1987_Fairchild_Linear_Data_Book 1987 Fairchild Linear Data Book
User Manual: 1987_Fairchild_Linear_Data_Book
Open the PDF directly: View PDF .
Page Count: 1154
Download | |
Open PDF In Browser | View PDF |
$9.95 F=AIRCHILD A Schlumberger Company 1987 Linear Division FAIRCHILD Linear Data Book A Schlumberger Company 1987 MAR 02 1987 Linear Division Linear Division 313 Fairchild Drive. Mountain V_. CA 94043 (415) 962·4011 TWX MVLD Introduction The Linear Data Book includes the standard linear product line plus our new Winchester Disk Drive circuits and CLASIC™ standard cells. For ease of reference linear products are organized by sections. For example, Operational Amplifiers, Voltage Regulators and Special Functions, which includes Digital Signal Processing products such as the pA212 Single Chip Modem. Technical information and basic product specifications, presented in data sheet form, include maximum ratings, electrical characteristics, performance curves, and packaging information. For many products, typical applications and test circuits are also included. Package codes, included on each data sheet, indicate the specific package(s) offered for the product. Detailed packaging information, listed by package code, is included in a separate section. This section includes the new Surface Mount Devices (SMD), such as the Small Outline integrated Circuit (SOIC) packages. A section on Aerospace and Defense precedes the Hi-Rei data sheets, which are organized in the same order as Standard ReI. These data sheets indicate the conformance to MIL-STD-883 and reference identical commercial data sheets for more complete information. Section 1 has an alpha-numeric product listing of all Fairchild device numbers in the book. An explanation of the part numbering system appears in the "Ordering Information" portion of Section 1. In addition, there is an industry cross reference keying Fairchild Linear Products to direct replacement and function equivalents offered by major linear products manufacturers. Other sections include information on Thermal Considerations and Quality. As added assistance, addresses and phone numbers of worldwide Field Sales Offices and Authorized Distributors have been listed. Information on any commercial or Hi-Rei linear product may be obtained from a local sales office or by contacting: Fairchild Linear Products Marketing Department MS 4-370 313 Fairchild Drive Mt. View, CA. 94039 The specifications included in this data book are as current and correct as could reasonably be determined at time of printing. Any errors noted by users, whether involving content or omissions can be directed to Linear Marketing at the above address. iii Table of Contents Section 1 Alpha Numeric Index ......................... .1-3 Industry Cross Reference Guide ........ 1-11 Ordering Information ........................ 1·17 Section 7 Operational Amplifiers MA101A, MA201A, MA301A ....................................7-3 MA101, MA201 .................................................. 7-11 Section 2 MA108/A, MA208/A, MA30B/A .............................. 7-14 Thermal Considerations ......................2-3 MA124, MA224, MA324, MA2902 ............................ 7-22 Section 3 MA1458, MA1558 ............................................... 7-27 Testing, Quality and Reliability ............ .3-3 MA 148, MA248, MA34B ........................................ 7-33 MA3303, MA3403, MA3503 ................................... 7-40 Section 4 CLASIC™ ......................................... .4-3 MA4136 ........................................................... 7-50 MA709 ............................................................ 7-58 Section 5 Disk Drives MA714 ............................................................ 7-67 pA24H80 ...........................................................5-3 MA715 ............................................................ 7-80 MA2460, MA2461 .................................................5-5 MA725 ............................................................ 7-88 pA2470 ........................................................... 5-13 MA741 .......................................................... 7-100 pA248X, MA248XR Series ................................... 5-23 MA747 .......................................................... 7-109 MA2480 ........................................................... 5-33 MA748 .......................................................... 7-118 pA2490 ........................................................... 5-36 MA759, MA77000 ............................................. 7-128 MA2580 ........................................................... 5-51 MA771 .......................................................... 7-140 MA772 .......................................................... 7-148 Section 6 Voltage Regulators MA774 .......................................................... 7-155 MA105, MA305, MA305A, MA376 .............................6-3 MA776 .......................................................... 7-162 MA117, MA217, MA317 ........................................ 6-10 MA798 .......................................................... 7-172 MA138, MA238, MA338 ........................................ 6-16 MA 150, MA250, MA350 ........................................ 6-23 Section 8 MA 1524A, MA2524A, MA3524A ............................. 6-36 Comparators MA111, MA311 ....................................................8-3 MA431A .......................................................... 6-42 MA139, MA239, MA339, MA2901, MA3302 ................ 8-11 MA494 ............................................................ 6-48 MA6685 ........................................................... 8-21 MA723 ............................................................ 6-55 MA6687 ...................................................•....... 8-30 MA78G, MA79G ................................................. 6-63 MA685 ............................................................ 8-32 MA78LOO Series ................................................ 6-72 MA687, MA687A ................................................ 8-42 MA78MG, MA79MG ............................................ 6-81 MA710 ............................................................ 8-44 MA78MOO Series ............................................... 6-91 MA711 ............................................................ 8-51 MA78S40 ....................................................... 6-103 MA760 ............................................................ 8-56 MA7800 Series ................................................ 6-111 MA79MOO Series ............................................. 6-126 Section 9 MA7900 Series ................................................ 6-135 Interface MA1488 ..................................•..........................9-3 MA1489, MA1489A ...............................................9-7 MA26LS31 ....................................................... 9-11 v Table of Contents Section 9 Interface (Cont.) pA556 ................................ :; ........................ 11·28 pA592 .......................................................... 11·34 1AA26LS32 ....................................................... 9·14 pA3486 ........................................................... 9·17 pA733 .......................................................... 11·39 pA3467 ...............•............•.•..............·.............. 9·21 pA7392 ......................................................... 11-45 pA55107A, pA75107A, pA75107B, pA75108B ......... 9·25 FSP100 ......................................................... 11·51 pA55110A, pA75110A ........................................ 9-34 F2224, F2212 ................................................. 11·63 pA75150 ................................................... ;·..... 9·40 F30S54, F30S57 ............................................. 11-64 pA75154 .................................. ; .......•.............. 9-45 F30S64, F30S67 ............................................. 11·76 pA75450/60170 Series .........•.................•....•...... 9·52 F3054, F3057 ................................................. 11·89 pA75491, pA75492 ....................................... , .... 9·68 pAV22 ......................................................... 11·102 pA9614 ........................................................... 9·72 1AA212A, pA212AT .................... '...................... 11·103 pA9615 ........................................................... 9·79 pA212K ..................•.................................... 11·115 pA96172, pA96174 ............................................ 9-87 pA96173, pA96175 ............................................ 9·92 Section 12 Aerospece and Defense .................. 12·3 Section 13 HI-Rei Voltage Regulators pA96176 ......................................................... 9·97 pA96177, pA96178 .......................................... 9·105 pA9636A ....................................................... 9·113 pA10SQB ........................................................ 13·3 pA9637A ....................................................... 9·118 pA109QB ........................................................ 13·7 pA9638 ......................................................... 9·122 pA117HQB .................................................... 13·11 pA9639A ....................................................... 9·126 pA117KQB .................................................... 13·15 pA9640 (1AA26S10) .......................................... 9·130 pA138QB ...................................................... 13-19 pA9643 ......................................................... 9·135 pA 150QB ...................................................... 13·20 pA9645 (pA3245) ............................................ 9·139 pA431QB ...................................................... 13·21 pA9665, pA9666, pA9667, pA9668 ..................... 9·143 pA494QB ...................................................... 13-22 pA9679 ......................................................... 9·149 ,iA723QB ...................................................... 13-23 pA78M05QB .................................................. 13-27 Section 10 Data Acquisition pA78M06QB .................................................. 13-31 DAC08 ............................................................ 10·3 pA78M08QB .................................................. 13·35 DAC1408/1508 Series ...................................... 10·12 pA78M12QB .................................................. 13-39 pA565........................................................... 10-17 ,iA78M1SQB .................................................. 13-43 pA571 .......................................................... 10·25 pA78M24QB .................................................. 13·47 pA9650 ......................................................... 10·34 pA78S400B ................................................... 13·51 pA7805QB ..................................................... 13·55 SectIon 11 Special Functions pA7812QB ..................................................... 13·59 1AA2240 .................................... , ...................... 11·3 pA7815QB ..................................................... 13·63 pA3046, pA3086 ............................................. 11·13 pA79M05QB .................................................. 13·67 pA3680 ......................................................... 11·19 pA79M08QB .................................................. 13·71 pA555 .......................................................... 11·22 pA79M12QB .................................................. 13·75 vi Table of Contents Section 13 Section 15 Hi-Rei Voltage Regulators (Cont.) Hi-Rei Comparators j.tA79M150B .................................................. 13-79 1/A1110B ........................................................ 15-3 j.tA79050B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 13-83 1/A1390B ........................................................ 15-7 j.tA79120B ..................................................... 13-87 1/A21110B ..................................................... 15-11 j.tA79150B ..................................................... 13-91 1/A7100B ...................................................... 15-15 j.tA 1524AOB ................................................... 13-95 1/A7110B ...................................................... 15-19 I/A7600B Section 14 ...................................................... 15-23 Hi-Rei Operational Amplifiers Section 16 j.tA101AOB ...................................................... 14-3 Hi-Rei Interface j.tA1010B ........................................................ 14-7 1/A55107AOB ................................................... 16-3 j.tA108AOB .................................................... 14-11 1/A55110AOB ................................................... 16-7 j.tA1080B ...................................................... 14-15 1/A55452BOB ................................................. 16-11 j.tA1100B ...................................................... 14-19 1/A96140B ....................................................• 16-15 j.tA1240B ...................................................... 14-23 1/A96150B ..................................................... 16-19 j.tA 1480B ...................................................... 14-27 1/A9616HOB ..................................................• 16-23 j.tA15580B ..................................................... 14-31 1/A96220B .................................•................... 16-27 j.tA2101AOB ................................................... 14-35 1/A96240B ...........•........................................• 16-31 j.tA21 01 OB ..................................................... 14-39 1/A96250B ..........................................•.......... 16-35 j.tA2108AOB ................................................... 14-43 j.tA96270B ..................................................... 16-39 j.tA21080B ..................................................... 14-47 1/A9636AOB ................................................... 16-43 j.tA41360B . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 14-51 1/A9637AOB ................................................... 16-47 j.tA7020B ...................................................... 14-55 1/A96380B .•................................................... 16-51 1/A709AOB .................................................... 14-59 1/A9639AOB ................................................... 16-55 1/A7090B ..............................•....................... 14-63 1/A96670B .•..............•.................................... 16-59 1/A7140B ...................................................... 14-67 1/A26LS310B ................................................. 16-63 1/A7150B ....................................•................. 14-71 1/A26LS320B ................................................. 16-64 1/A725AOB .................................................... 14-75 1/A7250B ....................................•................. 14-79 Section 17 1/A741AOB .................................................... 14-83 Hi-Rei Data Acquisition 1/A571S0B ...................................................... 17-3 1/A7410B ...................................................... 14-87 1/A747AOB .................................................... 14-91 Section 18 Hi-Rei Special Functions 1/A7470B ...................................................... 14-95 1/A30450B ....................................................... 18-3 1/A7590B ...................................................... 14-99 1/A5550B ........................................................ 18-7 1/A771BOB .................................................... 14-103 1/A7330B ...................................................... 18-11 j.tA772BOB ................................................... 14-107 1/A774BOB ................................................... 14-111 Section 19 Package Outlines ........................... 19-3 Section 20 Sales Offices and Distributors .......... 20-3 1/A7760B ..•.................................................. 14-115 vii Alpha Numeric Index FAIRCHILD A Schlumberger Company Device Description Page Device Description Page flA24H80FC flA24H80RC !lA24H80SC !lA24H80TC !lA26LS31DC flA26LS31 DMQB flA26LS31 LMQB IlA26LS31PC IlA26LS32DC IlA26LS32DMQB !lA26LS32LMQB IlA26LS32PC !lA78GU1C IlA78L05ASC IlA78L05AWC !lA78L05AWV IlA78L09AWC IlA78L09AWV IlA78L 12AWC /lA78L 12AWV /lA78L15AWC /lA78L 15AWV J.LA 78L62A WC J.LA78L62AWV /lA78L82AWC J.LA78L82AWV J.LA78M05HC ,uA78M05HM /lA78M05HMQB J.LA 78M05LMQB ,uA78M05UC J.LA78M06HC !lA78M06HM IlA78M06HMQB !lA78M06UC !lA78M08HC !lA78M08HM !lA78M08HMQB flA78M08UC flA78M12HC flA78M12HM flA78M12HMQB !lA78M12LMQB !lA78M12UC !lA78M15HC IlA78M15HM IlA78M15HMQB IlA78M15LMQB IlA78M15UC IlA78M24HC IlA78M24HM !lA78M24HMQB /lA78M24UC Disk Drives Disk Drives Disk Drives Disk Drives Interface Hi-Rei Interface Hi-Rei Interface Interface Interface Hi-Rei Interface Hi-Rei Interface Interface Voltage Regulators Voltage Regulators Voltage Regulators Voltage Regulators Voltage Regulators Voltage Regulators Voltage Regulators Voltage Regulators Voltage Regulators Voltage Regulators Voltage Regulators Voltage Regulators Voltage Regulators Voltage Regulators Voltage Regulators Voltage Regulators Hi-Rei Voltage Regulators Hi-Rei Voltage Regulators Voltage Regulators Voltage Regulators Voltage Regulators Hi-Rei Voltage Regulators Voltage Regulators Voltage Regulators Voltage Regulators Hi-Rei Voltage Regulators Voltage Regulators Voltage Regulators Voltage Regulators Hi-Rei Voltage Regulators Hi-Rei Voltage Regulators Voltage Regulators Voltage Regulators Voltage Regulators Hi-Rei Voltage Regulators Hi-Rei Voltage Regulators Voltage Regulators Voltage Regulators Voltage Regulators Hi-Rei Voltage Regulators Voltage Regulators 5-3 5-3 5-3 5-3 9-11 16-63 16-63 9-11 9-14 16-64 16-64 9-14 6-63 6-72 6-72 6-72 6-72 6-72 6-72 6-72 6-72 6-72 6-72 6-72 6-72 6-72 6-91 6-91 13-27 13-27 6-91 6-91 6-91 13-31 6-91 6-91 6-91 13-35 6-91 6-91 6-91 13-39 13-39 6-91 6-91 6-91 13-43 13-43 6-91 6-91 6-91 13-47 6-91 flA78MGU1C flA78S40DC flA78S40DM flA78S40DMQB flA78S40PC flA78S40PV flA79GU1C IlA79M05AHC IlA79M05AUC IlA79M05HM IlA79M05HMQB IlA79M05LMQB !lA79M08AHC IlA79M08AUC IlA79M08HM IlA79M08HMQB IlA79M12AHC IlA79M12AUC IlA79M12HM IlA79M12HMQB IlA79M12LMQB IlA79M15AHC !lA79M15AUC IlA79M15HM IlA79M15HMQB IlA79M15LMQB IlA79MGU1C IlA101ADMQB IlA 101AFMQB IlA101AHM IlA101AHMQB IlA101DMQB IlA101FMQB IlA101HM IlA101HMQB IlA105HM IlA105HMQB IlA 108ADMQB IlA 108AFMQB IlA108AHM IlA 108AHMQB !lA108DMQB !lA108FMQB IlA108HM IlA108HMQB !lA109HMQB J.LA 109KMQB !lA110HMQB !lA111DMQB IlA111FMQB IlA111HM !lA111HMQB !lA111RMQB Voltage Regulators Voltage Regulators Voltage Regulators Hi-Rei Voltage Regulators Voltage Regulators Voltage Regulators Voltage Regulators Voltage Regulators Voltage Regulators Voltage Regulators Hi-Rei Voltage Regulators Hi-Rei Voltage Regulators Voltage Regulators Voltage Regulators Voltage Regulators Hi-Rei Voltage Regulators Voltage Regulators Voltage Regulators Voltage Regulators Hi-Rei Voltage Regulators Hi-Rei Voltage Regulators Voltage Regulators Voltage Regulators Voltage Regulators Hi-Rei Voltage Regulators Hi-Rei Voltage Regulators Voltage Regulators Hi-Rei Operational Amplifiers Hi-Rei Operational Amplifiers Operational Amplifiers Hi-Rei Operational Amplifiers Hi-Rei Operational Amplifiers Hi-Rei Operational Amplifiers Operational Amplifiers Hi-Rei Operational Amplifiers Voltage Regulators Hi-Rei Voltage Regulators Hi-Rei Operational Amplifiers Hi-Rei Operational Amplifiers Operational Amplifiers Hi-Rei Operational Amplifiers Hi-Rei Operational Amplifiers Hi-Rei Operational Amplifiers Operational Amplifiers Hi-Rei Operational Amplifiers Hi-Rei Voltage Regulators Hi-Rei Voltage Regulators Hi-Rei Operational Amplifiers Hi-Rei Comparators Hi-Rei Comparators Comparators Hi-Rei Comparators Hi-Rei Comparators 6-81 6-103 6-103 13-51 6-103 6-103 6-63 6-126 6-126 6-126 13-67 13-67 6-126 6-126 6-126 13-71 6-126 6-126 6-126 13-75 13-75 6-126 6-126 6-126 13-79 13-79 6-81 14-3 14-3 7-3 14-3 14-7 14-7 7-11 14-7 6-3 13-3 14-11 14-11 7-14 14-11 14-15 14-15 7-14 14-15 13-7 13-7 14-19 15-3 15-3 8-3 15-3 15-3 1-3 Alpha Numeric Index Device Description Page Device Description Page /lA117HMQB /lA117KM /lA117KMQB /lA124DM /lA124DMQB /lA124FMQB /lA124LMQB /lA138KM /lA138KMQB /lA139DM 1.lA139DMQB I.lA 139FMQB I.lA 139LMQB /lA148DM /lA148DMQB /lA150KM /lA150KMQB 1.lA201AHV 1.lA201HC 1.lA201TC 1.lA208AHV /lA208HV 1.lA212ADC /lA212ADV 1.lA212APC 1.lA212ATDC 1.lA212ATDV /lA212ATPC /lA212ATQC /lA217KV /lA217UV /lA224DV /lA224PV /lA238KV 1.lA239DV 1.lA239PV 1.lA239SV 1.lA248DV 1.lA248PV 1.lA250KV 1.lA301AHC 1.lA301ASC 1.lA301ATC 1.lA305AHC 1.lA305HC /lA308AHC /lA308ASC 1.lA308ATC 1.lA308HC 1.lA308SC 1.lA308TC 1.lA311HC 1.lA311SC Hi-Rei Voltage Regulators Voltage Regulators Hi-Rei Voltage Regulators Operational Amplifiers Hi-Rei Operational Amplifiers Hi-Rei Operational Amplifiers Hi-Rei Operational Amplifiers Voltage Regulators Hi-Rei Voltage Regulators Comparators Hi-Rei Comparators Hi-Rei Comparators Hi-Rei Comparators Operational Amplifiers Hi-Rei Operational Amplifiers Voltage Regulators Hi-Rei Voltage Regulators Operational Amplifiers Operational Amplifiers Operational Amplifiers Operational Amplifiers Operational Amplifiers Special Functions Special Functions Special Functions Special Functions Special Functions Special Functions Special Functions Voltage Regulators Voltage Regulators Operational Amplifiers Operational Amplifiers Voltage Regulators Comparators Comparators Comparators Operational Amplifiers Operational Amplifiers Voltage Regulators Operational Amplifiers Operational Amplifiers Operational Amplifiers Voltage Regulators Voltage Regulators Operational Amplifiers Operational Amplifiers Operational Amplifiers Operational Amplifiers Operational Amplifiers Operational Amplifiers Comparators Comparators 13-11 6-10 13-15 7-22 14-23 14-23 14-23 6-16 13-19 8-11 15-7 15-7 15-7 7-33 14-27 6-23 13-20 7-3 7-11 7-11 7-14 7-14 11-103 11-103 11-103 11-103 11-103 11-103 11-103 6-10 6-10 7-22 7-22 6-16 8-11 8-11 8-11 7-33 7-33 6-23 7-3 7-3 7-3 6-3 6-3 7-14 7-14 7-14 7-14 7-14 7-14 8-3 8-3 /lA311TC /lA317KC /lA317UC /lA324DC /lA324PC /lA324SC /lA338KC /lA338UC /lA339DC 1.lA339PC 1.lA339SC /lA348DC 1.lA348PC 1.lA350KC 1.lA350UC 1.lA376TC 1.lA431ASC /lA431AWC /lA431AWV /lA431LMQB /lA431RMQB /lA494DC /lA494DMQB /lA494LMQB /lA494PC 1.lA494PV 1.lA555HMQB 1.lA555RMQB 1.lA555SC 1.lA555TC 1.lA556PC 1.lA565JJC 1.lA565KJC /lA565SJM /lA565TJM 1.lA571JJC /lA571KJC /lA571SDMQB /lA571SJM /lA592DC /lA592DM 1.lA592PC 1.lA592SC 1.lA592TC /lA685DM /lA685DV /lA685HM /lA685HV 1.lA685PV 1.lA685SV 1.lA687ADM 1.lA687ADV /lA687APV Comparators Voltage Regulators Voltage Regulators Operational Amplifiers Operational Amplifiers Operational Amplifiers Voltage Regulators Voltage Regulators Comparators Comparators Comparators Operational Amplifiers Operational Amplifiers Voltage Regulators Voltage Regulators Voltage Regulators Voltage Regulators Voltage Regulators Voltage Regulators Hi-Rei Voltage Regulators Hi-Rei Voltage Regulators Voltage Regulators Hi-Rei Voltage Regulators Hi-Rei Voltage Regulators Voltage Regulators Voltage Regulators Hi-Rei Special Functions Hi-Rei Special Functions Special Functions Special Functions Special Functions Data Acquisition Data Acquisition Data Acquisition Data Acquisition Data Acquisition Data Acquisition Hi-Rei Data Acquisition Data Acquisition Special Functions Special Functions Special Functions Special Functions Special Functions Comparators Comparators Comparators Comparators Comparators Comparators Comparators Comparators Comparators 8-3 6-10 6-10 7-22 7-22 7-22 6-16 6-16 8-11 8-11 8-11 7-33 7-33 6-23 6-23 6-3 6-42 6-42 6-42 13-21 13-21 6-48 13-22 13-22 6-48 6-48 18-7 18-7 11-22 11-22 11-28 10-17 10-17 10-17 10-17 10-25 10-25 17-3 10-25 11-34 11-34 11-34 11-34 11-34 8-32 8-32 8-32 8-32 8-32 8-32 8-42 8-42 8-42 1-4 Alpha Numeric Index Device Description Page Device Description Page jlA687DM jlA687DV jlA687PV jlA702DMQB MA702FMQB jlA702HMQB MA709ADMQB MA709AFMQB MA709AHM MA709AHMQB jlA709DMQB jlA709FMQB jlA709HC jlA709HM jlA709HMQB jlA709PC jlA709SC jlA709TC jlA710DC jlA710DM jlA710DMQB jlA710FMQB jlA710HC jlA710HM jlA710HMQB jlA710PC jlA711DC jlA711DM jlA711DMQB jlA711FMQB jlA711HC jlA711HM jlA711HMQB jlA711PC jlA714AHM jlA714EHC jlA714HC jlA714HM jlA714HMQB MA714LHC jlA714LSC jlA714LTC jlA714SC jlA714TC jlA715HC jlA715HM jlA715DM jlA715DC jlA715HMQB jlA723DC jlA723DM jlA723DMQB jlA723HC Comparators Comparators Comparators Hi-Rei Operational Amplifiers Hi-Rei Operational Amplifiers Hi-Rei Operational Amplifiers Hi-Rei Operational Amplifiers Hi-Rei Operational Amplifiers Operational Amplifiers Hi-Rei Operational Amplifiers Hi-Rei Operational Amplifiers Hi-Rei Operational Amplifiers Operational Amplifiers Operational Amplifiers Hi-Rei Operational Amplifiers Operational Amplifiers Operational Amplifiers Operational Amplifiers Comparators Comparators Hi-Rei Comparators Hi-Rei Comparators Comparators Comparators Hi-Rei Comparators Comparators Comparators Comparators Hi-Rei Comparators Hi-Rei Comparators Comparators Comparators Hi-Rei Operational Amplifiers Comparators Operational Amplifiers Operational Amplifiers Operational Amplifiers Operational Amplifiers Hi-Rei Operational Amplifiers Operational Amplifiers Operational Amplifiers Operational Amplifiers Operational Amplifiers Operational Amplifiers Operational Amplifiers Operational Amplifiers Operational Amplifiers Operational Amplifiers Hi-Rei Operational Amplifiers Voltage Regulators Voltage Regulators Hi-Rei Voltage Regulators Voltage Regulators 8-42 8-42 8-42 14-55 14-55 14-55 14-59 14-59 7-58 14-59 14-63 14-63 7-58 7-58 14-63 7-58 7-58 7-58 8-44 8-44 15-15 15-15 8-44 8-44 15-15 8-44 8-51 8-51 15-19 15-19 8-51 8-51 15-19 8-51 7-67 7-67 7-67 7-67 14-67 7-67 7-67 7-67 7-67 7-67 7-80 7-80 7-80 7-80 14-71 6-55 6-55 13-23 6-55 jlA723HM jlA723HMQB jlA723LMQB jlA723PC MA723SC jlA725AHM jlA725AHMQB jlA725EHC jlA725HC MA725HM jlA725HMQB jlA725TC MA733DC jlA733DM MA733DMQB jlA733FMQB jlA733HC jlA733HM MA733HMQB MA733PC jlA733SC jlA741ADMQB jlA741AFMQB jlA741AHM jlA741AHMQB Voltage Regulators Hi-Rei Voltage Regulators Hi-Rei Voltage Regulators Voltage Regulators Voltage Regulators Operational Amplifiers Hi-Rei Operational Amplifiers Operational Amplifiers Operational Amplifiers Operational Amplifiers Hi-Rei Operational Amplifiers Operational Amplifiers Special Functions Special Functions Hi-Rei Special Functions Hi-Rei Special Functions Special Functions Special Functions Hi-Rei Special Functions Special Functions Special Functions Hi-Rei Operational Amplifiers Hi-Rei Operational Amplifiers Operational Amplifiers Hi-Rei Operational Amplifiers Operational Amplifiers Hi-Rei Operational Amplifiers Hi-Rei Operational Amplifiers Operational Amplifiers Operational Amplifiers Operational Amplifiers Hi-Rei Operational Amplifiers Operational Amplifiers Operational Amplifiers Hi-Rei Operational Amplifiers Operational Amplifiers Operational Amplifiers Hi-Rei Operational Amplifiers Operational Amplifiers Operational Amplifiers Operational Amplifiers Hi-Rei Operational Amplifiers Hi-Rei Operational Amplifiers Operational Amplifiers Hi-Rei Operational Amplifiers Operational Amplifiers Operational Amplifiers Hi-Rei Operational Amplifiers Operational. Amplifiers Operational Amplifiers Hi-Rei Operational Amplifiers Operational Amplifiers Operational Amplifiers 6-55 13-23 13-23 6-55 6-55 7-88 14-75 7-88 7-88 7-88 14-79 7-88 11-39 11-39 18-11 18-11 11-39 11-39 18-11 11-39 11-39 14-83 14-83 7-100 14-83 7-100 14-83 14-87 7-100 7-100 7-100 14-87 7-100 7-100 14-87 7-100 7-100 14-87 7-100 7-100 7-109 14-91 14-91 7-109 14-91 7-109 7-109 14-95 7-109 7-109 14-95 7-109 7-109 jlA741 ARM jlA741ARMQB jlA741DMQB jlA741EHC jlA741ERC jlA741 ETC jlA741FMQB jlA741HC jlA741HM jlA741HMQB jlA741RC jlA741RM jlA741RMQB jlA741SC jlA741TC jlA747ADM jlA747ADMQB jlA747AFMQB jlA747AHM jlA747AHMQB jlA747DC jlA747DM MA747DMQB jlA747EDC jlA747EHC jlA747FMQB MA747HC MA747HM 1-5 ---------.~ Alpha Numeric Index Device Description Page Device Description Page pA747HMQB pA747PC pA747SC pA748HC pA748HM pA748RC pA748SC pA748TC pA759HC pA759HM pA759HMQB pA759U1C pA760DC pA760DM pA760DMQB pA760HC pA760HM pA760HMQB pA760RC pA760RM pA771ARC pA771ARM pA771ASC pA771ATC pA771BHMQB pA771BRC pA771BRM pA771BRMQB pA771BSC pA771BTC pA771LRC pA771LSC pA771LTC pA771RC pA771SC pA771TC pA772ARC pA772ARM pA772ASC pA772ATC pA772BHMQB pA772BRC pA772BRM pA772BRMQB pA772BSC pA772BTC pA772LRC pA772LSC pA772LTC pA772RC pA772SC pA772TC pA774BDC Hi-Rei Operational Amplifiers Operational Amplifiers Operational Amplifiers Operational Amplifiers Operational Amplifiers Operational Amplifiers Operational Amplifiers Operational Amplifiers Operational Amplifiers Operational Amplifiers Hi-Rei Operational Amplifiers Operational Amplifiers Comparators Comparators Hi-Rei .Comparators Comparators Comparators Hi-Rei Comparators Comparators Comparators Operational Amplifiers Operational Amplifiers Operational Amplifiers Operational Amplifiers Hi-Rei Operational Amplifiers Operational Amplifiers Operational Amplifiers Hi-Rei Operational Amplifiers Operational Amplifiers Operational Amplifiers Operational Amplifiers Operational Amplifiers Operational Amplifiers Operational Amplifiers Operational Amplifiers Operational Amplifiers Operational Amplifiers Operational Amplifiers Operational Amplifiers Operational Amplifiers Hi-Rei Operational Amplifiers Operational Amplifiers Operational Amplifiers Hi-Rei Operational Amplifiers Operational Amplifiers Operational Amplifiers Operational Amplifiers Operational Amplifiers Operational Amplifiers Operational Amplifiers Operational AmplifierS Operational Amplifiers Operational Amplifiers 14-95 7-109 7-109 7-118 7-118 7-118 7-118 7-118 7-128 7-128 14-99 7-128 8-56 8-56 15-23 8-56 8-56 15-23 8-56 8-56 7-140 7-140 7-140 7-140 14-103 7-140 7-140 14-103 7-140 7-140 7-140 7-140 7-140 7-140 7-140 7-140 7-148 7-148 7-148 7-148 14-107 7-148 7-148 14-107 7-148 7-148 7-148 7-148 7-148 7-148 7-148 7-148 7-155 pA774BDM pA774BDMQB pA774BPC pA774DC pA774DM pA774LDC pA774LPC pA774PC pA774SC pA776HC pA776HM pA776HMQB pA776TC pA798SC pA798TC pA1458CHC pA1458CRC pA1458CTC pA1458HC pA1458RC pA1458SC pA1458TC pA1488DC pA1488PC pA1488SC pA1489ADC pA1489APC pA1489DC pA1489PC pA1489SC pA1524ADM pA 1524ADMQB pA1558HM pA1558HMQB pA1558RM pA1558RMQB pA2101ADMQB pA2101DMQB pA2108ADMQB pA2108DMQB pA2111DMQB F2212DC F2212PC F2212QC F2224DC F2224PC F2224QC pA2240DC pA2240PC pA2460DC pA2460QC pA2461DC pA2461QC Operational Amplifiers Hi-Rei Operational Amplifiers Operational Amplifiers Operational Amplifiers Operational Amplifiers Operational Amplifiers Operational Amplifiers Operational Amplifiers Operational Amplifiers Operational Amplifiers Operational Amplifiers Hi-Rei Operational Amplifiers Operational Amplifiers Operational Amplifiers Operational Amplifiers Operational Amplifiers Operational Amplifiers Operational Amplifiers Operational Amplifiers Operational Amplifiers Operational Amplifiers Operational Amplifiers Interface Interface Interface Interface Interface Interface Interface Interface Voltage Regulators Hi-Rei Voltage Regulators Operational Amplifiers Hi-Rei Operational Amplifiers Operational Amplifiers Hi-Rei Operational Amplifiers Hi-Rei Operational Amplifiers Hi-Rei Operational Amplifiers Hi-Rei Operational Amplifiers Hi-Rei Operational Amplifiers Hi-Rei Comparators Special Functions Special Functions Special Functions Special Functions Special Functions Special Functions Special Functions Special Functions Disk Drives Disk Drives Disk Drives Disk Drives 7-155 14-111 7-155 7-155 7-155 7-155 7-155 7-155 7-155 7-162 7-162 14-115 7-162 7-172 7-172 7-27 7-27 7-27 7-27 7-27 7-27 7-27 9-3 9-3 9-3 9-7 9-7 9-7 9-7 9-7 6-36 13-95 7-27 14-31 7-27 14-31 14-35 14-39 14-43 14-47 15-11 11-63 11-63 11-63 11-63 11-63 11-63 11-3 11-3 5-5 5-5 5-5 5-5 1-6 • Alpha Numeric Index Device Description Page Device Description Page IlA2470DC IlA2480FC /lA2480TC /lA2482DC IlA2482RDC /lA2484DC /lA2484FC /lA2484GC /lA2484RDC /lA2484RFC /lA2484RGC /lA2485DC /lA2485FC /lA2485GC /lA2485RDC /lA2485RFC /lA2485RGC /lA2486DC /lA2486QC /lA2486RDC /lA2486RQC /lA2488GC /lA2488QC /lA2488RGC /lA2488RQC /lA2490DC /lA249OQC /lA2524ADV /lA2524APV /lA2580DC /lA2580FC !lA2580SC /lA2901DV /lA2901PV /lA2902PV /lA3045DMQB /lA3046PC /lA3046SC /lA3086DV /lA3086PV /lA3086SV /lA3302DV /lA3302PV /lA3302SV /lA3303DV /lA3303PV /lA3403DC /lA3403PC /lA3403SC IlA3486DC /lA3486PC /lA3487DC /lA3487PC Disk Drives Disk Drives Disk Drives Disk Drives Disk Drives Disk Drives Disk Drives Disk Drives Disk Drives Disk Drives Disk Drives Disk Drives Disk Drives Disk Drives Disk Drives Disk Drives Disk Drives Disk Drives Disk Drives Disk Drives Disk Drives Disk Drives Disk Drives Disk Drives Disk Drives Disk Drives Disk Drives Voltage Regulators Voltage Regulators Disk Drives Disk Drives Disk Drives Comparators Comparators Operational Amplifiers Hi-Rei Special Functions Special Functions Special Functions Special Functions Special Functions Special Functions Comparators Comparators Comparators Operational Amplifiers Operational Amplifiers Operational Amplifiers Operational Amplifiers Operational Amplifiers Interface Interface Interface Interface 5-13 5-33 5-33 5-24 5-24 5-24 5-24 5-23 5-24 5-24 5-23 5-24 5-25 5-25 5-24 5-25 5-25 5-25 5-25 5-25 5-25 5-26 5-26 5-26 5-26 5-36 5-37 6-36 6-36 5-51 5-51 5-51 8-11 8-11 7-22 18-3 11-13 11-13 11-13 11-13 11-13 8-11 8-11 8-11 7-40 7-40 7-40 7-40 7-40 9-17 9-17 9-21 9-21 /lA3503DM /lA3524ADC /lA3524APC /lA3680DV /lA3680PV /lA3680SV /lA4136DC /lA4136DMQB /lA4136PC /lA4136SC /lA6685DM /lA6685DV /lA6685HM /lA6685HV /lA6685PV /lA6685SV /lA6687DM /lA6687DV /lA6687PV /lA7392DV /lA7392PV /lA7805KC /lA7805KM /lA7805KMQB /lA7805UC2 /lA7805UC /lA7806KC /lA7806KM /lA7806UC /lA7808KC /lA7808KM /lA7808UC /lA7812KC /lA7812KM /lA7812KMQB /lA7812UC2 /lA7812UC /lA7815KC /lA7815KM /lA7815KMQB /lA7815UC /lA7818KC /lA7818KM /lA7818UC /lA7824KC /lA7824KM /lA7824UC /lA7885UC /lA7905KC /lA7905KM /lA7905KMQB /lA7905UC /lA7908KC Operational Amplifiers Voltage Regulators Voltage Regulators Special Functions Special Functions Special Functions Operational Amplifiers Hi-Rei Operational Amplifiers Operational Amplifiers Operational Amplifiers Comparators Comparators Comparators Comparators Comparators Comparators Comparators Comparators Comparators Special Functions Special Functions Voltage Regulators Voltage Regulators Hi-Rei Voltage Regulators Voltage Regulators Voltage Regulators Voltage Regulators Voltage Regulators Voltage Regulators Voltage Regulators Voltage Regulators Voltage Regulators Voltage Regulators Voltage Regulators Hi-Rei Voltage Regulators Voltage Regulators Voltage Regulators Voltage Regulators Voltage Regulators Hi-Rei Voltage Regulators Voltage Regulators Voltage Regulators Voltage Regulators Voltage Regulators Voltage Regulators Voltage Regulators Voltage Regulators Voltage Regulators Voltage Regulators Voltage Regulators Hi-Rei Voltage Regulators Voltage Regulators Voltage Regulators 7-40 6-36 6-36 11-19 11-19 11-19 7-50 14-51 7-50 7-50 8-21 8-21 8-21 8-21 8-21 8-21 8-30 8-30 8-30 11-45 11-45 6-111 6-111 13-55 6-111 6-111 6-111 6-111 6-111 6-111 6-111 6-111 6-111 6-111 13-59 6-111 6-111 6-111 6-111 13-63 6-111 6-111 6-111 6-111 6-111 6-111 6-111 6-111 6-135 6-135 13-83 6-135 6-135 1-7 Alpha Numeric Index Device Description pA7908KM Voltage Regulators pA7908UC Voltage Regulators IlA7912KC Voltage Regulators pA7912KM Voltage Regulators pA7912KMQB Hi-Rei Voltage Regulators pA7912UC Voltage Regulators pA7915KC Voltage Regulators pA7915KM Voltage Regulators pA7915KMQB Hi-Rei Voltage Regulators pA7915UC Voltage Regulators pA9614DC Interface pA9614DM Interface pA9614DMQB Hi-Rei Interface pA9614FMQB Hi-Rei .Interface 1lA9614LMQB Hi-Rei Interface pA9614PC Interface pA9615DC Interface pA9615DM Interface pA9615DMQB Hi-Rei Interface pA9615FMQB Hi-Rei Interface pA9615LMQB Hi-Rei Interface pA9615PC Interface pA9616HDMQB Hi-Rei Interface pA9616HLMQB Hi-Rei Interface pA9622DMQB Hi-Rei Interface pA9622FMQB Hi-Rei Interface pA9622LMQB Hi-Rei Interface pA9624DMQB Hi-Rei Interface pA9624FMQB Hi-Rei .Interface pA9625DMQB Hi-Rei Interface pA9625FMQB Hi-Rei Interface pA9627DMQB Hi-Rei Interface pA9636ARC Interface pA9636ARM Interface pA9636ARMQB Hi-Rei Interface pA9636ATC Interface pA9637ARC Interface pA9637ARM Interface IlA9637ARMQB Hi-Rei Interface pA9637ASC Interface pA9637ATC Interface pA9638RC Interface pA9638RM Interface pA9638RMQB Hi-Rei Interface pA9638SC Interface pA9638TC Interface pA9639ARMQB Hi-Rei Interface pA9639ATC Interface 1lA9640DC(26S10) Interface 1lA9640DM(26S10) Interface IlA9640PC(26S10) Interface 1lA9643TC Interface pA9645DC(3245) Interface Page Device Description Page 6-135 6-135 6-135 6-135 13-87 6'135 6-135 6-135 13-91 6-135 9-72 9-72 16-15 16-15 16-15 9-72 9-79 9-79 16-19 16-19 16-19 9-79 16-23 16-23 16-27 16-27 16-27 16-31 16-31 16-35 16-35 16-39 9-113 9-113 16-43 9-113 9-118 9-118 16-47 9-118 9-118 9-122 9-122 16-51 9-122 9-122 16-55 9-126 9-130 9-130 9-130 9-135 9-139 pA9645PC(3245) pA9665DC pA9665PC pA9666DC pA9666DM pA9666PC pA9667DC pA9667DM pA9667DMQB 1lA9667PC IlA9668DC 1lA9668DM pA9668PC 1lA9679TC IlA55107ADM pA55107ADMQB 1lA55110ADM 1lA55110ADMQB 1lA55452BRMQB pA75107ADC pA75107APC 1lA75107ASC pA75107BDC pA75107BPC pA75107BSC pA75108BPC pA75108BSC 1lA75110ADC pA75110APC 1lA75110ASC pA751SOPC pA75150RC pA75150SC pA75150TC pA75154DC pA75154PC pA75450DC pA75450PC 1lA75451RC pA7S451SC pA75451TC 1lA75452SC pA75452TC pA75453RC pA75453SC pA75453TC pA75461TC pA75462TC pA75471TC pA75472TC Interface Interface Interface Interface Interface Interface Interface Interface Hi-Rei Interface Interface Interface Interface Interface Interface Interface Hi-Rei Interface Interface Hi-Rei Interface Hi-Rei Interface Interface Interface Interface Interface Interface Interface Interface Interface Interface Interface Interface Interface Interface Interface Interface Interface Interface Interface Interface Interface Interface Interface Interface Interface Interface Interface Interface Interface Interface Interface Interface Interface Interface Operational Amplifiers 9-139 9-143 9-143 9-143 9-143 9-143 9-143 9-143 16-59 9-143 9-143 9-143 9-143 9-149 9-25 16-3 9-34 16-7 16-11 9-25 9-25 9-25 9-25 9-25 9-25 9-25 9-25 9-34 9-34 9-34 9-40 9-40 9-40 9-40 9-45 9-45 9-53 9-53 9-56 9-56 9-56 9-59 9-59 9-62 9-62 9-62 9-56 9-59 9-56 9-59 9-68 9-68 7-128 pA75491PC 1lA75492PC 1lA77000U1C 1-8 • Alpha Numeric Index Device Description Page Device Description /lA96172DC /lA96172PC /lA96173DC /lA96173PC /lA96174DC /lA96174PC /lA96175DC /lA96175PC /lA96176RC /lA96176TC /lA96177RC /lA96177TC /lA96178RC /lA96178TC /lA96501DC /lA96502DC /lA96503DC /lAV22DC /lAV22PC /lAV22QC DAC08CDC DAC08CPC DAC08DM DAC08EDC DAC08EPC DAC1408ADC DAC1408APC DAC1408BDC DAC1408BPC DAC1408CDC DAC1408CPC DAC1508DM F30S54DC F30S57DC F30S64DC F30S67DC Interface Interface Interface Interface Interface Interface Interface Interface Interface Interface Interface Interface Interface Interface Data Acquisition Data Acquisition Data Acquisition Special Functions Special Functions Special Functions Data Acquisition Data Acquisition Data Acquisition Data Acquisition Data Acquisition Data Acquisition Data Acquisition Data Acquisition Data Acquisition Data Acquisition Data Acquisition Data Acquisition Special Functions Special Functions Special Functions Special Functions 9-87 9-87 9-92 9-92 9-87 9-87 9-92 9-92 9-97 9-97 9-105 9-105 9-105 9-105 10-34 10-34 10-34 11-102 11-102 11-102 10-3 10-3 10-3 10-3 10-3 10-12 10-12 10-12 10-12 10-12 10-12 10-12 11-64 11-64 11-76 11-76 F3054DC F3057DC FSP100DC FSP100LC 10101 10102 10103 10104 10108 10201 10304 10403 10404 10701 10702 10703 10704 10706 10707 10708 10802 10901 11001 11004 11005 11201 11301 11302 11305 11501 11502 11503 11505 11506 11507 11-89 Special Functions Special Functions 11-89 Special Functions 11-51 Special Functions 11-51 JAN Hi-Rei Operational Amplifiers14-83 JAN Hi-Rei Operational Amplifiers14-91 JAN Hi-Rei Operational Amplifiers14-3 JAN Hi-Rei Operational Amplifiers 14-11 JAN Hi-Rei Operational Amplifiers14-31 JAN Hi-Rei Voltage Regulators 13-23 JAN Hi-Rei Comparators 15-3 JAN Hi-Rei Interface 16-15 JAN Hi-Rei Interface 16-19 JAN Hi-Rei Voltage Regulators 13-7 JAN Hi-Rei Voltage Regulators 13-27 JAN Hi-Rei Voltage Regulators 13-39 JAN Hi-Rei Voltage Regulators 13-43 JAN Hi-Rei Voltage Regulators 13-55 JAN Hi-Rei Voltage Regulators 13-59 JAN Hi-Rei Voltage Regulators 13-63 JAN Hi-Rei Special Functions 18-3 JAN Hi-Rei Special Functions 18-7 JAN Hi-Rei Operational Amplifiers14-27 JAN Hi-Rei Operational Amplifiers14-51 JAN Hi-Rei Operational Amplifiers14-23 JAN Hi-Rei Comparators 15-7 JAN Hi-Rei Comparators 15-15 JAN Hi-Rei Comparators 15-19 JAN Hi-Rei Comparators 15-11 JAN Hi-Rei Voltage Regulators 13-67 JAN Hi-Rei Voltage Regulators 13-75 JAN Hi-Rei Voltage Regulators 13-79 JAN Hi-Rei Voltage Regulators 13-83 JAN Hi-Rei Voltage Regulators 13-87 JAN Hi-Rei Voltage Regulators 13-91 1-9 Page Industry Cross Reference Guide F=AIRCHILO A Schlumberger Company Part Number Fairchild Equivalent AMD 715DC 715HC 715DM 715HM 723DC 723DM 723HC 723HM 723PC 725HC 725HM 733DC 733DM 733HC 733HM 741FM 741HC 741HM 741AFM 741AHM 741EHC 747DC 747DM 747HC 747HM 747PC 747ADM 747AHM 747EDC 747EHC 748HC 74BHM AM1408L6 AM1408L7 AM1408LB AM1508L8 AM26LS31DM AM26LS31PC AM26LS31DC AM26LS32DC AM26LS32PC AM6685DL AM6685DM AM66B5HL AM6685HM AM6685LL AM6687DL AM6687DM pA715DC pA715HC pA715DM pA715HM pA723DC pA723DM pA723HC IlA723HM pA723PC pA725HC pA725HM IlA733DC pA733DM pA733HC IlA733HM pA741FM pA741HC pA741HM pA741AFM pA741AHM pA741EHC pA747DC pA747DM pA747HC pA747HM pA747PC pA747ADM pA747AHM IlA747EDC pA747EHC pA74BHC IlA74BHM DAC1408ADC DAC1408BDC DAC140BCDC DAC1508DM pA26LS31DM pA26LS31PC pA26LS31DC pA26LS32DC pA26LS32PC pA6685DV IlA66B5DM pA6685HV pA6685HM pA66B5SV pA6687DV pA6687DM Part Number Fairchild Equivalent AMD (Cont.) AM6B5DL AM6B5DM AM6B5HL AM6B5HM AM6B5LL AM6B7DL AM6B7DL AM6B7DM DAC-08CQ DAC-OBEQ LM101H LM101AH LM105H LM108AH LMlllH LM124D LM139D LM201H LM201AH LM20BAH LM224D LM301AH MC14BBL MC14B9L SN75107BJ SN75107BN SN75110J SN75110N SN75450BJ SN75450BN pA6B5DV pA6B5DM pA6B5HV pA6B5HM pA6B5SV pA6B7DM pA6B7DV pA6B7DM DACOBCDC DAC08EDC pAl01HM pAl01AHM pAl05HM IlAl0BAHM pAlllHM pA124DM pA139DM pA201HC pA201AHV pA20BAHV pA224DV pA301AHC pA14BBSC pA14B9SC pA75107BDC pA75107BPC IlA75110DC pA75110PC IlA75450BDC pA75450BPC INTERSIL ICL10BLNTY ICL741CHSPA ICL741 MHSTY LM101AH LM105H LM10BH LM10BAH LMlllH LM124J LM301AH LM301AN LM305H LM308H LM308AH LM30BAN NE555N pAl0BHM IlA741TC pA741HM pAl01AHM pAl05HM pAl0BHM pAl08AHM pAlllHM pA124DM pA301AHC pA301ATC pA305HC pA30BHC pA30BAHC IlA30BATC pA555TC *Note Not exact package replacement 1-11 Part Number INTERSIL (Cont.) NE556N pA723DC pA723DM pA723HC pA723HM pA723PC pA733HC pA733HM pA741FM pA741HC pA741HM pA741TC pA74BHC pA74BHM pA74BTC . MOTOROLA AM26LS31DC AM26LS31PC AM26LS32DC AM26LS32PC DACOBEP DACOBPC LM101AH LM105HM LM108H LM10BAH LMlllH LMlllJ-B LMl17K LM124J LM139J LM201AH LM20BAH LM217K LM224J LM239J LM301AH LM301AN LM30BAH LM30BAN LM311H LM311J-8 LM311N LM317K LM317T LM324J LM339J Fairchild Equivalent pA556PC pA723DC pA723DM pA723HC pA723HM pA723PC pA733HC pA733HM pA741FM pA741HC pA741HM pA741TC pA748HC pA74BHM pA748TC pA26LS31DC IlA26LS31PC pA26LS32DC pA26LS32PC DAC08EPC DAC08CPC pAl01AHM pAl05HM pAl08HM pAl08AHM IlAll1HM pAl11RM pA117KM pA124DM pA139DM pA201AHV pA208AHM IlA217UV pA224DV IlA239DC pA301AHC IlA301ATC pA308AHC pA308ATC IlA311HC pA311RC IlA311TC pA317KC pA317UC IlA324DC IlA339DC • Industry Cross Reference Guide Part Number Fairchild Equivalent MOTOROLA (Cont.) LM348J MA348 DC LM348N MA348PC LM350K MA350KC LM350T MA350UC LM710CH MA710HC LM711CH MA711HC LM723CH MA723HC LM723CJ MA723DC LM741CH MA741HC LM741CN MA741TC LM2901N MA2901PC MC1408L7 DAC1408EDC MC1408L8 DAC1408ADC DAC1408CPC MC1408P6 MC1408P7 DAC1408BPC MC1408P8 DAC1408APC MC1411P MA9665PC MC1412P MA9666PC MC1413P MA9667PC MC1416P MA9668PC p.A555TC MC1455P1 MC1458CG p.A1458CHC MC1458CP1 MA1458CTC MC1458CU p.A1458CRC MC1458G MA1458HC MC1458P1 MA1458TC MC1458U MA1458RC MC1488L MA1488DC MC1488P MA1488PC MC1489L MA1489DC MC1489P MA1489PC MC1489AL p.A1489ADC MC1489AP MA1489APC DAC1508DM MC1508L8 MC1558G MA1558HM MC1558U MA1558RM MC1709AG MA709AHM MC1709CP1 MA709TC MC1709CP2 MA709PC MC1709G p.A709HM MC1710CG p.A710HC MC1710CL MA710DC MC1710CP MA710PC MC1710G MA710HM MC1710L MA710DM MC1711CG MA711HC MC1711CL MA711DC MC1711CP p.A711PC Part Number Fairchild Equivalent MOTOROLA (Cont.) MC1711G MC1711 L MC1723CG MC1723CL MC1723CP MC1723G MC1723L MC1733G MC1733L MC1733CG MC1733CL MC1741CG MC1741CP1 MC1741CU MC1741G MC1747CG MC1747CL MC1747CP2 MC1747G MC1747L MC1748CG MC1748CP1 MC1748G MC1776CG MC1776CP1 MC1776G MC3303P MC3386P MC3403L MC3403P MC3440AP MC3443P MC3456P MC3458P1 MC3486CL MC3486CN MC3487CL MC3487CN MC3488AP MC3558U MC55107L MC685B MC75107L MC75107P MC75108CL MC75108CP MC75491P MC75492P p.A711HM p.A711DM MA723HC MA723DC p.A723PC MA723HM MA723DM MA733HM MA733DM MA733HC p.A733DC p.A741HC p.A741TC p.A741RC MA741HM MA747HC MA747DC MA747PC MA747HM p.A747DM MA748HC p.A748TC p.A748HM MA776HC MA776TC p.A776HM MA3303PV MA3086PC p.A3403DC MA3403PC p.A9640PC MA9640PC p.A556PC MA798TC p.A3486DC p.A3486PC MA3487DC MA3487PC p.A9636AT p.A798TC MA55107ADM MA685HM MA75107ADC p.A75107APC MA75108ADC MA75108BPC MA75491PC p.A75492PC ·Note Not exact package replacement 1-12 Part Number Fairchild Equivalent MOTOROLA (Cont.) MC7805K MC7805CK MC7805CT MC7812K MC7812CK MC7812CT MC7815K MC7815CK MC7815CT MC7818K MC7818CK MC7818CT MC7824K MC7824CK MC7824CT MC78L05ACP MC78L12ACP MC78L15ACP MC78M05CG MC78M05CT MC78M06CG MC78M06CT MC78M08CG MC78M08CT MC78M12CG MC78M12CT MC78M15CT MC78M24CT MC7905CK MC7905CT MC7908CK MC7908CT MC7912CK MC7912CT MC7915CK MC7915CT NE592N SE592F SN75451BP SN75452BP SN75453BP TL431CLP TL494CJ TL494CN MA710HC MA711HC MA723DC p.A723HC MA7805KM MA7805KC MA7805UC MA7812KM MA7812KC MA7812UC MA7815KM p.A7815KC MA7815UC p.A7818KM p.A7818KC p.A7818UC p.A7824KM MA7824KC MA7824UC MA78L05AWC MA78L12AWC MA78L15AWC p.A78M05HC p.A78M05UC MA78M06HC MA78M06UC MA78M08HC MA78M08UC p.A78M12HC p.A78M12UC MA78M15UC MA78M24UC MA7905KC MA7905UC MA7908KC p.A7908UC p.A7912KC MA7912UC MA7915KC p.A7915UC MA592PC MA592DM p.A75451BTC MA75452BTC MA75453BTC MA4131AWC p.A494DC p.A494PC p.A710HC p.A711 HC MA723DC MA723HC Industry Cross Reference Guide Part Number Fairchild Equivalent MOTOROLA (Con!.) IlA723PC IlA723PC IlA741HC IlA741 HC IlA741TC 1lA741TC NATIONAL COP431I C0494M DS1488J DS1488N DS1489AJ DS1489AN DS1489J DS1489N DS26LS31C DS26LS31M DS26LS32C DS26LS32M DS3486J DS3486N DS75107J DS75107N DS75108J DS75108N DS75150J-8 DS75150N DS75154J DS75154N DS75450J DS75450N DS75491N LF351A LF351B LF351 LF351 N LF353A LF353B LF353 LF353N LF374B LF374 LM101AH LM105H LM108AH LM108H LM110H/883 LM111H LM117H/883 LM124J 1lA431AWC 1lA494DC IlA1488DC IlA1488PC IlA1489ADC IlA1489APC IlA1489DC IlA1489PC IlA26LS31 PC IlA26LS31DC IlA26LS32PC IlA26LS32DC IlA3486DC IlA3486PC IlA751 07 ADC IlA75107APC IlA75108ADC IlA751 08APC IlA75150SC 1lA75150PC IlA75154DC IlA75154PC IlA75450DC IlA75450PC IlA75491PC IlA771 A IlA771B IlA771 IlA771TC IlA772A IlA772B IlA772 IlA772TC IlA774B IlA774 IlA101AHM IlA105HM 1lA108AHM IlA108HM IlA110HMOB IlA111HM IlA117HMOB IlA124DM Fairchild Equivalent Part Number NATIONAL (Con!.) LM139J LM140K-5.0 LM140K-12 LM140K-15 LM201AH LM208H LM208AH LM21 01 AD/883 1lA2108AD/833 1lA2108D/883 LH2111 D/883 LM224J LM239J LM301AH LM301AN LM305H LM305AH LM308AN LM311J-8 LM311N LM317K LM317T LM324J LM324N LM339J LM339N LM340K-5.0 LM340T-5.0 LM340K-6.0 LM340K-8.0 LM340K-12 LM340T-12 LM340K-15 LM340T-15 LM340K-18 LM340K-24 LM348J LM348N LM350K LM3501 LM555CN LM556CN LM592JD LM592D LM709H LM709CH LM709CN LM709CN-8 1lA139DM 1lA7805KM IlA7812KM 1lA7815KM IlA201AHM IlA208HM IlA208AHM IlA21 01 ADMOB IlA2108ADMOB IlA2108DMOB 1lA2111 DMOB IlA224DV IlA239DC IlA301AHC IlA301ATC 1lA305HC 1lA305AHC 1lA308ATC 1lA311RC 1lA311TC IlA317KC 1lA317UC IlA324DC IlA324PC 1lA339DC 1lA339PC 1lA7805KC 1lA7805UC 1lA7806KC 1lA7808KC IlA7812KC IlA7812UC IlA7815KC IlA7815UC IlA7818KC IlA7824KC IlA348DC 1lA348PC IlA350KC IlA350UC 1lA555TC 1lA556PC IlA592DM IlA592D IlA709HM IlA709HC IlA709PC JlA709TC *Note Not exact package replacement 1-13 Part Number NATIONAL (Con!.) LM710H LM710CH LM710CN LM711H LM711CH LM711CN LM723H LM723J LM723CH LM723CJ LM723CN LM725H LM725CH LM725CN LM733H LM733CH LM733CN LM741H LM741AH LM741CH LM741CJ LM741CN LM747H LM747J LM747AH LM747AJ LM747CH LM747CJ LM747CN LM747EH LM747EJ LM748H LM748CJ LM748CH LM748CN LM760CH LM1458H LM1458J LM1458N LM1558H LM1558J LM2901N LM2901J LM3086N LM3302J LM3302N LM7805CK LM7805CT Fairchild Equivalent 1lA710HM 1lA710HC 1lA710PC 1lA711 HM IlA711 HC IlA711PC IlA723HM IlA723DM IlA723HC IlA723DC 1lA723PC 1l725HM IlA725HC IlA725TC 1lA733HM 1lA733HC 1lA733 PC 1lA741 HM 1lA741AHM 1lA741 HC 1lA741RC IlA741TC IlA747HM IlA747DM 1lA747AHM IlA747ADM IlA747HC 1lA747DC 1lA747PC IlA747EHC 1lA747EDC 1lA748HM 1lA748RC 1lA748HC 1lA748TC 1lA760HC JlA1458HC IlA1458RC 1lA1458TC 1lA1558HM 1lA1558RM 1lA2901PC 1lA2901DC 1lA3086PC 1lA3302DC JlA3302PC IlA7805KC 1lA7805UC Industry Cross Reference Guide Part Number Fairchild Equivalent NATIONAL (Cont.) LM7812CK LM7812CT LM7815CK LM7815CT LM78L05ACZ LM78L12ACZ LM78L15ACZ LM78M05CP LM78M12CP LM78M15CP LM7905CK LM7905CT LM7912CK LM7912CT LM7915CK LM7915CT LM7905CH LM7912CH LM7915CH MC1508-8 /lA7812KC /lA7812UC /lA7815KC /lA7815UC /lA78L05AWC /lA78L 12AWC /lA 78L15AWC J.LA78M05UC /lA78M12UC /lA78M15UC /lA7905KC J.LA7905UC /lA7912KC /lA7912UC J.LA7915KC J.LA7915UC J.LA79M05AHC J.LA79M12AHC J.LA79M15AHC DAC1508DM PMI DAC-08C DAC-08E DAC1408A-6 DAC1408A-7 DAC1408A-8 DAC1508A-8 OP-07J OP-07CJ OP-07EJ PM108J PM108AJ PM139AY PM139Y PM208J PM208AJ PM339Y PM339AY PM725J PM725CJ PM725CP PM741J PM741CJ PM741CZ PM1458J PM1458Z PM1558J DAC08CDC DAC08EDC DAC1408CPC DAC1408BPC DAC1408APC DAC1508DM J.LA714HM J.LA714HC J.LA714EHC J.LA108HM J.LA108AHM J.LA139ADM J.LA139DM J.LA208HV /lA208AHV J.LA339DC /lA339ADC /lA725HM /lA725HC /lA725TC /lA741HM /lA741HC /lA741RC J.LA1458HC /lA1458RC /lA1558HM Part Number Fairchild Equivalent Part Number Fairchild Equivalent SIGNETICS (Con!.) PMI (Con!.) PM1558Z PM4136Y PM4136CY J.LA1558RM /lA4136PC /lA4136DC SIGNETICS LM101AH LM111H LM124F LM139AF LM201AN LM224N LM224F LM301AN LM324N LM324F LM339N LM339F LM2901F LM2901N MC1458FE MC1458H MC1458N MC1488N MC1488F MC1489N MC1489F MC1489AN MC1489AF MC1558H MC1558FE MC3302N MC3302F MC3403CF MC3403CN NE5501 NE555D NE555N NE555N NE556N NE571F NE592D NE592F SE592F NE592N NE592N8 SE555FE ULN2001N ULN2003F /lA101AHM /lA111HM /lA124DM /lA139ADM /lA201AHM /lA224PV /lA224DV /lA301ATC J.LA324PC /lA324DC /lA339PC J.LA339DC J.LA2901DC J.LA2901PC /lA1458RC /lA1458HC /lA1458TC /lA1488PC /lA1488DC /lA1489PC /lA1489DC /lA1489APC /lA1489ADC /lA1558HM /lA1558RM /lA3302PC /lA3302DC /lA3403DC /lA3403PC /lA9665PC J.LA555SC J.LA555TC J.LA555PC /lA556PC /lA571JJC /lA592SC /lA592DC /lA592DM J.LA592PC J.LA592TC J.LA555RM /lA9665PC /lA9667DC ·Note Not exact package replacement 1-14 ULN2003N ULN2004F ULN2004N /lA723F /lA723H /lA723CD /lA723CF /lA723CH /lA723CN /lA733F /lA733H /lA733CF /lA733CH /lA733CN /lA741 FE /lA741CFE /lA741CN J.LA747F J.LA747CF J.LA747CN J.LA9667 PC J.LA9668 DC /lA9668PC J.LA723DM J.LA723HM J.LA723SC J.LA723DC J.LA723HC /lA723PC /lA733DM /lA733HM /lA733DC J.LA733HC J.LA733PC J.LA741RM J.LA741RC J.LA741TC J.LA747DM J.LA747DC J.LA747 PC SILICON GENERAL SG101A SG105T SG111T SG117K SG124J SG217P SG224J SG224N SG301AM SG301AT SG305T SG305AT SG311M SG311T SG317K SG317P SG324J SG324N SG555M SG556N SG710J SG710T SG710CN SG710CT SG711J /lA101AHM J.LA105HM /lA111 HM /lA117KM /lA124DM /lA217UV /lA224DV /lA224PV J.LA301ATC J.LA301AHC J.LA305HC /lA305AHC /lA311TC /lA311 HC /lA317KC J.LA317UC J.LA324DC /lA324PC /lA555TC /lA556PC J.LA710DM J.LA71 OHM J.LA710PC /lA710HC /lA711DM • Industry Cross Reference Guide Part Number Fairchild Equivalent SILICON GENERAL (Cont.) SG711T SG711CJ SG711CN SG711CT SG723CJ SG723CT SG723J SG723T SG723CN SG733J SG733T SG733CJ SG733CN SG733CT SG741F SG741T SG741CM SG747J SG747T SG747CJ SG747CN SG747CT SG748T SG748CM SG748CT SG1488J SG1489AJ SG1558T SG2001J SG2002J SG2003J SG3086J SG3086N SG3302J SG3302N SG75450BJ SE75450BN SG7805K SG7805CK SG7805CP SG7808K SG7808CK SG7808CP SG7812K SG7812CK SG7812CP SG7815K Part Number Fairchild Equivalent SILICON GENERAL (Cont.) J.lA711HM J.lA711DC J.lA711PC J.lA711HC J.lA723DC J.lA723HC J.lA723DM J.lA723HM J.lA723PC J.lA733DM J.lA733HM J.LA733DC J.lA733PC J.lA733HC J.LA741FM J.LA741HM J.lA741TC J.LA747DM J.LA747HM J.lA747DC J.LA747 PC J.LA747HC J.LA748HM J.lA748TC J.LA748HC J.lA1488DC J.lA1489ADC J.lA1558HM J.lA9665PC J.lA9666DC J.LA9667DC J.lA3086DC J.lA3086PC J.LA3302DC J.lA3302PC J.LA75450BDC J.LA75450BPC J.lA7805KM J.lA7805KC J.lA7805UC J.lA7808KM J.lA7808KC J.lA7808UC J.lA7812KM J.lA7812KC J.lA7812UC J.lA7815KM SG7815CK SG7815CP SG7818K SG7818CK SG7818CP SG7824K SG7824CK SG7824CP SG7905K SG7905CK SG7905CP SG7908K SG7908CK SG7908CP SG7912K SG7912CK SG7912CP SG7915K SG7915CK SG7915CP SG75450BCN SG75451BCM SG75451BCY SG75452BCM SG75453BCM SG75453BCY SG75461CM SG75462CM SILICON SYSTEMS J.LA2482RDC J.lA2484RDC J.lA2486RDC TEXAS INSTRUMENTS AM26S10CJ AM26S10CN TC101AJ LM105L LM124J LM139J LM148J TC201AJG LM348J LM348N LM376P J.lA9640DC J.lA9640PC J.lA101AHM J.lA105HM J.lA124DM J.lA139DM J.lA148DM J.lA201AHV J.lA348DC J.lA348PC J.lA376TC "Note Not exact package replacement 1-15 Fairchild Equivalent TEXAS INSTRUMENTS (Cont.) J.LA7815KC J.lA7815UC J.lA7818KM J.lA7818KC J.LA7818UC J.lA7824KM J.lA7824KC J.LA7824UC J.lA7905KM J.LA7905KC J.LA7905UC J.LA7908KM J.lA7908KC J.lA7908UC J.lA7912KM J.lA7912KC J.lA7912UC J.lA7915KM J.lA7915KC J.lA7915UC J.LA75450BPC J.lA75451BTC J.lA75451BRC J.LA75452BTC J.lA75453BTC J.lA75453BRC J.lA75461TC J.lA75462TC SS1117-2 SS1117-4 SS1117-6 Part Number MC1558JG NE555P NE556N RC4136D RC4136J RC4136N SA555D SA555P SE556N SN55107AJ SN55110AJ SN75107AJ SN75107AN SN75107BJ SN75107BN SN75108BN SN75110AJ SN75110AN SN75114J SN75114N SN75115J SN75115N SN75150N SN75150P SN75154J SN75154N SN75188J SN75188N SN75189J SN75189N SN75189AJ SN75189AN SN75450BN SN75451BJG SN75451BP SN75452BP SN75453BJG SN75453BP SN75461P SN75462P SN75471P SN75472P SN75491N SN75492N TLC555MJG TLC555CD TLC555CP J.lA1558RM J.lA555TC J.lA556PC J.lA4136SC J.lA4136DC J.LA4136PC J.LA555SC J.lA555TC J.LA556PC J.lA55107ADM J.lA55110ADM J.lA75107ADC J.lA75107APC J.lA75107BDC J.lA75107BPC J.lA75108BPC J.lA75110ADC J.lA75110APC J.lA9614DC J.lA9614PC J.lA9615DC J.lA9615PC J.LA75150PC J.lA75150TC J.lA75154DC J.lA75154PC J.lA1488DC J.lA1488PC J.lA1489DC J.LA1489PC J.lA1489ADC J.lA1489APC J.LA75450BPC J.LA75451 BRC J.lA75451BTC J.lA75452BTC J.lA75453BRC J.lA75453BTC J.lA75461TC J.lA75462TC J.lA75471TC J.lA75472TC J.LA75491PC J.lA75492PC J.lA555RM J.LA555SC J.lA555TC Industry Cross Reference Guide Part Number Fairchild Equivalent Part Number Fairchild Equivalent Part Number Fairchild Equivalent TEXAS INSTRUMENTS (Cont.) TEXAS INSTRUMENTS (Cont.) TEXAS INSTRUMENTS (Cont.) TL071ACO TL071ACP TL071 BCD TL071BCP TL071CD TL071CP TL071MJGB TL072ACD TL072ACP TL072BCD TL072BCP TL072CD TL072CP TL072MJGB TL074ACN TL074CN TL074MJB TL081ACJG TL081ACP TL081 BCJG TL081BCP TL081CJG TL081CP TL431CLP TL494CN TL494CJ TL494MJ ULN2001AN ULN2002AJ ULN2002AN ULN2003AJ ULN2003AN ULN2004AJ ULN2004AN /1A709MJ /1A709MU /1A709AMJ /1A709AMU /1A709CP I1A710CJ I1A710CN /1A710MJ /1A711CJ /1A711CN /1A711 MJ /1A711MV /1A723CJ /1A723CN /1A723MJ /1A733CJ I1A733CN /1A733MJ /1A741CJG I1A741CD I1A741CP /1A741MJ /1A741MJG /1A741MU /1A747C /1A747CN /1A747MJ I1A748CP I1A2240CJ /1A2240CN /1A7805CKC /1A7808CKC /1A7812CKC /1A7815CKC /1A7818CKC /1A7824CKC /1A7885CKC /1A78L05CLP I1A78L12CLP I1A 78L15CLP /1A78M05CKC /1A 78M06CKC /1A78M08CKC /1A78M12CKC /1A78M15CKC /1A78M24CKC /1A7905CKC I1A7908CKC /1A7912CKC /1A7915CKC /1A79M05CKC /1A79M08CKC /1A79M12CKC /1A 79M 15CKC I1A9637AC 9614CJ 9614CN 9615CJ 9615CN /1A771 BSC /1A771 BTC /1A771ASC /1A771ATC /1A771SC /1A771TC /1A771 BRMOB /1A772BSC I1A772BTC I1A772ASC /1A772ATC /1A772SC /1A772TC /1A772BRMOB /1A774BPC /1A774PC /1A774BDMOB /1A771 BRC I1A771BTC I1A771 ARC /1A771ATC /1A77LRC I1A77LTC 11A431AWC /1A494PC /1A494DC /1A494DM /1A9665PC /1A9666DC /1A9666PC /1A9667DC /1A9667PC /1A9668DC /1A9668PC /1A709DM /1A709FM I1A709ADM /1A709AFM /1A709TC /1A710DC /1A710PC /1A710DM I1A711 PC I1A711PC /1A711DM /1A711 FM I1A723DC /1A723PC /1A723DM /1A733DC I1A733PC /1A733DM /1A741RC /1A741SC /1A741TC /1A741DM /1A741RM /1A741FM /1A747DC /1A747PC /1A747DM /1A748TC *Note Not exact package replacement 1-16 /1A2240DC /1A2240PC I1A7805UC I1A7808UC /1A7812UC /1A7815UC /1A7818UC /1A7824UC I1A7885UC /1A78L05AWC /1A78L12AWC /1A78L15AWC I1A78M05UC I1A78M06UC /1A78M08UC /1A78M12UC /1A78M15UC /1A78M24UC /1A7905UC /1A7908UC /1A7912UC /1A7915UC /1A79M05AUC /1A79M08AUC /1A79M12AUC /1A79M15AUC /1A9637RC I1A9614DC /1A9614PC /1A9615DC /1A9615PC Ordering Information F=AIRCHILO A Schlumberger Company Standard ReI. and Hi-ReI. Ordering Code Device Identification Three basic units of information are contained in the ordering code. J.LA741 T C All Fairchild standard catalog linear circuits will be marked as shown in the following example. Device Type PackageType Temperature Range Device Type ~A7100C of Data Code JAN Part Ordering Code* This group of alpha numeric characters defines the device including functional and electrical characteristics, alpha suffixes are added to further delineate electrical options. l J M 385101 101 01 B G c JAN Designator Cannot be marketed with "J" unless qualified on Part I or Part II of the QPL General +--_ _ _ _ _ _--' Procurement Spec Refers to Detail Spec +--_ _ _ _--' 101 Op Amps 102 Voltage Regulators 103 Comparators 104 Interface 106 Voltage Followers 107 Positive Fixed Voltage Regulators 108 Transistor Arrays 109 Timers 110 Quad Op Amps 112 Voltage Comparator 113 D to A Converter 115 Negative Fixed Voltage Regulators 117 Positive Adjustable Voltage Regulators 118 Negative Adjustable Voltage Regulators 119 Low Power, Low Noise, Bi-Fet Op Amps Defines Device Type +--_ _ _ _ _ _ _-' Package Type One alpha suffix represents the basic package style. D = Dual In-Line (Hermetic, Ceramic) F = Flatpak (Hermetic) G = Flatpak (Brazed) H = Metal package J = Dual In-Line (Side Brazed) K = Metal Power Package (TO-3) L = LCC Leadless Ceramic Chip Carrier P = Dual In-Line (Molded) = PLCC Plastic Leaded Chip Carrier R = 8 Lead Dual In-Line (Hermetic, Ceramic) S = SOIC Small Outline Integrated Circuits T = 8 Lead Dual In-Line (Molded) U = Power Package (Molded, TO-220) W = Molded Package (TO-92 Outline) o Different outlines exist within each package style to accommodate various die sizes and number of leads. Specific dimensions for each package can be found in the Package Outline section of this catalog, listed by online code. These specific codes are referenced on each data sheet. Processing Level +--_ _ _ _ _ _ _ _ _ _---' S B Temperature Range Package Type +--_ _ _ _ _ _ _ _ _ _ _ _ _--' A 14-lead 1/4 x 1/4 Flatpak B 14-lead 114 x Flatpak C 14-lead 114 x 3/4 Dip D 14-lead 1/4 x 3/8 Flatpak E 16-lead 114 x 718 Dip F 16-lead 1/4 x 3/8 Flatpak G 8-lead Can H la-lead 114 x 114 Flatpak I la-lead Can J 24-lead 1/2 x 1 1/4 Dip K 24-lead 3/8 x 5/8 Flatpak L 24-lead 3/8 x 112 Flatpak X 3-lead TO-5 Can Y 2-lead TO-3 Can Z 24-lead 114 x 3/8 Flatpak Z 20 Terminal LCC Lead Finish +--_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _--' A Hot Solder Dip B Tin Plate C Gold Plate X Any Finish Above One alpha suffix represents one of the following three basic temperature grades in common use. Exact values and conditions are specified on the device data sheets. C = Commercial O°C to + 70°C M = Extended -55°C to + 125°C v = Industrial -25°C to +85°C -40°C to +85°C aB/883 Processing A two alpha suffix of OB indicates conformance to Class "B" process requirements of MIL-STD-883 to Fairchild MIL temperature range data sheet electricals. Examples J.LA 741 FM This number code indicates a J.LA741 Operational Amplifier in a flatpak with military temperature rating capability. J.LA725EHC This number code indicates a J.LA725 Instrumentation Operational Amplifier, electrical option E, in a metal package with a commercial temperature rating capability. • See Section 12 Aerospace & Defense 1-17 Thermal Considerations FAIRCHILD A Schlumberger Company Thermal Management {}JA = {}JC An effective and safe performance of various IC or transistor packages is attained by proper heat removal and maintenance of their junction temperatures below the specified maximum values. In order to achieve efficient thermal management, the user must rely upon important parameters, provided by the manufacturer (junction-to-ambient and junction-to-case thermal resistances and maximum operating junction temperature). + {}CS + {}SA TJ-TC Tc-Ts Ts-TA Po Po Po =---+---+--TJ - TA = - - (OC/W) Po Where Po = Power dissipation Measurements Thermal resistance is considered as the temperature gradient between two reference pOints in the package or the total system, per unit of power dissipation through the device encapsulated in the package, under steady state conditions. It is expressed as {}xy, in degrees centigrade per Watt (OC/W) - where X and Yare the two reference pOints. Substrate or isolation diode method is used to determine the device junction temperature, TJ. The other reference temperatures are measured using thermocouples attached to required points. There are standard procedures available for {}JA and {}JC measurements, details of which could be referred from MIL-STD-883 Method 1012, SEMI-STD Document #1341 and 1342. Equations A simple thermal circuit for a semiconductor device in equilibrium is shown in Figure 1. The reference pOints in this case are J - Device junction C - Package case S-Heat sink A-Ambient The package thermal characterization is best performed using 'Test Chips'. The chip specification conforms to SEMI-STD NO. G 32-86. These chips consist of transistors or resistor strips (as the heat source) covering 85 percent of the active device area. Temperature sensing diodes and associated metallization runs are electrically isolated from the heat source. Such a test chip is considered a basic cell. Heat dissipating through a large size chip could be simulated by using an array of such basic cells. The device, and thus the package, is heated while being powered. The diode forward voltage (VF) is simultaneously monitored using an independent low current source. TJ is determined from a VF vs TJ calibration curve. This very reliable thermal resistance data could be correlated with the die size (= heat dissipating area). Figure 1 Simplified Thermal Circuit ...-_ _ _ -_ : : : - - - - . TJ JUNCTION TEMPERATURE POWER (PI 9JC JUNCTION·TO·CASE THERMAL RESISTANCE TC CASE TEMPERATURE HEAT SOURCE lies CASE·TO·SINK THERMAL RESISTANCE TS SINK TEMPERATURE The thermal resistance measurement of specific device plus package combination differs from the above described test chip method. In this case, a substrate diode is selected for determining TJ. Special electrical equipment is required for pulsing power in the forward direction of the device under test while measuring voltage drop across the substrate diode in between the pulses. This measurement technique has its shortcomings, since it is more prone to experimental errors. BsA SINK·TO·AMBIENT THERMAL RESISTANCE ' - - - - - -_ _..... TA AMBIENT TEMPERATURE The power dissipation, which is analogous to current flow in electrical terms, is caused by a heat source similar to a voltage source. Temperature is analogous to voltage potential and thermal resistance to ohmic resistance. The junction-to-ambient thermal resistance, {}JA, is then expressed as a sum of thermal resistances in series, as shown: In order to maintain the junction temperature below a specific level, at times it is necessary to use an external heat sink. The following is devoted to selection of proper heat sinks, with special relevance to voltage regulators. 2-3 Thermal Considerations TJ Max- TA 8JA(tol) = 8JC + 8c s + 8SA = Thermal Considerations Using Voltage Regulators as an Example -=...:.="-.....:..; Po Case-to-sink and sink-to-ambient thermal resistance information on commercially available heat sinks is normally provided by the heat sink manufacturer. A summary of some commercially available heat sinks is shown in Table 1. However, if a chassis or other conventional surface is used as a heat sink, Figure 2 can be used as a guide to estimate the required surface area. Heat Sink Requirements When is a heat sink necessary, and what type of a heat sink should one use? The answers to these questions depend on reliability and cost requirements. Heat sinking is necessary to keep the operating junction temperature (TJ) of the regulator below the specified maximum value. Since semiconductor reliability improves as operating junction temperature is lowered, a reliability/cost compromise is usually made in the device design. How to Choose a Heat Sink - Example Determine the heat sink required for a regulator which has the following system requirements: Thermal characteristics of voltage regulator chips and packages determine that some form of heat sinking is mandatory whenever the power disSipation exceeds the following. Operating Maximum Maximum Maximum 0.67 W for the TO-39 package 0.69 W for the TO-92 package 1.56 W for the Mini Batwing and Power Watt (similar to TO-202) packages 1.8 W for the TO-220 package 2.8 W for the TO-3 package ambient temperature range: O°C to 60°C junction temperature: 125°C output current: 800 mA input to output differential: 10 V The TO-220 package is sufficient (lower cost, better thermal resistance). 8JC = 5°C/W maximum (from data sheet) TJ-TA 8JA(tol) = 8JC + 8cs + 8SA = ---p[)" 125-60 8cs + 8sA = - - - - 5 = 3.13°C/W 0.8 x 10 at 25°C ambient or lower power levels at ambients above 25°C. To choose or design a heat sink, the designer must determine the following regulator parameters. Assuming 8cs = 0.13°C/W then 8SA = 3°C/W Figure 2 Heat Sink Material Selection Guide Po Max - Maximum· power dissipation: (VI - Va) 10 + VI IQ TA - Ambient temperature the regulator will encounter during operation. TJ Max - Maximum operating junction temperature, specified by the manufacturer. 8Jc, 8JA - Junction-to-case and junction-to-ambient thermal resistance values, also specified by the regulator manufacturer. 8c s -'- Case-to-heat sink thermal resistance which, for large packages, can range from about 0.2°C/W to about 1°C/W depending on the quality of the contact between the package and the heat sink. 8SA - Heat sink-to-ambient thermal resistance, specified by heat sink manufacturer. , SURFACE AREA {BOTH SIDES OF THE HEAT SINK} SQUARE INCHES 11II111II~lIIiII~lilllillIllII'llIIpl~ 1/i/llllllillIlIIlIllllllllIlllIlIllIlIlllIIl.~" "11111111111 3 4 : 3/32" 7 6 8 8JA 5 44 3 3 2 2.;·5 2 5 4 5 3 4 2 1.5 2.5 3 1 1 2 I I 7 5 6 4 6 3 4 2.6 3.5 2 2.5 2 3 lilIlIIlIiIUlllllilhlllllllilllllljllllllllll!lllljI!/i1iil 1lIlIllIlIllIlIliiii/ililliillliiii 1I II I I I I I I 1 I I I II 77 3/32" ~...;.;;"---'-' 65 III Ii 1111111111/1111111111111111111 III I I I I I I I II I ill 7 THICKNESS 405060 80 1IIIIIIIIiI""IIIIII"IiIIl"lliilllllll!II!1 I I: 3/32" PD Max = 6 6 7 3/'S" TJMax-TA 76 7 3/32" Maximum permissible dissipation without a heat sink is determined by 202530 1"11/1 111 1"11111111'1111111111111111"111111"1111"11111 I ! THICKNESS 3/'." 15 luuhliiluuhlillilUlilill!lilll! III II IIi! II I I I I I I I ! I Ii I 3;16" THICKNESS 8 10 /1111/1111/1111111111111111111111111111111111/111111111111111111 I I I 1I II 3/16" THICKNESS 6 6 66 55 4 4 ;.5 32 . 5 2.6 2 2 !ililil "I Ii II 1111 III I II I III II! II II!I I 1111 I II I II ill COPPER; HORIZONTALLY. MOUNTED COPPER, VERTICALLY MOUNTED ALUMINUM. HORIZONTAllYMOUNTED ALUMINUM, VERTICAllY MOUNTED THERMAL RESISTANCE IN °CjW If the device dissipation Po exceeds this figure, a heat sink is necessary. The total required thermal resistance may then be calculated. To determine either area required or thermal resistance of a given area, draw a vertical line between the lop (or area) line down interest_ 2-4 10 the malerial of Thermal Considerations This thermal resistance value can be achieved by using either 22 square inches of 3/16 inch thick vertically mounted aluminum (Figure 2) or a commercial heat sink (Table 1). In some applications, especially with negative regulators, it is desirable to electrically insulate the regulator case from the heat sink. Hardware kits for this purpose are commer· cially available for such packages as the TO·3 and TO· 220. They generally consist of a 0.003 to 0.005 inch thick piece of mica or bonded fiberglass to electrically isolate the two surfaces, yet provide a thermal path between them. As expected, the thermal resistance will increase but, as in the direct metal·to·metal jOint, some improve· ment can be realized by using thermal lubricant on each side of the mica. Tips for Better Regulator Heat Sinking Avoid placing heat·dissipating components such as power resistors next to regulators. When using low dissipation packages such as TO·5, TO·39, and TQ.92, keep lead lengths to a minimum and use the largest possible area of the printed board traces or mounting hardware to provide a heat dissipation path for the regulator. If the regulator is mounted on a heat sink with fins, the most efficient heat transfer takes place when the fin is in a vertical plane, as this type of mounting forces the heat transfer from fin to air in a combination of radiation and convection. When using larger packages, be sure the heat sink sur· face is flat and free from ridges or high spots. Check the regulator package for burrs or peened·over corners. Re· gardless of the smoothness and flatness of the package and heat sink contact, air pockets between them are un· avoidable unless a lubricant is used. Therefore, for good thermal conduction, use a thin layer of thermal lubricant such as Dow Corning DC·340, General Electric 662 or Thermacote by Thermalloy. If it is necessary to bend any of the regulator leads, han· die them carefully to avoid straining the package. Further· more, lead bending should be restricted since repeated bending will fatigue and eventually break the leads. Table 1 Heat Sink Selection Guide This list is only representative. No attempt has been made to provide a complete list of all heat sink manufacturers. All values are typical as given by manufacturer or as determined from characteristic curves supplied by manufacturer. DBA Approx. ("C/W) To-3 Packages 0.4 (9" length) 0.4 - 0.5 (6" length) 0.56-3.0 0.6 (7.5" length) 0.7-1.2 (5-5.5" length) 1.0 - 5.4 (3" length) 1.9 2.1 2.3-4.7 4.2 4.5 4.8-7.5 5-6 5-10 Manufacturer3 and Type DSA Approx. (OC/W) 5.6 5.9 -10 6 6.4 6.5-7.5 8 8.1 8.8 9.5 9.5-10.5 9.8 -13.9 10 11 Thermalloy (Extruded) 6590 Series Thermalloy (Extruded) 6660, 6560 Series Wakefield 400 Series Thermalloy (Extruded) 6470 Series Thermalloy (Extruded) 6423, 6443, 6441, 6450 Series Thermalloy (Extruded) 6427, 6500, 6123, 6401, 6403, 6421, 6463, 6176, 6129, 6141, 6169, 6135, 6442 Series IERC E2 Series (Extruded) IERC E1, E3 Series (Extruded) Wakefield 600 Series IERC HP3 Series Staver V3·5·2 Thermalloy 6001 Series IERC HP3 Series Thermalloy 6013 Series Manufacturer3 and Type Staver V3·3·2 Wakefield 680 Series Wakefield 390 Series Staver V3·7·224 IERC UP Series Staver V1·5 Staver V3·5 Staver V3·7·96 Staver V3·3 IERC LA Series Wakefield 630 Series Staver V1·3 Thermalloy 6103, 6117 Series TO·220 Packages (See Note 1) 4.2 IERC HP3 Series 5- 6 IERC HP1 Series 6.4 Staver V3· 7·225 6.5 - 7.5 IERC VP Series 7.1 Thermalloy 6070 Series 8.1 Staver V3·5 8.8 Staver V3· 7·96 9.5 Staver V3·3 2·5 Thermal Considerations Table 1 Heat Sink Selection Guide (Cont.) BSA Approx. ("C/W) Manufacturer3 and Type 10 12.5 -14.2 13 15 15.1-17.2 16 18 19 20 20 25 Thermalloy 6032, 6034 Series Staver V4·3·192 Staver V5·1 Thermalloy 6030 Series Staver V4-3-128 Thermalloy 6072, 6106 Series Thermalloy 6038, 6107 Series IERC PB Series Staver V6-2 Thermalloy 6025 Series IERC PA Series TO·92 Packages 30 46 50 57 65-5 72 85 Staver F2-7 Staver F5-7A, F5-8-1 IERC RUR Series Staver F5-7D IERC RU Series Staver F1-7 Thermalloy 2224 Series TO-S and 12 12 - 16 15 22 22 24 25 26-30 27-83 28 T~39 BSA Approx. (OC/W) 34 35 39 41 42 42-65 46 50 50-55 53 55 56 58 60 68 72 Manufacturer3 and Type Thermalloy 2228 Series IERC Clip Mount Thermal Link Thermalloy 2215 Series Thermalloy 2205 Series Staver F5-5A Wakefield 296 Series Staver F6-5, F6-5L Thermalloy 2225 Series IERC Fan Tops Thermalloy 2211 Series Thermalloy 2210 Series Thermalloy 1129 Series Thermalloy 2230, 2235 Series Thermalloy 2226 Series Staver F1-5 Thermalloy 1115 Series Power Watt (similar to TO-202) Packages (See Note 2) 12.5 -14.2 Staver V4-3-192 13 Thermalloy 6063 Series Staver V5-1 13 15.1-17.2 Staver V4-3-128 19 Thermalloy 6106 Series Staver V6-2 20 24 Thermalloy 6047 Series 25 Thermalloy 6107 Series 37 IERC PA1-7CB with PVC-1B Clip 40-42 Staver F7-3 Staver F7-2 40-43 42 IERC PA2-7CB with PVC-1B Clip 42-44 Staver F7-1 Packages Thermalloy 1101, 1103 Series Wakefield 260-5 Series Staver V3A-5 Thermalloy 1116,1121, 1123 Series Thermalloy 1130,1131, 1132 Series Staver F5-5C Thermalloy 2227 Series IERC Thermal Links Wakefield 200 Series Staver F5-5B Notes 1. Most TQ-3 heat sinks can also be used with TO-220 packages with appropriate hole patterns. 2. Most TO-220 heat sinks can be used with the Power Watt package. 3. IERC: 135 W. Magnolia Blvd., Burbank, CA 91502 . Staver Co., Inc.: 41-51 N. Saxon Ave., Bay Shore, N.Y. 11706 Thermalloy Inc.: 2021 W. Valley View Lane, Dallas, TX 75234 Wakefield Engineering, Inc.: Audubon Rd., Wakefield, MA 01880 2-6 Testing, Quality and Reliability FAIRCHILD A Schlumberger Company c. Periodic sample testing at temperature extremes is done by Quality Assurance on outgoing material to ensure compliance. Testing For proper interpretation and understanding of published data sheet parameters, one must understand the philosophy used by Fairchild in testing its linear products. Quality and Reliability It is the policy of Fairchild Semiconductor Corporation that every employee be committed to pursuing excellence by producing zero defect products and services in conformance with customer requirements. Prevention, detection, and control methodologies are applied throughout the manufacturing and administrative processes to strive for zero defects and continual quality improvement. All Fairchild products are tested during various phases of the manufacturing process to ensure the shipment to the customer of a reliable product that meets or exceeds the guaranteed specifications. Fairchild tests its finished products, at room ambient, with automated equipment that operates at relatively high speeds. It is not unusual to perform more than a hundred tests on a simple product; each test normally takes a few milliseconds and testing of one device is normally completed in a matter of a few hundred milliseconds. Parameter variations due to internal heating of the device are minimized during factory testing. During normal operation of the device, the effects of the internal heating on the device performance must be kept in mind by the user as well as the person performing incoming testing in the laboratory. Internal power dissipation and thermal resistance numbers supplied in each data sheet will be helpful in determining temperature rise due to internal heating. Specific programs for quality improvement include, but are not limited to, the following: • Quality training. A formal nationally-recognized program Involving all engineering and management personnel. Operators are formally trained and certified for all production operations. • Statistical Process Control (SPC). A formal program of characterization and control limit setting. • Electrostatic Damage (ESD) control and measurement. A program to contain the effects of ambient static and to reduce device sensitivity. • Design control. A program to assure adequate rules and Implementation, process control, and demonstrated conformance of processes, materials, and products. • Measurement. In-process and outgoing attributes. Reconciliation of internal versus customer results. • Reliability hazard prevention. In-process monitors for the prevention of hazards such as moisture, pinholes, step coverage, contamination, and passivation integrity. • Reliability monitor. OutgOing reliability as measured by operating life In dry and moisture environments and other stress tests. Except for Aerospace and Defense products or customers that specifically request it, normally no temperature testing is done on production devices. How does Fairchild then guarantee the parameters it specifies over the temperature extremes? We do this by thorough characterization of the product. Prior to release to production of a new product, or a product modification, a representative sample from three production runs is tested in temperature chambers over the operating temperature range of the device. This characterization testing, normally done on automated testers, is supplemented by bench testing and covers all of the "guaranteed", "typical", as well as parameters not normally specified on the product data sheet. The results of this characterization are thoroughly analyzed and from them, the "minimum", "typical" and "maximum" data sheet values are determined. In addition, room temperature guardbands are established and yield enhancements are identified. The characterization is an on-going process and normally the correlation between room temperature and operating temperature extremes are very good. Product integrity and compliance to data sheet parameters are checked periodically by Quality Asssurance by sample testing outgoing material at temperature extremes. For continual product improvement the Linear division maintains failure analysis capability, return material system, and specification review to provide customer assistance and to focus factory actions for response to fitness for use issues. The failure analysis laboratory contains fundamental tools for optical and electrical definitions, for decapsulation, for specimen preparation, for SEM, EDAX, and electrical microprobe. Expert diagnosiS is provided by internal personnel and augmented with outside consultation. In summary then: a. Production testing is done at high speeds and normally at room temperature only. b. Compliance to temperature specifications is accomplished through on-going characterization and room temperature guardbands. Reliability is product performance in time, stress, and environment. The science of reliability is to define those attributes and controls necessary to assure and improve time/ stress/environment performance. Finished product reliability is measured periodically to assure conformance with life 3-3 Testing, Quality and Reliability requirements, and data is available quarterly for operating life and moisture life attributes. wafer is processed with automated die preparation that includes saw and pick and place. Quality is performance now, conformance to specification, and fitness for use. Basic elements of the linear division quality system are controlled documents and in-process inspections. Outgoing quality is measured for all lots to assure conformance to specification, and data is available monthly for electrical, visual, and mechanical attributes. The die (or chip) itself is assembled with automated die attach and wire bond, molded, and finished with automated handling at trim, form, test, and lead scan operations. In-process controls assure die attach, wire bond, molding, trim, and form. Emphasis on automation has reduced variability and enhances our ability to control quality and reliability. Commercial Product Flow Wafer fab must begin with controlled raw materials such as silicon, gasses, and chemicals. Post alloy sample probes and other monitors assure built-in quality. Automated electrical testing is performed at wafer level. The fabricated Finished product is inspected on a lot basis for electrical, visual, and mechanical parameters. Records are maintained for all inspections,and deviations from conformance are reviewed monthly for trend analysis and corrective improvements. Accept number for all inspections is zero. 3-4 , ~ ~ "' 't" " " , " ~ " ~ r" ~ '''' " " M &:: ~" 15 ":" '" ~~ "' " "," ~ 16 = , \ ! J , ' ' ~ 17 CLASIC™ F=AIRCHILD A Schlumberger Company Selecting a Design Entry Level Standard Cell Design with Fairchild CLASIC Approach Introduction The Fairchild CLASIC (Customizable Linear Applications Specific Integrated Circuits) approach brings to the systems designer a level of sophistication that will enable VlSI solutions requiring analog and mixed analog/digital functions to be integrated cost effectively. The CLASIC approach offers: • Bipolar and CMOS Technologies • Standard Cell and Array Methodologies • Customer CAD Tools That Allow Design and Simulation with Higher Level Building Blocks By offering a cell library of pre-designed commonly identified function blocks such as op amps, comparators, DAC's, VCO, Pll, gates, flip flops, counters, etc., and CAD tools to combine them, the CLASIC system considerably reduces the time and the risks associated with VlSI designs. The designers task is somewhat more complicated, but similar to designing a printed circuit board using standard IC's. Most importantly, however, with the CLASIC approach the customer can select the level of design participation desired. At the lowest level the customer can simply provide a functional description of the desired design and a CLASIC applications engineer will translate this into a standard cell schematic. As the user gains experience and confidence with the CLASIC approach, any level of design up through layout can be accomplished with the appropriate CAD tools at the users location if desired. The user has a choice of options best suited to his needs and experience. • Peak Detectors • PLL • Programmable Current Sources • VCO's • Wave Generators • Zero Crossing (Detectors) .555 Timer The Cell Library There are presently over 150 cells in the CLASIC library covering a broad range of linear and digital function with additional cells being added on a continual basis. The following is a partial list of the type of cells available: - Digital • Gates • Flip Flops • One Shots .• Edge Detectors • MUX's • Counters • Registers • Decoders • Delay Cells • Drivers • Translators (ECL/TTL) Linear • Amplifiers Op Amps, General Purpose Op Amps, Low Offset Op Amps, Programmable Norton Amp AGC Amp Video Amp Control Amp ECL Output • Comparators TTL Output General Purpose • Data Converters A/D D/A • Line Drivers/Receivers 422 485 The linear performance offered by Bipolar CLASIC cells is based on NPN fl of 2.5 GHz and PNP fl of 40 MHz. The logic cells are based on high performance ECl offering gate delays of 1.5 ns at fanout of 3 and 0 flip flop toggle frequencies better than 100 MHz. 4-3 CLASIC™ The CMOS cell library is presently based on a: 3 micron double poly process providing offset voltages of less than 5 mV, unity gain BW· of 2 MHz, gate delays of 5 ns at fan out of 3 and D flip flop toggle frequencies at better than 50 MHz. A new generation of cells is presently in design for a 2 micron CMOS double poly process which will provide gate delays of 1.5 ns and D flip flop toggle frequencies better than 200 MHz. A CLASIC software package for VAX mainframe systems will also be offered. If desired, customers can also work through Fairtech centers which are a worldwide design center network. In any case, the starting point for the customer is to describe the required system function in terms of the CLASIC cells. Where a requirement is not met with an existing cell, either the customer can create a new cell by using the macro level components such as transistors, resistors and capacitors which are available and described in the library or the special requirements can be described to Fairchild's CLASIC applications engineers who can deSign the cell for incorporation into the IC design. New cells are being continually added to the library to serve the vast majority of the customers needs. CLASIC CAD An important feature of the CLASIC system is to provide comprehensive CAE packages for PC's, workstations and mainframes. USing these software tools the customer can perform all of the design steps from schematic capture to circuit simulation and verification in their own laboratory. Figure 1 Data Separator/Encoder Block Diagram - A CLASIC Example -- PRE-COMPENSATION Vee At FOUND GND 2" 2' RZ WRITE READ WRITE GATE GATE DATA ADDRESS MARK ENABLE _-+---1 t--+---r-::~:-l READ/REF ... CLOCK WRITE ~--;-- MISSING CLOCK NRZ DATA L-_+-_______-+__ WRITE L----~-------_;--WRITECLOCK ·~-------------r--------1---GATE RZ READ DATA REFERENCE OSCILLATOR (IF) --t-l-..r-::~:--' --t........L.::.:::...J DELAY RESISTOR DELAY CAPACITOR ADDRESS MARK FOUND FAST SLOW --CHARGE PUMP + FILTER vco CAPACITOR EO"''''''' 4-4 CLASIC™ CLASIC CAD I (PC Based) • • • • • • Step 3: Fairchild Cell Libraries Schematic Capture Simulation Software Net List Post Processor Test Generation Documentation - Installation Manual - Design Applications Manual - Simulation Manual Step 4: Step 5: Step 6: Step 7: CLASIC CAD II (Workstation Based) For those customers who own or plan to purchase one of the popular workstations, CLASIC cell libraries with simulation models will be offered. Run simulation on schematic from Step 2. Redesign and/or reselect cells as appropriate to achieve desired performance. If breadboarding is desired for critical areas, kit parts of various standard cells are available in packaged form. This permits breadboarding to be accomplished with relative ease and accuracy. Auto route and place run on desired CAD tool. Layout verification run on desired CAD tool. Mask generation. Wafer Fabrication. CLASIC CAD III (VAX based) The CAD system used internally by the CLASIC groups which includes complete capability from cell schematic through layout verification, can be made available for those customers desiring this level of performance. Design Example: Task: To design a disk drive data separator/encoder decoder on a single chip. Original design required 25 IC packages plus numerous discretes. Approach: Use CLASIC Standard Cell Methodology. Step 1: Translate system level functional diagram into standard cell schematic. Create new cells if required. See Figure 1. Search cell library for required functions. Step 2: Perform Schematic Capture on desired CAD tool. Net list generation Step 8: Step 9: Assemble/Test (Fast turnaround prototype assembly; 1 day service). Evaluate prototypes. Fairchild can perform all the steps outlined 1 through 9, however with entry level CAD tools steps 1 through 3 can be achieved by the customer with minimal training and investment resulting in rapid payback and improved communications and efficiency. 4-5 CLASIC™ Available Packages: set from attachment No. of PhIs 8 14 16 20 24 28 32 40 44 68 132 Plastic Dip SOIC • • • •• • • • • • Side Brazed & Ceramic Dip • • • • • • • • 4-6 PLCC • • • • LCC • • • • • • • Flat Pak • • • • • • < < , 18 J,lA24H80 Winchester Disk Servo Preamplifier F=AIRCHILO A Schlumberger Company Linear Division Disk Drives Description Connection Diagram 8-Lead DIP and 50-8 Package (Top View) The !lA24H80 provides termination, gain, and impedance buffering for the servo read head in Winchester disk drives. It is a differential input, differential output design with fixed gain of approximately 100. The bandwidth is guaranteed greater than 30 MHz. The internal design of the !lA24H80 is optimized for low input noise voltage to allow its use in low input signal level applications. It is offered in 8-lead DIP, 10-lead flatpak, or SO-8 package suitable for surface mounting. • • • • Low Input Noise Voltage Wide Power Supply Range (8.0 V To 13 V) Internal Damping Resistors (1.3 kil) Direct Replacement For SSI 101A, With Improved Performance Device Code !lA24H80RC !lA24H80SC !lA24H80TC Absolute Maximum Ratings Storage Temperature Range Ceramic DIP and Flatpak Molded DIP and SO-8 Operating Temperature Range Lead Temperature Ceramic DIP and Flatpak (soldering, 60 s) Molded DIP and SO-8 (soldering, 10 s) Internal Power Dissipation 1, 2 8L-Ceramic DIP 8L-Molded DIP SO-8 10L-Flatpak Supply Voltage Output Voltage Differential Input Voltage -65'C to +175'C -65'C to + 150'C O'C to 70'C +IN NC -IN v+ NC -OUT v- + OUT Package Code 6T KC 9T Package Description Ceramic DIP Molded Surface Mount Molded DIP Connection Diagram 10-Lead Flatpak (Top View) 300'C • .-------,10 • +IN 265'C 1.30 W 0.93 W 0.81 W 0.79 W 15 V 15 V ± 1.0 V NC v+ -IN NC -OUT v- + OUT NC NC Order Information Device Code Notes 1. TJ Max = 150·C for the Molded DIP and 50-8, and 175·C for the Ceramic DIP and Flatpak. 2. Ratings apply to ambient temperature at 25·C. Above this temperature, derate the BL-Ceramic DIP at B.7 mWrC, the BL-Molded DIP at 7.5 mWrC, the SO-B at 6.5 mWrC. and the Flatpak at 5.3 mWrC. !lA24H80FC Package Code 3F Package Description Flatpak Description of Lead Functions Name 5-3 Description of Functions V+ Positive Differential Supply with respect to V- V- Negative Differential Supply with respect to V+ +IN Positive Differential Input -IN Negative Differential Input +OUT Positive Differential Output -OUT Negative Differential Output NC No connection MA24H80 Electrical Characteristics TA = 25°C, Vee = 8.0 V to 13.2 V, unless otherwise specified. Symbol Condition Characteristic Gain (differential)4 G BW Bandwidth (3.0 dB)2 n, n, Rp= 130 Vee = 12 V TA = O·C to 70·C 70 VI = 0.5 mVp _ p 30 65 1040 1300 RI Input Resistance Input Capacitance VI Input Dynamic Range (differential) Rp = 130 n, Is Supply Current Vee = 12 V Output Offset (differential) Rp = 130 Vn Equivalent Input Noise2, 3 Rs=O PSRR Power Supply Rejection Ratio 1 Rs = 0 AG/AV Gain Sensitivity (Supply) Rp = 130 AG/AT Gain Sensitivity (Temp) Rp= 130 CMR Common Mode Rejection 1 (Input) f= 5.0 MHz n, n, Notes 1. Tested at DC, guaranteed at frequency 2. Guaranteed, but not tested in production 3. Equivalent input noise (additional specification): MAX UNIT 4 1.0 jJ.V 100 Max CONDITION BW-15MHz2 BW=15MHz2 nV/v'Hz Typical Applications v+ SERVO HEAD ROC! v- ROC! -= Note. 1. Leads shown for B-Iead DIP. 2. Roq is equivalent load resistance. 3. Rp. RL' Roq RL +ROq 4. G - 0.77 Rp Where Rp = value from Note 3 (aboVe) in ohms. 5-4 n, Vee = 12 V 130 MHz 1560 f = 5.0 MHz n, n, mVp _ p n 1.5 BW=4.0 MHz 55 25 rnA 200 mV 2.0 jlV 70 dB ±0.5 AVec = ± 10% TA=25·C to 70·C -0.1 60 n pF 3.0 20 Rs = 0 Unit 120 3.0 AVo 3 0.85 Typ 80 CI TYP Min Vcc= 12 V Rp= 130 75 %/V %rC dB JIA2460 • JIA2461 FAIRCHILD Servo Control Chips A Schlumberger Company Linear Division Disk Drives Description Connection Diagram 28-Lead DIP (Top View) The 1lA2460 and !.lA2461 provide the analog signal processing required between a drive resident microprocessor and the servo power amplifier for Winchester disk closed loop head positioning. The !.lA2460 and 1lA2461 receive quadrature position signals from the servo channel; and from these, derive actual head seek velocity as well as position-mode off-track error. In the seek mode, the Digital to Analog Converter (DAC) is used to command velocity, while actual velocity is obtained by differentiating the quadrature position signals provided at V1 for external processing. The velocity signal (V2), obtained by integrating the motor current, is also available for extra damping, if desired. Further, the DAC may be used for detenting the head off-track for any purpose such as thermal compensation or soft-error retrys. .. DO v+ 27 D. DIRECTION INIOUT D2 CLOCK IN D3 D4 os DO VELOCITV2 VELOCITY 1 D7 LATCH ENABLE POSITION OUT SEEK/FOLLOW ANALOGSW TR' ANALOGSW 17 TR. • • • • • • • • Microprocessor Compatible Interface Quadrature DI-Blt Compatible On Board DAC Velocity V1 Derived From Position Signal Velocity V2 Derived From Motor Current Quarter-Track-Crosslng Signal Outputs Minimal External Components Compatible With 1lA2470 Demodulator I QUAD POSmON SIGNALS '5 ANALOG COMMON GND Order Information Device Code 1lA2460DC 1lA2461DC Absolute Maximum Ratings Storage Temperature Range Ceramic DIP PLCC Operating Temperature Range Lead Temperature Ceramic DIP (soldering, 60 5) PLCC (soldering, 10 s) Internal Power Dissipation 1, 2 28L-Ceramic DIP 28L-PLCC Supply Voltage Analog Common Voltage All inputs QIN 16 N IN TAO Package Description Package Code FM FM Ceramic DIP Ceramic DIP Connection Diagram 28-Lead PLCC (Top View) -65°C to + 175°C -65°C to + 150°C O°C to 70°C ~. ~ .. '" II8 II S Ci 8 >+ ",Ii' iSiS aoo°c 265°C D4 2.50 W. 1.a9 W. 15 V Max 8.0 V Max V supply Max • 0 3 •• .. . IT DACOUT DO MOTOR CUR- DO MOTOR CUR + 117 VELOCITY 2 LATCH ENABLE VELOCITY 1 SEEKIFOLLOW POSmONOUT Notes 1. TJ Max = 150·C for the PLCC, and 175·C for the Ceramic DIP. 2. Ratings apply to ambient temperature at 25·C. Above this temperature, derate the 28L·Ceramic DIP at 16.7 mWI"C, and the 28L·PLCC at 11.2 mWI"C. TAO ANALOGSW •• '3 ~ ~ •• •• pz;;Q (for j.lA2460) TTL signal whose frequency is 2 times N (or Q) (for j.lA2461). 12 Track 21 (TR1) TTL signal indicating N > Q (for j.lA2460) TTL signal whose frequency is 4 times N (or Q) (for j.lA2461). 13 Track 20 (TRO) TTL Signal whose frequency is 8 times N (or Q). 18 Analog Switch 19 Analog Switch Motor current sense input to motor current integrator. Outputs Analog switch to be used externally for changing from seek to follow. 20 Position Output Analog Signal representing sensed off track amplitude 21 Velocity 1 Analog output representing velocity processed from position Signals Nand Q. 22 Velocity 2 Analog output representing the integral of motor current. 25 DAC Output Used to command velocity and position. 5·6 Figure 1 Head Actuator Control System SYSTEM CLOCK TO DATA SEPERATOR JJ.A2470 SERVO HEAD POSmON DEMODULATOR DRIVE INTERFACE 1LA2460 CONTROL CIRCUIT MOTOR CURRENT SENSE RESISTOR Figure 2 Block Diagram N QUADRATURE POSlnON SIGNALS DACOUT Q POSITION OUT CLOCK IN ANALOG SWITCH N -N + SEEK/FOLLOW - } MOTOR CURRENT SENSE IN VELOCITY 2 V+ N ANLGCOM VELOCITY 1 Q GND 5-7 MA2460 • MA2461 Functional Description The input signals Nand Q are quadrature quasi triangular waveforms with amplitudes of ± 2.5 V nominal referenced to Analog Common. The periods of the input signals are subdivided by internal comparators and logic and sent to the Track Crossing outputs To, T1, and T2. The relationship of these outputs to the inputs Nand Q is shown in Figure 3a (for pA2460) and Figure 3b (for pA2461). Figure 2 shows a block diagram of the j.tA2460/ j.tA2461 Servo Controller. Power Supply And Reference Requirements The j.tA2460/ j.tA2461 is designed to operate from a single supply of 10 V to 12 V. Also required is a reference voltage of 5.0 V called Analog Common which serves two functions; all analog signals will be referenced to this voltage and in addition the internal DAC will use it to set full scale. Note that different servo patterns may yield different numbers of track centerlines for each period of the quadrature signal pair. The relationship of To, T1, and T2 to Nand Q is independent of track centerlines, leaving the correct interpretations to the microcontroller. A clock signal must be provided as a reference for the internal switched capacitor position differentiator and motor current integrator. The clock signal should be a sine or square wave between Analog Common and ground at a maximum frequency of 4.0 MHz. DAC The DAC is an 8-bit, buffered input, voltage output digital to analog converter. The output voltage with an input code of all zeros is equal to Analog Common. Full scale is equal to Analog Common ± 2.35 V. The polarity depends on the Direction In Signal; Direction In High will result in a positive DAC output. All digital inputs and outputs are TTL compatible levels referenced to ground. Input Signals And Track Crossing Outputs The input format selected for position feedback is consistent with a large class of sensors that generate two cyclical output signals displaced in space phase by 90 degrees (quadrature signal pairs). These sensors include resolvers, inducto-syns, optical encoders, and most importantly, servo demodulators designed for rigid disk head position sensing. Figure 3a The DAC enable line when high will cause the DAC's input buffer to become transparent, i.e. input data will affect the output voltage immediately. When DAC enable is brought low the data present on the input lines will be latched and any further changes to the input data will not change the output voltage. The DAC functions in both Seek and Follow Mode. During Seek Mode the DAC outFigure 3b Track Crossing Outputs (for /lA2460) RADIAL t<-!-+-+-7f-H-+*+-H--'I.:----"""7I- ~-+~~~-+~~~~----~_ HEAD POSITION TO TO Tl Tl T2 T2 TO Track Crossing Outputs (for /lA2461) 0101010101010101 TO 0101010101010101 Tlllllll00000000ll T1 0011001100110011 T21100000000111111 T2 0000111100001111 5-8 RADIAL HEAD POSITION J,LA2460 • ~A2461 direction indicated by DIRECTION IN/OUT. Figure 4 shows typical seek operation. put is used as a velocity reference. In Follow Mode the DAC output can be summed into the position reference signal to offset the heads from track center. Position Output When the 1lA2460/1lA2461 is set to Seek Mode the signal from Position Output lead is shown in Figure 5. This signal is made by switching the position inputs, (N and 0) through an inverter if required, (N" and 0) to the output using the track crossing signals. It can be used, if desired, to interpolate between DAC steps by attenuating it and summing it with the DAC output. Analog Switch An uncommitted single pole single throw analog switch with an ON resistance of approximately 100 .n is provided. This switch is ON during Follow Mode. Mode Select The two major intended operating modes for the !lA2460 are controlled by the microcontroller via the SEEK/FOLLOW input. Mode Select input high enables Seek Mode, low enables Track Follow Mode. Track Follow Mode is entered when the heads are near the end of a seek, usually within one half to one track away from the target track centerline. The final setting to the track center is done by the position loop. SEEK, when asserted by the microcontroller along with DIRECTION and a non-zero VELOCITY value as inputs, causes the actuator system to accelerate in the requested direction. During the ensuing motion, the actuator system will come under velocity feedback control. The velocity feedback signal is created by differentiation of the quadrature position signals and, additionally, by integration of motor current. When the device is switched to Follow Mode, the position input signal (N, N, 0 or 0) that is currently selected to the output is latched and the Position Out Signal follows the selected position input signal until the device is switched back to Seek Mode. This implies that the switch to Follow Mode must not be made until the signal that will be the correct Position error signal for the target track is present at the output. If track centers are defined as the zero crossings of both Nand 0 this means that the switch to Follow Mode must be made less than one-half track away from the target track. (This is with respect to a convention of 4 track per encoder cycle, so switching must be done within 90° of the period of N or 0). FOLLOW, the negation of SEEK, changes the feedback loop to a track-following or position mode. Position servos are typically second order systems and without loop compensation are potentially unstable. External components are used, along with the 1lA2460, to achieve stable track following performance. Velocity information (V1) is made available as an output in this mode as an aid in stabilizing certain loops. If non-zero data is supplied to the velocity latches in this mode, it will result in a track offset in the Figure 5 Position Output During Seek Mode Figure 4 Typical Seek DACOUT NAND Q INPUTS VELDCITY VI COIL CURRENT ACCELERATE CONSTANT VELOCITY SEEK POsmON OUTPUT DECELERATE TRACK FOLLOW 5-9 MA2460 • MA2461 Velocity Outputs There are two analog signal outputs representing velocity. The first (V1) is derived by differentiating the position input signals. The entire differentiator is on-chip, using switched capacitor techniques and requires no external components. grees and negative. if Q is leading N. This block functions during both Seek and Follow modes. The second velocity output is obtained by integrating a voltage proportional to the current in the motor using the following function: The transfer function of the differentiator is: dv/dt (out)=V (+lin--lin)x2x10-4 f (clock) Hz. Vo = dv/dt (input) x 14.3/f (clock) Hz The motor current integrator output is clamped to Analog Common during Follow Mode and is released at the initiation of a seek. As an example; a 10kHz triangular signal pair into Nand Q of 6.0 V peak-to-peak amplitude (dv/dt = 120 kv/sec) would result in a velocity voltage output of 1.716 volts referenced to Analog Common with. a clock of 1.0 MHz. The polarity will be ·positive if N is leading Q by 90 de- Figure 6 shows a typical application set up for the Servo Control chip. Figure 6 Typical Application Setup DACOUT r- PORT 1 8-SlTS L- PORT 2 L ERROR SIGNAL IlA2460 MICROCONTROLLER I SWITCH MATRIX VEL 1 VEL 2 DACIN POSOUT 3-Brrs TRKOUT DACEN SWl siF SW2 DIR POSlnoN DEMODULATOR CURRENT SENSE SERVO IN VOICE COIL MOTOR 5-10 MA2460 • MA2461 1JA2460, 1JA2461 Electrical Characteristics TA = O°C to 70°C, Vee = 12 V, fclk = 2.0 MHz, Analog Common = 5.0 V, unless otherwise specified. Symbol Digital I/O Characteristic Condition Input Voltage HIGH DAC Typ Output Voltage HIGH IOH=40 pA Input Load Current VI = 0 V to Vee Input Comparator Reference Level 2.5 Input Impedance 15 20 Linearity1 -1 V +1 LSB kil bits Monotonicity Guaranteed 7.25 7.35 7.45 Direction In Low 2.55 2.65 2.75 Zero Scale Voltage V 5.0 ±10 Settling Time2 • 4 To Y2 LSB All bits ON or OFF Input Voltage Range 1.0 15 On Resistance VCM=O V to 12 V Off Leakage3 Output Voltage Swing RL = 15K Follow Mode Voltage Gain RL = 15K ~ V1 9.0 20 100 200 il 2.0 100 nA 9.0 V 0.9 1.1 1.0 - ±20 mV 9.0 V ±20 mV +15 5-11 V kil 1.0 Output Offset Voltage Output Voltage Swing mV [J.s Input Impedance Output Offset Voltage rnA Direction In High Output Offset Voltage Velocity Outputs 0.2 3.0 8.0 Differential Nonlinearity Position Output V 2.4 2.0 Full Scale Output Voltage Analog Switch Unit 0.8 0.45 IOL =2.5 rnA Resolution Position Inputs Max 2.0 Output Voltage LOW Clock Input Min Input Voltage LOW IlA2460 • 1lA2461 1lA2460, 1lA2461 (Cont.) Electrical Characteristics TA = O°C to 70°C, Vee otherwise specified. Symbol = 12 V, fClk = 2.0 MHz, Analog Common Characteristic Condition Positive Supply Vcc= 13.2 V Iss Negative Supply Vcc = 13.2 V lAC Analog Common I V1 - Differentiator Linearity fclk V2 - Integrator Linearity fclk Icc Min = 5.0 V, unless Typ Max Unit 10 15 mA -15 -10 -2.0 0 mA +2.0 mA = 1.0 MHz to 4.0 MHz; fN/Q ..; 10kHz 0.25 % = 1.0 MHz to 4.0 MHz 1.0 % Notes 1. DAC Unearity is a function of the Clock frequency; Unearity at 1.0 MHz is typically ± b LSB. 2. DAC Settling TIme is approx 5.0 /lS, plus a delay of maximum 32 x Clock period i.e., 5 + 32 /lS at Clock = 1.0 MHz Minimum could be 5.0 /lS. 3. Equivalent to 50 Mn. 4. Guaranteed, 'but not tested in production. 5-12 ~A2470 FAIRCHILD A Schlumberger Company Winchester Disk Position Demodulator Preliminary Linear Division Disk Drives Description Connection Diagram 28-Lead DIP (Top View) The 1lA2470 is a monolithic analog/digital integrated circuit which decodes a quadrature di-bit pattern from the dedicated servo surface of a disk file into head position, track data and timing components. The 1lA2470 accepts this signal after it has been amplified by a 1lA2480 type of preamp and processes the various components for input to a 1lA2460 type servo controller. These three circuits and their external components form a disk servo control system for closed loop applications. TAKCLK Vcc, PRE·SCALER USB PRE-SCALER LSB SYNCTlUING VCO TUNING VOLTAGE • Quadrature Position Signals • Programmable Charge And Discharge In Peak Detectors • Sync Lock By PLL With Lock Detection Output • NRZ Track Data And Clock Output • Band Gap 5.0 V Reference Provided • AGC Amplifier With 36 dB Range • Servo Frame Rates To 400 kHz • Compatible With j.lA2480 Servo Preamp And j.lA2460 Servo Control Chip • Standard 5.0 V And 12 V Power Supplies VCOCAP1 VCOCAP2 STORAGE CAP 1 STORAGE CAP 2 CLKOUT ANALOG REF CHRG PUMP CUR CHRG MAGNITUDE COMPOUT PLLLOCKED CHRGCUR GND DlSCHRGCUR Absolute Maximum Ratings Storage Temperature Range Operating Temperature Range Lead Temperature Ceramic DIP (soldering, SO s) Internal Power Dissipation 1, 2 28L-Ceramic DIP Supply Voltage, VCC1 Supply Voltage, VCC2 -S5°C to + 175°C O°C to +70°C Order Information Device Code 300°C 1lA2470DC 2.50 W S.O V 15 V Not.. 1. TJ Max = 175°C. 2. Ratings apply to ambient temperature at 25°C. Above this temperature, derate at 16.7 mWI"C. 5-13 Package Code FM Package Description Ceramic DIP JlA2470 Block Diagram CHARGE PUMP CURRENT BALANCE BYPASS AGC COMP,' - tCOMPOSITE IN 2 - tCOMPOSITE IN 1 Vee, VCC2 GROUND - - AGC MP2 C1 COMPOSITE OUT SYNC nMlNG , I I1 AGC AMPLIFIER COMP CHARGE MAGjlTUOE SIG J SYNC SYNC SEPARATOR ANALOG REF - CHARGE PUMP PUMP DOWN 1 rr- 0 t- SYNC PLLLOCK DETECTOR U. W '" VCO WINOOW LOCKEO I ! DATA DEMODULATOR I TR!CK TRicK CLOCK DATA VCOCAPI VCOCAP2 VCOTUNING VOLTAGE 0 WINDOWS ~ - t-t-t-- - '0" DATA -H > o w z VI > w VI '" 5V REGULATOR 0 > AGC i-- ~ CAr 1 UP PHASE DETECTOR 0- PLLLOCKED STORAGE CAP 2 STORAGE I WINDOWS POSITION DEMODULATOR CLOCK OUT ..J 0 I DIVIDER DECODER DIV CLK PRE-SCALER I Jp jp OUT OUT DISCHARGE CHARGE CURRENT CURRENT 5-14 PRE-SCAJR LSB P!E-SCALER MSB J.LA2470 Description Of Lead Functions Lead I Name Function Input Signals Pre-scaler LSB Pre-scaler MSB Programs the Pre-scaler for VCO frequency relative to the frame rate. Divide ratios of 32, 64, 96, and 128 are available. Inputs are TTL levels. 5 VCO Tuning Voltage Voltage input sets the VCO Current. 11 Charge Pump Current Voltage input sets the current level into the Loop Filter. 2 3 14 Ground 18 VCC2 12 V supply input. 25 26 Composite IN 1 Composite IN 2 Composite signal inputs. 28 VCC1 5.0 V supply input. 1 Track Clock OUT Clock output derived from the Sync signal. Used as reference for Track Data; TTL. 10 Clock OUT VCO output; TTL. 13 PLL Locked Logic high when PLL is locked; TTL. 17 Composite OUT AGC Amplifier output. 19 Analog Reference 5.0 V reference output. Used as reference for Nand Q outputs. 20 QP OUT Quadrature position output. Outputs 21 NP OUT Normal position output. 27 Track Data NRZ data from missing Sync pulses; TTL. External Components 4 Sync Timing Oneshot timing RC network. Sets length of window used in Sync Separator. 6-7 VCO Capacitor VCO Timing Capacitor. Sets VCO center frequency. 8-9 Storage capacitor PLL Loop Filter. 12 Charge Magnitude Oneshot timing RC network. Sets length of current pulse out of the Phase Detector. 15 Peak Detector Discharge Current Resistor to Ground. Sets the internal peak detector discharge current. 16 Peak Detector Charge Current Resistor to Ground. Sets the internal peak detector charge current. 21 Balance Bypass Bypass capacitor for the offset cancelling circuit in the AGC Amplifier. Sets the low frequency roll off of the Amplifier. 23 AGC 1 Loop Filter capacitor for AGC Amplifier. 24 AGC 2 Bypass Capacitor for AGC Amplifier. 5-15 MA2470 Theory Of Operation pulse in the stream. Sync separator timing is shown in Figure 3. The purpose of the /lA2470 is to demodulate both analog and digital information from the composite servo .signal as shown in figure 1. This signal contains the digital signals Data and Sync and the analog quadrature di-bit signals N, N, Q, and Q. TRACK DATA DEMODULATOR The track data encoding flip-flop changes state whenever there is a data pulse present producing NRZ data for the user. Data The track data is presented as NRZ with a companion clock signal for latch control. The track data is decoded· from the first pulse in each servo cell. This data permits identification of index position, guardband etc. The codes and schemes are entirely at the user's option as no decoding is done on-chip. Sync The sync pulse is the one is always present in every frame pulse is used to synchronize the the rest of the information in the PHASE LOCK LOOP When a disk sync pulse is sensed by the Sync Separator, the PLL compares the phase of disk sync with the phase of a reference sync pulse generated by the window decoder. Refer to Figure 4 and 5. Every other sync pulse from the Sync Separator causes the window decoder counter to preset. This forces the decoder into phase alignment with the disk sync. Starting from a known condition allows a phase comparison to be made on the next frame by comparing the trailing edges of the reference sync with the disk sync pulses and outputing a correction signal to the charge pump to increase or decrease the veo frequency to correct the phase error. On the next frame the cycle is repeated. pulse in the frame which on every track. This PLL and makes decoding frame possible. Quadrature Position Signals The four position pulses are analog signals whose amplitude encodes the position of the disk file heads with respect to the data track centers. Nand Q are in a quadrature relationship, i.e. when Nand N are equal in magnitude the difference between Q and Q is at maximum and vice versa. Equal magnitudes of Nand N represent odd tracks and Q and Q the even tracks. LOCK DETECTOR When the frequency and phase of the veo are correct, the trailing edge of the sync pulse will coincide with the trailing edge of count 4 from the counter/decoder. The decoder generates a window from the end of count 3 to the end of count 5, so that the sync edge will ideally fall in the middle. Whenever the sync falls inside the window four consecutive times, lock is detected and the lock Signal goes true. In order for the lock signal to be reset the sync pulse must be outside the window for four consecutive frames. AGC Amplifier The 1lA2470 AGe Amplifier is a fully differential design with a typical bandwidth of 20 MHz and active offset cancelling. The composite signal input level must be between 30 mV and 300 mV to be within the Amplifier's active AGe range. The offset cancelling circuit requires an external filter capacitor which provides control of the low frequency response. An external capacitor is used to control the AGe bandwidth. The AGe Amplifier output amplitude is typically 3.5 Vp-p and is available at an output lead on the device for monitoring. POSITION DEMODULATOR Figure 6 shows the position signals as a function of servo head position. The Position Demodulator consists of four digitally enabled peak detectors, two summing amplifiers and a precision band gap reference. Each of the four peak detectors is enabled by the window decoder during one of the position pulses as shown in Figure 7. The N pOSition output is derived by taking the difference between the first two peak detector outputs. The Q output is similarly obtained from the second pair. The outputs are referenced to the 5 V reference which is available as an output to be used as an analog baseline. The charging and discharging slew rates in the peak detectors are programmable by external resistors. The charging slew rate is associated with acquisition of the peak and the discharge slew rate controls the droop rate between peaks. Sync Separator The Sync Separator shown in Figure 2 operates on the composite signal as it appears at the output of the AGe Amplifier. The hystereSiS comparator has thresholds of +0.7 V and 0 V and produces pulses whose trailing edges are at the zero crossings of the composite signal. The trailing edges of these pulses trigger the oneshot. The output of the oneshot is AND-gated with the pulse stream from the hysteresis comparator to produce the sync pulse. The pulse length from the oneshot should only be long enough to enclose the sync bit as the next 5-16 J,.LA2470 Figure 1 Composite Servo Signal Figure 2 Sync Separator TRACK CLOCK MONOSHOT COMPOSITE SIGNAL FROMAGC HYSTERSIS COMPARATOR NRZ TRACK AMPLIFIER DATA SYNC TO PHASE DETECTOR ~:~ ~II~~O~~ =Jl...~_____________---J SYNC WINDOW ..:1I=-_____________--' Figure 3 Sync Separator Timing DATA SYNC POSITION COMPOSITE SIGNAL CO~~!~~~~~ ~ ;-----u-,L._ .._ _ MONOSHOT - - - - ( ! ___Ir--- Ur-------------------------- SYNCTO-----, PHASE DETECTOR 5-17 J.LA2470 Figure 4 Phase Lock Loop Block Diagram Figure 5 veo Fast/Slow Timing Diagram PRESET PRESET COMPARE SYNC PRESET REF SYNC PUMP UP PUMPOOWN veo SLOW PRESET ~~ COMPARE PRESET ~ U PRESET REF SYNC PUMP UP PUMP DOWN veOFAST 5-18 fJ.A2470 Figure 6 Magnetized Pattern of Quadrature Oi-Bit Servo Signal and Read Signal SERVO HEAD GAP POSITION r-DATA PULSE -SYNC PULSE ,-NPULSE I I fNPULSE Q PULSE j N NS SN NS S N NS S N NS S r'rQPULSE N NS SN NS S A N NS SN NS S N NS S N NS S I N NS SN NS S V V 1/ A V JlJJ N NS SN NS S N NS S N NS S I N NS SN NS S VV N NS SN NS S 111\ V\I N NS SN NS S N NS S N NS S I I I Position Pulse N N COMPOSITE SERVO SIGNAL I I I I Iii --Ir-l. .-li___+-______ WINDOW 1 _ _ _ _ _ _ _ WINDOW 2 --______________ iI A A V V N NS SN NS S MAGNETIC PATTERN Figure 7 A VV A V /I /1 I N NS SN NS S N NS S N NS S 1\ VV 1\/1 VI/ A A 1\ \I v v \I /1/\ AA I ,L-________ ,----, ~, 5-19 READ SIGNAL VV /I 1\/1 V VI/ -----I J,LA2470 Figure 8 PLL Synchronizing Event WINDOW DECODER SYNC WINDOW WINDOW 1 WINDOW 2 WINDOW 3 L WINDOW 4 SYNCP SYNC SEPARATOR n ~ :-'-, -AJ\; Jl Y DATA AGC AMPLIFIER I : r--, r--, ~ ~ ,, ,, ,. .... "'1 ' I fI , ~ Y Y PLL SYNCHRONIZING EVENT Mayor may not be present. Width varies. May be present at any amplitude (from zero to sync pulse amplitude) I'A2470 TIMING DIAGRAM when Loop is locked. MA2470 Electrical Characteristics TA = 25°C, VCC2 = 12 V, VCC1 = 5.0 V, unless otherwise specified. Characteristic Condition Units AGC Amplifier Max Voltage Gain Input Freq = 1.0 MHz 46 AGC Range Input Freq = 1.0 MHz 40 dB 15 MHz Frequency Response Input Voltage Range 30 Output Voltage dB 300 mV 5.0 Vp_p 5.0 Vp_p Nand Q Outputs Output Voltage RL = 20K Output Impedance Output Offset Voltage 100 n 20 mV Voltage Reference Output Voltage V Output Current mA 5-20 /-LA2470 J.LA2470 (Cont.) Electrical Characteristics TA = 25°C, VCC2 = 12 V, VCC1 = 5.0 V, unless otherwise specified. Characteristic Condition VCO Max Frequency Cvco = 20 pF Tuning Range Digital Outputs (R pull-up = 2.0K to Vee> VOL 0.4 V Rise Time O.B to 2.4 V 20 ns Fall Time 2.4 to O.B V 5.0 ns Vcc 1 140 mA VCC2 12 mA Supply Current Program Voltage vs Charge Pump Current Capicator Value vs Sync Pulse Demodulator And Charge Pump Oneshot Pulse Length Control Voltage vs VCO Frequency Q.4 V / V V 50 / V > I .. ! 0 !;! 150 OUTPUT CURRENT - 200 mA 250 -Q.4 ~ 0.8 b :z: 40 V U) w Z 0 1.0 1.2 NORMALIZEO VCO FREQUENCY - MHz 5-21 / 60 ~ V 1/ 1/ 0.& '/ I g V -0.2 X VR=12K 80 II: / ~ ...~ :> ... "- / .., / 100 V 0.2 w / 100 '/ / 1.4 / 20 / o o /' R = 24K ./ " 200 ;' V 400 &00 PULSE LENGTH - ns 800 1000 IlA2470 Test Circuit (Note 2) • (NOTE 1) TRK ClK TRK DATA PRE-SCl lSB COMP IN 2 -=-------I SYNC TIMING COMPIN 1 VCO TUN VOL AG COMP2 VCO CAP 1 AGCOMP1 5.0 v -...........-'\IIAr..... .u A2470 C2 0.5 Jl ~F 510 VCO CAP 2 n O.~"~F-~~AOA°r-~---~~~---i (NOTE 1) UV VCC1 PRE-SCl MSB N OUT STOR CAP 1 SAL SYPS STOR CAP 2 QOUT ClK OUT VREF OUT f---IN q NOUT 1.0"F~ QOUT VREFOUT 5.1 kO ~OV-~~--t------------__i 750n CHG PMP CUR VCC2 CHG PMPMAG COMPOUT 24kO (NOTE 1) Pll lOCKED CHRG CUR GND DISCH CUR 12 V ~ -=- COMP OUT 20kO 2OOkO Notes 1. Open coilector digital outputs 2. C1 - 33 pF C2 -100 pF C3=15 pF Values are for a frame frequency of 150 kHz. Scale linearly for other frame notes. 5-22 -=- IlA248X • IlA248XR Series Winchester Disk Read/Write Preamplifiers FAIRCHILD A Schlumberger Company Linear Division Disk Drives Description Connection Diagram 24·Lead Flatpak (Top View) The J.LA248X/ J.LA248XR Series High Performance Read/ Write Preamplifiers are intended for use in Winchester disk drives which employ center tapped ferrite or manganesezinc read/write heads. The circuit can interface with up to eight read/write heads which makes it ideal for multi-platter disk drive designs. Designed to reside in the Head/ Disk Assembly (HDA) of Winchester disk drives, the Read/ Write Preamplifiers provide termination, gain, and output buffering for the disk heads as well as switched write current. Certain write fault conditions are detected and reported to protect recording integrity. The parts are available with internal damping resistor (J.LA248XR) and without internal damping resistor. (J.LA248X) • • • • • • • • • Wide Bandwidth, High Gain, Low Noise Up To Eight Read/Write Channels Internal Write Fault Condition Detection 5.0 V & 12 V Power Supply Voltages Independent Read & Write Data Lines TTL Control And Data Logic Levels Externally Programmable Write Current Available With Internal Damping Resistor Compatible With 551 117 Family cs HSO GNO HS1 HOX WDI HOY VDD1 H1X v DD2 H1Y veT H2X H3X H2Y H3Y Aiw Ne we Ne ROX WUS ROY vee Order Information Device Code Package Code FR FR J.LA2484GC J.LA2484RGC Package Description Brazed Flatpak Brazed Flatpak Input Voltages Absolute Maximum Ratings Head Select (HSO, HS1, HS2) Write Current (WC) Voltage in read and idle modes. (Write mode must be current limited to -70 mAl Chip Select (CS) Read/Write (R/W) Storage Temperature Range -65°C to + 175°C Ceramic -65°C to + 150°C Plastic Operating Junction Temperature Range 25°C to 135°C Lead Temperature Ceramic (soldering, 60 s) 300°C 265°C Plastic (soldering, 10 s) Internal Power Dissipation,l, 2 28L-Ceramic DIP 2.50 W 24L-Ceramic DIP 1.95 W 18L-Ceramic DIP 1.58 W 32L-Brazed Flatpak 1.88 W 24L-Brazed Flatpak 0.97 W 24L-Ceramic Flatpak 0.90 W 44L-PLCC 1.92 W 1.39 W 28L-PLCC Supply Voltage, VCCI 6.0 V 15 V Supply Voltage, VCC2 Write Current (IWC) 70 mA Part Selection Device Code J.LA2482X J.LA2484X J.LA2485X J.LA2486X J.LA2488X Notes 1. TJ Max - 150°C for the Plastic, and 175°C for the Ceramic. 2. Ratings apply to ambient temperature at 25°C. Above this temperature, derate the 28L~Ceramic DIP at 16.7 mW/oC the 24L~Ceramic DIP at 13 mW/oC, the 18L·Ceramic DIP at 10.5 mwrc, the 32L·Brazed Flatpak at 12.5 mwrc, the 24L·Brazed Flatpack at 6.5 mwrc, the 24L Ceramic Flatpak at 6.0 mW/oC, the 44L·PLCC at 15.3 mW/oC, and the 28L·PLCC at 11.2 mW/oC. 5-23 Channels 2 4 5 6 8 -0.4 V to VCCI +0.3 V -0.3 V to VCCI +0.3 V -0.4 V to VCCI +0.3 V -0.4 V to VCCI +0.3 V J.LA248X • J.LA248XR Series Connection Diagram 24-Lead DIP (Top View) Connection Diagram 18-Lead DIP (Top View) 24 cs GND 18 HSO cs HSI GND WDI HC VDD1 V""" HOX HSO HIX vco, vco• HOX HOY VCT H1Y VCT R/W HIX H1Y HOY H2X H3X WC H2Y H3Y RDX RDY R/W WC RDX wus RDY Vee Order Information Device Code j.iA2482DC j.iA2482RDC Order Information Device Code j.iA2484DC j.iA2484RDC Vcc NC Package Code 7L 7L Package Description FU FU 24 cs HSO GND HSI HOX HSO GND HSI HOY WDI HOX WDI HIX VCC2 HOY VDD1 HIX V... H1Y VCT H2X H3X H2Y H3Y R/Vi HC WC NC RDX WUS RDY Vcc Package Description Ceramic DIP Ceramic DIP Connection Diagram 24-Lead DIP (Top View) Ceramic DIP Ceramic DIP Connection Diagram 24-Lead Cerpak (Top View) Ci Package Code H1Y VCT H2X H4X H2Y H4Y RiW H3X WC H3Y RDX wus ADY Veef Order Information Device Code j.iA2484FC j.iA2484RFC Package Code FN FN Package Description Ceramic Flatpak Ceramic Flatpak Order Information Device Code j.iA2485DC j.iA2485RDC 5-24 Package Code 7L 7L Package Description Ceramic DIP Ceramic DIP MA248X • MA248XR Series Connection Diagram 24-Lead Cerpak (Top View) Connection Diagram 28-Lead DIP (Top View) cs HSO GNO HSI HOX HS2 28 HOY WOI HIX VDD1 H1Y VCT HOX H2X H4X HOY H2Y H4Y Riw H3X GNO HIX WC H3Y H1Y ROX wus H2X ROY Vee Order Information Device Code Package Code Package Description MA2485FC MA2485RFC Ceramic Flatpak Ceramic Flatpak FN FN HSI HSO H5Y H2Y H4X R/Vi H4Y WC H3X NC H3Y ROX WUS ROY Vee Connection Diagram 28-Lead PLCC (Top View) 3 HOY 2 1 28 27 26 Order Information Device Code Package Code Package Description MA2486DC MA2486RDC Ceramic DIP Ceramic DIP FM FM VDQ1 Connection Diagram 24-Lead Flatpak (Top View) HIX V.... H1Y VCT H2X H5X H2V H5Y CS HSO R/;;;; H4X GNO HSI WC H4Y HOX HS2 HOY WOI HIX VDD1 H1Y VCT 12 13 14 " )( > Q Z Q a: II: 15 u :Ii 16 17 18 )( ::> ~ 2 2 Order Information Device Code Package Code /lA2486QC KH MA2486RQC KH Package Description Plastic Leaded Chip Carrier Plastic Leaded Chip Carrier H2X H4X H2Y H4Y R/W H3X wc H3Y ROX WUS ROY Vee Order Information Device Code Package Code MA2485GC /lA2485RGC 5-25 FR FR Package Description Brazed Flatpak Brazed Flatpak MA248X • MA248XR Series Functional Description Connection Diagram 44·Lead PLCC (Top View) Ne 7 S 5 4 3 2 1 44 43 42 In the Write mode, the /lA248X//lA248XR Series accepts TTL compatible write data pulses on the WDI lead. On the falling edge of each write data pulse, a current transition is made in the selected head. Head selection is accomplished via TTL input signals: HSO, HS1, HS2 (see Table 2). Internal circuitry senses the following conditions: V DD1 41 VD02 VCT HOX HOY 11 35 H6Y ~X • H~ H1Y 13 HSY H2X H4X H2Y H7X 1. 2. 3. 4. 5. H6X Absence of data transitions. Open circuit head connection. Absence of write current. Short circuit head connection. Idle or read mode. H4Y Any or all of the above conditions would result in a high level on the write unsafe (WUS) output signal. 16 H7Y 2!l H3Y During read operations, the /lA284X amplifies the differential voltages appearing across the selected R/W head lead and applies the amplified signal differentially to data lines RDX and ROY. Order Information Device Code Package Code /lA2488QC KI /lA2488RQC KI Package Description Plastic Leaded Chip Carrier Plastic Leaded Chip Carrier Connection Diagram 32·Lead Flatpak (Top View) HSI 32 HS2 HSO 31 WOI cs 30 GND 29 VD01 VDD2 HOX 28 VCT HOY 27 H6X HIX 26 H6Y H1Y 25 H5X H2X 24 H5Y H2Y 10 23 H4X H7X 11 22 H4Y H7Y 12 21 H3X R/W 13 20 H3Y WC 14 19 WUS ROX 15 1. NC ROY 16 17 Vee Order Information Device Code Package Code /lA2488GC /lA2488RGC FS FS Package Description Brazed Flatpak Brazed Flatpak 5-26 J.lA248X • J.lA248XR Series Description of Lead Functions Lead Name Description of Functions CS Chip Select Chip Select High disables the read/write function of the device and forces idle mode. (TTL) R/W Read/Write Select A Logic High places the devices in read mode and a Logic Low forces write mode. Refer to Table 1. (TTL) HOX, Y through H7X, Y Read/Write Head Connections The J.LA2488 has eight pairs of read/write connections. The X and Y phases are made consistent with the read output, RDX and RDY, phases. (Differential) RDX, Y Read Data Outputs The chip has one pair of read data outputs which is multiplexed to the appropriate head connections. (Differential) HSO through HS2 Head Select Inputs The eight read/write heads are addressed with the head select inputs. Refer to Table 2. (TTL) WC Write Current Input This lead sets the current level for the write mode. An external resistor is connected from this lead to ground, and write current is determined by the value of this resistor divided into the write current constant K, which is typically 140 V. WDI Write Data Input The write data input toggles the write current between the X and Y selected head connections. Write current is switched on the negative edge of WDI. The initial direction for write current is the X side of the switch and is set upon entering read or idle mode. (TTL) VDD2 Resistor Center Tap In some versions (determined by lead availability) of the J.LA248X series, a resistor may be connected between RCT and VDD1 to reduce internal power dissipation. If this resistor is not used, RCT must be connected externally to VDD1. VCT Center Tap Voltage The center tap output provides bias voltage for the head inputs in read and write mode. It should be connected to the center tap of the read/ write heads. WUS Write Unsafe A high logic level at the write unsafe output indicates a fault condition during write. Write unsafe will also be high during read and idle mode. (Open collector) 5-27 tlA248X • tlA248XR Series Table 2 Head Select Inputs Table 1 Read/Write Select Operating Modes Head Selection Chip Select CS Read/Write R/W Mode HSO HS1 HS2 Head Selected 1 1 X Idle Read Write 0 1 0 1 0 1 0 1 0 0 1 0 0 0 0 1 1 0 1 2 3 4 5 o o 1 o 1 0 0 6 7 Note 1. If selected head is beyond the capacity of the /lA248X model, the open input condition on the selected input will be reported as an unsafe level at the WUS oulput. Block Diagram (Typical, J.LA248X) VCT >-- H C~P h SELECT WDI WRITE SELECT I R/W READ EN RDX I ROY POST READ AMPUFIER HSO HSI HS2 WUS I HEAD SELECT I I WRITE EN I I UNSAFE CIRCUIT DETECTOR 1J HOX I I ~ HEAD 0 DIFFERENTIAL READ AMPLIFIERS AND WRITE CURRENT SWITCHES I HEAD 1 H1V H2X HEAD 2 H2Y H3X HEAD3 H3Y (5 CHANNELS) I CURRENT DRIVER t- HOY HIX H4X HEAD4 H4Y I 1 WC 5-28 MA248X • MA248XR Series Absolute Maximum Ratings All voltages referenced to GND Symbol Characteristic Value Unit -0.3 to + 14 V VOO2 -0.3 to + 14 V Vee -0.3 to +6.0 V VOOl DC Supply Voltage Vin Digital Input Voltage Range -0.3 to Vee +0.3 V VH Head Port Voltage Range -0.3 to VOD +0.3 V Vwus WUS Port Voltage Range -0.3 to + 14 V Iw Write Current 10 Output Current RDX, RDY 60 rnA -10 mA VCT -60 WUS +12 Recommended Operating Conditions Value Unit 12 ± 10% V VOO2 6.5 to VOOl V Vee 5.0 ± 10% V 5.0 to 15 /lH 500 to 2000 Symbol VOOl Characteristic DC Supply Voltage Lh Head Inductance RD Damping Resistor (External) RCT RCT Resistor 90 ± 5.0% (1'2 watt) n n Iw Write Current 25 to 50 rnA 10 RDX, RDY Output Current o to IlA 5-29 100 J.LA248X • J.LA248XR Series DC Characteristics 25°C ';;;TJ';;; 125°C Voo 1 = 12 V, Vee = 5.0 V, unless otherwise specified. Symbol Icc IDD Pc VIL VIH Characteristic Supply Current Supply Current Power Consumption Digital Inputs: Read/Idle Mode 25 Write Mode 30 Idle Mode 25 Read Mode 50 Write Mode 30+lw = 125°C TJ Idle Mode 400 Read Mode 600 Write Mode, Iw=50 rnA, RCT=90 n 850 Write Mode, Iw=50 rnA, RCT=O n 1050 -0.3 0.8 Input Voltage HIGH 2.0 Vee + 0.3 IIH rnA mW V V VIL - 0.8 V Input Current HIGH VIH =2.0 V 100 /lA IOL =8.0 rnA 0.5 V VOH =5.0 V 100 /lA WUS Output Center Tap Voltage -0.4 rnA Input Current LOW IOH VCT Unit Max Input Voltage LOW IlL VOL Min Condition rnA Read Mode 4.0 (typ) V Write Mode 6.0 (typ) V Write Characteristics VOOl = 12 V, Vee = 5.0, Iw = 45 rnA, Lh = 10 J.lH, f(Oata) = 5.0 MHz, CL (ROX, ROY) .;;; 20 pF, Ro EXT = 750 n or Ro INT, unless otherwise specified. Characteristic Condition Write Current Range Min Max Unit rnA 10 50 Write Current Constant "K" 133 147 Differential Head Voltage Swing 5.7 V V (pk) Unselected Diff. Head Current 2.0 rnA (pk) Differential Output Capacitance 15 pF Differential Output· Resistance WDI Transition Frequency Without Internal Resistors 10K With Internal Resistors 538 WUS= LOW Iwe to Head Current Gain 5-30 n 1.0K 400 (typ) kHz 18 (typ) rnA/rnA MA248X • MA248XR Series Read Characteristics VDD1 = 12 V, Vee = 5.0 V, Lh = 10 MH, f (Data) = 5.0 MHz, CL (RDX, RDY) (Vin is referenced to VeT)' RD EXT = 750 Characteristic n < 20 pF, or RD INT, unless otherwise specified. Min Max Unit 80 120 VIV -2.0 +2.0 mV Condition Differential Voltage Gain Yin = 1.0 mVp. p at 300 kHz RL (RDX), RL (ROY) = 1.0 kQ Dynamic Range Input Voltage, VI, Where Gain Falls by 10%. Yin = VI + 0.5 mVp_p at 300 kHz Bandwidth (-3db) I Zs 1<5.0 Q, Yin = 1.0 mVp _ p 30 MHz Input Noise Voltage BW = 15 MHz, Lh = 0, Rh = 0 2.1 nV/YHZ Differential Input Capacitance f = 5.0 MHz 23 pF Differential Input Resistance f = 5.0 MHz I Without Internal Resistors I With Internal Resistors Q 2K 440 850 Input Bias Current 45 IJA Common Mode Rejection Ratio VCM=VCT+100 mVp _ p at 5.0 MHz 50 Power Supply Rejection Ratio 100 mVp _ p at 5.0 MHz on V001, V002, or VCC 45 db Channel Separation Unselected Channels: Yin = 100 mVp _ p at 5.0 MHz and Selected Channel: Yin = 0 mVp _ p 45 db Output Offset Voltage -480 +480 5.0 7.0 V 35 Q 1070 Q Common Mode Output Voltage Single Ended Output Resistance db f = 5.0 MHz Internal Damping Resistor 560 mV Switching Characteristics VDD1 = 12 V, Vee = 5.0 V, TJ = 25°C, Iw = 45 rnA, Lh = 10 MH, f (Data) RD EXT = 750 Symbol n = 5.0 MHz, or RD INT, unless otherwise specified. Characteristic Condition Min Max Unit IJS R/W to Write Delay to 90% of Write Current 1.0 R/W to Read Delay to 90% of 100 mV 10 MHz Read Signal Envelope or to 90% Decay of Write Current 1.0 CS to Select Delay to 90% of Write Current or to 90% of 100 mV 10 MHz Read Signal Envelope 1.0 CS to Unselect Delay to 90% Decay of Write Current 1.0 HSO HS1 HS2 to any Head Delay to 90% of 100 mV to 10 MHz Read Signal Envelope 1.0 IJS WUS Safe to Unsafe - TD1 Iw= 50 mA 8.0 IJS Unsafe to Safe - TD2 Iw=20 mA 1.0 Prop. Delay - TD3, TD4 Lh = 0 IJH, Rh = 0 Q From 50% Points 25 Asymmetry WDI has 50% Duty Cycle and 1 ns Rise/Fall Time Rise/Fall Time 10% - 90% Points R/W CS Head Current 1.6 5-31 2 20 IJs nS • J.LA248X • J.LA248XR Series Figure Head Current Timing DIFFERENnAL HEAD CURRENT figure 2a Unsafe to Safe Timing ' -_ _ _ DATA VWD Vwus - - - - - - - = '------- LOAD CAPACITANCE 20 pF PULL UP RESISTOR = 1.0 kQ Figure 2b Safe to Unsafe Timing HEAD OVERSHOOT VOLTAGE (VH1o VH2) 1---'.'=1 2.0V --LO-A-OCA-PAC-ITANCE =20pF PULL UP RESISTOR =1.ok2 5-32 MA2480 FAIRCHIL.D Winchester Disk Servo Preamplifier A Schlumberger Company Linear Division Disk Drives Description Connection Diagram 8-Lead DIP (Top View) The fJA2480 provides termination, gain, and impedance buffering for the servo read head in Winchester disk drives. It is a differential input, differential output design with fixed gain of approximately 100. The bandwidth is guaranteed greater than 10 MHz. The internal design of the f.lA2480 is optimized for low input noise voltage to allow its use in low input signal level applications. It is offered in 8-lead DI P (plastic) or 10-lead flatpak. • • • • Low Input Noise Voltage Wide Power Supply Range (8.0 V To 13 V) Internal Damping Resistors (1.0 kil) Functionally Compatible with SSI 101 Ne -IN v+ Ne -OUT v- +OUT Order Information Absolute Maximum Ratings Storage Temperature Range Flatpak Molded DIP Operating Temperature Range Lead Temperature Flatpak (soldering, 60 s) Molded DIP (soldering, 10 s) Internal Power Dissipation 1, 2 8L-Molded DIP 10L-Flatpak Supply Voltage Output Voltage Differential Input Voltage +IN Device Code fJA2480TG -65°C to + 175°G -65°C to + 150 0 G OOG to 70°C Package Code 9T Package Description Molded DIP Connection Diagram 10-Lead Flatpak (Top View) 0.93 W 0.79 W 15 V 15 V ± 1.0 V • +IN Ne v+ -IN Notes 1. TJ Max -150"C for the Molded DIP, and 175"C for the Flatpak. 2. Ratings apply to ambient temperature at 25"C. Above this temperature, derate the 10L·Flatpak at 5.3 mWrC, and the 8L-Molded DIP at 7.5 mWrC. Ne -OUT v- + OUT Ne Ne Order Information Device Code f.lA2480FC 5-33 Package Code 3F Package Description Flatpak J1A2480 Equivalent Circuit v+ +OUT -OUT a9 a24 R6 240Q a6 R1 9kQ R2 4.3kQ a2S R7 +IN R4 500 -IN R8 Q -4-----+----' R14 250Q ~----+-----~------~----------~------------~--------+-~------+--vEQOO710F 5-34 J,LA2480 Electrical Characteristics TA = 25°C, (V+)-(V-) =8.0 V to 13.2 V, unless otherwise specified. Symbol G Characteristic Condition Gain (differential) Min Rp= 130 n, Vce= 12 V 92 Rp=130 n, Vee=12 V, 80 Typ 115 Max Unit 138 150 TA = O·C to 70·C VI = 2.0 mVp _ p BW Bandwidth (3.0 dB) RI Input Resistance CI Input Capacitance VI Input Dynamic Range (differential) Rp = 130 n, Vee = 12 V Is Supply Current Vee = 12 V 10 30 800 1000 MHz 1200 n pF 3.0 mVp _ p 3.0 30 40 mA 600 mV t:No Output Offset (differential) Rs=On,Rp=130n Vn Equivalent Input Noise BW = 4.0 MHz, Rs = 0 n PSRR Power Supply Rejection Ratio Rs = 0 n, f < 5.0 MHz t::.GIt::.V Gain Sensitivity (Supply) t::. Vcc=±10%, Rp=130 n ± 1.3 %IV t::.GIt::.T Gain Sensitivity (Temp) TA = 25·C to 70·C, Rp = 130 n -0.2 %fOC CMR Common Mode Rejection (Input) f< 5.0 MHz Typical Applications v... SERVO HEAD R.. R.. V- Notes 1. Leads shown for 8·lead DIP. 2. Req is equivalent load resistance. 3. Rp- RL • Req RL'" Reo 4. G=.88 Rp Where Rp = value from Note 3 (above) In ohms. 5-35 1.5 50 55 65 70 10 /lV dB dB JIA2490 F=AIRCHILD MFM/2,7 Data Separatorl Encoder-Decoder A Schlumberger Company Linear Division Disk Drives Description Connection Diagram 28-Lead DIP (Top View) The 1lA2490 Data Separator/Encoder-Decoder chip provides a convenient, high performance means of converting MFM or 2,7 encoded data derived from magnetic media to an NRZ digital bit stream. Also included is an MFM or 2,7 encoder which converts NRZ data to MFM or 2,7 encoded . serial formal suitable for recording on magnetic media. The 1lA2490 provides both MFM and 2,7 modes of operation selectable with a select pen. NRZ WRITE DATA ADDRESS MARK ENABLE WRrTECLOCK WRITE GATE 28 WRITE MISSING CLOCK RZ WRITE DATA 25 PRE-COMPENSAllON 2' NRZ READ DATA The Data Separator chip provides the complete oscillator synchronization and data decode function required on controllers in the ST506 format, and disk drives in the ESDI format. The chip also allows selectable precompensation for those drives that may require it. M GATE (NOTE 1) ADDRESS MARK FOUND 23 FILTER + (NOTE 1) FlLTER(NOTE 11 22 8 Yee DELAY CAPACITOR (NOTE 1) AI FOUND • • • • • Data Rates To 25 Mbps ESDI And ST506 Compatible Signal Definitions Can Be Used In Drive. Or ControJler Selectable MFM Or 2,7 Encoding/Decoding Internal Generation/Detection Of MFM And 2,7 Address Marks • Internal Write Precompensatlon With Externally Programmed Value yeo CAP1 (NOTE 1) yeo CAP2 (NOTE 11 GROUND 20 1. CHARGE PUMP SLOW (NOTE 11 CHARGE PUMP FAST (NOTE 11 18 NC DELAY RESISTOR (NOTE 1) READ REF CLOCK RZ READ DATA READ GATE REFERENCE OSCILLATOR MFM (2,7) SELECT Absolute Maximum Ratings Storage Temperature Range Ceramic DIP PLCC Operating Temperature Range Lead Temperature Ceramic DIP (soldering, 60 s) PLCC (soldering, 10 s) Internal Power Dissipation1, 2 28L-Ceramic DIP 44L-PLCC Supply Voltage TTL Inputs Output Voltage Note 1. Passive compensation node. -65·C to + 175·C -65·C to + 150·C O·C to +70·C Order Information Device Code 1lA2490DC 300·C 265·C 2.50 W 1.92 W 6.0 V 6.0 V 6.0 V NolM 1. TJ Max -150·C for the PLCC, and 175·C for the Ceramic DIP. 2. Ratings apply to ambient temperature at 25·C. Above this temperature, derate the Ceramic DIP at 16.7 mWrC, and the PLCC at 15.3 mWI·C. 5-36 Package Code FM Package Description Ceramic DIP MA2490 Connection Diagram 44-Lead PLCC (Top View) NC 7 • 5 4 :I a 1 44 43 42 41 VCOCAP' VCOCAP' NC FILTER + , FlLTER- , NC VCCD 11 VCCA 1:1 GNDA VCCD 13 GND. DELAY CAPACITOR A1FOUND ,. CHARGE PUMP SLOW' CHARGE PUMP FAST' NC NC GND. NC " NC axt1710F Note 1. Passive compensation node. Order Information Device Code j.lA2490QC Package Code KI Package DescrlpUon Plastic Leaded Chip Carrier 5-37 MA2490 Description of Lead Functions Name Description of Functions Input Leads - All inputs are TTL Address Mark Enable This lead has two functions depending on the state of the WRITE GATE input lead. If ADDRESS MARK ENABLE is enabled (LOW) and WRITE GATE IS DISABLED (HIGH), then the 1lA2490 will go into an address mark search mode. The address mark is the DC erased gap. If ADDRESS MARK ENABLE is enabled (LOW) and WRITE GATE is enabled (LOW), then the 1lA2490 will not allow the RZ WRITE DATA output to change state. This allows the writing of DC erased gaps (address marks). Write Gate When enabled (LOW) this lead will allow the 1lA2490 to output encoded RZ data on the Write Data lead. Its function is tabulated as shown: Address Mark Enable Write Gate Resultant Function Enabled Enabled Disabled Disabled Enabled Disabled Enabled Disabled Write DC Erased Gap Search for DC Erased Gap Write RZ Data Disabled (LOW) (LOW) (HIGH) (HIGH) (LOW) (HIGH) (LOW) (HIGH) RZ Read Data This lead receives the encoded RZ data pulses from the Read Channel in the disk drive. This input is what the phase lock loop (PLL) locks up to when decoding read data, and is also what will restart the internal VCO clock after READ GATE switches from HIGH to LOW. Read Gate When enabled (LOW) this lead will allow the 1lA2490 to lock up to and read RZ data from the disk. When this lead changes states, the internal VCO clock is turned off. When this lead changes from HIGH to LOW (enabled), the first RZ READ DATA INPUT will restart the internal VCO clock. When this lead changes from LOW to HIGH (disabled), the first REFERENCE OSCILLATOR input pulse will restart the internal VCO clock. MFM/2,7 Select This lead allows the user to select the desired code. A TTL low selects MFM and a TTL high selects the 2,7 code. Reference Oscillator This is the reference clock input that the 1lA2490 phase lock loop syncs to when in the write mode and the idle state. This input also restarts the VCO clock after READ GATE switches from LOW to HIGH. The frequency of the reference oscillator should be the same as the data rate. During write, the WRITE CLOCK input must be phase locked to the signal on this lead. Precompensation 2° When this lead is enabled (HIGH) and PRECOMPENSATION 21 lead is disabled (LOW), the precompensation value will be 5% of the 2f clock period. Precompensation 21 When this lead is enabled (HIGH) and PRECOMPENSATION 2° lead is disabled (LOW), the precompensation value will be 10% of the 2f clock period. If both PRECOMPENSATION 2° and PRECOMPENSATION 21 leads are enabled (HIGH), the precompensation value will result in a 15% correction of 2f clock period. Write Missing Clock This lead receives the signal (active low) from the controller to drop the clock pulse out of bit 6 in the MFM "A 1" pattern. This lead should be enabled (LOW) only when the "A1" pattern is present at the NRZ WRITE DATA input. Write Clock This lead receives the clock from the controller which clocks the NRZ WRITE DATA (lead 28) input. 5-38 J.lA2490 Description of Lead Functions (Cont.) Name Description of Functions Input Leads - All inputs are TTL (Cont.) NRZ Write Data This lead receives NRZ data from the controller along with WRITE CLOCK, for encoding and subsequent writing on the disk. Data is valid at the rising edge of WRITE CLOCK. This input assumes "Os" are a TTL low level. Output Leads - All outputs are TTL RZ Write Data This lead is the RZ write data output to be written on the disk. This output is active low. It is clocked out with the PLL oscillator (which is locked to the REFERENCE OSCILLATOR). NRZ Read Data This lead is the NRZ decoded data output to the controller. This output assumes "Os" are a TTL low level. NRZ Read Data is valid at the rising edge of Read/ Reference Clock. Address Mark Found A negative pulse output on this lead will indicate the presence of a DC erased gap. If the 1lA2490 is able to count 16 clock intervals without a flux change being sensed from the disk, then a "zero" will be clocked out at the first rising edge of a flux change and will last for one clock period. The address mark Signal will occur at the beginning of the sync field since that is usually where the first flux change occurs after the DC gap. "A1" Found A negative pulse at this lead indicates that a missing clock has been found in the MFM code. This pulse lasts for one VCO clock period and is associated with the missing clock that was written in the "A1" pattern. Read/Reference Clock This lead will output the reference oscillator when READ GATE is disabled (HIGH), or the internal J.LA2490 clock when READ GATE is enabled (LOW) and 16 consecutive zeros have been decoded (in sync field). This allows the phase lock loop to lock up to the incoming RZ READ DATA before switching the READ/ REFERENCE CLOCK output from the REFERENCE OSCILLATOR INPUT to the internal PLL's oscillator. External Connection Leads Filter + Filter - This lead is the output of the charge pump and one of the differential inputs to the veo. A negative pulse here will increase the veo frequency. This lead is the output of the charge pump and the other (differential) input to the VCO. A negative pulse here will decrease the VCO frequency. This lead is the + 5.0 V supply - DIP only. Vee VeeA This lead is the VCCD This lead is the + 5.0 V supply for digital circuitry - PLCC only. Delay Capacitor The external capacitor that sets the delay time of the RZ READ DATA to one half of a clock (VCO) period is attached here. Varying the capacitor value will vary the centering of the incoming data in its phase-error window. The other side of the capacitor should be tied to the + 5.0 V supply. Delay Resistor An external resistor tied from this lead to GROUND will set the delay time (in conjunction with the capacitor on lead 9) of the internal delay network. A variable resistor can be used to accurately adjust the centering of the phase margin window. + 5.0 V supply for analog circuitry - PLCC only. 5-39 • J.LA2490 Description of Lead Functions (Cont.) Name Description of Functions External Connection Leads (Cont.) Charge Pump Fast An external resistor from this lead to ground will determine the current that is added to the CHARGE PUMP SLOW current that will be used by the charge pump to drive the filter. This current is switched in, only during the sync fields, to decrease the sync-up time of the phase lock loop. It is turned off when 16 consecutive zeros have been decoded in the sync field, indicating a proper phase lock to data. Charge Pump Slow An external resistor from this lead to ground sets the operating current in the Charge Pump for normal data reading. This current is always ON. The CHARGE PUMP FAST and CHARGE PUMP SLOW current values are selected in conjunction with the FILTER + and FILTER - component values to insure proper stability of the phase lock loop during its operation. Ground This lead is the GROUND return for the chip - DIP only. .Ground A This lead is the GROUND return for the analog circuit on the chip - PLCC only. Ground D This lead is the GROUND return for the digital circuit on the chip - PLCC only. VCO Cap 1 One side of the VCO frequency-setting capacitor connects to this lead. A negative sloping transition on this lead corresponds to an "up" level of the VCO clock. The other side of the capacitor connects to lead 23. VCO Cap 2 One side of the VCO frequency-setting capacitor connects to this lead. A negative sloping transition on this lead corresponds to an "up" level of the VCO clock. The other side of the capacitor connects to VCO CAP 1 lead. This lead can be connected to GATE lead if an in-phase start up is desired during the sync-up mode. Gate This lead can be tied to the adjacent veo CAP 2 lead for an in-phase start up of the VCo. The internal CLOCK GENERATOR (see block description) will always turn off the internal VCO clock when the READ GATE changes state. The VCO will continue to free-run unless this lead is connected to VCO CAP 2 lead. The in-phase start up can be used in those situations where a servo clock is available for accurate frequency prediction of the anticipated incoming RZ READ DATA stream. 5-40 MA2490 Detailed Block Description phase error between the occurrence of an incoming pulse (from the SWITCH block) and the phase lock loop's oscillator (VCO). One output will control charge-up current to the filter and the other output will control the discharge current to the filter. The following description gives a brief outline of the blocks contained in the block diagram of the j.lA2490 Data Separator. See Figure 1. SWITCH - Connects either incoming read data (from the disk drive read electronics) or a reference oscillator to the phase lock loop for synchronizing the phase lock loop's oscillator (VCO). When not reading data the SWITCH block connects the reference oscillator to the PLO's input. SINGLE SHOT DELAY - Provides a delay to allow the phase detector to set up for a phase comparison between incoming pulses and the phase lock loop's oscillator. The timing of this delay should be one half the VCO's clock period (quarter of the data rate) to assure a properly centered pulse in the Phase Lock Window. This delay circuit has absolutely no effect on the Data Window and the Data pulse phase relationships. The rising edges of the Delayed Data pulse and the VCO clock pulse are inherently in phase at the phase detector input, no matter how much the delay circuit is delaying the data. Since the Data Window is set by inverting the VCO clock waveform, the PHASE DETECTOR - Has two modes of operation - harmonic for read mode and non-harmonic for write and idle mode. In the harmonic mode, the phase detector is enabled by the rising edge .of the incoming pulse. In the non-harmonic mode, the phase detector is constantly enabled. The phase detector generates pulses to control the CHARGE PUMP. The pulse width will correspond to the Figure 1 Block Diagram --- PRE-COMPENSATION Vee A. FOUNO GND 20 2' RZ READ WRITE GATE GATE WRITE DATA AOORESS MARK ENABLE --+---1 NRZ~~~ --+--Il-=~::~t---------+t-=~~:J f--~-~r-::'::-l READ/REF .... CLOCK WRITE i+---j-- MISSING CLOCK NRZ '--+--------t-- WRITE DATA '----+---------j-- WRITE CLOCK L-------------~r_-------i_-GATE RZ READ DATA REFERENCE OSCILLATOR _-+_~~-:~=---, --t. . . . . L.::::::..J (IF) DELAY RESISTOR DELAY CAPACITOR ADDRESS MARK FOUND FAST SLOW -.- CHARGE PUMP 5-41 + FILTER VCO CAP. VCO CAPz MA2490 Delayed Data input will always be centered in the Data Window. enable all internal clocks. This provides the capability for an in-phase start up for PLL. See Figure 2. CHARGE PUMP - Provides either a charging or discharging current, as directed by the phase comparator, to the externally connected loop filter. The value of the current is internally switched between CHARGE PUMP FAST (a high current) and CHARGE PUMP SLOW (a low current). The higher current is used in the "sync-up" mode during the reading of sync-fields, and the lower current is used during reading data or ID fields. CONTROL LOGIC - Decodes the input control lines from the controller to provide internal control Signals to the j.tA2490. It indicates to the rest of the chip when reading or writing is being requested, and whether the MFM or 2,7 code is being used. During WRITE, it also presets the encoders to an encoded zero pattern. READ/WRITE CONTROL - This block controls the switching of the 1lA2490 between READ and WRITE modes of operation. VCO - The Voltage Controlled Oscillator generates a continuous stream of clock pulses at a frequency rate that is determined by the input voltage provided from the chargepump/filter combination, and an externally connected capacitor. The VCO output is. continually being phase compared .to the pulse stream selected by the SWITCH block. The input controlling voltage to the VCO is caused to vary in such a way as to maintain phase lock with the input pulses. MFM & 2,7 ENCODER - This block is controlled by the MFM/2,7 select lead. The MFM/2,7 select input will cause incoming WRITE DATA IN to be encoded into either MFM format or 2,7 format before it is clocked out as NRZ WRITE DATA. 16 BIT REGISTER - The incoming data stream for both read and write functions is shifted into this register for processing purposes. During sync-up time this register is used to count the number of incoming zeros to insure proper synchronization to the RZ READ DATA. During WRITE this register is used to enable precompensation time-shifts at the appropriate time in the write data stream. DC erased gaps in the RZ READ DATA stream are also detected by using this shift register. CLOCK GENERATOR - Provides the output of the VCO to the rest of the Chip. The output of the CLOCK GENERATOR switches off at a change of state of the READ GATE input, and turns back on at the first occurrence of the RZ READ DATA (if READ GATE is enabled), or the REFERENCE OSCILLATOR (if READ GATE is disabled). The GATE lead can be tied to the VCO CAP lead to start the VCO in-phase with incoming RZ DATA or REFERENCE OSCILLATOR. ADDRESS MARK DECODE - During read mode, when address mark enable is active this block finds DC erased gaps in the incoming bit-stream that are at least 16 bits wide. A signal is sent to the controller to indicate a gap has been found (ADDRESS MARK FOUND). ZERO PHASE START UP - This block turns off all internal clocks whenever the READ GATE input changes state, and also toggles the GATE lead. This lead can be tied to one of the VCO capaCitor leads to turn off the VCO at the same time. The first incoming bit that is to be fed into the phase lock oscillator (RZ READ DATA for READ GATE enabled, the REFERENCE OSCILLATOR for READ GATE disabled) will disable the gate function and allow the VCO to start in-phase with the incoming data, and. will MISSING CLOCK DECODER (MFM) -Immediately following the sync-field in an MFM encoded bit stream there is a pattern written that is not allowed in the MFM encode process. The byte written is generally "A1," and the CLOCK transition that should have occurred on the sixth bit is not written. On read-back this missing CLOCK bit is Figure 2 In-Phase Start up Timing for GATE Output Tied to Lead 23 (VCO CAP) READGA11: (INPUT) ________ READ DATAl REF CLOCK ~ (INPUT) ~x~ __________________________ __________________ ~n~~~ GATE (OUTPUT) INTERNAL CLOCK 5-42 }lA2490 detected by the Missing Clock Decoder and a pulse is generated. This pulse is used for timing alignment in the controller. signals and levels. When utilized within the drive, the interface becomes compatible with ESDI (Enhanced Small Disk Interface) the proposed industry standard for higher capacity drive. PHASE UP - This block lines up the ~2490's clock with the WRITE CLOCK input to assure proper phasing to clock out the WRITE DATA. The WRITE CLOCK input must be synchronized with the REFERENCE OSCILLATOR. Operation of the ~2490 is dependent on the format in which the sectors of the disk are written. The principal requirement is the provision of an adequately long synchronization field prior to valid data. For the ~490, this field must contain an all "zeros" (NRZ) data pattern for a minimum of 32 data bit intervals (NRZ) between assertion of READ GATE and the beginning of valid data (including address marks). Such a format as is suggested in the ST506 interface specifications is suitable. With the exception of the provision for leading "address marks," the format suggested in ESDI interface documents is also suitable. MFM & 2,7 DECODER - Translates the encoded RZ READ DATA into decoded NRZ DATA OUT before sending it on to the controller. The CONTROL LOGIC block will determine if the MFM decode or 2,7 decode algorithm is to be used. MISSING CLOCK GENERATOR (MFM) -In MFM this block allows the CLOCK transition in the 6th the ID byte" A1" to be stripped out before being as write data to the disk. This block is controlled controller. mode, bit of sent out by the Read When not writing, the internal PLL remains phase and frequency locked to the REFERENCE OSCILLATOR input until the READ GATE input is asserted by the controller. When ADDRESS MARK enable is asserted without asserting READ GATE or WRITE GATE, the ~2490 looks for the DC erased gap which should be at least 16 bits long. After detecting 16 bits of DC erased gap, a pulse appears at ADDRESS MARK FOUND lead at the first flux transition on the READ DATA lead. This pulse disappears with the arrival of the second pulse on the READ DATA lead. It is assumed, that this flux transition is the first bit of the encoded zero sync-field. ADDRESS MARK ENABLE should be disabled at this point and READ GATE should be asserted. ADDRESS MARK ENABLE and READ GATE should not be asserted at the same time. DIGITAL PRECOMP - Four values of precompensation delays can be selected through two digital inputs. The precompensation written is dependent on the bit position in the write data stream. Its purpose is to cause a bit to be written early or late to offset the effects of bit-crowding (peak shifting) of closely spaced flux transitions on the disk. The four values of precompensation allowed are selectable between 0%, 5%, 10% and 15% of the VCO clock period. ANALOG PRE-COMP - Works with the Digital Precomp block to actually inject the early or late write-time for a given WRITE DATA transition. Functional Description As discussed before, assertion of READ GATE is presumed to occur during the PLO sync portion of the track format. At the assertion of READ GATE, the PLL changes to phase lock mode. It enters a "fast acquisition" mode The ~2490 can reside in either the disk controller or the drive itself. When it resides in the controller, the interface signals are compatible with the industry standard ST506 Figure 3 READ/REF Clock Output Timing During Read Sync-up at the Time 16 Zeros Have Been Decoded in the Preamble Sync Field. R~GA~ -,~ ___________________________________________________ REFOSC (INPUT) (INTERNAL IF CLOCK) READ/REFCLOCK (OUTPUT) 5-43 J,LA2490 and attempts to lock on to the incoming MFM (or 2,7) RZ READ DATA pulses using pattern sensitive phase discrimination and fast loop dynamics. The j.lA2490 makes the important assumption that the pattern written in this field represents encoded zero data bits. WRITE CLOCK following the assertion of WRITE GATE. Prior to clocking out the first encoded data bit, an encoded zero pattern (preset internally) is clocked out for an integral number of WRITE CLOCK intervals (aSSOCiated with internal processing, 7 clock periods for MFM and 9 clock periods for 2,7). See Figure 4. When lock is achieved and 16 successive zero data bits have been decoded, the internal PLL switches to "slow track" mode in preparation for encountering the unique address mark byte. NRZ READ DATA OUT lead (which was high until now) switches to the decoded output pattern and READ/REFERENCE CLOCK output is switched from the READ/REFERENCE CLOCK to the PLL's clock. See Figure 3. The alignment of encoded RZ WRITE DATA pulses with respect to the internal VCO clock is modified by the j.lA2490 according to precompensation rilles shown in Table 1a. The amount of precompensation is one of four values (including zero) set by the state of the two PRECOMPENSATION SELECT inputs. The actual precompensation value is given in Table 1b as a percent of the oscillator period. The percentages are ± 0%, ± 5%, ± 10%, and ± 15% of the 2f clock. For MFM, the address mark is fixed internally as "A1" (HEX) or 10100001 where the clock pulse associated with bit 6 is not present. "A1" FOUND, a pulse from the j.lA2490 to the controller, is asserted at the rise of the VCO CLOCK associated with bit 6 of the address mark byte and is reset at the fall of the VCO CLOCK. For MFM, unique address mark bytes may be written by supplying an NRZ data stream representing "A1" (HEX) and asserting the WRITE MISSING CLOCK line at the fall of WRITE CLOCK for bit 1. See Figure 5. WRITE MISSING CLOCK must be negated at the fall of WRITE CLOCK for bit 8 of the "A 1" byte. This suppresses the normal "clock" transition for bit cell 6. The assertion or deassertion of WRITE MISSING CLOCK line does not have to be synchronous with the WRITE CLOCK. The level of WRITE MISSING CLOCK SIGNAL does not have any effect on the operation of j.lA2490 in 2,7 mode. NRZ DATA OUT and CLOCK are supplied continuously thereafter by the j.lA2490 until negation of the READ GATE signal by the controller. At that point the PLL is resynchronized with the REFERENCE OSCILLATOR and the reference clock is presented at the READ/REFERENCE output. Writing proceeds continuously until negation of WRITE GATE. Only the transitions (or lack thereof) associated with the WRITE DATA bit valid at the last rise of WRITE CLOCK will be written. Note that because of the aforementioned internal processing delays the writing of the last flux transitions will occur seven clock intervals for MFM (or nine clock intervals for 2,7) after the negation of WRITE GATE. Null bits appended to the controller write data stream allow for the finite turn-off time of write current. Write Write operations are begun at the assertion of WRITE GATE by the controller. The PLL remains phase and frequency locked to the REFERENCE OSCILLATOR input all the time during the WRITE MODE. WRITE CLOCK must be synchronized to the READ/REFERENCE CLOCK and the jitter should be less than ± Y4 of a period for reliable data transfer. The internal clock will be realigned to the write clock to assure reliable data transfer. WRITE DATA is sampled for processing on the first rising edge of Figure 4 Write Data Transfer Timing WRITE CLOCK WRITE DATA (INPUT) WRITE GATE (INPUT) I~--------------~------------I+f..--INTERNALLY PRESET ENCODED ZERO PATTERN ENCODED WRITE DATA HZ WRITE DATA (MFM OUTPUT) 5-44 MA2490 Figure 5 Missing Clock Generation BIT POSITION 6 o "AlII DATA WRITE MISSING CLOCK -, I~. ________________ r ~ ENCODED PATTERN ENCODED PATTERN WITH DROPPED CLOCK CDCDCDCDCDCDCDCD C = CLOCK TIME POSITION D - DATA TIME POSmON Recommended Operating Conditions Symbol Condition Characteristic Vcc Supply Voltage Min Typ Max Unit 4.75 5.0 5.25 V Vcc = 5.0 V Icc Supply Current 200 TA Ambient Temperature fOATA Input Data Rate TREF Reference Oscillator Clock Period 40 WREF Width of Reference Oscillator Clock 10 TWFO Width of Encoded RZ Data Pulse 0 25 mA 70 C 25 Mbps ns ns Y2T ref TRZO Pulse Width of RZ Read Data 10 5-45 ns JLA2490 Electrical Characteristics TA = 25°C, Vee = 5.0 V, unless otherwise specified. DC Characteristics Symbol Characteristic Condition Min Typ Vee - 2.0 Vee - 1.6 VOH Output Voltage HIGH Vee = Min, IOH = Max VOL Output Voltage LOW Vee = Min, IOL = Max IIH Input Current HIGH VIH V 80 IlL Input Current LOW VIL = 0.4 V 195 IOH Output Current HIGH IOL Output Current LOW VIH Input Voltage HIGH VIL Input Voltage LOW = 2.7 Max Unit 0.5 V V !1A !1A !1A -800 10 JJA V 2.0 0.8 V AC Characteristics Condition Min Max Unit TLock R Positive input transitions after Read Gate· goes LOW Gate not connected to VCO capacitor 32 TBD Ref Clock Period TLock w Positive input after Read Gate goes HIGH until PLL locks to reference oscillator Gate not connected to VCO capacitor 16 TBD Ref Clock Period Decode MFM Number of clock cycles required until output RZin NRZ out MFM 1 Ref Clock Period Decode 2,7 Number of clock cycles required until output (2,7) 5 Ref Clock Period Encode MFM Number of clock cycles accompanying input data to encoded write data NRZin RZout MFM 7 Ref Clock Period Encode 2,7 Number of clock cycles accompanying input data to encoded write data (2,7) 9 Ref Clock Period KI Charge Pump and Filter Gain n = number of VCO cycles between Data Bits, MFM: 1";;n";;3 2,7: 2";;n";;7 Symbol Characteristic Typ Slow 5 21TnGjR eps Fast 5 21TnC,Reps VControl II Rep! ±400 Differential Voltage Swing of Charge Pump 5-46 Amps! radian mV MA2490 Electrical Characteristics (Cont.) T A = 25°C, Vee = 5.0 V, unless otherwise specified. AC Characteristics Symbol Characteristic Condition Min Typ Measured from filter output Unit Max Kyco VCO Gain Constant fMAX YCO Maximum VCO Frequency fyeo VCO Center Frequency Tolerance ±30 fTEMPCO VCO Center Frequency Temperature Coefficient -5 Radians/ sec-volt 0.5 "-'Vco 70 MHz % %/oC External Component Selection Symbol Characteristic Min Capacitor1 Typ Max Unit kn kn Cyeo VCO Frequency Set Rcps Charge Pump Slow Resistor 0.7 5.0 50 RCPF Charge Pump Fast Resistor 0.7 5.0 50 Css Delay Capacitor2 Rss Delay Current Setting Resistor2 Notes 1. cvco -1/(2K) (fveo) 2. Delay TIme = Tveo/2 5.0 pF 10 0.1 Components pF kn 1.5 = (O.673)RssC.. Table 1a Precompensation Patterns 2,7 Precompensatlon Patterns Past MFM Precompensation Patterns Present Future Past Present Future +3 +2 +1 Write Bit -1 -2 -3 +2 +1 Write Bit -1 -2 0 1 1 0 0 0 0 0 0 0 0 0 ON TIME ON TIME EARLY LATE 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 ON TIME ON TIME EARLY LATE 0 0 0 0 0 1 0 1 1 0 1 5-47 1lA2490 path as possible to the chip supply or ground. The chip itself should be we" decoupled with the decoupling capacitors placed close to the chip. A" leads on the timing and filter components should be kept as short as possible. Table 1b PrecompensaUon Values Precomp. MSB Value LSB BIt Interval Shift % Of 2f Clock 0 0 1 1 0 1 0 1 ±O% ±5% ±10% ±15% A good ground plane should be used in the vicinity of the Data Separator Chip. Digital signals should be kept away from the vicinity of the Chip. Wire wrap configurations should be avoided for best performance. A" filter capacitors and single shot delay capacitors should be connected to the Vee lead. Table 2 2,7 Code Pattern Data A B 0 0 1 1 1 1 1 1 0 1 0 0 1 1 C Code D 8 7 6 5 1 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 1 0 0 1 0 1 0 0 4 VCO CapacItor 3 2 &0 40 0 0 0 0 0 0 0 1 0 VCO Freq MHz 25 20 15 10 5 50 40 30 20 10 CYCO VCO cap 12 18 25 39 85 pF pF pF pF pF - \ 0 0 Ca. Delay Cap R.. Delay Res 10 12 16 24 49 1.5 1.5 1.5 1.5 1.5 pF pF pF pF pF 1 CVCD - 2000 Ivco 1\ 0 0 I\" I' r---. 10 Table 3 Tabulated Values for VCO and SIngle Shot Data Rate Mbps \ \ 20 40 - ~ 100 80 &0 veo CAPACITOR-pF kn kn kn kn kn Delay Circuit Values &0 40 Recommended Charge Pump and Filter Component Values for 10 Mbps OperatIon. Cj - 0.47 /IF RI == 220 n Rep! = 5.1 kn Cp = 0.0047 /IF Reps = 5.1 kn ~ II I 30 ~ zUI :::I ..51 a: Layout PreoauUons A careful layout is required when attaching the critical timing components to the Data Separator. Connect the VCO capacitor and the Single Shot capacitor as close to the chip as possible. This will help cut down on the amount of noise picked up from other switching components nearby on the board that will affect the timing. The filter com~ ponents should also be placed as close to the chip as the layout wi" allow, with the returns making as short a 20 0 g \ \ C 1 ~~ ....... 10 o o _ ss - (1.34811vco Ass '1\ \ \ \ 1\ \ \ ~. I\. ~""""-O~~ ~"4!'''''' r-.... r- 10 20 30 Css-pF 5-48 -- 40 so JlA2490 Figure 6 ST506 ~---------------------INDEX------------------------~ t--------------------DRIVE SELECTED ENCDDED WRITE DATA ENCDDED READ DATA -------------------+1 1J.A2490 NRZ WRITE DATA DATA NRZ WRITE CLOCK SEPARATOR ADDRESS MARK ENABLE AND ENCODER I+------READ GATE ------I WRITE GATE-----i PRE·COMP.ENSATION VALUE PRE·CDMPENSATION VALUE DRIVE CONTROLLER ~-----INDEX-----~ CR0431DF 5-49 MA2490 Figure 7 ESDI \-----------DRIVESELECTED----------+I ~-----------------------INDEX----------------------~ NRZ WRITE DATA ENCDDED WRITE DATA ENCDDED READ DATA PRE-COMPENSATION VALUE PRE-COMPENSATION VALUE ADDRESS MARK ENABLE ADDRESS MARK FOUND CONTROLLER READ GATE WRITE GATE WRITE FAULT DRIVE 1+------- STEP --------------I DIRECTION TRACK ZERO ~------INDEX --------+I DRIVE SELECT 2 Typical Hook-up Diagram Vee Vee -=- Rss L Reps -=- ~ eveo 1:'f f '1p V Repf REFERENCE OSCILLATOR READ REFERENCE CLOCK READ GATE RZREADDATA NRZ READ DATA RZ WRITE DATA WRITE CLOCK NRZ WRITE DATA A1 FOUND WRITE GATE WRITE MISSING CLOCK ADDRESS MARK ENABLE ADDRESS MARK FOUND GND Vee MFM(2,7) SELECT PRE-COMPENSATION VALUE 5-50 J.LA2580 Winchester Disk Servo Preamplifier FAIRCHIL.D A Schlumberger Company Preliminary Linear Division Disk Drives Description Connection Diagram 8-Lead DIP and 50-8 Package (Top View) The !lA2580 provides termination, gain, and impedance buffering for the thin film servo read head in Winchester disk drives. It is a differential output design with fixed gain of approximately 250. The bandwidth is guaranteed greater than 30 MHz. The internal design of the /.lA2580 is optimized for low input noise voltage to allow its use in low input signal level applications. It is offered in 8-lead ceramic DIP, 10-lead Flatpak, and an SO-8 package suitable for surface mounting. • Low Input Noise Voltage, Typ 0.5 nV/YHz • Wide Power Supply Range (8_0 V to 13 V) • Internal Damping Resistors (1.0 kQ) NC -IN V+ NC -OUT v- + OUT Order Information Absolute Maximum Ratings Storage Temperature Range Ceramic DIP and Flatpak SO-8 Operating Temperature Range Lead Temperature Ceramic DIP and Flatpak (soldering, 60 s) SO-8 (soldering, 10 s) Internal Power Dissipation 1, 2 8L-Ceramic DIP 10L-Flatpak SO-8 Supply Voltage Output Voltage Differential Input Voltage +IN Device Code -65°C to + 175°C -65°C to + 150°C O°C to 70°C Package Code Package Description 6T KC Ceramic DIP Molded Surface Mount !lA2580DC !lA2580SC Connection Diagram 10-Lead Flatpak (Top View) • +IN 1.30 W 0.79 W 0.81 W 15 V 15 V ± 1.0 V NC - IN V+ NC -OUT V- + OUT NC NC Notes 1. TJ Max = 150·C for the 50-8. and 175·C for the Ceramic DIP and Flatpak. 2. Ratings apply to ambient temperature at 25·C. Above this temperature, derate the 8L-Ceramic DIP at 8.7 mW rc, the 10L-Flatpak at 5.3 mWrC, and the SO-8 at 6.5 mWrC. Order Information Device Code /.lA2580FC Package Code 3F Package Description Flatpak Description Of Lead Functions Name Description of Functions +IN -IN NC Positive Differential Input Negative Differential Input V- Negative Differential Supply with respect to Vcc. Positive Differential Output Negative Differential Output Positive Differential Supply with respect to Vcc No Connection +OUT -OUT V+ NC 5-51 MA2580 1lA2580 Electrical Characteristics TA=25 C, (V+)-(V-) =8.0 to 13.2 V, unless otherwise specified. Symbol Condition Characteristic n, Min Max Unit Rp=100 BW Bandwidth (3 dB) VI = 0.5 mVp.p RI Input Resistance 300 n CI Input CapaCitance 35 pF n, (V+)-(V-) = 12 V Typ Gain (differential) G 250 30 VI Input Dynamic Range (Differential) Rp=100 Is Supply Current (V+)-(V-) = 12 V tiNo Output Offset (Differential) Rs = 0, Rp = 100 Vn PSRR (V+)-(V-) = 12 V 28 n 600 Equivalent Input Noise BW=4.0 MHz Power Supply Rejection Ratio Rs = 0, f = 5.0 MHz 50 IlGIV Gain Sensitivity (Supply) 11 (V+)-(V-) ±10%, Rp=100 IlG/T Gain Sensitivity (Temp) TA = 25°C to 70°C, Rp = 100 CMR Common Mode Rejection (Input) f = 5.0 MHz Typical Application (Notes 1-4) V+ SERVO HEAD REO V- 65 Reo 0'"'''''' Notes 1. Leads shown for B-leed DIP. 2. Rea is equivalent loed resist""(l8. RL • Rea 3. R p - - RL + Rea 4. G-2.5 Rp Where Rp - value from Note 3 (above) in ohms. 5-52 MHz 1.0 mV pop 40 mA 600 mV nV/YHz 0.6 65 n 0.90 0.5 n 0.16 60 70 dB %IV °fi,I"C dB "" , '," ' " " " '" 18 MA 105 • MA30S MA30SA • MA376 Voltage Regulators FAIRCHILD A Schlumberger Company Linear Division Voltage Regulators Description Connection Diagram a-Lead Metal Package (Top View) The pA 105/305/305A/376 are monolithic positive voltage regulators constructed using the Fairchild Planar Epitaxial process. Applications for these devices include both linear and switching regulator circuits with output voltages greattlr than 4.5 V. These devices will not oscillate when confronted with varying resistive and reactive loads and will start reliably regardless of the load within the ratings of the circuit. They also feature fast response to both load and line transients. Used independently, the pA105/305 will supply 12 mA, the pA305A, 45 mA and pA376, 25 mAo The pA 105 is specified for the extended temperature range of -55°C to + 125°C. The pA305/376/305A are specified for O°C to +70°C operation. The pA105/305/305A are in an 8-lead TO-5 package and the pA376 is available in the space and cost saving DIP. REG OUT BOOSTER FEEDBACK OUT COMMON Lead 4 connected to case. • Low Standby Current Drain • Adjustable Output Voltage From 4.5 To 40 V • High Output Currents Exceeding 10 A With External Components • Load Regulation Better Than 0.1%, Full Load With Current-Limiting • DC Line Regulation Guaranteed At 0.03%/V • Ripple Rejection Of 0.01%/V • Available In Extended Temperature Range Order Information Device Code pA105HM pA305HC pA305AHC Package Code 5W 5W 5W Package Description Metal Metal Metal Connection Diagram a-Lead DIP (Top View) Absolute Maximum Ratings Storage Temperature Range Metal Can Molded DIP Operating Temperature Range Extended (pA 105) Commercial (pA205, pA305A, pA376) Lead Temperature Metal Can (soldering, 60 s) Molded DIP (soldering, 10 s) Internal Power Dissipation 1,2 8L-Metal Can 8L-Molded DIP Input Voltage pA 105, pA305A pA305, pA376 Input/Output Voltage Differential -65°C to + 175°C -65°C to + 150°C CURRENT LIMIT REG OUT BOOSTER COMP SHUTOOWN OUT -55°C to +125°C UNREGIN COMMON 1.00 W 0.93 W FEEDBACK REF BYPASS Order Information Device Code pA376TC 50 V 40 V 40V Notes 1. TJ Max = 1.50°C for the Molded DIP, and 175°C for the Metal Can. 2. Ratings apply to ambient temperature at 25°C. Above this temperature, derate the 8L·Metal Can at 6.7 mWrC, and the 8L·Molded DIP at 7.5 mWrC. 6-3 Package Code 9T Package Description Molded DIP p.A 105 • p.A30S p.A30SA • p.A376 Equivalent Circuit .------_t_-------......- -......- UNREGULATED IN R10 600Q BOOSTER OUT +-w.........l - - - CURRENT LIMIT ~--- REGULATED OUT +-__,._---- ~~~~nON ::I--+-t---4-- FEEDBACK .......- - t - - - + - - - + - - - - REFERENCE BYPASS .......~-~-~-------+--~------COM~ EQOO620F ~105 Electrical Characteristics TA = 25°C unless otherwise speeified 1 Symbol Characteristic Condition Min Typ Max Unit VIR Input Voltage Range 8.5 50 V VOR Output Voltage Range 4.5 40 V VI-VO Input/Output Voltage Differential VR LINE Line Regulation VR LOAD Load Regulation2 3.0 30 VI-VO < 5.0 V 0.025 0.06 VI-VO> 5.0 V 0.015 0.03 TA = 25°C 0.02 0.05 TA = 125°C 0.03 0.1 TA=-55°C 0.03 0.1 0.003 0.02 0.3 1.0 1.7 1.81 O 0.1 f.LF 0.002 TA=25°C, 6-4 225 300 V %/V % %/V % V % 375 mV IlA 105 • IlA305 IlA305A • IlA376 /JA 105 (Cont.) Electrical Characteristics TA Symbol = 25°C unless otherwise specified 1 Characteristic Condition ISCD Standby Current Drain VI = 50 V S Long Term Stability of FBSV TJ=125°C Min ITA = 25°C For End Point Measurement Typ Max Unit 0.8 2.0 mA 0.1 1.0 %/1000 hrs Typ Max /JA305A Electrical Characteristics T A = 25°C unless otherwise specified 1 Symbol Characteristic Condition Min Unit VIR Input Voltage Range 8.5 50 V VOR Output Voltage Range 4.5 40 V VI-VO Input/Output Voltage Differential VR LINE Line Regulation VR LOAD Load Regulation 3.0 30 VI-Vo<5.0 V 0.025 0.06 VI - Vo > 5.0 V 0.Q15 0.03 O 0.1 IlF TA = 25°C, 0.4 0.02 0.005 10Hz < f < 10kHz I CREF = 0 n, 0.03 0.003 V %/V 225 ITA = 25°C For End Point Measurements 300 375 mV 0.8 2.0 mA 0.1 1.0 %/1000 hrs /JA305 Electrical Characteristics TA = 25°C unless otherwise specified 1 Symbol Characteristic Condition Min Typ Max Unit VIR Input Voltage Range 8.5 40 V VOR Output Voltage Range 4.5 30 V VI-VO Input/Output Voltage Differential 3.0 30 VR LINE Line Regulation VI-Vo<5.0 V 0.025 0.06 VI-VO > 5.0 V 0.015 0.03 V %/V /JA 105 • /JA305 /JA305A • /JA376 JlA305 (Cont.) Electrical Characteristics TA = 25°C unless otherwise specified 1 Symbol VR LOAD Characteristic Condition Load Regulation 2 O~ IL ~ 12 mA Min Rsc = 10 Rsc = 15 Rsc = 10 tNI/!:No Ripple Rejection CREF = 10 !.IF, f = 120 Hz Ts Temperature Stability" of FBSV O°C ~ T A ~ FBSV Feedback Sense Voltage No Noise Typ Max Unit T A = 25°C 0.02 0.05 % T A = 70°C 0.03 0.1 T A = O°C 0.03 0.1 0.003 0.02 0.3 1.0 1.7 1.81 + 70°C 1.63 I 10Hz ~ f ~ 10kHz CREF = 0 ICREF n, VCLS Current Limit Sense VoltageS ISCD Standby Current Drain VI =40 V S Long Term Stability of FBSV TJ = 125°C JlA376 Electrical Characteristics O°C Symbol n, n, n, ~ Rsc = 10 Vo=O V > 0.1 0.005 % V % 0.002 !.IF 225 T A = 25°C %/V ITA = 25°C For End Point Measurements 300 375 mV 0.8 2.0 mA 0.1 1.0 %/1000 hrs TA .;;; 70°C Characteristic Condition Min Typ Max Unit VIR Input Voltage Range 9.0 40 V 5.0 37 V VOR Output Voltage Range VI-VO Input/Output Voltage Differential VR LINE Line Regulation VR LOAD Load Regulation 3.0 O°C ~TA ~ 0~IL~25 0.03 70°C mA Rsc=O Ripple Rejection VCLS Current Limit Sense Voltage ISCD Standby Current Drain VREF Reference Voltage V %/V 0.1 Rsc = 0 Rsc= 0 !:J.VI/!:No 30 TA = 25°C n, n, n, TA = 25°C 0.2 TA = 70°C 0.5 TA = O°C 0.5 f = 120 Hz, TA = 25°C 0.1 %/V 2.5 mA 1.80 V 360 VIN = 30 V, TA = 25°C 1.60 1.72 % mV Notes 1. These specifications apply for input and output voltages within the ranges given, and for a divider impedance seen by the feedback terminal of 2.0 kn, unless otherwise specified. The load and line regulation specifications are for constant junction temperature. Temperature drift effects must be taken into account separately when the unit is operating under conditions of high dissipation. 2. The output currents given, as well as the load regulation, can be increased by the addition of external transistors. The improvement factor will be roughly equal to the composite current gain of the added transistors. 3. With no external pass transistor. 4. Temperature stability is defined as the percentage change in output voltage for a thermal variation from room temperature to either temperature extreme, 6-6 IlA 105 • IlA305 IlA305A • IlA376 Typical Performance Curves 1 ~ ~ ~ '.0 ....~,.:::... ...... T1 = ,Joc 0.0' -~ •••.•....••.••....•• ••••••• ~-f---r--+·-···-··~·~.~..-.. ~T~ 0.02 ~ ~-f---r--+----4---+..-"..•..,j.---+---I ........ TA:::: -55°C 5 ........ 5o O.031--+--+--+--l--+--+----~-i -RSr Short Circuit Current vs Temperature Current-Limiting Characteristics Load Regulation ~ll ~ 0.6 I:; I:; 0 w 0.4 > ~w iw t!'~ : ~ ru ,--- O, Rs~ = 0.04 0~-.l-.....J,-....I..-...1'O,-..L-,.LS-..L----l 20 00 'r a; a; :> - ~}-- ......... ...0a; 30 0 en '0 .. 40 r.... t--.... . . . . r--. W"f...""" ......... Rr=I20~ r--. ~ r--.... 20 -75 -50 -25 OUTPUT CURRENT-mA LOAD CURRENT-mA Rsc = 10 Q f' t--.,!'sc = 'S" :J: Q 20 .... t:: :> u a; ! ! '0 ......... 30 u i l - 'fi- II : ~t- ~+, - 0.2 a; .. I :: 0 .. . E "~ > '--;f- - 1\ > I w 0.8 25 50 75 100 125 150 TEMPERATURE-oC PC09060F I ~ -0.021---+-"1"',"":"+''-"-,"'"'!'~::t-~~I--±=--I ~ '\ \. \ ' •••••TA--SSOC ,, ~ .~. g -O.06I--+--+--+H--+---Hr---+----i:--1 ~ "~ !i:J ...z 1 t--+:--! a: a; -0.081---t-t-1-+c+--I-tiTA= 126°C \ 'r--... .......... ......... 2.2 o 2.0 25 50 75 100 125 150 ~ ~ 1'-.. 0.0 2 r---....: \ , Standby Current Drain vs Input Voltage ~ g; ~o.oo 2 I- CREF = 10 /-t F 1 f;3!o 1jHZI 0.00 100 '.2,---,---r-....,-...,...-,.---.--,----, '0 125 1 ,.,\-.....j--+-+---l---+--+-kod ~ I EF - "~ ~o.ooS 75 .. 0.05 w 0.0 /" """;;;:::: 20 '0 5 ~ OUTPUT VOLTAGE-V = ~ V TEMPERATURE-OC 2.4 Yo 10V TA=25°C_ ~ ....V so ...... , -'. YoI= 4.SY- 25 ........ illa; Supply Voltage Rejection vs Input/Output Voltage Differential o. 8 6 ~ ....... TEMPERATURE-oC Minimum Input Voltage vs Temperature 50-25 I"--. I'.... u -75 -50 -25 - 75 ....... :> 0.2 V \ ~ 2.8 I w ~ 2.6 w 0.3 LOAD CURRENT-mA ./ 3.0 0.5 w en zw 0.4 en ~=wc, RlIl1';'=2~kQ Rl=l.11 Yo I I lo~5.0mA- > \ ~ > I w 0 .... III -0.04 ~T-A.j.=-,..-+o-c-'.\cT.--+----4t---+-",,"+--l ~ 3.2 0.6 J ROr 'j"- "Y':-.. if. Optimum Divider Resistance Values Current Limit Sense Voltage vs Temperature Load Regulation 20 =0 p.F 1l~ TA ....... L--1__-b~.~'+.__~~t-=~25~O~C~~~__~ 0.9 . = -ssoc ......................... . '.0 I I .·6 INPUT/OUTPUT VOLTAGE OIFFeRENTlAL-V 6-7 W J..-f-t i{'" ••.•.••.••.. TA = 125"C ............................ ....... O··,l:O-.L-20L-L--30 L..L--' ..L..L-.J .. INPUT VOlTAGE-V • IlA 105 • IlA305 IlA305A • IlA376 Typical Performance Curves (Cont.) Regulator Dropout Voltage Minimum Output Voltage vs Temperature Transient Response ~'-"-'--'I--'R-SC-=~'0-Q' 4.5 > I w .... .~... •••• ...... ......r . · IL = 2omA=+-_f--l ······~ ·~ ••• ~L=10mA -=.. P',,*""'""I •••• ..... ··J,o:r·;:••• IL =5.0mA !l"g .. / 4.0 3.5 V ,/ !; .... :> 0 ....v 3.0 •••••••• ""'::75=---±50=--""2'=5-+--:!25=-"'50!::---:O75"-"'100~""'!'25 2.5 -75 -so TEMPERATURE-oC 0 ~ 1~.Y.... =r4 1-_-f-_-+_OUT6~~:~~~AGE -401--+--+--1--+--+---1 w " ~ g I /' - 25 -25 50 75 100 ~ ~ 1.00 1-+--t.....I-+-+-+"'I"t..--k--+-l \ fA . ~ ffi g.... 0.751-+---+-t-+----I-+--*~,-j""':.+----1 TA = 25"C--:- ~O TA = ere 0.50 f-+----I-+-+----I-+--I+-+--i-<-+--l ID 3~ 0.251-+----1-+-+----1-+-*+-:-++---1 "' § 10 30 0 > 1.70 0 j$ 1.65 1.60 I.... i 15 25 20 30 /' 1/ V 10 l Minimum Input Voltage vs Temperature I. IO:1i6 5.0mA- Vo 7.3 '" 15 '"f-" ~ J..- ~ 5.0Iv_ 40 20 25 ............. 0.300 ::J - 10.250 o CJ 6.9 g 6.8 ~ 6.7 '" 6.6 j$ I Iis: ,/ V 0 _ _ CL.= O/-tF !l" 0 ........ CL=l.o'~F w ...... V 400 I > !; l!: LOAD If......r . :> 0 25 50 70 AMBIENT TEMPERATURE-"C -400 6.4 25 50 70 AMBIENT TEMPERATURE_oC 6 .. 8 av, = 5.0 vVo = 10V DEVIATION I w -40 6.5 0.200 ~ 'O~~~~T VOL~AGE_ 0 /' 35 Rsc = 10 Q 1\ LINE z 7.0 fo- 30 I > E 7.1 ! - Vo=5.0V Transient Response 7.2 ...... ~- INPUT YOLTAGE-V OUTPUT CURRENT-rnA Current Limit Sense Voltage vs Temperature .1 Vo = 10 V 1.75 z LOAD CURRENT-rnA _...... 1.95 1.80 II: 1.50 20 _LI25"~ 1.90 1.55 l""- I'--- ~~o ~~ Standby Current Drain vs Input Voltage E = 70"c-1-1 ~ au 0.350 = 10 Q : -400~0-~-~'~0-~--2=0~-~~3~0 125 1.95 g ::~ INPUT VOLTAGE Current Limiting Characteristics 'i j$ Rsc I--+'~-O..-A...-~.t--+-...-..-...+.~O =J'.~.~ .... 2.00 ~ OAOO CL = 0 f.l-F ••••••. CL = 1.0 J.tF 400 TEMPERATURE-OC Load Regulation > Vo •••:=. -';"~"F;;;;;f~-t'l _ ~ Typical Performance Curves for IlA376 10 ~ LINE I / / 1--+--+--II---tIlV, = 5.0V- :e 0 I I Rsc = 10 Q = 20mA INL = 1.0mA Vo = 10V 'FL l\...... ......... 1.. ...... INPUT. VOLTAGE I I 10 20 TIME-p.s 30 MA 105 • MA305 MA305A • MA376 Typical Performance Curves for J.IA376 (Cont.) Regulator Dropout Voltage 3.0 '2.3 r--r-,r--r--r-r-...,---,--,--r-. v'o ,; .0J 12.21--+-I-I+--+-1--t- Rsc = 10 Q- '2.• 1--+-I-I-l--+-1-+-+-+-+-l IL=20mA > ~ ~ 12.01-+-1-+\\-+-1-+-+-+--+-l 11.9I---F=i""'''I-..1O.r-=-+-r-....-II-+--+-+--l ~ l1.81---t.=I:::-:+-+-I-~""'::-+--+-i i ..... 1··-;;...::····.... 11.7 11.6 - IL"" lOrnA I .= 5.0 mA 11.5 Supply Voltages Rejection vs Input/Output Voltage Differential Optimum Divider Resistance R.I= J.11 lvoikQJ-- 2.8 R2=~ ell 2.7 ~ 2. 6 z 2.5 is ......... 2.9 I •.•••••••• ". 11.4 1--+-1-+-+-+-+--+-+--+-1 ~ '" g 2.3 '\ • 5 >0.015 ~ '0 15 \ "\ r-... l- t- iil 0.010 20 25 30 OUTPUT VOLTAGE-V TEMPERATURE-OC TA Ct!Ef : ~2:FHZ_ t '{. r---t-- 2.0 11.3 L--'--'--'-2-5-'--'----:SO'--'--7=-'=0-.L-....I ~0.025 \ 2.2 2. 1°1':1 L , , ~.' Vo= 1.72 x (R2+ 1)- vo' =.~ v ' = 25°C - f30 :!O,020 m 2.4 a: ' 1 -'- 35 '0 .5 20 25 30 INPUTfOUTPUT VOLTAGE DIFFERENTIAL PC12040F Typical Applications Basic Positive Regulator With Current-Limiting RSC R. V'---"""1>---(:) R2 lOS <:c V~Esr;E mA 6-9 J.lA 117 • J.lA217 • J.lA317 3-Terminal Positive Adjustable Regulators FAIRCHILD A Schlumberger Company Linear Division Voltage Regulators Connection Diagram TO-3 Package (Top View) Description The !iA 117/ !iA217 / !iA317 are adjustable 3-terminal positive voltage regulators capable of supplying in excess of 1.5 A over an output voltage range of 1.2 V to 37 V. They are exceptionally easy to use and require only two external resistors to set the output voltage. Further, they employ internal current-limiting, thermal shutdown and safe-area compensation, making them essentially blowout proof. (C~~:~2 IN o The IJ.A 117 series serves a wide variety of applications including local, on-card regulation. They also make an especially simple adjustable switching regulator, and a programmable output regulator; or by connecting a fixed resistor between the adjustment and output, the !iA 117 series can be used as a precision current regulator. 0 10 ADJ Order Information Device Code • Output Current In Excess Of 1.5 A In TO-3 And TO-220 Packages • Output Adjustable Between 1.2 V And 37 V • Internal Thermal Overload Protection • Internal Short Circuit Current-Limiting Constant Temperature • Output Transistor Safe-Area Compensation • Floating Operation For High Voltage Applications • Standard 3-Terminal Transistor Packages • Available In Extended Temperature Range Package Code !iA117KM !iA217KV !iA317KC HJ HJ HJ Package Description Metal Metal Metal Connection Diagram TO-220 Package (Top View) Absolute Maximum Ratings Storage Temperature Range TO-3 Metal Can TO-220 Package Operating Junction Temperature Range Extended (!iA117) Industrial (!iA217) Commercial (!iA317) Lead Temperature TO-3 Metal Can (soldering, 60 s) TO-220 Package (soldering, 10 s) Power Dissipation Input/Output Voltage Differential -65°C to +175°C -65°C to + 150°C Lead 3 connected to case. -55°C to +150°C -40°C to + 150°C O°C to + 150°C Order Information Device Code !iA217UV !iA317UC 300°C 265°C Internally Limited 40 V 6-10 Package Code GH GH Package Description Molded Power Pack Molded Power Pack Equivalent Circuit V, 310 Q 310Q 230Q 120Q 5.6 kQ 6.3 V 125kQ 12AkQ 5.0 pF 135Q 5102 200Q 13 kQ 6.8 kQ 6.3 V 6.3 V 30 pF 105Q 3.6kQ S.8kQ ~ 190Q S.lkQ 110Q 12.5 kQ 4Q 0.1 Q Vo ADJUST J,LA 117 • J,LA217 • J,LA317 Electrical Characteristics TJ = -55°C to + 150°C for the J..I.A 117, -40°C to + 125°C for the J..I.A217, and O°C to +125°C for the J..LA317; VI-Vo=5.0 V; 10=0.5 A; IMax=1.5 A; PMax=20 W; unless otherwise specified. ~117/217 Symbol VR LINE VR LOAD Condition 1 Characteristic Line Regulation 1,5 Load Regulation 1 Min Typ Max TA = 25°C; 3.0 V 5.0 V 0.1 0.3 0.1 0.5 %Vo 10 mA< 10< IMax Vo<5.0 V 20 50 20 70 mV Vo>5.0 V 0.3 1.0 0.3 1.5 %Vo 50 100 50 100 !.LA 0.2 5.0 0.2 5.0 !.LA 1.25 1.30 1.25 1.30 V Adjustment Lead Current Llladi Adjustment Lead Current Change 2.5 V 25 V. 6-12 O/OVo 10 mA A %Vo dB 80 0.3 1.0 %/1000 hrs J,tA117· J,tA217· J,tA317 Typical Performance Curves Load Regulation 0.4 VI VO 0.2 Adjustment Lead Current Current Limit 10 = 15V = 10V 1 .1. ;I! ~ IL=O.5A ~ IL=I.SA- () -0.2 r- r-r-.. W ~ -0.4 ......... g ... ~ -0." / , TJ = 25"C ~ ......... 1 I IiW a: a: u "0 .- ,~:-.. '" i~ TJ f- TJ, 15 -0.8 -1.0 -75 o 0 50 25 0 25 50 75 o 100 125 150 10 2.5 !;~ .. z ...... 2.0 .. 0 ZW -to ~ > i'--. ~ l"1.5 i= L i'--. 0 25 ~ ~~ 1.240 1.0 A - <' IL .:::: =500mA ~ P>- r---. r-... i 200 lmA I""-- I'.... 50 75 . W .. 40 ~ 20 o 0 25 50 75 100 3.0 "... 2.5 W z 2.0 W 1.5 " 1.0 R ~ 80 ~ a: ... 60 = 1 I 15 20 25 OUTPUT VOLTAGE-V r-- T(= 150"C - 30 35 0.01 ,/ If::: r:::::. v 1"- TJ = 25"C 10 20 30 40 Ripple Rejection vs Frequency 100 Cadi . 80 / III ~ ~ Cacti I = 10JLF z 0 i3W ~THbJ~l!, TJ . ~ -..... ............ -WiTHOUT~ 40 1'\ \ ['\,.\ 1.0 10 IL VI Vo TJ = 500 mA = 15V = 10V = 25°C \"'- "'- 20 OUTPUT CURRENT-A 6-13 //" = 10 JLF 0: = = = 25°7111 0.1 60 OJ a: 40 o ;;: ~ INPUT/OUTPUT VOLTAGE DIFFERENTIAL-V VI = 15V _~O 10V 20 f 120 Hz IL 500 mA f == 120 Hz TJ == 25"C = -55°C / / / ~ ~ ". I\, o 11 o 125 150 100 u 0: 10 TJ 120 W ..J VO =5.0V o 4.0 0.5 iz WITHOUT Cadj 75 100 125 150 35 a: a: u 5 III "- 50 4.5 W U UI 80 OJ a: ~ ~z I"- ........ Ripple Rejection vs Output Current ...... 25 E 130 60 0 JUNCTION TEMPERATURE_oC " 1.220 -75 -50 -25 Cadi! 10p..J- I z § -75 -50 -25 JUNCTION TEMPERATURE_oC Ripple Rejection vs Output Voltage III / 40 35 40 . .......... JUNCTION TEMPERATURE-oC 100 45 5.0 1,.230 100 125 150 V V V . Minimum Operating Current ffi ......... iomj IL 1.0 -75 -50 -25 ,'.250 .....- V IL=1.5A :---- ,""-'L = t- c:::- ~ ... w 0 W = 100 mV -...... 50 UI 1.260 AVO ~!l; ,- - 30 _f-- l- 55 Z Temperature Stability 3.0 "a: OW 20 60 INPUT/OUTPUT VOLTAGE OIFFERENTIAL-V Dropout Voltage .!. ~ W ..J -...... JUNCTION TEMPERATURE-"C > = _55°C .~ 7~ l- .. ... ..... a. 65 10 '-. 100 1K 10K 100K FREQUENCY -Hz 1M 10M J.LA 117 • J.LA217 • J.LA317 Typical Performance Curves (Cont.) Output Impedance Load Transient Response Line Transient Response 10 I .0 ~~~:~g~ f--- IL = 1.5 CL :: 0 p.F; WITHOUT Cadj 500 rnA r--- TJ = 2S-C I 0 / I V / 5 0 ~ L I L I ./ = Cadi = 10 p~-:: -----100 \ Ct.= 1K I I 10K lOOK ~~ 1. 0 !:;~ O. 5 >~ '" '"'" ~(,) 0 10 o / -2.0 -3.0 30 40 .5 ft-~ 1\ " II CL / 1\1 = 0 ~F; WITHOUT Cadi V, = 15V Vo :: 10 V I-'NL = 50mA TJ = 25"C 1 il 0 I \ I- I-1\, 'L I-- \ 10 30 40 Basic Circuit Operation The JlA 117 is a 3-terminal floating regulator. In operation, the JlA 117 develops and maintains a nominal 1.25 V reference (VREF) between its output and adjustment terminals. This reference voltage is converted to a programming current (Iprog) by R1 (see Figure 1), and this constant current flows through R2 to ground. The regulated output voltage is given by: Typ OJC Max OJC Typ OJA Max OJA °C/W °C/W °C/W °C/W 2.3 3.5 35 5.0 40 Vo = VREF ( 1 + :~ ) + ladj R2 (2) Since the current from the adjustment terminal (ladj) represents an error term in equation 2, the JlA 117 was deSigned to control ladj to less than 0 V and keep it constant. To do this, all quiescent operating current is returned to the output terminal. This imposes the requirement for a minimum load current. If the load current is less than this minimum, the output voltage will rise. Since the JLA 117 is a floating regulator, it is only the voltage differential across the circuit which is important to performance, and operation at high voltages with respect to ground is possible. Co 1.0# R2 CI is required if regulator is located an appreciable distance from power supply filter. Vo = 1.25 V ( 1 + ~~ -1 .0 "c I 20 Vo AD.lUST I 0 n CL - 1.0 p.F; Cadi - 10 JLF TIME-J.C.s Standard Application ~F ~Q ... 1;( 1.0 .5 Typical Applications 0.1 "> ~~ .. .0 1M TO-220 (JlA317) C, 10~F Q Design Considerations To calculate the maximum junction temperature or heat sink required, the following thermal resistance values should be used: TO-3 c...1 = 1,'- - - FREQUENCY-Hz Package 1.0~F; -1.o - r-- Vo = 10V IL =50mA 2S C ~> -1.5 - 1-- TJ / / "- (\ 5 WITHOUT Cadi 10· 3 10 w :~ ) + ladj R2 (1 ) Since ladj is controlled to less than 100 pA, the error associated with this term is negligible in most applications. 6-14 J1A 117 • J1A217 • J1A317 Figure Basic Circuit Configuration t VI Although the J1.A 117 is stable with no output capacitance, like any feedback circuit, certain values of external capacitance can cause excessive ringing. An output capacitance (Co) in the form of a 1.0 J1.F tantalum or 25 J1.F aluminum electrolytic capacitor on the output swamps this effect and insures stability. Vo + R1 VREF ~ \ IlpROO ________~t Vo Protection Diodes When external capacitors are used with any IC regulator it is sometimes necessary to add protection diodes to prevent the capacitors from discharging through low current points into the regulator. --+ladJ VRel = 1.25 R2 V Typical Figure 2 shows the J1.A 117 with the recommended protection diodes for output voltages in excess of 25 V or high capacitance values (Co> 25 J1.F, Cadi> 10 J1.F). Diode D1 prevents Co from discharging through the IC during an input short circuit. Diode D2 protects against capacitor Cadi discharging through the IC during an output short circuit. The combination of diodes D1 and D2 prevents Cadi from discharging through the IC during an input short circuit. Load Regulation The J1.A 117 is capable of providing extremely good load regulation, but a few precautions are needed to obtain maximum performance. For best performance, the programming resistor (R1) should be connected as close to the regulator as possible to minimize line drops which effectively appear in series with the reference, thereby degrading regulation. The ground end of R2 can be returned near the load ground to provide remote ground sensing and improve load regulation. Figure 2 Voltage Regulator with Protection Diodes 01 1N4002 External Capacitors A 0.1 J1.F disc or 1.0 J1.F tantalum input bypass capacitor (CI) is recommended to reduce the sensitivity to input line impedance. Vo R1 D2 1N4002 + The adjustment terminal may be bypassed to ground to improve ripple rejection. This capacitor (Cadi) prevents ripple from being amplified as the output voltage is increased. A 10 J1.F capacitor should improve ripple rejection about 15 dB at 120 Hz in a 10 V application. ADJUST R2 6-15 Co t----------<>------1 Cadj IlA 138 • IlA238 • IlA338 5-Amp Positive Adjustable Regulators FAIRCHILD A Schlumberger Company Linear Division Voltage Regulators Description Connection Diagram TO-3 Package (Top View) The J,LA 1381 J,LA2381 J.LA338 are adjustable 3-terminal positive voltage regulators capable of supplying in excess of 5.0 A over a 1.2 V to 32 V output range. They are exceptionally easy to use and require only two resistors to set the output voltage. IN (C~Q2 A unique feature of the J.LA 138 family is time dependent current-limiting. The current limit circuity allows peak currents of up to 12 A to be drawn from the regulator for short periods of time. This allows the J.LA 138 family to be used with heavy transient loads and speeds start up under full-load conditions. Under sustained loading conditions, the current limit decreases to a safe value protecting the regulator. Also included on the chip are thermal overload protection and safe-area protection for the power transistor. Overload protection remains functional even if the adjustment lead is accidentally disconnected. o ADJ Order Information Device Code Package Code J.LA 138KM J.LA238KV J,LA338KC The J.LA 1381 J.LA2381 J,LA338 are packaged in standard TO-3 transistor packages. The J.LA338 is also available in standard TO-220 transistor packages. • • • • • • • • • • • 0 1 FT FT FT Package Description Metal Metal Metal Connection Diagram TO-220 Package (Top View) Guaranteed 7.0 A Peak Output Current Guaranteed 5.0 A Output Current Output Adjustable Between 1.2 V and 32 V Load Regulation Typically 0.1 % Line Regulation Typically 0.005%/V Internal Thermal Overload Protection Internal Short Circuit Current-Limiting Output Transistor Safe-Area Compensation Floating Operation for High Voltage Applications Standard TO-3 and TO-220 Transistor Packages Available in Extended Temperature Range Lead 3 connected to case. Order Information Absolute Maximum Ratings Device Code Storage Temperature Range TO-3 Metal Can TO-220 Package Operating Junction Temperature Range Extended (J.LA138) Industrial (J,LA238) Commercial (J.LA338) Lead Temperature TO-3 Metal Can (soldering, 60 s) TO-220 Package (soldering, 10 s) Power Dissipation Input/Output Voltage Differential J.LA338UC -65°C to + 175°C -65°C to 150°C -55°C to +150°C -40°C to + 150°C O°C to + 150°C 300°C 265°C Internally Limited 35 V 6-16 Package Code GH Package Description Molded Power Pack Equivalent Circuit r---~~------~------~------~--------~--~----------------------------------~------------~----~---~ R26 0.03 L--1---~L-------L---~--L---L---l---l---l---l-__L-------t------J-----J__-------------=======~==~===~ L--------------------------------------------ADJ ~ -..) ~ ...... Co) CO • ~ N Co) CO • ~ Co) Co) CO • IlA 138 • IlA238 • IlA338 Electrical Characteristics Unless otherwise specified, these specifications apply: -55°C';;;; TJ';;;; + 150°C for the ~A138, -25°C';;;;TJ';;;;+150°C for ~A238 and 0°C';;;;TJ';;;;+125°C for the M338, VI- Vo = 5.0 V and 10 = 2.5 A. Although power dissipation is internally limited, these specifications are applicable for power dissipation up to 50 W, for TO-3; 25 W for TO-220 J.lA138/J.lA238 Symbol Characteristic Conditions VREF Reference Voltage 3 3.0 V<'VI-Vo<'35 V, 10 mA<.lo<.5.0 A, P <.50 W, TA = 25°C VR LINE Line Regulation 1 TA = 25°C, 3.0 V<'VI-Vo<.35 V VR LOAD Load Regulation 1 J.lA338 Min Typ Max Min Typ Max Units 1.19 1.24 1.29 1.19 1.24 1.29 V 0.005 0.Q1 0.005 0.03 %/V %IV 0.02 0.04 0.02 0.06 TA = 25°C, 10 mA<.lo<.5.0 A Vo<.5.0 V 5.0 15 5.0 25 mV Vo~5.0 0.1 0.3 0.1 0.5 %Vo 10 mA <'10 <.5.0 A Vo<.5.0 V 20 30 20 50 mV ~5.0 0.3 0.6 0.3 1.0 %Vo 0.002 0.01 0.002 0.02 %/W 3.0 V<'VI-Vo<'35 V Vo VRTH Thermal Regulation Pulse = 20 ms VDO Dropout Voltage4 IL <.5.0 A, VI TA = 25°C ladi Adjustment Lead Current dladi Adjustment Lead Current Change Ts ~ 7.0 V V V 3.0 3.0 V 45 100 45 100 J.lA 10 mA<'IL<'5.0 A 3.0 V<'VI-Vo<'35 V 0.2 5.0 0.2 5.0 !LA Temperature Stability TMin <.TJ <.TMax 1.0 IL Min Minimum Load Current VI-Vo=35 V 3.5 IL Current Limit VI-Vo<'10 V 5.0 8.0 5.0 0.5 ms Peak 7.0 12 7.0 VI-Vo=30 V No Noise TA = 25°C 10 Hz<'f<'10 kHz dVI/dVO Ripple Rejection Vo = 10 V, f = 120 Hz Long Term Stability2 S I Without Cadi I Cadi = 10 J.lF T A = 25°C for Endpoint Measurements 5.0 3.5 10 8.0 mA A 12 1.0 1.0 0.003 0.003 %Vo 60 %Vo 60 60 % 1.0 75 0.3 60 1.0 75 0.3 dB 1.0 %/1000 hrs Notes 1. Regulation is measured at constant junction temperature. Changes in output voltage due to heating effects are taken into account sepatately 3. Selected devices with tightened tolerance reference voltage available. 4. Minimum VI- Vo at aoe ~ TJ ~ + 125°C is 3.0 V and at -55·C ';;;TJ';;; + 150·C is 3.2 V. by thermal regulation. 2. Since Long Term Stability cannot be measured on each device before shipment, this specification is an engineering estimate of average stability from lot to lot. 6-18 JlA 138 • JlA238 • JlA338 Typical Performance Curves Line Transient Response Load Transient Response I O.6 CL:;:;; D~F, C.dJ = Op.F /CL = 1.0 p.F, Cadi 0 = 10 J.l.F VI -0.2 "" II 0.0 ~ 10 VI = 15V Vo 10V INI.. 100 mA = = TJ 6.0 4.0 ~ ~ 30 20 2.0 0 V - -6.0 -'§ o 2. ~ -0.2 ~-+-+--I-+-l---+-+--I--j ~0-0.3 1---+-+--+-+-1---1--+--+--; i\ \ I 10 -0.4 '----'---'--'--'--'--'---'----'---' -75 -so -25 25 50 75 100 125 150 30 20 TEMPERATURE-oC - ~ 10' V, Vo IL T, 3.0 ~ r- f-.- Ii I-2.0 ~ 0 1!; 1.0 Output Impedance !:No= 100mV 1 3.0 ~ffi - Dropout Voltage 0 r ..... - ~-+-t--+-t--+-+--+-+--- ~ ~~ -0.1 IL-.f.~f~~*;:::::f::::t:::::3;::.:::r-l TlME-p,S Thermal Regulation 0 = 25~C Ii I- TIME-J.LS 0 ~ ~1 "1\.. J. -4.0 I I 0 2.0 ~~ !:iii ".- V l I I!: iti- 20 I-- tfiCL= 1.0~F,C." = 10~F_ 8° . I I VO:;:;; lOY -0.4 ....-IL = 50 mA TJ :;:;; 250C 0 .5 "> ~I I r---r-r---r-r--r-,--r-,-, 0.2 CL=OJ.l.F.Cadj=DJ,tFn w .4 2 Load Regulation 4.0 15V 10V 2.0 A 25°C I- ~ tr- r~~ r- r- c.., = O"F 1 I"""- ./ 1/ 1.0 -75 40 -so -25 0 25 50 75 100 II 10-3 125 150 10 100 TEMPERATURE-"C Adjustment Current ffi :I 55 V 50 II) :::0 35 -75 V ,/ ~ I / -so lOOK Minimum Operating Current 25 ..- 50 75 100 125 150 1.23 -75 / ~ ,/ L.o 1 :if ~ \: .... ... "F / I--I--T, = 125"C TJ :;:;; 2S0C,.-" •.•• ~ ~ a:: 1.24 TEMPERATURE-DC ..z. 1#' ~ao VV i I -25 ,/' 126 ~> 1.25 / 45 40 ....-, / / l- d c I 10K 1.27 I II: II: :::0 0 1K FREQUENCY-Hz Temperature Stability 60 !Zw c..,-l0~F VI = lOY Vo = 5.0 V 0 "1 '/ IL=5.0A -25 25 75 TEMPERATURE-OC 6-19 125 1.0 .... T'I- 55 o o 10 20 30 INPUT/OUTPUT DlFFERENTlAL-V 40 IlA 138 • IlA238 • IlA338 Typical Performance Curves (Cent.) Current Limit 12 Current Limit r-IOli .r'ta. "" 1.0A ~~ 10 INL-S.OA 8.0 c I = 3.0 A 8.0 III IEIII ::> 6.0 ::> 6.0 'NL a: a: a: a: " I \ ::> 4.0 0 2.0 V, -10V Vo = S.OV TJ = 25°C 1.0 10 o 100 IiIII iil a: .. ~ , § 10 ~ 15 ~ -- c.., "" 1D/J-F ~ VlaVO = 5.0 V IL=2.0A f 120 Hz Tad) 2S"C 0.1 .,... I 0 z g iil a: ~ W ~ 20 ~ OUTPUT VOLTAGE-V 20 ~ =20V 1 L II 1.0 1 10 100 TlME-ms Ripple Rejection 80 80 Cad) 80 Codl .,... = 10PP 1 = OPP .... V 60 I z 0::: ~ l- r... :1 Cadi i"- ~ 1 = 10"F \.. 0 r'\ 40 Cad) a: 40 = O"F, ~ ~ 20 = = M v,-VO V,-VQ o " ~ ~ o -" 2.0 ~ ~ Ripple Rejection 40 o '" ~~iV: ~,-VT r - f- "'- 20 4.0 I TJtI2S"~ ........ ~ U 6.0 " !; 100 , 80 " '"- III i::> ,\ ~" 8.0 'NL -0 A INPUT/OUTPUT DtFFERENTlAL-V Ripple Rejection 80 ~ ....--INL = 1.0 A I o nME-ms 100 C INL = ioOA \ I- 0.1 I 0 "\ ~Yt , - 10 ~' ~-INL= 3.0,A I- o z ......... , = 25°C ~-INL=OA ::> 2.0 .,... TJ ".. 4.0 12 PEAK CURRENT LIMIT DC CURRENT LIMIT ~~~ ~ j ~ - ~~~ 10 c Current Limit 12 o V, Vo f TJ lSV 10V 120 Hz 2S"C 20 \.. v, Vo IL TJ 1.0 0.1 OUTPUT CURRENT-A 6-20 10 '\ lSV 10V 2.0 A 25°C 100 1K FREQUENCY-Hz 10 K lOOK IlA 138 • IlA238 • IlA338 formance, and operation at high voltages with respect to ground is possible. Design Considerations To calculate the maximum junction temperature or heat sink required, the following thermal resistance values should be used: Typ eJC °C/W Package Max eJC °C/W Typ eJA °C/W Max eJA °C/W TO-3 1.0 35 TO-220 3.5 40 Po Max = TJ Max- TA eJC + eCA Load Regulation The !LA 138 is capable of providing excellent load regulation, but a few precautions are needed to obtain maximum performance. For best performance, the programming resistor (R1) should be connected as close to the regulator as • possible to minimize line drops which effectively appear in • series with the reference, thereby degrading regulation. The ground end of R2 can be returned near the load ground to provide remote ground sensing and improve load regulation. TJ Max TA or ---:--eJA Figure 1 Basic Circuit Configuration eCA = ecs + eSA (Without heat sink) Solving for TJ: TJ=TA+PO (eJC+ eCA) or = TA + POeJA (Without heat sink) V, (+R1 Vo --o;;;;-~VREF r L::-__ '-+t"PROG Vo Where: TJ TA Po eJA eJc eCA eCS eSA = Junction Temperature = Ambient Temperature = Power R2 1 Dissipation = Junction-to-Ambient Thermal Resistance = Junction-to-Case Thermal Resistance = Case-to-Ambient Thermal Resistance = Case-to-Heat Sink Thermal Resistance = Heat Sink-to-Ambient Thermal Resistance Figure 2 Voltage Regulator with Protection Diodes Typical Applications Basic Circuit Operation The I1A 138 is a 3-terminal floating regulator. In operation, the !LA 138 develops and maintains a nominal 1.25 V reference (VREF) between its output and adjustment terminals. This reference voltage is converted to a programming current (lprog) by R1 (see Figure 1), and this constant current flows through R2 to ground. The regulated output voltage is given by: Vo = VREF( 1 + :~) + ladiR2 + Co (1) External Capacitors A 0.1 !LF disc or 1.0 !LF tantalum input bypass capacitor (CI) is recommended to reduce the sensitivity to input line impedance. Since the current from the adjustment terminal (Iadj) represents an error term in equation 1, the I1A 138 was designed to minimize ladi and make it constant with line and load changes. To do this, all quiescent operating current is returned to the output terminal. This imposes the requirement for a minimum load current. If the load current is less than this minimum, the output voltage will rise. The adjustment terminal may be bypassed to ground to improve ripple rejection. This capacitor (Cadi) prevents ripple from being amplified as the output voltage is increased. A 10 !LF capacitor should improve ripple rejection by 15 dB at 120 Hz in a 10 V application. Since the I1A 138 is a floating regulator, it is only the voltage differential across the circuit which is important to per- 6-21 IlA 138 • IlA238 • IlA338 Figure 2 shows the J.LA 138 with the recommended protection diodes for output voltages in excess of 25 V or high capaCitance values (Co> 25 J.lF, Cadi> 10 J.lF). Although the J.lA 138 is stable with no output capacitance, like any feedback circuit, certain values of external capacitance can cause excessive ringing. An output capacitance (Co) in the form of a 1.0 J.lF tantalum or 25 J.lF aluminum electrolytic capacitor on the output swamps this effect and insures stability. Diode D1 prevents Co from discharging through the IC during an input short circuit Diode D2 protects against capaCitor Cadi discharging through the IC during an output short circuit. The combination of diodes D1 and D2 prevents Cadi from discharging through the IC during an input short circuit. Protection Diodes When external capaCitors are used with any IC regulator it is sometimes necessary to add protection diodes to prevent the capacitors from discharging through low current points into the regulator. Figure 3a Figure 3b Adjustable Regulator with Improved Ripple Rejection High Stability 10 V Regulator 15~ --,.--1 Rl V, 2.0kQ 5% 01 lN4002 (NOTE 2) C3 + Cl 1.0~F 10 ~F R2 1.5 kQ 1% LM329B + (NOTE 1) R3 2S7Q 1% Figure 4 Adjustable Current Regulator Figure 5 Simple 12 V Battery Charger Rl t--'\O."'24"'Q_...._ _ _ ~A _ 5.0 A R Q ...._ _ _ _. , 0.1 v, (NOTE 4) Rl 120Q -=-12 V R2 2.4 kQ R3 120 Q V-5.0 V TO -10 V Notes 1. Solid tantalum. 2. Discharges Cl if output is shorted to ground. 3. Rl ~ 240 12 for LM138 and LM238. (R2) 4. As - sets output impedance of charger Zo = Rs 1 + Use of Rs allows low charging rates with fully Rl charged battery. 5. The 1000 IlF is recommended to filter out input transients. 6-22 1 -= J.lA 150 • J.lA250 • J.lA350 3-Amp Positive Adjustable Regulators FAIRCHILO A Schlumberger Company Linear Division Voltage Regulators Description Connection Diagram TO-3 Package (Top View) The !lA 150/ MA250lJ,LA350 are adjustable 3-terminal positive voltage regulators capable of supplying in excess of 3.0 A over a 1.2 V to 33 V output range. They are exceptionally easy to use and require only two external resistors to set the output voltage. (C~S~T~2 IN A unique feature of the MA 150 family is time dependent current-limiting. The current limit circuitry allows peak currents of up to 6.0 A to be drawn from the regulator for short periods of time. This allows the !lA 150 family to be used with heavy transient loads and speeds start up under full load conditions. Under sustained loading conditions, the current limit decreases to a safe value protecting the regulator. Also included on the chip are thermal overload protection and safe-area protection for the power transistor. Overload protection remains functional even if the adjustment lead is accidentally disconnected. o ADJ Order Information Device Code FT FT FT Package Description Metal Metal Metal Connection Diagram TO-220 Package (Top View) Guaranteed 3.0 A Output Current Output Adjustable Between 1_2 V and 33 V Load Regulation Typically 0.1 % Line Regulation Typically 0.005%/V Internal Thermal Overload Protection Internal Short Circuit Current-Limiting Output Transistor Safe-Area Compensation Floating Operation for High Voltage Applications Standard TO-3 and TO-220 Transistor Packages Available in Extended Temperature Range Lead 3 connected to case Order Information Absolute Maximum Ratings Storage Temperature Range TO-3 Metal Can TO-220 Package Operating Junction Temperature Range Extended (MA 150) Industrial (MA250) Commercial (MA350) Lead Temperature TO-3 Metal Can (soldering, 60 s) TO-220 Package (soldering, 10 s) Power Dissipation Input/Output Voltage Differential Package Code MA150KM MA250KV MA350KC The MA 150/MA250/ !lA350 are packaged in standard TO-3 transistor packages. The MA350 is also available in standard TO-220 transistor packages. • • • • • • • • • • 0 10 Device Code MA350UC -65°C to + 175°C -65°C to + 150°C -55°C to + 150°C -25°C to + 150°C O°C to + 150°C 300°C 265°C Internally Limited 35 V 6-23 Package Code GH Package Description Molded Power Pack Equivalent Circuit .---~-----r----~------~----~--~----------~--------------r----------'---r---~ llImiLLf:UJ~~~==----~==-=-=:~ R9 RIO R12 180 4.1 k 72 RI3 5.lk RI4 12 k R26 0.03 <» '" .j>. $. ...... c.n c • $. N c.n C • $. Co) c.n c IlA 150 • IlA250 • IlA350 J..IA150/J..lA250 Electrical Characteristics Unless otherwise specified, these specifications apply -55°e;:;;;;; T J ;:;;;;; + 1500 e for the J..IA 150, -25°e;:;;;;; TJ ;:;;;;; + 150 0 e for the J..IA250, and ooe;:;;;;; TJ;:;;;;; + 1500 e for the J..IA350, VI- Va = 5.0 V and 10 = 1.5 A. Although power dissipation is internally limited, these specifications are applicable for power dissipation up to 30 W, for TO-3; 25 W for TO-220. Symbol Characteristic Min Conditions Max Units 1.30 V TA = 25°C 3.0 V u ~ --- -1.0 -7S 0 -2S 2S 75 TEMPERATURE-OC 6-27 12S 10 20 TlME-p.s 30 40 IlA 150 • IlA250 • IlA350 Typical Performance Curves (Cont.) Adjustment Current Dropout Voltage Temperature Stability 65 1.26 60 C .-- E ~w II: II: "u.... z 55 50 w 45 d 40 i! gs '" ", ! ....... 1.25 "~ > 1.24 /' V / V V V V I a: " 1.23 1.0 r.-+-+-+---+-t--r-I---t--l 35 1.22 30 -75 -25 75 25 -75 125 -25 25 75 125 -75 -25 25 75 TEMPERATURE-OC TEMPERATURE-"C TEMPERATURE-OC Ripple Rejection 100 80 ... - .I J ~C.dJ=10p.F CD J ~ '-.... 80 u w Cadj iil II: . w - = OJ.lF 40 it iE Vl~VO f o = 5.0 V = 500 mA = 120 Ml 20 r--1L !'J=2r o ~ 10 15 ~ ~ M ~ OUTPUT VOLTAGE-V Design Considerations Solving for TJ: TJ = TA + po(eJC + eCA) or = T A + poeJA (Without heat sink) To calculate the maximum junction temperature or heat sink required, the following thermal resistance values should be used: Package Typ Max eJC °C/W eJC °C/W TO-3 TO-220 Po Max = 3.0 TJ Max- TA eJC eCA = ecs + eCA or Typ eJA Max eJA °C/W °C/W Where: TJ TA Po = Junction Temperature = Ambient Temperature = Power Dissipation 1.5 35 eJC e JA = Junction-to-Ambient 4.0 40 eCA eCS eSA = = = = TJ Max TA -=-=~--'-' eJA + eSA (Without heat sink) 6-28 Thermal Resistance Junction-to-Case Thermal Resistance Case-to-Ambient Thermal Resistance Case-to-Heat Sink Thermal Resistance Heat Sink-to-Ambient Thermal Resistance 125 p-A 150 • p-A250 • p-A350 Typical Applications In operation, the !lA150 develops a nominal 1.25 V reference voltage, VREF, between the output and adjustment terminal. The reference voltage is impressed across program resistor R1 and, since the voltage is constant, a constant current 11 then flows through the output set resistor R2, giving an output voltage of (Figure 1) Vo = VREF ( 1+ :~) + ladjR2 Figure 1 Basic Circuit Configuration V, r (1) Vo= V.Edl + ~) I.dl R2 Since the 50 !lA current from the adjustment terminal represents an error term, the /JA 150 was designed to minimize ladj and make it very constant with line and load changes. To do this, all quiescent operating current is returned to the output establishing a minimum load current requirement. If there is insufficient load on the output, the output will rise. r Although the /JA 150 is stable with no output capacitors, like any feedback circuit, certain values of external capacitance can cause excessive ringing. This occurs with values between 500 pF and 5000 pF. A 1.0 /JF solid tantalum (or 25 /JF aluminum electrolytic) on the output swamps this effect and insures stability. External Capacitors An input bypass capacitor is recommended. A 0.1 /JF disc or 1.0 /JF solid tantalum on the input is suitable input bypassing for almost all applications. The device is more sensitive to the absence of input bypassing when adjustment or output capacitors are used, but the above values will eliminate the possibility of problems. Load Regulation The /JA 150 is capable of providing extremely good load regulation but a few precautions are needed to obtain maximum performance. The current set resistor connected between the adjustment terminal and the output terminal should be tied directly to the output of (usually 240 the regulator rather than near the load. This eliminates line' drops from appearing effectively in series with the reference and degrading regulation. For example, a 15 V regulator with 0.05 resistance between the regulator and load will have a load regulation due to line resistance of 0.05 n x 1L. If the set resistor is connected near the load the effective line resistance will be 0.05 (1 + R2/R1) or in this case, 11.5 times worse. n) The adjustment terminal can be bypassed to ground on the !lA150 to improve ripple rejection. This bypass capacitor prevents ripple from being amplified as the output voltage is increased. With a 10 /JF bypass capacitor 88 dB ripple rejection is obtainable at any output level. Increases over 10 /JF do not appreciably improve the ripple rejection at frequencies above 120 Hz. If the bypass capacitor is used, it is sometimes necessary to include protection diodes to prevent the capacitor from discharging through internal low current paths and damaging the device. n n Figure 2 shows the effect of resistance between the reguset resistor. lator and 240 n In general, the best type of capacitor to use is solid tantalum. Solid tantalum capacitors have low impedance even at high frequencies. Depending upon capacitor construction, it takes about 25 /JF in aluminum electrolytic to equal 1.0 /Jf: solid tantalum at high frequencies. Ceramic capacitors are also good at high frequencies, but some types have a large decrease in capacitance at frequencies around 0.5 MHz. For this reason, 0.01 /JF disc may seem to work better than a 0.1 /JF disc as a bypass. With the TO-3 package, it is easy to minimize the resistance from the case to the set resistor, by using two separate leads to the case. The ground of R2 can be returned near the ground of the load to provide remote ground sensing and improve load regulation. 6-29 IlA 150 • IlA250 • IlA350 Figure 2 Protection Diodes When external capacitors are used with any IC regulator it is sometimes necessary to add protection diodes to prevent the capacitors from discharging through low current points into the regulator. Most 10 fJ.F capacitors have low enough internal series resistance to deliver 20 A spikes when shorted. Although the surge is short, there is enough energy to damage parts of the IC. Voltage Regulator with Line Resistance in Output Lead V, R2 When an output capacitor is connected to a regulator and the input is shorted, the output capacitor will discharge into the output of the regulator. The discharge current depends on the value of the capacitor, the output voltage of the regulator, and the rate of decrease of VI. In the fJ.A 150, this discharge path is through a large junction that is able to sustain 25 A surge with no problem. This is not true of other types of positive regulators. For output capacitors of 25 fJ.F or less, there is no need to use diodes. Figure 3 Voltage Regulator with Protection Diodes 01 lN4002 The bypass capacitor on the adjustment terminal can discharge through a low current junction. Discharge occurs when either the input or output is shorted. Internal to the JJ.A 150 is a 50 n resistor which limits the peak discharge current. No protection is needed for output voltages of 25 V or less and 10 fJ.F capacitance. Figure 3 shows a JJ.A 150 with protection diodes included for use with outputs greater than 25 V and high values of output capacitance. I-_......-+-_-Vo V, Cl Vo = 1.25 V ( 1 + R2 iii) I.dj R2 01 PROTECTS AGAINST Cl 02 PROTECTS AGAINST C2 Typical Applications Temperature Controller Light Controller ~~------------'--Vo Rl 1.2 kQ HEATER R2 80Q 6-30 JJ.A 150 • JJ.A250 • JJ.A350 Typical Applications (Cant.) Precision Power Regulator with Low Temperature Coefficient Slow Turn-On 15 V Regulator V, V, Adjustable Regulator with Improved Ripple Rejection High Stability 10 V Regulator 15~-.....- - i V, - R1 2.0kQ 5.0% .....- - i R1 240Q 01 1N4003 + R2 1.5 kQ 1.0% (NOTE 3) C3 1.0"F (NOTE 2) R3 2.67 Q 1.0% Notes 1. Adjust for 3.75 V across RI 2. Solid Tantalum 3. Discharge CI if output is shorted to ground 6-31 JlA 150 • JlA250 • JlA350 Typical Applications (Cont.) 5 V Logic Regulator with Electronic Shutdown (Note 2) Digitally Selected Outputs v, t----~Vo V, 7.0 V - 35 V C2 0.1 ~F 1.0 kl> r-+--'VItv- TTL o to 30 V Regulator AC Voltage Regulator V, _ _ _- - I I - -.......- - V o 35V 1201> v..... r\. R2 6 V..... 3A rv 12 2.0kl> 'V 4002 1.2V 120\1 R3 6802 -10V Notes 1. Sets maximum Vo 2. Min output '" 1.2 V 6-32 4882 IlA 150 • IlA250 • IlA350 Typical Applications (Cont.) 5.0 A Constant Voltage/Constant Current Regulator R3 R2 250kQ 36V 0.2 5W Rl 33 t-1----------t-----------r------1--+~r__~~~-30V + C3 10~F I "::" (NOTE 1) R6 240Q R5 330kQ -6.0 V TO -15 V R7 220 RB B.OkQ VOLTAGE ADJUST ";" 12 V Battery Charger T012V BATTERY Noles 1. Solid tantalum 2. Lights in constant current mode 6-33 IlA 150 • IlA250 • IlA350 Typical Applications (Cont.) Adjustable Current Regulator 1.2 V - 20 V Regulator with Minimum Program Current 3.0 A Current Regulator Rl 1-...0.,,3,..2_--- ~TO 3.0 A 1--,....-~1) v,----I v, R2 20kQ R3 120Q CR03440F v-5.0 V TO -18 V Precision Current Limiter Tracking Pre-Regulator ,-+ ~ ~~"-M-' Vo II, R3 120Q R4 1.0 kQ CR03460F Noles 1. Minimum load current 4.0 mA 2. 0.4';;Rl';;120 n 6-34 OUT ADJUST p.A 150 • p.A250 • p.A350 Typical Applications (Cont.) Adjusting Multiple On-Card Regulators with Single Control (Note 1) Simple 12 V Battery Charger RS Vo 0.211 Vo 110 (NOTE 3) (NOTE 2) (NOTE 2) IN4802 + R2 2Akll Adjustable 10 A Regulator Current Limited 6.0 V Charger V, , CR03501F 110 9.OV",aov + 1000"F 1.1 kll (NOTE 4) 10011 4.5VTO 25 V 1.011 (NOTES) 5.0kll 5.0kll Notes 1. All outputs within ± 100 mV 2. Minimum load -10 mA ( A2 ) 3. As - sels output impedance of charger Zo = As 1 +Use of As allows low charging rates with fully AI charged battery. 4. 1000 IJ.F is recommended to filter out any input transients. 5. Sets peak current (2 A to 0.3 f!) 6-35 p.A 1524A • p.A2524A • p.A3524A Advanced Pulse Width Modulators FAIRCHILD A Schlumberger Company Linear Division Voltage Regulators Description Connection Diagram 16-Lead DIP (Top View) The p.A 1524A family of regulating PWM ICs have been designed to retain the same highly versatile architecture of the industry standard UC1524 (SG1524) while offering substantial improvements to many of its limitations. The p.A1524A family is lead compatible with "non-A" models and in most existing applications can be directly interchanged with no effect on power supply performance. Using the p.A1524A family, however, frees the designer from many concerns which typically had required additional circuitry to solve. 16 ERROR AMP -IN +SVVREF ERROR AMP +IN +VIN OSC/SVNC The p.A1524A family includes a precise 5.0 V reference trimmed to ± 1% accuracy, eliminating the need for potentiometer adjustments; an error amplifier with an input range which includes 5.0 V, eliminating the need for a reference divider; a current sense amplifier useful in either the ground or power supply output lines; and a pair of 60 V, 200 mA uncommitted transistor switches which greatly enhance output versatility. CUR LIM AMP +IN COLLECTOR B CUR LIM AMP -IN COLLECTOR A R,. EMITTER A Cor SHUTDOWN GND An additional feature of the p.A 1524A family is an undervoltage lockout circuit which disables all the internal circuitry except the reference, until the input voltage has risen to the turn-on threshold. This holds standby current low until turn-on, greatly simplifying the design of low power, off-line supplies. The turn-on circuit has approximately 300 mV of hysteresis for jitter-free activation. EMlTTERB COMPENSATION c001390F Order Information Device Code p.A1524ADM p.A2524ADV p.A2524APV p.A3524APC p.A3524ADC Other product enhancements within the p.A1524A family design include a PWM latch which insures freedom from multiple pulsing within a period, even in noisy environments; logic to eliminate double pulsing on a single output; and a 300 ns external shutdown capability. The oscillator circuit of the p.A 1524A family is usable beyond 500 kHz and is now easier to synchronize with an external clock pulse. • • • • • • • • The p.A 1524A is packaged, in a hermetic 16-lead DIP and rated for operation from -55·C to + 125·C. The p.A2524A and p.A3524A are available in either ceramic or plastic packages and are rated for operation from -25·C to + 85·C and O·C to 70·C respectively. • • • • • 6-36 Package Code 78 78 98 98 78 Package Description Ceramic DIP Ceramic DIP Molded DIP Molded DIP Ceramic DIP Fully Interchangeable With Standard 1524 Families PreCision Reference Internally Trimmed To ± 1% High Performance Current Limit Function Under Voltage Lockout With Hysteristic Turn-On Start-Up Supply Current Less Than 4.0 mA Output Current To 200 mA 60 V Output Capability Wide Common Mode Input Range For Both Error And Current Limit Amplifiers PWM Latch Ensures Single Pulse Per Period Double Pulse Suppression Logic 300 ns Shutdown Through PWM Latch Guaranteed Frequency Accuracy Available In Extended Temperature Range p.A 1524A • p.A2524A • p.A3524A Absolute Maximum Ratings Storage Temperature Range Ceramic DIP Molded DIP Operating Temperature Range Extended (IIA1524A) Industrial (1IA2524A) Commercial (1IA3524A) Lead Temperature Ceramic DIP (soldering, 60 s) Molded DIP (soldering, 10 s) Internal Power Dissipation 1,2 16L-Ceramic DIP 16L-Molded DIP Supply Voltage Collector Supply Voltage Output Current (Each Output) Reference Output Current Oscillator Charging Current -65·C to +175·C -65·C to + 150·C -55·C to +125·C -25·C to +85·C O·C to +70·C 300·C 265·C Notes 1. TJ Max - IS0·C for the Molded DIP, and 17S·C for the Ceramic DIP. 2. Ratings apply to ambient temperature at 2S·C. Above this temperature, derate the 16L-Ceramic DIP at 10 mwrc, and the 16L-Molded DIP at 8.3 mwrc. Equivalent Circuit 1--------- YRE. VIN-------~----------~ osc------, POWER TO INTERNAL CIRCUITRY COMP------~ -IN 1.0K2 +IN ~~~~~-----------------~~WN 10K2 f"" -IN Power Dissipation at TA = +2S·C ........................................... 1000 mW Derate above + SO·C ....................................................... 10 mW Power Dissipation at Tc = + 2S·C ........................................... 2000 mW Derate for Case Temperature above + 2S·C .......................... 16 mW rc rc 6-37 GNO 1.50 W 1.04 W 40 V 60 V 200 rnA 50 rnA 5.0 rnA IJA 1524A • 1lA2524A • 1lA3524A 1lA1524, 1lA2524A, 1lA3524A Electrical Characteristics T A = -55°C to O°C to + 125°C + 70°C for the iJA.1524A, -25°C to + 85°C for the iJA.2524A, and for the iJA.3524A, VI = Vc = 20 V, unless otherwise specified. j.lA3524A j.lA 1524A/j.lA2524A Symbol Characteristic Conditions I I Max Min 40 8.0 7.5 8.5 5.5 V 2.5 V to 40 V 6.0 Min Typ I Typ I Max Unit Turn-on Characteristics Vo Input Voltage Operating Range after Turn-on Turn-on Threshold 8.0 5.5 Turn-on Current VI Operating Current VI = 6.0 = 8.0 Turn-on Hysteresis1 40 V 7.5 8.5 V 4.0 2.5 4.0 mA 10 6.0 10 mA 0.3 0.3 V Reference Section = 25°C = 10 V to IL = 0 mA to Vo Output Voltage TJ VR LINE Line Regulation VI 4.90 V 5.0 5.05 5.0 5.10 10 20 10 30 mV 5.0 50 5.0 50 mV Temperature Stability1 Over Operating Range 20 50 20 50 mV los Output Short Circuit Current VREF = 0 V, TJ = 25°C 80 100 80 100 mA No Noise 1 10 Hz';;;f';;;10 kHz, TJ = 25°C VR LOAD Load Regulation 4.95 40 V Long Term Stability1 Oscillator Section RT = 2700 n, Initial Accuracy TJ = 125°C, Cr = 0.01 mF, TJ = 25°C 20 mA 40 1000 Hrs 20 50 43 45 /lVrms 20 50 mV 43 47 kHz unless otherwise specified 41 Temperature Stability1 Over Operating Temperature Range Minimum Frequency TJ = 25°C, RT CT = 0.1 mF = 150 kn, Maximum Frequency TJ = 25°C, RT CT = 470 pF = 2.0 kn. Output Amplitude 1 TJ Output Pulse Width 1 TJ = 25°C = 25°C TJ = 25°C 39 2.0 Ramp Peak Ramp Valley 40 2.0 140 500 % 120 500 Hz kHz 3.5 3.5 V 0.5 0.5 /lS 3.3 3.5 3.7 3.3 3.5 3.7 V 0.6 0.75 0.9 0.6 0.75 0.9 V Error Amplifier Section VCM = 2.5 V. unless otherwise specified. VIO(EA) Input Offset Voltage 0.5 5.0 2.0 10 mV liB Input Bias Current 1.0 5.0 1.0 10 110 Input Offset Current .05 1.0 0.5 1.0 /.LA /.LA 6-38 MA 1524A • MA2524A • MA3524A JlA1524, JlA2524A, JlA3524A (Cont.) Electrical Characteristics TA = -55°C to + 125°C for the JlA 1524A, -25°C to + 85°C for the JlA2524A, and O°C to +70°C for the JlA3524A, VI = Vc = 20 V, unless otherwise specified. IlA 1524A1IlA2524A Symbol Characteristic Conditions Min Typ Max !lA3524A Min Typ Max Unit CMR Common Mode Rejection VCM=1.S V to S.S V 60 7S 60 7S dB PSRR Power Supply Rejection Ratio VI = 10 V to 40 V SO 60 SO 60 dB Output Swing Minimum Total Range O.S Open Loop Voltage Gain !lVo = 1.0 V to 4.0 V, RL ;;'10 MQ 72 80 60 80 dB Gain Bandwidth 1 TJ=2Soc, Av=O dB 1.0 3.0 1.0 3.0 MHz DC Transconductance 1, 2 TJ = 2SoC, 30 kQ < RL < 1.0 MQ 1.6 mho S.O O.S 1.6 S.O V Current Limit Amplifier Lead S = 0 V, unless otherwise specified. VIO Input Offset Voltage TJ = 2SoC, E/A Set for maximum output 190 VIO Input Offset Voltage Over Operating Temperature Range 180 lis Input Bias Current CMR Common Mode Rejection VLead 5 = -0.2 V to +S.S V SO 60 SO 60 dB PSRR Power Supply Rejection Ratio VI = 10 V to 40 V SO 60 SO 60 dB Output Swing Minimum Total Range O.S Open Loop Voltage Gain Vo= 1.0 V to 4.0 V, RL ;;'10 MQ 70 Delay Time 1 Lead 4 to Lead 9, !l VI = 300 mV 200 -1.0 210 180 220 170 -10 S.O 80 200 -1.0 O.S 70 300 220 mV 230 mV -10 !lA S.O V 80 dB 300 ns 80 V Output Section (Each Output) !lA VCE Collector Emitter Voltage Ic = 100 60 80 SO ICE Collector Leakage Current VCE = SO V 0.1 20 0.1 20 !lA VCE Sat Saturation Voltage Ic= 20 mA 0.2 0.4 0.2 0.4 V Ic=100 mA 1.0 1.S 1.0 1.S Ic= 200 mA 2.0 2.7 2.0 2.S VE Emitter Output Voltage IE = SO mA t, Rise Time 1 TJ = 2SoC, R = 2.0 kQ tf Fall Time 1 TJ = 2SoC, R = 2.0 kQ 17 6-39 18 17 18 V 1S0 1S0 ns SO SO ns JJ.A 1524A • JJ.A2524A • JJ.A3524A J.LA 1524, J.LA2524A, IlA3524A (Cont.) Electrical Characteristics TA = -55°C to + 125°C for the p.A 1524A, -25°C to + 85°C for the IlA2524A, and O°C to + 70°C for the IlA3524A, VI = Vc = 20 V, unless otherwise specified. ~A3524A MA1524A/~A2524A Symbol Characteristic Conditions Min Typ Max Min Max Unit TJ = 25°C, Lead 9 to Output 350 350 ns Shutdown Delay1 TJ = 25°C, Lead 10 to Output 300 300 ns Shutdown Threshold TJ = 25°C, Rc = 2.0 k.l1 0.6 0.7 1.0 0.6 Notes 1" These parameters are guaranteed by design but not 100% tested in production. 2. DC transconductance (gM) relates to DC open loop voltage gain according to the following equation: Av = 9M RL where RL is the resistance from lead 9 to ground. The minimum 9M specification is used to calculate minimum Av when the error amplifier output is loaded. Open Loop Test Circuit (Note 1, 2) +Vc 2.0 kQ lW COLLECTOR A f - f - -......- COLLECTOR B f-......- - - B O ,u.A1524A SYNC EMITTER A ERROR AMP CURRENT LIMIT EMITTER B 2.0 kQ RT 0.1 Typ Comparator Delay 1 10kQ 0.1 CT EIACONTROl 10kQ 2.0 kQ '----t--... ~1.0 kQ Cl CONTROL Notes 1. The !lA1524A should be able to be tested in any 1524 test circuit with two possible exceptions. a. The higher gain bandwidth of the current limit amplifier in the pA 1524A may cause oscillations in an uncompensated 1524 test circuit. b. The effect of the shutdown, lead 10, cannot be seen at the compensation terminal, lead 9; but must be observed at the outputs. 2. The circuit will allow all pA 1524A functions to be evaluated. 6-40 Ao 0.7 1.0 V J1A 1524A • J1A2524A • J1A3524A Typical Performance Curves Supply Current vs Voltage Error Amplifier Voltage Gain vs Frequency 10 1 . E ~ a: a: -- I T~ - III 55·1:_ 2S·C TJ 1, !zw 14 " :; Ul W o / o I o Y 10 0 TJ ,'2S·C 1 60 40 0- 0 0 -i I z W 0- 0 CIO 1 40 30 20 20 RL 1.0M2 RL 300 kQ RL 100 kQ RL 30 kQ = 20 V = 2S·C r- V, TJ 1"\ 1'- > 1 NOTE: OUTPUTS OFF, RT = ~ w "~ ? a a " _ 80 "I z Pulse Width Modulator Transfer Function 1'1'- J I SUPPLY VOLTAGE-V f ~~--~~-t--~~--+-~ 30 I-----t----t. !2. w " LEAD 9 TO GROUND. VALUES ~ f-BELOW 30 kQ WILL BEGIN TO ~ LIMIT THE MAXIMUM DUTY CYCLE. 100 I !Ii! r- R~ IS I~PEbANCE FROM 50 . 1K 10 K 100 K K: 20 f---+--+--:~+--~f---j 1,0 f---t-J'-7"', 1M PWM INPUT VOLTAGE (LEAD 9)-V FREQUENCY-Hz Oscillator Frequency vs Timing Components Output Dead Times vs Timing Capacitor Value Output Saturation Voltage 10 V, TJ ....... 20V 2S·C 5.0 c''> I, 1 c~'" 0 ~ I ''> ''> o 101), ''> C~ ''> ~~ ....... w ::E >= . 0 w 0 t- ::> ...::> 0- '00", 10 1 20 > ...::>I ...::> 0.5 INPUT AHEAD 4 > ...::>I 0- ~ 20 50 100 Shutdown Delay From PWM Comparator - Lead 9 ,. ,.,Ir" :1/.1", I. 1 .!..I 10 I TIMING CAPACITOR-nF > 15 ...::> 10 J TlErhb 0.2 VIN == 20 V, TJ == 25°C 0.1 LEAD 2 TO LEAD 16 LEAD 5 GROUNDED J, = ~o vi RL TJ ::> 0- OUTPUT COLLECTOR CURRENT-mA Turn-Off Delay From Shutdown - Lead 10 1 20 I t- 0 I', 0 = OSC OUTPUT NOTE: DEAD TIME PULSE WIDTH PLUS 1 ,OUTPUT DELAY 1 100 ~48~ ~ '/. '/ /50% 0- ~ 0.1 50 OUTPIUT ~T LEAD 9 VERDRIVE: 5% ~ a: ..... 1-' 0.2 - Current Limit Amplifier Delay '"'I' "i! Q 1.0 TIMING RESlSTOR-kQ - > I w 2.0 0 1 1 100 V,-20V RT = 2700 TJ == 25"C = 2.0 kQ= 2S·C _ -I 1 1 OUTPUT AT LEAD 12 OR 131 > ...::>I ...::> 0- VI ...I ::> 4 3 2 INPUT AT LEAD ,9 ...::> I 0- 0- ~ > f- NOTE: MINIMUM INPUT PULSE WIDTH TO LATCH IS 200 ns ~ OUTPUT AT LEAD 12 OR 13 t-t-i J DELAY TIME-~s 6-41 1 1 1 I I I INPUT AT 1 LEAD 10 1 1 1 1 1 _ NOTE: MINIMUM INPUT PULSE WIDTH _ T~ LATCH IS 200 ns 1 DELAY TlME-,u.s 1 20V TJ == 25°C r-- I--H 0,5 1 = RL == 2.0 kQ 10 0 1.0 > 1 20 15 DELAYTIME-"" tlA431A Adjustable Precision Zener Shunt Regulator FAIRCHILD A Schlumberger Company Linear Division Voltage Regulators Connection Diagram TO-92 Package (Top View) Description The J.IA431 A is a 3-terminal adjustable shunt regulator with guaranteed temperature stability over the entire temperature range of operation. The output voltage may be set at any level greater than 2.5 V (VREF) up to 36 V merely by selecting two external resistors that act as a voltage divided network. Due to the sharp turn-on characteristics this device is an excellent replacement for many zener diode applications. • Average Temperature Coefficient 50 ppmrC • Temperature Compensated For Operation Over The Full Temperature Range • Programmable Output Voltage • Fast Turn-On Response • Low Output Noise ANODE Order Information Device Code Absolute Maximum Ratings Storage Temperature Range Operating Temperature Range Industrial (J.IA431AV) Commercial (J.IA431AC) Lead Temperature TO-92 Package/SO-8 (soldering, 1Q s) Internal Power Dissipation 1,2 TO-92 Package SO-8 Package Cathode Voltage Continuous Cathode Current Reference Voltage Reference Input Current Operating Conditions Cathode Voltage Cathode Current Package Code J.IA431AWC p.A431AWV EI EI Package Description Molded Molded -65°C to + 15QoC Connection Diagram SO-8 Package (Top View) -40°C to +85°C QOC to +70°C 265°C 0.78 W 0.81 W 37 V -10 mA to +150 mA -0.5 V 10 mA Min Max 37 V VREF 1.0 mA 100 mA Order Information Notes 1. TJMax=150°C. 2. Ratings apply to ambient temperature at 25°C. Above this temperature, derate the TO·92 at 6.2 mW rc, and the 50-8 at 6.5 mW rc. Device Code J.IA431ASC 6-42 Package Code KC Package Description Molded Surface Mount J.lA431 A Equivalent Circuit r-________________________________~--~~--~--_4~-~~~HODE • R3 2.SkO RS Rl 3.30 6400 ~ ____________~~----------~~------------~--~~-~~~E DC Test Circuits Figure 1 Test Circuit For Vz = VREF Figure 2 Test Circuit For Vz IN -"'VIIv--t-- Vz Rl ""'"' liz --t R2 Figure 3 Test Circuit For Off-State Current Note Vz = VREF (1 + Rl/R2) + IREF· Rl 6-43 > VREF J1A431A J.lA431 A Electrical Characteristics TA = 25°C unless otherwise specified. Symbol Characteristic Condition Min Typ Max Unit 2.440 2.495 2.550 V 8.0 17 Vz from VREF to 10 V -1.4 -2.7 Vz from 10 V to 36 V -1.0 -2.0 2.0 4.0 /JA Rl = 10 kil, R2 = 00, 11=10 mA, TA = Full Range, Fig. 2 0.4 1.2 iJ.A Minimum Cathode Current for Regulation Vz = VREF, Fig. 1 0.4 1.0 mA IZ(OFF) Off-State Current Vz = 36 V, VREF = 0 V, Fig. 3 0.3 1.0 iJ.A rz Dynamic Output Impedance 2 Vz = VREF, Frequency = 0 Hz, Fig. 1 .75 il VREF Reference Voltage Vz = VREF, II = 10 mA, Fig. 1 VDEV Deviation of Reference Input Voltage Over Temperature 1 Vz = VREF, II = 10 mA, TA = full range, Fig. 1 dVREF Ratio of the Change in Reference Voltage to the Change in Cathode Voltage Iz = 10 mA, Fig. 2 IREF Reference Input Current Rl = 10 kil, R2 = II = 10 mA, Fig. 2 oc IREF Deviation of Reference Input Current over Temperature IZ(MIN) dVz 00, Notes mV mVIV ex: VREF can be positive or negative depending on whether the slope is positive or negative. 1. Deviation of reference input voltage, VDEV. is defined as the maximum variation of the reference input voltage over the full temperature range. Example: VOEV = 8.0 mY. VREF 8.0 mV ]10 [ = 2495 mY, T2 - T, = 70"C, slope is positive 6 2495 mV ox VREF = '7O'C = + 46 ppml"C 2. The dynamic output impedance, rz, is defined as: AVz rz=Alz T. When the device is programmed with two external resistors, R1 and R2, (see Figure 2), the dynamic output impedance of the overall circuit, rz, is defined as: TEMPERATURE The average temperature coefficient of the reference input voltage, is defined as: VOEV ]10 [ ± VREF (at 25"C) 0: VREF, rz = AV z '" [rz 1 + Alz 6 T2 T, Where: T2 - T, = full temperature change. 6-44 ~ ] R2 MA431A Typical Performance Curves Input Current vs Vz Thermal Information Input Current vs Vz 1000 TA "" 25°C Vz = I VREF 500 / / IzMlN I I 100 o V o / i'.. 500 1 100 1----+--+-+--+--11---; ~ ~ i """ I 5O~--t---~---t--~----t-~ ; 100 1.0 70 25 3.0 2.0 CATHODE YOLTAGE-V 85 125 CATHODE VOLTAGE-V TEMPERATURE-OC PC01361F Dynamic Impedance vs Frequency 15 TA = ZSOC liz = """" '~" U 10 ~ l ~ z ~ 5.0 / I I J ~ l.okll SOil tlz=10mA ./ o 1.OK 10K 1.0M lOOK 10 M FREQUENCY-Hz Stability Boundary Conditions 100 90 ~ I 80 70 !i w 60 :> so II: II: u w Q 0 ~ u A B C D VKA = 5VATIK =:I 10mA VItA = 10 V AT IK = 10 rnA VKA = 15 V ATI. = 10 mA 1 (NOTE 1) A 20 10 pF STABLE 1\ ,I 1/ STABLE 30 o B C 40 10 Note 1. The areas under the curves represent ccnditions that may cause the device to oscillate. For curves B, C, and D, R2 and V+ were adjusted to establish the initial VKA and I. ccndltlons with CL = O. V+ and CL were then adjusted to determine the ranges of stability. 1 VKA· VREF Ih I TA - 25°C 100 pF ~ r; / / r-2.....: \\ 1 1000 pF 0.01 "F 0.1 "F 1 "F 10 "F LOAD CAPACITANCE 6-45 IlA431A Typical Characteristics Test Circuit for Curves B, C, And D Below Test Circuit For Curve A Below Rl +I. 150 = 10kQ + + Cl Cl Q v+ VREF R2 Typical Applications Single Supply Comparator With Temperature Compensated Threshold Shunt Regulator v+ v+--~~-,--------~------~----Vo Rl VREF +----+-=i~ R2 I I +----OUT 1 T I IN -"""'----i-'iil~ I I lint ~ 2.5 V --~-----<~-----GND Output Control of a Three Terminal Fixed Regulator Series Regulator v+--~~-----------------------, v+-----.., 30Q IN ~A7805 OUTt----_---Vo Rl R2 Vo = VREF (1 +~) VOMlN=VREF+SV 6-46 MA431A Typical Applications (Cont.) Higher Current Shunt Regulator Yv--<,....--..... V+ - ..... --""""1~- Crow Bar Vo V+ ~-~--~--~-----Vo R1 R1 R2 R2 Over Voltage/Under Voltage Protection Circuit Voltage Monitor V+ - .....- - - - - -.....-w\o---.....----, V+---1~----t---1~---' R1B R1B R1A R1A R2B R2A R2B R2A LOW UMIT "" VREF (1 + ~)+ VBE R2B I, HIGH UMIT "" VREF ~ VREF ( 1 + R1B) R2B HIGH UMIT ~ VREF ( 1 + R1A) R2A LOW UMIT Fi1A) + RiA It: LED ON WHEN ~~~ r I - .-/ -4.0 o ~ -20 - 12V =5.0V_ = 40mA = 25"C Q~ a" ~~ "- "8~.~~ .0"1 i"":: t--.. > 0.6 w ~ w ,. UI I:: 0 :J -' !zW ~ 0.7 0: 0: 0.5 -- CUIII/£IVT 20 so ~ 0.4 ~ ~ '0.3 15 25 35 -so 45 ::; -O.11-+....,I-+-t-+--t-t-+....,---i 40 -20 o 100 -0·:':5-:.0-'----:5.':-0--'-,-:'5~-'---:2:':5-.L--:3':-5--'-45:'. 140 INPUT/OUTPUT VOLTAGE OIFFERENTlAl-V Output Impedance vs Frequency Line Transient Response 0.2 6.0 .0 4.0 f-Vo f-v, INPUT VOLTAGE I 0.1 -t--0.1 - - ...I v, = 12 V = 5.0 V I---TA = 25"C = 1.0 mA TO IL = 50 mA 5.0 15 25 CL ! I; -2.0 > .. I; = 1.0 ~F ,/ I!::::> 0.' ~ v, = 12V f----vo = 5.0 V 1.0mA ' L == 25°C I--TA c." 50mA w 0 '-' 25·C 'L 1.0 ~ OQ .i!! "~ ~U~OLTAGE r - f- l"- Rsc=OQ 'L ~ z > I w -0.2 I---Vo -0.3 -5.0 01 / 5.0 V 12V Roc _TA 2.0 I r-..... o C! - W Z JUNcnON TEMPERATURE-DC Load Regulation vs Input/Output Voltage Differential ~ ~ 0: =1.0mA Rsc=OQ 5.0 ~ IL 0 TIME-~s ~ = 5.0 V 1--+....,f-+--+-+--+-t-+-t--; !B0: i" lisc~,o" t-~ I--- 0.• ~ i'-.. r-- :::> -30 Vo I-+-+-t-+-+-Hlisc = Oil TAo = 2S"C 0.21-+""'I-+-t-+--t-,AV = 3.0V - ot~ > ~ 1'-- Line Regulation vs Input/Output Voltage Differential 0 4.0 Rsc=OQ 35 0.01 100 -6.0 -4.0 -5.0 45 5.0 15 25 35 45 10 K 1K 100K 1 M FREQUENCY-Hz INPUT/OUTPUT VOLTAGE DlFFERENTIAL-V Typical Performance Curves for fJ.A723 Maximum Load Current vs Input/Output Voltage Differential 200 ~Jl Jw l RTH::::< 15O"C/W PSTANDBV 1SO = 60 rnA (NO HEAT SINK) r120 . ~ g 80 40 o TA ~ 10 ~r-"""'~·C ...... ?4=!. t--- - '~ :::... ....... ... -0.15 ~ I ~ :l !BII: Q g 40 INPUT/OUTPUT VOLTAGE OIFFERENTIAL-V 50 o 20 60 OUTPUT CURRENT-mA 6-59 so = ~ ...~ l - I-- r- ~ r~~·C r--..~~'7;-> -0.15 -0.25 100 I I ~·C t- v,Vo = 5.0 V = 12V l40 7, I' -0.1 -0.2 Vo = 5.0 V =12 V Rsc=OQ t"" ~ -0.05 I--V, -0.2 30 ~ g "- ...... r-..... 20 I I IIIII!!~ 7~ = '~.C -0.1 = 125"C "'4.. o " -0.05 S I\, TA = 2SoC \ ~ I;::::- ~ \ :::> 0 0 0.05 - \ 0: 0: Load Regulation Characteristics With Current-Limiting 0.05 1 i Load Regulation Characteristics Without Current-Limiting o Rsc=10Q 5.0 10 15 20 OUTPUT CURRENT-mA 25 30 1lA723 Typical Performance Curves for 1lA723 Load Regulation Characteristics With Current-Limiting 0.1 ....... ~ i f- -~\ ..\ -';, • ~ ~n t-~ -Q.4 o 20 0.0 = Ico S ~ \ ~... -0.3 1.0 "'\ "'\ ~ ~ ,,~ ~ ;-0.2 5.Q ~ o.a ~~ ~ -0.1 1.2 Vo VREF, _ I'L =OmA viJov I-V, = 12V Rsc =-102 Standby Current Drain vs Input Voltage Current-Limiting Characteristics ~ Q.6 ~ t- - .. r-~ ,;'1-- I-• I-- I-- II r-II ~'-~ o o 20 I 81~ "n t- Vo=5.0V~R!: ~~~ Q.2 100 80 80 40 OUTPUT CURRENT- mA 3.0 I-- ell-- I-- u m / = -SSoC TA'" 25°C ~c '" 1.0 o o 100 80 :..-- ./ ,..... ~ I 80 40 2.0 Q '" TA ./' :::> w Q.4 !. ..~ .. 10 20 30 40 50 INPUT VOLTAGE-Y OUTPUT CURRENT-mA Typical Performance Curves for 1lA723C Maximum Load Current vs Input/Output Voltage Differential Load Regulation Characteristics Without Current-Limiting Current-Limiting Characteristics 1.2 h 1- 'TJuL.', .... Ant= 1WC/W ~::~E- 180 t:r (NOHEATSIfjK) \ 1\ - ~ ........... r-..;; 1\ .\ \i\. TA=7O"'C o 10 X~ 20 30 TA, ..... liZ' o.c T.~2S·c- _ 8 r-...~ ....... ,;' ,;' ,;'r- I- " I-- t" " de~ tl t- " " r--.. T.-25·C IT o --- f - vo=5.QV - '-- v, = 12V V, = 12Y -0.2 40 50 f-t sc o I1 Yo 0 20 o 40 80 100 80 -lAse o = 5.0 V i 10 12 20 40 80 100 80 OUTPUT CURRENT-mA OUTPUT CURRENT-mA INPUT/OUTPUT VOLTAGE DlFFERENTIAL-V POQII570F Maximum Load Current vs Input/Output Voltage Differential ~J.l)I28"b rAnt - I1t"C/W 180 PSTANDBY n = 60 mW DlPPilCKAGE Load Regulation Characteristics With Current-Limiting 5.Q o. 1 V, .... ~ \ ........ I' ........... \ 40 \ " ~~...,. r>]"'{... f- ·i~c o o 10 20 30 1 I I I I T. ~ I"40 IM'UT/OUTPUT VOLTAGE DlFFERENTIAL-V -0.2 50 o o.J - ~ 2S·C f;:: ~~ I ~~ t"<; I I I I 10 20 OUTPUT CURRENT-rnA 6-60 'L=OmA- = 12V R"F -1'Oll - l- 30 l v.~ Vo Vo=5.0~_ r- (NOHEAT_) Standby Current Drain vs Input Voltage i~ 0.0 !i 2.0 .,~ TA =25°C ~ ;;..: ~V A=~ TA = 70·C - f- 1.0 o o 10 20 30 INPUT YOlTAGE-V 40 50 IlA723 Typical Applications Figure 1 Basic Low Voltage Regulator (Vo = 2.0 V to 7.0 V) Figure 2 Basic High Voltage Regulator (Vo = 7.0 V to 37 V) V, V, V+ V+ Vc Vc VAEF OUT OUT VAEF Rsc R3 J.'A723 CL I-~--,\N"v""__ ~~~ULATED R1 CSI-----4 CR.F r R3 C1 100 pF C1 100pF R2 Typical Performance Regulated Output Voltage Line Regulation (AV 1= 3.0 V) Load Regulation (AIL = 50 mAl R1 1NV NJ. R2 Typical Performance Regulated Output Voltage Line Regulation (AVI = 3.0 V) Load Regulation (AIL = 50 mAl +5.0 V 0.5 mV 1.5 mV +15 V 1.5 mV 4.5 mV R, R2 A3 = - - for minimum temperature drift. R, + R2 R,R2 R3 = R1 + R2 for minimum temperature drift. R3 may be eliminated for minimum component count. Figure 3 Negative Voltage Regulator (Note 1) V, Figure 4 Positive Voltage Regulator (External NPN Pass Transistor) V, ,...---f---I RS 2.0kQ VR.F Vz JiA723 Q1 2N4898 CL Rsc R4 3.0 kQ R3 3.0kQ 1----j.--1r CS R1 V- REGULATED OUT C1 100pF R1 +-........ L-_ _....._--j_ _ _ _ _ _ _ REGULATED R2 OUT Typical Performance Regulated Output Voltage Line Regulation (AV1 = 3.0 V) Load Regulation (AIL = 100 mAl Typical Performance Regulated Output voltage Line Regulation (AVI = 3.0 V) Load Regulation (AIL = 1.0 A) -15 V 1 mV 2 mV Note 1. For metal can applications where Vz is required, an external 6.2 V Zener diode should be connected in series with Va. 6-61 +15 V 1.5 mV 15 mV JlA723 Typical Applications (Cont.) Figure 5 Positive Voltage Regulator (External PNP Pass Transistor) Figure 6 Foldback Current-Limiting V, V, v+ R3 60Q V+ Vc Rse 30 Q OUT VREF Q1 2N4898 Ve REGULATED OUT R3 2.7kQ VREF OUT ,.A723 Rt CL R4 5.6 kQ IJ.A723 R1 CL Rse CS R2 INV 1--4----4-.... ~~~ULATED N.I. R2 -=- Typical Performance Regulated Output Voltage Line Regulation (~VI = 3.0 V) Load Regulation (~IL = 10 mAl Short Circuit Current -=- Typical Performance Regulated Output Voltage Line Regulation (.::~.vl = 3.0 V) Load Regulation (~IL = 1.0 A) Figure 7 +5.0 V 0.5 mV 5.0 mV Figure 8 Remote Shutdown Regulator with CurrentLimiting (Note 1) Output Voltage Adjust Rt V, Pt V+ _ Vc Rse VREF OUT ""+-"",- ~~~ULATED ~""""1-WIr-..... R2 "A723 R1 CL CS NJ. R2 INV 1:--'V'.tv-Q1'l._"",,~ R' CCSL LDGICIN 2.0 kQ -=- -=- Typical Performance Regulated Output Voltage Line Regulation (~VI = 3.0 V) Load Regulation (~IL = 50 mAl +5.0 V 0.5 mV 1.5 mV Note 1. Current limit transistor may be used for shutdown if current limiting is not required. Add diode if vo> to v. 6·62 ~ON'INVERTING +5.0 V 0.5 mV 1.0 mV 20 mA JiA78G • JiA79G 4-Terminal Adjustable Voltage Regulators FAIRCHILD A Schlumberger Company Linear Division Voltage Regulators Description Connection Diagram 4-Lead TO-202 Package (Top View) The /lA78G and /lA79G are 4-terminal adjustable voltage regulators. They are designed to deliver continuous load currents of up to 1.0 A with a maximum input voltage of +40 V for the positive regulator /lA78G and -40 V for the negative regulator /lA79G. Output current capability can be increased to greater than 1.0 A through use of one or more external transistors. The output voltage range of the /lA78G positive voltage regulator is +5 V to +30 V and the output voltage range of the negative /lA79G is -30 V to -2.2 V. For systems requiring both a positive and negative, the /lA78G and /1A79G are excellent for use as a dual tracking regulator with appropriate external circuitry. These 4-terminal voltage regulators are constructed using the Fairchild Planar process. • • • • • • IN 2 1==: Heat sink tabs connected to common through device substrate. Order Information Device Code Package Code /1A78GU1C Package Description 8Z Power Watt Connection Diagram 4-Lead TO-202 Package (Top View) ~r- 0 O°C to 150°C 265°C Internally Limited IN 3 IN OUT :;:=;= CO NT 2 - COMM 1 Heat sink tabs connected to input through device substrate. Not recommended for direct electrical connection. +40 V -40 V Order Information Control Lead Voltage /lA78G /lA79G COMM COMM Absolute Maximum Ratings /lA78G /1A79G OUT 3- 0 Output Current In Excess Of 1 A /lA78G Positive Output +5 To +30 V /lA79G Negative Output -30 To -2.2 V Internal Thermal Overload Protection Internal Short Circuit Protection Output Transistor Safe-Area Protection Storage Temperature Range Operating Junction Temperature Range Lead Temperature (soldering, 10 s) Power Dissipation Input Voltage CO NT -~ o V -10 V (Vo-20 V) •. 5 ;!: -.... ... 200 -25 0 25 50 Load Transient Response ~ 110= I ~ !: III -!.."..:.!1ItA ~ - 2 . 1 • w!Z i LOAD CURRENT I ~ o f- - I- OUTPUT VOLTAGE DEVIATION ,/ 100 125 150 175 JUNCTION TEMPERATURE _ °C -1 • •• 3. 20 TIME-.l'1 4. 6 a... - I' -1 -2 " 15 os 20 30 OUTPUT VOLTAGE - V 100 Q ~ . , • 's~~ Ripple Rejection vs Frequency 1 I 1 1 ".V iii "T"-- ~"'" - 75 85 1000 800 .~o = ~%OF Vo -75 - 50 ~ 1> w 80 600 VI=1OV t- ?ROPOUT CONDITIONS • "- ~ > SOo lo.~ 1.• ::> 0. - - -~ t:- r-. -. 10 ~ , 7• OUTPUT CURRENT - rnA r-. I"--. \ 75 I ;;; 3. r-.... r-.... 50 75 100 125 150 175 0. 25 --- --_IO~ 25 80 -7.5 J.lA780 ~ 0 Ripple Rejection vs Output Voltage 2.5 ... -25 JUNCTION TEMPERATURE _ °C 8 Dropout Voltage vs Junction Temperature vs Frequency !'-..", Vo=5.0Y 10 = SOOmA -so i""l"'-. ...... Vo=5.0V INPUT VOLTAGE - V > I Vi = 10Y • V 20 "- 1.• 35 Differential Control Voltage vs Output Current lit 8 ~ l!:Z INPUT VOLTAGE - V 10 = SOOmA Vo = 5.0 V 6 15 V w ... ~ 1\ ::> 1.5 ...u0 0.5 12 ~ g 2.. u Differential Control Voltage vs Input Voltage ~I ,. .. !Zw 0 ~ '~ ~ ,. I _ t~ 0.5 • ~ ~ ~ t '!' / • ~, '-': ~ '{i 2.5 --- - ~-.. I 2. 3.. 5V IL = 20mA TJ = WC - . • ~ Control Current vs Junction Temperature 50 80 'II •• -. I z 0 tw 80 .. ~ 40 OJ !'i 2. VI = 8VT018V Yo = 5.0Y ••• '0 = 500 rnA TJ =25"C '00 1.0K 10K .OOK FREQUENCY - Hz PCl1860F 6-67 J-lA78G • J.LA79G Typical Performance Curves for J.!A79G Line Transient Response for MA78G .. > e Peak Output Current vs Input/Output Differential Voltage I 20 3.0 15 2.5 z 0 ..iZ C 3() C 10 10 5 !; ...zI 7 . ~ DEVIATION !:j ... ...=> .. • i ! 10 = 500 mA Vo = s.ov -20 o 10 12 I II: ' ". ,~ ~ ... 6?K'" ~ ~ TIME-~I 15 Y •.5 / I" I'-- !'.l" 0.5 o ...zI ~,,"" rll 0 -,. .e , 1.• - -10 0 ~ 2.0 a: a: 1.5 => ...~ OUTPUT VOLTAGE > .. Vo=5.0Y TJ=WC 10 zo "~ ...=> 1.5 INPUT VOLTAGE I !i Quiescent Current vs Input Voltage •o 30 10 15 20 25 30 3S 40 INPUT VOLTAGE - V PC11690F Control Current vs Junction Temperature Differential Control Voltage vs Input Voltage r--. r-.. ......... 1•• > e 0.9 . I -2.0 0.8 1\ 1. I 0.7 ... "~ ~ Z 0.8 w a: => 0.5 ...z 0 z 2.0 :;I Dropout Voltage vs Junction Temperature 70 ...z 1= 80 I ;pC ~r .... \ II: Differential Control Voltage vs Output Current 10 =500 mA =25°C 100 1.0K FREQUENCY- Hz 10K 100K fJA 78G • fJA 79G Typical Performance Curves for /-lA79G (Cent.) Load Transient Response > > I E II z o ~ ~ "~ 1 0 ~ ...zI "w "~ -5 .. VI =10 v VO,=5'jV 0 30 40 -10 > I ~ j!! r- r- 1\ 0 -5.0 g ... ~ !!; V 0 10 = 500 mA r-vl' = JOV 20 OUTPUT VOLTAGEDEVIATION A g ...::> ...::> -1 10 \ w w -15 1\ :; " g -, o J z 0 co co ::> u - - INPUT VOLTAGE I . I~PU1 VO~TAGf \ OUT~UT ~OLJAGE DEVIATION j!! g ~ S Line Transient Response 20 50 I 40 60 80 100 TIME -/-IS TIME -#-18 Test Circuits Design Considerations J.LA78G Test Circuit The /lA78G and /lA79G Adjustable Voltage Regulators have an output voltage which varies from VCONT to typically OUT VI IN Rl CONTROL COMM I~ 0.33 "F COMM R1 + R2 VI -2.0 V by Vo = VCONT - - R2 Vo pA78G r-- The nominal reference in the /lA78G is 5.0 V and /lA79G is -2.23 V. If we allow 1.0 mA to flow in the control string to eliminate bias current effects, we can make R2 = 5.0 kn in the IJA78G. Then, the output voltage is; Vo = (R1 + R2) V, where R1 and R2 are in kns. 0.1 R2 10 ..L CR05650F VO= Example: (RI:2R2) VOONT VOONT Nominal = 5.0 V By proper wiring of the feedback resistors, load regulation of the device can be improved significantly. /-lA79G Test Circuit 2 OUT IN - VI "A79G CONTROL COMM 2.0 "F 1~ -Vo - Both /lA78G and /lA79G regulators have thermal overload protection from excessive power, internal short circuit protection which limits each circuit's maximum current, and output transistor safe-area protection for reducing the output current as the voltage across each pass transistor is increased. Rl I .• R2 10 COMM ..L Vo = ( If R2 = 5.0 kn and R1 = 10 kn then Vo = 15 V nominal, for the /lA78G R2 = 2.2 kn and R1 = 12.8 kn then Vo = -15.2 nominal, for the /lA79G RI:2 R2) VeoNT Nominal = -2.23 V Recommended R2 current "" 1.0 rnA :. R2 = 5.0 k.l1 (1lA78G) R2 = 2.2 k.l1 (1lA79G) VOONT 6-69 • fJ.A78G • fJ.A79G Typical Applications For p.A78G (Note 1) Although the internal power dissipation is limited, the junction temperature must be kept below the maximum specified temperature in order to meet data sheet specifications. To calculate the maximum junction temperature or heat sink required, the following thermal resistance values should be used: Max Typ Max Typ °C/W °C/W °C/W Bypassing of the input and output (0.33 pF and 0.1 pF, respectively) is necessary. Basic Positive Regulator iJA78G OUT °C/W 5.0 A) (Note 2) V,- 2.0 0.125 IN. LEAD LENGTH FROM PC BOARD. __-:-:WITH 72"'C/W.1'EAT SINK ~ I\. I 0.4 IN. LEAD LENGTH FROM PC BOARD. 0.02 r 0.01 25 50 75 'R rEr 100 II: f= r- 125 ::> ~ 150 j:; ::> o. 8.0 ~1nJ.- - '0_ 7OtnA. r- I-r- r- ~40mA rI-1.5 r--....I. '0== 1.0 mA i-= "'"" 1.0 l. I,5.0.!.V r-Yo:: J -1 25 6.0 ~AJL05I_ I 1 > ::> 0 AMBIENT TEMPERATURE-"C Note Other ~ w ..... ~Ib. ~ 0.05 w j ...... IS 0.125 IN. LEAD LENGTH FROM PC BOARD. FREE AIR r- f-- Dropout Characteristics 2.5 I 5.0 ~ Dropout Voltage vs Junction Temperature 10=1.0mA-~ I w "~ 0 > ~ 5 ~~ 4.0 ~ "-' 10 = 100 mA 2.0 lo=40mA 0.5 1!: DROPOUTS CONDmON$ o o A~o = ;""0%1 Of' 25 yo 50 I I 75 100 JUNCTION TEMPERATURE-"C IlA 78LOO Series devices have similar curves. 6-77 125 2.0 4.0 6.0 INPUT VOLTAGE-V 8.0 10 JlA78LOO Series Typical Performance Curves (Cont.) Quiescent Current vs Input Voltage 4.2 7.0 i-~O= 500 V Il =40mA 6.0 i-TJ =:we 4.0 E I--- l- f-" >- zw () !fl 3.0 '--.....",- r--... -..... ::> () !Zw 3.4 a~ 3.2 2.8 15 10 20 25 30 1'0 o i 40 r 25 20 ~~L~5 INPUT VOLTAGE 10 200 o i:! > OUTPUT VOLTAGE DEVIATION g ..... i I I I I VI I ::> >- 6-100 -200 > I ~ i!i Q w 100 r o 2.0 I I 4.0 I I 11- 6.0 8,0 100 125 o 10 ....... 8.0VT018V 5.0 V 100mA 25°C 100 1.0 K 10K 100K FREQUENCY-Hz > 3.0 Ii 2.0 ~ 1.0 ~ ~ i!i ~~78Js 1 LOAD CURRENT g 200 100 r-r- _ OUTPUT VOLTAGE DEVIATION r ~ 0-1.0 10 - 100 rnA (RESISTIVE LOAD) r- IVOj 5 TJ 75 50 4.0 1 300 0 "~ I-Y'Vo 1-'0 - Load Transient Response Line Transient Response 400 20 AMBIENT TEMPERATURE_oC INPUT VOLTAGE-V Ii ill \ 3.0 ,--Vo= 5.0 V - 40 '\. VI = 10V 1 5.0 I z ....... () I 'E 60 a: 3.6 a: 6 2.0 80 !Z w l- 4.0 3.8 I -- 5.0 a: a: () J7~~ J78LL -..... ........ C E ::> 100 }'A78L05 _ c ~ w Ripple Rejection vs Frequency Quiescent Current vs Temperature -- 10 i-V' = 10V Yo = 5.0 V -2.0 12 o 10 20 l1ME-I'S 30 40 50 80 TIME-.us Design Considerations The MA 78L series regulators have thermal overload protection from excessive power, internal short-circuit protection which limits each circuit's maximum current, and output transistor safe-area protection for reducing the output current as the voltage across each pass transistor is increased. Package TO-92 160 160 Thermal Considerations The TO-92 molded package manufactured by Fairchild is capable of unusually high power dissipation due to the lead frame design. However, its thermal capabilities are generally overlooked because of a lack of understanding of the thermal paths from the semiconductor junction to ambient temperature. While thermal resistance is normally specified for the device mounted 1 cm above an infinite heat sink, very little has been mentioned of the options available to improve on the conservatively rated thermal capability. Although the internal power dissipation is limited, the junction temperature must be kept below the maximum specified temperature (125°C) in order to meet data sheet specifications. To calculate the maximum junction temperature or heat sink required, the following thermal resistance values should be used: 6-78 JJ.A 78LOO Series An expl~lfiation of the thermal paths of the TO-92 will allow the designer to determine the thermal stress he is applying in any given application. ed case. The heat sink effectively replaces the eCA (Figure 2) and the new thermal resistance, e' JA, equals 145°C/W (assuming 0.125 inch lead length). The TO-92 Package The TO-92 package thermal paths are complex. In addition to the path through the molding compound to ambient temperature, there is another path through the leads, in parallel with the case path, to ambient temperature, as shown in Figure 1. The net change of 15°C/W increases the allowable power diSSipation to 0.86 W with a minimal inserted cost. A still further decrease in JA could be achieved by using a heat sink rated at 46°C/W, such as the Staver FS-7A. Also, if • the case sinking does not provide an adequate reduction • in total eJA, the other external thermal resistance, eLA, may be reduced by shortening the lead length from package base to mounting medium. However, one point must be kept in mind. The lead thermal path includes a thermal resistance, eSA, from the leads at the mounting point to ambient, that is, the mounting medium. eLA is then equal to e LS + eSA. The new model is shown in Figure 2. e The total thermal resistance in this model is then: (1 ) Where: eJc = thermal resistance of the case between the regulator die and a point on the case directly above the die location. = thermal resistance between the case and air at ambient temperature. = thermal resistance from regulator die through the input lead to a point 1/16 inch below the regulator case. = total thermal resistance of the input/output ground leads to ambient temperature. = junction to ambient thermal resistance. In the case of a socket, eSA could be as high as 270°C/W, thus causing a net increase in (JJA and a consequent decrease in the maximum dissipation capability. Shortening the lead length may return the net (JJA to the original value, but lead sinking would not be accomplished. In those cases where the regulator is inserted into a copper clad printed circuit board, it is advantageous to have a maximum area of copper at the entry points of the leads. While it would be desirable to rigorously define the effect of PC board copper, the real world variables are too great to allow anything more than a few general observations. Figure 1 TO-92 Thermal Equivalent Circuit TJ The best analogy for PC board copper is to compare it with parallel resistors. Beyond some pOint, additional resistors are not significantly effective; beyond some point, additional copper area is not effective. t Pe(WATTS) Figure 2 TO-92 Thermal Equivalent Circuit (Lead at Other Than Ambient Temperature) HCA TA '-----*---1:111-----1 Methods of Heat Sinking With two external thermal resistances in each leg of a parallel network available to the circuit designer as variables, he can choose the method of heat sinking most applicable to his particular situation. To demonstrate, consider the effect of placing a small 72°C/W flag type heat sink, such as the Staver F1-7D-2, on the /lA78LXX mold- tPE(WATTS) TA L...---~o-----fllll----""" 6-79 JLA78LOO Series High Dissipation Applications As an example, consider a 15 V regulator with a supply voltage of 30 ± 5.0 V, required to supply a maximum load current of 30 mAo IQ is 4.3 mA, and minimum load current is to be 10 mAo R1 = 25-15-28 -="240.n 30 + 4.3 34.3 (6) VI = 35 - (30 + 4.3) 0.24 = 35 - 8.2 = 26.8 V R1 240 Q V,-"",,_ _ --- PD Max = (26.8 -15) 30 + 26.8 (4.3) = 354 + 115 = 470 mW, which permit operation up to 70 0 e in most applications. Vo ~ C1 C2 0.33 "F 0.1 J.LF It 10 _ 30 mA RL Line regulation of this circuit is typically 110 mV for an input range of 25 - 35 V at a constant load current; i.e. 11 mV IV. CROO181F Load regulation = constant VI load regulation (7) (typically 10 mV, 10 - 30 mA III + (11 mVIV) x 0.24 x 20 mA (typically 53 mV) = 63 mV for a load current change of 20 mA at a constant VI of 30 V. When it is necessary to operate a !lA78LOO regulator with a large input! output differential voltage, the addition of series resistor R1 will extend the output current range of the device by sharing the total power dissipation between R1 and the regulator. VI Min-VO-2.0 V R1 = ....:..::.:.:::.:..---'=---IL Max + IQ (3) Typical Applications where: IN---r'-l C1 0.33 fJ.F IQ is the regulator quiescent current. (NOTE 2) ~_---OUT C2 0.1 J.LF ' - - - - - -..... (NOTE 2) Regulator power dissipation at maximum input voltage and maximum load current is now (4) Notes 1. To specify an output voltage. substitute voltage value for "00". 2. Bypass capacitors are recommended for optimum stability and transient where: response and should be located as close as possible to the regulator. The presence of R1 will affect load regulation according to the equation: Load regulation (at constant VI) = load regulation (at constant VI) + line regulation (mV per V) x (RI) x (.:lILl. (5) 6-80 JlA78MG • JlA79MG FAIRCHILD 4-Terminal Adjustable Voltage Regulators A Schlumberger Company Linear Division Voltage Regulators Connection Diagram 1lA78MG Power Watt (Top View) Description The 1lA78MG and 1lA79MG are 4-terminal adjustable voltage regulators. They are designed to deliver continuous load currents of up to SOO mA with a maximum input voltage of +40 V for the positive regulator 1lA78MG and -40 V for the negative regulator 1lA79MG. Output current capability can be increased to greater than 10 A through use of one or more external transistors. The output voltage range of the 1lA78MG positive voltage regulator is s.o V to 30 V and the output voltage range of the negative 1lA79MG is -30 to -2.2 V. For systems requiring both a positive and negative, the 1lA78MG and 1lA79MG are excellent for use as a dual tracking regulator. These 4-terminal voltage regulators are constructed using the Fairchild Planar process. CONT o 4t:::::;:;:== OUT COUM Heat sink tabs connected to input through device substrate. Not recommended for direct electrical connection. Order Information • • • • • • Output Current In Excess Of 0.5 A 1lA78MG Positive Output Voltage +5.0 To +30 V 1lA79MG Negative Output Voltage -30 V To -2.2 V Internal Thermal Overload Protection Internal Short Circuit Current Protection Output Transistor Safe-Area Protection Device Code 1lA78MGU1C Package Code 8Z Connection Diagram pA79MG Power Watt (Top View) Absolute Maximum Ratings Storage Temperature Range Operating Junction Temperature Range Lead Temperature (soldering, 10 s) Internal Power Dissipation Input Voltage 1lA78MGC 1lA79MGC Control Lead Voltage 1lA78MGC 1lA79MGC Package Description Molded Power Pack IN -6S0C to + 1S0°C 0 O°C to 1S0°C 26SoC Internally Limited OUT CONT COUU IN CDOO1fJ1F +40 V -40 V Heat sink tabs connected to input through device substrate. Not recommended for direct electricel connection. o V<.V+ <'Vo Vcr <'-V<'O V Order Information Device Code 1lA79MGU1C 6-81 Package Code 8Z Package Description Molded Power Pack ~A78MG Equivalent Circuit r----.--------------~------------~~------~~--~------~----IN R11 O.6kO R5 ~~~--------+_--~~--------4-------4-----0UT 3.3kO ~------~-------------------------------CONTROL R6 2.7 kO 01 R1 1 kO R7 500 0 ~--~~--~--~~--~~--~------~~--~--~~-------------------COMMON ~79MG Equivalent Circuit (Note 1) r---1-----------~~------~--------_1------------~--------------------_1--------~~----------COMMON R2 Uk l-------------------~--------_+-----------CONTROL R23 4k OUT R22 0.1 k R13 0.2 k ~--~--~------~--~--~--~--------------_4--_4--_4 Note 1. Resistor values in n unless otherwise noted. 6-82 ________________4_--------4_----IN J.LA78MG • J.LA79MG J.lA78MGC Electrical Characteristics O°C <: TA <: 125°C for J.lA78MGC, VI = 10 V, 10 = 350 rnA, CI = 0.33 J.lF, Co = 0.1 J.lF, Test Circuit 1, unless otherwise specified. Symbol Condition 1,3 Characteristic Min Typ Max Unit VIR Input Voltage Range TJ = 25°C 7.5 40 V VOR Output Voltage Range VI =Vo + 5.0 V 5.0 30 V Vo Output Voltage Tolerance Vo+3.0 V - .......... V !i1M '=".c 2 00 3.0 I .- a: 5 Control Current vs Temperature Quiescent Current vs Input Voltage PQI1501F Differential Control Voltage vs Output Current Differential Control Voltage vs Input Voltage •• ~ 10 = SOD rnA VO=i.DY '0 I / I I / ,/ TJ "12I"C o. 10 15 / • r-.... .......... I -a.• i!I!I -5.0 e• 1-'·'· 10 .......... -1. .......... 21 -20.0 200 20 1;, .. '~ \ \ ... 400 I\. TJ-25"C 100 1000 5 • 0 ~ t- r- 5 ~ Ripple Rejection vs Frequency 21 75 ~ 1Of-1+IH-+-++tI-+-++++-++lI+F>.d a: ~f-I+IH-+-++tI-+-++++-++lH+-1 ~ ~ko~ I"'- f::: l"'t- ~ 50 20 21 30 VI Yo = 10 V = 5.GY 3 LOAO CURRENT I i II: 1 l- I-- OUTPUT VOLTAGE DEVIATION l/ 20 :~ ==1:': yTO 18 V I\.. 1 10"" 500 mA DROPOUT CONDITIONS !JoVo= 5'fo OF Yo • 15 Load Transient Response !Il 101-1-:::!::±t;J::::+-f-j.~:I-++tt-+t1*-f '0"" 500 InA. IO~ri .... o ,. OUTPUT YOLTAOe - Y mA • ot-""'" r-rt..... r- l"'- I"'I"'- '\ 10 OUTPUT CUARENT - Dropout Voltage vs Junction Temperature ~ lo-200.mA .......... -17.5 20 !-.... I ~:::: INPUT VOLTAGE - V ...... 85 VI =10V Vo=5.0V I / Ripple Rejection vs Output Voltage TJ'" 25"C 100 125 JUNCTION TEMPERATURE _·C 150 ·,0 -2 100 10 k 1k FREQUENCY - 100 Ie, PC01551F 6-85 o •• 20 ~ 30 TIME - Hz 50 10 pi PC01581F MA78MG • MA79MG Typical Performance Curves For 1lA78MG (Cant.) Line Transient Response > E I . I I I I INPUT VOLTAGE 30 zo I ! I z 1 > 0 ~ zo ...~ 10 " ~ > ." 0" - - I- OUTPUT VOLTAGE DEVIATION I +-r , ~ i!! II- ...I 1 -'o=50~ml -10 -zo -rOj"!", o 10 12 10 TIME -~. P001571F Typical Performance Curves For 1lA79MG Peak Output Current vs Input/Output Differential Voltage Quiescent Current vs Input Voltage BOO -1.5 700 c BOO 10"" -2.0 A ~ ...... I I- 0: u 300 " S 0 '00 ill '§ 1\ \ fA -o.s 15 20 25 " 30 -.0 ~ I I r-.. ........ ........ - B J -8.0 '\ O.4 10 - 15 20 -25 -30 -35 -40 3 ~ ....... ~ r--- ..... VI =10V Vo = -5.0 V o o ..... ~ ' I =f"JnAJ 25 50 75 100 125 Ripple Rejection vs Output Voltage 80 VI =10Y Yo =LOY .,,/ 3.0 1. / ,/ ' 1.V ~c, ~;.-'" V 70 ..... aD 0 ~o~ ' ' ' '... 1""" ...... 50 .......... 0 -10 -1. -5.0 lOUT =-. A YOUT "'-5.0Y -10 0 -15 INPUT VOLTAGE - V -25 150 JUNCTION TEMPERATURE- °C Differential Control Voltage vs Output Current II " ~ I :... 4.0 '" " ""- ~o I O.5 .... ffi0: I' INPUT VOLTAGE-V ~ I"""'"~'C ·4.0 0.8 ~ 1 INPUT/OUTPUT DIFFERENTIAL - V Differential Control Voltage vs Input Voltage / I ~ \ V ./V ffi OOC I o /lYo"" 5% OF Jo 0.4 10001-n,-"-n,-"-n,-,,,,.,...., '~500IhA I- 1. 0 Ripple Rejection vs Frequency Load Transient Response 40 50 TIME-IAI :+H-+-++t+-+-++It-l 10 ' 200 mA TJ '2S·C , 10 100 Ik 10 k 100 k FREQUENCY - Hz PC01661F Typical Performance Curve For J.tA78MG and J.lA79MG Worst Case Power Dissipation vs Ambient Temperature Line Transient Response . 100 50 ~ INPUT VOLTAGE I z ! '" ~ §! I > I 0 -5 \ vo"sr ! LIMITS FOR C GRADE- ...... I~FINiTE ~EA~ SIN~ 10 !!o 3.0 2.0 a: 1.0 ! " 10 =200 mA z0 30 20 ;: 5.0 ;;;;;; ~ ~~ "'< 2QoC/W "lis ~ 700 4.0 . ." ;a .. !j DEVIAnON I . .. -10~ OUTPUT VOLTAGE .. ~ o ;;0 i\ ,... -s , -15 0 0.5 0.' 0.3 0.2 - ~ y-....j. k- ~ r-- r- 1-0 "d",L i ' ..... 1'... 1\ -~"o\" ~ I""- 8JC "" 12°CJW 80 TIME-IJS 100 0.1 25 50 75 100 125 150 AMBIENT TEMPERATURE _ °C Design Considerations Example: The !LA78MG and !LA79MG variable voltage regulators have an output voltage which varies from VCONT to typically VI -2.0 V by Vo = VCONT \\ I\.~ PO(MAX} = 7.5 W (R1 + R2) R2 If R2 = 5.0 kQ and R1 = 10 kQ then Vo = 15 V nominal, for the !LA78MG; R2 = 2.2 kQ and R1 = 12.8 kQ then Vo = -15.2 V nominal, for the !LA79MG. By proper wiring of the feedback resistors, load regulation of the devices can be improved significantly. The nominal reference in the !LA78MG is 5.0 V and IlA79MG is -2.23 V. If we allow 1.0 mA to flow in the control string to eliminate bias current effects, we can make R2 = 5 kQ in the !LA78MG. The output voltage is then: Vo = (R1 + R2) Volts, where R1 and R2 are in kQs. Both !LA78MG and j.tA79MG regulators have thermal overload protection from excessive power, internal short circuit protection which limits each circuit's maximum current, and output transistor safe-area protection for reducing the 6-87 1lA78MG ellA79MG Basic Positive Regulator output current as the voltage across each pass transistor is increased. OUT Although the internal power dissipation is limited, the junction temperature must be kept below the maximum specified temperature in order to meet data sheet specifications. To calculate the maximum junction temperature or heat sink required, the following thermal resistance values should be used: >V,o-_-~ 0.33 ~F +Vo IN,.A78MG R1 CONTROL COMMON 0.1 ~F R2 -::CROO191F Typical IJJC Package 8.0 Power Watt Typical IJJA 12.0 70 Vo - VCONT ( 75 R1 + R2) """Fi2 Positive 5.0 V to 30 V Adjustable Regulator TJ Max- TA POMax- B B or JC+ CA OUT TJ Max- TA B 0.33 (Without a heat sink) +Vo ~A78MG +VI IN CONTROL COMMON ~F 0.1 p.F Skll JA IJCA = Bcs + BSA Solving for TJ: TJ = TA + Po(IJJc + BcAl or TA + POIJJA (Without heat sink) Where = Junction Temperature TJ = Ambient Temperature TA = Power Dissipation Po IJJC = Junction-to-case thermal resistance IJCA = Case-to-ambient thermal resistance IJcs = Case-to-heat sink thermal resistance IJsA = Heat sink-to-ambient thermal resistance BJA = Junction-to-ambient thermal resistance Positive 5.0 V to 30 V Adjustable Regulator 10> 1.5 A Q11>1.SA_ ...---"" R1 2N6124 OUT I- (0",1",)_ _ VR Max(Jl + 1) -10 Max If load is not ground raferenced, connect reverse biased diodes from outputs to ground. Output Waveform ., Typical Applications for MA79MG (Note 1) ~ Bypass capacitors are recommended for stable operation of the 1lA79MG over the input voltage and output current ranges. Output bypass capacitors will improve the transient response of the regulator. ,,/:::"1 The bypass capacitors, (2.0 j.lF on the input, 1.0 j.lF on the output) should be ceramic or solid tantalum which have good high frequency characteristics. If aluminum electrolytics are used, their values should be 10 j.lF or larger. The bypass capacitors should be mounted with the shortest leads, and if possible, directly across the regulator terminals. OV---------- Nole 1. All resistor values in ohms. 6-89 MA78MG • MA79MG Typical Applications for #lA79MG (Note 1) (Cont.) Negative High Current Voltage Regulator External Series Pass Negative High Current Short Circuit Protected Regulator Rac Q1 -Vo Rl In =--.,.-+-f -VI-~M+____ H~--+-""'--Vo lo~ R2 Rl 1.0 IJ.F #lA78MG Test Circuit 1 Rl = iJVBE(OI) V, IN .A7IMG Basic Negative Regulator -VI 2.0.F OUT .A7IMO IN CONTROL COMMON Rl CONTROL O.I.F 0.33 .F -Vo R2 Rl 1.0.F R2 Rl + R2) Vo= ( ~ R1 Vo OUT IR Max({l) -10 Max VCONT VCONT Nominally = 5 V + R2) VO--VCONT ( ~ #lA79MG Test Circuit 2 -30 V to -2.2 V Adjustable Regulator -- 1-1~_-t--Vo IN -VI CONTROL COMM It R1 + R2) VCONT VCONT Nominally = -2.23 V Recommended R2 current'" 1 rnA :.R2 = 5 kn (pA78MG) R2 - 2.2 kn (pA79MG) 6-90 - *1 R2 10 1Vo= ( ~ Rl .A78MG F Nate 1. All resistor values in ohms. -Vo OUT JlA78MOO Series 3-Terminal Positive Voltage Regulators F=AIRCHILD A Schlumberger Company Linear Division Voltage Regulators Description The pA78MOO series of 3-terminal medium current positive voltage regulators is constructed using the Fairchild Planar Epitaxial process. These regulators employ internal currentlimiting, thermal shutdown and safe-area compensation making them essentially indestructible. If adequate heat sinking is provided, they can deliver in excess of 0.5 A output current. They are intended as fixed voltage regulators in a wide range of applications including local (oncard) regulation for elimination of noise and distribution problems associated with single-point regulation. In addition to use as fixed voltage regulators, these devices can be used with external components to obtain adjustable output voltages and currents. Connection Diagram TO-39 Package (Top View) • • • • • • • Order Information Device Code Package Code pA78M05HM FC pA78M06HM FC pA78M08HM FC pA78M12HM FC pA78M15HM FC pA78M24HM FC pA78M05HC FC pA78M06HC FC pA78M08HC FC pA78M12HC FC pA78M15HC FC pA78M24HC FC COMMON OUT Lead 3 connected to case. Output Current In Excess Of 0.5 A No External Components Internal Thermal Overload Protection Internal Short Circuit Current-Limiting Output Transistor Safe-Area Compensation Available In JEDEC TO-220 And TO-39 Packages Output Voltages Of 5 V. 6 V. 8 V. 12 V. 15 V. And 24 V • Available In Extended Temperature Range Absolute Maximum Ratings Storage Temperature Range TO-39 Metal Can TO-220 Package Operating Junction Temperature Range Extended (pA78MOOM) Commercial (pA78MOOC) Lead Temperature TO-39 Metal Can (soldering, 60 s) TO-220 Package (soldering, 60 s) Power Dissipation Input Voltage 5.0 V to 15 V 24 V -65'C to + 175'C -65'C to + 150'C -55'C to + 150'C O'C to +150'C Package Description Metal Metal Metal Metal Metal Metal Metal Metal Metal Metal Metal Metal Connection Diagram TO-220 Package (Top View) 300'C 265'C Internally Limited 35 V 40 V """""'F Lead 3 connected to case. Order Information Device Code Package Code pA78M05UC GH pA78M06UC GH pA78M08UC GH pA78M12UC GH pA78M15UC GH pA78M24UC GH 6-91 Package Description Molded Power Pack Molded Power Pack Molded Power Pack Molded Power Pack Molded Power Pack Molded Power Pack MA78MOO Series Equivalent Circuit IN Q12 Rn 0.6 Q R5 3.3kQ OUT A6 2.7 kQ D1 R7 500Q '--_~ ___ ~ _ _ _-+_ _ _ 1lA78M05 Electrical Characteristics -55°C:;;;; TA:;;;; 125°C, VI otherwise specified. VR LINE VR LOAD Output Voltage TJ = 25°C Line Regulation TJ = 25°C Load Regulation TJ = 25°C ~ _ _ _ COMMON V, 10 = 350 rnA, CI = 0.33 /IF, Co Min = 0.1 /IF, unless Typ Max 5.0 5.2 V 7.0 V"';;;; V, ..,;;;; 25 V, 10 = 200 rnA 3.0 50 rnV 8.0 V"';;;;V,"';;;;20 V, 10= 200 rnA 1.0 25 5.0 rnA"';;;; 10"';;;;500 rnA 20 50 5.0 rnA"';;;; 10"';;;;200 rnA 10 25 4.8 Vo Output Voltage 8.0 V "';;;;V,"';;;;20 V, 5.0 rnA"';;;; 10 ..,;;;; 350 rnA 10 Quiescent Current TJ = 25°C Ala Quiescent Current Change I with I with ___ Condition 1 Characteristic Symbol Vo = 10 ~_-6--_~ 4.7 4.5 V 7.0 rnA rnA 8.0 V"';;;; VI ..,;;;; 25 V, 10 = 200 rnA 0.8 load 5.0 rnA"';;;; 10 ..,;;;; 350 rnA 0.5 Noise T A = 25°C, 10Hz"';;;; f ..,;;;; 100 kHz AV,/AVo Ripple Rejection f = 2400 Hz, 10 = 125 rnA, TJ = 25°C Voo Dropout Voltage TA = 25°C 8.0 62 6-92 40 80 2.0 rnV 5.3 line No Unit MVNo dB 2.5 V J,LA78MOO Series ~78M05 (Cont.) Electrical Characteristics -55°C";; T A ";; 125°C, VI otherwise specified. Symbol = 10 V, 10 = 350 rnA, CI = 0.33 p.F, Co = 0.1 IJ.F, unless Condition 1 Characteristic los Output Short Circuit Current TJ = 25°C, VI = 35 V Ipk Peak Output Current TJ = 25°C !:No/ AT Average Temperature Coefficient of Output Voltage 10= 5.0 rnA ~78M05C Electrical Characteristics O°C";; TA ..;; 125°C, VI otherwise specified. Symbol = 10 Output Voltage TJ = 25°C VR LINE Line Regulation TJ = 25°C Load Regulation Vo Output Voltage 0.5 TJ = 25°C Typ Max Unit 300 600 rnA 0.7 1.4 A 0.4 rnvrc/ Vo I -55°C ";TA"; +25°C I + 25°C ";TA"; + 125°C V, 10 = 350 rnA, CI = 0.33 Condltlon 1 Characteristic Vo VR LOAD Min 0.3 IJ.F, Co = 0.1 IJ.F, unless Min Typ Max 5.0 5.2 V 7.0 V";VI";25 V, 10=200 rnA 3.0 100 mV 8.0 V..; VI ..; 20 V, 10=200 rnA 1.0 50 5.0 rnA"; 10 ..; 500 rnA 20 100 5.0 rnA"; 10 ..; 200 rnA 10 50 4.8 7.0 V..; VI ..; 20 V, 5.0 rnA"; 10 ..; 350 rnA 4.75 TJ = 25°C mV 5.25 V 8.0 rnA 0.8 rnA la Quiescent Current Ala Quiescent Current Change No Noise TA=25°C, 10 Hz";f";100 kHz AVI/AVo Ripple Rejection f = 2400 Hz, 10 = 125 rnA, TJ = 25°C VDO Dropout Voltage TA = 25°C 2.0 V los Output Short Circuit Current TJ = 25°C, VI = 35 V 300 rnA Ipk Peak Output Current TJ = 25°C 700 rnA AVo/AT Average Temperature Coefficient of Output Voltage 10=5.0 rnA 1.0 rnvrc I with line I with load 4.5 Unit 8.0 V"; VI ..; 25 V, 10 = 200 rnA 5.0 rnA"; 10 ..; 350 rnA 6·93 0.5 62 40 p.V 80 dB ~78MOO J.LA78M06 Electrical Characteristics -55°C.s;; TA .s;; 125°C, VI otherwise specified. Symbol = 11 V, 10 = 350 Series rnA, CI = 0.33 Condition 1 Typ Max 6.0 6.25 8.0 V ";;V,";;25 V, 10=200 mA 5.0 60 9.0 V..;; V, ..;; 20 V, 10=200 mA 1.5 30 5.0 mA";;lo";;500 mA 20 60 Characteristic Vo Output Voltage TJ = 25°C VR L'NE Line Regulation TJ = 25°C IlF, Co = 0.1 IlF, unless Min ,5.75 VR LOAD Load Regulation TJ = 25°C Vo Output Voltage 9.0 V";;V,";;21 V, 5.0 mA";;lo";;350 mA IQ Quiescent Current ~IQ Quiescent Current Change 5.0 mA";;lo";;200 mA 4.5 mV 30 6.3 V 7.0 mA 0.8 mA 5.0 mA";;lo";;350 mA 0.5 No Noise TA=25°C, 10 Hz";;f";;100 kHz Ripple Rejection f = 2400 Hz, 10 = 125 mA, TJ = 25°C Voo Dropout Voltage TA=25°C los Output Short Circuit Current TJ = 25°C, V,=35 V IPk Peak Output Current TJ = 25°C ~Vo/~T Average Temperature Coefficient of Output Voltage 10=5.0 mA J.LA78M06C Electrical Characteristics O°C.s;; TA .s;; 125°C, VI otherwise specified. = 11 8.0 Vo Output Voltage TJ = 25°C VR UNE Line Regulation TJ = 25°C 59 0.5 V, 10 = 350 rnA, CI = 0.33 40 IlVlVo 80 dB 2.0 2.5 V 300 600 mA 0.7 1.4 A 0.4 mVrCI 0.3 Vo I -55°C ";;TA";; + 25°C I +25°C ";;TA";; + 125°C Condltlon 1 Characteristic IlF, Co = 0.1 IlF unless Min 5.75 Typ Max Unit 6.0 6.25 V 8.0 V";;V,";;25 V, 10=200 mA 5.0 100 mV 9.0 V ";;V,";;20 V. 10=200 mA 1.5 50 5.0 mA";;lo";;500 mA 20 120 VR LOAD Load Regulation TJ = 25°C Vo Output Voltage 8.0 V..;; V, ..;; 21 V. 5.0 mA";;lo";;350 mA IQ Quiescent Current ~IQ Quiescent Current Change 5.0 mA";;lo";;200 mA 10 5.7 4.5 mV 60 6.3 V 8.0 mA 9.0 V ";;V,";;25 V. 10 = 200 mA 0.8 mA 5.0 mA";;lo";;350 mA 0.5 TJ = 25°C I with line I with load V mV 9.0 V..;; V, ..;; 25 V, 10 = 200 mA TJ = 25°C I with line I with load ~V,/~Vo Symbol 10 5.7 , .. Unit 6-94 MA78MOO Series /-IA78M06C (Cont.) Electrical Characteristics O°C ~ T A ~ 125°C, VI = 11 V, 10 = 350 rnA, CI = 0.33 /-IF, Co = 0.1 /-IF unless otherwise specified. Symbol Condition 1 Characteristic No Noise TA = 25°C, 10Hz ~ f ~ Min Typ 100 kHz Unit MV 80 dB !lVI/!lVO Ripple Rejection f = 2400 Hz, 10 = 125 rnA, TJ = 25°C VDO Dropout Voltage TA = 25°C 2.0 V los Output Short Circuit Current TJ = 25°C, VI = 35 V 270 rnA IPk Peak Output Current TJ = 25°C 700 mA !lVo/!lT Average Temperature Coefficient of Output Voltage 10= 5.0 mA 0.5 mV/oC /JA78M08 Electrical Characteristics -55°C ~ T A ~ 125°C, VI = 14 V, 10 = 350 rnA, CI 59 Max 45 = 0.33 /-IF, Co = 0.1 /-IF, unless otherwise specified. Symbol Vo VR LINE VR LOAD Condition 1 Characteristic Output Voltage TJ = 25°C Line Regulation TJ = 25°C Load Regulation TJ = 25°C Min Typ Max 8.0 8.3 V 10.5 V~VI~25 V, 10= 200 mA 6.0 60 mV 11 V~VI~20 V, 10=200 mA 2.0 30 7.7 5.0 mA~lo~500 mA 25 80 5.0 mA~lo~200 mA 10 40 Vo Output Voltage 11.5 V~VI~23 V, 5.0 mA~lo~350 mA la Quiescent Current TJ = 25°C !lla Quiescent Current Change No Noise TA = 25°C, 10Hz ~ f !lVI/!lVO Ripple Rejection f = 2400 Hz, 10 = 125 mA, TJ = 25°C VDO Dropout Voltage TA = 25°C los Output Short Circuit Current TJ = 25°C, VI = 35 V Ipk Peak Output Current TJ = 25°C !lVo/!lT Average Temperature Coefficient of Output Voltage 10= 5.0 mA I with line I with load 11.5 5.0 7.6 4.6 V~VI~25 V, 10=200 mA mA~lo~350 100 kHz 8.0 56 0.5 I -55°C ~ TA ~ +25°C I +25°C ~TA ~ +125°C 6-95 mV 8.4 V 7.0 mA 0.8 mA 0.5 mA ~ Unit 40 80 MVNo dB 2.0 2.5 V 300 600 mA 0.7 1.4 A 0.4 mV/oC 0.3 MA78MOO Series MA78M08C Electrical Characteristics 0°C 12V -UmA ....... ~'2.04 ....... ".0 0.1 26 50 i , . " S ...... ....... ia! 11 ... -so -25 0 25 50 75 100 125 150 175 - 1.0 I-- r-~J ~ i II: II: -so 4.8 e- 4.7 ~ ....... I, 1~~~~ i ~ L I l~ 0.' ~ 20 26 30 INPUT/OUTPUT VOLTAGE OIFFERENTIAL-V U 150 10 15 -25 0 TJ =125OCI ~ ='oomA--. _____ 25 10 r- = ~"'" f_1o;-:!mA o 75 100 125 150 175 4.3 I!V ~ ~ II o 2.0 0 4.1 4.G 8.0 6.0 10 100 r-T-rr......,r-T"TT1r--rr-TTTTr-T-r"TTT-' 8Om:l~~ i:H-+tH-++HH-++t+-+-++++--l i " M 4,' 5 = 100 mA I !/ INPUT VOLTAGE-V J.nl I e:r Ripple Rejection vs Frequency Vil I Vo = 5.0 V Io = 200 rnA II V~ """ ~ ~ r---,o / 2.0 50 4.5 ~ "'" 10 "20"",:::::- i-- Jni _~o.l5.oJ 4.6 G 4A !i:w 20 V, = a.ov TO 18 '-V+++t+-+-HtH r L H'-t-Ht-+-t-H+-l I 111 "F I 1Ii Vo=5.0V _\'0T :: 200 mA 25 4.0 o~~~~~~-L~-L-LLU~ 10 15 20 25 30 35 INPUT VOLTAGE-V -75 -50 -25 0 25 50 75 100 125 150 175 AMBIENT TEMPERATURE-"C I-IA78MOO Series devices have similar curves, 6-101 10 100 1.0 K 10 K 100 K FREQUENCY-Hz PC120SOF Note Other fi.:~ ':,,,~, Dropout Characteristics a.o r-..: f-~~~~~~~S o ...1.1 1 i 75 ~~- 1/ 3.0 5.0 "'f::::. ~ ~ '\ Quiescent Current vs Temperature ::OCmA "..... ..til- ,. ...... ~ ,,~""c JUNClION TEMPERATURE-OC Quiescent Current vs Input Voltage 5.0 0,6 ...... r--;: ~ ~"'" - - 0.5 JUNClION TEMPERATURE-OC r+.Jo .IUIV iG ............. J .... ~- I"'-- ...... .::::: ~ 0 ~ 75 r- 15 11.88 11.80 125 100 -- -- • .0 II: ~11.96 0.8 10.4 '.5 w 1.5 0 '1 .92 75 ~ - r- r- \ \ • 1.0 PC01841F II: " r\1\ . AMBIENT TEMPERATURE-"C ~i78l. = -10 ~~ Dropout Voltage vs Junction Temperature -v! = ~.v' Yo 12.12 ..... ~ f\.\.~- 8JC -S.OIJC/W "" .... ~7.5w··1 150 Output Voltage vs Junction Temperature 12.1' ~""'9Ir~ CI.2 AMBIENT TEMPERATURE-"C 12.20 . ~ S -10 -TJ"UOC o I: " 10 10 0.0 20 > J. ~ ~1.0 ~ ij ~ !i S I -20 o r-- OUTPUT VOLTAGE DEYlA110N 0 1.0 l"- V 0-1.0 j 2.0 '.0 e.o 4.0 -2.0 10 12 o 10 20 Design Considerations The 1lA78MOO fixed voltage regulator series has thermaloverload protection from excessive power, internal short circuit protection which limits the circuit's maximum current, and output transistor safe-area compensation for reducing the output short circuit current as the voltage across the pass transistor is increased. Although the. internal power dissipation is limited, the junction temperature must be kept below the maximum specified temperature (150·C for 1lA78MOO; 125·C for 1lA78MOOC) in order to meet data sheet specifications. To calculate the maximum junction temperature or heat sink required, the following thermal resistance values should be used: Max (lJC Typ Package Typ (lJC (lJA Max (lJA TO-39 TO-220 18 3.0 25 5.0 120 60 140 40 TJ Max-TA Po MAX = " " or vJC + "CA TJMax-TA =" .JJA 30 40 50 80 TlME-~ TlME-II-_ (lCA .J..ri,.,L I I LOAD CURRENT 5 10 -6ODmA, 5.0 V -vo c--y.Vo=S.DV =10V Where: TJ = Junction Temperature = Ambient Temperature TA = Power Dissipation Po (lJC = Junction to case thermal resistance (lCA = Case-to-ambient thermal resistance (lcs = Case-to-heat sink to resistance (lSA = Heat sink-to-ambient thermal resistance (lJA = Junction-to-ambient thermal resistance Typical Applications Fixed Output Regulator IN -Wlr-t--t 0.33 p.F (NOTE 2) 1"-_--- OUT + 0.1 p.F (NOTE 2) Notes 1. To specify an output voltage, substitute voltage value for "XX". 2. Bypass capaCitors are recommended for optimum stability and transient response and should be located as close as possible to the regulator. (Without a heat Sink) = (lcs + (lSA Solving for TJ: TJ = TA + Po«(lJC + (lCA) or = TA + Po (lJA (Without a heat sink) 6-102 J,lA78S40 Universal Switching Regulator Subsystem FAIRCHILD A Schlumberger Company Linear Division Voltage Regulators Description Connection Diagram 16-Lead DIP (Top View) The MA78S40 is a monolithic regulator subsystem consisting of all the active building blocks necessary for switching regulator systems. The device consists of a temperature compensated voltage reference, a duty-cycle controllable oscillator with an active current limit circuit, an error amplifier, high current, high voltage output switch, a power diode and an uncommitted operational amplifier. The device can drive external NPN or PNP transistors when currents in excess of 1.5 A or voltages in excess of 40 V are required. The device can be used for step-down, step-up or inverting switching regulators as well as for series pass regulators. It features wide supply voltage range, low standby power dissipation, high efficiency and low drift. It is useful for any stand-alone, low part count switching system and works extremely well in battery operated systems. 16 DIODE CATHODE SWITCH COLLECTOR DIODE ANODE DRIVER COLLECTOR SWITCH EMmER v, OPAMPOUT OPAMP SUPPLY • Step-Up, Step-Down or Inverting Switching Regulators • Output Adjustable From 1.25 V to 40 V • Peak Currents To 1.5 A Without External Transistors • Operation From 2.5 V to 40 V Input • Low Standby Current Drain • 80 dB Line And Load Regulation • High Gain, High Current, Independent OP AMP • Pulse Width Modulation With No Double Pulsing TIMING CAPACITOR OPAMP +IN GND OPAMP -IN COMPARATOR -IN REFERENCE VOLTAGE COMPARATOR +IN CD01400F Order Information Device Code Package Code MA78S40DM MA78S40PV MA78S40DC MA78S40PC Package Description 78 98 78 98 Ceramic DIP Molded DIP Ceramic DIP Molded DIP Block Diagram COMPARATOR COMPARATOR +IN -IN nMING GROUND CAPACITOR r-- Ipk SENSE V,N _1__ __1 ___ _ DRIVER COLLECTOR SWITCH COLLECTOR --, I I I I I I I I I I I I 1...--_--. I I I~";;;';;;;~ L __ REFERENCE OP AMP VOLTAGE -IN OP AMP +IN • IpK SENSE OP AMP SUPPLY OP AMP OUT 6-103 --Fi-J SWITCH EMITTER DIODE ANODE DIODE CATHODE MA78S40 Absolute Maximum Ratings Storage Temperature Range Ceramic DIP Molded DIP Operating Temperature Range Extended (J,LA 78S40M) Industrial (J,LA78S40V) Commercial (J,LA78S40C) Lead Temperature Ceramic DIP (soldering, 60 s) Molded DIP (soldering, 10 s) Internal Power Dissipation 1,2 16L-Ceramic DIP 16L-Molded DIP Input Voltage from V+ to VInput Voltage from V+ Op Amp to V- -65°C to + 175°C -65°C to + 150°C -55°C to + 125°C -40°C to + 125°C O°C to +70°C 300°C 265°C 1.50 W 1.04 W 40 V 40 V Common Mode Input Range (Error Amplifier and Op Amp) Differential Input Voltage 3 Output Short Circuit Duration (Op Amp) Current from VREF Voltage from Switch Collectors to GND Voltage from Switch Emitters to GND Voltage from Switch Collectors to Emitter Voltage from Power Diode to GND Reverse Power Diode Voltage Current through Power Switch Current through Power Diode -0.3 to V+ ±30 V Indefinite 10 mA 40 V 40 V 40 V 40 V 40 V 1.5 A 1.5 A Notes 1. T J Max = 150·C for the Molded DIP, and 175·C for the Ceramic DIP. 2. Ratings apply to ambient temperature at 25·C. Above this temperature, derate the 16l-Ceramic DIP at 10 mWrC, and the 16l-Molded DIP at 8.3 mWrC. 3. For supply voltages less than 30 V. the absolute maximum voltage is equal to the supply voltage. Functional Description The ,uA78S40 is a variable frequency, variable duty cycle device. The initial switching frequency is set by the timing capacitor. 1 The initial duty cycle is 6:1. This switching frequency and duty cycle can be modified by two mechanisms - the current limit circuitry (Ipk sense) and the comparator. The comparator modifies the OFF time. When the output voltage is correct, the comparator output is in the HIGH state and has no effect on the circuit operation. If the output voltage is too high then the comparator output goes LOW. In the LOW state the comparator inhibits the turn-on of the output stage switching transistors. As long as the comparator is LOW the system is in OFF time. As the output current rises the OFF time decreases. As the output current nears its maximum the OFF time approaches its minimum value. The comparator can inhibit several ON cycles, one ON cycle or any portion of an ON cycle. Once the ON cycle has begun the comparator cannot inhibit until the beginning of the next ON cycle. The current limit modifies the ON time. The current limit is activated when a 300 mV potential appears between lead 13 (Vcel and lead 14 (lPk)' This potential is intended to result when designed for peak current flows through Rsc. When the peak current is reached the current limit is turned on. The current limit circuitry provides for a quick end to ON time and the immediate start of OFF time. Generally the oscillator is free running but the current limit action tends to reset the timing cycle. Increasing load results in more current limited ON time and less OFF time. The switching frequency increases with load current. VFD is the forward voltage drop across diode. It is listed on the data sheet as 1.5 V maximum. If an external diode is forward voltage drop must be used for the internal power 1.25 V typical, used, then its own VFD. VSAT is the voltage across the switch element (output transistors 01 and 02) when the switch is closed or ON. This is listed on the data sheet as output saturation voltage. Output saturation voltage 1 - defined as the switching element voltage for 02 and 01 in the Darlington configuration with collectors tied together. This applies to Figure 1, the step down mode. Output saturation voltage 2 - switching element voltage for 01 only when used as a transistor switch. This applies to Figure 2, the step up mode. For the inverting mode, Figure 3, the saturation voltage of the external transistor should be used for VSAT. Note 1. Oscillator frequency is set by a single external capacitor and may be varied over a range of 100 Hz to 100 kHz. 6-104 MA78S40 J.tA78S40 Electrical Characteristics TA = Operating temperature range, VI specified. Symbol Characteristic = 5.0 V, VOp Amp = 5.0 V, unless otherwise Condition Unit General Characteristics IcC Icc Supply Current (Op Amp Disconnected) VI = 5.0 V 1.8 3.5 mA VI =40 V 2.3 5.0 mA Supply Current (Op Amp Connected) VI = 5.0 V 4.0 mA VI = 40 V 5.5 mA Reference Section VREF Reference Voltage 1 IREF = 1.0 mA VR LINE Reference Voltage Line Regulation VI = 3.0 V to VI = 40 V, IREF = 1.0 mA, TA = 25°C VR LOAD Reference Voltage Load Regulation Extend -55°C < TA < +125°C, Comm 0 < TA < + 70°C, Indus -40°C < TA < + 85°C 1.180 IREF=1.0 mA to IREF=10 mA, TA=25°C 1.245 1.310 V 0.04 0.2 mV/v 0.2 0.5 mV/mA Oscillator Section ICHG Charging Current VI = 5.0 V, TA = 25°C 20 50 p.A ICHG Charging Current VI=40 V, TA=25°C 20 70 p.A IDISCHG Discharge Current VI = 5.0 V, TA = 25°C 150 250 p.A IDISCHG Discharge Current VI = 40 V, TA = 25°C 150 350 f.l.A Vosc Oscillator Voltage Swing VI = 5.0 V, TA = 25°C ton/toff Ratio of Chargel Discharge Time 0.5 V 6.0 f.l.s/f.l.s Current Limit Section VCLS Current Limit Sense Voltage mV Output Switch Section VSAT 1 Output Saturation Voltage 1 Isw = 1.0 A, Figure 1 1.1 1.3 V VSAT 2 hFE Output Saturation Voltage 2 Isw = 1.0 A, Figure 2 0.45 0.7 V Output Transistor Current Gain Ic=1.0 A, VCE=5.0 V, TA = 25°C 70 IL Output Leakage Current Vo=40 V, TA=25°C 10 nA Power Diode IDR Forward Voltage Drop ID = 1.0 A V Diode Leakage Current VD = 40 V, TA = 25°C nA Comparator VIO Input Offset Voltage VCM = VREF 1.5 15 mV liB Input Bias Current VCM = VREF 35 200 nA 110 Input Offset Current VCM = VREF 5.0 75 nA 6-105 t-tA78S40 j.lA78S40 (Cont.) Electrical Characteristics TA = Operating temperature range, VI specified. Symbol Characteristic = 5.0 V, VOp Amp Condition = 5.0 V, unless otherwise Min Typ 0 VCM Common Mode Voltage Range TA = 25°C PSRR Power Supply Rejection Ratio VI = 3.0 V to 40 V, TA = 25°C 70 Max Unit V1-2 V 96 dB Output Operational Amplifier VIO Input Offset Voltage VCM= 2.5 V 4.0 15 mV nA liB Input Bias Current VCM = 2.5 V 30 200 110 Input Offset Current VCM= 2.5 V 5.0 75 Avs+ Voltage Gain + RL = 2.0 kn to GND; Vo = 1.0 V to 2.5 V, TA = 25°C 25 250 V/mV Avs- Voltage Gain- RL = 2.0 kn to V+ (Op Amp) Vo = 1.0 V to 2.5 V, T A = 25°C 25 250 V/mV VCM Common Mode Voltage Range TA = 25°C CMR Common Mode Rejection VCM = 0 V to 3.0 V, TA = 25°C 76 100 dB PSRR Power Supply Rejection Ratio V+ Op Amp = 3.0 to 40 V, TA = 25°C 76 100 dB 10+ Output Source Current TA = 25°C 75 150 mA 10- Output Sink Current TA = 25°C 10 35 mA SR Slew Rate TA = 25°C 0.6 VIIlS VOL Output Voltage LOW IL = -5.0 mA, T A = 25°C VOH Output Voltage HIGH IL = 50 mA, T A = 25°C 0 Note 1. Selected devices with tightened tolerance reference voltage available. 6-106 Vcc-2 1.0 V+OP Amp -3.0 V nA V V V MA78S40 Design Formulas CHARACTERISTIC STEP-DOWN STEP-UP INVERTING -ton VO+VD Vo +VD-VI IVol+VD toff VI-VSAT-VO VI- VSAT VI-VSAT (ton + toff) Max - 1 - CT 4 X 10- 5 ton 4 X 10- 5 ton Ipk 2 10 Max ton + toff 210M 1 JJ.s fMin fMin 0 _ _- ax 4 X 10- 5 ton 210 Max ton + toff 0 ___ toff JJ.F A toff LMin (VI-VSAT-VO) I ton Max pk (VI-VSAT) - 1 - - ton Max pk (VI-VSAT) - 1 - - ton Max pk JJ.H Rse 0.33/lpk 0.33/lpk 0.33/lpk n Ipk (ton + toff) 10 ""-- 8 Vripple Vripple Note VSAT ~ ~ - fMin Co Vo 1 UNIT Saturation voltage of the switching element Forward voltage of the flyback diode 6-107 10 0 ton ""-- VriPple 0 ton JJ.F JIA78S40 Figure Figure 2 Typical Step-Down Operational Performance (TA = 25°C) Rsc V, 25V = L Rsc V, 10V 0.33 Q Typical Step-Up Operational Performance (TA 25°C) 3OOI'H 0.332 ""' Cy 0.01 JJ.F ~ --, V,N IBlAS- - - - I I I I I I I I I I I I I I I I I I t----[" Ql I I I I I I I I I"" Cy OSCILLATOR I I J ~1,214 I I ~ I I \ 10= 100 mA 8.0 V < VI < 18 V 5.0 mA i 8 ........ ~ r--.. r-V' I 1 1 1 i 0 25 50 75 8.0 100 125 150 175 100 75 125 1 6.0 4.0 ~ 4.0 g • .0 o 1.0 I o ~ m .." I' 2.0 4.0 r': DA 6.0 INPUT VOLTAGE-V - 8.0 15 2.0 :-- r- 20 ~ I""-' r::::: ~ 1.5 L I 0.4 j ~~ 1.6 2.0 2.4 -r- ~"'A. ~ "'A. r- ~~ -75 -so -2S 0 2S so 7S 100 125 lSO 175 JUNcnON TEMPERATURE-oC 4.6 JnJs VI = 10V -Vo=5.DV 10 = 500mA JAJ.- -- f- """ J78.&~- Quiescent Current vs Junction Temperature ~O ~ s.~ V 1 -~J :~.~ V 30 f- DROPOUT CONDmONS !J.Vo = 5.0% OF Vo o 1.2 25 r- I- ~~A. ;:- ~ l! 0.5 ~ 0.8 ~ ~ l- I07~~ ........ S 1.0 0 I- f- f- V II i I ../.. 10 ........ > / - ~O=100mA~~ '" I~ Joo JA - I 2.0 5.0 f- Dropout Voltage vs Junction Temperature II = lOY Yo = S.OY -TJ = 25°C ""'c I" '.so; " l'... INPUT/OUTPUT DlFFERENTlAL-Y 1 _y, " I Ie I ZI o o 5.0 t ~ t o w -LJ", i'/"h / I' 2.5 '.0 I ~ ~ n 1.0 OUTPUT CURRENT-A JAJ.- -TJ =25'C 1.5 150 Quiescent Current vs Input Voltage ~o 25.D~ ..... ~ ,,~ ~ ""<'$:"....... :::--, ""- 0 I" = 150"C JnJs ~ ........... =19V Vo -so -25 ." 5a. I 't*"~~ 0.5 5 ....... ~ '1 .9 o ',\ "!'§ ....... Dropout Characteristics .. 5 (.) =65' C/W 50 JUNCnON TEMPERATURE-"C g ........ " i" ',\ > 12.0 -75 "!'§ ...... ) },If--. 2.0 w II! II! 5.0 1 ~ ~ Hs:::: 7$oC/.., ~TS r--:!."IC 1 ~ 6.0 ,l781k- = 12V 11.8f-1o =.DrnA > '.'c:-", Current·Limiting Characteristics ".2 I!i '''.~ s ..,....... • ~~nJs 1 1 AMBIENT TEMPERATURE-DC Output Voltage vs Junction Temperature ~ 1~ 2.5 = 5.0"C/W AMBIENT TEMPERATURE_DC , 3.0 = 0 C/W r- W 1.0 '\' ........ -- r-- 20 II! D.' r-- .Je =5.0' C/W 0.2 r-- .JA = 65' C/W TJ MAX = 150"C "I 0.1 25 UMIT FOR "A78OOC - 50 40 30 = OC/W 10 i-- - 100 f-- 40 30 Peak Output Current vs Input/Output Voltage Differential Worst Case Power Dissipation vs Ambient Temperature (TO·220) l10 3." 5.0 10 15 20 25 INPUT VOLTAGE-V 6-122 30 35 • .6 -75 -50 -25 0 25 50 75 100 125 150 175 JUNcnON TEMPERATURE_oC IlA7800 Series Typical Performance Curves (Cont.) Ripple Rejection vs Frequency Line Transient Response 100 40 ,1J.1.k F 80 ! 60 0 " u w OJ a: r4 ~ 10 g a: r,YI 20 Yo r-~ z:::: I 1-10 rTJ =25'C I ==c 10 • ... mA mA 10 ryo -20 100 1.0K 10K 100 K o =S.oy 2.0 4.0 ~ =5.0 y 10 JnJ. I r.-:-'I "'10Y ~ I g o L 1.0 r- -r- OU~~:~AGE ~ I\.. I Ct.. = S.GY 250C =OjA-f II< 1111 1 ~ 10 = 20mA I ~ V I ,19,=500mA 0-1.0 -2.0 1. 10 J~ V,I ~ 1~~1I Yo TA 1.0 S ," '.0 LOAD CURRENT ~ '.0 8.0 Output Impedance vs Frequency Load Transient Response 4.0 6.0 nME-JA-S FREQUENCY-Hz Yo i DEVlAT10N 0 o 1010 20 30 40 50 60 TIUE-f.4. •10 100 'K 10K FREQUENCY-Hz Note The other p.A7800 series devices have similar curves. DC Parameter Test Circuit 0.1 JLF Vo 6-123 ~ ~ '.0 g OUTPUT VOLTAGE 8.0 V TO 18 V =5.0 V " 10 ~ 40 20 "~ni.. I INPUT VOLTAGE lOOK .11 tlA7800 Series Design Considerations Typical Applications The !1A7800 fixed voltage regulator series has thermal overload protection from excessive power dissipation, internal short circuit protection which limits the regulator's maximum current, and output transistor safe-area compensation for reducing the output current as the voltage across the pass transistor is increased. Although the internal power dissipation is limited, the junction temperature must be kept below the maximum specified temperature (150°C for Jl.A7800, 125°C for Jl.A7800C) in order to meet data sheet specifications. To calculate the maximum junction temperature or heat sink required, the following thermal resistance values should be used: Package Typ IiJC °C/W Max IiJC °C/W Typ IiJA °C/W Max IiJA °C/W TO-3 3.5 5.5 35 40 TO-220 3.0 5.0 40 60 Fixed Output Regulator v,----_-I I-_---vo 0.33 p.F Notes 1. To specify an output voltage, substitute voltage value for "'XX."' 2. Bypass capacitors are recommended for optimum stability and transient response. and should be located as close as possible to the regulator. High Input Voltage Circuits I-O-.....---vo '--__+-__-+ 0.1 p.F (NOTE 2) TJMax-TA Po Max =" +" . or "JC "CA v, _ _-""\ TJ MaxTA = - - , , - (Without heat sink) "JA ~"",,--vo 0.1 ;.tF IiCA = lics + liSA Solving for TJ: TJ=TA+Po(IiJc+licAl or = TA + POIiJA (Without heat sink) Where: TJ TA Po IiJC IiCA lics liSA IiJA High Current Voltage Regulator = Junction Temperature = Ambient Temperature = Power Dissipation = Junction-to-case thermal resistance = Case-to-ambient thermal resistance = Case-to-heat sink to thermal resistance = Heat sink-to-ambient thermal resistance = Junction-to-ambient thermal resistance v,-_----=>· 13(01) ~ 10 Max IREG Max R1 = ~ = IREG 6-124 13(01)VSE(Q1) (13 + 1) -10 Max IREG Max I1A 7800 Series Dual Supply Operational Amplifier Supply (±15 V@1.0 A) ·20I~ ---1r--t J.=4r---....------~~~ v 1----,.--1 GND--.~~-~~~-~~~-~_.-----GND lN4001 DR EQUIVALENT I---+---....-----~:ir v High Output Current, Short Circuit Protected Roc I N -.....---.-""'~.....""' Q2 2N6124 I--+_.-DUT Rl 0.1 "F 3.02 0.8 Rsc=ISC R1 = iNBE(Q1) IREG Max (~+ 1) -10 Max Positive and Negative Regulator 6·125 JlA 79MOO Series 3-Terminal Negative Voltage Regulators FAIRCHIL.D A Schlumberger Company Linear Division Voltage Regulators Description The }.LA79MOO series of 3-Terminal Medium Current Negative Voltage Regulators are constructed using the Fairchild Planar Epitaxial process. These regulators employ internal current-limiting, thermal shutdown, and safe-area compensation making them essentially indestructible. If adequate heat sinking is provided, they can deliver up to 0.5 A output current. They are intended as fixed voltage regulators in a wide range of applications including local (on-card) regulation for elimination of noise and distribution problems associated with single-point regulation. In addition to use as fixed voltage regulators, these devices can be used with external components to obtain adjustable output voltages and currents. Connection Diagram TO-39 Package (Top View) • • • • • • Order Information Device Code Package Code MA79M05HM FC MA79M08HM FC MA79M12HM FC MA79M15HM FC MA79M05AHC FC MA79M08AHC FC MA79M12AHC FC MA79M15AHC FC Output Current In Excess Of 0.5 A Internal Thermal Overload Protection Internal Short Circuit Current-Limiting Output Transistor Safe-Area Compensation Available In JEDEC TO-220 And TO-39 Packages Output Voltages Of -5 V, -8 V, -12 V, and -15 V Absolute Maximum Ratings Storage Temperature Range TO-39 Metal Can TO-220 Package Operating Junction Temperature Range Extended (MA79MOOM) Commercial (MA79MOOAC) Lead Temperature TO-39 Metal Can (soldering, 60 s) TO-220 Package (soldering, 60 s) Power Dissipation Input Voltage -5.0 V to -15 V -65°C to + 175°C -65°C to + 150°C -55°C to + 150°C O°C to + 150°C IN OUT Lead 3 connected to case. Package Description Metal Metal Metal Metal Metal Metal Metal Metal Connection Diagram TO-220 Package (Top View) 300°C 265°C Internally Limited ::;('" rOUT ~I :~Ii -35 V \.. \..COMMON IN Lead 3 connected to case. Order Information Device Code Package Code MA79M05AUC GH MA79M08AUC GH MA79M12AUC GH MA79M15AUC GH 6-126 Package Description Molded Power Pack Molded Power Pack Molded Power Pack Molded Power Pack I1A79MOO Series Equivalent Circuit r-----~----------~------~--~------------~------------~--------._--~-COMMON R25 4.5 k TO 6.3 k R20 17.2 k 6.4k 4.0k R24 1.7 k TO 18 k .....-w~---_J -12 V end-24 V R5 OPTIONS 420 • R23 I I I I .---+--f-------....l OUT Ql R22 0.1 R30 200 R6 800 R13 0.2 IN IlA79M05H Electrical Characteristics -55°C';;; TA';;; 125°C, V, = -10 V, 10 = 350 rnA, C, = 2.0 IlF, Co = 1.0 IlF, unless otherwise specified. 1,2 Symbol Output Voltage Vo VR LINE VR LOAD TJ = 25°C Load Regulation Output Voltage 10 Quiescent Current L\lo Quiescent Current Change Noise Min Typ Max -5.2 -5.0 -4.8 l-25 V';;'V,';;'-7.0 V 7.0 50 1-18 V';;'VI';;'-8.0 V TJ = 25°C Line Regulation Vo No Condition 3 Characteristic 3.0 30 TJ = 25°C, 5.0 rnA';;' 10';;' 500 rnA 75 100 TJ = 25°C, 5.0 rnA';;' 10';;' 350 rnA 50 -25 V';;'VI';;'-7.0 V, 5.0 rnA';;' 10';;'350 rnA, PD';;'4.0 W TJ = 25°C I with line I with load -5.25 -4.75 V rnV rnV V 2.0 rnA -25 V.;;, VI';;'-8.0 V 0.4 rnA 5.0 rnA';;' 10';;'350 rnA 0.4 TA = 25°C, 10 Hz';;'t';;'100 kHz 6-127 1.0 Unit 25 80 MVNo J.lA 79MOO Series 1lA79M05H (Cont.) Electrical Characteristics -55°C';;; TA .;;; 125°C, VI otherwise specified. 1,2 Symbol = -10 V, 10 = 350 rnA, CI = 2.0 Condition 3 Characteristic Min Ripple Rejection f = 2400 Hz, 10 = 125 mA, TJ = 25°C Voo Dropout Voltage TJ = 25°C los Output Short Circuit Current TJ = 25°C, VI = -35 V Ipk Peak Output Current VI-Vo=10 V, TJ=25°C f1Vo/f1T Average Temperature Coefficient of Output Voltage 10 = 5.0 mA, O°C < TA < 125°C f1VI/t:No 1lA79M05AC Electrical Characteristics -O°C';;; TA .;;; 125°C, VI otherwise specified. 1,2 Symbol = -10 V, 10 = 350 rnA, CI = 2.0 Max J.!F, Co 0.65 = 1.0 2.3 A 1.4 A 0.3 my/oCt Vo J.!F, unless Typ Max -5.0 -4.8 1-25 V 0.20 I w Co " .... "a . "j'MAX =7.• W Output Voltage vs Junction Temperature g 700 ··C/I\< . . . . . . . ~If~.l AMBIENT TEMPERATURE-"C "~ ' " HEAT SINK ~ I 2.0 0.2 ~-'---'-...JL......I.....L...J._L.-'---'-....J 0.1 0.15 ~""C/ is a: w 0.5 ;t w 0 .• ~ Co ~ "'j..;:: 800 "INFINITE . . . -ko"sJ, 5.0 4.0 ;t 3.0 Peak Output Current vs Input/Output Voltage Differential 10 K 100 K NOMINAL OUTPUT VOlTAGE-V MA 79MOO Series Typical Performance Curves (Cont.) Line Transient Response Output Impedance vs Frequency Load Transient Response 2.0 3.0 101 INPUT VOLTAGE -15 1\ L > ~ , > r 0 OUTP1 DEVIAnoN V g , > ~ I-~I o 80 Co = 25p.F il~MINMTI §-1.0 -2. 40 60 TlME-p.. = 1.01LF SOUD TANTAWM ou~uJ VOL~AGE- t DEVIATION "~ i!! I 5.o r~O =200mA Vo = 5.0 V 20 Co 1.0 w -5.0 ~ \i LOAD CURRENT ~ ~ \ 1.0 2.0 Iii -10 ~ vJLTAGE- l - I-- 10 - 100 MA Vo= -5.0 V TJ = 25°C = lOY Vf =f Ov , 30 40 50 10- 10 Design Considerations The safe-area protection network may cause the device to latch-up if the output is shorted and the regulator is operating with high input voltages. This mode of operation will not damage the device. However, power (input voltage or the load) must be interrupted momentarily for the device to recover from the latched condition. Although the internal power dissipation is limited, the junction temperature must be kept below the maximum specified temperature (150°C for /lA79MOO, 125°C for /lA79MOOC and /lA7900MAC) in order to meet data sheet specifications. To calculate the maximum junction temperature or heat sink required, the following thermal resistance values should be used: Package TO-39 18.0 25 120 140 TO-220 3.0 5.0 60 40 TJ Max- TA POMAX = 8 + 8 or JC CA 100 1.0K 10K lOOK 1.0M 10M 100M FREQUENCY-Hz TlME-,us The /l79MOO fixed voltage regulator series have thermaloverload protection from excessive power, internal shortcircuit protection which limits the circuit's maximum current, and output transistor safe-area compensation for reducing the output current as the voltage across the pass transistor is increased. 111111111 2 20 10 100 Solving for TJ: TJ=TA+PO (8Jc+8cA) or = TA + P0 8JA (Without a heat sink) Where: TJ TA Po 8JC 8CA 8cs 8sA 8JA = Junction Temperature = Ambient Temperature = Power Dissipation = Junction-to-case thermal resistance = Case-to-ambient thermal resistance = Case-to-heat sink thermal resistance = Heat sink-to-ambient thermal resistance = Junction-to-ambient thermal resistance Typical Applications Bypass capacitors are necessary for stable operation of the/lA79MOO series of regulators over the input voltage and output current ranges. Output bypass capacitors will improve the transient response of the regulator. The bypass capacitors, (2.0 /IF on the input, 1.0 /IF on the output) should be ceramic or solid tantalum which have good high frequency characteristics. If aluminum electrolytics are used, their values should be 10 /IF or larger. The bypass capacitors should be mounted with the shortest leads, and if possible, directly across the regulator terminals. Fixed Output Regulator Test Circuit (1 ) V,--_9_---i 2.0"F TJ Max - TA (Without a heat sink) 8JA 8CA = 8cs + 8SA 6-134 I---+--Vo 1.0p.F IlA7900 Series 3-Terminal Negative Voltage Regulators F=AIRCHILD A Schlumberger Company Linear Division Voltage Regulators Description The jJ.A7900 series of monolithic 3-terminal negative regulators is manufactured using the Fairchild Planar Epitaxial process. These negative regulators are intended as complements to the popular jJ.A7800 series of positive voltage regulators, and they are available in voltage options from -5.0 V to -15 V. The jJ.A7900 series employ internal current-limiting, thermal shutdown, and safe-area compensation, making them virtually indestructible. • • • • • • Connection Diagram To-3 Package (Top View) Output Current In Excess Of 1.0 A Internal Thermal Overload Protection Internal Short Circuit Current-Limiting Output Transistor Safe-Area Compensation Available In JEDEC TO-220 And TO-3 Packages Output Voltages of -5 V, -8 V, -12 V, and -15 V Order Information -55'C to + 150'C O'C to +150'C Device Code jJ.A7905KM jJ.A7908KM jJ.A7912KM jJ.A7915KM jJ.A7905KC jJ.A7908KC jJ.A7912KC jJ.A7915KC 300'C 265'C Internally Limited Connection Diagram TO-220 Package (Top View) Absolute Maximum Ratings Storage Temperature Range TO-3 Metal Can TO-220 Package Operating Junction Temperature Range Extended (jJ.A7900M) Commercial (jJ.A7900C) Lead Temperature TO-3 Metal (soldering, 60 s) TO-220 Package (soldering, 10 s) Power Dissipation Input Voltage -5 V to -15 V -65'C to + 175'C -65'C to + 150'C Package Code HJ HJ HJ HJ HJ HJ HJ HJ Package Description Metal Metal Metal Metal Metal Metal Metal Metal rOUT -35 V ~I :I~; ~~IN Note 1. The convention for Negative Regulators is the Algebraic value. thus -15 is less then -10 V. " \.....IN ' - - COMMON Lead 3 connected to case. Order Information Device Code jJ.A7905UC jJ.A7908UC jJ.A7912UC jJ.A7915UC 6-135 Package Code GH GH GH GH Package Description Molded Power Pack Molded Power Pack Molded Power Pack Molded Power Pack J.lA7900 Series Equivalent Circuit r-----~--------------~~--------_1~_1------------------._----------------._----------._----._-COMMON R2 1.4kQ R25 R23 4.0kQ 4.5 kQ T06.3kQ I I R24 1.7 kQ I R4 2.2 kQ TO 18kQ 1_12 V AND I -15V I OPTIONS .-J/ ~I--I---~._ OUT R5 420Q 01 020 Rlg 5.3 kQ C3 3 pF R16 4.7kQ R14 2.3kQ R17 3.0kQ R21 17 kQ R30 200Q R22 O.04Q R13 O.05Q IN 6·136 J.LA 7900 Series 1-!A7905 < < Electrical Characteristics -55°C TA 125°C, VI = -10 V, 10 = 500 rnA, CI = 2.0 j.lF, Co = 1.0 j.lF, unless otherwise specified. Symbol Vo VR LINE VR LOAD Conditlon 1 Characteristic Output Voltage TJ Line Regulation TJ Load Regulation TJ = 25°C = 25°C = 25°C Min 3.0 50 -2.0 V';;;VI';;;-12 V 1.0 25 15 100 5.0 25 5.0 rnA';;; 10 .;;; 1.5 A Vo Output Voltage 10 Quiescent Current ala Quiescent Current Change No Noise TA = 25°C, 10Hz';;; 1.;;; 100 kHz aVI/aVo Ripple Rejection 1 = 2400 Hz, 10 = 350 rnA, TJ VDO Dropout Voltage 10 = 1.0 A, TJ Ipk Peak Output Current TJ aVo/aT Average Temperature Coefficient 01 Output Voltage los Output Short Circuit Current j.lA7905C -8.0 V';;;VI';;;-20 V 5.0 rnA';;; 10 .;;; 1.0 A p';;;15 W -4.70 = 25°C IWith load 1.0 5.0 rnA';;; 10 .;;; 1.0 A = 25°C 10 = 5.0 rnA, mV V 2.0 rnA 1.3 rnA 0.5 = 25°C 25 80 pVIVo 54 60 1.1 2.3 1.3 2.1 3.3 A 0.3 mVioClVo 1.2 A = 25°C -55°C';;; TA';;; 125°C VI = -35 V, TJ V mV -5.30 -8.0 V';;;VI';;;-25 V Iwith line Unit Max -7.0 V ';;;VI';;;-25 V 250 rnA';;; 10 .;;; 750 rnA TJ Typ -4.8 -5.0 -5.2 = 25°C dB V < < Electrical Characteristics O°C TA 125°C, VI = -10 V, 10 = 500 rnA, CI = 2.0 j.lF, Co = 1.0 j.lF, unless otherwise specified. Symbol Vo VR LINE VR LOAD Condltion 1 Characteristic Output Voltage TJ Line Regulation TJ = 25°C = 25°C Min Typ Max -4.8 -5.0 -5.2 V -7.0 V';;;VI';;;-25 V 3.0 100 mV -8.0 V';;; VI';;;-12 V 1.0 50 15 100 5.0 50 TJ = 25°C 5.0 rnA';;; 10';;; 1.5 A Load Regulation 250 rnA';;; 10';;;750 rnA Vo -7.0 V';;;VI';;;-20 V, 5.0 rnA';;; 10';;; 1.0 A, p';;; 15 W Output Voltage = 25°C -4.75 -5.25 Unit mV V 10 Quiescent Current TJ 2.0 rnA ala Quiescent Current Change IWith line -7.0 V';;;VI';;;-25 V 1.3 rnA IWith load 5.0 mA';;;lo';;;1.0 A 0.5 No Noise TA = 25°C, 1.0 10 Hz';;;I';;;100 kHz 6-137 125 IlV J.lA 7900 Series 1lA7905C (Cont.) Electrical Characteristics O°C ~ T A ~ 125°C, VI otherwise specified. Symbol = -10 V, 10 = 500 rnA, C I = 2.0 IlF, Co= 1.0 IlF, unless Condition 1 Characteristic !lVlI tNo Ripple Rejection VDO Dropout Voltage IPk Peak Output Current !:Nol LlT Average Temperature Coefficient of Output Voltage 10 = 5.0 mA, OOG";; TA";; 125°C IlA7908 Electrical Characteristics Min Typ 54 Max Unit 60 dB 10=1.0 A, TJ = 25°C 1.1 V TJ = 25°C 2.1 A 0.4 mV/oC f = 2400 Hz, 10 = 350 mA, TJ = 25°C -55°C~TA~125°C, VI=-14 V, 10=500 rnA, CI=2.0 IlF, Co=1.0 IlF, unless otherwise specified. Symbol Condition 1 Characteristic Min Typ Max -7.7 -8.0 -8.3 6.0 80 Vo Output Voltage TJ = 25°C VA Line Regulation TJ = 25°C -10.5 V";;VI";;-25 V -11 V";; VI ..;; -17 V 2.0 40 Load Regulation TJ = 25°C 5.0 mA";; 10";; 1.5 A 12 100 4.0 40 LINE VA LOAD 250 mA";;lo";;750 mA Vo Output Voltage -11.5 V";;VI";;-23 V, 5.0 mA";; 10";; 1.0 A, p";;15 W la Quiescent Current Llla Quiescent Current Change -7.6 TJ = 25°C Unit V mV mV -8.4 1.0 V 2.0 mA [with line -11.5 V";;VI";;-25 V 1.0 mA [with load 5.0 mA";; 10 ..;; 1.0 A 0.5 No Noise TA=25°C, 10 Hz";;f";;100 kHz LlVI/LlVo Ripple Rejection f = 2400 Hz, VI = -13 V 10 = 350 mA, TJ = 25°C VDO Dropout Voltage 10=1.0 A, TJ IPk Peak Output Current TJ LlVoILlT Average Temperature Coefficient of Output Voltage los Output Short Circuit Current = 25°C = 25°C 10 = 5.0 mA, -55°C";; TA";; 125°C VI 25 80 pVlVo 54 60 1.1 2.3 1.3 2.1 3.3 A 0.3 mV/oClVo 1.2 A = -35 V, TJ = 25°C dB V 1lA7908C Electrical Characteristics O°C ~ T A ~ 125°C, VI = -14 V, 10 = 500 rnA, C I = 2.0 IlF, Co = 1.0 IlF, unless otherwise specified. Symbol Vo Condition 1 Characteristic Output Voltage TJ = 25°C 6-138 Min Typ Max Unit -7.7 -8.0 -8.3 V #-LA 7900 Series 1lA7908C (Cont.) Electrical Characteristics O°C';;;; TA .;;;; 125°C, V, = -14 V, 10 = 500 mA, C, = 2.0 IlF, Co = 1.0 IlF, unless otherwise specified. Symbol VR LINE VR LOAD Condltlon 1 Characteristic Line Regulation TJ = 25°C Load Regulation TJ = 25°C Min Typ Max Unit 160 rnV -10.5 V":V,":-25 V 6.0 -11 V":V,":-17 V 2.0 80 5.0 rnA": 10 ..: 1.5 A 12 160 250 rnA": 10 ..: 750 rnA 4.0 80 Vo Output Voltage -10.5 V":V,":-23 V, 5.0 rnA": 10": 1.0 A, p": 15 W 10 Quiescent Current TJ = 25°C dlo Quiescent Current Change -7.6 -8.4 1.0 rnV V 2.0 rnA rnA Iwith line -10.5 V..: V,":-25 V 1.0 Iwith load 5.0 rnA": 10": 1.0 A 0.5 200 /lV 60 dB 1.1 V No Noise TA = 25°C, 10 Hz":f": 100 kHz dV,/dVo Ripple Rejection f = 2400 Hz, V, = -13 V, 10 = 350 rnA, TJ = 25°C VDO Dropout Voltage 10 = 1.0 A, TJ = 25°C Ipk Peak Output Current TJ = 25°C 2.1 A dVo/dT Average Ternperature Coefficient of Output Voltage 10 = 5.0 rnA, O°C": TA ..: 125°C 0.6 rnV/oC 54 1lA7912 Electrical Characteristics -55°C';;;;TA';;;;125°C, V,=-19 V, 10=500 mA, C,=2.0 IlF, Co=1.0 IlF, unless otherwise specified. Symbol Condltlon 1 Characteristic Output Voltage TJ = 25°C VR Line Regulation TJ = 25°C -14.5 V":V,":-30 V Load Regulation TJ = 25°C 5.0 rnA": 10": 1.5 rnA LINE Min 10 -16 V ":V,":-22 V VR LOAD Typ Max -11.5 -12.0 -12.5 Vo 250 rnA": 10 ..: 750 rnA Vo Output Voltage -15.5 V ":V,":-27 V, 5.0 rnA": 10 ..: 1.0 A, p": 15 W 10 Quiescent Current TJ = 25°C dlO Quiescent Current Change 120 3.0 60 12 120 4.0 60 -11.4 -12.6 1.5 1.0 5.0 rnA": 10 ..: 1.0 A 0.5 Noise TA=25°C, 10 Hz":f":100 kHz f=2400 Hz, V,=-17 V, 10 = 350 rnA, TJ = 25°C 6-139 25 54 60 V rnA -15 V ":V,":-30 V Ripple Rejection rnV rnA IWith load No V rnV 3.0 Iwith line dV,/dVo Unit 80 /lVlVo dB MA7900 Series ~7912 (Cont.) Electrical Characteristics -55°C';;;; T A';;;; 125°C, V, otherwise specified. Symbol Voo = -19 V, 10 = 500 rnA, C, = 2.0 fJF, Co = 1.0 fJF, unless Condition 1 Characteristic Dropout Voltage 10 -1.0 A, TJ 'Pk Peak Output Current TJ = 25°C t.Volt.T Average Temperature Coefficient of Output Voltage 10 = 5.0 rnA, -55°C";; TA";; 150°C los Output Short Circuit Current VI = -35 Min = 25°C 1.3 V, TJ Typ Max 1.1 2.3 Unit V 2.1 3.3 A 0.3 mVrClVo = 25°C A 1.2 ~7912C Electrical Characteristics 0°C';;;;TA';;;;125°C, V,=-19 V, 10=500 rnA, C,=2.0 fJF, Co=1.0 fJF, unless otherwise specified. Symbol Condition 1 Characteristic Vo Output Voltage VR LINE Line Regulation = 25°C TJ = 25°C VR LOAD Load Regulation TJ = 25°C Min Typ Max -11.5 -12.0 -12.5 TJ -14.5 V";;VI";;-30 V 10 -16 V";;VI";;-22 V 3.0 120 5.0 rnA";; 12 240 4.0 120 '0 . ; 1.5 A 250 rnA";; '0";;750 rnA Vo Output Voltage -14.5 V";;VI";;-27 V, 5.0 rnA";; '0 ..;; 1.0 A, p";;15 W 10 Quiescent Current TJ t.lo Quiescent Current Change -11.4 240 -12.6 = 25°C 1.5 1.0 5.0 rnA";; '0 ..;; 1.0 A 0.5 t.Vl/t.Vo Ripple Rejection f = 2400 Hz, VI = -17 V, 10 = 350 rnA, TJ = 25°C Voo Dropout Voltage 10 = 1.0 A, TJ Ipk Peak Output Current TJ t.Volt.T Average Temperature Coefficient of Output Voltage 10 = 5.0 rnA, O°C";; TA";; 125°C V rnA -14.5 V";;VI";;-30 V TA=25°C, 10 Hz";;f";;100 kHz mV rnA lwith line Noise V mV 3.0 lwith load No Unit 300 p.V 60 dB 1.1 V 54 = 25°C = 25°C 2.1 A 0.8 mVrC Note8 1. All characteristics except noise voltage and ripple rejection ratio are measured using pulse techniques (tw .;; 10 ms, duty cycle .;; 5%). Output voltage changes due to changes in internal temperature must be taken into account separately. ~7915 Electrical Characteristics -55°C';;;; TA .;;;; 125°C, V, = -23 V, 10 = 500 rnA, C, = 2.0 fJF, Co = 1.0 fJF, unless otherwise specified. Symbol Vo Condltion 1 Characteristic Output Voltage TJ = 25°C 6-140 Min Typ Max Unit -14.4 -15.0 -15.6 V J.1A 7900 Series !lA7915 (Cont.) Electrical Characteristics -55°C ~ T A ~ 125°C, VI = -23 V, 10 = 500 mA, CI = 2.0 IJ.F, Co = 1.0 IJ.F, unless otherwise specified. Symbol VR LINE Condition 1 Characteristic Line Regulation TJ = 25°C Min Typ 11 150 3.0 75 5.0 mA 150 Dropout Voltage vs Junction Temperature > 0.20 !; !; I~m """"- I 0 PC09390F PC09400F "~ ~~~,~~ 0.5 9JC 50 l- ~""'t-~ l""I...... ~ 1""-" 'n r--- '\ l\ AMBIENT TEMPERATURE-"C AMBIENT TEMPERATURE-GC r-... I I...... ~tr-.. L '-::--. t 0. .00 Peak Output Current vs Input/Output Voltage Differential f- = 5.0C/W o.2 r-- 'JA = "'C/W 1 PDMAX = 15Wf 75 50 -0_- .0 II: I-- 8JC - 5.S"CJW I--- 8JA = 45·C/W Po MAX = 15Wr 25 1 UMIT FOR ~A79OOC 50 40 30 20 INFINITE HEAT SINK i 3:8 3.0 I:;;: 1---"0 "eA.r SINK 2.0 II: Worst Case Power Dissipation vs Ambient Temperature (TO-220) ... __ ...... r cw~ /O~7.0A ~ c- ~ ~~ '0", ...... ~~" 'o",~ ...... ........ "'-4 DROPOUT CONDInONsL ",5%IFVi - 75 -50 -25 0 25 50 V~= -"5 V L ,../ IE '.0 l'J f3 ii ~ '.5 I' Vo = -5.0 V 0.5 t"... 75 100 125 150 175 JUNCTION TEMPERATURE_oC 6-142 ~ 2.0 0 o ~ w ~ ~ ~ INPUT VOLTAGE-V 30 ~ 40 1lA7900 Series Typical Performance Curves (Cont.) Quiescent Current vs Temperature '00 VO~5.0IV_ Vo= r-;.; -'2 V AND ~,s r--- .......... '00 I II v,1 10 = 500mA ~ Ripple Rejection vs Output Voltages Ripple Rejection vs Frequency r-UL\UJUL i'I~li ~ t- f0- 1111 r- Vo "-Hd~:t.t.!'lS: = -5.0 V AND -8.0 Y - ii ·. ' ,, ....... -lVa 80 " = 5.0 V AND -8.0 V - r-. AY, =10Vp _ p 200mA -76 -150 -2S 0 TJ o 2S 150 75 '00 '26'SO '76 r ~ 10 > 0 ~ ~ I I IN VOLTAGE 4.0 20 ,. > a.o ~ ~ I OUT VOLTAGE DeVIATION 10 10K 'OOK I!i 2.0 '.0 I OUT VOLTAGE " . E ~ w a: a: w a: a: -'.00 DEVIAnON ~ 18 20 22 24 10 = 100mA Yo= -5.0 V '0' ~ 0 1.0 ~ 16 TJ'" 25"C LOAD CURRENT 2.0 14 Output Impedance vs Frequency I I I I I I I I V, = 'OV Vo=5.0V 12 NOMINAL OUTPuT VOLTAGE-V ~ 10' Co'" 1.o,."F SOUOTANTALUll G Q V -2.0 Co = 25#'F ALUIIINUIl 9 110"1 0-1.0 =500mA Vo=5.DV -ao 4.0 8.0 8.0 10 Load Transient Response Ii 0-1 0 1.oK FREQUENCY-Hz Line Transient Response . = 200mA o 100 AMBIENT TEMPERATURE-"C = '20 Hz r'o 10 =250C 10 r.1. 20 I-TJ = 25"C AV, =10Vp _ p 1-10 = 11.3 - -3.0 02.04.01.08.01012 nllE-~ -2.G o 10 20 30 40 50 10-2 60 10 100 1.oK 10K 100K 1.0M 10M FREQUENCY-Hz nME-"" Design Considerations The !!A7900 fixed voltage regulator series has thermal overload protection from excessive power dissipation, internal short circuit protection which limits the circuit's maximum current, and output transistor safe-area compensation for reducing the output current as the voltage across the pass transistor is increased. Typ 8JC Max 8JC Typ 8JA Max 8JA ·C/W ·C/W ·C/W ·C/W TO-3 3.5 5.5 40 35 TO-220 3.0 5.0 60 40 Package TJ MaxTA or - - 8JC + 8CA 8JA 8CA = 8cs + 8SA (Without heat sink) Although the internal power dissipation is limited, the junction temperature must be kept below the maximum specified temperature (150·C for !!A7900, 125·C for !!A7900C) in order to meet data sheet specifications. To calculate the maximum junction temperature or heat sink required, the following thermal resistance values should be used: Po Max = TJ Max-TA Solving for TJ: TJ = TA + Po (8JC + 8cAl or = TA + P08JA (Without heat sink) 6-143 100M p.A7900 Series Where: = Junction Temperature TJ TA = Ambient Temperature = Power Dissipation Po 8JA = Junction-to-Ambient Thermal Resistance 8JC = Junction-to-Case Thermal Resistance 8CA = Case-to-Ambient Thermal Resistance 8cs = Case-to-Heat Sink Thermal Resistance 8sA = Heat Sink-ta-Ambient Thermal Resistance Output Current HIGH, Foldback Current-Limited V,__.--.,....w......--+"\. ~------.--Vo l.o"F CF".",,. Typical Applications Bypass capacitors are necessary for stable operation of the p.A7900 series of regulators over the input voltage and output current ranges. Output bypass capacitors will improve the transient response of the regulator. The bypass capacitors, (2.0 IlF on the input, 1.0 IlF on the output) should be ceramic or solid tantalum which have good high frequency characteristics. If aluminum electrolytics are used, their values should be 10 !IF or larger. The bypass capaCitors should be mounted with the shortest leads, and if possible, directly across the regulator terminals. Fixed Output Regulator v, -__.-"--1 Output Current HIGH, Short Circuit Protected r=~~---~-Vo RSC = VSE(Q2) los Operational Amplifier Supply (± 15 V at 1.0 A) t-:--.,.------1P"------- ~~~ V ~~--Vo 1.0,..F GND----.,....+---~~~----~__.--~~------GND lN40010R EQUIVALENT CA03711lF t=-----+------<~--- ~~ V High Current Voltage Regulator V,--t--"\. ~~'-------__'--Vo 6-144 IlA 101A ellA201A ellA301A General Purpose Operational Amplifiers I=AIRCHILO A Schlumberger Company Linear Division Operational Amplifiers Description Connection Diagram 8-Lead Metal Package (Top View) The j.lA101A, j.LA201A, and j.lA301A are general purpose monolithic operational amplifiers constructed using the Fairchild Planar Epitaxial process. These integrated circuits are intended for applications requiring low input offset voltage or low input offset current. The accuracy of long interval integrators, timers, and sample-and-hold circuits is improved due to the low drift and low bias currents of the j.lA 101 A, j.LA201 A, or j.LA301 A. Frequency response may be matched to the individual circuit need with one external capacitor. The absence of latch up coupled with internal short circuit protection make the j.lA 101 A, j.LA201 A and j.LA301 A virtually foolproof. FREQ COMP v• • • • e Low Offset Current And Voltage Low Offset Current Drift Low Bias Current Short Circuit Protected Low Power Consumption Lead 4 connected to case. Order Information Device Code j.lA101AHM j.LA201 AHV j.LA301 AHC Absolute Maximum Ratings Storage Temperature Range Metal Can Molded DIP and 50-8 Operating Temperature Range Extended (j.lA101AM) Industrial (j.lA201 AV) Commercial (j.LA301AC) Lead Temperature Metal Can (soldering, 60 s) Molded DIP and 50-8 (soldering, 10 s) Internal Power Dissipation 1, 2 8L-Metal Can 8L-Molded DIP 50-8 Supply Voltage j.LA 101 A, j.LA201 A j.lA301A Differential Input Voltage Input Voltage3 Output Short Circuit Duration4 -65°C to + 175°C -65°C to + 150°C Package Code 5W 5W 5W Package Description Metal Metal Metal Connection Diagram 8-Lead DIP and SO-8 Package (Top View) -55°C to + 125°C -25°C to +85°C O°C to +70°C FREQ 300°C - OFFSET NULL/ FREQCOMP 265°C -IN v+ +IN OUT 1.00 W 0.93 W 0.81 W COMP + OFFSET NULL v- ±22 V ± 18 V ±30 V ± 15 V Indefinite Order Information Device Code j.LA301ASC j.lA301ATC Notes 1. TJ Max = 150·C for the Molded DIP and SO·8, and 175·C for the Metal Can. 2. Ratings apply to ambient temperature at 25·C. Above this temperature, derate the 8L·Metal Can at 6.7 mWrC. the 8L-Molded DIP at 7.5 mwrc and the SO-8 at 6.5 mW/·C. 3. For supply voltage less than ± 15 V. the absolute maximum input voltage is equal to the supply voltage. 4. Short circuit may be ground or either supply. pA 101 A and pA201 A ratings apply to + 125°C case temperature or + 75°C ambient temperature. pA301A ratings apply for case temperatures to 70·C. 7-3 Package Code KC 9T Package Description Molded Surface Mount Molded DIP JlA 101A· JlA201A· JlA301A Equivalent Circuit -OFFSET NULL! FREQ COMP FREQ COMP r---------~------~--r_--;_------~--------------~----v+ R11 25 fl '----f--......-OUT ~--~~~~~--~~------------~------ __________-4__~__~_____~ R4 2SOfl + OFFSET NULL 7-4 J-lA 101A· J-lA201A· J-lA301A J.lA101A, J.lA201A and J.lA301A Electrical Characteristics T A = 25°C, ± 5.0 V « Vee « ± 20 V for the J.LA 101 A and J.LA201 A, ±5.0 V«Vcc«±15 V for the J.LA301A, unless otherwise specified. J.lA 101A, J.lA201A Symbol Characteristic Condition Min Typ Max J.lA301A Min Typ Max Unit VIO Input Offset Voltage 0.7 2.0 2.0 7.5 mV 110 Input Offset Current 1.5 10 3.0 50 nA liS Input Bias Current 30 75 70 250 nA ZI Input Impedance Icc Supply Current Rs <50 k.l1 1.5 0.5 4.0 1.8 Vcc=±20 V Large Signal Voltage Gain Vcc=±15 V, Vo =±10 V, RL>2.0 k.l1 50 M.I1 rnA 1.8 VCC=±15V Avs 2.0 3.0 160 25 3.0 V/mV 160 The following specifications apply over the range of -55°C 2.0 k.l1 25 VOP Output Voltage Swing VCC=±15V IRL=10k.l1 ±12 ±14 ±12 ±14 I RL = 2.0 k.l1 ±10 ±13 ±10 ±13 Vcc=±20 V 10 30 ±12 Vcc=±15V 7-5 96 70 96 15 dB V/mV V MA 101A • MA201A • MA301A Typical Performance Curves Input Voltage Range vs Supply Voltage (1lA101A and 201A) zo Output Swing vs Supply Voltage (1lA101A and 201A) 20 -55·C:Si TA:S 125°C 8 21-t-- 8/ V ~~v/ +.\~ ;t>'f';' O·C S Voltage Gain vs Supply Voltage (1lA301A) 100 8 ...... V ./ ~t.""" , ~. /1 5 1/ 5 ....... :;... ~ _\Io'j'l!' 78 0 1. 70 •• 10 SUPPLYYOLTAGE- ±V SUPPLVVOLTAQE- ;t;Y 180 I '20 ~-+--~ ~~~-+~~~1'5Q I 80 ~ 80 r--+---r--t-~~~~+-~80 ~ g r-+--r~~~~~~'5 ~ i 1\ GAIN 20 0 f- r\ Vcc=±15V TA : 25°C C1-30pF C2 "" 300 pF -20 1 FREQUENCY - Hz TA = 25°C I\.. • i'\.PH~E r"\ N- 40 i5 ~ '\ ~ 1\ 1/ Vcc=±15V f-- r..... 225 I ~ 10 100 1.0K 10K 7-6 / ~~ GAIIN>- ~ ~ 100K1.0M 10M FREQUENCY - Hz .5 Open Loop Frequency Response (1lA101A, 201A, and 301A) TWO POLE PHASE ~ SUPPLYVOLTAGE- ::tV '20 ,'00 - .0 5 Open Loop Frequency Response (1lA101A, 201A, and 301A) Open Loop Frequency Response (1lA101A, 201A, and 301A) ~,~010 - oIo~>-Il ~010"'~~ ./ ~ 10 ...... ~010"'~ ~ 1/ V 0 ............ o O·C::s lAS 70·e lAS; 70·e ...... ~ ...... 20 15 10 SUPPLYVOLTAOE- ±V 94 ..,- ~ 5 Output Swing vs Supply Voltage (1lA301A) zo ~ 18 ~ 12 70 20 SUPPLYVOLTAGE- ::tV w V ./ g 15 O·C:5 TA:5 70°C ~ "'~'*' ~'<;;- III 78 10 Input Voltage Range vs Supply Voltage (1lA301A) zo 88 ;:'!82 0 zo 15 SUPPLYVOLTAOE- ,±y !E I ~ 5~ 10 94 z I--- V~);··# 0 ~ ." ./ 5 ·v "" g~ -SSoc S TA:$ 125°C -66°C:5 TA:5 125°e -- V Voltage Gain vs Supply Voltage (1lA101A and 201A) 0 FEE~ FOR~ARD -20 10 100 loOK 10K " lOOK 1.0M FREQUENCY - Hz 180 ..t:: .35 Q 90 ~ ~ I ·si 10M 100M MA101A· MA201A· MA301A Typical Performance Curves for 1lA101A, 1lA201A, and 1lA301A (Cent.) Large Signal Frequency Response Large Signal Frequency Response TA 12 I "~ > 8 ~ 1\ C, • 30 F\ o 1.0K it III i'. . . . . 100 K 1.0 M > 12 I "itz ~ TWO POLE --- o FREQUENCY - FEED FORWARD ...... 100 K, 10K FREQUENCY - Hz 1\ 8 S 1\ 10M 1\ ~ III I SINGLE POLE ...... 110K 8 TA ::: 25"C \ \ \ I \ S o 12 !i C1=3OpF C2 = 300 pF 1\ +I \C1 =3pF ! veJ =I~I,~ Iv TA :::; 25°C = 25°C \ +1 18 VCC=:t1SV vcl.I±ljJv > Large Signal Frequency Response 18 18 1.0 M o r-_ 10M 1.0 M 100 K Hz FREQUENCY - Hz PC04391F Voltage Follower Pulse Response Voltage Follower Pulse Response Voltage Follower Pulse Response 0 10 10 OUTPUT r- > I !i ~w i\ 2 N / "; -2 I ~ -4 I \ j-- -6 !I - > I !w OUTPUT ,..-- !\ 1\ 0 IIINPUT ~ ~ -4 I -8 -8 -10 -10 o ro ~ 30 ~ TIME M H ro = 1 I ...6 !i1.5 w FEED FORWARD ~ ~ ~ ~ ~ ~ --- -- TA = 30 ~ T~'-$~ ~ :--- iil 0.5 - ......,..yA = 25°C TA - '\ ~ 5 -- 1\ vee =' '" 20 15 SUPPLY VOLTAGE - 7-7 ±15V ~ >' >' tl (; cl 10 ~ >' ~- ~- rei " = 125"C 80 15 SUPPLYVOLTAGE- ±V ro H Current Limiting ;:-.......: V ~ V _ TIME- #oil Jssoc ~ 10 ~ 15 r;r: 25"C 5 o ro ~ #oil Voltage Gain vs Supply Voltage 1---"""1 ~~C:::; =2io~5 -8 120 ~ 1.0 o 10 TIME - 2.5 2.0 r -10 -.us Supply Voltage Current vs Supply Voltage I Vcc=±15V TA 25"C C1 =3OpF - .., o I TWOPOLE 300 j=l ~ INPUT OUTPUT I I SINGLE POLE -8 - - IT- t H I \ ~ -2 I \ - ~ IA. I 0 - r- I- r INPUT ±V o o 15 20 10 OUTPUT CURRENT - mA cl 25 30 p.A101A· p.A201A· p.A301A Typical Performance Curves for Input Current vs Temperature and ~201A) ~101A, ~201A, (~301A 50 00 BlM' r-. 80 l"- t--.... t-- r to-- B1AS r- r- '" 20 ... • . 0 ....... 8 r-.... OFFSET .~ l - I-. TA·25·C r-r- OFFSET 2 25 0 25 50 75 100 •10 10-' 0 -to " .... 8 1 0 -75 • ........ !?>2 Input Noise Voltage vs Frequency 80 10 3 (Cent.) Input Current vs Temperature only) (~101A 0 ~301A and 20 125 80 40 80 TEMPERATURE - ·C 1.oK 100 100K 10K FREQUENCY - Hz TEMPERATURE. _ °C PCQ4481F Input Noise Current vs Frequency (~101A and ~201A) Input Noise Current vs Frequency (~301A) Common Mode Rejection vs Frequency 120 10-24 Rs.lldl TA =25°C ~ " 1'\ I" [\ t-100 10k 1.Ok 100k 10-26 10 FREQUENCY - -~ I'" , 0 Avs , / 2 10 100 1.0 K 10 K FREQUENCY - 100 K 1.0 M Hz 10M Avs - 1000 /' '-./ 10-3 =1 / I'--'" 10 100 ,,/ / SINGLE POLE COMPENSATION ~~ ~~Jt IOi+ 5mA 1.0 K 10 K FREQUENCY - 7-8 Hz 100 1.0 K - I 100 K 1.0 M r VCMS±1V 10 K FREQUENCY - Hz Hz Closed Loop Output Impedance vs Frequency Supply Rejection vs Frequency 100 100K 10K 1.OK 100 FREQUENCY - Hz 20 10 " ~±10V 100 K 1.0 M pA101A· pA201A· pA301A Compensation Circuits (Note 2) Typical Applications (Note 2) Single Pole Compensation Fast Voltage Follower R2 Vo V, Power Bandwidth: 15 kHz Slew Rate: 1 VI P.s Inverting Amplifier With Balancing Circuit Rl R2 IN--~~~----~V-----~ Two Pole Compensation R2 >::...........---OUT Rl R4 5.1 Mn -V,--~V-""":..j >""-'.....-- R3 Vo Cl 30 pF Voltage Comparator For Driving Or DTL Integrated Circuits R,C s c,>---- IN R, + R2 Cs ~ OUT 30 pF C2~10 C, Feed Forward Compensation C2 Notes 1. May be zero or equal to parallel combination of Rl and R2 for minimum offset. 2. All lead numbers shown refer to 8-lead metal package. R2 Rl V,---'V'.",....-----t Vo R3 C, 150 pF 7-9 p.A 101A· p.A201A· p.A301A Typical Applications (Cont.) (Note 2) Low Frequency Square Wave Generator Practical Differentiator Rl C2 lMe R2 ,-__+ ___ (Note 1) ~~~ IMPEDANCE Cl >'-'-JVW.,...."'-t-- g~MPED D1,6.2V D2,6.2V Circuit For Operating Without A Negative Supply R1 R2 1 1 I v, ----,------,r '...!'-----4-R3 Notes I. Adjust C, for frequency 2. All lead numbers shown refer to 8-lead metal package 7-10 fh ~ 21TRI CI fc < fh < funity 1 - 21TR2C2 gain }.LA 101 • }.LA20 1 General Purpose Operational Amplifiers FAIRCHILD A Schlumberger Company Linear Division Operational Amplifiers Description Connection Diagram 8-Lead Metal Package (Top View) The IlA101 and IlA201 are general purpose monolithic operational amplifiers constructed using the Fairchild Planar Epitaxial process. They are intended for a wide range of analog applications where tailoring of frequency characteristics is desirable. The IlA101 and IlA201 compensate easily with a single external component. High common mode voltage range and absence of latch up make the IlA 101 and IlA201 ideal for use as voltage followers. The high gain and wide range of operating voltages provide superior performance in integrator, summing amplifier, and general feedback applications. The IlA 101 and 1lA201 are short circuit protected and have the same lead configuration as the popular 1lA741 , IlA748 and IlA709. FREQ COMP v- • Short Circuit Protection • Offset Voltage Null Capability • Large Common Mode And Differential Voltage Ranges • Low Power Consumption • No Latch Up Lead 4 connected to case. Order Information Device Code Absolute Maximum Ratings Storage Temperature Range Metal Can Molded DIP Operating Temperature Range I Extended (IlA 101 M) Commercial (IlA201 C) Lead Temperature Metal Can (soldering, 60 s) Molded DIP (soldering, 10 s) Internal Power Dissipation 2, 3 8L-Metal Can 8L-Molded DIP Supply Voltage Differential Input Voltage Input Voltage4 5W 5W Package Description Metal Metal Connection Diagram 8-Lead DIP (Top View) -65°C to + 175°C -65°C to + 150°C -55°C to + 125°C O°C to +70°C FREQ COMP - OFFSET NULL! FREQCOMP v+ -IN 300°C 265°C 1.00 0.93 ±22 ±30 ± 15 Package Code 1lA101HM 1lA201HC OUT +IN W W V + OFFSET v- NULL V V Order Information Device Code Notes I. Short circuit may be to ground or either supply. The IlA 101 ratings apply to + 125·C case temperature or + 75·C ambient temperature. The 1lA201 ratings apply to case temperatures up to + 70·C. 2. TJ Max ~ 150·C for the Molded OIP, and 175·C for the Metal Can. 3. Ratings apply to ambient temperature at 25·C. Above this temperature, derate the BL·Metal Can at 6.7 mW rc, and the BL-Molded DIP at 7.5 mWrC. 4. For supply voltages less than ± 15 V, the absolute maximum input voltage is equal to the supply voltage. 1lA201TC 7-11 Package Code 9T Package Description Molded DIP Equivalent Circuit -OFFSET NULL! FREQ COMP FREQ COMP r----------1--------.--+----+-------~--------------~------v+ -IN --+---------Ir-------I..' + IN --+------1:' Rl1 25 n ~__1f_--OUT R8 1kn L-~~~---+--__~~----__----~----------------~--~--~---vR4 250 n + OFFSET NULL 7-12 IlA101 ellA201 MA101 and MA201 Electrical Characteristics TA = 25°C, ±5.0 V 2.0 50 kn The following specifications apply over the range of -55°C < TA < 160 20 3.0 V/mV 150 + 125°C for /.IA 101, and O°C < TA < + 70°C for /.IA201. kn n kn VIO Input Offset Voltage Rs<50 !:Nlo/AT Input Offset Voltage Temperature Sensitivity Rs<50 110 Input Offset Current TA=TA Min 10 200 50 400 TA=TAMax 100 500 150 750 AIIO/ AT Input Offset Current Temperature Sensitivity liB Input Bias Current Rs<50 6.0 10 3.0 10.0 25°C < T A < T A Max 0.01 0.1 0.01 0.3 TA Min 2.0 kn VoP Output Voltage Swing Vee=±15 V kn 70 90 ±12 kn 70 I RL =10 kn I RL = 2.0 kn 7-13 25 nA nA/oC /.IA mA 65 90 dB 90 dB ±12 90 mV /.IV/oC 6.0 6.0 Supply Current nA kn 400 3.0 Vee=±15V Avs Typ 70 V 15 V/mV ±12 ±14 ±12 ±14 ±10 ±13 ±10 ±13 V /lA 1081A • /lA2081 A • /lA3081 A Super Beta Operational Amplifiers FAIRCHILD A Schlumberger Company Linear Division Operational Amplifiers Description Connection Diagram 8-Lead Metal Package (Top View) The p.A 108 Super Beta Operational Amplifier series is constructed using the Fairchild Planar Epitaxial process. High input impedance, low noise, low input offsets, and low temperature drifts are made possible through use of super beta processing, making the device suitable for applications requiring high accuracy and low drift performance. The pA 108 series is specially selected for extremely low offset voltage and drift, and high common mode rejection, giving superior performance in applications where offset nulling is undesirable. Increased slew rate without performance compromise is available through use of feed forward compensation techniques, maximizing performance in high speed sample-and-hold circuits and precision high speed summing amplifiers. The wide supply range and excellent supply voltage rejection assure maximum flexibility in voltage follower, summing, and general feedback applications. • • • • • FREQ COMP2 vLead 4 connected to case. Order Information Device Code /JA108HM pA108AHM pA208HV pA208AHV pA308HC pA308AHC Guaranteed Low Input Offset Characteristics High Input Impedance Low Offset Current Low Bias Current Operation Over Wide Supply Range Absolute Maximum Ratings Storage Temperature Range Metal Can Molded DIP and SO-8 Operating Temperature Range Extended (pA 108AM, pA 108M) Industrial (pA208AV, pA108V) Commercial (pA308AC, pA308C) Lead Temperature Metal Can (soldering, 60 s) Molded DIP and SO-8 (soldering, 10 s) Internal Power Dissipation 1. 2 8L-Metal Can 8L-Molded DIP SO-8 Supply Voltage pA 1081 A, pA2081 A pA308/A Differential Input Current 3 Input Voltage4 Output Short Circuit DurationS -65°C to + 175°C -65°C to + 150°C Package Code 5W 5W 5W 5W 5W 5W Package Description Metal Metal Metal Metal Metal Metal Connection Diagram 8-Lead DIP and SO-8 Package (Top View) -55°C to +125°C -25°C to + 85°C O°C to +70°C 8 FREQ CQMPI 300°C 265°C 1.00 W 0.93 W 0.81 W ±20 V ±18 V ±10 mA ±15 V Indefinite FREQ CQMP2 -IN v+ +IN OUT v- NC Order Information Device Code pA308SC /JA308TC pA308ASG pA308ATG Notes 1. TJ Max -150'C for the Molded DIP and SO-B, and 175'C for the Metal Can. 2. Ratings apply to ambient temperature at 25°C. Above this temperature. derate the BL-Metal Can at 6.7 mWI'C. the BL-Molded DIP at 7.5 mWI'C. and the SO-B at 6.5 mWI'C. 3. The inputs are shunted with back-to-back diodes for overvoltage protection. Therefore, excessive current will flow if a differential input voltage in excess of 1.0 V is applied between the inputs unless adequate limiting resistance is used. Package Code KG 9T KG 9T 4. For supply voltages less than voltage is equal to the supply 5. Short circuit may be to either operation up to the maximum 7-14 Package Description Molded Surface Mount Molded DIP Molded Surface Mount Molded DIP ± 15 V. the absolute maximum input voltage. supply or ground. Rating applies to operating temperature range. p.A 108! A • p.A208!A • p.A308! A Equivalent Circuit FREQ FREO COMP 1 COMP' r-----------.-----i---~--~------~--~--~--------------------~----------y+ RS 20 Idl R4 201dl R6 101dl R7 10 kG r -.....-'lM---1rOUT 019 -IN 020 R13 201dl TIN Rl o kG RIO 3200 RIS 6Q kG R17 5000 RIS 1 kn y- 7-15 J.1A 1OSI A • J.1A20S1 A • J.1A30S1 A pA108/A and pA208/A Electrical Characteristics ± 5.0 V < Vee < ± 20 V. TA = 25°C. unless otherwise specified. IlAl08A !lA208A Symbol Characteristic Condition Min IlA108 IlA208 Typ Max Typ Max Unit VIO Input Offset Voltage 0.3 0.5 0.7 2.0 mV 110 Input Offset Current 0.05 0.2 0.05 0.2 nA 0.8 2.0 0.8 2.0 liS Input Bias Current ZI Input Impedance lee Supply Current Vee=±20 V Avs Large Signal Voltage Gain Vee=±15 V. Vo=±10 V. RL>10 n 30 70 .03 80 Via Input Offset Voltage eNlo/AT Input Offset Voltage Temperature Sensitivity 110 Input Offset Current Alia/AT Input Offset Current Temperature Sensitivity liS Input Bias Current lee Supply Current CMR Common Mode Rejection 30 0.6 300 The following specifications apply over the range of -55°C < TA < + 125°C for the for the pA208/ A. unless otherwise specified. Min 0.3 50 !lA108/ A. Vee = ±20 V. TA = 125°C 5.0 3.0 96 0.8 3.0 0.4 110 Vee=±15V Power Supply Rejection Ratio Vee = ±5.0 V to ±20 V 96 Avs Large Signal Voltage Gain Vee=±15 V. Vo=±10 V. RL>10 n 40 VoP Output Voltage Swing Vee = ± 15 V. RL = 10 kn < Vee < ± 15 ±13 0.5 0.15 85 ± 13.5 Input Voltage Range PSRR pA308/A Electrical Characteristics T A = 25°C. ± 5.0 V 2.5 0.15 80 mV 15 IlV/oC 0.4 nA 2.5 pAloC 3.0 nA 0.4 mA 100 dB 96 dB V ±13 VlmV ±14 V V. unless otherwise specified. Min Condition 3.0 25 ±14 mA V/mV ±13.5 110 !lA308A Characteristic 0.6 and -25°C < TA < + 85°C 0.4 0.5 nA Mn 300 1.0 1.0 VIR Symbol 70 IlA308 Typ Max Min Typ Max Unit Via Input Offset Voltage 0.3 0.5 2.0 7.5 mV 110 Input Offset Current 0.2 1.0 0.2 1.0 nA liS Input Bias Current 1.5 7.0 1.5 7.0 ZI Input Impedance 10 7-16 40 10 40 nA Mn /lA 1081 A • /lA2081 A • /lA3081 A J.lA308! A (Cont.) Electrical Characteristics T A = 25°C, ± 5.0 V < Vee < ± 15 V, unless otherwise specified. j.LA308 J.lA308A Symbol Characteristic Condition Min Icc Supply Current Vee=±15V Avs Large Signal Voltage Gain Vee = ± 15 V, Vo=±10 V, RL;;;'10 Typ Max 0.3 0.8 80 n 300 Min 25 Typ Max 0.3 0.8 300 Unit mA V/mV The following specifications apply over the range of O°C';; TA .;; + 70°C VIO Input Offset Voltage t:Nlo/toT Input Offset Voltage Temperature Sensitivity 110 Input Offset Current tollo/ toT Input Offset Current Temperature Sensitivity liS Input Bias Current CMR Common Mode Rejection VIR Input Voltage Range Vee=±15V PSRR Power Supply Rejection Ratio Vee=±5.0 V to ±18 V 96 Avs Large Signal Voltage Gain Vee=±15V, Vo=±10 V, RL;;;'lO 60 VOP Output Voltage Swing Vee=±15 V, 0.73 1.0 5.0 6.0 1.5 2.0 10 2.0 10 96 110 80 mV 30 j.LV/oC 1.5 nA 10 pA/oC 10 nA 100 ± 13.5 ± 13.5 kn RL=10 kn 10 110 80 V 96 15 ±13 ±13 ±14 dB dB V/mV ±14 V Typical Performance Curves for J.lA108 Series Input Noise Voltage vs Frequency Open Loop Frequency Response 120 1000 ~ 100"'" 400 ~ :.; Z i w 100 '" 0 z po ~ i!< ~ Rs-l.0M I I Rs lOOK l- 80 - ~ 60 Mi' 80 c, _ 30pF- --,"" ~ ~~ol 'q; IIJ Cs ;.o~" "- 40 I, 10 10 : II 100 1.0K FREQUENCY - Hz 20 ~ o 0 PHASE ___ GAIN _ _ i 10K g = 100pF ... .0", Q, Rs ;:;; 0 , fi!'-I 'J- o 40 1~r---;----r----r---;----' I C'=13PF~ ....... ~ g Supply Rejection vs Frequency c, ;..., -'/ "'"" " \ '" 135 ~ ~ 90 4S 1 10 100 1.0 K = 30pF~ ~. 10 K 100 K 1.0 M 10 M FREQUENCY - Hz 7-17 ~ ~ -20 lOOK I ~ -~oo~~'~~-K--~'O~K--'~OO~K---'.~O~M--'~OM fREQUENCY - Hz JlA 1081 A • JlA2081 A • JlA3081 A Typical Performance Curves for J.l.A 108 Series (Cant.) Closed Loop Output Impedance vs Frequency 103 / 102 "I w ~ / 100 ~ 10- l000,Cf I Vee TA 30pF 10- 2 1.0 K 10 K 6 > I ~ = :t = Ct ::> I 1\ ~ w = 3pF 0 15 v- Cf= 25°C II o 1.0 K g -4 10 K !j 1/ 1\ -c-' 6 ~ Hz J / OUTPUT / I ! -2 3OP~ INPUT I i\ 0 ~ \ f- 100 K 1.0 M 10M FREQUENCY - \ ---1-- >- "z .5 1 100 = 25°C TA "z 'i· mj ...J lD \ 12 I 'Av .1,C,. 30pF / , 10 I III Vcc=±15V ~ = = \,'" V I) Av ! ,... ~ I ~ "; ~ 10, ~ ~ ", Voltage Follower Pulse Response Large Signal Frequency Response Ycc=±15V TA -8 t- -1 0 - 20 0 1.0 M 100 K := 25°C _~' .~30 20 40 60 TIME - FREQUENCY - Hz j 80 100 120 140 160 180 ~s Typical Performance Curves for J.l.A108/A, and J.l.A208/A (Unless otherwise specified) Input Currents vs Temperature !Z ~ I w ......b-, ,0 ~oa..v, r'-!~AS ~208 .5 0.25 r-::> ~ . ! ~ ~ iz 0.20 0.1 5 ~ 0.1 0 ........ ~ v 10 1.0 ~ 0 -55 -35 -15 5 25 45 65 85 III 1~~J.A 105 125 111 100 K Voltage Gain vs Supply Voltage (pA 108) I 110 z "." w !:; 100 0 > ,...L""" -....- 1.0 M 10M ~125'C 15 20 o o 10M 100M Supply Current vs Supply Voltage (f.lA 108) \ \ = 125°C 500 1. I 400 f- I T 15a: TIA • j5'C " TAi-r II iil ~300 7-18 ~ 100 II OUTPUT CURRENT - / ~200 V 5 90 1.0 M INPUTAESISTANCE-Q c 10 0 100 K 100M n 2f/20rAII ~5'Ct TAl s 18f;C 600 TA SUPPLYVOLTAGE- ±Y lO8Jl08A: - 55°C::s TA:S 125°C I Vcc=±1SV 0 c ~~ ,. ...... ......... \ V 5 ~ -\08I:zoa 10 TA:S 125°C 2i8J2~1:u5'cl TAtlIf ~ ~5OC "t::"t· ffi t: 5 c. = 0 f = 100Hz III ~ a: Output Swing vs Output Current (IlA 108) 120 = < 7 V. V / INPUT RESISTANCE - TEMPERATURE - 'C TA ",. 1081108A: - 55°C g O.1 -..!..,0&A/10& OFFSET 20&Al208 '" r-,081208 o 8 ~ 1.oK :; 100 .. ~ I Maximum Drift Error Maximum Offset Error 2.0 -- -- 0 10 ± rnA .fA. "" I_ 55°C Tl =25'C TA 1~'C = 15 SUPPLY VOLTAGE- ±V 20 IlA 1081A • p.A2081A • p.A3081A Typical Performance Curves for IlA3081 A (Unless otherwise specified) Input Current vs Temperature > 1000 E 3 2r-1 T; I - ~ i BIAS "'r-- > ......... ,..l!EF~ 0.1 6 Ii i!E 100 V / 10 -MAXIMUM 10 30 20 40 60 TEMPERATURE - 80 10 80 120 110 z > ,/ 100 UlM 10M 100M INPUT RESISTANCE - 0 Supply Current vs Supply Voltage Output Swing vs Output Current 16 > 7 ~.~26°:"~.C 10 I TA = 70°C V V T!T= ~oc -r V I 400 vcc l- ±\sv ....... ....... 1"'=SO·~ -- I II INPUT RESISTANCE - 0 C, =0 f = 100Hz ... :c 1.0 100 K ·C Voltage Gain vs Supply Voltage ~ i-' -~YPICAL "wi 0 "w V / r-- 0.1 0 I =IJJc_ w 0 ........ Maximum Drift Error (!lA308) Maximum Offset Error (!lA308) 4 ~ 350 ~ \ .." ~ '" ...... ~ - T. _!.c.1 TA=ioc T. 7O°C /' t-= toc 60 90 20 16 10 5 SUPPLY VOLTAGE - ± v o o o 6 OUTPUT CURRENT - Standard Compensation Circuits R2 R2 Rl Rl -IN -""''''"""........ -IN-OM"......H OUT R3 +IN -""''''"""--I R3 +IN c, (NOTE 1) Note 1. CF ;;>30 ( 1 +1 ~ ) 7-19 -w\,---I 10 15 SUPPLY VOLTAGE- ± mA OUT 20 "v J.l.A 1081A • J.l.A2081 A • J.l.A3081 A Feed Forward Compensation Higher Slew Rate and Wider Bandwidth Guarding Extra care must be taken in the assembly of printed circuit boards to take full advantage of the low input currents of the p.A 108 amplifier. Boards must be thoroughly cleaned with TCE or alcohol and blown dry with compressed air. After cleaning, the boards should be coated with epoxy or silicone rubber to prevent contamination. Even with properly cleaned and coated boards, leakage currents may cause trouble at 125°C, particularly since the input leads are adjacent to leads that are at supply potentials. This leakage can be significantly reduced by using guarding to lower the voltage difference between the inputs and adjacent metal runs. Input guarding of the 8-lead TO-99 package is accomplished by using a 10-lead circle, with the leads of the device formed so that the holes adjacent to the inputs are empty when it is inserted in the board. The guard, which is a conductive ring surrounding the inputs, is connected to a low impedance point that is at approximately the same voltage as the inputs. Leakage currents from high voltage leads are then absorbed by the guard. The lead configuration of the dual-in-line package is designed to facilitate guarding, since the leads adjacent to the inputs are not used (this is different from the standard 1-/A741 and p.A101A lead configuration). Standard Feed Forward C2 RI 5pF 10 Idl IN .....W\'"""""~--It~-...., OUT Open Loop Frequency Response .. z ..3 120 I ~ " ~ -..... "' 100 80 "- 40 9 20 0 z r0 "- '\ - 80 . I , I FEE~ FOR~ARD CO},PENSATION / I ." '\ , STANDARD' r-COMPENSATION " '\V I 10 100 -{HASE )."'" \.. "" I I -20 I 80 \..GAlN "' I'\.. 1""-..'0 1.0 K 10 K 100 K 1.0 M 10 M FREQUENCY - Hz Feed Forward Compensation for Decoupling Load Capacitance R2 Rs> 101cO lOOIdl IN~~~-1~--~~-~~---~ 10pFI-Ij >'...... ......-OUT ~~_ Note '------4-----+ CL 75 pF to O.OI.F CR01201F 7-20 p.A 1081 A • p.A2081 A • p.A3081 A Inverting Amplifier Rl Board Layout for Input Guarding With Metal Package R2 IN--~~1-------~~--------' COMPENSATION OUT R - R,IIR 2 (muol be low impedance) Follower BOTTOM VIEW CA01240F OUT IN ----*r---I Non-Inverting Amplifier R2 OUT Nole 1. Use to compensate for large source resistances. 7-21 JiA 124 • JiA224 • JiA324 • JiA2902 Quad Operational Amplifiers FAIRCHILD A Schlumberger Company Linear Division Operational Amplifiers Description Connection Diagram 14-Lead DIP and 50-14 Package (Top View) The /1A 124 series of quad operational amplifiers consists of four independent high gain, internally frequency compensated operational amplifiers designed to operate from a single power supply or dual power supplies over a wide range of voltages. The common mode input range includes the negative supply, thereby eliminating the necessity for external biasing components in many applications. The output voltage range also includes the negative power supply voltage. They are constructed using the Fairchild Planar Epitaxial process. OUT A -IN A -IN D +IN A +IN 0 y+ • Input Common Mode Voltage Range Includes Ground Or Negative Supply • Output Voltage Can Swing To Ground Or Negative Supply • Four Internally Compensated Operational Amplifiers In A Single Package • Wide Power Supply Range; Single Supply Of 3.0 V to 30 V, Dual Supply of ± 1.5 V to ± 16 V • Power Drain Suitable For Battery Operation y- OR GND +IN B +IN C -IN B -IN C OUT C OUT B Order Information Device Code /1A124DM /1A224DV /1A224PV /1A324DC /1A324PC /1A324SC /1A2902PV Absolute Maximum Ratings Storage Temperature Range Ceramic DIP -65°C to + 175°C Molded DIP and SO-14 -65°C to +150°C Operating Temperature Range Extended (/1A 124M) -55°C to +125°C Automotive (/1A2902V) -40°C to +85°C Industrial (/1A224V) -25°C to + 85°C Commercial (/1A324C) O°C to +70°C Lead Temperature Ceramic DIP (soldering, 60 s) 300°C Molded DIP and SO-14 (soldering, 10 s) 265°C Internal Power Dissipation 1, 2 14L-Ceramic DIP 1.36 W 14L-Molded DIP 1.04 W SO-14 0.93 W Supply Voltage Between V + and V- 32 V Differential Input Voltage 3 32 V Input Voltage3 -0.3 V (V-) to V+ Notes 1. TJ Max ~ 150·C for the Molded DIP and 80-14, and 175·C for the Ceramic DIP. 2. Ratings apply to ambient temperature at 25°C. Above this temperature derate the 14L-Ceramic DIP at 9.1 mWrC, the 14L-Molded DIP at 8.3 mWrC, and the 80-14 at 7.5 mWrC. 3. The input common mode voltage or either input signal voltage should not be allowed to go negative by more than 0.3 V. The upper end of the common mode voltage range is Vee -1.5 V, but either or both inputs can go to + 32 V without damage (+ 26 V for iJA2902). 4. Short circuits from the output to Vee can cause excessive heating and eventual destruction. Destructive disSipation can result from simultaneous shorts on all amplifiers. 7-22 Package Code 6A 6A 9A 6A 9A KD 9A Package Description Ceramic DIP Ceramic DIP Molded DIP Ceramic DIP Molded DIP Molded Surface Mount Molded DIP IlA 124 • IlA224 • IlA324 • IlA2902 Equivalent Circuit (1/4 of Circuit) -IN +IN OUT v+ BIAS COMMON TO ALL FOUR CHANNELS ,.-- - ------ - - ------ ------ v- orGND EQ00790F p.A 124, p.A224 and p.A324 Electrical Characteristics T A = 25°C, V + = 5.0 V, V - = GND, unless otherwise specified. J.LA 124/A224 Symbol Characteristic Via Input Offset Voltage 110 Input Offset Current liB Input Bias Current Condition Min V + = 5.0 V to 30 V VCM=O V to (V-)-1.5 V, Vo",,1.4 V, Rs~50 n CMR Common Mode Rejection Rs~10 kn 70 VIR Input Voltage Range V+ =30 V 0 PSRR Power Supply Rejection Ratio los Output Short Circuit Current1 10+ Output Source Current VID = 1.0 V, V + = 15 V 20 10- Output Sink Current VID = -1.0 V, V + VID = 15 V = -1.0 V, Vo = 200 mV V + = 15 V, RL;;' 2.0 kn 50 Avs Large Signal Voltage Gain CS Channel Separation 65 Typ Max Typ Max Unit 2.0 5.0 2.0 7.0 mV 3.0 30 5.0 50 nA 45 150 45 250 85 7-23 Min 65 28.5 100 40 1.0 kHz ~ f ~ 20 kHz, (Input Referenced ) J-IA324 70 28.5 0 65 60 100 40 nA dB V dB 60 mA 40 20 40 mA 10 20 10 20 mA 12 50 12 50 p.A 100 25 100 V/mV -120 dB -120 JJ.A 124 • JJ.A224 • JJ.A324 • JJ.A2902 J,LA 124, J,LA224 and J,LA324 (Cont.) Electrical Characteristics TA = 25°C, V + = 5.0 V, V - = GND, unless otherwise specified. iJA 1241 A224 Symbol Characteristic Condition Min I Typ I iJA324 I Min Max Typ I Max Unit The following specifications apply over the range of -55°C";;;TA";;;+125°C for the J..lA124; -25°C";;;TA";;;+85°C for the iJA224; and the O°C";;; TA ,,;;; + 70°C for the J..LA324. Via Input Offset Voltage LlVlolLlT Input Offset Voltage Temperature Sensitivity 110 Input Offset Current LlllolLlT Input Offset Current Temperature Sensitivity 10 liB Input Bias Current 40 Icc Supply Current V + = 5.0 V to 30 V, VCM = 0 V to V - = 2.0 V, Vo :::C1.4 V, Rs";;;50 il 7.0 9.0 7.0 7.0 100 Va = 0 V, RL = 00 V + = 30 V, Va = 0 V, RL = 00 J..lVrC 150 10 nA pArC 500 nA 0.7 1.2 mA 1.5 3.0 300 50 0.7 1.2 1.5 3.0 28 mV VIR Input Voltage Range V+ =30 V 10+ Output Source Current Via = + 1.0 V, V + = 15 V 10 20 10 20 mA 10- Output Sink Current Vlo=-1.0 V, V+ =15 V 5.0 8.0 5.0 8.0 mA Avs Large Signal Voltage Gain V + = 15 V, RL ;<>2.0 kil 25 VOH Output Voltage HIGH V + = 30 V, RL = 10 kil 27 V + = 30 V, RL = 2.0 kil 26 VOL Output Voltage LOW V+ =5.0 V, RL=10 kil 0 28 0 15 28 V V/mV 27 28 V 26 5.0 20 5.0 20 mV J.LA2902 Electrical Characteristics TA = 25°C, V + = 5.0 V, V - = GND, unless otherwise specified. Symbol Characteristic Via Input Offset Voltage 110 Input Offset Current Condition Min V + = 5.0 V to 26 V, VCM = 0 V to (V-) -1.5 V, Vo::::'1.4 V, Rs";;;50 il liB Input Bias Current CMR Common Mode Rejection Rs";;; 10 kil 50 VIR Input Voltage Range Vcc= 26 V 0 PSRR Power Supply Rejection Ratio los Output Short Circuit Current 1 50 Typ Max Unit 2.0 7.0 mV 5.0 50 nA 45 250 70 24.5 100 40 7·24 nA dB V dB 60 mA JlA 124 • JlA224 • JlA324 • JlA2902 J1A2902 (Cont.) Electrical Characteristics T A = 25°C, V + = 5.0 V, V - = GND, unless otherwise specified. Symbol 10+ Characteristic Output Source Current Condition Min VID = + 1.0 V, V + = 15 V 20 Typ Max Unit 40 rnA = 15 10- Output Sink Current VID=-1.0 V, V+ V 10 20 rnA Avs Large Signal Voltage Gain V+ =15 V, RL;;;'2.0 kn 15 100 V/mV CS Channel Separation 1.0 kHz < f < 20 kHz, Input Referenced -120 dB The following specifications apply over the operating temperature range of -40°C < TA < + 85°C V + = 5.0 V to 26 V, VCM = 0 V to V - = 2.0 V, Vo""-1.4 V, Rs<50 n VIO Input Offset Voltage 10 LlVlol LlT Input Offset Voltage Temperature Sensitivity 7.0 110 Input Offset Current 45 Lliiol LlT Input Offset Current Temperature Sensitivity mV p.V/oC 200 nA pA/oC 10 liB Input Bias Current Icc Supply Current Vo = 0 V, RL = VIR Input Voltage Range V+ =26 V 10+ Output Source Current V ID = + 1.0 V, V + = 15 V 10 20 rnA 10- Output Sink Current V ID V, V + = 15 V 5.0 8.0 rnA Avs Large Signal Voltage Gain V+ = 15 V, RL;;;' 2.0 kn 15 100 V/mV VOH Output Voltage HIGH = 2.0 kn = 10 kn RL = 10 kn 22 V+ Output Voltage LOW = -1.0 V, Vo = 0 V, RL = 26 V, RL V+ = 5.0 V, = 00 50 500 nA 0.7 1.2 rnA 1.5 3.0 rnA 24 V 0 V + = 26 V, RL V+ VOL = 26 00 Notes 1. Short circuits from the output to Vee can cause excessive heating and eventual destruction. Destructive dissipation can result from simultaneous shorts on all amplifiers. 7-25 23 V 24 5.0 100 mV p.A 124 • p.A224 • p.A324 • p.A2902 Typical Performance Curves Open Loop Frequency Response 120 ." vc~='i~v 100 -fo... I ~ 80 co "'~ ...~ TA ..... ...... 80 ....... t...... ~ § ...iii0 = 25°C ....... 20 ....... t...... -20 10 1.0 UK 100 10K 100M 100K FREQUENCY - Hz Output Characteristics Current Sourcing ,. I ,.+ 1111 I 1111 I I. f- I ,. ~ ,....9- .. I .. ~ i ~ :::I I Tiifr OUTPUT SOURCE CURRENT - 20 10 S 0 0 5.0 I'.r- -5.0 10 0.1 0.01 0.1 V 1111 I 1 0.001 :::I aoe Rl.=10kO 15 ~ !:i > ........ TA ""' I 0 INDEPENDENT OF V+ Vcc=±16V 1\ IS 10+ ~ Output Voltage vs Frequency 30 UII :.~~ e I Output Characteristics Current Sinking 1.0 K 100 mA Output Swing vs Supply Voltage OUTPUT SINK CURRENT - Input Bias Current vs Temperature ~ 100K 1.0M Input Bias Current vs Supply Voltage 400 T. = 211'C_ 10K FREQUENCY - Hz mA V.!,=I± 1~V 180 / 1-,... / V " r- / oo '2.0 4.0 6.0 1.0 10 12 SUPPLY VOLTAGE 14 16 -±v 18 20 0 0 -75 -55 -35 -IS 5.0 3 45 65 TEMPERATURE 7-26 _oc 85 105 13 o 2.0 4.0 S.O 8.0 10 12 14 SUPPLY VOLTAGE - ±V '6 18 20 IlA 1458 • IlA 1558 I=AIRCHIL.O Dual Internally Compensated Operational Amplifiers A Schlumberger Company Linear Division Operational Amplifiers Description Connection Diagram 8-Lead Metal Package (Top View) The J.lA 1458, J.lA 1558 are a monolithic pair of internally frequency compensated high performance amplifiers constructed using the Fairchild Planar Epitaxial process. They are intended for a wide range of analog applications where board space or weight are important. High common mode voltage range and absence of latch up make the J.lA 1458, J.LA 1558 ideal for use as voltage followers. The high gain and wide range of operating voltage provide superior performance in integrator, summing amplifier and general feedback applications. The J.lA 1458, J.lA 1558 are short circuit protected and require no external components for frequency compensation. The internal 6.0 db/octave roll off ensures stability in closed loop applications. For single amplifier performance, see the J.LA 741 data sheet. The Fairchild J.lA1458, J.lA1558 slew rate has been improved to 0.8/ J.lS typical. v+ vLead 4 connected to case. Order Information Device Code Package Code J.lA1458HC J.lA1458CHC J.lA1558HM • No Frequency Compensation Required • Short Circuit Protection • Large Common Mode And Differential Voltage Ranges • Low Power Consumption • No Latch Up • Mini-Dip Package 5W 5W 5W Package Description Metal Metal Metal Connection Diagram 8-Lead DIP and 50-8 Package (Top View) Absolute Maximum Ratings Storage Temperature Range Metal Can and Ceramic DIP Molded DIP and SO-8 Operating Temperature Range Extended (J.LA 1558M) Commercial (J.lA 1458C) Lead Temperature Metal Can and Ceramic DIP (soldering, 60 s) Molded DIP and SO-8 (soldering, 10 s) Internal Power Dissipation I, 2 8L-Metal Can 8L-Ceramic DIP BL-Molded DIP SO-8 Supply Voltage J.LA1558 J.LA1458 Differential Input Voltage Common Mode Input Swing 3 Output Short Circuit Duration 4 v+ -65°C to + 175°C -65°C to + 150°C OUTS -INB -55°C to + 125°C O°C to +70°C +INB 300°C Order Information 265°C 1.00 1.30 0.93 0.81 Device Code J.lA1458RC J.lA1458SC J.LA1458TC J.lA1458CRC J.LA1458CTC J.lA1558RM W W W W ±22 V ± 18 V ±30 V ±15 V Indefinite Package Code 6T KC 9T 6T 9T 6T Package Description Ceramic DIP Molded Surface Mount Molded DIP Ceramic DIP Molded DIP Ceramic DIP B.7 mWrC, the BL·Molded DIP at 7.5 mWrC, and the SO·B at 6.5 mWrC. 3. For supply voltages less than ± tS V, the absolute maximum input voltage is equal to the supply voltage. 4. Short circuit may be to ground or either supply. Rating applies to Notes 1. TJ Max = IS0·C for the Molded DIP and SO·B, and 17S·C for the Metal Can and Ceramic DIP. 2. Ratings apply to ambient temperature at 2S·C. Above this temperature, derate the BL·Metal Can at 6.7 mW rc, the BL-Ceramic DIP at + 125°C case temperature or 70°C ambient temperature. 7-27 p.A 1458 • p.A 1558 Equivalent Circuit (112 of Circuit) ;-~--------~------~---------1----~-------------------'--V+ OUT +IN -IN ----+---+-----1f-....I Rl 1 kO R3 5OkO RZ lkO L-____~--_4----~------~----~ ____ Rll 5OkO L_--~~~~_____+--~L_~~V- 7-28 I1A 1458 • I1A 1558 ~A1458 and ~A1458C Electrical Characteristics TA = 25°C, Vee = ± 15 V, unless otherwise specified. !.LA1458C !.LA1458 Symbol Characteristic VIO Input Offset Voltage 110 Input Offset Current liB Input Bias Current 21 Input Impedance Icc Supply Current Pc Power Consumption CMR Common Mode Rejection VIR Input Voltage Range PSRR Power Supply Rejection Ratio Condition Min Rs<10 kil 0.3 Vo=O V Typ Max Typ Max Unit 2.0 6.0 2.0 10 mV 0.03 0.2 0.03 0.3 !.LA 0.2 0.5 0.2 0.7 !.LA 1.0 2.3 5.6 2.3 8.0 mA 70 170 70 240 mW 70 90 60 90 ±13 ± 11 ±13 30 los Output Short Circuit Current Large Signal Voltage Gain Vo=±10 V, RL;;;'2.0 kD VOP Output Voltage Swing RL=10kil fc Unity Gain Crossover Frequency SR Slew Rate 150 dB V 30 20 !.LVIV 20 mA 20 100 20 100 V/mV ±12 ±14 ± 11 ±14 V 1.1 1.1 MHz 0.8 0.8 V/!.Ls Av = 1.0 The following specifications apply for O°C < TA < MD 1.0 ±12 Rs<10 kil Avs Min + 70°C VIO Input Offset Voltage Rs<10 kD 7.5 tlVloltlT Input Offset Voltage Temperature Sensitivity Rs= 50 il 110 Input Offset Current 0.3 0.4 !.LA liB Input Bias Current 0.8 1.0 !.LA 12 15 Avs Large Signal Voltage Gain Vo=±10 V, RL;;;'2.0 kil VOP Output Voltage Swing RL = 2.0 kD 7-29 ±13 !.LVloC 15 15 15 ±10 ±9.0 mV V/mV ±13 V JIA 1458 • JIA 1558 /lA1558 Electrical Characteristics T A = 25°C, Vee = ± 15 V, unless otherwise specified. J.LA 1558 Symbol VIO Characteristic Input Offset Voltage 110 Input Offset Current liB Input Bias Current ZI Input Impedance Icc Supply Current Pc Power Consumption CMR Common Mode Rejection VIR Input Voltage Range PSRR Power Supply Rejection Ratio los Output Short Circuit Current Condition Min Rs": 10 kn 0.3 Vo=O V Avs Large Signal Voltage Gain Vo=±10 V, RL>2.0 kn Output Voltage Swing RL = 10 kn fc Unity Gain Crossover Frequency SR Slew Rate Max Unit 1.0 5.0 0.03 0.2 IlA 0.2 0.5 !lA mV Mn 1.0 2.3 5.0 mA 70 150 mW 70 90 ±12 ±13 30 Rs":10 kn VOP Typ dB V 150 IlVN 20 mA 50 200 VlmV ±12 ±14 V 1.1 MHz 0.8 V/IlS Av = 1.0 The following specifications apply for -55°C": TA": + 125°C 6.0 VIO Input Offset Voltage Rs":10 kn tJ.VloltJ.T Input Offset Voltage Temperature Sensitivity Rs=50 n 110 Input Offset Current 0.5 liB Input Bias Current 1.5 Avs Large Signal Voltage Gain Vo=±10 V, RL>2.0 kn VOP Output Voltage Swing RL =2.0 kn 7-30 !lA !lA V/mV 25 ±10 mV IlV/oC 15 ±13 V JlA 1458 • JlA 1558 Typical Performance Curves TA = 25°C, Vee Voltage Gain vs Supply Voltage 115 z C 110 "w "~ 100 .. 95 g 90 o .ffi 28 ./' - V .;- 24 I w 20 "~ ,/'" 0 > .. I- => 12 I- => 8.0 85 80 3.0 6.0 9.0 12 18 15 ., o 10 m 100 70 50 C "w !i ~ 60 !j .. g .. 0 > zw ;t 40 2 20 I'" .. i'.. 0 -20 10 40 30 z 20 1.0 I E "- 100 1.0K Ii: iii z 100 K Hz LOAD RESISTANCE - 1.4 r- Yo 0 1.' ~ ./ ~ /' 10 E I w 0.8 0 z 7.0 a: 5.0 4.0 ~ 0 3.0 "'- \ .. 1.0 2.0 0.6 l- => l- => 0.4 0 0.2 2.0 Hz 1.0 . // 0 .. n Output Noise vs Source Resistance 0 10K lOOK 1.0M 10M FREQUENCY - r--. 10 K 1.0 K Power Consumption vs Supply Voltage 100 80 100 FREQUENCY - 120 I I II I II I II tv Open Loop Frequency Response .. RL = 2 k r-VOLTAGE FOLLOWER ±15 V SUPPLIES THO < 5% 4.0 SUPPLY VOLTAGE- Z 1\ 18 0 o Output Voltage Swing vs Load Resistance 32 105 g V, unless otherwise specified Power Bandwidth (Large Signal Swing vs Frequency) 120 tI = ± 15 6.0 10 18 14 22 SOURCE RESISTANCE - SUPPLY VOlTAGE-± V Typical Applications Quadrature Oscillator High Impedance, High Gain Inverting Amplifier Y+ .2 190 kU 1% f = 21r 7-31 J 1 C2 R2 C3 R3 (R1 C1 C1 = R2 C2) :r:~~~ pF n J1A 1458 • J1A 1558 Typical Applications (Cont.) CompressorIExpander Amplifiers Dl R RZ 10 kO D3 R +15 V R COMPRESSOR R4 EXPANDER 10 kO >'':l:''"___~_DO_UT_ _ _ -..:(IN>-4_..,;;;,yy_....,_ ......-lF" R D4 Notes Maximum compression expansion ratio - R,/R (10 kn> R >0) Diodes 01 through 04 are matched F06666 or equivalent Analog Multiplier +15 V AMPLIFIER CURRENT SOURCE lN9638 R2 20 kll 1% Rl 20 kll 1% Eo E" RS -15 v 5 kn 1% R4 R3 15 kll 1% 20 kll 1% -=EXPANDER COMPRESSOR -= -15 V ZERO ADJUST +15 V Note 1. Matched to 0.1% Eo - 100 EI1 X E'2 7-32 EXPANDER OUT J.1.A 148 • J.1.A248 • J.1.A348 FAIRCHILD Quad Operational Amplifiers A Schlumberger Company Linear Division Operational Amplifiers Description Connection Diagram 14·Lead DIP (Top View) The JJA 148 series is a true quad JJA741. It consists of four independent, high gain, internally frequency compensated, low power operational amplifiers which have been designed to provide functional characteristics identical to those of the familiar JJA741 operational amplifier. In addition, the total supply current for all four amplifiers is comparable to the supply current of a single JJA741 type operational amplifier. Other features include input offset currents and input bias currents which are much less than those of a standard JJA 741. Also, excellent isolation between amplifiers has been achieved by independently biasing each amplifier and using layout techniques which minimize thermal coupling. OUT A -IN A -IN D +IN A y+ • • • • • • • • JJA741 Op Amp Operating Characteristics Low Supply Current Drain Class AB Output Stage - No Crossover Distortion Lead Compatible With The JJA324 & JJA3403 Low Input Offset Voltage -1.0 mV Typically Low Input Offset Current - 4.0 nA Typically Low Input Bias Current - 30 nA Typically Gain Bandwidth Product For JJA148 (Unity Galn)1.0 MHz Typically • High Degree Of Isolation Between Ampllflers120 dB Typically • Overload Protection For Inputs And Outputs y- +IN B +IN C -IN B -IN C OUT B OUT C Order Information Device Code JJA148DM JJA248DV JJA248PV JJA348DC JJA348PC Package Code 6A 6A 9A 6A 9A Package Description Ceramic DIP Ceramic DIP Molded DIP Ceramic DIP Molded DIP Absolute Maximum Ratings Storage Temperature Range Ceramic DIP Molded DIP Operating Temperature Range Extended (JJA 148M) Industrial (JJA248V) Commercial (JJA348C) Lead Temperature Ceramic DIP (soldering, 60 s) Molded DIP (soldering, 10 s) Internal Power Dissipation 1,2 14L-Molded DIP 14L-Ceramic DIP Supply Voltage JJA148 JJA248, JJA348 Differential Input Voltage JJA148 JJA248, IlA348 Input Voltage JJA148 JJA248, JJA348 Output Short Circuit Duration 3 -65°C to + 175°C -65°C to +150°C -55°C to + 125°C -25°C to +85°C O°C to +70°C 300°C 265°C 1.04 W 1.36 W ±22 V ±18 V Notes 1. TJ Max = 150'C for the Molded DIP, and 175'C for the Ceramic DIP. 2. Ratings apply to ambient temperature at 25'C. Above this temperature, derate the 14-Lead Molded DIP at 8.3 mWI'C, and the 14-Lead Ceramic DIP at 9.1 mWI'C. 3. Any of the amplHier outputs can be shorted to ground indefinitely; however, more than one should not be simultaneously shorted as the maximum junction temperature will be exceeded. ±44 V ±36 V ±22 V ±18 V Indefinite 7-33 JlA 148 • JlA248 • JlA348 Equivalent Circuit (1/4 of Circuit) ~------------------.-----------~~~-------------.--v+ R6 -IN +IN 18 n OUT R7 V+ 22n +-----+-1: Q7 R3 SOKn ~--~~~--~ __ R4 3.4K n ~------~--+----------4--~----~--~--~~V- D = CIIOSSUNDER EOO0061F 7-34 IlA 148 • IlA248 • IlA348 pA148 Electrical Characteristics TA = 25°C, Vee = ± 15 V, unless otherwise specified. DC Characteristics Symbol Characteristic Via Input Offset Voltage 110 Input Offset Current liB Input Bias Current ZI Input Impedance Condition Min Typ Max 0.8 Unit 5.0 mV 4 25 nA 30 100 1.0 Rs<10 kn 2.5 nA Mn 3.6 rnA Icc Supply Current (Total) 2.4 los Output Short Circuit Current 25 rnA 160 V/mV Avs Large Signal Voltage Gain Vo=±10 V, RL;;;'2.0 kn CS Channel Separation 1.0 Hz Phase Margin SR Slew Rate Av = 7-35 IlA 148 • IlA248 • J.LA348 !.LA248 Electrical Characteristics T A = 25°C. Vee = ± 15 V. unless otherwise specified. DC Characteristics Symbol Characteristic Via Input Offset Voltage 110 Input Offset Current lis Input Bias Current ZI Input Impedance Condition Min Typ Max 1.0 Rs';;; 10 kU 0.8 Unit 6.0 mV 4 50 nA 30 200 2.5 nA MU Icc Supply Current (Total) 2.4 los Output Short Circuit Current 25 mA Avs Large Signal Voltage Gain Vo=±10 V. RL;;;'2.0 kU 160 V/mV CS Channel Separation 1.0 Hz';;; f .;;; 20 kHz (Input Referred) 25 4.5 -120 mA dB The following specifications apply over the range of -25°C';;; TA .;;; + 65°C. Via Input Offset Voltage 110 Input Offset Current Rs';;;10 kU 7.5 mV 125 nA 500 lis Input Bias Current CMR Common Mode Rejection VIR Input Voltage Range PSRR Power Supply Rejection Ratio Rs';;; 10 kU 77 Avs Large Signal Voltage Gain Va = ± 10 V. RL ;;;'2.0 kU 15 VoP Output Voltage Swing RL = 10 kU ±12 ±13 RL = 2.0 kU ±10 ±12 70 Rs';;; 10 kU 90 ±12 nA dB V 96 dB V/mV V AC Characteristics BW Bandwidth 1.0 MHz rt> Phase Margin Av= 1.0 60 degrees SR Slew Rate Av = 1.0 0.5 V/J.IS 7-36 J.1A 148 • J.1A248 • J.1A348 J.lA348 Electrical Characteristics TA = 25°C, Vee = ± 15 V, unless otherwise specified. DC Characterisitcs Symbol Characteristic Via Input Offset Voltage 110 Input Offset Current 118 Input Bias Current ZI Input Impedance Condition Rs~ Min 10 kil Typ Max 1.0 0.8 Unit 6.0 mV 4 50 nA 30 200 2.5 nA Mil Icc Supply Current (Total) 2.4 los Output Short Circuit Current 25 mA Avs Large Signal Voltage Gain Vo=±10 V, RL;;'2.0 kil 160 V/mV CS Channel Separation 1.0 Hz~f~20 kHz (Input Referred) -120 dB 25 4.5 mA The following specifications apply over the range of O°C ~ TA ~ + 70°C. Via Input Offset Voltage 110 Input Offset Current Rs~10 kil lis Input Bias Current CMR Common Mode Rejection VIR Input Voltage Range PSRR Power Supply Rejection Ratio Rs~ Avs Large Signal Voltage Gain Vo=±10 V, RL;;'2.0 kil VoP Output Voltage Swing RL = 10 kil ±12 ±13 RL = 2.0 kil ±10 ±12 7.5 mV 100 nA 400 Rs~ 10 kil 70 90 ±12 10 kil 77 nA dB V 96 15 dB V/mV V AC Characteristics BW Bandwidth rt> Phase Margin SR Slew Rate 1.0 MHz Av = 1.0 60 degrees Av = 1.0 0.5 V/J1-s 7-37 • p.A 148 • p.A248 • p.A348 Typical Performance Curves Positive Common Mode Input Voltage Limit vs Supply Voltage 20 -55 0 .. .... :> J~ 1 J TA 01 ~t:: 15 / z!! 0..1 :lw :10 oc U!:i wo ~> 10 / !:: .. on 0 5 5 / / ~120 ~ ;; z \ 80 60 10 ~ MEAN NOISE VOLTAGE o 10 100 FREQUENCY - 1.0 i 0.6 1.0K II II 0 > I "'i>v, ;; ~ 0.2 :I / 81 -15 :I!:: +25O.C~ z:l 0:::; I~ ~5 tLL w z -5 -5 -20 V > I w Ii a vJ=±!v RL=2k / Av=·' TA=25°C - \ \ I ... .,. 10 / \ ?' > v, 10 100 10 0 0 0 -1 00 10 10 160 120 TIME I 0 \ ~io-- 80 -15 Vo 10 [\ !:i '!io-- 40 -10 Inverting Large Signal Pulse Response ~ TIME -~. /7 NEGATIVE SUPPLY VOLTS - Av = 1 RL ~ 2 K ~ "..:: ~5°lc 0 0 10K ~ hV -10 5> TA "" 25°C / +125O~ ~ i!! w> Hz ~ <- ....... :> Vo 10 1\ \ h ...... :I 8;'! 0.4 Z Large Signal Pulse Response Ycc=±15V TA = 25"e Av = 1 I I I I 20 V Small Signal Pulse Response Vo 1 0.8 ~ MEAN NOISE CURRENT 20 15 100 1.2 a: ~ 40 :I -20 1.6 1 .4 ~ I III 100 ~~ POSITIVE SUPPL Y VOLTS - 0 '±;~ U vee' = TA "" 25"C ~140 1/ z ;;;> 160 ;~ +125 o Negative Common Mode Input Voltage Limit vs Supply Voltage Input Noise Voltage and Noise Current vs Frequency v, o 200 20 40 60 -~. 80 100 120 140 160 180 200 TIME - p8 PC/),2981F Supply Current vs Power Supply Voltage Input Bias Current vs Ambient Temperature Output Voltage Swing vs Supply Voltage 80 50 1 70 > I ~ I ~ 80 ! :i 50 ID 30 80 25 0 / : ,..... C,........- """"-:L..--' ? -55" ~ ~ ~ ~C f-"" o o 10 15 SUPPLY VOLTAGE - ±V -- a~ ~ ~ ~ Vcc.,.±20V cc=±15Vr--~ ..... R~.(. Vcc=±10V -. r--. --,:::~~._ 20 vee ±5r _ ~f=::=i 40 l 10 20 0 -55 -35 15 25 45 65 TEMPERATURE _ "C 7-38 85 105 125 TA "" 25°C 40 i 30 ~ 20 .. 0 1 V ~ ~ * V V V V V 0 10 15 SUPPLY VOLTAGE 20 -±V 25 IlA 148 • IlA248 • 1lA348 Typical Performance Curves (Cont.) Output Voltage vs Source Current Output Voltage vs Sink Current -15 15 > I VCC=±15V I ~ 0 ~ ~ ..........·c 25'~ \\ss.c 1\ ~ 5 '" 125"C o VCC=~'SV '\ e I ~ i'\,r\ 10 !; Output Impedance vs Frequency o 10 I +~OC\ 20 " OUTPUT SOURCE CURRENT - os Q I i ~ I 125"e o o 30 10 mAo 11 20 OUTPUT SINK CURRENT - 21 30 mA FREQUENCY - Hz FC03030F CMR vs Frequency Gain and Phase vs Frequency 110 80 r-... 70 3 30 i '" r-... "- 10 100 K 1.0 K 10 K FREQUENCY - I -5 3 -10 " -15 -20 " -25 i\.. -10 10 10 r-... i\.. Iso 15 Vcc"'±1SV TA ... 25"C t-- " '8 20 I i\.. "''''''''F Gain Bandwidth vs Temperature 100 K Hz 1.0 M 10 M -30 -35 0.1 100 Vcc=±15V 90 TA = 25"C 80 Llll ~ IIIII " PHASE IBw II so Ii! ~ 60 ~ \ 10kO 40 r'\.GAIN f1>l: 30 20 2.0k~\ . Vcc=±15V 70 :l f 10 10 0.5 FREQUENCY - 'w"I MHz z ~ ~~45~-_~U~~'~25=-~U7-~5S~5S=-~105=-~~ TEMPERATURE - "C """"" 7-39 I 10 "\ . 0: PC03010F MA3303 • MA3403 • MA3503 Quad F=AIRCHILD A Schlumberger Company Operational Amplifiers Linear Division Operational Amplifiers Description Connection Diagram 14-Lead DIP and S~14 Package (Top View) The pASSOS, pAS40S, and pAS50S are monolithic quad operational amplifiers consisting of four independent high gain, internally frequency compensated, operational amplifiers designed to operate from a single power supply or dual power supplies over a wide range of voltages. The common mode input range includes the negative supply, thereby eliminating the necessity for external biasing components in many applications. They are constructed using the Fairchild Planar Epitaxial process. OUT A -IN A +IN 0 +IN A v+ • Input Common Mode Voltage Range Includes Ground Or Negative Supply • Output Voltage Can Swing To Ground Or Negative Supply • Four Internally Compensated Operational Amplifiers In A Single Package • Wide Power Supply Range Single Supply Of 3.0 V To 36 V Dual Supply Of ± 1.5 To ± 18 V • Class AB Output Stage For Minimal Crossover Distortion • Short Circuit Protected Outputs • High Open Loop Gain 200K Typically • pA741 Operational Amplifier Type Performance v· +IN B -IN C -IN B OUT C OUT B Order Information Device Code pASSOSDV pASSOSPV pAS40SDC pA340SPC pAS40SSC pAS50SDM Absolute Maximum Ratings 5torage Temperature Range -65·C to + 175·C Ceramic DIP -65·C to + 150·C Molded DIP and 50-14 Operating Temperature Range -55·C to + 125·C Extended (pAS50SM) -40·C to + 85·C Industrial (pASSOSV) O·C to +70·C Commercial (pAS40SC) Lead Temperature SOO·C Ceramic DIP (soldering, 60 s) Molded DIP and 50-14 265·C (soldering, 10 s) Internal Power Disisipation l , 2 1.S6 W 14L-Ceramic DIP 14L-Molded DIP 1.04 W 50-14 0.9S W Supply Voltage Between V + and V- S6 V ±SO V Differential Input Voltage3 Input Voltage (V _1)3 -O.S V (V-) to V+ Notes I. TJ Max = 150·C for the Molded DIP and 80-14, and 175·C for the Ceramic DIP. 2. Ratings apply' to ambient temperature at 25·C. Above this temperature, derate the 14L·Ceramic DIP at 9.1 mW/·C, the 14L·Molded DIP at B.3 mWrC, and the 80·14 at 7.5 mWrC. 3. For supply voltage less than 30 V between V + and V -, the absolute maximum input voltage is equal to the supply voltage. 7-40 Package Code Package Description 6A 9A 6A 9A KD 6A Ceramic DIP Molded DIP Ceramic DIP Molded DIP Molded Surface Mount Ceramic DIP ~3303 • J.LA3403 • ~3503 Equivalent Circuit (1/4 of Circuit) OUT ~------------~----------'-----~~------'------+-1------~--V+ +IN -1------------++------. -IN 7-41 MA3303 • MA3403 • MA3503 MA3303 and MA3403 Electrical Characteristics TA = 25°C, Vee = ± 15 V, unless otherwise specified. ~3403 ~3303 Symbol Characteristic Condition Min Typ Max Typ Min Max Unit VIO Input Offset Voltage 2.0 8.0 2.0 8.0 mV 110 Input Offset Current 30 75 30 50 nA 118 Input Bias Current 200 500 200 500 nA ZI Input Impedance Icc Supply Current Vo = 0 V, RL = CMR Common Mode Rejection Rs";10 kn VIR Input Voltage Range PSRR Power Supply Rejection Ratio los Output Short Circuit Current (Per Amplifier) 1 Avs Large Signal Voltage Gain Vo=±10 V, RL >2.0 kn VOP Output Voltage Swing TR Transient Response 0.3 1.0 2.8 00 0.3 7.0 MS1 1.0 2.8 7.0 mA 70 90 70 90 dB +12 to V- +12.5 to V- +13 to V- +13.5 to V- V 30 150 p.VIV ±10 ±30 ±45 mA 200 20 200 12.5 ±12 +13.5 12 ±10 ±13 30 150 ±10 ±30 ±45 20 RL = 10 kS1 ±12 RL =2.0 kS1 ±10 V/mV V Rise timet Vo=50 mY, Fall time Av = 1.0, RL = 10 kS1 0.3 0.3 p.s Overshoot Vo=50 mY, Av = 1.0, RL = 10 kS1 5.0 5.0 % BW Bandwidth Vo=50 mY, Av = 1.0, RL = 10 kS1 1.0 1.0 MHz SR Slew Rate VI=-10 V to +10 V, Av = 1.0 0.6 0.6 V/IJ.S The following speCifications apply for -40·C"; TA ..; + 85·C for the p.A3303, and O·C"; TA ..; + 70·C for the p.A3403. VIO Input Offset Voltage 10 110 10 10 I1VlolfH Input Offset Voltage Temperature Sensitivity Input Offset Current 250 11110/I1T Input Offset Current Temperature Sensitivity 200 50 50 118 Input Bias Current Avs Large Signal Voltage Gain Vo=±10 V, RL>2.0 kS1 15 1000 15 VOP Output Voltage Swing RL =2.0 kS1 ±10 ±10 7-42 mV p'vrc 10 nA pArC 800 nA VlmV V /-LA3303 • /-LA3403 • /-LA3503 IlA3303 and 1lA3403 (Cont.) Electrical Characteristics T A = 25°C, V + = 5.0 V, V - = Gnd, unless otherwise specified. /lA3303 Symbol VIO Characteristic Typ Max Typ Min B.O Input Offset Voltage 110 Input Offset Current lis Input Bias Current Icc Supply Current PSRR Power Supply Rejection Ratio Avs Large Signal Voltage Gain VoP Output Voltage SWing 2 2.5 RL > 2.0 kg 20 RL = 10 kg ~30 V, Unit B.O mV nA 75 30 50 500 200 500 nA 7.0 2.5 7.0 rnA 150 /lVN 20 200 3.3 3.3 (V+) -2.0 (V+) -2.0 1.0 Hz ~ f ~ 20 kHz (Input Referenced) Channel Separation Max 2.0 150 5.0 V~V+ RL = 10 kg CS Min Condition /lA3403 200 V/rnV V -120 -120 dB IlA3503 Electrical Characteristics TA = 25°C, Vee = ± 15 V, unless otherwise specified. !lA3S03 Symbol Characteristic Condition Min Typ Max Unit Via Input Offset Voltage 2.0 5.0 mV 110 Input Offset Current 30 50 nA liS Input Bias Current 200 500 ZI Input Impedance 0.3 Icc Supply Current Va = 0, RL = CMR Common Mode Rejection Rs~lO VIR Input Voltage Range PSRR Power Supply Rejection Ratio los 2.B 00 kg Output Short Circuit Current (Per Amplifier) 1 rnA 90 dB +13 to V- +13.5 to V- V 30 150 /lVN ±10 ±30 ±45 rnA Avs Large Signal Voltage Gain Vo=±10 V, RL>2.0 kg 50 200 Output Voltage Swing RL = 10 kg ±12 ± 13.5 RL = 2.0 kg ±10 ±13 Transient Response 4.0 70 VOP TR nA Mg 1.0 V/mV V IRise time Va = 50 mY, Av = 1.0, RL = 10 kg 0.3 JOvershoot Vo=50 mY, Av=1.0, RL=10 kg 5.0 % /lS BW Bandwidth Va = 50 mY, Av = 1.0, RL = 10 kg 1.0 MHz SR Slew Rate VI=-10 V to +10 V, Av=1.0 0.6 V//ls 7-43 1lA3303 • 1lA3403 • J,LA3503 A" + 1lA3503 Electrical Characteristics -55°C" T 125°C, Vee = ± 15 V, unless otherwise specified. /lA3503 Symbol Characteristic VIO Input Offset Voltage !lVIO!!IT Input Offset Voltage Temperature Sensitivity 110 Input Offset Current !lllo! !IT Input Offset Current Temperature Sensitivity Condition Min Typ Max 6.0 200 Input Bias Current Avs Vo=±10 V, RL~2.0 kfl VOP Output Voltage Swing RL=2.0 kfl nA pArC 50 Large Signal Voltage Gain mV IlVloC 10 liB Unit 1200 25 nA V!mV ±10 V The following specifications apply for T A = 25°C, V + = + 5.0 V, V- = GND. VIO Input Offset Voltage 2.0 5.0 mV 110 Input Offset Current 30 50 nA liB Input Bias Current 200 500 nA Icc Supply Current PSRR Power Supply Rejection Ratio 2.5 Avs Large Signal Voltage Gain RL~2.0 kfl 20 VOP Output Voltage SWing2 RL=10 kfl 3.3 5.0 V<"V+ <"30 V, RL=10 kfl CS Channel Separation 1.0 Hz <" f <" 20 kHz (Input Referenced) Notes 1. Not to exceed maximum package power dissipation. 2. Output will swing to ground. 7-44 200 4.0 mA 150 IlVIV V!mV V (V+) -2.0 -120 dB J,LA3303 • J,LA3403 • J,LA3503 Typical Performance Curves Open Loop Frequency Response :c ".. "~ 80 > 40 Output Voltage vs Frequency VCC"" ±1S V TA 1100 I z Sine Wave Response 30 120 Av = 100 "" 25°C ~ III 1/\ 1\ If\ [ ~ d 80 .. g ... 0 .I IV V hl IV \J i!: 0 ~ 20 z III 0 r. r. .:: .~ g ~~ 1 \ 5 10 5.0 -...... o Hz r- -5 .0 T.OK SO = 25°C "" 10 kU TA AL 20 I NOTE: CI... AS output ltage produce. dl,tortlonl... line wave - 20 1!-'.o,u.LI..:l'O,...uw..,I-!;:IIO,..u.ll,:-:.o~K:f-'JIL'~O:-:K!-"-"'IOO±-!K;'l':,:-:!.O M FREQUENCY - r. r.. r.; lee 1= Wv . ~./DIV 10 K 1.0 M 100 K FREQUENCY - Hz PC02591F Output Swing vs Supply Voltage Input Bias Current vs Temperature 40 t='2.·L Input Bias Current vs Supply Voltage 180 4110 Vel = ~'5 J- ~ ~ .. .". 20 I .is 30 ./ z ... .. r- '/ 0 > :> /' 10 . ~ ... .. !; 160 ! / :> " u '-. "~ '10 ::i:> a: / 0 ,I oQ 2.0 4.0 8.0 8.0 1Q 12 SUPPLY VOLTAGE - 14 tv 16 18 20 150 o -75 -55 -35 -15 5.0 25 45 TEMPERATURE _ 7-45 65 0 C 85 105 125 o 2.0 4.0 6.0 8.0 10 12 14 16 SUPPLY VOLTAGE-:!:Y 18 20 J,LA3303 • J,LA3403 • J,LA3503 Typical Applications Wein Bridge Oscillator 50 kll r-----~~-----t--vo Multiple Feedback Bandpass Filter 10 kll -t VREF ....- " " '............ VREF = c +V+ R fo = center frequency fo BW ~ Bandwidth R in kU C in I'F ~ 1 - - for fo ~ 1 kHz 21TRC R~16 kn C ~ 0.Q1 I'F Comparator With Hysteresis Q~~<10 BW C1 R2 Q ~C2~~ R1 3 VAEF-""',............... v,---------f' R1 ~ R2 ~ 1J R3 = 9Q2_1 Use scaling factors in these expressions. HYSTERESIS VOHEifL I VOL Vo Vo VIL IVIH I VAEF If source impedance is high or varies, filter may be preceded with voltage follower buffer to stabilize filter parameters. Design example: given: Q ~ 5, fo ~ 1 kHz Let R1 - R2 ~ 10 kn then R3 ~ 9(5)2 - 10 R3~215 5 C~-~ 3 kn 1.6 nF 7-46 J..lA3303 • J..lA3403 • J..lA3503 Typical Applications (Cant.) High Impedance Differential Amplifier AC Coupled Inverting Amplifier R6 RI 100 kn Vl Rl C, 10 kn 'f R3 Co R4 + Cl 11 10 kn R2 l001cQ V+ 10.uFJ, 1\ 1\"" o \J RS 2Vp_p T V2 R7 Rt AY~Fi1 Ay ~ 10 (as shown) Your ~ C(1 + a + b)(V2 - V1) R2 R6 R5 R7 - '" R1 ~ R2~ Voltage Reference tor best CMRR V+ R4 R5 R6 ( 1 + 2R1 -) R5 R3 Gain~- R2 10kO ~C(1 +a+b) Rl 10kO AC Coupled Non-Inverting Amplifier AFOO380F V - -R1 -- ( 0- R1 + R2 =2 as shown ) V+ Ground Referencing A Differential Input Signal Rl 1MO va R2 Ay~ 1 +Fi1 Ay ~ + VR 11 (as shown) R2 1Mn R4 1Mn +VCM R3 1M!} 7-47 MA3303 • MA3403 • MA3503 Typical Applications (Cont.) Voltage Controlled Oscillator RI 100 kll n...r +Vco - ......"..""'......- - - - -.....-4 (NOTE 1) 51 kll OUT 1 R2 50 kll /'.A OUT 2 Function Generator VAEF = i TRIANGLE WAVE OUT Vee R2 300kll ,---'\IIoI\t--......-SQUARE WAVE OUT R3 75kU VAEF c RI IOOkll Rf (NOTE 2) L---'--VREF Pulse Generator Vo + SL..rL Note 1. Wide Control Voltage Range: OV';;'Vco';;'2 (V+-1.5 V) R1 + R2 R2R1 2. f = - - - if R3=--4CRIR1 R2 + R1 7-48 J,LA3303 • MA3403 • MA3503 Typical Applications (Cent.) Bi-Quad Filter A R C C1 V, R2 --jf-1.........Nv-.......-I VREF R1 RZ C1 f--NOTCH OUT VREF BW Q-10 where TBP - Center Frequency Gain TN - Bandpass Notch Gain Rl-QR Rl R2-TBP R3 -TNR2 Cl-l0 C Example: 10 -1000 Hz BW-l00 Hz T BP - l TN-l R-160 kS1 Rl =1.6 MS1 R2-1.6 MS1 R3-1.6 MS1 C -0.001 p.F 7-49 J.lA4136 Quad Operational Amplifier I=AIRCHILD A Schlumberger Company Linear Products Operational Amplifiers Description Connection Diagram 14-Lead DIP and 80-14 Package (Top View) The j.lA4136 Monolithic Quad Operational Amplifier consists of four independent high gain, internally frequency compensated operational amplifiers. The specifically designed low noise input transistors allow the j.lA4136 to be used in low noise signal proceSSing applications such as audio preamplifiers and signal conditioners. It is constructed using the Fairchild Planar Epitaxial process. The simplified output stage completely eliminates .crossover distortion under any load conditions, has large source and sink capacity, and is short circuit protected. A novel current source stabilizes output parameters over a wide power supply voltage range. -INA +INA Unity Gain Bandwidth - 3.0 MHz Typically Continuous Short Circuit Protection No Frequency Compensation Required No Latch Up Large Common Mode and Differential Voltage Ranges • pA741 Operational Amplifier Type Performance • Parameter Tracking Over Temperature Range • Gain and Phase Match Between Amplifiers • • • • • OUT A OUT 0 OUTB y+ +INB OUTC -IN B +INC y- -INC Order Information Device Code j.lA4136DC j.lA4136PC j.lA4136SC Absolute Maximum Ratings Storage Temperature Range Ceramic DIP Molded DIP and SO-14 Operating Temperature Range Lead Temperature Ceramic DIP (soldering, 60 s) Molded DIP and SO-14 (soldering, 10 s) Internal Power Disisipation 1, 2 14L-Ceramic DIP 14L-Molded DIP SO-14 Supply Voltage Differential Input Voltage3 Input Voltage 1 Output Short Circuit Duration4 -IN 0 -65°C to + 175°C -65°C to + 150°C O°C to +70°C 300°C 265°C 1.36 W 1.04 W 0.93 W ±18 V ±30 V ±15 V Indefinite Notes 1. TJ Max = 150·C for the Molded DIP and SO-14, and 175·C for the Ceramic DIP. 2. Rating apply to ambient temperature at 25·C. Above this temperature, derate tha 14L·Ceramic DIP at 9.1 mWrC, the 14L·Molded DIP at B.3 mWrC, and tha SO-14 at 7.5 mWrC. 3. For supply voltage less than ± 15 V, tha absolute maximum input voltage is equal to the supply voltage. 4. Short circuit may be to ground, one amplifier only. 7-50 Package Code 6A 9A KD Package Description Ceramic DIP Molded DIP Molded Surface Mount J.lA4136 Equivalent Circuit (1 /4 of Circuit) v.--------_4~----------~--_4~--------------~------~--__, R1 B.7 k 05:.----------~--_f~~--------------~r__1--~ +----.----~r 011 R6 50 RB 100 +--~~-+_--+----OUT -IN +IN R7 50 ----t------+---' 014 R9 6.B k R5 50 k v-----~-- __ ~--_+------~ __--------______ _+----4_------~ Nole 1. All resistor values are in ohms. 7-51 ____~----J J.lA4136 IlA4136 Electrical Characteristics TA = 25°C, Vee Symbol = ± 15 V, unless otherwise specified. Condition Characteristic Min Max Unit 0.5 6.0 mV nA Typ VIO Input Offset Voltage 110 Input Offset Current 5.0 200 lis Input Bias Current 40 500 ZI Input Impedance Pc CMR Common Mode Rejection VIR PSRR Rs<10 kU 0.3 210 Power Consumption Rs< 10 kU 70 ±12 Input Voltage Range 340 mW dB 90 ±14 V 150 Power Supply Rejection Ratio Rs< 10 kU Avs Large Signal Voltage Gain RL;;.o2.0 kU, Vo=±10 V 20 300 V/mV VOP Output Voltage Swing RL = 10 kU ±12 ±14 V RL =2.0 kU ±10 ±13 TR BW Transient Response I Rise time I Overshoot Bandwidth 30 nA MU 5.0 VI = 20 mY, RL = 2.0 kU, CL = 100 pF, Av = 1.0 0.13 Av = 1.0 pV!V /.LS 5.0 % 3.0 MHz 1.0 V//.LS dB SR Slew Rate RL = 2.0 kU, Av = 1.0 CS Channel Separation f = 10 kHz, Rs = 1.0 kU, Open Loop 105 f = 10kHz, Rs = 1.0 kU Av= 100 105 The following specifications apply over the range of - 55°C < TA < + 125°C for /.LA4136; O°C < TA < + 70°C for 1.LA4136C VIO Input Offset Voltage 7.5 mV 110 Input Offset Current 300 nA lIB Input Bias Current 800 nA Pc Power Consumption TA=TAMax 180 300 mW 400 Large Signal Voltage Gain TA = TA Min RL;;.o2.0 kU, Vo=±10 V 240 Avs VOP Output Voltage Swing Rs<10 kU RL =2.0 kU Vcc=±15 V 7-52 15 ±10 V/mV V fJ.A4136 Typical Performance Curves Input Bias Current vs Temperature 100 Vee ~ Input Offset Current vs Temperature 25 1 J ±1S J =[ :t15 Vee ':l 80 Common Mode Range vs Supply Voltage > I w 20 "~ 15 "~ ...z ..13~ 60 '" "' 40 iii ... ~ ! -- .. w w ::> () I-- t;; 10 ~ 0 ... ...... ~ 20 ~ o 0 10 20 30 40 50 TEMPERATURE _ 60 70 40 Z 20 § ~ () 40 50 60 70 SUPPLY VOLTAGE - °C -20 1.OK I 220 g ..,. W o 100 E z ~ ~ ~ 400 !:i """," 10 ~ I Z "r\. 1 Vee 240 j 600 "- 10K FREQUENCY - ~ ±15 J - r- r-- () 180 ~ ~ ~ 160 0 10 20 30 40 50 60 70 10 TEMPERATURE _ °C > 26 Vee TA I 4 > I "~ 2 2 "z ~ 2 !; 18 ~... ::> ~ 6 1 o 14 ~ 12 " ~ " 25°C / 0 8 0.1 30 40 50 0 60 70 C Output Voltage Swing vs Frequency 0 Vee:: :t15 V = 25°C = 2 kH 6 TA R, 2 4 0 ~ o =: - .,. J±1~.1 20 TEMPERATURE _ Output Voltage Swing vs Load Resistance 28 ;tV .. 200 lOOK 1.0M 10M o 200 '"0z -!!k...""2kn § Hz Typical Output Voltage vs Supply Voltage SUPPLY VOLT AGE - ::> 1- g "f:V Power Consumption vs Temperature 1"5 V Vee = 'r\. g 30 ,.'o" Open Loop Voltage Gain vs Temperature r-- 80 60 20 w o o 'oz" 800 ~ ~ 10 TEMPERATURE _ 120 ~ -- -- °c Open Loop Voltage Gain vs Frequency .. 100 o ~ 0 II 6 2 II \ 8 '\ 4 J 0 1.0 LOAD RESISTANCE - 7-53 10 kH ...... 100 1.0K 10K FREQUENCY - 100K Hz 1.0M p.A4136 Typical Performance Curves (Cont.) Quiescent Current vs Supply Voltage Voltage Follower Large Signal Pulse Response Transient Response 8 0 , Vee == :t15 V 8 TA = 25°C 10 TA ='2S"C I 6 ~ 0 I > . t- E Z W """" 0: ::> I ~ "ffi "ffl ::> o .., • 1 I 8 0 12 SUPPLY VOLTAGE - 15 -4 -0.25 18 r~O% RISE Vcc=±lSV TA == 25° C RL == 2 kH CL =:: 100 pF TIME 0.25 0.50 TIME - :tV Input Noise Voltage vs Frequency 0 0.75 1.0 -. - -4 10 1.25 I 100 z i 0: ::> I'- " w 1.0 '"oz Distortion vs Frequency (Vo = 0 ;:: R, 0.5 Av f Rs '" == ::;: = 'z"I 2 k 40 dB 1 kHz 1 kn 0 ;:: Q "i,. .. 0 l: 0 t- '"0 0.' I 0.3 ot- 0.2 0.1 ",.i ... .. 0 ~ ~ 100 K 0 .• ....- ) O!=;t:;t:::t:t::t:t:~u o 1,0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10 OUTPUT VOLTAGE-V :I: =1 Vrms) Vee '" 230 V RIAA COMPENSATION 0.5 0.4 0.3 0.2 \ ~ t0 t- O. 1 ./ o 10 100 80 60 .li 40 " 0 loOK FREQUENCY - 7-54 10 K Hz 10 100 I.OK FREQUENCY - Hz 0: 0: 0 t- !!! 10 K o.7 0.7r-.,--.--,-.--r-,-y-..,..,.-" Vee =- :t15 V 0 .• 1.0K FREQUENCY - Distortion vs Output Voltage (f 1 kHz) ...... r-, 25°C 0 100 Hz -- :I: till jOldi 10 40 w Vee -' _r15 V ~ 25°C Rs -;;; 100 k 1.0 'z"I ~ TA 0.1 FREQUENCY - '" J.m..lvLIJL,L = TA o ..ffi 30 ~s Channel Separation 140 10 ___ 20 TIME - I~ I L -8 120 i if ~s Input Noise Current vs Frequency i1~HH~~-+~-+~~~++H-+-~+; ,,, ,, 1\ ,, \ ,, , -1 0 100 ~ - 1/ 2 !; o r- 2 2 ~ I 4 ~ ~g I 2 ~-- ,, i/ ,, 4 w 90% lOOK 10 K Hz 100 K JlA4136 Typical Applications (Note 1) 400 Hz Lowpass Butterworth Active Filter 10k 620Q 20 k 820 Cl IN~~-;I~~~~~'-------------~~----------------~------------~~--------,---OUT 0.33pF 1k 1k -I I. I I MI38 _____ 0.33pF 1.62 k 1k 1k O.33pF Differential Input Instrumentation Amplifier With High Common Mode Rejection I I + OUT R3 10k 1% A R4 45k 1% R6 10 k 0.1% (NOTE 2) V ~.!!!f,+~) R2\ R3 Notes 1. All resistor values are in ohms 2. Matching determines CMRR RI R7 ~ R4 R2=R5 R6= R7 100 k 0.1% (NOTE 2) 7-55 13.2k IlA4 136 Typical Applications (Cont.) (Note 1) Analog Multiplier/Divider . - - - -.....-0-16 V 10k 10k El E2 Eo= - - 10k E, 10k 10 k 10k 10k 10 k kHz Bandpass Active Filter v+ 120 k v+ r-.IVI~-t--t-Vo 390k 39k 0.01 pF 820n 620k J. 10PF 100 k lOOk v+ Note 1. All resistor values are in ohms 7-56 tJA4136 Typical Applications (Cont.) (Note 1) Full-Wave Rectifier And Averaging Filter 20 k 20 k 2.6 k r -____________JV1%~--------------r_~1A%A-~~~,__~T 4.71'F ~c~~~+~~~~ ______~~____-, 4.71'F CAL 4.7"F 10k 1% 6.1 k 10k Notch Filter Using The !1A4136 As A Gyrator Multiple Aperture Window Discriminator R2 V, 30k V. IN Q, V3 < VI < V4 Q,==]~--------~ R4 v,-If---i Notch Frequency vs Capacitor 10k V'------i :I! '1k liZ I"' w a I'. w II: :..... a:: 100 r-.. ~ w (J 10 0.0001 0.001 0.01 0.1 Note 1. All resistor values are in ohms 1.0 CAPACITOR - "F 7-57 11A709 High Performance Operational Amplifier FAIRCHIL.D A Schlumberger Company Linear Division Operational Amplifiers Description Connection Diagram 8-Lead Metal Package (Top View) The p.A709 is a monolithic high gain operational amplifier constructed using the Fairchild Planar Epitaxial process. It features low offset, high input impedance, large input common mode range, high output swing under load, and low power consumption. The device displays exceptional temperature stability and will operate over a wide range of supply voltages with little performance degradation. The amplifier is intended for use in DC servo systems, high impedance analog computers, low level instrumentation applications, and for the generation of special linear and nonlinear transfer functions. IN FREQ COMP 2 -IN OUT v- Connection Diagram 8-Lead DIP and 50-8 Package (Top View) Lead 4 connected to case Order Information IN FREQ COMP1 IN FREQ COMP2 -IN y+ +IN OUT y- Device Code p.A709AHM p.A709HM p.A709HG ~A709TG p.A709SG Package Code 9T KG Package Description Metal Metal Metal Connection Diagram 14-Lead DIP (Top View) OUTFREQ COMP NC Order Information Device Code Package Code 5W 5W 5W Package Description Molded DIP Molded Surface Mount NC NC NC 12 IN FREQ COMP1 IN FREQ COMP2 -IN v+ +IN OUT vNC OUT FREQ COMP NC CD00741F Order Information Device Code p.A709PG 7-58 Package Code 9A Package Description Molded DIP fJ.A709 Internal Power Dissipation I, 2 8L-Metal Can 8L-Molded DIP SO-8 14L-Molded DIP Supply Voltage Differential Input Voltage Input Voltage Output Short Circuit Duration Absolute Maximum Ratings Storage Temperature Range Metal Can Molded DIP and SO-8 Operating Temperature Range Extended (/lA709AM, /lA709M) Commercial (/lA709C) Lead Temperature Metal Can (soldering, 60 s) Molded DIP and SO-8 (soldering, 1Os) -65°C to + 175°C -65°C to + 150°C -55°C to + 125°C O°C to +70°C 300°C 265°C Notes 1. TJ Max ~ IS0·C for the Molded DIP and SO-8, and 17S·C for the Metal Can. 2. Ratings apply to ambient temperature at 25°C. Above this temperature, derate the 8L-Metal Can at 6.7 mWrC, the 8L-Molded DIP at 7.5 mWrC, the SO-8 at 6.5 mWrC, and the 14L-Molded DIP at 8.3 mWrC. Equivalent Circuit IN FREO COMPI IN FREO COMP2 ~--------.----4-------------+--------~--~--------~----~--V+ R7 1 kfl 06 05 R15 30 kll OUT R8 3.6 kll R9 10kll OUT FREO COMP -IN RIO 18 kfl -IN Q1 013 Rl1 Rl3 2,4 lUI 7511 ~-----------4--------------~---+--V- 7-59 1.00 W 0.93 W 0.81 W 1.04 W ± 18 V ±5.0 V ± 10 V 5.0 s pA709 ~709A and MA709 Electrical Characteristics T A = 25°C, ± 9.0 V « Vee « ± 15 V, unless otherwise specified. /lA709A Symbol Characteristic Condition Min kn Typ /lA709 Max Min Max Unit 0.6 2.0 Typ 1.0 5.0 mV 10 50 50 200 nA 100 200 200 500 VIO Input Offset Voltage 110 Input Offset Current 118 Input Bias Current ZI Input Impedance Icc Supply Current VCC=±15V 2.5 3.6 2.7 5.5 mA Pc Power Consumption Vcc=±15 V 75 10S SO 165 mW TR Transient Response Vcc=±15 V VI =20 mV RL =2.0 kn C1 = 5.0 nF Av = 1.0 0.3 1.5 0.3 1.0 /lS Overshoot R2 = 50 n CL<100 pF R1 = 1.5 kn C2 = 200 pF Av = 1.0 10 30 10 30 % .. Rs<10 350 Rise time 700 150 nA kn 400 The follOWing specifications apply over the range of -55°C to + 125°C for the !1A709A and !1A709 . VIO Input Offset Voltage AVIO/AT Input Offset Voltage Temperature Sensitivity 110 Input Offset Current AIIO/AT Input Offset Current Temperature Sensitivity kn Rs= 50 n Rs<10 kn 1.S 10 3.0 4.8 25 6.0 TA = +125°C 3.5 50 20 200 TA = -55°C 40 250 100 500 TA = +25°C to +125°C 0.08 0.5 TA = +25°C to -55°C 0.45 2.S TA = -55°C 300 600 2.1 3.0 4.5 3.0 Rs<10 6.0 mV /lV/DC nA nArC 116 Input Bias Current AIlS/AT Input Bias Current Temperature Sensitivity TA = +125°C TA = -55°C 2.7 ZI Input Impedance TA =-55°C S5 170 40 100 kn CMR Common Mode Rejection Rs<10 SO 110 70 90 db VIR Input Voltage Range VCC=±15V ±8.0 ±10 ±S.O ±10 PSRR Power Supply Rejection Ratio Rs<10 Avs Large Signal Voltage Gain VCC=±15V RL ;;;'2.0 kn Vo=±10V 25 VOP Output Voltage Swing Vcc=±15 V RL = 10 kn ±12 VCC=±15V RL = 2.0 kn ±10 kn kn 40 7-60 500 1500 nA nA/oC 100 V 50 150 /lV/v 25 45 70 V/mV ±14 ±12 ±14 ±13 ±10 ±13 70 V IlA709 J,lA709A and J,lA709 (Cont.) Electrical Characteristics T A = 25°C, ± 9.0 V ~ Vee ~ ± 15 V, unless otherwise specified. J.lA709 /lA709A Symbol Icc Min Typ Max TA = ± 125°C 2.1 3.0 TA = -55°C 2.7 4.5 Characteristic Condition Supply Current Min Typ Max Unit mA J,lA709C Electrical Characteristics T A = 25°C, Vee = ± 15 V, unless otherwise specified. J.lA709C Symbol Characteristic VIO Input Offset Voltage 110 Condition Rs";;;10 Min kn Typ Max Unit 2.0 7.5 mV Input Offset Current 100 500 nA lis Input Bias Current 300 1500 ZI Input Impedance Icc Supply Current Vcc=±15V 2.7 6.66 mA Pc Power Consumption Vcc=±15V 80 200 mW CMR Common Mode Rejection Rs";;;10 VIR Input Voltage Range VCC=±15V PSRR Power Supply Rejection Ratio Rs";;; 10 TR Transient Response 50 kn 65 90 ±8.0 ±10 kn 50 nA kn 250 dB V 200 J.lVIV Rise time Vcc=±15V VI =20 mV RL = 2.0 kn C1 = 5.0 nF Av = 1.0 0.3 J.IS Overshoot R2 = 50 n CL = 100 pF R1 = 1.5 kn C2 = 200 pF Av = 1.0 10 % The following specifications apply over the range of O°C to + 70°C. kn VIO Input Offset Voltage Rs";;; 10 10.0 mV 110 Input Offset Current TA = O°C 750 nA lis Input Bias Current TA = O°C 2000 ZI Input Impedance TA = O°C Avs Large Signal Voltage Gain VCC=±15V VOP Output Voltage Swing nA 35 80 kn 15 45 V/mV Vcc=±15 V RL = 10 kn ±12 ±14 V Vcc=±15 V RL = 2.0 kn ±10 ±13 V RL~2.0 kn Vo=±10V 7-61 pA709 Typical Performance Curves for p.A709A Voltage Gain vs Supply Voltage Output Voltage Swing vs Supply Voltage 7. > E >: RL2:2kH I -55°e:::; TA s +125°C 60 . " ~ w "~ 40 0 30 zw 2. .. 9 .. g 0 1/ i-"" I I. , ...'"~- fo-I- 1. 9 I 11 ~ I 12 11 ~ , , 1iM ,/ 14 13 VCC~±15VI 10 T, - I I rfJ -ss·c ......' ~ > I 5 .• w 9-- ~o:~ 1! ~ E I TA - 2SCl C ~ "w I 02 OA 0.6 0.8 ~ 9 10 13 12 11 14 • 15 .. " 30 z w c 20 ....... " :---. - r-.... I 26 "~ 24 ... "..... ,."c ~ Vc~"19V I 10 -60 28 > ~Y r-- ~~:t72'" 20 20 --- I 60 100 TEMPERATURE _ TA /' / 22 / 20 ~ 18 ..~ 14 ., ,. / / 12 10 0.1 140 60 (Ie I- -- 11 40 I ! : -J.e1s T~ s l'25!e 10 70 ..g 9 .. 0 I c o > I I TA -125°C , - 5.0 12 ~ ~ .:t~t'- !J -15 -1.0 -0,8 -0.6 -0.4 -0.2 ~ ~ Voltage Gain vs Temperature ~ -10 10 ...,11,...11 ,:; _r- SUPPLY VOLTAGE - g 0 ~ .; 15 I ~ ... 5" -5.0 15 ±V ,~ I I RL~lOknl _ ~,.~ I- - - ~I'~~''''\ >:- Voltage Transfer Characteristics 15 ~I'c 20 ~ o I SUPPLY VOLTAGE - I I I 25 ,/ 'YI I :,...I I I > L l~~ I 30 V I I I I I .J Input Common Mode Voltage Range vs Supply Voltage ~ 9 10 11 12 13 SUPPLY VOLTAGE - 7-62 14 ~V 15 \ 1""'- 10 o 80 i\ 20 -60 -20 20 ...... 60 TEMPERATURE _ 100 (I C 140 IlA709 Typical Performance Curves for pA709A (Cont.) Common Mode Rejection Ratio vs Temperature 11 'II • ~ I ~ ~ 108 - ..... r--.. 1/ Vee ""±15V 3.0 2.0 i ....... ~ I ~ Z V /' 1.0 ~ I ./ ~ w '06 i ~ z 8 '0 • -60 .0 -20 60 , O. -60 '.0 '00 ! V • ,.. ,.. - .... t.... r-OVERLooT :.L .......... '.0 - 0 w 0 .• 5 w 0.' a: 0.' 90 .. 0 A ;:: 70 50 () a: ~ 0 .. RISETIMf I O.S 1.0 1.5 2.0 • ./ ./V' 30 V' r-- TIME- ....s ~ ,. 11 c '00 '40 ~ 10 w ~ ~ 1.0 I I--" '0 0 !ca: o('t~G~ V ./ '0 9 2.5 V- ,/ :I :l U) Z 0 ~ 60 _vLLUsv -TA-2S°C ,/ I 20 '00 V r-TF'SOC - ~ -20 Slew Rate vs Closed Loop Gain Using Recommended Compensation Networks TA == 25"C z I I f- -50 TEMPERATURE _ 110 vcc~I±,sv I :l '40 '00 "C Power Consumption vs Supply Voltage '- 0.8 60 TEMPERATURE - Transient Response 50 40 .0 -20 TEMPERATURE _ °C I"'-- 50 8 0,3 o. 104 " 70 :I m o.5 a: 8:I r- ......... 80 z ~ ~ ~ 90 5.0 RS~1o~n Q 110 !ca: Power Consumption vs Temperature Input Resistance vs Temperature ,. '3 ,, o. 's '0 ±v SUPPLY VOLTAGE - '00 '000 CLOSED LOOP VOLTAGE GAIN PC05010F Power Consumption vs Supply Voltage (!lA709 and j.lA709C) 110 Voltage Transfer Characteristics (!lA709 and j.lA709C) s LV TA'" 25°C ,/ it E 90 f 70 ,/ :I ::> vV' U) z 0 50 () a: w ..~ 0 ~"'V I z 1--"1-"" 30 ./ ./ ./ ,/ I s.0 ~ g 0 ~ ~ "'" I ~ TA -125"C fJ--II 'I TA - 25"C TA- -5S",?~1 > "'~ ~~\G~ V I I RL ==10kfl ,. - r/I I I Vcc=±,svl Input Bias Current vs Temperature (!lA709 and !lA709C) !Z 'I. 10 9 '0 11 ,. '3 SUPPLY VOLTAGE - =.V ,. -'5 '5 " -1.0 -0.8 0.6 -0.4 -0.2 ~ o.6 ~ o. i O. a I 0 Vee"'::t15 V '\ o.8 J II -5. 0 0 • "" O 0 0.2 0.4 0.6 0,8 INPUT VOLTAGE - 7-63 mY 1.0 ~ • 60 - t- .0 20 60 TEMPERATURE - "C '00 '40 MA709 Typical Performance Curves for p.A709 and p.A709C (Cont.) Input Offset Current vs Temperature Input Resistance vs Temperature 200 1.0 z u ~ '"~ " "- 80 II: ....... 40 o -20 -60 .i r--. 20 60 - 100 ~ 0.2 " L o -20 -60 140 20 > J "iz = J /' 24 ....'" S ..'"" ,. ... :> > /' 26 ~ / 22 I 1/ 20 0 ~ 18 w ""'" ~ I "~ / 12 0.2 0.• 15 I- 10 ~, ~ """, r:::- -- ~ 9 10 117s -r- w 0.6 ~ 91- o.7 O.5 125 10 11 12 13 SUPPLY VOLTAGE - :!.V 14 15 I I f- 0.4 II: 13 12 11 14 ~ ~ I 0.5 9 r-±L JveJ $ ±1~ V ~ ...... w IIEsPo 3 fj.- r- r-.. ~ 1.2 ~ ~ \.OO~6 0.8 II: J-" "" ~t-~ ~..¥ A .- ~C~ 'S~o ~tE I (00 "'8 '1"'0", l - T' 'Ot", 17 _ 0.4 o 11 12 13 7-64 14 15 ~ ~o,,?- I - 1.6 SUPPLY VOLTAGE - ::tV 2.5 Frequency Characteristics vs Temperature ::~,,"OIH\OT" 10 2.0 1.5 1.0 TIME-J,ls ±V sJIHR"TE ~ 'CiosiO I I Vee ='±15V e-TA= 25"C- - ~ISE TIMjE 15 2.0 1 150 9 ~ 1 l- c I 0 TA "" 25°C -r-- 140 100 0 ~ l!; I 25c C J 60 L ......... 0.8 0.2 1.3 ~200 20 OVERlHOOT 1.0 ~:> Frequency Characteristics vs Supply Voltage ~225 - 5.0 1.5 TA= ~ f- - f- I',-~\.~ ~I'~~Z~(\ SUPPLY VOLTAGE - 250 . i 20 kO Input Bias Current vs Supply Voltage ~ 1.2 as 10 LOAD RESISTANCE - -20 Transient Response I O°C:5 TA '$ +70°1 o 10 0.1 40 TEMPERATURE _ ... 14 - 1.4 30 25°C r-- l- I - 60 20 -60 140 Output Voltage Swing vs Supply Voltage Veej±\5~ TA 100 60 -l- i-- 80 TEMPERATURE _ °C Output Voltage Swing vs Load Resistance 28 ;8 i. ,/ TEMPERATURE _ °C 30 ii: ....... V 0.4 =;t15V 100 J ~ / I! ti ..i / J w u 0.6 120 ~ L i zW ~ Vee Vee'" ±12 V 0.8 J II: II: 120 VCC=±1SV ~ 160 .. :> Power Consumption vs Temperature -80 -20 20 60 TEMPERATURE _ °C 100 140 MA709 Typical Performance Curves for fJA709 and fJA709C (Cont.) Voltage Gain vs Supply Voltage (j.LA709C) 15 aoc:s: TA $: E ,1, -t-70°C R, ;;; I e 10 ~¢~ ~ " ~" w :,.-- f""" 0 > Q. i--" VV ~ ~ 50 "~ I~ > 0 9 9 ~ 0 z W Q. 0 11 "" I :ri w ";!g V 40 12 13 14 15 " ~ :,.-- ...... ",\..,,,,\l~ -, - i - t9 6. 0 10 11 12 ~~ -- i--'" 2.0 8 13 SUPPLY VOLTAGE - SUPPLY VOLTAGE - ±V 4.0 Z o ~ ...- ...... 8.0 w V 30 20 o:c ~ TAI$ +~o'~ 10 ~ a: "'7 10 10 ,/ ~ 0 0 9 I .I~~;:.- "w :,.-- V 1 _I 1 I Q. o ~ 2 kll -55°C $ TA:::; +125°C 60 Input Common Mode Voltage Range vs Supply Voltage 12 70 RLI~2Ikn I > z Voltage Gain vs Supply Voltage (j.LA709) 14 0 15 10 -r.V 11 12 13 14 15 SUPPLY VOLTAGE - :!:.V PCQ5121F Frequency Compensation Curves For All Types Open Loop Frequency Response For Various Values Of Compensation Frequency Response For Various Closed Loop Gains z ~ ~ Output Voltage Swing vs Frequency For Various Values Of Compensation > I 28H..I+H-+..I+H~:+++ z "~ 24 ~ 20 Q. I;; o ~ 9 6 '7 8.0 ~ 4.0 ~ ~ o 16 12 Q. z o i!! Co ~.OLK""'.!.J..JC-...J'-1....l..1..L""'--'-.J...J..'-'-W.ll...,...10 M FREOUENCY - Hz FREQUENCY - Hz 7-65 FREQUENCY - Hz IJ.A709 Test Circuits Transient Response Circuit Frequency Compensation Circuit 10kO R2(Nole 1) CROla6(lF Protection Circuits Output Short Circuit Protection Input Breakdown Protection Rl Rl 200n D1 R2 CROl380F CR01390F Latch Up Protection R2 Supply Over Voltage Protection v+ Dl Rl EO CRQl400F Note 1. Use R2 = 50 n when the amplifier is operated with capacitive loading. 7·66 J.lA714 Precision Operational Amplifier FAIRCHILD A Schlumberger Company Linear Division Operational Amplifiers Description Connection Diagram 8-Lead Metal Package (Top View) The IlA714 is a monolithic instrumentation operational amplifier constructed using the Fairchild Planar Epitaxial process. It is intended for precise, low level signal amplification applications where low noise, low drift and accurate closed loop gain are required. The offset null capability, low power consumption, very high voltage gain as well as wide power supply voltage range provide superior performance for a wide range of instrumentation applications. -OFFSET NULL -IN • • • • • • • • • Low Offset Voltage - 75 IlV Low Offset Voltage Drift-l.0 Ilvrc Typically Low Bias Current - ± 2.6 nA Low Input Noise Current - 0.12 pAl VHi at 1.0 kHz Typically High Open Loop Gain - 500 K Typically Low Input Offset Current - 2.8 nA High Common Mode Rejection - 110 dB Wide Power Supply Range - ± 3.0 To ± 22 V Plug-In Replacement For Op-07 vLead 4 connected to case. Order Information Device Code Package Code /lA714HM /lA714HC tJA714EHC /lA714LHC Absolute Maximum Ratings Storage Temperature Range Metal Can Molded DIP and SO-8 Operating Temperature Range Extended (/lA714M) Commercial (IlA714C, /lA714EC, IlA714LC) Lead Temperature Metal Can (soldering, 60 s) Molded DIP and SO-8 (soldering, 10 s) Internal Power Dissapation l , 2 8L-Metal Can 8L-Molded DIP SO-8 Supply Voltage IlA714, IlA714C, /lA714E IlA714L Differential Input Voltage Input Voltage 3 IlA714, IlA714C, /lA714E IlA714L >--':'VOUT -65°C to +175°C -65°C to + 150°C 5W 5W 5W 5W Package Description Metal Metal Metal Metal Connection Diagram 8·Lead DIP and SO-8 Package (Top View) -55°C to +125°C O°C to +70°C -OF1'SET 300°C NULL V+ 265°C OUT 1.00 W 0.93 W 0.81 W NC ±22 V ± 18 V ±30 V Order Information Device Code /lA714SG /lA714TC IlA714LSC /lA714LTG ±22 V ± 18 V Notes I. TJ Max ~ 150°C for the Molded DIP and 50·8, and 175°C for the Metal Can. 2. Ratings apply to ambient temperature at 25°C. Above this temperature, derate the BL·Metal Can at 6.7 mWrC, the 8L-Molded DIP at 7.5 mW/oC, and the 50-8 at 6.5 mWrC. 3. For supply voltage less than ± 22 V, the absolute maximum input voltage is equal to the supply voltage. 7-67 Package Code KC 9T KG 9T Package Description Molded Molded Molded Molded Surface Mount DIP Surface Mount DIP JIA714 Equivalent Circuit r-------_,--------~----t_--_,------~~------~----_t----_t----t_--~v+ + OF:~~~ __ -OF:~~~ __ R2A (NOTE 1) RIA 030t...,~.....,--+_+------+----_;----i::' - 029 C2 J,......019 '7 ~ 034,..r 016 C3 R9 C4 f"-f-OUT R23 R24 R17 R18 RS R19 R25 RIS ~~--~--~----------~~--~--~~----~v- Note 1. R2A and R2B are electronically adjusted on chip at the factory for minimum offset voltage 7-68 MA714 J..LA714 Electrical Characteristics TA = 25°C, Vee = ± 15 V Characteristic Symbol Condition Min Typ Via Input Offset Voltage Rs=50 n, VCM = 0 V 30 S Long Term Input Offset Voltage Stability Rs= 50 n, VCM =0 V 0.2 Input Offset Voltage Adjustment Range Ro= 20 kn 110 Input Offset Current VCM =0 V VCM =0 V Via adj lis Input Bias Current ZI Input Impedance Pc Power Consumption 1.0 3.0 60 4.0 6.0 Power Supply Rejection Ratio Vce=±3.0 V to ±18V, Rs=50n Ays Large Signal Voltage Gain nA nA Mn Vce = ±3.0 V, Vo=O V Input Voltage Range mW 110 126 ± 13.0 ±14.0 V 100 110 dB RL;;'2.0 kn, Vo=±10 V 200 500 V/mV RL ;;'500 n, Vo=±0.5 V Vce=±3.0 V 150 500 RL = 10 kn ± 12.5 ± 13.0 RL =2.0 kn ± 12.0 ± 12.8 RL=1.0 kn ± 10.5 ± 12.0 VCM=±13 V, Rs= 50 n BW Bandwidth Ay= 1.0 SR Slew Rate en in 2.8 120 PSRR /J.V mV 0.4 75 VIR Unit /J.V/mo Vo=O V Common Mode Rejection Output Voltage Swing 75 ±4.0 20 CMR VoP Max dB V 0.6 MHz RL = 2.0 kn, Ay = 1.0 0.17 V//J.s Input Noise Voltage 0.1 Hz to 1.0 kHz 0.35 0.6 /J.Vp-p Input Noise Voltage Density fo = 10 Hz 10.3 18.0 nV/YHZ fo = 100 Hz 10.0 13.0 fo = 1000 Hz 9.6 11.0 Input Noise Current 0.1 Hz to 1.0 kHz Input Noise Current Density fo = 10 Hz 0.32 0.80 fo = 100 Hz 0.14 0.23 fo = 1000 Hz 0.12 0.17 7-69 14 pA p-p pA/YHZ JlA714 J.IA714 (Cont.) Electrical Characteristics TA = 25°C, Vee = ± 15 V Symbol Characteristic Condition Unit The foilowing specifications apply for Vec = ± 15 V, -55°C";; TA ,,;; + 125°C VIO Input Offset Voltage AVlo/AT Input Offset Voltage Temperature Sensitivity1 Rs= 50 n, VCM =0 V 60 200 Jl.V Without External Trim Rs=50 n, VCM=O V 0.3 1.3 Jl.V/oC With External Trim Ro= 20 kn, Rs=50 n 0.3 1.3 110 Input Offset Current VCM=O V 1.2 5.6 nA Allo/AT Input Offset Current Temperature Sensitivity1 VCM=O V 8.0 50 pAloC liB Input Bias Current VCM =0 V 2.0 6.0 nA AIIB/AT Input Bias Current Temperature Sensitivity1 VCM=O V 13 50 pArC CMR Common Mode Rejection VCM=±13 V, Rs=50 n VIR Input Voltage Range PSRR Power Supply Rejection Ratio Vcc = ±3.0 V to ±18 V, Rs=50 n Avs Large Signal Voltage Gain VOP Output Voltage Swing J.IA714E Electrical Characteristics TA Symbol = 25°C, Vee = ± 15 106 123 dB ± 13.0 ± 13.5 V 94 106 dB RL#2.0 kn, Vo=±10V 150 400 VlmV RL = 2.0 kn ±12.0 ±12.6 Min Typ V V Characteristic Condition Max Input Offset Voltage Rs=50 n, VCM =0 V 30 S Long Term Input Offset Voltage Stability Rs=50 n, VCM =0 V 0.3 Input Offset Voltage Adjustment Range Ro=20 kn 110 Input Offset Current VCM =0 V 0.5 3.8 nA liB Input Bias Current VCM =0 V 1.2 4.0 nA ZI Input Impedance Pc Power Consumption VIO adj CMR Common Mode Rejection 75 Unit VIO Jl.V/mo ±4.0 15 mV 50 Mn Vo=O V 75 120 Vcc=±3.0 V, Vo=O V 4.0 6.0 VCM = ±13 V, Rs= 50 n 7-70 106 123 Jl.V mW dB J.lA714 f..LA714E (Cont.) Electrical Characteristics TA = 25°C, Vee = ± 15 V Symbol Characteristic Condition Min Typ ± 13.0 ± 14.0 V 94 107 dB RL;;;'2.0 kn, Vo=±10 V 200 500 V/mV RL ;;;'500 51, Vo=±0.5 V Vcc=±3.0 V 150 500 RL=10 kn ± 12.5 ± 13.0 RL = 2.0 kn ± 12.0 ± 12.8 RL =1.0kn ± 10.5 ± 12.0 VIR Input Voltage Range PSRR Power Supply Rejection Ratio Vcc = ±3.0 V to ± 18 V, Rs = 50 51 Avs Large Signal Voltage Gain VOP Output Voltage Swing Max Unit V BW Bandwidth Av = 1.0 0.6 MHz SR Slew Rate RL =2.0 kn, Av = 1.0 0.17 V/p.s en Input Noise Voltage 1 0.1 Hz to 1.0 kHz 0.35 0.6 p.V p-p Input Noise Voltage Density 1 fo=10 Hz 10.3 18.0 nV/YHz fo=100 Hz 10.0 13.0 fo = 1000 Hz 9.6 11.0 in Input Noise Current 1 0.1 Hz to 1.0 kHz Input Noise Current Density 1 14 30 pA p-p fo=10 Hz 0.32 0.80 pA/YHz fo=100 Hz 0.14 0.23 fo = 1000 Hz 0.12 0.17 The following specifications apply for Vcc = ± 15 V, O°C VIO Input Offset Voltage t:Nloll:.T Input Offset Voltage Temperature Sensitivity 1 ~ TA ~ 70·C 45 Rs = 50 51, VCM = 0 V 130 Without External Trim Rs=50 51, VCM = 0 V 0.3 1.3 With External Trim Ro=20 kn, Rs= 5051 0.3 1.3 p.V p'vrc 110 Input Offset Current VCM =0 V 0.9 5.3 nA 1:.1 101 I:.T Input Offset Current Temperature Sensitivity1 VCM =0 V 8.0 35 pA/oe 118 Input Bias Current VCM =0 V 1.5 5.5 nA 1:.1 18 II:.T Input Bias Current Temperature Sensitivity1 VCM =0 V 13 35 pA/·e CMR Common Mode Rejection VCM=±13 V, Rs = 5051 7-71 103 123 dB MA714 MA714E (Cont.) Electrical Characteristics TA = 25°C, Vee = ± 15 V Symbol Characteristic Condition VIR Input Voltage Range PSRR Power Supply Rejection Ratio Vcc = ±3.0 V to ± 18 V, Rs = 50 n Avs Large Signal Voltage Gain RL;;;'2.0 kn, Vo=±10V VOP Output Voltage Swing RL = 2.0 kn Min Typ ± 13.0 ± 13.5 V 90 104 dB 180 450 V/mV ± 12.0 ± 12.6 Min Typ Max Unit V MA714C Electrical Characteristics TA = 25°C, Vee = 15 V Symbol Characteristic Condition Max Unit VIO Input Offset Voltage Rs = 50 n, VCM =0 V 60 150 /lV S Long Term Input Offset Voltage Stability Rs = 50 n, VCM = 0 V 0.4 2.0 /lV/mo VIO adi Input Offset Voltage Adjustment Range Ro= 20 kn 110 Input Offset Current VCM = 0 V 118 Input Bias Current VCM = 0 V ZI Input Impedance Pc Power Consumption 8.0 6.0 1.8 7.0 33 150 Vcc= ±3.0 V, Vo= 0 V 4.0 8.0 VIR Input Voltage Range PSRR Power Supply Rejection Ratio Vcc=±3.0 V to ±18 V, Rs=50 n Avs Large Signal Voltage Gain nA nA Mn 80 Common Mode Rejection Output Voltage Swing mV 0.8 Vo=O V CMR VOP ±4.0 mW 100 120 ± 13.0 ± 14.0 V 90 104 dB RL;;;'2.0 kn, Vo=±10 V 120 400 V/mV RL;;;'500 n, Vo=±0.5 V Vcc=±3.0 V 100 400 RL = 10 kn ± 12.0 ± 13.0 RL = 2.0 kn ± 11.5 ± 12.8 VCM=±13 V, Rs=50n RL = 1.0 kn BW Bandwidth Av = 1.0 SR Slew Rate RL = 2.0 kn, Av = 1.0 7-72 dB V ± 12.0 0.6 MHz 0.17 V//ls J.LA714 I-lA714C (Cont.) Electrical Characteristics TA Symbol en in = 25°C, Vee = 15 V Characteristic Condition Min Typ Max Unit Input Noise Voltage 1 0.1 Hz to 1.0 kHz 0.38 0.65 pVp-p Input Noise Voltage Density1 fo=10 Hz 10.5 20.0 nV/YHZ fo=100 Hz 10.2 13.5 fo = 1000 Hz 9.8 11.5 Input Noise Current1 0.1 Hz to 1.0 kHz 0.15 35 ,Np-p Input Noise Current Density1 fo=10 Hz 0.35 0.90 pAlYHZ fo=100 Hz 0.15 0.27 fo = 1000 Hz 0.13 0.18 Rs= 50 n, VCM =0 V 85 250 fJ.V Without External Trim Rs=50 n, VCM =0 V 0.5 1.8 fJ.V/oC With External Trim Ro= 20 kn, Rs=50 n 0.4 1.6 The following specifications apply for Vcc = ± 15 V, O°C';;; TA < 70°C VIO Input Offset Voltage I).Vloll).T Input Offset Voltage Temperature Sensitivity1 110 Input Offset Current VCM =0 V 1.6 8.0 nA 1).1 101 I).T Input Offset Current Temperature Sensitivity 1 VCM =0 V 12 50 pArC liS Input Bias Current VCM = 0 V 2.2 9.0 nA I).lls//).T Input Bias Current Temperature Sensitivity1 VCM=O V 18 50 pAloC CMR Common Mode Rejection VCM = ±13 V, Rs=50 n VIR Input Voltage Range PSRR Power Supply Rejection Ratio Vcc = ± 3.0 V to ±18 V, Rs=50 n Avs Large Signal Voltage Gain RL ;;. 2.0 kn, Vo=±10V VOP Output Voltage Swing RL = 2.0 kn 7-73 97 120 ± 13.0 ± 13.5 V 86 100 dB 100 400 V/mV ± 11.0 ± 12.6 dB V JjA714 1lA714L Electrical Characteristics TA Symbol = 25°C. Vee = ± 15 V Characteristic Condition Min Typ Max Unit VIO Input Offset Voltage Rs=50 il. VCM =0 V 100 250 MV S Long Term Input Offset Voltage Stability Rs= 50 il. VCM =0 V 0.5 3.0 pV/mo ±4.0 mV Input Offset Voltage Adjustment Range Ro=20 kil 110 Input Offset Current VCM =0 V 5.0 20 nA lis Input Bias Current VCM = 0 V 6.0 30 nA ZI Input Impedance Pc Power Consumption mW VIO adj CMR Common Mode Rejection 8.0 33 100 180 VCC = ±3.0 V. Vo=O V 5.0 12 VCM=±13 V. Rs=50 il 100 120 ± 13.0 ± 14.0 V 90 104 dB V/mV VIR Input Voltage Range PSRR Power Supply Rejection Ratio Vcc = ± 3.0 V to ±18V.Rs=50il Avs Large Signal Voltage Gain RL>2.0 kil. Vo = ±10 V 100 300 RL>500 il. Vo=±0.5 V Vcc= ±3.0 V 50 150 RL = 10 kil ± 12.0 ± 13.0 RL = 2.0 kil ± 11.0 ± 12.8 VOP Output Voltage Swing RL = 1.0 kil dB V ± 12.0 0.6 MHz 0.17 V/MS 0.5 MV p-p fo = 10 Hz 10.5 nV/v'Hz fo = 100 Hz 10.2 fo = 1000 Hz 9.8 BW Bandwidth Av = 1.0 SR Slew Rate RL = 2.0 kil. Av = 1.0 en Input Noise Voltage 1 0.1 Hz to 1.0 kHz Input Noise Voltage Density1 in Mil Vo=O V Input Noise Current 1 0.1 Hz to 1.0 kHz 0.15 pA p-p Input Noise Current Density 1 fo = 10 Hz 0.35 pAlv'Hz fo = 100 Hz 0.15 fo = 1000 Hz 0.13 7-74 J.lA714 ~A714L (Cont.) Electrical Characteristics O°C ~ T A ~ + 70°C, Vee = ± 15 V Symbol Characteristic VIO Input Offset Voltage AVIO/AT Input Offset Voltage Temperature Sensitivity 1 Condition Min Typ Rs=n, VCM=O V Without External Trim Rs=50 n, VCM =0 V 1.0 With External Trim Ro= 20 kn, Rs= 50 n 1.3 Max Unit 400 /lV 3.0 /lV/oC 110 Input Offset Current VCM =0 V 8.0 40 nA AIIO/AT Input Offset Current Temperature Sensitivity1 VCM =0 V 20 100 pArC liB Input Bias Current VCM = 0 V 15 60 nA AIIB/AT Input Bias Current Temperature Sensitivity1 VCM=O V 35 150 pArC CMR Common Mode Rejection VCM=±13V, Rs=50 n 94 120 dB VIR Input Voltage Range ± 13.0 ±13.5 V PSRR Power Supply Rejection Ratio VCC = ±3.0 V to ± 18 V, Rs = 50 n 83 100 dB Avs Large Signal Voltage Gain RL~2.0 kn, Vo=±10 V 80 400 V/mV VOP Output Voltage Swing RL =2.0 kn ± 10.0 ±12.6 Note 1. Parameter is not 100% tested; 90% of the units meet this specification. 7-75 V t.£A714 Typical Performance Curves Untrimmed Offset Voltage vs Temperature > 90 '" I > w 70 > 60 / 0 ..Iii it 50 II. 40 0 w => :;l 30 I!!=> 20 > ... 0 .. i NULLING POT: 20 kG I I ""!:; k' f.../ "'- "'-... 0 16 VIO TRIMMED TO < 5.0 /LV I W V~A714C Ycc- ±15V R = 1000 ""!:; 30 '" / 90 JLA714~ ~A714 ..... .. 0 l.P V 0 w :3 10 w !:i .....5 10 " 100 50 " JotA,714 / - ,uA714C ~ w 12 '~714E ~ 20 ;! -50 Offset Voltage Stability vs Time Trimmed Offset Voltage vs Temperature II cy / ... "... ~ I! g '1 '(I' -8 1 100 2 3 4 5 6 7 8 9 10 11 12 TIME - MONTHS Warm-Up Drift 25 800 ~ I w 25 ~ 20 ~ I z C - 600 ~ ~ ~~t:&'TINE -16 50 Offset Voltage Change Due to Thermal Shock p.A714 g . S z ...-h ~t~&"l.~NE -4 -12 1000 "w ~~t~&'TINE P't:': ~~t~&"l.~NE- :c :t t:: TEMPERATURE - DC Voltage Gain vs Temperature O.2j1.V/mo I/TRENDLINE I W ~ 1\ yID @, /(J) ~~\ I;, ~ 50 TEMPERATURE - DC 'S :- ~~:rimL~NE . > ...-r-- 400 i. I -50 " 50 100 20 ~ 15 j1.A714C"" 1 "71 4E, If !I; 15 ...=> .. 10 10 i: i: Y :r 0 -20 0 ":c~ DEVICE IMMERSED IN700COILBATH 20 40 60 60 100 " TIME - SECONDS TEMPERATURE - "C ? u:. ;....- w ":I! 0 w Iii w z 200 TA'" 26°e "~ !:i i: i: Vee :'.,,5V ~ "'- ..-.A714 TIME AFTER POWER SUPPLY TURN-ON - MINUTES PC05620F Maximum Error vs Source Resistance Maximum Error vs Source Resistance > 1.0 1.0 'S = = .. I 0.8 (j) i: g Q w a: 0.6 a: w w a: a: 0.4 0 a: a: w => 0.2 .. '~" "'" ~ 1 V/l """~ 1.0 I. Vee: !,5V -55°C ... TA ~ o.8 if o 0.1 " ~A714E • ~A714 • ,uA714C =e E Vee :15V TA 25°C ...=> Maximum Error vs Source Resistance 100 MATCHED OR UNMATCHED SOURCE RESISTANCE - k!l ::s; 125°C i: g fiJ 0.6 II: a: $a: 0.4 l!ia: a: w p.A714 :E 0.2 i ; o 0.1 1.0 i -V I. / / Vee g Q / l/ V/ ---- 0.6 o 0.4 ~ 0.2 ffi 100 i J.lA714C ,u.A714E o 0.1 I I 0.8 w a: a: $ = :t15V O"C.;;; TA';;; 7€rC 1.0 a: a: MATCHED OR UNMATCHED SOURCE RESISTANCE - kfl 7·76 1.2 I 1.0 - 10 100 MATCHED OR UNMATCHED SOURCE RESISTANCE - kO J.lA714 Typical Performance Curves (Cont.) Input Bias Current vs Temperature Input Bias Current vs Differential Input Voltage ~ = :t:115V Vee 30 illII: 20 I a: :> <.> V01FF ,,;;: 1.0 V lis""' 3.0 nA (jj.A714) "" 7.0 nA (;.LA714C) r- 10 I '" III ~ I- :> ~ -10 V / -20 ~ V -10 ~ 50 20 -20 TEMPERATURE _ "C , :::E ~ > r-10 W is z I Rs = 0 I- :> : !!! 10 a '"~ i.O 11 0 --, 100 0.11 0.1 ,. oe 'i ! 1.0 "w "~ TA 10 100 FREQUENCY - Hz i\~ r'\~ 10 800 > 400 o. , g illo. I ", -r-- /' 200 1K r- .......... I ~ ,u.A714 r'\. III , 100K Open Loop Frequency Response 120 600 10K t.OK 100 FREQUENCY - Hz 80 " w 51 ......, !:i 0 ~~;5:~5V r'\. 40 > o. 0 g "- _ '\. ~ zw o. \ 0 0 ~ 1.0 i , 90 60 1.0 100 =25"C 0 ~ 0 50 0.1 10 ~A~'4 - z :;; ~ 0 Q 1'\ 70 , III i 0 0 o. III 'i: !g 100 ~ U~I= ~,~J TA = 25 C "ilrn 110 ,, 1000 "r--r\ 90 I: *-r BANOWIDTH - kHz #L A714C 100 50 80 ~ ~AU~lJ ,,/ iJ.A714E TEMPERATURE - "C f-++r.,--+-ri+t7',+--+-H+-I f= 1000 ~~ -so 30 Voltage Gain vs Supply Voltage JHJ4 ~ CMR vs Frequency '/ z PSRR vs Frequency a: a: 20 120 w FREQUENCY - Hz U) :> ./ II II 100 120 '\ o. !!! 0.5 !I +-r:t:::l TArTl1 1.0 1.0 ", 1.0 I- ~A714 I! J,tA714 Vee - +15V o. III 10 ,/ 1\ ~A714 t;; ~ 0 Vee = :t:15V TA = 25°C 0 U) " !!! Ia: w > !!! <.> 130 100 ." -10 Input Wideband Noise vs Bandwidth (0.1 Hz to Frequency Indicated) RS! llRS 2 L2~ j~1:: THERMAL NOISE OF SO~fF ~ISTORS INCLUOjD ~ EXCLUDE9 ~'i; w ~ !!! a: 1.5 :> DIFFERENTIAL INPUT VOLTAGE Input NOise Voltage vs Frequency 1000 vJ = ~lsv 2.0 30 --30 -30 100 !Zw II: III l- Z 50 § !! 10 -a, U) <.> / / ~ -20 2.5 , I- z w a: L'/ o. !!! "A71~ ~~ r- - / .. E / !! ,~ 30 = ±15V Vee TA = 25"C I- "'-., Input Offset Current vs Temperature I 10K o o -40 ::,:5 T10 :!;15 SUPPLY VOLTAGE - V 7-77 :!;20 0.1 1.0 10 100 1.0K 10K 100K 1.0M 10M FREQUENCY - Hz J.lA714 Typical Performance Curves (Cont.) Frequency Response For Various Closed Loop Gains '", 100 ~ 80 ;;; I Z :c 80 ~ 40 ""' !i! & 9 fil 28 Vee TA = .z15V =:we p.A714 > ...'"'" e ,. "..'"'" I t- "~"' ~~ gu 100 1.0K 10K lOOK 1.0M Vee = ±15V TA = 25°C > I I 1\ " o 10M V I 30 ... 2. Iil 5 li:o ill 0 o 20 40 TOTAL SUPPLY YOLTAGE, V+ to y- - v II II Vee = ::t15V TA=25"C ,\ ~~ ......... ~ 60 20 I-- • ® r-- ""'1" i( i i i cDv, (LEAD3)::>: -10 mY, Yo = +15 V LE D3) +10 V' Vi = 5V ®V -i TIME FROM OUTPUT BEING SHORTED - MINUTES 7-78 0.1 1.0 LOAD RESISTOR TO GROUND - kO p.A714 u liE u / 10 - 1 L 1.0 1000 35 =:we >= Ie 100 Short Circuit Current vs Time ~ .. I8 ..;: NEGATIVE SWING o 10 1 FREQUENCY - kHz r-p.A714 100 VI= :t10mV TA = 25"C 0 1000 E III pbs,LJ JJ.Jl ~~:t15~ 10 I 12 .."...... Power Consumption vs Supply Voltage • ,. - I FREQUENCY - Hz rTA 20 :JI ~714 !i! "\ 10 24 - 20 -\. 20 Output Voltage vs Load Resistance Maximum Undistorted Output vs Frequency 10 IlA714 Test Circuits Offset Voltage Test Circuit Optional Offset Nulling Circuit 200k!! Ro 20kll >-Ol-..--V+ Vo VIO= OUT 4~ v- Low Frequency Noise Test Circuit +15V 2.5M!! Vo Input Referred Noise ~ 25,000 7-79 MA715 High Speed Operational Amplifier FAIRCHILD A Schlumberger Company Linear Division Operational Amplifiers Description Connection Diagram 10-Lead Metal Package (Top View) The ~A715 is a high speed, high gain, monolithic operational amplifier constructed using the Fairchild Planar Epitrudal process. It is intended for use in a wide range of applications where fast signal acquisition or wide bandwidth is required. The ~A715 features fast settling time, high slew rate, low offsets, and high output swing for large signal applications. In addition, the device displays excellent temperature stability and will operate over a wide range of supply voltages. The ~A715 is ideally suited for use in AID and 01 A converters, active filters, deflection amplifiers, video amplifiers, phase-locked loops, multiplexed analog gates, precision comparators, sample-and-holds, and general feedback applications requiring DC wide bandwidth operation. COMP1A vlead 5 connected to case. • High Slew Rate -100 V/~ (Inverting, Av = 1) Typically • Fast Settling Time - 800 ns Typically • Wide Bandwidth - 65 MHz Typically • Wide Operating Supply Range • Wide Input Voltage Ranges Order Information Device Code 5X 5X ~A715HC -65°C to +175°C -55°C to +125°C O°C to +70°C 300°C 1.07 1.36 ± 18 ± 15 ± 15 Package Description Metal Metal Connection Diagram 14-Lead DIP (Top View) Absolute Maximum Ratings Storage Temperature Range Operating Temperature Range Extended (~A715M) Commercial (jJA715C) Lead Temperature Metal Can and Ceramic DIP (soldering, 60 s) Internal Power Dissipation 1, 2 10L-Metal Can 14L-Ceramic DIP Supply Voltage Differential Input Voltage Input Voltage3 Package Code ~A715HM COMP1A COMP 2B COMP lB y+ CASCOOE COMP 2A W -IN OUT +IN y- NC NC NC NC W V V V Notes 1. TJ Max = 175°C. 2. Ratings apply to ambient temperature at 25°C. Above this temperature, derate the 10l-Metal Can at 7.1 mWrC, and the 14l-Ceramic OIP at 9.1 mWrC. 3. For supply voltages less than ± 15 V, the absolute maximum input voltage is equal to the supply voltage. Order Information Device Code jJA715DM jJA715DC 7-80 Package Code 6A 6A Package Description Ceramic DIP Ceramic DIP J.LA715 Equivalent Circuit r---------~-------.----------._----------~----~~----~----~~----~--v+ R24 10 kO lkll R7 COMP1A 400n R20 50 II COMP1B 15pF OUT R2 R1 R27 400n -IN son +IN 4000 R22 3OO11 R23 3 kit R25 750 -+____+-____________________-+____-+____-+____ L-__ 7-81 ~--v- j.lA715 and !lA715C Electrical Characteristics TA = 25°C, Vee = ± 15 V, unless otherwise specified. MA715 Symbol Characteristic VIO Input Offset Voltage 110 Input Offset Current Condition Min Rs';; 10 kil Typ MA715C Max Unit 2.0 Max 5.0 Min Typ 2.0 7.5 mV 70 250 70 250 nA 400 750 400 1500 liS Input Bias Current ZI Input Impedance 1.0 1.0 Mil Ro Output Resistance 75 75 il nA Icc Supply Current 5.5 7.0 5.5 10 mA Pc Power Consumption 165 210 165 300 mW VIR Input Voltage Range Avs Large Signal Voltage Gain RL ;;. 2.0 kil, Vo=±10V V Settling Time Vo TR Transient Response SR IRise time IOvershoot Slew Rate = ± 5.0 ±10 ±12 ±10 ±12 15 30 10 30 V V/mV V, Av = 1.0 800 VI = 400 mV, Av = 1.0 30 60 30 75 25 40 25 50 Av= 100 800 70 70 38 Av= 10 Av = 1.0 (non-inverting) 15 Av = 1.0 (inverting) ns ns % V/p.s 38 18 10 100 18 100 The following specifications apply over the range of -55°C';; TA';; + 125°C for the p.A715, and O°C';; TA .;; + 70°C for the p.A715C. VIO Input Offset Voltage Rs';; 10 kil 7.5 10 mV 110 Input Offset Current TA=TAMax 250 250 nA TA=TAMin 800 750 TA=TAMax 750 1500 TA=TAMin 4.0 7.5 lis Input Bias Current CMR Common Mode Rejection Rs';; 10 kil 74 PSRR Power Supply Rejection Ratio Rs';; 10 kil Avs Large Signal Voltage Gain RL ;;. 2.0 kil, Vo=±10V 10 VOP Output Voltage Swing RL = 2.0 kil ±10 45 Note 1. TA - 2S·C only. 7-82 74 1 92 92 1 45 1 300 8 ±13 ±10 nA db 400 1 p.VIV V/mV ±13 V J.lA715 Typical Performance Curves for IlA715 and IlA715C Voltage Gain vs Temperature (MA7l5) Supply Voltage Rejection Ratio vs Temperature (MA7l5) 50 'E :- v~c ="'5~ RL =2kO ' - 40 I z C w 30 " 1"~ ..g .. g - ti 140 0 120 -r- t-... ~ '"w ;;J 20 "~ g 10 0 . I\. ~ 80 40 :> 20 Ii '" '" "- 60 I- 15 v~c = .,5V_ - RL = 10kO -. " :--... w "- 10 il !!l ....... r-. '" ,. 40 -40 20 100 ~ g: 25 v~c =1 "'5~ Rs :S10kO'- ,,. 1 0 160 'z" 0 zw 200 ~ Slew Rate vs Temperature (I.lA7l5) -40 120 TEMPERATURE _ cC ,. 40 -40 120 ,. 40 TEMPERATURE _ TeMPERATURE _ °C c 120 C PC04610F Common Mode Rejection Ratio vs Temperature (pA7l5) 11 0 Voltage Gain vs Temperature (pA7l5C) v:x, =''''5~ Rs~10kO'- 'Il I Q 100 Ii RL=2kO 90 ~ 8 g 70 0 " w r--.. / ..g .. g - 30 40 40 80 TEMPERATURE _ cC 20 30 40 50 110 = Vee ~15V RL = 10kH vdc= "j5V 18 I Rs S10kO 25 20 w ul - 2100 ~ r-- 15 10 - 'z" ~ ;;J l!:'" 90 - r- ,. ~ z o ~ 70 8 o 60 0102030405060 TEMPERATURE _ cc 70 ............ .......... r-.., ~ 40 ~ 20 010203040 TEMPERATURE _ 7-83 50 cc o o 10 20 30 -40 TEMPERATURE _ Ii '~" 70 60 Common Mode Rejection Ratio vs Temperature (pA7l5C) 35 30 10 TEMPERATURE _ °C Slew Rate vs Temperature (pA7l5C) I'.. 60 ;;J ~ 00 120 ~ g 10 0 60 ti '"z '" 20 0 zw ~~=1:k~V- I o ,. "~ j 8 Ii 100 ~ - 40 ~ r-. I-"'" 8'" .. 'E :- VC~ = .'~V I '" ~ 50 Supply Voltage Rejection Ratio vs Temperature (MA715C) 60 70 50 "c 60 70 I1A715 Typical Performance Curves for j.iA715 and j.iA715C Frequency Response For Open Loop Gains (Note 1) 120 Frequency Response for Closed Loop Gains 80 = ~ 100 :c Z 80 ~ 60 "w g .. S .. ill :;:::: " 40 "I 'w" ~- "";"-r-, '" ~ .." § 40 ['\1'\ 20 :c IIII r-.. 10K I !'" ... ..." .. "0 " ~ 0 to; ~" z w 1.0M lOOK z 0 ;: 60 Iia: r\ It II GAIN 1 II 20 I 15 "~ 0 ..... 40 GAIN 100 \ w -' 1\ ~ -240 0.01 to 0.1 \ -400 0.001 10 0.01 " 1.0 20 10 50 MHz 6.0 VCC"" ±15 V TA "" 2S"C 5.0 > I 4.0 w I '~" 1\ \ I II 1.0 Large Signal Pulse Response for Gain 10 \ I 0.1 FREQUENCY - Vee = ±15 V TA = 25°C 'I\. 3.0 2.0 0 z 0 :>! :>! 0 m -80 -320 I- :> 0 :>! = = Vee :t15V TA 25"C NOCOMP '\ -160 GAIN 10 0 > 100M 10 > 4.0 I w ;oJ 10M Hz S ~ I I 5.0 " 1.0M r... 6.0 VC~I~ :t15V TA 25"C ""; lCOMP lOOK 10K Open Loop Phase vs Frequency Unity Gain Large Signal Pulse Response M a: w 1.0K FREQUENCY - RL = 10kn1: =25"C kHz = 80 o SOM FREQUENCV - MHz Common Mode Rejection Ratio vs Frequency 0 10M Hz Vcc- .:t15V 25 0.001 100 20 0 o ~ I \ 40 0 30 FREQUENCY - . S . .\ 0 Output Swing vs Frequency for Closed Loop Gains > " 80 > FREQUENCY - Hz Supply Voltage Rejection Ratio vs Frequency "w < '" !:; IIII IIII -20 1.0K -~.o':-:'KWJ."'--::1O~K..J.J.'-::100::-:K,.u-'-:'1.~OM:,:-,-.u...='0::-M';->-~50·M 80 I GAI~\ w Vdc; ±15V TA=25"C NOCOMP Z IIII 9 " 1'\['\ FREQUENCY - G~,'~\oci ['\ G~'~ \0 > Q w .." IIII 0 r\ 20 0 =250C TA GAIN 1000 60 ~ '14 ~I 'k~o~ 0 Z OJ 100 tc~~ l,dv' 1111 Vee :t15V TA'" 25°C Voltage Gain vs Frequency I I 3.0 g ~ o 2.0 \ to \ 0 0 -1.0 0.01 0.1 1.0 FREQUENCY - 10 kHz 100 500 o 400 800 TIME - 1200 AS Note 1. See "Non-Inverting Compensation Components Value Table" for Closed Loop Gain values. 7-84 1500 -t0 200 400 600 800 1000 1200 1400 1600 TIME-ns MA715 Typical Performance Curves for j.LA715 and j.LA715C (Cont.) Large Signal Pulse Response for Gain 100 6.0 24 100 Vee = :t15V RL = 10kG TA = 25°C Vee'" :r15 V TA:=: 25"C 5.0 > I I 4.0 80 ~ w "~ 3.0 > ::> 2.0 I .. 0 . / 80 ~ w w ~ Ii: 0 ... ...::> Slew Rate vs Supply Voltage Slew Rate vs Closed Loop Voltage Gain '" ~ 1.0 -1.0 \ o 200 400 600 800 /' 40 o 2.0 TA Il o J. it o ~ RISoj TIME 50 150 -4.0 It.. y -6.0 200 250 300 350 -400 -400 400 TIME-ns Voltage Follower (Note 1) 22 v ~~N==2::mv - \ \\ 1 'O% 100 18 VC~= "'~V ~ -2.0 ~ 14 Small Signal Pulse Response Inverting Unity Gain ~ o 10 SUPPLY VOLTAGE - = 250C I ~ 200 100 6 f-~=I"'5IV > IV I' ,/ o o 100 Inverting Unity Gain Large Signal Pulse Response v~ = "'~V 90%"~ 12 ~ 10 1 VIN = 400niV TA = 25c C II \ V / CLOSED LOOP VOLTAGE GAIN Voltage Follower Transient Response 500 16 ~ ~ / 20 1000 1200 1400 1600 700 I-- T,I=..l·c RL = 10kG I-- NOCOMP ",.. TIME- ns 600 20 800 1200 I\IJ IV 1600 180 Voltage Offset Null Circuit (Note 1) 480 320 TIME-ns TIME-ns High Slew Rate Circuit (Note 1) y+ 5kH V+ FD100 50kH OUT + 5 7 ~lr.onF -15 V 2.5kfl y- Note 1. Lead numbers apply to metal package. 7-85 JiA715 Non-Inverting Compensation Components Values Frequency Compensation Circuit C1 Closed Loop Gain C1 1000 C2 C3 10 pF 100 50 pF 250 pF 10 (Note) 100 pF 500 pF 1000 pF 1 500 pF 2000 pF 1000 pF Note For gain 10, compensation may be simplified by removing C2, C3 and adding a 200 pF capacitor (C4) between lead 7 and 10. Note lead numbers apply to metal package. Suggested Values of Compensation Capacitors vs Closed Loop Voltage Gain Vee %1000 C3 = ±15V C2 \ I w (J Z i$ 13 if ~ 100 ". c>. .... ....c, ..... I- c. CLOSED LOOP VOlTAGE GAIN Layout Instructions Large source resistances may also give rise to the same problem and this may be decreased by the addition of a capaCitance across the feedback resistance. A value of around 50 pF for unity gain configuration and around 3,0 pF for gain 10 should be adequate. Latch Up - This may occur when the amplifier is used as a voltage follower. The inclusion of a diode between leads 6 and 2 with the cathode toward lead 2 is the recommended preventive measure. Layout - The layout should be such that stray capacitance is minimal. Supplies - The supplies should be adequately bypassed. Use of 0.1 fJ.F high quality ceramic capacitors is recommended. Ringing - Excessive ringing (long acquisition time) may occur with large capacitive loads. This may be reduced by isolating the capacitive load with a resistance of 100 n. 7-86 JlA715 Typical Applications Wide Bank Video Amplifier Drive Capability With 75 .n Coax Cable ,. +20 V VIDEO OUTPUT TO 75 !l COAX 7Sfl ""'\ fl -10 I o dB = z ~ " \ 255 mVpfI:- pice 5~ pk- pitt -20 7500 10k!! \ -30 75 !l r--Sikii-' NOISE OUT'" 2 mV RMS '. pk _ ~k SIG/R~S NOISE, " 42 dB ..... .... -40 0.' FREQUENCY - 100 10 1.0 MHz I I"" 1 L _____ --l EQUIVALENT CIRCUIT FOR IMAGE ORTHICON 51 kH -20V High Speed Integrator SOpF 20 10 kO 10 kO 15 I 10 ./NPUT / > I ~o~ \ 1\ -s -10 I \ / ~ \ / 5.0 k!l .L IN OUT °r !, p s -20 • 1.0 2.0 s.onF +15 V \ 2.5k!l 3.0 4.0 soon 5.0 -15 V TIME-J.(s Note All lead numbers shown refer to metal package. 7-87 IlA725 Instrumentation Operational Amplifier F=AIRCHILD A Schlumberger Company Linear Division Operational Amplifiers Connection Diagram 8-Lead Metal Package (Top View) Description The p.A725 is a monolithic instrumentation operational amplifier constructed using the Fairchild Planar Epitaxial process. It is intended for precise, low level signal amplification applications where low noise, low drift, and accurate closed loop gain are required. The offset null capability, low power consumption, very high voltage gain as well as wide power supply voltage range provide superior performance for a wide range of instrumentation applications. The p.A725 is lead compatible with the popular p.A741 operational amplifier. -OFFSET NULL • Low Input Noise Current- 0.15 pAlYHz At 1.0 kHz Typically • High Open Loop Gain - 3,000,000 Typically • Low Input Offset Current - 2.0 nA typically • Low Input Voltage Drift - 0.6 p.V typically • High Common Mode Rejectlon-120 dB • High Input Voltage Range-±14 V Typically • Wide Power SUpply Range - ± 3.0, V To ± 22 V • Offset Null Capability v- rc Order Information Device Code p.A725HM p.A725HC p.A725AHM p.A725EHC Absolute Maximum Ratings Storage Temperature Range Metal Can Molded DIP Operating Temperature Range Extended (p.A725AM, p.A725M) Commercial (p.A725EC, p.A725C) Lead Temperature Metal Can (soldering, 60 s) Molded DIP (soldering, 10 s) Internal Power Dissipation 1, 2 8L-Metal Can 8L-Molded DIP Supply Voltage Differential Input Voltage Input Voltage3 Voltage Between Offset Null and V+ , COO",." Lead 4 connected 10 case. -65·C to + 175·C -65·C to + 150·C Package Code 5W 5W 5W 5W Package Description Metal Metal Metal Metal Connection Diagram 8-Lead DIP (Top View) -55·C to + 125·C O·C to +70·C 300·C 265·C +OFFSET 1 NULL 1.00 W 0.93 W ±22 V ±5.0 V ±22 V ±0.5 V -OFFSET NULL -IN V+ +IN OUT v- FREQ caMP Order Information Notes 1. TJ Max -150°C for the Molded DIP, and 175°C for the Metal Can. 2. Ratings apply 10 ambient temperature at 25°C. Above this temperature. derate the 8L-Metal Can at 6.7 mWrC. and the BL-Molded DIP at 7.5 mWrC. 3. For supply voltsges less than ± 22 V, the absolute maximum input voltage is equal 10 the supply voltsge. Device Code p.A725TC 7-88 Package Code 9T Package Description Molded DIP Equivalent Circuit tI R2A + OFFSET I 10kn + -'W'v- NULL " R2B 10 kll t R3 RlO 29 k!l 300 !l t V+ -OFFSET NULL 100 k!! R1A EXTERNAL 42 kll R16 25 n +IN -£ 01 OUT -.J cD co -IN --+--------' R19 4.5 k!l 016 > R6 RS 5.1 k!l <> 2.4 kll R18 R12 R13 5.1 kn 1 kn 150 II R14 300 !~ ~--------------~----~----~--~-------+---+---4----------~--~----4-------~--v- fJ.A725 JJ.A725A/E and J.lA725 Electrical Characteristics TA = 25°C, Vee = ± 15 V, unless otherwise specified. pA.725A1E Symbol Characteristic Vlo Input Offset Voltage (Without external trim) 110 Input Offset Current lis Input Bias Current ZI Input Impedance Pc Power Consumption Condition Typ Min Rs<10 kn pA.725A1pA.725 80 Max Unit 0.5 0.5 1.0 mV 5.0 2.0 20 nA 42 100 1.5 120 80 nA Mn 120 mW 6.0 120 130 ± 13.5 ±14 Common Mode Rejection VIR Input Voltage Range PSRR Power Supply Rejection Ratio Rs< 10 kn Avs Large Signal Voltage Gain RL;;o.2.0 kn, Vo=±10V 1000 VOP Output Voltage Swing RL = 10 kn RL = 2.0 kn in Rs<10 kn Typ 150 CMR Input Noise Current Min 75 Vcc=±3.0 V en Max 1.5 pA.725E Input Noise Voltage pA.725 2.0 110 120 ± 13.5 ±14 5.0 2.0 dB V 10 INIV 1000 3000 V/mV ± 12.5 ±12 ±13.5 V ±10 ±10 ± 13.5 3000 fo = 10 Hz 15 15 15 fo = 100 Hz 9.0 12 9.0 fo = 1.0 kHz 8.0 12 8.0 fo = 10 Hz 1.0 1.2 1.0 fo = 100 Hz 0.3 0.6 0.3 fo = 1.0 kHz 0.15 0.25 0.15 The following specifications apply over the range of O°C < TA < and pA.725. Input Offset Voltage (Without external trim) Rs < 10 kn 0.75 .£lVlo/.£lT Input Offset Voltage Temperature Sensitivity (Without external trim) Rs = 50 n 2.0 .£lVlo/.£lT Input Offset Voltage Temperature Sensitivity (With external trim) Rs=50 n 0.6 110 Input Offset Current TA=TAMax 5.0 7-90 pAlYHz + 70°C for /JA 725E, - 55°C < TA < + 125°C for /JA 725A VIO TA=TAMin V nV/YHz 2.0 2.0 1.5 mV 5.0 /JV/ o C 0.6 /Jvre 4.0 1.2 20 18 7.5 40 nA IlA725 Jl.A725A/E and Jl.A725 (Cont.) Electrical Characteristics Vee=±15 V. and Jl.A725. O°C~TA~+70°C for Jl.A725E. -55°C~TA~+125°C for IlA725A/E Symbol Characteristic Condition Min Typ Jl.A725A IlA725 Max Typ Min Max Unit pA/oC dllO/dT Input Offset Current Temperature Sensitivity 118 Input Bias Current CMR Common Mode Rejection Rs~lO kil PSRR Power Supply Rejection Ratio Rs~lO Avs Large Signal Voltage Gain RL;;;'2.0 kil. TA=TAMax 1000 1000 V/mV RL;;;'2.0 kil. TA = TA Min 500 250 V/mV RL = 2.0 kil ±10 ±10 V 35 TA=TAMax Output Voltage Swing 35 70 20 100 80 200 180 TA = TA Min VOP 90 110 kil nA nA 100 dB 20 8.0 IlVN Jl.A725C Electrical Characteristics T A = 25°C. Vee = ± 15 V. unless otherwise specified. Symbol Characteristic VIO Input Offset Voltage (Without external trim) 110 Input Offset Current 118 Input Bias Current en Input Noise Voltage Condition Input Noise Current Typ 0.5 to = 10 Hz to= in Min Rs~ 10 kil mV 2.0 35 nA 42 125 9.0 to = 1.0 kHz 8.0 to = 10 Hz 1.0 to = 100 Hz 0.3 to = 1.0 kHz 0.15 Input Impedance VIR Input Voltage Range Avs Large Signal Voltage Gain RL ;;"2.0 kil. Vo=±10V CMR Common Mode Rejection Rs~10 kil PSRR Power Supply Rejection Ratio Rs~lO kil VOP Output Voltage Swing RL = 10 kil ±12 ± 13.5 RL = 2.0 kil ±10 ± 13.5 pAlYHz 1.5 Mil ± 13.5 ±14 V 250 3000 V/mV 94 120 2.0 80 7-91 nA nV/YHz 15 100 Hz Power Consumption Unit 2.5 ZI Pc Max dB 35 IlVN V 150 mW p.A725 /lA725C (Cont.) Electrical Characteristics QOC';;; T A .;;; + 7QoC, Vee = ± 15 V, unless otherwise specified. Symbol Characteristic Condition Min Typ Max Unit VIO Input Offset Voltage (Without external trim) Rs';;;10 kn t:.Vlol t:.T Input Offset Voltage Temperature Sensitivity (Without external trim) Rs=50 n 2.0 pV 1°C t:.Vlolt:.T Input Offset Voltage Temperature Sensitivity (With external trim) Rs= 50 n 0.6 pV/oC 110 Input Offset Current TA=TAMax 1.2 35 TA=TA Min 4.0 50 t:.IIOI t:.T Input Offset Current Temperature Sensitivity liB Input Bias Current 3.5 TA=TAMax 125 TA = TA Min 250 Avs Large Signal Voltage Gain RL>2.0 Common Mode Rejection Rs';;; 10 PSRR Power Supply Rejection Ratio Rs';;; 10 VoP Output Voltage Swing RL = 2.0 7-92 kn kn kn kn nA V/mV 125 ±10 nA pArC 10 CMR mV 115 dB 20 /lVIV V pA725 Typical Performance Curves Voltage Gain vs Temperature For Supply Voltages For p.A725/A 140 .......l-I-'" ID z ~ "'" ~ . g ~z ~ .. :::. 100 Vee - :15V I Vee = :t10Y --r- I 120 Untrimmed Input Offset Voltage vs Temperature For p.A725/A 1.0 .1 'LII" "c<;""'? ... Change In Trimmed Input Offset Voltage vs Temperature For p.A725/A Vee I ±5V AL O!: ~ 2 ItO 100 o i- : ~~~ :,,~s.~ 25 J 50 - 0 V .. ! -so ! co .. ... V ~ 0.8 ~ 0.4 ~! 20 100 80 140 20 -20 -60 100 60 ...... 1"'" 0.2 o 140 -60 -20 Voltage Gain vs Temperature for Supply Voltages For p.A725C/E 20 140 100 60 TEMPEAATURE _ ·C TEMPERATURE - ·C TEMPERATURE _ °C V i--"" ........ ........ o U -20 ........ g !-100 80 -80 Vee= :t15V 0.8 I ./ I--'" ~ 80 'r! 0 Trimmed Input Offset Voltage vs Temperature For p.A725C/E Untrimmed Input Offset Voltage vs Temperature For p.A725C/E 140 1.0 Vee = :t2DY i Vee I ..~ ~ ..g 9 .. = :t15V ±10V_ Vee z 120 Vee - :t:15V f-- - Yos:s S"Vat2S°C -- - Vee - :t5V o~ r- 100 0 z AL:it: 2kO 80 o 20 10 30 40 50 60 10 70 ·c TEMPERATURE - 20 30 40 50 TEMPERATURE - 60 70 Vee = :t15V 0.8 I '" ~ ~ . !; ! 80 0 'r! -- 0.8 f0- r-OA f-- ~ 0..2 0 10 20 ·c 30 40 50 60 70 TEMPERATURE - °C """70' Input Offset Current vs Temperature For p.A725/A Input Bias Current vs Temperature For p.A725/A Input Offset Current vs Temperature For p.A725C/E 100 8 ~ 7 vJ, = ±15V \ \ r\ 3[""'--. l"- 2 I"-20 20 100 ·c 140 0 10 " - ........... 1 60 TEMPERATURE _ &. 1\..'" ~ 4 1 o ~ 5 \ -60 , Vee = .:t1SV 5 20 30 ~ Vee = 20 :t10~~ ~ Vee 40 50 60 70 TEMPERATURE - ·C 0 -80 -20 20 = :t5V ....... 100 60 TEMPERATURE "",.9OF 7-93 Vee= :t20V ~vcc=:t15V ·c 140 MA725 Typical Performance Curves for all Types (Cont.) Input Bias Current vs Temperature !1A725C/E Power Supply Rejection Ratio vs Temperature Common Mode Rejection Ratio vs Temperature ." 100 10 Vee = :1:15V VCC=::t15V 6 120~-=r=p.,..-t-I-+-+-I=r-j ~z 9 1001-+--+-1-+-+-+-1-+-+-1 ~ ~ ~20V :----+:-:3 ~ cc r-r t = 0 ~ Vee = :t15V ~ o 801-+-+-+-+--1--!--+-1-+-I :& OV z ~ Vcc= ±5V ~ 80~~-+-+--+~-~-+-~~-; 8 10 30 20 50 40 80 o 70 -60 TEMPERATURE _ "'C vccl = l'5J ." . 0: 0 0 :& 1 I 1 1 . 80 20 80 ,00 140 " AVCL! 10000 iffi 1 AVCL - 1000 0.01 z 0 :& :& 0 TA = 25"'C ~ ;;J 1 VC~ = .sv 1.0 I z ;:: 100 1 t. .. o. ~ g . 9 z l -20 ~ 120 0 Vcc== :t10V RL O!! 2k!l 140.--.,..---..,---,---r--,---, TA = 25°C 0: I I .." I 1 1 o 60 40 !" Q 15 10 5 TEMPERATURE _oc 20 AVCL = 100 0.001 1,0 10 100 1.0 K 10 K 100 K 1.0 M SOURCE RESISTANCE- 11 SUPPLY VOLTAGE - :tV Stabilization Time of Input Offset Voltage From Power Turn-On Input Offset Voltage Drift vs Time Common Mode Input Voltage Range vs Supply Voltage 100 60 DC Closed Loop Voltage Gain Error vs Source Resistance Common Mode Rejection Ratio vs Supply Voltage = ::t20V 20 TEMPERATURE _ °C TEMPERATURE _ °C Output Voltage Swing vs Temperature Vee 20 i-- 50 TA! 25°C ,/ V :0;. .."s / 8 .... ...." . ." 0 .,...... > /V i!! i!! :I: 15 SUPPL V VOLTAGE - 20 :tv " ~ PREVIOUS VIO :::; 1 p,V - g 30 tij 20 !2... o !; .. 20 10 1\ i!! . i!! 10 ~ r- Z 10 Vee == ± 15 V TA == 25"C .. 30 we VIO~20p.YATt=O 0 ,/ ./ 0 I YCC=±1SV TA = 40 ~E "~ " 0 i"10N :I: /' 200 400 600 TlME-HRS 7-94 800 1000 TIME FROM POWER APPLICATION - MIN MA725 Typical Performance Curves for all Types (Cont.) Change In Input Offset Voltage Due to Thermal Shock vs Time Input Noise Current vs Frequency Input Noise Voltage vs Frequency . lit" 10'" r-rrrr-'-TTTr-r-rTTT-r-r"TT" Vee N :I: , > 1 10'" g ;!; ;!; w a: a: 1.... I, i3w 10-n W .".. !II !II fi lOw 0 Z 11 w 10. a: a: "'0" 'z" 0 " '" -10 1_ Z tAPPLY 10"" 80 20 TIME FROM HEAT APPLICATION - 100 '" 10'" '" 10 100 lOOK 10 K 1.0 K Narrow Band Spot Noise Figure Contours ! g 10 .." /' 10Hz ~ i 1.0 1 I- ~ !II 0 z I-- Il'I"znir o. 1 100 1.0 K 100 ~ ~ 10 10 ± 15 vt=~=fI\VCL = 1 Vee TA = 25°C =f1 EXTE~~~;EC~~L~~:EMIOE ~o '"6z 1/ 1()2 > PEAK-To-PEAK ~ 10 5 1 10 1.0 K 10 K FReQUENCY - Hz 100 K ~t'l, '~~~ ~ f$:~ 10 ,,<>~ ,<> ~ 5 1111 1/ 100 V !zw IIX &1 1.0 M / POWER SUPPLY RIPPLE VOLTAGE a: 5 10mV V IJ J 10 2 8: ~ &1 I I I ~ IV 100mV ~ - / 1 1 / FREQUENCY - Hz 7-95 / '- ~ ~<--, Y~ /IA "r.y 100 10 1\ o 100 1.0 K 10 K SOURCE RESISTANCE - 0 FREQ COMPENSATIONrr-Vcc = ± 15 v--j-ti Avec = 1 f-I--- T A = 25"C W ;!; !Ew , w 10V w 10' 1()4 Equivalent Input Ripple Voltage Due to Power Supply Ripple vs Frequency I II'FREQ COMPENSATION g 10' FREQUENCY - Hz = 1 w " I I III 10' I) Equivalent Input Noise Voltage Due to External Common Mode Noise vs Frequency 10' '5 TA = 25°C f = 1kHz 1\ ....... ~~'?rtH ....111 10 100 K 10 K SOURCE RESISTANCE - Hz vJl LI \ \ ""u:w ,/ 10Hz-10kHz '"5z 100 K 10 K 1.0 K 1 w 100kHz I 100 10 a: w e'" 10 12 25°C a: w 10"' ,. Q ~ 10"' Noise Figure vs Source Resistance 100 .5 !'.. . FREQUENCY - { = vW.J.v = 1 ....... FREQUENCY - Hz S Broadband Noise for Various Bandwidths TA . i5 w 0 -20 "lilz'" '" :I: :t:15V 25'C ffi w "!:;'" TA 1.0K -I"""'" 100 K flA725 Typical Performance Curves for all Types (Cont.) Power Consumption vs Temperature 160 ........ 140 ~ I z 2 l;: 100 ~ 80 i- " 8 0 ~ 40 -- - Open Loop Frequency Response For Values of Compensation a: -- - 00 ±20V ..". ~ .gg z ~- J10J- 20 -20 R1 == 10kn C1 80 I III 60 " ;! 40 .. ~ § c ~ 20 R1 = 470 C1 -Rl '= 27rl R2 -:= r- = .01p.F = .05,F I JJ, = .JS,F 10' I III I III I I II "\. 1 o 1 10 H~ 10' 10' 1 10' CLOSED LOOP VOLTAGE GAIN Output Voltage Swing vs Frequency Slew Rate vs Closed Loop Gain Vee == ±15V TA == 25°C R2 = ail? C2 == .02J.1F -20 100 10 FREQUENCY - I I I =="Vcc= ±1SV 10 .......... .......... ~I " w "' 270 n C2 :::; .0015/iF f-Rl l= ,~ 0 J, I-R~ 0: "c = .001 jtF 1 I I III " - 100 R2_ 100 SOpF I T R1 == 4700 C1 ~ -= 'Ii 1 .OK~ Z ~ Frequency Response for Various Closed Loop Gains !1j I 10K / .,. 1.0K 140 100 60 TEMPERATURE _ ~' ",-C2 " f3~ z rT - C> ~ o Vee - ±5V 0 -60 .'" 10 !g I vcd= 0 lOOK 100. Rl = ':::'::"6 = 120 Values for Suggested Compensation Networks vs Various Closed Loop Voltage Gains : ~ "' "' r-..... ...... o. 1 'V 10 10 10' 10 FREQUENCY - FREQUENCY - Hz Compensation Component Values Cl (J.lF) V I 0.0 10' Rl 1.0 ,/ 800 > .....-..,....-vo E I 90% w I ;400 g ~ 150 pF ~O.,/-1F I' Vee 10· !; o = ::r1SV TA=2S0C - V RL = 2 kU C,= l~rAT =1100 RljETljE -400 TIME-I-'s Typical Applications Precision Amplifier AVCL = 1000 SOMn 500kn 500kn 10kn 90kn ~~----EO Characteristics Av= 1000=60 dB DC Gain Error = 0.05% Bandwidth = 1 kHz for -0.05% error Diff. Input Res. = 1 Mfl Typical amplifying capability e n =10 MV on VCM=I.0 V Caution: Minimize Stray Capacitance Active Filter - Band Pass With 60 dB Gain Active Filter Frequency Response C, 100 Av= (AV' DC)(2+¥C')( R3 1 ) R3 + Rs + i27rloC3 80 I t! I z ~ fI\ Rx=Ry w g I 60 ~ Eo I 11 &..fo= 40 211'RxC)I..;c;iCx Q = 1 1/2 ..;c;iCx VI\ II 20 '{DC GAIN R)l+R y +R4 Av. DC = 1 + --R-S-to X 10-2 fo X 10-1 10 Tl=2S0 C foX10 NORMALIZED FREQUENCY Lead numbers are shown for metal package only. 7-97 fo X 102 J.LA725 Typical Applications (Cont.) Photodiode Amplifier (Note 2) R4 C1 100 !l (NOTE 1) ~_N......-l0,000 t-""7.;:-::;-"""M.--~....,r--"""",,,f.kl~l-l,ooo :;'~~E T I~SELECT ~U R3 10 10 lOOkU (NOTE 1) (NOTE 1) CALIBRATE ':" R14 100 n (NOTE 1) -15 V DC GAINS ~ 10,000; 1,000; 100; AND 10 BANDWIDTH ~ DETERMINED BY VALUE OF Cl AF00541F Thermocouple Amplifier (Note 2) ± 100 V Common Mode Range Differential Amplifier (Note 2) Cl SOOpF Rl SOkn R2 R3 5 kll 511 kO (NDTE 1) R4 >'-1-W'w-.....- OUT REFERENCE THERMOCOUPLE R4 5 kH IN 2000 C2 lOOpF -::R7 R3 511 kH (NOTE 1) RBI : pF 510n SDk!! I; = II 'or be.' CMR + >~...,...--OUT Rl = R4 -::- R2=R5 Gain 39!! = RI + ( : ' ) 5 kll DC GAIN = 1000 BANDWIDTH =DC TO 540 Hz EQUIVALENT INPUT NOISE = 0.24 pVrms -::- Notes 1. Indicates ± 1% metal film resistors recommended for temperature stability. 2. Lead numbers are shown for metal package only. 7-98 IlA725 Typical Applications (Cont.) Instrumentation Amplifier With High Common Mode Rejection (Note 1) R2 10 kU 39 n Rl 47 kil AS 100 k!) OUT IN 270 R3 10 kfl n R5 10 kll 39 n R7 lOOk£! -= R1 R3 R6 R4 - =- for best CMRR R3=R4 R1 =R6=10 R3 R6 Gain=R7 Note 1. Lead numbers are shown for metal package only. 7-99 MA741 FAIRCHILD Operational Amplifier A Schlumberger Company Linear Division Operational Amplifiers Description The !LA741 is a high performance monolithic operational amplifier constructed using the Fairchild Planar Epitaxial process. It is intended for a wide range of analog applications. High common mode voltage range and absence of latch up tendencies make the !LA741 ideal for use as a voltage follower. The high gain and wide range of operating voltage provide superior performance in integrator, summing amplifier, and general feedback applications. Connection Diagram 8-Lead Metal Package (Top View) NC >-~OOUT -IN • • • • No Frequency Compensation Required Short Circuit Protection Offset Voltage Null Capability Large Common Mode And Differential Voltage Ranges • Low Power Consumption • No Latch Up vLead 4 connected to case. Order Information Absolute Maximum Ratings Device Code Storage Temperature Range Metal Can and Ceramic DIP Molded DIP and SO-8 Operating Temperature Range Extended (!LA741 AM, !LA741M) Commercial (!LA741EC, !LA741C) Lead Temperature Metal Can and Ceramic DIP (soldering, 60 s) Molded DIP and SO-8 (soldering, 10 s) Internal Power Dissipation 1, 2 8L-Metal Can 8L-Molded DIP 8L-Ceramic DIP SO-8 Supply Voltage !LA741 A, !LA741 , !LA741E !LA741C Differential Input Voltage Input Voltage 3 Output Short Circuit Duration 4 !LA741HM !LA741 HC !LA741AHM !LA741EHC -65°C to + 175°C -65°C to + 150°C -55°C to + 125°C O°C to +70°C mwrc. Package Description Metal Metal Metal Metal 300°C 265°C 1.00 0.93 1.30 0.81 +OFF$ET NULL NC -IN v+ +IN OUT W W W W v- ±22 V ± 18 V ±30 V ± 15 V Indefinite -OFFSET NULL Order Information Device Code !LA741RM !LA741RC !LA741SC !LA741TC !LA741 ARM !LA741 ERC !LA741 ETC Can and Ceramic DIP. 2. Ratings apply to ambient temperature at 25°C. Above this temperature, derate the BL-Metal Can at 6.7 the BL-Molded DIP at 7.5 mW/oC. the BL-Ceramic DIP at B.7 and the SO-B at mwrc. 5W 5W 5W 5W Connection Diagram 8-Lead DIP and 50-8 Package (Top View) Notes 1. T J M., = 150°C for the Molded DIP and SO-B. and 175°C for the Metal 6.5 Package Code mwrc. 3. For supply voltages less than ± 15 V. the absolute maximum input voltage is equal to the supply voltage. 4. Short circuit may be to ground or either supply. Rating applies to 12S C case temperature or 75°C ambient temperature. D 7-100 Package Code 6T 6T KC 9T 6T 6T 9T Package Description Ceramic DIP Ceramic DIP Molded Surface Mount Molded DIP Ceramic DIP Ceramic DIP Molded DIP J.LA741 Equivalent Circuit -IN ~~--------~----.---------~------------.---~-----------------------t--V+ • is2 4/ • ~ 2 o 15 20 /v c w " /' / 10 "~ SUPPLY VOLTAGE - - 55 C:s TA:OS: 125°C 12 r! / 20 >;- 85 4 II: I- V 95 3. f- RL".kO - 550(: 5" TA:S 12SCC 3. .. /' ,. / ' .."''"" /' " /' ":;..'" V :0 ~ i > I 36 t-- RL1"'kO DOC:s TA:S 7O"C I / 70 ,. 40 105 !B Input Common Mode Voltage Range vs Supply Voltage for IJA741C/E Output Voltage Swing vs Supply Voltage for !lA741C/E Voltage Gain vs Supply Voltage for !lA741C/E \. 10 100 1.0K 10K FREQUENCY - lOOK 1.0M 10M Hz J,LA741 Typical Performance Curves (Cont.) Frequency Characteristics vs Supply Voltage for MA741C/E Voltage Follower Large Signal Pulse Response for MA741C/E Voltage Offset Null Circuit for MA741C/E y-8~~-+~--+--r-+--r-~-+-4 SUPPLY VOLTAGE - ±V Power Consumption vs Supply Voltage 106 TA = ;. 60 U 40 '" ;. .. ! 20 . § 10 V ~ V" o 5 3 ~102 // II: 0 ~""0 / / 26 I "z~ 22 ~ 20 l- I. ":I 16 ::> 0 'l- 0 ':" "~ I-- .,.. 0.5 1.0 Vee +15 TA - 2S C Q V= I W " ~ 10-15 o > w 610- 16 Z w a: « 5 10-1 7 U> ~ ::E 10~18 10 100 lOOK 10K 1.OK FREQUENCY - Hz Hz !' 100 . ::> 10- 23 ,/ 10 10.100 kHz ~ ....... ,/ ffia: , 10-10 kHz ~ ~ 10- 2 It. k~' ....V w a: w .o ~ ::> 10-2 5 z .... Z :I « o I- 10-26 10 100 I- 10K 1.0K FREQUENCY - 100K O. 1 100 lOOK 10K 1.OK Hz SOURCE RESISTANCE - fl Input Impedance vs Temperature for IlA741/A Input Bias Current vs Temperature for IlA741/A 100 200 Short Circuit Current vs Temperature for IlA741/A 35 V~e =1±15~ Vee = :t15V « 50 1 i 150 ilia: a e - 30 I I- ~ ~ 100 U> « iii 50 0 i'- -60 r-20 .... -20 i 100 60 TEMPERATURE - "C -,.0 I 10.0 V 5.0 ".- 25 ::> '" ......... '" u l- S u a: 20 ......... r-.. U I- a: .. --- 0 :r 1.0 -60 I' Z il!a: V 3.0 30 I- ....- ~ a: ~ vt= I- w ;!; Q ~ I .! U> " ~OO~~u-~I.O~K~~~IO~K~~~I=OO~K~~-'~"OM , o Vee - :1:15 TA - 2S C Broadband Noise for Various Bandwidths I 10-2 2 o 16~~H-~~HK~~-H+-~~H+~ FREQUENCY - IZ W (I) ~ kD 10- 2 ~ a 2.~~H-~4-~~~-H+-~~Ht~ 10 5.0 2.0 Input Noise Current vs Frequency a: a: 5 ~ 4~rtH--r-rrH~~HH~~~~-H+-~ I"LOAD RESISTANCE - . 10-1 ~ ·~rtH--r-rrH~~rH~i-i-Ht-1 0.2 10-13 . s: l: - 6 12~~H-~~HK~~~+-~~H+~ 10 • / TA=25°C ~ 2o~~H-~~~~I4H\-H+-~4-Ht~ o \ / 12 _=ro~ 32 ~ 2.~~H-~~~~~-H+-~~Ht~ I I. H+++-++++t-+-H ~~e ~ ±I,~J - z l.I' 0.1 :t ,or-rrn-~~n;-,-,-n~;-"OT-' > 36 I CI 2. Input Noise Voltage vs Frequency Output Voltage Swing vs Frequency -20 20 60 TEMPERATURE _ 7-107 100 0 c ,.0 ...... 15 10 -60 -20 20 60 TEMPERATURE _ "C 100 "0 • J.1.A741 Typical Performance Curves (Cont.) Input Offset Current vs Temperature for /lA7411A Frequency Characteristics vs Temperature for /lA741/A Power Consumption vS Temperature for /lA741/A 14 J,5V vcc'= ~ 12 1.4 I 120 Vee ~ Vee o ~ ~ W 0: ~ 8 \ ".... ~ 6 '-... o .... ~ ;; z o'" r- r- o -60 -20 20 .J ~ ~r- :t:15V 80 ~~ , :3 ,,~ f' r-- r--.... A;;J...! I ~ P' c~ ;; r--- ...... r- r- ....... "ffi60 - ~ - 1.\\"" ~ 1.0 ~ ;- a: 0.8 SLEW RATE Oo.~ 8"."",.,~ I I""" I 40 0.6 100 60 TEMPERATURE - w r- z z = 1.2 1'00 .... 10 I = :t20V E I -20 140 20 Input Bias Current vs Temperature for /lA741C/E 100 60 TEMPERATURE _ °C 140 10 20 60 100 TEMPERATURE _ <> - I-- Vee = ::t: 15V Vee 7.0 = ±15V ~ 80 c: .... ffi 0: Ii 60 0: ::> "'" iii " .... 40 ;; 20 .. - - r-- ::> o o 20 30 40 50 I-- 60 z o 10 ~80 .. 40 50 60 o 70 ""'"- = :t:20V r-- I--- :3 "- ........ $ l""'- ~ "> 1.00 ~ I". ........ 50 0 C 60 70 ~ a: 0.95 60 70 /' / ,/ - " ::::-- ~ V SLEW RATE 0..~" ~ ~01 ~;'l-c ":-c.-:- 20 18 0 50 "c Vc~ = "'~V .......... w 26 H24 60 40 40 1.05 Ii: 30 30 Frequency Characteristics vs Temperature for /lA741C/E 1.10 ~ 22 20 20 TEMPERATURE - i§ i'-u TEMPERATURE _ 10 I 28 70 10 o °C Short Circuit Current vs Temperature for /lA741C/E "a:w ~ 30 30 lE ::> '"~ 20 ~ -.... --- "'- 1 TEMPERATURE - 100 = ::!::15V ~ 2.0 70 Power Consumption vs Temperature for /lA741C/E Vee "- 5 1.0 10 Vee 3.0 TEMPERATURE _ °C ~ 90 I r-.... f-" lE I 5.0 140 c Input Offset Current vs Temperature for /lA741C/E Input Impedance vs Temperature for /lA741C/E 100 -20 ~O °C 0.90 10 20 30 40 TEMPERATURE - 7-108 50 "C 60 70 o 10 20 30 40 TEMPERATURE _ 50 "c ~ 60 70 JlA747 Dual Operational Amplifier FAIRCHILD A Schlumberger Company Linear Division Operational Amplifiers Description The IlA747 contains a pair of high performance monolithic operational amplifiers constructed using the Fairchild Planar Epitaxial process. They are intended for a wide range of analog applications where board space or weight are important. High common mode voltage range and absence of latch up make the JJ.A747 ideal for use as a voltage follower. The high gain and wide range of operating voltage provide superior performance in integrator, summing amplifier, and general feedback applications. The IlA747 is short circuit protected and requires no external components for frequency compensation. The internal 6 dB/octave roll-off insures stability in closed loop applications. For single amplifier performance, see J-IA741 data sheet. Connection Diagram 10-Lead Metal Package (Top View) NC vLead 5 connected to case. • • • • No Frequency Compensation Required Short Circuit Protection Offset Voltage Null Capability Large Common Mode And Differential Voltage Ranges • Low Power Consumption • No Latch Up Absolute Maximum Ratings Storage Temperature Range Metal Can and Ceramic DIP Molded DIP and SO-14 Operating Temperature Range Extended (IlA747AM, JJ.A747M) Commercial (IlA747EC, IlA747C) Lead Temperature Metal Can and Ceramic DIP (soldering, 60 s) Molded DIP and SO-14 (soldering, 10 s) Internal Power Dissipation 1, 2 10L-Metal Can 14L-Ceramic DIP 14L-Molded DIP SO-14 Supply Voltage IlA747A, IlA747 IlA747E, IlA747C Differential Input Voltage Input Voltage3 Voltage Between Offset Null and VOutput Short Circuit Duration 4 Order Information Device Code Package Code Package Description IlA747HM JJ.A747HC IlA747AHM IlA747EHC Metal Metal Metal Metal 5X 5X 5X 5X Connection Diagram 14-Lead DIP and 50-14 Package (Top View) -65°C to + 175°C -65°C to + 150°C -55°C to + 125°C O°C to +70°C -IN A V+ A +IN A 300°C -OFfSET 265°C 1.07 1.36 1.04 0.93 OUT A NULL A NC y- -OFFSET W W W W OUT B NULL B V+ B +IN B +OFFSET -IN B ±22 V ± 18 V ±30 V ± 15 V ±0.5 V Indefinite NULL B Order Information Package Code Device Code JJ.A747DM JJ.A747 DC IlA747PC JJ.A747SC IlA747ADM JJ.A747EDC Notes 1. TJ Max-150"C for the Molded DIP and 50-14, and 175"C for the Metal Can Ceramic DIP. 2. Ratings apply to ambient temperature at 25°C. Above this temperature, derate the 10l-Metal Can at 7.1 mW/oC, the 14l-Ceramic DIP at 9.1 mWrC, the 14l-Molded DIP at 8.3 mWrC, and the 50-14 at 7.5 mWrC. 3. For supply voltages less than ± 15 V, the absolute maximum input voltage is equal to the supply voltage. 6A 6A 9A KD 6A 6A Package Description Ceramic DIP Ceramic DIP Molded DIP Molded Surface Mount Ceramic DIP Ceramic DIP 4. Short circuit may be to ground or either supply. Rating applies to 125°C case temperature or 75°C ambient temperature. 7-109 JlA747 Equivalent Circuit (112 of circuit) -IN ~~-------i-----1~--------~----------~---'----------------------~--V+ R6 +IN 27 n OUT R7 22 +QFFSET NULL -OFFSET NULL v + A is internally connected to V + B. 7-110 n p.A747 ~A747 and ~747C Electrical Characteristics TA = 25°C, Vcc = ± 15 V, unless otherwise specified. jlA747C IlA747 Symbol Input Offset Voltage V,o V,o Characteristic adj Condition Min Rs';;10 kn Typ Max 1.0 5.0 Min ±15 Input Offset Voltage Adjustment Range Typ Max 1.0 6.0 ±15 Input Offset Current 20 200 20 200 I'B Input Bias Current 80 500 60 500 Z, Input Impedance Icc Supply Current Pc Power Consumption PSRR Power Supply Rejection Ratio Vcc~±5.0 los Output Short Circuit Current Large Signal Voltage Gain RL;o.2.0 kn, Vo~±10 V TR Transient Response V, ~ 50 mY, RL ~ 2.0 kn, CL ~ 100 pF, Av ~ 1.0 BW I Overshoot SR Slew Rate Channel Separation 2.0 RL ~ 2.0 kn, Av ~ 1.0 nA nA Mn 3.4 5.6 3.9 5.6 rnA 100 170 100 170 mW 30 150 30 150 IlVN 25 50 Bandwidth CS 0.3 V to ±16 V Avs IRise time 2.0 mV mV 1'0 0.3 Unit 25 rnA 200 V/mV 0.3 0.3 I1S 5.0 5.0 % 1.0 1.0 MHz 0.5 0.5 V/IlS 120 120 dB 200 25 The following specifications apply over the range of -55·C';;TA';;+125·C for jlA747, 0·C';;TA';;70·C for jlA747C V,o Input Offset Voltage Rs';;10 kn 1'0 Input Offset Current O·C';;TA ';;70·C 1.0 TA~+125·C TA I'B Input Bias Current ~ -55·C ~ +125·C TA ~ -55·C Supply Current ~ +125·C TA ~ -55·C Power Consumption 200 85 500 0.03 0.5 0.3 1.5 3.0 5.0 4.0 6.6 90 150 120 200 O·C ';;TA';; 70·C TA~+125·C TA~-55·C 1.0 7.5 mV 7.0 300 nA 30 800 4.0 6.6 rnA 120 200 mW CMR Common Mode Rejection VIR Input Voltage Range PSRR Power Supply Rejection Ratio Avs Large Signal Voltage Gain RL;o.2.0 kn, Vo~±10 V VOP Output Voltage Swing RL ~ 10 kn ±12 ±14 ±12 ±14 RL ~ 2.0 kn ±10 ±13 ±10 ±13 Rs';;10 kn 70 90 70 90 ±12 ±13 ±12 ±13 30 Vcc~±5.0 7-111 dB V 150 I1VN V to ±16 V 30 25 nA jlA O·C ';;TA';; 70·C TA Pc 7.0 O·C ';;TA';; 70·C TA Icc 6.0 15 150 V/mV V IlA747 ~A747A and ~747E Electrical Characteristics TA = 25°C, ± 5.0 V < Vcc < ± 20 V, unless otherwise specified. Symbol VIO VIO adj Characteristic Condition Input Offset Voltage Rs";;;50 Q Input Offset Voltage Adjustment Range Vee=±20 V Min Typ Max Unit 0.8 3.0 mV 10 mV 110 Input Offset Current 3.0 118 Input Bias Current 30 ZI Input Impedance Vee=±20V 1.0 Power Consumption Vee = ±20 V Common Mode Rejection Vee=±20 V, VI=±15 V, Rs=50 Q PSRR Power Supply Rejection Ratio Vee = + 10 V, -20 V to Vee = +20 V, -10 V, Rs=50 Q los Output Short Circuit Current AyS Large Signal Voltage Gain TR Transient Response BW Bandwidth SR Slew Rate I Rise time I Overshoot 80 mW 50 INN mA dB pA747A 10 25 40 I1A747E 10 25 35 Vee=±20 V, RL>2.0 kQ, Vo=±15 V 50 0.25 0.8 6.0 20 VI =50 mV, RL = 2.0 kQ, CL = 100 pF Ay = 1.0 VI=±10 V, Ay=1 nA 300 95 15 nA MQ 6.0 160 Pc CMR 30 80 V/mV /1S % 0.437 1.5 MHz 0.3 0.7 VI/1s The following specifications apply over the range of -55°C";;; TA";;; + 125°C for pA747A, O°C";;; TA ,,;;; + 70°C for pA747E. VIO Input Offset Voltage LlVlol LlT Input Offset Voltage Temperature Sensitivity 110 Input Offset Current 118 Input Bias Current LlIIOI LlT Input Offset Current Temperature Sensitivity pA747E /1A747A ZI Input Impedance Vee = ± 20 V Pc Power Consumption Vee = ±20 V Output Short Circuit Current Avs Large Signal Voltage Gain VOP Output Voltage Swing Channel Separation /1VI'C 70 nA nA TA = 25°C to 70°C 0.2 nAloC TA = O°C to 25°C 0.5 TA = 25°C to 125°C 0.2 TA = -55°C to + 25°C 0.5 MQ 0.5 pA747A I -55°C I + 125°C 330 330 Vee=±20 V, RL>2.0 kQ, Vo=±15 V Vee=±20 V Vee=±20 V 7-112 mW 270 10 Vee=±5 V, RL>2.0 kQ, Vo=±2.0 V CS mV 15 210 pA747E los 4.0 I RL=10 kQ I RL =2.0 kQ 32 40 mA V/mV 10 ±16 V ±15 100 dB I1A747 Typical Performance Curves for J.lA747A and J.lA747 Input Bias Current vs Temperature 100 200 ~ rJz '" 100 i U> '" iii I'-.. I- ;!; 30 50 - " ~ r- r- I- o -50 I- 20 -20 - 5.0 ~ I- u ~ I: o ili "- " I" , 20 15 10 .0 20 "- 25 I- ", -60 60 100 -60 140 -20 20 1.' Vee Vee = ±20V l- "~5V I ~I~ it 10 ffi a: o t: a: "u ~ ~ '\ .." I- - ......... ........ 80 U> 8 ........ ;!; IS .. 60 ~ r- r- ">~ ...> ........ 1.0 ~a: r- ",..9 ,,~ 9i .... w i'"'-- z "'- ~ 1.' I ....... 0.8 ~ :;- ~J} SLEW RATE ........ ,,~"" '7 1 c~ OOI>~ 44 "'l>~~ I 40 o -60 -20 20 60 -50 140 100 -20 Input Bias Current vs Temperature For /1A747C/E 80 I--- Vee = ,,'5V ... ffi " U> 60 '" 40 ;!; 20 - iii .." I- - '--- i-- o 010203040 TEMPERATURE - 506070 "c ,.c:I 5.0 i~ 3. 0 !; ;i; - 7.0 ,..... I-"'"' 0.6 -60 f~" I -20 20 60 140 100 TEMPERATURE _ "C "C - 10 Vee:;:: ;t15V a: a: u 140 100 60 Input Impedance vs Temperature For /1A747C/E 100 ~ 20 TEMPERATURE _ TEMPERATURE _ °C 140 "C Frequency Characteristics vs Temperature 120 E I 100 Z 100 50 TEMPERATURE _ °C Power Consumption vs Temperature vlc =1"'5~ 12 ~I-- " U TEMPERATURE _ Input Offset Current vs Temperature !!i ./ 3.0 TEMPERATURE _ "C 14 V ~ V 1.0 140 100 60 10 30 !Z ::! I a: .." ~ I i ...a:z U 35 V~c= ~'5~ 50 Vee '" ±15V 150 I- " Short Circuit Current vs Temperature Input Impedance vs Temperature Input Offset Current vs Temperature For /1A747C/E ...Vee"" ±15V ............. r-.... --- :-- 2.0 1 1.0 o 10 20 30 40 SO TEMPERATURE _ "C 7-113 60 70 o o 10 20 30 40 TEMPERATURE - SO "C 60 70 pA747 Typical Performance Curves (Cont.) Power Consumption vs Temperature For pA.747C/E Short Circuit Current vs Temperature For /JA747C/E 30 100 ~ ....... z ,. ~ ~ ~ o 80 70 ~ a: 20 30 40 50 60 0 10 20 30 40 50 80 70 40 TEMPERATURE _ °C / C 160 / Ii: /' :> 80 0 a: ~ o 70 0.951--t--t--t----1f-~ TEMPERATURE - ./ 40 L =e '~" V 104 ~ / 10 15 102 10 , 1.0 20 -45 '" '" 10 100 1.0K w '" '" 10K FREQUENCY - Input Offset Current vs Supply Voltage tOOK TA 0 \ a: a: :> ...0w 3.0 100 1.0K 10K - r- .. ." Vee 'Ii 1JZ ~ I- 0 10 15 SUPPLY VOLTAGE - 20 tV c: I w 400 . .z .... .. ... . . " 0 l- I- ~ 300 w a: 1 lOOK 10K 100 = ±1SV = 25°C 500 0 0 C, ;!; 1.0 I w z i!O ~ 2.0 1.0M 10M 600 TA 10 i" lOOK Hz Output Resistance vs Frequency 100 1.0M I- 5 10 FREQUENCY - Hz c: V -180 1.0 f - ZI 4.0 W r"-13 5 ~ IZ \ -90 :z: Input Impedance and Input Capacitance vs Frequency l25 C = 25°C TA .. 1.0M 10M 10M 5.0 ~ vc~= :t1~V 1\ TA = 25°C 0 ±v SUPPLY VOLTAGE - I'" 'j$" g 8. . ~ 10- 5 vcJ=%I!v_ r---., W 103 ,,/ o 105 "c Open Loop Phase Response vs Frequency 106 l25 I 0 20 Open Loop Frequency Response Q 120 .. .. r--... ......... ......... "c z z 22 18 10 TA 0 i'-- r-... 0 0 :t 200 ..,. 24 S Power Consumption vs Supply Voltage e 0 l- 0 TEMPERATURE - ~ 26 ...a: o 1.05 k:----1f----1f----1f--+ ............ ...a:z a: :> 60 50 28 I -- - r--r--r--r---,,---,---,,--,. 1.10 I- r-- a: ~ .e = ±20V Vee 90 I o Frequency Characteristics vs Temperature For pA.747C/E 0 II ~ 200 :> I- ;!; 0 100 0.1 t.OK 100 K 10K FREQUENCY - 7-114 Hz 100M 100 1.0 K 10K FREQUENCY - 100 K Hz 1.0M IlA747 Typical Performance Curves (Cont.) Output Voltage Swing vs Load Resistance 28 > I 26 " 24 Z ...~:> ...:> 22 ~ 16 .. .. ...6 . 0 t:" Vee ~ ,,\sJ _r-r- TA = 2S°C Input Noise Voltage Density vs Frequency Output Voltage Swing vs Frequency ..- 40 > I f" RL 10-1 3 ~lJL Vee'. 3S Vee _ :t15 = 10kO TA=25"C N w 20 " ~10-15 1\ I o > \ I W ~10-16 g 14 I 12 Z ~'O-17 '" w 10 8 0.1 / 0.2 0.5 1.0 2.0 5.0 LOAD RESISTANCE - kO Vee ::t:15 TA=WC 110-22 V= , !& 5\0: :lI is Z 10-24 ~ " ~ '" • ... 10 kHz 10 I llH~ ~Ul .,.,. V- .. = TA=OSOC ' - \. 70 \. .. 50 \. 40 ~ ~ 30 ~ 20 i\. \. 8'" o 10 O.1 100 1.0 K Hz lOOK 10 K SOURCE RESISTANCE - 1.0 10 n 100 1.0K 10K lOOK 1.0M 10M FREQUENCY - Voltage Follower Large Signal Pulse Response For /JA747/C Transient Response For p.A747/C Hz Frequency Characteristics vs Supply Voltage For p.A7471C 1.4 28 Vee =- z15 V TA TAo == 2S"C 24 = 25°C AL = 2 kO CL 20 ,. 10 g lOOK 10K 1.0 K 100 FREQUENCV - ...I ~ ~ oz 10-2 ,. - m Z >E .. 1/ 0: °10-25 10 !c "'" 10 _ 100 kHz 100K V~ ±l~V 90 Q 80 10 o ~ 100 100 ~- e ;:) 10-23 10K Hz Common Mode Rejection Ratio vs and Frequency p.A747/C I 0: 0: 1.0K 100 FREQUENCY - ~ i 10 Hz Broadband Noise for Various Bandwidths I 10-18 l.oM lOOK 10K 1.0K FREQUENCY - 10-21 ! ...... 0 100 10 Input Noise Current Density vs Frequency o v~ ;10-14 V 18 TA=~ % _ ~ = 100 pF 1.' .. J / "~ J 0 ....... -. INPUT > :> 11 :> 0 10% I - - ~erMe 0.5 w OUTPUT w :> ~ ~ \ \ ... 1-- ~N"E _!. I'~~~ "'\O~" s\.~'" 6~"O >= ........ ..l.. -4 ~"""le"7 w > 1.0 - S w ~\.OO' 0: I-- 0.8 G" --~ -8 1.0 TIME -I'_ 1.5 2.0 '.5 -10 -10 0 10 20 30 40 50 TIME - j.I.' 7-115 60 70 80 90 O. 6 5 10 2D 15 SUPPLY VOLTAGE - ±V IlA747 Test Circuits Voltage Offset Null Circuit Transient Response Test Circuit >-~"""'~--Vo RL t V- Typical Applications Quadrature Oscillator C2 820 pF 1% Tracking Positive and Negative Voltage References C3 820 pF 1% SINE OUT 01 R4 12 kO 02 f-15V R2 190kll 1% -15 V , ~ --:2:-~-J"'C"'2';'R"'2"'C""3R"'3~ (R1Cl ~ R2C2) 1 NEGATIVE REGULATED OUT -12 V 1L!5 5 mA SOURCE OR SINK R3 180 kll Rl '90 kll 1% v- Cl 820 pF 1% Rl 10 kll AI +A2 Positive Output = VOl x~ Negative Output 7-116 = - Positive Output x A6 AS iJA747 Analog Multiplier .,.-15 V CURRENT SOURCE R2 20 kU AMPLIFIER 1~. 1% (NOTE 2) R14 25.8 kO R12 12 kO 1% (NOTE 2) +15 V ..,..15 V Eo -15 V R3 20 kll 1% R5 5 kO 1% 25.8 k!l 1"10 --I, R4 15 kll 1% -15 V R15 E, 2 (NOTE 2) R7 150 kll R10 150 kll ZERO ADJUST -15 V +15 V Compressor/Expander Amplifiers (Note 1) D1 (NDTE 3) R R2 10 kH ~ D2 R5 R 1 kH D3 CDMPRESSOR IN EXPANDER IN -= COMPRESSOR f\7 EXPANDER OUT R fu- R6 1 kll -= EXPANDER Notes 1. Maximum Compression Expansion Ratio = RIR (10 kn > R ;;. 0) 2. Matched 10 0.1% Eo = 100 Ell X E'2 3. Diodes D1 through D4 are matched FD666 or Equivalent 7-117 J.lA748 Operational Amplifier F=AIRCHILO A Schlumberger Company Linear Division Operational Amplifiers Description The p.A748 is a high performance monolithic operational amplifier constructed using the Fairchild Planar Epitaxial process. It is intended for a wide range of analog applications where tailoring of frequency characteristics is desirable. High common mode voltage range and absence of latch up make the p.A748 ideal for use as a voltage follower. The high gain and wide range of operating voltages provide superior performance in integrator, summing amplifier, and general feedback applications. The p.A748 is short circuit protected and has the same lead configuration as the popular p.A741 operational amplifier. Unity gain frequency compensation is achieved by means of a single 30 pF capacitor. Connection Diagram 8-Lead Metal Package (Top View) FREQ COMP vLead 4 connected to case. • Short Circuit Protection • Offset Voltage Null Capability • Large Common Mode And Differential Voltage Ranges • Low Power Consumption • No Latch Up Absolute Maximum Ratings Storage Temperature Range Metal Can and Ceramic DIP Molded DIP and SO-8 Operating Temperature Range Extended (p.A748M) Commercial (p.A748C) Lead Temperature Metal Can and Ceramic DIP (soldering, 60 s) Molded DIP and SO-8 (soldering, 10 s) Internal Power Dissipation I, 2 8L-Metal Can 8L-Molded DIP 8L-Ceramic DIP SO-8 Supply Voltage Differential Input Voltage Input Voltage 3 Output Short Circuit Duration 4 -65°C to + 175°C -65°C to + 150°C Order Information Device Code Package Code Package Description p.A748HM p.A748HC Metal Metal 5W 5W Connection Diagram 8-Lead DIP and 50-8 Package (Top View) -55°C to + 125°C O°C to +70°C - OFFSET NULLI FREQCOMP FREQ COMP -IN v+ +IN OUT + OFFSET v- 1.00 W 0.93 W 1.30 W 0.81 W ±22 V ±30 V ± 15 V Indefinite NULL Order Information Device Code Package Code Package Description p.A748RC p.A748SC pA748TC Ceramic DIP Molded Surface Mount Molded DIP Notes I. TJ Max = 150"C for the Molded DIP and SO·8, and 175"C for the Metal Can and Ceramic DIP 2. Ratings apply to ambient temperature at 25'C. Above this temperature, derate the 8L-Metal Can at 6.7 mWI"C, the 8L-Molded DIP at 7.5 mWI"C, the 8L-Ceramic DIP at 8.7 mWI"C, and the SO-8 at 6.5 mWrC. 3. For supply voltages less than ± 15 V, the absolute maximum input voltage is equal to the supply voltage. 4. Short circuit may be to ground or either supply. Rating applies to 125"C case temperature or + 75°C ambient temperature. 7-118 6T KC 9T fJ.A748 Equivalent Circuit - IN - OFFSET NULL IFREQ COMP FREQ COMP vt +IN R6 27H OUT + OFFSET NULL V+ R1 1kn 7-119 f.1A748 J-IA748 Electrical Characteristics TA Symbol = 25°C, Vee = ± 15 V, Ce = 30 Characteristic Via Input Offset Voltage Via adj Input Offset Voltage Adjustment Range pF, unless otherwise specified. Condition Min Rs';; 10 kn Typ Max 1.0 5.0 ±15 Unit mV mV 110 Input Offset Current 20 200 lis Input Bias Current 80 500 ZI Input Impedance Icc Supply Current 1.9 2.8 rnA Pc Power Consumption 60 85 mW 0.3 los Output Short Circuit Current Avs Large Signal Voltage Gain TR Transient Response SR Slew Rate I Rise time IOvershoot RL ;;;'2.0 kn, Vo=±10 V 50 VI = 20 mY, Cc = 30 pF, RL = 2.0 kn, CL = 100 pF, Av = 1.0 RL = 2.0 kn, Av = 1.0 RL = 2.0 ·kn, Cc = 3.5 pF, Av = 10 2.0 nA nA Mn 25 rnA 150 V/mV 0.3 iJ.s 5.0 % 0.5 V/J-Is 5.5 The following specifications apply for -55°C';; TA';; 125°C Via Input Offset Voltage Rs';; 10 kn 1.0 6.0 mV 110 Input Offset Current TA=TAMax 10 200 nA TA = TA Min 50 500 lis Input Bias Current TA=TA Max 0.03 0.5 TA=TAMin 0.3 1.5 Icc Pc Supply Current Power Consumption TA=TAMax 1.5 2.5 TA=TA Min 2.0 3.3 TA=TAMax 45 75 TA=TA Min 60 100 CMR Common Mode Rejection Rs';; 10 kn VIR Input Voltage Range PSRR Power Supply Rejection Ratio Rs';; 10 kn Avs Large Signal Voltage Gain RL;;;'2.0 kn, Vo=±10 V VOP Output Swing RL=10 kn ±12 ±14 RL = 2.0 kn ±10 ±13 7-120 70 90 ±12 ±13 30 25 iJ.A rnA mW dB V 150 iJ.VN V/mV V fJA748 IlA748C Electrical Characteristics TA Symbol = 25°C, Vee = ± 15 V, Ce = 30 Characteristic VIO Input Offset Voltage 110 Input Offset Current pF, unless otherwise specified. Condition Min Rs< 10 kn Typ Max Unit 2.0 6.0 mV 20 200 nA 80 500 liB Input Bias Current ZI Input Impedance Icc Supply Current 1.9 2.8 mA Pc Power Consumption 60 85 mW los Output Short Circuit Current 25 mA 0.3 Avs Large Signal Voltage Gain TR Transient Response SR I Rise time IOvershoot Slew Rate 2.0 nA Mn 150 V/mV VI = 20 mY, Cc = 30 pF, RL = 2.0 kn, CL = 100 pF, Av = 1.0 0.3 /J.s 5.0 % RL = 2.0 kn, Av = 1.0 0.5 V//J.s RL;;'2.0 kn, Vo=±10 V 20 The following specifications apply for O°C < TA < 70°C VIO Input Offset Voltage Rs<10 kn 110 Input Offset Current TA=TAMax 300 nA TA = TA Min 800 /J. A mA IcC Supply Current Pc Power Consumption 2.0 7.5 TA=TAMax 1.5 2.5 TA = TA Min 2.0 3.3 TA =TA Max 45 75 TA = TA Min 60 100 CMR Common Mode Rejection VIR Input Voltage Range PSRR Power Supply Rejection Ratio Rs<10 kn Avs Large Signal Voltage Gain RL;;'2.0 kn, Vo=±10 V VOP Output Voltage Swing RL=10 kn ±12 ±14 RL = 2.0 kn ±10 ±13 Rs < 10 kn 7-121 mV mW 70 90 dB ±12 ±13 V 30 15 150 /J.VIV V/mV V f.1A748 Typical Performance Curves for p.A748 Input Bias Current vs Temperature Short Circuit Current vs Temperature Input Impedance vs Temperature 300 Vee 10.0 ~ ±1~V 35 vcd ~±~v / 'V 5.0 \ 1i .... 200 iii 1\ Z w a: a: " III .." .... ~ .... i'-- r--. ~ o -so 1.0 20 i t--.. -- so 20 100 TEMPERATURE _ <> a: a: 0.5 Vcc '=±15V '" ..... " "- 25 "0t:: "()0a: '/ ~ 100 ! 140 c Power Consumption vs Temperature 50 40r---.---~--.----r---r---' -20 c 0 I 80 Vee = ±15 V VJc~±1'V r-RL-=" 1i I ....z ~ e 30 ffi w a: a: "t; 0 ~ ". a II: 20 ~ ~- .... ~ 10 0 • ,. 10 r- 20 -20 a: i3 t- ........... so 20 50 ~ 40 30 -so 140 100 <> Z 0 0 -20 c -- ~ so 20 TEMPERATURE _ 100 <> 30 40 50 TEMPERATURE _ °C 70 IVee =IX1. V 1 5.0 I- I V - Ii : 60 1.0 140 c Short Circuit Current vs Temperature for IlA748C 7.0 w a: a: " "li t:: 20 ...... r-........ 26 ........... 24 "'- () I- a: /'" 10 28 0 /'" /' o 30 Z /V V 20 r- 32 2.0 40 10 ...... Vee - ±15 V r-- I-- o 1- r- a: w Input Impedance vs Temperature for 1lA748C iI 80 o " 10 ffia: 120 t-... 80 In 10 Vee -:!:15V i~ ~ :Ii TEMPERATURE _ 200 " 0 - I ...... SUPPLY VOLTAGE - -z.V Input Bias Current vs Temperature for IlA748C ~ z 30 o -so 20 70 I 22 0 l: In 30 40 TEMPERATURE _ 7-122 50 <> C 60 70 20 18 o 10 20 30 '" 40 TEMPERATURE _ .......... 50 <> C ~ 60 70 f..LA748 Typical Performance Curves for I-IA748 and I-IA748C (Cont.) Input Offset Current vs Supply Voltage for J,lA748C Input Offset Current vs Temperature for J,lA748C Power Consumption vs Temperature for J,lA748C so 50 Vee"" ±.15 V ...z 301---'/--+--+--+--+-"" w a; a; :> 0 i... :> ffi a; a; :> 0 20 ~ ...l!;:> 0 .. ~ I .. 10 3: 3: 15 ~ -- 20 20 o I ~ I'..." 105 w 0 ;/ 100 95 .. V ".. :> V / .."'" ... '" .." w 20 16 so 60 0 0 40 ~ ~ V 16 ./' ./ 20 o > +1 I w / V /' ~ ! ~ ~ ! ./ 5 10 15 SUPPLY VOLTAGE - 20 :tv 50 0 60 70 c TA =125oC 'a;~" 12 ~ 10 /""" /' / '/ / w 0 0 / / :E z 0 1/ :E :E 0 0 10 o 20 15 20 15 10 5 ±v SUPPLY VOLTAGE - ±v Frequency Characteristics vs Supply Voltage 1.4 TA= 25°C ±15V 25°C Vee TA 24 / V 1.2 w !O 20 w > 1.0 1 ~ 16 I 2 J 0.2 J s\.I'-'" ~s£ ,,~I'- b= -r-- ..\Q~" ~",Q ~.oo~"· 0: 8 0.1 N4.V S1EN}- ... :> o .. 40 14 g"" V Output Voltage Swing vs Load Resistance / 30 I! / 5 I 20 Input Common Mode Voltage Range vs Supply Voltage 28 E w 24 > 100 10 TEMPERATURE _ ./ SUPPLY VOLTAGE - TA = 25°C RL=oo a; 30 o 70 £ o 120 iilz 60 ./ ±V Power Consumption vs Supply Voltage :E 50 c 0 w 12 .... 40 32 .; SUPPLY VOLTAGE - I z 30 40 16 :> 0 80 Q 20 ~ 85 ~ 10 r-- 50 w -RL=2kU > I -- - 60 b a; .. ~ TA= 25°C RL = 2 ktl ~ 110 g 0 0 40 C §z iilz r- Output Voltage Swing vs Supply Voltage TA-25 C ~ f :E TEMPERATURE _ 115 !;l !:i z 10 ~y Voltage Gain vs Supply Voltage 70 I 30 o 10 SUPPLY VOLTAGE - =. Vee L±15V RL 40 0.8 osl'-Q 0.6 0.5 1.0 2.0 LOAD RESISTANCE - 7-123 5.0 kO 10 10 15 SUPPLY VOLTAGE - 20 ±V J.1A748 Typical Performance Curves for I1A748 and !1A748C (Cont.) Frequency Characteristics vs Temperature for J.lA748 1.' - w '3 ~ w > 1.10 ~cc ~ ±1J v 1.2 !:i Lv 0.8 ~ I'--.. r--... ~ JLEWIRAiE II ~ P' c~ 1.0 iil a: Vee = ±15 V ~('~ 'i>\-t;;,~ 0.6 -60 (Oo..~ 60 100 TEMPERATURE _ 0 3 ~ ~ 1.00 ~ I --¥I ~ ...~" " ...... :::::- ~ ~ ~ol 10 20 30 40 50 TEMPERATURE _ C 0 60 70 c FREQUENCY - 10-22 V 10-100 kHz 10-23 ~ W 10-24 10-1 kHz......... ~ Veel~ ±15 ~ TA •••••••••• " Rs i 10 loOK 100 FREQUENCY - lOOK 10K RL=2kfl Cc=30pF ". ~ ••••••• 1 " - ..... \ ~~~--+-~---r~t.-~.--i -30 \ --60 '\ RL=2kn Cc=3pF ...•..•... m a: -90 m c RL = 2 kO Cc""30pF ~ -120 TA ~ Rs =500 25°C > I - ~. J" I!I-I ~~ : ~ok~ . II "... " '\ 0 24 l! ~ FREOUENCY - Hz 60 9z 40 0 ~ .. w ..... o 106 80 >;- ·180 lOS 100 Z 6 -210 104 ."" ~ .g I \cc ~ 30 PF\ '"~ 103 ,.---,.--,--,-..,.--,-..,.--, ID \CC:=3pF ,. Hz Open loop Frequency Response for RL;;' 10 kil 1~ 32 107 1.0 K 10 K 100 K FREQUENCY - 7-124 \ '--....L_..L...-...l_...L._..L...-'_-' 10 102 103 104 105 106 107 FREQUENCY - II vL'±U~ c. ~ 102 n z " ~ -150 10 100 K Output Voltage Swing vs Frequency i\ 1 10 K 40 v~ ~±lJv "\ ..... -~ 1.0 K SOURCE RESISTANCE - Hz Open Loop Phase Response vs Frequency .~ 1 100 25°C_ =SOl 40r--r-~r--I~8~'~~~_+---1 Go § I ,.,..", ~ ~ 80r--r--4b,-,~,~.~,,-+-~-+---1 ~ V 10--25 ~ i ~ 100 ~ wr--I-~~~~.~~~'-~-'R'~.2"kn~ ~ ":;'" Cc=3pF 10-10 kHz Z ::& ""=- 120 ...---'r--'~--'~-'~-'~..,.~-' _Y~C-+15Y -TA ->soC i Hz Open loop frequency Response for RL = 2 kil Broadband Noise for Various Bandwidths a '"~ '" ~,. 10-171-f.+1+-++H+-+-++t+--+-+-+++-I 1ft( 0.9 0 100 l-rtff""f...t:Ii+t-t-t+tt-t--Htt-i 10-161-f.+1+-++H+-+-++t+-+-+-+++-I "o ~+'1<0 140 +15 V 10-1S w ~ >soc ~ 10-141--++++-++H4-1-1-+1-+--+--+-H+-I g I ~0J. 1O-13...-,....,.,.,---r-r-rrr-,-,...,.,..,..-..,.-..,.-rrr-, I w S~EWRATE /' 7" 0: 10-21 Vee TA "'~ ........... 0.95 Input Noise Current vs frequency ~ ~~ f<-"" 1.05 10"''f~'' I I -20 Input Noise Voltage vs Frequency Frequency Characteristics vs Temperature for JJA748C ..... 100M Hz 10 M FREQUENCY - Hz MA748 Typical Performance Curves for JlA748 and JlA748C (Cont.) Frequency Response for Various Closed Loop Gains 120 !/lI Vee I; ±IS Compensation Capacitance vs Closed Loop Voltage Gain so t ~~<>k71- TA RL 100 Input Impedance and Input Capacitance vs Frequency '& Z ~ w 10 S! g 0 9 0 III I Cc=1pF ~ 60 .. '& 2, 80 --~ Cc =]2 pF 40 ce;3~ ~ 20 90 cc",1 3OPF 100 1.0K 10K FREQUENCY - C, 11: 100 K I-t-+H-++t+t-t-t-+tt--t-+i-t+-t 1.0 !; "' -20 10 "r!z 1\ ~PFj ~\. Cc; ~ K I w "z~ ~ ." !ion 2.0 z 0 z FREQUENCY - At. =2kU \ \ " NO OVERSHOOT (CL:51OO pF) "- "-"' L ~ 1.0 ~ .......", 0.5 010 20 30 40 Transient Response Test Circuit ~ 506070 CLOSED LOOP VOLTAGE GAIN - Hz +15 V TA = 25"C 2()O/o OVERSHOOT ~ " Vee \. (el::; 20 pF) 1.0M 100 K Hz 10 5.0 :I! 0 10M Voltage Follower Transient Response (Gain of 1) ~ ... 0 ! 0.1 lOOK 1.0M w 20 dB Voltage Follower Large Signal Pulse Response 10 28 Vee::: ±15 V TA ; 2S"C 24 20 90% ~ I ... K 16 ~~4-----~------Vo 12 I ;. i' w ~ > ... .... :> 11 - > I "0~ I 'o5 1/221' RL V, Vee::c ±15 v eL = :> -6 RL ::: 2 k!l R,ser ME - r - -2 0 TA =25°C 100 pF V "- r OU~PUk~ ,I INPUT/ =r-- cr !", " Cc=30pF ['y :I ;, <10 .. 3 -10 0.5 1.0 1.5 2.5 2.0 TIME - TIME -).JS Output Resistance vs Frequency Common Mode Rejection Ratio vs Frequency 600 100 Vee = ±15 v !/l TA =25"C 0 I ~ z 0 w 400 0 ~ I 90 z ;:: 80 \. 70 \. 60 id so 300 a: ....... / :> 200 :> ;;J a: l!l0 \ 40 :I! 30 0 20 0 0 10 \. z 0 100 ''"" 0 100 1.0 K 10 K FREOUENCY - Hz 100 K l.oM .1 Vee =±15VTA =25"C CL =30pF_ ~ I 500 ~ - RL =2kO C'SiPi- 10 100 1.0 K 10 K 100 K 1.0M 10 M FREQUENCY _ Hz 7-125 ~s \ ~ JlA748 Test Circuits Feed Forward Compensation Large Signal Feed Forward Transient Response 10 10 kll r-~CC~±I~V RL ;10 7.5 =10pF r-~L "'25°C TA r 10 kll >--<....._p--Vo \ 3.0 kll -2.5 150 pF o 2 RESPONSE TIME -,.s Voltage Offset Null Circuit Suggested y+ 10 Mil Alternate y- 5.1 Mil 25 kll 7-126 J.lA748 Typical Applications Pulse Width Modulator Rl R2 ~~'V _-'l00'MkO,..-......_ _ _ _ _ _... l00WkO~ +15 V -15 V ,---+--Vo R3 C1 0.47 ~F 10 kO J. R' 100 k!l 01 6.2V RS 100 !l 02 6.2 V Practical Dlfferentiator Circuit for Operating the j.tA748 Without a Negative Supply C2 Rl R2 R2 +15 v -15 V +ZOV V, >8'--_-VO R3 1 Ie = 211' R2 C1 1 Ih = 211' Rl Cl fc < fh < funity 211' R2 C2 gain 7-127 p.A759 • p.A77000 FAIRCHILD Power Operational Amplifiers A Schlumberger Company Linear Division Operational Amplifiers Description The pA759 and pA77000 are high performance monolithic operational amplifiers constructed using the Fairchild Planar Epitaxial process. The pA759 provides 325 mA and the pA 77000 provides 250 mA output current and feature small signal characteristics better than the fJA741. The amplifiers are designed to operate from a single or dual power supply with the input common mode range including the negative supply. The high gain and high output power provide superior performance whenever an operational amplifier is needed. The pA759 and pA77000 employ internal current limiting, thermal shutdown, and safe-area compensation making them essentially indestructible. These amplifiers are intended for a wide range of applications including voltage regulators, audio amplifiers, servo amplifiers, and power drivers. • Output Current p.A759 - 325 mA Minimum p.A77000 - 250 mA Minimum • Internal Short Circuit Current Limiting • Internal Thermal Overload Protection • Internal Output Transistors Safe-Area Protection • Input Common Mode Voltage Range Includes Ground Or Negative Supply Connection Diagram 8-Lead Metal Package (Top View) NC vLead 4 connected to case. Order Information Device Code fJA759HM fJA759HC Package Code 5W 5W Package Description Metal Metal Connection Diagram TO-202 Package (Top View) Absolute Maximum Ratings Storage Temperature Range Metal Can Power Watt Operating Junction Temperature Range Extended (pA759M) Commercial (pA759C, pA77000C) Lead Temperature Metal Can (soldering, 60 s) Power Watt (soldering, 10 s) Internal Power Dissipation 1 Supply Voltage Differential Input Voltage Input Voltage2 -65°C to + 175°C -65°C to + 150°C -55 to + 150°C O°C to + 125°C Order Information Device Code fJA759U1C fJA77000U1C Internally Limited ±18 V 30 V ± 15 V Notes 1. Although the internal power dissipation is limited. the junction temperature must be kept below the maximum specified temperature in order to meet data sheet specifications. To calculate the maximum junction temperature or heat sink required, use the thermal resistance values which follow the Electrical Characteristics Table. 2. For a supply voltage less than 30 V between V+ and V-. the absolute maximum input voltage is equal to the supply voltage. 7-128 Package Code 8Z 8Z Package Description Power Watt Power Watt p.A759 • p.A77000 Equivalent Circuit -IN +IN--~--~-----+-----4---4--------~ -OFFSET NULL + OFFSET NULL Note All resistor values in ohms. --------------_-.=,"".;;.-;'---------------...---7-129 J.LA759 • J.LA77000 p.A759 Electrical Characteristics TJ = 25°C. Vee = ± 15 V. unless otherwise specified. Symbol Characteristic Condition Min Typ Max Unit VIO Input Offset Voltage 1.0 3.0 mV 110 Input Offset Current 5.0 30 nA liB Input Bias Current 50 150 nA Rs<:10 kil ZI Input Impedance Icc Supply Current 0.25 VIR Input Voltage Range los Output Short Circuit Current IVcc-vo1=30 V 10 PEAK Peak Output Current 3.0 V<:lvcc-vo1<:10 V 1.5 12 +13 to V- Avs Large Signal Voltage Gain TR Transient Response I Rise time I Overshoot RL>50 il. Vo=±10 V ±325 50 RL = 50 il. Av = 1.0 Mil 18 mA +13 to V- V ±200 mA ±500 mA 200 V/mV 300 ns 5.0 % SR Slew Rate RL = 50 il. Av = 1.0 0.6 Vlp.s BW Bandwidth Av= 1.0 1.0 MHz The foliowing specifications apply for -55°C <: TJ <: + 150°C VIO Input Offset Voltage 110 Input Offset Current Rs<:10 kil 4.5 mV 60 nA liB Input Bias Current CMR Common Mode Rejection Rs<:10 kil 80 100 dB PSRR Power Supply Rejection Ratio Rs<:10 kil 80 100 dB 25 200 V/mV ±10 ± 12.5 300 Avs Large Signal Voltage Gain RL>50 il. Vo=±10 V VOP Output Voltage Swing RL =50 il 7-130 nA V fJ.A759 • fJ.A77000 IlA759C Electrical Characteristics TJ = 25°C, Vee = ± 15 V, unless otherwise specified. Symbol Characteristic VIO Input Offset Voltage 110 Condition Min Typ Max Unit 1.0 6.0 mV Input Offset Current 5.0 50 nA lis Input Bias Current 50 250 ZI Input Impedance Icc Supply Current VIR Input Voltage Range Rs";; 10 kn 1.5 +13 to V- +13 to V- V ±200 mA 12 los Output Short Circuit Current IVcc-vo1=30 V 10 PEAK Peak Output Current 3.0 v,,;;lvcc-vok10 V Avs Large Signal Voltage Gain RL > 50 n, Vo = ± 10 V TR Transient Response I I Rise time nA 0.25 Mn 18 mA ±325 ±500 25 200 V/mV 300 ns RL = 50 n, Av = 1.0 Overshoot mA 10 % SR Slew Rate RL = 50 n, Av = 1.0 0.5 V//ls BW Bandwidth Av = 1.0 1.0 MHz The following specifications apply for 0°";; TJ";; + 125°C VIO Input Offset Voltage 110 Input Offset Current lis Input Bias Current CMR Common Mode Rejection Rs";;10 kn 7.5 mV 100 nA 400 Rs";; 10 kn 70 100 nA dB PSRR Power Supply Rejection Ratio Rs";;10 kn 80 100 dB Avs Large Signal Voltage Gain RL>50 n, Vo=±10 V 25 200 V/mV VOP Output Voltage Swing RL = 50 n ±10 ± 12.5 7-131 V IlA759 • IlA77000 1JA77000 Electrical Characteristics TJ = 25°C, Vee = Symbol ± 15 V, unless otherwise specified. Characteristic VIO Input Offset Voltage 110 Input Offset Current lis Input Bias Current ZI Input Impedance Condition Min Rs';;;l0 kn Icc Supply Current VIR Input Voltage Range los Output Short Circuit Current IVcc-v01=30 V Typ mV 5.0 50 nA 50 250 1.5 +13 to V- +13 to V- V ±200 mA 18 mA ±400 200 V/mV = 1.0 300 ns 10 % = 1.0 0.5 VI/1s 1.0 MHz 3.0 V.;;;lvce-vol.;;;lO V Large Signal Voltage Gain RL;;'50 n, Vo=±10 V TR Transient Response SR Slew Rate RL BW Bandwidth Av = 1.0 n, Av Mn 25 Peak Output Current = 50 nA 0.25 ±250 10 PEAK Avs RL = 50 n, Av Unit 8.0 12 I Rise time I Overshoot Max 1.0 mA The following specifications apply for 0·';;; TJ .;;; + 125°C VIO Input Offset Voltage Rs';;;10 kn 10 mV 110 lis Input Offset Current 100 nA Input Bias Current 400 CMR Common Mode Rejection Rs';;; 10 kn 70 100 nA dB PSRR Power Supply Rejection. Ratio Rs';;;l0 kn 80 100 dB Avs Large Signal Voltage Gain RL;;'50 n, Vo=±10 V 25 200 V/mV VOP Output Voltage Swing RL = 50 n ±10 ± 12.5 7-132 V tJ.A759 • tJ.A7700a Package Typ Max Typ Max Mounting Hints IiJC °C/W IiJC °C/W IiJA °C/W IiJA °C/W Metal Can Package (/lA759HChIA759HM) The /lA75[) in the S·Lead TO·99 metal can package must be used with a heat sink. With ± 15 V power supplies, the !lA759 can dissipate up to 540 mW in its quiescent (no load) state. This w0U1d result in a 100°C rise in ohip temperature to 125°C (assuming a 25°C ambient temperature). In order to avoid this problem, it is advisable to use either a slip on or stud mount heat sink with this package. If a stud mount heat sink is used, it may be necessary to use insulating washers between the stud and the chassis because the case of the !lA759 is internally connected to the negative power supply terminal. Power Watt (U1) S.O 12 75 SO Metal Can (H) 30 40 120 150 TJMax-TA POMax= Ii or JC + IiCA = TJMax-TA (Without a heat sink) IiJA IiCA = lics + liSA Power Watt Package (!lA7""1C//lA77000U1C) The !lA759U1C and !lA77000U1C are designed to be attached by the tab to a heat sink. This heat sink can be either one of the many heat sinks which are commercially available, a piece of metal such as the equipment chassis, or a suitable amount of copper foil as on a double sided PC board. The important thing to remember is that the negative power supply connection to the op amp must be made through the tab. Furthermore, adequate heat sinking must be provided to keep the chip temperature below 125 C under worst case load and ambient temperature conditions. Solving TJ: TJ = TA + PD(IiJC + IiCA) or = TA + POIiJA (Without a heat sink) Where: TJ = TA = PD = IiJA = IiJC = IiCA = lics = liSA = Junction Temperature Ambient Temperature Power Dissipation Junction to ambient thermal resistance Junction to case thermal resistance Case to ambient thermal resistance Case to heat sink thermal resistance Heat sink to ambient thermal resistance Q Typical Performance Curves Frequency Response For Various Closed Loop Gains 100 ..... ~ C 90 80 70 "w 80 .g 40 "~ 0 > .... .,0w - , " 100 90 'll "\ ~ I\. 50 "w "~ \ "' 30 .. .. 10 g u "' -10 101 102 103 104 r- '\ 80 ."'-. 70 80 I I "\. "\. \ 50 ./' \ 40 105 FREQUENCY·Hz \. , 1\ 106 > 30 § 20 z w 10 0 0 Output Voltage vs Frequency /~AIN I\. 0 .\ 20 100 Open Loop vs Frequency Response \ "\. '" -10 107 100 101 1()2 103 104 80 105 60 40 20 >'t. 25 i!lc !:i0 20 E " ...> 50 10 -40 "I' 10' 107 103 104 FREQUENCY·Hz FREQUENCY-Hz $ 7-133 ~ -20 \. 106 AL = SOO TA = 25°C 30 140 100 \, v~cl ~\!v 160 PHA.k- 120 "'- 3' 180 105 10' p.A759 • p.A77000 Typical Performance Curves (Cont.) Output Voltage vs Load Resistance II 30 >'t. Vee = :t15V ~~- is'C 25 IIIc ~ > .... i.... "0 20 15 /I II, i //\ Vi TJ;,lsor V I I 10 / II -2 -4 Vee = :t15V 10 1000 20 40 ~O 30 30 40 50 20 I 10 I 25"f -6 100 'E \ I = RL SOO TAl; / RISE TIME 0.22 Il. km 0.2 60 0.4 0.6 0.8 1.0 1.2 1.4 TlME-",_ TIME-"" LOAD RESISTANCE-O AL .. SOO ~~~~- 90% 1\ I \ INPUT .... I 50 ~ OUTPUT Vee - :t15V r, 80 ~ / ,,-: \, 10 Voltage Follower Transient Response Voltage Follower Large Signal Pulse Response f'CO,251OF Total Harmonic Distortion vs Power Output Total Harmonic Distortion vs Frequency 10 10 Vee = :15V RL = SOO ~ Vee = :18V (320) 2O""_p ~ I I I Vee III :t12V(160,80) f= 1kHz, 1.0 1.0 0.1 I f- If- .0 :;! .... Av III: 20dB -1~1= J..I " I II 1 I I RL 80 - 160 .01 .001 .01 .02 103 , / 320 e III I I Vc6 ~ ~j5V TA-WC I Av= 1 0.1 103 I ~.... yj Input Noise Voltage vs Frequency .05 0.1 0.2 0.5 1.0 2 5 100 10 10' POWER OUTPUT·W FREQUENCY-Hz FREQUENCY-Hz """''''''' Noise Current vs Frequency , Vee III: ±15V TA-we ~ ILl ~ 700 c E i 800 800 10 ..... 100 !iw I r-..... 800 PowItr supply-single 36 V Temperature TJ = 2SOC , 500 B !:: 400 c .......... , r--..... .......... ........ .......... u I'-.. I'i 300 . 200 ~:I: 500 5 400 .... 300 0 200 a: a: :> u , .......... ~ :> "c ~ -- V E :> 10- Peak Output Current vs Output Voltage Short Circuit Current vs Junction Temperature ./ /' V 100 100 •, 102 103 FREQUENCY·Hz -so so 100 JUNCnoN TEMPERATURE - °C 7-134 lSO 12 18 24 OUTPUT VOLTAGE.V 30 36 J1A759· J1A77000 Offset Null Circuit Paralleling p.A759 Power Op Amps V, --'VIIV-_-f 0.50 Vo 0.50 Audio Applications Low Cost Phono Amplifier C2 10pF R3 25k ,~~~t}~ 1-= CARTRIDGE .1 ":'" -= -= Headphone Amplifier v, 25k 1,.F 180pF 22k 10k 2.2k Note 1. All resistor values in ohms. 7·135 Speaker Impedance (ohms) Output Power (watts) Min Supply (volts) (volts) 4 8 16 32 .18 .36 .72 1.44 9 12 15 25 2.4 4.8 9.6 19.2 Vop.p JiA759 • JiA77000 Bi-Directional Intercom System Using the /lA759 Power Op Amp +12 V 2k + 10~ +12V 160 -12V TONE CONTROL (OP1'lONAL) Features Circuit Simplicity 1 Watt of Audio Output Duplex operation with only one two-wire cable as interconnect. Note 1. All resistor values in ohms. 7-136 IlA759 • IlA77000 High Slew Rate Power OP Ampl Audio Amp AG Servo Amplifier - Bridge Type C 5k 50k v, ----;iil-""I\i-.,.----w..-, +28 V 300 10pF 10 k +28 V t - - - - Vo 5.1 k V,-'VV'....-........ -"""I'¥-..,...--I PO(MAX) (8 0) - 18 W 5.1 k 2 PHASE SERVOMOTOR -13V ~0.47"F 10k Features High Slew Rate 9 V/IlS High 3 dB Power Bandwidth 85 kHz 18 Watts Output Power Into an 8 Load. Low Distortion-.2%, 10 VRMS, 1 kHz Into 8 n Features Gain of 10 Use of 1lA759 Means Simple Inexpensive Circuit n Design Consideration Av>10 Design Considerations 325 mA Max Output Current Servo Applications DC Servo Amplifiers 5k 50 k V, 1 Features Circuit Simplicity One Chip Means Excellent Reliability Design Considerations 10<325 mA Note 1. All resistor values in ohms. 7-137 IlA759 • IlA77000 Regulator Applications Adjustable Dual Tracking Regulator +y,--------------, +7Y to +35 Y +Yo 1 "F 5.6 k 1% GND 2k 2"F 1 "F -V, IN !'A79MG -7Yto-35V 5.6 k 1% 25k OUT -Yo Features Wide Output Voltage Range (± 2.2 to ± 30 V) Excellent Load Regulation AVo < ± 5 mV for Alo = ±0.2 A Excellent Line Regulation AVo < ±2 mV for AVI = 10 V Note 1. All resistor values in ohms. 7·138 p.A759 • p.A77000 Regulator Applications (Cont.) 10 Amp -12 Volt Regulator 15-2~IV_"""'_ _" " " ' - - - - - - - ' R1 12 Q1 2N2907 Q2 _125 o I"F r-I R2 1~9300 I I I -=2k I --.J Q4 2N2612 R4 0.03 !l 12k Vo- 12V RS Uk R6 3k Features Excellent Load and Line Regulation Excellent Temperature Coefficient-Depends Largely on Tempco of the Reference Zener Note 1. All resistor values in ohms. 7-139 p,A771 Operational Amplifier F=AIRCHIa...D A Schlumberger Company Linear Division Operational Amplifiers Description This monolithic JFET Input Operational Amplifier incorporates well matched ion implanted JFETs on the same chip with standard bipolar transistors. The key features of this op amp are low input bias current in the sub nanoamp range plus high slew rate (13 V / p.s typically) and wide bandwidth (3.0 MHz typically). • • • • Connection Diagram 8-Lead DIP and SO-8 Package (Top View) +OFFSET NULL -IN Low Input Bias Current - 200 pA Low Input Offset Current - 100 pA High Slew Rate - 13 V I p.s Typically Wide Bandwidth - 3.0 MHz Typically Absolute Maximum +IN v- Ratings Storage Temperature. Range Ceramic DIP Molded DIP and SO-8 Operating Temperature Range Extended (pA771 AM, pA771BM) Commercial (pA771C, pAn1AC, pA771BC, pA77tLC) Lead Temperature Ceramic DIP (soldering, 60 8) Molded DIP and S0-8 (soldering, lOs) Internal Power Di8sipation 1,2 8l,..CeramiC DIP 8L-Molded DIP SO-8 Supply VeI1age Differential Inrt Voltage Input Voltage Output.ShortCircuit Duration OUT -OFFSET NULL CDOO761F -65·C to + 175·C -65·C to + 150°C ~55·C to + 125°C O·C to +70·C 300°C 265°C 1.30 W 0.93 W 0.81 W ±18 V 30 V ±16 V Indefinite Order Information Device Code MA771RC MA771SC pA771TC pA771ARM pA771ARC pA771ASC pA771ATC pA771BRM pA771BRC pA771BSC pA771BTC MA771LRC pA771LSC pA771 LTC Notft 1. TJ _=150"C lor the MOldlld OIPai"ld so.e, and 17SoC for the CeiarI1ie OIP. 2 . Rltlingsapplyto .ambl$t11:1!1tnperalure4t25°C•. AbOve this temperature, detatethe 8L·Qeramic 011> at fn rrNVN;,. the SL-Moided DIP at 7.5.mwrC~andtheSO-8 at6.5mWrC. 3. unless0th9/Wise speCified theab.soIut& maximum negative input voltage 1$ equal to tht\ negative powersupptyvOltage:. , we 7-140 Package Code 6T KC 9T 6T 6T KC 9T 6T 6T KC 9T 6T KC 9T Package Description Ceramic DIP Molded Surface Mount Molded DIP Ceramic DIP Ceramic DIP Molded Surface Mount Molded DIP Ceramic DIP Ceramic DIP Molded Surface Mount Molded DIP Ceramic DIP Molded Surface Mount Molded DIP IlA771 Equivalent Circuit r---------------~----------~~~--------~----------------------.-----~----~v+ J6 R5 OUT Q24 R8 R18 ~-4____~--t_~--~~~~--~~--~------~~--------------~-----+--~v- OFFSET NULL + OFFSET NULL 7-141 IlA771 MA771 and MA771L Electrical Characteristics T A = 25°C, Vee = ± 15 V, unless otherwise specified. DC Characteristics p.A771 Symbol Characteristic Condition Via Input Offset Voltage 110 Input Offset Current1 VCM=O V, TJ=25°C liB Input Bias Current1 VCM = 0 V, TJ = 25°C 21 Input Impedance Icc Supply Current los Output Short Circuit Current Avs Large Signal Voltage Gain Min Typ VCM = 0 V, Rs = 50 n 50 p.A771L Max Unit 10.0 15.0 mV 100 100 pA 200 pA Max Min 200 Typ 50 1012 1012 2.8 2.8 25 Va = ± 10 V, RL > 2.0 kn 50 100 n 50 mA 25 mA 100 V/mV The following specifications apply for O°C';;;; TA .;;;; + 70°C, Vcc = ± 15 V Via Input Offset Voltage VCM = 0 V, Rs = 50 n /lVlo//lT Input Offset Voltage Temperature Sensitivity Rs=50n 110 Input Offset Current1 VCM =0 V 4.0 4.0 liB Input Bias Current1 VCM =0 V 8.0 8.0 nA 3.0 3.0 mA 20 13 10 10 mV /lVrC nA Icc Supply Current CMR Common Mode Rejection VIR Input Voltage Range PSRR Power Supply Rejection Ratio Vcc=±10 V to ±18 V, Rs=50n 70 70 dB Avs Large Signal Voltage Gain Vo=±10 V, RL>2.0 kn 25 25 V/mV VoP Output Voltage Swing RL = 10 kn ±12 ±12 RL = 2.0 kn ±10 ±10 VCM = ± 11 V, Rs = 50 n 70 ± 11 7-142 70 +15 -12 ± 11 dB +15 -12 V V f.lA771 MA771A and MA771B Electrical Characteristics TA = 25 DC, Vee = ± 15 V, unless otherwise specified. DC Characteristics IlA771 A Symbol Characteristic Condition Via Input Offset Voltage VCM = 0 V, Rs = 50 110 Input Offset Current 1 VCM = 0 V, TJ = 25°C Current 1 lis Input Bias ZI Input Impedance Icc Supply Current los Output Short Circuit Current Avs Large Signal Voltage Gain Min Typ n 50 VCM = 0 V, TJ = 25°C IlA771B Max Max Unit 2.0 Min 5.0 mV 50 50 pA 100 pA 2.8 mA 100 Typ 50 2.8 25 Vo=±10 V, RL;;'2.0 kn 50 n 10 12 1012 100 50 25 mA 100 V/mV The following specifications apply for 0°C 2.0 kn 50 50 V/mV VOP Output Voltage Swing RL = 10 kn ±12 ±12 RL = 2.0 kn ±10 ±10 50 100 50 1012 1012 2.S ± 11 The following specifications apply for -55°C < TA < + 125°C, ± 11 +15 -12 n +15 -12 V V VCC = ± 15 V VIO Input Offset Voltage VCM = 0 V, Rs = 50 n ~Vlo/~T Input Offset Voltage Temperature Sensitivity Rs=50 n S.O 110 Input Offset Current 1 VCM =0 V 20 20 nA liS Input Bias Current1 VCM = 0 V 50 50 nA 3.4 rnA 5.0 10 mV JlVo IC 10 Icc Supply Current CMR Common Mode Rejection VCM=±11 V, Rs=50 n SO SO dB PSRR Power Supply Rejection Ratio Vcc=±10 V to ±1S V, Rs = 50 n SO SO dB Avs Large Signal Voltage Gain Vo = ± 10 V, RL>2.0 kn 25 25 V/mV VOP Output Voltage Swing RL = 10 kn ±12 ±12 RL = 2.0 kn ±10 ±10 3.4 7·144 V p.A771 J.LA771 (Cant.) Electrical Characteristics TA = 25°C, = ± 15 Vee V, unless otherwise specified. AC Characteristics All Grades Symbol Characteristic Condition Min Typ Max Unit BW Bandwidth (Figure 2) Av = -10 3.0 SR MHz Slew Rate (Figure 1) 13 V//ls en Input Noise Voltage Rs = 100 [2, f = 1000 Hz 16 nV/YHz in Input Noise Current f = 1000 Hz 0.01 pA/YHz Note operation the junction temperature rises above the ambient temperature as a result of internal power dissipation, Po· T J =TA + 8JA PO where 8JA is the thermal resistance from junction to ambient. Use of a heat sink is recommended if input bias current is to be kept to a minimum. 1. The input bias currents are junction leakage currents which approximately double for every 1aoc increase in the junction temperature, TJ. Due to limited production test time, the input bias currents measured are correlated to junction temperature. In normal Typical Performance Curves Output Voltage Swing vs Load Resistance 140 0 Vee I", :l:15V TA = 25°C ~ 25 / II > C> z 20 ~ 15 V "I 100 h o . > 0 ~ '" ~ o ~ g S z & ./ 5 O.S 0.1 5.0 1.0 OUTPUT LOAD· 10 32 12 ::I f\ 100 K 1.0M "' '" ~180 ~ '-, "\ 10 100 "'" 2. .. 5 '" 4 ~ 3 V '"C> < 2 ~ 1 z 10M • -75 / . ....~" , . > 7 i7 0 o o 20 15 10 Hz SUPPLY VOLTAGE • ±v Slew Rate vs Temperature 7 III v z !j; ::I 1.0K 10K 100K 1.0M 10M 100M ~ '"a:C> ~135 ~ 11: 20 8a: < 0 FREQUENCY - Hz "' ~ . ~ 10 K ~'"'1-" '," ...g ,. 1.0 K \'"Q ::l 25 20 o "-9. ·90 Gain Bandwidth Product vs Temperature !;! RL = 1OkO TA = 25°C ~ 24 ::I "' FREQUENCY v~J lUv 28 ....'" 60 n Maximum Undistorted Output vs Frequency z !j; PHASE "- ·20 1.0 0 C> "'~ 80 0. > ·45 .. 4. / ~ !; . 3. III I !:; > 40 120 C> '"~ Output Voltage Swing vs Supply Voltage Open Loop Frequency Response v.!c = ~'5V 20 ..... 1'-.. "- r-......... ......... ......... ~50 ~25 "'" r---.. t--.... I 25 r- t-- SO TEMPERATURE -"C 7-145 75 100 10 125 5 -75 -so -25 25 "'" f""-.... .... 50 TEMPERATURE-OC 75 100 125 p.A771 Typical Performance Curves (Cont.) Input Bias Current vs Case Temperature Small Signal Pulse Response 70 Vee > E "~ 0 > 30 20 0 10 (\ 90%/ T V I 40 .... i.... 100M TA = 25"C 50 ,;, = ±15V RL= 20 CL = 100pF 60 L ::> 10% / r-- r5 a: 50 ~ m 100 i ~ 100 125 150 175 ",V - 15 E > w g ~~ ~# o~ :& z ~~ &Ci 5 o o 10 15 SUPPl y VOLTAGE - ±V 20 ~ 4.0 a: § o o '!;! It 5 / 0 50 75 100 125 o !i sz ......... 3.0 - r- ~ 2.0 ::> "'1.• -so -25 25 50 TEMPERATURE·OC 7-146 75 o -1 TIME AFTER POWER SUPPLY TURN-ON _ MINUTES 1 5.• 100 :& :& o V / '" 0 ..'" 150 u"/ / z 0 10 :& :& 0 '!;! ~ V 0 :& 25 v,!, = ;,5V w w 0 V ,/ /' Supply Current vs Temperature 20 > w /' / CASE TEMPERATURE - °C Maximum Common Mode Input Voltage vs Supply Voltage C V V TIME Mn. ""~ 1 '50 '" 10K a: ,I 75 G ij 1.0K RISEn'ME = 60 os vc~ = .},5V TAo = 25 e / .... 1.0 25 200 Vc~ = .,',5V l100K j/ -10 -25 Bias Current Warm up Change 100 125 JlA771 Test Circuit Input Offset Voltage Null Circuit v- Typical Applications Figure 1 Unity Gain Amplifier Figure 2 Gain-of-10 Inverting Amplifier lOkI! 1 kl! V,-W..------1 V, RL 2 kll RL 2kU O'I01t31F 7-147 iJ.A772 Dual Operational Amplifier FAIRCHIL.D A Schlumberger Company Linear Division Operational Amplifiers Description This monolithic JFET Input operational amplifier incorporates well matched ion implanted JFETs on the same chip with standard bipolar transistors. The key features of this op amp are low input bias current in the sub nanoamp range plus high slew rate (13 V/ IlS typically) and wide bandwidth (3.0 MHz typically). • • • • Connection Diagram 8-Lead DIP and SO-8 Package (Top View) v+ aUTB Low Input Bias Current - 200 pA Low Input Offset Current - 100 pA High Slew Rate-13 V/jJ.S Typically Wide Bandwidth - 3.0 MHz Typically +INA -INB +INS Absolute Maximum Ratings Storage Temperature Range Ceramic DIP Molded DIP and SO-8 Operating Temperature Range Extended (IlA772AM, p.A772BM) Commercial (p.A772C, p.A772AC, p.A772BC, p.A772LC) Lead Temperature Ceramic DIP (soldering, 60 s) Molded DIP and SO-8 (soldering, 10 s) Internal Power Dissipation 1. 2 8L-Ceramic DIP 8L-Molded DIP SO-8 Supply Voltage Differential Input Voltage Input VoltageS Output Short Circuit Duration -65°C to + 175°C -65°C to + 150°C - 55°C to + 125°C O°C to +70°C 300°C 265°C 1.30 W 0.93 W 0.81 W ±18 V 30 V ±16 V Indefinite Order Information Device Code p.A772RC p.A772SC p.A772TC p.A772ARM p.A772ARC p.A772ASC p.A772ATC p.A772BRM p.A772BRC p.A772BSC p.A772BTC IlA772LRC IlA772LSC IlA772LTC Notes 1. TJ Max = IS0·C for the Molded DIP and SO·B. and 17S·C for the Ceramic DIP. 2. Ratings apply to ambient temperature at 2S·C. Above this temperature, derate the Bl-Ceramic DIP at B.7 mWrC, the Bl-Molded DIP at 7.5 mWrC, and the SO-B at 6.5 mWrC. S. Unless otherwise specified the absolute maximum negative input voltage is equal to the negative power supply voltage. 7-148 Package Code 6T KC 9T 6T 6T KC 9T 6T 6T KC 9T 6T KC 9T Package Description Ceramic DIP Molded Surface Mount Molded DIP Ceramic DIP Ceramic DIP Molded Surface Mount Molded DIP Ceramic DIP Ceramic DIP Molded Surface Mount Molded DIP Ceramic DIP Molded Surface Mount Molded DIP IlA772 Equivalent Circuit (112 of Circuit) r---------------~----------~~._--------~----------------------._----~----~v+ Rl R2 r-~~~-----------r-Q3 J6 RS R16 L-~~--~~--~--~--~------~~--_4--------+_--------------_+------~--4_v- 7-149 IlA772 ~772 and MA772L Electrical Characteristics T A = 25°C, Vee = ± 15 V, unless otherwise specified. DC Characteristics iJ.A772L J.LA772 Symbol Characteristic Condition Min Typ Max Min Typ Max Unit VIO Input Offset Voltage VCM = 0 V, Rs = 50 Q 10.0 15.0 mV 110 Input Offset Current1 VCM = 0 V, TJ = 25°C 100 100 pA lis Input Bias Current1 VCM=O V, TJ=25°C 200 pA 2.8 mA ZI Input Impedance Icc Supply Current (Per Amplifier) los Output Short Circuit Current Avs Large Signal Voltage Gain 50 200 50 10 12 10 12 2.8 25 Vo=±10 V, RL~2.0 kQ 50 100 50 Q 25 mA 100 V/mV The following specifications apply for Vcc = ± 15 V, O°C ~ TA ~ + 70°C VIO Input Offset Voltage VCM = 0 V, Rs= 50 Q 13 20 !;,.VloI!;,.T Input Offset Voltage Temperature Sensitivity Rs=50 Q 110 Input Offset Current1 VCM = 0 V 4.0 VCM =0 V 8.0 8.0 nA 3.0 3.0 mA 10 mV iJ.V/oC 10 4.0 nA lis Input Bias Current 1 Icc Supply Current (Per Amplifier) CMR Common Mode Rejection VIR Input Voltage Range PSRR Power Supply Rejection Ratio Vcc=±10 V to ±18 V, Rs=50 Q 70 70 dB Avs Large Signal Voltage Gain Vo = ± 10 V, RL~2.0 kQ 25 25 V/mV VOP Output Voltage Swing RL = 10 kQ ±12 ±12 RL = 2.0 kQ ±10 ±10 VCM = ± 11 V, Rs = 50 Q 70 ± 11 7-150 70 +15 -12 ± 11 dB +15 -12 V V pA772 MA772A and MA772B Electrical Characteristics TA = 25°C, Vee = ± 15 V, unless otherwise specified. DC Characteristics JiA772B JiA772A Symbol Via Characteristic Condition Input Offset Voltage VCM = 0 V, Rs = 50 Current 1 110 Input Offset liB Input Bias Current 1 ZI Input Impedance Icc Supply Current (Per Amplifier) los Output Short Circuit Current Avs Large Signal Voltage Gain Min Typ kn Max Min Typ 2.0 50 VCM = 0 V, TJ = 25°C 50 VCM = 0 V, TJ = 25°C 50 100 2.8 50 mV 50 pA 100 pA n 2.8 25 kn Unit 5.0 10 12 1012 Vo=±10 V, RL;;'2.0 Max 100 50 mA 25 mA 100 V/mV The following specifications apply for O°C < TA < + 70°C, Vcc = ± 15 V n Via Input Offset Voltage VCM = 0 V, Rs = 50 iJ.VloliJ.T Input Offset Voltage Temperature Sensitivity Rs= 50 110 Input Offset Current1 VCM =0 V 2.0 2.0 nA liB Input Bias Current1 VCM =0 V 4.0 4.0 nA Icc Supply Current (Per Amplifier) 3.0 3.0 mA CMR Common Mode Rejection VIR Input Voltage Range PSRR Power Supply Rejection Ratio Rs=50 ± 18 V Avs Large Signal Voltage Gain Vo=±10V, RL;;' 2.0 VoP Output Voltage Swing RL = 10 Rs=50 4.0 n n, VCM=±11 V 80 ± 11 RL = 2.0 n, 7.0 10 Vcc=±10 V to kn kn kn 7-151 dB 80 +15 -12 ± 11 mV JiV/oC 10 +15 -12 V 80 80 dB 25 25 V/mV ±12 ±12 ±10 ±10 V J.lA772 J.LA712AM and J.LA712BM Electrical Characteristics TA = 25°C, Vee = ± 15 V, unless otherwise specified. DC Characteristics JlA772BM J..LA772AM Symbol Characteristic Condition VIO Input Offset Voltage VCM = 0 V, Rs = 50 .11 110 Input Offset Current 1 VCM = 0 V, TJ = 25°C liS Input Bias Current1 VCM = 0 V, TJ = 25°C ZI Input Impedance Icc Supply Current (Per Amplifier) VIR Input Voltage Range Min Typ Max Min Typ 2.0 50 50 100 Unit 5.0 mV 50 pA 50 100 pA 2.8 rnA .11 10 12 1012 2.8 ± 11 V, Rs = 50 .11 Max +11 +15 +11 +15 -11 -12 -11 -12 V 80 80 dB Vcc=±10 V to ±18 V, Rs = 50 .11 80 80 dB large Signal Voltage Gain Vo=±10 V, RL;;;' 2.0 k.l1 50 50 V/mV Output Voltage Swing RL = 10 k.l1 ±12 ±12 RL = 2.0 k.l1 ±10 ±10 CMR Common Mode Rejection VCM = PSRR Power Supply Rejection Ratio Avs VOP V The following specifications apply for Vcc = ± 15 V, -55°C <; TA <; 125°C Via Input Offset Voltage VCM = 0 V, Rs <; 50 .11 LiVia/LiT Input Offset Voltage Temperature Sensitivity Rs = 50 .11 110 Input Offset Current 1 VCM = 0 V 20 20 liS Input Bias Current 1 VCM= 0 V 50 50 nA Icc Supply Current (Per Amplifier) 3.4 3.4 rnA CMR Common Mode Rejection VCM = ± 11 V, Rs = 50 .11 80 80 dB PSRR Power Supply Rejection Ratio Vcc=±10 V to ±18 V, Rs = 50 .11 80 80 dB Avs large Signal Voltage Gain Vo=±10 V, RL;;;' 2.0 k.l1 25 25 V/mV VOP Output Voltage Swing RL = 10 k.l1 ±12 ±12 RL = 2.0 k.l1 ±10 ±10 5.0 8.0 7-152 mV JlVo/C 10 10 nA V MA772 Electrical Characteristics (Cont.) Vee = ± 15 V, TA = 25°C AC Characteristics All Grades Symbol Characteristic Typ Min Condition Max Unit 3.0 BW Bandwidth (Figure 2) Av -10 SR Slew Rate (Figure 1) 13 V/l1s en Input Noise Voltage Rs = 100 .11, f = 1000 Hz 16 nV/YHz in Input Noise Current f = 1000 Hz 0.01 pA/YHz = MHz Note 1. The input bias currents are junction leakage currents which approximately double for every 1DOC increase in the junction temperature, TJ. Due to limited production test time, the input bias currents measured are correlated to junction temperature. In normal operation the junction temperature rises above the ambient temperature as a result of internal power dissipation, Po. TJ = TA + 8JAPO where 8JA is the thermal resistance from junction to ambient. Use of a heat sink is recommended if input bias current is to be kept to a minimum. Typical Performance Curves Output Voltage Swing vs Load Resistance 30 Vee l= .. TA : ~'5~ =25°C z I 20 ~ - ,r 25 Cl Output Voltage Swing vs Supply Voltage . ~ / 120 III I 100 30 z ~ w 10 ~g ~ ~ .... ./ 5.0 1.0 OUTPUT LOAD· RL TA i, =1QkO =25"C .... g g 16 e~ " 12 1.0M ~ 10M , ~'"1-" w -180 ~ ~ 20 IE 'r-... 1.0 10 100 " 1.0K 10K 100K 1.0M 10M 100M FREQUENCY - Hz Slew Rate vs Temperature . 5 v~ = ~'5V 20 "'-. 4 ......... 3 r-..... 1 o -75 -50 -25 25 50 TEMPERATURE- QC 7-153 75 100 " .......... ........ ------ !z [\ 100 K 40 "'0. 7 ~ z FREQUENCY - Hz .. , "' ~ 25 ~ 24 10 K 20 15 10 Gain Bandwidth Product vs Temperature > 1.0K " ... SUPPLY VOLTAGE -:tV ~ 20 o 60 * 10 v~J lUv 28 PHASE -20 n Maximum Undistorted Output vs Frequency 32 g z ,I' 0 0.5 0.1 ;! § L/ 10 ::> o w ·45 ~ Cl / o ~ 80 ~ V 20 .... / ::> o ~ / Cl 15 ; i .... '" ~ .... ::> o 140 ~ w Cl Open Loop Frequency Response 40 .......... . . . 1"--- 10 125 ~ 5 75 ·50 25 25 50 TEMPERATURE- °C 75 100 125 IlA772 Typical Performance Curves (Cont.) Input Bias Current vs Case Temperature Small Signal Pulse Response Vee 0 .. 0 S 30 ...> = :t:15V RL=2fl CL = 100pF TA = 25°C 0 "~ 1.0M f\ / ~ 20 10 f- / ~100 '.0 0 /' V !; .. '0 ! J V /"/' ~ I--'" o -1 0 -25 25 50 75 TIME 100 125 150 = 25°C 1 150 / 10K G1.0K ,I VC~ = %1'5 V TA ... ffi II: II: RISETJME == SOns 10~/V' vo:, = "I'5V t100K r-- 90%1 T V I !; o Bias Current Warm up Change 200 0 175 25 50 75 100 125 -1 CASE TEMPERATURE _ (Ie ~". 3 4 7 TIME AFTER POWER SUPPLY TURN-ON _ MINUTES PC02911F Maximum Common Mode Input Voltage vs Supply Voltage ." .~ . . 15 v"/ ff-'" : 150 > / 0 ~~ fP '" ''o"" ... ~ 10 V / 5 5 / in ~ o o ~ Z "'!§II: 3.0 100 ~,. () 15.0 0 '" '" u ...'" <\~+.- .qoq. ~= ~'5V ~ V o o ~ Supply Current vs Temperature 20 4.0 u . .g 0 ~ 2.0 > :> ;: ........... (I) - ---I--.. 1.0 z 10 15 20 SUPPLY VOLTAGE - ±V 0 -so -25 25 50 75 100 125 TEMPERATURE -"C Typical Applications Figure 2 Gain-of-10 Inverting Amplifier Figure 1 Unity Gain Amplifier 'Ok!! , k!! V,--¥./Ir......_-I V, Cl Al 100 pF 2 kH Al 2k!! 7-154 JlA774 Quad FAIRCHILD A Schlumberger Company Operational Amplifier Linear Division Operational Amplifiers Description Connection Diagram 4-Lead DIP and 50-14 Package (Top View) This monolithic JFET Input Operational Amplifier incorporates well matched ion implanted JFET on the same chip with standard bipolar transistors. The key features of this op amp are low input bias current in the sub nanoamp range plus high slew rate (13 V I IlS typically) and wide bandwidth (3.0 MHz typically). • • • • OUT A Low Input Bias Current - 200 pA Low Input Offset Current -100 pA High Slew Rate-13 VIIlS Typically Wide Bandwidth - 3.0 MHz Typically -IN A -IN 0 +IN A +IN 0 v- v+ +IN B +IN C -IN B -IN C Absolute Maximum Ratings Storage Temperature Range Ceramic DIP Molded DIP and SO-14 Operating Temperature Range Extended (J1A774M, IlA774BM) Commercial (J1A774C, IlA774BC, IlA774LC) Lead Temperature Ceramic DIP (soldering, 60 s) Molded DIP and SO-14 (soldering 10 s) Internal Power Dissipation 1, 2 14L-Ceramic DIP 14L-Molded DIP SO-14 Supply Voltage Differential Input Voltage Input Voltage 3 Output Short Circuit Duration -65°C to + 175°C -65°C to + 150°C OUT C Order Information Device Code IlA774DM I.lA774DC IlA774PC IlA774SC IlA774BDM IlA774BDC IlA774BPC IlA774LDC IlA774LPC 1.36 W 1.04 W 0.93 W ± 18 V 30 V ± 16 V Indefinite NOles 1. TJ Max ~ 150·C for the Molded DIP and 50-14, and 175·C for the Ceramic DIP. 2. Ratings apply to ambient temperature at 25°C. Above this temperature, derate the 14L-Ceramic DIP at 9.1 the 14L-Molded DIP at 8.3 and the 50-14 at 7.5 mwrc. 3. Unless otherwise specified the absolute maximum negative input voltage is equal to the negative power supply voltage. mwrc, mwrc, 7-155 Package Code 7A 7A 9A KD 7A 7A 9A 7A 9A Package Description Ceramic DIP Ceramic DIP Molded DIP Molded Surface Mount Ceramic DIP Ceramic DIP Molded DIP Ceramic DIP Molded DIP p.A774 Equivalent Circuit (1/4 of Circuit) r---------------~----------~~._--------~----------------------~----~----~v+ Rl R2 r-~~~-----------r-Q3 J6 RS R16 ~~~--~~--_4--~~__~----~~+_--_+--------~----------------+_------+_ 7-156 __ ~v- J.l.A774 J1A774, J1A774L Electrical Characteristics TA = 25°C, Vee = ± 15 V, unless otherwise specified. DC Characteristics MA774L J.LA774 Symbol Characteristic Condition Input Offset Voltage VCM = 0 V, Rs=50 110 Input Offset Current 1 VCM = 0 V, TJ = 25°C VCM = 0 V, TJ = 25°C liB ZI Input Impedance Icc Supply Current (Per Amplifier) los Output Short Circuit Current Avs Large Signal Voltage Gain Typ n VIO Input Bias Current 1 Min 50 Max Unit 10.0 15.0 mV 100 100 pA 200 pA 2.8 mA Max Min 200 Typ 50 1012 2.8 25 Vo=±10 V, RL=2.0 kn 50 n 10 12 100 50 25 mA 100 V/mV The following specifications apply for O°C < TA < + 70°C, Vcc = ± 15 V VIO Input Offset Voltage VCM = 0 V, Rs = 50 !::Nlol LlT Input Offset Voltage Temperature Sensitivity Rs = 50 110 Input Offset Current1 VCM =0 V Current 1 n 13 n 20 10 liB Input Bias Icc Supply Current (Per Amplifier) CMR Common Mode Rejection VIR Input Voltage Range PSRR Power Supply Rejection Ratio Vcc=±10 V to ±18 V, Rs=50 Avs Large Signal Voltage Gain Vo=±10 V, RL>2.0 VOP Output Voltage Swing RL = 10 VCM =0 V VCM = ± 11 V, Rs = 50 n 70 ± 11 kn kn RL = 2.0 kn 7-157 n 4.0 nA 8.0 8.0 nA 3.0 3.0 mA 70 +15 -12 MV/oC 10 4.0 mV ± 11 dB +15 -12 V 70 70 dB 25 25 V/mV ±12 ±12 ±10 ±10 V p.A774 JJ.A774A, JJ.A774B Electrical Characteristics TA = 25°C, Vee = ± 15 V, unless otherwise specified. DC Characteristics IJA774A Symbol Characteristic Condition V,o Input Offset Voltage VCM = 0 V, Rs = 50 kn 1'0 Input Offset Current1 VCM = 0 V, TJ = 25°C I'B Input Bias Current 1 VCM=O V, TJ=25°C Z, Input Impedance Icc Supply Current (Per Amplifier) los Output Short Circuit Current Avs Large Signal Voltage Gain Min Typ IJA774B Max Min Typ 2.0 50 50 100 50 1012 25 The following specifications apply for Vcc = ± 15 V, O°C < TA kn 50 mV 50 pA 100 pA 2.8 mA n 50 25 mA 100 V/mV < + 70°C 4.0 Input Offset Voltage VCM = 0 V, Rs = 50 LlV,ol LlT Input Offset Voltage Temperature Sensitivity Rs =50 1'0 Input Offset Current 1 VCM = 0 V I'B Input Bias Current1 VCM=O V Icc Supply Current (Per Amplifier) CMR Common Mode Rejection VIR Input Voltage Range PSRR Power Supply Rejection Ratio Vcc=±10 V to ±18 V, Rs=50 Avs Large Signal Voltage Gain Vo=±10 V, RL~2.0 VoP Output Voltage Swing RL = 10 n 7.0 10 n 80 kn kn kn 7-158 n 2.0 nA 4.0 4.0 nA 3.0 3.0 mA 80 +15 -12 mV IJV/oC 10 2.0 ± 11 RL = 2.0 100 n V,o VCM=±11 V, Rs=50 Unit 5.0 10 12 2.8 Vo=±10 V, RL~2.0 Max ± 11 dB +15 -12 V 80 80 dB 25 25 V/mV ±12 ±12 V ±10 ±10 IlA774 /JA774AM, /JA774BM Electrical Characteristics T A = 25°C, Vee = ± 15 V, unless otherwise specified. DC Characteristics iJ.A774AM Symbol Characteristic Condition Min Typ iJ.A774BM Max Min Max Unit VIO Input Offset Voltage VCM = 0 V, Rs = 50 Q 2.0 5.0 mV 110 Input Offset Current1 VCM = 0 V, TJ = 25°C 50 50 pA lis Input Bias Current 1 VCM = 0 V, TJ = 25°C 100 pA ZI Input Impedance Icc Supply Current (Per Amplifier) 2.8 mA VIR Input Voltage Range CMR Common Mode Rejection VCM = ± 11 V, Rs = 50 Q 80 80 dB PSRR Power Supply Rejection Ratio Vcc = ± 10 V to ± 18 V, Rs = 50 Q 80 80 dB Avs Large Signal Voltage Gain Vo=±10V, RL > 2.0 kQ 50 50 V/mV VOP Output Voltage Swing RL = 10 kQ ±12 ±12 RL =2.0 kQ ±10 ±10 50 100 Typ 50 1012 1012 2.8 ± 11 ± 11 +15 -12 Q +15 -12 V V The following specifications apply for -55°C';;; TA';;; + 125°C, VCC = ± 15 V Input Offset Voltage VCM=O V, Rs';;;50 Q Input Offset Voltage Temperature Sensitivity Rs =50 Q 110 Input Offset Current 1 VCM =0 V lis Input Bias Current 1 VCM = 0 V Icc Supply Current (Per Amplifier) 3.4 CMR Common Mode Rejection VCM=±11 V, Rs=50 Q 80 80 dB PSRR Power Supply Rejection Ratio Vcc=±10 V to ±18 V, Rs=50 Q 80 80 dB Avs Large Signal Voltage Gain Vo=±10 V, RL>2.0 kQ 25 25 VlmV VOP Output Voltage Swing RL = 10 kQ ±12 ±12 RL = 2.0 kQ ±10 ±10 VIO aVlo/aT 5.0 8.0 mV iJ.vo/C 20 20 nA 50 50 nA 3.4 mA 10 7-159 10 V IlA774 Electrical Characteristics (Cont.) TA = 25°C, Vee = ± 15 V AC Characteristics All Grades Symbol Characteristic Condition BW Bandwidth (Figure 2) Av = -10 SR Slew Rate (Figure 1) en Input Noise Voltage Rs = 100 in Input Noise Current f= 1000 Hz n, Min Typ Unit Max 3.0 MHz 13 V//ls 16 nV/YHz 0.01 pA/YHz f = 1000 Hz Note operation the junction temperature rises above the ambient temperature as a result of internal power dissipation, Po. TJ = TA + 8JAPo where (JJA is the thermal resistance from junction to ambient. Use of a heat sink is recommended if input bias current is to be kept to a minimum. 1. The input bias currents are junction leakage currents which approximately double for every 1COC increase in the junction temperature, TJ. Due to limited production test time, the input bias currents measured are correlated to junction temperature. In normal Typical Performance Curves Output Voltage Swing vs Load Resistance 30 Vee l= TA A I.. 25 > "i Z '" 140 ;'5~ = 25°C 120 /' II 20 ~ / I 100 ~ > .. h ~ 15 !j 50 .. 40 g 10 ~ !/ ;) I- ~ / ;) 0 PHASE '\ 0.5 0.1 ~'-", 5.0 1.0 -20 1.0 10 I I- g 8 • 20 i z I ~ 12 I- ;) o "'z 1\ ~ o lOOk FREQUENCY - Hz il: I- / K 10 I- V ;) \ 100 V g o 1.0K 10K 100K 1.0M 10M 100M 0 5 1.0M V~c = ~'5V 10M "-~ I"- ~ 3 -- ......... 2 r-- :---. ....... i'-.. ....... --....--. 10 1 0 -75 ·50 ·25 25 50 TEMPERATURE·OC 7-160 20 Slew Rate vs Temperature 20 .......... 15 10 SUPPLY VOLTAGE· ±V 6 ::c 4 16 I- 10k ; 0. i AL == 10kO TA=WC ~ 24 1.0k ~ 20 -180 ~ "10 / 25 > '" " Gain Bandwidth Product vs Temperature V~c J lUv 28 ~ FREQUENCY - Hz Maximum Undistorted Output vs Frequency 32 "' ~ 20 V "z 1-" OUTPUT LOAD - 0 "i "' ""-9, o o . I.. > 30 -45 ~ 0. l- I- 40 80 ~ 0. "" S Output Voltage Swing vs Supply Voltage Open Loop Frequency Response 75 100 125 - 5 75 50 25 25 50 TEMPERATURE·OC 75 100 125 p.A774 Typical Performance Curves (Cont.) Input Bias Current vs Case Temperature Small Signal Pulse Response 70 CL TA ~ 50 = 100pF =25"C ~ S > 30 " 20 10 ~ h / 0- o 1.0M 0- e:: ~ 60na I i. 5 ! 100 10 1.0 -10 -25 25 50 75 100 125 150 -75 175 / ... " .S 15 .d/ 10'" z ,p4' 10 :IE :IE ." 15~ g / :IE z ~~f(, 100 :IE :IE ~t; 0 > >= ~ ~~ ~ :IE 0 .. V 0 o ".> V / 5 ;; . 5 / 0 o o /~ - / V -so -25 25 50 75 100 o 125 -1 ~ lilz 10 4 TIME AFTER POWER SUPPLY TURN-ON - Supply Current vs Temperature 20 0 / CASE TEMPERATURE - DC 0- > /' V TIME -ns Maximum Common Mode Input Voltage vs Supply Voltage = we 1 150 /V 51.0K RISETIME 10'1// / ~ 10K a: a: V I YC~ = ,."5Y TA 1100 K ........ 90%f ~ .. 40 200 yo:, = ,.',5Y Vee = :t15V RL = 20 60 Bias Current Warm Up Change 20 15 SUPPL y VOLTAGE - ±V 0 ,J, = ,.'15Y t 5.0 ~ 4.0 ::l ......... !Po .."" ~ - t- 2. 0 '"I. 0 ·50 -25 25 so 75 100 125 TEMPERATURE - "C Typical Applications Figure 1 Unity Gain Amplifier Figure 2 Gain·of·10 Inverting Amplifier 10kH CL '00 pF AL AL 2 kll 2kn -::- 7-161 6 MINUTES J.lA776 FAIRCHILD Multi-Purpose Programmable Operational Amplifier A Schlumberger Company Linear Division Operational Amplifiers Description The pA776 Programmable Operational Amplifier is constructed using the Fairchild Planar Epitaxial process. High input impedance, low supply currents, and low input noise over a wide range of operating supply voltages coupled with programmable electrical characteristics result in an extremely versatile amplifier for use in high accuracy, low power consumption analog applications. Input noise voltage and current, power consumption, and input current can be optimized by a single resistor or current source that sets the chip quiescent current for nano watt power consumption or for characteristics similar to the pA741. Internal frequency compensation, absence of latch up, high slew rate and short circuit current protection assure ease of use in long time integrators, active filters, and sample and hold circuits. • • • • • • • • • • Micropower Consumption ± 1.2 V To ± 18 V Operation No Frequency Compensation Required Low Input Bias Currents Wide Programming Range High Slew Rate Low Noise Short Circuit Protection Offset Null Capability No Latch Up Connection Diagram 8-Lead Metal Package (Top View) ISET -IN vlead 4 connected to case. Order Information Device Code pA776HM J.!A776HC Package Code 5W 5W Package Description Metal Metal Connection Diagram 8-Lead DIP (Top View) -OFFSET NULL Absolute Maximum Ratings Storage Temperature Range Metal Can Molded DIP Operating Temperature Range Extended (pA776M) Commercial (pA776C) Lead Temperature Metal Can (soldering, 60 s) Molded DIP (soldering, 10 s) Internal Power Dissipation " 2 8L-Metal Can 8L-Molded DIP Supply Voltage Differential Input Voltage Input Voltage 3 Voltage Between Offset Null and VOutput Short Circuit Duration 4 ISET (Maximum Current at ISET) VSET (Maximum Voltage to Ground at ISET) >-"':';0 OUT -65°C to + 175°C -65°C to +150°C -IN v+ +IN OUT v- -55°C to +125°C O°C to +70°C ISET +OFFSET NULL Order Information Device Code 1.00 W 0.93 W ± 18 V ±30 V ± 15 V ±0.5 V Indefinite pA776TC Package Code 9T Package Description Molded DIP 500 pA (V+ -2.0 V) 5.0 kQ VOP 180 12 3.0 200 MQ 5.0 0.75 Vo=±10 V, RL>75 kQ mV 18 VI = 20 mV, RL = 5.0 kQ, CL = 100 pF, Av= 1.0 1.6 0.35 0 10 % RL = 5.0 kQ, Av = 1.0 0.1 0.8 V/J.ls J.ls The following specifications apply -55°C < TA < + 125°C VIO Input Offset Voltage Rs< 10 kQ 6.0 6.0 mV 110 Input Offset Current TA = +125°C 5.0 15 nA lis Input Bias Current 20 120 Icc Supply Current 30 200 J.IA 0.9 6.0 mW TA=-55°C 10 40 TA = +125°C 7.5 50 TA =-55°C Pc Power Consumption CMR Common Mode Rejection VIR Input Voltage Range PSRR Power Supply Rejection Ratio Rs< 10 kQ Avs Large Signal Voltage Gain Vo=±10 V, RL >75 kQ 100 75 VOP Output Voltage Swing RL = 75 kQ ±10 ±10 Rs< 10 kQ 70 70 90 ±10 7-164 dB 90 ±10 25 150 nA V 25 150 J.lV/v V/mV V J1A776 IlA776 Electrical Characteristics T A = 25°C, Vee = ± 3.0 V, unless otherwise specified. ISET = 1.51lA Symbol Characteristic Condition Min Typ Max 2.0 5.0 ISET = 15J.LA Min Typ Max Unit 2.0 5.0 mV Via Input Offset Voltage Via adi Input Offset Voltage Adjustment Range 9.0 110 Input Offset Current 0.7 3.0 2.0 15 nA lis Input Bias Current 2.0 7.5 15 50 nA ZI Input Impedance 50 Icc Supply Current 13 20 130 160 Pc Power Consumption 78 120 780 960 los Output Short Circuit Current Avs Large Signal Voltage Gain Rs < 10 kS1 18 5.0 3.0 Vo=±1.0 V, RL:;;'75 kS1 50 SR Transient Response I Rise time I Overshoot Slew Rate RL = 5.0 kS1, Av = 1.0 J.LA IlW mA 5.0 V/mV 50 VI = 20 mV, RL = 5.0 kS1, CL=100 pF, Av=1.0 MS1 200 Vo=±1.0 V, RL:;;'5.0 kS1 TR mV 200 3.0 0.6 0 5 0.03 0.35 IlS % VIIlS The following specifications apply -55°C < TA < + 125°C Via Input Offset Voltage Rs< 10 kS1 6.0 110 Input Offset Current TA = +125°C TA = -55°C liS Input Bias Current Icc Supply Current TA = +125°C TA =-55°C Pc Power Consumption CMR Common Mode Rejection VIR Input Voltage Range PSRR Power Supply Rejection Ratio Rs<10 kS1 Avs Large Signal Voltage Gain Va = ± 1.0 V, RL:;;'75 kS1 Rs<10 kS1 70 Output Voltage Swing mV 5.0 15 nA 10 40 nA 7.5 50 nA 20 120 25 180 150 1080 86 70 ± 1.0 86 25 150 V 25 25 RL = 5.0 kS1 7-165 150 IlVN V/mV 25 ±2.0 ±2.4 RL = 75 kS1 J.LA IlW dB ± 1.0 Va = ± 1.0 V, RL:;;'5.0 kS1 VoP 6.0 V ± 1.9 ±2.1 IlA776 !lA77SC Electrical Characteristics TA = 25°C, Vee = ± 15 V, unless otherwise specified. ISET = 1.5/lA Symbol Characteristic Condition Min Typ Max 2.0 6.0 ISET = 15/lA Min Typ Max Unit 2.0 6.0 mV VIO Input Offset Voltage VIO Input Offset Voltage Adjustment Range 9.0 110 Input Offset Current 0.7 6.0 2.0 25 nA lis Input Bias Current 2.0 10 15 50 nA 30 160 adj Rs< 10 kn ZI Input Impedance 50 Icc Supply Current 20 Pc Power Consumption los Output Short Circuit Current Avs Large Signal Voltage Gain 18 5.0 0.9 3.0 Vo = ± 10 V, RL>75 kU 50 Output Voltage Swing RL = 75 kU ±12 SR Transient Response I Rise time I Overshoot Slew Rate /1A 5.7 mW 12 mA V/mV 50 400 ±10 ±13 ±14 V RL = 5.0 kn TR Mn 190 400 Vo= ± 10 V, RL>5.0 kU VOP mV VI = 20 mV, RL > 5.0 kU, CL=100 pF, Av=1.0 1.6 0.35 0 10 % RL = 5.0 kn, Av = 1.0 0.1 0.8 VI/1s /1S The following specifications apply O°C < TA < + 70°C VIO Input Offset Voltage Rs<10 kU 7.5 7.5 mV 110 Input Offset Current TA = 70°C 6.0 25 nA TA = O°C 10 40 lis Input Bias Current TA = 70°C 10 50 TA = O°C 20 100 35 200 /1A 1.05 6.0 mW Icc Supply Current Pc Power Consumption CMR Common Mode Rejection VIR Input Voltage Range PSRR Power Supply Rejection Ratio Rs<1O kU Avs Large Signal Voltage Gain Vo=±10 V, RL >75 kU VOP Output Voltage Swing RL = 75 kU Rs<10 kU 70 90 70 ±10 7-166 dB 90 ±10 25 200 V 25 50 50 ±10 ±10 nA 200 /1VIV V/mV V IlA776 !lA77SC Electrical Characteristics TA = 25°C, Vee = ± 3.0 V, unless otherwise specified. ISET = 1.51lA Symbol Characteristic Input Offset Voltage Via Condition Min Rs < 10 kn Typ Max 2.0 6.0 Input Offset Voltage Adjustment Range 9.0 110 Input Offset Current 0.7 6.0 10 Via adj ISET = 151lA Min Typ Max Unit 2.0 6.0 mV 18 mV 2.0 25 15 50 nA liB Input Bias Current 2.0 ZI Input Impedance 50 Icc Supply Current 13 20 130 170 IlA Pc Power Consumption 78 120 780 1020 IlW los Output Short Circuit Current 3.0 Avs Large Signal Voltage Gain Va = ± 1.0 V, RL # 75 kn 25 5.0 5.0 SR Transient Response I Rise time LOvershoot 200 Slew Rate 25 VI = 20 mV, RL # 5.0 kn, CL = 100 pF, Av = 1.0 RL = 5.0 kn, Av = 1.0 mA VlmV Va = ± 1.0 V, RL # 5.0 kn TR nA Mn 200 3.0 0.6 0 5 0.03 0.35 IlS % VIlIS The following specifications apply O°C < T A < + 70°C Via Input Offset Voltage Rs< 10 kn 7.5 7.5 mV 110 Input Offset Current TA = 70°C 6.0 25 nA TA = O°C 10 40 liB Input Bias Current TA = 70°C 10 50 TA = O°C 20 100 Icc Supply Current Pc Power Consumption CMR Common Mode Rejection VIR Input Voltage Range PSRR Power Supply Rejection Ratio Rs< 10 kn Avs Large Signal Voltage Gain Vo=±1.0 V, RL#75 kn VoP Output Voltage Swing Rs< 10 kn 70 25 180 IlA 150 1080 IlW 86 70 ± 1.0 RL = 5.0 kn 7-167 200 dB V 25 25 Vo =±1.0 V, RL # 5.0 kn RL = 75 kn 86 ±1.0 25 nA 200 IlVN VlmV 25 ±2.0 ±2.4 V ±2.0 ±2.1 pA776 Typical Performance Curves for J,1A776 and J,1A776C Input Bias Current vs Set Current 100 Input Bias Current vs Temperature Input Offset Current vs Temperature 30 f-~1 ~12s.~ I III , '±3.0'V $ t- ±3.0 V =:; Vee s; ±1, v '.! 1/ 0 IZ W V '" "'" :/ ,. 1 iii "'- ........ '" ISET"'" 15 p.A 12 ".!5 / V O. 1 0.1 0.01 "'- I- 1SET CURRENT - o -60 100 10 - '\ C- - ~cc ~ ±1~ v 20 o 100 60 TEMPERATURE _ c ~seT=15pA rr- JJs~- c- f- i- ~ '- -20 $ "'i- ........ ' /J.A '+3.0'V \ \. \ u / ~CC l ±1~ v 24 -60 140 -20 20 60 100 140 TEMPERATURE _ "C C PC03981F Change in Input Offset Voltage vs Set Current 0 Change in Input Offset Voltage vs Temperature (Unnulled) ~l =~'c' '" ±3.0 V S Vee:5; ±1S v 300 ~ 200 ~ 100 t; r"- ..!; !5 ! ~ -300 W "~ w " -500 '" "". 10-15 0 . 1/ z 10- 16 W ::E (.) -300 o 100 10 -20 -60 10- 14 .;2(15ET'- "A)±::: ±3.~ v ~cc J- ~, 1.5' I $' ±1. $ W TA "'" 25"C 10- 15 g . o e~2(ISE! I - 1S ,llA) W "- z . ~ 10- 16 !'.. "~ ~ ::E r---.. "10-1 7 10 I I I In2(lsET =. i 10-2S~ FREQUENCY - 10K Hz 10-17 0.01 140 r= .. o w SET CURRENT - ...l'!, iii 100 , 10-26 '" I- ~ ffi 10-27 '" "'"o ::E ::E " w z ilZ w W ." 10-27 100 K ~::E ." 10 r\. W U . 10-28 10-29 ~ f-Htt-+++t+!;.o :5~;CC < :t18 V ~f W ::E 100 jJ.A Optimum Source Resistor for Minimum Noise vs Set Current '"~ '" r-- 10 0.1 Input Noise Current vs Set Current '" "'" U"'" ~ 1.0K 100 U 15 I-IA} in2(ISET - 1.5 ,uA) 100 60 20 TEMPERATURE _ "C Input Noise Voltage and Current vs Frequency "~ 10-14 :I: SET CURRENT - /loA ~ +18 V > w /' V <::: 0 V -100 ±3.0 v < Vee t 1 kHz 10-13 r-~~1-~+t~r =1Hz w /' ~ -20 0 / ~ , ".~ V 0 TA 25"C 10-"~~Bj~[[=~ ~> ISET = 15 IlA w 0 0 vL =1±ls~_ I 400 I, !;1 500 ~ Input Noise Voltage vs Set Current f - 1 Hz - 1 kHz 0.01 0.1 10 SET CURRENT - 7-168 jJ.A ~ o , , 10-30 "- 1 100 "O. 1 0.01 0.1 SET CURRENT - 10 /loA 100 JlA776 Typical Performance Curves for !lA776 and !lA776C (Cont.) Output Voltage Swing vs Load Resistance 30 'z" TA 25°C ~ 24 ~ V .. ":I '2 . "~ I- :J 18 'YII,·Y / 0 I I g - ~ I- :J o I I 100 K 1 M ,. 500 '" '~" 400 z ;;: w ..gg ..ffi 300 200 0 100 :v o = 15 IlA RL.=5::~ - .,.... V ,...... ..... io ~ z I' '" ±9 ±6 ±12 ::,:15 ±18 ...- ~SET RL=75k!l 0 0 0 -60 -20 20 60 1,000 140 '00 800 -/ g . g ffi.. 600 ~ 400 200 -60 -20 150 ~ o-r- ;: RL=75kfl "a:z \ ~ "-- a: a: :J u ... >~ 90 ~ '" 60 100 140 10 0 0.1 :: ;;.0 :5;~cc +18 V w ~ / 1 ISET = 1.5;.;A Vee 0 Vee 0 -20 20 -+:15~ ±3.0 o > t; V ~ TEMPERATURE _ LL "C / 200 I / ~ w '"z 0.Q1 V 40 0 ~ ::- 140 J50C l'2~OC I ~ vl'tsgle 1.0 il l<: :J: U 0.1 10 SET CURRENT - 7-169 IJ.A 100 - Vee"" ±15 V InitialOffsel 0 " v 100 - ---- o O. 1 60 100 ilA Thermal Response Of Input Offset Voltage To Step Change Of Case Temperature ~ 80 0 < 10 SET CURRENT - 1000 V -60 20 ~ :r 0 :J ~a: '"a: 1-3.0 V- Ve $ 18 V 30 '" 600 - ±3.0 v ~ Vee I-+-H+--+-H_T,'A = 25°C >- :J 12 ffi 100 JlA 0 ;: u Standby Supply Current vs Set Current . . ,5 v Vee 40 TEMPERATURE _ °C 1 J.-I. ISET = 15 J.lA ~~ 20 TEMPERATURE _ °C Supply Current vs Temperature SET CURRENT - Power Supply Rejection Ratio vs Set Current "'-;:ET~15"A' RL=stn I "- w - 10 ISET - 0 I 1,200 = 1.5 JJ.A- ~ 1.0K 0.1 V VCC=:t15V z ;;: '" ~'" 10K ;;: ,. , /' o E rlSET Vee - ±3.0 v :::E: 100 K I- > 1.400 - V/ . / .. Voltage Gain vs Temperature Vcc=±3.0V I E # 8 Vee - ±15 oa: ISET = 1.5 J.lA RL = 5 k!l r;r 1.0M :J ~V /, ~ I I t; V SUPPLY VOLTAGE - Voltage Gain vs Temperature 600 4- 12 n LOAD RESISTANCE - > 6 I- I I I I 10 K 1.0 K 20 "'~" Vee ..co ;±:3.0 V 1.5 MA < ISET < 15 iJA - o ~.~~J.L7~ ~!~SET ~ 15 >LAy' w I :J: ~ AL = 5 kfl 4 '~z" - A J _III 6 I- > I = C:::T~I ~~oc I N ISET ="5 /lA 8 Vee = j:15 V I- :J TA=2S"C Vee = ±15 V ISET 15 p.A K- 10 M 2 -"- ...d-t1"f ~ Gain Bandwidth Product vs Set Current Output Voltage Swing vs Supply Voltage -20 20 40 60 TIME FROM HEAT APPLICATION - 80 s pA776 Typical Performance Curves for pA776 and pA776C (Cont.) Stabilization Time Of Input Offset Voltage From Power On Input Offset Voltage Drift vs Time ::. 100 ~ I w i--'" -10 V 1/ g > -20 ~ .. -30 tu Vee'"" :t15 TA -40 =: Initial v w " .. I- ::> 16 I- ::> 0 / I I I-- 800 600 1000 " I .> 1.0M Vee = ±3 " vV' 0: I:! II 1 lOOK " I I liET to V~ -II if" ti GjD 0.5 1.0 1.5 2.0 2.5 Vs 1.5 I1A ± 1.5 V Mn 3.6 Mn 7.5 Mn 20 Mn 1.7 10K 0.1 10 seT CURRENT - 100 p.A ISET Equations (V + )-0.7 - (V -) ISET 15 IlA kn 360 kn 750 kn 2.0 Mn 170 0.01 Y Vee ISET = -'---'----'--'RSET where: RSET is connected to V(V + )-0.7 ISET = -'---'--RSET where: RSET is connected to ground. Note The iJA776 may be operated with RSET connected to ground or V- 7-170 0.00 1 0.01 / ±3.a v V V 1/ 10 0.1 seT CURRENT - Hr. Vcc- +15 V l- I Quiescent Current Setting Resistor (ISET to V-) ± 15 V " 0: ~ w TIME -Ill ±6.0 V 400 '00 0 I- . I 10 M ±15 ISET= 15 IJ.A RL = 5 kfl CL '" 100 pF ~8 ±3.0 V I .0 Set Current vs Set Resistor v Vee = o. 1 ~ TIME - 1 -0.5 w : / +15 Y ;0 Min v---- 40 3' V- 100 M 48 "!:;< 40 o 56 E II U ov Voltage Follower Transient Response (Unity Gain) Vee TREND IlIN~ i!! i!! 0l'set IV01jge 11.0 IV 1 1 60 23456789 ~ > 80 ~ ~ / ::> i!! TA 'j125 C O o J t; ~ ~ > 10 ~ee" ±18 V w " V Slew Rate vs Set Current IJ.A 100 JlA776 Biasing Circuits Voltage Offset Null Circuit Resistor Biasing v- Va RSET v- -::- FET Current Source Biasing RSET Connected to Ground v+ Va RSET v- v- Transient Response Test Circuit RSET Connected to V- "Recommended for supply voltages less than ± 6 V. Transistor Current Source Biasing . A - - - Va v- 7-171 IlA798 Dual Operational Amplifier FAIRCHIL.D A Schlumberger Company Linear Division Operational Amplifiers Description Connection Diagram 8-Lead DIP and 50-8 Package (Top View) The pA798 consists of a monolithic pair of independent, high gain, internally frequency compensated operational amplifiers designed to operate from a single power supply or dual power supplies over a wide range of voltages. The common mode input range includes the negative supply, thereby eliminating the necessity for external biasing components in many applications. The output voltage range also includes the negative power supply voltage. The J.l.A798 is constructed using the Fairchild Planar Epitaxial process. • Input Common Mode Voltage Range Includes Ground Or Negative Supply • Output Voltage Can Swing Near Ground Or Negative Supply • Internally Compensated • Wide Power Supply Range Single Supply Of 3.0 V To 36 V Dual Supply of ± 1.5 V To ± 18 V • Class AB Output Stage For Minimal Crossover Distortion • Short Circuit Protected Output • High Open Loop Gain - 200 k Typ • Exceeds J.l.A1458 Type Performance • Operation Specified At ± 15 V And +5.0 V Power Supplies • High Output Current Sink Capability 0.8 mA At Vo 400 mV Typ v+ -IN A +IN A -IN B v- +IN B Order Information Device Code pA798SC J.l.A798TC = Absolute Maximum Ratings Storage Temperature Range Operating Temperature Range Lead Temperature (soldering, 10 s) Internal Power Dissipation 1. 2 8L-Molded DIP SO-8 Supply Voltage Between V+ and VDifferential Input Voltage Input Voltage 3 Output Short Circuit Duration 4 OUT B -65°C to + 150°C O°C to +70°C 0.93 W 0.81 W 36 V ±30 V -0.3 V (V-) to V+ Indefinite Noles 1. TJ Max = 150°C. 2. Ratings apply to ambient temperature at 25°C. Above this temperature, derate the Molded DIP at 7.5 mW/'C. and the SO-8 at 6.5 mW/'C. 3. For supply voltage less than 30 V between V+ and V -, the absolute maximum input voltage is equal to the supply voltage. 4. Indefinite on shorts to ground or V - supply. Shorts to v+ supply may result in power dissipation exceeding the absolute maximum rating. 7-172 Package Code Package Description KC 9T Molded Surface Mount Molded DIP JJ-A798 Equivalent Circuit (112 of circuit shown) v+----------------------~----------------------~r_------~--------~--------_, C1 5 pF -IN v---~-+----+_----~----+_--r_----+-4-----------+-----+---+-----+---+-~ 'IN Note 1. All resistor values in ohm. 7-173 J1A798 IlA798 Electrical Characteristics TA = 25°C, Vee = ± 15 V, unless otherwise specified. Symbol Characteristic V,o Input Offset Voltage 1'0 Input Offset Current Condition Min Typ 2.0 I'B Input Bias Current Z, Input Impedance Ro Output Resistance Icc Supply Current Vo = 0, RL = CMR Common Mode Rejection Rs<:10 kil VIR Input Voltage Range PSRR Power Supply Rejection Ratio Positive los Output Short Circuit Current1 •2 Vo=-15 V, V,o=1.0 V (Per Amplifier) Vo=Gnd, V,o=-1.0 V Avs Large Signal Voltage Gain Vo=±10 V, RL=2.0 kil VoP Output Voltage Swing RL = 10 kil RL = 2.0 kil TR Transient Response 0.3 Max mV 10 50 nA 50 250 1.0 2.0 nA Mil 800 00 Unit 6.0 il 4.0 mA 70 90 dB +13 to V- +13.5 to V- V Negative 30 150 /JVIV 30 150 30 45 10 70 85 20 200 V/mV ±13 ±14 V ±12 ± 13.5 10 mA Rise Time Vo=50 mV, Av = 1.0, RL = 10 kil 0.3 Fall Time Vo= 50 mV, Av = 1.0, RL = 10 kil 0.3 Overshoot Vo=50 mV Av=1.0, RL=10 kil 20 % /Js BW Bandwidth Vo = 50 mV, Av = 1.0, RL = 10 kil 1.0 MHz SR Slew Rate V, = -10 V to + 10 V, Av = 1.0 0.6 V//Js CS Channel Separation f = 1.0 kHz to 20 kHz (Input Referenced) -120 dB The following specifications apply for O°C <: TA <: + 70°C V'O Input Offset Voltage AV,ol AT Input Offset Voltage Temperature Sensitivity 1'0 Input Offset Current AI,ol AT Input Offset Current Temperature Sensitivity I'B Input Bias Current 7.5 10 /JVfOC 200 nA pAloC 50 400 7-174 mV nA IlA798 /lA798 (Cont.) Electrical Characteristics TA Symbol = 25°C, Vee = ± 15 V, unless otherwise specified. Characteristic Min Condition Avs Large Signal Voltage Gain RL=2.0 kn, Vo=±10 V VOP Output Voltage Swing RL = 2.0 kn Typ Max 15 Unit V/mV ±10 V The following specifications apply for TA = 25°C, V + = 5.0 V, V-=GND Via Input Offset Voltage 2.0 7.5 mV 110 Input Offset Current 10 50 nA liB Input Bias Current 80 250 Avs Large Signal Voltage Gain PSRR Power Supply Rejection Ratio VOP Output Voltage SWing 3 RL ;;;"2.0 kn Output Sink Current Icc Supply Current 200 RL = 10 kn 4.0 ~30 Vo= 200 mV, V ID = 1.0 V V 1. Not to exceed maximum package power dissipation. 2. Indefinite on shorts to ground or v- supply. Shorts to v+ supply may result in power dissipation exceeding the absolute maximum rating. 3. Output will swing to ground. 7-175 pVIV Vp . p (V+) -1.5 0.35 mA 2.0 Notes nA V/mV 150 5.0 V~V+ RL = 10 kn 10- 20 4.0 mA IlA798 Typical Performance Curves Sinewave Response Output Voltage vs Frequency AVI '\ fA " = '2°rTTrr,-;nrT-n~rT~,-rm~~~ t-- ~100f-+~~tH~~ff-rt~-t-Mtrt~~ I vLUJ 251-++-t-t--t-H+f'OkO ,i,. RL = TA 25°C Ifl f' Open Loop Frequency Response 30r--rTTr--r~-rrr-;--,,-n--' = Vee'" :t1SY TA ~ 8°f-+~-t-tH~~ff-rt~-t-Htf-t~~ " w ~ IV IV V IV \ 60 ~ 40rt~~~rt-HTI-rt~~Htr+~~ t; 9 r- h .......... Ir- * o~~~++ffiH1#rrmrrH~ -2~.'=o.ll"-:',o,-J-t.LL",!,OO,.wlL,.':-O:-!-K"'""=,-:fO"'KllJ.,':O':-O:fK.ill,~.O M -5.0 L-...J....J...J-l-....J.._"--''-'-'--:-':-''''''''...J....u..-:-, 1.0 K 10 K 100 K FREQUENCY - Output Swing vs Supply Voltage 40 1.0M FREQUENCY - Hz Input Bias Current vs Temperature '00 I TA - 20~~~~rt-HTI-rt~-t-Ht~~~ z h 50 ,us/DIY 1 25~C Vee ~ Hz Input Bias Current vs Supply Voltage 80 I = ±15V ~ > 30 I w I 15 ... " Z ... 50 rr: il!a: z w Z < rr: '"G 50 w 20 " 0 ...> .."... = 25°C < !;; V '0 r-,... iii ~ a .... ~ iii 40 ~ ~ 25 1/ "0 r- ~ V ~ / o o ! o 2.0 4.0 6.0 8.0 10 12 SUPPLY VOLTAGE - 14 16 ±V 18 20 0 -75 -55 -35 -15 5.0 25 45 65 TEMPERATURE _ °C 7-176 85 105 125 o 2.0 4.0 6.0 8.0 10 12 14 SUPPLY VOLTAGE - 16 ±V 18 20 /J.A798 Typical Applications Multiple Feedback Bandpass Filter Wein Bridge Oscillator &OK r------JVY~------t--Yo 10 k YREf + VREF 1_-10 J.lF 1 C VREF O;::iV+ t. to = center frequency t. R C BW = Bandwidth A in kil C in "F fo 1 fo = - - for fo 0--<10 BW 21TAC o Cl-C2-3 = 1.0 kHz A=16 kil C= 0,01 "F High Impedance Differential Amplifier Al - A2 = 1] R3 = 902-1 Use scaling factors in these expressions. R' V1 If source impedance is high or varies, filter may be preceded with voltage follower buffer to stabilize filter parameters. " ' -....--Yo Design example: given: 0 - 5, fo = 1.0 kHz Let Al =A2-10 kil then A3 - 9(5)2 -10 A3-215 kil R3 5 C=:;=1.6 "F R4 Comparator With Hysteresis RS R2 YOH HYSTERESIS ~y.,,0t:ffi I R1 VREF ---'lM__.......... ----- V,-----..f va R7 Vo VOL V!L I AF00691F VIH VO=C (1 +a+b)(V2-Vl) Afooe81F - VAEF A2 A5 A6 '" - A7 for best CMAA Al - A4 A2= AS A6 Gain Al H - Al + A2 (VOH VOL) Al + A2 A2Al 4CA,Al A2 + Rl 2Al -Ai (1 +Fi3) =C (1 +8 +b) Note 1. All resistor values in ohms. f - - - - if A 3 - - - - 7-177 I1A798 Typical Applications (Cont.) Pulse Generator Vo R3 100 k RS 100 k +0 n II ....J L..J L- Function Generator VREF 1 =- 2 TRIANGLE WAVE OUT v+ R2 r-_ _...J3VOOVVk_ _....,~_~~~ARE WAVE R3 VAEF 75 k R1 100 k c Rt ' - - -....-VREF AF00661F Note 1. All resistor values are in ohms. 7-178 J.lA 111 • J.lA311 Voltage Comparators FAIRCHILD A Schlumberger Company Linear Division Comparators Connection Diagram 8-Lead Metal Package (Top View) Description The MA 111 and MA311 are monolithic, low input current voltage comparators, each constructed using the Fairchild Planar Epitaxial process. The MA 111 series operates from the single 5.0 V integrated circuit logic supply to the standard ± 15 V operational amplifier supplies. The MA 111 series is intended for a wide range of applications including driving lamps or relays and switching voltages up to 50 V at currents as high as 50 mA. The output stage is compatible with RTL, DTL, TTL and MOS logic. The input stage current can be raised to increase input slew rate. V+ • Low Input Bias Current 100 nA Max (MA111), 250 nA Max (MA311) • Low Input Offset Current 10 nA Max (MA 111), 50 nA Max (MA311) • Differential Input Voltage ± 30 V • Power Supply Voltage Single 5.0 V Supply To ± 15 V • Offset Voltage Null Capability • Strobe Capability V- Lead 4 connected to case Order Information Device Code Package Code 5W 5W MA111HM !J.A311 HC Absolute Maximum Ratings 1 Storage Temperature Range Metal Can Molded DIP and SO-8 Operating Temperature Range Extended (MA 111 M) Commercial (MA311 C) Lead Temperature Metal Can (soldering, 60 s) Molded DIP and SO-8 (soldering, 10 s) Internal Power Dissipation 2, 3 8L-Metal Can 8L-Molded DIP SO-8 Voltage between V+ and VOutput to V(MA111) (MA311) Ground to VDifferential Input Voltage Input Voltage Output Short Circuit Duration BALANCE! STROBE +IN Package Description Metal Metal Connection Diagram 8-Lead DIP and SO-8 Package (Top View) -65°C to + 175°C -65°C to + 150°C -55°C to + 125°C O°C to 70°C GND 300°C +IN 265°C BALANCEI -IN STROBE 1.00 W 0.93 W 0.81 W 36 V 50 V 40 V 30 V ±30 V ± 15 V 10 s Order Information Device Code !J.A311TC MA311SC Notes 1. This rating applies for ± 15 V supplies. The positive input voltage limit is 30 V above the negative supply. The negative input voltage limit is equal to the negative supply voltage or 30 V below the positive supply, whichever is less. 2. TJ Ma, ~ 150°C for the Molded DIP and SO-B, and 175°C for the Metal Can. 3. Ratings apply to ambient temperature at 25°C. Above this temperature, derate the BL-Metal Can at 6.7 mwrc, the BL-Molded DIP at 7.5 mW/oC, and the SO-B at 6.5 mW/oC. 8-3 Package Code 9T KC Package Description Molded DIP Molded Surface Mount • Equivalent Circuit BALANCE BALANCE! STROBE r---~---.~~--r---+---~----~------~---'-----------------'-----W +IN >-+--_OUT -IN ---1--1(( RU 130Q Q15 R12 600Q R13 4Q '-----t---------GND v- pA111 Electrical Characteristics TA = 25°C, Vee Symbol Characteristic = ± 15 V, unless otherwise specified. 1 Condition Min Typ Max Unit VIO Input Offset Voltage 2 0.7 3.0 mV 110 Input Offset Current2 4.0 10 nA liB Input Bias Current 60 100 nA Rs';;;50 kn Avs Large Signal Voltage Gain 200 tpD Response Time3 200 VSAT Saturation Voltage 10(ST) Strobe On Current ICEX Output Leakage Current VI .;;; -5.0 mV, 10L = 50 mA 0.75 V/mV ns 1.5 mA 3.0 VI;;' 5.0 mV, Vo = 35 V 0.2 V 10 nA 4.0 mV 20 nA 150 nA The following specifications apply for -55°C';;; TA';;; + 125°C. VIO Input Offset Voltage 2 110 Input Offset Current2 liB Input Bias Current VIR Input Voltage Range VSAT Saturation Voltage Rs';;;50 kn ±14 V+ ;;'4.5 V, V- = 0 V, VI .;;; -6.0 mV, 10L';;; 8.0 mA 8-4 0.23 V 0.4 V lolA 111 (Cont.) Electrical Characteristics -55·C"; TA"; + 125·C. Vee = ± 15 V. unless otherwise specified. 1 Symbol Typ Max 0.1 0.5 p.A TA = 25·C 5.1 6.0 rnA = 25·C 4.1 5.0 rnA Typ Max Unit 2.0 7.5 rnV nA Characteristic Min Condition ICEX Output Leakage Current VI ;;"5.0 rnV. Vo 1+ Positive Supply Current 1- Negative Supply Current TA = 35 V Unit 1oIA311 Electrical Characteristics TA = 25·C. Vee = ± 15 V. unless otherwise specified. 1 Symbol VIO Condition Characteristic Input Offset Voltage2 Rs";;;;50 k!l Min 110 Input Offset Current2 6.0 50 liB Input Bias Current 100 250 200 Avs Large Signal Voltage Gain tpo Response Tirne3 VSAT Saturation Voltage lo(sn Strobe On Current ICEX Output Leakage Current ns 200 VI";;;;-10 rnV. 10 = 50 rnA 0.75 1.5 0.2 V rnA 3.0 VI;;"10 rnV. Vo=35 V nA V/rnV 50 nA 10 rnV 70 nA 300 nA The following specifications apply for O·C";;;; TA .,;;;; + 70·C. VIO Input Offset Voltage2 110 Input Offset Current2 liB Input Bias Current VIR Input Voltage Range VSAT Saturation Voltage V+ ;;.. 4.5 V. V- = 2.25 V. VI";;;;-10 rnV. 10L ";;;;8.0 rnA 1+ Positive Supply Current 1- Negative Supply Current Rs";;;;50 k!l ±14 V 0.23 0.4 V TA = 25°C 5.1 7.5 rnA TA = 25°C 4.1 5.0 rnA Notes 1. The offset voltage, offset current and bias current specifications apply for any supply voltage from a single 5.0 V supply to ± 15 V supplies. 2. The offset voltages and offset currents given are the maximum values required to drive the output within a volt of either supply with a 1.0 mA load. Thus, these parameters define an error band and take into account the worst case effects of voltage gain and input impedance. 3. The response time spec~ied is for a 100 mV input step with 5.0 mV overdrive. 8-5 Typical Performance Curves for p.A 111 Input Bias Current vs Temperature Input Offset Current vs Temperature ... 30 Vc~. t1~V- 25 45 o -55 -35 105 125 85 -15 - "- NORMAL 25 45 V+ > I 85 85 Ifilil voi+ti 105 125 ., ~ ..g'" '" i 50 .. I s- o -16 12 -12 -8 -4 DIFFERENTIAL INPUT VOLTAGE - V 18 o.a .... L . ..-: ;y r-T." -we 1>' /" // .... .L 0.1 .. o 2S 65 85 oc 30 40 I eoc:o J I\. '\ -0.' '- I-- 0.' 1.0 DIFFERENTIAL INPUT VOLTAGE - mY Leakage Current vs Temperature 10-7 Vee = t15 v Vee = ±15v:;;r= ;..' i ::::::", ' OUTPUT CURRENT - rnA -1.0 105 125 = 30V ~'\ FOLLOWER OUTPUT R~. 4S 10 . -r-... r- 0 -55 -35 -15 --- .~ ; 25 45 6S Note 1. Leads 5, 6 and 8 are shorted. 8-6 85 105 125 ......... 10-8 /' V, = 15V ./ ~ 10-10 10-11 5 TEMPERATURE - OC Vo,'OV/' 10-8 !Z POSlTI":':'PPLY - ~ I ~::I;;;:~ I'"""' r-- r-- NEGATIVE SUPPLYr-- r-- r- I (tTHr- I-- I-- ~ f"<;T•• :we 10 EMITTER 10 7~ i'-- ..- o -55 -35 -15 Vee TA = 250C I I II I\. ~20 o V- ""'" A;..' - -- !; '-- ..... f I ~ g30 ~ Supply Current vs Temperature +•. ~", v, = sov ht.. ~ :!. .. -1 I RL= 1 kQ w'40 -1.0 TEMPERATURE - Saturation Voltage vs Output Current '-NObMAL1Oun!uT > D.2 • 0 Output Voltage vs Differential Input Voltage ~FE~~ED_f.? 0.' it 1M INPUT RESISTANCE - ::; r0- 100 K "K etC S PPLY VD :rAG o., ,./ 1.0 Common Mode Limits vs Temperature I TA,=WC JccUl'~ r RAISED (NOTE 1) ........ ...... TEMPERATURE - Input Bias Current vs Differential Input Voltage 110 ......... - oc TEMPERATURE - 150 "- ...... 65 ":' 10 " NORMAL -15 c', ~ "....... -55 -35 oo~ vee' • 'l~V ~, RAISED (NOTE 1) o Offset Voltage vs Input Resistance i--"': 25 45 . 85 TEMPERATURE - OC 105 125 #lA 111 • #lA311 Typical Performance Curves for 1lA311 Input Bias Current vs Temperature 20 500 RAISEiI (NOTE 1 I ~300 r- t-- i ~ i i i200 r- r- r- - V iITrrtlsl'rn 01020 30 40 TEMPERATURE - 5060 100K 70 oc T = 25"C 80 Vee·30V TA = 250C REFERRED TO YVO~ AGES 50 -0. i i i ~ o -16 -12 -8 -4 • 12 DIFFERENTIAL INPUT VOLTAGE - V 16 :!,::... ... ~ f-- EMITTER FOLLOWER OUTPUT A II II \. '\. RL=8DDO: I 0.2 v I - ::; u T I ( .. -1 0 T NORMAL OUTPUT AL" 1 kO V1 = 40V > I -1 .0 ... n Output Voltage vs Differential Input Voltage 8UPP • 10M 1M INPUT RESISTANCE - v+ Jcc l• ~15~_ / TYPICAL Common Mode Limits vs Temperature Input Bias Current vs Differential Input Voltage MIAXIMUM NORMAL o 010203040506070 TEMPERATURE - "C 200 ~ TA= 250C 10 D 225 ve!,= .Jv(NOTE 1) o NORMAL 100 r--.... ~ I ~ i r-.... v":'=.Jv- t-- t-- ~400 Offset Voltage vs Input Resistance Input Offset Current vs Temperature T - 10 20 30 40 TEMPERATURE - -1.0 ere \. T T o 70 50 1 -0.5 " 1.0 DIFFERENTIAL INPUT VOLTAGE - mV PC'''••' ' Supply Current vs Temperature Saturation Voltage vs Output Current o.a T. . a\~:- 0.7 ~ ./ Leakage Current vs Temperature 0 FOumrr V rr- /' ./ 1/ - I 10 ~~W J. - f--- OUTPUT ~M!- NEGATIVE SUPPl.YIOUTTHlj- 20 30 OUTPUT CURRENT - .... 40 = 40V ..... ,;" I 10-1 INPUT VI 50 o f--- Note 1. Leads 5. 6 and 8 are shorted. 8-7 &0 70 15 Y ~ 10-11 01020 30 40 50 TEMPERATURE - "C :I • 0.1 D Vo c ./ V FYcc' mv Vcc ."15V 8 ~ 25 35 4S 15 TEMPERATURE - 'C 15 75 Typical Applications Offset Null Circuit Strobe Circuit Zero Crossing Detector Driving MOS Logic (Note 3) Increasing Input Stage Current (Note 1) r-1......--V+ TTL STROBE V+=5.0V 1.01cll 7 TOMOS R3 LOGIC 10 k OFFSET BALANCING STROBING "::: """""'" CR02210F Adjustable Low Voltage Reference Supply Negative Peak Detector +lSV Vo Digital Transmission Isolator (Note 3) v+ =s.ov I v+=5.0Y (:= ~ ~) FCD820 RS 5k 21 8 31""1~ Positive Peak Detector R3 3.,-1 +15 V 100 Rl FROM TTL GATE Notes 1) Increases typical common mode slew rete from 7.0 VI /IS to 1B VI /IS. 2) Solid Tantalum. 3) All resistor values in ohms. 8-8 R2 SDk o.01~:: RS 1k R4 lk • 4 TTL OUT MA 111 • MA311 Typical Applications (Cont.) Relay Driver with Strobe Y, Strobing of Both Input And Output Stages (Note 1) FROM D/A NETWORK TTL STROBE Rl 1 kO TTL STROBE Switching Power Amplifier Precision Photodiode Comparator IN Rl Rl 10 kO '--""'--""'''---'''''--'-+5.0 Y 3.9kO ~FPT100 R3 1 kO R2 lOOk{) OUT 3 R3 TTL OUT 100 Cl 0.1 JJ.F Notes 1. Typical input current is 50 pA with inputs strobed off. 2. Absorbs inductive kickback of relay and protects Ie from severe voltage transients on VI line. 3. R2 sets the comparison level. At comparison, the photodiode has less than 5.0 mV across it, decreasing leakages by an order of magnitude. 8-9 to '---+-==.....-v- Switching Power Amplifier V+ Q2.~ 1112 2N61~ 112 6200 OUT I 6200 1 R11 6200 I I 300 k!l RS RS 5'00 39kO 1 h R13 3OOkO R9 39kO R14 5100 R8 15 kO ~--~------------~-----t--------~~----~~-----------------------t---4--~A---IN J,.Cl To.22,J1 R7 ~~------------~----~-----4~------~---------------------------------4------~A---REFERENCE 15 kO 8-10 p.A 139 • p.A239 • p.A339 p.A290 1 • p.A3302 F=AIRCHILO A Schlumberger Company Quad Comparators Linear Division Comparators Description Connection Diagram 14-Lead DIP and 50-14 Package (Top View) The pA 139 series consists of four independent precision voltage comparators designed specifically to operate from a single power supply. Operation from split power supplies is also possible and the low power supply current drain is independent of the supply voltage range. Darlington connected PNP input stages allow the input common mode voltage to include ground. ,. OUTB OUTC OUT A OUT 0 • Single Supply Operation + 2.0 V To + 36 V • Dual Supply Operation ± 1.0 V To ± 18 V • Allow Comparison Of Voltages Near Ground Potential • Low Current Drain 800 /lA Typ • Compatible With All Forms Of Logic • Low Input Bias Current 25 nA Typ • Low Input Offset Current ± 5.0 nA Typ • Low Offset Voltage ± 2.0 mV V+ Absolute Maximum Ratings Storage Temperature Range Ceramic DIP Molded DIP and SO-14 Operating Temperature Range Extended (pA 139M) Automotive (pA2901V, pA3302V) Industrial (pA239V) Commercial (pA339C) Lead Temperature Ceramic DIP (soldering, 60 s) Molded DIP and SO-14 (soldering, 10 s) Internal Power Dissipation 1. 2 14L-Ceramic DIP 14L-Molded DIP SO-14 Supply Voltage pA 139 Series/ pA2901 pA3302 Differential Input Voltage pA 139 Series/ pA2901 pA3302 Output Short Circuit to GND 3 Input Current (VI < -0.3 V)4 -65°C to + 175°C -65°C to + 150°C V-orGNO -INA +IND +INA -IN 0 -IN B +INC +INB -INC Order Information Device Code pA139DM pA239DV pA239PV pA239SV pA339DC pA339PC pA339SC pA2901DV pA2901PV pA3302DV pA3302PV pA3302SV -55°C to +125°C -40°C to +85°C -25°C to +85°C O°C to 70°C 300°C 265°C 1.36 W 1.04 W 0.93 W Package Code 6A 6A 9A KD 6A 9A KD 6A 9A 6A 9A KD Package Description Ceramic DIP Ceramic DIP Molded DIP Molded Surface Mount Ceramic DIP Molded DIP Molded Surface Mount Ceramic DIP Molded DIP Ceramic DIP Molded DIP Molded Surface Mount 36Vor±18V 28 V or ±14 V 36 V 28 V Indefinite 50 mA Notes 1. TJ Max ~ 150'C for the Molded DIP and SO·14. and 175'C for the Ceramic DIP. 2. Ratings apply to ambient temperature at 25'C. Above this temperature, derate the 14L-Ceramic DIP at 9.1 mWI'C, the 14L·Molded DIP at 8.3 mW I'C, and the SO-14 at 7.5 mW I'C. 3. Short circuits from the output to V+ can cause excessive heating and eventual destruction. The maximum output current is approximately 20 mA independent of the magnitude of v+. 4. This input current will exist only when the voltage at any of the input leads is driven negative. It is due to the collector base junction of the input PNP transistors becoming forward biased and thereby acting as input diode clamps. In addition to diode action, there is also lateral NPN parasitic transistor action on the Ie chip. This transistor action can cause the output voltages of the comparators to go to the v+ voltage level or to ground for a large overdrive, for the time duration that an input is driven negative. This is not destructive and normal output states will re-establish when the input voltage, which is negative, again returns to a value greater than -0.3 V. 8-11 MA 139 • MA239 • MA339 MA2901 • MA3302 Equivalent Circuit V+ +IN----1C - I N - - - - - - - / - - - - - - 1 -_ _ _---I .----OUT y- or GNO IlA 139, 1.lA239, 1.lA339 Electrical Characteristics TA = 25°C, V+ = 5.0 V, unless otherwise specified. !lA139 Symbol Characteristic Condition VIO Input Offset Voltage 5 liB Input Bias Current 1 11+ or 11- with Output in Linear Range (11+) - (11-) Min Typ !lA239, J,lA339 Max Min Typ Max Unit ±2.0 ±5.0 ±2.0 ±5.0 mV 25 100 25 250 nA ±50 nA (V+)-1.5 V 110 Input Offset Current VIR Input Common Mode Voltage Range2 ±5.0 Icc Supply Current RL = 00 on all Comparators 0.8 Avs Large Signal Voltage Gain RL;;;'15 kn, V+ =15 V (To Support Large Vo Swing) 200 200 V/mV tpD1 Large Signal Response Time VI = TTL Logic Swing, VREF = 1.4 V, VRL = 5.0 V, RL = 5.1 kn 300 300 ns tpD2 Response Time 3 VRL = 5.0 V, RL = 5.1 kn 1.3 1.3 J,lS 8-12 ±25 (V+)-1.5 0 2.0 ±5.0 0 0.8 2.0 mA p.A 139 • MA239 • p.A339 MA2901 • p.A3302 J.(A139, MA239, J.(A339 (Cont.) Electrical Characteristics TA = 25°C, V+ = 5.0 V, unless otherwise specified. pA139 Symbol Characteristic Condition IOL Output Sink Current VI- ;;;'1.0 V, VI+ = 0 V, Vo< 1.5 V VSAT Saturation Voltage VI- ;;;'1.0 V, VI+ = 0 V, iOL <4.0 rnA ICEX Output Leakage Current VI+ ;;;'1.0 V, VI- =0 V, Vo=30 V Min 6.0 Typ IlA239, pA339 Max 16 250 Min 6.0 400 Typ 250 200 Unit Max 16 rnA 400 rnV 200 nA The following specifications apply for -55°C < TA < + 125°C for the IlA 139, -25°C < TA < + 85°C for the 1lA239 and O°C < TA < + 70°C for the 1lA339. VIO Input Offset VoltageS 110 Input Offset Current (II+)-(Ij-) 118 Input Bias Current 11+ or 11- with Output in Linear Range 0 9.0 9.0 rnV ± 100 ±150 nA 300 400 nA VIR Input Voltage Range VSAT Saturation Voltage VI- ;;;'1.0 V, VI+ =0 V, 10L <4.0 rnA 700 700 rnV ICEX Output Leakage Current VI+ ;;;'1.0 V, VI- =0 V, Vo=30 V 1.0 1.0 IlA VIO Differential Input Voltage4 Keep all VI's;;;' 0 V (or V-, if used) 36 36 V 8-13 (V+)-2.0 0 (V+)-2.0 V JlA 139 • JlA239 • JlA339 JlA2901 • JlA3302 J,!A2901, J,!A3302 Electrical Characteristics TA = 25°C, V+ = 5.0 V, unless otherwise specified. 1lA2901 Symbol Characteristic Condition VIO Input Offset Voltage5 118 Input Bias Current1 11+ or 11- with Output in Linear Range 110 Input Offset Current (11+)-(11-) VIR Input Common Mode Voltage Range2 Icc Supply Current Avs Large Signal Voltage Gain Min Typ RL = co, V+ = 30 V RL~15 kn, 25 Max Min Typ Max Unit ±2.0 ±7.0 ±3.0 ±2.0 mV 25 250 25 500 nA ±S.O ±50 ±S.O ± 100 nA (V+)-1.5 V 0 RL = co on all Comparators 1lA3302 (V+)-1.5 0.8 2.0 1.0 2.5 100 0 0.8 2.0 2.0 mA 30 V/mV 300 300 ns 1.3 1.3 j.lS 16 mA V+ = 15 V (To Support Large Vo Swing) tpD1 Large Signal Response Time VI = TTL Logic Swing, VREF = 1.4 V, VRL = 5.0 V, RL = 5.1 kn tpD2 Response Time3 VRL = 5.0 V, RL = 5.1 kn 10L Output Sink Current VI- ~1.0 V, VI+ =0 V, Vo~1.5 V VSAT Saturation Voltage VI- ~1.0 V, VI+ =0 V, 10L ~4.0 mA 400 ICEX Output Leakage Current VI+ ~1.0 V, VI- =0 V, Vo= 30 V 200 6.0 8-14 16 2.0 250 SOO mV 200 nA IlA 139 - IlA239 - IlA339 IlA2901 -IlA3302 1lA2901, 1lA3302 (Cont.) Electrical Characteristics -40°C';;;; T A';;;; + 85°C, V+ = 5.0 V, unless otherwise specified. 1lA2901 Symbol Characteristic Condition Via Input Offset VoltageS 110 Input Offset Current (II+)-(Id liB Input Bias Current 11+ or 11- with Output in Linear Range Min Typ 9.0 VIR Input Voltage Range VSAT Saturation Voltage VI- ;;;;'1.0 V, VI+ =0 V, 10L <4.0 rnA ICEX Output Leakage Current VID Differential Input Voltage4 1lA3302 Min Max 15 Typ Max Unit 40 mV 50 200 300 nA 200 500 1000 nA (V+)-2.0 0 0 (V+)-2.0 V 700 700 mV VI+ ;;;;'1.0 V, VI- =0 V, Vo= 30 V 1.0 1.0 p.A Keep all VI's;;;;' 0 V (or V-, if used) V+ V+ V 400 Notes 1. The direction of the input current is out of the IC due to the PNP input stage. This current is essentially constant, independent of the state of the output so no loading change exists on the reference or input lines. 2. The input common mode voltage or either input signal voltage should not be allowed to go negative by more than 0.3 V. The upper end of the common mode voltage range is (V+) - 1.5 V, but either or both inputs can go to + 30 V without damage. 3. The response time specified is for a 100 mV input step with 5.0 mV overdrive. For larger overdrive signals 300 ns can be obtained, see typical periormance curves segment. 4. Positive excursions of input voltage may exceed the power supply level. As long as the other voltage remains within the common mode range, comparator will provide a proper output state. The low input voltage state must not be less than -0.3 V or 0.3 V below the magnitude of the negative power supply, if used. 5. At output switch pOint, Vo= 1.4 V, Rs = 0 fl with V+ from 5.0 V; and over the full input common mode range 0 V to V+ -1.5 V. 6. For input signals that exceed Vee. only the overdriven comparator is affected. With a 5.0 V supply, VI should be limited to 25 V maximum and a limiting resistor should be used on all inputs that might exceed the positive supply. 8-15 pA 139 • pA239 • MA339 MA2901 • MA3302 Typical Performance Curves for 1lA139, 1lA239, 11339 Supply Current 1.0 ", 0.8 I .. o.a /" a: a: ::> u ~ o. o. --I-- 1 Ii Input Bias Current f' TA = -wc i o i 80 ~ _T~= ~ ~ - 20 I RLa .. o 10 Z 0 ~ l "" 20 10 I- ::> rrTAo *12&OC S - 0.001 40 30 SUPPLY VOLTAGE - V SUPPLY VOLTAGE - V , 0 5.0 mY ,.. INPUT OVERDRIVE 2Om~ 100mV .0 " '~'~Vo . \ 0 _ - ... " Response Time for Various Input Overdrives - Positive Transition ; 6.0 g ~ !; o n '" "" 4.G 3.0 2.0 5mV l20mv II I I .0 J 1 0 1.0 TIME -"s 1.5 I 1 +5.0 V "" TYi I 2.0 o.s - ... ~ v. - 1- r- r-Yi - 0.5 I INPUT OVERDRIVE,.. 100 mY IV s.o I! Vo I I 1.0 TlME-"s 8-16 1.5 ~~ /~ '/ :% 0.G1 "TA = 25'C ,/ 0.1 1.0 10 OUTPUT SINK CURRENT - mA PCOe9OOF Response Time for Various Input Overdrives - Negative Transition ~~ 0.G1 0 '" ~ 0. ~A=-55OC 0.1 3 "- ~Tr1i o o 40 30 20 TA=12SOC~ ~ I- -"t=11'c- 1.0 ~ -SS'C ~40 _T~"J ;;.J:.j I G.2 .." c 1"_ Tt=~ ,. > I RI(eY) .. 10· Q l ,V 0.' 10 VI(JMI' Jv ...J. 1 TA" o-i:- --- Output Saturation Voltage 80 2.0 .... 100 J.lA 139 • J.lA239 • J.lA339 J.lA290 1 • J.lA3302 Typical Performance Curves for 1lA2901, IlA3302 Supply Current RL = k--" GO 1.2 E Iiw ......T. =-4C)OC TA 1.0 /" .. ......'" .. ~ 0.8 I ....... ....... ~ ...... 0.8 ~ ~oocl TA = 8.0 r--r--.--r---rs.o-m-Y....=-ITNPUT---r-ove-rRD-R"TIVE---r w s.o 3.0 II 2Om~ 1-:-:-+--tt--tl-+-+Y'~+5.0Y 5.1 kfl- Yo _ 2.0 0 100 mY .0 ~ !:i 4.0 3.G g § - ~ ~~+-4-~~~I-:-:-+-1--r-+-1 ~!:i ~r ~ ~ -100 1-+--+-+-+-+-+-+ TAr ! ~ u TlME-,uS u i U 2.0 .0 'E ~ s.o I g !; ~ 0 n r "- ~ ISmY 120 mY I I IJ J I II I +5.0 V V, - + -SO-100 _ ~'~ ~ rTie - Vo- - - I I I I 0.5 1.0 TIME -p.S 8-17 1.5 ~ V ~ / a 0.01 r 0.1 ~ K:" ~ 'TA=OOC riC 1.0 10 OUTPUT SINK CURRENT - mA I 6.o INPUT OVERDRIVE .. 100 mY i 0~+-4-~~~1-:-:-~~-r-+~ I ~ 40 30 20 "·C, f\... ~V / 0.01 ::> Response Time for Various Input Overdrives - Positive Transition i I ..... !; 0 SUPPLY YOLTAGE - Y ~ 4 .0 r- ..~ ~~ T.=85"C TA. 0.1 0.001 10 V Response Time for Various Input Overdrives - Negative Transition !; !; o o 40 30 SUPPLY VOLTAGE - g I i 85 20 ~ - ---T T- - z 0 ooc Td:.: Tj=85 - r-- 1..-: 1.0 g ....-t ...~- ...... V 10 'E > "~ ::> . =-4O"e w ........... '"'"::> u "~ 10 80 "... c I Output Saturation Voltage Input Bias Current 2.0 ?" 100 MA 139 • MA239 • MA339 MA2901 • MA3302 Application Information Typical Applications (V+ The pA 139 series are high gain, wide bandwidth devices which, like most comparators, can easily oscillate if the output lead is inadvertently allowed to capacitively couple to the inputs via stray capacitance. This shows up only during the output voltage transition intervals as the comparator changes states. Power supply bypassing is not required to solve this problem. Standard PC board layout is helpful as it reduces stray input! output coupling. Reducing the input resistors to < 10 kn reduces the feedback signal levels and finally, adding even a small amount (1.0 V to 10 mY) of positive feedback (hysteresis) causes such a rapid transition that oscillations due to stray feedback are not possible. Simply socketing the Ie and attaching resistors to the leads will cause input! output oscillations during the small transition intervals unless hysteresis is used. If the input signal is a pulse waveform, with relatively fast rise and fall times, hysteresis is not required. =15 V) AND Gate V+ 39kQ 3.0kQ A B C V:::r "::" "0·"1" OR Gate V+ All leads of any unused comparators should be grounded. The bias network of the pA 139 series establishes a drain current which is independent of the magnitude of the power supply voltage over the range of 2.0 V to 30 V. 3.0kQ 200kQ A It is usually unnecessary to use a bypass capacitor across the power supply line. B C V;=r The differential input voltage may be larger than V+ without damaging the device. Protection should be provided to prevent the input voltages from going more negative than -0.3 V (at 25°C). An input clamp diode can be used as shown in the applications segment of this data sheet. "::" "0·"1"' f=A-B·C Monostable Multivibrator The output of the pA 139 series is the uncommitted collector of grounded emitter NPN output transistor. Many collectors can be tied together to provide wired OR output function. An output pull-up resistor can be connected to any available power supply within the permitted supply voltage range. There is no restriction on this voltage due to the magnitude of the voltage which is applied to the V+ terminal of the pA139 package. The output can also be used as a simple SP/ST switch to ground (when a pull up resistor is not used). The amount of current which the output device can sink is limited by the drive available (which is independent of V+) and the ~ of this device. When the maximum current limit is reached (approximately 16 rnA), the output transistor will come out of saturation and the output voltage will rise very rapidly. The output saturation voltage is limited by the approximately 60 n saturation resistance of the output transistor. The low offset voltage of the output transistor (1.0 mY) allows the output to clamp essentially to ground level for small load currents. ol to -It-..,---.-........-t l00pF ;:J""E o PW ---V+ 1mB _ _ to It lN914 Vo o.o01F 1.0MQ 8-18 p.A 139 • p.A239 • MA339 MA2901 • MA3302 Typical Applications (V+ = 15 V) (Cont.) Monostable Multivlbrator with Input Lock Out Bistable Multivibrator V. V· 100kO 15kO 51kO v:::n.. S .Ii:.15 V R v::::n.. 1OOkO .'" 100kO 0 --IE <4 V 1,.. 0 -::- Vo 1OOkO Vo 240kO 62 kO -=CA"",F Squarewave Oscillator Time Delay Generator V· V. 4.3kO 1OOkO 10kO 15 kO 200 3.0 kO 10kO V;::r '. .. 51 kO INPUT GATING SIGNAL 1OkO Ve, 3.0 kO 1OOkO 10MO 10kO V;:n.. _ to "'+VI-+ V;:r V. 10 12 aOkO 51 kO v+ • ----------.,.-~- 10 kO V. v;:r ~ct V2 I " -.12 .. v, Vo 100kO V.·-..:.Wlr-..........---'\/V'._--I V., 10 " f4 51kO ~_ 8-19 CR02370F IlA 139 • IlA239 • IlA339 IlA2901 • IlA3302 Typical Applications (V+ =15 V) (Cont.) Large Fan-In AND Gate (Note 1) Pulse Generator V+ V+ Dl lN914 R1 (NOTE 4) l.oUO R2 100 leO V::r VO(NOTE 3) "0· "I" l.oUO (NOTE 2) Wired-OR Outputs V+ Vo Notes 1) All resistor values in ohms. 2) All diodes 1N914. 3) Vo=A-e-c-o 4) For large ratios 01 Rl/R2. 01 can be omitted. 8-20 15 kO /lASS8S Ultra Fast Single Latched Comparator FAIRCHIL.D A Schlumberger Company Linear Division Comparators Connection Diagram 10-Lead Metal Package (Top View) Description The !lA6685 is an ultra fast single voltage comparator manufactured with an advanced high speed bipolar process that makes possible very short propagation delays (2.7 ns) with excellent matching characteristics. The comparator has differential analog inputs and complementary logic outputs compatible with most forms of ECL. The output current capability is adequate for driving terminated 50 n transmission lines. The low input offsets and short delays make this comparator especially suitable for high speed precision analog to digital processing. GND1 +IN -IN O:~t-:,..~---:;-4:J Q OUT The !lA6685 is lead compatible with the AM6685 and functionally compatible with AD9685 and SP9685. • • • • • • ~~----::OQOUT v- 2.7 ns Typical Propagation Delay Complementary ECl Outputs 50 n line Driving Capability Built-In Latch Typical Output Skew 0.2 ns Propagation Delay Constant With Overdrive Order Information Device Code !lA6685HM !lA6685HV Package Code 5X 5X Package Description Metal Metal Connection Diagram 16-Lead DIP (Top View) Connection Diagram 50-14 Package (Top View) 16 GND1 14 GND2 Q OUT NC v+ NC +IN NC -IN NC OUT GND2 Q GNDI NC v+ v- +IN LATCH ENABLE NC NC -IN NC NC Q OUT LATCH ENABLE Q OUT NC NC v- NC CD00961F Order Information Device Code !lA6685SV Package Code Package Description KD Molded Surface Mount Order Information Device Code !lA6685DM !lA6685DV !lA6685PV 8-21 Package Code 68 68 98 Package Description Ceramic DIP Ceramic DIP Molded DIP J.LA6685 Absolute Maximum Ratings Storage Temperature Range Metal Can and Ceramic DIP Molded DIP and SO-14 Operating Temperature Range Extended (!lA6685M) Industrial (!lA6685V) Lead Temperature Metal Can and Ceramic DIP (soldering, 60 s) Molded DIP and SO-14 (soldering, 10 s) Internal Power Dissipation 1, 2 10L-Metal Can 16L-Ceramic DIP 16L-Molded DIP SO-14 Positive Supply Voltage Negative Supply Voltage Input Voltage Differential Input Voltage Output Current Minimum Operating Voltage (V+ to V - ) -65°C to + 175°C -65°C to + 150°C -55°C to + 125°C -30°C to + 85°C 300°C 1.07 W 1.50 W 1.04 W 0.93 +7.0 V -7.0 V !4.0 V !6.0 V 30 mA 9.7 V 265°C Notes 1. TJ Max = 150·C for the Molded DIP and 80·14, and 175·C for the Metal Can and Ceramic DIP. 2. Ratings apply to ambient temperature at 25·C. Above this temperature, derate the 10l-Metal Can at 7.1 mWrC, the 16l-Ceramic DIP at 10 mWrC, the 16l-Molded DIP at 6.3 mWrC, and the 80-14 at 7.5 mWrC. Equivalent Circuit V+--~--~--------~----------T---~~--~--------~--~--' ~------~~--~--+---~r-~r-r----+--~----+-T---~----~----------GND2 -IN GN01 Q V-------~ ____ ~--------~----~----------_4 ______________ ______________ ~ ~ EQOO360F 8-22 MA6685 1lA6685V, 1lA6685M Electrical Characteristics Over recommended operating temperature and supply voltage ranges, unless otherwise specified. DC Characteristics /lA6685M "A6685V Symbol V,O Condltlon 1 Characteristic Input Offset Voltage Rs < 100 Rs<100 n, n n Min T A = 25°C -3.0 Typ Max 0.3 -3.5 Min +3.0 -2.0 +3.5 -3.0 Typ 0.3 Max +2.0 "vrc Average Temperature Coefficient of Input Offset Voltage Rs<100 1'0 Input Offset Current2 25°C < TA < TA Max -1.0 0.2 +1.0 -1.0 0.2 +1.0 TA=TA Min -1.3 0.3 +1.3 -1.6 0.3 +1.6 liB Input Bias Current VCM Common Mode Voltage Range CMR Common Mode Rejection 4.0 25°C I- t-t-t-t-t-t--t--t--H Yr= -S.2V °O~~~l00~~200f--L~~~~-~L-~~SOO 0.2 'PD -"-~-~ TIME-ns 5 ~ % e ~ ; 1"- ...... -4.0 -4.S ~ ~m -4.6 TEMPERATURE-"C -4.8 -5.0 -5.2 -5.4 -5.6 -5.8 NEGATIVE SUPPLY VOLTAGE-V PC06550F Positive Common Mode Limit vs Positive Supply Voltage -0.6 4.5 -0.7 > I -0.9 § -1.0 ............ !:l ~ ~ ~ ...... - 5.6 5.8 6.0 6.2 6.4 POsmVE SUPPLY VOLTAGE-V 6.8 ~ -1.0 !:l ~ 5Q. -1.6 ~ -1.7 VOL -1.5 -1.9 -1.9 -M-~-15 5 ~ ~ ~ TEMPERATURE-oC 8-24 H ~ VOH 1-0.8 -1.8 -2.0 2.S I -0.8 > -1.6 lS -1.7 r-'"" 5.4 ..... ~ -0.6 -0.7 ~ J v'!-- -0.8 ...... r-'"" Output Levels vs Negative Supply Voltage Output Levels vs Temperature m -r-.. -;:'r-.. r-_ -2.0 -4.6 -4.8 -S.O -5.2 -5.4 -5.6 NEGATIVE SUPPLY VOLTAGE-V -5.& MA668S Typical Performance Curves (Cont.) TA = 25°C, V+ = 6.0 V, V - = -5.2 V, Vr = -2.0 V, RL = 50 n, and switching characteristics are for Vin = 100 mV, VOD = 10 mV, unless otherwise specified. Output Levels vs DC Loading Supply Currents vs Temperature -0.6 /2002 '\ J -0.8 .1 r r- -!";... > ~ -0.9 II !i -1.0 ~ g 1/502 - ..L / I ,2002 -1.6 J 5i!: -1.7 1/ 502 LOAD~ FOR / VOL / -1.9 o 12 16 20 ~ ~ II: II: .8 e 25 ~ 20 28 e;. 25 I 1- ::> " .... ::> ffi e;. 10 I 6.0 6.2 6.4 ....... ............ o 1. 12 !Zw 10 !Zw 10 ~ ~ 1Mm § .."~ ::> l.I .. ::> a; o -3 1\1 1/\ ... V" -4 /1--' '\ -2 -1 COMMON MODe VOLTAGE-V o -150 ~v -100 J V 1\ "r-.... - 50 50 100 DIFFERENTIAL INPUT VOLTAGE-mY 8-25 -4.6 -4.8 -5.0 -5.2 -5.4 -5.6 NEGATIVE SUPPLY VOLTAGE-V NON-INVERTING IN 1', II: II: ::> . ~ 5 INVERTING IN 12 II: II: -5.8 ..... ,.... .. 14 1. a; .." 16 I -5.6 10 ~ Input Current vs Differential Input Voltage 16 -5.4 12 ~ r- r- r- TEMPERATURE-oC I. -5.2 a; POSITIVE SUPPLY VOLTAGE-V Input Bias Current vs Common Mode Voltage -5.0 ::> -~-~-~ 6.8 --- _~f- II: II: o 5.8 ,~ ,....~ .... Input Bias Current vs Negative Supply Voltage !Zw ....... .... ~ .... NEGATIVE SUPPLY VOLTAGE-V 12 a; 5.6 10 -4.6 -4.8 ~m M 16 ~ 15 "..:! '~" ~ I. .."~ .. ,~ 10 5.4 I ~ 15 16 ::> ~ .... ~ I--" 20 I. II: II: 20 ~ 5 Input Bias Current vs Temperature !Z w II: II: ::> TEMPERATURE-"C 30 I II: II: ::> 15 -~-~-~ 32 1- !Zw 10 24 25 I ~ l - I--- Supply Currents vs Positive Supply Voltage E E ." .. 1+ LOAD CURRENT-mA e - I ~ Yr= -2.0V '~ i-- -1.8 -2.0 30 30 \ -0.7 !; Supply Currents vs Negative Supply Voltage 150 -5.8 • MA6685 Typical Applications (TA = 25°C) High Speed Window Detector +VREF --T----I IN "- OUT 50Q +VREF r ~ OJT 2oJmVl~iv. /f [\ -VREF "-VREF --T-----of 50Q IN~mvt'v. V 50Q 10ns/div. -2.0V High Speed Sampling IN LATCH ENABLE ~ ~Q--~--~--- OUT IN 50Q OUT LATCH ENABLE (Sample Rate = 100 MHz) IJ [1 ( IJ IJ J -2.0V V\, "\ \ if - / \ ( \ \ 5ns/div. 8-26 J .... IJ ( 5OOmV/dlv. 100mVldlv. SOOmV/div. MA6685 Measurement Of Propagation Delay +6.0V V+ ~D 'LL INPUT FROM PULSE GENERATOR 50Q COAX CABLE ~ O.1iJ.F HIGH SPEED SCOPE PROBES GND tt::51.2". (10%-90%) 5.0kQ V'-----.M---t---<>I 50Q 50Q 50Q -2.0V -5.2V Propagation delays tpo + (0 output) and tpo - (Q output) are measured with input signal conditions of a 100 mV step with an overdrive of 10 mV (the overdrive is the voltage in excess of that needed to bring the output to the center of its dynamic range). Offset is compensated for by adjusting VI until outputs are in the linear region while the Pulse Generator is disconnected. VI is then increased in the positive direction so inverting input changes by 10 mV, i.e. the overdrive condition. Propagation delays are then measured with actual input pulse condition of + 110 mV to o V swing, with a tpo + or tpo - reading taken between the + 10 mV level of the input pulse and the 50% point of the outputs. over the devices. If the IlA6685 is operated without air flow, the change in electrical characteristics due to the increased die temperature must be taken into account. Interconnection Techniques All high speed Eel circuits require that special precautions be taken for optimum system performance. The 1lA6685 is particularly critical because it features very high gain (60 dB) at very high frequencies (100 MHz). A ground plane must be provided for a good, low inductance, ground current return path. The impedance at the inputs should be as low as possible and lead lengths as short as practical. It is preferable to solder the device directly to the printed circuit board instead of using a socket. Open wiring on the outputs should be limited to less than one inch, since severe ringing occurs beyond this length. For longer lengths, the printed circuit interconnections become microstrip transmission lines when backed up by a ground plane, with a characteristic impedance of 50 to 150 n. Reflections will occur unless the line is terminated in its characteristic impedance. The termination resistors normally go to -2.0 V, but a Thevenin equivalent to V- can be used at some increase in power. Best results are usually obtained with the terminating resistor at the end of the driven line. The lower impedance lines are more suitable for driving capacitive loads. The supply voltages should be decoupled with RF capaCitors connected to the ground plane as close to the device supply leads as possible. Thermal Considerations To achieve the high speed of the IlA6685, a certain amount of power must be dissipated as heat. This increases the temperature of the die relative to the ambient temperature. In order to be compatible with Eel III and Eel 10,000, which normally use air flow as a means of package cooling, the 1lA6685 characteristics are specified when the device has an air flow across the package of 500 linear feet per minute or greater. Thus, even though different Eel circuits on a printed circuit board may have different power dissipations, all will have the same input and output levels, etc. provided each sees the same air flow and air temperature. This eases deSign, since the only change in characteristics between devices is due to the increase in ambient temperature of the air passing 8-27 J1A6685 Timing Diagram Key To Timing Diagram WAVEFORM INPUTS OUTPUTS LATCH ENABLE MUST BE STEADY OIFFERENTIAL INPUT VOLTAGE Q MAY CHANGE FROM HTOL OUT Q OUT -- -----~~1----------~~:)'= 5~/. WILLSE STEADY WIUBe CHANGING FROM HTOL MAY CHANGE FROM L TOH WILL BE DON'TeARE; ANY CHANGE PERMITTED CHANGING; STATE UNKNOWN CHANGING FROM l TOH Note The set up and hold times are a measure of the time required for an input signal to propagate through the first stage of the comparator to reach the latching circuitry. Input signal changes occurring before ts will be detected and held; those occurring after th will not be detected. Changes between ts and th mayor may not be detected. Definition Of Terms VIO Input Offset Voltage - That voltage which must be applied between the two input terminals through two equal resistances to obtain zero voltage between the two outputs. .lVlo/.lT Average Temperature Coefficient Of Input Offset Voltage - The ratio of the change in input offset voltage over the operating temperature range to the temperature range. Input Offset Current - The difference between the currents into the two input terminals when there is zero voltage between the two outputs. Input Bias Current currents. VOH Output Voltage HIGH - The logic HIGH output voltage with an external pull-down resistor returned to a negative supply. VOL Output Voltage LOW The logic LOW output voltage with an external pull-down resistor returned to a negative supply. 1+ Positive Supply Current - The current required from the positive supply to operate the comparator. 1- Negative Supply Current - The current required from the negative supply to operate the comparator. Power Consumption - The power dissipated by the comparator with both outputs terminated in 50 n to -2.0 V. The average of the two input Switching Terms (see Timing Diagram) Input Resistance - The resistance looking into either input terminal with the other grounded. tpD+ Input To Output HIGH Delay - The propagation delay measured from the time the input signal crosses the input offset voltage to the 50% point of an output LOW to HIGH transition. tPD- Input To Output LOW Delay - The propagation delay measured from the time the input Signal crosses the input offset voltage to the 50% point of an output HIGH to LOW transition. tpD+(E) Latch Enable To Output HIGH Delay The propagation delay measured from the 50% point of the Latch Enable Signal LOW to HIGH transition to the 50% point of an output LOW to HIGH transition. Input Capacitance - The capacitance looking into either input terminal with the other grounded. VCM Common Mode Voltage Range - The range of voltages on the input terminals for which the offset and propagation delay specifications apply. CMR Common Mode Rejection - The ratio of the input voltage range to the peak-to-peak change in input offset voltage over this range. PSRR Power Supply Rejection Ratio - The ratio of the change in input offset voltage to the change in power supply voltages producing it. 8-28 MA6685 tpO-(E) Latch Enable To Output LOW Delay The propagation delay measured from the 50% point of the Latch Enable signal HIGH to LOW transition to the 50% point of an output HIGH to LOW transition. ts Minimum Set up Time The minimum time before the negative transition of the Latch Enable signal that an input signal change must be present in order to be acquired and held at the outputs. tpw(E) Minimum Latch Enable Pulse Width The minimum time that the Latch Enable signal must be HIGH in order to acquire and hold an input signal change. Other Symbols TA Output load terminating voltage Rs Input source resistance RL Output load resistance Yin Input pulse amplitude Vee Supply voltages V+ Positive supply voltage Voo Input overdrive Frequency V- Negative supply voltage f Minimum Hold Time - The minimum time after the negative transition of the Latch Enable signal that the input signal must remain unchanged in order to be acquired and held at the outputs. 8-29 Ambient temperature VT • J,LA6687 Ultra Fast Voltage Comparators FAIRCHILD A Schlumberger Company Linear Division Comparators Description Connection Diagram 16-Lead DIP (Top View) The /lA6687 is an ultra fast dual voltage comparator manufactured with an advanced high speed bipolar process that makes possible very short propagation delays (2.7 ns) with excellent matching characteristics. These comparators have differential analog inputs and complementary logic outputs compatible with most forms of ECl. The output current capability is adequate for driving terminated 50 transmission lines. The low input offsets and short delays make these comparators especially suitable for high speed precision analog-to-digital processing. 16 n Separate latch functions are provided to allow each comparator to be independently used in a sample and hold mode. The latch function inputs are designed to be driven from the complementary outputs of a standard ECl gate. If latch enable is HIGH and latch enable is LOW, the comparator functions normally. When latch enable is driven lOW and latch enable is driven HIGH, the comparator outputs are locked in their existing logical states. Should the latch function not be used, latch enable must be connected to ground. Q OUT B Q OUT A Q OUT GND A GNDB B LATCH ENABLE A LATCH ENABLE B LATCH ENABLE A LATCH ENABLE B v- The /lA6687 is lead compatible with the AM6687 and with the AD9687 and SP9687. v+ -IN A -IN B +INA + IN B Order Information Device Code j.lA6687DM j.lA6687DV /lA6687PV • 2.7 ns Typical Propagation Delay At 10 mV Overdrive • Complementary ECl Outputs • 50 n line Driving Capability • 1.0 ns Latch Set up Time Absolute Maximum Ratings Storage Temperature Range Ceramic DIP Molded DIP Operating Temperature Range Extended (/lA6687M) Industrial (/lA6687V) lead Temperature Ceramic DIP (soldering, 60 s) Molded DIP (soldering, 10 s) Internal Power Dissipation I, 2 16l-Ceramic DIP 16l-Molded DIP Positive Supply Voltage Negative Supply Voltage Input Voltage Differential Input Voltage Output Current Q OUT A -65°C to + 175°C -65°C to + 150°C -55°C to + 125°C -30°C to + 85°C 1.50 W 1.04 W +7.0 V -7.0 V !4.0 V !6.0 V 30 mA Notes 1. TJ Max = IS0·C for the Molded DIP and 17S·C for the Ceramic DIP. 2. Ratings apply to ambient temperature at 2S·C. Above this temperature, derate the 16L·Ceramic DIP at 10 mWrC, and the 16L-Molded DIP at 8.3 mWrC. 8-30 Package Code 68 68 98 Package Description Ceramic DIP Ceramic DIP Molded DIP JlA6687 Electrical Characteristics Over the recommended operating temperature and supply voltage ranges, unless otherwise specified. DC Characteristics JlA6687V Symbol Condition 1 Characteristic Input Offset Voltage VIO 110 Input Offset Current2 Input Bias Current lis VCM Input Common Mode Range CMR Common Mode Rejection Max. Min. Max. -2.0 +2.0 -3.0 +3.0 -3.0 +3.0 -10 +10 -10 +10 JlV;oC 25°C 1-0.2 ;- ...g~-1.0 -1.2 -1.4 -1.6 -4.6 -4.8 -5.0 -5.2 -5.4 2 -4 -5.6 -5.8 NEGATIVE SUPPLY VOLTAGE-V -1 .1 r- POSrrWEOOMMoNMODEUMrr ~ 3.$ I-- I -4.0 5 ~ % "~1~~ TEMPERATURE-oC 2 4 6 ~ \ \ t--... J 8 wnw ~ -so ~ 60 ...... u ~ -40 -70 ~ Positive Common Mode Limit vs Positive Supply Voltage I :E :::i 1'-- ....... 4.0 w c 0 :E 1'-- ...... § -$-~-~ o !\ t: ~ -3.5 NEGATIVE COMMON MODE UMrr I 1I 5 ;-..- I 4.$ -3.0 g -3.$ \ \ GOUT -: ~ > w i 10 :; TlME-ns -2.5 .J. i" -2 Negative Common Mode Limit vs Negative Supply Voltage 4.0 ~ -3 -\ COMMON MODE VOLTAGE-V Common Mode Limits vs Temperature t -1~ i".. I ~ ~-O.8 2~L-L-L-L-~L-~~~~~ 10 i".. / I\.. ./ ./ ~ -0.6 '- i".. 1/ z 0 :E :E 1"-...... ...... r--., -4.0 I 0 """ ..... 3.$ ..... "'" ..... .......... "w E 3.0 ..... I!!CL -4.5 -4.6 -4.8 -5.0 -5.2 -5.4 -5.6 -S.B NEGATIVE SUPPlY VOLTAGE-V 8-36 2.$ 5.4 5.6 5.8 6.0 6.2 6.4 POSmVE SUPPLY VOLTAGE-V 6.8 U Typical Performance Curves (Cant.) TA = 25°C, V+ = 6.0 V, V- = -5.2 V, Vr = -2.0 V, RL = 50 n, and switching characteristics are for Yin = 100 mY, VOD = 5.0 mY, unless otherwise specified. Output Levels vs Negative Supply Voltage Output Levels vs Temperature -0.6 -0.7 - I- .I ,..... vo.!!.-- -0.8 > I -0.9 _I-""" w ~ -1.0 -0.6 -0.7 -0.7 -0.8 -0.8 I -0.9 ~ -1.0 g !;; -1.6 -1.6 g I!: 5 -1.7 VOL -1.7 -1.8 -1.8 -1.9 -1.9 -2.0 -2.0 -"-~-15 5 ~ ~ ~ ~ ~ m r-_ r- -4.8 I 20 ::> ... ::> 15 .. ~ 12 !Zw 10 a; a; ....... -4.B r- t- 0; o -M-~-~ -5.0 -5.2 -5.4 -5.6 5 ~ ~ - M M TEMPERATURE-OC 32 Il -5.8 5.' 5.6 ~ 0; 6.0 6.2 6.' 6.8 16 1 I !Zw - - .. !;; 5.8 POSITIVE SUPPLY VOLTAGE-V ,. u o 1~m 28 Input Bias Current vs Common Mode Voltage ::> r--.. 24 I Input Bias Current vs Negative Supply Voltage ,. 10 20 10 -4.6 16 12 16 -- - Supply Currents vs Positive Supply Voltage 1-1- 1-- I-r-- 15 ,. ...... 12 NEGAnVE SUPPLY VOLTAGE-V Input Bias Current vs Temperature ::> o .... 1--" .... ,~ I-'"' TEMPERATURE- OC a; a; I LOAD CURRENT -mA 10 10 Vr=-2.0V VOL ...... f--' .... ::; 1+ u -5.8 - ~g~D~ J 25 u u ~ -S.6 /S02 30 !Zw a; a; ::; ""I -5.4 Supply Currents vs Negative Supply Voltage ""EI 25 ffi !Zw -5.2 r-!~r:- .i. ,/ ...... ~ -1.9 30 I i -5.0 ,L -1.8 t-r-- -2.0 -4.6 30 ::> """"f-,..... o - ,2002 /S02 -1.6 -1.7 NEGATiVe SUPPLY VOLTAGE-V Supply Currents vs Temperature a; a; ..5 !;; VOL 1 TEMPERATURE- "C ~ r II :i -1.0 !:i g 1 [2002 'J w !:i g 1\ > I -0.9 VOH > !:i ~ Output Levels vs DC Loading -0.6 -4.6 a; a; 12 10 ::> 0 ~ /, -ssoc I w "~ 2.0 ~ 1.0 ..S! ...-: rl-) IJ/ III :g 0 -aD -1.0 r---.. Z TA = 25°C > I 1500 S! 3.0 "w "~ 1500 V "X ./ ./ V 1000 V /' V ~ ,,-I.r ~rV ,,- _-~$>" .... / - ,V V 500 1300 -50 5.0 2000 S! \ 1400 1.0 z C \ w "~ ...1S\'" ;;; \. ~ ,V 2500 "' '\ I 1600 I r-T.I =25'~ v- = -S.OY ~ TA = lZSOC 3000 V.I"2~ 1700 ~I (~ -1.0 -5.0 Voltage Gain vs Supply Voltages -20 20 60 100 140 12 11 10 13 14 POSITIVE SUPPLY VOLTAGE - V TEMPERATURE _ °C INPUT VOLTAGE - mY """." Input Bias Current vs Temperature Input Offset Current vs Temperature 50 2.0 v. ~ 12~ Y+ '. V-=-6.0V 1 II! i V+ = 12V v- = -7.0V -5.0 V S VCM $: +5.0Y '-- I- I I 30 § "~ 12~ v- = -6.GY '\ 1 40 I !i Common Mode Rejection Ratio vs Temperature " 20 i'\ ~ ......... 10 r--. ....... o i r- r- o o -50 -20 20 r- ....... \ () 1.0 50 100 140 -50 -20 ....... "" 20 i' ~ ......... Power Consumption vs Temperature 100 60 TEMPERATURE - TEMPERATURE - OC 100 r-..... i'. 94 140 3.5 4.0 = -6.DV 3.0 I..... ................ ./ 50 ....e~+J.!l!..~m.L -::::: ~~""'A£ i'- ......... 20 100 140 oc Output Voltage Levels vs Temperature J.= \2V~_ v- v- = -6.0Y -20 TEMPERATURE - Output Sink Current vs Temperature v. ~ 12~ -50 oc ~+=\2V' v- = -6.0 V - SHOlO ....... ~~ i'. 0 NEGATIVE OUTPUT LEVEL 75 -10 -20 20 50 100 TEMPERATURE _ °C -1.0 1.0 140 -50 -20 20 50 TEMPERATURE _ °C 8-48 100 140 -50 I -20 20 50 TEMPERATURE _ °C 100 140 MA710 Typical Performance Curves for 11A710 (Cont.) Response Time for Response Time for Various Input Overdrives Various Input Overdrives > 4.0 I 3.0 W ~ 2.0 ~ .Jm~ I I ,II 10mY V1 /~ i'-~.o ~v ,~ .0 ~ > I 3.0 !:j 2.0 ~ '\r-..~ \ 1.0 ~ °r - 1 5 -1 .0 i ~ I /IV 0 Common Mode Pulse Response 4.0 r\ o -IOiV lot " WI g~ ~5.0mV :I .. ~g i' I W 100 !:i ~ so !;i ~> or- r- 20 40 60 80 Y+= 12V V- = -B.OV TA = 2SOC 0 0 0 0 100 20 120 40 60 80 100 40 > I =OO,? ...... T.~JC, ~ / r-- '.0 0 .> . .... W ";! I .... ::> 0 'I 3.0 5.0 20 30 40 0 50 60 30 o o ~ ~ b-. 1.0 20 30 40 SO TEMPERATURE - OC 60 " ~ ! 70 14 V+:c 12V v- .. -7.0Y -5.0VSVCM:55.DV 98 - I- - r-- I-- Ul W '" t"'--. o 10 13 '""'""- 0: o l - t----. 102 I ~ ~ '""'""- r- f- I. 11 Vi 0: ~ 0: o t; ~~ 0100 ::> 0 -~ ~ ~~ Common Mode Rejection Ratio vs Temperature I ::> I- POSITIVE SUPPLY VOLTAGE _ V -6.DY ffi 0: ~ V 10 70 vL,.J_ v- = -6.0 V 1 10 ~ ./' / ,/ 400 10 .. v+=I.v 40 ~ i! ~ 1200 TEMPERATURE _ °C v-:;:; ".... V~ .. 1600 600 o -I JP .-- -I- ~ ........ Input Offset Current vs Temperature 50 en 20 t--.. iii 2000 ~ .......... mY Input Bias Current vs Temperature ! ......... 1400 1200 1.0 ,..,- ~ !-- z 1300 INPUT VOLTAGE - 1 I ....z r--..... ~:= ~~.~v- -1.0 -3.0 T~= 25~ '400 ~I ~ A -1.0 -5.D 2800 ........ ISO Voltage Gain vs Supply Voltages y- = -6.0V '""'""- 1500 ~ J 1.0 ::> I z TA'" 70"C 1// l"- ,'0 80 V.'. 12V 1. _ - ~ ..fI '-.... W "~ 1600 - TIME-n. 1700 TA Vo ~ 120 Typical Performance Curves for JJA710C Voltage Gain vs Ambient Temperature Voltage Transfer Characteristic 4.0 J.lA710 - TIME-nl TIME -nl 3.0 SOCl r- 'VCM o- r 0 I 50Cl r-- r- e- Tj=ri ! V- -6.0 V A =25"C- .0 -1.~r- 20mV vLI,• V v- =-6.0 V 0 ~ i 2.0 I 'l! W 0: 0: J+== j.v ~_ !> 3-0 2.0 mY iz ..... 010203040506070 TEMPERATURE - 8-49 oc 0 :I :I 0 0 96 .. 9. 0 10 20 30 40 so TEMPERATURE _ °C 80 70 J,LA71 0 Typical Performance Curves for j.LA710C (Cont.) Power Consumption vs Temperature Output Voltage Levels vs Temperature Output Sink Current vs Temperature 4.0 '00 V!=.2J -6.0 V- V.'=.2V',_ v-:: -B.OY v-= ~ I ~ ~ 90 8 85 I - 3.0 ~_ 2., a '"~ o 10 20 30 40 50 60 - > I .. "~ ~ ~ 4.0 ,I 3.0 2Jm~ 2.0 10mV .0 0 o _..0 /~ 1/11 V '" ...... v-"'" ~ 100 ~ 50 ~ i ·rr 0 10 1=("J 20 40 60 TIME -ft. 80 100 1-1- 120 2•0 > •.0 7- V-:: -6.0Y 0 a 1-1-1- LOGJ~ THR~SHOLJ VOLTAGE- - 1.0 NEGATIVE OUTPUT LEVEL .. > 4 •0 I ~ 3.0 I 2.0 0 '.5 20 30 so 40 60 I .. O~i"r - Of-- 20mV 1,\ i' K 1\ ~V ~r\ -..0 70 100 g 50 i 0 8-50 80 70 L 0 i' - 500 - - 2.0 - - 500 0- TA = 250C 60 60 Y-=-S.oV VA=25°C._ S.OmV V- =-B.OV - TIME -n8 50 J.= kv ,_ 0 > => .. I!:~ .. , 40 40 2.0mV V+ = 12V 20 30 Common Mode Pulse Response I !:i 20 TEMPERATURE - OC ~ i 10 °C Response Time for Various Input Overdrives 2.0~V f--+- y-:: -6.GV POSIT',E ourUT LjVEL > ~ 5 TEMPERATURE - vL 1'2 V 1-1- I ~ ...... V!=.2J,,_ o 70 ,/ i/ll po.., - I , ~ I-- I--- ~ TEMPERATURE _ °C Response Time for Various Input Overdrives I > 2.0 O~ 80 75 'I , 95 3.0 100 120 5!:i g ....... "A~ Vo - I- VCM , •.0 0 40 80 TIME-ns .20 .60 IlA711 Dual High Speed Differential Comparator FAIRCHILD A Schlumberger Company Linear Division Comparators Description Connection Diagram 10-Lead Metal Package (Top View) The I1A711 is a dual high speed differential comparator featuring high accuracy, fast response times, large input voltage range, low power consumption and compatibility with practically all integrated logic forms. When used as a sense amplifier, the threshold voltage can be adjusted over a wide range, almost independent of the integrated circuit characteristics. Independent strobing of each comparator channel is provided, and pulse stretching on the output is easily accomplished. Other applications of the dual comparator include a window discriminator in pulse height detectors and a double ended limit detector for automatic Go/No-Go test equipment. The I1A711, which is similar to the pA710 differential comparator, is constructed using the Fairchild Planar Epitaxial process. • • • • V+ V- Lead 5 connected to case Fast Response Time - 40 ns Typical 5.0 mV Maximum Offset Voltage 10 I1A Maximum Offset Current Independent Comparator Strobing Order Information Device Code pA711HM pA711HC Absolute Maximum Ratings Storage Temperature Range Metal Can and Ceramic DIP Molded DIP Operating Temperature Range Extended (pA 711 M) Commercial (pA711C) Lead Temperature Metal Can and Ceramic DIP (soldering, SO s) Molded DIP (soldering, 10 s) Internal Power Dissipation 1, 2 10L-Metal Can 14L-Ceramic DIP 14L-Molded DIP Positive Supply Voltage Negative Supply Voltage Peak Output Current Differential Input Voltage Input Voltage Strobe Voltage Package Code 5X 5X Package Description Metal Metal Connection Diagram 14-Lead DIP (Top View) -S5°C to + 175°C -S5°C to + 150°C 14 -55°C to +125°C O°C to 70°C NC 1.07 W 1.3S W 1.04 W +14 V -7.0 V 50 mA ±5.0 V ±7.0 V o V to +S.O V NC -INA STROBE A +INA GND v+ v+IN B OUT -INB STROBE B NC NC c001061F Notes I. TJ Max -ISO·C for the Molded DIP, and 17S·C for the Metal Can and Ceramic DIP. 2. Ratings apply to ambient temperature at 2S·C. Above this temperature, derate the IOl·Metal Can at 7.1 mW·C, the 14l·Ceramic DIP at 9.1 mW·C, and the 14l·Molded DIP at 8.3 mW·C. Order Information Device Code I1A711DM pA711DC I1A711 PC 8-51 Package Code SA SA 9A Package Description Ceramic DIP Ceramic DIP Molded DIP I1A711 Equivalent Circuit STROBE A STROBE B .---_4r_--------------~----~----~----~----~------------_4r_--~---v+ R4 4.3 kG 04 6.2 V R1S 4.3kO R14 4.3 kQ 06 018 R2 R12 9100 9100 R13 910n R1 910 n 02 6.2 V -INA -IN B GNO +INA +INB R7 S.DS kO R9 1200 R8 2400 R10 1200 L-----------------~~--------------------~------ _______V- J.lA711 Electrical Characteristics T A = 25°C, V+ = 12 V, V- = -6.0 V, unless otherwise specified. Symbol VIO Characteristic Input Offset Voltage Condition Vo=1.4 V, Rs<200 Vo=1.4 V, Rs<200 110 Input Offset Current lis Input Bias Current Avs Large Signal Voltage Gain tpD Response Time 1 tSTRL Strobe Release Time VIR Input Voltage Range n, n Min VCM=O V Vo=1.4 V 750 V- =-7.0 V Typ Max Unit 1.0 3.5 mV 1.0 5.0 0.5 10.0 IJ.A 25 75 p.A 1500 VIV 40 ns 12 ns ± 5.0 V ±5.0 VIDR Differential Input Voltage Range Ro Output Resistance VOH Output Voltage HIGH VI ;;'10 mV VOH Loaded Output Voltage HIGH VI ;;'10 mY, 10H = 5.0 mA 2.5 3.5 VOL Output Voltage LOW VI ;;'10 mV -1.0 -0.5 VO(ST) Strobed Output Level VST<0.3 V -1.0 V n 200 8-52 4.5 5.0 V V 0 V 0 V JiA711 J.l.A711 (Cont.) Electrical Characteristics T A = 25°C, V+ = 12 V, V- = -6.0 V, unless otherwise specified. Symbol Characteristic Min Condition Typ Max Unit 10L Output Sink Current VI;;;' 10 mY, Vo;;;'O V 10(ST) Strobe Current VST = 100 mV 1.2 1+ Positive Supply Current Vo = GND, Inverting Input = 5.0 mV 8.6 mA 1- Negative Supply Current Vo = GND, Inverting Input = 5.0 mV 3.9 mA Pc Power Consumption The following specifications apply for -55°C 0.5 0.8 130 ~ VIO Input Offset Voltage2 110 Input Offset Current liB Input Bias Current AVIO/ AT Temperature Coefficient of Input Offset Voltage Avs Large Signal Voltage Gain mA 2.5 mA 200 mW 4.5 mV 6.0 mV 20 pA TA ~ + 125°C Rs ~ 200 Rs~200 n, n VCM = 0 V 150 !lA !lV/DC 5.0 500 VIV J.l.A711C Electrical Characteristics T A = 25°C, V+ = 12 V, V- = -6.0 V, unless otherwise specified. Symbol VIO Condition 1 Characteristic Input Offset Voltage Vo = +1.4 V, Rs~200 Vo=+1.4 V, Rs~200 110 Input Offset Current liB Input Bias Current Avs Large Signal Voltage Gain tpD Response Time 1 n, n Min VCM=O V Vo=+1.4 V 700 Typ Max Unit 1.0 5.0 mV 1.0 7.5 mV 0.5 15 !lA 25 100 1500 40 ns 12 ns tSTRL Strobe Release Time VIR Input Voltage Range VIDR Differential Input Voltage Range Ro Output Resistance VOH Output Voltage HIGH VI;;;'lO mV VOH Loaded Output Voltage HIGH VI ;;;'10 mY, 10H = 5.0 mA 2.5 3.5 VOL Output Voltage LOW VI;;;'lO mV -1.0 -0.5 VO(ST) Strobed Output Level VST~0.3 -1.0 10L Output Sink Current VI;;;' 10 mY, Vo;;;'GND 10(ST) Strobe Current VST = 100 mV 1.2 1+ Positive Supply Current Vo = GND, Inverting Input = 10 mV 8.6 V- =-7.0 V ±5.0 V ±5.0 V n 200 V 8-53 4.5 0.5 !lA VIV 5.0 V 0 V 0 V V 0.8 mA 2.5 mA mA IlA711 p.A711C (Cont.) Electrical Characteristics TA = 25°C, V+ Symbol = 12 V, V- = -6.0 Characteristic 1- Negative Supply Current Pc Power Consumption V, unless otherwise specified. Min Condition' Typ Max Unit 230 mW 6.0 mV 10 mV 25 pA 3.9 Vo=GNO, Inverting Input = 10 mV 130 mA The following specifications apply for O·C < TA < 70·C Input Offset Voltage2 VIO Rs<200 Rs <200 110 Input Offset Current liB Input Bias Current fl.Vlo/fl.T Temperature Coefficient of Input Offset Voltage Avs Large Signal Voltage Gain n, n VCM=O V 150 pA /J.vrc 5.0 500 VIV Notes 1. The response time specified is for a 100 mV step input with 5.0 mV overdrive. 2. The input offset voltage is specified for a logic threshold as follows: JJA711: 1.8 V at -55·C, 1.4 Vat + 25·C, 1.0 V at + 125·C jJA711C: 1.5 V at O·C, 1.4 V at 25·C, 1.2 V at 70·C Typical Performance Curves Voltage Transfer Characteristic p.A 711 5.0 4.0 > I OJ "~ ...~ :> 3.0 V+= 12Y V- -&.OV = Voltage Transfer Characteristic p.A711C 5.0 I I ~ 1 11 TA lB. =12S"C .... > I r1L III1 /I, 2.0 4.0 'II TA = _55°C I .......T. = 25°C Ii ~ 1.0 -3.0 -1.0 3.0 TA 1.0 3.0 5.0 INPUT VOLTAGE - mY = ooc II. 'fI1 i"A 'I... IH~ 2.0 VI ~ TA - > ~ ~ ... ~ i 7~C TA = 250C -3.0 -1.0 8-54 1. 0 0 J_ J, yjV '. 1~m~ jll il II 'I ..< 5.~~V ? KJ.omv -1.0 I 1.0 INPUT VOLTAGE - mV PCQ7200F 4. 0 3. 0 ~ OJ "~ g -1.0 -5.0 5. 0 g 2-o .4 II 1.0 0 VI -1.0 -5.0 "~ ~ ... :> 5 HI :> 0 OJ I J .L L I-V.=12V V-=-&.ov Response Time for Various Input Overdrives 3.0 5.0 ~ i!< V+ 100 = 12V V- = -6.0V TA = 25°C 50 0 I 20 40 60 80 TIME -ns 100 120 p.A711 Typical Performance Curves (Cont.) Voltage Gain vs Temperature 1700 > "" ~ I 2800 "'\ 1600 1500 i... TAl. J+.12V v-, -6.0V 2400 V > ~ 2000 " "'\ I ~ ... ~ 1400 "~ 1,\ !:l ~ ~ 1"'\ 1300 1600 1200 I\. -20 20 800 100 140 V 1>0" /p V - y-·-6.0Y TA T = 25Ge CL ...'i 4.0 "~ 0 _ _ 5.1kO 2.0 > ... :::l ~ 0 -, _6.0y-f-f- l~ c~1 fI f- f- .... ...... ~'::.~ t'--.. !; ~ " 40- ./ / -2.0 10 "C ..... ~Yo 6.0 ..... ,,'~~ ".V~ ..- V 400 60 TEMPERATURE - / alc I-I,.....- V ;I. Z "'\ 1200 -60 Output Pulse Stretching With Capacitive Loading Voltage Gain vs Supply Voltages 13 12 11 100 14 300 200 TIME -ns POSITIVE SUPPLY VOLTAGE - V 400 500 PC07240F Common Mode Pulse Response ~ !> a 0 I II 1 ::I" 1.0 f- r 00 of-' .f- > !; I 2. 0 - . ~ 0 '$.40 $I ~ E, ~ I 1 I i ~ I 120 80 40 '\ '\ 30 () Vo I I I I J y+ ~ 12~ y-. -6.0 V \ TA'25"C 500 !;~ 1.0 0g 50 = 12V v-. -6.0V , ... I 2.0 g~ z!:l V+ Strobe Release Time for Various Input Overdrives Input Bias Current vs Temperature 160 ........ 10 -60 - -20 20 60 100 140 ~ V+ 12ly y-. -6.0 V I z o f ~ 130 l- I- r... I'-... I-" () I 120 -60 -20 20 60 ~ 100 1.0 0 2.0 ~ 1.0 140 TEMPERATURE - "C 8-55 § i-"" / vi. \2VI y-. -6.0V TA= 250C I 5.omv...., !; Power Consumption vs Temperature ~ a0 > I g PC01210F ~ g ~ TEMPERATURE - "C 140 ~ ;! 2. 0 ! ...... o TIME -ns "- 20 > I -1.0 -. 'i ~ 2.omV &V 10 OmV 1.omyL f- 20 TIME 30 -ns 40 50 p.A760 FAIRCHILD High Speed Differential Comparator A Schlumberger Company Linear Division Comparators Description Connection Diagram 8-Lead Metal Package (Top View) The pA7S0 is a differential voltage comparator offering considerable speed improvement over the pA710 family and operates from symmetric supplies of ± 4.5 V to ± S.5 V. The pA7S0 can be used in high speed analog-todigital conversion systems and as a zero crossing detector in disc file and tape amplifiers. The pA7S0 output features balanced rise and fall times for minimum skew and close matching between the complementary outputs. The outputs are TTL compatible with a minimum sink capability of two gate loads. • • • • • V+ Guaranteed High Speed - 25 ns Max Guaranteed Delay Matching On Both Outputs Complementary TTL Compatible Outputs High Sensitivity Standard Supply Voltages V- Lead 4 connected to case Order Information Device Code pA7S0HM pA7S0HC Connection Diagram 14-Lead DIP (Top View) Ne Ne Ne Ne V+ Ne V+ IN2 OUT 1 IN2 OUT 1 INI OUT 2 INI OUT 2 v- ONO Ne Ne V- Order Information Device Code pA7S0RM pA7S0RC Order Information Package Code SA SA OND COO'09OF CD01080f Device Code pA7S0DM pA7S0DC Package Description Metal Metal Connection Diagram 8-Lead DIP (Top View) 14 Ne Package Code 5W 5W Package Description Ceramic DIP Ceramic DIP 8-5S Package Code ST ST Package Description Ceramic DIP Ceramic DIP IlA760 Absolute Maximum Ratings Storage Temperature Range Metal Can and Ceramic DIP Molded DIP Operating Temperature Range Extended (MA760M) Commercial (!1A760C) Lead Temperature Metal Can and Ceramic DIP (soldering, 60 s) Molded DIP (soldering, 10 s) Internal Power Dissipation l , 2 8L-Metal Can 14L-Ceramic DIP 8L-Ceramic DIP Positive Supply Voltage Negative Supply Voltage Peak Output Current Differential Input Voltage Input Voltage -65°C to + 175°C -65°C to + 150°C -55°C to + 125°C O°C to 70°C 1.00 W 1.36 W 1.30 W +8.0 V -8.0 V 10 mA ±5.0 V V+ >VI >V- 300°C 265°C Notes I. TJ Max - 175°C. 2. Ratings apply to ambient temperature at 25°C. Above this temperature, derate the SL-Metal Can at 6.7 mW'oC, the 14L-Ceramic DIP at 9.1 mwrc, and the SL-Ceramic DIP at S.7 mW'oC. Equivalent Circuit .-~----~------~----~--------------------~ R2 Rl --~ RIS SkO 1k0 1 kO __ __ ---------4~--~~----------~--V+ R16 6200 Rll 1050 0 OUT 1 ~ INI IN 2 __--------+-----+-~--------~----~--GND ----1----1 1-_________________ OUT 2 R3 R5 R7 350 0 3500 3500 Rl' 3500 L-----~------+_----~~----~----~~----~------------------------------------vEQ00420F 8-57 J.lA760 IlA760 Electrical Characteristics Vee = ± 4.5 V to ± 6.5 V, T A = -55°C to + 125°C, T A = 25°C for typical figures, unless otherwise specified. Symbol Condition Characteristic Rs~200 Min n Ty~ Max Unit VIO Input Offset Voltage 1.0 6.0 mV 110 Input Offset Current 0.5 7.5 pA liB Input Bias Current 8.0 60 pA Ro Output Resistance (either output) Vo= VOH tpo Response Time TA = 25°C1 30 ns 18 TA=25°C2 25 16 (Note 3) ~tpo n 100 ns Response Time Difference between Outputs 1 (tpo of +VI1)-(tpO of -VI2) TA = 25°C (tpo of + V12) - (tpo of - V11) TA = 25°C 5.0 (tpo of + VII) - (tpo of + V12) TA = 25°C 7.5 5.0 7.5 (tpo of -VI1) - (tpo of -VI2) TA = 25°C RI Input Resistance f = 1.0 MHz 12 CI Input Capacitance f = 1.0 MHz 8.0 pF 3.0 pV/oC 2.0 nArC n, ~Vlo/~T Average Temperature Coefficient of Input Offset Voltage Rs = 50 ~llo/~T Average Temperature Coefficient of Input Offset Current TA = 25°C to 125°C VIR Input Voltage Range Vee=±6.5 V VIOR Differential Input Voltage Range VOH Output Voltage HIGH (either output) TA = -55°C to + 125°C 7.0 TA = + 25°C to -55°C o mA ~ 10H ~ 5.0 ±4.0 mA kn ±4.5 V ±5,0 V 2.4 3.2 V 2.4 3.0 Vee = +5.0 V 10H = 80 pA, Vee = ± 4.5 V 0.25 0.4 V Vee = ±6.5 V 18 32 mA Vee=±6.5 V 9.0 16 mA VOL Output Voltage LOW (either output) 10L =3.2 mA 1+ Positive Supply Current 1- Negative Supply Current Notes 1. Response time measured from the 50% point of a 30 mVp-p 10 MHz sinusoidal input to the 50% point of the output. 2. Response time measured from the 50% point of a 2.0 V POp 10 MHz sinusoidal input to the 50% point of the output. 3. Response time measured from the start of a 100 mV input step with 5.0 mV overdrive to the time when the output crosses the logic threshold. 8-58 J.1A760 /JA760C Electrical Characteristics Vee = ± 4.5 V to ± 6.5 V, TA = O°C to 70°C, TA = 25°C for typical figures, unless otherwise specified. Symbol Characteristic Condition Min n Typ Max Unit VIO Input Offset Voltage 1.0 6.0 mV 110 Input Offset Current 0.5 7.5 MA 8.0 60 MA 30 ns Rs<200 118 Input Bias Current Ro Output Resistance (either output) VO=VOH tpD Response Time TA = 25°C ' TA = 25°C2 18 (Note 3) 16 dtpD n 100 25 ns Response Time Difference between Outputs 1 (tpD of +Vll) - (tpD of -VI2) TA = 25°C 5.0 (tpD of +VI2)-(tpD of -VII) TA = 25°C 5.0 (tpD of + VII) - (tPD of + V12) TA = 25°C 10 10 (tpD of -VII) - (tPD of -VI2) TA = 25°C RI Input Resistance f= 1.0 MHz 12 kn CI Input Capacitance f= 1.0 MHz 8.0 pF dVIO/dT Average Temperature Coefficient of Input Offset Voltage Rs = 50 3.0 MV/oC diIO/dT Average Temperature Coefficient of Input Offset Current TA = 25°C to 70°C 5.0 nA/oC VIR Input Voltage Range Vce = ±6.5 V VIDR Differential Input Voltage Range VOH Output Voltage HIGH (either output) n, TA = O°C to 70°C 10 TA = 25°C to O°C ±4.0 ±4.5 V ±5.0 V V o mA I > I Vee- t5Y w TA = 25°e - ";! ~ 2OmV.., 2 I• ,.mV-'! 1 ~ g 50 ~ i ~ 2 ~~=~o~V 3 Vcc=tSV 10 MHz SINE WAYE INPUTS TAo = 25°C _ ~ V2jV 20mV ! ~5mv 1 I w ,.mV" ~ •".. ~ I 100 ~ o ~ ~ 40 4 ~ ~ -5mV ~ 2mV Response Time vs Input Voltage e 10 15 20 25 30 35 i Ipd- !w ~ -- '''- -- .,z 2 I ~ 100 ~ • 1 30 13II: I I 20 I I 50 • I. 10 TIME-M 15 20 25 30 35 1 12 INPUT VOLTAGE - mVp•p TIME - ns Response Time vs Input Voltage I. 2 Voltage Transfer Characteristic Voltage Transfer Characteristic 30 Vee = tSV Ycc=t5V 10 MHz SINE WAVE INPUTS TAo = 25°e ~ I f"'... 20 ...- I"'---. w :IE .,.. ' Z 0 W I--+-I--+_/-,:!-/I- . r- ;:: .,w : > I w vJ =tiD v "~ g - ~ 10 5o II: 1 /I! • 10 20 50 100 200 500 1000 2000 INPUT VOLTAGE - Voltage Gain vs Supply Voltage ~~2==~=_~,==~~---L--L--L--J INPUT VOLTAGE - mY mV Voltage Gain vs Temperature Input Bias Current vs Temperature 12 8000 TA = 25°C 4000 8000 ~ 7000 ~ - ,,/ I 8000 ~5000 ~4000 3000 2000 /' Vee vcc=t5V ......... 1 "I'... V ... ! i:!> I VJ ~2~==~_I~~'~Z'..~!~-L--~-L~ INPUT VOLTAGE - mVp•p iii I/P "....- ...zI , ........ W '"'" ~ ".,~ r'\. = t6.5 V I'... II: "' ... "!I: / L t4.S I. I, 2000 ts.o u.s t6.0 SUPPLY VOLTAGE - V t6.S .... -2. 20 50 TEMPERATURE _ °C 8-60 100 14. • -50 -2. 2. 50 TEMPERATURE _ °C 100 14. pA760 Typical Performance Curves (Cont.) Input Offset Current vs Temperature '.0 ., e~ \ 0.8 30 Vee = tI.sv , w :> ! !w '\ :> u " 0.0 '''- -r- I II> W a: '0 V~H @'IO ='5.0 ~A - , I ~ L,.....- li-"" 1-1-"" r- :-- r'''- II> 0.2 Vee = t5Y > 20 z 2 '5 ....... - 25 2 w a: 0.0 a: ... :~ ~±::::~=~,!Hz ~ z Iii ~ 0 Output Voltage Levels vs Temperature Response Time vs Temperature ~/CTI1"£ Votr"'Oe ~ VOL @ ISINK -20 20 60 '00 TEMPERATURE - OC 25 w :E w !! a: 20 80 '00 -eo '40 20 I l- I 25 , 15 '0 ~ '0 , 5 10 CAPACITIVE LOAD - 50 '00 200 pi' I 20 ! I , o I '00 '40 oc Vee 10 Y 8-61 '2 10 ~ !!iu i.. :> ~ 50 CAPACITIVE LOAD - pF Common Mode Range vs Supply Voltage , Iiw e 100 200 = t6.SV =25"C _ L,.....-f-"-TA .0 a: - PC;07420F SUPPLY VOLTAGE - = 3.2 mA 80 18 Vee = t5Vi = 250C 2 20 Input Bias Current vs Differential Input Voltage TA '5 o -20 TEMPERATURE - 30 = t5V TA = 250C Vee ;:: -20 Fall Time vs Capacitive Load 30 , -eo TEMPERATURE - "c Rise Time vs Capacitive Load 2 o 5 140 .,.,.- -r,;;; !/ ,/ < I'." " "- ....... I,.. 20 40 r80 --80 DIFFERENnAL INPUT VOLTAGE - mY '00 p.A760 Typical Applications (Note 1) Line Receiver With High Common Mode Range R. .....---., Fast Positive Peak Detector IN -.iV'~-""IIr---~:.j ~"'--'---- OUT Rl PI FD888 IN -""">IV-------.,..,L~--- OUT RS JL -Ifso ... Common mode range = ±4)( ~ Differential input sensitivity V = 5 x ~ mV p, must be adjusted for optimum common mode rejection. For As = 200 0 Common "mode range = t16 V Sensitivity 20 mV Level Detector with Hysteresis = 100kn High Speed 3·Bit AID Converter j IN Msa Q.7SV Zero Crossing Detector (Note 2) R3 Icon V+ FD888 IN 5.0k 1.2SV -_--I . . .;.,..--I)I-..... -~f_....._+.:.j ~......- - - OUT R4 loon ~.::...-.....-OUT 1.7SV so RS loon 2.25 V Total delay = 30 ns = 300 Hz to 3.0 MHz Minimum input voltage = 20 mVp-p R6 Input frequency loon """"OF Not. . 2.75 V 1. Lead numbers shown are for Metal Package only. 2. All resistor values in ohms. loon R7 3.25 V son R8 350n +5.0 V Input voltage range = 3.5 V Typical conversion speed = 30 ns CFlO2..aoF 8-62 MA1488 FAIRCHILO RS-232C Quad Line Driver A Schlumberger Company Linear Division Interface Products Description Connection Diagram 14-Lead DIP and 50-14 Package (Top View) The /JA 1488 is an EIA RS-232C specified quad line driver. This device is used to interface data terminals with data communications equipment. The /JA 1488 is a lead-for -lead replacement of the MC1488. v• • • • Current Limited Output - ± 10 rnA Typical Power-Off Source Impedance 300 Minimum Simple Slew Rate Control With External CapaCitor Flexible Operating Supply Range n IN 01 OUT A Absolute Maximum Ratings Storage Temperature Range Ceramic DIP Molded DIP and SO-14 Operating Temperature Range Lead Temperature Ceramic DIP (soldering, 60 s) Molded DIP and SO-14 (soldering, 10 s) Internal Power Dissipation " 2 14L-Ceramic DIP 14L-Molded DIP SO-14 Supply Voltage Input Voltage Range Output Signal Voltage v+ IN A IN 02 IN81 OUTO INB2 INC' OUTB -65°C to + 175°C -65°C to + 150°C O°C to +70°C INC2 GND OUTC Order Information Device Code Package Code Package Description 6A 9A KD Ceramic DIP Molded DIP Molded Surface Mount /JA1488DC /JA1488PC /JA1488SC 1.36 W 1.04 W 0.93 W ± 15 V -15V to +7.0V ± 15 V Note 1. TJ Max ~ 175°C for the Ceramic DIP, and 150°C for the Molded DIP and 50-14. 2. Ratings apply to ambient temperature at 25°C. Above this temperature, derate the 14L-Ceramic DIP at 9.1 mW 1°C, the 14L-Molded DIP at 8.3 mwrc, and the 50·14 at 7.5 mW/oC. Equivalent Circuit (1/4 of Circuit) v+----~----------~----~----. 05 R5 300n +---_+--.-'VV',,--OUT 07 09 GNO~ R8 v---------~~ __ ________ ~ 9-3 70 !l ~~ JJ.A1488 ~A1488 Electrical Characteristics DC Characteristics Vee = ± 9.0 V ± 1 %, TA = O°C to 70°C, unless otherwise specified. Symbol Characteristic Condition Figure IlL Input Current LOW VIL = 0 V 1 IIH Input Current HIGH VIH = 5.0 V 1 VOH Output Voltage HIGH VIL = 0.8 V, RL = 3.0 kn Vee = ±9.0 V 2 Min 1.0 6.0 7.0 9.0 10.5 -6.0 -7.0 VIL = 0.8 V, RL = 3.0 kn Vee=±13.2 V VOL Output Voltage LOW VIH = 1.9 V, RL = 3.0 kn Vee = ±9.0 V 2 VIH = 1.9 V, RL = 3.0 kn Vee=±13.2 V Typ Max Unit 1.6 mA 10 p.A V V -9.0 -10.5 los+ Positive Output Short Circuit Current 1 VIL = 0.8 V 3 -6.0 -10 -12 mA los- Negative Output Short Circuit Current 1 VIH = 1.9 V 3 +6.0 +10 +12 mA Ro Output Resistance Vee = 0 V, Va = ± 2.0 V 4 300 1+ Positive Supply Current RL = 00 VIH = 1.9 V, V+ = 9.0 V 5 VIL = 0.8 V, V+ = 9.0 V 1- Negative Supply Current n mA 15 20 4.5 6.0 VIH=1.9 V, V+ =12 V 19 25 VIL =0.8 V, V+ = 12 V 5.5 7.0 VIH=1.9 V, V+ =15 V 34 VIL = 0.8 V, V+ = 15 V 12 RL = 00 VIH = 1.9 V, V - = -9.0 V 5 -13 VIL = 0.8 V, V - = -9.0 V VIH = 1.9 V, V - = -12 V Pe Power Consumption -18 -17 mA -15 p.A -23 mA VIL=0.8 V, V- =-12 V -15 p.A VIH=1.9 V, V- =-15 V -34 mA VIL = 0.8 V, V - = -15 V -2.5 mA Vee=±9.0 V 333 mW Vee=±12 V 576 AC Characteristics Vee = ± 9.0 V ± 1 %, T A = 25°C Symbol tpLH Characteristic Propagation Delay Time Condition RL = 3.0 kn, CL = 15 pF Figure 6 tpHL t, Fall Time t, Rise Time RL = 3.0 kn, CL = 15 pF Note 1. Maximum package power dissipation may be exceeded if all outputs are shorted simultaneously. 9-4 6 Min Typ Max Unit 220 350 ns 70 175 ns 70 75 ns 55 100 ns IlA1488 Typical Performance Curves Transfer Characteristics vs Supply Voltage 12 > I 6.0 w ~" ~ vcci Output Voltage and Current Limiting Characteristics 20 I 12 v rr- Vee +9V r- VCr"16V + ~ I .... ~ 12 I\- t-\ 4.0 !z ~ ~\ --- \ 1\~ \.o"o.J::'.~}- :J > r-- r---.. 1\ a: a: 0 .... (,) 't~ :J 1=:J 0 -6.0 -12 ~ I I I I 0.8 0.4 -4.0 o~ 3 kH o 1.9 -12 I -20 1.2 1.• 2.0 ,. 'l. " v Vcc=±9V -aD -:- r-- ,. 1\ i\ 100 \ w a: ;0 ~ II. '" 10 4.0 v'--Dyvo1\1\ I V- -25 75 TEMPERATURE _ <> c 125 1.0 1.0 10 CL 100 CAPACITANCE - 9-5 1\ 1000 pF ~ ~ ~ 6.0 1--+-+--V++-~-+-f9-.0-V+-+--I---l v,'·~V _ ~_ o.~ V-=-9.oV ~-aor---f-+-+--I--+--f--I--1 !5 e: :J o TEMPERATURE _ t( 8.0 0 -75 \ ~ 8 .• I !i II. iil 0.8 12 I w > -= los Output Slew Rate vs Load Capacitance 1000 0 "\.. OUTPUT VOLTAGE - V Supply Voltage vs Maximum Operating Temperature "~ \ V v, INPUT VOLTAGE-V > Short Circuit Output Current vs Temperature 10,000 0 c I1A1488 DC Test Circuits Figure 1 Input Current Figure 4 Output Resistance (Power-off) + 9 V -9 V 14 10 12 13 10 III t it 1 I'H +5V Figure 5 Supply Currents V+ Figure 2 Output Voltage v+ y- 1.9 V ~ 1.9 V 14 lVIH v,Hb 3 kll 12 12 ~ O.BV O.BV V- Figure 6 AC Test Circuit and Voltage Waveforms Figure 3 Output Short Circuit Current +9V V, -O-}-3.'-'-r,----vo r -9V 14 'SPF -=- -=- ~ ~ ~~ 12 CL RL +3.0V+l'SV v, 11 ~ tPHL --. O.BV V o - - -.... - ~-----OV ' -_ _ _r - - - I , tr and tf are measured 10% to 90% 9-6 p.A 1489 • p.A 1489A RS-232C Quad Line Receivers FAIRCHILO A Schlumberger Company Linear Division Interface Products Description Connection Diagram 14-Lead DIP and 50-14 Package (Top View) The /lA 1489 and the /lA 1489A are EIA RS-232C specified quad line receivers. These devices are used to interface data terminals with data communications equipment. The /lA 1489 and /lA 1489A are lead-for-Iead replacements of the MC1489 and MC1489A respectively. • • • • INA RESPONSE CONTROL A Input Resistance 3.0 kS1 To 7.0 kS1 Input Signal Range ± 30 V Input Threshold HystereSiS Built-In Response Control a) Logic Threshold Shifting b) Input Noise Filtering RESPONSE CONTROL D OUT A IN B RESPONSE CONTROL B RESPONSE CONTROL C OUTS Absolute Maximum Ratings Storage Temperature Range Ceramic DIP Molded DIP and 80-14 Operating Temperature Range Lead Temperature Ceramic DIP (soldering, 60 s) Molded DIP and SO-14 (soldering, 10 s) Internal Power Dissipation 1. 2 14L-Ceramic DIP 14L-Molded DIP SO-14 Supply Voltage Input Voltage Range Output Load Current IND 12 GND OUTC -65°C to + 175°C -65°C to + 150°C O°C to +70°C Order Information 300°C Device Code Package Code Package Description 6A 9A KD 6A 9A Ceramic DIP Molded DIP Molded Surface Mount Ceramic DIP Molded DIP J.LA1489DC /lA1489PC /lA 1489SC /lA 1489ADC /lA1489APC 265°C 1.36 W 1.04 W 0.93 W 10 V ±30 V 20 mA Note 1. TJ Ma, ~ 175·C for the Ceramic DIP. and 150·C for the Molded DIP and 50·14. 2. Ratings apply to ambient temperature at 25°C. Above this temperature, derate the 14L-Ceramic DIP at 9.1 mW/·C. the 14L-Molded DIP at 8.3 and the 50-14 at 7.5 mwrc. mwrc. Equivalent Circuit (1/4 of circuit) , - - - _ -....-vcc 9 kll 5 kll 1.6 kll OUT 3.55 kll L--~~---~~~~-~--GND 9-7 • IlA 1489 • IlA 1489A ~1489, ~1489A Electrical Characteristics DC Characteristics Vee = 5.0 V ± 1.0%, response control lead is open, TA = O·C to 70·C, unless otherwise specified. Symbol Characteristic IIH Input Current HIGH IlL Input Current LOW Condition VIH = 25 V Figure 3.6 1 -3.6 VIL = -25 V VOH Input Turn-on Threshold Voltage TA = 25·C, VOL <0.45 V j.LA1489 Input Turn-off Threshold Voltage TA = 25·C, VOH ;;;'2.5 V, 10H =-0.5 mA j.tA1489 Output Voltage HIGH Max Unit 8.3 mA -8.3 mA -0.43 VIL = -3.0 V VTH- Typ 0.43 VIH = 3.0 V VTH+ Min 1 2 j.tA1489A 2 j.LA1489A VIH = 0.75 V, 10H = -0.5 mA 1.0 1.75 1.5 1.95 0.75 1.25 0.75 0.8 1.25 2.6 4.0 5.0 2 0.2 0.45 3 3.0 2 V 2.25 V V Input Open Circuit, 10H = -0.5 mA VOL Output Voltage LOW los Output Short Circuit Current lee Supply Current VIH = 5.0 V 4 20 26 mA Pe Power Consumption VIH = 5.0 V 4 100 130 mW VIL = 3.0 V, 10L = 10 mA V mA AC Characteristics Vee = 5.0 V ± 1.0%, TA = 25·C Symbol tpLH Condition Characteristic Propagation Delay Time tpHL t, Rise Time t/ Fall Time kn RL = 390 n RL = 3.9 kn RL =390 n RL = 3.9 9-8 Figure Min Typ 5 25 5 10 Max Unit 85 ns 25 50 ns 120 175 ns 20 ns Typical Performance Curves 6.0 V I Ii 2.0 w /' a; a; ::I .." I- V /' -2.0 /' !!O "~ g 1.6 90 1.2 - -5.0 3.0 ~ 0 15 5.0 .. I- ::I ::I 0 2.0 1.0 r- -1.0 -3.0 _~T VJlI1 :!l a; -60 ~A1489 ,.,41489 ",A1489A I- ~ i!! I I o r---- V,lH f.I :t I OA V,HL 1.0 :t o 120 .0 °c o 4.0 8.0 SUPPLY VOLTAGE - -=- VTH 8.0 RT = 5.0 kn YTH=5.0Y 3.0 6.0 RT = 11 kO VTH",,-5.0Y [/RT"" • 5.0 > I 4.0 w "~ 3.0 0 > I- ::I 2.0 YIH~-- ~ ::I 0 1.0 .A1 V,LHI =11 kO INPUT VOLTAGE - V --'" - -1.0 -3.0 ~ ... 6.0 3.0 INPUT VOLTAGE - V Test Circuits Figure Input Current Figure 2 Output Voltage and Input Threshold Voltage + 5.0 V V, 12 V /.LA 1489A Input Threshold Voltage Adjustment 1.... '-/r-III 13k:' VTi =5.i V i""C"Y I 1 I RT = ~HL TEMPERATURE _ RT V,HL ~ 0 I- 90 ;- 25 Y ~V'i'" w > 0 > .uA 1489A lr" I I I RT - 5.0 kn VTH = 5.0 V "~ w "~ a; !!O /.lA1489 Input Threshold Voltage Adjustment 4.0 I -I"'- lI- INPUT VOLTAGE - V > I > /J.Al489 V'LH .. Y -15 5.0 V'HL pA1489A 1'.....'''',4B9.q ~" ::I V, 6.0 6.0 I I I :t 0.8 ,/ -10 -25 I w 2.D .,:tw ./ ::I > 2.0 - 2.4 10 C E Input Threshold Voltage vs Supply Voltage Input Threshold Voltage vs Temperature Input Current vs Input Voltage VIHL I 14 V,LH V,HlO OPEN 0 V,LH + 5.0 V - 5.0 V 14 10 12 10 L...----'.:,:3t._..,.,,_J" 12 13 9-9 11 JlA 1489 • JlA 1489A Test Circuits (Cent.) Figure 4 Supply Current Figure 3 Output Short Circuit Current Vee Vee ICC 14 14 --lOS 10 10 12 12 13 11 13 11 Figure 5 AC Test Circuit and Voltage Waveforms T 5.0 V ~:OV 1\0% ~I '--~--tP-LH-(NOTE »---4----~~------Vo V, Figure 6 Response Control Node R (NOTE 5) RESPONSE NODE Vo V, 1/4 J,lA1489A Notes 1. All diodes FDSOO or equivalent. 2. CT ~ 15 pF ~ total parasitic capacitance, which includes probe and jig capacitance. 3, tr and tf measured 10% to 90%. 4. Capacitor is for noise filtering. 5. Resistor is for threshold shifting. 9-10 3) JJ.A26LS31 Quad High Speed Differential Line Driver F=AIRCHILO A Schlumberger Company Linear Division Interface Products Description Connection Diagram 16-Lead DIP (Top View) The I.lA26LS31 is a quad differential line driver designed for digital data transmission over balanced lines. The 1.lA26LS31 meets all the requirements of EIA Standard RS-422 and Federal Standard 1020. It is designed to provide unipolar differential drive to twisted-pair or parallel-wire transmission lines. The circuit provides an enable and disable function common to all four drivers. The 1.lA26LS31 features three-state outputs and logical OR-ed complementary enable inputs. The inputs are all LS compatible and are all one unit load. OUTAi INO OUTA2 OUTD1 ENABLE OUT02 OUTB2 ENABLE OUTBi OUTC2 INB OUTC1 The I.lA26LS31 offers optimum performance when used with the 1.lA26LS32 Quad Differential Line Receiver. • • • • • • • • • • Output Skew - 2_0 ns Typical Input To Output Delay - 12 ns Operation From Single + 5_0 V Supply 16-Lead Ceramic And Molded DIP Package Outputs Won't Load Line When Vcc = 0 V Four Line Drivers In One Package For Maximum Package Density Output Short Circuit Protection Complementary Outputs Meets The Requirements Of EIA Standard RS-422 High Output Drive Capability For 100 Terminated Transmission Lines GND INC Order Information n Device Code Package Code I.lA26LS31DC I.lA26LS31PC 78 98 Package Description Ceramic DIP Molded DIP Function Table (Each Driver) Absolute Maximum Ratings Storage Temperature Range Ceramic DIP Molded DIP Operating Temperature Range Lead Temperature Ceramic DIP (soldering, 60 s) Molded DIP (soldering, 10 s) Internal Power Dissipation 1,2 16L-Ceramic DIP 16L-Molded DIP Supply Voltage3 Input Voltage Output Voltage +s.ov INA Outputs -65°C to + 175°C -65°C to + 150°C O°C to +70°C Input Enable y Z H L H H L H L L H Z Z X H = High level l= low level X = Immaterial Z = High Impedance (off) 1.50 W 1.04 W 7.0 V 7.0 V 5.5 V Logic Symbol Notes 1. TJ Max = 150'C for the Molded DIP, and 175'C for the Ceramic DIP. 2. Ratings apply to ambient temperatures at 25'C. Above this temperature, derate the 16l-Ceramic DIP at 10 mWI'C, and the 16l-Molded DIP at 8.3 mWI'C. 3. All voltages are with respect to network ground terminals. GND Vee D2 D1 C2 C1 B2 OUTPUTS 9-11 81 A2 Ai J,lA26LS31 J.lA26LS31 Electrical Characteristics Symbol ooe < TA < 70 oe, 4.75 V < Vee < 5.25 V, unless otherwise specificied. Characteristic Condition Typl 2.5 3.2 Max Unit V Output Voltage HIGH Vee = Min, IOH =-20 rnA VOL Output Voltage LOW Vee = Min, 10L = 20 rnA V,H Input Voltage HIGH Vee = Min V,L Input Voltage LOW Vee = Max I,L Input Current LOW Vee = Max, V, = 0.4 V I'H Input Current HIGH Vee = Max, V, = 2.7 V 0.5 20 IlA I'R Input Reverse Current Vee = Max, V, = 7.0 V 0.001 0.1 rnA loz Off State (High Impedance) Output Current Vee = Max IVo=2.5 V 0.5 20 I1A IVo=0.5 V 0.5 -20 V'c Input Clamp Voltage Vee = Min, I, = -18 rnA los Output Short Circuit Vee = Max 0.32 0.5 0.8 -0.20 -30 V V 2.0 -0.36 V rnA -0.8 -1.5 V -60 -150 rnA Icc Supply Current Vee = Max, All Outputs Disabled 60 80 rnA IplH Input 10 Output Vee = 5.0 V, TA = 25°C, Load = Note 2 12 20 ns tpHL Input 10 Output Vee = 5.0 V, TA = 25°C, Load = Note 2 12 20 ns SKEW Output to Output Vee = 5.0 V, TA = 25°C, Load = Note 2 2.0 6.0 ns tLZ Enable to Output Vee = 5.0 V, TA = 25°C, CL = 10 pF 23 35 ns tHZ Enable to Output Vee = 5.0 V, TA = 25°C, CL = 10 pF 17 30 ns tZl Enable to Output Vee = 5.0 V, TA = 25°C, Load = Note 2 35 45 ns tZH Enable to Output Vee = 5.0 V, TA = 25°C, Load = Note 2 30 40 ns Noles 1. 2. Min VOH All typical values are Vee = 5.0 V, TA = 25"e eL = 30 pF, V, = 1.3 V to Vo = 1.3 V, VPULSE load Test Circuit for Three-State Outputs) = 0 V to +3.0 V (See Ae 9-12 MA26LS31 AC Load Test Circuit for Three-State Outputs TEST POINT FROM OUTPUT UNDER TEST Propagation Delay (Notes 1 and 3) Vee INPUT TRANSmON ___-r~--r---~7'St,~ t~n I Rt 750 OUT Enable and Disable Times (Notes 2 and 3) Enable Disable 3V ENABLE INPUT • OV OUTPUT NORMALLY LOW ~t.5V OUTPUT NORMALLY HIGH ~t.5V Notes 1. Diagram shown for Enable Low. Switches S1 and S2 open. 2. S1 and S2 of Load Circuit are closed except where shown. 3. Pulse Generator for all Pulses: Rate < 1.0 MHz, 20 = 50 n, tr ~6.0 ns, tf <6.0 ns. 4. CL includes probe and jig capacitance. Typical Application DATA IN RT SHIELD OR COMMON GROUND RETURN 9-13 DATA OUT J,LA26LS32 Quad Differential Line Receiver FAIRCHILO A Schlumberger Company Linear Division Interface Products Description Connection Diagram 16-Lead DIP (Top View) The !lA26LS32 is a quad differential line receiver designed to meet the requirements of EIA Standards RS-422 and RS-423, and Federal Standards 1020 and 1030 for balanced and unbalanced digital data transmission. 1 The device features an input sensitivity of 200 mV over the input range of ± 7.0 V. The MA26LS32 provides an enable function common to all four receivers and threestate outputs with 8.0 mA sink capability. Also, a fail-safe input/ output relationship keeps the outputs high when the inputs are open. -INA Vec +INA -INB OUTA +INB OUTC The !lA26LS32 offers optimum performance when used with the !lA26LS31 Quad Differential Line Driver. • Input Voltage Range Of ± 7.0 V (Differential Or Common Mode) ± 0.2 V Sensitivity Over The Input Voltage Range • Meets All The Requirements Of EIA Standards RS-422 And RS-423 • Input Impedance (15K Typical) • 30 mV Input Hysteresis • Operation From Single + 5.0 V Supply • Fail-Safe Input/Output Relationship. Output Always High When Inputs Are Open. • Three-State Drive, With Choice Of Complementary Output Enables, For Receiving Directly Onto A Data Bus. • Propagation Delay 17 ns Typical • Advanced Low Power Schottky processing • 100% Reliability Assurance Screening To MIL-STD-883 Requirements. 8.3 mwrc. mwrc, OUTO -INC +IND GNO -INO Device Code Package Code !lA26LS32DC MA26LS32PC 7B 9B Package Description Ceramic DIP Molded DIP Function Table (Each Receiver) Differential Inputs E V VID;;;.oO.2 V H X H H < 0.2 V X X L H X X L H X X L L L H Z L H ~ High Level L ~ Low Level 300°C 265°C Outputs E VID<-0.2 V -6SOC to + 175°C -6SoC to + 150°C O°C to +70°C Enables A-B -0.2 V < VID x ? ? = Immaterial X ~ High Impedance (off) ? = Indeterminate Logic Symbol 1.S0 W 1.04 W 7.0 V ±25 V ±25 V 7.0 V SO mA INPUTS ENiiLE ENABLE " D2 01 C2 C1 82 81 A2 41 ~,c1c1c1rY Notes 1. TJ Max~ 150"C for the Molded DIP, and 175"C for the Ceramic DIP. 2. Ratings apply to ambient temperature at 25°C. Above this temperature, derate the 16L·Ceramic DIP at 10 +INC Order Information Absolute Maximum Ratings Storage Temperature Range Ceramic DIP Molded DIP Operating Temperature Range Lead Temperature Ceramic DIP (soldering, 60 s) Molded DIP (soldering, 10 5) Internal Power Dissipation 1, 2 16L-Ceramic DIP 16L-Molded DIP Supply Voltage 3 Common Mode Voltage Range Differential Input Voltage Enable Voltage Output Sink Current OUTB ENABLE GND and the 16L·Molded DIP at 3. All voltages are with respect to network ground terminal. 9-14 Vee OUTPUT OUTPUT o C OUTPUT 8 OUTPUT A J-lA26 LS32 IlA26 LS32 Electrical Characteristics Symbol ooe « TA « 70 oe, 4.75 V « Characteristic « Vee 5.25 V, unless otherwise specified. Conditions Min Typ Max Units -0.2 ±0.06 +0.2 V VTH Differential Input Voltage -7.0 V 0.2 V H H H ? -0.2 V < VIO < 0.2 Vlo<-0.2 V H L X L Z H = High Level L = Low Level ? = Indeterminate X = Immaterial Z = High Impedance (off) Noles 1. TJ Max ~ 150°C for the Molded DIP, and 175°C for the Ceramic DIP. 2. Ratings apply to ambient temperature at 25°C. Above this temperature, derate the 16L-Ceramic OIP at 10 mwrc. and the 16L-Malded DIP at 8.3 mwrc. 3. All voltages are with respect to network ground terminal. 9-17 V J,lA3486 Block Diagram DIFFERENTIAL INPUTS THREE-STATE CONTROL INPUT OllTPUT Y Recommended Operating Conditions Symbol Value Unit Vee Supply Voltage Characteristic 4_75 to 5.25 V VeM Input Common Mode Voltage Range -7.0 to +7.0 V VIO Input Differential Voltage Range 6.0 V TA Operating Temperature o to +70 °C 1-lA3486 Electrical Characteristics Over recommended operating temperature and supply voltage ranges, unless otherwise specified. Symbol Characteristic Condition VIH Input Voltage HIGH VIL Input Voltage LOW Three-State Control VTH(O) Differential Input Threshold Voltage 5 -7.0 V~Vle~7.0 V, VIH =2.0 V Min Three-State Control 10 =-0.4 mA, VOH;;;'2.7 V 10=8.0 mA, VOL ~0.5 V liS Input Bias Current HIGH 4 VOH Output Voltage VOL Output Voltage LOW Vee=O V or 5.25 V, Other inputs at 0 V Max V 0.8 V 0.2 V -3.25 VI =-3.0 V -1.50 VI = +3.0 V +1.50 VI = +10 V +3.25 10 = 8.0 mA, VIO= 0.4 V Unit -0.2 VI =-10 V -7.0 V~VeM~7.0 V, 10 =-0.4 mA, VIH =2.0 V VIO = 0.4 V 9-18 Typ1 2.0 2.7 mA V 0.5 I1A3486 j.lA3486 (Cont.) Electrical Characteristics Over recommended operating temperature and supply voltage ranges, unless otherwise specified. Symbol loz Characteristic Output Third State Leakage Current Condition Min Typt Max VI(D) = + 3.0 V, VIL = 0.8 V, Vo = 0.5 V -40 V'(D) = -3.0 V, VIL = 0.8 V, Vo=2.7 V 40 los Output Short Circuit Current3 V'(D) = 3.0 V, VIH= 2.0 V, Vo=O V I,L Input Current LOW Three-State Control VIL = 0.5 V I'H Input Current HIGH -15 Unit J,lA -100 mA -100 I1A I1A Three-State Control VIH = 2.7 V Three-State Control V,H = 5.25 V 20 100 -1.5 VIC Input Clamp Diode Voltage (Three-State Control) Three-State Control Ilc=-10mA Icc Supply Current VIL = 0 V V 85 mA Typt Max Unit Switching Characteristics Vcc = 5.0 V, TA = 25°C Symbol Characteristic Propagation Delay Time Differential Condition Min Inputs to Outputs tpHL(D) Output HIGH to LOW 16 35 ns tpLH(D) Output LOW to HIGH 16 30 ns tpLZ Control to Output Output LOW to Third State 24 35 ns tpHZ Output HIGH to Third State 16 35 ns tpZH Output Third State to HIGH 16 30 ns tPZL Output Third State to LOW 16 30 ns Propagation Delay Time Notes 1. All currents into device leads are shown as positive, out of device leads are negative. All voltages referenced to ground unless otherwise noted. 2. Typical values are TA ~ 25°C, Vcc ~ 5.0 V. and V'c ~ 0 V. 3. Only one output at a time should be shorted. 4. Refer to EtA RS-422/3 for exact conditions. Input balance and VOH/VOL levels are tested Simultaneously for worst case. 5. Differential input threshold voltage and guaranteed output levels are tested simultaneously for worst case. 9-19 J,lA3486 Parameter Measurement Information Figure 1 Propagation Delay Differential Input to Output TO SCOPE (INPUT) TOSCOPE (OUTPUT) INPUT~.SV 1.SV 3.0V ov tPLH(~~H tpLH(:F_ €) PULSE GENERATOR (Note 1) I +1.5V OUTPUT CL =15 PF 1.3V 1.3V VOL -------------------OV (N..,2) +2.0V Figure 2 Propagation Delay Three-State Control Input to Output TO SCOPE (INPUT) 3-STATE CONTROL TO SCOPE (OUTPUT) PULSE GENERATOR (NolO 1) SW1 2.OkO o--+S.OV DIFFERENTIAL INPUTS CL=1SpF (N..,2) I 5.0kO 3.0V 3.0V IN _____J_-,-___ ' - - - - - - ' - - - - - OV OV SW1CLOSED ~ SW2 CLOSED --~1.3V OUT O.SV VOL OV ~ HSW2CLOSED ~ 'PZH IN 1.SV 'PZL 3.0V 1.SV - - - - - OV SW10PEN CLOSED ZLSW2 OPEN VOH OUT 3.0V IN~'SV --tipS~~ 1.SV OUT 1.SV ---OV / --' \.SV ~5.0V-V.E VOL - - - - - - - - - - - - - - - - - - - OV Notes 1. The input pulse is supplied by a generator having the following characteristics: PRR = 1.0 MHz, 50% duty cycle, tTLH = tTHL = 6.0 ns (10% to 90%), Zo = 50 n. 2. CL includes probe and jig cpacitance. 3. All diodes are IN916 or equivalent. 9-20 MA3487 FAIRCHILD RS-422 Quad Line Driver With Three-State Outputs A Schlumberger Company linear Division Interface Products Connection Diagram 16-Lead DIP (Top View) Description Fairchild's RS-422 Quad line Driver features four independent driver chains which comply with EIA Standards for the electrical characteristics of balanced voltages digital interface circuits. The outputs are three-state structures which are forced to a high impedance state when the appropriate output control lead reaches a logic zero condition. All input leads are PNP buffered to minimize input loading for either logic one or logic zero inputs. In addition, internal circuitry assures a high impedance output state during the transition between power-up and powerdown. • • • • • • • • A/B CONTROL C/O CONTROL Four Independent Driver Chains Three-State Outputs PNP High Impedance Inputs Fast Propagation Time TTL Compatible Single 5.0 V Supply Voltage Output Rise And Falls Times Less Than 20 ns Lead Compatible And Interchangeable With MC3487 And DS3487 COOO451F Order Information Device Code Absolute Maximum Ratings Storage Temperature Range Ceramic DIP Molded DIP Operating Temperature Range Lead Temperature Ceramic DIP (soldering, 60 s) Molded DIP (soldering, 10 s) Internal Power Dissipation 1,2 16L-Ceramic DIP 16L-Plastic DIP Supply Voltage 3 Input Voltage Package Code !lA3487DC IlA3487PC 78 98 Package Description Ceramic DIP Molded DIP -65°C to +175°C -65°C to + 150°C O°C to +70°C Function Table (Each Driver) 300°C 265°C Outputs 1.50 W 1.04 W 8.0 V 5.5 V Input Enable y Z H L X H H L H L L H Z Z H = High Level L= Low Level X = Immaterial Z = High Impedance (off) Notes 1. TJ Max = 150"C for the Molded DIP. and 175"C for the Ceramic DIP. 2. Ratings apply to ambient temperature at 25"C. Above this temperature, derate the 16L·Ceramic DIP at 10 mWrC, and the 16L·Molded DIP at 8.3 mWrC. 3. All voltages are with respect to network ground terminal. 9-21 tlA3487 Block Diagram NON·INVERTING INPlIT OllTPUTS INVERTING /.lA3487 Electrical Characteristics 4.75 V .;;; Vee';;; 5.25 V, TA = DoC to 70°C, unless otherwise specified. Symbol V,L Characteristic Condition Min Input Voltage LOW Typ1 Max Unit 0.8 V J.IA J.IA V,H Input Voltage HIGH I'L Input Current LOW V,L = 0.5 V -400 I'H Input Current HIGH V,H = 2.7 V +50 V,H = 5.5 V + 100 V,C Input Clamp Voltage 1,=-18mA -1.5 V VOL Output Voltage LOW 10L =48 mA 0.5 V VOH Output Voltage HIGH 10H =-20 mA 2.5 los Output Short Circuit Current3 V,H = 2.0 V -40 loz Output Leakage Current Hi·Z State 10L(off) V V -140 mA V,L = 0.5 V, V,L (z) = 0.8 V +100 J1.A V,H = 2.7 V, C'L (z) = 0.8 V +100 Output Leakage Current VOH=6.0 V, Vee=O V + 100 Power Off VOL = -0.25 V, Vee = 0 V -100 Vos·Vos Output Offset Voltage Difference 2 Voo Output Differential Voltage 2 tNoo Output Differential Voltage Change leex Supply Current4 Icc 2.0 ±OA 2.0 Control Leads Gnd Control Leads 2.0 V 9·22 J.IA V V ±OA V 105 mA 85 mA MA3487 IlA3487 (Cont.) Electrical Characteristics Switching Characteristics Vee = 5.0 V, TA = 25°C Max Unit Propagation Delay Times High to Low Input 20 ns Low to High Input 20 ns Output Transition Times - Differential High to Low Input 20 ns Low to High Input 20 ns Propagation Delay Control to Output RL Symbol Characteristic tpHL Condition tpLH tTHL tTLH Typ CL = 50 pF 25 ns RL = 200, CL = 50 pF 25 ns tpZH(E) RL = 00, CL = 50 pF 30 ns tpZL(E) RL 30 ns tpHZ(E) tpLZ(E) = 200, Min = 200, CL = 50 pF Notes 1. Typical values are TA~25'e, Vcc~5.0 V 2. See EIA Specification RS-422 for exact test conditions 3. Only one output may be shorted at a time 4. Circuit in three-state condition Parameter Measurement Information Figure 1 Three-State Enable Test Circuit and Waveforms TO SCOPE 3.0V or GND IN INPUT TO SCOPE OUT OPEN FOR INVERTING OUTPUT tPZH(E) TEST ONLY 2000 NON-INVERTING OUTPUT CONTROL ~~~~ATOR ...n.. o---.I'>N-- +5Y r CL =5O PF (Note 2) -=-1.OkO 500 OPEN FOR tpZl.(E) (Note I) TEST ONLY CR00961F ~'5V CONTROL INPUT 'PHZ(E) OUT OUT ~v -~ aov 3.0V CONTROL INPUT 1,.5V OY tPZl.(E)- VOH IpZH(E)~1.5V OUT VOL OV OV VOH '\ 1.5V OUT ¢. I I- ~ :!: L!J 1 -4.0 f--+-I7'7*,~"77'*,~"---+---l INPUT - 9-27 H Lor H H w The input protection diodes are useful in certain party-line systems which may have multiple V + power supplies and, in which case, may be operated with some of the V + supplies turned off. In such a system, if a supply is turned off and allowed to go to ground, the equivalent input circuit connected to that supply would be as follows: Indeterminate L -------+---------' > H L Recommended Combinations of Input Voltage for Line Receivers +IN Output Lor H Lor H H < VIO < 25 B Version -IN S G A-B Vlo;;;'25 mV B-TO-GROUND VOLTAGE - V L • ~A55107A· ~A75107A ~A75107B· ~A75108B pA55107A, pA75107A, pA75107B Electrical Characteristics Over recommended operatin~ temperature range with V+ = Max and V- = Max, unless otherwise specified. 1, DC Characteristics Symbol Characteristic Min Condition IIH Input Current HIGH VOIFF = 0.5 V, VCM = -3.0 V to +3.0 V IlL Input Current LOW VOIFF = -2.0 V, VCM = -3.0 V to +3.0 V IIH(G) Gate Input Current HIGH Typ 30 Max Unit 75 IlA -10 /lA V(G) =2.4 V 40 IlA V(G) = V+ 1.0 mA -1.6 mA IIL(G) Gate Input Current LOW V(G) = 0.4 V IIH(ST) Strobe Input Current HIGH V(ST) = 2.4 V 80 /lA V(ST) =V+ 2.0 mA -3.2 mA IIL(ST) Strobe Input Current LOW VOH Output Voltage HIGH 10H = -400 /lA, VCM = -3.0 V to +3.0 V Vcc= Min VOL Output Voltage LOW 10L = 16 mA, VCM = -3.0 V to +3.0 V Vcc= Min los Output Short Circuit Current2 Vo=O V 1+ Positive Supply Current Vo = VOH, 10H = 0 V, TA = 25°C 18 1- Negative Supply Current Vo = VOH, 10H = 0 V, TA = 25°C -8.4 V(ST) = 0.4 V 2.4 V 0.4 V -70 mA 30 mA -15 mA Typ Max Unit 17 25 ns tpHL(O) 17 25 ns tpLH(S) 10 15 ns tpHL(S) 10 15 ns AC Characteristics Vcc = ± 5.0 V, RL = 390 Symbol tpLH(O) n, -18 CL = 50 pF, TA = 25°C. (See Test Circuit) Characteristic Condition Min Propagation Delay Time J..IA75108B DC Characteristics Symbol Characteristic Condition Min Typ Max Unit IIH Input Current HIGH VOIFF = 0.5 V, VCM = -3.0 V to + 3.0 V IlL Input Current LOW VOIFF = -2.0 V, VCM = -3.0 V to +3.0 V IIH(G) Gate Input Current HIGH V(G) = 2.4 V IIL(G) Gate Input Current LOW V(G) = 0.4 V IIH(ST) Strobe Input Current HIGH V(ST) = 2.4 V 80 /lA V(ST) = V+ 2.0 mA 30 75 -10 40 V(G)=V+ 9-28 /lA /lA /lA 1.0 mA -1.6 mA MA55107A· MA75107A MA75107B· MA75108B J..IA75108B (Cont.) Electrical Characteristics Over recommended operatin~ temperature range with V+ unless otherwise specified. 1 , Symbol Characteristic Condition = Max and VTyp Min = Max, Max Unit -3.2 mA IIL(ST) Strobe Input Current LOW V(ST) = 0.4 V VOL Output Voltage LOW IOL = 16 mA, VeM =-3.0 V to +3.0 V Vee = Min 0.4 V IOH Output Current HIGH Vo=V+ Vce = Min 250 pA 1+ Positive Supply Current VO=VOH' IOH = 0 V, TA = 25°C 18 30 mA 1- Negative Supply Current VO=VOH' IOH = 0 V, TA = 25°C -8.4 -15 mA AC Characteristics Vce = ± 5.0 V, RL = 390 Symbol n, CL = 15 pF, TA = 25°C. (See Test Circuit) Characteristic Min Condition Typ tpLH(D) Max 19 Propagation Delay Time Unit 25 ns tpHL(D) 19 25 ns tpLH(S) 13 20 ns tpHL(S) 13 20 ns Notes I. For ,.,A551 07A guaranteed supply voltage range is ± 4.5 V to ± 5.5 V and operating temperature range is -55°C I 4.0 ~ g~ 100 ~7l1089 5.0 }lA7J,08B I JNVER~ING - _I INiuTS ~ I x I " ;: ~A55107A/B I'A75107A/B I- a: I I " ~ o - 40 ",A75107A/B ~ ",A75108B+1 20 10 10 20 30 40 --- --! ~ ~ 1 ~:~~:~:~B"I 0 I 20 ~ IT :.-15 .. .." ~ ........... 25°C DIFFERENTIAL INPUT VOLTAGE - mY a: a: ::> 40 o 30 20 Z W ii N - 10 TA .. I l- VcC"'-'-S.ov 1.0 I I ~ I- () I I o Vcc=..!:5.0V 25 80 ~ 3.0 2.0 30 YcC"'::5.0V 10N.I~VER~ING ~'NPu7 I- ~ High Logic Level Supply Current vs Ambient Temperature Input Current HIGH Into 1A or 2A vs Ambient Temperature Output Voltage vs Differential Input Voltage 0 ~ ~ TEMPERATURE - °C 9-29 n 00 _ I 10 I 'i 75 100 5.0 o 75 -50 25 0 25 SO TEMPERATURE _ °C 125 J.LA55107A· MA75107A MA75107B· MA75108B Typical Performance Curves (Cont.) ILA55107A, !LA75107A/B Propagation Delay Time (Differential Inputs) vs Ambient Temperature 120 40 Vee Vee =:t 5.0 v ~ w l- 1( iif a z 0 15 .. 10 0 ~A75107A/B 20 -.tPl.H(O) !i "if 100 30 25 RJ390L ~ ~ I~ , / ' 80 ~ ...-t tPHL(DI RLLJn ~ 40 if 0 If o ~ 0 25 ~ ~ ~ m 75 CL=50pF 30 ~ if 0 If I J II--- 25 50 75 ,/' "'~75108~.A tPLH(S) 15 _p> k:: 10 r--~~\..\S) ~ _ 20 z 0 I !i 15 .. 10 "if T 5.0 o ~ V 0 ~"'(S) II: ~ 0 25 ~ ~ - tpHllS) 5.0 ,uA75107A/B H -~ 100 125 m m 75 50 -25 25 ----200mV +IN~~ OUT ~ -4--tp --+---+---5j""",1 ,......... I I Voltage Waveforms STROBE OR STROBE COMMON ~ I>- 50 TEMPERATURE _ "C _ _ _-OV 2--1 aov VOL 9-30 !i 15 0 10 I I-R!E:=:::::, e3J"~ ... ~A7S108B""1 I ~ l' RL Rl-- 1950 !! 25 50 TEMPERATURE - o TEMPERATURE _ "C 20 I 75 100 , 3900 11 5.0 25 ~ ,/ 20 iif a z I If 30 w 30 25 I Vee""..!: 5.0 V CL ~ 15 pF 0 :IE 1= 25 z 0 ./ HI-'"' VCC=±5.0V RL=390B CL=15pF 35 :I a 1( 40 VCC"'±S.ov Rl=3900 35 ~ ~ !LA55107A, ILA75107A/B Propagation Delay Time (Strobe Inputs) vs Ambient Temperature 40 w w TEMPERATURE _ "C !LA75108B Propagation Delay Time (Strobe Inputs) vs Ambient Temperature w V f-- 25 TEMPERATURE - <>C 1= 35 - -il -- TI 50 40 ~J5108l-l 20 r-RL l J n 5.0 ~ II 60 Z 0 II: ~ = ± 5.0 V CL=15pF 35 -RL=390U CL=50pF w ILA75108B Propagation Delay Time HIGH-to-LOW level vs Ambient Temperature !LA75108B Propagation Delay Time LOW-to-HIGH Level vs Ambient Temperature 125 75 "C 100 125 MA55107A· MA75107A MA75107B • MA75108B AC Test Circuit OUTPUT MA55107A DIFFERENTIAL INPUT ~A75107A/B (NOTE 4) 390 II -1 STROBE COMMON STROBE B $TROBEA OUTPUT 751088 son STROBE INPUT (NOTE 2) -: (NOTE 3) -: V+=+5.0V Notes 1. The pulse generators have the following characteristics: t, ~ t, ~ 10 ± 5.0 ns, tPl ~ 500 ns, PRR ~ 1.0 MHz, tp2 ~ 1.0 p.s, PRR ~ 500 kHz, Zo ~ 50 n. 2. Strobe input pulse is applied to Strobe A when inputs AI - A2 are being tested; to common Strobe when inputs Al-A2 or Bl- 92 are being tested; and to Strobe 9 when inputs Bl - B2 are being tested. 3. CL includes probe and jig capacitance. 4. All diodes are 1N916. Basic Balanced-Line Transmission System p + ("ASSn5110A) DATA INPUT INA1 (,.A55n5107A) TWISTED-PAIR OR EQUIVALENT TRANSMISSION LINE Zo = 2 RT 'NA2 INHIBIT INHA INH COMMON r CL STROBE A ·1 9-31 RECEIVER STROBE COMMON • MA55107A· MA75107A MA75107B· MA75108B Data-Bus or Party-Line System RT DATA INPUT + p ! ! TWIsteD-PAIR LINE P STROBE COMMON RT DRIVER 1 + ! AT AT DRIVER 3 DRIVER 2 INAl INA2 INHIBIT INHA INH COMMON Application The J.tA55107A, J.tA75107A dual line circuits are designed specifically for use in high speed data transmission systems that utilize balanced, terminated transmission lines such as twisted-pair lines. The system operates in the balanced mode, so that noise induced on one line is also induced on the other. The noise appears common mode at the receiver input terminals where it is rejected. The ground connection between the line driver and receiver is not part of the signal circuit so that system performance is not affected by circulating ground currents. as 25 mV (or less). For normal line resistances, data may be recovered from lines of several thousand feet in length. Line termination resistors (RT) are required only at the extreme ends of the line. For short lines, termination resistors at the receiver only may prove adequate. The signal amplitude will then be approximately: VOIFF "'" 10(on) • RT The strobe feature of the receivers and the inhibit feature of the drivers allow the J.tA55107A, J.tA75107A dual line circuits to be used in data-bus or party-line systems. In these applications, several drivers and receivers may share a common transmission line. An enabled driver transmits data to all enabled receivers on the line while other drivers and receivers are disabled. Data is thus time multiplexed on the transmission line. The J.tA551 07 A, J.tA 75107 A device specifications allow widely varying thermal and electrical environments at the various driver and receiver locations. The data-bus system offers maximum performance at minimum cost. The unique driver output circuit allows terminated transmission lines to be driven at normal line impedances. High speed system operation is ensured since line reflections are virtually eliminated when terminated lines are used. Cross-talk is minimized by low signal amplitudes and low line impedances. The typical data delay in a system is approximately (30 + 1.3L) ns, where L is the distance in feet separating the driver and receiver. This delay includes one gate delay in both the driver and receiver. Data is impressed on the balanced-line system by unbalancing the line voltages with the driver output current. The driven line is selected by appropriate driver input logic levels. The voltage difference is approximately: V0 1FF "'" 112 10(on) • RT (2) The J.tA55107A, J.tA75107A dual line circuits may also be used in unbalanced or single line systems. Although these systems do not offer the same performance as balanced systems for long lines, they are adequate for very short lines where environment noise is not severe. The receiver threshold level is established by applying a DC reference voltage to one receiver input terminal. The signal from the transmission line is applied to the remaining input. The reference voltage should be optimized so (1) High series line resistance will cause degradation of the signal. The receivers, however, will detect signals as low 9-32 J,LA55107A· J,LA75107A J,LA75107B • J,LA75108B tionately. Input sensitivity, input Impedance and delay times will be adversely affected. that signal swing is symmetrical about it for maximum noise margin. The reference voltage should be in the range of -3.0 V to +3.0 V. It can be provided by a voltage supply or by a voltage divider from an available supply voltage. The p.A75108B line receivers feature an open-collector-output circuit that can be connected in the DOT-OR logic configuration with other p.A75108B outputs. This allows a level of logic to be implemented without additional logic delay. Unbalanced or Single-Line Systems INPUT~ VRE'-Y- Increasing Common Mode Input Voltage Range of Receiver ~OUTPUT STROBES R1 R2 Precautions in the Use of J..IA55107A, J..IA75107A and J..IA75108B Dual Line Receivers The following precaution should be observed when using or testing j.LA551 07 A, p.A 75107A line circuits. R2 R1 When only one receiver in a package is being used, at least one of the differential inputs of the unused receiver should be terminated at some voltage between -3.0 V and + 3.0 V, preferably at ground. Failure to do so will cause improper operation of the unit being used because of common bias circuitry for the current sources of the two receivers. Cfl01900F p.A75108B Wired-OR Output Connections The p.A55107A, j.LA75107A and j.LA75108B line receivers feature a common mode input voltage range of ± 3.0 V. This satisfies the requirements for all but the noisiest system applications. For these severe noise environments, the common mode range can be extended by the use of external input attenuators. Common mode input voltages can in this way be reduced to ± 3.0 V at the receiver input terminals. Differential data signals will be reduced propor- ~r=::::3JO-P~-OUTPUT 9-33 J,LA55110A • J,LA75110A Dual Line Drivers FAIRCHILD A Schlumberger Company Linear Division Interface Products Description Connection Diagram 14-Lead DIP and 50-14 Package (Top View) The J.lA55110AlJJA75110A have improved output current regulation with supply voltage and temperature variations. The higher current outputs allow data to be transmitted over longer lines. These drivers offer optimum performance when used with the J.lA55107A, JJA75107A, JJA75107B, and J.lA75108B line receivers. INA1 INA2 INHA These drivers feature independent channels with common voltage supply and ground terminals. The significant difference between the two drivers is in the output current specification. The driver circuits feature a constant output current that is switched to either of two output terminals by the appropriate logic levels at the input terminals. The output current can be switched off (inhibited) by LOW logic levels on the inhibit inputs. INH9 IN 91 IN B2 GND Order Information The inhibit feature is provided so the circuits can be used in party line or data bus applications. A strobe or inhibitor, common to both drivers, is included for increased driver logic versatility. The output current in the inhibited mode, 10(0If), is specified so that minimum line loading is induced when the driver is used in a party line system with other drivers. The output impedance of the driver in the inhibited mode is very high; the output impedance of output transistor is biased to cutoff. Inputs Outputs C D Al/Bl A2/B2 X X L X OFF OFF X X X L Ol-F OFF L X H H ON OFF X L H H ON OFF H H H H OFF ON Package Description Ceramic DIP Ceramic DIP Molded DIP Molded Surface Mount -65°C to + 175°C -65°C to + 150°C -55°C to +125°C O°C to +70°C 300°C 265°C 1.36 W 1.04 W 0.93 W ±7.0 V 5.5 V -5.0 V to 12 V Noles 1. TJ Max - 175°C for the Ceramic DIP, and 150°C for the Molded DIP and 80-14. Inhibitor B 6A 6A 9A KD Storage Temperature Range Ceramic DIP Molded DIP and SO-14 Operating Temperature Range Extended (JJA55110A) Commercial (JJA75110A) Lead Temperature Ceramic DIP (soldering, 60 s) Molded DIP and SO-14 (soldering, 10 s) Internal Power Dissipation 1, 2 14L-Ceramic DIP 14L-Molded DIP SO-14 Supply Voltage 3 Input Voltage (any input) Output Voltage (any output) Function Table A Package Code JJA55110ADM JJA75110ADC JJA75110APC JJA75110ASC Absolute Maximum Ratings • No Output Transients On Power-Up Or Down • Improved Stability Over Supply Voltage And Temperature Ranges • Constant Current, High Impedance Outputs • High Speed 15 ns • Standard Supply Voltages • Inhibitor Available For Driver Selection • High Common Mode Output Voltage Range (-3.0 V to 10 V) • TTL Input Compatibility • Extended Temperature Range Logic Device Code 2. Ratings apply to ambient temperature at 25°C. Above this temperature, derate the 14L-Ceramic DIP at 9.1 mwrc, the 14L-Molded DIP at 8.3 mWI'C, and the 80-14 at 7.5 mWrC. 3. Voltage values are with respect to network ground terminal. H - HIGH, L - LOW, X - Don't Care 9-34 Equivalent Circuit Rl. R2 6OOl! Rl 2.2 k!l ,...-.03 O. 850" I - I " INA2 2~ 08 OUTAl 850" 01 IN AI V 550" OS 3.5 kn ~Q4 ...... ~ 01 ~~ ZI • t' Z2 o;-.t 02 OUTA2 Vas ...... O~ Vas 702 ~ ~D9 R7 4 kn ~03 os 4kO y- GN0 y, R9 1.2 kfl 08 2 kO n~ J. 011 1.3kn ~ i~ 010 n R21 2.5 k!l 01S r Val. 011........ tI 2kU 013 ,~ Q114 ' " Z4 v--- 01." l 7 os lY' - INH 8Ol! 70S r .". COMMON y, 4- V to Z3 ~.. R10 1 kH 01. 3700 R10S Rl09 2 kn 1.2 kll n~ • 4Rl11 1.3kU ...... 01' 018 017 01S 1 kO 5 kO 1 kU . 1-'" ~~ ZI03 V 0109 r 019 011 All0 r / " 0 1 kn R113 2 kll ~~ ZS r- ...... 011S 70104 011 R112 3700 !I '"' ) 011r- ~ '(,; 07 01S RIS 12 k!l Y- .". r-y, ~ 0101 2.2kU R114 0105 800" sson 3.5 kU Rl03 0104 850" 8500 I: ) IN 81 ...... 0101 I - 0102 0103........ OUTS1 ~~ Z101 it' ZI02 V ......0106 010~ r.. 0102 INS. 70103 ~ 013 ~ 01. OUTB2 ......0105 V 0104 ,.-- 0101 [ R107 0106 4 k!l 4 k!l Y- _ > - - .". o = CROSSUNDER 9-35 I 8O!l MA55110A· MA75110A Recommended Operating Conditions 1 J.LA75110A J.LA55110A Symbol Characteristic V+ Positive Supply Voltage V- Negative Supply Voltage VeM+ Positive Common Mode Voltage VeM- Negative Common Mode Voltage TA Operating Temperature Min Typ Max Typ Min Max Unit V 4.5 5.0 5.5 4.75 5.0 5.25 -4.5 -5.0 -5.5 -4.75 -5.0 -5.25 V 10 0 10 V -3.0 0 125 0 0 0 -55 25 25 -3.0 V 70 °C MA55110A, MA75110A Electrical Characteristics Over recommended operating temperature range, unless otherwise specified. DC Characteristics Symbol Condition 2 Characteristic Min Typ3 Max Unit V VIH Input Voltage HIGH 2.0 VIL Input Voltage LOW VIC Input Clamp Voltage Vce = Min, II = -12 mA 10(on) On-State Output Current Vce = Max, Vo = 10 V 10(011) Off-State Output Current Vee = Min, Vo=10 V 100 J.LA II Input Current At Maximum Input Voltage A,BorC Inputs Vee = Max, VI = 5.5 V 1.0 mA IIH Input Current HIGH A,BorC Input IlL Input Current LOW A, B or C Inputs I+(on) Positive Supply Current With Driver Enabled I-(on) Negative Supply Current With Driver Enabled 1+(011) Positive Supply Current With Driver Inhibited I-(off) Negative Supply Current With Driver Inhibited 0.8 Vee = Min, Vo = -3.0 V 6.5 -0.9 -1.5 12 15 V V mA 12 2.0 D Input Vee = Max, VI = 2.4 V 40 Vee = Max, VI = 0.4 V -3.0 J.LA 80 D Input mA -6.0 D Input Vee = Max, A & B Inputs at 0.4 V, C & D Inputs at 2.0 V Vee = Max, A, B, C, & D Inputs at 0.4 V 9-36 23 35 mA -34 -50 mA 21 mA -17 mA J..LA55110A· J..LA75110A ~55110A, IlA75110A (Cont.) Electrical Characteristics AC Characteristics Vcc = ± 5.0 Symbol tpLH V, T A = 25°C Characteristic Condition Propagation Delay Time, LOW to HIGH tpHL Propagation Delay Time, HIGH to LOW tpLH Propagation Delay Time, LOW to HIGH tpHL Propagation Delay Time, HIGH to LOW CL = 40 pF, RL = 50 n See Test Circuit Notes 1. When using only one channel of the line drivers, the other channel should be inhibited and/or its outputs grounded. 2. For conditions shown as Min or Max, use appropriate value specified under recommended operating conditions. 3. All typical values are Vee ~ ± 5.0 V, TA ~ 25"C AC Test Circuit ;:-.....,.-......-OUTPUT 2 '---t-.....,.-OUTPUT 1 o ___'*___ I,.L l-=- RL 50n TO OTHER CHANNEL -JI Notes 1. The pulse generators have the following characteristics: tr ~ tf ~ 10 ±5.0 ns, twl ~ 500 ns, PRR ~ 1.0 MHz, tW2 ~ 1.0 ,"S, PRR ~ 500 kHz, Zo ~ 50 n. 2. CL includes probe and jig capacitance. 3. For simplicity, only one channel and the inhibitor connections are shown. 9-37 From (Input) To (Output) A or B 1 or 2 Cor D 1 or 2 Min Typ Max Unit 9.0 15 ns 9.0 15 ns 16 25 ns 13 25 ns pA55110A • pA75110A AC Waveforms '-___--JI\'"--~~~~~~~~:: LOGIC INPUT 10R2 1..----lw2----I~1 3V INHIBITOR INPUT OR INHIBITOR COMMON 50% '--------------'.4---- 0V OUT 2 ,.~Ifi_------ __------------__--------OFF OUT 1 '"-__~J.~--------------------ON Typical Applications Simplex Operation p DATA IN •+ DATA OUT INHIBIT RO/2 SHIELD OR COMMON GROUND RETURN 9-38 MA55110A • MA75110A Typical Applications (Cont.) Half-Duplex Operation PORT ENABLES '--L-"'-PORT ENABLES OATA IN OATA IN SHIELD OR COMMON GROUNO RETURN OATA OUT DATA OUT Notes 1. All drivers are jtA75110A or jtA55110A. Receivers are jtA75107A or jtA75108B. Twisted-pair or coaxial transmission line should be used for minimum noise and cross talk. 2. When only one driver in a package is being used, the outputs of the other driver should either be grounded or inhibited to reduce power dissipation. 9-39 • MA75150 RS-232C I=AIRCHILD A Schlumberger Company Dual Line Driver Linear Division Interface Products Description Connection Diagram 14-Lead DIP (Top View) The pA75150 is a monolithic dual line driver designed to satisfy the requirements of the standard interface between data terminal equipment and data communication equipment as defined by EIA Standard RS-232C. A rate of 20K bps can be transmitted with a full 2500 pF load. Other applications are in data transmission systems using relatively short single lines, in level translators, and for driving MOS devices. The logic input is compatible with most TTL and DTL families. Operation is from + 12 V and -12 V power supplies. NC STROBE INA INB GND • Withstands Sustained Output Short Circuit To Any Low Impedance Voltage Between -25 V And + 25 V • 2.0 IJS Max Transition Time Through The + 3.0 V To -3.0 V Transition Region Under Full 2500 pF Load • Inputs Compatible With Most TTL And DTL Families • Common Strobe Input • Inverting Output • Slew Rate Can Be Controlled With An External Capacitor At The Output • Standard Supply Voltages ± 12 V NC NC CDOO88OF Order Information Device Code pA75150PC Absolute Maximum Ratings Storage Temperature Range Ceramic DIP Molded DIP and S0-8 Operating Temperature Range Lead Temperature Ceramic DIP (soldering, 60 s) Molded DIP and SO-8 (soldering, 10 s) Internal Power Dissipation 1, 2 14L-Molded DIP 8L-Ceramic DIP 8L-Molded DIP SO-8 Supply Voltage Input Voltage3 Applied Output Voltage3 Package Code 9A Package Description Molded DIP Connection Diagram 8-Lead DIP and SO-8 Package (Top View) -65·C to +175·C -65·C to +150·C O·C to +70·C 300·C v+ STROBE IN A L 265·C 1.04 W 1.30 W 0.93 W 0.81 W ±15 V 15 V ±25 V r-r,--" OUT A INB OUTB GND v- Order Information Device Code pA75150RC pA75150TC pA75150SC Notes 1. TJ Max = 175·C for the Ceramic DIP, and 150·C for the Molded DIP and 80·14. 2. Ratings apply to ambient temperature at 25·C. Above this temperature, derate the 14L-Ceramic DIP at 9.1 mWrC, the 14L·Molded DIP at 8.3 mWrC, and the SO-14 at 7.5 mWrC. 3. Voltage values are with respect to network ground. 9-40 Package Code 6T 9T KC Package Description Ceramic DIP Molded DIP Molded Surface Mount MA75150 Equivalent Circuit (1/2 of Circuit) y+------------1_-----------.------~----1_------------__, R2 15kn R1 111U1 01 IN ----------tCt--+ ~OBE--------~C~~ 07 09 OUT 011 GNO------------~--~--~ 012 013 014 Note Component values shown are nominal. y------------------------------------+--------~----~~ Recommended Operating Conditions Symbol Characteristics V+ Positive Supply Voltage V- Negative Supply Voltage VI Input Voltage Vo Applied Output Voltage TA Operating Temperature Typ Min Unit 10.8 12 13.2 -10.8 -12 -13.2 V 5.5 V 0 0 9-41 Max 25 V ±15 V 70 ·C MA75150 J.lA75150 Electrical Characteristics TA = 0 to 70°C, unless otherwise specified. 1 DC Characteristics Symbol VIH Characteristic Condition Input Voltage HIGH Figure 1 VIL Input Voltage LOW VOH Output Voltage HIGH V+ =10.8 V, V- =-13.2 V, VIL = 0.8 V, RL = 3.0 kil to 7.0 kil 2 VOL Output Voltage LOW Vee = ± 10.8 V, VIH = 2.0 V, RL = 3.0 kil to 7.0 kil 1 IIH Input Current HIGH Vee = ± 13.2 V, VI = 2.4 V IlL los Input Current LOW Output Short Circuit Current Min 5.0 Data Input Vee = ± 13.2 V, VI = 0.4 Strobe Input Vee=±13.2V Vo= 25 V 3 3 I-H Negative Supply Current HIGH I+L Positive Supply Current LOW I-L Negative Supply Current LOW V V -5.0 V J.l.A 1.0 10 2.0 20 -1.0 -1.6 -2.0 -3.2 2.0 4 mA mA -3.0 Vo=-25 V 15 Va = 0 V, VI = 3.0 V Positive Supply Current HIGH 8.0 -8.0 Strobe Input Unit V 2 Data Input Max 0.8 -15 Vo = 0 V, VI = 0 V I+H Typ2 2.0 Vee = ± 13.2 V, VI = 3.0 V, RL = 3.0 kil, TA = 25°C 5 Vee=±13.2 V VI = 3.0 V, RL = 3.0 kil, TA = 25°C 5 10 22 mA -1.0 -10 mA 8.0 17 mA -9.0 -20 mA AC Characteristics Vee = ± 12 V, TA = 25°C. Symbol Figure Min Typ2 Max Unit CL = 2500 pF, RL = 3.0 kil to 7.0 kil 6 0.2 1.4 2.0 J.l.S 0.2 1.5 2.0 J.l.S CL = 15 pF, RL = 7.0 kil 6 40 ns 20 ns CL = 15 pF, RL = 7.0 kil 6 60 ns 45 ns Condition Characteristic tTLH Transition Time, Output LOW to HIGH tTHL Transition Time, Output HIGH to LOW tTLH Transition Time, Output LOW to HIGH tTHL Transition Time, Output HIGH to LOW tpLH Propagation Delay Time, Output LOW to HIGH tpHL Propagation Delay Time, Output HIGH to LOW Notes 1. The algebraic convention where the most positive (least negative) limit is designated as maximum is used in this data sheet for logic levels only, e.g., when -5.0 V is the maximum, the typical value is a more negative voltage. 2. All typical values are at Vee - ± 12 V. TA - 25"e. 9-42 MA75150 Typical Performance Curves Typical Output Current vs Applied Output Voltage 20 15 ~ I I- z '"::I "::I.... 10 5.0 II: II: V, = -5.0 0 -10 -- ::/::. , - ·15 20 -25 - 2.lv I , ·20 -15 -10 -5.0 - I- ,- I-- ...... ::I _~cJJv TA=25'C { -Rl-7kH I I ..... RL ;=:3kH_ l.J • VIIO.4~ 0 5.0 10 15 20 25 APPLIED OUTPUT VOLTAGE - V Test Circuits Figure 2 VIL. VOH (Note 1) Figure 1 VIH. VOL Figure 4 los Figure 3 IIH. IlL v+ ~ IIH v, - .- v- l---l, ffD-e+ r NOTE 2 III II I I L I J --l-- OPEN Notes 1. Each input is tested separately. 2. When testing I,H. the other input is at 3.0 V; when testing I,L. the other input is open. 3. los is tested for both input conditions at each of the specified output conditions. 9-43 MA75150 Figure 6 Switching Characteristics Figure 5 I+H' LH, I+L' LL (Note 1) v+ I+H. I+L ~I v- It 3.0 V "~ L_-r-_J r ~~~:[==)o--t>--+-~---'---OUT Okll CA017QOF Noles 1. Arrows indicate actual direction of current flow. Current into a terminal is a positive value. 2. The pulse generator has the following characteristics: duty cycle -< 50%, Zo~50 V+ I-H. I-L n. 3. CL includes probe and jig capacitance. Voltage Waveforms I I ~~10ns ....c:"l90:::.::-Y.----':;:90::::.'~.=!iL ::: - t- - - - - - - - 3.0 V I I IN I _"",.,;1:,:;O',;:;V'J): : ~.:.11l'::;~:::..._ _ _ _ _ ov :..---50 1 - ' $ - - -.....1: I I.-tPHL~ '..... tPLH-.1 I I I -----------~I I I OUT ~3.0V I -3.0V I I r;"";:"'-'"---"';;;;;"';';"F-+--- VOL tTLHI~ 9-44 MA75154 RS-232C FAIRCHILD A Schlumberger Company Quad Line Receiver Linear Division Interface Products Description Connection Diagram 16-Lead DIP (Top View) The /.IA75154 is a monolithic quad line receiver designed to satisfy the requirements of the standard interface between data terminal equipment and data communication equipment as defined by EIA Standard RS-232C. Other applications are for relatively short, single line, point-to-point data transmission and for level translators. Operation is normally from a single 5.0 V supply; however, a built-in option allows operation from a 12 V supply without the use of additional components. The output is compatible with most TTL and DTL circuits when either supply voltage is used. ~r VCC2 Veel CONTROLS 14 A In normal operation, the threshold control terminals are connected to the VCC1 terminal, lead 15, even if power is being supplied via the alternate VCC2 terminal, lead 16. This provides a wide hysteresis loop which is the difference between the positive-going and negative-going threshold voltages. In this mode of operation, if the input voltage goes to zero, the output voltage will remain LOW or HIGH as determined by the previous input. THRESHOLD CONTROL D INA OUT A IN B OUT B INC OUT C IN D CUT 0 GND R1 Order Information Device Code For fail-safe operation, the threshold control terminals are open. This reduces the hysteresis loop by causing the negative-going threshold voltage to be above zero. The positive-going threshold voltage remains above zero as it is unaffected by the disposition of the threshold terminals. In the fail-safe mode, if the input voltage goes to zero or an open circuit condition, the output will go HIGH regardless of the previous input condition. 1.IA75154DC 1.IA75154PC Package Code 68 98 Package Description Ceramic DIP Molded DIP Absolute Maximum Ratings Storage Temperature Range Ceramic DIP Molded DIP Operating Temperature Range Lead Temperature Ceramic DIP (soldering, 60 s) Molded DIP (soldering, 10 s) Internal Power Dissipation 1, 2 16L-Ceramic DIP 16L-Molded DIP Supply Voltage (Lead 15)3 Alternate Supply Voltage (Lead 16)3 Input Voltage 3 • Input Resistance - 3.0 kn To 7.0 kn Over Full RS-232C Voltage Range • Input Threshold Adjustable To Meet Fail-Safe Requirements Without Using External Components • Built-In Hysteresis For Increased Noise Immunity • Inverting Output Compatible With DTL Or TTL • Output With Active Pull-Up For Symmetrical Switching Speeds • Standard Supply Voltages - 5.0 V Or 12 V -65°C to + 175°C -65°C to + 150°C O°C to +70°C 300°C 265°C 1.50 W 1.04 W 7.0 V 14 V ±25 V Notes 1. T J Max~ 175·C for the Ceramic DIP, and 150·C for the Molded DIP. 2. Ratings apply to ambient temperature at 25°C. Above this temperature, derate the 16L-Ceramic DIP at 10 mwrc, and the 16L·Molded DIP at 8.3 mWrC. 3. Voltage values are with respect to network ground terminal. 9-45 MA75154 ,---, Equivalent Circuit (Note 1) ---------1 COMMON TO 4 CIRCUITS Vee2 -+---"""1~---' (NOTE 2) 1 OF 4 RECEIVERS I 5 kn I 3.2kH 1.6 kn 1.6 kU 200!l 1.4 k!l I I V C C 1 - + - - -..... I I I OUT I 4.2 .....____+-+~ k~l R1-+-~~ I GNO-~------~ 1 kU I I L _________ ~ Notes 1. Component values shown are normal. 2. When using Vee" Vee2 may be left open or shorted to Vee,. When using Vee2, Vee, must be left open or connected to the threshold control leads. Recommended Operating Conditions Symbol Characteristic Typ Min Max Unit VCCl Supply Voltage 4.5 5 5.5 V VCC2 Supply Voltage 10.8 12 13.2 V ±15 V VI Input Voltage N Normalized Fan Out from Each Output TA Operating Temperature 10 0 9-46 25 70 °C MA75154 JlA75154 Electrical Characteristics TA = 0 to 70 0 e unless otherwise specified. 3 DC Characteristics Symbol Characteristic Condition Figure VIH Input Voltage HIGH 1 VIL Input Voltage LOW 1 VTH+ Positive-Going Threshold Voltage Normal Operation 1 Negative-Going Threshold Voltage (VTH+) (VTH-) Hysteresis VOH Output Voltage HIGH 10H =-400 /J.A 1 VOL Output Voltage LOW 10l = 16 mA 1 RI Input Resistance f,VI = -25 V to -14 V 2 Normal Operation 1 Fail-Safe Operation Normal Operation Max Unit -3.0 V V 3.0 Fail-Safe Operation VTH- Typ2 Min 1 V 0.8 2.2 3.0 0.8 2.2 3.0 -3.0 -1.1 0 0.8 1.4 3.0 0.8 3.3 6.0 0 0.8 2.2 Fail-Safe Operation 2.4 3.5 V V V 0.23 0.4 V 3.0 5.0 7.0 kn f,VI = -14 V to -3.0 V 3.0 5.0 7.0 f,VI = -3.0 V to +3.0 V 3.0 6.0 f,VI = 3.0 V to 14 V 3.0 5.0 7.0 7.0 f,VI = 14 V to 25 V 3.0 5.0 11=0 mA 3 0 0.2 2.0 V los Output Short Circuit CurrentI VCCI = 5.5 V, VI = -5 V 4 -10 -20 -40 mA ICCI Supply Current from VCCI VCCI = 5.5 V, T A = 25°C 5 20 35 mA ICC2 Supply Current from VCC2 VCC2 = 13.2 V, TA = 25°C 23 40 mA Max Unit VI (open) Input Open Circuit Voltage AC Characteristics VCCI = 5.0 V, TA = 25°C Symbol Characteristic tpLH Propagation Delay Time, LOW-to-HIGH tpHL Condition CL = 50 pF, RL = 390 Figure n Min Typ 22 ns Propagation Delay Time, HIGH-to-LOW 20 ns tTLH Transition Time, LOW-to-HIGH 9.0 ns tTHL Transition Time, HIGH-to-LOW 6.0 ns Notes I. Not more than one output should be shorted at a time. 2. All typical values are at V, ~ 5.0 V, TA ~ 25°C. 3. The algebraic convention where the most positive (least negative) limit is designated as maximum is used in this data sheet for logic and threshold levels only, e.g., when -3.0 V is the maximum, the minimum limit is a more negative voltage. 9-47 6 IlA75154 Typical Characteristics Output Voltage vs Input Voltage (Note 1) 4.0 -" Vee, =5.0 V TA= 25°C > 3.0 I ~ NORMAL OPERATION ~ ~ I 2.0 /! r- FAIL-SAFE OPERATION VrH- VTH- u " f.. VTH+ " 1.0 /I ',', /! o -2S " - 4.0 - 3.0 -2.0 -1.0 0 1.0 2.0 3.0 4.0 INPUT VOLTAGE-V Note 1. For normal operation, the threshold controls are connected to fail-safe operation, the threshold controls are open. Vcc,. For DC Test Circuits s.svo 013.2 V Note 1. Arrows indicate actual direction of current flow. Current into a terminal is a positive value. 9-48 " 2S J,LA75154 DC Test Circuits (Cont.) Test Table Test In T VOH Open Open IOH 4.5 V VOH Open Open IOH Open 10.8 V VTH+ Min. VTH- Min (fail-safe) VOH 0.8 V Open IOH 5.5 V Open VOH 0.8 V Open IOH Open 13.2 V VTH- Min (normal) VOH Note 1 Lead 15 IOH 5.5 V and TH Open VOH Note 1 Lead 15 IOH TH 13.2 V VIL Max. VTH- Min (normal) VOH -3.0 V Lead 15 IOH 5.5 V and TH Open VOH -3.0 V Lead 15 IOH TH 13.2 V VIH Min. VTH+ Max. VTH- Max (fail-safe) VOL 3.0 V Open IOL 4.5 V Open VOL 3.0 V Open IOL Open 10.8 V Open Measure Open circuit input (fail-safe) VIH Min. VTH+ Max (normal) VTH- Max (normal) Out VCC1 VCC2 Open VOL 3.0 V Lead 15 IOL 4.5 V and TH VOL 3.0 V Lead 15 IOL TH 10.8 V VOL Note 2 Lead 15 IOL 5.5 V and TH Open VOL Note 2 Lead 15 IOL TH 13.2 V Notes 1. Momentarily apply -5.0 V. then 0.8 V. 2. Momentarily apply 5.0 V. then ground. Figure 2 Test Table RI Op::~vo (::PEN .L -= I, 0 I: - 0 15 ~IIN V, 16 Vee, VCC2 - TH OPEN ---.1 "I OUT I I OPEN I L __ - T --. _J GND 9-49 VCC2 Open Open GND Open Open Open Open Open 1 -= VCC1 5.0 V Lead 15 TH and 5.0 V Open GND GND Open Open Open 12 V Open Open GND Lead 15 TH 12 V Lead 15 TH GND Lead 15 TH Open IlA75154 DC Test Circuits (Cont.) Figure 4 los (Note 1) OPEN Figure 3 V1(open) 5'5V:J0_10--0 3,2 1 5.5 V OPEN OPEN Veel VCC2 R1 _k.-16_~ I v OUT/ -5.0 V / 15 16 - - Vq:1 VCC2 - - Rl ~IOS I GND OUT/ + 1 1 -.-l / L __ -T- __ J OPEN ><>---=-='-+-I VI(OPEN)L ---T--- ~ J -OPEN Figure 5 Icc (Note 2) 5'5V)C:~E-IICC~13'2V GND t OPEN Test Table TH VCC1 rTi I :: VCC2 Open 5.5 V Open Lead 15 5.5 V Open Open Open 13.2 V Lead 15 TH 13.2 V 5.0 V - t Vee1 VCC2 OPEN -~II R1 .><:>-_-""ou~T-r-1-OPEN Notes 1. Each output is tested separately. 2. All four line receivers are tested simultaneously. Arrows indicate actual direction of current flow. Current into a terminal is a positive value, 9-50 MA75154 AC Test Circuit 5.0 V IN OPEN j--TH PULSE GENERATOR (NOTE 1) _ OPEN 15_~_~_ VCC1 VCC2 OUT R1 liN 'I RL = 390 11 oUTI I I L----T----J I CL == 50 pF (NOTE 2) GND • Voltage Waveforms Notes 1. The pulse generator has the following characteristics: tw ~ 200 ns, duty cycle';; 20%, Zo ~ 50 n. 2. C L includes probe and jig capacitance. 3. All diodes are 1N3064. 9-51 J.lA75450/60/70 Series F=AIRCHILO Dual Peripheral Drivers A Schlumberger Company Linear Division Interface Products Description The JJA75400 series offers flexibility in designing high speed logic buffers, power drivers, lamp drivers, line drivers, MOS drivers, clock drivers, and memory drivers. The JJA75400 series of devices are dual high speed general purpose interface drivers that convert TTL and DTL logic levels to high current drive capability. The JJA75450 features two TTL NAND gates and two uncommitted transistors. The JJA 75451, JJA 75452, and JJA 75453 feature two standard series 74 TTL gates in AND, NAND and OR configurations respectively, driving the base of two high voltage, high current, uncommitted collector output transistors. • • • • • No Latch·Up Up To 55 V High Output Current Capability TTL Or DTL Input Compatibility Input Clamp Diodes 5.0 V Supply Voltage Absolute Maximum Ratings JJA75451 JJA75452 JJA75453 JJA75450 Storage Temperature Range 1 Ceramic DIP JJA75461 JJA75462 JJA75471 JJA75472 -65°C to +175°C -65°C to + 175°C -65°C to + 150°C -65°C to + 150°C Operating Temperature Range O°C to +70°C O°C to +70°C Lead Temperature Ceramic DIP (soldering, 60 s) 300°C 300°C 265°C 265°C Molded DIP and SO-8 Molded DIP and SO-8 (soldering, 10 s) Internal Power Dissipation 2 , 3 14L-Ceramic DIP 1.36 W 14L-Molded DIP 1.04 W 8L-Ceramic DIP 1.30 W 8L-Molded DIP 0.93 W SO-8 0.81 W Supply Voltage 4 7.0 V Input Voltage4 5.5 V 5.5 V Inter-emitter Voltage5 5.5 V 5.5 V Vcc to Substrate Voltage 9 35 V Collector to Substrate Voltage 9 35 V Collector to Base Voltage 35 V Collector to Emitter Voltage6 30 V Emitter to Base Voltage Output Voltage4 and 7 5.0 V Continuous Collector Current8 300 mA 7.0 V Table 2 300 mA Continuous Output Current8 Notes 1. 1lA75452 is Molded DIP and 50-8 only. 2. TJ Max -175·C for the Ceramic DIP, and 150·C for the Molded DIP. 3. Ratings apply to ambient temperature at 25·C. Above this temperature, derate the 14L-Ceramic DIP at 9.1 mW/·C, the 14L-Molded DIP at 8.3 mWrC, the 8L-Ceramic DIP at 8.7 mWrC, and the 8L-Molded DIP at 5. This is the voltage between two emitters of a mulitiple emitter input transistor. 6. This value applies when the base-emitter resistance (RBE) is equal to or less than 500 n. 7. This is the maximum Yoltage which should be applied to any output when it is in the off state. S. Both halves of these dual circuits may conduct rated current simultaneously. 9. For the !lA75450 only, the substrate (Lead 8), must always be at the most negative device voltage for proper operation. 7.5 mWrC. 4. Voltage values are with respect to network ground terminal unless otherwise specified. 9-52 IlA75450/60/70 Series Test Table 1 Operating Temperature Range and Supply Voltage Range Symbol Characteristic TA Operating Temperature Vee Supply Voltage !1A75000 Series O°C to 70°C +4.75 V to +5.25 V Test Table 2 VOH Vs !1A75471 !1A75472 !1A7545X !1A75461 J1A75462 Maximum Output 30 V 35 V 80 Maximum, Latch-up 20 V 30 V 55 Symbol Characteristic V V Equivalent Circuit J.tA75450 Dual Positive AND Peripheral Drivers ..---;---T"-......- - - - v c c Connection Diagram 14-Lead DIP (Top View) 1.6k 4k 130 1E GATE INA 1B 1C 1B SUB G 1C 4k 1E 1.6 k 130 GNO 2C OUT Logic Function B Positive Logic: Z = XY (gate only) Z = XY (gate and transistor) IN -+--i--+ 2B 2E Order Information Device Code J.tA75450DC J.tA75450PC Package Code 6A 9A ~~-~--~-~~--------GNO Package Description Ceramic DIP Molded DIP All resistor values in ohms 9-53 J.lA75450/60/70 Series IlA75450 Electrical Characteristics Over recommended operating temperature and supply voltage ranges, (use Test Table 1), unless otherwise indicated. DC Characteristics TTL Gates Symbol Characteristic Test Figure Condition Min Typl Max Unit V VIH Input Voltage HIGH 1 VIL Input Voltage LOW 2 0.8 V VIC Input Clamp Diode Voltage Vcc = Min, II = -12 mA 3 -1.5 V VOH Output Voltage HIGH Vcc = Min, Vil = 0.8 V, 10H = -400 /lA 2 VOL Output Voltage LOW Vcc = Min, VIH = 2.0 V, 10L = 16 mA 1 II Input Current at Maximum Input Voltage Input A Vcc = Max, VI = 5.5 V 4 Input Current HIGH Input A IIH 2.0 2.4 3.3 0.22 Input G Vcc = Max, VI = 2.4 V 4 0.4 V 1.0 mA 2.0 mA 40 !lA 80 Input G Input A V Vcc = Max, VI = 0.4 V -1.6 3 IlL Input Current LOW los Input G Output Short Circuit Current2 Vcc = Max 5 ICCH Supply Current HIGH Vcc = Max, VI = 0 V 6 ICCl Supply Current LOW Vcc = Max, VI = 5.0 V mA -3.2 -18 -55 mA 2.0 4.0 mA 6.0 11 Output Transistors (Note 4) Symbol Characteristic Condition Min V 5.0 V V(BR)CER Collector to Base Breakdown Voltage Ic = 100 /lA, RBE = 500 V(BR)EBO Emitter to Base Breakdown Voltage IE=100 /lA, Ic=O!lA hFE Static Forward Current Transfer Rati0 3 VCE = 3.0 V, Ic = 100 mA, TA = 25°C 25 VCE = 3.0 V, Ic = 300 mA, T A = 25°C 30 VCE = 3.0 V, Ic = 100 mA 20 VCE = 3.0 V, Ic = 300 mA 25 VSE(sat) VCE(sat) Collector to Emitter Saturation Voltage 3 18 = 10 mA, Ic = 100 mA 0.85 1.0 IB = 30 mA, Ic = 300 mA 1.05 1.2 IB=10 mA, Ic=100 mA 0.25 0.4 IB = 30 mA, Ic = 300 mA 0.5 0.7 9-54 Unit 30 Ic=100 /lA, IE=O /lA Base to Emitter Voltage3 Max V Collector to Base Breakdown Voltage .n Typl 35 V(BR)CBO V V IlA75450/60/70 Series fJA75450 (Cont.) Electrical Characteristics Over recommended operating temperature and supply voltage ranges, (use Test Table 1), unless otherwise indicated. AC Characteristics Vcc = 5.0 V, TA = 25°C TTL Gates Symbol Characteristic tPLH Propagation Delay Time, LOW to HIGH tpHL Propagation Delay Time, HIGH to LOW Condition CL = 15 pF, RL = 400 n Test Figure J.lA75450B Min 12 Typ Max Unit 12 22 ns 8.0 15 ns Typ Max Unit 8.0 15 ns 12 20 Output Transistors Symbol Condition 3 Characteristic Test Figure Min td Delay Time tr Rise Time ts Storage Time 7.0 15 ns tf Fall Time 6.0 15 ns Typ Max Unit 20 30 ns 20 30 ns ns Ic = 200 mA, VSE(off) = -1.0 V, IS(I) = 20 mA, IS(2) = -40 mA, CL=15 pF, RL=50 13 n ns --"--," Gates and Transistors Combined Symbol Condition Characteristic Ic= 200 mA, CL=15 pF, RL = 50 n Test Figure Min tpLH Propagation Delay Time, LOW to HIGH tpHL Propagation Delay Time, HIGH to LOW tTLH Transition Time, LOW to HIGH 7.0 12 tTHL Transition Time, HIGH to LOW 9.0 15 VOH HIGH Level Output Voltage After Switching VI =20 V, Ic"'300 mA, RSE = 500 n Notes 1. All typical values are at Vee ~ 5.0 v. TA ~ 25°C. 2. Not more than one output should be shorted at a time. 3. These parameters must be measured using the pulse techniques. tw = 300 J.lS, duty cycle < 2%. 4. Voltage and current values shown are nominal; exact values vary slightly with transistor parameter. 9-55 14 15 VI-6.5 ns mV • J-lA75450/60/70 Series Truth Table ~75451, ~75461, ~75471 Dual Positive AND Peripheral Drivers Output Inputs Connection Diagram 8-Lead DIP and 50-8 Package (Top View) IN A1 LJ-----, Vee INA2 IN B2 OUT A INB1 GND n-+----' Device Code OUT B Package Code Package Description 6T KC 9T 9T 9T Ceramic DIP Molded Surface Mount Molded DIP Molded DIP Molded DIP Equivalent Circuit (1/2 of Circuit) ,---_-_-----vcc 4k 1.6k 130 OUTPUT INPUTS L L L H H H L L L L H H H = HIGH Level, L Order Information 1lA75451RC 1lA75451SC MA75451TC MA75461TC 1lA75471TC X y {_+-_.. t--~--~~---+-*--~--GND Notes Component values shown are nominal. All resistor values in ohms. 9-56 = LOW Level Z (on (on (on (off state) state) state) state) MA75450/60/70 Series IlA75451 Electrical Characteristics Over recommended operating temperature and supply voltage ranges, (use Test Table 1), unless otherwise indicated. DC Characteristics Symbol Characteristic Condition Test Figure !1A75451 Min Typ1 Max 2.0 Unit VIH Input Voltage HIGH 7 VIL Input Voltage LOW 7 0.8 V VCD Input Clamp Diode Voltage Vcc= Min, 11=-12mA 8 -1.5 V 10H Output Current HIGH 2 Vcc= Min, VIH = 2.0 V 7 100 p.A VOL Output Voltage LOW Vcc= Min, VIL = 0.8 V, 10L = 100 mA 7 0.25 0.4 V 0.5 0.7 Vcc= Min, VIL = 0.8 V, 10L = 300 mA V II Input Current at Maximum Input Voltage Vcc = Max, VI = 5.5 V 9 1.0 mA IIH Input Current HIGH Vcc= Max, VI = 2.4 V 9 40 p.A IlL Input Current LOW Vcc= Max, VI = 0.4 V 8 -1.0 -1.6 mA ICCH Supply Current HIGH Vcc = Max, VI = 5.0 V 10 7.0 11 mA ICCL Supply Current LOW Vcc= Max, VI=O V 52 65 mA Typ Max 18 25 ns 25 25 ns ns AC Characteristics Vcc = 5.0 V, TA = 25°C Symbol Characteristic tpLH Propagation Delay Time, LOW to HIGH tpHL Propagation Delay Time, HIGH to LOW Condition 10"'200 mA, CL = 15 pF, RL = 50 Test Figure Min 14 n tTLH Transition Time, LOW to HIGH 5.0 8.0 tTHL Transition Time, HIGH to LOW 7.0 12 VOH HIGH Level Output Voltage After Switching 3 10"'300 mA 9-57 15 VI-6.5 Unit ns mV • jlA75450/S0/70 Series 1lA75461, 1lA75471 Electrical Characteristics Over recommended operating temperature and supply voltage ranges, (use Test Table 1), unless otherwise indicated. DC Characteristics ~75461 Test Figure Min VIH Input Voltage HIGH 7 2.0 VIL Input Voltage LOW 7 VIC Input Clamp Diode Voltage Vce= Min, 11=-12mA 8 10H Output Current HIGH 2 Vee = Min, VIH = 2.0 V 7 VOL Output Voltage LOW Vee = Min, VIL = 0.8 V, 10L = 100 mA 7 Symbol Characteristic Condition Typl IlA75471 Max Typl Min -1.2 Unit V 0.8 -1.5 -1.2 100 Vee = Min, VIL = 0.8 V, 10L = 300 mA Max 2.0 0.8 V -1.5 V 100 IlA V 0.16 0.4 0.16 0.4 0.35 0.7 0.35 0.7 II Input Current at Maximum Input Voltage Vee = Max, VI = 5.5 V 9 1.0 1.0 mA IIH Input Current HIGH Vee = Max, VI = 2.4 V 9 40 40 IlA IlL Input Current LOW Vee = Max, VI = 0.4 V 8 ICCH Supply Current HIGH Vce= Max, VI = 5.0 V 10 ICCL Supply Current LOW Vcc= Max, VI=O V -1.0 -1.6 -1.0 -1.6 mA 8.0 11 8.0 11 mA 61 76 61 76 mA AC Characteristics Vcc = 5.0 V, TA = 25°C Symbol Characteristic Condition Test Figure ~75471 IlA75461 Min Typ Max Typ Max Unit 35 55 35 55 ns 25 40 25 40 ns ns Min tpLH Propagation Delay Time, LOW to HIGH tpHL Propagation Delay Time, HIGH to LOW tTLH Transition Time, LOW to HIGH 8 20 8.0 20 tTHL Transition Time, HIGH to LOW 10 20 10 20 VOH HIGH Level Output Voltage After Switching 3 10""200 mA, CL=15pF, RL = 50 n 10""300 mA Notes 1. All typical values are at Vee = 5.0 V, TA = 25°C. 2. VOH = 30 V for pA75451 , 35 V for I'A75461, 80 V for pA75471. 3. V, = 20 V for pA75451, 30 V for I'A75461, 55 V for I'A75471. 9-58 14 15 V!-10 VI-18 ns mV JIA75450/60/70 Series Truth Table f.lA75452, f.lA75462, f.lA75472 Dual Positive NAND Peripheral Driver Inputs Connection Diagram 8-Lead DIP and 80-8 Package (Top View) Output 2 L L H H INAI L H L H H - HIGH Level. L - LOW Level INA2 OUT A GND Order Information Device Code Package Code J.lA75452SC J.lA75452TC J.LA75462TC J.lA75472TC Package Description Molded Molded Molded Molded KC 9T 9T 9T Surface Mount DIP DIP DIP Equivalent Circuit (112 of Circuit) r--_.-----.--......- - -vcc 4kn 1.6kn 1.6 kn 130n UTPUT INPUTS[_+-~ Notes Component values shown are nominal. All resistor values in ohms. 9-59 H H H L (off (off (off (on state) state) state) state) ~A75450/60/70 Series pA75452 Electrical Characteristics Over recommended operating temperature and supply voltage ranges, (use Test Table 1), unless otherwise indicated. DC Characteristics J,LA75452B Test Figure Min VIH Input Voltage HIGH 7 2.0 Vil Input Voltage LOW 7 0.8 V VIC Input Clamp Diode Voltage Vcc= Min, 11=-12 rnA 8 -1.5 V 10H Output Current HIGH 2 Vcc= Min, Vil = 0.8 V 7 100 JlA VOL Output Voltage LOW Vcc = Min, VIH = 2.0 V, 10l = 100 rnA 7 0.25 0.4 V 0.5 0.7 Symbol Characteristic Condition Vcc= Min, VIH = 2.0 V, 10l = 300 rnA Typ1 Max Unit V II Input Current at Maximum Input Voltage Vcc= Max, VI = 5.5 V 9 1.0 rnA IIH Input Current HIGH Vcc= Max, VI = 2.4 V 9 40 JJ.A III Input Current LOW Vcc= Max, VI = 0.4 V 8 -1.0 -1.6 rnA ICCH Supply Current HIGH Vcc= Max, VI =0 V 10 11 14 rnA ICCl Supply Current LOW Vcc= Max, VI = 5.0 V 56 71 rnA Typ Max 25 35 ns 22 35 ns ns J.LA75452 AC Characteristics Vcc = 5.0 V, TA = 25°C Symbol Characteristic Condition Test Figure Min tplH Propagation Delay Time, LOW to HIGH tpHl Propagation Delay Time, HIGH to LOW tTlH Transition Time, LOW to HIGH 5.0 8.0 tTHl Transition Time, HIGH to LOW 7.0 12 VOH HIGH Level Output Voltage After Switching 3 10"'200 rnA, Cl=15pF, Rl = 50 .n 10"'300 rnA 9-60 14 15 VI-6.5 Unit ns mV MA75450/60/70 Series iJ.A75462! iJ.A75472 Electrical Characteristics Over recommended operating temperature and supply voltage ranges, (use Test Table 1), unless otherwise indicated. DC Characteristics Symbol Characteristic Condition IlA75462 Test Figure Min 2.0 VIH Input Voltage HIGH 7 VIL Input Voltage LOW 7 VCD Input Clamp Diode Voltage Vcc= Min, 11=-12 mA 8 10H Output Current HIGH 2 Vcc= Min, VIL = 0.8 V 7 VOL Output Voltage LOW Vcc= Min, V1H =2.0 V, 10L = 100 mA 7 Typ1 IlA75472 Max Typ1 Min Unit V 0.8 -1.2 -1.5 -1.2 100 Vcc= Min, VIH =2.0 V, 10L = 300 mA Max 2.0 0.8 V -1.5 V 100 !-LA V 0.16 0.4 0.16 0.4 0.35 0.7 0.35 0.7 .. ----- ,. II Input Current at Maximum Input Voltage Vcc= Max, VI =5.5 V 9 1.0 1.0 mA IIH Input Current HIGH Vcc= Max, VI = 2.4 V 9 40 40 IlA IlL Input Current LOW Vcc= Max, VI = 0.4 V 8 -1.0 -1.6 -1.0 -1.6 mA ICCH Supply Current HIGH Vcc= Max, VI=O V 10 13 17 13 17 mA ICCL Supply Current LOW Vcc= Max, VI = 5.0 V 65 76 65 76 mA Typ Max Unit 65 ns AC Characteristics Vcc = 5.0 V, T A = 25°C Symbol Characteristic Condition Test Figure !lA75472 !lA75462 Min Typ Max Min 50 65 45 40 50 30 50 ns Transition Time, LOW to HIGH 12 25 13 25 ns Transition Time, HIGH to LOW 15 20 10 20 tpLH Propagation Delay Time, LOW to HIGH tpHL Propagation Delay Time, HIGH to LOW tTLH tTHL VOH HIGH Level Output Voltage After Switching 3 10""200 mA, CL=15pF, RL = 50 14 .n 10""300 mA Notes 1. All typical values are at Vee = 5.0 V, TA = 25"C. 2. VOH = 30 V for ",,75452, 35 V for ",,75462, 80 V for ",,75472. 3. Vs = 20 V for ",,75452, 30 V for ",,75462 and 55 V for ",,75472. 9-61 15 VI-10 VI-18 ns mV IlA75450/S0/70 Series Truth Table J.lA75453 Dual Positive OR Peripheral Drivers Inputs Connection Diagram 8·Lead DIP and 50·8 Package (Top View) INA1 Vee IN A2 IN 92 OUT A IN 81 GND 2 L L H H H ~ OUT B Device Code Package Code Package Description 6T KG 9T Ceramic DIP Molded Surface Mount Molded DIP Equivalent Circuit (112 of Circuit) r-------~--------~-----.--------""""VCC 1k 500 ~----~----~--------------__~-4----~'GND Notes Component values shown are nominal. All resistor values in ohms. 9-62 L H L H HIGH Level, L ~ LOW Level Order Information pA75453RG pA75453SG pA75453TG Output L H H H (on (off (off (off state) state) state) state) JlA75450/60/70 Series MA75453 Electrical Characteristics Over recommended operating temperature and supply voltage ranges, (use Test Table 1), unless otherwise indicated. DC Characteristics Symbol Characteristic Condition Test Figure Min 2.0 Typl Max Unit VIH Input Voltage HIGH 7 VIL Input Voltage LOW 7 0.8 V V VIC Input Clamp Diode Voltage Vcc = Min, II = -12 mA 8 -1.5 V 10H Output Current HIGH Vcc = Min, VOH = 30 V, VIH = 2.0 V 7 100 MA VOL Output Voltage LOW Vcc = Min, VIL = 0.8 V, 10L = 100 mA 7 0.25 0.4 V 0.5 0.7 Vcc = Min, VIL = 0.8 V, IOL = 300 mA II Input Current at Maximum Input Voltage Vcc = Max, VI = 5.5 V 9 1.0 IIH Input Current HIGH Vcc = Max, VI = 2.4 V 9 IlL Input Current LOW Vcc = Max, VI = 0.4 V 8 -1.0 ICCH Supply Current HIGH Vcc = Max, VI = 5.0 V 11 ICCL Supply Current LOW Vcc = Max, VI = 0 V mA 40 IlA -1.6 mA 8.0 11 mA 54 68 mA Typ Max Unit 18 25 ns 16 25 ns ns AC Characteristics Vcc = 5.0 V, TA = 25°C Symbol Characteristic Condition Test Figure MA75453 Min tpLH Propagation Delay Time, LOW to HIGH tpHL Propagation Delay Time, HIGH to LOW tTLH Transition Time, LOW to HIGH 5.0 8.0 tTHL Transition Time, HIGH to LOW 7.0 12 VOH HIGH Level Output Voltage After Switching 10""200 mA, CL = 15 pF, RL = 50 14 n VI = 20 V, 10""300 mA Notes 1. All typical values are at Vee - 5.0 V, TA - 25°C. 9-63 15 VI -6.5 ns mV • JIA75450/60/70 Series Characteristics Measurement Information DC Test Circuits (Note 1) Figure 1 VIH. VOL (Note 2) Figure 4 Vee Vee 10L V,H I.. IIH (Note 3) VI-----f --, --'=~[)~-T"""::·==-' OPEN t I t Figure 5 CR00370F los (Note 5) Vee Figure 2 Vil. VOH (Note 3) Vee ~ V,L VOH 1t -= Figure 6 ICCH. ICCl (Note 6) V'-"""'1--r""\. OPEN Figure 3 VIC. III (Notes 3 and 4) 4.5 V ---==== ..,!Lj VI _ _ _ _ 'lfT ! 1 Vee --"1.._' OPEN Figure 7 VIH. Vil. 10H. VOL (Note 3) CROO390F V,H VOL Notes 1. Arrows indicate actual direction of current flow. Current into a terminal is a positive value. 2. Both inputs are tested simultaneously. 3. Each input is tested separately. 4. When testing V'c, input not under test is open. 5. Eaeh gate is tested separately. 6. Both gates are tested simultaneously. 1 9-64 -= t MA75450/60/70 Series Characteristics Measurement Information (Cont.) Figure 9 110 IIH (Note 1) Vee DC Test Circuits (Note 5) ii, hH Test Table 2 V, Input Under Test Other Input Apply Measure f.lA754X1 VIH VIL VIH Vee VOH IOL IOH VOL f.lA754X2 VIH VIL VIH Vee IOL VOH VOL IOH /JA754X3 VIH VIL GND VIL VOH IOL IOH VOL Circuit Figure 8 -A,B Output B,A Figure 10 (Note 4) CIRCUIT y UNDER TEST OPEN ICCH' ICCl for AND, NAND Circuits VIC, III (Note 1) Vec OPEN ICCH • •ICCL Vee 4.5V----...., r V,--t--+--r-, CIRCUIT Y UNDER B,A OPEN TEST I ___ L Figure 11 Notes 1. Each input is tested separately. 2. When lesting I'L J.lA75400, Ihe inpul not under test is grounded. For all other circuits it is at 4.5 V. 3. When testing VIC. input not under test is open. 4. Both gates are tested simultaneously. 5. Arrows indicate actual direction of current flow. Current into a terminal is a position value. II ICCH' ICCl for OR, NOR Circuits (Note 4) VI----+~I""'_ I L ___ 9·65 1 I I I J J1A75450/S0/70 Series Characteristics Measurement Information (Cont.) Switching Characteristics Figure 12 Propagation Delay Times, Each Gate ()lA75450 Only) INPUT OUTPUT 5V 90% I rl 10% 1/ r ......---O.5~s IPLH_ 1. The pulse generator has the following characteristics: PAR -1.0 MHz, Zo '" 50 n. 2. CL includes probe and jig capacitance. 3. All diodes are FD777. 90% 3V 1.5 V ~O%1 - - - - - 0 V -- I_IPHL v ~.: OUTPUT _ _ _ _.J Notes r"10ns Figure 13 Switching Times, Each Transistor (IlA75450 Only) -1 V INPUT 10 V 1 kn +--.....--1-0UTPUT O.1pF 62 INPUT son n d« -----.90~~~,~+-------3V Rl.=500 CL = 15 pF (Note 2) OUTPUT-_~= Notes 1. The pulse generator has the following characteristics: duty cycle .;; 1%, Zo '" 50 n. 2. CL includes probe and jig capacitance. 9-66 ~i'~",~_o_%_______ ~-i- 0 V ~_________ ~ I /~10~~~'---- MA75450/60/70 Series Characteristics Measurement Information (Cant.) Switching Characteristics Figure 14 Switching Times of Complete Drivers INPUT 2.4 V -I 'OV INPUT r-~5 ns lJtt:~10ns ~1:VI 3V 1.5 V _10_"'_______.,;,10;. '4;.;."'-I+________ ,A75451 p.A75450 p.A75453 0V --- INPUT 1:: :90:: -'"__0_.5_" so: 1:lf-~1-0n_s --3 1.5V ~10~"'~ V ______ OV 0.4 V Notes tPLHltc'" VOH OUTPUT---~~ 1. The pulse generator has the following characteristics: PRR = 1.0 MHz, Zo '" 50 n. 2. When testing IlA75450, connect output Y to transistor base with a 500 n resistor to ground. 3. CL includes probe and jig capacitance. ....._______ 50'" I---VOL ..,;,10~"';;",( trLH-j I- WFOO100F Figure 15 Latch-up Test of Complete Drivers Vee = 2OVto 55V (T.ble 2) I rS5n. V 1 -2r{% INPUT '.5 ~:~::~ JlA75453 ' - -........-..-'OUTPUT r::,on. 3V 1.5v '0% 1 .;.:'O%;;;..._ _ _ _ _ _ _ _ _ _.....;;~_r.:_+. -------0 v 1 - - - - - - -40 .... ' ~_ _ _ _ _~.~I INPUT:jt.-';,.,t: "":,. .5_n·______...,~=_f_s'_on_.--3V p.A7S452 10 CL=15pF (Note 3) 0.4 V l1t OUTPUT Notes 1. The pulse generator has the following characteristics: PRR = 12.5 kHz, Zo '" 50 n. 2. When testing !lA75450, connect output Y to transistor base with a 500 n resistor from there to ground, and ground the substrate terminal. 3. CL includes probe and jig capacitance. 9-67 1.5 V ~~'·.. "~...;,;;.O%;::..,_ _ _ _'OV J-lA75491 • J.LA75492 FAIRCHILD MOS To LED Segment And Digit Drivers A Schlumberger Company Linear Division Interface Products Description Connection Diagram 14-Lead DIP (Top View) The JJA75491 LED Quad Segment Digit Driver interfaces MOS signals to common cathode LED displays. High output current capability makes the device ideal for use in time multiplex systems using the segment address or digit scan method of driving LEDs to minimize the number of drivers required. The JJA75492 Hex LED/Lamp Driver converts MOS signals to high output currents for LED display digit select or lamp select. The high output current capability makes this device ideal for use in time multiplex systems using the segment address or digit scan method of driving LEDs to minimize the number of drivers required. IE 4E lC 4C Yss GND 1lA75491 • 50 mA Source Or Sink Capability • Low Input Currents For MOS Compatibility • Low Standby Power • Four High Gain Darlington Circuits 2C 3C 2E 3E IN 3 1lA75492 • 250 mA Sink Capability • MOS Compatible Inputs • Low Standby Power • Six High Gain Darlington Circuits Order Information Device Code Package Code JJA75491 PC 9A Package Description Molded DIP Connection Diagram 14-Lead DIP (Top View) Absolute Maximum Ratings Storage Temperature Range Operating Temperature Range Lead Temperature Molded DIP (soldering, 10 s) Internal Power Dissipation 1,2 Supply Voltage Input Voltage3 Collector (Output) Voltage 4 Collector (Output) to Input Voltage Emitter to Ground Voltage (VI;;;' 5.0 V) JJA75491 Emitter to Input Voltage JJA75491 Continuous Collector Current JJA75491 JJA75492 Collector Output Current (all collectors) JJA75492 IN4 INI -65°C to +150°C O°C to +70°C 265°C 1.04 W 10 V -5.0 V to Vss 10 V 10 V lC 2C IN2 10 V 5.0 V GND 50 mA 250 mA IN3 3C 600 mA 4C Notes 1. T.J Ma)l' = 150°C. 2. Ratings apply to ambient temperature at 2S'C. Above this temperature, derate at 8.3 mW/'C. 3. The input is the only device terminal which may be negative with respect to ground. 4. Voltage values are with respect to network ground terminal unless Order Information Device Code JJA75492PC otherwise noted. 9-68 Package Code 9A Package Description Molded DIP J.LA75491 • J.LA75492 Equivalent Circuit (1/3 of /lA75492) Equivalent Circuit (1/2 of /lA75491) COLLECTOR IN -t: OUT COLLECTOR 4kn 4kO IN-_r-'No ___ 4.4kO 4.4 kH IN--P-'Nor-t-I:.. 6 kn 7 kU 7 kH 7kn 6 kn EMITTER 430 430 !l 7kO n Vss--4O------+--.... vss-->-----f---f-.....---.,KI--I GND OUT IN GND EMITTER Truth Tables /lA75492 /lA75491 OUTPUTS INPUTS OUTPUTS 1C-6C L H H L INPUTS 1E-4E L 1C-4C L H H /lA75491 Electrical Characteristics Vss = 10 V, TA = H H = HIGH Level, L = LOW Level L ooe to 70 oe, unless otherwise specified. DC Characteristics Symbol VCEL ICH Typ Max VI = 8.5 V through 1.0 kn, 10L = 50 mA, VE = 5.0 V, TA = 25°C Condition 0.9 1.2 V VI = 8.5 V through 1.0 kn, 10L = 50 mA, VE = 5.0 V 0.9 1.5 V p.A Characteristic LOW Level Collector to Emitter Voltage Collector Current HIGH Min VCH=10V VE = 0 V, VI = 0.7 V 100 VCH = 10 V VE = 0 V, II = 40 p.A 100 10L = 20 mA II Input Current at Maximum Input Voltage VI = 10 V IER Reverse Biased Emitter Current Ic = 0 V, VI = 0 V, VE = 5.0 V Iss Supply Current 9-69 2.0 Unit 3.3 mA 100 p.A 1.0 mA J,LA75491 • J,LA75492 JlA75491 (Cont.) Electrical Characteristics AC Characteristics Vss = 7.5 V, TA = 25°C Symbol tpHL Characteristic Propagation Delay Time tpLH Min Condition RL = 200 .11, VIH = 4.5 V CL = 15 pF, VE = 0 V Typ Max Unit 20 ns 100 ns J.tA75492 Electrical Characteristics Vss = 10 V, TA = O°C to 70°C, unless otherwise specified. DC Characteristics Symbol VOL IOH Characteristic Output Voltage LOW Output Current HIGH II Input Current at Maximum Input Voltage Iss Supply Current Typ Max VI = 6.5 V through 1.0 kn, IOL = 250 mA, TA = 25°C Condition Min 0.9 1.2 VI = 6.5 V through 1.0 kn, IOL = 250 mA 0.9 1.5 VOH=10V 11=40 pA 200 VOH=10 V VI = 0.5 V 200 VI= 10 V IOL = 20 mA 2.0 Unit V JJ.A 3.3 mA 1.0 mA Max Unit AC Characteristics Vss = 7.5 V, TA = 25°C Symbol tpHL Characteristic Propagation Delay Time tpLH Condition RL = 39 .11, VI = 7.5 V CL = 15 pF Test Circuit and Waveforms 7.5 V PULSE GENERATOR (NOTE 1) 1 kH I--'V"""'-i >C>--'-_-Vo Notes 1. The pulse generator has the following characteristics: PRR - 100 kHz. tw - 1.0 jlS, Zo - 50 n. 2. CL includes probe and jig capacitance. 9-70 Min Typ 30 ns 300 ns IlA75491 -IlA75492 Typical Applications Interfacing Between MOS Calculator Circuit and LED Multi-Digit Display This example of time multiplexing the individual digits in a visible display minimizes display circuitry. Up to twelve dig, I I I its of a 7-segment display plus decimal point may be displayed using only three J.lA75491 and two J.lA75492 drivers. 'v, _ _ .1. _ _ _ , 1. I I ~--~-------------------------------, v, I I RL I I I [2DF4--- 1. I I I I I I RL Vss -, ------- I 1 I I I .A75491 I QUAD SEGMENT I DRIVER I (3 PACKAGES) I I I I I I ..J I I ~A~~ _____ _ "::" GND II II v~ LI II I I I- 0I I- 0I I- 0 I _______ _ I II II ~ I _I e I I II I_ .I I I -0 --, J.. I I I 011 I,u.A75492 I HEX DIGIT I I I I _______ .......J "::" GND 9-71 ?2R~~~~AGES) IlA9614 Dual Differential Line Driver FAIRCHIL.D A Schlumberger Company Linear Division Interface Products Description Connection Diagram 16-Lead DIP (Top View) The pA9614 is a TTL compatible dual differential line driver. It is designed to drive transmission lines either differentially or single ended, back matched or terminated. The outputs are similar to TIL, with the active pull-up and the pull-down split and brought out to adjacent leads. This allows multiplex operation (wired-OR) at the driving site in either the single ended mode via the uncommitted collector, or in the differential mode by use of the active pullups on one side and the uncommitted collectors on the other (See Applications). The active pull-up is short circuit protected and offers a low output impedance to allow back matching. The two pairs of outputs are complementary, providing NAND and AND functions of the inputs and adding greater flexibility. The input and output levels are TTL compatible with clamp diodes provided at both input and output to handle line transients. ACTive ACTive Max OUTA2 OUTBI OUTB2 IN Al ACTIve PULL-UP 92 INA2 INB3 INA3 INB2 GNO IN 81 Order Information Device Code Package Code 68 68 98 pA9614DM pA9614DC pA9614PC Absolute Maximum Ratings Note 1. TJ PUli-UPBl PULL·UPA2 Single 5.0 V Supply TTL Compatible Inputs Output Short Circuit Protection Input Clamp Diodes Output Clamp Diodes For Termination Of Line Transients • Complementary Outputs For NANDI AND Operation • Uncommitted Collector Outputs For Wired-OR Application • Extended Temperature Range Package Description Ceramic DIP Ceramic DIP Molded DIP Truth Table -65°C to + 175°C -65°C to + 150°C INPUTS -55°C to + 125°C O°C to +70°C 1.50 1.04 -0.7 -0.5 OUT Al ACTIVE • • • • • Storage Temperature Range Ceramic DIP Molded DIP Operating Temperature Range Extended (pA9614M) Commercial (pA9614C) Lead Temperature Ceramic DIP (soldering, 60 s) Molded DIP (soldering, 10 s) Internal Power Dissipation 1.2 16L-Ceramic DIP 16L-Molded DIP Vcc Lead Potential to Ground Lead Input Voltage Voltage Supplied to Outputs (Open Collectors) Vcc PULL-UP Al W W V to +7.0 V V to +5.5 V -0.5 V to +12 V -175°C for the Ceramic DIP. and 150°C for the Molded DIP. 2. Ratings apply to ambient temperature at 25°C. Above this temperature, derate the 16L·Ceramic DIP at 10 mwrc. and 16L·Molded DIP at 8.3 mwrc. 9-72 OUTPUTS 3 2 1 1 2 L L L H L L L H H L L H L H L L H H H L H L L H L H L H H L H H L H L H H H L H JlA9614 Equivalent Circuit (112 of circuit) r-~r-_1r-_1~-----t------~--~--~------t---------_1r-_1~---------t----t-----Vcc R19 540 Q25 01 +-----i:.Q24 C4 03 R22 4k ACTIVE PULL-UP 2-----...--...-----1 R23 10 OUT 2 - - - -......--. ACTIVE C3 '-------4~---+----PULL-UP 1 . - - -......--OUT1 R1 R16 4k 1.6k 04 R21 1k INPUTS U----------+-------.------' } b~HER .;I---==-,7--...~_1~------------------------. DRIVER GND Note All resistor values in ohms. 9-73 J.LA9614 MA9614 Electrical Characteristics Vee = 5.0 V±10%, TA=-55°C to +125°C, unless otherwise specified. -55°C Symbol Characteristic Condition Min +25°C Max Min Typ Min 400 Max Unit 400 mV Output Voltage LOW 10L =40 mA Vcc = 4.5 V VOH1 Output Voltage HIGH 10H =-10 mA, Vec = 4.5 V 2.4 2.4 3.2 2.4 V IOH = -20 mA, Vcc=4.5 V 2.0 2.0 2.6 2.0 V -40 -90 -120 10 100 200 IJ.A -1.10 -1.60 -1.60 mA 35 60 100 IJ.A 1.3 0.8 0.8 V los Output Short Circuit Current Vo=O V Vcc = 5.5 V ICEX Output Leakage Current VCEX = 12.0 V Vcc = 5.5 V IlL Input Current LOW VI = 0.4 V Vec = 5.5 V IIH Input Current HIGH VI = 4.5 V Vec = 5.5 V VIL Input Voltage LOW Vec = 5.5 V VIH Input Voltage HIGH 200 Max VOL VOH2 400 + 125°C -1.60 0.8 2.0 Vcc=4.5 V 2.0 1.5 mA 2.0 -0.8 -1.5 V V Voc Clamp Output Voltage LOW lac =-40 mA Vcc = 5.5 V Icc Supply Current Inputs = 0 V Vcc = 5.5 V 34 50 mA IMax Supply Current Inputs = 0 V VMax = 7.0 V 46 65 mA tpLH Turn-Off Time 14 20 ns tpHL Turn-On Time CL = 30 pF Vcc = 5.0 V (See AC Circuit) VM = 1.5 V 18 20 ns VIC Input Clamp Diode Voltage -1.0 -1.5 V Vcc = 4.5 V Ilc=-12 mA 9-74 J.lA9614 J1A9614C Electrical Characteristics Vee = 5.0 V ± 5%, TA = ooe to 70 oe, unless otherwise specified. 25°C O°C Symbol Characteristic Condition Min Max Min 200 70°C Max Min 450 Max 450 Unit VOL Output Voltage LOW 10L = 40 mA Vcc = 4.75 V VOH1 Output Voltage HIGH 10H =-10 mA, Vce = 4.75 V 2.4 2.4 3.2 2.4 V 10H = -40 mA, Vcc = 4.75 V 2.0 2.0 2.6 2.0 V -40 -90 -120 10 100 200 J.lA -1.10 -1.60 -1.60 mA 100 JJ.A 0.8 V VOH2 450 Typ mV los Output Short Circuit Current Vo=O V Vcc = 5.25 V ICEX Output Leakage Current VCEX = 5.25 V Vcc = 5.25 V IlL Input Current LOW VI = 0.45 V Vcc = 5.25 V IIH Input Current HIGH VI = 4.5 V Vcc = 5.25 V VIL Input Voltage LOW Vcc = 5.25 V VIH Input Voltage HIGH Vec = 4.75 V Voc Clamp Output Voltage LOW loc =-40 mA Vee = 5.25 V -0.8 -1.5 Icc Supply Current Inputs = 0 V Vec = 5.25 V 33 50 mA IMax Supply Current Inputs = 0 V VMax = 7.0 V 46 70 mA tpLH Turn-Off Time 14 30 ns tpHL Turn-On Time CL = 30 pF Vcc = 5.0 V (See AC Circuit) VM=1.5 V 18 30 ns VIC Input Clamp Diode Voltage -1.0 -1.5 V -1.60 0.8 2.0 Vee = 4.75 V Ilc=-12 mA 9-75 2.0 35 60 1.3 0.8 1.5 mA 2.0 V V MA9614 Typical Performance Curves Active Pull-Down Output Current LOW vs Output Voltage LOW 100 . ~ ~ 60 ~ 20 ~ ~ ij' " 0.1 3.5 t%/' 3.0 ! ~ ~ 40 Logic Levels vs Ambient Temperature ~ VCC"" 5.5 V Vee-S.oy a o l~ 0 I i TA-25"C Active Pull-Up Output Current HIGH vs Output Voltage HIGH 2.5 - VC~=5'0V - f- VdH=NbLd..D g" ~ 2.0 Vcc-4.SV "- ~ 1.S !; 01.0 0.2 0.3 0.4 0.5 0.6 0.7 -100 !--'---;',.;:"O-'--::'::--"--:3"'.0,--'----,J4.0 0.5 VOL o I -80 20 OUTPUT VOLTAGE LOW-V so 140 Supply Current vs Operating Frequency Supply Current vs Temperature 80 I 20 AMBIENT TEMPERATURE- C C OUTPUT VOLTAGE HIGH- V Supply Current vs Supply Voltage 0 at IOL 40mA 40 NO LOAD TA""25"C vcJ=5.!V // 0 I vcc=toy_ CL=30pF OUTPUTS OPEN 80 ~ 35 I II ~~ ~ 0 o ft,;::f-' 1.0 0 20 so 140 o 5.0 10 3.0 - Vcc-S.5V Vee = 5.0 V Vcc-- 4.5 V 2.0 1.01---1--+-"--+--+-+--1 o 100 AMBIENT TEMPERATURE- "C 4.0 > T -55"C ~ Z 0 efi li' 0 TA > S 2.0 5.0r--r--,--.,--Y--,r--r--, 5.0 30 1.0 Transfer Characteristics vs Supply Voltage T -125"C ! I 0.5 FREQUENCY-MHz Transfer Characteristics vs Temperature 40 0.2 0.5 1.0 1.5 2.0 2.5 INPUT VOLTAGE-V 9-76 3.0 3.5 °0~~0.~S"1~.0~!'~.S'-~2~.o'-~2~.S-~3.~0-~3.5 INPUT VOLTAGE-V MA9614 AC Test Circuit and Waveforms Vee Vee I I I H'PLH _%_(_A)__ IPHL -J~rM------------~ Input Pulse Frequency ~ 500 kHz Amplitude ~ 3.0 ±0.1 V Pulse Width ~ 110 ± 10 ns tr =tf<5.0 ns Typical Applications Differential Mode Expansion Multiplex Operation 1-1-..--------TWISTEO.PAIR p 10 I LlNE---------.j~ SHIELD DR COMMON GROUND CONNECTION 11 Only one driver is enabled at one time Expand by tying NAND active pull-down outputs together and by tying AND active pull~up outputs together. The drivers can be inhibited by taking one input to ground. 9-77 100" 4 3 MA9614 Typical Applications (Cont.) Simplex - Differential Operation 5:~VCC"'16~ I·____T_W_'S_~...,~_~_P_AI_R_I t i 1 42 1I2.A9614 DATA INPUTS __ £ SHIELD OR COMMON GROUND CONNECTION P See pA9615 data sheet for operation of pA9615 Typical Reflection Diagram 200 1M 2 vJc s.Jv TA=25"C A:o~ S~A.Je du}pu~ DLvl~E 120 CHARACTERISTICS i-" / f / HIGH STATE OUTPUT DEVICE iiiTEt'y',S -200 - I I I I -2 _I - - _ _ _ _I t > r . ; v c c T 3 10 OUTPUT VOLTAGE-V See pA9621 data sheet for usage of reflection diagram 9-78 2 1I~9615r.=oC OATA 7 1 OUTPUT 6 £ 4 3 see 9615 DATA SHEET FOR OPERATION OF 9615 iL A9615 Dual Differential Line Receiver FAIRCHILD A Schlumberger Company Linear Division Interface Products Description Connection Diagram 16-Lead DIP (Top View) The MA9615 is a dual differential line receiver designed to receive differential digital data from transmission lines and operate over the extended and industrial temperature ranges using a single 5.0 V supply. It can receive differential data in the presence of high level (± 15 V) common mode voltages and deliver undisturbed TTL logic to the output. OUT A ACTIVE 2 PULL-UP A 3 STROBE A RESPA The response time can be controlled by use of an external capacitor. A strobe and a 130 Q terminating resistor are provided at the inputs. The output has an uncommitted collector with an active pull-up available on an adjacent lead to allow either wired-OR or active pull-up TTL output configuration. +INA RA -INA GNO • TTL Compatible Output • High Common Mode Voltage Range • Choice Of An Uncommitted Collector Or Active Pull-Up • Strobe • Extended Temperature Range • Single 5_0 V Supply Voltages • Frequency Response Control • 130 Q Terminating Resistor Order Information Device Code MA9615DM MA9615DC MA9615PC Absolute Maximum Ratings Storage Temperature Range Ceramic DIP Molded DIP Operating Temperature Range Extended (MA9615M) Commercial (MA9615C) Lead Temperature Ceramic DIP (soldering. 60 s) Molded DIP (soldering. 10 s) Internal Power Dissipation 1,2 16L-Ceramic DIP 16L-Molded DIP Vcc Lead Potential to Ground Lead Input Voltage Referred to Ground Voltage Applied to Outputs for High Output State without Active Pull-up Voltage Applied to Strobe -65°C to + 175°C -65°C to + 150°C -55°C to + 125°C O°C to +70°C 1.50 1.04 -0.5 ±20 -INB W W V to +7.0 V V -0.5 V to +13.2 V -0.5 V to +5.5 V Note 1. TJ M., ~ 175°C for the Ceramic DIP, and 150°C for the Molded DIP. 2. Ratings apply to ambient temperature at 25°C. Above this temperature, derate the 16L·Ceramic DIP at 10 mW and the 16L·Molded DIP at 8.3 mW/oC. rc, 9-79 Package Code 68 68 98 Package Description Ceramic DIP Ceramic DIP Molded DIP tLA9615 Equivalent Circuit (1/2 of Circuit) Vee RESP STROBE R1B R4 R11 R5 1.64 kO 1.skU 1.64kH R22 2.0 k!l 1.8kn R19 R24 80 n 013 900n R Rl 13011 R2 R3 8.36 k!~ 8.36 ktl ACTIVE PULL·UP +IN r--------, I Vee I I I I I I -IN R7 7.0k!! R6 7.0kH R1S 2.5 kH Rl' 2.5 kO R27 3.0 k!l R16 R17 soon 500!! L, Q15 RB 3000 Rl0 132 il R9 lOOn GND R25 100 !l R29 10 k!! OUT R20 2.5 ktl R28 100 III I _______ L 02 R26 90!! I I ..JI - - - = COMMON TO BOTH CHANNELS 9·80 TO OTHER RECEIVER R21 1.0 kn -= -= MA9615 MA9615 Electrical Characteristics Vee = 5.0 V ± 10%, TA = -55°C to + 125°C, unless otherwise specified. T = -55°C Symbol Characteristic Condition 1 VOL Output Voltage LOW Vee = 4.5 V, Va = (Note 2), 10L = 15.0 rnA, VOIFF = 0.5 V VOH Output Voltage HIGH Vee = 4.5 V, Va = (Note 2), 10H = -5.0 rnA, VOIFF = -0.5 V leEx Output Leakage Current Vee = 4.5 V, VeEx = 12 V, VOIFF = Vee los Output Short Circuit Current Vee = 5.5 V, Vos=O V2 , VOIFF = -0.5 V II Input Current Vee = 5.5 V, VI = 0.4 V, Other input = 5.5 V II(ST) Strobe Input Current Vee=5.5 V, VI = 0.4 V, VOIFF = 0.5 V II(R.C) Response Control Input Current Vee = 5.5 V, VI(R.e) = 0.4 V, VOIFF = 0.5 V VeM Common Mode Voltage Vee = 5.0 V, VOIFF = 1.0 V IR(ST) Strobe Input Leakage Current Vee = 4.5 V, VR = 4.5 V, VOIFF = -0.5 V RI Input Resistance Vee = 5.0 V, VI(R) = 1.0 V, + Input = GND VTH Differential Input Threshold Voltage 3 Vee = 5.0 V VeM =0 V Min Max T= 25°C Min 0.40 2.2 Typ 0.18 2.4 T = +125°C Max Min 0.40 3.2 -0.9 -15 Vee = 5.0 V ± 10%, -15 V 2.0 0 1.0 ~ -1--~0V' ~:!:~ ~ ~ 3.0 II t: < ~ o I!::> -0.2 -20 -10 - > I w "~ > ...:> • I!::> S: 0 Vee I V'~- - 3.0 >' r- ;:;- >' >', "~ OJ OJ ~- j$ 3.0 I!::> o o 0.2 ~ 2.0 Vee 1o 5.5 o -=- 4.0 v Vee 5.0 Vee 4.5 V 2.0 3.0 ~ I "eI ...Z !L I 2.0 / a: a: ..... -4.0 VOIFF "" 2.0 V \1 vcc;ov 5.0 0 5.0 15 COMMON MODE VOLTAGE - V 9-84 V I' ;:; 15 / :> 0 VDIFF .,.., - 2.0 V :> -2.0 25 4.0 Vee 5.0 V UNTESTED INPUT ~ 0 V TA = 25°C w o 4.0 'I 1.0 TA = 25<>C 1.0 3.0 ~ Input Current vs Input Voltage o STROBE INPUT VOLTAGE - V c STROBE INPUT VOLTAGE - V 6.0 ve~ - 5!5 V 8J 2.0 OA I!::> " " " 1.0 0.2 3.0 ~ 2.0 >' ;;' >' " " " ~ <> 0 o g 1\ 2.0 140 100 1.0 -- w " l"\ 1.0 60 20 Vee - 5.0 Vee0 4.5V 0 ...:>> 8J " " " 2.0 4.0 0 0 TA ° 1250c 5.0 > I 4.0 w 4.0 > I 3.0 20 0.5 V 6.0 I Vee '. 5.0 ~ 5.0 V r-... i-- 4.5 V 15 rnA IOl VOfFF Strobe Input/Output Transfer Characteristics vs Vee Output Voltage vs Common Mode Voltage 5.0 - (vee 1- INPUT VOLTAGE - V 6.0 ...:>> ....:> I 5.0 -0.4 0.2 Strobe Input/Output Transfer Characteristic vs Ambient Temperature 0 -50 o 0.1 VOL AMBIENT TEMPERATURE - ~ INPUT VOLTAGE - V "~ -40 -30 6.0 0 - 0.1 1.0 0 60 1.0 o 1.5 0.5 - o o 1.0 > I w 4.0 2.0 ~ g 5 Vee l 5.0 o ~, II 2.5 f w = VOIFF '" 0.5 V OUTPUT CURRENT HIGH - rnA ~~ 0 - a -fI4.5 V -~ HVOH IOH 5.0 rnA ~ !:; Input/Output Transfer Characteristics vs Temperature TA""25"C I..... I r- I-- ~e~s.sv "fw r--.. "~ 20 V'~- I 2.0 3.0 > 7.0 > _ ~ I I I v~e -., ~ 4.0 ~ o I :z: mA Input/Output Transfer Characteristics vs Vee 6.0 > I'-... 4.0 3.0 Vee - 5.5 V I TA = 2S"C TA _125°C o Output Voltage HIGH vs Ambient Temperature Output Voltage HIGH vs Output Current HIGH 25 -6.0 -25 / / -15 -5.0 0 5.0 INPUT VOLTAGE - V 15 25 MA9615 Typical Performance Curves for IlA9615 and IlA9615C (Cont.) 70 WITL AcJVE PU~L-UP I ... 15 '"'" u :> \ 40 -INPUTS"" 0 .~ ~ 10 o o V 1.0 V v I Z V 70 60 60 50 so Vee"" S.OV Vj=-3VT03V ..~ 40 ':>" u 30 ~SS-oV / o. 20 :> ..e .....'" \<. .V 30 70 TA "" 25°C 60 r-CONNECTEO TO ACTIV. PULL-oOiN\ ONLY I E 50 + INPUTS = Vee I . Switching Time vs Ambient Temperature Supply Current vs Ambient Temperature Supply Current vs Supply Voltage Vee ~ o. o. il - INjUTS .., Vee + 20 S.sy- - INPU~ Jee rpur =o,v 0 ";: -- ~ - ...... 30 20 1 Cl=30~ 40 Z - IPL~ RL=3.9kn V I---V V ..- .L - V tpHL RL=390n- [L 0130 p] - 10 10 WITH REilsTORI PULL-r p o 2.0 3.0 4.0 5.0 SUPPLY VOLTAGE - 6.0 -60 7.0 -20 0 20 60 -20 140 100 TEMPERATURE _ cC V 0 20 60 100 TEMPERATURE _ °C Switching Time Test Circuit and Waveforms (Note 1) Figure 1 ~+3.0V Vee ~~ V, )0----<....--1-.....- Vo v, ~-UV .:~\r f:~~;; RL ~ _ _ _ _~'.5V STROBE Note 1. Use V, or Vi. ground other input. Figure 2 +INA=t>---o-INA OUT A - Notes 1. For tpHL measurement RL = 390 n 2. For tpHL measurement RL ~ 3.9 kn 3. For input pulse: Width ~ 100 ns ± 10 ns, t r• tf = 5.0 ns PRR ~ 500 kHz 4. CL = 30 pF including probe and jig capacitance 5. Response control open, maximum scocket capacitance = 5.0 pF < VERTICAL"" 2.0 VlOIV. HORIZONTAL = 50 ns/DlV. Photograph of a !lA9615 switching differential data in the presence of high common mode noise. 9-85 140 J1A9615 Typical Applications Figure 3 Standard Usage DRIVER SYSTEM RECEIVER SYSTEM LINE ....:;..=~....I=:::j:==<'l==:::j:~.... .... Figure 4 H _"A_9_61_5_... Frequency Response Control Frequency Response as a Function of Capacitance -t>---t-o- 10M ~~~~J CONTROL PIN TTL LOGIC vc~H.hv TA = 25°C 100M CR N :r I 100K >- "zw ::> 0 Notes w CR > 0.01 p.F may cause slowing of rise and fall times of the output. Due to the mechanism of induction of differential noise, the use of the response control is not normally needed. 10 K 0: "- to K 100 0.001 ..... 0.01 0.1 CAPACITANCE - 9-86 1.0 MF 10 MA96172· MA96174 FAIRCHILO Quad Differential Line Drivers A Schlumberger Company Linear Division Interface Products Connection Diagram 16-Lead DIP (Top View) Description The pA96172 and pA96174 are high speed quad differential line drivers designed to meet EIA Standard RS-485. The devices have three-state outputs and are optimized for balanced multipoint data bus transmission at rates up to 10 Mbps. The drivers have wide positive and negative common mode range for multipoint applications in noisy environments. Positive and negative current-limiting is provided which protects the drivers from line fault conditions over a + 12 V to -7.0 V common mode range. A thermal shutdown feature is also provided and occurs at junction temperature of approximately 160°C. The pA96172 features an active high and active low Enable, common to all four drivers. The pA96174 features separate active high Enables for each driver pair. Compatible RS;485 receivers, transceivers, and repeaters are also offered by Fairchild and are designed to provide optimum bus performance. The respective device types are pA96173/96175, pA96176, and pA96177 /96178. IIA96172 • • • • • • Meets EIA Standard RS-485 And RS-422A Monotonic Differential Output Switching Transmission Rate To 10 Mbs Three-State Outputs Designed For Multipoint Bus Transmission Common Mode Output Voltage Range: -7.0 V To +12 V • Operates From Single + 5.0 V Supply • Thermal Shutdown Protection • pA96172196174 Are Lead And Function Compatible with the SN75172175174 or the AM26LS31/MC3487 respectively • I'A96174 Function Table (Each Driver) J.LA96172 Input A H L H L X Enables Outputs E E y Z H H X X L X X L L H H L H L L H L H Z Z Order Information Device Code pA96172DC pA96172PC pA96174DC pA96174PC Function Table (Each Driver) J.LA96174 Outputs Input Enable Y Z H L X H H L H L Z L H Z H - High Level L = Low Level X = Immaterial Z - High Impedance (off) 9-87 Package Code 78 98 78 98 Package Description Ceramic DIP Molded DIP Ceramic DIP Molded DIP ~96172· ~96174 Absolute Maximum Ratings Storage Temperature Range Ceramic DIP Molded DIP Operating Temperature Range Lead Temperature Ceramic DIP (soldering, 60 s) Molded DIP (soldering, 10 s) Internal Power Dissipation l , 2 16L-Ceramic DIP 16L-Molded DIP Supply Voltage3 Enable Input Voltage -65·C to + 175·C -65·C to +150·C O·C to +70·C 300·C 265·C 1.50 W 1.04 W 7.0 V 5.5 V Note. 1. TJ Max = 150'C for the Molded DIP, and 17S'C for the Ceramic DIP. 2. Ratings apply to ambient temperature at 2S'C. Above this temperature, derate the 16L·Ceramic DIP at 10 mW/'C, and the 16L·Molded DIP at 8.3 mWI'C, 3. All voltages are with respect to network ground terminal. Recommended Operating Conditions Symbol Min Characteristic 4.75 Supply Voltage Vcc Typ 5.0 -7.01 Max Unit 5.25 V + 12.0 V Voc Common Mode Output Voltage IOH Output Current HIGH -60 mA IOL Output Current LOW 60 mA TA Operating Temperature 70 ·C 0 25 Note 1. The algebraic convention, where tha less positive (more negative) limit is deSignated minimum, is used in this data sheet for common moda input voltage and threshold voltage levels only. 1lA96172, 1lA96174 Electrical Characteristics Over recommended temperature and supply voltage ranges, unless otherwise specified. Symbol Condition Characteristic Min Typl 2.0 Input Voltage HIGH Input Voltage LOW VOH Output Voltage HIGH IOH=-20mA 3.1 VOL Output Voltage LOW IOL =20mA 0.8 VIC Input Clamp Voltage 11=-18 mA IVODll Differential Output Voltage 10=0 mA IVOD21 Differential Output Voltage RL = 54 n, Fig. 1a RL = 100 n, Fig. 1b Change in Magnitude of Differential Output Voltage 2 0.8 RL = 54 nor 100 n, Fig. 1b 9-88 V V V -1.5 6.0 1.5 2.0 Unit V VIH VIL .lIVODI Max V V V 2.0 2.3 V ±0.2 V MA96172· MA96174 ~96172, ~96174 (Cont.) Electrical Characteristics Over recommended temperature and supply voltage ranges, unless otherwise specified. Symbol Characteristic Condition Voc Common Mode Output Voltage3 AIVocl Change in Magnitude of Common Mode Output Voltage2 10 Output Current with Power off Vcc=O V, Vo=-7.0 V to 12 V loz High Impedance State Output Current Vo=-7.0 V to 12 V IIH Input Current HIGH Min Typl Max Unit 3.0 V ±0.2 V ± 100 pA ±200 pA VI = 2.7 V 20 pA ±50 IlL Input Current LOW VI =0.5 V -100 pA los Short Circuit Output Current Vo=-7.0V -250 mA Vo=O V -150 Icc Vo=Vcc 150 Vo= 12 V 250 Supply Current (all drivers) I Outputs Enabled I Outputs Disabled No load 50 70 50 60 mA Switching Characteristics Vee = 5.0 V, TA = 25°C Symbol Characteristic too Differential Output Delay Time Condition Typ Max Unit 15 25 ns 15 25 ns 12 20 ns 12 20 ns Fig. 4 30 45 ns Fig. 5 30 45 ns Fig. 4 25 35 ns Fig. 5 30 45 ns RL = 60 n, Fig. 2 RL = 27 n, Fig. 3 tTO Differential Output Transition Time tpLH Propagation Delay Time, Low-to-High Level Output tpHL Propagation Delay Time, High-to-Low Level Output tPZH Output Enable Time to High Level RL = 110 tPZL Output Enable Time to Low Level RL = 110 tpHZ Output Disable Time from High Level RL = 110 tpLZ Output Disable Time from Low Level RL = 110 Notes 1. All typical values are Vee = 5.0 V and TA = 25°C. 2. '" IVool and "'IVael are the changes in magnitude of Voo and Voe respectively, that occur when the input is changed from a high level to a low level. 3. In EIA Standard RS-422A and RS·485, Vae, which is the average of the two output voltages with respect to ground, is called output offset voltages, Vas. 9-89 n, n, n, n, Min J,tA96172· J,tA96174 Parameter Measurement Information Figure 1a Differential Output Voltage with Varying Common Mode Voltage Figure 1b Differential and Common Mode Output Voltage 3750 _~~+f~··· -=- (NoIe31 CROOe21F Figure 2 Differential Output Delay and Transition Times Figure 3 Propagation Delay Times ,-------~-----3V 2.3Y IN r----------l I I GENERATOR ~11 500 OV RL-270 ~>tI~~~1: OUT I: y OUT 1 _ IL________ I IY -=- e::.:: z OUT ~ 1J>i.H 2.3V VOL YOH 2.3V --YOL Figure 4 tPZH and tpHZ , -______,--------3V IN ,-__ GENERATOR +-~--L- VOH OUT ~11 VOFF:::OV CR0C871F 9-90 MA96172· MA96174 Parameter Measurement Information (Cant.) Figure 5 tPZL and tpLZ 5V r---------l 11&.-11011 'I,I ......>-:1~~:>----,.J:'-'our OVor 3V -+----1 "Ji '~: .-.~-:-'V r-------~-_r~!-~~ 5V I Il __________ JI GENERATOR SOil (N.... 1) our 2.3V tVOI. -= O.5V 3V (Note 4) Notes I. The input pulse is supplied by a generator having the following characteristics: PRR = 1.0 MHz, duty cycle = 50%, t,"; 5.0 ns, t, ..; 5.0 ns, Zo - 50 fl. 2. CL includes probe and jig capacitance. 3. !lA96172 with active high and active low Enables is shown here. !lA96174 has active high Enable only. 4. To test the aclive low Enable E of !lA96172, ground E and apply an inverted waveform to E. !lA96174 has active high Enable only. Typical Application 1/41/A18172 ~~--~--~----~-----------------------~----~~----~, ~~~;--+~--+---------------------+-~~-;~--~ 1/4pA861n 1/411A98175 UP TO 32 ORIVER/RECEIVER PAIRS AFOO13OF Note The line length should be terminated at both ends in its characteristic impedance. Stub lengths off the main line should be kept as short as possible. 9-91 J.lA96173 • J.lA96175 Quad Differential Line Receivers FAIRCHILD A Schlumberger Company Linear Division Interface Products Description Connection Diagram 16-Lead DIP (Top View) The 1lA96173 and 1lA96175 are high speed quad differential line receivers designed to meet EIA Standard RS-485. The devices have three-state outputs and are optimized for balanced multipoint data bus transmission at rates up to 10 Mbps. The receivers feature high input impedance, input hysteresis for increased noise immunity, and input sensitivity of 200 mV over a common mode input voltage range of -12 V to +12 V. The receivers are therefore suitable for multipoint applications in noisy environments. The 1lA96173 features an active high and active low Enable, common to all four receivers. The 1lA96175 features separate active high Enables for each receiver pair. Compatible RS-485 drivers, transceivers, and repeaters are also offered by Fairchild and are designed to provide optimum bus performance. The respective device types are 1lA96172/96174, 1lA96176 and 1lA96177/96178. • • • • • • • • • • "A98173 Meets EIA Stsndard RS-485, RS-422A, RS-423A Designed For Multipoint Bus Applications Three-State Outputs Common Mode Input Voltage Range: -12 V To +12 V Operates From Single + 5.0 V Supply Input Sensitivity Of ± 200 mV Over Common Mode Range Input Hysteresis Of 50 mV Typical High Input Impedance Fall-Safe Input/Output Features Drive Output HIGH When Input Is Open 1lA96173/96175 Are Lead And Function Compatible With SN75173175175 Or The AM26LS32/MC3486 Respectively. I'A98175 Function Table (Each Receiver) 1oIA96173 Differential Inputs A-B Enables Outputs E E V H X X L H H -0.2 V < VIO < 0.2 V H X X L ? ? Vlo<-0.2 V H X X L L L X L H Z VIO > 0.2 V Order Information Device Code Package Code 1lA96173DC 1lA96173PC 1lA96175DC 1lA96175PC 78 98 78 98 Package Description Ceramic DIP Molded DIP Ceramic DIP Molded DIP Function Table (Each Receiver) 1oIA96175 H = High Level L- Low Level ? - Indeterminate X - Immaterial Z = High Impedance (off) 9-92 Differential Inputs A-B Enable Output y Vlo;;;'0.2 V H H -0.2 V < VIC < 0.2 V H ? Vlo";;-0.2 V H L X L Z MA96173· MA96175 Absolute Maximum Ratings Storage Temperature Range Ceramic DIP Molded DIP Operating Temperature Range Lead Temperature Ceramic DIP (soldering, 60 s) Molded DIP (soldering, 10 s) Internal Power Dissipation 1,2 16L-Ceramic DIP 16L-Molded DIP Supply Voltage3 Input Voltage, A or B Inputs Differential Input Voltage Enable Input Voltage Low Level Output Current -65°C to + 175°C -65°C to + 150°C O°C to +70°C 300°C 265°C 1.50 W 1.04 W 7.0 V ±25 V ±25 V 7.0 V 50 mA • Notes 2. TJ Me> ~ 150·C for the Molded DIP, and 17S·C for the Ceramic DIP. Ratings apply to ambient temperature at 2S·C. Above this temperature, derate the 16l-Ceramic DIP at 10 mWrC, and the 16l-Molded DIP at 3. All voltages are with respect to network ground terminal. 1. 8.3 mWrC. Recommended Operating Conditions Max Unit 5.25 V Common Mode Input Voltage _12 1 +12 V Differential Input Voltage2 -12 +12 V -400 p.A 16 mA 70 °C Symbol Min Characteristic Supply Voltage 4.75 VCM VID Vcc 10H Output Current HIGH 10l Output Current LOW TA Operating Temperature 0 Typ 5.0 25 Notes 1. The algebraic convention, where the less positive (more negative) limit is designated minimum, is used in this data sheet for common mode input voltage and threshold voltage levels only. 2. Differential input! output bus voltage is measured at the noninverting terminal A with respect to the inverting terminal B. J,lA96173, J,lA96175 Electrical Characteristics Over recommended temperature, common mode input voltage, and supply voltage ranges, unless otherwise specified. Symbol Characteristic Condition VTH Differential-Input High Threshold Voltage Vo = 2.7 V, 10 = -0.4 mA VTL Differential-Input Low Threshold Voltage Vo = 0.5 V, 10 = 16 mA VT+ -VT_ Hysteresis3 VCM =0 V VIH Enable Input Voltage HIGH Min Max 0.2 _0.2 2 Unit V V 50 2.0 9-93 Typl mV V MA96173· MA96175 J,lA96173, J,lA96175 (Cont.) Electrical Characteristics Over recommended temperature, common mode input voltage, and supply voltage ranges, unless otherwise specified. Symbol Characteristic Condition VIL Enable Input Voltage LOW VIC Enable Input Clamp Voltage VOH Output Voltage HIGH VIO= 200 mY, 10H = -400 IlA VOL Output Voltage LOW Vlo=-200 mV Min Typl 11=-18mA Max Unit 0.8 V -1.5 V 2.7 V IIOL = 8.0 mA 0.45 V 110L = 16 mA 0.50 loz High-Impedance State Output Vo = 0.4 V to 2.4 V II Line Input Current4 Other Input = 0 V I I VI = 12 V ±20 IlA 1.0 mA -0.8 VI = -7.0 V IIH Enable Input Current HIGH VIH = 2.7 V 20 IlL Enable Input Current LOW VIL = 0.4 V -100 AI Input Aesistance los Short Circuit Output Current Icc Supply Current !1A k.l1 12 -15 IlA -85 mA 75 mA Typ Max Unit 15 25 ns 15 25 ns 22 ns Outputs Disabled Switching Characteristics Vcc = 5.0 V, T A = 25°C Symbol Characteristic Condition VIO = -2.5 V to 2.5 V, CL = 15 pF, Fig. 1 Min tpLH Propagation Delay Time, Low to High Level Output tpHL Propagation Delay Time, High to Low Level Output tpZH Output Enable Time to High Level CL = 15 pF, Fig. 2 15 tPZL Output Enable Time to Low Level CL = 15 pF, Fig. 3 15 22 ns tpHZ Output Disable Time from High Level CL = 5.0 pF, Fig. 2 14 30 ns tpLZ Output Disable Time from Low Level CL = 5.0 pF, Fig. 3 24 40 ns Notes 1. All Typical values are at Vee - 5.0 V, TA - 25°C. 2. The algebraic convention, where the less positive (more negative) limit is designated minimum, is used in this data sheet for common mode input voltage and threshold voltage levels only. 3. Hysteresis is the difference between the positive-going input threshold voltage, VT+. and the negative·going input threshold voltage. V-r-. 4. Refer to EIA standard RS·485 for exact conditions. 9-94 J.LA96173· J.LA96175 Parameter Measurement Information Figure 1 tpLH. tpHL (Note 3) >--:----,-- OUT IN :1" }s;- U' -2.5V L ~ ----VOH OUT 1.3V 1.3V VOL CA00891F Figure 2 tpHZ. tPZH (Note 3) CR00901F Figure 3 tPZL. tpLZ (Note 3) Vee Notes 1. The inpul pulse is supplied by a generalor having Ihe following characterislics: PRR - 1.0 MHz, 50% duty cycle, t,..;;; 6.0 ns, If';;; 6.0 ns, Zo=50n. 2. CL includes probe and jig capacilance. 3. pA96173 wilh active high and aclive low Enables is shown here. pA96175 has active high Enable only. 4. All diodes are 1N916 or equivalent. 5. To lesl the active low Enable E of pA96173, ground E and apply an inverted inpul waveform to E. pA96175 has active high Enable only. 9-95 MA96173· MA96175 Typical Application 114..-74 114..-72 ~----r-~--~---------------------T---~~r---~ ~~-r+-~~~r--------------------+--r-+~~--~ 114jJA96175 114pA81173 UP TO 32 DRIVERlRECEIVER PAIRS Note The line length should be terminated at both ends in its characteristic impedance. Stub lengths off the main line should be kept as short as possible. 9-96 J.lA96176 FAIRCHIL.D Differential Bus Transceiver A Schlumberger Company Linear Division Interface Products Description Connection Diagram 8-Lead DIP (Top View) The J.lA96176 Differential Bus Transceiver is a monolithic integrated circuit designed for bidirectional data communication on balanced multipoint bus transmission lines. The transceiver meets EIA Standard RS-485 as well as RS-422A. 7 B} IN/OUT The J.lA96176 combines a three-state differential line driver and a differential input line receiver, both of which operate from a single 5.0 V power supply. The driver and receiver have an active Enable that can be externally connected to function as a direction control. The driver differential outputs and the receiver differential inputs are internally connected to form differential input/output (I/O) bus ports that are designed to offer minimum loading to the bus whenever the driver is disabled or when Vee = 0 V. These ports feature wide positive and negative common mode voltage ranges making the device suitable for multipoint applications in noisy environments. 6 Package Code Package Description 6T 9T Ceramic DIP Molded DIP Function Table (Driver) Differential Inputs The J.lA96176 can be used in transmission line applications employing the J.LA96172 and the J.LA96174 quad differential line drivers and the J.LA96173 and J.lA96175 quad differential line receivers. • • • • • • • • BUS PORT Order Information Device Code J.LA96176RC J.LA96176TC The driver is designed to handle loads up to 60 mA of sink or source current. The driver features positive and negative current-limiting a.nd thermal shutdown for protection from line fault conditions. Thermal shutdown is designed to occur at junction temperature of approximately 160°C. The receiver features a typical input impedance of 12 kn, an input sensitivity of ± 200 mV, and a typical input hysteresis of 50 mY. • • • • • • A Outputs D Enable DE A B H L X H H L H L Z L H Z Function Table (Receiver) Bidirectional Transceiver Meets EIA Standard RS-422A And RS-485 Designed For Multipoint Transmission Three-State Driver And Receiver Enables Individual Driver And Receiver Enables Wide Positive And Negative Input/Output Bus Voltage Ranges Driver Output Capability ± 60mA Maximum Thermal Shutdown Protection Driver Positive And Negative Current-Limiting High Impedance Receiver Input Receiver Input Sensitivity Of ± 200 mV Receiver Input Hysteresis Of 50 mV Typical Operates From Single 5.0 V Supply Low Power Requirements Differential Inputs A-B Enable RE Output VID;;;'0.2 V -0.2 V < VID < 0.2 V VID<-0.2 V X L L L H H ? L H = High Level L = Low Level ? = Indeterminate X = Immaterial Z = High Impedance (off) 9-97 R Z MA96176 Absolute Maximum Ratings Storage Temperature Range Ceramic DIP Molded DIP Operating Temperature Range Lead Temperature Ceramic DIP (soldering, 60 s) Molded DIP (soldering, 10 s) Internal Power Dissipation 1, 2 8L-Ceramic DIP 8L-Molded DIP Supply Voltage 3 Differential Input Voltage Enable Input Voltage Notes 1. TJ Max ~ -65°C to + 175°C -65°C to + 150°C O°C to +70°C 1.30 W 0.93 W 7.0 V ±25 V 5.5 V 150·C for the Molded DIP, and 175·C for the Ceramic DIP. 2. Ratings apply to ambient temperature at 25°C. Above this temperature, derate the 8L-Ceramic DIP at 8.7 mWrC, and the 8L-Molded DIP at 7.5 mwrc. 1. All voltage values, except differential input/output bus voltage, are with respect to network ground terminal. Recommended Operating Conditions Symbol VCC Characteristic Supply Voltage Min Typ Max Unit 4.75 5.0 5.25 V 12 V _7.0 1 VI or VCM Voltage at any Bus Terminal (Separately or Common Mode) VID Differential Input Voltage 2 ±12 V IOH Output Current HIGH -60 mA IOL Output Current LOW TA Operating Temperature Driver Receiver Driver Receiver voltage and threshold voltage levels only. 2. Differential input! output bus voltage is measured at the noninverting terminal A with respect to the inverting terminal B. 9-98 J.LA 60 mA 16 0 Notes 1. The algebraic convention, where the less positive (more negative) limit is designated minimum, is used in this data sheet for common mode input -400 25 70 °C J.lA96176 I.lA96176 Electrical Characteristics Over recommended temperature, common mode input voltage, and supply voltage ranges, unless otherwise specified. Driver Section Symbol VIH Characteristic Condition Input Voltage HIGH Min Typ1 Max 2.0 V Vil Input Voltage LOW VOH Output Voltage HIGH IOH =-20mA VOL Output Voltage LOW 10l =20mA VIC Input Clamp Voltage 11=-18 mA IVOD11 Differential Output Voltage 10= 0 mA IVOD21 Differential Output Voltage Rl = 100 2.0 2.25 Rl = 54 1.5 2.0 "'IVODI Change in Magnitude of Differential Output Voltage 2 Voc Common Mode Output Voltage3 "'IVocl Change in Magnitude of Common Mode Output Voltage 2 10 Output Current4 (Includes Receiver II) Output Disabled Input Current HIGH VI = 2.4 V 20 IIH 0.8 Rl = 54 n V 0.85 V 6.0 or 100 n, Fig. 1 IVo=12V IVo = -7.0 V 3.1 -1.5 n, Fig. 1 n, Fig. 2 Unit V V V ±0.2 V 3.0 V ±0.2 V 1.0 mA -0.8 J.l.A III Input Current LOW VI =0.4 V -100 JJ.A los Short Circuit Output Current Vo=-7.0V -250 mA Vo=O V -150 Icc Supply Current Vo=Vcc 150 Vo = 12 V 250 I Outputs Enabled I Outputs Disabled No Load 9-99 35 40 mA • MA96176 ~A96176 (Cont.) Electrical Characteristics Over recommended temperature, common mode input voltage, and supply voltage ranges, unless otherwise specified. Drive Switching Characteristics Vcc = 5 V, TA = 25°C Symbol Characteristic Condition Min Typ Max Unit too Differential Output Delay Time RL = 60 n, Fig. 4 15 25 ns tTD Differential Output Transition Time RL = 60 n, Fig. 4 15 25 ns tpLH Propagation Delay Time, Low-to-High Level Output RL = 27 n, Fig. 5 12 20 ns tpHL Propagation Delay Time, High-to-Low Level Output RL = 27 n, Fig. 5 12 20 ns tpZH Output Enable Time to High Level RL = 110 n, Fig. 6 25 35 ns tpzL Output Enable Time to Low Level RL = 110 n, Fig. 7 25 35 ns tpHZ Output Disable Time from High Level RL = 110 n, Fig. 6 20 25 ns tpLZ Output Disable Time from Low Level RL = 110 n, Fig. 7 29 35 ns Typ1 Max Unit Receiver Section Symbol Characteristic Condition Min VTH Differential Input High Threshold Voltage Vo = 2.7 V, 10 = -0.4 mA VTL Differential Input Low Threshold Voltage Vo = 0.5 V, 10 = 8.0 mA VT+ -VT_ Hysteresis6 VCM = 0 V VIH Enable Input Voltage HIGH VIL Enable Input Voltage LOW VIC Enable Input Clamp Voltage 11=-18 mA VOH Output Voltage HIGH VIO = 200 mY, 10H = -400 pA, Fig. 3 VOL Output Voltage LOW VIO = -200 mY, Fig. 3 0.2 -0.2 5 V 50 mV 2.0 loz High Impedance State Output Vo = 0.4 V to 2.4 V II Line Input Current? Other Input = 0 V IIH Enable Input Current HIGH VIH =2.7 V IlL Enable Input Current LOW VIL RI Input Resistance los Short Circuit Output Current Icc Supply Current (total package) = 0.4 V 0.8 V -1.5 V 2.7 V I 10L = 8.0 mA 0.45 IIOL=16 mA 0.50 /lA I VI = 12 V 1.0 mA I VI =-7.0 V 0.8 20 -100 12 -15 IOutputs Enabled IOutputs Disabled 9-100 V ±20 V No Load V pA /lA kn -85 mA 40 mA !-LA96176 Receiver Switching Characteristics Vee = 5.0 V, TA = 25°C Symbol Typ Max Unit 16 25 ns 16 25 ns CL = 15 pF, Fig. 9 15 22 ns 15 22 ns CL = 5.0 pF, Fig. 9 14 30 ns 24 40 ns Characteristic Condition tpLH Propagation Delay Time, Low-to-High Level Output VID = 0 V to 3.0 V CL = 15 pF, Fig. 8 tpHL Propagation Delay Time, High-to-Low Level Output tPZH Output Enable Time to High Level tPZL Output Enable Time to Low Level tpHZ Output Disable Time from High Level tpLZ Output Disable Time from Low Level Min Notes 1. All typical values are at Vee = 5.0 V and TA = 25'C. 2. "IVool and "lVoel are the changes in magnHude of Voo and Voe, respectively, that occur when the input is changed from a high level to a low level. 3. In EIA Standard RS-422A and RS-485, Voe, which is the average of the two output voltages wHh respect to GND, is called output offset voltage, • Vos· 4. This applies for both power-on and power-off. Refer to EIA Standard RS-485 for exact conditions. 5. The algebraic convention, where the less positive (more negative) limit is designated minimum, is used in this data sheet for common mode input voltage and threshold voltage levels only. 6. Hysteresis is the difference between the positive-going input threshold voltage, VT + , and the negative-going input threshold voltage, VT - . 7. This applies for both power-on and power-off. Refer to EIA Standard RS-485 for exact conditions. Parameter Measurement Information Figure 2 Driver VOD with Varying Common Mode Voltage Figure 1 Driver VOD and Voc ~~ (Note 3) t 3750 -7Vto +12V 3750 Figure 3 Receiver VOH and VOL v~rl'>-I ov=:1 ntlot.. J 't (+) Gt 9-101 MA96176 Parameter Measurement Information (Cont.) Figure 4 Driver Differential Output Delay and Transition Times IN GENERATOR 500 (Note 1) OUT Figure 5 Driver Propagation Times IN 2.3V RL=270 y OUT ---0---,--'-- OUT GENERATOR (Note 1) 500 Z 3V OUT Figure 6 Driver Enable and Disable Times (tpZH. tpHZ) --":>-"1'-~- OUT OVor3V IN RL= 1100 d.5V 1.J J,9 toHz PZH GENERATOR 500 OUT (Note 1) . -.:..L 3V ov VOH 0.5V 2.3V VOFF~ Figure 7 Driver Enable and Disable Times (tpZL. tpLZ) 5V 3V RL= 1100 ---0---,.....- IN OUT ~ ov 1.5V l.5V ~ PZL OUT tpLZ 2.3V 5V 0.5V -rVOL 9-102 OV MA96176 Parameter Measurement Information (Cont.) Figure 8 Receiver Propagation Delay Times IN OUT :1:.5V 1'1 tJ.v 3V ov l:ev~ VOL OV--------------~ CFI01061F Figure 9 Receiver Enable and Disable Times 81 I.5V 52 O---5V GENERATOR ~1) ~ 1JozH IN OUT tnL 3V 81101.5V 1.5V OV 52 OPEN S3CLOSED IN ---(:E V~ £L ""'" I.5V ~ D.5V OUT 3V SI1D-1.5V S2 CLOSED OV S30PEN ;:-.:;r-~4.5V OUT - - OV IN ~ 1.5V ~ ----I' toLz 3V SI1D1.5V IN 52 CLOSED OV S3CLOSED V~ OUT ---~I.3V VOL V ~ :J=\=~1.3V 1.5V 3 SI1D-l.5V S2CLOSED OV S3CLOSED o.sV VOl. Wf'00481F Notes 1. The input pulse is supplied by a generalor having the following characteristics: PRR - 1.0 MHz, 50% duty cycle, t," 6.0 ns, tf" 6.0 ns, Zo- 50 n. 2. CL includes probe and stray capacitance. 3. ",,96176 Driver enable is Active-High 4. All diodes are 1N916 or equivalent. 9-103 J,lA96176 Typical Application ~A96176 ~A96176 ~----~~----r--------------------~--~~-- __~ /,--,-+-~~~~-------------------~~~--~--~~ UP TO 32 TRANSCEIVERS Note The line length should be terminated at both ends of its characteristic impedance. Stub lengths off the main line should be kept as short as possible. 9-104 J.LA96177 • J.LA96178 Differential Bus Repeaters FAIRCHILD A Schlumberger Company Linear Division Interface Products Description The JlA96177 and JLA96178 Differential Bus Repeaters are monolithic integrated devices each designed for one-way data communications on multipoint bus transmission lines. These devices are designed for balanced transmission bus line applications and meet EIA Standard RS-485 and RS-422A. Each device is designed to improve the performance of the data communication over long bus lines. The JLA96177 and JLA96178 are identical except for the Enable inputs, which are complementary. The JLA96177 is an active high Enable. The JlA96178 is an active low Enable. These complementary Enables allow the devices to be used in pairs for bidirectional communication. Connection Diagram 8-Lead DIP (Top View) IJA96177 SA}BUS IN Jo--.r" B BUS } OUT The JlA96177 and JLA96178 feature positive and negative current limiting and three-state outputs for the receiver and driver. The receiver features high input impedance, input hysteresis for increased noise immunity, and input sensitivity of 200 mV over a common mode input voltage range of -12 V to + 12 V. The driver features thermal shutdown for protection from line fault conditions. Thermal shutdown is designed to occur at a junction temperature of approximately 160'C. The driver is designed to drive current loads up to 60 mA maximum. ~A96178 y .........- - , 6 Order Information Device Code Package Code JLA96177RC 6T JLA96177TC 9T JLA96178RC 6T JLA96178TC 9T • Meets EIA Standard RS-422A And RS-485 • Designed For Multipoint Transmission On Long Bus Lines In Noisy Environments • Three-State Outputs • Bus Voltage Range -7.0 V To 12 V • Positive And Negative Current Limiting • Driver Output Capability ± 60 mA Max • Driver Thermal Shutdown Protection • Receiver Input High Impedance • Receiver Input Sensitivity Of ± 200 mV • Receiver Input Hysteresis Of 50 mV Typical • Operates From Single 5.0 V Supply • Low Power Requirements Vlo~0.2 V -0.2 V < VIO < 0.2 V VID';;;;-0.2 V X T H H H L H ? L Z Differential Inputs A-B VIO~0.2 V -0.2 V < VID < 0.2 V Vlo';;;;-0.2 V X H = High Level L = Low Level ? = Indeterminate X = Immaterial Z = High Impedance (off) Outputs Y Z H ? L Z OUT Package Description Ceramic DIP Molded DIP Ceramic DIP Molded DIP Function Table JLA96178 Function Table JlA96177 Enable E Z} BUS ......."'-_-;<1 Y The IlA96177 and IlA96178 are designed for optimum performance when used on transmission buses employing the IlA96172 and IlA96174 differential line drivers, JLA96173 and JLA96175 differential line receivers, or IlA96176 differential bus transceiver. Differential Inputs A-B S A } BUS B IN L ? H Z 9-105 Enable E T L L L H H ? L Z Outputs Y Z H ? L Z L ? H Z tlA96177 • tlA96178 Absolute Maximum Ratings Storage Temperature Range Ceramic DIP Molded DIP Operating Temperature Range Lead Temperature Ceramic DIP (soldering, 60 s) Molded DIP (soldering, 10 s) Internal Power Dissipation 1,2 8L-Ceramic DIP 8L-Molded DIP Supply VoltageS Input Voltage -65°C to + 175°C -65°C to + 150°C O°C to +70°C 1.30 W 0.93 W 7.0 V 5.5 V Notes 1. TJ Max = 150·C for the Molded DIP, and 175°C for the Ceramic DIP. 2. Ratings apply to ambient temperature at 25°C. Above this temperature, derate the 8L·Ceramic DIP at 8.7 mWrC, and the 8L-Molded DIP at 7.5 mWrC. 3. All voltage values are with respect to network ground terminal. Recommended Operating Conditions Symbol Min Characteristic Vcc Supply Voltage VI or VCM Voltage at any Bus Terminal (Separately or Common mode) VID Differential Input Voltage2 IOH Output Current HIGH IOL Output Current LOW Typ 4.75 5.0 _7.0 1 Driver Units 5.25 V 12 V ±12 V -60 mA -400 !1A Driver 60 mA Receiver 16 Receiver TA Max Operating Temperature 0 Notes 1. The algebraic convention, where the less positive (more negative) limit is designated minimum, is used -in this data sheet for common mode input voltage and threshold voltage levels only. 2. Differential input! output bus voltage is measured at the noninverting terminal A with respect to the inverting terminal B. 9-106 25 70 °C MA96177 • MA96178 IlA96177, IlA96178 Electrical Characteristics Over recommended temperature, common mode input voltage, and supply voltage ranges, unless otherwise specified. Driver Section Symbol Characteristic Condition Min Typl VIH Input Voltage HIGH VIL Input Voltage LOW VIC Input Clamp Voltage 11=-18 rnA IVODll Differential Output Voltage 10= 0 rnA IVOD21 Differential Output Voltage RL = 100 2.0 2.25 RL = 54 1.5 2.0 Max 2.0 V 0.8 V -1.5 V 6.0 n Fig. 2 n Fig. 1 n or 100 n, Change in Magnitude of Differential Output Voltage 2 Voc Common Mode Output Voltage 3 ~IVocl Change in Magnitude of Common Mode Output Voltage 2 10 Output Current with Power off Vcc=O V, Vo=-7.0 V to 12 V loz High Impedance State Output Current Vo=-7.0 V to 12 V IIH Input Current HIGH VI = 2.7 V 20 IlL Input Current LOW VI = 0.5 V los Short Circuit Output Current Fig.l ±0.2 V 3.0 V ±0.2 V ±100 IlA ±200 -100 !lA !lA !lA Vo=-7.0 V -250 rnA Vo=O V -150 Vo=Vcc 150 ±50 Vo = 12 V Icc Supply Current V V ~IVODI RL = 54 Unit No Load 9-107 250 IOutputs IOutputs Enabled 35 Disabled 40 rnA • MA96177 • MA96178 jJA96177, tlA96178 (Cont.) Electrical Characteristics Over recommended temperature, common mode input voltage, and supply voltage ranges, unless otherwise specified. Drive Switching Characteristics Vcc = 5.0 V, TA = 25°C Typ Max Unit 15 25 ns RL = 60 n, Fig. 4 15 25 ns RL = 27 n, Fig. 5 12 20 ns Propagation Delay Time, High-to-Low Level Output RL = 27 n, Fig. 5 12 20 ns tPZH Output Enable Time to High Level RL = 110 n, Fig. 6 25 45 ns tPZL Output Enable Time to Low Level RL = 110 n, Fig. 7 25 40 ns tpHz Output Disable Time from High Level RL = 110 n, Fig. 6 20 25 ns tpLZ Output Disable Time from Low Level RL = 110 n, Fig. 7 29 35 ns Symbol Characteristic Condition too Differential Output Delay Time RL tTD Differential Output Transition Time tpLH Propagation Delay Time, Low-to-High Level Output tpHL = 60 Min n, Fig. 4 Receiver Section Symbol Characteristic Condition Min Typ1 Max Unit VTH Differential Input High Threshold Voltage Vo = 2.7 V, 10 = -0.4 mA VTL Differential Input Low Threshold Voltage Vo = 0.5 V, 10 = 8.0 mA 0.2 VT+-VT_ Hysteresis6 VIH Enable Input Voltage HIGH VIL Enable Input Voltage LOW VIC Enable Input Clamp Voltage 11=-18 mA VOH High Level Output Voltage VID = 200 mY, 10H = -400 pA, Fig. 3 VOL Low Level Output Voltage VIO = -200 mY, Fig. 3 jlOL = 8.0 mA loz High-Impedance State Output Va = 0.4 V -360 Vo=2.4 V 20 -0.2 5 V 50 VCM = 0 V Line Input Currentl V Other Input = 0 V Enable Input Current HIGH VIH = 2.7 V IlL Enable Input Current LOW VIL = 0.4 V RI Input Resistance los Short Circuit Output Current Icc Supply Current (total package) 0.8 V -1.5 V 0.45 V 2.7 V 0.50 1.0 JVI = 12 V pA mA -0.8 IVI = -7.0 V IIH mV 2.0 jlOL = 16 mA II V 20 -100 p.A pA ~~- 12 -15 No Load 9-108 kn -85 mA I Outputs Enabled 35 mA IOutputs Disabled 40 MA96177 • MA96178 JJA96177, J.!A96178 (Cont.) Electrical Characteristics Over recommended temperature, common mode input voltage, and supply voltage ranges, unless otherwise specified. Receiver Switching Characteristics Vcc = 5.0 V, TA = 25°C Symbol Characteristic tpLH Propagation Delay Time, Low-to-High Level Output tpHL Propagation Delay Time, High-to-Low Level Output Min Condition VID = 0 V to 3.0 V CL = 15 pF, Fig. 8 tPZH Output Enable Time to High Level tPZL Output Enable Time to Low Level tpHZ Output Disable Time from High Level tpLZ Output Disable Time from Low Level CL CL = 15 pF, Fig. 9 = 5.0 pF, Fig. 9 Typ Max Unit 16 25 ns 16 25 ns 15 22 ns 15 22 ns 14 30 ns 24 40 ns Notes 1. 1. All typical values are at Vee - 5.0 V and TA - 25"C. 2. Dol Vao I and Dol Vae I are the changes in magnitude of Vao and Vae, respectively, that occur when the input is changed from a high level to a low level. 3. In EIA Standard RS-422A and RS-485, Vae, which is the average of the two output voltages with respect to GND, is called output offset voltage. Vos· 4. The algebraic convention, where the less positive (more negative) limit is designated minimum, is used in this data sheet for common mode input voltage and threshold voltage levels only. 5. Hysteresis is the difference between the positive-going input threshold voltage, VT+ and the negative-going input threshold voltage, VT_. 6. Refer to EIA Standard RS-485 for exact conditions. Parameter Measurement Information Figure 2 Figure 1 Driver VOD2 and Voc Driver VOD2 with Varying Common Mode Voltage 3750 ~ '----'--------' -7Vto +12V Voc RL ~ CROO130F Figure 3 ENABLED (_3) Receiver VOH and VOL V'Drf'>-/ OV~ I6tIOL J 't (+) t IOH (-) 9-109 3750 • J.lA96177 • J.lA96178 Parameter Measurement Information (Cont.) Figure 4 Driver Differential Output Delay and Transition Times IN GENERATOR (Note 1) OUT Figure 5 Drive Propagation Times IN 2.3 V RL=271l --<~....,..+-- y OUT OUT GENERATOR (Note 1) ENABLED (Nota3) Z OUT Figure 6 Driver Enable and Disable Times (tpZH. tpHZ) '-o-_-oSl --C>-T-~- OUT OVor3V IN RL=110n GENERATOR d. sv 1.j ~ ZH SOil (Note 1) OUT 3V OV tPHZ 2.3V ~VOH O.SV VOFF"=OV Figure 7 Driver Enable and Disable Times (tpZlo tpLZl SV RL= looll -"'0--,"'+- OUT 9-110 f.lA96177 • f.lA96178 Parameter Measurement Information (Cont.) Figure 8 Receiver Propagation Delay Times IN ~'5V I.] LH OUT 3V OV ~ IPH~ 1.3V VOH 1.3V VOL ENABLED - - - - - - - - ' (NoI.3) Figure 9 Receiver Enable and Disable Times S2 o--SV (~A96177) IPZH (~A96177)~ IN I.SV (~A96178) ~ 3V Sllol.SV S20PEN OV 53 CLOSED IN (~A96178) tpZL ~ 1.5V VOH I.SV ~ OUT.J VOL - - OV ( A96177) ~ IN IpLl IpHZ ~ 3V Sllol.SV ~I~ L - SIIo-I.5V S2CLOSED OV 53 OPEN ~i=-~4.5V PZH OUT 3V (~A96177)~ 3V Silo -1.SV IN (~A96178) S2CLOSED (~A96178) l : : :IpHZ f = t 1 . 5 V ::H 53 CLOSED 1.5V :F\= S2CLOSED OV 53CLOSED PLZ --~1.3V OUT OUT --~1.3V O.5V VOL Notes I. The input pulse is supplied by a generator having the following characteristics: PRR = 1.0 MHz, duty cycle::::::50%, tr ~ 6.0 ns, tf'::::;;; 6.0 n5, Zo ~ 50 [2. 2. CL includes probe and stray capacitance. 3. !lA96178 Enable is active low, !lA96177 Enable is active high. 4. All diodes are 1N916 or equivalent. 9-111 MA96177 • MA96178 Typical Application Note The line length should be terminated at both ends in its characteristic impedance. Stub lengths off the main line should be kept as short .as possible. 9-112 JlA9636A RS-423 Dual Programmable Slew Rate Line Driver FAIRCHIL.D A Schlumberger Company Linear Division Interface Products Connection Diagram 8-Lead DIP (Top View) Description The I1A9636A is a TTL/CMOS compatible, dual, single ended line driver which has been specifically designed to satisfy the requirements of EIA Standard RS-423. The I1A9636A is suitable for use in digital data transmission systems where signal wave shaping is desired. The output slew rates are jointly controlled by a single external resistor connected between the wave shaping control lead (WS) and ground. This eliminates any need for external filtering of the output signals. Output voltage levels and slew rates are independent of power supply variations. Current-limiting is provided in both output states. The I1A9636A is designed for nominal power supplies of ± 12 V. WAVESHAPE CONTROL INA OUT A INB OUTB v- GND Order Information Inputs are TTL compatible with input current loading low enough (1/10 UL) to be also compatible with CMOS logic. Clamp diodes are provided on the inputs to limit transients below ground. • • • • • V+ Device Code Package Code !1A9636ARM !1A9636ARC !1A9636ATC 6T 6T 9T Package Description Ceramic DIP Ceramic DIP Molded DIP Programmable Slew Rate Limiting Meets EIA Standard RS-423 Commercial Or Extended Temperature Range Output Short Circuit Protection TTL And CMOS Compatible Inputs Absolute Maximum Ratings Storage Temperature Range Ceramic DIP Molded DIP Operating Temperature Range Extended (I1A9636AM) Commercial (!1A9636AC) Lead Temperature Ceramic DIP (soldering, 60 s) Molded DIP (soldering, 10 s) Internal Power Dissipation 1,2 8L-Ceramic DIP 8L-Molded DIP V+ Lead Potential to Ground Lead V - Lead Potential to Ground Lead V+ Lead Potential to V- Lead Output Potential to Ground Lead Output Source Current Output Sink Current -65°C to + 175°C -65°C to + 150°C -55°C to +125°C O°C to +70°C 1.30 W 0.93 W V-to+15V +0.5 V to -15 V o V to +30 V ± 15 V -150 mA 150 mA Notes 1. T J Max ~ 175·C for the Ceramic DIP, and 150·C for the Molded DIP. 2. Ratings apply to ambient temperature at 25°C. Above this temperature, derate the 8L·Ceramic DIP at S.7 mWI"C, and the SL·Molded DIP at 7.5 mW/·C. .iL 9-113 IlA9636A Equivalent Circuit r---------------~ TO OTHER CHANNEL TO OTHER CHANNEL I WSCIN I I I I R18 [ 4COn ~~ R7 CU6 08 I I 026"'a.,1 L.o"015 ~ I I 022~~ I • t'021 I I 027 I I I I R17 I 8.58kn I I I I I I ~ h:- "Q28 ~ ~ W [f U10 ~il-015 t016 ~~017 I I I I I ~ il- 02O I I I I I K~ ~~ ~ ~018 ~ ,.. TO OTHER CHANNEL :;122 TO 020 ......... OTHER CHANNEL ; , 500 n lOOn 013 ~ f- ~10 - '~ ,.--< ,..,. R5 ~ OUT Rl 7I '''02 I" R19 V 011 R4 Cl '-- ~01 ~02 [ ~CU3 r-- ,......., 'Cu9 V016 ."" " R6 2.53 k!l R6 R9 25kH 910 H a.. ,.....017 V 018 'I v- o - ~ R2 61 701 V019 R15 10 kO '~03 1;;0 L _______________ .J - 09'" '7014 R13 lOkI! R14 " >-012· 70 V03 ~ ~~011 ,.......,~ CUii' ,...... R12 " , 05 08'" ,.....012 GNO ~.. CU5 ~ ~ I I I TO OTHER CHANNEL 032 Q6 *-4:: TO OTHER CHANNEL IN = COMMON TO BOTH CHANNELS = CROSSUNOER 9-114 MA9636A Recommended Operating Conditions !lA9636A Characteristic Symbol V+ Positive Supply Voltage V- Negative Supply Voltage TA Operating Temperature Rws Wave Shaping Resistance Min IlA9636AC Typ Max Min Typ Max Unit 10.8 12 13.2 10.8 12 13.2 -13.2 -12 -10.8 -13.2 -12 -10.8 V 70 ·C 1000 kil -55 25 10 125 0 500 10 25 V /-LA9636A Electrical Characteristics Over recommended operating temperature, supply voltage and wave shaping resistance ranges unless otherwise specified. DC Characteristics Symbol VOHI Characteristic Output Voltage HIGH Condition RL to GND (RL = 00) VOH2 RL to GND (RL = 3.0 kil) VOH3 RL to GND (RL Min Typ Max Unit 5.0 5.6 6.0 V 5.0 5.6 6.0 V 4.0 5.5 6.0 V RL to GND (RL = 00) -6.0 -5.7 -5.0 V VOL2 RL to GND (RL = 3.0 kil) -6.0 -5.6 -5.0 V VOL3 RL to GND (RL = 450 il) -6.0 -5.4 -4.0 V 25 50 il -150 -60 -15 rnA 15 60 150 rnA +100 !lA VOL1 Output Voltage LOW = 450 Ro Output Resistance 450 il";';RL los+ Output Short Circuit Current1 Vo=O V, VI=O V il) Vo = 0 V, VI = 2.0 V losICEX Output Leakage Current Vo = ± 6.0 V, Power-Off -100 VIH Input Voltage HIGH VIL Input Voltage LOW VIC Input Clamp Diode Voltage 11= 15 rnA -1.5 -1.1 IlL Input Current LOW VI = 0.4 V -80 -16 IIH Input Current HIGH VI = 2.4 V 1.0 10 VI = 5.5 V 10 100 13 18 2.0 V 0.8 1+ Positive Supply Current Vcc=±12 V, RL=oo, Rws = 100 kil, VI = 0 V 1- Negative Supply Current Vcc=±12 V, RL=oo, Rws = 100 kil, VI = 0 V Notes 1. Only one output should be shorted at a time. 9-115 -18 -13 V V !lA p.A mA rnA J.lA9636A J.(A9636A (Cont.) Electrical Characteristics Over recommended operating temperature, supply voltage and wave shaping resistance ranges unless otherwise specified. AC Characteristics Vcc=±12 V±10%, TA = 25°C, see AC Test Circuit Symbol Characteristic Condition Rws = 10 Fall Time tj Typ Max 0.8 1.1 1.4 8.0 11 14 Min kn Rws = 100 kn Rws = 500 kn Rws = 1000 kn Rws = 10 kn Rws = 100 kn Rws = 500 kn Rws = 1000 kn Rise Time t, 40 55 70 80 110 140 0.8 1.1 1.4 8.0 11 14 40 55 70 80 110 140 Unit J.lS J.lS Typical Performance Curves Input/Output Transfer Characteristic vs Temperature Yle~L2~ - 200 Rl~450ll 150 Rws"'" 100kn > I 6.0 !i 4.0 ... ~ g i 125"C 2-0 70"e 0 -2.0 - I J -55°C Y~e ~I± 12'y rRws = 100 ktl ,.. fl - f-. -55°C ~ 2S°C f- -200 1.2 0.6 I-J:o;. TA=25"C 1I ~ II: 30 20 V, =2V 10 a ~ ~: o 0 0 0 /v,-OY lLl 125"C -40 -50 1.8 1.6 125"C VCC=±12V Aws= 100k{l- 0 -30 -55°C -6.0 ~H I"'" ~ -150 25"C 1/ DOC 50 r-U II 2S°C -4.0 OA Output Current vs Output Voltage (Power On) Input Current vs Input Voltage -1.0 INPUT VOLTAGE - V 0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 - 10 8.0 6.0 4.0 2.0 INPUT VOLTAGE - V 0 j,./ 2.0 4.0 6.0 8.0 10 OUTPUT VOLTAGE - V PC06101F Output Current vs Output Voltage (Power Off) 100 1/ 60 .. ~ tz... VCC=y,""DV 60 I - FD600 DIODE CONNECTED IN SERIES WITH Vee PIN 40 20 } II: a: ::> "5 -20 Supply Current vs Temperature I r ..e ..... 20 Z 10 0: 0: ..". LOGIC JlY'~O- ~ V, == 1 A~OG'C VI=1 1- _"'LOGIC_ V, '" 0 en -60 -30 so -40 -100 -10 -8.0 -6.0 -4.0 -2.0 0 2.0 4.0 OUTPUT VOLTAGE - V 6.0 8.0 10 -55 , 25 ::i if r- II: 125 100 0°'2.±! IIII 2S°C 7ooe" 125"C Q ~ TEMPERATURE _ °C ~ 10 oV ~ 1. 10 K 20 K 50 K 100 K 300 K 1.0 M 3.0 M WAVE SHAPING RESISTANCE PC06121F 9-116 I ~ r- I I 11 70 '1 ;:: 1t~OG'C 1+ ~ -10 ::> -20 0 55°C jWS'1 'OOOll - 30 I 1000 Jee ~I± 12'y 40 ::> 1= -40 ::> Transition Time vs Rws II J..lA9636A AC Test Circuit and Waveforms +12V V,--.....- - t I'>o--.....- -.....-Vo 450!l SUI CL 30pf -12V V, Amplitude: 3.0 V Offset: 0 V Pulse Width: 500 IlS PRR: 1.0 kHz tr=tf~10 ns Note el includes jig and probe capacitance RS-423 System Application V+ V- Note 1. Use Fairchild's 1N4448. 9-117 IlA9637A Dual Differential Line Receiver FAIRCHILD A Schlumbe~$ler Company Linear Division Interface Products Description The 1lA9637A is a Schottky dual differential line receiver which has been specifically designed to satisfy the requirements of EIA Standards RS-422 and RS-423. In addition, the 1lA9637A satisfies the requirements of MIL-STD 188114 and is compatible with the International Standard CCITT recommendations. The 1lA9637A is suitable for use as a line receiver in digital data systems, using either single ended or differential, unipolar or bipolar transmission. It requires a single 5.0 V power supply and has Schottky TTL compatible outputs. The 1lA9637A has an operational input common mode range of ± 7.0 V either differentially or to ground. • • • • • • • • • Dual Channels Single 5.0 V Supply Satisfies EIA Standards RS-422 And RS-423 Built-In ± 35 mV Hysteresis High Common Mode Range High Input Impedance TTL Compatible Output Schottky TechnolC)gy Extended Temperature Range Connection Diagram 8-Lead DIP and 50-8 Package (Top View) +IN A -INA OUTB +IN B GNO -IN B Order Information Device Code 1lA9637ARM 1lA9637ARC 1lA9637ATC 1lA9637ASC Absolute Maximum Ratings Storage Temperature Range Ceramic DIP Molded DIP Operating Temperature Range Extended (1lA9637 AM) Commercial (1lA9637 AC) Lead Temperature Ceramic DIP (soldering, 30 s) Molded DIP and SO Package (soldering, 10 s) Internal Power Dissipation 1. 2 8L-Ceramic DIP 8L-Molded DIP SO-8 Vcc Lead Potential to Ground Input Potential to Ground Differential Input Voltage Output Potential to Ground Output Sink Current Vee OUT A -65°C to +175°C -65°C to + 150°C -55°C to +125°C O°C to +70°C 300°C 265°C 1.30 W 0.93 W 0.81 W -0.5 V to 7.0 V ± 15 V ± 15 V -0.5 V to +5.5 V 50 mA Notes 1. TJ Max = 17S·C for Ihe Ceramic DIP. and IS0·C for Ihe Molded DIP. 2. Ralings apply 10 ambienl lemperalure al 2S·C. Above Ihis temperature. derale Ihe 8L-Ceramic DIP al 8.7 mWrC. Ihe 8L-Molded DIP al 7.5 mWrC. and Ihe SO-8 al 6.5 mWrC. 9-118 Package Code 6T 6T 9T KC Package Description Ceramic DIP Ceramic DIP Molded DIP Molded Surface Mount MA9637A Equivalent Circuit r---------.-------~~-----_.------_.-_.-------~----~c R7 RS R24 R14 R15 R23 as 02 Rll Cl 5 pF -IN ---~W- __... R3 Vee OUT • - I N - -.....~W-_-+---I_--_+ R19 RS GNO Recommended Operating Conditions f,lA9637A Symbol Characteristic Vee Supply Voltage TA Operating Temperature f,lA9637AC Min Typ Max Min Typ Max Unit 4.5 5.0 5.5 4.75 5.0 5.25 V -55 25 125 0 25 70 ·C 9-119 tLA9637A ,uA9637A Electrical Characteristics Over recommended operating temperature and supply voltage ranges, unless otherwise specified. DC Characteristics Symbol Characteristic Condition 1 Min Typ2 Max Unit VTH Differential Input Threshold Voltage 3 -7.0 V VCM .;;; +7.0 V -0.2 +0.2 V VTH(R) Differential Input Threshold Voltage4 -7.0 V .;;; VCM .;;; +7.0 V -0.4 +0.4 V II Input CurrentS 3.25 mA .;;; 1.1 VI = 10 V, 0 V .;;; Vcc .;;; +5.5 V VI=-10 V, 0 V .;;; Vcc .;;; +5.5 V VOL Output Voltage LOW 10L = 20 mA, Vcc = Min VOH Output Voltage HIGH IOH=-1.0 mA, Vcc=Min los Output Short Circuit Current6 Va = 0 V, Vcc = Max Icc Supply Current Vcc = Max, VI+ = 0.5 V, VI- =GND VHYST Input Hysteresis VCM = ± 7.0 -3.25 -1.6 0.35 0.5 V V 2.5 3.5 -40 -75 -100 mA 35 50 mA mV 70 V (See Curves) AC Characteristics Vcc = 5.0 V, TA = 25°C Symbol Characteristic Condition Min Typ Max Unit tpLH Propagation Delay Time Low to High See AC Test Circuit 15 25 ns tpHL Propagation Delay Time High to Low See AC Test Circuit 13 25 ns n Notes 1. Use MiniMax values specified in recommended operating conditions. 2. Typical limits are at Vee = S.O V and TA = 2S·C. 3. VO'FF (Differential Input Voltage) = (V,+) - (V,-). VeM (Common Mode Input Voltage) = V,+ or V,-. 4. 500 ± 1% in series with inputs. 5. The input not under test is tied to ground. 6. Only one output should be shorted at a time. Typical Input/Output Transfer Characteristics Vee" 5.25 V I w "~ g !:; 0. l- S il I ,. I~::-: I I I :I > I I I I: I : "i!.... g ... I !:; o I I I I: I VCM I 1 I I == +7 V I: I ~ V--" I lr---~r+lr-~---HI~----~ VCM - 0 I~ I w VeM"!7V VCM" OV--" I I I I I II II o -100 'NPUT VOLTAGE-mV 50 INPUT VOLTAGE-mV 9-120 100 JlA9637A AC Test Circuit and Waveforms Vee = s.ov Vee = s.ov Vo +O.5V 392 v, n V, -o.SV 51 !) C, 15 pF 3.92 kn Notes CL includes jig and probe capacitance. All diodes are FD700 or equivalent. V, Amplitude: 1.0 V Offset: 0.5 V Pulse Width: 100 ns PRR: 5.0 MHz tr=tf N ' - - -... Rl4 Rl5 ~---..,.--+--. Rll Vee OUT Rl -IN----J>N'---~---~--_+ R2 R6 O~ ~----_+--~~ RS Rl9 GNO Recommended Operating Conditions Characteristic Symbol Vee Supply Voltage TA Operating Temperature 9-127 Min Typ Max 4.75 5.0 5.25 Unit V 0 25 70 °C MA9639A pA9639A Electrical Characteristics Over recommended operating temperature and supply voltage ranges, unless otherwise specified. DC Characteristics Condition 1 Typ2 Max Unit VTH Differential Input Threshold Voltage3 -7.0 V ------.. OTHER RECEIVERS R20 - - c::J ~ COMMON CIRCUITRY ~ CROSSUNDER I I I I I I -.J I L __ - TO ONE OTHER RECEIVER " 9-131 J,LA9640(26510) Recommended Operating Conditions Extended 4 Symbol Characteristic Min Typ Commercial 5 Max Min Typ Max Unit Vee Supply Voltage 4.50 5.0 5.5 4.75 5.0 5.25 V TA Operating Temperature -55 25 125 0 25 70 °C 1lA9640(26S10) Electrical Characteristics Over recommended operating temperature and supply voltage ranges, unless otherwise specified. DC Characteristics Symbol Condition 1 Characteristic Min Typ2 Extended 4 2.5 3.4 Comm 5 2.7 3.4 Max Output Voltage HIGH (Receiver Outputs) Vee = Min, IOH=-1.0 mA, VI = VIL or VIH VOL Output Voltage LOW (Receiver Outputs) Vee = Min, 10L = 20 mA, VI = VIL or VIH VIH Input Voltage HIGH (Except Bus) Guaranteed Input Logic HIGH for All Inputs VIL Input Voltage LOW (Except Bus) Guaranteed Input Logie LOW for All Inputs Vie Input Clamp Voltage (Except Bus) Vee = Min, 11=-18 mA IlL Input Current LOW Vee = Max, VI = 0.4 V Vee = Max, VI=2.7 V ENABLE 20 DATA 30 VOH IIH Input Current HIGH Vee los lee -= Max, Unit V 0.5 V V 2.0 0.8 V -1.2 V ENABLE -0.36 mA DATA -0.54 VI = 5.5 V IlA 100 Extended4 -20 -55 Comm 5 -18 -60 Output Short Circuit Current (Except Bus)3 Vee = Max Supply Current Vee = Max, VI = VIH, Enable = GND 45 70 mA mA AC Characteristics Vee = 5.0 V, TA = 25°C Symbol Condition6 Characteristic Min Typ2 Max Rs=50 n, Cs =50 pF 10 15 14 18 Bus to Receiver Out Rs = 50 n, RL = 280 n, Cs = 50 pF, CL = 15 pF 10 15 Ir Rise Time Bus If Fall Time Bus Rs = 50 n, CB = 50 pF tpD Data Input to Bus Enable Input 10 Bus 9-132 Unit ns 4.0 10 ns 2.0 4.0 ns IlA9640(26S10) J.lA9640(26S10) (Cont.) Electrical Characteristics Over recommended operating temperature and supply voltage ranges, unless otherwise specified. Bus Input/Output Characteristics Symbol VOL Vcc= Min Extended 4 Comm s ICEX (ON) Bus Leakage Current Cl 0.42 0.7 IOL = 100 mA 0.51 0.8 p.A 2.4 V Comm s 2.0 2.25 Extended4 Comm s Vee (NOTE 2) 5 PF -=- (NOTE') BUS TEST POINT Note I. Includes probe and jig capacitance. 2. All Diodes 1N916 or equivalent. 9-133 p.A 100 Rl 280 {} I' IOL = 70 mA V 2.0 Figure 1 AC Test Circuit -=- 0.5 Unit Extended4 Notes 1. For conditions shown as Min or Max, use the appropriate value specified under Electrical Characteristics for the applicable device type. 2. Typical limits are at Vee - S.O V, TA - 2SoC ambient and maximum loading. 3. Not more than one output should be shorted at a time. Duration of the short circuit test should not exceed one second. 4. Extended temperature range, ceramic DIP. 5. Commercial temperature range, ceramic or molded DIP. 6. CB and CL include probe and jig capacitance. I 0.8 0.33 100 Bus Enable = 2.4 V, Vcc= Min RECEIVER OUT 0.51 IOL = 40 mA Vo=4.5 V Receiver Input Threshold LOW TEST POINT IOL = 100 mA Comm s Bus Enable = 2.4 V, VCC= Max 0F 0.7 200 Vo=4.5 V, VCc=O V CS 0.42 -50 Bus Leakage Current 50 IOL = 70 mA Vo= 4.5 V Receiver Input Threshold HIGH (NOTE') 0.5 Extended 4 ICEX (OFF) Vee Max 0.33 Min Vo= 0.8 V Vcc= Max VTH+ VTH- Typ2 IOL =40 mA Condition 1 Characteristic Output Voltage LOW 1.6 2.0 1.75 2.0 V J.LA9640(26S 10) Figure 2 Waveforms p.A9640 , INPUT ENABLE INPUT BUS TEST POINT t f . ~ f ~,~ { 'PH' ~ RECEIVEROUT _ _ _ _ TEST POINT _t_;;: j 'i_v ~ fW ~ {___==~" r- -1 \l "' 'PHL t-'PLH _!vr~~~~\ T- I ____~":HV " ~----' - - - - - V O L CR01781F 9-134 J..lA9643 Dual TTL To MOS/CCD I=AIRCHIL.O A Schlumberger Company Driver Linear Division Interface Products Description Connection Diagram 8-Lead DIP (Top View) The /JA9643 is a dual positive logic "AND" TTL-to-MOS driver. The 1JA9643 is a functional replacement for the SN75322 with one important exception: the two external PNP transistors are no longer needed for operation. The 1JA9643 is also a functional replacement for the 75363 with the important exception that the VCC3 supply is not needed. The lead connections normally used for the external PNP transistors are purposely not internally connected to the 1JA9643. INA E IN B GND • Satisfies CCD Memory And Delay Line Requirements • Dual Positive Logic TTL To MOS Driver • Operates From Standard Bipolar And MOS Supply Voltages • High Speed Switching • TTL And DTL Compatible Inputs • Separate Drivers Address Inputs With Common Strobe • VOH And VOL Compatible With Popular MOS RAMs • Does Not Require External PNP Transistors Or VCC3 • VOH Minimum Is VCC2-0.5 V Order Information Device Code 1JA9643TC Package Description Molded DIP Truth Table INPUT Absolute Maximum Ratings Storage Temperature Range Operating Temperature Range Lead Temperature Molded DIP (soldering, 10 s) Internal Power Dissipation 1, 2 Supply Voltage Range of VCCI 3 Supply Voltage Range of VCC2 Input Voltage Inter-Input Voltage4 Package Code 9T -65°C to + 150°C O°C to +70°C 265°C 0.93 W -0.5 V to +7.0 V -0.5 V to +15 V 5.5 V 5.5 V Notes I. TJ Max-ISO'C 2. Ratings apply to ambient temperature at 2S·C. Above this temperature, derate at 7.5 mWrC. 3. Voltage values are with respect to network ground terminals unless otherwise noted. 4. This rating applies between any two inputs of anyone of the gates. 9-135 ENABLE OUTPUT L L L L H L H L L H H H MA9643 Equivalent Circuit (1/2 of Circuit) At VCC1 10kn 01~ Cl R3 Rl lkn 3kn R2 +--.---I----1--t' Q14 1.5kU 03 t---------i:OS· 07 OUT 011 02 Rll eoOn o CROSSUNDER R4 soon 014 GNO EOOO27OF Recommended Operating Conditions Symbol Characteristic Min Typ Max Unit Vce1 Supply Voltage 4.75 5.0 5.25 VCC2 Supply Voltage 11.4 12 12.6 V TA Operating Temperature 0 25 70 ·C V me 1lA9643 J.LA9643 Electrical Characteristics Over recommended operating temperature and VCC1, VCC2 ranges, unless otherwise specified. DC Characteristics Symbol Characteristic Condition Typ1 Min Max VIH Input Voltage HIGH VIL Input Voltage LOW 2.0 VOH Output Voltage HIGH IOH = -400 p.A VOL Output Voltage LOW IOL = 10 mA 0.4 0.5 IOL = 1.0 mA 0.2 0.3 VCC2- 0.5 Input Current at Maximum Input Voltage VCC1 = 5.25 V, VCC2 = 11.4 V VI =5.25 V IIH Input Current HIGH VI =2.4 V IlL Input Current LOW V 0.8 II VI =0.4 V Unit V V VCC2- 0.2 V 0.1 mA A Inputs 40 p.A E Inputs 80 A Inputs -0.5 E Inputs -1.0 mA ICC1(L) Supply Current from VCC1 All Outputs LOW VCC1 = 5.25 V, VCC2 = 12.6 V 15 19 mA ICC2(L) Supply Current from VCC2 All Outputs LOW VCC1 = 5.25 V, VCC2 = 12.6 V 5.5 9.5 mA ICC1(H) Supply Current from VCC1 All Outputs HIGH VCC1 = 5.25 V, VCC2 = 12.6 V 9.0 13 mA ICC2(H) Supply Current from VCC2 All Outputs HIGH VCC1 = 5.25 V, VCC2 = 12.6 V 5.5 9.5 mA AC Characteristics VCC1 = 5.0 V, VCC2 = 12 V, TA = 25°C Symbol Characteristic tDLH Delay Time tDHL Delay Time tTLH Rise Time tTHL Fall Time tTLH Rise Time tTHL Fall Time tPLHA_ tpLHB tPHLA_ tpHLB Skew between outputs A and B Condition CL =300 pF CL =300 pF RSERIES = 0 RSERIES = 10 n CL =300 pF .( Min Typ 1. All typical values are at vcc, = 5.0 V. V= = 12.0 V, and TA - 2SoC unless otherwise noted. 9-137 Unit 5.0 9.0 17 ns 5.0 9.0 17 ns 6.0 11 17 ns 6.0 11 17 ns 8.0 14 20 ns 8.0 14 20 ns 0.5 Note Max ns MA9643 AC Test Circuit and Waveforms v,-_...r-- 2.4 V - - " " L_ _.....""",_.---vo 1-<10ns I v,----1 .....:---VON CFI01760F Notea Tha pulse generator has the following characteristics: PRR -1.0 MHz, Zo - 50 n CL includes probe and jig capacitance. 9·138 J.LA9645(3245) Quad TTL To MOS/CCD Driver FAIRCHILD A Schlumberger Company Linear Division Interface Products Description The j.lA9645(3245) is a high speed driver intended to be used as a clock (high level) driver for 18 or 22·lead dy· namic NMOS RAMs. It also satisfies the non·overlapping 2·phase clock drive requirements for CCD memories like the F464 (64K) RAM. Connection Diagram 16-Lead DIP (Top View) Vee1 VCC2 The circuit is designed to operate on nominal + 5.0 V and + 12 V power supplies and contains input and output clamp diodes to minimize line reflections. ourD our A INO INA The device features two common enable inputs, a refresh select input and a clock control input. Internal gating structure is organized so that all four drivers may be de· activated for standby operation, or a single driver may be activated for read/write operation or all four drivers may be activated for refresh operation. C E, R E2 INC INB The j.lA9645(3245) is a lead for lead replacement of the Intel 3245 Quad TTL·to·MOS Driver, with substantially reo duced DC power dissipation. our a OUTC OND • • • • NC Interchangeable With Intel 3245 Four High Speed, High Current Drivers Control Logic Optimized For MOS RAMs Satisfies CCD Memory And Delay Line Drive Requirements • TTL And DTL Compatible Inputs • High Voltage Schottky Technology Device Code Package Code j.lA9645DC(3245) 7B j.lA9645PC(3245) 9B Absolute Maximum Ratings Truth Table Storage Temperature Range Ceramic DIP Molded DIP Operating Temperature Range Lead Temperature Ceramic DIP (soldering, 60 s) Molded DIP (soldering, 10 s) Internal Power Dissipation 1,2 16L·Ceramic DIP 16L·Molded DIP Supply Voltage, VCC1 Supply Voltage, VCC2 All Input Voltages Outputs For Clock Driver Temperature Under Bias Order Information Package Description Ceramic DIP Molded DIP Inputs -65·C to + 175·C -65·C to + 150·C O·C to +70·C 300·C 26!?·C 1.50 W 1.04 W -0.5 V to +7.0 V -0.5 V to + 14.0 V -1.0 V to V-1.0 V to (V-) +1.0 V -10·C to +70·C Control Address C E2 E1 INPUT REFRESH H X X X X H X X X X X X X X X X X L L L L L L H L X X L H- HIGH L=LOW Don't Care X= Notes 1. TJ Max -175'C for the CeramiC DIP, and 150'C for the Molded DIP. 2. Ratings apply to ambient temperature at 25·C. Above this temperature, derate the 16L-Ceramic DIP at 10 mWrC, and the 16L-Molded DIP at 8.3 mWrC. 9·139 H Output H L L L L H H J.LA9645(3245) Equivalent Circuit Vcc, I vi A4 SkU ·'if ii 71IOn At 10lcH ...... ~tD12 ~ t-- "02 t C1 10;'" ""'05 ".... ""'014 ".... ':" ~~D7 R14 SIUI R15 5kn '-- R11 300n R18 SkU ~1U1 .: ~ ~D13 r-:tI va;- i~~" ~ ~DI ~ ~D10 10k.l1 ~ N ~~ 150n D8~ Q6 ii. "018 D4! ...... R7 200" ~ ii, R10 1.5k" "017 "1 iDS GNO ~ OUT8 !tiB INC INO I I ....;-.- OUTC ~ OUTD I I I 9-140 !t,11 ""'012 .,....,. R13 ......:: .~ III 1.5 kn ~ C 1 R3 R K~ RI 4kn ....... OUT A j~D14 ""011 .,....,. ':" MA9645(3245) Logic Diagram !, I!o OUT A INA OUTS INII OUTe INe OUT 0 INiI ii C 1lA9645(3245) Electrical Characteristics VCCl = 5.0 V ± 5%, VCC2 = 12 V ± 5%, TA = Doe to 70 oe, unless otherwise specified. DC Characteristics Symbol Characteristic Condition Typ Input Load Current, IN (A,B,C,D) VF = 0.45 V Max -0.25 Unit IFD IFE Input Load Current, R, C, E1, E2 VF = 0.45 V -1.0 rnA IRD Data Input Leakage Current VR= 5.0 V 10 IRE Enable Input Leakage Current VR =5.0 V 40 iJ.A iJ.A VOL Output Voltage LOW Output Voltage HIGH 0.45 IOL = 5.0 mA, VIH = 2.0 V IOL=-5.0 mA VOH Min IOH = -1.0 mA, VIL = 0.8 V VIL Input Voltage LOW, All Inputs Input Voltage HIGH, All Inputs V -1.0 V VccrO.5O IOH = 5.0 mA VIH rnA VCC2 +1.0 0.8 2.0 V V I+H Positive Supply Current HIGH VCCl =5.25 V 13 20 I-H Negative Supply Current HIGH VCC2= 12.6 V 14 20 mA PC(H) Power Consumption HIGH All Outputs HIGH 248 357 mW Power Per Channel mA 62 90 mW I+L Positive Supply Current LOW VCCl = 5.25 V 27 35 rnA I-L Negative Supply Current LOW VCC2 = 12.6 V 12 15 mA PC(L) Power Consumption LOW All Outputs LOW 296 373 mW 74 94 mW Power Per Channel 9-141 ~9645(3245) 1LA9645(3245) (Cont.) Electrical Characteristics VCC1 = 5.0 V ± 5%, VCC2 = 12 V ± 5%, TA = O°C to 70°C, unless otherwise specified. AC Characteristics Symbol t-( +) Characteristic Input to Output Delay RSERIES =0 Delay Plus Rise Time RSERIES=O t+(-) Input to Output Delay RSERIES=O tOFt Delay Plus Fall Time RSERIES= 0 tT Output Transition Time RSERIES = 20 tOR2 Delay Plus Rise Time RSERIES = 20 tOF2 Delay Plus Fall Time RSERIES = 20 tORt Mint Condition T yp2,4 5.0 3.0 n n n 10 11 18 7.0 18 13 27 24 Max3 ns 32 AC Test Circuit and Waveforms 3V~\ "K"'u_v____--' 1. - ____ _ GND _ _ v_ - WF00111F Note AC Test Conditions: Input Pulse Amplitude - 3.0 V Input Pulse Rise and Fall Times = 5.0 ns Between 1.0 V and 2.0 V 9-142 ns ns 32 20 38 38 Notes 1. CL=150 pF 2. CL - 200 pF 3. CL = 250 pF 4. Typical values are measured at TA - 25°C CROOe11F Unit ns ns ns ns IlA9665 • IlA9666 IlA9667 • IlA9668 High Current/Voltage Darlington Drivers FAIRCHILD A Schlumberger Company Linear Division Interface Products Description Connection Diagram 16-Lead DIP (Top View) The #lA9665, #lA9666, #lA9667, and #lA9668 are comprised of seven high voltage, high current NPN Darlington transistor pairs. All units feature common emitter, open collector outputs. To maximize their effectiveness, these units contain suppression diodes for inductive loads and appropriate emitter base resistors for leakage. INA INS The #lA9665 is a general purpose array which may be used with DTL, TTL, PMOS, CMOS, etc. Input current limiting is done by connecting an appropriate discrete resistor to each input. INC IND INE INF The #lA9666 version does away with the need for any external discrete resistors, since each unit has a resistor and a Zener diode in series with the input. The #lA9666 was specifically designed for direct interface from PMOS logic (operating at supply voltages from 14 V to 25 V) to solenoids or relays. INO OUTG OND COMMON Order Information Device Code The #lA9667 has a series base resistor to each Darlington pair, thus allowing operation directly with TTL or CMOS operating at supply voltages of 5.0 V. #lA9665DC #lA9665PC #lA9666DM #lA9666DC #lA9666PC #lA9667DM #lA9667DC #lA9667PC #lA9668DM #lA9668DC #lA9668PC The #lA9668 has an appropriate input resistor to allow direct operation from CMOS or PMOS outputs operating from supply voltages of 6.0 V to 15 V. The #lA9665, #lA9666, #lA9667, and #lA9668 offer solutions to a great many interface needs, including solenoids, relays, lamps, small motors, and LEDs. Applications requiring sink currents beyond the capability of a single output may be accommodated by paralleling the outputs. • • • • • • • Seven High Gain Darlington Pairs High Output Voltage (VCE = 50 V) High Output Current (Ic 350 mAl DTL, TTL, PMOS, CMOS Compatible Suppression Diodes For Inductive Loads 2 Watt Molded DIP On Copper Lead Frame Extended Temperature Range = 9-143 Package Code 68 98 68 68 98 68 68 98 68 68 98 Package Description Ceramic DIP Molded DIP Ceramic DIP Ceramic DiP Molded DIP Ceramic DIP Ceramic DIP Molded DIP Ceramic DIP Ceramic DIP Molded DIP J.{A9665 • IlA9666 • IlA9667 • IlA9668 Absolute Maximum Ratings Storage Temperature Range Ceramic DIP Molded DIP Operating Temperature Range Extended (!lA96661718M) Commercial (!lA9665/6/7/8C) Lead Temperature Ceramic DIP (soldering, 60 s) Molded DIP (soldering, 10 s) Internal Power Dissipation 1, 2 16L-Ceramic DIP 16L-Molded DIP Input Voltage Output Voltage Emitter-Base Voltage Continuous Collector Current Continuous Base Current -65·C to +175·C -65·C to +150·C -55·C to +125·C O·G to +70·C 300·G 265·G 1.50 W 1.04 W 30 V 55 V 6.0 V 500 mA 25 mA Notes 1. TJ Max -175'C for the Ceramic DIP, and 150'C for the Molded DIP. 2. Ratings apply to ambient temperature at 25'C. Above this temperature, derate the 16L-Ceramic DIP at 10 mWI'C, and the 16L-Molded DIP at 8.3 mW/'C. 3. Under normal operating conditions, these units will sustain 350 rnA per output with VCE(Sat) = 1.6 V at 70'C with a pulse width of 20 ms and a duty cycle of 30%. Equivalent Circuits 1lA9667 1lA9665 COMMON COMMON ,---....~-=-- OUT 2.7kn .----....~-=-- OUT iii 1lA9666 1lA9668 CO.aN COMMON , - - -.....___-=--OUT . - - - -....- - - O U T 10-5 kll E000351F 9-144 MA9665 • MA9666 • MA9667 • MA9668 /lA9665/617/8 Electrical Characteristics TA = 25°C, unless otherwise specified. Symbol ICEX Output Leakage Current TA = 70°C for Commercial VCE = 50 V VCE = 50 V, VI = 6.0 V VCE = 50 V, VI = 1.0 V VCE(Sat) Test Figure Conditions 1 Characteristic pA9666 pA9668 Max 100 1b 500 1b 2 1.25 1.6 Ic = 200 rnA, 18 = 350 pA 2 1.1 1.3 Input Current VI = 17 V 2 0.9 1.1 3 0.85 1.3 VI =3.85 V pA9666 pA9667 3 0.93 1.35 VI = 5.0 V !lA9668 3 0.35 0.5 VI = 12 V 3 1.0 1.45 4 Input Current2 TA = 70°C for Commercial Ic = 500 pA VI(ON) Input Voltage3 VCE = 2.0 V, Ic = 300 rnA 65 13 2.4 VCE = 2.0 V, Ic = 250 rnA 5 2.7 VCE = 2.0 V, Ic = 300 mA 5 3.0 pA9668 5 5.0 VCE = 2.0 V, Ic = 200 mA 5 6:0 VeE = 2.0 V, Ie = 275 rnA 5 7.0 VeE = 2.0 V, Ic = 350 mA 5 VeE = 2.0 V, Ic = 350 mA pA9665 2 pA V mA pA 5 VCE = 2.0 V, Ic = 125 mA DC Forward Current Transfer Ratio pA9666 pA9667 50 5 VCE = 2.0 V, Ic = 200 rnA Unit 500 Ic = 350 mA, 18 = 500 pA II(OFF) hFE Typ Collector-Emitter Saturation Voltage Ic = 100 mA, 18 = 250 pA II(ON) Min 1a V 8.0 1000 CI Input Capacitance 15 30 pF tpLH Turn-On Delay 0.5 VI to 0.5 Vo 1.0 5.0 iJ.S tpHL Turn-Off Delay 0.5 VI to 0.5 Vo 1.0 5.0 iJ.S IR Clamp Diode Leakage Current VR = 50 V 6 50 pA VF Clamp Diode Forward Voltage IF=350 mA 7 2.0 V Notes 1. All limits stated apply to the complete Darlington series except es specified for a single device type. 2. The I'(OFF) current lim" guaranteed against partial turn-on of the output. 3. The V'(ON) voltage limit guarantees a minimum output sink current per the spec~ied test conditions. 9-145 1.7 MA9665 • MA9666 • MA9667 • MA9668 Typical Performance Curves Collector Current vs Saturation Voltage Collector Current vs Input Current IJCO ,- 400 TYPICAL (2 PARALLELED DEVICES) -! TYPICAL I I TYPICAL (SINGLE DEVlCE)- , ' I, o I 1.0 I ,, MAX/ I Z 1.5 1.0 :::> ;!; 0.5 E ffi i a / ' ~ 1.0 5 ~0.5 ./' ,/.' 3.0 ./ I /, " o 2.0 oC 1.5 V , w :::> ~o s.o 6.0 7.0 a.o V V "," ,/ TYP , " o 5.0 9.0 INPUT YOLTAGta - v Peak Collector Current va Duty Cycle arid Number of Outputs (Molded package) "" 6.0 7.0 8.0 9.0 10 11 12 INPUT VOLTAGE - V Peak Collector Current vs Duty Cycle and Number of Outpl,lts (Ceramic Package) . E' I ~300I--H--\--,H-"*""---+'~-I----l ~ ~ ~ 2ODr---~~~~~~~~--~ ~ ~ DUTY CYCLE - "10 .." 1.0 0.5 , / V ..' .. . TY:~ ~' ~' DUTY CYCLE - % 9·146 12 14 16 18 20 22 INPUT VOLTAGE - V ~ TYP, / , E 600 2.0 V ~' , / , o 400 1lA9668 Input Current vs Input Voltage 2.5 2.0 ~ z INPUT CURRENT - 1lA9667 Input Current vs Input Volt!lge . .. ... ...." iB - 20D SATURATION VOLTAGE - V '" I ,'1 o o 1.5 V ""V/ / ~ 1.5 V I /UMIT MA) I I V " 0.5 I / ---/-. ~' I o ,, 2.0 V MAXI I I 1lA9666 Input Current vs Input Voltage 24 26 JlA9665 • JlA9666 • JlA9667 • JlA9668 Test Circuits Figure 1a Figure 1b Figure 2 OPEN +50V OPEN+50V ~~r" Figure 3 OPEN 'ifIT" Figure 4 OPEN OPEN +50V rr'mA vi"':'" -= Figure 6 Figure 7 +50V ,- ~ ~ " OPEN -!Of iF 9-147 #+ t t -:- Figure 5 OPEN rffi Ie l-:-v eE :-:- t tlA9665 • tlA9666 • tlA9667 • tlA9668 Typical Applications Buffer for Higher Current Loads PMOS to Load V, II:! V, V2 16 16 15 15 14 14 13 l "A9666 13 12 ~9667 12 11 10 PMOS OUTPUT -= TTL -= OUTPUT TTL to Load V, V2 16 15 14 13 ~9668 ~~ 10 1 CMOS OUTPUT -= 12 -= -= 9-148 -= t~ IlA9679 Differential Bus Repeater FAIRCHILD A Schlumberger Company Linear Division Interface Products Description Connection Diagram 8-Lead DIP (Top View) The J.lA9679 Differential Bus Repeater is a monolithic integrated circuit designed for bidirectional data communication on balanced bus transmission lines. The repeater meets EIA Standard RS-422A. The J.lA9679 combines a three-state differential line driver and a differential input line receiver, both of which operate from a single 5.0 volt power supply. The driver and receiver are operated from a single enable lead. When one device is active, the other device is disabled. This feature allows for complete isolation of the driver from the receiver function. The driver is designed to handle loads up to 60 mA of sink or source current. The driver features positive and negative current limiting and thermal shutdown protection for line fault conditions. Thermal shutdown is designed to occur at a junction temperature of "" 160°C. The receiver features a typical input impedance of 12 kU, an input sensitivity of ± 200 mV and a typical input hysteresis of 50 mV. • • • • • • • • • • • T B E z GND y Package Code J.lA9679TC 9T Package Description Molded DIP Function Table Receiver Differential Inputs Enable Output Driver A-B E T VID;;' 0.2 V L H Z -0.2 V <; VID < 0.2 L ? Z VID<;-0.2 V V L L Z X H Z See Function Table Driver Function Table Driver Absolute Maximum Ratings Driver Input -65°C to + 150°C O°C to +70°C 265°C 0.93 W 7.0 V 5.5 V = 150"C. 2. Ratings apply to ambient temperature at 25°C. Above this temperature, derate at 7.5 mWrC. 3. AU voltage values are with respect to network ground terminal. 9-149 Enable Output Receiver A-B E y H H H L Z L H L H Z H = High Level L = Low Level ? = Indeterminate X = Immaterial Z = High Impedance (off) Notes 1. TJ Max A Order Information Device Code Meets EIA Standard RS-422A Three-State Control Common Enable For Isolation Driver Output Capability ± 60 mA Thermal Shutdown Protection Positive And Negative Current Limiting High Impedance Receiver Input Receiver Input Sensitivity Of ± 200 mV Receiver Input Hysteresis Of 50 mV Typical Operates From Single 5.0 V Supply Low Power Requirements Storage Temperature Range Operating Temperature Range Lead Temperature Molded DIP (soldering, 10 s) Internal Power Dissipation I, 2 Supply Voltage 3 Input Voltage Vcc Z J-lA9679 Recommended Operating Conditions Symbol Characteristic Min Typ Max Units V Vcc Supply Voltage VID Differential Input Voltage 1 10H Output Current HIGH Driver -400 p.A 10L Output Current LOW Driver 60 mA Receiver 16 4.75 5.0 5.25 Receiver Operating Temperature TA 0 25 ±12 V -60 mA 70 °C Note 1. The algebraic convention where the less positive (more negative) limit is designated minimum is used in this data sheet for common mode input voltage and threshold voltage levels only. j.lA9679 Electrical Characteristics Over recommended operating temperature and supply voltage ranges, unless otherwise specified. Driver Section Symbol Characteristic Condition VIH Input Voltage HIGH VIL Input Voltage LOW VIC Input Clamp Voltage 11=-18mA I VOD11 Differential Output Voltage 10=0 V RL=100 Typ1 Max 2.0 .n IVOD21 Differential Output Voltage . -I ov~ n!IOL J 'i (+) ! lOti (-) 9·152 3750 JlA9679 Parameter Measurement Information (Cont.) Figure 4 Driver Differential Output Delay and Transition Times IN GENERATOR (Note 1) son J:'SV !no 1.] 3V OV !no """",....,90%=...-- ~ 2.SV OIlT Figure 5 Drive Propagation Times IN 2.3V RL=27n ~>-"""'''''''-OUT y OIlT GENERATOR (Note 1) ENABLED (Note 3) Figure 6 Z OIlT Driver Enable and Disable Times (tpZH. tpHZ) , -_ _.oSI ---C>--r---t-- OVor3V OIlT IN RL= 110n GENERATOR (Note 1) d. 'j J.9 sv H son OIlT 3V OV ..... ..:..L-VOH 2.3V O.SV VOFF""'OV Figure 7 Driver Enable and Disable Times (tpZL. tpLZ) sv RL= loon IN ~>-"""'''''''-OUT d. sv 3V ov ~r OUT l.j -1IpLZr/SV ~SV t 9-153 VOL }.tA9679 Parameter Measurement Information (Cont.) Figure 8 Receiver Propagation Delay Times -d. 5V IN 1.) 3V OV ~: ~ OUT 1.3V ENABLED _ _ _ _ _ _ _...J VOH 1.3V VOL (Note 3) Figure 9 Receiver Enable and Disable Times 51 o--5V IPZH . -cE IPZL (1IA9679)~. INPUT 1.5V ((lA9679)~ 3V S1t01.5V INPUT S2 OPEN S3CLOSED OV VOH --.I INPUT 1.5V ~ PHZ O.5V OUTPUT IPLZ IpHZ _9~3V ~~~4.5V ~VOL OUTPUT - - OV ("'-7 ) S2 CL05ED OV S30PEN 1.5V OUTPUT 3V 5110 -1.5V 1.5V ("A9679)~ <-. S1101.5V S2 CLOSED INPUT.l 3V 511o-1.5V 1.5 V 52 CL.OSED \ OV S3CLOSED OV S3 CLOSED PLZ ~ --~1.3V VOH OUTPUT --~1.3V O.5Y VOL Notes 1. The input pulse is supplied by a generator having the following characteristics: PRR = 1.0 MHz, duty cycle"'50%, t,';; 6.0 ns, tf';; 6.0 ns, Zo=50n. 2. CL includes probe and stray capaCitance. 3. ,.A96178 Enable is active low, ,.A96177 Enable is active high. 4. All diodes are 1N916 or equivalent. 9-154 OAC08 8-Bit Multiplying 01 A Converter FAIRCHIL.D A Schlumberger Company Linear Division Data Acquisition Description Connection Diagram 16-Lead DIP (Top View) The DAC08 is an 8-bit multiplying digital-to-analog converter constructed using the Fairchild Planar Epitaxial process. Advanced circuit design achieves very high speed performance with outstanding applications capability and low cost. • Fast Settling Time To 1/2 LSB 85 ns • Full Scale Current Prematched To ± 1 LSB • Direct Interface To TTL, CMOS, ECL, HTL, PMOS, DTL • Linearity To ± 0.19% Max Over Temperature Range • High Output Compliance -10 V To +18 V • True And Complemented Outputs • Wide Range Multiplying Capability • Low Full Scale Current Drift + 10 ppml"C TYP • Wide Power Supply Range ± 4.5 V To ± 18 V • Low Power Consumption 33 mW at ± 5 V • External Compensation For Max Bandwidth • Low Cost Absolute Maximum Ratings Storage Temperature Range Ceramic DIP Molded DIP Operating Temperature Range Extended (DAC08M) Commercial (DAC08C) Lead Temperature Ceramic DIP (soldering, 60 s) Molded DIP (soldering, lOs) Internal Power Dissipation 1. 2 16L-Ceramic DIP 16L-Molded DIP V+ to VLogic Inputs VLC Reference Reference Voltage Reference Inputs (V14' V15) Input Differential (V14, V15) Input Current IREF (14) -65°C to + 175°C -65°C to + 150°C Order Information Device Code -55°C to +125°C O°C to 70°C DAC08DM DAC08EDC DAC08EPC DAC08CDC DAC08CPC 300°C 265°C 1.50 W 1.04 W 36 V V- to (V-) + 36 V V- to V+ V- to V+ ± 18 V 5.0 mA Notes 1. TJ Max = 150°C for the Molded DIP, and 175°C for the Ceramic DIP. 2. Ratings apply to ambient temperature at 25°C. Above this temperature, derate the 16L·Molded DIP at 8.3 mwrc, the 16L·Ceramic DIP at 10 mW/oC. 10-3 Package Code 78 78 98 78 98 Package Description Ceramic DIP Ceramic DIP Molded DIP Ceramic DIP Molded DIP • DAC08 Block Diagram LSB B8 MSB V+ COMP 61 B2 B3 B4 B5 B7 B6 V- DAC08, DAC08E, and DAC08C Electrical Characteristics TA = O°C to 70°C for the DAC08E and DAC08C, -55°C to + 125°C for the DAC08; Vee = ± 15 V, IREF = 2.0 mA. Output characteristics refer to both lOUT and lOUT. Symbol Characteristic Min Condition Typ Max RESO Resolution B.O B.O B.O MONO Monotonicity B.O B.O B.O NL Nonlinearity ts tpLH Settling Time Propagation Delay DACOB, DACOBE ±0.19 DACOBC ±0.39 To ± h LSB, all bits switched, ON or OFF TA = 25°C TA = 25°C tpHL I B5 135 B5 150 Each bit 35 60 All bits switched 35 60 DACOB I DACOBE/C ±10 TCIFS Full Scale Temperature Coefficient Vac Output Voltage Compliance Full scale current change Ra > 20 mil IFS4 Full Scale Current VREF = 10.000 V, R14 , R15 = 5.000 kil, TA = 25°C IFSS Full Scale Symmetry IFs4 -I Fs2 Izs IFSR Zero Scale Current Output Current Range VIL Logic Input Voltage LOW VIH Logic Input Voltage HIGH IlL Logic Input Current LOW < 1,12 LSB, -10 Unit bits bits % FS ns ns ppmrC +1B V 1.990 2.Q40 mA DACOB/E ± 1.0 ±B.O pA DACOBC ±2.0 ±16 DACOB/E 0.2 2.0 DACOBC 0.2 4.0 1.940 p.A mA R14. 15 = 5.000 kil VREF = + 15.000 V, V- = -10 V 2.1 VREF=+25.000 V, V-=-12 V 4.2 VLC = 0 V O.B V -10 p.A 2.0 VLC=O V, VI=-10 V to +O.B V 10-4 -2.0 DAcoa DAC08 Series (Cant.) Electrical Characteristics TA = O°C to 70°C for the DAC08E and DAC08C, -55°C to + 125°C for the DAC08; Vee = ± 15 V, IREF = 2.0 rnA. Output characteristics refer to both lOUT and lOUT. Symbol Characteristic Min Condition IIH Logic Input Current HIGH VI=+2.0 V to +18 V VIS Logic Input Swing V- =-15 V VTHR Logic Threshold Range Vee=±15 V 115 Reference Input Bias Current dl/dt Reference Current Slew Rate PSSIFS+ Power Supply Sensitivity Typ pA -10 +18 V -10 +13.5 V -3.0 pA 4.0 8.0 V+ = +4.5 V to + 18 V, IREF = 1.000 mA 0.01 0.002 0.01 Vee = ± 5.0 V, IREF = 1.000 mA 11+ V+ = +5.0 V, IREF = 2.000 mA, V- = -15 V I1+ Vee=±15 V, IREF = 2.000 mA 1Power Consumption Pc mAillS 0.0003 V- = -4.5 V to -18 V, IREF = 1.000 mA Power Supply Current Unit 10 -1.0 PSSIFS1+ Max 0.002 2.3 3.8 -4.3 -5.8 2.4 3.8 -6.4 -7.8 2.5 3.8 -6.4 -7.8 33 48 V+ = +5.0 V, V- =-15 V, IREF = 2.000 mA 108 136 Vee = ± 15 V, IREF = 2.000 mA 135 174 Vee = ± 5.0 V, IREF = 1.000 mA %/% mA • mW Typical Performance Curves Full Scale Current vs Reference Current Reference Input Frequency Response 5.0 e- TA 4.0 ~ I ...z w '"'":J 0 ...:J ... :J .. 3.0 2.0 / 0 1.0 V °° SMALL SIGNAL VI = 50 mVp-p CENTERED AT 200 mY =T"'N Tb TJAX ALL BITS "HIGH" ;I / V V V .. VI I ... ~ v- = -15V ~ l'LlMITFOR 1- / - = j"0J- '" 2.0 3.0 REFERENCE CURRENT - 4.0 5.0 mA ~ LARGE SIGNAL VI = 2.0 Vp-p CENTERED AT 1.0 V -6 -10 t -I' C-VR'i = i V'tf = 15 0.1 0.2 0.5 FREQUENCY - Note 1. Positive common mode range is always (V +) -1.5 V 10-5 MHz 2.0 1.6 VL'S IV v- = I II -S.O v IREF = 2.0mA ~ 1.2 o \ 2.0 ffi §'" o :J \ r 2.4 .... \ 1.0 ALL BITS "ON" V~ = -IJV I ~ R14 = R15 = 1.0 kO !-RL~500n TA = TMIN TO TUAX 2.• \ II ALL BITS "ON" 1.0 " -2 !50 w > 3.2 - ./ \ III LIMIT FOR Reference AMP Common Mode Range (Note 1) 5.0 0.8 IREF = 1.0 mA_ I I I 0.4 10 ° ~ IREF = 0.2 mA- 4 ~ 4 6 ro t-r-- N REFERENCE COMMON MODE VOLTAGE - U V DAC08 Typical Performance Curves (Cont.) Output Current vs Output Voltage (Output Voltage Compliance) 3.2 ~ 2.4 I- 2.0 I Z V-·-15V 1.6 !:; 1.' 0 0.8 .."S" II [ w II: II: 16 I v_J-S.O~ 1.6 1.' E u IREF ~ = 1.0 mA r-... 14 ~ I -50 50 ~ ALL BITS "HIGH" OR "LOW" II 0.6 ~ IAr'I2.°j' ~- ~ ~- r - -":I- 8: i -> 0.4 0.' I- Z II: II: 4.0 , 'A,""I ·O j IREF 2.0 "" ,- =O.2mA 4.0 -4.0 ,- .. -15V 8.0 IREF = 2.0mA 5.0 W 4.0 ~ 3.0 ." 8: ,. B4 ,. Y+=+1SY '.0 1.0 I 011 -1' B3 I ,- ~ B' V~ 8.0 I f il :lI: 150 oc Supply Current vs Temperature 7.0 Bl 100 8.0 Z 0 50 TEMPERATURE - I- II: II: !:; -4.0 ALL B'TS "H'GH" OR "LOW" 20 " o o .....0 -8.0 -1' -16 NEGAnVE SUPPLY VOLTAGE - LOGIC INPUT VOLTAGE - V V -20 -50 50 TEMPERATURE - 100 150 oc Supply Current vs Positive Supply Voltage 8.0 ALL BITS "HIGH" OR "LOW" 1- ~ 8.0 I ffi ~ 4.0 ~ ~.. ,. Note 1. B1 through B8 have identical transfer characteristics. Bits are fully switched, with less than 1/2 LSB error. At less than ± 100 mV from actual threshold, these switching pOints are guaranteed to lie between 0.8 and 2.0 V over the operating temperature range (VLe - 0.0 V). 2.0 o o 4.0 8.0 12 16 POSITIVE SUPPLY VOLTAGE - 20 V 10-6 - re~"..g~~TVC~:~:~~· GRAPH.) - -50 8.0 IAE~' 2.6mA 1.0 =-15 V 4.0 oc Supply Current vs Negative Supply Voltage w 0.8 I- RANGE FOR V- -12 150 100 TEMPERATURE - I- .""" or- -&.0 1.' ~ 8. J.eRJ'SS'~LE ~uJ.n. tOL~AGE I IREF:52.0 mA 0.4 18 Bit Transfer Characteristics (Note 1) " f- i! ~ 0.8 OUTPUT VOLTAGE - V 1.4 ~ !-- o.ZmA 10 r-... I o r- I= I IREF > ,; I 0.4 r-... Vr·,5V IIA'i' 2.imA I 20 2.0 I TA = TMIN TO TMAX ALL BITS "ON" 2.8 Output Voltage Compliance vs Temperature VTH-VLC vs Temperature DAC08 Test Circuits Figure 1 Settling Time Measurement FOR TURN-ON, VL " 2.7 V +SV Yt. FOR TURN-OFF, VL = 0.1 V 0.11-1F 1kOJ J50~ +0.4 V >--....- ....""""""-+---4 ~~ PRO:?:: -0.4 v R15 0.1 ~J+15V -15 V Typical Applications Figure 2 Basic Positive Reference Operation MSB LSB B1 B2 B3 B4B5B6 B7BB - 1 FS "" RREF x 255 256 IO+Io=IFS For all logic states IREF VREF+ +YR.. 14 RAEF (R14) 10 DAC08 VAEF- 10 15 Yt.c COMP Cc 0.1 pF For fixed reference, TTL operation, typical values are: VREF = +10.000 V RREF 13 R15 -= +VREF =5.000 k R15 "" RREF Cc = 0.01 ,uF VLe " 0 V (GROUND) V+ 10-7 DAC08 Typical Applications (Cont.) Figure 3 Recommended Full Scale Adjustment Circuit Figure 4 LOWT.C. 4.5kn r-""",_-i14 -- , - -......-"""'_--114 IREF'" 2 mA "'10 V Basic Negative Reference Operation DACOS DACOS R15 -VREF--'VI_-I15 50 kCl~--"~TlV!.-_-I15 POT ~5kO Note RREF sets IFs; R15 is for bias current cancellation. Figure 5 Basic Unipolar Negative Operation MSB LSB Bl B2 B3 B4 B5 B6 B7 B8 Eo 10 IREF = 2.000 mA 14 DAC08 iii 5.000 kCl -= EO B1 B2 B3 B4 B5 B6 B7 Full Scale Full Scale - LSB iO B8 10 mA Eo Eo 1 0 1.992 1.984 .000 .008 -9.960 -9.920 .000 - .040 mA Half Scale + LSB Half Scale Half Scale - LSB 1 1 0 0 0 1 0 0 1 0 0 1 0 0 0 0 1 0 0 1 1 0 1.008 1.000 .992 .984 .992 1.000 -5.040 -5.000 -4.960 -4.920 -4.960 -5.000 Zero Scale + LSB Zero Scale 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 .008 .000 1.984 1.992 - .040 .000 -9.920 -9.960 10-8 DAC08 Typical Applications (Cont.) Figure 6 High Noise Immunity Current To Voltage Conversion Bl B2 B3 B4 B5 BI B7 BI 5k!l IREF =2mA 5kCl +10Y VAEF+ 10 DACOI VREF- V+ Eo 10 v- ec VLC 5 kCl 5 kCl C\,;:,. -::- ECY ':' +15V -15V ':' Provides isolation from ground loops Symmetrical ± 10 V output Useful within systems between boards True complementary/differential current transmission High speed analog signal transmission B1 B2 B3 B4 B5 B6 B7 Pos Full Scale Pos Full Scale - LSB (+) Zero Scale B8 Eo 1 0 +9.920 +9.840 1 0 0 0 0 0 0 1 0 0 H Zero Scale +0.040 -0.040 Neg Full Scale + LSB Neg Full Scale 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 -9.840 -9.920 Figure 7 Basic Bipolar Output Operation 10.000 IREF = 2.000 mA =0;: 1. DACOI • v 10.000 kCl 10 Eo 10 Eo 10.000 kCl 2 CflOV41F B1 B2 B3 B4 B5 B6 B7 Pos Full Scale Pos Full Scale - LSB Zero Scale + LSB Zero Scale Zero Scale - LSB 1 0 Neg Full Scale + LSB Neg Full Scale 0 0 B8 Eo Eo 1 0 - 9.920 - 9.840 +10.000 + 9.920 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 - 0.080 0.000 + 0.080 + 0.160 + 0.080 0.000 0 0 0 0 0 0 0 0 0 0 0 0 1 0 + 9.920 +10.000 - 9.840 - 9.920 10-9 • DAC08 Typical Applications (Cont.) Figure 8 Positive Low Impedance Output Operation DAC08 For complementary output (operation as negative logic DAe). connect inverting input of Op-Amp to 10 (Lead 2); connect 10 (Lead 4) to ground. Figure 9 Negative Low Impedance Output Operation DACOS IFS .... ~IREF For complementary output (operation as negative logic DAC), connect inverting input of Op-Amp to 10 (Lead 2); connect 10 (Lead 4) to ground. Figure 10 Pulsed Reference Operation +VAEF I ovJl... I ~RREF I R, I OPTIONAL RESISTOR FOR OFFSET INPUTS -U- 14 REQ Rp DAC08 ~200 ..n.. TYPICAL VALUES: R, =5kO i-V. = 10V 10 ":" ":" ":' NO CAP 10-10 DAcoa Typical Applications (Cont.) Figure 11 Accommodating Bipolar References +VREF V,~ tF +VAEF~W.....--;14 ~WIr-""-I14 -Do- A, II~ DACOS DACOS A15 (OPTIONAL) 15 HIGH INPUT---. IMPEDANCE RREF "" R15 f,---15_ - - - I I +VAEF must be above peak positive swing of VI IREF ~ peak negative swing of II Figure 12 Interfacing With Various Logic Families TTL, DTL YrH = 1.4 V YrN =VLC + 1.4V 15 V CMOS, HTL, HNIL YrH = 7.5 V 12VTO 15V 15 V DAC08 10kO PMOS YrH=OV • 1N4148 9.1kO VLe 6.2 V 10 kO ZENER -5 V TO -10 V 10kO ECl YrH' -1.29 V 10VCMOS YrH = s.o v DACOS 10V 6.2kO VLe VLe 3.6 kO 1N4148 r~1"F 3.9kO 1 kO CR02840F -5.2 V CI'10285OF Note Do not exceed negative logic input range of DAC 10-11 OAC 14081 1508 Series 8-Bit Multiplying 01 A Converters FAIRCHILD A Schlumberger Company Linear Division Data Acquisition Description The DAC1408/1508 Series are mOnolithic B-bit multiplying digital-to-analog converters constructed using the Fairchild Planar Epitaxial process. It is designed for use where the output current is a linear product of an B-bit digital word and an analog input vqltage. The DAC1408/150B Series are lead-for-Iead replacements for the MC 140B and SSS 140B devices. Connection Diagram 16-Lead DIP (Top View) 16 NC • Relative Accuracy ±0.19"1o Error Maximum DAC1408A • 7 And 6-Blt Accuracy Available DAC1408B, DAC1408C • Fast Settling Time To 112 LSB - 85 ns • Non-Inverting Digital Inputs are TTL And CMOS Compatible • Output Voltage Swing +0.5 V to -5.0 V • High-speed Multiplying Input Slew Rate 4.0 mA//.ls • Standard Supply Voltages +5.0 V And -5.0 V To -15 V • Low Full Scale Current Drift + 10 ppmrC Typically • Low Power Consumption 33 mW at ± 5 V • Low Cost Absolute Maximum Ratings Storage Temperature Range Ceramic DIP Molded DIP Operating Temperature Range Extended (DAC1508M) Commercial (DAC140BC) Lead Temperature Ceramic DIP (soldering. 60 s) Molded DIP (soldering. 10 s) Internal Power Dissipation 1, 2 16L-Ceramic DIP 16L-Molded DIP V+ VDigital Input Voltage (5 Vto 12 V) Applied Output Voltage Reference Current (114) Reference Amplifier Inputs (V14. V1S) COMP GND VREF- v- VREF+ v+ lOUT (MSB) Al A8(LSB) A2 A7 A3 A6 A4 AS Order Information -65°C to + 175°C -65°C to + 150°C -55°C to + 125°C O°C to +70°C 1.50 W 1.04 W 5.5 V -16.5 V 5.5 V 0.5 V to -5.2 V 5.0 mA 5.5 V. -16.5 V Device Code DAC140BADC DAC140BAPC DAC140B8DC DAC14088PC DAC1408CDC DAC1408CPC DAC1508DM Package Code 78 98 78 98 78 98 78 Package Description Ceramic DIP Molded DIP Ceramic DIP Molded DIP Ceramic DIP Molded DIP Ceramic DIP Equivalent Circuit Al A2 A3 A4 AS AS A7 A8 GND Notes VR ... 1. TJ Max = 1S0·C for the Molded DIP, and 17S·C for the Ceramic DIP. 2. Ratings apply to ambient temperature at 2S·C. Above this temperature, derate the 16L·Molded DIP at 8.3 mW rc, the 16L-Ceramic DIP at 10 mwrC. -i-.-------, V+ REFERENCE CURRENT AMPUFIER VREF--+---I COMP -V- CURRENT SOURCE PAIR 10-12 DAC1408/1508 Series DAC1408/1508 Series Electrical Characteristics T A = O°C to 70°C for the DAC1408, -55°C to + 125°C for the DAC1508; V+ = +5.0 V, V- = -15 V, VREF/R14 = 2.0 mA. All digital inputs at HIGH logic level. Symbol E, Max Unit DAC140SAlDAC150S ± 0.19 % DAC140SB 1 ±0.39 DAC140SC1 ±0.7S Characteristic Min Condition Relative Accuracy (Error Relative to Full Scale 10) Y2 ts Settling Time to Within (Includes tpLH) LSB tpLH. tpHL Propagation Delay TClo Output Full Scale Current Drift VIH Logic Input Voltage HIGH VIL Logic Input Voltage LOW Typ TA = 25°C2 S5 135 ns TA = 25°C 30 100 ns ±20 ppm 1°C 2.0 V O.S IIH Logic Input Current HIGH VIH = 5.0 V 0 0.04 IlL Logic Input Current LOW VIL = O.S V -0.4 -O.S 115 Reference Input Bias Current -1.0 -5.0 pA lOR Output Current Range mA V- =-5.0 V 0 2.0 2.1 V- = -6.0 to -15 V 0 2.0 4.2 1.9 1.99 2.1 mA 4.0 pA -0.55, +0.4 V 10 Output Current VREF = 2.000 V, R14 = 1.0 10 Min Output Current All bits LOW Voc Output Voltage Compliance E,~0.19% at kn 0 V- =-5.0 V TA = 25°C V- below -10 V dl/dt Reference Current Slew Rate PSRR (-) Output Current Supply Sensitivity 1+ Supply Current -5.0, +0.5 4.0 Power Supply Voltage Range Power Consumption 2.7 pAN +22 mA -7.5 -13 +4.5 +5.0 +5.5 -4.5 -15 -16.5 All bits LOW, V- = -5.0 V 105 170 305 TA = 25°C VRPc mAlps +13.5 0.5 All bits LOW 1VR+ mA All bits LOW. V- = -15 V 190 All bits HIGH, V- = -5.0 V 90 All bits HIGH, V- = -15 V 160 Notes 1. All current switches are tested to guarantee at least 50% of rated output current. 2. All bits switched. 10-13 V mW • DAC1408/1508 Series Test Circuits Figure 1 Notation Definitions Typical values: R14 ~ R15 ~ 1k VREF ~ .20 V Co 15 pF V1 and 11 apply to inputs A1 thru AS The resistor tied to lead 15 is to temperature compensate the bias current and may not be necessary for all applications. 10 ~ K [-~. ~'L + -'iF-' ~: +~+~+R+Ml 32 64 128 256 ~----------~-~~TPUT RL where K ~ VFI'l't and An • "1" if An is at HIGH level An • "0" if An is at LOW level Figure 2 Relative Accuracy Test Circuit MSB A1 A2 A3 12-BIT D/A 0 TO 10 V OUTPUT CONVERTER AS (±o.o2% A6 ERROR MAX) SkO A7 I A4 ..--ro- ..- A8 A9A10A11A12 5OkO LSBllll VREf"'2V 1000 --~ 1 1/ WO.1'#~ /zA714 r R14 9500 MSB 14 13 5 -::- 6 7 8 8-BIT COUNTER • DAC1408 SERIES ~ 10 11 12 LSBofffII 1.0kO - c V- -= ":;" 10-14 ERROR (1V.1%) DAC1408/1508 Series Test Circuits (Cent.) Figure 3 Transient Response and Settling Time V+ V, 1.4 V +2..0 V 14 tf = 1.01<0 15 It::; 10 ne 0.1 pF- USE RL TO GND FOR TURN OFF MEASUREMENT V, DAC1408 1 '0"'" SERIES ~::~~;;T~IME (ALL BITS SWITCHES LOW TO HIGH) 10 11 SETTLING TIME FOR FIGURE 1 16 1. = 300 na TYPICAL Vo TO t1i2 LBS 12 TRANSIENT RESPONSE -~If-............- - -...... 15 pF 1_co';; 25 pF 5.1 0 .... 0.1 pF- "'" V- Applications • • • • • • • • • • • • • • • • Tracking al d Converters Successive Approximation aId Converters 2 112 Digit Panel Meters and DVMs Waveform Synthesis Sample and Hold Peak Detector Programmable Gain and Attenuation CRT Character Generation Audio Digitizing and Decoding Programmable Power Supplies Analog-Digital Multiplication Digital-Digital Multiplication Analog-Digital Division Digital Addition and Subtraction Speech Compression and Expansion Stepping Motor Drive 10-15 DAC1408/1508 Series Applications (Cont.) Figure 5 Negative VREF V+ Figure 4 Positive VREF V+ RI4 ~ RI4 ~ RIS .,..... RIS +VREF AI A2 14 S 6 -= A3 AI DACI408 SERIES A2 A4 A3 A4 AS A6 10 AS A6 10 A8 12 A7 II A7 II C A8 12 y- V- Figure 6 Use with Current-to-Voltage Converting OP AMP VREF V+ MSB 5 AI Theoretical YO = 2.0 VdC RI4 = RI5 • 1.0 kQ Ro = 5.0 kQ YREF t'1,-,4_-",,,,,_--VREF RI4 A2 A5 A6 SERIES A7 A8 10 A3 A4 A6 A7 AS J Adjust VREF R14 or Ra so that Va with all digital inputs at HIGH level is equal to 9.961 Volts. DACI408 AS A2 +"32+ &\+ 128+ 2ss- A3 A4 [AI Va· Ri4(Ro) 2+4+8+16 2V Va • Ti( (5 k) RO [, 1 1 1 2" + "4 + "8 + 16 '1 11 12 1 1 1 +32+64+128+256 Vo • 10 V ~~~ V- 10-16 = 9.961 V ,uA565 Digital to Analog Converter FAIRCHILD A Schlumberger Company Linear Division Data Acquisition Description The J.LA565 is a fast 12-bit digital-to-analog converter combined with a high stability voltage reference on a single monolithic chip. The J.LA565 chip uses 12 precision, high speed bipolar current steering switches, control amplifier, laser-trimmed thin film resistor network, and buried zener voltage reference to produce a high accuracy analog output current. Connection Diagram 24-Lead DIP (Top View) NC NC V+ The internally buried zener reference is laser-trimmed to 10 V with a ± 1% maximum error. The reference voltage is available externally and can supply up to 1.5 mA beyond that required for the reference and bipolar offset resistors. REF OUT (+10 V ± 1%) ANALOG COM REFERENCE IN VBIPOLAR OFFSET IN The chip also contains additional SiCr thin film resistors which can be used either with an external op amp to provide a precision voltage output or as input resistors for a successive approximation AID converter. The resistors are matched to the internal ladder network to guarantee a low gain temperature coefficient and are laser-trimmed for minimum full scale and bipolar offset errors. DAC OUT 13 BIT 12 (lSB) IN The J.LA565 is available in four performance grades. The J,LA565J and J,LA565K are specified for use over the 0 to 70°C temperature range, and the J,LA565S and J.LA565T are specified for the -55°C to + 125°C range. Order Information Device Code Package Code J.LA565SJM J.LA565TJM J.LA565JJC J.LA565KJC • • • • • • Single Chip Construction Very High Speed, Settles To 1/2 LSB In 200 ns Full Scale Switching Time - 30 ns High Stability Buried Zener Reference On Chip Monotonicity Guaranteed Over Temperature Linearity Guaranteed Over Temperature - 112 LSB Max (J,lA565K) • Low Power, 225 mW Including Reference 10-17 7R 7R 7R 7R Package Description Ceramic (Side Brazed) Ceramic (Side Brazed) Ceramic (Side Brazed) Ceramic (Side Brazed) • J.LA565 Absolute Maximum Ratings Storage Temperature Range Operating Temperature Range Extended (/JA565M) Commercial (1JA565C) Lead Temperature Ceramic (Side Brazed) (soldering, 60s) Internal Power Dissipation 1, 2 24L-Ceramic (Side Brazed) V+ to Digital Common V- to Digital Common Analog Common to Digital Common Voltage on DAC Output (Lead 9) Digital Inputs (Leads 13 to 24) to Digital Common Ref In to Analog Common Bipolar Offset to Analog Common 10 V Span R to Analog Common 20 V Span R to Analog Common Ref Out -55°C to +125°C O°C to +70°C 2.50 W OVto+18V o V to -18 V Notes 1. TH!ax=175"C. 2. Ratings apply to ambient temperature at 25"C. Above this temperature, derate at 16.7 mWrC. Block Diagram REF OUT BIPOLAR OFFSET IN V+ ,.A56S 9.95 kO 20VSPAN 5kO 10 V SPAN 19.95kO REF IN 5kO -- CAC 10 ANALOG COMMON 10 = 4 lit IREF )I 8kO CODE .". CODE INPUT V- DIGITAL COMMON "::" MSB INPUT BITS 1-12 10-18 ~ LSB DAC OUT ± 1.0 V -3.0 V to +12 V -1.0 V to +7.0 V ± 12 V ± 12 V ± 12 V ± 12 V Indefinite Short to either Common Momentary Short to V+ MA565S/J and MA565T/K Electrical Characteristics TA=+25°C, V+ =+15 V, V-=-15 V, unless otherwise specified. 1 !lA565T/K 1 IlA565S/J 1 Symbol Characteristic Units Condition Min VIH VIL IIH IlL Data Input Voltage Logic "1" Bit ON Logic "0" Bit OFF Data Input Current Logic "1" Bit ON Logic "0" Bit OFF Unipolar All bits ON (Fig 1) RESO Resolution IFS Output Current Typ 2.0 5.5 Min Typ 2.0 0.8 120 Bipolar Output Resistance (exclusive of span resistors) IlS Output Offset All bits ON or OFF (Fig 2) Max 5.5 0.8 120 260 35 75 35 75 12 Bits -2.0 -2.4 -1.6 -2.0 -2.4 mA ± 0.8 ± 1.0 ± 1.2 ± 0.8 ± 1.0 ± 1.2 6.0 8.0 10 6.0 8.0 10 -1.6 Unipolar (Fig 1) 0.01 0.05 0.01 0.02 Bipolar R2 = 50 n fixed (Fig 2) 0.05 0.15 0.05 0.1 Co Output Capacitance Voe Output Compliance Voltage EA Accuracy (error relative to full scale) TA to Min -1.5 IMax to TA +10 ± 1,14 ±h ± 1,18 ± 1,14 (0.012) (0.003) (0.006) :r4 ± 1,14 ± 1,12 (0.018) (0.006) (0.012) :r4 ± 1,14 ± 1,12 (0.012) ± 1,12 Differential Nonlinearity TA Min to TA Max +10 (0.006) ± 1,12 Max -1.5 ± ± IlA kn % of FS pF 25 25 IMin V 260 12 Ro DNL Max V LSB % of FS LSB % of FS LSB Monotonicity Guaranteed Monotonicity Guaranteed TCllS Temperature Coefficient of Unipolar Zero TA Min to TA Max 1.0 2.0 1.0 2.0 ppm/oC TCllS Temperature Coefficient of Bipolar Zero TA Min to TA Max 5.0 10 5.0 10 ppmrC TCIFS Temperature Coefficient of Gain (Full Scale) TA Min to TA Max 15 30 10 20 ppm/oC TCONL Temperature Coefficient of Differential Nonlinearity TA Min to TA Max 2.0 ts Settling Time to h LSB All Bits ON-to-OFF or OFF-to-ON 200 10-19 ppmrC 2.0 400 200 400 ns • J.LA565 IlA565S/J and IlA565T/K (Cant.) Electrical Characteristics TA= +25°C, V+ = + 15 V, V- = -15 V, unless otherwise specified. 1 1lA565S/J 1 Symbol Characteristic Units Min tpLH Full Scale Transition tpHL 1+ Power Requirements IPSSIFS POR Power Supply Sensitivity Typ Typ Min 30 15 30 90% to 10% Delay plus Fall Time 30 50 30 50 V+ =+13.5 V to +16.5 V 3.0 5.0 3.0 5.0 V- = -13.5 V to -16.5 V -12 -18 -12 -18 V+ =+15 V, ± 10% 3.0 10 3.0 10 V- =-15 V, ± 10% 15 25 15 25 o to o to +5.0 -2.5 to +2.5 o to -10 to +10 V ± 0.25 ± 0.1 ± 0.25 % of FS ± 0.05 ± 0.15 ± 0.05 ± 0.1 ± 0.25 Izs Rl Bipolar Zero Adjustment Range ± 0.15 ± 0.15 Current (avail. for external loads) IREF Pc V ± 0.1 ± 0.25 Voltage V + 10 -10 to +10 Gain Error with Fixed 50 IJ. Resistor for R2 Gain Adjustment Range Reference Output V 15 20 25 15 20 25 9.90 10.00 10.10 9.90 10.00 10.10 1.5 2.5 1.5 2.5 Power Consumption 225 Note 1. TA Min and TA Max are aoc and 70 0 e for J and K grade, and -55°C to + 125°C for Sand T grade. 10-20 ppm of FS/% -5.0 to +5.0 IFS R2 VREF mA -5.0 to +5.0 Bipolar Zero Error with Fixed 50 IJ. Resistor for R1 Reference Input Impedance ns V +5.0 -2.5 to +2.5 + 10 Izs Rl ZI Max 15 Programmable Output Range External Adjustments Max 10% to 90% Delay plus Rise Time o to IFS R2 1lA565T/K 1 Condition 345 225 kIJ. V mA 345 mW MA565 Typical Performance Curve Typical Applications Typical Negative Compliance Range vs Negative Supply Buffered Voltage The standard current-to-voltage conversion connections using an operational amplifier are shown in Figure 1 with the preferred trimming techniques. If a low offset operational amplifier (1lA714L, 1lA725A) is used, excellent performance can be obtained in many situations without trimming (an op amp with less than 0.5 mV max offset voltage should be used to keep offset errors below 1,12 LSB). If a 50 n fixed resistor is substituted for the 100 trimmer, typically the unipolar zero will be within ± 1,12 LSB (plus op amp offset), and full scale accuracy will be within 0.1 % (0.25% max). Substituting a 50 n resistor for the 100 n bipolar offset trimmer will give a bipolar zero error typically within ±2 LSB (0.05%). n Y ~ /(=-2mA 10 = 0 mA The 1lA771 is recommended for buffered voltage output applications which require a settling time to ± 1,12 LSB of two microseconds. The feedback capacitor is shown with the optimum value for each application; this capacitor is required to compensate for the 25 pF DAC output capacitance. 16.5 V 13.5 V NEGATIVE SUPPLY - v- Figure 1 0 V to + 10 V Unipolar Voltage Output +15 V +15 V V+ BIPOLAR OFFSETIN 8 9.95kO -= ,-_+11'--,20 V SPAN -=- SkQ 10 5 kO DAC - 10 10 = 41{ IREF x CODe DAC 8kO OUT 2.4kO CODE INPUT V- -15V DIGITAL COMMON (NOTE 1) 12 -= MSB - - - - - - - -__ .. LSB Note 1 Digital and analog common must have a common current return path. *See typical applications continued for proper connections. 10-21 • pA565 This unipolar configuration (Figure 1) will provide a unipolar + 10 V output range. In this mode, the bipolar terminal, lead 8, should be grounded if not used for trimming. Please note that it is not necessary to trim the op amp to obtain full accuracy at room temperature. In most bipolar situations, an op amp trim is unnecessary unless the untrimmed offset drift of the op amp is excessive. o to Step I, Zero Adjust Turn all bits OFF and adjust zero trimmer, R1, until the output reads 0.000 volts (1 LSB = 2.44 mY). In most cases this trim is not needed, but lead 8 should then be connected to lead 5. The /lA565 can also be easily configured for a unipolar to + [) V range or ± 2.5 V and ± 10 V bipolar ranges by using the additional 5 kil application resistor provided at the 20 V span R terminal, lead 11. For a 5 V span (0 to + 5 or ± 2.5), the two 5 kil resistors are used in parallel by shorting lead 11 to lead 9 and connecting lead 10 to the op amp output and the bipolar offset either to ground for unipolar or to REF OUT for the bipolar range. For the ± 10 V range (20 V span) use the 5 kil resistors in series by connecting only lead 11 to the op amp output and the bipolar offset connected as shown. The ± 10 V option is shown in Figure 3. oV Step II, Gain Adjust Turn all bits ON and adjust 100 il gain trimmer, R2, until the output is 9.9976 V. (Full scale is adjusted to 1 LSB less than nominal full scale of 10.000 V.) If a 10.2375 V full scale is desired (exactly 2.5 mY/bit), insert a 120 il resistor in series with the gain resistor at lead 10 to the op amp output. Figure 2 bipolar configuration, will provide a bipolar output voltage from -5.000 V to +4.9976 V, with positive full scale occurring with all bits ON (all "1"s). Internal/External Reference Use The /.lA565 has an internal low-noise buried zener diode reference which is trimmed for absolute accuracy and temperature coefficient. This reference is buffered and optimized for use in a high speed DAC and will give long-term stability equal or superior to the best discrete zener reference diodes. The performance of the /lA565 is specified with the internal reference driving the DAC since all trimming and testing (especially for full scale and bipolar) are done in this configuration. Step I, Offset Adjust Turn OFF all bits. Adjust 100 il trimmer R1, to give -5.000 V output. Step II, Gain Adjust Turn ON all bits, adjust 100 il gain trimmer, R2, to give a reading of +4.9976 V. Figure 2 ± 5 V Bipolar Voltage Output REf OUT Rl 100 II +15 V V+ 3 BIPOLAR OfFSET IN 8 "A565 R2 lOO11 11 9.95kll 5 kll 10 DAC 10 =4 w IREF., CODE CODE INPUT DIGITAL COMMON V(NOTE 1) -15 V 12 -=- .. MSB - 10-22 LSB 20V SPAN -=- 10VSPAN MA565 circuit is shown in Figure 4. The input line can be modelled as a 30 kU resistance connected to -0.7 V rail. The JlA565 can be used with an external reference, but may not have sufficient trim range to accommodate a reference which does not match the internal reference. Application of Analog and Digital Commons The J.LA565 brings out separate analog and digital grounds to allow optimum connections for low noise and high speed performance. The two ground lines can be separated by up to 200 mV without any loss in performance. There may be some loss in linearity beyond that level. Up to ± 1.0 V can be tolerated between the ground lines without damage to the device. If the JlA565 is to be used in a system in which the two grounds will be ultimately connected at some distance from the device, it is recommended that parallel back-to-back diodes be connected between the ground lines near the device to prevent a fault condition. The internal reference has sufficient buffering to drive external circuitry in addition to the reference currents required for the DAC (typically 0.5 mA to REF IN and 1.0 mA to BIPOLAR OFFSET IN, if used). A minimum of 1.5 mA is available for driving external circuits. The reference is typically trimmed to ± 0.2%, then tested and guaranteed to ± 1.0% max error. The temperature coefficient is comparable to that of the full scale TC for a particular grade. Digital Input Considerations The J.LA565 uses a standard positive true straight binary code for unipolar outputs (all" 1"s give full scale output), and an offset binary code for bipolar output ranges. In the bipolar mode, with all "0" s on the inputs, the output will go to negative full scale; with 100... 00 (only the MSB on), the output will be 0.00 V; with all "1 "s, the output will go to positive full scale. The analog common at lead 5 is the ground reference point for the internal reference and is thus the "high quality" ground for the J.LA565: it should be connected directly to the analog reference point of the system. The digital common at lead 12 can be connected to the most convenient ground reference point; analog power return is preferred, but digital ground is acceptable. If digital common contains high frequency noise beyond 200 mY, this noise may feed through the converter, so that some caution will be required in applying these grounds. The threshold of the digital input circuitry is set at 1.4 V and does not vary with supply voltage. The input lines can interface with any type of 5 V logic, TTL/DTL or CMOS, and have sufficiently low input currents to interface easily with unbuffered CMOS logiC. The configuration of the input Figure 3 ± 10 V Bipolar Voltage Output +15 V Y+ Rl 1000 BIPOLAR OFFSET IN 3 R2 8 lOY 11 9.95 kO 1000 20YSPAN 5kO +-_-¥10:"'10Y SPAN 5 kO DAC 10 =4 II IREF DAC OUT II 81<0 CODE 2.41<0 CODE INPUT 7 DIGITAL 12 Y_ COMMON -15 Y (NOTE 1) ":" MSB - - - - - - - - - <..~ 10-23 LSB • iJA565 Output Voltage Compliance The 1JA565 has a typical output compliance range from -2 V to + 10 V. The current-steering output stages will be unaffected by changes in the output terminal voltage over that range. However, there is an equivalent output impedance of 8k in parallel with 25 pF at the output terminal which produces an equivalent error current if the voltage deviates from analog common. This is a linear effect which does not change with input code. Operation beyond the compliance limits may cause either output stage saturation or breakdown which results in nonlinear performance. Compliance limits are not affected by the positive power supply, but are a function of output current and negative supply. Figure 4 Equivalent Digital Input Circuit DIGITAL INPUTS (LEADS 13 TO' 24) I r.". SPF DIGITAL...! COMMON 30kQ '" -0.7 V TO LOGIC '" CR02500F 10-24 J,lA571 Analog to Digital Converter FAIRCHIL.D A Schlumberger Company Linear Division Data Acquisition Description Connection Diagram 18-Lead DIP (Top View) The MA571 is a 10-bit successive approximation AID converter consisting of a DAC, voltage reference, clock, comparator, successive approximation register and output buffers - all fabricated on a single chip. No external components are required to perform a full accuracy 10-bit conversion in 25 J.Ls. 18 BIT 10LSB 17 "'DA"":rAMR""ETlAD"'Y 18 DIGITAL COM 15 BIPOLAR OFFSET 14 ANALOG COM BIT 8 BIT 7 The device offers true 10-bit accuracy and exhibits no missing codes over its entire operating temperature range. BIT 6 BIT 5 Operation is guaranteed with -1 5 V and + 5 V to + 15 V supplies. The device will also operate with a -12 V supply. BIT4 BIT 3 BIT 2 Operating on supplies of + 5 V to ± 15 V, the MA571 will accept analog inputs of 0 V to + 10 V unipolar, or ± 5 V bipolar, externally selectable. As the BLANK and CONVERT input is driven LOW, the 3-state outputs will be open and a conversion starts. Upon completion of the conversion, the DATA READY line will go LOW and the data will appear at the output. Pulling the BLANK and CONVERT input HIGH blanks the outputs and readies the device for the next conversion. The J.LA571 executes a true 10-bit conversion with no missing codes in approximately 25 J.Ls. V+ MSB BIT 1 Order InfC?rmation Device Code J.LA571SJM MA571JJC J.LA571KJC Package Code Package Description FD FD FD Ceramic (Side Brazed) Ceramic (Side Brazed) Ceramic (Side Brazed) Absolute Maximum Ratings Storage Temperature Range Operating Temperature Range Extended (MA571 M) Commercial (MA571C) Lead Temperature Ceramic (Side Brazed) (soldering, 60 s) Internal Power Dissipation 1, 2 18L-Ceramic (Side Brazed) V+ to Digital Common V- to Digital Common Analog Common to Digital Common Analog Input to Analog Common Control Inputs Digital Outputs (Blank Mode) The J.LA571 is available in two versions for the O·C to + 70·C temperature range, the J.LA571 J and K. The J.LA571S guarantees lO-bit accuracy and no missing codes from -55·C to + 125·C. All three grades are packaged in an 18-lead ceramic side brazed package. • • • • • • Complete AID Converter With Reference And Clock Fast Successive Approximation Conversion - 25 J.LS No Missing Codes Over Temperature Digital Multiplexing - 3-State Outputs 18-Lead Ceramic Side Brazed Package Low Cost Monolithic Construction -65·C to + 175·C -55·C to + 125·C O·C to +70·C 300·C 1.74 W +7 V -16.5 V ±1 V ± 15 V o to V+ o to V+ o to o to Notes 1. TJ Max~ 17S"C. 2. Ratings apply to ambient temperature at 2S"C. Above this temperature, derate at 11.6 mWrC. 10-25 • IlA571 Block Diagram DIGITAL V+ V- COMMON I I I BU( (C!IilV) '[ I ... B+C I- SIeO ~ ANALOG IN I- , 1'" ~ ~ ~ -*" ..- 10-BIT CURRENT OUTPUT DAC + COMPARAT,A f- lO-BIT SAA ~ r-----' I I f- !NT I I CLOCK IL _____ JI - ----- --~ f- 1 I I TEMPERATURE COMPENSATED BURIED ZENER REFERENCE AND DAC CONTROL L.... ~ ~ ~ t DATA OUTPUTS L .... fBIPOLAR OFFSET BIT 1 L ...... ~ .... ANALOG COMMON MSB t 'L ...... 'L LSB BIT 10 3-STATE BUFFERS I DATAREADV EOO0451F 10·26 J.lA571 ~571J and IlA571K Electrical Characteristics TA = 25°C, TA Min = O°C, TA Max = 70°C, V+ = + 5.0 V, V- = -15 V, all voltages measured with respect to digital common, unless otherwise specified. /.lA571J Symbol Characteristic Min Condition Typ /.lA571K Max Min Typ Max 10 10 Resolution EA Relative Accuracy 1 VFS Full Scale Calibration 2 Vzs Unipolar Offset ± 1.0 ±Y2 Bipolar Offset ± 1.0 ±Y2 TA Min to TA ± 1.0 Max Differential Nonlinearity TCvzs Temperature Coefficient of Unipolar Offset 25°C to TA Temperature Coefficient of Bipolar Offset 25°C to TA Temperature Coefficient of Full Scale Calibration 25°C to TA Min or TA Max, with 15 n. Resistor or 50 n. Trimmer TCVFS PSRR Power Supply Rejection Ratio CMOS Pos Supply ±13.5 TTL Pos Supply +4.5 Negative Supply -16.5 9.0 Max Min Min or TA or TA Max Max V~V+ ~+16.5 V~V+ ~5.5 10 ± 1.0 44 22 ±2.0 ± 1.0 44 22 ±4.0 ±2.0 88 44 ± 1.0 V 3.0 5.0 ±2.0 ± 1.0 ±2.0 ± 1.0 LSB ppm/oC LSB ppml"C LSB 7.0 3.0 7.0 kn. 10 0 10 V -5.0 +5.0 -5.0 +5.0 5.0 Analog Input Impedance VIR Analog Input Ranges Unipolar Output Coding Unipolar Positive True Binary Positive True Binary Bipolar Positive True Offset Binary Positive True Offset Binary OC LSB ppm/oC 0 ZI Bipolar LSB Bits ±2.0 V V V~V+ ~-13.5 LSB 10 10 TA Min to TA LSB ±Y2 ±2.0 ±2.0 With 15 n. Resistor in Series with Analog Input DNL TCvzs ±Y2 ± 1.0 Units Bits RESO IOL Output Sink Current Va = 0.4 V Max, TA Min to TA Max 3.2 3.2 mA 10H Output Source Current3 (Bit Outputs) Va = 2.4 V Min, TA Min to TA Max 0.5 0.5 mA BC IIH Output Leakage When Blanked ±40 10-27 ±40 /.lA • MA571 J.LA571J and J.LA571K (Cont.) Electrical Characteristics TA = 25°C, TA Min = O°C, TA Max = 70°C, V+ = + 5.0 V, V- = -15 V, all voltages measured with respect to digital common, unless otherwise specified. J.lA571J Symbol BC IlL Characteristic Blank & Convert Input Condition Min Typ o V O OOO:~I:fmxs yvvOOOOO 1'lt:/IX._ _ _....;~y CRO~620F • 10-33 MA9650 FAIRCHILD 4-Bit Current Source A Schlumberger Company Linear Division Data Acquisition Description The !1A9650 is a high speed 4-bit precision current source, intended for use in DI A and AID converters with up to 12-bit accuracy. It is constructed on a single silicon chip, using the Fairchild Planar Epitaxial process and consists of a reference transistor and four logic operated precision current sources connected to a single output summing line. Logic inputs are fully TTL compatible under all temperature and supply conditions. A clamp circuit is provided to prevent turn-on latch up on the reference input. • • • • Connection Diagram 16-Lead DIP (Top View) 16 V+ MSB OUT BIT 2 OUT BIT 3 OUT 200 ns Settling Time (12 ± 1/2 LSB) Variable Bit Currents Reference Compensation TTL Compatible VREF2 LSB OUT Absolute Maximum Ratings Storage Temperature Range Operating Temperature Range Lead Temperature Ceramic DIP (soldering, 60 s) Internal Power Dissipation 1. 2 16L-Ceramic DIP Logic Input Voltage V+ VMSB Current VREF Inputs Output (VREF voltage ;;;. -7.0 V) -65°C to + 175°C O°C to +70°C lOUT IREF 300°C 1.50 W +5.5 V +7 V -18 V 2.0 mA +7 V to V+18 V to VREF Notes 1. TJ MAX = 175"C. 2. Ratings apply to ambient temperature at 25"C. Above this temperature, derate the 16L-Ceramic DIP at 10 mW"C. Order Information Device Code Package Code !1A96501 DC !1A96502DC IlA96503DC 6B 6B 6B Package Description Ceramic DIP Ceramic DIP Ceramic DIP Truth Table Logic Input Nominal Output Current (mA) Logic Input Nominal Output Current (mA) 0000 0001 0010 0011 0100 0101 0110 0111 1.875 1.750 1.625 1.500 1.375 1.250 1.125 1.000 1000 1001 1010 1011 1100 1101 1110 1111 0.875 0.750 0.625 0.500 0.375 0.250 0.125 0.000 I-IA9650 Kits Required to Build DI A-AID Converters Temperature Range O°C to +70°C Type And No. of Unit 96501C 96502C 96503C 0 0 1 0 1 1 2 2 1 Accuracy to: 8 Bits 10 Bits 12 Bits 10-34 J,tA9650 Equivalent Circuit BIf3 IN LS8 IN BIT 2 MS8 IN IN vAl SIlO A3 12110 03 A4 1110 AS 8110 04 AI A2 2.5 110 3.3 110 AI 1110 ... AIO 2AkCl 2.3 kCl All 2.5 110 Q2 lOUT I... GND ... (1.2) L-~-----;------+-~-----;r-----~-+------t-----~--~~~4---~r-V A14 120 L-----4-----~----+-----~~--_+------~----t_----~~--_+------_+----~--+-v- LSB OUT BITS OUT BIT 2 OUT 10-35 USB OUT AEF OUT J,lA9650 ~A96501C· ~A96502C· ~A96503C Electrical Characteristics TA = 25°C, V+ = 5.0 V, V- = -15 V, unless otherwise specified. Symbol EA IFSER PSCIFS Characteristic Accuracy Full Scale Output Current Error Power Supply Coefficient of Full Scale Output Current VSE VSE Range hFE hFE of Reference Transistor Zo Output Impedance Condition (J.tA9650 1C) Min Typ - Max Unit ±0.01 % of IFS (J.tA96502C) ±0.05 (J.tA96503C) ±0.2 (IlA96501C) ±0.1 (J.tA96502C) ±0.2 (IlA96503C) ±0.4 (J.tA9650 1C) ±0.003 (J.tA96502C, J.tA96503C) ± 0.012 620 % %IV mV 1000 All Bits On 5.0 Mn The following specifications apply for O°C";;; T A ,,;;; 70°C EA IFSER Accuracy Full Scale Output Current Error (IlA96501C) ±0.025 (MA96502C) ±0.1 (J.tA96503C) ±0.3 (IlA96501C) 0.2 (IlA96502C) 0.3 (J.tA96503C) 0.6 % of IFS % PSSIFS Power Supply Sensitivity of Full Scale Output Current (IlA96501C) ±0.006 (J.tA96502C, J.tA96503C) ±0.024 VIL Input Voltage LOW Each Bit On VIH Input Voltage HIGH Each Bit Off IlL Input Current LOW VIL = 0.4 V -1.6 IIH Input Current HIGH VIH = 2.4 V 40 J.tA 10 Output Current Bit 1 (MSB) 2.0 mA 0.8 2.0 10 Vo Output Current Output Voltage Bit 2 0.5 1.0 Bit 3 0.25 0.5 0.125 0.25 (IlA96501C) 5.0 250 (J.tA96502C, J.tA96503C) 5.0 500 All Bits Off Reference Current mA nA Feeding Op Amp Summing Junction Resistive Load IR V V 1.0 Bit 4 (LSB) %IV Using Compensation Transistor 10-36 0 -4.0 V V+ 1.0 mA MA9650 1-/A96501C 'IlA96502C '1-/A96503C (Cont.) Electrical Characteristics TA = 25°C, V+ Symbol 5.0 V, V- = Characteristic -15 V, unless otherwise specified. = Condition Min Typ Max ± 1.0 Current Unit ±2.2 mA IVR VREF ILiM Reference Limit Current VREF= 75 mA 1+ Positive Supply Current (pA96501 C, pA96502C) 8.0 mA (pA96503C) 10 1- Negative Supply Current 20 0 V (pA96501C, pA96502C) -11 (pA96503C) -15 mA Typical Performance Curves Switching Time vs MSB Current (50% In to 10% Out) Settling Time vs Load Resistance (0 to FSI Output ± 1'2 LSB) Output Current Settling Time vs MSB Current (0 to FSI Output ± 1'2 LSB) 1.0 175 70 SUMMING JUNCTION LOAD r-~:= ~:~ 80 TA= :l5"C --- ~ 1 onA IISB CURRENT r-V+=5.0V BUMMING JUNCTION LOAD 150 _~+. 5.0 V V-=-15V TA = 2$OC t I !:It I 25 o o 1•• 1.0 2.0 1.8 1.4 Input Logic Threshold Voltage vs Ambient Temperature 2.00 "- > I 1.50 ~~ 1.25 gl.oo I~ ~ 1.305 ~ 1.300 ~ 1.295 1.285 0.25 -75 1.280 0 25 50 10 Full Scale Output Current Drift vs Ambient Temperature 75 AMBIENT TEMPERATURE-'C 100 125 M~B IlonA CJRREJ.. -Y+_ 5.0Y v-= -15 V ---- i-- l/ / 4.5 -14 ,... I-- V / 11.280 o.so T"1 1O PfRL I ~ ~ I"- TLnl2 Eo/LSBI_ ! ..... o.ooa > V ./ LOAD RESISTANCE-lin TAo II 2f5OC 'r--... -25 2.0 • v: V ~~ o o 1.310 0.75 -50 1.• 1.315 v-= -15V " 1.8 / ~ 0.2 Input Logic Threshold Voltage vs Supply Voltage v+=s.ov 'r--... ~ .7 /' MSB CURRENT-onA MSB CURRENT -mA 1.75 v# 0.8 ~G.4 ... IT 10 1A I' ;: BIT 1.0 ~ :2 V-a -15 V 0.8 r-TA= :l5"C V 5.0 -15 SUPPLY VOLTAGE-V 10-37 5.5 -18 -O.ooa -75 -50 -25 25 50 75 AMBIENT TEMPERATURE-"C 100 125 jJA9650 Typical DC Test Circuit (Note 1) BIT INPUTS V· LSB 7 12 3 R8 100 k ±O.1% 51 R9 52 2 MSB PRECISION VOLTMETER ~A9650 8 11 13 14 ZERO ADJUST 15 5 I _--.J R5 10k R4 80 k R3 R2 40k 20k 5M 5k -=- R1 10k 5k V- (NOTE 2) -=- Notes 1. All resistor values in ohms. 2. Required resistor ratio tolerances of R1- R5 to test the various grades are as follows: i o---~_IcIP 0 ~ V OUT _ '---1:; ~ Cora ,.------ 1/48002~~~ oJ----------.........-SERIALDATA L-... ..-+--4---1-------+------' 1/4~n CLOCK 1/r_ ..... " y EOAoA,A. ""_ HIT ADDRESSABLE LATCH C01234567 LJ ~~~--------------~~ l:~~LEL +-~~-+~ 10V VR£F FULO.ADJ ____________________ __ OUT ~_____ ~~-+~~4-+_--------------------+_----MSB ""728 312 5k --LSB ak ~ ""m 2 _ aa ~ ~ 4:0.1 pF J 30pF 1000 FDmf ::S~FDm ~ -=- T 2k ANALOG INPUT V J, 10-40 220 k -15 V 5k Note. 1. All resistor values in ohms. 2. Digital GND indicated by Analog GND indicated by 15k 100k 1k --=- IlA224 0 Programmable Timer/Counter FAIRCHILD A Schlumberger Company Linear Division Special Functions Connection Diagram 16-Lead DIP (Top View) Description The IJA2240 Programmable Timer/Counter is a monolithic controller capable of producing accurate microsecond to five day time delays. Long delays, up to three years, can easily be generated by cascading two timers. The timer consists of a time-base oscillator, programmable 8-bit counter and control· flip-flop. An external resistor capacitor (RC) network sets the oscillator frequency and allows delay times from 1 RC to 255 RC to be selected. In the astable mode of operation, 255 frequencies or pulse patterns can be generated from a single RC network. These frequencies or pulse patterns can also easily be synchronized to an external. signal. The trigger, reset and outputs are all TTL and DTL compatible for easy interface with digital systems. The timer's high accuracy and versatility in producing a wide range of time delays makes it ideal as a direct replacement for mechanical or electromechanical devices. 00 Vee o. REGULATOR our TlIlE-BASE our RESISTORI CAPACrroR IN MODULATION IN TRIGGER IN RESET • • • • • • • • Accurate Timing From Microseconds To Days Programmable Delays From 1 RC To 255 RC TTL, DTL And CMOS Compatible Outputs Timing Directly Proportional To RC Time Constant High Accuracy External Sync And Modulation Capability Wide Supply Voltage Range Excellent Supply Voltage Rejection GND Order Information Device Code !lA2240DC !lA2240PC Absolute Maximum Ratings Storage Temperature Range Ceramic DIP Molded DIP Operating Temperature Range Lead Temperature Ceramic DIP (soldering, 60 s) Molded DIP (soldering, 10 s) Internal Power Dissipation 1, 2 16L-Ceramic DIP 16L-Molded DIP Supply Voltage Output Current Output Voltage Regulator Output Current -65°C to + 175°C -65°C to + 150°C O°C to 70°C 300°C 265°C 1.50 W 1.04 W 18 V 10 mA 18 V 5.0 mA Notes 1. TJ Max -150·C for the Molded DIP, and 175·C for the Ceramic DIP. 2. Ratings apply to ambient temperature at 25·C. Above this temperature, derate the 16l-Ceramic DIP at 10 mW'·C, and the 16l-Molded DIP at 8.3 mWrC. 11-3 Package Code 78 98 Package Description Ceramic DIP Molded DIP • J.LA2240 Block Diagram v~-t~-----------------------.----, RI 5kCl R M~~ -t-+------1 R2 8.59 kQ RESET L...---1__ TRIGGER IN GND TB OUT O. O. 0,28 I~------------~~------------~a~I~"~---------C~~;R----------a.I~"r---~a~I~~g~ .. ~A2240C Electrical Characteristics TA = 25°C, Vee = 5.0 V, R = 10 k.Q, C = 0.1 Symbol Characteristic ~F, unless otherwise specified. Condition Unit General Characteristic Vee Supply Voltage For Vee <;;;4.5 V, Short Lead 15 to Lead 16 Icc Supply Current Vee = 5.0 V, VTR = 0 V, VRS = 5.0 V Vee = 15 V, VTR = 0 V, VRS = 5.0 V Total Circuit 4.0 Counter Only VREG Regulator Output 15 V 4.0 7.0 rnA 13 18 1.5 I I Measured at Lead 15 Vee=5.0 V 3.9 4.4 Vee = 15 V 5.8 6.3 6.8 3.5 5.0 V Time-Base tAee Timing Accuracy 1 VRS = 0, VTR = 5.0 V Lltl LlT Temperature Drift O°C <;;; TJ <;;; 75°C Lltl LlV Supply Drift Vee ~ 8.0 V (See Performance Curves) fMax Max Frequency R = 1.0 kQ, C = 0.007 /.IF VMOD Modulation Voltage Level Measured at Lead 12 RT Recommended Range of Timing Components Timing Resistor I Vee = 5.0 V IVee = 15 V I Vee = 5.0 V IVee = 15 V (See Performance Curves) 11-4 200 % ppmfOC 80 0.08 0.3 130 2.80 3.50 %/V kHz 4.20 V 10.5 0.001 10 MQ MA2240 IlA2240C (Cont.) Electrical Characteristics TA = 25°C, Vee = 5.0 V, R = 10 kS1, C = 0.1 IlF, unless otherwise specified. Symbol CT Characteristic Condition Timing Capacitor Min Typ 0.01 Max Unit 1000 J.l.F Trigger/Reset Controls VTR Trigger Threshold Measured at Lead 11, VRS = 0 V 1.4 ITR Trigger Current VRS = 0 V, VTR = 2.0 V 10 JJ.A ZT Trigger Impedance 25 kS1 Time2 tRSPT Trigger Response VRS Reset Threshold Measured at Lead 10, VTR = 0 V VTR = 0 V, VRS = 2.0 V IR Reset Current ZR Reset Impedance tRSPT Reset Response Time2 2.0 1.0 1.4 V J.l.s 2.0 V 10 JJ.A 25 kS1 0.8 J.l.S 1.5 MHz 20 kS1 Counter TRMax Max Toggle Rate ZI Input Impedance VTH Input Threshold tr Output Rise Time Measured at Lead 14 VRS = 0 V, VTR = 5.0 V 1.0 Measured at Leads 1 through 8 RL = 3.0 kS1, CL = 10 pF tf Fall Time 10- Sink Current VOL <0.4 V ICEX Leakage Current VOH=15 V 1.4 V 180 ns 180 2.0 4.0 0.01 Notes 1. Timing error solely introduced by 1lA2240 measured as % of ideal time·base period of T - RC. 2. Propagation delay from application of trigger (or reset) input to corresponding state change in counter output at Lead 1. 11-5 mA 15 J.l.A J,LA2240 Typical Performance Curves Supply Current vs Supply Voltage in Reset Condition 16 10M,--r-; ,/ I ffi a '" / / 6 ~ ~ 1.0M ./ ~ 12 il! / 4 V 1.0K o o 10 12 14 16 18 100 SUPPLY VOLTAGE - V • POOa090F Minimum Trigger/Retrigger Timing vs Timing Capacitor Time-Base Period Drift vs Supply Voltage 3.0 100~R~=-'0~M~Q-r---r--70~~~ 3.0 750C 250C !!. ;F. % ~ I I 2.5 .... e a a ~ w O"C . ~ 2.0 ::> W 1.5 w 2.0 ........... \ ii: ~ w 750C ....... :E .~ 1.0 0 ~ 0: "....a: 1000 TIMING CAPACITOR - p.F Minimum Trigger Pulse Width vs Trigger and Reset Amplitude CI Time-Base Period vs External RC Recommended Range of Timing Component Values ;:: 10 0: W ~ ~ co 25·C- w :E ;:: O·C "....S! - 0: C = 0.1 "" - w 1.0 R = 10kO ~1.0 '" 0: r--- W "S!.... 0: MINIMUM TRIGGER DELAY A _ _ TIME SUBSEQUENT TO APPLICATION OF POWER MINIMUM RETRIGGER :E ::> :E Z 1.0 1.0 iii -2.0 1.5 2.0 2.5 10 4 3.0 SUPPLY VOLTAGE - TRIGGER OR RESET AMPLITUDE - V Normalized Change in Time-Base Period vs Modulation Voltage 12 I a " a ~ a: o :;l :E 1.0 0: 0 Y Z 0.5 V ............... w / :E ;:: ...0 -1.0 "~:r: -2.0 -3.0 1 MOOULAnON VOLTAGE - R=~ " o V i ~=1kn w ./ o 1.0 ~ ............... co 25 50 75 TEMPERATURE - OC 11-6 100 Yee!,5Y ;F. 1.0 .'" / !j! 10 jJ.F 2.0 ~ Yee 5 V C =0.1 IJ.F ii: ~ w Yee=51 ;:: 1.5 1.0 Time-Base Period vs Temperature 0 z i RESET INPUT 0.1 TIMING CAPACITOR - 2.0 ;F. B - - TIME SUBSEQUENT TO A .01 0.01 V Time-Base Period vs Temperature 2." 2.0 14 " 100 illt= ...o -1.0 -- c= j' "" -~ R=10M~ w i'" -2.0 " -3.0 o 25 50 TEMPERATURE _ 75 0 C 100 J,tA2240 Functional Description (Figure 1 and Block Diagram) When power is applied to the jAA2240 with no trigger or reset inputs, the circuit starts with all outputs HIGH. Application of a positive going trigger pulse to trigger lead 11, initiates the timing cycle. The trigger input activates the time-base oscillator, enables the counter section and sets the counter outputs LOW. The time-base oscillator generates timing pulses with a period T = 1 RG. These clock pulses are counted by the binary counter section. The timing sequence is completed when a positive going reset pulse is applied to Reset, lead 10. In most timing applications, one or more of the counter outputs are connected to the reset terminal with S1 closed (Figure 3). The circuit starts timing when a trigger is applied and automatically resets itself to complete the timing cycle when a programmed count is completed. If none of the counter outputs are connected back to the reset terminal (switch S1 open), the circuit operates in an astable or free running mode, following a trigger input. Once triggered, the circuit is immune from additional trigger inputs until the timing cycle is completed or a reset input is applied. If both the reset and trigger are activated simultaneously, the trigger takes precedence. Reset (R) (lead 10) sets all outputs HIGH. Important Operating Information Ground connection is lead 9. Trigger (TRIG) (lead 11) sets all outputs LOW. Time-base output (TBO) (lead 14) can be disabled by bringing the RG input (lead 13) LOW via a 1.0 kn resistor. Figure 2 gives the timing sequence of output waveforms at various circuit terminals, subsequent to a trigger input. When the circuit is in a reset state, both the time-base and the counter sections are disabled and all the counter outputs are HIGH. Normal TBO (lead 14) is a negative going pulse greater than 500 ns. Figure 1 Logic Symbol 13 11 Figure 3 12 TRIG VREG Basic Circuit Connection for Timing Applications Monostable: S1 Closed Astable: S1 Open 15 r----------------,-----~c 10 RL 10kO R 1412345678 0.01 "F C Vee = Lead 16 GND = Lead 9 J TRIGGER JL J 13 12 RC MOD 11 TRIG Figure 2 Timing Diagram of Output Waveforms ~n I-~..u_------- _____ ..L..._ hnnnnnnnnnnnr"" 1j.JUUUUlJUUlJlJl.Uo..L..J ........~.................... h I I I I I 15 20 kO 47kO LEAD 11 ~'~BASE LEAD 14 I tLn.n..n..n..n._1 b VREG JL TRIGGER IIN I I" III"" I" "II" III " h pA2240 RESET 'I_I_I ---I ~~~NTER LEAD 1 1 T < To < 255 T WHERE T RC = LEAD 2 TRIGGER -I"LLEAD 3 ~ -I To I- LEAD 4 LEAD 5 11-7 • J.LA2240 Note: Under the conditions of high supply voltages (Vee> 7.0 V) and low values of timing capacitor (CT < 0.1 MF), the pulse width of TBO may be too narrow to trigger the counter section. Thi~ can be corrected by connecting a 600 pF capacitor from TBO (lead 14) to ground (lead 9). The time-base can be synchronized by setting T to be an integer multiple of the sync pulse period (Ts). This can be done by choosing the timing components Rand C at lead 13 such that: Reset (lead 10) stops the time-base oscillator. where: T = RC = (Ts/m) m is an integer, 1.0';;; m';;; 10 Outputs (0 0 ... 0128) (leads 1 - 8) sink 2.0 mA current with VOL';;; 0.4 V. Figure 5 gives the typical pull-in range for harmonic synchronization for various values of harmonic modulus, m. For m < 10, typical pull-in range is greater than ± 4% of time-base frequency. For use with external clock, minimum clock pulse amplitude should be 3.0 V, with greater than 1.0 MS pulse duration. Circuit Controls RC Terminal (lead 13) The time-base period T is determined by the external RG network connected to RC, lead 13. When the time-base is triggered, the waveform at lead 13 is an exponential ramp with a period T= 1 RG. Counter Outputs (00 •.• 0128, leads 1 thru 8) The binary counter outputs are buffered open collector type stages, as shown in the block diagram. Each output is capable of sinking 2.0 mA at 0.4 V VOL. In the reset condition, all the counter outputs are HIGH or in the nonconducting state. Following a trigger input, the outputs change state in accordance with the timing diagram of Figure 2. The counter outputs can be used individually, or can be connected together in a wired-OR configuration, as described in the programming segment of this data sheet. Time·Base Output (TBO, lead 14) The time-base output is an open-collector type stage as shown in the block diagram, and requires a 20 kn pull-up resistor to lead 15 for proper circuit operation. In the reset state, the time-base output is HIGH. After triggering, it produces a negative going pulse train with a period T = RG, as shown in the diagram of Figure 2. The time-base output is internally connected to the binary counter section and can also serve as the input for the external clock Signal when the circuit is operated with an external time base. The counter section triggers on the negative going edge of the timing or clock pulses generated at TBO, lead 14. The trigger threshold for the counter section is Reset and Trigger Inputs (R and TRIG, 10 and 11) The circuit is reset or triggered with positive going control pulses applied to leads 10 and 11 respectively. The threshold level for these controls is approximately two diode drops ("'" 1.4 V) above ground. Minimum pulse widths for reset and trigger inputs are shown in the Performance Curves. Once triggered, the circuit is immune to additional trigger inputs until the end of the timing cycle. Figure 5 Typical Pull·ln Range for Harmonic Synchronization Modulation and Sync Input (MOD, lead 12) The oscillator time-base period (T) can be modulated by applying a DC voltage to MOD, lead 12 (see Performance Curves). The time-base oscillator can be synchronized to an external clock by applying a sync pulse to MOD, lead 12, as shown in Figure 4. Recommended sync pulse widths and amplitudes are also given. t 20 ~ Figure 4 Operation with External Sync Signal T• o .......... ..J /4-0.3 T < T. < 0.8 T =3\... JLJ[ --L ~ 0.1~ SYNC --; IN 12 ,.,42240 5.1 kO I--Ts--j o o 11-8 i'--.r-.., r--- 10 RATIO OF TIME-BASE PERIOD TO SYNC-PULSE PERIOD - Trrs 12 MA2240 Monostable Operation '" + 1.4 V. The counter section can be disabled by clamping the voltage level at lead 14 to ground. Precision Timing In precision timing applications, the IlA2240 is used in its monostable or self-resetting mode. The generalized circuit connection for this application is shown in Figure 3. The output is normally HIGH and goes LOW following a trigger input. It remains LOW for the time duration (To) and then returns to the HIGH state. The duration of the timing cycle To is given as: When using high supply voltages (Vee> 7.0 V) and a small value timing capacitor (Or < 0.1 IlF), the pulse width at TBO lead 14 may be too narrow to trigger the counter section. This can be corrected by connecting a 600 pF capacitor from lead 14 to ground. Regular Output (VREG. lead 15) The regulator output VREG is used internally to drive the binary counter and the control logiC. This terminal can also be used as a supply to additional 1lA2240 circuits when several timer circuits are cascaded (see Figure 6) to minimize power dissipation. For circuit operation with an external clock, VREG can be used as the Vee input terminal to power down the internal time-base and reduce power dissipation. When supply voltages less than 4.5 V are used with the internal time-base, lead 15 should be shorted to lead 16. Figure 6 TO = nT= NRC where T = RC is the time-base period as set by the choice of timing components at RC lead 13 (see Performance Curves) and n is an integer in the range of 1 < n < 255 as determined by the combination of counter outputs (00 ... 0128), leads 1 through 8, connected to the output bus. Low Power Operation of Cascaded Timers Vee Vee R Vee RL 47 kO 30ko i} J TRIGGER .J'1.. L I TRIG MOD RC ,.A2240 #1 RESET ~r- R Jl.. I I RC MOD TRIG TBO 00 02 04 VAEG a, 0,6032064 0128 11111 IllY - ,.A2240 #2 Ii Iii r- VAEG r- R Tao 00 02 04 080160320640,28 I OUT 150kO Vee = Lead 16 GND = Lead 9 11-9 IlA2240 Counter Output Programming The binary counter outputs, 0 0 ... 0 128 , leads 1 through 8 are open collector type stages and can be shorted together to a common pull-up resistor to form a wired-OR connection; the combined output will be LOW as long as any one of the outputs is LOW. The time delays associated with each counter output can be added together. This is done by Simply shorting the outputs together to form a common output bus as shown in Figure 3. For example, if only lead 6 is connected to the output and the rest left open, the total duration of the timing cycle, To, is 32 T. Similarly, if leads 1, 5, and 6 are shorted to the output bus, the total time delay is To = (1 + 16 + 32) T = 49 T. In this manner, by proper choice of counter terminals connected to the output bus, the timing cycle can be programmed to be 1 T ~ To ~ 255 T. In cascaded operation, the time-base section of Unit 2 can be powered down to reduce power consumption by using the circuit connection of Figure 6. In this case, the Vee terminal (lead 16) of Unit 2 is left open, and the second unit is powered from the regulator output of Unit 1 by connecting the VREG (lead 15) of both units together. Astable Operation The J.lA2240 can be operated in its astable or free running mode by disconnecting the reset terminal (lead 10) from the counter outputs. Two typical circuits are shown in Figures 8 and 9. The circuit in Figure 8 operates in its free running mode with external trigger and reset signals. It starts counting and timing following a trigger input until an external reset pulse is applied. Upon application of a positive going reset signal to lead 10, the circuit reverts back to its reset state. This circuit is essentially the same as that of Figure 3 with the feedback switch 81 open. Ultra Long· Time Delay Application Two /1A2240 units can be cascaded as shown in Figure 7 to generate extremely long time delays. Total timing cycle of two cascaded units can be programmed from To = 256 RC to To = 65,536 RC in 256 discrete steps by selectively shorting one or more of the counter outputs from Unit 2 to the output bus. In this application, the reset and the trigger terminals of both units are tied together and the Unit 2 time base is disabled. Normally, the output is HIGH when the system is reset. On triggering, the output goes LOW where it remains for a total of (256)2 or 65,536 cycles of the time-base oscillator. The circuit of Figure 9 is deSigned for continuous operation. It self triggers automatically when the power supply is turned on, and continues to operate in its free running mode indefinitely. In astable or free running operation, each of the counter outputs can be used individually as synchronized oscillators, or they can be interconnected to generate complex pulse patterns. Figure 7 Cascaded Operation for Long Delays Vee Vee Vee RL 47 kO R 10 kO C 1 kO MOD RC RC TRIGGER Jl... ",,2240 #2 REmrr--~~--+-------------------+---~~~~~~~~+-+-~----~--OUT Jl... 47 kO Vee = Lead 16 GND = Lead 9 11-10 MA2240 Binary Pattern Generation In astable operation, as shown in Figure 8, the output of the j.lA2240 appears as a complex pulse pattern. The waveform of the output pulse train can be determined directly from the timing diagram of Figure 2 which shows the phase relations between the counter outputs. Figures 10 and 11 show some of the complex pulse patterns that can be generated. The pulse pattern repeats itself at a rate equal to the period of the highest counter bit connected to the common output bus. The minimum pulse width contained in the pulse train is determined by the lowest counter bit connected to the output. Figure 9 Free Running or Continuous Operation (Note 1) Vee Vee 10 kll Vee RL 10 kll R C 0.01 pF J J TRIG RC MOD ....2240 0.047pF Figure 8 Operation with Trigger and Reset Inputs (Note 1) r---------....- - Vee RL 10 kll R C J: ~ TRIGGER J1.. CR02970F 0.01 pF RC Figure 10 Binary Pulse Patterns Obtained by Shorting Various Counter Outputs MOD TRIG A. 2 LEAD PATTERNS .JUUUUL I1IlIlI"L-.JlIl T ....2240 RESET ~!-I3T J1.. = RC -ITt- 1--8T--f-rr-/ LEADS 1 AND 2 SHORTED B. 3 LEAD PATTERN JULJlJl rrn""---_ 3T~5T+I ~1.:::==;21;:T·':-=-=-=-=-="::"'i"1 LEADS " 3, AND 5 SHORTED Note 1. Vee = Lead 16 GND = Lead 9 11 -11 Figure 11 Vee Continuous Free run Operation Examples of Output vee RC MOD -lRC\- RC WAVEFOR" n"E-8ASEOUTPUT (h OUTPUT rYYYYYY1/ /fYYYYYYY1 I I I I I I 1/ / IIIIIIII ruuu// LIU1.S1S II-______ ~~-lRCIIn____ I. 256RC ~~ .. I .IlSLj j----fiSL I.. .1 256RC j"'F,'~t//~ I--256RC Vee'" Lead 16 GND:; Lead 9 .. I F=L/j~ I.. ~1 256RC 11-12 }1A3046 • J,LA3086 General Purpose Transistor Arrays FAIRCHILD A Schlumberger Company Linear Division Special Functions Description Connection Diagram 14-Lead DIP and 50-14 Package (Top View) The J.lA3046 and /.lA3086 are general purpose transistor arrays. Each contains a differentially connected pair and three individually isolated transistors. Each part is designed for general purpose, low power applications for consumer and industrial applications. • • • • Low Input Offset Voltage Wideband Operation Low Noise Matched Differential Amplifier Absolute Maximum Ratings Storage Temperature Range Ceramic DIP Molded DIP and SO-14 Operating Temperature Range /.lA3046 /.lA3086 Lead Temperature Ceramic DIP (soldering, 60 s) Molded DIP and SO-14 (soldering, 10 s) Internal Power DisSipation 1, 2 14L-Ceramic DIP 14L-Molded DIP SO-14 Collector-to-Emitter Voltage Collector-to-Base Voltage Collector-to-Substrate Voltage 3 Emitter-to-Base Voltage Collector Current (Each Transistor) -65°C to + 175°C -65°C to +150°C O°C to +70°C -40°C to +85°C C1 C5 Bl E5 SUBSTRATE El,2 B5 B2 C4 C2 E4 B3 B4 E3 C3 Order Information Device Code 1.36 W 1.04 W 0.93 W 15 V 20 V 20 V 5.0 V 50 mA Package Code Package Description 9A KD 6A 9A KD Molded DIP Molded Surface Mount Ceramic DIP Molded DIP Molded Surface Mount /.lA3046PC /.lA3046SC /.lA3086DV /.lA3086PV /.lA3086SV Equivalent Circuit E5 Notes 1. TJ Max = 150°C for the Molded DIP and SO-14. and 175°C for the Ceramic DIP. 2. Ratings apply to ambient temperature at 25°C. Above this temperature. derate the 14L-Ceramic DIP at 9.1 mWfOC. The 14L·Molded DIP at 8.3 mW/oC, and the SO-14 at 7,5 mW/oC. 3. Substrate must be connected to the most negative voltage to maintain C5 SUBSTRATE 85 C4 E4 B4 C3 B3 E3 04 normal operation. Cl 11-13 Bl E1,2 B2 C2 MA3046 • MA3086 IlA3046 Electrical Characteristics TA = 25°C unless otherwise specified. Symbol Characteristic Condition Min Typ Max Unit V(SR)CSO Collector-to-Base Breakdown Voltage Ic=10 /lA, IE=O 20 60 V V(SR)CEO Collector-to-Emitter Breakdown Voltage Ic = 1.0 rnA, Is = 0 15 24 V V(SR)CIO Collector-to-Substrate Breakdown Voltage Ic=10 /lA, Ic=O 20 60 V V(SR)ESO Emitter-to-Base Breakdown Voltage IE= 10 /lA, Ic=O 5.0 7.0 V Icso Collector Cutofl Current VCS = 10 V, IE=O 0.002 40 nA ICEO Collector Cutoff Current VCE = 10 V, Is=O See Curve 0.5 /lA hIe Static Forward Current-Transfer Ratio (Static Beta) VCE = 3.0 V AIIO Input Oflset Current for Matched Pair 0 1 and 02 I hOI - 11021 VCE = 3.0 V, Ic = 1.0 rnA VSE Base-to-Emitter Voltage VCE = 3.0 V 100 Ic=10 rnA Ic = 1.0 rnA Ic = 10 /lA 40 100 54 0.3 IE = 1.0 rnA 0.715 IE= 10 rnA 0.800 /lA V AVSE Magnitude of Input Offset Voltage for Differential Pair IVSEI - VSE21 VCE = 3.0 V, Ic = 1.0 rnA 0.45 5.0 mV AVSE Magnitude of Input Offset Voltage for Isolated Transistors IVSE3- VSE41, IVSE4- VSESI, IVSES - VSE31 VCE = 3.0 V, Ic = 1.0 rnA 0.45 5.0 mV AVSE/AT Temperature Coefficient of Baseto-Emitter Voltage VCE = 3.0 V, Ic = 1.0 rnA -1.9 mVloC VCE(Sat) Collector-to-Emitter Saturation Voltage Is = 1.0 rnA, Ic = 10 rnA 0.23 V IAVlol/AT Temperature Coefficient of Magnitude of Input-Offset Voltage VCE=3.0 V, Ic= 1.0 rnA 1.1 /lVloC NF Low Frequency Noise Figure 1= 1.0 kHz, VCE = 3.0 V, Ic = 100 /lA, Rs = 1.0 kfl 3.25 dB 11-14 I1A3046 • I1A3086 J.LA3086 Electrical Characteristics TA = 25°C unless otherwise specified. Symbol Characteristic Condition Min Typ Max Unit V(BR)CBO Collector-to-Base Breakdown Voltage Ic=10 !lA, IE=O 20 60 V V(BR)CEO Collector-to-Emitter Breakdown Voltage Ic = 1.0 mA, IB = 0 15 24 V V(BR)CIO Collector-to-Substrate Breakdown Voltage Ic = 10 !lA, Ic = 0 20 60 V V(BR)EBO Emitter-to-Base Breakdown Voltage IE = 10 !lA, Ic = 0 5.0 7.0 V ICBO Collector Cutoff Current VCB = 10 V, IE = 0 0.002 100 nA ICEO Collector Cutoff Current VCE = 10V,IB=0 See Curve 5.0 !lA hie Static Forward Current Transfer Ratio (Static Beta) VCE = 3.0 V Ic=10 mA Ic = 1.0 mA Ic = 10 !lA ~IIO Input Offset Current for Matched Pair 01 and 02 11101 - 11021 VCE = 3.0 V, Ic = 1.0 mA VBE Base-to-Emitter Voltage VCE = 3.0 V 100 40 100 54 0.3 IE = 1.0 mA 0.715 IE = 10 mA 0.800 !lA V ~VBE Magnitude of Input Offset Voltage for Differential Pair IVBE1- VBE21 VCE = 3.0 V, Ic = 1.0 mA 0.45 mV ~VBE Magnitude of Input Offset Voltage for Isolated Transistors IVBE3- VBE41, IVBE4- VBE51, IVBE5 - VBE31 VCE = 3.0 V, Ic = 1.0 mA 0.45 mV ~VBE/~T Temperature Coefficient of Baseto-Emitter Voltage VCE -1.9 mY/DC VCE(sat) Collector-to-Emitter Saturation Voltage IB = 1.0 rnA, Ic = 10 rnA 0.23 V I~Vlol/~T Temperature Coefficient of Magnitude of Input-Offset Voltage VCE = 3.0 V, Ic = 1.0 rnA 1.1 !lVrC NF Low Frequency Noise Figure f = 1.0 kHz, VCE = 3.0 V, Ic = 100 !lA, Rs = 1.0 kS"l 3.25 dB = 3.0 V, Ic = 1.0 rnA 11-15 • MA3046 • MA3086 MA3046 and ~A3086 Electrical Characteristics T A = 25°C unless otherwise specified. Symbol Characteristic Condition Unit Low Frequency, Small Signal Equivalent Circuit Characteristics hIe Forward Current Transfer Ratio hie Short Circuit Input Resistance hoe Open Circuit Output Conductance h,e Open Circuit Reverse Voltage Transfer Ratio Yle Admittance Characteristics: Forward Transfer Admittance 110 f = 1.0 kHz, VCE = 3.0 V, Ic = 1.0 rnA 3.5 kS1 15.6 J..Imho 1.8 x 10- 4 31 - j1.5 f= 1.0 MHz, VCE=3.0 V, Ic= 1.0 rnA 0.3 + jO.04 0.001 + jO.03 Vie Input Admittance Yoe Output Admittance Y,e Reverse Transfer Admittance fT Gain Bandwidth Product VCE = 3.0 V, Ic = 3.0 rnA 500 MHz 0.6 pF 0.58 pF 2.8 pF See Curve CEs Emitter-to-Base Capacitance VES = 3.0 V, IE = 0 CCS Collector-to-Base Capacitance VCS = 3.0 V, Ic = 0 CCI Collector-to-Substrate Capacitance Vcs = 3.0 V, Ic = 0 300 Typical Performance Curves 20 JOE=I3.JJ -Rs =500n =25°C T. 15 20 , l/~y~~ ~.#j ~~ ~ - "~ '""-f- Vdo='3.~V - As TA I.~ = 1000 n .l~("I, -' f-----1 =2SOC 15 R~7 / ~'f 10 / "~ lk~"" .-/ O.OS 0.1 0.2 COLLl!CTOR CURRENT - 0.5 rnA ,---JOE! 3.h J ,---!,s = 10 k!l TA I a:: ~ - / 1.0 o 0.01 0.02 0.05 0.1 ~, ~<:i o~ /' 11-16 1.0 ---= 0.01 0.02 /'" / -(kHz ./ o 0.5 rnA V V V 0.2 / Il-.~ / , kHz COLLECTOR CURRENT - ~,,-->~ :---- Q~'I' 10 /" J:"" 25<'C 15 10 kHz 0.02 25 ~'ii 10';;;; 00.01 30 20 V Q4? ~Q ~ 10 Noise Figure vs Collector Current Noise Figure vs Collector Current Noise Figure vs Collector Current .......--r- 0.05 0.1 0.2 COLLECTOR CURRENT - 10kHz- 0.5 mA 1.0 J.lA3046 • J.lA3086 Typical Performance Curves (Cont.) Forward Transfer Admittance vs Frequency I . Input Admittance vs Frequency COMM~~MITTER ClRC~IT,BA N-E~lr E CIRCUIT, BASE I~~ C 1 30 w IN. r-T"VeE-• aOy we T• • WC YCE= aoY .. _ ",,-!c = '.DmA I - !If. Output Admittance vs Frequency • '.DmA -I 0:" ~~ 20 .. !i! ~ iJ 10 ~w ... 8 -20 0.1 0.2 0.5 1.0 2.0 '.0 5.0 10 20 50 100 200 'l! "Z -1.S I" ~ 8 0 10 20 50 FREQUENCY - MHz 100 '20 a: 110 I ~ f-~l.l Uv "'~C T / 90 V 0: a 80 o V 0: J0: 70 ~ " !i Iii "ty '00 .. 50 " \, hFE11 hFE2 .0 0.8 0.5 1.0 2.0 EMITTER CURRENT - mA "l5V_ f-- '0 ""II: - VeE '0- 3 ~ :::t V 5V 10- 2 8 50 25 10-3 75 '00 o '25 25 ~~ ! 0.5 5.0 10 D.'-75 VeE =3V 100 '25 Static Base-to-Emitter Voltage and Input Offset Voltage vs Emitter Current FOR DIFFERENTIAL PAIR AND _ .... RED ISOLATED TRA~SISTORS7 VeE ~~~ e" 0.6 75 0.8 w 2 50 AMBIENT TEMPERATURE _ °C 0.9 ~ = 10V U 10-1 Base-to-Emitter Voltage Characteristic vs Temperature for Each Transistor 6:;; 50 100 200 ,Q2 ~18"0 ~ I 0.8 0 ~ 0.05 0.1 0.2 zW 0: 0: 'DV 10-2 > OR IhFE1 ""E2[ V 0.01 0.02 ,., 10 20 Collector-to-Emitter Cutoff Current vs Temperature for Each Transistor .. Vee'" 15 10-4 0 200 ...,"''''' s.o I ~ 0.7 ! 0.5 1.0 2.0 FREQUENCY - MHz AMBIENT TEMPERATURE _ °C Static Forward Current Transfer and Beta Ratio for Transistors 01, 02 vs Emitter Current o 0.1 0.2 11 ~ "a: 0 !i0: o 50 100 200 Vol" r-IE"'O i ~ II: ,0-, _b. " -2.0 , '0 I ,l. -0.5 -1.0 g 5.0 10 20 .. LESS THAN 500 MHz w" O:z 0.5 1.0 2.0 Collector-to-Base Cutoff Current vs Temperature for Each Transistor "0: Ilio >w / / FREQUENCY - MHz 1 1 = '.0 mA .1, .( '+J..~cQUENCIES g,. IS SMALL AT Ii!~ lib "" ~~ 0.1 0.2 MHz i-~CE= '.0 V 0:" W .. o ~~M=M2~"tMITT~R CIRCUIT, BASE INjouT Ic V '.L Reverse Transfer Admittance vs Frequency 0.5 I I /"" V FREQUENCY - I w .../ V '"' -10 E E we Ie .'.0 II' \. --. i:! j ... Vee-aOy TA ". ,/ \. 0 i" COMMON-EMITTER CIRCUIT, BASE INPUT h I~ ~~ fo' = 3.0 v VeE _ TA = 25'C / V f-- I ,/ / ~ 8:~ ~~"~ ~~~~ -50 -25 25 50 75 AMBIENT TEMPERATURE _ °c 11-17 " 100 125 INPUT OFFSET VOLTAGE 0.' 0.01 0.02 II 0.05 0.1 0.2 "./ II 0.5 1.0 2.0 EMITTER CURRENT - mA o 5.0 10 MA3046 • MA3086 Typical Performance Curves (Cont.) Input Offset Current for Matched Transistor Pair Q1, Q2 vs Collector Current Input Offset Voltage for Differential Pair and Paired Isolated Transistors vs Ambient Temperature .. 0 10 5.0 VeE = 3.0 V TA = 250C > ~ 2.0 ~ 1.0 i 0.5 E I o~ .. i I / at:i 3.0 ~ ~ o v~ = 3.~V V 2-0 '00 ~~ V - VCE=3.0V hie = 110 ..,. 0: W w i 0.1 o ./ 0.05 ~ ! - 0.05 0.1 0.2 0.5 1.0 2.0 COllECTOR CURRENT - InA 5.0 10 - ~ f.- 0.50 f"'"'j 0.'5 o -75 IE -50 -25 25 800 i 400 I v..: = 3.~V 0 :l Q 0 800 II: ./ l: :; .. Q Z C ~ " V f 200 o o 9 COLLECTOR CURRENT - 50 75 AMBIENT TEMPERATURE _ °C TAo = 250C .. . ~::. I/t.~ ....... "w Q N iI,. '.0 ./~ 0: 0 Z i'..V V ""\:;~ 10 rnA 11-18 100 125 h" h .. h •• v;... Gain Bandwidth Product vs Collector Current i I III. if PCOS300F 1000 10 l.! 0.02 0.01 0.01 0.02 } ~A ~~~~:: ~:a~'0-4 AT1m~= h hoe = 15.6 ~mho II! In > 0.75 0.2 Normalized h Parameters vs Collector Current 0.1 0.01 0.02 hi' 0.05 0.1 0.2 0.5 1.0 2.0 COLLECTOR CURRENT - mA 5.0 10 J1A3680 Quad Telephone Relay Driver FAIRCHILD A Schlumberger Company Linear Division Special Functions Description The MA3680 Relay Driver is a monolithic integrated circuit designed to interface -48 V relays to TTL or other logic systems in telephony applications. The device has a 50 mA source capability and operates from -48 V battery power. The quad configuration increases board density in typical line card applications. Since there can be considerable noise and IR drop between logic ground and battery ground, these drivers are designed to operate with a high common mode range (± 20 V referenced to battery ground). Also, each driver has common mode range separate from the other drivers in the package. Low differential input current (typically 100 MA) draws low power from the driving circuit. Differential inputs permit either inverting or non-inverting operation. A clamp network is incorporated in the driver outputs, eliminating the need for an external network to quench the high voltage inductive backswing caused when the relay is turned off. A fail-safe feature is incorporated to insure that the driver will be off in the VI + input or both inputs are open. Standby power (driver off) is very low, typically 50 MW per driver. • • • • • • • -48 V Battery Operation 50 rnA Output Capability TTl/CMOS Compatible Comparator Input High Common Mode Input Voltage Range Very Low Input Current Fail-Safe Disconnect Feature Built-In Output Clamp Diode Connection Diagram 14-Lead DIP and SO-14 Package (Top View) +IN A BATGND -IN A our A -IN B our B +IN B our C +IN C our D -IN C BAT NEG -IN D +IN 0 Order Information Device Code J.LA3680DV J.LA3680PV J.LA3680SV Package Code 6A 9A KD Package Description Ceramic DIP Molded DIP Molded Surface Mount Absolute Maximum Ratings 1 Storage Temperature Range Ceramic DIP Molded DIP and SO-14 Operating Temperature Range Lead Temperature Ceramic DIP (soldering, 60 5) Molded DIP and SO-Package (soldering, 10 s) Internal Power Dissipation 2, 3 14L-Ceramic DIP 14L-Molded DIP SO-14 Differential Input Voltage Output Current (LL';;; 5.0 H) Output Current (RLl BAT NEG Input Voltage (BAT NEG ;;;'-50 V) -65°C to + 175°C -65°C to + 150°C -25°C to +85°C 300°C 265°C 1.36 W 1.04 W 0.93 W ±20 V 50 rnA 100 rnA Max +0.5 V +20 V Min -70 V BAT NEG -0.5 V Notes 1. All voltages are with respect to BAT GND. 2. TJ Max = IS0·C for the Molded DIP and SO-14, and 17S·C for the Ceramic DIP. 3. Ratings apply to ambient temperature at 2S·C. Above this temperature, derate the 14L-Ceramic DIP at 9.1 mWrC, the 14L-Molded DIP at 8.3 mW'·C, and the 50-14 at 7.5 mWrC. 11-19 MA3680 Recommended Operating Conditions Max Unit -60 -10 V -10 +10 V +2 +10 V Logic Off Voltage (VI+-VI-) -10 +0.8 V Temperature Range -25 +85 °C Characteristic Min Battery Voltage (BAT NEG) Input Voltage Logic On Voltage (VI+-VI-) Electrical Characteristics Over Recommended Operating Conditions unless otherwise specified. TA = 25°C, BAT NEG = -52 V. Symbol Characteristic VIH Logic "1" Differential Input Voltage VIL Logic "0" Differential Input Voltage IINH Logic "1" Input Current IINL Logic "0" Input Current Conditions Min Typ 1.3 0.8 Max 2.0 40 100 VI+ = 7.0 V, VI- = 0 V 375 1000 +0.01 +5.0 VI+ =-7.0 V, VI- =0 V -100 -1.0 V V 1.3 VI+ = 2.0 V, VI- = 0 V VI+ = 0.4 V, VI- = 0 V Unit JJA JJA VOL Output ON Voltage IOL =-50 rnA -2.1 -1.6 V IOFF Output Leakage Vo = BAT NEG -100 -2.0 IFS Fail-Safe Output Leakage Vo = BAT NEG (Inputs open) -100 -2.0 -100 -2.0 JJA JJA JJA -1.2 -0.9 ILC Output Clamp Leakage Current Vo=BAT GND Vc Output Clamp Voltage ICLAMP = -50 rnA, Referenced to BAT NEG Vp Positive Output Clamp Voltage ICLAMP = +50 rnA, Referenced to BAT GND IB(ON) Supply Current All Drivers On -4.4 -2.0 IB(OFF) Supply Current All Drivers Off -100 -1.0 tpLH Propagation Delay, Output Low-to-High L = 1.0 H, RL = 1.0 kn 1.0 10 J.LS tpHL Propagation Delay, Output High-to-Low L = 1.0 H, RL = 1.0 kn 1.0 10 J.LS 11-20 0.9 V 1.2 V rnA JJA MA3680 Equivalent Circuit (1/4 of circuit) DC Test Circuit At _IN --"t-~W\r----, A4 Dt D4 -IN--t-----,~r >-~------- - - - - - ., r ~~-, 1tva L_:_-.J D5 '::' I -52 V BAT NEG OUT D3 L-__~~~~______~__________________~___ ::~ I I L ____ .J • 9 BAT NEG AC Test Circuit and Waveforms -52 V Typical Applications +5.0 V r --l-~ 74XXI I L=tH I __ I~_--, I I I I )0--------'-1 -52 V -48 V CRO""" CR03040F 11-21 J.LA555 Single Timing Circuit FAIRCHILD A Schlumberger Company Linear Division Special Functions Description The J.lA555 Timing Circuit is a very stable controller for producing accurate time delays or oscillations. In the time delay mode, the delay time is precisely controlled by one external resistor and one capacitor; in the oscillator mode, the frequency and duty cycle are both accurately controlled with two external resistors and one capacitor. By applying a trigger signal, the timing cycle is started and an internal flip-flop is set, immunizing the circuit from any further trigger signals. To interrupt the timing cycle a reset signal is applied ending the time-out. Connection Diagram 8-Lead DIP and 50-8 Package (Top View) TRIGGER DISCHARGE OUT THRESHOLD The output, which is capable of sinking or sourcing 200 mA, is compatible with TTL circuits and can drive relays or indicator lamps. • • • • • • • • Timing Control, J.lS To Hours Astable Or Monostable Operating Modes Adjustable Duty Cycle 200 rnA Sink or Source Output Current TTL Output Drive Capability Temperature Stability Of 0.005% Per °C Typ Normally On Or Normally Off Output Direct Replacement For SE555INE555 CONTROL VOLTAGE RESET Order Information Device Code J.LA555TC J.lA555SC Absolute Maximum Ratings Storage Temperature Range Operating Temperature Range Lead Temperature (soldering, 10 s) Internal Power Dissipation 1, 2 8L-Molded DIP SO-8 Supply Voltage vee GND -65°C to + 150°C O°C to +70°C 265°C 0.93 W 0.81 W +18 V Notes 1. TJ Max -150°C. 2. Ratings apply to ambient temperature at 25°C. Above this temperature, derate the 8L-Molded DIP at 7.5 mWrC, and SO-8 at 6.5 mWrC. 11-22 Package Code Package Description 9T KC Molded DIP Molded Surface Mount J,LA555 Block Diagram Vcc--+....5.0kO THRESHOLD CONTROL VOLTAGE DISCHARGE --++-1 R FLIP-FLOP 5.0 kO TRIGGER -++-1 Q S INHIBITI RESET -~I""-T"- OUT 5.0 kO RESET _+_________..J GND Equivalent Circuit (Note 1) CONTROL VOLTAGE VCC-~~---~~-----'-~~-----~-----~---1~-----1---~----+-----~ THRESHOLD OUT TRIGGER-------+----iJ RESET ---------i:-' DISCHARGE-----, GND' _ _ _-4_~~~-------4---4--~~------4--------4---4-------J Note 1. All resistor values in ohms. 11-23 JlA555 /JA555 Electrical Characteristics TA = 25°C, V+ = +5.0 V to +15 V, unless otherwise specified. Symbol Characteristic Vee Supply Voltage Icc Supply Current 1 tD Timing Error Initial Acc\.lracy Drift with Temperature Condition Min VTR Threshold Voltage Trigger Voltage Max Unit 16 V 3.0 6.0 mA Vee = 15 V, RL=oo LOW State 10 15 RI = 2.0 kS1 to 100 kS1 C = 0.1 IlF 1.0 % 50 ppm/DC 0.1 %V Vee = 5.0 V, RL = 00 Drift with Supply Voltage VTH Typ 4.5 Vee = 5.0 V 2.6 3.33 4.0 Vee=15 V 9.0 10 11 Vee = 15 V 4.0 5.0 6.0 Vee = 5.0 V 1.1 1.67 2.2 0.5 5.0 V V ITR Trigger Current VR Reset Voltage 0.7 1.0 V IR Reset Current 0.1 1.5 mA ITH Threshold Current2 0.1 0.25 !lA Vev Control Voltage Level VOL VOH Output Voltage LOW Output Voltage HIGH 0.4 Vee=15 V 9.0 10 11 Vee = 5.0 V 2.6 3.33 4.0 Vee=15 V, 10-=10 mA 0.1 0.25 10- = 50 mA, Vee = 15 V 0.4 0.75 10- = 100 mA, Vee = 15 V 2.0 2.5 10- = 200 mA, Vee = 15 V 2.5 3.5 Vee = 5.0 V, 10- = 8.0 mA 0.3 10- = 5.0 mA, Vee = 5.0 V 0.25 10+ = 200 mA, Vee = 15 V 11.0 12.5 10+ = 100 mA, Vee = 15 V 12.75 13.3 Vee = 5.0 V, 10+ = 100 mA 2.75 Rise Time of Output 100 tf Fall Time of Output 100 IDIS Discharge Leakage Current 20 11-24 V V 0.35 V 3.3 tr Notes 1. Supply Current is typically 1.0 mA less when output is HIGH. 2. This will determine the maximum value of R1 + R2. For 15 V operation, the maximum total R = 10 Mil. IlA ns ns 100 nA MA555 Typical Performance Curves Minimum Pulse Width Required for Triggering 150 2.0 10 125 ~ 4: 8.0 I l: .... e i ... w oJ E 100 ~ 15 '" 50 Z li T; I ...-...- ~ :> :IE :> 25 "u 4.0 f..- ~ ~ ..... ~ ~ ~....1•• ,O·j ~ V ./ !:; §l1.0 ..50.6 50.8 .... 0.4 o 5.0 0.4 10 TA > =250C 1.0 I "~ '"' > SUPPLY VOLTAGE - - =S.OV V ~ ~ 0.1 0.01 1.0 5.0 50 10 TA = 25°C / ~ S 1.000 e 1.0 • ./ V i 5.0 10 SINK CURRENT - 50 100 rnA Propagation Delay vs Voltage Level of Trigger Pulse 1.015 ~ol--r--+--+--+--+--jL-I--~ 1.010 \ -- \ N ::; ---I - 1.005 o. 1 ~ 5 SINK CURRENT - 1.015 "'i='" :> t--t-+-t-t/-=-...-!::......-t-H+--l SINK CURRENT-mA Delay Time vs Supply Voltage J ~ o > .... O.O~'::.0---L.-l.....L5:'.0:--:",0:--'-LJ...,5':0-~,00 100 100 ( 1,. 0 w o ./ 50 > 1.01--II-H+-+-+-++I1--I > e 10 Vee = 15, V ~" k..-' 0.1 1'5 v 5.0 0 o t:; s Output Voltage LOW vs Output Sink Current > 0 I ,cct SOURCE CURRENT - mA Vee::: 10 V ~ r-5.0 o1.0 15 Output Voltage LOW vs Output Sink Current Vee a: ~ 1.2 ./ 2.0 0.3 ....- TA = 25°C > 11.4 w 0.2 0.2 10 :e 1.8 1.6 ijl Output Voltage LOW vs Output Sink Current :> V V LOWEST VOLTAGE LEVEL OF TRIGGER PULSE - x Vee ...... =2~'C V V ./ ./ / 6.0 a: a: '/!f>'C ....- 0.1 ~ Output Voltage HIGH vs Output Source Current Total Supply Current vs Supply Voltage ~ i= >- 1.005 ~ -- o -- r- S 200 1 - - + - + - 1 - - + - - ) 9 ; 4 - + - - 1 - ~ oz 150 a: "~ 100 z if ~ 1.000 ::; ~ 0.995 o ! I l - i"- t-- o Z 0.990 0.990 0.985 0.985 10 SUPPLY VOLTAGE - 15 V 20 fi I--t~;.j-"""'+--f--+-+-+---j 50 -50 -25 25 50 75 AMBIENT TEMPERATURE - 11-25 100 ~C i 25 LOWEST VOLTAGE LEVEL OF TRIGGER PULSE- x Vee J..LA555 Typical Applications Figure 1 Monostable Mode ~C=~OVT015V----------------~---------, Monostable Operation In the monostable mode, the timer functions as a one shot. Referring to Figure 1 the external capacitor is initially held discharged by a transistor inside the timer. Rl RESET--- When a negative trigger pulse is applied to lead 2, the flip-flop is set, releasing the short circuit across the external capacitor and driving the output HIGH. The voltage across the capacitor increases exponentially with the time constant T = R1 C1. When the voltage across the capacitor equals Vee, the comparator resets the flip-flop which then discharges the capacitor rapidly and drives the output to its LOW state. Figure 2 shows the actual waveforms generated in this mode of operation. TRIGGER ;,tA555 :r3 The circuit triggers on a negative going input signal when the level reaches h Vee. Once triggered, the circuit remains in this state until the set time elapsed, even if it is triggered again during this interval. The duration of the output HIGH state is given by t = 1.1 R1C1 and is easily determined by Figure 3. Notice that since the charge rate and the threshold level of the comparator are both directly proportional to supply voltage, the timing interval is independent of supply. Applying a negative pulse simultaneously to the Reset terminal (lead 4) and the trigger terminal (lead 2) during the timing cycle discharges the external capacitor and causes the cycle to start over. The timing cycle now starts on the positive edge of the reset pulse. During the time the reset pulse is applied, the output is driven to its LOW state. r Figure 2 Monostable Waveform t = 01 ms/DIV INPUT"" 2.0 V/DIV I- OUTPUT VOLTAGE =:: l J ~ II '/ - ir-f 5.0 V/OIV I-- / ir-f LI-- J CAPACITOR VOLTAGE - 2.0 VIOl V When Reset is not used, it should be tied HIGH to avoid any possibility of false triggering. R1 = 9.1 kil, C1 =: 0.01 i'F. RL '" 1.0 kJl Figure 3 Time Delay vs R1 and C1 100 r---,---.,.----.--..,.,..-..-r--, 10r---+---+---~~~~-+~~ 0.01 I+--W---h''---H<---I7<--+--~ 1.0 TIME DELAY 11-26 10 CONTROL YOLTAGE 0.01 "F JlA555 Astable Operation When the circuit is connected as shown in Figure 4 (leads 2 and 6 connected) it triggers itself and free runs as a multivibrator. The external capacitor charges through R1 and R2 and discharges through R2 only. Thus the duty cycle may be precisely set by the ratio of these two resistors. Figure 4 Astable Mode ~c=~OVT015V------------------~~---------, Rl OUT------i In the astable mode of operation, C1 charges and discharges between h Vee and 5'3 Vee. As in the triggered mode, the charge and discharge times and therefore frequency are independent of the supply voltage. R2 CONTROL VOLTAGE Figure 5 shows actual waveforms generated in this mode of operation. 0.01 ~F I The charge time (output HIGH) is given by: Figure 5 Astable Waveform tl = 0.693 (R1 + R2) C1 - t - 0.5 milDlY and the discharge time (output LOW) by: t2 = 0.693 (R2) C1 OUTPUT VOLTAGE 5.0 VIDIV I I I I Thus the total period T is given by: T = tl + t2 = 0.693 (R1 + 2R2) C1 / V ~ ~ / \Y~ The frequency of OSCillation IS then; '" 1.44 f=-=----T (R1 + 2R2) C1 CAPACITOR VOLTAGE = 1.0 VIOIV Rl = R2 = 4.8 ko, Cl = 0.1 "F, RL = 1 kO and may be easily found by Figure 6. The duty cycle is given by: Figure 6 R2 DC=--- Free Running Frequency vs R1, R2, and C1 R1 + 2R2 "fw 1.0 (J Z ;! ~ 0.1 " (J 0.01 FREE RUNNING FREQUENCY -Hz 11-27 • JlA556 Dual Timing Circuits FAIRCHILD A Schlumberger Company Linear Division Special Functions Description The J.LA556 Timing Circuits are very stable controllers for producing accurate time delays or oscillations. In the time delay mode, the delay time is precisely controlled by one external resistor and one capacitor; in the oscillator mode, the frequency and duty cycle are both accurately controlled with two external resistors and one capacitor. By applying a trigger signal, the timing cycle is started and an internal flip-flop is set, immunizing the circuit from any further trigger Signals. To interrupt the timing cycle a reset signal is applied, ending the time-out. Connection Diagram 14-Lead DIP (Top View) DISCHARGE THRESHOLD DISCHARGE CONTROL VOLTAGE THRESHOLD The output, which is capable of sinking or sourcing 200 mA, is compatible with TTL circuits and can drive relays or indicator lamps. RESET OUT The J.LA556 Dual Timing Circuit is a pair of J.LA555s for use in sequential timing or applications requiring multiple timers. • • • • • • • Timing Control, JIS To Hours Astable Or Monostable Operating Modes Adjustable Duty Cycle 200 mA Sink Or Source Output Current TTL Output Drive Capability Temperature Stability Of 0.005% Per °c Typ Normally On Or Normally Off Output TRIGGER GND RESET OUT TRIGGER Order Information Device Code J.LA556PC Absolute Maximum Ratings Storage Temperature Range Operating Temperature Range Lead Temperature (soldering, 10 s) Internal Power Dissipation 1, 2 Supply Voltage CONTROL VOLTAGE -65°C to + 150°C O·C to +70°C 265°C 1.04 W +18 V Notes 1. TJ Max = 150·C. 2. Ratings apply to ambient temperature at 25°C. Above this temperature, derate at 8.3 mwrc. 11-28 Package Code 9A Package Description Molded DIP MA556 (112 Block Diagram of circuit) Vcc--+....S.OkO THRESHOLD CONTROL VOLTAGE DISCHARGE -++-1 R FUP-FLOP S.OkO TRIGGER -++--f Q S INHIBITI RESET -"""1, ....-,..-- OUT 5.0 kO RESET _+_________....1 GND Equivalent Circuit (';2 of circuit) (Note 1) CONTROL VOLTAGE VCC-~~_---~-----~~~-----~_---~-~----p--~--~---, THRESHOLD OUT TRIGGER--------Ir---~ RESET - - - - - i : ' DISCHARGE----, Note 1. All resistor values in ohms. 11-29 tlA556 pA556 Electrical Characteristics TA = 25°C, V+ = + 5.0 V to + 15 V, unless otherwise specified. Symbol Condition Characteristic Supply Voltage lee Supply Current (Total) 1 Vee = 5.0 V, RL = Vee = 15 V, RL = LOW State to Timing Error (Monostable) Min Initial Accuracy Drift with Temperature 00 00 teH, DIS Initial Accuracy Drift with Temperature ITH Threshold Current2 VTR Trigger Voltage ITR Trigger Current VR Reset Voltage IR Reset Current Vev Control Voltage Level VOL VOH V 6.0 12 mA 20 28 % R 1 , R2 = 2.0 kn to 100 kn C = 0.1 J..IF 2.25 % 150 ppmfOC 50 ppm/oC 0.1 %V %V 0.3 Threshold Voltage Vee = 5.0 V 2.6 3.33 4.0 Vee=15 V 9.0 10 11 30 250 nA Vee = 15 V 4.0 5.0 6.0 V Vee = 5.0 V 1.3 1.67 2.0 0.5 5.0 0.4 0.1 Output Voltage LOW Output Voltage HIGH V 10 11 2.6 3.33 4.0 10- = 10 mA, Vee = 15 V 0.1 0.25 10- = 50 mA, Vee = 15 V 0.4 0.75 2.75 10- = 100 mA, Vee = 15 V 2.0 10- = 200 mA, Vee = 15 V 2.5 3.5 10- = 5.0 mA, Vee = 5.0 V 0.25 0.35 Vee = 5.0 V, 10+ = 100 mA 12.5 2.75 V 3.3 Rise Time of Output 100 tf Fall Time of Output 100 lOIS Discharge Leakage Current Ato Matching Characteristics ns ns 20 100 0.1 2.0 ±10 Drift with Supply Voltage 0.2 Notes 1. Supply current when output is HIGH is typically 1.0 mA less. 2. This will determine the maximum value of R1 + R2 for 15 V operation. The maximum total R = 10 Mil. 3. Matching characteristics refer to the difference between performance characteristics of each timer section. 11-30 V 12.75 13.3 t, Initial Timing Accuracy V mA 9.0 11 J..IA 1.5 Vee = 5.0 V Vee = 15 V, 10+ = 100 mA V 1.0 Vee=15 V Vee = 15 V, 10+ = 200 mA Timing Drift with Temperature Unit 16 0.75 Drift with Supply Voltage VTH Max Rl = 2.0 kn to 100 kn C = 0.1 J..IF Drift with Supply Voltage Timing Error (Astable) Typ 4.5 Vcc nA % ppmfOC 0.5 %V J-tA556 Typical Performance Curves Minimum Pulse Width Required for Triggering Total Supply Current vs Supply Voltage 150 20 125 ~ 16 I ...c :t 100 ffi i w ~ 75 :> :> :IE 50 Z i 25 f.- 00 a .iil ~ 8.0 ~ ~ P"" 12 a: a: ?!>'C l.-V ..-- ~ ~ "{,. ;:. 10°,.... k;::: .. :IE /' TA = 25'C/' /' V Output Voltage HIGH vs Output Source Current 2.0 vV 1/ 1.8 1.6 CI 1.2 V V g~ 1.0 ... ~ 0.8 5 0. 6 /' 4.0 0.4 0.2 ;-5.0 o 0.4 0.3 0.2 0.1 LOWEST VOLTAGE LEVEL OF TRIGGER PULSE - 10 SUPPLY VOLTAGE - V 5.0 II Vee Output Voltage LOW vs Output Sink Current o 15 TA = 250C ,.- ~ ~ ..... 0.01 1.0 ~ 50 0.1 " 0.01 1.0 mA • .......... TA = 25°C .,/' 5.0 10 SINK CURRENT - 50 100 mA Propagation Delay vs Voltage Level of Trigger Pulse Delay Time vs Ambient Temperature 1.015 1.010 1.01 0 C 1,000 ~ o SINK CURRENT - w :!l ... :> O.O~'::.0---'--l.....J.5:'-.0:--:"0:--'_L-L5::0,--7.'00 100 1.01 5 c > .....- o 5.0 10 SINK CURRENT-mA j o :> Delay Time vs Supply Voltage >- 1,005 100 { I 1.0 w ~ 0.1 f-_f-+T_At-~+-25.'...C""V"'---f_H+_--l ~ :> w 50 > 1.0f--+-+-H--\--\-+-ffl---\ ~ o > ":l 10 Vee == 15 V > g ,. 5.0 Output Voltage LOW vs Output Sink Current Vee"" 10 V I "~ 0.1 YC1~ ,15 V 10 > I 1.0 w . ~ SOURCE CURRENT - mA Output Voltage LOW vs Output Sink Current Vee = S.OV ... ... I 1.0 10 :> 0 TA = 25°C > I 1.4 w \ - \ ~ 1'--- :l:Ii 0.99 5 250~-r--+--+--+--+--~-4--~ ~ 2 "~ >- 1.005 -- C ~ 1.000 --r-- r-- - -r- ::; ~ 0.995 a: a: o z o z 0.990 0.990 0.98 5 0.985 10 SUPPLY VOLTAGE - 15 V 20 I ~ w 200 t---+-+-f--+-~4-+--l ~ 150 c ii "If: 100 I--f:::;;:;..j-""'+--+--+-+-+---I ~ 50 -50 -25 25 50 75 AMBIENT TEMPERATURE _ _ _ _ _ _ _ _ _ _ _ _ _.c,· 11-31 100 ec 125 0.4 LOWEST VOLTAGE LEVEL OF TRIGGER PULSE-. Vee MA556 Typical Applications Figure 1 Monostable Mode ~C=~OVT015V----------------~---------, Monostable Operation In the monostable mode, the timer functions as a one shot. Referring to Figure 1 the external capacitor is initially held discharged by a transistor inside the timer. 14 When a negative trigger pulse is applied to lead 6, the flip-flop is set, releasing the short circuit across the external capacitor and drives the output HIGH. The voltage across the capacitor, increases exponentially with the time constant T = R1C1. When the voltage across the capacitor equals :r3 Vee, the comparator resets the flip-flop which then discharges the capacitor rapidly and drives the output to its LOW state. Figure 2 shows the actual waveforms generated in this mode of operation. The circuit triggers on a negative going input Signal when the level reaches h Vee. Once triggered, the circuit remains in this state until the set time has elapsed, even if it is triggered again during this interval. The duration of the output HIGH state is given by t = 1.1 R1C1 and is easily determined by Figure 3. Notice that since the charge rate and the threshold level of the comparator are both directly proportional to supply voltage, the timing interval is independent of supply. Applying a negative pulse simultaneously to the Reset terminal (lead 4) and the trigger terminal (lead 6) during the timing cycle discharges the external capacitor and causes the cycle to start over. The timing cycle now starts on the positive edge of the reset pulse. During the time the reset pulse is applied, the output is driven to its LOW state. R. RESET--- TRIGGER 1/2/JA5S6 OUT r CONTROL YOLTAGE 0.01 p.f CAOQ521F Figure 2 Monostable Waveform t = 0.1 mS/DIV INPUT = 2.0 VlDIV I- OUTPUT VOLTAGE = 5.0 V/DIV J V '11 I-- W / f-- ..J CAPACITOR VOLTAGE When Reset is not used, it should be tied HIGH to avoid any possibility of false triggering. / -li 2.0 V/DIV Rl = 9.1 k!l. C1 = 0.01 J.lF, Rl = 1.0 kll Figure 3 Time Delay vs R1 and C1 l00r---~--,---~---r,r-~~~ . ~ ~ 1.0 <.> z ~ ..1l ~ 0.1 0.0' f+--+,.<---J7 \ 0.2 100K 01 100M 10M FREQUENCY - Hz 10K 1M J I -0.2 10 o II ~ GAIN 1 '/ 0 D 1.0 ~I / GAIN 2--'" 0.8 :.J \ S ~ 20 8:E 1.2 > ..~ ..... r-.., = Vee t6 V TA = 25°C RL= 1 kO 1.4 "z 5.0 so o 1.8 ~~v veU TA = :WC RL=1kfl ,:. &.0 r-.., 70 Pulse Response 7.0 5 10 50 100 -0., -15 -10 -5 500 1000 0 5 10 15 TIME-ns FREQUENCY - MHz 20 25 30 35 PC07730F Differential Overdrive Recovery Time 70 .~V veA= TA =:WC I GAN2 .. .ffi40 260 1 / :Eso ;: V 8:l3O ~ !!i2O ffi is 10 1.6 00 20 40 GAIN 2 TA = 250C RL=1kO Vee = taV 1.4 7 1.2 > .. l/ /" - I -. / I 1.0 "~ 0.8 ~ Q.6 5 0.4 S II 0.2 1 Z 1.05 ~ 1&1 ~ = £ev '\ ........ ~+ r-- l ~ \ t-...... 0 5 10 15 0.' 60 100 TEMPERATURE - ·c !~ -0.4_15 -10 -5 0 5 10 15 TIME- 20 25 30 35 na Voltage Gain vs Supply Voltage III 40 TAI.U~c ~~ III ~ ~irc ~ ~30 ~ ..fi 020 10 -10 =25°C 1.4 T~YriC ~ ~loc IT~I= 12~ Ii 140 TA= 125D C TA ;.-. TA= 7O"C j D.2 20 25 30 35 Vcc=tBV RL-1 leO ~ 0 \ 20 :-&l rj 0 'II ; \ -20 -- , -0.2 -0.4 -15 -10 -5 z ~ 2\ 0.65 0.80 -80 0.6 TlME-n. \.\; w " TA = -55"C ..5 ISO > 0.90 TA = 00 0.8 ...:::> 60 Ve gUS 5.. .. ~ Gain vs Frequency vs Temperature \ 1.00 RL=1kCl 1.2 > 1 1.0 :.J .J GAIN 2 Vee = ±6V 1.4 -0.2 80 100 120 140 160 180 200 60 Voltage Gain vs Temperature ~ 1.10 1.8 ~ '/ 0 / Vee = ±6V Vee = ±3V DIFFERENTIAL INPUT VOLTAGE - mV 1.15 Pulse Response vs Temperature Pulse Response vs Supply Voltage 1 5 10 so 100 FREQUENCY - MHz 11-37 I jJ 5001000 TA·25·C ~I 1.3 12 . : 1.0 ~ 0.9 ..g ~ Ii 0.8 0.7 ~ 0.6 0.5 f"'" ~ 1.1 I- GJ.,.... 'll-" I-" p- ~ ~ ~~"/ / ~ ...... .- V ,/ V 0. 4 3 SUPPLY VOLTAGE - tV MA592 Typical Performance Curves (Cont.) Output Voltage and Current Swing vs Supply Voltage Voltage Gain Adjust Circuit Voltage Gain vs RADJ lOGO 7.0 TAI= J.c D.2,.F T T ~ i..;' ~ #:¥ ~ V . ~ ~ '" P" I ·z ':' Rod, ... ~ 10 ~ " :..I §! ... ~Z ...a: 1.0 " 0.1 I " .ot 8.0 5.0 6.0 7.0 SUPPLY VOLTAGE - +Y 4.0 ........... 100 ~ D.2 .F ~v." Vee = tlV 1= 100 11Hz TA = 25'C > 1 10 lK 100 10K 100K 1M RodI- n PC07671F PC07810F Output Voltage Swing vs Load Resistance 7.0 we J8.0 I ~ 5.0 V- ~a.o { 80 ...I 70 ~ 80 §! 50 :..I 6z !i2.0 ... I! L.o ii! ;!; ..... 500 1 K LOAD RESISTANCE - TAD B 5K 10K n ~24 30 20 12 01 2 1 0 100 lK BOURCE RESISTANCE - '/ ,/ I' ./ 8 ~ 18 5 18 a::! 17 i 18 ~ ,. ...... ....... ....... ...... ~ 15 !/ 20 i MHz I' ./ I 18 =1 40 TA= 25"C E we I 28 ! 20 I Supply Current vs Supply Voltage !i Vee. t8V VCC'- t8V 10 50 100 200 10 21 G~IN~III 90 ... g 0 100 Vee = t6V TAo- !... 4.0 Supply Current vs Temperature Input Noise Voltage vs Source Resistance / 3 SUPPLY VOLTAGE - tY 11-38 n 10K 14 -80 -20 20 80 TEMPERATURE - 'C 100 140 p.A733 Differential Video Amplifier FAIRCHILD A Schlumberger Company Linear Division Special Functions Description The IlA733 is a monolithic two-stage differential input, differential output video amplifier constructed using the Fairchild Planar Epitaxial process. Internal series shunt feedback is used to obtain wide bandwidth, low phase distortion, and excellent gain stability. Emitter follower outputs enable the device to drive capacitive loads and all stages are current source biased to obtain high power supply and common mode rejection ratios. It offers fixed gains of 10, 100 or 400 without external components, and adjustable gains from 10 to 400 by the use of a single external resistor. No external frequency compensation components are required for any gain option. The device is particularly useful in magnetic tape or disc file systems using phase or NRZ encoding and in high speed thin film or plated wire memories. Other applications include general purpose video and pulse amplifiers where wide bandwidth, low phase shift, and excellent gain stability are required. Connection Diagram 10-Lead Metal Package (Top View) vNote Pin 5 connected to case. Order Information Device Code • • • • 120 MHz Bandwidth Typ 250 kf2 Input Resistance Typ Selectable Gains Of 10, 100, And 400 No Frequency Compensation Required Absolute Maximum Ratings Storage Temperature Range Metal Can and Ceramic DIP Molded DIP and SO-14 Operating Temperature Range Extended (1lA733M) Commercial (1lA733C) Lead Temperature Metal Can and Ceramic DIP (soldering, 60 s) Molded DIP and SO-14 (soldering, 10 s) Internal Power Dissipation " 2 10L-Metal Can 14L-Ceramic DIP 14L-Molded DIP SO-14 Supply Voltage Differential Input Voltage Common Mode Input Voltage Output Current Package Code 1lA733HM 1lA733HC 5X 5X Package Description Metal Metal Connection Diagram 14-Lead DIP and 50-14 Package (Top View) -65°C to +175°C -65°C to + 150°C 14 -55°C to + 125°C O°C to +70°C 1.07 W 1.36 W 1.04 W 0.93 W ±S.O V ±5.0 V ±6.0 V 10 mA IN2 INt NC Ne G.. G... G. a". v- v+ Ne Ne OUTt OUT 2 COO124OF Order Information Device Code Notes 1. TJ Max -150°C for the Molded DIP, and 175°C for the Metal can and Ceramic DIP. 2. Ratings apply to ambient temperature at 25°C. Above this temperature, derate the 10l-Metal Can at 7.1 mWrC, the 14l-Ceramic DIP at 9.1 mWrC, the 14l-Molded DIP at 8.3 mWrC, and the 50-14 at 7.5 mWrC. 1lA733DM 1lA733DC 1lA733PC 1lA733SC 11-39 Package Code Package Description 6A 6A 9A KD Ceramic DIP Ceramic DIP Molded DIP Molded Surface Mount • pA.733 Equivalent Circuit V+ IN1 +--+-O'UT1 UT2 R14 400Cl V- ~733 and ~733C Electrical Characteristics TA = 25°C, Vee = ± 6.0 V unless otherwise specified. p.A733 Symbol Avo BW Condltlon 1 Characteristic Differential Voltage Gain Bandwidth Rs=50 n ,- t, tpo ZI Risetime Propagation Delay Input Impedance Input Capacitance Input Offset Current Max Min Typ Max Unit V/V Gain 1 300 400 500 250 400 600 90 100 110 80 100 120 Gain 3 9.0 10 11 8.0 10 12 Gain 1 40 40 Gain 2 90 90 Gain 3 120 120 Rs=50 n, Vo = 1.0 Vp_p Gain 1 10.5 10.5 Gain 2 4.5 Gain 3 2.5 2.5 Rs=50 n, Vo = 1.0 Vp_p Gain 1 7.5 7.5 Gain 2 6.0 Gain 3 3.6 Gain 1 Gain 3 110 Typ Gain 2 Gain 2 CI p.A733C Min Gain 2 4.5 10 6.0 ns 12 ns 10 3.6 4.0 20 kn 4.0 10 30 250 30 250 2.0 0.4 11-40 10 MHz 2.0 3.0 0.4 pF 5.0 pA #J,A733 /.IA733 and 1.IA733C (Cant.) Electrical Characteristics T A = 25°C, Vee = ± 6.0 V unless otherwise specified. p.A733 Symbol Condition! Characteristic liB Input Bias Current en Input Noise Voltage Min Input Voltage Range CMR Common Mode Rejection VCM PSRR Supply Voltage Rejection Ratio tJ.Vcc = ± 0.5 V, Gain 2 Vos Output Offset Voltage = ± 1.0 V, Gain 2 Typ Max 9.0 20 Min 12 Rs=50 n, BW = 1.0 kHz to 10 MHz VIR p.A733C Typ Max 9.0 30 Unit IJA. 12 IlVrms ± 1.0 ± 1.0 60 86 60 86 dB 50 70 50 70 dB V Gain 1 0.6 1.5 0.6 1.5 Gain 2 and Gain 3 0.35 1.0 0.35 1.5 2.9 3.4 2.9 3.4 VOCM Output Common Mode Voltage 2.4 2.4 V V VOP Output Voltage Swing 3.0 4.0 3.0 4.0 Vp-p 10- Output Sink Current 2.5 3.6 2.5 3.6 rnA Ro Output Resistance 20 Icc Supply Current 18 20 24 18 n 24 rnA The following specifications apply over the range of -55·C";;TA";;125·C for 1JA.733 and 0·C";;TA";;70·C for 1JA.733C. Avo Differential Voltage Gain Gain 1 200 600 250 600 Gain 2 80 120 80 120 Gain 3 8.0 12 8.0 12 Gain 2 8.0 ZI Input Impedance 8.0 110 Input Offset Current 5.0 6.0 liB Input Bias Current 40 40 VIV kn IJA. IJA. VIR Input Voltage Range ±1.0 ±1.0 V CMR Common Mode Rejection 50 50 dB PSRR Power Supply Rejection Ratio 50 50 dB Vos Output Offset Voltage Gain 1 1.5 1.5 Gain 2 and Gain 3 1.2 1.5 VOP Output Swing 2.5 2.8 10- Output Sink Current 2.2 2.5 Icc Supply Current 27 Note. 1. Gain Select leads G'A and G'8 connected together for Gain 1. 2. Gain Select leads G2A and G28 connected together for Gain 2. 3. All Gain Select leads open for Gain 3. 11-41 V Vp.p 27 rnA rnA JlA733 Typical Performance Curves Phase Shift vs Frequency Phase Shift vs Frequency I'- .."'II! "' -5 S "- I ..5 -15 I.. -20 -25 N "" ..... -3SO 10 Vee. I 1 5 .0 30 ~ I 8 1.4 II!. " 1 00 1.2 I 5.0 i: :!I vc~1J~v TAo ="J5OC ~ r-... !; ..... 500 1000 RL = 1 kQ 1.0 "' 0.8 Gl'N ~ 0.. :> 0.. :> 0.2 Q \ Vcc=tBY Gl'N .... ~ 2.0 ~ 20 50 100 TA = 25°C > I "~ ..0 gt.o '" 10 FREQUENCY - MHz 1.6 ,:. ~ 5 500 1000 Pulse Response .. 8.0 70 ~ l~ '\ f- 10 50 100 FREQUENCY - MHz t6V TA. 25°C i f- .r 7.0 80 i ....... GAIN 3 Output Voltage Swing vs Frequency GAIN ~I_ 90 \ ~~ ~i -300 • 100 GAIN 2 G> Common Mode Rejection Ratio vs Frequency 2 1\ ~ FREQUENCY - MHz. III TA= 25"C GAIN 1 1\ • • o Vee ~_~_I V = ~\ r--.. -10 Q -so &0 Vee = t6V TAo soc f::: ~t-- GAIN 2 YCC' t6_ IITAO:; 2SOC Voltage Gain vs Frequency r ....... I ...<: I 'GAIN / J 01.0 -0.2 10 o 10K 100K 0, 1M 10M FAEQUENCY - Hz 100M 5 so 10 FREQUENCY - 100 -0.4 -15 -10 -5 500 1000 5101520253035 TIMe-ne MHz PC07900F PC07880F PC07910F I Differential Overdrive Recovery Time Pulse Response vs Supply Voltage 1.8 70 7' /' I ., ,so .. 1540 ;: 8II! V 30 ~ / /,V 1 20 010 r-r- V 00 20 V 40 10 80 100 120 140 160 180 200 DIFFERENnAL INPUT VOLTAGE - mY TA- 25'C- 1.4 Vcc=tlY TA - 2SOC 80 GAIN 2 GAIN. oJN21. 2 Pulse Response vs Temperature R 1.2 > I 1.0 ""'~ 0.8 ... S ~ 0.1 :> 0.' 0 0.. Vcc=tBV II I VCf" fllV j vcc .. § 0.8 !j ~ 0.6 t3V '/ S I!: il 1 Vee" t8_ VAL= 1 kO I 1.0 TA= 0 TA= -55°C C rm~. r ~\ -I v.. Q.4 j • 0. TA = 1250C TAo = 25°C TA'" 7()I'C I 0 -0.2 -0., -15 -10 -5 1.' 1.' = 1 k!l -0.2 0 5 10 15 TIME-ni 11-42 20 2S 30 35 -0. • -15 -10 -5 0 5 10 15 TIME-ns 20 25 30 35 1lA733 Typical Performance Curves (Cont.) Voltage Gain vs Temperature 1.15 ~ , \ 1.1 0 1&1 ! ~ Vee = tay 1- 1.0 -I- ~ 1- _\ '\ ....... ~'I'.. \ ~ \ 0.85 0.90 -60 I- 0"111 3 ~ ~ -~ 0.8 '"2: 0.7 II! 0.8 \ - 20 20 TEMPERATURE - OC L...- ~ au ~ 0.5 100 25~C V '" ~ ""'J,,'J...!o.o ~ ~~ I- ....... j--.. ~ 0.90 II! 1.2 1 z1.1 ~Na- 0.05 T•• l.a .- 1 , .05 3 Voltage Gain vs Supply Voltage Gain vs Frequency vs Temperature 7 1/ / '/ 140 FREQUENCY - SUPPLY VOLTAGE - tY MHz "."'OF 7.0 Gain vs Frequency vs Supply Voltage Output Voltage Swing vs Load Resistance Output Voltage and Current Swing vs Supply Voltage 7.0 T.I.Jc GAINZ TAo = ZS-C ~~:~ ::;..- ~ TAo 'II z ./ ./ a 40 ~ 30 '" V ~ 20 '\ ~ 10 ~ i ~4~~ Z If Vee-tlV ii ....... 7.0 5.0 8.0 SUPPLY VOLTAGE - tV 8.0 ZSOC Ycc=:!:8Y Z 4.0 II: 50 1 ./ 1/ ~ . / • 80 Vcc=t8V 50 100 aGO 500 1 K V,Cj{3V -10 5K 10K 1 LOAD RESISTANCE - 0 5 10 80 100 FREQUENCY - MHz 500 1000 ""'' oaF Input Noise Voltage vs Source Resistance Voltage Gain Adjust Circuit Voltage Gain vs Rad) 100 1000 Vcc= tlV oAINJ 111_ vcc·tev ~~==~~C"Hz- u~ 0 I 0 V 0,2,.,.F - ~ 10 o 1 TA = HOC ~ 1 z iii "'" ~ i 100 \, ~ ~ II: I i'... 10 5 10 50100 5001K 10 K """"" SOURCE RESISTANCE - (} 11-43 r"" 10 100 1K Rul-Q 10K #J,A733 Typical Performance Curves (Cont.) Input Impedance vs' Temperature Supply Current vs Supply Voltage Supply Current vs Temperature . .. 70 GAIN 2 Vee = t6V 28 v~=t~V TA- 20 24 '/ ./ /' /' / ./ 1/ /' V o -60 r--.. V V i' V V ... V 10 ............ 1/ 12 -20 . 15 20 100 TEMPERATURE _ °C ,.-eo 140 -20 ./ . 20 100 TEMPERATURE _ °C 140 Oscillator Frequency for Various Capacitor Values 107 r--.... .......... ~ 1 leO r--' 6200 c pA733> Lf/" 1 ~ ___ MEASURED """ CALCULATED/ I--T-I ~ ru ~ ... .......... 1=1IT I = I I ....... ~ 1 2(R1 • R2)CLn [AIr --'!!.L -1] A1 +R2 ''''3.4 x 103c '0;00 1K 10K 100K 1M FREQUENCY - Hz 11-44 3 SUPPLY VOLTAGE - tV Typical Applications 10S / 8 " 10M 25~ JJ,A7392 DC Motor Speed Control Circuit I=AIRCHILD A Schlumberger Company Linear Division Special Functions Description The p.A7392 is designed for precision, closed loop, motor speed control systems. It regulates the speed of capstan drive motors in automotive and portable tape players and is useful in a variety of industrial and military control applications, e.g., floppy disc drive systems and data cartridge drive systems. The device is constructed using the Fairchild Planar Epitaxial process. Connection Diagram 14-Lead DIP (Top View) +MOTOR STALL TIMER DRIVE IN -MOTOR HlC DRIVE IN The p.A7392 compares actual motor speed to an externally presettable reference voltage. The motor speed is determined by frequency to voltage conversion of the input signal provided by the tachometer generator. The result of the comparison controls the duty cycle of the pulse width modulated switching motor drive output stage to close the system's negative feedback loop. -TACH IN OUT EMITTeR GND MOTOR DRIVE OUT CLAMPING DIDOE +TACH IN V+ PULSEnMING Thermal and over voltage shutdown are included for selfprotection, and a stall-timer feature allows the motor to be protected from burn out during extended mechanical jams. • • • • Precision Performance High Current Performance Wide Range Tachometer Input Thermal Shutdown, Over Voltage And Stall Protection • Internal Regulator • Wide Supply Voltage Range 6.3 V To 16 V REGULATOR OUT PULSE OUT "",.... Order Information Device Code p.A7392DV p.A7392PV Package Code 6A 9A Package Description Ceramic DIP Molded DIP Absolute Maximum Ratings Storage Temperature Range Ceramic DIP Molded DIP Operating Temperature Range Lead Temperature Ceramic DIP (soldering, 60 s) Molded DIP (soldering, 10 s) Internal Power Dissipation 1 - 3 14L-Ceramic DIP 14L-Molded DIP Supply Voltage (V+), V9, Vl0, Vll Regulator Output Current, 18 Voltage Applied to Lead 6 (Tachometer Pulse Timing) -65·C to + 175·C -65·C to + 150·C -40·C to + 85·C 300·C 265·C 1.36 W 1.04 W 24 V 15 rnA 7.0 V Voltage Applied Between Leads 3 and 5 (Tachometer Inputs) Continuous Current through Leads 11 and 12 Motor Drive Output ON Repetitive Surge Current through Leads 11 and 12 (Motor Drive ON) Repetitive Surge Current through Leads 10 and 11 (Motor Drive OFF) ± 6.0 V 0.3 A 1.0 A 0.3 A Notes 1. TJ Max = 150'C for the Molded DIP, and 17S'C for the Ceramic DIP. 2. Ratings apply to ambient temperature at 25'C. Above this temperature, derate the 14L·Ceramic DiP at 9.1 mW/'C, the 14L·Molded DIP at B.3 mWI"C. 3. Internally UmHed. 11-45 pA7392 Block Diagram SUPPLY r - - 1 r -....- -....- VOLTAGE V+ 1 SPEED ADJUST PULSE TIMING TACHOMETER INPUTS ~ PULSE MOTOR DRIVER INPUTS V+ OUTPUT CLAMPING DIODE ./LJLf I I REGULATOR OUTPUT PROTECTIVE CIRCUITS VOLTAGE REGULATOR SECTION L---T--------------------------+ IL_______________ I STALL TIMER ~ ~ _________ ~ EQ(J0540F 11-46 MA7392 IlA7392 Electrical Characteristics TA = 25·C, V+ Symbol = 14.5 V, unless otherwise specified. Characteristic Unit Condition Voltage Regulator Section (Test Circuit 1) Icc Supply Current VReg Regulator Output Voltage LlNEReg Regulator Output Line Regulation (~Va) V+ = 10 V to 16 V V+ = 6.3 V to 16 V Regulator Output Load Regulation (~Va) la from 10 rnA to 0 40 mV 2.4 V LOADReg Excluding Current into Lead 11 4.5 7.5 10 rnA 5.0 5.5 V 6.0 20 mV 12 50 Frequency to Voltage Converter Section (Test Circuit 2) VIN Tachometer (-) Input Bias Voltage liN Tachometer (+) Input Bias Current Vs=Va VOIFF Tachometer Input Positive Threshold (Vs-Va) VHY Tachometer Input Hysteresis 1.0 10 !1A 10 25 50 mVp. p 20 50 100 mVp•p 300 500 n 50 55 %Va R Pulse Timing ON Resistance VTH Pulse Timing Switch Threshold tr Output Pulse Rise Time It Output Pulse Fall Time VSat.LOW Pulse Output LOW Saturation (V7) 0.13 0.25 V VSat.HI Pulse Output HIGH Saturation (Va- V7) 0.12 0.2 V ISource Pulse Output HIGH Source Current V7 = 1.0 V -260 -180 SVS Frequency-to-Voltage Conversion Supply Voltage Stabilityl VFV = 0.25 Va2 V + = 10 V to 16 V 0.1 % TS Frequency-to-Voltage Conversion Temperature Stabilitya VFV = 0.25 Va2 TA = -40·C to + 85°C 0.3 % V6 = 1.0 V 45 0.3 jl.S 0.1 -340 jI.S !1A Motor Drive Section VIO Input Offset Voltage liS Input Bias Current CMR Common Mode Range 0.1 VSAT Motor Drive Output Saturation 111 ILEAK Motor Drive Output Leakage 10 Flyback Diode Leakage 20 mV 10 !1A 2.5 V 2.0 V V 11 = V1 0 = 16 V 5.0 V10 = 16 V, Vll = 0 V 30 !1A !1A 0.8 = 300 rnA 11-47 1.3 J.LA7392 ~7392 (Cont.) Electrical Characteristics TA = 25°C, V+ Symbol = 14.5 V, unless otherwise specified. Characteristic Condition Flyback Diode Clamp Voltage VD Min 111 = 300 mA Motor Drive Output OFF Typ Max Unit 1.1 1.3 V Protective Circuits J-TOC Thermal Shutdown Junction Temperature4 Over Voltage Overvoltage Shutdown4 18 VTH Stall Timer Threshold Voltage 5 2.5 ITH Stall Timer Threshold Current5 °C 160 V 24 21 2.9 3.5 V 0.3 3.0 JJ.A Notes 1. Frequency·to·voltage conversion, supply voltage stabilny is defined as: VFV(16 V) _ VFV(10 V) V.(16 V) + VFV(14.5 V.(10 V) V) x 100% V.(14.5 V) 2. VFV is the integrated DC output voltage from the pulse generator (Lelld 7) 3. Frequency-Io-voltage conversion temperature stability is defined as: VFV(8S0C) _ VFv(-40·C) V8(8S°C) V8(-40°C) + VFv(2S·C) x 100% V8(2S°C) 4. Motor Drive circuitry is disabled when these limits are exceeded. If the condition continues for the duration set by the external stall timer components, the circuit is latched off until reset by temporarily opening the power suppty input tine. S. If stall timer protection is not required, tead 14 should be grounded. Typical Performance Curves Overvoltage Shutdown Voltage vs Junction Temperature Stall Timer Threshold Voltage vs Junction Temperature Stall Timer Threshold Current vs Junction Temperature 0.8 25 v. " 14.Jv "---- r-- "" "'- ~ u i 125 ·c 150 -50 -25 25 50 j!: i'-.. 75 ffi " 100 JUNCTION TEMPERATURE - 11-48 0.8 1\ 0.5 0.. \ \. r".... a: 2.0 25 50 75 100 JUNCTION TEMPERATURE _ t 0.7 !Z... " V+I: 14. V 1. 125 +c !! 0.2 . 0.1 ...... ~ 150 0.3 0 -so -25 "" 25 "- 50 r- I-7S 100 JUNCTION TEMPERATURE _ °C 125 150 IlA7392 Typical Performance Curves (Cont.) 2 T,I= .Joe SA T.'= 2~oe > '0 "'"~ §! .... I I I I I 11 / o 12 16 SUPPLY VOLTAGE - 3 l'i 2 ~ II o V i I I I I 1 J I i 1 ! 12 16 SUPPLY VOLTAGE - V 1./ '" V V V u "'4.7 I ! ....... 5.' 5 I!: 5.0 ila:: ••9 g I I o 24 ~ I , ~ 20 '"5.2 , II :l I , I 4 it 5 !( ! , I I o ! ! v+'= ".Iv >5.3 15 i....-' I-"" o Regulator Output Voltage vs Junction Temperature Regulator Output Voltage vs Supply Voltage Supply Current vs Supply Voltage 20 24 U -60 -25 V 25 50 75 100 125 JUNcnON TEMPERATURE - DC 150 PCD11370F Flyback Diode Current (D3) vs Flyback Diode Voltage Tachometer Input Hysteresis vs Junction Temperature 58 800 v;=,Jv v+ 1 -- ....... ..,. !ii 1 500 u 400 ~ g300 I ~200 ~ ""'00 o 42 -60 -25 25 50 75 100 JUNCTION TEMPERATURE - oe 125 150 o / FLYBACK DIODE VOLTAGE - V > "M !i!j 1.42 §! / !:! '.36 ii: Q 1.34 I!i 1.32 ./ V V .,- V V 1.30 -50 -25 25 50 75 100 / / 125 / / / / Motor Drive Output ON Voltage vs Ambient Temperature 'M ! 1. • ~ 1.3. il V+ TJ = TA = .DC 1 600 V "...,... / =114.S J J =1 14•5 TJ = TA = 2SOC 700 ./ Motor Drive Output ON Current vs Motor Drive Output ON Voltage 150 11-49 / / MOTOR DRIVE OUTPUT ON VOLTAGE - V tJA7392 Test Circuits Test Circuit Test Circuit 2 20 kO TACH INPUT VOLTAGES 14 13 100 0 14 12 10 kO 13 11 0.1 pE 12 100 0 10 TACH INPUT VOLTAGE ADJUST 11 V=G.3V... 'NOM = 1000 Hz L-____________DC 10 ~~~ 100 kO REGULATOR VOLTAGE + -=-14.5 V (INTEGRATED FREQ-TO-VOLTAGE CONVERTER OUTPUT VOLTAGE) PULSE PULSE x t--------------<~-TIMING OUTPUT--------~ VOLTAGE 00025 p,F Typical Application Using MagnetiC Tachometer 33OkO ch RS 9.1 kO SPEED ADJUST 100 kCl 10kO O.Ol"F A- I 2kO 1 141- 2 13 "hfll * 1 3 4 "::" r--- 5 RF l00kO ,6 7 :r F Cp H~ "::" Rp 100 kCl 11 "::" l°h 9 sf- I I I I I I (:> Typical comp onent values: • CP=4~PF Cp'DCpto 1000 C de endin system requirements on Cs:: 2 X stal~~me-out AMotor 2:: 5 n 11-50 1 100 kO 10VT016V 5 "F TACHOME TER (I = NOMI NAL TACHOME TER FREQUEN CY) VOLTAGE FSP100 Programmable Digital Filter FAIRCHILD A Schlumberger Company Preliminary Advanced Signal Processing Division Description Connection Diagram (Top View) The Fairchild FSP100 is a device optimized for use in one dimensional data stream processing. It efficiently implements both recursive and non-recursive filter structures. It has, on-chip, all the functions necessary to perform most common filter primitives in a Single instruction. The advanced architecture has separate data and instruction paths to avoid input-output bottlenecks, and utilizes a high performance crosspoint switch to efficiently route data between the processing elements. A transparent pipeline allows simultaneous instruction fetch, execution and data input/output. The serial data path permits variable data word lengths between 20 and 32-bits, which allows efficient single-chip implementations that have not been possible with previous single chip digital signal processors. REsET IDLE The FSP100 uses an external byte-wide program memory for maximum design flexibility without compromising performance. Multiprocessing is straightforward because the FSP100 is directly cascadeable. RESERVED OPSO FLAG OPRQ PA7 INRQ PA6 INCK PA5 INSD PA' INOR PA3 HOLD PA2 OPCK Voo GNO PAl ClK PAO OPOR PB2 NOT USED PBl NOT USED The FSP100 instruction set implements familiar digital signal processing primitives such as Pole-pairs, Zeros, Peak Detectors and Oscillators. The FSP100 comes with a comprehensive software support system, including an assembler and a simulator, which runs under the UNIX', VMS" and MS-DOS operating systems. A hardware development system which allows real time verification of applications software completes the support package. NXT PBO OVER 07 SIGN 06 DO 05 01 D. 02 03 Order Information Device Code Package Code Package Description FSP100DC FSP100LC Consult Factory Consult Factory 40-Lead Ceramic DIP 44-Lead LCC • Requires No External Synchronization Between Input/Output Clocks and Processor Clocks • Optional Data Input and Output Formats and Word Lengths • External Program Memory for Maximum Design Flexibility • On-Chip Data Memory for Storing State Variables • Complete Software and Hardware Support Package for Design Development • Single-Phase 16 MHz Processor Clock Frequency • Single-Phase 10 MHz Data Input and Output Clock Frequency • 40-Lead Ceramic DIP and 44-Lead LCC Packages • TTL- and CMOS-Compatible Input/Outputs • Fu" Performance Over -55°C to + 125°C Operating Temperature Range • 2-Micron CMOS Process • Single-Chip Programmable Digital Filter • Programmed in the Language of Filter Designers (in Terms of Poles and Zeros) • Programmable Internal Data Word Lengths Between 20 and 32-Bits • Executes Complete Filter Functions in a Single Instruction Cycle • Triple Multiplier-Accumulator Provides 3 Million Multiplies Per Second • Sample Rates up to 200 KHz for Single-Chip Applications • Simply Cascade Processors with no Intermediate Logic for Higher Sample Rates • Separate Data and Instruction Paths On- and OffChip • Separate Processor and Data Input/Output Clocks for Ease of System Design #< A trademark of AT&T **A trademark of Digital Equipment Corporation 11-51 FSP100 Logic Symbol PROGRAM AODRESS PROGRAM DATA BUS 00·07 OATA INPUT PORT INDR OPDR INRQ OPRQ FSP100 INCK OPCK OPSD PROGRAM CONTROL IDLE CONTROL I DATA OUTPUT PORT PROCESSOR CONTROL +POWER/CLOCK Architecture General Description The data path contains all of the components necessary to execute a two·pole filter section with a single instruc· tion: • A triple multiplier·adder. • An editing unit which modifies the result from the triple multiplier to obtain saturation and other non·linear effects. • Scratch pad registers. • An accumulator with extension bits and scaler. • A sequential access memory with two data channels for state variable storage. • A crosspoint switch for passing data between the blocks. • An input and an output interface, which can synchronize the chip with the input and/or output data rate. The control path is thus eliminating the program sequencer is also provided for quencer, if desired. path are: totally independent of the data path, need for pipeline flushing. A simple is provided on·chip, but a clock output use with an external program se· The major elements of the control • A program sequencer, providing branching and looping. • An instruction decoder for configuring the crosspoint switch. Triple Multiplier-Adder Most of the arithmetic unit consists of a triple multiplieradder. During each instruction cycle, it forms the sum of products: R = Xg • Gamma + Xa • Alpha + Xb • Beta The X's are Signal data streams emerging from the crosspoint switch. Alpha, Beta and Gamma are coefficients. Alpha is in the range -2 to +2. Beta is in the range -1 to + 1. Gamma is normally a power of two scaling factor in the range of -2 to +2, but it is possible to feed Signal data to the Gamma coefficient input to effect the signalby-signal multiplications required for modulation, veo's and time-varying filters. Normally the multiplier rounds the final sum·of·products. However, recursive filtering instructions may invoke random switching between rounding and truncation in order to de· feat limit cycles. The triple multiplier includes a fast carry chain. This fast carry chain provides an overflow and sign output in ad· vance of the serial data output, in order to control the saturation and non·linear function logic in the editing unit. The triple multiplier uses Booth encoders operating directly on the incoming data bit-pairs. These Booth encoders can also perform non-linear functions. Signals from the control section can cause the input data streams to be masked to zero or inverted as they enter the arithmetic unit, to provide half or full wave rectification or a sign·dependent gain. • A bus for distributing the instruction bytes for local decoding. 11·52 FSP100 Figure 1 Block Diagram INSTRUCTION BUS -... z ... - f~ :Zz 00 a:U U ADDRESS COUNTERS DATA MEMORY ~ I-~ I-- - H ~ 0VA.N SCRATCH REGISTERS REGISTER FILE r-IPSO OPSD --- ACCUMULATOR SCALER RI FAST CARRY CHAIN r-- ~ ::cU ,.-- ~ EOITING UNIT 1 r--!!- ~ INSTRUCTION DECODER i -- .. -- ~ ...a:w > ~ ! .. Q '"z ~ z ~ ... 5 ,.!!- '":I'" ..L '"'" a: .. TRIPLE MULTIPLIER WITH ADDER I-- 00-07 Q U t INPUT INTERFACE 2. OUTPUT INTERFACE -!- t t t INSTRUCTION SEQUENCER BYTE COUNTER ____ PO-P7 ~FO-F2 "--- unit: one for the filter output, and the other for the new state variable value_ Editing Unit The primary function of the editing unit is to saturate the result from the multiplier to prevent overflow osciiiations in recursive filters_ Scratch Pad Registers The scratch pad registers are a group of six variablelength registers_ Two registers serve as working stores; each one is connected between a crosspoint switch output and input The use of these registers is determined by the FUNCTION code_ The saturation logic consists of a multiplexer which can select between the multiplier output, + 1, -1 or 0_ A control PLA sets the switches according to the FUNCTION code and the sign/overflow flags, to achieve either saturation or the more complex behavior required for the other non-linear operators_ A dual-port connects another crosspoint switch output and input four-word register file_ This register file is directly addressable by an instruction field_ It can be used to store intermediate results for more complex filter topologies. Another function of the editing unit is to provide some commonly used, computationally simple filter zeros_ This function allows execution of some biquadratic sections in a single instruction cycle_ When this function is used, the output of the filter is different than the new value of the state variable (which needs to be stored in the data memory)_ There are, therefore, two outputs from the editing Accumulator An accumulator is also connected to an output from the crosspoint switch. It is used primarily for implementing FIR and parallel IIR summing nodes. It has six extension bits 11-53 FSP100 which permit accumulation of up to 64 values without the risk of overflow. The accumulator output is connected to a crosspoint switch input via a power-of-four scaling circuit, the scaling factor being determined by the SETUP instruction. Data Memory The data memory is organized as a 64-column, 32-row array of 2-port, 3-transistor RAM cells. It functions logically as an adjustable length shift register, with two data channels each two bits wide. The length of the "shift register" is set up during initialization. The rows are written sequentially. Each row receives 16 bits from each of four input bit streams (two data channels) for an effective register length of a multiple of 32 bits per channel. Adjustable length shift registers on the input increase the length resolution to four bits per channel. The serial access memory restricts operation to algorithms in which the data flows in an ordered stream, such as filters and correlators. However, this memory organization can efficiently store data of arbitrary word length. Also, the instruction word does not require a memory address field. Input and Output The input! output data is single bit wide serial with four possible arithmetic formats. It may be either most- or least-significant bit first. The input and output word lengths are independent both of each other and of the internal word length. Associated with both the input and output port are two handshake lines; one indicates that the external device is ready, the other that the FSP100 is ready. The FSP100 can suppress its ready signal until the external device is ready, thus enabling the processor to directly control the transfer. The input and output ports each have their own clock. These clocks may be asynchronous with respect to each other and with respect to the processor clock. The interface logic is deSigned to have an arbitrarily low error rate without reducing the interface throughput. While the processor is waiting for an external device to become ready, the I/O interface stops the execution of the program. Execution resumes upon completion of the I/O transfer. The processor thus synchronizes itself to the sample rate of the rest of the system. data transfers for one instruction cycle to take place simultaneously, with no contention, at effective data rates up to 240M bits per second. The crosspoint switch is double-buffered, so that it may be set up for the next instruction during the execution of the current instruction. The connection pattern determines the signal processing algorithm. Program Sequencer The program sequencer is built around an eight bit instruction counter and a three-bit byte counter. The byte counter addresses the eight bytes of one instruction. To avoid the need for a branch address field in the program counter, the branch address is loaded with the SETUP instruction into the label register. The program sequencer also contains a loop counter and loop control logic. The branch logic can perform unconditional branches and conditional branches depending on the state of the "Flag" pin. Instruction Decoder Instruction decoding is performed by two PLA's operating on the function code. One PLA generates the crosspoint switch configuration; the other controls the non-linear functions in the editing unit. The remainder of the instruction word is decoded locally by the small control sections associated with each data path component. Pipelining The FSP100 incorporates instruction-level pipelining to eliminate time lost in many processors fetching the next instruction from memory and storing the results of the previous instruction back into memory. The following Table 1 depicts this action. Time slot T3 is typical. The result of instruction N is stored in memory. Instruction N + 1 is executed within the FSP100 and the 64 bits of the instruction N + 2 are fetched from the external memory. During the time slot T4 the progress of each instruction advances. Instruction N + 1's results are stored back in memory. Instruction N + 2 is executed within the FSP100 and instruction N + 3 is fetched from external memory. Pipelining continues in this fashion without conflict since the time to either fetch an instruction or store a result is always less than or equal to the time required by the FSP100 to execute an instruction. Crosspoint Switch The crosspoint switch replaces the data busses of more conventional architectures. It enables all the necessary 11-54 FSP100 Signal Processing Functions Table 1 Pipelining The following list presents the functions selectable by the FUNCTION code. Those functions that require more than one instruction cycle are implemented as two separate instructions. The software support package allows these multiple instruction sequences to be coded as a single instruction. The list does not include functions for testing, initialization and control, because the user does not usually code these functions directly. TIME PERIODS INST. N T1 T2 T3 FETCH EXECUTE STORE FETCH EXECUTE STORE FETCH EXECUTE STORE FETCH EXECUTE INST. N+1 INST. N+2 T4 INST. N+3 Name T5 T6 STORE Number of Instructions Function Filter Poles: POLES CPOLES APOLES RPOLE RPOLES 1 2 2 1 2 Direct form pole-pair State-space pole-pair Adaptive pole-pair Real pole with well-defined gain Two independent real poles with well-defined gain Filter Zeros: ZERO ZEROS NOTCH FIR Real zero with well-defined gain Direct form zero pair Adaptive notch Two taps of an FIR Combined Poles and Zeros: POLEP POLEN POLEZERO BIO BIOR BIOU BlOT BIOPP BIOPN BIONN LAD DR 1 1 1 2 2 2 3 1 1 2 Real pole with well-defined gain; zero at Z = + 1 Real pole with well-defined gain; zero at Z = -1 Real pole and zero Direct form second order section Second order section for parallel forms Second order section with zeros in unit circle Transposed form second order section Direct form second order section, zeros at Z = + 1 Direct form second order section, zeros at Z = ± 1 Direct form second order section, zeros at Z = -1 Ladder form filter section Miscellaneous Linear Functions: GAIN SUM INTEGS Gain and offset Weighted sum of two signals Resettable integrator Signal Generators: RAMP EXPVCO SINEGEN RANDY PULSE PULSERT Ramp/sawtooth generator Exponential ramplVCO Sinewave oscillator Pseudo random noise Pulse generator Retriggerable pulse generator 11-55 • FSP100 Name Number of Instructions Function Point Non-Linearities: BREAKPT SDGAIN SDOFF SDLEVEL SDSRC CCLIP SUBIZ SUBIT LIMIT MAXVAL MINVAL RESTORE Breakpoint (for piecewise linear functions) Sign dependent gain Sign dependent offset Sign dependent level Sign dependent source Center clipping Substitute zero inside window Substitute data inside window Limiting function (like saturation) Maximum of two signals Minimum of two signals Restore sign removed by absolute value Non-Linearities with State: SAMPLE PEAKHOLD LEVELDET ZCROSS Sample and hold Tracks and holds peaks Comparator with hysteresis Zero crossing detector Housekeeping: GETMEM PUTMEM LOADB LOADC LOADBC Recover state variables Save value to memory Load B register Load C register Load Band C register Notes Instruction names are preliminary. "Well-defined" means that the gain coefficient is not restricted to a power of 2. Table 2 Instruction Format Table 2.1 ......-- bytes 0 .• 3 - . . . . . - - . bytes 4 .. 7 - - . FUNC + microcode fields II Multiplier coeftts SETUP + microcode fields II Setup parameters INIT ~ Default Microcode Format - All Function Codes Except INIT - - - - - - - - - - - - - bytes 0 ...3 - - - - - - - - - - - - -.. 2+2 I defines fixed operating MODE parameters ""co"'" 4+1 - Y-output/Pi-load Temp file r/w addresses Temp register source select Accumulator control Source nonlinearity Source data for FUNC to operate on Sequence control - Next, Jump, Loop, Flag Instruction function code - e9 POLES or PEAK DETECT 11-56 It of bits used I Gamma coelnt FSP100 Table 2.2 Coefficient Format (all Function Codes Except INIT And SETUP) Table 2.3 SETUP Parameter Format (only Applies For SETUP Function Code) _ - - - - - - - b y t•• 4 ...7 - - - - - - -_ _ - - -_ _ byt•• 4 ...7 _ _ _ _ _• ~ ... I,L_A_B_E_L.....I....,N,-L_O_O_p-.JI.,.R_E_S--.JII....rA_S_C_A_L...t..,P_R_U_P_D_A_T_E...JI I I 8+4 16 16 - I Range -1 .•. <+1 I I Range -2 ...<+2 I I 1 3 8 - I I l,ogram update addr••• byte # of bits used # of bits used Accumulator output scaling Reserved for future use 'nltlal value for loop counter Jump address for branch instructions Table 2.4 Special INIT Instruction Format - - - - - - - - - - - - - - - - b y t•• O...3 - - - - - - - - - - - - - - _ . - ~ 6 2 j 1 4 - #ofbUsused I !nput upsampling Passive (active) mode Data direction Dither duty cycle 1 Operating wordlenglh Memory cycle force Immediate/delayed mode Reserved for future use Memory length parameter NEXT sequence code INIT function code - - - - - - - - - - - - - - - - - - - - - b y t e s 4 ... 7 - - - - - - - - - - - - - - - - - - - -__ 4 I 4 8 4 1 I I 1 - • of bits used IInvert Magnitude Bits Invert Sign Bit Invert Magnitude Bits I Invert Sign Bit Reserved for future use Output subsampling factor Reserved for future use Passive (active) mode Data direction Input injection position Y output wordlength X input wordlength Noles The XFORMAT field operates on the incoming data stream AFTER it has entered the PDF and it has been subject to the XMODE data direction field. Thus, it regards the Most Significant bit of incoming data as the sign bit and the remaining bits as the magnitude bits. The YFORMAT field operates on the outgoing data stream while it is still in the internal two's complement format. Thus, it regards the Most Significant bit of internal data as the sign bit and the remaining bits as the magnitude bits. The data is still subject to bit reversing as specified in the YMODE data direction field. 11-57 FSP100 Signal Descriptions Name 110 VCC GND INCK INDR INRQ INSD OPCK OPDR OPRQ OPSD RESET HOLD IDLE ClK OVER SIGN NXT FLAG PAO-? PBO-2 DO-? I I I I 0 I I I 0 0 I I 0 H/L H H H H H H H H l H H I 0 0 0 I 0 0 I H H H H H H H Description Power Power Input clock Input device ready Input request Input serial data Output clock Output device ready Output request Output serial data Reset Force processor wait Indicates forced processor wait Processor clock Overflow Sign External sequencer clock Flag (branch control) Program word address (tri-state) Program byte address (tri-state) Program byte input Program Memory Operation The FSPi00 is designed to operate with an external program memory with no impact on the data throughput. To achieve this, a separate instruction bus is utilized with dedicated address and data lines. Internally, a 64-bit instruction word is used, but it is time-multiplexed into eight bytes. The ii-bit program address bus can address a total of 256 instructions with the least significant three bits addressing both the eight bytes of the current instruction and the eight most significant bits of the program counter. This configuration means that, when using a byte-wide memory, no additional external interface logic is required. Figure 2 illustrates the typical configuration of an FSPi00 and its program memory, in this case a 1 K x 8-bit PROM. A timing diagram follOWS. Data Input/Output Operation The FSPi00 has a dedicated data input-output port that allows maximum utilization of the processor while requiring a minimum of external logic. To achieve this, dedicated input and output channels are available that can be asynchronous from the CPU and each other in a variety of configurations, according to external requirements. Further, to simplify multiprocessor systems, the ports are configured such that processors can be directly tied output to input with no additional logic. The operation of the two ports is largely the exception of the data pin itself. Both one bit wide, and come with a variety of pendently configure each channel. These follows: the same with ports are serial, options to indeoptions are as Clock Frequency: This determines the rate at which the bits are serially clocked into and out of the data pins. It is individually selectable for each channel and need not be synchronous with the CPU clock. Data Word Length: The input-output ports can operate with any data word length from 8 up to 32 bits in increments of 2 bits. Further, this word length does not have to be the same as that used internally; the FSPi00 automatically adjusts for the value selected. Data Format: This indicates the arithmetic format of the external serial data stream. The options for the incoming arithmetic format are two's complement, inverted two's complement, offset binary and inverted offset binary. The FSP100 will automatically convert between the format specified and its' own internal two's complement format. Data Direction: This determines the direction in which the bits are passed into and out of the data pins. The data can be either least- or most- significant-bit first. The FSP100 automatically adjusts for this choice internally. 11-58 FSP100 Figure 2 FSP100 With External Program Memory Yoo F93451 A3-As PAOPA6 Ao-A2 01-08 PA7 PBOPB2 POOP07 FSP-100 Program Memory Timing Diagram (20-Bit Operation) I, 10 CPU CLOCK I PROGRAM BYTE fpc:.~~;:~ LINES _ _P_R_O_G_RA_M_BYT_E_7-+1_.II"_ _ _ _B_YT_E_0_-+_JX,-_ _B_Y_TE_l_ __ ---l PROGRAM fp,!~~;;:' LINES PROGRAM MEMORY g~i:~~NES PC n .JX I --I Ipc - PC (n+l) I'A - ____ (00-07) :::j ISETUP I-- ~,.---:"---:R~O"'D-O---C l---- 'MA =:::.j I R007 NOTE: tMA =65 ns @ 16 MHz (Typical) t PC = 25 ns Typical @ 30pF Loading Handshake Mode: This determines whether the FSP100 behaves as a master or slave during the input and output handshake operation. The two modes are called "ACTIVE" and "PASSIVE" mode. In active mode, the FSP100 determines when the transfer begins. In passive mode, the FSP100 waits until the device ready line goes high before beginning a transfer. Figure 3 shows a typical data path configuration for a cascaded pair of FSP100s being driven by a standard A-D input and D-A output. Input and Output timing diagrams follow. 11-59 FSP100 Figure 3 Dual Processor Configuration with Analog Input and Output ANALOG TO DIGITAL SUBSYSTEM STATUS PASSIVE - * [ Voo * PASSIVE * ACTIVE OPDR INRQ OPDR INDR FSP100 OPRQ OPSD INSD INDR FSP100 0PRQ OPSD OPCK INCK INRQ SERIAL DATA ACTIVE INCK INSD I CLK * ENABLE OPCK DIGITAL TO ANALOG SUBSYSTEM SERIAL DATA ~ * HAND SHAKE MODE Data Input Timing/Handshake Timing ("n" Bit Data) ACTIVE/FSP100 READY INCK INRQ _-+-,i/ -0 L \1...._ _ _ __ IROAR INDR INSD ---ii, DON'T CARE OCr--BI-T-O-"'X ,----------------r -------------------~\ ! X'-_ _-I BtT 1 :BIT(n-l) X~__~B~IT~n~_JX~__~D~O~N_'T_C~A_R~E~___ --If--t,OL ACTIVE/NOT READY AND PASSIVE/NOT READY INCK tNRQ tNDR __-,I INSD _ _ ___iX~_ _ _ _ _ _ _ _ BI_T_O_ _ _ _ _ _ ___iX ,,------------------------------------BIT 1 --------------"'\ \ ! 8 ___ B __'__ T_n___E ' T CARE PASSIVE/READY INCK ~ INRQ \~-- INDR INSD ,-------- I ________ D_O_N_'T_C_A_R_E_ _ _ _ _-'X BIT 0 X BIT 1 ----------~-------~\ ! : BIT (n-l) X~_B_I_T_n_ _ _ _ __ WFOO57QF 11-60 FSP100 Data Output Timing ("n" Bit Data) ACTIVE/FSP100 READY OPCK OPRQ ,----- ~ I - - - - I !--tROAR I\---------------------~ OPDR - - - - - - - ' / -+'IX OPSD _ _ _ _ _ _ _B_I_T_O_ _ _ _ BIT t --l ~IOSD X x: BIT 2 ,~-------------\ BI~ BIT n Xr-UN-D-E-F-IN-E-D ACTIVE/NOT READY AND PASSIVE/NOT READY OPCK --l !--tROANR OPRQ ____________________________~I OPDR -.I f _~(---~,~_ _ ,--------------------------------- ,, --------------~ J OPSD ____U_N_D_E_F_IN_E_D_ _ -'X~_________B_IT__O____________~x:: BI~~___BI_T_n___~D PASSIVE/READY OPCK OPRQ ________________________- - J J (~(---~',-_ _ I OPSD , --------------~ OPOR ___________________________________~I ) ::::==J(~________________B_IT_O_________________...x::BI~----B-I-T-n----------- PFD Reset Operation CPU CLOCK (ClK) RESET PROGRAM COUNTER (PAO-PA7) TRI-STATE BYTE COUNTER (PBO-PB2) TRI-STATE PROGRAM DATA (00-07) DON'T CARE ADDRESS DON'T CARE DON'T CARE NEXT 1 - - - - - - TAESET-------! NOTE: TRESET must be the greater time period of 25 CPU clock cycles of three (3) Input Data Clock cycles. 11-61 • FSP100 Absolute Maximum Ratings 1 Symbol Characteristic VDD Supply Voltage VI Input Voltage II dc Input Current TSTG Storage Temperature Ceramic Package Plastic Package TA TL Range Unit -0.5 to +6.0 V -0.5 to VDD +0.5 V ±20 mA °C -65 to + 150 -40 to +125 Ambient Temperature Under Bias2 Commercial/Industrial °C -40 to +70 Lead Temperature (Soldering, 10 s) 300 °C Electrical Characteristics Voo = 5.0 V ± 0.25 V, 0 to 70 0 e Symbol Characteristic Conditions Min Max Unit VIH Input HIGH Voltage CMOS Input TTL Input Guaranteed Input HIGH Voltage 3.5 2.0 VDD VDD V VIL Input LOW Voltage CMOS Input TTL Input Guaranteed Input LOW Voltage -0.5 -0.5 1.5 0.8 V V VOH Output HIGH Voltage 70°C, VDD V VDD -0.05 V VOL Output LOW Voltage 70°C, V liN Input Leakage Current VIN loz Three-State Output Leakage Current = 4.5 VDD = 4.5 = VDD or GND VOUT = VDD or GND 0.1 V -10 10 p.A -10 10 p.A CIN Input Capacitance Excluding Package 5.0 pF COUT Output Capacitance Excluding Package 5.0 pF Notes 1. Stresses greater than those listed under Absolute Maximum Ranges may cause permanent damage to the device. This is a stress rating only; operation of the device at any condition above those indicated in the operational sections of these specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. 2. Junction temperature may not exceed ambient temperature by more than 20·C. 11-62 F2224· F2212 2400/1200/600/300 bps Full Duplex Modem FAIRCHILO A Schlumberger Company Advance Information, June 1986 Advanced Signal Processing Division Description Connection Diagram 28-Lead DIP (Top View) The F2224 and F2212 are single-chip full-duplex modem circuits, operating at 2400 (F2224 only), 1200, 600 and 0-300 bps. The F2224 is compatible with the CCITI V.22 bis modem specification, and both chips are compatible with V.22B, Bell 212A, Bell 103, V.21, V.23 and Bell 202. The ICs perform all signal processing functions, and feature both a parallel microprocessor interface with integral UART and an alternate four line serial control and separate data interface. Voo Vss GND NC XTL1 The F2212, under control of a host processor or dedicated microcontroller, provides a complete low-cost solution to data transmission at speeds up to 1200 bps and is pin for pin and functionally compatible with the F2224, which provides an upgrade path to 2400 bps operation, with minimal changes to existing firmware. Handshaking protocols are included on-chip, which will reduce control-processor firmware requirements. XTL2 BCLK RXIN TX01 TX02 IN1 IN2 An on-chip hybrid simplifies connection to the telephone network and uncommitted I/O lines are provided for DAA control and RS232 implementation if required. DTMF dialing and call progress tone detection are included. oun OUT2 • V_22 bis (F2224 Only), V.22B, 212A, 103, V.21, V.23 And Bell 202 Compatible • V.23 And 202 Modes Have Selectable 75 Or 150 bps Backward Channels • Performs All Signal Processing Functions • Parallel J.l.P Interface With Integral UART • Alternate Serial Control And Data Interface • Register Control Of Modem And UART Operation • DTMF Tone Generation And Call Progress Tone Detection For Smart Dialer Applications • 1300 Hz Calling Tone Generator On Chip • On-Chip Hybrid And Programmable 1/0 For DAA Control And RS232 Implementation • Very Few External Components Required • Low Power Dissipation And A Very Low Power Standby Mode • 28-Lead Ceramic DIP, Plastic DIP And Surface Mount Packages Order Information Device Code F2224DC F2224PC F2224QC F2212DC F2212PC F2212QC 11-63 Package Code Package Description FM Ceramic DIP Molded DIP Molded Surface Mount Ceramic DIP Molded DIP Molded Surface Mount FM • F=AIRCHILO A Schlumberger Company F30S54/F30S57 Monolithic Serial Interface CMOS CODEC/FILTER Preliminary Advanced Signal Processing Division Description The F30S54, F30S57 family consists of Jl-Iaw and A-law monolithic PCM CODEC/FILTERS utilizing the AID and 0/ A conversion architecture shown in Figure 1, and a serial PCM interface. The F30S54, F30S57 operate in the synchronous mode only and are pin compatible with the F3054 and F3057 respectively. The devices are fabricated using Fairchild's advanced Double Poly Silicon-Gate CMOS process. Connection Diagram (Top View) The transmit portion of each device consists of an input gain adjust amplifier, an active RC pre-filter, a switchedcapacitor band-pass filter, and a compressing encoder with auto-zero circuitry. The active RC pre-filter eliminates very high frequency noise, and the switched-capacitor filter rejects signals below 200 Hz and above 3400 Hz. The compressing encoder samples the filtered signal and encodes it in the compressed Jl-Iaw and A-law PCM format. The receive portion of each device consists of an expanding decoder, which reconstructs the analog signal from the compressed Jl-Iaw or A-law code, a low-pass filter which corrects for the sin x/x response of the decoder output and rejects signals above 3400 Hz and is followed by a single-ended power amplifier capable of driving low impedance loads. The devices require a 1.536 MHz, 1.544 MHz or 2.048 MHz master clock and an 8 kHz frame sync pulse. The timing of the frame sync pulses and PCM data is compatible with both industry· standard formats. 16 v•• VFxt+ GND VFxl- VFRO GS. vee TSx NC FS DR Ox CLKSEL NC PDN Order Information Device Code Package Code F30S54DC FW F30S57DC FW • Pin Compatible with F3054, F3057 • Complete Codec and Filtering System Including: • Transmit High-Pass and Low-Pass Filtering • Receive Low-Pass Filter with Sin X/X Correction • Active RC Noise Filters • Jl-Law or A-Law Compatible Coder and Decoder • Internal Precision Voltage Reference • Serial 110 Interface • Internal Auto-Zero Circuitry • Jl-Law, 16 Pin - F30S54 • A-Law, 16 Pin - F30S57 • Meets or Exceeds all D3/D4 and CCITT Specifications • ± 5 V Operation • Low Operating Power-Typically 40 mW • Power-Down Standby Mode - Typically 1.7 mW • Automatic Power-Down • TTL or CMOS Compatible Digital Interfaces • Maximizes Line Interlace Card Circuit Density 11-64 MCLK Package Description Ceramic DIP Ceramic DIP F30S54/F30S57 Figure 1 Block Diagram R, GSx ------------------------------------------------------ -----~ I I I I I I I I I I I I I I I ANAL~ _-'V'VI/1F..x_' ....-..!.-f RC ACllVE FILlER I I I I I SWITCHED CAPACITOR BAND-PASS FILlER I I I I AID VOLTAGE REFERENCE XMT REGISTER CONTROL LOGIC Dx COMPARATOR POWER AMPLIFIER VFRO SWITCHED -----,c-< ReV CAPACITOR LOW-PASS REGISTER RLlER llMNG AND CONTROL +5V -SV Vee Va. GND MCLK 11-65 PDN CLKSEL FS DR F30S54/F30S57 Pin Description Pin No. Function Name 1 2 3 4 5 6 7 VBB GND VFRO Vee N.C. DR CLKSEL 8 9 10 11 12 PDN MCLK N.C. Dx FS 13 14 15 16 TSx GSx VFxl VFxl + Negative power supply pin. VB B = -5.0 V ± 5%. Ground. All Signals are referenced to this pin. Analog output of the receive filter. Positive power supply pin. Vee = + 5.0 V ± 5%. No internal connection. Receive data input. PCM data is shifted into DR following the FS leading edge. Logic input which selects either 1.536 MHz/1.544 MHz or 2.048 MHz for master clock. MCLK is used for both transmit and receive directions (see Table 1). Power Down. The device is powered up when PDN is held low. Master clock. Must be 1.536 MHz, 1.544 MHz or 2.048 MHz. No internal connection. The 3-state PCM data output which is enabled by FS. Frame sync pulse input which enables MCLK to shift out the PCM data on Dx. FS is an 8 kHz pulse train; see Figures 2 and 3 for timing details. Open drain output which pulses low during the encoder time slot. Analog output of the transmit input amplifier. Used to externally set gain. Inverting input of the transmit input amplifier. Non-inverting input of the transmit input amplifier. Functional Description Power-Up When power is first applied, power-on reset circuitry initializes the device and places it into the power-down mode. All non-essential circuits are deactivated and the Dx and VFRO outputs are put in high impedance states. To power-up the device, a logical low level must be applied to the PDN pin and FS pulses must be present. Thus, two power-down control modes are available. The first is to pull the PDN pin high; the second is to hold the FS input continuously low - the device will power-down approximately 2 ms after the last FS pulse. Power-up will occur on the first FS pulse. The 3-state PCM data output, Dx, will remain in the high impedance state until the second FS pulse. Synchronous Operation Synchronous operation requires only one masterclock for both the transmit and receive directions. Table 1 indicates the frequencies which can be selected, depending on the state of CLKSEL. For 1.544 MHz operation, the device automatically compensates for the 193rd clock pulse each frame. Table 1 Selection of Master Clock Frequencies Master Clock Frequency Selected CLKSEL 11-66 F30S57 F30S54 o 1.536 MHz or 1.544 MHz 2.048 MHz 1 (or Open Circuit) 2.048 MHz 1.536 MHz or 1.544 MHz F30S54/F30S57 Functional Description (Cont.) gains in excess of 20 dB across the audio passband to be realized. The op amp drives a unity-gain filter consisting of an RC active pre-filter, followed by an eighth order switched-capacitor bandpass filter clocked at 128 kHz. The output of this filter directly drives the encoder sample-andhold circuit. The A/D is of compressing type according to !.I-law (F30S54) or A-law (F30S57) coding conventions. A precision voltage reference is trimmed in manufacturing to provide an input overload level (tMAX) of nominally 2.5 V peak (see table of Transmission Characteristics). The FS frame sync pulse controls the sampling of the filter output, and then the successive-approximation encoding cycle begins after the decode cycle. The 8-bit code is then loaded into a buffer and shifted out through Dx at the next FS pulse. The total encoding delay will be approximately 165 !.Is (due to the transmit filter) plus 125 !.IS (due to encoding delay), which total 290 !.Is. Any offset voltage due to the filters or comparator is cancelled by sign bit integration. Short Frame Sync Operation The device can utilize either a short frame sync pulse or a long frame sync pulse. Upon power initialization, the device assumes a short frame mode. In this mode, the frame sync pulse, FS, must be one MCLK period long, with timing relationships specified in Figure 2. With FS high during a falling edge of MCLK, the next rising edge of MCLK enables the Dx 3-state output buffer, which will output the sign bit. The following seven rising edges clock out the remaining seven bits, and the next falling edge disables the Dx output. The corresponding eight falling edges of the same clock pulses will clock in the receive data. Long Frame Sync Operation To use the long frame sync mode, the frame sync pulse, FS, must be three or more MCLK periods long, with timing relationships specified in Figure 3. Based on the sync, FS, the device will sense whether short or long frame sync pulses are being used. The Dx 3-state output buffer is enabled with the rising edge of FS or the rising edge of MCLK, whichever comes later, and the first bit clocked out is the sign bit. The following seven MCLK rising edges clock out the remaining seven bits. The Dx output is disabled by the eighth falling edge of MCLK, or by FS going low, whichever comes later. Provided the frame sync FS is greater than three MCLK periods, the Dx output will be enabled for eight MCLK periods, independent of the actual length of the FS pulse. Receive Section The receive section consists of an expanding DAC which drives a fifth order switched-capacitor low pass filter clocked at 128 kHz. The decoder is A-law (F30S57) or • !.I-law (F30S54) and the 5th order low pass filter corrects for the sin x/x attenuation due to the 8 kHz sample/hold. The filter is then followed by a power amplifier capable of driving a 600 n load to a level of 7.2 dBm. The receive section is· unity gain. Upon the occurrence of FS the data at the DR input is clocked in on the falling edge of the next eight MCLK periods. At the end of the time slot, the decoding cycle begins, and 10 !.IS later the decoder DAC output is updated. The total decoder delay is approximately 10 !.IS (decoder update) plus 110 !.IS (filter delay) plus 62.5 !.IS (Y2 frame), which gives approximately 180 !.Is). Transmit Section The transmit section input is an operational amplifier with provision for gain adjustment using two external resistors, see Figure 1. The low noise and wide bandwidth allow 11-67 F30S54/F30S57 Absolute Maximum Ratings Vee to GND VSS to GND Voltage at any Analog Input or Output Voltage at any Digital Input or Output 7.0 V -7.0 V Operating Temperature Range Storage Temperature Range Lead Temperature (Soldering, 10 seconds) Vee + 0.3 V to Vss-0.3 V Vee+0.3 V to GND-0.3 V -25°C to + 125°C -65°C to + 150°C 300°C Electrical Characteristics Unless otherwise noted: Vee = 5.0 V ± 5%, Vaa - 5.0 V ± 5%, GND = 0 V, TA = O°C to 70°C; typical characteristics specified at Vee = 5.0 V, Vaa = -5.0 V, TA = 25°C; all signals are referenced to GND. Symbol Characteristic Condition Unit Operating Current leeO Power-Down Current 0.3 1.5 rnA IssO Power-Down Current 0.03 0.3 rnA lee1 Active Current 4.0 7.0 rnA Iss1 Active Current 4.0 7.0 rnA 0.6 V 0.4 0.4 V V 10 p.A Digital Interface VIL Input Low Voltage VIH Input High Voltage VOL Output Low Voltage VOH Output High Voltage Dx, IH = -3.2 rnA IlL Input Low Current GND .;;; VIN .;;; VIL, All Digital Inputs -10 IIH Input High Current VIH .;;; VIN .;;; Vee -10 10 p.A 102 Output Current in High Impedance State Dx, GND';;;Vo';;;Vee -10 10 iJ.A 200 2.2 V *IL=3.2 rnA T x, IL = 3.2 rnA, Open Drain 2.4 V Analog Interface With Transmit Amplifier Input IIXA Input Leakage Current -2.5 V';;;V';;; +2.5 V, VFxl + or VFxl- -200 RIXA Input Resistance -2.5 V';;; V';;; +2.5 V, VFxl + or VFxl- 10 RoXA Output Resistance Closed Loop, Unit Gain RLXA Load Resistance GSx CLXA Load Capacitance GSx VoXA Output Dynamic Range GSx, RL ;;;>10 kn ±2.8 V AvXA Voltage Gain VFxl + to GS x 5000 VIV 1.0 3.0 10 n kn 50 1.0 nA Mn pF FuXA Unity Gain Bandwidth VosXA Offset Voltage -20 20 VeMXA Common-Mode Voltage -2.5 2.5 CMRRXA Common-Mode Rejection Ratio 60 dB PSRRXA Power Supply Rejection Ratio 60 dB Analog Interface With Receive Amplifier Output RoRF Output Resistance Pin VFRO RLRF Load Resistance VFRO = ± 2.5 V 11-68 2.0 MHz mV V F30S54/F30S57 Electrical Characteristics (Cont.) Unless otherwise noted: Vee = 5.0 V ± 5%, Vss - 5.0 V ± 5%, GND = 0 V, TA = O°C to 70°C; typical characteristics specified at Vee = 5.0 V, Vss = -5.0 V, TA = 25°C; all signals are referenced to GND. Symbol Characteristic Condition CLRF Load Capacitance VFRO to GND VOSRO Output DC Offset Voltage VFRO to GND Min Typ -200 Max Unit 25 pF 200 mV Timing Specifications - 1/tpM Frequency of Master Clock tWMH Width of Master Clock High 160 tWML Width of Master Clock Low 160 tRM Rise Time of Master Clock 50 ns tFM Fall Time of Master Clock 50 ns tHMF Holding Time from Master Clock Low to Frame Sync Long Frame Only 0 ns tHOLO Holding Time from Master Clock High to Frame Sync Short Frame Only 0 ns tSFM Set-Up Time from Frame Sync to Master Clock Low Long Frame Only 80 ns tOMO Delay Time from MCLK High to Data Valid Load = 150 pF plus 2 LSTTL Loads txop Delay Time to TSx Low Load tozc Delay Time from MCLK Low to Data Output Disabled tOZF Delay Time to Valid Data from FS or MCLK, Whichever Comes Later tSOM Set-Up Time from DR Valid to MCLK Low 50 ns tHMO Hold Time from MCLK Low to DR Invalid 50 ns tSF Set-Up time from FS to MCLK Low Short Frame Sync Pulse (1 or 2 Clock Periods Long) (Note 1) 50 ns tHF Hold Time from MCLK Low to FS Short Frame Sync Pulse (1 or 2 Clock Periods Long) (Note 1) 100 ns tHMFI Hold Time from 3rd Period of Master Clock Low to Frame Sync FS Long Frame Sync Pulse (from 3 to 8 Clock Periods Long) 100 ns Note short frame sync timing, For FS Depends on the CLKSEL Pin = 150 1.536 1.544 2.048 0 pF plus 2 LSTTL Loads CL = 0 pF to 150 pF must go high while the Master Clock is high, 11-69 MHz MHz MHz ns ns 180 ns 140 ns 50 165 ns 20 165 ns F30S54/F30S57 Transmission Characteristics Unless otherwise specified: T A = ooe to 70 oe, Vee = 5.0 V ± 5%, VBB = -5.0 V ± 5%, GND = 0 V, f = 1.02 kHz, VIN = 0 dBmO, transmit input amplifier connected for unity-gain non-inverting. Symbol Unit Condition Characteristic Amplitude Response Absolute Levels Vrms Nominal 0 dBmO Level is 4 dBm (600 n) o dBmO F30S54 F30S57 tMAX Max Overload Level F30S54 (3.17 dBmO) F30S57 (3.14 dBmO) GXA Transmit Gain, Absolute TA = 25°C, Vcc = 5 V, VBB = -5 V Input at GSx = 0 dBmO at 1020 Hz GXR Transmit Gain, Relative to GXA f = 16 Hz f = 50 Hz f = 60 Hz f = 200 Hz f = 300 Hz - 3000 Hz f = 3300 Hz f = 3400 Hz f = 4000 Hz f = 4600 Hz and Up, Measure Response from 0 Hz to 4000 Hz GXAT Absolute Transmit Gain Variation with Temperature TA = O°C to 70°C GXAV Absolute Transmit Gain Variation with Supply Voltage Vce = 5 V ± 5%, VBB = -5 V ± 5% GXRL Transmit Gain Variations with Level Sinusoidal Test Method Reference Level = -10 dBmO VFxl + = -40 dBmO to + 3 dBmO VFxl + = -50 dBmO to -40 dBmO VFxl + = -55 dBmO to -50 dBmO 1.2276 1.2276 2.501 2.492 -0.15 VPK VPK 0.15 dB -40 -30 -26 -0.1 0.15 0.05 0 -14 -32 dB dB dB dB dB dB dB dB dB ±0.1 dB ±0.05 dB -0.2 -0.4 -1.2 0.2 0.4 1.2 dB dB dB -1.8 -0.15 -0.35 -0.7 GRA Receive Gain, Absolute TA = 25°C, Vee = 5 V, VBB = -5 V Input = Digital Code Sequence for o dBmO Signal at 1020 Hz -0.15 0.15 dB GRR Receive Gain, Relative to GRA f f f f -0.15 -0.35 -0.7 0.15 0.05 0 -14 dB dB dB dB GRAT Absolute Receive Gain Variation with Temperature TA = O°C to 70°C ±0.1 dB GRAV Absolute Receive Gain Variation with Supply Voltage Vee = 5 V ± 5%, VBB = -5 V ± 5% ±0.05 dB GRRL Receive Gain Variations with Level Sinusoidal Test Method; Reference Input PCM Code Corresponds to an Ideally Encoded-10 dBmO Signal PCM Level = -40 dBmO to +3 dBmO PCM Level = -50 dBmO to -40 dBmO PCM Level = -55 dBmO to -50 dBmO -0.2 -0.4 -1.2 0.2 0.4 1.2 dB dB dB -2.5 2.5 V VRo Receive Output Drive Level = = = = 0 Hz 3300 3400 4000 RL = 600 to 3000 Hz Hz Hz Hz n 11-70 F30S54/F30S57 Transmission Characteristics (Cont.) Unless otherwise specified: TA = O·C to 70·C, Vee = 5.0 V ± 5%, Vss = -5.0 V ± 5%, GND = 0 V, f = 1.02 kHz, VIN = 0 dBmO, transmit input amplifier connected for unity-gain non-inverting. Symbol Characteristic Unit Condition Envelope Delay Distortion With Frequency DXA Transmit Delay, Absolute f=1600 Hz 290 315 IlS DXR Transmit Delay, Relative to DXA f = 500 Hz - 600 Hz f=600 Hz-800 Hz f = 800 Hz-1000 Hz f = 1000 Hz -1600 Hz f = 1600 Hz - 2600 Hz f = 2600 Hz - 2800 Hz f = 2800 Hz - 3000 Hz 195 120 50 20 55 80 130 220 145 75 40 75 105 155 IlS IlS IlS IlS IlS IlS IlS DRA Receive Delay, Absolute 1=1600 Hz 180 DRR Receive Delay, Relative to DRA f f f f f = = = = = 500 Hz - 1000 Hz 1000 Hz -1600 Hz 1600 Hz - 2600 Hz 2600 Hz - 2800 Hz 2800 Hz - 3000 Hz -40 -30 200 Ils -25 -20 70 100 145 90 125 175 IlS IlS IlS IJ.S IlS dBrn Noise co Nxe Transmit Noise, C Message Weighted F30S54 VFxl + = 0 V 12 15 Nxp Transmit Noise, P Message Weighted F30S57 VFxl + = 0 V -74 -69 (Note 1) NRC Receive Noise, C Message Weighted F30S54 PCM Code Equals Alternating Positive and Negative Zero NRP Receive Noise, P Message Weighted F30S57 PCM Code Equals Positive Zero NRS Noise, Single Frequency 1 = 0 kHz to 100 kHz, Loop Around Measurement, VFxl + = 0 Vrms PPSRx Positive Power Supply Rejection, Transmit VFxl + = 0 Vrms, Vee = 5.0 Voe + 100 mVrms 1 = 0 kHz - 50 kHz 40 dBC NPSRx Negative Power Supply Rejection, Transmit VFxl + = 0 Vrms, VB B = -5.0 Voe + 100 mVrms 1 = 0 kHz - 50 kHz 40 dBC PPSRR Positive Power Supply Rejection, Receive PCM Code Equals Positive Zero Vee = 5.0 Voe + 100 mVrms 1=0 Hz-4000 Hz 1 = 4 kHz - 25 kHz 1 = 25 kHz - 50 kHz 40 40 36 dBC dB dB PCM Code Equals Positive Zero VBB = -5.0 Voe + 100 mVrms 1 = 0 Hz-4000 Hz 1 = 4 kHz - 25 kHz 1 = 25 kHz - 50 kHz 40 40 36 dBC dB dB NPSRR Negative Power Supply Rejection, Receive 11-71 dBmOp dBrnCo 8.0 11 -82 -79 dBmOp -53 dBmO F30S54/F30S57 Transmission Characteristics (Cont.) Unless otherwise specified: TA = O°C to 70°C, Vee = 5.0 V ± 5%, Vss = -5.0 V ± 5%, GND = 0 V, f = 1.02 kHz, VIN = 0 dBmO, transmit input amplifier connected for unity-gain non-inverting. Symbol SOS Characteristic Spurious Out-ot-Band Signals at the Channel Output Condition Typ Min Unit Max Loop Around Measurement, 0 dBmO, 300 Hz - 3400 Hz Input Applied to VFxl +, Measure Individual Image Signals at VFRO 4600 Hz - 7600 Hz 7600 Hz - 8400 Hz 8400 Hz - 100,000 Hz -32 -40 -32 dB dB dB Distortion STDx STDR Signal to Total Distortion Transmit or Receive Half-Channel SFDx Single Frequency Distortion, Transmit -46 dB SFDR Single Frequency Distortion, Receive -46 dB IMD Intermodulation Distortion Loop Around Measurement, VFxl + = -4 dBmO to -21 dBmO, Two Frequencies in the Range 300 Hz - 3400 Hz -41 dB Transmit to Receive Crosstalk, o dBmO Transmit Level f = 300 Hz - 3400 Hz DR = Steady PCM Code -75 dB Receive to Transmit Crosstalk, Receive Level f = 300 Hz - 3400 Hz, VFxl = -70 dB Sinusoidal Test Method Level = 3.0 dBmO = 0 dBmO to -30 dBmO = -40 dBmO XMT RCV = -55 dBmO XMT RCV 33 36 29 30 14 15 dBC dBC dBC dBC dBC dBC Crosstalk CTX_R CTR_X o dBmO -90 oV -90 (Note 2) Notes 1. Measured by extrapolation from the distortion test result. 2. CT R-X is measured with a - 40 dBmO activating signal applied at VFxl + . Encoding Format At Ox F30S54 Il-Law VIN (at GSx) = + Full-Scale VIN (at GSx) = 0 V VIN (at GSx) = - Full-Scale 1 0 F30S57 A·Law (Includes Even Bit Inversion) 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 [~ 11-72 Figure 2 Timing Diagrams Short Frame Sync Timing TS. MCLK FS OR D. Figure 3 , (X2){ X X XiX >8-- Long Frame Sync Timing TSx MCLK .:.. FS '" "TI DR Ox I" I ¢( "'--__, I" 1 X 1'...._ __ flI.,,"--- ~ . ,'....-----" >¢ ), " " " ,~ '\....:-oL W o en C1'I 01:1...... "TI W o en C1'I ..... F30S54/F30S57 Applications Information T-Pad Attenuator I I I Z1i R2 I I I II iZ2 800n I I I L_____ _ ___..1 R1 =Z1 (N2+' )_ 2V Z1 ,Z2 (~) ~-1 tf2-1 R2=2V Z1 ,Z2 All ground connections to each device should meet at a common point as close as possible to the GND pin. This minimizes the interaction of ground return currents flowing through a common bus impedance. 0.1 /-IF supply decoupiing capacitors should be connected from this common ground point to Vee and Vss. For best performance, the ground point of each CODECI FILTER on a card should be connected to a common card ground in star formation, rather than via a ground bus. This common ground point should be decoupled to Vee and Vss with 10 /-IF capacitors. 10 >-_300wn'v--:I_-. -,..;' . V'.-...-""j-r--_-"';""-,...-_'+I_,':V2 Power Supplies While the pins of the F30S54 family are well protected against electrical misuse, it is recommended that the standard CMOS practice be followed, ensuring that ground is connected to the device before any other connections are made. In applications where the printed circuit board may be plugged into a "hot" socket with power and clocks already present, an extra long ground pin in the connector should be used. Wh ere N-V - (;.J POWERIN POWER OUT and s=~ Also: Z= VZSco Zoe Where Zsc = Impedance with short clrcuH termination and Zoe = impedance with open circuit termination 1T-Pad Attenuator ,....-----------, 300n Receive Gain Adjustment For applications where a F30S54 family CODEC/FILTER receive output must drive a 600 load, but a peak swing lower than ± 2.5 V is required, the receive gain can be easily adjusted by inserting a matched T-pad or 1T-pad at the output. Table II lists the required resistor values for 600 terminations. As these are generally non-standard values, the equations can be used to compute the attenuation of the closest practical set of resistors. It may be necessary to use unequal values for the R1 or R4 arms of the attenuators to achieve a precise attenuation. Generally it is tolerable to allow a small deviation of the input impedance from nominal while still maintaining a good return loss. For example a 30 dB return loss against 600 is obtained if the output impedance of the attenuator is in the range 282 n to 319 n (assuming a perfect transformer). I R3 I R-'4M~,...R4-+1Z2-' >---'\M-Z1-l1-...... n I I I I I , L__________ J n R3=V¥(~;1) R3=Z1(~) tt2-2NS+ 1 n 11-74 "0 1:"1/2 600n F30S54/F30S57 Applications Information (Cont.) Table II. Attentuator Tables for Z1 (All Values in Q) dB R1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10 11 12 13 14 15 16 18 20 1.7 3.5 5.2 6.9 8.5 10.4 12.1 13.8 15.5 17.3 34.4 51.3 68 84 100 115 179 143 156 168 180 190 200 210 218 233 246 Figure 4 =Z2 =300 Q R2 R3 R4 26k 13k 6.7k 6.5k 5.2k 4.4k 3.7k 3.3k 2.9k 2.6k 1.3k 850 650 494 402 380 284 244 211 184 161 142 125 110 98 77 61 3.5 6.9 10.4 13.8 17.3 21.3 24.2 27.7 31.1 34.6 70 107 144 183 224 269 317 370 427 490 550 635 720 816 924 i.17k 1.5k 52k 26k 17.4k 13k 10.5k 8.7k 7.5k 6.5k 5.8k 5.2k 2.6k 1.8k 1.3k 1.1k 900 785 698 630 527 535 500 473 450 430 • 413 386 I 366 Typical Synchronous Application -sv V,, VFxl + GNO VFx l - FROMSlIC *O.,"F -& *O.,"F +5V Vee TO sue VFRO ----------- GSx F30S54 F30S57 ~ R2 ~ ANALOG INTERFACE ----------------- -----------. DIGITAL INTERF ACE FS Fs Ox 5VorGND PON CLKSEL BCLK PON MCLK :I MCLK (2.048 MHz/ 1.544 MHz/1.536 MHz) . =20 x log (01+02) ; (R1+ R2) > 10K!! Note 1: XMITgaln ~ 11-75 F=AIRCHILO A Schlumberger Company F30S64/F30S67 Monolithic Serial Interface CMOS CODEC/FILTER Preliminary Advanced Signal Processing Division Description Connection Diagram (Top View) The F30S64, F30S67 family consists of !.I-law and A-law monolithic PCM CODEC/FILTERS utilizing the AID and D/ A conversion architecture shown in Figure 1, and a serial PCM interface. The F30S64, F30S67 operate in the synchronous mode only and are pin compatible with the TP3064 and TP3067 respectively. Similar to the F30S54 and F30S57, these devices feature an additional Receive Power Amplifier to provide push-pull balanced output drive capability. The receive gain can be adjusted by means of two external resistors for an output level of up to ± 6.6 V across a balanced 600 load. Also included is an analog loopback switch and TSx output. The devices are fabricated using Fairchild's advanced Double Poly Silicon-Gate CMOS process. 20 VPO+ GND vpoVPI VFnO .n The transmit portion of each device consists of an input gain adjust amplifier, an active RC pre-filter, a switchedcapacitor band-pass filter, and a compressing encoder with auto-zero circuitry. The active RC pre-filter eliminates very high frequency noise, and the switched-capacitor filter rejects Signals below 200 Hz and above 3400 Hz. The compressing encoder samples the filtered Signal and encodes it in the compressed !.I-law or A-law PCM format. VB. VFxl+ VFxlGSx ANLB Vee TSx NC FS DR Ox CLKSEL PDN NC MCLK Order Information Device Code F30S64DC F30S67DC Package Code FL FL Package Description Ceramic DIP Ceramic DIP The receive portion of each device consists of an expanding decoder, a switched-capacitor low-pass filter, and two power amplifiers. The decoder reconstructs the analog signal from the compressed !.I-law or A-law code, and the low-pass filter corrects for the sin x/x response of the decoder output. The two power amplifiers are in a bridged configuration and are capable of driving low impedance loads. The devices require a 1.536 MHz, 1.544 MHz or 2.048 MHz master clock and an 8 kHz frame sync pulse. The timing of the frame sync pulses and PCM data is compatible with both industry standard formats. • Pin Compatible with TP3064, TP3067 • Complete Codec and Filtering System Including: • Transmit High-Pass and Low-Pass Filtering • Receive Low-Pass Filter with Sin X/X Correction • Receive Push-Pull Power Amplifier • Analog Loopback • Active RC Noise Filters • !.I-Law or A-Law Compatible Coder and Decoder • Internal Precision Voltage Reference • Serial I/O Interface • Internal Auto-Zero Circuitry • !.I-Law, 20 Pin - F30S64 • A-Law, 20 Pin - F30S67 • Meets or Exceeds all 03/04 and CCITT Specifications • ± 5 V Operation • • • • • 11-76 Low Operating Power - Typically 45 mW Power-Down Standby Mode - Typically 1.7 mW AutomatiC Power-Down TTL or CMOS Compatible Digital Interfaces Maximizes Line Interface Card Circuit Density F30S64/F30S67 Figure 1 Block Diagram ! ANALOG LOOPBACK ----- GSx --~--------------------------------------------------- ---l / I I / / I I I I I I I I I I / R I I RC ACTIVE FILTER SWITCHED CAPACITOR BAND-PASS FILTER AID CONTROL LOGIC VOLTAGE REFERENCE VPO XUT REGISTER Ox RCV REGISTER DR R. COMPARATOR VPI A4 VFRO TIMING AND CONTROL +5V -SV Vee Va. : ---------+---+----1 ----------!~!~-~~~~------- ----- ----- ----- ____J eND MCLK 11-77 PDN CLKSEL FS F30S64/F30S67 Pin Description Pin No. Function Name 1 2 3 4 VPO+ GND VPOVPI 5 6 7 8 9 VFRO Vee N.C. DR CLKSEL 10 11 12 13 14 PDN MCLK N.C. Dx FS 15 16 TSX ANLB 17 18 19 20 GSx VFxl VFxl + Vss The non-inverted output of the receive power amplifier. Ground. All signals are referenced to this pin. The inverted output of the receive power amplifier. Inverting input to the receive power amplifier. Also powers down both amplifiers when connected to Vss. Analog output of the receive filter. Positive power supply pin. Vee = + 5 V ± 5%. No internal connection. Receive data input. PCM data is shifted into DR following the FS leading edge. Logic input which selects either 1.536 MHz, 1.544 MHz or 2.048 MHz for master clock. MCLK is used for both transmit and receive directions (See Table 1). Power down. The device is powered up when PDN is held low. Master clock. Must be 1.536 MHz, 1.544 MHz or 2.048 MHz. No internal connection. The 3-state PCM data output which is enabled by FS. Frame sync pulse input which enables MCLK to shift out the PCM data on Dx and shift in data on DR. FS is an 8 kHz pulse train, see Figures 2 and 3 for timing details. Open drain output which pulses low during the encoder time slot. Analog Loopback control input. Must be set to logic '0' for normal operation. When pulled to logiC '1', the transmit filter input is disconnected from the output of the transmit preamplifier and connected to the VPO + output of the receive power amplifier. Analog output of the transmit input amplifier. Used to externally set gain. Inverting input of the transmit input amplifier. Non-inverting input of the transmit input amplifier. Negative power supply pin. Vss = -5 V + 5%. Functional Description Power-Up When power is first applied, power-on reset circuitry initializes the device and places it into the power-down mode. All non-essential circuits are deactivated and the Dx and VFRO outputs are put in high impedance states. To power-up the device, a logical low level must be applied to the PDN pin and FS pulses must be present. Thus, two power-down control modes are available. The first is to pull the PDN pin high; the second is to hold the FS input continuously low - the device will power-down approximately 2 ms after the last FS pulse. Power-up will occur on the first FS pulse. The 3-state PCM data output, Dx, will remain in the high impedance state until the second FS pulse. Synchronous Operation Synchronous operation requires only one master clock for both the transmit and receive directions. Table 1 indicates the frequencies which can be selected, depending on the state of CLKSEL. For 1.544 MHz operation, the device automatically compensates for the 193rd clock pulse each frame. Table 1. Selection of Master Clock Frequencies Master Clock Frequency Selected CLKSEL 11-78 F30S67 F30S64 o 1.536 MHz or 1.544 MHz 2.048 MHz 1 (or Open Circuit) 2.048 MHz 1.536 MHz or 1.544 MHz F30S64/F30S67 Functional Description (Cont.) Short Frame Sync Operation The device can utilize either a short frame sync pulse or a long frame sync pulse. Upon power initialization, the device assumes a short frame mode. In this mode, the frame sync pulse, FS, must be one MCLK period long, with timing relationships specified in Figure 2. With FS high during a falling edge of MCLK, the next rising edge of MCLK enables the Dx 3-state output buffer, which will output the sign bit. The following seven rising edges clock out the remaining seven bits, and the next falling edge disables the Dx output. The corresponding eight falling edges of the same clock pulses will clock in the receive data. Long Frame Sync Operation To use the long frame sync mode, the frame sync pulse, FS, must be three or more MCLK periods long, with timing relationships specified in Figure 3. Based on the sync, FS, the device will sense whether short or long frame sync pulses are being used. The Dx 3-state output buffer is enabled with the rising edge of FS or the rising edge of MCLK, whichever comes later, and the first bit clocked out is the sign bit. The following seven MCLK rising edges clock out the remaining seven bits. The Dx output is disabled by the eighth falling edge of MCLK, or by FS going low, whichever comes later. Provided the frame sync FS is greater than three MCLK periods, the Dx output will be enabled for eight MCLK periods, independent of the actual length of the FS pulse. Transmit Section The transmit section input is an operational amplifier with provision for gain adjustment using two external resistors, see Figure 1. The low noise and wide bandwidth allow gains in excess of 20 dB across the audio passband to be realized. The op amp drives a unity-gain filter consisting of an RC active pre-filter, followed by an eighth order switched-capacitor bandpass filter clocked at 128 kHz. The output of this filter directly drives the encoder sample-andhold circuit. The AID is of compressing type according to /-I-law (F30S64) of A-law (F30S67) coding conventions. A precision voltage reference is trimmed in manufacturing to provide an input overload level (tMAX) of nominally 2.5 V peak (see table of Transmission Characteristics). The FS frame sync pulse controls the sampling of the filter output, and then the successive-approximation encoding cycle begins after the decode cycle. The 8-bit code is then loaded into a buffer and shifted out through Dx at the next FS pulse. The total encoding delay will be approximately 165 /-IS (due to the transmit filter) plus 125 p.s (due to encoding delay), which totals 290 p.s. Any offset voltage due to the filters or comparator is cancelled by sign bit integration. Receive Section The receive section consists of an expanding DAC which drives a fifth order switched-capacitor low pass filter clocked at 128 kHz. The decoder is A-law (F30S67) or /-I-law (F30S64) and the 5th order low pass filter corrects for the sin x/x attenuation due to the 8 kHz sample/hold. The filter is then followed by a 2nd order RC active postfilter with its output at VFRO. The receive section is unitygain, but gain can be added by using the power amplifiers. Upon the occurrence of FS the data at the DR input is clocked in on the falling edge of the next eight MCLK periods. At the end of the time slot, the decoding cycle begins, and 10 p.s later the decoder DAC output is updated. The total decoder delay is -10 p.s (decoder update) plus 110 p.s (filter delay) plus 62.5 /-IS (1'2 frame), which gives approximately 180 p.s. Receive Power Amplifiers Two inverting mode power amplifiers are provided for directly driving a matched line interface transformer. The gain of the first power amplifier can be adjusted to boost the ± 2.5 V peak output signal from the receive filter up to ± 3.3 V peak into an unbalanced 300 .Q load, or ± 4.0 V into an unbalanced 15 k.Q load. The second power amplifier is internally connected in unity-gain inverting mode to give 6 dB of Signal gain for balanced loads. Maximum power transfer to a 600 .Q subscriber line termination is obtained by differentially driving a balanced transformer with a \12:1 turns ration, as shown in Figure 4. A total peak power of 15.6 dBm can be delivered to the load plus termination. Both power amplifiers can be powered down independently from the PDN input by connecting the VPI input to Vee, saving approximately 8 mW of power. 11-79 • F30S64/F30S67 Absolute Maximum Ratings Vcc to GND VBB to GND Voltage at any Analog Input or Output Voltage at any Digital Input or Output 7.0 V -7.0 V Vcc + 0.3 V to GND-0.3 V -25°C to +125°C -65°C to + 150°C Operating Temperature Range Storage Temperature Range Lead Temperature (Soldering, 10 seconds) Vcc+0.3 V to Vss-0.3 V Electrical Characteristics Unless otherwise noted: Vee = 5.0 V± 5%, VBB - 5.0 V± 5%, GND = 0 V, TA = DoC to 70°C; typical characteristics specified at Vee = 5.0 V, VBB = -5.0 V, TA = 25°C; all signals are referenced to GND. Symbol Unit Condition Characteristic Operating Current ICCO Power-Down Current 0.3 1.5 mA IBBO Power-Down Current 0.03 0.3 mA Icc1 Active Current Power Amplifier Active, VPI = 0 V 4.3 7.0 mA IBB1 Active Current Power Amplifier Active, VPI = 0 V 4.3 7.0 mA 0.6 V Digital Interface VIL Input Low Voltage VIH Input High Voltage VOL Output Low Voltage VOH Output High Voltage Ox, IH IlL Input Low Current GND ~ VIN IIH Input High Current loz Output Current in High Impedance State 2.2 V Ox, IL = 3.2 mA TSx, IL = 3.2 mA,Open Drain = -3.2 ~ 0.4 0.4 2.4 mA V V V -10 10 VIH ~ VIN ~ Vcc -10 10 J.LA Ox, GND~Vo~Vcc -10 10 JlA V, VFxl+ or VFxl- -200 200 + 2.5 V, VFxl+ or VFxl- 10 VIL, All Digital Inputs J.LA Analog Interface With Transmit Input Amplifier V~V~+2.5 IIXA Input Leakage Current -2.5 RIXA Input Resistance -2.5 V ~ V RoXA Output Resistance Closed Loop, Unity Gain RLXA Load Resistance GSx CLXA Load Capacitance GSx ~ nA MSl 1.0 3.0 10 Sl kSl 50 pF VoXA Output Dynamic Range GSx, RL ;;;'10 kSl ±2.8 V AvXA Voltage Gain VFxl+ to GSx 5000 VIV 1.0 2.0 MHz FuXA Unity Gain Bandwidth VosXA Offset Voltage -20 20 mV XCMXA Common-Mode Voltage -2.5 2.5 V CMRRXA Common-Mode Rejection Ratio 60 11-80 dB F30S64/F30S67 Electrical Characteristics (Cont.) Unless otherwise noted: Vee = 5.0 V± 5%, VBB - 5.0 V± 5%, GND = 0 V, TA = DoC to 70°C; typical characteristics specified at Vee = 5.0 V, VBB = -5.0 V, T A = 25°C; all signals are referenced to GND. Symbol PSRRXA Characteristic Condition Power Supply Rejection Ratio Min Typ Max 60 Unit dB Analog Interface With Receive Amplifier Output RoRF Output Resistance Pin VFRO RLRF Load Resistance VFRO= ±2.5 V CLRF Load Capacitance VFRO to GND VOSRO Output DC Offset Voltage VFRO to GND 1.0 3.0 10 n kn 500 pF -200 200 mV -100 100 nA Analog Interface With Power Amplifiers IPI Input Leakage Current -1.0 V ~ VPI ~ 1.0 V -1.0 V ~ VPI ~ 1.0 V RIPI Input Resistance VIOS Input Offset Voltage ROP Output Resistance 10 Mn -25 Inverting Unity-Gain at VPO+ or VPO- Fe Unity-Gain Bandwidth Open Loop (VPO-) CLP Load Capacitance RL>1500 n RL =600 n RL =300 n GAp+ Gain, VPO- to VPO+ RL = 300 n VPO+ to GND Level at VPO- = 1.77 Vrms (+3 dBmO) PSRRp Power Supply Rejection of Vee or Vss 25 1.0 n kHz 400 100 500 1000 1 VPO+ or VPO- to GND mV -1.0 pF pF pF V/V VPO - Connected to VPI o kHz-4 kHz o kHz-50 kHz 60 36 dB dB Timing Specifications lItpM Frequency of Master Clock Depends on the CLKSEL Pin tWMH Width of Master Clock High 160 ns tWML Width of Master Clock Low 160 ns tRM Rise Time of Master Clock 50 ns tFM Fall Time of Master Clock 50 ns tHMF Holding Time from Master Clock Low to Frame Sync Long Frame Only 0 ns tHOLD Holding Time from Master Clock High to Frame Sync Short Frame Only 0 ns tSFM Set-Up Time from Frame Sync to Master Clock Low Long Frame Only 80 ns 11-81 1.536 1.544 2.048 MHz MHz MHz F30S64/F30S67 Electrical Characteristics (Cont.) Unless otherwise noted: Vee = 5.0 V± 5%, Vss - 5.0 V± 5%, GND = 0 V, TA = O°C to 70°C; typical characteristics specified at Vee = 5.0 V, Vss = -5.0 V, TA = 25°C; all signals are referenced to GND. Symbol Characteristic Condition Min Typ Max Unit tDMD Delay Time from MCLK High to Data Valid Load = 150 pF plus 2 LSTTL Loads tXDP Delay Time to TSx Low Load = 150 pF plus 2 LSTTL Loads tDze Delay Time from MCLK Low to Data Output Disabled tDZF Delay Time to Valid Data from FS or MCLK, Whichever Comes Later tSDM Set-Up Time from DR Valid to MCLK Low 50 ns tHMD Hold Time from MCLK Low to DR Invalid 50 ns tSF Set-Up time from FS to MCLK Low Short Frame Sync Pulse (1 or 2 Clock Periods Long) (Note 1) 50 ns tHF Hold Time from MCLK Low to FS Short Frame Sync Pulse (1 or 2 Clock Periods Long) (Note 1) 100 ns tHMFI Hold Time from 3rd Period of Master Clock Low to Frame Sync FS Long Frame Sync Pulse (from 3 to 8 Clock Periods Long) 100 ns CL =0 pF to 150 pF Note For short frame sync timing, FS must go high while the Master Clock is high. 11-82 0 180 ns 140 ns 50 165 ns 20 165 ns Figure 2 Timing Diagram Short Frame Sync Timing TSx MCLK FS DR Ox Figure 3 Timing Diagram Long Frame Sync Timing TSX MCLK ex, FS w ." DR Co) o en I' fJ) Ox \." 1 X 'i ), " " " ''----L ~ ...... ." Co) o en fJ) ...... • F30S64/F30S67 Transmission Characteristics Unless otherwise specified: TA = ooe to 70 oe, Vee = 5.0 V ± 5%, VBB = -5.0 V ± 5%, GND = 0 V, f = 1.02 kHz, VIN = 0 dBmO, transmit input amplifier connected for unity-gain non-inverting. Symbol Characteristic Unit Condition Amplitude Response Absolute Levels Nominal 0 dBmO Level is 4 dBm (600 .12) o dBmO F30S64 F30S67 Max Overload Level F30S64 (3.17 dBmO) F30S67 (3.14 dBmO) tMAX GXA Transmit Gain, Absolute TA = 25°C, Vee = 5 V, Vss = -5 V Input at GSx = 0 dBmO at 1020 Hz GXR Transmit Gain, Relative to GXA f = 16 Hz f=50 Hz f = 60 Hz f=200Hz f = 300 Hz - 3000 Hz f= 3300 Hz f= 3400 Hz f = 4000 Hz f = 4600 Hz and Up, Measure Response from 0 Hz to 4000 Hz ooe GXAT Absolute Transmit Gain Variation with Temperature TA = GXAV Absolute Transmit Gain Variation with Supply Voltage Vee = 5 V ± 5%, Vss = -5 V ± 5% GXRL Transmit Gain Variations with Level Sinusoidal Test Method Reference Level = -10 dBmO VFxl+ = -40 dBmO to +3 dBmO VFxl+ = -50 dBmO to -40 dBmO VFxl+ = -55 dBmO to -50 dBmO Receive Gain, Absolute TA = 25°C, Vee = 5 V, Vss = -5 V Input = Digital Code Sequence for o dBmO Signal at 1020 Hz GRR Receive Gain, Relative to GRA f= f= f= f= GRAT Absolute Receive Gain Variation with Temperature TA = O°C to 70°C GRAV Absolute Receive Gain Variation with Supply Voltage Vee=5 V±5%, Vss=-5 V±5% to 3000 Hz Hz Hz Hz 11-84 Vrms Vrms 2.501 2.492 VPK VPK 0.15 dB -40 -30 -26 -0.1 0.15 0.05 0 -14 -32 dB dB dB dB dB dB dB dB dB ±O.1 dB ±0.05 dB -0.2 -0.4 -1.2 0.2 0.4 1.2 dB dB dB -0.15 0.15 dB -0.15 -0.35 -0.7 0.15 0.05 0 -14 dB dB dB dB ±O.1 dB ±0.05 dB -1.8 -0.15 -0.35 -0.7 to 70°C GRA 0 Hz 3300 3400 4000 -0.15 1.2276 1.2276 F30S64/F30S67 Transmission Characteristics (Cant.) Unless otherwise specified: TA = O°C to 70°C, Vee = 5.0 V ± 5%, Vss = -5.0 V ± 5%, GND = 0 V, f = 1.02 kHz, VIN = 0 dBmO, transmit input amplifier connected for unity-gain non-inverting. Symbol GRRL VRo Characteristic Receive Gain Variations with Level Receive Filter Output at VFRO Condition Min Typ Max Unit Sinusoidal Test Method; Reference Input PCM Code Corresponds to an Ideally Encoded -10 dBmO Signal PCM Level = -40 dBmO to + 3 dBmO PCM Level = -50 dBmO to -40 dBmO PCM Level = -55 dBmO to -50 dBmO -0.2 -0.4 -1.2 0.2 0.4 1.2 dB dB dB RL = 10 kQ -2.5 2.5 V Envelope Delay Distortion With Frequency DXA Transmit Delay, Absolute f=1600 Hz 290 315 J.ls DXR Transmit Delay, Relative to DXA f = 500 Hz - 600 Hz f=600 Hz-800 Hz f = 800 Hz - 1000 Hz f = 1000 Hz -1600 Hz f = 1600 Hz - 2600 Hz f = 2600 Hz - 2800 Hz f = 2800 Hz - 3000 Hz 195 120 50 20 55 80 130 220 145 75 40 75 105 155 J.ls J.lS J.lS J.lS J.lS J.lS J.lS DRA Receive Delay, Absolute f=1600 Hz 180 DRR Receive Delay, Relative to DRA f = 500 Hz -1000 Hz f f f f = 1000 Hz-1600 Hz -40 -30 = 1600 Hz - 2600 Hz = 2600 Hz - 2800 Hz = 2800 Hz - 3000 Hz 200 J.lS -25 -20 70 100 145 90 125 175 J.lS J.lS J.lS J.lS J.ls Noise Nxe Transmit Noise, C Message Weighted F30S64 VFxl+ = 0 V 12 15 dBrnCO Nxp Transmit Noise, P Message Weighted F30S67 VFxl+ = 0 V -74 -69 (Note 1) dBmOp NRe Receive Noise, C Message Weighted F30S64 PCM Code Equals Alternating Positive and Negative Zero NRP Receive Noise, P Message Weighted F30S67 PCM Code Equals Positive Zero NRS Noise, Single Frequency f = 0 kHz to 100 kHz, Loop Around Measurement, VFxl+ = 0 Vrms PPSRx Positive Power Supply Rejection, Transmit VFxl+ = 0 Vrms, Vee = 5.0 Vac + 100 mVrms f = 0 kHz - 50 kHz 40 dBC NPSRx Negative Power Supply Rejection, Transmit VFxl+ = 0 Vrms, VBB = -5.0 Vae + 100 mVrms f = 0 kHz - 50 kHz 40 dBC 11-85 8.0 -82 11 dBrnCO -79 dBmOp -53 dBmO F30S64/F30S67 Transmission Characteristics (Cont.) Unless otherwise specified: TA = O°C to 70°C, Vee = 5.0 V ± 5%, Vss = -5.0 V ± 5%, GND = 0 V, f = 1.02 kHz, VIN = 0 dBmO, transmit input amplifier connected for unity-gain non-inverting. Symbol PPSRR NPSRR SOS Characteristic Positive Power Supply Rejection, Receive Negative Power Supply Rejection, Receive Spurious Out-of-Band Signals at the Channel Output Condition Min Typ Max Unit PCM Code Equals Positive Zero Vee = 5.0 Voc + 100 mVrms f=O Hz-4000 Hz f=4 kHz-25 kHz f=25 kHz-50 kHz 40 40 36 dBC dB dB PCM Code Equals Positive Zero VBB = -5.0 Voc + 100 mVrms f=O Hz-4000 Hz f=4 kHz-25 kHz f=25 kHz-50 kHz 40 40 36 dBC dB dB Loop Around Measurement, 0 dBmO, 300 Hz - 3400 Hz Input Applied to VFxl+, Measure Individual Image Signals at VFRO 4600 Hz - 7600 Hz 7600 Hz - 8400 Hz 8400 Hz - 100,000 Hz -32 -40 -32 dB dB dB Distortion STDx STDR Signal to Total Distortion Transmit or Receive Half-Channel SFDx Single Frequency Distortion, Transmit -46 dB SFDR Single Frequency Distortion, Receive -46 dB IMD Intermodulation Distortion Loop Around Measurement, VFxl+ = -4 dBmO to -21 dBmO, Two Frequencies in the Range 300 Hz - 3400 Hz -41 dB CTx.R Transmit to Receive Crosstalk, 0 dBmO Transmit Level f = 300 Hz-3400 Hz DR = Steady PCM Code -90 -75 dB CTR.X Receive to Transmit Crosstalk, 0 dBmO Receive Level f = 300 Hz - 3400 Hz, VFxl = 0 V -90 -70 (Note 2) dB Sinusoidal Test Method Level = 3.0 dBmO = 0 dBmO to -30 dBmO = -40 dBmO XMT RCV = -55 dBmO XMT RCV 33 36 29 30 14 15 dBC dBC dBC dBC dBC dBC Crosstalk 11-86 F30S64/F30S67 Transmission Characteristics (Cont.) Unless otherwise specified: TA = O°C to 70°C, Vee = 5.0 V ± 5%, Vss = -5.0 V ± 5%, GND = 0 V, f = 1.02 kHz, VIN = 0 dBmO, transmit input amplifier connected for unity-gain non-inverting. Symbol Characteristic Condition Unit Power Amplifiers VOL S/Dp Maximum 0 dBmO Level for Better than ± 0.1 dB Linearity Over the Range -10 dBmO to +3 dBmO Balanced Load, RL Connected Between VPO+ and VPORL = 600 n RL = 1200 n RL = 30 kn 3.3 3.5 4.0 Vrms Vrms Vrms Signal/Distortion RL = 600 n, 0 dBmO 50 dB Notes 1. Measured by extrapolation from the distortion test result. 2. eT R.X is measured with a -40 dBmO activating signal applied at VFxl+. Encoding Format At Ox F30S64 J.L-Law VIN (at GSx) = + Full-Scale VIN (at GSx) = 0 V VIN (at GSx) = - Full-Scale [ F30S67 A-Law (Includes Even Bit Inversion) 1 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 Applications Information All ground connections to each device should meet at a common pOint as close as possible to the GND pin. This minimizes the interaction of ground return currents flowing through a common bus impedance. 0.1 J.LF supply decoupiing capacitors should be connected from this common ground point to Vee and VBB. Power Supplies While the pins of the F30S60 family are well protected against electrical misuse, it is recommended that the standard CMOS practice be followed, ensuring that ground is connected to the device before any other connections are made In applications where the printed circuit board may be plugged into a "hot" socket with power and clocks already present, an extra long ground pin in the connector should be used. For best performance, the ground point of each CODEC/ FILTER on a card should be connected to a common card ground in star formation, rather than via a ground bus. This common ground point should be decoupled to Vee and VBB with 10 J.LF capacitors. 11-87 • F30S64/F30S67 Figure 4 Typical Synchronous Application 300 R3 R1 R4 ANALOG LOOPBACK TSx CLKSEL FS DR Dx MCLK PDN Note 1: Transmit gain = 20 Note 2: Receive gain = 20 x x log (R1;2R2 ),(R1 +R2)?: 10k!} log (2 ~4R3 ) • R42! 10k!} 11-88 F3054/F3057 Monolithic Serial Interface CMOS CODEC/FILTER FAIRCHILD A Schlumberger Company Advanced Signal Processing Division Description Connection Diagram (Top View) The F3054, F3057 family consists of /l-Iaw and A-law monolithic PCM CODEC/FILTERS utilizing the AID and DI A conversion architecture shown in Figure 1, and a serial PCM interface. The devices are fabricated using Fairchild's advanced Double-Poly Silicon Gate CMOS process. 16 The transmit portion of each device consists of an input gain adjust amplifier, an active RC pre-filter, a switchedcapacitor band-pass filter, and a compressing encoder with auto-zero circuitry. The active RC pre-filter eliminates very high frequency noise, and the switched-capacitor filter rejects signals below 200 Hz and above 3400 Hz. The compressing encoder samples the filtered signal and encodes it in the compressed /l-Iaw or A-law PCM format. The receive portion of each device consists of an expanding decoder, which reconstructs the analog signal from the compressed /l-Iaw or A-law code, a low-pass filter which corrects for the sin xIx response of the decoder output and rejects signals above 3400 Hz and is followed by a single-ended power amplifier capable of driving low impedance loads. The devices require two 1.536 MHz, 1.544 MHz or 2.048 MHz transmit and receive master clocks, which may be asynchronous, transmit and receive bit clocks, which may vary from 64 kHz to 2.048 MHz, and transmit and receive frame sync pulses. The timing of the frame sync pulses and PCM data is compatible with both industry standard formats. v•• VFxl+ GND VFx l - VFRO GSx Vee TSx FSR FSx DR Ox BCLKRI BLCKx CLKSEL MCLKRi MCLKx PDN Order Information Device Code F3054DC F3057DC • Complete Codec and Filtering System Including: • Transmit High-Pass and Low-Pass Filtering • Receive Low-Pass Filter With Sin XIX Correction • Active RC Noise Filter • /l-Law or A-Law Compatible Coder and Decoder • Internal Precision Voltage Reference • Serial 1/0 Interface • Internal Auto-Zero Circuitry • /l-Law, 16 Pin-F3054 • A-Law, 16 Pin - F3057 • Meets or Exceeds All 03/04 and CCITT Specifications • ± 5.0 V Operation • Low Operating Power - Typically 60 mW • Power-Down Standby Mode - Typically 3.0 mW • Automatic Power-Down • TTL or CMOS Compatible Digital Interfaces • Maximizes Line Interface Card Circuit Density 11-89 Package Code FW FW Package Description Ceramic DIP Ceramic DIP F3054/F3057 Figure 1 Block Diagram RF GS, r------------------------------------------------------------------ II I I I I I I I ~~~~'-~-+l--; RC I AC1lVE FILla! VFx l + XMT VOLTAGE REGISTER REFERENCE DE TIMING AND CONTROL L-----~i:--~i:---}------------~~~~~~~~----------~---i-----1--------Vee Vaa GND MCLKx MCLKA' BCLKx BCLKA' PDN CLKSEL 11-90 FSA FSx Ox F3054/F3057 Pin Description Pin No. Function Name 1 2 3 4 5 6 7 8 MClKR/PDN 9 MClKx 10 BClKx 11 12 Ox FSX 13 14 15 16 TSX GSX VFxlVFxl+ Negative power supply pin. VBB = -5 V ± 5%. Ground. All signals are referenced to this pin. Analog output of the receive filter. Positive power supply pin. Vee = +5 V ± 5%. Receive frame sync pulse which enables BClKR to shift PCM data into DR. FSR is an 8 kHz pulse train. See Figures 2 and 3 for timing details. Receive data input. PCM data is shifted into OR following the FSR leading edge. The bit clock which shifts data into DR after FSR leading edge. May vary from 64 kHz to 2.048 MHz, but must be synchronous with MCKlR. Alternatively, may be a logic input which selects either 1.536 MHz/1.544 MHz or 2.048 MHz for master clock in synchronous mode and BClKx is used for both transmit and receive directions (see Table 1). Receive master clock. Must be 1.536 MHz, 1.544 MHz or 2.048 MHz. When MClKR is connected continuously low, MClKx is selected for all internal timing. When MClKR is connected continuously high, the device is powered down. Transmit master clock. Must be 1.536 MHz, 1.544 MHz or 2.048 MHz. May be asynchronous with MClKR. The bit clock which shifts out the PCM data on Dx. May vary from 64 kHz to 2.048 MHz, but must be synchronous with MClKx. The 3-state PCM data output which is enabled by FSx. Transmit frame sync pulse input which enables BClKx to shift out the PCM data on Ox. FSx is an 8 kHz pulse train; see Figures 2 and 3 for timing details. Open drain output which pulses low during the encoder time slot. Analog output of the transmit input amplifier. Used to externally set gain. Inverting input of the transmit input amplifier. Non-inverting input of the transmit input amplifier. Functional Description Synchronous Operation For synchronous operation, the same master clock and bit clock should be used for both the transmit and receive directions. In this mode, a clock must be applied to MClKx and the MClKR/PDN pin can be used as a power-down control. A low level on MClKR/PON powers up the device and a high level powers down the device. In either case, MClKx will be selected as the master clock for both the transmit and receive circuits. A bit clock must also be applied to BClKx and the BClKR/ClKSEl can be used to select the proper internal divider for a master clock of 1.536 MHz, 1.544 MHz or 2.048 MHz. For 1.544 MHz operation, the device automatically compensates for the 193rd clock pulse each frame. Power-Up When power is first applied, power-on reset circuitry initializes the device and places it into the power-down mode. All non-essential circuits are deactivated and the Dx and VFRO outputs are put in high impedance states. To power-up the device, a logical low level or clock must be applied to the MClKR/PDN pin and FSx and/or FSR pulses must be present. Thus, two power-down control modes are available. The first is to pull the MClKR/PON pin high; the second is to hold both FSx and FSR inputs continuously low - the device will power-down approximately 2 ms after the last FSx or FSR pulse. Power-up will occur on the first FSx or FSR pulse. The 3-state PCM data output, Ox, will remain in the high impedance state until the second FSx pulse. 11-91 • F3054/F3057 Functional Description (Cont.) With a fixed level on the BClKR/ClKSEl pin, BClKx will be selected as the bit clock for both the transmit and receive directions. Table 1 indicates the frequencies of operation which can be selected, depending on the state of BClKR/ClKSEL. In this synchronous mode, the bit clock, BClKx, may be from 64 kHz to 2.048 MHz, but must be synchronous with MClKx. Each FSx pulse begins the encoding cycle and the PCM data from the previous encode cycle is shifted out of the enabled Ox output on the positive edge of BClKx. After 8 bit clock periods, the 3-state Ox output is returned to a high impedance state. With an FSR pulse, PCM data is latched via the DR input on the negative edge of BClKx (or BClKR if running). FSx and FSR must be synchronous with MClKx/R. Table 1 Selection of Master Clock Frequencies Master Clock Frequency Selected BCLKR/CLKSEL F3057 Clocked 2.048 MHz 0 1.536 MHz or 1.544 MHz 2.048 MHz 1 (or Open Circuit) F3054 1.536 MHz or 1.544 MHz 2.048 MHz 1.536 MHz or 1.544 MHz Asynchronous Operation For asynchronous operation, separate transmit and receive clocks may be applied. MClKx and MClKR must be 2.048 MHz for the F3057, and 1.536 MHz or 1.544 MHz for the F3054 and need not be synchronous. For best transmission performance, however, MClKR should be synchronous with MClKx, which is easily achieved by applying only static logic levels to the MClKR/PON pin. This will automatically connect MClKx to all internal MClKR functions (see Pin Description). For 1.544 MHz operation, the device automatically compensates for the 193rd clock pulse each frame. FSx starts each encoding cycle and must be synchronous with MClKx and BClKx. FSR starts each decoding cycle and must be synchronous with BClKR, which must be a clock. The logic levels shown in Table 1 are not valid for asynchronous operation. BClKx and BClKR may operate from 64 kHz to 2.048 MHz. Short Frame Sync Operation The device can utilize either a short frame sync pulse or a long frame sync pulse. Upon power initialization, the device assumes a short frame mode. In this mode, both frame sync pulses, FSx and FSR, must be one bit clock period long, with timing relationships specified in Figure 2. With FSx high during a falling edge of BClKx, the next riSing edge of BClKx enables the Ox 3-state output buffer, which will output the sign bit. The following seven rising edges clock out the remaining seven bits, and the next falling edge disables the Ox output. With FSR high during a falling edge of BClKR (BClKx in synchronous mode), the next falling edge of BClKR latches in the sign bit. The following seven falling edges latch in the seven remaining bits. Both devices may utilize the short frame sync pulse in synchronous or asynchronous operating mode. Long Frame Sync Operation To use the long frame sync mode, both the frame sync pulses, FSx and FSR, must be three or more bit clock periods long, with timing relationships specified in Figure 3. Based on the transmit frame sync, FSx, the device will sense whether short or long frame sync pulses are being used. For 64 kHz operation, the frame sync pulse must be kept low for a minimum of 160 ns. The Ox 3-state output buffer is enabled with the rising edge of FSx or the rising edge of BClKx, whichever comes later, and the first bit clocked out is the sign bit. The following seven BClKx rising edges clock out the remaining seven bits. The Ox output is disabled by the falling BClKx edge following the eighth rising edge, or by FSx going low, whichever comes later. A rising edge on the receive frame sync pulse, FSR, will cause the PCM data at DR to be latched in on the next eight falling edge of BClKR (BClKx in synchronous mode). Both devices may utilize the long frame sync pulse in synchronous or asynchronous mode. Transmit Section The transmit section input is an operational amplifier with provision for gain adjustment using two external resistors, see Figure 4. The low noise and wide bandwidth allow gains in excess of 20 dB across the audio passband to be realized. The op amp drives a unity-gain filter consisting of an RC active pre-filter, followed by an eighth order switched-capacitor bandpass filter clocked at 128 kHz. The output of this filter directly drives the encoder sample-andhold circuit. The AID is of compressing type according to /-L-Iaw (F3054) or A-law (F3057) coding conventions. A precision voltage reference is trimmed in manufacturing to provide an input overload (tMAX) of nominally 2.5 V peak (see table of Transmission Characteristics). The FSx frame sync pulse controls the sampling of the filter output, and then the successive-approximation encoding cycle begins. The 8-bit code is then loaded into a buffer and shifted out through Ox at the next FSx pulse. The total encoding delay will be approximately 165 /-LS (due to the transmit filter) plus 125 /-LS (due to encoding delay), which total 290 /-Ls. 11-92 F3054/F3057 Any offset voltage due to the filters or comparator is cancelled by sign bit integration. Receive Section The receive section consists of an expanding DAC which drives a fifth order switched-capacitor low pass filter clocked at 128 kHz. The decoder is A-law (F3057) or M-Iaw (F3054) and the 5th order low pass filter corrects for the sin x/x attenuation due to the 8 kHz sample/hold. The filter is then followed by a power amplifier capable of driving a 600 il load to a level of 7.2 dBm. The receive section is unity-gain. Upon the occurrence of FSA. the data at the DA input is clocked in on the falling edge of the next eight BClKA (BClKx> periods. At the end of the decoder time slot. the decoding cycle begins. and 10 MS later the decoder DAC output is updated. The total decoder delay is -10 MS (decoder update) plus 110 MS (filter delay) plus 62.5 MS (Y2 frame). which gives approximately 180 MS. Absolute Maximum Ratings Vee to GND Vss to GND Voltage at any Analog Input or Output Voltage at any Digital Input or Output 7.0 V -7.0 V Vee + 0.3 V to Vss-0.3 V Vcc+0.3 V to GND-0.3 V -25°C to +125°C -65°C to + 150°C Operating Temperature Range Storage Temperature Range lead Temperature (Soldering. 10 seconds) 300°C Electrical Characteristics Unless otherwise noted: Vee = 5.0 V ± 5%. Vaa - 5.0 V ± 5%. GND = 0 V. TA = O°C to 70°C; typical characteristics specified at Vee = 5.0 V. Vaa = -5.0 V. TA = 25°C; all signals are referenced to GND. Symbol Characteristic Conditions Operating Current leeO Power-Down Current 0.5 1.5 rnA IssO Power-Down Current 0.05 0.3 rnA lee1 Active Current 6.0 9.0 rnA Iss1 Active Current 6.0 9.0 rnA 0.6 V Digital Interface VIL Input low Voltage VIH Input High Voltage VOL Output low Voltage Ox. IL = 3.2 rnA TSx. IL = 3.2 rnA. Open Drain VOH Output High Voltage Ox. IH = -3.2 rnA 2.2 V 0.4 0.4 2.4 V V V IlL Input low Current GND ..;; VIN ..;; VIL. All Digital Inputs -10 10 IIH Input High Current VIH ";;VIN ";;Vee -10 10 loz Output Current in High Impedance State Ox. GND";; Vo";; Vee -10 10 MA MA MA 200 nA Analog Interface With Transmit Input Amplifier IIXA Input leakage Current -2.5 V";;V";;+2.5 V. VFxl + or VFxl- -200 RIXA Input Resistance -2.5 V";;V";;+2.5 V. VFxl + or VFxl- 10 RoXA Output Resistance Closed loop. Unity Gain 11-93 Mil 1.0 3.0 il F3054/F3057 Electrical Characteristics (Cont.) Unless otherwise noted: Vee = 5.0 V ± 5%, Vss - 5.0 V ± 5%, GND = 0 V, TA = DoC to 70°C; typical characteristics specified at Vee = 5.0 V, Vss = -5.0 V, T A = 25°C; all signals are referenced to GND. Symbol Characteristic Conditions Min Typ Max RLXA load Resistance GSx CLXA load Capacitance GSx VoXA Output Dynamic Range GSx, RL;;" 10 kn ±2.8 AvXA Voltage Gain VFxl + to GS x 5000 FuXA Unity Gain Bandwidth VosXA Offset Voltage -20 20 VCMXA Common-Mode Voltage -2.5 2.5. 10 kn 50 1.0 Unit pF V VIV 2.0 MHz mV V CMRRXA Common-Mode Rejection Ratio 60 dB PSRRXA 60 dB Power Supply Rejection Ratio Analog Interface With Receive Amplifier Output RORF Output Resistance Pin VFRO VFRO= ±2.5 V RLRF load Resistance CLRF load Capacitance VOSRO Output DC Offset Voltage 1.0 3.0 n 500 pF 200 mV 600 n -200 Timing Specifications Frequency of Master Clocks Depends on the Device Used and the BClKR/ClKSEl Pin MClKx and MClKR tWMH Width of Master Clock High MClKx and MClKR 160 ns tWML Width of Master Clock low MClKx and MClKR 160 ns tRM Rise Time of Master Clock MClKx and MClKR 50 ns tFM Fall Time of Master Clock MClKx and MClKR 50 ns tSBFM Set-Up Time from BClKx High (and FSx in long Frame Sync Mode) to MClKx Falling Edge First Bit Clock after the leading Edge of FSx 1/tpM 1.536 1.544 2.048 MHz MHz MHz 100 ns tpB Period of Bit Clock tWBH Width of Bit Clock High tWBL Width of Bit Clock low tRB Rise Time of Bit Clock tFB Fall Time of Bit Clock tHBF Holding Time from Bit Clock low to Frame Sync long Frame Only 0 ns tHOLD Holding Time from Bit Clock High to Frame Sync Short Frame Only 0 ns 485 = 2.2 V = 0.6 V tps = 488 ns tpB = 488 ns VIH 160 VIL 160 11-94 488 15,725 ns ns ns 50 ns 50 ns F3054/F3057 ± 5%, Vaa - 5.0 V ± 5%, GND = 0 V, T A = O°C to 70°C; typical characteristics specified at Vee = 5.0 V, Vaa = -5.0 V, T A = 25°C; all signals are referenced to GND. Electrical Characteristics (Cont.) Unless otherwise noted: Vee = 5.0 V Symbol Characteristic Conditions Min Typ Max 80 Unit tSFB Set-Up Time from Frame Sync to Bit Clock Low Long Frame Only tDBD Delay Time from BCLKx High to Data Valid Load = 150 pF plus 2 LSTTL Loads tXDP Delay Time to TSx Low Load = 150 pF plus 2 LSTTL Loads tDZC Delay Time from BCLKx Low to Data Output Disabled tDZF Delay Time to Valid Data from FSx or BCLKx, Whichever Comes Later tSDB Set-Up Time from DR Valid to BCLKR/X Low 50 ns tHBD Hold Time from BCLKR/X Low to DR Invalid 50 ns tSF Set-Up time from FSX/R to BCLKx/R Low Short Frame Sync Pulse (1 or 2 Bit Clock Periods Long)(Note 1) 50 ns tHF Hold Time from BCLK)4!R Low to FSX/R Short Frame Sync Pulse (1 or 2 Bit Clock Periods Long)(Note 1) 100 ns tHBFl Hold Time from 3rd Period of Bit Clock Low to Frame Sync (FSx or FSR) Long Frame Sync Pulse (from 3 to 8 Clock Periods Long) 100 ns tWFL Minimum Width of the Frame Sync Pulse (Low Level) 64K Bitls Operating Mode 160 ns CL = 0 pF to 150 pF Note 1. For short frame sync timing, FSx and FSR must go high while their respective bH clocks are high. 11-95 ns 180 ns 140 ns 50 165 ns 20 165 ns 0 F3054/F3057 Figure 2 Timing Diagram Short Frame Sync Timing BLCKX FSx -------«~~X\__ r---:~. _IX'__........_ ....X'__-'X,....'-==:X'-__ ~ Figure 3 Timing Diagram Long Frame Sync Timing --IICLKx FSx IICLKa ~ - 11-96 F3054/F3057 Transmission Characteristics Unless otherwise specified: TA = O·G to 70·G, Vee = 5.0 V ± 5%, Vee = -5.0 V ± 5%, GND = 0 V, f = 1.02 kHz, VIN = 0 dBmO, transmit input amplifier connected for unity-gain non-inverting. Symbol Characteristic Unit Conditions Amplitude Response Absolute Levels Nominal 0 dBmO Level is 4.0 dBm (600 il) o dBmO F3054 F3057 Max Overload Level F3054 (3.17 dBmO) F3057 (3.14 dBmO) tMAX GXA Transmit Gain, Absolute TA = 25·C, Vce = 5 V, VBB = -5 V Input at GSx = o dBmO at 1020 Hz GXR Transmit Gain, Relative to GXA 1 = 16 Hz 1= 50 Hz 1 = 60 Hz 1 = 200 Hz 1 = 300 Hz - 3000 Hz 1 = 3300 Hz 1 = 3400 Hz 1= 4000 Hz 1 = 4600 Hz and Up, Measure Response Irom 0 Hz to 4000 Hz GXAT Absolute Transmit Gain Variation with Temperature TA = O°C to 70·C GXAV Absolute Transmit Gain Variation with Supply Voltage Vee = 5 V ± 5%, VBB = -5 V ± 5% GXRL Transmit Gain Variations with Level Sinusoidal Test Method Relerence Level = -10 dBmO VFxl + = -40 dBmO to +3 dBmO VFxl + = -50 dBmO to -40 dBmO VFxl + = -55 dBmO to -50 dBmO 1.2276 1.2276 Vrms Vrms 2.501 2.492 VPK VPK -0.15 -1.8 -0.15 -0.35 -0.7 ±0.1 0.15 dB -40 -30 -26 -0.1 0.15 0.05 0 -14 -32 dB dB dB dB dB dB dB dB dB dB ±0.05 dB -0.2 -0.4 -1.2 0.2 0.4 1.2 dB dB dB GRA Receive Gain, Absolute TA = 25·C, Vee = 5 V, VBB = -5 V Input = Digital Code Sequence for o dBmO Signal at 1020 Hz -0.15 0.15 dB GRR Receive Gain, Relative to GRA 1=0 Hz 1= 3300 1= 3400 1= 4000 -0.15 -0.35 -0.7 0.15 0.05 0 -14 dB dB dB dB GRAT Absolute Receive Gain Variation with Temperature TA = O·C to 70·C ±0.1 dB GRAV Absolute Receive Gain Variation with Supply Voltage Vee = 5 V ± 5%, VBB = -5 V ± 5% ±0.05 dB to 3000 Hz Hz Hz Hz 11-97 • F3054/F3057 Transmission Characteristics (Cant.) Unless otherwise specified: TA = O°C to 70°C, Vee = 5.0 V ± 5%, VBB = -5.0 V ± 5%, GND = 0 V, f = 1.02 kHz, VIN = 0 dBmO, transmit input amplifier connected for unity-gain non-inverting. Symbol GRRL VRO Characteristic Receive Gain Variations with Level Receive Output Drive Level Conditions Min Typ Max Unit Sinusoidal Test Method; Relerence Input PCM Code Corresponds to an Ideally Encoded -10 dBmO Signal PCM Level = -40 dBmO to + 3 dBmO PCM Level = -50 dBmO to -40 dBmO PCM Level = -55 dBmO to -50 dBmO -0.2 -0.4 -1.2 0.2 0.4 1.2 dB dB dB RL = 600 Q -2.5 2.5 V Envelope Delay Distortion With Frequency DXA Transmit Delay, Absolute 1 = 1600 Hz 290 315 IlS DXR Transmit Delay, Relative to DXA 1=500 Hz-600 Hz 1 = 600 Hz - 800 Hz 1 = 800 Hz - 1000 Hz 1 = 1000 Hz -1600 Hz 1 = 1600 Hz - 2600 Hz 1 = 2600 Hz - 2800 Hz 1 = 2800 Hz - 3000 Hz 195 120 50 20 55 80 130 220 145 75 40 75 105 155 IlS IlS IlS IlS IlS IlS IlS DRA Receive Delay, Absolute 1= 1600 Hz 180 DRR Receive Delay, Relative to DRA 1= 1= 1= 1= 1= 500 Hz - 1000 Hz 1000 Hz-1600 Hz 1600 Hz - 2600 Hz 2600 Hz - 2800 Hz 2800 Hz - 3000 Hz -40 -30 200 IlS -25 -20 70 100 145 90 125 175 IlS IlS IlS IlS IlS Noise Nxe Transmit Noise, C Message Weighted F3054 VFxl + = 0 V 12 15 dBrnCO Nxp Transmit Noise, P Message Weighted F3057 VFxl + = 0 V -74 -69 (Note 1) dBmOp NRe Receive Noise, C Message Weighted F3054 PCM Code Equals Alternating Positive and Negative Zero 8.0 11 dBrnCO NRP Receive Noise, P Message Weighted F3057 PCM Code Equals Positive Zero -82 -79 dBmOp NRS Noise, Single Frequency 1 = 0 kHz to 100 kHz, Loop Around Measurement, VFxl + = 0 Vrms -53 dBmO PPSRx Positive Power Supply Rejection, Transmit VFxl + = 0 Vrms Vec = 5.0 Voe + 100 mVrms 1 = 0 kHz - 50 kHz 40 dBC NPSRx Negative Power Supply Rejection, Transmit VFxl + = 0 Vms, VBB = -5.0 Voe + 100 mVrms 1 = 0 kHz - 50 kHz 40 dBC 11-98 F3054/F3057 Transmission Characteristics (Cont.) Unless otherwise specified: TA = O°C to 70°C, Vee = 5.0 V ± 5%, VBB = -5.0 V ± 5%, GND = 0 V, f = 1.02 kHz, VIN = 0 dBmO, transmit input amplifier connected for unity-gain non-inverting. Symbol PPSRR NPSRR SOS Characteristic Positive Power Supply Rejection, Receive Negative Power Supply Rejection, Receive Spurious Out-of-Band Signals at the Channel Output Conditions Min Typ Max Unit PCM Code Equals Positive Zero Vcc = 5.0 Voc + 100 mVrms f = 0 Hz - 4000 Hz f = 4 kHz - 25 kHz f = 25 kHz - 50 kHz 40 40 36 dBC dB dB PCM Code Equals Positive Zero VBB = -5.0 Voc + 100 mVrms f = 0 Hz - 4000 Hz f=4 kHz-25 kHz f = 25 kHz - 50 kHz 40 40 36 dBC dB dB Loop Around Measurement, 0 dBmO, 300 Hz - 3400 Hz Input Applied to VFxl +, Measure Individual Image Signals at VFRO 4600 Hz - 7600 Hz 7600 Hz - 8400 Hz 8400 Hz - 100,000 Hz -32 -40 -32 dB dB dB Distortion STDx STDR Signal to Total Distortion Transmit or Receive Half-Channel Sinusoidal Test Method Level =3.0 dBmO = 0 dBmO to -30 dBmO = -40 dBmO XMT RCV = -55 dBmO XMT RCV SFDx Single Frequency Distortion, Transmit -46 dB SFDR Single Frequency Distortion, Receive -46 dB IMD Intermodulation Distortion Loop Around Measurement, VFxl + = -4 dBmO to -21 dBmO, Two Frequencies in the Range 300 Hz - 3400 Hz -41 dB Transmit to Receive Crosstalk, 0 dBmO Transmit Level f = 300 Hz - 3400 Hz DR = Steady PCM Code -90 -75 dB Receive to Transmit Crosstalk, 0 dBmO Receive Level f = 300 Hz - 3400 Hz, VFxl = 0 V -90 -70 (Note 2) dB 33 36 29 30 14 15 dBC dBC dBC dBC dBC dBC Crosstalk CTX_R CTR_X Notes 1. Measured by extrapolation from the distortion test result. 2. CT A.X is measured with a -40 dBmO activating signal applied at VFxl + . 11-99 F3054/F3057 Encoding Format At Ox F3054 Il-Law F3057 A-Law (Includes Even Bit Inversion) VIN (at GSx) = + Full-Scale 1 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 VIN (at GSx) = 0 V 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 VIN (at GSx) = -Full-Scale [ Applications Information T -Pad Attenuator I I I z1i R2 I I I iZ2" l_____ _ ___ J R1=Z1 ("'+')-2YZ1.Z2 N2_1 R2=2V Z1 ,Z2 (N~') All ground connections to each device should meet at a common pOint as close as possible to the GND pin. This minimizes the interaction of ground return currents flowing through a common bus impedance. 0.1 IlF supply decoupiing capacitors should be connected from this common ground point to Vee and Vss. For best performance, the ground point of each CODECI FILTER on a card should be connected to a common card ground in star formation, rather than via a ground bus. This common ground point should be decoupled to Vee and Vss with 10 IlF capacitors. 10 >--'11300"'!!Ir-...!.I_-..J-v;1",-_-...-_-"-,,,;,,-_-+1_-,1 :V2 Power Supplies While the pins of the F3054 family are well protected against electrical misuse, it is recommended that the standard CMOS practice be followed, ensuring that ground is connected to the device before any other connections are made. In applications where the printed circuit board may be plugged into a "hot" socket with power and clocks already present, an extra long ground pin in the connector should be used. Where N soon I I I (~) ~-1 V = POWER IN POWER OUT and s=~ Also:' Z= yZSC' Zoe =Impedance with shon circuit termination and Zoe =Impedance with open circuit termination Where Zsc 1T-Pad Attenuator ,-----------, R3 I 300!! I 110 1:V2 W ">--'lNY-Z1-+!--R4 Ir-- 10Kn 11-101 IlAV22 1200 bps Full Duplex Modem I=AIRCHILO A Schlumberger Company Advance Information May 1986 Advanced Signal Processing Division Description Connection Diagram 28-Lead Dip (Top View) The pAV22 1200 bps full duplex modes I.C. is fabricated in Fairchild's advanced Double-Poly Silicon-Gate CMOS process. The monolithic I.C. performs all the signal processing functions required of a CCITT V.22, alternative 8 compatible modem. Handshaking protocols, dialing control and mode control functions can be handled by a general purpose, single chip J.lC. The pAV22, J.lC and several components to perform the telephone line interface and control provide a high performance, cost effective and ultra-low power solution for V.22-compatible modem designs. SLIM The modem chip performs the modulation, demodulation, filtering and certain control and self-test functions required for a CCITT V.22-compatible modem, as well as additional enhancements. 80th 550 Hz and 1800 Hz guard tones and notch filters and DTMF tone generator are on-chip. Switched-capacitor filters provide channel isolation, spectral shaping and fixed compromise equalization. A novel switched-capacitor modulator and a digital coherent demodulator provide 1200 DPSK operation. Voo LIM 27 Vss RXIN 26 AGNO DOT 25 TXO ETC 24 alA. SYNC 23 TXSQ EDET 22 SCT HS 21 MOD1 SCRM 20 MOD2 TXD 10 19 TEST XTL2 11 18 DGND XTL1 17 HSK2 SCR 16 HSK1 RXD 15 RLST The receive filter and energy detector may be configured for call progress tone detection (dialtone, busy, ringback, voice) providing the front end for a smart dialer. Order Information • Functions as a CCITT V.22-compatible modem • Interfaces to Single Chip J.lC Which Handles Handshaking Protocols and Mode Control Functions • DTMF Tone Generation and Call Progress Tone Detection for Smart Dialer Applications • 1300 Hz Calling Tone Generator On Chip • Pin and function compatible with the J.lA212A • On Chip Oscillator Uses 3.6864 MHz Crystal • Few External Components Required • Operates from +5 and -5 Volt Supplies • Low Operating Power: 35 mW Typical • 550 Hz and 1200 Hz guard tones and notch filters are on-chip Device Code pAV22DC pAV22PC J.lAV22QC *Consult Factory Absolute Maximum Ratings Voo to DGND or AGND Vss to DGND or AGND Voltage at any Input Voltage at any Digital Output Voltage at any Analog Output Operating Temperature Range Storage Temperature Range Lead Temperature (soldering, 10 seconds) 7.0 V -7.0 V Voo + 0.3 to Vss -0.3 V Voo + 0.3 V to DGND -0.3V Voo + 0.3 V to Vss -0.3 V O°C to 70°C -65°C to + 150°C 11-102 Package Code FM Package Description Ceramic DIP Molded DIP Molded Surface Mount MA212A· MA212AT 1200/300 bps Full Duplex Modem FAIRCHILD A Schlumberger Company Advanced Signal Processing Division Description Connection Diagram 28-Lead Dip (Top View) The IlA212A and the IlA212AT 1200 bps modem circuits are fabricated in Fairchild's advanced Double-Poly SiliconGate CMOS process. Either monolithic chip performs all signal processing functions required for a Bell 212A/1 03 compatible modem. Dialing, handshaking protocols, and mode control functions can be provided by a general purpose single-chip IlC. The IlA212A or IlA212AT and IlC; along with several components to handle the control and telephone line interfaces, provide a high performance, cost-effective solution for an intelligent Bell 212A-compatible modem design. SUM Either modem chip performs the modulation, demodulation, filtering and certain control and self-test functions required for a Bell 212A-compatible modem, as well as additional functional enhancements. Switched capacitor filters provide channel isolation, spectral shaping and fixed compromise equalization for both high and low speed modes. A novel switched-capacitor modulator and a digital coherent demodulator provide 1200 bps QPSK operation while a separate digital FSK modulator and demodulator handle the 0-300 bps requirement. The /lA212AT includes an integral DTMF tone generator on-chip. The IlA212A without DTMF generator, is cost optimal for answer-only applications or if an external dialer is present. The IlA212A and J.!A212AT are otherwise pin and firmware compatible. Existing IlA212A applications can be easily upgraded to the J.!A212AT with minor software changes (see technical bulletin M-1 appended.) The receive filter and energy detector may be configured for call progress tone detection (dialtone, busy, ringback, voice), providing the front end for a smart dialer on either the J.!A212A or J.!A212AT. • Functions as 212A and 103 Compatible Modem • Performs all Signal Processing Functions • Interfaces to Single Chip IlC Which Handles Handshaking Protocols and Mode Control Functions • DTMF Tone Generation (!lA212AT) • IlA212A is Pin and Firmware Compatible with the !lA212AT for Easy Upgrade • Call Progress Tone Detection for Smart Dialer Applications • On Chip OSCillator Uses Standard 3.6864 MHz Crystal • Few External Components Required • Industrial Temperature Range Option (-40°C to +85°C) • Operates from +5 and -5 Volt Supplies • Low Operating Power: 35 mW Typical • 28-Lead Ceramic DIP, 28-Lead Plastic DIP, and 28-Lead Surface Mount Packages • A IlA212A DeSigner's Kit Is Available Voo LIM 27 Vss RXIN 26 AGNO DOT 25 TXO ETC 24 oiA SYNC 23 TXSQ EOET 22 SCT HS 21 MOD1 SCRM 20 MOO2 TXO 10 XTL2 11 XTL1 12 17 HSK2 SCR 13 16 HSK1 RXO 14 15 RLST 19 TEST DGNO Order Information Type Temperature Range Code Package IlA212ATDC o to +70°C IlA212ATDV -40°C to +85°C J.!A212ATPC o to +70°C J.!A212ATQC o to +70°C IlA212ADC IlA212ADV IlA212APC o to + 70°C -40°C to + 85°C o to + 70°C FM 28-Lead Ceramic DIP FM 28-Lead Ceramic DIP 28-Lead Molded DIP 28-Lead Molded Surface Mount FM 28-Lead Ceramic DIP FM 28-Lead Ceramic DIP 28-Lead Molded DIP 'Consult Factory Absolute Maximum Ratings VDD to DGND or AGND Vss to DGND or AGND Voltage at any Input Voltage at any Digital Output Voltage at any Analog Output Operating Temperature Range Storage Temperature Range Lead Temperature (soldering, 10 s) 11-103 7.0 V -7.0 V VDD + 0.3 to Vss -0.3 V VDD + 0.3 V to DGND -0.3 V VDD + 0.3 V to Vss -0.3 V O°C to 70°C -65°C to + 150°C 300°C • J.lA212A • J.lA212AT Pin No. 28 Pin Description Positive power supply VDD = + 5 V VDD 26 Pin No. 21 20 Pin Description MOD1 Selects character length (ASYNC) or TX clock (SYNC). In ASYNC mode, MOD2 selects 8, 9, 10 or 11 bit character length; in SYNC mode, selects internal, external or recovered RCV clock as XMTR data clock source. Active only if HS = 1. (See Table 1) (Note) AGND Analog Ground 18 DGND Digital Ground 27 Vss Negative power supply Vss = -5 V 3 RXIN Line signal to modem. From active or passive Hybrid output. 25 TXO Line signal from modem. To active or passive Hybrid input. 10 TXD XMIT Data. Serial data from host. Disconnected when in digital loop. 24 O/A Orig/answer Mode Select. Assigns channels to XMTRS/RCVRS. 1 = Originate mode, 0 = Answer mode. (Note) 14 RXD RCVD Data. Serial data to host, Intern ally clamped to mark (= 1) when modem is in digital loop or EDET is inactive (= 1). 23 TXSQ Squelch XMTRS in date mode. XMTRS off; 1 = turns on XMTR selected by HS pin. iJA212AT: In dialer mode, 0 = DTMF generator OFF/call progress detection. 1 = DTMF generator ON. iJA212A: In dialer mode call progress detection only. TXSQ must be set to O. 22 SCT Serial Clock Transmit. 1200 Hz clock providing XMTR timing in SYNC mode. SCT source (INT., EXT., SLAVE) selected by MOD1, MOD2 pins. TXD changes on negative edge, sampled on positive edge. Internal clock provided in ASYNC mode. 5 ETC 9 SCRM Scrambler. "0" disables scrambler and descrambler for testing purposes. 12 11 XTL1 XTL2 Frequency control. 3.6864 MHz XTAL oscillator, operating parallel mode. Provides timing, sample clocks and L.O.'s. External Transmit Clock. 1200 Hz external clock providing XMTR timing in SYNC mode, selected by MOD1, MOD2 pins. TXD changes on negative edge, sampled on positive edge. Provided on SCT pin if selected. 13 SCR Serial Clock Receive. In SYNC mode, 1200 Hz bit clock recovered from RCVD Signal. May be pin-selected (MOD1, MOD2) as local transmit clock (SLAVE mode); provided on SCT pin if selected. RXD changes on negative edge, sampled on positive edge. Undefined in ASYNC mode. 7 EDET Energy Detect. In data mode, EDET = 0 if valid signal above threshold is present for 155 ± 50 ms, EDET = 1 if signal below threshold for > 17 ± 7 ms. In dialer mode, follows on/off variations of call-progress tones, when TXSQ = 0 o = Both 8 HS Selects modem speed. 1 selects 1200 bps. 0 selects 300 bps. (Note) 6 SYNC Selects CHAR ASYNC or BIT SYNC mode. 1 = ASYNC mode: enables XMIT & RCV buffers, sets character length according to MOD1, MOD2 pins. 0 = SYNC mode: disables buffers, selects TX clock source according to MOD1, MOD2 pins. Active only if HS = 1. Note For IlA212AT in dialer mode, a/A, HS, MOD1 and MOD2 select the DTMF to be generated (see Table 2). 11-104 J-LA212A • J-LA212AT Pin No. 15 2 Pin Description RLST Remote Loop Status, used in RDL mode. Responding modem: sets RLST = 0 upon receipt of unscrambled mark for 154 - 231 ms. initiating modem: asserts RLST = 0 upon receipt of scrambled mark for 231 - 308 ms. (See Table 3). SLIM Soft Limiter Output. Connect external 0.033 J.lF capacitor here. LIM Comparator input. Connected external 0.033 J.lF capacitor here. 4 19 16 17 by MOD1 and MOD2 internal, external or derived from the recovered received data. A scrambler preceeds encoding to ensure that the line spectrum is sufficiently distributed to avoid interference with the in-band supervisory singlefrequency signaling system employed in most Bell System toll trunks. The randomized spectrum also facilitates timing recovery in the receiver. The scrambler is characterized by the following recursive equation: Yi = Xi EB Yi-14 EB Yi-17 If HS = 1, forces a 1200 bps dotting pattern on the transmit path, for use when programming the 212AT high speed self-test mode. Both RCV and XMIT paths are in SYNC mode during dotting transmission, overriding the setting of SYNC, and of HSK1, HSK2. If HS = 0, DOT forces a 155 bps dotting pattern for use in lowspeed self-test mode. 1 = Normal Path, 0 = Dotting. TEST HSK1, HSK2 When the TEST pin is inactive (high), HSK1 and HSK2 select one of four transmit conditions, for use when programming the Handshake sequences. (See Table 1). When TEST is active (low), the HSK1 and HSK2 pins select one of three test conditions, or, alternatively, the dialer mode used for call progress tone detection and DTMF tone generation, J.lA212AT only. where Xi is the scrambler input bit at time i. Yi is the scrambler output bit at time i and EB denotes the XOR operation. 212A-type modems achieve full-duplex 1200 bps operation by encoding transmitted data by bit-pairs (dibits), thereby halving the apparent data rate. The resultant reduced spectral width allows both frequency channels to coexist in a limited bandwidth telephone channel with practical levels of filtering. The four unique dibits thus obtained are graycoded and differentially phase modulated onto a carrier at either 1200 Hz (originate mode) or 2400 Hz (answer mode). Each dibit is encoded as a phase change relative to the phase of the preceding signal dibit element: Dibit Phase Shift (deg) 00 01 +90 11 -90 180 10 Functional Description* Refer to Figure 1. Transmitter The transmitter consists of high-speed and low-speed modulators, a transmit buffer and scrambler, and a transmit filter and line driver. In high-speed asynchronous mode, transmit data from the Data Terminal Equipment enters the transmit buffer, which synchronizes the data to the internal 1200 bps clock. Data which is underspeed relative to 1200 bps periodically has the last stop bit sampled twice resulting in an added stop bit. Similarly, overspeed input data periodically has unsampled - and therefore deleted - stop bits. The MOD1 and MOD2 pins choose 8, 9, 10 or 11 bit character lengths. In synchronous mode the transmit buffer is disabled. The transmitter clock source may be chosen o At the receiver, the dibits are decoded and the bits are reassembled in the correct sequence. The left-hand digit of the dibit is the one occurring first in the data stream as it enters the modulator after the scrambler. The lowspeed transmitter generates phase-coherent FSK using one of two programmable tone generators. Answer mode mark (2225 Hz) is also utilized as answer tone in both low and high speed operation. In Dialer mode, both tone generators are employed to generate DTMF tone pairs. The summed modulator outputs drive a lowpass filter which serves as a fixed compromise amplitude and delay equalizer for the phone line and reduces output harmonic energy well below maximum specified levels. The filter output drives an output buffer amplifier with low output impedance. The buffer provides 700 mVrms in data mode, for a nominal -9 dBm level at the line, assuming 2 dB loss in the data access arrangement. * For additional information contact sales office for Applications Note ASP-1 "Theory of Operation-IlA212A" and Technical Bulletins M1, M3 & M4. 11-105 • JlA212A· JlA212AT mode the descrambler output is identically the received data, while in asynchronous mode the descrambler output stream is selectively processed by the receive buffer. Underspeed data presented to the transmitting modem passes essentially unchanged through the receive buffer. Overspeed data, which had stop bits deleted at the transmitter, has those stop bits reinserted by the receive buffer. (Generally, stop bit lengths will be elastic). The receive buffer output is then presented to the receive data pin (RXD) at a nominal intracharacter rate of 1219.05 bps. DTMF Tone Generation The ~212AT includes on-chip DTMF generation, using two programmable tone generators. Dialer mode must be selected on TEST, HSK1 and HSK2 for DTMF dialing. The a/A, HS, MOD1 and MOD2 pins are used to select the required digit according to the encoding scheme shown in Table 2, and the tones are turned on and off by the logic level on TXSO. The generated tones meet the applicable CCITT and EIA requirement for tone dialing. DTMF output levels are 1.0 Vrms (low group) and 1.25 Vrms (high group). Receiver The received signal from the line-connection circuitry passes through a lowpass filter which performs anti-aliasing and compromise amplitude and delay equalization of the incoming signal. Depending upon mode selection (originate/answer) the following mixer either passes or down converts the signal to the 1200 Hz bandpass filter. In analog loopback mode, the receiver originate and answer mode assignments are inverted, which forces the receiver to operate in the transmitter frequency band. The 1200 Hz bandpass filter passes the desired received signal while attenuating the adjacent transmitted signal component reflected from the line (talker echo). The chosen passband shape converts the spectrum of the received high-speed signal to 100% raised cosine to minimize intersymbol interference in the recovered data. Following the filter is a soft limiter and a signal energy detector. An external capacitor is used to eliminate offset between the soft limiter output and the following limiter. The energy detector provides a digital indication that energy is present within the filter passband at a level above a preset threshold. Approximately 3 dB of hysteresis is provided between on and off levels to stabilize the detector output. In dialer mode, the detector output is used to provide logic level indication of the presence of call progress tones. The limiter output drives the OPSK demodulator and the carrier and clock recovery phase-locked loops. The low speed FSK demodulator shares part of the clock recovery loop. The OPSK demodulator and carrier loop form a digital coherent detector. This technique offers a 2 dB advantage in error performance compared to a differential demodulator. The demodulator output are in-phase (I) and quadrature (0) binary Signals which together represent the recovered dibit stream. The dibit decoder circuit utilizes the recovered clock signal to convert this dibit stream to serial data at 1200 bps. The recovered bit stream is then descrambled, using the inverse of the transmit scrambler algorithm. In synchronous Master Clock/Oscillator/Divider Chain The I.lA212A or I.lA212AT may be controlled by either a quartz crystal operating in parallel mode or by an external signal source at 3.6864 MHz. The crystal should be connected between XTL 1 and XTL2 pins, with a 30 pF capacitor from each pin to digital ground (see Figure 1). Crystal requirements; Rs < 150 ohms, CL = 18 pF, parallel mode, tolerance (accuracy, temp, aging) less than ± 75 ppm. An external TTL drive may be applied to the XTL2 pin, with XTL 1 grounded. Internal divider chains provide the timing Signals required for modulation, demodulation, filtering, buffering, encoding/decoding, energy detection and remote digital loopback. Timing for line connect and disconnect sequences (handshaking) derives from the host controller, ensuring maximum applications flexibility. Control Considerations The host controller, whether a dedicated microcontroller or a digital interface, controls the ~212A or I.lA212AT as well as the line connect circuit and other IC's. On-Chip timing and logiC circuitry has been specifically designed to simplify the development of control firmware. Operating and Test Modes Table 1 indicates the operating and test modes defined by the eight control pins. The ~212A and ~212AT (together with the host controller) supports analog loopback, and local and remote digital loopback modes. Analog loopback forces the receiver to the transmitter channel. The controller forces the line control circuit on-hook but continues to monitor the ring indicator. This mode is available for lowspeed, highspeed synchronous and highspeed asynchronous operation. In local digital loop, the modem I.C. isolates the interface, slaves the transmit clock to SCR (high-speed mode), and loops received data back to the transmitter. In remote digital loop, local digital loop is initiated in the far-end modem by request of the near-end modem, if the far-end modem is so enabled. The I.lA212A and I.lA212AT includes the handshake sequences required for this mode; the controller merely monitors RLST and controls remote loopback according to Table 3. Remote loop is only available in high-speed mode. 11-106 Figure 1 Block Diagram .0331JF SLIM I EOET SCR LIM RECEIVE FILTER ,-------------------------------------1 : I RXIN : BALANCED ANTI_ALIAS I I ~~: r:::;:-l r'\ I AANnp.&~~ I : 1_, I. SCRM 3.6864 MHz 30" ~ RLST D 30pF T 1---+--_--+1-> XTL1 (OGNO) ~ 0 ..... RXC ETC SCT • I ,. TXO AGNO DGND Voo Txsa Vss 'I'A212AT only • O/A HSKl HSK2 TEST i. DOT MOD1 MOD2 SYNC HS TXO JiA212A· JiA212AT Answer Tone In this mode, 2225 Hz answer tone is transmitted provided TXSQ is inactive high ( = 1). Receive speed is selected as normal with the HS pin. This permits the speed of the originating modem to be determined while answer tone is continuously transmitted. Force Continuous Mark Disconnects TXD pin from the transmitter and forces the signal internally to a mark (logic 1). Force Continuous Space Disconnects TXD pin from the transmitter and forces the signal internally to a space (logic 0). Analog Loop Receiver is forced to the transmitter channel. With modem on-hook (disconnected from line) signal from TXO is reflected through hybrid to RXIN. Local Digital Loop Internally connects RXD to TXD and SCR to SCT. Transmitted data (TXD) and clock (ETC) are ignored. SCR and SCT are provided. RXD is forced to 1. Remote Digital Loop Initiating modem: If RDL is initiated (TEST = 0, HSK1 = 1, HSK2 = 0), TXD is isolated, RXD is clamped to a 1 and unscrambled mark is transmitted. When high speed scrambled dotting pattern is detected, scrambled mark is transmitted. At this point, upon receipt of scrambled mark, RLST is set to O. Responding modem: Upon receipt of unscrambled mark when in data mode (TEST = HSK1 = HSK2 = 1), RLST is set to O. Upon detecting this the controller responds by setting TEST and HSK2 to 0, and the modem I.e. isolates TXD, clamps RXD to 1, and transmits a 1200 bps scrambled dotting pattern. At this pOint, upon receipt of a scrambled mark signal, the modem I.C. internally loops RCVR data and clock to the XMTR, and sets RLST back to 1. (See Table 3) Dialer Mode The IlA212AT provides DTMF tone generation and energy indication at EDET pin to identify call progress tones, i.e. dial, busy and ringback. The DTMF digit is selected by the levels on 0/1\, HS. MOD1 and MOD2 according to Table 2. Tone generation is turned on and off by the level on TXSQ. 1 = on, 0 = off. The J.lA212A provides call progress indication only. TXSQ must be set to O. 11-108 J-lA212A· J-lA212AT Electrical Characteristics Unless otherwise noted: VDD = 5.0 V ± 5%, Vss = -5.0 V ± 5%, DGND = AGND = 0 V, TA = O°C to 70°C, typical characteristics specified at VDD = 5.0 V, Vss = -5.0 V, TA = 25°C; all digital signals are referenced to DGND, all analog signals are referenced to AGND. Table 1 Operating and Test Modes DOT 0 1 1 1 1 1 1 1 1 1 1 HS SYNC - X - 1 1 1 1 1 1 1 - - - 1 1 1 1 1 1 0 X 1 MOD1 X MOD2 TEST HSK1 HSK2 X 1 1 1 1 1 1 1 1 1 1 1 0 0 0 - 1 0 0 1 1 1 1 1 1 1 1 0 1 1 1 0 1 0 1 1 1 1 1 1 1 1 1 0 - - 0 0 0 1 0 0 - - - 1 1 1 1 0 0 0 0 0 1 1 1 1 0 0 1 1 0 1 0 1 - - - - X X X X X X X X X X X X - - - Key: SCT - TX Buffer and PSK Modulator Clock SCR - Receive Clock ETC - External Clock Input SCT Dotting Pattern (155 or 1200 bps) Answer Tone Force Continuous Mark Force Continuous Space ASYNC, 8 Bit ASYNC, 9 Bit ASYNC, 10 Bit ASYNC, 11 Bit SYNC, Internal SYNC, Slave SYNC, External Analog Loop Local Digital Loop Response to Far End Request for RDL Low Speed Mode Dialer Mode, Note 1 Remote Digital Loop Initiate INT X X X INT INT INT INT INT SCR ETC ETC SCR SCR X X X INT - Internal 1200 Hz Clock x - Don't Care - - Set as appropriate for desired operating condition. Table 2 DTMF Encoding 2 (J.LA212AT only) O/A HS MOD1 MOD2 DTMF Digit 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 2 3 1 0 0 1 1 0 0 1 1 0 0 1 1 Description 4 5 6 7 8 9 # A B C 0 Notes 1. DTMF digit is selected according to Table 2 for the jlI\212AT. 'i'XSQ enables the tone generator: 1 = ON, 0 = OFF. TXSQ = 0 allows energy detection of call progress tone in both the jlI\212A and jlI\212AT. 2. For DTMF to operate dialer mode must be asserted. Trn, HSKI and HSK2 must be = O. 11-109 JIA212A • JIA212AT Table 3 Remote Digital Loopback (RDL) Command Sequences Modem Action Controller Action TEST HSK1 HSK2 RLST 1 1 1 1 0 1 0 1 0 1 0 0 1 1 1 0 0 1 0 0 0 1 0 1 1 1 1 1 l' 1 0 1 Data Mode Initiate RDL: Disable scrambler Disconnect TXD Force 1 on RXD Transmit unscrambled mark (U.M.) "INITIATE RDL" Recognize Dotting for 231 - 308 ms Enable scrambler Transmit scrambled mark (S.M.) Recognize S.M. for 231 - 308 ms Connect TXD Unclamp RXD "RDL ESTABLISHED" Response to far end request: U.M. recognized for 154 - 231 ms "RDL REQUESTED" "RDL RESPONSE OK" Disconnect TXD Force 1 on RXD Force Sync Slave Mode Transmit Dotting S.M. recognized Internally loop Receiver to Transmitter "RDL ESTABLISHED" Terminate RDL: Reset to Data Mode "TEST ~ HSKl ~ HSK2 ~ 1 TXSQ active 80 ms may be asserted at anytime after '"RDL ESTABLISHED·· and before terminating. Energy Detector Symbol Characteristic Condition Vthon Vthoff OfflOn Threshold OnlOff Threshold Voltage Level at RXIN Pin In Data Mode ton toff Energy Detect Time Data Mode Loss of Energy Detect Time at EDET Pin Vthon Vthon Vthon Dialer Mode OfflOn Threshold Dialtone OfflOn Threshold Busy/Ringback ton Energy Detect (Detecting Call Energy Detect (Detecting Call toff in the Dialer Mode Progress Tones) in the Dialer Mode Progress Tones) Min 11-110 Max 6.5 5.2 105 10 Voltage Level at RXIN Pin in Dialer Mode At EDET Pin Typ 155 17 Units mV rms 205 24 10 4.6 ms ms mVrms 25 30 35 ms 30 36 42 ms J.LA212A • J.LA212AT System Performance Symbol BER Characteristic Condition Min = -30 dBm = -44 dBm Bit Error Rate: SNR required for BER = 10- 5 @ 1200 bps on a 3002-CO line, with 5 kHz white noise referred to 3 KHz. Figures shown are for originate mode. (Note: Pline values assume 4 dB net gain from line to RXIN) Pline Pline Telegraph Distortion Back-to-Back, 300 bps (Low Speed Mode) Typ Max Units 13 14 dB dB 10 % Peak Figure 2 Bit Error Rate vs Signal-to-Noise Ratio 10-2 , . . - - - - , - - - , - - - , - - - , - - - , - - - , I PIN :::;:-30dBm I 10- 3 t----1~r__1~\-1-_t-_t-_t w !;; a: a: ~ 10-41--t-----1/--'\-/t--\-t---t----I ill ...iii 10-' f--j---t-+t-+--'ct--\-t----I 10-' ' - - - - - - - , ' - - ' - - - - , . ' - - : ' ' - - ' - - - ' '6 4 SIGNAL TO NOISE RATIO (SNR) - dB Note SER measured in synchronous mode, using an AEA S3A channel simulator. Analog Line Interface Symbol Vline Vlenh Vlenl VTXSQ Pext Vee Characteristic Output Level at TXO: Output Level at TXO: Output Level at TXO: Output level at TXO: Extraneous frequency DTMF power. Output Offset at TXO Condition Data Mode DTMF HIGH Group DTMF LOW Group output relative to Min Typ Max Units -20 Vrms Vrms Vrms mVrms dB 0.7 1.1 0.9 0.5 Any DTMF digit 5.0 11-111 mV /-LA212A· /-LA212AT Masterclock Input Symbol Characteristic Fclock Tolclk Vexth Clock Frequency Clock Frequency Tolerance External Clock Input HIGH Vextl External Clock Input LOW Condition Min Typ Max 3.6864 -.01 4.5 XTL2 driven and XTL 1 grounded XTL2 driven and XTL 1 grounded Units MHz +.01 % V 0.5 V Digital Interface Symbol Characteristic VIL VIH VOL VOH IL Input Voltage LOW Input Voltage HIGH Output Voltage LOW Output Voltage HIGH Input Current LOW IIH 100 Input Current HIGH Operating Current Iss Operating Current Condition Min Typ Max 0.6 2.2 IL =2.0 mA IL =-2.0 mA DGND ,,;; VIN ,,;; VIL. All Digital Inputs VIH ,,;; VIN ,,;; Voo Voo = 5.0 V No Analog Signals Vss = -5.0 V No Analog Signals 0.6 3.0 -100 -50 Units V V V V /lA 4.3 10 p.A mA -2.7 -5.0 mA Transmit Buffer (Character Asynchronous Mode) Symbol Characteristic Ltxchar Input Character Length Rtxchar Lbreak Intracharacter Signaling Rate Input Break Sequence Length Condition Start bit + data bits + stop bit At TXD pin At TXD pin 11-112 Min Typ 8 1170 23 1200 Max Units 11 bits 1212 bps bits J.lA212A • J.lA212AT Receive Buffer (Character Asynchronous Mode) Carrier Frequencies and Signaling Rates Symbol Characteristic Condition Min Typ Max Units Rtxehar Fexr (ORIG) Fexr (ANS) Baud Intracharacter Signaling Rate HS Cxr Freq. (Orig. Mode) HS Cxr Freq. (Ans. Mode) Dibit Rate At RXD pin Unmodulated Carrier Unmodulated Carrier High Speed Mode 1219.05 1200 2400 600 bps Hz Hz Baud Fmark (ORIG) Fspaee (ORIG) Mark Frequency Originate Mode (1270) Space Frequency Originate Mode (1070) Low Speed Mode Low Speed Mode 1269.42 1066.67 Hz Hz Fmark (ANS) Low Speed Mode 2226.09 Hz Fspace (ANS) Mark Frequency Answer Mode/Answer Tone (2225) Space Frequency Answer Mode (2025) Low Speed Mode 2021.05 Hz Ftonl DTMF Low Frequency Tone Group Dialer Mode 698.2 771.9 853.3 942.3 Hz Ftonh DTMF High Frequency Tone Group Dialer Mode 1209.4 1335.7 1476.9 1634.0 Hz Tol Tolerance of all above Frequencies/Data Rates Data Rate Low Speed Mode bps 11-113 -0.01 0 +0.01 300 % bps • DTMF Dialing, the J,lA212A and J,lA212AT FAIRCHILD A Schlumberger Company Technical Bulletin M-1 April 1986 Garry Shapiro, Advanced Signal Processing Division The /lA212A-the world's first and lowest power 1200/ 300 b/s single-chip modem - will be joined, at about midyear, by the /lA212AT. The second in a series of Fairchild modem IC products, the /lA212AT is pin-compatible with the /lA212A with the addition of an integral DTMF tone generator. This Bulletin summarizes factors to be considered in current /lA212A-based modem designs for migration to the /lA212AT. DTMF Access The /lA212AT DTMF tone generator is accessed via the Dialer mode, which is asserted by setting TEST = HSK1 = HSK2 = O. In the /lA212A, Dialer mode offers only call-progress tone detection, but, in the /lA212AT, both call-progress tone detection and DTMF tone generation are provided. The DTMF output is enabled by TXSQ = 1 and disabled by TXSQ = 0; EDET should be ignored when DTMF tones are being generated. See Table 1.1. Table 1.1. Dialer Mode TXSQ J,tA212A /lA212AT o Call-progress Call-progress Call-progress DTMF generation DTMF Tone-Pair Selection The /lA212AT employs 4 pins (O/A, HS, MOD1, and MOD2) to generate 1 each of the 4 LOW and 4 HIGH group DTMF tones; nominal tone frequencies are shown in Table 1.2. Table 1.3 displays the DTMF Encoding matrix. Therefore, if Data mode output power to a 600 n load is -9 dBm, tone output power is -7 dBm (Low group) and -5 dBm (HIGH group). These levels, as well as harmonic and out-of-band energy values conform to the requirements of EIA RS-496. p.A212AT Design-In Considerations The /lA212A and /lA212AT are pin-compatible and functionally identical for all modes except DTMF tone generation. The /lA212AT can therefore replace the /lA212A in all current and future designs, provided that the following considerations are observed: • Ensure Proper Control Of The TXSQ Pin When In Dialer Mode. See Table 1.1. • Provide /lController Lines For The a/A, HS, MOD1 And MOD2 Pins, if any are not presently provided. • Plan For Replacement Of The Present Tone Dialing Scheme. Current /lA212A designs with DTMF dialing often employ a dialer chip or a DAC. Ensure that downstream removal of such parts will not affect the design. • Allow ROM Space. Since DTMF control code replaces the previous scheme, this should not usually be a problem. Table 1.3 DTMF Encoding Matrix (TEST HSK1 HSK2 0, TXSQ 1) = = = = a/A HIS MOD1 MOD2 DTMF Digit 0 0 0 0 0 1 0 1 0 1 2 3 0 0 0 1 0 1 4 5 6 7 0 0 0 1 0 1 8 9 Table 1.2 Tone Frequencies (Hz) Low Group F (Nom.) 697 770 852 941 High Group F (Act.) F (Nom.) 698.2 771.9 853.3 942.3 1209 1336 1477 1633 0 F (Act.) 1209.4 1335.7 1476.9 1634.0 0 Output Characteristics 0 0 Table 1.4 summarizes nominal output levels at the TXO pin for Data mode, and for the DTMF Low and High tone groups. Absolute values and values relative to Data mode are shown. Mode Data DTMF Low DTMF High Vtxo(rms) Relative (dB) 0.70 0.88 1.11 +2 o +4 11-114 0 1 0 # A B C D FAIRCHILD A Schlumberger Company IlA212K 1200/300 bps Full Duplex Modem Designer's Kit Advanced Signal Processing Division Description The /lA212K Designer's Kit supports the Fairchild /lA212A modem. The purpose of the kit is essentially threefold: • To provide a convenient means of demonstrating the capabilities, features and performance of the /lA212Athe world's first single-chip 212A modem IC. • To facilitate the design of applications-specific control firmware for the /lA212A. • To provide a FCC registered DAA design reference and Hybrid design support. The Designer's Kit includes the following materials: 1. The j.tA212A Modem Board is a 1200/300 b/s, fullduplex, originate/answer, stand alone "smart" 212A modem board. Compatible with the Hayes Smartmodem 1200™ command set, Demo Board supports features not found on Smartmodem™, including call progress tone detection (in addition to audio line monitoring) and support of the Remote Loopback test mode. Demo Board showcases all features and modes of the /lA212A IC, except the use of 8 and 9 bit asynchronous characters, which are incompatible with the Hayes "AT" protocol. Synchronous operation is available, and is particularly useful for bit error rate testing. All modes and options are via software control. Demo Board operates with received line signals from -45 to > -10 dBm, and transmits at a nominal -10 dBm into load. a 600 n 2. The j.tA212A Designer's Manual a. Overview and Hardware. This part summarizes features, interface requirements (power, control, telephone line), and modem architecture. It enables the user to quickly go online and to become familiar with modem operation. b. pA212A Modem Demonstration Program (Ver. 1.27). This is an extensive discussion of Demo Board control firmware, and is primarily intended to assist designers developing firmware for /lA212A-based products. It is presented within the framework of the familiar Hayes Smartmodem 1200™ command set, and may be considered a superset of that de-facto industry standard. Although written for the 6801 microcontroller, the organization and modularization of the code are applicable to most of the microcontrollers currently available. 3. To Assist Hardware and Firmware Development a. a circuit schematic diagram and parts list b. Technical Bulletin M3: DAAIHybrid Design Programs for the pA212A c. a 5.25" floppy disk containing 6801 source listings and utilities. Object listings are also available to those requiring them. Consult your local Fairtech™ Center, Salesoffice or Advanced Signal Processing Division for further details, reference materials and information regarding new modem and design support products. Figure 1 #lA212K 11-115 Aerospace and Defense Processing FAIRCHIL.D A Schlumberger Company Aerospace and Defense Processing ing, test methods, laboratory suitability, product assurance program, and personnel training. Facilities and documentation are audited by DESC prior to certification and periodically thereafter. Processing to MIL-M-38510 and MIL-STD-883 is performed by a totally dedicated Business Unit within the Linear Division of Fairchild to serve the unique Linear components requirements of our various military customers. Fairchild Linear has been committed to the Linear Hi Rei program for many years and intends to continue to maintain a leadership position in that market segment. Fairchild Linear maintains a very active MIL-M-38510 Qualified Products List (QPL) Program and has maintained a leadership position in the total number of Linear QPL's for many years. The Aerospace and Defense program offers four levels of processing flows as noted below. These flows would normally satisfy a majority of customer requirements. An outline of the JM35810 Class "B" flow is given in Figure 1. DESC Selected Item Drawings • Jan-Level "8" - Full compliance to MIL-M-38510 Jan program and QPL listings as published by Defense Electronics Supply Center. DESC Selected Item Drawings or Military Drawings provide and industry standard specification in compliance with Class "B" requirements for devices that are not JAN qualified. These products are dual marked with the DESC Military Drawing Number as well as the industry standard device number. • Military (DESC) Drawing - Conformance to Class "8" process requirements to DESC selected item drawings. Linear "Q8" Flow (MIL-STD-883 Class "8") Fairchild's "QB" process flow can fill customer needs when a desired product is not available on JAN QPL or when system requirements call for a cost effective but reliable alternative to the full JAN program. The product is processed to MIL-STD-883 methods as specified in Figure 1. Electrical testing is performed to Fairchild Standard Schematic as defined on the data sheets. • "Q8" Flow - Conformance to Class "8" process requirements of MIL-STD-883 to Fairchild MIL temperature range data sheet electricals. • "QS" Flow - Conformance to Class "S" process requirements of MIL-STD-883 to Fairchild MIL temperature range data sheet electricals and including wafer lot acceptance per Figure 3A. JAN Qualified (MIL-M-38510) Class "8" Program The JAN Program offers the customer a standard of product processing, quality and reliability that is well documented by the manufacturer and monitored by the Defense Electronics Supply Center (DESC) of the U.S. Government. The products are manufactured in the U.S. in a government certified facility to the requirements of MIL-M-38510 and individual product specifications as called out in the MIL-M-38510 "Slash Sheets". The DESC certification is based on standardized documentation for design, process- "QS" Flow Fairchild Linear offers a capability to fulfill basic processing requirements of Class "S" at wafer fabrication, assembly, environmental screening and test/finish on selected popular devices. It is our intent to standardize the processing of Class "S" products to the "QS" flow shown in Figures 3A, 38, and 3C so that customer requirements for Class "S" can be accommodated. Fairchild does not currently hold a Class "S" certification from DESC. 12-3 • Aerospace and Defense Processing Figure 1 "08" and JAN Class "8" Process Flow Description I Internal Visual "OB" Flow MIL-STD-883 Test Method and Description JAN Class "B" Flow MIL-STD-883 Test Method and Description 2010 Condo B 2010 Condo B 1008 Condo C (note 1) 1008 Condo B (note 1) 1010 Condo C 1010 Condo C I Stabilization Bake I Temperature Cycling I Constant Acceleration (Centrifuge) I Interim (Pre Burn-In) Electrical Parameters 2001 Condo E 2001 Condo y 1 Orientation only y 1 Orientation only (note 2) (note 2) Per Applicable Test Spec. Per Applicable Device Specification (Slash Sheet) 1015, 160 Hrs. at 125°C or Per Table 1 of Method 1015 1015, 160 Hrs. at 125°C or Per Table 1 of Method 1015 Per Applicable Test Spec. Per Applicable Device Specification (Slash Sheet) 5% 5% Per Applicable Test Spec. Per Applicable Device Specification (Slash Sheet) 1014 1014 5005 Groups A, B, C and D Limits and Conditions Per Applicable Linear "OB" Data Sheet 5005 Groups A, B, C and D Limits and Conditions Per Applicable Device Specification (Slash Sheet) 2009 2009 I Burn-In Test I Interim (Post Burn-In) Electrical Parameters I Percent Defective Allowable (PDA) Calculation I Final Electrical Test I Seal (Hermiticity) I Ouality Conformance Inspection I External Visual Notes: 1, Defines minimum time and temperature, greater temperature and/or longer time used for some packages types. 2. Or lower G levels as allowed for larger packages per MIL-STD-883. Method 5004. 12-4 Aerospace and Defense Processing Figure 2 JAN Part Numbering System J M 385101 101 01 B G C __ ~ JAN Designator Cannot be market with "J" General unless qualified on Part I Spec Procurement or Part II of the QPL T1~-=------ Refers to Detail Spec Defines Device 101 Op Amps 102 Voltage Regulators Type 103 Comparators 104 Interface 106 Voltage Followers 107 Positive Fixed Voltage Regulators 108 Transistor Arrays 109 Timers 110 Quad Op Amps 112 Voltage Comparator 113 D to A Converter 115 Negative Fixed Voltage Regulators 117 Positive Adjustable Voltage Regulators 118 Negative Adjustable Voltage Regulators 119 Low Power, Low Noise, Bi-Fet Op Amps Processing Level S B Package Type A 14-lead 1/4 x 1/4 Flatpak B 14-lead 114 x 112 Flatpak C 14-lead 1/4 x 3/4 Dip D 14-lead 1/4 x 3/8 Flatpak E 16-lead 1/4 x 7/8 Dip F 16-lead 1/4 x 3/8 Flatpak G 8-lead Can H 10-lead 114 x 114 Flatpak I 10-lead Can J 24-lead 1/2 x 1 1/4 Dip K 24-lead 3/8 x 5/8 Flatpak L 24-lead 3/8 x 112 Flatpak X 3-lead TO-5 Can Y 2-lead TO-3 Can Z 24-lead 114 x 3/8 Flatpak 2 20 Terminal LCC Lead Finish A Hot Solder Dip B Tin Plate C Gold Plate X Any Finish Above Linear JAN Generic Part Numbers M38510/ 01 02 03 04 05 06 07 08 101 741 747 101A 108A 2101A 2108A 118 1558 78M24 7805 7812 7815 7905 7912 7915 7924 102 723 103 710 711 111 2111 9614 9615 104 55107 55108 106 110 2110 107 109 78M05 78M12 78M15 4156 4136 124 79M15 79M24 138 108 3045 109 555 110 148 112 139 113 0802 0801 115 79M05 79M12 117 117H 117K 150 119 771 772 774 Note Dated material. Please contact Fairchild for latest revisions. 12-5 09 7824 10 Aerospace and Defense Processing "as" Processing The flow charts that follow provide the major steps and acceptance criteria utilized for the processes and should form the basis for any Class "5" business negotiations with Linear Marketing. These flow charts will also provide a prospective customer with Fairchild Linear's capabilities in Class "5" processing. The Linear Division has a standardized "OS" flow for all processing steps through Assembly, Test, Burn-In and Finish that will meet the requirements of a majority of customers and thus reduce the need for custom Class "5" process flows. Figure 3A "QS" Minimum Wafer Lot Acceptance Steps CV TEST WAFERS FOR FIELD OXIDE OUALITY GlASSIVATION THICKNESS MEASUREMENT CV TEST WAFERS FOR EVAPORATOR CLEANLINESS TOP SIDE METAL THICKNESS MEASUREMENT SAMPLE PROBE TEST FOR DIFFUSION PARAMETERS AU THICKNESS MEASUREMENT SEM ACCEPTANCE OF METAL PATTERN: MIL-STO-S83 METHOD 2018 VISUAL INSPECTION & ACCEPTANCE FOR OlE BANK WITH FUll TRACEABiliTY "OS" DIE INVENTORY 12-6 Aerospace and Defense Processing Figure 38 "QS" Assembly Flow INCOMING "OS" WAFERS WITH TRACEABILITY DIE VISUAL CONDITION "A" METHOO 2010 DIE SHEAR MONITOR METHOD 2019 DIE ATTACH BOND PULL MONITOR METHOD 2011 WIRE BOND NON-DESTRUCTIVE BOND PULL METHOD 2023 INTERNAL VISUAL CONDITION "A" METHOD 2010 OC INTERNAL VISUAL AND CUSTOMER SOURCE PRE-CAP IF REOUIRED SEAL Note Piece part traceability maintained when desired. 12-7 Aerospace and Defense Processing Figure 3C (Typical) "QS" Test, Burn-In and Final Acceptance (Typical) "QS" Environmental and Finish Processing PRE-BURN-IN ELECTRICAL PER APPLICABLE DEVICE SPECIFICATION (SLASH SHEET) ASSEMBLED CLASS "S" LOT STABILIZATION BAKE CONOITION C (Note 1) METHOD 1008 TEMPERATURE CYCLING CONDITION C BURN-IN 240 HOURS AT 12S'C OR PER FIGURE 1015-1 OF MIL-STD-883 POST BURN-IN ELECTRICAL PER APPLICABLE DEVICE SPECIFICATION (SLASH SHEET) METHOD 1010 CONSTANT ACCELERATION Yl ORIENTATION CONDITION E (Note 2) METHOD 2001 PARTICLE IMPACT NOISE DETECTION (PIND) CONDITION A PERCENT DEFECT ALLOWABLE (PDA) CALCULATION METHOD 2020 FINE AND GROSS LEAK TEST - METHOD 1014 FINE LEAK TEST - METHOD 1014, CONDITION B GROSS LEAK TEST - METHOD 1014, CONDITION C QUALITY CONFORMANCE INSPECTION, METHOD 5005 GROUPS A, B, C, AND D. LIMITS AND CONDITIONS PER APPLICABLE DEVICE SPECIFICATIONS (SLASH SHEET)_ EXTERNAL VISUAL - RADIOGRAPHIC (X-RAY) (2 VIEWS) METHOD 2012 METHOD 2008 25°C SCREEN EXTERNAL VISUAL AND PACK - SERIALIZATION AND MARKING (MAXIMUM 4 CHARACTERS AND ON FLATPACK SERIALIZATION ON BOTTOM ONLY) PLANT CLEARANCE METHOD 2009 SHIP QSOOO31F Notes 1. Defines minimum time and temperature, greater temperature and/or longer time used for some packages types. 2. Or lower G levels as allowed for larger packages per MIL-STD-883, Method 5004. 12-8 MA10SQB FAIRCHILD Voltage Regulator A Schlumberger Company MIL-STD-883 November 1985 - Rev 05 Aerospace and Defense Data Sheet Linear Products Description Connection Diagram 8-Lead Can (Top View) The IlA 10508 is a monolithic positive voltage regulator constructed using the Fairchild Planar Epitaxial process. Applications for this device include both linear and switching regulator circuits with output voltages greater than 4.5 V. This device will not oscillate when confronted with varying resistive and reactive loads and will start reliably regardless of the load within the ratings of the circuit. It also features fast response to both load and line transients. 6 REG OUT BOOSTER OUT • Low Standby Current Drain • Adjustable Output Voltage From 4.5 To 40 V • High Output Current Exceeding 10 A With External Components • Load Regulation Better Than 0.1 %, Full Load With Current-Limiting FEEDBACK COMMON Lead 4 connected to case. Order Information Part No. !1A105HM08 Casel Finish GC Package Code MiI-M-38510, Appendix C A-1 8-Lead Can • 13-3 IlA10SQB Processing: MIL-STD-883, Method 5004 Absolute Maximum Ratings Storage Temperature Range Operating Temperature Range Lead Temperature (soldering, 60 s) Internal Power Dissipation 12 Can Input Voltage Input/Output Voltage Differential -65°C to + 175°C -55°C to + 125°C 300°C Burn-In: Method 1015, Condition A, PDA calculated using Method 5005, Subgroup 1 Quality Conformance Inspection: MIL-STD-883, Method 5005 330 mW 50 V 40 V Group A Electrical Tests Subgroups: 1. 2. 3. 4. Static tests at Static tests at Static tests at Dynamic tests 25°C 125°C -55°C at 25°C Group C and D Endpoints: Group A, Subgroup Notes 1. 100% Test and Group A 2. Group A 3. Periodic tests, Group C 4. Guaranteed but not tested 5. When changes occur, FSC will make data sheet revisions available. Contact local sales representative for the latest revision. 6. For more information on device function, refer to the Fairchild Linear Data Book Commercial Section. 7. V'R and V,- Vo are guaranteed by the FBSV test. 8. VOR is guaranteed by the FBSV and the VR LOAD tests. 9. The line and load regulation specifications are given for the condition of constant chip temperature. Temperature drift effects must be taken into account separately for high dissipation conditions. 10. The output currents given, as well as the load regulation, can be increased by the addition of external transistors. The improvement factor will be approximately equal to the composite current gain of the added transistor. 11. With no external pass transistor. 12. Rating applies to ambient temperatures up to 125·C. Above 125·C ambient, derate linearly at 150·C/W. 13-4 /JA10SQB J.LA10SQB Electrical Characteristics These specifications apply for input and output voltages within the ranges given and for a divider impedance seen by the feedback terminal of 2 kn unless otherwise specified. Symbol Characteristic Subgrp Condition Min Max Unit Note VI = 50 V, Va = 20 V 1.63 1.81 V 1 1 VI = 8.5 V, Va = 4.5 V 1.63 1.81 V 1 1 8.5 50 V 1 1 VOR Output Voltage Range 8 4.5 40 V 1 1 VI-Va Input/Output Voltage Differential? 3.0 30 V 1 1 VR LINE Line Regulation 9 1 FBSV Feedback Sense Voltage VIR Input Voltage Range? VR LOAD Ts Load Regulation 9 ,10 Temperature Stability of FBSV 9.5 V ";VI "; 11.5 V, Va = 4.5 V 0.03 %/V 1 25 V"; VI"; 50 V, Va = 20 V 0.03 1 0.03 %N %N 1 46 V"; VI"; 50 V, Va = 40 V 1 1 8.5 V"; VI"; 9.5 V, Va = 4.5 V 0.06 %/V 1 1 VI = 50 V, Va = 40 V, o rnA"; IL .,; 12 rnA, Rsc=10 n 0.05 % 1 1 0.1 % 1 2,3 25°C"; T A"; 125°C 1.0 % 4 2 -55°C"; T A"; 25°C 1.0 % 4 3 2.0 rnA 1 1 375 mV 1 1 0.02 %/V 4 4 %/1000 hrs 4 1 ISCD Standby Current Drain VI = 50 V, Va = 20 V VCLS Current Limit Sense Voltage 11 9.0 V"; VI"; 40 V, Va = 0 V, Rsc= 10 n llVI/ !:No Ripple Rejection CREF = 10 tJ.F, f = 10 kHz S Long Term Stability of FBSV 225 1.0 13-5 JiA10SQB Primary Burn-In Circuit CURRENT LIMIT BOOSTER OUT 10 kfl REG OUT COMP SHUT· DOWN 1/4W 0.47 p.F 60V 30V UNREG IN FEEDBACK O.'~F 2 kCl 100 V COMMON 1/4W REF BYPASS ";" -=Equivalent Circuit r-----------~t_----------------~------~---UNREGULATEDIN R10 6002 BOOSTER OUT +--'VVv~~-- CURRENT LIMIT ; - - - - - - REGULATED OUT +-______...._________ ~~~:rf~~~TlON :l--I---+------~--- FEEDBACK '-------1------1--4 L---~~~--~~------------~---- ___________ REFERENCE BYPASS __ _______________ ~ COMMON 13·6 JlA109QB F=AIRCHIL.O 5 Volt Regulator A Schlumberger Company MIL-STD-883 November 1985 - Rev 0 5 Aerospace and Defense Data Sheet Linear Products Description Connection Diagram 3-Lead TO-39 Can (Top View) The /lA 10908 is a complete 5 volt regulator constructed using the Fairchild Planar Expitaxial process. This regulator employs internal current-limiting, thermal shutdown and safe-area compensation, making it essentially indestructible. It is intended for use as a local regulator, eliminating noise and distribution problems associated with single point regulation. If adequate heat sinking is provided, this regulator can provide over 1 A output current. The /lA 10908 is intended primarily for use with TTL and DTL logic and is completely specified under worst case conditions to match the power supply requirements of these logic families. In addition to use as a fixed 5 V regulator, this device can be used with external components to obtain adjustable output voltages and currents and as the power pass element in precision regulators. 6 COMMON OUT Lead 3 connected to case. Connection Diagram 2-Lead TO-3 Can (Top View) • Output Current In Excess Of 1 A • Specified To Match Worst Case TTL And DTL Requirements • No Internal Components • Internal Thermal Overload Protection • Output Transistor Safe-Area Compensation C~~~~~~OUT o 0 1 IN Order Information Part No. /lA109HM08 !1A109KM08 Casel Finish XC YC JAN Product Available 10701 8XC 13-7 Package Code MiI-M-38510, Appendix C 3-Lead Can 2-Lead Can 3-Lead Can • J1A109QB Processing: MIL-STD-883, Method 5004 Absolute Maximum Ratings Storage Temperature Range -65°C to + 175°C Operating Temperature Range -55°C to 300°C + 125°C Lead Temperature (soldering, 60 s) Internal Power Dissipation 10 Can Without Heat Sink HMOSll Can With Heat Sink HMOS12 Can Without Heat Sink KMOS13 Can With Heat Sink KMOS14 Input Voltage Burn-In: Method 1015, Condition A, PDA calculated using Method 5005, Subgroup 1 Quality Conformance Inspection: MIL-STD-883, Method 5005 0.18 W 0.5 W 0.71 W Group A Electrical Tests Subgroups: W 5.6 35 V 1. Static tests at 25°C 2. Static tests at 125°C 3. Static tests at -55°C 4. Dynamic tests at 25°C 9. AC tests at 25°C Group C and D Endpoints: Group A, Subgroup Notes 1. 100% Test and Group A 2. Group A 3. Periodic tests. Group C 4. Guaranteed but not tested 5. When changes occur, FSC will make data sheet revisions available. Contact local sales representative for the latest revision. 6. For more information on device function, refer to the Fairchild Linear Data Book Commercial Section. 7. All characteristics except line and load transient response and noise are measured using pulse techniques (tw -< 10 ms, duty cycle < 5%). Output voltage changes due to changes in the internal temperature must be taken into account separately. 8. Conditions given will result in the following: Po « 4 W for HM08 and Po«15 W for KM08. 9. Device shall turn-on at VI < 9 V and shall remain on when the input is returned to 10 V. 10. Internally limited. 11. Rating applies to derate linearly at 12. Rating applies to derate linearly at 13. Rating applies to derate linearly at ambient temperatures up to 125°C. Above 125°C, 140°C/W. ambient temperatures up to 125°C. Above 125°C, 50°C/W. ambient temperatures up to 125°C. Above 125°C, 35°C/W. 14. Rating applies to ambient temperatures up to 125 C. Above 12S C, Q D derate linearly at 4.46°C/W. 13-8 pA109QB 1lA109HQB, 1lA109KQB Electrical Characteristics CI = 0.33ILF, Co = 0.1 ILF, unless otherwise specified. 7 Symbol Characteristic Condition HMQB Vo Output Voltage Min Max Unit Note 4.7 4.6 Subgrp 5.3 V 1 1 5.4 V 1 1,2,3 KMQB VI = 10 V IL = 350 rnA IL = 500 rnA Vo Output VoltageS B.O V';;; VI .;;; 20 V, 5.0 rnA';;; IL .;;; IMax l:J.Vo/l:J.T Average Temperature Coefficient of Output Voltage VI = 7.0 V IL=5.0 rnA, 25°C';;;TA';;;125°C 2.0 mVloC 4 2 VI =7.0 V IL = 5.0 rnA, -55°C';;; T A';;; 25°C 2.0 mVrC 4 3 7.0 V.;;; VI .;;; 25 V 50 mV 1 1 100 mV 1 1 10 rnA 1 1 O.B rnA 1 1,2,3 0.5 rnA 1 1,2,3 2.0 A 1 1 IMax = 350 rnA VR LINE Line Regulation IL =200 rnA IMax= 1.0 A IL = 500 rnA VR LOAD Load Regulation VI=10 V, 5.0 mA';;;IL';;;IMax ISCD Standby Current Drain 7.0 V';;;VI';;;25 V IMax = 500 rnA IL =350 rnA IMax = 1.0 A IL =500 rnA l:J.ISCD (LINE) Standby Current Drain Change (vs Line Current) B.O V.;;; VI .;;; 25 V l:J.ISCD (LOAD) Standby Current Drain Change (vs Load Current) VI=10 V, 5.0 mA~IL';;;IMax IMax = 350 rnA IMax= 1.0 A los Output Short Circuit Current VI =35 V HMOB VSTART Voltage Start9 l:J.VI/l:J.VO Ripple Rejection VI=10 V, f=2400 Hz No Noise VI=10 V, 10 Hz';;;f';;;10 kHz IL =200 rnA IL =500 rnA KMOB IL = 125 rnA IL =50 rnA l:J.VO/l:J.VI Line Transient Response Load Transient Response Long Term Stability of Vo 1 1 V 1 1 60 dB 1 4 125 IN,ms 4 9 15 mVIV 4 9 2.0 mV/mA 4 9 0.5 %/1000 hrs 4 9 IL = 350 rnA VI = 10 V (Vpulse = 3.0 V) IL =5.0 rnA VI = 10 V IL =50 rnA l:J.IL = 200 rnA S 2.B IL=100 rnA IL = 5.0 rnA l:J.VO/l:J.IL A 4.7 VI = 10 V 13-9 IL = 100 rnA l:J.IL =400 rnA J).A109QB Primary Burn-In Circuit (38510/10701 may be used by FSC as an alternate.) 30V IN OUT Equivalent Circuit IN R9 400 0 (NOTE 2) R4 100 kCl R13 10 kO R1B 500 0 ...------+-----i: 014 "]---<1"'::::::"':':+--">/111....--+ Rll 012 RS ~~~ ___-+__ ___ ~ 0.& 0 (NOTE 2) ~~~_~_~O~T 3.3kCl R16 &.0 kO (NOTE 2) RI 2.7 kCl 011 Rl Dl 1.0 kO R19 R7 S.O kO SOOO Rl0 L-__ ~~~~ __ ~ 6.0 kCl ____ ~ __ ~~ R14 6.0kO ______4-__ __ ~ ~~ ________ Note 1. Capaci10r value necessary to suppress oscillations. 2. pAl09HMOB: A9-400 pAl09KMOB: A9 -100 n. All =0.6 n, A16=6 kn. n. All - 0.3 n, A16 - 2 kn. 13-10 ~_______ COMMON IlA117HQ8 3-Terminal Positive Adjustable Regulator FAIRCHILD A Schlumberger Company MIL-STD-883 November 1985 - Rev 05 Aerospace and Defense Data Sheet Linear Products Description Connection Diagram 3-Lead TO-39 Can (Top View) The /lA 117HQB is a 3-terminal adjustable positive voltage regulator capable of supplying in excess of 0.5 A over an output voltage range of 1.2 V to 37 V. This voltage regulator is exceptionally easy to use and requires only two external resistors to set the output voltage. Further, it employs internal current-limiting, thermal shutdown and safearea compensation, making it essentially blow-out proof. The /lA 117HQB serves a wide variety of applications including local, on-card regulation. This device also makes an especially simple adjustable switching regulator, and a programmable output regulator; or by connecting a fixed resistor between the adjustment and output, the /lA117HQB can be used as a precision current regulator. 6 IN Order Information Part No. /lA117HMQB • • • • Output Current In Excess Of 0.5 A Output Adjustable Between 1.2 V And 37 V Internal Thermal Overload Protection Internal Short Circuit Current-Limiting Constant Temperature • Output Transistor Safe-Area Compensation • Floating Operation For High Voltage Applications 13-11 Casel Finish XC Package Code MiI-M-38510, Appendix C 3-Lead Can IlA117HQ8 Absolute Maximum Ratings Storage Temperature Range Operating Temperature Range Lead Temperature (soldering, 60 s) Internal Power Dissipation9 Can Without Heat Sink10 Can With Heat Sink11 Input/Output Differential Voltage Processing: MIL-STD-883, Method 5004 -65°C to + 175°C -55°C to + 125°C 300°C Burn-In: Method 1015, Condition A, PDA calculated using Method 5005, Subgroup 1 0.18 W 0.5 W Quality Conformance Inspection: MIL-STD-883, Method 5005 40 V Group A Electrical Tests Subgroups: 1. Static tests at 25°C 2. Static tests at 125°C 3. Static tests at -55°C 4. Dynamic tests at 25°C 9. AC tests at 25°C Group C and D EndpOints: Group A, Subgroup Notes 1. 100% Test and Group A 2. Group A 3. Periodic tests, Group C 4. Guaranteed but not tested 5. When changes occur, FSC will make dete sheet revisions available. Contact local sales representative for the latest revision. 6. For more Information on device function, refer to the Fairchild Linear Data Book Commercial Section. 7. All characteristics except line and load transient response and noise are measured using pulse techniques (tw';; 10 ms, duty cycle';; 5%). Output voltage changes due to changes in the internal temperature must be taken into account separately. 8. Conditions given will resul1 in the following: Po';; 4 W. 9. Internally limited. 10. Rating applies to ambient temperatures up to 125°C. Above 125°C, derate lineariy at 140°C/W. 11. Rating applies to ambient temperatures up to 125°C. Above 125°C, derate linearly at 50°C/W. 13-12 MA117HQ8 /lA117HQB Electrical Characteristics IL = 50 rnA, unless otherwise specified? Symbol Va VR LINE VR LOAD Characteristic Output VoltageS Line Regulation Load Regulation Condition Min Max VI = 4.25 V, IL = 5.0 mA 1.2 VI = 4.25 V, IL = 500 mA 1.2 VI = 41.3 V, IL = 5.0 mA 1.2 VI=41.3 V, IL=50 mA 1.2 4.25 V < VI < 41.3 V VI = 6.25 V, Va = VREF, 5.0 mA < IL < 500 mA Unit Note Subgrp 1.3 V 4 1 1.3 V 1 1,2,3 1.3 V 1 1,2,3 1.3 V 1 1 9.0 mV 1 1 18.5 mV 1 2,3 12 mV 1 1 12 mV 1 2,3 ladi Adjustment-Lead Current VI = 6.25 100 pA 1 1,2,3 Aladi (LINE) Adjustment-Lead Current Change (vs Line Voltage) 3.75 V --IN OUT AOJ ~ (NOTE 1) I 1200 (NOTE 1) ~ -' Note 1. Capacitor value necessary to suppress oscillations. Equivalent Circuit Refer to the Fairchild Linear Data Book Commercial Section 13-18 fJA138Q8 FAIRCHILD A Schlumberger Company S-Amp Positive Adjustable Regulator MIL-STD-883 November 1985 - Rev 01 Aerospace and Defense Data Sheet Linear Products Description Connection Diagram 2-Lead TO-3 Can (Top View) The !1A 13808 is an adjustable 3-terminal positive voltage regulator capable of supplying in excess of 5.0 A over a 1.2 V to 32 V output range. It is exceptionally easy to use and requires only two resistors to set the output voltage. A unique feature of the /.LA 13808 is time dependent current-limiting. The current-limit circuitry allows peak currents of up to 12 A to be drawn from the regulator for short periods of time. This allows it to be used with heavy transient loads and also speeds start-up under full-load conditions. Under sustained loading conditions, the current-limit decreases to a safe value protecting the regulator. Also included on the chip are thermal overload protection and safe-area protection for the power transistor. Overload protection remains functional even if the adjustment lead is accidentally disconnected. 2 • • • • • • • • • (C1'S~T~2 o 0 IN .0 ADJ Order Information Part No. /.LA138KM08 High Peak Output Current High Output Current Output Adjustable Between 1.2 V And 32 V Low Load Regulation Low Line Regulation Internal Thermal Overload Protection Internal Short Circuit Current-Limiting Output Transistor Safe-Area Compensation Floating Operation For High Voltage Applications Noles 1. When changes occur, FSC will make data sheet revisions available. Contact local sales representative for the latest revision. 2. For more information on device function, refer to the Fairchild Linear Data Book Commercial Section. 13-19 Casel Finish YC Package Code MiI-M-38510, Appendix C 2-Lead Can FAIRCHILO A Schlumberger Company llA150QB 3-Amp Positive Adjustable Regulator MIL-STD-883 November 1985 - Rev 0 ' Aerospace and Defense Data Sheet Linear Products Description Connection Diagram 2-Lead TO-3 Can (Top View) The I1A 15008 is ~an adjustable 3-terminal positive voltage regulator capable of supplying in excess of 3.0 A over a 1.2 V to 33 V output range. It is exceptionally easy to use and requires only two external resistors to set the output voltage. A unique feature of the I1A 15008 is time dependent current-limiting. The current-limit circuitry allows peak currents of up to 6.0 A to be drawn from the regulator for short periods of time. This allows it to be used with heavy transient loads and also speeds start-up under full-load conditions. Under sustained loading conditions, the currentlimit decreases to a safe value protecting the regulator. Also included on the chip are thermal overload protection and safe-area protection for the power transistor. Overload protection remains functional even if the adjustment lead is accidentally disconnected. 2 IN (C~s":Q2 o ADJ Order Information Part No. • • • • • • • • High Output Current Output Adjustable Between 1.2 V And 33 V Low Load Regulation Low Line Regulation Internal Thermal Overload Protection Internal Short Circuit Current-Limiting Output Transistor Safe-Area Compensation Floating Operation For High Voltage Applications 0 10 11A150KM08 Notes 1. When changes occur, FSC will make data sheet revisions available. Contact local sales representative for the latest revision. 2. For more information on device function, refer to the Fairchild Linear Data Book Commercial Section. 13-20 Casel Finish YC Package Code MiI-M-38510, Appendix C 2-Lead Can IlA431 QB Adjustable Precision Shunt Regulator FAIRCHILD A Schlumberger Company MIL-STD-883 July 1986-Rev 01 Aerospace and Defense Data Sheet Linear Products Description The pA4310B is a 3-lead adjustable shunt regulator with guaranteed temperature stability over the entire temperature range. The output voltage may be set at any level greater than 2.5 V (VREF) up to 36 V merely by selecting two external resistors that act as a voltage divided network. Due to the sharp turn-on characteristics this device is an excellent replacement for many zener diode applications. 2 . Connection Diagram a-Lead DIP (Top View) CATHODE • Typical Temperature Coefficient 50 ppmrC • Temperature Compensated For Operation Over The Full Temperature Range • Programmable Output Voltage • Fast Turn-On Response • Low Output Noise Notes 1. When changes occur. FSC will make data sheet revisions available. eontsct local sales representstive for the latest revision. 2. For more information on device function. refer to the Fairchild Unear Oats Book Commercial Section. REFERENCE NC NC NC ANODE NC NC Connection Diagram 20-Terminal CCP (Top View) .... u z: ~u zu ...... ~ NC NC NC NC NC NC NC ANODE NC NC U z: U z U z: U z U Z eR053." Order Information Casel Part No. Finish pA431RMOB PA pA431LMOB 2C 13-21 Package Code Mil-M-38510, Appendix C 0-4 8-Lead DIP C-2 20-Terminal CCP FAIRCHILD A Schlumberger Company IlA494QB Pulse Width Modulated Control Circuit MIL-STD-883 July 1986-Rev 01 Aerospace and Defense Data Sheet Linear Products Description The #LA494QB is a monolithic integrated circuit which includes all the necessary building blocks for the design of pulse width modulated (PWM) switching power supplies, including push-pull, bridge, and series configurations. The device can operate at switching frequencies between 1.0 kHz and 300 kHz and output voltages up to 40 V. 2 Connection Diagram 16-Lead DIP (Top View) • Uncommitted Output Transistors Capable Of 200 mA Source Or Sink • On-Chlp Error Amplifiers • On-Chip 5.0 V Reference • Internal Protection From Double Pulsing Of Outputs With Narrow Pulse Widths Or With Supply Voltages Below Specified Limits • Dead Time Control Comparator • Output Control Selects Single-Ended Or Push-Pull Operation • Easily Synchronized (Slaved) To Other Circuits Notes 1. When changes occur, FSC will make data sheet revisions available. Contact local sales representative for the latest revision. 2. For more information on device function, refer to the Fairchild Linear Data Book Commercial Section. +INt +IN2 -INt -IN 2 COMPENI PWM COMP IN VREF DEAD TIME OUTCONTRDL CONTROl. C. Vee II,- C2 GND E2 Cl El (DO,,,,,, Connection Diagram 20-Terminal CCP (Top View) ~ . z () z .. .. .. z ~ COMPEN/PWM VREF COMP INPUT OUT CONTROL DEAD TIME CONTROL HC NC CT Vee RT C2 "z " Order Information Casel Part No. Finish #LA494DMQB EB #LA494LMQB 2C 13-22 U () z iii III """'_ Package Code MII-M-38510, Appendix C D-2 16-Lead DIP C-2 20-Terminal CCP J.lA723Q8 Precision Voltage Regulator FAIRCHILD A Schlumberger Company MIL-STD-883 July 1986-Rev 25 Aerospace and Defense Data Sheet Linear Products Description The /lA723QB is a monolithic voltage regulator constructed using the Fairchild Planar Epitaxial process. The device consists of a temperature compensated reference amplifier, error amplifier, power series pass transistor and currentlimit circuitry. Additional NPN or PNP pass elements may be used when output currents exceeding 150 mA are required. Provisions are made for adjustable current limiting and remote shutdown. In addition to the above, the device features low standby current drain, low temperature drift and high ripple rejection. The /lA723QB is intended for use with positive or negative supplies as a series, shunt, switching, or floating regulator. Applications include laboratory power supplies, isolation regulators for low level data amplifiers, logic card regulators, small instrument power supplies, airborne systems, and other power supplies for digital and linear circuits. 6 Connection Diagram 10-Lead Can (Top View) • • • • • CURRENT LIMIT Connection Diagram 14-Lead DIP (Top View) Positive Or Negative Supply Operation Series, Shunt, Switching, Or Floating Operation Low Line And Load Regulation Output Voltage Adjustable From 2 V To 37 V Output Current To 150 rnA Without External Pass Transistor ,. ... FREQ COMP CURRENT SENSE v+ -IN Vc +IN OUT o Z '" CURRENT LIMIT ...IE t- u NC NC Connection Diagram 20-Terminal CCP (Top View) i::; v- Lead 5 connected to case. Vz ..". u u z u z u Z v- It. CURRENT NC V+ SENSE NC NC -IN lie NC NC +IN OUT Order Information Casel Part No. Finish /lA723DMQB /lA723HMQB I-IA723LMQB CA IC 2C Package Code MiI-M-38510, Appendix C D-1 14-Lead DIP A-2 10-Lead Can C-2 20-Terminal CCP JAN Product Available I >- u z u z 10201 10201 10201 10201 ,; 13-23 BCA BCB BIA BIC D-1 D-1 A-2 A-2 14-Lead DIP 14-Lead DIP 10-Lead Can 10-Lead Can IlA723Q8 Absolute Maximum Ratings Storage Temperature Range -65°C to + 175°C Operating Temperature Range -55°C to +125°C Lead Temperature (soldering, 60 s) 300°C Internal Power Dissipation 8 Can 350 mW DIP and CCP 400 mW Pulse Voltage from V+ to V-, (50 ms) 50 V 40 V Continuous Voltage from V+ to VInput/Output Voltage Differential 40 V Differential Input Voltage ±5 V Voltage Between Non-Inverting Input and V8 V Current from Vz 25 mA 15 mA Current from VREF Processing: MIL-STD-883, Method 5004 Burn-In: Method 1015, Condition A, PDA calculated using Method 5005, Subgroup 1 Quality Conformance Inspection: MIL-STD-883, Method 5005 Group A Electrical Tests Subgroups: 1. 2. 3. 4. Static tests at Static tests at Static tests at Dynamic tests 25°C 125°C -55°C at 25°C Group C and 0 Endpoints: Group A, Subgroup Notes I. 100% Test and Group A 2. Group A 3. Periodic tests, Group C 4. Guaranteed but not tested 5. When changes occur, FSC will make data sheet revisions available. Contact local sales representative for the latest revision. 6. For more information on device function, refer to the Fairchild Linear Data Book Commercial Section. 7. The line and load regulation specifications are given for the condition of constant chip temperature. Temperature drift effects must be taken into account separately for high dissipation conditions. 8. Rating applies to ambient temperatures up to 125·C. Above 125·C ambient, derate linearly at 140·C/W for the Can and 120·C/W for the DIP and CCP. 13-24 MA723QB llA723QB Electrical Characteristics VI = V+ = Ve";; 12 V, V- = 0 V, Vo = 5.0 V, IL CREF = 0 IlF, unless otherwise specified. Symbol Characteristic VREF Reference Voltage AVREF (LOAD) Reference Voltage Change With Load Condition = 1.0 rnA, Rse Min 6.95 o mA";; IREF";; 5.0 Max 7.35 20 mA = 0 n, C1 Unit = 100 pF, Note Subgrp V 1 1,2,3 mV 1 1 VIR Input Voltage Range 9.5 40 V 1 1 VOR Output Voltage Range 2.0 37 V 1 1 VI-VO Input/Output Voltage Diff. 3.0 38 V 1 1 Vz Zener Voltage Iz = 1.0 mA 5.8 7.2 V 1 1 VR LINE Line Regulation? 12 V";;VI";;15 V 0.1 %Vo 1 1 12 V";;VI";;40 V 0.2 %Vo 1 1 12 V";;VI";;15 V 0.3 %Vo 1 2,3 0.15 1 VR LOAD Load Regulation? Tc Vo Average Temp. Coefficient of Output Voltage ISCD Standby Current Drain los Output Short Circuit Current .lVI/AVo Ripple Rejection 1.0 mA";; IL ,,;; 50 mA %Vo 1 0.6 2,3 %Vo 1 25°C";; TA";; 125°C -0.010 +0.010 %I"C 4 2 -55°C";; TA";; 25°C -0.015 +0.015 VI = 30 V, IL = 0 mA %I"C 4 3 3.5 mA 1 1 4.0 mA 4 2 2.4 mA 4 3 85 mA 4 1 Vo = 0 V, Rsc = 10 .11 45 f = 10 kHz, CREF = 0 p.F 64 dB 3 4 f = 10kHz, CREF = 5.0 p.F 76 dB 3 4 p.Vrms 3 4 7.0 J.lVrms 3 4 10 mVIV 3 4 mV/mA 3 4 I CREF = 0 p.F I CREF = 5.0 J.lF No Noise 100 Hz";;f";; 10 kHz AVo/AVI Line Transient Response AVI=3.0 V AVo/AIL Load Transient Response IL = 40 mA, AIL = 10 mA 13-25 120 -1.5 IlA723QB Block Diagram Primary Burn-In Circuit (38510/10201 may be used by FSC as an alternate) CURRENT CURRENT SENSE LIMIT COMFI f-- FREO COMP -IN FREO. V+ I 3GV 1000 pF [ 5.1 kO 1'4W +IN V+ VREF VC V- OUT - EQOO560F 0.47 "F - I100V Equivalent Circuit v+ Rl 50011 03 R3 25 kll R4 R5 l.Okll 1.0 07 Vc kll D1 6.5Y OUT D3 6.5 V Vz t-------~~: ""1-_____ ~I~~~ENT L-_ _ _ _ _ _ ~~:::NT +IN V- -IN ,a,lO''''' 13-26 IlA78MOSQB FAIRCHILD A Schlumberger Company 3-Terminal Positive Voltage Regulator MIL-STD-883 July 1986-Rev 25 Aerospace and Defense Data Sheet Linear Products Description Connection Diagram 3-Lead TO-39 Can (Top View) The IlA78M05QB 3-Terminal Medium Current Positive Voltage Regulator is constructed using the Fairchild Planar Epitaxial process. This regulator employs internal currentlimiting, thermal shutdown and safe-area compensation, making it essentially indestructible. If adequate heat sinking is provided, it can deliver in excess of 500 rnA output current. It is intended as a fixed voltage regulator in a wide range of applications including local, on-card regulation for eliminat:on of noise and distribution problems associated with single point regulation. In addition to use as a fixed voltage regulator, this device can be used with external components to obtain adjustable output voltages and currents. s • • • • • OUT Lead 3 connected to case. Output Current In Excess Of 0.5 A No External Components Internal Thermal Overload Protection Internal Short Circuit Current-Limiting Output Transistor Safe-Area Compensation Connection Diagram 20-Terminal CCP (Top View) NC Ne NC Ne Ne NC NC OUT NC NC Order Information Casel Part No. Finish Package Code MiI-M-38510, Appendix C 1.IA78M05HMQB IlA78M05LMQB 3-Lead Can C-2 20-Terminal CCP XC 2C JAN Product Available 10702 13-27 BXC 3-Lead Can IlA78M05QB Absolute Maximum Ratings Storage Temperature Range Operating Temperature Range Lead Temperature (soldering, 60 s) Internal Power Dissipation 9 Can Without Heat Sink 10 Can With Heat Sink 11 CCP Without Heat Sink12 Input Voltage Processing: MIL-STD-883, Method 5004 -65°C to + 175°C -55°C to + 125°C 300°C 0.18 W 0.5 W 0.4 W 35 V Burn-In: Method 1015, Condition A, PDA calculated using Method 5005, Subgroup 1 Quality Conformance Inspection: MIL-STD-883, Method 5005 Group A Electrical Tests Subgroups: 1. Static tests at 25°C 2. Static tests at 125°C 3. Static tests at -55°C 4. Dynamic tests at 25°C 9. AC tests at 25°C Group C and 0 Endpoints: Group A, Subgroup 1 Notes 1. 100% Test and Group A 2. Group A 3. Periodic tests. Group C 4. Guaranteed but not tested S. When changes occur. FSC will make data sheet revisions available. Contact local sales representative for the latest revision. 6. For more information on device function, refer to the Fairchild Linear Data Book Commercial Section. 7. All characteristics except line and load transient response and noise are measured using pulse techniques (tw';; 10 ms. duty cycle';; S%). Output voltage changes due to changes in the internal temperature must be taken into account separately. B. Conditions given will result in the following: PD ';; 4 W. 9. Internally limited. 10. Rating applies to ambient temperatures up to 12S·C. Above 12S·C, derate linearly at 140·C/W. 11. Rating applies to ambient temperatures up to 12S·C. Above 12S·C. derate linearly at SO·C/W. 12. Rating applies to ambient temperatures up to 12S·C. Above 12S·C. derate linearly at 120·C/W. 13-28 MA78MOSQB IlA78MOSQB Electrical Characteristics V, = 10 V, IL = 350 mA, C, = 0.33 IlF, Co = 0.1 IlF, unless otherwise specified. Symbol Characteristic Condition 5.0 mA < IL < 350 mA tNol!::.T VR Max 4.8 5.2 V 1 1 IV, = 8.0 V 4.7 5.3 V 1 1,2,3 [VI = 20 V 4.7 Output VoltageS Vo LINE Average Temperature Coefficient of Output Voltage Line Regulation Load Regulation Note Subgrp 5.3 V 1 1,2,3 IL = 5.0 rnA, 25°C .Vo/ !J.T Average Temperature Coefficient of Output Voltage IL = 5.0 mA, 25°C";;; T A";;; 125°C 3.6 mV/oC 4 2 IL = 5.0 mA, -55°C";;; T A";;; 25°C 3.6 mVI"C 4 3 VR Line Regulation -30 V";;;VI";;;-14.5 V 80 mV 1 1 120 mV 1 2.3 1 LINE -30 V";;; V I < 15 V -25 V";;;VI";;;-15 V VR LOAD Load Regulation ISCD Standby Current Drain 5.0 mA";;; IL ,,;;; 500 mA 50 mV 1 75 mV 1 2.3 240 mV 1 1.2.3 2.0 rnA 1 1 3.0 mA 1 2.3 !J.lsCD (LINE) Standby Current Drain Change (vs Line Voltage) -30 V";;;VI";;;-14.5 V 0.4 mA 1 1.2.3 !J.ISCD (LOAD) Standby Current Drain Change (vs Load Current) 5.0 mA";;; IL ,,;;; 350 mA 0.4 mA 1 1.2,3 2.3 V 1 1 1.0 A 1 1.2.3 2.0 A 1 1.2.3 120 mV 3 1 V 1 1.2.3 dB 1 4.5,6 VDO Dropout Voltage los Short Circuit Current VI = -35 V IPk Peak Output Current VI-Vo=-10 V VRTH Thermal Regulation VI = -22 V, IL = 500 mA VSTART Voltage Start9 !J.VI/!J.VO Ripple Rejection VI = -17 V, IL = 125 rnA, ej = 1.0 Vrms , f = 2400 Hz No Noise VI=-17 V, IL=50 mA, 10 Hz";;;f";;;10 kHz 600 pVrms 4 9 !J.VO/!J.VI Line Transient Response VI = -17 V, IL = 5.0 mA, Vpulse = -3.0 V 30 mVlV 4 9 !J.VO/!J.IL Load Transient Response VI = -17 V, IL = 50 mA, !J.IL =200 mA 2.5 mV/mA 4 9 0.5 -4.75 13-77 50 tlA79M12QB Primary Burn-In Circuit (38510/11502 may be used by FSC as an alternate) -30 V IN OUT (NOTE 1) Equivalent Circuit (Note 2) r-----~----------~r_------~--~--------------~------------~--------_r----~COMMON .2 Uk t-------t:"os 025 4.5 k TO 6.3 k .23 4.0 k A2' +------r-----t:::017 1.7k TO 18 k OUT 01 +--+-i:: 020 . 800 L-____~----~----~~----~_4 A22 0.1 A13 __ ~--------------~~~~------------ Noles 1. Capacitor value necessary to suppress oscillations. 2. All resistor values in ohms. 13-78 __ 0.2 ~------4__IN IlA79M1SQB 3-Terminal Negative Voltage Regulator I=AIRCHILD A Schlumberger Company MIL-STD-883 July 1986-Rev 25 Aerospace and Defense Data Sheet Linear Products Description Connection Diagram a-Lead TO-a9 Can (Top View) The IlA79M15QB 3-Terminal Medium Current Negative Voltage Regulator is constructed using the Fairchild Planar Epitaxial process. This regulator employs internal currentlimiting, thermal shutdown and safe-area compensation, making it essentially indestructible. If adequate heat sinking is provided, it can deliver up to 500 mA output current. It is intended as a fixed voltage regulator in a wide range of applications including local, on-card regulation for elimination of noise and distribution problems associated with single point regulation. In addition to use as a fixed voltage regulator, this device can be used with external components to obtain adjustable output voltages and currents. 6 • • • • Output Current In Excess Of 0.5 A Internal Thermal Overload Protection Internal Short Circuit Current-Limiting Output Transistor Safe-Area Compensation 13-79 MA79M15QB· Processing: MIL-STD-883, Method 5004 Absolute Maximum Ratings Storage Temperature Range Operating Temperature Range Lead Temperature (soldering, 60 s) Internal Power Dissipation 10 Can Without Heat Sink 1.1 Can With Heat Sink12 CCP Without Heat Sink13 Input Voltage -65°C to + 175°C -55°C to +125°C 300°C 0.18 W 0.5 W 0.4 W -35 V Burn-In: Method 1015, Condition A, PDA. calculated using Method 5005, $ubgroup 1 . Quality Conformance Inspectlon:MIL-STD-883, Method 5005 . Group A Electrical Tests Subgroups: 1. 2. 3. 4. 5. 6. 9. Notes 1. 100% Test and Group A 2. Group A 3. Periodic tests, Group C 4. Guaranteed but not tested 5. When changes occur, FSC will make data sheet revisions available. Contact local sales representative for the latest revision. 6. For more information on device function, refer to the Fairchild Linear Data Book Commercial Section. 7. All characteristics except line and load transient response and noise are measured using pulse techniques (tw< 10 ms, duty cycle <5%). Output vonage changes due to changes in the internal temperature must be taken into account separately. 8. Conditions given will result in the following: Po < 4 W. 9. Slowly ramp input voltage up to -8.0 V. When circuit starts, output voltage will be as specified. 10. Internally limited. 11. Rating applies to ambient temperatures up to 125°C. Above 125°C, derate linearly at 140°C/W. 12. Rating applies to ambient temperatures up to 125°C. Above 125°C, derate linearly at 50·C/W. 13. Rating applies to ambient temperatures up to 125°C. Above 125°C, derate linearly at 120"C/W. Static tests at 25°C Static tests at 125°C Static tests at -55°(; Dynamic tests at 25" C DynamiC tests at 1250 C Dynamic tests at -550 C AC tests at 25°C .. Group C and D Endpoints: Group A; Subgroup 1 13-80 J-lA79M15QB /-IA79M15QB Electrical Characteristics VI Symbol Vo = -23 V, 350 rnA, CI = 2.0 /-IF, Co Characteristic = 1.0 /-IF, unless otherwise specified? Condition Output VoltageS 5.0 mA";;IL";;350 mA IVI=-17.5 V VR liNE VR LOAD Average Temperature Coefficient of Output Voltage Line Regulation Load Regulation Max Unit Note -14.4 V 1 1 -15.75 -14.25 V 1 1,2,3 -15.75 -14.25 Subgrp V 1 1,2,3 IL = 5.0 mA, 25°C";; TA";; 125°C 4.5 mY/DC 4 2 IL = 5.0 mA, -55°C";; T A ";; 25°C 4.5 mY/DC 4 3 1 I VI = -30 V D.Vo/D.T Min -15.6 -30 V";;VI";;..,.17.5 V 80 mV 1 -'-30 V";; VI";; 18.5 V 150 mV 1 2,3 -28 V";; VI <-18 V 50 mV 1 1 5.0 mA";; iL < 500 mA 80 mV 1 2,3 240 mV 1 1 300 mV 1 2,3 2.0 mA 1 1 ISCD Standby Current Drain 3.0 mA 1 2,3 D.ISCD (LINE) Standby Current Drain Change (vs Line Voltage) -30 V";;V I ";;-17.5 V 0.4 mA 1 1,2,3 D.ISCD (LOAD) Standby Curreni Drain Ch~nge (vs Load Current) 5.0 mA";; IL ";;350 mA 0.4 mA 1 1,2,3 2.3 V 1 1 1.0 A 1 1,2,3, 2.0 A 1 1,2,3 150 mV 4 1 VDO Dropout Voltage los Short Circuit Current VI = -35 V IPk Peak Output Current VI-Vo=-10 V VRTH Thermal Regulation VI = -25 V, IL = 500 mA VSTART Voltage Start 9 D.VI/ D.Vo Ripple Rejection VI = -20 V, IL = 125 mA, ej = 1.0 V,ms, f = 2400 Hz No Noise VI =-20 V, IL = 50 mA, 10Hz";; f ,,;; 10kHz D.Vo/ D.V I Line Transient Response D.Vo/ D.IL Load Transient· Response 0.5 -4.75 V 1 1,2,3 dB 1 4,5,6 700 f.lV,ms 4 9 VI = -20 V, IL = 5.0 mA, Vpul se = -3.0 V 30 mVIV 4 9 VI= -20 V, IL = 50 mA, D.IL = 200 mA 2.5 mV/mA 4 9 13-81 50 MA79M15QB Primary Burn-In Circuit (38510/11503 may be used by FSC as an alternate) -30 V OUT_ >---IN COMMON : ~(NOTE 1) 1 (NOTE 1) Equivalent Circuit (Note 2) ;-----~----------~--------_,--~--------------,_------------_r--------~----r_COMMON 0' Uk +---;:::05 025 4.5k TO 6.3 k R23 4.0k +-----......----~a17 024 Uk TO 18k OUT 01 01. Cl 15pF R" •. 1 09 7.5k .., 01. 7.Sk R13 IN Noles 1. Capacitor value necessary to suppress oscillations. 2. All resistor values in ohms. 13-82 J,LA790SQB 3-Terminal Negative Voltage Regulator FAIRCHILD A Schlumberger Company MIL-STD-883 July 1986-Rev 15 Aerospace and Defense Data Sheet Linear Products Description Connection Diagram 2-Lead TO-3 Can (Top View) The IlA79050B 3-Terminal Negative Voltage Regulator is constructed using the Fairchild Planar Epitaxial process. This negative regulator is intended as a complement to the popular !lA78050B Positive Voltage Regulator. The IlA79050B employs internal current-limiting, safe-area protection, and thermal shutdown, making it virtually indestructible. 6 • • • • OUT Output Current In Excess Of 1 A Internal Thermal Overload Protection Internal Short Circuit Current-Limiting Output Transistor Safe-Area Compensation Order Information Casel Part No. IlA7905KMOB Finish YC Package Code MiI-M-38510, Appendix C 2-Lead Can JAN Product Available 11505 11505 13-83 BYA BYC 2-Lead Can 2-Lead Can J,lA790SQB Absolute Maximum Ratings Storage Temperature Range Operating Temperature Range Lead Temperature (soldering, 60 s) Internal Power Dissipation 9 Can Without Heat Sink10 Can With Heat Sink 11 Input Voltage Processing: MIL-STD-883, Method 5004 -65°C to + 175°C -55°C to +125°C 300°C 0.71 W 5.6 W -35 V Burn-In: Method 1015, Condition A, PDA calculated using Method 5005, Subgroup 1 Quality Conformance Inspection: MIL-STD-883, Method 5005 Group A Electrical Tests Subgroups: 1. 2. 3. 4. 5. 6. 9. Notes 1. 2. 3. 4. 5. 100% Test and Group A Group A Static tests at 25°C Static tests at 125°C Static tests at -55°C Dynamic tests at 25°C Dy nam ic tests at 1250 C Dynamic tests at -550 C AC tests at 25°C Group C and 0 Endpoints: Group A, Subgroup 1 Periodic tests, Group C Guaranteed but not tested When changes occur, FSC will make data sheet revisions available. Contact local sales representative for the latest revision. 6. For more information on device function, refer to the Fairchild Linear Data Book' Commercial Section. 7. All characteristics except line and load transient response and noise are measured using pulse techniques (tw~10 ms, duty cycle :::;;:;;5%). Output voltage changes due to changes in the internal temperature must be taken into account separately. 8. Conditions given will result in the following: Po';; 15 W. 9. Internally limited. 10. Rating applies to ambient temperatures up to 125·C. Above 125·C. derate linearly at 35·C/W. 11. Rating applies to ambient temperatures up to 125·C. Above 125·C. derate linearly at 4.46·C/W. 13-84 IlA790SQB J.lA790SQB Electrical Characteristics VI = -10 V, IL = 500 rnA, CI = 2.0 J.lF, Co = 1.0 J.lF, unless otherwise specified? Symbol Characteristic Condition Output VoltageS Vo 5.0 mA ~ IL ~ 1.0 A t:.Vo/t:.T VR LINE Average Temperature Coefficient 01 Output Voltage Line Regulation Unit Note -4.8 V 1 1 1,2,3 -5.3 -4.7 V 1 -5.3 -4.7 V 1 1,2,3 mV/oC 4 2 IL = 5.0 mA, -55°C ~ T A ~ 25°C 1.5 mVrC 4 3 1 1 -25 V~VI~-7.0 V 50 mV ~-s.O V 75 mV V~VI~-8.0 V 25 mV 50 mV 1 2,3 5.0 mA ~ IL ~ 1.5 A 100 mV 1 1,2,3 1 ~ VI 250 mA ~ IL ~ 750 mA ISCD Subgrp 1.5 -12 VR LOAD Max -5.2 IL = 5.0 mA, 25°C ~TA ~ 125°C -25 V Load Regulation IVI = -8.0 V IVI =-20 V Min Standby Current Drain t:.ISCD (LINE) Standby Current Drain Change (vs Line Voltage) -25 V ~VI ~-s.O V t:.ISCD (LOAD) Standby Current Drain Change (vs Load Current) 5.0 mA ~ IL ~ 1.0 A I 1 2,3 1 1 35 mV 1 60 mV 1 2,3 2.0 mA 1 1 3.0 mA 1 2,3 1.3 mA 1 1,2,3 0.5 mA 1 1,2,3 VDO Dropout Voltage IL = 1.0 A 2.3 V 1 1 los Short Circuit Current VI =-35 V 2.0 A 1 1,2,3 4.0 A 1 1,2,3 50 mV 1 1 V 4 1,2,3 dB 1 4,5,6 Ipk Peak Output Current VI = -S.O V, t:.Vo = 0.48 V VRTH Thermal Regulation VI=-15 V, IL=1.0 A VSTART Voltage Start VI = -20 V, RL = 5.0 t:.VI/t:.VO Ripple Rejection VI = -10 V, IL = 350 mA, ej = 1.0 Vrrns , 1 = 2400 Hz No Noise VI=-10 V, IL=100 mA, 10Hz ~ 1 ~ 10kHz 250 p.V rrns 4 9 t:.VO/t:.VI Line Transient Response VI = -10 V, IL = 5.0 mA, Vpul se = -3.0 V 30 mVIV 4 9 t:.VO/t:.IL Load Transient Response VI = -10 V, IL = 100 mA, t:.IL = 400 mA 2.5 mV/mA 4 9 13-85 n 1.0 -5.25 -4.75 45 ~7905QB Primary Burn-In Circuit (38510/11505 may be used by FSC as an alternate) -30 V IN OUT (NOTE 1) Note 1. Capacitor value necessary to suppress oscillations. Equivalent Circuit r---~r-------------~--------~~r---------------r--------------.--------~----~-eOMMON A2 UkO +----11::'05 A25 4.5kO TO 6.3 kO A2' 4.0kO A2. 1.7 kO TO 18 kO OUT A5 4200 01 01. el 15" . 15 kO 020 AI. S.3kn e' 'pF Al0 A16 4.7 k(} 15 kO AI. 2.3kO A17 3.0'"' A21 17,", A30 2000 A22 0.040 A13 0.050 IN 13-86 p.A7912QB FAIRCHILD A Schlumberger Company 3-Terminal Negative Voltage Regulator MIL-STD-883 July 1986-Rev 15 Aerospace and Defense Data Sheet Linear Products Description Connection Diagram 2-Lead TO-3 Can (Top View) The f.,lA79120B 3-Terminal Negative Voltage Regulator is constructed using the Fairchild Planar Epitaxial process. This negative regulator is intended as a complement to the popular f.,lA78120B Positive Voltage Regulator. The f.,lA 79120B employs internal current-limiting, safe-area protection, and thermal shutdown, making it virtually indestructible. 6 • • • • OUT Output Current In Excess Of 1 A Internal Thermal Overload Protection Internal Short Circuit Current-Limiting Output Transistor Safe-Area Compensation Order Information Part No. f.,lA7912KMOB Casel Finish YC Package Code MiI-M-38510, Appendix C 2-Lead Can JAN Product Available 11506 11506 13-87 BYA BYC 2-Lead Can 2-Lead Can MA7912QB Processing: MIL-STD-883, Method 5004 Absolute Maximum Ratings -65°C to + 175°C -55°C to + 125°C 300°C Storage Temperature Range Operating Temperature Range Lead Temperature (soldering, 60 s) Internal Power Dissipation 9 Can Without Heat Sink 10 Can With Heat Sink II Input Voltage Burn-In: Method 1015, Condition A, PDA calculated using Method 5005, Subgroup 1 Quality Conformance Inspection: MIL-STD-883, Method 5005 0.71 W 5.6 W -35 V Group A Electrical Tests Subgroups: 1. 2. 3. 4. 5. 6. 9. Notes I, 100% Test and Group A 2, Group A 3, Periodic tests, Group C 4. Guaranteed but not tested 5. When changes occur, FSC will make data sheet revisions available. Contact local sales representative for the latest revision. 6. For more information on device function, refer to the Fairchild Linear Data Book Commercial Section. 0 Group C and 0 Endpoints: Group A, Subgroup 7. All characteristics except line and load transient response and noise are measured using pulse techniques (tw 10 ms, duty cycle 5%). Output voltage changes due to changes in the internal temperature must be taken into account separately, 8, Condttions given will result in the following: Po';; 15 W, 9, Internally limited, 10. Rating applies to ambient temperatures up to 125"C, Above 125"C, derate linearly at 35"C/W. II, Rating applies to ambient temperatures up to 125"C, Above 125"C, derate linearly at 4.46"C/W, -< Static tests at 25°C Static tests at 125°C Static tests at -55°C Dynamic tests at 25°C Dynam ic tests at 125 C Dynam ic tests at -550 C AC tests at 25°C < 13-88 JlA7912QB /.IA7912QB Electrical Characteristics VI = -19 V, IL = 500 mA, CI = 2.0 /.IF, Co = 1.0 /.IF, unless otherwise specified'? Symbol Vo Characteristic Condition Output Voltage 8 5.0 mA < IL < 1.0 A t:.Vo/t:.T VR LINE VR LOAD Average Temperature Coefficient of Output Voltage Line Regulation Load Regulation I VI = -15.5 V IVI =-27 V Min Max UnIt Note -12.5 -11.5 V 1 1 -12.6 -11.4 V 1 1,2,3 -12.6 -11.4 V 1 1,2,3 IL=5.0 mA, 25°C --"(:> OUT -IN NC -OFFSET NULL! FREQ COMP NC -IN FREQ COMP C::=::J-...J V+ +lNC=:J---' NC -OFFSET NULL! FREQ COMP NC v- - - - -. . ._ _ _ _ _....---NULL +OFFSET FREQ COMP -IN V+ Order Information +IN OUT Part No. +OFFSET !1A101DMOB !1A1 01HMOB !1A101FMOB V- NC YC=:::JOUT NULL Casel Finish CA GC HA Package Code MiI-M-38510, Appendix C D-1 14-Lead DIP A-1 8-Lead Can F-4 10-Lead Flatpak NC JAN Product Available 10103 10103 10103 10103 10103 10103 10103 10103 14-7 BCA BCB BGA BGC BHA BHB BPA BPB D-1 D-1 A-1 A-1 F-4 F-4 D-4 D-4 14-Lead DIP 14-Lead DIP 8-Lead Can 8-Lead Can 10-Lead Flatpak 10-Lead Flatpak 8-Lead DIP 8-Lead DIP • J-lA101QB Processing: MIL-STD-883, Method S004 Absolute Maximum Ratings -65°C to + 175°C -55°C to + 125°C 300°C Storage Temperature Range Operating Temperature Range Lead Temperature (soldering, 60 s) Internal PoWer DisSipation 11 Can and Flatpak DIP Supply Voltage Differential Input Voltage Input Voltage 12 Short Circuit Duration 13 Burn-In: Method 10.1S, Condition A, PDA calculated . using Method SOOS, Subgroup 1 Quality Conformance Inspection: MIL"STD-883, MethodSOOS 330 mW 400 mW ±22 V ±30 V ±20 V Indefinite Group A Electrical Tests. Subgroups: 1. 2. 3. 4. 5. 6. 9. 10. 11. Static tests. at 25°C Static tests at 125°C Static tests at -55°C Dynamic tests at 25°C Dynamic tests at 125°C Dynamic tests at -55°C AC tests at 25°C AC tests at 125°C AC tests at -55°C Group C and 0 Endpoints: Group A,. Subgroup Notes 1. 100% Test and Group A 2. Group A 3. Periodic tests, Group C 4. Guaranteed but not tested 5. When changes occur, FSC will make data sheet revisions available. Contact local sales representative for the latest revision. 6. For more ihformation on device function, refer to the Fairchild Linear Data Book Commercial Section, 7. Z, is guaranteed by liB: Z, ~ 4.0 Vrll'B' Vr 125'C, and 19mV at -55'C. B. Pc is guaranteed by Icc: Pc = 40 ~ 26 mV at 25'C, 34 mV at Icc- 9. V,R is guaranteed by the CMR test. 10. BW is guaranteed by t,: BW ~ 0.35/t,. 11. Rating applies to ambient temperatures up to 125'C. Above 125'C ambient, derate linearly at 150'C/W for the Can and Flatpak and 120'C/W for the DIP. 12. For supply voltages less than ± 20 V, the absolute maximum input voltage is equal to the supply voltage. 13. Short circuit may be to ground or either supply. Rating applies to 125°C case temperature or 75°C ambient temperature. 14-8 J.lA101QB JlA101QB Electrical Characteristics Vee = ± 20 V, unless otherwise specified . Symbol Vlo . Characteristic Input Offset Voltage Condition ±5.0 V';;;Vcc';;;±20 V, Rs = 50 Q VCM =0 V . 25°C';;;TA ';;;125°C !:lVlol!:lT Input Offset Voltage Temperature Sensitivity VIO adj Input Offset Voltage Adjustment Range Radj = 5.1 MQ 110 Input Offset Current VCM =0 V !:lllol!:lT liB Input Offset CUrrent Temperature Sensitivity Input Bias Current ZI Input Impedance7 Icc Supply Current Pc ~55°C';;; TA';;; +25°C 25°C';;; TA ,;;; 125°C -55°C ';;;TA';;; +25°C Input Voltage Range 9 VCM=±15 V, Rs=50 Q PSRR Power Supply Rejection Ratio ±5.0 V';;;Vcc';;;±20 V, Rs=50Q los Output Short Circuit Current VCC=±15V Avs Large. Signal Voltage Gain Vcc=±15 V, Vo=±10 V, RL = 2.0 kQ . Output Voltage Swing Vcc = ± 15 V ... Transient Response TR(os) Rise Time Overshoot BW Bandwidth 10 SR Slew Rate mV 1 1 mV 1 2,3 25 pV 1°C 4 2 25 IlV/oC 4 3 mV 1 1,2,3 200 nA 1 1,2 500 nA 1 3 0.1 nArC 4 2 0.2 nA/oC 4 3 340 nA 1 1 750 nA 1 2,3 1 MQ 1 3.0 mA 1 1 2.5 mA 1 2 3 3.5 mA 1 mW 1 1 100 mW 1 2 70 dB 1 1,2,3 ±15 V 1 1,2,3 IlV/v 1 1,2,3 316 mA 1 1,2,3 50 V/mV 1 4 25 V/mV 1 5,6 ±12 V 1 4,5,6 ±10 V 1 4,5,6 800 ns 3 9, 10, 11 25 % 3 9, 10, 11 0.437 MHz 3 9, 10, 11 0.3 V/IlS 3 9,10 0.2 V/IlS 3 11 VI=50 mV, RL = 2.0 kQ, CL = 100 pF, Av = 1.0 RL = 2.0 kQ, Av = 1.0 Subgrp 5.0 60 I RL = 10 kQ I RL = 2.0 kQ Note 120 Power ConsumptionS Common Mode Rejection Unit 6.0 0.3 CMR TR(t,) Max 1.0 ±5.0 V';;;Vcc<±20 V, VCM = 0 V VIR VOP Min NI (BB) Noise Broadband BW= 5.0 kHz 15 IlV,ms 4 9 NI (PC) Noise Popcorn BW = 5.0 kHz 80 IlVpk 4 9 14-9 MA101QB Primary Burn-In Circuit (38510/10103 may be used by FSC as an alternate) 30 pF -OFFSET NULLIFREQ COMP - FREQ COMP +15V ~ r-- -IN V+ +IN OUT +OFFSET NULL V- I r---- -15V Equivalent Circuit -OFFSET NULLI FREO COMP FREQ COMP ~--------~~------'--+----+-------~--------------~-----V+ -IN ----+-----------1------(;. +IN----+-------~( Rll 25 n +-......__ OUT L...__ Rl 5kn R2 2OkO R3 10kn R8 1 kO L-~~~__~----~~-----------4----------------~--~--~---~ R4 250n + OFFSET NULL 14-10 J.lA108AQB Super Beta Operational Amplifier FA. RCH. L.O A Schlumberger Company MIL-STD-883 July 1986-Rev 25 Aerospace and Defense Data Sheet Linear Products Description Connection Diagram 8-Lead Can (Top View) The p.A 108AOB Super Beta Operational Amplifier is constructed using the Fairchild Planar Epitaxial process. High input impedance, low noise. low input offsets, and low temperature drifts are made possible through use of super beta processing, making the device suitable for applications requiring high accuracy and low drift performance. The p.A 108AOB is specially selected for extremely low offset voltage and drift, and high common mode rejection, giving superior performance in applications where offset nulling is undesirable. Increased slew rate without performance compromise is available through use of feedforward compensation techniques, maximizing performance in high speed sample-and-hold circuits and precision high speed summing amplifiers. The wide supply range and excellent supply voltage rejection assure maximum flexibility in voltage follower, summing, and general feedback applications. 6 • • • • • FREQ CaMP 2 yLead 4 connected to case. Connection Diagram 10-Lead Flatpak (Top View) Guaranteed Low Input Offset Characteristics High Input Impedance Low Offset Current Low Bias Current Operation Over Wide Supply Range 10 NC Connection Diagram 14-Lead DIP (Top View) -IN FREQ CaMPI FREQ NC CQMP2 C:=::J-...J v+ +INL"':"":...J-...J OUT NC y- 14 NC NC FREQ CQMPI NC NC FREQ CQMP2 -IN v+ +IN OUT NC NC Order Information Part No_ p.A 108ADMOB p.A 108AHMOB p.A 108AFMOB Casel Finish CA GC HA Package Code MiI-M-38510, Appendix C D-1 14-Lead DIP A-1 8-Lead Can F-4 10-Lead Flatpak JAN Product Available v- 10104 10104 10104 10104 10104 10104 HC 14-11 BCA BCC BGA BGC BHA BHB D-1 D-1 A-1 A-1 F-4 F-4 14-Lead DIP 14-Lead DIP 8-Lead Can 8-Lead Can 10-Lead Flatpak 10-Lead Flatpak p.A.108AQB Absolute Maximum Ratings Storage Temperature Range Operating Temperature 'Range Lead Temperature (soldering, 60 s) Internal Power Dissipation9 Can and Flatpak DIP Supply Voltage Differential Input Voltage Input Voltage 10. .. Short Circuit Duration 11 Differential Input Current12 Processing: MIL-STD-883, Method 5004 -65°C to + 175°C -55°C to +125°C 300°C 330 mW 400 mW ±22 V ±5.0 V ±20 V Indefinite ±10 mA Burn-In: Method 1015, Condition A, PDA calculated using Method 5005, Subgroup 1 Quality Conformance Inspection: MIL-STD-883, Method 5005 Group A Electrical Tests Subgroups: 1.. 2. 3. 4. 5. 6. 9. 10. 11. Static tests at 25°C Static tests at 125°C Static tests at -55°C Dynamic tests at 25°C Dynamic tests at 125°C DynamiC tests at -55°C AC tests at 25°C AC tests at 125°C AC tests at -55°C Group C and 0 Endpoints: Group A, Subgroup .1 Notea 1. 2. 3. 4. 5. 6. 7. 8. 9. 10.. 11. 12. 100% Test and Group A Group A . Periodic. tests, Group C Guaranteed but not tested When changes occur, FSC will make data sheet revisions available. Contact local saies representative for the latest revision. For more information on device function, refer to the Fairchild Linear Data Book Commerciai Section. ZI is guarantaed by liB: ZI- 2[(VT/IIB) + l00lRe(lO-~I, VT - 26 mV at 25·C, Re - 170.0. VIR is guaranteed by the CMR test. Rating applies to ambient temperatures up fo 125·C. Above 125·C arnbien~ derate lineerly at 15o.·C/W for the Can and Flalpak and 12o.·C/W for the DIP. For Supply Voltages less than ±2O V, the absol~ maximum input voltage is equal to the BUppIy voltage. Short circuit may be to ground or e"her BUpply. Rating applies to 125·C caSe temperature or 75·C ambient temperature. The inputs are shunted with back-to-back diodes for overvoltage protection. Therefore, excessive current will flow if a· differential input voltage in excess of 1.0. V is applied between the inputs' unless adecjuata limiting resistance is used. n. 14-12 p,A108AQB 1lA108AQB Electrical Characteristics ± 5.0 V ~ Vee ~ ± 20V. unless otherwise specified. Symbol VIO I1Vlo/l1T Characteristic Input Offset Voltage Condition Min Rs=50 n, VCM=O V Input Offset Voltage Temperature Sensitivity Max Unit Note 0.5 mV 1 1 Subgrp 1.0 mV 1 2,3 25°C';;; TA';;; 125°C 5.0 p'vrc 4 2 -55°C';;; TA';;; +25°C 5.0 p'vrc 4 3 0.2 nA 1 1 2,3 110 Input Offset Current VCM =0 V 0.4 nA 1 11110/l1T Input Offset Current Temperature Sensitivity 25°C';;; TA';;; 125°C 2.5 pArc 4 2 -55°C';;; TA';;; +25°C 5.0 pArc 4 3 1.9 nA 1 1 3.0 nA 1 2,3 Mn 1 1 liB Input Bias Current ZI Input Impedance7 Icc Supply Current VCM =0 V 30 0.6 mA 1 1,2 0.8 mA 1 3 96 dB 1 1,2,3 ± 13.5 V 1 1,2,3 Vcc=±20 V CMR Common Mode Rejection Vcc = ± 15 V, VCM = ± 13.5 V, Rs=50 n VIR Input Voltage RangeS VCC=±15V PSRR Power Supply Rejection Ratio ±5.0 V';;;Vcc';;;±20 V, Rs=50 n 16 p.VN 1 1,2,3 los Output Short Circuit Current Vcc=±15 V 15 mA 3 1,2,3 Avs Large Signal Voltage Gain Vcc=±15 V, Vo=±10V, RL = 10 kn 80 V/mV 1 4 VlmV 1 5,6 Vcc=±15 V, RL = 10 kn ±13 V 1 4,5,6 1000 ns 3 9,10,11 50 0/0 3 9,10,11 Vlp.s 3 9,10,11 VOP Output Voltage Swing TR(t,) Transient Response Rise Time Overshoot TR(os> 40 Vcc=±20 V, VI = 50 mY, RL =2.0 kn, CL = 100 pF, Av = 1.0 SR Slew Rate Vcc= ±20 V, RL = 2.0 kn, Av = 1.0 NI (BB) Noise Broadband Vcc= ±20 V, BW = 5.0 kHz 15 p.V,ms 4 9 NI (PC) Noise Popcorn Vcc=±20 V, BW=5.0 kHz 40 /JVpk 4 9 14-13 0.05 ~A108AQB Primary Burn-In Circuit (38510/10104 may be used by FSC as an alternate) 30 pF 1\ L....-- FREa COMPl ~ FAEa COMP2 -IN Y+ +IN OUT -1r:- Y- NC t--- jY t--- Equivalent Circuit FREQ FREa co.... co. 1 r---------~~--~~_1--_.------~--_r--~------------------~~---------Y+ AS R4 2D1 --£:=:::1 OUT LAG! FREOCOMP LEADI v- - -..._ _ _ _.......,----- FREO COMP Order Information Part No. ~702HMQB GC ~702FMQB HA CA ~702DMQB 14-55 Casel Finish Package Code MiI-M-38510, Appendix C A-l 8-Lead Can F-4 10-Lead Flatpak 0-1 14-Lead DIP J1A702QB Processing: MIL-STD-883, Method 5004 Absolute Maximum Ratings Storage Temperature Range Operating Temperature Range Lead Temperature (soldering, 60 s) Internal Power Dissipation 11 Can and Flatpak DIP Supply Voltage Differential Input Voltage Input Voltage 12 Peak Output Current -65°C to + 175°C -55°C to + 125°C 300°C 330 mW 400 mW 21 V ±5.0 V +1.5 V to -6.0 V 50 rnA Burn-In: Method 1015, Condition A, PDA calculated using Method 5005, Subgroup 1 Quality Conformance Inspection: MIL-STD-883, Method 5005 Group A Electrical Tests Subgroups: 1. 2. 3. 4. 5. 6. 9. Static tests at 25°C Static tests at 125°C Static tests at -55°C Dynamic tests at 25°C Dynamic tests at 125°C Dynamic tests at -55°C AC tests at 25°C Group C and 0 Endpoints: Group A, Subgroup Notes 1. 100% Test and Group A 2. Group A 3. Periodic tests, Group C 4. Guaranteed but not tested 5. When changes occur, FSC will make data sheet revisions available. Contact local sales representative for the latest revision. 6. For more information on device function, refer to the Fairchild Linear Data Book Commercial Section. 7. ZI is guaranteed by liB: ZI = 2.0 VTIIIB, VT = 26 mV at 25'C, 34 mV at 125'C, and 19 mV at -55'C. B. Pc, is guaranteed by Icc,: Pc, = (12 V)(lccl + (6.0 V)(lcc,). 9. VIR is guaranteed by the CMR test. 10. Pc2 is guaranteed by Icc.: Pc2 = (6.0 V)(ICC2) + (3.0 V)(lcc21· 11. Rating applies to ambient temperatures up to 125'C. Above 125'C ambient, derate linearly at 150'C/W for the Can and Flatpak and 120'C/W for the DIP. 12. For supply voltage of 21 V. Transient Response Test Circuits Figure 1 Unity-Gain Amplifier (Lag Compensation) Figure 2 X100 Amplifier (Lead Compensation) 2kCl >-............-_Vo 14-56 JlA702QB JlA702QB Electrical Characteristics V+ = 12 V, V- = -6.0 V, unless otherwise specified. Symbol Characteristic Condition n, Min Max Unit Note 2.0 mV 1 1 mV 1 2,3 p.V/oC 4 2 p.V/oC 4 3 VIO Input Offset Voltage Rs = 50 3.0 t:Nlo/AT Input Offset Voltage Temperature Sensitivity 25°C < TA < 125°C 10 -55°C ---<0 OUT -IN • • • • • • • • Low Offset Voltage Low Offset Voltage Drift Low Bias Current Low Input NOise Current High Open Loop Gain Low Input Offset Current High Common Mode Rejection Wide Power Supply Range vLead 4 connected to case. Order Information Part No. 1lA714HMQ8 Casel Finish GC Package Code MiI-M-38510, Appendix C A-1 8-Lead Can • 14-67 J.lA714Q8 Absolute Maximum Ratings Storage Temperature Range Operating Temperature Range Lead Temperature (soldering. 60 s) Internal Power Dissipation 10 Can' Supply Voltage Differential Input Voltage Input Voltage 11 Processing: MIL-STD-883, Method 5004 -65°C to + 175°C -55°C to + 125°C 300°C 330 mW ±22 V ±30 V ±22 V Burn-In: Method 1015, Condition A, PDA calculated using Method 5005, Subgroup 1 Quality Conformance Inspection: MIL-STD-883, Method 5005 Group A Electrical Tests Subgroups: 1. 2. 3. 4. 5. 6. Static tests at Static tests at Static tests at Dynamic tests Dynamic tests Dynamic tests 25°C 125°C -55°C at 25°C at 125°C at -55°C Group C and D Endpoints: Group A, Subgroup 1 Notes 1. 100% Test and Group A 2. Group A 3. Periodic tests, Group C 4. Guaranteed but not tested 5. When changes occur I FSC will make data sheet revisions available. Contact loca1 sales representative for the latest revision. 6. For more information on device function, refer to the Fairchild Linear Data Book Commercial Section. Pc1 is guaranteed by ICC1; Pc1 - 30 ICC1. Pc2 is guaranteed by ICC2; Pc2 = 6 ICC2. V,R is guaranteed by the CMR test. Rating applies to ambient temperatures up to 125'C. Above 125'C ambient, derate linearly at 150'C/W. 11. For supply voltages less than ±22 V, the absolute maximum input vOltage is equal to the supply voltage. 7. 8. 9. 10, 14-68 fJA714QB ~A714QB Electrical Characteristics Vee = ± 15 V, unless otherwise specified. Symbol Via Characteristic Input Offset Voltage Condition Min Rs = 50 Q, VCM = 0 V Max Unit Note Subgrp 75 p.V 1 1 200 p.V 1 2,3 110 Input Offset Current VCM =0 V 2.8 nA 1 1 5.6 nA 1 2,3 liB Input Bias Current VCM =0 V 3.0 nA 1 1 6.0 nA 1 2,3 1 ICC1 Supply Current Vo=O V 4.0 mA 1 ICC2 Supply Current VCC = ± 3.0 V, Va = 0 V 1.0 mA 1 1 Pc1 Power Consumption? Vo=O V 120 mW 1 1 Pc2 Power ConsumptionS Vcc = ± 3.0 V, Va = 0 V 6.0 1 CMR Common Mode Rejection VCM = ± 13 V, Rs = 50 Q VIR Input Voltage Range 9 PSRR Power Supply Rejection Ratio Avs Large Signal Voltage Gain Output Voltage Swing 1 dB 1 1 106 dB 1 2,3 1,2,3 ± 13.0 V 1 10 p.VN 1 1 20 p.VN 1 2,3 200 V/mV 1 4 150 V/mV 1 5,6 150 V/mV 1 4 ±3.0 V";;Vcc";;±18 V, Rs = 50 Q Va = ± 10 V, RL = 2.0 kQ Vcc =±3.0 V, Vo =± 0.5 V, RL = 500 Q VoP mW 110 RL = 10 kQ ± 12.5 V 1 4 RL = 2.0 kQ ± 12.0 V 1 4,5,6 RL = 1.0 kQ ± 10.5 V 1 4 14-69 J.tA714QB Primary Burn-In Circuit - +OFFSET NULL -OFFSET NULL r--15 V ~ r-- -IN V+ +IN OUT V- NC I I-- -15 V Equivalent Circuit RIA R1B +IN -IN R3 "I 029 as~Q6~~~~6 07 M~~ ; R12 09 Q28(~ ~ riLl +OF~~~_ -OF~~~~ _ Cl C2 Q34~019 ~C31~ ~ ~~ R9 016 f0~ OUT RIO ~ ~ J 02 J R5 1'1 R23 R24 ')~2 ~. R16 R7 010)- I p' V+ .) 0301.,. R2B (NOTE 1) R2A (NOTE 1) L<039 ;::L.KQ44 1 015 03~ 0.3 R17 032 R18 03' R21 ... ",020 ~5 018 R8 R.9 038> R14 R13 R15 040 035>- R26 R20 R25 V- Note 1. R2A and R2B are electronically adjusted on a chip at the factory for minimum offset voltage. 14-70 J.lA71SQ8 High Speed Operational Amplifier FAIRCHIL.D A Schlumberger Company MIL-STD-883 July 1986-Rev 15 Aerospace and Defense Data Sheet Linear Products Description Connection Diagram 10-Lead Can (Top View) The p.A715QB is a high speed, high gain, monolithic operational amplifier constructed using the Fairchild Planar Epitaxial process. It is intended for use in a wide range of applications where fast signal acquisition or wide bandwidth is required. The p.A715QB features fast settling time, high slew rate, low offsets and high output swing for large signal applications. In addition, the device displays excellent temperature stability and will operate over a wide range of supply voltages. The p.A715QB is ideally suited for use in AID and 01 A converters, active filters, deflection amplifiers, video amplifiers, phase-locked loops.. multiplexed analog gates, precision comparators, sample-andholds, and general feedback applications requiring DC wide bandwidth operation. 6 • • • • • y- Lead 5 connected to case. High Slew Rate Fast Settling Time Wide Bandwidth Wide Operating Supply Range Wide Input Voltage Ranges Order Information Part No. p.A715HMQB 14-71 Casel Finish IC Package Code MII-M-38510, Appendix C A-2 10-Lead Can JlA715QB Processing: MIL-STD-883, Method 5004 Absolute Maximum Ratings Storage Temperature Range Operating Temperature Range Lead Temperature (soldering, 60 s) Internal Power DiSSipation9 Can Supply Voltage Differential Input Voltage Input Voltage 10 -65°C to + 175°C -55°C to + 125°C 300°C 350 mW ±18 V ±15 V ±15 V Burn-In: Method 1015, Condition A, PDA calculated using Method 5005, Subgroup 1 Quality Conformance Inspection: MIL-STD-883, Method 5005 Group A Electrical Tests Subgroups: 1. 2. 3. 4. 5. 6. 9. Static tests at 25°C Static tests at 125°C Static tests at -55°C Dynamic tests at 25°C Dynamic tests at 125°C Dynamic tests at -55°C AC tests at 25°C Group C and D Endpoints: Group A, Subgroup 1 N_ 1. 2. 3. 4. 5. 6. 7. 6. 9. 10. 100% Test and Group A Group A Periodic tests, Group C Guaranteed but not tested When changes occur, FSC will make data shea! revisions available. Contact local sales representative for the latest revision. For more information on device function, refer to the Fairchild Unear Data Book Commercial Section. Pc is guansnteed by Icc: Pc - 30 Icc. VIR is guaranteed by the CMR test. Rating applies to ambient temperatures up to 125'C. Above 125'C ambien~ derate linearly at 140'C/W. For supply voltages le99 than ± 15 V, the absolute maximum input voltage is equal to the supply voltage. 14-72 MA71SQ8 ~715QB Electrical Characteristics Vee = ± 15 V, unless otherwise specified. Symbol Via Characteristic Input Offset Voltage Condition Rs = 50 n, Min VCM = 0 V Max Unit Note Subgrp 5.0 mV 1 1 7.5 mV 1 2,3 1'0 Input Offset Current VCM =0 V 250 nA 1 1,2 800 nA 1 3 I'B Input Bias Current VCM =0 V 750 nA 1 1,2 4.0 3 IJA 1 Icc Supply Current 7.0 mA 1 1 Pc Power Consumption 7 210 mW 1 1 CMR Common Mode Rejection 1,2,3 VIR Input Voltage RangeS PSRR Power Supply Rejection Ratio ±7.0 V~Vcc~±18 V, Rs=10 kn Avs Large Signal Voltage Gain Vo=±10 V, RL = 2.0 VOP Output Voltage Swing TR(t,) Transient Response TR(os) SR Slew Rate I Rise Time I Overshoot VCM = ± 10 V, Rs = 10 RL = 2.0 kn kn kn 74 dB 1 ±10 V 1 1,2,3 p.VlV 1 1,2,3 15 V/mV 1 4 10 VlmV 1 5,6 V 1 4,5,6 60 ns 2 9 40 % 2 9 Vlp.s 2 9 300 ±10 V, = 400 mV, Av = 1.0 Av= 1.0 15 • 14-73 #lA71SQB Primary Burn-In Circuit COMP 11 CaMP lA CASCaDE CaMP 2B 30V .----i-IN t-----I+IN t-----Iv- V+ t - - - -... COMP fA OUT Equivalent Circuit r--------.----.------~-----~--~--~~--r_--~-v+ R24 10 kn R7 COMPIA 400n R20 son R21 OUT 25 kn -IN R2 Rl 400n an R27 son +IN ~~~~~m-~~--------------------1(Q9 R22 300U R23 3 IeIl R25 75 U L-__~----~--------------------~----_+----~----~--~ 14-74 FAIRCHILD A Schlumberger Company J,lA725AQB Instrumentation Operational Amplifier MIL-STD-883 July 1986-Rev 15 Aerospace and Defense Data Sheet Linear Products Description Connection Diagram a-Lead Can (Top View) The JJA725AQB is a monolithic instrumentation operational amplifier constructed using the Fairchild Planar Epitaxial process. It is intended for precise, low level signal amplification applications where low noise, low drift and accurate closed loop gain are required. The offset null capability, low power consumption, very high voltage gain as well as wide power supply voltage range provide superior performance for a wide range of instrumentation applications. The JJA725AQB is lead compatible with the popular JJA741AQB operational amplifier. 6 • • • • • • • • Low Input Noise Current High Open Loop Gain Low Input Offset Current Low Input Voltage Drift High Common Mode Rejection High Input Voltage Range Wide Power Supply Range Offset Null Capability -OFFSET NULL vLead 4 connected to case. Order Information Part No. JJA725AHMQB 14-75 Casel Finish GC Package Code MII-M-38510, Appendix C A-1 8-Lead Can MA725AQB Absolute Maximum Ratings Storage Temperature Range Operating Temperature Range Lead Temperature (soldering, 60 s) Internal Power Dissipation 10 Can Supply Voltage Differential Input Voltage Input Voltage 11 Voltage Between Offset Null and V+ Short Circuit Duration 12 Processing: MIL-STD-883, Method 5004 -65°C to + 175°C -55°C to + 125°C 300°C 330 mW ±22 V ±5.0 V ±22 V ±0.5 V Indefinite Burn-In: Method 1015, Condition A, PDA calculated using Method 5005, Subgroup 1 Quality Conformance Inspection: MIL-STD-883, Method 5005 Group A Electrical Tests Subgroups: 1. 2. 3. 4. 5. 6. 9. Static tests at 25°C Static tests at 125°C Static tests at -55°C Dynamic tests at 25°C Dynamic tests at 125°C Dynamic tests at -55°C AC tests at 25°C Group C and D Endpoints: Group A, Subgroup 1 Notes 1. 100% Test and Group A 2. Group A 3. Periodic _ , Group C 4. Guaranteed but not tested S. When changes occur, FSC will make data sheet revisions available. Contect local seles representative for the latest revision. 6. For more information on device function, refer to the Fairchild Unear Data Book Commercial Section. 7. Pel is guaranteed by ICC1 : Pel - 30 ICC1 ' 8. Pc2 is guaranteed by ICC2: Pc2 = 6.0 ICC2. 9. VIR is guaranteed by the CMR test. 10. Rating applies to ambient temperatures up to 12S"C. Above 12S"C ambient, derate linearly at 150"C/W. 11. For supply voltages less than ± 22 V, the absolute maximum input voltage is equal to the supply voltage. 12. Short circuit may be to ground or either supply. Rating applies to 12S"C case temperature or 7S"C ambient temperature. 14-76 MA725AQB }lA725AQB Electrical Characteristics Vee = ± 15 V, unless otherwise specified. Symbol VIO flVlolflT 110 Characteristic Condition 1 1 1 2,3 2.0 p'vrc 4 2 -55°C ~ TA ~ +25°C 5.0 p'vrc 4 3 VCM = 0 V 5.0 nA 1 1 4.0 nA 1 2 18 nA 1 3 90 pArc 4 2 -55°C ~TA ~ +25°C 90 pArc 4 3 VCM = 0 V 75 nA 1 1 70 nA 1 2 Input Offset Current ICCl Supply Current ICC2 Supply Current ~TA ~ 125°C 25°C ~TA ~ 125°C Pel Pe2 Power ConsumptionS Vcc = ±3.0 V CMR Common Mode Rejection VCM=±13.5 V, Rs=50 n VIR Input Voltage Range9 PSRR Power Supply Rejection Ratio ±5.0 V~Vcc~±22 V, Rs= 50 n Avs Large Signal Voltage Gain Vo= ±10 V, Rl = 2.0 kn Output Voltage Swing 180 nA 1 3 4.0 I11A 1 1 1.0 mA 1 1 120 mW 1 1 6.0 mW 1 1 120 dB 1 1 110 dB 1 2,3 ± 13.5 V 1 1,2,3 p.VIV 1 1 Vcc = ±3.0 V Power Consumption 7 VOP Subgrp mV 25°C Input Bias Current Note mV Input Offset Voltage Temperature Sensitivity (Without External Trim) lis Unit 0.5 Rs = 50 n, VCM = 0 V Input Offset Current Temperature Sensitivity Max 0.75 Input Offset Voltage (Without External Trim) flldflT Min 5.0 p.VIV 1 2,3 1000 V/mV 1 4,5 500 V/mV 1 6 8.0 Rl = 10 kn ±12.5 V 1 4 RL = 2.0 kn ±10 V 1 5,6 nV/v'HZ 4 9 No Noise Voltage f = 10 Hz 100 Hz ~ 1 ~ 1.0 kHz 12 nV/v'HZ 4 9 NI Noise Current f = 10 Hz 1.2 pA/v'HZ 4 9 1=100 Hz 0.6 pAlv'HZ 4 9 f = 1.0 kHz 0.25 pA/v'HZ 4 9 15 14-77 • MA725AQB Primary Burn-In Circuit +OFFSET NULL -OFFSET NULL 30 V V+ ,------I-IN OUT .....- - - - -... +IN ~----_fv- 1--____-1 FREQ COMP Equivalent Circuit r--~r---1----1----~---~----~----~----t-----t----~-----~-Y+ R15 18 k!l +IN OUT 026 -IN--+--_____...J R1. 4.Skn L------------~~ __ ~----~ __ __--__ ~ ~~~~~~ 14-78 _______ R12 lkH R13 15()O ~--~-- R14 __ 300n ______ ~ ~v- p.A72SQ8 FAIRCHIL.D A Schlumberger Company Instrumentation Operational Amplifier MIL-STD-883 July 1986-Rev 15 Aerospace and Defense Data Sheet Linear Products Description Connection Diagram 8-Lead Can (Top View) The /lA 7250B is a monolithic instrumentation operational amplifier constructed using the Fairchild Planar Epitaxial process. It is intended for precise, low level signal amplification applications where low noise, low drift and accurate closed loop gain are required. The offset null capability, low power consumption, very high voltage gain as well as wide power supply voltage range provide superior performance for a wide range of instrumentation applications. The /lA7250B is lead compatible with the popular /lA7410B operational amplifier. 6 • • • • • • • • -OffSET NULL Low Input Noise Current High Open Loop Gain Low Input Offset Current Low Input Voltage Drift High Common Mode Rejection High Input Voltage Range Wide Power Supply Range Offset Null Capability y- Lead 4 connected to case. Order Information Part No. /lA725HMOB Casel Finish OC Package Code Mil-M-38510, Appendix C A-1 8-Lead Can • 14-79 JlA725Q8 Processing: MIL-STD-883, Method 5004 Absolute Maximum Ratings Storage Temperature Range Operating Temperature Range Lead Temperature (soldering, 60 s) Internal Power Dissipation 9 Can Supply Voltage Differential Input Voltage Input Voitage 10 Voltage Between Offset Null and V+ Short Circuit Duration 11 -65°C to + 175°C -55°C to + 125°C 300°C 330 mW ±22 V ±5.0 V ±22 V ±0.5 V Indefinite Burn-In: Method 1015, Condition A, PDA calculated using Method 5005, Subgroup 1 Quality Conformance Inspection: MIL-STD-883, Method 5005 Group A Electrical Tests Subgroups: 1. 2. 3. 4. 5. 6. Static tests at 25°C Static tests at 125°C Static tests at - 55°C Dynamic tests at 25°C Dynamic tests at 125°C DynamiC tests at -55°C 9. AC tests at 25°C Group C and D Endpoints: Group A, Subgroup Notes 1. 100% Test and Group A 2. Group A 3. Periodic tests, Group C 4. Guaranteed but not tested 5. When changes occur, FSC will make data sheet revisions available. Contact local sales representative for the latest revision. 6. For more information on device function, refer to the Fairchild linear Data Book Commercial Section. 7. Pc is guaranteed by Icc: Pc ~ 30 Icc. 8. V,R is guaranteed by the CMR test. 9. Rating applies to ambient temperatures up to 125·C. Above 125·C ambient, derate linearty at 150·C/W. 10. For supply voltages less than ± 22 V, the absolute maximum input voltage is equal to the supply voltage. 11. Short circuit may be to ground or either supply. Rating applies to 125°C case temperature or 75°C ambient temperature. 14-80 }lA725QB IlA725Q8 Electrical Characteristics Vee = ± 15 V, unless otherwise specified. Symbol Characteristic Condition n, Min Max 1.0 Unit Note mV 1 Subgrp VIO Input Offset Voltage (Without External Trim) Rs = 50 1.5 mV 1 2,3 AVIO/AT Input Offset Voltage Temperature Sensitivity (Without External Trim) 25°C';; TA';; 125°C 5.0 jJ.V/oC 4 2 -55°C';; TA';; +25°C 7.0 jJ.V/oC 4 3 Input Offset Current VCM =0 V 20 nA 1 1,2 40 nA 1 3 150 pAloC 4 2 -55°C ';;TA';; +25°C 150 pAloC 4 3 VCM =0 V 100 nA 1 1,2 200 nA 1 3 110 AIIO/AT Input Offset Current Temperature Sensitivity lis Input Bias Current VCM = 0 V 25°C';; TA';; 125°C 1 Icc Supply Current 4.0 mA 1 1 Pc Power Consumption? 120 mW 1 1 CMR Common Mode Rejection 110 dB 1 1 100 dB 1 2,3 1,2,3 VIR PSRR VCM=±13.5 V, Rs=50 n Input Voltage RangeS Power Supply Rejection Ratio ± 13.5 V 1 10 jJ.VN 1 1 20 jJ.VN 1 2,3 1000 V/mV 1 4,5 ±5.0 V';;Vcc';;±22 V, Rs= 50 n Avs Large Signal Voltage Gain Vo=±10V, RL = 2.0 VOP Output Voltage Swing RL = 10 kn RL = 2.0 kn 14·81 kn 250 V/mV 1 6 ±12 V 1 4 ±10 V 1 4,5,6 • /lA72SQ8 Primary Burn-In Circuit +OFFSET NULL -OFFSET NULL 30V .-------1 -IN ....- - - - - - 1 V+I------' OUT +IN ""'-----1 V- FREQ COMP Equivalent Circuit r---~-~~--~---~---~----~----~----t-----t-----t-----~-V+ I I R2A + -"""r 10k!! + OFFSET NULL R1A 42 kU 100 kO EXTERNAL R2B 10kH R3 29 kH -OFFSET NULL R1B 42 ktl R16 25 !l +IN OUT t----1i:: -IN 026 --+---------' Jr----+---~~~_i~~-_i~~-+_----+_~017 R6 5.1 kH R8 2.4 kn L-____________~____~----~--+_-- ____ R18 5.1 kll ~~~~-------- 14-82 R12 1 kO __ __ ~ R13 150 Jl R14 300 !I ~--~------~-~ JlA741AQ8 Operational Amplifier F=AIRCHILO A Schlumberger Company MIL-STD-883 July 1986-Rev 25 Aerospace and Defense Data Sheet Linear Products Description Connection Diagram 8-Lead Can (Top View) The J.lA741AQB is a high performance monolithic operational amplifier constructed using the Fairchild Planar Epitaxial process. It is intended for a wide range of analog applications. High common mode voltage range and absence of latch-up tendencies make the IlA741 AQB ideal for use as a voltage follower. The high gain and wide range of operating voltage provide superior performance in integrator, summing amplifier, and general feedback applications. 6 Ne >-....:..c;.> OUT -IN • • • • No Frequency Compensation Required Short Circuit Protection Offset Voltage Null Capability Large Common Mode And Differential Voltage Ranges • Low Power Consumption • No Latch-Up vLead 4 connected to case. Connection Diagram 8-Lead DIP (Top View) Connection Diagram 10-Lead Flatpak (Top View) Ne Ne +OFFSET NULL Ne _INr----......J +OFFSET NULL NC -IN v+ +IN OUT v+ v- - - - , ._ _ _ _ _. r - - -OFFSET NULL v- YC:::C:::J OUT +IN -OFFSET NULL c000761F Order Information Connection Diagram 14-Lead DIP (Top View) Casel Finish NC NC Part No. IlA741ADMQB IlA741AHMQB !1A741AFMQB IlA741ARMQB NC Ne JAN Product Available +QFFSET NULL NC -IN v+ +IN OUT ,. vNe 10101 10101 10101 10101 10101 10101 10101 10101 -OFFSET NULL He 14-83 CA GC HA PA BCA BCB BGA BGC BHA BHB BPA BPB Package Code MiI-M-38510, Appendix C D-1 14-Lead DIP A-1 8-Lead Can F-4 10-Lead Flatpak D-4 8-Lead DIP D-1 D-1 A-1 A-1 F-4 F-4 D-4 D-4 14-Lead DIP 14-Lead DIP 8-Lead Can 8-Lead Can 10-Lead Flatpak 10-Lead Flatpak 8-Lead DIP 8-Lead DIP MA741AQ8 Processing: MIL-STD-883, Method 5004 Absolute Maximum Ratings Storage Temperature Range Operating Temperature Range Lead Temperature (soldering, 60 s) Internal Power Dissipation 11 Can and Flatpak DIP Supply Voltage Differential Input Voltage Input Voltage 12 Short Circuit Duration 13 -65°C to + 175°C -55°C to +125°C 300°C 330 mW 400 rnW ±22 V ±30 V ±20 V Indefinite Burn-In: Method 1015, Condition A, PDA calculated using Method 5005, Subgroup 1 Quality Conformance Inspection: MIL-STD-883, Method 5005 Group A Electrical Tests Subgroups: 1. 2. 3. 4. 5. 6. 9. 10. 11. Static tests at 25°C Static tests at 125°C Static tests at -55°C Dynamic tests at 25°C Dynamic tests at 125°C Dynamic tests at -55°C AC tests at 25°C AC tests at 125°C AC tests at -55°C Group C and 0 Endpoints: Group A, Subgroup Notes 1. 100% Test and Group A 2. Group A 3. Periodic tests, Group C 4. Guaranteed but not tested 5. When changes occur, FSC will make data sheet revisions available. Contact local sales representative for the latest revision. 6. For more information on device function, refer to the Fairchild Linear Data Book Commercial Section. 7. Z, is guaranteed by I'B: Z, - 4.0 VTIi'B, VT = 26 mV at 25°C, 34 mV at 125°C and 19 mV at -55°C. B. Pc is guaranteed by Icc: Pc = 40 Icc. 9. V'R is guaranteed by the CMR test. 10. BW is guaranteed by t,: BW = 0.35/t,. 11. Rating applies to ambient temperatures up to 125°C. Above 125°C ambient, derate linearly at lSOoC/W for the Can and Flatpak and 120°C/W for the DIP. 12. For supply voltages less than ± 20 V, the absolute maximum input voltage is equal to the supply voltage. 13. Short circuit may be to ground or either supply. Rating applies to 125°C case temperature or 75°C ambient temperature. 14-84 MA741AQ8 /lA741AQ8 Electrical Characteristics Vee = Symbol Via t:J.Vlolt:J.T ± 15 V, unless otherwise specified. Max Unit Note 3.0 mV 1 1 4.0 mV 1 2,3 25°C <;TA <; 125°C 15 INloC 4 2 -55°C <;TA <; +25°C 15 pV 1°C 4 3 mV 1 1,2,3 Characteristic Input Offset Voltage Condition Input Offset Voltage Temperature Sensitivity Via adi Input Offset Voltage Adjustment Range Vcc=±20 V 110 Input Offset Current VCM = 0 V t:J.llolt:J.T 118 ZI Icc Pc Input Offset Current Temperature Sensitivity Input Bias Current 5.0 30 nA 1 1 nA 1 2,3 25°C <; TA <; 125°C 0.5 nA/oC 4 2 -55°C <; TA <; +25°C 0.5 nAloC 4 3 80 nA 1 1 210 nA 1 2,3 1.0 Mn 1 1 0.5 Mn 1 2 VCM =0 V Input Impedance7 Supply Current Vcc=±20 V Power ConsumptionS Vcc=±20 V Common Mode Rejection Vec=±20 V, VCM=±15 V, Rs=50 n VIR Input Voltage Range 9 Vee = ±20 V PSRR Power Supply Rejection Ratio V+ = 10 V, V- = -20 V to V+ = 20 V, V- = -10 V, Rs = 50 n los Output Short Circuit Current Avs Large Signal Voltage Gain TR(tr) Transient Response TR(os) Vee=±20 V I Rise Time I Overshoot 3.750 mA 1 1 3.375 mA 1 2 4.125 mA 1 3 150 mW 1 1 135 mW 1 2 165 mW 1 3 80 dB 1 1,2,3 ±15 V 1 1,2,3 50 pVIV 1 1 100 pV/V 1 2,3 mA 1 1,2,3 50 V/mV 1 4 32 V/mV 1 5,6 10 V/mV 1 4,5,6 ±16 V 1 4,5,6 ±15 V 1 4,5,6 ns 3 9,10,11 60 Vee=±20 V, Vo=±15 V, RL = 2.0 kn Vee = ± 5.0 V, Va = ± 2.0 V, RL = 2.0 kn Output Voltage Swing Subgrp 70 CMR VoP Min Rs= 50 n, VCM = 0 V I RL = 10 kn I RL = 2.0 kn Vee = ± 20 V, VI = 50 mY, RL = 2.0 kn, CL = 100 pF, Av = 1.0 800 % 3 9,10,11 0.437 25 MHz 3 9,10,11 0.3 Vips 3 9,10,11 pVrms 4 9 pVpk 4 9 BW Bandwidth 10 SR Slew Rate Vee = ±20 V, RL = 2.0 kn, Av = 1.0 NI (BB) Noise Broadband Vee=±20 V, BW=5.0 kHz 15 NI (PC) Noise Popcorn Vee = ±20 V, BW = 5.0 kHz 40 14-85 pA741AQB Primary Burn-In Circuit (38510/10101 may be used by FSC as an alternate) - +OFFSET NULL - NC 15V * r- -IN V+ +IN OUT I - -OFFSET NULL V- -15 V Equivalent Circuit -IN r1~------i-----~------~~--------~---.--------------------~-V+ R6 +IN 27 n OUT R7 22 n +OFFSET NULL Rl lkn R3 50kn Rll 50 kn R2 1 kn L---~~~~--~---+------ __ ~ __ ~ ____-4__-+____ -OFFSET NULL 14-86 ~ ____-+__ ~~~~v_ p.A741Q8 I=AIRCHILO Operational Amplifier A Schlumberger Company MIL-STD-883 July 1986-Rev 25 Aerospace and Defense Data Sheet Linear Products Description Connection Diagram 8-Lead Can (Top View) The J.LA 741 QB is a high performance monolithic operational amplifier constructed using the Fairchild Planar Epitaxial process. It is intended for a wide range of analog applications. High common mode voltage range and absence of latch-up tendencies make the J.LA741QB ideal for use as a voltage follower. The high gain and wide range of operating voltage provide superior performance in integrator, summing amplifier, and general feedback applications. 6 Ne -IN • • • • No Frequency Compensation Required Short Circuit Protection Offset Voltage Null Capability Large Common Mode And Differential Voltage Ranges • Low Power Consumption • No Latch-Up Connection Diagram 10-Lead Flatpak (Top View) >---QOUT vLead 4 connected to case. Connection Diagram 8-Lead DIP (Top View) NC NC +OFFSET NULL +OFFSET NUll. NC -IN v+ V+ +IN OUT -IN +IN v- C:=:::J-.J C:=:::J-.J Y==JOUT -OFFSET NULL v- -OFFSET ----~__________~----NULl. Connection Diagram 14-Lead DIP (Top View) Order Information Part No. J.LA741DMQB JJA741HMQB J.LA741FMQB JJA741RMQB 14 NC NC NC NC +OFFSET NUll. NC -IN V+ +IN OUT vNC Casel Finish CA GC HA PA JAN Product Available 10101 BCA 10101 BCB 10101 BGA 10101 BGC 10101 BHA 10101 BHB 10101 BPA 10101 BPB -OFFSET NULL NC COO2{l20F 14-87 Package Code MiI-M-38510, Appendix C D-1 14-Lead DIP A-1 8-Lead Can F-4 10-Lead Flatpak D-4 8-Lead DIP D-1 D-1 A-1 A-1 F-4 F-4 D-4 D-4 14-Lead DIP 14-Lead DIP 8-Lead Can 8-Lead Can 10-Lead Flatpak 10-Lead Flatpak 8-Lead DIP 8-Lead DIP J.lA741Q8 Absolute Maximum Ratings Storage Temperature Range Operating Temperature Range Lead Temperature (soldering, 60 s) Internal Power Dissipation 11 Can and Flatpak DIP Supply Voltage Differential Input Voltage Input Voltage 12 Short Circuit Duration 13 Processing: MIL-STD-883, Method 5004 -65°C to + 175°C -55°C to + 125°C 300°C 330 mW 400 mW ±22 V ±30 V ±20 V Indefinite Burn-In: Method 101.5, Condition A, PDA calculated using Method 5005, Subgroup 1 Quality Conformance Inspection: MIL-STD-883, Method 5005 Group A Electrical Tests Subgroups: 1. 2. 3. 4. 5. 6. 9. 10. 11. Static tests at 25°C Static tests at 125°C Static tests at -55°C Dynamic tests at 25°C Dynamic tests at 125°C Dynamic tests at -55°C AC tests at 25°C AC tests at 125°C AC tests at -55°C Group C and 0 Endpoints: Group A, Subgroup Notes 1. 100% Test and Group A 2. Group A 3. Periodic tests, Group C 4. Guaranteed but not tested 5. When changes occur, FSC will make data sheet revisions available. Contact local sales representative for the latest revision. 6. For more information on device function, refer to the Fairchild Linear Data Book Commercial Section. 7. Z, is guranteed by I'B: Z, ~ 4.0 VT/I'B, VT ~ 26 mV at 2S'C, 34 mV at 12S'C and 19 mW at - SS·C. 8. Pc is guaranteed by Icc: Pc = 30 Icc 9. V'R is guaranteed by the CMR test. 10. BW is guaranteed by t,: BW ~ 0.3S/t,. 11. Rating applies to ambient temperatures up to 12S·C. Above 12S'C ambient, derate linearly at lS0'C/W for the Can and Flatpak and 120'C/W for the DIP. 12. For supply voltages less than ± 20 V, the absolute maximum input voltage is equal to the supply voltage. 13. Short circuit may be to ground or either supply. Rating applies to 125°C case temperature or 75°C ambient temperature. 14-88 J,tA741Q8 J,!A741Q8 Electrical Characteristics Vee = ± 15 V, unless otherwise specified. Symbol Max Unit Note 5.0 mV 1 1 mV 1 2,3 /lVrC 4 2 /lVrC 4 3 mV 1 1,2,3 200 nA 1 1,2 500 nA 1 3 25°C ';;;TA';;; 125°C 1.0 nArC 4 2 -55°C';;; TA';;; +25°C 1.0 nArC 4 3 340 nA 1 1 500 nA 1 2 3 Characteristic Condition Min VIO Input Offset Voltage 50 n,;;;Rs';;;10 kn, VCM=O V 6.0 tl.Vloltl.T Input Offset Voltage Temperature Sensitivity 25°C ';;;TA';;; 125°C 15 -55°C ';;;TA';;; + 25°C 15 VIO adj 110 tl.1 101 tl.T 118 Input Offset Voltage Adjustment Range Vcc=±20 V Input Offset Current VCM=O V Input Offset Current Temperature Sensitivity Input Bias Current 5.0 VCM =0 V 1500 ZI Icc Pc CMR VIR PSRR Input Impedance7 nA 1 0.3 Mn 1 1 0.2 Mn 1 2 2.8 mA 1 1 2.5 mA 1 2 3.3 mA 1 3 85 mW 1 1 75 mW 1 2 100 3 Supply Current Power ConsumptionS Common Mode Rejection Input Voltage Range9 VCM=±12 V, Rs=50 n Power Supply Rejection Ratio ±5.0 V';;;Vcc';;;±22 V, Rs = 50 n mW 1 70 dB 1 1,2,3 ±12 V 1 1,2,3 IlVN 1 1,2,3 150 los Output Short Circuit Current Avs Large Signal Voltage Gain Va = ± 10 V, RL = 2.0 kn VOP Output Voltage Swing RL = 10 kn ±12 RL =2.0 kn ±10 TR(t,) TR(os) Transient Response I Rise Time I Overshoot mA 1 1,2,3 50 V/mV 1 4 25 V/mV 1 5,6 V 1 4,5,6 V 1 4,5,6 800 ns 3 9,10,11 25 % 3 9,101 0.437 MHz 3 9,101 0.3 V/IlS 3 9,101 IlV,ms 4 9 /lVpk 4 9 60 Vee = ±20 V, VI = 50 mY, RL = 2.0 kn, CL = 100 pF, Av = 1.0 BW Bandwidth 10 SR Slew Rate NI (BB) Noise Broadband Vce = ± 20 V, BW = 5.0 kHz 15 NI (PC) Noise Popcorn Vee = ±20 V, BW = 5.0 kHz 40 Vcc = ±20 V, RL = 2.0 kn, Av = 1.0 14-89 Subgl"J 1lA741Q8 !»rimary Burn-In Circuit :38510/10101 may be used by FSC as an alternate) - +OFFSET NU~~ Ne ~ 15V ~ r- -IN V+ +IN OUT I -OFFSET v- ~ N~~ -1SV CA05190F Iquivalent Circuit -IN r1~---------;-------t----------~~------------~---~~----------------------------t--V+ R6 +IN 270 OUT R7 220 +OFFSET NULL Rl 1kO R3 SOkO R11 R2 1 kO 50 kO L..---~~~~---+-----4------------~---~------~ -OFFSET NULL 14-90 __-4______~______-4___~~___~v_ #lA747AQ8 Dual Operational Amplifier FAIRCHILD A Schlumberger Company MIL-STD-883 July 1986-Rev 25 Aerospace and Defense Data Sheet Linear Products Description Connection Diagram 10-Lead Can (Top View) The #lA747AQB is a pair of high performance monolithic operational amplifiers constructed using the Fairchild Planar Epitaxial process. They are intended for a wide range of analog applications where board space or weight are important. High common mode voltage range and absence of latch-up make the #lA747AQB ideal for use as a voltage follower. The high gain and wide range of operating voltage provide superior performance in integrator, summing amplifier, and general feedback applications. Ne The /lA747AQB is short circuit protected and requires no external components for frequency compensation. The internal 6 dB/octave roll-off insures stability in closed loop applications. 6 y- Lead 5 connected to case. • • • • No Frequency Compensation Required Short Circuit Protection Offset Voltage Null Capability Large Common Mode and Differential Voltage Ranges • Low Power Consumption • No Latch-Up Connection Diagram 14-Lead Flatpak (Top View) +INA' y- '--1L..=:J OUT A y- NC -OFFSET NULLa -IN A -OFFSET NULL A ......C=:J OUT a +IN a C::=::J-....I_.J -IN a [==t:~:"" OUT A NC Order Information Casel Finish Part No. Package Code MiI-M-38510, Appendix C F-1 14-Lead Flatpak 0-1 14-Lead DIP A-2 10-Lead Can +IN B Y+ a -IN a + OFFSET NULL a JAN Product Available NULL B V+B __...J==J NULL +OFFSET a V+ A #lA747AFMQB #lA747ADMQB #lA747AHMQB -OFFSET Y+A '-- -OFFSET NULLA Connection Diagram 14-Lead DIP (Top View) +IN A +OFFSET NULLA -INA,-_....r..., OUT a 10102 10102 10102 10102 10102 10102 COOO781F 14-91 AA CA IC BAA BAB BCA BCB BIA BIC F-1 F-1 0-1 0-1 A-2 A-2 14-Lead Flatpak 14-Lead Flatpak 14-Lead DIP 14-Lead DIP 10-Lead Can 10-Lead Can MA747AQB Processing: MIL-STD-883, Method 5004 Absolute Maximum Ratings Storage Temperature Range Operating Temperature Range Lead Temperature (soldering, 60 s) Internal Power Dissipation 12 Can and Flatpak DIP Supply Voltage Differential Input Voltage Input Voltage 13 Short Circuit Duration 14 -65°C to + 175°C -55°C to + 125°C 300°C 350 mW 400 mW ±22 V ±30 V ±20 V Indefinite Burn-In: Method 1015, Condition A, PDA calculated using Method 5005, Subgroup 1 Quality Conformance Inspection: MIL-STD-883, Method 5005 Group A Electrical Tests Subgroups: 1. 2. 3. 4. 5. 6. 9. 10. 11. Static tests at 25°C Static tests at 125°C Static tests at -55°C Dynamic tests at 25°C Dynamic tests at 125°C Dynamic tests at -55°C AC tests at 25°C AC tests at 125°C AC tests at -55°C Group C and D Endpoints: Group A, Subgroup 1 Notes 1. 100% Test and Group A 2. Group A 3. Periodic tests, Group C 4. Guaranteed but not tested S. When changes occur, FSC will make date sheet revisions availeble. Contee! local sales representetive for the latest revision. 6. For more information on device function, refer to the Fairchild Linear Date Book Commercial Section. 7. Not availeble on /AA747AHMQB. 8. ZI is guaranteed by liB: ZI = 4.0 VT/IIB, VT = 26 mV at 2S·C, 34 mV at 12S·C, and 19 mV at -SS·C. 9. Pc is guaranteed by Icc: Pc = 40 Icc. 10. VIR is guaranteed the CMR test. 11. BW is guaranteed by t,: BW = 0.3S/t,.. 12. Rating applies to ambient temperatures up to 12S·C. Above 12S·C ambient, derate linearly at 140·C/W for the can and Flatpak and 120·C/W for the DIP. 13. For supply vonages less than ± 20 V, the absolute maximum input voltege is equal to the supply voltege. 14. Short circuR may be to ground or eRher supply. Rating applies to 12S·C case temperature or 7S·C ambient temperature. 14-92 J.LA747AQ8 /-LA747AQB Electrical Characteristics ± 5.0 V Symbol VIO t!.Vlolt!.T « Vee « ± 20 V, unless otherwise specified. Characteristic Input Offset Voltage Condition Rs = 50 kn, VCM = 0 V Input Offset Voltage Temperature Sensitivity 25°C ~TA ~ Input Offset Voltage Adjustment Range? Vcc= ±20 V 110 Input Offset Current VeM = 0 V lis Input Offset Current Temperature Sensitivity Input Bias Current 125°C -55°C ~TA ~ +25°C VIO adi t!.llolt!.T Min 25°C ~ TA ~ -55°C ~TA 125°C +25°C VCM = 0 V Input Impedance8 Vee=±20 V Icc Supply Current (Total) Vec=±20 V Unit Note 3.0 mV 1 1 4.0 mV 1 2,3 15 /-LVrC 4 2 15 /lV/oC 4 3 mV 1 1,2,3 5.0 ~ ZI Max 30 nA 1 1 70 nA 1 2,3 0.2 nA/oC 4 2 0.5 nAloC 4 3 80 nA 1 1 210 nA 1 2,3 Mn 1 1 2 1.0 Mn 1 7.50 mA 1 1 6.75 mA 1 2 8.25 mA 1 3 300 mW 1 1 270 mW 1 2 330 mW 1 3 dB 1 1,2,3 0.5 Pc CMR Power Consumption (Total)9 Common Mode Rejection VIR Input Voltage Range 10 PSRR Power Supply Rejection Ratio Vec=±20 V Vec=±20 V, VCM=±15 V, Rs=50 n ±15 los Output Short Circuit Current Avs Large Signal Voltage Gain TR(t,) TR(os) BW Output Voltage Swing Transient Response Vee=±20 V Rise Time Overshoot V 1 1,2,3 50 /lVIV 1 1 100 /lV/V 1 2,3 60 Vee=±20 V, Vo=±15 V, RL = 2.0 kn Vec=±5 V, Vo =±2 V, RL = 2.0 kn VOP 80 V+ =10 V, V-=-20 V to V+ = 20 V, V- = -10 V, Rs= 50 n I RL=10 kn I RL = 2.0 kn mA 1 1,2,3 V/mV 1 4 32 V/mV 1 5,6 10 V/mV 1 4,5,6 ±16 V 1 4,5,6 ±15 V 1 4,5,6 800 ns 3 9, 10, 1 25 % 3 9, 10, 1 MHz 3 9, 10, 1 50 Vee = ±20 V, VI = 50 mV, RL = 2.0 kn, CL = 100 pF, Av = 1.0 Bandwidth 11 0.437 14-93 Subgrp J.LA747AQB (Cont.) Electrical Characteristics ± 5.0 V';;;; Vee';;;; ± 20 V, unless otherwise specified. Symbol Characteristic Condition Min Max Unit Note Subgrp VIIlS 3 9,10,1 SR Slew Rate Vee = ±20 V, RL = 2.0 kQ, Av = 1.0 0.3 CS Channel Separation Vee=±20 V 100 dB 1 9, 10, 1 NI (BB) Noise Broadband Vee = ± 20 V, BW = 5.0 kHz 15 IlVrms 4 9 NI (PC) Noise Popcorn Vee = ± 20 V, BW = 5.0 kHz 40 IlVpk 4 9 Primary Burn-In Circuit (38510/10102 may be used by FSC as an alternate) 15 V NC OUT A V+A OUTB -IN A V+B +INA -IN B V- +INB -=-15 V -=- Equivalent Circuit -IN r1--------r---~--------._--------~--~------------------~--V+ R6 + IN 27 n OUT R7 22 n +OFFSET NULL R1 1 kfl R3 50 kO L---~ Rl1 R2 1 kn __ ~ ____ 50 k!1 ~ __ ~ ________ ~ __ ~ -+__ ____ ____ __ __ ____ -OFFSET NULL 14-94 ~ ~ ~ ~ ~~V_ J.LA747Q8 Dual Operational Amplifier F=AIRCHILC A Schlumberger Company MIL-STO-883 July 1986-Rev 15 Aerospace and Defense Data Sheet Linear Products Description Connection Diagram 10-Lead Can Package (Top View) The !LA7470B is a pair of high performance monolithic operational amplifiers constructed using the Fairchild Planar Epitaxial process. They are intended for a wide range of analog applications where board space or weight are important. High common mode voltage range and absence of latch-up make the !LA74 70B ideal for use as a voltage follower. The high gain and wide range of operating voltage provide superior performance in integrator, summing amplifier, and general feedback applications. The !LA7470B is short circuit protected and requires no external components for frequency compensation. The internal 6 dB/octave roll-off insures stability in closed loop applications. 6 • • • • No Frequency Compensation Required Short Circuit Protection Offset Voltage Null Capability Large Common Mode And Differential Voltage Ranges • Low Power Consumption • No Latch-Up NC vLead 5 connected to case. Connection Diagram 14-Lead Flatpak (Top View) +OFFSET NULLA -INA~~---,"" +INA V+ A -OFFSET NULLA Connection Diagram 14-Lead DIP (Top View) YC=JOUTA NC V-OFFSET NULLB r - I C = J OUT B +INB~~_r- -IN A +IN A -OFFSET NULL A v- + OFFSET --'"'"L._ _ _ _ _. .- - NULL B V+ A OUT A Order Information NC Part No. Case I Finish +IN B V+ B /.lA747FMOB /.lA747DMOB /.lA747HMOB -IN B + OFFSET NULL B JAN Product Available -OFFSET NULL B V+ B +OFFS£T -IN B NULL A OUT B 10102 10102 10102 10102 10102 10102 14-95 AA CA IC BAA BAB BCA BCB BIA BIC Package Code Mil-M-38510, Appendix C F-1 14-Lead Flatpak D-1 14-Lead DIP A-2 10-Lead Can F-1 F-1 D-1 D-1 A-2 A-2 14-Lead Flatpak 14-Lead Flatpak 14-Lead DIP 14-Lead DIP 10-Lead Can 10-Lead Can MA747Q8 Absolute Maximum Ratings Storage Temperature Range Operating Temperature Range Lead Temperature (soldering, 60 s) Internal Power Dissipation 12 Can and Flatpak DIP Supply Voltage Differential Input Voltage Input Volt~ge13 Short Circuit Duration 14 Processing: MIL-STD-883, Method 5004 -65°C to + 175°C -55°C to +125°C 300°C 350 mW 400mW ±22 V ±30 V ±20 V Indefinite Burn-In: Method 1015, Condition A, PDA calculated using Method 5005, Subgroup 1 Quality Conformance Inspection: MIL-STD-883, Method 5005 Group A Electrical Tests Subgroups: 1. 2. 3. 4. 5. 6. 9. 10. 11. Static tests at 25°C Static tests at 125°C Static tests at -55°C Dynamic tests at 25°C Dynamic tests at 125°C Dynamic tests at -55°C AC tests at 25°C AC tests at 125°C AC tests at -55°C Group C and 0 EndpOints: Group A, Subgroup 1 Notes 1. 100% Test and Group A 2. Group A 3. Periodic tests, Group C 4. Guara'1lGed but not tested 5. When cpanges occur, FSC will make data sheet revisions available. Contact local sales representative for the latest revision. 6. For mo(e information on device function, refer to the Fairchild Unear Data Bqpk Commercial Section. 7. Not available on "A747HMQB. 8. Z, is g~anteed by I'B: Z, - 4.0 VTIi'B, VT - 26 mV at 25·C, 34 mV at 125·C, and 19 mV at -55·C. 9. Pc is guaranteed by Icc: Pc - 30 Icc. 10. V'R is i'aranteed by the CMR test. 11. BW is guaranteed by 1,: BW - 0.35/1,. 12. Rating applies to ambient temperatures up to 125·C. Above 125·C ambient, derate linearly at 140·C/W for the Can and Flatpak and 120·C/W for the DIP. 13. For supply voltages less than ± 20 V, the absolute maximum input voltage is equal to the supply voltage. 14. Short circuit may be to ground or either supply. Rating applies to 125°C case temperature or 75°C ambient temperature. 14-96 }lA747QB JJA747QB Electrical Characteristics Vee Symbol Via ~Vlo/~T = ± 15 V, unless otherwise specified. Characteristic Input Offset Voltage Input Offset Voltage Temperature Sensitivity Condition '" Min Max Unit Note Subgrp 1 5.0 mV 1 6.0 mV 1 2,3 25°C ";;;TA";;; 125°C 15 /NloC 4 2 -55°C ";;;TA";;; +25°C 15 pV/oC 4 3 mV 4 1,2,3 nA 1 1,2 3 Rs=10 kn, VCM=O V Via adi Input Offset Voltage Adjustment Rangel 110 Input Offset Current VeM =0 V 500 nA 1 ~llo/~T Input Offset Current Temperature Sensitivity 25°C ";;;TA";;; 125°C 1.0 nArC 4 2 -55°C";;; TA";;; +25°C 1.0 nA/oC 4 3 340 nA 1 1 500 nA 1 2 3 liB Input Bias Current 5.0 200 VeM = 0 V 1500 ZI lee Pc Input ImpedanceS VIR Input Voltage Range 10 PSRR Power Supply Rejection Ratio los Output Short Circuit Current Avs Large Signal Voltage Gain TR(os) 1 1 0.2 Mn 1 2 Power Consumption (Total)9 Common Mode Rejection TR(t,) 1 Mn Supply Current (Total) CMR VoP nA 0.3 Output Voltage Swing Transient Response I Rise Time I Overshoot VeM = ± 12 V, Rs = 50 n 5.6 mA 1 1 5.0 mA 1 2 3 6.6 mA 1 170 mW 1 1 150 mW 1 2 200 3 mW 1 70 dB 1 1,2,3 ±12 V 1 1,2,3 pVIV 1 1,2,3 V+ =10 V, V-=-20 V to V+ =20 V, V-=-10 V, Rs=50 n 150 mA 1 1,2,3 50 V/mV 1 4 25 V/mV 1 5,6 60 Vo=±10 V, RL=2.0 kn RL = 10 kn ±12 V 1 4,5,6 RL = 2.0 kn ±10 V 1 4,5,6 800 ns 3 g, 10, 1 25 % 3 g, 10,11 Vee = ± 20 V, VI = 50 mV, RL = 2.0 kn, CL = 100 pF, Av = 1.0 BW Bandwidth 11 0.437 MHz 3 g, 10, 1 SR Slew Rate Vee=±20V, RL = 2.0 kn, Av = 1.0 0.3 V/IlS 3 g, 10, 1 CS Channel Separation Vee =±20 V 80 dB 1 9 NI (BB) Noise Broadband Vee = ± 20 V, BW = 5.0 kHz 15 IlV,ms 4 9 NI (PC) Noise Popcorn Vee = ±20 V, BW = 5.0 kHz 40 IlVpk 4 9 14-97 • MA747Q8 Primary Burn-In Circuit (38510/10102 may be used by FSC as an alternate) 15 V Ne OUT A V+A OUTB -INA V+ B +INA -INB V- +INB "::" -15 V "::" CR05210F Equivalent Circuit (1/2 of circuit) -IN ~~------~----.-------~~---------.---,__------------------~--V+ R6 +IN '7 n OUT R7 •• n ·OFFSET NULL R1 R3 1kn 50kn R11 R2 1 kn 50 kn L---~~~~--t---~--------4---~--~-4--~----4-----~--~~~~V- -OFFSET NULL 14-98 F=AIRCHILO A Schlumberger Company J,lA7S9QB Power Operational Amplifier MIL-STD-883 July 1986-Rev 15 Aerospace and Defense Data Sheet Linear Products Description Connection Diagram 8-Lead Can (Top View) The J,lA759QB is a high performance monolithic operational amplifier constructed using the Fairchild Planar Epitaxial process. The amplifier provides high output current and features small signal characteristics better than the J,lA741QB. The amplifier is designed to operate from a single or dual power supply and the input common mode range includes the negative supply. The high gain and high output power provide superior performance whenever an operational amplifier is needed. The J,lA759QB employs internal current-limiting, thermal shutdown and safe-area compensation making it essentially indestructible. It is intended for a wide range of applications including voltage .. regulators, audio amplifiers, servo amplifiers, and power drivers. s • • • • • High Output Current Internal Short Circuit Current-Limiting Internal Thermal Overload Protection Internal Output Transistors Safe-Area Protection Input Common Mode Voltage Range Includes Ground Or Negative Supply NC vLead 4 connected to case. Order Information Part No. J,lA759HMQB 14-99 Casel Finish GB Package Code MII-M-38510, Appendix C A-1 8-Lead Can J.LA759QB Proce~ing: Absolute Maximum Ratings Storage Temperature Range Operating Temperature Range Lead Temperature (soldering, 60 s) Internal Power Dissipation 10 Can Supply Voltage Differential Input Voltage Input Voltage 11 -65°C to +175°C -55°C to +125°C 300°C 330 mW ±18 V ±15 V (V- - 0.3 V) to V+ MIL-STD-883, Method 5004 Burn-In: Method 1015, Condition A, PDA calculated using Method 5005, Subgroup 1 Quality Conformance Inspection: MIL-STD-883, Method 5005 Group A Electrical Tests Subgroups: 1. 2. 3. 4. 5. 6. Static tests at Static tests at Static tests at Dynamic tests Dynamic tests Dynamic tests 25°C 125°C -55°C at 25°C at 125°C at -55°C Group C and D Endpoints: Group A, Subgroup 1 NotH 1. 100% Test and Group A 2. Group A 3.. Periodic 18sts, Group C 4. Guaranteed but not tested 5. When changes occur, FSC will make data shein revisions available. Contact local sales representative for the latest revision. 6. For more information on device function, refer to the Fairchild Lineer Oata Book Commercial Section. 7. ZI Is guaranteed by liB: ZI = 4.0 VT/IIB, VT = 26 mV at 25°C, 34 mV at 125°C, and 19 mV at -55°C. B. VIA Is guaranteed by the CMR test. 9. Vo - ± 12 V is guaranteed by worse case Vo - ± 5 V. 10. Rating applies to ambient temperatures up to 125°C. Above 125°C ambient. derate linearly at lSOoC/W. 11. For Supply voltages kiss then ± 15 V, the ab.soIute maximum input voltage is equal to the supply voltage. . 14-100 IlA759QB ~759QB Electrical Characteristics Vee = ± 15 V, unless otherwise specified. Symbol Input Offset Voltage VIO VIO Characteristic adj 110 Condition Rs = 50 il, VCM = 0 V Input Offset Voltage Adjustment Range Input Offset Current liB Input Bias Current ZI Input Impedance7 Min Unit Note 3.0 mV 1 1 4.5 mV 1 2,3 mV 1 1 30 nA 1 1 60 nA 1 2,3 150 nA 1 1 2,3 Max 6.0 VCM=O V VCM=O V nA 1 Mil 1 1 mA 1 1 dB 1 1,2,3 V 1 1,2,3 /lVlV 1 1,2,3 mA 1 1 50 VlmV 1 4 25 V/mV 1 5,6 V 1 4,5,6 300 Icc Supply Current CMR Common Mode Rejection VIR Input Voltage RangeS 0.25 18 -15 V";;;VCM";;;13 V, Rs=10 kil 80 -15 PSRR Power Supply Rejection Ratio ±5.0 V";;;Vcc";;;±18 V, Rs=10 kil IPk Peak Output Current9 5.0 V";;;Vo";;;12 V, -12 V";;;Vo";;;-5.0 V Avs Large Signal Voltage Gain RL = 50 n, VoP Output Voltage Swing RL=50 n Vo = ± 10 V 13 100 ±325 ±10 14·101 Subgrp J.LA759Q8 Primary BlI,fn-ln Circuit - ·OFFSET NULL NC r---15V -IN V+ +IN OUT J .,1- r--- V- +OFFSET NULL r---- -15 V ~uivaleQt Circuit -IN +IN--~--~-----r-----+---+--------~ -OfFSET NULL + OFFSET NULL EOOOO21F • 14-102 FAIRCHILD A Schlumberger Company p.A7718Q8 Operational Amplifier MIL-STD-883 July 1986-Rev 15 Aerospace and Defense Data Sheet Linear Products Description Connection Diagram 8-Lead Can (Top View) This monolithic JFET input operational amplifier incorporates well matched ion-implanted JFETs on the same chip with standard bipolar transistors. The key feature of this op amp is low input bias currents in the sub nanoamp range plus high slew rate and wide bandwidth. 6 • • • • NC Low Input Bias Current Low Input Offset Current High Slew Rate Wide Bandwidth >--"-0 OUT -IN vLead 4 connected to case. Connection Diagram 8-Lead DIP (Top View) +OFFSET NULL -IN v+ +IN OUT -OffSET v- NULL Order Information Part No_ 1lA771BHMQB 1lA771 BRMQB 14-103 Casel Finish GC PA Package Code MII-M-38510, Appendix C A-1 8-Lead Can D-4 8-Lead DIP ~A771BQB Processing: MIL-STD-883, Method 5004 Absolute Maximum Ratings Storage Temperature Range Operating Temperature Range Lead Temperature (soldering, 60 s) Internal Power Dissipation 10 Can DIP Supply Voltage Differential Input Voltage Input Voltage 11 Short Circuit Duration 12 -65°C to + 175°C _55°C to + 125°C 300°C Burn-in: Method 1015, Condition A, PDA calculated using Method 5005, Subgroup 1 Quality Conformance Inspection: MIL-STD-883, Method 5005 330 mW 400 mW ±18 V ±30 V ±16 V Indefinite Group A Electrical Tests Subgroups: 1. 2. 3. 4. 5. 6. 9. 10. 11. Not•• 1. 100% Test and Group A 2. Group.A 3. PeriodiC tests, iJrolJp C 4. Guaranteed but not tested 5. When changes OccUr, FSC will make data sheet revisions available. Contact local sales representative for the latest revision. 6. For mOre information on device function, refer to the Fairchild Linear Data Book Commercial Section. 7. The input bias currents are junction leakage curre.nts whiCh approximately double for every 10"C increase in the junction temperature, TJ. Due to IimHed production test time, the input bias currents measured are correlated to junction temperature. In normal operation the junction temperature rises above the ambient temperature as a result of Internal dissipation, Po. TJ - TA + 6jA PD where OjA is the thermal rGsistance from junction to ambient. Use of a heat sink is recommended ij input bias current is to be kept to a minimum. 8. VIA is guaranteed by the CMR test. 9. VOP·is guaranteed by the Avs test. 10. Rating applies to ambient temperatures up to 12S"C. Above 12S"C ambient, derate linearly at 150"C/W for the can and 120"C/W for the DIP. 11. For negative supply voltages less than -16 V, the negative input vOltage is equal to the negative supply voltage. 12. Short circuit may be to ground or eHher supply. Rating applies to 12S"C case temperature or 7S"C ambient temperature. Static tests at 25°C Static tests at 125°C Static tests at -55°C Dynamic tests at 25°C Dynamic tests at 125°C Dynamic tests at -55°C AC tes.ts at 25" C AC tests at 125" C AC tests at ~55" C Group C and 0 Endpoints: Group A, Subgroup 14-104 MA771BQB ~771BQB Electrical Characteristics Vee = ± 15 V, unless otherwise specifies. Symbol Via !lVlol !IT Characteristic Input Offset Voltage Condition Input Offset Voltage Temperature Sensitivity 1 2 -55°C';;; TA';;; + 25°C 30 4 3 mV 4 1,2,3 Input Voltage Range8 PSRR Power Supply Rejection Ratio los Output Short Circuit Current Avs Large Signal Voltage Gain VoP TR(t,) B.O VCM =0 V VIR 1 2,3 4 VCM = 0 V Common Mode Rejection Subgrp mV Input Offset Current? CMR 1 p'vrc p'vrc 110 Supply Current Note mV 30 VCM = 0 V Icc Unit 5.0 B.O Input Offset Voltage Adjustment Range Input Bias Current? Max 25°C';;; TA';;; 125°C VIO adi liB Min Rs = 50 n, VCM = 0 V VCM = ± 11 V, Rs=50 kn 50 pA 1 1 20 nA 1 2,3 100 pA 1 1 5Q nA 1 2,3 2.B mA 1 1 3.4 mA 1 2,3 dB 1 1,2,3 BO ± 11 ±10 V';;;Vcc';;;±lB V, Rs=50 kn 100 1 1,2,3 1 1,2,3 mA 1 1,2,3 50 VlmV 1 4 25 VlmV 1 5,6 BO Vo=±10 V, RL = 2.0 kn V p.VIV Output Voltage Swing RL = 10 kn ±12 V 1 4,5,6 Output Voltage Swing9 RL = 2.0 kn ±10 V 1 4,5,6 ns 4 9,10,11 Transient Response I Rise Time I Overshoot TR(os) VI = 50 mY, RL = 2.0 kn, CL = 100 pF, Av = 1.0 SR Slew Rate RL = 2.0 kn, Av = 1.0 ts Settling Time Av = 1.0 200 40 7.0 1500 % 4 9,10,11 V/p.s 4 9,10,11 ns 4 9 NI (BB) Noise Broadband BW= 10 kHz 15 p.V,ms 4 9 NI (PC) Noise Popcorn BW=10 kHz BO P.Vpk 4 9 14-105 IlA771BQB Primary Burn-In Circuit (38510/11904 may be used by FSC as an alternate) - +OFFSET NULL Ne r-15 Y y- _IN OUT .,1r- 1 -IN Y- -OFFSET NULL - -15Y Equivalent Circuit r-------------~----------~~--------~------------------_r----~----,_~ J8 -0""'" NULL + OFFSET NULL 14-106 F=AIRCHILD A Schlumberger Company MA772BQB Operational Amplifier MIL-STO-883 July 1986-Rev 15 Aerospace and Defense Data Sheet Linear Products Description Connection Diagram 8-Lead Can (Top View) This monolithic JFET input operational amplifier incorporates well matched ion-implanted JFETS on the same chip with standard bipolar transistors. The key feature of this op amp is low input bias currents in the sub nanoamp range plus high slew rate and wide bandwidth. 6 • • • • v+ Low Input Bias Current Low Input Offset Current High Slew Rate Wide Bandwidth vLead 4 connected 10 case. Connection Diagram 8-Lead DIP (Top View) v+ OUTB -INB +INB Order Information Part No. j.JA772BHMQB j.JA772BRMQB Casel Finish GC PA Package Code Mil-M-38S10, Appendix C A-1 8-Lead Can 0-4 8-Lead DIP JAN Product Available 11905 14-107 BPB 0-4 8-Lead DIP J.LA772BQB Processing: MIL-STD-883, Method 5004 Absolute Maximum Ratings Storage Temperature Range Operating Temperature Range Lead Temperature (soldering, 60 s) Internal Power Dissipation 10 Can DIP Supply Voltage Differential Input Voltage Input Voltage 11 Short Circuit Duration12 -65°C to + 175°C -55°C to + 125°C 300°C Burn-In: Method 1015, Condition A, PDA calculated using Method 5005, Subgroup 1 Quality Conformance Inspection: MIL-STD-883, Method 5005 330 mW 400 mW ±18 V ±30 V ±16 V Indefinite Group A Electrical Tests Subgroups: 1. 2. 3. 4. 5. 6. 9. 10. 11. Notes 1. 100% Test and Group A 2. Group A 3. Periodic tests, Group C 4. Guaranteed but not tested 5. When changes occur, FSC will make data sheet revisions available. Contact local sales representative for the latest revision. 6. For more information on device function, refer to the Fairchild Unear Data Book Commercial Section. 7. The input bias currents ere junction leakage currenta which approximately double for every 10°C increeae in the junction temperature, TJ. Due to limited production test time, the input bias currents measured ere correlated to junction temperature. In normal operation thll junction temperature rises above the ambient temperature as a resuU of internal dissipation, Po. TJ - TA + IJjA Po where OjA is the thermal resistance from junction to ambient. Use of a heat sink is recommended H input bias current is to be kept to a minimum. 8. VIR Is gU!lranteed by the CMR test. 9. Vop is guaranteed by the Avs test. 10. Rating applies to ambient temperatures up to 125°C. Above 125°C ambient, derate linearly at 150°CIW for the Can and 120°C/W for the DIP. 11. For negative supply voltages less then -16 V, the negative input voltage is equal to the negative supply voUBge. 12. Short circuit may be to ground or either supply. Rating applies to 125°C case temperature or 75°C ambient temperature. Static tests at 25°C Static tests at 125°C Static tests at -55°C DynamiC tests at 25°C DynamiC tests at 125°C Dynamic tests at -55°C AC tests at 25° C AC tests at 125" C AC tests at -55" C Group C and D Endpoints: Group A, Subgroup 1 14-108 ~A772BQB ~772BQB ± 15 V, unless otherwise specified. Electrical Characteristics Vee = Symbol Characteristic Condition = 50 Min Max Unit Note 5.0 mV 1 1 mV 1 2,3 4 2 30 p'vrc p'vrc 4 3 VIO Input Offset Voltage Rs 8.0 tNlo/AT Input Offset Voltage Temperature Sensitivity 25°C';;; TA';;; 125°C 30 -55°C';;; TA';;; +25°C Input Offset Currene VCM=O V 110 liB Input Bias Currene Icc Supply Current (Total) VCM =0 V CMR Common Mode Rejection VIR Input Voltage RangeS PSRR Power Supply Rejection Ratio los Output Short Circuit Current Avs Large Signal Voltage Gain VOP Output Voltage Swing Output Voltage SWing 9 TR(t,.) Transient Response TR(oS> n, VCM = 0 V I Rise Time I Overshoot VCM = ±11 V, Rs=50 kn RL = 2.0 kn, Av = 1.0 NI (BB) Noise Broadband BW=10 kHz NI (PC) Noise Popcorn BW=10 kHz CS Channel Separation pA 1 1 2,3 1 6.8 mA 1 2,3 80 dB 1 1,2,3 ± 11 V 1 1,2,3 100 p.VIV 1 1,2,3 80 mA 1 1,2,3 50 V/mV 1 4 25 V/mV 1 5,6 V 1 4,5,6 4,5,6 V 1 200 ns 4 9,10,11 40 % 4 9,10,11 V/p.s 4 9,10,11 ns 4 9 15 p.V rms 4 9 80 P.Vpk 4 9 dB 1 9 7.0 1500 80 14-109 100 1 RL =2.0 kn Av = 1.0 2,3 1 VI = 50 mV, RL = 2.0 kn CL=100 pF. Av=1.0 Settling Time 1 1 nA ±10 Slew Rate 1 nA mA ±12 SR pA 50 RL = 10 kn ts 50 20 5.6 ±10 V';;;Vcc';;;±18 V, Rs=50 kn Vo=±10 V, RL =2.0 kn Subgrp J.lA772BQB Primary Burn-In Circuit (38510/11905 may be used by FSC as an alternate) 15V OUT A V+ -INA OUTB +INA -INB V- +INB -= -15 Ii -= CI'ID5180F Equivalent Circuit r-------------------------~~----------------1_~----------------~------------------------------------~--------~--------._~ J6 RS RI6 ~~~----~--------~----~----~------------4_~----_4----------------~----------------------------~------------~~~~ 14-110 f=AIRCHILD A Schlumberger Company JlA774BQB Operational Amplifier MIL-STO-883 July 1986-Rev 15 Aerospace and Defense Data Sheet Linear Products Description Connection Diagram 14-Lead DIP (Top View) This monolithic JFET input operational amplifier incorporates well matched ion-implanted JFETS on the same chip with standard bipolar transistors. The key feature of this op amp is low input bias currents in the sub nanoamp range plus high slew rate and wide bandwidth. 6 • • • • OUT" Low Input Bias Current Low Input Offset Current High Slew Rate Wide Bandwidth -IN" +IN" y+ +IN D y- +IN B +IN C -IN B -IN C OUTB OUT C Order Information Part No. 1LA774BDMQB 14-111 Casel Finish PA Package Code MII-M-38S10, Appendix C 0-1 14-Lead DIP J,LA7748Q8 Absolute Maximum Ratings Storage Temperature Range Operating Temperature Range Lead Temperature (soldering, 60 s) Internal Power Dissipation 10 DIP Supply Voltage Differential Input Voltage Input Voltage 11 Short Circuit Duration 12 Processing: MIL-STD-883, Method 5004 -65°C to +175°G -55°C to +125°C 300°C Burn-In: Method 1015, Condition A, PDA calculated using Method 5005, Subgroup 1 Quality Conformance Inspection: MIL-STD-883, 400 mW ± 18 V ±30 V ± 16 V Indefinite Method 5005 Group A Electrical Tests Subgroups: 1. 2. 3. 4. 5. 6. 9. 10. 11. Notes 1. 100% Test and Group A 2. Group A 3. Periodic tests. Group C 4. Guaranteed but not tested 5. When changes occur, FSC will make data. sheet revisions available. Static tests at 25°C Static tests at 125°C Static tests at -55°C Dynamic tests at 25°C Dynamic tests at 125°C Dynamic tests at -55°C AC tests at 25" C AC tests at 125" C AC tests at -55" C Group C and D Endpoints: Group A, Subgroup Contact local sales representative for the latest revision. 6. For more information on device function, refer to the Fairchild Linear Data Book Commercial Section. 7. The input bias currents are junction leakage currents which approximately double for every 10°C increase in the junction temperature, TJ. Due to limited production test time, the input bias currents measured are correlated to junction temperature. In normal operation the junction temperature rises above the a~ient temperature as a result of internal dissipation, Po. TJ = TA + OjA Pfwhere OjA is the thermal resistance from junction to ambient. Use of a heat sink is recommended if input bias current is to be kept to a minimum. S. V,R is guaranteed by the CMR test. 9. Vop is guaranteed by the Avs test. 10. Rating applies to ambient temperatures up to 12S·C. Above 12S·C ambient, derate linearly at 120·C/W. 11. For negative supply voltages less than -16 V, the negative input voltage is equal to the negative supply voltage. 12. Short circuit may be to ground or either supply. Rating applies to 125°C case temperature or 75°C ambient temperature. 14-112 fJ.A774BQB j.tA774BQB Electrical Characteristics Vee = ± 15 V, unless otherwise specified. Symbol Characteristic Condition Min Max Unit Note 5.0 mV 1 Subgrp 1 Via Input Offset Voltage Rs = 50 n, VCM = 0 V 8.0 mV 1 2,3 !:Nlol AT Input Offset Voltage Temperature Sensitivity 25°C -~:>OUT -IN vLead 4 connected to case. Order Information Casel Part No. pA776HMOB 14-115 Finish GB Package Code MiI-M-38510, Appendix C A-1 8-Lead Can J,LA776Q8 Absolute Maximum Ratings Storage Temperature Range Operating Temperature Range Lead Temperature (soldering, 60 s) Internal Power DisSipation 10 Can Supply Voltage Differential Input Voltage Input Voltage 11 Short Circuit Duration 12 Voltage E;letween Offset Null and VISET (Max Current at ISET) VSET (Max Voltage to GND at ISET) Processing: MIL-STD-883, Method 5004 -65°C to + 175°C -55°C to + 125°C 300°C 330 mW ± 18 V ±30 V ±15 V Indefinite ±0.5 V 500 iJ.A (V+ - 2 V) Burn-In: Method 1015, Condition A, PDA calculated using Method 5005, Subgroup 1 Quality Conformance Inspection: MIL-STD-883, Method 5005 Group A Electrical Tests Subgroups: 1. 2. 3. 4. 5. 6. ~VSET~V+ Static tests at Static tests at Static tests at Dynamic tests Dynamic tests Dynamic tests 25°C 125°C -55°C at 25°C at 125°C at -55°C Group C and D Endpoints: Group A, Subgroup Notes 1. ~100% Test and Group A Group A 3~ Periodic tests, Group C 4~ Guaranteed but not tested 5. When changes occur, FSC will make data sheet revisions available. Contact local sales representative for the latest revision. 2~ 6. For more information on device function, refer to the Fairchild Unear Data Bbok Commercial Section. PC1 is guaranteed by ICC1: Pc1 ~ 30 ICC1~ 8. Pc2 is guaranteed by ICC2: Pc2 = 6 ICC2' 9~ V,R is guaranteed by the CMR test. 1o~ Rating applies to ambient temperatures up to 125"C~ Above 125"C ambient derate linearly at 150"C/W~ 11. For supply voltages less than ±15 V, the absolute maximum input voltage is equal to the supply voltage~ 12~ Short circuit may be to ground or either supply~ Rating applies to 125°C case temperature or 75°C ambient temperature for ISET < 30 MA~ 7~ 14-116 J-lA776Q8 JlA7760B Electrical Characteristics ± 3.0 V .;;; Vee';;; ± 15 V, 1.5 JlA';;; ISET .;;; 15 JlA, unless otherwise specified. Symbol VIO 110 Characteristic Input Offset Voltage Input Offset Current Condition Rs = 50 n, Min VCM = 0 V ISET = 1.5 pA VCM = 0 V ICC1 Input Bias Current Supply Current VeM = 0 V Vce=±15 V Supply Current Vee = ±3.0 V Power Consumption? Vcc=±15V Power ConsumptionS Vec=±3.0 V Common Mode Rejection Subgrp 6.0 mV 1 2,3 3.0 nA 1 1 5.0 nA 1 2 10 nA 1 3 1 1,2 1 3 ISET = 1.5 pA 7.5 nA 1 1,2 20 nA 1 3 ISET = 15 pA 50 nA 1 1,2 120 nA 1 3 ISET = 1.5 pA ISET = 1.5 pA ISET = 1.5 pA ISET = 1.5 pA ISET = 15 pA CMR 1 nA ISET = 15 pA Pc2 1 nA ISET= 15 pA Pc1 Note mV 15 ISET = 15 pA ICC2 Unit 5.0 40 ISET = 15 pA liB Max 25 pA 1 1 30 pA 1 2,3 180 pA 1 1 200 pA 1 2,3 20 pA 1 1 25 pA 1 2,3 160 pA 1 1 180 pA 1 2,3 0.75 mW 1 1 2,3 0.9 mW 1 5.4 mW 1 1 6.0 mW 1 2,3 120 pW 1 1 150 pW 1 2,3 960 pW 1 1 1080 pW 1 2,3 Vec=±15 V, VCM=±10 V, Rs= 50 n 70 dB 1 1,2,3 Vce=±3.0 V, VeM=±1.0 V, Rs = 50 n 70 dB 1 1,2,3 V 1 1,2,3 V 1 1,2,3 pVIV 1 1,2,3 VIR Input Voltage Range 9 Vee=±15 V ±10 Vee = ±3.0 V ± 1.0 PSRR Power Supply Rejection Ratio ±3.0 V IN CI--+-~-OUT R11 -IN--~-i3 130 0 Q15 R12 8000 R13 40 L----4------~~GND V- 15-6 p.A139Q8 F=AIRCHILO Quad Comparator A Schlumberger Company MIL-STO-883 July 1986-Rev 25 Aerospace and Defense Data Sheet Linear Products Description Connection Diagram 14-Lead DIP (Top View) The jJ.A 1390B consists of four independent precision voltage comparators designed specifically to operate from a single power supply. Operation from split power supplies is also possible and the low power supply current drain is independent of the supply voltage range. Darlington connected PNP input stages allow the input common mode voltage to include ground. 6 • Single Supply Operation • Dual Supply Operation • Allow Comparison Of Voltages Near Ground Potential • Low Current Drain • Compatible With All Forms Of Logic • Low Input Bias Current • Low Input Offset Current • Low Offset Voltage OUT A OUTD V-orGND -INA +IN 0 +INA -IN D -IN B +IN C +INB -INC Connection Diagram 14-Lead Flatpak (Top View) Q § § Y+ OUTC Y+ Connection Diagram 20-Terminal CCP (Top View) <.> OUTB OUT B Y- OR GND [::==}::::;~::~['4==~ OUT C OUT D NC NC Y- OR GND -IN A - L - _.... +IND +IN 0 '-____r---, -IN NC NC -IN +IN A BL_y'i"'.... .-'-' D I +IN C +IN B - - - " _ _ _ ". .. . -~ J""- -IN C -IN D CD01470F <.> <.> Z ., i!i + Order Information Part No. MA 139FMOB MA 139DMOB jJ.A139LMOB Casel Finish AA CA 2C Package Code MiI-M-38510, Appendix C F-1 (14-Lead Flatpak) D-1 (14-Lead DIP) C-2 (20-Terminal CCP) JAN Product Available 11201 11201 15-7 BCA BCB D-1 (14-Lead DIP) D-1 (14-Lead DIP) J1A139QB Processing: MIL-STD-883, Method 5004 Absolute Maximum Ratings Storage Temperature Range Operating Temperature Range Lead Temperature (soldering, 60 s) Internal Power Dissipation 8 Flatpak DIP and CCP Supply Voltage Differential Input Voltage9 Input Voitage 10 Input Current Short Circuit Duration 11 -65°C to 175°C -55°C to 125°C 300°C Burn-In: Method 1015, Condition A, PDA calculated using Method 5005, Subgroup 1 Quality Conformance Inspection: MIL-STD-883, 350 mW 400 mW ± 18 V or 36 V 36 V -0.3 V to 36 V 10 mA Indefinite Method 5005 Group A Electrical Tests Subgroups: 1. 2. 3. 4. 5. 6. 9. 10. 11. Notes 1. 100% Test and Group A 2. Group A 3. Periodic tests. Group C 4. Guaranteed but not tested Static tests at 25°C Static tests at 125°C Static tests at -55°C Dynam ic tests at 25° C Dynamic tests at 1250 C Dynamic tests at -55c C AC tests at 25°C AC tests at 125°C AC tests at -55°C Group C and D Endpoints: Group A, Subgroup 1 5. When changes occur, FSC will make data sheet revisions available. Contact local sales representative for the latest revision. 6. For more information on device function, refer to the Fairchild Linear Data Book Commercial Section. 7. VIR is guaranteed by the VIO test. 8. Rating applies to ambient temperatures up to 125·C. Above 125·C ambient, derate linearly at 140·C/W for the Flatpak and 120·C/W for the DIP and CCP. 9. The differential input voltage shall not exceed the supply voltage. 10. For supply voltages less than ± 18 V, the absolute maximum input voltage is equal to the supply voltage. The input common mode voltage or either signal input voltage should not be allowed to go negative more than 0.3 V. 11. Short circuit may be to ground or negative supply. Rating applies to 125°C case temperature or 75°C ambient temperature. Short circuit from output to V+ can cause extensive heating and eventual destruction. No more than one amplifier should be shorted at the same time as the maximum junction temperature will be exceeded. 15-8 p.A139QB Electrical Characteristics V+ = 5 V, V- = 0 V, unless otherwise specified. Symbol VIO Max Unit Note o V . ti~ ell. OUT A2 w"a. w" PULtt~~~ C:=J--I :1:':' u z ~ L-=:J-- --....-.,--4-- Vo ii, STROBE CR02040F Use V, or 'ii" ground other input. 16-20 J.LA9615QB fJA961SQB Electrical Characteristics Symbol Characteristic Condition VOL Output Voltage LOW 7 ,8 Vee = 4.5 V, 10L = 15 rnA, VOIFF = 0.5 V VOH Output Voltage HIGH 7 ,8 Vee = 4.5 V, 10H = -5.0 rnA, VOIFF = -0.5 V leEx Output Leakage Current8 Vee = 4.5 V, VeEx = 12 V, VOIFF = 4.5 V Min Subgrp Max Unit Note 0.40 V 1 1,2,3 V 1 1,2 3 2.4 2.2 V 1 !J.A 1 1 200 !J.A 1 2,3 -15 rnA 1 1,2,3 100 los Output Short Circuit Currentl,8 Vee = 5.5 V, Vo = 0 V, VOIFF = -0.5 V -80 11L1 Low Level Input Current (Data Input) Vee = 5.5 V, VI = 0.4 V, Other Input = 5.5 V -0.7 rnA 1 1,2 -0.9 rnA 1 3 IIL2 Low Level Input Current8 (Strobe) Vee = 5.5 V, VI = 0.4 V, VOIF F = 0.5 V -2.4 -2.4 rnA rnA 1 4 1 2,3 IIL3 Low Level Input CurrentS (Response Control) Vee = 5.5 V, VOIFF = 0.5 V rnA rnA 1 4 1 2,3 VIR Input Voltage Range 9 Vee = 5.0 V, VOIFF = 1.0 V 15 V 1 1,2,3 IIH High Level Input Current8 (Strobe) Vee = 4.5 V, VOIFF = -0.5 V, VR = 4.5 V RI Input Resistor Vee = 5.0 V, VI(R) = 1.0 V, +Input = GND VTH Differential Input Threshold Voltage -1.2 -1.2 -15 2.0 !J.A 1 1 5.0 !J.A 1 2,3 77 167 Q 1 1 Vee = 4.5 V, VeM = 0 V -500 500 rnV 1 1,2,3 Vee=5.0 V, VeM= ±15 V -1.0 1.0 V 1 1,2,3 50 rnA 1 1,2,3 -1.5 V 3 1 5.5 V 4 1,2,3 lee Supply Current Vee = 5.5 V, -Inputs = 0 V, + Inputs = 0.5 V Vie Input Clarnp Voltage (Strobe) Vee = 4.5 V, lie = -12 rnA BVI High Level Input Breakdown Voltage (Strobe) Vee = 5.5 V, 11= 1.0 rnA tpLH1 Propagation Delay to High Level (Inputs A and B to Output) Vee = 5.0 V, CL = 30 pF, RL = 3.9 kQ (See Fig. 1) 50 ns 2 9 75 ns 3 10, 11 tPHL1 Propagation Delay to Low Level (Inputs A and B to Output) Vee = 5.0 V, CL = 30 pF, RL = 390 Q (See Fig. 1) 50 75 ns ns 2 3 9 10, 11 tpHL2 Propagation Delay to Low Level (Strobe to Output) Vee = 5.0 V, CL = 30 pF, RL = 390 Q 15 ns ns 4 9 10, 11 tpLH2 Propagation Delay to High Level (Strobe to Output) Vee = 5.0 V, CL = 30 pF, RL = 3.9 kQ ns ns 4 16-21 22 15 25 3 3 9 10, 11 • Primary Burn-In Circuit (38510/10404 may be used by FSC as an alternate) 5V 1 5100 510 0 OUTA Vee 1 kO - ACTIVE PULL-UP A OUTB STAOBE A ACTIVE PULL-UP B AESPA STROBE B RESP B +INA - RA F r-- +IN B -INA AB GNO -IN B r-- il- Equivalent Circuit (1/2 of circuit) AESP Vee A4 All 1.64 kU 1.5 STAOBE A18 1.8kll k~k R22 R2. 80 !! 2.0 k!! A19 900U 013 A A2 8.36kJ! Al 130 !! A3 8.36 kH 04 R23 4.0 k!1 +IN r--------l I Vee I I I I I I -IN A7 7.0kU A6 7.0kfl 010 R15 2.5 k!l R27 2.5 kll OUT R20 3.0 k!l R16 soon TO OTHEA RECEIVEA R8 lOOn RIO 132 n R9 300 !l GNO - ~ R25 100 n 10 k!! IL .". Rl' 2.5 k~l Ll - - ACTIVE PULL-UP 07 R28 100 HI _______ 02 I I .JI COMMON TO BOTH CHANNELS 16-22 R26 9OJ! A21 1.0 kll .". .". MA9616HQB F=AIRCHILO Triple Line Driver A Schlumberger Company MIL-STD-883 July 1986-Rev 25 Aerospace and Defense Data Sheet Linear Products Description Connection Diagram 14-Lead DIP (Top View) The 1lA9616HQB is a triple line driver which meets the electrical interface specifications of EIA RS-232-C and CCITT V.24 and/or MIL-STD-188C. Each driver converts TTL/DTL logic levels to EIAICCITT and/or MIL-STD-188C logic levels for transmission between data terminal equipment and data communications equipment. The output slew rate is internally limited and can be lowered by an external capacitor; all output currents are short circuit limited. The outputs are protected against RS-232-C fault conditions. A logic HIGH on the inhibit terminal interrupts signal transfer and forces the output to a VOL (EIAICCITT MARK) state. INA1 v+ INA2 INB1 INHIBrrA INB2 OUTA For the complementary function, see the 1lA9627QB Dual EIA RS-232-C and MIL-STD-188C Line Receiver.6 • Internal Slew Rate Limiting • Meets EIA R8-232-C And CCITT V.24 And/Or MIL-STD-188C • Logic True Inhibit Function • Output Short Circuit Current-Limiting • Output Voltage Levels Independent Of Supply Voltages INHIBITB INC OUTB INHIBITC OUTC v- GND Connection Diagram 20-Terminal CCP (Top View) cj!; ~ j!; "z + > Iii j!; INHIBrrA INB2 NC NC INHIBrrB OUTA NC NC OUTB INC .. I" z C!I "z ,L "50 j!; """"" Order Information Part No. 1lA9616HDMQB 1lA9616HLMQB 16-23 Casel Finish CA 2C Package Code Mil-M-38510, Appendix C D-1 14-Lead DIP C-2 20-Terminal CCP ~9616HQB Processing: MIL-STD-883, Method 5004 Absolute Maximum Ratings Storage Temperature Range Operating Temperature Range Lead Temperature (soldering, 60 s) Internal Power Dissipation 10 DIP and CCP Supply Voltage Input or Inhibit Voltage Output Signal Voltage -65°C to + 175°C -55°C to + 125°C 300°C Burn-In: Method 1015, Condition A, PDA calculated using Method 5005, Subgroup 1 Quality Conformance Inspection: MIL-STD-883, Method 5005 400 mW ± 15 V -1.5 V to +6.0 V ± 15 V Group A Electrical Tests Subgroups: 1. 2. 3. 9. 10. 11. Static tests at 25°C Static tests at 125°C Static tests at -55°C AC tests at 25°C AC tests at 125°C AC tests at -55°C Group C and 0 Endpoints: Group A, Subgroup 1 Notes 1. 100% Test and Group A 2. Group A 3. Periodic tests. Group C 4. Guaranteed but not tested 5. When changes occur, FSC will make data sheet revisions available. Contact locel sales representative for the latest revision. 6. For more information on device function, refer to the Fairchild Linear Data Book Commercial Section. 7. VIH and VIL are guaranteed by the VOH and VOL tests. 8. All input and supply leads are grounded. 9. An external capacitor may be needed to meet signal wave shaping requirements of MIL-STD-188C at the applicable modulation rate. No external capacitor is needed to meet RS-232-C. 10. Rating applies to ambient temperatures up to 125"C. Above 12S"C ambient, derate linearly at 120"C/W. Figure Switching Time Test Circuit and Waveforms INt 012 (INHIBIT = LOW) v" .><>----0 OUT V,. OV VOH-__",."..t INHIBIT OUT Omit VI 2 for channel 'C'. Input PRR - 50 kHz Pulse Width - 20 /.IS Ir = tf = 10 ± S.O ns 16-24 OV-------r~~~------~~--- pA9616HQB 1AA9616HQB Electrical Characteristics ± 10.8 V';;; Vee';;; ± 13.2 V, RL = 3.0 kil, unless otherwise specified. Symbol Characteristic Condition VOH Output Voltage HIGH VI1 and lor VI2 = VINHIBIT = 0.8 V VOL Output Voltage LOW VI1 VOH to VOL Output Voltage HIGH to Output Voltage LOW Magnitude Matching Error los+ Positive Output Short Circuit Current RL = 0 n, VI1 and lor VI2 = VINHIBIT = 0.8 V los- Negative Output Short Circuit Current RL =0 n, VI1 = VI2 = VINHIBIT = 2.0 V VIH Input Voltage HIGH7 VIL Input Voltage LOW7 IIH Input Current HIGH IlL Input Current LOW 1+ Positive Supply Current 1- Negative Supply Current Ro Output Resistance, Power SR+ Positive Slew Rate9 SR- Negative Slew Rate9 = VI2 = VINHIBIT = 2.0 V Min Max 5.0 7.0 -7.0 1 1,2,3 -5.0 V 1 1,2,3 ±10 % 1 1,2,3 -45 -12 rnA 1 1,2,3 12 60 rnA 1 1,2,3 V 1 1,2,3 V 1 1,2,3 0.8 V 40 p.A 1 1,2,3 VI1 = VI2 = 5.5 V 1.0 1 1,2,3 1 1,2,3 1 1,2,3 1 1,2,3 1 1,2,3 1 1,2,3 1 1,2,3 1 9 VI1 = VI2 = 0.4 V VI1 = VI2 = VINHIBIT = 0.8 VI1 = VI2 = VINHIBIT = 2.0 VI1 = VI2 = VINHIBIT = 0.8 VI1 = VI2 = VINHIBIT = 2.0 V -1.0 V -25 rnA rnA rnA rnA rnA rnA 300 n -1.6 VI1 Offl Note Subgrp V 2.0 = VI2 = 2.4 Unit V 25 V 15 -2.0 V"; Va"; 0.5 V CL = 2500 pF, RL = 3.0 kn (See Fig. 1) 4.0 30 4.0 30 CL = 2500 pF, RL = 3.0 kn (See Fig. 1) -30 -4.0 -30 -4.0 VIlIS VIlIS VIlIS VIlIS 2 10,11 1 9 2 10,11 • 16-25 J.lA9616HQB Primary Burn-In Circuit 12V - INAl V+ INA2 INB1 INHIBIT A INB2 OUT A I-----J INHIBIT B -: INC OUTB I-- INHIBITC OUTC I-- v- ii GND - -12 V Equivalent Circuit (1/3 of circuit) v+ INHIBIT --i<.r--r---".!VI.-T----4------- (J Z ,( Part No. J.LA9622DMOB J.LA9622LMOB J.LA9622FMOB ID z T 16-27 Casel Finish CA 2C AA Package Code MiI-M-38510, Appendix C D-1 14-Lead DIP C-2 20-Terminal CCP F-1 14-Lead Flatpak • J.LA9622QB Absolute Maximum Ratings Storage Temperature Range Operating Temperature Range Lead Temperature (soldering, 60 s) Internal Power Dissipation 8 Flatpak DIP and CCP V+ to GND Input Voltage Voltage Applied to Outputs for Output High State V- to GND Enable to GND Processing: MIL-STD-883, Method 5004 -65°C to + 175°C -55°C to + 125°C 300°C Burn-In: Method 1015, Condition A, PDA calculated using Method 5005, Subgroup 1 Quality Conformance Inspection: MIL-STD-883, 350 mW 400 mW -0.5 V to +7.0 V ± 15 V Method 5005 Group A Electrical Tests Subgroups: 1. Static tests at 25°C 2. Static tests at 125°C -0.5 V to + 13.2 V -0.5 V to -12 V -0.5 V to +15 V 3. Static tests at -55°C 9. AC tests at 25°C Group C and 0 Endpoints: Group A, Subgroup Notes 1. 100% Test and Group A 2. Group A 3. Periodic tests, Group C 4. Guaranteed but not tested 5. When changes occur, FSC will make data sheet revisions available. Contact local sales representative for the latest revision. 6. For more information on device function, refer to the Fairchild Linear Data Book Commercial Section. 7. When S3 is connected to V-, open inputs cause output to be high. When V+ = 5 V, V- = -10 V and S3 is connected to ground, open inputs cause output to be low. 8. Rating applies to ambient temperatures up to 12S·C. Above 12S·C ambient, derate linearly at 140·C/W for the Flatpak and 120·C/W for the DIP and CCP. Figure 1 Switching Time Test Circuit and Waveforms VI3'::~~~:V j~:v Yo 0.2V 1.5V 1.5V OV======~--------------~~ 16-28 MA9622QB I.IA9622QB Electrical Characteristics Symbol Characteristic Condition VOL Output Voltage LOW V+ = S3 = 4.5 V, V- = -11 V, VDIFF = 2.0 V, 10L = 12.4 mA, EN = open VOH Output Voltage HIGH V+ = 4.5 V, V- = -9.0 V, S3 = 0 V, VDIFF = 1.0 V, 10H = -0.2 mA, EN = open Unit Note V 1 3.0 V 1 1 2.9 V 1 2 3 Min Max 0.4 2.8 ICEX los Output Leakage Current Output Short Circuit Current Enable Input Leakage Current V+ = S3 = 4.5 V, V- =-11 V, IN = open, EN = 4.0 V IF(EN) Enable Input Forward Current V+ = 5.5 V, V- = -9.0 V, VI = open, EN = S3 = 0 V IF(+IN) + Input Forward Current V+ = 5.0 V, V- =-10 V, VI+ = 0 V, VI- = GND, EN = S3 = open IR(EN) IFHN) -Input Forward Current V+ = S3 = 5.0 V, V- = -10 V, VI+ = GND, V I- = 0 V, EN = open V 1 1 1 200 1 2 50 JlA 1 3 -3.1 -1.4 mA 1 1 -3.1 -1.3 mA 1 2,3 2.0 JlA 1 1 5.0 I.IA 1 2 -1.5 mA 1 1,2,3 100 -2.1 mA 1 1 -2.0 mA 1 2 -2.3 mA 1 3 -2.4 mA 1 1 -2.3 mA 1 2 3 -2.6 VIL(EN) Input Voltage LOW 4.5 V --..,....I--fo) ~ ~~~LHIr- OUT PRR = 500 kHz Amplitude = -10 V Pulse Width = 1 ~s tr =tj = 20 ns Vo ~1.5V CR05060F TESTS tpLH, tpHL CONDITIONS (0C) V+ (Volts) V(Volts) R (kil) 25 5.0 -13 3.75 TA 16-36 IlA962SQB /-IA9625QB Electrical Characteristics Symbol Characteristic Condition Min Unit Note V 1 1 V 1 2,3 V 1 1,2,3 V 1 1,2,3 -3.0 V 1 1,2,3 V 1 1,2,3 210 IJ.A. 1 1,2,3 Max VOH Output Voltage HIGH V+ = 4.5 V, V- = -11 V, IOH =-60 IJ.A. 2.6 VOL Output Voltage LOW V+ = 5.5 V, V- =-11 V, IOL = 1.5 mA 0.5 V+=4.5V,V-=-11 V, IOL = 1.2 mA 0.5 2.5 Subgrp VIH Input Voltage HIGH 7 VIL Input Voltage LOWs IF Input Load Current V+ =5.0 V, V-=-13 V, VF = -3.0 V ICEX Output Leakage Current V+ = VCEX = 4.5 V, V- =-13 V 50 IJ.A. 1 1 I+ L Positive Supply Current LOW V+ = 5.5 V, V- = -15 V, VI =-10 V 4.8 mA 1 1 I+H Positive Supply Current HIGH V+ = 5.5 V, V- =-15 V, VI=O V 2.1 mA 1 1 1- Negative Supply Current V+ =5.5 V, V-=-15 V, Input Open or Gnd -9.0 mA 1 1 I-Max Negative Supply Current Maximum V+ = 8.0 V, V- = -20 V, VI =0 V -25 mA 1 1 tpLH Propagation Delay to High Level V+ = 5.0 V, V- =-13 V, (See Fig. 1) 100 ns 2 9 tpHL Propagation Delay to Low Level 150 ns 2 9 -9.0 16-37 J,lA9625QB Primary Burn-In Circuit 5V -15V Equivalent Circuit V+ 10kQ 5kQ 5kQ 10kQ OUTA OUTB 22kQ INB 3kQ 3kQ V- 16-38 MA9627QB FAIRCHILD Dual Line Receiver A Schlumberger Company MIL-STO-883 July 1986-Rev 15 Aerospace and Defense Data Sheet Linear Products Description Connection Diagram 16-Lead DIP (Top View) The J-!A96270B is a dual line receiver which meets the electrical interface specifications of EIA RS-232C and MIL-STD-188C. The input circuitry accomodates ±25 V input signals and the differential inputs allow user selection of either inverting or non-inverting logic for the receiver operation. The fJA96270B provides both a selectable hysteresis range and selectable receiver input resistance. When lead 1 is tied to V-, the typical switching pOints are at 2.6 V and -2.6 V, thus meeting RS-232-C requirements. When lead 1 is open, the typical switching points are at 50 fJA and -50 fJA, thus satisfying the requirements of MIL-STD-188C LOW level interface. Connecting the R lead to the (-) input yields an input impedance in the range of 3 kn to 7 kn and satisfies RS-232-C requirements; leaving R unconnected, the input resistance will be greater than 6 kn to satisfy MIL-STD-188C. 16 HYSTERESIS OUTA OUTB STROBE A STROBEB NC NC -INA -INB RA The output circuitry is TTL/DTL compatible and will allow "collector-dotting" to generate the wired-OR function. A TTL/DTL strobe is also provided for each receiver.6 • • • • • • • • v+ RB +INA +INB v- GNO EIA RS-232-C Input Standards MIL-STD-188C Input Standards Variable Hysteresis Control High Common Mode Rejection R Control (5 kn Or 10 kn) Wired-OR Capability Choice Of Inverting And Non-Inverting Inputs Outputs And Strobe TTL Compatible Order Information Part No. fJA9627DMOB Case I Finish EA Package Code MiI-M-38510, Appendix C D-2 16-Lead DIP • 16-39 tLA9627QB Absolute Maximum Ratings Processing: MIL-STD-883, Method 5004 Storage Temperature Range Operating Temperature Range Lead Temperature (soldering, 60 s) Internal Power Dissipation? DIP V+ to GND V- to GND Input Voltage Referred to GND Strobe to GND Applied Output Voltage -65°C to + 175°C -55°C to +125°C 300°C Burn-In: Method 1015, Condition A, PDA calculated using Method 5005, Subgroup 1 Quality Conformance Inspection: MIL-STD-883, Method 5005 400 mW OVto+15V OVto-15V ±25 V -0.5 V to +5.5 V -0.5 V to +15 V Group A Electrical Tests Subgroups: 1. 2. 3. 9. Static tests at 25°C Static tests at 125°C Static tests at -55°C AC tests at 25°C Group C and 0 Endpoints: Group A, Subgroup Notes 1. 100% Test and Group A 2. Group A 3. Periodic tests, Group C 4. Guaranteed but not tested 5. When changes occur, FSC will make data sheet revisions available. Contact local sales representative for the latest revision. 6. For more information on device function, refer to the Fairchild Linear ? Data Book Commercial Section. Rating applies to ambient temperatures up to 12S"C. Above 12S"C ambient, derate linearly at 120°C/W. Figure 1 Switching Time Test Circuit and Waveforms Vo -S.OV +IN R PRR = 10kHz PW = SOfLS t,=t,=Sns V, -IN -5.0V 3.92kQ - - - v+ =12V ±1% ~GND Vo - - - V-=-12V HYSOPEN 15 pF includes jig capacttance. All diodes are FD777 or equivalent. 16-40 MA9627QB J,lA9627QB Electrical Characteristics Hysteresis, -IN A, -IN B, RA, and RB Open for MIL-STD-1BBC, unless otherwise specified. Symbol Characteristic Condition Min VOL Output Voltage LOW V+ = 10.8 V, V- = -13.2 V, VI+ = 0.6 V, IOL = 6.4 mA VOH Output Voltage HIGH V+ = 10.8 V, V- =-13.2 V, VI+ = 0.6 V, 10H = -0.5 mA 2.4 los Output Short Circuit Current V+ = 13.2 V, V- = -10.8 V, VI+ = 0.6 V, Outputs Grounded -3.0 IIH(ST) Input Current HIGH (Strobe) V+ = 10.8 V, V- =-13.2 V, VI+ =0.6 V Unit Note V 1 Subgrp 1,2,3 V 1 1,2,3 mA 1 1,2,3 40 p.A 1 1,2,3 VST = 5.5 V 1.0 mA 1 1,2,3 kU 1 1,2,3 /lA 1 1,2,3 p.A 1 1,2,3 V 1 1,2,3 V 1 1,2,3 18 mA 1 1,3 12.4 mA 1 2 -16 mA 1 1,3 -11.4 mA 1 2 Input Resistance V+ = 13.2 V, V- =-13.2 V, -3.0 V~VI+ ~3.0 V ITH+ Positive Threshold Current ± 10.8 VS.Vccs. ± 13.2 V, Vo = 2.4 V ITH- Negative Threshold Current ±10.8 V~Vcc~ ±13.2 V, Vo = 0.4 V VldST) Input Voltage LOW (Strobe) VI+ =-0.6 V VIH(ST) Input Voltage HIGH (Strobe) V+ = 13.2 V, V- =-10.8 V, VI+ =-0.6 V 1+ Positive Supply Current ±10.8 V~Vcc~ ±13.2 V VI+ =-0.6 V Negative Supply Current 0.4 VST = 2.4 V RI 1- Max 6.0 100 -100 0.8 ±10.8 V~Vcc~ ±13.2 V VI+ = 0.6 V 2.0 Electrical Characteristics +IN A and -IN B connected to ground, AA and AB connected to -IN A and -IN B, and Hysteresis connected to V- for RS-232C, unless otherwise specified. Symbol RI Characteristic Input Resistance Condition 3.0 V~VI~25 -3.0 V ~ VI VI V ~-25 V Input Voltage VTH+ Positive Threshold Voltage VTH- Negative Threshold Voltage Min Max Unit Note Subgrp 3.0 7.0 kU 1 1,2,3 3.0 7.0 kU 1 1,2,3 -2.0 2.0 V 1 1,2,3 3.0 V 1 1,2,3 V 1 1,2,3 -3.0 Electrical Characteristics Vee = ± 12 V for MIL-STD-1BBC and AS-232C Symbol Characteristic Condition tpLH Propagation Delay to High Level (See Fig. 1) tpHL Propagation Delay to Low Level (See Fig. 1) 16-41 Min Max Unit Note 250 ns 2 9 250 ns 2 9 Subgrp Primary Burn-In Circuit y 1.2kO 1/4W_ 2 kO 12V HVS 1 V+ 1.2 kO 1/4W 1/4W OUTA STROBE A - NC -INA - RA +INA > - - - GNO OUT B STROBE B NC - -INS RB +INB ~ V- ~ r----- -= -12 V Equivalent Circuit (112 of circuit) v+----------------~----_.------~------~------------------------_1--_.------~--------C1 1.1pF + IN Rl1 R43 1.2BkQ 700Q --...,..-i'(-.,--, Rl 8kQ R2 11.3kQ R R4 2kQ = R34 11.3kQ R41 3.2kQ 07 v- ______~~----+_----~----~------------~----------~-----------+--~----~-HVS---------4----~------------------------------------------------------------------ 16-42 IlA9636AQB Dual Programmable Slew Rate Line Driver FAIRCHIL.D A Schlumberger Company MIL-STD-883 July 1986-Rev 15 Aerospace and Defense Data Sheet Linear Products Description Connection Diagram 8-Lead DIP (Top View) The IlA9636AOB is a TTL/CMOS compatible, dual, single ended, line driver which has been specifically designed to satisfy the requirements of EIA Standard RS-423. The IlA9636AOB is suitable for use in digital data transmission systems where Signal wave shaping is desired. The output slew rates are jointly controlled by a single external resistor connected between the wave shaping control lead (WS) and ground. This eliminates any need for external filtering of the output signals. Output voltage levels and slew rates are independent of power supply variations. Current limiting is provided in both output states. The IlA9636AOB is designed for nominal power supplies of ± 12 V. WAVESHAPE CONTROL INA OUT A INB OUTB GND V- Order Information Inputs are TTL compatible with input current loading low enough (1/10 UL) to be compatible with CMOS logic also. Clamp diodes are provided on the inputs to limit transients below ground. 6 • • • • V+ Part No. J.LA9636AR MOB Casel Finish PA Package Code MiI-M-38510, Appendix C D-4 8-Lead DIP Programmable Slew Rate Limiting Meets EIA RS-423 Requirements Output Short Circuit Protection TTL And CMOS Compatible Inputs II 16-43 /JA9636AQB Absolute Maximum Ratings Processing: MIL-STD-883. Method 5004 -65°C to + 175°C -55°C to + 125°C 300°C Storage Temperature Range Operating Temperature Range Lead Temperature (soldering, 60 s) Internal Power Dissipation 10 DIP V+ to GND V- to GND V+ to VOutput to GND Output Source Current Output Sink Current Burn-In: Method 1015, Condition A, PDA calculated using Method 5005, Subgroup 1 Quality Conformance Inspection: MIL-STD-883, Method 5005 400 mW V- to +15 V 0.5 V to -15 V o to +30 V ± 15 V -150 mA 150 mA Group A Electrical Tests Subgroups: 1. 2. 3. 9. Static tests Static tests Static tests AC tests at at 25°C at 125°C at -55°C 25°C Group C and D Endpoints: Group A, Subgroup Notes 1. 100% Test and Group A 2. Group A 3. Periodic tests. Group C 4. Guaranteed but not tested 5. When changes occur. FSC will make data sheet revisions available. Contact local sales representative for the latest revision. 6. For more information on device function, refer to the Fairchild Linear Data Book Commercial Section. 7. Only one output shorted at a time. 8. VIH is guaranteed by the VOH test. 9. V,L is guaranteed by Ihe VOL test. 10. Rating applies to ambient temperatures up to 125·C. Above 125·C ambient, derate linearly at 120·C/W. Figure 1 Switching Time Test Circuit and Waveforms + 12V v,-........p---I ,~o---p---p---vo 4500 510 CL 30pF -12 V C L includes jig and probe capacitance V, Amplitude - 3.0 V Offset - 0 V Pulse Width - 500 IlS PRR = 1 kHz t,-I,-10ns 16-44 MA9636AQB 1lA9636AQB Electrical Characteristics 10.8 V'" V+ '" 13.2 V, -13.2 V'" V- '" -1 0.8 V, and 10 kS1 '" Rws '" 500 kS1, unless otherwise specified. Symbol Characteristic Condition Min Max Unit Note 5.0 6.0 V 1 1,2,3 5.0 6.0 V 1 1,2,3 4.0 6.0 V 1 1,2,3 -6.0 -5.0 V 1 1,2,3 RL to GND (RL = 3.0 kS1) -6.0 -5.0 V 1 1,2,3 RL to GND (RL = 450 S1) -6.0 -4.0 V 1 1,2,3 50 S1 1 1,2,3 VOH1 Output Voltage HIGH RL to GND (RL = 00) VOH2 Output Voltage HIGH RL to GND (RL = 3.0 kS1) VOH3 Output Voltage HIGH RL to GND (RL = 450 S1) Vou Output Voltage LOW RL to GND (RL = 00) VOL2 Output Voltage LOW VOL3 Output Voltage LOW Ro Output Resistance RL =450 S1 los+ Positive Output Short Circuit Current? Vo = 0 V, VI = 0 V, Rws =10 kS1 los- Negative Output Short Circuit Current? Vo = 0 V, VI = 2.0 V, Rws=10 kS1 ICEX Output Leakage Current Vcc= 0 V, Vo= ± 6.0 V, Rws = 10 kS1 VIH Input Voltage HIGH8 VIL Input Voltage LOW9 VIC Input Clamp Diode Voltage II = 15 mA -1.5 IlL Input Current LOW VI = 0.4 V -80 IIH Input Current HIGH VI = 2.4 V 10 VI = 5.5 V -150 -15 mA 1 1,2,3 15 150 rnA 1 1,2,3 -100 100 p.A 1 1,2,3 V 1 1,2,3 0.8 V 1 1,2,3 V 1 1,2,3 p.A 1 1,2,3 p.A 1 1,2,3 100 p.A 1 1,2,3 18 mA 1 1,2,3 rnA 1 1,2,3 1.4 /lS 1 9 2.0 1+ Positive Supply Current V+ = 12 V, V- =-12 V, RL = 00, Rws = 100 kS1, VI=O V 1- Negative Supply Current V+ = 12 V, V- =-12 V, RL = 00, Rws = 100 kS1, VI=O V t, Rise Time Rws = 10 kS1 0.8 (See Fig. 1) tf Subgrp -18 Rws = 100 kS1 8.0 14 /lS 1 9 Rws =500 kS1 40 70 /lS 1 9 Rws = 1000 kS1 80 140 /lS 1 9 Fall Time Rws =10 kS1 0.8 1.4 JJ.S 1 9 (See Fig. 1) Rws = 100 kS1 8.0 14 /lS 1 9 Rws = 500 kS1 40 70 JJ.S 1 9 Rws= 1 MS1 80 140 /lS 1 9 16-45 Primary Burn-In Circuit 100kO 1/4W 15Y y. +------1 IN A OUT A +------1 IN B OUTB t - - - - - - i GND Y- -15Y Equivalent Circuit r---------------~ R18 400U TO D22~t" WClM --;l J ~ *~~027 ~ ~D15 Rl7 8.58 kU A ~~ R7 ~ ~01S I ~ r---< r K--> D12' ~ D13 ... ...... D5 ...... D8~7 7D3 ~ ~ ~10 r-- 7D1 R19 V a. ~= ~ ~~D18 10 OTHER CHANNEL t;122 TO 020 ........ OTHER CHANNEL ....... R13 10kU R12 SOOU ~ RS R4 [~CU3 ~ ,........, 'cii9' V 016 ..... V019 ...... R15 10 kO 01 r-J(02 C1 '--- ..-.~ cu;; " R14 380U k 012 ...... GND R1 71 702 Io,~ J- ~ OUT '04 .... ......011 CHANNEL R2 81 r.:f ~7D14 OTHER U'D V03 .......- D20 ~~D17 i7 ~ ~t'D11 o 05 D8~" [ CU5 ...- D16 O~ as I I ......028 ~~D21 I I I I I I I I I I IN I I I I 028~ OTHER CHANNEL TO I WSCIN 10 OTHER CHANNEL R6 25kU R6 2.53 kll V 017 ...... V 018 "f R9 910U TO OTHER CHANNEL L _______________ .J - - Y- o - = COMMON TO BOTH CHANNELS = CROBSUNDER 16-46 JlA9637AQB FAIRCHIL.O A Schlumberger Company Dual Differential Line Receiver MIL-STD-883 July 1986-Rev 15 Aerospace and Defense Data Sheet Linear Products Description Connection Diagram a-Lead DIP (Top View) The !1A9637 AOB is a Schottky dual differential line receiver which has been specifically designed to satisfy the requirements of EIA Standards RS-422 and RS-423. In addition, the !1A9637 AOB satisfies the requirements of MIL-STD 188-114 and is compatible with the International Standard CCITT recommendations. The MA9637 AOB is suitable for use as a line receiver in digital data systems, using either single ended or differential, unipolar or bipolar transmission. It requires a single 5 V power supply and has Schottky TTL compatible outputs. The MA9637AOB has an operational input common mode range ± 7 V either differentially or to ground. 6 • • • • • • • • Dual Channels Single 5 V Supply Satisfies EIA Standards RS-422 and RS-423 Built In ± 35 mV Hysteresis High Common Mode Range High Input Impedance TTL Compatible Output Schottky Technology Vee +INA OUT A -INA OUTB +lNB GND -INS Order Information Part No. MA9637ARMOS Casel Finish PA Package Code MiI-M-38510, Appendix C D-4 8-Lead DIP • 16-47 IlA9637AQB Processing: MIL-STD-883, Method 5004 Absolute Maximum Ratings Storage Temperature Range Operating Temperature Range Lead Temperature (soldering, 60 s) Internal Power DissipationS DIP Supply Voltage Input Voltage Differential Input Voltage Output Voltage Output Sink Current -65°C to + 175°C -55°C to + 125°C 300°C Burn-In: Method 1015, Condition A, PDA calculated using Method 5005, Subgroup 1 Quality Conformance Inspection: MIL-STD-883, Method 5005 400 mW -0.5 V to +7.0 V ± 15 V ± 15 V -0.5 V to +5.5 V 50 mA Group A Electrical Tests Subgroups: 1. 2. 3. 9. Static tests Static tests Static tests AC tests at at 25°C at 125°C at -55°C 25°C Group C and D EndpOints: Group A, Subgroup Notes 1. 2. 3. 4. 5. 100% Test and Group A Group A Periodic tests, Group C Guaranteed but not tested When changes occur, FSC will make data sheet revisions available. Contact local sales representative for the latest revision. 6. For more information on device function, refer to the Fairchild Linear Data Book Commercial Section. 7. Only one output should be shorted at a time. 8. Rating applies to ambient temperatures up to 125·C. Above 125·C ambient. derate linearly at 120·C/W. Figure 1 Switching Time Test Circuit and Waveforms Vee =5.0V Vee =S.ov -O~V----'~~ 51!) Vo CL includes jig and probe capacitance. All diodes are FD700 or equivalent -b. +0.5V------,-----_ v, ---I1r---,·5V,.5V\,---- V, Amplitude ~ 1.0 V Offset ~ 0.5 V Pulse Width ~ 100 ns PRR ~ 5.0 MHz t r =tf=5.0 ns 16-48 JlA9637AQB IlA9637AQB Electrical Characteristics 4.5 V';;; Vee';;; 5.5 V, unless otherwise specified. Symbol Characteristic Min Max Unit Note VTH Differential Input Threshold Voltage VCM = !7.0 V Condition -0.2 0.2 V 1 1,2,3 VTH(R) Differential Input Threshold Voltage Resistor VCM = !7.0 V -0.4 0.4 V 1 1,2,3 II Input Current o V';;;Vec';;;5.5 3.25 mA 1 1,2,3 mA 1 1,2,3 V 1 1,2,3 V 1 1,2,3 -40 rnA 1 1,2,3 V I VI+ = 10 V I VI+ =-10 V -3.25 Subgrp VOL Output Voltage LOW Vee = 4.5 V, 10L = 20 mA VOH Output Voltage HIGH Vee = 4.5 V, 10H = -1.0 rnA los Output Short Circuit Current? Vee = 5.5 V, Vo = 0 V Icc Supply Current Vee = 5.5 V, VI+ = 0.5 V, VI- =GND 50 rnA 1 1,2,3 tpLH Propagation Delay to High Level Vec = 5.0 V (See Fig. 1) 25 ns 2 9 tpHL Propagation Delay to Low Level 25 ns 2 9 16-49 0.5 2.5 -100 I-lA9637AQB Primary Burn-In Circuit 5V +IN A I - - - - - - i OUT A -INA OUTB +IN B GNO -INB 1 - - - 1 - -...... Cfl04180F Equivalent Circuit r--------~-------_.-----~---~-_t-----t_--VCC R7 RS R24 R23 RIS +-------t--, 02 Cl 5pF +IN ---<~-.NI/'-""'--4 OUT -IN --- --- El.2 B5- >--- 82 C4 100 kCl 1/4W 100 kO 1/4W C2 E4_ > - - - 83 84_ >--- E3 C3 .". 100 kCl 1/4W 18-6 I1A555Q8 Single Timing Circuit FAIRCHILD A Schlumberger Company MIL-STD-883 July 1986-Rev 15 Aerospace and Defense Data Sheet Linear Products Description Connection Diagram 8·Lead DIP (Top View) The MA555QB Timing Circuit is a very stable controller for producing accurate time delays or oscillations. In the time delay mode, the delay time is precisely controlled by one external resistor and one capacitor; in the oscillator mode, the frequency and duty cycle are both accurately controlled with two external resistors and one capacitor. By applying a trigger signal, the timing cycle is started and an internal flip-flop is set, immunizing the circuit from any further trigger Signals. To interrupt the timing cycle a reset Signal is applied ending the time-out. TRIGGER DISCHARGE OUT THRESHOLD The output is compatible with TTL circuits and can drive relays or indicator lamps.6 • • • • • • • Vee GND CONTROL VOLTAGE RESET Timing Control, IJS To Hours Astable Or Monostable Operating Modes Adjustable Duty Cycle High Sink Or Source Output Current TTL Output Drive Capability Low Temperature Stability Normally ON Or Normally OFF Output Connection Diagram 8·Lead Can (Top View) Vee RESET Order Information Part No. MA555HMQB IlA555RMQB Casel Finish GC PA JAN Product Available 10901 BGC 10901 BPA 10901 BPB 18-7 Package Code MII-M-38510, Appendix C A-1 (8-Lead Can) D-4 (8-Lead DIP) A-1 (a-Lead Can) D-4 (8-Lead DIP) D-4 (8-Lead DIP) #-lA555QB Processing: MIL-STD-883, Method 5004 Absolute Maximum Ratings Storage Temperature Range Operating Temperature Range Lead Temperature (soldering, 60 s) Internal Power Dissipation 7 Can DIP Supply Voltage Discharge Current Output Sink Current Output Source Current -65°C to 175°C -55°C to 125°C 300°C Burn-In: Method 1015, Condition A, PDA calculated using Method 5005, Subgroup 1 Quality Conformance Inspection: MIL-STD-883, Method 5005 330 mW 400 mW ±18 V 200 mA 200 mA -200 mA Group A Electrical Tests Subgroups: 1. 2. 3. 4. 5. 6. 9. 10. 11. Static tests at 25°C Static tests at 125°C Static tests at -55°C Dynamic tests at 25°C Dynamic tests at 125°C Dynamic tests at -55°C AC tests at 25°C AC tests at 125°C AC tests at -55°C Group C and D Endpoints: Group A, Subgroup 1 Notes 1. 100% Test and Group A 2. Group A 3. Periodic tests, Group C 4. Guaranteed but not tested 5. When changes occur, FSC will make data sheet revisions available. Contact local sales representative for the latest revision. 6. For more information on device function, refer to the Fairchild Linear Data Book Commercial Section. 7. Rating applies to ambient temperatures up to 125·C. Above 125'C ambient, derate linearty at 150'C/W for the Can and 120'C/W for the DIP. 18-8 IlA555Q8 Electrical Characteristics 4.5 V';;; Vee';;; 16.5 V, unless otherwise specified. Symbol Characteristic Condition Min Max Unit Note 12 mA 1 1,2,3 5.0 mA 1 1,2,3 10.3 V 1 1,2,3 V 1 1,2,3 1,2,3 Icc Supply Current Vee=15 V, RL=oo VTH Threshold Voltage Vee=15 V 9.7 Vee = 5.0 V 3.0 3.6 Vee = 5.0 V, RL = VTA Trigger Voltage 00 Vee=15 V 4.8 5.2 V 1 Vee = 5.0 V 1.45 1.9 V 1 1,2,3 Vee = 15 V -5.0 /lA 1 1,2,3 ITA Trigger Current VA Reset Voltage 5.0 V';;;Vee<15 V IA Reset Current Vee=15 V ITH Threshold Current Vee=15 V Vev Control Voltage Level Vee=15 V 9.6 10.4 Vee = 5.0 V 2.9 3.8 VOL Output Voltage LOW Vee=15 V 0.1 1.0 V 1 1,2,3 -1.6 0 mA 1 1,2,3 0.25 /lA 1 1,2 2.5 /lA 1 3 V 1 1 V 1 1 0.15 V 1 0.25 V 1 0.5 V 1 0.7 V 1 2 2.2 V 1 1 2.8 V IOL = 200 mA 3.5 V 1 1 IOL =8.0 mA 0.25 V 1 1 0.35 V 1 2,3 IOL = 10 mA IOL = 50 mA IOL = 100 mA Vee = 5.0 V VOH Output Voltage HIGH Vee=15 V Vee = 5.0 V 1 2 1,3 --2,3 --- --- IOH =-200 mA 11 V 1 1 13 V 1 1,2,3 IOH =-100 mA 3.0 V 1 1,2 2.0 V 1 3 nA 1 1 1,3 2 Discharge Leakage Current Vee = 15 V, VD = 15 V VSAT Discharge Saturation Voltage Vee = 5.0 V, IOL = 5.0 mA tpLH Propagation Delay to High Level (Monostable) tTLH Transition Time to High Level (Monostable) tTHL Transition Time to Low Level (Monostable) tD(OH) Time Delay High (Monostable) RT = 1.0 kn, CT = 0.1 /IF Drift in Time Delay vs. Change in Supply Voltage (Monostable) ~Vee --- 1,3 --- IOH =-100 mA leEx ~tD(OH)/ Subgrp 95 5.0 /lA 0.25 0.4 V 1 1 1,3 V RT = 1.0 kn, CT = 0.1 /IF 900 ns 3 10 800 ns 3 9,11 RT = 1.0 kn, CT = 0.1 /IF 300 ns 3 9,10,11 300 ns 3 9,10,11 106.7 113.3 /lS 3 9,10,11 RT = 100 kn, CT = 0.1 /IF 10.67 11.33 ms 3 9,10,11 ~Vee = 12 V, RT = 1.0 kn, CT = 0.1 /IF -220 220 nslV 4 9 18-9 2 • JIA555QB MA555QB (Cont.) Electrical Characteristics 4.5 V < Vee < 16.5 V, unless otherwise specified. Symbol Characteristic Condition Min kn, CT = 0.1 /IF tPHL Propagation Delay Time (Threshold to Output) (Monostable) RT = 1.0 ~tpH(OH)1 Temperature Coefficient of Time Delay (Monostable) Vcc = 16.5 V Capacitor Charge Time (Astable) CT= 0.1 /IF tDIS Capacitor Discharge Time (Astable) CT = 0.1 IlF ~teHI Drift in Capacitor Charge Time vs Change in Supply Voltage (Astable) ~Vce= 12 V, RTA = RTS = 1.0 CT=O.l/lF Temperature Coefficient of Capacitor Charge Time Vcc = 16.5 V RTA = RTB = 1.0 kn, CT = 0.1 /IF Reset Time Vce = 16.5 V, RTA = RTB = 1.0 CT= 0.1 /IF ~T tCH ~Vce tCH/~T tres Note Subgrp /lS 3 9,10,1 -11 11 ns/oC 3 10 -55°C <: TA <: 25°C -11 11 nsrC 3 11 RTA RTB = 1.0 kn 120 156 /lS 3 9,10,1 kn 11.3 15 ms 3 9,10,1 57.5 80 /lS 3 9,10,1 = RTA = RTB = 100 RTA = RTB = 1.0 kn kn 5.4 7.7 ms 3 9,10,1 -820 820 ns/V 4 9 25°C <: TA <: 125°C -68 68 ns/oC 3 10 <: TA <: 25°C -68 68 ns/oC 3 11 2.0 /lS 3 10 1.5 /lS 3 9,11 RTA = RTB = 100 -55°C kn, kn Block Diagram 12 V ~ Unit 12 <: TA <: 125°C 25°C Primary Burn-In Circuit (38510/10901 may be used by FSC as an alternate) GND Max Vee Vee 5.0 kO DISCH THRESHOLD CONTROL VOLTAGE 10kO TRIGGER DISCHARGE R FLlP·FLOP ~ OUT -- RESET 1 kO THRESHOLD CONTROL VOLTAGE 5.0 kO r- S INHIBIT! RESET TRIGGER 5.0 kO RESET GND 18·10 "::" Q OUT JlA733Q8 FAIRCHILO A Schlumberger Company Differential Video Amplifier MIL-STD-883 July 1986-Rev 25 Aerospace and Defense Data Sheet Linear Products Description Connection Diagram 10-Lead Can (Top View) The !lA73308 is a monolithic two-stage differential input, differential output video amplifier constructed using the Fairchild Planar Epitaxial process. Internal series shunt feedback is used to obtain wide bandwidth, low phase distortion, and excellent gain stability. Emitter follower outputs enable the device to drive capacitive loads and all stages are current source biased to obtain high power supply and common mode rejection ratios. It offers fixed gains of 10, 100 or 400 without external components, and adjustable gains from 10 to 400 by the use of a single external resistor. No external frequency compensation components are required for any gain option. The device is particularly useful in magnetic tape or disc file systems using phase or NRZ encoding and in high speed thin film or plated wire memories. Other applications include general purpose video and pulse amplifiers where wide bandwidth, low phase shift, and excellent gain stability are required. 6 • • • • G2A vLead 5 connected to case. Connection Diagram 14-Lead DIP (Top View) Wide Bandwidth High Input Resistance Selectable Gains Of 10, 100, And 400 No Frequency Compensation Required 14 IN' NC Connection Diagram 14-Lead Flatpak (Top View) GOA G'A IN 2 IN' NC NC G,. G2A G,. G'A V+ NC v- v+ NC NC OUT 2 OUT' OUT 1 Order Information Part No. !lA733DM08 !lA733HM08 IlA733FM08 Casel Finish CA IC AA Package Code MiI-M-38510, Appendix C 0-1 14-Lead DIP A-2 10-Lead Can F-1 14-Lead Flatpak • 18-11 IlA733Q8 Absolute Maximum Ratings Storage Temperature Range Operating Temperature Range Lead Temperature (soldering, 60 s) Internal Power Dissipation9 Can and Flatpak DIP Supply Voltage Differential Input Voltage Input Voltage Output Current Processing: MIL-STD-883, Method 5004 -65°C to 175°C -55°C to 125°C 300°C 330 mW 400 W ±8 V ±5 V ±6 V 10 mA Burn-In: Method 1015, Condition A, PDA calculated using Method 5005, Subgroup 1 Quality Conformance Inspection: MIL-STD-883, Method 5005 Group A Electrical Tests Subgroups: 1. 2. 3. 4. 5. 6. 9. Static tests at 25°C Static tests at 125°C Static tests at - 55°C Dynamic tests at 25°C Dynamic tests at 125°C Dynamic tests at -55°C AC tests at 25°C Group C and 0 Endpoints: Group A, Subgroup 1 Notes I. 100% Test and Group A 2. Group A 3. Periodic tests, Group C 4. Guaranteed but not tested 5. When changes occur, FSC will make data sheet revisions available. Contact local sales representative for the latest revision. 6. For more information on device function, refer to the Fairchild Linear Data Book Commercial Section. 7. VIR is guaranteed by the CMR test. 8. Gain Select leads GIA and GI B are connected together for Gain I, Gain Select leads G2A and G2B are connected together for Gain 2, and all Gain Select leads are left open for Gain 3. 9. Rating applies to ambient temperatures up to 125·C. Above 125·C ambient, derate linearly at 140·C/W for the Can, 150·C/W for the Flatpak, 120·C/W for the DIP. 18-12 J..LA733Q8 Electrical Characteristics Vee = ± 6.0 V, unless otherwise specified. Symbol 110 Characteristic Condition Min Input Offset Current liB Input Bias Current ZI Input Impedance Max Note 3.0 JJ.A 1 1 5.0 jJA 1 2,3 20 JJ.A 1 1 2,3 40 Icc Gain 2 JJ.A 1 20 kn 1 1 8.0 kn 1 2,3 Supply Current CMR Common Mode Rejection VIR Input Voltage Range? PSRR Power Supply Rejection Ratio 5.5 V~V+ ~S.5 V, V- = -S.O V, Gain 2 Vos Output Offset Voltage Gain 1 Gain 2,3 VCM = ± 1.0 V, Gain 2 24 mA 1 1 27 mA 1 2,3 60 dB 1 1 50 dB 1 2,3 ± 1.0 V 1 1,2,3 50 dB 1 1,2,3 1.5 V 1 1,2,3 1.0 V 1 1 1.2 V 1 2,3 3.4 V 1 1 mA 1 1 VCMO Output Common Mode Voltage 2.4 10- Output Sink Current 2.5 A Differential Voltage Gains 2.2 Gain 1 Gain 2 Gain 3 VOP Output Voltage Swing tR Risetime Rs = 50 n, Vo = 1 Vp _ p, Gain 2 tpD Propagation Delay Rs=50 Gain 2 n, Vo=1 Vp _ p, 18-13 Subgrp Unit mA 1 2,3 300 500 VIV 1 4 200 SOO VIV 1 5,6 4 90 110 VIV 1 80 120 VIV 1 5,S 9.0 11 VIV 1 4 8.0 12 5,6 VIV 1 3.0 Vp _ p 1 4 2.5 Vp _ p 1 5,S 10 ns 2 9 10 ns 2 9 JlA733QB Primary Burn-In Circuit IV IN 1 GOA IN2 G,. G.. V+ G,. oun v- OUT 2 12 V ":" OR_ Equivalent Circuit V+ IN1 t---;--oUT 1 UT2 R14 4000 VEOOOS11F 18-14 Package Outlines FAIRCHILD A Schlumberger Company 3 Lead Molded Package In Accordance with JEDEC TO·92 EI 1..-.195 (4.95)--1 I .175 (4.45) I Notes Leads are solder dipped copper alloy. Lead No. 2 connected to die pad. Package material is plastic. Package weight is 0.19 gram. ,,, -- , .190 (4.83) .170 (4.32) SEATING PLANE I '_ ... " t Dimensions -.055 (1.40) and -.105 (2.67) are measured .045 .525 (13.34) .475 (12.07) ~ , I I .:~~g~~ - H . 1.14 .095 2.41 at the body of package . ~ ~ .022 (0.56) .016(0.41) :~~ ~~:~~~ LEAD NO. 3 LEAD NO. 2 LEAD NO. 1 .105 (2.87) .080 (2.03) POOOO10F 3 Lead Metal Package In Accordance with JEDEC TO·39 Fe .370 (9.40) .350(8.89) Notes Leads. are gold plated kovar. Leads 1 and 2 are electrically isolated with glass . Lead No. 3 connected to case. Eyelet is gold plated kovar. Can is Grade A nickel. Package weight is 1.23 grams. DIA ~ .335 (8.51)1 . 315 (8.00) DlA ~ .034(0.864) --L- .165 (4.19) ~ 3 PlNS___ 0.19 (0.48) 0.I':,l~·41) --+SEATING PLANE ~ .565 (14.35) .500 (12.70) ! PIN 2 All dimensions in inches (bold) and millimeters (parentheses) 19-3 Package Outlines 18 Lead Ceramic DIP Side Brazed Package . 915(2324) ~-"'." 1. FD Notes Leads are nickel and gold plated alloy 42 or kovar. Package material is alumina. Combo-lid is gold plated kovar or alloy 42 . I 440 (".,8)-----1 .425(10.80) 18 .050(1.27) R NOM ~ ~ ,- ~ INDEX MARK 17 Leads are intended for insertion in hole rows on .300 11 10 I .305(7.75) .285(7.24) 8 .155(3.94) .110(2.79) 1 .160(4.06) .140(3.56) t .110(2.79)TYP .090(2.29) ~ l f .325(8 .26) .295(7 .49) 9~ - - -- - 2 (7.62) centers. Board drilling dimensions should equal your practice for .020 (0.51) diameter leads. Package weight is 1.5 grams . 1 .012(0.30) .009(0.23) TYP j :~~ ~g~~l TYP L·020(051) .016(0 41) TYP .310(7.87) .290(7.37) STANDOFF WIDTH 20 Lead Ceramic DIP FL Notes Leads are tin-plated alloy 42. Leads are intended for insertion in hole rows on .300 .025(0.64)R (7.62) centers. They are purposely configured with "positive" misalignment to facilitate insertion. Board-drilling dimensions should equal your practice for .020 (0.51) diameter lead. Hermetically sealed alumina package. 'The .035-.045 (0.89-1.14) dimension does not apply to the corner leads. Package weight is 2.8 grams. NOM •165(4.19) .125(3.16) 1..-.410(10.41)--1 NOM All dimensions in inches (bold) and millimeters (parentheses) 19-4 Package Outlines 28 Lead Ceramic DIP FM Note. Leads are tin-plated alloy 42. Leads are intended for insertion in hole rows on .600 .025(O.64}A NOM. •, 9014.83} .'~ (IS, 24) centers. They are purposely configured with "positive" misalignment to facilitate insertion. Board drilling dimensions should equal your practice for .020 (0, 51) diameter lead. Hermetically sealed alumina package. Package weight is 8.32 grams. R=;:::;=;:::;==;::::r=;:::r;:::r=;:::r=;=r"W=;:::;=;:::;==;::::r=;:::r;:::r=;:l:l I ·20015.OS} .'2s13.'8} + .110(2,79} ·09012,29} 24 Lead Cerpak .0601'.52} ,0481' .22} .01510.38} r ~ .27717.04}+ .3951'O.03} .36519.27} .25716,53}" .0'510.38 015(038} I I }!":1 }l FN .2771 7.04 .25716.53) .. Note. Leads are tin-plated alloy 42. Increase maximum limits by .003 (0,08) if leads are solder dipped. Package weight is 0.68 grams. .0501'·27}TVP .O'610.40} .OOI(0.02} 1213 t=-~::::J:====!:t .OOSI0.'5} ,G0410.'0} .0451'·'4} MAX All dimensions in inches (bold) and millimeters (parentheses) 19-5 Package Outlines 24 Lead Flatpak ·.330(S.3S) .310(7.87) .2S0(7.11) ,.260(6.60). FR .330(S.38) .310(7.87) Notes Leads are gold plated alloy 42. If solder-dipped leads are used, the maximum limits for these dimensions may be increased by .003 (0,08) . Package weight is 0.53 grams. . 015(0.38) -.i 1 .567(14.40) 10 1213 15 ~ .006(0.15) .004(0.10) .025(0.64) .015(0.38) I r .410(10.14) .3S5 (9.7S) .300(7.62) L JL REIF .068(1.73) .058(1.47) ~--~*~~I~~~I~*~= ~.37) .050!1.27) TYP .090(2.29) .065(1.65) r-Ej---r T .200(5.0S) .185(4.70) 32 Lead Flatpak .32O(S.13) .300(762) rl .767(19.48) REF L .006(0.15) .004(0.10) ~ .520(13.21) .480(1219) [~IN No.1 "'07 32 D + :4J34) J .800(20.32) .050(1.27) TYP ~ l1 1;.37O(9.40 1:-'00(101s)i Leads are gold plated alloy 42 . If solder·dipped leads are used, the maximum limits for these dimensions may be increased by .003 (0,08). Package weight is 1.97 grams. I .440(11.1S) L • 17 16 Notes .040(1.02) •030t-7S) I INDEX 1. FS .320(S.13) .300(762) .019(0.4S) .015(0.3S) TYP .080(2.03) .064(1.63) ---.-l I -.J I .095(2.41) .075(1.91) ---I l- t .020(0.51 ) .010(0.25) .370(9.40) All dimensions in inches (bold) and millimeters (parentheses) 19-6 Package Outlines 2 Lead Metal TO-3 with Moly-Pad FT Notes .072(1.83) .052(1.32) .295(7.49) . 265(6.73) 450~ Base is nickel plated steel. I Can is nickel plated steel. Leads are solder dipped over nickel plated alloy 52 . Leads 1 and 2 electrically isolated from case with glass . c::j:I==::;:;:===:q:o---1 1 . .400(10.16) Case is third electrical connection . Package weight is 12.3 grams. t Lead No.2 ::::i~~~; DIA 2 HOLES + Lead No.1 3 Lead Molded Package In Accordance with JEDEC TO-220 GH Notes Leads are solder dipped over nickel plated copper alloy. Lead No. 2 is electrical contact with the mounting tab. Mounting tab is nickel plated copper alloy. Package material is plastic. Package weight is 2.0 grams. t* .060 ('.52) .045 (1.14) .185 (4.70) '"',,,65;-:(;;;4,,",...9)...L_ _-.-_ SEATING PLANE '-"'-t-'-'----.'----------';-:~~~ g~!~ .055 (1.40) .045(1.14) .030 (0.76) .013 (0.33) t t ~ --I L -~l r SECTION .040 (1.02) .025 (0.64) x-x All dimensions in inches (bold) and millimeters (parentheses) 19-7 Package Outlines 2 Lead Metal Package In Accordance with JEDEC TO-3 HJ Noles .072 (1.83) Base is nickel plated steel. .052 (1.32) Can is nickel plated steel. Leads are solder dipped over nickel plated alloy 52. :;;:;:;:=:J+D~ t Leads 1 and 2 electrically isolated from case with glass. Case is third electrical connection. Package' weight is 12.3 grams . . 185 (4.70) .165 (4.19)R 2 PLACES 8 Lead Plastic sOle KC Noles All tolerances are ± .002 (0.05) unless noted. Leads are solder plated (90Sn/10Pb). Package material is plastic. I t .154(3.91) REF ..242(6.15) .025(0.64) .230(5.841 =:~J£ I l"';:;;;==i"'i=::r=:;=;;:;:;;;;;;;::!l r----1,--- 8-------r .189(480) --=='11 .050(1'27~.016(0411 TYP. r- , ~ )It==========t0:--t .060(1.53)REF. .010(025) CIA.TYP. ~ TYP. .015(O.38)X45~j .015(0,38) CIA.TYP. .197(5 OO)-----j --------~--~-~~ .024(0,61) .020(0.51) All dimensions in inches (bold) and millimeters (parentheses) 19·8 Package Outlines 14 Lead Plastic SOIC KD Notes All tolerances are ± .002 (0.05) unless noted. Leads are solder plated (90Sn/10 Pb). Package material is plastic . 1 - - - - - - .340(8,64) - - - - - - 1 .015(0,38) .015(0,38) DIA.TYP. x 45 0 REF'1 .010(0,25) DIA.TYP. , .025(0,64) ~======7==*'n 08O( 53)"EF. .024(0,61) .020(0,51) 28 Lead PLCC .D4S(1.14}><4S0 n'i----- r I-=- .490(\245) I LEAD No.1 -'T---L I .454111.53) U' L' 454 111 5 3 I j I r----490(12451=j 1-----+-.172(4.371 KH Notes All tolerances are ± .003 unless otherwise noted. The leads are solder dipped or solder plated copper alloy. Package material is plastic. All dimensions in inches (bold) and millimeters (parentheses) 19-9 Package Outlines 44 Lead PLCC LEAD No.1 IDENTIFIER .04S(1.14)X4S" POLISHED .654 _____ (1.14) SEATING PLANE I r- i .690 .04S D t .045(1.14)DIA SURFACE SPOT I .045 (1.14) +i ____ _ "f '
Source Exif Data:File Type : PDF File Type Extension : pdf MIME Type : application/pdf PDF Version : 1.3 Linearized : No XMP Toolkit : Adobe XMP Core 4.2.1-c043 52.372728, 2009/01/18-15:56:37 Create Date : 2013:08:08 17:35-08:00 Modify Date : 2013:08:09 06:48:21-07:00 Metadata Date : 2013:08:09 06:48:21-07:00 Producer : Adobe Acrobat 9.55 Paper Capture Plug-in Format : application/pdf Document ID : uuid:9f36d65c-9d17-2f49-a6d3-2b055ab3b22e Instance ID : uuid:d00786e0-6829-d844-8242-ad3177dfbbf1 Page Layout : SinglePage Page Mode : UseNone Page Count : 1154EXIF Metadata provided by EXIF.tools