Defines
Device
101 Op Amps
102 Voltage Regulators
Type
103 Comparators
104 Interface
106 Voltage Followers
107 Positive Fixed Voltage Regulators
108 Transistor Arrays
109 Timers
110 Quad Op Amps
112 Voltage Comparator
113 D to A Converter
115 Negative Fixed Voltage Regulators
117 Positive Adjustable Voltage Regulators
118 Negative Adjustable Voltage Regulators
119 Low Power, Low Noise, Bi-Fet Op Amps

Processing

Level

S

B

Package Type
A 14-lead 1/4 x 1/4 Flatpak
B 14-lead 114 x 112 Flatpak
C 14-lead 1/4 x 3/4 Dip
D 14-lead 1/4 x 3/8 Flatpak
E 16-lead 1/4 x 7/8 Dip
F 16-lead 1/4 x 3/8 Flatpak
G 8-lead Can
H 10-lead 114 x 114 Flatpak
I 10-lead Can
J 24-lead 1/2 x 1 1/4 Dip
K 24-lead 3/8 x 5/8 Flatpak
L 24-lead 3/8 x 112 Flatpak
X 3-lead TO-5 Can
Y 2-lead TO-3 Can
Z 24-lead 114 x 3/8 Flatpak
2 20 Terminal LCC

Lead Finish
A Hot Solder Dip
B Tin Plate
C Gold Plate
X Any Finish
Above

Linear JAN Generic Part Numbers
M38510/

01

02

03

04

05

06

07

08

101

741

747

101A

108A

2101A

2108A

118

1558

78M24

7805

7812

7815

7905

7912

7915

7924

102

723

103

710

711

111

2111

9614

9615

104

55107

55108

106

110

2110

107

109

78M05

78M12

78M15

4156

4136

124

79M15

79M24
138

108

3045

109

555

110

148

112

139

113

0802

0801

115

79M05

79M12

117

117H

117K

150

119

771

772

774

Note
Dated material. Please contact Fairchild for latest revisions.

12-5

09

7824

10

Aerospace and Defense Processing

"as"

Processing

The flow charts that follow provide the major steps and
acceptance criteria utilized for the processes and should
form the basis for any Class "5" business negotiations
with Linear Marketing. These flow charts will also provide
a prospective customer with Fairchild Linear's capabilities
in Class "5" processing.

The Linear Division has a standardized "OS" flow for all
processing steps through Assembly, Test, Burn-In and Finish that will meet the requirements of a majority of customers and thus reduce the need for custom Class "5"
process flows.

Figure 3A

"QS" Minimum Wafer Lot Acceptance Steps

CV TEST WAFERS FOR FIELD OXIDE OUALITY

GlASSIVATION THICKNESS MEASUREMENT

CV TEST WAFERS FOR EVAPORATOR CLEANLINESS

TOP SIDE METAL THICKNESS MEASUREMENT

SAMPLE PROBE
TEST FOR
DIFFUSION
PARAMETERS

AU THICKNESS MEASUREMENT

SEM ACCEPTANCE OF METAL PATTERN: MIL-STO-S83

METHOD 2018

VISUAL INSPECTION & ACCEPTANCE FOR OlE BANK
WITH FUll TRACEABiliTY

"OS" DIE INVENTORY

12-6

Aerospace and Defense Processing

Figure 38

"QS" Assembly Flow
INCOMING "OS"
WAFERS WITH TRACEABILITY

DIE VISUAL
CONDITION "A"
METHOO 2010

DIE SHEAR
MONITOR
METHOD 2019

DIE ATTACH

BOND PULL
MONITOR
METHOD 2011

WIRE BOND

NON-DESTRUCTIVE
BOND PULL
METHOD 2023

INTERNAL VISUAL
CONDITION "A"
METHOD 2010

OC INTERNAL VISUAL AND
CUSTOMER SOURCE PRE-CAP
IF REOUIRED

SEAL

Note
Piece part traceability maintained when desired.

12-7

Aerospace and Defense Processing

Figure 3C
(Typical)

"QS" Test, Burn-In and Final Acceptance (Typical)

"QS" Environmental and Finish Processing

PRE-BURN-IN ELECTRICAL PER APPLICABLE DEVICE SPECIFICATION
(SLASH SHEET)

ASSEMBLED CLASS "S" LOT

STABILIZATION BAKE CONOITION C
(Note 1)

METHOD 1008

TEMPERATURE CYCLING CONDITION C

BURN-IN 240 HOURS AT 12S'C OR PER FIGURE 1015-1 OF
MIL-STD-883

POST BURN-IN ELECTRICAL PER APPLICABLE DEVICE
SPECIFICATION
(SLASH SHEET)

METHOD 1010

CONSTANT ACCELERATION Yl ORIENTATION
CONDITION E
(Note 2)

METHOD 2001

PARTICLE IMPACT NOISE DETECTION (PIND) CONDITION A

PERCENT DEFECT ALLOWABLE (PDA) CALCULATION

METHOD 2020

FINE AND GROSS LEAK TEST -

METHOD 1014

FINE LEAK TEST - METHOD 1014, CONDITION B
GROSS LEAK TEST - METHOD 1014, CONDITION C

QUALITY CONFORMANCE INSPECTION, METHOD 5005
GROUPS A, B, C, AND D. LIMITS AND CONDITIONS PER
APPLICABLE DEVICE SPECIFICATIONS
(SLASH SHEET)_

EXTERNAL VISUAL -

RADIOGRAPHIC
(X-RAY) (2 VIEWS)
METHOD 2012

METHOD 2008

25°C SCREEN

EXTERNAL VISUAL AND PACK -

SERIALIZATION AND MARKING
(MAXIMUM 4 CHARACTERS AND ON FLATPACK
SERIALIZATION ON BOTTOM ONLY)

PLANT CLEARANCE

METHOD 2009

SHIP
QSOOO31F

Notes
1. Defines minimum time and temperature, greater temperature and/or
longer time used for some packages types.
2. Or lower G levels as allowed for larger packages per MIL-STD-883,
Method 5004.

12-8

MA10SQB

FAIRCHILD

Voltage Regulator

A Schlumberger Company
MIL-STD-883
November 1985 - Rev 05

Aerospace and Defense Data Sheet
Linear Products

Description

Connection Diagram
8-Lead Can
(Top View)

The IlA 10508 is a monolithic positive voltage regulator
constructed using the Fairchild Planar Epitaxial process.
Applications for this device include both linear and switching regulator circuits with output voltages greater than
4.5 V. This device will not oscillate when confronted with
varying resistive and reactive loads and will start reliably
regardless of the load within the ratings of the circuit. It
also features fast response to both load and line transients. 6

REG
OUT

BOOSTER
OUT

• Low Standby Current Drain
• Adjustable Output Voltage From 4.5 To 40 V
• High Output Current Exceeding 10 A With External
Components
• Load Regulation Better Than 0.1 %, Full Load With
Current-Limiting

FEEDBACK

COMMON

Lead 4 connected to case.

Order Information
Part No.
!1A105HM08

Casel
Finish

GC

Package Code
MiI-M-38510, Appendix C
A-1 8-Lead Can

•

13-3

IlA10SQB

Processing: MIL-STD-883, Method 5004

Absolute Maximum Ratings
Storage Temperature Range
Operating Temperature Range
Lead Temperature (soldering, 60 s)
Internal Power Dissipation 12

Can
Input Voltage
Input/Output Voltage Differential

-65°C to + 175°C
-55°C to + 125°C
300°C

Burn-In: Method 1015, Condition A, PDA calculated
using Method 5005, Subgroup 1
Quality Conformance Inspection: MIL-STD-883,
Method 5005

330 mW
50 V
40 V

Group A Electrical Tests Subgroups:
1.
2.
3.
4.

Static tests at
Static tests at
Static tests at
Dynamic tests

25°C
125°C
-55°C
at 25°C

Group C and D Endpoints: Group A, Subgroup
Notes
1. 100% Test and Group A
2. Group A
3. Periodic tests, Group C
4. Guaranteed but not tested
5. When changes occur, FSC will make data sheet revisions available.
Contact local sales representative for the latest revision.
6. For more information on device function, refer to the Fairchild Linear
Data Book Commercial Section.
7. V'R and V,- Vo are guaranteed by the FBSV test.
8. VOR is guaranteed by the FBSV and the VR LOAD tests.

9. The line and load regulation specifications are given for the condition
of constant chip temperature. Temperature drift effects must be taken
into account separately for high dissipation conditions.
10. The output currents given, as well as the load regulation, can be
increased by the addition of external transistors. The improvement
factor will be approximately equal to the composite current gain of the
added transistor.
11. With no external pass transistor.
12. Rating applies to ambient temperatures up to 125·C. Above 125·C
ambient, derate linearly at 150·C/W.

13-4

/JA10SQB

J.LA10SQB
Electrical Characteristics These specifications apply for input and output voltages within the ranges given and

for a divider impedance seen by the feedback terminal of 2 kn unless otherwise
specified.
Symbol

Characteristic

Subgrp

Condition

Min

Max

Unit

Note

VI = 50 V, Va = 20 V

1.63

1.81

V

1

1

VI = 8.5 V, Va = 4.5 V

1.63

1.81

V

1

1

8.5

50

V

1

1

VOR

Output Voltage Range 8

4.5

40

V

1

1

VI-Va

Input/Output Voltage
Differential?

3.0

30

V

1

1

VR LINE

Line Regulation 9

1

FBSV

Feedback Sense Voltage

VIR

Input Voltage Range?

VR LOAD

Ts

Load Regulation 9 ,10

Temperature Stability of FBSV

9.5 V ";VI "; 11.5 V, Va = 4.5 V

0.03

%/V

1

25 V"; VI"; 50 V, Va = 20 V

0.03

1

0.03

%N
%N

1

46 V"; VI"; 50 V, Va = 40 V

1

1

8.5 V"; VI"; 9.5 V, Va = 4.5 V

0.06

%/V

1

1

VI = 50 V, Va = 40 V,
o rnA"; IL .,; 12 rnA,
Rsc=10 n

0.05

%

1

1

0.1

%

1

2,3

25°C"; T A"; 125°C

1.0

%

4

2

-55°C"; T A"; 25°C

1.0

%

4

3

2.0

rnA

1

1

375

mV

1

1

0.02

%/V

4

4

%/1000
hrs

4

1

ISCD

Standby Current Drain

VI = 50 V, Va = 20 V

VCLS

Current Limit Sense Voltage 11

9.0 V"; VI"; 40 V, Va = 0 V,
Rsc= 10 n

llVI/ !:No

Ripple Rejection

CREF = 10 tJ.F, f = 10 kHz

S

Long Term Stability of FBSV

225

1.0

13-5

JiA10SQB

Primary Burn-In Circuit

CURRENT
LIMIT

BOOSTER
OUT

10 kfl

REG
OUT
COMP
SHUT·
DOWN

1/4W

0.47 p.F
60V

30V

UNREG
IN

FEEDBACK

O.'~F

2 kCl

100 V

COMMON

1/4W

REF
BYPASS

";"

-=Equivalent Circuit

r-----------~t_----------------~------~---UNREGULATEDIN

R10
6002

BOOSTER OUT

+--'VVv~~-- CURRENT LIMIT

; - - - - - - REGULATED OUT

+-______...._________ ~~~:rf~~~TlON

:l--I---+------~--- FEEDBACK

'-------1------1--4

L---~~~--~~------------~----

___________ REFERENCE BYPASS

__ _______________
~

COMMON

13·6

JlA109QB

F=AIRCHIL.O

5 Volt Regulator

A Schlumberger Company
MIL-STD-883
November 1985 - Rev 0 5

Aerospace and Defense Data Sheet
Linear Products

Description

Connection Diagram
3-Lead TO-39 Can
(Top View)

The /lA 10908 is a complete 5 volt regulator constructed
using the Fairchild Planar Expitaxial process. This regulator
employs internal current-limiting, thermal shutdown and
safe-area compensation, making it essentially indestructible.
It is intended for use as a local regulator, eliminating
noise and distribution problems associated with single point
regulation. If adequate heat sinking is provided, this regulator can provide over 1 A output current. The /lA 10908 is
intended primarily for use with TTL and DTL logic and is
completely specified under worst case conditions to match
the power supply requirements of these logic families. In
addition to use as a fixed 5 V regulator, this device can
be used with external components to obtain adjustable
output voltages and currents and as the power pass element in precision regulators. 6

COMMON
OUT

Lead 3 connected to case.

Connection Diagram
2-Lead TO-3 Can
(Top View)

• Output Current In Excess Of 1 A
• Specified To Match Worst Case TTL And DTL
Requirements
• No Internal Components
• Internal Thermal Overload Protection
• Output Transistor Safe-Area Compensation

C~~~~~~OUT

o

0
1

IN

Order Information
Part No.
/lA109HM08
!1A109KM08

Casel
Finish

XC

YC

JAN Product Available
10701
8XC

13-7

Package Code
MiI-M-38510, Appendix C
3-Lead Can
2-Lead Can

3-Lead Can

•

J1A109QB

Processing: MIL-STD-883, Method 5004

Absolute Maximum Ratings
Storage Temperature Range

-65°C to

+ 175°C

Operating Temperature Range

-55°C to
300°C

+ 125°C

Lead Temperature (soldering, 60 s)
Internal Power Dissipation 10
Can Without Heat Sink HMOSll
Can With Heat Sink HMOS12
Can Without Heat Sink KMOS13
Can With Heat Sink KMOS14
Input Voltage

Burn-In: Method 1015, Condition A, PDA calculated
using Method 5005, Subgroup 1
Quality Conformance Inspection: MIL-STD-883,
Method 5005

0.18 W
0.5 W
0.71 W

Group A Electrical Tests Subgroups:

W

5.6
35

V

1. Static tests at 25°C
2. Static tests at 125°C
3. Static tests at -55°C

4. Dynamic tests at 25°C
9. AC tests at 25°C

Group C and D Endpoints: Group A, Subgroup
Notes
1. 100% Test and Group A
2. Group A
3. Periodic tests. Group C
4. Guaranteed but not tested
5. When changes occur, FSC will make data sheet revisions available.
Contact local sales representative for the latest revision.

6. For more information on device function, refer to the Fairchild Linear
Data Book Commercial Section.
7. All characteristics except line and load transient response and noise
are measured using pulse techniques (tw -< 10 ms, duty cycle < 5%).
Output voltage changes due to changes in the internal temperature
must be taken into account separately.

8. Conditions given will result in the following: Po « 4 W for HM08 and
Po«15 W for KM08.
9. Device shall turn-on at VI < 9 V and shall remain on when the input is
returned to 10 V.

10. Internally limited.
11. Rating applies to
derate linearly at
12. Rating applies to
derate linearly at
13. Rating applies to
derate linearly at

ambient temperatures up to 125°C. Above 125°C,
140°C/W.
ambient temperatures up to 125°C. Above 125°C,
50°C/W.
ambient temperatures up to 125°C. Above 125°C,
35°C/W.

14. Rating applies to ambient temperatures up to 125 C. Above 12S C,
Q

D

derate linearly at 4.46°C/W.

13-8

pA109QB

1lA109HQB, 1lA109KQB
Electrical Characteristics CI = 0.33ILF, Co = 0.1 ILF, unless otherwise specified. 7
Symbol

Characteristic

Condition
HMQB

Vo

Output Voltage

Min

Max

Unit

Note

4.7

4.6

Subgrp

5.3

V

1

1

5.4

V

1

1,2,3

KMQB

VI = 10 V
IL = 350 rnA

IL = 500 rnA

Vo

Output VoltageS

B.O V';;; VI .;;; 20 V,
5.0 rnA';;; IL .;;; IMax

l:J.Vo/l:J.T

Average Temperature
Coefficient of Output Voltage

VI = 7.0 V
IL=5.0 rnA, 25°C';;;TA';;;125°C

2.0

mVloC

4

2

VI =7.0 V
IL = 5.0 rnA, -55°C';;; T A';;; 25°C

2.0

mVrC

4

3

7.0 V.;;; VI .;;; 25 V

50

mV

1

1

100

mV

1

1

10

rnA

1

1

O.B

rnA

1

1,2,3

0.5

rnA

1

1,2,3

2.0

A

1

1

IMax = 350 rnA

VR LINE

Line Regulation

IL =200 rnA

IMax= 1.0 A

IL = 500 rnA

VR LOAD

Load Regulation

VI=10 V, 5.0 mA';;;IL';;;IMax

ISCD

Standby Current Drain

7.0 V';;;VI';;;25 V

IMax = 500 rnA

IL =350 rnA

IMax = 1.0 A

IL =500 rnA

l:J.ISCD
(LINE)

Standby Current Drain Change
(vs Line Current)

B.O V.;;; VI .;;; 25 V

l:J.ISCD
(LOAD)

Standby Current Drain Change
(vs Load Current)

VI=10 V, 5.0 mA~IL';;;IMax
IMax = 350 rnA

IMax= 1.0 A

los

Output Short Circuit Current

VI =35 V

HMOB

VSTART

Voltage Start9

l:J.VI/l:J.VO

Ripple Rejection

VI=10 V, f=2400 Hz

No

Noise

VI=10 V, 10 Hz';;;f';;;10 kHz

IL =200 rnA

IL =500 rnA

KMOB

IL = 125 rnA

IL =50 rnA
l:J.VO/l:J.VI

Line Transient Response

Load Transient Response

Long Term Stability of Vo

1

1

V

1

1

60

dB

1

4

125

IN,ms

4

9

15

mVIV

4

9

2.0

mV/mA

4

9

0.5

%/1000
hrs

4

9

IL = 350 rnA

VI = 10 V (Vpulse = 3.0 V)
IL =5.0 rnA

VI = 10 V
IL =50 rnA
l:J.IL = 200 rnA

S

2.B

IL=100 rnA

IL = 5.0 rnA
l:J.VO/l:J.IL

A

4.7

VI = 10 V

13-9

IL = 100 rnA
l:J.IL =400 rnA

J).A109QB

Primary Burn-In Circuit
(38510/10701 may be used by FSC as an alternate.)
30V

IN

OUT

Equivalent Circuit
IN
R9
400 0
(NOTE 2)
R4
100 kCl

R13
10 kO

R1B
500 0

...------+-----i: 014
"]---<1"'::::::"':':+--">/111....--+ Rll
012

RS

~~~

___-+__ ___
~

0.& 0
(NOTE 2)
~~~_~_~O~T

3.3kCl

R16
&.0 kO
(NOTE 2)

RI
2.7 kCl

011

Rl

Dl

1.0 kO

R19

R7

S.O kO

SOOO
Rl0
L-__

~~~~

__

~

6.0 kCl
____

~

__

~~

R14
6.0kO
______4-__
__
~

~~

________

Note
1. Capaci10r value necessary to suppress oscillations.

2. pAl09HMOB: A9-400
pAl09KMOB: A9 -100

n. All =0.6 n, A16=6 kn.
n. All - 0.3 n, A16 - 2 kn.

13-10

~_______

COMMON

IlA117HQ8
3-Terminal Positive
Adjustable Regulator

FAIRCHILD
A Schlumberger Company
MIL-STD-883
November 1985 - Rev 05

Aerospace and Defense Data Sheet
Linear Products

Description

Connection Diagram
3-Lead TO-39 Can
(Top View)

The /lA 117HQB is a 3-terminal adjustable positive voltage
regulator capable of supplying in excess of 0.5 A over an
output voltage range of 1.2 V to 37 V. This voltage regulator is exceptionally easy to use and requires only two
external resistors to set the output voltage. Further, it employs internal current-limiting, thermal shutdown and safearea compensation, making it essentially blow-out proof.
The /lA 117HQB serves a wide variety of applications including local, on-card regulation. This device also makes
an especially simple adjustable switching regulator, and a
programmable output regulator; or by connecting a fixed
resistor between the adjustment and output, the
/lA117HQB can be used as a precision current regulator. 6

IN

Order Information
Part No.
/lA117HMQB

•
•
•
•

Output Current In Excess Of 0.5 A
Output Adjustable Between 1.2 V And 37 V
Internal Thermal Overload Protection
Internal Short Circuit Current-Limiting Constant
Temperature
• Output Transistor Safe-Area Compensation
• Floating Operation For High Voltage Applications

13-11

Casel
Finish
XC

Package Code
MiI-M-38510, Appendix C
3-Lead Can

IlA117HQ8

Absolute Maximum Ratings
Storage Temperature Range
Operating Temperature Range
Lead Temperature (soldering, 60 s)
Internal Power Dissipation9
Can Without Heat Sink10
Can With Heat Sink11
Input/Output Differential Voltage

Processing: MIL-STD-883, Method 5004
-65°C to + 175°C
-55°C to + 125°C
300°C

Burn-In: Method 1015, Condition A, PDA calculated
using Method 5005, Subgroup 1

0.18 W
0.5 W

Quality Conformance Inspection: MIL-STD-883,
Method 5005

40 V

Group A Electrical Tests Subgroups:
1. Static tests at 25°C
2. Static tests at 125°C
3. Static tests at -55°C
4. Dynamic tests at 25°C
9. AC tests at 25°C
Group C and D EndpOints: Group A, Subgroup
Notes
1. 100% Test and Group A
2. Group A
3. Periodic tests, Group C
4. Guaranteed but not tested
5. When changes occur, FSC will make dete sheet revisions available.
Contact local sales representative for the latest revision.
6. For more Information on device function, refer to the Fairchild Linear
Data Book Commercial Section.
7. All characteristics except line and load transient response and noise
are measured using pulse techniques (tw';; 10 ms, duty cycle';; 5%).
Output voltage changes due to changes in the internal temperature
must be taken into account separately.
8. Conditions given will resul1 in the following: Po';; 4 W.
9. Internally limited.
10. Rating applies to ambient temperatures up to 125°C. Above 125°C,
derate lineariy at 140°C/W.
11. Rating applies to ambient temperatures up to 125°C. Above 125°C,
derate linearly at 50°C/W.

13-12

MA117HQ8

/lA117HQB
Electrical Characteristics IL = 50 rnA, unless otherwise specified?
Symbol
Va

VR LINE

VR LOAD

Characteristic
Output VoltageS

Line Regulation

Load Regulation

Condition

Min

Max

VI = 4.25 V, IL = 5.0 mA

1.2

VI = 4.25 V, IL = 500 mA

1.2

VI = 41.3 V, IL = 5.0 mA

1.2

VI=41.3 V, IL=50 mA

1.2

4.25 V < VI < 41.3 V

VI = 6.25 V, Va = VREF,
5.0 mA < IL < 500 mA

Unit

Note

Subgrp

1.3

V

4

1

1.3

V

1

1,2,3

1.3

V

1

1,2,3

1.3

V

1

1

9.0

mV

1

1

18.5

mV

1

2,3

12

mV

1

1

12

mV

1

2,3

ladi

Adjustment-Lead Current

VI = 6.25

100

pA

1

1,2,3

Aladi
(LINE)

Adjustment-Lead Current
Change (vs Line Voltage)

3.75 V--IN

OUT
AOJ

~

(NOTE 1)

I

1200
(NOTE 1)

~

-'

Note
1. Capacitor value necessary to suppress oscillations.

Equivalent Circuit
Refer to the Fairchild Linear Data Book Commercial
Section

13-18

fJA138Q8

FAIRCHILD
A Schlumberger Company

S-Amp Positive
Adjustable Regulator

MIL-STD-883
November 1985 - Rev 01

Aerospace and Defense Data Sheet
Linear Products

Description

Connection Diagram
2-Lead TO-3 Can
(Top View)

The !1A 13808 is an adjustable 3-terminal positive voltage
regulator capable of supplying in excess of 5.0 A over a
1.2 V to 32 V output range. It is exceptionally easy to use
and requires only two resistors to set the output voltage.
A unique feature of the /.LA 13808 is time dependent current-limiting. The current-limit circuitry allows peak currents
of up to 12 A to be drawn from the regulator for short
periods of time. This allows it to be used with heavy transient loads and also speeds start-up under full-load conditions. Under sustained loading conditions, the current-limit
decreases to a safe value protecting the regulator. Also
included on the chip are thermal overload protection and
safe-area protection for the power transistor. Overload protection remains functional even if the adjustment lead is
accidentally disconnected. 2

•
•
•
•
•
•
•
•
•

(C1'S~T~2
o
0
IN

.0
ADJ

Order Information
Part No.
/.LA138KM08

High Peak Output Current
High Output Current
Output Adjustable Between 1.2 V And 32 V
Low Load Regulation
Low Line Regulation
Internal Thermal Overload Protection
Internal Short Circuit Current-Limiting
Output Transistor Safe-Area Compensation
Floating Operation For High Voltage Applications

Noles
1. When changes occur, FSC will make data sheet revisions available.
Contact local sales representative for the latest revision.
2. For more information on device function, refer to the Fairchild Linear
Data Book Commercial Section.

13-19

Casel
Finish

YC

Package Code
MiI-M-38510, Appendix C
2-Lead Can

FAIRCHILO
A Schlumberger Company

llA150QB
3-Amp Positive
Adjustable Regulator

MIL-STD-883
November 1985 - Rev 0 '

Aerospace and Defense Data Sheet
Linear Products

Description

Connection Diagram
2-Lead TO-3 Can
(Top View)

The I1A 15008 is ~an adjustable 3-terminal positive voltage
regulator capable of supplying in excess of 3.0 A over a
1.2 V to 33 V output range. It is exceptionally easy to use
and requires only two external resistors to set the output
voltage. A unique feature of the I1A 15008 is time dependent current-limiting. The current-limit circuitry allows peak
currents of up to 6.0 A to be drawn from the regulator for
short periods of time. This allows it to be used with heavy
transient loads and also speeds start-up under full-load
conditions. Under sustained loading conditions, the currentlimit decreases to a safe value protecting the regulator.
Also included on the chip are thermal overload protection
and safe-area protection for the power transistor. Overload
protection remains functional even if the adjustment lead is
accidentally disconnected. 2

IN

(C~s":Q2

o

ADJ

Order Information
Part No.

•
•
•
•
•
•
•
•

High Output Current
Output Adjustable Between 1.2 V And 33 V
Low Load Regulation
Low Line Regulation
Internal Thermal Overload Protection
Internal Short Circuit Current-Limiting
Output Transistor Safe-Area Compensation
Floating Operation For High Voltage Applications

0
10

11A150KM08

Notes
1. When changes occur, FSC will make data sheet revisions available.
Contact local sales representative for the latest revision.
2. For more information on device function, refer to the Fairchild Linear
Data Book Commercial Section.

13-20

Casel
Finish

YC

Package Code
MiI-M-38510, Appendix C
2-Lead Can

IlA431 QB
Adjustable Precision
Shunt Regulator

FAIRCHILD
A Schlumberger Company
MIL-STD-883
July 1986-Rev 01

Aerospace and Defense Data Sheet
Linear Products

Description
The pA4310B is a 3-lead adjustable shunt regulator with
guaranteed temperature stability over the entire temperature range. The output voltage may be set at any level
greater than 2.5 V (VREF) up to 36 V merely by selecting
two external resistors that act as a voltage divided network. Due to the sharp turn-on characteristics this device
is an excellent replacement for many zener diode applications. 2
.

Connection Diagram
a-Lead DIP
(Top View)

CATHODE

• Typical Temperature Coefficient 50 ppmrC
• Temperature Compensated For Operation Over The
Full Temperature Range
• Programmable Output Voltage
• Fast Turn-On Response
• Low Output Noise
Notes
1. When changes occur. FSC will make data sheet revisions available.
eontsct local sales representstive for the latest revision.
2. For more information on device function. refer to the Fairchild Unear
Oats Book Commercial Section.

REFERENCE

NC

NC

NC

ANODE

NC

NC

Connection Diagram
20-Terminal CCP
(Top View)

....
u

z:

~u

zu

......

~

NC

NC

NC

NC

NC

NC

NC

ANODE

NC

NC

U

z:

U

z

U

z:

U

z

U

Z

eR053."

Order Information
Casel
Part No.
Finish
pA431RMOB
PA
pA431LMOB
2C

13-21

Package Code
Mil-M-38510, Appendix C
0-4 8-Lead DIP
C-2 20-Terminal CCP

FAIRCHILD
A Schlumberger Company

IlA494QB
Pulse Width Modulated
Control Circuit

MIL-STD-883
July 1986-Rev 01

Aerospace and Defense Data Sheet
Linear Products

Description
The #LA494QB is a monolithic integrated circuit which includes all the necessary building blocks for the design of
pulse width modulated (PWM) switching power supplies, including push-pull, bridge, and series configurations. The
device can operate at switching frequencies between
1.0 kHz and 300 kHz and output voltages up to 40 V. 2

Connection Diagram
16-Lead DIP
(Top View)

• Uncommitted Output Transistors Capable Of 200 mA
Source Or Sink
• On-Chlp Error Amplifiers
• On-Chip 5.0 V Reference
• Internal Protection From Double Pulsing Of Outputs
With Narrow Pulse Widths Or With Supply Voltages
Below Specified Limits
• Dead Time Control Comparator
• Output Control Selects Single-Ended Or Push-Pull
Operation
• Easily Synchronized (Slaved) To Other Circuits
Notes
1. When changes occur, FSC will make data sheet revisions available.
Contact local sales representative for the latest revision.
2. For more information on device function, refer to the Fairchild Linear
Data Book Commercial Section.

+INt

+IN2

-INt

-IN 2

COMPENI
PWM COMP IN

VREF

DEAD TIME

OUTCONTRDL

CONTROl.

C.

Vee

II,-

C2

GND

E2

Cl

El

(DO,,,,,,
Connection Diagram
20-Terminal CCP
(Top View)

~

.
z

()

z

.. ..
..
z

~

COMPEN/PWM

VREF

COMP INPUT

OUT CONTROL

DEAD TIME CONTROL

HC

NC

CT

Vee

RT

C2

"z
"
Order Information
Casel
Part No.
Finish
#LA494DMQB
EB
#LA494LMQB
2C

13-22

U

()

z

iii

III

"""'_
Package Code
MII-M-38510, Appendix C
D-2 16-Lead DIP
C-2 20-Terminal CCP

J.lA723Q8
Precision Voltage
Regulator

FAIRCHILD
A Schlumberger Company
MIL-STD-883
July 1986-Rev 25

Aerospace and Defense Data Sheet
Linear Products

Description
The /lA723QB is a monolithic voltage regulator constructed
using the Fairchild Planar Epitaxial process. The device
consists of a temperature compensated reference amplifier,
error amplifier, power series pass transistor and currentlimit circuitry. Additional NPN or PNP pass elements may
be used when output currents exceeding 150 mA are required. Provisions are made for adjustable current limiting
and remote shutdown. In addition to the above, the device
features low standby current drain, low temperature drift
and high ripple rejection. The /lA723QB is intended for
use with positive or negative supplies as a series, shunt,
switching, or floating regulator. Applications include laboratory power supplies, isolation regulators for low level data
amplifiers, logic card regulators, small instrument power
supplies, airborne systems, and other power supplies for
digital and linear circuits. 6

Connection Diagram
10-Lead Can
(Top View)

•
•
•
•
•

CURRENT
LIMIT

Connection Diagram
14-Lead DIP
(Top View)

Positive Or Negative Supply Operation
Series, Shunt, Switching, Or Floating Operation
Low Line And Load Regulation
Output Voltage Adjustable From 2 V To 37 V
Output Current To 150 rnA Without External Pass
Transistor

,.

...

FREQ
COMP

CURRENT
SENSE

v+

-IN

Vc

+IN

OUT

o

Z

'"

CURRENT
LIMIT

...IE

t-

u

NC

NC

Connection Diagram
20-Terminal CCP
(Top View)

i::;

v-

Lead 5 connected to case.

Vz

..".
u

u

z

u

z

u
Z

v-

It.

CURRENT

NC

V+

SENSE
NC

NC

-IN

lie

NC

NC

+IN

OUT

Order Information
Casel
Part No.
Finish
/lA723DMQB
/lA723HMQB
I-IA723LMQB

CA
IC
2C

Package Code
MiI-M-38510, Appendix C
D-1 14-Lead DIP
A-2 10-Lead Can
C-2 20-Terminal CCP

JAN Product Available

I

>-

u
z

u

z

10201
10201
10201
10201

,;

13-23

BCA
BCB
BIA
BIC

D-1
D-1
A-2
A-2

14-Lead DIP
14-Lead DIP
10-Lead Can
10-Lead Can

IlA723Q8

Absolute Maximum Ratings
Storage Temperature Range
-65°C to + 175°C
Operating Temperature Range
-55°C to +125°C
Lead Temperature (soldering, 60 s)
300°C
Internal Power Dissipation 8
Can
350 mW
DIP and CCP
400 mW
Pulse Voltage from V+ to V-, (50 ms) 50 V
40 V
Continuous Voltage from V+ to VInput/Output Voltage Differential
40 V
Differential Input Voltage
±5 V
Voltage Between Non-Inverting
Input and V8 V
Current from Vz
25 mA
15 mA
Current from VREF

Processing: MIL-STD-883, Method 5004
Burn-In: Method 1015, Condition A, PDA calculated
using Method 5005, Subgroup 1
Quality Conformance Inspection: MIL-STD-883,
Method 5005
Group A Electrical Tests Subgroups:
1.
2.
3.
4.

Static tests at
Static tests at
Static tests at
Dynamic tests

25°C
125°C
-55°C
at 25°C

Group C and 0 Endpoints: Group A, Subgroup

Notes
I. 100% Test and Group A
2. Group A
3. Periodic tests, Group C
4. Guaranteed but not tested
5. When changes occur, FSC will make data sheet revisions available.
Contact local sales representative for the latest revision.
6. For more information on device function, refer to the Fairchild Linear

Data Book Commercial Section.
7. The line and load regulation specifications are given for the condition
of constant chip temperature. Temperature drift effects must be taken

into account separately for high dissipation conditions.
8. Rating applies to ambient temperatures up to 125·C. Above 125·C
ambient, derate linearly at 140·C/W for the Can and 120·C/W for the
DIP and CCP.

13-24

MA723QB

llA723QB
Electrical Characteristics VI

= V+ = Ve";; 12 V, V- = 0 V, Vo = 5.0 V, IL
CREF = 0 IlF, unless otherwise specified.

Symbol

Characteristic

VREF

Reference Voltage

AVREF
(LOAD)

Reference Voltage Change
With Load

Condition

= 1.0

rnA, Rse

Min

6.95

o mA";; IREF";; 5.0

Max

7.35
20

mA

= 0 n,

C1

Unit

= 100

pF,

Note Subgrp

V

1

1,2,3

mV

1

1

VIR

Input Voltage Range

9.5

40

V

1

1

VOR

Output Voltage Range

2.0

37

V

1

1

VI-VO

Input/Output Voltage Diff.

3.0

38

V

1

1

Vz

Zener Voltage

Iz = 1.0 mA

5.8

7.2

V

1

1

VR LINE

Line Regulation?

12 V";;VI";;15 V

0.1

%Vo

1

1

12 V";;VI";;40 V

0.2

%Vo

1

1

12 V";;VI";;15 V

0.3

%Vo

1

2,3

0.15

1

VR LOAD

Load Regulation?

Tc Vo

Average Temp. Coefficient
of Output Voltage

ISCD

Standby Current Drain

los

Output Short Circuit Current

.lVI/AVo

Ripple Rejection

1.0 mA";; IL ,,;; 50 mA

%Vo

1

0.6

2,3

%Vo

1

25°C";; TA";; 125°C

-0.010

+0.010

%I"C

4

2

-55°C";; TA";; 25°C

-0.015

+0.015

VI = 30 V, IL = 0 mA

%I"C

4

3

3.5

mA

1

1

4.0

mA

4

2

2.4

mA

4

3

85

mA

4

1

Vo = 0 V, Rsc = 10 .11

45

f = 10 kHz, CREF = 0 p.F

64

dB

3

4

f = 10kHz, CREF = 5.0 p.F

76

dB

3

4

p.Vrms

3

4

7.0

J.lVrms

3

4

10

mVIV

3

4

mV/mA

3

4

I CREF = 0 p.F
I CREF = 5.0 J.lF

No

Noise

100 Hz";;f";;
10 kHz

AVo/AVI

Line Transient Response

AVI=3.0 V

AVo/AIL

Load Transient Response

IL = 40 mA, AIL = 10 mA

13-25

120

-1.5

IlA723QB

Block Diagram

Primary Burn-In Circuit
(38510/10201 may be used by FSC
as an alternate)

CURRENT CURRENT
SENSE
LIMIT

COMFI

f--

FREO
COMP

-IN

FREO.
V+

I

3GV

1000 pF

[

5.1 kO

1'4W

+IN

V+

VREF

VC

V-

OUT

-

EQOO560F

0.47 "F

-

I100V

Equivalent Circuit
v+

Rl
50011
03

R3
25
kll

R4

R5
l.Okll

1.0

07

Vc

kll

D1
6.5Y

OUT

D3

6.5 V
Vz

t-------~~:
""1-_____ ~I~~~ENT
L-_ _ _ _ _ _ ~~:::NT

+IN

V-

-IN

,a,lO'''''

13-26

IlA78MOSQB

FAIRCHILD
A Schlumberger Company

3-Terminal Positive
Voltage Regulator

MIL-STD-883
July 1986-Rev 25

Aerospace and Defense Data Sheet
Linear Products

Description

Connection Diagram
3-Lead TO-39 Can
(Top View)

The IlA78M05QB 3-Terminal Medium Current Positive Voltage Regulator is constructed using the Fairchild Planar Epitaxial process. This regulator employs internal currentlimiting, thermal shutdown and safe-area compensation,
making it essentially indestructible. If adequate heat sinking
is provided, it can deliver in excess of 500 rnA output
current. It is intended as a fixed voltage regulator in a
wide range of applications including local, on-card regulation for eliminat:on of noise and distribution problems associated with single point regulation. In addition to use as a
fixed voltage regulator, this device can be used with external components to obtain adjustable output voltages and
currents. s

•
•
•
•
•

OUT

Lead 3 connected to case.

Output Current In Excess Of 0.5 A
No External Components
Internal Thermal Overload Protection
Internal Short Circuit Current-Limiting
Output Transistor Safe-Area Compensation

Connection Diagram
20-Terminal CCP
(Top View)

NC

Ne

NC

Ne

Ne

NC

NC

OUT

NC

NC

Order Information
Casel
Part No.
Finish

Package Code
MiI-M-38510, Appendix C

1.IA78M05HMQB
IlA78M05LMQB

3-Lead Can
C-2 20-Terminal CCP

XC
2C

JAN Product Available
10702

13-27

BXC

3-Lead Can

IlA78M05QB

Absolute Maximum Ratings
Storage Temperature Range
Operating Temperature Range
Lead Temperature (soldering, 60 s)
Internal Power Dissipation 9
Can Without Heat Sink 10
Can With Heat Sink 11
CCP Without Heat Sink12
Input Voltage

Processing: MIL-STD-883, Method 5004
-65°C to + 175°C
-55°C to + 125°C
300°C
0.18 W
0.5 W
0.4 W
35 V

Burn-In: Method 1015, Condition A, PDA calculated
using Method 5005, Subgroup 1

Quality Conformance Inspection: MIL-STD-883,
Method 5005

Group A Electrical Tests Subgroups:
1. Static tests at 25°C
2. Static tests at 125°C
3. Static tests at -55°C
4. Dynamic tests at 25°C
9. AC tests at 25°C

Group C and 0 Endpoints: Group A, Subgroup 1
Notes
1. 100% Test and Group A
2. Group A
3. Periodic tests. Group C
4. Guaranteed but not tested
S. When changes occur. FSC will make data sheet revisions available.
Contact local sales representative for the latest revision.
6. For more information on device function, refer to the Fairchild Linear
Data Book Commercial Section.
7. All characteristics except line and load transient response and noise
are measured using pulse techniques (tw';; 10 ms. duty cycle';; S%).
Output voltage changes due to changes in the internal temperature
must be taken into account separately.
B. Conditions given will result in the following: PD ';; 4 W.
9. Internally limited.
10. Rating applies to ambient temperatures up to 12S·C. Above 12S·C,
derate linearly at 140·C/W.
11. Rating applies to ambient temperatures up to 12S·C. Above 12S·C.
derate linearly at SO·C/W.
12. Rating applies to ambient temperatures up to 12S·C. Above 12S·C.
derate linearly at 120·C/W.

13-28

MA78MOSQB

IlA78MOSQB

Electrical Characteristics V, = 10 V, IL = 350 mA, C, = 0.33 IlF, Co = 0.1 IlF, unless otherwise specified.
Symbol

Characteristic

Condition

5.0 mA < IL < 350 mA

tNol!::.T

VR

Max

4.8

5.2

V

1

1

IV, = 8.0 V

4.7

5.3

V

1

1,2,3

[VI = 20 V

4.7

Output VoltageS

Vo

LINE

Average Temperature
Coefficient of Output Voltage

Line Regulation

Load Regulation

Note Subgrp

5.3

V

1

1,2,3

IL = 5.0 rnA, 25°C .Vo/ !J.T

Average Temperature
Coefficient of Output Voltage

IL = 5.0 mA, 25°C";;; T A";;; 125°C

3.6

mV/oC

4

2

IL = 5.0 mA, -55°C";;; T A";;; 25°C

3.6

mVI"C

4

3

VR

Line Regulation

-30 V";;;VI";;;-14.5 V

80

mV

1

1

120

mV

1

2.3
1

LINE

-30 V";;; V I

< 15 V

-25 V";;;VI";;;-15 V

VR LOAD

Load Regulation

ISCD

Standby Current Drain

5.0 mA";;; IL ,,;;; 500 mA

50

mV

1

75

mV

1

2.3

240

mV

1

1.2.3

2.0

rnA

1

1

3.0

mA

1

2.3

!J.lsCD
(LINE)

Standby Current Drain
Change (vs Line Voltage)

-30 V";;;VI";;;-14.5 V

0.4

mA

1

1.2.3

!J.ISCD
(LOAD)

Standby Current Drain
Change (vs Load Current)

5.0 mA";;; IL ,,;;; 350 mA

0.4

mA

1

1.2,3

2.3

V

1

1

1.0

A

1

1.2.3

2.0

A

1

1.2.3

120

mV

3

1

V

1

1.2.3

dB

1

4.5,6

VDO

Dropout Voltage

los

Short Circuit Current

VI = -35 V

IPk

Peak Output Current

VI-Vo=-10 V

VRTH

Thermal Regulation

VI = -22 V, IL = 500 mA

VSTART

Voltage Start9

!J.VI/!J.VO

Ripple Rejection

VI = -17 V, IL = 125 rnA,
ej = 1.0 Vrms , f = 2400 Hz

No

Noise

VI=-17 V, IL=50 mA,
10 Hz";;;f";;;10 kHz

600

pVrms

4

9

!J.VO/!J.VI

Line Transient Response

VI = -17 V, IL = 5.0 mA,
Vpulse = -3.0 V

30

mVlV

4

9

!J.VO/!J.IL

Load Transient Response

VI = -17 V, IL = 50 mA,
!J.IL =200 mA

2.5

mV/mA

4

9

0.5

-4.75

13-77

50

tlA79M12QB

Primary Burn-In Circuit
(38510/11502 may be used by FSC as an alternate)
-30 V

IN

OUT

(NOTE 1)

Equivalent Circuit (Note 2)
r-----~----------~r_------~--~--------------~------------~--------_r----~COMMON

.2

Uk

t-------t:"os
025
4.5 k
TO 6.3 k

.23
4.0 k

A2'

+------r-----t:::017

1.7k
TO 18 k

OUT

01

+--+-i:: 020

.

800

L-____~----~----~~----~_4

A22
0.1

A13

__

~--------------~~~~------------

Noles
1. Capacitor value necessary to suppress oscillations.
2. All resistor values in ohms.

13-78

__

0.2

~------4__IN

IlA79M1SQB
3-Terminal Negative
Voltage Regulator

I=AIRCHILD
A Schlumberger Company
MIL-STD-883
July 1986-Rev 25

Aerospace and Defense Data Sheet
Linear Products

Description

Connection Diagram
a-Lead TO-a9 Can
(Top View)

The IlA79M15QB 3-Terminal Medium Current Negative
Voltage Regulator is constructed using the Fairchild Planar
Epitaxial process. This regulator employs internal currentlimiting, thermal shutdown and safe-area compensation,
making it essentially indestructible. If adequate heat sinking
is provided, it can deliver up to 500 mA output current. It
is intended as a fixed voltage regulator in a wide range of
applications including local, on-card regulation for elimination of noise and distribution problems associated with single point regulation. In addition to use as a fixed voltage
regulator, this device can be used with external components to obtain adjustable output voltages and currents. 6
•
•
•
•

Output Current In Excess Of 0.5 A
Internal Thermal Overload Protection
Internal Short Circuit Current-Limiting
Output Transistor Safe-Area Compensation

13-79

MA79M15QB·

Processing: MIL-STD-883, Method 5004

Absolute Maximum Ratings
Storage Temperature Range
Operating Temperature Range
Lead Temperature (soldering, 60 s)
Internal Power Dissipation 10
Can Without Heat Sink 1.1
Can With Heat Sink12
CCP Without Heat Sink13
Input Voltage

-65°C to + 175°C
-55°C to +125°C
300°C
0.18 W
0.5 W
0.4 W
-35 V

Burn-In: Method 1015, Condition A, PDA. calculated
using Method 5005, $ubgroup 1 .
Quality Conformance Inspectlon:MIL-STD-883,
Method 5005
.
Group A Electrical Tests Subgroups:
1.
2.
3.
4.
5.
6.
9.

Notes
1. 100% Test and Group A
2. Group A
3. Periodic tests, Group C
4. Guaranteed but not tested
5. When changes occur, FSC will make data sheet revisions available.
Contact local sales representative for the latest revision.
6. For more information on device function, refer to the Fairchild Linear
Data Book Commercial Section.
7. All characteristics except line and load transient response and noise
are measured using pulse techniques (tw< 10 ms, duty cycle <5%).
Output vonage changes due to changes in the internal temperature
must be taken into account separately.
8. Conditions given will result in the following: Po < 4 W.
9. Slowly ramp input voltage up to -8.0 V. When circuit starts, output
voltage will be as specified.
10. Internally limited.
11. Rating applies to ambient temperatures up to 125°C. Above 125°C,
derate linearly at 140°C/W.
12. Rating applies to ambient temperatures up to 125°C. Above 125°C,
derate linearly at 50·C/W.
13. Rating applies to ambient temperatures up to 125°C. Above 125°C,
derate linearly at 120"C/W.

Static tests at 25°C
Static tests at 125°C
Static tests at -55°(;
Dynamic tests at 25" C
DynamiC tests at 1250 C
Dynamic tests at -550 C
AC tests at 25°C

..

Group C and D Endpoints: Group A; Subgroup 1

13-80

J-lA79M15QB

/-IA79M15QB

Electrical Characteristics VI
Symbol
Vo

= -23

V, 350 rnA, CI = 2.0 /-IF, Co

Characteristic

= 1.0

/-IF, unless otherwise specified?

Condition

Output VoltageS
5.0 mA";;IL";;350 mA IVI=-17.5 V

VR liNE

VR LOAD

Average Temperature
Coefficient of Output
Voltage
Line Regulation

Load Regulation

Max

Unit

Note

-14.4

V

1

1

-15.75 -14.25

V

1

1,2,3

-15.75 -14.25

Subgrp

V

1

1,2,3

IL = 5.0 mA, 25°C";; TA";; 125°C

4.5

mY/DC

4

2

IL = 5.0 mA, -55°C";; T A ";; 25°C

4.5

mY/DC

4

3
1

I VI = -30 V
D.Vo/D.T

Min
-15.6

-30 V";;VI";;..,.17.5 V

80

mV

1

-'-30 V";; VI";; 18.5 V

150

mV

1

2,3

-28 V";; VI <-18 V

50

mV

1

1

5.0 mA";; iL < 500 mA

80

mV

1

2,3

240

mV

1

1

300

mV

1

2,3

2.0

mA

1

1

ISCD

Standby Current Drain

3.0

mA

1

2,3

D.ISCD
(LINE)

Standby Current Drain
Change (vs Line Voltage)

-30 V";;V I ";;-17.5 V

0.4

mA

1

1,2,3

D.ISCD
(LOAD)

Standby Curreni Drain
Ch~nge (vs Load Current)

5.0 mA";; IL ";;350 mA

0.4

mA

1

1,2,3

2.3

V

1

1

1.0

A

1

1,2,3,

2.0

A

1

1,2,3

150

mV

4

1

VDO

Dropout Voltage

los

Short Circuit Current

VI = -35 V

IPk

Peak Output Current

VI-Vo=-10 V

VRTH

Thermal Regulation

VI = -25 V, IL = 500 mA

VSTART

Voltage Start 9

D.VI/ D.Vo

Ripple Rejection

VI = -20 V, IL = 125 mA,
ej = 1.0 V,ms, f = 2400 Hz

No

Noise

VI =-20 V, IL = 50 mA,
10Hz";; f ,,;; 10kHz

D.Vo/ D.V I

Line Transient Response

D.Vo/ D.IL

Load Transient· Response

0.5

-4.75

V

1

1,2,3

dB

1

4,5,6

700

f.lV,ms

4

9

VI = -20 V, IL = 5.0 mA,
Vpul se = -3.0 V

30

mVIV

4

9

VI= -20 V, IL = 50 mA,
D.IL = 200 mA

2.5

mV/mA

4

9

13-81

50

MA79M15QB

Primary Burn-In Circuit
(38510/11503 may be used by FSC as an alternate)
-30 V
OUT_

>---IN
COMMON

:

~(NOTE

1)

1

(NOTE 1)

Equivalent Circuit (Note 2)
;-----~----------~--------_,--~--------------,_------------_r--------~----r_COMMON

0'
Uk

+---;:::05

025
4.5k
TO 6.3 k

R23

4.0k

+-----......----~a17

024
Uk
TO 18k

OUT

01
01.

Cl
15pF
R"
•. 1
09

7.5k

..,

01.
7.Sk

R13

IN

Noles
1. Capacitor value necessary to suppress oscillations.
2. All resistor values in ohms.

13-82

J,LA790SQB
3-Terminal Negative
Voltage Regulator

FAIRCHILD
A Schlumberger Company
MIL-STD-883
July 1986-Rev 15

Aerospace and Defense Data Sheet
Linear Products

Description

Connection Diagram
2-Lead TO-3 Can
(Top View)

The IlA79050B 3-Terminal Negative Voltage Regulator is
constructed using the Fairchild Planar Epitaxial process.
This negative regulator is intended as a complement to
the popular !lA78050B Positive Voltage Regulator. The
IlA79050B employs internal current-limiting, safe-area protection, and thermal shutdown, making it virtually indestructible. 6

•
•
•
•

OUT

Output Current In Excess Of 1 A
Internal Thermal Overload Protection
Internal Short Circuit Current-Limiting
Output Transistor Safe-Area Compensation

Order Information
Casel
Part No.
IlA7905KMOB

Finish
YC

Package Code
MiI-M-38510, Appendix C
2-Lead Can

JAN Product Available
11505
11505

13-83

BYA
BYC

2-Lead Can
2-Lead Can

J,lA790SQB

Absolute Maximum Ratings
Storage Temperature Range
Operating Temperature Range
Lead Temperature (soldering, 60 s)
Internal Power Dissipation 9
Can Without Heat Sink10
Can With Heat Sink 11
Input Voltage

Processing: MIL-STD-883, Method 5004
-65°C to + 175°C
-55°C to +125°C
300°C
0.71 W
5.6 W
-35 V

Burn-In: Method 1015, Condition A, PDA calculated
using Method 5005, Subgroup 1
Quality Conformance Inspection: MIL-STD-883,
Method 5005
Group A Electrical Tests Subgroups:
1.
2.
3.
4.
5.
6.
9.

Notes

1.
2.
3.
4.
5.

100% Test and Group A
Group A

Static tests at 25°C
Static tests at 125°C
Static tests at -55°C
Dynamic tests at 25°C
Dy nam ic tests at 1250 C
Dynamic tests at -550 C
AC tests at 25°C

Group C and 0 Endpoints: Group A, Subgroup 1

Periodic tests, Group C

Guaranteed but not tested
When changes occur, FSC will make data sheet revisions available.
Contact local sales representative for the latest revision.

6. For more information on device function, refer to the Fairchild Linear
Data Book' Commercial Section.
7. All characteristics except line and load transient response and noise

are measured using pulse techniques (tw~10 ms, duty cycle :::;;:;;5%).
Output voltage changes due to changes in the internal temperature
must be taken into account separately.

8. Conditions given will result in the following: Po';; 15 W.
9. Internally limited.
10. Rating applies to ambient temperatures up to 125·C. Above 125·C.
derate linearly at 35·C/W.
11. Rating applies to ambient temperatures up to 125·C. Above 125·C.
derate linearly at 4.46·C/W.

13-84

IlA790SQB

J.lA790SQB
Electrical Characteristics VI = -10 V, IL = 500 rnA, CI = 2.0 J.lF, Co = 1.0 J.lF, unless otherwise specified?
Symbol

Characteristic

Condition

Output VoltageS

Vo

5.0 mA ~ IL ~ 1.0 A

t:.Vo/t:.T

VR

LINE

Average Temperature
Coefficient 01 Output
Voltage
Line Regulation

Unit

Note

-4.8

V

1

1
1,2,3

-5.3

-4.7

V

1

-5.3

-4.7

V

1

1,2,3

mV/oC

4

2

IL = 5.0 mA, -55°C ~ T A ~ 25°C

1.5

mVrC

4

3

1

1

-25

V~VI~-7.0

V

50

mV

~-s.O

V

75

mV

V~VI~-8.0

V

25

mV

50

mV

1

2,3

5.0 mA ~ IL ~ 1.5 A

100

mV

1

1,2,3
1

~

VI

250 mA ~ IL ~ 750 mA

ISCD

Subgrp

1.5

-12

VR LOAD

Max

-5.2

IL = 5.0 mA, 25°C ~TA ~ 125°C

-25 V

Load Regulation

IVI = -8.0 V
IVI =-20 V

Min

Standby Current Drain

t:.ISCD
(LINE)

Standby Current Drain
Change (vs Line Voltage)

-25 V ~VI ~-s.O V

t:.ISCD
(LOAD)

Standby Current Drain
Change (vs Load Current)

5.0 mA

~

IL ~ 1.0 A

I

1

2,3

1

1

35

mV

1

60

mV

1

2,3

2.0

mA

1

1

3.0

mA

1

2,3

1.3

mA

1

1,2,3

0.5

mA

1

1,2,3

VDO

Dropout Voltage

IL = 1.0 A

2.3

V

1

1

los

Short Circuit Current

VI =-35 V

2.0

A

1

1,2,3

4.0

A

1

1,2,3

50

mV

1

1

V

4

1,2,3

dB

1

4,5,6

Ipk

Peak Output Current

VI = -S.O V, t:.Vo = 0.48 V

VRTH

Thermal Regulation

VI=-15 V, IL=1.0 A

VSTART

Voltage Start

VI = -20 V, RL = 5.0

t:.VI/t:.VO

Ripple Rejection

VI = -10 V, IL = 350 mA,
ej = 1.0 Vrrns , 1 = 2400 Hz

No

Noise

VI=-10 V, IL=100 mA,
10Hz ~ 1 ~ 10kHz

250

p.V rrns

4

9

t:.VO/t:.VI

Line Transient Response

VI = -10 V, IL = 5.0 mA,
Vpul se = -3.0 V

30

mVIV

4

9

t:.VO/t:.IL

Load Transient Response

VI = -10 V, IL = 100 mA,
t:.IL = 400 mA

2.5

mV/mA

4

9

13-85

n

1.0

-5.25

-4.75

45

~7905QB

Primary Burn-In Circuit
(38510/11505 may be used by FSC as an alternate)
-30 V

IN

OUT

(NOTE 1)

Note
1. Capacitor value necessary to suppress oscillations.

Equivalent Circuit
r---~r-------------~--------~~r---------------r--------------.--------~----~-eOMMON
A2
UkO

+----11::'05
A25
4.5kO
TO 6.3 kO

A2'
4.0kO

A2.
1.7 kO
TO 18 kO

OUT

A5
4200

01

01.

el
15"

.

15 kO

020

AI.
S.3kn
e'
'pF

Al0

A16
4.7 k(}

15 kO

AI.
2.3kO
A17
3.0'"'

A21
17,",

A30
2000

A22
0.040
A13

0.050
IN

13-86

p.A7912QB

FAIRCHILD
A Schlumberger Company

3-Terminal Negative
Voltage Regulator

MIL-STD-883
July 1986-Rev 15

Aerospace and Defense Data Sheet
Linear Products

Description

Connection Diagram
2-Lead TO-3 Can
(Top View)

The f.,lA79120B 3-Terminal Negative Voltage Regulator is
constructed using the Fairchild Planar Epitaxial process.
This negative regulator is intended as a complement to
the popular f.,lA78120B Positive Voltage Regulator. The
f.,lA 79120B employs internal current-limiting, safe-area
protection, and thermal shutdown, making it virtually
indestructible. 6

•
•
•
•

OUT

Output Current In Excess Of 1 A
Internal Thermal Overload Protection
Internal Short Circuit Current-Limiting
Output Transistor Safe-Area Compensation

Order Information
Part No.
f.,lA7912KMOB

Casel
Finish
YC

Package Code
MiI-M-38510, Appendix C
2-Lead Can

JAN Product Available
11506
11506

13-87

BYA
BYC

2-Lead Can
2-Lead Can

MA7912QB

Processing: MIL-STD-883, Method 5004

Absolute Maximum Ratings
-65°C to + 175°C
-55°C to + 125°C
300°C

Storage Temperature Range
Operating Temperature Range
Lead Temperature (soldering, 60 s)
Internal Power Dissipation 9
Can Without Heat Sink 10
Can With Heat Sink II
Input Voltage

Burn-In: Method 1015, Condition A, PDA calculated
using Method 5005, Subgroup 1
Quality Conformance Inspection: MIL-STD-883,
Method 5005

0.71 W
5.6 W
-35 V

Group A Electrical Tests Subgroups:
1.
2.
3.
4.
5.
6.
9.
Notes
I, 100% Test and Group A
2, Group A
3, Periodic tests, Group C
4. Guaranteed but not tested
5. When changes occur, FSC will make data sheet revisions available.
Contact local sales representative for the latest revision.
6. For more information on device function, refer to the Fairchild Linear
Data Book Commercial Section.

0

Group C and 0 Endpoints: Group A, Subgroup

7. All characteristics except line and load transient response and noise
are measured using pulse techniques (tw 10 ms, duty cycle
5%).
Output voltage changes due to changes in the internal temperature
must be taken into account separately,
8, Condttions given will result in the following: Po';; 15 W,
9, Internally limited,
10. Rating applies to ambient temperatures up to 125"C, Above 125"C,
derate linearly at 35"C/W.
II, Rating applies to ambient temperatures up to 125"C, Above 125"C,
derate linearly at 4.46"C/W,

-<

Static tests at 25°C
Static tests at 125°C
Static tests at -55°C
Dynamic tests at 25°C
Dynam ic tests at 125 C
Dynam ic tests at -550 C
AC tests at 25°C

<

13-88

JlA7912QB

/.IA7912QB

Electrical Characteristics VI = -19 V, IL = 500 mA, CI = 2.0 /.IF, Co = 1.0 /.IF, unless otherwise specified'?
Symbol

Vo

Characteristic

Condition

Output Voltage 8
5.0 mA < IL < 1.0 A

t:.Vo/t:.T

VR LINE

VR LOAD

Average Temperature
Coefficient of Output
Voltage
Line Regulation

Load Regulation

I VI = -15.5 V
IVI =-27 V

Min

Max

UnIt

Note

-12.5

-11.5

V

1

1

-12.6

-11.4

V

1

1,2,3

-12.6

-11.4

V

1

1,2,3

IL=5.0 mA, 25°C--"(:> OUT

-IN

NC

-OFFSET NULL!
FREQ COMP
NC

-IN

FREQ
COMP

C::=::J-...J

V+

+lNC=:J---'
NC
-OFFSET NULL!
FREQ COMP

NC

v- - - - -. . ._ _ _ _ _....---NULL
+OFFSET

FREQ
COMP

-IN

V+

Order Information

+IN

OUT

Part No.

+OFFSET

!1A101DMOB
!1A1 01HMOB
!1A101FMOB

V-

NC

YC=:::JOUT

NULL

Casel
Finish
CA
GC
HA

Package Code
MiI-M-38510, Appendix C
D-1 14-Lead DIP
A-1 8-Lead Can
F-4 10-Lead Flatpak

NC

JAN Product Available
10103
10103
10103
10103
10103
10103
10103
10103

14-7

BCA
BCB
BGA
BGC
BHA
BHB
BPA
BPB

D-1
D-1
A-1
A-1
F-4
F-4
D-4
D-4

14-Lead DIP
14-Lead DIP
8-Lead Can
8-Lead Can
10-Lead Flatpak
10-Lead Flatpak
8-Lead DIP
8-Lead DIP

•

J-lA101QB

Processing: MIL-STD-883, Method S004

Absolute Maximum Ratings
-65°C to + 175°C
-55°C to + 125°C
300°C

Storage Temperature Range
Operating Temperature Range
Lead Temperature (soldering, 60 s)
Internal PoWer DisSipation 11
Can and Flatpak
DIP
Supply Voltage
Differential Input Voltage
Input Voltage 12
Short Circuit Duration 13

Burn-In: Method 10.1S, Condition A, PDA calculated
. using Method SOOS, Subgroup 1
Quality Conformance Inspection: MIL"STD-883,
MethodSOOS

330 mW
400 mW
±22 V
±30 V
±20 V
Indefinite

Group A Electrical Tests. Subgroups:
1.
2.
3.
4.
5.
6.
9.
10.
11.

Static tests. at 25°C
Static tests at 125°C
Static tests at -55°C
Dynamic tests at 25°C
Dynamic tests at 125°C
Dynamic tests at -55°C
AC tests at 25°C
AC tests at 125°C
AC tests at -55°C

Group C and 0 Endpoints: Group A,. Subgroup
Notes
1. 100% Test and Group A
2. Group A
3. Periodic tests, Group C

4. Guaranteed but not tested
5. When changes occur, FSC will make data sheet revisions available.
Contact local sales representative for the latest revision.
6. For more ihformation on device function, refer to the Fairchild Linear

Data Book Commercial Section,
7. Z, is guaranteed by liB: Z, ~ 4.0 Vrll'B' Vr
125'C, and 19mV at -55'C.
B. Pc is guaranteed by Icc: Pc

= 40

~

26 mV at 25'C, 34 mV at

Icc-

9. V,R is guaranteed by the CMR test.
10. BW is guaranteed by t,: BW ~ 0.35/t,.
11. Rating applies to ambient temperatures up to 125'C. Above 125'C
ambient, derate linearly at 150'C/W for the Can and Flatpak and
120'C/W for the DIP.
12. For supply voltages less than ± 20 V, the absolute maximum input
voltage is equal to the supply voltage.
13. Short circuit may be to ground or either supply. Rating applies to
125°C case temperature or 75°C ambient temperature.

14-8

J.lA101QB

JlA101QB

Electrical Characteristics Vee = ± 20 V, unless otherwise specified .
Symbol

Vlo

. Characteristic

Input Offset Voltage

Condition

±5.0 V';;;Vcc';;;±20 V,
Rs = 50 Q
VCM =0 V
. 25°C';;;TA ';;;125°C

!:lVlol!:lT

Input Offset Voltage
Temperature Sensitivity

VIO adj

Input Offset Voltage Adjustment
Range

Radj = 5.1 MQ

110

Input Offset Current

VCM =0 V

!:lllol!:lT

liB

Input Offset CUrrent
Temperature Sensitivity
Input Bias Current

ZI

Input Impedance7

Icc

Supply Current

Pc

~55°C';;;

TA';;; +25°C

25°C';;; TA ,;;; 125°C
-55°C ';;;TA';;; +25°C

Input Voltage Range 9

VCM=±15 V, Rs=50 Q

PSRR

Power Supply Rejection Ratio

±5.0 V';;;Vcc';;;±20 V,
Rs=50Q

los

Output Short Circuit Current

VCC=±15V

Avs

Large. Signal Voltage Gain

Vcc=±15 V, Vo=±10 V,
RL = 2.0 kQ

. Output Voltage Swing

Vcc = ± 15 V

...

Transient
Response

TR(os)

Rise Time
Overshoot

BW

Bandwidth 10

SR

Slew Rate

mV

1

1

mV

1

2,3

25

pV 1°C

4

2

25

IlV/oC

4

3

mV

1

1,2,3

200

nA

1

1,2

500

nA

1

3

0.1

nArC

4

2

0.2

nA/oC

4

3

340

nA

1

1

750

nA

1

2,3
1

MQ

1

3.0

mA

1

1

2.5

mA

1

2
3

3.5

mA

1

mW

1

1

100

mW

1

2

70

dB

1

1,2,3

±15

V

1

1,2,3

IlV/v

1

1,2,3

316

mA

1

1,2,3

50

V/mV

1

4

25

V/mV

1

5,6

±12

V

1

4,5,6

±10

V

1

4,5,6

800

ns

3

9, 10, 11

25

%

3

9, 10, 11

0.437

MHz

3

9, 10, 11

0.3

V/IlS

3

9,10

0.2

V/IlS

3

11

VI=50 mV,
RL = 2.0 kQ, CL = 100 pF,
Av = 1.0

RL = 2.0 kQ, Av = 1.0

Subgrp

5.0

60

I RL = 10 kQ
I RL = 2.0 kQ

Note

120

Power ConsumptionS

Common Mode Rejection

Unit

6.0

0.3

CMR

TR(t,)

Max

1.0

±5.0 V';;;Vcc<±20 V,
VCM = 0 V

VIR

VOP

Min

NI (BB)

Noise Broadband

BW= 5.0 kHz

15

IlV,ms

4

9

NI (PC)

Noise Popcorn

BW = 5.0 kHz

80

IlVpk

4

9

14-9

MA101QB

Primary Burn-In Circuit
(38510/10103 may be used by FSC as an alternate)

30 pF

-OFFSET
NULLIFREQ
COMP

-

FREQ
COMP

+15V

~

r--

-IN

V+

+IN

OUT

+OFFSET
NULL

V-

I

r----

-15V

Equivalent Circuit
-OFFSET
NULLI
FREO COMP

FREQ
COMP

~--------~~------'--+----+-------~--------------~-----V+

-IN

----+-----------1------(;.

+IN----+-------~(

Rll

25 n

+-......__ OUT

L...__

Rl
5kn

R2
2OkO

R3
10kn

R8
1 kO

L-~~~__~----~~-----------4----------------~--~--~---~
R4

250n

+ OFFSET NULL

14-10

J.lA108AQB
Super Beta
Operational Amplifier

FA. RCH. L.O
A Schlumberger Company
MIL-STD-883
July 1986-Rev 25

Aerospace and Defense Data Sheet
Linear Products

Description

Connection Diagram
8-Lead Can
(Top View)

The p.A 108AOB Super Beta Operational Amplifier is constructed using the Fairchild Planar Epitaxial process. High
input impedance, low noise. low input offsets, and low
temperature drifts are made possible through use of super
beta processing, making the device suitable for applications requiring high accuracy and low drift performance.
The p.A 108AOB is specially selected for extremely low offset voltage and drift, and high common mode rejection,
giving superior performance in applications where offset
nulling is undesirable. Increased slew rate without performance compromise is available through use of feedforward
compensation techniques, maximizing performance in high
speed sample-and-hold circuits and precision high speed
summing amplifiers. The wide supply range and excellent
supply voltage rejection assure maximum flexibility in voltage follower, summing, and general feedback applications. 6

•
•
•
•
•

FREQ
CaMP 2

yLead 4 connected to case.

Connection Diagram
10-Lead Flatpak
(Top View)

Guaranteed Low Input Offset Characteristics
High Input Impedance
Low Offset Current
Low Bias Current
Operation Over Wide Supply Range

10
NC

Connection Diagram
14-Lead DIP
(Top View)

-IN

FREQ
CaMPI
FREQ

NC

CQMP2

C:=::J-...J

v+

+INL"':"":...J-...J

OUT

NC

y-

14
NC

NC

FREQ
CQMPI

NC

NC

FREQ
CQMP2

-IN

v+

+IN

OUT

NC

NC

Order Information
Part No_
p.A 108ADMOB
p.A 108AHMOB
p.A 108AFMOB

Casel
Finish
CA

GC
HA

Package Code
MiI-M-38510, Appendix C
D-1 14-Lead DIP
A-1 8-Lead Can
F-4 10-Lead Flatpak

JAN Product Available

v-

10104
10104
10104
10104
10104
10104

HC

14-11

BCA
BCC

BGA
BGC
BHA
BHB

D-1
D-1
A-1
A-1
F-4
F-4

14-Lead DIP
14-Lead DIP
8-Lead Can
8-Lead Can
10-Lead Flatpak
10-Lead Flatpak

p.A.108AQB

Absolute Maximum Ratings
Storage Temperature Range
Operating Temperature 'Range
Lead Temperature (soldering, 60 s)
Internal Power Dissipation9
Can and Flatpak
DIP
Supply Voltage
Differential Input Voltage
Input Voltage 10. ..
Short Circuit Duration 11
Differential Input Current12

Processing: MIL-STD-883, Method 5004
-65°C to + 175°C
-55°C to +125°C
300°C
330 mW
400 mW
±22 V
±5.0 V
±20 V
Indefinite
±10 mA

Burn-In: Method 1015, Condition A, PDA calculated
using Method 5005, Subgroup 1

Quality Conformance Inspection: MIL-STD-883,
Method 5005

Group A Electrical Tests Subgroups:
1..
2.
3.
4.
5.
6.
9.
10.
11.

Static tests at 25°C
Static tests at 125°C
Static tests at -55°C
Dynamic tests at 25°C
Dynamic tests at 125°C
DynamiC tests at -55°C
AC tests at 25°C
AC tests at 125°C
AC tests at -55°C

Group C and 0 Endpoints: Group A, Subgroup .1
Notea
1.
2.
3.
4.
5.
6.
7.
8.
9.

10..
11.
12.

100% Test and Group A
Group A
.
Periodic. tests, Group C
Guaranteed but not tested
When changes occur, FSC will make data sheet revisions available.
Contact local saies representative for the latest revision.
For more information on device function, refer to the Fairchild Linear
Data Book Commerciai Section.
ZI is guarantaed by liB: ZI- 2[(VT/IIB) + l00lRe(lO-~I, VT - 26 mV at
25·C, Re - 170.0.
VIR is guaranteed by the CMR test.
Rating applies to ambient temperatures up fo 125·C. Above 125·C
arnbien~ derate lineerly at 15o.·C/W for the Can and Flalpak and
12o.·C/W for the DIP.
For Supply Voltages less than ±2O V, the absol~ maximum input
voltage is equal to the BUppIy voltage.
Short circuit may be to ground or e"her BUpply. Rating applies to
125·C caSe temperature or 75·C ambient temperature.
The inputs are shunted with back-to-back diodes for overvoltage
protection. Therefore, excessive current will flow if a· differential input
voltage in excess of 1.0. V is applied between the inputs' unless
adecjuata limiting resistance is used.

n.

14-12

p,A108AQB

1lA108AQB

Electrical Characteristics ± 5.0 V ~ Vee ~ ± 20V. unless otherwise specified.
Symbol

VIO

I1Vlo/l1T

Characteristic

Input Offset Voltage

Condition

Min

Rs=50 n, VCM=O V

Input Offset Voltage
Temperature Sensitivity

Max

Unit

Note

0.5

mV

1

1

Subgrp

1.0

mV

1

2,3

25°C';;; TA';;; 125°C

5.0

p'vrc

4

2

-55°C';;; TA';;; +25°C

5.0

p'vrc

4

3

0.2

nA

1

1
2,3

110

Input Offset Current

VCM =0 V

0.4

nA

1

11110/l1T

Input Offset Current
Temperature Sensitivity

25°C';;; TA';;; 125°C

2.5

pArc

4

2

-55°C';;; TA';;; +25°C

5.0

pArc

4

3

1.9

nA

1

1

3.0

nA

1

2,3

Mn

1

1

liB

Input Bias Current

ZI

Input Impedance7

Icc

Supply Current

VCM =0 V

30
0.6

mA

1

1,2

0.8

mA

1

3

96

dB

1

1,2,3

± 13.5

V

1

1,2,3

Vcc=±20 V

CMR

Common Mode Rejection

Vcc = ± 15 V,
VCM = ± 13.5 V,
Rs=50 n

VIR

Input Voltage RangeS

VCC=±15V

PSRR

Power Supply Rejection Ratio

±5.0 V';;;Vcc';;;±20 V,
Rs=50 n

16

p.VN

1

1,2,3

los

Output Short Circuit Current

Vcc=±15 V

15

mA

3

1,2,3

Avs

Large Signal Voltage Gain

Vcc=±15 V,
Vo=±10V,
RL = 10 kn

80

V/mV

1

4

VlmV

1

5,6

Vcc=±15 V,
RL = 10 kn

±13

V

1

4,5,6

1000

ns

3

9,10,11

50

0/0

3

9,10,11

Vlp.s

3

9,10,11

VOP

Output Voltage Swing

TR(t,)

Transient Response

Rise Time
Overshoot

TR(os>

40

Vcc=±20 V,
VI = 50 mY,
RL =2.0 kn,
CL = 100 pF, Av = 1.0

SR

Slew Rate

Vcc= ±20 V,
RL = 2.0 kn, Av = 1.0

NI (BB)

Noise Broadband

Vcc= ±20 V,
BW = 5.0 kHz

15

p.V,ms

4

9

NI (PC)

Noise Popcorn

Vcc=±20 V,
BW=5.0 kHz

40

/JVpk

4

9

14-13

0.05

~A108AQB

Primary Burn-In Circuit
(38510/10104 may be used by FSC as an alternate)
30 pF
1\

L....-- FREa

COMPl

~

FAEa

COMP2

-IN

Y+

+IN

OUT

-1r:- Y-

NC

t---

jY

t---

Equivalent Circuit
FREQ

FREa

co....

co. 1

r---------~~--~~_1--_.------~--_r--~------------------~~---------Y+

AS

R4
2D1--£:=:::1 OUT
LAG!
FREOCOMP

LEADI

v- - -..._ _ _ _.......,----- FREO COMP

Order Information
Part No.
~702HMQB

GC

~702FMQB

HA
CA

~702DMQB

14-55

Casel
Finish

Package Code
MiI-M-38510, Appendix C
A-l 8-Lead Can
F-4 10-Lead Flatpak
0-1 14-Lead DIP

J1A702QB

Processing: MIL-STD-883, Method 5004

Absolute Maximum Ratings
Storage Temperature Range
Operating Temperature Range
Lead Temperature (soldering, 60 s)
Internal Power Dissipation 11
Can and Flatpak
DIP
Supply Voltage
Differential Input Voltage
Input Voltage 12
Peak Output Current

-65°C to + 175°C
-55°C to + 125°C
300°C
330 mW
400 mW
21 V
±5.0 V
+1.5 V to -6.0 V
50 rnA

Burn-In: Method 1015, Condition A, PDA calculated
using Method 5005, Subgroup 1
Quality Conformance Inspection: MIL-STD-883,
Method 5005
Group A Electrical Tests Subgroups:
1.
2.
3.
4.
5.
6.
9.

Static tests at 25°C
Static tests at 125°C
Static tests at -55°C
Dynamic tests at 25°C
Dynamic tests at 125°C
Dynamic tests at -55°C
AC tests at 25°C

Group C and 0 Endpoints: Group A, Subgroup
Notes
1. 100% Test and Group A
2. Group A
3. Periodic tests, Group C
4. Guaranteed but not tested
5. When changes occur, FSC will make data sheet revisions available.
Contact local sales representative for the latest revision.
6. For more information on device function, refer to the Fairchild Linear
Data Book Commercial Section.
7. ZI is guaranteed by liB: ZI = 2.0 VTIIIB, VT = 26 mV at 25'C, 34 mV at
125'C, and 19 mV at -55'C.
B. Pc, is guaranteed by Icc,: Pc, = (12 V)(lccl + (6.0 V)(lcc,).
9. VIR is guaranteed by the CMR test.
10. Pc2 is guaranteed by Icc.: Pc2 = (6.0 V)(ICC2) + (3.0 V)(lcc21·
11. Rating applies to ambient temperatures up to 125'C. Above 125'C
ambient, derate linearly at 150'C/W for the Can and Flatpak and
120'C/W for the DIP.
12. For supply voltage of 21 V.

Transient Response Test Circuits
Figure 1 Unity-Gain Amplifier
(Lag Compensation)

Figure 2 X100 Amplifier
(Lead Compensation)

2kCl

>-............-_Vo

14-56

JlA702QB

JlA702QB

Electrical Characteristics V+ = 12 V, V- = -6.0 V, unless otherwise specified.
Symbol

Characteristic

Condition

n,

Min

Max

Unit

Note

2.0

mV

1

1

mV

1

2,3

p.V/oC

4

2

p.V/oC

4

3

VIO

Input Offset Voltage

Rs = 50

3.0
t:Nlo/AT

Input Offset Voltage
Temperature Sensitivity

25°C < TA < 125°C

10

-55°C ---<0 OUT

-IN

•
•
•
•
•
•
•
•

Low Offset Voltage
Low Offset Voltage Drift
Low Bias Current
Low Input NOise Current
High Open Loop Gain
Low Input Offset Current
High Common Mode Rejection
Wide Power Supply Range

vLead 4 connected to case.

Order Information
Part No.
1lA714HMQ8

Casel
Finish

GC

Package Code
MiI-M-38510, Appendix C
A-1 8-Lead Can

•
14-67

J.lA714Q8

Absolute Maximum Ratings
Storage Temperature Range
Operating Temperature Range
Lead Temperature (soldering. 60 s)
Internal Power Dissipation 10
Can'
Supply Voltage
Differential Input Voltage
Input Voltage 11

Processing: MIL-STD-883, Method 5004
-65°C to + 175°C
-55°C to + 125°C
300°C
330 mW
±22 V
±30 V
±22 V

Burn-In: Method 1015, Condition A, PDA calculated
using Method 5005, Subgroup 1
Quality Conformance Inspection: MIL-STD-883,
Method 5005
Group A Electrical Tests Subgroups:
1.
2.
3.
4.
5.
6.

Static tests at
Static tests at
Static tests at
Dynamic tests
Dynamic tests
Dynamic tests

25°C
125°C
-55°C
at 25°C
at 125°C
at -55°C

Group C and D Endpoints: Group A, Subgroup 1
Notes
1. 100% Test and Group A
2. Group A
3. Periodic tests, Group C
4. Guaranteed but not tested
5. When changes occur I FSC will make data sheet revisions available.
Contact loca1 sales representative for the latest revision.
6. For more information on device function, refer to the Fairchild Linear

Data Book Commercial Section.
Pc1 is guaranteed by ICC1; Pc1 - 30 ICC1.
Pc2 is guaranteed by ICC2; Pc2 = 6 ICC2.
V,R is guaranteed by the CMR test.
Rating applies to ambient temperatures up to 125'C. Above 125'C
ambient, derate linearly at 150'C/W.
11. For supply voltages less than ±22 V, the absolute maximum input
vOltage is equal to the supply voltage.
7.
8.
9.
10,

14-68

fJA714QB

~A714QB

Electrical Characteristics Vee = ± 15 V, unless otherwise specified.
Symbol

Via

Characteristic

Input Offset Voltage

Condition

Min

Rs = 50 Q, VCM = 0 V

Max

Unit

Note

Subgrp

75

p.V

1

1

200

p.V

1

2,3

110

Input Offset Current

VCM =0 V

2.8

nA

1

1

5.6

nA

1

2,3

liB

Input Bias Current

VCM =0 V

3.0

nA

1

1

6.0

nA

1

2,3
1

ICC1

Supply Current

Vo=O V

4.0

mA

1

ICC2

Supply Current

VCC = ± 3.0 V, Va = 0 V

1.0

mA

1

1

Pc1

Power Consumption?

Vo=O V

120

mW

1

1

Pc2

Power ConsumptionS

Vcc = ± 3.0 V, Va = 0 V

6.0

1

CMR

Common Mode Rejection

VCM = ± 13 V, Rs = 50 Q

VIR

Input Voltage Range 9

PSRR

Power Supply Rejection Ratio

Avs

Large Signal Voltage Gain

Output Voltage Swing

1

dB

1

1

106

dB

1

2,3
1,2,3

± 13.0

V

1

10

p.VN

1

1

20

p.VN

1

2,3

200

V/mV

1

4

150

V/mV

1

5,6

150

V/mV

1

4

±3.0 V";;Vcc";;±18 V,
Rs = 50 Q
Va = ± 10 V, RL = 2.0 kQ

Vcc =±3.0 V, Vo =± 0.5 V,
RL = 500 Q
VoP

mW

110

RL = 10 kQ

± 12.5

V

1

4

RL = 2.0 kQ

± 12.0

V

1

4,5,6

RL = 1.0 kQ

± 10.5

V

1

4

14-69

J.tA714QB

Primary Burn-In Circuit

-

+OFFSET

NULL

-OFFSET
NULL

r--15 V

~

r--

-IN

V+

+IN

OUT

V-

NC

I

I--

-15 V

Equivalent Circuit

RIA

R1B

+IN

-IN

R3

"I

029

as~Q6~~~~6
07

M~~

;

R12
09

Q28(~

~

riLl

+OF~~~_ -OF~~~~ _

Cl

C2

Q34~019

~C31~ ~

~~

R9

016

f0~

OUT

RIO
~

~

J 02

J

R5

1'1
R23

R24
')~2

~.

R16

R7

010)-

I

p'

V+

.)

0301.,.

R2B (NOTE 1)

R2A (NOTE 1)

L<039

;::L.KQ44

1 015
03~

0.3

R17
032

R18
03'

R21

...
",020

~5

018

R8

R.9

038>

R14
R13
R15

040

035>-

R26

R20

R25
V-

Note
1. R2A and R2B are electronically adjusted on a chip at the factory for

minimum offset voltage.

14-70

J.lA71SQ8
High Speed
Operational Amplifier

FAIRCHIL.D
A Schlumberger Company
MIL-STD-883
July 1986-Rev 15

Aerospace and Defense Data Sheet
Linear Products

Description

Connection Diagram
10-Lead Can
(Top View)

The p.A715QB is a high speed, high gain, monolithic operational amplifier constructed using the Fairchild Planar Epitaxial process. It is intended for use in a wide range of
applications where fast signal acquisition or wide bandwidth is required. The p.A715QB features fast settling time,
high slew rate, low offsets and high output swing for large
signal applications. In addition, the device displays excellent temperature stability and will operate over a wide
range of supply voltages. The p.A715QB is ideally suited
for use in AID and 01 A converters, active filters, deflection amplifiers, video amplifiers, phase-locked loops.. multiplexed analog gates, precision comparators, sample-andholds, and general feedback applications requiring DC wide
bandwidth operation. 6
•
•
•
•
•

y-

Lead 5 connected to case.

High Slew Rate
Fast Settling Time
Wide Bandwidth
Wide Operating Supply Range
Wide Input Voltage Ranges

Order Information
Part No.
p.A715HMQB

14-71

Casel
Finish
IC

Package Code
MII-M-38510, Appendix C
A-2 10-Lead Can

JlA715QB

Processing: MIL-STD-883, Method 5004

Absolute Maximum Ratings
Storage Temperature Range
Operating Temperature Range
Lead Temperature (soldering, 60 s)
Internal Power DiSSipation9
Can
Supply Voltage
Differential Input Voltage
Input Voltage 10

-65°C to + 175°C
-55°C to + 125°C
300°C
350 mW
±18 V
±15 V
±15 V

Burn-In: Method 1015, Condition A, PDA calculated
using Method 5005, Subgroup 1
Quality Conformance Inspection: MIL-STD-883,
Method 5005
Group A Electrical Tests Subgroups:
1.
2.
3.
4.
5.
6.
9.

Static tests at 25°C
Static tests at 125°C
Static tests at -55°C
Dynamic tests at 25°C
Dynamic tests at 125°C
Dynamic tests at -55°C
AC tests at 25°C

Group C and D Endpoints: Group A, Subgroup 1
N_
1.
2.
3.
4.
5.
6.
7.
6.
9.
10.

100% Test and Group A
Group A
Periodic tests, Group C
Guaranteed but not tested
When changes occur, FSC will make data shea! revisions available.
Contact local sales representative for the latest revision.
For more information on device function, refer to the Fairchild Unear
Data Book Commercial Section.
Pc is guansnteed by Icc: Pc - 30 Icc.
VIR is guaranteed by the CMR test.
Rating applies to ambient temperatures up to 125'C. Above 125'C
ambien~ derate linearly at 140'C/W.
For supply voltages le99 than ± 15 V, the absolute maximum input
voltage is equal to the supply voltage.

14-72

MA71SQ8

~715QB

Electrical Characteristics Vee = ± 15 V, unless otherwise specified.
Symbol

Via

Characteristic

Input Offset Voltage

Condition

Rs = 50

n,

Min

VCM = 0 V

Max

Unit

Note

Subgrp

5.0

mV

1

1

7.5

mV

1

2,3

1'0

Input Offset Current

VCM =0 V

250

nA

1

1,2

800

nA

1

3

I'B

Input Bias Current

VCM =0 V

750

nA

1

1,2

4.0

3

IJA

1

Icc

Supply Current

7.0

mA

1

1

Pc

Power Consumption 7

210

mW

1

1

CMR

Common Mode Rejection

1,2,3

VIR

Input Voltage RangeS

PSRR

Power Supply Rejection Ratio

±7.0 V~Vcc~±18 V,
Rs=10 kn

Avs

Large Signal Voltage Gain

Vo=±10 V, RL = 2.0

VOP

Output Voltage Swing

TR(t,)

Transient
Response

TR(os)
SR

Slew Rate

I Rise Time
I Overshoot

VCM = ± 10 V, Rs = 10

RL = 2.0

kn

kn

kn

74

dB

1

±10

V

1

1,2,3

p.VlV

1

1,2,3

15

V/mV

1

4

10

VlmV

1

5,6

V

1

4,5,6

60

ns

2

9

40

%

2

9

Vlp.s

2

9

300

±10

V, = 400 mV, Av = 1.0

Av= 1.0

15

•
14-73

#lA71SQB

Primary Burn-In Circuit
COMP 11

CaMP lA

CASCaDE

CaMP 2B
30V

.----i-IN
t-----I+IN

t-----Iv-

V+ t - - - -...
COMP fA

OUT

Equivalent Circuit
r--------.----.------~-----~--~--~~--r_--~-v+
R24

10 kn

R7
COMPIA

400n

R20

son
R21

OUT

25 kn
-IN

R2

Rl

400n

an

R27

son

+IN

~~~~~m-~~--------------------1(Q9
R22
300U

R23
3 IeIl

R25
75 U

L-__~----~--------------------~----_+----~----~--~

14-74

FAIRCHILD
A Schlumberger Company

J,lA725AQB
Instrumentation
Operational Amplifier

MIL-STD-883
July 1986-Rev 15

Aerospace and Defense Data Sheet
Linear Products

Description

Connection Diagram
a-Lead Can
(Top View)

The JJA725AQB is a monolithic instrumentation operational
amplifier constructed using the Fairchild Planar Epitaxial
process. It is intended for precise, low level signal amplification applications where low noise, low drift and accurate
closed loop gain are required. The offset null capability,
low power consumption, very high voltage gain as well as
wide power supply voltage range provide superior performance for a wide range of instrumentation applications. The
JJA725AQB is lead compatible with the popular JJA741AQB
operational amplifier. 6

•
•
•
•
•
•
•
•

Low Input Noise Current
High Open Loop Gain
Low Input Offset Current
Low Input Voltage Drift
High Common Mode Rejection
High Input Voltage Range
Wide Power Supply Range
Offset Null Capability

-OFFSET

NULL

vLead 4 connected to case.

Order Information
Part No.
JJA725AHMQB

14-75

Casel
Finish

GC

Package Code
MII-M-38510, Appendix C
A-1 8-Lead Can

MA725AQB

Absolute Maximum Ratings
Storage Temperature Range
Operating Temperature Range
Lead Temperature (soldering, 60 s)
Internal Power Dissipation 10
Can
Supply Voltage
Differential Input Voltage
Input Voltage 11
Voltage Between Offset Null and V+
Short Circuit Duration 12

Processing: MIL-STD-883, Method 5004
-65°C to + 175°C
-55°C to + 125°C
300°C
330 mW
±22 V
±5.0 V
±22 V
±0.5 V
Indefinite

Burn-In: Method 1015, Condition A, PDA calculated
using Method 5005, Subgroup 1
Quality Conformance Inspection: MIL-STD-883,
Method 5005
Group A Electrical Tests Subgroups:
1.
2.
3.
4.
5.
6.
9.

Static tests at 25°C
Static tests at 125°C
Static tests at -55°C
Dynamic tests at 25°C
Dynamic tests at 125°C
Dynamic tests at -55°C
AC tests at 25°C

Group C and D Endpoints: Group A, Subgroup 1
Notes
1. 100% Test and Group A
2. Group A
3. Periodic _ , Group C
4. Guaranteed but not tested
S. When changes occur, FSC will make data sheet revisions available.
Contect local seles representative for the latest revision.
6. For more information on device function, refer to the Fairchild Unear
Data Book Commercial Section.
7. Pel is guaranteed by ICC1 : Pel - 30 ICC1 '
8. Pc2 is guaranteed by ICC2: Pc2 = 6.0 ICC2.
9. VIR is guaranteed by the CMR test.
10. Rating applies to ambient temperatures up to 12S"C. Above 12S"C
ambient, derate linearly at 150"C/W.
11. For supply voltages less than ± 22 V, the absolute maximum input
voltage is equal to the supply voltage.
12. Short circuit may be to ground or either supply. Rating applies to
12S"C case temperature or 7S"C ambient temperature.

14-76

MA725AQB

}lA725AQB
Electrical Characteristics Vee = ± 15 V, unless otherwise specified.
Symbol

VIO

flVlolflT

110

Characteristic

Condition

1

1

1

2,3

2.0

p'vrc

4

2

-55°C ~ TA ~ +25°C

5.0

p'vrc

4

3

VCM = 0 V

5.0

nA

1

1

4.0

nA

1

2

18

nA

1

3

90

pArc

4

2

-55°C ~TA ~ +25°C

90

pArc

4

3

VCM = 0 V

75

nA

1

1

70

nA

1

2

Input Offset Current

ICCl

Supply Current

ICC2

Supply Current

~TA ~

125°C

25°C ~TA ~ 125°C

Pel
Pe2

Power ConsumptionS

Vcc = ±3.0 V

CMR

Common Mode Rejection

VCM=±13.5 V, Rs=50 n

VIR

Input Voltage Range9

PSRR

Power Supply Rejection Ratio

±5.0 V~Vcc~±22 V,
Rs= 50 n

Avs

Large Signal Voltage Gain

Vo= ±10 V, Rl = 2.0 kn

Output Voltage Swing

180

nA

1

3

4.0

I11A

1

1

1.0

mA

1

1

120

mW

1

1

6.0

mW

1

1

120

dB

1

1

110

dB

1

2,3

± 13.5

V

1

1,2,3

p.VIV

1

1

Vcc = ±3.0 V

Power Consumption 7

VOP

Subgrp

mV

25°C

Input Bias Current

Note

mV

Input Offset Voltage
Temperature Sensitivity
(Without External Trim)

lis

Unit

0.5

Rs = 50 n, VCM = 0 V

Input Offset Current
Temperature Sensitivity

Max

0.75

Input Offset Voltage
(Without External Trim)

flldflT

Min

5.0

p.VIV

1

2,3

1000

V/mV

1

4,5

500

V/mV

1

6

8.0

Rl = 10 kn

±12.5

V

1

4

RL = 2.0 kn

±10

V

1

5,6

nV/v'HZ

4

9

No

Noise Voltage

f = 10 Hz

100 Hz ~ 1 ~ 1.0 kHz

12

nV/v'HZ

4

9

NI

Noise Current

f = 10 Hz

1.2

pA/v'HZ

4

9

1=100 Hz

0.6

pAlv'HZ

4

9

f = 1.0 kHz

0.25

pA/v'HZ

4

9

15

14-77

•

MA725AQB

Primary Burn-In Circuit
+OFFSET
NULL

-OFFSET
NULL
30 V

V+

,------I-IN

OUT

.....- - - - -... +IN

~----_fv-

1--____-1

FREQ

COMP

Equivalent Circuit
r--~r---1----1----~---~----~----~----t-----t----~-----~-Y+

R15
18 k!l

+IN
OUT

026

-IN--+--_____...J
R1.
4.Skn

L------------~~

__

~----~

__ __--__
~

~~~~~~

14-78

_______

R12
lkH

R13
15()O

~--~--

R14

__ 300n
______
~

~v-

p.A72SQ8

FAIRCHIL.D
A Schlumberger Company

Instrumentation
Operational Amplifier

MIL-STD-883
July 1986-Rev 15

Aerospace and Defense Data Sheet
Linear Products

Description

Connection Diagram
8-Lead Can
(Top View)

The /lA 7250B is a monolithic instrumentation operational
amplifier constructed using the Fairchild Planar Epitaxial
process. It is intended for precise, low level signal amplification applications where low noise, low drift and accurate
closed loop gain are required. The offset null capability,
low power consumption, very high voltage gain as well as
wide power supply voltage range provide superior performance for a wide range of instrumentation applications. The
/lA7250B is lead compatible with the popular /lA7410B
operational amplifier. 6

•
•
•
•
•
•
•
•

-OffSET
NULL

Low Input Noise Current
High Open Loop Gain
Low Input Offset Current
Low Input Voltage Drift
High Common Mode Rejection
High Input Voltage Range
Wide Power Supply Range
Offset Null Capability

y-

Lead 4 connected to case.

Order Information
Part No.
/lA725HMOB

Casel
Finish
OC

Package Code
Mil-M-38510, Appendix C
A-1 8-Lead Can

•
14-79

JlA725Q8

Processing: MIL-STD-883, Method 5004

Absolute Maximum Ratings
Storage Temperature Range
Operating Temperature Range
Lead Temperature (soldering, 60 s)
Internal Power Dissipation 9
Can
Supply Voltage
Differential Input Voltage
Input Voitage 10
Voltage Between Offset Null and V+
Short Circuit Duration 11

-65°C to + 175°C
-55°C to + 125°C
300°C
330 mW
±22 V
±5.0 V
±22 V
±0.5 V
Indefinite

Burn-In: Method 1015, Condition A, PDA calculated
using Method 5005, Subgroup 1
Quality Conformance Inspection: MIL-STD-883,
Method 5005
Group A Electrical Tests Subgroups:
1.
2.
3.
4.
5.
6.

Static tests at 25°C
Static tests at 125°C
Static tests at - 55°C
Dynamic tests at 25°C
Dynamic tests at 125°C
DynamiC tests at -55°C
9. AC tests at 25°C

Group C and D Endpoints: Group A, Subgroup
Notes
1. 100% Test and Group A
2. Group A
3. Periodic tests, Group C

4. Guaranteed but not tested
5. When changes occur, FSC will make data sheet revisions available.
Contact local sales representative for the latest revision.
6. For more information on device function, refer to the Fairchild linear
Data Book Commercial Section.

7. Pc is guaranteed by Icc: Pc ~ 30 Icc.
8. V,R is guaranteed by the CMR test.
9. Rating applies to ambient temperatures up to 125·C. Above 125·C
ambient, derate linearty at 150·C/W.
10. For supply voltages less than ± 22 V, the absolute maximum input

voltage is equal to the supply voltage.
11. Short circuit may be to ground or either supply. Rating applies to
125°C case temperature or 75°C ambient temperature.

14-80

}lA725QB

IlA725Q8
Electrical Characteristics Vee = ± 15 V, unless otherwise specified.
Symbol

Characteristic

Condition

n,

Min

Max

1.0

Unit

Note

mV

1

Subgrp

VIO

Input Offset Voltage
(Without External Trim)

Rs = 50

1.5

mV

1

2,3

AVIO/AT

Input Offset Voltage
Temperature Sensitivity
(Without External Trim)

25°C';; TA';; 125°C

5.0

jJ.V/oC

4

2

-55°C';; TA';; +25°C

7.0

jJ.V/oC

4

3

Input Offset Current

VCM =0 V

20

nA

1

1,2

40

nA

1

3

150

pAloC

4

2

-55°C ';;TA';; +25°C

150

pAloC

4

3

VCM =0 V

100

nA

1

1,2

200

nA

1

3

110

AIIO/AT

Input Offset Current
Temperature Sensitivity

lis

Input Bias Current

VCM = 0 V

25°C';; TA';; 125°C

1

Icc

Supply Current

4.0

mA

1

1

Pc

Power Consumption?

120

mW

1

1

CMR

Common Mode Rejection

110

dB

1

1

100

dB

1

2,3
1,2,3

VIR
PSRR

VCM=±13.5 V, Rs=50

n

Input Voltage RangeS
Power Supply Rejection Ratio

± 13.5

V

1

10

jJ.VN

1

1

20

jJ.VN

1

2,3

1000

V/mV

1

4,5

±5.0 V';;Vcc';;±22 V,
Rs= 50 n

Avs

Large Signal Voltage Gain

Vo=±10V, RL = 2.0

VOP

Output Voltage Swing

RL = 10

kn
RL = 2.0 kn

14·81

kn

250

V/mV

1

6

±12

V

1

4

±10

V

1

4,5,6

•

/lA72SQ8

Primary Burn-In Circuit
+OFFSET
NULL

-OFFSET
NULL
30V

.-------1 -IN
....- - - - - - 1

V+I------'

OUT

+IN

""'-----1 V-

FREQ

COMP

Equivalent Circuit
r---~-~~--~---~---~----~----~----t-----t-----t-----~-V+
I
I

R2A

+
-"""r

10k!!

+ OFFSET
NULL

R1A
42 kU

100 kO

EXTERNAL

R2B
10kH

R3
29 kH

-OFFSET
NULL

R1B
42 ktl

R16
25 !l

+IN
OUT

t----1i::
-IN

026

--+---------'
Jr----+---~~~_i~~-_i~~-+_----+_~017
R6
5.1 kH

R8
2.4 kn

L-____________~____~----~--+_--

____

R18
5.1 kll
~~~~--------

14-82

R12
1 kO

__ __
~

R13
150 Jl

R14
300 !I

~--~------~-~

JlA741AQ8
Operational Amplifier

F=AIRCHILO
A Schlumberger Company
MIL-STD-883
July 1986-Rev 25

Aerospace and Defense Data Sheet
Linear Products

Description

Connection Diagram
8-Lead Can
(Top View)

The J.lA741AQB is a high performance monolithic operational amplifier constructed using the Fairchild Planar Epitaxial process. It is intended for a wide range of analog
applications. High common mode voltage range and absence of latch-up tendencies make the IlA741 AQB ideal
for use as a voltage follower. The high gain and wide
range of operating voltage provide superior performance in
integrator, summing amplifier, and general feedback applications. 6

Ne

>-....:..c;.> OUT

-IN

•
•
•
•

No Frequency Compensation Required
Short Circuit Protection
Offset Voltage Null Capability
Large Common Mode And Differential Voltage
Ranges
• Low Power Consumption
• No Latch-Up

vLead 4 connected to case.

Connection Diagram
8-Lead DIP
(Top View)

Connection Diagram
10-Lead Flatpak
(Top View)
Ne

Ne

+OFFSET
NULL

Ne

_INr----......J

+OFFSET
NULL

NC

-IN

v+

+IN

OUT

v+

v- - - - , ._ _ _ _ _. r - -

-OFFSET
NULL

v-

YC:::C:::J OUT

+IN

-OFFSET
NULL

c000761F

Order Information
Connection Diagram
14-Lead DIP
(Top View)

Casel
Finish

NC

NC

Part No.
IlA741ADMQB
IlA741AHMQB
!1A741AFMQB
IlA741ARMQB

NC

Ne

JAN Product Available

+QFFSET
NULL

NC

-IN

v+

+IN

OUT

,.

vNe

10101
10101
10101
10101
10101
10101
10101
10101

-OFFSET
NULL

He

14-83

CA
GC
HA
PA

BCA
BCB
BGA
BGC
BHA
BHB
BPA
BPB

Package Code
MiI-M-38510, Appendix C
D-1 14-Lead DIP
A-1 8-Lead Can
F-4 10-Lead Flatpak
D-4 8-Lead DIP

D-1
D-1
A-1
A-1
F-4
F-4
D-4
D-4

14-Lead DIP
14-Lead DIP
8-Lead Can
8-Lead Can
10-Lead Flatpak
10-Lead Flatpak
8-Lead DIP
8-Lead DIP

MA741AQ8

Processing: MIL-STD-883, Method 5004

Absolute Maximum Ratings
Storage Temperature Range
Operating Temperature Range
Lead Temperature (soldering, 60 s)
Internal Power Dissipation 11
Can and Flatpak
DIP
Supply Voltage
Differential Input Voltage
Input Voltage 12
Short Circuit Duration 13

-65°C to + 175°C
-55°C to +125°C
300°C
330 mW
400 rnW
±22 V
±30 V
±20 V
Indefinite

Burn-In: Method 1015, Condition A, PDA calculated
using Method 5005, Subgroup 1
Quality Conformance Inspection: MIL-STD-883,
Method 5005
Group A Electrical Tests Subgroups:
1.
2.
3.
4.
5.
6.
9.
10.
11.

Static tests at 25°C
Static tests at 125°C
Static tests at -55°C
Dynamic tests at 25°C
Dynamic tests at 125°C
Dynamic tests at -55°C
AC tests at 25°C
AC tests at 125°C
AC tests at -55°C

Group C and 0 Endpoints: Group A, Subgroup
Notes
1. 100% Test and Group A
2. Group A
3. Periodic tests, Group C
4. Guaranteed but not tested
5. When changes occur, FSC will make data sheet revisions available.

Contact local sales representative for the latest revision.
6. For more information on device function, refer to the Fairchild Linear
Data Book Commercial Section.
7. Z, is guaranteed by I'B: Z, - 4.0 VTIi'B, VT = 26 mV at 25°C, 34 mV at
125°C and 19 mV at -55°C.
B. Pc is guaranteed by Icc: Pc = 40 Icc.
9. V'R is guaranteed by the CMR test.
10. BW is guaranteed by t,: BW = 0.35/t,.
11. Rating applies to ambient temperatures up to 125°C. Above 125°C
ambient, derate linearly at lSOoC/W for the Can and Flatpak and
120°C/W for the DIP.
12. For supply voltages less than ± 20 V, the absolute maximum input
voltage is equal to the supply voltage.
13. Short circuit may be to ground or either supply. Rating applies to
125°C case temperature or 75°C ambient temperature.

14-84

MA741AQ8

/lA741AQ8
Electrical Characteristics Vee =
Symbol

Via
t:J.Vlolt:J.T

± 15

V, unless otherwise specified.
Max

Unit

Note

3.0

mV

1

1

4.0

mV

1

2,3

25°C <;TA <; 125°C

15

INloC

4

2

-55°C <;TA <; +25°C

15

pV 1°C

4

3

mV

1

1,2,3

Characteristic

Input Offset Voltage

Condition

Input Offset Voltage
Temperature Sensitivity

Via adi

Input Offset Voltage Adjustment
Range

Vcc=±20 V

110

Input Offset Current

VCM = 0 V

t:J.llolt:J.T

118

ZI

Icc

Pc

Input Offset Current
Temperature Sensitivity
Input Bias Current

5.0
30

nA

1

1

nA

1

2,3

25°C <; TA <; 125°C

0.5

nA/oC

4

2

-55°C <; TA <; +25°C

0.5

nAloC

4

3

80

nA

1

1

210

nA

1

2,3

1.0

Mn

1

1

0.5

Mn

1

2

VCM =0 V

Input Impedance7
Supply Current

Vcc=±20 V

Power ConsumptionS

Vcc=±20 V

Common Mode Rejection

Vec=±20 V, VCM=±15 V,
Rs=50 n

VIR

Input Voltage Range 9

Vee = ±20 V

PSRR

Power Supply Rejection Ratio

V+ = 10 V, V- = -20 V to
V+ = 20 V, V- = -10 V,
Rs = 50 n

los

Output Short Circuit Current

Avs

Large Signal Voltage Gain

TR(tr)

Transient Response

TR(os)

Vee=±20 V

I Rise Time
I Overshoot

3.750

mA

1

1

3.375

mA

1

2

4.125

mA

1

3

150

mW

1

1

135

mW

1

2

165

mW

1

3

80

dB

1

1,2,3

±15

V

1

1,2,3

50

pVIV

1

1

100

pV/V

1

2,3

mA

1

1,2,3

50

V/mV

1

4

32

V/mV

1

5,6

10

V/mV

1

4,5,6

±16

V

1

4,5,6

±15

V

1

4,5,6

ns

3

9,10,11

60
Vee=±20 V, Vo=±15 V,
RL = 2.0 kn
Vee = ± 5.0 V, Va = ± 2.0 V,
RL = 2.0 kn

Output Voltage Swing

Subgrp

70

CMR

VoP

Min

Rs= 50 n,
VCM = 0 V

I RL = 10 kn

I RL = 2.0 kn
Vee = ± 20 V, VI = 50 mY,
RL = 2.0 kn, CL = 100 pF,
Av = 1.0

800

%

3

9,10,11

0.437

25

MHz

3

9,10,11

0.3

Vips

3

9,10,11

pVrms

4

9

pVpk

4

9

BW

Bandwidth 10

SR

Slew Rate

Vee = ±20 V, RL = 2.0 kn,
Av = 1.0

NI (BB)

Noise Broadband

Vee=±20 V, BW=5.0 kHz

15

NI (PC)

Noise Popcorn

Vee = ±20 V, BW = 5.0 kHz

40

14-85

pA741AQB

Primary Burn-In Circuit
(38510/10101 may be used by FSC as an alternate)

-

+OFFSET

NULL

-

NC

15V

*

r-

-IN

V+

+IN

OUT

I

-

-OFFSET
NULL

V-

-15 V

Equivalent Circuit
-IN
r1~------i-----~------~~--------~---.--------------------~-V+

R6

+IN

27

n
OUT

R7

22 n

+OFFSET
NULL

Rl
lkn

R3
50kn

Rll
50 kn

R2

1 kn

L---~~~~--~---+------

__

~

__

~

____-4__-+____

-OFFSET
NULL

14-86

~

____-+__

~~~~v_

p.A741Q8

I=AIRCHILO

Operational Amplifier

A Schlumberger Company
MIL-STD-883
July 1986-Rev 25

Aerospace and Defense Data Sheet
Linear Products

Description

Connection Diagram
8-Lead Can
(Top View)

The J.LA 741 QB is a high performance monolithic operational
amplifier constructed using the Fairchild Planar Epitaxial
process. It is intended for a wide range of analog applications. High common mode voltage range and absence of
latch-up tendencies make the J.LA741QB ideal for use as a
voltage follower. The high gain and wide range of operating voltage provide superior performance in integrator,
summing amplifier, and general feedback applications. 6

Ne

-IN

•
•
•
•

No Frequency Compensation Required
Short Circuit Protection
Offset Voltage Null Capability
Large Common Mode And Differential Voltage
Ranges
• Low Power Consumption
• No Latch-Up

Connection Diagram
10-Lead Flatpak
(Top View)

>---QOUT

vLead 4 connected to case.

Connection Diagram
8-Lead DIP
(Top View)

NC

NC

+OFFSET
NULL

+OFFSET
NUll.

NC

-IN

v+

V+

+IN

OUT

-IN
+IN

v-

C:=:::J-.J
C:=:::J-.J

Y==JOUT

-OFFSET
NULL

v-

-OFFSET

----~__________~----NULl.

Connection Diagram
14-Lead DIP
(Top View)

Order Information
Part No.
J.LA741DMQB
JJA741HMQB
J.LA741FMQB
JJA741RMQB

14
NC

NC

NC

NC

+OFFSET
NUll.

NC

-IN

V+

+IN

OUT

vNC

Casel
Finish
CA
GC
HA
PA

JAN Product Available
10101
BCA
10101
BCB
10101
BGA
10101
BGC
10101
BHA
10101
BHB
10101
BPA
10101
BPB

-OFFSET
NULL
NC
COO2{l20F

14-87

Package Code
MiI-M-38510, Appendix C
D-1 14-Lead DIP
A-1 8-Lead Can
F-4 10-Lead Flatpak
D-4 8-Lead DIP

D-1
D-1
A-1
A-1
F-4
F-4
D-4
D-4

14-Lead DIP
14-Lead DIP
8-Lead Can
8-Lead Can
10-Lead Flatpak
10-Lead Flatpak
8-Lead DIP
8-Lead DIP

J.lA741Q8

Absolute Maximum Ratings
Storage Temperature Range
Operating Temperature Range
Lead Temperature (soldering, 60 s)
Internal Power Dissipation 11
Can and Flatpak
DIP
Supply Voltage
Differential Input Voltage
Input Voltage 12
Short Circuit Duration 13

Processing: MIL-STD-883, Method 5004
-65°C to + 175°C
-55°C to + 125°C
300°C
330 mW
400 mW
±22 V
±30 V
±20 V
Indefinite

Burn-In: Method 101.5, Condition A, PDA calculated
using Method 5005, Subgroup 1
Quality Conformance Inspection: MIL-STD-883,
Method 5005
Group A Electrical Tests Subgroups:
1.
2.
3.
4.
5.
6.
9.
10.
11.

Static tests at 25°C
Static tests at 125°C
Static tests at -55°C
Dynamic tests at 25°C
Dynamic tests at 125°C
Dynamic tests at -55°C
AC tests at 25°C
AC tests at 125°C
AC tests at -55°C

Group C and 0 Endpoints: Group A, Subgroup
Notes
1. 100% Test and Group A
2. Group A
3. Periodic tests, Group C
4. Guaranteed but not tested
5. When changes occur, FSC will make data sheet revisions available.
Contact local sales representative for the latest revision.
6. For more information on device function, refer to the Fairchild Linear
Data Book Commercial Section.
7. Z, is guranteed by I'B: Z, ~ 4.0 VT/I'B, VT ~ 26 mV at 2S'C, 34 mV at
12S'C and 19 mW at - SS·C.
8. Pc is guaranteed by Icc: Pc = 30 Icc
9. V'R is guaranteed by the CMR test.
10. BW is guaranteed by t,: BW ~ 0.3S/t,.
11. Rating applies to ambient temperatures up to 12S·C. Above 12S'C
ambient, derate linearly at lS0'C/W for the Can and Flatpak and
120'C/W for the DIP.
12. For supply voltages less than ± 20 V, the absolute maximum input
voltage is equal to the supply voltage.
13. Short circuit may be to ground or either supply. Rating applies to
125°C case temperature or 75°C ambient temperature.

14-88

J,tA741Q8

J,!A741Q8

Electrical Characteristics Vee = ± 15 V, unless otherwise specified.
Symbol

Max

Unit

Note

5.0

mV

1

1

mV

1

2,3

/lVrC

4

2

/lVrC

4

3

mV

1

1,2,3

200

nA

1

1,2

500

nA

1

3

25°C ';;;TA';;; 125°C

1.0

nArC

4

2

-55°C';;; TA';;; +25°C

1.0

nArC

4

3

340

nA

1

1

500

nA

1

2
3

Characteristic

Condition

Min

VIO

Input Offset Voltage

50 n,;;;Rs';;;10 kn, VCM=O V

6.0
tl.Vloltl.T

Input Offset Voltage
Temperature Sensitivity

25°C ';;;TA';;; 125°C

15

-55°C ';;;TA';;; + 25°C

15

VIO

adj

110
tl.1 101 tl.T
118

Input Offset Voltage
Adjustment Range

Vcc=±20 V

Input Offset Current

VCM=O V

Input Offset Current
Temperature Sensitivity
Input Bias Current

5.0

VCM =0 V

1500
ZI
Icc

Pc

CMR
VIR
PSRR

Input Impedance7

nA

1

0.3

Mn

1

1

0.2

Mn

1

2

2.8

mA

1

1

2.5

mA

1

2

3.3

mA

1

3

85

mW

1

1

75

mW

1

2

100

3

Supply Current

Power ConsumptionS

Common Mode Rejection
Input Voltage Range9

VCM=±12 V, Rs=50 n

Power Supply Rejection
Ratio

±5.0 V';;;Vcc';;;±22 V, Rs = 50 n

mW

1

70

dB

1

1,2,3

±12

V

1

1,2,3

IlVN

1

1,2,3

150

los

Output Short Circuit Current

Avs

Large Signal Voltage Gain

Va = ± 10 V, RL = 2.0 kn

VOP

Output Voltage Swing

RL = 10 kn

±12

RL =2.0 kn

±10

TR(t,)
TR(os)

Transient
Response

I Rise Time

I Overshoot

mA

1

1,2,3

50

V/mV

1

4

25

V/mV

1

5,6

V

1

4,5,6

V

1

4,5,6

800

ns

3

9,10,11

25

%

3

9,101

0.437

MHz

3

9,101

0.3

V/IlS

3

9,101

IlV,ms

4

9

/lVpk

4

9

60

Vee = ±20 V, VI = 50 mY,
RL = 2.0 kn, CL = 100 pF, Av = 1.0

BW

Bandwidth 10

SR

Slew Rate

NI (BB)

Noise Broadband

Vce = ± 20 V, BW = 5.0 kHz

15

NI (PC)

Noise Popcorn

Vee = ±20 V, BW = 5.0 kHz

40

Vcc = ±20 V, RL = 2.0 kn,
Av = 1.0

14-89

Subgl"J

1lA741Q8

!»rimary Burn-In Circuit
:38510/10101 may be used by FSC as an alternate)

-

+OFFSET
NU~~

Ne ~

15V

~

r-

-IN

V+

+IN

OUT

I

-OFFSET

v-

~

N~~

-1SV

CA05190F

Iquivalent Circuit
-IN

r1~---------;-------t----------~~------------~---~~----------------------------t--V+

R6

+IN

270
OUT
R7

220

+OFFSET
NULL

Rl
1kO

R3
SOkO

R11

R2
1 kO

50 kO

L..---~~~~---+-----4------------~---~------~

-OFFSET

NULL

14-90

__-4______~______-4___~~___~v_

#lA747AQ8
Dual
Operational Amplifier

FAIRCHILD
A Schlumberger Company
MIL-STD-883
July 1986-Rev 25

Aerospace and Defense Data Sheet
Linear Products

Description

Connection Diagram
10-Lead Can
(Top View)

The #lA747AQB is a pair of high performance monolithic
operational amplifiers constructed using the Fairchild Planar
Epitaxial process. They are intended for a wide range of
analog applications where board space or weight are important. High common mode voltage range and absence
of latch-up make the #lA747AQB ideal for use as a voltage follower. The high gain and wide range of operating
voltage provide superior performance in integrator, summing amplifier, and general feedback applications.

Ne

The /lA747AQB is short circuit protected and requires no
external components for frequency compensation. The internal 6 dB/octave roll-off insures stability in closed loop
applications. 6

y-

Lead 5 connected to case.

•
•
•
•

No Frequency Compensation Required
Short Circuit Protection
Offset Voltage Null Capability
Large Common Mode and Differential Voltage
Ranges
• Low Power Consumption
• No Latch-Up

Connection Diagram
14-Lead Flatpak
(Top View)

+INA'

y-

'--1L..=:J OUT A

y-

NC

-OFFSET
NULLa

-IN A

-OFFSET
NULL A

......C=:J OUT a

+IN a

C::=::J-....I_.J

-IN a

[==t:~:""

OUT A
NC

Order Information
Casel
Finish
Part No.

Package Code
MiI-M-38510, Appendix C
F-1 14-Lead Flatpak
0-1 14-Lead DIP
A-2 10-Lead Can

+IN B

Y+ a

-IN a

+ OFFSET
NULL a

JAN Product Available

NULL B

V+B

__...J==J NULL
+OFFSET
a

V+ A

#lA747AFMQB
#lA747ADMQB
#lA747AHMQB

-OFFSET

Y+A

'--

-OFFSET
NULLA

Connection Diagram
14-Lead DIP
(Top View)

+IN A

+OFFSET
NULLA

-INA,-_....r...,

OUT a

10102
10102
10102
10102
10102
10102

COOO781F

14-91

AA
CA
IC

BAA
BAB
BCA
BCB
BIA
BIC

F-1
F-1
0-1
0-1
A-2
A-2

14-Lead Flatpak
14-Lead Flatpak
14-Lead DIP
14-Lead DIP
10-Lead Can
10-Lead Can

MA747AQB

Processing: MIL-STD-883, Method 5004

Absolute Maximum Ratings
Storage Temperature Range
Operating Temperature Range
Lead Temperature (soldering, 60 s)
Internal Power Dissipation 12
Can and Flatpak
DIP
Supply Voltage
Differential Input Voltage
Input Voltage 13
Short Circuit Duration 14

-65°C to + 175°C
-55°C to + 125°C
300°C
350 mW
400 mW
±22 V
±30 V
±20 V
Indefinite

Burn-In: Method 1015, Condition A, PDA calculated
using Method 5005, Subgroup 1
Quality Conformance Inspection: MIL-STD-883,
Method 5005
Group A Electrical Tests Subgroups:
1.
2.
3.
4.
5.
6.
9.
10.
11.

Static tests at 25°C
Static tests at 125°C
Static tests at -55°C
Dynamic tests at 25°C
Dynamic tests at 125°C
Dynamic tests at -55°C
AC tests at 25°C
AC tests at 125°C
AC tests at -55°C

Group C and D Endpoints: Group A, Subgroup 1
Notes
1. 100% Test and Group A
2. Group A
3. Periodic tests, Group C
4. Guaranteed but not tested
S. When changes occur, FSC will make date sheet revisions availeble.
Contee! local sales representetive for the latest revision.
6. For more information on device function, refer to the Fairchild Linear
Date Book Commercial Section.
7. Not availeble on /AA747AHMQB.
8. ZI is guaranteed by liB: ZI = 4.0 VT/IIB, VT = 26 mV at 2S·C, 34 mV at
12S·C, and 19 mV at -SS·C.
9. Pc is guaranteed by Icc: Pc = 40 Icc.
10. VIR is guaranteed the CMR test.
11. BW is guaranteed by t,: BW = 0.3S/t,..
12. Rating applies to ambient temperatures up to 12S·C. Above 12S·C
ambient, derate linearly at 140·C/W for the can and Flatpak and
120·C/W for the DIP.
13. For supply vonages less than ± 20 V, the absolute maximum input
voltege is equal to the supply voltege.
14. Short circuR may be to ground or eRher supply. Rating applies to
12S·C case temperature or 7S·C ambient temperature.

14-92

J.LA747AQ8

/-LA747AQB
Electrical Characteristics ± 5.0 V
Symbol

VIO

t!.Vlolt!.T

« Vee « ± 20

V, unless otherwise specified.

Characteristic

Input Offset Voltage

Condition

Rs = 50 kn,
VCM = 0 V

Input Offset Voltage
Temperature Sensitivity

25°C ~TA

~

Input Offset Voltage Adjustment
Range?

Vcc= ±20 V

110

Input Offset Current

VeM = 0 V

lis

Input Offset Current
Temperature Sensitivity
Input Bias Current

125°C

-55°C ~TA ~ +25°C

VIO adi

t!.llolt!.T

Min

25°C

~ TA ~

-55°C ~TA

125°C
+25°C

VCM = 0 V

Input Impedance8

Vee=±20 V

Icc

Supply Current (Total)

Vec=±20 V

Unit

Note

3.0

mV

1

1

4.0

mV

1

2,3

15

/-LVrC

4

2

15

/lV/oC

4

3

mV

1

1,2,3

5.0

~

ZI

Max

30

nA

1

1

70

nA

1

2,3

0.2

nA/oC

4

2

0.5

nAloC

4

3

80

nA

1

1

210

nA

1

2,3

Mn

1

1
2

1.0

Mn

1

7.50

mA

1

1

6.75

mA

1

2

8.25

mA

1

3

300

mW

1

1

270

mW

1

2

330

mW

1

3

dB

1

1,2,3

0.5

Pc

CMR

Power Consumption (Total)9

Common Mode Rejection

VIR

Input Voltage Range 10

PSRR

Power Supply Rejection Ratio

Vec=±20 V

Vec=±20 V, VCM=±15 V,
Rs=50 n

±15

los

Output Short Circuit Current

Avs

Large Signal Voltage Gain

TR(t,)
TR(os)
BW

Output Voltage Swing

Transient
Response

Vee=±20 V

Rise Time
Overshoot

V

1

1,2,3

50

/lVIV

1

1

100

/lV/V

1

2,3

60
Vee=±20 V, Vo=±15 V,
RL = 2.0 kn
Vec=±5 V, Vo =±2 V,
RL = 2.0 kn

VOP

80

V+ =10 V, V-=-20 V to
V+ = 20 V, V- = -10 V,
Rs= 50 n

I RL=10 kn
I RL = 2.0 kn

mA

1

1,2,3

V/mV

1

4

32

V/mV

1

5,6

10

V/mV

1

4,5,6

±16

V

1

4,5,6

±15

V

1

4,5,6

800

ns

3

9, 10, 1

25

%

3

9, 10, 1

MHz

3

9, 10, 1

50

Vee = ±20 V, VI = 50 mV,
RL = 2.0 kn, CL = 100 pF,
Av = 1.0

Bandwidth 11

0.437

14-93

Subgrp

J.LA747AQB (Cont.)
Electrical Characteristics ± 5.0 V';;;; Vee';;;; ± 20 V, unless otherwise specified.
Symbol

Characteristic

Condition

Min

Max

Unit

Note

Subgrp

VIIlS

3

9,10,1

SR

Slew Rate

Vee = ±20 V, RL = 2.0 kQ,
Av = 1.0

0.3

CS

Channel Separation

Vee=±20 V

100

dB

1

9, 10, 1

NI (BB)

Noise Broadband

Vee = ± 20 V, BW = 5.0 kHz

15

IlVrms

4

9

NI (PC)

Noise Popcorn

Vee = ± 20 V, BW = 5.0 kHz

40

IlVpk

4

9

Primary Burn-In Circuit
(38510/10102 may be used by FSC as an alternate)
15 V

NC

OUT A

V+A

OUTB

-IN A

V+B

+INA

-IN B

V-

+INB

-=-15 V

-=-

Equivalent Circuit
-IN
r1--------r---~--------._--------~--~------------------~--V+

R6

+ IN

27

n
OUT

R7

22

n

+OFFSET
NULL
R1
1 kfl

R3
50 kO
L---~

Rl1

R2
1 kn

__

~

____

50 k!1
~

__

~

________

~

__

~

-+__ ____ ____ __ __

____

-OFFSET
NULL

14-94

~

~

~

~

~~V_

J.LA747Q8
Dual
Operational Amplifier

F=AIRCHILC
A Schlumberger Company
MIL-STO-883
July 1986-Rev 15

Aerospace and Defense Data Sheet
Linear Products

Description

Connection Diagram
10-Lead Can Package
(Top View)

The !LA7470B is a pair of high performance monolithic operational amplifiers constructed using the Fairchild Planar
Epitaxial process. They are intended for a wide range of
analog applications where board space or weight are important. High common mode voltage range and absence
of latch-up make the !LA74 70B ideal for use as a voltage
follower. The high gain and wide range of operating voltage provide superior performance in integrator, summing
amplifier, and general feedback applications.
The !LA7470B is short circuit protected and requires no
external components for frequency compensation. The internal 6 dB/octave roll-off insures stability in closed loop
applications. 6

•
•
•
•

No Frequency Compensation Required
Short Circuit Protection
Offset Voltage Null Capability
Large Common Mode And Differential Voltage
Ranges
• Low Power Consumption
• No Latch-Up

NC

vLead 5 connected to case.

Connection Diagram
14-Lead Flatpak
(Top View)
+OFFSET
NULLA

-INA~~---,""

+INA

V+ A

-OFFSET
NULLA

Connection Diagram
14-Lead DIP
(Top View)

YC=JOUTA
NC

V-OFFSET
NULLB

r - I C = J OUT B

+INB~~_r-

-IN A
+IN A

-OFFSET
NULL A

v-

+ OFFSET

--'"'"L._ _ _ _ _. .- - NULL B

V+ A

OUT A

Order Information

NC

Part No.

Case I
Finish

+IN B

V+ B

/.lA747FMOB
/.lA747DMOB
/.lA747HMOB

-IN B

+ OFFSET
NULL B

JAN Product Available

-OFFSET
NULL B

V+ B

+OFFS£T

-IN B

NULL A

OUT B

10102
10102
10102
10102
10102
10102

14-95

AA
CA
IC

BAA
BAB
BCA
BCB
BIA
BIC

Package Code
Mil-M-38510, Appendix C
F-1 14-Lead Flatpak
D-1 14-Lead DIP
A-2 10-Lead Can

F-1
F-1
D-1
D-1
A-2
A-2

14-Lead Flatpak
14-Lead Flatpak
14-Lead DIP
14-Lead DIP
10-Lead Can
10-Lead Can

MA747Q8

Absolute Maximum Ratings
Storage Temperature Range
Operating Temperature Range
Lead Temperature (soldering, 60 s)
Internal Power Dissipation 12
Can and Flatpak
DIP
Supply Voltage
Differential Input Voltage
Input Volt~ge13
Short Circuit Duration 14

Processing: MIL-STD-883, Method 5004
-65°C to + 175°C
-55°C to +125°C
300°C
350 mW
400mW
±22 V
±30 V
±20 V
Indefinite

Burn-In: Method 1015, Condition A, PDA calculated
using Method 5005, Subgroup 1
Quality Conformance Inspection: MIL-STD-883,
Method 5005
Group A Electrical Tests Subgroups:
1.
2.
3.
4.
5.
6.
9.
10.
11.

Static tests at 25°C
Static tests at 125°C
Static tests at -55°C
Dynamic tests at 25°C
Dynamic tests at 125°C
Dynamic tests at -55°C
AC tests at 25°C
AC tests at 125°C
AC tests at -55°C

Group C and 0 EndpOints: Group A, Subgroup 1
Notes
1. 100% Test and Group A
2. Group A
3. Periodic tests, Group C
4. Guara'1lGed but not tested
5. When cpanges occur, FSC will make data sheet revisions available.

Contact local sales representative for the latest revision.
6. For mo(e information on device function, refer to the Fairchild Unear
Data Bqpk Commercial Section.
7. Not available on "A747HMQB.
8. Z, is g~anteed by I'B: Z, - 4.0 VTIi'B, VT - 26 mV at 25·C, 34 mV at
125·C, and 19 mV at -55·C.
9. Pc is guaranteed by Icc: Pc - 30 Icc.
10. V'R is i'aranteed by the CMR test.
11. BW is guaranteed by 1,: BW - 0.35/1,.
12. Rating applies to ambient temperatures up to 125·C. Above 125·C
ambient, derate linearly at 140·C/W for the Can and Flatpak and
120·C/W for the DIP.
13. For supply voltages less than ± 20 V, the absolute maximum input
voltage is equal to the supply voltage.
14. Short circuit may be to ground or either supply. Rating applies to
125°C case temperature or 75°C ambient temperature.

14-96

}lA747QB

JJA747QB
Electrical Characteristics Vee
Symbol

Via
~Vlo/~T

=

± 15 V, unless otherwise specified.

Characteristic

Input Offset Voltage
Input Offset Voltage
Temperature Sensitivity

Condition

'"

Min

Max

Unit

Note

Subgrp

1

5.0

mV

1

6.0

mV

1

2,3

25°C ";;;TA";;; 125°C

15

/NloC

4

2

-55°C ";;;TA";;; +25°C

15

pV/oC

4

3

mV

4

1,2,3

nA

1

1,2
3

Rs=10 kn, VCM=O V

Via adi

Input Offset Voltage
Adjustment Rangel

110

Input Offset Current

VeM =0 V

500

nA

1

~llo/~T

Input Offset Current
Temperature Sensitivity

25°C ";;;TA";;; 125°C

1.0

nArC

4

2

-55°C";;; TA";;; +25°C

1.0

nA/oC

4

3

340

nA

1

1

500

nA

1

2
3

liB

Input Bias Current

5.0
200

VeM = 0 V

1500
ZI
lee

Pc

Input ImpedanceS

VIR

Input Voltage Range 10

PSRR

Power Supply Rejection Ratio

los

Output Short Circuit Current

Avs

Large Signal Voltage Gain

TR(os)

1

1

0.2

Mn

1

2

Power Consumption (Total)9

Common Mode Rejection

TR(t,)

1

Mn

Supply Current (Total)

CMR

VoP

nA

0.3

Output Voltage Swing
Transient
Response

I Rise Time
I Overshoot

VeM = ± 12 V, Rs = 50 n

5.6

mA

1

1

5.0

mA

1

2
3

6.6

mA

1

170

mW

1

1

150

mW

1

2

200

3

mW

1

70

dB

1

1,2,3

±12

V

1

1,2,3

pVIV

1

1,2,3

V+ =10 V, V-=-20 V to
V+ =20 V, V-=-10 V, Rs=50 n

150

mA

1

1,2,3

50

V/mV

1

4

25

V/mV

1

5,6

60
Vo=±10 V, RL=2.0 kn
RL = 10 kn

±12

V

1

4,5,6

RL = 2.0 kn

±10

V

1

4,5,6

800

ns

3

g, 10, 1

25

%

3

g, 10,11

Vee = ± 20 V, VI = 50 mV,
RL = 2.0 kn, CL = 100 pF, Av = 1.0

BW

Bandwidth 11

0.437

MHz

3

g, 10, 1

SR

Slew Rate

Vee=±20V, RL = 2.0 kn,
Av = 1.0

0.3

V/IlS

3

g, 10, 1

CS

Channel Separation

Vee =±20 V

80

dB

1

9

NI (BB)

Noise Broadband

Vee = ± 20 V, BW = 5.0 kHz

15

IlV,ms

4

9

NI (PC)

Noise Popcorn

Vee = ±20 V, BW = 5.0 kHz

40

IlVpk

4

9

14-97

•

MA747Q8

Primary Burn-In Circuit
(38510/10102 may be used by FSC as an alternate)
15 V

Ne

OUT A

V+A

OUTB

-INA

V+ B

+INA

-INB

V-

+INB

"::"

-15 V

"::"
CR05210F

Equivalent Circuit (1/2 of circuit)
-IN

~~------~----.-------~~---------.---,__------------------~--V+

R6

+IN

'7

n
OUT

R7

•• n

·OFFSET
NULL
R1

R3

1kn

50kn

R11

R2
1 kn

50 kn

L---~~~~--t---~--------4---~--~-4--~----4-----~--~~~~V-

-OFFSET
NULL

14-98

F=AIRCHILO
A Schlumberger Company

J,lA7S9QB
Power
Operational Amplifier

MIL-STD-883
July 1986-Rev 15

Aerospace and Defense Data Sheet
Linear Products

Description

Connection Diagram
8-Lead Can
(Top View)

The J,lA759QB is a high performance monolithic operational
amplifier constructed using the Fairchild Planar Epitaxial
process. The amplifier provides high output current and
features small signal characteristics better than the
J,lA741QB. The amplifier is designed to operate from a single or dual power supply and the input common mode
range includes the negative supply. The high gain and
high output power provide superior performance whenever
an operational amplifier is needed. The J,lA759QB employs
internal current-limiting, thermal shutdown and safe-area
compensation making it essentially indestructible. It is intended for a wide range of applications including voltage ..
regulators, audio amplifiers, servo amplifiers, and power
drivers. s

•
•
•
•
•

High Output Current
Internal Short Circuit Current-Limiting
Internal Thermal Overload Protection
Internal Output Transistors Safe-Area Protection
Input Common Mode Voltage Range Includes Ground
Or Negative Supply

NC

vLead 4 connected to case.

Order Information
Part No.
J,lA759HMQB

14-99

Casel
Finish
GB

Package Code
MII-M-38510, Appendix C
A-1 8-Lead Can

J.LA759QB

Proce~ing:

Absolute Maximum Ratings
Storage Temperature Range
Operating Temperature Range
Lead Temperature (soldering, 60 s)
Internal Power Dissipation 10
Can
Supply Voltage
Differential Input Voltage
Input Voltage 11

-65°C to +175°C
-55°C to +125°C
300°C
330 mW
±18 V
±15 V
(V- - 0.3 V) to V+

MIL-STD-883, Method 5004

Burn-In: Method 1015, Condition A, PDA calculated
using Method 5005, Subgroup 1
Quality Conformance Inspection: MIL-STD-883,
Method 5005
Group A Electrical Tests Subgroups:
1.
2.
3.
4.
5.
6.

Static tests at
Static tests at
Static tests at
Dynamic tests
Dynamic tests
Dynamic tests

25°C
125°C
-55°C
at 25°C
at 125°C
at -55°C

Group C and D Endpoints: Group A, Subgroup 1
NotH
1. 100% Test and Group A

2. Group A
3.. Periodic 18sts, Group C
4. Guaranteed but not tested
5. When changes occur, FSC will make data shein revisions available.
Contact local sales representative for the latest revision.
6. For more information on device function, refer to the Fairchild Lineer
Oata Book Commercial Section.
7. ZI Is guaranteed by liB: ZI = 4.0 VT/IIB, VT = 26 mV at 25°C, 34 mV at
125°C, and 19 mV at -55°C.
B. VIA Is guaranteed by the CMR test.
9. Vo - ± 12 V is guaranteed by worse case Vo - ± 5 V.
10. Rating applies to ambient temperatures up to 125°C. Above 125°C
ambient. derate linearly at lSOoC/W.
11. For Supply voltages kiss then ± 15 V, the ab.soIute maximum input
voltage is equal to the supply voltage.
.

14-100

IlA759QB

~759QB

Electrical Characteristics Vee = ± 15 V, unless otherwise specified.
Symbol

Input Offset Voltage

VIO

VIO

Characteristic

adj

110

Condition

Rs = 50 il, VCM = 0 V

Input Offset Voltage
Adjustment Range
Input Offset Current

liB

Input Bias Current

ZI

Input Impedance7

Min

Unit

Note

3.0

mV

1

1

4.5

mV

1

2,3

mV

1

1

30

nA

1

1

60

nA

1

2,3

150

nA

1

1
2,3

Max

6.0
VCM=O V

VCM=O V

nA

1

Mil

1

1

mA

1

1

dB

1

1,2,3

V

1

1,2,3

/lVlV

1

1,2,3

mA

1

1

50

VlmV

1

4

25

V/mV

1

5,6

V

1

4,5,6

300

Icc

Supply Current

CMR

Common Mode Rejection

VIR

Input Voltage RangeS

0.25
18
-15 V";;;VCM";;;13 V, Rs=10 kil

80
-15

PSRR

Power Supply Rejection Ratio

±5.0 V";;;Vcc";;;±18 V, Rs=10 kil

IPk

Peak Output Current9

5.0 V";;;Vo";;;12 V,
-12 V";;;Vo";;;-5.0 V

Avs

Large Signal Voltage Gain

RL = 50

n,

VoP

Output Voltage Swing

RL=50

n

Vo = ± 10 V

13
100

±325

±10

14·101

Subgrp

J.LA759Q8

Primary BlI,fn-ln Circuit

-

·OFFSET
NULL

NC

r---15V

-IN

V+

+IN

OUT

J

.,1-

r---

V-

+OFFSET
NULL

r----

-15 V

~uivaleQt

Circuit

-IN

+IN--~--~-----r-----+---+--------~

-OfFSET
NULL

+ OFFSET
NULL
EOOOO21F

•

14-102

FAIRCHILD
A Schlumberger Company

p.A7718Q8
Operational Amplifier

MIL-STD-883
July 1986-Rev 15

Aerospace and Defense Data Sheet
Linear Products

Description

Connection Diagram
8-Lead Can
(Top View)

This monolithic JFET input operational amplifier incorporates well matched ion-implanted JFETs on the same chip
with standard bipolar transistors. The key feature of this
op amp is low input bias currents in the sub nanoamp
range plus high slew rate and wide bandwidth. 6
•
•
•
•

NC

Low Input Bias Current
Low Input Offset Current
High Slew Rate
Wide Bandwidth

>--"-0 OUT

-IN

vLead 4 connected to case.

Connection Diagram
8-Lead DIP
(Top View)

+OFFSET
NULL

-IN

v+

+IN

OUT
-OffSET

v-

NULL

Order Information
Part No_
1lA771BHMQB
1lA771 BRMQB

14-103

Casel
Finish

GC
PA

Package Code
MII-M-38510, Appendix C
A-1 8-Lead Can
D-4 8-Lead DIP

~A771BQB

Processing: MIL-STD-883, Method 5004

Absolute Maximum Ratings
Storage Temperature Range
Operating Temperature Range
Lead Temperature (soldering, 60 s)
Internal Power Dissipation 10
Can
DIP
Supply Voltage
Differential Input Voltage
Input Voltage 11
Short Circuit Duration 12

-65°C to + 175°C
_55°C to + 125°C
300°C

Burn-in: Method 1015, Condition A, PDA calculated
using Method 5005, Subgroup 1
Quality Conformance Inspection: MIL-STD-883,
Method 5005

330 mW
400 mW
±18 V
±30 V
±16 V
Indefinite

Group A Electrical Tests Subgroups:
1.
2.
3.
4.
5.
6.
9.
10.
11.

Not••
1. 100% Test and Group A
2. Group.A
3. PeriodiC tests, iJrolJp C
4. Guaranteed but not tested
5. When changes OccUr, FSC will make data sheet revisions available.
Contact local sales representative for the latest revision.
6. For mOre information on device function, refer to the Fairchild Linear
Data Book Commercial Section.
7. The input bias currents are junction leakage curre.nts whiCh
approximately double for every 10"C increase in the junction
temperature, TJ. Due to IimHed production test time, the input bias
currents measured are correlated to junction temperature. In normal
operation the junction temperature rises above the ambient temperature
as a result of Internal dissipation, Po. TJ - TA + 6jA PD where OjA is
the thermal rGsistance from junction to ambient. Use of a heat sink is
recommended ij input bias current is to be kept to a minimum.
8. VIA is guaranteed by the CMR test.
9. VOP·is guaranteed by the Avs test.
10. Rating applies to ambient temperatures up to 12S"C. Above 12S"C
ambient, derate linearly at 150"C/W for the can and 120"C/W for the
DIP.
11. For negative supply voltages less than -16 V, the negative input
vOltage is equal to the negative supply voltage.
12. Short circuit may be to ground or eHher supply. Rating applies to
12S"C case temperature or 7S"C ambient temperature.

Static tests at 25°C
Static tests at 125°C
Static tests at -55°C
Dynamic tests at 25°C
Dynamic tests at 125°C
Dynamic tests at -55°C
AC tes.ts at 25" C
AC tests at 125" C
AC tests at ~55" C

Group C and 0 Endpoints: Group A, Subgroup

14-104

MA771BQB

~771BQB

Electrical Characteristics Vee = ± 15 V, unless otherwise specifies.
Symbol

Via

!lVlol !IT

Characteristic

Input Offset Voltage

Condition

Input Offset Voltage
Temperature Sensitivity

1

2

-55°C';;; TA';;; + 25°C

30

4

3

mV

4

1,2,3

Input Voltage Range8

PSRR

Power Supply Rejection Ratio

los

Output Short Circuit Current

Avs

Large Signal Voltage Gain

VoP

TR(t,)

B.O

VCM =0 V

VIR

1
2,3

4

VCM = 0 V

Common Mode Rejection

Subgrp

mV

Input Offset Current?

CMR

1

p'vrc
p'vrc

110

Supply Current

Note

mV

30

VCM = 0 V

Icc

Unit

5.0
B.O

Input Offset Voltage Adjustment
Range

Input Bias Current?

Max

25°C';;; TA';;; 125°C

VIO adi

liB

Min

Rs = 50 n, VCM = 0 V

VCM = ± 11 V,
Rs=50 kn

50

pA

1

1

20

nA

1

2,3

100

pA

1

1

5Q

nA

1

2,3

2.B

mA

1

1

3.4

mA

1

2,3

dB

1

1,2,3

BO
± 11

±10 V';;;Vcc';;;±lB V,
Rs=50 kn

100

1

1,2,3

1

1,2,3

mA

1

1,2,3

50

VlmV

1

4

25

VlmV

1

5,6

BO
Vo=±10 V,
RL = 2.0 kn

V
p.VIV

Output Voltage Swing

RL = 10 kn

±12

V

1

4,5,6

Output Voltage Swing9

RL = 2.0 kn

±10

V

1

4,5,6

ns

4

9,10,11

Transient Response

I Rise Time

I Overshoot

TR(os)

VI = 50 mY, RL = 2.0 kn,
CL = 100 pF, Av = 1.0

SR

Slew Rate

RL = 2.0 kn, Av = 1.0

ts

Settling Time

Av = 1.0

200
40
7.0
1500

%

4

9,10,11

V/p.s

4

9,10,11

ns

4

9

NI (BB)

Noise Broadband

BW= 10 kHz

15

p.V,ms

4

9

NI (PC)

Noise Popcorn

BW=10 kHz

BO

P.Vpk

4

9

14-105

IlA771BQB

Primary Burn-In Circuit
(38510/11904 may be used by FSC as an alternate)

-

+OFFSET

NULL

Ne

r-15 Y

y-

_IN

OUT

.,1r-

1

-IN

Y-

-OFFSET

NULL

-

-15Y

Equivalent Circuit
r-------------~----------~~--------~------------------_r----~----,_~

J8

-0""'" NULL

+ OFFSET NULL

14-106

F=AIRCHILD
A Schlumberger Company

MA772BQB

Operational Amplifier

MIL-STO-883
July 1986-Rev 15

Aerospace and Defense Data Sheet
Linear Products

Description

Connection Diagram
8-Lead Can
(Top View)

This monolithic JFET input operational amplifier incorporates well matched ion-implanted JFETS on the same chip
with standard bipolar transistors. The key feature of this
op amp is low input bias currents in the sub nanoamp
range plus high slew rate and wide bandwidth. 6

•
•
•
•

v+

Low Input Bias Current
Low Input Offset Current
High Slew Rate
Wide Bandwidth
vLead 4 connected 10 case.

Connection Diagram
8-Lead DIP
(Top View)

v+
OUTB

-INB
+INB

Order Information
Part No.
j.JA772BHMQB
j.JA772BRMQB

Casel
Finish

GC
PA

Package Code
Mil-M-38S10, Appendix C
A-1 8-Lead Can
0-4 8-Lead DIP

JAN Product Available
11905

14-107

BPB

0-4 8-Lead DIP

J.LA772BQB

Processing: MIL-STD-883, Method 5004

Absolute Maximum Ratings
Storage Temperature Range
Operating Temperature Range
Lead Temperature (soldering, 60 s)
Internal Power Dissipation 10
Can
DIP
Supply Voltage
Differential Input Voltage
Input Voltage 11
Short Circuit Duration12

-65°C to + 175°C
-55°C to + 125°C
300°C

Burn-In: Method 1015, Condition A, PDA calculated
using Method 5005, Subgroup 1
Quality Conformance Inspection: MIL-STD-883,
Method 5005

330 mW
400 mW
±18 V
±30 V
±16 V
Indefinite

Group A Electrical Tests Subgroups:
1.
2.
3.
4.
5.
6.
9.
10.
11.

Notes
1. 100% Test and Group A
2. Group A
3. Periodic tests, Group C
4. Guaranteed but not tested
5. When changes occur, FSC will make data sheet revisions available.
Contact local sales representative for the latest revision.
6. For more information on device function, refer to the Fairchild Unear
Data Book Commercial Section.
7. The input bias currents ere junction leakage currenta which
approximately double for every 10°C increeae in the junction
temperature, TJ. Due to limited production test time, the input bias
currents measured ere correlated to junction temperature. In normal
operation thll junction temperature rises above the ambient temperature
as a resuU of internal dissipation, Po. TJ - TA + IJjA Po where OjA is
the thermal resistance from junction to ambient. Use of a heat sink is
recommended H input bias current is to be kept to a minimum.
8. VIR Is gU!lranteed by the CMR test.
9. Vop is guaranteed by the Avs test.
10. Rating applies to ambient temperatures up to 125°C. Above 125°C
ambient, derate linearly at 150°CIW for the Can and 120°C/W for the
DIP.
11. For negative supply voltages less then -16 V, the negative input
voltage is equal to the negative supply voUBge.
12. Short circuit may be to ground or either supply. Rating applies to
125°C case temperature or 75°C ambient temperature.

Static tests at 25°C
Static tests at 125°C
Static tests at -55°C
DynamiC tests at 25°C
DynamiC tests at 125°C
Dynamic tests at -55°C
AC tests at 25° C
AC tests at 125" C
AC tests at -55" C

Group C and D Endpoints: Group A, Subgroup 1

14-108

~A772BQB

~772BQB

± 15 V, unless otherwise specified.

Electrical Characteristics Vee =
Symbol

Characteristic

Condition

= 50

Min

Max

Unit

Note

5.0

mV

1

1

mV

1

2,3

4

2

30

p'vrc
p'vrc

4

3

VIO

Input Offset Voltage

Rs

8.0

tNlo/AT

Input Offset Voltage
Temperature Sensitivity

25°C';;; TA';;; 125°C

30

-55°C';;; TA';;; +25°C

Input Offset Currene

VCM=O V

110

liB

Input Bias Currene

Icc

Supply Current (Total)

VCM =0 V

CMR

Common Mode Rejection

VIR

Input Voltage RangeS

PSRR

Power Supply Rejection Ratio

los

Output Short Circuit Current

Avs

Large Signal Voltage Gain

VOP

Output Voltage Swing
Output Voltage SWing 9

TR(t,.)

Transient Response

TR(oS>

n, VCM = 0 V

I Rise Time
I Overshoot

VCM = ±11 V,
Rs=50 kn

RL = 2.0 kn, Av = 1.0

NI (BB)

Noise Broadband

BW=10 kHz

NI (PC)

Noise Popcorn

BW=10 kHz

CS

Channel Separation

pA

1

1
2,3
1

6.8

mA

1

2,3

80

dB

1

1,2,3

± 11

V

1

1,2,3

100

p.VIV

1

1,2,3

80

mA

1

1,2,3

50

V/mV

1

4

25

V/mV

1

5,6

V

1

4,5,6
4,5,6

V

1

200

ns

4

9,10,11

40

%

4

9,10,11

V/p.s

4

9,10,11

ns

4

9

15

p.V rms

4

9

80

P.Vpk

4

9

dB

1

9

7.0
1500

80

14-109

100

1

RL =2.0 kn

Av = 1.0

2,3

1

VI = 50 mV, RL = 2.0 kn
CL=100 pF. Av=1.0

Settling Time

1

1

nA

±10

Slew Rate

1

nA

mA

±12

SR

pA

50

RL = 10 kn

ts

50
20

5.6

±10 V';;;Vcc';;;±18 V,
Rs=50 kn

Vo=±10 V,
RL =2.0 kn

Subgrp

J.lA772BQB

Primary Burn-In Circuit
(38510/11905 may be used by FSC as an alternate)
15V

OUT A

V+

-INA

OUTB

+INA

-INB

V-

+INB

-=
-15

Ii

-=

CI'ID5180F

Equivalent Circuit
r-------------------------~~----------------1_~----------------~------------------------------------~--------~--------._~

J6

RS

RI6

~~~----~--------~----~----~------------4_~----_4----------------~----------------------------~------------~~~~

14-110

f=AIRCHILD
A Schlumberger Company

JlA774BQB
Operational Amplifier

MIL-STO-883
July 1986-Rev 15

Aerospace and Defense Data Sheet
Linear Products

Description

Connection Diagram
14-Lead DIP
(Top View)

This monolithic JFET input operational amplifier incorporates well matched ion-implanted JFETS on the same chip
with standard bipolar transistors. The key feature of this
op amp is low input bias currents in the sub nanoamp
range plus high slew rate and wide bandwidth. 6
•
•
•
•

OUT"

Low Input Bias Current
Low Input Offset Current
High Slew Rate
Wide Bandwidth

-IN"
+IN"
y+

+IN D
y-

+IN B

+IN C

-IN B

-IN C

OUTB

OUT C

Order Information
Part No.
1LA774BDMQB

14-111

Casel
Finish
PA

Package Code
MII-M-38S10, Appendix C

0-1 14-Lead DIP

J,LA7748Q8

Absolute Maximum Ratings
Storage Temperature Range
Operating Temperature Range
Lead Temperature (soldering, 60 s)
Internal Power Dissipation 10
DIP
Supply Voltage
Differential Input Voltage
Input Voltage 11
Short Circuit Duration 12

Processing: MIL-STD-883, Method 5004
-65°C to +175°G
-55°C to +125°C
300°C

Burn-In: Method 1015, Condition A, PDA calculated
using Method 5005, Subgroup 1

Quality Conformance Inspection: MIL-STD-883,

400 mW
± 18 V
±30 V
± 16 V
Indefinite

Method 5005

Group A Electrical Tests Subgroups:
1.
2.
3.
4.
5.
6.
9.
10.
11.

Notes
1. 100% Test and Group A
2. Group A
3. Periodic tests. Group C
4. Guaranteed but not tested
5. When changes occur, FSC will make data. sheet revisions available.

Static tests at 25°C
Static tests at 125°C
Static tests at -55°C
Dynamic tests at 25°C
Dynamic tests at 125°C
Dynamic tests at -55°C
AC tests at 25" C
AC tests at 125" C
AC tests at -55" C

Group C and D Endpoints: Group A, Subgroup

Contact local sales representative for the latest revision.
6. For more information on device function, refer to the Fairchild Linear
Data Book Commercial Section.
7. The input bias currents are junction leakage currents which
approximately double for every 10°C increase in the junction
temperature, TJ. Due to limited production test time, the input bias
currents measured are correlated to junction temperature. In normal
operation the junction temperature rises above the a~ient temperature
as a result of internal dissipation, Po. TJ = TA + OjA Pfwhere OjA is
the thermal resistance from junction to ambient. Use of a heat sink is
recommended if input bias current is to be kept to a minimum.
S. V,R is guaranteed by the CMR test.
9. Vop is guaranteed by the Avs test.
10. Rating applies to ambient temperatures up to 12S·C. Above 12S·C
ambient, derate linearly at 120·C/W.
11. For negative supply voltages less than -16 V, the negative input
voltage is equal to the negative supply voltage.
12. Short circuit may be to ground or either supply. Rating applies to
125°C case temperature or 75°C ambient temperature.

14-112

fJ.A774BQB

j.tA774BQB

Electrical Characteristics Vee = ± 15 V, unless otherwise specified.
Symbol

Characteristic

Condition

Min

Max

Unit

Note

5.0

mV

1

Subgrp

1

Via

Input Offset Voltage

Rs = 50 n, VCM = 0 V

8.0

mV

1

2,3

!:Nlol AT

Input Offset Voltage
Temperature Sensitivity

25°C -~:>OUT

-IN

vLead 4 connected to case.

Order Information
Casel
Part No.
pA776HMOB

14-115

Finish
GB

Package Code
MiI-M-38510, Appendix C
A-1 8-Lead Can

J,LA776Q8

Absolute Maximum Ratings
Storage Temperature Range
Operating Temperature Range
Lead Temperature (soldering, 60 s)
Internal Power DisSipation 10
Can
Supply Voltage
Differential Input Voltage
Input Voltage 11
Short Circuit Duration 12
Voltage E;letween Offset Null and VISET (Max Current at ISET)
VSET (Max Voltage to GND at ISET)

Processing: MIL-STD-883, Method 5004
-65°C to + 175°C
-55°C to + 125°C
300°C
330 mW
± 18 V
±30 V
±15 V
Indefinite
±0.5 V
500 iJ.A
(V+ - 2 V)

Burn-In: Method 1015, Condition A, PDA calculated
using Method 5005, Subgroup 1
Quality Conformance Inspection: MIL-STD-883,
Method 5005
Group A Electrical Tests Subgroups:
1.
2.
3.
4.
5.
6.

~VSET~V+

Static tests at
Static tests at
Static tests at
Dynamic tests
Dynamic tests
Dynamic tests

25°C
125°C
-55°C
at 25°C
at 125°C
at -55°C

Group C and D Endpoints: Group A, Subgroup
Notes
1. ~100% Test and Group A
Group A
3~ Periodic tests, Group C
4~ Guaranteed but not tested
5. When changes occur, FSC will make data sheet revisions available.
Contact local sales representative for the latest revision.
2~

6. For more information on device function, refer to the Fairchild Unear
Data Bbok Commercial Section.
PC1 is guaranteed by ICC1: Pc1 ~ 30 ICC1~
8. Pc2 is guaranteed by ICC2: Pc2 = 6 ICC2'
9~ V,R is guaranteed by the CMR test.
1o~ Rating applies to ambient temperatures up to 125"C~ Above 125"C
ambient derate linearly at 150"C/W~
11. For supply voltages less than ±15 V, the absolute maximum input
voltage is equal to the supply voltage~
12~ Short circuit may be to ground or either supply~ Rating applies to
125°C case temperature or 75°C ambient temperature for
ISET < 30 MA~
7~

14-116

J-lA776Q8

JlA7760B
Electrical Characteristics ± 3.0 V .;;; Vee';;; ± 15 V, 1.5 JlA';;; ISET .;;; 15 JlA, unless otherwise specified.
Symbol
VIO

110

Characteristic
Input Offset Voltage

Input Offset Current

Condition
Rs = 50

n,

Min

VCM = 0 V

ISET = 1.5 pA

VCM = 0 V

ICC1

Input Bias Current

Supply Current

VeM = 0 V

Vce=±15 V

Supply Current

Vee = ±3.0 V

Power Consumption?

Vcc=±15V

Power ConsumptionS

Vec=±3.0 V

Common Mode Rejection

Subgrp

6.0

mV

1

2,3

3.0

nA

1

1

5.0

nA

1

2

10

nA

1

3

1

1,2

1

3

ISET = 1.5 pA

7.5

nA

1

1,2

20

nA

1

3

ISET = 15 pA

50

nA

1

1,2

120

nA

1

3

ISET = 1.5 pA

ISET = 1.5 pA

ISET = 1.5 pA

ISET = 1.5 pA

ISET = 15 pA

CMR

1

nA

ISET = 15 pA

Pc2

1

nA

ISET= 15 pA

Pc1

Note

mV

15

ISET = 15 pA

ICC2

Unit

5.0

40

ISET = 15 pA

liB

Max

25

pA

1

1

30

pA

1

2,3

180

pA

1

1

200

pA

1

2,3

20

pA

1

1

25

pA

1

2,3

160

pA

1

1

180

pA

1

2,3

0.75

mW

1

1
2,3

0.9

mW

1

5.4

mW

1

1

6.0

mW

1

2,3

120

pW

1

1

150

pW

1

2,3

960

pW

1

1

1080

pW

1

2,3

Vec=±15 V, VCM=±10 V,
Rs= 50 n

70

dB

1

1,2,3

Vce=±3.0 V, VeM=±1.0 V,
Rs = 50 n

70

dB

1

1,2,3

V

1

1,2,3

V

1

1,2,3

pVIV

1

1,2,3

VIR

Input Voltage Range 9

Vee=±15 V

±10

Vee = ±3.0 V

± 1.0

PSRR

Power Supply Rejection Ratio

±3.0 VIN

CI--+-~-OUT

R11

-IN--~-i3

130 0
Q15
R12

8000
R13

40
L----4------~~GND

V-

15-6

p.A139Q8

F=AIRCHILO

Quad Comparator

A Schlumberger Company
MIL-STO-883
July 1986-Rev 25

Aerospace and Defense Data Sheet
Linear Products

Description

Connection Diagram
14-Lead DIP
(Top View)

The jJ.A 1390B consists of four independent precision voltage comparators designed specifically to operate from a
single power supply. Operation from split power supplies is
also possible and the low power supply current drain is
independent of the supply voltage range. Darlington connected PNP input stages allow the input common mode
voltage to include ground. 6
• Single Supply Operation
• Dual Supply Operation
• Allow Comparison Of Voltages Near Ground
Potential
• Low Current Drain
• Compatible With All Forms Of Logic
• Low Input Bias Current
• Low Input Offset Current
• Low Offset Voltage

OUT A

OUTD

V-orGND

-INA

+IN 0

+INA

-IN D

-IN B

+IN C

+INB

-INC

Connection Diagram
14-Lead Flatpak
(Top View)

Q

§ §
Y+

OUTC

Y+

Connection Diagram
20-Terminal CCP
(Top View)
<.>

OUTB

OUT B

Y- OR GND

[::==}::::;~::~['4==~ OUT C
OUT D

NC

NC
Y- OR GND

-IN A

- L - _.... +IND

+IN 0

'-____r---, -IN
NC

NC
-IN

+IN A

BL_y'i"'....

.-'-'

D

I +IN C

+IN B - - - " _ _ _
".
.. .
-~
J""- -IN C

-IN D

CD01470F

<.>

<.>

Z
.,

i!i
+

Order Information
Part No.
MA 139FMOB
MA 139DMOB
jJ.A139LMOB

Casel
Finish
AA
CA
2C

Package Code
MiI-M-38510, Appendix C
F-1 (14-Lead Flatpak)
D-1 (14-Lead DIP)
C-2 (20-Terminal CCP)

JAN Product Available
11201
11201

15-7

BCA
BCB

D-1 (14-Lead DIP)
D-1 (14-Lead DIP)

J1A139QB

Processing: MIL-STD-883, Method 5004

Absolute Maximum Ratings
Storage Temperature Range
Operating Temperature Range
Lead Temperature (soldering, 60 s)
Internal Power Dissipation 8
Flatpak
DIP and CCP
Supply Voltage
Differential Input Voltage9
Input Voitage 10
Input Current
Short Circuit Duration 11

-65°C to 175°C
-55°C to 125°C
300°C

Burn-In: Method 1015, Condition A, PDA calculated
using Method 5005, Subgroup 1

Quality Conformance Inspection: MIL-STD-883,

350 mW
400 mW
± 18 V or 36 V
36 V
-0.3 V to 36 V
10 mA
Indefinite

Method 5005

Group A Electrical Tests Subgroups:
1.
2.
3.
4.
5.
6.
9.
10.
11.

Notes
1. 100% Test and Group A
2. Group A
3. Periodic tests. Group C
4. Guaranteed but not tested

Static tests at 25°C
Static tests at 125°C
Static tests at -55°C
Dynam ic tests at 25° C
Dynamic tests at 1250 C
Dynamic tests at -55c C
AC tests at 25°C
AC tests at 125°C
AC tests at -55°C

Group C and D Endpoints: Group A, Subgroup 1

5. When changes occur, FSC will make data sheet revisions available.
Contact local sales representative for the latest revision.
6. For more information on device function, refer to the Fairchild Linear

Data Book Commercial Section.
7. VIR is guaranteed by the VIO test.
8. Rating applies to ambient temperatures up to 125·C. Above 125·C
ambient, derate linearly at 140·C/W for the Flatpak and 120·C/W for
the DIP and CCP.
9. The differential input voltage shall not exceed the supply voltage.
10. For supply voltages less than ± 18 V, the absolute maximum input

voltage is equal to the supply voltage. The input common mode
voltage or either signal input voltage should not be allowed to go
negative more than 0.3 V.

11. Short circuit may be to ground or negative supply. Rating applies to
125°C case temperature or 75°C ambient temperature. Short circuit
from output to V+ can cause extensive heating and eventual
destruction. No more than one amplifier should be shorted at the
same time as the maximum junction temperature will be exceeded.

15-8

p.A139QB

Electrical Characteristics V+ = 5 V, V- = 0 V, unless otherwise specified.
Symbol

VIO

Max

Unit

Note

o V.

ti~

ell.

OUT A2

w"a.

w"

PULtt~~~ C:=J--I

:1:':'

u

z

~

L-=:J----....-.,--4-- Vo

ii,
STROBE

CR02040F

Use V, or

'ii"

ground other input.

16-20

J.LA9615QB

fJA961SQB
Electrical Characteristics
Symbol

Characteristic

Condition

VOL

Output Voltage LOW 7 ,8

Vee = 4.5 V, 10L = 15 rnA,
VOIFF = 0.5 V

VOH

Output Voltage HIGH 7 ,8

Vee = 4.5 V, 10H = -5.0 rnA,
VOIFF = -0.5 V

leEx

Output Leakage Current8

Vee = 4.5 V, VeEx = 12 V,
VOIFF = 4.5 V

Min

Subgrp

Max

Unit

Note

0.40

V

1

1,2,3

V

1

1,2
3

2.4
2.2

V

1

!J.A

1

1

200

!J.A

1

2,3

-15

rnA

1

1,2,3

100

los

Output Short Circuit Currentl,8

Vee = 5.5 V, Vo = 0 V,
VOIFF = -0.5 V

-80

11L1

Low Level Input Current
(Data Input)

Vee = 5.5 V, VI = 0.4 V,
Other Input = 5.5 V

-0.7

rnA

1

1,2

-0.9

rnA

1

3

IIL2

Low Level Input Current8
(Strobe)

Vee = 5.5 V, VI = 0.4 V,
VOIF F = 0.5 V

-2.4
-2.4

rnA
rnA

1
4

1
2,3

IIL3

Low Level Input CurrentS
(Response Control)

Vee = 5.5 V, VOIFF = 0.5 V

rnA
rnA

1
4

1
2,3

VIR

Input Voltage Range 9

Vee = 5.0 V, VOIFF = 1.0 V

15

V

1

1,2,3

IIH

High Level Input Current8
(Strobe)

Vee = 4.5 V, VOIFF = -0.5 V,
VR = 4.5 V

RI

Input Resistor

Vee = 5.0 V, VI(R) = 1.0 V,
+Input = GND

VTH

Differential Input Threshold
Voltage

-1.2
-1.2
-15

2.0

!J.A

1

1

5.0

!J.A

1

2,3

77

167

Q

1

1

Vee = 4.5 V, VeM = 0 V

-500

500

rnV

1

1,2,3

Vee=5.0 V, VeM= ±15 V

-1.0

1.0

V

1

1,2,3

50

rnA

1

1,2,3

-1.5

V

3

1

5.5

V

4

1,2,3

lee

Supply Current

Vee = 5.5 V, -Inputs = 0 V,
+ Inputs = 0.5 V

Vie

Input Clarnp Voltage (Strobe)

Vee = 4.5 V, lie = -12 rnA

BVI

High Level Input Breakdown
Voltage (Strobe)

Vee = 5.5 V, 11= 1.0 rnA

tpLH1

Propagation Delay to High Level
(Inputs A and B to Output)

Vee = 5.0 V, CL = 30 pF,
RL = 3.9 kQ (See Fig. 1)

50

ns

2

9

75

ns

3

10, 11

tPHL1

Propagation Delay to Low Level
(Inputs A and B to Output)

Vee = 5.0 V, CL = 30 pF,
RL = 390 Q (See Fig. 1)

50
75

ns
ns

2
3

9
10, 11

tpHL2

Propagation Delay to Low Level
(Strobe to Output)

Vee = 5.0 V, CL = 30 pF,
RL = 390 Q

15

ns
ns

4

9
10, 11

tpLH2

Propagation Delay to High Level
(Strobe to Output)

Vee = 5.0 V, CL = 30 pF,
RL = 3.9 kQ

ns
ns

4

16-21

22
15
25

3
3

9
10, 11

•

Primary Burn-In Circuit
(38510/10404 may be used by FSC as an alternate)
5V

1
5100

510 0
OUTA

Vee

1 kO

-

ACTIVE
PULL-UP A

OUTB

STAOBE A

ACTIVE
PULL-UP B

AESPA

STROBE B

RESP B

+INA

-

RA

F

r--

+IN B

-INA

AB

GNO

-IN B

r--

il-

Equivalent Circuit (1/2 of circuit)
AESP

Vee

A4

All

1.64 kU

1.5

STAOBE

A18
1.8kll

k~k

R22

R2.
80 !!

2.0 k!!

A19
900U

013

A
A2
8.36kJ!

Al
130 !!

A3
8.36 kH

04

R23
4.0 k!1

+IN

r--------l
I Vee
I
I
I
I
I
I

-IN

A7
7.0kU

A6
7.0kfl

010

R15
2.5 k!l
R27
2.5 kll

OUT
R20
3.0 k!l

R16

soon
TO
OTHEA
RECEIVEA

R8

lOOn

RIO
132 n

R9
300 !l

GNO
-

~

R25
100 n

10 k!!

IL

.".

Rl'
2.5 k~l

Ll

- -

ACTIVE
PULL-UP

07

R28
100 HI

_______

02

I
I
.JI

COMMON TO BOTH CHANNELS

16-22

R26
9OJ!

A21
1.0 kll

.".
.".

MA9616HQB

F=AIRCHILO

Triple Line Driver

A Schlumberger Company
MIL-STD-883
July 1986-Rev 25

Aerospace and Defense Data Sheet
Linear Products

Description

Connection Diagram
14-Lead DIP
(Top View)

The 1lA9616HQB is a triple line driver which meets the
electrical interface specifications of EIA RS-232-C and
CCITT V.24 and/or MIL-STD-188C. Each driver converts
TTL/DTL logic levels to EIAICCITT and/or MIL-STD-188C
logic levels for transmission between data terminal equipment and data communications equipment. The output
slew rate is internally limited and can be lowered by an
external capacitor; all output currents are short circuit limited. The outputs are protected against RS-232-C fault conditions. A logic HIGH on the inhibit terminal interrupts
signal transfer and forces the output to a VOL (EIAICCITT
MARK) state.

INA1

v+

INA2

INB1

INHIBrrA

INB2

OUTA

For the complementary function, see the 1lA9627QB Dual
EIA RS-232-C and MIL-STD-188C Line Receiver.6
• Internal Slew Rate Limiting
• Meets EIA R8-232-C And CCITT V.24 And/Or
MIL-STD-188C
• Logic True Inhibit Function
• Output Short Circuit Current-Limiting
• Output Voltage Levels Independent Of Supply
Voltages

INHIBITB

INC

OUTB

INHIBITC

OUTC

v-

GND

Connection Diagram
20-Terminal CCP
(Top View)

cj!;

~

j!;

"z

+

>

Iii
j!;

INHIBrrA

INB2
NC

NC

INHIBrrB

OUTA

NC

NC

OUTB

INC

..

I"

z

C!I

"z

,L

"50

j!;

"""""
Order Information
Part No.
1lA9616HDMQB
1lA9616HLMQB

16-23

Casel
Finish
CA
2C

Package Code
Mil-M-38510, Appendix C
D-1 14-Lead DIP
C-2 20-Terminal CCP

~9616HQB

Processing: MIL-STD-883, Method 5004

Absolute Maximum Ratings
Storage Temperature Range
Operating Temperature Range
Lead Temperature (soldering, 60 s)
Internal Power Dissipation 10
DIP and CCP
Supply Voltage
Input or Inhibit Voltage
Output Signal Voltage

-65°C to + 175°C
-55°C to + 125°C
300°C

Burn-In: Method 1015, Condition A, PDA calculated
using Method 5005, Subgroup 1
Quality Conformance Inspection: MIL-STD-883,
Method 5005

400 mW
± 15 V
-1.5 V to +6.0 V
± 15 V

Group A Electrical Tests Subgroups:
1.
2.
3.
9.
10.
11.

Static tests at 25°C
Static tests at 125°C
Static tests at -55°C
AC tests at 25°C
AC tests at 125°C
AC tests at -55°C

Group C and 0 Endpoints: Group A, Subgroup 1
Notes
1. 100% Test and Group A
2. Group A
3. Periodic tests. Group C
4. Guaranteed but not tested
5. When changes occur, FSC will make data sheet revisions available.
Contact locel sales representative for the latest revision.
6. For more information on device function, refer to the Fairchild Linear
Data Book Commercial Section.
7. VIH and VIL are guaranteed by the VOH and VOL tests.
8. All input and supply leads are grounded.
9. An external capacitor may be needed to meet signal wave shaping
requirements of MIL-STD-188C at the applicable modulation rate. No
external capacitor is needed to meet RS-232-C.
10. Rating applies to ambient temperatures up to 125"C. Above 12S"C
ambient, derate linearly at 120"C/W.

Figure

Switching Time Test Circuit and Waveforms
INt 012
(INHIBIT = LOW)

v"

.><>----0 OUT

V,.

OV
VOH-__",."..t

INHIBIT
OUT

Omit VI 2 for channel 'C'.
Input PRR - 50 kHz
Pulse Width - 20 /.IS
Ir = tf = 10 ± S.O ns

16-24

OV-------r~~~------~~---

pA9616HQB

1AA9616HQB
Electrical Characteristics ± 10.8 V';;; Vee';;; ± 13.2 V, RL = 3.0 kil, unless otherwise specified.
Symbol

Characteristic

Condition

VOH

Output Voltage HIGH

VI1 and lor
VI2 = VINHIBIT = 0.8 V

VOL

Output Voltage LOW

VI1

VOH to
VOL

Output Voltage HIGH to Output
Voltage LOW Magnitude
Matching Error

los+

Positive Output Short Circuit
Current

RL = 0 n, VI1 and lor
VI2 = VINHIBIT = 0.8 V

los-

Negative Output Short Circuit
Current

RL =0 n,
VI1 = VI2 = VINHIBIT = 2.0 V

VIH

Input Voltage HIGH7

VIL

Input Voltage LOW7

IIH

Input Current HIGH

IlL

Input Current LOW

1+

Positive Supply Current

1-

Negative Supply Current

Ro

Output Resistance, Power

SR+

Positive Slew Rate9

SR-

Negative Slew Rate9

= VI2 = VINHIBIT = 2.0

V

Min

Max

5.0

7.0

-7.0

1

1,2,3

-5.0

V

1

1,2,3

±10

%

1

1,2,3

-45

-12

rnA

1

1,2,3

12

60

rnA

1

1,2,3

V

1

1,2,3

V

1

1,2,3

0.8
V

40

p.A

1

1,2,3

VI1 = VI2 = 5.5 V

1.0

1

1,2,3

1

1,2,3

1

1,2,3

1

1,2,3

1

1,2,3

1

1,2,3

1

1,2,3

1

9

VI1

= VI2 = 0.4 V
VI1 = VI2 = VINHIBIT = 0.8
VI1 = VI2 = VINHIBIT = 2.0
VI1 = VI2 = VINHIBIT = 0.8
VI1 = VI2 = VINHIBIT = 2.0

V

-1.0

V

-25

rnA
rnA
rnA
rnA
rnA
rnA

300

n

-1.6

VI1

Offl

Note Subgrp

V

2.0

= VI2 = 2.4

Unit

V

25

V

15

-2.0 V"; Va"; 0.5 V
CL = 2500 pF, RL = 3.0 kn
(See Fig. 1)

4.0

30

4.0

30

CL = 2500 pF, RL = 3.0 kn
(See Fig. 1)

-30

-4.0

-30

-4.0

VIlIS
VIlIS
VIlIS
VIlIS

2

10,11

1

9

2

10,11

•
16-25

J.lA9616HQB

Primary Burn-In Circuit
12V

-

INAl

V+

INA2

INB1

INHIBIT A

INB2

OUT A

I-----J

INHIBIT B

-:
INC

OUTB

I--

INHIBITC

OUTC

I--

v-

ii

GND

-

-12 V

Equivalent Circuit (1/3 of circuit)
v+
INHIBIT

--i<.r--r---".!VI.-T----4-------

(J

Z

,(

Part No.
J.LA9622DMOB
J.LA9622LMOB
J.LA9622FMOB

ID

z

T

16-27

Casel
Finish
CA
2C
AA

Package Code
MiI-M-38510, Appendix C
D-1 14-Lead DIP
C-2 20-Terminal CCP
F-1 14-Lead Flatpak

•

J.LA9622QB

Absolute Maximum Ratings
Storage Temperature Range
Operating Temperature Range
Lead Temperature (soldering, 60 s)
Internal Power Dissipation 8
Flatpak
DIP and CCP
V+ to GND
Input Voltage
Voltage Applied to Outputs
for Output High State
V- to GND
Enable to GND

Processing: MIL-STD-883, Method 5004
-65°C to + 175°C
-55°C to + 125°C
300°C

Burn-In: Method 1015, Condition A, PDA calculated
using Method 5005, Subgroup 1

Quality Conformance Inspection: MIL-STD-883,

350 mW
400 mW
-0.5 V to +7.0 V
± 15 V

Method 5005

Group A Electrical Tests Subgroups:
1. Static tests at 25°C

2. Static tests at 125°C

-0.5 V to + 13.2 V
-0.5 V to -12 V
-0.5 V to +15 V

3. Static tests at -55°C
9. AC tests at 25°C

Group C and 0 Endpoints: Group A, Subgroup
Notes
1. 100% Test and Group A
2. Group A
3. Periodic tests, Group C
4. Guaranteed but not tested
5. When changes occur, FSC will make data sheet revisions available.
Contact local sales representative for the latest revision.
6. For more information on device function, refer to the Fairchild Linear

Data Book Commercial Section.
7. When S3 is connected to V-, open inputs cause output to be high.
When V+ = 5 V, V- = -10 V and S3 is connected to ground, open
inputs cause output to be low.
8. Rating applies to ambient temperatures up to 12S·C. Above 12S·C
ambient, derate linearly at 140·C/W for the Flatpak and 120·C/W for
the DIP and CCP.

Figure 1 Switching Time Test Circuit and Waveforms

VI3'::~~~:V
j~:v
Yo

0.2V

1.5V

1.5V

OV======~--------------~~

16-28

MA9622QB

I.IA9622QB

Electrical Characteristics
Symbol

Characteristic

Condition

VOL

Output Voltage LOW

V+ = S3 = 4.5 V, V- = -11 V,
VDIFF = 2.0 V, 10L = 12.4 mA,
EN = open

VOH

Output Voltage HIGH

V+ = 4.5 V, V- = -9.0 V,
S3 = 0 V, VDIFF = 1.0 V,
10H = -0.2 mA, EN = open

Unit

Note

V

1

3.0

V

1

1

2.9

V

1

2
3

Min

Max

0.4

2.8
ICEX

los

Output Leakage Current

Output Short Circuit Current

Enable Input Leakage
Current

V+ = S3 = 4.5 V, V- =-11 V,
IN = open, EN = 4.0 V

IF(EN)

Enable Input Forward
Current

V+ = 5.5 V, V- = -9.0 V,
VI = open, EN = S3 = 0 V

IF(+IN)

+ Input Forward Current

V+ = 5.0 V, V- =-10 V,
VI+ = 0 V, VI- = GND,
EN = S3 = open

IR(EN)

IFHN)

-Input Forward Current

V+ = S3 = 5.0 V, V- = -10 V,
VI+ = GND, V I- = 0 V,
EN = open

V

1
1

1

200

1

2

50

JlA

1

3

-3.1

-1.4

mA

1

1

-3.1

-1.3

mA

1

2,3

2.0

JlA

1

1

5.0

I.IA

1

2

-1.5

mA

1

1,2,3

100

-2.1

mA

1

1

-2.0

mA

1

2

-2.3

mA

1

3

-2.4

mA

1

1

-2.3

mA

1

2
3

-2.6
VIL(EN)

Input Voltage LOW

4.5 V--..,....I--fo)

~

~~~LHIr-

OUT

PRR = 500 kHz
Amplitude = -10 V
Pulse Width = 1 ~s
tr =tj = 20 ns

Vo

~1.5V

CR05060F

TESTS
tpLH, tpHL

CONDITIONS
(0C)

V+
(Volts)

V(Volts)

R
(kil)

25

5.0

-13

3.75

TA

16-36

IlA962SQB

/-IA9625QB

Electrical Characteristics
Symbol

Characteristic

Condition

Min

Unit

Note

V

1

1

V

1

2,3

V

1

1,2,3

V

1

1,2,3

-3.0

V

1

1,2,3

V

1

1,2,3

210

IJ.A.

1

1,2,3

Max

VOH

Output Voltage HIGH

V+ = 4.5 V, V- = -11 V,
IOH =-60 IJ.A.

2.6

VOL

Output Voltage LOW

V+ = 5.5 V, V- =-11 V,
IOL = 1.5 mA

0.5

V+=4.5V,V-=-11 V,
IOL = 1.2 mA

0.5

2.5

Subgrp

VIH

Input Voltage HIGH 7

VIL

Input Voltage LOWs

IF

Input Load Current

V+ =5.0 V, V-=-13 V,
VF = -3.0 V

ICEX

Output Leakage Current

V+ = VCEX = 4.5 V,
V- =-13 V

50

IJ.A.

1

1

I+ L

Positive Supply Current LOW

V+ = 5.5 V, V- = -15 V,
VI =-10 V

4.8

mA

1

1

I+H

Positive Supply Current HIGH

V+ = 5.5 V, V- =-15 V,
VI=O V

2.1

mA

1

1

1-

Negative Supply Current

V+ =5.5 V, V-=-15 V,
Input Open or Gnd

-9.0

mA

1

1

I-Max

Negative Supply Current Maximum

V+ = 8.0 V, V- = -20 V,
VI =0 V

-25

mA

1

1

tpLH

Propagation Delay to High Level

V+ = 5.0 V, V- =-13 V,
(See Fig. 1)

100

ns

2

9

tpHL

Propagation Delay to Low Level

150

ns

2

9

-9.0

16-37

J,lA9625QB

Primary Burn-In Circuit
5V

-15V

Equivalent Circuit
V+

10kQ

5kQ

5kQ

10kQ

OUTA OUTB

22kQ

INB

3kQ

3kQ

V-

16-38

MA9627QB

FAIRCHILD

Dual Line Receiver

A Schlumberger Company
MIL-STO-883
July 1986-Rev 15

Aerospace and Defense Data Sheet
Linear Products

Description

Connection Diagram
16-Lead DIP
(Top View)

The J-!A96270B is a dual line receiver which meets the
electrical interface specifications of EIA RS-232C and
MIL-STD-188C. The input circuitry accomodates ±25 V input signals and the differential inputs allow user selection
of either inverting or non-inverting logic for the receiver
operation. The fJA96270B provides both a selectable hysteresis range and selectable receiver input resistance.
When lead 1 is tied to V-, the typical switching pOints are
at 2.6 V and -2.6 V, thus meeting RS-232-C requirements.
When lead 1 is open, the typical switching points are at
50 fJA and -50 fJA, thus satisfying the requirements of
MIL-STD-188C LOW level interface. Connecting the R lead
to the (-) input yields an input impedance in the range of
3 kn to 7 kn and satisfies RS-232-C requirements; leaving R unconnected, the input resistance will be greater
than 6 kn to satisfy MIL-STD-188C.

16

HYSTERESIS

OUTA

OUTB

STROBE A

STROBEB

NC

NC

-INA

-INB

RA

The output circuitry is TTL/DTL compatible and will allow
"collector-dotting" to generate the wired-OR function. A
TTL/DTL strobe is also provided for each receiver.6
•
•
•
•
•
•
•
•

v+

RB

+INA

+INB

v-

GNO

EIA RS-232-C Input Standards
MIL-STD-188C Input Standards
Variable Hysteresis Control
High Common Mode Rejection
R Control (5 kn Or 10 kn)
Wired-OR Capability
Choice Of Inverting And Non-Inverting Inputs
Outputs And Strobe TTL Compatible

Order Information
Part No.
fJA9627DMOB

Case I
Finish
EA

Package Code
MiI-M-38510, Appendix C
D-2 16-Lead DIP

•
16-39

tLA9627QB

Absolute Maximum Ratings

Processing: MIL-STD-883, Method 5004

Storage Temperature Range
Operating Temperature Range
Lead Temperature (soldering, 60 s)
Internal Power Dissipation?
DIP
V+ to GND
V- to GND
Input Voltage Referred to GND
Strobe to GND
Applied Output Voltage

-65°C to + 175°C
-55°C to +125°C
300°C

Burn-In: Method 1015, Condition A, PDA calculated
using Method 5005, Subgroup 1
Quality Conformance Inspection: MIL-STD-883,
Method 5005

400 mW
OVto+15V
OVto-15V
±25 V
-0.5 V to +5.5 V
-0.5 V to +15 V

Group A Electrical Tests Subgroups:
1.
2.
3.
9.

Static tests at 25°C
Static tests at 125°C
Static tests at -55°C
AC tests at 25°C

Group C and 0 Endpoints: Group A, Subgroup
Notes
1. 100% Test and Group A
2. Group A
3. Periodic tests, Group C
4. Guaranteed but not tested
5. When changes occur, FSC will make data sheet revisions available.
Contact local sales representative for the latest revision.
6. For more information on device function, refer to the Fairchild Linear

?

Data Book Commercial Section.
Rating applies to ambient temperatures up to 12S"C. Above 12S"C
ambient, derate linearly at 120°C/W.

Figure 1 Switching Time Test Circuit and Waveforms
Vo

-S.OV

+IN
R

PRR = 10kHz
PW = SOfLS
t,=t,=Sns

V,

-IN

-5.0V
3.92kQ

- - - v+

=12V

±1%

~GND

Vo

- - - V-=-12V

HYSOPEN

15 pF includes jig capacttance.
All diodes are FD777 or equivalent.

16-40

MA9627QB

J,lA9627QB
Electrical Characteristics Hysteresis, -IN A, -IN B, RA, and RB Open for MIL-STD-1BBC, unless otherwise
specified.
Symbol

Characteristic

Condition

Min

VOL

Output Voltage LOW

V+ = 10.8 V, V- = -13.2 V,
VI+ = 0.6 V, IOL = 6.4 mA

VOH

Output Voltage HIGH

V+ = 10.8 V, V- =-13.2 V,
VI+ = 0.6 V, 10H = -0.5 mA

2.4

los

Output Short Circuit Current

V+ = 13.2 V, V- = -10.8 V,
VI+ = 0.6 V, Outputs
Grounded

-3.0

IIH(ST)

Input Current HIGH (Strobe)

V+ = 10.8 V,
V- =-13.2 V,
VI+ =0.6 V

Unit

Note

V

1

Subgrp
1,2,3

V

1

1,2,3

mA

1

1,2,3

40

p.A

1

1,2,3

VST = 5.5 V

1.0

mA

1

1,2,3

kU

1

1,2,3

/lA

1

1,2,3

p.A

1

1,2,3

V

1

1,2,3

V

1

1,2,3

18

mA

1

1,3

12.4

mA

1

2

-16

mA

1

1,3

-11.4

mA

1

2

Input Resistance

V+ = 13.2 V, V- =-13.2 V,
-3.0 V~VI+ ~3.0 V

ITH+

Positive Threshold Current

± 10.8 VS.Vccs. ± 13.2 V,
Vo = 2.4 V

ITH-

Negative Threshold Current

±10.8 V~Vcc~ ±13.2 V,
Vo = 0.4 V

VldST)

Input Voltage LOW (Strobe)

VI+ =-0.6 V

VIH(ST)

Input Voltage HIGH (Strobe)

V+ = 13.2 V, V- =-10.8 V,
VI+ =-0.6 V

1+

Positive Supply Current

±10.8 V~Vcc~ ±13.2 V
VI+ =-0.6 V

Negative Supply Current

0.4

VST = 2.4 V

RI

1-

Max

6.0
100
-100
0.8

±10.8 V~Vcc~ ±13.2 V
VI+ = 0.6 V

2.0

Electrical Characteristics +IN A and -IN B connected to ground, AA and AB connected to -IN A and
-IN B, and Hysteresis connected to V- for RS-232C, unless otherwise specified.
Symbol
RI

Characteristic
Input Resistance

Condition
3.0

V~VI~25

-3.0 V ~ VI
VI

V

~-25

V

Input Voltage

VTH+

Positive Threshold Voltage

VTH-

Negative Threshold Voltage

Min

Max

Unit

Note

Subgrp

3.0

7.0

kU

1

1,2,3

3.0

7.0

kU

1

1,2,3

-2.0

2.0

V

1

1,2,3

3.0

V

1

1,2,3

V

1

1,2,3

-3.0

Electrical Characteristics Vee = ± 12 V for MIL-STD-1BBC and AS-232C
Symbol

Characteristic

Condition

tpLH

Propagation Delay to High Level

(See Fig. 1)

tpHL

Propagation Delay to Low Level

(See Fig. 1)

16-41

Min

Max

Unit

Note

250

ns

2

9

250

ns

2

9

Subgrp

Primary Burn-In Circuit

y
1.2kO
1/4W_
2 kO

12V

HVS

1

V+

1.2 kO
1/4W

1/4W

OUTA
STROBE A

-

NC
-INA

-

RA
+INA

> - - - GNO

OUT B
STROBE B
NC

-

-INS

RB
+INB ~

V-

~

r-----

-=
-12 V

Equivalent Circuit (112 of circuit)
v+----------------~----_.------~------~------------------------_1--_.------~--------C1
1.1pF

+ IN

Rl1

R43

1.2BkQ

700Q

--...,..-i'(-.,--,
Rl
8kQ

R2
11.3kQ
R

R4
2kQ

=
R34
11.3kQ
R41

3.2kQ

07

v- ______~~----+_----~----~------------~----------~-----------+--~----~-HVS---------4----~------------------------------------------------------------------

16-42

IlA9636AQB
Dual Programmable
Slew Rate Line Driver

FAIRCHIL.D
A Schlumberger Company
MIL-STD-883
July 1986-Rev 15

Aerospace and Defense Data Sheet
Linear Products

Description

Connection Diagram
8-Lead DIP
(Top View)

The IlA9636AOB is a TTL/CMOS compatible, dual, single
ended, line driver which has been specifically designed to
satisfy the requirements of EIA Standard RS-423.
The IlA9636AOB is suitable for use in digital data transmission systems where Signal wave shaping is desired.
The output slew rates are jointly controlled by a single
external resistor connected between the wave shaping
control lead (WS) and ground. This eliminates any need
for external filtering of the output signals. Output voltage
levels and slew rates are independent of power supply
variations. Current limiting is provided in both output
states. The IlA9636AOB is designed for nominal power
supplies of ± 12 V.

WAVESHAPE
CONTROL
INA

OUT A

INB

OUTB

GND

V-

Order Information

Inputs are TTL compatible with input current loading low
enough (1/10 UL) to be compatible with CMOS logic also.
Clamp diodes are provided on the inputs to limit transients
below ground. 6
•
•
•
•

V+

Part No.
J.LA9636AR MOB

Casel
Finish
PA

Package Code
MiI-M-38510, Appendix C
D-4 8-Lead DIP

Programmable Slew Rate Limiting
Meets EIA RS-423 Requirements
Output Short Circuit Protection
TTL And CMOS Compatible Inputs

II

16-43

/JA9636AQB

Absolute Maximum Ratings

Processing: MIL-STD-883. Method 5004
-65°C to + 175°C
-55°C to + 125°C
300°C

Storage Temperature Range
Operating Temperature Range
Lead Temperature (soldering, 60 s)
Internal Power Dissipation 10
DIP
V+ to GND
V- to GND
V+ to VOutput to GND
Output Source Current
Output Sink Current

Burn-In: Method 1015, Condition A, PDA calculated
using Method 5005, Subgroup 1
Quality Conformance Inspection: MIL-STD-883,
Method 5005

400 mW
V- to +15 V
0.5 V to -15 V
o to +30 V
± 15 V
-150 mA
150 mA

Group A Electrical Tests Subgroups:
1.
2.
3.
9.

Static tests
Static tests
Static tests
AC tests at

at 25°C
at 125°C
at -55°C
25°C

Group C and D Endpoints: Group A, Subgroup
Notes
1. 100% Test and Group A
2. Group A
3. Periodic tests. Group C
4. Guaranteed but not tested
5. When changes occur. FSC will make data sheet revisions available.
Contact local sales representative for the latest revision.
6. For more information on device function, refer to the Fairchild Linear

Data Book Commercial Section.
7. Only one output shorted at a time.
8. VIH is guaranteed by the VOH test.
9. V,L is guaranteed by Ihe VOL test.
10. Rating applies to ambient temperatures up to 125·C. Above 125·C
ambient, derate linearly at 120·C/W.

Figure 1 Switching Time Test Circuit and Waveforms
+ 12V

v,-........p---I

,~o---p---p---vo

4500

510

CL

30pF

-12 V

C L includes jig and probe capacitance

V,
Amplitude - 3.0 V
Offset - 0 V
Pulse Width - 500 IlS
PRR = 1 kHz
t,-I,-10ns

16-44

MA9636AQB

1lA9636AQB

Electrical Characteristics 10.8 V'" V+ '" 13.2 V, -13.2 V'" V- '" -1 0.8 V, and 10 kS1 '" Rws '" 500 kS1,
unless otherwise specified.
Symbol

Characteristic

Condition

Min

Max

Unit

Note

5.0

6.0

V

1

1,2,3

5.0

6.0

V

1

1,2,3

4.0

6.0

V

1

1,2,3

-6.0

-5.0

V

1

1,2,3

RL to GND (RL = 3.0 kS1)

-6.0

-5.0

V

1

1,2,3

RL to GND (RL = 450 S1)

-6.0

-4.0

V

1

1,2,3

50

S1

1

1,2,3

VOH1

Output Voltage HIGH

RL to GND (RL = 00)

VOH2

Output Voltage HIGH

RL to GND (RL = 3.0 kS1)

VOH3

Output Voltage HIGH

RL to GND (RL = 450 S1)

Vou

Output Voltage LOW

RL to GND (RL = 00)

VOL2

Output Voltage LOW

VOL3

Output Voltage LOW

Ro

Output Resistance

RL =450 S1

los+

Positive Output Short Circuit Current?

Vo = 0 V, VI = 0 V,
Rws =10 kS1

los-

Negative Output Short Circuit Current?

Vo = 0 V, VI = 2.0 V,
Rws=10 kS1

ICEX

Output Leakage Current

Vcc= 0 V, Vo= ± 6.0 V,
Rws = 10 kS1

VIH

Input Voltage HIGH8

VIL

Input Voltage LOW9

VIC

Input Clamp Diode Voltage

II = 15 mA

-1.5

IlL

Input Current LOW

VI = 0.4 V

-80

IIH

Input Current HIGH

VI = 2.4 V

10

VI = 5.5 V

-150

-15

mA

1

1,2,3

15

150

rnA

1

1,2,3

-100

100

p.A

1

1,2,3

V

1

1,2,3

0.8

V

1

1,2,3

V

1

1,2,3

p.A

1

1,2,3

p.A

1

1,2,3

100

p.A

1

1,2,3

18

mA

1

1,2,3

rnA

1

1,2,3

1.4

/lS

1

9

2.0

1+

Positive Supply Current

V+ = 12 V, V- =-12 V,
RL = 00, Rws = 100 kS1,
VI=O V

1-

Negative Supply Current

V+ = 12 V, V- =-12 V,
RL = 00, Rws = 100 kS1,
VI=O V

t,

Rise Time

Rws = 10 kS1

0.8

(See Fig. 1)

tf

Subgrp

-18

Rws = 100 kS1

8.0

14

/lS

1

9

Rws =500 kS1

40

70

/lS

1

9

Rws = 1000 kS1

80

140

/lS

1

9

Fall Time

Rws =10 kS1

0.8

1.4

JJ.S

1

9

(See Fig. 1)

Rws = 100 kS1

8.0

14

/lS

1

9

Rws = 500 kS1

40

70

JJ.S

1

9

Rws= 1 MS1

80

140

/lS

1

9

16-45

Primary Burn-In Circuit
100kO
1/4W

15Y
y.

+------1 IN A

OUT A

+------1 IN B

OUTB

t - - - - - - i GND

Y-

-15Y

Equivalent Circuit
r---------------~

R18
400U
TO

D22~t"

WClM

--;l

J

~

*~~027

~
~D15

Rl7
8.58 kU

A

~~

R7

~

~01S

I

~

r---<

r K-->

D12'
~

D13

...

...... D5

......

D8~7

7D3

~
~

~10

r--

7D1

R19

V

a.

~=
~

~~D18
10
OTHER
CHANNEL

t;122

TO

020 ........

OTHER
CHANNEL

.......
R13
10kU

R12
SOOU

~

RS

R4

[~CU3
~

,........,
'cii9'

V 016

.....
V019

......
R15
10 kO

01

r-J(02
C1

'---

..-.~
cu;; "
R14
380U

k

012

......

GND

R1
71

702

Io,~

J-

~ OUT

'04

....

......011

CHANNEL

R2
81

r.:f

~7D14

OTHER

U'D

V03

.......-

D20

~~D17

i7

~

~t'D11

o

05

D8~"

[ CU5

...-

D16

O~

as

I
I

......028

~~D21

I
I
I
I
I
I
I
I
I
I

IN

I
I
I
I

028~

OTHER
CHANNEL

TO

I

WSCIN

10
OTHER
CHANNEL

R6
25kU

R6
2.53 kll

V 017

......

V

018

"f

R9
910U

TO

OTHER

CHANNEL

L _______________ .J
-

-

Y-

o
-

= COMMON TO BOTH CHANNELS

= CROBSUNDER

16-46

JlA9637AQB

FAIRCHIL.O
A Schlumberger Company

Dual Differential
Line Receiver

MIL-STD-883
July 1986-Rev 15

Aerospace and Defense Data Sheet
Linear Products

Description

Connection Diagram
a-Lead DIP
(Top View)

The !1A9637 AOB is a Schottky dual differential line receiver which has been specifically designed to satisfy the requirements of EIA Standards RS-422 and RS-423. In
addition, the !1A9637 AOB satisfies the requirements of
MIL-STD 188-114 and is compatible with the International
Standard CCITT recommendations. The MA9637 AOB is
suitable for use as a line receiver in digital data systems,
using either single ended or differential, unipolar or bipolar
transmission. It requires a single 5 V power supply and
has Schottky TTL compatible outputs. The MA9637AOB
has an operational input common mode range ± 7 V either
differentially or to ground. 6

•
•
•
•
•
•
•
•

Dual Channels
Single 5 V Supply
Satisfies EIA Standards RS-422 and RS-423
Built In ± 35 mV Hysteresis
High Common Mode Range
High Input Impedance
TTL Compatible Output
Schottky Technology

Vee

+INA

OUT A

-INA

OUTB

+lNB

GND

-INS

Order Information
Part No.
MA9637ARMOS

Casel
Finish
PA

Package Code
MiI-M-38510, Appendix C
D-4 8-Lead DIP

•
16-47

IlA9637AQB

Processing: MIL-STD-883, Method 5004

Absolute Maximum Ratings
Storage Temperature Range
Operating Temperature Range
Lead Temperature (soldering, 60 s)
Internal Power DissipationS
DIP
Supply Voltage
Input Voltage
Differential Input Voltage
Output Voltage
Output Sink Current

-65°C to + 175°C
-55°C to + 125°C
300°C

Burn-In: Method 1015, Condition A, PDA calculated
using Method 5005, Subgroup 1
Quality Conformance Inspection: MIL-STD-883,
Method 5005

400 mW
-0.5 V to +7.0 V
± 15 V
± 15 V
-0.5 V to +5.5 V
50 mA

Group A Electrical Tests Subgroups:
1.
2.
3.
9.

Static tests
Static tests
Static tests
AC tests at

at 25°C
at 125°C
at -55°C
25°C

Group C and D EndpOints: Group A, Subgroup
Notes
1.
2.
3.
4.
5.

100% Test and Group A
Group A
Periodic tests, Group C
Guaranteed but not tested
When changes occur, FSC will make data sheet revisions available.
Contact local sales representative for the latest revision.

6. For more information on device function, refer to the Fairchild Linear
Data Book Commercial Section.
7. Only one output should be shorted at a time.
8. Rating applies to ambient temperatures up to 125·C. Above 125·C
ambient. derate linearly at 120·C/W.

Figure 1 Switching Time Test Circuit and Waveforms
Vee =5.0V

Vee

=S.ov

-O~V----'~~

51!)

Vo

CL includes jig and probe capacitance.
All diodes are FD700 or equivalent

-b.

+0.5V------,-----_

v,

---I1r---,·5V,.5V\,----

V,
Amplitude ~ 1.0 V
Offset ~ 0.5 V
Pulse Width ~ 100 ns
PRR ~ 5.0 MHz
t r =tf=5.0 ns

16-48

JlA9637AQB

IlA9637AQB
Electrical Characteristics 4.5 V';;; Vee';;; 5.5 V, unless otherwise specified.
Symbol

Characteristic

Min

Max

Unit

Note

VTH

Differential Input Threshold Voltage

VCM = !7.0 V

Condition

-0.2

0.2

V

1

1,2,3

VTH(R)

Differential Input Threshold Voltage
Resistor

VCM = !7.0 V

-0.4

0.4

V

1

1,2,3

II

Input Current

o V';;;Vec';;;5.5

3.25

mA

1

1,2,3

mA

1

1,2,3

V

1

1,2,3

V

1

1,2,3

-40

rnA

1

1,2,3

V

I VI+ = 10 V
I VI+ =-10 V

-3.25

Subgrp

VOL

Output Voltage LOW

Vee = 4.5 V, 10L = 20 mA

VOH

Output Voltage HIGH

Vee = 4.5 V, 10H = -1.0 rnA

los

Output Short Circuit Current?

Vee = 5.5 V, Vo = 0 V

Icc

Supply Current

Vee = 5.5 V, VI+ = 0.5 V,
VI- =GND

50

rnA

1

1,2,3

tpLH

Propagation Delay to High Level

Vec = 5.0 V (See Fig. 1)

25

ns

2

9

tpHL

Propagation Delay to Low Level

25

ns

2

9

16-49

0.5
2.5
-100

I-lA9637AQB

Primary Burn-In Circuit
5V

+IN A I - - - - - - i

OUT A

-INA

OUTB

+IN B

GNO

-INB

1 - - - 1 - -......

Cfl04180F

Equivalent Circuit
r--------~-------_.-----~---~-_t-----t_--VCC
R7

RS

R24

R23

RIS

+-------t--,

02

Cl
5pF

+IN ---<~-.NI/'-""'--4

OUT

-IN ------ El.2

B5-

>--- 82

C4

100 kCl
1/4W

100 kO
1/4W

C2

E4_

> - - - 83

84_

>--- E3

C3

.".

100 kCl
1/4W

18-6

I1A555Q8
Single Timing Circuit

FAIRCHILD
A Schlumberger Company
MIL-STD-883
July 1986-Rev 15

Aerospace and Defense Data Sheet
Linear Products

Description

Connection Diagram
8·Lead DIP
(Top View)

The MA555QB Timing Circuit is a very stable controller for
producing accurate time delays or oscillations. In the time
delay mode, the delay time is precisely controlled by one
external resistor and one capacitor; in the oscillator mode,
the frequency and duty cycle are both accurately controlled with two external resistors and one capacitor. By
applying a trigger signal, the timing cycle is started and an
internal flip-flop is set, immunizing the circuit from any further trigger Signals. To interrupt the timing cycle a reset
Signal is applied ending the time-out.

TRIGGER

DISCHARGE

OUT

THRESHOLD

The output is compatible with TTL circuits and can drive
relays or indicator lamps.6
•
•
•
•
•
•
•

Vee

GND

CONTROL
VOLTAGE

RESET

Timing Control, IJS To Hours
Astable Or Monostable Operating Modes
Adjustable Duty Cycle
High Sink Or Source Output Current
TTL Output Drive Capability
Low Temperature Stability
Normally ON Or Normally OFF Output

Connection Diagram
8·Lead Can
(Top View)
Vee

RESET

Order Information
Part No.
MA555HMQB
IlA555RMQB

Casel
Finish
GC
PA

JAN Product Available
10901
BGC
10901
BPA
10901
BPB

18-7

Package Code
MII-M-38510, Appendix C
A-1 (8-Lead Can)
D-4 (8-Lead DIP)

A-1 (a-Lead Can)
D-4 (8-Lead DIP)
D-4 (8-Lead DIP)

#-lA555QB

Processing: MIL-STD-883, Method 5004

Absolute Maximum Ratings
Storage Temperature Range
Operating Temperature Range
Lead Temperature (soldering, 60 s)
Internal Power Dissipation 7
Can
DIP
Supply Voltage
Discharge Current
Output Sink Current
Output Source Current

-65°C to 175°C
-55°C to 125°C
300°C

Burn-In: Method 1015, Condition A, PDA calculated
using Method 5005, Subgroup 1
Quality Conformance Inspection: MIL-STD-883,
Method 5005

330 mW
400 mW
±18 V
200 mA
200 mA
-200 mA

Group A Electrical Tests Subgroups:
1.
2.
3.
4.
5.
6.
9.
10.
11.

Static tests at 25°C
Static tests at 125°C
Static tests at -55°C
Dynamic tests at 25°C
Dynamic tests at 125°C
Dynamic tests at -55°C
AC tests at 25°C
AC tests at 125°C
AC tests at -55°C

Group C and D Endpoints: Group A, Subgroup 1
Notes
1. 100% Test and Group A
2. Group A
3. Periodic tests, Group C
4. Guaranteed but not tested
5. When changes occur, FSC will make data sheet revisions available.
Contact local sales representative for the latest revision.
6. For more information on device function, refer to the Fairchild Linear
Data Book Commercial Section.
7. Rating applies to ambient temperatures up to 125·C. Above 125'C
ambient, derate linearty at 150'C/W for the Can and 120'C/W for the
DIP.

18-8

IlA555Q8
Electrical Characteristics 4.5 V';;; Vee';;; 16.5 V, unless otherwise specified.
Symbol

Characteristic

Condition

Min

Max

Unit

Note

12

mA

1

1,2,3

5.0

mA

1

1,2,3

10.3

V

1

1,2,3

V

1

1,2,3
1,2,3

Icc

Supply Current

Vee=15 V, RL=oo

VTH

Threshold Voltage

Vee=15 V

9.7

Vee = 5.0 V

3.0

3.6

Vee = 5.0 V, RL =

VTA

Trigger Voltage

00

Vee=15 V

4.8

5.2

V

1

Vee = 5.0 V

1.45

1.9

V

1

1,2,3

Vee = 15 V

-5.0

/lA

1

1,2,3

ITA

Trigger Current

VA

Reset Voltage

5.0 V';;;Vee<15 V

IA

Reset Current

Vee=15 V

ITH

Threshold Current

Vee=15 V

Vev

Control Voltage Level

Vee=15 V

9.6

10.4

Vee = 5.0 V

2.9

3.8

VOL

Output Voltage LOW

Vee=15 V

0.1

1.0

V

1

1,2,3

-1.6

0

mA

1

1,2,3

0.25

/lA

1

1,2

2.5

/lA

1

3

V

1

1

V

1

1

0.15

V

1

0.25

V

1

0.5

V

1

0.7

V

1

2

2.2

V

1

1

2.8

V

IOL = 200 mA

3.5

V

1

1

IOL =8.0 mA

0.25

V

1

1

0.35

V

1

2,3

IOL = 10 mA

IOL = 50 mA

IOL = 100 mA

Vee = 5.0 V

VOH

Output Voltage HIGH

Vee=15 V

Vee = 5.0 V

1

2

1,3

--2,3

--- ---

IOH =-200 mA

11

V

1

1

13

V

1

1,2,3

IOH =-100 mA

3.0

V

1

1,2

2.0

V

1

3

nA

1
1

1,3
2

Discharge Leakage
Current

Vee = 15 V, VD = 15 V

VSAT

Discharge Saturation
Voltage

Vee = 5.0 V, IOL = 5.0 mA

tpLH

Propagation Delay to
High Level (Monostable)

tTLH

Transition Time to High
Level (Monostable)

tTHL

Transition Time to Low
Level (Monostable)

tD(OH)

Time Delay High
(Monostable)

RT = 1.0 kn, CT = 0.1 /IF

Drift in Time Delay vs.
Change in Supply
Voltage (Monostable)

~Vee

---

1,3

---

IOH =-100 mA

leEx

~tD(OH)/

Subgrp

95
5.0

/lA

0.25
0.4

V

1
1

1,3

V

RT = 1.0 kn, CT = 0.1 /IF

900

ns

3

10

800

ns

3

9,11

RT = 1.0 kn, CT = 0.1 /IF

300

ns

3

9,10,11

300

ns

3

9,10,11

106.7

113.3

/lS

3

9,10,11

RT = 100 kn, CT = 0.1 /IF

10.67

11.33

ms

3

9,10,11

~Vee = 12 V, RT = 1.0 kn,
CT = 0.1 /IF

-220

220

nslV

4

9

18-9

2

•

JIA555QB

MA555QB (Cont.)
Electrical Characteristics 4.5 V < Vee < 16.5 V, unless otherwise specified.
Symbol

Characteristic

Condition

Min

kn, CT = 0.1 /IF

tPHL

Propagation Delay Time
(Threshold to Output)
(Monostable)

RT = 1.0

~tpH(OH)1

Temperature Coefficient
of Time Delay
(Monostable)

Vcc = 16.5 V

Capacitor Charge Time
(Astable)

CT= 0.1 /IF

tDIS

Capacitor Discharge
Time (Astable)

CT = 0.1 IlF

~teHI

Drift in Capacitor
Charge Time vs Change
in Supply Voltage
(Astable)

~Vce=

12 V, RTA = RTS = 1.0
CT=O.l/lF

Temperature Coefficient
of Capacitor Charge
Time

Vcc = 16.5 V
RTA = RTB
= 1.0 kn,
CT = 0.1 /IF

Reset Time

Vce = 16.5 V,
RTA = RTB = 1.0
CT= 0.1 /IF

~T

tCH

~Vce

tCH/~T

tres

Note

Subgrp

/lS

3

9,10,1

-11

11

ns/oC

3

10

-55°C

<: TA <: 25°C

-11

11

nsrC

3

11

RTA

RTB = 1.0

kn

120

156

/lS

3

9,10,1

kn

11.3

15

ms

3

9,10,1

57.5

80

/lS

3

9,10,1

=

RTA = RTB = 100
RTA = RTB = 1.0

kn
kn

5.4

7.7

ms

3

9,10,1

-820

820

ns/V

4

9

25°C <: TA <: 125°C

-68

68

ns/oC

3

10

<: TA <: 25°C

-68

68

ns/oC

3

11

2.0

/lS

3

10

1.5

/lS

3

9,11

RTA = RTB = 100

-55°C

kn,

kn

Block Diagram

12 V

~

Unit

12

<: TA <: 125°C

25°C

Primary Burn-In Circuit
(38510/10901 may be used by FSC as an alternate)
GND

Max

Vee

Vee

5.0 kO
DISCH

THRESHOLD
CONTROL
VOLTAGE

10kO

TRIGGER DISCHARGE

R
FLlP·FLOP

~

OUT

--

RESET

1 kO
THRESHOLD

CONTROL
VOLTAGE

5.0 kO

r-

S INHIBIT!
RESET

TRIGGER

5.0 kO

RESET

GND

18·10

"::"

Q

OUT

JlA733Q8

FAIRCHILO
A Schlumberger Company

Differential Video
Amplifier

MIL-STD-883
July 1986-Rev 25

Aerospace and Defense Data Sheet
Linear Products

Description

Connection Diagram
10-Lead Can
(Top View)

The !lA73308 is a monolithic two-stage differential input,
differential output video amplifier constructed using the
Fairchild Planar Epitaxial process. Internal series shunt
feedback is used to obtain wide bandwidth, low phase distortion, and excellent gain stability. Emitter follower outputs
enable the device to drive capacitive loads and all stages
are current source biased to obtain high power supply and
common mode rejection ratios. It offers fixed gains of 10,
100 or 400 without external components, and adjustable
gains from 10 to 400 by the use of a single external resistor. No external frequency compensation components
are required for any gain option. The device is particularly
useful in magnetic tape or disc file systems using phase
or NRZ encoding and in high speed thin film or plated
wire memories. Other applications include general purpose
video and pulse amplifiers where wide bandwidth, low
phase shift, and excellent gain stability are required. 6

•
•
•
•

G2A

vLead 5 connected to case.

Connection Diagram
14-Lead DIP
(Top View)

Wide Bandwidth
High Input Resistance
Selectable Gains Of 10, 100, And 400
No Frequency Compensation Required

14
IN'

NC

Connection Diagram
14-Lead Flatpak
(Top View)

GOA

G'A
IN 2

IN'

NC

NC

G,.

G2A

G,.

G'A

V+

NC

v-

v+

NC

NC

OUT 2

OUT'

OUT 1

Order Information
Part No.
!lA733DM08
!lA733HM08
IlA733FM08

Casel
Finish
CA
IC
AA

Package Code
MiI-M-38510, Appendix C
0-1 14-Lead DIP
A-2 10-Lead Can
F-1 14-Lead Flatpak

•
18-11

IlA733Q8

Absolute Maximum Ratings
Storage Temperature Range
Operating Temperature Range
Lead Temperature (soldering, 60 s)
Internal Power Dissipation9
Can and Flatpak
DIP
Supply Voltage
Differential Input Voltage
Input Voltage
Output Current

Processing: MIL-STD-883, Method 5004
-65°C to 175°C
-55°C to 125°C
300°C
330 mW
400 W
±8 V
±5 V
±6 V
10 mA

Burn-In: Method 1015, Condition A, PDA calculated
using Method 5005, Subgroup 1
Quality Conformance Inspection: MIL-STD-883,
Method 5005
Group A Electrical Tests Subgroups:
1.
2.
3.
4.
5.
6.
9.

Static tests at 25°C
Static tests at 125°C
Static tests at - 55°C
Dynamic tests at 25°C
Dynamic tests at 125°C
Dynamic tests at -55°C
AC tests at 25°C

Group C and 0 Endpoints: Group A, Subgroup 1
Notes
I. 100% Test and Group A
2. Group A
3. Periodic tests, Group C
4. Guaranteed but not tested
5. When changes occur, FSC will make data sheet revisions available.
Contact local sales representative for the latest revision.
6. For more information on device function, refer to the Fairchild Linear

Data Book Commercial Section.
7. VIR is guaranteed by the CMR test.
8. Gain Select leads GIA and GI B are connected together for Gain I,
Gain Select leads G2A and G2B are connected together for Gain 2,
and all Gain Select leads are left open for Gain 3.
9. Rating applies to ambient temperatures up to 125·C. Above 125·C
ambient, derate linearly at 140·C/W for the Can, 150·C/W for the
Flatpak, 120·C/W for the DIP.

18-12

J..LA733Q8

Electrical Characteristics Vee = ± 6.0 V, unless otherwise specified.
Symbol
110

Characteristic

Condition

Min

Input Offset Current

liB

Input Bias Current

ZI

Input Impedance

Max

Note

3.0

JJ.A

1

1

5.0

jJA

1

2,3

20

JJ.A

1

1
2,3

40

Icc

Gain 2

JJ.A

1

20

kn

1

1

8.0

kn

1

2,3

Supply Current

CMR

Common Mode Rejection

VIR

Input Voltage Range?

PSRR

Power Supply Rejection Ratio

5.5 V~V+ ~S.5 V,
V- = -S.O V, Gain 2

Vos

Output Offset Voltage

Gain 1
Gain 2,3

VCM = ± 1.0 V, Gain 2

24

mA

1

1

27

mA

1

2,3

60

dB

1

1

50

dB

1

2,3

± 1.0

V

1

1,2,3

50

dB

1

1,2,3

1.5

V

1

1,2,3

1.0

V

1

1

1.2

V

1

2,3

3.4

V

1

1

mA

1

1

VCMO

Output Common Mode Voltage

2.4

10-

Output Sink Current

2.5

A

Differential Voltage Gains

2.2
Gain 1

Gain 2

Gain 3

VOP

Output Voltage Swing

tR

Risetime

Rs = 50 n, Vo = 1 Vp _ p,
Gain 2

tpD

Propagation Delay

Rs=50
Gain 2

n,

Vo=1 Vp _ p,

18-13

Subgrp

Unit

mA

1

2,3

300

500

VIV

1

4

200

SOO

VIV

1

5,6
4

90

110

VIV

1

80

120

VIV

1

5,S

9.0

11

VIV

1

4

8.0

12

5,6

VIV

1

3.0

Vp _ p

1

4

2.5

Vp _ p

1

5,S

10

ns

2

9

10

ns

2

9

JlA733QB

Primary Burn-In Circuit
IV
IN 1

GOA

IN2

G,.

G..

V+

G,.

oun

v-

OUT 2

12 V

":"

OR_

Equivalent Circuit
V+

IN1

t---;--oUT 1

UT2

R14

4000

VEOOOS11F

18-14

Package Outlines

FAIRCHILD
A Schlumberger Company

3 Lead Molded Package
In Accordance with JEDEC TO·92
EI

1..-.195 (4.95)--1

I

.175 (4.45)

I

Notes
Leads are solder dipped copper alloy.
Lead No. 2 connected to die pad.
Package material is plastic.
Package weight is 0.19 gram.

,,, -- ,

.190 (4.83)
.170 (4.32)

SEATING
PLANE

I

'_ ... "

t

Dimensions -.055 (1.40)
and -.105 (2.67)
are measured

.045

.525 (13.34)
.475 (12.07)

~

,

I

I

.:~~g~~ - H

.

1.14

.095

2.41

at the body of package .

~ ~ .022 (0.56)

.016(0.41)

:~~ ~~:~~~

LEAD NO. 3
LEAD NO. 2

LEAD NO. 1

.105 (2.87)
.080 (2.03)

POOOO10F

3 Lead Metal Package
In Accordance with JEDEC TO·39

Fe

.370 (9.40)
.350(8.89)

Notes
Leads. are gold plated kovar.
Leads 1 and 2 are electrically isolated with glass .
Lead No. 3 connected to case.
Eyelet is gold plated kovar.
Can is Grade A nickel.
Package weight is 1.23 grams.

DIA

~ .335

(8.51)1
. 315 (8.00)
DlA

~

.034(0.864)

--L-

.165 (4.19)

~
3 PlNS___
0.19 (0.48)

0.I':,l~·41)

--+SEATING PLANE

~

.565 (14.35)
.500 (12.70)

!

PIN 2

All dimensions in inches (bold) and millimeters (parentheses)

19-3

Package Outlines

18 Lead Ceramic DIP
Side Brazed Package

.

915(2324)

~-"'."
1.

FD
Notes
Leads are nickel and gold plated alloy 42 or kovar.
Package material is alumina.
Combo-lid is gold plated kovar or alloy 42 .

I

440 (".,8)-----1
.425(10.80)

18
.050(1.27) R

NOM

~

~

,-

~

INDEX MARK

17

Leads are intended for insertion in hole rows on .300
11

10

I

.305(7.75)
.285(7.24)

8

.155(3.94)
.110(2.79)

1

.160(4.06)
.140(3.56)

t
.110(2.79)TYP
.090(2.29)

~

l

f

.325(8 .26)
.295(7 .49)

9~

- - -- -

2

(7.62) centers.
Board drilling dimensions should equal your practice for
.020 (0.51) diameter leads.
Package weight is 1.5 grams .

1

.012(0.30)
.009(0.23)
TYP

j

:~~ ~g~~l TYP

L·020(051)
.016(0 41) TYP

.310(7.87)
.290(7.37)

STANDOFF
WIDTH

20 Lead Ceramic DIP
FL
Notes
Leads are tin-plated alloy 42.
Leads are intended for insertion in hole rows on .300

.025(0.64)R

(7.62) centers.
They are purposely configured with "positive"
misalignment to facilitate insertion.
Board-drilling dimensions should equal your practice for
.020 (0.51) diameter lead.
Hermetically sealed alumina package.
'The .035-.045 (0.89-1.14) dimension does not apply to
the corner leads.
Package weight is 2.8 grams.

NOM

•165(4.19)
.125(3.16)
1..-.410(10.41)--1

NOM

All dimensions in inches (bold) and millimeters (parentheses)

19-4

Package Outlines

28 Lead Ceramic DIP
FM
Note.
Leads are tin-plated alloy 42.
Leads are intended for insertion in hole rows on .600

.025(O.64}A
NOM.

•, 9014.83}

.'~

(IS, 24) centers.
They are purposely configured with "positive"
misalignment to facilitate insertion.
Board drilling dimensions should equal your practice for
.020 (0, 51) diameter lead.
Hermetically sealed alumina package.
Package weight is 8.32 grams.

R=;:::;=;:::;==;::::r=;:::r;:::r=;:::r=;=r"W=;:::;=;:::;==;::::r=;:::r;:::r=;:l:l

I

·20015.OS}
.'2s13.'8}

+
.110(2,79}
·09012,29}

24 Lead Cerpak

.0601'.52}
,0481' .22}
.01510.38}

r

~

.27717.04}+ .3951'O.03}
.36519.27}
.25716,53}"
.0'510.38
015(038} I

I
}!":1

}l

FN

.2771 7.04
.25716.53)

..

Note.
Leads are tin-plated alloy 42.
Increase maximum limits by .003 (0,08) if leads are
solder dipped.
Package weight is 0.68 grams.

.0501'·27}TVP

.O'610.40}
.OOI(0.02}

1213

t=-~::::J:====!:t

.OOSI0.'5}
,G0410.'0}

.0451'·'4}
MAX

All dimensions in inches (bold) and millimeters (parentheses)

19-5

Package Outlines

24 Lead Flatpak
·.330(S.3S)
.310(7.87)

.2S0(7.11)
,.260(6.60).

FR

.330(S.38)
.310(7.87)

Notes

Leads are gold plated alloy 42.
If solder-dipped leads are used, the maximum limits for

these dimensions may be increased by .003 (0,08) .
Package weight is 0.53 grams.

. 015(0.38)

-.i

1

.567(14.40)

10 1213 15

~
.006(0.15)
.004(0.10)

.025(0.64)
.015(0.38)

I

r

.410(10.14)
.3S5 (9.7S)

.300(7.62)

L
JL

REIF

.068(1.73)
.058(1.47)

~--~*~~I~~~I~*~=

~.37)

.050!1.27)
TYP
.090(2.29)
.065(1.65)

r-Ej---r

T

.200(5.0S)
.185(4.70)

32 Lead Flatpak
.32O(S.13)
.300(762)

rl
.767(19.48)

REF

L
.006(0.15)
.004(0.10)

~

.520(13.21)
.480(1219)

[~IN No.1
"'07

32

D

+ :4J34)

J

.800(20.32)
.050(1.27)
TYP

~

l1

1;.37O(9.40

1:-'00(101s)i

Leads are gold plated alloy 42 .
If solder·dipped leads are used, the maximum limits for
these dimensions may be increased by .003 (0,08).
Package weight is 1.97 grams.

I

.440(11.1S)

L

•

17

16

Notes
.040(1.02)
•030t-7S)

I

INDEX

1.

FS

.320(S.13)
.300(762)

.019(0.4S)
.015(0.3S)
TYP

.080(2.03)
.064(1.63)

---.-l
I

-.J

I

.095(2.41)
.075(1.91)

---I

l-

t

.020(0.51 )
.010(0.25)

.370(9.40)

All dimensions in inches (bold) and millimeters (parentheses)

19-6

Package Outlines

2 Lead Metal TO-3
with Moly-Pad
FT
Notes

.072(1.83)
.052(1.32)
.295(7.49)
. 265(6.73)

450~

Base is nickel plated steel.

I

Can is nickel plated steel.
Leads are solder dipped over nickel plated alloy 52 .
Leads 1 and 2 electrically isolated from case with glass .

c::j:I==::;:;:===:q:o---1

1

.
.400(10.16)

Case is third electrical connection .

Package weight is 12.3 grams.

t

Lead No.2

::::i~~~; DIA
2 HOLES
+

Lead No.1

3 Lead Molded Package
In Accordance with JEDEC TO-220
GH
Notes
Leads are solder dipped over nickel plated copper alloy.
Lead No. 2 is electrical contact with the mounting tab.
Mounting tab is nickel plated copper alloy.
Package material is plastic.

Package weight is 2.0 grams.

t*

.060 ('.52)
.045 (1.14)

.185 (4.70)

'"',,,65;-:(;;;4,,",...9)...L_ _-.-_
SEATING
PLANE

'-"'-t-'-'----.'----------';-:~~~ g~!~

.055 (1.40)
.045(1.14)

.030 (0.76)
.013 (0.33)

t
t

~
--I L
-~l

r

SECTION

.040 (1.02)
.025 (0.64)

x-x

All dimensions in inches (bold) and millimeters (parentheses)

19-7

Package Outlines

2 Lead Metal Package
In Accordance with JEDEC TO-3
HJ
Noles

.072 (1.83)

Base is nickel plated steel.

.052 (1.32)

Can is nickel plated steel.
Leads are solder dipped over nickel plated alloy 52.

:;;:;:;:=:J+D~
t

Leads 1 and 2 electrically isolated from case with glass.
Case is third electrical connection.

Package' weight is 12.3 grams .

. 185 (4.70)
.165 (4.19)R
2 PLACES

8 Lead Plastic sOle
KC
Noles
All tolerances are ± .002 (0.05) unless noted.
Leads are solder plated (90Sn/10Pb).
Package material is plastic.

I

t

.154(3.91)
REF ..242(6.15)
.025(0.64)
.230(5.841

=:~J£ I

l"';:;;;==i"'i=::r=:;=;;:;:;;;;;;;::!l

r----1,---

8-------r
.189(480)

--=='11

.050(1'27~.016(0411
TYP.

r- ,

~
)It==========t0:--t .060(1.53)REF.

.010(025)
CIA.TYP.

~

TYP.

.015(O.38)X45~j

.015(0,38)
CIA.TYP.

.197(5 OO)-----j

--------~--~-~~

.024(0,61)
.020(0.51)

All dimensions in inches (bold) and millimeters (parentheses)

19·8

Package Outlines

14 Lead Plastic SOIC
KD
Notes
All tolerances are ± .002 (0.05) unless noted.
Leads are solder plated (90Sn/10 Pb).
Package material is plastic .

1 - - - - - - .340(8,64) - - - - - - 1

.015(0,38)

.015(0,38)

DIA.TYP.

x 45

0

REF'1

.010(0,25)

DIA.TYP.

,

.025(0,64)

~======7==*'n

08O( 53)"EF.

.024(0,61)
.020(0,51)

28 Lead PLCC

.D4S(1.14}><4S0

n'i-----

r

I-=-

.490(\245)

I

LEAD No.1

-'T---L

I

.454111.53)

U'
L'

454 111 5 3 I j

I

r----490(12451=j
1-----+-.172(4.371

KH
Notes
All tolerances are ± .003 unless otherwise noted.
The leads are solder dipped or solder plated copper
alloy.
Package material is plastic.

All dimensions in inches (bold) and millimeters (parentheses)

19-9

Package Outlines

44 Lead PLCC

LEAD No.1 IDENTIFIER
.04S(1.14)X4S"

POLISHED

.654

_____

(1.14)

SEATING PLANE

I

r-

i
.690

.04S

D t

.045(1.14)DIA
SURFACE SPOT

I

.045
(1.14)

+i ____ _

"f '
Source Exif Data:
File Type                       : PDF
File Type Extension             : pdf
MIME Type                       : application/pdf
PDF Version                     : 1.3
Linearized                      : No
XMP Toolkit                     : Adobe XMP Core 4.2.1-c043 52.372728, 2009/01/18-15:56:37
Create Date                     : 2013:08:08 17:35-08:00
Modify Date                     : 2013:08:09 06:48:21-07:00
Metadata Date                   : 2013:08:09 06:48:21-07:00
Producer                        : Adobe Acrobat 9.55 Paper Capture Plug-in
Format                          : application/pdf
Document ID                     : uuid:9f36d65c-9d17-2f49-a6d3-2b055ab3b22e
Instance ID                     : uuid:d00786e0-6829-d844-8242-ad3177dfbbf1
Page Layout                     : SinglePage
Page Mode                       : UseNone
Page Count                      : 1154
EXIF Metadata provided by EXIF.tools

Navigation menu