1987_Microcomputer_Products_Vol_1 1987 Microcomputer Products Vol 1

User Manual: 1987_Microcomputer_Products_Vol_1

Open the PDF directly: View PDF PDF.
Page Count: 858

Download1987_Microcomputer_Products_Vol_1 1987 Microcomputer Products Vol 1
Open PDF In BrowserView PDF
NEe

NEe Electronics Inc.

VOL 1 OF2

MICROCOMPUTER
PRODUCTS
1987

DATA BOOK

SINGLE-CHIP PRODUCTS
;

. ,

.

NEe

NEe Electronics Inc.

1987
MICROCOMPUTER
DATA BOOK
SINGLE-CHIP PRODUCTS
VOL 1 OF2

August 1986
NECEL-000175
Stock No. 500100
©1986 NEC Electronics Inc./Printed in U.S.A.

No part of this document may be copied or reproduced in any form or by any means without the prior written consent
of NEC Electronics Inc. The information in this document is subject to change without notice. Devices sold by NEC
Electronics Inc. are covered by the warranty and patent indemnification provisions appearing in NEC Electronics Inc.
Terms and Conditions of Sale only. NEC Electronics Inc. makes no warranty, express, statutory, implied, or by
description, regarding the information set forth herein or regarding the freedom of the described devices from patent
infringement. NEC Electronics Inc. makes no warranty of merchantability orfitness for any purpose. NEG Electronics
Inc. assumes no responsibility for any errors that may appear in this document. NEC Electronics Inc. makes no
commitment to update or to keep current the information contained in this document.

NEe

ii

NEe

I
E

GENERAL INFORMATION

QUALITY AND RELIABILITY

I
I
I
I

4-BIT. SINGLE-CHIP MICROCOMPUTERS

8-BIT. SINGLE-CHIP MICROCOMPUTERS

i6-BIT. SINGLE-CHIP MICROCOMPUTERS

LCD PERIPHERALS

~

DEVELOPMENT TOOLS

E

PACKAGING INFORMATION

iii

t-{EC

iv

ttiEC

TABLE OF CONTENTS

Section 1 - General Information

Page

Introduction ....................' ....................................... r' ••••••••••••••••••••••••• 1-3
Ordering Information ............................................................................. 1-3
Part Numbering System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-3
4-Bit, Single-Chip Microcomputer Selection Guide .................................................. 1-4
8-Bit, Single-Chip Microcomputer Selection Guide .................................................. 1-7
16-Bit, Single-Chip Microcomputer Selection Guide ................................................. 1-9
CMOS LCD Peripheral Selection Guide ............................................................ 1-9
,uPD7500 Series Hardware Development Tool Selection Guide ...................................... 1-10
,uPD75000 Series Hardware Development Tool Selection Gu ide ..................................... 1-10
,uPD7800 Series Hardware Development Tool Selection Guide ...................................... 1-11
,uPD78000 Series Hardware Development Tool Selection Guide ..................................... 1-11
,uPD70320/322 Hardware Development Tool Selection Guide ....................................... 1-11
,uPD8048 Series Hardware Development Tool Selection Guide ...................................... 1-11
MD-086 Series Microcomputer Development System Selection Guide ............................... 1-12
MD-910TM Character Display Terminal Development System Selection Guide ....................... 1-12
PG1000 PROM Programmer Selection Guide ...................................................... 1-12
Ordering Procedure for ROM-Based Microcomputer Products ...................................... 1-13
ROM Code Submission (Form No. NEC-0000071) .................................................. 1-14

Section 2 - Quality and Reliability
Introduction ...................................................................................... 2-3
Technology Description ......................................... ;................................. 2-3
Reliability Testing ................................................................................. 2-3
Failure Rate Calculation and Prediction ............................................................ 2-6
Reliability Test Results ............................................................................ 2-7
NEC's Goals on Failure Rates ...................................................................... 2..;7
Infant Mortality Failure Screening .................................................................. 2-8
Life Tests ........................................................................ . . . . . . . . . . . . . . . .. 2-8
Built-in Quality and Reliability .................................................................... 2-10
Approaches to Total Quality Control .............................................................. 2-10
Summary and Conclusion ........................................................................ 2-12

Section 3 - 4-Bit, Single-Chip Microcomputers
,uPD7500 Series
,uPD7500H/H-E
,uPD7501
,uPD7502/03
,uPD7506
,uPD7507/08
,uPD7507H/08H
,uPD7507S
,uPD7508A
,uPD7514
,uPD7516H
,uPD7519/19H
,uPD7527 A/28A
,uPD7533
,uPD7537 A/38A
pPD7554/64
,uPD7556/66
,uPD75104/106/108
pPD75P108

CMOS
CMOS
CMOS
CMOS
CMOS
CMOS
CMOS
CMOS
CMOS
CMOS
CMOS
CMOS
CMOS
CMOS
CMOS
CMOS
CMOS
CMOS
CMOS

Microcomputers .................................................... 3-3
Microcomputers for ,uPD7500-Series Evaluation ...................... 3-31
Microcomputer with LCD Controller/Driver .......................... 3-45
Microcomputers with LCD Controller/Driver ......................... 3-59
Microcomputer .................................................... 3-75
Microcomputers ................................................... 3-89
Microcomputers .................................................. 3-109
Microcomputer ................................................... 3-123
Microcomputer with FIP® Driver ................................... 3-141
Microcomputer with LCD Controller/Driver ......................... 3-155
Microcomputer with FIP® Controller/Driver ......................... 3-175
Microcomputers with FIP® Controller/Driver ........................ 3-199
Microcomputers with FIP® Driver .................................. 3-229
Microcomputer with A/D Converter ................................ 3-243
Microcomputers with FIP® Driver .................................. 3-263
Microcomputers with Serial I/O .................................... 3-277
Microcomputers with Comparator .................................. 3-295
Microcomputers .................................................. 3-313
Microcomputer with On-Chip EPROM .............................. 3-325

FIP is the registered trademark for NEC's fluorescent indicator panel (vacuum fluorescent display).

v

TABLE OF CONTENTS

NEe

Section 4 - a-Bit, Single-Chip Microcomputers
pPD78C05A/06A
pPD7807/08/09
pPD78P09
pPD7810/11
pPD78C10/C11/
C14
pPD7810H/11 H
pPD78PG11
pPD78310/312
pPD8035HL/48H
pPD80C35/C48,
pPD48
pPD8039HLl49H,
IlPD8749H
IlPD80C39H/49H,
Il PD4 9H
IlPD80C40H/50H,
IlPD50H
IlPD8041 AH,
IlPD8741A
IlPD80C42
IlPD8748H

Page

High-End CMOS Microcomputers ............................................... 4-3
High-End NMOS Microcomputers with Comparator and 8K ROM ................. 4-23
High-End NMOS Microcomputer with Comparator and 8K EPROM ................ 4-51
NMOS Microcomputers with A/D Converter ..................................... 4-75
CMOS Microcomputers with A/D Converter .................................... 4-101
NMOS Microcomputers with A/D Converter ....................................
High-End NMOS Microcomputer with Piggyback EPROM .......................
CMOS Microcomputers, Real-Time Control Oriented ............................
High-Speed HMOS Microcomputers ...........................................
CMOS Microcomputers ........................................................

4-129
4-155
4-175
4-201
4-213

High-Speed HMOS Microcomputers ........................................ ~ .. 4-235
High-Speed CMOS Microcomputers ........................................... 4-249
High-Speed CMOS Microcomputers ............ ; .............................. 4-271
NMOS Microcomputers with Universal PPI ..................................... 4-293
CMOS Microcomputer with Universal PPI ...................................... 4-307
High-Speed NMOS Microcomputer with UV EPROM ............................ 4-325

Section 5 - ie-Bit, Single-Chip Microcomputers
IlPD70320/322

CMOS Microcomputers (V25™)

5-3

V25 is a trademark of NEC Corporation.

Section e - LCD Peripherals
IlPD6307
IlPD6308
IlPD7225
IlPD7227
IlPD7228
IlPD72030

LCD Row Driver ................................................................ 6-3
LCD Column Driver ........................................................ ; .... 6-7
CMOS, Intelligent, Alphanumeric LCD Controller/Driver ......................... 6-11
CMOS, Intelligent, Dot-Matrix LCD Controller/Driver ............................. 6-21
CMOS, Intelligent, Dot-Matrix LCD Controller/Driver ............................. 6-29
CMOS, Intelligent, LCD Controller .............................................. 6-39

Section 7 - Development Tools
IlPD7500 Series Hardware Development Tools ...................................................... 7-3
IlPD7500 Series Hardware Development Tool Selection Guide ..................................... 7-3
EVAKIT-7500B .................................................................................. 7-4
pPD75000 Series Hardware Development Tools ..................................................... 7-7
EVAKIT-75X .................................................................................... 7-7
IlPD7800 Series Hardware Development Tools ...................................................... 7-9
IlPD7800 Series Hardware Development Tool Selection Guide ...............................•..... 7-9
EVAKIT-87AD .................................................................................. 7-9
EVAKIT-87LC ................................................................................. 7-10
IE-7809-M ..................................................................................... 7-11
IE-87AD-M .................................................................................... 7-11
IE-7811H-M .................................................................................... 7-12
IE-78C11-M .................................................................................... 7-12
IlPD78000 Series Hardware Development Tools .................................................... 7-15
IE-78310-R .................................................................................... 7-15
pPD70320/322 Hardware Development Tools ...................................................... 7-17
IE-70322 ...................................................................................... 7-17
vi

NEe

TABLE OF CONTENTS

Section 7 - Development Tools (cont)
JlPD8048 Series Hardware Development Tools .....................................................
EVAKIT-84C-1 .................................................................................
EVAKIT-80C42 ................................................................................
EV-9001/EV-9002 ..............................................................................
SE-80C50H System Evaluation Board ...........................................................
V-Series Hardware Development Tools ............................................................
IE-70108/70116 .................................................................................
JlPD7500 Series Software Absolute Assembler Development Tools ..................................
ASM75 ........................................................................................
JlPD75000 Series Software Relocatable Assembler Development Tools ..... , .........................
RA75X ........................................................................................
JlPD7800 Series Software Absolute Assembler Development Tools ..................................
ASM87 ........................................................................................
JlPD7800 Series Software Relocatable Assembler Development Tools ................................
RA87 ..........................................................................................
JlPD78000 Series Software Relocatable Assembler Development Tools ...............................
RA310 .........................................................................................
JlPD70320/322 Software Relocatable Assembler Development Tools .................................
Evakit Communication Program ..................................................................
MD-086 Series Microcomputer Development Systems ..............................................
MD-086 Floppy and Hard Disk Drive System .....................................................
MD-910TM Character Display Terminal Development Tool ..........................................
PG1000 PROM Programmer ......................................................................

Page

7-19
7-19
7-19
7-20
7-20
7-21
7-21
7-23
7-23
7-25
7-25
7-27
7-27
7-29
7-29
7-31
7-31
7-33
7-35
7-37
7-37
7-43
7-45

Section 8 - Packaging Information
Package/Device Cross Reference .................................................................. 8.. 3
20-Pin Plastic Shrink DIP (300 mil) ................................................................. 8-5
20-Pin Plastic SO (Small Outline) (300 mil) ......................................................... 8-5
24-Pin Plastic Shrink DIP (300 mil) ................................................................. 8-6
24-Pin Plastic SO (Small Outline) (300 mil) ......................................................... 8-6
28-Pin Plastic DIP (600 mil) ........................................................................ 8-7
28-Pin Plastic Shrink DIP (400 mil) ................................................................. 8-7
40-Pin Plastic DIP (600 mil) ........................................................................ 8-8
40-Pin Plastic Shrink DIP (600 mil) ................................................................. 8-8
40-Pin Ceramic Piggyback DIP (600 mil) ........................................................... 8-9
40-Pin Cerdip with Window (600 mil) ............................................................... 8-9
42-Pin Plastic DIP (600 mil) ....................................................................... 8-10
42-Pin Plastic Shrink DIP (600 mil) ................................................................ 8-10
42-Pin Ceramic Piggyback DIP ................................................................... 8-11
44-Pin Plastic Miniflat ............................................................................ 8-11
52-Pin Plastic Miniflat ............................................................................ 8-12
54-Pin Plastic Miniflat ............................................................................ 8-12
54-Pin Plastic Miniflat (Inverted leads) ............................................................. 8-13
64-Pin Plastic Shrink DIP (750 mil) ................................................................ 8-13
64-Pin Plastic Miniflat ............................................................................ 8-14
64-Pin Plastic QUiP .............................................................................. 8-14
64-Pin Shrink Cerdip with Window ................................................................ 8-15
64-Pin Ceramic QUIP with Window ............................................................... 8-15
64-Pin Ceramic Piggyback QUiP .................................................................. 8-16
68-Pin Plastic Leaded Chip Carrier (PLCC) ........................................................ 8-16
80-Pin Plastic Miniflat ............................................................................ 8-17
84-Pin Plastic Leaded Chip Carrier (PLCC) ........................................................ 8-17

vii

NEe

TABLE OF CONTENTS
Numerical Index
Device

Page

JlPD49~

............................................. 4-249
JlPD50H ............................................. 4-271
JlPD6307 ............................................... 6-3
JlPD6308 ............................................... 6-7
JlPD7225 .............................................. 6-11
JlPD7227 .............................................. 6-21
JlPD7228 .............................................. 6-29
JlPD7500 Series ....................................... 3-3
JlPD7500H ............................................ 3-31
JlPD7500H-E ......................................... 3-31
JlPD7501 .............................................. 3-45
JlPD7502 .............................................. 3-59
JlPD7503 .............................................. 3-59
JlPD7506 .............................................. 3-75
JlPD7507 .............................................. 3-89
JlPD7507H ........................................... 3-109
JlPD7507S ........................................... 3-123
JlPD7508 .............................................. 3-89
JlPD7508A ........................................... 3-141
JlPD7508H ........................................... 3-109
JlPD75CG08 .......................................... 3-89
JlPD75CG08H ....................................... 3-109
JlPD7514 ............................................. 3-155
JlPD7516H ........................................... 3-175
JlPD75CG16H ....................................... 3-175
JlPD7519 ............................................. 3-199
JlPD7519H ........................................... 3-199
JlPD75CG19 ......................................... 3-199
JlPD75CG19H ....................................... 3-199
JlPD7527 A .......................................... 3-229
JlPD7528A .......................................... 3-229
JlPD75CG28 ........................................ 3-229
JlPD7533 ............................................ 3-243
JlPD75CG33 ........................................ 3-243
JlPD7537 A .......................................... 3-263
JlPD7538A .......................................... 3-263
JlPD75CG38 ... .'.................................... 3-263
JlPD7554 ............................................ 3-277
JlPD7556 ............................................ 3-295
JlPD7564 ............................................ 3-277
JlPD7566 ............................................ 3-295

viii

~~~

P~e

JlPD78C05A ........................................... 4-3
JlPD78C06A ........................................... 4-3
JlPD7807 .............................................. 4-23
JlPD7808 .............................................. 4-23
JlPD7809 .............................................. 4-23
JlPD78P09 ............................................ 4-51
JlPD7810 .............................................. 4-75
JlPD7810H ........................................... 4-129
JlPD78C10 ........................................... 4-101
JlPD7811 .............................................. 4-75
JlPD7811 H ........................................... 4-129
JlPD78C11 ........................................... 4-101
JlPD78C14 ........................................... 4-101
JlPD78PG11 ......................................... 4-155
JlPD8035HL ........................................ 4-201
JlPD80C35 ........................................... 4-213
JlPD8039HL ........................................ 4-235
JlPD80C39H ........................................ 4-249
JlPD80C40H ........................................ 4-271
JlPD8041 AH ........................................ 4-307
JlPD80C42 .......................................... 4-321
JlPD8048H .......................................... 4-201
JlPD80C48 ........................................... 4-213
JlPD8049H .......................................... 4-235
JlPD80C49H ........................................ 4-249
JlPD80C50H ........................................ 4-271
JlPD8741A .......................................... 4-307
JlPD8748H .......................................... 4-339
JlPD8749H .......................................... 4-235
JlPD70320 ............................................. 5-3
JlPD70322 ............................................. 5-3
JlPD72030 ............................................ 6-39
JlPD75104 ............................................
JlPD75106 ............................................
JlPD75108 ............................................
JlPD75P108 .........................................

3-313
3-313
3-313
3-325

JlPD78310 ............................................ 4-175
JlPD78312 ............................................ 4-175

NEe

GENERAL INFORMATION

1-1

II

GENERAL INFORMATION

Section 1 - General Information

NEe

Page

Introduction ................................................................. 1-3
Ordering Information ......................................................... 1-3
Part Numbering System ...................................................... 1-3
4-Bit, Single-Chip Microcomputer Selection Guide ............................. 1-4
8-Bit, Single-Chip Microcomputer Selection Guide ............................. 1-7
16-Bit, Single-Chip Microcomputer Selection Guide ............................ 1-9
CMOS LCD Peripheral Selection Guide ........................................ 1-9
pPD7500 Series Hardware Development Tool Selection Guide .................. 1-10
pPD75000 Series Hardware Development Tool Selection Guide ................. 1-10
pPD7800 Series Hardware Development Tool Selection Guide .................. 1-11
pPD78000 Series Hardware Development Tool Selection Guide ................. 1-11
pPD70320/322 Hardware Development Tool Selection Guide ................... 1-11
pPD8048 Series Hardware Development Tool Selection Guide .................. 1-11
MD-086 Series Microcomputer Development System Selection Guide ........... 1-12
MD-910TM Character Display Terminal Development System Selection Guide .. 1-12
PG1000 PROM Programmer Selection Guide .................................. 1-12
Ordering Procedure for ROM-Based Microcomputer Products .................. 1-13
ROM Code Submission (Form No. NEC-0000071) ............................. 1-14

1-2

t-{EC

GENERAL INFORMATION

Introduction

Ordering Information

The NEC microcomputer data book is issued in two
volumes.

Part numbers for ordering microcomputer products
are listed on the first page of each data sheet. NEC's
part numbers consist of four elements as shown in the
example that follows.

• Volume 1: Single-Chip Products
• Volume 2: Microprocessors, Peripherals, and DSP
Products
NEC offers a wide variety of single-chip microcomputer
products for you to choose from. Volume 1 covers
4-bit, 8-bit, and 16-bit microcomputers plus LCD peripheral products, both NMOS and CMOS, in an assortment of packages. This extraordinary selection provides greater design alternatives with products that
truly fit your needs in data processing, communications, instrumentation, industrial, and consumer applications.

Part Numbering System
f.1P

0

7810H

CW

~ Package type

Plastic DIP = C
Plastic shrink DIP = CS,
CT, CU, CW
Cerdip = 0
Shrink cerdip = OW
Plastic SO = G
Plasticminiflat=G-OO, G-12,
G-22, G-R, G-F, G-1 B
Plastic QUIP = G-36

Volume 1 is divided into the following sections.
1. General Information. This section includes ordering
information, product selection guides, and ROM Code
submission procedures.
2. Quality and Reliability. The NEC concepts of designed-in quality and total quality control as a company-wide activity are discussed here.

L..-_ _

1 . -_ _ _

L..-_ _

Device identifier (alphanumeric)

Device type: 0 = Digital MOS

NEC monolithic silicon integrated circuit

3. Four-Bit Single-Chip Microcomputers. This section
covers the 7500 Series, the 75000 Series, and the
cost-effective, low-end mini-microcomputers known
as 755x/756x.
4. Eight-Bit Single-Chip Microcomputers. The 8-bit
products include the popular 80xx/87xx and 80Cxx
Series together with the high-end 7800 and 78000
Series.
5. Sixteen-Bit Single-Chip Microcomputers. The 16bit microcomputers are CMOS products, type 703201
70322.
6. LCD Peripherals. Peripherals include LCD controller-driver products for alphanumeric, dot-addressable,
and large-area displays.
7. Development Tools. A comprehensive line of development hardware and software products support NEC's
single-chip microcomputer families.
8. Packaging. This section provides dimensioned
package drawings and a cross-reference from package
type to device numbers.

1-3

II

NEe

GENERAL INFORMATION
4-Bit, Single-Chip CMOS Microcomputer Selection Guide
Clock
(MHz)

Supply
Voltage

ROM

(V)

(X8)

RAM
IX4)

liD

Package

46

Plastic QUIP

64

Device

Description

JlPD7500HG-36

Microcomputer

0.7

4.5 to 5.5

External

256

JlPD7500H-EG-36

Microcomputer

0.2

4.5 to 5.5

External

256

46

Plastic QUIP

64

JlPD7501G-12

Microcomputer with
LCD Controller/Driver

0.4

2.5 to 6.0

1K

96

24

Plastic Miniflat

64

JlPD7502G-12

Microcomputer with
LCD Controller/Driver

0.4

2.7 to 6.0

2K

128

23

Plastic Miniflat

64

JlPD7503G-12

Microcomputer with
LCD Controller/Driver

0.4

2.7 to 6.0

4K

224

23

Plastic Miniflat

64

JlPD7506C

Microcomputer

0.4

2.5 to 6.0

1K

64

22

Plastic DIP

28

JlPD7506CT

Microcomputer

0.4

2.5 to 6.0

1K

64

22

Plastic Shrink DIP

28

JlPD7506G-00

Microcomputer

0.4

2.5 to 6.0

1K

64

22

Plastic Miniflat

52

JlPD7507C

Microcomputer

0.4

2.5 to 6.0

2K

128

32

Plastic DIP

40

JlPD7507CU

Microcomputer

0.4

2.5 to 6.0

2K

128

32

Plastic Shrink DIP

40

JlPD7507G-00

Microcomputer

0.4

2.5 to 6.0

2K

128

32

Plastic Miniflat

52

JlPD7507HC

Microcomputer

4.19

2.7 to 6.0

2K

128

32

Plastic DIP

40

JlPD7507HCU

Microcomputer

4.19

2.7 to 6.0

2K

128

32

Plastic Shrink DIP

40

JlPD7507HG-22

Microcomputer

4.19

2.7 to 6.0

2K

128

32

Plastic Miniflat

44

JlPD7507SC

Microcomputer

0.4

2.2 to 6.0

2K

128

20

Plastic DIP

28

JlPD7507SCT

Microcomputer

0.4

2.2 to 6.0

2K

128

20

Plastic Shrink DIP

28

JlPD7508C

Microcomputer

0.4

2.5 to 6.0

224

32

Plastic DIP

40

JlPD7508CU

Microcomputer

0.4

2.5 to 6.0

4K
4K

224

32

Platic Shrink DIP

40

JlPD7508G-00

Microcomputer

0.4

2.5 to 6.0

4K

224

32

Plastic Miniflat

52

JlPD75CG08E

Piggyback EPROM
Microcomputer

0.4

4.5 to 5.5

4K

224

32

Ceramic DIP

40

JlPD7508HC

Microcomputer

4.19

2.7 to 6.0

4K

224

32

Plastic DIP

40

JlPD7508HCU

Microcomputer

4.19

2.7 to 6.0

4K

224

32

Plastic Shrink DIP

40

JlPD7508HG-22

Microcomputer

4.19

2.7 to 6.0

4K

224

32

Plastic Miniflat

44

JlPD75CG08HE

Piggyback EPROM
Microcomputer

4.19

4.5 to 5.5

4K

224

32

Ceramic DIP

40

JlPD7508AC

Microcomputer with
FIP Driver

0.4

2.7 to 5.5

4K

208

32

Plastic DIP

40

JlPD7514G-12

Microcomputer with
LCD Controllier IDriver

0.5

2.7 to 6.0

4K

256

31

Plastic Miniflat

80

JlPD7516HG-12

Microcomputer with
FIP Controller/Driver

6.55

2.5 to 6.0

6K

256

53

Plastic Miniflat

64

JlPD7516HG-36

Microcomputer with
FIP Controller/Driver

6.55

2.5 to 6.0

6K

256

53

Plastic QUIP

64

JlPD7516HCW

Microcomputer with
FIP Controller/Driver

6.55

2.5 to 6.0

6K

256

53

Plastic Shrink DIP

64

JlPD75CG16HE

Piggyback EPROM
Microcomputer with
FIP Controller/Driver

6.55

4.5 to 5.5

6K

256

53

Ceramic QUIP

64

1-4

Pins

NEe

GENERAL INFORMATION

4-Bit, Single-Chip CMOS Microcomputer Selection Guide (cont)
Device

Description

(MHzl

Supply
Voltage
(VI

(X41

liD

jlPD7519G-12

Microcomputer with
FIP Controller / Driver

4.19

2.5 to 6.0

4K

256

53

Plastic Miniflat

64

jlPD7519G-36

Microcomputer with
FIP Controller/Driver

4.19

2.5 to 6.0

4K

256

53

Plastic QUIP

64

jlPD7519CW

Microcomputer with
FIP Controller/Driver

4.19

2.5 to 6.0

4K

256

53

Plastic Shrink DIP

64

jlPD75CG19E

Piggyback EPROM
Microcomputer with
FIP Controller/Driver

4.19

4.5 to 5.5

4K

256

53

Ceramic DIP

64

jlPD7519HG-12

Microcomputer with
FIP Controller /Driver

6.55

2.5 to 6.0

4K

256

53

Plasti Miniflat

64

jlPD7519HG-36

Microcomputer with
FIP Controller/Driver

6.55

2.5 to 6.0

4K

256

53

Plastic QUIP

64

jlPD7519HCW

Microcomputer with
FIP Controller / Driver

6.55

2.5 to 6.0

4K

256

53

Plastic Shrink DIP

64

jlPD75CG19HE

Piggyback EPROM
Microcomputer with
FIP Controller/Driver

6.55

4.5 to 5.5

4K

256

53

Ceramic DIP

64

jlPD7527AC

Microcomputer with
FIP Display

0.6

2.7 to 6.0

2K

128

35

Plastic DIP

42

jlPD7527 ACU

Microcomputer with
FIP Display

0.6

2.7 to 6.0

2K

128

35

Plastic Shrink DIP

42

jlPD7528AC

Microcomputer with
FIP Display

0.6

2.7 to 6.0

4K

160

35

Plastic DIP

42

jlPD7528ACU

Microcomputer with
FIP Display

0.6

2.7 to 6.0

4K

160

35

Plastic Shrink DIP

42

jlPD75CG28E

Piggyback EPROM
Microcomputer with
FIP Display

0.5

4.5 to 5.5

4K

160

35

Ceramic DIP

42

jlPD7533C

Microcomputer with
A/D Converter

0.5

2.7 to 6.0

4K

160

34

Plastic DIP

42

jlPD7533CU

Microcomputer with
A/D Converter

0.5

2.7 to 6.0

4K

160

34

Plastic Shrink DIP

42

jlPD7533G-22

Microcomputer with
A/D Converter

0.5

2.7 to 6.0

4K

160

34

Plastic Minflat

44

jlPD75CG33E

Piggyback EPROM
Microcomputer with
A/D Converter

0.5

4.5 to 5.5

4K

160

34

Ceramic DIP

42

jlPD7537AC

Microcomputer with
FIP Driver

0.6

2.7 to 6.0

2K

128

35

Plastic DIP

42

jlPD7537ACU

Microcomputer with
FIP Driver

0.6

2.7 to 6.0

2K

128

35

Plastic Shrink DIP

42

jlPD7538AC

Microcomputer with
FIP Driver

0.6

2.7 to 6.0

4K

160

35

Plastic DIP

42

jlPD7538ACU

Microcomputer with
FIP Driver

0.6

2.7 to 6.0

4K

160

35

Plastic Shrink DIP

42

Clock

ROM

RAM

(X81

Package

Pins

11

1-5

NEe

GENERAL INFORMATION
4-Bit, Single-Chip CMOS Microcomputer Selection Guide (cont)
ROM

RAM

(MHzl

Supply
Voltage
(VI

(X81

Clock
Device

Description

(X41

lID

Package

pPD75CG38E

Piggyback EPROM
Microcomputer with
FIP Driver

0.5

4.5 to 5.5

4K

160

35

Ceramic DIP

42

pPD7554CS

Microcomputer with
Serial 110

0.7

2.5 to 6.0

1K

64

16

Plastic Shrink DIP

20

pPD7554G

Microcomputer with
Serial 110

0.7

2.5 to 6.0

1K

64

16

Plastic SO

20

pPD7556CS

Microcomputer with
Comparator

0.7

2.5 to 6.0

1K

64

20

Plastic Shrink DIP

24

pPD7556G

Microcomputer with
Comparator

0.7

2.5 to 6.0

1K

64

20

Plastic SO

24

pPD7564CS

Microcomputer with
Serial 110

0.7

2.7 to 6.0

1K

64

15

Plastic Shrink DIP

20

pPD7564G

Microcomputer with
Serial 110

0.7

2.7 to 6.0

1K

64

15

Plastic SO

20

pPD7566CS

Microcomputer with
Comparator

0.7

2.7 to 6.0

1K

64

19

Plastic Shrink DIP

24

pPD7566G

Microcomputer with
Comparator

0.7

2.7 to 6.0

1K

64

19

Plastic SO

24

pPD75104CW

Microcomputer

4.19

2.5 to 6.0

4K

320

58

Platic Shrink DIP

64

pPD75104G-18

Microcomputer

4.19

2.5 to 6.0

4K

320

58

Plastic Miniflat

64

pPD75106CW

Microcomputer

4.19

2.5 to 6.0

(6016)

320

58

Plastic Shrink DIP

64

pPD75106G-18

Microcomputer

4.19

2.5 to 6.0

(6016)

320

58

Plastic Miniflat

64

pPD75108CW

Microcomputer

4.19

2.5 to 6.0

8K

512

58

Plastic Shrink DIP

64

Pins

pPD75108G-18

Microcomputer

4.19

2.5 to 6.0

8K

512

58

Plastic Miniflat

64

pPD75P108CW

Microcomputer with
On-Chip OTPROM

4.19

2.5 to 6.0

8K

512

58

Plastic Shrink DIP

64

pPD75P108DW

Microcomputer with
On-Chip EPROM

4.19

2.5 to 6.0

8K

512

58

Plastic Shrink DIP

64

pPD75P1 08G-1 8

Microcomputer with
On-Chip OTPROM

4.19

2.5 to 6.0

8K

512

58

Plastic Miniflat

64

1-6

NEe

GENERAL INFORMATION

a-Bit, Single-Chip Microcomputer Selection Guide
Device

Description

Clock
(MHz)

JlPD78C05AG-36

CMOS Microcomputer

JlPD78C06AG-12

Supply
Voltage
(V)

ROM
IX8)

RAM
IX8)

110

Package

6.25

2.6 to 6.0

External

128

46

Plastic QUIP

64

CMOS Microcomputer

6.25

2.5 to 6.0

4K

128

46

Plastic Miniflat

64

JlPD7807CW

NMOS Microcomputer
with Comparator

12

4.5 to 5.5

External

256

28

Plastic Shrink DIP

64

JlPD7807G-36

NMOS Microcomputer
with Comparator

12

4.5 to 5.5

External

256

28

Plastic QUIP

64

JlPD7808CW

NMOS Microcomputer
with Comparator

12

4.5 to 5.5

4K

256

40

Plastic Shrink DIP

64

JlPD7808G-36

NMOS Microcomputer
with Comparator

12

4.5 to 5.5

4K

256

40

Plastic QUIP

64

JlPDl809CW

NMOS Microcomputer
with Comparator

12

4.5 to 5.5

8K

256

40

Plastic Shrink DIP

64

JlPD7809G-36

NMOS Microcomputer
with Comparator

12

4.5 to 5.5

8K

256

40

Plastic QUIP

64

JlPD78P09R

NMOS Microcomputer
with Comparator

12

4.5 to 5.5

EPROM
8K

256

40

Ceramic QUIP
with Window

64

JlPD7810CW

NMOS Microcomputer
with AID Converter

12

4.5 to 5.5

External

256

32

Plastic Shrink DIP

64

JlPD7810G-36

NMOS Microcomputer
with AID Converter

12

4.5 to 5.5

External

256

32

Plastic QUIP

64

JlPD78C10CW

CMOS Microcomputer
with AID Converter

12

4.5 to 5.5

External

256

32

Plastic Shrink DIP

64

JlPD78C 1OG-1 B

CMOS Microcomputer
with AID Converter

12

4.5 to 5.5

External

256

32

Plastic Miniflat

64

JlPD78C10G-36

CMOS Microcomputer
with AID Converter

12

4.5 to 5.5

External

256

32

Plastic QUIP

64

JlPD78C10L

CMOS Microcomputer
with AID Converter

12

4.5 to 5.5

External

256

32

PLCC

68

JlPD7810HCW

NMOS Microcomputer
with AID Converter

15

4.5 to 5.5

External

256

32

Plastic Shrink DIP

64

JlPD7810HG-36

NMOS Microcomputer
with AID Converter

15

4.5 to 5.5

External

256

32

Plastic QUIP

64

JlPFD7811 CW

NMOS Microcomputer
with AID Converter

12

4.5 to 5.5

4K

256

44

Plastic Shrink DIP

64

JlPD7811 G-36

NMOS Microcomputer
with AID Converter

12

4.5 to 5.5

4K

256

44

Plastic QUIP

64

JlPD78C11 CW

CMOS Microcomputer
with AID Converter

12

4.5 to 5.5

4K

256

44

Plastic Shrink DIP

64

JlPD78C11G-1 B

CMOS Microcomputer
with AID Converter

12

4.5 to 5.5

4K

256

44

Plastic Miniflat

64

JlPD78C11G-36

CMOS Microcomputer
with AID Converter

12

4.5 to 5.5

4K

256

44

Plastic QUIP

64

JlPD78C11L

CMOS Microcomputer
with AID Converter

12

4.5 to 5.5

4K

256

44

PLCC

68

Pins

1-7

11

NEe

GENERAL INFORMATION
a-Bit, Single-Chip Microcomputer Selection Guide (cont)
Clock
(MHz)

Supply
Voltage

ROM

RAM

(V)

(XS)

Device

Description

(XS)

I/O

Package

IlPD7811 HG-36

NMOS Microcomputer
with AID Converter

15

4.5 to 5.5

4K

256

44

Plastic QUIP

64

Piggy Back EPROM
NMOS Microcomputer
with AID Converter

12

4.5 to 5.5

4K

256

44

Ceramic QUIP

64

CMOS Microcomputer
with AID Converter

12

4.5 to 5.5

16K

256

44

Plastic Shrink DIP

64

IlPD78C14G-1 B

CMOS Microcomputer
with AID Converter

12

4.5 to 5.5

External

256

44

Plastic Miniflat

64

IlPD78C14G-36

CMOS Microcomputer
with AID Converter

12

4.5 to 5.5

External

256

44

Plastic QUIP

64

CMOS Microcomputer
with AID Converter

12

4.5 to 5.5

External

256

44

PLCC

68

Pins

CMOS Microcomputer

12

4.5 to 5.5

External

256

28

Plastic Shrink DIP

64

IlPD7831 OG-1 B

CMOS Microcomputer

12

4.5 to 5.5

External

256

28

Plastic Miniflat

64

IlPD78310G-36

CMOS Microcomputer

12

4.5 to 5.5

External

256

28

Plastic QUIP

64

CMOS Microcomputer

12

4.5 to 5.5

External

256

28

PLCC

68

CMOS Microcomputer

12

4.5 to 5.5

8K

256

40

Plastic Shrink DIP

64

IlPD78312G-1 B

CMOS Microcomputer

12

4.5 to 5.5

8K

256

40

Plastic Miniflat

64

IlPD78312G-36

CMOS Microcomputer

12

4.5 to 5.5

8K

256

40

Plastic QUIP

64

CMOS Microcomputer

12

4.5 to 5.5

8K

256

40

PLCC

68

EPROM Microcomputer

12

4.5 to 5.5

8K

256

40

Plastic QUIP

64

HMOS Microcomputer

6

4.5 to 5.5

External

64

27

Plastic DIP

40

CMOS Microcomputer

6

4.5 to 5.5

External

64

27

Plastic DIP

40

HMOS Microcomputer

11

4.5 to 5.5

External

128

27

Plastic DIP

40

CMOS Microcomputer

12

2.5 to 6

External

128

27

Plastic DIP

40

CMOS Microcomputer

12

2.5 to 6

External

256

27

Plastic DIP

40

NMOS Microcomputer
with Universal PPI

11

4.5 to 5.5

1K

64

18

Plastic DIP

40

CMOS Microcomputer
with Universal PPI

12

4.5 to 5.5

2K

128

18

Plastic DIP

40

CMOS Microcomputer
with Universal PPI

12

4.5 to 5.5

2K

128

18

Plastic Miniflat

44

IlPD78P312G-36

IlPD80C48G-00

IlPD80C49G-00

1-8

HMOS Microcomputer

6

4.5 to 5.5

1K

64

27

Plastic DIP

40

CMOS Microcomputer

6

2.5 to 6.0

1K

64

27

Plastic DIP

40

CMOS Microcomputer

6

2.5 to 6.0

1K

64

27

Plastic Miniflat

52

CMOS Microcomputer

6

2.5 to 6.0

1K

64

27

Plastic Miniflat

44

HMOS Microcomputer

11

4.5 to 5.5

2K

128

27

Plastic DIP

40

CMOS Microcomputer

12

2.5 to 6.0

2K

128

27

Plastic DIP

40

CMOS Microcomputer

12

2.5 to 6.0

2K

128

27

Plastic Miniflat

52

CMOS Microcomputer

12

2.5 to 6.0

2K

128

27

Plastic Miniflat

44

NEe

GENERAL INFORMATION

B-Bit, Single-Chip Microcomputer Selection Guide (cont)
Clock
(MHz)

Supply
Voltage
(V)

ROM

RAM

(X8)

Device

Description

(X8)

liD

JlPD80C50HC

CMOS Microcomputer

12

2.5 to 6.0

4K

256

27

Plastic DIP

Package

JlPD50HG-22

CMOS Microcomputer

12

2.5 to 6.0

4K

256

27

Plastic Miniflat

44

JlPD8741AD

NMOS Microcomputer
with Universal PPI

6

4.5 to 5.5

1K

64

18

Cerdip with
Window

40

JlPD8748HC

NMOS Microcomputer
with UV EPROM

11

4.5 to 5.5

1K

64

27

Plastic DIP

40

JlPD8748HD

NMOS Microcomputer
with UV EPROM

11

4.5 to 5.5

1K

64

27

Cerdip with
Window

40

JlPD8749HC

HMOS Microcomputer

11

4.5 to 5.5

2K

128

27

Plastic DIP

40

JlPD8749HD

HMOS Microcomputer

11

4.5 to 5.5

2K

128

27

Cerdip with
Window

40

Pins
40

11

i6-Bit, Single-Chip Microcomputer Selection Guide
Device

Description

JlPD70320G-12

CMOS Microcomputer

Clock
(MHz)

Supply
Voltage
(V)

ROM

RAM

(X8)

(X8)

liD

10

4.5 to 5.5 V

16K

256

32

Package

Pins

Plastic Miniflat

80

JlPD70320L

CMOS Microcomputer

10

4.5 to 5.5 V

16K

256

32

PLCC

84

JlPD70322G-12

CMOS Microcomputer

10

4.5 to 5.5 V

16K

256

32

Plastic Miniflat

80

JlPD70322L

CMOS Microcomputer

10

4.5 to 5.5 V

16K

256

32

PLCC

84

Clock
(MHz)

Supply
Voltage
(V)

Active
(rnA)

CMOS LCD Peripheral Selection Guide
No. of
Rows

No. of
Column

Power Dissipation
Standby
(rnA)

Package

Pins

Device

Description

JlPD6307G-F

LCD Row Driver

32

2.5

4.5 to 5.5

Plastic Miniflat

54

JlPD6307G-R

LCD Row Driver

32

2.5

4.5 to 5.5

Plastic Miniflat
Reverse leads

54

JlPD6308G-F

LCD Column Driver

40

2

4.5 to 5.5

1.2

Plastic Miniflat

54

JlPD6308G-R

LCD Column Driver

40

4.5 to 5.5

1.2

Plastic Miniflat
Reverse leads

54

JlPD7225G-00

LCD Controlier/Driver

2.7 to 5.5

0.1

Plastic Miniflat

52

JlPD7227G-12

LCD Controller 1Driver

+5

0.2

Plastic Miniflat

64

JlPD7228G-12

LCD Controller 1Driver

+5

0.2

0.02

Plastic Miniflat

80

JlPD72030G-12

LCD Display Controller

+5

5

0.001

Plastic Miniflat

64

4

32

0.2

40
8/16

42/50

1.1

1-9

NEe

GENERAL INFORMATION
pPD7500 Series Hardware Development Tool Selection Guide
Part
Number

Emulator

Add·On Board
IRequired)

System
Evaluation Board

IlPD7501

EVAKIT·7500B

EV7514

SE·7514A

IlPD7502

EVAKIT·7500B

EV7514

SE·7514A

IlPD7503

EVAKIT·7500B

EV7514

SE·7514A

IlPD7506

EVAKIT·7500B

IlPD7507

EVAKIT·7500B

IlPD7507H

EVAKIT·7500B

IlPD7507S

EVAKIT·7500B

EPROM
Device

SE·7508
IlPD75CG08E
EV7508H

IlPD75CG08HE
SE·7508

IlPD7508

EVAKIT·7500B

IlPD7508A

EVAKIT·7500B

IlPD7508H

EVAKIT·7500B

EV7508H

IlPD7514

EVAKIT·7500B

EV7514

IlPD75CG08E
SE·7508
IlPD75CG08HE
SE·7514A

IlllPD7516H

EVAKIT·7500B

EV7500FIP

IlPD75CG16HE

IlPD7519

EVAKIT·7500B

EV7500FIP

IlPD75CG19E

IlPD7519H

EVAKIT·7500B

EV7500FIP

IlPD75CG19HE

IlPD7527

EVAKIT·7500B

EV7528

IlPD75CG28E

IlPD7528

EVAKIT·7500B

EV7528

IlPD75CG28E

IlPD7533

EVAKIT·7500B

EV7533

IlPD75CG33E

IlPD7537

EVAKIT·7500B

EV7528

IlPD75CG38E

IlPD7538

EVAKIT·7500B

EV7528

IlPD7554

EVAKIT·7500B

EV7554A

SE·7554A

IlPD7556

EVAKIT·7500B

EV7554A

SE·7554A

IlPD7564

EVAKIT·7500B

EV7554A

SE·7554A

IlPD7566

EVAKIT·7500B

EV7554A

SE·7554A

pPD75000 Series Hardware
Development Tool Selection Guide
Device

Description

EV75108

Add·on board

EV75208

Add·on board

1-10

IlPD75CG38E

NEe

GENERAL INFORMATION

pPD7800 Series Hardware Development Tool Selection Guide
Part
Number

Emulator

Real-time
Trace
Board

jlPD7BC05A

EVAKIT-B7LC [Note 1]

jlPD7BC06A

EVAKIT-B7LC

jlPD7B07

IE-7B09-M

jlPD7BP09R

jlPD7BOB

IE-7B09-M

jlPD7BP09R

jlPD7B09

IE-7B09-M

jlPD7B10

EVAKIT-B7AD [Note 1]
IE-B7AD-M
IE-7B11H

jlPD7BC10

IE-7BC11-M

jlPD7B11

EVAKIT-B7AD [Note 1]
IE-B7AD-M

jlPD7B11H

IE-7B11H
IE-7BC11-M

jlPD7BC14

IE-7BC11-M

System
Evaluation
Board

EVB7LCRTT

EV7BC06A

SE-7BC06

EVB7LCRTT

EV7BC06A

SE-7BC06

EPROM
Device

jlPD7BP09R

jlPD7B10H

jlPD7BC11

Add-on
Board

I

EVB7ADRTT

jlPD7BPG11E
jlPD7BPG11E

EVB7ADRTT

jlPD7BPG11 E [Note 2]

Notes:

(1) Addresses O-OFFFH access memory on the Evakit only.
(2) Special selected parts.

pPD78000 Series Hardware
Development Tool Selection Guide

pPD8048 Series Hardware
Development Tool Selection Guide
System
Evaluation
Board

Description

Device
IE-310-R

Stand-alone in-circuit emulator

pPD70320/322 Hardware Development
Tool Selection Guide
Device

Description

IE-70322

Portable stand-alone in-circuit emulator

Part
Number

Emulator

jlPDB035H

EVAKIT-B4C-1

jlPDB04BH

EVAKIT-B4C-1

jlPDB039H

EVAKIT-B4C-1

jlPDB049H

EVAKIT-B4C-1

jlPDBOC39H

EVAKIT-B4C-1

jlPDBOC4B

EVAKIT-B4C-1

jlPDBOC35

EVAKIT-B4C-1

jlPDBOC49H

EVAKIT-B4C-1

jlPDBOC40H

EVAKIT-B4C-1

jlPDBOC50H

EVAKIT-B4C-1

jlPDBOC42

EVAKIT-BOC42

EPROM
Device
jlPDB74BH*
jlPDB749H*

SE-BOC50H
SE-BOC50H
SE-BOC50H
jlPDB741A

*jlPD8748H and jlPD8749H are both available in erasable windowed
packages or in the economical one time programmable plastic
package.

Conversion Board

Function

EV-9001-64

64-pin QUIP to 64-pin shrink DIP

EV-9002-42

42-pin standard DIP to 42-pin shrink DIP

EV-9002-40

40-pin standard DIP to 40-pin shrink DIP

EV-9002-2B

2B-pin standard DIP to 2B-pin shrink DIP

1-11

GENERAL INFORMATION

MD·086 Series Microcomputer
Development System Selection Guide
Device

Description

MD-086FD-10

MD-086 series, floppy-disk based system

MD-086HD-10

MD-086 series, floppy-hard-disk based system

MD-086DK

Hard-disk upgrade for MD-086FD-10

MD-910TM

Character display terminal

MD·910TM Character Display Terminal
Development System Selection Guide
Device

Description

MD-910TM

Character display terminal

PG 1000 PROM Programmer
Selection Guide
Device

Description

PG1003

Plug-in personality module

PG1005

Plug-in personality module

1-12

t-{EC

ttiEC

GENERAL INFORMATION

Ordering Procedure for
ROM-Based Microcomputer Products
The devices listed below are ROM-based microcomputer products.
pPD70322
pPD7501
pPD7502
pPD7503

pPD7533
pPD7537A
pPD7538A
pPD7554

pPD78C11
pPD78C14
pPD78312
pPD8041AH

pPD7506
pPD7507
pPD7507H
pPD7507S

pPD7556
pPD7564
pPD7566
pPD75104

pPD80C42
pPD8048H
pPD80C48
pPD8049H

pPD7508
pPD7508H
pPD7514
pPD7516H

pPD75106
pPD75108
pPD75206
pPD75208

pPD80C49H
pPD80C50H
pPD8355

pPD7519
pPD7519H
pPD7527A
pPD7528A

pPD78C06A
pPD7809
pPD7811
pPD7811H

Please use the following ordering guidelines. Contact
your local sales representative for assistance and to
obtain the necessary forms.
A complete order must include:

o

o
o
o
o
o

Two copies of ROM code information contained in
either the equivalent memory EPROMs or EPROMbased microcomputers.
ROM code submission form (provided by your
local sales representative); see next three pages.
Your engineering specifications, if applicable.
Please ignore this item if NEC has already reviewed
your specification.
Mask charge payment.
Liability agreement for ROM-based work-in-progress. The NEC form, "ROM-Based Microprocessors
Agreement," can be obtained from your local sales
representative.
Your purchase order.

NEC Electronics Inc. will return the ROM code patterns
in the EPROM media together with a code listing and a
ROM-code verification form to you. Please return the
verification form to verify the code in the EPROM
provided by NEC. NEC guarantees that the final
product will contain the same code you verified.
Summary:
Step 1

0 Customer submits a complete order, including the items listed above.

Step 2

0 NEC returns ROM pattern to customer
together with a ROM-code verification form
and a code listing.

Step 3

0 Customer verifies code received from N EC
and returns verification form.

Step 4

0 NEC acknowledges customer order and
begins production.

1-13

I

NEe

GENERAL INFORMATION

NEe
NEe Electronics Inc.

ROM CODE
SUBMISSION
Date _ _ _ _ _ _ _ _ __

To: NEC Electronics Inc.
Corporate Headquarters
401 Ellis Street, P.O. Box 7241
Mountain View, CA 94039
Attn:

ROM Code Administrator

We are ready to place a purchase order for our

Customer Part Number

'

your

NEC Part Number

'

and are

submitting two copies of the ROM code on the following medium/media. (Please check all applicable boxes.)

o pPD2764
o pPD27128

0
0

pPD70P322
pPD75P108

0
0

0
0
0

pPD78P09
pPD78P312

o pPD77P20

pPD8741A
pPD8748H
pPD8749H

o pPD8755A

This device should be manufactured as follows: (Please check all applicable boxes.)
To our engineering specification # _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __
With special marking: _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __

o
o
o With the I/O port loading options (available only on the devices listed on this form).
o

Lead type (if applicable) Bent
Straight _ _ _ _ _ __
Application _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __

o

NEC Electronics Inc.
Please return the processed ROM code to the following individual for our verification.
Name

Company

Division

Shipping Address (not a P.O. Box. please)

City

State

ZIP

Telephone Number

Customer
Please send this form and the items listed below in a package clearly marked "ROM CODE Enclosed" to the address
above.
•
•
•
•
•

Two copies of ROM code
Engineering specification, if applicable. Not required if NEC has already reviewed the specification.
Mask charge payment.
Signed "ROM-Based Microprocessors Agreement"
Purchase order

Form No. NEC-0000071 Rev. B 7/86

1-14

&1986 NEC Electronics Inc

NEe

GENERAL INFORMATION

NEe
pPD7519, pPD7519H, pPD7516H
Pin

lID Port Loading Option

50
51
52
53

Open drain
0
0
0
0

Pull-down
resistor to
VLOAD
0
0
0
0

54
55
56
57

0
0
0
0

0
0
0
0

Ta /5 a
T9 /5 9
T10 /5 10
T11 /S 11

0
0
0
0

0
0
0
0

T12 /S 12
T13 /S 13
T14 /5 14
T15 /S 15

0
0
0
0

.0
0
0
0

To
T1
T2
T3

0
0
0
0

0
0
0
0

T4
T5
T6
T7

0
0
0
0

0
0
0
0

pPD7527A, pPD7528A, pPD7537A, pPD7538A
Pin
POolINTO

lID Port Loading Option

o Direct connection (no

o Zero-crossing

zero-crossing detector)

Open drain
0
0
0
0

Pull-down
resistor to
VLOAD
0
0
0
0

P83

0
0
0
0

0
0
0
0

P90
P91
~
P93

0
0
0
0

0
0
0
0

P100
P101
P102
P103

0
0
0
0

0
0
0
0

P110
P111
P112
P113

0
0
0
0

0
0
0
0

P23-P21
P33-P30
P43-P40
P53-PSo
Plio
P81
P~

detector

I

pPD7554, pPD7564
Pin

I/O Port Loading Option
No Internal
resistor
0
0
0
0

POo
P01
P02
P03

Pull-up
resistor
0
0
0
0

Pull-down
resistor
0
0
0
0

Plio
P81
P82
P83*

N-chann'l.
open drain
0
0
0
0

CMOS. pushpull output
0
0
0
0

P100
P101
P102
P103

0
0
0
0

0
0
0

P110
P111
P112
P113

0
0
0
0

0
0
0
0

Oscillator
RESET

OR-oscillator

o No internal resistor

N-channel.
open-drain.
and pull-up
0
0
0
0
0
0
0
0

o External clock (7554 only)
o Pull-down resistor

• If P83 is used for CL2. the N-channel open-drain option should be
selected. In this case. P83 cannot function as a port.

Form No. NEC-0000071 Rev. 8 7/86

@1986 NEG Electronics Inc.

1-15

NEe

GENERAL INFORMATION'

t\fEC
pPD7556, pPD7566
Pin

pPD75104, pPD75106
I/O Port Loading Option

POo
P01
P02
P03

Pull-up
resistor
0
0
0
0

PUll-down
resistor
0
'0
0
0

No intarnal
resistor
0
0
0
0

P10
P11
P12
P13

0
0
0
0

0
0
0
0

0
0
0
0

N-channel.
open-drain
0
0
0

CMOS. pushpull output
0
0
0

PBo
PB1
PB2
PB3*

0

0

P90
P91

0
0

0
0

P100
P101
P102
P103

0
0
0
0

0
0
0
0

N-channel.
open-drain.
and pull-up
0
0
0
0

P110
P111
P112
P113

0
0
0
0

0
0
0
0

0
0
0
0

Pin

VREF
0

Comparator
input
0
0
0
0

DR-oscillator
Oscillator
o External clock (7556 only)
RESET
o No internal resistor
o Pull-down resistor
o No internal bias
o Internal bias
VREF
* If P83 is used for CL2. the N-channel open-drain option should be
selected. In this case. P83 cannot function as a port.

P120
P121
P122
P123

Open drain
0
0
0
0

Pull-up
resistor
0
0
0
0

P130
P131
P132
P133

0
0
0
0

0
0
0
0

P140
P141
P142
P143

0
0
0
0

0
0
0
0

Power-on reset flag
Power-on reset generator

1-16

DYes
o Yes*

o No
o No

* If power-on reset generator is selected. power-on reset flag must
be selected also.

pPDBOC4B
Pin

lID Port Loading Option

P1o-P17
P2o-P23
P24-P27

CMOS
(-5pA)
0
0
0

TTL-compatible
(-50pA)
0
0
0

pPDBOC49H,pPDBOC50H

lID Port Loading Option

Pin

POO-P07
P1o-P17
P24-P27

Form NO.NEC-0000071 Rev. B 7/86

lID Port Loading Option

CMOS
(-5pA)
0
0
0

No pull-up
resistor
0
0
0

TTL-compatible
(-50pA)
0
0
0

©1986 NEC Electronics Inc.

t-IEC

I

QUALITY AND RELIABILITY

2-1

QUALITY AND RELIABILITY

NEe

Section 2 - Quality and Reliability
Introduction ................................................................. 2-3
Technology Description ..............................................•....... 2-3
Reliability Testing ............................................................ 2-3
Failure Rate Calculation and Prediction ........................................ 2-6
Reliability Test Results ........................................................ 2-7
NEC's Goals on Failure Rates ................................................. 2-7
Infant Mortality Failure Screening ............................................. 2-8
Life Tests.................. , . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 2-8
Built-in Quality and Reliability.'; .............................................. 2-10
Approaches to Total Quality Control .......................................... 2-10
Summary and Conclusion ................................................... 2-12

2-2

NEe

QUALITY AND RELIABILITY

Introduction

Reliability Testing

As large-scale integration reaches a higher level of
density, reliability of devices imposes a profound
impact on system reliability. And as device reliability
becomes a major factor, test methods to assure acceptable reliability become more complicated. Simply
performing a reliability test according to a conventional method can not satisfy the demand i ng req u i rements for higher reliability. At these new, higher levels
of LSI density, it is increasingly difficult to activate all
the elements in the internal circuits. A different philosophy and methodology is needed for reliability assurance. Moreover, as integration density increases,
the degradation of internal elements in an LSI device is
seldom detected by measuring characteristics across
external terminals.

Reliability is defined as the characteristics of an item
expressed by the probability that it will perform a
required function under stated conditions for a stated
period of time. This involves the concept of probability,
definition of required function(s). and the critical
time used in defining the reliability.

In order to improve and guarantee a certain level of
reliability for large-scale integrated circuits, it is essential to build quality and reliability into the product.
Then, the conventional reliability tests are followed to
ensure that the product demonstrates an acceptable
level of reliability.
NEG has introduced the concept of total quality control
(TOG) across its entire semiconductor product line.
By adopting TOG, NEG can build quality into the
product and thus assure higher reliability. The concept
and methodology of total quality control are companywide activities involving workers, engineers, quality
control staffs, and all levels of management.
NEG has also introduced a prescreening method into
the production line that helps eliminate potentially
defective units. The combination of building quality in
and screening projected early failures out has resulted
in superior quality and excellent reliability.

Definition of a required function, by implication, treats
the definition of a failure. Failure is defined as the
termination of the ability of a device to perform its
required function. Furthermore, a device is said to
have failed if it shows inability to perform within
quaranteed parameters as given in an electrical
specification.
Discussion of reliability and failure can be approached
in two ways: with respect to systems or to individual
devices. The accumulation of normal device failure
rates constitutes the expected failure rate of the system
hardware. Important considerations here are the constant failure period, the early failure (infant mortality)
period, and overall reliability level. With regard to
individual devices, areas of prime interest include
specific failure mechanisms, failures in accelerated
tests, and screening tests.
Some of these failure considerations pertain to both
systems and devices. The probability of no failures in a
system is the product of the probability of no failure in
each of its components. The failure rate of system
hardware is then the sum of the failure rates of the
components used to construct the system.
Figure 1.

Reliability Life (Bathtub) Curve

Technology Description
Most large-scale integrated circuits utilize high-density,
MOS technology. State-of-the-art high performance
has been achieved by introducing fine-line generation
techniques. By reducing physical parameters, circuit
density and performance increase while active circuit
power dissipation decreases. The data presented here
shows that this advanced technology yields products
as reliable as those from previous technologies.

. . ____--____------__~ ::~:u~
Random Failure Period

~

Time_
83-003939A

2-3

IE

NEe

QUALITY AND RELIABILITY
Life Distribution
The fundamental principles of reliability engineering
predict that the failure rate of a group of devices will
follow the well-known bathtub curve in figure 1. The
curve is divided into three regions: infant mortality,
random failures, and wearout failures.
Infant mortality, as the name implies, represents the
early-life failures of devices. These failures are usually
associated with one or more manufacturing defects.
After some period of time, the failure rate reaches a low
value. This is the random failure portion of the curve,
representing the useful portion of the life of a device.
During this random failure period, there is a decline in
the failure rate due to the depletion of potential random
failures from the general population.
The wearout failures occur at the end of the device's
useful life. They are characterized by a rapidly rising
failure rate overtime as devices wear out both physically and electrically.
Thus, for devices that have very-long life expectancies
compared to those of systems, the areas of concern
will be the infant mortality and the random failure
portions of the population.
The system failure rates are related to the collective
device failure rates. In a given system, afterelimination
of the early failures, the system will be left to the failure
rate of its components. In order to make proper
projections of the failure rate in the operating environment, time-to-failure must be accelerated in tests in a
predictable way.

Failure Distribution at NEe
Integrated circuits returned to NEC from the field
underwent extensive failure analysis at NEC's Integrated Circuit Division.

Temperature, humidity, and bias tests are used for
testing the moisture resistance of plastic encapsulated
integrated circuits. NEG developed a special process
to improve the plastic encapsulation material. As a
result, moisture-related~thus packaging-related-failures have been drastically reduced.
As a preventive measure, NEC has introduced a special
screening procedure embedded in the production line.
A burn-in at an elevated temperature is performed for
100 percent of the lots. This burn-in effectively removes
the potentially defective units. In addition, improvement
of the plastic encapsulation material has lowered the
failures in a high-temperature and high-humidity
environment.
Figure 2.

Failure Distribution of MOS Integrated
Circuits
Percent Failures
20

40

60

80

100

Oxide
Deslroyed
Si02 Pattern
Defects
Bond·Wire
Peel or Cut
Metalization
Defects

Percent
Cumulative
Failures

Moisture
Penetration
Parameter
Degradation
Scratch
Chip/Peel/
Crack
Metalization
Corrosion
Other

First, approximately 50 percent of the field returns
were found to be damaged either from improper
handling or misuse of the devices. These units were
eliminated from the analysis. The remaining failed
units were classified by their failure mechanisms as
depicted in figure 2. These failures were then related to
the major integrated circuit failure mechanisms and to
their origins in a particular manufacturing step.
As shown in figure 2, the first four failure mechanisms
accounted for more than 90 percent of total failures. As
a result, NEC improved processes and material to
reduce these failures. Additionally, NEC introduced
screening procedures to detect and eliminate defective
devices.

2-4

63·Q03940A

NEe

QUALITY AND RELIABILITY

Accelerated Reliability Testing
As an example, assume that an electronic system
contains 1000 integrated circuits and can tolerate 1
percent system failures per month. The failure rate per
component is:

0.01 Failures

13.888 x 10-9 Failures/Hour
or 13.8888 FITs

720K Device Hours
where FIT

R = Ro exp(-Ea/kT)
where

Ro

A most common time-to-failure relationship involves
the effect of temperature, which accelerates many
physiochemical reactions leading to device failure.
Other environmental conditions are voltage, current,
humidity, vibration, or some combination of these.
Table 1 lists the reliability assurance tests performed at
NEC for integrated circuits.
Monthly NEe Reliability Tests

Test
life Test
High-temperature,
operating
High-temperature,
storage

MIL·STO-883
Method

Test Conditions

1005A, D

TA = 100 to 125°C
for 1000 hours

1008C

TA = 150°C for 1000 hours

High-temperature,
high-humidity test

TA = 85°C at 85% RH
for 1000 hours

Pressure cooker test

TA = 125°C at 2.3 atm
for 168 hours

Environmental Test
Soldering heat test

2031
(MIL-STD-750)

T = 260°C for 10 s
without flux

Temperature cycle

1010C

T = -65 to +150°C for
10 cycles

Thermal shock

1011A

T = 0 to 100°C for
15. cycles

Lead fatigue

2004B2

at 250 gm: 3 leads, 3 bends

Solderability

2003

T = 230°C for 5 s with flux

= Constant

Ea
k

= Activation energy in eV

T

= Absolute temperature in kelvin

= Failure units per 109 device hours

To demonstrate this failure rate, note that 13.8888 FITs
corresponds to one failure in about 7000 devices
during an operating test of 10,000 hours. It is quickly
apparent that a test condition is required to accelerate
the time-to-failure in a predictable and understandable
way. The implicit requirement for the accelerated
stress test is that the relationship between the accelerated stress testing condition and the condition of
actual use be known.

Table 1.

Temperature Effect. The effect of temperature that
concerns us is that which responds to the Arrhenius
relationship. This relates the reaction rate to temperature.

= Boltzmann's constant
= 8.617 x 10-5 eV/K

(K)

The significance of this relationship is that the failure
mechanisms of semiconductor devices are directly
applicable to it. A linear relationship between failure
mechanism and time is assumed.
Activation Energy. Associated with each failure mechanism is an activation energy value. Table 2 lists some
of the more common failure mechanisms and the
associated activation energy of each.
Table 2.

Activation Energy and Detection of Failure
Mechanisms

Failure Mechanism

Activation
Energy

Oxide defect

0.3 eV

Silicon defect

0.3 eV

Ionic contamination

1.0-1.35 eV

Electromigration

0.4-0.8 eV

Charge injection

1.3 eV

Gold-aluminum
interface

0.8 eV

Metal corrosion

0.7 eV

Detection
High-temperature operating
life test

High-humidity operating
life test

High-Temperature Operating Life Test. This test is
used to accelerate failure mechanisms by operating
the devices at an elevated temperatu re of 125 cC. The
data obtained is translated to a lower temperature by
using the Arrhenius relationship.
High-Temperature and High-Humidity Test. Semiconductor integrated circuits are highly sensitive to
the general accelerating effect of humidity in causing
electrolytic corrosion between biased lines. The hightemperature and high-humidity test is performed to
detect failure mechanisms that are accelerated by
these conditions. This test is effective in accelerating
leakage-related failures and drifts in device parameters
due to process instability.

2-5

NEe

QUALITY AND RELIABILITY
High-Temperature Storage Test. Another common test
is the high-temperature storage test in which devices
are sUbjected to elevated temperatures with no applied
bias. This test is used to detect mechanical problems
and process instability.
Environmental Test. Other environmental tests are
performed to detect problems related to the package,
material, susceptibility to extremes in environment,
and problems related to usage of the devices.

Acceleration Factor
The acceleration factor is the factor by which the
failure rate can be accelerated by increased temperature. This factor is derived from the Arrhenius
failure rate expression, resulting in the following form.
A = F1/F2
where

Failure Rate Calculation and Prediction

= exp[(Ea/k) x (1/T1

-1/T2)]

A = Acceleration factor
F2 = Failure rate at T 2
F1 = Failure rate at T1

Analysis of integrated circuit failure rates can serve
many useful purposes. For example, the early-life
failure rate helps establish a warranty period, while the
mature-life failure rate aids in estimating repair costs,
spare parts stock requirements, or product downtime.
Accurate prediction of failure rates can also be used for
process control.

In calculating the field reliability of an integrated
circuit, it is necessary to calculate the junction temperature. In general, the junction temperature will
depend on the ambient temperature, cooling, package
type, operating cycle time, and power dissipation of
the circuit itself. In these terms, the junction temperature (TJ) is expressed as:

The following sections describe the failure rate calculation and prediction methods used by NEC's
Integrated Circuit Division.

where

T J = TA + Pd Af 8JA

The Arrhenius Model
Most integrated circuit failure mechanisms depend to
some degree on temperature. This relationship can be
represented by the Arrhenius model, which includes
the effects of temperature and activation energy of the
failure mechanisms.
As applied to accelerated life testing of integrated
circuits, the Arrhenius model assumes that degradation
of a performance parameter is linear with time. Temperature dependence is taken to be the exponential
function that defines the probability of occurrence.
The relationship of failure rate to temperature is
expressed as:
F1
Where: F2
F1
Ea
k
T

= F2 exp[(Ea/k) x (1/T1 - 1fT2)]
= Failure rate at T2
= Failure rate at T1
= Activation energy in eV
= Boltzmann's constant

= Operating junction temperature in
kelvin (K)

The equation explains the thermal dependence of
integrated circuit failure rates and is used for derating
the resulting failure rate to a more realistic temperature.

2-6

TJ = Junction temperature
TA = Ambient temperature
Pd = Power dissipation
At = Air flow factor
8JA = Package thermal resistance

Table 3 lists derating factors of various failure mechanisms. This table is generated assuming that an accelerated test is performed at ajunction temperature of
125°C. The result is then derated to 55°C junction
temperature. The acceleration factor may then be
obtained by taking the inverse of the derating factor.
Table 3.

Derating Factors of Failure Mechanisms

Failure Mechanisms

Activation
Energy, eV

Derating Factor

Oxide defect

0.3

0.1546

Silicon defect

0.3

0.1546

Ionic contamination

1.0

0.001984

Electromigration

0.4

0.08307

Charge injection

1.3

0.0003067

Metal corrosion

0.7

0.01315

Gold-aluminum interface

0.8

0.006886

The acceleration of failure mechanisms in a highhumidity and high-temperature environment must be
expressed as a function not only of temperature but
also of humidity.

NEe
According to the reliability test statistics, the acceleration factor in such an environment can best be
approximated with Peck's model as follows.
A
where

= exp[(Ea/k) x (1/T1 -1/T2)] X (H2/H1)4.5
Ea = Activation energy
k = Boltzmann's constant
T
H

= Junction temperature

= Relative humidity

For example, the acceleration factor for high-humidity
and high-temperature or pressure cooker tests ranges
from 100 to 1000 times that of the normal operating
envi ron ment.

Failure Rate Calculation
As an example, suppose that product samples are
submitted to a 1000-hour life test at 125°C junction
temperature and two failures are encountered: one
oxide and one metalization defect. The sample size is
885 units.
Thus, the oxide failure rate is 0.11 percent per 1000
hours and the metalization failure rate is 0.11 percent
per 1000 hours. Therefore, the total failure rate at
125°C sumsto 0.22 percent per 1000 hours at 1K hours.

Failure Rate Prediction
To derate these failure rates to a normal operating
environment, use the derating factors listed in table 3.
Oxide failures = 0.11 x 0.1546 = 0.01701% per 1K hrs
Metal failures = 0.11 x 0.01315 = 0.00145%
per 1K hrs
Total failures = 0.01846% per 1K hrs
Note that the example above is a snapshot of the hightemperature life test performed on a particular lot. It is
not accumulated data that can be used to represent
overall reliability. This conservative illustration, however, shows that the failure rate in a normal operating
environment is approximately one-twelfth the failure
rate in a higher-temperature environment.
The failure rate prediction takes different activation
energies into account whenever the causes of failures
are known through performing failure analysis. In
some cases, however, an activation energy is assumed
in order to accomplish a quick first-order approximation. To yield a conservative estimate offailure rates,
NEC assumes an average activation energy of 0.7 eV
whenever the exact failure mechanism is not known.

QUALITY AND RELIABILITY
Reliability Test Results
Before introducing new technologies or products,
NEC's internal reliability goals must be attained. Several
categories of testing are used in the internal qualification program to assure that product reliability
meets NEC's reliability goals. Once the product is
qualified, its reliability level is regularly monitored in a
monthly reliability test.

NEe's Goals on Failure Rates
NEG's approach to achieving high reliability is to build
quality into the product, as opposed to merely screening out defective units. The use of distributed control
methods embedded in the production line, in conjunction with conventional screening methods, results
in the highest reliability at the lowest cost.
NEC's maximum failure rate goals for infant mortality
and long-term device operation are listed in table 4.

Table 4.

Infant Mortality and Long-Term Failure Rates

Type

Failure Rate
Percent/tODD Hours

Infant mortality

0.10 max

Long-term
1.2M device hours average
3.0M device hours average

0.02 max
0.01 max

Infant Mortality Failure Rate
The infant mortality goal for each product group is set
at 0.10 percent maximum. When a failure rate exceeds
this level, there is prompt remedial action.

Long-Term Failure Rate
The long-term failure rate goal is based on the
following conditions:
• A minimum of 1.2 million device hours at 125°C is
accumulated to resolve 0.02 percent per 1000 hours
at 55°C with a 60-percent confidence level.
• A minimum of 3 million device hours at 125°C is

accumulated to resolveO.01 percent per 1000 hours
at 55°C with a 60-percent confidence level.

2-7

IE
...

NEe

QUALITY AND RELIABILITY
Infant Mortality Failure Screening

Life Tests

It is logical to assume the integrated circuit that fails at
one tem peratu re wou Id also fai I at another tem peratu re,
except it would fail sooner at a higher temperature. As
can be expected, the failure rate is a function of
activation energy. Establishing infant mortality screening, therefore, requires knowledge of the likely failure
mechanisms and their associated activation energy.

The most significant difference between NEG's products and those of other integrated circuit manufacturers
is that NEG's have been prescreened for their infant
mortality defects. The products delivered to customers
are operating at the beginning of the random failure
region of the life curve. The life test data also reflects
this fact, as will be shown.

The most likely mechanisms associated with infant
mortality failures are generally manufacturing defects
and process anomalies. These generally consist of
contamination, cracked chips, wire bond shorts, or bad
wire bonds. Since these describe a number of possible
mechanisms, anyone of which might predominate at a
given time, the activation energy for infant mortality
might be expected to vary considerably.

The failure mechanism distribution from field failures,
as previously shown in figure 2, also contains a very
low percentage due to infant mortality. The majority of
failures are long-term life failures, and these can be
eliminated by stringent process control. Usually, these
failure mechanisms have low activation energy associated with them.

The effectiveness of a screening condition, preferably
at some stress level in order to shorten the time, varies
greatly with the failure mechanism being screened for.
Another factor is the economics of the screening
process introduced into the production line. Optimal
conditions and duration of a screening process will be
a compromise of these two factors.
For example, failures due to ionic contamination have
an activation energy of approximately 1.0 eV. Therefore, a 15-hour stress at 125°G junction temperature
would be the equivalent of approximately 90 days of
operation at a junction temperature of 55°G. On the
other hand, failures due to oxide defects have an
activation energy of approximately 0.3 eV, and a 15hour stress at 125°G junction temperature would be
the equivalent of approximately one week's operation
at 55°G junction temperature. As indicated by this, the
condition and duration of infant mortality screening
wou Id be a strong function of the allowable component
failures, hence the system failure, in the field.
Empirical data, gathered over more than a year at NEG,
indicates that early failure does occur after less than 4
hours of stress at 125°G ambient temperature. This
fact is supported by the life test of the same lot, where
the failure rate shows random distribution, as opposed
to a decreasing failure rate that then runs into the
random failure region.
NEG has adopted the initial infant mortality burn-in at
125°C as a standard production screening procedure.
As a result, the field reliability of NEG devices is an
order of magnitude higher than the goals set for NEG's
integrated circuit products.

2-8

Another significant improvement devised by NEG is
plastiC encapsulation and passivation. As a result, NEG
products show excellent reliability in both highhumidity and high-temperature environments. Following is life test data accumulated over more than a year
for large-scale integrated circuits.

High-Temperature Operating Life Test
This test is used to accelerate failure mechanisms by
operating the devices at an elevated temperature. For
large-scale integrated circuits, the failure rate is 0.242
percent per 1000 hours at 125°G. This is equivalent to
0.0071 percent per 1000 hours in an operating environment of 55°G (table 5).
Table 5.
Number of
Samples
3317

High- Temperature Operating Life Test
Number of Failures at
48 hrs 96 hrs 168 hrs 500 hrs 1K hrs
1

4

3

Total number of failures at 1K hrs
= 8
Failure rate at 1K hrs at 125°C
= 0.242% per 1K hrs
Projected failure rate at 1K hrs at 55°C = 0.007% per 1K hrs

High-Temperature and High-Humidity Life Test
This test is used to accelerate failure mechanisms by
operating the devices at high temperature and high
humidity. Leakage-related failures and device parameter drift are accelerated by this test. For these
large-scale integrated circuits, the failure rate is 0.091
percent per 1000 hours. This is equivalent to 0.0027
percent per 1000 hours in an operating environment of
55°G. The test conditions are TA = 85°G and relative
humidity (RH) = 80% (table 6).

NEe
Table 6.

QUALITY AND RELIABILITY

High- Temperature and High-Humidity Life
Test

Table 9.

Life Test Data
Total
Number of Failures at
Number of
Number of
Samples 96 hrs 168 hrs 500 hrs lK hrs Failures

Number of Failures at

Number of
Samples

48 hrs 96 hrs 168 hrs 500 hrs 1K hrs

Test Time
High-temperature
life test

3317

0

1

4

3

8

= 2
= 0.091% per 1K hrs

High-humidity
life test

2190

0

0

0

2

2

= 0.003% per 1K hrs

High-temperature
storage life test

2410

0

0

4

5

High-Temperature Storage Life Test

Pressure
cooker test

1718

4

5

This test is effective in accelerating the failure
mechanisms related to mechanical reliability problems
and process instability. For these LSI devices, the
failure rate is 0.207 percent per 1000 hours at 125°C.
This is equivalent to 0.0061 percent per 1000 hours in
an operating environment of 55°C (table 7).

Total

9635

4

6

2190

0

Total number of failures at 1K hrs
Failure rate at 1K hrs at 85°C/80% RH
Projected failure rate at 1K hrs at
55°C/60% RH

Table 7.

0

2

Number of Failures at
48 hrs 96 hrs 168 hrs 500 hrs 1K hrs

o

2410
Total number of failures at 1K hrs
Failure rate at 1K hrs at 125°C
Projected failure rate at 1K hrs
at 55°C

0

0

1

4

=5
= 0.207% per 1K hrs
= 0.006% per 1K hrs

Pressure Cooker Test
This test is effective in accelerating failure mechanisms related to metalization corrosion due to moisture.
The failure rate is 0.52 percent per 1000 hours at T A =
125°C and 2.3 atm at 100 percent humidity. This is
equivalent to 0.0013 percent per 1000 hours at 55°C
and an environment of 60 percent humidity (table 8).

Table 8.
Number of
Samples
1718

5

9
24

9

The projected failure rate in the normal operating
environment is calculated assuming that the average
activation energy is 0.7 eV.
Figure 3 shows the life distribution of NEC integrated
circuits as a form of the bathtub curve.

High- Temperature Storage Life Test

Number of
Samples

No test
performed

Pressure Cooker Test

This life test data shows improvements of approximately an order of magnitude better than NEC's goal.
The hours of operation are equivalent to the normal
operating environment. Wear-out failures, which had
been the main target for reliability improvement, have
also been significantly reduced. This result comes
mainly from process improvements and stringent manufacturing process control.
NEC's main goal has been to improve reliability with
respect to infant mortality and long-term life failures.
This can be achieved by introducing an effective
screening method for infant mortality and building
quality into the product.

Figure 3.
0.10

Plot of Life Test Results

+-------

Infant Mortality Failure Rate Goal
0,10 percent per 1000 hours maximum

+-+------

Long-Term Life Failure Rate Goal
0.02 percent per 1000 hours maximum

Number of Failures at
48 hrs 96 hrs 168 hrs 500 hrs
0

Total number of failures at 168 hrs
Failure rate at 125°C
Projected failure rate at 55°C

4

5

1K hrs

No test performed

0.05

= 9
=

0.54% per 1K hrs

= 0.001% per 1K hrs
0.01

Life Test Data Summary
Table 9 summarizes the life test results and projected
failure rates in the normal operating environment. The
failure rate shows random distribution as opposed to a
decreasing failure rate. This is a result of infant
mortality screening.

0.005

O.SK

lK

2K

3K

4K

SK

10K

20K

30K

40K

Hours_
83-003941 A

2-9

~
KI::I

NEe

QUALITY AND RELIABILITY
Thermal Stress Tests

Approaches to Total Quality Control

Temperature cycling and thermal shock test the thermal
compatibility of material and metal used to make
integrated circuits. Table 10 lists the reliability test
results of thermal stress tests.

First, the quality control function is embedded into
each process. This method enables early detection of
possible causes of failure and immediate feedback.

Table 10.

Thermal Stress Tests
Number of
Samples

Number of
Failures

Soldering heat test
TA = 260°C for 10 seconds

1891

o

Temperature cycle
TA = -65 to +150 °C, 10 cycles

1891

Thermal shock test
TA = 0 to +100°C, 15 cycles

1891

Teslltem

o

Mechanical Stress Tests

Second, the reliability and quality assurance policy is
an integral part of the entire organization. This enables
a companywide quality control activity. At NEG, everyone in the company is involved with the concept and
methodology of total quality control.
Third, there is an ongoing research and development
effort to set even higher standards of device quality and
reliability.
Fourth, extensive failure analysis is performed periodically and corrective actions are taken as preventive
measures. Process control is based on statistical data
gathered from this analysis.

In addition to the device life test, NEG performs
mechanical stress tests to detect reliability problems
related to the package, material, and device susceptibility to an extreme environment. Table 11 lists
mechanical stress test results.

The goal is to maintain the superior product quality
and reliability that has become synonymous with the
NEG name. The new standard is continuously upgraded
and the iterative process continues.

Table 11.

Building quality into a product requires early detection
of possible causes of failure at each process step.
Then, immediate feedback to remove the causes is a
must. A fixed station quality inspection is often lacking
in immediate feedback. It is, therefore, necessary to
distribute quality control functions to each process
step, including the conceptual stage. NEG has implemented a distributed quality control function at each
step of the process. Following is a breakdown of the
significant steps:

Mechanical Stress Tests

Teslltem

Number of
Samples

Number of
Failures

Mechanical shock test
at 15 kg, 3 axis

315

Vibration test
at 100 Hz to 2 kHz, 20 g

315

0

Constant acceleration
at 20 kg, 3 axis

315

0

Lead fatigue test
at 240 grams

538

0

Solderability test
at 230°C for 5 seconds

638

0

Built-In Quality and Reliability
As large-scale integration reaches even higher levels
of density, simple quality inspections cannot assure
adequate levels of product quality and reliability. In
order to ensure the reliability of state-of-the-art VLSI,
NEG has adopted another approach. Highest reliability
and superior quality of a device can only be achieved
by building these characteristics into the product at
each process step. NEG, therefore, has introduced the
notion of total quality control (TQG) into its entire
semiconductor production line. Quality control is distributed into each process step and then summed to
form a consolidated system.

2-10

Implementation of Distributed Quality Control

•
•
•
•
•

Product development phase
Wafer processing
Chip mounting and packaging
Electrical testing and thermal aging
Incoming material inspection

Product Development Phase. The product development
phase includes conception of a product, review of the
device proposal, organization and physical element
design, engineering evaluation, and finally, transfer of
the product to manufacturing. Quality and reliability
are considered at every step. More significantly, at the
design review stage and prior to product transfer, the
quality and reliability requirements have to be examined
and determined to be satisfactory. This often adds 2 to
3 months to the product development cycle. Building
in high reliability, however, cannot be sacrificed.

NEe

QUALITY AND RELIABILITY

Wafer Processing Stage Inspection. The in-process
quality inspections that occur at the wafer fabrication
stage are listed in table 12.

Figure 4.

Electrical Testing and Screening

DC Parameters

Table 12.

Wafer Processing Inspection

Process

Inspection Item

Wafer

Resistivity, dimension, and appearance,
(lot sampling inspection)

Mask
Photolithography

Alignment and etching (100% inspection)

DC Parameters,
AC Functional

Cleaning
Diffusion and oxidation

Oxide thickness, sheet resistivity (lot
sampling inspection)

IE

Metalization and passivation Thickness, Vth, C-V characteristics (lot
sampling)
Wafer sort and scribe

Dc parameters (100% inspection)

Die sort

100% visual inspection
Electrical,
Appearance, and
Dimensions

Chip Mounting and Packaging. The in-process quality
inspections done at the chip mounting and packaging
stage are listed in table 13.
Table 13.

Chip Mounting and Packaging Inspection

Process

Inspection Item

Die

Incoming material Inspection

83-003942A

Die attach

Appearance (lot sampling inspection)

Wire bonding

Bond strength, appearance (lot sampling)

Packaging

100% appearance inspection

Incoming Material Inspection. Prior to warehouse
storage, lots are subjected to an incoming inspection
according to the following sampling plan.

Fine leak*

Lot sampling

• Electrical test:

Gross leak*

100% inspection

*For ceramic package devices only.

Electrical Testing and Screening. Electrical testing and
infant mortality screening are performed at this stage.
A flowchart of the process is depicted in figure 4.
At the first electrical test, dc parameters are tested
according to the electrical specifications on 100% of
each lot. This is a prescreening prior to the infant
mortality test. At the second electrical test, ac functional tests as well as dc parameter tests are performed on
100% of the subjected lot. If the percentage of defective
units exceeds the limit, the lot is subjected to an
additional burn-in. During this time, the defective units
are undergoing a failure analysis, the results of which
are then fed back into the process for corrective action.

Dc parameters
Functional test

• Appearance

LTPD
LTPD

3%
3%

LTPD

3%

Reliability Assurance Test
Samples are continually taken from the warehouse and
subjected to monthly reliability tests as discussed
previously. They are taken from similar process groups
so that it can be assumed that any device is representative of the reliability of the group.

2-11

NEe

QUALITY AND RELIABILITY
In-Process Screening

Summary and Conclusion

Perhaps the most significant preventive measure that
NEC has implemented is the introduction of 100%
burn-in as an integral part of the standard production
process. Most of the potential infant failures are effectively screened from every lot, thereby improving
reliability. Assuming average activation energy of 0.7
eV, burn-in at T A = 125 °G for 4 hours is equivalent to a
week's operation in a normal operating environment.
This appears to be ample time for accelerating the
time-to-failure mechanisms for early failures.

As has been discussed, building quality and reliability
into products is the most efficient way to ensure
product reliability. NEC's approach of distributing
quality control functions to process steps, then forming
a consolidated quality control system, has produced
superior quality and excellent reliability.

Process automation, as previously mentioned, has also
contributed a great deal toward improving reliability.
Since its introduction, assembly related failure mechanisms have been substantially reduced. And, in
combination with in-process screening and materials
improvement, it has helped establish quality and
reliability above NEG's initial goals.

Prescreening, introduced as an integral part of largescale integrated circuit protection, has been a major
factor in improving reliability. The most recent year's
production clearly demonstrates continuation of NEG's
high reliability and the effectiveness of this method.
Reliability assurance tests (RATs), performed monthly,
have ensured high outgoing quality levels. The combination of building quality into products, effective
prescreening of potential failures, and the reliability
assurance test has established a singularly high standard of quality and reliability for NEG's large-scale
integrated circuits.
With a companywide quality control program, NEG is
committed to building superior quality and highest
reliability into all its products. Through continuous
research and development activities, extensive failure
analysis, and process improvements, a higher standard
of quality and reliability will continuously be set and
maintained.

2-12

NEe

4-BIT, SINGLE-CHIP MICROCOMPUTERS

3-1

4-BIT, SINGLE-CHIP MICROCOMPUTE~S

t-IEC

Section 3 - 4-Bit, Single-Chip Microcomputers
pPD7500 Series
pPD7500H/H-E
pPD7501
pPD7502/03
pPD7506
pPD7507/08
pPD7507H/08H
pPD7507S
pPD7508A
pPD7514
pPD7516H
pPD7519/19H
pPD7527 A/28A
pPD7533
pPD7537 A/38A
pPD7554/64
pPD7556/66
pPD75104/106/108
pPD75P108

CMOS Microcomputers .................................. 3-3
CMOS Microcomputers for pPD7500-Series Evaluation .... 3-31
CMOS Microcomputer with LCD Controller/Driver ........ 3-45
CMOS Microcomputers with LCD Controller/Driver ....... 3-59
CMOS Microcomputer .................................. 3-75
CMOS Microcomputers ................................. 3-89
CMOS Microcomputers ...... ; ......................... 3-109
CMOS Microcomputer ................................. 3-123
CMOS Microcomputer with FIP® Driver ................. 3-141
CMOS Microcomputer with LCD Controller/Driver ....... 3-155
CMOS Microcomputer with FIP® Controller/Driver ....... 3-175
CMOS Microcomputers with Flp® Controller/Driver ...... 3-199
CMOS Microcomputers with FI p® Driver ................ 3-229
CMOS Microcomputer with A/D Converter .............. 3-243
CMOS Microcomputers with FI p® Driver ................ 3-263
CMOS Microcomputers with Serial I/O .................. 3-277
CMOS Microcomputers with Comparator ................ 3-295
CMOS Microcomputers ................................ 3-313
CMOS Microcomputer with On-Chip EPROM ............ 3-325

FIP is the registered trademark for NEe's fluorescent indicator panel (vacuum fluorescent display).

3-2

NEe
NEe Electronics Inc.
Description
The J.lPD7500 series of 4-bit, single-chip CMOS microcomputers is a broad product line of devices designed
for a variety of applications; for example, electronic
games, home electronic products such as the VCR,
and electronic automotive devices. To this end, more
than 25 products based on the J.lPD7500 evaluation
chip have been designed with various combinations of
memory size, number of I/O ports, output drive capability, type of display driver/ controller (LCD or FIP®),
oscillators, package type (DIP, shrink DIP for ease of
handling, flat for high-density installations, QUIP), and
more. Because the J.lPD7500 series products have
hardware and software in common, systems are easily
upgraded.
The J.lPD7500 series uses a low-power CMOS design.
As an example, the current consumption of the
J.lPD7508C operating at 5 V is typically 300J.lA (at 10J.ls,
200 kHz). In standby mode at3 V, current consumption
is reduced to 0.3 J.lA (typ). This feature is most suitable
for systems requiring battery backup or for batterypowered devices that must operate for long periods.

pPD7500 SERIES
4-BIT, SINGLE-CHIP
CMOS MICROCOMPUTERS

The many kinds of peripheral hardware (such as
display controllers/drivers) that are built into the
members of the series can significantly reduce the cost
of a system. One common hardware feature is an 8-bit
timer, which easily provides a clock function. With the
exception of the J.lPD7506/7556/7566, all products of
the series incorporate an 8-bit serial 110, so that
developing multiprocessorsystemsorconnecting peripheral devices is easier. The J.lPD7533 offers a 4channel, 8-bit A/D converter.
Piggyback products, such as the J.lPD75CG08, are
available and can be used as a final check of functions
during system development, preproduction, and small
volume production.
The same support tools can be used for the entire
series, thus helping to reduce system development
cost.
Table 2 lists the package types applicable to each chip
in the J.lPD7500 series.
FIP is the registered trademark for NEG's fluorescent indicator panel
(vacuum fluorescent display).

The wide operating voltage range of the series allows
systems to be configured with normal operation at
5 V ±10% and battery backup operation at 3 V. In
particular, the J.lPD7507S can run at 2.2 V, and systems
using this device need only a single lithium battery,
thus reducing the overall system cost
Although the normal operating temperature range is
-10 to +70°C, products in the J.lPD7500 series can
operate from -40 to +85°C and -40 to +110°C in
accordance with the user's request. This is useful in
automotive and outdoor applications.
Table 1 lists the J.lPD7500 series products and features,
and figure 1 shows the different development directions
of the series. Within each of these directions, the
memory sizes have been serialized. For example, in the
product group with built-in LCD controllers, the
J.lPD7501 has a 1K-byteROM, the J.lPD7502 has a
2K-byte ROM, and the J.lPD7503 has a 4K-byte ROM.
(Note also that the J.lPD7502 and J.lPD7503 are pin
compatible; software developed on the J.lPD7502 can
be used without modification on the J.lPD7503. Except
LAMT instruction for J.lPD7502 only and LAMTL instruction for J.lPD7503 only.)

3-3

E

NEe

fJ;PD7500
Table 1.

pPD 7500 Series Product List

Product (PPD)

Features

Clock Osc

ROM Ix8)

RAM Ix4)

liD

Power Supply

7500H

EVACHIP, high speed (2.86/Js)

RC

8K (External)

256

46

5 V ±10%

7500H-E

EVACHIP

RC

8K (External)

256

46

5 V ±10%

7501

LCD controller/driver, 24-segment

RC

1K

96

24

2.5 to 6.0 V

7502

LCD controller/driver, 24-segment

RC

2K

128

23

2.5 to 6.0 V

7503

LCD controller/driver, 24-segment

RC

4K

224

23

2.5 to 6.0 V

7514

LCD controller/driver, 32-segment

RC

4K

256

31

2.7 to 6.0 V

7507S

General purpose, low voltage

RC

2K

128

20

2.2 to 6.0 V

7507

General purpose

RC

2K

128

32

2.5 to 6.0 V

7508

General purpose

RC

4K

224

32

2.5 to 6.0 V

7507H

General purpose, high speed (2.86/Js)

Xtal/Cer

2K

128

32

2.7 to 6.0 V

7508H

General purpose, high speed (2.86/Js)

Xtal/Cer

4K

224

32

2.7 to 6.0 V

7506

General purpose

R

1K

64

22

2.5 to 6.0 V

7554

LED direct drive, mask option ports, serial I/O

R

1K

64

16

2.5 to 6.0 V

7564

LED direct drive, mask option ports, serial I/O

Ceramic

1K

64

15

2.5 to 6.0 V

7556

LED direct drive, mask option ports,
4-channel comparator

R

1K

64

20

2.5 to 6.0 V

7566

LED direct drive, mask option ports,
4-channel comparator

Ceramic

1K

64

19

2.5 to 6.0 V

7527A

P-ch, high-voltage output ports for FIP driver;
high speed (3.3 p.s)

RC

2K

128

35

2.7 to 6.0 V

7537A

P-ch, high-voltage output ports for FIP driver;
high speed (3.3 p.s)

Ceramic

2K

128

35

2.7 to 6.0 V

7528A

P-ch, high-voltage output ports for FIP driver;
high speed (3.3 p.s)

RC

4K

160

35

2.7 to 6.0 V

7538A

P-ch, high-voltage output ports for FIP driver;
high speed (3.3 p.s)

Ceramic

4K

160

35

2.7 to 6.0 V

7508A

P-ch, high-voltage output ports for FIP driver

RC

4K

208

32

2.7 to 5.5 V

7519

FIP controller/driver

Xtal

4K

256

53

2.5 to 6.0 V

7519H

FIP controller/driver; high speed (2.44 p.s)

Xtal

4K

256

53

2.5 to 6.0 V

7516H

FIP controller/driver; high speed (2.44 p.s)

Xtal

6K

256

53

2.5 to 6.0 V

7533

LED driver; 4-channel A/D converter

Ceramic

4K

160

30

3.0 to 6.0 V

75CG08

Piggyback; for 7507/08

RC

4K

224

32

5 V ±10%

75CG08H

Piggyback; for 7507H/08H

Xtal/Cer

4K

224

32

5 V ±10%

75CG19

Piggyback; for 7519

Xtal

4K

256

53

5 V ±10%

75CG19H

Piggyback; for 7519H

Xtal

4K

256

53

5 V ±10%

75CG16H

Piggyback; for 7516H

Xtal

6K

256

53

5 V ±10%

75CG28

Piggyback; for 7527A/28A

RC

4K

160

35

5 V ±10%

75CG38

Piggyback; for 7537A138A

Ceramic

4K

160

35

5 V ±10%

75CG33

Piggyback; for 7533

Ceramic

4K

160

30

5V±10%

3-4

NEe
Figure 1.

fJPD7500

pPD7500 Series Product Classification

:> I~'~""~O I

L -_ _ _ _ _ _ _ _ _ _

0~CD
U

Minimicrocomputer

[Piggyback]

General
purpose

>

I

7500H

L------,)
AID

D:~~:~Oltage

533

D
Table 2.

"---->

Applicability of Packages

Product IJ,tPDI

Package

Product IJ,tPDI

Package

7500H, 7500H-E

64 QUIP

7527 A, 7528A

42 DIP or SDiP

7501

64 miniflat

75CG28

42 ceramic piggyback DIP

7502,7503

64 miniflat

7533

42 DIP, SDlP, or 44 miniflat
42 ceramic piggyback DIP

7506

28 DIP or SDIP; 52 miniflat

75CG33

7507,7508

40 DIP or SDlP; 52 miniflat

7537 A, 7538A

42 DIP or SDiP

75CG08

40 ceramic piggyback DIP

75CG38

42 ceramic piggyback DIP

7507H,7508H

40 DIP or SDIP; 44 miniflat

7554,7564

20 SDlP or SO package

75CG08H

40 ceramic piggyback DIP

7556,7566

24 SDiP or SO package

7507S

28 DIP or SDiP

Note:

7508A

40 DIP

7514

80 miniflat

(1) For ordering information, including package codes, refer to the
applicable data sheet.

7516H

64 miniflat, QUIP, or SDiP

75CG16H

64 ceramic piggyback QUIP

7519,7519H

64 miniflat, QUIP, or SDIP

75CG19, 75CG19H

64 ceramic piggyback QUIP

(2) Packages are plastic unless otherwise specified.

3-5

NEe

J..lPD7500
Applications
7500 series products with a built-in LCD controller:
• Electronic game
• Automotive device (dashboard display)
• Phone
• VCR (timer)
• Camera
• Calculator
• Electronic musical instrument
• Measuring equipment
• Medical device (blood pressure gauge)
• Water, gas, or electric meter
• Pager
• PPC
• Data terminal

7500 series products with built-in high-voltage outputs:
•
•
•
•
•
•

VCR
ECR
Microwave oven
Electronic game
Scanner
Trip computer

7500 series products with a built-in LED controller/driver:
• Electronic game
• Deck controller
• Refrigerator
• Cooking appliance
• Washing machine

7500 series general-purpose products:
• VCR
• Phone
• Automobile
• ECR
• Record player
• Transceiver
• PPC
• Cassette

Block Diagram
Common Processor Portion

I

Peripheral

PC

• Timer/Counter

I

• Serial Interface

SP

~

I
I

• Interrupt Circuit

A
• Standby Circuit

ALU
• System Clock Circuit
• General I/O Port

• Display Control Driver

ROM

[J
I

H

I

D

I I
I I

L

E

I

I
49-001252B

3-6

ttfEC

J,1PD7500

Functional Description

Program Counter [PC]

A jlPD7500 series microcomputer consists of the following:
• Program counter (PC)
• Accumulator (A)
• Program status word (PSW)
• Arithmetic logic unit (ALU)
• General-purpose registers (H, L, D, E)
• Program memory (ROM)
• Data memory (RAM)

The program counter (figure 2) is a binary counter that
generates a 12-bit address. The bit length of the PC will
vary depending on the ROM size for the particular
device. ThejlPD7516H andjlPD7500H/H-E, which contain more than 4K-bytes of memory, access upper
memory by setting bit 1 of the program status word
(BNK flag) to 1.

The peripheral hardware includes the following:
• Timer/counter
• Serial interface
• Interrupt circuit
• Standby circuit
• System clock oscillation circuit
• General-purpose I/O
• Display controller/driver

Figure 2.

Program Counter Structure

When an instruction executes, the PC increments by
the number of bytes in the instruction.
When a jump instruction (JMP, JCP, JAM) executes,
either immediate data or the contents of the accumulator and data memory, which show a jump
destination, are loaded into some or all bits of the PC.
While a call instruction is executing (CALL, CAL T) or
at an interrupt occurrence, the contents of the PC (the
return address already incremented to designate the
next instruction) are stored in stack memory. A proper
address is then loaded into the PC.
While a return instruction is executing (RT, RTS,
RTPSW), the contents of stack memory are loaded into
the PC.
The RESET instruction clears the PC to O.

3-7

3

~EC

JiPD7500
Figure 3.

Stack Pointer [SP]
The stack area for the pPD7500 series resides in data
memory. The stack depth can be as large as the
maximum size of RAM, since the stack pointer is user
programmable.

Data Movement at Execution of TAMSP
and TSPAM

The stack pointer is an 8-bit register (SPy-SPa) that
stores the stack's top address for the area in data
memory used as an LIFO stack. The SP decrements
when a call (CALL, CAL T) or push (PSHDE, PSHHL)
instruction executes and at an interrupt generation. It
increments when a return (RT, RTS, RTPSW) or pop
(POPDE, POPHL) instruction executes.
To determine the stack area, the SP must be initialized
by the TAMSP instruction. However, when TAMSP
executes, 0 (zero) is unconditionally loaded into SPa.
Because the SP decrements before a stack instruction
executes, the top of the stack will always begin at an
odd memory location. Thus the initial value of the SP
should be set to the top of the stack (odd) plus one (set
to an even value). To.setthe most significant address of
the stack area to FFH, the initial value of the SP should
be OOH.
Although TSPAM may read the SP at any time, it
cannot read the contents of SPa; 0 is unconditionally
stored in bit 0 of data memory. See figure 2 and table 3.

Table 3.

Process
Order

Stack Memory Push/Pop Operation
RT, RTS

RTPSW

PSHDE,
PSHHL

CALL, CALT

Interrupt

2

(SP-1) (SP-2) -

PCM
PCl

PCH - (SP)
PCl - (SP+2)

PCH - (SP)
PSW - (SP+ 1)

(SP-1) (SP -2) -

3

(SP-3) -

PSW

PCM -

PCl -

(SP+2)

SP -

4

(SP -4) -

PCH

SP- SP+4

PCM -

(SP+3)

5

SP -

Note:

(1) PCH = PC1rPCa
PCM = PCrPC4
PCl = PC3-PCa

3-8

SP-4

(SP+3)

SP- SP+4

D/H

Ell

SP-2

POPDE,
POPHL
Ell - (SP)
D/H -

SP -

(SP+ 1)
SP+2

NEe

f.l P D7500

Program Memory [ROM]

General-Purpose Registers

Program memory is a mask-programmable ROM of
6144 words x 8 bits (maximum). It stores programs and
table data, and is addressed by the PC. (See figure 4.)
ROM address locations are from OOOH to 17FFH.

The four 4-bit general-purpose registers D, E, H, and L
either operate in units of 4 bits, or can form the 8-bit
pair registers DE, DL, and HL (D or H is the upper-order
4 bits, and E or L is the lower-order 4 bits) to be used as
data pointers.

Specific fixed address locations are allocated to
RESET and interrupt start addresses and the table
areas of the LHL T and CAL T instructions. Consideration of these locations in program memory should be
taken in preparing a program.
Figure 4.

Program Memory Map

When pair register HL operates as a data pointer, it can
perform automatic increment and decrement for the L
register only. (See figure 5.) The L register is also used
to specify I/O ports and mode registers when the I/O
instruction (OPL, IPL) is executed.
The pPD7501 /06/27/28/33/37/38/54/64/56/66 do not
contain DE registers.
Figure 5.

General-Purpose Register Configurations
o

~3

r---:-------'j=---:;:::f

________~O

r----

Subroutine
Entry
Addresses

-----:,~
49·001229A

J9·001228A

3-9

NEe

J.lPD7500
Data Memory [RAM]

Accumulator [A]

Data memory is a static RAM of 256 words x 4 bits
(maximum). It is used to store processing data and
display data. It also operates with the accumulator to
process data in 8-bit units.

The accumulator is a 4-bit register that performs
various arithmetic/logical operations. Operating with
data memory addressed by pair register HL, data
processing may be done in 8-bit units (higher-order
bits in the accumulator and lower-order bits in data
memory). See figure 8.

There are three types of data memory addressing:
• Direct, performed by the second byte of the
instruction

Figure 8. Accumulator Configuration

• Register indirect, performed indirectly by the contents of the pair register designated by an instruction
• Stack indirect, performed by the contents of the SP
Locations 00 to 3FH are used for display memory
devicespPD7516H/19H, so these locations cannot be
used for stack area. Locations 00 to 17H (1 FH for the
pPD7514) are used for display memory devices
pPD7501/02/03/14, so these locations cannot be used
for stack area. See figure 6.
Valid stack area is used during execution of the
instructions CALL, CALT, RT, RTS, RTPSW, PSHDE,
PSHHL, POPDE, and POPHL. At the execution of a call
instruction or an interrupt occurrence, the contents of
the PC and PSW are stored in the stack area. At the
execution of a push instruction, the contents of DE or
HL are stored in the stack. See figure 7.

Arithmetic Logic Unit [ALU]
The ALU is a 4-bit arithmetic logic circuit that performs
such processes as binary addition, arithmetic/logical
operation, comparison, and rotation.

Program Status Word [PSW]
The 4-bit PSW consists of two skip flags (SK1, SKO)
and a carry flag (C), as shown in figure 9.

Figure 9.

Structure of Program Status Word
3

SKl

Figure 6.

Data Memory Map
Data memory
(0) DOH
32 x 4

(31) lFH
,.PD7519116 (32) 20H
Display Area
PPGArea

28 x 4

3BH
(63) 3FH 3CH
(64) 40H

4x4

256 x4

(256)

Figure 7.

192x 4

FFH
49-001230A

Stack Contents After Call, Interrupt, or
Push

SP-4

Call Instruction,
Interrupt

Push Instruction

Stack

Stack

PCl1-PCa

SP-3

PSW

SP-2

PC3-PCO

SP-2

E orL

SP-l

PCrPC4

SP-l

DorH

49-001231A

3-10

0

C

The contents of the PSW are automatically stored in
the stack area at an execution of a call instruction
(CALL, CALT) or at an interrupt occurrence, and are
restored by an RTPSW instruction. The BNK flag is
used in the pPD7500H/H-E and 7516H to access high
memory.
At RESET, SK1 and SKO are cleared to 0, and C is
undefined.

Stack Area

"r

1

SKO BNK

49-001256A

,.PD751f Display
Data Area

Direct/Register
Indirect Address
Area

2

I I I I Ipsw

NEe
Skip Flags [SK1, SKO]. The skip flag is used to hold the
following skip states:
• String effect of an LAI instruction
• String effect of an LHLI or LHLT instruction
• Skip condition accomplished by instructions other
than string effect
The skip flag is automatically set and reset when an
instruction is executed.
Carry Flag [C]. This flag can be generated only by the
addition instruction (ACSC). If a carry is generated
from bit 3 of the ALU, the carry flag is set to 1. If a carry
is not generated, the carry flag is reset to O.
The carry flag is set to 1 by the SC instruction and reset
to 0 by the RC instruction. Its contents are tested by
the SKC instruction. The carry bit is rotated into the
high bit of the accumulator by the rotation instruction
(RAR).

J,1PD7500
System Clock Generator
The system clock (CL) is generated by one of the five
types of oscillators listed in table 4. The CPU clock (~)
is derived from CL by frequency division.
Table 4. IlPD7500 Series System Clock (CL) and CPU
C/ock(~)
~/CL

Oscillator
Type

Stop Mode
Released by

7500H,7500H-E 1/2
7501
7502
7503
7514
7507,7507S
7508,7508A
7527A
7528A

RC

Interrupt or RESET

7506
7554
7564
7556
7566

1/2

R

Interrupt or RESET

7507H
7508H

1/12

Crystal/ceramic
1.0 to 4.2 MHz

RESET (Note 1)

7519
7519H
7516H

1/32 or 1/64
1/16 or 1/64
1/16 or 1/64

Crystal
RESET
4.19 to 6.55 MHz
(75194.19 MHz max)

7537A
7538A

1/2

Ceramic

Product (PPD)

Frequency
Ratio

RESET

7533
Note:
(1) RESET pulse width provides time for oscillation stabilization.

3-11

E

ttiEC

JlPD7500
RC Oscillator
The system clock generator (figure 10) consists of an
RC oscillator and a half-frequency divider. The RC
oscillator is controlled by an external resistor (R) and
capacitor (C) connected to CL 1 and CL2.

Notshown in figure 10, the RC oscillator output (CL) is
sent to a clock control circuit, and then frequency
divided to become a count pulse (CP) for the timer/
event counter.

An external clock can be input to the CL 1 pin without
using an RC circuit. Pin CL2 should be left open. In this
case, the RC oscillator merely operates as an inverting
buffer.

If an external clock is used, the CL 1 input clock
becomes CL via an inverting buffer, so the supply of CL
does not stop even in stop mode. Thus, both stop mode
and halt mode stop only the half-frequency divider. In
both modes, only the output of cp is stopped.

The frequency of CL is the RC oscillation frequency of
the CL 1 input clock frequency. The RC oscillator
output is frequency divided by 2 to become the CPU
clock (CP), which is sent to the CPU and the serial
interface.
Using the standby circuit, the RC oscillator and the
half-frequency divider are stopped in the stop mode,
thereby stopping the output of CL and cp.ln halt mode,
only the half-frequency divider is stopped, so that cp
stops but CL continues to be supplied.
Figure 10.

System Clock Generator; RC Oscillator
StopF/F
~"I---_STOP'

~------~Q

S~--------------~

HaltF/F

R
Disable
Clock

frl

Q

S

P

'

"

I--+---- HALT"
RESET (High)

R

cu

RC
Oscillator

CL2

STANDBY RELEASE

11---------+--,-1----- RESET ( 1.. )

~---_(toCPU)

~----------------. . . CL(SystemClock)

Note: • Indicates instruction execution.
49·0012338

3-12

NEe

J.lPD7500

R Oscillator
In this circuit, the resistor is external and the capacitor
is internal. See figure 11.
Figure 11.

System Clock Generator; R Oscillator
Stop F/F
r------~Q

,--,..----1,.-- STOp·

S~----------------~

HaltF/F

R
Disable
Clock

Q

S

1--+--- HALT"
RESET (High)

R

CL1

E

RC
Oscillator

CL2

STANDBY RELEASE

........~----- RESET (

L )

t--------.. c!> (to CPU)

L -____________________________

CL (System Clock)

Note: • Indicates instruction execution.
49·0012346

3-13

NEe

J..l.PD7500
Crystal/Ceramic Oscillator

The standby mode control circuit is mainly composed
of a stop flip-flop and a halt flip-flop. See figures 12 and
13.

This clock generator provides stable high-speed operation. The circuit (figure 12) consists mainly of a
crystal oscillator circuit, several frequency dividers,
and a control circuit for standby (halt/stop) modes.

The STOP instruction sets the stop flip-flop to the stop
mode, in which crystal oscillation and all clock supplies
are stopped. A high input to RESET resets the stop
flip-flop, and crystal oscillation starts again. When
RESET goes low, the supply for each clock restarts.

The crystal oscillator operates at the fundamental
crystal frequency, typically 4.19 MHz. Or, a ceramic
resonator (typically 4.0 MHz) may be connected
between the CL 1 and CL2 pins. Or, an external clock
may be input at CL 1, in which case the crystal oscillator
operates as an inverting buffer.

Figure 13.

The frequency divider generates several ki nds of clocks
by dividing the crystal/ceramic oscillation frequency
(fee) orthe external clock frequency (fe), where fee or
fe = 4.19 MHz, as follows:

Stop Mode Timing

r

HALT
(----STOP

Mode----~Mod:.;;,i.je

Operating
Mode

r o a t a ~:~ntion

-~-il,~

VOO

t

VOOOR

STOP Instruction
Execution

• System clock (CL): fee/6 or fe/6 (698 kHz)
RESET

• CPU clock (cp) and output clock (CPOUT): fee/12 or
fc/12 (349 kHz):
49·0012368

• Timer/event counter clock: fee/8 or fe/8 (524 kHz)
System clock CL is supplied to the timer/event counter,
the clock synchronizing the gate of the INT1 interrupt
input, etc.
Figure 12.

System Clock Generator; Crystal/Ceramic Oscillator

OUT
(349kHz)

,...

-

V2
CLR

~

To Timer/Event Counter
(524kHz)

V.
CLR

CL
(698kHz)

0-----Crystal!
Ceramic
Oscillator

~
fc

V2
CLR

0--

i -.......

V3

~~

V2

 (to CPU)
I-- t--- (349kHz)

CLR

CLR

L-.

Disable
Clock

HALTF/F

'--Q

(~

-

---

RK (

HALT
RELEASE
RESET(""l)

s~r-

HALT'

S

STOP'

R

RESET

-J
STOPF/F
Q

Note: • Indicates instruction execution.
49·001235E

3-14

NEe

J.l,PD7500

The HALT instruction sets the halt flip-flop to halt
mode. In this mode, input from the half-frequency
divider that generates the CPU clock is inhibited and
the CPU clock is stopped. The halt flip-flop is reset
either by the RELEASE signal, which becomes active
when the interrupt request flag is set, or at the falling
edge of the RESET signal. The supply to the CPU clock
restarts.

The frequency divider divides the output of the crystal
oscillator (fxx for crystal oscillation, and fx for the
external clock) to the following values:
• 1/2 for pulse generator clock ¢PPG
• 1/8 for system clock ClH (pPD7519H/16H)
• 1/16 for system clock ClH (pPD7519)
• 1/32 for system clock Cll and FI P controller clock
¢FIP

Crystal Oscillator
This clock generator (figure 14), applicable to 7516H,
7519, and 7519H, consists of a crystal oscillator, a
frequency divider, and a standby (halt/stop) mode
control circuit. The crystal (for example, 6.55 MHz is
4.19 MHz) is connected to pinsX1, X2. (ThepPD7519 is
4.19 MHz only).

• 1/128 for the timer/event counter clock.

It is also possible to operate with an external clock
input at X1. In this case, the crystal oscillator acts
merely as an inverting buffer.
Figure 14.

System Clock Generator; Crystal Oscillator
r - - - - - - - - - - - - - . - - R E SET

I - - - - -__+-- STOP [Note 1]

f~" ,

STOPF/F
Frequency Divider
1/8 [Note 21

11128

L-----J

4.19 MHz

'-

EM2 -.-1----.

_ - - - HALT [Note 1]

,,-""'J-----HALT RELEASE

IRESET(""L)

1 - - - - - - - - - ; . --_________-. CL(System Clock)

L -_ _

' - - - - - - - - - - , - - - - - - . to Timer/Event Counter

' - - - - - - - - - - - - - - - _ PPG(toPulseGenerator)

[1] Indicates instruction execution.
[2] IlPD7519 uses 1/16.IlPD7519H/16H uses 1/8.
49-0012576

3-15

NEe

J,tPD7500
The 1/8 and 1/32 frequency-divided outputs are available as system clock sources. If expansion mode
register bit 2 (EM2) is 1,1/8 is selected; if it is 0,1/32 is
selected. (Note: For pPD7519, the divisor is 1/16
instead of 1/8.) In systems where high-speed processing is not required, or in part of a program that does
not require high-speed processing, power consumption
can be held to a minimum with the 1/32 frequencydivided low-speed clock. It is necessary to use the
low-speed clock when using a supply voltage that is
too low to allow operation with a high-speed clock.
System clock selection via EM2 does not apply to FIP
(FIP controller clock) or PPG (pulse generator clock).
The FIP clock is always 1/32 times the input frequency;
the PPG clock is always half the input frequency.
The system clock is half-frequency divided to be a CPU
clock, . Also, the system clock becomes an input of
the clock control circuit, which generates a count
pulse (CP) of the timer/event counter.
The standby mode control circuit consists mainly of
the stop and halt flip-flops. The STOP instruction sets
the stop flip-flop, which stops crystal oscillation and
clears the frequency divider circuit. All output from the
frequency divider circuit stops; the system is in stop
mode. A RESET input clears the stop flip-flop and
starts crystal oscillation and the frequency dividing
operation.
The HALT instruction sets the halt flip-flop. This
inhibits the input of the half-frequency divider from
generating a CPU clock , thereby causing the CPU
clock to be halted (halt mode). The halt flip-flop is also
set when the STOP instruction executes and when
RESET is input, so that the flip-flop performs the same
operation as that in halt mode. The flip-flop is reset at
the falling edge of either the RELEASE signal (which
becomes active when anyone interrupt flag is set) or
the internal reset (IRESET) signal (which is released
after a certain waiting time following the release of the
RESET input), thereby starting the supply of . See
figure 15.
Figure 15.

Release of Stop Mode

Operating
Mode

Operating
Mode

-4..-I-----Stop Mode---_-I-Data Retention

VDDR
Wait (- 62.5 msl
4.19 MHz)
RESET
49-001237A

3-16

Ceramic Oscillator
This circuitry (figure 16) consists of a ceramic oscillator, half-frequency divider, control circuit for standby
(halt) mode, etc. The oscillator frequency is set by a
ceramic resonator connected to pins CL 1 and CL2. Or,
an external clock may be input at CL 1. In this case, the
oscillator operates as an inverting buffer. Output from
the oscillator is used as the system clock (CL), which is
divided into a CPU clock  (1/2 CL).
The standby mode control circuit consists mainly of
the halt flip-flop. When this flip-flop is set, input of the
half-frequency divider is inhibited from generating the
CPU clock , thereby causing the CPU clock to be
halted (halt mode). This flip-flop is reset either by the
RELEASE signal, which becomes active when one
interrupt request flag is set, or by the falling edge of the
RESET input. The supply of the  clock then begins.
The halt flip-flop is also set when the RESET input is
active. At power-on reset, RESET goes high and then
the ceramic oscillator is driven. After a short time, the
oscillation output becomes stable. So that an unstable
clock does not cause the CPU to misoperate, the halt
flip-flop inhibits the CPU clock as long as RESET is
high level. Thus, the high-level pulse width for the
RESET input should be wide enough to cover the
required time for oscillator stabilization.

Count Clock Generator Circuit
This crystal oscillator (figure 17) is fed either by the
crystal connected to pins X1 and X2, or by an external
clock connected to X1 (in which case it operates as an
inverting buffer). The output X is sent to the clock
control circuit, either directly or after being frequency
divided, in order to become a count pulse (CP) for the
timer/event counter. The frequency of X is equivalent
to the crystal oscillation frequency or the X1 external
clock frequency. This circuit is not affected by standby
(halt/stop) mode.
The count clock oscillator generates frequencies
between 25 and 50 kHz. Figures 18 and 19 illustrate the
frequency error (ppm) vs. temperature and capacitance.

NEe
Figure 16.

JlPD7500

System Clock Generator; Ceramic Oscillator
StopF/F
, . . . , . - _ - - STOp·
S~---------------~
~_r_,

__

r---------~Q

HaltF/F

R
Disable
Clock

I----+--HALT'

Q

RESET (High)

r~CL1

R
Ceramic
Oscillator

~~CL2

STANDBY RELEASE

...........k----RESET (

L )

L-+-------------------------RESET(Jr)

v,

1-------__

L--_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

~

 (to CPU)

CL (System Clock)

Note: • Indicates instruction execution.
49·0012388

Figure 17.

Figure 18.

Count Clock Generator

,------

Crystal Oscillation

1~:C

~ ~r

Temperature Dependence of Count Clock
Frequency

I
I

R

X1

I
I

Crystal
Oscillator

r- ~~~~~;~o~~n~rol

X2

330kH

-20~------~~----_T--------r_~-----r------~

Circuit)

-40~--~--~-------L--------r_----~-r------~

I

X2

L ______
32.768
kHz

-60

1-External
Clock

I
I

I

IL

20 P F

-80
X1

Crystal
Oscillator

I
I
Open

----

X2

(Inverted
Buffer)

Count Clock
r- (toCircuit)
Clock Control
X

330 kO

o

External Clock

30 pF

~

f

-20

20

40

60

80

TA [CC]

Capacitance (C1) Dependence of Count
Clock Frequency

Figure 19.

_______
49·001239A

-2

-4

C1

f

*

C2 = 30 pF

"

---I____________________~ §

~---------~---------~~
10
20
Capacitance, C1 [pF]

3-17

NEe

J.lPD7500
1/0 Ports

Port

OOH/OOHE

06

POo

A

B

F

P02

E

P03

B

E

P60·P63

Port

00H/OOHE/07/07H/08/08H/14
E

P70·P73
OOH/OOHE

06

07/078/07H/08/08HI
01/14/19/19H/16H

INTO

B

B

INT1

B

B

INT2

B

F

RESET

E

E

Port

B

B

02103
F

A

OOH/OOHE/01 102/03/06/07/07HI
08/08H/14/1 911 9H/16H

Port

Port

Table 5. pPD7500 Series 110 Buffer Configurations

P01

pPD7500 Series 110 Buffer Configurations
(cont)

Table 5.

Input and output buffers (figure 20) are classified as
types A through I. Table 5 shows the applicability of
each type to the 7500 series. For example, on the
pPD7506, port POo is a type B input buffer and P03 is a
type A input buffer; P01 and P02 are not used. (Part
numbers in table 5 are abbreviated; thus, pPD7506
becomes "06".)

B

01/02/03/07/078/07HI
08/08H/14/1 911 9H/16H

B
B

B

B

07H/08

19/19HI16H

EVENT

B

B

If>OUT

C

Port

01

02/03

00H/OOHE/06/07/07H/081
08H/14/1 9/1 9H/16H

P10

B

B

E

PPO

o

P11

A

A

E

Port

01/02103/14

P12

A

A

E

COMO·COM3

P13

A

A

E

Port
P20·P23

Port
P3O·P3

Port
P40·P43

Port
P5O·P3

3-18

00H/OOHE/06/07/078/07HI
08/08H/14/1 911 9H/16H

0
OOH/OOHE/OI 102/03/07/0781
07H/08/08HI1411 9/1 9H/16H

Port

19/19H/16H

G
H

Port

14

Port

19/19H/16H

H

SO·S7

0
OOH/OOHE/OI 102/03/06/071
078/07H/08/08H/14/1 9/1 9HI16H

TO·T7

Port

E

BUSS, BUSg

OOH/OOHE/OI 102/03/06/07/0781
08/08HI1411 911 9HI16H

BUSO·BUS7

E

OOH/OOHE
C

E
E

DOUT

C

ALE

C

PSEN

C

LCDCL

C

CSOUT

C

STB

C

TEST

A

NEe
Figure 20.

JlPD7500

Interface at Input/Output Ports
Type F

Type A
Voo
Data

Type 0

InlOut

Output
Disable

~"P"

Type G
Vss
P·ch

Type B

~'"P"

..1..

T

Type C

P·ch

N·ch
Output

Voo

~---o

Output

T

N·ch

Vss

Type 0
Voo
P·ch

Data~
Output

outPut~

Type I

Disable

------~----------~--oVDD

Vss

Type E
Display Output

Data
Type 0

InlOut

Output
Disable

~------------- - - - - - - - - - I

~~---<~-+--~

P02/S0 0 - - - - - + - - - - - - - 1 - - 1 - - < 1 - - - - - - - - - - - - - - 4 - - - - - - - - - - - - l

LJ:>--+--

TOUT

POo 0 - - - - - - - - - - - 1

• Command Execution
tf> System Clock

R~-~--_

INTS

RS F/F
"""'--

,....--....., Q

S 1 - - - - - - 'SIO
83-0034686

3-36

NEe
Figure 5.

pPD7500H/H-E

Interrupt Control

INT1o------------~

INTT--------------I

INTS------I--f

INTOID-----4---I-,

I

INT2D-----+------~

S I O · - - -.....

'Command Signal

~

Standby
Release
83-0034086

3-37

NEe

pPD7500H/H-E
Figure 6.

Clock Control
Inlernal Bus

~----------------,

r-------------------------------~----~

CL-----I
LCDCL

~~=====r~~-----CP
[To the Timer/Event Counter]

INT2

-_---1---1.-....

83-0034098

3-38

NEe
Figure 7.

pPD7500H/H-E

Interface at Input/Output Ports
Type A
TEST,POO

Type 0
P30-P33, P20/PSTB, P21/PTOUT, P22, P23

Voo
Voo
P·ch

~I"P"

oataJb:
Output
Output
Disable

Vss
Vss

Type B
INTO, INT1, INT2, RESET, P03/S1

I

Type E
BUSO-BUS7, BUS10-BUS13, P40-P43, P50-P53,
P60-P63, P70-P73, P02/S0, P10-P13
Data
TypeD

Output

InlOut

Disable

TypeC
BUSS, BUSg OOUT, ALE, PSEN, LCD CL, CSOUT, STB

Type F
P01/SCK

Voo
Data
TypeD

Output

In/Out

Disable
t---~

Output

Vss
83·003410C

3-39

NEe

jlPD7500H/H-E
Absolute Maximum Ratings
TA

= 25°C

Operating temperature, TOPT
/JPD7500H
/JPD7500H-E

oto +40°C
-10 to +70°C

Storage temperature, TSTG

-65 to +150°C

Power supply voltage, VDD

-0.3 to +7.0 V

All input and output voltages

-0.3 to VDD + 0.3 V

Output current (total, all output ports)
IOH
IOL

-20 mA
50 mA

Comment: Stresses above those listed under Absolute Maximum
Ratings may cause permanent damage to the device. This is a stress
rating only and functional operation of the device at these or any
other conditions above those indicated in the operational sections of
this specification is not implied. Exposure to absolute maximum
rating conditions for extended periods may affect device reliability.

DC Characteristics
/JPD7500H: T A = 0 to +40°C, Voo == 5 V ±5%
/JPD7500H-E: T A = -10 to HO°C, Voo = 5 V ±10%

Limits
pPD7500H·E

/JPD7500H
Parameter

Symbol

Input high voltage

VIH1

0.7 VDD

VIH2
VIL1
VIL2

Input low voltage
Input leakage current, high

Typ

Min

Max

Min

VDD

0.7 VDD

VDD - 0.5

VDD

0

0.3 VDD

0

IUH1

Typ

Max

Unit

VDD

V

All inputs other than CL 1, X1

Test Conditions

VDD - 0.5

VDD

V

CL1, X1

0

0.3 VDD

V

All inputs other than CL 1, X1

0.5

0.5

V

3

3

pA

CL1, X1
All inputs other than CL 1, X1

IUH2

10

10

pA

CL1, X1

Input leakage current, low

IUL1

-3

-3

/JA

All inputs other than CL 1, X1

-10

VOH

/JA
V

CL1, X1

Output voltage, high
Output voltage, low

VOL

0.4

V

Output leakage current, high

ILOH

3

3

/JA

Vo = VDD

Output leakage current, low

ILOL

-3

-3

VO=O V

Supply current

IDD1

4

3

/JA
mA

20

/JA

-10

IUL2

IDD2

VDD -1.0

VDD -1.0
0.4

2

20

2

IOH = 1.0 mA

Normal operation, all output pins
open, no BUS conflicts
Stop mode, X1

=0 V

Capacitance
TA

= 25°C, Voo =0 V, f = 1 MHz

Limits
pPD7500H
Parameter

Symbol

Input capacitance
Output capacitance
1/0 capacitance

3-40

Co

Min

Typ

pPD7500H·E
Max

Min

Max

Unit

Test Conditions

15

Typ

15

pF

Unmeasured pins returned to Vss

15

15

pF

15

15

pF

t-lEC

pPD7500H/H-E

AC Characteristics

pPD7500H: TA = 0 to 40°C, VDD = 5 V ±5%
pPD7500H-E: TA = -10 to +70°C, VDD = 5 V ±10%

Limits
pPD7500H

pPD7500H·E

Symbol

Min

Typ

Max

Min

Typ

Max

Unit

System clock oscillation frequency

f¢

300

400

500

160

200

250

kHz C = 33 pF ±5%;
pPD7500H: R= 33 kn ±2%;
pPD7500H·E: R= 62 kn ±2%

700

10

410

kHz CL 1 = external clock

CL 1 input rise time

tCR

0.2

0.2

ps

CL 1 input fall time

tCF

0.2

0.2

ps

CL 1 input clock width (high)

tCH

0.7

1.2

CL 1 input clock width (low)

tCl

0.7

1.2

Count clock oscillation frequency (X1, X2)

fxx

25

Parameter

Test Conditions

Clock Operation

10

32

50

25
0

ps
ps
32

50

kHz Crystal oscillation

Count clock input frequency (X1)

fx

700

410

kHz

X1 input rise time

fXR

0.2

0.2

ps

X1 input fall time

fXF

0.2

0.2

ps

X1 input clock width (high)

tXH

0.7

1.2

ps

X1 input clock width (low)

tXl

0.7

1.2

ps

ALE pulse width (high)

tlH

400

600

ns

Address setup time to ALE!

tAL

100

200

ns

Address hold time to ALE!

tlA

80

80

ns

tO~~

200

200

ns

Output data hold time after DOUT f

tooo

80

80

ns

DOUT pulse width (low)

tOOL

400

600

ALE -

tLDV

600

700

tAOV

700

900

Bus 1/0 Operation

Output data setup time to DOUT

t

data input valid time

Address -

data input valid time

PSEN pulse width (low)

tpSl

PSEN -

data input valid time

tpsov

PSEN -

data float

tpsoF

700

ns

1000
300

ns
ns

600
0

ns

ns
ns

3-41

NEe

pPD7500H/H-E
AC Characteristics (cont)
Limits
IIPD7500H
Parameter

Symbol

Min

Typ

IIPD7500H-E
Max

Min

Typ

Max

Unit

Test Conditions

Port 110 Operation
Port 1 output setup time to STB t

tpST

200

200

ns

Port 1 output hold time after STB f

tSTP

80

80

ns

STB pulse width (low)

tSTL1

400

600

ns

Output data setup time to STB t

tOST

300

300

ns

Output data hold time after STB t

tSTO

80

80

ns

STB!- input data valid time

tSTDV

STB!- input data float time

tSTOF

Control setup time to STBl

tCST

200

200

ns

Control hold time after STBl

tSTC

80

80

ns

8S0

8S0

Port output mode

I/O expander mode

ns
ns

STB pulse width (low)

tSTL2

700

1000

ns

CSOUT setup time to STBl

tCSST

200

200

ns

CSOUT hold time after STBl

tSTCS

80

80

ns

2.S

3.0

liS

Input

2.86

4.9

liS

Output

1.1

1.3

liS

Input

1.3

2.2

liS

Output

1.1

1.3

liS

Input

1.3

2.2

liS

Output

Serial Interface Operation
SCK cycle time
SCK pulse width, high
SCK pulse width, low

tKCY
tKH
tKL

SI setup time to SCKt

tSIK

300

300

ns

SI hold time after SCKt

tKSI

4S0

4S0

ns

SO output delay after SCKt

tSKO

SOO

8S0

ns

Other Operations
INTO pulse width, high

tlOH

10

10

INTO pulse width, low

tlOL

10

10

JlS

INT1 pulse width, high

tl1H

2/f¢

2/f¢

liS

INT1 pulse width, low

tl1L

2/f¢

2/f¢

JlS

INT2 pulse width, high

tl2H

2/f¢

2/f¢

JlS

INT2 pulse width, low

tl2L

2/f¢

2/f¢

JlS

RESET pulse width, high

tRSH

10

10

JlS

RESET pulse width, low

tRSL

10

10

JlS

3-42

liS

NEe

J.lPD7500H/H-E

Timing Waveforms
Strobe Output TIming

AC Test Input

~O.7VDD

O.7VDD~

~~O~.3~V~D~D________________O_.3_V~D~D~

83·003411A

Clock Timing

Clllnpul

f:"T'~lh
tCR

Xllnpul

1=

83-003414A

tCF

txL4l/f~txH~1

_ _
tXR

tXF
83·003412A

Bus I/O Timing

\ ___------J/

Cll

\_----/

!---tLH-

ALE

J
!---tALf.tLA·

BUSO-BUS7,
BUS10-BUS13

BUSS,
BUSs

/

Address

\.

~

K

~

Data Out

K

I--tODO-- I'tooo'

i+---tLOV-

\

tAOV

II
t------tOOL - -

\

1/
tPSLI-tpsOV"

BUSO-BUS7,
BUS10-BUS13

l'tPSOF'
Data In

83-0034138

3-43

NEe

pPD7500H/H-E
Timing Waveforms (cont)
Port 1 I/O Expander Port Timing

Expander
Port Output

~

Port Control

Output Data

STO
J ,t
-

tOST

Expander
Port Input

Input Data

Port Control

I---tSTOF-

tSTOV
~tSTC'"

tCST
STB

tSTL2

I

~

_tcssT~_,1

CSOUT-it--,---'

II
I-tSTCS

_ _ _} _

83-0034159

Serial Interface Timing

Interrupt Input Timing

'NTO
[Rising Edge Triggered]

51 - - ! - - - - - - {

'Nn
[Rising Edge Triggered]

50

Output Data
83-003416A

'Nn
[Failing Edge Triggered]

----I"~~ ~"~=i

1---- ---*T

i'--

----I""~
1---- ---*T~'''"=1i'-~'''"=i~''''~ r
---'1"
11-- --¥

RESET Input Timing
'Nn
[Rising Edge Triggered]

83-003318A

3-44

c="ait=''"=iI\1----

____

~

83-003417A

t¥EC

pPD7501
4-BIT, SINGLE-CHIP
CMOS MICROCOMPUTER
WITH LCD CONTROLLER/DRIVER

NEe Electronics Inc.
Description

Pin Configuration

The jlPD7501 4-bit, single-chip CMOS microcomputer
has advanced fourth-generation architecture with the
functional blocks necessary for a single-chip controller,
including an 8-bit timer/event counter, an 8-bit serial
I/O, and an LCD display controller/driver.

NC
P32

The jlPD7501 contains two 4-bit general-purpose
registers outside of RAM. The jlPD7501 executes a
su bset of the jlPD7500 series B instruction set with a
10-jls instruction cycle time.

P31
P30

4

P03/S1

P02/S0

Maximum power consumption is 900 jlA at 5 V and
300jlA at3 V. The HALT and STOP instructions further
reduc.e power consumption.

P63
P62
P61
P60
P53

Features

o
o
o

o

o
o

o
o
o
o

o

o
o

1024 x 8-bit program ROM
96 x 4-bit data RAM
Interrupts
-External: INTO, INT1
-Internal: INTT (timer/event counter), INTS
(serial interface)
a-bit timer/event counter
-Based on crystal oscillation
-External event counter (prescale option by 64)
Serial interface
LCD controller/driver
-Programmable multiplexing mode: triplex or
quadruplex
-4 common lines (COMo-COM3)
-24 segment lines (SO-S23)
Standby modes: stop, halt
Data retention mode
I/O ports
-3 input ports
-1 output port
-3 I/O ports
RC oscillation clock
Crystal oscillation clock
2.5 to 6.0 V operating voltages
CMOS technology

Ordering Information
Part No.

IIPD7501 G-12

Package Type

Max Frequency
of Operation

64-pin plastic miniflat

410 kHz

83-00330SA

Pin Identification
No.

Symbol

NC

Function

No connection

2-4,64

P33-P30

Output port 3

5-7,55

P03/S1

Input port 0, serial I/O interface,
external interrupt

P02/~

P01/SCK
POoIINT1
8-11

P63-P60

I/O port 6

12-15

P53-P50

I/O port 5

16-19

P43-P40

I/O port 4

20,21

X2, X1

Crystal clock/external event input

22

Vss

Ground

23-25

VLC03- VLC01

LCD bias voltage inputs

26,58

VOO

Positive power supply

27-30

COMo-COM3

LCD backplane driver outputs

31-54

S23- S0

LCD segment driver outputs

56

RESET

Reset input

57,59

CL1, CL2

System clock input

60-63

P13-P11
P1ollNTO

Input port 1, external interrupt

3-45

NEe

'pPD7501
:; Pin Functions

COM3-COMO [LCD Backplane Driver Outputs]

, P03-POO [Input Port 0]; 51, SO, SCK [Serial
, I/O Interface]; and INT1 [External Interrupt]

Leave unused pins open.

This port Gan be configured as a 4-bit parallel input
port or a~the 8-bit serial I/O interface under control of
-. the serial· mode select register. The ser .1 input SI,
seriaLoutput SO, and the se.rial clock SCK (active low)
usedfo{.~wrtchronizing data transfer make up the 8-bit
serialllO interface. Line POo is always shared with
external'interrupt INT1. If POo/1 NT1 is unused, it should
be connected to Vss. If P01/SCK, P0 2/SO, or P03/S1 are
unused, connect them to Vss or Voo.

, P13-P10 [Input Port 1] and INTO
[External Interrupt]
Four-bit input port. Line P10 is shared with external
interrupt INTO, a rising edge-triggered interrupt. If
P1o/INTO is unused, connect it to Vss. If P13-P11 are
unused, connect them to Vss or Voo.

P33-P30 [Output Port 3]
i

Four-bit latched three-state output port 3. Leave unused
pins open.

P43-P40 [I/O Port 4]
. Four-bit input/latched three-state output port. This
port also performs 8-bit parallel I/O with port 5. In
input mode, connect unused pins to Vss or Voo. In
output mode, leave unused pins open.

P53-P50 [I/O Port 5]
Four-bit input/latched three-state output port. This
port also performs 8-bit parallel I/O with port 4. In
input mode, connect unused pins to Vss or Voo. In
output mode, leave unused pins opel').

P63-P60 [I/O Port 6]
Four-bit input/latched three-state output port. The
port 6 mode select register configures individual lines
as inputs or outputs. In input mode, connect unused
pins to Vss or Voo. In output mode, leave unused pins
open.

3-46

S23-S0 [LCD Segment Driver Outputs]
Leave unused pins open.

VLC03-VLC01 [LCD Bias Voltage Inputs]
LCD bias voltage supply to the LCD voltage controller.
Apply appropriate voltages from a voltage ladder
connected across Voo. Leave unused pins open.

X2, X1 [Crystal Clock/External Event Input]
For crystal clock operation, connect a crystal oscillator
circuit to input X1 and output X2. For external event
counting, input event pulses to X1 and leave X2 open. If
X1 is not used, leave it open. If X2 is not used, connect it
to Vss.

CL 1, CL2 [System Clock Input]
Connect an 82-kO resistor across CL 1 and CL2, and
connect a 33-pF capacitor from CL 1 to Vss. Alternatively, connect an external clock source to CL 1 and
leave CL2 open.

RESET [Reset Input]
A high-level input to the RESET pin initializes the
pPD7501 after power-up.

VOO [Positive Power Supply]
Apply a single voltage in the range +2.7 to +6.0 volts
for proper operation.

NEe

pPD7501

Block Diagram
SCK/P01
X1

INTO/P10 INT1/POO

X2

Program Memory
1024 x 8 Bits

SI/P03

SO/ P02

Instruction
Decoder
Data Memory
96 x 4 Bits

LCDCL

System
Clock
Generator

CL1

CL2

LCD Controller/Driver

Standby
Control

i

VDD

i

Vss

i

RESET

COMO·COM3

VLCD1, VLCD2,
VLCD3
83-0033136

Details of some blocks on the diagram are illustrated
in figures 1 through 6 as listed below.
Figure

1
2

3
4

5
6

Title
Interface at Input/Output Ports
Clock Control
Timer/Event Counter
Test Control
Serial Interface
LCD Controller/Driver

3-47

NEe

JlPD7501
Figure 1.

Interlace at Input/Output Ports
Type E
P02/S0, P4o·P43, P50·P53, P60·P63

Type A
P11, P12, P13

Voo

Voo

Datalb:
Disable

Inputl
Output

Output

N·ch

Vss

Voo
Vss

Type B
POO/INT1, P03/SI, P10IlNTO, RESET

Vss

Type F
P01/SCK

Type D
P30·P33

Voo

Voo
P·ch

P·ch

Datalb:
Disable

Output

Datalb:
Disable

Inputl
Output

Output

Output

Vss

Vss

83-003320C

3-48

NEe
Figure 2.

J.lPD7501

Clock Control
Internal Bus

Clock Mode Register

Prescaler 1
(1/4)

CL

Prescaler 2
(1/64)

J---._-_+_

~~~ ~~ntrolierlDriVer)

Clock Mode Register
CM1

CMO

Count Pulse
CL x

2~6

xx

-i4

LCD Clock
CL x

2~6

x x-&CL x

~

____________________________-+ CP
(Timer/Event Counter)

2~6

83-0033218

Figure 3.

Timer/Event Counter
Internal Bus
~--~-----------------,

r-----------------------J

'TCNTAM

-------------_--------------+1

1---.----- :~oTinterruPt Circuit)

CP----_I

Count Hold
Circuit

1---1-_ _ _ _ _ _ _ TOUT

(To Serial Interface)

'Command Execution
'Timer
RESET
83-0033228

3-49

NEe

pPD7501

Figure 4.

Test Control

Test RQF
,Control

Q

Nonsync
Edge
Detect

INTT

INTT
RQF

TIMER'

SM3
INTS

Standby
Release

Q

Nonsync
Edge
Detect

INTO/S
RQF

INTO
CL
SIO'
INTI
RQF

Sync
Edge
Detect

INTI

Q

• Instruction Execution
83·0033238

Figure 5.

Serial Interface

PO~Slo-------------~~>-~4-~--~

P02/S0 o---------_----------~---<:

t-------------------t----------------------'

'----.J:l-+--- TOUT
t----¢

RS F/F

POO/INTI <>-------------~ : > - - - - - - 4 - -...

R
• Command Execution
¢ System Clock

1+---------- ~oT~nterruPt Circuit)

S .....- - - - - - - 'SIO
83·0033248

3-50

NEe
Figure 6.

pPD7501

LCD Controller/Driver

OP, OPL (Command Execution)

Data
Memory

LCD CL
~~~~~~~~~~

Multiplexer

So

VLC03

VLC02

VLCD1

COM3 COM2 COM1 COMO

Multiplexer
COMO-COM3 Outputs (Type G)

1-

P.ch

...L

T

P.ch

N·ch
OUT

LCD Voltage Ladder Connections
VOO

T

R
C

N·ch

H-

VLCD1

R
VLC02

50·523 Outputs (Type H)

f,

II

R
C
VLC03

II

R~ Y"

...L

P.ch

~------,

_~OUT
T

N·ch

VSS

r.
83-003325C

3-51

NEe

pPD7501
DC Characteristics
= 2.7 to 6.0 Volts

For VDD

T A = -10 to +70,oC

Limits
Parameter

Symbol

Input voltage, high

Input voltage, low

Min

Typ

Max

VIH1

0.7 VOO

VOO

V

Except CL 1, X1

VIH2

VOO - 0.5

VOO

V

CL1, X1

VIHOR

0. 9VOOOR

VOOOR + 0.2

V

RESET, data retention mode

0

0.3 Voo

V

Except CL 1, X1

0.5

V

CL1, X1

V

IOH = -1.0 mA; VOO = 4.5 to 6.0 V

V

10L = -100 IlA

VIL1
VIL2

0

Output voltage, high

VOH

VOO -1.0

Output voltage, low

VOL

VOO - 0.5

Input leakage current, high
Input leakage current, low

Test
Conditions

Unit

0.4

V

IOL = 1.6 mA; VOO = 4.5 to 6.0 V

0.5

V

10L = 400llA

IUH1

3

IlA

Except CL 1, X1; VI = VOO

IUH2

10

CL 1, X1; VI = VOO

IUL1

-3

IlA
IlA

IUL2

-10

IlA

CL1,X1;VI=OV

Except CL 1, X1; VI = 0 V

Output leakage current, high

ILOH

3

IlA

Vo = Voo

Output leakage current, low

ILOL

-3

IlA

Vo=OV

Output impedance (Note 1)

ReOM

3

5

kn

COMo-COM3; VOO = 4.5 to 6.0 V

5

15

kn

COMo-COM3

15

20

kn

SO-S23; VOO = 4.5 to 6.0 V

20

60

kn

SO-S23

6.0

V

300

900

IlA

Normal operation, VOO = 5 V ±10%;
R = 82 kn ±2%, C = 33 pF ±5%

70

300

IlA

Normal operation, VOO = 3 V ±10%;
R = 160 kn ±2%, C = 33 pF ±5%

Rs
Supply voltage

VOOOR

Supply current

1001

1002
1000R
Note:

(1)

VLCD

= 2.7 V to

V LCD1
VLCD2
VLCD3

3-52

= VDD = VDD = VDD -

V DD

(1/3) VLCD
(2/3) VLCD
VLCD

2.0

Data retention mode

= 0 V; VOO = 5 V ±10%
= 0 V; VOO = 3 V ±10%
Data retention mode, VOOOR = 2.0 V

1.0

20

IlA

Stop mode, X1

0.3

10

IlA

Stop mode, X1

0.2

10

IlA

NEe

JlPD7501

DC Characteristics (cont)
For VDD = 2.5 to 3.3 Volts
TA = -10 to +70°c
Limits
Typ

Min

Test
Conditions

Max

Unit

VOO

V

Except CL 1, X1

VOO

V

CL1, X1

VOOOR + 0.2

V

RESET, data retention mode

V

Except CL 1, X1

Parameter

Symbol

Input voltage, high

VIH1

O.B VOO

VIH2

VOO - 0.3

VIHOR

0. 9VOOOR
0

0.2 VOO
0.3

V

CL1, X1

V

IOH = -BOJ.lA
IOL = 350J.lA

Input voltage, low

VIL1
VIL2

Output voltage, high

VOH

Output voltage, low

VOO - 0.5

VOL

0.5

V

Output leakage current, high

ILOH

3

J.lA

Vo = Voo

Output leakage current, low

ILOL

-3

J.lA

Vo =OV

Supply voltage

VOOOR

Supply current

1001

1002
IOOOR

V

2.0
50

250

J.lA

Normal operation, VOO = 3 V ±10%;
R = 240 kn ±2%, C = 33 pF ±5%

35

230

J.lA

Normal operation, VOO = 2.5 V;
R = 240 kn ±2%, C = 33 pF ±5%

Storage temperature, TSTG
Power supply voltage, Voo
All input and output voltages
Output current high, IOH
Per pin
Total, output ports
Output current low, IOL
Per pin
Total, output ports

11

0.3

10

J.lA

Stop mode, X1 = 0 V; VOO = 3 V ±10%

0.2

10

J.lA

Stop mode, X1 = 0 V; VOO = 2.5 V

0.2

10

J.lA

Data retention mode, VOOOR = 2.0 V

Absolute Maximum Ratings
Operating temperature, TOPT

Data retention mode

Capacitance
-10 to +70°C

TA = 25°C, Voo=OV
Limits

-65 to +150°C
-0.3 to +7.0 V
-0.3 V to VOO + 0.3 V
-17mA
-20mA

Parameter

Symbol

Typ

Max

Input capacitance

CI

15

Output capacitance

Co

15

1/0 capacitance

CIQ

15

Test
Unit

Conditions

pF f=1 MHz;
unmeasured pins
pF
returned to Vss
pF

17mA
55 mA

Comment: Exposing the device to stresses above those listed in
Absolute Maximum Ratings could cause permanent damage. The
device is not meant to be operated under conditions outside the
limits described in the operational sections of this specification.
Exposure to absolute maximum rating conditions for extended
periods may affect device reliability.

3-53

NEe

pPD7501
AC Characteristics
For Voo = 2.7 to 6.0 Volts
T A = -10 to +70°C
Limits
Parameter

Symbol

Min

System clock frequency

fcc

fc

System clock rise and fall
time

tCR, tCF

System clock pulse width

tCH, tCl

Counter clock frequency

tKCY

SI hold time after SCK

t

SO delay time after SCK ~

240

kHz

VOO = 5 V ±10%; R = 82 kO ±2% (Note 1)

100

120

kHz

Voo = 3 V ±10%; R= 160 kO ±2% (Note 1)

75

135

kHz

R = 160 kO ±2% (Note 1)

10

410

kHz

CL 1, external clock, 50% duty; Voo = 4.5 to
6.0 V

10

125

kHz

CL 1, external clock, 50% duty; Voo = 2.7 V

0.2

ps

CL 1, external clock

1.2

50

ps

CL 1, external clock; Voo = 4.5 to 6.0 V

4.0

50

ps

CL 1, external clock; Voo = 2.7 V

50

kHz

X1, X2, crystal oscillator

410

kHz

X1, external pulse input, 50% duty;
Voo = 4.5 to 6.0 V

125

kHz

X1, external pulse input, 50% duty;
VDO = 2.7 V

0.2

ps

X1, external pulse input

32

1.2

ps

X1, external pulse input; Voo = 4.5 to 6.0 V

4.0

ps

X1, external pulse input; Voo = 2.7 V

3.0

ps

SCK as input; Voo = 4.5 to 6.0 V

8.0

ps

SCK as input

4.9

ps

SCK as output; Voo = 4.5 to 6.0 V

16.0

ps

SCK as output

1.3

ps

SCK as input; Voo = 4.5 to 6.0 V

4.0

ps

SCK as input

2.2

ps

SCK as output; Voo = 4.5 to 6.0 V

8.0

ps

SCK as output

tSIK

300

ns

tKSI

450

tKH, tKl

t

200

75

0

tXH, tXl

SI setup time to SCK

150

fx

Counter clock pulse width

SCK pulse width

Unit

25

tXR, tXF

SCK cycle time

Max

fxx

Counter clock rise and fall
time

tKSO

ns

850

ns

1200

ns

INTO pulse width

tIOH, tlOl

10

ps

INT1 pulse width

t11H, tl1l

2/f¢

ps

RESET pulse width

tRSH, tRSl

10

ps

RESET setup time

tSRS

0

ns

RESET hold time

tHRS

0

ns

Note:

(1) RC network at CL 1 and CL2; C = 33 pF ±5%,I~c/ocl~ 60 ppm.

3-54

Test
Conditions

Typ

Voo = 4.5 V to 6.0 V

t-IEC

pPD7501

AC Characteristics (cont)
For VDD

= 2.5 to 3.3 Volts

TA = -10 to +70°C

Limits
Parameter

Symbol

Min

System clock frequency

fcc

50
50

fC
System clock rise and fall
time
System clock pulse width

tCH, tCl
fxx

Counter clock rise and fall
time
Counter clock pulse width

tXH, tXl

SCK cycle time

tKCY

SCK pulse width
SI setup time to SCK

t

Unit

80

kHz

64

77

kHz

Voo = 2.5 V; R = 240 kn ±2% (Note 1)

80

kHz

CL 1, external clock, 50% duty

0.2

IlS

CL 1, external clock

10

6.25

50

IlS

CL 1, external clock

kHz

X1, X2, crystal oscillator

fx

80

kHz

X1, external pulse input, 50% duty

tXR, tXF

0.2

IlS

X1, external pulse input

6.25

IlS

X1, external pulse input

12.5

IlS

SCK as input

25.0

IlS

SCK as output

25

32

6.25

IlS

SCK as input

11.5

IlS

SCK as output

tSIK

t

SO delay time after SCK

IlS

tKSI

!

Voo = 5 V ±10%; R = 240 kn ±2% (Note 1)

50

tKH, tKl

SI hold time after SCK

Max

tCR, tCF

Counter clock frequency

Test
Conditions

Typ

IlS

2

tKSO

IlS

INTO pulse width

tlOH, tlOL

30

IlS

INT1 pulse width

t11H, tl1l

2/f¢

IlS

30

IlS

RESET pulse width

tRSH, tRSl

RESET setup time

tSRS

ns

RESET hold time

tHRS

ns

Note:
(1) RC network at CL 1 and CL2; C = 33 pF ±5%,I..6.C/ocl::; 60 ppm.

Recommended Rand C Values for System
Clock Oscillation Circuit
TA = -10 to +70°C

Supply Voltage Range

Recommended
Values (Note 1)

Frequency Range

4.5 to 6.0 V

R = 82 kn ±2%

150 to 240 kHz,
200 kHz typical

2.7 to 3.3 V

R =160 kn ±2%

75 to 120 kHz,
100 kHz typical

2.7 to 6.0 V

R =160 kn ± 2%

75 to 135 kHz

2.5 to 3.3 V

R = 240 kn ±2%

50 to 80 kHz

2.5 V

R = 240 kn ±2 %

50 to 77 kHz

Note:
(1) C = 33 pF ±5%,I..6.C/ocl::; 60 ppm.

3-55

t-{EC

pPD7501
Timing Waveforms
External Interrupts

A C Test Points
Voo

==X

007VOO

~Oo~3~V~o~o

= 2.7 to 6.0 V

Oo7V00X==
Test Points
_________________O~o3~V~o~o

Voo

,,,,~"O'=V="O"~

'N"~''''=V='""~

= 2.5 to 2.7 V

=X

008VOO
Oo8V00X=
Test Points
~O~o2~V~O~O_________________O~o2~V~oo

83-003317A

83-003314A

Reset
Clocks

83-003318A

CL1

Data Retention
X1

Data Retention Mode

VOO
RESET

Seriallntertace

SI

so

VIHOR
83-003319A

---!-------{

Valid Output Data

)(

~------'

83-003316A

3-56

VOOOR

NEe

JlPD7501

Operating Characteristics

fe vs Vee
1000

~1

r-

400

~
~

>.

u

[TA = 25°C]

t2

-I 1---1

CL1~

c:

"'"

..

~

r-

>.

u

"'"

tl

2t2

.

Q.

Defined
Operating Voltage

2tl

0

10

'"
"0
c:

til

()

1

1

o

o

Supply Voltage VOO [V]

Supply Voltage Voo [V]

fCC vs Vee

lee vs Vee
500

1000

~
l"

500

c
E

100

33

50

[TA

.---::::
~

pF

I
10

>.

:: I

~

lJ'q'~
0
kHz

til

0.5

0.1

E 22
pF

o

--kO
33

1

l"

pF

r' ---

I

-

N

~

400

~ 300

~:~i [~:~ ~gl-

>.

u

-

I---

200

I---

---

..g

I--"'"

'"
c:

~

150

~
l"

I---

I"

+ Xtal Oscillation

33pF

.~

.-

100

0

!

--

til

50

---- _.

I
-

c:

!
c:

~

100

'u

..0
u
0

r

[TA

33pF

20

c:

"'"

voo~~

!
c:

~

'u

""'-'-

..

200

r-l"

0

is
~
100

R CL2

u

'"

Resistance R [kO]

100

0

Voo=2.5V~

'"'"

50

~Ll

150

0

:-..

R

1I

--------------1-----

>.

u

I I

!

R = 82 kO

~

r'--,

r---

til

Voo = 5 V,
_ _ _ _ _ _ _ _ _ _ _ _ _ _ f- _
__ _

N

25 o

~ 200~----~----~--------------r-------~--9F~~~~~

(3

20

1 cl-

(J

2~
l"

E

R=240kO-

250r----------r----------r---------~--------~

......

~
50

I

- voo = 51 '"'

200

"'"

.-

160kO

fCC vs TA

1 .1.

>.

u

ro-

R

Supply Voltage Voo [V]

fCC vs R

(J

.-

2

500

~

f - - - - - R = 82 kO
f--

---- f-'----

Supply Voltage Voo [V]

~

---

R

I---

0

STOP [Xl = 0 V]

[t=25 0 C ] -

I

(J

250

STOP

X2

[82 kO]
[160 kO]
[240 kO]
HALT [82kO]

c:

,

I

Xl

()

-

25°C]

R

c:

~

v

u

(3

10

!

~

~

r

tl>t2:fx=~
tlt2:fC= ~
2t2

100 I-

fX vs Vee
1000

I

500

(3
E

50

i

til

Voo=3V,

--r-----,....---------------------------R = 160 kO

C

_ _ _ _ _ _ _ _ ..... _ _ _ _ _ _ .

.....

I.....

-·Voo=2.5V,- '"

OL-________L -________L -________L -______

-25

~

R=240kO

C = 33 pF
r"C/OC 560 ppm
25

50

~~

75

Operating Temperature T A [OC]

3-57

NEe

pPD7501
Operating Characteristics (cont)

1001 VS

fcc

1001 vs TA

500

500

;c

.5!.
Q 400
0

"'"

~

~
l

....

E
300

33pF

c

!

C
E

~

"'"

R

I
0

200 f - -

c

c

~

ii

300 f - -

c

~
0 200

a,.,

400

~

100

~g

§'

0

1il
0

50

100

150

200

250

100

5 V, R

82 kO

R

Voo

= 3 V, R = 160 kO

1

-25

300

25

50

Operating Temperature TA [OC]

IOL

IOH vs VOH

VS

VOL

20

-6
[TA

= 25°C]
;c

-5

!.
....

:J:

E

5}

~

0

c

~

0

15
_ _- - , Voo=3V

-;

...

:I

-;

Voo

0

'ii -2

= 3V

~

0

___+---

Voo = 2.5 V

l!

~

~

~

.2'
:r

High-Level Output Voltage VOH [V]

3-58

I

o

System Clock Oscillation Frequency fCC [kHz]

;c

~
l

33pF

,.,
~til

-= r =

voo

0

til

!.

-

Low-Level Output Voltage VOL [V]

75

NEe
NEe Electronics Inc.
Description
The pPD7502 and pPD7503 4-bit, single-chip CMOS
microcomputers have advanced fourth-generation architecture with the functional blocks necessary for a
single-chip controller, including an 8-bit timer/event
counter, an 8-bit serial liD, and an LCD controller/
driver.
The instruction set includes the following types of
instructions: addressing, table look-up, bit manipulation, vectored dump, auto increment or decrement
data pointer, and conditional skip. These instructions
maximize use of fixed program memory space.

pPD7502/03
4-BIT, SINGLE-CHIP
CMOS MICROCOMPUTERS
WITH LCD CONTROLLER/DRIVER

o RC oscillation clock
o Crystal oscillation clock
o 2.7 to 6.0 V operating voltage
o CMOS technology
Ordering Information
Package Type

Part No.

Max Frequency
of Operation

pPD7502G-12

64-pin plastic miniflat

410 kHz

pPD7503G-12

64-pin plastic miniflat

410 kHz

Pin Configuration

Both devices are manufactured with the CMOS process
and have a maximum power consumption of 900 pA at
5 V and 300 pA at 3 V. Halt and stop modes further
reduce power consumption.
These devices are ideal for a wide range of solar- and
battery-powered applications.

Features

o 92 powerful instructions
o Program ROM
o
o
o
o
o

o
o
o

- pPD7502: 2048 x 8-bit
- pPD7503: 4096 x 8-bit
Data RAM
- pPD7502: 128 x 4-bit
- pPD5703: 224 x 4-bit
Interrupts
- External: INTO, INT1
- Internal: INTT (timer/event counter)
INTS (serial interface)
8-bit timer/event counter
- Based on crystal oscillation
- External event counter (prescale option by 64)
Serial interface
LCD controller/driver
- Programmable multiplexing mode: triplex or
quadruplex
- 4 common lines (COMo-COM 3)
- 24 segment lines (SO-S23)
Standby modes: stop, halt
Data retention mode
I/O ports
- 3-bit input port
- 4-bit input port
- 4-bit output port
- Two 4-bit I/O ports with 8-bit capability
- 4-bit I/O port with each bit configurable as an
input or output

NC

1

P3,

3

P30

4

P03fSI

5

P02/S0

6

0

PO,/SCK
P63
P62

9

P6,

10

P60

11

P53

12

P52

13

P5,

14

P50

15

P43

16

P42

17

P4,

18

P40

19

83-003429A

3-59

NEe

pPD7502/03
Status of Unused Pins

Pi n Identification
Symbol

Name

Pin Connection

NC

No connection

CL2

Open

2-4.64

P33-P30

4-bit output port 3

X1

Vss

5-7

P03/S1

3-bit input port O. or
serial I/O interface

X2

Open
VSS or VDD

Vss

No.

P02/~

function

8-11

P63-P60

4-bit I/O port 6

P01/SCK
PO:!/SO
P03/S1

12-15

P53-P50

4-bit I/O port 5

P1o/INTO

16-19

P43-P40

4-bit I/O port 4

P11-P13

VSS or VDD

20.21

X2. X1

Crystal clock/external event
input port X

P30-P33

Open

22

Vss

Ground

Input mode: Vss or VDD
Output mode: Open

23-25

P40-P43
P50-P53
P60-P63

P01/SCK

VLCD3- VLCD1

LCD bias supply inputs

26.58

VDD

Positive power supply

27-30

COM3-COMo

LCD backplane driver outputs

31-54

S23- S0

LCD segment driver outputs

55

INT1

External interrupt

56

RESET

RESET input

57.59

CL1. CL2

System clock input

60-63

P13-P11.
P10llNTO

4-bit input port 1. or
external interrupt INTO

3-60

INT1

Vss

SO-S23
COMo-COM3
VLCD1- VLCD3

Open

NEe

pPD7502/03

Pin Functions
P03/SI, P02/S0, P01/SCK [Port 0 or Serial
Interface]
This port can be configured as a 4-bit parallel input
port 0 or as the 8-bit serial I/O interface under control
of the serial mode select register. The serial interface
consists of the serial input (SI), the serial output (SO),
and the serial clock (SCK), which synchronizes data
transfer.

P13-P11, P1011NTO [Port 1 or Interrupt]

INT1 [Interrupt]
This external interrupt is a rising edge-triggered
interrupt.

RESET
A high-level input to this pin initializes the pPD7502/
7503.

X2, X1 [Crystal Clock/External Event Input Port X]

4-bit input port 1. Line P10 is shared with external
interrupt INTO, which is a rising edge-triggered interrupt.

For crystal clock operation, connect a crystal oscillator
circuit to input X1 and output X2. For external event
counting, input external event pulses to X1 and leave
X2 open.

P33-P30 [Port 3]

CL 1, CL2 [System Clock Input]

4-bit, latched three-state output port 3.

P43-P40 [Port 4]

Connect an 82-kO resistor across CL 1 and CL2, and a
33-pF capacitor from CL 1 to Vss. Or, connect an
external clock source to CL 1 and leave CL2 open.

4-bit input or latched three-state output port 4. Can
perform 8-bit I/O in conjunction with port 5.

VLC03-VLC01 [LCD Bias Voltage Inputs]

P53-P50 [Port 5]
4-bit input or latched three-state output port 5. Can
perform 8-bit I/O in conjunction with port 4.

LCD bias voltage supply inputs to the LCD voltage
controller. Apply appropriate voltages from a voltage
ladder connected across VDD.

VOO
P63-P60 [Port 6]
4-bit input or latched three-state output port 6. The port
6 mode select register configures individual lines as
inputs or outputs.

COM3-COMO [LCD Backplane Driver Outputs]

Positive power supply. For proper operation, apply a
single voltage from 2.7 to 6.0 V.

Vss
Ground.

LCD backplane driver outputs.

S23-S0 [LCD Segment Driver Outputs]
LCD segment driver outputs.

3-61

3

NEe

pPD7502/03
Block Diagram
SCK/P01
INT1 INTO/POO

X2

X1

SI/P03

SO/P02

H [4]

Program Memory
2048 x 8 Bits [7502]
4046 x 8 Bits [7503]

Instruction
Decoder

Data Memory
128 x 4 Bits [7502]
224 x 4 Bits [7503]

LCDCL

System
Clock
Generator

CL1

CL2

LCD Controlier/Drlver

Standby
Control

r

VDD

r

VSS

r

RESET

COMO·COM3

VLCD1. VLCD2.
VLCD3
83-0034308

See figures 1 through 8 for additional block diagram
details.
Figure
1

2
3
4
5
6
7
8

3-62

Title
Data Memory Map
Program Memory Map
Interface at Input/Output Ports
Clock Control
Timer/Event Counter
Interrupt Control
Serial Interface
LCD Controller/Driver

NEe
Figure 1.

pPD7502/03
Figure 2.

Data Memory Map
Address

[DeCima~

Address

Program Memory Map

Address
[Decimal]
MSB

r-----------. ~~~xJ
LCD Segment Data
Storage Area

Address
[Hex]
LSB
OOOH

RESET Pulse Vectors Program
Execution to Address DOH

16

010H

INTT [Internal TimerlEvent
Counter Interrupt] Vectors
Execution to 010H

32

020H

INTOIS [External Interrupt or
Serial Interface Interrupt]
Vectors Execution to 020H

48

030H

INT1 [External Interrupt 1]
Vectors Execution to 030H

0

716151413121110

~! I--------~ ~~~

~
...'" ...":c
...":c 0~

I'PD7502

0

It)

~

Q
11-

192

OCOH

207
208

OCFH
ODOH

255

OFFH

1023
1024

3FFH
400H

_,-2047
2048

7FFH
800H

I - '-----4095

FFFH

~

0

I'PD7503

~

223

L.-_ _ _ _ _ _ _......

Q
11-

LHL T Instruction
Reference Table
CALT Instruction
Reference Table

Last Address for
CALL Instruction
Entry (lJPD7503]

DFH
83-003432 A

83-003431 A

3-63

~EC

pPD7502/03
Figure 3.

Interlace at Input/Output Ports
Type A
P11, P12, P13

Type E
P02/S0, P40·P43, P50·P53, P60·P63
Voo

Voo
P·ch

Datalb:
Disable

Inputl
Output

Output

Voo

Vss

Vss

Type B
INT1, P03/SI, P10/INTO, RESET

Vss

Typ~

Type D
P3o·P33

P01/SCK
Voo

Voo
P·ch

P·ch

Datalb:
Disable

Output

Datalb:
Disable

Inputl
Output

Output

Output

Vss

Vss

83-003859C

3-64

NEe
Figure 4.

pPD7502/03

Clock Control
Internal Bus

Clock Mode Register

Prescaler 1

CL

(1/4)

Prescaler 2
(1/64)

LCD CL
l - -___- - . (LCD Controller/Driver)

Clock Mode Register
CM1

CMO

Count Pulse
CL x

LCD Clock

2k-

CL x

2~6

> - - - - - - - - - - - - - - - - ~~mer/Event Counter)
CL x

x

2!6-

x-&83-003321B

Figure 5.

Timer/Event Counter
Internal Bus

L -__~______________- ,

r-------------------~

'TCNTAM - - - - - - - _ - - - - - - - . - \

~----- ~oT~nterruPt Circuit)

CP------;~

Count Hold
Circuit

J...--I----_

~~u;erial Interface)

'Command Execution
'Timer
RESET
83-0033228

3-65

NEe

pPD7502/03
Figure 6.

Interrupt Control

INT1 ( r - - i - - = - = , - - - - - - - - f
INTS

P10/lNTO o - - t - - f

SIO·
INTT----------I

Standby
Release

·Command Execution

83-0034336

Figure 7.

Ser/allnterlace

"IP
"IPL
PO~Slo---------~=>--+-+-r--~

P02/S0 0 - - - - - - - - ' - - - - - - - - - - - + - - - < 1---------------1I-------------~

'---IO-+-- TOUT

-=----r/J

RS F/F

--+---- ~oT~nterruPt Circuit)

R .....
"Command Execution
r/J System Clock

S .....- - - - - "SIO
83-0038056

3-66

NEe
Figure 8.

pPD7502/03

LCD Controller/Driver

OP, OPL (Command Execution)

Data
Memory

LCD CL
~~~~~~~~~~

Multiplexer

So

VLCD3

VLCD2

VLCD1

COM3 COM2 COM1 COMo

COMO-COM3 Outputs (Type G)

Multiplexer

J.-

P-ch

..L

T

P-ch

N-ch
OUT

LCD Voltage Ladder Connections

T

VDD

R
C

a--

VLCD1

R
C
~L

VLCD2

II

R
VLCD3

r.

N-ch

50-523 Outputs (Type H)

...L

~_P_-C_h____________- .

_~OUT
T

N-ch

II

R~ V"
Vss

d.,
83-003325C

3-67

tt{EC

pPD7502/03
Absolute Maximum Ratings

Capacitance

TA=25°C

TA=25°C;VDD=OV
-0.3 to +7.0 V

Power supply voltage, Voo
All input and output voltages

-0.3 V to Voo + 0.3 V

Output current high, IOH
Per pin
Total, output ports

-:17 rnA
-20 rnA

Output current low, IOL
Per pin
Total, output ports

17 rnA
55 rnA

Limits
Parameter

Symbol

Min

Typ

Max

Unit

Input
capacitance

CI

15

pF

Output
capacitance

Co

15

pF

1/0
capacitance

CIO

15

pF

Test
Conditions
fc = 1 MHz
Unmeasured
pins returned to
Vss

-10 to +70°C

Operating temperature, TOPT

-65 to +150°C

Storage temperature, TSTG

Comment: Exposing the device to stresses above those listed in

Absolute Maximum Ratings could cause permanent damage. The
device is not meant to be operated under conditions outside the
limits described in the operational sections of this specification.
Exposure to absolute maximum rating conditions for extended
periods may affect device reliability.

DC Characteristics
For VDD

= 2.5 to 3.3 Volts

TA = -10 to +70°C

Limits
Parameter

Symbol

Input voltage, high

VIH1
VIH2
VIHOR

Input voltage, low

VIL1

Typ

Test
Conditions

Max

Unit

O.B Voo

Voo

V

Except CL1, X1

Voo - 0.3

Voo

V

CL1, X1

0.9 VOOOR

VOOOR + 0.2

V

RESET, data retention mode

0

0.2 VOO

V

Except CL 1, X1

0.3

V

CL1, X1

V

10H = -BOpA
IOL = 350pA

Min

VIL2

0

Output voltage, high

VOH

Voo - 0.5

Output voltage, low

VOL

0.5

V

Input leakage current, high

IUH1

3

pA

Except CL 1, X1; VIN = Voo

IUH2

10

pA

CL1, X1; VIN = Voo

Input leakage current, low
Output leakage current, high
Output leakage current, low
Supply voltage
Supply current

IUL1

-3

f.JA

Except CL1, X1; VIN = 0 V

IUL2

-10

pA

CL 1, X1; VIN = 0 V

ILDH

3

pA

Vo = Voo

ILOL

-3

pA

Vo =OV

VOOOR
1001

1002
1000R

3-68

V

2.0

Data retention mode

50

250

pA

Normal operation, VOO = 3 V ± 10%; R
= 240 kO ±2%, C= 33 pF ±5%

35

230

pA

Normal operation, VOO = 2.5 V; R = 240
kO ±2%, C = 33 pF ±5%

0.3

10

pA

Stop mode, X1 = 0 V; Voo = 3 V ±10%

0.2

10

f.JA

Stop mode, X1 = 0 V; Voo = 2.5 V

0.2

10

pA

Data retention mode, VOOOR = 2.0 V

NEe

pPD7502/03

DC Characteristics (cont)
==:::: 2.7
TA = -10 to +70°C

For VDD

to 6.0 Volts
Limits

Parameter

Symbol

Input voltage, high

VIH1
VIH2
VIHOR

0.9 VOOOR

VOOOR + 0.2

0

0.3 VOO
0.5

Input voltage, low

VIL1

Min

Typ

Unit

0.7 VOO

VOO

V

Except CL 1, X1

VOO - 0.5

VOO

V

CL1, X1

V

Except CL 1, X1

VIL2

0

Output voltage, high

VOH

VOO -1.0

Output voltage, low

VOL

Voo - 0.5

Input leakage current, high
Input leakage current, low

Test
Conditions

Max

RESET, data retention mode
V

CL1, X1

V

IOH = -1.0 rnA, VOO = 4.5 to 6.0 V

V

IOL = - 1OO f.J A

0.4

V

IOL = 1.6 rnA, VOO = 4.5 to 6.0 V

0.5

V

IOL = 400f.JA

IUH1

3

f.JA

IUH2

10

f.JA

CL1, X1

IUL1

-3

f.JA

Except CL 1, X1; VI =0 V

Except CL 1, X1; VI = Voo

IUL2

-10

f.JA

CL1, X1

Output leakage current, high

ILOH

3

f.JA

Vo = Voo

Output leakage current, low

ILOL

-3

f.JA

Vo=O V

3

5

kn

COMo-COM3; VOO = 4.5 to 6.0 V

5

15

kn

COMo-COM3

15

20

kn

SO-S23; VOO = 4.5 to 6.0 V

20

60

kn

SO-S23

6.0

V

300

900

f.J A

Normal operation, VOO =5 V ± 10%;
R= 82 kn ± 2%, C= 33 pF ± 5%

70

300

f.JA

Normal operation, VOO =3 V ± 10%;
R = 160 kn ± 2%, C = 33 pF ± 5%

Output impedance (1)

ReOM
Rs

Supply voltage
Supply current

VOOOR
1001

1002
1000R

2.0

Data retention mode

1.0

20

f.JA

Stop mode, X1 = 0 V; Voo

= 5 V ± 10%

0.3

10

f.JA

Stop mode, X1 = 0 V; Voo

= 3 V ± 10%

0.2

10

f.JA

Data retention mode, VOOOR = 2.0 V

Note:

(1)

VLCD = 2.7 V to VDD
V L CD1
VDD - (1/3) VLCD
VLCD2 = VDD - (2/3) VLCD
VLCD3
VDD - VLCD

=
=

3-69

NEe

pPD7!i02103
AC Characteristics
For VDD
TA

= 2.7 to 6.0 Volts

= -10 to +70°C

Limits

Test
Conditions

Parameter

Symbol

Min

Typ

Max

Unit

System clock frequency

fcc

150

200

240

kHz

Voo:= 5 V ±10%; R:= 82 kn ±2% (Note 1)

75

100

120

kHz

Voo := 3 V ±10%; R:= 160 kn ±2% (Note 1)

75

135

kHz

R:= 160 kn ±2% (Note 1)

10

410

kHz

CL 1, external clock. 50% duty; Voo := 4.5 to
6.0 V

10

125

kHz

CL 1. external clock. 50% duty; Voo := 2.7 V

0.2

jJS

CL 1. external clock

1.2

50

jJS

CL 1. external clock; Voo := 4.5 to 6.0 V

4.0

50

jJS

CL 1. external clock; Voo := 2.7 V

50

kHz

X1. X2. crystal oscillator

fc

System clock rise and fall
time

tCR. tCF

System clock pulse width

tCH. tCl

Counter clock frequency

fxx

25

fx

0

410

kHz

X1. external pulse input. 50% duty;
VDD := 4.5 to 6.0 V

0

125

kHz

X1. external pulse input. 50% duty;
Voo:= 2.7 V

0.2

jJS

X1. external pulse input

Counter clock rise and fall
time

tXR. tXF

Counter clock pulse width

tXH. tXl

SCK cycle time

tKCY

SCK pulse width

SI setup time to SCK

tKH. tKl

t

SI hold time after SCK

t

SO delay time after SCK

l

32

1.2

jJS

X1. external pulse input; Voo := 4.5 to 6.0 V

4.0

jJS

X1. external pulse input; Voo := 2.7 V

3.0

jJS

SCK as input; Voo := 4.5 to 6.0 V

8.0

jJS

SCK as input

4.9

jJS

SCK as output; Voo := 4.5 to 6.0 V

16.0

jJS

SCK as output

1.3

jJS

SCK as input; Voo := 4.5 to 6.0 V

4.0

jJs

SCK as input

2.2

jJS

SCK as output; Voo := 4.5 to 6.0 V

8.0

jJs

SCK as output

tSIK

300

ns

tKSI

450

ns

tKso

850

ns

1200

ns

INTO pulse width

tlOH. tlOL

10

jJs

INT1 pulse width

t11H. tl1l

2/frp

jJS

RESET pulse width

tRSH. tRSl

10

jJS

RESET setup time

tSRS

0

ns

RESET hold time

tHRS

0

ns

Note:

(1) RC network at CL 1 and CL2; C := 33 pF ±5%.lllC/oCI~ 60 ppni.

3-70

Voo := 4.5 V to 6.0 V

NEe

pPD7502/03

AC Characteristics (cont)
For VDD = 2.7 to 5.5 Volts
TA=-10to+70°C
Limits
Parameter

Symbol

System clock frequency

fcc

Min
50
50

fc
System clock rise and fall
time

Typ
64

10

tCR, tCF

Max

Unit

Test
Conditions

80

kHz

Voo = 5 V ±10%; R= 240 kn ±2% (Note 1)

77

kHz

Voo = 2.5 V; R= 240 kn ±2% (Note 1)

80

kHz

CL 1, external clock, 50% duty

0.2

J1S

CL 1, external clock

50

J1S

CL 1, external clock

50

kHz

X1, X2, crystal oscillator

fx

80

kHz

X1, external pulse input, 50% duty

tXR, tXF

0.2

J1S

X1, external pulse input

System clock pulse width

tCH, tCl

Counter clock frequency

fxx

Counter clock rise and fall
time
Counter clock pulse width

6.25
25

32

tXH, tXl

6.25

J1S

X1, external pulse input

SCK cycle time

tKCY

12.5

J1S

SCK as input

25

J1S

SCK as output

SCK pulse width

tKH, tKL

6.25

J1S

SCK as input

11.5

J1s

SCK as output

SI setup time to SCK

t

SI hold time after SCK

tSIK

t

SO delay time after SCK
INTO pulse width

tKSI

!

2

tKSO
tlOH, tlOL

30

INT1 pulse width

tl1H, tl1l

2/fr/J

RESET pulse width

tRSH, tRSl

30

Note:

(1) RC network at CL 1 and CL2; C = 33 pF ±5%,I~C/°Cl:::; 60 ppm.

Recommended Rand C Values for System
Clock Oscillation Circuit
TA = -10 to +70°C

Supply Voltage Range

Recommended
Values (Note 1)

Frequency Range

4.5 to 6.0 V

R =82 kn ±2%

150 to 250 kHz,
200 kHz typical

2.7 to 3.3 V

R =160 kn ±2%

75 to 120 kHz,
100 kHz typical

2.7 to 6.0 V

R =160 kn± 2%

75 to 135 kHz

2.5 to 3.3 V

R = 240 kn ±2%

50 to 80 kHz

2.5 to 6.0 V

R = 240 kn ±2 %

50 to 85 kHz

Note:

(1) C = 33 pF ±5%,I~C/°Ci:::; 60 ppm.

3-71

NEe

pPD7502/03
Timing Waveforms
Timing Measurement Points

Voo

=X

External Interrupts

= 2.7 to 6.0 V

0.7VDDX="
Test Points
~0.~3~V~DD~_______________0_.3~V~D~D

---yo

0.7VDD

Voo
0.8 VDD

INro ~"o'=r="OH~

INn~""=r="'~

= 2.5 to 2.7 V
0.8 VDD

V

83-003317A

~~0_.2_V~D~D______
Th_st_p_o_ln_ts______
0._2_VD
__
Df~
83-003314A

Reset

Clocks

83-003318A

CL1

Data Retention Mode
Data Retention Mode

X1
VDD
RESET

Seria/lnterlace

SI

so

VIHDR
83-003319A

---+---------{

Valid Output Data
83-003316A

3-72

VDDDR

NEe

pPD7502/03

Operating Characteristics
25°C

TA =

fCC vs Voo

fC vs VOO

500

N

~

1000

400

E

>-

"c
""

I

400

200 I---

~

33pF

J;

---

R

.-

+---

.-

- .-

U)

50

~

(

R-82kO

100 f-

[TA = 25'C]

t2

....1 1---1
CL1~
tl>t2:fC= ~
212

~

g

(3

160 kO

10

!
U)

R = 240 kO-

1

o
Supply Voltage VOO [V]

Supply 'Voltage Voo [V]

fCC vs R
N

~

E

~

.l<

g

I I
I 5_J

cl-

[TAl 25 o

£

100

J;

R

100 ~

.t
"

..............

E

"0
(3

I I

i

[

20

-

+_

~

 12: fX = _~
212

"c

U)

"

Xl~

~

.l<

VOO=2.5V~

50 f---

>c

[TA = 25°C]

12

....11--1

211

C

;:00...

I

11<12:fx=~

Q.

(3

20

11

400 ~

>-

"c
""...

..............

33pF

I

~

l'

...""

~

VO

1000

f-

>u 200
c

.tc

fX vs VOO

r i""'1'
voo~
t=~
t=

~

()

V

.l<

R

2

500

V

Defined
Operating Voltage

11<12:fC= ~
211

.t

t-

---I--

E

i

1-----

---- +------

.-

100

t-

~

150 I---

'u
.l<

N

~

300 f--250 I---

c

0
"0
(3

il

[t=25 0 C ] -

I

()

I

~

75

&l

0.1

0
Supply Voltage VOO [V]

'l_7'l

t-{EC

pPD7502/03
Operating Characteristics (cont)
1001 vs

fcc

IOH vs VOH
-6

500~----~------~------r-----~------'-----~

[TA = 25°C)

~

~
1

o 400

E

~

~

Io

33 pF

300

R

:«.§.
l:

5}
c
0

...
::0

200~-----+-------h~----~-----+------4-----~

___~__------~VOO=3V

0

100~-7~-+------4-------~-----+------+-----~<

~

-3

::0

~

~

-4

§

----!-----""""7'''f'------+-----

C

o

-5

~

!
J:

-2

-1

§

o

OL-----~----~------L-----~----~----~~
o

50

100

150

300

250

200

System Clock Oscillation Frequency

fcc [kHz)

High-Level Output Voltage VOH [V)

IOL vs VOL

1001 vs TA
500

20

:«,3;

[TA= 25°C)

0 400
E

...
III

0

::E
c

'"
!
x.
0
c

300

r-

200 I------

~
0

>-

Q.

-

--

~
1

33pF

-

~

~

_ _---, Voo = 3 V

10

__-+---

Voo = 2.5 V

!

R

100
Voo

i

= v. R = 160 kCl

<

~

•

.3

§
~

25
Operating Temperature TA [OC)

3-74

15

~

0

0

g.

o

..J

5}
c:

....
Voo = 5 V. R = 82 kCl

tJ)

-25

:«.§.

50

75

Low-Level Output Voltage VOL [V)

NEe
NEe Electronics Inc.

pPD7506
4-BIT, SINGLE-CHIP
CMOS MICROCOMPUTER

Description

Pin Configurations

The J.lPD7506 CMOS 4-bit single chip microcomputer
has the J.lPD7500 series architecture. Twenty-two I/O
lines are organized into the 2-bit input port 0, the 4-bit
output port 2, and the 4-bit I/O ports 1, 4, 5, and 6. The
device executes 58 of the J.lPD7500 Set B instructions,
and has a 5-J.ls instruction cycle time. The subroutine
stack is implemented in RAM for greater nesting depth
and flexibility.

28-Pin Plastic DIPs
Vss
P42
P41

P03/Xl

P40
POo/INTO

P21/PTOUT

P53

P22

P52

Due to the CMOS process, the device has a maximum
power consumption of 600J.lA at 5 V, and this is further
reduced in halt and stop modes.

P51
P50
P63

Features
D 1024 x 8-bit program ROM
64 x 4,.bit data RAM
D 8-bit timer/event counter
o Two 4-bit general-purpose registers
o Two testable interrupts
D 5-l1s instruction cycle/400 kHz external clock
o 600 pA max current consumption
D 2 standby modes
0221/0 lines

P13

P62
CL1

Pl1

Cl2

Plo

Voo
83-003461 A

o

52-Pin Plastic Mlnlflat

52 51 50 49 48 47 46 45 44 43 42 41 40

Ordering Information
Part No.

Package Type

NC

39

NC

Max Frequency
of Operation

Cll

NC
NC

0

NC

37

NC

36

X2

pPD7506C

28-pin plastic DIP

410 kHz

Cl2

35

NC

pPD7506CT

28-pin plastic shrink DIP

410 kHz

NC

34

P43

pPD7506G-00

52-pin plastic miniflat

410 kHz

Voo

/lPD7506

RESET

33

Voo

32

NC

31

Vss

Pl1

10

30

P42

P12

11

29

P41

NC

12

28

NC

NC

13

27

NC

Pl0

14 15 16 17 18 19 20 21 22 23 24 25 26

CJ

z

CJ

z

CO>
:if
Ii: A.

:f lzl

CJ
Z

~

CO>

~

f lzl

CJ
Z

83-003462A

3-75

NEe

J.tPD7506
Pin Functions

Pi n Identification

POo/INTO, P03/X1 [Port 0]

28-Pln Plastic DIPs
No.

Symbol

Function
4-bit 110 port 4

2-bit input port O. Line POo is shared with external
interrupt INTO. Line P03 is shared with crystal clockl
external event input X1. Ground any unused pins.

1, 25-27

P43-P40

2

X2

External event input

3

P03/X1

Input port O/Clock input

P1o-P13 [Port 1]

4

P2o/PSTB

Output port 2/0utput strobe

5

P21/PTOUT

Output port 2lTimer out F/F signal

6-7

P22-P23

Output port 2

4-bit input port or three-state output port. Output is
strobed in synchronization with the PSTB pulse. Connect unused pins to Vss or Voo.

8-11

P6o-P63

4-bit I/O port 6

12, 13

CL1, CL2

System clock input

14

VDD

Positive power supply

15

RESET

RESET input

16-19

P1o-P14

4-bit I/O port 1

20-23

P50-P53

4-bit I/O port 5

24

POOIINTO

Input port O/Externallnterrupt

28

VSS

Ground

52-Pin Plastic Miniflat

P20/PSTB, P21/PTOUT, P22, P23 [Port 2, Strobe,
Timer F/F Output]
4-bit latched, three-state output port. Line P20 is
shared with the port 1 output strobe pulse PSTB. Line
P21 is shared with the timer out flip flop signal PTOUT.
Leave unused pins open.

P43-P40 [Port 4]
4-bit input or latched three-state output port. Can
perform 8-bit parallel 1/0 in conjunction with port 5. In
input mode, connect unused pins to Voo or Vss. In
output mode, leave unused pins open.

No.

Symbol

3, 5

CL1, CL2

System clock input

7, 33

VDD

Positive power supply

8

RESET

RESET input

9-11, 16

P1o-P14

4-bit I/O port 1

16-18, 21

P50-P53

4-bit I/O port 5

23

POo/INTO

Input port O/External interrupt

24, 29, 30,
34

P4o-P43

4-bit I/O port 4

31

VSS

Ground

36

X2

External event input

41

P03/X1

Input port O/Clock input

42

P2o/PSTB

Output port 2/0utput strobe

43

P21/PTOUT

Output port 2lTimer out F/F signal

CL 1, CL2 [System Clock Input]

44, 45

P22-P23

Output port 2

47-50

P6o-P63

4-bit I/O port 6

1, 2, 4, 6,
12-15,19,
20,25-28,
32,35,37-40,
46, 51, 52

NC

No connection

Connect a 120-kO resistor across CL 1 and CL2, and a
33-pF capacitor from CL 1 to Vss. Or, connect an
external clock source to CL 1 and leave CL2 open.

Function

P53-P50 [Port 5]
4-bit input or latched three-state output port. Can
perform 8-bit parallel 1/0 in conjunction with port 4.ln
input mode, connect unused pins to Vss or Voo. In
output mode, leave unused pins open.

P63-P60 [Port 6]
4-bit input or latched three-state output port. The port
6 mode select register (MSR) configures individual
lines as inputs or outputs. In input mode, connect
unused pins to Vss or Voo. In output mode, leave
unused pins open.

X2, X1 [Crystal Clock/External Event Input]
For crystal clock operation, connect a crystal oscillator
circuit to input X1 and output X2. For external event
counting, connect external event pulses to input X1
and leave X2 open. If X1 is not used, connect it to Vss. If
X2 is not used, leave it open.

RESET
A high level input to this pin initializes the pPD7506.
3-76

t-IEC

J..tPD7506

Voo
Positive power supply. For proper operation, apply a
single voltage from 2.7 to 6.0 V.

Vss
Ground.

Block Diagram

P03/X1

POO/INTO

X2

Program Memory
1024 x 8 Bits

Instruction
Decoder
Data Memory
64 x 4 Bits

System
Clock
Generator

CL1

CL2

Standby
Control

t

Voo

t

VSS

t

RESET
83-003463C

3-77

NEe

J.tPD7506
Clock Control Circuit

Table 1.

This circuit consists of a 4-bit clock mode register
(CMR), prescalers 1 and 2, and a multiplexer, as shown
in figure 1. The circuit selects the clock source, accepts
output from the system clock oscillator (CL) and count
clock generator circuit (X), divides the signal according
to the setting in the CMR, and outputs the count pulse
(CP) to the timer/event counter.
The OP or OPL instruction sets the CMR as defined by
table 1. Before loading the CMR, it is necessary to clear
bit 2 of the accumulator (A2) to zero.

Selecting the Count Pulse Frequency

o
o

CMo

Frequency Selected

o

CLl256
X/64

x

o

x
CM3

TOUT Signal

o

Disabled
Enabled

Figure 1.

Clock Control Circuit
Internal Bus

Clock Mode Register

Prescaler 2
(1/64)

)--------------

~~mer/Event Counter)

x
Crystal Clock Oscillator/
Event Counter Input
83-0039228

3-78

NEe

JAPD7506

Timer/Event Counter
The timer/event counter consists of an 8-bit count
register, an 8-bit modulo register, an 8-bit comparator,
and a timer out flip flop, as shown in figure 2.
The count register is a binary up-counter that increments each time a count pulse is input. The TIMER
instruction, a RESET signal, or an INTT coincidence
signal clears it to OOH. When an overflow occurs the
counter is reset from FFH to OOH.
'
Figure 2.

The modulo register determines the number in the
count register. The TAMMOD instruction sets the
contents of the modulo register. On reset, its contents
are FFH.
The comparator compares the contents of the count
register and the modulo register; when equal, the
comparator outputs INTT.

Timer/Event Counter
TAMMOD
Instruction Execution

'--_____

IE

....

~-----J-

- - - - - I N T T [Coincidence]

Counter Pulse
[from Clock Control Circuit]

TIMER
Instruction
Execution or
RESET Pulse _ _ _ _ _ _ _ _ _ _ _----.J

PTOUT
[to P21/PTOUT Pin]
83-0034648

3-79

NEe

~PD7506

Interrupts

Table 2.

ThepPD7506 has two interrupts, INTT and INTO.INTT
is internally generated by the timer/event counter.
INTO is externally generated. See figure 3.

Mode

CL

160 kCl (J 500 '- 1--' - u S! ,.. . u c :> ~ 0 ~ 100 ~ r til R=240kO- , "'- 50 fCC vs R fX vs VOO ' 25 o ~ 1I til 20 50 400 - ,..u .. voo=~ " 100 - I ;:-... .............. 0 '" 100 - 0 1 500 o 100 vs VOO 1000 g ~ i .,~ C- .::!. c Voo = 3V, R = 160 kCl 50 C ~ ,.. __ ------ ----- _. ------------------- C = 33 pF I1CI'C '-:;60 ppm 10 (J ~ -- ------ ------ ----- STOP [Xl = 0 V) Ul '" ~ R = 240 kCl 0.5 1? O~---------L--------~~--------~--------~~ -25 ---k~4;;~~;;:::~~~:~i f~:~ :gj 100 E 50 1 - - - - - - - - - + - - ' - - - - - 1 " - - - - - - - - 1 - -'voo = 2.5 V, - til [82kO) -+---+----=:::;;ot[160 kCl) [240 kCl) __ _ _--,HALT [82 kO) 500 CL2 J Defined Operaling Vollage Supply Voltage Voo [V) ~Ll C ~ ~ ~ 200 R C ..!... r' § 100 --------1----------__ ------1------ ----- ~ 212 (J Voo= 5 V, R = 82 kCl 5= ,,!_ 10 fCC vs TA 150 11> 12: fx = "'u0" Voo=2.5V~ 250r----------r--------~----------,_--------~ ~ [TA = 25'C) ~ 211 Resislance R [kCl) ( I 11 <12:fX= " ~ I: 12 -11-1 X1SLJL C r-.. I I E I 11 N - i 20 1000 l cl- ~ ....... R 0 o Supply Voltage Voo [V) [TA =~ J = 3 3 PF 0 "'u0" "- 200 12:fC= ~ 212 E - .- til .. 100 I- [TA = 25°C) I _lll~ .!! ___ -I-' E i u R = 82 kCl ---- 1-'---- R - S! ,.. I CL1SLJL ~ R .- - 100 i [TA=25°C)- I S! ,.. 1000 25 Operaling Temperalure TA [0C] 50 75 0.1 0 Supply Vollage Voo [V] 3-87 NEe JJPD7506 Operating Characteristics (cont) 1001 vs fcc IOH vs VOH -6 500 Cl .:; Q E ~ 0 ~ '".. ;( -5 ~ I 400 300 33pF I: E. :I: E ~ CJ R .. "a. a. 0 " 200 -3 __. l - - - - - - ! Voo = 3 V 0 I: ~ CJ t -4 I: 100 I Ul I i -2 -1 ~ 0 0 50 100 150 250 200 300 High-Level Output Voltage VOH [V] System Clock Oscillation Frequency ICC [kHz] IOL vs VOL 1001 vs TA 20 500 ;( .:; C E . 400 ." 0 ~ '" 300 t---- I: l'!! ~ 0 200 t---- I: ~ ;( - ------ t--- ~ I 33pF E. ..J E I: ~ Voo = 5 V, R = 82 kO R ~" 0 a; CJ >- 100 ~ I Voo = 3 V, R = 160 kG Ul I o -25 25 Operating Temperature TA ['C] 3-88 50 _ _- - - , Voo CJ '" __--1--- Voo = 2.5 V ~ ~ .3 is ~ 75 Low-Level Output Voltage VOL [V] =3 V NEe NEe Electronics Inc. pPD7507/08 4-BIT, SINGLE-CHIP CMOS MICROCOMPUTERS Description Features The JlPD7507 and JlPD7508 4-bit, single-chip CMOS microcomputers have theJlPD7500 series architecture. The subroutine stack is implemented in RAM for greater nesting depth and flexibility. o o Thirty-two I/O lines are organized into eight 4-bit ports: input port/serial interface port 0, output ports 2 and 3, and I/O ports 1,4, 5, 6, and 7. The JlPD7507 and JlPD7508 execute 92 instructions of the JlPD7500 series A instruction set with a 5-Jls instruction cycle time. Maximum power consumption is 900 JlA at 5 V, less in the HALT and STOP low-power modes. The JlPD75CG08 is a piggyback EPROM prototyping ch ip that is pi n-compatible with JlPD7507 and JlPD7508. A 2716 inserted into the top of the JlPD75CG08 emulates the JlPD750Ts ROM. A 2732 emulates the JlPD7508's ROM. When emulating the JlPD7507, the user must take care to use only the first 128 RAM locations. Although the JlPD7507 and JlPD7508 can operate over a range of 2.5 to 5.5 V, JlPD75CG08 operation is limited to 5 V ±10%. Single chip microcomputer Program ROM - JlPD7507: 2048 x 8-bit - JlPD7508: 4096 x 8-bit - JlPD75CG08: piggyback EPROM o Data RAM - JlPD7507: 128 x 4-bit - JlPD7508: 224 x 4-bit - JlPD75CG08: 224 x 4-bit D 8-bit timer/event counter o Four 4-bit general purpose registers o Four vectored, prioritized interrupts o Executes 92 instructions of pPD7500 series A instruction set o 5 JlS instruction cycle/400 kHz external clock o Two standby modes o 32 I/O lines o Low-power HALT and STOP modes Ordering Information *Part Number Package Type Max Frequency of Operation pPD7507C 40-pin plastic DIP 410 kHz Table 1 summarizes the differences among JlPD7507, JlPD7508 and JlPD75CG08. pPD7507CU 40-pin plastic shrink DIP 410 kHz pPD7507G-00 52-pin plastic miniflat 410 kHz Table 1. pPD7508C 40-pin plastic DIP 410 kHz pPD7508CU 40-pin plastic shrink DIP 410 kHz pPD7508G-00 52-pin plastic miniflat 410 kHz pPD75CG08E 40-pin ceramic piggyback DIP 410 kHz Features Comparison pPD75CGD8 Program memory 2K x 8 EPROM (2716) 4K x 8 EPROM (2732) x4 pPD7507n508 x 8 masked ROM (7507) x 8 masked ROM (7508) 128 x 4 (7507) 2K 4K Data memory 224 Data retention mode No Yes Power supply 5 V ±10% 2.7 to 6.0 V Package types 40-pin ceramic piggyback DIP 40-pin plastic DIP 40-pin plastic shrink DIP 52-pin plastic miniflat 224 x 4 (7508) * A 3-digit mask identification code is added to the part number by NEC at the time of code verification. 3-89 NEe J,tPD7507/08 Pin Configurations 40-Pln Plastic DIP and Plastic Shrink DIP X2 52-Pin Plastic Miniflat Xl P20/PSTB Vss P2l/PTOUT P 43 P22 P42 NC P23 P4l P73 Plo P4 0 RESET Pl l P53 NC P12 P52 Cll P23 P22 P2l/PTOUT P20/PSTB NC P13 P5l NC P30 P50 VDD P3l P63 NC P32 P62 Cl2 Vss P33 P6l INn P43 P70 P60 POo/INTO NC P7l P03/S1 P01/SCK P42 P7 2 P02/S0 NC NC P73 P01/SCK RESET POolINTO Cll INT1 VDD Cl2 X2 VDD Xl 83-003454A Pin Identification 40-Pln Ceramic Piggyback DIP X2 83-003455A 40-Pin DIP, Shrink DIP and Piggyback DIP Xl Vss No. P43 Function 1,40 X2, X1 Crystal clock/external event input port P4l 2-5 P2o/PSTB, P21/PTOUT, P22, P23 Output port 2/output strobe pulse, timer out F/F signal P40 Pll P53 P12 P52 P13 P5l 6-9 P1o-P13 I/O port 1 P30 P50 10-13 P30-P33 Output port 3 14-17 P7o-P73 I/O port 7 18 RESET RESET input System clock inputs P3l P63 P32 P62 P33 P6l P70 P60 P7l P03/S1 19,21 CL1, CL2 P72 P02/S0 P73 P01/SCK 20 Voo Positive power supply RESET POoflNTO 22 INT1 External interrupt Cll INT1 VDD~________________~, Cl2 23-26 POoIINTO, P01/SCK, P02/SQ, P03/S1 Input port O/external interrupt, serial I/O interface 83-003779A 3-90 Symbol P42 27-30 P6o-P63 I/O port 6 31-34 P50-P53 I/O port 5 35-38 P43-P40 I/O port 4 39 Vss Ground NEe f.,lPD7507/08 Pin Identification (cont) Pin Functions 28-Pin EPROM Socket on Piggyback DIP POo/INTO, P01/SCK, P02/S0, P03/S1 [Port 0/ External Interrupt, Serial Interface] No. Symbol 1,2 NC Not connected Function 3-10 ArAo Address bits 7-0 11-13 10- 12 Data bits 0-2 14,22 VSS Ground 15-19 13- 17 Data bits 3-7 20 CE Chip Enable 21,23 A10- A11 Address bits 10, 11 24,25 Ag, As Address bits 9, 8 26,28 VDD Positive power supply 27 MSEL Memory select 52-Pin Miniflat No. Symbol 1,4,6,13, 14,27,29, 35,40,45 NC Not connected 2,50-52 P70-P73 110 port 7 Function 3 RESET RESET input 5,9 CL 1, CL2 System clock inputs 7 VDD Positive power supply 10 INT1 External interrupt 11,12, 15,16 POoIINTO, P01/SCK, P02/S0, P03/S1 Input port Olexternal interrupt, serial 110 interface 17-20 P60-P63 110 port 6 21-24 P50-P53 110 port 5 25,26 28,30 P43-P40 110 port 4 31 VSS Ground 32,34 X1, X2 Crystal clock I external event input 33 VDD Positive power supply 36-39 P20/PSTB, P21/PTOUT, Ph P23 4-bit output port 2/0utput strobe pulse, timer out F/F signal 41-44 P10-P13 110 port 1 46-49 P30-P33 Output port 3 4-bit input port/serial I/O interface. This port can be configured as a 4-bit parallel input port or as the 8-bit serial I/O interface under control of the serial mode select register. The serial input SI, serial output SO (active low), and the serial clock SCK (active low), used for synchronizing data transfer, make up the 8-bit serial I/O interface. Line POQ is always shared with external interrupt INTO, a rising edge-triggered interrupt. If POQ/INTO is unused, it should be connected to Vss. If P01/SCK, P02/S0, or P03/S1 are unused, connect them to Vss or Voo. P10-P13 [Port 1] 4-bit input/three-state output port. Data output to port 1 is strobed in synchronization with a P2Q/PSTB pulse. Connect unused pins to Vss or Voo. P20/PSTB, P21/PTOUT, P22, P23 [Port 2] 4-bit latched three-state output port. Line P2Q is shared with PSTB, the port 1 output strobe pulse. Line P21 is shared with PTOUT, the timer out F/F signal. Leave unused pins open. P30-P33 [Port 3] 4-bit latched three-state output port. Leave unused pins open. P40-P43 [Port 4] 4-bit latched three-state output port. Can also perform 8-bit parallel I/O with port 5. In input mode, connect unused pins to Voo or GND. In output mode, leave unused pins open. P53-P50 [Port 5] 4-bit input/latched three-state output port. This port also performs 8-bit parallel I/O with port 4. In input mode, connect unused pins to Vss or VDD. In output mode, leave unused pins open. P63-P60 [Port 6] 4-bit input/latched three-state output port. The port 6 mode select register configures individual lines as inputs or outputs. In input mode, connect unused pins to Vss orVoo.ln output mode, leave unused pins open. 3-91 NEe JlPD7507/08 P70·P73 [Port 7] RESET [Reset] 4-bit input/latched three state output port. In input mode, connect unused pins to Vss or Voo. In output mode, leave unused pins open. A high level input to this pin initializes the pPD7507 /08 after power up. . INT1 [Interrupt 1] X2, X1 [Crystal Clock/External Event Input] For crystal clock operation, connect a crystal oscillator circuit to input X1 and output X2. For external event counting, input external event pulses to input X1 while leaving output X2 open. If X1 is not used, leave it open. If X2 is not used, connect it to ground. CL 1, CL2 [System Clock Input] External rising edge-triggered interrupt. Connect to Vss if unused. Voo [Power Supply] Positive power supply. Apply a single voltage in the range 2.7 to 6.0 V for proper operation. Vss [Ground] Connect a 120 kO resistor across CL 1 and CL2, and connect a 33 pF capacitor from CL 1 to Vss. Alternatively, connect an external clock source to CL 1 and leave CL2 open. If CL 1 is unused, connect it to Vss. Ground. Block Diagram General Registers Program Memory 2048 x 8-Bit ROM [pPD7507] 4096 x 8-Bit ROM [pPD7508] CL CL1 Instruction Decoder 0[4] E [4] H [4J L [4J Stack Pointer [8J Data Memory 128 x 4-Bit ROM [pPD7507] 224 x 4-Bit ROM [pPD7508] ¢ CL2 III RESET Voo Vss 83-003470C 3-92 t-lEC JlPD7507/08 Memory Map Clock Control Circuit Figure 1 shows the ROM memory map of the The clock control circuit consists of a 4-bit clock mode register (bits CM1 and CM2), prescalers 1,2, and 3, and a multiplexer. It takes the output of the system clock generator (Cl) and count clock generator circuit (I). It also selects the clock source and divides the signal according to the setting in the clock mode register. It outputs the count pulse (CP) to the timer/event counter. Figure 2 shows the clock control circuit. pPD7507/08. Figure 1. ROM Map Address [Decimal] MSB 0 to. Address [Hex] LSB 716151413121110 OOOH 16 010H 32 020H 48 030H C> ~ Q a. ::.. a. :E ~ RESET Pulse Vector. Program Execution to Address OOH INTT [Internal Timer/Event Counter Interrupt] Vectors Execution to 010H INTO/S [External Interrupt 0/ Serial Interface Interrupt] Vectors Execution to 020H INT1 [External Interrupt 1] Vectors Execution to 030H I!! Q a. ::.. a. :E ~ 0 Table 2 lists the codes set in the clock mode register by the OP or OPl instruction to specify the count pulse frequency. Be sure to clear the high-order bits of the accumulator (A3, A2) to zero before loading the clock mode register. Table 2. 192 OCOH} LHLT Instruction Reference Table OCFH 207 208 ODOH} CALT Instruction OFFH Reference Table 0 255 1023 1024 3FFH 400H <-2047 2048 7FFH 800H Last address for CALL Instruction entry for pPD7507 L--4095 FFFH Last address for CALL Instruction entry for pP 07508 Selecting the Count Pulse Frequency CM2 CM! o 0 o o o 0 o o CMo Frequency Selected 0 CLl256 o x x o CLl32 o Not used X/64 X/8 Not used 83-003456A CM3 TOUT Signal o Disabled Enabled Figure 2. Clock Control Circuit XI >-------------------------_.CP (Timer/Event Counter) Crystal Clock Oscillator/ Event Counter Input 83-003457B 3-93 ttiEC J.1PD7507/08 Timer/Event Counter The timer/event counter consists of an 8-bit counter, an 8-bit modulo register, an 8-bit comparator, and a timer out flip-flop as shown in figure 3. The 8-bit count register is a binary 8-bit up-counter which is incremented each time a count pulse is input. The TIMER instruction, a RESET signal, or an INTT coincidence signal clears it to OOH. The 8-bit modulo register determines the number of counts the count register holds. The TAMMOD instruction loads the contents of the modulo register. RESET sets the, modulo register to FFH. The 8-bit comparator compares the contents of the count register and the modulo register and outputs an I NTT when they are equal. Figure 3. Timer/Event Counter Internal Bus ~--~--------------~ r--------------------J ~CN~M--------------------------~ 1---------.. INTT [Coincidence] CP------------------------------~ I---t--t---l~u;erial Interface) 'Command Execution Clock MSR ~imer RESET Bit·3 PTOUT [to P21/ PTOUTpin] Pulse 83-003458B 3-94 NEe JlPD7507/08 Serial Interface The 8-bit serial interface allows the pPD7507/08 to communicate with peripheral devices such as the pPD7001 A/D converter, the pPD7227 dot matrix LCD controller/driver, and other microprocessors or microcomputers. Figure 4 shows the serial interface. The serial interface consists of an 8-bit shift register, a 3-bit SCK pulse counter, the SI input port, the SO output port, the SCK serial clock I/O port, and a 4-bit serial mode select register (MSR). The MSR selects serial I/O or port 0 operation. Figure 4. Serial Interface P03lS1 0 - - - - - - - - - - - 1 P02/S0 Il ~>---_++'H_-H o - - - -........-----+-~~ 1--_ _ _ _ _ _ _-+-________--1 _.J>--+-- TOUT POO/INTO 0 - - - - - - - - - 1 RS F/F I+-----<~-_ INTS (To Interrupt CircuIt) • Command Execution ¢ System Clock 1 - - - - - - ·SIO 83-0030146 t-IEC JlPD7507108 Interrupts The tJPD7507/08 has four vectored, prioritized interrupts. Two of these interrupts, INTT and INTS, are internally generated from the timer/event counter and serial interface, respectively. INTO and INT1 are externally generated. Table 3 is a summary of the four interrupts. Figure 5 is the block diagram. Table 3. tJPD750710Blnterrupts Location Priority INTT Source Coincidence in timer/event counter Internal 1 10H INTS Transfer complete signal from serial interface Internal 2 20H INTO INTO pin External 2 20H INT1 INT1 pin External 3 30H Figure 5. Function ROM Vector Address Interrupt Block Diagram INTT--------+---------4--4-+=~-fS'Ii;n:-,Hr_t~--_t__t___t INTS---------+---r ROM INTO---------+--I SIO·-----------f INT1----------------~----~'Ii~_, ~~~------~~ Timer· _ _ _ _ _ _ _ _ _ _ _ _ _ _--' ·Command Execution >----_ Standby Release 83-003459B NEe J.lPD7507/08 System Clock and Timing Circuitry Figure 6. RC Circuit Connection Timing for the pPD7507/08 is internally generated except for a frequency reference, which can be an RC circuit or an external clock source. Connect the frequency reference to the on-Chip oscillator for the feedback phase shift required for oscillation. Figure 6 shows the connection for an RC circuit. Figure 7 shows the connection for an external clock source. -CL2 83-002994A The internal oscillator generates a frequency in the range 60 kHz to 300 kHz depending on the frequency reference. For example, at Voo = 5 V, an 83-kO resistor and a 33-pF capacitor generate a frequency of 200 kHz. The oscillation frequency is fed to the clock control circuit. It is divided by two and the resulting signal is fed to the CPU and serial interface as shown in figure 8. Figure 7. External Clock Source Connection L External Source CL2 Table 4 shows the operating status of the various logic blocks under the three power down-modes. Figure 8. L1 System Clock Circuitry 83-002995A X1 X2 INTT CL1 INTS Syslem Clock Oscillator CL2 '------+--------------0 STOP ~---<> \-----<> ~:~~~~:~~n Siandby Release Reset 83-0034606 3-97 NEe JlPD7507/08 Table 4. Power-Down Operating Status Power-Down Mode logic Block HALT STOP Data Retention Mode System clock (Note 1) Disabled Disabled X2 Normal Normal Disabled CPU Disabled Disabled Disabled RAM Data retained Data retained Data retained Internal registers Data retained Data retained Data retained Timer I event counter Normal (Note 3) Disabled Serial interface (Note 2) (Note 2) Disabled INTO Normal Normal Disabled INT1 Normal Disabled Disabled RESET Normal Normal (Note 4) Note: (1) Supplied to timer/event counter but not to CPU or serial interface. (2) Can function normally if the serial MSR is set to get the SCK signal externally or from the TOUT signal. (3) Can function normally if the clock MSR is set to use X1 as the source for the count pulse. (4) To enter the data retention mode, raise RESET while Voo is lowered. To end the data retention mode, raise RESET when Voo is raised, then lower it. INTT, INTO, INTS or RESET releases the STOP mode. RESET or any interrupt releases the HALT mode. 3-98 NEe JlPD7507/08 I/O Port Interfaces Figure 9 shows the internal circuit configurations at the I/O ports. Figure 9. Interface at Input/Output Ports Type E Type A P02/S0, P40-P43, PSO-PS3, P60-P63, P10·P13, P70-P73 Voo Voo P·ch oatalb: ~"'" Inputl Output Output Disable . Vss Voo Vss Type B POo/INTO, P03/SI, RESET, INT1 Vss Type F Type 0 P01/SCK P30-P33, P20/PSTB, P21/PTOUT, P22-P23 Voo Voo P·ch P·ch oatalb: oatalb: Inpull Output Output Output Output Disable Disable Vss Vss 83·003860C 3-99 NEe f.1PD7507108 Absolute ,Maximum Ratings TA Capacitance =25°C TA = 25°C, Voo =,0 V Operating temperature, TOPT limits Storage temperature, TSTG -65 to +150°C -0.3 to +7.0 V Power supply voltage, VOO All input and output voltages -0.3 to Voo + 0.3 V Output current high, IOH One pin All pins, total -17 rnA -30 rnA Output current low, IOL One pin Ports 1,2,3,7 Ports 4, 5, 6 Parameter Symbol Typ Max Unit Input capacitance CI 15 Output capacitance Co 15 pF 1/0 capacitance CIO 15 pF Test Conditions pF f= 1 MHz; unmeasured pins returned to Vss 17 rnA 25 rnA 25 rnA Comment: Exposing the device to stresses above those listed in Absolute Maximum Ratings could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational sections of this specification. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. DC Characteristics For Voo TA = 2.5 to 3.3 V (7507, 7508 only) =-10 to +70°C Limits Parameter Input voltage, high Symbol Min Typ Max Unit Test Conditions VIH1 O.B VOO VOO V Except CL 1, X1 VIH2 VOO - 0.3 Voo V CL1, X1 VIHoR RESET, data retention mode 0.9VOOOR VOoOR + 0.2 V VIL1 0 0.2 VOO V Except CL 1, X1 VIL2 0 0.3 V CL1, X1 Output voltage, high VOH Voo - 0.5 V IOH = -BOpA Output voltage, low VOL 0.5 V IOL = 350pA Input voltage, low Input leakage current, high Input leakage current, low Output leakage current, high IUH1 3 pA VUH2 10 pA CL1, X1 IUL1 -3 JlA Except CL1, X1; VI = 0 V VUL2 -10 pA CL1, X1 ILOH 3 JlA Vo = Voo -3 JlA Vo =OV Output leakage current, low ILOL Supply voltage VOoOR Supply current 1001 1002 1000R 3-100 2.0 V Except CL1, X1; VI = Voo Data retention mode 50 250 pA Normal operation, VOO = 3 V ±10%; R = 240 kQ ±2%, C= 33 pF ±5% 35 230 pA Normal operation, Voo = 2.5 V; R = 240 kQ ±2%, C = 33 pF ±5% 0.3 10 JlA Stop mode, X1 = 0 V; Voo = 3 V ±10% 0.2 10 pA Stop mode, X1 = 0 V; VOO = 2.5 V 0.2 10 pA Data retention mode, VOoOR = 2.0 V NEe fJPD7507/08 DC Characteristics {cont} For VDD = 2.7 to 6.0 V (75CG08. 5 V ±10%) TA = -10 to +70°C limits Parameter Symbol Input voltage, high V,H1 Input voltage, low Output voltage, high Output voltage, low Input current, high Min Typ 0.7 VDD Unit VDD V Except CL 1, X1 CL1, X1 V,H2 VDD - 0.5 VDD V V,HDR 0.9VDDDR VDDDR + 0.2 V RESET, data retention mode 0 0.3 VDD V Except CL 1, X1 V,L2 0 0.5 V CL 1, X1 VOH VDD -1.0 V 10H = -1.0 mA; VDD = 4.5 to 6.0 V, 7507/08 only V,L1 VDD - 0.5 V 10H = -100 fJA, 7507/08 only VOH1 VDD -1.0 V 10H = -1.0 mA, 75CG08 only VOH2 VDD - 0.75 V 10H = -5.0 mA, 75CG08 only 0.4 V 10L = 1.6 mA; VDD = 4.5 to 6.0 V, 7507/08 only 0.5 V IOL = 400 fJA, 7507/08 only 0.4 V 10L = 1.6 mA, 75CG08 only 300 fJA fJA fJA fJA fJA fJA fJA fJA VOL Input current, low I'H I,L Input leakage current, high IUH1 3 IUH2 10 Input leakage current, low Test Conditions Max -200 IUL1 -3 IUL2 -10 Output leakage current, high 'LOH 3 Output leakage current, low ILOL -3 Supply voltage VDDDR Supply current IDD1 'D02 'DDDR 2.0 75CG08 only, V, = VDD, MSEL 75CG08 only, V, = 0 V, 10-17 Except CL1, X1; V, = VDD CL1, X1 Except CL1, X1; V, = 0 V CL1, X1 Vo = VDD Vo=OV V Data retention mode, 7507/08 only 300 900 fJA Normal operation, VDD = 5 V ±10%; R= 82 kO ±2%, C = 33 pF ±5% 70 300 fJA Normal operation, VDD = 3 V ±10%; R = 160 ko ±2%, C= 33 pF ±5%, 7507/08 only fJA fJA fJA fJA 1.0 20 0.3 10 2 20 0.2 10 Stop mode, X1 = 0 V; VDD = 5 V ±10% Stop mode, X1 = 0 V; VDD = 3 V ±10%, 7507/08 only Stop mode, X1 = 0 V; VDD = 5 V ±10%, 75CG08 only Data retention mode VDDDR = 2.0 V, 7507/08 only NEe f..lPD7507108 AC Characteristics For Voo = 2.7 to 6.0 V (75CGOB, 5 V ±10%) TA = -10 to +70°C Limits Test Conditions Parameter Symbol Min Typ Max System clock frequency fcc 150 200 240 kHz Voo 75 100 120 kHz Voo = 3.0 ±10%; R = 160 kn ±2% (Note 1), 7507/08 only 75 135 kHz VOO 10 410 kHz CL 1, external clock, 50% duty; Voo = 4.5 to 6.0 V, 7507/08 only, Voo = 5 V ±5%, 75CG08 only 10 125 kHz CL 1, external clock, 50% duty; Voo = 2.7 V, 7507/08 only 10 300 kHz CL 1, external clock, 50% duty; 75CG08 only 0.2 JiS CL 1, external clock CL 1, external clock; Voo = 4.5 to 6.0 V, 7507/08 only fc System clock rise and fall times tCR, tCF System clock pulse width tCH, tCl Counter clock frequency fxx tXR, tXF Counter clock pulse width tXH, tXl SCK cycle time SCK pulse width tKCY tKH, tKl = 3.0 ±10%; R= 160 kn ±2% (Note 1), 7507/08 only 1.2 50 JiS 50 JiS CL 1, external clock; Voo = 2.7 V, 7507/08 only 1.5 50 JiS CL 1, external clock, 75CG08 only 1.2 50 JiS CL 1, external clock; Voo 50 kHz X1, X2, crystal oscillator 410 kHz X1, external pulse input; 50% duty; Voo = 4.5 to 6.0 V, 7507/08 only 0 125 kHz X1, external pulse input, 50% duty; VOO = 2.7 V, 7507/08 only 0 300 kHz X1, external pulse input; 50% duty, 75CG08 only 410 kHz X1, external pulse input; 50% duty; Voo = 5 V, 75CG08 only 0.2 JiS X1, external pulse input X1, external pulse input; Voo = 4.5 to 6.0 V, 7507/08 only 25 32 = 5 V ±5%, 75CG08 only 1.2 JiS 4.0 JiS X1, external pulse input; Voo = 2.7 V, 7507/08 only 1.5 JiS X1, external pulse input, 75CG08 only 1.2 JiS X1, external pulse input; Voo = 5 V ±5%, 75CG08 only 3.0 JiS SCK as input; Voo = 4.5 to 6.0 V, 7507/08 only 5 V ±5%, 75CG08 only 8.0 JiS SCK as input, 7507/08 only 4.9 JiS SCK as output; Voo = 4.5 to 6.0 V, 7507/08 only 5V ±5%, 75CG08 only 16.0 JiS SCK as output, 7507/08 only 4.0 JiS SCK as input, 75CG08 only 6.7 JiS SCK as output, 75CG08 only 1.3 JiS SCK as input; Voo = 4.5 to 6.0 V, 7507/08 only 5V ±5%, 75CG08 only 4.0 JiS SCK as input Note: (1) RC network at CL 1 and CL2; C = 33 pF ±5%,It..c/ocl::; 60 ppm. ~-102 = 5.0 V ±10%; R= 82 kn ±2% (Note 1) 4.0 fx Counter clock rise and fall times Unit NEe JJ,PD7507/08 AC Characteristics (cont) For VDD = 2.7 to 6.0 V (75CG08, 5 V ±10%) TA = -10 to +70°C limits Parameter Symbol SCK pulse width SI setup time to SCK t SI hold time after SCK tSIK t Min Typ Max 2.2 /.IS SCK as output, Voo = 4.5 to 6.0 V, 7507 lOB only 5 V ±10% 75CGOB only B.O /.IS SCK as output, 7507 lOB only 3.0 /.IS SCK as output, 75CGOB only 300 ns 450 SO delay time after SCK ~ ns 850 1200 Port 1 output setup time to PSTB t tpST Port 1 output setup time to PSTB t tSTP Test Conditions Unit ns Voo = 4.5 to 6.0 V, 7507 lOB only 5 V ±10% 75CGOB only ns 7507 lOB only 1I (2fcC - BOO) ns Voo = 4.5 to 6.0 V, 7507 lOB only 5 V ±10% 75CGOB only 1I (2fCC - 2.0) ns 7507 lOB only 100 ns Voo = 4.5 to 6.0 V, 7507/0B only 5 V ±10% 75CGOB only 100 ns 7507 lOB only 1I (2fcC - BOO) ns Voo = 4.5 to 6.0 V, 7507 lOB only 5 V ±10% 75CGOB only 7507 lOB only PSTB pulse width tSTL 1I (2fcc - 2.0) ns INTO pulse width tlOH, tlOL 10 /.IS INn pulse width t11H, tl1L 2/fcc /.IS RESET pulse width tRSH, tRSL 10 /.IS RESET setup time tSRS 0 ns RESET hold time tHRS 0 ns II 3-103 t-{EC ~PD7507/08 AC Characteristics (cont) For VDD = 2.5 to 3.3 V (7507, 7508 only) TA == -10 to +70°C Limits Parameter Symbol Min System clock frequency fcc 50 50 fc System clock rise and fall time Max 80 kHz R = 240 kn ±2% (Note 1) 64 77 kHz VDD = 2.5 V; R = 240 kn ±2% (Note 1) 80 kHz CL 1, external clock, 50% duty 0.2 /1S CL 1, external clock 50 /1S CL 1, external clock 50 kHz X1, X2, crystal oscillator 80 kHz X1, external pulse input, 50% duty 0.2 /1S X1, external pulse input 10 tCR, tCF System clock pulse width tCH, tCl Counter clock frequency fxx 25 fx 0 Counter clock rise and fall time 6.25 tXR, tXF Test Conditions Typ 32 Unit Counter clock pulse width tm tXl 6.25 /1S X1, external pulse input SCK cycle time tKCY 12.5 /1S SCK as input 25.0 /1s SCK as output 6.25 /1s SCK as input 11.5 /1S SCK as output SCK pulse width SI setup time to SCK tKH, tKl t SI hold time after SCK tSIK t Port 1 output setup time to PSTB /1s tKSI SO delay time after SCK ~ 2 tKSO t Port 1 output hold time after PSTB PSTB pulse width /1s t /1S tpST 1/(2fcc - 2.0) ns tSTP 100 ns tSTl 1/(2fcC - 2.0) ns /1s INTO pulse width tIOH, tlOl 30 INT1 pulse width tl1H, tl1l 2IfCC /1s RESET pulse width tRSH, tRSl 30 /1s RESET setup time tSRS 0 ns RESET hold time tHRS Note: (1) RC network at CL 1 and CL2; C = 33 pF ±5%,lllC/ocl::::: 60 ppm. ~-104 ns NEe J,tPD7507/08 Timing Waveforms External Interrupts Timing Measurement Points Voo ==X 0.7VDD ~O~.3~V~D~D Oo7VDDX= Test Points _________________O~o3~V~D~D Voo ==X 0.aVDD ~O~.2~V~D~D = 2.7 to 6.0 V 'Hm ~"O'J="O"~ '"T<~'"'J="'"~ = 2.5 to 2.7 V o.aVDDX= Test Points _________________ O~.2~VD~D 83-003314A 83-003317A RESET Clocks 83-003318A CL1 Data Retention Mode Data Retention Mode X1 VDD VDDDR RESET Serial Interface SI 83-003319A --i-------{ so Valid Output Data >C '------- 83-003316A Output Strobe 83-003414A 3-105 NEe J,1PD7507108 Operating Characteristics TA =25°C fcC vs R fccvs Voo 500 ,----r----.I-,---I~--r..,,-----r---,Ic---Jr---1 500 ~ 400 (,) i! ! 250 I---200 I---- c 0 :; 150 I---- j 100 ~ 33pF J; ~ 1-----=-~---I-- __ - - f- ~ :; 2 1-----t-, --- - 50 [ R=82kCl ~ ~---- R -- ------- U 1 - - - + - -+----11----+-+-I-I--+---+-[TA = 25°C]1 1----1- VOl = 51 "dr-...--j~-+-+-+-----+----+---+-----1 ~ (,) ~ 300 I---- N It=25 0 C]- I (,) c 0 ~ R ~... g 160 kCl « 200~--4--+--+-~~~~~~----+---4--4-~ ".~ ~ VDD~,~ ~33PFT .-m R -1--1--+-1--- 0 i i R=240kO- ~ II) 50 100 fCC vs TA 1000 Voo= 5V. --I...-----I------I-.!!..':.!~ ! '" 'f~i ~ ! I C=33 pF AC/oC S60 ppm OL-________ ~ __________L -_________L_ _ _ _ _ _ _ _ 25 50 L 11>12:fC= ~ 212 100 f.-.- Defined Operaling Vollage 11 <12:fC= ~ 211 lAo U ~ 10 E ~ ! ~ ~ 1 75 a Supply Vollage Voo [V] Operaling Temperalure TA 1°C] loovs VOO fX vs VOO 1000 I 11 N ! 400 f- ~ ! ! 1000 I [TA= 25°C] 12 --11-1 X1J"LR r; 100 f- .." 11>12:fX=~ 212 11<12:fX=~ 211 c r" V 500 I- V ~ c Defined Operating Voltage 100 .~ 50 I- 33 E ~ ~ " 0 1 F-PF l" I 0.1 o Supply Vollage Voo [V] 3-106 F 22 o - ~:~~ g:~ ~gl- STOP + Xlal Oscillalion ~ ,17r~~ 0 kHz 0.5 • (J I-:';::;;;; ~ ~ [82kO] [160kO] [240 kO] HALT [82kCl] ~ X2 XI II) - I I U 10 25°C] -,. I 10 [TA R PF,l ,., ~ g i) V V g R=240kO -25 [TA = 25°C] CL1J"LR 2! --~-----~-----I----~ ~ ~ Voo=2.5V.- 50 __1'll~ IT VDD''', R = 160kCl I-J; C --~-----~-----~---__ ~----_ 1- _ _ _ _ _ ~--- g U N ! ~ I I 400 I- --1...-----1------1----- ~ 100 SOD fcvs VOO 250r-------r---------r---------~--------~ o 200 Resislance R [kO] Supply Vollage VOO IV] I ............... VOO = 2.5 V----"'" ~ ...... N----+--i 50 f - - ~ kO 1 ~ 33 pF l....o'" r--'::/ 4 Supply Voltage Voo [V] STOP [XI = a V] NEe IlPD7507/08 Operating Characteristics (cont) TA = 25°C 1001 VS fcc 1001 VS TA 500r-----~------,-------r-----_r------~----~ ~ C E ~ J 400 ~ 0 :::I! 300 33 pF E I! A 500 1 c 400 E ..o ." i ----+---~'I"'___----+----f ~ 0 ~ o 200 c ~ ,., 200 f - - c ~ 0 ~ 300 I-- I! 100 0 ~ ~----~------~------~----~------~----~~ 0 50 100 150 200 250 ,., 100 ! -5 -25 300 X 75 15 E c ~ i 50 IOL vs VOL ... 5 0 -3 ~ i 25 Operating Temperature T A [OC] <' g -4 __~--------~VOO=3V 0 I 20 :r: :l A Voo = 3 V, A = 160 kO o IOH vs VOH 0 Voo = 5 V, A = 82 kO Ul -6 c ~ J 33pF System Clock Oscillation Frequency ICC [kHz] E ---- U Ul <' g - - -2 ~ 0 ____- - - , VOO = 3 V 10 ___-+---- Voo= 2.5 V ~ ~ .3 -1 High-Level Output Voltage VOH [V] Low-Level Output Voltage VOL [V] 3-107 ~PD7507/08 3-108 NEe NEe NEe Electronics Inc. Description The pPD7507H and pPD7508H are pin-compatible, high-speed (4.19 MHz), 4-bit, single-chip CMOS microcomputers with the pPD7500 series architecture. The subroutine stack is implemented in RAM for greater nesting depth and flexibility. Thirty-two I/O lines are organized into eight 4-bit ports: input port/serial interface port 0, output ports 2 and 3, and I/O ports 1,4,5,6, and 7. The pPD7507H and pPD7508H execute 92 instructions of the pPD7500 series A instruction set with a 2.86-ps instruction cycle time. Maximum power consumption is 800 pA at 5 V and less in the HALT and STOP low-power modes. The 75CG08H is a piggyback EPROM prototyping chip that is pin-compatible with 7507H and 7508H. A 2716 plugged into the top of the 75CG08H emulates the ROM of a 7507H. A 2732 emulates the ROM of 7508H. When emulating the 7507H, the user must take care to use only the first 128 RAM locations. Although 7507H and 7508H can operate over a range of 2.5 to 6.0 V, 75CG08H is limited to 5 V ±10%. Table 1 summarizes the differences among 7507H, 7508H, and 75CG08H pPD7507H/08H 4.BIT, SINGLE·CHIP CMOS MICROCOMPUTERS Ordering Information Part No. Package Type Max Frequency of Operation tLPD7507HC 40-pin plastic DIP 4.19 MHz tLPD7507HCU 40-pin plastic shrink DIP 4.19 MHz tLPD7507HG-22 44-pin plastic miniflat 4.19 MHz tLPD7508HC 40-pin plastic DIP 4.19 MHz tLPD7508HCU 40-pin plastic shrink DIP 4.19 MHz tLPD7508HG-22 44-pin plastic miniflat 4.19 MHz tLPD75CG08HE 40-pin ceramic piggyback DIP 4.19 MHz Pin Configurations 40-Pin Plastic DIP and Plastic Shrink DIP OUT 1 EVENT P20/PSTB 2 Vss P21/PTOUT 3 P43 NC P23 Voo NC P41 P10 P40 As P11 Ag P12 P13 P30 P31 P32 P33 A4 A11 A3 Vss A2 A10 A1 CE Ao 17 11 Is 12 14 Vss 13 Is P70 P71 P72 P73 P4 2 RESET P51 P62 P03/S1 P02/S0 P01/SCK POo/INTO Cl1 INT1 Voo Cl2 83-003761 A 44-Pin Plastic Miniflat Function 27-30 P60-P6J 110 port 6 31-34 P50-P53 110 port 5 35-38 P4o-P43 110 port 4 39 Vss Ground 40 EVENT External event input port 44-Pln Miniflat 83-003762A No. Symbol 1.4 P1o-P13 I/O port 1 5-8 P30-P33 Port 3 output 9.10. 13.14 P70-P73 110 port 7 11-12 NC Not connected 15 RESET RESET input 16.18 CL1. CL2 System clock inputs 17 VOO Positive power supply 19 INn External interrupt 1 20 POoflNTO Port 0 inputflnterrupt 0 21 P01/SCK Port 0 input/Serial clock 110 22 P02/S0 Port 0 input/Serial output 23 NC Not connected 24 P03/S1 Port 0 input/Serial output 25-28 P60-P6J I/O port 6 29-32 P5Q- P53 I/O port 5 P40-P43 110 port 4 33-36 3-110 Function NEe pPD7507H/08H Pin Identification (cont) P20/PSTB, P21/PTOUT, P22, P23 [Port 2] 44-Pin Miniflat (cant) No. Symbol 37 Vss Function Ground 4-bit latched three-state output port. Line P2a is shared with PSTB, the port 1 output strobe pulse. Line P21 is shared with PTOUT, the timer out F/F signal. Leave unused pins open. 38 EVENT External event input 39 The clock control circuit consists of a 4-bit clock mode register (bits CMo-CM3), prescalers 1,2, and 3, and a multiplexer. It takes the output of the system clock generator (CL) and external EVENT input. It also selects the clock source and divides the signal according to the setting in the clock mode register. It outputs the count pulse (CP) to the timer/event counter. Figure 3 shows the clock control circuit. CM1 CMo Frequency Selected 0 0 fce/1536 (CLl256) 0 1 fce/512 (fee/8 x 1/64) 1 0 EVENT input 1 Not used 0 fcc/192 (CLl32) 0 Cll Frequency Range VOO IIPD74HCOO 4.5 to 6.0 V 0.1 to 4.2 MHz 2.7 to 6.0 V 0.1 to 1.8 MHz 0 0 ~Cl2 0 0 83·003763A fcc/64 (fcc/8 x 1/8) 0 Memory Map Not used Not used Figure 2 shows the ROM program map of the 7507H17508H. Figure 2. ROM Map Address [Decimal) MSB 0 :I: :I: ~ Q ~ Address [Hex) LSB 716151413121110 OOOH RESET Pulse Vectors Program Execution to Address OOOH INTT [Internal Timer/Event Counter Interrupt) Vectors Execution to 010H INTO/S [External Interrupt 0/ Serial Interface Interrupt) Vectors Execution to 020H 16 010H 32 020H 48 030H INTl [External Interrupt 1) Vectors Execution to 030H 192 OCOH} 207 OCFH LHLT Instruction Reference Table Q II. "'- 1 II. :c II. "'II. :c 0~ ~ 0 ~. ODOH} CAL T Instruction Reference Table 255 OFFH . 1023 1024 3FFH 400H 2047 2048 7FFH 800H Last Address for CALL Instruction Entry IIPD7507H <----4095 FFFH Last Address for CALL Instruction Entry IIPD7508H 83·0034368 3-113 1m NEe pPD7507H/08H Figure 3. Clock Control Circuit Internal Bus To Timer/ Event Counter 1/8 fcc----------1~_+_r~ CL----t [1/6 feel EVENT-----I >----_CP Count Pulse to Timer/Event Counter 'Instruction execution 83-003469B Timer/Event Counter Serial Interface The timer/event counter consists of an 8-bit counter, an 8-bit modulo register, an 8-bit comparator, and a timer out flip flop as shown in figure 4. The 8-bit serial interface allows the pPD7507H/08H to communicate with peripheral devices such as the pPD7001 A/D converter, the pPD7227 dot matrix LCD controller/driver, and other microprocessors or microcomputers. The 8-bit count register is a binary 8-bit up counter, which is incremented each time a count pulse is input. The TIMER instruction, a RESET signal, or an INTT coincidence signal clears it to OOH. The 8-bit modulo register determines the number of counts the count register holds. The TAMMOD instruction loads the contents of the modulo register. RESET sets the modulo register to FFH. The 8-bit comparator compares the contents of the count register and the modulo register and outputs an I NTT one clock pulse after they are equal. Table 3. The serial interface consists of an 8-bit shift register, a 3-bit SCK pulse counter, the SI input port, the SO output port, the SCK serial clock I/O port, and a 4-bit serial mode select register (MSR). The MSR selects serial I/O or port 0 operation. Interrupts ThepPD7507H/08H has four vectored, prioritized interrupts. Two of these interrupts, INTT and INTS, are internally generated from the timer/event counter and serial interface, respectively. INTO and INT1 are externally generated. Table 3 is a summary of the four interrupts. pPD7507HIOBH Interrupts Source Function Location Priority INTT Coincidence in timer/event counter Internal 1 10H INTS Transfer complete signal from serial interface Internal 2 20H INTO INTO pin External 2 20H INT1 INT1 pin External 3 30H 3-114 ROM Vector Address NEe Figure 4. pPD7507H/08H Timer/Event Counter r-----------------------J Internal Bus L -_ _~ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _~ ~CNTAM------------------------------~ 1------- INTT [Coincidence] CP----------------------------------~~ .--+------1---- ~u;erlallnterfaCe) ·Command Execution Clock MSR Bit 3 ·Timer RESET PTOUT [to P21/ PTOUTpln] 83-0034378 Figure 5. System Clock Circuitry I-+-__________________.. ~;:~~~ Timer/Event Counter ~ __________________-.CL [698 kHz] CL1 ~ [349 kHz] CL2 ~---"'---'-- Halt Release ~--z--..-- Reset ['-.] ~-,...-t--- Hall * 14----+-- Stop* t+--------+--- Reset ·Command Instruction 83-0034388 3-115 ~EC pPD7507H/08H System Clock and Timing Circuitry Table 4. pPD7507H/OBH Time Bases There are four time bases available for the pPD7507H/08H. Table 4 shows these bases and the frequencies generated. Base The CPU clock is used by the CPU and serial interface. The system clock is used by the timer/event counter and the INT1 signal. External clock Symbol Frequency CL 1/6 fcc (698 kHz/4.19 MHz) System clock CPU clock 1/12 fcc (349 kHz/4.19 MHz) 1/12 fCC (349 kHz/4.19 MHz) ¢OUT Timerlevent counter clock 1/8 fcc (524 kHz/4.19 MHz) 1/0 Port Interfaces Figure 6 shows the internal circuit configurations at the I/O ports. Figure 6. Interlace at Input/Output Ports Type B Type E POoIINTO, INn, P03/SI, RESET, EVENT P10-P13, P02/S0, P40-P43, P50-P53, P60-P63, P70-P73 Voo p·ch Datalb: Inpull Output Type C Output Disable ¢OUT Voo Voo --t Vss Output Vss Vss Type D P20/PSTB, P21/PTOUT, P22, P23, P30-P33 Voo Type F P01/SCK Voo Dat8Jb: Output Output Disable P·ch D8ta1h: I"pull Output N·eh Vss Output Disable Note: Upon RESET, both transistors are turned off. Vss 83-003439C 3-116 NEe pPD7507H/08H Absolute Maximum Ratings Capacitance TA = 25°C, Voo = 0 v TA=25°C Limits Operating temperature, TOPT Storage temperature, TSTG Power supply voltage, Voo All input and output voltages -0.3 to +7.0 V --0.3 to Voo + 0.3 V Output current, high, IOH One pin All pins, total -5mA -20mA Output current, low, IOL One pin Ports 6, 7 Total ports 17 mA 20 mA 200 mA Parameter Symbol Input capacitance CI Typ Max 15 Unit Test Conditions pF f = 1 MHz; ........:...-........:...-----~------..:..P-F unmeasured pins Output capacitance 15 Co _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ returned to Vss I/O capacitance CIQ 15 pF Comment: Exposing the. device to stresses above those listed in Absolute Maximum Ratings could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational sections of this specification. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. 3-117 t-IEC pPD7507H/08H DC Characteristics T A = -10 to +70°C; VDO = 2.7 to 6.0 V (5 V ±10% for 75CG08H) Limits Parameter Symbol Input voltage, high VIH1 Input voltage, low Output voltage, high Output voltage, low Input leakage current, high Input leakage current, low Min Typ 0.7 Voo Test Conditions Max Unit Voo V CL1, CL2 Except CL 1, CL2 VIH2 Voo - 0.5 Voo V VIHOR 0. 9VOOOR VOOOR + 0.2 V RESET, data retention mode 0 0.3 Voo V Except CL 1, CL2 VIL2 0 0.5 V CL1, CL2 VOH Voo -1.0 V IOH = -1.0 mA; Voo = 4.5 to 6.0 V; except A11/VPP VIL1 VOO - 0.5 V IOL = -100 /.lA Voo - 0.75 V A11 /Vpp; IOH = -5 mA (j.tPD75CG08H only) 0.5 VOL 1.5 V IOL = 12 mA; VOO = 4.5 to 6.0 V; Ports 2-5 0.4 V IOL = 1.6 mA; VOO = 4.5 to 6.0 V; Ports 6-7 0.5 V 3 /.lA Except CL 1, CL2; VI = Voo IUH2 20 /.lA CL 1, CL2; VI = Voo IUL1 -3 /.lA Except CL 1, CL2; VI = 0 V IUL2 -20 /.lA CL 1, CL2; VI = 0 V IUH1 IOL = 400/.lA Output leakage current, high ILOH 3 /.lA Vo = Voo Output leakage current, low ILOL -3 /.lA Vo =OV Supply voltage VOOOR 6.0 V Supply current 1001 900 (1) 1000 (2) 3000 (1) 3000 (2) /.lA /.lA Normal operation, Voo = 4.5 to 6.0 V; f = 4.19 MHz 150 (2) 700 (2) /.lA Normal operation, VOO = 2.7 to 3.3 V; f= 1 MHz 350 (1) 500 (2) 800 (1) 1100 (2) /.lA /.lA HALT mode, X1 = 0 V; VOO = 4.5 to 6.0 V; f = 4.19 MHz 70 (2) 180 (2) /.lA HALT mode, X1 = 0 V; VOO = 2.7 to 3.3 V; f= 1 MHz 0.1 10 /.lA STOP mode 1002 1003 Note: (1) Crystal oscillation; C1 = C2 = 10 pF. (2) Ceramic oscillation; C1 = C2 = 30 pF. 3-118 2.0 Data retention mode NEe pPD7507H/08H AC Characteristics TA = -10 to HO°C; VDD = 2.7 to 6.0 V (5 V ±10% for 75CG08H) Limits Parameter Symbol Min System clock frequency fCY EVENT input frequency fE Typ Max Unit 2.86 120 kHz 6.7 120 kHz 0 700 kHz 0 250 kHz Test Conditions Voo = 4.5 to 5.5 V Voo = 4.5 to 6.0 V EVENT input high tEH 0.7 ps EVENT input low tEL 3.3 ps SCK cycle time tKCY 2.5 ps SCK as input; Voo = 4.5 to 6.0 V 10 ps SCK as input 2.86 ps SCK as output; Voo 11 ps SCK as output SCK pulse width SI setup time to SCK tKH. tKL t SI hold time after SCK t SO delay time after SCK l ps SCK as input; Voo = 4.5 to 6.0 V ps SCK as input ps SCK as output; Voo ps SCK as output tSIK 300 ns tKSI 450 tKSO ns 1200 ns ns (Note 2) ns tSTP 80 ns tSWL (Note 1) ns (Note 2) ns 10 ps PSTB pulse width tIOH. tlOL tI1WH. tl1WL (Note 3) ps 10 ps RESET pulse width tRSH. tRSL RESET setup time tSRS 0 ns tos 25 ms Clock stabilization time =4.5 to 6.0 V ns 850 (Note 1) Port 1 output hold time after PSTB t INT1 pulse width 1.1 1.3 tpST =4.5 to 6.0 V 4.5 5.0 Port 1 output setup time to PSTB t INTO pulse width Voo = 4.5 to 6.0 V Voo = 4.5 to 6.0 V Voo = 4.5 to 6.0 V Voo = 4.5 to 6.0 V Voo =4.5 V Note: (1) (3 -:- fcc or fc) - 350. (2) (3 -:- fcc or fc) - 1000. (3) tCY = 12 -:- fcC or fC· 3-119 NEe pPD7507H/08H Timing Waveforms External Interrupts Clocks .Nro --C="O'=:J="O"~ 'Nn --C='"'=:J='"~ Timing Measurement Points 83-003317A ~O.7.VOO O.7V00V--~~O~.3_V~o~o________________O_.3_V~O~O~ Reset 83·003411 A Serial Interface 83-003318A STOP Mode I~STOPMode SI ~~ ---+------00{ VOO so -----Valid Output Data Data Retention VOOOR )( RESET 83-003316A 83-003442A EVENT Input 83-003441 A 3-120 NEe pPD7507H/08H Operating Characteristics (cont) TA = 25°C Oscillator Frequency vs Supply Voltage Oscillator Frequency vs Supply Voltage 10 10 == MC'~c,~,,,, N J: :: ~ ~ 0 i 0 -_ o 0.5 0.4 0.3 C1;}; --~ J;C2 .~ 0 0.2 0.1 '--_---''--_----'_ _--'-_ _........J.._ _- - ' -_ _- ' -_ _- ' - - - - ' o o Supply Voltage, VOO [V] Clock Frequency vs Supply Voltage 100 f=1 ~ J: ~ : 1.1 MHz_L--J Supply Voltage, VOO [V] N I _2.5MHz C1J; ~ == 0.2 0.1 0 £c -- ;};C2 --f-4.2MHZ = i CL1 CL2 C2 < 20 ~C, ""pF £c ° _ ~ Jl J:! ~.~ N J: J:! r ~~~ 10 I t:, Event Frequency vs Supply Voltage CLaj CL1 IlPD74HCOO c o co .~ -- o '" u°" ., .,>c 0.1 0.01 I----I------t----t--+---+---+---+--_+_-----I w c o" (J 0.01 0.001 '--_ _'--_----'_---'--'-_ _--'-_ _--'-_ _.....L.._ _- ' - - - - ' o o Supply Voltage, Voo [V] Supply Voltage, VOO [V] Supply Current vs Supply Voltage 104 =R -- = <" ~ 103 == E c ~ 102 CL2 0 ~ == C CL1 ];,C1 C1 ];,C2 = = C2 30 pF I ,. I t3:t~:r.::J: fCC 1 _I, ~ 100 r- 1 MHz fCC 4.19 MHzfCC = 1 MHz HALT Mode I 10' 1400 Operating Mode (J ~ en Oscillator Frequency vs Supply Voltage 1200 <" ~ 1000 c 800 (J ... 600 ~ en 400 c E i ~ht 0 rr- =T C I o o Supply Voltage, Voo [V] J ; C, , L' V -- ---- o TA= 25°C Voo=5V- Voperatin g Mode J;C2 C, = C2 = 30 pF 200 TA j ~ fHALTMode Oscillation Frequency, fCC [MHz] 3-121 NEe pPD7507H/08H Operating Characteristics (cont) TA = 25°C Clock Frequency vs Supply Voltage VOL vs. IOL [Ports 2-7] 20 TA = 25°C 1400 TA= 25°C Voo = 5 V 1200 ~ c .,/ / V 1000 E .: E. ./ 800 ~ 15 :c ~ ' / p e r a l i n g Mode 0 >. SOO Q. g. 400 III V o o i ~ 0 HALT Mode _ _ ./ 200 ~~ I- ~ 2 Output Voltage - V Counter Clock Frequency, Ie [MHz] VOH vs.IOH -7 TA = 25°C -6 :c E. -5 voo=s'j I: -4 0 -3 0 -2 Vvo~ /1 0-0=4~ i /// 1/// i -1 ~ --- Voo=3V o o Output Voltage - V 3-122 Voo =3 V 10 U ,NEe pPD7507S 4-BIT, SINGLE-CHIP CMOS MICROCOMPUTER NEe Electronics Inc. Description Pin Configuration The jJPD7507S 4-bit, single-chip CMOS microcomputer has advanced fourth-generation architecture. It is a reduced version of the jJPD7507, with fewer I/O lines. The device can be operated as low as VD D = 2.2 V to minimize power consumption. P20 4 P21/PTOUT P22 P23 Features P30 D Single-chip microcomputer D Can operate on a single lithium battery D Executes 91 instructions of jJPD7500 instruction setA D 2048 x 8-bit program ROM D 128 x 4-bit data RAM D Interrupt capabilities - Two external interrupts: INTO, INT1 - Two internal interrupts: INTT, INTS D 8-bit timer/event counter D 8-bit serial interface D Two standby modes D Data retention mode D 20 I/O lines D Internal RC oscillation circuitry D Crystal oscillation circuitry for count clock D Low power consumption o Single 2.2 to 6.0 V operating voltage o CMOS technology Ordering Information Part No. Package Type Max Frequency of Operation J.lPD7507SC 28-pin plastic DIP 410 kHz J.lPD7507SCT 28-pin plastic shrink DIP 410 kHz P03/S1 P02/S0 P01/SCK POolINTO INT1 83-003418A Pin Identification No. Symbol 1,25-27 Function I/O port 4 2,3 X2, X1 Crystal clock/external event input 4-7 P2o, P21/PTOUT, P22, P23 Output port 2/timer out F/F signal 8-11 Output port 3 12 RESET RESET input 13,15 CL1, CL2 System clock input Positive power supply 14 Voo 16 INT1 External interrupt 17-20 POO/INTO P01/SCK P02/S0 P03/S1 Input port O/external interrupt, serial I/O interface 21-24 I/O port 5 28 Vss Ground 3-123 NEe /APD7507$ Pin Functions POo/INTO, P01/SCK, [Port O/Externallnterrupt Serial Interface] P02/S0, P03/S1 ' 4-bit input port/serial I/O interface. This port can be configured as a 4-bit parallel input port or as the 8-bit serial I/O interface under control of the serial mode select register. The serial input SI, serial output SO, and the serial clock SCK (active low) used for synchronizing data transfer make up the 8-bit serial I/O interface. Line POa is always shared with external interrupt INTO, a rising-edge triggered interrupt. If POa/INTO is unused, it should be connected to ground. If P01/SCK, P02/S0, or P0 3/SI are unused, connect them to ground or Voo. P20, P21/PTOUT, P22, P23 [Port 2] 4-bit latched three-state output port. Line P21 is shared with PTOUT, the timer out F/F signal. If any pins are unused, leave them open. P33-P30 [Port 3] 4-bit latched three-state output port. Leave unused pins open. P43-P40 [Port 4] 4-bit input/latched three-state output port. This port, with port 5, also performs 8-bit parallel I/O. In input mode, connect unused pins to ground or Voo. In output mode, leave unused pins open. 3-124 P53-P50 [Port 5] 4-.bit input/latched three-state output port. This port, with port 4, also performs 8-bit parallel I!0~ In input mode, connect unused pins to ground· or VDO. In output mode, leave unused pins open. X2, X1 [Crystal Clock/External Event Input] Connect a crystal oscillator circuit to input X1 and output X2 for crystal clock operation. Alternatively, connect external event pulses to input X1 and leave output X2 open for external event counting. If X1 is not used, connect it to ground. If X2 is not used, leave it open. CL 1, CL2 [System Clock Input] Connect an 82-kO resistor across CL 1 and CL2 and connecta 33-pF capacitor from CL 1 to GND (200 kHz). Alternatively, connect an external clock source to CL 1 and leave CL2 open. INT1 [External Interrupt] This is a rising edge-triggered interrupt. Voo [Power Supply] Positive power supply. Apply a single voltage in the range 2.2 to 6.0 V for proper operation. Vss [Ground] Ground. NEe JAPD7507S Block Diagram Xl INTl INTO/POO X2 SCKlP01 SI/P03 SO/P02 POO·P03 Program Memory 2048 x 8 Bits Cl H [4] Instruction Decoder ¢ Data Memory l28x4 Bits Cll Cl2 r Voo t VSS t RESET 83'()03419B 3-125 NEe IlPD7507S Memory Map Figure 1 shows the program memory map of the pPD7507S. Figure 1. Program Memory Map Address [decimal] MSB 71 61 5 I 41 3 I 2.11 Address [Hex] LSB I0 OOOH RESET pulse vectors program execution to addre.s OOOH. 161========1 010H INTT [internailimer/event counter Interrupt] vectors program execution to addre•• 010H. 321========1 020H INTO/S [External Interrupt O/lnternal serial Interface Interrupt] vectors program execution to address 020H. 461========1 030H INT1 [Extemallnterrupt1] vectors execution to address 030H. 192 t - - - - - - ' - - - - I OCOH ~g~ t - - - - - - - - I g~~~ 255 t - - - - - - - - I OFFH 2047 ...._ _ _ _ _ _", 7FFH I LHLT Instrucllon reference table. I CALT Instruction reference table. Last address for CALL Instruction entry. 83-0034216 3-126 t\'EC J.lPD7507S Clock Control Circuit The clock control circuit consists of a 4-bit clock mode register (bits CMo-CM3), prescalers 1,2, and 3, and a multiplexer. It takes the output of the system clock generator (CL) and the count clock generator circuit (I). It also selects the clock source and divides the signal according to the setting in the clock mode register. It supplies the timer/event counter with the count pulse. Figure 2 shows the clock control circuit. Table 1 lists the codes set in the clock mode register by the OP 12 and OPL instruction to specify the count pulse frequency. CM3 controls the timer out flip flop. When CM3 is 0, the timer out F/F is disabled; when CM3 is 1, it is output. When you set the clock mode register with the OPL instruction, clear the high-order two bits of the accumulator. Table 1. o o o o Selecting the Count Pulse Frequency CM1 CMu 0 0 ClI256 0 1 X/64 0 X 1 Frequency Selected X 0 0 ClI32 0 1 X/8 0 Not used Not used CM3 Timer F/F Output o Disabled Output Figure 2. Clock Control Circuit x--------------~~+-+-~~ >---------cp ·Instructlon execution 83·0034208 3-127 NEe J.lPD 7 50"7S Timer/Event Counter The timer/event counter consists of an 8-bit counter, an 8-bit modulo register, an 8-bit comparator, and a timer-out flip-flop as shown in figure 3. The 8-bit counter is a binary up-counter which is incremented each time a count pulse is input. The TIMER instruction, an INTT coincidence signal, or a RESET signal clears it to OOH.The 8-bit modulo register determines the number of counts the count register holds. The TAMMOD instruction loads the modulo register. RESET sets the modulo register to FFH. The 8-bit comparator compares the contents of the count register to the modulo register and outputs a coincidence signal when these are equal. Figure 3. Timer/Event Counter ~_~ _______Internal Bus ~ ~-----------J *TCNTAM - - - - - -__- - - - - - + 1 1------- INTT [Coincidence] c p - -__ ~ Count Hold Circuit [Initialized during TCNTAM] t--+--t--- ·Command Execution CM3 ~~U:erlal Interface) PTOUT Timer RESET 83-003422B 3~128 NEe J.lPD7507S Serial Interface The 8-bit serial interface allows the pPD7507S to communicate with peripheral devices such as the pPD7001 AID convertor, the pPD7227 dot matrix LCD controller/driver, and other microprocessors or microcomputers. Figure 4 shows the serial interface. The serial interface consists of an 8-bit shift register, a 3-bit SCK pulse counter, the SI input port, the SO output port, the SCK serial clock I/O port, and a 4-bit serial mode select register (MSR). The MSR selects serial I/O or port 0 operation. Figure 4. Serial Interface P03/SI 0 - - - - - - - 1 >--*+t+--+I P02/S0o----........-----+t---c~ ...- - - - - - - - I _ - - - - - - - - - - - . J '-..s>--t-- TOUT POollNTO - - - - - - - - - - 1 • Command execution I/J System Clock RS F/F t--+----.:T~nt8rruPt Circuit) S 1+------ ·SIO 83-0034238 3-129 NEe J.lPD7507S Interrupts System Clock and Timing Circuitry The pPD7507S has four vectored, prioritized interrupts. Two of these interrupts, INTT and INTS, are internally generated from the timer/event counter and serial interface, respectively. INTO and INT1 are externally generated. Table 2 is a summary of the four interrupts. Figure 5 is the block diagram. Timing generation for the pPD7507S is internally generated except for a frequency reference, which can be an RC circuit or an external clock source. Connect the frequency reference to the on-chip oscillator for the feedback and phase shift required for oscillation. Figures 6 to 9 show the connections for count clocks and system clocks. Table 3 shows the operating status of the various logic blocks under the three power-down mod.es. Table 2. pPD7507S Interrupts Function Source Location Priority INTT Coincidence in timer/event counter Internal 1 10H INTS Transfer complete signal from serial interface Internal 2 20H INTO INTO pin External 2 20H INT1 INT1 pin External 3 30H Figure 5. ROM Vector Address Interrupt Block Diagram INT1o---+---:'l==~--~ INTS Plio/INTO o---+-IJ SIO· INTT------,---,----f L.-:=::.....I ·Command Instruction Standby Release 83-o03424B 3-130 NEe Figure 6. J..lPD7507S Count Clock. Crystal Oscillator Figure 8. System Clock. RC Oscillation r:-- C ~ Xl System Clock ¢ [To CPU and Serial Interface] Count Clock X [To Count Clock] Crystal Oscillation c~~~~~~~X_2______~ L..:: _ _ _ HALT Mode ' - - - - - _ C L [To Clock Circuitry] 83-003425A 83-003427A Figure 7. Count Clock. External Source Figure 9. System Clock. External Source 1:--External Clock I IL Xl Count Clock X [To Count Clock] Buffer X2 External Clock System Clock ¢ [To CPU and Serial Interface] ___ CL2 HALT Mode L - - - - - _ C L [To Clock Circuitry] 83-003426A 83-Q03428A Table 3. Power-Down Operating Status Power Down Mode Logic Block HALT STOP Data Retention System clock (1) Disabled Disabled X2 Normal Normal Disabled CPU Disabled Disabled Disabled RAM Data retained Data retained Data retained Internal registers Data retained Data retained Data retained Timer/event counter Normal (3) Disabled Serial interface (2) (2) Disabled INTO Normal Normal Disabled INT1 Normal Disabled Disabled RESET Normal Normal (4) Note: (1) Supplied to timer/event counter but not to CPU or serial interface. (2) Can function normally if the MSR is set to get the SCK signal externally or from the TOUT signal. (3) Can function normally if the clock MSR is set to use X1 as the source for the count pulse. (4) To enter the data retention mode, raise RESET while Voo is lowered. To end the data retention mode, raise RESET when Voo is raised, then lower it. INTT, INTO, INTS or RESET releases the STOP mode. RESET or any interrupt releases the HALT mode. 3-131 I NEe IAPD7507S 1/0 Port Interfaces Figure 10 shows the configurations at the I/O ports. Figure 10. Input/Output Port Interfaces Type A Type E P02/S0, P40·P43, PSO·PS3 Vee Vee [Type 0 output] P·ch Data~ Inpull Output Output Disable Vee Vss Vss Type B POO/INTO, P03/SI, INT1, RESET [Type A input] ~'"'" Vss Type D Typ~ P30·P03, P20, P21/PTOUT, P22, P23 P01/SCK Vee Voo [Type 0 output] Data~ P·ch Data~ Inpull Output Output Output Disable Output Disable Vss . . Vss [Type B Input] Note: Upon RESET, both transistors are turned off. 83-003861C 3-132 NEe J.tPD7507S Capacitance Absolute Maximum Ratings -10 to +70°C Operating temperature. TOPT TA = 25°C, VD D = 0v Limits -6.5 to +150°C Storage temperature, TSTG -0.3 to +7.0 V Power supply voltage, VDD Input voltage, VI -0.3 to VDD + 0.3 V Output voltage. Vo -0.3 to VDD + 0.3 V Symbol Parameter Typ Max Input capacitance CI 15 pF Output capacitance Co 15 pF 15 pF 1/0 capacitance Output current high, 10H One pin Total. all pins Test Conditions Unit f = 1 MHz; unmeasured pins returned to Vss -17mA -34mA Output current low. 10l One pin Total, all pins Ports P2. P3. and P43 Ports P5 and P40-P42 17mA 25 mA 25 mA Comment: Exposing the device to stresses above those listed in Absolute Maximum Ratings could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational sections of this specification. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. DC Characteristics For VDD = 2.7 to 6.0 V TA = -10 to +70°C Limits Parameter Input voltage, high Input voltage, low Symbol Min Typ Max VIH1 0.7 VDD VDD V Except CL 1, X1 VIH2 VDD - 0.5 VDD V CL1, X1 VIHDR 0.9VDDDR VDDDR + 0.2 V RESET, data retention mode 0 0.3 VDD V Except CL 1, X1 0.5 V CL1, X1 V 10H = 1.0 mA; VDD = 4.5 to 6.0 V VIl1 VIl2 0 Output voltage, high VOH VDD -1.0 Output voltage, low VOL V 10l = -100pA 0.4 V 10l = 1.6 mA; VDD = 4.5 to 6.0 V 0.5 V 10l = 400 pA IUH1 3 IUH2 10 IUL1 -3 pA pA pA pA pA pA VDD - 0.5 Input leakage current, high Input leakage current. low Test Conditions Unit IUl2 -10 Output leakage current, high ILDH 3 Output leakage current. low IlOl -3 Supply voltage VDDOR Supply current ID01 2.0 V CL 1, X1; VI = VDD Except CL 1, X1; VI = 0 V CL 1. X1; VI = 0 V Vo = VDD Vo =OV Data retention mode 300 900 pA Normal operation, VDD = 5 V ±10%; R = 82 kn ±2%. C = 33 pF ±5% 70 300 pA Normal operation. VDD = 3 V ±10%; R = 160 kn ±2%, C = 33 pF ±5% 20 pA pA pA Stop mode, X1 = 0 V; VDD = 5 V ±10% IDD2 IDDDR Except CL1, X1; VI = VDD 0.3 10 0.2 10 Stop mode, X1 = 0 V Data retention mode VODDR = 2.0 V 3-133 NEe IlPD7507S DC Characteristics (cont) VDD = 2.2 103.3 V TA = -10 to +70°C Limits Parameter Symbol Input voltage, high VIH1 VIH2 VIHOR Unit 0.7 VOO VOO V VOO - 0.1 VOO V CL1, X1 0.9VOOOR VOOOR + 0.2 V RESET, data retention mode VIL1 0 0.2 VOO V Except CL 1, X1 VIL2 0 0.2 V CL1, X1 Output voltage, high VOH VOO - 0.5 Output voltage, low VOL Input leakage current, high Input leakage current, low Typ Test Conditions Max Input voltage, low Min Except CL 1, X1 V IOH = -BOJlA 0.5 V IOL = 350pA IUH1 3 JlA Except CL 1, X1; VI = VOO IUH2 10 JlA CL1, X1; VI = VOO IUL1 -3 JlA Except CL 1, X1; VI = 0 V IUL2 -10 JlA CL1,X1;VI=OV Output leakage current, high ILOH 3 JlA Va = VOO Output leakage current, low ILOL -3 JlA Va =OV Supply voltage VOOOR Supply current 1001 1002 1000R 3-134 2.0 V Data retention mode 50 200 JlA Normal operation, R = 270 ko ±2%, C =33 pF ±5% 30 100 JlA Normal operation, VOO = 2.2 V; R= 270 kO ±2%, C = 33 pF ±5% 0.3 10 JlA Stop mode, X1 0.2 10 JlA Stop mode, X1 = 0 V; VOO = 2.2 V 0.2 10 JlA Data retention mode, VOOOR = 2.0 V =0V NEe J.lPD7507S AC Characteristics = For VDD 2.7 to T A = -10 to +70°C 6.0 Volts Limits Test Conditions Parameter Symbol Min Typ Max Unit System clock frequency fcc 150 200 240 kHz Voo 75 100 120 kHz Voo fc System clock rise and fall time tCR, tCF System clock pulse width tCH, tCl Counter clock frequency ! 10 125 kHz CL 1, external clock, 50% duty; Voo = 2.7 V 0.2 ps CL 1, external clock 1.2 50 ps CL 1, external clock; Voo = 4.5 to 6.0 V 4.0 50 ps CL 1, external clock; Voo 50 kHz X1, X2, crystal oscillator 32 = 4.5 to = 2.7 V kHz X1, external pulse input, 50% duty; Voo = 4.5 to 6.0 V 0 125 kHz X1, external pulse input, 50% duty; Voo = 2.7 V 0.2 ps X1, external pulse input X1, external pulse input; Voo = 4.5 to 6.0 V tKH, tKl t CL 1, external clock, 50% duty; Voo 6.0 V 410 tKCY SO delay time after SCK R = 160 kn ±2% (Note 1) kHz 0 tXH, tXl SI hold time after SCK kHz 410 fxx Counter clock pulse width SI setup time to SCK f 135 10 fx tXR, tXF SCK pulse width 75 20 Counter clock rise and fall time SCK cycle time = 5 V ±10%; R =82 kn ±2% (Note 1) = 3 V ±10%; R =160 kn ±2% (Note 1) 1.2 ps 4.0 ps X1, external pulse input; Voo 3.0 ps SCK as input; Voo = 4.5 to 6.0 V 4.9 ps SCK as output; Voo 8.0 ps SCK as input 16.0 ps SCK as output 1.3 ps SCK as input; Voo = 4.5 to 6.0 V 2.2 ps SCK as output; Voo 4.0 ps SCK as input SCK as output 8.0 ps tSIK 300 ns tKSI 450 tKSO I = 2.7 V =4.5 to 6.0 V =4.5 to 6.0 V ns 850 ns 1200 ns INTO pulse width tlOH, tlOl 10 ps INT1 pulse width t11H, tl1l 2/f ps RESET pulse width tRSH, tRSl 10 ps RESET setup time tSRS 0 ns RESET hold time tHRS 0 ns Voo = 4.5 V to 6.0 V Note: (1) RC network at CL 1 and CL2; C = 33 pF ±5%,I~C/Ocl~ 60 ppm. 3-135 NEe IJPD7507S AC Characteristics (cont) For Voo = 2.2 to 3.3 V TA = -10to +70°C Limits Test Conditions Parameter Symbol Min Typ Max System clock frequency fcc 40 60 70 kHz R= 240 kn ±2% (Note 1) 43 55 65 kHz Voo = 2.2 V; R = 240 kn ±2% (Note 1) 80 kHz CL 1, external clock, 50% duty 0.2 J1S CL 1, external clock fc System clock rise and fall time 10 tCR, tCF System clock pulse width tCH, tCl 6.1 Counter clock frequency fxx 20 fx 0 Counter clock rise and fall time tXR, tXF 32 Unit 50 J1S CL 1, external clock 50 kHz X1, X2, crystal oscillator 80 kHz X1, external pulse input, 50% duty 0.2 J1S X1, external pulse input Counter clock pulse width tXH, tXl 6.1 J1S X1, external pulse input SCK cycle time tKCY 12.5 J1S SCK as input 25 J1s SCK as output SCK pulse width tKH, tKl 6.5 J1S SCK as input 11.5 J1S SCK as output 1 J1S SI setup time to SCK t tSIK SI hold time after SCKt SO delay time after SCK INTO pulse width tKSI ! J1S tKSO J1s tlOH, tlOl 30 J1S INT1 pulse width t11H, tl1l 2/f J1S RESET pulse width tRSH, tRSl 30 J1s RESET setup time tSRS 0 ns RESET hold time tHRS 0 ns Note: (1) RC network at CL 1 and CL2; C = 33 pF ±5%,I.6.C/ocl::::: 60 ppm. Recommended Rand C Values for System Clock Oscillation Circuit TA = -10 to +70°C Supply Voltage Range Recommended Values (Note 1) Frequency Range 4.5 to 6.0 V R=82kn±2% 150 to 250 kHz, 200 kHz typical 2.7 to 3.3 V R =160 kn ±2% 75 to 120 kHz, 100 kHz typical 2.7 to 6.0 V R =160 kn± 2% 75 to 135 kHz 2.2 to 3.3 V R ='= 270 kn ±2% 40 to 70 kHz 2.2V R = 270 kn ±2 % 43 to 65 kHz Note: (1) C = 33 pF ±5%,I.6.C/ocl::::: 60 ppm. 3-136 NEe JJPD7507S Timing Waveforms External Interrupts Timing Test Points Voo =X = 2.7 to 6.0 V 0.7VOO O.7V00X= Test Points ~O~.3~V~o~o~______________~O.~3~V~oO Voo = 2.5 to 2.7 V ,,,,~,,o'=r='~"~ 'Nft ~O.8VOO O.8VooV ~~O~.2~V~o~o______Th_s_t_p_oi_nt_s_____O~.2~VO~of~ 83-003314A ~'"'=r'""~ 83-003317A RESET Clocks 83-003318A I: CL1 Data Retention Mode Data Retention Mode X1 Voo RESET Serial Interface VOOOR VIHOR 83-003319A SI ----I--------.......f so Valid Output Data )( '-----83-003316A 3-137 NEe /JPD7507S Operating Ch aracteristics TA = 250C Ie vs VOD S 4 4 5 Supply Voltage Voo [V] upply Voltage Voo [V] 1000 4 Resistance R [kO] 25 Operating Tem perature TA [Oe] 3-138 Supply Voltage Voo [V] 75 4 5 Supply Voltage Voo [V] NEe JAPD7507S Operating Characteristics (cont) TA = 25°C 1001 vs fcc IOH vs VOH -6 500 <' .:;, C "8" :::E r <' E. ~ J 400 E 300 33pF E -4 c: ~ R U !! &. S 0 U ~ -3 ::I 0 200 c: ~ ,., -5 :I: 100 '~" g rJ) ! __~--------~VDD=3V -2 l: -1 9 0 g 0 100 50 150 200 300 250 High-Level Output Voltage VOH [V] System Clock Oscillation Frequency fCC [kHz] 1001 vs TA IOL vs VOL 20 500 <' .:;, C ..." ° :::E g' ! x. 0 <: <' E. .... E 400 E 300 200 r-r-- § 33pF u,.. - ~ J ... ::I ::I 0 ___- - - - , VDD = 3 V 10 ___- t - - - VDD = 2.5 V S R ~ g. VDD = 3 V, R = 160 kCl rJ) o § U VDD = 5 V. R = 82 kCl 'a 100 -25 15 c: '::}" J 25 Operating Temperature T A [OC] 50 !l g 9 g 75 Low-Level Output Voltage VOL [V] 3-139 J-lPD7507S -3-140 NEe pPD7508A 4-BIT, SINGLE-CHIP CMOS MICROCOMPUTE'R WITH Flp® DRIVER t-IEC NEe Electronics Inc. Description Pin Configuration The tlPD7508A 4-bit, single-chip CMOS microcomputer has advanced fourth-generation architecture. It is identical to the tlPD7508 except for a smaller RAM and 16 lines of vacuum fluorescent display FIP drive capability. It contains a 4096 x 8-bit ROM and a 208 x 4-bit RAM. vss P43 P42 P41 P40 P53 The tlPD7508A contains four 4-bit general purpose registers outside RAM. The subroutine stack is implemented in RAM for greater nesting depth and flexibility. The tlPD7508A executes 92 instructions of the tlPD7500 series instruction set A with a 10-tls cycle time. The tlPD7508A has two external and two internal edgetriggered hardware vectored interrupts. It also contains an 8-bit timer/event counter and an 8-bit serial interface to reduce software requirements. Ports 3-6 can be pulled to -35 V to drive vacuum fluorescent displays. CMOS technology allows the use of a single 2.7 V to 6.0 V power supply with a maximum current consumption of 900 tlA. This is even lower in the HALT and STOP standby modes. P63 P62 P61 P60 PO31'S I paz/so P01/SCK POoIlNTO CL1 voo 83-OO2989A Pin Identification Symbol No. Features o Single-chip microcomputer o Executes 92 instructions of tlPD7500 instruction set A o Instruction cycle: o o o o o o o o o o o o o o o - 10 tls/200 kHz (5 V internal) - 5 tls/400 kHz (5 V external) 4096 x 8-bit program ROM 208 x 4-bit data RAM Interrupt capabilities - Two external interrupts: INTO, INT1 - Two internal interrupts: INTT, INTS 8-bit timer/event counter 8-bit serial interface Two standby modes Data retention mode 32 I/O lines Four high-voltage (40 V) ports Two high-current (8 rnA) ports Internal RC oscillation circuitry Crystal oscillation circuitry for count clock Low power consumption Single 2.7 to 6.0 V operating voltage CMOS technology -....---~ Function 1,40 X2, X1 Crystal clock/external event input port 2-5 P2o/PSTB P21/PTOUT, P22, P23 Output port 2/output strobe pulse, timer out F/F signal 6-9 P1o-P13 I/O port 1 10-13 P30-P33 Output port 3 14-17 P7o-P73 I/O port 7 18 ' RESET RESET input 19,21 CL1, CL2 System clock inputs 20 Voo Positive power supply 22 INT1 External interrupt 23-26 POo/INTO, P01/SCK, P02/S0 P03/S1 Input port 0/ external interrupt, serial I/O interface 27-30 P6o-P63 I/O port 6 31-34 P50-P53 I/O port 5 35-38 P43-P40 110 port 4 39 VSS Ground FIP is the registered trademark for NEC's fluorescent indicator panel (vacuum fluorescent display). Ordering Information Part No. pPD7508AC Package Type Max Frequency of Operation 40-pin plastic DIP 400 kHz 3-141 NEe pPD7508A Pin Functions POO/INTO, P01/SCK, [Port O/External Interrupt, Serial Interface] P02/S0, P03/S1 4-bit input port/serial 110 interface. This port can be configured as a 4-bit parallel input port or as the 8-bit serial I/O interface under control of the serial-mode select register. The serial input SI, serial output SO (active low), and the serial clock SCK (active low) used for synchronizing data transfer make Lip the 8-bit serial· I/O interface. Line POo is always shared with external interrupt I NTO, a rising edge-triggered interrupt. If POo/INTO is unused, it should be connected to Vss. If P01/SCK, P02/S0, or P03/S1 are unused, connect them to Vss or Voo· P10·P13 [Port 1] 4-bit input/three-state output port. Data output to port 1 is strobed in synchronization with a P2o/PSTB pulse. Connect unused pins to Vss or Voo. P20/PSTB, P21/PTOUT, P22, P23 [Port 2] 4-bit latched three-state output port. Line P20 is shared with PSTB, the port 1 output strobe pulse. Line P21 is shared with PTOUT, the timer out F/F signal. Leave unused pins open. P30·P33 [Port 3] 4-bit latched three-state output port. Leave unused pins open. P40-P43 [Port 4] 4-bit latched three-state output port. Can also perform 8-bit parallel I/O with port 5. In input mode, connect unused pins to Voo or GND. In output mode, leave unused pins open. P63-P60 [Port 6] 4-bit input/latched three-state output port. The port 6 mode select register configures individual lines as inputs or outputs. In input mode, connect unused pins to Vss orVoo.ln output mode,leave unused pins open. P70-P73 [Port 7] 4-bit input/latched three-state output ·port. In input mode, connect unused pins to Vss or Voo. In output mode, leave unused pins open. X2, X1 [Crystal Clock/External Event Input] For crystal clock operation, connect a crystal oscillator circuit to input X1 and output X2. For external event counting, input external event pulses to input X1 while leaving output X2 open. If X1 is not used, leave it open. If X2 is not used, connect it to ground. CL 1, CL2 [System Clock Input] Connect an 82 kO resistor across CL1 and CL2, and connect a 33 pF capacitor from CL1 to Vss (200 kHz). Alternatively, connect an external clock source to CL 1 and leave CL2 open. If CL 1 is not used, connect it to Vss· RESET [Reset] A high level input to this pin initializes the pPD7508A after power up. INT1 [Interrupt 1] External rising edge-triggered interrupt. Connect to Vss if unused. Voo [Power Supply] Positive power supply. Apply a single voltage in the range 2.7 to 6.0 V for proper operation. P53-P50 [Port 5] 4-bit input/latched three-state output port. This port also performs 8-bit parallel I/O with port 4. In input mode, connect unused pins to Vss or VOD. In output mode, leave unused pins open. 3-142 Vss [Ground] Ground. NEe pPD7508A Block Diagram P03/SI P02/S0 P01/SCK General Registers Program Memory 4096 x 8-Blt ROM CL Instruction Decoder o [4J E [4J H [4J L [4J Stack Pointer Data Memory 208 x 4-BII RAM t/> ) ) ) CL1 CL2 RESET VOO VSS 83-002990C Functional Description Program Memory Figure 1. Program Memory Map Address [DeclmalJ Figure 1 is a map of the 4096 x a-bit program ROM_ Address [HEXJ MSB LSB OOOH RESET Pulse vectors program execution to address ~OH. 16 010H INTT [Internal Timer/Event Counter InterruptJ vectors program execullon to address 010H. 32 020H INTS or INTO vectors program execution to address 020H. 48 030H INT1 [External Interrupt 1J veclors program execution to address D30H. o 716151413121110 ~ 192 207 208 255 OCOH} LHLT Instruction Reference Table OCFH ODOH } CALT Instruction Reference Table OFFH ,~,II==========II"'" 4095T Lasl address for CALL instruction entry of the pPD7508A TFFFH 83·0029918 3-143 NEe pPD7508A Clock Control Circuit The clock control circuit (figure 2) consists of a 4-bit clock mode register (bits CM1 and CM2), prescalers 1, 2, and 3, and a multiplexer. It takes the output of the system clock generator (CL) and count clock generator circuit (I). It also selects the clock source and divides the signal according to the setting in the clock mode register. It outputs the count pulse (CP) to the timer/event counter. Table 1 lists the codes set in the clock mode register by the OP or OPL instruction to specify the count pulse frequency. Bit CM3 controls the timer out F/F; it is disabled when the bit is 0 and output when the bit is 1. When you set the clock mode register with the OP or OPL instruction, clear the high-order two bits of the accumulator. Table 1. Selecting the Count Pulse Frequency CMZ CMl CMo 0 0 0 0 0 CLl256 X/64 0 0 Frequency Selected 0 X 0 CLl32 1 X 0 X/8 0 0 Not used Not used CM3 Timer F/F Signal o Enabled Disabled Figure 2. Clock Control Circuit >-----CP Crystal Clock Oscillatorl Event Counter Input ·Command Execution 83-oo2992B 3-144 NEe pPD7508A Timer/Event Counter The timer/event counter consists of an a-bit counter, an a-bit modulo register, an a-bit comparator, and a timer out flip flop, as shown in figure 3. The a-bit count register is a binary a-bit up counter which is incremented each time a count pulse is input. The TIMER instruction, a RESET signal, or an INTT coincidence signal clears it to OOH. The a-bit modulo register determines the number of counts the count register holds. The TAMMOD instruction loads the contents of the modulo register. RESET sets the modulo register to FFH. The a-bit comparator compares the contents of the count register and those of the modulo register and outputs an INTT when they are equal. Figure 3. Timer/Event Counter Internal Bus ~-~-------, ·TCNTAM ,---------~ -------------+\ 1-------- :~T:.erruPt Circuit 1--+---- ~~u;erlal ·Command Execution Clock MSR ·Timer Bit-3 Interface) PTOUT to pin 3 RESET 83-0030138 3-145 NEe pPD7508A Serial Interface The 8-bit serial interface allows the pPD7508A to communicate with peripheral devices such as the pPD7001 A/D converter, the pPD7227 dot matrix LCD controller/driver, and other microprocessors or microcomputers. Figure 4 shows the serial interface. The serial interface consists of an 8-bit shift register, a 3-bit SCK pulse counter, the SI input port, the SO output port, the SCK serial clock I/O port, and a 4-bit serial mode select register (MSR). The MSR selects serial I/O or port 0 operation. Figure 4. Serial Interface P03lSI ~------I :>-~H--~ P02/S0 o - - - -........-----t-r-.-c:: 1 - - - - - - - - - - 1 1 - - - - - - - - - - - - - ' '---....JC>--f-- TOUT POollNTO 0 - - - - - - - - - - 1 RS F/F R • Command Execution System Clock q, t--.---. ~oT~nterruPt Circuit) 5 1 - - - - - - ·510 83-oo3014B 3-146 NEe Interrupts Table 2. The pPD7508A has four vectored, prioritized interrupts. Two of these interrupts, INTT and INTS, are internally generated from the timer/event counter and serial interface, respectively. INTO and INT1 are externally generated. Table 2 is a summary of the four interrupts. Figure 5 is a block diagram of the interrupts. Figure 5. pPD7508A pPD 7508A .Interrupts Function Location INTT Coincidence in timer / event counter Internal INTS Transfer complete signal from serial interface Internal Source Priority ROM Vector Address 10H 2 20H INTO INTO pin External 2 20H INT1 INT1 pin External 3 30H Interrupt Block Diagram INTlo---I---.==::-:-:-----I INTS POO/INTO o---If--L~ SIO' INTT--------~ 'Command Instruction Standby Release 83·0034246 3-147 ,NEe pPD7508A System Clock and Timing Circuitry Figure 6. TimingforthepPD7508A is internally generated except for a frequency reference, which can be an RC circuit or an external clock source. Connect the frequency reference to the on-Chip oscillator for the feedback phase shift required for oscillation. Figure 6 shows the connection for an RC circuit. Figures 6 and 7 show the connection for the frequency reference. RC Circuit Frequency Reference Vss()-H-~ CL1 '---- CL2 83-002994A The internal oscillator 'generates a frequency in the range 60 kHz to 300 kHz depending on the frequency reference. For example, at Voo = 5 V, an 83 kO resistor and a 33 pF capacitor generate a frequency of 200 kHz. The oscillation frequency is fed to the clock control circuit. It is divided by two and the resulting signal is fed to the CPU and serial interface as shown in figure 8. Figure 7. External Clock Frequency Reference E xternal=LL1 Source Table 3 shows the operating status of the various logiC blocks under the three 'power down modes. Open CL2 83-002995A Figure 8. Sy,tem Clock Circuitry X1 INTl 'X2 CL1 INTS CL2 Standby Release ___~---vRESET 83-0029969 3-148 NEe Table 3. pPD7508A Absolute Maximum Ratings Power Down Operating Status TA = 25°C Power Down Mode Logic Block HALT STOP Data Retention Operating temperature, TOPT System clock (1) Disabled Disabled Storage temperature, TSTG -65 to 150°C X2 Normal Normal Disabled Power supply voltage, VDD -0.3 to +7.0 V CPU Disabled Disabled Disabled RAM Data retained Data retained Data retained Input voltage, VI Except ports 4-6 Ports 4-6 -0.3 to VDD + 0.3 V VDD - 40 to VDD + 0.3 V Internal registers Data retained Data retained Data retained Ti mer I event counter Normal (3) Disabled Output voltage, Vo Except ports 3-6 Ports 3-6 -0.3 to VDD + 0.3 V VDD - 40 to VDD + 0.3 V Serial interface (2) (2) Disabled INTO Normal Normal Disabled INT1 Normal Disabled Disabled RESET Normal Normal (4) Note: (1) Supplied to timer/event counter but not to CPU or serial interface. (2) Can function normally if the serial MSR is set to get the SCK signal externally or from the TOUT signal. (3) Can function normally if the clock MSR is set to use X1 as the source for the count pulse. (4) You must raise RESET while VDD is lowered to enter data retention mode. Raise RESET when VDD is raised, then lower it to end the data retention mode. INTT, INTO, INTS or RESET releases STOP mode. RESET or any interrupt releases HALT mode. Output current, high, IOH Single port, one pin except ports 3-6 Single port, one pin ports 3-6 All port pins -17 mA -30mA -150 mA Output current, low, IOL One pin All port pins 17 mA 50 mA Comment: Exposing the device to stresses above those listed in Absolute Maximum Ratings could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational sections of this specification. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Capacitance TA=25°C,VDD=OV Limits Parameter Symbol Min Typ Max Unit pF Test Conditions Input capacitance CI 15 Output capacitance Co 15 pF Except port 3 Co 35 pF Port 3 CIO 15 pF Except ports 4-6 CIO 35 pF Ports 4-6 1/0 capacitance 3-149 Il NEe pPD7508A DC Characteristics TA =-10 to +70°C, voo = 2.7 to 5.5 V limits Parameter Input voltage, high Input voltage, low Output voltage, high Symbol Min Typ Max Unit Test Conditions VIH1 0.7 Voo Voo V Except CL 1, X1, ports 4-6 VIH2 Voo - 0.5 Voo V CL1, X1 VIH3 0.7 Voo Voo V Ports 4-6; Voo = 4.5 to 5.5 V VIH3 Voo - 0.5 Voo V Ports 4-6; Voo = 3 to 4.5 V VIH3 2.5 Voo V Ports 4-6; Voo = 2.7 to 3 V VIHOR 0.9 VOOOR VOOOR +0.2 V RESET, data retention mode 0 0.3 Voo V Except CL 1, X1, ports 4-6 VIL1 VIL2 0 0.5 V CL1, X1 VIL3 Voo - 35 0.3 Voo V Ports 4-6 VOH Voo -1.0 V Except ports 3,6; 10H = 1.0 mA, Voo = 4.5 to 5.5 V VOH Voo - 2.0 V Ports 3, 6; 10H = -8.0 mA; Voo = 4.5 to 5.5 V VOH Voo - 0.5 V 10H = -100 pA; Voo = 2.7 to 5.5 V VOL 0.4 V Except ports 3, 6; 10L =1.6 mA, Voo = 4.5 to 5.5 V VOL 0.5 V Except ports 3, 6; 10L = 400 pA; Voo = 2.7 to 5.5 V ILlH1 3 pA Except CL 1, X1, ports 4-6; VI = Voo ILlH2 10 pA CL 1, X1; VI = Voo ILlH3 60 pA Ports 4-6; VI = Voo ILlL1 -3 pA Except CL 1, X1, ports 4-6; VI =OV ILlL2 -10 pA CL1,X1;VI=OV ILlL3 -30 pA Ports 4-6; VI = Voo - 35 V ILOH1 3 pA Vo == Voo Except ports 4-6 ILOH2 30 pA Ports 4-6; Vo = Voo Output leakage current, low ILOL1 -3 pA Vo =OV -30 pA Ports 3-6; Vo = Voo - 35 V Supply voltage VOOOR Supply current 1001 300 900 pA Normal operation, Voo = 5 V ±10%; R = 82 kn ±2%, C= 33 pF ±5% 1001 70 300 pA Normal operation, Voo = 3 V ±10%; R = 160 kn ±2%, C=33 pF ±5% Output voltage, low Input leakage current, high Input leakage current, low Output leakage current, high ILOL2 2.0 V 20 pA Stop mode, Voo = 5 V ±10% (1) 1002 0.3 10 pA Stop mode, Voo = 3 V ±10% (1) 1000R 0.3 10 pA Data retention mode VOOOR = 2.0 V 1002 Note: (1) X1 = 0 V; ports 4-6 output disabled or low level input. 3-150 Data retention mode t-IEC pPD7508A AC Characteristics = -10 to 70°C, Voo = 2.7 to 5.5 V TA Limits Test Conditions Parameter Symbol Min Typ Max Unit System clock frequency fcc 150 200 240 kHz CL 1, CL2, RC clock, R = 82 kn ±2%; C = 33 pF ±5% Voo = 5 V ±10%, I t.C/ °C I :s: 60 ppm fcc 75 100 120 kHz CL 1, CL2, RC clock, R = 160 kn ±2%; C = 33 pF ± 5% Voo = 3 V ±10%,1 t.C/ °C I :s: 60 ppm fcC 75 135 kHz CL 1, CL2, RC clock, R = 160 kn ±2%; C = 33 pF ±5% I t.C/ °C I :s: 60 ppm fC 10 410 kHz CL 1, external clock, 50% duty, Voo = 4.5 to 5.5 V fC 10 125 kHz CL1, external clock, 50% duty, Voo = 2.7 V 0.2 /.IS CL 1, external clock System clock rise and fall times tCR, tCF System clock pulse width tCH, tCl 1.1 50 /.IS CL 1, external clock, Voo tCH, tCl 3.5 50 /.IS CL 1, external clock, Voo fxx 25 50 kHz X1, X2, crystal oscillator fx 0 410 kHz X1, external pulse input 50% duty, Voo = 4.5 to 6.0 V fx 135 kHz X1, external pulse input 50% duty, Voo = 2.7 V Counter clock rise and fall times tXR, tXF 0.2 /.IS X1, external pulse input Counter clock pulse width tXH, tXl 1.1 /.IS X1, external pulse input, Voo = 4.5 to 5.5 V tXH, tXl 3.5 /.IS X1, external pulse input, Voo = 2.7 V Port 1 output setup time to PSTB t tpST (1) /.IS Voo = 4.5 to 5.5 V tpST (2) /.IS Port 1 output hold time from PSTB high tSTP 0.1 /.IS tSTP 0.1 /.IS PSTB low pulse width tSTL (1) /.IS tSTl (2) /.IS tKCY 3.0 /.IS SCK as input, Voo = 4.5 to 5.5 V tKCY 5.0 /.IS SCK as output, Von tKCY 7.0 /.IS SCK as input Counter clock frequency SCK cycle time SCK pulse width 32 Voo = 4.5 to 5.5 V Voo = 4.5 to 5.5 V = 4.5 to 5.5 V = 2.7 V = 4.5 to 5.5 V tKCY 14.0 /.IS SCK as output tKH, tKl 1.3 /.IS SCK as input, Voo = 4.5 to 5.5 V tKH, tKl 2.2 /.IS SCK as output, Von tKH, tKl 3.3 /.IS SCK as input tKH, tKL 6.5 /.IS SCK as output = 4.5 to 5.5 V 3-151 I] NEe pPD7508A AC Characteristics (cont) Limits Parameter Symbol Sisetup time to SCK high tSIK 0.3 tKSI 0.45 SI hold time'idter SCK high Min Typ Max Unit JiS JiS tSKO 0.85 JiS tSKO 1.2 JiS SO delay time after SCKlow INTO pulse width tlOH 10 JiS tlDL 10 Jis tl1H (3) JiS tl1L (3) JiS tRSH 10 JiS tRSL 10 JiS INT1 pulse width RESET pulse width RESET high set up time ,tSRS RESET high hold time tHRS Note: (1) fCC/2 - 0.8 or fC/2 - 0.8 (2) fCC/2 - 0.3 or fC/2 - 0.2 (3) 2/fCC or 2/fC 3-152 ns 0 Test Conditions ns VDD = 4.5 to 6.0 V NEe pPD7508A Timing Waveforms Timing Test Points External Interrupts O.7VDD~ ---V-0.7VDD ~~O~.3~V~D~D________________O~.3~VD~O~ "w 83-003411A Clocks CL11nput i='' =j[=,e'=i tCR X11nput i= --c"o'=r="o,~ "" --C"'=V="'"~ 83-003317A RESET tCF tXL~11f~tXH~% 83-003318A ._ _ tXR tXF Data Retention Mode 83-003412A Data Retention Mode Serial Interface VOO RESET VDOOR VIHOR 83-003319A 51 ----+--------.f so Valid Output Data 83-003316A Output Strobe 83·003414A 3-153 NEe JlPDT508A Operating Characteristics f vs R 100 VS VOO [HALT Mode] 500 200 N 2~ c E i ~ ! § 100 50 ~ ~C 0 c S 0 ~ i0 100 ~ 200 50 ~ Q, §' 1/1 20 1= 33pF C=33 PF « 8 1 ot....0 50 200 100 10 ~ 500 ~ Resistance, R [kO] Supply Voltage, Voo [V] fCC vs VOO 250 Ii 20 2- I or, () ~ 100 vs VOO [STOP Mode] I 30 IC=33 PF .. R=82kO 20 ~ 2 c r; 150 .§ 100 I i E i 10 § R= 160kO 0 >ii. ..... R1 §' i o 1/1 ;!i ~ 50 gj 2 Supply Voltage, VOO [V] 3-154 Porls4-6 Output 1 R1 = 330 kO C1 =20pF C2 = 30 pF C1 ;,; Xtal = 32.768 kHz 2 Supply Current, VOO [V] ;,;C2 ~ i NEe NEe Electronics Inc. Description The JIPD7514 is a 4-bit single-chip microcomputer with a 4-bit ALU, a 4K x B-bit program memory (ROM), a 256 x 4-bit data memory (RAM), an B-bit serial interface, a programmable B-bit timer/event counter, an LCD controller/driver, and 31 general purpose 110 lines. The LCD controller/ driver supervises all of the timing required by 32 segment drivers and 4 common drivers, for biplexedltriplexed LCD (1/2 bias method) or triplexed/ quadriplexed LCD (113 bias method). The instruction set includes transfer and increment! decrement instructions to directly address memory, memory bit manipulation instructions, test instructions for bit test and data comparison, memory reference instructions with automatic register increment! decrement functions, table look-up instructions, load instructions with a string effect, and multi-branch instructions. The /iPD7514 allows the organization of any system with the least additional circuitry. It is suited for the following applications: • • • • • • J.(PD7514 4.BIT, SINGLE·CHIP CMOS MICROCOMPUTER WITH LCD CONTROLLER/DRIVER o 110 ports - 4-bit input port (POOIINTO, P01/SCK, P02/S0, P03/SI) - Strobed 4-bit 110 port (P10-P13) - 3-bit output port (P20/PSTB, P21/PTOUT, P22) - 4-bit output port (P3o-P33) - 4-bit 110 ports (P40-P43, P50-P53, P60-P63, P70-P73) DOn-chip RC oscillator for system clock o Crystal oscillator input pins o CMOS technology o low power consumption o Single power supply (2.7V to 6.0Y) Ordering Information Part No. pPD7514G-12 Package Type Max Frequency of Operation aD-pin plastic miniflat 500 kHz Pin Configuration 'Telephones Personal radio equipment Automobile equipment (electric) High-grade electronic calculators Electron ic games VCRs Features o o o 92 powerful instructions Instruction cycle 5/is at 400 kHz, 5 V Interrupts - 2 external: INTO, INn - 2 internal: INIT (timer/event counter) INTS (serial interface) o Programmable B-bit timer/event counter - Time base count operation - External event count operation DB-bit serial interface (three serial clocks) o LCD controller/driver - Static method - Biplexed/triplexed LCD (1/2 bias method) - Triplexed/quadriplexed LCD (113 bias method) - Common outputs (strobe): 4 lines (COMo-COM3) - Segment outputs (data): 32 lines (SO-S31) o Standby operation - Stop and halt modes 83,OO2914A 3-155 NEe JAPD7514. Pin Functions Pin Identification No. Symbol 1,2,79,80 P40-P43 I/O port 4 3,4 X1, X2 Crystal clock 5-7 VLC1-VLC3 LCD bias voltage input 8-11 COMo-COM3 LCD common output 12-22, 24-32, SO-S31 34-41, 43-46 Function LCD segment output 33 Voo Power supply positive 47 INT1 External interrupt input 48 RESET Reset input 49,50 CL1, CL2 System clock 51-54 P70-P73 I/O port 7. 55 56 57 P22 P21/PTOUT P20/PSTB 3-bit output port 2. PTOUT is the timer F/ Foutput. PSTB is the strobe output. 58-61 P10-P13 I/O port 1 62,63,65,66 P30-P33 I/O port 3 64 VSS Ground 67 68 69 70 P03/S1 4-bit input port O. Serial input. Serial output. Serial clock I/O. Interrupt request input. 71-74 P60-P63 I/O port 6 75-78 P50,..P53 I/O port 5 P02/~ P01/SCK POolINTO Status of Unused Pins Name Pin Connection POO-P03 (Port 0) This is the 4·bit input port O. The pins also operate as the interrupt input (INTO/POO), serial clock I/O (SCK/P01), and serial data output (SO/P02) and input (SI/P03). P10- P13 (Port 1) This is the 4·bit I/O port 1. Data on these lines is loaded into the accumulator. by execution of a port input in· struction (IP, IP1, IPL). The contents of the accumulator are output by the execution of a port output instruction (OP, OPL). Port 1 does 'not have an output latch. When a port output instruction is executed, the strobe signal, which·is used for latching output data externally, is au· tomatically output from PSTB. ThePSTB signal is suit· able for data output to memory or peripheral circuits requiring write strobe signals. Port 1 is usually held high impedance, and is driven for output with a port output instruction. P20-P22 (Port 2) . This is the three"state 3·bit latched output port 2. Follow· ing RESET, these pins become high impedance. When port 1 is outputting data, P20 operates as the write strobe output (P20/ PSTB). P21 is the output (P21/ PTOUT) for the timer flip·flop signal (TOUT) .. P30-P33 (Port 3) This is the 4·bit latched output port 3. On RESET, the contents of the output latches become undefined and the output goes high impedance. CL2 Open X1 Vss X2 Open P40-P43 (Port 4), P50-P53 (Port 5) INT1 POolINTO Vss P01/SCK P02/S0 P03/S1 P10-P13 Vss orVoo Ports 4 and 5 are both 4·bit latched I ports. Ports 5 and 4 can be treated as a pair, and can input or output 8·bit data (by an IP54 or OP54 instruction) between the accu· mulator and memory (addressed by the HL register). P20/PSTB P21/PTOUT P22 P30-P33 Open P40-P43 P50-P53 P6o-P63 P70-P73 Input mode: Vss or Voo Output mode: Open SO-S31 COMo-COM3 VLC1-VLC3 Open 3-156 to A RESET or input instruction will place these ports in input mode (high impedance). On RESET, the output latch contents become undefined. If data is input to an I/O port just after changing it from output to input mode, data on the line at the execution of the first input instruction may be unstable. Accord· ingly, the first input data just after the modification should be ignored. Executing the input instruction again will insure the data is stable. NEe JAPD7514 P60-P63 (Port 6) SO-S31 (Segment) This is the 4-bit latched 110 port 6. Each line can be set as an input or output using the port 6 mode register (PM3-PMO). Port 6 performs data 110 to and from the accumulator in 4-bit units. An output instruction will cause the output latches to latch the contents of the accumulator. Then the contents of the output latch at the bit position that the PM R designates as being in the output mode are output from the pins via the output buffers. The other pins are high impedance (input). These segment signal outputs directly drive the LCD segment lines. They are used for biplexed/triplexed LCD (1/2 bias method) and triplexed/quadriplexed LCD (1/3 bias method). P70-P73 (Port 7) This is the 4-bit latched 110 port 7. An input instruction reads port data into the accumulator. An output instruction latches and outputs the accumulator contents. A RESET or input instruction will place port 7 in input mode (high impedance). INTO (Interrupt 0) This input is the rising-edge-triggered external interrupt. It has a Schmidt-trigger input in order to decrease noise. Setting bit 3 of the shift mode register (SM3) low level selects INTS; setting it high selects INTO. INTO can be used in both stop and halt modes. INT1 (Interrupt 1) INT1 is the rising-edge-triggered external interrupt input. X1, X2 (Crystal Clock) X1 and X2 are the crystal connection pins for the count clock generator. An external clock may be input to X1 directly, in which case X2 must be open. COMO-COM3 (Common) These outputs directly drive common (backplane) LCD lines via the following strobe signals: • 1/2 bias method: biplexed (COMo, COM1), triplexed (COMo-COM~ • 1/3 bias method: triplexed (COMo-COM2), quadriplexed (COMo-COM3) VLC1, VLC2, VLC3 (LCD Power Supply) These pins are the LCD bias voltage supply. Based on applied voltages to these pins, the on-chip LCD controller/driver generates segment and common signals to the LCD. The bias voltage configuration for the 1/2 bias method is different from that for the 1/3 bias method. RESET A high level input to this pin resets the /JPD7514. VDD Positive power supply. VSS Ground. CL1, CL2 (System Clock) CL1 and CL2 are the resistor and capacitor connection pins for the system clock generator. An external clock may be input to CL1 directly, in which case CL2 must be open. 3-157 NEe JAPD7514 Block Diagram ~ ~POo-P03 ~P1P1 ~O-3 P2Q-P22 PSTBIP2Q PTOUTIP21 P50-P53 Instruction Decoder P60-P63 Cl P70-P73 Cll Cl2 RESET VOO Vss VLC1-VLC3 COMO-COM3 50-531 83.()Q3589C 3-158 NEe JiPD7514 Absolute Maximum Ratings DC Characteristics (cont) TA= -10 0Cto +70 0C, Voo=2.7Vt06V TA=25°C Limits -0.3Vto +7V Supply voltage, Voo Symbol Max Unit Test Conditions - 0.3 V to Voo +0.3 V Parameter Output voltage, Vo -0.3VtoVoo +0.3V Common output ReOM impedance 3 5 15 kQ Segment output RS impedance 15 20 kQ 20 60 kQ Supply current 600 1800 /AA Operating mode Voo=5V ±10%; R=39kQ ±2%; C=33pF ±5% 70 210 ~ Operating mode Voo=3V ±10%; R=160kQ ±2%; C=33pF ±5% 300 900 ~ Halt mode X1=OV; Voo=5V ±10%; R=39kQ ±2%; C=33pF ±5% 35 100 ~ Halt mode X1=OV; Voo=3V ±10%; R=160kQ ±2%; C=33pF ±5% 1.0 20 /AA Stop mode X1=OV; Voo=5V ±10% 0.3 10 ~ Stop mode X1=OV; Voo=3V ±10% Max Unit Test Conditions Output current high, IOH Per pin Min Typ Input voltage, VI -5mA Total, all output ports -50mA Output current low, IOL Per pin 15mA 40mA Total, Ports 0, 4, 5, 6, P30, P31 1001 40mA Total, Ports 1,2,7, P32, P33 Operating temperature, TOPT -10°C to +70°C - 65°C to + 150°C Storage temperature, TSTG Comment: Exposing the device to stresses above those listed in Absolute Maximum Ratings could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational sections of the specification. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. 1002 DC Characteristics TA = -100Cto +70 oC, Voo=2.7Vt06V Limits Parameter Input voltage high Input voltage low Output voltage high Symbol Min VIHl Typ Test Conditions Max Unit 0. 7V oo Voo V Except X1, CL1, RES, INTO, INT1, SI, SCK VIH2 0. 8V oo Voo V RES, INTO, INT1, SI, SCK VIH3 VOO-O.5 Voo V X1, CL1 VILl 0 0.3 Voo V Except X1, CL1, RES, INTO, INT1, SI, SCK VIL2 0 0. 2V oo V RES, INTO, INT1, SI, SCK VIL3 0 0.5 V X1, CL1 Voo-1.0 V Voo=4.5 to 6.0V; IOH= -1.0mA Voo-0.5 V 0.4 V 0.5 V IOL =400~ 3 ~ VI=VOO exceptX1, CL1 VOH Output voltage low VOL Input leakage current high IUHl kQ 1003 Voo=4.5 to 6.0V Voo=4.5t06.0V Capacitance TA=25°C;Voo=ov Limits Parameter Symbol Min Typ Input capacitance CI 15 pF (Note 1) IOH= -100/AA Output capacitance Co 15 pF (Note 1) Voo=4.5 to 6.0 V; IOL=1.6mA I/O capacitance CIO 15 pF (Note 1) IUH2 10 /AA VI=VOO; X1, CL1 Input leakage current low IUL1 -3 /AA VI = 0 V except X1, CL1 IUL2 -10 ~ X1, CL1 Output leakage current high / low ILOH 3 /AA Vo=Voo ILOL -3 /AA Vo=OV Note: (1) fc = 1 MHz. Return unmeasured pins to 0 V. 3-159 E NEe IJPD7514 AC Characteristics TA= -10°C to +70 oc,Voo=3Vto6V Limits Parameter Symbol System clock fcc oscillation (CL1, CL2) Min Typ Max Unit 300 400 500 kHz 75 System clock fc input frequency (CL1) CL1 input rise time CL1input fall time 100 flO( Count clock fx input frequency (X1) tSTl (2) ns (3) JAs C=33pF ±5%, lAC / °CI~60 ppm R=160kQ ±2%, Voo=3V ±10% SCK cycle time tKCY 3.0 /As Input Voo=4.5 V t06.0V Output 150 kHz Duty=50% 0.2 /AS /As 50 /As 3.2 50 /AS 0.9 50 0.9 25 32 /AS 50 /As 50 kHz 0 500 kHz 0 150 kHz tXR 0.2 X1 input fall time tXF 0.2 X1 input rise time PSTBpuise width low 10 3.2 Count clock oscillation frequency (X1, X2) C=33pF ±5%, lAC / °CI~60 ppm R=39kQ ±2%, Voo=5V ±10% Voo=4.5Vto 6.0V, Duty=50% Voo-4.5 V to 6.0V SCK pulse width tKH high SCK pulse width tKl low Voo=4.5 V to 6.0V C1=20pF C2=30 pF R=220 kQ (Note 1) Voo=4.5 to 6.0V, Duty =50% Max Unit 4.0 /As /As Input 13.0 /As Output 1.3 JAs Input Voo=4.5 V to 6.0V Output 1.8 JAs 3.8 /As Input 6.3 /As Output 1.3 /As Input Voo=4.5 V to 6.0V Output 1.8 /As 3.8 JAs Input 6.3 /As Output SI set-up time (to SCKt) tSIK 300 ns SI hold time (after SCKt) tKSI 450 ns 850 SO output delay tKSO time (after SCK.I-) /As INTO pulse width high JAS INTO pulse width low 1200 ns ns tlOH 10 /As tlOL 10 JAs /As Voo=4.5 V to 6.0V INT1 pulse width tl1H high (4) /AS 3.2 /AS Voo=2.7V /As /AS Voo=4.5Vto 6.0V INT1 pulse width tl1l low (4) 0.9 10 JAs /As Voo=2.7V RESET pulse width high tRSH 3.2 Port 1output set- tpST up time to PSTBt (2) JAs Voo=4.5Vto 6.0V RESET pulse width low tRSl 10 /As (3) /As Port10utp~ 0.1 JAs 0.1 JAs tXH X1 input pulse width low tXL tSTP hold after PSTB t Note: VOO=4.5Vto 6.0V (1) See recommended clock circuit on next page. (2) 1/2 fcc - 0.8 or 1/2 fc - 0.8 (3) 1/2 fcc - 2.0 or 1/2 fc - 2.0 (4) 2/fcc or 2/fc 3-160 Voo=4.5V to 6.0V 8.0 0.9 X1 input pulse width high Test Conditions Min kHz 0.2 Typ Symbol 510 tCF CL1input pulse tCl width low kHz Limits Parameter 10 tCR CL1 input pulse tCH width high 120 Test Conditions Voo=4.5Vto 6.0V t-{EC J.tPD7514 Timing Waveforms Recommended Clock Circuit Data Retention Mode Timing I'PD7514 X1 X2 VDD-+---4. R 0 Xtal C2 J C1.J 83-002915A Note: In data retention mode, all inputs (except RESEll should be made lower level than VDDDR. 83-002918A AC Timing Test Points Clock Timing L ==X0.7VDD> Test ___ 0.7VDD 0.3 VDD Points - - - 0.3 VDD 1-----1Ifc----~ 83-002916C CL Input Data Retention Characteristics TA = -100Cto +70°C Limits Typ Symbol Min Data retention supply voltage VDDDR 2.0 Data retention supply current IDDDR Data retention RESET input voltage high VIHDR RESET set-up time tSRS 0 ns RESET hold time tHRS o ns Parameter Unit Test Conditions XL Input v 0.3 0.9 x VDDDR Max 83·002917A 10 VDDDR +0.2 v Serial Transfer Timing SI---01--..(1 SO Output Data 83-D02919A 3-161 NEe J-LPD7514 Timing Waveforms (cont) Program Memory (ROM) This 4,096·word x a·bit mask-programmable ROM stores programs and table data and is addressed by the PC. ROM address locations are from OOOH to FFFH. Fixed locations are allocated to the RESET and inter· rupt start addresses, and table areas· of the LH LT and CALT instructions. See figure 2. Strobe OutputTiming P10- P1 3 ---~ PSTB----. Figure 2. Program Memory Map 83-OO2920A Interrupt Input Timing OOOH RESET Start Address 010H INTT Start Address 020H INTO/S Start Address 030H INTl Start Address INTO Subroutine Entry ~~11--------I1J Look.up Table of LHLT Instruction INT1 Look·up Table of CALT Instruction (Call Address Table) ~4 RESET Input Timing FFFH r l...______....l 83-003591A RESET General Purpose Registers Program Counter (PC) Registers D, E, H, and Loperate in units of 4 bits, orthey form the a·bit pair registers DE, DL, and HL for use as a data pointer (D or H is the upper·order 4 bits). See figure 3. This 12·bit binary counter, shown in figure 1, holds the address of the current instruction in program memory. When an instruction executes, the PC increments by the number of bytes in the instruction. RESET clears the PC to 0. Pair register HL can perform the functions of automatic increment ( +1) and automatic decrement ( -1) for the L register only. The L register is also used to specify I/O ports and mode registers when the I/O instruction (OPL, IPL) is executed. Figure 1. Program Counter Structure Figure 3. General·Purpose Register Configuration Functional Description 0 D 83-OO3590A Stack Pointer (SP) This a-bit register (SPrSPo) stores the top address of the data memory area used as a LIFO stack. The SP decrements when a call (CALL, CALT) or a push (PSHDE, PSHHL) instruction executes, and at an interrupt generation. It increments when a return (RT, RTS, RTPSW) or POP (POPDE, POPHL) instruction executes. 3-162 { H 3 '::==;;::' 1 83-003592A NEe J-lPD7514 Data Memory (RAM) Accumulator (A) This 256-word x 4-bit static RAM stores processing data and display data. It also operates with the accumulator to process data in 8-bit units. There are three types of data memory addressing: • Direct addressing is made by the second byte of the instruction. • Register indirect addressing is made indirectly by the contents of the register pair designated by an instruction. • Stack indirect addressing is made by the contents of the SP. The accumulator is a 4-bit register. (See figure 6.) Various arithmetic/logical operations are done mainly by the accumulator. Operating with the data memory addressed by the pair register HL, data processing may be done in 8-bit units (higher-order bits in the accumulator and lower-order bits in the data memory). RAM resides at addresses OOH-FFH. Thirty-two of these locations (00H-1 FH) are allocated for the LCD display data area. When display data is written to 00H-1 FH, the LCD controller/driver reads it and generates an LCD drive signal. Address locations 00H-1FH cannot be used as stack area. See figure 4. Data Memory Direct/Register Indirect Address Area Arithmetic Logic Unit (ALU) The ALU is a 4-bit arithmetic logic circuit that performs such processes as binary addition, arithmeticllogical operation, comparison, and rotation. Program Status Word (PSW) Figure 4. Data Memory Map t Display Data Area Figure 6. Accumulator Configuration (0) DOH (31) lFH (32) 20H 32x4 256x4 The program status word consists of two skip flags (SK1, SKo) and a carry flag (C). (See figure 7.) These are stored in the stack area upon execution of a call instruction (CALL, CALT) or at an interrupt occurrence; they are restored by an RTPSW instruction. At RESET, SK1 and SKo are cleared to 0, and C is undefined. 224x4 Figure 7. Structure of Program Status Word ~______~____(~22~~__ FF_H~____~~ 83-003593A Addresses 20H-FFH in data memory can be used as a stack area at execution of a call or return instruction (CALL, CALT, RT, RTS, RTPSW), a push/pop instruction (PSHDE, PSHHL, POPDE, POPHL), or at an interrupt occurrence. At the execution of a call instruction or an interrupt occurrence, the contents of the PC and PSW are stored in the stack. At the execution of a push instruction, the contents of DE or HL are stored in the stack. The data is stored in the stack as shown in figure 5. Figure 5. Stack Contents after Call, Interrupt, or Push Call Instruction, Interrupt Push Instruction Stack Stack SP4 PC11-PCa SP3 PSW SP2 PC3-PCO SP2 Eorl SP1 PC7-PC4 SP1 DorH 83-003594A 3 2 83-003598A System Clock Generator Circuit This circuit consists of an RC oscillator circuit and a half-frequency divider circuit, as shown in figure 8. The RC oscillator circuit is controlled by an external resistor (R) and capacitor (C) connected to CL1 and CL2. An external clock can be input to CL1 without using an RC circuit. CL2 should be left open, in which case the RC oscillator circuit merely operates as an inverted buffer. In stop mode, the RC oscillator circuit and the halffrequency divider circuit stop, thereby stopping the output of CL and ~, respectively. In halt mode, the half-frequency divider circuit stops (~), but CL continues to be supplied. With an external clock, when the device is in standby mode, the CL1 input clock becomes CL via an inverted buffer; CL continues to be supplied. In this case, both standby modes stop only the half-frequency divider (~). 3-163 NEe ""PD7514 Figure 8. System Clock Generator Circuits Figure 9. Count Clock Generator Circuits RC Oscillation Crystal Oscillation I'PD7514 I'PD7514 r------------- r-------- I III-------<4+1--1 SM3 P02/SO -4------++---< 1----------+--------------' ~_~~---+----~--TOUT POoIINTO ----I>---4-~_+ INTO Note: 1. Indicates the Intemal clock signal (System clock). 2. TOUT isthetlmer-out F/Fslgnal. 3. -Indicates the execution of instruction. 4. 5M3 Is to the Interrupt controller. R RSF/F \-------IQ INTS S-SIO' 83'()()3602B 3-166 NEe J.lPD7514 LCD Controller/Driver Table 2. Maximum Segment Number This controller/driver directly drives an LCD with static, 1/2 bias voltage (biplexed, triplexed) and 1/3 bias voltage (triplexed, quadriplexed) configurations. Thirty-two segment lines (SO-S31) and 4 common lines (COMo-COM3) serve as the LCD driver outputs. See tables 2 and 3, and figure 14. Bla, Multiplexing COMUne, Mallmum Segment Number 1/2 biplexed COMO. 1 64 (32 Segmentsx2 Commons) 1/2 triplexed COMO. 1. 2 96 (32 Segments x 3 Commons) 1/3 triplexed COMO. 1. 2 96 (32 Segmentsx3 Commons) 1/3 quadriplexed COMO. 1. 2. 3 128 (32 Segmentsx4 Commons) Note: To supply the proper voltage to the segment and common lines, supply the voltages listed in table 4 to pins VLC1, VLC2, and VLC3. See also figure 15. In the following cases, LCD driving waveform stops operation and DC potential is applied between LCD electrodes. This will considerably reduce the I ife span of the LCD. LCD Clock Source Primary Cau.., CL Channel o(System Clock) 1. STOP instruction is executed. 2. External clock is stopped. X Channel (Count Clock) 1. External clock is stopped. Table 3. Display Mode Register CMO=O DM2 DM3 DMo Multiplexing 0 Quadriplexed 0 Bias Voltage LCDCL 1/3 CL/256 Biplexed 1/2 CL/512 Triplexed 1/3 CLl512 1/2 CL/1024 CLl1536 Triplexed CLl3072 DM1 DI,play output control DM1 DI,play output control 0 TO deselect all segments Signal 1 To enable display outs X192 X256 X/128 X384 X512 X/128 X584 X1512 CL12048 Biplexed 0 CL/1536 Frame Frequency X256 X/164 CLl2048 Quadriplexed 0 CL1768 CLl1024 Triplexed 0 LCDCL CL/1024 Triplexed 0 MCO=1 Frame Frequency X/256 X768 Table 4. LCD Supply Voltage Pin Name lI21la, 113 Bias VLC1 Voo-(112) VLCO Voo-(113) VLCO VLC2 Voo-(112) VLCO Voo-(2I3) VLCO VLC3 VOO-VLCO VOO-VLCO ~_1~7 NEe JAPD7514 Figure 14. LCD ControllerlDriverBlock Diagram On-chip Bus Data Memory Multiplexer LCD Drive·Voltage Controller 532 so S30 VLC3 VLC2 VLC1 Common Driver COM3 COM2 COM1 COMO Note: 'indicates instruction execution Multiplexer 83-OO3604C 3-168 NEe f..'PD7514 Figure 15. Configuration of LCD Power Supply by Voltage Dividing Method (a) '/3 Bias Method !,PD7514 Positive VOD (b) '12 Bias Method 1--..........- - - - 1....... Power Supply !,PD7514 Rl Positive 1---..--..-+ Power Supply Interrupt Enable Register (IE2-IEo). This register permits or inhibits individual interrupt requests of INn; INTO/S and INT1; it allows the interrupt if the respective bit of each interrupt is set to 1, and inhibits the interrupt if o. See figure 17. R2 Rl Output Port Output Port Vss 1 - - - - - - . GND Interrupt Function There are two external (INTO, INT1) and two internal (INn; INTS) interrupts. Interrupt INTO and pin POo share one line; figure 12 shows how to select between these. When INTO is selected, either INTO or INTS may be specified. The interrupt process (interrupt address and priority) for INTO and INTS is the same. See table 5 and figure 16. Vss 1 - - - - - - + GND The value~ ~f R, R2, and C depend on the particular LCD panel charactensllcs. TYPical values are: VLCD = VOO-VLC3 2.7 V"VLCD"VDD (KR2-'>2R, typically R,=I00K R2=200K C=O.OO1"F VLCD = 1 + ~:Rl 83-003603A Figure 16. Interrupt Controller Block Diagram CL INTI 0 - + - - - - - - - - - 4 INTS PQoIINTO 510"----.._# Notes: 1. "Indicates execution of instruction. 2. 5M3 is bit 3 of the shift mode register. (Selection of INTO or INTS) Standby Release 6121 83-0036058 3-169 NEe J.(PD7514 Standby Function Table 5. Source of Interrupts Interrupt Intlllt Priority Interrupt Address INTI (coincidence signal from timer / event counter) Int 1 10H (16) INTO (interrupt signal from POo pin) Ext 20H (32) INTS (transfer end signal from serial interface) Int 20H (32) INT1 (interrupt signal from INT1 pin) Ext 30H (48) Figure 17. Format of Interrupt Enable Register EI 1 E2IE1IEo ~ Interrupt Enable Register To pennlt or Inhibit INTT To penn It or Inhibit INTO/S To pennlt or Inhibit INT1 83-003606A Interrupt Master Enable F/F (1M E). This F/F permits or inhibits the acceptance of all interrupts (INTI, INTO, INTS, and INT1); after accepting an interrupt, it is reset to inhibit subsequent interrupts. The F I F is set by the EI o instruction to permit all interrupts not individually dis· abled, or it is reset by the 01 0 instruction to inhibit all interrupts. In either case, the interrupt enable register is unaffected. Typical Interrupts. Figure 18 is an example of the interrupt process for the INT1 interrupt. Figure 18. Typical Interrupt Process Flow -t-- RESET Address: 30H Master Enable FIF = 0 Enable Register = 000 EI EI 1 PSHDE PSHHL t T I I Enable Register = 100 Master Enable F/F=1 (INT1 Enable) -.t T Master Enable FIF = 0 (All Interrupts Disabled) ~ -.t INT1 01 I 1 Master Enable FIF = 0 (All Interrupts Disabled) POPHL POPDE EIO PTPSW 83.(J()3607A 3-170 Two standby modes, stop and halt, are provided to reduce power consumption during a program standby state. The STOP and HALT instructions select these modes. In standby mode, program execution ceases and the contents of data memory and all internal registers are held. The shift register and timer! event counter still operate. A RESET or interrupt generation releases standby mode; if an interrupt request flag is set, stop/halt mode cannot be set in spite of the STOP I HALT instruction execution. Consequently, when setting standby mode when there is a possibility of a request flag being set, it is necessary to have the interrupt request flag reset either by processing the interrupt in advance or by executing a SKI instruction. Differences between stop and halt modes are shown in table 6. The main difference lies in that RC oscillation output (CL) either stops (stop mode), or does not stop (halt mode), when the system clock is being supplied by RC oscillation. Table 6. Comparing Stop and Halt Modes Mode Instruction CL 0 X Interrupt used CPU 510 eNT for rele... Stop STOP X X 0 X * Halt HALT 0 X 0 X 0 INTI, INTO/S, INT1 Note: o Operation possible • Operation possible with a mode selected X Operation disabled INTI,INTO/S NEe J-tPD7514 Reset Function A high level RESET input initializes the J.lPD7514. The sequence of events is as follows: (1) The PC is cleared to O. (2) PSW flags SK1 and SKo are cleared to O. (3) The timer/event counter as reset as follows: Count register = OOH Modulo register = FFH Timer out F/F=O (4) The clock control circuit is reset as follows: Clock mode register (CM3-CMO) is cleared to 0 CP = LCD Clf = Cl X 1/256 TOUT is disabled. Prescalers 1, 2, 3 0 After RESET, program execution starts from address OOH. The contents of each register must be initialized as needed. = Shift mode register (SM3-SMO) is cleared to O. Serial interface shift operation stops. Port 0 is placed in input mode (high impedance). INTS is selected for the interrupt source of INTO/S. (6) Display mode register (DM3-DMO) is cleared to O. 1/3 bias, quadriplexed Frame frequency = CLl1024, LCD drive deselected (8) All output buffers of ports 0-7 are turned off, and become high impedance, I/O ports are set to input mode. (10) The contents of data memory and the following registers are undefined: Stack pointer (SP) Accumulator (A) Carry flag (C) General-purpose registers (D, E, H, l) Output latch of each port Shift register (5) (7) (9) Power·On·Reset Circuit. The simplest example is shown in figure 19. Figure 19. Power· On-Reset Circuit ---- +5V I'P07514 + -w. Interrupt control circuit becomes as follows: Interrupt request flags 0 Interrupt master enable F / F = 0 Interrupt enable register = 0 All pending interrupts cancelled. All interrupts disabled. = ~ RESET 83-003608A 16121 Port 6 mode register (PM3-PMO) is cleared to O. Operating Characteristics fccvs R fccvs Voo 1000 (TA I-- §~ I-I-- I -= 33PF = R=39kQ- t-- R I-I-- 2S 0 C) -- -- - 1--- -- I--- -- - r-l--t- 1--- f-~160-tQ- I--- (TA 'N' J: ~500 1 J --4- 1--+ 1--- I 1 .~ - -1--1--- -~ - -- - j - - 1-- 1 - - 1-- - -1-- -1-- Supply Voltage, Voo (V) -- -- - 1--- 1-- 1--- 1-- ~ () I II :"~OI=ISV --+- t-+ 1--- -- ~~ ! ...o i' I ""g I 100 - 2S 0 C) 50 ~ -I- 10 10 ~d~ I ~~ I-I-- --t- --t-- -ti Voo=3V-- R -+- I-j~- I-r- 1--- -l-: 33PF i 50 100 Resistance, R (kQ) 500 3-171 NEe JlPD7514 Operating Characteristics (cont) Rvs VOO fccvs TA ~ (TA l Voo =5V R=39kQ -- - - - - -- - - r---- - - - f--- -- - -- - -- --t- '- -r---- -- f--- -:-:--+- '- - Voo=3V R 160kQ W *' a60pp':;;/°C)- 10 -25 1000 i 100 50 c3 - 50 25 AmblentTemperalure, TA (OC) 1010 +70°C) 75 =w =1 = Cll Cl2 10 t= R ~ I == I :-- - 33PF ~-I ~ I Supply Vollage, Voo (VI fcvs Voo fxvs vOO 1+11+1412 ;: 1000 g (TA JLJL 'N 12:fx= 1000 500 I I I I I I 1 o W O Cll 1 .... -~ 50 E ~ *,33 PF c3 ~ a. --- i""'" 3 V HALT (39 kHz) HAL; (1601HZ) STOP+Xlal= ~ I 0.1 o -=- I -=- 500 0 .a:- 100 li ~ g' 30PF r ......... STOP (Xl = 0 V) ! « --Supply Vollage, Voo (VI 3-172 1000 E I I I I § . / i-"""" ljp~~~ 20PF <" ~ i X2J lXl I Supply Vollage, VOD (V) .."., 10 I IOO1VS TA _ " ....... kH R Cl2 L J I I loovs VOO ~ (TA 25°C) ~ Operaling Mode (39 kHz) 100 ~ Defined Oparallng Area ~ Supply Vollage, Voo (VI i 1010 +70°C) 1 11<12:fx= 211 11 >12:fc= 2112 I I I c I I........ II ~ <" .,3. (TA- 500 J"8 I Defined Operallng Area I ......... ~ ~ !. 0 50 I I I I 'w Cl1 10 VOO 5V~ R 39kQ E VOO-3V!~ R 160kQ_r----- CL2. R *,33 PF -25 25 50 Amblenl Temparalure, TA (OC) 75 NEe J,lPD7514 Operating Characteristics (cont) VOHVS IOH VOlVS IOl -10 20 0 (TA=2S C) (TA=2S 0 C) I I. Voo=SV ~:z: / I V voo=~ / S} .c .1iP Voo=sv = -s AOO=4~ ~ u /v i Iv .", o / o~ ./ ~ I Voo=3V --r o S i VOO-VOH(V) V ... V V . . . 11 . . V o~ . . . /1 - -- Voo=3V I 1 o Output Voltage Low, VOL (V) I Differences Between the JJPD7514, JJPD7508, and JJPD7503 The J.tPD7514 integrates the features of the J.tPD7508 and the strengthened LCD controller I driver of the J.tPD7503. Differences are shown in table 7. Table 7. Difference Between J.tPD7514, J.tPD7508, and J.tPD7503 IlPD7514 jlPD7508C/G On-chip RAM 256x4 226x4 224x4 Input ports Port 0 (POO-P03) Port 0 (P01-P03) Port 1(P1rP13) PortO (P01-P03) Port 1 (P11-P1 3) Output ports Port 2 (P20-P22) Port 2 (P20-P23) 110 ports Port 1(P10-P13) Port 7 (P70-P73) Port 1(P10-P13) Port 7 (P70-P73) Number of ports 31 32 LCD controller I driver Multiplexing Biplexed Triplexed Quadriplexed Triplexed Quadriplexed LCD controller I driver Segments 32 24 Package SO-pin flat 40-pin DIP/ 52-pin flat IlPD7503G 23 64-pin flat 3-173 J.tPD7514 3-174 NEe NEe NEe Electronics Inc. J,lPD7516H 4.BIT, SINGLE·CHIP CMOS MICROCOMPUTER WITH FlpID CONTROLLER/DRIVER Description D Vectored, prioritized interrupts - Two external: INTO, INT1 - Two internal: timer (I NIT) and serial (INTS) D Four 4-bit general purpose registers D 107 instructions; subset of J,lP07500 series instruction set A - Look-up-table capability - Indirect indexed addressing The J,lP07516H and 75CG16H are 4-bit, single-chip CMOS microcomputers with the J,lP07500 series architecture and a FIP controller/driver. On-board peripheral functions include an 8-bit timer/event counter, an 8-bit serial interface, a 14-bit programmable pulse generator, and a display controller/driver that supervises all of the timing requirements by the 24-port S segment drivers either for a 16-character, 7-segment FIP, or an 8-character, 14-segment FIP. The J,lP07516H is functionally equivalent to the J.lP07519H except for ROM size. Twenty-eight I/O lines are organized into seven 4-bit ports: the input/serial interface port 0, output ports 2 and 3, and I/O ports 1,4,5, and 6. The subroutine stack is implemented in RAM for greater nesting depth and flexibility, providing such operations as the pushing and popping of register values. The J,lP07516H /75CG16H has a 2.44 J,ls instruction cycle time at fxx = 6.55 MHz. For the J,lP07516H, current consumption is less than 6mA for normal operation (Voo=5V ±10%, fxx = 6.55 MHz, high speed mode). The J,lP075CG16H, a piggyback EPROM version, is available for prototyping and program development. It is pincompatible and functionally equivalent to the masked version. Features D 6144 x 8-bit program memory (ROM) D 256 x 4-bit data memory (RAM) D 281/0 lines D Programmable FIP controller/driver - 24 high-voltage output lines D 8-bit serial interface D 8-bit timer/event counter D Programmable pulse generator (PPG) - Variable duty port (0/ A converter) - Signal generator port - 1-bit output port @ D Instruction cycle - J,lP07516H low speed mode: 15.26J,ls/4.19 MHz - J,lP07516H low speed mode: 9.77 J,ls/6.55 MHz - J,lP07516H high speed mode: 3.81J,ls/4.19 MHz - J,lP07516H high speed mode: 2.44J,ls/6.55 MHz D Two power-down modes D Single power supply (2.5 V to 6 V) Applications The J,lP07516H has a variety of flexible powerful functions and is best suited for the following applications: • Video tape recorders • Plain paper copiers • .Electronic cash registers • Telephone sets • Electronic scales • Automobiles Figures 1-4 show how to apply the device to a digital tuning system, a telephone, an ECR, and automotive equipment. Ordering Information Part Number Package Type Max Frequency of Operation J.lPD7516HG-12 64-pin plastic miniflat 6.55 MHz J.lPD7516HG-36 64-pin plastic QUIP 6.55 MHz J.lPD7516HCW 64-pin plastiC shrink DIP 6.55 MHz J.lPD75CG16HE 64-pin ceramic piggyback QUIP 6.55 MHz FIP is the registered trademark for NEC's fluorescent indicator panel (vacuum fluorescent display). 3-175 NEe fAPD7516H Pin Configurations 64·Pin Plastic Mlnlflat 64·Pin Plastic QUIP, and Shrink DIP I- ~ m Q. Q. ...I 0 IU I- 1II) Iii P20/P5TB ~ w P21/PTOUT 64 63 62 61 60 59 58 57 56 55 54 53 52 P23 RESET 0Q. Q. NC POollNTO Q. rfiR~~~ gt-~~~~ g: « Q. Q. Q. Q. > ~ Q. Q. Q. Q. > 0 P01/5CK P02/S0 P03l51 P60 P61 P62 P63 51 50 VLOAO To 49 Tl 48 47 46 45 44 T2 T3 T4 T5 43 42 PPO NC POolINTO P01/SCK T6 T7 VOO INn P33 P32 P31 P30 VPRE VLOAO To P02/S0 Tl P03iSI T2 P60 P61 P62 T3 T4 Ts P63 P50 T6 T7 P51 10 11 P52 12 40 Ta/Sa T9/S9 Tl0/S l0 P53 P10 13 14 39 T11/S11 P51 P52 Ta/5a Tg/Sg 38 T12 /S 12 P53 TlO/ S10 Pl1 15 16 17 37 36 35 34 Tl31S 13 Plo T11/511 Tl4iS14 Tls/S 1S So P11 P12 T12/S12 Tl3i513 P13 Tl4i 5 14 33 51 NC Tls/51S P40 P41 50 Sl P50 P12 P1 3 P40 P41 I'PD7518H 41 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 iiffi~x~~$clI'clfW'~~ > w 83-002979A P42 52 P43 S3 ~~T ~ X2 55 56 Xl Pin Identification VSS'""1,.;~_ _...;.;;.... 57 83-002980A Plastic Miniflat, QUIP, and Shrink DIP Flat QUIP(1) S,mbol 7,24 NC No connection Function Flat QUIP(1) S,mbol Function 2 8 POOIINTO 51 57 VLOAD 3 9 POj/SCK High voltage option resistor supply negative. This pin is not used (NC) in the /APD75CG16H. 4 10 .P02/S0 Port 0, or external interrupt INTO and the serial I 10 interface 5 11 P03/S1 52 58 VPRE High voltage predriver supply negative 6-9 12-15 P60-P63 Port 6 53-56 59-62 P30-P33 Port 3 10-13 16-19 P50-P53 Port 5 57 63 INT1 External interrupt 14-17 20-23 P10-P13 Port 1 59 P20/PSTB 18-21 25-:28 P40-P43 Port 4 60 Port 2, or port 1STB signal, timer FI F output, internal CL output, and general purpose output 2 P21/PTOUT 22 29 EVENT Timer I event counter input 61 3 P22/PCL 23,24 30,31 X2, X1 Crystal clock input 62 4 P23 25 32 Vss Ground 63 5 RESET RESET input 26,58 64 VDD Power supply positive 64 6 PPO PPG output 27-34 33-40 SO-S7 Segment outputs Note: 35-42 41-48 Ta/SaT15 /S 15 Timing I segment outputs (1) This QUIP pin identification is al50 true for the shrink DIP and piggyback packages. 43-50 49-56 To-T7 Timing outputs 3-176 NEe J.(PD7516H Pin Configurations (cont) Pin Functions 64-Pin Ceramic Piggyback QUIP (Except EPROM) POOl INTO, P~/SCK, P02/SO, P03/S1 (Port 0) P20/P5TB 1 64 Vee P2,/PTOUT 2 63 INT1 P22/PCl 3 4 P23 ~PD75CG16H 62 P33 61 P32 RESET 5 60 P3, PPO 6 59 P30 NC 7 58 VPRE POo/INTO 8 57 NC PO,/5CK 9 56 To P02/50 10 P03/51 11 Vee Vee 55 T, Vee 54 T2 Vee 53 T3 52 T4 51 T5 P60 12 A'2 A7 P6, 13 A6 Aa P62 14 A5 A9 P63 15 P50 16 50 T6 A3 49 T7 P5, 17 P52 18 A2 48 Ta/5 a 47 T9/59 P53 19 P10 20 Ao 17 46 T,0/5,0 10 16 45 T"/5,, P1, 21 15 44 T'2/5,2 P12 22 14 43 T'3/5,3 13 42 T'4/5,4 P13 23 NC 24 41 T'5/5,5 P40 25 40 So P4, 26 39 5, P42 27 38 52 -.. .. ..r- P43 28 37 53 EVENT 29 36 54 X2 30 35 55 X1 31 34 56 Vss 32 33 57 This port can be configured as the 4-bit, parallel input port 0, or as the 8-bitseriall/ 0 interface under control of the serial mode select register. The 8-bit serial 110 interface consists of the serial input (SI), the serial output (SO), and a serial clock (SCK) used for synchronizing data transfer. Line POo is shared with external interrupt INTO, which is a rising edge-triggered interrupt. P10-P13 (Port 1) Individual lines can be configured as a 4-bit input or as a latched, three-state output under control of the port 1 mode select register. P20/PSTB, P21/PTOUT, P22/PCL, P23 P20-P23 are the 4-bit latched output port 2. PSTB is the port 1 output strobe pulse. PTOUT is the timer-out F/F signal. PCl is the internal system clock output. P23 is a general purpose output. P30-P33 (Port 3) 4-bit, latched three-state output port 3. P40-P43 (Port 4) 83-00298'A P50-P53 (Port 5) Pin Identification (cont) 4-bit latched three-state I/O port. Can perform 8-bit parallell/O in conjunction with port 4. I-lPD75CG16H, Piggyback EPROM No. Symbol Voo 2-10,21, 23-25 Ao-A12 4-bit latched three-state 110 port. Can perform 8-bit parallell/O in conjunction with port 5. Function Unused Program counter output P60-P63 (Port 6) Individual lines can be configured as a 4-bitinput or as a latched, three-state output under control of the port 6 mode select register. 11-13,15-19 10- 17 Data input from the 2764 14 Vss Same as bottom pin 32; connected to 2764 GND pin EVENT 20 CE Chip enable output 1-bit external event input for the timer/event counter. Vss Same as bottom pin 32; supplies OE signal to the 2764 SO-S7,T8/S8-T15/~5,TO-T7 26 Voo Same as bottom pin 64; supplies Vee to the 2764 27,28 Voo Unused 22 High voltage outputs. SO-57 are segment driver outputs, and To-T7 are digit driver outputs. Ta/Sa-T15/ S15 can be configured as either segment or digit driver outputs under control of the display mode select register. 3-177 IE NEe I-tPD7516H INT1 External, rising edge triggered interrupt. EPROM Pin Functions Piggyback EPROM PPO Ao-A12 (Address) 1-bit programmable pulse generator output. PPO can operate as the pulse width modulation output, signal generator port, or 1-bit output port, as dictated by the PPG mode select register. Output the 13 bits of the program counter (PCO-PC11), which are the address signals of EPROM 2764. RESET RESET input. RIC circuit or pulse initializes J.lPD7516H and also releases stop or halt mode. X1,X2 Crystal clock connection. A crystal oscillator circuit is connected to X1 and X2 for system clock operation, or an external clock may be connected to X1 and an inverted clock to X2. VPRE High voltage predriver supply. Apply single voltage from Voo -12V to Voo for proper display operation. V LOA 0 10-17 (Data Input) Input data from the 2764. CE (Chip Enable) Outputs the chip enable signal to the 2764. Voo(Pin 1) Electrically equivalent to Voo of the bottom pins. Provided for future devices. Use in the open condition. VOO(Pin 26) Electrically equivalent to Voo of the bottom pins. Supplies Vee to 2764. VOO(Pins 27, 28) Electrically equivalent to Voo of the bottom pins. Do not use these pins. High voltage option resistor supply negative. Apply single voltage from Voo - 40 V to Voo for proper display operation. This pin is not used (NC) in the J.lPD75CG16H. VSS(Pin 22) Voo Electrically equivalent to VSS of the bottom pins. Supplies OE signal to the 2764. Power supply positive. Apply single voltage ranging from 2.5 V to 6.0 V for proper operation. VSS(Pin 14) Vss Electrically equivalent to Vss of the bottom pins. Connected to 2764 GND pin. Ground. 3-178 NEe J.lPD7516H Block Diagrams IAPD7516H INT1 EVENT INTO/POo SCK/POI SO/P0 2 SI/P03 POO·P03 P10·P1a P20·P23 PSTB/P20 PTOUT/P21 PCLlP22 P30·P33 ROM Program Memory 6144 x 8 Bits v.PD7516H) Instruction Decoder P40·P43 CL Standby Control P50·P53 Ix/ 128 Clock Generator X1 X2 P60·P63 PPO T7·lo TIs/SIS Ts/Sa 57·50 VPRE VLOAD 83-0029826 3-179 tt¥EC iJPD7516H Block Diagrams (cont) jAPD75CG16H EVENT INTl INTO/POo SCK/P01 SO/P02 SI/P03 POO·P03 Plo·P13 P20·P23 PSTB/P20 PTOUT/P21 PCLlP22 P30·P33 P40·P43 10.17 CE P50·P53 P60·P63 Xl X2 PPO T7·TO T1s1515 Ta/Sa 57·50 VPRE 83-0029838 3-180 NEe J.lPD7516H Absolute Maximum Ratings Consumption: (1) CPU 5.5V x 2.0mA=11mW TA=25°C Supply voltages Voo VLOAO (IlPD7516H) -0.3Vto +7V Voo -40 V to +Voo +0.3 V Voo -12 V to +Voo +0.3 V Input voltage, VI -0.3 V to Voo +0.3 V Output voltage, Va Display outputs, Va Voo -40 V to Voo +0.3 V Other outputs, Voo - 0.3 V to Voo +0.3 V Output current high, 10H Per pin, other than display outputs Per pin, SO-S7 -15mA -15mA -30mA (2) Output pins Segment pins: (5/7 x 2V) x 5mA x 9=64mW Timing pins: 2 V x 15 mA = 30 mW LED output pins: (10/15 x 2V) x 10mA x 4=53mW (3) Pull-down resistors (30 + 5.5 V)2/80 kQ x 10 = 158 mW Therefore, PT = (1) + (2) + (3) = 316 mW DC Characteristics j.lPD7516H: TA = -10°C to + 70°C, VOO = 2.5 V to 6 V j.lPD75CG16H:TA= -100Cto +70 oC,VDO=5V ± 10% Total, display outputs, IlPD7516H -120mA display outputs, IlPD75CG16H -90mA Parameter Total, other than display outputs -20mA Input voltage high VIH1 0. 7V oo Voo V Other than X1, X2 VIH2 Voo-0.4 Voo V X1, X2 (Note 1) Input voltage low VIL1 0 0. 3V OD V Other than X1, X2 VIL2 0 0.4 V X1, X2 (Note 1) Output voltage high VOH Voo-1.0 V Voo=5V±10%, 10H= -1mA Voo-0.5 V IlPD7516H only, 10H= -100~ 0.4 V Voo=5 V ±10%, IOL=1.6mA 0.5 V IlPD7516H only, 10L =400~ 3 ~ VI = Voo; other than X1, X2 Output current low, 10L Per pin Total, all output ports Total power consumption (Note 1), PT Plastic flat package (IlPD7516H) Plastic QUIP, (IlPD7516H) 17mA 60mA 400mW Umlta Symbol 600mW Min Typ Max Unit Operating temperature, TOPT Storage temperature, TSTG Comment: Exposing the device to stresses above those listed in Absolute Maximum Ratings could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational sections of the specification. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Output voltage low Input leakage current high Note: (1) Calculation of PT: there are three kinds of power consumption, the total of which should be less than the total power consumption (PT) in this specification. Use of less than 80% of PT is recommended. The three different power consumptions are as follows: 1. CPU power consumption. Voo(max) x I001(max) 2. Power consumption of output pins. This includes both normal output and display output. Calculate the total consumption of each output pin to which the maximum current flows. 3. Power consumption of on-chip pull-down resistors (mask option). Example Configuration: 9 segments x 11 digits, 4 LED outPUtS VOO = 5 V ±10%, 4.19 MHz oscillation Segment pin = 5 mA (max) Timing pin = 15 mA (max) LED output pin = 10 mA (max) Vacuum fluorescent display (V LOA D) = - 30 V Input leakage current low VOL IUH1 Test Conditions IUH2 20 ~ VI=VOO; X1, X2 IUL1 -3 ~ VI = 0 V; other than X1, X2 IUL2 -20 ~ VI=OV; X1, X2 Input leakage current IlL -200 ~ IlPD75CG16H only; VI=OV, 10-17 Output leakage current high ILOH 3 ~ VO=Voo Output leakage current low ILOL1 -3 Il A Vo=OV: other than display outputs ILOL2 -10 ~ VO=VLOAO= Voo-35 V: display outputs 3-181 I ttiEC JIPD7516H DC Characteristics (cont) j.lPD7516H: TA = -10°C to + 70°C, Voo = 2.5 V to 6 V j.lPD75CG16H: TA = -10°C to + 70°C, VDO = 5 V ± 10% Limits Parameter Display output current On-chip pull-down resistance Symbol 100 RL Typ Max Unit Tast Conditions -7 mA SO-S7; (Notes 2 & 3) -4 mA j.lPD75CG16H; (Notes 2 & 3) -15 mA To-T15 (Notes 2 & 3) -10 mA j.lPD75CG16H; (Notes 2 & 3) -3 mA So-S]; (Note 4) -2 mA j.lPD75CG16H; (Note 4) -7 mA To-T15 (Note 4) -5 mA j.lPD75CG16H; (Note 4) kQ VOO- VLOAO=35 V 40 70 120 Limits Paramatar Symbol Min Supply current, 10D1 j.lPD75CG16H 1002 Tast Conditions Typ Max Unit 1.2 3.6 mA High speed Voo=4.75 V to 5.5 V; (Note 5) 1.0 3.0 mA High speed; (Note 6) 350 1000 j.tA Halt mode Voo=5V±10%; (Note 6) 20 j.tA Stop mode; (Note 6) 1003 Note: (1) The circuits in figures 19 and 20 are recommended. (2) The external circuit in figure 21 is recommended. (3) VPRE=VOo-9V±1V, Vo o =4Vto6V, Voo=Voo-2V (4) VPRE=OV, VOO=VDD-2V (5) 6.55 MHz crystal, C1 = C2 = 10 pF (6) 4.19 MHz crystal, C1 = C2 = 10 pF Supply current, 1001 j.lPD7516H 1002 1001 1002 1003 3-182 Min 3.0 0.6 9.0 1.9 mA mA High speed Voo=5V±10%; (Note 5) Low speed halt mode Voo=5V±10%; (Note 5) 2.0 6.0 mA High speed Voo=5V±10%; (Note 6) 400 1200 j.tA Voo=3V±1O%; (Note 6) 450 1500 j.tA Halt mode Voo=5 V ±10%; (Note 6) 150 400 j.tA Halt mode Voo=3V ±10%; (Note 6) 0.1 20 j.lA Stop mode Voo=5 V ±10%; (Note 6) 0.1 10 j.tA Stop mode Voo=3V ±10%; (Note 6) Capacitance TA=25°C;Voo=OV Limits Paramatar Symbol Input capacitance CI Output capacitance, Display outputs Co Other outputs I/ acapacitance Cia Min Typ Max Unit Tast Conditions 15 pF (Note 1) 35 pF (Note 1) 15 pF (Note 1) 15 pF (Note 1) Note: (1) fc = 1MHz, Unmeasured pins are connected to OV. t-IEC J.lPD7516H AC Characteristics Clock Operation Port 1110 Operation (cant) IlPD7516H:TA= -10°C to +70°C, Voo=2.5Vt06V IlPD75GC16H:TA = -10°Cto +70 oC, Voo =5V±10% Parameter Limits Parameter System clock oscillation Symbol fxx System clock fx input frequency X1, X2 input pulse width high, low Min Typ Max Unit Limits Test Conditions Symbol 3.5 4.19 4.2 MHz (Notes 1, 2 & 3) 6.55 6.6 MHz Voo=4.5 V to 6.0V; (Notes 1, 2 & 3) Input data floating time (after PS'i'B t) 0.1 4.2 MHz (Notes 1& 4) 4.2 6.6 MHz Voo=4.5Vto 6.0V; (Notes 1& 4) Control set-up tesT time (to PSTB +) 100 tXL 75 ns (Notes 1 & 4) Voo=4.5Vto 6.0V; (Notes 1 & 4) EVENT input frequency fE 410 EVENT input pulse width high, low tEL 1.2 !-Is Voo=4.0Vto 6.0V tEH 6.25 j.ls j.lPD7516H only 80 kHz Voo=4.0Vto 6.0V kHz !-IPD7516H only Note: (1) The circuits in figures 19 and 20 are recommended. (2) Refer to the Operating Supply Voltage table. Unit Test Conditions 700 ns (Note 2) 0 ns (Note 2) 100 ns (Note 2) 100 ns (Note 2) ns (Note 2) ns (Note 2) tSTDF Control hold time tSTe Output command Input command PSTB pulse width low tSTL2 750 Note: (1) Port output mode. (2) 1/0 expander mode Voo = 4 V to 6 V. Port 1110 Operation j.lPD7516H:TA= -100Cto +70 oC, VoO=4.5Vt06.0V IlPD75CG16H:TA= -10 0Cto +70 oC, Voo=4.75Vt05.5V 4.2MHz~ fx, fxx~ 6.6 MHz Low Speed Mode(1) (EM2 = 0) Limits (4) External clock. Parameter Port 1110 Operation IlPD7516H: TA = -10°C to + 70°C, Voo = 2.5 V to 6 V IlPD75CG16H: TA = -10°Cto +70°C, Voo=5V±10% 0.1 MHz ~ fx, fxx ~ 4.2 MHz Limits Symbol 80 0 (3) Crystal oscillation. Parameter Typ Input data valid tSTDV time (after PSTB +) 4.2 tXH Max Min Min Typ Max Unit Test Conditions ns (Note 1) Symbol Unit Test Conditions ns (Note 2) Port 1output tSTP hold time (after PSTB t) 100 ns (Note 2) PSTB pulse width low tSTL1 600 ns (Note 2) Output data set- tOST uptime (to PSTB t) 400 ns (Note 3) Output data hold tSTO time (after PSTB t) 100 ns (Note 3) ns (Note 3) ns (Note 3) ns (Note 3) Port 1output hold time (after PSTB t) tSTP 100 PSTB pulse width low tSTL1 450 ns (Note 1) Output data set- tOST uptime (to PSTB t) 200 ns (Note 2) Input data valid tSTOV time (after PSTB +) Output data hold tSTD time (after PSTB t) 100 (Note 2) Input data floating time (after PSTB t) ns Max 400 250 (Note 1) Typ Port 1 output set- tpST uptime (to PSi'B t) Port 1 output set- tpST uptime (to PSTB t) ns Min 850 tSTDF Control set-up teST time (to PSTB +) 400 3-183 NEe JJPD7516H AC Characteristics (cont) Port 1110 Operation (cont) Other Operations Limits Parameter Symbol Control hold time tSTC Output command Input command PSTB pulse width low Min Typ Unit ns {Note 3) Parameter ns {Note 3) INTO pulse tIOH, width high, low tlOL 10 ",s ns {Note 3) INT1 pulse width tl1H high, low t11L' (1) ",s RESET pulse tRSH, width high, low tRSL 10 ",s Limits 100 80 0 tSTL2 Max ",PD7516H:TA = -10°C to +70 oC, Voo=4.5Vt06.0V ",PD75CG16H: TA = -10°C to + 70°C, Voo = 4.75 V to 5.5 V Test Conditions 1200 Note: (1) The ",PD82C43/8243H, etc, cannot interface with the ",PD7516H in high speed mode (EM 2 = 1). (2) Port output mode. Symbol Min Typ Max Unit Test Conditions Note: (1) 26/f x or 26/f xx (3) 1/0 expander mode Voo = 4 V to 6 V. ",PD75CG16H EPROM Characteristics TA= -10°C to +70°C;Voo=5V±10% Serial Interface Operation Limits ",PD7516H: TA = -10°C to + 70°C, Voo = 2.5 V to 6 V ",PD75CG16H:TA= -10OCto + 70°C, Voo=5V±10% Limits Parameter Typ Test Conditions Access time tACC tKCY 2.1 ",s Voo=4Vt06V; Input 12.5 ",s ",PD7516H only; Input (1) ",s Voo=4Vt06V; Output (2) ",s ",PD7516H only; Output TA = -10°C to + 70°C SCK pulse width tKH high, low 0.7 ",s Voo=4 V to 6V; Input Parameter tKL 6.5 ",s ",PD7516H only; Input (3) ",s Voo=4Vt06V; Output (4) ",s ",PD7516H only; Output 300 ns Voo=4Vto 6V 1000 ns ",PD7516H only 450 ns VDO=4Vto 6V SI hold time (after SCK t) tSIK tKSI 1000 SO output delay tKSO time (after SCK ~) Note: (1) High speed mode: 16/f x or 16/f xx Low speed mode: 64/f x or 64/f xx (2) 64/f xx or 64/f xx (3) High speed mode: 8/f x or 8/f xx Low speed mode: 32/f x or 32/f xx (4) 32/f xx - 2.01'5, or 32/f xx - 2.01'5 3-184 ns ",PD7516H only 500 ns Voo=4 V to 6 V for 7516H 2000 ns ",PD7516H only Min Typ CE low set-up tCE time to data valid Min SI set-up time (to SCK t) Unit Symbol Symbol SCK cycle time Max Parameter Max Unit 700 ns 700 ns Test Conditions ns Data valid hold tlH time to CE rising edge Operating Supply Voltages Limits CPU (Note 1) Symbol Typ Test Conditions Max Unit 4.5 6.0 V fx, fxx =4.2MHzto 6.6 MHz, (Note 3) 4.0 6.0 V fx=0.1 MHzto 4.2MHz, fxx =3.5 MHz to 4.2 MHz, (Note 3) 4.5 6.0 V fx, fxx =4.2 MHz to 6.6 MHz, (Note 4) 2.5 6.0 V fx=0.1MHzto 4.2 MHz, fxx=3.5 MHz to 4.2 MHz, (Note 4) Min tt1EC J.lPD7516H AC Characteristics (cont) Timing Waveforms Operating Supply Voltages (cont) Data Retention Timing Limits Parameter Symbol Crystal oscillation circuit (Note 2) Typ Min 4.5 Max Unit 6.0 V Te,t Conditions 6.6MHz, C1=10pF, C2~ 10 pF, (Note 5) 2.7 6.0 V h I fxx =4.2 MHz to C1=10pF, C2~ 10pF, fxx =3.5MHzto 4.2 MHz, (Note 5) 2.85 6.0 V C1=10pF, C2~ 22pF, fxx =3.5 MHz to 4.2 MHz, (Note 5) External clock 2.5 6.0 V Display controller 4.0 6.0 V PPG 4.0 6.0 V Port 1 2.5 6.0 V Port output mode 4.0 6.0 V 1/0 expander mode (---STOP Mode rData Retention MOde, t '\ Voo VOOOR Execution of STOP Instruction /;..----- =-..! I RESET 83·002959A Clock Timing X1 input I EVENT Timing Note: (1) Except the crystal oscillation circuit, display controller, PPG, and portt (2) The circuits in figure 19 and 20 are recommended. 83·002961A (3) High speed mode, EM2=1. (4) Low speed mode, EM2 = o. EPROM Timing (5) Crystal Oscillator. AC Waveform Measurement Points (Except X1, X2) 0.7 Voo 0.3 VOO > Test Points < 0.7 Voo 0.3 Voo CE 83·002909A 10·17 ----------<1 83'()02962A Strobe Output Timing Plo·P13 PSTB 83·002963A 3-185 NEe f..tPD7516H Timing Waveforms (cont) Interrupt Input Timing Port I/O Expander I/O Timing Expander Port Output INTO Expander Port Input INT1 (Rising Edge) INT1 (Falling Edge) 83-002966A Serial Transfer Timing RESET Input Timing SCK RESET 83-002967A SI---+--..(J SO Output. _ Data V_ I'--. 83-002965A 3-186 NEe JiPD7516H Figure 1. Digital Tuning System Application Tuning Signal - - - - - - - - - - - - - - - - - - - - - - - - , Electronic Tuner (Analog Output) ....-------------1 PPO LPF Keyboard I'PD7516H System Control Voo Vss 83-0029858 Figure 2. Telephone Application Buzzer Figure 3. ECR Application Keyboard DO Telephone Line (Dial Pulse) Keyboard Buzzer Melody DO I X1 I 83-OO2986A Power Fail PPO X2 Voo Vss I 83-002987A 3-187 NEe J,tPD7516H Data Memory (RAM), 256 Words x 4 Bits Figure 4. Automotive Equipment Application This static RAM used to store display and operation data. It may also function with the accumulator (A) for 8bit data processing. Analog Input • Fuel • Temperature • Battery ct1 Buzzer Il..Jmelod Y 83-002988B Functional Description Program Memory (ROM), 6144 Words x 8 Bits This mask-programmable memory is addressed by the bank flag (BNK) and the program counter (PC), and is used to store programs and table data. See figure 5. Figure 5. OOOOH Program Memory Map r-------,~----O-OO-OH RESET vector 3,84ox8 INTT vector 0020H INTO/S vector 0030H INTI vector D Data memory addresses are from OOH to OFFH. The first 64 locations are pre-assigned as display data for the FIP display (OOH to 03BH) and the programmable pulse generator (PPG) modulo section (03CH to 03FH). When display data is written in OOH-03BH, the FIP controller/driver automatically reads it and generates drive signals for the FIP. See figure 6. Addresses OOH-03FH cannot be accessed by stack operations. RAM locations 40H-OFFH can be used as a stack area addressed by the SP. This data memory area is used when executing call or return instructions (CALL, CALT, AT, RTS, RTSPW), push/pop instructions (PSHDE, PSHHL, POPDE, POPHL), and when answering an interrupt. When executing a call instruction or interrupt occurence with interrupts enabled, the contents of the PC and program status word (PSW) are stored in the stack area. A push instruction stores the contents of DE or H L in the stack area. See figure 7. 256 x 8 0010H There are three types of data memory addressing: • Direct. Address designation is made on the second byte of the instruction. • Register indirect. Address designation is made by the contents of a register pair designated by the instruction . • Stack. Indirect address designation is made by the contents of the stack pOinter (SP). Figure 6. ~ Data MemoryMap Data Memory ~ (0) DOH lFFFH OOCFH OODOH Reference table (16 x 8) for LHLT Instruction Reference table (48 x 8) for CALT instruction 83·002938A General Purpose Registers Four 4-bit general purpose registers (D, E, H, L) may be paired as follows for 8-bit operations: DE, HL, and DL. These 8-bit register pairs are commonly used as pointers to memory locations. When using the HL register pair as a data pointer, auto-increment and autodecrement of the L register may be specified. 3-188 60 x 4 Display iata Area J OOCOH (59) 3BH (60) 3CH 4 x 4 PPG Modulo Section Dire ctllndirect Ad dress Area J (63) 3FH (64) 40H 256 x 4 ..,,!,.. 192 x 4 (255) FFH 83·002939A NEe Figure 7. #-,PD7516H Push, Call, Interrupt • 1/32 (system clock, Cll; and FOP controller clock, FIP) Push Instruction Call Instruction/Interrupt Stack Stack SP·4 • PCll' PCS SP-3 PSW SP·2 E or L SP·2 PC3'PCO SP· 1 D or H SP· 1 PC7,PC4 83-002940A Clock Generator The system clock generator consists of a crystal oscillator, a frequency divider, and a standby (stop/halt) mode control circuit, as shown in figure 8. When an external crystal is connected to X1 and X2, the crystal oscillator generates the f xx . (The notation 'fxx' is used when referring to crystal oscillation; 'fx' is used when an external clock is input.) It is also possible to obtain a clock by inputting an external clock into X1 and an inverted clock to X2. The frequency divider divides the output of the crystal oscillator into four frequencies, as follows: • 1/2 (pulse generator clock, PPG) • 1/8 (system clock, ClH) Figure 8. 1/128 (timer/event counter clock) The system clock (Cl) may be 1/8 or 1/32 frequencydivided, depending on the state of expansion mode register bit 2 (EM:V. EM2 = 1 selects 1/8 , and EM2 = 0 selects 1/32. Cl is supplied to all circuits except the FIP controller and PPG, which use the fxx x 1/32 and fxx x 1/2, respectively. Cl is 1/2 frequency divided to supply the CPU (,) clock. Cl is an input to the clock control circuitry used to generate the count pulse (CP) used by the timer / event counter. The standby mode control circuit consists mainly of the stop and halt flip-flops. The stop flip-flop, when set, stops the crystal oscillator. There is no input to the frequency divider, so no clocks are output to the ",PD7516H circuitry. The STOP instruction sets the stop flip-flop; RESET clears it. The halt flip-flop, when set, inhibits the input to the 1/2 frequency divider that generates " thereby stopping ,. A HALT or STOP sets this flip-flop; it is reset by the RELEASE Signal (generated when an interrupt flag is set) or at the falling edge of the internal reset (IRESET) signal. (IRESET is released after a waiting time following the release of the external RESET input.) Clock Generator Circuit ...----------~r__--RESET ~----+-+----STOP [Note 1] STOP F/F Frequency Divider 112 11128 ........... r - - - - - J : i A L T [Note 1] EM2--+---' I - - - - - - H A L T RELEASE l...-_ _ _ I RESET ( ~ ) ~----_, (to CPU) L -_ _-+---1~-------------- __ CL (System Clock) L -_ _ _ _ _ _ _ _ _ _ _ _ _ to Timerlevent counter l...-_ _ _ _ _ _ _ _ _ _ _ _ _ _ 'FIP (to FIP controller) Note: [1] Instruction execution. L -_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 'PPG (to pulse generator) 83-0029418 3-189 3 t\'EC f..'PD7516H Figure 9. Clock Control Circuit _nt~ernalrBU-S--------------------------------------------~ L -_ _ _ _ _ _ _ _ _ to Tim~~~~~~: _------------ 1xx ___________________-1-__1--__1---1 128 Prescaler 2 (1/8) Event 0 - - - ~------------ CP (to Timer/Event Counter) Note: (1) Instruction execution. 83·002942B Clock Control Circuit This circuit consists of a 4-bit clock mode register (CMo-CM3), three prescalers, and a multiplexer, as shown in figure 9. The circuit generates the clock pulse (CP) input to the timer 1event counter from the following inputs: • System clock (Cl) • 1/128 divided clock from the crystal oscillator (fxx/128) • External EVENT pulse Bit CMo-CM2 determine the clock input selection and divide ratio. CM3 gates the output of a timer out signal from the PTOUT (P21) pin. When CM3 = 1, output from the timer out flop-flop (TOUT) is output to P21. Executing an OP or OPl instruction loads the clock mode register. The format of the clOck mode register is shown in figure 10. Timer/Event Counter This counter consists of an 8-bit counter register, an 8bit modulo register, an 8-bit comparator, and a timer-out flip-flop, as shown in figure 11. The 8-bit count increments at every rising edge of the clock pulse (CP). It is cleared to 0 when executing the TIMER instruction, a RESET input, or a coincidence signal from the comparator. 3-190 Figure 10. Clock Mode Register Clock Mode Register ICM3T CM21cM11cMol L -l--l CM2 CM1 0 0 CMO 0 CL x~ 256 Ixx~ orlxx x~ 8192 0 0 1 0 0 1 1 0 1 EVENT input CL x-.!... 32 1 0 0 1 0 1 1 1 1 0 1 1 CM3 o I 1 8192 Ixx~ orlxx x~ 1024 1024 Inhibit Designation 01 Timer Out F/F Output I I Stop Output I I I 83·002943A The modulo register determines the INTI signal interval. The contents of this register are set via the TAMMOD instruction. RESET sets the contents to OFFH. The timer-out flip-flop inverts with every INTI signal output from the comparator. Its output, TOUT, can by sent to the PTOUT pin when bit 3 (CM3) of the clock mode register is set. TOUT may also be used as a serial clock source to the serial interface. NEe Figure 11. J-lPD7516H Serial Interface Structure of the Timer/Event Counter The serial interface is used for serial data I/O. It consists of an a·bit shift register, a 4·bit shift mode register, and a 3·bit counter, as shown in figure 12. Figure 13 shows the serial shift timing. TCNTAM - t - - . - ! [Note 1] The serial clock (SCK) controls the serial data communication rate. An a·bit byte clocks into the serial input (SI) port or out of the serial output (SO) port starting with the MSB. Data transmission occurs synchronously with the falling edge of SCK. Data reception occurs synchronously with the rising edge of SCK. CP Note: [1] Instruction execution. PTOUT The 3·bit counter counts the number of serial clock pulses. When a byte of serial data is transferred, an internal interrupt signal (INTS) is generated. Selecting INTS (setting SM3 of the shift mode register to 0) sets the interrupt request flag, INTO/S RQF. 83·002944A The end of transfer of each byte can also be verified by testing INTS RQF with the SKI instruction instead of interrupt processing. Figure 12. Serial Interface Block Diagram POJiSI O - - - - i .>-----4-+-1-+--+I SM3 [Note 2] P02/SO 0----"------++-< "-_ Jo-----1i-----+--TOUT Notes: [1] Indicates instruction execution. [2] SM3 to the interrupt controller. I------<>--.INTS POOIINTOo------t . > - - - - - -... RS """""----~---,Q F/F SI+----SIO [Note 1] 83-0029458 CPU Clock (~) When the SIO instruction executes, eight CPU clock pulses (~) are supplied to the serial interface for the serial clock and output from SCK. After the eighth clock, SCK is fixed high level, automatically stopping serial data 110 after one byte has transferred. Table 1. SCK Frequencies Low Speed Mode High Speed Mode 6.55 MHz 102.4 kHz 409.6 kHz 4.19MHz 65.5 kHz 262 kHz SCK does not have to be software controlled. Its transfer rate is determined by the frequency of ~. See table 1. 3-191 11 ttlEC JAPD7516H Figure 13. Serial Shift Timing INTS generating timing reenabling the master interrupt flip-flop or until their interrupt request flags are reset by executing a SKI instruction. Figure 14 is a block diagram of the interrupt control circuit. FIP Controllerl Driver 83·002946A Interrupt Function There are two external and two internal interrupts, with the specifications listed in table 2. The external interrupt INTO uses the POO port pin as the interrupt signal input, and has the same interrupt process as the internal serial interrupt INTS. Selection of the interrupt is programmable and depends on the application. Table 2. Interrupt Specifications Vector Inti Source Ext PriorIty Address INTI (coincidence signal from timer / event counter) int 1 10H(16) INTO (interrupt signal from POO terminal) ext 20H(32) INTS (end of transfer signal from serial interface) int 20H(32) INT1 (interrupt signal from INT1 terminal) ext 3 30H(48) Interrupt Sequence When an interrupt goes active, the following occur: • A corresponding interrupt request flag is set. • The interrupt master enable flip-flop is reset. • The contents of the PC and PSW are saved in the stack. • An interrupt start address is generated and jumped to. • The interrupt request flag set by the interrupt is reset. Two machine cycles are required for interrupt execution, one for saving the return address and one for jumping to the interrupt start address. If several interrupts occur simultaneously, all respective request flags are set, and the interrupt with the highest priority is processed. The remaining interrupts are pending until serviced by 3-192 The FIP controller/driver consists of 60 4-bit nibbles of display memory (000-03BH of data RAM), a 4-bit display mode register (DM3-DMo), a 4-bit timing mode register (TM3-TMo), a 4-bit blanking mode register (BM3-BMo), an output selector, and a high voltage output driver. See figure 15. The FI P controller / d river has 24 outputs for directly d riving a high voltage vacuum fluorescent display: • 8 segment signal outputs (So-S7) • 8 timing signal (grid) outputs (To-T7) • 8 timing or segment outputs (Ta/Sa-T15/S15) The contents of the display mode register determines which of the five display modes is available to the user. The modes are as follows: • Static mode - 24 static output • Dynamic mode - 8 segment mode - 12 segment mod~ I - 12 segment mode II - 16 segment mode The contents of the timing mode register determine the number of display digits (1-16) and control the number of timing signals (To-T15) output. Timing signals drive the grids of vacuum fluorescent display tubes. The voltage on the grid will determine the brightness of a digit (made up of one or more segments) or if the digit will be turned on or off. The width of the timing signal pulse can be adjusted at eight independent steps by the value loaded into the blanking mode register. This function is useful for dimming control and for preventing display cross-talk of adjacent digits. The active level of the timing signal can be designated high or low by bit DM 3 . NEe Figure 14. J..lPD7516H Interrupt Control Circuit Block Diagram [Note 1] SM3 [Note 2] INT1 INT1 ROF CLINTS POolINTO Nonsync Edge Detect INTO/S ROF Nonsync Edge Detect INIT ROF Vector Address Gen [Note 1] SID INIT Note: [1] Indicates instruction execution. [Note 1] Timer [2] SM3 is bit 3 of the shift mode register (selection of INTO or INTS). HALT Release 83-0029478 Figure 15. FIP Controller/Driver Block Diagram On·chip Bus Display Data Memory (60 )( 4 bits max) Segment Data Latch (16 bits) TO·T7 83-0029848 ~_1Q~ ttiEC J.(PD7516H Display Mode Register (OM) Figure 16. This 4-bit write-only register (OM3-0MO) determines the display mode (dynamic, static, and off) of the FIP controller/driver. It also determines the active level of the display timing signals. This is shown in figure 16. Display Mode Register Format IDM~DM21DM1 DMOJ L- ~ The DM register has an output address of aBH and is accessed by the output instructions OP and OPL when bit EM3 of the expansion mode register is set. The OM register is cleared by a RESET. 0 0 0 Display OFF 0 0 1 Use Inhibited f--0 1 0 1 0 1 1 0 0 Static display (24 segment output) 8 segment mode (up to 16 digits) f--- Figure 17 showns a display example in 12-segment model. 1 0 1 1 1 1 r---1 1 0 r---- o 12 segment mode I (up to 15 digits) Dynamic Display 12 segment mode II (up to 11 digits) 16 segment mode (up to 11 digits) I I Timing signal Tn: active hi9~ 1 Timing signal Tn: active low I 83-002949A Figure 17. Display Example in 12-Segment Mode I Display Data Memory {OM = [x[101] TM = [1010] 1 EH T1S T14 T13 T12 I k i i h g f e d c b Ja 0 0 0 b3 0 0 0 b2 0 0 0 0 b1 0 0 0 0 bO 0 0 0 0 0 b3 0 0 1 1 1 b2 0 0 0 0 1 b1 0 0 0 0 1 1 bO 1 0 0 1 1 0 b3 1 0 1 1 0 1 b2 0 0 1 1 0 0 b1 0 1 0 0 1 0 0 bO II II II II : I I I I I I I : I I II I Ts Ts T4 T3 T2 Tl 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 1 1 0 1 1 0 0 0 I I I I I I I I I I I Tg/Sg Ta/Sa 1FH 1DH 1CH 03H 01H OOH 27H 25H 24H I I I 1BH 19H 18H 17H 15H 14H OFH ODH OCH OBH 09H 08H 0 0 0 0 0 1 13H 11H 10H ~ • • • • • • • • • I I ~ S14 ~ ~ S7 S6 S5 S4 S3 S2 S1 SO 23H 21H 20H 07H 05H 04H 2BH 29H 28H Tll /S 11 Tl0/Sl0 1 T7 I I I + 4n + 3 4n + 1 4n I I I • To I I I I I I I I I I I SUN AMa p";b 0 - MON - I I I I ~E1 WED leil - FRI SAT THU I-I I- I I- I I- I I 1 I- I a ffglb [10 [10 I~I C10 [10 [10 [10 [10 1]0 el~~ -0 i 10 h 1 2 3 4 7 9 5 6 8 83-0029508 NEe Standby Function Two standby modes, stop and halt, hold device power consumption to a minimum. Stop mode is entered via the STOP instruction, and halt mode is entered via the HALT instruction. In stop mode, all clocks are stopped. In halt mode, only the CPU clock (~) is stopped. Stop mode can only be released by a RESET. Halt mode may be released either by a RESET or by the setting of an interrupt request flag. Stop Mode In stop mode, the contents of memory are retained, and all other functions are stopped. RESET releases stop mode. In stop mode, the X1 input is internally shorted to Vss in order to hold the crystal oscillator leakage to a minimum. A system using stop mode cannot use an external clock. Halt Mode When no interrupt flags are set, the HALT instruction causes the device to enter halt mode. In this mode, only ~ stops; all other clocks continue to operate. The following functions continue to operate: • Clock oscillation • Frequency division and output of clocks other than ~ • Event input • Timer/event counter • Serial interface (except when ~ is used as SCK) • FIP controller/driver • PPG • Interrupts (INTO, INTS, INIT, INn) • RESET Since a set interrupt flag releases the device from halt mode, this mode cannot be entered if an interrupt request flag is set. It is therefore necessary to reset the request flag(s) either by answering the interrupt(s) (setting the interrupt master enable F/F and process interrupt) or by executing the SKI instruction. J.LPD7516H Low Supply Voltage Data Retention (J.tP D7516H only) Data retention is possible with VOD as low as 2 V. VOO should be lowered after the device is put in stop mode and while RESET is inactive. Stop mode cannot be released in low voltage data retention mode; VOO should first be raised to normal operation. Release of Stop Mode RESET releases stop mode. On RESET's rising edge, the device mode changes to halt mode, starting clock oscillation. At the falling edge of RESET, a waiting time (about 62.5 ms/4.19 MHz, 40 ms/6.55 MHz) elapses, allowing for stabilization of crystal operation; following this the halt mode is released. After normal RESET operation, the CPU begins program execution from address OOOOH. C3 In the release operation, the contents of data memory are retained while the contents of other registers become undefined. Power-on Reset Circuit An example of the simplest power-on reset circuit using a resistor and capacitor is shown in figure 18. Figure 18. Power-on Reset Circuit +5V ~RESET 83-002951B Figure 19. In halt mode, CPU power consumption is eliminated. To hold power consumption to a minimum, all unnecessary circuits should be inactive and the steps below should be taken: • Set the system clock (CL) to low speed • Set the FIP controller/driver to the off mode • Set the PPG for static operation • Stop SCK input Crystal X1 X2 r---m~ C1 = 10 pF C2 os; 22 pF e'1 r 83-002956A 'l_10k NEe ""PD7516H Figure 20. External Clock Figure 21. External Circuit VOOr---~------~-----------o-5V + _=~ 3.3,..F Xl 2~ RD9.1EL VpREr---+--------+ ~ 68 kO High·Speed CMOS Inverters VLOAO r------------+-------------- l II) <" .3 High Speed Halt Mode 500 X1 X2 o 10 10 PF I 1 I J 500 f- 2.0 &::: f- ~ We -t-- t--- ~ 100 (J >- X1 50 g- Il) 110 PF 1 ~ M ~,,~ ~"" V <" ~ IJ ~5ob- High spee1d 2.0 i/ . / Mjde ~eel = 5 V - I-- V ..... 17 V 1-1-1 ...... 17 )?' l - I.--- .... "-- l- Low Speed Mode Vee -- ~ f=: ~ r== &AI = V _I-- I--'" :: I ./ 1.0 I 100 Vs. fx High Speed Mode Vee = 5 V II) o ~ - Supply Voltage, Vee (V) High Speed Hall Mode Vee = 5 V o I I I o ./ >- I I I 10 pF I - ~ ~ i== =t~- t~ - 10 pFI6.55 MHz 10 4.19 MHz ~ X2:: D ii hi A I1= ~5obI I t- (J k:::: Low Speed Hal~ Mo~e &::: 100 Vs. fxx ~ 6.55 MHz):: l--- High Speed Halt Mode Low Speed Mode 1000 Q Q Supply Voltage, Vee (V) <" = 25°C,lxx ~i9h, Spe~d Mode High Speed Mode J....-- I--- +-- 1000 c( (TA 4..19 MHz)= 25°C,lxx = 3V ... Low Speed Halt Mode Veo = 3 V Clock Oscillation Frequency, Ixx (MHz) o -::.... "- V - .J,.....--P' __ V HiJh ~pee~ J.....- Halt Mode Vee = 5 V- _+- Low Speed Mode j... Low Speed Halt Mode o Clock Input Frequency, Ix (MHz) 3-197 f..'PD7516H 3-198 NEe NEe NEe Electronics Inc. J..tPD7519/19H 4-BIT, SINGLE-CHIP CMOS MICROCOMPUTERS WITH Flp® CONTROLLER/DRIVER Description Features The J.LPD7519, 7519H, 75CG19, and 75CG19H are CMOS 4-bit, single-chip microcomputers with the J.LPD7500 series architecture and a FIP controller/driver. Onboard peripheral functions include and 8-bit timer/event counter, an 8-bit serial interface, a 14-bit programmable pulse generator, and a display controller/driver that supervises all of the timing requirements of the 24 port S segment drivers either for a 16-character, 7-segment Flp, or an 8-character, 14-segment FIP. o 4096 x 8-bit program memory (ROM) o 256 x 4-bit data memory (RAM) o 28 I/O lines o Programmable FIP controller/driver Twenty-eight 110 lines are organized into seven 4-bit ports: the input serial interface port 0, output ports 2 and 3, and I/O ports 1, 4, 5, and 6. o The subroutine stack is implemented in RAM for greater nesting depth and flexibility, providing such operations as the pushing and popping of register values. o o The J.LPD7519 has a 7.63 J.Ls instruction cycle time at fxx = 4.19 MHz. The J.LPD7519H/75CG19H has a 2.44 J.Ls instruction cycle time at fxx = 6.55 MHz. o Current consumption for the J.LPD7519 is less than 2 rnA in normal operation (Voo 5 V ± 10%, fxx 4.19 MHz, high speed mode) and is further reduced in the halt and stop power-down modes. For the J.LPD7519H, current consumption is less than 6 rnA for normal operation (Voo 5 V ± 10%, fxx 6.55 MHz, high speed mode). = = o o o = = The J.LPD75CG19/75CG19H piggyback EPROM version, is available for prototyping and program development. It is pin-compatible and functionally equivalent to the masked version. Note: FIP is the registered trademark for NEG's fluorescent indio cator panel (vacuum fluorescent display). o o - 24 high-voltage output lines 8-bit serial interface 8-bit timer/event counter Programmable pulse generator (PPG) - Variable duty port (D/A converter) - Signal generator port - 1-bit output port Vectored, prioritized interrupts - Two external: INTO, INT1 - Two internal: timer (INTT) and serial (INTS) Four 4-bit general purpose registers 106 instructions; subset of J.LPD7500 series instructions set A - Look-up-table capability - Indirect indexed addressing Instruction cycle - J.LPD7519 low speed mode: 15.26 J.Ls/4.19 MHz - J.LPD7519 high speed mode: 7.63 J.Ls/4.19 MHz - J.LPD7519H low speed mode: 15.26 J.Ls/4.19 MHz - J.LPD7519H low speed mode: 9.77 J.Ls/6.55 MHz - /APD7519H high speed mode: 3.81 /As/4.19 MHz - /APD7519H high speed mode: 2.44 /As/6.55 MHz Two power-down modes Single power supply (2.5 V to 6.0 V) Ordering Information Part Number Package Type Max Frequency of Operation tJPD7519G-12 64-pin plastic miniflat 4.19 MHz tJPD7519G-36 64-pin plastic QUIP 4.19 MHz 4.19 MHz tJPD7519CW 64-pin plastic shrink DIP tJPD75CG19E 64-pin ceramic piggyback QUIP 4.19 MHz tJPD7519HG-12 64-pin plastic miniflat 6.55 MHz tJPD7519HG-36 64-pin plastic QUIP 6.55 MHz tJPD7519HCW 64-pin plastic shrink DIP 6.55 MHz tJPD75CG19HE 64-pin ceramic piggyback QUIP 6.55 MHz 3-199 3 ~EC /-lPD7519119H Pin Configurations 64-Pln Plastic Mlnlflat 64-Pin Plastic QUIP and Shrink DIP P20IPSTB P21/PTOUT NC VLOAD POo/lNTO P22/PCL P33 P23 RESET P32 P31 PPO P30 50 To NC 49 T1 PDa/INTO VLOAD 48 T2 P01/SCK To P03/SI 47 T3 P02/S0 T1 P80 46 T4 P03i51 T2 P61 45 T5 P60 T3 P62 44 T6 P61 T4 P63 43 T7 P62 T5 42 Te/S6 TglSg P63 T6 P50 T7 0 P01/SCK P02/S0 VPRE P50 10 P51 11 41 P52 12 40 T101S10 P51 P53 13 39 T11 /S 11 P52 Te/5a Tg/59 I'PD751917519H P10 14 38 T12 /S 12 P53 T10/510 P11 15 37 T13iS13 P10 T11 /5 11 P12 16 36 T14iS14 P11 T12/512 P13 17 T1s1S15 P12 T13i5 13 So P13 T14i514 S1 NC T1s1515 P40 18 P41 19 20 21 22 23 24 25 26 27 28 29 30 31 32 ~.:ti~ Do Do w ~ x ~8Jj~Jf.3Jl~ > > 83·002933A P40 50 P41 51 P42 52 P43 S3 EVENT 54 X2 55 X1 Sa Vss 57 83·002934A 3-200 NEe /-lPD7519/19H Pin Configurations (cont) Pin Identification 64·Pin Ceramic Piggyback QUIP Flatpack, Shrink DIP, and QUIP Packages Flat P20/PSTB VDD P21/PTOUT INTl P22/PCL P33 P23 P32 RESET P31 PPO P30 NC 7, 24 VPRE POoliNTO NC P01/SCK To P02/S0 Tl P03/S1 T2 P60 T3 P61 T4 P62 QUlP(I) Name Function NC No connection 8 POo/INTO 9 P01/SCK Port 0 or external interrupt INTO and the serial I/O interface 4 10 P02/S0 5 11 P03/S1 6-9 12-15 P60-P63 10-13 16-19 P50-P53 Port 6 Port 5 14-17 20-23 P10-P13 Port 1 18-21 25-28 P40-P43 Port 4 29 EVENT Timer/event counter input 30-31 Ts 22 P63 T6 23-24 X2, X1 Crystal clock input P 50 T7 25 32 Vss Ground VDD Power supply positive P51 Ta/Sa P52 Tg/Sg 26, 58 64 P53 Tl0/S l0 27-34 33-40 SO-S7 Segment outputs 35-42 41-48 T8/ S8T15/ S15 Timing/segment outputs Pl 0 Tll/S11 Pl1 T12/S12 P12 T13/S 13 P13 T14/S14 43-50 49-56 To-T7 Timing outputs NC T1S/S 1S 51 57 P 40 So VLOAD P 41 Sl High voltage option resistor supply negative. This pin is not used (NC) in the J..lPD75CG19175CG19H. P42 S2 52 58 VPRE High voltage predriver supply negative P43 S3 EVENT S4 X2 Ss Xl S6 Vss S7 53-56 P30-P33 Port 3 INT1 External interrupt 59 P20/PSTB 60 P21/PTOUT Port 2, or port 1 STB signal, timer F/F output, internal CL output, and general purpose output 57 83·002935A 59-62 63 61 P22/PCL 62 4 P23 63 5 RESET RESET input 64 6 PPO PPG output Note: (1) This QUIP pin identification is also true for the shrink DIP and piggyback packages. t-IEC /JPD7519/19H Pin Identification (cont) P60·P63 (Port 6) EPROM Socket on Piggyback QUIP Individual lines can be configured as a 4-bit input or as a latched, three-state output under control of the port 6 mode select register. No. Symbol Function VDD MSEL Unused Unused EVENT 3-10,21, 23-25 Ao-A11 Program counter output 1-bit external event input for the timerlevent counter. 11-13, 15-19 10- 17 Data input from the 2732 50.57, T8/S8·T 15/515, To.:r 7 14 Vss Same as bottom pin 32; connected to 2732 GND pin 20 CE Chip enable output 22 Vss Same as bottom pin 32; supplies OE signal to the 2732 26 VDD Same as bottom pin 64; supplies Vee to the 2732 INTI VDD Unused External, rising edge triggered interrupt. 27, 28 Pin Functions POo/INTO, P01/SCK, P02/S0, P03/S1 (Port 0) This port can be configured as the 4-bit, parallel input port 0, or as the 8-bit serial 1/0 interface under control of the serial mode select register. The serial interface consists of the serial input (SI), serial output (SO), and serial clock (SCK) used for synchronizing data transfer. Line POo is shared with external interrupt INTO, which is a rising edge-triggered interrupt. P1o·P13 (Port 1) High voltage outputs. SO-S7 are segment driver outputs, and To.:r7 are digit driver outputs. Ts/Ss.:r 15/S15 can be configured as either segment or digit driver outputs under control of the display mode select register. PPO 1-bit programmable pulse generator output. PPO can operate as the pulse width modulation output, the signal generator port, or as a 1-bit output port, as dictated by the PPG mode select register. RESET RESET input. RIC circuit or pulse initializes JAPD7519/7519H and also releases stop or halt mode. X2, X1 Individual lines can be configured as a 4-bit input or as a latched, three-state output under control of the port 1 mode select register. Crystal clock connection. A crystal oscillator circuit is connected to X1 and X2 for system clock operation. Or, an external clock may be connected to X1 and an inverted clock to X2. P20/PSTB, P21/PTOUT, P22/PCL, P23 (Port 2) VPRE P20-P23 are the 4-bit latched output port 2. PSTB is the port 1 output strobe pulse. PTOUT is the timer-out F/F signal. PCl is the internal system clock output. P23 is a general purpose output. High voltage predriver supply. Apply single voltage from Voo-12 V to Voo for proper display operation. P30·P33 (Port 3) 4-bit, latched three-state output port 3. P40·P43 (Port 4) 4-bit latched three-state 1/0 port. Can perform 8-bit parallel 1/0 in conjunction with port 5. VLOAD High voltage option resistor supply negative. Apply single voltage from Voo-40 V to Voo for proper display operation. This pin is not used (NC) in the JAPD75CG19/75CG19H. VDD Power supply positive. Apply single voltage ranging from 2.5 V to 6.0 V for proper operation. P50·P53 (Port 5) 4-bit latched three-state 1/0 port. Can perform 8-bit parallel 1/0 in conjunction with port 4. Vss Ground. NEe J,lPD7519/19H Pin Functions, EPROM Socket Voo (Pins 27, 28) Ao-A11 (Address) Electrically equivalent to VDD of the bottom pins. Do not use these pins. Output the 12 bits of the program counter (PCa-PC11), which are the address signals of EPROM 2732. Vss (Pin 22) Electrically equivalent to Vss of the bottom pins. Supplies OE signal to the 2732. 10-17 (Data Input) Input data from the 2732. Vss (Pin 14) CE (Chip Enable) Outputs the chip enable signal to the 2732. Electrically equivalent to Vss of the bottom pins. Connected to 2732 GND pin. Voo (Pin 1) MSEL Electrically equivalent to VDD of the bottom pins. Provided for future devices. Use in the open condition. Provided for future devices. Use in the open condition. Voo (Pin 26) Electrically equivalent to VDD of the bottom pins. Supplies Vee to the 2732. Block Diagram, J.tPD7519/7519H INT1 EVENT INTO/POo SCK/P01 SO/P02 SI/P03 P20·P23 PSTB/P20 PTOUT/P21 PCL/P22 ROM Program Memory 4096 x 8 Bits {jJPD7519/7519H) CL Standby Control 1,/128 Clock Generator X1 X2 PPO TrTo T1S/S1S Ts/Sa S7·S0 VPRE VLOAD 83·0029368 NEe JAPD7519119H Block Diagram, IlPD75CG19/75CG19H EVENT INn INTO/POo ..!L 128 P10·P13 P20·P23 P5TB/P20 PTOUT/P21 PC L/P22 P 40· P4 3 lo·h ce-----, X1 X2 PPO T7·To T1s1515 Ta /5 a 57·50 VPRE 83·0029378 NEe J..lPD7519/19H Functional Description Program Memory (ROM), 4096 Words x 8 Bits This mask programmable memory is addressed by the program counter (PC), and is used to store programs and table data. See figure 1. General Purpose Registers Four 4-bit general purpose registers (0, E, H, L) may be paired as follows for B-bit operations: DE, HL, and DL. These B-bit register pairs are commonly used as pointers to memory locations. When using the HL register pair as a data pointer, auto-increment and -decrement of the L register may be specified. Data Memory (RAM), 256 Words x 4 Bits This static RAM is used to store display and operation data. It may also function with the accumulator (A) for B-bit data processing. There are three types of data memory addressing: • Direct. Address designation is made on the second byte of the instruction. • Register indirect. Address designation is made by the contents of a register pair designated by the instruction. • Stack. Indirect address designation is made by the contents of the stack pointer (SP). Figure 1. Data memory addresses are from OOH to OFFH. The first 64 locations are pre-assigned as display data for the FIP display (OOH to 03BH) and the programmable pulse generator (PPG) modulo section (03CH to 03FH). When display data is written in 00H-03BH, the FIP controller/driver automatically reads it and generates drive signals for the FIP. See figure 2. Addresses 00H-03FH cannot be accessed by stack operations. RAM locations 40H-OFFH can be used as a stack area addressed by the SP. This data memory area is used when executing call or return instructions (CALL, CALT, RT, RTS, RTSPW), push/pop instructions (PSHDE, PSHHL, POPDE, POPHL), and when answering an interrupt. When executing a call instruction or interrupt occurrence with interrupts enabled, the contents of the PC and program status word (PSW) are stored in the stack area. A push instruction stores the contents of DE or HL in the stack area. See figure 3. Figure 2. Data Memory (0) OOH OOOOH RESET vector 0010H INIT vector 0020H INTO/S vector (59) 3BH (60) 3CH PPG MOdto Section 0030H INT1 vector 4 x 4 (63) 3FH (64) 40H Dire ct/lndirect Ad dress Area 256 x 4 ' 'r' 256 x 8 Figure 3. 192 x 4 (255) FFH 83-002939A Push, Call, Interrupt Push Instruction 3.84ox8 60 x 4 Display iata Area Program Memory Map OOOOH Data Memory Map Call Instruction/Interrupt Stack Stack D SP-4 ~ SP-3 PSW SP-2 E or L SP-2 pe3- PCO SP-1 o or H SP·1 PC7,PC4 ! 1FFFH PCll-PCS OOCOH OOCFH OODOH Reference table (16 x 8) for LHL T instruction 83-002940A Reference table (48 x 8) for CAL T instruction 83-002938A 3-205 NEe IlPD7519/19H Clock Generator The system clock generator consists of a crystal oscillator, a frequency divider, and a standby (stop/halt) mode control circuit, as shown in figure 4. When an external crystal is connected to X1 and X2, the crystal oscillator generates the f xx . (The notation 'f xx ' is used when referring to crystal oscillation; 'f x' is used when an external clock is input.) It is also possible to obtain a clock by inputting an external clock into X1 and an inverted clock to X2. The frequency divider divides the output of the crystal oscillator into four frequencies, as follows: 1/2 (pulse generator clock, PPG) 1/8 (system clock, ClH) ~PD7519H only 1/16 (system clock, ClH) ~PD7519 only 1/32 (system clock, Cll; and FIP controller clock, FIP) • 1/128 (timer/event counter clock) • • • • the FIP controller and PPG, which use the fxx x 1/32 and fxx x 1/2, respectively. Cl is 1/2 frequency divided to supply the CPU (cp) clock. Cl is an input to the clock control circuitry used to generate the clock pulse (CP) used by the timer/event counter. The standby mode control circuit consists mainly of the stop and halt flip-flops. The stop flip-flop, when set, stops the crystal oscillator. There is no input to the frequency divider, so no clocks are output to the ~PD7519/7519H circuitry. The STOP instruction sets the stop flip-flop, and RESET clears it. The halt flipflop, when set, inhibits the input to the 1/2 frequency divider that generates cp, thereby stopping cp, A HALT or STOP sets this flip-flop; it is reset by the RELEASE signal (generated when an interrupt flag is set) or at the falling edge of the internal reset (I RESET) signal. (IRESET is released after a waiting time following the release of the external RESET input.) The system clock (Cl) may be 1/8 (~PD7519H), 1/16 ~PD7519) or 1/32 frequency-divided, depending on the state of expansion mode register bit 2 (EM2)' EM2 = 1 selects 1/8 ~PD7519H) and 1/16 ~PD7519), and EM2 = 0 selects 1/32. Cl is supplied to all circuits except Figure 4. Clock Generator Circuit r---------------.~--RESET ~---..._t__--STOP [Note 1] """'---~----HALT [Note 1] STOP F/F Frequency Divider 1/2 11128 1 - - - - - - HALT RELEASE ' - -_ _ _ I RESET ( """"-- ) t-------- ~ (to CPU) ' - - - - - + - - - 1 - - _ - - - - - - - - - _ CL (System Clock) ' - - - - - - - - - - - - -_ _ 10 Timerlevent counler Note: [1] Instruction execution. l...--------------_~FIP ' - - - - - - - - - - - - - - - - - - - - - -___ (10 FIP conlroller) ~PPG (10 pulse generalor) 83·0029418 3-206 NEe J-lPD7519/19H Figure 6. Clock Control Circuit This circuit consists of a 4-bit clock mode register (CMo-CM3), three prescalers, and a multiplexer, as shown in figure 5. The circuit generates the clock pulse (CP) input to the timer/event counter from the following inputs: Clock Mode Register Clock Mode Register I CM31 CM21cM11 CMO I CM2 CM1 • System clock (CL) • 1/128 divided clock from the crystal oscillator (fxx/128) • External EVENT pulse Bits CMo-CM2 determine the clock input selection and divide ratio. CM3 gates the output of a timer out signal from the PTOUT (P21) pin. When CM3 = 1, output from the timer out flip-flop (TOUT) is output to P21. Executing an OP or OPL instruction loads the clock mode register. CL x~ 256 0 0 0 0 0 1 0 a 1 1 0 1 EVENT input 1 a 0 CL x 1 32 1 0 1 1 1 1 1 0 1 CM3 0 I CMO 1 fxx~ 8192 orfxx )(~ 8192 fxx~ orfxx )(~1024 1024 Inhibit Designation of Timer Out F/F Output I Stop Output I 83-002943A The format of the clock mode register is shown in figure 6. Figure 5. Il Clock Control Circuit Internal Bus to Tim~~~~~:~ _ - - - - - - - - - - - l ~--------------~-~-~~ 128 Event 0 - - Note: (1) Instruction execution. Prescaler 2 (1/8) II :><>----1==t=t===l:J Prescaler 3 (1/8) ~-------CP (to Timer/Event Counter) 83-002942B 3-207 NEe ",PD7519/19H Timer/Event Counter Serial Interface This counter consists of an 8-bit count register, an 8-bit modulo register, an 8-bit comparator, and a timerout flip-flop, as shown in figure 7. The serial interface, used for serial data 1/0, consists of an 8-bit shift register, a 4-bit shift mode register, and a 3-bit counter, as shown in figure 8. Figure 9 shows the serial shift timing. The 8-bit count increments at every rising edge of the clock pulse (CP). Executing the TIMER instruction, a RESET input, or a coincidence signal from the comparator clears it to O. The modulo register determines the INTT signal interval. The contents of this register are set via the TAMMOD instruction. RESET sets the contents to OFFH. The timer-out flip-flop inverts with every INTT signal output from the comparator. Its output, TOUT, can be sent to the PTOUT pin when bit 3 (CM3) of the clock mode register is set. TOUT may also be used as a serial clock source to the serial interface. Figure 7. Structure of the Timer/Event Counter TCNTAM -.....----+1 [Note 1] CP Note: [1] Instruction execution. PTOUT 83-002944A 3-208 The serial clock (SCK) controls the serial data communication rate. An 8-bit byte clocks into the serial input (SI) port or out of the serial output (SO) port starting with the MSB. Data transmission occurs synchronously with the falling edge of SCK. Data reception occurs synchronously with the rising edge of SCK. The 3-bit counter counts the number of serial clock pulses. When a byte of serial data is transferred, an internal interrupt signal (INTS) is generated. Selecting INTS (setting SM3 of the shift mode register to 0) sets the interrupt request flag, INTO/S ROF. The end of transfer of each byte can also be verified by testing INTS ROF with the SKI instruction instead of interrupt processing. NEe Figure 8. J..tPD7519/19H Serial Interface Block Diagram POa/510------I JI----4-+-t+-t 5M3 [Note 2] P02/50o---+-----+-+-< to--+------f-TOUT RI----<>---.. INT5 POo/INToo------I > - - - - -.. R5 ............r-----, Q F/F 514----510 [Note 1] Note: [1) Indicates instruction execution. [2) SM3 to the interrupt controller. 83·0029458 Figure 9. Serial Shift Timing INT5 generating timing 51 the internal serial interrupt INTS. Selection of the interrupt is programmable and depends on the application. Table 1. fxx 50 83·002946A Low Speed Mode High Speed Mode 6.55 MHz 102.4 kHz 409.6 kHz (",PD7519H) 4.19 MHz 65.5 kHz 262 kHz (",PD7519H) 4.19 MHz 65.6 kHz 131 kHz (",PD7519) CPU Clock (cj» Table 2. When the SIO instruction executes, eight CPU clock pulses (~) are supplied to the serial interface for the serial clock and output from SCK. After the eighth clock, SCK is fixed high level, automatically stopping serial data 110 after one byte has transferred. Source SCK does not have to be software controlled. Its transfer rate is determined by the frequency of ~. See table 1. SCK Frequencies Interrupt Specifications Int/Ext Priority Vector Address INTT (coincidence signal from timer/event counter) int 10H(16) INTO (interrupt signal from POo terminal) ext 20H(32) INTS (end of transfer signal from serial interface) int 20H(32) INT1 (interrupt signal from INT1 terminal) ext 30H(48) Interrupt Function There are two external and two internal interrupts, with the specifications listed in table 2. The external interrupt INTO uses the POo port pin as the interrupt signal input, and has the same interrupt process as 3-209 NEe tJPD7519119H Interrupt Sequence When an interrupt goes active, the following occur: • A corresponding interrupt request flag is set. • The interrupt master enable flip-flop is reset. • The contents of the PC and PSW are saved in the stack. • An interrupt start address is generated and jumped to. • The interrupt request flag set by the interrupt is reset. Figure 10. Two machine cycles are required for interrupt execution, one for saving the return address and one for jumping to the interrupt start address. If several interrupts occur simultaneously, all respective request flags are set, and the interrupt with the highest priority is processed. The remaining interrupts are pending until serviced by reenabling the master interrupt flipflop or until their interrupt request flags are reset by executing a SKI instruction. Figure 10 is a block diagram of the interrupt control circuit. Interrupt Control Circuit Block Diagram [Note 1) SM3 [Note 2) INT1 CL- R INT1 ROF INTS POolINTO Nonsync Edge Detect S R INTO/S ROF Vector Address Gen [Note 1) SIO INTT Note: [1] Indicates Instruction execution. [2] SM3 is bit 3 01 the shift mode register (selection of INTO or INTS). Nonsync Edge Detect S R INTT ROF [Note 1) Timer HALT Release 83·0029476 3-210 NEe J..tPD7519/19H FIP Controller/Driver The FIP controller/driver consists of 60 4-bit nibbles of display memory (000-03BH of data RAM), a 4-bit display mode register (DM3-DMo), a 4-bit timing mode register (TM3.:rMo), a 4-bit blanking mode register (BM3-BMo), an output selector, and a high voltage output driver. See figure 11. The FIP controller/driver has 24 outputs for directly driving a high voltage vacuum fluorescent display: • 8 segment signal outputs (SO-S7) • 8 timing signal (grid) outputs (To.:r7) • 8 timing or segment outputs (Ta/Sa.:r15/S15 The content of the display mode register determines which of five display modes is available to the user. The modes are as follows: The content of the timing mode register determines the number of display digits (1-16), and controls the number of timing signals (To-T15) output. Timing signals drive the grids of vacuum fluorescent display tubes. The voltage on the grid will determine the brightness of a digit (made up of one or more segments) or if the digit will be turned on or off. The width of the timing signal pulse can be adjusted at eight independent steps by the value loaded into the blanking mode register. This function is useful for dimming control and for preventing display cross-talk of adjacent digits. The active level of the timing signal can be designated high or low by bit DM3. • Static mode - 24 static output • Dynamic mode - 8 segment mode - 12 segment mode I - 12 segment mode II - 16 segment mode Figure 11. FIP Controller/Driver Block Diagram On-chip Bus Display Data Memory (60 x 4 bits max) Segment Data Latch (16 bits) SO-57 83-002948B 3-211 NEe IlPD7519119H Display Mode Register (OM) This 4-bit write-only register (OM3-0MO) determines the display mode (dynamic, static, and off) of the FIP controller/driver. It also determines the active level of the display timing signals. This is shown in figure 12. Figure 12_ The OM register has an output address of aBH and is accessed by the output instructions OP and OPL when bit EM3 of the expansion mode register is set. The OM register is cleared by a RESET. Figure 13 shows a display example in 12 segment mode I. Display Mode Register Format lOM31DM21DMl DMOJ L-~ 0 0 0 Display OFF 0 0 1 Use Inhibited I---0 1 0 0 1 1 1 0 0 Static display (24 segment output) 8 segment mode (up to 16 digits) I---1 0 1 1 1 1 r---1 1 0 r---- o Dynamic Display 12 segment mode I (up to 15 digits) 12 segment mode II (up to 11 digits) 16 segment mode (up to 11 digits) I Timing signal Tn: active high I 1 Timing signal Tn: active low I I 83-002949A Figure 13. Display Example in 12 Segment Mode I Display Data Memory 2BH 29H 28H {OM = [x(101) TM = (1010) 1 EH I ~ TIS T14 T13 T12 515 514 57 56 55 54 53 52 51 SO S13 s,; I k j i h g , e d c b Ja 23H 21H 20H lFH lDH lCH lBH 19H 18H 17H 15H 14H 13H llH 10H OFH ODH OCH OBH 09H 08H 07H 05H 04H 03H 01H OOH b3 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 b2 0 0 0 1 0 0 0 0 0 0 0 bl 0 0 0 0 0 0 1 0 0 0 0 bO 0 0 0 0 0 0 0 0 0 0 0 b3 0 0 0 0 1 1 0 0 1 1 1 b2 0 0 0 0 1 1 0 0 0 0 1 bl 0 0 0 0 0 0 0 0 0 1 1 bO 0 0 0 0 0 1 0 0 1 1 0 b3 0 1 1 0 1 1 0 1 1 0 1 b2 0 1 1 0 1 0 0 1 1 0 0 bl bO 1 0 0 0 0 1 0 0 1 0 0 iI iI iI iI iI : iI iI II : II I I I + Tll/Sll Tl0/Sl0 1 27H 25H 24H I AMa PMb 0 I I I I I I I + + Tg/Sg Ta/Sa SUN MON ~1 WED 1 2 3 4 I I I I I I I I I I I I 4n + 1 4n I I + + + + + + + + T7 Ts Ts T4 T3 T2 Tl To THU FRI SAT 5 6 7 I I I I 4n + 3 a I I I I I·d I I I-I I I I-I I-I I I ,fglb I=10 I=10 1~lo 1]0 [10 I]0 [10 [10 Clo e(~~ - - 8 9 i 10 h 83-0029508 3-212 NEe J..lPD7519/19H Standby Function Two standby modes, stop and halt, hold device power consumption to a minimum. Stop mode is entered via the STOP instruction, and halt mode is entered via the HALT instruction. In stop mode, all clocks are stopped. In halt mode, only the CPU clock (+) is stopped. Stop mode can only be released by a RESET. Halt mode may be released either by a RESET or by the setting of an interrupt request flag. Stop Mode In stop mode, the contents of memory are retained, and all other functions are stopped. RESET releases stop mode. In stop mode, the X1 input is internally shorted to Vss in order to hold the crystal oscillator leakage to a minimum. A system using stop mode cannot use an external clock. Halt Mode When no interrupt flags are set, the HALT instruction causes the device to enter halt mode. In this mode, only stops; all other clocks continue to operate. The following functions continue to operate: + • Clock oscillation • Frequency division and output of clocks other than • Event input • Timer/event counter • Serial interface (except when is used as SCK) • FIP controller/driver • PPG • Interrupts (INTO, INTS, INTT, INT1) • RESET Since a set interrupt flag releases the device from halt mode, this mode cannot be entered if an interrupt request flag is set. It is therefore necessary to reset the request flag(s) either by answering the interrupt(s) (setting the interrupt master enable F/F and process interrupt) or by executing the SKI instruction. + + In halt mode, CPU power consumption is eliminated. To hold power consumption to a minimum, all unnecessary circuits should be inactive and the steps below should be taken: • • • • Set the system clock (CL) to low speed Set the FIP controller/driver to the off mode Set the PPG for static operation Stop SCK input Low Supply Voltage Data Retention (J,tPD7519/7519H only) Data retention is possible with VDD as low as 2 V. VDD should be lowered after the device is put in stop mode, and while RESET is inactive. Stop mode cannot be released in low voltage data retention mode; VDD should first be raised to normal operation. Release of Stop Mode RESET releases stop mode. On RESET's rising edge, the device mode changes to halt mode, starting clock oscillation. At the falling edge of RESET, a waiting time (about 62.5 ms/4.19 MHz, 40 ms/6.55 MHz) elapses, allowing for stabilization of crystal operation, following which halt mode is released. After normal RESET operation, the CPU begins program execution from address OOOOH. In the release operation, the contents of data memory are retained while the contents of other registers become undefined. Power-on Reset Circuit An example of the simplest power-on reset circuit using a resistor and capacitor is show in figure 14. Figure 14. Power-on Reset Circuit +5V _______ RESET 83·0029518 3-213 NEe JAPD7519/19H Application The ",PD7519/7519H has a variety of flexible powerful functions and is best suited for the following applications: • • • • • • Video tape recorders Plain paper copiers Electronic cash registers Telephone sets Electronic scales Automobiles Figures 15·18 show how to apply the device to a digital tuning system, a telephone, an ECR, and automotive equipment. Figure 15. Digital Tuning System Application Tuning Signal - - - - - - - - - - - - - - - - - - - - , Electronic Tuner (Analog Output) ....- - - - - - - - - 1 LPF PPO Keyboard I'PD7519/7519H System Control P 10· P1 3 Voo Vss 83·0029528 3-214 NEe Figure 16. J..lPD7519/19H Telephone Application Figure 18. Automotive Equipment Application Hook Switch, etc. Line Control Telephone Line (Dial Pulse) Analog Input • Fuel • Temperature • Battery Keyboard cf'1 Buzzer 1'" melody 83·0029558 83·002953A Figure 17. ECR Application Keyboard Buzzer Melody DCJ J PPO I I 83·002954A 3-215 NEe ~PD7519/19H Absolute Maximum Ratings TA = 25°C -0.3Vto +7V Supply voltages, Voo VLOAO (",PD751917519H) (V DO - 40) to (Voo + 0.3) (V DO - 12) to (Voo + 0.3) Input voltage, VI -0.3 V to (Voo + 0.3) Output voltage, Display outputs, Vo (V DO - 40) to (Voo + 0.3) Other outputs, Voo -0.3 V to (Voo + 0.3) Output current high, IOH Per pin, other than display outputs -15 mA Per pin, SO-S7 -15 mA -30 mA Total, display outputs, ",PD751917519H -120 mA Display outputs, /-lPD75CG19175CG19H -90 mA Total, other than display outputs -20 mA 17 mA ____T_ot_al_,_al_lo_u~tp_u_t~po_rt_s_______________________ 60mA Total power consumption (1), PT Plastic flat package (/-lPD751917519H) Plastic QUIP, (/-lPD751917519H) 400 mW ExamRle Configuration: 9 segments x 11 digits, 4 LED outputs Voo 5 V ± 10%,4.19 MHz oscillation Segment pin 5 mA (max) = Timing pin;;; 15 mA (max) LED output pin 10 mA (max) Vacuum fluorescent display (VLOAO) = - 30 V Consumption: 600 mW Operating temperature, TOPT Storage temperature, TSTG Comment: Exposing the device to stresses above those listed in Absolute Maximum Ratings could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational sections of this specification. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. 3-216 1. CPU power consumption. Voo(max) x I001(max) 2. Power consumption of output pins. This includes both normal output and display output. Calculate the total consumption of each output pin to which the maximum current flows. 3. Power consumption of on-chip pull-down resistors (mask option). = Output current low, IOL Per pin Note: (1) Calculation ofPT: There are three kinds of power consumption, the total of which shou Id be less than the total power consumption (PT) in this specification. Use of less than 80% of PT is recommended. The three different power consumptions are as follows: (1) CPU 5.5 V x 2.0 mA = 11 mW (2) Output pins Segment pins: (5/7 x 2 V) x 5 mA x 9 Timing pins: 2 V x 15 mA = 30 mW LED output pins: (10/15 x 2 V) x 10 mA (3) Pull-down resistors (30 + 5.5 V)2/80 kO x 10 158 mW = 64 mW x 4 = 53 mW = Therefore, PT = (1) + (2) + (3) = 316 mW NEe J..lPD7519/19H Capacitance Operating Supply Voltages TA TA = -10°C to = 25°C; Voo = 0 v Limits Parameter Symbol Input capacitance CI Output capacitance, Display outputs Other outputs Co liD capacitance Cia Min Typ Max Unit 15 pF 35 pF 15 pf 15 pF Test Conditions fC = 1 MHz Unmeasured pins are connected to 0 V + 70°C limits Parameter Min Max Unit CPU (1) /oIPD75191 75CG19 4.0 6.0 V 2.5 6.0 V Test Conditions fx = 0.4 MHz to 4.2 MHz High speed mode, fxx = 3.5 MHz to 4.2 MHz EM2=1 Low speed mode, EM2=0 4.0 6.0 High speed V fx, fxx = 4.2 MHz to mode, V 6.6 MHz fx = 0.1 MHz to 4.2 MHz EM2=1 fxx = 3.5 MHz to 4.2 MHz 4.5 6.0 V 2.5 6.0 V Crystal oscilla- 2.7 6.0 tion circuit (2) /oIPD75191 2.85 6.0 75CG19 V C1 = 10 pF C2 :s 10 pF V C1 = 10 pF C2 :s 22 pF CPU (1) /oIPD7519HI 75CG19H 4.5 6.0 Low speed mode, fx = 0.1 MHz to 4.2 MHz EM2=0 fxx = 3.5 MHz to 4.2 MHz fx, fxx = 4.2 MHz to 6.6 MHz Crystal Oscillator External clock 2.5 6.0 V Crystal oscilla- 4.5 6.0 tion circuit (2) /oIPD7519HI 2.7 6.0 75CG19H V fxx = 4.2 MHz to 6.6 MHz Crystal C1 = 10 pF, C2 :s 10 pF Oscillator V C1 = 10 pF, C2 :s 10 pF fxx = 3.5 MHz to 4.2 MHz 2.85 6.0 V C1 = 10 pF, C2 :s 22 pF fxx = 3.5 MHz to 4.2 MHz 2.6 6.0 V Display controller 4.0 6.0 V PPG 4.0 6.0 V Port 1 2.5 6.0 V Port output mode 4.0 6.0 V liD expander mode External clock Note: (1) Except the crystal oscillation circuit, display controller, PPG, and port 1. (2) The circuits in figures 19 and 20 are recommended. 3-217 I NEe J-LPD7519/19H DC Characteristics = TA -10°C to + 70°C ",PD7519/7519H: Voo 2.5 Vto 6 V; ",PD75CG19/75CG19H: Voo = =5 V ± 10% Limits Parameter Input voltage high Input voltage low Output voltage high Output voltage low Input leakage current high Symbol Min Typ Max Unit Test Conditions VIH1 0.7 VDD VDD V VIH2 VDD -0.4 VDD V X1, X2 (1) VIL1 0 0.3 VDD V Other than X1, X2 VIL2 0 0.4 V X1, X2 (1) VOH VDD -1.0 V VDD -0.5 V = -1 rnA = -100!-IA VDD = 5 V ± 10%, IOL = 1.6 rnA; ",PD7519/19H only, IOL = 400!-IA VI = VDD; other than X1, X2 VI = VDD; X1, X2 VI = 0 V; other than X1, X2 VI = 0 V; X1, X2 ",PD75CG19H only VI = 0 V, 10 - 17 Vo = VDD Vo = 0 V; other than display outputs Vo = VLOAD = VDD-35 V; display outputs VPRE = VDD-9 V ± SO-S7 ",PD75CG 19/75CG 19H VOD = VDD-2 V VDD = 4 V to 6 V VOL 0.4 0.5 V V !-IA Other than X1, X2 VDD = 5V ± 10%,IOH ",PD7519/19H only, IOH ILlH1 3 ILlH2 20 /AA Input leakage current low ILlL1 -3 !-IA ILlL2 -20 !-IA Input leakage current IlL -200 !-IA Output leakage current high ILOH 3 !-IA Output leakage current low ILOL1 -3 !-IA ILOL2 -10 -7 !-IA rnA -4 rnA -15 rnA To-T15 -10 rnA ",PD75CG 19175CG 19H -3 rnA SO-S7 VPRE -2 rnA /APD75CG 19175CG 19H VOD VDD = 4 V to 6 V -7 rnA To-T15 -5 rnA /APD75CG19/75CG19H Display output current 10D =0V On-chip pull-down resistance, ",PD7519 RL 80 140 220 kO VOD - VLOAD = 35 V On-chip pull-down resistance, /APD7519H RL 40 70 120 kO VOD - VLOAD = 3-218 35 V = VDD -2 V 1 V(2) NEe f..tPD7519/19H DC Characteristics (cont) = TA -10°C to + 70°C /JPD7519/7519H: Voo 2.5 V to 6 V; /JPD75CG19/75CG19H: Voo = =5V ± 10% Limits Parameter Supply current, /JPD7519 (3) Symbol Min Max Unit 600 2000 /JA High speed Voo = 5 V ± 10% 4.19 MHz crystal C1 = C2 = 10 pF 200 700 800 120 400 iJA iJA iJA Low speed Voo 260 1003 0.1 10 /JA Stop mode 1001 1002 700 2000 800 iJA iJA High speed 4.19 MHz crystal C1 350 1001 1002 2.0 6.0 mA High speed 6.55 MHz crystal 0.6 1.9 mA Halt mode C1 1001 1.3 4.0 mA High speed 4.19 MHz crystal Voo C1 = C2 = 10 pF 250 800 /JA Low speed Voo 1002 450 1500 150 400 0.1 20 0.1 10 iJA iJA iJA iJA Low speed halt mode Voo = 5 V ± 10% 1.2 3.6 mA High speed Voo = 5 V ± 10% 6.55 MHz crystal C1 = C2 = 10 pF 1.0 3.0 mA High speed halt mode Voo = 4.75 to 5.5 V 4.19 MHz crystal C1 = C2 = 10 pF 350 1000 iJA Low speed halt mode Voo = 5 V ± 10% 4.19 MHz crystal C1 = C2 = 10 pF 20 iJA 1001 1002 Supply current, /JPD75CG19 (3) Supply current, /JPD7519H (3) 1003 Supply current, /JPD75CG19H (3) Test Conditions Typ 1001 1002 1003 =3V± 10% =5V± =3V± Low speed halt mode Voo Low speed halt mode Voo 10% 10% = C2 = 10 = 5 V ± 10% Low speed halt mode Voo pF = C2 = 10 pF Voo = 5 V ± 10 = 5 V ± 10% =3V± II 10% Low speed halt mode Voo = 3 V ± 10% Voo = 5 V ± 10% Stop mode Voo = 3V ± 10% Voo =5V± 10% Stop mode Note: (1) The circuits in figures 19 and 20 are recommended. (2) The external circuit in figure 21 is recommended. (3) The display controller and PPG are not operated. 3-219 NEe I-lPD7519/19H Figure 19. AC Characteristics Crystal TA = -10°C to + 70°C Clock Operation, jiP07519/75CG19 = J.lPD7519: voo 2.5 V to 6 V J.lPD75CG19: voo 5 V ± 10% X2 X1 = limits HDI-- Figure 20. r e'I C1 = 10 pF C2 :s 22 pF 83·002956A External Clock Min Typ Max Unit System clock oscillation frequency fxx 3.5 4.19 4.2 MHz Crystal oscillation (1), (2) System clock input frequency fx 0.1 X1, X2 input pulse width high and low tXH 100 ns tXL 100 ns MHz External clock (1) EVENT input frequency kHz 80 X1 EVENT input pulse width high, low ~ Test Conditions Symbol Parameter tEH External clock (1) Voo = 4.0 V to 6.0 V kHz J.lPD7519 only 6.25 J.ls Voo = 4.0 V to 6.0 V J.ls J.lPD7519 only Note: High·Speed CMOS Inverters (1) The circuits in figures 19 and 20 are recommended. External Clock (2) Refer to the Operating Supply Voltages tables. 83·002957A Clock Operation, jiP07519H/75CG19H Figure 21. = J.lPD7519H: voo 2.5 V to 6 V J.lPD75CG19H: voo 5 V ± 10% External Circuit = limits VDD~~~----~-----------o -5 3.31'F V Parameter RD9.1EL 68 k!l -30 VLOAD Vss -= v Note: RD9.1EL: Zener Diode (NEC) Zener Voltage = 8.29 V to 9.30 V 83·002958A Symbol System clock oscillation frequency fxx System clock input frequency fx Test Conditions Min Typ Max Unit 3.5 4.19 4.2 Crystal MHz oscillation (1), (2) 4.2 6.55 6.6 0.1 4.2 4.2 6.6 X1, X2 input pulse width high, low tXH 100 tXL 75 EVENT input frequency fE EVENT Input pulse width high, low tEL 6.25 MHz VOO = 4.5 V to 6.0 V External MHz clock (1) MHz VOO = 4.5 V to 6.0 V ns External clock (1) ns Voo = 4.5 V to 6.0 V 410 kHz Voo = 4.0 V to 6.0 V 80 kHz J.lPD7519H only J.ls Voo = 4.0 V to 6.0 V J.lPD7519H only Note: (1) The circuits in figures 19 and 20 are recommended. (2) Refer to the Operating Supply Voltages table. 3-220 NEe J.tPD7519/19H AC Characteristics (cont) TA = -10°C to AC Characteristics (cont) + 70°C TA = -10°C to + 70°C Port 11/0 Operation, pPD7519175CG19 Port 1 I/O Operation, pPD7519HI75CG19H ",PD7519: voo 2.5 V to 6 V ",PD75CG19: voo 5 V ± 10% 0.1 MHz ~ fx, fxx ~ 4.2 MHz ",PD7519H: voo 4.5 V to 6 V ",PD75CG19H: Voo 4.75 V to 5.5 V 4.2 MHz ~ fx, fxx ~ 6.6 MHz, Low Speed Mode(1) (EM2 = = = Limits Unit Test Conditions 400 ns Port output mode 100 ns Symbol Min Port 1 output setup time (to PSTBt) tpST Port 1 output hold time (after PSTBt) tSTP Parameter Max PSTB pulse width low tSTL1 600 ns Output data set-up time (to PSTBt) tOST 400 ns Output data hold time (after PSTBt) tSTD 100 ns Input data valid time (after PSTB+) tSTDV Input data floating time (after PSTBt) tSTDF Con~et-up time tesT Control hold time Output command Input command tSTe PSTB pulse width low tSTL2 = Limits Unit· Test Conditions 400 ns Port output mode 100 ns Symbol Min Port 1 output setup time (to PSTBt) tpST Port 1 outp!!!.Jlpld time (after PSTBt) tSTP Parameter Max PSTB pulse width low tSTL1 600 ns Output data set-up time (to PSTBt) tOST 400 ns Output data hold time (after PSTBt) tSTD 100 ns ns Input data valid time (after PSTBt) tSTDV a ns Input data floating time (after PSTBt) tSTDF a ns 400 ns Control set-up time (to PSTB+) tesT 400 ns ns ns Control hold time Output command Input command tSTe 100 ns PSTB pulse width low tSTL2 850 1/0 expander mode VOO = 4 V to 6 V (to PSTB+) a 80 1200 = 0) 850 100 a 1200 80 1/0 expander mode VOO = 4 V to 6 V IE ns ns ns ns Note: Port 1 liD Operation, pPD7519HI75CG19H = (1) The ",PD82C43/8243H, etc, cannot interface with the ",PD7519H in high speed mode (EM2 1). = ",PD7519H: Voo 2.5 V to 6 V ",PD75CG19H: Voo 5 V ± 10% 0.1 MHz ~ fx, fxx ~ 4.2 MHz = Limits Unit Test Conditions 250 ns Port output mode tSTP 100 ns Symbol Min Port 1 output setup time (to PSTBt) tpST Port 1 output hold time (after PSTBt) PSTB pulse width low Parameter Max tSTL1 450 ns Output data set-up time (to PSTBt) tOST 200 ns Output data hold time (after PSTBt) tSTO 100 ns Input data valid time (after PSTBt) tSTOV Input data floating time (after PSTBt) tSTOF Control set-up time (to PSTB+) tesT Control hold time Output command Input command tSTe PSTB pulse width low tSTL2 700 1/0 expander mode VOO = 4 V to 6 V ns ns 100 ns 100 a 750 80 ns ns ns 3-221 NEe J.lPD7519/19H AC Characteristics (cont) AC Characteristics (cont) TA TA = -10°C to +70°C = -10°C to +70 O C Serial Interface Operation, pPD7519/75CG19 Serial Interface Operation, pPD7519H/75CG19H ",PD7519: voo 2.5 V to 6 V ",PD75CG19: voo 5 V ± 10% ",PD7519: voo 2.5 V to 6 V ",PD75CG19: Voo 5 V ± 10% = Limits Parameter SCK cycle time SCK pulse width high, low Symbol SI set-up time (to SCKt) time (after Max Unit ",5 Input Voo = 4 V to 6 V 12.5 ",5 ",PD7519 only 4.9 ",5 Output Voo 4 V to 6 V 10 ",5 ",PD7519 only 1.3 ",5 Input Voo = 4 V to 6 V 65 ",5 ",PD7519 only 2.2 ",5 Output Voo 4 V to 6 V 4.5 ",5 ",PD7519 only 300 ns Voo = 4 V to 6 V 1000 ns ",PD7519 only 450 ns Voo = 4 V to 6 V 1000 ns ",PD7519 only 850 ns Voo = 4 V to 6 V 2000 ns ",PD7519 only tSIK tKSI tKSO Test Conditions 3.0 tKH SCKt) SO ou~ delay time (after SCK~) Min tKCY tKL ~old = = = Limits Symbol Parameter SCK cycle time Min Max Unit 2.1 ",5 Input Voo = 4 V to 6 V 12.5 ",5 ",PD7519H only (1) ",5 Output Voo 4 V to 6 V tKCY = (2) SCK pulse width high, low '" Input Voo = 4 V to 6 V 6.5 ",5 ",PD7519H only (3) ",5 Output Voo 4 V to 6 V (4) ",5 ",PD7519H only 300 ns Voo = 4 V to 6 V 1000 ns ",PD7519H only 450 ns Voo = 4 V to 6 V 1000 ns ",PD7519H only 500 hs Voo = 4 V to 6 V 2000 ns ",PD7519H only tSIK m.J!old time (after SCKt) tKSI SO ou~ delay time (after SCK~) tKSO ",PD7519H only ",5 = SI set-up time (to SCKt) Note: (1) High speed mode: 16/f x or 16/f xx Low speed mode: 64/f x or 64/f xx (2) 64/f x or 64/f xx (3) High speed mode: 8/f x - O.B ",5, or B/fxx - O.B ",5 Low speed mode: 32/f x - O.B ",5, or 32/f xx - O.B ",5 (4) 32/f x - 2.0 3-222 ",5, = 0.7 tKH tKL Test Conditions or 32/fxx - 2.0 ",5 = NEe f.,tPD7519/19H Timing Waveforms AC Characteristics (cont) TA = -10°C to +70 0 C AC Waveform Measurement Points (Except X1, X2) Other Operations /iPD7519/7519H: voo = 4.5 V to 6.0 V /iPD75CG19/75CG19H: voo 4.75 V to 5.5 V 0.7 Voo 0.3 Voo = Test Points < 0.7 Voo 0.3 Voo 83-002909A Limits Parameter > Symbol Min INTO pulse width high. low tIOH. tlOL 10 /is INT1 pulse width high. low t11H. tm (1) /is RESET pulse width high. low tRSH. tRSL Max Test Conditions Unit 10 Data Retention Timing H~STOPMode I /is 1\ Voo VOOOR Execution of STOP Instruction Note: " rData Retention MOde1 /"----- =-.i It SRS RESET (1) 26/f x or 26/f xx 83-002959A j.LPD75CG19/75CG19H EPROM Characteristics TA = -10°C to + 70°C; Voo =5 V ± 10% Clock Timing Limits Parameter Symbol Min Typ Max Unit Access time tACC 700 ns CE low set-up time to data valid tCE 700 ns Data valid hold time to CE rising edge tlH Test Conditions X1 input ns 0 EVENT Timing Stop Mode Low Voltage Data Retention Characteristics, j.LPD7519/7519H TA = -10°C to +70 0 C Limits Parameter Symbol Min Data retention supply voltage VOOOR 2.0 Data retention supply current IOOOR RESET set-up time tSRS Typ 0.1 Max Unit 6.0 V 10 /i A Test Conditions 83-002961 A EPROM Timing VOOOR = 2 V /is CE 10·17 -----------(J 83-002962A 3-223 NEe I-'PD7519/19H Timing Waveforms (cont) Strobe Output Timing Interrupt Input Timing INTO INT1 83·002963A Port 1 I/O Expander I/O Timing (Rising Edge) INT1 (Falling Edge) Expander Port Output 83·002966A RESET Input Timing Expander Port Input RESET 83·002967A 83·002964A Serial Transfer Timing SCK SI---+---C Output Data. 83·002965A NEe J..lPD7519/19H Operating Characteristics, pPD7519/7519H = 25°C TA 100 vs (Voo - Voo) (V DO = 4 V to 6 V) 15.0 / 1/ Voo - ;;( .sc VPRE - 9 VI I / / c ~ U I I VVoo - c. :> 0 1// 5.0 c )!I/ Ir// ~ / V ;;( .s =5V VPRE I '" 4V 1 .-)...-. / I-"'" VOoffi, V 41----------IL--I--_~-+_----+_---___i .2 I I Voo Voo - Voo SO,S7 - //i' o ~ I-"" ~ Voo - VPRE Ih en =7V 1 ...--r I V ./ IJ :> VPRE / /' 10H vs (Voo - VOH) 1 V I .2 10.0 / " -100 Voo - VPRE VPRE o Voo - Voo (V) Voo - 100 vs (Voo - Voo) (Voo = 4 to 6 V) 30 I Voo - VPRE - 9 V)V Voo - .sc / 20 § I / / / ,/ / - -~ Voo - .s I - VplRE = 4 V- ~ c ~:J' _ Voo To·T7 Voo -100 VPRE ~ Voo - Voo (V) 15 .2 - T8/S8·T1S/S1S " ;;( =5V 1 Vo~ o I¥' o VPRE /' ./ --,'" II / / /' 11// HJ/ =7V Voo - 10L vs VOL 20 I J -t--1 ./ I II / U VPRE / I ;;( ~ / VOH (V) Voo - Voo = 3 V 10 ~ Voo·= 2.5 V u :> c. :> 0 5 « VPRE ~ ~ Output Voltage Low, VOL (V) 3-225 NEe iJPD7519/19H Operating Characteristics, JlPD7 519H only TA = 25°C 100 vs Voo (fxx = 4.19 MHz) 100 vs fxx 1000 I--- ~ ..;!. s~eed c ~ g- i::====-I---- I 50 ..;!. 0 0 c en 1-----+---+---+--__1" 10~_~ 2.0 x21 X1 pFr,~flo _ __ L_ _J __ _L__ _ 3.0 4.0 J_1_~1 ___ 5.0 = = L_1_~~ 6.0 100 vs fx 600 ~ 4" .:i Ext~SP Clock •• d I~:'~:r 500 i - - - - - _ j _ i: 400 ~ ~ 3001-----~---~-~~~4_~~~~~~-__I I en 200r----lr~~~~~~~::~::~;;~~~~~ Clock Input Frequency 3-226 Ix (MHz) ~ 500 Voo 0 >- 300 I- ~ en =5V 400 200 P' : < Supply Voltage, Voo (V) 700 a_ ,/ ~ 100 0 >1i -I____ I-_ Haiti MOde"::::,C::::- ..k-:::--:I-' __ I----- Low Speed Haiti Mode 0 0 § High Low Speed M~I--'"'" 700 f- a - High Speed Halt MoJe b - Low Speed Halt Mode c - Low Speed Mode 600 I---" High Speed Me!!!- 500 100 o ~ ''''J S!P'J I ...-- i--'b I::::::: I--b a_ VDD = 3 V { - c- I _I - b I o Clock Oscillation Frequency, Ixx (MHz) NEe J..lPD7519/19H Operating Characteristics, pPD7519 only TA = 25°C 100 vs fxx 100 vs Voo 25°C,lxx = 4.19 MHz)= (TA I <" ~ i () High Speed Mode 1000 r---ti 100 50 -Lo~ Speed Mod!- V ~ 1 Low Speed Halt Mode o 10 f-- ~ ~ ~,,~ tOO' f-- High Speed Mode Voo >- /' High Speed Halt Mode Voo = 5 V (J) I <" ~ 500 l 1 0 PF j.,--- t---. Low Speed Mode Voo = 3 V o ro-+- Low Speed Halt Mode Voo I .~ Clock Oscillation Frequency, Ixx (MHz) 100 vs fx 25°C,lxx S.55 MHz) j I 100 () 50 >- ~ r---- ~- -- F F=.-: High spee1d / E F= F= ~c o = f== X1 r--- 1 == X2 ~ '== - 1 I Supply Voltage, Voo (V) ~5ob- k:::::: 10 pF IS.55 MHz 10 ITAI= >-- --- ~ - 3V o Low spee~ Hal~ Mo~e c: (J) I High Speed Halt Mode -Low Speed Mode 1000 .L-I-1 r--:r- 100 vs VOO (TA IV" 1.0 Supply Voltage, Voo (V) High Speed Mode =5V V ...... V () ~ illl 4.19 MHz :' 10 PF 1 2.0 c: ~ 1 >- f-- <" ~ ~5ob- iTA 1= r- ~ 500 ~ (J) ~ High Speed Halt Mode c: ~ I 10 I - P~ , - r--- ~= ~ § c: V ~ V Mide ~ool = 5 V_ t- ,£'i"'" () >- ~ 1.0 V (J) /' ~~ - V o o IV" ~ l..--' -I-' .I. -' I High Speed Ha:t Mode Voo = 5 V- 1-' ....... -~ ,...,~Low Speed ---...- Mode .... Low Speed Halt Mode Clock Input Frequency, Ix (MHz) 3-227 J.lPD7519/19H 3-228 NEe NEe NEe Electronics Inc. Description The I-LPD7527A, I-LPD7528A, and I-LPD75CG28 are 4-bit, single-chip CMOS microcomputers with the I-LPD7500 architecture and FIP direct-drive capability. Note: This data sheet pertains to j.lPD7527A, j.lPD7528A, and j.lPD75CG28. For simplification, the revision letter (A) usually is omitted from the part numbers within the data sheet. The I-LPD7527 contains a 2048 x 8-bit ROM and a 128 x 4-bit RAM. The I-LPD7528 contains a 4096 x 8-bit ROM and a 160 x 4-bit RAM. The I-LPD7527/28 contains two 4-bit general purpose registers located outside RAM. The subroutine stack is implemented in RAM for greater depth and flexibility. The I-LPD7527/28 typically executes 67 instructions with a 5I-Ls instruction cycle time. The I-LPD7527/28 has one external and two internal edge-triggered hardware-vectored interrupts. It also contains an 8-bit timer/event counter and an 8-bit serial interface to help reduce software requirements. Thirty-one high-voltage lines are organized into the 3-bit ' output port 2, the 4-bit output ports 3, 8, and 9, and the 4bit I/O ports 4, 5, 10, and 11. The low power consumption CMOS process allows the use of a power supply between 2.7 and 6.0V. Current consumption is less than 3.0 mA maximum, and can be further reduced in the halt and stop power-down modes. The I-LPD75CG28 is a piggyback EPROM version of the I-LPD7527/28. Pin-compatible and function-compatible with the final, masked versions of the I-LPD7527/28, the I-LPD75CG28 is used for prototyping and for aiding in program development. pPD7527A/28A 4-BIT, SI,NGLE-CHIP CMOS MICROCOMPUTERS WITH Flp® DRIVER D Vectored interrupts: one external, two internal D 8-bit timer/event counter o 8-bit serial interface o Standby function (HALT, STOP) o Data retention mode o Zero-cross detector on POolINTO input (mask optional) o System clock (JAPD7527/7528175CG28): on-chip RC oscillator o CMOS technology o Low power consumption D Single power supply -I-LPD7527/7528: 2.7 to 6.0 V -I-LPD75CG28: 5.0 V Ordering Information Part Number J.tPD7527AC / 28AC MalFrequency of Operation Package Type • 42-pin plastic DI P 610 kHz J.tPD7527ACU /28ACU 42-pin plastic shrink DIP 610 kHz J.tPD75CG28E 42-pin ceramic piggyback DIP 500 kHz Pin Configurations I-LPD7527/28, 42-Pin Plastic DIP or Shrink DIP RESET eL1 CL2 VpRE V LOAD P53 P52 P51 P50 P33 P40 Features o o o o o o o o 67 instructions Instruction cycle: -Internal clock: 51-Ls/400 kHz, 5 V - External clock: 41-Ls/500 kHz, 5 V Upwardly compatible with the I-LPD7500 series product family 4,096 x 8-bit ROM (JAPD7528/75CG28) 2,048 x 8-bit ROM (JAPD7527) 160 x 4-bit RAM (JAPD7528/75CG28) 128 x 4-bit RAM (JAPD7527) 351/0 lines 31 high-voltage output lines that can directly drive a vacuum fluorescent display (FIP) Can select either a pull-down resistor or open-drain output per 31 high-voltage outputs (mask optional) FIP is the registered trademark for NEC's fluorescent indicator panel (vacuum fluorescent display), 49·001078A 3-229 I NEe fAPD7527A/28A Pin Configurations (cont) /-LPD75CG28 EPROM No. /-LPD75CG28, 42·Pin Ceramic Piggyback DIP Symbol VDD RESET VLOAD NCO 2 270MSEL A791-:f6~Voo A60 425 0 As I I P52 P51 A505240 Ag P50 I I A406 230All P23 I I A30 7 220Vss P22 I I A208210Al0 P21/PTOUT A1 0 9200CE I I Ao010 19017 P103 P102 I I 10011 18016 PllJj 11012170 15 P1Do I I 12013 16014 Pl13 vSSy:.s9 13 P111 P110 EPROM address output P03/S1 11-13,15-19 10-17 Data read input from the EPROM P30 14 Vss Connection to EPROM GND pin 20 CE Chip enable output 22 P02/S0 vooO 1 280VoO P53 Pl12 No connection AO-A10 P01/SCK CL2 VpRE NC 3-10,21, 24,25 Vss POo/INTO CL1 P31 P32 Vss Supplies EPROM OE signal 23 A11 Program counter MSB output P42 26 VDD Supplies Vee to the EPROM P43 27 MSEL Mode select input VDD Supplies high-level signal to MSEL P33 P40 P41 POo 28 POl P02 Note: (1) Output drivers on ports 2-5 and 8-11 are mask-optional. Accordingly, either an open-drain output or a pull-down resistor can be selected. VLOAD is suitable for an output driver with a pull-down resistor. P03 P90 P91 EPROM: 2732 P92 (2) Ports 2-5 are suitable as FIP segment signal outputs, and ports 8-11 are suitable for FIP digit signal outputs. P93 Voo Function Connection to pin 21 of j.lPD75CG28 49-001079A (3) Ports 8'-11 have high-current drive capability and can drive an LED directly. Pin Identification Pin Functions, I-lPD7527 128 and I-lPD75CG28 /-LPD7527/28 and /-LPD75CG28 No. Symbol Function RESET Reset input 2,3 CL1, CL2 Clock pins 4 VPRE High-voltage predriver supply 5 VLOAD High-voltage option resistor supply 6-9 P50-P53 High-voltage I 10 port 5 10,12 P23, P22 P21/PTOUT High-voltage output port 2, and output port from timer I event counter (PTOUT) 13-16 P100-P103 High-current, high-voltage I 10 port 10 17-20 P110-P113 High-voltage, high-current I 10 port 11 RESET System reset (input). CL1, CL2 Connection to the RC oscillator. CL1 is the external clock input. VPRE Negative power supply for high-voltage output predrivers (for ports 2-5, 8-11). 21 VDD Positive power supply 22-25 P90-P93 High-voltage, high-current output port 9 VLOAD 26-29 P8o-P83 High-voltage, high-current output port 8 30-33 P4o-P43 High-voltage I 10 port 4 34-37 P30-P33 High-voltage output port 3 Negative power supply for optional load resistors (pulldown resistors) of high-voltage output drivers (for ports 2-5,8-11). This pin is only on the /-LPD7527/28. 38 39 40 41 P03/S1 P02/.§2... P01/SCK POOl INTO 4-bit input of port 0; or serial data input (SI), serial data output (SO), serial clock I 10 (SCK), and external interrupt input (INTO) or zero-cross detect input (POo). 4-bit, high-voltage 1/0 port 5. 42 Vss Ground P53-P50 P21-P23 3-bit, high-voltage output port 2. 3-230 ttfEC JAPD7527A/28A PTOUT Pin Functions, I-lPD75CG28 EPROM Output port from the timer/event counter. MSEL P103-P100 Changes the addressing area of the external EPROM and the on-chip RAM (with a pull-down resistor). Connecting a jumper between socket pins 27 (MSEL) and 28 (voo) selects ",P07527 mode (2-Kbyte EPROM, 128 x 4bit RAM). Leaving MSEL open selects ",P07528 mode (4Kbyte EPROM, 160 x 4-bit RAM). 4-bit, high-voltage, high-current I/O port 10. Capable of bit set/reset by SPBLlRPBL instructions. P113-P110 4-bit, high-voltage, high-current 110 port 11. Capable of bit set/reset by SPBLlRPBL instructions. Ao-A10 Voo Output the low-order 11 bits of the program counter (PCO-PC10). Used as EPROM address signals. Positive power supply. A11 P93-P90 4-bit, high-voltage, high-current output port 9. Capable of bit set/reset by SPBLlRPBL instructions. When MSEL is high level, A11 outputs high-level signals. When MSEL is open, A11 outputs the MSB of the PC, which is used as the most significant address signal of the 4-Kbyte EPROM 2732. P83-P80 10- 17 4-bit, high-voltage, high-current output port 8. Capable of bit set/reset by SPBLlRPBL instructions. Input data read from the EPROM. P43-P40 CE 4-bit, high-voltage I/O port 4. Outputs the chip enable signal to the EPROM. P33-P30 Voo 4-bit, high-voltage output port 3. Pin 26 is electrically equivalent to the bottom Voo pin and is used to supply Vee to the EPROM. Pin 28 is electrically equivalent to the bottom VOO pin and is used to supply the high level signal to MSEL. Pin 1 connects to pin 21 of ",P075CG28. POO-P03 4-bit input port O. POO is also used as the zero-cross detection input. SI Serial data input. so Vss Pin 14 is electrically equivalent to the bottom VSS pin in voltage, and is connected to the EPROM GNO pin. Pin 22 is electrically equivalent to the bottom VSS pin and is used to supply the OE signal to the EPROM. Serial data output. Instruction Set I/O serial clock. Refer to the User's Manual. The instruction set appears also as subset A4 in the data sheet for the ",P07500 series of single-chip microcomputers. INTO External interrupt input. Vss Ground. 3-231 m ~ fttfEC J.tPD7527A/28A Block Diagram, ",PD7527/28 POo/INTO H(4) Program Memory 2048 x 8 Bits (I-'-PD7527/) 4096 x 8 Bits (I-'-PD7528/) CL Instruction Decoder ,I> Data Memory 128 x 4 Bits (I-'-PD7527) 160 x 4 Bits (I-'-PD7528) P100-P103 CL1 CL2 I i i Voo Vss P110-P113 RESET 49-0010678 3-232 NEe J-LPD7527A/28A Block Diagram, f.tPD75CG28 POO/INTO P21-P23 PTOUT/ P21 ~DP7C I L.-_ _ _ _ _.... Instruction Buffer Instruction Decoder CL Data Memory 160x4 Bits CL1 CL2 hh t voo Vee vss vss RESET 49-0010688 Absolute Maximum Ratings TA=25°C Power supply voltage, Voo -0.3to +7V Output current high, ports 3, 4, 8, 9 total, IOH -55mA Power supply voltage, VLOAO (flPD7527 / 28) VOO-40VtoVoO +0.3V Output current high, ports 2, 5, 10, 11 total, IOH -55mA Power supply voltage, VPRE VOO-12 V to Voo +0.3 V Output current low, per pin, IOL 15mA Output current low, all ports total, IOL 15mA Input voltage, except ports 4,5, 10, 11, VIN Input voltage, ports 4, 5, 10, 11, VIN Output voltage, except ports 2-5,8-11, Vo Output voltage, ports 2-5,8-11, Vo -0.3VtoVoO +0.3V VOO-40 V to Voo +0.3 V -0.3VtoVoo +0.3V Voo-40 V to Voo +0.3 V Output current high, per pin: POj, P02; IOH -15 mA Output current high, per pin: ports 2-5,8-11; IOH -30 mA Operating temperature, TOPT Storage temperature, TSTG Comment: Exposing the device to stresses above those listed in Absolute Maximum Ratings could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational sections of the specification. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. 3-233 t\'EC JAPD7527AI28A DC Characteristics ",PD7527/28 TA = -10°C to +70 oC, Voo = +2.7VtoS.OV Limits Parameter Input voltage, low Input voltage, high Symbol Min Typ Mal( Test Conditions Unit VIL1 0 0. 3V oo V Port 0, RESET VIL2 0 0.5 V CL1 VIL3 Voo-35 0.3 Voo V Ports 4, 5, 10, 11 VIH1 0. 7Voo Voo V Port 0, RESET VIH2 Voo-0.5 Voo V CL1 VIH3 0. 7V oo Voo V Ports 4, 5, 10, 11; 4.5V~Voo~ 6.0V Voo-0.5 Voo V Ports 4, 5, 10, 11; Limits Parameter Output leakage current, low Output leakage current, high Typ Unit ILOL1 -3 ~ Vo=OV; P01, P02 ILOL2 -10 ~ Vo=Voo-35V; ports 2-5, 8-11 ILOH1 3 ~ Vo=Voo; except ports 4, 5, 10, 11 ILOH2 80 ~ Vo=Voo; ports 4, 5,10,11 1.0 3.0 mA Voo=5V±10%, R=39kQ 0.4 1.0 mA Voo=3V, R=82kQ 200 600 JAA Voo=5V±10%, R=39kQ (Note 4) 60 200 ~ Voo=3V, R=82kQ (Note 4) Min Supply current, 1001 normal operation 2.7V~Voo~ 4.5V Output voltage, low 0.4 VOL V P01, P02; 4.5V~ Voo~6.0V; IOL=1.6mA 0.5 Output voltage, high VOH Voo-2.0 VOO-0.5 3-234 210 640 ~ Ports 2-:5, 10H= -4mA (Note 1) Voo=5V±10%, R=39kQ (Note 5) 67 230 ~ Voo=3V, R=82kQ (Note 5) 0.1 10 ~ Voo=3 V (Note 4) 10 40 ~ Voo=5V±10% (Note 5) 7 30 140 220 ~ kQ V VOO-1.0 Input leakage current, high IOL=400~ V V VOO-2.0 Input leakage current, low P01, P02; V Voo-2.0 Supply current, 1002 HALT mode (Note 6) V V Voo-2.0 Test Conditions Mal( Symbol Ports 8-11, 10H= -10mA (Note 1) Ports 2-5, 10H= -2mA (Note 2) Ports 8-11, IOH=-5mA (Note 2) P01, P02; IOH=-1mA (Note 3) V P01, P02; 10H= -100~ IUL1 -3 ~ VIN=OV; POa-P03 IUL2 -40 ~ VIN=OV; POa (Note 5) IUL3 -10 ~ VIN=OV; CL1 IUL4 -10 ~ VIN=Voo-35V; ports 4, 5, 10, 11 IUH1 3 ~ VIN=VOO; POa-P03 (Note 4) IUH2 40 ~ VIN = Voo; POa (Note 5) IUH3 10 ~ VIN = Voo; CL1 IUH4 80 ~ VIN=VOO; ports 4, 5,10,11 Supply current, 1003 STOP mode (Note 6) On-chip pullRL down resistance 80 Voo=3V (Note 5) Voo- VLOAO = 35 V Note: (1) VPRE = Voo-9V +1V. The circuit in figure 5 is recommended. (2) VPRE=OV. Vo o =4.5Vto6.0V. (3) Voo = 4.5 V to 6.0 V. (4) Without zero-cross detector. (5) With zero-cross detector. (6) Ports 4, 5, 10, 11 are low level output or low level input. t-IEC ""PD7527A/28A DC Characteristics (cont) I-lPD75CG28 TA= -10°C to +70°C, Voo= +5V±10% Limits Parameter Limits Parameter Input voltage, high Output voltage, low Test Conditions Input leakage current, low IUL1 -3 ~ VIN=OV; POO-P03 VIN=OV; POo Typ Unit 0.3 Voo V Port 0, RESET IUL2 -40 ~ 0.5 V CL1 IUL3 -10 ~ VIN=OV; CL1 VIL3 Voo-35 0. 3V oo V Ports 4, 5, 10, 11 IUL4 -10 ~ VIH1 0. 7V oo Voo V Port 0, RESET VIN=Voo-35V; ports 4, 5, 10, 11 VIH2 Voo-0.5 Voo V CL1 IUH1 3 ~ VIN=VOO; POO-P03 VIH3 O.7Voo Voo V Ports 4, 5, 10, 11 IUH2 40 V ~ VIN=VOO; POo 0.4 P01, P02; IOL=1.6mA IUH3 10 /AA VIN = Voo; CL1 IUH4 80 /AA VIN=VOO; ports 4, 5,10,11 Min 0 VIL1 VIL2 VOL 0.5 Output voltage, high Test Conditions Unit Min Max Symbol Input voltage, low Typ Max Symbol VOH Voo-2.0 Input leakage current, high V P01, P02; 10L =400~ V Ports 2-5, 10H= -4mA (1) Voo-2.0 V Ports 8-11, 10H = -10 mA(1) Voo-2.0 V Ports 2-5, 10H = - 2 mA(2) Voo-2.0 V Ports 8-11, 10H = - 5 mA(2) Voo-1.0 V P01, P02; 10H= -1mA Input current, low (10-17) IlL -200 ~ VIN=OV Input current, high (MSEL) IIH 300 ~ VIN=VOO Output leakage current, low Output leakage current, high ILOL1 -3 ~ Vo=OV; P01, P02 ILOL2 -10 ~ Vo=Voo-35V; ports 2-5,8-11 ILOH1 3 ~ Vo=Voo; except ports 4, 5, 10, 11 ILOH2 80 ~ Vo=Voo; ports 4, 5,10,11 Supply current, 1001 normal operation 1.0 3.0 mA R=39kQ Supply current, 1002 HALT mode(3) 210 630 /AA R=39kQ Supply current, 1003 STOP mode(3) 10 50 ~ Note: (1) VpRE = VDD- 9V +1\1. The circuit in figure 6 is recommended. (2) VpRE=OV (3) Ports 4, 5, 10, 11 are output off or low input. Figure 1. Recommended Circuit, I-lPD752717528 Recommended Circuit, J.lPD75CG28 +5V Voo Voo ):~.3 ~F ~ ~RD9.1EL ~PD7527 Figure 2. +5V ~L7 ~PD75CG28 VPRE VPRE 17528 :.68 kl! 68kl! 30V VLOAO Vss ~~ RD9.1EL 3.3~F _-30V Vss 1 49·001052A 1 49·001054A 3-235 E NEe I-lPD7527A/28A Zero-Cross Detection Characteristics AC Characteristics liPD7527/28:TA= -10OCto +70°C, Voo=4.5Vto6.0V liPD75CG28:TA= -10°Cto +70°C,Voo= +5V±10% ",PD7527/28 Limits Parameter Symbol Min Zero-cross detection input voltage Vzx{P-P) 1 Zero-cross accuracy VAZX Zero-cross detection input frequency fzx Typ Max 3 Unit Vp_p AC coupled, C=0.1!-1F ±100 1000 45 Test Conditions mV 50 Hz to 60 Hz sine wave Hz Zero-Cross Detection Waveform TA= -100Cto +70 oC,Voo= +2.7V to 6.0V Limits Parameter Cycle time (Note 1) Symbol tCY POo event input fpo frequency Min Typ Max Unit 3.3 200 lis 6.9 200 !-Is 0 610 kHz 0 290 kHz POo input rise time tpOR 0.1 lis POo input fall time tpOF 0.1 !-Is Test Conditions Voo=4.5Vto 6.0V Voo=4.5Vto 6.0V POo input pulse tpOL width, low 1.63 !-Is POo input pulse tpOH width, high 0.72 lis Voo=4.5Vto 6.0V SCK cycle time 3.0 !-Is Input: Voo=4.5 V to 6.0V 3.3 lis Output: Voo=4.5Vto 6.0V Signal 8.0 lis Input Note: In the above waveforms, both o-t0-1 and 1-to-O transitions of the zero-cross detection signal delay from the low-to-high and hlgh-to-Iow transitions of the AC Input signal, respectively. However, it Is possible that the zero-cross detection leads low-to-high and/or hlgh-to-Iow transltlon(s) of the AC input signal. 6.9 liS Output AClnput II II I, II tKCY I 'I I I zerocros~ Detection SCK pulse width, low tKL SCK pulse width, high tKH 49'OO1055A Capacitance TA = 25°C, Voo=ov, f=1.0MHz, Unmeasured pins returned to GND Limits Parameter Symbol Input capacitance CI Output capacitance Co I/O capacitance CIO 3-236 Min Typ Test Conditions 3.9 !-IS Input 3.35 liS Output 1.4 !-Is Input: Voo=4.5V t06.0V 1.55 !-Is Output: Voo=4.5Vto 6.0V Max Unit 300 ns pF POo, P03 SI set-up time (to riSing-edge ofSCK) tSIK 15 SI hold time tKSI 450 ns 15 pF Port 2 35 pF Ports 3,8,9 15 pF P01, P02 35 pF Ports 4,5, 10, 11 (afterri~ edge of SCK) SO output delay tKSO time (after falling-edge of SCK) 850 ns 1200 ns INTO pulse tIOH, width, high, low tlOL 10 liS RESET pulse tRSH, width, high, low tRSL 10 liS Voo=4.5Vto 6.0V NEe jiPD7527A/28A AC Characteristics (cont) Oscillation Characteristics J.lPD75CG28 J.lPD7527/28 TA = -10°Clo +70 0 C, Voo= +5V±10% TA= -10°C 10 + 70°C, Voo=2.7Vl06.0V Limits Parameter Symbol Min Typ Max Unit tCY 4.0 200 J.ls POQ event input fpo frequency 0 500 kHz Cycle time (Note 1) Test Conditions LlmHs Parameter Symbol System clock oscillation frequency (Note 1) fcc fc Typ Max Unit 300 400 500 kHz R=39kQ±2%; Voo=4.5Vto 6.0V 110 150 190 kHz R=110kQ±2% 10 500 kHz Voo=4.5Vto 6.0V 10 210 kHz POQ input rise time tpOR 0.2 J.ls POQ input fall time tpDF 0.2 J.ls System clock CL1 input frequency (Note 2) CL1input rise time (Note 2) tCR 0.2 J.ls CL1input fall time (Note 2) tCF 0.2 J.ls POQ input pulse tpOH, width, high, low tpOl 0.8 J.ls SCK cycle time tKCY 3.0 J.ls Input 4.0 J.ls Output SCK pulse width, low tKl 1.8 J.ls Output SCK pulse width, high tKH 1.3 J.ls Input SI set-up time (to rising-edge of SCK) tSIK 300 ns SI hold time (after risingedge of SCK) tKSI 450 ns CL1input pulse tCl width, low (Note 2) 2.0 50 J.ls CL1 input pulse tCH width, high (Note 2) 0.8 50 J.ls Voo=4.5Vto 6.0V J.lPD75CG28 TA= -10°C 10 +70 oC,Voo=5V±10% LlmHs SO output delay tKSD time (after falling-edge of SCK) 850 Parameter ns INTO pulse tlOH, width, high, low llOL 10 J.ls RESET pulse tRSH, width, high, low tRSl 10 J.ls Symbol UnH 300 400 500 kHz R=39kQ±2% 110 150 190 kHz R=110kQ±2% 500 kHz fc CL1input rise time (Note 2) tCR 0.2 "'S tCF 0.2 "'S 50 /As Data input delay tCE time from CE 700 ns CL1 input fall time (Note 2) ns CL1input pulse tCH, width, high, low tCl a Max System clock CL1 input frequency (Note 2) ns tlH Typ fcc 700 Test CondHlons Min System clock oscillation frequency (Note 1) Data input delay tACC time from address Input hold time after address Test Conditions Min 10 0.8 Note: (1) R, C (see figure 3) Note: (1) tCY = 2/fcc or 2/fc (2) External clock (see figure 4) AC Waveform Measurement Points (Except CL 1) ~0.7VOO> _ 0.3 VOO Test Points <: 0.7VOoX= 0.3 VOO ~ 49·001056A 3-237 NEe ",PD7527A128A Figure 3. Recommended RC Oscillator Circuit Figure 4. Recommended External Clock Circuit ~ e~ e = 33pF ±S% 49-001060A l.lel '" 60 ppm/'e 49-001059A Data Retention Mode Timing Stop Mode Low Voltage Data Retention Characteristics IlPD7527/28 TA VOO-+-----\ = -1o oe to + 70 e 0 Limits Symbol Min Data retention supply voltage VOOOR 2.0 Data retention supply current IOOOR Paramet.r Typ T.st Conditions Max Unit 6.0 V 0.3 10 ~ VOOOR=2V (Note 1) 7 30 ~ VOOOR=2V (Note 2) VOOOR +0.2 V Data retention RESET input voltage high VIHOR 0. 9V OOOR RESET set-up time tSRS 0 /As RESET hold time tHRS 0 /As RESET TA= -10 0 eto +70 oe Limits Typ Symbol Min Data retention supply voltage VOOOR 2.0 Data retention supply current IOOOR Data retention RESET input voltage high VIHOR 0.9 VOOOR RESET set-up time tSRS 0 /As RESET hold time tHRS 0 /As 7 Note: (1) Without zero-cross detector (2) With zero-cross detector 3-238 ® VIH1 ® VIHOR 0 VIL1 49-001077A J.lPD75CG28 EPROM Interface IlPD75CG28 Paramet.r CD VOOOR Note: In data retention mode, all inputs should be made lower level than VOOOR. Max Unit 5.5 V 30 /AA VOOOR +0.2 V T.st Conditions VOOOR=2V A 4-Kbyte EPROM (2732) plugs into socket pins on top of the IlPD75CG28. A high input to MSEL selects IlPD7527 mode and fixes the A11 output high level in order to access the upper 2-Kbytes of the 4-Kbyte EPROM. When MSEL is open, IlPD7528 mode is selected. All EPROM addresses can be accessed because A11 functions as the MSB of the address. Figure 5 shows the address control unit. Figures 6 and 7 show the IlPD75CG28 connected with the 2732. Figure 8 shows the EPROM read timing. Data is read into the instruction buffer at the end of the T4 state. The chip enable (CE) signal is made active during 2 states (T3, T4) in order to decrease the power consumption of the EPROM. NEe Figure 5. J-tPD7527A/28A Address Control Unit VOO(28) MSEL to Address Decoder of Data Memory SW On-chip pull-down resistor Vss SWan : ~PD7527 Mode SW off : ~P07528 Mode 49-0010B9A Figure 6. Connection with the 2732 (JAPD7527 Mode) Figure 7. ~PD75CG28 2732 ~PD75CG28 VOO(26) Connection with the 2732 (JAPD7528 Mode) 2732 Vee VOO(26) Voo(28) MSEL 0 Vee Voo(28) -(open) All (high) All MSEL -(open) "'\ / " "- Ao-A1O ) Ao- A l0 AO-All v Ao-All CE CE CE CE VSS(22) OE VSS(22) OE A 10-17 Oo-Or GND VSS(14) GND VSS(14) K.. 10-17 °o-Or 49·001070A Figure 8. 49-001071A EPROM Read Timing 1 Machine Cycle T4 T1 \ CLl \ \.. _ _ _ _-..1/ (External) AO-A" CE ____________ J)(~ - - - -/ I T2 I T3 I T4 / \ / _______________________Ad_d_~_SS 'I ______________________ \ _J)(~______ \~-----_/ .J}-- - - - - - - - - - - -<~__________ ___J>- - - - - 10- 17 _______________ Re_a_d_Da_ta________ 49·001072A 3-239 ttiEC J.lPD7527A/28A Timing Waveforms EPROM (jAPD75CG28 only) Serial Interface SCK tlH 10 -17 SI -----------<1 49-001075A so Clock Output Data >C 49-001074A Interrupt Input CL11nput tCF RESET 49-001169A Reset Input PDQ Input 49-001073A INTO 49-00116SA 3-240 NEe J.lPD7527A/28A Operating Characteristics fpovs VOO 100 vs Voo (Typical) 1000 10,000 500 e ./ E ./ Guaranteed Area ~ c § u :::J Co c » 50 100 50 Q. g- 8 III 0.. ~~ ~ Cll 10 E:::::::: ~ r-- o o 2.7 3 .-l-':_ ~ R=39kQ R=110kQ R -39kQ R=110kQ H~Mode I CL2 R E 10 -- 500 Q E -- 100 \~ TA 125 oC 1000 ~ ..::l. ./ 1:.' ~ Operating Mode ./ N :I: 33PF I j" ~ o Supply Voltage, (V) Supply Voltage, Voo(V) fCC vs VOO (lYpical) fC vs VOO 1000 1000 N N :I: ~ 500 ~ .>< g (3 E ~ Guaranteed Area c . 0 100 ~ 50 g 2.7 3 500 I'.... "" r-. I!! u.. (3 E ! o I33PF f I VOH vs IOH (Ports 2-5) (l'ypical) 25°C .... ~ g r--- -~r-------r-------,-------,-------,-------, TA N ~ R Supply Voltage, Voo (V) fCC vs R (lYpical) [ i _ 10 o ~~ - ! 1000 u 50 E Supply Voltage, Voo (V) ~ 100 (3 10 R=39kQ R 110kQ u.. ! :I: I---- g: ./ c:r :::J 2SoC g ./ f 500 t - - - TA ~ ,/ ~ J: 0 ./ ~ 100 ~- ~~= ~ 50 I - - f-.f - . - f-f - . - f-- I - - - I- I--- f-- CL1 I::: -20r------r------~------i_-----_+---~ Voo=SV ~ ~. I-- Voo-3V CL2 ..... -10f----------f--------~f---~~-~-----_+------__4 R I33PF -= 10 10 50 100 Resistance, R (kQ) 500 1000 VOO-VOH(V) 3-241 NEe ~PD7527A/28A Operating Characteristics (cont) Difference. Among the tJPD75271281CG28 jlPD7527 jlPD7528 Program memory 4 Kbyte EPROM (2732) connectable on top On-chip 2 Kbyte ROM On-chip 4 Kbyte ROM Data memory (RAM) 160x4 128x4 160x4 High-voltage output lines All open-drain outputs On-chip load capacitor or open drain output (bit by bit, mask optional) f.lPD75C028 VOH vs IOH (Ports 8-11) (TypIcal) 0 TA=2S C -10~----~----~~----~------~----~ ~ ~ VLOAD pin No Zero-cross detection Yes Package 42-pin ceramic piggyback DIP bottom pin compatible with ",PD7527 128 Power supply 5V VDD-VOH(V) 3-242 Mask optional 42-pin plastic DIP 42-pin plastic shrink DIP 2.7Vto6.0V NEe NEe Electronics Inc. pPD7533 4-BIT, SINGLE-CHIP CMOS MICROCOMPUTER WITH A/D CONVERTER PRELIMINARY INFORMATION Description The pPD7533 is a 4-bit, single-chip CMOS microcomputer with a 4-channel, 8-bit A/D converter, 8-bit timer/event counter, and an 8-bit serial interface. The pPD7533 has 30 I/O lines, 8 of which can be used to directly drive LEDs. The pPD7533 executes 67 instructions of the pPD7500 series "A" instruction set. The A/D converter has various temperature monitoring applications that can be used with household electrical appliances, such as air conditioners and electric ovens. Other applications include health monitoring equipment and cameras. The pPD75CG33 consists of a 28-pin socket "piggybacked" on the lower 42-pin ceramic DIP. This socket is configured to hold either a 2732A or 2764 EPROM. For engineering purposes, programs can be tried and debugged before ROM code submission. Features o 4-bit single chip microcomputer o 67 instructions (subset of pPD7500 series set A) o Instruction cycle o o o o o o o o o o o - 5 ps at 5 V, 400-kHz clock at ceramic oscillation, DIVSEL = high - 10 ps at 5 V, 400-kHz clock at ceramic oscillation, DIVSEL = low Program memory (ROM): 4096 words x 8 bits - External in the pPD75CG33 Data memory (RAM): 160 words x 4 bits 8 high current output lines for LED direct drive Input/output ports - Two 4-bit input ports - One 2-bit output port - One 4-bit output port - Three 4-bit input/output ports (two of which can function in 8-bit units) - One 4-bit input/output port usable at bit level Interrupts: two internal and one external 8-bit serial interface Standby operation -STOP mode - HALT mode On-chip system clock oscillator - Ceramic resonator - Full or 1/2 oscillation frequency CMOS technology Low power consumption Single power supply Ordering Information Maximum Frequency of Operation Package Type Part Number pPD7533C 42-pin plastic DIP pPD7533CU 42-pin plastic shrink DIP 500 kHz 500 kHz pPD7533G-22 44-pin plastic minifiat 500 kHz pPD75CG33E 42-pin ceramic piggyback DIP 500 kHz Pin Configurations 42-Pin Plastic DIP or Plastic Shrink DIP Vss P50 P22 P21/PTOUT P73 P72 83-002631 A 3-243 NEe pPD7533 Pin Configurations (cont) Pin Identification 42-P/n Ceramic Piggyback DIP 42-Pln DIP, Shrink DIP, and PIggyback DIP P43 Vss P42 P50 IlP075CG33 P41 P51 P40 P52 P22 P21/PTOUT 5 6 Voo Vss P53 2 Cl2 P73 Cl1 P72 No. Symbol 1-4 P43-P40 I/O port 4 5,6 P22, P21/PTOUT Port 2 output 7-10 P73-P70 I/O port 7 11-14 P33-P30 Port 3 output 16-19 Avss AN3-ANO AID converter ground 20 VAREF AID reference voltage input 21 15 OIVSEl P7 1 P70 10 P3a 11 A4 P32 12 P3l 13 Al A9 RESET A1l POo/INTO/EVENT Vss P01/SCi< P02/S0 P03/SI P30 14 Ao 17 P10 AVss 15 10 Is P11 AN3 16 11 15 P12 AN2 17 12 14 P13 AN1 18 Vss 13 P60 ANO 19 P61 VAREF 20 P62 Voo 21 P63 Voo Positive power supply P63-P60 I/O port 6 26-29 P13-P10 Port 1 input P03/S1 Port 0 input/Serial input 31 P~/SO Port 0 input/Serial output 32 P01/SCK Port 0 input/(I/O) Serial clock 33 POo/INTO/EVENT Port 0 input/Interrupt O/Event input 34 RESET RESET input 35 DIVSEL System clock selection input 36,37 CL1, CL2 External clock input/System clock terminal 38-41 P53-PSo I/O port 5 42 Vss Ground 83-002633A P21/PTOUT NC P73 Cl1 P72 OIVSEl P71 P 33 RESET POo/INTO/ EVENT P01/SCK P32 P02/S0 P31 P03/SI P30 P10 P 70 AVss P11 AN3 P12 83-002632A 3-244 Analog input 22-25 30 44-Pin Plastic Minlflat Function NEe pPD7533 Pin Functions Pin Identification (cont) POO-P03 [Port 0] 44-Pin Miniflat No. Symbol Function 1,44 P21/PTOUT, P22 2-5 P73-P70 lID port 7 6-9 P33-P30 Port 3 output Port 2 output 10 AVSS AID converter ground 11-14 AN3-ANO Analog input 15 VAREF AID reference voltage input 17 Voo Positive power supply 18-21 P63-P60 1/0 port 6 21-25 P13-P10 Port 1 input 26 P03/S1 Port 0 input/Serial input POO-P03 function as port O. POo also functions as a count pulse input pin for the timer/event counter (EVENT) or as interrupt 0 (INTO). P0 1 also functions as a serial clock input/output pin (SCK) for the serial interface. P02 functions as a serial data output pin (SO) and pins P03 as a serial data input pin (SI). The P0 1/SCK and P0 2/SO pins are three-state input/output. The shift mode register (SM o-SM3) determines the operation mode of the port 0 input/output pins; how-:ever, the data on POO-P03 can be loaded into the accumulator at any time by executing a port input instruction (IP/IPL). This is possible even when POr P03 are functioning as the serial interface. After a RESET, POO-P03 become input ports (high impedance). 27 P02/S0 Port 0 input/Serial output 28 P0 1/SCK Port 0 input/(l/O) Serial clock 29 POol INTO/ EVENT Port 0 input/Interrupt O/Event input P10-P13 [Port 1] 30 RESET RESET input 31 DIVSEL System clock selection input 32,34 CL1, CL2 External clock inputlSystem clock P1o-P13 function as port 1. Execution of an IP or IPL instruction reads data present on P1o-P13 into the accumulator. Tie any unused lines of P1o-P13 to VDD or Vss· 35-38 P53-P50 lID port 5 P21-P22 [Port 2] 39 VSS Ground 40-43 P43-P40 lID port 4 P2rP22 function as port 2 with an output latch. When an output instruction (OP/OPL) to port 2 is executed, the middle 2 bits (A1 and A2) of the accumulator are latched by the output latch and, at the same time, output to P2rP22. 28-Pin EPROM Socket on 42-pin Piggyback DIP No. 1,26-28 Symbol Function Voo Positive power supply 2,14,22 VSS Ground 20 CE Chip enable output 3-10,21, 23-25 Ao-A11 Address bus 11-13, 15-19 10-17 Data bus After being written once, the output latch contents remain until they are rewritten by an output instruction or a reset. The status of the corresponding output signal also remains. After a reset, the output latch contents become undefined, all output signals are disabled, and the output drivers are turned off. P21 is also used as an output pin (PTOUT) for the timer-out F/F signal (PTOUT). Bit 3 (eM3) of the clock mode register controls the PTOUT output. When eM3 is 1, TOUT is ORed with the P21 output latch contents and sent to the output driver. Therefore, to output the P21 output latch contents, reset eM3 to 0 to inhibit the TOUT signal. Note that soon after the RESET signal is asserted, CM3 is reset and TOUT is inhibited. However, since the output latch contents are undefined after a reset, to output the TOUT signal, first write 0 in the P21 output latch and then set CM3 to 1 to output TOUT. III t\'EC pPD7533 P30·P33 [Port 3] P60·P63 [Port 6] P30-P33 function as port 3 with an output latch. When an output instruction to port 3 is executed, the accumulator contents are latched and output. P6o-P63 function as the 4-bit input latched, three-state output port. The individual lines can be programmed as either inputs or outputs. Once data is written in the output latch, the data is held until the next outputinstruction to port 3 is executed or RESET is asserted. After a reset, the output latch contents become undefined and the output driver is turned off. In input mode, data present at this portis read into the accumulator by the execution of an IP or IPL instruction. Accumulator data written to this port by the execution of an OP, OPL, ANP, or ORP instruction is statically latched, and remains unchanged until rewritten. This data, however, is not output since the output buffer is disabled and placed in the high impedance state. P40·P43 [Port 4] P50·P53 [Port 5] P4o-P43 function as port 4 and P50-P53 function as port 5. When an input instruction is executed, the data on these pins is read into the accumulator. When an output instruction is executed, the accumulator contents are latched and output. After the data is written into the latch, it is held until the next output instruction to ports 4 or 5 is executed, or RESET is asserted. Ports 4 and 5 can work as a pair enabling data (input with the IP54 instruction and output with the OP54 instruction) in a-bit units. The high four bits of data are from the accumulator and the low four bits are from memory (addressed by HL). Ports 4 and 5 automatically set in the input mode (high impedance output) after a reset or when· the input instructions to these ports are executed. After a reset, the output latch contents become undefined. Both ports 4 and 5 can drive LEOs directly. In output mode, accumulator data written to the specified port line by the execution of the OP, OPL, ANP, or ORP instruction is statically latched and output to the P6 n pin. Data present at P6 n is read into the accumulator by the execution of the IP or IPL instruction, making it possible to read the contents of the P6 n output latch. All lines of port 6 are initialized to the high impedance state at Reset. Leave any unused lines open (if outputs) or tied to VDD or Vss (if inputs). The port 6 mode select register (MSR) controls the function of the individual port 6 lines. The execution of the OP or OPL instruction loads the port 6 MSR with the accumulator contents. The 4-bit immediate data operand or the contents·of the L register must be set to OEH. Figure 1 shows the format of the port 6 MSR. Figure 1. Port 6 MSR Format Note that after the port changes from output mode to input mode, the data on the line is unstable when the input instruction that changes the mode is first executed. It is strongly recommended that you re-execute the input instruction considering the input/output mode switching time. This will insure reading stable data. The bit manipulation instruction affects the specified bit only. So when the output latch contents are undefined, (immediately after a reset), initialize the output latch contents with an output instruction before the bit manipulation instruction is executed. 3-246 P60 L------P61 ' - - - - - - - - - - P62 L--_ _ _ _ _ _ _ _ _ P63 PM n Port 6 Selection 0 P6 n input [output buffer high-impedance] 1 P6n output [output buller on] 83-002634A t-iEC pPD7533 P70-P73 [Port 7] Pin Functions, pPD75CG33 EPROM Port 7 is a 4-bit input or latched three-state output port. The execution of an IP or IPL instruction execution reads data present at this port into the accumulator. Accumulator data written to this port by the execution of an OP, OPL, ANP, or ORP instruction is statically latched and remains unchanged until rewritten. Ao-A11 [EPROM Address] Upon reset, all lines are initialized to the highimpedance state. Leave any unused lines open (if outputs) or tied to Voo or Vss (if inputs). ANO-AN3 [AID Input Terminal] ANO-AN3 are the 4-channel AID converter input terminals. The AID converter uses a successive approximation method. VAREF [AID Converter Positive Reference] The voltage on VAREF determines the full scale analog voltage. Ao-A11 output the contents of the EPROM program address counter. A reset leaves Ao-A11 undefined. 10-17 [Data Bus] 10-17 input the contents of the EPROM data bus. CE [Chip Enable] CE outputs the EPROM chip enable signal. (Active low.) Voo [Power Supply], VSS [Ground] Voo is the positive power supply pin with the same voltage as the lower portion pin 21. Vss is the ground pin with the same voltage as the lower portion pin 42. The following voltages are supplied to the 2764 or 2732A pins from Voo or Vss. AVSS [AID Converter Ground] Avss is the ground for the AID circuit. CL 1, CL2 [Clock] CL 1 and CL2 connect external oscillator elements to the system clock. Connect a ceramic resonator to these pins. If an exte'rnal clock is used, place a buffer between the clock source and the CL 1 and CL2 pins. Pin Number 2764 2732A Symbol Voltage 20 Vpp VDD pin 21 = +5 V 28 24 Vee VDD pin 21 = +5 V 22 20 DE VSS pin 42 = 0 V 2 14 12 A12 VDD pin 21 = +5 V Vss Vss pin 42 = 0 V When connecting the oscillation parts to the CL 1 and CL2 pins, use the shortest wiring possible. Ground the capacitor as close to the Vss pin as possible. DIVSEL [System Clock Divider Selection Input] DIVSEL selects whether the system clock runs at ceramic oscillation frequency, or at one-half the ceramic oscillation frequency. If a logic 0 (Vss) is connected to DIVSEL, the system clock is one-fourth the ceramic oscillation. If DIVSEL is high, then the system clock will be one-half of the ceramic oscillation. RESET [Reset] A high on RESET activates this input. Voo [Power Supply] Voo is the positive power supply pin. Vss [Ground] Vss is the ground pin. 3-247 NEe pPD7533 Block Diagram INTO/EVENT/POo EVENT Clock Conlrol CL P10-P103 P21/PTOUT, P22 P30-P33 P40-P43 Program Memory 4096 x 8 Bits Instruction Decorder P50-P53 CL I/J P60-P63 Cll CL2 111 Voo Vss RESET P70-P73 AN o-AN3 VAREF Avss 83-00263~ Absolute Maximum Ratings Capacitance TA TA =25°C Power supply voltage, Voo == 25°C, Voo == 0 v Limits -0.3 to +7.0 V Input voltage, VI -0.3 V to Voo + 0.3 V Parameter Output voltage, Vo -0.3 V to Voo + 0.3 V Input capacitance -20 rnA (all output ports) 10 rnA (1 pin) High level output current, IOH Low level output current, IOL -10 rnA (1 pin) 45 rnA ports 2,3,4,7 (total pins) 45 rnA ports 0,5,6 Operating temperature, TOPT -10 to +70 o G Storage temperature, TSTG -65 to +150°C AID Vss, Avss -0.3 to +0.3 V AID reference, VAREF -0.3 V to Voo Comment: Exposing the device to stresses above those listed in Absolute Maximum Ratings could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational sections of this specification. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. 3-248 Symbol Min Max Unit GIN 15 pF Output capacitance GOUT 15 pF 110 capacitance GIO 15 pF Test Conditions f =1 MHz Unmeasured pins are 0 V NEe pPD7533 DC Characteristics A C Characteristics TA = -10 to +70°C. Voo = 3.0 to 6.0 V. DlVSEL Limits Parameter High level input voltage (other than CL1. CL2) Symbol VIH1 High level input voltage (CL 1. CL2) VIH2 Low level input voltage (other than CL1. CL2) VIL1 Low level input voltage (CL1. CL2) VIL2 High level output voltage VOH Min Max Unit 0.7 Voo Voo V Voo - 0.5 0 0 Voo 0.3 Voo 0.5 0.5 (typ) Test Conditions Conditions specified by oscillation characteristics V Limits Parameter Symbol Min Max Cycle time tCY 4.0 200 ps 9.5 200 ps 0 500 kHz 0 210 kHz Voo = 4.5-6.0 V IOH=-1mA fE EVENT input high duration tEH 0.8 ps EVENT input low duration tEL 2.3 ps SCK cycle time tKCY 3.0 fJS V IOH = -100pA V Voo = 4.5-6.0 V IOL = 10 mA 0.4 V IOL = 1.6 mA IOL = 400pA 0.5 V High level IUH1 input leakage current (other than CL 1. CL2) 3 pA High level input leakage current (CL 1. CL2) IUH2 20 Low level input leakage current (other than CL 1. CL2) IUL1 -3 pA Low level input leakage current (CL1. CL2) IUL2 -20 pA High level 'LDH output leakage current 3 pA VOUT = Voo Low level 'LDL output leakage current -3 pA VOUT = 0 V pA VIN = Voo VIN = Voo VIN = 0 V Supply current 10D1 1.0 (typ) 3.0 rnA Operating mode: Voo = 4.5-6.0 V; fcc = 400 Hz 1002 450 (typ) 1200 pA HALT mode: Voo = 4.5-6.0 V; fcc = 400 HZ 1003 0.1 (typ) 10 pA STOP mode SCK high. low level duration tKH. tKL Test Conditions Unit EVENT input frequency V 2.0 Voo - 0.5 Low level VOL output voltage TA = -10 to +70°C. Voo = 3.0 to 6.0 V V V Voo -1.0 =1 . Voo = 4.5-6.0 V Voo = 4.5-6.0 V Voo = 4.5-6.0V Input Voo = 4.5-6.0 V 4.0 ps Output 8.0 pS Input 9.5 pS Output 1.3 pS Input Voo = 4.5-6.0 V 1.8 pS Output 4.0 pS Input Output 4.7 pS SI setillL time (SCK high) tSIK 300 ns SI hold time (SCK high) tKSI 450 ns SCK low to SO output delay time tKSO INTO high. low level duration tIOH. tlOL 10 ps RESET high. low level duration tRSH. tRSL 10 ps 850 ns Voo = 4.5-6.0 V 1200 3-249 11 NEe pPD7533 Data Memory, STOP Mode Data Retention Characteristics TA = -10 to +70 G O limits Typ Parameter Symbol Min Max Unit Data retention supply voltage VDDDR 2.0 6.0 V Data retention supply current IDDDR RESET setup time tSRS 0 ps Oscillation stabilizing time tos 20 ms 0.1 10 Symbol Min Resolution I STOP Mode J ~ I ---t--I)\ flA VDDDR ms Data Retention Timing RESET limits Parameter Typ ·'1 Data tCONV Sampling time tSAMP Ceramic resonator: when VDD greater than 4.5 V Analog input voltage VIAM Analog input impedance RAN Crystal: when VDD greater than 45V VAREF current IAREF * tCYC Unit Test Conditions Bits 0.6 ±1/2 LSB Conversion time ·19 HALT = 2.0 V Max 8 Absolute accuracy 25 VOO Test Conditions AID Converter Characteristics TA = -10 to +70 0 G, Voo = +5.0 V ±5%, Vss = Avss = 0 V, VAREF = Voo - 0.5 V to Voo 9 tCyc* tCYC* 0 VAREF Mn 1000 0.4 V 2 rnA 2 = fcc (DIVSEL = 1) roperating Mode Mode l1r--:----- Rete::o: :ode_ o STOP Instruction Execution tSRS =-.j 83-002636A Osci Ilator Characteristics TA = -10 to HOOG, Voo = 3.0 to 6.0 V, DIVSEL = 1 limits Test Conditions Oscillation Configuration Parameter Min Typ Max Unit Ceramic See figure 3 Oscillation frequency (fcc) 390 400 410 kHz VDD == 4.5 to 6.0 V Stabilization time 20 ms VDD greater than 4.5 V CL 1 input frequency 10 410 kHz VDD =- 4.5 to 6.0 V 10 210 kHz 1.0 50 ps 50 pS External clock See figure 3 CL 1 input high, low level duration (tcH,tcLl 2.0 3-250 VDD = 4.5 to 6.0 V NEe pPD7533 Timing Waveforms AC Timing Measuring POints (Except CL 1) 0.7 Voo _ _ Measuring Points 0.3 VOO - - - - <: Serial Transfer Timing 0.7 VOO 0.3 VOO Clock Timing SI ----1----<1 t------l/fC-----..! so Output Data \/ ~--"- 83-002640A Cll Interrupt Input Timing EVENT Timing INTO EVENT RESET Input Timing 83-002639A RESET 3-251 NEe pPD7533 Functional Description Standby Control System Clock Generator The HALT F/F and the STOP F/F comprise the control circuitry for standby mode (figure 2). The STOP F/F is set by the STOP instruction. When the STOP F/F is set, the ceramic oscillator stops. The rising edge of the RESET input resets the STOP F/F. The ceramic oscillator circuit generates the system clock for the pPD7533. Fig u re 2 shows that the osci Ilator circuit for the pPD7533 includes a ceramic oscillator, two divide-by-two circuits, the DIVSEL input, and control circuitry for the standby modes, HALT and STOP. Figure 3 shows that the ceramic oscillator requires that a ceramic resonator be connected to the CL 1 and CL2 pins. An external clock can also be inputat CL 1. In this case, the oscillator operates as an inverted buffer. Figure 2 shows that the output .frequency from the ceramic oscillator connects either directly to the clock selector or via a divide-by-two circuit. The selector is controlled by the DIVSEL line. If DIVSEL is low the divide-by-two frequency is selected. This opti~n is used during a low power operating mode. If DIVSEL is high, then the direct frequency is chosen. The output of the selector is used as system clock (CL), and is also divided by two to supply the CPU cloc,k (¢). Table 1 shows how DIVSEL selects the system and CPU clocks, and machine cycle timing. The HALT instruction sets the HALT F/F and inhibits the input of the half-frequency divider which generates the CPU clock. As a result, only the CPU clock is stopped in HALT mode. The RELEASE signal resets ~he HALT F/F. RELEASE becomes active when any mterrupt request flag is set, or at the falling edge of the RESET input. While RESET is active, the HALT F/F is set, and the chip goes into the HALT mode. At a power-on Reset, the ceramic oscillation is driven when the RESET input signal becomes high. Figure 3. Clock Driver Configuration 30 pF .-----i i l - - _ -... CL 1 External Clock --I >0---...-.... CL1 Ceramic c:::J CMOS Inverter Resonator 30 pF Table 1. DlVSEl Clock Selection System Clock (ClI CL2 CPU Clock (4)1 Machine Cycle low 200 kHz 100 kHz 10 tiS High 400 kHz 200 kHz 5 tiS Figure 2. 83-002644A System Clock Generator STOPF/F . - - _ - - STOP Instruction r------,--~Q HALTF/F l - - - - I - - - HALT Instruction L-...j--RESET - , . . . . - _ - - Standby Release ,,--~---RESET " '--t-----------RESET J CL1 Ceramic Oscillator CL2 r---+CPU ' - - - - - - - - - - - _ C L To Timer/Event Counter DIVSEL o-----------~ 83-002643B 3-252 t\'EC pPD7533 It takes a short period of time for the oscillator output to become stable. To prevent errors due to an unstable clock, the HALT F/F is set to inhibit the CPU clock while the RESET input is high. Therefore, the highlevel pulse width for the RESET input should be wide enough to cover the required time for the ceramic resonator oscillation to stabilize. Format of Clock Mode Register Figure 5. I CM3 I C M2 I CM1 I - The OP 12 or OPL (L = 12) instruction sets codes in the clock mode register. CM3 designates the output of the timer-out signals. If CM3 = 1, the output of the timerout F/F (TOUT) is available at the PTOUT (P21) pin. CMo I Clock Control Figure 4 shows that the clock controller contains a 4-bit clock mode register (CMO-CM3), prescalers 1-3, and multiplexers. The clock controller selects the clock sources and prescalers, and supplies the count pulses (CP) to the timer/event counter. The clock sources are the system clock generator output (CL) or the EVENT pulse. I CM2 C M1 CMo 0 0 0 CL x 0 0 1 EVENT x 2~6 ~ 0 1 0 EVENT 0 1 1 EVENT 1 0 0 CLX~ 1 0 1 EVENTxt 1 1 0 CLX~ 1 1 1 EVENT CM3 Figure 5 shows the format of the clock mode register. CP Count Pulse Timer-out F/F 0 PTOUT inhibited 1 PTOUT output enabled 83-002646A Figure 4. Clock Controller Block Diagram Internal Bus - O P , OPL Instruclion Execulion Timer/Event Counter - - - - ' Mux CL EVENT [POo/INTO] O------jj..;..r::r:--4-tj::t::t=~C) ~~~g=>- I ____ Timer/Event Counter CP 83-0026458 3-253 t-IEC pPD7533 Timer/Event Counter Event Counter Operation Figure 6 shows the timer/event counter has an 8-bit count register, 8-bit modulo register, an 8-bit comparator, and a timer-out flip fiop. To use the timer/event counter as an event counter, input the external event pulse into the POo pin, and select POo' as the count pulse (CP) for the clock controller. The count register counts the external event pulses input at the POo pin, either as they are, or frequency divided. Timer Operation Afterthe TAMMOD instruction sets a count value in the modulo register and the TIMER instruction clears the contents of the count reg ister, the timer starts counti ng count pulses (CP). If an external clock is used, the count pulses are synchronized with the rising edge of CL 1 or the POo input. When the value of the modulo register equals the value of the count register, the comparator generates a coincidence signal (INTT) to set an interrupt request flag. Then it clears the count register to repeat the counting. In this manner, the timer functions as an interval timer whose interval is set by the modulo register. As a result, the timer/event counter operates as an event counter that generates interrupts after observing the number of counts (events) specified by the modulo register. The TCNTAM instruction can read the current count at any time. Set the modulo register with the number of count pulses minus one. If set to 0, no counting will occur because the counter register is held at 0 (both the detection of coincidence and zero-clearing are simultaneously made). Regardless of any instructions, the count pulses are always input into the count register, updating the count value. If the contents of the count register are equal tothose of the modulo register, the INTT request flag is then set. For this reason, inhibit INTT interrupts when not using the timer. Figure 6. Block Diagram of Timer/Event Counter 1 - - - - - - - ;r:s~:~~n Execution TCNTAM Instruction Execution -----.----+1 . - - - -....... INTT CP - Count Hold Circuit for TCNTAM Execution TOUT Serial Interface and Port 2 Timer Reset Instruction Execution 83-002647B 3-254 NEe pPD7533 Serial Interface As figure 7 shows, the serial interface includes an 8-bit shift register, a 4-bit shift mode register, and a 3-bit counter. The serial clock controls serial data I/O. At the falling edge of the serial clock (SCK), the SO line outputs the most significant bit (7) of the shift register. The contents of the shift register are shifted by one bit at the rising edge of the next serial clock (n -0 n+1). At the same time, the data on the SI line is loaded into the least significant bit (0) of the shift register. The 3-bit counter (octal counter) counts up the serial clocks and generates an internal interrupt signallNTS at every count of 8 clocks (at the end of a 1-byte serial data transfer). It then sets the interrupt request flag (INTO/S RQF). The TAMSIO instruction sets data in the shift register during the transmission of serial data, then starts transmission. At the end of the transmission of each byte (8 bits) an internal interrupt (INTS) is generated. The SIO instruction also starts the reception of serial data. The received data is taken from the shift register by executing the TSIOAM instruction after an interrupt (INTS) is generated by the reception of one byte of data. Figure 7. The end of a 1-byte transfer can be confi rmed by testing the INTS RQF with the SKI instruction instead of interrupt processing. The following three types of serial clock sources are available: system clock ¢, external clock (SCK input), and timer-out F/F output signal (TOUT). Bits SM2-SMO of the shift mode register select the clock source. If the system clock ¢ is chosen, execute the SIO instruction to supply the clock to the serial interface, controlling the input/output of serial data while ¢ is output from the SCK pin. After eight ¢ pulses, the clock is automatically discontinued by holding the SCK output at a high level. Therefore, the input/output of serial data automatically stops after each byte has been transferred. Consequently, the software does not need to control the serial clock and the transfer rate is determined by the system clock frequency. In this mode, after six machine cycles from the execution of the SIO, the TSIOAM instruction can read out the received data from the shift register or can write in the next transmit data. Figure 8 shows the shift mode register format. Serial Interface Block Diagram -OP,OPL· P02/SI SM3 0---+------+--+--< 1--_ _ _ _ _-+_ _ _ _ _ _ _-1 ~~~----~-----~------TOUT ~------+------+------¢ POO/INTO/EVENT 1--+------ INTS RS F/F '-.lr---~ Q S 1 - - - - - - - SIO· "Instruction Execution 83-267488 3-255 NEe pPD7533 Figure 8. Format of'Shlft Mode Register SM 2 SM I SMo P03/81 P02/80 0 0 0 Port input Port input 0 1 1 0 0 Outputs TOUT continuously SI input SO output 0 Bit SM3 selects the interrupt source in the following manner: SM3 Interrupt Source o INTS INTO 1 If the external clock (SCK input) is selected, the serial clocks are input from SCK. When the eighth external serial clock is input, an internal interrupt (INTS) is generated, signalling the end of a 1-byte data transfer. Since the serial clocks are not internally inhibited, the external clock must hold the signal high after eight clocks. The external serial clock determines the transfer rate. The serial interface can be operated from DC to the maximum rate in the electrical specifications. If TOUT is selected, the half-frequency divided coincidence signal of the timer/event counter is the serial clock. This serial clock controls the input/output of the serial data and is output from the SCK pin. 3-256 Serial Operation Stops Outputs t/J continuously 0 0 POI /8CK Port input SCK input Operates with external clock SCK output (----......:....----- :~~~=:: "Instruction Execution 83-002653B Standby Function The jJPD7533 has two types of standby modes (STOP and HALT) to minimize power consumption during a program standby state_ STOP mode is set by the STOP instruction and HALT mode by the HALT instruction_ When standby mode is set, program execution is stopped, and the contents of all internal registers and data memory are held_ However, it is possible to operate the shift register and the timer/event counterAn interrupt or reset releases standby mode_ Since an interrupt releases standby mode, neither STOP nor HALT modes can be set if an interrupt request flag is set Therefore, when setting standby mode when there is a possibility of a request flag being set, first reset the interrupt request flag by processing the interrupt in advance or by executing the SKI instruction. The major difference in the two modes is that crystal oscillation (CL) stops in STOP mode but does not stop in HALT mode. In STOP mode, it is possible to go into data retention mode by lowering the power supply voltage_ During data retention mode, all operation stops and only the data RAM stays intact Table 2 shows the differences between STOP and HALT modes_ Table 2. Differences Between STOP and HAL T Modes Mode Operation Ceramic Oscillation STOP Mode HALT Mode X(1) 0(2) 112 Ceramic Oscillation X X CPU X X Serial 1/0 (3) Timer IEvent Counter X AID Converter X 0 RESET INTOIS ROF NTT ROF RESET Input Release of Standby Mode 0 Note: (1) Not possible (2) Possible (3) Possible depending on clock source selected 3-259 NEe pPD7533 STOP Mode In STOP mode, ceramic oscillation and the halffrequency divider stop. The CPU stops and the operations requiring the system clock (CL, 0) stop. Release from STOP mode is with the RESET input only. All other functions cease to operate. In order to minimize power consumption, the current flowing through the resistor ladder of the A/D converter must be minimized. To minimize power consumption, turn off the power to the VAREF pin. Note that ceramic oscillation stops and disables the system clock during STOP mode by bringing CL2 to ground. Therefore, if the external clock is connected to CL 1 and a STOP instruction is executed, the CPU will enter HALT mode instead. HALT Mode In HALT mode, only the half-frequency divider circuit stops in the clock generator circuit (CL operates, ¢ stops). Therefore, the CPU and the operation of the serial interface (when using ¢ as a serial clock) stop. However, since the clock control circuit is still in operation, it can select the CL signal from the clock generator or the EVENT input and supply the count pulse (CP) to the timer/event counter. Conseq uently, the ti mer/event cou nter can be operated in HALT mode. The serial interface operates if a serial clock other than ¢ (such as the external clock, TOUT signal) is selected. The HALT mode is released by the RESET input or an interrupt, even if the interrupt is disabled. If the interrupt master enable F/F is disabled, the instruction following the STOP/HALT instruction is executed regardless of the state of the interrupt enable register (interrupt routine is not initiated). In this case, the interrupt request flag is left set. If necessary, it can be reset by the SKI instruction. After any release, operation resumes with the same register contents as before standby mode. Release From Standby Mode with RESET Both STOP and HALT modes are released unconditionally by the RESET input. Figure 14 shows the release timing. If the device is reset during STOP mode, the low to high transition of the RESET pin will take the processor from STOP mode to HALT mode. When RESET goes high to low, the HALT mode is abandoned, and after a normal reset operation, the PC is initialized to O. Only the data memory will stay intact during the HALT mode, but all registers become undefined. If the device is reset during HALT mode, the high to low transition of RESET will release the device from standby mode. After a normal reset operation, the PC is initialized to o. Only the data memory will stay intact during the STOP mode, but all registers become undefined. Figure 15 shows the release from HALT mode by RESET. Figure 14. Release from STOP mode by RESET ~ ~-I-_----.J Release from Standby Mode by Interrupt RESET _ _ The standby mode is released when the interrupt request flag is set by an interrupt source, whether interrupts are disabled or enabled. However, the operations after release differ in each case. ~ Input _ . HALT Mode STOP Mode .1 • Reset Operation PC=O Clock Oscillation Begins 83-002654A If the interrupt master enable F/F is enabled, and if the interrupt is enabled, the corresponding interrupt routine is initiated after execution of one instruction after the STOP/HALT instruction. Then, the result flag is reset. If the corresponding bit of the interrupt enable register has been reset, execution of instructions starts after the STOP/HALT instruction, and the interrupt routine is not initiated. In this case, the request flag for release remains set. If necessary, reset the request flag with the SKI instruction. 3-260 Figure 15. Release from HAL T Mode by RESET RESET~ - - - HALT Mode .1 • Reset Operation PC=O 83-002655A t\'EC pPD7533 Reset Function Power-on Reset Circuit The J.lPD7533 is reset and initialized by the input of the RESET signal (active high). Figure 16 shows an example of the simplest power-on reset circuit using a resistor and a capacitor. A RESET causes the CPU to initialize in the following manner: Figure 16. • Program counter (PC) is cleared to 0 • Skip flags (SK1, SKO) and program status word (PSW) are reset to 0 • Timer/event counter: - Count register = OOH - Modulo register = FFH - Timer-out F/F = 0 • Clock control circuitry: - Clock mode register (CM3-CMO) = 0 CL - CP = 256 • • • • • Power-on Reset Circuit +5V pPD7533 ~ ..---tRESET r.7 83-002656A - Timer-out FF signal not output to PTOUT - Prescalers 1-3 = 0 Shift Mode Register (SM3-SMa) is cleared to O. - Shift operation stops - Port 0 is in input mode (high impedance) - INTS is selected interrupt source of INTO/S AID converter circuit: - ADM register is set to 0 - ANO is selected - SA register is set to 7FH - EOC flag is set to logic 1 Interrupt control circuit: - Interrupt request flags = 0 - Interrupt master enable F/F = 0 - Interrupt enable register = 0 - All pending interrupts are cancelled - All interrupts are disabled All Port 2-7 output buffers are turned off Contents of data memory and the following registers are undefined: - Stack pointer (SP) - Accumulator (A) - Carry flag (C) - General purpose registers (H,L) - All port output latches - Shift register 3-261 pPD7533 3-262 NEe NEe NEe Electronics Inc. Description The /JPD7537 A, /JPD7538A, and /JPD75CG38 are 4-bit, single-chip CMOS microcomputers with the /JPD7500 architecture and FIP direct-drive capability. Note: This data sheet pertains to ",PD7537A, ",PD7538A, and ",PD75CG38. For simplification, the revision letter (A) usually is omitted from the part numbers within the data sheet. The /JPD7537 contains a 2048 x 8-bit ROM and a 128 x 4-bit RAM. The /JPD7538 contains a 4096 x 8-bit ROM and a 160 x 4-bit RAM. The /JPD7537/38 contains two 4-bit general purpose registers located outside RAM. The subroutine stack is implemented in RAM for greater depth and flexibility. The /JPD7537/38 typically executes 67 instructions with a 5/Js instruction cycle time. The /JPD7537/38 has one external and two internal edge-triggered hardware-vectored interrupts. An 8-bit timer/event counter and an 8-bit serial interface help to reduce software requirements. Thirty-one high-voltage lines are organized into the 3-bit output port 2, the 4-bit output ports 3, 8, and 9, and the 4bit I/O ports 4, 5, 10, and 11. The low power consumption CMOS process allows the use of a power supply between 2.7 V and 6.0 V. Current consumption is less than 3.0 mA maximum, and can be further reduced in the halt and stop power-down modes. The /JPD75CG38 is a piggyback EPROM version of the /JPD7537/38. Pin-compatible and function-compatible with the final, masked versions of the /JPD7537/38, the /JPD75CG38 is used for prototyping and for aiding in program development. pPD7537A/38A 4-BIT, SINGLE-CHIP CMOS MICROCOMPUTERS WITH Flp® DRIVER D Can select either a pull-down resistor or open-drain output per 31 high-voltage outputs (mask optional) D Vectored interrupts: one external, two internal D 8-bit timer/event counter o 8-bit serial interface o Standby function (HALT, STOP) o Data retention mode o Zero-cross detector on POOIINTO input (mask optional) o System clock (lJPD753717538/75CG38): on-chip ceramic oscillator o CMOS technology o Low power consumption o Single power supply - /JPD7537/7538: 2.7 V to 6.0 V -/JPD75CG38: 5.0V ±10% Ordering Information Max Frequency Part Package Type Number of Operation ",PD7537 AC / 38AC 42-pin plastic DIP 610 kHz /APD7537ACU /38ACU 42-pin plastic shrink DIP 610 kHz /APD75CG38E 42-pin ceramic piggyback DIP 500 kHz Pin Configurations /JPD7537/3842·Pin Plastic DIP or Shrink DIP RESET Cll Cl2 VpRE 41 POo"NTO PO,/SCK P02/S0 VlOAD P53 P52 P5, P50 Features D 67 instructions D Instruction cycle: - I nternal clock: 5 /Js /400 kHz, 5 V - External clock: 4/Js/500 kHz, 5 V D Upwardly compatible with the /JPD7500 series product family D 4,096 x 8-bit ROM (lJPD7538/75CG38) 2,048 x 8-bit ROM (lJPD7537) D 160 x 4-bit RAM (lJPD7538/75CG38) 128 x 4-bit RAM (lJPD7537) D 351/0 lines D 31 high-voltage output lines that can directly drive a vacuum fluorescent diplay (FIP) 49-001170A FIP is the registered trademark for. NEC's fluorescent indicator panel (vacuum fluorescent display). 3-263 NEe IAPD7537A/38A !-,PD75CG38 EPROM Pin Configurations (cont) No. Symbol !-,PD75G38 42·Pin Ceramic Piggyback DIP RESET CL1 Vss POo/INTO CL2 P01/SCK VpRE Voo 0 1 280 Voo VLOAO NC 0 2 270 MSEL P53 A76'H6~Voo P52 P113 Supplies EPROM OE signal Program counter MSB output 26 Voo Supplies Vee to the EPROM 1- P42 27 MSEL Mode select input 1 P43 28 Voo Supplies high-level signal to MSEL 1 (~)12 I 17 ~)ls 1 12013 16014 Vss<2,1415913 7- P111 P110 Chip enable output P41 1 10011 18016 17 CE A11 1 Pl12 20 23 AoOl0 19017 P100 Connection to EPROM GND pin P30 P33 1 1 11 Vss Vss 1 P1CJ, 14 P02/S0 22 Al0 9200CE P102 Data read input from the EPROM P03/S1 P32 1 P103 10-17 P31 A30 7220Vss 1 1 A20 8 210 Al0 P21/PTOUT EPROM: 2732 P40 P80 P81 Note: (1) Output drivers on ports 2-5 and 8-'11 are m~sk-optional. Accordingly, either an open-drain output or a pull-down resistor can be selected. VLOAD is suitable for an output driver with a pull-down resistor. P82 P83 P90 P91 (2) Ports 2-5 are suitable as FIP segment signal outputs, and ports 8-11 P92 are suitable for FIP digit signal outputs. P93 Voo 49-001171A Pin Identification Symbol Function RESET Reset input 2,3 CL1, CL2 Clock pins 4 VPRE High-voltage output predriver supply 5 VLOAD High-voltage output option resistor supply 6-9 P50-P53 High-voltage I/O port 5 10,12 P23, P22 P21/PTOUT High-voltage output port 2, and output port from timer / event counter (PTOUT) 13-16 P100-P103 High-current, high-voltage I/O port 10 17-20 P110-P113 High-voltage, high-current I/O port 11 21 Voo Positive power supply 22-25 P90-P93 High-voltage, high-current output port 9 26-29 P80-P83 High-voltage, high-current output port 8 High-voltage I/O port 4 30-33 P40-P43 34-37 P30-P33 High-voltage output port 3 38 39 40 41 P03/S1 P01/SCK POo/INTO 4-bit input of port 0; or serial data input (SI), serial data output (SO), serial clock I/O (SCK), and external interrupt input (INTO) or zero-cross detect input (POO). 42 VSS Ground 3-264 P02/~ (3) Ports 8-11 have high-current drive capability and can drive an LED directly. Pin Functions, ",PD7S37' 38 and ",PD7SCG38 !-,PD7537138 and !-,PD75CG38 No. EPROM address output 11-13,15-19 1 1 P23 No connection 1 A40 6 230All P22 NC 3-10, 21, 24, 25 Ao-A10 1 As 05 240Ag P50 Connection to pin 21 of flPD75CG38 1 A60 4250 Aa P51 Function Voo RESET System reset (input). CL1, CL2 Connection to the ceramic oscillator. CL1 is the external clock input. VPRE Negative power supply for high-voltage output pre· drivers (for ports 2-5, 8-11). VLOAD Negative power supply for optional load resistors (pulldown resistors) of high-voltage output drivers (for ports 2-5, 8-11). This pin is only on the !-,PD7537 138. P53-P50 4-bit, high-voltage I/O port 5. P21-P23 3-bit, high-voltage output port 2. NEe /JPD7537A/38A PTOUT Pin Functions, J-lPD75CG38 EPROM Output port for the timer/event counter. MSEL P103-P100 4-bit, high-voltage, high-current I/O port 10. Capable of bit set/reset by SPBLlRPBL instructions. P113-P110 4-bit, high-voltage, high-current I/O port 11. Capable of bit set/reset by SPBLlRPBL instructions. Voo Positive power supply. P93- P90 4-bit, high-voltage, high-current output port 9. Capable of bit set/reset by SPBLlRPBL instructions. P83-P80 4-bit, high-voltage, high-current output port 8. Capable of bit set/reset by SPBLlRPBL instructions. P43-P40 4-bit, high-voltage I/O port 4. P33-P30 4-bit, high-voltage output port 3. POO-P03 4-bit input port O. POo is also used as the zero-cross detection input. SI Serial data input. so Changes the addressing area of the external EPROM and the on-chip RAM (with a pull-down resistor). Connecting a jumper between socket pins 27 (MSEL) and 28 (Voo) selects /JPD7537 mode (2-Kbyte EPROM, 128 x 4bit RAM). Leaving MSEL open selects /JPD7538 mode (4Kbyte EPROM, 160 x 4-bit RAM). AO-A10 Output the low-order 11 bits of the program counter (PCO-PC10). Used as EPROM address signals. A11 When MSEL is high level, A11 outputs high-level signals. When MSEL is open, A11 outputs the MSB of the PC, which is used as the most significant address signal of the 4-Kbyte EPROM 2732. 10- 17 Input data read from the EPROM. CE Outputs the chip enable signal to the EPROM. Voo Pin 26 is electrically equivalent to the bottom Voo pin and is used to supply Vee to the EPROM. Pin 28 is electrically equivalent to the bottom Voo pin and is used to supply the high level signal to MSEL. Pin 1 connects to pin 21 of /JPD75CG38. Vss Pin 14 is electrically equivalent to the bottom Vss pin in voltage, and is connected to the EPROM GND pin. Pin 22 is electrically equivalent to the bottom Vss pin and is used to supply the OE signal to the EPROM. Serial data output. Instruction Set SCK Refer to the User's Manual. The instruction set appears also as subset A4 in the data sheet for the /JPD7500 series of single-chip microcomputers. Serial I/O clock. INTO External interrupt input. Vss Ground. 3-265 NEe ",PD7537A/38A Block Diagram, IAPD7537/38 POO"NTO 4 POO-P03 P21-P23 PTOUT/P21 P30-P33 P40-P43 H(4) Program Memory 2048 x 8 Bits !/lPD7537) 4096 x 8 Bits !/lPD7538) Instruction Decoder Cl Data Memory 128 x 4 Bits (I-'PD7537) 160 x 4 Bits (I-'PD7538) Cll Cl2 I Voo f Vss I P90-P93 Pll0-P113 RESET 49-0010678 3-266 NEe J.(PD7537A138A Block Diagram, J.lPD75CG38 POO/INTO P2,-P23 PTOUT/P2, L.-_ _ _ _ --'~DP7C Instruction Buffer Cl Instruction Decoder Points Symbol 500 kHz tCR 0.2 j.ls tCF 0.2 j.ls 50 j.ls 49-001056A After Voo reaches 4.5V ... CL1input pulse tCH. width high. low tCl 0.7V00X== <:: 0.3 VOO ms Test Conditions 0.8 Note: (1) Ceramic resonator: CSB400P (MURATA) is recommended; C = 300 pF (see figure 3). (2) External clock (see figure 4). 3-271 NEe J..lPD7537A/38A Figure 3. Recommended Circuit, /-LPD753717538 Data Retention Mode Timing HAl.T Operating Mode Mode r5---sTOP Mode'----.J---+I I _ r Data Retention Mode ---.Jf~----\. Voo t Execution of STOP Instruction 49-Q01057A RESET Figure 4. Recommended Circuit, /-LPD75CG38 49-001076A tJPD75CG38 EPROM Interface 49-001058A Stop Mode Low Voltage Data Retention Characteristics /-LPD7537/38 TA= -10°C to +70 oc, Voo=2.7Vto6.0V Limits Parameter Symbol Min Data retention supply voltage VDDDR 2.0 Data retention supply current IDDDR RESET set-up time Typ Unit 6.0 V 0.1 10 JAA VDDDR=2V (Note 1) 7 30 JAA VDDDR=2V (Note 2) tSRS Oscillation stable tos time Test Conditions Max A 4-Kbyte EPROM (2732) plugs into socket pins on top of the /-LPD75CG38. A high input to MSEL selects the /-LPD7537 mode and fixes the A11 output high level in order to access the upper 2-Kbytes of the 4-Kbyte EPROM. When MSEL is open, /-LPD7538 mode is selected. All EPROM addresses can be accessed because A11 functions as the MSB of the address. Figure 5 shows the address control unit. Figures 6 and 7 show the /-LPD75CG38 connected with the 2732. Figure 8 shows the EPROM read timing. Data is read into the instruction buffer at the end of the T4 state. The chip enable (CE) signal is made active during 2 states (T3, T4) in order to decrease the power consumption of the EPROM. Figure 5. Address Control Unit MSBOf_'--_ _~ Address Buffer lAS 20 ms VOO(28) After VDD reaches 4.5V MSEL to Address Decoder of Data Memory SW On-chip pull-down resistor /-LPD75CG38 TA= -10°C to +70 oc, Voo=5V±100/0 Vss Limits Parameter Symbol Min Data retention supply voltage VDDDR 2.0 Data retention supply current IDDDR RESET set-up time tSRS Oscillation stable tos time 7 Max Unit 5.5 V 30 0 20 Note: (1) Without zero-cross detector. (2) With zero-cross detector. 3-272 Typ Test Conditions ms After VDD reaches 4.5V SW on : flPD7537 Mode SW off : flPD7538 Mode 49-001174A NEe Figure 6. J.tPD7537 AI38A Connection with the 2732 (JlPD7537 Mode) )J.PD75CG38 Figure 7. Connection with the 2732 (JlPD7538 Mode) 2732 )J.PD75CG38 2732 Vee VOO(26) VOO(26) Voo(28) MSEL :J Vee Voo(28) r--(open) All (high) All MSEL r--(open) ... ... "a-Al0 ) "a- Al0 Ao-All ) " CE VSS(22) "'- CE CE CE OE VSS(22) OE Oo-Or lo-Ior 10-17 GND Co-Or ... " Vss(14) "a-All 0' GND Vss(14) 49-001173A FigureS. 49-001071A EPROM Read Timing 1 Machine Cycle T1 T4 T2 I \ / CLl \ (External; I / T3 T4 I ..,XI..__________ AO-Al1 _ _ _ _ _ CE \ / \ -JXI.._____ A_dd_re_ss_ _ _ _ _ _ _ _ _ \~ ____--J/ - - - - "/ ...J}- - - - - - - - - - - - -<'-_____ 10- 17 _ _ _ _ _ _ _ Re_ad_O_at_a_ _ _ _..,}- - - - -l9-0010i2A NEe, ",PD7537A/38A Timing Waveforms EPROM(/iPD75CG38 only) 10- 17 Serial Interface SI --------"-------<1 ---'--+---(1 49·001075A so Clock Output Data V--------I\..49-001074A Interrupt Input CL11nput INTO 49-001168A Reset Input POo Input 49-001073A RESET 49-001169A 3-274 NEe J.lPD7537A/38A Operating Characteristics fCC (Ceramic Oscillation) vs. Voo 1000 I N J: Oscillation .... ............. .... () J:! [ I!! u. I: 0 ~.~ TA- Guaranteed Ar~~.~ •••• ~ 100 ""0 (3 ~ ~ ~ ~ I---10 o 10~+70°C SOO C I /" ~ Guaranteed Area 11. r I 0 ceo c" /' N ~Operation =w. ~ 0 u fpovs. VOO 1000 L Guaranteed Area 100 ::l Q. I: SO ~ C I T I 10 o Supply Voltage, Voo (V) 2.7 3 Supply Voltage, (V) I fcvs. VOO 100 VS. Voo (Typical) 1000 ~ TA-2S o C Operating Mode <" ..;!. c E soo E § u,., 8: ~ 1000 100 SO cil 10 !I - ~ ~ I-- o V - = N J: 500 ~ J:! ..... [ Halt Mode- £ ::l ./ "" ./ Guaranteed Area 100 Q. I: CL1 CL21 ""g 0 ~!~' (3 E CSB400P ! I330PF I330PF -=-1 -=- SO 1 10 o o Supply Voltage, Voo (V) 2.7 3 Supply Voltage, VOO (V) VOH vs. IOH (Ports 2-5) (Typical) VOH vs. IOH (Ports 8-11) (Typical) -30 TA=2S oC TA=2S o C -20 <" <" .s .s .9 .9 :I: :I: -10 -10 § ~ VOO-VOH (V) VOO-VOH(V) 3-275 ttiEC IAPD7537A/38A Differences Among the ",PD7537/38/CG38 JdlD75CQ38 ,d'D7537 ,d'D7538 Program memory 4 Kbyte EPROM (2732) connectable on top On-chip 2 Kbyte ROM On-chip 4 Kbyte ROM Data memory (RAM) 160x4 128x4 160x4 High-voltage output lines All open-drain outputs On-chip load capacitor or open drain output (bit by bit. mask optional) VLOAD pin No Yes Zero-cross detection Yes Mask optional Package 42-pin ceramic piggyback DI P bottom pin compatible with ~PD7537 /38 Power supply 5V 3-276 42-pin plastic DIP 42-pin plastic shrink DIP 2.7Vto 6.0V NEe NEe Electronics Inc. pPD7554/64 4-BIT, SINGLE-CHIP CMOS MICROCOMPUTES WITH SERIAL I/O PRELIMINARY INFORMATION Description Pin Configuration The ",PD7554 and ",PD7564 are low-end versions of ",PD7500 series products. These microcomputers incorporate a serial interface and are useful as slave CPUs to high-end ",PD7500 series or a-bit ",COM-87 series products. P01/SCK P02/S0 POalSI P80 P8l The ",PD7554/7564 has output ports that can directly drive triacs and LEDs. Also, various mask-optional I/O circuits can be configured for a wide selection of outputs allowing a reduction of external circuitry in your design. The ",PD7554 and ",PD7564 differ only in their clock circuitry. The ",PD7554 uses an external resistor with an internal capacitor for an RC oscillator clock, where the ",PD7564 uses an external ceramic oscillator as a clock. These microcomputers are ideally suited to control devices such as plain paper copiers (PPCs), printers, VCRs, and audio equipment. Features o o o o o o o o o o o 47 instructions (subset of ",PD7500 set 8) Instruction cycle: External clock: 2.86 ",s/700 kHz, 5 V RC oscillator ~PD7554): 4 ",s/500 kHz, 5 V Ceramic oscillator ~PD7564): 3 ",s/660 kHz, 5 V Program memory (ROM) of 1024 x 8-bits Data memory (RAM) of 64 x 4-bits 8-bit timer/event counter 8-bit serial interface 16 I/O lines Data memory retention at low supply voltage CMOS technology Low power consumption Single power supply (2.5 V to 6.0 V) ",PD7554 (2.7 V to 6.0 V) J,LPD7564 Ordering Information Part Number Package Type pPD7554CS 20-pin plastic shrink DIP pPD7564CS 20-pin plastic 3hrink DIP pPD7554G 20-pin plastic SO pPD7564G 20-pin plastic SO GND POO/INTO P82 Cl2(P83) Cl1 83-0026l4A Pin Identification No. Symbol Function 1-4 POo/INTO P01/SCK P02/S0 P03/S1 4-bit input port O/count clock input/serial interface 5-8 P8o-P82 P83/CL2 4-bit output port 8 Connection for ceramic resonator or RC. CL1 Connection for ceramic resonator or RC 10 11 Voo RESET Reset input pin 12-15 P101-P103 4-bit I/O port 10 16-19 P11o-P113 4-bit I/O port 11 20 GND Ground +5 V power supply Pin Functions POo/INTO, P01/SCK P02/S0, POa/SI (Port O/count clock input/serial interface) 4-bit input port O/count clock input/serial I/O interface. This port can be configured as a 4-bit parallel input port or as the 8-bit serial I/O interface, under control of the serial mode select register. The serial input SI (active high), serial output SO (active low), and the serial clock SCK (active low-synchronizes data transfer) comprise the 8-bit serial I/O interface. If POo/INTO is unused, connect it to ground. If any of P01-P03 are unused, connect them to ground or VDD. The port is in the input state at reset. 3-277 11 NEe pPD7554/64 P80·P82 P8s1CL2 (Port 8/clock input 2) 4-bit output port 8. This port can sink 15 mA and interface 12 V. On the ~PD7554, the port function of P83/CL2 is specified by mask option. P83 is a normal output port on the ~PD7564. On the ~PD7554, CL2 is one of the pins to which a resistor for RC oscillation is connected. On the ~PD7564, CL2 is one of the pins to which a ceramic resonator is connected. If any of P8o-P82 pins are unused, leave them open. The port is in the high impedance state at reset. CL 1 (Clock input 1) On the ~PD7554, CL1 is one of the two pins to which a resistor for RC oscillation is connected. On the ~PD7564, CL 1 is one of the two pins to which a ceramic resonator is connected. P110·P113 (Port 11) 4-bit I/O port. This port can sink 10 mA and interface 12 V. If any of these pins are unused, connect them to ground or VDD in the input state, or leave open in the output state. The port is in the high impedance or high-level output state at reset. GND (Ground) Ground. Pin Mask Options Table 1 shows the mask options for all the port pins and the RESET pin. You may select these options in bit units. Table 1. Pin Pin Mask Options Options 1 No connection to internal resistor 2 Connected to internal pull-up resistor 3 Connected to internal pull-down resistor Voo (Power supply) Positive power supply. CMOS (push-pull) output N-channel open-drain output RESET (Reset) Use as P83 Use as CL2 System reset input pin (active high). This pin can be internally connected to a pull-down resistor if specified by mask option. P1 Oo-P1 03 (Port 10) 4-bit 1/0 port. This port can sink 10 mA and interface 12 V. If any of these pins are unused, connect them to ground or VDD in the input state, or leave open in the output state. The port is in the high impedance or high-level output state at reset. 3-278 CMOS (push-pull) output N-channel open-drain output P100-P103 P110-P113 Used as P83 1 N-channel open-drain input/output 2 CMOS (push-pull) input/output 3 N-channel open-drain input/output with internal pull-up resistor. RESET *: !-,PD7554 only Connected to internal pull-down resistor Not connected to internal pull-down resistor NEe pPD7554/64 ILPD7554 Block Diagram POollNTO Program Memory 1024x8 Bits Instruction Decoder CL Q CL 1 CL2(P831 1 r VDD GND 1 RESET 83-0026158 3..279 pPD7554/64 ",PD7564 Block Diagram 3-280 NEe NEe J.LPD7554/64 Functional Description 1/0 Ports Figure 1 shows the internal circuits at 1/0 ports PO, P8, PIO, and P11 Figure 1. Interface at lID Ports Type F. Type D Output with Type B Schmitt·Triggered input P01/SCK Type.A. CMOS Input Cell (Part of Type E) Voo Data Output Disable - - - - iL -_ _.... InlOut ~'"P"' Type O. Vss Type B. Schmitt-Triggered Input POO/INTO, P03/SI Mid·Level Voltage, High·Current P8o/P82, P83/CL2 D a l a - - -......-I Out Type D. Push·Pull Output (part of types E and F) High impedance on RESET (output disabled); both p. and N·channel transistors are turned off. Voo Type P. P·ch Data~ Mid·level Voltage Input Buffer P100·P103, P110·P113 Output Output Disable .. Data--__.-4 Vss ,..--+----0 In/Out Type E. Type D Output 1I"ith Type A Input Buffer P02/S0 Output _ Disable ........_--1 (Middle-Level Voltage. Middle·Level Current) Data Output Disable InlOut Mlddle·Level Voltage Input Buffer 83-003557C 3-281 NEe pPD7554/64 Program Memory Data Memory The ",PD7554/7564 has a mask-programmable ROM with a capacity of 1024 words by 8 bits for program storage. It is addressed by the program counter. The reset start address is OOOH. Figure 2 shows the program memory map. The data memory is static RAM with a capacity of 64 words by 4 bits. Part of this memory is used as the stack area. The data memory is also used in8-bit data processing when paired with the accumulator. Figure 4 shows the data memory map. Figure 4. General Purpose Registers Two registers, H (2-bit) and L (4-bit) are provided as general purpose registers. Each register can be individually manipulated. The two registers also form pair register HL; H being the high register and L being the low one. The HL register is a data pointer to address data memory. Figure 3 shows the configuration of the general purpose registers. Data Memory Map (0) OOH 64 words x 4 bits (63) 3FH L...-_ _ _....I 83-002594A The L register also specifies an 1/0 port or mode register when an 1/0 instruction (IPL or OPL) is executed. It also specifies the bits of a port when the SPBL or RPBL instruction is executed. Figure 2. Program Memory Map You may use any area of the data memory as the stack. The boundary of the stack is determined by how the TAMSP instruction initializes the stack pointer. Once the boundary is set, a call or return instruction automatically accesses the stack. ~O»"f~ ' ' ' 3FFHU Figure 3. 83-002592A Configuration of General Purpose Registers o 1 0 3 Data memory can be addressed directly, with the immediate data from an instruction; indirectly, with the contents of HL (including autoincrement and autodecrement); and indirectly by the contents of the stack pointer. When a call instruction is executed, the contents of the program counter and the program status word (PSW) are stored to the stack in the sequence shown in figure 5; Figure 5. Call Instruction Storage to Stack 0 "::""'1--;"1 Stack Area 3 SP·4 83-002593A 0\ 0 0 \ PCg\ PCa SP·3 psw' SP·2 PC3'PCO SP·1 PCr,PC4 'Bit 101 PSW is always O. 83-002595A 3-282 NEe When a return instruction is executed, the contents of the program counter are automatically restored, but the PSW is not. The contents of data memory can be retained with a low supply voltage during STOP mode. Accumulator The accumulator is a 4-bit register used in arithmetic operations. The accumulator can process 8-bit data with paired data addressed by HL. Figure 6 shows the configuration of the accumulator.. Figure 6. Configuration of the Accumulator pPD7554/64 Program Status Word The program status word (PSW) consists of two skip flags (SKO and SK1), a carry flag (C), and bit 1, which is always zero. Figure 7 shows the configuration of the PSW. Figure 7. Configuration of the Program Status Word 3 2 ° I~S_K...J1l_s_K0..J..I_o--,-_c...I1 psw 83-002597A The contents of the PSW are stored to the stack when a call instruction is executed, but are not restored from the stack by the return instruction. Arithmetic Logic Unit The arithmetic logic unit (ALU) is a 4-bit arithmetic circuit that performs operations such as binary addition, logical operation, increment, decrement, comparison, and bit processing. The skip flags retain the following skip conditions: string effect byLAI or LHLI instruction, and skip condition satisfied by an instruction other than a stringeffect instruction. The skip flag is set or reset in accordance with the instruction executed. The carry flag is set to 1 if an addition instruction (ACSC) generates a carry from bit 3 of the ALU. If no carry is generated, the flag is reset to zero. The SC instruction sets the carry flag and the RC instruction resets it. When a RESET is input, the SK1 and SKO flags are cleared to zero and the contents of the carry flag are undefined. E t'tIEC pPD7554/64 oscillator. The STOP flip-flop is reset by the standby release signalthat becomes active when one of the test requests flags is set or at the falling edge of the RESET signal. When the STOPflip-flop'is reset, the RC oscillator resumes operation and supplies the system clock. System Clock Generator The system clock generator consists of a ceramic oscillator, a 112 frequency divider, standby modes (STOP/HAL and control circuit. Figure 8 is a circuit diagram of the system clock generator. n, In the f.tPD7554, the RC oscillator operates with a single external resistor connected across CL 1 and CL2 (the capacitor C is incorporated). When the RC oscillator is not used, external clock pulses can be input via the CL 1 pin. In this case, the RC oscillator functions as an inverting buffer. The output from the RC oscillator serves as the system clock (CL) which is then divided by two and used as the CPU clock (~). The HALT & STOP instruction & RESET HIGH sets the HALT flip-flop which disables signals from going to the 1/2 frequency divider that generates the CPU clock. Only the CPU clock stops in HALT mode. The HALT flip-flop is reset by the same conditions as the STOP flip-flop. Figure 9 shows the system clock generator circuit for the f.tPD7564. The standby mode control circuit is made up of a STOP flip-flop and a HALT flip-flop. The STOP instruction sets the STOP flip-flop and stops the system clock supply. This flip-flop also stops the RC Figure 8_ System Clock Generator' for JiPD7554 STOP F/F 1---------......,.- STOp· HALT F/F S Q HALT· RESET (High) Standby Release CL2 RESET (-"L) ; (to CPU) L-_ _ _ _ _ _ _ _ _ _ _ CL (System Clock) • Execution of Instruction 83-0025986 Figure 9_ System Clock Generator for JiPD7564 STOP F/F 1---1----- STOp· HALT F/F Q CL1 S I=---+- HALT· RESET (High) Ceramic Oscillator Standby Release CL2 \ - - - - RESET 'L. L--1--_ _ _ _ _ _ _ _ _ RESET ~ (To CPU) L-_ _ _ _ _ _ _ _ _ _ _ _ CL (System Clock) ·Executlon of Instruction 83-0025996 3-284 NEe pPD7554/64 On the J.lPD7564, the ceramic oscillator operates with a ceramic resonator connected across CL 1 and CL2. The output from the ceramic oscillator is used as the system clock (CL); it is divided by two to produce the CPU clock (~). The standby mode control circuit is made up of a STOP flip-flop and a HALT flip-flop. The STOP instruction sets the STOP flip-flop and stops the ceramic oscillation, thus stopping the supply for all clocks. The STOP flip-flop is reset by the RESET signal (high level) and restarts ceramic oscillation. The supply of each clock resumes when RESET goes low. The HALT instruction sets the HALT flip-fiop which disables signals from going to the 1/2 frequency divider that generates the CPU clock. Only the CPU clock stops in HALT mode. The HALT flip-flop is reset by the HALT RELEASE signal (activated by setting at least one test request flag) or the falling edge of RESET, resuming supply of the CPU clock. The HALT flip-flop is also set when RESET is active (high level). At power on reset operation, the rising edge of RESET starts ceramic oscillation; however, some time is required to achieve stable oscillation. To prevent the unstable clock from operating the CPU, the HALT flip-flop is set and the CPU clock is stopped while RESET is high. Accordingly, the high-level width of RESET must be more than the required stable time for the ceramic resonator. Figure 10. Clock Control Circuit Clock Control Circuit The clock control circuit consists of a 2-bit clock mode register (bits CM1 and CM2), prescalers 1, 2, and 3, and a multiplexer. It takes the output of the system clock generator (CL) and event pulses (POo). It also selects the clock source and prescaler according to the setting in the clock mode register and supplies the timer/event counter with count pulses. Figure 10 shows the clock control circuit. Table 2 lists the codes set in the clock mode register by the OPL instruction to specify the count pulse frequency. When you set the clock mode register with the OPL instruction, clear bit 0 of the accumulator (correspon~ ding to bit CMO Of the EVAKIT-7500 or J.lPD7500H during emulation). Timer/Event Counter The timer/event counter is a binary 8-bit up-counter which is incremented each time a count pulse is input. The TIMER instruction or a RESET signal clears it to OOH. When an overflow occurs, the counter Is reset from FFH to OOH. Figure 11 shows the inputs and outputs of the counter. Table 2. Selecting the Count Pulse Frequency CM2 CM1 o o o CLl256 o CLl32 CLl4 Frequency Selected POQ Figure 11. Timer/Event Counter CL CP 'Instruction Execution CP 83-002601A 'Instruction Execution 83-002600A 3-285 t'tfEC pPD7554/64 Serial Interface The serial interface consists of an 8-bit shift register, a 3-bit shift mode register, and a 3-bit counter. This interface inputs and outputs serial data. Figure 12is a block diagram of the interface. Test Control Circuit The ~PD7564 has three test sources, as shown in table 3. The test control circuit consists of two test request flags (INT T RQF and INTO/S RQF) set by the three test sources, and a test request flag control circuit that checks the contents of each test request flag byexecuting an SKI instruction and resetting the flags. Test sources INTO and INTS share the request flag INTO/S RQF. Bit 3 of the shift mode register (SM3) determines which source is selected. A zero in SM3 selects INTS and a one selects INTO. The request flag INTT RQF is set when a timer overflow occurs in the timer event counter. The SKI or TIMER instruction resets it When'SM3 is zero, request flag INTO/S RQF is set when the INTS signal is generated, indicating the end of an 8-bit serial data transfer. The SKI or SIO instruction resets the flag. When SM3 is one, request flag INTO/S RQF is set at the rising edge of the signal input to the POollNTO pin. The SKI instruction resets the flag. The logical sum of the outputs from the test request flags releases standby mode (STOP* or HALT mode). The mode is released when one or both flags are set. Both flags and SM3 are reset when the RESET Signal is input. After reset, source INTS is selected and signal input to the INTO pin is inhibited as the initial condition. Figure 13 is a block diagram of the test control circuit *only jJPD7554 Table 3. JiPD7564 Test Sources Source Function Location Request Flag INTT Overflow in timer/event counter internal INTT ROF INTO Test request signal from POo pin external INTO/S ROF INTS Transfer complete signal from serial interface internal INTO/S ROF Figure 12. Serial Interlace Block Diagram Note:' (1) +Is the Internal clock signal (I.e., system clock). (2) • Instruction execution (3) SM3 and INTO are Input to the test control circuit. 83-oo2622B 3-286 NEe Figure 13. pPD7554/64 Test Control Circuit Block Diagram Internal Bus INTT - 1 - - - - - - - - - 1 Standby Release INTO ----.----...__ II 'SIO Note: (1) SM3 is bit 3 of the shill mode register. (2) • Instruction execution 83·0026238 Standby Modes Table 4. STOP and HAL T Modes The J.lPD7554/64 has two standby modes to reduce power consumption while the program is in the wait state. The STOP and HALT instructions set these modes. Mode CL + STOP x x x When the program enters a standby mode, program execution stops and the contents of all registers and data memory immediately before the program entered standby mode are retained. The timer and serial interface can operate. The RESET signal and STANDBY Release Signal *1 releases STOP mode. HALT mode is released when one or both of the test request flags are set, or when the RESET signal is input. The program cannot enter a standby mode when a test request is being set, even if the STOP or HALT command is executed. If there is some uncertainty as to the state of the test request flags, execute the SKI instruction to reset them so the program can enter standby mode. Table 4 compares STOP and HALT modes. The main difference is that STOP mode stops the system clock and HALT does not. Ceramic oscillation stops during STOP mode. The power consumed by the ceramic oscillator is the difference between the two modes. In STOP mode, data memory can be retained with a lower supply voltage. HALT POD CPU Timer Released by x RESET input x INTT RQF INTO/S RQF RESET input Note: (1) 0: operates x: stops l>: will operate depending on clock source j.lPD7554, if external clock is used STOP instruction will not STOP CL. In this case STOP mode acts as HALT mode. Power-on Reset Circuit Figure 14 shows a circuit example of the power-on reset circuit using a resistor and a capacitor. This is the simplest reset control circuit. Figure 21 shows the circuit with a pull-down resistor internally connected to RESET as a mask option. ,.,PD7554/7564 Applications Figures 16 and 17 show examples of application circuits for the I-IPD7554/7564. Table 5 compares the features of products in this part of the 7500 series devices. *1 standby release signal only for j.lPD7554 3-287 t-lEC pPD7554/64 Figure 14. Power·on Reset Circuit Product Comparison Table 5. ",P07554 Item Voo I'PD7564 Instruction cyclelsystem clock (5 V) :!: z:~ ~ RC ",P07564 ",P07556 4 ",sl 500 kHz 4 ",sl 500 kHz External 2.S6 ",sl 700 kHz 2.S6 ",sl 700 kHz RESET Ceramic 3 ",sl 3 ",sl 660 kHz ri7 83-002624A Figure 15. Power·on Reset Circuit with Pull·down Resistor 47 47 45 ROM 1024xS 1024xS 1024xS 1024xS RAM 64x4 64x4 64x4 64x4 1/0 port total 16 (max) 15 20 (max) 19 Port 0 POO-P03 POO-P03 POO-P01 POO-P01 P10-P13 P01-P03 Port 1 PSO-PS2 P90-P91 P90-P91 Port 10 P100P103 P100P103 P100P103 P100P103 Port 11 P110P113 P110P113 P110P113 P110P113 Timer IEvent counter S-bit S-bit S-bit S-bit Serial interface S-bit S-bit Process CMOS CMOS CMOS CMOS Package 20-pin plastic shrink DIP 20-pin plastic shrink DIP 24-pin plastic shrink DIP 24"pin plastic shrink DIP Port 9 RESET Vss 83-002625A Figure 16. 45 PSO-PS2 PS2/CL2 I'PD7564 :!:z:~ 660 kHz Instruction set Port S Voo ",P07566 PSO-PS2 PSO-PS2 PS3/CL2 4-channel 4-channel Comparator Tape Counter Circuit Master Microcomputer y Microcomputer for Tape Counter RESET ~OUT POo/INTO I-----ICLI SCK SCK P113 Count Pulse Up/Down Signal I'PD7554 SO I'PD7507H SI I'PD7508H 1-----1 SI r----I SO 7·segment LEDs 83-002626B 3-288 NEe Figure 17. pPD7554/64 Remote·controlled Data Reception, Key Input and LED Display. Master Microcomputer r I'PD7564 0 SCK I - - SCK SO I-- SI (11 (1) P11l P11 2 S I Driver !!,PA80C) SI I - - SO I'PD7508H I - - P113 (2) I'PD7519H etc. I-- RESET LEDC ~C DC ~G ~ 1--1-- P' I:'-. f-' ;/ 1--1-- I:'-. /.~(i P' f-' 1--1-- ~G~ I--~ P80 I----< P8l (3) Remote Controlled Signal AmPlifier I'PC1473 r P82 P83 POo P100 P10l (4) P102 P103 Note: (1) CMOS output (2) Chip select or transfer request (3) Open·drain output (4) Input with internal pull·up resistor Key Input (4 x 4) 83-0026278 Absolute Maximum Ratings TA = 25°C Operating temperature, TOPT Storage temperature, TSTG -0.3 V to +7.0 V Power supply voltage, VDD Input Voltage VI Output Voltage Va Except Port 10 & 11 -0.3 V to VDD + 0.3 V -------------------------------Port 10 & 11 -'(___ 1)____ -_0._3_tO---.::VD=D_+__ 0_.3_V (2) -0.3 to + 13 V Except Port 8, 10 & 11 -0.3 to VDD + 0.3 V Ports 8, 10, 11 (___1)'---___ - _0._3_to_V...:;Dc.::..D_+__ O._3_V (2) Output current high, one port IOH all output ports, total IOH -5 mA -15 mA 5 mA Ports 9, 10, 11 15 mA Ports 8, Power dissipation, PD Capacitance = = = Symbol Min TA 25°C, VDD GND 0 V; f Unmeasured pins returned to GND - 0.3 to +13 V Output current low POi, P02 All ports, total Comment: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. (1) CMOS I/O or N-channel open drain + internal pull up resistor (2) N-channel open drain I/O 30 mA 100 mA 480 mW (TA = 70°C) = 1 MHz, limits Parameter Typ Max Unit Test Conditions Input capacitance C, 15 pF POo. P03 Output capacitance Co 35 pF Port 8 1/0 capacitance 1/0 capacitance Cia Cia 35 15 pF pF Ports 10, 11. POi, P02 NEe pPD7554/64 DC Characteristics = ",PD7554 only: TA -10°C to +700 C, Voo = 2.5 V to 3.3 V, GND = 0 V ",PD7554/64: TA = -10°C to +70°C, VOO= 2.7 V to 6.0 V, GND = 0 V (Voo = 2.5-3.3) 7554 only (Voo = 2.7 to 6.0 V) 7554/64 Limits Limits Symbol Min Input high voltage except CL1 VIH1 Input high voltage CL1 (2) VIH2 Input high voltage ports 10, 11 VIH3 0.8 Voo Parameter Max Min 0.8 Voo Voo Voo-0.3 Voo 12 (1) ~p Unit 0.7 Voo Voo V Voo-0.5 Voo 12 (1) V Data retention mode Includes CLI for 7564 0.7 Voo V VIHOR 0.9 VOOOR VOOOR +0.2 0.9 VOOOR VOOOR +0.2 V Input low voltage except CL1 VIl1 0 0.2 VOO 0 0.3 VOO V Input low voltage CL1 (2) VIl2 0 0.3 0 0.5 V Input leakage current except CL1 IU1 IU1 -3 3 -3 3 /AA Input leakage current CL1 (2) IU2 -10 10 -10 Input leakage current ports 10, 11 IU3 Output voltage high P01, P02, ports 8-11 VOH Output voltage high P01, P02, ports 8-11 VOH Output voltage high P01, P02, ports 8-11 VOH Output voltage low P01, P02, ports 10, 11 VOL Output voltage low P01, P02 VOL Output voltage low P01, P02 Output voltage low ports 10, 11 Output voltage low ports 10, 11 Input high voltage RESET Test Conditions Max ~p oV ~ VI ~ VOO Includes CLI for 7564 10 /AA oV ~ 10 (1) IJA VI V IOH Voo-2.0 V VOO = 4.5 V to 6.0 V, IOH = 1 rnA VOo-1.0 V VOO IOH V IOl 0.4 V VOL 0.5 V VOO = 4.5 V to 6.0 V, IOl = 1.6 rnA IOl = 400/AA VOL 0.4 V VOO = 4.5 V to 6.0 V, IOl = 1.6 rnA VOL 2.0 V VOO = 4.5 V to 6.0 V, IOl = 10 rnA Output voltage low ports 10, 11 VOL 0.5 V VOO = 2.7 V, IOl = 400 IJA Output voltage low port 8 VOL V IOl Output voltage low port 8 VOL 2.0 V VOO = 4.5 V to 6.0 V, 10l = 15 rnA Output voltage low port 8 VOL 0.5 V VOO = 2.7 V IOl = 600 IJA 3 IJA IJA Output leakage current IL01 Output leakage current ports 8-11 IlO2 Supply voltage, data retention mode VOOOR 10 (1) VOo-1.0 0.5 0.5 -3 3 -3 10 (1) 10 (1) = -80 ",A = 2.7 V = -100 ",A = 350 IJA = 500 IJA oV ~ VO ~ VOO Vo = 12 V V 2.0 2.0 VI ~ VOO = 12 V Supply current, normal operation 1001 55 180 IJA VOO = 3 V ± 0.3 V R = 150 kO ± 2% R oscillation 1001 40 150 IJA VOO = 2.5 V R = 150 kO ± 2% Supply current, normal operation, ceramic oscillation 1001 650 2200 /AA VOO = 5 V + 0.5 V fcc = 700 kHz Supply current, normal operation, ceramic oscillation 1001 120 360 IJA VOO = 3 V ± 10% fcc = 300 kHz ~ tlnn NEe pPD7554/64 DC Characteristics (cont) = = = = ",PD7554 only: TA -10°C to +70°C, Voo 2.5 V to 3.3 V, GND 0V ",PD7554/64: TA -10°C to + 70°C, Voo 2.7 V to 6.0 V, GND = 0 V = (Voo = 2.5-3.3) 7554 only (Voo Limits Parameter Symbol Min ~p = 2.7 to &.0 V) 7554/&4 Limits Max Min ~p Max UnH Test CondHlons Supply current, normal operation, R oscillation 1001 270 900 ,.,A VOO = 5 V ± 0.5 V R = 56 kO = 2% Supply current, normal operation, R oscillation 1001 80 240 ,.,A VOO = 3 V ± 10% R = 100 kO ± 2% Supply current, HALT mode, R osc. 1002 25 180 ,.,A VOO = 3 V ± 0.3 V R = 150 kO ± 2% 1002 18 60 ,.,A VOO = 2.5 V R = 150 kO ± 2% Supply current, HALT mode, ceramic osc. 1002 450 1500 ,.,A VOO = 5 V ± 0.5 V fcc = 700 kHz Supply current, HALT mode, ceramic osc. 1002 65 200 ,.,A VOO = 3.0 V ± 10% fcc = 300 kHz Supply current, HALT mode, R osc. 1002 120 400 ,.,A VOO = 5 V ± 0.5 V R = 56 kO ± 2% Supply current, HALT mode, R osc. 1002 35 110 ,.,A VOO = 3 V ± 10% R = 100 kO ± 2% 10 Supply current, STOP mode 1003 Supply current, STOP mode 1003 0.1 5 0.1 ,.,A VOO Supply current, STOP mode 1003 0.1 p.A VOO = 3 V ± 10% Supply current, data retention mode 1000R 0.1 ,.,A VOOOR 0.1 5 ,.,A Pull-up/down resistance, Port 0, RESET RP1 23.5 47 70.5 23.5 47 70.5 kO Pull-up resistance Ports 8-11 RP2 7.5 15 22.5 7.5 15 22.5 kO =5V ± = 2.0 0.5 V V Note: (1) N-channel open drain I/O ports. (2) JAPD7554 only AC Characteristics = = IlPD7554 only: TA = -10°C to +70 0 C, Voo 2.5 V to 3.3 V, GND 0V IlPD7554/64: TA -10°C to + 70°C, Voo= 2.7 V to 6.0 V, GND 0V = (Voo = = 2.5 - 3.3) 7554 only (Voo Limits limits Symbol Min ~p Max System clock osc. frequency (1) fcc 140 180 220 System clock osc. frequency (1) Parameter = 2.7 to 6.0 V) 7554/64 Test Conditions Min ~p Max kHz R = 150 kO ± 2% fcc 400 500 600 kHz System clock osc. frequency (1) fcc 200 350 300 kHz Voo = 4.5 V to 6.0 V; R = 56 kO ± 2% Voo = 3 V ± 10%; R = 100 kO ± 2% System clock osc. frequency, CL1, CL2 fcc 140 External clock frequency, CL1 fc 10 External clock frequency, CL1 fc 10 710 kHz Voo = 4.5 V to 6.0 V; 50% duty External clock frequency, CL 1 fC 10 350 kHz Voo duty 175 Unit kHz 240 250 Voo = 2.5 V R = 150 kO ± 2%; 50% duty kHz = 2.7 V; 50% 3-291 I] NEe pPD7554/84 AC Characteristics (cont) j.lPD7554 only: TA = -10°C to +700 C, Voo = 2.5 V to 3.3 V, GND = 0 V j.lPD7554/64: TA = -10°C to +700 C, VOO= 2.7 V to 6.0 V, GND = 0 V (You = 2.5-3.3) 7554 only (VDO LImItS Parametar System clock osc. frequency (2) = 2.7 to 6.0 V) 755"64 LImItS 1W Max fcc 290 700 710 kHz Voo 290 500 510 kHz Voo tos System clock rise time, CL1 1W Max Test Conditions Min Oscillation stabilization time (2) Min' Unit Symbol 290 400 410 kHz Voo 290 300 310 kHz Voo j.lS Voo 20 tCR 200 200 System clock fall time, CL1 tCF 200 200 System clock pulse width tCH System clock pulse width tCH System clock pulse width tCl 2 50 2 50 0 250 = 4.5 to 6.0 V = 4.0 to 6.0 V = 3.5 to 6.0 V = 2.7 to 6.0 V = 2.7 to 6.0 V ns ns j.lS 0.7 50 1.45 50 j.lS j.ls Voo = 2.7 V 50% duty System clock pulse width, CL1 tCl External clock frequency (POo) fpoo External clock frequency (POo) fpoo 0 710 kHz Voo = 4.5 V to 6.0 V; 50% duty External clock frequency (POo) fpoo 0 350 kHz Voo duty = 2.7 V 50% ns Voo = 4.5 V to 6.0 V Voo = 2.7 V kHz POo rise time tCRPOO 200 200 POo fall time tCFPO 200 200 POo pulse width tpOOH POo pulse width tpOOH POo pulse width tpOOl POa pulse width tpOOl INTO high time tlOH 30 INTO low time tlOl RESET high time tRSH RESET low time tRSl RESET setup time tSRS RESET hold time tHRS SCK cycle time tKCY 8.0 /AS Input SCK cycle time tKCY 10.0 /AS Output SCK cycle time tKCY 2.0 /AS Input; Voo to 6.0 V SCK cycle time tKCY 2.5 /AS Output; Voo = 4.5 V to 6.0 V 2 ns /AS 0.7 2 /As /As 1.45 /AS 10 /As 30 10 /As 30 10 /AS 30 10 /As 0 0 /As '0 0 /As = 4.5 V = 2.7 V SCK cycle time tKCY 5.0 SCK cycle time tKCY 5.7 /AS j.ls Output; Voo = 2.7 V SCK pulse width tKH /As Input SCK pulse width tKH 1.0 "'S Input; Voo = 4.5 V to 6.0 V SCK pulse width tKH 1.25 "'s Output; Voo to 6.0 V /AS Output /As Input; Voo = 2.7 V SCK pulse width tKl SCK pulse width tKl 3-292 4.0 5.0 2.5 Input; Voo = 4.5 V NEe pPD7554/64 AC Characteristics (cont) = = = ",PD7554 only: TA -1O o e to +70o e, Voo 2.5 V to 3.3 V, GND 0V ",PD7554/64: TA -1O o e to + 70 o e, VDD 2.7 V to 6.0 V, G N D = 0 V = = (Voo = 2.5-3.3) 7554 only (Voo limits Parameter Symbol Min ~p = 2.7 to &.0 V) 7554/&4 limits Max Min ~p Max Unit SCK pulse width tKL 2.85 ",s SI setup time to SCKt tSIK 0.3 0.1 !AS SI hold time after SCKt tKSI 0.3 0.1 !AS SO output delay time after SCKt tKSO SO output delay time after SCKt tKSO SO output delay time after SCKt ' tKSO 2.0 Test Conditions Output; VOO = 2.7 V !-,S GOUT = 100 pF max. 0.85 !-,S Voo = 4.5 V to 6.0 V; GOUT = 100 pF max. 1.2 ",s Voo = 2.7 V; GOUT = 100 pF max. (1) ",PD7554 only (2) ",PD7564 only 3-293 NEe pPD7554/64 Timing Waveforms Clocks Data Retention Mode f.lPD7554 . 1-----1Ifc-----'-~ flPD7554 ~I'-----STOP Mode.-----~ Operating Mode Voo :-..----l CL1----"'\. t POO _ _ _ _ _ 1/POO :l-= tPOOL~FtPOOH ~:: (1) VIHI (2) VODDR (3) VIHOR (4) VIU RESET tSRS 83-002612A tpooR::::fLtPOOF 83-002609A Data Retention Mode f.lPD7564 External Interrupt HALT Mode Operating flPD7564\1+.----STOP M o d e - - - -... ·l---+{ -Mode Voo 83-002610A Reset RESET-----------------J RESET ----t=·~'T·""~:: ~:~ 83-002611 A Serial Interface 1----tKCy----+t SCK----""\ SI-----+---~ SO Data _Output _ _VA83-002628A 83-002613A NEe NEe Electronics Inc. J,tPD7556/66 4-BIT, SINGLE-CHIP CMOS MICROCOMPUTERS WITH COMPARATOR Description Pin Configuration The J,lP07556 and J,lP07566 are low-end versions of J,lP07500 series products. These microcomputers incorporate a 4-bit comparator input and are useful as slave CPUs to high-end J,lP07500 series or B-bit J,lCOM-B7 series products. The J,lP07556/66 has output ports that can directly drive triacs and LEOs. Also, various mask-optional 1/0 circuits can be configured for a wide selection of outputs allowing a reduction of external circuitry in your design. There are two testable interrupts. The J,lP07556 and J,lP07566 differ only in their clock circuitry. The J,lP07556 uses an external resistor with an in~ ternal capacitor for an RC oscillator clock, where the J,lP07566 uses a ceramic oscillator as a clock. These microcomputers are ideally suited to control devices such as air conditioners, microwave ovens, refrigerators, rice cookers, and audio equipment. 83-001994A Pin Identification Symbol 1, 2 POo I INT0 P01/VREF 2-bit input port 0I testable input pin I comparator reference voltage input pin 3-6 P1o/CINo PV CIN 1 P12/CIN2 P13/CIN3 4-bit input port 1I 4-bit comparator inputs 7-9, 10 P80-P82, P83/CL2 3-bit output port 8 (7566), 3- .(4-) bit output port 81 connection for RC oscillator (7556) I Ceramic resonator (7566) 11 CL1 Connection for ceramic resonator I RC oscillator Features o o 45 instructions (subset of J,lP07500 set 8) Instruction cycle: - External clock: 2.B6J.ls/700 kHz, 5 V - RC osci Ilator (J,.tP07556): 4 J.ls 1500 kHz, 5 V - Ceramic oscillator (J,.tP07566): 3J.ls/660 kHz, 5 V o Program memory (ROM) of 1024 x B bits o Data memory (RAM) of 64 x 4 bits DB-bit timerlevent counter o 1/0 lines: - J,lPD7556: 20 - J,lPD7566: 19 o Data memory retention at low supply voltage o Standby (STOP I HALD functions o CMOS technology o Low power consumption o Single power supply (2.5 V to 6.0 V J.lPD7556) (2.7V to 6.0V J,lPD7566) Function No. 12 VDD +5 V power supply 13 RESET Reset input pin 14-17 P10rP103 4-bit I 10 port 10 18-21 P11o-P113 4-bit I 10 port 11 22-23 P90-P91 2-bit output port 9 24 GND Ground Ordering Information Part Number Package Type J.lPD7556CS 24-pin plastic shrink DIP J.lPD7566CS 24-pin plastic shrink DIP J.lPD7556G 24-pin plastic SO J.lPD7566G 24-pin plastic SO 3-295 NEe J,lPD7556/66 Pin Functions POOIINTO, PD1/VREF (Port O/count clock input/comparator reference voltage input) 2-bit input port O/count clock input/comparator reference voltage input. INTO is an edge-sensitive testable input pin that detects a signal at the rising edge. VREF is the comparator reference voltage input pin. A mask option specifies whether this pin is used as P01 or VREF. POa/INTO is unused; connect it to ground. If PD1 /VREF is unused, connect it to ground or Voo. The port is in the input state at reset. P10/CINO-P13/CIN3 (Port 1/comparator inputs) 4-bit input port 1/comparator inputs. A mask option specifies whether these pins are used as digital inputs (Port 1) or as comparator inputs (CINo-CIN3). If any of P1a-P13 pins are unused, connect them to ground or Voo. The port is in the input state at reset. PSo-P82, P83/CL2 (Port 8/clock input 2) 4-bit output port 8. This port sinks 15 rnA and can interface to 12V. On the /APD7556, the port function of P83/ CL2 is specified by mask option. PBs is a normal output port on the /APD7556. On the /APD7556, CL2 is one of the pins to which a resistor for RC oscillation is connected. On the /AP07566, CL2 is one of the pins to which a ceramic resonator is connected. If any of P80-P82 pins are unused, leave them open. The port is in the high impedance state at reset. CL1 (Clock input 1) On the /APD7556, CL1 is one of the two pins to which a resistor for RC oscillation is connected. On the /APD7566, CL1 is one of the two pins to which a ceramic resonator i.s connected. Vee (Power supply) Positive power supply. RESET (Reset) System reset input pin (active high). This pin can be internally connected to a pull-down resistor if specified by mask option. P100-P103 (Port 10) 4-bit I/O port. This port sinks 10 rnA and can interface to 12V. If any of these pins are unused, connect them to ground or Voo in the input state, or leave open in the output state. The port is in the high impedance or highlevel output state at reset. P110-P113 (Port 11) 4-bit I/O port. This port sinks 10 rnA and can interface to 12V. If any of these pins are unused, connect them to ground or Voo in the input state, or leave open in the output state. The port is in the high impedance or highlevel output state at reset. P90-P9-, (Port 9) 2-bit output port. This port sinks 15 rnA and can interface to 12 V. If either of these pins is unused, leave it open. The port is in the high impedance state at reset. GND (Ground) Ground. 3-296 NEe JJPD7556/66 Block Diagram INTO/POe r-;.;;;;--1---- POe/INTO P10/CINO-P13/CIN3 Program Memory 1024x8Blts P90-P91 Instruction Decoder P10e-P103 Data Memory 64x 4 Bits P110-P113 CL1 CL2 t t t VDD GND RESET 83-0019958 Absolute Maximum Ratings TA=25OC Power supply voltage, Voo -0.3Vto +7V Input voltage, ports other than 10 & 11, VI -0.3 V to Voo +0.3 V Input voltage, ports 10,11, V, (1) - 0.3 V to Voo +0.3 V Input voltage, ports 10,11, V, (2) -0.3VtoVoo +13 V Output voltage, ports other than 8, 10 & 11, Vo - 0.3 V to Voo +0.3 V Output voltage, ports 8, 10, 11, Vo (1) - 0.3 V to Voo +0.3 V Output voltage, ports 8, 10, 11, Vo (2) -0.3VtoVoo +13 V Output current high, one pin, IOH Output current high, aU output ports total, IOH -5mA -15mA Output current low, ports 10, 11, IOL 15mA Output current low, ports 8, 9, IOL 30mA Output current low, aU ports total, IOL Operating temperature, TOPT 100mA Comment: Exposing the device to stresses above those listed in Abso- lute Maximum Ratings could cause permanent damage. The device is not meant to be operated under conditions outside the limits dascribed in the operational sections of the specification. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Note: (1) CMOS push pull or N-channel open drain + pull up resistor 110 (2) N-channel open drain 1/0 Capacitance TA = 25°C, Voo=GND=OV, f=1.0MHz, Unmeasured pins returned to GND Umlta Parameter Symbol Min Typ Max Unit pF POO-P01; P10-P13, GINO-GIN3 35 pF Ports 8,9 35 pF Ports 10, 11 Input capacitance Storage temperature, TSTG Power dissipation, Po Output capaCitance liD capacitance GOUT Test Conditions 3-297 NEe IJPD7550/66 DC Characteristics ",PD7556:TA= -10°C to +70 oc, Voo= +2.5V to 3.3 V, GND=OV ",PD7556/",PD7566:TA = -10OCto +70OC, Voo= +2.7V to 6.0 V, GND=OV Umlts TA =10 0 Cto HOoC, YDD= +2.5Yto3.3Y j.lPD7558 Parameter Input voltage low Input voltage, high Output voltage low Symbol Min VIL1 VIL2 TA = 10°C to + 70°C, YDD= +2.7Yt08.0Y j.lPD75881j.1PD7558 Typ Max Min 0 0. 2V OO 0 0. 3VOO V Except CL1 0 0.3 0 0.5 V CL1 VIH1 0. 8V OO VOO 0. 7V OO VOO V Except CL1 VIH2 Voo-0.3 CL1 0.5 VOO 0. 7V OO VOD 12(1) V VIH3 VOO 12(1) Voo-0.5 V Ports 10,11 VIHDR 0.7VDDOR VOODR+0.2 0.9VDDDR VDDDR+0.2 V RESET; data retention V Ports 10,11; IOL=350j.iA 0.4 V Ports 10,11; VDD=4.5 V to 6.0V, IOL=t6mA 2.0 V Ports 10,11; VOD=4.5Vto 6.0V, IOL =10mA 0.5 V Ports 10,11; VOD=2.7V, IOL =400j.iA V Ports 8,9; 10L =500j.iA 2.0 V Ports 8,9; VOD=4.5 V t06.0V,IOL=15mA 0.5 V Ports 8,9; Voo=2.7V, IOL = 600 j.iA V Ports 8-11; IOH= -80j.iA Voo-2.0 V VOD-tO V Ports 8-11; VDO=4.5 V to 6.0V, IOH=1mA Ports 8-11; VDO=2.7V, IOH=100j.iA 2.0 V 0.5 VOL 0.5 Output voltage high VOH VDD-tO Supply voltage, data retention mode VDDOR 2.0 Input leakage current IU1 -3 IU2 -10 IL01 IL02 3-298 3 -3 3 j.iA Except CL1; OV~VI~VDD 10 -10 10(1) IU3 Output leakage current T.st Conditions Unit Max Typ -3 3 10(1) -3 OV~VI~VDD 10 j.iA CL1; 10(1) j.iA Ports 10,11; VO=12V 3 j.iA OV~VO~VDO 10(1) j.iA Ports 8-11; Vo = 12 V ~EC JlPD7556/66 DC Characteristics (cont) IlPD7556:TA= -10°C to +70 o c, Voo= +2.5Vto3.3V,GND=OV IlPD7556/IlPD7566: TA = -10°cto +70°c, Voo = +2.7Vto6.0V, GND=OV Limits TA = 10°C to HOoC, VDD = +2.5 V to 3.3 V J.lPD7556 Parameter Supply current, normal operation Supply current, HALT mode Supply current, STOP mode Supply current, data retention mode Symbol Min IOD1 1002 Max 55 180 ~ Roscillation; Voo=3V±0.3V, R=150k2±2% 40 150 ~ Roscillation; Voo=2.5V, R=150k2±2% IOOOR Min Typ Test Conditions Typ Max Unit 650 2200 ~ Ceramic oscillation; Voo=5 V ±0.5 V, fcc= 700 kHz 120 360 ~ Ceramic oscillation; Voo=3V±10%, fcc=300 kHz 270 900 p.A Roscillation; Voo=5V±0.5V, R=56k2±2% 80 240 p.A Roscillation; Voo=3V±10%, R=100k2±2% 25 80 p.A Roscillation; Voo=3V±0.3V, R=150k2±2% 18 60 p.A Roscillation; Voo=2.5V, R=150k2±2% 0.1 1003 TA = 10°C to HOoC, VDD= +2.7Vt06.0V J.lPD75661J.1PD7556 450 1500 p.A Ceramic oscillation; Voo=5 V ±0.5 V, fCC = 700kHz 65 200 p.A Ceramic oscillation; Voo=3V ±10%, fcc=300 kHz 120 400 p.A Roscillation; Voo=5V±0.5V, R=56k2±2% 35 110 p.A R oscillation; Voo=3V±10%, R=100k2±2% 0.1 10 0.1 5 5 0.1 5 0.1 !lA !lA !lA !lA Voo=5V±0.5V Voo=3V±10% VOOOR=2.0V Pull·up / down resistance RP1 23.5 47 70.5 23.5 47 70.5 k2 Port 0, RESET, Port 1 Pull·up resistance RP2 7.5 15 22.5 7.5 15 22.5 k2 Ports 8-11 Note: (1) N-channel open-clrain 1/0 ports. 3-299 11 NEe IJPD7556166 Comparator TA= -10 0 eto +7o oe, Voo=3.0Vto6.0V,GND=OV Limits jAPD7556 Parameter Symbol Typ Min jAPD7566 Max Min Voo 0 Typ Max Unit Voo V Test Conditions Input voltage range VCIN/ VREF Response time TCOMP 4 4 Input voltage resolution AVCIN 100 100 mV All comparators 50 mV All comparators; Voo=5V±0.5V ~ All comparators 10 Input leakage current ICIN/ IREF 10 50 -3 -3 All comparators MC(1) All comparators VREF bias resistance (R1, R2) BIAS 100 100 kQ (R1 = R2) typically Comparator circuit current IOOCMP 50 50 ~ Comparator; Voo=5V±0.5V Note: (1) Machine cycle. AC Characteristics ,",PD7556:TA = -10 0 eto + 70 oe, voo = +2.5Vto3.3V, GND=OV ,",PD7556',",PD7566:TA = -10 0 eto +70 oe, voo= +2.7V to 6.0 V, GND =OV Limits = = = TA 10°C to +70 oC, Voo +2.5 Vto 3.3 V jAPD7556 Parameter System clock oscillator frequency Symbol Min Typ Max fcc 140 180 220 140 External clock frequency System clock rise time System clock fall time TA 10°C to +70 oC, Voo= +2.7Vto6.0V jAPD75661jAPD7556 fc 175 10 Typ Max kHz R=150kQ±2% 400 500 600 kHz Voo=4.5 Vto 6.0V; R=56kQ±2% 200 250 300 kHz Voo=3V ±10%, R=100kQ±2% kHz CL1, CL2; Voo=2.5V; R=150kQ±2% 210 Unit kHz CL1; 50% duty 10 710 kHz CL1; Voo=4.5 V to 6.0V; 50% duty 10 350 kHz CL1; Voo=2.7V; 50% duty 250 tCR 200 200 ns CL1 200 ns CL1 tCF 200 System clock pulse width, low tCl 50 System clock pulse width, high tCH 50 ,",S 1.45 50 /As CL1; Voo=2.7V /As 0.7 fcC 3-300 Test Conditions Min 50 /As CL1; Voo=4.5 V to 6.0V 290 700 710 kHz Voo=4.5t06.0V 290 500 510 kHz Voo=4.0to 6.0V 290 400 410 kHz Voo = 3.5 to 6.0 V 290 300 310 kHz Voo=2.7 to 6.0V NEe J,lPD7556/66 AC Characteristics (cont) JAPD7556:TA = -10 0 cto + 70°C, Voo = +2.5Vto3.3V, GND=OV JAPD75561JAPD7566: TA = -10 0 cto +70 oc, Voo = +2.7V to 6.0 V, GND=OV Limits TA=100Cto HOoC, VDD= +2.7Vt08.0V /lPD75881j1PD7558 TA = 10°C to HOoC, VDD= +2.5Vt03.3V jlPD7558 Symbol Min Oscillator setup tos 20 External clock frequency (POo) fpOO o Parameter Max Typ Min Typ Max JAS 250 kHz 50% duty 710 kHz Voo=4.5Vto6.0V; 50% duty 0 350 kHz Voo=2.7V; 50% duty POo rise time tCRPO 200 200 ns tCFPO 200 200 ns POo pulse width, low tpOOL /AS 1.45 /AS 0.7 JAS INTO low time tlOL 30 10 INTO high time tlOH 30 10 10 tRSL 30 RESET high time tRSH 30 10 RESET setup time tSRS 0 0 tHRS 0 0 RESET hold time Voo=2.7V JAS tpOOH RESET low time Oscillator stabilization time after Voo=4.5 V 0 POofall time POo pulse width, high Test Conditions Unit Voo=4.5 V to 6.0 V Timing Waveforms Clocks CL1 External Interrupt --,-F'''jF''"~1 =~~ :i-= INTO----C'~'T''''=_t_=~:: 83-002610A btCR:dl-tCF--li=- t POo _ _ _ _ 1/POo tPOOL~ FPOOH ~:~ Reset tpooRdLtPOOF 83-002609A Data Retention Mode - JAPD7566 83-002611A HALT Mode I'PD7564I Operating Mode Data Retention Mode - JAPD7556 Voo Operating I'PD7554I' Mode Voo:----ool (1) V,HI (2) VOODR (3) V,HOR (4) V,L, RESET _ _ _ _ _ _ _ _ _ _.....J RESET 83-002613A tSRS IHRS 83-002612A 3-301 NEe JiPD7556166 Pin Mask Options Figure 2. Table 1 shows the mask options for all the port pins and the RESET pin. You may select these options in bit units. Type 2 Schmitt· triggered Input: P10-P13/C/No-C/N3 VDD --vvv--, oMask Option o Table 1. Pin Mask Options Pin Options POO 1 2 3 No connection to internal resistor Connected to Internal pull-up resistor Connected to internal pull-down resistor P01/VREF 1 2 3 4 No connection to internal resistor Connected to internal pull-up resistor Connected to internal pull-down resistor Used as VREF pin A bias of Voo 12 internally applied to VREF pin Bias not applied P1o/CINoP13/CIN3 1 2 3 4 No connection to internal resistor Connected to internal pull-up resistor Connected to internal pull-down resistor Used as comparator input pins P8o-P82 P90-P91 1 2 CMOS (push-pull) output N-channel open-drain output P83-CL2 (7556) option one 1 2 Used as P83 Used as CL2 P83-CL2 (7556) option two 1 2 CMOS push-pull N-channel open-drain P10o-P103 P11o-P113 1 2 3 N-channel open-drain input/output CMOS (push-pull) input/output N-channel open-drain input/output with internal pull-up resistor RESET 1 2 Connected to internal pull-down resistor Not connected to internal pull-down resistor 83-OO1997A Figure 3. Type 3 Input Cell: PO,IVREF VDD~ Mask OptionO ~O~'" Reference Voltage 83-001998A Figure 4. Type 4 Output Cell: PBo-PB3J P90-P9, 110 Pin Configurations Oata---.__--4 Figure 1. Type 1 Input Cell (part of Type 2) VDD~ Out Mask Option o ~-"""----1I----o In 83-001999A 83-001996A 3-302 NEe Figure 5. fJPD7556/66 Type 5//0 Cell: P10o-P103, P11o-P113 Figure 7. Program Memory Map OO'OO"n Voo 08t8--_...---,. ~t. ,""'., q-----oln/Out Figure 8. Configuration of General Purpose Registers MIddle-level Voltage Input Buffer 1 Figure 6. 0 3 0 01r--""";"1 83-002590A Type 6 Schmitt· triggered Input: POollNTO Data Memory 1 The data memory is static RAM with a capacity of 64 words by 4 bits. Part of this memory is used as the stack area. The data memory is also used in a-bit data processing when paired with the accumulator. Figure 9 shows the data memory map. Program Memory Data memory can be addressed directly, with the immediate data from an instruction; indirectly, with the contents of HL (including autoincrement and autodecrement); and indirectly by the contents of the stack pointer. The ~PD7556/66 has a mask-programmable ROM with a capacity of 1024 words by8 bits for program storage or table data. It is addressed by the program counter. The reset start address is OOOH. Figure 7 shows the program memory map. You may use any area of the data memory as the stack. The boundary of the stack is determined by how the TAMSP instruction initializes the stack pointer. Once the boundary is set, a call or return instruction automatically accesses the stack. General Purpose Registers When a call instruction is executed, the contents of the program counter and the program status word (PSW) are stored to the stack in the sequence shown in figure 10. 83·002591A Two registers, H (2-bit) and L (4-bit), are provided as general purpose registers. Each register can be individually manipulated. The two registers also form pair register HL; H being the high register and L being the low one. The H L register is a data pointer to address data memory. Figure a shows the configuration of the general purpose registers. The L register also specifies an 1/0 port or mode register when an 1/0 instruction (IPL or OPL) is executed. It also specifies the bits of a port when the SPBL or RPBL instruction is executed. When a return instruction is executed, the contents of the program counter are automatically restored, but the PSW is not. The contents of data memory can be retained with a low supply voltage during STOP mode. Accumulator The accumulator is a 4-bit register used in arithmetic operations. The accumulator can process a-bit data when paired with the data memory addressed by HL. Figure 11 shows the configuration of the accumulator. 3-303 t-IEC fJPD7556166 Figure 9. When a RESET is input, the SK1 and SKO flags are cleared to zero and the contents of the carry flag are undefined. Data Memory Map (0) OOH Figure 12. Configuration of the Program Status Word 64 words x 4 bits 3 2 SK1 SKo 0 I I I I c Ipsw (63) 3FH "'--_ _ _..... 0 83-002597A 83-002594A System Clock Generator Figure 10. Call Instruction Storage to Stack The system clock generator consists of a RC oscillator (7556) a ceramic resonator (7566), a 1/2 frequency divider, standby modes (STOP/HALn, and control circuit. Figure 13 is a circuit diagram of the system clock generator for the ",PD7556. Stack Area 3 0 SP·3 ololpcslpcs psw· SP·2 PC3·PCO SP·1 PC7·PC4 SP·4 *Blt 1 of PSW is always o. 83-002595A Figure 11. Configuration of the Accumulator Arithmetic Logic Unit The arithmetic logic unit (ALU) is a 4-bit arithmetic circuit that performs operations such as binary addition, logical operation, increment, decrement, comparison, and bit processing. Program Status Word The program status word (PSW) consists of two skip flags (SKO and SK1), a carry flag (C), and bit 1, which is always zero. Figure 12 shows the configuration of the PSw. The contents of the PSW are stored to the stack when a call instruction is executed, but are not restored from the stack by the return instruction. The skip flags retain the following skip conditions: string effect by LAlor LHLI instruction, and skip condition satisfied by an instruction other than a string-effect instruction. The skip flag is set or reset in accordance with the instruction executed. The carry flag is set to 1 if an addition instruction (ACSC) generates a carry from bit 3 of the ALU. If no carry is generated, the flag is reset to zero. The SC instruction sets the carry flag and the RC instruction resets it. 3-304 In the J..tPD7556, the RC oscillator operates with a single external resistor connected across CL1 and CL2 (the capacitor C is incorporated). When the RC oscillator is not used, external clock pulses can be input via the CL1 pin. In this case, the RC oscillator functions as an inverting buffer. The output from the RC oscillator serves as the system clock (CL) which is then divided by two and used as the CPU clock (+). The standby mode control circuit is made up of a STOP flip-flop and a HALT flip-flop. The STOP instruction sets the STOP flip-flop and stops the system clock supply. This flip-flop also stops the RC oscillator. The STOP flip-flop is reset by the standby release signal that becomes active when one of the test request flags is set or at the falling edge of the RESET signal. When the STOP flip-flop is reset, the RC oscillator resumes operation and supplies the system clock. The HALT instruction sets the HALT flip-flop which disables signals from going to the 1/2 frequency divider that generates the CPU clock. Only the CPU clock stops in HALT mode. The HALT flip-flop is set or reset by the same conditions as the STOP flip-flop. Figure 14 shows the system clock generator circuit for the J..tPD7566. On the J..tPD7566, the ceramic oscillator operates with a ceramic resonator connected across CL1 and CL2. The output from the ceramic oscillator is used as the system clock (CL); it is divided by two to produce the CPU clock (+). The standby mode control circuit is made up of a STOP flip-flop and a HALT flip-flop. The STOP instruction sets the STOP flip-flop and stops the ceramic oscillation, thus stopping the supply for all clocks. The STOP flip-flop is reset by the RESET signal (high level) and restarts ceramic oscillation. The supply of each clock resumes when RESET goes low. NEe Figure 13. J..lPD7556 166 System Clock Generator for JAPD7556 STOP F/F S ~--------,-- STOp· Q HALT F/F R S Q HALT· RESET (High) R Standby Release CL2 "'-_"-- - RESET (~) ~ (to CPU) L -_ _ _ _ _ _ _ _ _ _ _ CL (System Clock) ·Execution of Instruction 83-0025988 Figure 14. 11 System Clock Generator for JAPD7566 STOP F/F Q S J-.-------1 R STOp· HALT F/F HALT* CL1 RESET (High) Ceramic Oscillator Standby Release CL2 RESET ' - RESET ~ (To CPU) CL (System Clock) • Execution of Instruction 83-0025998 The HALT instruction sets the HALT flip-flop which disables signals from going to the 1/2 frequency divider that generates the CPU clock. Only the CPU clock stops in HALT mode. The HALT flip-flop is reset by the HALT RELEASE signal (activated by setting at least one test request flag) or the falling edge of RESET, resuming supply of the CPU clock. The HALT flip-flop is also set when RESET is active (high level). At power-on reset operation, the rising edg~ of RESET starts ceramic oscillation; however, some time is required to achieve stable oscillation. To prevent the unstable clock from operating the CPU, the HALT flip-flop is set and the CPU clock is stopped while RESET is high. Accordingly, the high-level width. of RESET must be more than the required stable time for the ceram ic resonator. Clock Control Circuit The clock control circuit consists of a 2-bit clock mode register (bits CM1 and CM2), prescalers 1, 2, and 3, and a multiplexer. It takes the output of the system clock generator (CL) and event pulses (POo).1t also selects the clock source and prescaler according to the setting in the clock mode register and supplies the timer/event counter with count pulses. Figure 15 shows the clock control circuit. Table 2 lists the codes set in the clock mode register by the OPL instruction to specify the count pulse frequency. 3-305 NEe J-lPD7556/66 Figure 15. Test Control Circuit Clock Control Circuit The /-tPD7556/66 has two test sources, as shown in table 3. Table 3. CL /-tPD7556/66 Test Sources Source Function Location Request Flag INTT Overflow in timer I event counter Internal INTT ROF INTO Test request signal from POo pin External INTO ROF The test control circuit consists of two test request flags (INTT RQF and INTO RQF) set by the two test sources, the SM3 flag which determines whether INTO is enabled, and a test request flag control circuit that checks the contents of each test request flag by executing an SKI instruction and resetting the flags. The OPL instruction (L = FH, corresponding to A3) sets the SM3 flag. INTO is enabled when SM3 =1. "Instruction Execution 83-002600A Table 2. Selecting the Count Pulse Frequency CM2 CM1 Frequency Selected o o o CL/256 o CL/32 POo CL/4 When you set the clock mode register with the OPL instruction, clear bit 0 of the accumulator (corresponding to bit CMO of the EVAKIT-7500 or /-tPD7500H during emulation). Timer/Event Counter The timer/event counter is a binary 8-bit up-counter which is incremented each time a count pulse is input. The TIMER instruction or a RESET signal clears it to OOH. When an overflow occurs, the counter is reset from FFH to OOH. Figure 16 shows the inputs and outputs of the counter. Figure 16. Timer/Event Counter Request flag INTO RQF is set at the rising edge of the signal input to the INTO/POa pin and the SKI instruction resets it. The logical sum of the outputs from the test request flags release HALT mode. The mode is released when one or both flags are set. Both flags and SM3 are reset when the RESET signal is input. After reset, signal input to the INTO pin is inhibited as the initial condition. Figure 17 is a block diagram of the test control circuit. Standby Modes The /-tPD7556/66 has two standby modes to reduce power consumption while the program is in the wait state. The STOP and HALT instructions set these modes. When the program enters a standby mode, program execution stops and the contents of all registers and data memory immediately before the program entered standby mode are retained. The timer can operate even in HALT mode. The RESET signal or standby release signal (7556 only) releases STOP mode. HALT mode is released when one or both of the test request flags are set, or when the RESET signal is input. The program cannot enter a standby mode when a test request is being set, even if the STOP or HALT command is executed. CP If there is some uncertainty as to the state of the test request flags, execute the SKI instruction to reset them so the program can enter standby mode. "Instruction Execution 83-002601 A 3-306 The request flag INTI RQF is set when a timer overflow occurs in the timer event counter. The SKI or TIMER instruction resets it. NEe Figure 17. J-lPD7556/66 Test Control Circuit Block Diagram OPL(Note1) INTT--+----I HALT Release INTOv---... Note (1) ~ Instruction execution 83-0026028 Table 4 compares STOP and HALT modes. The main difference is that STOP mode stops the system clock and HALT does not. Oscillation stops during STOP mode. The power consumeq by the oscillator is the difference between the two modes. In STOP mode, data memory can be retained with a lower supply voltage. Figure 18. Power·on Reset Circuit VDD ~ Table 4. Mode CL STOP x HALT "PD7564 RESET STOP and HALT Modes POo x CPU x o x Timer Released by RESET input INTIRQF, INTO RQF (7556 only) INTIRQF INTO RQF RESET input Note: 83-002603A Figure 19. Power·on Reset Circuit with Pull· down Resistor VDD "PD7564 o=operales x = stops ~= operational depending on clock source RESET Power·on Reset Circuit Figure 18 shows a circuit example of the power-on reset circuit using a resistor and a capacitor. This is the simplest reset control circuit. Figure 19 shows the circuit with a pull-down resistor internally connected to RESET as a mask option. GND B3-OO2604A Figures 20 to 23 show examples of application circuits for the /iPD7556/66. 3-307 NEe JAPD7556166 Figure 20. Refrigerator or Air Conditioner Circuitry LEDx4 12VMax RES PBo PB1 ' P82 CIN1 CIN2 P90 P91 P113 CMOS Output CINo Comparator Input CIN3 ~PD7566 VREF I P100 P101 P102 CMOS Output INTO With Pull-Up Resistor P103 -:- CL1 CL2 J Note: J With Pull-Down Resistor I~ P111 P112 ~,,~L 1 Over-Current Compressor Detection Motor Incase 01 air conditioner, Heater is changed to Fan Motor. 83·002605B 3-308 NEe Figure 21. JJPD7556/66 Rice Cooker Circuitry 2SA733 "-' AC 100 V RD 10E lEDx4 '--+---1-----' RES Plio CINO Comparator Input P90 Open Drain Output P91 lplll Heater for Keeping Warm Heater for Cooking -I P110 L - -_ _ _ ~PD7566 ~----IVREF ....--"w"......t------'VI/\r---1 P11l1 CMOS P112 CMOS Output .-J'W..........~-------'V->Ar-_i P102 Output .....-J\N.,.....,6----------..JVo,.I\r--! P103 .----------1 Cll Input With P11 Pull· Down Resistor P12 1 - - - - - - - 1 Cl2 83·002606B 3-309 ~EC JiPD7556/66 Figure 22. Washing Machine Circuitry 2SA733 RES P10:! Open Drain Input P90 PB1 ~ Pl00 Washing Motor Output Plo, CMOS Output P110 Water Water Supply Drain Magnet Magnet Pl13 Piezo ?" P10a CMOS Output 3-310 r~ PSt pe2 POO jlnput With Pull·Up Resistor Cl2 ~ Open Drain Output po, Cll ~ ~PD7566 P10 Input With Pull·Up Resistor P11 P12 P13 Key Input x 12 NEe Figure 23. fJPD7556/66 Tape Deck Controller Circuitry P91 Motor Planger Driver P100 P11l-t P1l0-P1l2 Record Pl13 Mute P102 Music Select P103 P80 ~PD7566 Tape·End Detect INTO Open Drain Output PIl-t Voltage Detect PB1 P82 P90 P13 Cll Cl2 With Pull· Up Resistor I~ P11 P12 Key x12 ~ ~ 83·0026088 3-311 NEe JAPD1556/66 Table 5 compares the features of products in this part of the 7500 series devices. Table 5. Product Comparison Item Instruction cycle / system clock (5 V) JJPD7554 RC 4 /As / 500 kHz External 2.86 /As 1700 kHz JJPD7564 f1PD7556 2.86 /As 1700 kHz 3/As I 660 kHz Ceramic f1PD7566 4/As/500kHz 3/As/660 kHz Instruction set 47 47 45 45 1024x8 ROM 1024x8 1024x8 1024x8 RAM 64x4 64x4 64x4 64x4 I 10 port total 16 (max) 15 20 (max) 19 Port 0 POO-P01 POO-P01 Port 1 P1o-P13 P1o-P13 Port 8 P80-P82 P83/CL2 P80-P82 Port 9 P90-P91 P90-P91 Port 10 P10o-P103 P10o-P103 Port 11 P11o-P113 P11o-P113 8-bit 8-bit Comparator 4-channel 4-channel Process CMOS CMOS CMOS CMOS Package 20-pin plastic shrink DIP 20-pin plastic shrink DIP 24-pin plastic shrink DIP 24-pin plastic shrink DIP Timer I event counter 8-bit 8-bit Serial interface 8-bit 8-bit 3-312 t-iEC pPD75104/106/108 4-BIT, SINGLE-CHIP CMOS MICROCOMPUTERS NEe Electronics Inc. Description The pPD75104, pPD75106, and pPD75108 are highperformance single-chip CMOS microcomputers that incorporate a CPU, ROM, RAM, I/O ports, vector interrupt functions, serial interface, and timer/event counters. The devices can manipulate data in 1-,4-, or 8-bit units. A variety of bit manipulation instructions enhance I/O data control. The devices are especially suitable for controlling VCRs, audio sets, touch-tone telephones, and printers. Features o 46 instructions o o o o o o - Bit manipulation instructions - 8-bit data transfer, comparison, and increment! decrement instructions - 1-byte relative branch instructions - GETI instruction that realizes 2- or 3-byte instructions in 1-byte units I nstruction cycles - High-speed cycle: 0.95 ps/4.19 MHz, VDD = 5 V - Low-voltage cycle: 1.91 ps/4.19 MHz, 15.3 ps/ 4.19 MHz Program memory (ROM) - pPD75104: 4096 x 8 bits - pPD75106: 6016 x 8 bits - pPD75108: 8064 x 8 bits Data memory (RAM) - pPD75104: 320 x 4 bits - pPD75106: 320 x 4 bits - pPD75108: 512 x 4 bits Bit manipulation memory (bit-sequential buffer): 16 bits Four banks of 8 x 4-bit general purpose registers Accumulators - Bit accumulator (CY) - 4-bit accumulator (A) - 8-bit accumulator (XA) 058 I/O lines - High-current output ports that can directly drive LEDs (total of 200 rnA for 32 pins) - 12 N-channel, open-drain outputs with 12 V maximum - Four programmable threshold comparator inputs - Two external event inputs o Vectored interrupt function capable of multiple interrupts - Three external vectored interrupts - Two external test inputs - Four internal vectored interrupts o Two 8-bit timer/event counters o 8-bit serial interface - Data transfer can start with LSB or MSB - Two transfer modes (transmit/receive and receive-on Iy) - Mask option power-on reset circuit - Crystal or ceramic oscillator - Standby modes (STOP/HALT) - CMOS technology - Low power consumption Ordering Information Part Number ROM (Bytes) pPD75104CW 4096 Package Type 64-pin plastic shrink DIP pPD75106CW 6016 64-pin plastic shrink DIP pPD75108CW 8064 64-pin plastic shrink DIP pPD75104G-1B 4096 64-pin plastic miniflat pPD75106G-1 B 6016 64-pin plastic miniflat pPD75108G-1 B 8064 64-pin plastic miniflat 3-313 NEe pPD75104/106/108 Pin Configurations 64-Pln Shrink DIP 64-Pln Minif/at ... ... P13/INT3 vss P12/INT2 P90 P11/INT1 P91 P1o/INTO P92 P41 PTH03 P93 P40 PTH02 P80 PS3 N '" 0. 0. o ~M~~gO :! Z 0. 0. ... 0. 0. 0. 10 U> ,.... ('II ('II) 0 ~ ~ ~ ~ > 0. co :ll '" 0. 0. 0. N '" 0 51 P131 P 132 P133 PTH01 P81 PS2 PTHOO P82 PS1 TlO P 121 P83 PSo P122 TI1 P70 RESET X2 48 45 P120 P123 P23 P71 P22/PCL P72 X1 P21/PT01 P73 P63 P2o/PTOO P60 P62 P03/SI P03/S 1 P61 P61 P2o/PTOO P02/S0 P62 P60 39 P21/PT01 P73 P22/PCL P72 36 P 23 TI1 P01/SCK P63 POo/INT4 X1 P123 X2 P71 P122 RESET P70 P121 PSo P83 P120 PS1 P82 P133 PS2 P132 PS3 P131 P 40 P130 P41 P143 P42 P142 P43 P141 P30 P140 P31 NC P32 voo P33 POo/INT4 P01/SCi< 42 Il P D5104/106/108 13 16 P02/S0 TIO PTHOO 19 0 N ,.... 00 0. :E: '" N 0 co 0. (I') 0) 0. ('II CD 0. en ,.... en 0. 0 CD 0. U) UJ > N PTH01 ~ ~ ~ ~ S S Z Z Z z :z: :z: I0. ~~?~t: 0. 0. 0. 0. C') I- 83-003930B 83-002742B Pin Identification Symbol Function P13/1NT3 P12/1NT2 P11/1NT1 P10/lNTO 4-bit input port 1/ Edge-triggered vectored interrupts PTH03PTHOO Programmable threshold comparator analog input port Symbol P143-P140 Function 4-bit I/O port 14 NC No connection VDD Positive power supply P33-P30 Programmable 4-bit I/O por.t 3 P43-P40 4-bit I/O port 4 P53-P50 4-bit I/O port 5 RESET Reset input X2, X1 Ceramic or crystal system clock oscillator TlO, TI1 External event input for timer/event counter P23, P22/PCL P21/PT01, P20/PTOO 4-bit I/O port 2/Clock output terminallTimer / . event counter output pins P03/S1 4-bit input port O/Serial interface/Edge-triggered vectored interrupt P63-P60 Programmable 4-bit I/O port 6 P73-P70 4-bit I/O port 7 P83-P80 4-bit I/O port 8 P123-P120 4-bit I/O port 12 P93-P90 4-bit I/O port 9 P133-P130 4-bit I/O port 13 Vss Ground P02/~ P01/SCK POo/INT4 3-314 I II NEe pPD75104/106/108 Pin Functions P83-P80 [Port 8] P0 3/SI, P02/S0, P01/SCK, POo/INT4 [Port 0, Serial 4-bit I/O port for directly driving LEOs. The port is in the input state at reset and has a-bit lID capability when paired with port 9. 110, Interrupt 4] Port 0 can be configured as a 4-bit parallel input port or as the serial lID interface under control of the serial mode select register. The serial input SI (active high). serial output SO (active low). and the serial clock SCK (active low synchronizes data transfer) make-up the serial I/O interface. INT4 is an edge-triggered vectored interrupt triggered by a rising or falling edge. The port is in the input state at reset. P13-P1o/INT3-INTO [Port 1, Interrupts 3-0] Port 1 is a 4-bit input port. INTO and INT1 are edgetriggered vectored interrupts selected by a rising or falling edge. INT2 and INT3 are triggered by a rising edge only. The port and the interrupts are in the input state at reset. P93-P90 [Port 9] 4-bit I/O port for directly driving lEDs. The port is in the input state at reset and has a-bit lID capability when paired with port 8. P123-P120 [Port 12] 4-bit I/O port. N-channel open-drain. 12 V max. An internal pull-up resistor is a mask option. The port is in the high-impedance state at reset when open-drain is selected or in the high-level state when a pull-up resistor is selected. Port 12 has 8-bit 1/0 capability when paired with port 13. P133-P130 [Port 13] P23, P22/PCL, P21/PT01, P2o/PTOO [Port 2, Clock Output, Timer/Event Counter Output] Port 2 is a 4-bit I/O port for directly driving LEOs. PT01 and PTOO are the timerlevent counter output pins. PCl is the clock output pin. These pins are in the input state at reset. 4-bit lID port. N-channel open-drain. 12 V max. An internal pull-up resistor is a mask option. The port is in the high-impedance state at reset when open-drain is selected or in the high-level state when a pull-up resistor is selected. Port 13 has a-bit I/O capability when paired with port 12. P33-P30 [Port 3] P143-P140 [Port 14] Programmable 4-bit lID port for directly driving LEOs with bit-level 110 selection. The port is in the input state at reset. 4-bit lID port. N-channel open-drain 12 V max. An internal pull-up resistor is a mask option. The port is in the high-impedance state at reset when open-drain is selected or in the high-level state when a pull-up resistor is selected. P43-P40 [Port 4] 4-bit 1/0 port for directly driving LEOs. The port is in the input state at reset and has 8-bit I/O capability when paired with port 5. PTH03-PTHOO [Threshold Detector Analog Input Port] Threshold detector analog input port. P53-P50 [Port 5] 4-bit 1/0 port for directly driving lEDs. The port is in the input state at reset and has 8-bit lID capability when paired with port 4. TIO, TI1 [Timer/Event Counter Input] External event input for the timerlevent counter. These two pins are also an edge-triggered vectored interrupt and a 1-bit input port. P63-P60 [Port 6] Programmable 4-bit lID port for directly driving LEOs with bit-level I/O selection. The port is in the input state at reset and has 8-bit lID capability when paired with port 7. P73-P70 [Port 7] 4-bit lID port for directly driving LEOs. The port is in the input state at reset and has 8-bit lID capability when paired with port 6. RESET [Reset] System reset input pin (active low). X2, X1 [System Clock I/O] These pins are the system clock I/O. The clock may be from an external source or from an internal oscillator controlled by a crystal or ceramic resonator connected to pins X2 and X1. See figure 1. 3-315 NEe pPD75104/106/108 Figure 1. Voo [Power Supply] System Clock Configurations Positive power supply. A. Ceramic Oscillator Vss [Ground] System ground. X1 X2 pPD7500 Series Table 1 compares the features of similar products in the pPD75000 series. 30 PF l 3 0 PF J 1/0 Port Interfaces Figure 2 shows the internal circuit configurations at the I/O ports. B. Crystal Oscillator X1 IOPF X2 lS20 PF l C. External Clock pPD74HCOO Clock 83-002753A Table 1. Product Comparison Item pPD75Pl08 pPD75104 pPD75106 pPD75108 Program memory EPROM 0000-1FFFH Mask ROM OOOO-OFFFH Mask ROM 0000-177FH Mask ROM 0000-1FFFH Data memory 512 x 4-bit Bank 0: 256 Bank 1: 256 320 x 4-bit Bank 0: 256 Bank 1: 64 320 x 4-bit Bank 0: 256 Bank 1: 64 512 x 4-bit Bank 0: 256 Bank 1: 256 Instruction set Set P108 Set P108 minus BR!addr (3-byte instr.) Set P108 Set P108 Ports 12-14 pull-up resistor Not offered Mask option Mask option Mask option Power-on reset Integrated Mask option Mask option Mask option Power-on flag Integrated Mask option Mask option Mask option Operating voltage 5 V±10% 2.5 to 6.0 V 2.5 to 6.0 V 2.5 to 6.0 V Pin 31 Vpp NC NC NC Packaging 64-pin ceramic shrink DIP 64-pin plastic miniflat or shrink DIP 64-pin plastic miniflat or shrink DIP 64-pin plastic miniflat or shrink DIP 3-316 NEe Figure 2. pPD75104/106/108 Interface at Input/Output Ports Type F P01/SCK Type A Voo Voo Data~ ~'"'"' Inpull Output Output Disable Vss Vss Type B P13-P10/INT3·INTO, TlO, T11, POO/INT4, P03/SI, RESET Type M P123-P120, P133-P130, P143-P140 ~'"'"' V?D < Pull up Resistor [Mask Option] ~ ~-~-o ~n.!:~~t Data~ Type D outputJ Disable - I Voo P·ch oata~ Inpul Buffer Output outPut~ Type N PTH03-PTH09 Disable Vss Comparator Type E P23, P22/PCL, P21 IPT01, P20/PTOO. P02/S0, P33-P30, P43-P40, P53-P50, P60, P73-P70, P83-P80, P93-P90 Voo '"~ VREF [Threshold Vollage] Data~ Inpull Output Output Disable N.ch Voo l Vss Vss 3-317 NEe pPD75104/106/108. Figure 3. Cycle Time Supply Voltage VB I \ 1\ \ 1 0.5 o 1\ 3 VOO IV] Block Diagram POO-P03 P10-P13 P20-P23 PTOO/P20 P30-P33 TI1 PT01/P21 SI/P03 SO/P02 SCK/P01 P40-P43 ROM Program Memory Decode and Control IlPD75104: 4096 x B IlPD75106: 6016 x B P50-P53 RAM Data Memory P60-P63 IlPD75104/106: 320 x4 IlPD7510B: 512 x 4 PPD7510B: 8064 x B P70-P73 INTO/P1 0 INT1/P11 INT2/P12 INT3/P13 INT4/POo PBO-PB3 P90-P93 CPU Clock PTHOO-PTH03 4 '" PCL/P22 Xl X2 1 1 1 Voo Vss RESET 83·0027438 3-318 t-lEC pPD75104/106/108 Absolute Maximum Ratings Capacitance (Preliminary Specifications) TA = 25°C, Voo = GND = 0 V, f = 1 MHz TA = 25°C Limits Operating temperature, TOPT Parameter Symbol Min Typ Max Unit Test Conditions Storage temperature, TSTG -65 to +150°C Input capacitance CI 15 Power supply voltage, Voo -0.3 to +7.0 V Output capacitance Co 15 pF Unmeasured pins returned to GND pF I/O capacitance Cia 15 pF Input voltage Ports 12, 13, 14 (1), VI2 Other ports VI1 -0.3 to +13 V -0.3 to Voo + 0.3 V Output voltage, Va -0.3 to Voo + 0.3 V Output current, high One pin All output pins, total Output current, low Single pin (peak value) Ports 0, 2-4, 12-14, total (peak value) Ports 5-9, total (peak value) Power dissipation, Po (TA = 70°C) -15mA -30 rnA 30 rnA (2) 15 rnA 100 rnA (2) 60 rnA 100 rnA (2) 60 rnA 480 mW Note: (1) No internal pull-up resistor (mask option). If internal pull up resistor is used, then voltages are same as V11' (2) The calculation method is: value = peak value x duty. Comment: Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. 3-319 NEe pPD75104/106/108 DC Characteristics = -40 to +85°C, Voo = 2.7 to 6.0 V, GND = 0 V TA Limits Parameter Symbol Input high voltage except Xl, X2, TIO, T11, ports 0,1,12-14, and RESET VIH1 Input high voltage, ports 0,1, TIO, T11, and RESET Min Typ Test Conditions Max Unit 0.7 Voo Voo V VIH2 0.8 Voo Voo V Input high voltage, ports 12-14 VIH3 0.7 Voo 12 V Input high voltage X1, X2 VIH4 Voo - 0.5 Voo V Input low voltage except Xl, X2, TlO, T11, ports 0,1, and RESET VIL1 0 0.3 Voo V Input low voltage ports 0,1, TIO, Tl1, and REm VIL2 0 0.2 V Input low voltage X1, X2 VIL3 0 0.4 V Input leakage current high, except X1, X2 IUH1 3 J.lA VI = Voo Input leakage current high, X1,X2 IUH2 20 J.lA VI = Voo Input leakage current low, except X1, X2 IUL1 -3 J.lA VI =OV Input leakage current low, X1,X2 IUL2 -20 J.lA VI =OV Output voltage, high VOH V 10H = -100J.lA Output voltage, low Ports 0,2-9 Ports 12-14 VOL 2.0 V Voo = 4.5 to 6.0 V 10L = 15 mA 10L = 10 mA Output voltage, low VOL 0.4 V Voo = 4.5 to 6.0 V; 10L = -1.6 mA Output leakage current, high ILOH V Voo -1.0 Voo - 0.5 0.5 V 3 J.lA -3 (Note 1) Voo = 4.5 to 6.0 V; 10H = -1 mA 10H = 400J.lA Vo = VOO Output leakage current, low ILOL J.lA VO=OV Supply current 1001 3.5 mA Voo = 5 V + 10% (Note 2,3,4) 0.9 mA Voo = 3 V + 10% (Note 2, 3, 5) Supply current HALT mode 1002 600 J.lA VOO = 5 V + 10% (Note 2, 3, 5) 150 J.lA Voo = 3 V + 10% (Note 2, 3, 5) (Note 2) Supply current, STOP mode 1003 Pull-up resistance, ports 12-14 RL 15 0.1 10 J.lA 35 55 kn Notes: (1) No internal pull-up resistor. If an internal pullr·up resistor is used, then same as V11. If an input voltage greater than 10V is supplied to port 12,13, or 14, the pull-up resistor must be> 50 kO. (2) Does not account for current drawn through the mask option pull-up resistor, the mask option power-on reset circuit, or the comparator circuit. (3) 4.19-MHz crystal oscillation; C1 = C2 = 10 pF. (4) Set PCC to 00118 for high-speed operation. (5) Set PCC to 00008 for low-!;oeed ooeration. 3-320 NEe pPD75104/106/108 Crystal Characteristics TA = -40 to +85°C; Voo = 2.7 to 6.0 V limits Type Parameter Ceramic Frequency (fXX) oscillator Oscillation 2.0 Stabilization (1) Crystal Frequency (fXX) oscillator Oscillation Input frequency 5.0 MHz 4 ms 20 ms Voo = 4.5 to 6.0 V 2.0 4.19 5.0 MHz Stabilization (1) External clock Test Conditions Min Typ Max Unit 2.0 Highllow level 100 duration (txH. txL) 5 ms 25 ms Voo = 4.5 to 6.0 V 5.0 MHz 250 ns Note: (1) Time required for oscillator to stabilize after power-on or release of STOP mode. II AC Characteristics = 2.7 to 6.0 V. GND = 0 v TA = -40 to +85°C. Voo Limits Parameter Symbol Cycle time (Note 1) tCY TI input frequency fTI Min Typ Max Unit 0.95 32 jJS 3.85 32 jJS 0 1 MHz 0 550 kHz TI high time tTIH 0.48 jJS Tllow time tTIL 1.8 jJS SCK cycle time tKCY SCK pulse width SI setup time to SCK high tSIK SI hold time from SCK high INTO pulse width Voo = 4.5 to 6.0 V Voo = 4.5 to 6.0 V Input; Voo = 4.5 to 6.0 V 0.8 jJS jJS Output; Voo = 4.5 to 6.0 V 3.2 jJS Input 3.8 jJS Output 0.4 jJS Input; Voo = 4.5 to 6.0 V (tKCy/2) - 50 ns Output; Voo = 4.5 to 6.0 V 1.6 jJS Input (tKCY 12) - 50 ns Output 100 ns ns 500 tINTH. tlNTL Voo = 4.5 to 6.0 V 0.95 SCK low to SO valid delay time RESET pulse width Test Conditions 300 ns 1000 ns 5 jJS 5 jJS Voo = 4.5 to 6.0 V Note: (1) Cycle time depends on the supply voltage as shown in figure 3. 3-321 NEe pPD75104/106/108 Power-On Reset Characteristics (Mask Option) Data Memory STOP Mode Low Supply Voltage Data Retention Characteristics TA TA = -40 to +85°C limits Parameter Symbol Min Typ Max Unit 0.5 Power-on reset circuit operation voltage Power-on reset circuit operation voltage rise time 10 Power-on reset circuit consumption current 30 100 Test Conditions = -40 to +85°C Limits Parameter Symbol Min V Data retention supply voltage VOOOR 2.0 ps Data retention supply current IOOOR Release signal set time tSREL pA Oscillation tWAIT stable wait time Typ 0.1 Max Unit 6.0 V 10 pA 0 = -40 to +85°C, Voo = 4.5 to 6.0 V limits Parameter Symbol Min Typ Max Unit ±100 mV V Comparision accuracy VACOMP Threshold voltage VTH 0 VOO PTH input voltage 0 VOO VIPTH Comparator consumption current Test Conditions V rnA Set PTHM7 to 1 Table 2. Oscillation Stable Walt Times BTM3 BTM2 BTMI BTMO o o 0 0 WaltTlme "xx = 4.19 MHzJ 220 /fxx (approx 250 ms) 217/fXX (approx 31.3 ms) o 215 /fXX (approx 7.82 ms) 213 /fXX (approx 1.95 ms) 3-322 VDOOR = 2.0 V ps 217 /fX ms When released by RESET (Note 1) See table 2. ms When released by interrupt request Comparator Characteristics TA Test Conditions Note: (1) During oscillation stable wait time, CPU operation must be stopped to avoid unstable operation upon oscillation start. NEe pPD75104/106/108 Timing Waveforms Clock Timing Timing Measurement POints (Except Ports 0, 1, TI1, X1, X2, RESET) O.7VDD~ --V0.7VDD ~~O_.3_V~D~D_________________O_.3~VD~D~ XI Input 83-oo3411A 83-oo2756A TI Timing Serial Interface Timing 83-oo2757A Interrupt Input Timing SI ---i---------(] Output Data SC INTO-INT4 83-oo275&A 83-oo2759A Reset Input Timing Data Retention Timing (STOP Mode is Released by RESET) ("~J RESET HALT Mode 0.2 VOO Internal Reset Operation ~SToPMode Operation Mode 83-oo276oA ~~Data Retention Mode t VOO STOP Instruction Execution Data Retention Timing (STOP Mode is Released by Interrupt Request) VOODR J - - - - - - S T O P MOde _ _ _ _-+J.ot---3-_-I+--~~~~ation Data Retention Mode 83-002761 A VOD VOOOR Standby Release Signal [Interrupt Request] 83-oo2762A 3-323 pPD75104/106/108 3-324 NEe NEe NEe Electronics Inc. pPD75P108 4-BIT, SINGLE.CHIP CMOS MICROCOMPUTER WITH ON-CHIP EPROM PRELIMINARY INFORMATION Description The jJPD75P108 is a high-performance, single-chip CMOS microcomputer that incorporates a CPU, ROM, RAM, I/O ports, vector interrupt functions, serial interface, and timer/event counters. The device is functionally equivalent and pin-compatible with the jJPD75104/pPD75106/jJPD75108. The EPROM in thejJPD75P108 allows you to evaluate your program before placing the mask order. An OTP ROM version is available for small production runs. Features o o o o o o o o 46 instructions - Bit manipulation instructions '~ 8-bit data transfer,comparison, and increment/ decrement instructions - 1-byte relative branch instructions - GETI instruction that realizes 2-or 3-byte instructions in 1-byte units Instruction cycles - High-speed cycle: 0.95 jJs/4.19 MHz, VDD = 5 V - Low-voltage cycle: 1.91 jJs/4.19 MHz, 15.3 jJs/4.19 MHz ' Program memory (EPROM): 8192 x 8 bits Data memory (RAM): 512 x 4 bits Bit manipulation memory (bit-sequential buffer): 16 bits Four banks of 8 x 4-:-bit general-purpose registers Accumulators - Bit accumulator (CY) - 4-Bit accumulator (A) - 8-Bit accumulator (XA) 58 I/O lines - High-current output ports that can directly drive LEOs (total of 200 mAfor 32 pins) - 12 N-channelopen-drain outputs with 12 V maximum - Four programmable comparator threshold inputs - Two external event inputs o Vectored o o interrupt function capable of multiple interrupts - Three external vectored interrupts - Two external test inputs - Four internal vectored interrupts Two 8-bit timer/event counters 8-bit serial interface - Data transfer can start with LSB or MSB - Two transfer modes (transmit/receive and receive-only) o o o o o Power-on reset circuit Crystal or ceramic oscillator Standby modes (STOP/HALT) CMOS technology Low power consumption Ordering Information Part Number Package Type ROM (8K x 81 pPD75P108DW 64-pin shrink cerdip with window pPD75P108CW 64-pin plastic shrink DIP OTP ROM pPD75P108G-1 B 64-pin plastic miniflat OTP ROM EPROM Pin Configurations 64-Pin Ceramic Shrink DIP or Shrink Cerdip with Window P13/1NT3 Vss P12/1NT2 P90 P11IINT1 P9l Plo/lNTO P92 PTH03 P93 PTH02 P80 PTHOl P8l PTHOO P82 TIO P83 TI1 P70 P 23 P7l P22/PCL P72 P2l/PTOl P73 P2o/PTOO P03/S1 P6l P02/S0 P62 P01/SCK P63 POolINT4 P1 23 X2 P122 RESET P12l P50 P1 20 P5l P1 33 P132 P13l P40 P1 30 P4l P1 43 P42 P142 P43 P14l P30/MDO P1 40 P3l/MDl Vpp P32/MD2 Voo P33/MD3 83·0027639 3-325 NEe pPD75P108 Pin Configurations (cont) Symbol 64-Pln Plastic Min/fiat Q Q .,.. Q ('\rI Q M Q ~~~~~~g8:~i;£'~ > > ~ ~ ~ ~ P40 ~ ~ ~ ;;; ~ ~ '"III ~. ~ ~ .P5l P53-PSo 4-bit 1/0 port 5 RESET Reset input X2,X1 Ceramic or crystal system clock oscillator P63-P60 Programmable 4-bit 110 port 6 4-bit 1/0 port 7 P133 P83-P80 4-bit 1/0 port 8 P120 P93-P90 4-bit 1/0 port 9 VSS Ground P132 0 P53 4-bit 1/0 port 4 PlJ- P7o ~ III III P12l P122 P50 Function P43-P40 P123 POoIINT4 X2 Xl P01/SCK IJPD75P108 P02/S0 P62 P03/S1 P6l P20/PTOO P73 P22/PCL P72 P 23 Til P 70 TID PTHOO P83 PTHOl '"N 0 N ~ ~ = 0 M ~ N ~. en '" ~ 0 ~ 0 0 '" N N ~ N M ~ N ~ .,.. ~ ~~~~~>~~~ ~ ~ '" ... J: I~ POo/lNT4, P01/SCK, P02/SO, P03/S1 [Port 0, Interrupt, Serial Clock, Serial Interface] This port can be configured as a 4-bit parallel input port or as the serial liD interface under control of the serial mode select register. The serial input 81, serial output SO, and the serial clock SCK make up the serial 110 interface. INT4 isan edge-triggered vectored interrupt triggered by a rising or falling edge. The port is in the input state at reset. 0N J: I- ~ ~ 83-003931A Pin Identification Symbol Pin Functions Function P13/1NT3, P12/1NT2, P11/1NT1, P1o/iNTO [Port 1, Edge-Triggered Interrupts] 4-bit input port 1/interrupts. INTO and INT1 are edgetriggered vectored interrupts selected by a rising or falling edge. INT2 and INT3 are triggered by a rising edge only. The port and the interrupts are in the input state at reset. P1311NT3 P1211NT2 P1111NT1 P10llNTO 4-bit input port 1lEdge-triggered vectored interrupts PTH03-PTHOO Programmable threshold comparator analog input port TIO, TI1 External event input for timerlevent counter P23, P22/PCL P21/PT01 P20/PTOO 4-bit 1/0 port 2/Clock output terminal/Timerl event counter output pins P03/S1 4-bit input port O/Serial interface/Edgetriggered vectored interrupt P33/M03, P32/MD2, P31/MD1, P30/MOO [Port 3, EPROM Function Mode Inputs] 4-bit 110 port 12 Programmable 4-bit liD port for directly driving LEOs with bit-level 110 selection. MOO-M03 selectthe EPROM operating mode. The port is in the input state at reset. P02/§!L P01/SCK POoII NT4 4-bit 1/0 port 13 P14J- P14o 4-bit 1/0 port 14 Vpp EPROM programming power supply Voo Positive power supply P33/MD3 P32/MD2 P31/MD1 P30/MDO Programmable 4-bit 1/0 port 3/EPROM function mode selection inputs 3-326 P23, P22/PCL, P21/PT01, P2o/PTOO [Port 2, Clock Output, Timer/Event Counter Output] Port 2 is a 4-bit liD port for directly driving LEOs. PT01 and PTOO are the timerlevent counter output pins. PCl is the clock output pin. These pins are in the input state at reset. P43-P40 [Port 4] 4-bit liD port for directly driving LEOs. The port is in the input state at reset and has 8-bit liD capability when paired with port 5. NEe JlPD75P108 Pin Functions (cont) RESET [Reset] P53-P50 [Port 5] System reset input pin (active low). 4-bit 110 port for directly driving LEOs. The port is in the input state at reset and has 8-bit I/O capability when paired with port 4. P63-P60 [Port 6] X2, X1 [System Clock 1/0] These pins are the system clock I/O. The clock may be ceramic or crystal. Voo [Power Supply] Programmable 4-bit 110 port for directly driving LEOs with bit-level I/O selection. The port is in the input state at reset and has 8-bit I/O capability when paired with port 7. Vpp [EPROM Programming Power Supply] P7 3-P70 [Port 7] Ouring normal operation, connect to VDD . Connect to +21 V for EPROM programming. 4-bit 110 port for directly driving LEOs. The port is in the input state at reset and has 8-bit 110 capability when paired with port 6. Vss [Ground] Positive power supply. System ground. P83-P80 [Port 8] 4-bit 110 port for directly driving LEOs. The port is in the input state at reset and has 8-bit I/O capability when paired with port 9. P93-P90 [Port 9] 4-bit 110 port for directly driving LEOs. The port is in the input state at reset and has 8-bit 110 capability when paired with port 8. P123-P120 [Port 12] 4-bit I/O port, N-channel, open-drain (12 V max). The port is in the high-impedance state at reset and has 8-bit I/O capability when paired with port 13. P133-P130 [Port 13] 4-bit 110 port, N-channel, open-drain (12 V max). The port is in the high-impedance state at reset and has 8-bit 110 capability when paired with port 12. P143-P140 [Port 14] 4-bit 110 port, N-channel, open-drain (12 V max). The port is in the high-impedance state at reset. PTH03-PTHOO [Threshold Detector Analog Input Port] Threshold detector analog input port. TIO, TI1 [Timer/Event Counter Input] External event input for the timer/event counter. These two pins are also an edge-triggered vectored interrupt and a 1-bit input port. 3-327 NEe pPD75P108 Block Diagram POO-P03 Pl0-P13 P20-P23 TIO PTOO/P20 P30-P33 Til P40-P43 PT01/P2l EPROM Program Memory 8192 x 8 SI/P03 SO/P0 2 SCK/POl Decode and Control RAM Data Memory 512 x 4 P60-P63 P70-P73 INTO/P10 INT1/Pll INT2/P1 2 INT3/P13 INT4/POo P80-P83 P90-P93 P120-P123 CPU Clock P130-P133 '" Xl PCL/P22 X2 1 1 1 Voo Vss P140-P143 RESET 83-002764C pPD75000 Series Table 1 compares the features of similar products in the pPD75000 series. Table 1. Product Comparison Item pPD75Pl08 pPD75104 pPD75106 pPD75108 Program memory EPROM 0000-1FFFH Mask ROM OOOO-OFFFH Mask ROM 0000-177FH Mask ROM 0000-1FFFH Data memory 512 x 4-bit Bank 0: 256 Bank 1: 256 320 x 4-bit Bank 0: 256 Bank 1: 64 320 x 4-bit Bank 0: 256 Bank 1: 64 512 x 4-bit Bank 0: 256 Bank 1: 256 Instruction set Set P108 Set P108 minus BR!addr (3-byte instr.) Set P108 Set P108 Ports 12-14 pull-up resistor Not offered Mask option Mask option Mask option Mask option Power-on reset Integrated Mask option Mask option Power-on flag Integrated Mask option Mask option Mask option Operating voltage 5 V ±10% 2.5 to 6.0 V 2.5 to 6.0 V 2.5 to 6.0V Pin 31 Vpp NC NC NC Packaging 64-pin ceramic shrink DIP or plastic miniflat 64-pin plastic miniflat Oi shrink DIP 64-pin plastic miniflat or shrink D!P 64-pin plastic minif!at or shrink D!P 3-328 NEe pPD75P108 Figure 1. EPROM Programming EPROM Programming Flowchart The internal 8K-byte EPROM is programmed via the pins and functions listed in table 2. Refer to the flowchart, figure 1. The Vpp and Voo pins must be held at 5 V for at least 10 ps upon power-up and before the programming voltages of 21 V to Vpp and 6 V to Voo are applied. Mode pins MDo-MD3 control the programming stepsas shown in table 3. Address inputs are not used during programming. The program memory address is first cleared via the mode pins, then incremented by applying four clock pulses to the X1 input. Table 2. EPROM Access Pin Function Vpp Programming voltage. Connect to 21 V when programming EPROM. X1, X2 Address increment clock input. X2 inputs the inverse of X1. MDO-MD3 Mode selection P40-P43 8-bit data bus connection, low P50-P53 8-bit data bus connection, high VDD Connect to 6 V during programming. Table 3. IE No EPROM Mode Selection vpp = 21 V, VD D = 6.0 V MOO MOl H M02 M03 Operating Mode Program memory address clear H H H H Program memory write L L H H Program verify H X H H Program inhibit I/O Port I nlerfaces Figure 2 shows the internal circuit configurations at the 1/0 ports. 3-329 NEe pPD75P108 Figure 2. Interface at Input/Output Ports TypeB P13/INT3, P10/INTO, TIO, T11, POO/INT4, P03/SI, RESET TypeE P23, P22/PCL, P21/PT01, P20/PTOO, P02/S0, P33/M D3-P30/M DO, P43-P40, PS3-PSO, P63-P60, P73-P70, P83-P80, P93-P90 Voo Data~ Inputl Output Output Disable Noch Voo Vss Vss Voo Data~ Inputl Output Output Olsable TypeM P123-P120, P133-P130, P143-P140 V?D Pull-up Resistor ~ [Mask Option] ~ InlOut oata~ffN_Ch outputJ Disable - I ./1 ~_I Input Buller 3-330 ~I NEe a-BIT, SINGLE-CHIP MICROCOMPUTERS 4-1 E a-BIT, SINGLE-CHIP MICROCOMPUTERS NEe Section 4 - a-Bit, Single-Chip Microcomputers JlPD7SC05A/06A JlPD7S07/0S/09 JlPD7SP09 JlPD7S10/11 JlPD7SC10/C11/C14 JlPD7S10H/11 H JlPD7SPG11 JlPD7S310/312 JlPDS035HLl4SH JlPDSOC35/C4S, JlPD4S JlPDS039HL/49H, JlPDS749H JlPDSOC39H/49H, ·JlPD49H JlPDSOC40H/50H, JlPD50H JlPDS041AH, JlPDS741A JlPDSOC42 JlPDS74SH 4-2 High-End CMOS Microcomputers ...................... 4-3 High-End NMOS Microcomputers with Comparator and SK ROM ........................... 4-23 High-End NMOS Microcomputer with Comparator and SK EPROM ........................ 4-51 NMOS Microcomputers with AID Converter ............ 4-75 CMOS Microcomputers with AID Converter ........... 4-101 NMOS Microcomputers with AID Converter ........... 4-129 High-End NMOS Microcomputer with Piggyback EPROM .......................................... 4-155 CMOS Microcomputers, Real-Time Control Oriented .. 4-175 High-Speed HMOS Microcomputers .................. 4-201 CMOS Microcomputers .............................. 4-213 High-Speed HMOS Microcomputers .................. 4-235 High-Speed CMOS Microcomputers .................. 4-249 High-Speed CMOS Microcomputers .................. 4-271 NMOS Microcomputers with Universal PPI ............ 4-293 CMOS Microcomputer with Universal PPI ............. 4-307 High-Speed NMOS Microcomputer with UV EPROM ... 4-325 NEe NEe Electronics Inc. Description The pPD78COSA and pPD78C06A are advanced CMOS 8-bit general purpose, single-chip microcomputers intended for applications requiring 8-bit microprocessor control and extremely low power consumption. They are ideally suited for portable, battery-powered/backed-up products. Subsets of the pPD7801, the pPD78COSA/06A integrate an 8-bit ALU, 4K-byte ROM, 128-byte RAM, 46 I/O lines, an 8-bit timer, and a serial I/O port on a single die. Expanded system operation can easily be implemented using industry standard peripheral and memory components. Total memory space can be increased to 64K bytes. The pPD78COSA/06A lend themselves well to lowpower, portable applications by featuring two powerdown modes to further conserve power when the processor is not active. ThepPD78C06A is packaged in a 64-pin plastic miniflat package. ThepPD78COSA is a ROM-less version, packaged in a 64-pin QUIP, and designed for prototype development and small volume production. Features o CMOS silicon gate technology; +S V supply o o o o o o o o o o o o Complete single-chip microcomputer -8-bit ALU -4K-byte ROM -128-byte RAM 6.2S MHz Low power consumption 46 I/O lines Expansion capabilities -60K-byte external memory address range -8080A bus compatible Serial I/O port 101 instructions with multiple address modes Power-down modes -Halt mode -Stop mode 8-bit timer Prioritized interrupt structure -Two external -One internal On-Chip clock generator ROM-less version available (78COSA) pPD7SC05A/06A HIGH-END, S-BIT, SINGLE-CHIP CMOS MICROCOMPUTERS Ordering Information ParI Number Package Type pPD78C05AG-36 64-pin plastic QUIP pPD78C06AG-12 54-pin plastic miniflat Pin Configurations 64-Pin Plastic QUIP AB1S Vee "'OUT DB7 AB14 AB13 DB6 AB12 DBs AB11 DB4 AB10 DB3 ABs DB2 ABa DB1 AB7 DBo AB6 Ne ABs INT1 AB4 INTo AB3 WAIT AB2 M1 AB1 ViR ABo RD PB7 PCs PBs PC4 PBs PC3 PB4 PC2 PB3 PC1 PB2 PCo PB1 REL PBo TO PA7 SCK PAs SI PAs SO PA4 RESET PA3 X2 PA2 PA1 X1 Vss I: 32 33 PAo 83-002770A 4-3 NEe pPD78C05A/06A Pin Configurations (cont) Plastic QUIP (cont.) No. 64-Pln Plastic Mlnlflat Reset input 30,31 X2, X1 PE7 32 VSS Ground potential DB2 PEs 33-40 DBl PEs PAo-PA7 I/O port A, bits 0-7 DBO PE4 41-48 PBO-PB7 I/O port B, bits 0-7 INTl PE3 49-63 INTo PE2 PEo-PE14 (78C06A) ABo-AB14 (78C05A) Address bus/output port E, bits 0-14 Address bus, bits 0-14 WAIT PEl WR RD PEo 64 Vee Power supply PCs PBs PB7 PC4 PBs PC3 PB4 PC2 PB3 PCl P B2 PCo PB l REL PBo TO PA7 19 Plastic Mlnlflat No. No. PAa Function Not connected 2-5 DB3-DBo Bidirectional data bus, bits 3-0 6,7 INh INTo Interrupt inputs 1 and 0 8 WAIT Wait request input 9 WR Write strobe output 10 RD Read strobe output 11-16 PCs-PCo Input port C 17 REL STOP release input 18 TO Timer output 19 SCK Serial clock input/output 20 SI Serial data input Function 21 SO Serial data output Address bus/output port E, bit 15 Address bus, bit 15 22 RESET Reset input 23,24 X2, X1 Crystal connections 25 Vss IC (Vecl Ground potential 26 27-34 Symbol PE1S (78C06A) AB1S(78C05A) Symbol NC Plastic QUIP 14 Serial data output RESET PEa Pi n Identification 12,13 SO 29 NC 83-002771 A 11 28 DB3 SCK 3-10 Function Serial data input Crystal connections 52 64 2 Symbol SI 27 ¢OUT Clock output DB7-DBo Bidirectional data bus NC Not connected INT1, INTo Interrupt inputs 1 and 0 WAIT Wait request input Internally conected to Vee PAo-PA7 I/O port A, bits 0-7 35-42 PBO-PB7 I/O port B, bits 0-7 43-57 PEo-PE14 Address bus/output port E, bits 0-14 Vee Power supply 15 M1 Machine cycle 1 output 16 WR Write strobe output 58 17 RD Read strobe output 59 PE1S Address bus/output port E, bit 15 18-23 PCs-PCo Input port C 60-63 DBr DB 4 Bidirectional data bus, bits 7-4 24 REL STOP release input 64 ¢OUT Clock output 25 TO Timer output 26 SCK Serial clock input/output 4-4 NEe pPD78C05A/06A Pin Functions SCK [Serial Clock] DBo·DB7 [Data Bus] The control clock for the serial data port is userprogrammable as an input or output. The 8-bit bidirectional data bus transfers data between the accumulator and external memory or memorymapped I/O. INTo, INT1 [Interrupts 0 and 1] INTo is a rising-edge-triggered external interrupt input. INT1 is an active-high external interrupt input. Both inputs must be held high for a least 2flS to be recognized as valid. SI [Serial Data Input] The SI input loads into the serial register on the rising edge of SCK. SO [Serial Data Output] On the falling edge of SCK, the serial register outputs data to SO, most significant bit first. WAIT [Wait Request] RESET [Reset] The WAIT input is used to interface with slow memories or peripherals. WAIT is sampled at the end of machine cycle T 2. If it is low, then the processor goes into a wait state until WAIT returns high. A low level on RESET input of more than 8 fls resets the processor. M1 [Machine Cycle 1] (78C05A only) The M1 output is high during machine cycles T1 through T3 of the first opcode fetch of an instruction. WR [Write Strobe] When the WR output is low, valid output data is available on the data bus. RD [Read Strobe] The processor loads data from the data bus into the accumulator on the rising edge of the RD output. X1, X2 [Crystal Connections] These pins connect to the internal clock generator circuit. If an external clock generator is used, then it is connected to X1. I: Vss [Ground] This is the power supply ground potential input. IC [Vee] (78C06A only) This is the internal connection to Vee through a high impedance. It should be left open. PAO·PA7 [Port A] The 6-bit input port has internal pull-up resistors. When contents of the port buffer are transferred to the accumulator, they fill the least significant six bits. Port A is an 8-bit latched output port. Data can be readily transferred between the accumulator and the output latch buffers. The contents of the output latches can be modified using arithmetic and logic instructions. Data remains latched at port A unless it is acted on by another port A instruction or a RESET is issued. REL [STOP Release] PBo·PB7 [Port B] The STOP release input has an internal pull-down resistor. High level on REL releases the processor from stop mode, allowing the clock generator to restart. Port B is an 8-bit I/O port. Data is latched at port B in both the input and output modes. Each bit of port B can be independently set to either input or output mode. The mode B register programs the individual lines of port B to be either an input (mode Bn = 1) or an output (mode Bn = 0). PCo·PCs [Port C] TO [Timer Output] Frequency of square wave output at TO is determined by the timer register contents. TO outputs a low level after reset. 4-5 pPD78C05A/06A PEo-PE15 [Port E] (78C06A only) Port E is a 16-bit address bus/output port. It can be set to one of two operating modes using the PER or PEX instruction. • 16-bit address bus: the PER instructfon sets this mode for use with external I/O or memory expansion (up to 60K bytes, externally). • 16-bit output port: the PEX instruction sets port E to a 16-bit output port. The contents of Band C registers appear· on PE8-PE15 and PEo-PE7, respectively. ABo-AB15 [Address Bus] These lines are the 16-bit address bus to the main memory. The 78C05A, having no internal ROM, must address the area from 0 to 4096 as external ROM. The 78C05A AB lines are unlike the 78C06A PE lines in that they have no internal latches. When the Port E output instruction PEX is executed in a 78C05A, the register pair BC is output to the AB lines for only one clock cycle during the third machine cycle. This is provided to allow external hardware to emulate the Port E operation of the 78C06A. Vee [Power Supply] This pin is the power supply input, 3.5 to 6.0 V during normal operation. cp OUT [Clock Output] The system clock frequency, which is 1/4 or 1/8 of the crystal frequency, is output on this pin. ¢ OUT is active in halt mode but is held high in stop mode. Block Diagram OSC Xl 16 latch REl INC/DEC PC Data SP B Progl'llm Memory (4K-byte) Memory (128-Byte) A C 7BC06A o INTI H TO SI PCs-PC. WR M, (fLPD78C05A) 4-6 WAIT RESET ~Out 1 1 VCC VSS ttiEC pPD78C05A/06A Absolute Maximum Ratings -0.3 to +7.0 V Supply voltage, VCC Input voltage, VI -0.3 V to VCC + 0.3 V Output voltage, Vo -0.3 V to VCC + 0.3 V Output high current, 10H (device total) -5mA Output low current, 10L (device total) 43.5 mA Operating temperature, TOPR -65 to +150 °C Storage temperature, TSTG Comment: Exposing the device to stresses above those listed in Absolute Maximum Ratings could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational sections of this specification. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Capacitance TA = +25°C; Vee = GND = 0 V Limits Parameter Symbol Min Typ Max Unit Input capacitance C, 15 pF Output capacitance Co 15 pF I/O capacitance CliO 15 pF Test Conditions fc = 1 MHz; unmeasured pins returned to 0 V Low-Power Data Memory Retention in Stop Mode TA = -40 to + 85°C Limits Parameter Data retention voltage Symbol Min VCCDR 2.0 Data retention ICCDR supply current TYP Test Max Unit Conditions V 0.8 20 J1A VCCDR = 2.0 V, (X1 =OV,X2= open) Data retention input low RESET voltage VILDR Data retention input high RESET voltage VIHDR REL input delay time to 500 J1S REL Input high time tREL 10 J1S 0 0.2 VCCOR 0.8 VCCOR V VCCDR Note: (1) In data retention mode, input voltages to WAIT and PCO-PC5 pins (with pull-up resistors) should be maintained the same as VeeDR level; other input voltages should be kept less than VeeDR level. 4-7 4 NEe pPD78C05A/06A DC Characteristics AC Characteristics TA = -40 to +85°C; Vcc = +5 V ±10% Limits Parameter Symbol Min Input high voltage VIH1 0.7 Vee VIH2 0.75 Vee VIH3 Vee - 2.0 VIH4 VIL1 Typ Max Unit Vee V Test Conditions INTO,INT1, WAIT, PBOPB7, PCO-PC5 Read/Write Operation 78C05A, tCY¢ = 660 ns; 78C06A, tCY¢ = 1320 ns Limits Parameter Symbol Min Typ Max 1070 +660 Unit RD low time tRR ns RD LE to WAIT LE . tRWT 460 ns Address (PEo- tAWTI 790 ns V RESET, SCK, REL, SI Vee V DBo-DB7 Vee - 0.5 Vee V X1 0 0.3 Vee V INTo-INT1' WAIT, PBoPB7, PCO-PC5 VIL2 0 0.25 Vee V RESET, SCK, REL, SI VIL3 0 0.8 V DBo-DB7 VIL4 0 0.5 V X1 VOH1 2.4 V 10H = -100tJA M1 to RD LE (1) tMR 108 ns RD TE to M1 (1) tRM 130 ns V 10H = -50 tJA ¢O!J.l.LE to WR LE tw 0.45 V IOL = 1.8 mA tA 420 ns 100 tJA VIN = Vee (REL) Address (PEoPE15) to ¢OUT TE 90 ns tJA VIN = Vee (X1) Address (PEoPE15) to ¢OUT TE (1) tA- 45 -100 tJA VIN = 0 V (WAIT, PCoPC5) Address (PEoPE15) to data output tA02 510 ns IIL2 -45 tJA VIN = 0 V (X1) Data output to WR TE tow 740 + 660N ns Input high leakage current IUH 3.2 tJA VIN = Vee (except REL, X1) WR TE to data stable time two 130 ns Address tAW 460 ns Input low leakage current IUL1 -3.2 tJA VIN =OV (except WAIT, PCO-PC5, X1) (P~E15) 180 ns -3.2 tJA VIN =0 V (Stop mode, X1) WRTE to address stable time tWA IUL2 WR low time tww ILOH 3.2 tJA VOUT = Vee 690 +900N ns Output high leakage current WR LE to WAIT LE tWWT Output low leakage current ILOL Vee supply current lee1 4 7.5 mA Operation mode lee2 1.2 2.7 mA Halt mode 20 tJA Stop mode (X1 = 0 V, X2 = Open) Input low voltage Output high voltage VOH2 Output low voltage VOL Input high current IIH1 Vee- 0.5 7 IIH2 Input low current 11L1 -3.2 tJA VOUT = 0 V WAIT LE WAIT set-up time to ¢OUT LEo tWTS 370 ns WAIT hold time after ¢OUT LE tWTH 0 ns 175 ns to WR LE 110 ns Note: (1) Applies only to 78C05A. lee3 4-8 -7 ~to (2) N is number of WAIT states (TWAIT). In the 78C06A, two WAIT state!> are automatically inserted when accessing internal ROM. (3) LE is leading edge and TE is trailing edge. Test Conditions NEe pPD78C05A/06A AC Characteristics (cont) Bus Timing Depending on tCY4J Serial Operation TA = -40 to +85°C Symbol Formula 78C05A, tCY4J = 660 ns; 78C06A, tC Y4J = 1320 ns Limits MiniMax Unit tR4J (1/2)T -150 Min ns Parameter Symbol Min TYP Test Conditions Max Unit 80,000 ns ns SCK input SCK output tA01 (3/2 + N)T - 200 Max ns SCK cycle time tCYK 1270 1280 tRA(T3) (1/2)T -150 Min ns SCK low time tKKL tRA(T4) (3/2)T -150 Min ns 515 520 ns ns SCK input SCK output tRO (1 + N)T - 200 Max ns SCK high time tKKH 515 520 ns ns SCK input SCK output tRR (2 + N)T -250 Min ns 200 ns T -200 Max ns SI set-up time to SCK TE tSIS tRWT tAwTI (3/2)T - 200 Max ns 250 ns tWTS Min SI hold time after SCK TE tSIH (1/3)T + 150 ns (3/8)T -140 Min ns SCK LE to SO delay time tKO tMR (1) tRM (1) (1/2)T - 200 Min ns Note: tA4J (1) (1/2)T - 240 Min ns (1) tA4J T -240 Min ns (2) tA02 T -150 Min ns Input timings are measured at VIH min and VIL max. Output timings are measured at VOH= 2.4 V, VOL = 0.45 V, and load = one TTL + 200 pF. tow (3/2 + N)T - 250 Min ns (3) LE is leading edge and TE is trailing edge. two (1/2)T - 200 Min ns Clock Timing tAW T -200 Min ns TA tWA (1/2)T -150 Min ns 300 ns E = -40 to +85°C voo = +5 V ±10% Limits (3/2 + N)T - 300 Min ns tWWT (1/2)T - 220 Max ns X1 input cycle time tCYX 160 X1 input low time tXXL 75 ns X1 input high time tXXH 75 ns OUT cycle time (2) tCY4J 1,280 OUT low time (2) t4J4JL 515 ns OUT high time (2) t4J4JH 515 ns OUT cycle time (1) tCY4J 640 OUT Low time (1) t4J4JL 195 ns OUT high time (1) t4J4JH 195 ns OUT rise/ fall time tR, tF tCYK 2T Min ns tKKL T -120 Min ns tKKH T -120 Min ns Note: (1) For 78C05A only (2) N = Number of TWAIT states In the 78C06A, two wait states are automatically inserted when accessing internal ROM. T = tCY4J for 78005A T = 2tCY 4J for 78C06A tCY assumes 50% duty cycle on X1' Symbol Min TYP tww Parameter Max Unit 10,000 ns 80,000 40,000 120 Test Conditions ns ns ns Note: (1 ) Applies only to 78C05A. (tCY4J (2) Applies only to 78C06A. (tCY4J = 4/fosc) = 8IfosC> 4-9 NEe pPD78C05A/06A Timing Waveforms Write Operation ! - - - T , - - - t - - -T2 - - - t - - -TWAIT---i·I---T3 - - - { ILPD78C06A: OUT PEo-PE,5 ____ ,~------~------------------~--------__----------~--------------------~,--- DBO-DB7----~------+_----_\__________~__------~----~~~~~~~-------------------- ILPD78C05A: M, 4-10 NEe pPD78C05A/06A Timing Waveforms (cont) Countup operation is initiated upon execution of the STM instruction. When the contents of the upcounter are incremented and a coincidence with the Timer Reg. occurs, an internal interrupt (INTT) is generated. The duration of the time-out may be altered by loading new contents into the timer register. Serial Operation The timer flip-flop is set by the STM instruction and reset on a countup operation. Its output (TO) is available externally and may be used for general external synchronization. Serial Port Operation 83-003075A Clock Timing "'OUT 83-003076A The on-ch ip serial port (figure 3) provides basic synchronous serial communication functions allowing the pPD78C05A/06A to serially interface with external devices. Serial transfers are synchronized with either the internal clock or an external clock input (SCK). The transfer rate is fixed at fasc/8 if the internal clock is used or is variable between dc and fasc/8 when an external clock is used. The clock source select is determined by the serial mode register. Data on the 81 (serial input) line is latched into the serial register on each rising edge of the serial clock (SCK). Concurrently, data is transferred out of the serial register onto the 80 (serial output) line with each falling edge of SCK. At this time, receive and transmit operations th rough the SI/SO port are enabled. Receive and transmit operations are performed MSB first. Functional Description Interrupt Structure Memory Map The pPD78C05A/06A provide a maskable interrupt structure capable of handling vectored prioritized interrupts. Interrupts can be generated from three different sources: two external interrupts and a timer interrupt. When activated, each interrupt branches to a designated memory vector location for that interrupt. See table 1. The pPD78C06A can directly address up to 64K bytes of memory. Except for the on-chip ROM (0-4,095) and RAM (65,408-65,535), any memory location can be used as either ROM or RAM. Figure 1 defines the 064K-byte memory space for the pPD78C06A showing that the reset start address, interrupt start address, call tables, etc, are located in the internal ROM area. Timer Operation A programmable 8-bit timer (figure 2) is provided onchip for measuring time intervals, generating pulses, and general time-related control functions. It is capable of measuring time intervals from 5 j1S to 21 ms in duration. The timer consists of a prescaler that decrements an 8-bitcounter at a fixed 5-ps or 82-ps rate. Table 1. Interrupt Structure INT Vectored Memory Location Priority INTT 8 2 Internal, timer overflow Type INTo 4 1 External, level sensitive INT1 16 3 External, rising-edge sensitive ..:1-11 II ... NEe pPD78C05A/06A Figure 1. Memory Map 0 Reset/Stop Release Internal ROM 4,096 x 8 4 INTo 8 INTT 4,095 4,096 [ INT, External Memory 61,312 x 8 "I - 65,279 65,280 ------------------ - 128 Low Address 129 High Address 130 Low Address 131 High Address Call Table Working I- Register 65.407 65.40 8 Internal RAM 128 x 8 254 Low Address 255 High Address - 65,535 User's Area <--------------------------- -PEX Instruction - - - - - - - - - - - - - - - - - - - - - - - - - - - > \ ----\---- \ ---- \---- \ ---- \---- \ ----I ---- \---- \ ----I -.:.--\ -.:.-- \ T, M, T2 T3 T. T, T2 T3 T. T, T2 T3 J - - - - - - - - - - - - - - \'-_______________________________________________ AB)(_________I_st_B~y_te_F_et_ch________~X~________ 2n_d_B~y~te_F_et~ch________~X~ ___B_C~_JX~______________ NEe Figure 2. pPD78C05A/06A Timer Block Diagram Instruction-_------------+-----_---------+------------, Prescaler 1 System Clock (3) System Clock = Oscillation Frequency x 1/4 Figure 3. Serial Port Diagram Internal Bus ~----------------~ WRs RDs SI SO Octal Counter T.(INTS) Internal SCK S Start SilO R T. 4-1~ NEe pPD78C05A/06A Reset Table 2. An active-low signal on the RESET input for more than 4 ps forces the pPD78C05A/06A into a reset condition, which affects the following internal functions: Function Halt Mode Stop Mode Oscillator Run Stop Internal system clock Stop • The interrupt enable flags are reset, and interrupts are inhibited. • The interrupt request flag is reset. • The halt flip-flop is reset, and the halt state is released. • The contents of the mode B register are set to FFH, and port B becomes an input port. • All flags are reset to O. • The internal count register for timer operation is set to FFH and the timer F/F is reset. • The contents of the program counter are set to OOOOH. • Data bus (DBo-DB7), RD, and WR go to a highimpedance state. Once the RESET input goes high, the program is started at location OOOOH. Halt and Stop Modes Timer Run Timer register Hold Upcounter, prescaler 0, 1 Run Cleared Serial interface Run Run (1) Serial clock Hold Hold Interrupt control circuit Run Stop Interrupt enable flag Hold Reset INTo, INT 1 input Active Inactive Hold Set REL input Inactive Active Set INTT T8 (lNTFS) Mask register Pending interrupts (INTFX) Reset RESET input Active Stop and Halt Modes On-chip RAM Hold The JlPD78C05A/06A have a stop and a halt mode. The effects of stop and halt on various functions are shown in table 2. Output latch in ports A, B, E Hold Program counter (PC) Cleared Stack pOinter (SP) Unknown General registers (A, B, C, 0, E, F, L) Registers The JlPD78C05A/06A contain seven 8-bit registers and two 16-bit registers. See figure 4. Program status word (PSW) Reset Mode B register Hold Standby control register (SCO-SC3) General Purpose Registers Standby control register (SC4) Set The general purpose registers B, C, D, E, H,· L can function as auxiliary registers to the accumulator or in pairs as data pOinters (BC, DE, HL). Automatic increment and decrement addressing mode capabilities extend the uses for the DE and HL register pairs. Timer mode register (TMMo-TMM1) Hold Timer mode register (TMM1) Set Serial mode register (SM) Hold Figure 4. Registers Data bus (DBo-DB7) High-Z High-Z RD, WR output High High Note: 15 (1) Serial clock counter is running and T 8 is generated; however, there are no effects from it. PC SP A c Main o H 83-003077A 4-14 NEe jlPD78C05A/06A Accumulator [A] Automatic Decrement Addressing All data transfers between the jlPD78C05AI 06A and external memory or 1/0 are done through the accumulator. ~~----------~~----~~_l------loperandl rp Memory Program Counter [PC] The PC is a 16-bit register containing the address of the next instruction to be fetched. Under normal program flow, the PC is automatically incremented. However, in the case of a branch instruction, the PC contents are from another register or an instruction's immediate data. A reset sets the PC to OOOOH. Stack Pointer [SP] The stack pointer is a 16-bit register used to maintain the top of the stack area (Iast-in/first-out). The contents of the SP are decremented during a Call or Push instruction or if an interrupt occurs. The SP is incremented during a Return or POP instruction. Working-Register Addressing The contents of the register are linked with the byte following the opcode to form a memory address that contains the operand. The V register is used to indicate the memory page. This address mode is useful as a short-offset address mode when working with operands in a common memory page where only one additional byte is required for the address. Mnemonics with a W suffix indicate this address mode. In the jlPD78C05AI 06A, the V register is always FFH. "r PC PC + 1 I Address Modes Register Addressing The instruction opcode specifies a register that contains the operand. r ~~-------------------------------.~ The instruction opcode specifies a register pair that contains the memory address of the operand. Mnemonics with an X suffix indicate this address mode. rp Memory Operand I t I Il Direct Addressing The two bytes following the opcodespecify an address of a location containing the operand. Opcode PC Register Indirect Addressing FFHex Memory I PC + 1 PC + Low Address f--------I 2 High Address Operand I 1 Byte Immediate Addressing PC PC+ 1 Automatic Increment Addressing The opcode specifies a register pair that contains the memory address of the operand. The contents of the register pair are automatically incremented to point to a new operand. This mode provides automatic sequential stepping when working with a table of operands. rp Immediate Extended Addressing PC PC+ 1 PC+2 Opcode Low Operand High Operand Memory ~~----------~'~~-----~~----__'Ioperandi B L...-....-_ 4-15 NEe pPD78C05~/06A Clock Driver Circuit Instructions The 6.25-MHz master timing signal is from an external oscillator connected to pin X1 or from an internal oscillator controlled by an external 6.25-MHz crystal connected to pins X1 and X2 (figure 5). Dividing fosc by four creates the internal CPU clock (f4> = 1.5625 MHz). A system clock is available for external use at the ¢OUT pin. Its frequency is 1.5625 MHz (6.25/4) or 0.78125 MHz (6.2S/8) for 78C05A and 78C06A, respectively. Figure 5. External 6.25-MHz Crystal X1 16.25 ric> T 1 pPD7BC05A106A MHz C2 X2 Crystal speclflcallons AT cut lose = 6.25 MHz R=50n CL = 16 ±0.2 pF P = 1.0 ±0.2 mW Instruction Set Definitions Description Operand A, B,C, D, E,H,L r1 B, C, D, E, H, L r2 A, B, C sr PA, PB, PC, MK, MB, TMO, TM1, S, SM, SC sr1 PA, PB, PC, MK, S, TMO, TM1, SC sr2 PA, PB, PC, MK rp SP, B,D,H rp1 rpa B,D,H wa a-bit immediate data used to access working register area B, D, H, D+, H+, D-, H- word 16-bit immediate data byte 8-bit immediate data bit 1-bit immediate data if FO, F1, FT, FS F CY,Z fa 10-bit immediate data used to access fixed area in locations 0-2047 ta 5-bit immediate data used to access table in locations 128-191 Capacitor specifications C1, C2 = 5to 20 pF [Including stray capacitance] IC1-C21 :510pF Number of bytes in an instruction 83-002772A Note: (1) When special register operands sr, sr1, sr2 are used, PA = port A, PB = port B, PC = port C, MK = mask register, MB = mode B register, SM = serial mode register, SC = standby control register, TMo = timer register 0, TM1 = timer register 1, S = serial register. (2) When register pair operands rp, rp1 are used, SP = stack pointer, B = BC, D = DE, H = HL. (3) Operands rpa, rp1, wa are used in indirect addressing and auto-incrementlauto-decrement addressing modes. B = (BC), D=(DE), H=(HL), D+=(DE)+, H+=(HL)+, D-=(DE)-,and H-= (HL)-. (4) When the interrupt operand "if" is used, FO = INTFO, F1 = INTF1, FT = INTFT, FS = INTFS. (5) When the operand F is used, CY = Carry and Z = Zero. (6) The V register is always FFH. 4-16 NEe jlPD78C05A/06A Instruction Set Mnemonic Operand Bytes *Clocks Skip Condition Operation Flags CY Z 8·8it Data Transfer MOV r1,A 4/6 (r1) +- (A) MOV A,r1 4/6 (A) +- (r1) MOV sr,A 2 10114 (sr) +- (A) MOV A,sr1 2 10/14 (A) +- (sr1) MOV r,word 4 17/25 (r) +- (word) MOV word,r 4 17125 (word) +- (r) 2 MV1 r,byte 7/11 (r) +- (byte) STAW wa 10/14 (FFH,wa) +- (A) LDAW wa 10/14 STAX rpa 7/9 ((rpa))+- (A) LDAX rpa 7/9 (A) +- ((rpa)) (A) +- (FFH,wa) 16·8it Data Transfer SBeD word 20/28 (word) +- (e), (word + 1) SDED word 20/28 (word) +- (E), (word + 1) +- (D) SHLD word 20/28 (word) +- (L), (word + 1) +- (H) SSPD word 20/28 (word) -- (SPLl, ((word) + 1) - (SPH) LBeD word 20/28 (e) +- (word), (B) - +- (B) II (word + 1) LDED word 20/28 (E) +- (word), (D) +- (word + 1) LHLD word 20/28 (L) +- (word), (H) - LSPD word 20/28 (SP1) +- (word) POP rp1 14/18 (rp1L) +- ((SP)) (rp1H) +- ((SP) + 1), (SP) +- (SP) + 2 LXI rp,word 10/16 (rp) - 8/12 (A)-(A)+(r) (word + 1) word Arithmetic ADD A,r ADDX rpa ADe A,r ADeX SUB 2 11/15 (A) - (A) + ((rpa)) 2 8/12 (A) - (A) + (r) + (ey) rpa 2 11/15 (A) - (A) + ((rpa)) + (ey) A,r 2 8/12 (A)-(A)-(r) SUBX rpa 2 11/15 (A) - (A) - ((rpa)) SBB A,r 2 8/12 (A) - (A) - (r) - (ey) SBBX rpa 2 11/15 (A) - (A) - ((rpa)) - (ey) ADDNe A,r 2 8/12 (A)-(A)-(r) No carry ADDNeX rpa 2 11/15 (A) - No carry SUBNB A,r 2 8/12 (A)-(A)-(r) No borrow SUBNBX rpa 2 11/15 (A) - No borrow (A) - ((rpa)) (A) - (rpa) 4-17 NEe pPD78COSA/06A Instruction Set (cont) Mnemonic Operand Bytes Operation *Clocks Skip Condition Logical (A)--(A)A(r) ANA A,r 2 8/12 ANAX rpa 2 11/15 (A) -- (A) A ((rpa)) ORA A,r 2 8/12 (A)--(A)V(r) (A) -- (A) V ((rpa)) ORAX rpa 2 11/15 XRA A,r 2 8/12 (A) -- fA) V (r) XRAX rpa 2 12/15 (A) -- (A) V ((rpa)) GTA A,r 2 8/12 (A)-(r)-l No borrow GTAX rpa 2 11/15 (A) - ((rpa))-l No borrow LTA A,r 2 8/12 (A)- (r) LTAX rpa 2 11/15 (A) -((rpa)) Borrow ONAX rpa 2 8/12 (A) A ((rpa)) No zero OFFAX rpa 2 11/15 (A) A ((rpa)) NEA A,r 2 8/12 (A)-(r) No zero No zero Borrow Zero NEAX rpa 2 11/15 (A) - ((rpa)) EQA A,r 2 8/12 (A)-(r) Zero EQAX rpa 2 11/15 (A) - ((rpa)) Zero 7/11 (A) -- (A) V byte 7/11 (A) Immediate Data Transfer (Accumulator) XRI A,byte ADINe - A,byte 2 SUINB A,byte 2 7/11 (A) -- (A) - byte ADI A,byte 2 7/11 (A) -- (A) ACI A,byte 7/11 (A) -- (A) SUI A, byte 7/11 (A) -- (A) - byte SBI A,byte ANI A,byte ORI 2 +-'- (A) - byte No carry No borrow + byte + byte+ (CY) 7/11 (A) -- (A) - byte -(CY) 2 7/11 (A) -- (A) A byte A,byte 2 7/11 (A) -- (A) V byte GTI A,byte 2 7/11 (A) - byte-l No borrow LTI A,byte 2 7/11 (A) - byte Borrow ONI A,byte 2 7/11 (A) A byte No zero OFFI A,byte 2 7/11 (A) A byte Zero NEI A,byte 2 7/11 (A) - byte No zero EQI A,byte 2 7/11 (A) - byte Zero Immediate Data Transfer (Special Register) ANI sr2,byte 3 17/23 (sr2) -- (sr2) A byte ORI sr2,byte 3 17/23 (sr2) -- (sr2) V byte OFFI sr2,byte 3 14/20 (sr2) A byte Zero ONI sr2,byte 3 14/20 (sr2) A byte No zero 4-18 Flags CY Z NEe pPD78C05A/06A Instruction Set (cont) Mnemonic Skip Condition Operand Bytes *Clocks Operation ANIW wa,byte 3 16/22 (FFH, wa) +- (FFH, wa) A byte ORIW wa,byte 3 16/22 (FFH, wa) +- (FFH, wa) V byte GTIW wa,byte 3 13/19 (FFH, wa) - byte - 1 No borrow LTIW wa,byte 3 13/19 (FFH, wa) - byte Borrow ONIW wa,byte 3 13/19 (FFH, wa) A byte No zero OFFIW wa,byte 3 13/19 (FFH, wa) A byte Zero NEIW wa,byte 3 13/19 (FFH, wa) - byte No zero EQIW wa,byte 3 13/19 (FFH, wa) - byte Zero Flags CY Z Working Register Increment/Decrement (r2) +- (r2) +1 INR r2 4/6 INRW wa 13/17 DCR DCRW r2 wa 4/6 13/17 INX rp 7/9 (rp)+-(rp) DCX rp 7/9 (rp)+-(rp) - 1 DAA 4/6 Decimal adjust accumulator STC 8/12 (CY) +-1 1 CLC 8/12 (CY) +- 0 0 RLD 17/21 Rotate left digit RRD 17/21 Rotate right digit RAL 8/12 (A m+1) +- (Am), (AO) +- (CY), (CY) +- (A7) RAR 8/12 (A m-1) +- (Am), (A7) +- (CY), (CY) +- (Ao) (FFH, wa) +- (FFH, wa) (r2) +- (r2) - 1 Carry +1 (FFH, wa) +- (FFH, wa)-1 Carry Borrow Borrow +1 E Miscellaneous Rotate and Shift Jump JMP word 10/16 JB 4/6 JR word JRE word 2 (PC) +- word (PCH) +- (B), (PCl) +- (C) 10/12 (PC) +- (PC) 13/17 (PC) +- (PC) + 1 + jdisp1 + 2 + jdisp 4-19 NEe J.IPD78C05A/06A Instruction Set Mnemonic Operand Bytes *Clocks 3 16/22 ((SP) - 1) -- ((PC) + 3)H, ((SP) ~ 2) -- ((PC) + 3)l, (PC) -- word Skip Condition Operation Call CALL word CALF word 13/17 ((SP) - 1) - ((PC) + 2)H, ((SP) - 2) - ((PC) + 2)l, (PC1S-PC11) - 00001, (PC lO -PCO) -fa CALT word 19/21 ((SP) -1) - ((PC) + 1)H, ((SP) - 2) - ((PC) + 1lL, (PCl) - (128 + 2ta), (PCH) - (129 + 2ta) 10/12 (PCl) - ((SP)), (PCH) - ((SP) +1), (SP) - (SP) + 2 RETS 10+n/12+n (PCLl ~ ((SP)), (PCH) - ((SP) +1), (SP) - (SP) +2, (PC) - (PC) +n RETI 13/15 (PCLl - ((SP)), (PCH) - ((SP) +1), (PSW) -- ((SP) +2), (SP) - (SP) +3 Return RET Skip SKNC SKNZ 2 2 8/12 8/12 Skip if no carry Skip if co zero Cy= 0 Z=O SKNIT 2 8/12 Skip if no INT X otherwise reset INT X f=O NOP 1 4/6 No operation EI 2 8/12 Enable interrupt DI 2 8/12 Disable interrupt 4/6 4/6 Start (trigger) serial 1/0 start timer CPU Control Serial Port Control SIO STM Port EControl PEX 2 11/15 (PE1S-PES) - (B), (PE7-PEO) - (C) PER 2 8/12 Port E AB mode 4-20 Flags CY Z NEe pPD78C05A/06A Program Status Word (PSW) Operation Operation Reg. Memory Immediate Skip ADD ADC SUB SBB ADDX ADCX SUBX SBBX AD! ACI SUI SBI ANA ORA XRA ANAX ORAX XRAX ANI ORI XRI ADDNC SUBNB GTA LTA ADDNCX SUBNBX GTAX LTAX ADINC SUINB GTI LTI GTlW LTIW ONAX OFFAX ONI OFFI ONIW OFFIW NEA EQA NEAX EQAX NEI EQI NEIW EQIW INR DCR INRW DCRW 06 °5 Z SK °4 HC 0 ANIW ORIW 0 D3 L1 °2 LO 00 CY 0 • • 0 • 0 0 0 DAA • • RLL,RLR RLD-RRD • • STC CLC MVI A, byte MVI L, byte LXI H, word SKNC SKNZ SKNIT RETS All other instructions • • • • • • 0 0 0 0 0 0 0 1 0 • • • • • • • • • • 0 0 • 0 0 0 0 • 0 • • 0 0 • • Flag Symbols: t 1 0 • Flag Flag Flag Flag affected according to result of operation. set reset not affected. 4-21 I] J.lPD78C05A/06A 4-22 NEe NEe NEe Electronics Inc. pPD7S07/0S/09 HIGH-END, S-BIT, SINGLE-CHIP NMOS MICROCOMPUTERS WITH COMPARATOR AND SK ROM PRELIMINARY INFORMATION Description Pin Configuration The pPD7807/pPD7808/j1PD7809 single chip microcomputer augments the high-end NEG family of 8-bit microcomputers with on-chip peripheral functions. Like the j1PD7811, the device has a fast internal 16-bit ALU and data paths, 256 bytes of RAM, a multifunctional 16-bit timer/event counter, two 8-bit timers, a USART, and two zero-cross detect inputs. Other features are 8K ROM (4K ROM for the j1PD7808), a programmable threshold comparator (8 inputs), a programmable WAIT function, a watchdog timer, hold and hold acknowledge for DMA interfaces, and bit test/write instructions for both RAM and I/O. The pPD7809 and pPD7808 are mask-ROM versions with your program on chip. The j1PD7807 is the ROMless version for prototyping and small volume applications. Features o o o o o o o o o o o o o o o o NMOS silicon gate technology requiring +5 V power supply Complete single-chip microcomputer -16-bit ALU -8K ROM (4K ROM for the j1PD7808) -256-byte RAM Large I/O capability -40 I/O port lines (J1PD7809 and j1PD7808) -28 110 port lines (j1PD7807) -8 input lines Two zero-cross detect inputs Expansion capabilities (64K memory access total) -8085A bus compatible -56K-byte external memory address range (60K for the j1PD7808) Programmable threshold comparator -8 inputs, 1 of 16 software selectable levels Full duplex USART -Synchronous and asynchronous 165 instructions -16-bit arithmetic, multiply and divide 1 j1S instruction cycle time Prioritized interrupt structure -3 external -8 internal Hold, hold acknowledge for DMA interface Programmable WAIT function Watchdog timer Standby function On-chip clock generator 64-pin plastic straight or bent lead QUIP or plastic shrink DIP IJ HLDA NMI INT1 MODEl RESET MODEO 49-000477A Ordering Information Part Number Package Type Max Freq. of Operation JlPD7807G-36 JlPD7808G-36 JlPD7809G-36 64-Pin plastic QUIP 12 MHz JlPD7807CW JlPD7808CW JlPD7809CW 64-Pin plastic shrink DIP 12 MHz 4-23 NEe pPD7807/08/09 Pin Identification No. Symbol PCO·PC7 [Port C] Function 1-8 PAo-PA7 PortA I/O 9-16 PBO-PB7 Port B I/O 17 PCO/TxO Port C I/O line O/Transmit data output 18 PC1/RxO Port C I/O line 1/Receive data input 19 PC2/SCK Port C I/O line 2/Serial clock I/O 20 ~TI/ NT2 Port C I/O line 3/Timer input/Interrupt request 2 input 21 PC4/TO Port C I/O line 4/Timer output 22 PCs/CI Port C I/O line 5/Counter input 23,24 PC6, PC7/ COo' C01 Port C I/O lines 6, 7/Counter outputs 0,1 25 NMI Nonmaskable interrupt input 26 INT1 Interrupt request 1 input . Mode 1 input/memory cycle 1 output 27 MOOE1/M1 28 RESET Reset input 29 MOOEO/ iO/M Mode 0 input/I/O/memory output 30,31 Port C is an 8-bit three-state port. Each bit is independently programmable as either input or output. Alternatively, the lines of port C can be used as control lines for the USART and timer. Reset puts all lines of port C in port mode; input. TxD [Transmit Data]. Serial data output terminal. RxD [Receive Data]. Serial data input terminal. SCK [Serial Clock]. Output for the serial clock when internal clock is used. Input for serial clock when external clock is used. TI [Timer Input]. Timer input terminal. INT2 [Interrupt Request 2]. Falling-edge-triggered. maskable interrupt input terminal and AC-input. zerocross detection terminal. TO [Timer Output]. The output of TO is a square wave with a frequency determined by the timer. CI [Counter Input]. External pulse input to timer/event counter. COo, C01 [Counter Outputs 0, 1]. Programmable rectangular wave outputs based on timer/event counter. X2, X1 Crystal connections 1, 2 32 Vss Ground 33 VRTH Port T threshold voltage input 34-41 PTo-PT7 Port T variable threshold input port PDO·P07 [Port 0] 42 HOLD Hold request input 43 HLDA Hold acknowledge output Port 0 is an 8-bit three-state port. It can be programmed as either 8 bits of input or 8 bits of output. When external expansion memory is used, port 0 acts as the multiplexed address/data bus. 44 AD Read strobe output 45 WR Write strobe output 46 ALE Address latch enable output 47-54 PFO-PF7 Port F I/O 55-62 POO-P07 Port 0 110 63 VDD RAM backup power supply 64 Vee 5 V power supply Pin Functions PAo·PA7 [Port A] Port A is an 8-bit three-state port. Each bit is independently programmable as either input or output. Reset makes all lines of port A inputs. PBo·PB7 [Port B] Port B is an 8-bit three-state port. Each bit is independently programmable as either input or output. Reset makes all lines of port B inputs. 4-24 PFo·PF7 [Port F] Port F is an a-bit three-state port. Each bit is independently programmable as an input or output. When external expansion memory is used, port F outputs the high-order address bits. PTo·PT7 [Port T] Port T is made up of a variable threshold inputs. The input of each line is compared to a threshold voltage. VRTH [Variable Threshold Reference Voltage] VRTH is the reference voltage that the port T threshold voltage is derived from. NMI [Nonmaskable Interrupt] Falling-edge-triggered nonmaskable interrupt input. t-IEC pPD7S07/0S/09 INT1 [Interrupt Request 1] Voo [Backup Power] INT1 is a rising-edge-triggered, maskable interrupt input. It is also an AC-input, zero-cross detection terminal. Backup power for on-chip RAM. RESET [Reset] When the RESET input is brought low, it initializes the PD7807/08/09. MODE1, MODEO [Mode 1, 0] The MODE1 and MODEO inputs select the memory expansion mode. MODE1 also outputs the M1 signal during each opcode fetch. MODEO outputs the 101M signal. HOLD [Hold Request] When the HOLD input is high, the CPU is put in a hold state until HOLD is brought low. HLDA [Hold Acknowledge] The CPU brings the HLDA output high when it is in the hold state, and low when the hold is released. RD [Read Strobe] The RD output goes low to gate data from external devices onto the data bus. RD goes high during reset. Three-state. WR [Write Strobe] The WR output goes low to indicate that the data bus holds valid data. It is a strobe signal for external memory or I/O write operations. WR goes high during reset. Three-state. ALE [Address Latch Enable] Vee [Power Supply] +5 V power supply. Input/Output ThepPD7S07/0S/09 has S comparator input lines (port T) and 40 digital I/O lines; five S-bit ports (port A, port B, port C, port D, port F). Comparator Input Lines. PTo-PT7 are configured as variable threshold comparator input lines. Port A, Port B, Port C, Port F. Each line of these ports can be individually programmed as an input or output. When used as I/O ports, all have latched outputs and high-impedance inputs. Port D. Port D can be programmed as a byte input or a byte output. Control Lines. Under software control, each line of port C can be configured individually to provide control lines for the serial interface, timer, and timer/counter. Memory Expansion. In addition to the single-chip operation mode, the pPD7S09 has four memory expansion modes. Under software control, port 0 can provide a multiplexed low-order address and data bus; port F can provide a high-order address bus. Table 1 shows the relation between memory expansion modes and the pin configurations of port 0 and port F. Table 1. Memory Expansion Modes and Port Configurations Memory Expansion Port Configuration None The ALE output latches the address signal to the output of PDo-PD7. Port D Port F I/O port 110 port 256 Bytes Port D Port F Multiplexed addressldata bus 110 port X1, X2 [Crystal Connections 1,2] 4K Bytes Port D Port Fo-F3 Port F4-F7 Multiplexed addressldata bus Address bus 110 port 16K Bytes Port D Port Fo-Fs Port Fs-F7 Multiplexed addressldata bus Address bus 110 port 56K Bytes Port D Port F Multiplexed addressldata bus Address bus X1 and X2 are the system clock crystal oscillator terminals. X1 is the input for an external clock. Vss [Ground] Ground potential. 4-25 NEe pPD7807/08/09 Block Diagram Xl=EJ Osc. X2 PF7 -PF o (AB'5- AB .) PCo/TxD Inc./Dec. PC,/RxD PC SF EA PC,tSCK 13 V A B C 0 16 Main G.R. H INT1 EA' V' B' PD7 -PDo (AD7 -AD o) Program Memory A' C' Alt. G.R. ",PD7809 BK-bytes Data Memory (256-byte) E' PC 7 -PC o PC 3 /TI/INT2 PCs/CI PCs/COO PB 7 -PB o PC,/COl PT 7 -PT o PA7 -PA o VRTH Notes: The pPD7B07 has no on chip ROM. HOLD HLDA ALE MODE 1 J I MODE 0 L Voo RESET II 49'000554C Timers Timer/Event Counter The timers consist of two 8-bit timers: The timers may be programmed independently or may be cascaded and used as a 16-bit timer. The timer can be software set to increment at intervals of four machine cycles (1 /1S at 12 MHz operation) or 128 machine cycles (32/1s at 12 MHz), or to increment on receipt of a pulse at TI. Figure 1 shows the block diagram for the timer. The 16-bit multifunctional timer/event counter (figure 2) can be used for the following operations: • Interval timer • External event counter • Frequency measurement • Pulse width measurement • Programmable square-wave output 4-26 ttfEC Figure 1. pPD7S07/0S/09 Timer Block Diagram ,------ Timer 0 ,---------, Timer 1 PC 3 iT1 I I I I ---, Timer/Event Counter I I Watchdog Timer Serial Interface Clear I I I I I I I I I I I I I I I I I I I I I I L __ _ _ INTTa INTT, I _ _ ...J Internal Bus Notes: 1 CL = 311 (250n5: 12MHz operation). I: System clock lrequency (MHz). 49·0005906 Interrupt Structure Table 2. There are 11 interrupt sources. Three are external interrupts and eight are internal. The following, table 2, shows 11 interrupt sources divided into six priority levels. See figure 3. Interrupt Request IRQO IRQ1 Interrupt Sources Interrupt Address 4 8 Standby Function The standby function saves the top 32 bytes of RAM with backup power (Voo) if the main power (Vee) fails. On power up, you can check the standby flag to determine whether recovery was made from standby mode or from a cold start. Type of Interrupt Internal/ External NMI (Nonmaskable interrupt) Ext INTWD (Watchdog timer) Int INTTO (Coincidence signal from timer 0) Int INTT1 (Coincidence signal from timer 1) IRQ2 16 INT1 (Maskable interrupt) Ext INT2 (Maskable interrupt) IRQ3 24 INTEO (Coincidence signal from timer/event counter) Int INTE1 (Coincidence signal from timer/event counter) IRQ4 32 IRQ5 40 INTEIN (Falling signal of CI and TO counter) Int/Ext INTSR (Serial receive interrupt) Int INST (Serial send interrupt) 4-27 NEe pPD7807/08/09 Figure 2. Timer/Event Counter Block Diagram CPO CP1--t---I Output Control EIN PC.,IC01 INT1 4CL PCs/CI ----+--+------1 o--_~-1-----+____f TO CPO INTEO Interrupt Control INTE1 INTEIN t-----------------+------Notes: 1 CL = 3/1 [250 ns: 12 MHz operation}. f: System clock frequency [MHz}. Figure 3. NMI INTTO INm INTI INT2 INTEO INTE1 INTEIN INTWD INTSR INTST Interrupt Structure Block Diagram EIN 49·000553C Figure 4. Universal Ser/a/lnterface B/ock Diagram PC,/RxD OV ER S8 SK2 SK1 PCo/TxD 49·000591 A 4-28 NEe Universal Serial Interface The serial interface can operate in one of three modes: synchronous, asynchronous, and I/O interface. The I/O interface mode transfers data MSB first, for easy interfacing to certain NEG peripheral devices. Synchronous and asynchronous modes transfer data LSB first. Synchronous operation offers two modes of data reception: search and nonsearch. In the search mode, data is transferred one bit at a time from the serial register to the receive buffer. This allows a software search for a sync character. In the nonsearch mode, data transfer from the serial register to the transmit buffer occurs eight bits at a time. In asynchronous mode, the serial interface can act as a fullduplex USART with data transfer rates up to 125K bps. Figure 4 shows the universal serial interface block diagram. Zero-Crossing Detector The INT1 and INT2 terminals (used common to TI and PC3) can detect the zero-crossing point of lowfrequency AC signals. When driven directly, these pins respond as a normal digital input. Figure 5 shows the zero-crossing detection circuitry. The zero-crossing detection capability allows you to make the 50-60 Hz power signal the basis for system timing and to control voltage phase sensitive devices. To use the zero-cross detection mode, an AC signal of approximately 1-3 V AC (peak-to-peak) and a maximum frequency of 1 kHz is coupled through an external capacitor to the INT1 and INT2 pins. jlPD7S07/0S/09 Figure 5. Zero-Crossing Detection Circuitry IINT1 C IINT2 (PC3) ----l f------<)---'--_--~ >0------1>0-- 83-00383SA Figure 6. Threshold Variable Input Port PToo--------~ PT,o--------+--n... PT2 o--------+--n... PT3 o--------+--n-... II PT. C>--------+--Qo,. PTsC>--------+--n-... PT6 C>--------+-O-" PT7o--------+~ For the INT1 pin, the internal digital state is sensed as a the rising edge crosses the average DC level, when it becomes a 1 and INT1 interrupt is generated. o until For the INT2 pin, the state is sensed as a 1 until the falling edge crosses the average DC level, when it becomes a 0 and INT2 interrupt is generated. 49-000594A Variable Threshold Input Port [Port T] Port T has the following features: • 8 input lines • 16 threshold levels from 1/16 to 16/16 of reference voltage (VRTH) • Level selected by writing to mode T register (figure 7) • Output of comparator reads 0 until voltage at pin exceeds selected level • Comparison execution time: 12 flS Figure 6 shows the block diagram for the threshold variable input port. Figure 7 shows the mode T register format. 4-29 NEe pPD7807/08/09 Figure 7. 7 6 Watchdog Timer Mode T Register Format 5 4 3 r-I-T -1-1 MT31 MT2 MT,I MTal Specification of 16 Threshold Levels 0 0 0 0 0 0 0 1 VTHX 0 0 1 0 VTHX'!-\. 0 0 1 1 VTH X 0 1 0 0 V TH X'Y1. 0 1 0 1 VTH X 0 1 1 0 VTH X 0 1 1 1 VTH XY16 1 0 0 0 V TH Xo/,. 1 0 0 1 V TH X 'Yi. 1 0 1 0 VTH X'cv,6 1 0 1 1 VTH x'Y,6 1 1 0 0 VTH X 1 1 0 1 VTH X':Y'6 1 1 1 0 V TH X '0/1. 1 1 1 1 VTHX '0/,6 VTHx'o/i. Use the watchdog timer for software or overall performance safety checks. If the watchdog is enabled, it must be cleared at regular intervals in program execution to avoid watchdog interrupts. Intervals are software selectable via the WDM register. Figure a shows the block diagram for the watchdog timer. Y16 Bit Address Instructions ¥,. The following bits may be addressed directly with certain instructions: '¥,. 0/,. • Any bit in the first 16 bytes of memory addressed by the V register • Any bit in the five a-bit I/O ports (A, B, C, D, F) • Any bit in the comparator port • Any bit in the following special registers: interrupt mask, serial mode high, timer mode, timer/event counter output control. '0/,. An addressed bit may be tested, set, cleared, orcomplemented. It also may be moved to or from the carry flag. An addressed bit may be ANDed, ORed, and XORed with the carry flag. 49-ooo595A Figure 8. Watchdog Timer Block Diagram INTWD Interval Control WDS --+---+-----fS Q~------------------------------------~ RESET-----~---fR Notes: 1 CL = 311 [250 ns: 12 MHz operation]. f: System clock frequency [MHz]. 49-0005938 4-30 NEe pPD7S07/0S/09 Absolute Maximum Ratings DC Characteristics ----------------------------- TA = -1Q°Cto +70°C; Vee = +5.0V ±10%; Vss=OV; Vee -O.B v'S. Voo 'S. Vee; TA = -40°C to +B5°C (J,tPD7BOB) Voo -0.5 V to +7.0 V AVee -0.5 V to +7.0 V Parameter Symbol Input low voltage V,L 0 O.B V Input high voltage V,H1 2.0 Vee V V,H2 O.B Vee Vee V SCK,X1 V,H3 O.B VOO Vee V RESET 0.45 V IOL = 2.0 mA V IOH = -200pA Power supply voltages, Vee -0.5 V to +7.0 V Input voltage, V, -0.5 V to +7.0 V Output voltage, Vo -0.5 V to +7.0 V Reference input threshold voltage, VRTH -0.5 V to Vee +0.1V Operating temperature, TOPR 10 MHz'S. fXTAL 'S.12 MHz Limits fXTAL'S. 10 MHz (fJPD7B07/09) -40°C to +B5°C fXTAL'S. 10 MHz (fJPD7B08 only) Storage temperature, TSTG (fJPD7B07/09) -40°C to +125 °C Storage temperature, (fJPD7BOB only) Comment: Exposing the device to stresses above those listed in Absolute Maximum Ratings could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational sections of this specification. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Operating Conditions Oscillating Frequency Vee. AVec Output low voltage VOL Output high voltage VOH Typ Min Max Unit 2.4 I nput current Test Conditions All except SCK, RESET, and X1 ±200 pA INT1, TI(PC3); + 0.45 V 'S. V,N 'S. Vee III ±10 pA All except INT1, TI(PC3) oV 'S.V,N 'S. Vee Output leakage ILO current ±10 pA +0.45 V 'S. Vo 'S. Vee Input leakage current VRTH input current IRTH 0.2(1) 0.6 mA VRTH = Vee +5.0 V ± 10% Voo supply current 100 1.5(1) 3.5 mA +5.0 V ± 10% Vee supply current lee 150(1) 220 mA 10 MHz'S. fXTAL 'S. 12 MHz +5.0 V ±5% fXTAL'S. 10 MHz (fJPD7B07/09) fXTAL'S. 10 MHz (fJPD7BOB) Note: Capacitance (1) TA = 25°C: Vee = Voo = +5.0 V Limits Parameter Symbol Min Typ Max Unit Test Conditions Capacitance C, 10 Output capacitance Co 20 pF Afe = 1 MHz. pF Unmeasured I/O capacitance CIQ 20 pin returned pF to 0 V. Hold Operation TA =-1Q°C to +70°C; Vee = +5.0V ±10%; Vss= 0 v; Vee -O.B v'S. Voo 'S. Vee; TA = -40°C to +B5°C (J,tPD7B08) Limits Parameter Symbol Min HOLD t setup time to ALE t tSHOL 2T + 150 ALE t to HLDA t delay tOLHA HLDA t to bus floating tFBHA HOLD! to HLDA ! delay tHOOA HLDA ! to bus enable time tEHAB Bus setup time tBL to ALE Typ Max Unit Test Conditions ns T+ 150 ns ns T - 50 4T + 150 ns ns 2T 100 ns 4-31 E NEe pPD7807/08/09 Comparator Characterisctics Data Retention Characteristics TA = -10°C to +70°C; Vee = +5.0 V±10%; Vss =OV; Vee '-:O.S VS Voo S Vee; TA = -40°C to +S5°C (pPD7S0S) TA = -10°C to +70°C: Vee = 0 v, VOO = VOOOR: TA = -40°C to Limits Parameter Symbol Comparison accuracy VACOMP Threshold voltage Comparison time Min VTH 0 tCOMP 144 VIPT 0 PT input voltage Typ +S5°C (pPD7S0S) Limits Test Max Unit Conditions Parameter Symbol Min ±100 mV Data retention voltage VOOOR 3.2 V Data retention supply current IOOOR VCC Typ 1.3 Max Unit Test Conditions 5.5 V RESET = VIL 3.0 rnA RESET = VIL VOOOR = 3.2 V 145 tCYC VCC V External Clock TA =-10°Cto +70°C; Vee = +5.0 V±10%; Vss=OV; Vee -O.S VS VOD:S Vee: TA = -40°C to +S5°C (pPD7S0S) Limits Parameter Symbol Min Typ Test Max Unit Conditions High level width t<1>H 30 250 Low level width t<1>L 30 250 ns Rising time tr 0 30 ns Falling time tl 0 30 ns ns AC Characteristics = 0 v, Vee -o.s V S VOO S Vee; See Operating Conditions table Vss Limits 'XTAL == 10 MHz Parameter Symbol Min Max 'XTAL = 12 MHz Min Max Unit Test Conditions (1) Read/Write Operation RESET pulse width tRP 6.0 5.0 Interrupt pulse width tiP 3.6 3.0 Counter input pulse width tCI 600 500 tCI 4.8 4.0 Timer input pulse width tTl 600 500 X1 Input cycle time tCYC 100 tAL 100 Address set-up to ALE l Address hold after ALE Address to RD RD l l delay time l to address floating Address to data input Note: (1) Load capacitance: CL = 150 pF. 4-32 250 83 I-lS ns Event counter mode Pulse width measurement mode ns 250 65 ns ns tLA 70 50 ns tAR 200 150 ns tAFR 20 20 ns tAO 480 360 ns NEe j1PD7S07/0S/09 AC Characteristics (cont) Vss = 0 v, Vee -0.8 V :5 VDD :5 Vee; See Operating Conditions table Limits Parameter Symbol 'XTAl = 10 MHz 'XTAl = 12 MHz Min Min Max Max Unit Test Conditions (1) Read/Write Operation ALE ~ to data input tLDR 300 215 ns RD ~ to data input tRO 250 180 ns ALE ~ to RD ~ delay time tLR 50 35 ns tROH 0 0 ns Data hold time to RD RD t t to ALE t delay time RD width low tRL 150 115 ns tRR 350 280 ns Data read 650 530 ns Opcode fetch ALE width high tLL 160 125 ns M1 setup time to ALE ~ tML 100 65 ns M1 hold time from ALE ~ tLM 70 50 ns 101M setup time to ALE ~ tiL 100 65 ns 101M hold time from ALE ~ tLi 70 50 ns Address to WR ~ delay tAW 200 150 ns ALE ~ to data output tLOW 210 195 WR ~ to data output two 100 100 ALE ~ to WR ~ delay tLW 50 35 tow 300 230 ns tWOH 130 95 ns Data set-up time to WR Data hold time to WR WR t t t to ALE t delay time WR width low E ns ns ns tWL 150 115 ns tww 350 280 ns Note: (1) Load capacitance: CL = 150 pF. 4-33 NEe pPD7S07/0S/09 Serial Operation See Operating Conditions table Limits Parameter Symbol SCK cycle time fXTAL = 10 MHz fXTAL = 12 MHz Min Min Max 500 SCK width low SCK width high SCK input (4) ns SCK input (5) 2.4 2 ps SCK output 500(6) 400(7) ns SCK input(4) 200 200 ns SCK input (5) 1100 900 ns SCK output 500(6) 400(7) ns SCK input (4) 200 200 ns SCK input (5) 1100 900 ns SCK output 80 80 ns (4) ns (4) ns (4) t RxD hold time after SCK t RxD set-up time to SCK SCK ps 500 1.2 tCYK Test Conditions Unit Max 80 80 l TxD delay time 210 210 Note: (4) 1x Baud rate in Asynchronous, Synchronous, or I/O Interface mode. (5) 16x Baud rate or 64x Baud rate in Asynchronous mode. (6) 505 ns min for pPD7808 only. (7) 420 ns min for pPD7808 only. Zero-Cross Characteristics Limits Parameter Symbol Min Typ Max Zero-cross detection input Vzx 3(8) Zero-cross accuracy AZX ±135 Zero-cross detection input frequency fZX Note: (8) 1.8 VAC p _p max for pPD7808 only. 4-34 0.05 Unit Test Conditions mV 60 Hz sine wave AC coupled kHz NEe pPD7S07/0S/09 Bus Timing Depending on tCYC (cont) Bus Timing Depending on tCYC Symbol Calculating Expression MinIMax Calculating Expression Symbol MinIMax tAW 3T -100 Min Min tLOW T + 110 Max Min tLW T - 50 Min 48T Min tow 4T -100(4) Min tIP 36T Min tWOH 2T -70 Min tAL 2T -100 Min tWL 2T -50 Min tLA T -30 Min tww 4T - 50(4) Min tAR 3T -100 Min tCYK tAO 7T - 220(4) Max tRP 60T Min tTl 6T tCI(2) 6T tCI(3) tLOR 5T - 200(4) Max tRO 4T -150(4) Max tLR T -50 Min tRL 2T -50 Min 4T - 50 (Data Read)(4) Min tRR -.. -......... _----- .. __ . __ ._----_.--- ... _---------------- 2T -40 Min tML 2T -100 Min tLM T -30 Min tiL 2T -100 Min tLi T -30 Min Min tKKL 6T -100 (SCK input)(1)(5) ----------._-------------------------------12T - 100 (SCK output) Min tKKH 6T - 100 (SCK input)(1)(5) --------.----------- --------_ ... _-_._-----------.-._12T - 100 (SCK output) Min Note: (1) 1x Baud rate in asynchronous, synchronous, or I/O interface mode. 7T - 50 (Opcode Fetch)(4) tLL 12T (SCK input)(1) --------.--------------- -------------------------24T (SCK output) (2) (3) (4) (5) T=tCyc= _1_ fXTAL The items not included in this list are independent of oscillator frequency (fXTAd. Event counter mode. Pulse width measurement mode. Add 3Twhen using external program memory with programmable WAIT function. 5T+5 (SCK input)(1) min for JlPD7808 only. Timing Waveforms Read Operation Xl - . J. } - K X ADDRa-ADDRF , lAD .J(IIf/). ADORa ADDR7 ~ILA- I--- f--I LL - - ALE Dala-in 1_ _ ""I: I- tLDR I-tRL II-IAFR I----I AL - ~tROH J - V IRD RD I-ILR Ill. IRR IAR MODEO [iO/M] [Nolet] ~ I'L- ~IL~-I Noles: [1] iO/M signal is oulpullo Ihe MODEO pin during a read or wrile of special regisler[s] Sr-Sr2, if MODEO is pulled up 10 Vee' 49-0005438 4-35 NEe pPD7S07/0S/09 Timing Waveforms (cont) Write Operation T, T2 T3 Xl AB,s-AB.~~--~--------------------------~~~~~----------------------------"--"------- (PF7 -P,F.) ~,'-__,1I=__________-:-_________~----A-D-DR...;.;..--A-DD-R..;.F--------------------------.1 '\__.1'\_______ Data-out I------tow------~ ALE ~-----------tww-----------~ MODED [iO/M) [Note 1) Noles: [1) iO/M signal Is output to the MODED pin during a read or write ofspeclal reglster[s) Sr-Sr2,11 MODED Is pulled up to Vee. 49·0005448 Opcode Fetch Operation Xl AB,s-AB. (PF 7 -PF.) -J ). [( ALE ~ ~ I ROH Opcode ADDR.- ADDR 7 I--tLA - I--tLR "- tAR A ! - - - - tML - 4-36 ~tL:.J M1 81gnalls output to the MODEl pin during opcode letch II MODEl pin is pulled up to Vee. ------- I----tRL ~tRo- RD MOOEl [M'l) [Note 1) ---l t LOR - _tLL - IAL- Notes: (1) - ADDR.-ADDRF tAO tRR -- 'I X NEe pPD7807/08/09 Timing Waveforms (coni) Serial Operation Transmit/Rec/eve Timing TxD RxD ----~---'1~-----------J~------------- -------J1~~--------~t'---------------49·0005468 Hold Operation X1 J I ALE ~."')- IE \ A HOLD t SHDL - - r- HLDA ) ~ PF 7 -PF D PD 7 -PDD AD, iNA t FBHA - - XTAL Oscillation Circuit - - tHDDA - tEHAB 49·0005498 External Clock Timing ~:B~~~l-t"H-l O.BV c tr tF t,bL tCYC 49·000550A c AC Timing Test Points C = 10 pF 2.0V 49·0005528 2.4V 0.4SV =::X:> O.BV 2.0V Test Points 384 I I I I I I I I I I I I I I I L I INTTa INTT, I I __ _ _ I _ _ ..J Internal Bus Notes: 4'3 = (1)12 fXTAL X '13 fXTAL X V2 == 4'384 == tXTAL X V384 f XT AL = System Clock Frequency (MHz) 49-0012178 4-55 t\'EC pPD78P09 Figure 2. Timer/Event Counter Block Diagram INTlo----------I PC,/CI o--+-+----I~ TO INTEO INTEl INTEIN 49-001226C Table 3. Interrupt Request IROO IR01 Interrupt Structure Interrupt Sources Interrupt Address 4 8 Type of Interrupt Internal/ External NMI (Nonmaskable interrupt) Ext INTWD (Watchdog timer) Int INTTO (Coincidence signal from timer 0) Int INTT1 (Coincidence signal from timer 1) IR02 16 INT1 (Maskable interrupt) Ext INT2 (Maskable interrupt) IR03 24 INTEO (Coincidence signal from timer/event counter) Int 32 IR05 40 INTEIN (Falling signal of CI and TO counter) Int/Ext INTSR (Serial receive interrupt) Int INST (Serial send interrupt) 4-56 Standby Function The standby function saves the top 32 bytes of RAM with backup power (Voo) if the main power (Vee) fails. On power up, you can check the standby flag to determine whether recovery was made from standby mode or from a cold start. Universal Serial Interface INTE1 (Coincidence signal from timer/event counter) IR04 There are 11 interrupt sources. Three are external interrupts and eight are internal. Table 3 shows 11 interrupt sources divided into six priority levels. See figure 3. The serial interface can operate in one of three modes: synchronous, asynchronous, and I/O interface. The 1/0 interface mode transfer~ data MSB first, for easy interfacing to certain NEG peripheral devices. Synchronous and asynchronous modes transfer data LSB first. Synchronous operation offers two modes of data reception: search and nonsearch. In the search mode, data is transferred one bit at a time from the NEe serial register to the receive buffer. This allows a software search for a sync character. In the nonsearch mode, data transfer from the serial register to the transmit buffer occurs eight bits at a time. In asynchronous mode, the serial interface can act as a fullduplex USART with data transfer rates up to 125 kb/s. Figure 4 shows the universal serial interface block diagram. Zero-Crossing Detector The INT1 and INT2 terminals (used common to TI and PC3) can detect the zero-crossing point of lowfrequency AC signals. When driven directly, these pins respond as a normal digital input. Figure 5 shows the zero-crossing detection circuitry. The zero-crossing detection capability allows you to make the 50-60 Hz power signal the basis for system timing and to control voltage phase sensitive devices. pPD78P09 Figure 3. Interrupt NMI INTWD INTTO INm INT1 INT2 INTEO INTE1 INTEIN INTSR INTST OV ER S6 Universal Serial Interface Block Diagram Figure 4. To use the zero-cross detection mode, an AC signal of approximately 1-3 V AC (peak-to-peak) and a maximum frequency of 1 kHz is coupled through an external capacitor to the INT1 and INT2 pins. Forthe INT1 pin, the internal digital state is sensed as a o until the rising edge crosses the average DC level, when it becomes a 1 and INT1 interrupt is generated. Pc,/RxD For the INT2 pin, the state is sensed as a 1 until the falling edge crosses the average DC level, when it becomes a 0 and INT2 interrupt is generated. PC 2 /SCKo--+--< I--t-- Variable Threshold Input Port [Port T] PCo/TxDo-----.cn-----------------' Port T has the following features: • 8 input lines • 16 threshold levels from 1/16 to 16/16 of reference voltage (VRTH) • Level selected by writing to mode T register (figure 7) • Output of comparator port bit reads 0 until voltage at pin exceeds selected level • Comparison execution time: 12 /1S SK 2 • SK, Noles: (1)24 = fXTAL X V24 fXTAL X %84 = Crystal Frequency (MHz) H 30 250 ns Low level width tcl>L 30 250 ns Rising time tr 0 30 ns Falling time tf 0 30 ns Test Conditions Symbol Min Data retention voltage VOOOR 3.2 Data retention supply current IOOOR Typ 1.3 Max Unit 5.5 V 3.0 mA t to ALE t delay time WR width low ns tow 230 ns tWOH 95 ns tWL 115 ns tww 280 ns (1) Load capacitance: CL = 150 pF; fXTAL = 12 MHz (figure 10). Figure 10. Data Retention Characteristics Parameter WR tLW 35 Note: External Crystal Connections 10pF TA = -10 to +50°C; Vee = 0 V, VDD = VDDDR limits ns Test Conditions RESET = VIL RESET = VIL VOOOR = 3.2 V ~~+ X1 X2 83-003938A NEe pPD78P09 DC Programming Characteristics Serial Operation TA =25 ±5°C, Vee = 5 V ±10%, Vpp =21 V±0.5 V, Vss =0 V, Vee - 0.8 V ~ VDD ~ Vee Symbol Input voltage low Input voltage high VIL VIH1 Min Min teYK 1.66 ps SCK input (1) V 500 ns SCK input (2) V 2 ps SCK output 750 ns SCK input (1) SCK, X1 200 ns SCK input (2) OV~VI 2.0V Test Points 0.8 V <::C 0.8 V 49-000551A .,-----+_---------:.1.,.....- PD 7 -PD o 7T - 50 (Opcode Fetch) (4) tLL 2T -40 tML 2T -100 Min tLM T -30 Min tiL 2T -100 Min tu T -30 Min tAW 3T -100 Min tLOW T + 110 Max tLw T- 50 Min Instruction Set tow 4T -100 (4) Min tWOH 2T -70 Min In addition to the basic 7800 family instruction set, the pPD78P09 executes the following types of instructions: tWL 2T -50 Min tww 4T - 50 (4) Min 20T (SCK input) (1) Min tCYK -- .. _-_.- ... _-- ... __ ... __ .. -.-. __ ......... _--_ ........... _-- Min 24T (SCK output) tKKL 10T - 80 (SCK input) (1) Min __ • ___ • ______ • • • _ • • __ • • • • __ • • • ____ • • • __ • • • _____ • • • ___ • • - __ 0 . 12T - 100 (SCK output) tKKH 10T - 80 (SCK input) (1) Min ---1-2T-~-100-(SCK-~~t-p~i)----------------- Note: (1) 1x baud rate in asynchronous, synchronous, or 110 interface mode_ T = tCYC = 1 fXTALThe items not inciuded in this ii~t are Ifid6p6iident of csc!!!atcr frequency (fXTAd(2) Event counter mode. (3) Pulse width measurement mode. (4) Add 3T when using external program memory with programmable WAIT function. 4-62 --Programming mode--t----Verify m o d e - - Note (1) MODE 0, MODE 1 = low level, PC 7 (2) External Clock Input = 1 MHz = high level 49'001221A • 16-bit data transfers between memory, registers, and extended accumulator • 16-bit addition and subtraction • 16-bit comparison and skip • 16-bit AND, OR, XOR operation • 16-bit data shift and rotation • Multiply; 8-bit by 8-bit, 16-bit product (less than 8ps execution) • Divide; 16-bit by 8-bit, 16-bit quotient, 8-bit remainder (less than 15 ps execution) • Working register instruction for efficient RAM addressing, testing, and manipulating • Direct bit addressing for code-efficient addressing, testing, and manipulating bits in RAM, port lines, and mode registers. NEe pPD78P09 Operand Format/Description Remarks Format 1. sr-sr5 (special register) Description r r1 r2 V,A,B,C,D,E,H,L EAH,EAL,B,C, D, E,H, L A, B, C sr sr2 sr3 sr4 sr5 PA, PB, PC, PD, PF, MKH, MKL, SMH, SML, EOM, ETMM, TMM, MM, MCC, MA, MB, MC, MF, TxB, TMo, TM1, WDM, MT PA, PB, PC, PD, PF, MKH, MKL, SMH, EOM, TMM, RxB, PT, WDM PA, PB, PC, PD, PF, MKH, MKL, SMH, EOM, TMM ETMo, ETM1 ECNT, ECPTO, ECPT1 PA, PB, PC, PD, PF, MKH, MKL, SMH, EOM, TMM, PT rp rp1 rp2 rp3 SP, B, D, H V, B, D, H, EA SP, B, D, H, EA B, D, H rpa rpa1 rpa2 B, D, H, D +, H +, D -, H B, 0, H B, D, H, D +, H + , D -, H -, D+ byte, H + A, H + B, H + EA, H + byte D, H, D + +, H + +, D + byte, H + A, H + B, H + EA, H + byte sr1 rpa3 wa 8-Bit immediate data word byte bit 16-Bit immediate data 8-Bit immediate data 8-Bit address of bit location NMI, FTO, FT1, F1, F2, FEO, FE1, FEIN, FSR, FST, ER, OV, IFE2, SB Instruction Set Symbol Definitions Symbol ECNT = Timer/Event Counter Upcounter ECPTO = Timer/Event Counter Capture 0 ECPT1 = Timer/Event Counter Capture 1 ETMM = Timer/Event Counter Mode EOM = Timer/Event Counter Output Mode WDM = Watchdog Timer Mode TxB = Tx Buffer RxB = Rx Buffer SMH = Serial Mode High SML = Serial Mode Low MKH = Mask High MKL = Mask Low 2. rp-rp3 (register pair) SP = Stack Pointer B = BC D = DE H = HL V=VA EA = Extended Accumulator Il 3. rpa-rpa3 (rp addressing) CY, HC, Z irf PA = Port A PB = Port B PC = Port C PD = Port D PF = Port F PT = Port T MA = Mode A MB = Mode B MC = Mode C MCC = Mode Control C MF = Mode F MT = Mode T MM = Memory Mapping TMo = Timer Register 0 TM1 = Timer Register 1 TMM = Timer Mode ETMo = Timer/Event Counter Register 0 ETM1 = Timer/Event Counter Register 1 B = (BC) D = (DE) H = (HL) D + = (DE) + 1 H + = (HL) + 1 D -= (DE)-1 H - = (HL)-1 D+ + = (DE) + 2 H + + = (HL) + 2 D + byte = (DE) + byte H +A = (HL) + (A) H + B = (HL) + (B) H + EA = (HL) + (EA) H + byte = (HL) + byte 4. f (flag) Description CY = Carry Transfer direction, result 5. irf (interrupt flag) A Logical product (logical AND) V Logical sum (logical OR) .Jf Exclusive OR NMI = NMI input FTO = INTFTO FT1 = INTFT1 F1 = INTF1 F2 = INTF2 FEO = INTFEO FE1 = INTFE1 Complement Concatenation HC = Half Carry Z = Zero FEIN = INTFEIN FSR = INTFSR FST = INTFST ER = Error OV = Overflow IE2 = Interrupt Enable F/F2 SB = Standby 4-63 .J:o. I 0> .J:o. Instruction Se~t 81 82 - Mnemonic MVI Operation Operand B-Bit Data Transfer MOV rl,A A, r1 6 5 0 0 0 0 0 0 1 0 (A) - (r1) (sr)-(A) (A)-(sr1) (r)-(word) 0 0 0 word,r (word) - 0 (r) (r) -byte set L1 if r = A set LO if r = L sr2,byte (sr2) - byte *r,byte *wa, bytE' ((V)e(wa)) - MVIX STAW LDAW STAX LDAX EXX *rpa1,bytl~ EXA EXH EXR 1 2 0 T2 T1 To T2 T1 TO 7 6 5 B4 4 3 2 1 0 State,l ) Bytes Skip Condition 0 (r1)-(A) MVIW byte (rpa1) - byte ((V)e(wa)) - A (A) - ((V)e(wa)) (rpa2) - (A) (A) - ((rpa2)) (B) .... (B'),(C) .... (C').(D) .... (D') (E) - (E'),(H) .... (H'),(L) .... (L') (V) .... (V'),(A) .... (A'),(EA) .... (EA') (H) - (H'),(L) .... (L') (V) .... (V'),(A) - (A'),(B) - (B'); (C) - (C') (D) - (D') (E) .... (E'),(H) .... (H'),(L) - (L'),(EA) - (EA') 16-Bit Data Transfer BLOCK D+ DMOV 7 B3 4 3 *sr,A *A,sr1 r,word *wa *wa *rpa2 rpa2 ,.a ,.CiI 1::: Operation Code ((DE)) - ((HL)),(DE) - (DE) + 1, (HL) - (HL) + 1, (C) - (C)-1 End if borrow D((DE)) - ((HL)),(DE) - (DE) + 1, (HL) - (HL) -1, (C) - (C)-1 End if borrow rp3, EA (rp3d - (EAL),(rp3H) - (EAH) EA,rp3 (EAL) - (rp3d,(EAH) - (rp3H) III 0 0 0 1 1 0 1 1 1 0 0 0 0 0 0 Lowaddr 1 0 0 0 0 Lowaddr 0 1 R2 R1 Ro 0 0 0 0 0 0 0 0 Data 0 1 o A1 Ao 0 0 0 1 1 0 0 0 0 1 A2 A1 Ao 0 A2 A1 Ao 0 0 0 0 1 1 0 0 1 0 A3 0 A3 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 S5 S4 S3 S5 S4 S3 1 0 1 High addr 1 1 1 High addr Data 1 0 0 S3 0 0 0 0 0 1 0 0 0 0 S2 S1 So S2 S1 So R2 R1 Ro 10 10 17 2 2 4 R2 R1 Ro 17 4 7 2 14 3 13 3 10 10 10 7/13(3) 7/13(3) 8 2 2 2 2 2 2 8 8 8 2 2 2 0 o S2 S1 So Data Offset Data Offset Offset Data (2) Data (2) 0 1 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 13 x (C+1) 0 0 0 1 0 0 0 1 13 x (C+ 1) 1 0 0 0 0 P1 Po P1 Po G 4 4 4 4 L1 = 1 and r = A LO = 1 and r = L ;( ~ Instruction Set (cont) Operation Code Bl B2 - Operation 7 16-Bit Data Transfer (cont) DMOV sr3, EA (sr3) - (EA) EA,sr4 (EA) - (sr4) SBCD word (word) - (C), (word + 1) - (B) 0 0 0 SDED (D) 0 Mnemonic Operand word (word) - (E), (word + 1) - SHLD word (word) - (L), (word + 1) - SSPD word (word) - (SPd,(word + 1) - STEAX rpa3 ((rpa3)) - LBCD word (C) - (H) (word),(B) +- (EAH) (word + 1) 0 (E) +- (word),(D) +- (word + 1) 0 LHLD word (L) +- (word),(H) +- (word + 1) 0 LSPD word (SPL) +- (word),(SPH) +- LDEAX rpa3 (EAL) PUSH rp1 ((SP) -1) - (rp1H) ((SP) - 2) (SP) +- (SP) - 2 POP rp1 LXI +- ((rpa3)),(EAH) ((word) + 1) (rp1d - ((SP)),(rp1H) (SP) - (SP) + 2 *rp2,word (rp2) +- (word) set LO if rp2 = H +- +- ((rpa3) + 1) 0 ((SP) + 1) (C) +- ((PC)+3+(A)),B +- ((PC)+3+(A)+ 1) TABLE 8-Bit Arithmetic (Register) A,r (A)-(A)+(r) ADD (r)-(r)+(A) r,A (A) +- (A) + (r) + (CY) ADC A,r r,A (r) +- (r) + (A) + (CY) 0 1 0 7 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Lowaddr 1 0 0 Lowaddr 1 0 0 Lowaddr 1 0 0 Lowaddr 0 0 1 0 Data(4) 0 (rp1d 0 1 1 0 0 Lowaddr 0 0 1 0 Data(4) 0 0 0 word 0 0 6 2 Lowaddr 1 0 0 Lowaddr 0 LDED 5 0 0 Lowaddr 1 0 0 0 (SPH) (EAL),((rpa3)) + 1 - 6 B3 4 3 0 5 B4 4 3 0 1 0 0 0 High 1 0 High 1 1 High 0 0 High 0 1 0 0 2 1 0 Bytes Uo 0 V1 Vo 1 0 14 2 14 20 2 4 0 20 4 0 20 4 0 20 4 14/20(3) 3 20 4 20 4 20 4 20 4 14/20(3) 3 0 addr 1 addr 1 addr 1 addr C3 C2 C1 Co 0 0 0 0 0 0 0 0 0 0 0 0 0 High addr 1 0 1 High addr 1 1 1 High addr 0 0 1 0 High addr 0 0 C3 C2 C1 Co 0 State(l) 0 1 0 02 01 00 13 0 0 0 02 01 00 10 0 P2 P1 Po 0 High byte 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 Low byte 0 0 0 0 10 3 17 2 8 8 8 8 2 Skip Condition ~~ LO = 1 and rp2= H 1::: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ~ I 0 0 R2 R1 RO 0 R2 R1 Ro 0 R2 R1 Ro 0 R2 R1 RO' 2 2 2 "at " D 0 G (J) 0'1 I!I ~ en 1::: Instruction Set (cont) 0) "a Operation Code Mnemonic Operand Operation 8-Bit Arithmetic [Register] (cont) ADDNC· A,r (A) - (A) + (r) r,A (r)-(r)+(A) SUB A,r (A) - (A) - (r) r,A (r)-(r)-(A) SBB A,r (A) - (A) - (r) - (CY) r,A (r) - (r) ~ (A) - (CY) SUBNB A,r (A) - (A) - (r) r,A (r)-(r)-(A) ANA A,r (A) - (A) 1\ (r) r,A (r) - (r) 1\ (A) ORA A,r (A) - (A) V (r) r,A (r)-(r)V(A) XRA A,r (A) - (A) -'o'-(r) r,A (r) - (r)-'o'-(A) GTA A,r (A) - (r) - 1 r,A (r)-(A)-1 LTA A,r (A) - (r) r,A (r)- (A) NEA A,r (A) - (r) r,A (r)-(A) EQA A,r (A) - (r) r,A (r)-(A) ONA A,r (A) 1\ (r) OFFA A,r (A) 1\ (r) 8-Bit Arithmetic (Memory) ADDX rpa (A) - (A) + ((rpa)) ADCX rpa (A) - (A) + ((rpa)) + (CY) ADDNCX rpa (A) - (A) + ((rpa)) SUBX rpa (A) - (A) - ((rpa)) SBBX rpa (A) - (A) - ((rpa)) - (CY) SUBNBX rpa (A) - (A) - ((rpa)) ANAX rpa (A) - (A) 1\ ((rpa)) ORAX rpa (A) - (A) V ((rpa)) iii 7 654 01 o 1 o o o o o o o 1 1 1 1 1 1 1 B1 B2 ~ B4 3 2 0 7 6 5 4 3 2 00000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 R2 R2 R2 R2 R1 R1 R1 R1 Ro Ro Ro Ro 8 8 R2 R2 R2 R2 R2 R2 R2 R2 R2 R2 R2 R2 R1 R1 R1 R1 R1 R1 R1 R1 R1 R1 R1 R1 Ro Ro Ro Ro Ro Ro Ro Ro Ro Ro Ro Ro 8 0 0 o 1 0 1 00000 o 1 1 0 0 0 0 o 1 1 0 0 0 0 o o o o o o o o o o o o o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 o o 0 0 o 0 0 o o 1 o 0 0 0 0 0 0 o o 1 o 0 0 0 o o 1 1 1 1 1 0 o 000 1 o o o o 0 0 0 01110000 01110000 01110000 01110000 01110000 o 1 1 1 0 0 0 1 0 0 0 01110000 1 1 1 1 1 1 1 1 1 1 0 1 1 0 0 0 0 0 1 1 1 1 0 0 0 1 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 0 0 0 0 1 1 1 ~ ~ 1 R2 R1 1 R2 R1 1 R2 R1 1 R2 R1 o o 0 0 1 1 1 1 0 0 1 1 1 ~ ~ ~ State(l) 8 8 8 8 8 8 8 8 8 8 8 8 ~ 8 Ro Ro Ro Ro 8 0 1 1 R2 R1 Ro 1R2 R1 Ro 8 8 0 1 0 0 1 1 0 1 0 0 0 0 0 0 1 1 A2 A2 A2 A2 A2 A2 A2 A2 A1 A1 A1 A1 A1 A1 A1 A1 Ao Ao Ao Ao Ao Ao Ao Ao 8 8 8 Bytes 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 11 2 11 2 11 11 11 11 11 11 2 2 2 2 2 Skip Condition No carry No carry CD --o " CD No borrow No borrow No borrow No borrow Borrow Borrow No zero No zero Zero Zero No zero Zero No carry No borrow ~ ~ Instruction Set (cont) Operation Code - Mnemonic Operand Operation 8-Bit Arithmetic (Memory) (cont) (A) ;,- (A)..IJ-((rpa)) XRAX rpa GTAX rpa LTAX rpa NEAX rpa EQAX rpa ON AX rpa OFFAX rpa Immediate Data ADI *A,byte r,byte (A) - ((rpa))-1 (A)- ((rpa)) (A)- ((rpa)) (A) - ((rpa)) (A) /\ ((rpa)) (A) /\ ((rpa)) 0 0 0 0 0 0 0 (A) - (A) + byte (r) - (r) + byte 0 sr2, byte (sr2) ACI SBI + byte (sr2) + byte + (CY) *A,byte (A) - (A) + byte r,byte (r) - (r) + byte sr2,byte (sr2) - SUI (sr2) *A,byte (A) - (A) + byte + (CY) r,byte (r) - (r) + byte + (CY) sr2,byte (sr2) - ADINC 7 (sr2) + byte sr2,byte (sr2) - 0 *A,byte (A) - (A) - byte - (CY) r;byte (r) - (r) - byte - (CY) 0 sr2,byte (sr2) - 0 B2 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 Data 0 0 Data 0 0 1 0 Data 0 0 Data 0 0 0 Data 0 0 Data 1 0 1 0 Data 0 0 Data B4 4 3 State(1) Bytes Skip Condition 2 1 0 A2 A2 A2 A2 A2 A2 A2 A1 A1 A1 A1 A1 A1 A1 Ao Ao Ao Ao Ao Ao Ao 11 11 11 11 11 11 11 Data 0 0 R2 R1 Ro 7 2 0 11 3 S3 0 0 0 S2 S1 So 20 3 0 Data 1 0 R2 R1 Ro 7 0 11 2 3 0 S3 0 0 S2 S1 So 20 3 1 0 2 0 Data 0 0 R2 R1 Ro 7 0 11 3 No carry No carry 0 S3 0 0 S2 S1 So 20 3 No carry Data 0 R2 R1 Ro 11 3 3 0 7 6 5 0 0 0 0 0 0 o 0 1 0 1 0 0 0 1 0 0 0 0 0 Data 0 0 Data 1 0 0 0 0 0 (sr2) - byte - (CY) 0 0 0 0 5 B3 4 3 0 0 0 0 0 0 0 0 *A,byte (A) - (A) - byte r,byte (r) - (r) - byte (sr2) - byte 6 B1 0 0 0 2 2 2 2 2 ~~ No borrow Borrow No zero Zero No zero Zero 7 0 S3 0 S2 S1 So 20 2 0 Data 1 0 R2 R1 Ro 7 0 11 3 0 S3 0 S2 S1 So 20 3 1::: "D~ " ~ 0 CD I 0> -../ II ~ I 0> Instruction Set (cont) "t: (X) Operation Code 12 11 n 7 6 Immediate Data (cont) SUINB *A,byte (A) +- (A) - byte r,byte (r) +- (r) - byte o o 0 1 sr2,byte (sr2) o Mnemonic ANI ORI Operand 6TI LTI NEI +- (sr2) - byte *A,byte (A) +- (A) A byte r,byte (r) +- (r) A byte o o sr2,byte (sr2) o +- (sr2) A byte *A,byte (A) +- (A) V byte r,byte (r) +- (r) V byte sr2,byte (sr2) XRI Operation +- (sr2) V byte o o o o sr2,byte (sr2) o (sr2)-\l-byte *A,byte (A) - byte-1 r,byte (r) - byte-1 o o srS,byte (srS) - byte - 1 o 4 3 0 0 Data o 0 1 0 1 o 0 0 1 1 0 B4 076543210 2 0 o o 0 S3 0 0 1 3 No borrow 2 o S3 0 0 0 20 3 o 0 0 Data 1 1 R2 R1 7 o S3 0 0 S2 S1 So Ro 11 2 3 0 S2 S1 So 20 3 Data 1 0 R2 R1 Ro 7 11 2 3 S2 S1 So 20 3 1 0 o 0 o 0 0 o 0 S3 0 0 1 o 1 0 o 0 o Data 1 R2 R1 Ro 7 11 2 3 No borrow No borrow S2 S1 So 14 3 No borrow 1 R2 R1 Ro 7 11 2 3 Borrow Borrow S2 S1 So 14 3 Borrow 1 R2 R1 Ro 7 11 2 3 No zero No zero o 1 0 o 1 Data 0 Data o 0 S3 0 o 20 3 1 o o S2 S1 So 7 o *A,byte (A) - byte r,byte (r) - byte o 11 1 0 o No borrow No borrow Data 0 1 R2 R1 Ro o o 2 3 0 S3 0 srS,byte (srS) - byte 7 0 o Skip Condition 11 o 0 o o Bytes o o 0 State(l) 0 R2 R1 Ro Data o Data 1 0 *A,byte (A) - byte r,byte (r) - byte III 0 Data 1 0 1 0 Data o 0 Data o 0 1 0 Data o 0 0 Data 000 1 1 0 Data o 0 Data 0 1 0 1 1 0 Data o *A,byte (A) +- (A)-\l-byte r,byte (r) +- (r)-\l-byte +- 5 0 1 1 1 0 Data o 0 Data 0 Data o 1 o "~a "o C) ~ ,~ Instruction Set (cont) Operation Code - Mnemonic Operand Operation Immediate Data (cont) NEI sr5,byte (sr5) - byte 7 6 5 0 B1 B3 4 3 0 0 B2 B4 2 1 0 7 6 5 4 3 2 1 0 State(l) Bytes Skip Condition S2 S1 So 14 3 No zero 7 11 2 3 Zero 1 R2 R1 Ro S2 S1 So 14 3 Zero 1 R2 R1 Ro 7 11 2 3 No zero 0 0 S2 S1 So 14 3 No zero 1 R2 R1 Ro 7 11 2 3 Zero Zero S2 S1 So 14 3 Zero 0 0 0 0 14 3 0 0 0 0 14 3 0 0 0 0 14 3 0 0 0 0 14 3 0 0 0 0 14 3 0 0 0 0 14 3 0 0 0 14 3 0 S3 0 0 0 1 0 S3 1 0 0 0 S3 ~~ Data EOI *A,byte (A) - byte r,byte 0 0 (r) - byte 1 1 0 0 Data Zero Data sr5,byte (sr5) - byte 0 0 0 Data ONI *A,byte (A) A byte r,byte 0 0 (r) A byte 0 0 0 0 1 Data 0 No zero Data sr5,byte (sr5) A byte 0 0 0 Data OFFI *A,byte (A) A byte r,byte 0 0 (r) A byte 0 1 1 0 0 Data 0 0 S3 0 1 Data sr5,byte (sr5) A byte 0 0 0 0 Data Working Register ADDW wa (A) +- (A) + ((V)e(wa)) 0 1 0 0 0 0 0 0 Offset ADCW wa (A) +- (A) + ((V)e(wa)) + (CY) 0 1 0 Offset ADDNCW wa (A) +- (A) + ((V)e(wa)) 0 1 0 0 0 0 0 0 No carry Offset SUBW wa (A) +- (A) - ((V)e(wa)) 0 1 0 Offset SBBW wa (A) +- (A) - ((V)e(wa)) - (CY) 0 1 0 0 Offset SUBNBW wa (A) +- (A) - ((V)e(wa)) 0 1 0 0 0 0 Offset ANAW wa (A) +- (A) A ((V)e(wa)) 0 1 0 0 0 Offset 0 0 No borrow 1::: "ata " ~ 0 I en CD <0 II ~ ~ Instruction Set (cont) 1::: 0 Operation Code 81 Mnemonic Operand Operation 7 Working Register (contI ORAW wa (A) - (A) V ((V)e(wa)) 0 XRAW wa (A) - (A)-'f((V)e(wa)) 0 GTAW wa (A) - ((V)e(wa)) - 1 0 LTAW wa (A) - ((V)e(wa)) 0 NEAW wa (A) - ((V)e(wa)) 0 EQAW wa (A) - ((V)e(wa)) 0 ONAW wa (A) A ((V)e(wa)) 0 OFFAW wa (A) A ((V)e(wa)) 0 ANIW *wa,byte ((V)e(wa)) - ((V)e(wa)) A byte ORIW *wa,byte ((V)e(wa)) GTIW *wa,byte ((V)e(wa)) - byte - 1 +- ((V)e(wa)) V byte 0 6 5 B3 4 3 0 Offset 1 0 Offset 1 0 Offset 1 0 Offset 1 0 Offset 1 0 Offset 1 0 Offset 1 0 Offset 0 0 0 0 Data 1 0 Data 0 82 2 6 5 B4 4 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 7 0 0 0 0 0 0 0 0 0 0 0 0 State(1) Bytes Skip Condition 2 1 0 0 0 14 3 0 14 3 14 3 No borrow 0 0 0 14 3 Borrow 0 0 0 0 14 3 No zero 0 0 0 0 14 3 Zero 0 0 0 0 14 3 No zero 0 0 0 0 14 3 Zero Offset 19 3 Offset 19 3 0 0 0 0 0 0 0 0 Offset 13 3 No borrow 0 Data 1 0 Data 0 Offset 13 3 Borrow LTIW *wa,byte ((V)e(wa)) - byte 0 NEIW *wa,byte ((V)e(wa)) - byte 0 0 0 0 Offset 13 3 No zero 0 Offset 13 3 Zero EQIW *wa,byte ((V)e(wa)) - byte 0 Data 1 0 Data ONIW *wa,byte ((V)e(wa)) A byte 0 0 0 0 Offset 13 3 No zero 0 Data 1 0 Data 0 Offset 13 3 Zero OFFIW *wa,byte ((V)e(wa)) A byte III " 0 CD 0 0 "a1a ~ ~ Instruction Set (cont) Operation Code Mnemonic Operand 16-Bit Arithmetic EADD EA,r2 DADD EA,rp3 DADC EA,rp3 DADDNC EA,rp3 ESUB EA,r2 DSUB EA,rp3 DSBB EA,rp3 DSUBNB EA,rp3 DAN EA,rp3 DOR EA,rp3 DXR EA,rp3 DGT EA,rp3 DLT EA,rp3 DNE EA,rp3 DEQ EA,rp3 DON EA,rp3 DOFF EA,rp3 Multiply/Divide MUL r2 DIV r2 Increment/Decrement INR r2 INRW ·wa INX rp EA DCR r2 DCRW wa DCX rp EA Others f" :i 765 Operation (EA) - (EA) + (r2) (EA) - (EA) + (rp3) (EA) - (EA) + (rp3) + (CY) + (rp3) (EA) (EA) - (r2) (EA) - (EA) - (rp3) (EA) - (EA) - (rp3) - (CY) (EA) - (EA) - (rp3) (EA) - (EA) A (rp3) (EA) - (EA) V (rp3) o o o o 1 000 o 1 0 01 0 o 1 0 000 o 1 0 0 1 0 (EA) - (rp3) (EA) - (rp3) (EA) - (rp3) (EA) A (rp3) o o o o 1 (r2) - (r2) +1 ((V)e(wa)) (rp) (EA) (r2) - (rp) ((V)e(wa)) +1 +1 (EA) +1 (r2) - 1 ((V)e(wa)) -- ((V)e(wa)) -1 (rp) - (rp) - 1 (EA) - (EA) - 1 DAA Decimal Adjust Accumulator STC (CY)-1 CLC (CY)-O CMC (CY) -- (CY) 4 320 o 0 0 0 R1 Ro o 0 1 P1 1 0 0 0 1 P1 Po 1 P1 Po 0 R1 Ro 0 1 P1 Po 0 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 o 0 0 0 o o o 1 o o o o o o o 1 0 0 0 0 1 0 0 0 P1 Po 0 0 1 0 1 1 0 1 0 0 1 1 0 0 P1 Po 0 0 1 0 1 0 R1 Ro 0 0 0 0 1 0 0 0 0 0 R1 Ro 0 0 0 0 1 0 0 o o o o 1 1 1 1 0 5 o 0 0 0 1 0 0 0 1 o Remainder 0 0 0 6 o 000 0 0 0 1 1 o (EA) -;- (r2), (r2) - o 7 0 0 0 1 1 1 x (r2) (A) (EA) - 0 o o o 1 1 1 (EA) A (rp3) (EA) - 2 o o o o o o o o o o o o o o (EA) - (EA) V (rp3) (EA) - (rp3) - 1 B4 3 o (EA) - B2 ~ 4 o (EA) - B1 0 0 0 0 0 0 0 1 0 000 001 000 001 0 0 001 000 1 1 0 0 0 1 1 1 1 0 1 1 0 1 o o o o o 0 0 1 0 1 Po State(l) 11 11 2 11 2 11 11 11 2 2 P1 Po 11 P1 Po P1 Po P1 Po P1 Po P1 Po 11 11 11 11 11 P1 Po 11 P1 Po 11 P1 Po 11 P1 Po P1 Po 11 11 R1 Ro 32 1 R1 Ro 59 o 4 16 7 7 4 16 7 7 Offset Offset Bytes o I!!I 0 1 8 0 o No carry 2 2 2 2 No borrow 2 2 2 2 2 2 2 2 No borrow Borrow No zero Zero No zero Zero ~ 2 2 Carry 2 Carry 1 Borrow 2 Borrow 1::: " D ~ 0 1 1 ~ ~ 2 4 o o o Skip Condition 2 2 ,.o CD U) .;.. I ...... ,.a 1:: Instruction Set (cont) N Operation Code Mnemonic Operand Others (contI NEGA Rotate and Shift RLO RRO RLL r2 RLR r2 SLL SLR SLLC SLRC ORLL r2 r2 r2 r2 EA ORLR EA OSLL EA OSLR EA Jump JMP 7 4 3 2 0 7 654 3 2 o o o o 0 0 0 0 000 000 000 o o 0 0 1 0 001 o 001 000 o 0 0 1 001 000 01001000 1 001 000 o 1 001 000 01001000 o o o o o 1 001 000 101 o 1 001 o 1 001 o 1 0 o 0 Rotate left digit Rotate right digit (r2m + 1) +- (r2 m), (r2o) - (CY), (CY) - (r27) (r2m -1) +- (r2m),(r27) - (CY), (CY) +- (r2o) (r2m+ 1) - (r2m),(r20) +- 0, (CY) +- (r27) (r2m - 1) +- (r2m),(r27) +- 0, (CY) +- (r20) (r2m + 1) +- (r2 m),(r20) +- 0, (CY) +- (r27) (r2m - 1) - (r2m),(r27) -- 0, (CY) +- (r2o) (EAn + 1) +- (EAn),(EAO) +- (CY), (CY) +- (EA1S) (EAn - 1) +- (EA n),(EA1S) +- (CY), (CY) +- (EAO) (EAn + 1) +- (EAn),(EAO) +- 0, (CY) +- (EA1S) (EAn - 1) +- (EA n),(EA1S) +- 0, (CY) +- (EAO) o o o *word (PC) word *word (PCH) +- (B),(PCLl- (C) (PC) +- (PC) + 1 + jdisp 1 (PC) +- (PC) + 2 + jdisp (PC) +-(EA) word 5 000 o +- 6 82 B4 o (A) +- (A) + 1 JB JR JRE JEA Operation 81 n o o o o 1 2 1 R1 Ro 17 17 8 2 2 2 0 R1 Ro 8 2 0 1 0 0 1 R1 Ro 0 1 0 0 0 R1 Ro 0 0 0 0 1 R1 Ro 0 0 0 0 0 R1 RO 0110100 8 8 8 8 8 2 2 2 2 2 0 8 2 000 10100100 8 2 000 101 8 2 Lowaddr 10 3 jdisp 00101000 10 10 8 2 2 Lowaddr 16 3 00101001 17 2 fa 13 2 o 1 1 Bytes 8 o o o State(l) 1 0 1 0 0 High addr 1 00 0 0 1 jdisp1 0 0 1 1 1 001 000 000 1 1 1 0 0 0 0 0 0 0 0 1 0 Skip Condition ""-II CD ,.o CD Carry Carry 4 Call CALL *word CALB CALF *word «SP) -1) +- «PC) + 3)H, «SP) - 2) +- «PC) + 3)l (PC) +- word, (SP) +- (SP) - 2 01000000 High addr «SP) -1) +- «PC) + 2)H, «SP) - 2) +- «PC) + 2) l (PCH) + - (B),(PCLl+- (C), (SP) +- (SP) - 2 o 1 001 «SP) - 1) +- «PC) + 2)H, "«SP) - 2) +- «PC) + 2)l (PC1S-11) +- 00001, (PC1O-0) +- fa, (SP) +- (SP) - 2 o 1 1 III 1 000 1 +- ~ ~ Instruction Set (cont) Operation Code BI Mnemonic Operand Operation 7 6 5 B2 B3 4 3 2 I 0 7 6 5 B4 4 3 2 I 0 Statell) Bytes Skip Condition Calileont) CALT word SOFT! ((SP) - 1) - ((PC) + 1)H, ((SP) - 2) - ((PC) + 1) L (PCLl - (128 + 2ta),(PCH) (129 + 2ta),(SP) - (SP) - 2 ((SP) -1) - (PSW),((SP) - 2) ((PC) + 1)H,((SP) - 3) - ((PC) + 1)L, (PC) - 0060H,(SP) - (SP) - 3 ta 0 0 1 1 1 0 1 1 0 16 0 1 0 16 0 0 0 10 0 0 ~ ~ Return (PCLl- ((SP)),(PCH) - ((SP) + 1) (SP) - (SP) + 2 (PCLl- ((SP)),(PCH) - ((SP) + 1) (SP) - (SP) + 2,(PC) - (PC) + n (PCLl - ((SP)),(PCH) - ((SP) + 1) (PSW) - ((SP) + 2), (SP) - (SP) + 3 RET RETS RETI 0 0 0 0 0 1 0 1 0 0 0 1 1 0 0 1 10 Unconditional Skip 13 0 Bit Manipulation MOV AND OR XOR SETB *CY, bit (CY) - (bit) *bit CY (bit)-(CY) *CY,bit (CY) - (CY) A (bit) SK *CY, bit *CY, bit *bit *bit *bit *bit SKN *bit CLR NOT (CY) - (CY) V bit (CY) - (CY)Jf(bit) (bit)-1 (bit)-O (bit)-(bit) Skip if (bit) = 1 Skip if (bit) = 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 Bit Addr Bit Addr Bit Addr Bit Addr Bit Addr Bit Addr 10 13 10 Bit Addr BitAddr BitAddr Bit Addr 13 13 10 10 10 13 10 2 2 2 2 2 2 2 2 2 2 (bit) = 1 (bit) =0 1:::: ".....D "o CD ~ I ...... CD U) ~ .j::. I --...I Instruction Set (cont) 1::: .j::. Operation Code B1 Mnemonic Operand Operation 7 Skip iff= 1 Skip if f = 0 Skip if irf = 1, then reset irf Skip if irf = 0 Reset irf if irf = 1 No operation Enable interrupt msable interrupt Halt 0 0 0 0 6 5 B3 4 3 0 0 0 0 - 2 0 7 6 5 0 0 0 0 0 0 0 0 0 B4 4 3 2 0 0 F2 F1 FO F2 F1 FO 10 10 State(1) Bytes Skip Condition CPU Control SK SKN SKIT SKNIT NOP EI DI HLT "m D B2 ""-I " 0 irf irf 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 14 13 12 11 14 13 12 11 0 0 8 8 8 8 2 2 2 2 4 4 4 11 1 2 f= 1 f=O irf=1 irf=O CD Note: (1) In the case of skip condition, the idle states are as follows: 1-byte instruction: 4 states 2-byte instruction (with *): 7 states 2-byte instruction: 8 states 3-byte instruction (with *): 10 states 3-byte instruction: 11 states 4-byte instruction: 14 states (2) 82 (Data): rpa2 = D + byte, H + byte. (3) Right side of slash (/) in states indicates case rpa2, rpa3 = D H + EA, H + byte. (4) 83 (Data): rpa3 = D + byte, H + byte, H + A, H + 8, + byte ~ ~ Ii I NEe NEe Electronics Inc. Description pPD7810/11 8-BIT, SINGLE-CHIP NMOS MICROCOMPUTERS WITH AID CONVERTER Pin Configuration The IlPD7810 and IlPD7811 single-chip microcomputers integrate sophisticated on-chip peripheral functionality normally provided by external components. The device's internal 16-bit ALU and data paths, combined with a powerful instruction set and addressing, make the IlPD7810/11 appropriate in data processing as well as control applications. The devices integrate a 16-bit ALU, 4K-ROM, 256-byte RAM with an 8-channel AID converter, a multifunction 16-bit timerl event counter, two 8-bit timers, a USART, and two zero-cross detect inputs on a single die, allowing their use in fast, high end processing applications. This involves analog signal interface and processing. PAo Vee PA, Voo PA. P0 7 PA 3 PD. PA. PO s PAs PD. PAs P0 3 PA7 PD. PB o PO, POo PF7 PB 3 PF. PF s PBs The IlPD7811 is the mask-ROM high volume production device embedded with custom customer program. The IlPD7810 is a ROM-less version for prototypi ng and small volume production. The IlPD78PG 11 E is a piggy-back EPROM version for design development. PB 7 PF. PF, PF o ALE Features PC 3 WR PC. AD PC s AVee PC. V AREF PC 7 NMI D NMOS silicon gate technology requiring +5 V power supply o Complete single-chip microcomputer - 16-bit ALU - 4K x 8 ROM - 256-byte RAM o 44 I/O lines o Two zero-cross detect inputs D Two 8-bit timers D Expansion capabilities - 8085A bus-compatible - 60K-byte external memory address range o 8-channel, 8-bit AID converter - Autoscan mode - Channel select mode D Full duplex USART - Synchronous and asynchronous o 153 instructions - 16-bit arithmetic, multiply and divide D 11ls instruction cycle time (12 MHz operation) D Prioritized interrupt structure - 3 external - 8 internal D Standby function o On-chip clock generator o 64-pin plastic QUIP or shrink DIP INT1 ANs MOOE1 AN. RESET AN3 MOOED AN. AN, ANo Vss AVss 49-000601 A Ordering Information Part Number Package Type Max Frequency of Operation jlPD7810G-36 jlPD7811 G-36 64-pin plastic QUIP 12 MHz jlPD7810CW jlPD7811CW 64-pin plastic shrink DIP 12 MHz 4-75 NEe pPD7810/11 Pin Identification No. 1-8 Symbol PAo-PA7 PCO·PC7 [Port C] function Port A 1/0 9-16 PBO-PB7 Port B 1/0 17 PCO/TxD Port CliO line OlTransmit data output Port C is an 8-bit three-state port. Each bit is independently programmable as either input or output. Alternatively, the lines of port C can be used as control lines for the USART and timer. Reset puts all lines of port C in port mode, input. 18 PC1/RxD Port CliO line 1/Receive data input 19 PC2/SCK Port CliO line 2/Serial clock 1/0 20 ~TII INT2 Port CliO line 3/Timer inputllnterrupt request 2 input 21 PC4/TO Port CliO line 4ITimer output 22 PC5/CI Port CliO line 5/Counter input SCK [Serial Clock]. Output for the serial clock when internal clock is used. Input for serial clock when external clock is used. 23,24 PCs, PC71 COO, C01 Port CliO lines 6, 7/Counter outputs 0,1 TI [Timer Input]. Timer input terminal. 25 NMI Nonmaskable interrupt input 26 INT1 Interrupt request 1 input 27 MODE1/Ml Mode 1 input/Memory cycle 1 output 28 RESET Reset input 29 MODEOI iO/M Mode 0 inputlllO/Memory output 30, 31 X2, X1 Crystal connections 1, 2 32 Vss Ground TxD [Transmit Data]. Serial data output terminal. RxD [Receive Data]. Serial data input terminal. INT2 [Interrupt Request 2]. Falling-edge-triggered, maskable interrupt input terminal and AC-input, zerocross detection terminal. TO [Timer Output]. The output of TO is a square wave with a frequency determined by the timer/counter. CI [Counter Input]. External pulse input to timer/event counter. COo, C01 [Counter Outputs 0, 1]. Programmable rectangular wave outputs based on timer/event counter. 33 AVss Port T threshold voltage input 34-41 ANo-AN7 AID converter analog inputs 0-7 42 VAREF AI D converter reference voltage PDo·PD7 [Port 0] 43 AVee AID converter power supply 44 RD Read strobe output 45 WR Write strobe output 46 ALE Address latch enable output Port D is an 8-bit three-state port. It can be programmed as either 8 bits of input or 8 bits of output. When external expansion memory is used, port D acts as the multiplexed address/data bus. 47-54 PFO-PF7 Port F 1/0/Expansiom memory address bus (bits 8-15) 55-62 PDo-PD7 Port D 1/0/Expansion memory addressl data bus 63 Voo RAM backup power supply 64 Vee 5 V power supply PFo·PF7 [Port F] Port F is an 8-bit three-state port. Each bit is independently programmable as an input or output. When external expansion memory is used, port F outputs the high-order address bits. ANo·AN7 Pin Functions PAo·PA7 [Port A] Port A is an 8-bit three-state port. Each bit is independently programmable as either input or output. Reset makes all lines of port A inputs. PBo·PB7 [Port B] Port B is an 8-bit three-state port. Each bit is independently programmable as either input or output. Reset makes all lines of port B inputs. 4-76 These are the eight analog inputs to the A/D converter. AN4-AN7 can also be used as a digital input for falling edge detection. AVss [AID Converter Power Ground] AVss is the ground potential for the A/D converter power supply. NMI [Nonmaskable Interrupt] Falling-edge-triggered nonmaskable interrupt input. NEe pPD7810/11 INT1 [Interrupt Request 1] WR [Write Strobe] INT1 is a rising-edge-triggered, maskable interrupt input. It is also an AC-input, zero-cross detection terminal. The WR output goes low to indicate that the data bus holds valid data. It is a strobe signal for external memory or 1/0 write operations. WR goes high during reset. RESET [Reset] When the RESET input is brought low, it initializes the ALE [Address Latch Enable] pPD781D/11. The ALE output latches the address signal to the output of PDo,..PD7' MODE1, MODEO [Mode 1, 0] The MODE1 and MOOED inputs select the memory expansion mode. MODE1 also outputs the M1 signal during each opcode fetch. MODED outputs the jQ/M signal. VAREF [AID Converter Reference] X1, X2 [Crystal Connections 1, 2] X1 and X2 are the system clock crystal oscillator terminals. X1 is the input for an external clock. Vss [Ground] Ground potential. VAREF set the upper limit for the AID converter's conversion range. Voo [Backup Power] AVee [AID Converter Power] Backup power for on-chip RAM. This is the power supply voltage for the AID converter. Vee [Power Supply] RD [Read Strobe] +5 V power supply. The RD output goes low to gate data from external devices onto the data bus. RD goes high during reset. 4-77 NEe pPD7810/11 Block Diagram x'=EJ X2 . Osc.· PF 7 -PFo (AB,s-AB.) PC,/TxD PC,/RxD PC,tSCi< PD7 -PD o (AD 7 -AD o) NMI INTl PC 7 -PC o PC 31T1/INT2 PCs/CI PC 6 /CO O PB 7 -PB o PC 7 /CO, AN 7 -AN o VAREF AVee AVss PA 7 -PA o RD WR ALE MODEl MODEO RESET Voo 11 Vce Vss 49·000600C 4-78 NEe Functional Description Memory Map The JlPD7811 can directly address up to 64K bytes of memory. Exceptfortheon-chip ROM (0-4095) and RAM (65280-65535), any memory location can be used as ROM or RAM. The memory map, figure 1, defines the 0 to 64K byte memory space for the JlPD7811. pPD7810/11 Table 1. Memory Expansion Analog Input Lines. ANa-AN? are configured as analog input lines for on-chip A/D converter. Port A, Port B, Port C, Port F. Each line of these ports can be individually programmed as an input or output. When used as I/O ports, all have latched outputs and high-impedance inputs. Port D. Port D can be programmed as a byte input or a byte output. AN4-AN7' The high order analog input lines, AN4-AN?, can be used as digital input lines for falling edge detection. Control Lines. Under software control, each line of port C can be configured individually to provide control lines for the serial interface, timer, and timer/counter. Memory Expansion. In addition to the single-chip operation mode, theJlPD7811 has four memoryexpansion modes. Under software control, port D can provide a multiplexed low-order address and data bus; port F can provide a high-order address bus. Table 1 shows the relation between memory expansion modes and the pin configurations of port D and port F. Port Configuration None Port D Port F I/O port I/O port 256 Bytes Port D Port F Multiplexed address/data bus I/O port 4K Bytes Port D Port Fo-F3 Port F4-F7 Multiplexed address/data bus Address bus I/O port 16K Bytes Port D Port Fo-F5 Port F6-F7 Multiplexed address/data bus Address bus I/O port 60K Bytes Port D Port F Multiplexed address/data bus Address bus Input/Output The JlPD7810/11 has 8 analog input lines (ANa-AN?), 44 digital I/O lines, five 8-bit ports (port A, port B, port C, port D, port F), and 4 input lines (AN4-AN?). Memory Expansion Modes and Port Configurations Timers There are two 8-bit timers. The timers may be programmed independently or may be cascaded and used as an 8-bit timer with 8-bit prescaler. The timer can be software setto increment at intervals of four machine cycles (1 JlS at 12 MHz operation) or 128 machine cycles (32Jls at 12 MHz), orto increment on receipt of a pulse at TI. Figure 2 shows the block diagram for the timer. Timer/Event Counter The 16-bit multifunctional timer/event counter (figure 3) can be used for the following operations: • Interval timer • External event counter • Frequency measurement • Pulse width measurement • Programmable square-wave output 4-79 . ~ NEe pPD7810/11 Figure 1. Memory Map 0 , ". IntemalROM 4,096 Bytes x 8 ,,~ 0 Re8etlStandby Release 4 IRQO 8 IRQ1 10H IRQ2 18H IRQ3 20H IRQ4 28H IRQ5 OFFFH 1000H :~ Extemal Memory 61,184 Bytes x 8 :~ FEFF,H FFOOH IntemalRAM 256 Bytes x8 FFFFH "l" .... CIIllllIbIe- -1 SoftINT t" SOH LowADDR 81H HlghADDR 82H LowADDR 83H HlghADDR ~ BEH LowADDR BFH L,.COH HlghADDR : ... Uaer'8Area I . .~ OFFFH 49-000602C 4-80 NEe Figure 2. pPD7810/11 Timer Block Diagram Timer 0 ,---------, Timer 1 r---- - ---, PC 3 1T1 I I I I Timer/Event Counter Serial Intertace Clear I 4 CL----I-f-----I 128CL I I I I I I I I I I I I I I I I I I I I IL _ _ _ _ INTI. INTI, I _ _ ...I Internal Bus Notes: 1 CL = 31f (250ns: 12MHz operation~ f: System clock frequency (MHz). 49'()()()S90B 4-81 t¥EC pPD7810/11 Figure 3. Block Diagram for Timer/Event Counter 4CL--------, PCs/CI (}----1r----------f---f TO INTEO INTE1 INTEIN Notes: 1 CL = 31f (25Ons: 12MHz operation~ f: System clock frequency (MHz~ 49-000599C 8-Bit A/D Converter Analog/Digital Converter • 8 input channels • 4 conversion result registers • 2 powerful operation modes - Autoscan mode - Channel select mode • Successive approximation technique • Absolute accuracy: ±1.5 LSB (±O.6%) • Conversion range: 0 to 5 V • Conversion time: 48 JlS • Interrupt generation The JlPD7810/11 features an 8-bit, high speed, high accuracy AID converter. The AID converter is made up of a 256-resistor ladder and a successive approximation register (SAR). There are four conversion result registers (CRo-CR3). The 8-channel analog input may be operated in either of two modes. In the select mode, the conversion value of one analog input is sequentially stored in CRo-CR3. In the scan mode, the upper four channels or the lower four channels may be specified. Then those fou r channels wi II be consecutively selected and the conversion results stored sequentially in the four conversion result registers. Figure 4 shows the block diagram for the AID converter. 4-82 NEe pPD7810/11 Interrupt Structure Universal Serial Interface There are 11 interrupt sources. Three are external interrupts and eight are internal. The following, table 2, shows 11 interrupt sources divided into six priority levels. See figure 5. The serial interface can operate in one of three modes: synchronous, asynchronous, and I/O interface. The I/O interface mode transfers data MSB first, for easy interfacing to certain NEG peripheral devices. Synchronous and asynchronous modes transfer data LSB first. Synchronous operation offers two modes of data reception: search and nonsearch. In the search mode, data is transferred one bit at a time from the serial register to the receive buffer. This allows a software search for a sync character. In the nonsearch mode, data transfer from the serial register to the transmit buffer occurs eight bits at a time. Figure 6 shows the universal serial interface block diagram. Standby Function The standby function saves the top 32 bytes of RAM with backup power (Voo) if the main power (Vee) fails. On power-up, you can check the standby flag (SB) to determine whether recovery was made from standby mode or from a cold start. Table 2. Interrupt Sources Interrupt Request Interrupt Address Type of Interrupt Internal! External IRQO NMI (Nonmaskable interrupt) Ext IRQ1 INTTO (Coincidence signal from timer 0) Int INTT1 (Coincidence signal from timer 1) IRQ2 16 INT1 (Maskable interrupt) Ext INT2 (Maskable interrupt) IRQ3 24 INTEO (Coincidence signal from timer / event counter) Int INTE1 (Coincidence signal from timer/event counter) IRQ4 32 IRQ5 40 INTEIN (Falling signal of CI and TO counter) Figure 5. Interrupt Structure Block Diagram NMI INITO INITl INTl INT2 INTEO INTEl INTEIN INTAD INTSR INTST I OV ER SB Int/Ext INTAD (AID converter interrupt) INTSR (Serial receive interrupt) Int INST (Serial send interrupt) 49-000603A Figure 4. AID Converter Block Diagram Figure 6. Universal Signal Interface Block Diagram AVec AVss VAREF AND AN, AN2 AN3 AN. AN. AN. AN7 ~ ~ PC,'RxD :=;; Edge Detect 49-000B04A 49-000591A 4-83 NEe pPD7810/11 Zero-Crossing Detector Absolute Maximum Ratings The INT1 and INT2 terminals (used common to TI and PC3) can detect the zero-crossing point of lowfrequency AC signals. When driven directly, these pins respond as a normal digital input. Figure 7 shows the zero-crossing detection circuitry. Power supply voltages, Vee -0.5 V to +7.0 V Voo -0.5 V to +7.0 V AVee -0.5 V to +7.0 V The zero-crossing detection capability allows you to make the 50-60 Hz power signal the basis for system timing and to control voltage phase-sensitive devices. To use the zero-cross detection mode, an AC signal of approximately 1-3 V AC (peak-lo-peak) and a maximum frequency of 1 kHz is coupled through an external capacitor to the INT1 and INT2 pins. For the I NT1 pin, the internal digital state is sensed as a the rising edge crosses the average DC level, when it becomes a 1 and INT1 interrupt is generated. o until For the INT2 pin, the state is sensed as a 1 until the falling edge crosses the average DC level, when it becomes a 0 and INT2 interrupt is generated. Figure 7. AVss -0.5 V to +0.5 V Input voltage, VI -0.5 V to +7.0 V Output voltage, Vo -0.5 Vto +7.0 V Reference input voltage, VAREF -0.5 V to Vee Operating temperature, TOPR 10 MHz $ fXTAL $ 12 MHz fXTAL $ 10 MHz Storage temperature, TSTG Comment: Exposing the device to stresses above those listed in absolute maximum ratings could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational sections of this specification. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Operating Conditions Oscillating Frequency Zero-Crossing Detection Circuit c ~~----------------------- INT1 INT2(PC 3 ) fXTAL $ 10 MHz Vee, AVec +5.0 V ±10% 10 MHz $ fXTAL $12 MHz +5.0 V ±5% Capacitance TA =25°C; Vcc = Voo = Vss = 0 V Limits Parameter Symbol Min TYP . Max Capacitance CI 10 Output capacitance Co 20 1/0 capacitance CIO 20 Unit Test Conditions pF Afe = 1 MHz. Unmeasured pF pins returned to 0 V. pF Recommended XTAL Oscillation Circuit 49·000592A c= 10 pF 83·003282A 4-84 NEe pPD7810/11 DC Characteristics Serial Operation TA == -10°C to +70°C; Vee == +5.0 V ±5%; Vss == 0 V; VDD == Vee - 0.8 V to Vee Limits Parameter Symbol Input low voltage VIL Input high voltage VIH1 Min Typ Max Unit Test Conditions O.B V Vee V All except SCK, RESET, X1 and X2 VIH3 2.0 O.B Vee Vee O.B VDD Vee V RESET 0.45 V IOL == 2.0 mA VOL Output high voltage VOH 2.4 V IOH == -200 pA Data retention voltage VDDDR 3.2 V Vee = 0 V; RESET = VIL I nput current ±200 pA INT1, TI(PC3); + 0.45 V::; VI < Vee ±10 pA All except INT, TI(PC3) oV::; VI ::;Vee III Vee supply current Max ps Alec 6 12 mA IDD 1.5 3.5 mA TA = -40 to +B5°C 3.2 mA Vee = VDD = 5VTA=-10to +70°C Icc tKKL SCK width high tKKH RxD set-up time to SCK t 150 220 SCK input (1) ns (2) 500 SCK width low Test Conditions Unit teYK ps SCK output 750 ns SCK input(1) 200 ns SCK input (2) 900 ns SCK output 750 ns SCK input (1) 200 ns SCK input (2) 900 ns SCK output BO ns (1) tRXK RxD hold time after SCK t tKRX BO ns (1) SCK ~ TxD delay time tKTX 210 ns (1) Note: (1) 1x baud rate in asynchronous, synchronous, or I/O interface mode. E (2) 16x baud rate or 64x baud rate in asynchronous mode. Zero-Cross Characteristics ±10 pA +0.45 V::; Vo ::; Vee Output leakage ILO current VDD supply current SCK cycle time Min V SCK, X1, X2 Output low voltage AVec supply current Symbol 2 VIH2 Input leakage current Limits Parameter Limits Parameter Symbol Min Max Unit Test Conditions Zero-cross detection input Vzx 3 V ac, p-p Ac coupled Zero-cross accuracy Azx ±135 mV 60-Hz sine wave Zero-cross detection input frequency fzx 0.05 kHz mA TA = -40 to +B5°C; Vee = VDD = 5 V 4-85 NEe pPD7810/11 AC Characteristics Read/Write Operation vss = 0 v, vee - 0.8 v::::; VDO::::; Vee Limits fXTAL = 10 MHz Parameter Symbol RESET pulse width Min Max fXTAl = 12 MHz Min Max Test Conditions (11 Unit tRP 6.0 5.0 /1S Interrupt pulse width tiP 3.6 3.0 /1S Counter input pulse width tel 600 500 ns Event counter mode 4.8 4.0 /1S Pulse width measurement mode 500 ns tel Timer input pulse width tTl 600 X1 Input cycle time teye 100 Address set-up to ALE! tAL 100 65 ns Address hold after ALE! tLA 70 50 ns Address to RD ! delay time tAR 200 RD ! to address floating tAFR 20 20 Address to data input tAD 480 360 ns ALE! to data input tLDR 300 215 ns RD ! to data input tRD 180 ns ALE! to RD ! delay time tLR 50 35 ns tRDH 0 0 ns tRL 150 115 ns tRR 350 280 ns Data read 650 530 ns Opcode fetch Data hold time to RD RD t t to ALE t delay time RD width low 250 83 250 ns 150 250 ns ns ALE width high tLL 160 125 ns M1 setup time to ALE! tML 100 65 ns M1 hold time after ALE! tLM 70 50 ns 101M setup time to ALE! tiL 100 65 ns 101M hold time after ALE! tLi 70 50 ns Address to WR ! delay tAW 200 150 l to data output WR l to data output tLDW 210 195 ns tWD 100 100 ns ALE ALE! to WR ! delay Data set-up time to WR Data hold time to WR WR tLW 50 35 ns tDW 300 230 ns tWDH 130 95 ns tWL 150 115 ns tww 350 280 ns t t t to ALE t delay time WR width low Note: (1) Load capacitance: CL 4-86 ns = 150 pF. NEe pPD7810/11 AID Converter Characteristics TA = -10°C to +70°C; Vee = AVec = 5,0 V ±5%; Vss = AVss = 0 V; VAREF = AVec - 0,5 V to AVec, Limits Parameter Symbol Resolution Min Typ Max Unit Bits 8 Absolute accuracy 0.4% LSB ± 1/2 TA = -10°C to +50°C 0,6% TA = -10°C to +70°C (Note 1) LSB ±1/2 Conversion time Sampling time tCONV tSAMP 576 tCYC 83 ns::; tCyc::; 110 ns 432 tCYC 110 ns::; tCyc::; 170 ns 96 tCYC 83 ns::; tCyc::; 110 ns 72 Analog input voltage VIA Analog resistance RAN Analog reference current IAREF Test Conditions tCYC 0 VAREF 1000 0,2 0,5 1.5 110 ns::; tCYc::; 170 ns Symbol MiniMax Min tTl 6T Min tCI(2) 6T Min tCI(3) 48T Min tiP 36T Min tAL 2T -100 Min tLA T -30 Min tAR 3T -100 Min tAD 7T - 220 Max tLDR 5T - 200 Max tRD 4T -150 Max tLR T -50 Min tRL 2T - 50 Min Mn tLL = -40°C to +85°C, Calculating Expression 60T tRR mA tCYC tRP V Note: (1) In case of fXTAL::; 10 MHz, TA Bus Timing Depending on 4T - 50 (Data Read) ----------------._-------------------_.7T - 50 (Opcode Fetch) 2T -40 Min Min tAW 3T -100 Min tLDW T+ 110 Max tLW T -50 Min tDW 4T -100 Min tWDH 2T -70 Min tWL 2T -50 Min tww 4T -50 Min tCYK 20T (SCK input)(1) ---.-------_.----._.----._-_.-- ... --------_.-----.--24T (SCK output) Min tKKL 10T - 80 (SCK input)(1) -.---"---.--------------------- .. _------------.------. 12T - 100 (SCK output) Min tKKH 10T - 80 (SCK input)(1) .--.---.---------------".---------------------.------. 12T - 100 (SCK output) Min IE] Note: (1) 1x Baud rate in asynchronous, synchronous, or I/O interface mode, T = teye = 1/fXTAL' The items not included in this list are independent of oscillator frequency (fXTAd, (2) Event counter mode, (3) Pulse width measurement mode, 4-87 NEe pPD7810/11 Timing Waveforms Read Operation x, AB,.-AB. X l (PF7 -PF.) -- --.JIUa t::1 t ROH tAD 1 ADoR.-AooR7 I-- - t L L _ - ALE - tAL - ) Data-In 1-~ t LOR I - tLA - -X 'i: AooR.-ADoR'5 _ t RL _ " I-tAFR t Ro Ro -tLR ~ tRR tAR MOoEO [101M] [Note 1] I 7''! ! - = = = i ' L - . tL Note: [1] iO/M signal Is output to the MOoEO pin during a read orwrlteofspeclal reglster[s] Sr-Sr2, if MOoEO Is pulled up to Vee. 49-0005438 Write Operation x, AB'5-AB.~'~--~~~------------------------------------------------------------~J~~'~----(PF7 -PF.) _r'-__,.-p;__________-:-________~----A-0-0-R;.8--A-0-oR-,;;.5----------------------_J''-_r'-____ 0 7 -0. (P07 -Po.) .....r '"_,.p;_____.....;~_t_....;..--_'l~'--J,,...-----------------O-ata-o---ut--_:__:__---------~,--,, ,______ I------tow------i ALE ~-----------tww------------~ MOoEO [101M] [Note 1] Note: [1] iO/M signal is output to the MOoEO pin duringareadorwrlteolspeclal reglster[s] Sr-Sr2, If MOoEO is,pulled up to Vee. 49·0006396 4-88 NEe pPD7810/11 Timing Waveforms (cont) Opcode Fetch Operation X, ,5 AB -AB. (PF 7 -PF.) J--.J l( ADDR.-ADDR ,5 tAD AD 7 -AD. (PD 7 -PD.) ALE - ) tRDH Opcode ADDR.- ADDR 7 1-----1 '}-------- t LDR - I::::::: _tLL j4--tLA_ -tRL ~ If f - - t RD - - tALRD - tLR IK:"' tRR tAR MODE1 [M1] [Note 1] ! - - - tML - J :+/ . tL Note: [1] M1 signal Is output to the MODE1 pin during Opcode Fetch If MODE1 pin Is pulled up to VCC. 49-0005458 I Serial Operation Transmit/Receive Timing TXD ____ ~----~~--------------~------------------ RXD ________~~4+------------~-------------------- 49-0005468 4-89 NEe pPD7810/11 Operand Format/Description Remarks Format 1. sr-sr4 [special register) Description r r1 r2 V,A,B,C, D,E, H,L EAH,EAL, B,C,D,E, H,L A, B,C sr sr2 sr3 sr4 PA, PB, PC, PO, PF, MKH, MKL, ANM, SMH, SML, EOM, ETMM, TMM, MM, MCC, MA, MB, MC, MF, TxB, TMo, TM1 PA,PB, PC, PD, PF, MKH, MKL, ANM, SMH, EOM, TMM, RXB, CRO,CR1,CR2,CR3 PA, PB, PC, PD, PF, MKH, ANM, MKL; SMH, EOM, TMM ETMO, ETM1 . ECNT, ECPT rp rp1 rp2 rp3 SP,B,D,H V, B,D,H, EA SP,B,D,H,EA B, D,H rpa rpa1 rpa2 B, D, H, D+ , H + , 0 -, H B, D,H B, D, H, 0 +, H + , D -, H -, D+ byte, H + A, H + B, H + EA, H + byte D, H, D + +, H + +, D + byte, H + A, H + B, H + EA, H + byte sr1 rpa3 wa a-Bit il)1mediate data word byte bit 16-Bit immediate data a-Bit immediate data 3-Bit immediate data f CY,HC,Z irf FNMI, FTO, FT1, F1, F2, FEO, FE1, FEIN, FAD, FSR, FST, ER, OV, AN4, ANs, AN6, AN?, SB ETMM = Timer/Event Counter Mode EOM = Timer/Event Counter Output Mode MM = Memory Mapping TMo = Timer Register 0 TM1 = Timer Register 1 TMM = Timer Mode ETMo = Timer/Event Counter Register 0 ETM1= Timer/Event Counter Register 1 TxB = TX Buffer RxB = RX Buffer SMH = Serial Mode High SML = Serial Mode Low MKH = Mask High MKL = Mask Low ANM = A/D Channel Mode CRo = A/D Conversion Result 0-3 to CR3 2. rp·rp3 [register pair) H = HL V=VA EA = Extended Accumulator SP = Stack Pointer B=BC D= DE Description B = (BC) D = (DE) H = (HL) D+=(DE) + H - = (HL) + D-= (DE)H- = (HL)'CY = Carry 5. irf [interrupt flag) A Logical product (logical AND) NMI = NMI* Input v Logical sum (logical OR) Exclusive OR Complement Concatenation D + += (DE) ++ H + +=(HL) ++ D + byte = (DE) + byte H + A = (HL) + (A) H + B = (HL) + (B) H + EA = (HL) + (EA) H + byte = (HL) + byte 4. f [flag) Transfer direction, result 4-90 ECNT = Timer/Event Counter Upcounter ECPT = Timer/Event Counter Capture 3. rpa·rpa3 [rp addressing) Instruction Set Symbol Definitions Symbol PA = Port A PB = Port B PC = Port C PD = Port D PF = Port F MA = Mode A MB = Mode B MC = Mode C· MCC = Mode Control C MF = Mode F FTO = INTFTO FT1 = INTFT1 F1 = INTF1 F2 = INTF2 FEO = INTFEO FE1 = INTFE1 HC = Half Carry Z = Zero FEIN = INTFEIN FAD = INTFAD FSR = INTFSR FST = INTFST ER = Error OV = Overflow AN4 to AN? = Analog Input 4-7 SB = Standby Instruction Set Operation Code Mnemonic Operand Operation 7 6 5 0 0 0 B1 B3 4 3 B2 2 1 0 7 6 5 B4 4 3 2 1 0 State(l) Bytes Skip Condition 8·Bit Data Transfer MOV MVI r1,A A, r1 (r1)-(A) (A)-(r1) 0 0 *sr,A *A,sr1 r,word (sr)-(A) (A)-(sr1) (r)-(word) 0 0 word,r (word)-(r) 0 *r,byte (r) -byte setL1 if r = A set LOif r = L sr2,byte (sr2) - byte 0 MVIW *wa, byte ((V).(wa)) - 0 MVIX STAW LDAW STAX LDAX *rpa1,byte *wa *wa *rpa2 *rpa2 EXX EXA EXH 16·Bit Data Transfer BLOCK D DMOV rp3, EA EA,rp3 byte (rpa1) - byte ((V).(wa)) +- A 0 0 0 1 0 0 (rpa2) - (A) (A) - ((rpa2)) (B) - (B'),(C) - (C'),(D) - (D') (E) .... (E'),(H) .... (H'),(L) .... (L') (V) ++ (V'),(A) .... (A'),(EA) ++ (EA') (H) .... (H'),(L) .... (L') A3 0 ((DE)) - ((HL)),(DE) - (DE + 1), (HL) - (HL) + 1, (C) - (C)-1 End if borrow 0 ((V).(wa)) (rp3L) - (EAL),(rp3H) - (EAH) (EAL) - (rp3d,(EAH) - (rp3H) A3 0 0 0 0 0 0 0 0 (A) - 0 1 0 1 1 0 0 Lowaddr 1 0 0 0 0 0 1 0 0 0 0 Lowaddr 0 1 R2 R1 Ro 1 0 0 0 0 0 0 Data 1 0 Data 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 S5 S4 S3 S2 S1 So S5 S4 S3 S2 S1 So 1 0 1 R2 R1 Ro High addr 10 10 17 2 2 4 1 1 R2 R1 RO High addr 17 4 7 2 14 3 Offset 13 3 Data 10 2 Offset Offset Data (2) Data (2) 10 10 7/13(3) 2 2 2 2 1 0 Data S3 o A1 Ao 0 0 1 1 0 0 0 1 A2 A1 Ao 1 A2 A1 AO 0 0 0 1 0 0 1 1 1 0 0 0 4 4 T2 T1 TO 1 T2 T1 To 0 P1 Po P1 Po 0 0 0 o S2 S1 So 7/13(3) 4 ~ t'l L1 = 1 and r = A LO = 1 and r = L 4 4 13 x (C+1) 4 4 ,. 1::: g --a ...0CD ...~ .j::a.. I ~ I!II ~ I <.D 1::: Instruction Set (cont) I\) Operation Code 82 81 Mnemonic Operand 7 Operation 16-Blt Data Transfer (cont) OMOV sr3, EA (sr3) +- (EA) EA,sr4 (EA) +- (sr4) S8CO word (word) +- (C), (word + 1) +- (8) o o o SOEO . word (word) +- (E), (word + 1) - (D) o SHLO word (word) +- (L), (word + 1) - (H) o SSPO word (word) - (SPd,(word + 1) +- (SPH) o STEAX rpa3 ((rpa3)) - L8CO word (C) - (EAL),((rpa3) + 1 +- (EAH) (word),(8) - (word + 1) o o 0 0 o 1 (E) - (word),(O) - (word + 1) o LHLO word (L) - (word),(H) - (word + 1) o LSPO word (SPd -'(word),(SPH) - ((word) + 1) o LOEAX rpa3 (EAL) - ((rpa3)),(EAH) - ((rpa3) + 1) o PUSH rp1 ((SP) - 1) - (rp1H) ((SP) - 2) (SP) +- (SP) - 2 POP rp1 TABLE (C) 8-Bit Arithmetic [Register) ADD A,r (A) r,A (r) AOC A,r (A) r,A (r) - 4 o word LXI 5 o LOEO (rp1d- ((SP)),(rp1H) (SP) - (SP) + 2 *rp2,word (rp2) - (word) set LO if rp2 = H & U o o ((SP) + 1) 2 I 0 o 000 000 0 0 0 Lowaddr 10000 Lowaddr 1 0 0 0 0 Lowaddr 1 0 0 0 0 Lowaddr 0 1 0 0 0 Oata(4) 1 0 0 0 0 Lowaddr 1 0 0 0 0 Lowaddr 1 0 0 0 0 Lowaddr 1 0 0 0 0 Lowaddr 0 1 0 0 0 Oata(4) o (rp1d 3 o 2 I 0 01001UO 1 1 0 0 0 0 V1 Vo 000 1 1 0 High addr o 0 1 0 1 1 High addr o 0 1 1 1 o High addr 1 0 o 0 001 High addr o 0 1 C3 C2 C1 Co 000 o 0 o 0 o 0 o High addr 1 0 1 1 High addr 1 1 1 1 High addr 0 0 1 1 High addr 0 C3 C2 C1 Co 0 Statefl) Bytes 14 14 20 2 20 4 20 4 20 4 14/20(3) 3 20 4 20 4 20 4 20 4 14/20(3) 3 0 02 01 00 10 0 ((PC)+3+(A)),B - ((PC)+3+(A)+ 1) 0 0 0 (A) + (r) (r) + (A) (A) + (r) + (CY) (r) + (A) + (CY) o o o o III 5 13 0 0 & 002 01 00 0 P2 P1 Po 0 1 High byte 1 7 B4 4 3 0 1 0 o o o o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Low byte o o 1 o 10 3 0 1 000 17 2 o o o o 0 0 0 0 ~ ~ ~ 8 8 2 2 ~ 1 0 ~ ~ ~ 8 2 1 0 ~ ~ ~ 8 2 " ".... ... 2 4 1 ~ ~ Skip Condition a .... ...oCD LO = 1 and rp2=H ~ t) Instruction Set (cont) Operation Code B2 B1 U Mnemonic Operand Operation 7 6 5 4 3 2 1 0 7 6 1 0 o 0 5 B4 4 3 2 1 0 State(l) Bytes Skip Condition 8-Bit Arithmetic [Registerl(cont! ADDNC SUB SBB SUBNB ANA ORA XRA GTA LTA NEA EQA ONA OFFA (A) + (r) (r) + (A) (A) - (r) (r) - (A) (A) - (r) - (CY) (r) - (A) - (CY) (A) - (r) (r) - (A) (A) A (r) (r) A (A) (A) V (r) (r) V (A) (A).If(r) (r) ¥ (A) (r) - 1 (A) - 1 (r) A,r r,A A,r r,A A,r r,A A,r r,A A,r r,A A,r r,A A,r r,A A;r r,A A,r (A) (r) (A) (r) (A) (r) (A) (r) (A) (r) (A) (r) (A) (r) (A) (r) (A) - r,A (r) A,r r,A A,r r,A A,r A,r (A) - (r) (r)-(A) (A) - (r) (r) - (A) (A) A (r) (A) A (r) ~ (A) o o or 0 000 0 0 0 0 0 0 00000 01 00000 00000 0 o 1 0 0 0 0 0 o 100 000 o 1 100 000 o 0 000 0 o 1 0 0 0 0 o 0 0 0 0 0 o 0 0 0 0 0 o 0 0 0 0 0 o 1 0 0 0 0 0 o 0 0 0 0 0 o 0 0 0 0 0 o 0 000 0 o 1 0 0 0 0 0 o 0 0 0 0 0 o 1 1 0 0 0 0 0 01 00000 01 00000 o 1 1 0 0 0 0 0 o 1 1 0 0 0 0 0 o o o o 0 ~ ~ ~ 0 ~ ~ ~ 8 8 0 R~ 0 R2 R1 Ro 1 o R2 R1 Ro o 1 o R2 R1 Ro 1 0 o R2 R1 Ro o 0 o R2 R1 Ro 1 000 ~ R1 Ro o 0 0 0 R2 R1 Ro 1 0 0 ~ R1 Ro 000 R2 R1 Ro 100 o R2 R1 Ro 000 R1 Ro 1 0 o ~ R1 Ro o o 0 R2 R1 Ro 1 0 1 1 R2 R1 Ro o 0 1 1 R2 R1 Ro o 1 ~ R1 Ro o o R2 R1 ~ ~ R1 Ro 1 1 o R2 Rl Ro o 0 R2 Rl Ro o 1 R2 R1 Ro 8 8 8 8 o 0R2 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 2 2 2 2 2 2 2 2 2 2 2 2 No carry No carry ~ ~ No borrow No borrow 2 2 2 2 2 2 2 2 2 2 2 2 No borrow No borrow Borrow Borrow No zero No zero Zero Zero No zero Zero 8-Bit Arithmetic (Memory! ADDX ADCX ADDNCX SUBX SBBX SUBNBX ANAX ORAX rpa rpa rpa rpa rpa rpa rpa rpa (A) (A) (A) (A) (A) (A) (A) (A) - (A) + ((rpa)) (A) + ((rpa)) + (CY) (A) + ((rpa)) (A) - ((rpa)) (A) - ((rpa)) - (CY) (A) - ((rpa)) (A) A ((rpa)) (A) V ((rpa)) o o o o o o o o 1 000 0 o 0 0 0 o 000 o 0 0 0 000 0 000 0 o 0 0 0 1 0 0 0 0 1 o o 0 0 1 1 0 o 1 1 01 0 o 0 o 1 1 0 1 0 A2 0 A2 0 A2 0 A2 0 A2 0 A2 1 A2 1 A2 Al Ao A1 Ao A1 Ao A1 Al Al Al Al Ao Ao Ao Ao Ao 11 11 11 11 11 11 11 11 2 2 2 2 2 2 2 2 No carry No borrow 1:: "a ....CD--o ~ ~ .... I co (J.) I!II ~ I <0 ,. 1:::: Instruction Set (cont) ~ Operation Code Bl Mnemonic Operand Operation 7 ~ B2 a B4 & 5 432 0 7 & 543 2 1 0 State(l) Bytes Skip Condition 8-Bit Arithmetic IMemory)lcont) XRAX rpa (A) GTAX rpa (A) - ((rpa» -1 LTAX NEAX rpa rpa (A) - ((rpa» (A) - ((rpa)) o o o o EQAX rpa (A) - ((rpa)) o ONAX OFFAX rpa rpa (A) A ((rpa)) (A) A ((rpa» o +- (A)-\f((rpa» o o o o o o o o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o o o 0 0 0 0 0 0 0 11 11 1 1 A2 A1 Ao 11 o 1 A2 A1 Ao 11 1 1 1 A2 A1 Ao 11 o o 0 1 A2 A1 Ao 1 1 A2 A1 -Ao 11 11 2 2 2 2 2 2 2 0 1 1 0 1 0 A2 A1 Ao 1 A2 A1 Ao ..... m o ~ No borrow Borrow No zero Zero No zero Zero Immediate Data ADI *A,byte (A) r,byte (r) ++- + byte + byte (A) (r) o o o o o o 0 o o 0 o o 0 0 R2 R1 Ro 7 11 3 o 0 S3 o 0 0 S2 S1 So 20 3 1 0 R2 R1 Ro 7 11 3 o S2 S1 So 20 3 Data 2 Data sr2, byte (sr2) (sr2) +- + byte 0 Data ACI *A,byte (A) r,byte (r) ++- sr2,byte (sr2) + byte + (CY) + byte + (CY) (A) (r) (sr2) +- + byte + (CY) o o 010 1 0 1 o 0 o o o o o 0 S3 o 0 1 2 o 0 0 7 1 0 o 0 o 0 R2 R1 Ro 11 3 No carry No carry o 0 S3 0 o 0 S2 S1 So 20 3 No carry 0 Data 0 Data 2 Data ADINC *A,byte (A) r,byte (r) ++- + byte + byte (A) (r) o o 0 o Data Data sr2,byte (sr2) +- (sr2) + byte o o 0 Data SUI *A,byte (A) r,byte (r) ++- (A) - byte (r) - byte o o o o o 1 0 0 1 0 o 0 o o 0 R2 R1 Ro 7 11 3 o 0 S3 o 0 S2 S1 So 20 3 1 Data 2 Data sr2,byte (sr2) +- (sr2) - byte 0 Data SBI *A,byte (A) r,byte (r) +- +- (A)..,.. byte - (CY) (r) - byte - (CY) o o 1 0 o o 1 o 0 7 2 0 R2 R1 Ro 11 3 o 20 3 Data o 0 o o 0 S3 Data sr2,byte (sr2) +- (sr2) - byte - (CY) 0 Data III S2 S1 So ~ ~ Instruction Set (cont) Operation Code Mnemonic Operand Operation 7 6 0 0 0 5 B1 B3 4 3 B2 B4 2 1 0 0 1 0 0 Data 0 7 6 0 0 0 0 S3 5 4 3 2 1 0 Statell) Bytes Skip Condition Immediate Data (contI SUINB *A,byte (A) r,byte (r) ++- sr2,byte (sr2) (A) - byte (r) - byte +- (sr2) - byte 0 0 0 7 2 R2 R1 Ro 11 3 No borrow No borrow 0 S2 S1 So 20 3 No borrow 1 R2 R1 Ro 11 3 S2 S1 So 20 3 7 2 1 R2 R1 Ro 11 3 S2 S1 So 20 3 7 2 0 R2 R1 Ro 11 3 0 S2 S1 So 20 3 Data 1 R2 R1 Ro 2 No borrow 11 3 No borrow S2 S1 So 14 3 No borrow 7 2 Borrow 1 R2 R1 Ro 11 3 Borrow S2 S1 So 14 3 Borrow Data 0 1 R2 R1 Ro 7 Data 0 ~ ~ Data ANI ORI *A,byte (A) - (A) /\ byte r,byte (r) - (r) /\ byte 0 sr2,byte (sr2) - 0 *A,byte (A) r,byte (r) - (sr2) /\ byte (A) V byte (r) V byte 0 0 0 0 0 0 0 0 1 1 0 Data 0 0 0 0 Data 0 0 S3 0 0 1 0 0 1 1 0 0 Data 0 0 0 0 0 0 0 0 2 Data 1 Data sr2,byte (sr2) XRI *A,byte (A) r,byte +- (sr2) V byte 0 (A)-\fbyte 0 0 0 0 Data 0 1 0 0 (r) -(r)-Ifbyte sr2,byte (sr2) - (sr2) V byte 0 Data 0 0 0 S3 Data 1 0 0 0 S3 0 0 Data GTI * A,byte (A) - byte - 1 0 r,byte (r) - byte-1 0 sr2,byte (sr2) - byte - 1 LTI NEI 0 0 0 0 0 0 Data 0 0 0 Data 0 S3 0 0 0 0 0 1 0 S3 *A,byte (A) - byte r,byte (r) - byte 0 sr2,byte (sr2) - byte 0 0 0 Data * A,byte (A) - byte 0 0 0 r,byte (r) - byte 0 1 0 0 Data 1 Data 0 11 No zero 3 No zero 1::: "--aD ... :::.: ... CX) 0 Data ~ I (0 0'1 ~ ~ I <0 1::: Instruction Set (cont) 0) Operation Code Bl B2 - - B3 Mnemonic Operand Operation Immediate Data (cont) NEI sr2,byte (sr2) - byte EQI ONI OFFI 7 6 5 4 0 0 0 Data 1 0 1 0 Data 0 0 Data 0 0 1 0 Data 0 0 Data 1 0 1 0 Data 0 *A,byte (A) - byte r,byte (r) - byte 0 0 sr2,byte (sr2) - byte 0 *A,byte (A) A byte r,byte (r) A byte 0 0 sr2,byte (sr2) A byte 0 *A,byte (A) A byte r,byte (r) A byte 0 0 sr2,byte (sr2) A byte 0 0 3 0 0 2 B4 4 3 2 S2 S1 So 14 1 R2 R1 Ro S2 S1 So 14 1 0 7 0 0 S3 0 0 0 1 6 5 1 0 1 0 Data 0 S3 State(l) Bytes Skip Condition 3 No zero 7 2 11 3 Zero Zero 3 Zero 1 0 2 0 0 Data 0 1 R2 R1 Ro 7 0 11 3 No zero No zero 0 0 S3 0 0 S2 S1 So 14 3 No zero 1 0 1 0 7 2 0 0 1 1 R2 R1 Ro 11 3 Zero Zero 0 0 S3 0 S2 S1 So 14 3 Zero 0 0 0 0 0 0 0 14 3 0 0 0 0 0 0 0 14 3 0 0 0 0 14 3 0 0 0 0 0 14 3 1 0 0 0 0 14 3 0 0 0 0 14 3 0 0 0 14 3 Data "ma ...0--...~ Data Working Register ADDW wa (A) - (A) + ((V)e(wa)) 0 1 0 0 Offset ADCW wa (A) - (A) + ((V)e(wa)) + (CY) 0 1 0 Offset ADDNCW wa (A) - (A) + ((V)e(wa)) 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 SUBW wa (A) - (A) - ((V)e(wa)) 0 Offset 1 0 Offset SBBW wa (A) - (A) - ((V)e(wa)) - (CY) 0 1 0 0 1 No carry Offset SUBNBW ANAW wa wa (A) (A) - (A) - ((V)e(wa)) (A) A ((V)e(wa)) ,II 0 1 0 Offset 1 0 Offset 0 0 No borrow ~ (1 Instruction Set (cont) Operation Code Bl Mnemonic Operand Working Register (cont) ORAW wa Operation (A) +- (A) V ((V)e(wa)) 7 6 5 B3 4 3 0 B2 2 0 6 5 B4 4 3 2 1 0 0 0 0 0 0 0 0 14 3 0 0 0 0 0 0 0 0 14 3 0 0 0 0 0 0 14 3 No borrow 0 0 0 0 0 0 14 3 Borrow 0 0 0 0 0 14 3 No zero 0 0 0 14 3 Zero 0 0 0 14 3 No zero 0 0 0 14 3 Zero I 0 0 7 State(l) Bytes Skip Condition ~ ~ Offset XRAW wa (A) GTAW wa (A) - ((V)e(wa))-1 0 LTAW wa (A) - ((V)e(wa)) 0 NEAW wa (A) - ((V)e(wa)) 0 EQAW wa (A) - ((V)e(wa)) 0 +- (A).lf((V)e(wa)) 0 1 0 Offset 1 0 Offset 1 0 Offset 1 0 Offset 1 0 0 0 Offset ONAW wa (A) A ((V)e(wa)) 0 1 0 Offset 0 0 OFFAW wa (A) A ((V)e(wa)) 0 1 0 Offset 0 0 0 0 0 0 Offset 19 3 0 Data 1 0 0 Offset 19 3 ANIW ORIW *wa,byte ((V)e(wa)) *wa,byte ((V)e(wa)) +- +- ((V)e(wa)) A byte ((V)e(wa)) V byte 0 0 0 0 0 0 Data GTIW *wa,byte ((V)e(wa)) - byte - 1 0 0 0 0 0 Offset 13 3 No borrow 0 Data 1 0 Data 0 Offset 13 3 Borrow LTIW *wa,byte ((V)e(wa)) - byte 0 NEIW *wa,byte ((V)e(wa))- byte 0 0 0 0 Offset 13 3 No zero 0 Data 1 0 0 Offset 13 3 Zero 0 Offset 13 3 No zero EQIW *wa,byte ((V)e(wa)) - byte 1 Data ONIW OFFIW *wa,byte ((V).(wa)) A byte *wa,byte ((V)e(wa)) A byte-' ' 0 0-Q 0 0 Data 1 0 0 1 ,. 1::: D Offset 0 Data 13 3 Zero IIIiiI CD ~ ~ ~ ~ ~ I (0 "'" II 4:>- cb 1:: Instruction Set (cont) (X) ~ Operation Code Mnemonic Operand Operation 7 654 o o o o o o r B1 ~ ~ ~ 3 2 0 7 o 6 5 4 3 2 0 o o o o 0 R1 Ro 1 P1 Po 11 0 0 11 11 11 11 11 State(1) Bytes Skip Condition 16-Bit Arithmetic EADD EA,r2 (EA) - (EA) + (r2) DADO EA,rp3 (EA) - (EA) + (rp3) DADC EA,rp3 (EAr ~ (EA) + (rp3) + (CY) DADDNC EA,rp3 (EA) - (EA) + (rp3) ESUB EA,r2 (EA) - (EA) - (r2) DSUB EA,rp3 (EA) - (EA) - (rp3) DSBB EA,rp3 (EAr - (EA) - (rp3) - (CY) DSUBNB EA,rp3 (EA) - (EA) - (rp3) DAN EA,rp3 (EA) - (EA) /\ (rp3) (EA) V (rp3) DOR EA,rp3 (EA) - DXR EA,rp3 (EA) -(EA)-\f-(rp3) DGT EA,rp3 (EA) - (rp3) - 1 DLT EA,rp3 (EA) - (rp3) ONE EA,rp3 (EA) - (rp3) DEQ EA,rp3 (EA) - (rp3) DON EA,rp3 (EA) /\ (rp3) DOFF EA,rp3 (EA) /\ (rp3) Multiply /Divide MUL r2 DIV r2 Increment/Decrement INR r2 INRW *wa INX OCR DCRW DCX rp (EA) - (A) x (r2) (EA) - (EA) + (r2), (r2) - Remainder (r2)-(r2)+1 ((V)e(wa)) (rp) - EA (EA) - r2 (r2) - *wa o o o o o o o o o o ((V)e(wa)) + 1 (EA) + 1 . ((V)e(wa)) - ((V)e(wa)) -1 1 (J 0 0 0 o o o o o o o 1 1 1 0 0 0 0 0 0 1 0 0 0 o 1 1 1 0 0 0 0 0 0 1 0 1 0 1 0 1 1 o o 1 0 0 1 0 11 2 1 P1 Po 11 1 P1 Po 11 2 2 2 100 1 0 1 000 o 1 R1 Ro P1 Po P1 Po 0 P1 Po 1 Pt Po 2 2 2 P1 Po 11 2 001 0 P1 010 o o 1 P1 Po 11 11 11 11 11 11 11 2 2 No borrow 2 Borrow 0 1 0 0 o 1 0 0 1 0 P1 Po 1 0 P1 Po 010 1 0 1 0 1 1 0 1 0 (J o 0 0 o o 0 P1 Po P1 Po P1 Po 1 1 0 0 0 0 o o 1 0 0 0 0 R1 Ro 0 1 0 0 0 0 0 0 P1 Po 0 1 0 7 0 7 001 o 1 0 1 0 1 0 0 0 1 0 1 0 0 R1 Ro 0 0 1 1 0 0 0 0 0 0 1 2 No zero 2 Zero 2 2 Zero R1 Ro 32 2 R1 Ro 59 2 4 Offset 16 16 (rp) - 1 0 0 P1 Po 0 0 1 1 7 EA (EA) - (EA) - 1 1 0 1 0 1 0 0 1 7 o o o o o 0 0 0 1 1 0 0 Decimal Adjust Accumulator CLC (CY)-O Iii 1 1 0 0 4 0 00101 0 000 00101 0 8 o 8 Carry Borrow 2 Others (CY) -1 No zero Carry 2 4 Offset (rp) - DAA No borrow 2 001 rp STC No carry 0 Po " 2 010 o o (rp) + 1 (r2) - 1 1 1 ..., Q) .... o ~ .... 2 2 Borrow ~ ~ Instruction Set (cont) Operation Code B1 B2 B3 Mnemonic Operand 7 Operation Others [conti NEGA Rotate and Shift RLD RRD RLL r2 (r2m + 1) - (r2 m), (r2o) (CY) - (r27) RLR r2 (r2m - 1) - (r2m),(r27) (CY) - (r2o) SLL SLR r2 r2 (r2m + 1) - (r2m),(r20) - 0, (CY) (r2m - 1) +- (r2m),(r27) +- 0, (CY) SLLC SLRC r2 r2 (r2m + 1) +- (r2m),(r20) (r2m - 1) +- (r2m),(r27) DRLL EA (EAn + 1) +- (EAn},{EAO) (CY) +- (EA1S) DRLR EA (EAn -1) +- (EA n},{EA1S) (CY) +- (EAo) DSLL EA (EAn + 1) +- (EAn),(EAo) (CY) + - (EA1S) DSLR EA (EAn - 1) +- (EA n},{EA1S) (CY) +- (EAo) 6 5 4 0 0 3 2 1 0 7 6 0 0 0 5 B4 4 3 2 1 1 1 0 1 1 0 0 (A)-(A)+1 0 Rotate left digit 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 Rotate right digit 0 1 1 1 0 0 1 (CY), 0 1 0 1 0 0 0 0 0 1 1 0 (CY), 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 +- +- 0, (CY) 0, (CY) +- (CY), +- +- (CY), 0, +- 0, ++++- 2 17 2 17 2 1 R1 Ro 8 2 o R1 Ro 8 2 0 1 R1 Ro 0 0 R1 Ro 0 0 8 8 8 8 8 2 2 2 0 8 2 8 2 8 2 Lowaddr 10 3 0 4 1 1 jdisp 10 10 2 0 0 0 8 2 0 0 0 High addr 0 0 16 3 0 17 2 13 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 1 High addr 0 0 0 (r27) (r2o) 0 1 1 Bytes 8 0 0 (r27) (r20) State(l) 1 1 0 0 0 0 0 0 R1 Ro R1 Ro 0 0 0 Skip Condition ~ n 2 Carry Carry 2 Jump JMP *word word *word JEA Call CAll *word CALB CALF ~ cO co +- (PCH) JB JR JRE (PC) *word (PC) (PC) (PC) word +- +++- (B),(PCl) +- (C) (PC) + 1 + jdisp 1 (PC) + 2 + jdisp (EA) 0 0 0 0 0 0 0 0 0 0 0 jdisp1 1 ((SP) -1) + - ((PC) + 3)H, ((SP) - 2) + - ((PC) + 3)l (PC) - word, (SP) +- (SP) - 2 0 1 0 ((SP) -1) +- ((PC) +2)H, ((SP) - 2) - ((PC) + 2)l (PCH) +- (B), (PCl) - (C), (SP) +- (SP) - 2 0 1 0 0 1 ((SP) - 1) + - ((PC) + 2)H, ((SP) - 2) - ((PC) + 2)l (PC1S-11) - 00001, WC10-0) +- fa, (SP) +- (SP) - 2 0 1 1 1 1- 0 0 0 0 1 0 0 Lowaddr 1 1::: 0 0 1 0 fa ~ 1 0 0 1 "C--.. ... ~ ... CD 0 ~ I " 1:::: Instruction Set (cont) Operation Code 0 B1 B2 - B3 Mnemonic Operand Operation 7 6 5 0 0 4 2 3 1 0 7 6 5 B4 4 3 2 1 0 State(1) Bytes Skip Condition Call (conti CALT word SOFTI ((SP) -1) - ((PC) + 1)H, ((SP) - 2) - ((PC) + 1)L (PGLl - (128 + 2ta),(PCH) (129 + 2ta),(SP) - (SP) :..- 2 ((SP) - 1) - (PSW),((SP) - 2) ((PC) + 1)H,((SP) - 3) - ((PC) + 1)L, (PC) - 0060H,(SP) - (SP) - 3 • Return 0 ta 1 0 16 0 1 0 16 0 10 RET (PCLl - ((SP)) , (PCH) (SP) - (SP) + 2 + 1) 0 0 0 RETS (PCLl- ((SP)),(PCH) - ((SP) + 1) (SP) - (SP) + 2,(PC) -{PC) + n 0 0 0 RET! (PCtl- ((SP)),(PCH) - ((SP) + 1) (PSW) - ((SP) + 2), (SP) - (SP) + 3 0 bit, wa 0 ((SP) 0 0 0 ...... CD ...~... Unconditional Skip 10 0 "a ... 13 Skip Bit 0 1 1 B2 Offset So B1 10 2 Bit Test CPU Control SK Skip if f = 1 Skip iff =0 SKN SKIT irf Skip if irf = 1, then reset irf SKNIT irf NOP Skip if irf = 0 Reset irf if irf = 1 No operation EI Enable interrupt 01 Disable interrupt Halt HLT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 F2 F1 Fo F2 F1 Fo 0 0 1 0 0 0 0 0 0 1 f =1 f=O irf = 1 2 irf =0 13 12 11 10 14 13 12 11 10 8 0 0 2 2 2 14 0 0 8 8 8 0 1 4 4 4 1 11 2 Notes: (1) In the case of skip condition,the idle states are as follows: 1-byte instruction: 4 states 2-byte instruction (with *): 7 states 3-byte instruction (with *): 10 states 2-byte instruction: 8 states 3-byte instruction: 11 states 4-byte instruction: 14 states (2) B2 (Data): rpa2 (4) B3 (Data): rpa3 III = D + byte, H + byte. (3) Right side of slash (I) in states indicates case rpa2, rpa3 = D + byte, H + A, H + B, H + EA, H + byte. = D + byte, H + byte ~ ~ NEe NEe Electronics Inc. Description ThepPD78C10,pPD78C11, andpPD78C14 single-chip microcomputers integrate sophisticated on-chip peripheral functionality normally provided by external components. The devices' internal 16-bit ALU and data paths, combined with a powerful instruction set and addressing, make them appropriate in data processing as well as control applications. The devices integrate a 16-bit ALU, 4K-byte ROM, 256-byte RAM with an 8channel AID converter, a multifunction 16-bit timerl event counter, two 8-bit timers, a USART, and two zero-cross detect inputs on a single die, allowing their use in fast, high end processing applications. This involves analog signal interface and processing. The pPD78C11 is a 4K-byte mask ROM high-volume production device embedded with custom customer program. The pPD78C14 is a 16K-byte mask ROM device. The pPD78C10 is a ROM-less version for prototyping and small volume production. pPD78C10/C11/C14 a-BIT, SINGLE-CHIP CMOS MICROCOMPUTERS WITH A/D CONVERTER Ordering Information Part Number J,lPD78C10G-36 J,lPD78C11G-36 J,lPD78C14G-36 64-pin plastic OUIP 12 MHz J,lPD78C10CW J,lPD78C11CW J,lPD78C14CW 64-pin plastic shrink DIP 12 MHz J,lPD78C10G-1 B J,lPD78C11 G-1 B J,lPD78C 14G-1 B 64-pin plastic miniflat 12 MHz J,lPD78C10L J,lPD78C11L J,lPD78C14L 68-pin PLCC (available 3086) 12 MHz Pin Configurations 64-Pin QUIP or Shrink DIP III Voo Features D CMOS technology - 2.5 to 6.0 V operating range - 30 mA operating current D Complete single-chip microcomputer -16-bit ALU - 4K x 8 ROM (78C11) - 16K x 8 ROM (78C14) - 256-byte RAM D 441/0 lines D Two zero-cross detect inputs D Two 8-bit timers D Expansion capabilities - 8085A bus-compatible - 60K-byteexternal memory address range D 8-channel, 8-bit AID converter - Autoscan mode - Channel select mode D Full duplex USART - Synchronous and asynchronous D 154 instructions - 16-bit arithmetic, multiply and divide - HALT and STOP instructions D 1 ps instruction cycle time (12 MHz operation) D Prioritized interrupt structure - 3 external - 8 internal D Standby function D On-chip clock generator D 64-pin plastic QUIP, shrink DIP, or flatpack Max Frequency of Operation Package Type STOP PA4 PDs PAs PD4 PA6 PF7 PF6 PB6 PB7 PC3/TI/INT2 PCs/COo 23 PC7/COl NMI INT1 ANs MODEl RESET ANo AVss 83-003817A 4-101 NEe pPD78C10/C11/C14 Pin Configurations (cont) Pin Identification (cont) AVss A/D converterpower supply ground A/D converter analog inputs 0-7 S4 VAREF A/D converter reference voltage PD1 AVoo AID converter power supply voltage PDo RD Read strobe output WR Write strobe output ALE Address latch enable output PFO-PF7 Port F I/O/Expansion memory address bus (bits 8-15) PDo-PD7 Port 0 I/O/Expansion memory address/ data bus STOP Stop mode control input Voo 5 V power supply ...... IDU')~M S2 1 PA7 0 PBo PB1 48 P F7 PB2 PFs PB3 PFs 7 4S PF4 PBs PF3 PBs PF2 PB7 IlPD78C10/C11/C14 10 42 PF1 PCo/TxD PFo PC1/RxD ALE PC2/SCK 13 39 ViR R5 PC3/T1/INT2 PC4/TO PCs/CI AVoo 1S PCs/COo AN7 PC7/C01 ANs NMI Ground ANo-AN7 I~ PB4 Vss ~ '" ~ ~ '" ~ ~ " ~ ,C > I~- C ~ C ~ C ~C ~C ~ Lf)oo:tMN,...OQO PAs Function Symbol 64-Pin Miniflat 19 33 20 23 Pin Functions PAo-PA7 [Port A] ANs 32 Port A is an 8-bit three-state port. Each bit is independently programmable as either input or output. Reset makes all lines of port A inputs; 83·003818A PBo-PB7 [Port B] Pin Identification Symbol Function PortA I/O Port B I/O PColTxD Port C I/O line O/Transmit data output Port C I/O line 1/Receive data input Port C I/O line 2/Serial clock I/O Port C I/O line 3/Timer input/Interrupt request 2 input Port B is an 8-bit three-state port. Each bit is independently programmable as either input or output. Reset makes all lines of port B inputs. PCO-PC7 [Port C] Port C is an 8-bit three-state port. Each bit is independently programmable as either input or output. Alternatively, the lines of port C can be used as control lines for the USART and timer. Reset puts all lines of port C in port mode, input. Port C I/O line 4/Timer output PCS/CI Port C I/O line 5/Counter input Port C I/O lines 6, 7/Counter outputs 0,1 NMI Nonmaskable interrupt input INT1 Interrupt request 1 input MODE1 Mode 1 input/Memory cycle 1 output RESET TxD [Transmit Data]. Serial data output terminal. RxD [Receive Data]. Serial data input terminal. Reset input SCK [Serial Clock]. Output for the serial clock when internal clock is used. Input for serial clock when external clock is used. MODEO Mode 0 input/I/O/Memory output TI [Timer Input]. Timer input terminal. X1, X2 Crystal connections 1, 2 4-102 NEe INT2 [Interrupt Request 2]. Falling-edge-triggered, maskableinterrupt input terminal and AC-input, zerocross detection terminal. TO [Timer Output]. The output of TO is a square wave with a frequency determined by the timer/counter. CI [Counter Input]. External pulse input to timer/event counter. COo, C01 [Counter Outputs 0, 1]. Programmable rectangular wave outputs based on timer/event counter. pPD78C10/C11/C14 MODE1, MODEO [Mode 1, 0] The MODE1 and MODEO inputs select the memory expansion mode. MODE1 also outputs the M1 Signal during each opcode fetch. MODEO outputs the 10/M signal. VAREF [AID Converter Reference] VAREF sets the upper limit for the A/D conversion range. AVoo [AID Converter Power] PDo-PD7 [Port D] This is the power supply voltage for the A/D converter. Port 0 is an a-bit three-state port. It can be programmed as either a bits of input or a bits of output. When external expansion memory is used, port 0 acts as the multiplexed address/data bus. RD [Read Strobe] PFo-PF7 [Port F] Port F is an a-bit three-state port. Each bit is independently programmable as an input or output. When external expansion memory is used, port F outputs the high-order address bits. ANo-AN7 The RD output goes low to gate data from external devices onto the data bus. RD goes high during reset. Th ree-state. WR [Write Strobe] The WR output goes low to indicate that the data bus holds valid data. It is a strobe signal for external memory or I/O write operations. WR goes high during reset. Three-state. ALE [Address Latch Enable] These are the eight analog inputs to the A/D converter. AN 4 -AN 7 can also be used as a digital input for falling edge detection. The ALE output latches the address signal to the output of PDQ-PO? AVss [AID Converter Power Ground] X1, X2 [Crystal Connections 1,2] AVss is the ground potential for the A/D converter power supply. X1 and X2 are the system clock crystal oscillator terminals. X1 is the input for an external clock. NMI [Nonmaskable Interrupt] Vss [Ground] Falling-edge-triggered nonmaskable interrupt input. Ground potential. INT1 [Interrupt Request 1] STOP [Stop Mode Control Input] INT1 is a rising-edge-triggered, maskable interrupt input. It is also an AC-input, zero-cross detection terminal. A low-level input on STOP stops the system clock oscillator. RESET [Reset] +5 V power supply. Voo [Power Supply] When the RESET input is brought low, it initializes the device. 4-103 III ~ NEe pPD78C10/C11/C14 Block Diagram X'=EJ X2 Osc .. PF 7 -PF o (AB,s-AB.) PC./TxD Inc.lDec. PC SP EA PC,/RxD PC,tSCK V NMI 12 A C Main G.R. 0 H INTl A' C' PD 7 -PD o (AD 7- ADo) Program Memory [NotelJ Data Memory (2S6-byte) All. G.R. PC 3 /TI/INT2 PCs/CI PCs/COo PC 7 /CO, VAAEF AVoo AVss Note: [lJ On-Chip ROM: 78Cl0: 0 78Cll: 4096 Bytes 78C14: 16,384 Bytes AD WR ALE MODEl MODEO RESET STOP 11 Voo Vss 49-000634C 4-104 NEe Functional Description Memory Map The pPD78C11 can directly address up to 64K bytes of memory. Exceptforthe on-chip ROM (0-4095) and RAM (65,280-65,335), any memory location can be used as ROM or RAM. The memory map, figure 1, defines the 0 to 64K byte memory space for the pPD78C11. On-chip ROM is located from 0-16,383 in the pPD78C14. pPD78C10/C11/C14 Table 1. Memory Expansion Analog Input Lines. ANa-AN? are configured as analog input lines for on-chip A/D converter. Port A, Port B, Port C, Port F. Each line of these ports can be individually programmed as an input or output. When used as I/O ports, a" have latched outputs and high-impedance inputs. Port D. Port D can be programmed as a byte input or a byte output. AN4-AN7. The high-order analog input lines, AN4-AN?, can be used as digital input lines for falling-edge detection. Control Lines. Under software control, each line of port C can be configured individually to provide control lines for the serial interface, timer, and timer/counter. Memory Expansion. In addition to the single-chip operation mode, the pPD78C11 has four memory expansion modes. Under software control, port D can provide a multiplexed low-order address and data bus; port F can provide a high-order address bus. Table 1 shows the relation between memory expansion modes and the pin configurations of port D and port F. Port Configuration None Port D Port F I/O port I/O port 256 Bytes Port D Port F Multiplexed address/data bus I/O port 4K Bytes Port D Port Fo-F3 Port F4-F7 Multiplexed address/data bus Address bus I/O port 16K Bytes Port D Port Fo-F5 Port FS-F7 Multiplexed address/data bus Address bus I/O port 6DK Bytes Port D Port F Multiplexed address/data bus Address bus Input/Output The pPD78C10/C11/C14 has 8 analog input lines (ANa-AN?), 44 digital I/O lines, five 8-bit ports (port A, port B, port C, port D, port F), and 4 input lines (AN 4-AN?). Memory Expansion Modes and Port Configurations Timers There are two 8-bit timers. The timers may be programmed independently or may be cascaded and used as a 16-bit timer. The timer can be software set to increment at intervals of four machine cycles (1 ps at 12 MHz operation) or 128 machine cycles (32ps at 12 MHz), or to increment on receipt of a pulse at TI. Figure 2 is the block diagram for the timer. Timer/Event Counter The 16-bit multifunctional timer/event counter (figure 3) can be used for the following operations: • • • • • Interval timer External event counter Frequency measurement Pulse width measurement Programmable square-wave output 4-105 11 ~ NEe pPD78C10/C11/C14 Figure 1. Memory Map Reset/Standby Release Internal ROM 4,096 Bytes: 78C11 16,384 Bytes: 78C14 IROO IR01 External Memory 61,184 Bytes: 78C11 49,152 Bytes: 78C14 10H IR02 18H IR03 20H IR04 28H IR05 FEFFH FFOOH Internal RAM 256 Bytes x 8 FFFFH 001 SoftlNT .... 80H LowADDR 81H HighADDR 82H LowADDR 83H High ADDR I . l" BEH LowADDR BFH COH HighADDR l" User's Area 49-000635C 4-106 NEe Figure 2. JlPD78C10/C11/C14 Timer Block Diagram PC.,TO Timer 0 ,---------, Timer 1 r-----I I PC 3 1T1 I I I ----, Timer/Event Counter I I Clear Serial Interlace I I I I I I INTTo INTT, I I I _ _ _ ...J Internal Bus Notes: 1 CL = 3/f (250ns: 12MHz operation). f: System clock frequency (MHz). 49·000645B 4-107 NEe pPD78C10/C11/C14 Figure 3. Block Diagram for Timer/Event Counter 4CL-------, PC.IClo-----,-------I---I TO--+--. PC 71CO, INTEO INTEl INTEIN Notes: 1 CL = 31f (25Ons: 12MHz operation). f: System clock frequency (MHz). 49·000633C 8-Bit AID Converter Analog/Digital Converter • 8 input channels • 4 conversion result registers • 2 powerful operation modes - Autoscan mode - Channel select mode • Successive approximation technique • Absolute accuracy: 0.6% ±1/2 LSB • Conversion range: 0 to 5 V • Conversion time: 42 ps • Interrupt generation ThepPD78C10/C11/C14featuresan 8-bit, high-speed, high-accuracy AID converter. The AID converter is made up of a 256-resistor ladder and a successive approximation register (SAR). There are four conversion result registers (CRo-CR3)' The 8-channel analog input may be operated in either of two modes. In the select mode, the conversion value of one analog input is sequentially stored in CRo-CR3' In the scan mode, the upper four channels or the lower four channels may be specified. Then those four channels will be consecutively selected and the conversion results stored sequentially in the four conversion result registers. Figure 4 shows the block diagram for the AID converter. To prevent operation of the AID converter and thus reduce power consumption, set VAREF = 0 V. 4-108 NEe pPD78C10/C11/C14 Interrupt Structure There are 11 interrupt sources. Three are external interrupts and eight are internal. Table 2 shows 11 interrupt sources divided into six priority levels. See figure 5. Standby Function ThepPD78C10/C11/C14 has two standby modes: HALT and STOP. The HALT mode reduces power consumption to less than 50% of normal operating requirements, while maintaining the contents of on-chip registers, RAM, and control status. The system clock and on-board peripherals continue to operate, but the CPU stops executing instructions. The HALT mode is initiated by executing the HL T instruction. The HALT mode can be released by any nonmasked interrupt or by RESET. Type B is initiated by inputting a low level on the STOP input. Only RAM contents are saved, not the CPU register contents. The OSCillator is stopped. The STOP mode is released by raising STOP to a high level. The oscillator stabilization time is fixed at 65 ms; 65 ms after STOP is raised, instruction execution will begin at location O. You can increase the stabilization time by holding RESET low for the required time period. AID Converter Block Diagram Figure 4. AVec AVss VAREF AN, AN, AN, AN, AN, AN, AN, AN, i i The STOP mode reduces power consumption to less than 0.1 % of normal operating requirements. There are two STOP modes: type A and type B. Type A is initiated by executing a STOP instruction. If Vee is maintained within the operating range (2.5 to 6.0 V), on-board RAM and CPU register contents are saved. If Vee is held above 2.0 V (but less than 2.5 V), only on-board RAM is saved. The oscillator is stopped. The STOP mode can be released by an input on NMI or RESET. The user can program oscillator stabilization time via timer 1. By checking the standby flag (SB), the user can determine whether the processor has been in the standby mode. Table 2. Interrupt Request Interrupt Sources Interrupt Address Type of Interrupt IROO 4 NMI (Nonmaskable interrupt) Ext 8 INTTO (Coincidence signal from timer 0) Int INTT1 (Coincidence signal from timer 1) IR02 16 Figure 5. Interrupt Structure Block Diagram Wi INTTO INTT1 INT1 INT2 INTEO INTEl INTEIN INTAD INTSR INTST ov Internal/ External IR01 INT1 (Maskable interrupt) 49-000632A ER S8 49-000642A Ext INT2 (Maskable interrupt) IR03 24 INTEO (Coincidence signal from timer I event counter) Int INTE1 (Coincidence signal from timer levent counter) IR04 32 IROS 40 INTEIN (Falling signal of CI and TO counter) Int/Ext INTAD (AID converter interrupt) INTSR (Serial receive interrupt) Int INST (Serial send interrupt) 4-109 NEe pPD78C10/C11/C14 Universal Serial Interface Zero-Crossing Detector The serial interface can operate in one of three modes: synchronous, asynchronous, and liD interface. The liD interface mode transfers data MSB first, for easy interfacing to certain NEC peripheral devices. Synchronous and asynchronous modes transfer data LSB first. Synchronous operation offers two modes of data reception: search and nonsearch. In the search mode, data is transferred one bit at a time from the serial register to the receive buffer. This allows a software search for a sync character. In the nonsearch mode, data transfer from the serial register to the transmit buffer occurs eight bits at a time. Figure 6 shows the universal serial interface block diagram. The INT1 and INT2 terminals (used common to TI and PC3) can detect the zero-crossing point of lowfrequency AC signals. When driven directly, these pins respond as a normal digital input. Figure 7 shows the zero-crossing detection circuitry. Figure 6. Universal Serial Interface Block Diagram The zero-crossing detection capability allows you to make the 50-60 Hz power Signal the basis for system timing and to control voltage phase-sensitive devices. To use the zero-cross detection mode, an AC signal of approximately 1-3 V AC (peak-to-peak) and a maximum frequency of 1 kHz is coupled through an external capacitor to the INT1 and INT2 pins. For the I NT1 pin, the internal digital state is sensed as a the rising edge crosses the average DC level, when it becomes a 1 and INT1 interrupt is generated. o until For the INT2 pin, the state is sensed as a 1 until the falling edge crosses the average DC level, when it becomes a 0 and INT2 interrupt is generated. Figure 7. PC,/RxD Zero-Crossing Detection Circuit IINT1 C I iNT2 (PC3) ~r---~--~~---1~--~I~r-- 49-000646A 83-003835A 4-110 NEe pPD78C10/C11/C14 Absolute Maximum Ratings Power supply voltages, Voo Operating Conditions -0.5 V to +7.0 V ----------------------------AVoo AVss to Voo + 0.5 V AVss Input voltage, VI Output voltage, Vo Output current low, IOL Output current low, total for all pins -40°C to +85°C fXTAL::; 12 MHz +5.0 V ±10% -0.5 V to +0.5 V -0.5 V to +7.0 V -0.5 V to Voo+ 0.5 V Capacitance TA =25°C; Voo = Vss = 0 v Limits 4.0 rnA 100 rnA Parameter Input capacitance Output current high, IOH -2.0 rnA Output current high, total for all pins -SOmA Reference input voltage, VAREF Oscillating Frequency Symbol Min Typ Max CI 10 Output capacitance Co 20 liD capacitance CIO 20 Unit Test Conditions pF Afe = 1 MHz. Unmeasured pF pins returned to 0 V. pF -0.5 V to AVoo + 0.3 V Operating temperature, TOPR fXTAL::; 12 MHz Recommended XTAL Oscillation Circuit Storage temperature, TSTG Comment: Exposing the device to stresses above those listed in Absolute Maximum Ratings could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational sections of this specification. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. c = 10 pF 83-003282A 4-111 NEe pPD78C10/C11/C14 Serial Operation DC Characteristics TA = -1Q°C to HOaC; Voo = +5.0 V ±50/0; Vss = 0 v Limits Parameter Symbol Input low voltage VIL1 Input high voltage Min Typ 0 0.2 VOO V Note 1 inputs. VIH1 2.2 VOO V All except X1, X2, and Note 1 inputs. Output low voltage VOL Output high voltage VOH Data retention voltage VOOOR 0.8 Voo Voo 0.45 V X1, X2, and Note 1 inputs. Max Unit ns (2) IlS SCK output 2 tKKL SCK width high tKKH t 420 ns SCK input (1) 200 ns SCK input (2) 900 ns SCK output 420 ns SCK input (1) 200 ns SCK input (2) 900 ns SCK output tRxK 80 ns (1) tKRX 80 ns (1) V 10H = - 1OO IlA RxD hold time after SCK t V STOP mode SCK l TxD delay time tKTX VOO - 0.5 Test Conditions /lS SCK input (1) tCYK 500 RxD set-up time to SCK 210 ns (1) Note: ±200 /lA INT1, TI(PC3); oV:S= VI:S= VOO ±10 IlA All except INT, TI(PC3) ov:s= VI :S=VOO III Output leakage ILO current ±10 /lA oV:s= Vo :s= VOO AVoo supply current Aloo 0.3 1.0 mA VOO supply current 1001 15 30 mA Operation mode f = 12 MHz 1002 10 20 mA HALT mode f = 12 MHz 15 IlA VOOOR = 2.5 V 10 50 /lA VOOOR=5V ±10% 1000R Note: (1) Inputs RESET, STOP, NMI, SCK, INT1, TI, and AN4-AN7. 4-112 Min V 10L = 2.0 mA V IOH= -1.0 mA I nput current Data retention current SCK cycle time SCK width low VOO -1.0 2.5 Symbol Parameter V All except Note 1 inputs. VIL2 VIH2 Input leakage current Max Unit 0.8 0 Limits . Test Conditions (1) 1x baud rate in asynchronous, synchronous, or I/O interface mode. (2) 16x baud rate or 64x baud rate in asynchronous mode. Zero-Cross Characteristics LImits Parameter Symbol Min Max Unit Zero-cross detection input VZX 1 1.8 VAC p_p Zero-cross accuracy Azx Zero-cross detection input frequency fzx 0.05 ±135 mV 1 kHz Test Conditions Ac coupled 60-Hz sine wave NEe pPD78C10/C11/C14 AC Characteristics Read/Write Operation TA = -40°C to +85°C; Voo = +5.0 V ± 10%; Vss = 0 v limits fXTAl = 12 MHz Parameter Symbol Min Max Unit RESET pulse width tRP 10 J1S Interrupt pulse width (iNT1, INT2) tiP 3.0 J1S 10 J1S NMI pulse width Counter input pulse width Test Conditions (1) 500 ns Event counter mode 4.0 J1S Pulse width measurement mode tTl 500 ns X1 Input cycle time tCYC 83 Address set-up to ALE! tAL 65 ns Address hold after ALE! tLA 50 ns Address to RD ! delay time tAR 150 RD ! to address floating tAFR 20 ns Address to data input tAD 360 ns ALE! to data input tLDR 215 ns RD ! to data input tRD 180 ALE! to RD ! delay time tLR 35 ns tRDH 0 ns tRL 115 ns tRR 280 ns Data read 530 ns Opcode fetch Timer input pulse width Data hold time to RD RD t t to ALE t delay time RD width low tCI 250 ns ns ALE width high tLL 125 ns M1 Setup time to ALE! tML 65 ns M1 Hold time after ALE! tLM 50 ns 101M Setup time to ALE! tiL 65 ns 101M Hold time after ALE! tLi 50 ns tAW 150 ns Address to WR ! Delay ALE ! to data output tLOW 195 WR ! to data output tWD 100 ALE! to WR ! delay Data set-up time to WR Data hold time to WR WR t t t to ALE t delay time WR width low II ns ns ns tLW 35 ns tDW 230 ns tWDH 95 ns tWL 115 ns tww 280 ns Note: (1) Load capacitance: CL = 150 pF. 4-113 NEe JlPD78C10/C111Cf~4 AI D Converter Characteristics = = AVss = 0 V; AVDD -0.5 V :::;VAREF:::; TA -40°C to +85°C; Vss AVDD; VDD - 0.5:::; AVDD Symbol Resolution Min Typ Conversion time Sampling time tCONV tSAMP VIA Analog RAN input impedance VAREF current IAREF MinIMax Min tTl 6T Min tCI (2) 6T Min 0.4% LSB TA = -10°C to ±1/2 +50°C tCI (3) 48T Min tIP 36T Min 0.6% ± 1/2 LSB tAL 2T -100 Min tLA T -30 Min tAR 3T -100 Min 7T - 220 Max Max Unit Test Conditions Bits 567 tCYC 83 ns :::; tCYC :::; 110 ns 432 tCYC 110 ns :::; tCYC :::; 170 ns tAD tLOR 5T - 200 Max 96 tCYC 83 ns :::; tCYC :::; 110 ns tRO 4T -150 Max tLR T -50 Min tRL 2T -50 Min 72 Analog input voltage Calculating Expression 60T 8 Absolute accuracy Symbol tRP Limits Parameter Bus Timing Depending ontCYC tCYC 110 ns:::; tCYc:::; 170 ns 0 VAREF 1000 1.5 3.0 4T - 50 (Data Read) ........... -------.--------.----7T - 50 (Opcode Fetch) Min V tRR Mn tLL 2T -40 tML 2T -100 Min tLM T -30 Min tiL 2T -100 Min tLi T -30 Min tAW 3T -100 Min tLOW T+110 Max tLW T -50 Min tow 4T -100 Min tWOH 2T -70 Min tWL 2T -50 Min tww 4T -50 Min rnA tCYK tKKL Min 12T (SCK input) (1) ----------.----------------------------24T (SCK output) Min 5T + 5 (SCK input) (1) Min ···1·2·T·~·1·00·(SCK··~~t·p~t) tKKH 51 + 5 (SCK input) (1) Min ···12T·~·100·(SCK·output) Note: (1) 1x baud rate in asynchronous, synchronous, or I/O interface mode. T = tCYC = 1/fxTAL · The items not included in this list are independent of oscillator frequency (fXTALl. (2) Event counter mode. (3) Pulse width measurement mode. 4-114 NEe pPD78C10/C11/C14 Timing Waveforms Read Operation x, -~ -JIIIIA -- X i( ADDR.-ADDR'5 tAD HtRDH ) ADDRO ADDR7 l+- f-- t LL ______ -- ~tAL-- RD t lOR I--tLA---oo ALE ,....., 1- Data-in I-tRL l~tAFR -If tRD tRR j-tLR tAR MODEO [iO/M) [Note 1) ~tIL _ _ r I+tL~-I Note: [1) iO/M signal is output to the MODEO pin during a read or write of special register[s) Sr-Sr2, if MOOEO is pulled up to VDD. 49-oo0543B Write Operation x, , -... , - - - .....''\.,.....,'-_ __ AB'5-AB.-~"-'~~-------------------------------'"\ r'-_''''___--'__-:-_~___~---A..:D..:D..:R::..--A..:.D,;;.DR..:.,:;:,5------------- (PF 7-PF o) ..... Data-out t-------tDw------l ALE ~------tww--------~ WR MOOEO [161M] [Note 1) Note: [1) jQ/M signal is outputto the MODEO pin during a read or write of special register[sj Sr-Sr2, if MODEO is pulled up to Voo. 49-0oo639B 4-115 NEe pPD78C10/C11/C14 Timing Waveforms (cont) Opcode Fetch Operation x, AB'5- AB • (PF7 -PFol -- ...ft_J X ADDR.-ADDR'5 lAD AD7-ADo (PD7 -PDol ALE r -) ADDRo-ADDR7 IROHI--l "' Opcode .---jILDRI--ILA _ILL "J-------j+---IRL - -< I - - - IRo - - IAL- RD - ILR ~ IRR IAR MODE11M1) [Note1J ~ILA" ! - - - IML - Nole: [1J M1 signal is oulpullo Ihe MODEl pin during Opcode Felch if MODE1 pin is pulled up 10 Voo. 49·0005458 Serial Operation Transmit/Receive Timing TXD ____~-----'l~--------------J,------------------ RxD ________J~__~----------~.~------------------ 49-0005468 4-116 ~EC pPD78C10/C11/C14 Operand Format/Description Format Remarks Description r r1 r2 ~A,B,C,D,E,H, sr sr2 sr3 sr4 PA, PB, PC, PO, PF, MKH, MKL, ANM, SMH, SML, EOM, ETMM, TMM, MM, MCC, MA, MB, MC, MF, TxB, TMO, TM1, ZCM PA, PB, PC, PO, PF, MKH, MKL, ANM, SMH, EOM, TMM, RxB, CRO, CR1, CR2, CR3 PA, PB, PC, PO, PF, MKH, ANM, MKL, SMH, EOM, TMM HMo, ETM1 ECNT, ECPT rp rp1 rp2 rp3 SP, B, 0, H V,B,D,H,EA SP, B, 0, H, EA B, 0, H rpa rpa1 rpa2 B, 0, H, 0+ , H + , 0 -, H B, 0, H B, 0, H, 0 +, H + , 0 -, H -, 0 + byte, H + A, H + B, H + EA, H + byte 0, H, 0 + +, H + +, 0 + byte, H + A, H + B, H + EA, H + byte L EAH,EAL,B,C,D,E,H,L A, B, C sr1 rpa3 wa 8-Bit immediate data word byte bit 16-Bit immediate data 8-Bit immediate data 3-Bit immediate data FNMI, FTO, FT1, F1, F2, FEO, FE1, FEIN, FAD, FSR, FST, ER, OV, AN4, AN5, ANs, AN?, SB v SP = Stack Pointer B= BC 0= DE TxB = Tx Buffer RxB = Rx Buffer SMH = Serial Mode High SML = Serial Mode Low MKH = Mask High MKL = Mask Low ANM = A/D Channel Mode CRo = A/D Conversion Result 0-3 to CR3 TxB = Tx Buffer RxB = Rx Buffer SMH = Serial Mode High SML = Serial Mode Low MKH = Mask High High MKL = Mask Low H=HL V=VA EA = Extended Accumulator 3. rpa-rpa3 (rp addressing) Logical product (logical AND) Logical sum (logical OR) 4. f (flag) Description Transfer direction, result A HMM = Timer/Event Counter Mode EOM = Timer/Event Counter Output Mode MM = Memory Mapping TMo = Timer Register 0 TM1 = Timer Register 1 TMM = Timer Mode HMo = Timer /Event Counter Register 0 HM1 = Timer/Event Counter Register 1 ZCM = Zero-Cross Mode Control Register B = (BC) 0= (DE) H = (HL) 0+ = (DE) + H -=(HL) + D-=(DE) H -=(HL)- Instruction Set Symbol Definitions Symbol ECNT = Timer/Event Counter Upcounter ECPT = Timer/Event Counter Capture 2. rp-rp3 (register pair) CY, HC, Z irf 1. sr-sr4(special register) PA = Port A PB = Port B PC = Port C PO = Port 0 PF = Port F MA = Mode A MB = Mode B MC = Mode C MCC = Mode Control C MF = Mode F Exclusive OR CY = Carry Complement 5. irf (Interrupt flag) Concatenation NMI = NMI* Input FTO = INTFTO FT1 = INTFT1 F1 = INTF1 F2 = INTF2 FEO = INTFEO FE1 = INTFE1 D++=(DE) ++ H++=(HL)++ o+ byte = (DE) + byte H + A = (HL) + (A) H + B = (HL) +(B) H + EA = (HL) + (EA) H + byte = (HL) + byte HC = Half Carry Z = Zero FEIN = INTFEIN FAD =INTFAD FSR =INTFSR FST = INTFST ER = Error OV = Overflow AN4 to AN? = Analog Input 4-7 SB = Standby 4-117 E ! 1::: Instruction Set "a Operation Code ....L ex> B1 Mnemonic 2 1 0 6 (r1)-(A) (A)-(r1) 0 0 0 0 0 *sr,A (sr)-(A) *A,sr1 r,word (A)-(sr1) (r)-(word) 0 0 0 1 0 0 1 word,r (word)-(r) 0 1 *r,byte (r) - byte set L1 if r = A set LO if r = L 0 1 1 0 0 0 0 Lowaddr 1 1 0 0 0 0 Lowaddr 0 1 R2 R1 Ro 0 1 sr2,byte (sr2) - byte MVIW *wa, byte ((V)e(wa)) - MVIX STAW LDAW STAX LDAX EXX *rpa1,byte *wa *wa *rpa2 *rpa2 EXA EXH 16·Bit Data Transfer BLOCK D DMOV 5 B2 7 8·Bit Data Transfer r1,A MOV A, r1 MVI Operation Operand B3 4 3 byte 0 0 0 (rpa2) -- (A) (A) - ((rpa2)) (B) ++ (B'),(C) ++ (C'),(D) ++ (D') (E) ++ (E'),(H) ++ (H'),(L) ++ (L~) (V) ++ (V'),(A) ++ (A'),(EA) ++ (EA') ++ (H'),(L) ++ 1 0 (rpa1) -- byte ((V)e(wa)) - A (A) - ((V)e(wa)) (H) 0 (L') ((DE)) - ((HL)),(DE) -- (DE + 1), (HL) - (HL) + 1, (C) - (C)-1 End if borrow rp3, EA (rp3Ll -- (EAL),(rp3H) - (EAH) EA,rp3 (EAL) - (rp3L),(EAH) - (rp3H) 0 1 0 A3 0 A3 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 Data 1 0 Data 0 1 0 0 0 1 0 6 5 2 1 0 0 0 0 o A1 Ao 0 0 1 0 0 0 1 A2 A1 Ao 1 A2 A1 Ao 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 P1 Po 1 P1 Po Bytes 10 10 17 2 2 4 17 4 7 2 14 3 Offset 13 3 Data 10 10 10 7/13(3) 7113(3) 2 2 2 2 2 S5 S4 S3 S2 S1 So S5 S4 S3 S2 S1 So 1 0 1 R2 R1 Ro High addr 1 1 1 R2 R1 Ro 1 0 0 High addr Data S3 0 0 0 o Offset Offset Data (2) Data (2) S2 S1 So ~ m n .... ~ ..n ..n 4 1 0 State(l) Skip Condition 4 T2 T1 To 1 T2 T1 To 0 0 0 1 7 B4 4 3 "~ L1 = 1 and r = A LO = 1 and r = L 4 4 4 13 x (C+1) 4 4 ~ ~ Instruction Set (cont) Operation Code B1 Mnemonic Operand Operation 7 16-Bit Data Transfer [contI DMOV sr3, EA (sr3) - (EA) EA,sr4 (EA) - (sr4) SBCD word (word) - (C), (word + 1) - 0 0 0 SDED word (word) - (E), (word + 1) - (D) 0 SHLD word (word) - (L), (word + 1) - (H) 0 SSPD word (word) - (SPL),(word + 1) - STEAX rpa3 ((rpa3)) - LBCD word (C) LDED word +- (E) - (SPH) (EAL),((rpa3) + 1 - (word),(B) (word),(D) - (EAH) 0 LSPD word (SPd+- (word),(SPH) +- ((word) + 1) 0 LDEAX rpa3 (EAL) +- ((rpa3)),(EAH) +- ((rpa3) + 1) 0 PUSH rp1 LXI ((SP) - 1) +- (rp1H) ((SP) - 2) +- (rp1d (SP) +- (SP) - 2 (rp1d+- ((SP)),(rp1H) +- ((SP) + 1) rp1 (SP) - (SP) + 2 *rp2,word (rp2) +- (word) set LO if rp2 = H TABLE (C) +- ((PC)+3+(A)),B - 8-Bit Arithmetic [Register) (A)-(A)+(r) ADD A,r (r) +-(r) + (A) r,A ADC A,r r,A (A) +- (A) + (r) + (CY) (r) +- (r) + (A) + (CY) ((PC)+3+(A)+ 1) 1 0 0 Lowaddr 1 0 0 0 (L) +- (word),(H) +- (word + 1) B4 2 1 0 0 Lowaddr 0 0 1 0 Data(4) 0 word B2 0 0 Lowaddr 1 0 0 Lowaddr 1 0 0 Lowaddr (word + 1) (word + 1) 5 0 0 0 LHLD POP !..... (B) 6 B3 4 3 Lowaddr 1 0 0 Lowaddr 1 0 0 Lowaddr 0 0 1 0 Data(4) 0 State(l) Bytes 14 14 2 2 20 4 0 20 4 20 4 20 4 0 1 1 1 High addr 0 0 0 1 High addr 0 1 C3 C2 C1 Co 14/20(3) 3 0 0 20 4 20 4 20 4 20 4 14/20(3) 3 1 0 7 6 5 4 3 2 1 0 0 0 0 1 0 0 0 0 0 1 o 0 0 0 0 0 Uo V1 Vo 1 0 High addr 1 0 1 High addr 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 High addr 1 0 1 High addr 1 1 1 High addr 0 0 0 0 0 0 0 0 1 High addr 0 0 0 C3 C2 C1 Co 0 02 01 00 13 o 10 Skip Condition ~ ~ 1::: 0 0 02 01 00 0 P2 P1 Po 0 High byte 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Low byte 0 0 1 0 0 0 1 0 0 0 0 0 10 3 0 17 2 0 R2 R1 Ro 0 R2 R1 RO 0 R2 R1 Ro 0 R2 R1 RO 8 8 8 0 0 2 2 2 2 LO = 1 and rp2 = H "a ~ CD n... ~...... ...~ ~ CD I!!I ~ ~ ,.a Instruction Set (cont) l:: I\) Operation Code o ~ Mnemonic Operand Operation 8·Bit Arithmetic [Register~ Icont) ADDNC A,r (A) -- (A) + (r) r,A (r) -- (r) + (A) SUB A,r (A) -- (A) - (r) r,A (r) -- (r) - (A) SBB A,r (A) -- (A) - (r) -:- (CY) r,A (r) -- (r) - (A) - (CY) SUBNB A,r (A) -- (A) - (r) r,A (r) -- (r) - (A) ANA A,r (A) -- (A) A (r) r,A (r) -- (r) A (A) ORA A,r (A) -- (A) V (r) r,A (r) -- (r) V (A) XRA A,r (A) -- (A) V (r) r,A (r) -- (r) V (A) GTA A,r (A) - (r) -:- 1 r,A (r) - (A) - 1 LTA A,r (A) - (r) r,A (r)- (A) NEA A,r (A) ~ (r) r,A (r)-(A) EQA A,r (A) - (r) r,A (r)-(A) ONA A,r (A) A (r) OFFA A,r (A) A (r) 8·Bit Arithmetic (Memory) ADDX rpa (A) -- (A) + ((rpa» ADCX rpa (A) -- (A) + ((rpa» + (CY) ADDNCX rpa (A) -- (A) + ((rpa» SUBX rpa (A) -- (A) - ((rpa» SBBX rpa (A) -- (A) - ((rpa» - (CY) SUBNBX rpa (A) -- (A) - ((rpa» ANAX rpa (A) -- (A) A ((rpa» ORAX rpa (A) -- (A) V ((rpa» 7 o o o o o o o o o o o o o o o o o o o o o o o o o 654 o B2 B4 321 0 1 1 0 0 0 0 0 0 0 000 0 0 0 0 0 0 0 000 000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 000 000 0 0 0 0 0 0 0 000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 000 100 0 0 0 000 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 1 1 1 1 011 1 1 011 011 011 1 1 011 o a o 0 0 0 100 0 0 1 0 0 0 0 100 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 000 7 o 1 o 654 3 2 o 0 0 0 0 0 0 0 0 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 R2 R2 R2 R2 R2 R2 R2 R2 R2 R2 R2 R2 R2 R2 R2 R2 R2 R2 R2 R2 R2 R2 R2 R2 R1 R1 R1 R1 R1 R1 R1 R1 R1 R1 R1 R1 R1 R1 R1 R1 R1 R1 R1 R1 R1 R1 R1 R1 0 0 1 0 0 0 00 1 0 1 0 0 1 1 1 A2 A2 A2 A2 A2 A2 A2 A2 A1 A1 A1 A1 A1 A1 A1 A1 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 1 1 0 0 1 1 1 1 0 0 1 1 0 0 1 o 1 o 1 o 1 o 1 o 1 o 1 o 1 o 1 o 1 1 o o o 1 1 1 1 10 1 0 1 0 1 1 1 1 0 0 0 1 0 Ro Ro Ro Ro Ro Ro Ro Ro Ro Ro Ro Ro Ro Ro Ro Ro Ro Ro Ro Ro Ro Ro Ro Ro Ao Ao Ao Ao Ao Ao Ao Ao State(l) Bytes 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 11 11 11 11 11 11 11 11 2 2 2 2 2 2 2 2 Skip Condition No carry No carry .... ..n ~.. .... CD ~ No borrow No borrow No borrow No borrow Borrow Borrow No zero No zero Zero Zero No zero Zero No carry No borrow ~ ~ Instruction Set (cont) Operation Code Mnemonic Operand Operation 8-Blt Arithmetic (Memory) (cont) XRAX rpa (A) GTAX rpa (A) LTAX rpa (A) NEAX rpa (A) EQAX rpa (A) ONAX rpa (A) A OFFAX rpa (A) A Immediate Data ADI *A,byte (A) r,byte (r) - (A) V ((rpa)) ((rpa)) - 1 ((rpa)) ((rpa)) ((rpa)) ((rpa)) ((rpa)) + byte + byte (A) (r) 7 6 5 4 o o o o o o o ~ B2 U B4 3 2 o o o o o o o 0 0 o o 000 o o 0 0 0 7 0 0 000 0 0 0 0 0 0 0 0 654 3 o o o Statell) 1 0 A2 A1 Ao 11 1 1 0 1 A2 A1 AO 11 A2 A1 Ao 1 0 1 1 1 1 1 A2 A1 AO 11 11 11 A2 A1 AO 11 1 1 A2 A1 Ao 1 o o o o 0 0 o 0 0 0 0 2 A2 A1 Ao Bytes Skip Condition 2 2 No borrow 2 Borrow No zero 11 2 2 2 2 Zero No zero Zero 2 o 0 o o 0 0 R2 R1 Ro 7 11 3 o 0 S3 o 0 0 S2 S1 So 20 3 1 0 o 0 o o 1 S3 o Data ~~ Data sr2, byte (sr2) - (sr2) + byte 0 Data ACI + byte + (CY) + byte + (CY) *A,byte (A) - (A) r,byte (r) - (r) o o 010 1 0 7 2 0 R2 R1 Ro 11 3 o S2 S1 So 20 3 Data Data sr2,byte (sr2) - (sr2) + byte + (CY) o o o 0 Data ADINC + byte + byte *A,byte (A) - (A) r,byte (r) - (r) o o 0 o 0 1 1 0 o 0 0 No carry 0 o 0 R2 R1 Ro 7 11 2 o 3 No carry S3 0 o 0 S2 S1 So 20 3 No carry 7 2 o 1 1 0 0 R2 R1 Ro 11 3 S3 1 1 0 0 S2 S1 So 20 3 7 2 Data Data sr2,byte (sr2) - (sr2) + byte o o o 0 Data SUI *A,byte (A) - (A) - byte r,byte (r) - (r) - byte o 1 01 1 0 0 1 1 0 10100 Data Data sr2,byte (sr2) - (sr2) - byte 00000 D~ SBI * A,byte (A) - (A) - byte - (CY) r,byte (r) - (r) - byte - (CY) o o 1 1 1 1 1 1 0 0 1 1 1 0 0 001 0 0 Data o 1 1 1 0 R2 R1 Ro 11 3 S3 1 1 1 0 S2 S1 So 20 3 Data sr2,byte (sr2) - (sr2) - byte - (CY) o 1 D~ ~ ~ ~ ~ 'l:::: "ma..... ..n ..n .... ~ ~ ~ .!... 1:: Instruction Set (cont) I\) I\) Operation Code Bl Mnemonic Operation Operand Immediate Data Icont) SUINB *A,byte (A) -- (A) - byte r,byte (r) -- (r) - byte ANI ORI XRI 0 *A,byte (A) -- (A) /\ byte r,byte (r) -- (r) /\ byte 0 0 sr2,byte (sr2) -- (sr2) /\ byte 0 *A,byte (A) -- (A) V byte r,byte (r) -- (r) V byte 0 0 sr2,byte (sr2) -- (sr2) V byte 0 *A,byte (A) -- (A) V byte 0 0 sr2,byte (sr2) -- (sr2) V byte 0 *A,byte 0 0 r,byte LTI (r) -- (r) V byte (A) - byte - 1 (r) - byte-1 6 5 B3 3 4 sr2,byte (sr2) - byte - 1 0 *A,byte (A) - byte r,byte (r) - byte 0 0 2 1 0 0 Data 0 0 0 Data 0 0 0 Data 1 0 1 0 Data 0 0 Data 1 0 0 7 0 0 0 0 0 1 0 Data 0 0 Data 1 0 1 0 5 B4 4 3 2 1 0 0 R2 R1 Ro State(l ) Bytes 7 2 11 3 Skip Condition No borrow No borrow "a--a CD n """ ~ n ~ ~ 0 0 S3 0 0 S2 S1 So 20 3 Data 0 1 R2 R1 Ro 7 2 11 3 0 S2 S1 So 20 3 0 Data 1 1 R2 R1 Ro 11 3 3 No borrow '"n ~ 1 0 0 0 0 S3 0 0 0 0 ~ 7 S3 0 0 S2 S1 So 20 0 0 0 Data 1 0 R2 R1 Ro 11 3 ~O 0 0 S2 S1 So 20 3 0 1 0 Data 0 0 Data 0 6 Data 0 0 Data 0 0 sr2,byte (sr2) -- (sr2) - byte r,byte GTI 7 B2 7 1 0 2 0 0 Data 0 1 R2 R1 Ro 7 0 11 3 No borrow No borrow 0 0 S3 0 0 S2 S1 So 14 3 No borrow 2 0 0 0 Data 1 1 R2 R1 RO 7 0 11 3 Borrow Borrow 3 Borrow No zero No zero 1 Data sr2,byte (sr2) - byte NEI *A,byte (A) - byte r,byte (r) - byte 0 0 0 0 Data 0 0 S3 0 S2 S1 So 14 0 0 1 0 1 0 2 1 Data 0 1 R2 R1 Ro 7 0 11 3 Data ,II ~ ~ Instruction Set (cont) Operation Code B1 Mnemonic Operand Operation 7 6 5 B3 4 3 B2 2 1 0 7 6 5 B4 4 3 2 0 S2 S1 So 14 7 2 Zero 1 R2 R1 Ro 11 3 Zero S2 S1 So 14 3 Zero 1 0 State(l ) Bytes Skip Condition Immediate Data (cont) NEI sr2,byte (sr2) - byte 0 0 0 S3 3 No zero ~ ~ Data EQI *A,byte (A) - byte 0 0 1 Data r,byte (r) - byte 0 0 Data 0 0 1 0 0 0 sr2,byte (sr2) - byte 0 S3 Data ONI *A,byte r,byte (A) /\ byte (r) /\ byte 0 0 0 1 7 0 0 0 Data 0 1 R2 R1 Ro 11 3 No zero No zero 0 S3 0 S2 S1 So 14 3 No zero 2 Zero 1 R2 R1 Ro 11 3 Zero S2 S1 So 14 3 Zero 0 0 14 3 0 0 14 3 0 0 14 3 14 3 14 3 14 3 14 3 Data sr2,byte (sr2) /\ byte 0 0 0 Data OFFI *A,byte (A)/\byte r,byte (r) /\ byte 1 0 1 1 0 0 0 Data 0 1 Data (sr2) /\ byte 0 0 0 Data 0 0 S3 Working Register ADDW wa (A) - (A) + ((V)e(wa)) 0 0 0 0 0 0 Offset ADCW wa (A) - (A) + ((V)e(wa)) + (CY) 0 1 0 0 0 0 0 Offset ADDNCW wa (A) - (A) + ((V)e(wa)) 0 1 0 0 0 No carry l:: Offset SUBW wa (A) - (A) - ((V)e(wa)) SBBW wa (A) - (A) - ((V)e(wa)) - (CY) 1 0 0 Offset 1 0 1 0 0 0 0 0 0 0 0 "--a C CD Offset SUBNBW wa (A) - (A) - ((V)e(wa)) 1 0 0 Offset ANAW wa (A) - (A) /\ ((V)e(wa)) 0 1 0 0 0 Offset ~ I -I. 0 0 0 0 No borrow n ... 0 ""......n Ci... ~ I\:) c.v ~ ~ ~ Instruction Set (cont) I\:) ~ Operation Code Bl B2 B3 Mnemonic Operand Working Register (contI ORAW wa XRAW wa Operation (A) (A) - (A) V ((V)e(wa)) (A) V ((V)e(wa)) 7 (A) - ((V)e(wa)) - 1 0 LTAW wa (A) - ((V)e(wa)) 0 NEAW wa (A) - ((V)e(wa)) 0 EQAW wa (A) - ((V)e(wa)) 0 ONAW wa (A) /\ ((V)e(wa)) 0 OFFAW wa (A) /\ ((V)e(wa)) 0 ((V)e(wa)) /\ byte ORIW *wa,byte ((V)e(wa)) - ((V)e(wa)) V byte GTIW *wa,byte ((V)e(wa)) - byte - 1 4 0 3 0 Offset 1 0 0 wa *wa,byte ((V)e(wa)) - 5 0 GTAW ANIW 6 Offset 1 0 Offset 0 0 0 0 0 0 0 14 3 0 0 0 0 0 0 0 14 3 ~ n... '-n 0 0 7 0 0 0 0 0 0 0 0 0 0 0 0 1 0 Offset 0 0 0 0 0 0 0 0 Data 1 0 Data 2 1 0 Statell) Bytes 0 0 0 14 3 No borrow 0 0 0 14 3 Borrow 0 0 0 0 14 3 No zero 0 0 0 0 14 3 Zero 0 0 0 0 14 3 No zero 0 0 14 3 Zero Offset 19 3 0 Offset 19 3 0 0 n ... ... ~ 0 0 0 0 0 0 0 Offset 13 3 No borrow 0 Data 1 0 Data 0 Offset 13 3 Borrow *wa,byte ((V)e(wa)) - byte 0 NEIW *wa,byte ((V)e(wa)) - byte 0 0 0 0 Offset 13 3 No zero 0 Data 1 0 0 Offset 13 3 Zero 0 Offset 13 3 No zero 0 Offset 13 3 Zero *wa,byte ((V)e(wa)) - byte CD 5 0 Skip Condition LTIW EQIW "... 6 1 0 1 0 Offset 1 0 Offset 1 0 Offset 1 0 Offset 0 2 a -.a B4 4 3 Data ONIW *wa,byte ((V)e(wa)) /\ byte 0 0 0 0 Data OFFIW *wa,byte ((V)e(wa)) /\ byte· III 0 0 1 0 Data ~ ~ Instruction Set (cont) Operation Code B1 B2 U Mnemonic Operand 16-Bit Arithmetic EADD EA,r2 DADD EA,rp3 DADC EA,rp3 DADDNC EA,rp3 ESUB EA,r2 DSUB EA,rp3 DSBB EA,rp3 DSUBNB EA,rp3 DAN EA,rp3 DOR EA,rp3 DXR EA,rp3 DGT EA,rp3 DLT EA,rp3 DNE EA,rp3 DED EA,rp3 DON EA,rp3 DOFF EA,rp3 Multiply /Divide MUL r2 DIV r2 Increment/Decrement INR r2 INRW *wa INX DCR DCRW DCX ! Others DAA STC CLC Operation (EA) - (EA) + (r2) (EA) (EA) - (EA) (EA) (EA) (EA) (EA) (EA) (EA) - (EA) + (rp3) (EA) - (r2) (EA) - (rp3) (EA) - (rp3) - (CY) (EA) - (rp3) (EA) (EA) (EA) (EA) (EA) -'- + (rp3) + (rp3) + (CY) (EA) II (rp3) (EA) V (rp3) (EA) V (rp3) (rp3) - 1 (rp3) (EA) - (rp3) (EA) - (rp3) (EA) II (rp3) (EA) II (rp3) x (r2) + (r2), (r2) - Remainder (EA) - (A) (EA) - (EA) (r2) - (r2) + 1 ((V)e(wa)) - ((V)e(wa)) B4 7654320 o o o o o o o o o o o o o o o o o o o o o o o o o o o o 1 o o 1 0 0 1 0 0 o o 1 0 0 0 1 0 0 1 0 0 1 0 0 000 1 0 0 1 0 0 2 o o o 0 0 0 R1 RO 0 0 0 1 1 1 0 0 Po Po Po 1 0 0 0 0 0 1 P1 1 P1 1 P1 0 R1 1 0 P1 P1 P1 P1 P1 P1 P1 P1 Po Po Po Po Po Po Po Po 1 o 1 0 1 o 0 0 o 0 0 0 0 0 0 1 1 0 0 000 o 0 001 010 0 0 o 1 0 0 1 1 1 0 0 0 0 0 0 000 000 0 0 0 1 0 0 R1 Ro 0 0 0 0 1 0 0 0 0 0 R1 Ro rp EA r2 *wa (rp) - (rp) + 1 (EA) - (EA) + 1 (r2) - (r2) - 1 ((V)e(wa)) - ((V)e(wa)) -1 0 1 0 0 0 1 0 0 0 0 rp EA (rp) - (rp) - 1 (EA) - (EA) - 1 0 1 0 P1 Po 0 1 0 0 1 0 0 1 0 1 1 Decimal Adjust Accumulator (CY)-1 (CY)-O o o o 1 1 1 1 0 0 001 001 3 1 1 1 0 0 0 1 0 0 P1 Po 0 1 0 1 0 1 +1 654 1 0 o o o o o 7 0 0 000 000 o 0 1 o o 0 0 0 1 o 1 RO 1 P1 Po 1 P1 Po P1 Po 1 P1 Po 1 1 1 R1 Ro 1 R1 Ro 1 o o 0 State(1) 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 32 59 4 16 7 7 4 Offset Offset 16 Bytes 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 I\) CJ1 II 8 8 No carry No borrow No borrow Borrow No zero Zero No zero Zero Carry 2 Carry ,. 'l::: 2 4 0 0 ~ ~ 2 2 7 7 00101 00101 Skip Condition 2 2 Borrow Borrow a --a .. ~.. .... CD n ~ ! ,.o Instruction Set (cont) 1::: N 0> Operation Code Mnemonic 765 4 (A)-(A)+1 o Rotate left digit Operation Operand Others (cont) NEGA Rotate and Shift RLD RRD B1 B2 ~ B4 0 7 654 0 000 o 0 1 1 1 001 001 000 000 o 0 1 001 1 001 000 o 0 o 3 2 320 o 2 0 17 100 17 r2 (r2m + 1) - (r2m), (r2o) (CY) - (r27) (CY), RLR r2 (r2 m-1) - (r2m),(r27) (CY) - (r2o) (CY), o 1 0 0 o 0 o 0 SLL r2 (r2 m+ 1) - (r2m),(r20) - 0, (CY) - (r27) 0 0, (CY) - (r2o) 0 1 0 0 SLLC r2 SLRC DRLL r2 EA (r2 m+ 1) - (r2m),(r20) - 0, (CY) (r2m - 1) - (r2m),(r27) - 0, (CY) (EAn + 1) - (EAn),(EAO) - (CY), (CY) - (EA15) (r2ol o o o o 0 (r2m),(r27) - 0 0 1 (r2m -1) - 10 1 0 0 r2 o o o o o 000 SLR DRLR EA DSLL EA (EAn - 1) - (EAn),(EA15) - (CY), (CY) - (EAo) (EAn + 1) +- (EAn),(EAO) - 0, (CY) - (EA15) DSLR EA (EAn - 1) - (EAn),(EA15) (CY) - (EAo) Jump JMP ·word (PC) - 0, word (r27) 1 1 0 1 R1 Ro 8 2 2 2 o 0 R1 Ro 8 2 1 R1 Ro 8 0 R1 Ro 8 2 2 2 2 2 1 1 0 0 0 0 1 R1 Ro 8 0 0 1 0 0 0 R1 Ro 1 0 .0 8 o 0 1 000 o 1 1 0 0 0 8 2 0 000 o 1 001 0 8 2 0 000 o 1 0 0 8 2 10 3 1 0 0 1 0 0 1 001 000 000 o o 0 o o o o o o 1 0 1 0 0 0 jdisp1 0 ..... CD ...on "- RLL 000 000 Bytes 8 o o o Rotate right digit State(1) Skip Condition 0 0 0 Lowaddr 0 n ..."-... .... n Carry Carry High addr JB JR JRE JEA (PCH) - (B),(PCLl -- (C) (PC) - (PC) + 1 + jdisp 1 o word ·word (PC) - (PC) + 2 + jdisp (PC) - (EA) o o 3)H, 3)l (SP) - 2 2) H, 2)l (C), ((SP) -1) - ((PC) + 2)H, ((SP) - 2) - ((PC) + 2)l (PC15-11) - 00001, (PC1O-0) - fa, (SP) - (SP) - 2 o 0 1 +-- 1 1 0 0 o 1 0 o 1 001 o 1 1 0 0 1 4 10 8 2 2 Lowaddr 16 3 00101001 17 2 fa 13 jdisp 1 1 o 0 0 0 0 High addr 0 0 o 0 1 0 10 1 000 Call CALL ·word CALB CALF ·word ((SP) - 1) '- ((PC) + ((SP) - 2) - ((PC) + (PC) - word, (SP) ((SP) - 1) - ((PC) + ((SP) - 2)- ((PC) + (PCH) - (B), (PCl) (SP) - (SP) - 2 dl 1 000 1 - ~ ~ Instruction Set (cont) Operation Code B2 81 Mnemonic 7 Operation Operand 6 5 0 0 B4 B3 4 3 2 1 0 7 6 5 4 3 2 1 0 State(l) Bytes Skip Condition Call (conti CALT word ((SP) - 1) - ((PC) + 1)H, ((SP) - 2) - ((PC) + 1) l (PCd + - (128 + 2ta),(PCH) (129 + 2ta),(SP) - (SP) - 2 ((SP) - 1) - (PSW),((SP) - 2) ((PC) + 1)H,((SP) - 3) - ((PC) + 1)l, (PC) + - 0060H,(SP) - (SP) - 3 SOFTI ta 0 0 16 0 1 0 16 0 0 0 10 ~~ Return RET (PCd- (SP)),(PCH) (SP) - (SP) + 2 + 1) 0 RETS (PCl) - ((SP)),(PCH) - ((SP) + 1) (SP) - (SP) + 2,(PC) - (PC) + n 0 RETI (PCl) -- ((SP)),(PCH) - ((SP) + 1) (PSW) - «(SP) + 2), (SP) - (SP) + 3 0 bit, wa 0 ((SP) 10 0 0 0 Unconditional Skip 13 0 Skip Bit 1 1 B2 B1 Offset Bo Bit Test 10 CPU Control SK Skip iff= 1 0 0 0 0 0 0 0 0 SKN Skip if f = 0 0 0 0 0 0 0 0 0 0 SKIT irf Skip if irf = 1, then reset irf 0 0 0 0 0 0 0 SKNIT irf Skip if irf = 0 Reset irf if irf = 1 0 0 0 0 0 0 0 NOP No operation 0 0 0 0 0 0 EI Enable interrupt 01 HLT STOP Disable interrupt 0 1 0 1 Halt CPU operation 0 1 0 Stop system clock 0 0 0 0 1 0 0 0 F2 F1 Fo 8 2 f=1 F2 F1 FO 8 2 f=O 14 13 12 11 10 8 2 irf=1 14 13 12 11 10 8 2 irf=O 4 4 4 0 1 0 0 0 0 0 0 0 0 0 0 "a 12 0 0 't:: 0 12 --I 2 Q) Notes: (1) In the case of skip condition, the idle states are as follows: 2-byte instruction (with *): 7 states 1-byte instruction: 4 states 3-byte instruction (with *): 10 states 2-byte instruction: 8 states 4-byte instruction: 14 states 3-byte instruction: 11 states (2) B2 (Data): rpa2 = D + byte, H + byte. (3) Right side of slash (/) in states indicates case rpa2, rpa3 = D + byte, H H + B, H + EA, H + byte. (4) B3 (Data): rpa3 = D + byte, H + byte ~ ~ I\) ~ m + A, n.... 0 "....n.... "n.... ~ pPD78C10/C11/C14 4-128 NEe NEe NEe Electronics Inc. Description pPD7810H/11H 8-BIT, SINGLE-CHIP NMOS MICROCOMPUTERS WITH A/D CONVERTER Pin Configuration The pPD7810H and pPD7811 H single-chip microcomputers integrate sophisticated on-chip peripheral functionality normally provided by external components. The devices' internal 16-bit ALU and data paths, combined with a powerful instruction set and addressing, make thepPD7810H/11 H appropriate in data processing as well as control applications. The devices integrate a 16-bit ALU, 4K-ROM, 256-byte RAM with an 8-channel AID converter, a multifunction 16-bit timerl event counter, two 8-bit timers, a USART, and two zero-cross detect inputs on a single die, allowing their use in fast, high-end processing applications. This involves analog signal interface and processing. The pPD781 OH/11 H are high-speed versions of the pPD7810/11. The pPD7811 H is the mask-ROM high PC. pc, pc. pc. pc. volume production device embedded with custom customer program. The pPD7810H is a ROM-less version for prototyping and small volume production. D NMOS silicon gate technology requiring +5 V power supply o Complete single-chip microcomputer -16-bit ALU -4Kx8 ROM -256-byte RAM D 44 1/0 lines D Two zero-cross detect inputs D Two 8-bit timers D Expansion capabilities -8085A bus compatible -60K-byte external memory address range o 8-channel, 8-bit AID converter -Autoscan mode -Channel select mode D Full duplex USART -Synchronous and asynchronous o 153 instructions -16-bit arithmetic, multiply and divide o 1 ps instruction cycle time o Prioritized interrupt structure -3 external -8 internal o Standby function D On-chip clock generator D 64-pin plastic QUIP, shrink DIP E pC s Features pc. PC 7 NMI INT1 MODEl MODEO Vss ____________ 49-oQl334A Ordering Information Part Number Package Type Max Frequency of Operation pPD7810HG-36 pPD7811 HG-36 64-pin plastic QUIP 15 MHz pPD7810HCW pPD7811HCW 64-pin plastic shrink DIP 15 MHz 4-129 t-lEC f..lPD781 OH/11 H Pin Identification No. 1-8 Symbol PCO-PC7 [Port C] Function PAo-PA7 Port A I/O 9-16 PBo-PH7 Port B I/O 17 PCo/TxO Port C I/O line O/Transmit data output 18 PC1/RxO Port C I/O line 1/Receive data input 19 PC2/SCK Port C 110 line 2/Serial clock I/O 20 PC31T1/ INT2 Port C I/O line 3/Timer input/Interrupt request 2 input Port C is an 8-bit three-state port. Each bit is independently programmable as either input or output. Alternatively, the lines of port C can be used as control lines for the USART and timer. Reset puts all lines of port C in port mode, input. TxD [Transmit Data]. Serial data output terminal. RxD [Receive Data]. Serial data input terminal. 21 PC4/TO Port C I/O line 4/Timer output 22 PCs/CI Port C I/O line 5/Counter input SCK [Serial Clock]. Output for the serial clock when internal clock is used. Input for serial clock when external clock is used. 23,24 PC6, PC7/ COo' C01 Port ClIO lines 6, 7/Counter outputs 0,1 TI [Timer Input]. Timer input terminal. 25 NMI Nonmaskable interrupt input 26 INT1 Interrupt request 1 input INT2 [Interrupt Request 2]. Falling-edge-triggered, maskable interrupt input terminal and AC-input, zerocross detection terminal. 27 MOOE1/M1 Mode 1 input/Memory cycle 1 output 28 RESET Reset input 29 MOOEO/ IO/M Mode 0 inputll/O/Memory output 30, 31 X2, X1 Crystal connections 1,.2 32 VSS Ground 33 AVss Port T threshold voltage input 34-41 ANo-AN7 AID converter analog inputs 0-7 42 VAREF A/D converter reference voltage PDo-PD7 [Port D] 43 AVee AID converter power supply 44 RO Read strobe output 45 WR Write strobe output Port D is an 8-bit three-state port. It can be programmed as either 8 bits of input or 8 bits of output. When external expansion memory is used, port D acts as the multiplexed address/data bus. 46 ALE Address latch enable output 47-54 PFo-PF7 Port F I/O/Expansion memory address bus bits 8-15 55-62 POO-P07 Port 0 I/O/Expansion memory address/ data bus 63 Voo RAM backup power supply Vee 5 V power supply 64 TO [Timer Output]. The output of TO is a square wave with a frequency determined by the timer/counter. CI [Counter Input]. External pulse input to timer/event counter. COo, C01 [Counter Outputs 0, 1]. Programmable rectangular wave outputs based on timer/event counter. PFo-PF7 [Port F] Port F is an 8-bit three-state port. Each bit is independently programmable as an input or output. When external expansion memory is used, port F outputs the high-order address bits. ANo-AN7 Pin Functions PAo-PA7 [Port A] These are the eight analog inputs to the A/D converter. AN 4 -AN 7 can alsobe used as a digital input for falling edge detection. Port A is an 8-bit three-state port. Each bit is independently programmable as either input or output. Reset makes all lines of port A inputs. AVss [AID Converter Power Ground] PBo-PBj7 [Port B] Port B is an 8-bit three-state port. Each bit is independently programmable as either input or output. Reset makes all lines of port B inputs. 4-130 AVss is the ground potential for the A/D converter power supply. NMI [Nonmaskable Interrupt] Falling-edge-triggered nonmaskable interrupt input. NEe JlPD781 OHI11 H INT1 [Interrupt Request 1] WR [Write Strobe] INT1 is a rising-edge-triggered, maskable interrupt input. It is also an AC-:-input, zero-cross detection terminal. The WR output goes low to indicate that the data bus holds valid data. It is a strobe signal for external memory or I/O write operations. WR goes high during reset. RESET [Reset] When the RESET input is brought low, it initializes the pPD781 DH/11 H. ALE [Address Latch Enable] The ALE output latches the address signal to the output of PDo-PD7. MODE1, MODEO [Mode 1,0] The MODE1 and MODED inputs select the memory expansion mode. MODE1 also outputs the M1 signal during each opcode fetch. MODED outputs the 101M signal. X1, X2 [Crystal Connections 1, 2] X1 and X2are the system clock crystal oscillator terminals. X1 is the input for an external clock. Vss [Ground] VAREF [AID Converter Reference] VAREF set the upper limit for the AID converter's conversion range. AVee [AID Converter Power] Ground potential. Voo [Backup Power] Backup power for on-chip RAM. This is the power supply voltage for the AID converter. Vee [Power Supply] RD [Read Strobe] +5 V power supply. The RD output goes low to gate data from external devices onto the data bus. RD goes high during reset. 4-131 NEe J.lPD781 OHI11 H Block Diagram x'o--:=EJ· Osc. X. PF7 -PF. (AB'5- AB.1 PC,lTxD IncJDec. PC SP EA PC,/RxD PC",SCK V B NMI 12 A C E 0 H Main G.R. EA' INTl V' B' A' C' E' 0' Alt. G.R. PD7 -PD. (ADrAD.1 Program Memory 4K-bytes ROM Data Memory (256-bytel PC 7 -PC. PC"ITIIINT2 PCJTO PCs/CI PC",CO. PC.,ICO, PB 7 -PB. AN 7 -AN. V AREF AVcc AVss PA7 -PA. AD WR ALE MODEl MOOED RESET Voo 11 Vee Vss 49·001330C :::: 4-132 NEe Functional Description Memory Map The pPD7811 H can directly address up to 64K bytes of memory. Except for the on-chip ROM {O-4095} and RAM {65280-65535}, any memory location can be used as ROM or RAM. The memory map, figure 1, defines the O-to 64K-byte memory space for the pPD7811 H. J..lPD7810H/11H Table 1. Memory Expansion Port 0 Port F I/O port I/O port 256 Bytes Port 0 Port F Multiplexed address/data bus I/O port 4K Bytes Port 0 Port Fo-F3 Port F4-F7 Multiplexed address/data bus Address bus I/O port 16K Bytes Port 0 Port Fo-Fs Port F6-F7 Multiplexed address/data bus Address bus I/O port 60K Bytes Port D Port F Multiplexed address/data bus Address bus Analog Input Lines. ANa-AN7 are configured as analog input lines for on-chip A/D converter. Port A, Port e, Port C, Port F. Each line of these ports can be individually programmed as an input or output. When used as I/O ports, all have latched outputs and high-impedance inputs. Port D. Port 0 can be programmed as a byte input or a byte output. AN4-AN7' The high order analog input lines, AN4-AN7, can be used as digital input lines for falling edge detection. Control Lines. Under software control, each line of port C can be configured individually to provide control lines for the serial interface, timer, and timer/counter. Memory Expansion. In addition to the single-chip operation mode, thejlPD7811H hasfourmemoryexpansion modes. Under software control, port 0 can provide a multiplexed low-order address and data bus; port F can provide a high-order address bus. Table 1 shows the relation between memory expansion modes and the pin configurations of port 0 and port F. Port Configuration None Input/Output The pPD7810H/11 H has 8 analog input lines {ANa-AN7}, 44 digital I/O lines, five 8-bit ports {port A, port S, port C, port 0, port F}, and 4 input lines {AN 4-AN 7}· Memory Expansion Modes and Port Configurations Timers There are two 8-bit timers. The timers may be programmed independently or may be cascaded and used as an 8-bit timer with 8-bit prescaler. The timer can be software set to increment at intervals of four machine cycles {1 ps at 12 MHz operation} or 128 machine cycles {32ps at 12 MHz}, orto increment on receipt of a pulse at TI. Figure 2 shows the block diagram for the timer. Timer/Event Counter The 16-bit multifunctional timer/event counter {figure 3} can be used for the following operations: • Interval timer • External event counter • Frequency measurement • Pulse width measurement • Programmable square-wave output 4-133 I: ~ NEe JJPD781 OH/11 H Figure 1. Memory Map Reset/Standby Release IRQO Internal ROM 4,096 Bytes x 8 IRQ1 ~~~~~ ...--------------1 10H External Memory 61,184 Bytes x 8 IRQ2 ~--------------------~ 18H 20H IRQ3 IRQ4 r---------------------~ ~~~~~----------~ Internal RAM 256 Bytesx8 28H IRQ5 FFFFH " -_ _ _ _ _ _ _ _ _ _- - ' ~I SoftlNT I LowADDR HighADDR }t=o LowADDR HighADDR }t=l LowADDR HighADDR }t=31 User's Area 49-001326C 4-134 NEe Figure 2. fJPD781 OH/11 H Timer Block Diagram ,--------..., Timer 0 PC,/TI Timer 1 ,------ I I I I Timer/Event Counter --I Seriallntertace Clear I 4 CL----Ih--l 128CL I I I I I I I I INTTo INTT, I I _ _ _ oJ IntemalBus Notes: 1 CL = 311 (250 ns: 12 MHz operation). f: System clock frequency (MHz). 49-00'331B 4-135 NEe IlPD781 OH/11 H Figure 3. Block Diagram for Timer/Event Counter 4CL------, PCslClo---,-------t---i TO---+--, PC,ICO, INTEO INTEl INTEIN Not••: 1 CL = 31f(25O.ns: 12 MHzoperatlon~ f: System clock frequency (MHz~ 49·0013326 8-Bit AID Converter Analog/Digital Converter • 8 input channels • 4 conversion result registers • 2 powerful operation modes -Autoscan mode -Channel select mode • Successive approximation technique • Absolute accuracy: ±1.5 LSB (±O.6%) • Conversion range: 0 to 5 V • Conversion time: 40 ps • Interrupt generation ThepPD7810H/11 H features an 8-bit, high speed, high accuracy AID converter. The AID converter is made up of a 256-resistor ladder and a successive approximation register (SAR). There are four conversion result registers (CRo-CR3)' The 8-channel analog input may be operated in either of two modes. In the select mode, the conversion value of one analog input is sequentially stored in CRo-CR3' In the scan mode, the upper four channels or the lower four channels may be specified. Then those four channels will be consecutively selected and the conversion results stored sequentially in the four conversion result registers. Figure 4 shows the block diagram for the AID converter 4-136 NEe JAPD781 OH/11 H Interrupt Structure Universal Serial Interface There are 11 interrupt sources. Three are external interrupts and eight are internal. The following, table 2, shows 11 interrupt sources divided into six priority levels. See figure 5. The serial interface can operate in one of three modes: synchronous, asynchronous, and I/O interface. The I/O interface mode transfers data MSB first, for easy interfacing to certain NEG peripheral devices. Synchronous and asynchronous modes transfer data LSB first. Synchronous operation offers two modes of data reception: search and nonsearch. In the search mode, data is transferred one bit at a time from the serial register to the receive buffer. This allows a software search for a sync character. In the nonsearch mode, data transfer from the serial register to the transmit buffer occurs eight bits at a time. Figure 6 shows the universal serial interface block diagram. Standby Function The standby function saves the top 32 bytes of RAM with backup power (Voo) if the main power (Vee) fails. On power up you can check the standby flag (S8) to determine whether recovery was made from standby mode or from a cold start. Table 2. Interrupt Request Interrupt Sources Interrupt Address Type of Interrupt Internall External IRQO 4 NMI (Nonmaskable interrupt) Ext IRQ1 8 INTTO (Coincidence signal from timer 0) Int INTT1 (Coincidence signal from timer 1) IRQ2 16 IRQ3 24 INn (Maskable interrupt) Ext INT2 (Maskable interrupt) INTEO (Coincidence signal from timer / event counter) Figure 5. NMI INTTO INTTl INn INT2 INTEO INTEl INTEIN INTAO INTSR INTST Interrupt Structure Block Diagram :J:I .z ~ I Int INTE1 (Coincidence signal from timer/event counter) IRQ4 32 IRQ5 40 EI INTEIN (Falling signal of CI and TO counter) INTAD (A/D converter interrupt) Int/Ext INTSR (Serial receive interrupt) Int 01 INST (Serial send interrupt) 49-OO1333A Figure 4. AID Converter Block Diagram Figure 6. Universal Signal Interface Block Diagram AVcco-------------------~ AVsso-----------------~ VAREF o---------~ ANo 0--------1 AN, 0--------1 AN. 0 - - - - - - - 1 AN3 0-------1 AN4 0-------....-1 AN. 0------1P"-+-I ANa 0---.....-11-+-1 AN, 0--...+-11-+-1 PC,fRxD Internal Bus SK •• SK, PC.fTxO 49-00'327A 49-001329A 4-137 NEe /JPD7810H/11H Zero-Crossing Detector Absolute Maximum Ratings The INT1 and INT2 terminals (used common to TI and PC3) can detect the zero-crossing point of lowfrequency AC signals. When driven directly, these pins respond as a normal digital input. Figure 7 shows the zero-crossing detection circuitry. Power supply voltages, _V-"-cc"--_ _ _ _ _ _ _ _-_0_.5_V_to_+_7_.0_V The zero-crossing detection capability allows you to make the 50-60 Hz power signal the basis for system timing and to control voltage phase sensitive devices. To use the zero-cross detection mode, an AC signal of approximately 1-3 V AC (peak-to-peak) and a maximum frequency of 1 kHz is coupled through an external capacitor to the I NT1 and I NT2 pins. For the INT1 pin, the internal digital state is sensed as a o until the rising edge crosses the average DC level, when it becomes a 1 and INT1 interrupt is generated. For the I NT2 pi n, the state is sensed as a 1 u nti I the falling edge crosses the average DC level, when it becomes a 0 and INT2 interrupt is generated. Figure 7. Zero-Crossing Detection Circuit VDD -0.5 V to +7.0 V AVcc -0.5 V to +7.0 V AVss -0.5 V to +0.5 V Input voltage, VI -0.5 V to +7,0 V Output voltage, Vo -0.5 V to +7.0 V Reference input voltage, VAREF -0.5 V to Vcc V Output current low, 10L All outputs Total, all outputs 4.0 rnA 100 rnA Output current high, 10H All outputs Total, all outputs -0.5 rnA -20 rnA Operating temperature, TOPR fXTAL :s. 15 MHz Storage temperature, TSTG Comment: Exposing the device to stresses above those listed in Absolute Maximum Ratings could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational sections of this specification. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Operating Conditions Oscillating Frequency Vee. AVec +5.0 V ± 10% fXTAL:S 15 MHz Capacitance TA =25°C; Vcc = Voo = Vss =0 V Limits Parameter Symbol Min Typ Max Capacitance CI 10 Output capacitance Co 20 1/0 capacitance CIO 20 Unit Test' Conditions pF fc = 1 MHz. Unmeasured pF pins returned to 0 V. pF 49·001328A Recommended XTAL Oscillation Circuit c= 10 pF 83·003282A 4-138 NEe JAPD781 OH/11 H DC Characteristics = +5.0 V ±10%; Vss = 0 V; Vee -0.8 V:S AC Characteristics TA = -10°C to +70°C; Vee Voo:S Vee Read/Write Operation Limits Parameter Symbol Input low voltage VIL Input high voltage Typ Min Max Unit 0.8 Test Conditions Vee - 0.8 V ~ Voo ~ Vee Limits V Parameter X1 input cycle time Symbol Min Max Unit teye 66 250 ns Conditions 20 ns Load capacitance: CL = 150 pF VIH1 2.0 Vee V All except SCK, RESET, and X1 VIH2 0.8 Vee Vee V SCK, X1(1) VIH3 0.8 Voo Vee V RESET Data hold after RD t 0.45 V 10L = 2.0 mA WR to data output two Address setup to ALE! tAL 30 ns fXTAL = 15 MHz Address hold after ALE! tLA 35 ns Address to RD delay time tAR 100 ns ±200 fJA INT1, TI(PC3); + 0.45 V:S VI < Vee Address to data input tAD 250 ns tLOR 135 ns ±10 fJA All except INT1, TI(PC3) oV:S VI:S Vee RDl to data input tRO 120 ns ALE to RD delay time ±10 fJA +0.45 V:S Vo :S Vee Output low voltage VOL Output high voltage VOH 2.4 V IOH Data retention voltage Vooo 3.2 V Vec=OV; RESET = VIL Input current Input leakage current TA = -1Q°C to +70°C, Vee = +5.0 V ±10%, Vss = -0 V, III Output leakage ILO current = -200 fJA 1 RD to address floating 1 1 ALEl to data input I I tAFR tROH ns 0 100 ns tLR 15 ns ALE to WR delay time tLW 15 ns IJ AVee supply current Alee 6 12 mA Data setup time to WRt tow 165 ns VOO supply current 100 1.5 3.2 mA TA = +25°C; Vee = Voo = 5V Data hold time after WRt tWOH 60 ns Vee supply current lee 150 200 mA TA = +25°C; Vee = VOO = 5V WR t to ALEt delay time tWL 80 ns WR width low tww 215 ns RD t to ALE t delay time tRL 80 ns RD width low tRR 215 ns 415 ns OP code fetch, fXTAL = 15 MHz; CL = 150 pF ns fXTAL = 15 MHz Load capacitance ns = 150 pF Note: (1) For XTAL oscillation, see the recommended circuit. External Clock Timing TA = -10°C to +70°C; Vee = +5.0 V ±10%; vss = 0 V; Vee --0.8 V :S Voo:S Vee Limits Typ Test Max Unit Conditions Parameter Symbol Min X1 input width high t4>H 20 250 ns X1 input width low t4>L 20 250 X1 input rise time tr 0 20 X1 input fall time tf 0 20 ALE width high tLL 90 tAW 100 ns Address to WRl delay ns ALE! to data output tLOW ns M1 setup time to ALE! tML 30 ns M110ld time after ALE tLM 35 ns 10/~ setup time to tiL 30 ns time after tLi 35 ns 180 Data read, fXTAL = 15 MHz; CL = 150 pF ns ALE 10/~ hold ALE 4-139 NEe I-tPD781 OH/11 H Serial Operation Zero-Cross Characteristics Limits Parameter SCK cycle time Symbol Min tCYK 800 Max Unit tKKL SCK width high tKKH RxD set-up time to SCi( t RxD hold time after SCK t SCK l TxD delay time tRXK tKRX ns SCK input (2) 1.6 ps SCi( output 335 ns SCK input (1) 200 ns SCK input (2) 700 ns SCK output 335 ns SCK input (1) 200 ns SCK input (2) 700 ns SCK output 80 ns (1) ns (1) 210 Parameter Max Unit Test Conditions Zero-cross detection input VZX 1.8 VACp_p AC coupled Zero~cross accuracy Azx ±135 mV 60 Hz sine wave Zero-cross detection input frequency fzx Symbol Min 0.05 kHz Bus Timing Depending on tCYC Symbol ns (1) 80 tKTX Limits ns SCK input (1) 500 SCK width low Conditions TA =-10to+70°C, Vee=+5.0V± 10%, VSS=OV, Vee-8V::;Voo <:5:V ee Calculating Expression MinIMax tAL 2T -100 Min tLA T -30 Min Min tAR 3T -:-100 Note: tAD 7T - 220 Max (1) 1x clock rate in asynchronous, synchronous, or I/O interface mode. tLDR 5T - 200 Max tRD 4T -150 Max tLR T -50 Min tRL 2T - 50 Min (2) 16x, 64x clock rate in asynchronous mode. AID Converter Characteristics TA = 0 to +70°C; Vee = AVec = +5.0 V ± 10%; Vss = AVss = 0 V; AVec - 0.5 V::; VAREF::; AVec tRR Symbol tLL 2T -40 Min tML 2T -100 Min tLM T -30 Min tiL 2T -100 Min tCYC 66 ns::; tCYc::; 110 ns tLi T -30 Min tAW 3T -100 Min 432 tCYC 110 ns::; tCYc::; 170 ns tLDW T + 110 Max 96 tCYC 66 ns::; tCYc::; 110 ns tLW T -50 Min tDW 4T -100 Min tWDH 2T -70 Min tWL 2T -50 Min tww 4T -50 Min tCYK 12T (SCK input)(1) -------_. __ .----------------_ ... ----------._.-.-.------24T (SCK output) Min tKKL 5T + 5 (SCK input)(1) .--------------_.---.------------------ .. --------------12T - 100 (SCK output) Min tKKH 5T + 5 (SCK input)(1) ------------" .. ------------------_.--------------_.---12T - 100 (SCK output) Min Min Typ Sampling time Unit Conditions bits 0.8% LSB TA=-10to ± 1/2 +150°C, 66 ns ::; tCYC::; 170 ns Absolute accuracy Conversion time Max 8 Resolution tCONV tSAMP 576 72 Analog .input voltage VIA Analog resistance RAN Analog reference current IAREF Min ~-.------------ Limits Parameter 4T - 50 (Data Read) .. ... -.---------------- .. -------------------7T - 50 (Opcode Fetch) tCYC 110 ns::; tCYc::; 170 ns 0 VAREF 1000 0.2 0.5 V Mel 1.5 rnA Note: (1) 1x clock rate in asynchronous, synchronous, or I/O interface mode. (2) T = teye = 1/fxTAL. 4-140 (3) The items not included in this list are independent of oscillator frequency (fXTALl. NEe J.lPD7810H/11 H, Other Operations T A = -10 to +70°C, Vee = +5.0 V ± 10%, Vss = 0 V, Vee - 0.8 V::§;; VOD::§;; Vee Limits Parameter Symbol TI width high, low CI width high, low Max Test Conditions Unit tCI1H, tCl1L 6 6 tCYC Event count mode tCI2H, tCI2L 48 tCYC Pulse width measurement mode 36 36 36 60 tCYC tTlH, tTIL NMI width high, low tNIH, tNIL INT1 width high, low t11H, tl1L INT2 width high, low t12H, tl2L RESET width high, low Min tRSH, tRSL tCYC tCYC tCYC tCYC Timing Waveforms Read Operation X1 High Address PDa-P D7 Low Address ALE RD ----+-----+If---t 1+-----tRD-----~ 1+-------tRR----.:.----Ir-------------- ,,,~.I ., "f~:~lf~dL,.L~, MODEO(IO/M) [Note 2) ------------------------- Note: (1) M1 is output to the MODE1 pin at the first opcode fetch cycle if the MODE 1 pin is pulled up. (2) 101M is output to the MODEO pin at the sr to sr2 register read cycle If the MODEO pin Is pulled up. 83·003;2848 4-141 NEe IAPD781 OH/11 H Timing Waveforms (cont) Write Operation Xl High Address PFo-PF7 Write Data POO-P07 1+------tDw-----~ ALE I+------------tww--------~ WR tAw-------+I .OOEO~" --C,,,-J L,,~ ,...-----------------------------J [Note 1) \_ Note: (1) 101M Is output to the MOOED pin at the srto sr2 register write cycle if the MOOED pin is pulled up. 83·0032858 Serial Operation !-------tCYK-------------.j SCK TxO RxO tRXK j4-----tKRX------~ 83·0032868 4-142 NEe J,tPD781 OH/11 H Timing Waveforms (cont) RESET Input Timing Timer Input Timing _ YO.8V tRSHI.tRSlJ...--- RESET DO _ 0.8 V 83-003287A 83·003291A External Clock Timing Timer/Event Counter Input Timing: Event Counter Mode 83-003288A 83·003292A Timer/Event Counter Input Timing: Pulse Width Measurement Mode AC Timing Test Points 2.4 V~ 0.45 V 2.0 V ;: Test pOints:::' 2.0 V 0.8 V 0.8 V x:= 83-003283A 83-003289A Interrupt Input Timing 'M' J"'"=(~"}.---­ ~fi ----L''''J=''"~'--­ "u J~"=("aJ...--83-003290A 4-143 t-IEC pPD7810H/11 H Instruction Set Operand Format/Description Remarks Description Format V,A, B,C,D,E,H,L EAH,EAL,B,C, D,E,H, L A, B,C sr2 sr3 sr4 PA, PB, PC, PD, PF, MKH, MKL, ANM, SMH,SML, EOM, ETMM, TMM, MM, MCC, MA, MB, MC, MF, TxB, TMo, TM1 PA, PB, PC, PD, PF, MKH, MKL, ANM, SMH, EOM, TMM, RXB, CRO, CR1, CR2, CR3 PA, PB, PC, PD, PF, MKH, ANM, MKL, SMH, EOM, TMM HMo, ETM1 ECNT, ECPT rp rp1 rp2 rp3 SP,B,D,H V, B, D, H, EA SP,B,D,H,EA B, D,H rpa rpa1 rpa2 B, D, H, D+ , H + , D-, H B,D,H B, D, H, D+, H + , D-, H -, D + byte, H + A, H + B, H + EA, H + byte D, H, D+ +, H + +, D+ byte, H + A, H + B, H + EA, H + byte sr sr1 rpa3 wa a-Bit immediate data word byte bit 16-Bit immediate data a-Bit immediate data 3-Bit immediate data FNMI, flO, Fl1, F1, F2, FEO, FE1, FEIN, FAD, FSR, FST, ER, OV, AN4, ANs, AN6, AN?, SB Instruction Set Symbol Definitions Symbol Description Transfer direction, result A Logical product (logical AND) V Logical sum (logical OR) .Jf Exclusive OR Complement Concatenation 4-144 ECNT = Timer/Event Counter Upcounter ECPT = Timer/Event Counter Capture PA = Port A PB = Port B PC = Port C PD = Port D PF = Port F MA = Mode A MB = Mode B MC = Mode C MCC = Mode Control C MF= Mode F ETMM = Timer/Event Counter Mode EOM'= Timer/Event Counter Output Mode MM = Memory Mapping TMo = Timer Register 0 TM1 = Timer Register 1 TMM = Timer Mode ETMo = Timer/Event Counter Register 0 ETM1 = Timer/Event Counter Register 1 TxB = TX Buffer RxB = RX Buffer SMH = Serial Mode High SML = Serial Mode Low MKH = Mask High MKL = Mask Low ANM = A/D Channel Mode CRo = AID Conversion Result 0-3 to CR3 2. rp-rp3 (register pair) SP = Stack Pointer B = BC D= DE H= HL V=VA EA = Extended Accumulator 3. rpa-rpa3 (rp addressing) CY, HC, Z irf 1. sr-sr4 (special register) B= (BC) D= (DE) H = (HL) D+= (DE) + H -=(HL) + D-=(DE) H-=(HL) - D+ += (DE) ++ H + += (HL) ++ D+ byte = (DE) + byte H + A = (HL) + (A) H + B = (HL) + (B) H + EA = (HL) + (EA) H + byte = (HL) + byte 4. f (flag) CY = Carry HC = Half Carry Z = Zero 5. irf (interrupt flag) NMI = NMI* Input FTO = INTFTO FT1 = INTFT1 F1 = INTF1 F2 = INTF2 FEO = INTFEO FE1 = INTFE1 FEIN = INTFEIN FAD = INTFAD FSR = INTFSR FST = INTFST ER = Error OV= Overflow AN4 to AN? = Analog Input 4-7 SB = Standby Instruction Set Operation Code B1 Mnemonic 7 6 5 (r1)-(A) (A)-(r1) 0 0 0 0 0 0 1 0 T2 T1 To T2 T1 To *sr,A *A,sr1 r,word (sr)-(A) 0 0 0 0 0 0 (A) -(sr1) (r)-(word) 0 0 0 0 word,r (word)-(r) 0 Operand a-Bit Data Transfer MOV r1,A A, r1 MVI Operation *r,byte 0 1 0 0 0 MVIW *wa, byte ((V)e(wa)) - 0 MVIX STAW LDAW STAX lDAX EXX *rpa1,byte *wa *wa *rpa2 *rpa2 1 0 Data 0 1 EXA EXH 16-Bit Data Transfer DMOV byte (rpa1) - byte ((V)e(wa)) - A (A) - ((V)e(wa)) (rpa2) - (A) (A) - ((rpa2)) (B) ++ (B'),(C) ++ (C'),(D) ++ (D') (E) ++ (F),(H) ++ (H'),(l) ++ (l') (V) ++ (V'),(A) ++ (A'),(EA) ++ (EA') (H) ++ (H'),(l) ++ (l') D ((DE)) - ((Hl)),(DE) - (DE + 1), (Hl) - (Hl) + 1, (C) - (C) -1 End if borrow rp3, EA (rp3d- (EAl),(rp3H) - (EAH) EA,rp3 .(EAl) - (rp3Ll,(EAH) - (rp3H) 0 0 0 1 1 0 0 0 A3 A3 0 0 0 0 0 0 0 0 2 0 1 0 0 Data 0 0 1 0 0 0 0 0 o A1 Ao 1 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 5 B4 4 3 2 1 0 State(l) Bytes 0 0 S5 S4 S3 S5 S4 S3 1 1 0 1 High addr 1 1 1 High addr Data S2 S1 So S2 S1 So R2 R1 Ro 10 10 17 2 R2 R1 Ro 17 4 7 2 o S2 S1 So 14 3 13 3 0 0 0 Offset A2 A1 Ao 1 A2 A1 Ao 0 0 0 1 0 6 Skip Condition 4 4 S3 0 0 0 7 1 0 0 lowaddr 1 0 0 0 0 lowaddr 0 1 R2 R1 Ro (r)-byte set l1 if r = A setLO if r = l sr2,byte (sr2) - byte BLOCK B2 B3 4 3 Data Offset Offset Data (2) Data (2) ~ ~ 2 4 10 2 10 10 7/13(3) 7/13(3) 4 2 2 2 2 l1 = 1 and r = A lO = 1 and r = l 4 0 4 13 x (C+1) P1 Po P1 Po 4 4 'l::: "......a CD ... 0 ::z: ...::z:~ t' ~ 01 ~ ~ .!.. ,.a 1::: Instruction Set (cont) .j::>. Operation Code 0) Mnemonic Operand 7 Operation 16-Bit Data Transfer Icont) OMOV sr3, EA (sr3) - (EA) EA,sr4 (EA) - (sr4) SBCD word (word) - (C), (word + 1) - (B) o o o SDEO (0) o word (word) - (E), (word + 1) - SHLD word (word) - (L), (word + 1) - SSPD word (word) - (SPLl,(word + 1) - STEAX rpa3 ((rpa3)) - LBCD word (C) - (word),(B) - o o (SPH) (EAH) (word + 1) B4 2 1 0 000 0 0 000 Lowaddr 1 0 0 0 0 Lowaddr 1 1 0 0 0 Lowaddr 1 0 0 0 0 Lowaddr 00100 Data(4) o (H) (EAL),((rpa3) + 1 - 6 o o o 0 0 1 0 0 0 word (E) - (word),(O) - (word + 1) LHLD word (L) - LSPD word (SPLl - (word),(SPH) - LDEAX rpa3 (EAL) - ((rpa3)),(EAH) - PUSH rp1 POP LXI (word),(H) - (word + 1) ((word) + 1) ((rpa3) + 1) ((SP) - 1) - (rp1H) ((SP) - 2) - (rp1Ll (SP) - (SP) - 2 rp1 (rp1Ll - ((SP)),(rp1H) - ((SP) + 1) (SP) - (SP) + 2 *rp2,word (rp2) - (word) set LO if rp2 == H TABLE (C) - ((PC)+3+(A)),B 8-Bit Arithmetic [Register) ADO A,r (A) - (A) + (r) r,A (r)-(r) + (A) ADC A,r (A) .- (A) + (r) + (CY) r,A (r) - (r) + (A) + (CY) ((PC)+3+(A)+ 1) o 1 0 0 o o o 0 o o 2 0 Bytes 01001UO 1 0 0 0 0 V1 Vo 000 1 1 0 High addr 14 14 20 2 2 4 o o 20 4 1 0 20 4 1 0 20 4 14/20(3) 3 20 4 20 4 20 4 20 4 14/20(3) 3 0 o 0 o 0 o 1 0 1 High addr 1 1 1 High addr 001 High addr 0 1 C3 C2 C1 Co 0 o 0 0 C3 C2 C1 Co 0 02 01 00 10 0 0 o o o o 3 13 0 0 4 02 01 00 0 P2 P1 Po 0 1 High byte 1 5 0 1 1 1 1 High addr 0010111 High addr o 0 1 1 1 High addr o 0 0 0 High addr Lowaddr 1 000 Lowaddr 1 000 Lowaddr 00100 Oata(4) o 1 0 6 State(1) o Lowaddr LDED 7 0 Low byte o 0 1 0 o o o o 0 0 0 0 0 0 0 0 o 0 0 0 0 0 0 0 0 o 1 .. ..... B2 B1 B3 543 1 000 10 3 17 2 2 2 2 2 1 0 o 0 0 o o o 0 0 ~ ~ ~ 8 8 1 1 0 R2 R1 Ro 0 R2 R1 Ro 8 ~ ~ ~ 8 Skip Condition CD o :z .. ~ :z LO == 1 and rp2 == H ~ ~ Instruction Set (cont) Operation Code BI B2 B4 U Mnemonic .j::o. I ~ ...... Operand Operation a-Bit Arithmetic [Registerl(contl AOONC A,r (A) +- (A) + (r) r,A (r) +- (r) + (A) SUB A,r (A) +- (A) - (r) r,A (r) +- (r) - (A) SBB A,r (A) +- (A) :- (r) - (CY) r,A (r) +- (r) - (A) - (CY) SUBNB A,r (A) +- (A) - (r) r,A (r) +- (r) - (A) ANA A,r (A) +- (A) A (r) r,A (r) +- (r) A (A) ORA A,r (A) +- (A) V (r) r,A (r) +- (r) V (A) XRA A,r (A) +- (A) V (r) r,A (r) +- (r) V (A) GTA A,r (A) - (r) - 1 r,A (r) - (A) - 1 LTA A,r (A) - (r) r,A (r) - (A) NEA A,r (A) - (r) r,A (r) - (A) EQA A,r (A) - (r) r,A (r) - (A) ONA A,r (A) A (r) OFFA A,r (A) A (r) 8-Bil Arithmetic (Memory) AOOX rpa (A) +- (A) + ((rpa)) AOCX rpa (A) +-(A) + ((rpa)) + (CY) AOONCX rpa (A) +- (A) + ((rpa)) SUBX rpa' (A) +- (A) - ((rpa)) SBBX rpa (A) +- (A) - ((rpa)) - (CY) SUBNBX rpa (A) +- (A) - ((rpa)) ANAX rpa (A) +- (A) A ((rpa)) ORAX rpa (A) +- (A) V ((rpa)) 7 6 o o o o o o o o o o o o o o o o o o o o o o o 5 1 1 1 4 3 2 0 6 4 3 2 0 Statell) 0 0 0 1 0 0 0 R2 R1 Ro 8 0 0 0 0 o 0 0 0 R2 R1 RO 8 0 0 0 0 1 1 1 0 0 R2 R1 Ro 8 0 0 o 1 1 0 0 R2 R1 Ro 8 1 1 0 R2 R1 RO 8 8 0 0 0 000 0 000 0 o 1 1 1 0 R2 R1 Ro o 0 0 0 1 0 1 1 0 R2 R1 Ro 8 0 0 0 0 o 0 1 1 0 R2 R1 RO 8 000 0 0 1 0 0 1 R2 R1 Ro 8 0 0 0 0 0 o 0 0 1 R2 R1 Ro 8 0 0 0 0 1 0 0 1 1 R2 R1 RO 8 000 0 0 o 0 0 1 1 R2 R1 Ro 0 0 0 0 0 1 0 0 1 0 R2 R1 RO 8 8 0 0 0 0 R2 R1 Ro 8 0 0 o 0 0 1 0 0 1 0 1 0 1 R2 R1 RO o 0 1 0 1 R2 R1 RO 8 o 1 1 1 R2 R1 Ro 8 000 0 0 0 0 0 0 000 0 0 o 0 1 1 1 R2 R1 Ro 8 0 0 0 0 1 1 1 0 1 R2 R1 RO 8 000 0 0 o 1 1 0 1 R2 R1 RO 8 000 0 0 1 1 1 1 1 R2 R1 Ro 8 o 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 1 0 0 0 0 0 00 o 0 o 0 0 0 0 1 1 1 R2 R1 Ro o o 0 1 R2 R1 Ro 8 8 1 1 R2 R1 Ro 8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 o 0 0 A2 A1 Ao 11 2 0 1 0 A2 A1 AO 11 2 o 1 0 0 A2 A1 Ao 11 2 2 2 2 2 2 01110000 1 0 0 A2 A1 Ao 11 1 1 1 000 0 1 1 1 0 A2 A1 Ao 11 1 1 1 0 0 0 0 1 1 0 A2 A1 Ao 11 1 1 100 0 0 o o 0 0 1 A2 A1 Ao 11 1 1 1 000 0 0 0 1 1 A2 A1 Ao 11 1 Bytes 1 01110000 o o o o o 5 0 000 1 7 Skip Condition No carry ~ ~ No carry No borrow No borrow No borrow No borrow Borrow Borrow No zero No zero Zero Zero No zero Zero 1::: No carry "a --I ...o :z "...... co No borrow :z .j::o. !... Instruction Set (cont) l::: .j::o. (» Operation Code Mnemonic Operand Operation 8·Bit Arithmetic (Memory) (cont) XRAX rpa (A) - (A) V ((rpa)) GTAX rpa (A) - ((rpa)) - 1 LTAX rpa (A) -((rpa)) NEAX rpa (A) - ((rpa)) EaAX rpa (A) - ((rpa)) ONAX rpa (A) A ((rpa)) OFFAX rpa (A) A ((rpa)) Immediate Data ADI *A,byte (A) - (A)+ byte r,byte (r) - (r) + byte 7 6 5 4 B1 H B3 M 3 2 0 o o o 000 o 0 0 o 0 0 000 o 0 0 o 0 0 0 0 0 0 0 0 o o 0 o o 000 o 00 o o Data 010 1 0 Data o o o o o o 0 0 7 6 5 o 0 4 aytes Skip Condition 11 2 2 2 2 2 2 2 No borrow Borrow No zero Zero No zero Zero 0 R2 R1 Ro 7 11 2 3 o S2 S1 So 20 3 3 2 1 0 o A2 A2 A2 A2 A2 A2 A2 A1 A1 A1 A1 A1 A1 A1 Ao Ao Ao Ao Ao Ao Ao 010 o o o Data 1 0 o 0 o o o 0 S3 o 0 State(1) 11 11 11 11 11 11 "a..... .. .. CD o z ~ Z Data sr2, byte (sr2) ACI (sr2) + byte *A,byte (A) - (A) + byte + (CY) r,byte (r) - (r) + byte + (CY) sr2,byte (sr2) - (sr2) + byte + (CY) 0 7 2 0 R2 R1 Ro 11 3 o S2 S1 So 20 3 Data 1 0 o 0 o o o 0 S3 o 1 Data ADINC *A,byte (A) - (A) + byte r,byte (r) - (r) + byte o o 0 o 0 1 0 1 0 o 0 o 0 o 0 R2 R1 Ro 7 11 2 3 No carry 'No carry o 0 S3 0 o 0 S2 S1 So 20 3 No carry Data Data sr2,byte (sr2) - (sr2) + byte o o 0 Data SUI SBI *A,byte (A) - (A) - byte r,byte (r) - (r) :- byte o o 1 100 7 2 0 Data o 0 o o 0 'R2 R1 Ro 11 3 sr2,byte (sr2) - o 100 o 0 S3 o 0 S2 S1 So 20 3 *A,byte (A) - (A) - byte - (CY) r,byte (r) - (r) - byte - (CY) o o Data 1 0 1 0 Data 7 sr2,byte (sr2) - o (sr2) - byte (sr2) - byte - (CY) 1 1 1 1 o 0 Data o Data 1 0 o 0 o 1 1 1 0 R2 R1 Ro 11 2 3 o 0 S3 1 20 3 Data 1 1 0 S2 S1 So ~ ~ Instruction Set (cont) Operation Code BI Mnemonic Operand Operation Immediate Data (contI SUINB 'A,byte (A) - (A) - byte r,byte (r) - (r) - byte sr2,byte (sr2) ANI ORI GTI NEI ~ 0 0 0 sr2,byte (sr2) - 0 (sr2) A byte 'A, byte (A) - (A) V byte r,byte (r) - (r) V byte 5 0 0 0 Data 0 0 Data 0 0 0 0 0 0 0 0 0 Data 0 0 0 (sr2) V byte 'A,byte (A) - (A) V byte r,byte (r) - (r) V byte 0 0 sr2,byte (sr2) - 0 (sr2) V byte *A,byte (A) - byte - 1 r,byte LTI 6 'A,byte (A) - (A) A byte r,byte (r) - (r) A byte sr2,byte (sr2) XRI (sr2) - byte 7 B3 4 3 (r) - byte-1 0 0 sr2,byte (sr2) - byte - 1 ~ 0 'A,byte (A) - byte r,byte (r) - byte 0 0 sr2,byte (sr2) - byte 0 'A,byte (A) - byte r,byte (r) - byte 0 0 0 0 0 0 Data 1 0 0 Data 0 0 Data 0 0 Data 0 0 Data 2 I 0 7 6 0 0 0 0 0 0 0 0 0 Data 0 0 Data S3 1 0 0 Data 0 0 Data 2 I 0 State(l) Bytes Skip Condition Data 1 0 R2 R1 Ro 7 2 11 3 No borrow No borrow 0 S2 S1 So 20 3 No borrow 2 0 0 Data 0 1 R2 R1 Ro 7 0 11 3 0 0 S3 0 0 S2 S1 So 20 3 2 0 0 Data 1 1 R2 R1 Ro 7 0 11 3 3 0 0 S3 0 0 S2 S1 So 20 0 0 2 0 0 0 Data 1 0 R2 R1 Ro 7 0 11 3 0 0 S3 0 S2 S1 So 20 3 1 1 0 0 0 0 Data 0 1 R2 R1 Ro 11 3 No borrow No borrow 0 0 S3 0 S2 S1 So 14 3 No borrow 0 0 0 Data 1 1 R2 R1 Ro 7 0 11 2 3 Borrow Borrow 0 0 S3 0 S2 S1 So 14 3 Borrow 1 0 B4 4 3 0 1 0 0 0 1 1 Data 0 1 R2 R1 Ro 2 7 2 11 3 No zero No zero ~ ~ 1::: "a --.I CD 0 .... :z: ....~ I ~ co 5 0 1 0 0 Data 0 B2 m :z: f." ~ l::: Instruction Set (cont) C1I Operation Code 0 B2 B1 Mnemonic Operand Operation 7 6 5 B3 3 4 2 1 0 7 0 S3 6 5 B4 4 3 2 1 0 State(l) Bytes Skip Condition Immediate Data (cont) NEI sr2,byte (sr2) - byte 0 0 0 0 • A,byte (A) - byte r,byte (r) - byte 0 0 1 1 0 0 1 0 0 0 ~ 0 :I: - 14 3 No zero ::.: 2 Zero 1 R2 R1 Ro 7 11 3 Zero :I: S2 S1 So 14 3 Zero 7 11 2 No zero 1 R2 R1 Ro 3 No zero S2 S1 So 14 3 No zero 7 11 2 Zero R2 R1 Ro 3 Zero S2 S1 So 14 3 Zero 0 14 3 Data 1 Q) S2 S1 So Data EQI ".....a Data sr2,byte (sr2) - byte 0 0 S3 1 0 0 0 0 S3 0 0 0 ~ 0 Data ONI 0 • A,byte (A) A byte r,byte (r) A byte 0 0 1 0 0 Data 0 Data sr2,byte (sr2) A byte 0 0 0 Data OFFI ·A,byte (A) A byte r,byte 0 0 (r) A byte 0 1 o .1 1 1 0 0 Data 1 1 Data sr2,byte (sr2) A byte 0 0 0 0 0 Data Working Register ADDW wa (A) +- (A) + ((V)e(wa)) 0 1 0 0 0 0 0 0 0 0 0 0 14 3 0 0 0 0 14 3 0 0 14 3 0 0 0 0 14 3 0 0 0 0 14 3 0 0 14 3 Offset ADCW wa (A) +- (A) + ((V)e(wa)) + (CY) 0 1 0 Offset ADDNCW wa (A) ..- (A) + ((V)e(wa)) 0 1 0 0 0 No carry Offset SUBW wa (A) ..- (A) - ((V)e(wa)) 0 1 0 0 Offset SBBW wa (A) ..- (A) - ((V)e(wa)) - (CY) 0 1 0 0 1 Offset SUBNBW wa (A) +-(A) - ((V)e(wa)) 0 1 0 0 0 0 0 Offset ANAW wa (A) +- (A) A ((V)e(wa)) 0 1 0 Offset II 0 0 No borrow ~ I:) Instruction Set (cont) Operation Code B1 B2 B3 Mnemonic Operand Working Register Icont) wa ORAW XRAW wa Operation (A) (A) - (A) V ((V).(wa)) 7 6 5 4 3 0 0 2 1 0 0 0 6 5 B4 4 3 2 1 0 0 0 0 State(l ) Bytes Skip Condition 14 3 14 3 14 3 No borrow 14 3 Borrow 14 3 No zero 14 3 Zero 0 14 3 No zero 0 14 3 Zero Offset 19 3 0 Offset 19 3 0 Offset 13 3 No borrow 0 Offset 13 3 Borrow Offset 13 3 No zero 0 Offset 13 3 Zero 0 Offset 13 3 No zero Offset 1 0 (A) V ((V).(wa)) 7 0 0 0 0 ~~ Offset GTAW LTAW NEAW EOAW ONAW wa wa wa wa wa (A) - ((V).(wa)) - 1 1 0 0 (A) - ((V).(wa)) Offset 1 0 (A) - ((V).(wa)) Offset 1 0 0 (A) - ((V).(wa)) Offset 1 0 (A) 1\ ((V).(wa)) Offset 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Offset OFFAW wa (A) 1\ ((V).(wa)) 1 0 0 0 Offset ANIW 'wa,byte ((V).(wa)) - 0 ((V).(wa)) 1\ byte 0 Data ORIW *wa,byte ((V).(wa)) - ((V).(wa)) V byte 0 0 0 1 Data GTlW LTIW 0 *wa,byte ((V).(wa)) - byte - 1 0 0 Data *wa,byte ((V).(wa)) - byte 0 0 0 1 Data NEIW *wa,byte ((V).(wa)) - byte 0 0 0 Data EOIW *wa,byte ((V).(wa)),- byte 1 0 Data ONIW *wa,byte ((V).(wa)) 1\ byte 0 0 0 Data OFFIW *wa,byte ((V).(wa)) 1\ byte 0 1 0 Data Offset 3 Zero "a ~ CD 0 .... Z ~ .!.... ~ 13 "t::: m "....Z.... ~ ~ U'I Instruction Set (cont) 't: "a Operation Code I\) Mnemonic Operand 16-Bit Arithmetic EADD EA,r2 DADO EA,rp3 DADC EA,rp3 DADDNC EA,rp3 ESUB EA,r2 DSUB EA,rp3 DSBB EA,rp3 DSUBNB EA,rp3 DAN EA,rp3 DOR EA,rp3 DXR EA,rp3 DGT EA,rp3 DLT EA,rp3 ONE EA,rp3 DEQ EA,rp3 DON EA,rp3 DOFF EA,rp3 Multiply /Divide MUL r2 DIV r2 Increment/Decrement INR r2 INRW *wa INX rp EA OCR r2 DCRW *wa DCX rp EA Others DAA STC CLC 7 Operation (A) x (r2) (EA) + (r2), (r2) - 4 o o o o o o o o o o o o Remainder Decimal Adjust Accumulator (CY)-1 (CY)-O o o B2 U B4 3 o o o o o o o o o o o o o o o o o o (r2) - (r2) + 1 ((V)e(wa)) - ((V)e(wa)) + 1 (rp) - (rp) + 1 (EA) - (EA)+ 1 (r2) - (r2) - 1 ((V)e(wa)) - ((V)e(wa)) - 1 (rp) - (rp) - 1 (EA) - (EA) - 1 II 5 o o (EA) - (EA) + (r2) (EA) - (EA) + (rp3) (EA) - (EA) + (rp3) + (CY) (EA) - (EA) + (rp3) (EA) - (EA) - (r2) (EA) - (EA) - (rp3) (EA) - (EA) - (rp3) - (CY) (EA) - (EA) - (rp3) (EA) - (EA) 1\ (rp3) (EA) - (EA) V (rp3) (EA) - (EA) V (rp3) (EA) - (rp3) - 1 (EA) - (rp3) (EA) - (rp3) (EA) - (rp3) (EA) 1\ (rp3) (EA) 1\ (rp3) (EA) (EA) - 6 B1 1 1 1 0 7 654 o o o 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o 0 1 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 P1 Po 1 0 0 1 1 1 0 1 0 0 R1 Ro 0 0 1 0 0 0 R1 Ro 0 0 o 0 P1 Po 0 0 1 o o o 0 0 2 000 1 0 1 0 1 o 1 1 0 0 1 0 0 o 320 0 0 0 0 0 0 o o o 000 001 001 0 010 o 1 1 o o o 1 1 1 o o 0 1 1 1 0 0 R1 Ro ~ Po ~ Po P1 Po R1 Ro P1 Po 1 P1 Po 1 P1 Po P1 Po P1 Po P1 Po P1 Po 1 P1 Po State(l) 0 11 1 1 1 0 1 11 P1 P1 1 P1 1 P1 1 o Po Po Po Po R1 Ro R1 Ro 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 32 59 16 2 2 2 2 2 2 2 2 2 2 2 ~ ... CD o :z ~ ... No carry z No borrow No borrow Borrow No zero Zero No zero Zero 2 2 2 Carry Carry 2 Borrow Borrow 7 7 4 Offset 16 1 7 7 0 2 2 2 2 2 4 Offset 0101001 000 Bytes Skip Condition 1 1 1 001 000 1 001 0 1 001 000 001 0 o o o 4 8 8 2 2 ~ ~ Instruction Set (cont) Operation Code Mnemonic Operand Operation Bl B2 B3 7 & 5 4 3 2 1 0 1 0 0 1 0 0 1 0 7 & 5 B4 4 3 2 1 0 0 0 1 1 0 1 0 8 2 0 0 0 0 0 2 2 R1 Ro 17 17 8 State(l) Bytes Skip Condition Others (cont) +1 NEGA Rotate and Shift RLD (A) - Rotate left digit 0 0 0 RRD RLL Rotate right digit 0 r2 (r2m + 1) - (r2 m), (r2o) (CY) - (r27) (CY), 0 0 0 0 RLR r2 (r2m -1) - (r2m),(r27) (CY) - (r2o) (CY), 0 0 0 0 SLL SLR SLLC SLRC r2 r2 r2 r2 (r2m + 1) (r2m _ 1) - 0, (CY) 0, (CY) - (r27) (r2o) (r27) (r2o) 0 0 0 0 0 0 0 0 EA 0 0 0 0 0 0 0 0 0 0 0 DRLL 0 0 DRLR EA (r2m + 1) - (r2m),(r20) - 0, (CY) (r2m -1) - (r2m),(r27) - 0, (CY) (EAn + 1) - (EAn),(EAO) - (CY), (CY) - (EA1S) (EAn - 1) - (EA n),(EA1S) - (CY), (CY) - (EAO) 0 0 0 0 0 0 0 0 1 0 0 DSLL EA 1 0 DSLR EA Jump JMP *word JB JR JRE word *word JEA (A) (r2m),(r20) (r2 m),(r27) - 1 0 ((SP) -1) - ((PC) + 2)H, ((SP) - 2) - ((PC) + 2) L (PCH) - (B), (PCLl- (C), (SP) - (SP) - 2 0 ((SP) -1) - ((PC) + 2)H, ((SP) - 2) - ((PC) + 2)L (PC1S-11) - 00001, (PC10-0) - fa, (SP) - (SP) - 2 0 8 2 0 0 0 0 0 0 0 0 0 0 o R1 Ro R1 Ro 2 2 2 2 2 0 0 1 0 1 High addr 0 0 0 1 0 0 R1 Ro 0 0 ((SP) - 1) - ((PC) + 3)H, ((SP) - 2) - ((PC) + 3)L (PC) - word, (SP) - (SP) - 2 o 0 (PC) - 1 0 0 0 0 0 0 0 0 0 0 0 0 1 (PC) + 2 + jdisp (EA) 0 0 0 (PC) (PC) - 0 0 0 0 0 0 0 R1 Ro R1 Ro 1 0 0 0 0 1 0 0 0 o 1 (PCH) - (B),(PCL) - (C) (PC) - (PC) + 1 + jdisp 1 0 0 0 0 0 0 0 0 0 0 8 8 8 8 8 (EAn + 1) - (EAnHEAO) - 0, (CY) - (EA1S) (EAn - 1) - (EA n),( EA 1S) - 0, (CY) - (EAo) word 0 0 1 0 0 jdisp1 0 1 1 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 2 0 0 8 2 0 0 8 2 0 0 8 2 Lowaddr 10 3 jdisp 10 10 1 0 0 *word CALB CALF .J:o. I Ir-;.r-----J1\-~~ _ _ _ _ _ _ _ _ _ _ _ _ _-':':::::::::;.!::-=::.:!:F_ _ _ _ _ _ _ _ _ _ _ _-1"_...A.____ --===t==~~~§~=~---------~-IRR-------Ilr-----------49-000182A Transmit/Receive Timing TXD _ _4-__~H+_______J~________________ RXD _ _ _ _ _~~~--------~----------~----49-000179A 4-161 NEe MPD78PG11 Remarks 1. sr-sr4 (special register) PA PB PC PO PF MA MB MC MCC MF MM TMD TMI TMM HMo HMI = = = = = = = = = = = = = = = = 5. irf (interrupt flag) Port A Port B Port C Port 0 Port F Mode A Mode B Mode C Mode Control C Mode F Memory Mapping Timer Register 0 Timer Register 1 Timer Mode Timer Event Counter Register 0 Timer Event Counter Register 1 ECNT ECPT ETMM Timer IEvent Counter Upcounter Timer IEvent Counter Capture TimerIEvent Counter Mode Timer IEvent Counter Output Mode AID Channel Mode = = = EOM = ANM = foRo CR3 TxB RxB SMH SMl MKH MKl = AID Conversion Results 0-3 = TxBuffer RxBuffer Serial Mode High Serial Mode low Mask High Mask low = = = = = FNMI FTO FT1 F1 F2 FEO FE1 FEIN FAD = = = = = = = = = INTFNMI INTFTO INTH1 INTF1 INTF2 INTFEO INTFE1 INTFEIN INTFAD FSR FST ER OV AN 4 to AN4 SB = = = = = = = INTFSR INTFST Error Overflow Analog Input 4-7 = Standby Instruction Set Symbol Definitions Symbol Description Transfer direction. result logical product (logical AND) ,\ v logical sum (logical OR) 2. rp-rp3 (register pair) SP B 0 = Exclusive OR Stack POinter BC DE H V EA = 0++ H++ D+byte H+A H+ B H+ EA H+ byte = = = = = '= Hl VA Extended Accumulator Complement Concatenation 3. rpa-rpa3 (rp addressing) B = = = o H 0+ H+ DH- = = = = (BCj (DE) (Hlj (DEj+ (Hl)+ (DE)(Hl)- = = = (DE)++ IHl)++ (DE+ byte) (Hl+A) (Hl+B) (Hl+EA) (Hl+byte) 4. (flag) CY = HC Carry = Half Carry Z = Zero Instruction Groups 8-bit Data Transfer Dpcode Mnemonic Operand B1 B2 B4 0001lT2T1TD 4 (r1j-(A) OOOOlT 2TIT D 4 (Aj-(r1) sr. A 01001101 r1. A -_.-------_."._-------------.- ----_.-._.--------- .. -.--------------_.------------_.".----_._-_ .. ------------_.--------._- -----._.---------.---------- ----------.-----_._. ----_.-------_.----------- 110S4S3S2S ISO ---------_ .. _------._---------._._-_._--------------- .. --.--------_.-----------_.-.-----._-_ .. ------._-- -------------------_.----------_ Skip Condition Operation State 1 A. r1 .......... --------------- MOV B3 10 (srJ-(A) -----_._.--. __ ._ .. ---------_.--- .-------------------- ---_._-_.,,-_ .. _---- A. sr1 01001100 l1S5S4S3S2S1S0 10 (Aj-(sr1) ... __ ._----- .... _-----_ ...... .. _-------- .. _--_._----_._ .. _._----,_ .. - ... _---,_.- .. _._--,_ ......... _--_ ..... .. _----, ... _._._---_._._-,--_ ..... _-_ .... _._-_ ....... ...... _,--_._ .... _--_ ...... _._.,-----, ..... _----"-_ ..... _---- .... _-_._ ..... _.. _ _ _ r. ...... word 01110000 01101R2R1Ro low Addr High Addr 17 (rj-(wordj ---_., __ ._._,-_ ....... _.. -... _.... _--_ .. _---_ .... __ ._. __ .. __ .... _--_.-_ .... _-_. __ ... __ .. _---- .. _..•. __ ..... _.... _._ ....... _-_._ ... _--_.- ... ............. _. __ ._._ .. _--_ ...... ,--_ ..... _.... _-_ ..... _.... .. _.... __ ........ _--_ .. _ MVI word. r 01110000 r. byte 01101R2R1RO High Addr 17 01100100 MVIW wa. byte MVIX rpa1. byte STAW wa _ (wordj-(r) (rJ-byte String skip. when r Data --_ ..... _._--_ ...... _._._--_ .......... __ .. _--_ ..... _.... _._, .... _-_._ ...... __ .. _._ ... _... __ ._. __ ....... _._"-- sr2. byte 4-162 low Addr ..... __ ... -... _.- ..... -.... 14 (sr2j-byte S;P000S2S1S0 Data 01110001 Offset Data 13 ((V). (wa)J-byte 01 001 OA lAo Data 10 (rpal)-byte 01100011 Offset 10 ((V)(wall-A = A or l NEe pPD78PG11 Instruction Groups (cont) 8-Bit Data Transfer (cont) Opcode Mnemonic Operand B1 B2 B3 B4 State 1 LDAW wa 00000001 Offset STAX rpa2 A3 0111 A2A lAo Data 2 10 7113 3 LDAX rpa2 A30101 A2A lAo Data 2 7113 3 Skip Condition Operation IA)-((V). Iwall Irpa2)-IA) IAI-lIrpa211 EXX 00010001 B IB)-IB'). IC)-IC'). ID)-ID') IE)-IE'). IH)-IH'). IL)-IL') EXA 00010000 8 IV)-IV'). IA)-IA'I. IEA)-IEA') EXH 01010000 8 IH)-IH'). IL)-IL') 16-bit Data Transfer BLOCK 00110001 rp3. EA . __ 13 IIDEII-IIHLII. IDE)-IDE 1+ ), 1) IHL)-IHL) + 1. IC)-IC) - 1 End if borrow Irp3d-IEAL). Irp3 H)-lEAH) c+ 101101P1 PO 4 EA. rp3 101001P1PO 4 sr3. EA 01001000 .... _--- .. _----------- DMOV I ------_ .... _----.- .. _--------- ._----_ .... _---.-_.---_ .... _--------_ .. _-_._-- ..... -_._._.-- .- ... _._--_ .... ------._---------_. ------------_ .... -.. _-------------------_ .. _-- 1101D01U o ···EA:··~·~4········ ··········l····················i·iiiiiiiiiv;·ii~··········· 01110000 00011110 .............................................. Low Addr IEALI-Irp3d.IEAHI-Irp3H) ----.- .. ------------_ ... _------ ... _-----_._._---------_._. --.--------_ .. _--_ .. _---- Isr3)-IEA) ···i4········"iE"Ai=·i~·~4i············ ................................ SBCD word 20 Iword)-IC). ((word) + 1) -IB) SDED word 00101110 20 Iword)-IE). ((word) + 1) -ID) SHLD word 00111110 20 Iwordl-IL). ((wordl + II -IHI SSPD word , 20 Iword)-ISPd.llword + 1) ISPH) STEAX rpa3 01001000 01110000 00001110 High Addr 14 If 14120 3 IIrpa311-IEAL). IIrpa3) + 1)lEAH) Data 4 LBCD word 20 ICI-Iword). IBJ-lIwordl + I) LBCD word 00101111 20 IE)-Iword). ID)-((wordJ + 1) LHLD word 00111111 20 IL)-Iword). IH)-((word) + 11 LSPD word 00001111 20 ISPd-lword). ISPH)-((word) + 1) LDEAX rpa3 01001000 PUSH rpl 10110020100 13 ((SPJ - lJ-lrplHIIISP) - 2J Irpl ~ISPJ-ISPJ - 2 POP rpl 10100020100 10 Irpl d-((SPII. Irpl HJ-IISP) + 1) ISP)-ISP) + 2) LXI rp2. word OP2P1Po0100 10 Irp2)-lwordl String skip when rp2 17 (C)-((PC) + 3 + IAII B-((PC) + 3 + IA) + 1) 00011111 Low Addr High Addr If 1000C3C2C1CO 14120 3 IEALI-((rpa3)). IEAHI-lIrpa3J + 1) Data 4 Low Byte High Byte = H 8-bit Aritmetic (Register) TABLE 01001000 A. r ADD r. A 11000R R1R0 2 -------------------.-._------_._-------.. _-----------. ._-------------_.------- r. A A. r ADC 01100000 10101000 01000R 2R 1Ro -------------- -------------- 11010R2R1Ro ----------------------------01010R 2R1Ro -.. _--- --------- 8 8 IAI-IA) + Ir) ----------------------------------------------Ir)-Ir) + IA) 8 IA)·-IA) + Ir) + ICY) .--~ ------------------------- -------------------- -------------_ .. _--- Ir)-Ir) + IA) + ICY) 4-163 NEe pPD78PG11 Instruction Groups (cont) 8-Bit Arithmetic (Register) (cont) Ope ode Mnemonic AOONC Operand A. r B1 B2 B4 B3 01100000 10100R2R)RO .... -_ .. _-_ ............... __ ... _-------_ .................. __ .. _-_ ...... -.......... - ........ __ .......... __ ... _-_._- ... __ r. A State 1 Skip Condition Operation 8 (A)-(A) +(r) No Carry 8 (r)-(r) + (A) No Carry ........... -......................... -- .................... _-_ ................................. -........ -_ ..... . 00100R2R) Ro SUB A. r 11100R2R)Ro 8 (A)-(A) - (r) ..... __ ..... __ ................ _.. _.. _................... --0 __ .... _--_ .... ·... _--_ ............................ __ ................... _......... _............. _........... _...... __ ......... ___ ................... _..... __ ... _._. __ ......... . SBB 8 (A)-(A) - (r) - (CY) -_ ....... ........... __ ... _-_ ...... _-_ ... _-_ ................................................................... ... ...... _. __ ............ -........................... -........ ...................... -.. ... _. r. A SUBNB ANA XRA GTA LTA NEA _ , _ _ r. A 8 _ __ ............... _-_. __ ... . (r)-(r) - (A) - (CY) A. r 10110R2R)RO 8 (A)-(A) - (r) No Borrow r. A 00110R 2R) Ro 8 (r)-(r) - (A) No Borrow A. r 10001R2R)Ro 8 (A)-(A) .\ (r) ._ ................................ _................ _................................ _._ ............ _............ _ ... -.... -............................... _ ... _............... -- ....... _.... . ···~·:i··························~ ·····················ooool·ii~R·;i~············· 01100000 ··············································8· ·······i~i·:i~i··:\··iAi"······························ ........................... 10011R2R)Ro 8 (A)-(A)V(rlJ r. A 00011 R2R )Ro 8 (r)-(r)V(A) A. r 10010R2R)Ro 8 (A)-(AJV(rlJ A. r 10101 R2R )RO ........... __ ....... -................................................... _........... _......... -................... _........... _.............. _ ........ __ ................. -.... -.................... _.. - _........ _.. -._ .............. _ .. ................. _.... _....... _._ ........ _................... _ ...................... _........ _...... _........... __ ..................... _._ .......... _....... -..... ' - ' - " - " ' - " - " ' . . ..................... _ ........ . 8 (A) - (r) - 1 No Borrow 8 (r) - (A) - 1 No Borrow ...... _......................... _................. _............. _........... _....... _.... -...... _.................... _ .. _.... -._ ............. _ .......... -.......... __ ... _...... _.- .... __ ......... -._ ................. _ .......... _ ....... . r. A ....~: ..~.................................................~~.1.~.~.~~~.~~.~.....................................................,.........~..........!~! ~ ~~! r. A 00111R2R)Ro 8 (r) - (A) . . .............................................~~~.~~~ ......... Borrow A. r 11101R2R)Ro 8 (A) - (r) ............. .. -._ ............. _._ .................................... -..................... _._ ................. ....................................... _._ ......... ..... _ _ r. A 01101R2R)Ro A. r EQA (r)-(r) - (A) 11110R2R)RO A. r ORA 8 01100R2R)Ro A. r _ No Zero _ .............................................. _...... " ' - 8 (r) - (A) No Zero 8 (A) - (r) Zero r. A 01111R2R)Ro 8 (r) - (A) Zero ONA A. r 11001 R2R )RO 8 (A).\(r) No Zero OFFA A. r 11011R2R)Ro 8 (A).\(r) Zero 01100000 8-bit Arithmetic (Memory) ADDX rpa 11000A2A)Ao 11 (A)-(A) + IIrpalJ ADCX rpa 11 01 OAzA )A 0 11 (A)-(A) + IIrpalJ + (CY) ADDNCX rpa 10100AzA)A 0 11 (A)-(A) + IIrpalJ SUBX rpa 11100AzA )A 0 11 (A)-(A) - IIrpalJ SBBX rpa 11110AzA)Ao 11 (A)-'-(A) - IIrpalJ - (CY) SUBNBX rpa 10110AzA )Ao 11 (A)-(A) - IIrpalJ ANAX rpa 10001A2A)AO 11 (A)-(A) - IIrpalJ ORAX rpa 10011AzA )AO 11 (A)-(A)VllrpalJ XRAX rpa 10010A2A)Ao 11 (A)-(A)V((rpalJ GTAX rpa 10101A 2A)A 0 11 (A) - IIrpalJ - 1 No Borrow LTAX rpa 10111A2A )Ao 11 (A) - IIrpalJ Borrow NEAX rpa 11101A2A)AO 11 (A) - IIrpalJ No Zero EQAX rpa 11111A2A)Ao 11 (A) - IIrpalJ Zero ONAX rpa 11001AzA)Ao 11 (A)-lIrpalJ No Zero OFFAX rpa 11011A2A)Ao 11 (A)-lIrpalJ Zero 4-164 01110000 , No Carry No Borrow NEe pPD78PG11 Instruction Groups (cont) Immediate Data Opcode Mnemonic * ADI ACI ADINC 8UI B2 A. byte 01000110 -Data- r. byte 01110100 01ODOR2R1Ro sr2. byte 0110 I 8310008~180 A. byte 01010110 -Data- r. byte 01110100 01010R2Rl RO B3 B4 .-._-----.-----.-.----------------------_.--._--- --------._----_.-----.-.--------------_.- sr2. byte 0110 I 8310108~180 A. byte 00100110 -Data- r. byte 01110100 00100R2R1RO sr2. byte 0110 I 8aOl00828180 A. byte 01100110 -Data- r. byte 01110100 01100R R1R0 sr2. byte 0110 I State 1 Skip Condition Operation (A)-(A) + byte Data .------- .. -------.------ .. ----._------._-----.-.--- ---------------._-----.-------.-._----.---------------".---------------- ---- ------- 11 (r)-(r) + byte 20 (sr2)-(sr2) + byte 11 (r)-(r) + byte + (CY) 20 (sr2)-(sr2) + byte + (CY) -------.---------._------_._-------._ .. _----------------.----------- .---------------._---- (A)-(A) + byte + (CY) Data (A)-(A) + byte No Carry (sr2)-(sr2) + byte No Carry ----------_.-----._.-- ------------------------- -.----------------------------------- .. _----------.--- -._.-_ .. --------._-------- .. -Data 11 (r)-(r) + byte No Carry .----------------------------------._-----.-------.------ .. ---------_._- .. _.-------_. ---_ .. _---_ ... _---_ .. _----_._.------_.------------------------------------------_._---------_._------------------- ------------------------------- 2 -------------------- ------------------------------------------------_._---._---------------A. byte 8BI Bl Operand 01110110 -Data- r. byte 01110100 01110R R R sr2. byte 0110 8311108~180 20 (A)-(A) - byte Data 11 (r)-(r) - byte 20 (sr2)-(sr2) - byte (A)-(A) - byte - (CY) Data 11 (r)-(r) - byte - (CY) 20 (sr2)-(sr2) - byte - (CY) 2 1 o ---_.-----_._._---------------- ----_._---------------_._---------------_._------_._---------------------_._-------------------------------------------------------_._---- --------------------------- ------------_._-------_._---j * A. byte 00110110 -Data(A)-(A) - byte No Borrow ........................................................................................................................................................................................................................................... 8UINB ANI ORI XRI r. byte 01110100 00110R2R1RO sr2. byte 0110 I 8aOll08~180 A. byte 00000111 -Data- -----------_. __ ._-----_._--------------------------------_._-----_._---_._------_._-----_. _.. _---- .. _------_._._--_ .. _. __ ._- sr2. byte 01100100 830001828180 -Data- A. byte 00010111 r. byte 01110100 sr2. byte 0110 I 8300118~180 A. byte 00010110 -Data- 00011 R2R lRO -_ .. __ ._-_. __ .. _- .. -.. _-_._---- ... _._- .. __ .---._-_ ... .. __ ... .. _--_ .. _-- .. _-----_. __ ._ r. byte 01110100 _.-._---_.-_.-.- ... _--- ..... _- .... _--- .. _._----_.A. byte 0110 I (r)-(r) - byte No Borrow (sr2)-(sr2) - byte No Borrow . __ ._---. __ .. __ ._--- .. __ .. _-._-_ .. _- .. __ ._--._-_.-._---_._--_._. -. __ ._-----_ .... _-._-_.- ~.~ ~~~.=~r.) . ~~~!.~................................ ............... ......... 20 (sr2)-(sr2);\byte 11 (r)-(r)Vbyte 20 (sr2)-(sr2)Vbyte (A)-(A)Vbyte Data _ 00010R2R1RO ... .. .. _.. _. __ ._ .. _- ... _._--_.-_._-----_ 11 20 (A)-(A).\byte . . r. . ~.~~~...............~1.~.1.~1~.~................~~~~l."-tl.!.~.~........... ......n.~.~~.................... sr2. byte (A)-(A)Vbyte Data 11 (r)-(r)Vbyte -- .. -_ .. _-- .. _._---_ ... __ .. _-_ .... __ .. _-._-_.----_ .... --- .. _.... .. __ . _ _ 8a00108 28 180 20 _ .. _._ .. __ ._._- .. __ .. _- ... __ .. -- .. _._ .. - (sr2)-(sr2)Vbyte 00100111 - Data- r. byte 01110100 00101 R2R 1R0 sr2. byte 0110 I 8a0101 8~ 180 14 (sr5) - byte - 1 A. byte 00110111 -Data- 7 (A) - byte Borrow r. byte 01110100 00111 R2R lRO 11 (r) - byte Borrow sr2. byte 0110 I 8301118~180 14 (sr5) - byte A. byte 01100111 -Data- 7 (A) - byte r. byte 01110100 01101 RzR lRO sr2. byte 0110 I 8311018~180 A. byte 01110111 -Data- ----------._-_. __ .--_ .. -.. -_. GTI Data .._-_ .. _-- .. __ ._.- .. _--_.- -... _-- .. _-_._ ... _-- . __ .. _-- .. _--_ ....... _-_._._- .. -._----_. __ .. _- .. _... -_ .. _._--_. __ ._- .... _---_ .... -..... -- .. _ .. _--. __ .. _-.--- -.-_._--- ... _._--.--_._----_.. Data .._ ... _- .. __ ._._-----_ .. _- ... _-_ .. - 7 (A) - byte - 1 No Borrow 11 (r) - byte - 1 No Borrow ._-_ .. _._----_._-- .. __ .. _----_ .. _._- .. __ .. _--- .. __ ._- ... ---._---_. __ ._-- -.. _ ... _-._-_ ... -..... -- ------_._- .. __ .. _--. __ .. _-- ....... .. _-_ ._-_._--._._ ... --_. __ ._- No Borrow .__ .. __ ._-_._-----_.- .. ------._.--- ... _... -._-_.- .. _--._-_._--_ .... __ ._-_._-_._-.----_. __ ... _ .. _- ... _ ....... ---_ .... __ .... -... _--_ .... _--_ .. -- ... __ .. -._._--_._-.-.-_ ... --. __ .... _-_ .. __ .- .. __ .. -.. __ .. -._-_._-_._-_ ..... __ .-- LTI NEI EOI -_"""-"".---.---. --_._----_ ... -._-_ .. _- .. __ .. -.. _--- .. _----- ... _ ... -.--_ .. _- .. _ ... -... - Data Data -.--_ .. _- .. _--_ .. -.---_ .... _--_ ... _----_ ... _--_ .. _--- ... .-._--- .. --_ .. -.. -----._-_ ..... _--_.- .. _-_.- .. __ ._.- .. ------ .... _._----_ .. _-._ .. __ .- .. _--_ .. -._--_ .. --._----._-_._-_. .. _---. __ ... _. __ ... _-. __ .--. __ .. --- .. _ .. 11 (r) - byte -- .. __ ._--.--_ .... __ ... _-_._- ... _--_ .. 14 Data _ (sr5) - byte Borrow No Zero No Zero No Zero (A) - byte Zero 11 (r) - byte Zero 14 (sr5) - byte Zero 4-1RR 4 NEe J-LPD78PG11 Instruction Groups (cont) Immediate Data (cont) Opcode Mnemonic Operand 82 81 A. byte 01000111 -Data- r. byte 01110100 01001 R2R IRo sr2. byte 0110 I A. byte 01010111 -Data- r. byte 01110100 01011R~IRo sr2. byte 0110 I ADDW wa 01110100 ADCW wa 1101 ADDNCW wa SUBW 83 84 State 1 Operation Skip Condition (A).\byte No Zero 11 (r).\byte No Zero 14 (sr5).\byte No Zero 7 (A).\byte Zero 11 (r).\byte Zero 14 Isr5).\byte Zero 14 (A)-IA) + ((V)o(wall 14 (A)-(A) + ((V) -(wall + (CY) 1010 14 (A)-IA) + ((V)o(wall wa 1110 14 IA)-IA) -((V)-(wall SBBW wa 1111 14 IA)-IAI - ((V)o(wall - (CYI SUBNBW wa 1011 14 IA)-(A) - ((VI-(wall ANAW wa 10001000 14 (A)-IA)A((V) - (wall ORAW wa XRAW wa GTAW wa LTAW wa NEAW EQAW ONAW wa OFFAW wa ONI Data ---------.------------------------._----------------------------------------------------_."-._----------------------._------------_ .. _-------.------------_.---------------_.-------------------------- .. _-------------.----.-----------.- OFFI -------------------------.--------.---------_. Data ------_ ... _---_._---------.--------.-.----------------------_.------.-----------------------._------.--------.-------. -----_.------- .. ------------------_.-------- Working Register ANIW 1 11000000 Offset 1001 I No Carry No Borrow 14 IA)-(A)V((V) -(wall 14 (A)-IAIvt(V)o(wall 10101000 14 IA) - ((V)-(wall - 1 No Borrow 1011 14 IA) - ((V) - (wall Borrow wa 1110 14 IA) - ((V) - (wall No Zero wa 1111 14 (A) - ((V) - (wall Zero 1100 14 IAI.\((VI- Iwall No Zero 1101 14 IA).\((V)o(wall Zero 01110100 , 10010000 Offset wa. byte 00000101 19 ((V) -Iwall-((V)o(wall.\byte ORIW * wa. byte 0001 19 ((V) -(wall-((V) -IwallVbyte GTIW * wa. byte 0010 13 ((V)o(wall - byte - 1 No Borrow LTIW * wa. byte 0011 13 ((VI- Iwall - byte Borrow NEIW * wa. byte 0110 13 ((V) -Iwall - byte No Zero EQIW * wa. byte 0111 13 ((V)- Iwall -byte Zero ONIW * wa. byte 0100 13 ((V) -Iwall .\byte No Zero OFFIW * wa. byte 0101 13 ((V)o(wall·\byte Zero 11 IEA)-IEA) + (r2) 11 (EA)-IEA) + Irp3) IEA)-IEA) + Irp31 + ICY) -Offset- Data 1 16-bit Arithmetic EADD EA. r2 DADD EA. rp3 DADC EA. rp3 11 DADDNC EA. rp3 11 lEAl-lEA) + Irp3) ESUB EA. r2 0000 011000RIR o 11 IEA)-IEA) - Ir2) DSUB EA. rp3 01110100 111001 PIPO 11 IEA)-IEA) - (rp3) DSBB EA. rp3 11 IEA)-IEA) - Irp3) - ICY) DSUBNB EA. rp3 1011 DAN EA. rp3 100011P IPO 4-166 01110000 010000RI Ro 0100 1111 I t 11 IEA)-IEA) - Irp3) 11 lEAl-lEAl - Irp31 No Carry No Borrow NEe pPD78PG11 Instruction Groups (cont) 16-Bit Arithmetic (cont) Opcode Operand DOR EA. rp3 11 (EA)-(EA)V(rp3) DXR EA. rp3 100101 PIP O 11 (EA)-(EA)V(rp3) DGT EA. rp3 101011 PIP O 11 (EA) - (rp3) - I No Borrow DLT EA. rp3 lOll 11 (EA) - (rp3) Borrow Bl B2 B3 B4 01110100 State 1 Operation Skip Condition Mnemonic ONE EA. rp3 1110 11 (EA) - (rp3) No Zero DEQ EA. rp3 1111 11 (EA) - (rp3) Zero DON EA. rp3 1100 11 (EA).\(rp3) No Zero DOFF EA. rp3 1101 11 (EA). \[rp3) Zero MUL r2 32 (EA)-(A) 59 (EAI-(EAI + (r2). (r2)-Remainder 4 (r2) - (r2) + I Carry 16 ((V). (wall-((V). (wall + I Carry if MultiplyIDivide 01001000 DIV r2 INR r2 010000R I Ro INRW wa 00100000 rp 00P I Po0010 001011 RIRo 0011 1 x (r2) Increment/Decrement INX .. _--. EA 10101000 OCR r2 010100RI Ro DCRW wa 00110000 DCX -Offset- (rp)-(rp) + I --------------_.-- .. _--------- rp OOPIPoOOII EA 10101001 (EAI-(EA) + I 4 -Offset- 16 (r2)-(r2) - I Borrow ((V). (wall-((V). (wall - I Borrow (rp)-(rp) - I --- ---- --- --_._-------------------. (EA)-(EA) - I Others DAA 01100001 STC 01001000 4 Decimal Adjust Accumulator 00101011 8 (CY)-I CLC 00101010 8 (CY)-O NEGA 00111010 8 (A)-(A) + I Rotate and Shift RLD 01001000 RRD 00111000 17 Rotate Left Digit 1 1001 17 Rotate Right Digit 001101 RIRo (r2 M+ 1)-(r2 M). (r2 0)-(CY). (CY)-(r2 7) r2 1 OOR IRo (r2M + 1)-(r2M).(r2 7)-(CY). (CY)-(r2 0) SLL r2 001001 RI Ro (r2M + JI-(r2M).(r2 0)-0. (CY)-(r27) SLR r2 OORIRo (r2 M _11-(r2 MI. (r2 71--0. (CY)-(r2 0) SLLC r2 OOOOOIRIRo (r2M + 1)-(r2 M). (r201-0. (CY)-(r2 7) Carry SLRC r2 100RI RO (r2 M _ II' (r2 MI. (r2 71-0. (CY)-(r2 0) Carry RLl r2 RLR 01001000 j A.-1R7 Il NEe ",PD78PG11 Instruction Groups (cont) Rotate and Shift (cont) Ope ode Mnemonic Operand oRLL EA oRLR EA oSLL EA oSLR EA B1 01001000 B3 B2 B4 Operation State 1 (EAN + I)-(EA N). (EAo)-(CV). (CV)-(EA I5) 10110100 8 0000 8 10100100 8 (EAN _1)-(EA N).(EAI5)-(CV), (CV)-(EA o) (EA N+ I)-(EAN). (EAo)-O. (CV)-(EA 15) 8 (EA N-I)-(EA N). (EAI5)-0 10 (PC)-word j j 0000 Skip Condition Jump JMP word 01010100 -Low Addr- High Addr 00100001 JB JR word ll-jdisp 1- JRE word 0100111- jdisp- 01001000 00101000 JEA 4 (PCH)-(8). (PCd-(C) 10 (PC)-(PC) + 1 + jdisp 1 10 (PC)-(PC) + 2 + jdisp 8 (PC)-EA 16 liSP) - l)-IIPC) + 3)H. liSP) - 2)-IIPC) + 31L. (PC)-word. (SP)-(SP) - 2 Call CALL word CALB 01000000 -Low Addr- 01001000 00101001 17 liSP) - l)-IIPC) + 2)H. liSP) - 2)-((PC) + 2)L. (PCH)-(B). (SP)-(SP) - 2 la- 13 liSP) - l)-((PC) + 2)H. liSP) - 2)-I\PC) + 2)L. (PC 15_11)-00001. (PCIO-oI-la. (SP)-(SP) - 2 High Addr CALF word 01111- CALT word 100-ta- 16 liSP) - 1)-((PC) + I)H. liSP) - 2)-I\PC) + III (PCt.\-(128 + 2ta). (P~) (129 + 2ta). (SP)-(SP) - 2 01110010 16 liSP) - l)-(PSW). liSP) - 2)IIPC) + l)H. liSP) - 3)-IIPC) + l)L. (PC)-0060H. (SP)(SP) - 3 10111000 10 (PC)-IISP)). (PC ~-ItSP) + 1) (SP)-(SP) + 2 1001 10 (PCt.\-IISP)). (PCH)-IISP) + 1) (SP)-(SP) + 2. (PC)-(PC) + n 01100010 13 (PCJ-IISP)), (PCHI-I\SP) + 1) (PSW)-IISP) + 2). (SP)-(SP) + 3 Unconditional Skip 10 Bit Test ltV). (wall bit = 1 SOFT! Return RET RETS j RETI Skip BIT bit. wa 01011B2BIBo -Onset- 01001000 0001F2Fl f o 8 Skip if 1= 1 1= 1 0001 8 8 Skip if 1= 0 Skip il irl = 1. then reset Irl 1=0 irf = 1 CPU Control SK SKN SKIT 4-168 irf • j 01 01 41312111 0 NEe pPD78PG11 Instruction Groups (cont) CPU Control (cont) Ope ode Mnemonic Operand SKNIT irf Bl 01001000 B2 B3 B4 State 1 8 01114131211 10 Operation Skip if irf = 0 Reset irf, if irf = 1 NOP 00000000 4 No Operation EI 10101010 4 Enable Interrupt 4 Disable Interrupt 11 Halt DI 10111010 HLT 01001000 Notes: * * * * 00111011 Skip Condition irf = 1 1 :In the case of skip condition, the idle states are as follows: 1-byte instruction: 4 states 2-byte instruction (with *): 7 states 2-byte instruction: 8 states 3-byte instruction (with *): 10 states 3-byte instruction: 11 states 4-byte instruction (with *): 14 states 2: B2 (Data):rpa2 = D + byte. H + byte. 3: Right side of slash (I) in states indicate case rpa2, rpa3 = D + byte, H + A, H + B, H + EA, H + byte. 4: B3 (Data): rpa3 = D + byte, H + byte. Emulating the JlPD7811 To emulate thetJPD7811: tie MODEO to ground and pull up MODE1 through a 10-kO resistor; insert a 2732A or 2764 into the upper terminals of the tJPD78PG11. If a 2732 is used it should be inserted so that pin 1 of the 2732A goes into terminal 3 (see pin configuration). If a 2764 is used, address line A12 will be held low so that only memory locations O-OFFFH (the lower 4K bytes) of the 2764 will be accessed. This simulates accessing 4K bytes of masked-ROM in the tJPD7811. In other respects tJPD78PG11 is functionally equivalent to tJPD7811. 3. Control Lines Under software control, each line of Port C can be configured individually to provide control lines for serial interface, timer, and timerlevent counter. Input/Output 4. Memory Expansion In addition to the single-chip operation mode, tJPD78PG11 has 4 memory expansion modes. Under software control, Port D can provide multiplexed low-order address and data bus and Port F can provide high-order address bus. The relation between memory expansion modes and the pin configurations of Port D and Port F is shown in the table that follows. 8 Analog Input Lines 44 Digital 110 Lines: five 8-bit ports (Port A, Port S, Port C, Port D, Port F) and 4 input lines (AN4-AN7) Memory Expansion 1. Analog Input Lines ANa-AN7 are configured as analog input lines for on-chip AID converter. 2. Port Operation -Port A, Port S, Port C, Port F Each lineof these ports can be individually programmed as an input or as an output. When used as 1/0 ports, all have latched outputs, high-impedance inputs. -Port D Port 0 can be programmed as a byte input or a byte output. - AN 4- AN 7 The high-order analog input lines, AN4-AN7 can be used as digital input lines for falling edge detection. None 256 Bytes 4K Bytes 16K Bytes 60K Bytes Port Configuration Port D I/O Port Port F I/O Port Port D Multiplexed Address/Data Bus Port F I/O Port Port D Multiplexed Address/Data Bus Port Fo-Fa Address Bus Port F4 - F7 I/O Port Port D Multiplexed Address/Data Bus Port Fo- F5 Address Bus Port Fo- F7 I/O Port Port D Multiplexed Address/Data Bus Port F Address Bus 4-169 NEe J,LPD78PG11 Memory Map The J.lPD78PG11 can directly address up to 64K bytes of memory. Except for the EPROM (0-4,095) and RAM (65,280-65,535), any memory location can be used as ROM or RAM. The following memory map defines the 0-64K-byte memory space for the J.lPD78PG11. Memory Map Reset/Standby Relsase IRQO Internal ROM 4,096 Bytes x B IRQ1 OFFFH 1000H External Memory 61,184 Bytes x 8 10H IRQ 2 1BH IRQ3 20H IRQ 4 28H IRQS FEFFH FFOOH IntemalRAM 256BytesxB FFFFH ~1 SoftlNT BOH LowADDR 81H HighADDR 82H LowADDR B3H HlghADDR I }t=o }t=1 LowADDR HighADDR }t=31 User's Area 49-0001728 4-170 NEe pPD78PG11 Timers Timer /EventCounter The timer/event counter consists of two 8-bit timers. The timers may be programmed independently or may be cascaded and used as a 16-bit timer. The timer can be set in software to increment at intervals of 4 machine cycles (1,us at 12MHz operation) or 128 machine cycles (32,us at 12MHz), or to increment on receipt of a pulse at T1. The 16-bit multifunctional timer/event counter can be used for the following operations: o Interval timer o External event timer o Frequency measurement o Pulse width measurement o Programmable square-wave output Timer Block Diagram ,-----Timer 0 Timer 1 r - - - - - - --1 Timer/Event Counter Serial Interface 49-0001738 .:1.-171 NEe jLPD78PG11 Block Diagram for Timer IEvent Counter 4CL PCsfCI CP, TO pc./co. CPo Output Control EIN pC.tco, CPo CP, INTEO Interrupt Control INTEl EIN INTEIN Note: = CL 311 [250 ns; 12 MHz operation]. f: System clock frequency [MHz]. 49-oo0174B 8-Bit AID Converter o8 o o o o o o o input channels 4 conversion result registers 2 powerful operation modes -Autoscan mode -Channel select mode Successive approximation technique Absolute accuracy: ±1.S LSB (±O.6%) Conversion range: OV to SV Conversion time: SOILS I nterrupt generation AnaloglDigital Converter The JlPD78PG11 features an 8-bit, high-speed, highaccuracy AID converter. The AID converter consists of a 256-resistor ladder and a successive approximation reg!ster (SAR). There are four conversion result registers (CRo-CR3). The 8-channel analog input may be operated in either of two modes. I n the select mode, the conversion value of one analog input is sequentially stored in CRo-CR3. In the scan mode, the upper four 4-172 channels or the lower four channels may be specified. Then those four channels will be consecutively selected and the conversion results stored sequentially in the four conversion result registers. AID Converter Block Diagram ~cc~-----------------, AVs.o--------------, VAREF 0------------------, AN. 0--------1 AN,o-----t AN. 0--------1 AN 3 0 - - - - - t AN. 0-----.-1 AN. 0---+-+-1 AN. o-----..+-+-t AN, o--~+-+-t Internal Bus 49-000175A NEe pPD78PG11 Interrupt Structure Universal Serial Interface There are 11 interrupt sources. Three are external interrupts and 8 are internal. These 11 interrupt sources are divided into 6 priority levels as shown in the table below. The serial interface can operate in any of three modes: synchronous, asynchronous, and I/O interface. The I/O interface mode transfers data MSB first for ease of communication with certain peripheral devices. Synchronous and asynchronous modes transfer data LSB first. Synchronous operation offers two modes of data reception. In the search mode, data is transferred one bit at a time from serial register to receive buffer. This allows a software search for a sync character. In the nonsearch mode, data transfer from serial register to transmit buffer occurs 8 bits at a time. Interrupt Interrupt Request Type of Interrupt InlExt 4 NMI (Nonmaskable interrupt) External IRQ I 8 INTTO (Coincidence signal from timer 0) INTTI (Coincidence signal from timer I) Internal IRQ2 16 INTI INT2 External IRQ3 24 INTEO (Coincidence ti mer / event INTEl (Coincidence timer/event IRQ4 32 INTEIN (Falling signal of Cl and TO counter) INTAD (A/D converter interrupt) In/External IRQ5 40 INTSR (Serial receive interrupt) INST (Serial send interrupt) Internal IRQO (Maskable interrupt) (Maskable interrupt) signal from counter) signal from counter) Universal Serial Interface Block Diagram Internal PC,IRxD Il PC,.ISCKo--~< Interrupt Structure Block Diagram NMI INTTO SK.. SK, PCoITxD 49-000177A INTTI INTI 1NT2 INTEO INTE1 INTEIN INTAD INTSR INTST ov ER SB AN 7 -AN. Zero-crossi ng Detector The INT1 and INT2 terminals (used common to TI and PC3) can be used to detect the zero-crossing point of slow moving AC signals. When driven directly, these pins respond as a normal digital input. To utilize the zero-cross detection mode, an AC signal of approximately 1-3V AC peak-to-peak magnitude and a maximum frequency of 1kHz is coupled through an external capacitor to these pins. Standby Function The pPD78PG11 offers a standby function that allows the user to save up to 32 bytes of RAM with backup power (VOD) if the main power (Vee) fails. On powerup the pPD78PG11 checks whether recovery was made from standby mode or from cold start. For the INT1 pin, the internal digital state is sensed as a zero until the rising edge crosses the DC average level, when it becomes a one and INT1 interrupt is generated. For the INT2 pin, the state is sensed as a one until the falling edge crosses the DC average level, when it becomes a zero and INT2 interrupt is generated. The zero-cross detection capability allows the user to make the 50-60Hz power signal the basis for system timing and to control voltage phase sensitive devices. 4-173 NEe jlPD78PG11 Operand Format/Description Zero-Crossing Detection Circuit IINT1 C IINT2 (PC31 ~~--~--~~--,~~--~~~-- Format Description r rl r2 V. A. B. C. D. E. H. L sr sr2 sr3 sr4 PA. PB. PC. PD. PF. MKH. MKL. ANM. 8MH. SML. EOM. ElMM. TMM. MM. Mee. MA.MB. MC MF. TxB. TMo. TMI PA. PB. PC. PD. PF. MKH. MKL. ANM. SMH. EOM. TMM. RxB. eRo; CR I. CR2; CR3 PA. PB. PC. PD. PF. MKH. MKL. ANM. SMH. EOM. TMM ElMo. ElMI ECNT. ECPT rp rpl rp2 rp3 SP. B. D. H V. B. D. H. EA SP. B. D. H. EA B. D. H rpa rpal rpa2 rpa3 B. B. B. D. srl 83-003835A EAH. EAL. B. C. D. E. H. L A. B. C D. H. D+. H+. D-. HD. H 0. H. D+. H+. D-. H-. D+ byte. H+ A • H+ B. H+ EA. H+ byte H. D+. H+ +. D+ byte. H+ A. H+ B. H+ EA. H+ byte wa 8-bit immediate· data word byte bit l6-bit immediate data B-bit immediate data 3-bit immediate data CV. He. irf 4-174 z FNMI. flO. FTl. Fl. F2. FEO. FE1. FEIN. FAD. FSR. FST. ER. OV. AN4• AN 5• AN 6• AN 7• SB NEe NEe Electronics Inc. Description The tJPD78310 and tJPD78312 microcomputers are designed for use in process control. They perform all the usual process control functions and are particularly well-suited for driving dc motors in servo loops and stepping motors. The processor includes on-chip memory, timers, input/output registers, and a powerful interrupt handling facility. The tJPD78310/312 is constructed of high-speed CMOS circuitry and operates from a +5 V power supply. The input frequency (maximum 12 MHz) is derived from an external crystal or an external oscillator. The internal processor clock is two-phase, and thus machine states are executed at a rate of 6 MHz. The shortest instructions require three states, making the minimum time 500 ns. The CPU contains a three-byte instruction prefetch queue which allows a subsequent instruction to be fetched during execution of an instruction that does not reference memory. pPD78310/312 8-BIT, SINGLE-CHIP CMOS MICROCOMPUTERS, REAL-TIME CONTROL ORIENTED D Macro service facility for interrupts - Gives the effect of 8 DMA channels o Bidirectional serial port - Either UART or interface mode - Dedicated baud rate generator o Watchdog timer D Refresh output for pseudostatic RAM o Programmable HALT and STOP modes D One-byte call instruction o On-chip clock generator D CMOS silicon gate technology o +5 V power supply Pin Configurations 64-Pin DIP and QUIP VDD P47/AD7 P4s/ADs Program memory is 8K bytes of mask-programmable ROM (tJPD78312 only), and data memory is 256 bytes of static RAM. ThetJPD78310 is the ROM-less version. P44/AD4 P43/AD3 P42/AD2 P41/AD1 P4o/ADo Note: pPD78P312, available in 3086, is a prototyping chip for pPD78312. It has an on-chip 8K EPROM instead of a mask ROM. ALE VIR Features D Complete single-chip microcomputer - 16-bit ALU - 8K ROM (tJPD78312 only) - 256 bytes RAM - 1-bit and 8-bit logic D Instruction prefetch queue D 16-bit unsigned multiply and divide D String instructions D Memory expansion D - 808SA bus-compatible - Total64K address space D Large I/O capacity - Up to 32 I/O port lines D Extensive timer/counter system - Two 16-bit up/down counters - Two 16-bit timers - Free running counter with two 16-bit capture registers - Pulse-width modulated outputs - Timebase counter D Four-channel 8-bit A/D converter D Two 4-bit real-time output ports D Two nonmaskable interrupts D Eight hardware priority interrupt levels P1s PS7/A1S P17 PSs/A14 P20INMI PSs/A13 PS4/A12 P22/INTE1 PS3/A11 P23/INTE2 PS2/A10 PS1/Ag P2S/RxD PSo/As P26/SCK P37/CLR1/T01 P27/CTS P3S/PWM1 P30/CIO P31/CTRLO P34/PWMO AVss AVREF P33/CTRL1 AN3 X1 AN2 AN1 Vss _ _ _ _ _ _-r- ANo 83-003822A 4-175 NEe pPD78310/312 Pin Identification (cont) Pin Configurations (cont) Symbol 54-Pin Mlnltlat I/O port 2/Clear to send input co U'> U'> 51 Up/down counter 1 input P41/AD1 P40/ADo Up/down counter 1 control input ALE ViR 48 EA X1 External crystal/External clock input X2 External crystal Vss P57/A1S P1S 42 pPD78310/312 10 P54/A12 P53/A11 P21/1NTEO 13 39 16 36 PSO/AS P24/TxD P36/CLRO/TOO P3s/PWM1 P34/PWMO 33 N 45 P2s/RxD Refresh output P30/C10 N RO P22/1NTE1 RFSH Up/down counter 0 control input '" o P17 Function P37/CLR1/T01 I/O port 3/Counter 1 clear input/Timer 1 output P50-P57/ As-A15 I/O port 5/High address byte output EA External access control input RESET External reset input RD Read strobe output WR Write strobe output ALE Address latch enable output P40-P47/ ADo-AD7 I/O port 4/External address/Data bus Voo Power supply pPD78310CW pPD78312CW 54-pin plastic shrink DIP 12MHz Pin Functions pPD78310G-36 pPD78312G-36 pPD78P312G-36 54-pin plastic QUIP 12 MHz POO-P07 [Port 0] pPD7831 OG-1 B pPD78312G-1B 54-pin plastic miniflat 12 MHz Port 0 consists of 8 bits, individually programmable for input/output or two 4-bit real-time (timer controlled) output ports. pPD78310L pPD78312L 68-pin PLCC 12 MHz P10-P17 [Port 1] Port 1 consists of 8 bits, individually programmable for input/output. Pin Identification Symbol POO-PO? Function I/O port 0 P10-P1? I/O port 1 P20/NMI Nonmaskable interrupt input P20/NMI Port P20 is dedicated to NMI, the nonmaskable external interrupt request. P21-P23/1 NTEO-I NTE2 1.1 ....... 1,,.. .... 1.... ;n+ ........ lln+ innlltt" IVIQ.;:)r\QUIt;i I l l l \ l I I U P " IIIPUh,1 I/O port 2/Serial transmit output P25/RxD I/O port 2/Serial transmit output I/O port 2/Serial clock output 4-176 Ports P21-P23 are dedicated to INTEU, IN I t::l, and INTE2, the maskable external interrupt requests. NEe pPD78310/312 P24/TxD ANo-AN3 P24 is an I/O port bit or the transmitted serial data output. ANo-AN3 are the four program selectable input channels for the A/D converter. P2s/RxD AVREF P2s is an I/O port bit or the received serial data input. AVREF is the reference voltage input for the A/D converter. P2s1SCK P26 is an I/O port bit or the serial shift clock output. AVss AVss is the analog ground pin. P27/CTS P27 is an I/O port bit or clear-to-send input (external serial transmission control) in the asynchronous communication mode. In theseriall/O interface mode, it becomes the serial receive clock I/O pin.1 P34/PWMO P34 is an I/O port bit or the pulse-width modulated output O. P3s/PWM1 RFSH RFSH is the refresh pulse output to be used for external pseudostatic DRAM. P3s is an I/O port bit or the pulse-width modulated output 1. P36/CLRO/TOO P30/CIO Port P30 is dedicated to Cia, the external count input for up/down counter o. P36 is an I/O port bit, or the clear input for up/down counter 0, or the timer a flip-flop output. P37/CLR1/T01 P31/CTRLO Port P31 is dedicated to CTRLO, the external control input for up/down counter O. P37 is an I/O port bit, or the clear input for up/down counter 1, or the timer 1 flip-flop output. PSo-PS7/As-A15 [Port 5] P32/CI1 Port P32 is dedicated to C11, the external count input for up/down counter 1. P33/CTRL1 Port P33 is dedicated to CTRL 1, the external control input for up/down counter 1. X1 X1 is the external oscillator input or one of the connections for an external crystal. It is used to generate the system clock. The system clock frequency is half the input frequency. X2 X2 is the second connection for an external crystal. Vss Vss is the power supply return, normally ground. Port 5 consists of 8 bits, individually programmable for input or output, or the high-order address bits for external memory. Under control of the memory mask register, bits P50-P53 are used for 4K memory expansion, bits P50-P5s are used for 16K memory expansion, or bits P50-P57 are used for 56K memory expansion. EA [External Access] On IIPD78312, a Iowan EA enables use of external memory in place of on-chip ROM. The EA pin must be Iowan IIPD7831 O. This pin is used for the external reset input. A low level sets all registers to their specified reset values. RD RD is the read strobe output. It is to be used by external memory (or data registers) to place data on the I/O bus during a read operation. 4-177 ., IIIi.i t\fEC pPD78310/312 WR P40·P47/ADo·AD7 [Port 4] WR is the write strobe output. It is to be used by external memory (or data registers) to latch data from the I/O bus during a write operation. Port 4 consists of 8 bits, programmable as a unit for input or output, or as the multiplexed address/data bus if external memory or external interface circuitry is used. The port is controlled by the memory mapping register. ALE ALE is the address latch enable. It is to be used by external circuitry to latch the low-order 8 address bits during the first part of a read or write cycle. Voo VDD is the positive power supply input. Block Diagram 16 P20INMI P21/1NTEO P22/1NTE1 ALE P23/1NTE2 AD WR P24/TxD RFSH P2S/RxD EA P2s/SCK P27/CTS P30/CIO P31/CTRLO P32/CI1 P33/CTRL1 P3s/CLRO/TOO X1 P37/CLR1/T01 X2 RESET P21/1NTEO Voo Vss P3S/PWM1 AVREF ANo-AN3 AVss P3S/CLRO/TOO P37 /CLR1/T01 49-001302C 4-178 NEe pPD78310/312 Functional Description General Registers On-chip features designed to facilitate process control include two 16-bit timers, two 16-bit up/down counters, two pulse-width modulated outputs, a free-running counter with two capture registers, two 4-bit real-time (timer controlled) output ports, an 8-bit A/D converter with 4 input channels, a timebase counter to generate widely spaced interrupts, and a watchdog timer to guard against infinite program loops. The CPU has 16 8-bit registers (figure 2) that can also be used in pairs to function as 16-bit registers. A complete set of 16 general registers is mapped into each of 8 program-selectable register banks, stored in RAM. Three bits in the PSW specify which of the register banks is active at any given time. Each register bank has two program-selectable accumulators. In addition there is a serial 110 port which can be used in either an interface mode or an asynchronous communication mode. HALT and STOP modes are provided to conserve power at times when the action of the CPU is not required. Figure 1. Memory Map FFFFH - FEOOH I- - - - - - - - FFFFH7T"""-----, - - f- """' Special Function Registers , " , , All I/O, timer, and control registers are defined as special function registers and assigned addresses in the top 256 bytes of memory. The special function registers may be operated on directly by many of the arithmetic, logic, and move instructions of the CPU. Table 2 at the end of the Functional Description describes the registers. FFOOHr- _ _ T _ _ _ Register I Storage I Internal , Awiiiib"ie' RAM '~~H Storage: FE80H External Memory Area IOFFF::":'Hr-------, / / / The pPD78310/312 features 1-byte addressing of the special function registers and 1-byte addressing ofthe internal RAM. There are nine modes of addressing main memory, including autoincrement, autodecrement, indexing, and double indexing. There are 8- and 16-bit immediate operands. Fixed Area / Addressing I / 0800H ______ _ / I lFFFH - - - - - Internal / ROM I / --t-.J OFFFH - - - - 007FH - - --- --Cali 0040H _ _ _Table _ _Area _ _ OOOOH ' - -_ _- L _ _ _ _ _ _ _ _OOOOH Vector Table Area 49·001304A External Memory External memory (figure 1) is supported by 110 port 4, an 8-bit multiplexed address/data bus. The memory mapping register controls the size of external memory as well as the number of additional wait states. Highorder address bits are taken from I/O port 5 as required. No bits are required for 256 bytes of external memory; bits P50-P53 are used for 4K bytes, P50-P55 for 16K bytes, and P50-P57 for 56K bytes. Any remaining port 5 bits are available for I/O. Figure 2. Register Designation and Storage RSS=1 FE80H Register Bank ;' 7 I r-_-~-~_-.J.."""I_-~-O_"" / / I I I I I I / .------jl I I =0 AX [RPOI RPO I I I I I I Refresh The pPD7831 0/312 has a refresh signal for use with the pseudostatic RAM. The refresh cycle can be set to one of four intervals ranging from 2.67 to 21.3 ps. The refresh is timed to follow a read or write operation so that the CPU does not have to wait. I RSS __A_[~~_..L_~~~_ BC [RP1] RPI ~_[~~..L~l~~] AX [RP2] __ ~: __ ..L __~ __ RP2 R7 RS I _____ _ _ _ _ _ _ _ ...L.. ~il~?ll~lR!l BC [RP3] RP3 VPH [Rgi ..L I _ VPL ______ _ _[RBI __ _ VP [RP4] UPH [Rll) I UPL [RIO) -------'------UP [RPS) _~l~:U__ ~~~~ DE [RPS) H [R1S] FEFFH I L [R14) ------'------HL [RP7) 83-003824A 4-179 NEe pPD78310/312 Program Status Word Figure 3. Pulse-Width Modulated Output r------------------------------, Following is the program status word format. I 15 8 o I RB2 I RB1 I RBo I 0 o IE 7 S I I I o 0 z RB2- RB o IE S Z RSS AC UF P/V SUB Cy I RSS I AC UF P/V ISUB I Cy Active register bank number Interrupt enable Sign (1 if last result was negative) Zero (1 if last result was zero) Register set select Auxiliary carry (carry out of 3 bit) User flag Parity or arithmetic overflow Subtract (1 if last operation was subtract) Carry Input/Output All ports may be used for either latched output or highimpedance input. All ports except port 4 are bitprogrammable for input or output. Port 0 is used for real-time or normal I/O. Port 1 is used for normal I/O. The low nibble of ports 2 and 3 is always used for control and the high nibble for control or normal 110. Port 4 is used for the external address/data bus or byte-programmable I/O. Port 5 is used for the high bits of the external address or for normal I/O. Real-Time Output Port The real-time output port shares pins with 110 port O. The high and low nibbles are treated separately or together. Data is transferred from a buffer to the port latches on either a timer or software command. Serial Port The serial port can operate in UART or interface mode with the baud rate and byte format under program control. The serial port also includes a dedicated baud rate generator. Pulse-Width Modulated Outputs The two independent pulse-width modulated outputs are controlled by two 16-bit modulus registers and counters. There are four programmable repetition rates ranging from 91.6 Hz to 23.4 kHz. Figure 3 shows one of these outputs. 4-180 I 49·001303A Timers The JlPD7831 0/312 has two 16'-bit ti mers. The inputs to these timers may be the. internal clock divided by 6 or by 128. Each timer has an associated modulus register to store the timer count. The timer counts down to zero, sets a flag, reloads from the modulus register, and then counts down again. The timer flags can be used under program control to generate interrupt requests and/or a square-wave output. TMO also functions optionally as two one-shot timers. Figure 4 is a diagram of the interval timers. There is a free-running counterthat counts the internal clock divided by 4 or by 16. The counter has two 16-bit capture registers. Capture is triggerd by an external interrupt request or by the up/down counter clock. The timebase counter generates a signal at one of four intervals ranging from 170 JlS to 175 ms. The signal can be used to generate an interrupt request and/or an up/down counter capture. . Up/Down Counters The JlPD78310/312 has two 16-bit up/down counters, each of which has two capture/compare registers. There are three modes of operation: compare and interrupt, capture on external command, and capture on timebase counter command. There are five sources of counts: the internal clock divided by 3, the external clock, external independent up and down inputs, external clock with direction control, and external clock with automatic up/down discrimination. Figure 5 shows an up/down counter. NEe Figure 4. pPD78310/312 Timer Block Diagram ,-----------------------------, SCLK/6 I I I I I SCLK/128 I I I I I I I I I I I I I I j I I I I MOO (16) I I I I ~ ::: 3- SCLK/128 L ________ - - 6 I I ~ output: -n------------ >00 ----~ Internal Bus q 49-001305C Standby Modes Watchdog Timer HALT and STOP modes conserve power when CPU action is not required. In HALT mode, the CPU stops and the clock continues to run. Maskable interrupts can restart the CPU. The watchdog timer protects agains inadvertent program loops. A nonmaskable interrupt occurs if the timer is not reset before a timeout occurs. There are four program-selectable intervals ranging from -5.5 ms to 349.3 ms. The watchdog timer can be disabled by software. The watchdog timer mode register controls the watchdog timer and is a protected location written to by a special instruction. In STOP mode, the CPU and clock are both stopped. A RESET pulse or the nonmaskable external interrupt is required to restart them. There is also the option of slowing the system clock by a factor of four. The standby control register controls the standby modes and is a protected location written to only by a special instruction. AID Converter The AID converter has four input channels and can operate in either scan or select mode. The AID converter performs 8-bit successive approximation conversions, has a 30-Jls conversion time, and is triggered either internally or externally. The AID converter includes an on-Chip sample and hold amplifier. 4-181 NEe JlPD78310/312 Figure 5. Up/Down Counter Block Diagram ~f-~-----------------------l ~~9 ~O r - - - - -7ro;- - - - - - - - - ---,- - - - I I I I ~= I I --1 I I Interrupt Request I I I I CIO I I CTRLO I I I I Interrupt Request CLRO I I I L _______ _ I I I I I I ------Dn-------~ & Internal Bus V 49-0013066 Interrupts Macro Service There are two nonmaskable interrupt sources: the external nonmaskable interrupt and the watchdog timer. Their relative priorities are software selectable. The macro service controller can be programmed to perform word or byte transfers. It can transfer data from a special function register to memory or from memory to a special function register. Transfer events are triggered by interrupt requests and take place without software intervention. There are eight hardware priority interrupt levels, level ohaving the highest priority and level 7 the lowest. The fifteen maskable interrupt sources (table 1) are divided into five groups, and each group can, under program control, be assigned to anyone of the priority levels. I nterrupts may be serviced by routines entered either by vectoring or by context switching. Context switching automatically saves a" the general registers, the program status word, and the program counter. Figure 6 illustrates the mechanism of context switching. Fina"y, there is an optional macro service function that transfers data between anyone special function register and memory without program intervention. 4-182 There are eight macro service channels; channel control information is stored in RAM. This information (figure 7) consists of a 16-bit memory address (optiona"y incremented at each transfer), an 8-bit special function register designator, and an 8-bit transfer counter (decremented at each transfer.) When the count equals 0, a context switch or vectored interrupt occurs. NEe Table 1. pPD78310/312 Interrupt Sources and Vector Addresses Default Priority Source Nonmaskable interrupts Maskable interrupts Macro Service No No No 003EH 0002H OOOAH 0 1 2 3 CRFOO CRF01 CRF10 CRF11 Up/down counter Up/down counter Up/down counter Up/down counter Yes No Yes No 001AH 001CH 001EH 0020H 4 6 EXIFO EXIF1 EXIF2 External interrupt 0 External interrupt 1 External interrupt 2 Yes Yes Yes 0004H 0006H 0008H 7 8 9 TIMFO TIMF1 TlMF2 Timer flag 0 Timer flag 1 Timer flag 2 Yes Yes Yes OOOEH 0010H 0012H 10 11 12 SEF SRF STF Serial port error Serial port receive buffer Serial port transmit buffer No Yes Yes 0022H 0024H 0026H 13 14 ADF TBF A/D converter doneftag Timebase counter flag Yes No 0028H OOOCH RESET External reset line Figure 7. Hardware Context Switching OOOOH pPD78312 Macro Service Pointer Addresses New Active Register Bank Current Active Register Bank 15 8/7 FEEOH MSP4 AX AX BC FEE3H SFRP4 FEE7H SFRP5 FEEBH SFRP6 FEEFH SFRP7 FEF3H SFRPO FEF7H SFRP1 FEFBH SFRP2 FEFFH SFRP3 BC Ssve RP2 ~ RP3 VP UP UP I I I MSC4 FEE2H MSC5 FEE6H MSC6 FEEAH FEE4H MSP5 PC SsveArea PSW SsveArea VP Register Bank 1 DE DE HL HL I FEECH Channel 7 MSC7 Register Bank 0 Load Program L Status Word I I FEF4H FEF6H MSC2 FEFAH MSC3 FEFEH FEF8H FEFCH MSP3 49-001307A I Channel 0 FEF2H MSC1 MSP2 I FEEEH FEFOH MSCO MSP1 I Channel 5 Channel 6 MSPO I Channel 4 FEE8H MSP6 MSP7 Program Counter Vector Break instruction External nonmaskable interrupt Watchdog timer 5 Figure 6. Interrupt Service BRK NMI WDT Channel 1 Channel 2 Channel 3 Note: [11 The macrO service pointers share storage with register banks 0 and 1_ [21 MSP = Memory address pointer SFRP ~ Special function register pointer MSC -, Transfer counter 4-183 NEe pPD78310/312 Table 2. Special Function Registers Function Address Mnemonic Read/ Write 16-Bit Transfer Reset State FFOOH I/O port 0 PO R/W No Undefined FF01H I/O port 1 P1 R/W No Undefined FF02H I/O 2 P2 R/W No (Note 1) Undefined FF03H I/O port 3 P3 R/W No (Note 1) Undefined FF04H I/O port 4 P4 R/W No Undefined FF05H I/O port 5 P5 R/W No Undefined FF08H FF09H Capture/compare register 00 CROOl CROOH R/W Yes Undefined FFOAH FFOBH Capture/compare register 01 CR01l CR01H R/W Yes Undefined FFOCH FFODH Capture/compare register 10 CR10l CR10H R/W Yes Undefined FFOEH FFOFH Capture/compare register 11 CR11l CR11H R/W Yes Undefined FF10H FF11H Capture register 0 (from FRC) CPTOl CPTOH R/W Yes Undefined FF12H FF13H Capture register 1 (from FRC) CPT1l CPT1H R/W Yes Undefined FF14H FF15H PWM register 0 (duration) PWMOl PWMOH R/W Yes Undefined FF16H FF17H PWM register 1 (duration) PWM1l PWM1H R/W Yes Undefined FF1CH FF1DH Presettable up/down counter 0 UDCOl UDCOH R/W Yes Undefined FF1EH FF1FH Presettable up/down counter 1 UDC1l UDC1H R/W Yes Undefined FFH p~rt FF20H Port 0 mode register PMO R/W No FF21H Port 1 mode register PM1 R/W No FFH FF22H Port 2 mode register PM2 R/W No FFH FF23H Port 3 mode register PM3 R/W No FFH FF25H Port 5 mode register PM5 R/W No FFH FF32H Port 2 mode control register PMC2 R/W No OFH Port 3 mode control register PMC3 R/W No OFH Real-time output port control register RTPC R/W No 08H FF33H FF38H 4-184 NEe Table 2. pPD78310/312 Special Function Registers (cont) Address Function Mnemonic Read/ Write 16-Bit Transfer Reset State R/W R/W No No Undefined Undefined 30H FF3AH FF3BH Port 0 buffer register (Note 2) FF40H Memory mapping register MM R/W No FF41H Refresh mode register RFM R/W No 10H FF42H Watchdog timer mode register WDM R/W No OOH FF44H Standby control register STBC R/W No 2nH (Note 3) FF46H Timebase mode register TMB R/W No OOH FF48H Interrupt mode register INTM R/W No OOH POL POH FF4AH In-service priority register ISPR R/W No OOH FF4EH CPU control word CCW R/W No OOH FF50H Serial communication mode register SCM R/W No OOH FF52H Serial communication control register SCC R/W No OOH FF53H Baud rate generator BRG R/W No OOH FF56H Serial communication receive buffer RXB R No Undefined FF57H Serial communication transmit buffer TXB W No Undefined FF60H Free-running counter control register FRCC R/W No OOH FF64H Capture mode register CPTM R/W No OOH FF66H PWM mode register PWMM R/W No OOH FF68H AID converter mode register ADM R/W No OOH FF6AH AID converter result register ADCR R No Undefined FF70H Count unit input mode register CUlM R/W No OOH I: FF72H Up/down counter control register 0 UDCCO R/W No OOH FF74H Capture/ compare control register CRC R/W No OOH FF80H Timer 0 control register TMCO R/W No OOH FF82H Timer 1 control register TMC1 R/W No OOH FF88H FF89H Timer 0 TMOL TMOH R/W Yes Undefined FF8AH FF8BH Modulus/timer register 0 MDOL MDOH R/W Yes Undefined FF8CH FF8DH Timer 1 TM1L TM1H R/W Yes Undefined FF8EH FF8FH Modulus register 1 MD1L MD1H R/W Yes Undefined FFBOHFFBFH External area (Note 4) 4-185 NEe pPD78310/312 Table 2. Special Function Registers (cont) Address Mnemonic Function Read/ Write 16·Blt Transfer Reset State 47H FFCOH Interrupt controlOO Up/down counter CRICOO R/W No FFC1H Macro service control 00 Up/down counter CRMSOO R/W No Undefined FFC2H Interrupt control 01 Up/down counter CRIC01 R/W No 47H FFC4H Interrupt control 10 Up/down counter CRIC10 R/W No 47H FFC5H Macro service control 10 Up/down counter CRMS10 R/W No Undefined FFC6H Interrupt control 11 Up/down counter CRIC11 R/W No 47H 47H FFC8H EXIFO interrupt control External interrupt EXICO R/W No FFC9H EXIFO macro service control External interrupt EXMSO R/W No Undefined FFCAH EXIF1 interrupt control External interrupt EXIC1 R/W No 47H FFCBH EXIF1 macro service control External interrupt EXMS1 R/W No Undefined FFCCH EXIF2 interrupt control External interrupt EXIC2 R/W No 47H FFCDH EXIF2 macro service control External interrupt EXMS2 R/W No Undefined FFCEH TMFO interrupt control Timer flag TMICO R/W No 47H FFCFH TMFO macro service control Timer flag TMMSO R/W No Undefined FFDOH TMF1 interrupt control Timer flag TMIC1 R/W No 47H FFD1H TMF1 macro service control Timer flag TMMS1 R/W No Undefined FFD2H TMF2 interrupt control Timer flag TMIC2 R/W No 47H FFD3H TMF2 macro service control Timer flag TMMS2 R/W No Undefined FFDAH Error interrupt control Serial port SEIC R/W No 47H FFDCH Receive interrupt control Serial port SRIC R/W No 47H FFDDH Receive macro service control Serial port SRMS R/W No Undefined FFDEH Transmit interrupt control Serial port STIC R/W No 47H FFDFH Transmit macro service control Serial port STMS R/W No Undefined FFEOH A/D converter interrupt control ADIC R/W No 47H FFE1H A/D converter macro service control ADMS R/W No Undefined FFE2H Timebase counter interrupt control TBIC R/W No 47H FFFCH FFFDH Stack pointer (Note 5) SPL SPH R/W Yes Undefined FFFEH FFFFH Program status word (Note 5) PSWL PSWH R/W Yes OOH Note: (1) Bits 0-3 of port 2 and port 3 are read-only. (2) POH and POL are 4-bit buffer registers used to store data to be loaded into the high and low nibbles of the real-time output (PO). (3) Bit 3 of the STBCis not affected by RESET (n = 0 or 8). (4) External registers interfaced with these addresses can be accessed by special function register addressing. (5) SP and PSW do not have real SFR addresses and can be accessed only by special instructions. 4~186 NEe pPD78310/312 Instruction Set Symbols in the Operand and Operation Columns The instruction set for the pPD7831 0/312 has 8- and 16-bit arithmetic instructions including a 16 x 16-bit unsigned multiply with a 32-bit product and a 32 by 16-bit unsigned divide with a 32-bit quotient and a 16-bit remainder. The instruction set also excutes an 8-bit and a 16-bit shift and rotate by count, 1- and 8-bit logic, and 1-, 2-, and 3-byte call instructions. String manipulation instructions are also included. Symbol There are four addressing modes for unconditional branching. Branch instructions exist to test single bits in the program status word, the 16-bit accumulator, the special function registers, and internal RAM. The instruction set also includes multiple register PUSH and POP instructions. Following are several tables explaining symbols, designations, and codes in the Instruction Set. Machine codes are omitted from the instructions but they are in the User's Manual. Meaning RO-R15 r1 RO-R7 r2 C,B rp RPO-RP7* rp1 RPO-RP7* rp2 DE, HL, VP, UP sfr Special function register, 8 bits sfrp Special function register, 16 bits post RPO, RP1, RP2, RP3, RP4, RP5/PSW, RP6, RP7 Bits set to 1 indicate register pairs to be pushed/popped to/from the stack RP5 pushed/popped by PUSH/POP: SP is stack pointer PSW pushed/popped by PUSHU/POPU: RP5 is stack pointer mem (DE), (HL), (DH), (HL+), (DE-), (HL-), (VP), (UP); register indirect (DE + A), (HL + A), (DE + B), (HL + B), (VP + DE), (VP + HL); baselindex mode (DE + byte), (HL + byte), (VP + byte), (UP + byte), (SP + byte); base mode Word (A), word (B), word (DE), word (HL); index mode saddr FF20H-FF1 FH: immediate byte addresses one byte in RAM, or label saddrp FE20H-FF1 FH: immediate byte (bit 0 = 0) addresses one word in RAM word 16 bits of immediate data byte 8 bits of immediate data jdisp 8-bit two's complement displacement (immediate data) bit 3 bits of immediate data (bit position in byte), or label 3 bits of immediate data addr16 OOOOH-FEFFH: 16-bit immediate address (up to FFFFH in MOV instruction) !addr16 OOOOH-FEFFH: 16-bit absolute branch address (immediate data) $addr16 Relative branch address ((PC)+jdisp» addr11 0800H-OFFFH: 0800H+ (11-bit immediate address), or label addr5 0040H-007EH: 0040H + 2 x (5-bit immediate address), or label 4-187 NEe pPD78310/312 Symbols In the Operand and Operation Columns (cont) Symbol Meaning Flag Indicators Symbol Meaning A A register (8-bit accumulator) (blank) x X register 0 Cleared to 0 B B register 1 Set to 1 C C register X Set or cleared according to result D D register P Parity of result E E register V Arithmetic overflow H H register U Undefined L L register R Restored from saved PSW RO-R15 Register 0-15 AX Register pair AX (16-bit accumulator) BC Register pair BC DE Register pair DE HL Register pair HL RPO-RP7 Register pair 0-7 PC Program counter SP Stack pointer UP User stack pointer (RP5) No change Execution Times of Memory Reference Instructions: Number of Processor States Memory Reference Mode XCH AC Auxiliary carry flag Z Zero flag CMP Subtract flag TPF Table position flag RBS Register bank select flag RSS Register set select flag IE Interrupt enable flag EOS End of software interrupt flag STBC Standby control register WDM Watchdog timer mode register ( ) Contents of the location whose address is within ( ); (+) and (-) indicate that the address is incremented after or decremented before it is used. (( )) Contents of the memory location defined by the contents of the location defined by the quantity within the (( )). XXH Hexadecimal number XH,XL High-order 8 bits and low-order 8 bits of X rp and rp1 describe the same registers, but generate different machine code. 4-188 6 7 8 8 8 A,mem 6 7 7 7 mem,A 7 8 8 8 A,mem --mem, A 6 7 7 7 A,mem ADD, ADDC, SUB, SUBC, AND,OR,XOR SUB 6 mem,A Program status word Parity I overflow flag Index 6 mem,A Carry flag Sign flag Base 5 A,mem MOV PSW P/V Base Index Instruction CY S Register Indirect Memory Addressing Modes mod 1 0110 1 0111 mem Register Indirect Base Index 0 0 0 (DE+)* (DE+A) 0 0 0 0 0 0110 Base (DE + byte) (HL+)* (HL+A) (SP + byte) word (A) (DE+ B) (HL + byte) word (HL) word (B) (HL-)* (HL+B) (UP + byte) (DE)* (VP+ DE) (VP + byte) 0 1 (HL)* (VP + HL) 0 Index word (DE) (DE-)* 0 0 0 1 0 1010 (VP) (UP) *1-byte instructions: defined by special opcode and mem only. NEe pPD78310/312 General Register Designations r, r1 R3 R2 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 r2 C reg 0 1 C B Rl RO 0 0 1 1 0 0 1 1 0 1 0 1 0 1 0 1 RO R1 R2 R3 R4 R5 R6 R7 0 0 1 1 0 0 1 1 0 1 0 1 0 1 0 1 R8 R9 R10 R11 R12 R13 R14 R15 rp reg I rl ~ P2 PI PO reg-pair 0 0 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 1 0 1 0 1 0 1 RPO RP1 RP2 RP3 RP4 RP5 RP6 RP7 02 01 00 reg-pair 0 0 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 1 0 1 0 1 0 1 RPO RP4 RP1 RP5 RP2 RP6 RP3 RP7 rp1 rp2 81 80 reg-pair 0 0 1 1 0 1 0 1 VP UP E DE HL 4-189 t-{EC pPD78310/312 Instruction Set Flags Mnemonic Operand Operation MOV r1, #byte r1 - saddr, #byte (saddr) - sfr**, #byte sfr - r, r1 r-r1 3 2 A, r1 A-r1 3 1 A,saddr A- 3 2 saddr, A 3 2 XCH byte byte byte (saddr) States Bytes 3 2 3 3 3 3 (saddr) - A saddr, saddr (saddr) - (saddr) 4 3 A, sfr A-sfr 3 2 sfr, A sfr-A 3 2 A,mem* A-(mem) 5 A,mem A-(mem) 5-6 mem,A* (mem) -A 5 1 mem,A (mem)-A 5-6 2-4 5 2 4 2 4 4 A, (saddrp) A- (saddrp), A ((saddrp)) - A, addr16 A- addr16, A (addr16) - PSWL, #byte ((saddrp)) A (addr16) 3 4 PSWL - byte 3 3 PSWH, #byte PSWH - byte 3 3 PSWL, A PSWL -A 3 2 PSWH, A PSWH -A 3 2 A, PSWL A- PSWL 3 2 A, PSWH A-PSWH 3 2 A,r1 A+-. r1 4 r,r1 r-r1 A,mem A+-. (mem) A, saddr A +-. (saddr) 4 2 A,sfr A-sfr 7 3 A, (saddrp) A+-. ((saddrp)) 6 2 saddr, saddr (saddr) - - (saddr) 8 3 * One-byte move instruction. 4-190 Z AC P/V SUB CY X X X X X X X X X X X X 2-4 A 4 2 7-8 2-4 ** A special instruction is used to write to STBC and WDM (see below). S NEe pPD78310/312 Instruction Set (cont) Flags Mnemonic Operand Operation MOVW rp1, #word rp1 - XCHW ADD AD DC word saddrp, #word (saddrp) - sfrp, #word sfrp - word word States Bytes 3 3 4 4 3 4 rp, rp1 rp - AX, saddrp AX - saddrp, AX (saddrp) - AX 3 2 saddrp, saddrp (saddrp) - (saddrp) 4 3 rp1 (saddrp) 3 2 3 2 AX, sfrp AX - sfrp 3 2 sfrp, AX sfrp - AX 3 2 AX, saddrp AX - AX, sfrp AX-sfrp saddrp, saddrp (saddrp) - rp rp1 rp-rp1 A, #byte A, CY - saddr, #byte (saddr), CY - (saddrp) (saddrp) 4 2 7 3 8 3 (saddr) + byte sfr, #byte sfr, CY - r, r1 r,CY-r+r1 A, saddr A, CY - A + (saddr) A, sfr A, CY - A + sfr sfr + byte (saddr), CY - A,mem A, CY - P/V SUB CY 2 2 X X X V 0 X 3 X X X V 0 X 7 4 X X X V 0 X 3 2 X X X V 0 X X X X V 0 X 3 X X X V 0 X A + byte saddr, saddr AC S (saddr) + (saddr) A + (mem) 4 6 6 3 X X X V 0 X 6-7 2-4 X X X V 0 X 7-8 2-4 X X X V 0 X 3 2 X X X V 0 X 3 X X X V 0 X mem,A (mem), CY - A, #byte A, CY - saddr, #byte (saddr), CY (saddr) + byte + CY 4 sfr, #byte sfr, CY - 7 4 X X X V 0 X r,r1 r, CY - r + r1 + CY 3 2 X X X V 0 X A, saddr A, CY - A + (saddr) + CY 3 2 X X X V 0 X A, sfr A, CY - A + sfr + CY 3 X X X V 0 X saddr, saddr (saddr), CY (saddr) + (saddr) + CY 3 X X X V 0 X A,mem A, CY - 6-7 2-4 X X X V 0 X mem,A (mem), CY - 7-8 2-4 X X X V 0 X (mem) + A A + byte + CY sfr + byte + CY A + (mem) + CY (mem) + A + CY 4-191 IJ NEe pPD78310/312 Instruction Set (cont) Flags States Bytes A, CY +- A - byte 3 2 s x saddr, #byte (saddr), CY +- (saddr) - byte 4 3 x sfr, #byte sfr, CY +- sfr - byte 7 4 r, r1 r, CY +- r - r1 3 2 A,saddr A, CY +- A - (saddr) 3 2 A,sfr A, CY +- A - sfr 6 3 x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x Mnemonic Operand Operation SUB A, #byte SUBC AND OR saddr, saddr (saddr), CY +- (saddr) - (saddr) 6 3 A,mem A, CY +- A - (mem) 6-7 2-4 mem,A (mem), CY +- (mem) - A 7-8 2-4 A, #byte A, CY +- A - byte - CY 3 2 saddr, #byte (saddr), CY +(saddr) - byte - CY 4 3 sfr, #byte sfr, CY +- sfr - byte - CY 7 4 r, r1 r, CY +- r - r1 - CY 3 A,saddr A, CY +- A - (saddr) - CY 3 2 A,sfr A, CY +- A - sfr - CY 6 3 saddr, saddr (saddr), CY +(saddr) - (saddr) - CY 6 3 A,mem A, CY +- A - (mem) - CY 6-7 2-4 mem,A (mem), CY +- (mem) - A - CY 7-8 2-4 A, #byte A +- A A byte 3 2 saddr, #byte (saddr) +- (saddr) A byte 4 3 sfr, #byte sfr +- sfr A byte 7 4 r, r1 r +- 'r A r1 3 2 A,saddr A +- A A (saddr) 3 2 A,sfr A- 6 3 saddr, saddr (saddr) +- (saddr) A (saddr) 6 3 A,mem A+- AA (mem) 6-7 2-4 mem,A (mem) +- (mem) A A 7-8 2-4 A, #byte A +- A V byte 3 2 saddr, #byte (saddr) +- (saddr) V byte 4 3 sfr, #byte sfr +- sfr V byte 7 4 r, r1 r +- r V r1 3 2 A,saddr A +- A V (saddr) 3 2 A,sfr A +- A V sfr saddr, saddr (saddr) +- (saddr) V (saddr) A,mem A +- A V (mem) mem,A 4-192 AAsfr (mem) +- (mem) V A 6 3 6 3 6-7 2-4 7-8 2-4 x x x x x x x x x x AC P/V x x x V x x x SUB CY V x x V x V x V V x x x x x x x V x V x V x x x x x x x x x x x x x V x V x x x x x x x x x x x x x x x x x x x x x x x V U p u p u u u u u u u p V V V x V x x V V p p p p p p U p u p U p U p U p U p U p U p u p o o o o o o o o o o o o o o o o o o x x o o o o o o o o o o o o o o o o o o NEe pPD78310/312 Instruction Set (cont) Flags States Bytes s z AC P/V SUB CV A --V- byte 3 2 x 4 3 x sfr, #byte sfr - 7 4 x o o o 0 (saddr) - x x x u u u u u u u u u P saddr, #byte x x x Mnemonic Operand Operation XOR A, #byte CMP ADDW SUBW sfr-V- byte r,r1 r- r-V- r1 3 2 A, saddr A- A-V- (saddr) 3 2 A-V- sfr 6 3 6 3 x x x x 6-7 2-4 x 7-8 2-4 x x x x A, sfr A- saddr, saddr (saddr) - A,mem A- mem, A (mem) - A, #byte A - byte 3 2 x x saddr, #byte (saddr) - byte 4 3 x x (saddr)-V- (saddr) A-V- (mem) (mem)-V- A x x x x x x x x x sfr, #byte sfr - byte 7 4 r, r1 r - r1 3 2 A, saddr A - (saddr) 3 2 A, sfr A - sfr 6 3 x x x x x saddr, saddr (saddr) - (saddr) 6 3 x x A, mem A - (mem) 6-7 2-4 x 6-7 2-4 x x x 4 3 X X 5 4 X X u u mem,A (mem) - A AX, #word AX, CY - saddrp, #word (saddrp), CY - sfrp, #word sfrp, CY - rp, rp1 rp, CY - AX, saddrp AX + word (saddrp) + word x x x sfrp + word 8 5 X X U 4 2 X X U AX, CY - + rp1 AX + (saddrp) 4 2 X X U AX, sfrp AX, CY - AX + sfrp 7 3 X X U saddrp, saddrp (saddrp), CY (saddrp) + (saddrp) 6 3 X X u AX, #word AX, CY - 4 3 X X U 5 4 X X saddrp, #word CMPW (saddr)-V- byte rp AX - word (saddrp), CY - (saddrp) - word P P P P P P P P o o o o o o x x v v v x x x v v v v v v v v v v v v v o o o o o o o o x x x x o o o o o o o X X X X X X X X U v v U v X U X X sfrp, #word sfrp, CY - 8 5 X X rp, rp1 rp, CY - rp - rp1 4 2 X X AX, saddrp AX, CY - AX - (saddrp) 4 2 X X U v v AX, sfrp AX, CY - AX - sfrp 7 3 X x U v x saddrp, saddrp (saddrp), CY (saddrp) - (saddrp) 6 3 X X U v X X sfrp - word AX, #word AX - word 4 3 X X U v saddrp, #word (saddrp) - word 5 4 X X U sfrp, #word sfrp - word 8 5 X X U v v v v v v rp, rp1 rp - rp1 4 2 X X U AX, saddrp AX - (saddrp) 4 2 X X U AX, sfrp AX - sfrp 7 3 X X saddrp, saddrp (saddrp) - (saddrp) 6 3 X X u u X X x X X X X 4-193 tttlEC pPD78310/312 Instruction Set (cont) Flags Mnemonic Operand Operation States Bytes MULU r1 AX-Ax r1 18 DlVU 2 r1 AX (Quotient). r1 (Remainder) -AX+r1 18 2 MULUW rp1 AX (High Order 16 Bits). rp1 (Low Order 16 Bits). -AX x rp1 27 2 DlVUX rp1 AXDE (Quotient). rp1 (Remainder) -AXDE+ rp1 50 2 INC DEC INCW S Z AC P/V SUB r1 r1-r1 +1 3 1 X X X V 0 saddr (saddr) - 4 2 X X X V 0 r1 r1-r1-1 3 1 X X X V saddr (saddr) - 4 2 X X X V X X 0 P 0 X X X 0 P 0 X X X 0 P 0 X X X 0 P 0 X X X 0 P 0 X X X 0 P 0 X 0 X X rp2 rp2 - saddrp (saddrp) - (saddr) + 1 (saddr) - 1 rp2 + 1 (saddrp) + 1 3 1 6 3 rp2 rp2- rp2-1 saddrp (saddrp) - 6 3 ROR r1. n (CY. r17 - r10; r1 m- 1 - r1 m) x n 4+3n 2 ROL r1. n (CY. r10 - r17; r1 m+ 1 - r1 m) x n 4+3n RORC r1. n (CY - r10; r17-CY; r1 m- 1 - r1 m) x n 4+3n ROLC r1. n (CY - r17; r10-CY; r1 m+1- r1m) x n 4+3n SHR r1. n (CY- r1 0; r17-0; r1 m- 1 - r1 m) x n 4+3n SHL r1. n (CY- r1 7; r10-O; r1m + 1 - r1m) x n 4+3n SHRW rp1. n (CY - rpO; rP15- 0; rPm - 1 - rPm) x n 4 +3n 2 X X 0 SHLW rp1. n (CY +- rp15; rpO-O; rPm + 1 -- rPm) x n 4 + 3n 2 X X 0 P 0 ROR4 (rp1) A3-0 - (rp 1h-0; (rp1)7-4 - A3-0; (rp1) 3-0 - (rp1}]-4 8 2 X X 0 P 0 ROL4 (rp1) A3-0 - (rp1}]-4; (rp1b-0 -- A3-0; (rp1}]-4 - (rp1)3-0 8 2 X X 0 P 0 Decimal Adjust Accumulator 3 X X X V 0 DECW ADJ4 4-194 CY (saddrp) - 1 3 2 2 X t\'EC pPD78310/312 Instruction Set (cont) Flags Mnemonic Operand Operation MOV1 CY, saddr.bit CY - CY, sfr.bit AND1 OR1 States Bytes (saddr.bit) 6 3 X CY - sfr.bit 6 3 X CY, A.bit CY - A.bit 6 2 X CY, X.bit CY - X.bit 6 2 X CY, PSWH, bit CY - PSWH.bit 6 2 X CY, PSWL, bit CY - PSWL.bit 6 2 X saddr.bit, CY (saddr.bit) - S Z AC P/V SUB CY 3 CY 7 3 sfr.bit, CY sfr.bit - A.bit, CY A.bit - CY 8 2 X.bit, CY X.bit- CY 8 2 PSWH.bit, CY PSWH.bit - CY 8 2 PSWL.bit, CY PSWL.bit - CY 8 2 CY, saddr.bit CY - CY A (saddr.bit) 6 3 CY,/saddr.bit CY - CY A (saddr.bit) 6 3 X CY, sfr.bit CY - CY A sfr.bit 6 3 X CY'/sfr.bit CY - CY A sfr.bit 6 3 X CY, A.bit CY - CY A A.bit 6 2 X CY,/A.bit CY CY A A.bit 6 2 X CY, X.bit CY - CY A X.bit 6 2 X CY,/X.bit CY CY A X.bit 6 2 X CY, PSWH.bit CY - CY A PSWH.bit 6 2 X CY,/PSWH.bit CY - CY A PSWH.bit 6 2 X CY, PSWL.bit CY - CY A PSWL.bit 6 2 X CY,/PSWL.bit CY - CY A PSWL.bit 6 2 X CY, saddr.bit CY - CY V (saddr.bit) 6 3 X CY,/saddr.bit CY - CY V (saddr.bit) 6 3 X CY, sfr.bit CY - CY V sfr.bit 6 3 X CY'/sfr.bit CY - CY V sfr.bit 6 3 X 2 X +- +- CY X CY, A.bit CY - CY V A.bit 6 CY,/A.bit CY - CY V A.bit 6 2 X CY, X.bit CY - CY V X.bit 6 2 X CY,/X.bit CY - CY V X.bit 6 2 X CY, PSWH.bit CY - CY V PSWH.bit 6 2 X CY,/PSWH.bit CY - CY V PSWH.bit 6 2 X CY, PSWL.bit CY - CY V PSWL.bit 6 2 X CY, / PSWL. bit CY - CY V PSWL.bit 6 2 X 4-195 E NEe pPD78310/312 Instruction Set (cont) Flags Mnemonic Operand Operation XOR1 CY, saddr.bit CY - CY, sfr.bit SET1 CLR1 NOT1 States Bytes CY.Jf (saddr.bit) 6 3 X CY - CY.Jf sfr.bit 6 3 X CY, A.bit CY - CY.Jf A.bit 6 2 X CY, X.bit CY - CY.Jf X.bit 6 2 X CY, PSWH.bit CY - CY.Jf PSWH.bit 6 2 X CY, PSWL.bit CY - CY.Jf PSWL.bit 6 2 X saddr.bit (saddr.bit) - 5 2 sfr.bit sfr.bit-1 6 3 A.bit A.bit-1 7 2 X.bit X.bit-1 7 2 PSWH.bit PSWH·bit-1 7 2 PSWL.bit PSWL.bit -1 7 2 saddr.bit (saddr.bit) - sfr.bit 1 5 2 sfr.bit - 0 6 3 2 0 A.bit A.bit-O 7 X.bit X.bit-O 7 2 PSWH.bit PSWH·bit-O 7 2 PSWL.bit PSWL.bit - 0 saddr.bit (saddr.bit) - (saddr.bit) 7 2 6 3 sfr.bit sfr.bit -sfr.bit 6 3 A.bit A.bit - A.bit 7 2 X.bit X.bit - 7 2 PSWH.bit PSWH.bit - PSWH.bit 7 2 PSWL.bit PSWL.bit - PSWL.bit 7 2 SET1 CY CY-1 3 CLR1 CY CY-O 3 X.bit Z AC P/V SUB CY 1 1 0 X NOT1 CY CY-CY 3 1 CALL !addr16 (SP - 1) - (PC + 3)H; (SP - 2) - (PC + 3)L; PC - addr16; SP- SP-2 8 3 CALLF !addr11 (SP - 1) - (PC + 2)H; (SP - 2) - (PC + 2k; PC - addr11; SP- SP-2 8 2 CALLT (addr5) (SP - 1) - (PC + 1)H; (SP - 2) - (PC + 1k; PCH - (TPFX8000H + addr5 + 1); PCH - (TPFX8000H + addr5); SP-SP-2 10 4-196 S NEe pPD78310/312 Instruction Set (cont) Flags States Bytes (SP - 1) +- (PC + 2)H; (SP - 2) +- (PC + 2)l; PCH +- rp1H; PCl +- rp1l; SP +- SP - 2 13 2 (SP - 1) +- (PC + 2)H; (SP - 2) +- (PC + 2)l; PCH +- (rp1)H; PCl +- (rp1)l; SP +- SP-2 11 2 BRK (SP - 1) +- PSWH; (SP - 2) +- PSWl; (SP - 3) +- (PC + 1)H; (SP - 4) +- (PC + 1)l; PCl +- (OO3EH); PCH +- (OO3FH); SP +- SP-4 16 RET PCl +- (SP); PCH +- (SP + 1); SP +- SP +2 RET! PCl +- (SP); PCH +- (SP + 1); PSWl +- (SP + 2); PSWH +- (SP + 3); SP +- SP+4; EOS +- 0 14 post ((SP - 1) +- postH; (SP - 2) +- postl; SP +- SP - 2) x n. 7+8n PSW (SP - 1) +- PSWH; (SP - 2) +- PSWl; SP +- SP-2 5 PUSHU post ((UP - 1) +- postH; (UP - 2) +- postl; UP +- UP - 2) x n. 8+8n 2 POP post (postl +- (SP); (postH +- (SP + 1); SP +- SP + 2) x n. 7+8n 2 PSW PSWl +- (SP); PSWH +- (SP + 1); SP +- SP + 2 5 post (postl +- (UP); postH +- (UP + 1); UP +- UP + 2) x n. 8+8n SP, #word SP +- word 3 4 SP,AX SP +- AX 3 2 Mnemonic Operand Operation CALL rp1 (rp1) PUSH POPU MOVW SP Z R R AC P/V SUB CV R R R E 2 R R R R R R 2 AX,SP AX 3 2 INCW SP SP +- SP + 1 6 2 DECW SP SP +- SP-1 6 2 +- S LI._1Q7 t\'EC pPD78310/312 Instruction Set (cont) Flags Mnemonic Operand Operation States Bytes BR !addr16 PC -- addr16 4 3 rp1 PCH -- rp1H; PCl -- rp 1l; 6 2 (rp1) PCH -- (rp1)H; PCl -- (rp1)l; 9 2 7 . 2 $addr16 PC -- addr16 BC BL $addr16 PC -- addr16 if CY = 1 7(3) BNC BNL $addr16 PC -- addr16 if CY = 0 7(3) BZ BE $addr16 PC -- addr16 if Z = 1 7(3) BNZ BNE $addr16 PC -- addr16 if Z = 0 7(3) BV BPE $addr16 PC -- addr16 if PIV = 1 7(3) BNV BPO $addr16 PC -- addr16 if PIV = 0 7(3) BN $addr16 PC -- addr16 if S = 1 7(3) BP $addr16 PC +- addr16 if S = 0 7(3) 2 BGT $addr16 PC -- addr16 if (PIV.J.f S) V Z = 0 9(5) 3 2 BGE $addr16 PC +- addr16 if P/V.J.f S = 0 9(5) 3 BLT $addr16 PC +- addr16 if PIV.J.f S = 1 9(5) 3 BLE $addr16 PC +- addr16 if (PIV.J.f S) V Z = 1 9(5) 3 BH $addr16 9(5) 3 BNH $addr16 9(5) 3 BT saddr.bit, $addr16 9(7) 3 10(7) 4 10(7) 3 PSWH.bit, $addr16 =0 PC -- addr16 if Z + CY = 1 PC -- addr16 if (saddr.bit) = 1 PC +- addr16 if (sfr.bit) = 1 PC -- addr16 if A.bit = 1 PC -- addr16 if X.bit = 1 PC +- addr16 if PSWH.bit = 1 PSWL.bit, $addr16 PC +- addr16 if PSWl.bit = 1 saddr.bit, $addr16 PC +- addr16 if (saddr.bit) sfr.bit, $addr16 PC -- addr16 if (sfr.bit) A.bit, $addr16 PC -- addr16 if A.bit = 0 10(7) 3 X.bit, $addr16 PC -- addr16 if X.bit = 0 10(7) 3 PSWH.bit, $addr16 PC -- addr16 if PSWH.bit = 0 10(7) 3 PSWL.bit, $addr16 PC addr16 if PSWl.bit = 0 10(7) 3 saddr.bit, $addr16 PC +- addr16 if (saddr.bit) then reset (saddr.bit) 12(7) 4 sfr.bit, $addr16 PC +- addr16 if (sfr.bit) then reset (sfr.bit) 12(7) 4 A.bit, $addr16 PC +- addr16 if A.bit = 1 then reset A.bit 11(7) 3 sfr.bit, $addr16 A.bit, $addr16 X.bit, $addr16 BF BTCLR A_1QR PC +- addr16 if Z + CY +- =0 =0 =1 =1 10(7) 3 10(7) 3 10(7) 3 10(7) 4 10(7) 4 S Z AC P/V SUB CY NEe pPD78310/312 Instruction Set (cant) Flags Mnemonic Operand Operation States Bytes BTCLR (cont) X.bit, $addr16 PC +- addr16 if X.bit = 1 then reset X.bit 11(7) 3 PSWH.bit, $addr16 PC - addr16 if PSWH.bit = 1 then reset PSWH.bit 12(7) 3 PSWL.bit, $addr16 PC - addr16 if PSWl.bit = 1 then reset PSWl.bit 12(7) 3 saddr.bit, $addr16 PC - addr16 if (saddr.bit) then set (saddr.bit) 12(7) 4 sfr.bit, $addr16 PC - addr16 if (sfr.bit) then set (sfr.bit) 12(7) 4 A.bit, $addr16 PC - addr16 if A.bit = 0 then set A.bit 11(7) 4 X.bit, $addr16 PC - addr16 if X.bit = 0 then set X.bit 11(7) 3 PSWH.bit, $addr16 PC - addr16 if PSWH.bit = 0 then set PSWH.bit 12(7) 3 PSWL.bit, $addr16 PC - addr16 if PSWl.bit = 0 then set PSWl.bit 12(7) 3 r2, $addr16 r2-r2-1; then PC - addr16 if r2 "" 0 8(5) 2 saddr, $addr 16 (saddr) - (saddr) - 1; then PC - addr16 if saddr "" 0 7(6) 3 BRKCS RBn PCH-R5; PCl -R4; R7-PSWH; R6-PSWl; RBS2-0 -- n; RSS -0; IE-O 13 2 RETCS !addr16 PCH - R5; PCl - R4; R4, R5 - (addr16); PSWH - R7; PSWl - R6; EOS-O 6 3 MOVM (DE+),A (DE+) -A; C - C - 1, End if C = 0 2+ 7n (DE-), A (DE-)-A; C - C - 1, End if C = 0 2+ 7n 2 (DE+), (HL +) (DE+) - (HL +); C - C - 1, End if C = 0 2 + 10n 2 (DE-), (HL-) (DE-) - (HL -); C - C - 1, End if C = 0 2 + 10n 2 (DE+), A (DH)-A; C - C - 1, End if C = 0 2 + 12n 2 (DE-), A (DE-)-A; C - C -1, End if C = 0 2 + 12n 2 BFSET DBNZ MOVBK XCHM =0 =0 S Z AC P/V SUB CY Il 4-199 NEe pPD78310/312 Instruction Set (cont) Flags S Z AC P/V 2 X X X V X 2+8n 2 X X X V X (OE+) - (HL+); C - C - 1, End if C = 0 or Z = 0 2+ 11n 2 X X X V X (OE-), (HL-) (OE-) - (HL-); C - C - 1, End if C = 0 or Z = 0 2 + 11n 2 X X X V X (OE+), A (OE+) - A; C - C -1, End if C = 0 or Z = 1 2+8n 2 X X X V X (OE-), A (OE-) -A; C - C - 1, End if C = 0 or Z = 1 2+8n 2 X X X V X (OE+), (HL+) (OE+) - (HL+); C - C - 1, End if C = 0 or Z = 1 2 + 11n 2 X X X V X (OE-), (HL-) (OE-) - (HL-); C +- C - 1, End if C= 0 or Z = 1 2 + 11n 2 X X X V X (OE+), A (OE+) -A; C - C - 1, End if C = 0 or CY = 0 2+8n 2 X X X V X (OE-), A (OE-) -A; C - C - 1, End if C = 0 or CY = 0 2+8n 2 X X X V X (OE+), (HL+) (OE+) - (HL+); 2 + 11n C - C - 1, End if C = 0 or CY = 0 2 X X X V X (OE-), (HL-) (OE-) - (HL-); 2 + 11n C - C - 1, End if C = 0 or CY = 0 2 X X X V X (OE+), A (OE+) -A; C - C -1, End if C = 0 or CY = 1 2+8n 2 X X X V X (OE-), A (OE-) - A; C - C - 1, End if C = 0 or CY 2+8n 2 X X X V X (OE+), (HL+) (OE+) - (HL+); 2 + 11n C - C - 1, End if C = 0 or CY = 1 2 X X X V X (OE-), (HL-) (OE-) - (HL-); C - C - 1, End if C = 0 or CY 2 + 11n 2 X X X V X States Bytes (OE+) (HL+); C +- C - 1, End if C = 0 2+ 15n 2 (OE-), (HL-) (OE-)-(HL-); C - C - 1, End if C = 0 2 + 15n 2 (OE+),A (OE+) -A; C - C -1, End if C = 0 or Z = 0 2+ 8n (OE-), A (OE-) - A; C - C - 1, End if C = 0 or Z = 0 (OE+), (HL+) Mnemonic Operand Operation XCHBK (OE+), (HL+) CMPME CMPBKE CMPMNE CMPBKNE CMPMC CMPBKC CMPMNC CMPBKNC MOV =1 STBC, #byte STBC +- byte 5 4 WOM, #byte WOM- byte 5 4 RSS - RSS 3 1 RBn RSS -0; RBS2-0 - n 3 RBn, ALT RSS-1; RBS2-0 - n 3 SWRS SEL =1 NOP No Operation 3 EI IE - 1 (Enable Interrupt) 3 01 IE - 0 (Disable Interrupt 3 4-200 2 SUB CY NEe NEe Electronics Inc. pPD8035HL/48H HIGH·SPEED, 8·BIT, SINGLE·CHIP HMOS MICROCOMPUTERS Description Ordering Information The I-IPD8035HL and the I-IPD8048H make up the I-IPD8048H family of single-chip 8-bit microcomputers. The processors in this family differ only in their internal program memory options: the I-IPD8048H with 1K x 8 bytes of mask ROM and the J,lPD8035HL with external memory. Part Number Package Type pPD8035HLC 40-pin plastic DIP 6 MHz pPD8048HC 40-pin plastic DIP 6 MHz Max Frequency of Operation Pin Configuration The NEC I-IPD8035HL and I-IPD8048H are single component, 8-bit, parallel microprocessors using n-channel silicon gate MOS technology. The I-IPD8048H family of components functions efficiently in control as well as in arithmetic applications. Standard logic function implementation is facilitated by the large variety of branch and table look-up instructions.· TO XTAL1 XTAL2 3 RESET ss P2s P~ The JlPD8035HL/48H instruction set comprises 1 and 2 byte instructions with. over 70% of them single-byte. Execution requires only 1 or 2 cycles per instruction and over 50% are single-cycle instructions. P14 P13 The functions of the I-IPD8048H series of microprocessors can easily be expanded Lising standard 8080A/8085A peripherals and memories. Il P10 P23 The J,lPD8048H contains the following functions usually found in external peripheral devices: 1024 x 8 bits of ROM program memory; 64 x 8 bits of RAM data memory; 27 I/O lines; an 8-bit interval timer/event counter; oscillator and clock circuitry. The I-IPD8035HL is intended for applications using external program memory only. It contains all the features of the I-IPD8048H except the 1024 x 8-bit internal ROM. The external program memory can be implemented using standard 8080A/8085A memory products. 83-002890A Pin Identification No. TO 4 Features D Fully compatible with industry standard . 8048/8748/8035 D 2.51-1s cycle time: all instructions 1 or 2 bytes D Interval timer/event counter D 64 x 8-byte RAM data memory D External and timer interrupts D 96 instructions: 70% single byte D 271/0 lines D Internal clock generator D 8 level stack D Compatible with 8080A/8085A peripherals D HMOS silicon gate technology D Single +5 V power supply Symbol 6 9 Function Test 0 input/output XTAL1 Crystal 1input XTAL2 Crystal 2 input RESET Reset input SS Single step input INT Interrupt input EA External access input RD Read output PSEN Program store enable output 10 WR Write output 11 ALE Address latch enable output 12-19 DBa-DB? Bidirectional data bus 20 Vss Ground 21-24. 35-38 P2a-P2? Quasi-bidirectional Port 2 25 PROG Program output NEe J-tPD8035HL148H Pin Identification (cont) No. Symbol 26 VDD RD(Read) Function RAM power supply 27-34 P10-P17 Quasi-bidirectional Port 1 39 T1 Test 1input 40 Vee Primary power supply Pin Functions XTAL 1(Crystal 1) XTAL1 is one side of the crystal, LC, or external frequency source (non-TTL-compatible VIH). XTAL 2 (Crystal 2) XTAL2 is the other side of the crystal or frequency source. TO (Test 0) TO is the testable input using conditional transfer functions JTO and JNTO. The internal state clock (CLK) is available to TO using the ENTO CLK instruction. TO can also be used during programming as a testable flag. T1 (Test 1) T1 is the testable input using conditional transfer functions JT1 and JNT1. T1 can be made the counterltimer input using the STRT CNT instruction. RESET (Reset) An active low on RESET initializes the processor. RESET is also used for PROM programming verification and power-down (non-TTL compatible VIH). SS (Single Step) An active low on SS, together with ALE, causes the processor to execute the program one step at a time. I NT (Interrupt) An active low on INT starts an interrupt if interrupts are enabled. A reset disables an interrupt.INT can be tested with the JNI instruction and, depending on the results, a jump to the specified address can occur. EA (External Access) An active high on EA disables internal program memory and fetches and accesses external program memory. EA is used for system testing and debugging. RD will pulse low when the processor performs a bus read. An active low on RD enables data onto the processor bus from a peripheral device and functions as a read strobe for external data memory. WR(Write) WR will pulse low when the processor performs a bus write. WR can also function as awrite strobe for external data memory. PSEN (Program Store Enable) \ PSEN becomes active only during a~ external memory fetch. (Active low). ALE (Address Latch Enable) ALE occurs at each cycle. ALE can also be used as a clock output. The falling edge of ALE addresses external data memory or external program memory. DBO-DB7 (Data Bus) DBo-DB7 is a bidirectional port. Synchronous reads and writes can be performed on this port using RD and WR strobes. The contents of the DBo-DB7 bus can be latched in a: static mode. During an external memory fetch, DBo-DB7 output the low-order eight bits of the memory address. PSEN fetches the instruction. DBo-DB7 also output the address of an external data memory fetch. The addressed data is controlled by ALE, RD, and WR P10-P17 (Port 1) P10-P17 is an 8-bit quasi-bidirectional port. P2Q-P27 (Port 2) P20-P27 is an 8-bit quasi-bidirectional port. P20-P23 output the high-order four bits of the address during an external program memory fetch. P20-P23 also function as a 4-bit 110 bus for the ",PD82C43 110 port expander. PROG (Program Pulse) PROG is used as an output pulse during a fetch when interfacing with the ",PD82C43 1/0 port expander. Vee (Primary Power Supply) Vee is the primary power supply. Vee is +5V during normal operation. NEe JJPD8035HL/48H Vee (RAM Power Supply) Voo must be set to +5 V for normal operation. Voo supplies power to the internal RAM during standby mode. Vss (Ground) Vss is ground potential. Block Diagram Expansion to Additional Extemal Memory and 110 Oscillator Frequency Bus Latch Low Program Counter's Temp Register Bus Buffer and Latch Port 1 Timer and Event Counter :J 8 ...... B _ Arlthtmetic Logic Unit (ALU) TestO Multiplexer Register 0 _Test1 -00 Conditional Branch Logic (8) --+- Vee Program Supply Power Supply { - - Register 1 Flag 0 Register 2 _Flag1 _ Register 4 "8~r-------------4 Register 5 _ACC VDD +5 V (Low Power Standby) _ --+- VSS Ground Register 3 Timer Flag -Carry ACC Bit Test ~ r-------------4 Register 6 Register 7 8·Level Stack (Variable Word Length) EA Interrupt Initialize PROMI Expander Strobe Control and Timing XTAL XTAL 1 2 ALE External Memory Access tt Oscillatorl Crystal RD WR Optional Second Register Bank Data Store Address Latch Strobel Cycle Clock Program Memory Enable Single Step Read/Write Strobes Resident Data MemoryRAM (64 x 8) Note: !,PD8035H does not include ROM. 83-002891C NEe /JPD8035HL148H Logic Symbol DC Characteristics (cont) TA=OOCto + 70°C, Vcc=Voo= +5V±10%, Vss=OV Umlts Port 1 Parameter Port 2 Output low VOL3 voltage (all other outputS) Read ::E: ic Port Expander Strobe Bus 83-002892A Absolute Maximum Ratings TA = 25°C Operating temperature, TOPT O°C to +70°C Storage temperature, TSTG - 65°C to +150°C -0.5Vto +7V (Note 1) Voltage on any pin, VI / 0 Power dissipation, Po 1.5W Note: (1) With respect to ground. Comment: Exposing the device to stresses above those listed in Absolute Maximum Ratings could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational sections of the specification. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. DC Characteristics TA=OOCto +70OC, Vcc=Voo= +5V±10%, Vss=OV Umlts Input low voltage (All except XTAL1, XTAL2) VIL Min -0.5 Input high VIH voltage (All except XTAL1, XTAL2, RESET) 2.0 Input high VIH1 voltage (XTAL1, XTAL2, RESET) 3.8 VOL Output low volta~, WR, PSEN, ALE) VOL1 Output low voltage (PROG) VOL2 4-?O4 0.45 V 10L =2.0mA 2.4 V 10H = - 400 JAA Output high VOH1 voltage (RD, WR, PSEN, ALE) 2.4 V 10H = - 400 JAA Output high VOH2 voltage (all other outputs) Input leakage IlL current (T1, INT) 2.4 V 10H= -40JAA ±10 JAA Vss ~ VIN ~ Vcc -500 JAA Mal Unit 0.8 V Test Conditions VOH 0.8 VCC VCC VCC~VIN~ Input leakage current (P1 0- P1 7, ~-P27' EA, SS) 11L1 Output leakage current (bus, TO, high impedance state) 10L Power down supply current 100 4 8 mA TA=25°C Total supply current 100+ Icc 50 80 mA TA=25°C RAM standby voltage Voo 5.5 V Vss+0.45V ±10 JAA VCC~VIN~ VSS+0.45V 2.2 Standby mode. Reset~ 0.6V AC Characteristics TA=OOCto +70 oC, Vcc=Voo = +5V±10%, Vss=OV Limits -0.5 Test Conditions Unit Parameter Input low VIL1 voltage (RESET, X1, X2) Output low voltage (bus) Typ Typ Max Output high voltage (bus) ~~~~mStore Address Latch Enable Symbol Min Write ~ Parameter Symbol V V V Symbol Min Typ Max Unit Test Conditions ALE pulse width tLL 410 ns (Note 1) Address setup to ALE tAL 220 ns (Note 1) Address hold from ALE tLA 120 ns (Note 1) Control pulse tCC1 width (RD,WR) 1050 ns (Note 1) Contro~ tCC2 800 ns (Note 1) tow 880 ns (Note 1) ns (Note 2) 220 ns (Note 1) width (PSEN) 0.45 0.45 0.45 V V V IOL=2.0mA 10L =2.0mA 10L =2.0mA Data setup WR Data hold after WR two 110 Data hold (RD, PSEN) tOR 0 RDto data in tR01 800 ns (Note 1) PSEN to data in tR02 550 ns (Note 1) NEe J..tPD8035HL/48H AC Characteristics (cont) Timing Waveforms TA =O°C to +70°C, vcc=voo= +5V±10%, Vss=OV Limits Parameter Symbol Min Typ Max Unit rest Conditions ns (Note 1) Address setup toWR tAW Address setup to data (RD) tA01 1570 ns (Note 1) Address setup to data (PSEN) tA02 1090 ns (Note 1) 680 Instruction Fetch from External Memory ALE Address float to tAFC1 RD. WR 290 ns (Note 1) Address float to tAFC2 PSEN 40 ns (Note 1) ALE to control (RD.WR) tLAFC1 420 ns (Note 1) ALE to control (PSEN) tLAFC2 170 ns (Note 1) ~trolto~ tCA1 120 ns (Note 1) tCA2 620 ns (Note 1) tcp 210 ns (Note 1) PSEN Bus -tAD283-002864A Read from External Data Memory tCY (RD. WR. PROG) Control to ALE (PSEN) Port control setup to PROG ALE I- tLL -j-tLAFC1-!-tCC1-!-tCA1-! Port control hold tpc to PROG 460 ns (Note 1) PROG to P2 input valid tpR 1300 ns (Note 1) Input data hold from PROG tpF 250 ns (Note 1) Output data setup top 850 ns (Note 1) Output data hold tpD 200 ns (Note 1) PROG pulse width tpp 1500 ns (Note 1) Port 2 I /0 data tpL setup to ALE 460 ns (Note 1) Port 2 I /0 data tLP hold to ALE 150 Floating tAD83-D02883A Write to External Memory ALE l-tLAFC1-!-tCC1-!-tCA1-1 WR Port output from tpv ALE ns (Note 1) 850 ns (Note 1) 15 JAs (Note 1) ns (Note 1) 11 LJ AD LJ Floating 83-Q02864A Cycle time tCY 2.5 TO rep rate tOPRR 500 Note: (1) Control outputs: CL = 80 pF, bus outputs: CL (2) Bus high impedance, load =150 pF =20 pF 4-20fi NEe ",PD8035HL/48H Timing Waveforms (cont) Port 2 Timing Bus Timing Requirements Symbol Timing Formula MinIMax Unit tLL (7/30) tCY -170 Min ns tAL (2I15)tCy-110 Min ns (1/15)tCy-40 Min ns ns ALE Expander Port Output Expander Port Input (1/2) tCy-200 Min tCC2 (2/5) tCy-200 Min ns tow (13/30) tCY - 200 Min ns ns two (1/15)tCy-50 Min tOR (1/10)tCy-30 Max ns tR01 (215) tCY- 200 Max ns tR02 (3/10) tCY - 200 Max ns tAW (1/3)tCy-150 Min ns tA01 (11/15) tCY- 250 Max ns tA02 (8/15) tCy-250 Max ns tAFC1 (2115) tCy-40 Min ns tAFC2 (1/30)tCy-40 Min ns tLAFC1 (1/5) tCy-75 Min ns tLAFC2 (1/10)tCy-75 Min ns tCA1 (1/15)tCy-40 Min ns tCA2 (4/15) tCy-40 Min ns tcp (1/10) tCy-40 Min ns tpc (4/15) tCY- 200 Min ns tpR (17/30) tCy-120 Max ns ns PROG 4-206 tpF (1/10) tCY Max top (2/5) tCy-150 Min ns tpo (1/10)tCy-50 Min ns tpp (7/10) tCY - 250 Min ns tpL (4/15) tCY - 200 Min ns tLP (1/10) tCY -100 Min ns tpv (3/10) tCy-100 Max ns tOPRR (3/15) tCY Min ns tCY 6MHz /-Is Instruction Set Operation Code Mnemonic Function Description D7 De Ds D4 D3 D2 D1 Do ADDA, # data (A) - Add immediate the specified data to the accumulator. 0 d7 0 d6 0 d5 0 d4 0 d3 0 d2 1 dl 1 do ADDA, Rr (A) - (A) + (Rr) r = 0-7 Add contents of designated register to the accumulator. 0 1 1 0 1 ADDA, @Rr (A) - (A) + ((Rr» r.= 0-1 Add indirect the contents of the data memory location to the accumulator. 0 0 0 0 0 ADDC A, # data (A) - Add immediate with carry the specified data to the accumulator. 0 d7 0 d6 1 d4 0 d3 0 d2 1 dl ADDCA, Rr (A) - (A) + (C) + (Rr) for r = 0-7 Add with carry the contents of the designated register to the accumulator. 0 1 1 1 ADDCA,@Rr (A) - (A) + (C) + ((Rr» forr = 0-1 Add indirect with carry the contents of data memory location to the accumulator. 0 ANL A, # data (A) - Logical AND specified immediate data with accumulator. 0 d7 1 d6 0 d5 ANLA, Rr (A) - (A) AND (Rr) r = 0-7 Logical AND contents of designated register with accumulator. 0 1 0 1 ANLA, @Rr (A) - (A) AND ((Rr)) r = 0-1 Logical AND indirect the contents of data memory with accumulator. 0 0 0 CPLA (A) -NOT (A) Complement the contents of the accumulator. 0 a 1 0 CLRA (A)-O Clear the contents of the accumulator. 0 0 0 0 Decimal adjust the contents of the accumulator. 0 Decrement by 1the accumulator's contents. 0 0 Cycles Bytes C Accumulator (A) + data (A) + (C) + data (A) AND data DAA DECA (A)-(A)-1 oJ 1 d4 0 0 0 d3 0 d2 1 dl 0 0 0 0 0 0 INCA (A)-(A)+1 Increment by 1the accumulator's contents. 0 0 0 (A) - Logical OR specified immediate data with accumulator. 0 d7 1 d6 0 d5 0 d4 0 d3 ORL A, Rr (A) - (A) OR (Rr) for r = 0-7 Logical OR contents of designated register with accumulator. 0 1 0 0 1 ORLA, @Rr (A) - (A) OR ((Rr)) for r = 0-1 Logical OR indirect the contents of data memory location with accumulator. RLA (AN + 1) - (AN); N = 0-6 (Ao) -(A7) Rotate accumulator left by 1 bit without carry. 0 RLC A (AN + 1) - (AN); N = 0-6 (Ao)-(C) (C)-(A7) Rotate accumulator left by 1 bit through carry. 0 (AN) - (AN + 1); N = 0-6 (A7) - (Ao) Rotate accumulator right by 1 bit without carry. (A) OR data 0 0 F1 ~ ~ • 1 do • • 0 ORL A, # data RRA ~ 0 d5 • Flags AC FO • 1 do • 0 d2 1 dl 0 0 1 do ,.a 1: CD 0 W 01 Z 0 .,.....rCD ) Z .J I!I ~ I \) ,. 1:: Instruction Set (cont) ::> :xl Mnemonic Function Description D7 De Operation Code Ds D4 D3 D2 D1 DO Cycle. Byte. C Rotate accumulator right by 1 bit through carry. 0 SWAP A (AN) - (AN + 1); N = 0-6 (A7)-(C) (C)-(Ao) (A4-A7) -'" (Ao-A3) Swap the two 4-bit nibbles in the accumulator. 0 XRLA. # data (A) - Logical XOR specified immediate data with accumulator. 1 d7 1 d6 0 d5 1 d4 0 d3 XRLA. Rr (A) - (A) XOR (Rr) for r = 0-7 Logical XOR contents of designated register with accumulator. 1 1 0 1 1 XRLA. @Rr (A) - (A) XOR ((Rr)) for r = 0-1 Logical XOR indirect the contents of data memory location with accumulator. (Rr) - (Rr) - 1; r = 0-7 If (Rr) = 0; (PCO-PC7) - addr Decrement the specified register and test contents. (PCO-PC7) -- addr if Bb = 1 (PC) -- (PC) + 2 if Bb = 0 Jump to specified address if accumulator bit is set. (PCO-PC7) -- addr if C = 1 (PC) -- (PC) + 2 if C = 0 Jump to specified address if carry flag is set. (PCO-PC7) -- addr if FO = 1 (PC) -- (PC) + 2 if FO = 0 Jump to specified address if flag FO is set. (PCO-PC7) - addr if F1 = 1 (PC) -- (PC) + 2·if F1 = 0 Jump to specified address if flag F1 is set. (PCS-PC10) - (addrs-addr10) (PCO-PC7) -- (addro-addr7) (PC11) - DBF Direct jump to specified address within the 2K address block. JMPP@A (PCO-PC7) -- ((A)) Jump indirect to specified address with address page. JNCaddr (PCO-PC7) - addr if C = 0 (PC) -- (PC) + 2 if C = 1 Jump to specified address if carry flag is low. (PCO:-PC7) -- addr if I = 0 (PC) - (PC) + 2 if I = 1 Jump to specified address if interrupt is low. (PCO-PC7) - addr if Ta = 0 (PC) - (PC) + 2 ifTa 1 Jump to specified address if test 0 is low. (PCO-PC7) -- addr ifT1 = 0 (PC) - (PC) + 2 ifT1 1 Jump to specified address if test 1 is low. (PCO-PC7) -- addr if A = a (PC) - (PC) + 2 if A = 1 Jump to specified address if accumulator is non-zero. (PCO-PC7) - addr ifTF = 1 (PC) -- (PC) + 2 ifTF = a Jump to specified address if timer flag is set to 1. Branch DJNZ Rr. addr JBb addr JC addr JFO addr JF1 addr JMP addr JNI addr JNTO addr JNT1 addr JNZ addr JTF addr F1 CJ CO 0 Accumulator (cont) RRCA Flags AC FO (A) XOR data = = II • 0 W en ,........ Z 0 0 0 0 d2 1 d1 0 0 0 1 do a7 as a5 ~ a3 r a2 r a1 r ao b2 a7 b1 a6 bo a5 a4 0 a3 0 a2 a1 0 ao 1 a7 1 a6 1 a5 a4 0 a3 1 a2 1 a1 0 ao 0 a7 as 1 a5 ~ 0 a3 1 a2 1 a1 0 ao 0 a7 a6 1 a5 a4 0 a3 1 a2 1 a1 0 ao a10 a7 ag a6 as a5 0 a4 0 a3 1 a2 a1 0 ao 1 0 0 0 0 a3 a2 a1 0 ao 0 a3 a2 a1 a ao 1 0 0 1 a7 a6 0 0 0 a7 as ~ ~ a a7 a a6 a5 ~ a a3 a2 a1 a ao a a7 a6 a a5 a a4 a a3 a2 a1 a ao a7 a a6 a a5 a4 0 a3 a2 a1 a ao a a7 a6 a a5 a4 a a3 1 a2 a1 0 ao a5 ~ a 2 2 C» Z 2 2 2 2 2 2 ~ ~ Instruction Set (cont) Operation Code Mnemonic Function Description JTO addr (PCO-PC l ) - addr if TO = 1 (PC) - (PC) + 2 if TO = 0 Jump to specified address if test 0 is a 1. JT1 addr (PCO-PCl) - addr if T1 = 1 (PC) - (PC) + 2 ifT1 = 0 Jump to specified address if test 1is a 1. (PCo-P.C?) - addr if A = 0 (PC) - (PC) + 2 if A = 1 Jump to specified address if accumulator is O. D7 De Ds D4 Da 0 0 as a4 0 a3 as 0 al 1 a? as 1 as 0 as 0 as a4 0 a4 0 a3 0 a3 0 0 0 D2 D1 Do a2 a1 0 ao a2 1 a2 1 a1 1 a1 0 ao 0 aO Cycles Bytes Branch (cont) JZ addr al C Flags AC FO F1 ~ ~ 2 Control EN I Enable the external interrupt input. 0 DIS I Disable the external interrupt input. 0 Enable the clock output pin TO. 0 ENTO CLK SEL MBO ~ (DBF) -0 Select bank 0 (locations 0-2047) of program memory. SEL MB1 (DBF)-1 Select bank 1(locations 2048-4095) of program memory. SEL RBO (BS)-O Select bank 0 (locations 0-7) of data memory. SEL RB1 (BS)-1 Select bank 1 (locations 24-31) of data memory. (A)-data Move immediate the specified data into the accumulator. MOVA, Rr (A) - (Rr); r = 0-7 Move the contents of the designated registers into the accumulator. MOVA,@Rr (A) - ((Rr)); r = 0-1 Move indirect the contents of data memory location into the accumulator. MOVA, PSW (A)-(PSW) Move contents of the program status word into the accumulator. MOV Rr, # data (Rr) - Move immediate the specified data into the deSignated register. d? 0 1 0 0 0 0 0 0 0 1 0 0 d? 0 ds 1 ds 0 d4 0 d3 0 d2 1 1 1 0 0 0 0 0 0 ds 1 ds 1 d4 1 d3 1 MOV Rr, A (Rr) - Move accumulator contents into the designated register. 1 0 MOV@Rr,A ((Rr)) - (A); r = 0-1 Move indirect accumulator contents into data memory location. 1 0 MOV@Rr, # data ((Rr)) - data; r = 0-1 Move immediate the specified data into data memory. 1 d? 0 ds 1 d5 1 0 (A); r = 0-7 0 0 0 Data Moves MOVA, # data data; r = 0-7 0 MOVPSW, A (PSW)-(A) Move contents of accumulator into the program status word. MOVPA,@A (PCo-PC?) - (A) (A)-((PC)) Move data in the current page into the accumulator. MOVP3A,@A (PCo-PC?) - (A) (PCa-PCm) - 011 (A)-((PC)) Move program data in page 3 into the accumulator. 1 0 0 1 d1 1 do r d2 r d1 r do 0 1 0 0 0 0 1 d4 0 d3 0 d2 0 d1 1 0 0 0 0 2 2 1:: do " D CD 0 0 W UI ...-..Z . m I I\) Z 0 <0 II ~ I 1:: Instruction Set (cont) I\) (5 Mnemonic Description Function D7 De Ds Operation Code D4 D3 D2 Flags D1 Do Cycles Bytes C AC FO F1 MOVXA, @R (A) - ((Rr»; r = 0-1 Move indirect the contents of external data memory into the accumulator. 0 0 MOVX@R,A ((Rr)) -- (A); r = 0-1 Move indirect the contents Of the accumulator into external data memory. 0 0 XCH A, Rr XCHA,@Rr (A) ++ (Rr); r = 0-7 (A) ++ ((Rr)); r = 0-1 Exchange the accumulator and designated register's contents. Exchange indirect contents of accumulator and location in data memory. XCHDA,@Rr (Ao-A3) r = 0-1 Exchange indirect 4-bit contents of accumulator and data memory. 0 ++ ((Rr))o-((Rr))3; 0 0 0 0 Flags CPLC (C) -NOT(C) Complement contents of carry bit. 0 CPL FO (FO) - NOT (FO) Complement contents of flag FO. 0 NOT (F1) 0 0 0 0 0 0 r 0 0 0 0 CD :z • 0 Complement contents of flag Ft 0 1 0 Clear contents of carry bit to O. 0 0 0 CLR FO (FO)-O Clear contents of flag 0 to O. CLR F1 (F1)-0 Clear contents of flag 1to O. Input / Output ANL BUS, # data (bus) - 0 0 0 0 • • • 0 Logical AND immediate specified data with contents of bus. 1 d7 0 d6 0 d5 1 d4 1 d3 0 d2 0 d1 0 do (Pp) -- (Pp) AND data p = 1-2 Logical AND immediate specified data with designated port (1 or 2). 1 d7 0 d6 0 d5 1 d4 1 d3 0 d2 P d1 P do ANLD Pp, A (Pp) - (Pp) AND (Ao-A3); p= 4-7 Logical AND contents of accumulator with designated port (4-7). 1 0 0 1 1 1 IN A, Pp (A) - (Pp); p = 1-2 Input data from designated port (1-2) into accumulator. 0 0 0 0 0 INSA, BUS (A) - (bus) Input strobed bus data into accumulator. 0 0 0 0 0 MOVDA, Pp (Ao-A3) - (Pp); p = 4-7 (A4-A7) -- 0 Move contents of designated port (4-7) into accumulator. 0 0 0 0 MOVD Pp, A (Pp) -(Ao-A3); p = 4-7 Move contents of accumulator to designated port (4-7). 0 0 ORL BUS, # data' (bus) -- (bus) OR data Logical OR immediate specified data with contents of bus. 1 d7 0 d6 0 0 d5 ORLD Pp, A (Pp) - (Ppl OR (Ao-A3); P = 4-7 Logical OR contents of accumulator with designated port (4-7). 1 0 ORL Pp, (Pp) - (Pp) OR data p = 1-2 Logical OR immediate specified data with designated port (1-2). d7 OUTL BUS, A (bus) --:- (A) Output contents of accumulator onto bus. 0 OUTL Pp,A (Pp) - Output contents of accumulator to designated port (1-2). 0 # data (A); P = 1-2 II .... .,.. 0 (F1) - (bus) AND data :z r-. 2 r 0 (C)-O 0 W 01 0 1 0 CPL F1 0 0 0 CLRC ANL Pp, CD 0 Data Moves (cont) # data "e P 0 1 2 0 0 0 d4 1 d3 d2 d1 do 0 0 1 1 P P 0 d6 0 d5 0 d4 1 d3 0 d2 P d1 P do 0 0 0 0 0 1 0 0 2 2 ~ ~ Instruction Set (cont) Flags Operation Code Mnemonic Description Function D7 Do Ds D4 0 0 D3 D2 Increment by 1 contents of designated register. 0 0 0 1 Increment indirect by 1 the contents of data memory location. 0 0 0 0 0 a10 a7 ag a6 aa a5 a4 a3 a2 Return from subroutine without restoring program status word. 0 0 0 0 0 Return from subroutine restoring program status word. 0 0 D1 Do Subroutine Registers = 0-7 = 0-7 DEC Rr (Rr) (Rr) - (Rr) - 1; r INC Rr (Rr) - (Rr) + 1; r INC@Rr ((Rr)) r = 0-1 CALLaddr ((SP)) - (PC), (PSW4-PSW7), (SP) - (SP) + 1 (PCa-PC1Q) - (addra-addr10) (PCO-PC7) - (addro-addr7) (PC11) - DBF ((Rr)) + 1; (SP) = 1 ((SP)) RET (SP) (PC) - RETR (SP) - (SP) = 1 (PC) -((SP)) (PSW4-PSW7) - ((SP)) Decrement by 1 contents of designated register. Call designated subroutine. Timer / Counter EN TCNTI Enable internal interrupt flag for timer / counter output. 0 0 DIS TCNTI Disable internal interrupt flag for timer / counter output. 0 0 MOVA, T (A)-(T) Move contents of timer / counter into accumulator. 0 MOVT, A (T)-(A) Move contents of accumulator into timer / counter. 0 0 0 a1 aO Bytes C AC FO F1 ~ ~ 0 0 0 1 0 STOP TCNT Stop count for event counter. 0 STRT CNT Start count for event counter. 0 0 STRTT Start count for timer. 0 0 Miscellaneous NOP No operation performed. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Note: (1) Operation code designations rand p form the binary representation of the registers and ports involved. (2) The dot under the appropriate flag bit indicates that its content is subject to change by the instruction it appears in. (3) Cycles References to the address and data are specified in bytes 2 and/or 1 of the instruction. 0 l::: " ~ CO (4) Numerical subscripts appearing in the function column reference the specific bits affected. 0 (5) When the bus is written to, with an OUTl instruction, the bus remains an output port until either device is reset or a MOVX instruction is excecuted. CIt c.» ...:z:.... . f" CD ~ :z: I!I ttiEC I-lPD8035HLI48H Instruction Set Symbol Definitions Symbol A AC addr Operating Characteristics Description Accumulator Bu~ Output High Voltage YS. Source Current Auxiliary carry flag \TYP Program memory address (12 bits) Bb Bit designator (b = 0-7) BS Bank switch BUS Bus port C Carry flag 3mA :I: ClK Clock signal CNT Event counter \ \ 2mA 9 1mA Nibble designator (4 bits) data Number of expression (8 bits) DBF Memory bank flip-flop FO, F1 Vec=4.5V OV 2V ~ I 4V 6V VOH Flags 0,1 Interrupt Pp PSW "In-page" operation designator Port designator (p=1, 2 or 4-7) Rr Register designator (r=O, 1or 0-7) SP Stack pointer T Timer TF Timer flag TO, T1 Testable flags 0, 1 X External RAM # Prefix for immediate data @ Prefix for indirect address $ Program counter's current value (x) Contents of external RAM location ((x)) Port P1 & P2 Output High Voltage YS. Source Current Program status word Vee=4.5V ~~ . :I: 9 \ OV ~ I 4V 2V 6V VOH2 Contents of memory location addressed by the contents of external RAM location Replaced by AND Logical product (logical AND} OR Logical sum (logical OR) XOR Exclusive-OR Bus Output Low Voltage Ys. Sink Current Typ Vee = 4.5 V ..J 9 ~----------------~----------------~I OV 4-212 1V VOL 2V NEe NEe Electronics Inc. Description The IIPD80C35, IIPD80C48, and IIPD48 are true standalone 8-bit microcomputers fabricated using CMOS technology. All of the functional blocks necessary for an integrated microcomputer are incorporated, including a 1 K-byte ROM (J.tPD80C48 only), a 64-byte RAM, 27 I/O lines, an 8-bit timer/event counter, and a clock generator. This integrated capability permits use in stand-alone applications. For deSigns requiring extra capability, the1lPD80C35/IIPD80C48 can be expanded using peripherals and is memory compatible with industry-standard 8080A/8085A processors. pPD80C35/C48,pPD48 8-BIT, SINGLE-CHIP CMOS MICROCOMPUTERS Pin Configurations 40·Pin Plastic DIP TO XTAL1 XTAL2 RESET 4 iNf EA Providing compatibility with industry-standard 8048, 8748, and 8035 processors, the IIPD80C35/IIPD80C48 features significant savings in power consumption. In addition to the power savings gained through CMOS technology, the IIPD80C35/IIPD80C48 offers two standby modes (Halt and Stop modes) to further minimize power drain. DB7 Vss Features D 8-Bit CPU with memory and 110 on a single-chip D Hardware/software-compatible with industryD D D D D D D D D D D D D standard 8048, 8748, and 8035 processors 1K x 8 ROM (J.tPD80C48 only) 64 x 8 RAM 27 I/O lines 2.5-IIS cycle time (6-MHz crystal) All instructions executable in 1 or 2 cycles 97 instructions: 70 percent are single-byte instructions Internal timer/event counter Two interrupts (external and timer) Easily expandable memory and I/O Bus compatible with 8080A/8085A peripherals Power-efficient CMOS technology requiring a single +2.5 to +6.0 V power supply Halt mode Stop mode 83·002861A 52· Pin Plastic Mlniflat NC NC P 25 PROG NC P23 P2& P22 P27 P21 T1 P20 vce Vec NC Vss TO DB7 XTAL1 DB6 XTAL2 DB5 RESET NC DB4 NC 83·002882A 4-213 NEe pPD80C35/C48,pPD48 Pin Configurations (cont) Pin Identification Symbol 44-Pin Plastic Miniflat Cl () z VDD g: .., '" 0 N £I. N £I. en C\I £I. IN £I. f'-. CD II) III III III >'" Q Q Q "" Test 0 input/clock output XTAL1 Crystal 1 input XTAL2 Crystal 2 input III Q DB3 0 P10 RESET Reset input SS Software stop. input INT Interrupt input· EA External access input DB2 P 11 Function TO 31 DB1 P12 DBo RD Read output P 13 ALE PSEN Program store enable output WR Write output ALE Address latch enable output Vss Ground P20-P27 Quasi-bidirectional port 2 P 14 28 IlP D48 WR P1s PSEN NC AD P1s P17 25 EA iNT 55 10 P24 Bidirectional data bus PROG Program output VDD Oscillator control voltage T1 Test 1 input Quasi-bidirectional port 1 83-003962A Ordering Information Part Number Package Type Max Frequency of Operation ROM JlPD80C35C 40-pin plastic DIP 6 MHz None JlPD80C48C 40-pin plastic DIP 6 MHz 1K x 8 JlPD80C48G-00 52-pin plastic miniflat 6 MHz 1K x 8 JlPD48G-22 44-pin plastic miniflat 6 MHz 1K x 8 Note: JlPD80C48C, JlPD80C48G-00, and JlPD48G-22 have two optional port types: type 0, 10H = -5 JlA; type 1, 10H = -50 JlA. Type 0 or 1 can be selected independently for P1o-P17, P2o-P23, and P24-P27. Vee Primary power supply NC No connection Pin Functions XTAL 1, XTAL2 [Crystals 1, 2] XTAl1 and XTAl2 are the crystal inputs for the internal clock oscillator. XTAl1 is also used as an input for external clock signals. TO [Test 0] The JTO and JNTO instructions test the level of TO and, if it is high, the program address jumps to the specified address. TO becomes a clock output when the ENTO ClK instruction is executed. T1 [Test 1] The JT1 and JNT1 instructions test the level of T1 and, if it is high, the program address jumps to the specified address. T1 becomes an internal counter input when the STRT CNT instruction is executed. RESET [Reset] RESET initializes the processor and is also used to verify the internal ROM. RESET determines the oscillation stabilizing time during the release of STOP mode. The RESET pulse width requires at least 5 machine cycles when the supply voltage is within specifications and the oscillation frequency is stable. 4-214 NEe pPD80C35/C48, pPD48 SS [Single Step] P10-P17 [Port 1] SS causes the processor to execute the program one step at a time. P1 O-P17 is an 8-bit quasi-bidirectional port. P20-P27 [Port 2] INT [Interrupt] I NT starts an interrupt if interrupts are enabled. A reset disables an interrupt. INT can be tested with the JNI instruction and, depending on the results, a jump to the specified address can occur. EA [External Access] EA disables internal program memory and fetches and accesses external program memory. EA is used for system testing and debugging. P2o-P27 is an 8-bit quasi-bidirectional port. P2o-P23 output the high-order four bits of the address during an external program memory fetch. P2o-P23 also function as a 4-bit 1/0 bus for the pPD82C43 I/O port expander. PROG [Program Pulse] PROG is used as an output pulse during a fetch when interfacing with the pPD82C43 1/0 port expander. V DO [Oscillator Control Voltage] RD enables a data read from external memory. VDD stops and starts the oscillator in STOP mode. STOP mode is enabled by forcing VDD low during a rest. WR [Write] Vee [Primary Power Supply] WR enables a data write to external memory. Vee is the primary power supply. Vee must be between +2.5 V and +6.0 V for normal operation. In STOP mode, Vee must be at least +2.0 V to ensure data retention. RD [Read] PSEN [Program Store Enable] PSEN fetches instructions only from external program memory. ALE [Address Latch Enable] ALE occurs at each cycle. The falling edge of ALE addresses external data memory or external program memory. ALE can also be used as a clock output. Vss [Ground] Vss is ground potential. NC [No Connection] NC is no connection. DBO-DB7 [Data Bus] DBo-DB7 is a bidirectional port, which reads and writes data using RD and WR for latching. During an external program memory fetch, DBo-DB7 output the low-order eight bits of the memory address. PSEN fetches the instruction. DBo-DB7 also output the address of an external data memory fetch. The addressed data is read and written by RD and WR. 4-215 III NEe pPD80C35/C48,pPD48 Block Diagram Expansion to Additional External Memory and 110 A Oscillator Frequency R iT Timer and Event Counter _ Conditional Branch logic vcc . _ Power Supply { +2.5VtO. +6.0V ~ TestO Register 0 -iNT Register 1 _ Flag 0 Flag 1 Register 2 _ TimerFlag _Carry Ground Multiplexer _Test1 _ACC - ACC Bit Test Voo Standby Power Control Register 3 i Register 4 g i_st_er_5_ _ _- l \-R_e_ Register 6 Register 7 8·Level Stack (Variable Word Length) RESET Voo PROG EA Control and Timing XTAL XTAL 1 2 ALE Optional Second Register Bank Data Store Low Power Standby Control Interrupt Initialize 110 CPU/ Expander Memory Strobe Separate Oscillator/ Crystal Address Latch Strobe/ Cycle Clock Program Memory Enable Single Step Read/Write Strobes Resident Data Memory -RAM (64 x 8) Note: "PDSOC35 does not Include ROM. 83·002863C Absolute Maximum Ratings TA =25°C Power supply voltage, Vee Vss - 0.3 to +10 V Input voltage, VIN Vss -0.3toVee +0.3V Output voltage, Vo Vss - 0.3 to Vee +0.3 V Operating temperature, TOPT Storage temperature, TSTG -40°C to +85°C -65°Cto +150°C Comment: Exposing the device to stresses above those listed in Absolute Maximum Ratings could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational sections of the specification. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. 4-216 NEe pPD80C35/C48,pPD48 DC Characteristics Standard Voltage Range Extended Voltage Range TA= -40°C to +85°C, Vee = +5V±10%, Vss=OV TA= -40°C to +85°C, Vee = +2.5Vto +6.0 V, Vss=OV Limit, Parameter Symbol Min Typ Max Unit Te,t Condition, Input voltage low VIL -0.3 +0.8 V Input voltage high VIH Vcc- 2 Vcc V Except XTAL1, XTAL2, RESET VIH1 Vcc- 1 Vcc V RESET, XTAL1, XTAL2 Output voltage low VOL Output voltage high VOH VOH1(1) VOH2 Input current V 10L =2.0mA 2.4 V Bus, RD, WR, PSEN, ALE, PROG, TO; 10H= -100J,iA 2.4 V 10H= -5J,iA (type 0) port 1, port 2 2.4 V 10H= -50J,iA (type 1) port 1, port 2 V All outputs, 10H= -0.2J,iA +0.45 Vcc- 0.5 -15 IILP(1) IILC -40 J,iA Port 1, port 2; VIN~VIL (type 0) -500 J,iA Port 1, port 2; VIN~VIL (type 1) -40 /AA Limit, Parameter Output leakage current ±1 IU1 VIL -0.3 Input voltage high VIH 0. 7Vcc VIH1 0. 8Vcc Max Unit +0.18Vcc V Vec V Except XTAL1, XTAL2 Vec V XTAL1, XTAL2 +0.45 V 10L =1.0 mA VOL Output voltage high VOH 0. 75Vcc V Bus, RD, WR, PSEN, ALE, PROG, TO; 10H= -100 J,iA VOH1 O.7Vcc V All other outputs; 10H= -1 J,iA (type 0) port 1, port 2 O.7Vcc V All other outputs; 10H = -10 J,iA (type 1) port 1, port 2 Input current IILP -15 -40 J,iA J,iA EA; VSS~VIN~ Vcc ILO ±1 J,iA VSs~VO~VCC High impedance, bus, TO 0.4 4 Icc VCCOR 2.0 0.8 mA Halt mode tCy=2.5/As 20 J,iA Stop mode (Note 2) 8 mA tCy=2.5/As V Port 1, port 2; VIN~VIL (type 0) -500 J,iA Port 1, port 2; VIN~VIL (type 1) IlL -40 J,iA IU1 ±1 J,iA SS, RESET; VIN~ VIL T1, INT, Vss C2 IC1-C21 ~ 20pF For example, C1 = 30 pF, and C2 = 10 pF. Values of C1 and C2 do not include stray capacitance. C'= C+3Cpp 2 83-OO2876A Note: Cpp = 5 -10pF. Pin to pin capacitance should be approximately 20pF, Including stray capacitance. 83·002875A 4-222 As the crystal frequency is lowered, there is an equivalent reduction in series resistance (R). As the temperature of the crystal is lowered, R is increased. Due to this relationship, it becomes difficult to stabilize oscillation when there is low power supply voltage. When Vee is less than 2.7 V and the oscillator frequency is 3 M Hz or less, TA (ambient temperature) should not be less than -10°C. t'tIEC Figure 8. pPD80C35/C48,pPD48 External Clock Frequency Reference Circuit Figure 9. Major Input and Output Signals Vee Port 1 XTAL{= ~ 2 ---,...,-1 ..... >0--..-_-=-1[ ~ XTALl iij 0 !i! c 'S. Open ---2.( Port 2 Read Write ~~~lbl~m Store Address Latch Enable XTAL2 Port Expander Strobe Bus Note: A minimum voltage of Vee -1 is required for XTAL1 to go HIGH. 83-002878A 83-002877A Instruction Set Instruction Set Symbol Definitions Symbol Description A Accumulator AC addr Stack pOinter Auxiliary carry flag T Timer Program or data memory address (ao-a?) or (aO-a10) TF Timer flag BS Bank switch BUS Bus ClK Clock Counter DBF FO, F1 INT 8-bit binary data (do-d?) Pp PSW Rr # @ Flag 0, flag 1 Interrupt pin Test 0, test 1pin , Prefix for immediate data Prefix for indirect address Indicates the hex number corresponding to the accumulator bit or page number specified in the operand (x) ((x)) Contents of RAM Contents of memory location addressed by (x) Transfer direction, result Memory bank flip-flop Indicates the hex number of the specified register or port PC TO, T1 Carry flag CNT data Description SP Accumulator bit (b=0-7) C Symbol AND OR EXOR logical product (logical AND) logical sum (logical OR) Exclusive-DR Complement Program counter Port 1, port 2, or ports 4-7 (p=1, 2 or 4-7) Program status word Register (r=0-7) 4-223 ~ I I\) I\) Instruction Set (cont) 1::: ~ Mnemonic Function Description ADDA, # data (A) - Adds immediate data do-d7 to the accumulator. Sets or clears both carry flags. (Note 2) ADDA, Rr (A) - (A) + (Rr) r = 0-7 Adds the contents of register Rr to the accumulator. Sets or clears both carry flags. (Note 2) ADDA,@Rr (A) - (A) + ((Rr)) r = 0-1 Hex Code Operation Code D7 De Ds D4 D3 D2 D1 Do 03 0 d7 0 d6 0 d5 0 d4 0 d3 0 d2 1 dl 1 do 6n(4) 0 1 1 0 Adds the contents of the internal data memory location specified by 6n( 4) bits 0-5 of register Rr to the accumulator. Sets or clears both carry flags. (Note 2) 0 0 0 0 Adds, with carry, immediate data do-d7 to the accumulator. Sets or clears both carry flags. (Note 2) 13 0 d7 0 d6 0 d5 1 1 Cycles Bytes 0 Accumulator (A) + data 0 ADDCA, Rr (A) - (A) + (C) + (Rr) r = 0-7 Adds, with carry, the contents of register Rr to the accumulator. Sets or clears both carry flags. (Note 2) 7n(4) 0 ADDCA,@Rr (A) - (A) + (C) + ((Rr)) r = 0-1 Adds, with carry, the contents of the internal data memory location specified by bits 0-5 of register Rr, to the accumulator. Sets or clears both carry flags. (Note 2) 7n(4) 0 ANLA, # data (A) - Takes the logical product (logical AND) of immediate data do-d7 and the contents of the accumulator, and stores the result in the accumulator. 53 0 d7 ANLA, Rr (A) - (A) AND (Rr) r = 0-7 Takes the logical product (logical AND) of the contents of register Rr and the accumulator, and stores the result in the accumulator. 5n(4) 0 0 ANLA, @Rr (A) - (A) AND ((Rr)) r = 0-1 Takes the logical product (logical AND) of the contents of the internal data memory location specified by bits 0-5 of register Rr, and the accumulator, and stores the result in the accumulator. 5n(4) 0 0 CPLA (A)-(A) Takes the complement of the contents of the accumulator. 37 0 0 CLRA (A)-O Clears the contents of the accumulator. 27 0 0 Converts the contents of the accumulator to BCD. Sets or clears the carry flags. When the lower 4 bits (Ao-A3) are greater than 9, or if the auxiliary carry flag has been set, adds 6 to (Ao-A3). When the upper 4 bits (A4-A7) are greater than 9 or if the carry flag (C) has been set, adds 6 to (A4-A7). If an overflow occurs at this point, Cis set. (Note 2) 57 0 DAA 1 d6 DECA (A)-(A) -1 Decrements the contents of the accumulator by 1. 07 0 0 (A)-(A)+1 Increments the contents of the accumulator by 1. 17 0 ORLA, # data (A) - Takes the logical sum (logical OR) of immediate data do-d7 and the contents of the accumulator, and stores the result in the accumulator. 43 0 d7 0 1 d6 ORLA, Rr (A) - (A) OR (Rr) r i I = 0-7 Takes the logical sum (logical OR) of register Rr and the contents of 4n(4) the accumulator, and stores the result in the accumulator. 0 0 d5 1 d4 W ell ..tl .."a CD 0 d3 0 d2 1 dl 1 do 1 1 d4 CD 0 0 0 0 d3 0 d2 1 dl 1 do 2 1 2 0 0 0 1 0 0 INCA (A) OR data_ n w (A) - (A) AND data 2 1::: ADDC A, # data (A) + (C) + data "a CD 0 0 0 0 0 1 0 1 1 1 0 d5 0 d4 0 d3 0 d2 1 dl 1 0 0 do ~ ~ Instruction Set (cont) Mnemonic Operation Code Hex Code D7 4n(4) 0 Function Description ORLA, @Rr (A) - (A) OR ((Rr)) r = 0-1 Takes the logical sum (logical OR) of the contents of the internal data memory location specified by bits 0-5 in register Rr, and the contents of the accumulator, and stores the result in the accumulator. RLA (AN + 1) - (AN) (AD) - (A7) N = 0-6 Rotates the contents of the accumulator one bit to the left. The MSB is rotated into the LSB. E7 RLCA (AN + 1) - (AN); N = 0-6 (Ao)-(C) (C)-(A7) Rotates the contents of the accumulator one bit to the left through carry. F7 RRA (AN) - (AN + 1); N = 0-6 (A7) -(AD) Rotates the contents of the accumulator one bit to the right. The LSB is rotated into the MSB. 77 RRCA (AN) - (AN + 1); N = 0-6 (A7)-(C) (C)-(Ao) Rotates the contents of the accumulator one bit to the right through carry. 67 SWAP A (A4-A7)- (Ao-A3) Exchanges the contents of the lower 4 bits of the accumulator with the upper 4 bits of the accumulator. 47 0 XRLA, # data (A) - Takes the exclusive OR of immediate data do-d7 and the contents of the accumulator, and stores the result in the accumulator. D3 1 d7 XRLA, Rr (A) - (A) XOR (Rr) r = 0-7 Takes the exclusive OR of the contents of register Rr and the accumulator, and stores the result in the accumulator. Dn(4) XRLA,@Rr (A) - (A) XOR ((Rr)) r = 0-1 Takes the exclusive OR of the contents of the location in data memory specified by bits 0-5 in register Rr, and the accumulator, and stores the result in the accumulator. Dn(4) (Rr) - (Rr) - 1; r = 0-7 If(Rr)i-O; (PCa-PC7) - addr Decrements the contents of register Rr by 1, and if the result is not equal to 0, jumps to the address indicated by aa-a7' En (PCa-PC7) - addr if b = 1 (PC) = (PC) + 2 if b = 0 Jumps to the address specified by aO-a7 if the bit in the accumulator specified by bo-b2 is set. D6 Ds D4 D1 Do 0 d2 1 d1 1 da 0 0 0 r a1 r aa a1 aD D3 D2 Accumulator (cont) (A) XOR data 0 0 0 JBb addr Bytes ~ ~ 0 0 0 0 0 0 1 d6 0 ds 1 d4 0 d3 1 0 1 1 0 Branch DJNZ Rr, addr Cycles 1:: x2(6) a7 a6 as a4 a3 r a2 b2 a7 b1 a6 ba a5 a4 0 a3 0 a2 "a CD 0 n W CII Ci,. ..1:: CD ",.a ~ J\) J\) CD CJ1 II1II ~ I I\) I\) Instruction Set (cont) Mnemonic Hex Code Operation Code Function Description (PCo-PC?) - addr if C = 1 (PC) - (PC) + 2 if C = 0 Jumps to the address specified by ao-a? if the carry flag is set. JFO addr (PCo-PC?) - addr if FO = 1 (PC) - (PC) + 2 if FO = 0 Jumps to the address specified by aO-a? if FO is set. B6 JF1 addr (PCo-PC?) - addr if F1 = 1 (PC) - (PC) + 2 if F1 = 0 Jumps to theaddress specified by aO-a? if F1 is set. 76 0 a? a6 JMP addr (PCS-PC10) - (addrs-addr10) Jumps directly to the address specified by aO-a10 and the DBF. (PCo-PC?) - (addro-addr?) (PC11) - DBF x4(6) a10 a? ag a6 D7 De Ds D4 D3 D2 D1 Do a? a6 a5 a4 0 a3 a2 a1 ao a? 0 a6 a4 a3 1 a2 a1 0 ao a5 a4 0 a3 1 a2 a1 0 ao as a5 0 a4 0 a3 a2 0 a1 0 ao Branch (cont) JC addr JMPP@A (PCo-PC?) - JNCaddr F6 Replaces the lower 8 bits of the program counter with the contents of program memory specified by the contents of the accumulator, producing a jump to the specified address within the current page. B3 (PCo-PC?) - addr if C = 0 (PC) - (PC) + 2 if C = 1 Jumps to the address specified by aO-a? if the carry flag is not set. E6 (PCo-PC?) - addr if I = 0 (PC) - (PC) + 2 if I = 1 Jumps to the address specified by aO-a? if the interrupt flag is not set. 86 (PCo-PC?) - addr if TO = 0 (PC) - (PC) + 2 if TO = 1 Jumps to the address specified by aO-a? if test 0 is low. 26 (PCo-PC?) - addr if T1 = 0 (PC) - (PC) + 2 ifT1 = 1 Jumps to the address specified by aO-a? if test 1 is low. JNZaddr (PCo-PC?) - addr if A 0 (PC) - (PC) + 2 if A = 0 Jumps to the address specified by aO-a? if the contents of the accumulator are not equal to O. 96 JTF addr (PCo-PC?) - addr if TF == 1 (PC) - (PC) + 2 ifTF = 0 Jumps to the address specified by aO-a? if the timer flag is set. The timer flag is cleared after the instruction is executed. 16 (PCo-PC?) - addr if TO = 1 (PC) - (PC) + 2 if TO = 0 Jumps to the address specified by aO-a? if test 0 is high. 36 (PCo-PC?) - addr if T1 = 1 (PC) - (PC) + 2 ifT1 = 0 Jumps to the address specified byao-a? if test 1 is high. (PCo-PC?) - addr if A = 0 (PC) - (PC) + 2 if A = 1 Jump to the address specified byao-a? if the contents of the accumulator are equal to O. JNI addr JNTO addr JNT1 addr JTO addr JT1 addr JZ ,.a 1::: 0'> ((A)) '* 0 0 a6 a5 0 a4 0 a3 a2 a1 0 ao a? 0 a6 a5 a4 a3 a2 a1 0 ao 0 a? a6 1 a5 0 a4 0 a3 a2 a1 0 ao a? a6 0 a5 a4 0 a3 a2 a1 0 ao a? a6 a5 a4 a3 a2 a1 ao a? 0 a6 0 a5 1 a4 0 a3 1 a2 1 a1 0 ao 0 a? 0 a6 a5 a4 a3 a2 a1 0 ao 0 a? a6 0 a5 a4 a3 a2 a1 ao a6 0 a5 a4 0 a3 a2 a1 0 ao C6 a? Bytes CD 0 nW en ~ !'J ,. ,.a ,. 1::: CD a? 46 56 a5 Cycles ~ 0 Instruction Set (cont) Mnemonic Function Hex Code Description Operation Code D7 De Ds D4 D3 D2 D1 0 0 0 0 0 Do Control EN I Enables external interrupts. When external interrupts are enabled, a low-level input to the INT pin causes the processor to vector to the interrupt service routine. 05 0 0 DIS I Disables external interrupts. When external interrupts are disabled, low-level inputs to the INT pin have no effect on program execution. 15 0 0 Enables clock output to pin TO. 75 SEL MBO ENTO CLK (DBF) -0 Clears the memory bank flip-flop, selecting program memory bank o(program memory addresses 0-2047(10)). Clears PC11 after the next JMP or CALL instruction. E5 SEL MB1 (DBF)-1 Sets the memory bank flip-flop, selecting program memory bank 1 (program memory addresses 2048-4095(10) ). Sets PC11 after the next JMP or CALL instruction. F5 SEL RBO (BS)-O Selects data memory bank 0 by clearing bit 4 (bank switch) of the PSW. Specifies data memory addresses 0-7(10) as registers 0-7 of data memory bank O. C5 SEL RB1 (BS)-1 Selects data memory bank 1 by setting bit 4 (bank switch) of the PSW. Specifies data memory 24-31(10) as registers 0-7 of data memory bank 1. D5 Initiates halt mode. 01 0 23 0 d7 0 d6 1 d5 0 d4 0 d3 1 1 1 1 1 HALT Bytes ~ ~ 0 0 0 0 Cycles 0 0 0 0 0 0 0 0 0 Data Moves MOV A, # data (A) -data Moves immediate data do-d7 into the accumulator. MOV A, Rr (A) - (Rr); r = 0-7 Moves the contents of register Rr into the accumulator. Fn(4) MOVA,@Rr (A) - ((Rr)); r Moves the contents of internal data memory specified by bits 0-5 in register Rr, into the accumulator. Fn(4) MOVA, PSW (A)-(PSW) MOV Rr, # data (Rr) - = 0-1 Moves the contents of the program status word into the accumulator. data; r = 0-7 0 C7 0 d7 MOV Rr, A (Rr) - MOV@Rr,A ((Rr)) - MOV @ Rr, # data ((Rr)) - (A); r = 0-7 (A); r = 0-1 data; r = 0-1 0 r d1 0 1 0 0 0 0 d3 0 d2 0 d1 0 Moves immediate data do-d7 into the data memory location specified by bits 0-5 in register Rr. Bn(4) 0 d6 1 d5 1 d4 d3 r d2 1 0 An(4) D CD 0 d4 An(4) " 0 d5 Moves the contents of the accumulator into the data memory location specified by bits 0-5 in register Rr. 1 do 'l::: d6 Moves the contents of the accumulator into register Rr. 1 d7 1 d1 0 Bn(4) Moves immediate data do-d7 into register Rr. 0 d2 r do nW UI (:) ~ ..'l::: CD r do " D ~ ~ N '" CD -.J ~ ~ I I\) I\) 1:: Instruction Set (cont) e» Mnemonic Hex Code Operation Code Function D!tscrlptlon MOV PSW, A (PSW)-(A) Moves the contents of the accumulator into the program status word. 07 MOVPA,@A (PCO-PCl) - (A) (A)-((PC)) Moves the contents of the program memory location specified by PCS-PC11 concatenated with the contents of the accumulator, into the accumulator. A3 MOVP3A,@A (PCO-PCl) - (A) (PCS-PC11) - 001 (A)-((PC)) Moves the contents of the program memory location specified by 0011 (PCS-PC11, page 3 of program memory bank 0) and the contents of the accumulator, into the accumulator. E3 MOVXA,@R (A) - Moves the contents of the external data memory location specified by register Rr, into the accumulator. 8n(4) 0 0 MOVX@R,A ((Rr)) - Moves the contents of the accumulator into the external data memory location specified by register Rr. 9n(4) 0 0 XCH A, Rr (A)- (Rr); r = 0-7 Exchanges the contents of the accumulator and register Rr. 2n(4) XCH A, @Rr (A)- ((Rr)); r Exchanges the contents of the accumulator and the contents of the data memory location specified by bits 0-5 in register Rr. 2n(4) XCHOA,@Rr (Ao-A3)- ((Rr))o-((Rr)13; r = 0-1 Exchanges the contents of the lower 4 bits of the accumulator with 3n(4) the contents of the lower 4 bits of the internal data memory location specified by bits 0-5 in register Rr. CPLC (C)-(C) Takes the complement of the carry bit. A7 0 1 CPL FO (FO)-(FO) Takes the complement of flag O. 95 0 0 CPL F1 (F1)-(F1) Takes the complement of flag 1. 85 0 CLR C (C)-O Clears the carry bit. 97 0 0 1 0 1 CLR FO (FO)-O Clears flag O. 85 0 0 0 0 0 CLR F1 (F1)-0 Clears flag 1. A5 0 0 0 0 D7 De Ds D4 D3 D2 D1 Do Cycles Bytes "ma 0 Data Moves (cont) ((Rr)); r = 0-1 (A); r = 0-1 = 0-1 0 0 0 nW 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 en ... t; CD 1:: .." a CD Flags 0 0 1 0 0 0 0 ~ ~ Instruction Set (cont) Mnemonic Function Hex Code Description Operation Code D7 De 98 1 d7 0 d6 Ds D4 D3 D2 D1 Do 0 d2 0 d1 0 do P d1 P do Input! Output ANlBUS, # data (bus) - d5 d4 1 d3 ANl Pp, # data (Pp) - (Pp) AND data; p = 1-2 Takes the logical AND of the contents of designated port Pp and immediate data do-d7, and sends the result to port Pp for output. 9n(5) 1 d7 0 d6 0 d5 1 d4 1 d3 0 d2 ANlD Pp, A (Pp) - (Pp) AND (Ao-A3); P = 4-7 Takes the logical AND of the contents of designated port Pp and the 9n(5) lower 4 bits of the accumulator, and sends the result to port Pp for output. 1 0 0 1 1 1 IN A, Pp (A) - (Pp); p = 1-2 loads the accumulator with the contents of designated port Pp. On(5) 0 0 0 0 0 P INSA, BUS (A) - (bus) loads the contents of the bus into the accumulator on the rising edge of RD. 08 0 0 0 0 0 MOVDA, Pp (Ao-A3) (A4-A7) - Moves the contents of designated port Pp to the lower 4 bits of the accumulator, and clears the upper 4 bits. On(5) 0 MOVD Pp, A (Pp) - Moves the lower 4 bits of the accumulator to designated port Pp. The upper 4 bits of the accumulator are not changed. 3n(5) ORl BUS, # data (bus) - ORlD Pp, A (bus) AND data (Pp); p = 4-7 0 (Ao-A3); P = 4-7 Takes the logical AND of the contents of the bus and immediate data do-d7, and sends the result to the bus. Takes the logical OR of the contents of the bus and immediate data do-d7, and sends the result to the bus. 88 (Pp) - (Pp) OR (Ao-A3); P = 4-7 Takes the logical OR of the contents of designated port Pp and the lower 4 bits of the accumulator, and sends the result to port Pp for output. 8n(5) ORl Pp, # data (Pp) - (Pp) OR data; p = 1-2 Takes the logical OR of the contents of designated port Pp and immediate data do-d7, and sends the result to port Pp for output. 9n(5) OUTl BUS, A (bus) - latches the contents of the accumulator onto the bus on the rising edgeofWR. Note: Never use the OUTl BUS instruction when using external program memory, as this will permanently latch the bus. 02 OUTl Pp,A (Pp) - (bus) OR data (A) (A); P = 1-2 0 0 Bytes ~ ~ 0 p 0 1 d7 Cycles p 0 d6 0 d5 0 d4 1 d3 0 d2 0 d1 0 do 0 0 0 1 1 P P 1 d7 0 d6 0 d5 0 d4 1 d3 0 d2 P d1 P do 0 0 0 0 0 0 1 0 1::: latches the contents of the accumulator into designated port Pp for 3n(5) output. 0 0 0 p "am 0 n Registers = 0-7 = 0-7 DEC Rr (Rr) - (Rr) -1; r INC Rr (Rr) - (Rr) + 1; r INC@Rr ((Rr))-((Rr)) +1; r = 0-1 Decrements the contents of register Rr by 1. Cn(4) Increments the contents of register Rr by 1. 1n(4) 0 0 0 Increments by 1the contents of the data memory location specified by bits 0-5 in register Rr. 1n(4) 0 0 0 W 0 CII 0 0 ti,.. ..1:::m "a,..m ~ I f\) f\) <0 ~ .j:>.. I a Mnemonic ""'Function Description He. Code Operation Code D7 D6 D5 D4 D3 D2 D1 DO am a7 ag a6 as a5 a4 0 a3 a2 0 a1 0 aO Subroutine CALL addr RET RETR ((SP)) - (PC), (PSW4-PSW7) (SP) - (SP) + 1 (PC8-PC10) - (addrs-addr10) (PCO-PC7) - (addro-addr7) (PC11) -DBF Stores the contents of the program counter and the upper 4 bits of the PSW in the address indicated by the stack pOinter, and increments the contents of the stack pOinter, calling the subroutine specified by address ao-am and the DBF. x4(6) (SP) (PC) - Decrements the contents of the stack pOinter by 1and stores, in the program counter, the contents of the location specified by the stack pOinter, executing a return from subroutine without restoring the PSW. 83 Decrements the contents of the stack pointer by 1and stores, in the program counter, the contents of the upper 4 bits of the PSW and the contents of the location specified by the stack pOinter, executing a return from subroutine with restoration of the PSW. 93 Enables internal interrupt of timer I event counter. If an overflow condition occurs, then an interrupt will be generated. 25 0 Disables internal interrupt of timer I event counter. 35 a (SP) - 1 ((SP)) (SP) - (SP) - 1 (PC) -((SP)) (PSW4-PSW7) - ((SP)) ,.D 1:: Instruction Set (cont) I\) w Cycles Bytes CD 0 nw (II ts .,.. 0 0 0 0 0 ...CD ,. 1::: 0 0 D 0 ~ CD Timer I Counter EN TCNTI DIS TCNTI 0 0 a 0 MOVA, T (A)-(T) Moves the contents of the timer I counter into the accumulator. MOVT, A (T)-(A) Moves the contents of the accumulator into the timer I counter. 62 0 STOP TCNT Stops the operation of the timer I event counter. 65 0 0 0 STRTCNT Starts the event counter operation of the timer I counter when T1 changes from a low-level input to a high-level input. 45 0 0 0 STRTT Starts the timer operation of the timer I counter. The timer is incremented every 32 machine cycles. 55 0 0 Uses one machine cycle without performing any operation. 00 42 0 0 0 0 0 0 0 Miscellaneous NOP 0 0 0 0 0 0 ~ ~ Instruction Set (cont) Note: (1) Binary operation code designations rand p represent encoded values or the lowest-order bit value of specified registers and ports, respectively. (2) Execution of the ADD, ADDC, and DA instructions affect the carry flags, which are not shown in the respective function equations. These instructions set the carry flags when there is an overflow in the accumulator (the auxiliary carry flag is set when there is an overflow of bit 3 of the accumulator) and clear the carry flags when there is no overflow. Flags that are specifically addressed by flag instructions are shown in the function equations for those instructions. (3) References to addresses and data are specified in byte 1 and/or 2 in the opcode of the corresponding instruction. (4) The hex value of n for specific a) Direct addressing RO: n 8 R2: n A R3: n = B Rt n = 9 b) Indirect addressing @ RO: n 0 @ Rt n = = = ~ ~ registers is as follows: = R4: n C RS: n = D = R6: n E R7: n = F =1 (S) The hex value of n for specific ports is as follows: P1: n 9 P4: n C P6: n E P2:n = A PS: n = D P7: n = F = = = (6) The hex value of x for specific accumulator or address bits is as follows: a) JBb instruction Bo: x = 1 B2: x = S B4 :x = 9 B6:X = D B7:x = F Bf x = 3 B3: x = 7 B5: x = B b) JMP instruction Page 4: x = 8 Page 6: x = C Page 2: x = 4 Page 0: x = 0 Page 3: x = 6 PageS: x = A Paget x = 2 Page 7: x = E c) CALL instruction Page 2: x = S Page 0: x = 1 Page 4: x = 9 Page 6: x = D Page 1: x = 3 PageS: x = B Page 7: x = F Page 3: x = 7 't:: " o C Q) nw UI ~ ~ Q) .. 't:: " C .j:::o,. ~ Q) I I\) ~ III NEe pPD80C35/C48,pPD48 Operating Characteristics Port Control Hold After PROG, tpc Max (J.lPD80C48), and Address to Output Delay, tACC Min ~PD82C43), VS. Supply Voltage Supply Current VS. Oscillation Frequency I., 1 i \ . . . . . . . . . . . . ::::~:. ~--l--~ ~ 0.1 l 0.05 1-----+--:-:-:... .......... .......................... 0.03 VCC=3V ~ ........... "- ~ ................... ~ ........... 0.2 tpcMax ICC1......,......- - - ! - - - I t----+--..,.,.,.. .......... ,......:...."-..-.._..+-_ _ _-+-_ _ _ _+-_-1 0.1 ~PD82C43: ~Mln ~PD~ u ::::::::::::::::.. ...........-............ ·................fo;-a-=x......- - - ! - - - I d -a IC~ t----+--____+----,;"1' ...:.4Max _ _ _l-_~ I ~~ u. 0.5 1 Oscillation Frequency, I (MHz), (I = 15 tCY) 4 5 Supply Voltage, Vcc (V) Current Consumption as a Function of Temperature Normal Operating Mode Cycle Time VS. Supply Voltage 200 - 100 10 50 'iii' 1=6MHz Vcc=5.5V ~ r- Operation Guarantee Area ,3. > ~ 20 t j:: ! 10 ........... ~ ,.... ICC1 '""" ~ Halt Mode ~~ " Supply Voltage, Vcc (V) 25 Temperature, TA(OC) Supply Current VS. Oscillation Frequency Current Consumption as a Function of Operating Frequency - Normal Operating Mode -40 ......J........... I ICC ~ ICC~ Max <" g 1i .............. :B j i 0.5 ••••••••••••••• •••••••• J! •................ ...... • •••••• 10 8 k'" ........-4lYP 1 ./ 1 ..---ICC--V Typ--~--II--~ t..- ..- --0-.... 0.11---•••-••-+. VCC=,5.5V I &l 0.2 0.5 Oscillation Frequency, I(MHz),(I = 151tCY) V Max.,...- / ,J. .. . .~ ...:...:. .-...-1.f.....-•••-••-..-••-•••+.....----+-----I---+----1 .............. 0.05 0.1 VCC=5.5V V V,..:.:...-..-...-...+·-···-···=··~.q.---Ic-f-~I---fv--+-----I ............... 0.2 ••••• .......... 85 1/ 0.2 V j..ool.- V j..ool.- V /' K V i .... 0.5 OSCillator Frequency (MHz) Note: External oscillation Is lor lrequency less than 1 MHz. Internal oscillation requires more power. 4-232 t\'EC pPD80C35/C48, pPD48 Operating Characteristics (cont) Output High Current VS. Output High Voltage Output High Current VS. Output High Voltage -15.-------,-------,-------,--------,-------, Vee=4.5V 1:z: 9-10~------+_------+_~~--~------_+------~ i' § u .c Cl :t: [ :; -5~------+_------+_~~--~--~--_+------_1 o 2 Output High Voltage, VOH (V) Output High Voltage, VOH1 (V) Output High Current VS. Supply Voltage c ~ :z: 9 -100 -10 - 0.4 . - - - - - - - , - - - - - - - - , - - - - - - -......------:V::-O-H~2-=:-:-Ve-e---::O-::.5-:-:-1V c ~ :z: 9 V / I u .c 9 :z: I- Output High Current VS. Supply Voltage v -150 -15 -SO-5 o co JJ 'i ~ 3 g -0.2 ~------+_------+_-------t---r---+------~ :z: [ :; o VOH1=2.4V 6 I L_~'~--L-------L-----~------~~----~ Supply Voltage, Vee (V) I Supply Voltage, Vee (V) Output Low Current VS. Output Low Voltage Output Low Current VS. Supply Voltage 3 V 2 c: ~ u ~ [ 1 / V V /" ...J 9 ~ 82~--------------~~~------------------~ ~ l- :; o c .s ................. e t I~ VOL = 0.45 V Supply Voltage, Vee (V) ~__________________~_____________V_e~e_=_4_.5~V 0.5 Output Low Voltage, VOL (V) 1",,<,> 1.0 4-233 t-{EC pPD80C35/C48,pPD48 Operating Characteristics (cont) Current Consumption as a Function of Temperature - Stop Mode ~r-----r-----+---r-------~~--~ VCC=5.5V -40 4':'234 25 Temperature, TA (OC) 85 I NEe NEe Electronics Inc. Description The NEC /JPD8039HL, /JPD8049H and the /JPD8749H are high performance, single component, 8-bit parallel microcomputers using n-channel silicon gate MOS technology. The processors differ only in their internal program memory options: the /JPD8049H has 2K x 8 bytes of mask ROM, the /JPD8749H has 2K x 8 of UV erasable EPROM and the /JPD8039H L has external program memory. The /JPD8049H family functions efficiently in control as well as arithmetic applications. The powerful instruction set eases bit handling applications and provides facilities for binary and BCD arithmetic. Standard logic functions implementation is facilitated by the large variety of branch and table look-up instructions. The instruction set is comprised of 1 and 2 byte instructions, most of which are single-byte. The instruction set requires only 1 or 2 cycles per instruction with over 50 percent of the instructions single-cycle. The /JPD8049H family of microprocessors will function as stand-alone microcomputers. Their functions can easily be expanded using standard 8080A/8085A peripherals and memories. The /JPD8039HL is intended for applications using external program memory only. It contains all the features of the /JPD8049H except for the internal ROM. The external program memory can be implemented using standard 8080A/8085A memory products. The /JPD8049H contains the following functions usually found in external peripheral devices: 2048 x 8 bits of mask ROM program memory; 128 x 8 bits of RAM data memory; 271/0 lines; an 8-bit interval timer/event counter; and oscillator and clock circuitry. The /JPD8749H differs from the /JPD8049H in its 2048 x 8-bit UV erasable EPROM program memory instead of the mask ROM memory. It is useful in preproduction or prototype applications where the software design has not yet been finalized or in system designs whose quantities do not require a maskROM. ~PDa039HL/49H,~PDa749H HIGH·SPEED, a·BIT, SINGLE·CHIP HMOS MICROCOMPUTERS o o o o o o o External and internal interrupts 96 instructions: 70 percent single byte 271/0 lines Internal clock generator Expandable with 8080A/8085A peripherals HMOS silicon gate technology Single +5 V ± 10 percent power supply Ordering Information Part Number Package Type Max Frequency of Operation JJPD8039HLC 40-pin plastic DIP 11 MHz JJPD8049HC 40-pin plastic DIP 11 MHz JJPD8749HC 40-pin plastic DIP 11 MHz JJPD8749HD 40-pin cerdip (Note 1) 11 MHz Note: (1) With quartz window. Pin Configuration Vee T1 P27 \VA ALE DBo DBl DB2 DB3 Voo DB4 PROG P23 P22 83·002879A Features o o o o o o High performance 11 MHz operation Fully compatible with industry standard 8039/8049/8749 Pin compatible with the /JPD8048/8748 1.36/Js cycle time. All instructions 1 or 2 bytes Programmable interval timer/event counter 2K x 8 bytes of ROM, 128 x 8 bytes of RAM 4-235 NEe ~PD8039HL/49H,~PD8749H SS (Single Step) Pin Identification Function No. Symbol 1 TO Test 0 input/output 2 XTAL1 Crystal 1input 3 XTAL2 Crystal 2 input 4 RESET Reset input 5 SS Single step input 6 INT Interrupt input 7 EA External access input 8 RD Read output 9 PSEN Program store enable output 10 WR Write output Address latch enable output An active low on SS, together with ALE, causes the processor to execute the program one step at a time. INT (Interrupt) An active low on INT starts an interrupt if interrupts are enabled. A reset disables an interrupt.INT can be tested with the JNI instruction and, depending on the resuits a jump to the specified address can occur. ' EA (External Access) An active high on EA disables internal program memory and. fetches and accesses external program memory. EA IS used for system testing and debugging. 11 ALE 12-19 DBO-DB? Bidirectional data bus RD(Read) 20 Vss Ground 21-24 P20-P2? Quasi-bidirectional Port 2 25,35-38 PRaG Program output 26 Voo RAM power supply RD will pulse low wh~the processor performs a bus read. An active low on RD enables data onto the processor bus from a peripheral device and functions as a read strobe for external data memory. 27-34 P10-P1? Quasi-bidirectional Port 1 39 T1 Test 1input 40 Vee Primary power supply WR(Write) WR will pulse low when the processor performs a bus write. WR can also function as a write,strobe for external data memory. Pin Functions XTAL 1(Crystal 1) XTAL1 is one side of the crystal, LC, or external frequency source (non-TTL-compatible VIH). XTAL 2 (Crystal 2) XTAL2 is the other side of the crystal or frequency source. For external sources, XTAL2 must be driven with the logical complement of the XTAL1 input. TO (Test 0) TO is the testable input using conditional transfer function.s JTO and IN!O. The internal state clock (CLK) is available to TO uSing the ENTO CLK instruction. TO can also be used during programming as a testable flag. T1 (Test 1) T1 is the testable input using conditional transfer functions JT1 and JNT1. T1 can be made the counterltimer input using the STRT CNT instruction. RESET (Reset) An active low on RESET initializes the processor. RESET is also used for PROM programming verification and power-down (non-TTL compatible VIH). 4-236 PSEN (Program Store Enable) PSEN becomes active only during an external memory fetch. (Active low). . ALE (Address Latch Enable) ALE occurs at each cycle. ALE can also be used as a clock output. The falling edge of ALE addresses external data memory or external program memory. DBO-DB7 (Data Bus) DBo-DB7 is a bidirectional port. Synchronous reads and writes can be performed on this port using RD and WR strobes. The contents of the DBa-DB7 bus can be latched in a static mode. During an external memory fetch, DBo-DB7 output the low order eight bits of the memory address. PSEN fetches the instruction. DBa-DB7 also output the address of an external data memory fetch. The addressed data is controlled by ALE, RD, and WR. P10-P17 (Port 1) P10-P17 is an 8-bit quasi-bidirectional port. NEe tJPD8039HL149H, tJPD8749H P20- P27 (Port 2) Vee (RAM Power Supply) P2o-P27 is an 8-bit quasi-bidirectional port. P2o-P23 output the high order four bits of the address during an external program memory fetch. P20-P23 also function as a 4-bit I/O bus for the ~PD82C43 110 port expander. Voo provides +5 V to the 128 x 8-bit RAM section. During normal operation, Vee must also be +5 V to provide power to the other functions in the device. During standby operation, Voo must remain at +5 V while Vee is at ground potential. PROG (Program Pulse) PROG is used as an output pulse during a fetch when interfacing with the ~PD82C431/0 port expander. When the ~PD8049H is used ina stand-alone mode, PROG can be allowed to float. Vss (Ground) Vss is ground potential. Vee (Primary Power Supply) Vee is the primary power supply. Vee is +5 V during normal operation. Block Diagram Expansion to Additional External Memory and I/O Oscillator Frequency Bj E T'j' Bus Buller and Timer and Event Counter Conditional Branch (8) Logic Power Supply { _ 8 Latch Port 1 _ TestO _ Test1 - - iNT Register 1 _ Flag 0 Flag 1 Register 2 _ Timer Flag _Carry VCC Program Supply Multiplexer Register 0 - - Voo +s V (Low Power Standby) _ACC -VssGround _ ACCBitTest Register 3 i Register 4 I-R_eg_is_te_r_s- - - - 4 Register 6 Register 7 B-Level Stack (Variable Word Length) EA Control and Timing XTAL XTAL 1 2 ALE Optional Second Register Bank Data Store Interrupt Initialize PROM I Expander Strobe External Memory Access Oscillator I Crystal Address Latch Strobel Cycle Clock Program Memory Enable Single Step ReadlWrite Strobes Resident Data MemoryRAM (128 x 8) Note: "PD8039HL does not Include ROM. 83OO288OC 4-237 ~PD8039HL/49H, NEe f-lPD8749H Logic Symbol Limits Parameter ...!.- Por:t1 XTAL{= Read J: ic Write ~ ~~~bl~m Store Address Lateh Enable Por:t Expander Strobe Bus 83-002892A Absolute Maximum Ratings TA = 25°C Operating temperature. TOPT O°C to +70°C Storage temperature. TSTG - 65°C to +150°C Voltage on any pin -0.5Vto +7.0V(Notel) Power dissipation. Po 1.5W Note: (1) With respect to ground. Min Typ Mal( Test Conditions Unit 2.4 V 10H= -400 ",A Output high VOHl voltage (RD. WR. PSEN. ALE) 2.4 V 10H= -400 ",A Output high VOH2 voltage (all other outputS) 2.4 V 10H= -40",A ±10 ~ VSS ~ VIN ~ Vee Output high voltage (... ) Por:t2 Symbol VOH Input leakage IlL current (Tl. EA. INT) Input leakage current (Pl 0- P1 7. P20-P27. EA. SS) 11L1 -500 ",A Vss+ 0.45 V ~ VIN ~ Vee Output leakage current (BUS. TO. high impedance state) ILO ±10 ~ Vee ~ VIN ~ VSS+ 0.45V 10 rnA TA=25°C rnA TA=25°C Comment: Exposing the device to stresses above those listed in Absolute Maximum Ratings could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational sections of the specification. Exposure to absolute maximum rating conditions for extended periods may affect device reliabi lity. Power down supply current 100 Total supply current 100+ lee DC Characteristics TA=25°C±5°C, Vee = +5V±5%, Voo= +21V±O.5V 8749H only 5 80 110 85 110 8749H only DC Programming Characteristics TA=OOCto +70 0 C, Vee=Voo= +5V±10%~ Vss=OV Limits Limits Test Conditions Mal( Unit 20.5 21.5 V VOD program VOOL voltage low level 4.75 5.25 V PROG program voltage high level VPH 17.5 18.5 V PROG voltage low level VPL 4.0 Vee V VEAH 17.5 18.5 V ~tage(~ EA program/ verify voltage high level RD. WR. PSEN. ALE) VOO high voltage 100 supply current 20.0 mA PROG high voltage supply current 1.0 rnA 1.0 rnA Parameter Input low voltage (All except XTAL1. XTAL2) Symbol VIL Min -0.5 Input high VIH voltage (All except XTAL1. XTAL2. RESET) 2.0 Input high VIHl voltage (XTAL1. XTAL2. RESET) 3.8 Output low VOL Typ Mal( Unit 0.8 V Vee V Vee V 0.45 V 10L =2.0mA Output low voltage (All others except PROG) VOL1 0.45 V 10L =2.0mA Output low voltage (PROG) VOL2 0.45 V 10L =2.0mA 4-238 Parameter VOO program voltage high level Symbol Min VOOH IpROG EA high voltage lEA supply current Typ Test Conditions NEe ~PD8039HL/49H,~PD8749H AC Characteristics TA=OOCto +70°C, vee=voo= +5V±10%, vss=ov Umlt. Parameter Symbol Min TyP Max Unit Test Condition. Limits Parameter Symbol Min Typ Max Unit ALE pulse width tLL 150 ns Address setup to ALE tAL 70 ns tLA 50 ns Control pulse tCC1 width (RD, WR) 480 ns Control pulse width (PSEN) tCC2 350 ns I/O rep rate Data setup beforeWR tow 390 ns Note: (1) Control outputs: CL= 60 pF, bus outputs: CL = 150 pF Data hold after WR two 40 ns Data hold (RD, PSEN) tOR 0 RD to data in PSEN to data in Address hold from ALE Port 2 I / 0 data tpL setup to ALE 160 ns Port 2 I / 0 data tLP hold to ALE 40 ns Port output from tpv ALE Cycle time tCY 1.36 tOPRR 270 510 ns 15 J.ls Te.t Conditions ns (2) Bus high impedance, load = 20 pF (Note 2) (3) Calculated values will be equal to or better than published 8049 values. 110 ns tR01 350 ns tR02 210 ns Address setup toWR tAW Address setup to data (RD) tA01 AC Programming Characteristics 300 ns 750 480 Address setup to tA02 data (PSEN) ns ns TA=25°C±5°C, Vee = +5V±5%, Voo= +21V±O.5V Limits Parameter Symbol Min Address setup tAW time to RESETt 4tCY Address hold time after RESETt tWA 4tCY Address float to tAFC1 RD,WR 140 ns Data in setup time to PROG t tow 4tCY Address float to tAFC2 PSEN 10 ns Data in hold time two after PROG+ 4tCY 4tCY ALE to control (RD, WR) tLAFC1 200 ns RESET hold time tpH to verify ALE to control (PSEN) tLAFC2 60 ns Voo tVOOW Voo hold time after PROG+ tVOOH PROG pulse width tpw Control to ALE tCA1 (RD. WR. PROG) 50 ns Control to ALE (PSEN) tCA2 320 ns Port control setup to PROG tcp 100 ns Port control hold tpc to PROG 160 ns PROG to P2 input valid tpR Input data hold from PROG tpF 0 Output data setup top 400 ns Output data hold tpo 90 ns PROG pulse width 700 ns tpp 650 ns 140 ns 0 50 TESTO setup tTW time for program mode 4tCY TESTO hold time twr after program mode 4tCY TESTO to data out delay(1) too RESET pulse width to latch address tww 4tCY Vooand PROG rise and fall times tr.tf 0.5 Typ Max Unit 1.0 ms 1.0 ms 60 ms Test Conditions 4tCY 100 J.ls 4-239 E NEe J.lPD8039HL/49H, IJPD8749H AC Programming Characteristics (cont) Timing Waveforms TA = 25°C±5°C, Vee = +5V±5%, Voo= +21V±O.5V Limits Parameter CPU operation cycle time Symbol Min tCY 4.0 RESET setup tRE time before EA t 4tCY TyP Max Unit 15 ",5 Test Conditions Instruction Fetch from ExternafMemory Note: (1) Control outputs: CL = 60 pF, bus outputs: CL = 150 pF (2) Bus high impedance, load = 20 pF (3) Calculated values will be equal to or better than published 8049 values. Bus Timing Requirements -tAD283·002864A Symbol Timing Formula MinIMax Unit tLL (7/30) tCY -170 Min ns tAL (2/15) tCy-110 Min ns tLA (1/15) tCy-40 Min ns tCC1 . (1/2)tCy-200 Min ns tCC2 (2/ 5) tCY- 200 Min ns tow (13/30) tCY - 200 Min ns two (1/15) tCY- 50 Min ns tOR (1/10) tCy-30 Max ns tR01 (2/5)tCy-200 Max ns tR02 (3/10) tCY- 200 Max ns tAW (1/3) tCy-150 Min ns tA01 (11/15) tCY- 250 Max ns tA02 ,8/15) tCY- 250 Max ns tAFC1 (2/15)tCy-40 Min ns tAFC2 (1/30) tCY- 40 Min ns tLAFC1 (1/5) tCy-75 Min ns tLAFC2 (1/10) tCY- 75 Min ns tCA1 (1/15)tCy-40 Min ns tCA2 (41.15)tCy-40 Min ns tcp (2/15) tCY- 80 Min ns tpc (4/15) tCY- 200 Min ns tpR (17/30) tCY -120 Max ns tpF (1/10) ICY Max ns lop (2/5) ICy-150 Min ns lpo (1/10) ICY- 50 Min ns lpp (7/10) tCY - 250 Min ns tpL (4/15) tCY- 200 Min ns I-------tcv-----ALE Floating i---tAD83·002865A ILP (1/10) tCY -100 Min ns tpv (3/10) tCy-100 Max ns IOPRR (3/15) tCY Min ICY 11MHz 4-240 Read from External Data Memory ns ",5 Write to External Memory NEe ~PD8039HL/49H,~PD8749H Timing Waveforms (cont) Port 2 Timing ALE Expander Port Output Expander Port Input PROG Waveforms for Programming the /APD8749H 1_-------program-------~-Verify-,I-------Programl-------+ TO RESET DBO-DB7 J--- PROG '"-_N_ex_t_M_d_re_s_s-J ... Valid " Mdress (8-9) Valid P20-P21 VOD X\.______________ Data To Be Programmed Valid ~:::V-------!"'~jl Next Mdress r"",,"-VOOH _ _ _ _ ~\.._---t-o-wtn--+~, I,.------------~\\..-----------83·002885A Program/Verify Timing (ROM/EPROM) TO RESET DBO-DB7 P20-P21 \ )----< Mdress (0-7) Valid X X Data Out Valid \ / \ / >----< X Next Mdress X Next Data Out Valid r-------83·002888A 4-241 ~ I I\) 1:: Instruction Set ~ Mnemonic Funciton Description D7 DO Operation Code D5 D4 D3 D2 Accumulator ADDA, # data (A) - Add immediate the specified data to the accumulator. 0 d7 0 d6 0 d5 I\) (A) + data 0 d4 0 d3 (A) - (A) + (Rr) r = 0-7 Add contents of designated register to the accumulator. 0 ADDA,@Rr (A) - (A) + ((Rr)) r = 0-1 Add indirect the contents of the data memory location to the accumulator. 0 ADDC A, # data (A) - Add immediate with carry the specified data to the accumulator. 0 d7 0 d6 0 d5 1 d4 0 d3 ADDCA, Rr (A) - (A) + (C) + (Rr) r = 0-7 Add with carry the contents of the designated register to the accumulator. 0 1 1 1 1 ADDCA,@Rr (A) - (A) + (C) + ((Rr)) r = 0-1 Add indirect with carry the contents of data memory location to the accumulator. 0 ANLA, # data (A) - Logical AND specified immediate data with accumulator. 0 d7 1 d6 0 d5 1 d4 0 d3 ANLA, Rr (A) - (A) AND (Rr) r = 0-7 Logical AND contents of designated register with accumulator. 0 1 0 1 1 ANLA, @Rr (A) - (A) AND ((Rr)) r = 0-1 Logical AND indirect the contents of data memory with accumulator. 0 CPLA (A) -NOT(A) Complement the contents of the accumulator. 0 0 CLRA (A)-O Clear the contents of the accumulator. 0 0 Decimal adjust the contents of the accumulator. 0 (A) AND data DAA 1 d1 1 do 0 1 0 0 C • • 0 0 d2 1 d1 1 do • • '11 F1 0 CD 0 W CO ...:E:.... ... CO :E: 1:: '11 0 CD 0 0 • 0 ~ U) 0 0 0 0 1 0 0 0 (A)-(A)-1 Decrement by 1the accumulator's contents. 0 0 0 1 d1 0 0 1 do :E: 0 INCA (A)-(A) +1 Increment by 1the accumulator's contents. 0 0 0 1 0 ORLA, # data (A) - Logical OR specified immediate data with accumulator. 0 d7 1 d6 0 d5 0 d4 0 d3 ORLA, Rr (A) - (A) OR (Rr) r = 0-7 Logical OR contents of designated register with accumulator. 0 1 0 0 1 ORLA, @Rr (A) - (A) OR ((Rr)) r = 0-1 Logical OR indirect the contents of data memory location with accumulator. 0 0 0 0 RLA (AN + 1) - (AN); N = 0-6 (Ao) -(A7) Rotate accumulator left by 1bit without carry. 0 0 RLCA (AN + 1) - (AN); N = 0-6 (Ao)-(C) (C)-(A7) Rotate accumulator left by 1 bit through carry. RRA (AN) - (AN + 1); N = 0-6 (A7) - (Ao) Rotate accumulator right by 1bit without carry. 0 0 0 d2 0 1 DEC A (A) OR data Do Brte. • ADDA, Rr (A) + (C) + data 0 d2 D1 Crcle. Flags AC FO 0 • 0 d2 1 d1 0 0 1 do • ;( ~ Instruction Set (cont) Operation Code Mnemonic Function Description D7 D6 Ds D4 D3 0 0 D2 D1 Do 0 d2 1 d1 1 do Accumulator (cont) RRCA (AN) - (AN + 1); N = 0-6 (A7)-(C) (C)-(Ao) Rotate accumulator right by 1 bit through carry. 0 SWAP A (A4-A7) - Swap the 2 4-bit nibbles in the accumulator. 0 XRLA, # data (A) - XRLA, Rr XRLA, @Rr (Ao-A3) Logical XOR specified immediate data with accumulator. (A) - (A) XOR (Rr) r = 0-7 Logical XOR contents of designated register with accumulator. (A) - (A) XOR ((Rr)) r = 0-1 Logical XOR indirect the contents of data memory location with accumulator. (Rr) - (Rr) - 1; r = 0-7 If (Rr) '" 0; (PCO-PC7) - addr Decrement the specified register and test contents. (PCO-PC7) -- addr if Bb = 1 (PC) - (PC) + 2 if Bb = 0 Jump to specified address if accumulator bit is set. (PCO-PC7) - addr if C = 1 (PC) - (PC) + 2 if C = 0 Jump to specified address if carry flag is set. JFOaddr (PCO-PC7) - addr if FO = 1 (PC) - (PC) + 2 if FO = 0 JF1 addr (A) XOR data 0 0 0 1 d7 1 d6 0 d5 1 d4 0 d3 1 1 0 1 1 0 0 0 Cycles Bytes C Flags AC FO F1 ~~ Branch DJNZ Rr, addr a7 a6 a5 0 a4 a3 r a2 r a1 r ao b2 a7 b1 a6 bo a5 a4 0 a3 0 a2 a1 0 ao 1 a7 1 a6 a5 a4 0 a3 1 a2 a1 ao Jump to specified address if flag FO is set. 1 a7 0 a6 1 a5 1 a4 0 a3 1 a2 1 a1 0 ao (PCO-PC7) - addr if F1 = 1 (PC) - (PC) + 2 if F1 = 0 Jump to specified address if flag F1 is set. 0 a7 a6 a5 a4 0 a3 a2 a1 0 ao (PCa-PC1O) - (addra-addr1O) (PCO-PC7) - (addro-addr7) (PC11) - DBF Direct jump to speciffed address within the 2K address block. a10 a7 ag a6 aa a5 0 a4 0 a3 a2 a1 ao JMPP@A (PCO-PC7) -- ((A)) Jump indirect to specified address with address page. 0 1 0 1 JNC addr (PCO-PC7) -- addr if C = 0 (PC) - (PC) + 2 if C = 1 Jump to specified address if carry flag is low. a6 a5 0 a4 0 a3 JNI addr (PCO-PC7) - addr if I = 0 (PC) -- (PC) + 2 if I = 1 Jump to specified address if interrupt is low. a7 a6 0 a5 a4 0 a3 JNTO addr (PCO-PC7) -addr if TO = 0 (PC) - (PC) + 2 if TO = 1 Jump to specified address if test 0 is low. 0 a7 0 a6 1 a5 0 a4 0 a3 a2 JNT1 addr (PCO-PC7) - addr ifT1 = 0 (PC) - (PC) + 2 ifT1 = 1 Jump to specified address if test 1 is low. 0 a7 1 a6 0 a5 a4 0 a3 1 a2 JNZaddr (PCO-PC7) - addr if A", 0 (PC) - (PC) + 2 if A = 1 Jump to specified address if accumulator is non-zero. 1 a7 0 a6 0 a5 a4 a3 (PCO-PC7) -- addr ifTF = 1 (PC) - (PC) + 2 ifTF = 0 Jump to specified address if timer flag is set to 1. 0 a7 0 a6 a5 a4 0 a3 JBb addr JC addr JMP addr ~ I I\) -'=>- JTF addr a7 (.0.) I!I!I a2 a1 0 aO a2 1 a1 ao a1 0 ao a1 0 aO a2 a1 aO a2 a1 0 ao "l: " D CD 0 W CD ....... % ~ CD ..% "l: " D CD ~ CD % f" J\) Instruction Set (cont) Mnemonic Description Function D7 D6 Operation Code Ds D4 D3 D2 D1 Do Branch (cant) JTO addr JT1 addr JZ addr ,.a 1:: ~ ~ Cycles Bytes C Flags AC FO F1 CD 0 (PCO-PC7) - addr ifTO = 1 (PC) - (PC) + 2 if TO = 0 Jump to specified address if test 0 is a 1. (PCO-PC7) - addr if T1 = 1 (PC) - (PC) + 2 ifT1 = 0 Jump to specified address if test 1is a 1. (PCO-PC7) - addr if A = 0 (PC) -(PC) + 2ifA = 1 Jump to specified address if accumulator is O. a7 0 as a5 a4 0 a3 a2 a1 0 aO 0 a7 1 a7 1 as 1 as 0 a5 0 a5 a4 0 a4 0 a3 0 a3 a2 1 a2 a1 1 a1 aO 0 ao 0 0 Control EN I Enable the external interrupt input. 0 0 DIS I Disable the external interrupt input. 0 0 Enable the clock output pin TO. 0 ENTO ClK 0 1 0 0 0 0 (DBF) -0 Select bank 0 (locations 0-2047) of program memory. SEl MB1 (DBF)-1 Select bank 1(locations 2048-4095) of program memory. 1 SEl RBO (BS)-O Select bank 0 (locations 0-7) of data memory. 0 SEl RB1 (BS)-1 Select bank 1(locations 24-31) of data memory. 0 MOV A, # data (A) -data Move immediate the specified data into the accumulator. 0 d7 0 ds 1 d5 0 d4 0 d3 MOVA, Rr (A) - (Rr); r = 0-7 Move the contents of the designated registers into the accumulator. 1 1 1 1 1 MOVA,@Rr (A) - «Rr)); r = 0-1 Move indirect the contents of data memory location into the accumulator. MOVA, PSW (A) -(PSW) Move contents of the program status word into the accumulator. MOV Rr, # data (Rr) - data; r = 0-7 Move immediate the specified data into the designated register. 1 d7 (A); r = 0-7 Move accumulator contents into the designated register. 1 . CD ~ ,. aCD ~ CD 0 0 :z: r..... 1:: 0 0 SEL MBO W CD :z: 0 0 Data Moves MOV Rr, A (Rr) - MOV@Rr,A «Rr)) - (A); r = 0-1 Move indirect accumulator contents into data memory location. MOV@Rr, # data «Rr)) - data; r = 0-1 Move immediate the specified data into data memory. MOV PSW, A 0 1 d7 0 0 0 0 ds 1 d5 1 d4 1 d3 1 d1 1 do r d2 r d1 r do 0 d2 0 0 1 0 1 0 1 0 0 0 0 0 ds 1 d5 1 d4 0 d3 0 d2 0 d1 1 do 0 1 0 1 1 1 0 0 0 0 0 0 (PSW)-(A) Move contents of accumulator into the program status word. 1 MOVPA,@A (PCO-PC7) - (A) (A)-«PC)) Move data in the current page into the accumulator. 0 MOVP3A,@A (PCO-PC7) - (A) (PCa-PC10) - 011 (A)-«PC)) Move program data in page 3 into the accumulator. ~ ~ Instruction Set (cont) Operation Code Mnemonic Function Description MOVXA,@R (A) - ((Rr)); r = 0-1 MOVX@R,A ((Rr)) - (A); r = 0-1 XCH A, Rr (A) - (Rr); r = 0-7 Exchange the accumulator and deSignated register's contents. 0 0 0 1 XCH A, @Rr (A) - ((Rr)); r = 0-1 Exchange indirect contents of accumulator and location in data memory. 0 0 0 0 XCHDA,@Rr (Ao-A3) r = 0-1 Exchange indirect 4-bit contents of accumulator and data memory. 0 0 De Ds D4 D3 D2 D1 Move indirect the contents of external data memory into the accumulator. 0 0 0 0 0 0 Move indirect the contents of the accumulator into external data memory. 0 0 0 0 0 0 0 0 D7 Do Cycles Bytes C Flags AC FO F1 Data Moves (cont) Flags CPL C (C) - CPL FO (FO) - CPL F1 (F1) - CLR C ((Rr))o-((Rr))s; Complement contents of carry bit. 0 1 0 1 NOT (FO) Complement contents of flag FO. 0 0 0 0 NOT (F1) Complement contents of flag F1. 0 1 0 0 (C)-O Clear contents of carry bit to O. 0 0 0 1 CLR FO CLR F1 (FO)-O Clear contents of flag 0 to O. 0 0 (F1)-0 Clear contents of flag 1to O. Input! Output ANL BUS, # data (bus) - NOT (C) 0 1 0 0 0 0 0 0 • • • • • Logical AND immediate specified data with contents of bus. 1 d7 0 d6 0 d5 1 d4 1 d3 0 d2 0 d1 0 do (Pp) - (Pp) AND data p = 1-2 Logical AND immediate specified data with designated port (1 or 2). 1 d7 0 d6 0 d5 1 d4 1 d3 0 d2 P d1 P do ANLD Pp, A (Pp) - (Pp) AND (Ao-A3); P = 4-7 Logical AND contents of accumulator with designated port (4-7). 1 0 0 1 1 1 ANL Pp, # data (bus) AND data " IN A, Pp (A) - Input data from designated port (1-2) into accumulator. 0 0 0 0 0 p P 2 (A) -(bus) Input strobed bus data into accumulator. 0 0 0 0 0 0 0 2 MOVDA, Pp (Ao-A3) (A4-A7) - Move contents of designated port (4-7) into accumulator. 0 0 0 0 Move contents of accumulator to deSignated port (4-7). 0 0 Logical OR immediate specified data with contents of bus. 1 d7 0 0 0 0 0 d5 d4 1 d3 0 d6 d2 d1 do (Pp); P = 4-7 0 MOVD Pp, A (Pp) (bus) - ORLD Pp, A (Pp) - (Pp) OR (Ao-As); p = 4-7 Logical OR contents of accumulator with deSignated port (4-7). 1 0 0 0 1 1 P P ORL Pp, # data (Pp) - (Pp) OR data p = 1-2 Logical OR immediate specified data with designated port (1-2). 1 d7 0 d6 0 d5 0 d4 1 d3 0 d2 P d1 P do ~ OUTL BUS, A (bus) -(A) Output contents of accumulator onto bus. 0 0 0 0 0 0 1 0 01 OUTL Pp, A (Pp) - Output contents of accumulator to designated port (1-2). 0 0 (Ao-A3); p = 4-7 (bus) OR data (A); P = 1-2 m 0 C CO 0 W CO 2: ......r- p ORL BUS, # data I\.) ~ ~ INS A, BUS (Pp); p = 1-2 ~ ~ CO ~ ~ " C CO ~ CO 2: ~ I N 1: Instruction Set (cont) ~ (J) Operation Code Mnemonic Function Description D7 De D5 1 a a a D4 D3 D2 D1 Do Registers DEC Rr (Rr) = a-7 + 1; r = a-7 Decrement by 1 contents of designated register. (Rr) - (Rr) - 1; r INC Rr (Rr) - (Rr) INC@Rr ((Rr))-((Rr)) +1; r = a-1 Increment indirect by 1 the contents of data memory location. ((SP)) - (PC), (PSW4-PSW7), (SP) - (SP) + 1 (PCS-PC10) - (addrs- addr10) (PCo-PC?) - (addro-addr7) (PC11) - DBF Call designated subroutine. (SP) - (SP) = 1 (PC) -((SP)) Return from subroutine without restoring program status word. (SP) - (SP) = 1 (PC) - ((SP)) (PSW4-PSW?) - ((SP)) Return from subroutine restoring program status word. a Increment by 1 contents of designated register. a RET RETR a10 a7 ag a6 as a5 Bytes C F1 "a C» 0 ~ CD :z 1 a a a a a a2 a1 ao Subroutine CALL addr Cycles Flags AC FO a a4 a3 ...,.rCD ..:z 1: "a CD a a a a ~ a CD :z a Timer / Counter EN TCNTI Enable internal interrupt flag for timer / counter output. DIS TCNTI Disable internal interrupt flag for timer / counter output. MOVA, T (A)-(T) MOVT, A (T)-(A) Move contents of timer / counter into accumulator. a a a a a a 1 1 a a Move contents of accumulator into timer / counter. STOP TCNT Stop count for event counter. 1 STRT CNT Start count for event counter. STRTT Start count for timer. a a a No operation performed. a a a a a a a a a a 1 a a a a a Miscellaneous NOP a a a a a a Note: (1) Operation code designations rand p form the binary representation of the registers and ports involved. (2) The dot under the appropriate flag bit indicates that its contents are subject to change by the instruction it appears in. (3) References to the address and data are specified in bytes 2 and/or 1 of the instruction. (4) Numerical subscripts appearing in the function column r~ference the specific bits affected. (5) When the bus is written to with an OUTL instruction, the bus remains an output port until either the device is reset or a MOVX instruction is executed. ~ ~ NEe ~PD8039HL/49H,~PD8749H Instruction Set Symbol Definitions A Accumulator AC Auxiliary carry flag addr Bb Bit designator (b = 0-7) Bank switch BUS Bus port C Carry flag ClK Clock signal CNT Event counter \TYP 3mA J: Number of expression (8 bits) DBF Memory bank flip-flop Vee=4.5V \ 2mA \ 9 1mA ( Nibble designator (4 bits) data FO, F1 Bus Output High Voltage vs. Source Current Program memory address (12 bits) BS D Operating Characteristics Description Symbol OV 2V 4V 6V VOH Flags 0,1 Interrupt "In-page" operation designator Pp PSW Program status word Rr Register designator (r= 0, 1or 0-7) SP Stack pointer T Timer TF Timer flag TO, T1 Testable flags 0, 1 X External RAM # Prefix for immediate data @ Prefix for indirect address $ Program counter's current value (x) ((x)) Port P1 & P2 Output High Voltage vs. Source Current Port desig nator (p = 1, 2 or 4-7) II Vee=4.5V Typ '"J: 9 OV ~\ 2V ~ 4V VOH2 Contents of external RAM location Contents of memory location addressed by the contents of external RAM location Replaced by AND OR EXOR Bus Output Low Voltage vs. Sink Current logical product (logical AND) logical sum (logical OR) Typ Exclusive-OR vee = 4.5 V ..J 9 10mA~----~~---------+----------------~ I ~ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _- L _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ~ ~2 OV 2V VOL 4-247 ~PD8039HL/49H,~PD8749H 4-248 NEe NEe NEe Electronics Inc. ~PDaOC39H/49H,~PD49H HIGH-SPEED, a-BIT, SINGLE-CHIP CMOS MICROCOMPUTERS Description Pin Configurations The JAPD80C39H, JAPD80C49H, and JAPD49H are singlechip, 8-bit microcomputers containing an 8-bit CPU, ROM (80C49H and 49H), RAM, I/O ports, and control circuitry. Through CMOS technology, the devices can retain data with low power consumption. In addition, the processor uses two standby modes (HALT and STOP) to further minimize power drain. 40-Pin Plastic DIP TO Vee 1 T1 XTAL1 P27 Features o o o o o o o o o o o o o o o o o o 98 instructions 1.25JAs instruction cycle time (12 MHz crystal) Addition, logic, and decimal adjust functions 2K x 8-bit ROM (JJPD80C49H and JAPD49H) 256 x 8-bit RAM Standby function 8-level stack Two sets of working registers Interrupt capability Two test inputs Internal timer/event counter Input/output ports (8 bits x 2) - Data bus alternative to I/O ports (8 bits x 1) Expandable memory and I/O ports Single-step function Internal clock generator CMOS technology Single power supply of +2.5 to +6.0 V Intel 8049H, 8039H pin compatible Item IIPD80C49H IIPD80C49 Instructions 98 (STOP instruction added) 97 Instruction Cycle 1.2S/As (12 MHz crystal) 1.87S/As (8 MHz crystal) Standby Modes 3 (HALT, hardware STOP, software STOP) 2 (STOP and HALT) Standby Functions All standby modes stop at the same timing. The control signal (ALE) stops in the inactive state whether or not internal or external ROM is accessed. HALT and STOP modes stop at different timing. Type 0: IOH = - S/AA; Voo=SV±10% Type 1: IOH= -50~; Voo=5V±10% Type 2: no pullup resistor Type 0: IOH = -5~; Voo=5V±10% Type 1: IOH=-50~; Voo=5V±10% Port Options ViR ALE DBo DB1 DB2 Vss 83-002789A 44-Pin Plastic Miniflat ~ ~ > Q STOP lQ ~ Q JQ DB3 0 P10 DB2 P11 31 DB1 P12 DBo P13 ALE pPD49H P14 28 ViR PSEiii 25 EA P1s NC Ri5 P16 P17 P24 10 iNi' 58 83-002790A 4-249 11 NEe ~PD80C39H/49H,~PD49H Pin Configurations (cont) Pin Identification Function Symbol 52· Pin Plastic Miniflat (.) (.) z Z ~ NC ;r D. fl f f. f f ... ... en CD (.) f. f Z ... c c > ... M C> NC TO Test 0 input / clock output XTAL1 Crystal 1input XTAL2 Crystal 2 input RESET Reset input SS Single step input INT Interrupt input P2s PROG NC P23 P2s P22 EA External access input P27 P21 RD Read output T1 P20 Vee IC* PSEN Program store enable output NC Vss WR Write output DB7 ALE Address latch enable output DBa-DB7 Bidirectional data bus TO XTAL1 DB6 10 XTAL2 DBs RESET DB4 Vss Ground NC P2a-P27 Quasi-bidirectional port 2 NC 13 (.) z Il:! I~ iti I~ I~ I~ .., (.) ~ ~ z ~ Q~ IE Q Q c( *Internally connected topln7 83·003899A Ordering Information Part .Number Package Type I1PD80C39HC 40-pin plastic DIP I1PD80C49HG-00 52-pin plastic miniflat Mal Frequency of Operation ROM 12 MHz None 12 MHz 2K x 8 bits I1PD80C49HC 40-pin plastic DIP 12 MHz 2K x 8 bits I1PD49HG-22 44-pin plastic miniflat 12 MHz 2K x 8 bits 4-250 PROG Program output STOP Stop input P1a-P17 Quasi-bidirectional port 1 T1 Test 1input VDD Power supply NC Not connected IC Internal connection NEe ~PD80C39H/49H,~PD49H Pin Functions XTAL1, XTAL2 (Crystals 1, 2) WR(Write) XTAl1 and XTAl2 are the crystal inputs for the internal clock oscillator. XTAl1 is also used as an input for external clock signals. WR enables a data write to external memory. TO (Test 0) The JTO and J NTO instructions test the level of TO and, if it is high, the program address jumps to the specified address. TO becomes a clock output when the ENTO ClK instruction is executed. T1 (Test 1) The JT1 and J NT1 instructions test the level of T1 and, if it is high, the program address jumps to the specified address. T1 becomes an internal counter input when the STRT CNT instruction is executed. RESET (Reset) RESET initializes the processor and is also used to verify the internal ROM. RESET determines the oscillation stabilizing time during the release of STOP mode. The RESET pulse width requires at least 5 machine cycles when the supply voltage is within specifications and the oscillation frequency is stable. (Active low). SS (Single Step) SS causes the processor to execute the program one step at a time. SS also determines the oscillation stabilizing time during the release of the software STOP mode. INT (Interrupt) INT starts an interrupt if interrupts are enabled. A reset disables an interrupt. INT can be tested with the JNI instruction and, depending on the results, a jump to the specified address can occur. EA (External Access) PSEN (Program Store Enable) PSEN fetches instructions only from external program memory. (Active low). ALE (Address Latch Enable) ALE occurs at each cycle. The falling edge of ALE addresses external data memory or external program memory. ALE can also be used as a clock output. DBO-DB7 (Data Bus) DBa-DB? is a bidirectional port. DBa-DB? reads and writes data using RD and WR for latching. During an external program memory fetch, DBa-DB? output the loworder eight bits of the memory address. PSEN fetches the instruction. DBa-DB? also output the address of an external data memory fetch. The addressed data is read and written by RD and WR. P10- P17 (Port 1) P1a-P1? is an 8-bit quasi-bidirectional port. P20-P27 (Port 2) P2a-P2? is an 8-bit quasi-bidirectional port. P2a-P23 output the high-order four bits of the address during an external program memory fetch. P2a-P23 also function as a 4-bit 110 bus for the J-lPD82C43 110 port expander. PROG (Program Pulse) PROG is used as an output pulse during a fetch when interfacing with the J-lPD82C43110 port expander. STOP (Stop) STOP controls the hardware STOP mode. STOP stops the oscillator when active low. EA disables internal program memory and fetches and accesses external program memory. EA is used for system testing and debugging. (Active high). Voo (Power Supply) RD (Read) Vss (Ground) RD enables a data read from external memory. (Active low). Vss is ground potential. VDD is the positive power supply (+2.5 V to +6.0 V). 4-251 NEe ~PD80C39H/49H,~PD49H Block Diagram DalaMemory 128x8RAM Regis1er0-7 B Level Stack (Variable Leng1h) Op1lonai Second Register Bank Data Store P1o-P17 P20- P27 Program Memory SlOP T1 Power Supply Voo - +2.5-+6.0V V GND ss _ TO T1 Test 49-0005578 Absolute Maximum Ratings DC Characteristics TA=25°c Standard Voltage Range Power supply voltage, Voo Vss -0.3Vto +7V Input voliage, VI Vss -0.3VtoVoo +0.3V Output voltage, Vo Vss -0.3VtoVoo +O.3V Operating temperature, TOPT Storage temperature, TSTG -40°C to +85°C - 65°C to + 150°C Comment: Exposing the device to stresses above those listed in Absolute Maximum Ratings could cause permanent damage. The device is not meant to be operated under conditions outside the limits de, scribed in the operational sections of the specification. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. TA= -40°C to +85°c,Voo= +5V±10%,Vss=OV Limits Parameter Symbol Min TyP Max Unit Test Conditions Input voltage low VIL -0.3 +0.8 V Input voltage high VIH Voo-2 Voo V Except XTAL1, _ XTAL2, RESET, SS VIH1 VOO-1 VOO V RESET, XTAL1, XTAL2, SS +0.45 V IOL=2.0mA Output voltage low VOL Output voltage high VOH 2.4 V Bus, RD, WR, PSEN, ALE, PROG, TO; IOH= -400jAA VOH1(1) 2.4 V IOH = - 5 fAA (type 0) port 1, port 2 2.4 V. IOH= -50jAA (type 1) port 1, port 2 V All outputs, IOH= -0.2fAA -40 jAA Port 1, port 2; VIL (type 0) VI~ -500 fAA Port 1, port 2; VIL (type 1) VI~ -40 fAA SS, RESET; VOH2 Input current IILP(1) IILC Voo-0.5 -15 VI~VIL 4-252 NEe ~PD80C39H/49H,~PD49H DC Characteristics (cont) Extended Voltage Range (cant) Standard Voltage Range (cant) TA= -400Cto +85°C,Voo= +2.5Vto +6.0V,Vss=ov Limits TA= -40°C to +85°C, Voo= +5V±10%, Vss=OV Limits Parameter Input leakage current Output leakage current Symbol Typ Min ILl1 Max Unit ±1 JAA Test Conditions Parameter Symbol Min Standby current 1001(4) 1L12 ±3 JAA EA; VSS~VI~VOO ILO ±1 JAA VSs~Vo~VOO High impedance, bus, TO(3) 1.5 3.0 mA tCy=1.25JAs 1002(5) 20 JAA (2) Supply current (total) 100 18 mA tCy=1.25JAs Data retention voltage VOOOR Standby current 1001(4) V 2.0 Max Unit 0.3 0.6 mA Voo=3V; tCy=5JAs 2.0 4.0 mA Voo=6 V tCy=1.25JAs T1, INT, STOP; VSS~VI~VOO 20 JAA (2); Voo=3 V 50 JAA Voo=6 V 2.0 4.0 mA Voo=3V; tCy=5JAs 10 20 mA Voo=6V; tCy=1.25JAs 1002(5) Supply current 100 Test Conditions Typ Note: At hardware STOP mode (STOP, RESET~0.4 V) or RESET (RESET~O.4 V) (1) Types 0, 1, and 2 options can be specified for j.lPD80C49H. Type 0 for j.lPD80C39H only. (2) Input pin voltage is VI':S;; VILor VI ~ VIH' (3) Includes port 1and port 2 pins optionally specified with type 2. (4) HALT mode. (5) STOP mode. Extended Voltage Range TA= -40°Cto +85°C, Vss=OV Limits Parameter Symbol Input voltage low VIL Input voltage high VIH VIH1 Output voltage low VOL Output voltage high VOH Input current Input leakage current Output leakage current Min Typ -0.3 Max Unit Test Conditions Limits VDD= t5V±10"lo +0.18Voo V O.7VOO VOO 0. 8V OO II AC Characteristics TA = - 40°C to +85°C, Voo = +2.5 V to +6.0 V, Vss = 0 V VOO +0.45 0. 75V oo V V Except XTAL1, _ XTAL2, RESET, SS RESET, XTAL1, XTAL2, SS V IOL=1.0mA V Bus, RD, WR, PSEN, ALE, PROG, TO; 10H = -100 JAA Parameter Symbol Min Max Cycle time 150 VDD= 2.5Vto&.OV Min Max 150 Test Unit Conditions tCY 1.25 ALE pulse width tLL 125 995 ns (1) Address setup before ALE tAL 140 890 ns (1) Address hold from ALE tLA 45 295 ns (1) Control pulse width (fill, WR) tCC1 425 2300 ns (1) JAs VOH1(1) 0. 7V oo V 10H = -1 JAA (type 0) port 1, port 2 Control pulse width (PSEN) tCC2 300 1400 ns (1) 0. 7V OO V 10H = -10 JAA (type 1) port 1, port 2 Data setup before WR tow 340 1965 ns (1) Data hold after WR two 45 295 ns (2) Data hold after RD, PSEN tOR 95 470 ns (1) RD to data in tR01 300 1800 ns (1) 1300 ns (1) ns (1) -40 JAA Port 1, port 2; VIL (type 0) VI~ -500 JAA Port 1, port 2; VIL (type 1) VI~ IILC -40 JAA SS, RESET; VIL ILl1 ±1 JAA T1 , INT, STOP; PSEN to data in tR02 VSS~VI~VOO Address setup before WR tAW Address setup before data in tA01 IILP(1) -15 VI~ 1L12 ±5 JAA EA; VSS~VI~VOO ILO ±1 JAA VSs~Vo~VOO High impedance, bus, TO (3) 175 1850 350 700 3585 (1) (im) 4-253 NEe ~PD80C39H/49H,~PD49H AC Characteristics (cont) AC Timing Test Points (Except RESET, XTAL1, XTAL2, 55) TA= -40°Cto +85°C, Vss=OV (a)Voo= +5.OV±10% Limits Parameter Symbol Address setup before data in (PSEN) tA02 Address float to RD, WR tAFC1 Address float to PSEN tAFC2 Voo -2 Voo= +5Vj:10% Voo= 2.5Vt08.0V Min Min Max Max 2750 500 ==:>C::::>- Test Unit Conditions ns (1) Voo -2 Test Points 0.8 0.8 (b)Voo= +2.5 to S.OV O·7V oo O·7V oo ===x~ Test Points 0.18Voo 105 600 ns (1) 125 ns (1) ALE to control tLAFC1 signal (RD, WR) 175 925 ns (1) ALE to control signal (PSEN) 50 425 ns (1) Control signal tCA1 (RD, WR, PROG) to ALE 35 285 ns (1) Control signal (PSEN) to ALE tCA2 280 1285 ns (1) Port control setup before falling edge of PROG tcp 85 460 ns (3) tLAFC2 -=:::::x=: ~x== 0. 18Voo 4~70A Timing Waveforms Instruction Fetch (External Program Memory) ALE PSEN Port control hold tpC1 0 Port control hold tpC2 after falling edge of PROG 135 PROG to time P2 tpR input must be valid ns (3,4) ns (3,5) 2715 ns (3) 500 ns (3) 200 80 1135 585 Read (External Data Memory) ALE AD Input data hold time tpF 0 125 0 Output data setup time top 350 1850 ns (3) Output data hold tpo time 75 450 ns (3) PROG pulse width tpp 625 3250 ns (3) Port 21/0 data setup time tpL 135 1135 ns (3) Port 21/0 data hold time tLP 125 ns (3) ALEta port output tpv ns (3) TO clock period tOPRR ns (3) Write (External Data Memory) ALE 1600 475 250 1000 WR Bus Floating Floating Note: (1) Control output: CL = 80 pF, bus output: CL = 150 pF (2) CL=20pF (3) Control output: CL =.80 pF (4) At execution of MOVO A, Pp instruction (5) At execution of MOVO Pp, A; ANlO Pp, A; ORlO Pp, A instructions 4-254 49-OOO571B NEe J.lPD80C39H/49H, J.lPD49H Timing Waveforms (cont) Bus Timing Requirements Symbol Timing Formula MiniMax Unit (7/30) tCY -170 Min ns (1/5)tCy-110 Min ns (1/15) tCy-40 Min ns (1/2) tCY - 200 Min ns (2/5) tCY- 200 Min ns tow (13/30) tCY - 200 Min ns two (1/15) tCy-40 Min ns tOR (1/10)tCy-30 Max ns (2/5) tCY- 200 Max ns (3/10) tCy-200 Max ns (2/5) tCy-150 Min ns (23/30)tCy-250 Max ns (315) tCy-250 Max ns (2/15)tCy-65 Min ns (1/30)tCy-40 Min ns (1/5) tCy-75 Min ns (1/10) tCy-75 Min ns tCA1 (1/15) tCY- 50 Min ns tCA2 (4/15) tCY- 50 Min ns tcp (1/10)tCy-40 Min ns (4/15) tCY- 200 Min ns (17/30) tCY -120 Max ns (1/10) tCY Max ns top (2/5) tCy-150 Min ns tpo (1/10) tCy-50 Min ns Port 2 Expansion Timing ALE Expander Port Output Expander Port Input PROG I/O Port Timing 2nd Cycle ALE P20-P23 Output Port 20-Port 23 Data New P20-P23 Data PC H P 2 4 - P 2 7 - - - - - - - - - - - " " ' " " ' I r -_ _ _ __ P1~-;;-;:~r __ Po_rt_24;...-P_o_rt.....;.27_D_ata_,_Po_rt....;10;...-P_ort_1..:... 7 _Da_ta-J 1,,-_N_ew_po_rt_Da_ta_ 49-000572A (7/10) tCY - 250 Min ns (4/15) tCY- 200 Min ns (1/30)tCy-40 Min ns tpv (3/10) tCY +100 Max ns tOPRR (1/5) tCY Min tCY (11 fXTALl x 15 tpp ns lAS 4-255 NEe ~PD80C39HI49H,~PD49H Operating Characteristics IOH VSVOH IOHVS VOH -15 r - - - - r - - - - , - - - - , - - - - - - , - - - . . , . - - , -150 -~r--------,,---~---.---------r----~--' TA = 25°C Voo = 4.5 V TA = 25·C VOO=4.5V c ~ i :z: .9 :i x I -100 -10 I-----I----_f-~._____--+----+-----l .9 ..c JP x -400 C § U U -50 I -51-----+-----1-~.___f-~._____-l----____1 io .... ~ o ~ ~~O----L---~---~---~~~~ Output Voltage High VOH1 [V] Output Voltage High VOH [V] IOHVSVOO -200 IOH vs VOO ~20 TA=25·C VOH1 =2.4V ~ -150 -15 :z: .9 ..c JP X I -100 -10 U io -50 -5 / o / / V TA = 25°C VOH2 = Voo -0.5 V ~ :z: .9 ..c JP :z: ~ -0.2 ::I U 1 :; 0 0( ~ t ~ -0.4 gj o 0 " 2 Supply Voltage Voo [V] Supply Voltage Voo [V] IOL vs VOL IOL vs VOO TA = 25°C VOL = 0.45 V C C !. ... !. ... .9 ....~ .9 • .3 2 ~ U !u ::I 2 /" i :; ~ // " " 0 0 0( ~ :I § ij gj 1 2 4-256 4 Supply Voltage VOO [V] ::s 0 0 0.5 Output Voltage Low VOL [V] 1.0 NEe ~PD80C39H/49H,~PD49H Operating Characteristics (cont) 100/1001 vs f 100/1001 vs f 20 TA=25°C Voo = 5.5 V IO~ j..-l-- ;,. ... 10 1 Q -- 5 Q ~ E I .~ u .... .... ::::: ~ .... ..... 1~ --- 100 Typ .... ."-~-- 10'" IO~1- ~ .... 1- I- >- is. Do Jl 0.5 _ -I- 0.2 ~ ___ - - - 0.11......._ _ _-'----_--L_-'---L--L--L..L.L.l..._ _ _--'-_ _.L..-.......J 0.1 0.5 0.2 0.2 0.1 0.2 0.5 10 15 Supply Voltage VOO [V] Oscillation Frequency I [MHz] [I = 15 tCY] Curves below 1 MHz show characteristics lor external oscillation Curves below 1 MHz show characteristics 'or external oscillation. IPC1 Max [80C49H] and IACC Min [82C43] vs VOO ICyvs VOO 200 ! ..c 100 J} It tJPOSOC49H tPC1 Max j:: 20 CJ CJ ~ j:: 150 X Q i u 10 ~ U ~ 'iii;' It E It E j:: ~ ~ i Operation Secured Area 0 ""'-. TA = -40 10 +S5°C 'I: ~ 0 A- X . . . . t---.. Supply Voltage Voo [V] .- TA= 25°C \ .5 :& 200 :& == 50 !> 250 ~ i ,. ~ 100 tJPOS2C43 ~CMln ~ ~ r---... .......... 0 !Q g ~ 50 o 1 ,(" Supply Voltage VOO [V] Note: Curves without "operation secured area" show relerence data. 4-257 III ~EC JjPD8'OC39H 149H, JjPD49H Functional Description The ",PD80C39H I ",PD80C49H has the following functional blocks: Instruction Decoder The instruction decoder stores the operation code of each instruction and converts it into outputs that control the functions of each block. These outputs control the functions executed by the ALU, data source, and specified registers. Arithmetic Logic Unit (ALU) The ALU receives 8-bit data from the 'accumulator or temporary register and computes an 8-bit result under control of the instruction decoder. The ALU executes the following functions: • Add with carry or add without carry • Logical AND, OR, XOR • Increment and decrement • Bit complement • Rotate left and right • Swap nibbles • BCD decimal correction When a carry results from ALU overflows, the carry bit of the program word is set. counter exceed the built-in ROM area, the external program memory will be automatically accessed by DBo-DB7, P20-P23, and PSEN. Data Memory The ",PD80C39H I ",PD80C49H has 128 words x 8 bits of data memory that can be externally expanded 256 words maximum when needed. RAM Address Register The RAM address register specifies the next address to be accessed in data memory. Program Status Word The PSW (figure 1) is an 8-bit status word containing the information shown in table 1. Figure 1. Program Status Word 5 2 I I I I I I I I I CY AC FO BS I ! 1 I Stack save possible 52 I 51 SO I I CYCarry AC Auxiliary Carry FO Flag 0 BS Register Bank Select Stack Pointer 49-000561 A Table 1. Bits 0-2 Accumulator PSW Bit Functions Stack pOinter bits (SO-S2) A RESET clears the stack pOinter to 0, The accumulator is an 8-bit register that stores ALU input data and arithmetic results. It can also be used for transferring data between 1/0 ports and memory. Bit 3 Not used (1), Bit 4 Working register bank switch bit (B8) 0= Bank 0 1=Bank 1 Temporary Register Bit 5 The temporary register is an 8-bit register used for the internal proceSSing necessary with arithmetic operations. The contents of the temporary register are input to the ALU. Flag bit (FO), User-controlled bit that can be complemented, cleared, or tested by conditional jump instruction JFO, Bit 6 Auxiliary Carry (AC) , Generated by an auxiliary carry, ADD instruction, Can by used by decimal adjust instruction DA A, Bit 7 Carry flag (CY) Indicates that an accumulator overflow has taken place with the previously executed instruction, Program Counter The program counter is a 12-bit register that addresses on-chip program memory. The program counter specifies the address of the next instruction to be executed. Program Memory The ",PD80C49H contains a mask-programmable ROM of 2048 x 8 bits that can be addressed by a program counter. The ",PD80C39H has no internal ROM, so it uses external program memory. You can expand internal program memory to 4096 bytes by connecting external program memory. When the contents of the program 4-258 Conditional Branch logic The conditional branch logic is used to test processor conditions. Use a conditional jump instruction to test the conditions shown in table 2. Control Logic The control logic generates or receives the signals that control various functions including memory reads and writes, interrupts, software STOP mode, resets, and external memory fetches. NEe Table 2. ~PD80C39H/49H,~PD49H Branching Conditions Test Device Conditional Jump Accumulator All 0 Not all 0 Accumulator bit Carry flag Event Counter. When the T1 pin and counter input are connected by the execution of a STRT CNT instruction, the counter starts counting as an event counter. A change in T1 from high to low causes a count signal which increments the counter by +1. The maximum speed of a count increment is one count per 3 machine cycles. When a 12 MHz crystal is used, the maximum speed is 1 count per 3.75 !As. There is no mimimum speed. After a count signal the T1 input must be held low at least 250 ns (at 12 MHz). User flags (FO, F1) Timer overflow flag Test inputs (TO, T1) Interrupt input (INT) o Reset Functions A reset performs the following functions: • Clears the program counter and the stack pointer toO • Selects register bank and memory bank 0 • Sets the data bus in a high impedance state (except when EA is high) • Sets ports 1, 2 in input mode • Disables interrupts (timer and external) • Stops the timer • Clears the timer flag, FO, and F1 • Disables the clock output from TO • Releases HALT and STOP modes Timer/Event Counter The timer / event counter can count external events in order to generate a precise time delay. The counter operation is the same in both modes, the only difference is the input source. The counter is an 8-bit binary up counter (figure 2) that can be reset. It is possible to transfer the contents of the timer to the accumulator and vice-versa by using the MOV A, T and MOV T, A instructions, respectively. The contents of the counter can be independently initialized by the MOV T, A instruction. Use the STRT T instruction to use the counter as a timer and the STRT CNT instruction to use the counter as an event counter. Figure 2. Once the counter starts, it continues counting until the program executes a STOP TCNT instruction or RESET becomes active. The counter is incremented up to the maximum count (FFH) and overflows when the count goes from FFH to OOH. Timer/Event Counter Timer. When an internal clock is connected with the counter input by the execution of the STRT T instruction, the counter starts counting as a timer. When used as a machine cycle clock, ALE is passed through a prescaler which generates an internal clock that increments the timer every 32 machine cycles. The prescaler is reset during the execution of a STRT T instruction. With a 12 M Hz crystal, the counter is incremented by +1 at each 25 kHz clock every 40 !As. You can obtain a delay from 40 !As to 10 ms (256 counts) by presetting the counter and detecting the overflow. To obtain time" through software control, in excess of 10 ms, count overflows in a separate register. To count in steps of 40 !As or less, an external clock can be supplied to the T1 input which causes the counter to operate in the event counter mode. Use the ALE frequency divided by 3 or more for the external clock. Use a software delay loop for fine adjustment of an extremely small or large delay. Ports 1 and 2 Latch and Buffer Ports 1 and 2 are 8-bit input/output ports.The data written to the port by an output instruction is latched and output and the data is maintained unless a new output instruction is executed. Input data is not latched, so it is necessary to stabilize input data when reading data by an input instruction. Several port-loading options are available. At the time you order a mask ROM, {JAPD80C49H), you can designate the pullup resistors for port lines P10-P17, P20-P23, and P24-P27. XTAL+1S Three types of pullup resistors are available: 49-OOO563A Type 0 (IOH= -5f..1A: Voo= +5 V +10%) Type 1 (lOH= -50 f..IA: Voo= +5 V +10%) Type 2 No pullup resistor 4-259 t\'EC ~PD80C39HJ49H,~PD49H Only type 0 pullup resistors are available with the ",PD80C39H. Timing Logic The oscillator generates a clock signal that controls all system timing operations. Oscillation is generated by either an external self-oscillating element or external clock input. The oscillator acts as an internal high-gain amplifier for serial resonance. To obtain the oscillation frequency, an external LC network or a crystal or ceramic external resonator may be connected. As the crystal frequency is lowered, there is an equivalent reduction in series resistance (R). As the temperature of the crystal is lowered, R is increased. Due to this relationship, it becomes difficult to stabilize oscillation where there is low power supply voltage. When Vee is less 'than 2.7 V and the oscillator frequency is 3 MHz or less, TA (ambient temperature) should not be less than -10°C. Standby Control The standby control cirquitry allows .Iow power consumption operation. The standby function operates in 2 ' modes: HALT and STOP. HALT Mode In HALT mode, the oscillation circuit continues to operate but the internal clock stops. The CPU holds all the status of the internal circuits just prior to execution of the HALT instruction. In HALT mode, power consumption is much less than normal. Setting HALT Mode. HALT mode is set by execution of the HALT instruction and released by 'either INT or RESET. If interrupts are disabled and INT becomes low at a machine cycle right before the HALT instruction and remains low during 2 machine cycles, the HALT instruction byte will be fetched and decoded, but the HALT mode will not be set. Program operation resumes from the instruction following the HALT instruction. If interrupts are enabled under the same conditions as above, the HALT instruction byte will be fetched and decoded but the HALT mode will not be set and the program will jump to the interrupt start address, After returning from the interrupt routine, the program will continue from the instruction following the HALT instruction. Releasing HALT Mode. Release HALT mode by activating INT or RESET. When using INT to release HALT mode, a low level is present at the INT pin and the internal clock is restarted. If interrupts are enabled, the interrupt is executed after the first instruction following the HALT instruction. 4-260 In the interrupt enable state, hold the INT pin low until the interrupt procedure is started to ensure the interrupt. When using RESET to release HALT mode, a low level is present at the RESET pin and the HALT mode is reset and a normal reset operation is executed. When RESET goes to a high level, the program starts from address O. STOP Mode In STOP mode, the oscillator stops and only the contents of RAM are maintained. Power consumption is lower than that of the HALT mode. You can set the STOP mode with hardware, by controlling the RESET and STOP pins; and by software, by executing the corresponding instruction. Hardware STOP Mode In hardware STOP mode, the contents of RAM can be held at a voltage as low as +2.0 V. To set hardware STOP mode, set the RESET pin to a low level to protect the contents of RAM. Set the STOP pin to a low level to stop operation of the oscillation circuit. To release hardware STOP mode, apply the normal operating level ( +2.5 V to +6.0 V) to the power supply at the VDD pin. As figure 3 shows, set the STOP pin to a high level while holding the RESET pin at a low level. This will restart the oscillation circuit. When RESET is set high after oscillation circuit operation is stabilized, the program is started from address OOOH. Because the STOP pin controls oscillator operation, be careful to protect the STOP pin from noise. When power is turned on, or when STOP mode is released, the oscillation circuit restarts. Because the crystal or ceramic resonator utilizes mechanical vibration, a certain time is required for the oscillation to stabilize. The "t" represents the oscillation stabilizing wait time in the timing waveform. During this wait time, it is necessary to stop instruction execution in order to prevent CPU errors, Therefore, "t" must be longer than the oscillator's stabilizing time. Figure 3. Oscillator Stop and Start Oscillation Start 4-r '---------'t 'r R'''~ STOP 4iH)()()566A NEe ~PD80C39H'49H,~PD49H Oscillation stabilizing time differs somewhat by the type of oscillator used. With a 6 MHz oscillation frequency, a crystal resonator needs several milliseconds to stabilize, while a ceramic resonator needs several hundred microseconds. Figure 4 shows how to easily control the hardware STOP mode by externally connecting a capacitor to the RESET pin. This allows control of the oscillation stabilizing time. Figure 4. Hardware STOP Mode Control Circuit + External - Capacitor -----~---<>< I - - - - - ¢ STOP 49-000567A Software STOP Mode In software STOP mode, the oscillation circuits stop, but the CPU maintains all status of internal circuits and data existing just before the STOP instruction. Software STOP mode is the same as when the oscillation circuit stops in HALT mode. causes SS to go to a high level. Then, program execution restarts. The time it takes for SS to reach the threshold of a logic 1 determines the oscillation stabilizing wait time. After software STOP mode is released, if interrupts are disabled as in the HALT mode, program execution is resumed from the instruction following the STOP instruction. If interrupts are enabled, the interrupt procedure is initiated (address 003H) after the execution of 1 instruction following the STOP instruction. To assure the interrupt, hold INT at a low level until the interrupt procedure is initiated. Even with short low level timing, the interrupt procedure will be assured if you place a 1-machine cycle instruction afterthe STOP instruction. However, it is recommended that you hold INT low for at least 2 machine cycles. When using the RESET input, a low level at the RESET pin resets the software STOP flip-flop. The oscillator starts and the SS pin goes to a high level as Css is charged. The program starts from address OOOH when RESET goes high. Also, since..!!!,e oscillation stabilizing wait time is generated when SS is low, the RESET pin should be held low longer than the SS pin. When the oscillation stabilizing wait time is obtained by the externally connected capacitor, the value of the capacitor (CRST) connected to the RESET pin (figure 4) should be set at least 3 times larger than that of capacitor CSS connected to the SS pin. For example, if Css is set to O.33/-lF, CRST should be 1/-lF. When no capacitor is connected to the SS pin, the low level time of the RESET pin should be set to a value larger than the oscillation stabilizing time and SS should be open or pulled up with a 1 k or more resistor. In software STOP mode, if a capacitor (Css) is connected to the SS pin as shown in figure 5, you can obtain the oscillation stabilizing wait time when releasing STOP mode. Setting Software STOP Mode. To set software STOP mode, execute the STOP instruction. This sets the internal software STOP mode flip-flop which stops the oscillator and turns transistors A and B off and on, respectively. Capacitor Css discharges through transistor B causing the SS pin to go low. Releasing Software STOP Mode. To release software STOP mode, apply an INT or RESET input. When using the INT input (figure 6), a low at the INT pin resets the software STOP flip-flop and turns transistors A and B on and off, respectively. Then the oscillator restarts, but since SS is still low, program execution remains stopped. With transistor A on, Css charges and 4-261 II ~ NEe ~PD80C39HI49H,~PD49H Figure 5. Software STOP Mode Control Circuit Figure 6. Software STOP Mode Timing 55---"" Software STOPF/F ffiff------~------_f!~----~ r---+---------- Execution of STOP Instruction Oscillation Stabilizing Wait Time 49-000569A "Execution of instruction 4-262 49-OOO568A Instruction Set Mnemonic Operation Description ADD A, # data (A) - Add immediate the specified data to the accumulator. (2) ADDA, Rr (A) - (A) + (Rr) for r = 0-7 ADDA, @Rr Hex Code Operation Code D7 De Ds D4 D3 D2 D1 Do 03 0 dl 0 d6 0 d5 0 d4 0 d3 0 d2 1 d1 1 do Add contents of designated register to the accumulator.(2) 6n(4) 0 1 1 0 1 (A) - (A) + ((Rr)) for r = 0-1 Add indirect the contents the data memory location to the accumulator.(2) 6n(4) 0 0 0 0 0 ADDC A, # data (A) - Add immediate with carry the specified data to the accumulator. (2) 13 0 dl 0 d5 1 d4 0 d3 0 d2 1 d1 ADDC A, Rr (A) - (A) + (C) + (Rr) for r = 0-7 Add with carry the contents of the designated register to the accumulator.(2) 7n(4) 0 1 1 1 ADDCA,@Rr (A) - (A) + (C) + ((Rr)) for r = 0-1 Add indirect with carry the contents of data memory location to the accumulator. (2) 7n(4) 0 0 0 0 ANLA, # data (A) - Logical AND specified immediate data with accumulator. 53 0 dl 1 d6 0 d5 1 d4 0 d3 0 d2 1 d1 ANLA, Rr (A) - (A) AND (Rr) for r = 0-7 Logical AND contents of designated register with accumulator. 5n(4) 0 1 0 1 1 ANLA, @Rr (A) - (A) AND ((Rr)) forr = 0-1 Logical AND indirect the contents of data memory with accumulator. 5n(4) Accumulator (A) + data (A) + (C) + data (A) AND data CPLA (A) -NOT(A) Complement the contents of the accumulator. 37 0 0 (A)-O Clear the contents of the accumulator. 27 0 0 1 Decimal adjust the contents of the accumulator. (2) 57 0 1 0 DECA (A)-(A)-1 Decrement by 1the accumulator's contents. 07 0 0 0 0 1 0 0 0 1 do 0 ,.a 1= (A)-(A)+1 Increment by 1the accumulator's contents. 17 0 0 0 1 0 1 (A) - (A) OR data Logical OR specified immediate data with accumulator. 43 0 dl 1 d6 0 d5 0 d4 0 d3 0 d2 1 d1 ORLA, Rr (A) - (A) OR (Rr) for r Logical OR contents of designated register with accumulator. 4n(4) 0 1 0 0 1 ORLA, @Rr (A) - (A) OR ((Rr)) for r = 0-1 Logical OR indirect the contents of data memory location with accumulator. 4n(4) 0 0 0 0 0 0 RLA (AN +1) - (AN) (Ao) - (Al) for N = 0-6 Rotate accumulator left by 1 bit without carry. E7 0 0 RLCA (AN + 1) - (AN); N = 0-6 (Ao)-(C) (C)-(Al) Rotate accumulator left by 1 bit through carry. F7 (AN) - (AN + 1); N = 0-6 (Al) -(Ao) Rotate accumulator right by 1 bit without carry. 0 ~ ~ 1 do 0 INCA = 0-7 Bytes 0 ORLA, # data RRA I I\) 0 CLRA DAA ~ 0 d6 Cycles 1 1 do CD 0 n W CD ....:z ~ CD ..:z ,.a 1= 77 0 0 ~ CD :z (J) (,.) I!I ~ I\J Instruction Set (cont) 1: (J) ~ Operation Code Hex Code D7 67 0 Operation Description (AN) - (AN + 1); N = 0-6 (A7)-(C) (C)-(Aa) Rotate accumulator right by 1 bit through carry. SWAP A (A4-A7)-- (Aa-A3) Swap the 2 4-bit nibbles in the accumulator. 47 0 XRL A, # data (A) - Logical XOR specified immediate data with accumulator. D3 1 d7 XRLA, Rr (A) - (A) XOR (Rr) for r = 0-7 Logical XOR contents of deSignated register with accumulator. Dn(4) 1 XRLA, @Rr (A) - (A) XOR ((Rr)) for r = 0-1 Logical XOR indirect the contents of data memory location with accumulator. Dn(4) (Rr) - (Rr) - 1; r = 0-7 If (Rr) "'0; (PCa-PC7) - addr Decrement the specified register and test contents. (PCa-PC7) - addr if Bb = 1 (PC) - (PC) + 2 if Bb = 0 Jump to specified address if accumulator bit is set. (PCa-PC7) - addr if C = 1 (PC) - (PC) + 2 if C = 0 Jump to specified address if carry flag is set. (PCa-PC7) - addr if FO = 1 (PC) - (PC) + 2 if FO = 0 Jump to specified address if flag FO is set. (PCa-PC7) - addr if F1 = 1 (PC) - (PC) + 2 if F1 = 0 Jump to specified address ifflag F1 is set. Mnemonic De D5 D4 D3 0 0 D2 D1 Do Cycles Bytes Accumulator (cont) RRCA (A) XOR data JBb addr JC addr JFO addr JF1 addr JMP addr W CG 0 0 0 1 d6' 0 d5 1 d4 0 d3 1 0 1 1 0 ... ." ....Z 0 d2 1 d1 1 da CG Z 1: 0 0 0 a3 r a2 r a1 r aa 0 CG (PCs-PC1a) - (addrs-addr1a) Direct jump to specified address within the 2K address block. (PCa-PC7) - (addra-addr7) (PC11) -DBF JMPP@A (PCa-PC7) - JNC addr (PCa-PC7) - addr if C = 0 (PC) - (PC) + 2 if C = 1 JNI addr JNT1 addr JNZ addr ((A)) - addr if I = 0 (PC) + 2 if I = 1 (PCa~PC7) (PC) JNTO addr 0 CD 0 n Branch DJNZ Rr, addr " En x2(6) 76 x4(6) B3 E6 Jump to specified address if test 0 is low. (PCa-PC7)- addr ifT1 = 0 (PC) - (PC) + 2 ifT1 = 1 Jump to specified address if test 1 is low. (PCa-PC7) - addr if A '" 0 (PC) - (PC) + 2 if A = 0 Jump to specified address if accumulator is non-zero. a5 b2 a7 b1 a6 ba a5 a4 0 a3 0 a2 a1 0 aa a7 a6 a5 a4 0 a3 a2 a1 0 aa a7 0 a6 a5 1 a4 0 a3 1 a2 a1 0 aa 0 a7 a6 1 a5 a4 0 a3 a2 a1 0 aa a1Q a7 ag a6 as a5 0 a4 0 a3 a2 0 a1 0 aa 0 0 0 a3 a2 a1 0 aa B6 Jump to specified address if carry flag is low. (PCa-PC7) - addr if TO = 0 (PC) - (PC) + 2 if TO = 1 a6 F6 Jump indirect to specified address with address page. Jump to specified address if interrupt is low. a7 0 a4 0 a7 a6 a5 0 a4 a7 0 a6 0 a5 0 a4 0 a3 a2 a1 0 aa 0 a7 0 a6 a5 0 a4 0 a3 1 a2 a1 0 aa 0 a7 a6 0 a5 0 a4 0 a3 a2 a1 0 aa a7 0 a6 0 a5 1 a4 ' 0 a3 1 a2 a1 0 aa 86 26 46 96 Z 2 2· ~ ~ Instruction Set (cont) Hex Code Operation Description JTF addr (PCa-PC7) - addr if TF = 1 (PC) - (PC) + 2 ifTF = 0 Jump to specified address if timer flag is set to 1. 16 JTO addr (PCa-PC7) - addr if TO = 1 (PC) - (PC) + 2 if TO = 0 Jump to specified address if test 0 is a 1. 36 (PCa-PC7) - addr ifT1 = 1 (PC) - (PC) + 2 ifT1 = 0 Jump to specified address if test 1 is a 1. (PCa-PC7) - addr if A = a (PC) - (PC) + 2 if A = 1 Jump to specified address if accumulator is O. Mnemonic Operation Code D7 De Ds D4 Da D2 D1 Do 0 a7 0 a5 a4 0 a3 a6 0 a7 a2 a1 aO 0 a6 a5 1 a4 0 a3 1 a2 a1 ao 0 a7 a6 0 a5 a4 0 a3 a2 a1 ao a7 1 a6 a5 0 a4 0 a3 a2 a1 ao 0 0 0 a 0 0 0 0 a 0 0 Branch (cont) JT1 addr JZ addr 56 C6 a Cycles Bytes ~~ Control EN I Enable the external interrput input. 05 DIS I Disable the external interrupt input. 15 0 ENTO ClK Enable the clock output pin TO. 75 0 SEl MBO (DBF) -0 Select bank 0 (locations 0-2047) of program memory. E5 SEl MB1 (DBF)-1 Select bank 1(locations 2048-4095) of program memory. F5 SEl RBO (BS)-O Select bank 0 (locations 0-7) of data memory. C5 SEl RB1 (BS)-1 0 Select bank 1 (locations 24-31) of data memory. D5 HALT Initiates halt mode. 01 0 STOP Sets CPU to software stop mode. 82 0 Move immediate the specified data into the accumulator. 23 1 0 0 0 a a 0 0 0 0 0 0 a 0 0 d3 0 d2 0 0 0 Data Moves MOV A, # data MOV A, Rr (A) -data (A) - .j:>. = 0-7 MOVA,@Rr (A) - MOVA, PSW (A)-(PSW) MOV Rr, # data (Rr) - data; r MOV Rr, A (Rr) - (A); r MOV@Rr,A ((Rr)) - MOV @ Rr, # data ((Rr)) - I I\) (Rr); r MOV PSW, A ((Rr)); r = 0-1 = 0-7 = 0-7 (A); r = 0-1 data; r = 0-1 (PSW)-(A) Move the contents of the designated registers into the accumulator. Fn(4) Move indirect the contents of data memory location into the accumulator. Fn(4) 0 d7 0 d6 1 d5 0 d4 1 1 1 1 1 d1 1 da 1:: '11 D CD 0 0 Move contents of the program status word into the accumulator. C7 Move immediate the specified data into the designated register. Bn(4) 1 d7 Move accumulator contents into the designated register. An(4) 1 Move indirect accumulator contents into data memory location. An(4) Move immediate the specified data into data memory. Bn(4) Move contents of accumulator into the program status word. D7 0 0 0 0 d6 1 d5 1 d4 1 d3 0 1 0 1 0 0 0 n 0 W CD r d2 r d1 0 0 0 a 1 d7 0 d6 1 d5 1 d4 0 d3 0 d2 d1 1 1 0 1 0 1 1 r do :z .... ~ CD ..:z r do 1:: '11 D ~ CD :z 0> (]I I!I .J:>. I Instruction Set (cont) 1:: N 0> 0> Mnemonic Operation Description Hex Code Operation Code D7 De Ds D4 D3 D2 D1 Do MOVPA, @A (PCO-PC7) - (A) (A)-((PC)) Move data in the current page into the accumulator. A3 MOVP3A,@A (PCO-PC7) - (A) (PCa-PC11) - 0011 (A)-((PC)) Move program data in page 3 into the accumulator. E3 MOVXA, @R (A) - MOVX@R,A ((Rr)) - XCH A, Rr (A)- (Rr): r XCHDA,@Rr Bytes "C Q) 0 Data Moves (cont) XCH A,@Rr Cycles 0 ((Rr)): r = 0-1 Move indirect the contents of external data memory into the accumulator. 8n(4) 0 (A): r = 0-1 Move indirect the contents of the accumulator into external data memory. 9n(4) 0 = 0-7 (A)- ((Rr)): r = 0-1 Exchange the accumulator and designated register's contents. 2n(4) Exchange indirect contents of accumulator and location in data memory. 2n(4) (Ao-A3)- ((Rr))o-((Rr)l3: r = 0-1 Exchange indirect 4-bit contents of accumulator and data memory. 3n(4) 0 0 0 n 0 0 0 0 Q 0 0 0 0 0 0 0 0 W CD :I: ..... ,. 1:: ,." C 0 0 1 0 0 0 0 0 0 0 0 0 CD ..:I: CD :I: Flags CPLC (C) -NOT(C) Complement contents of carry bit. A7 0 CPL FO (FO) - NOT (FO) Complement contents of flag FO. 95 0 CPL F1 (F1) - NOT (F1) Complement contents of flag F1. 85 0 0 0 0 1 0 0 0 0 CLR C (C)-O Clear contents of carry bit to O. 97 0 0 0 1 CLR FO (FO)-O Clear contents of flag 0 to O. 85 0 0 0 0 CLR F1 (F1)-0 Clear contents of flag 1to O. A5 0 0 0 0 Logical AND immediate specified data with contents of bus. 98 Input! Output (bus) AND data d7 0 d6 0 d5 d4 1 d3 0 d2 0 d1 do 9n(5) 1 d7 0 d6 0 d5 1 d4 1 d3 0 d2 P d1 P do Logical AND contents of accumulator with deSignated port (4-7). 9n(5) 1 0 0 1 1 1 P P Input data from designated port (1-2) into accumulator. On(5) 0 0 0 0 0 08 0 0 0 0 0 0 0 On(5) 0 0 0 0 ANL BUS, # data (bus) - ANL Pp, # data (Pp) - (Pp) AND data p = 1-2 Logical AND immediate specified data with designated port (1 or 2). ANLD Pp, A (Pp) .,- (Pp) AND (Ao-A3): P = 4-7 (Pp): p = 1-2 IN A, Pp (A) - INS A, BUS (A) -(bus) MOVD A, Pp (Ao-A3) (A4-A7) - (Pp): p = 4-7 0 Input strobed bus data into accumulator. Move contents of designated port (4-7) into accumulator. ~ n Instruction Set (cont) Mnemonic Operation Description Hex Code Move contents of accumulator to designated port (4-7). 3n(5) Operation Code D7 D6 Ds D4 D3 D2 D1 Do 0 d1 0 do Inputl Output (cont) MOVD Pp, A (Pp) - ORl BUS, (bus) - (AO-A3); p = 4-7 (bus) OR data logical OR immediate specified data with contents of bus. 0 88 1 d7 0 d6 0 d5 0 d4 1 d3 0 d2 # data ORlD Pp, A (Pp) - (Pp) OR (Ao-A3); P = 4-7 logical OR contents of accumulator with designated port (4-7). 8n(5) 1 0 0 0 1 1 ORl Pp, (Pp) - (Pp) OR data p = 1-2 logical OR immediate specified data with designated port (1-2). 9n(5) # data 1 d7 0 d6 0 d5 0 d4 1 d3 0 d2 P d1 P do OUTl BUS, A (bus) -(A) Output contents of accumulator onto bus. 0 0 0 0 1 0 1 0 0 a1 ao (Pp) - (A); P = 1-2 DEC Rr (Rr) - (Rr) - 1; r INC Rr (Rr) - (Rr) + 1; r INC@Rr ((Rr))-((Rr)) +1; r = 0-1 OUTl Pp,A 02 0 0 Output contents of accumulator to designated port (1-2). 3n(5) 0 0 Decrement by 1 contents of designated register. Cn(4) Increment by 1 contents of designated register. 1n(4) 0 0 Increment indirect by 1the contents of data memory location. 1n(4) Cycles Bytes ~ ~ P Registers = 0-7 = 0-7 1 0 0 0 ag a6 a8 a5 0 Subroutine CAlladdr x4(6) ((SP)) - (PC), (PSW4-PSW7) Call designated subroutine. (SP) - (SP) + 1 (PC8-PC10) - (addr8-addr10) (PCO-PC7) - (addro-addr7) (PC11) - DBF RET (SP) - (SP) - 1 (PC) -((SP)) Return from subroutine without restoring program status word. 83 RETR (SP) - (SP) - 1 (PC) - ((SP)) (PSW4-PSW7) - ((SP)) Return from subroutine restoring program status word. 93 a10 a7 a4 0 a3 0 a2 0 1: "a 0 Q) 0 n Timer I Counter W EN TCNTI Enable internal interrupt flag for timer I counter output. 25 DIS TCNTI Disable internal interrupt flag for timer / counter output. 35 0 0 0 0 0 0 1 MOVA, T (A)-(T) Move contents of timer I counter into accumulator. 42 0 0 0 0 0 MOVT, A (T)-(A) Move contents of accumulator into timer / counter. 62 0 1 0 0 0 STOP TCNT Stop count for event counter. 65 0 0 0 STRTCNT Start count for event counter. 45 0 STRTT Start count for timer. 55 0 ~ 0 0 0 0 CD ....:z: ~ CD 0 ..:z: 1: "a ~ CD I I\) :z: en ....... I! ~ N 0> 1:: Instruction Set (cont) 00 Mnemonic Operation Description Operation Code Hex Code D7 D6 D5 00 0 0 0 D4 D3 D2 D1 Do 0 0 0 0 Cycles Bytes Misce"aneous NOP No operation performed. "oI:» C» n w U) Note: (1) Binary instruction code designations rand p represent encoded values or the lowest-order bit value of specified registers and ports, respectively. (2) Execution of the ADD, ADDC, and DA instructions affect the carry flags, which are not shown in the respective function equations. These instructions set the carry flags when there is an overflow in the accumulator (the auxiliary carry flag is set when there is an overflow of bit 3 of the accumulator) and clear the carry flags when there is no overflow. Flags that are specifically addressed by flag instructions are shown in the function equations for those instructions. (3) References to addresses and data are specified in byte 1 and/or 2 in the opcode of the corresponding instruction. ....:z:.... CD ..:z: 1:: "....I:» (4) The hex value of n for specific registers is as follows: a) Direct addressing R4:n = C R6:n = E RO: n = 8 R2: n = A R1: n = 9 R3: n = B R5: n = D R7: n = F b) Indirect addressing @ RO: n = 0 @ R1: n = 1 CD :z: (5) The hex value of n for specific ports is as follows: Pt n = 9 P4: n = C P6: n = E P2: n = A P5: n = D P7: n = E (6) The hex value of x for specific accumulator or address bits is as follows: a) JBb instruction B4 :x = 9 Bo: x = 1 B2: x = 5 D B6:X B7 :x = F B1: x = 3 B3: x = 7 B5:x = B b)JMP instruction Page 4: x = 8 Page 0: x = 0 Page 2: x = 4 Page 6: x C Page 3: x = 6 Page 1: x = 2 Page7:x = E Page 5: x = A c) CALL instruction Page 0: x = 1 Page 2: x = 5 Page 4: x = 9 Page 6: x = D Page t x = 3 Page 3: x = 7 Page 5: x = B Page 7: x = F = = ~ ~ NEe ~PD80C39HI49H,~PD49H Symbol Definitions Symbol Description Symbol Description A Accumulator SP AC Auxiliary carry flag T Timer Program memory address (ao-a?) or (aO-a10) TF Timer flag addr Accumulator bit (b=0-7) BS TO, T1 Stack pOinter Testable flags 0, 1 Bank switch # Prefix for immediate data BUS Bus port @ Prefix for indirect address C Carry flag ClK Clock signal CNT Event counter data Number or expression (8 bits) DBF Memory bank flip-flop Indicates the hex number corresponding to the accumulator bit or page number specified in the operand (x) Contents of external RAM location ((x)) Contents of memory location addressed by the contents of external RAM location FO, F1 Flags 0,1 INT Interrupt AND logical product (logical AND) Indicates the hex number of the specified register or port OR logical sum (logical OR) PC Program counter Pp Port designator (p = 1, 2 or 4-7) PSW Rr Replaced by XOR Exclusive-OR Complement Program status word Register designator (r = 0-7) 4-269 ~PD80C39H/49H,~PD49H 4-270 NEe NEe NEe Electronics Inc. pPD80C40H/50H,pPD50H HIGH-SPEED, 8-BIT, SINGLE-CHIP CMOS MICROCOMPUTERS Pin Configurations Description The J.lPD80C40H, J.lPD80C50H, and J.lPD50H are singlechip, CMOS 8-bit microcomputers containing an 8-bit CPU, ROM (J.lPD80C50H only), RAM, I/O ports, and control circuitry. Through CMOS technology, the devices can retain data with low power consumption. In addition, the processor uses two standby modes (HALT and STOP) to further minimize power drain. 40-Pin Plastic DIP TO XTAL1 XTAl2 RESET 55 Features o o o o o o o o o o o o o o o o o o EA AD 98 instructions 1.25 J.ls instruction cycle time (12 M Hz crystal) Addition, logic, and decimal adjust functions 2K x 8-bit ROM (J.lPD80C50H) 256 x 8-bit RAM Standby function 8-1 eve I stack Two sets of working registers Interrupt capability Two test inputs Internal timer/event counter Input/output ports (8 bits x 2) - Data bus alternative to I/O ports (8 bits x 1) Expandable memory and I/O ports Single-step function Internal clock generator CMOS technology Single power supply of +2.5 V to +6.0V Inte18050H,8040H pin compatible PSEN 49-00047BA 44-Pin Plastic Miniflat STOP Ordering Information Part Number Package Type DB2 P11 ROM pPD80C40HC 40-pin plastic DIP 12 MHz None pPD80C50HC 40-pin plastic DIP 12 MHz 2K x 8 bits pPD50HG-22 44-pin plastic 12 MHz 2K x 8 bits miniflat DB3 0 P10 Max Frequency of Operation P1s DB1 P12 DBo P13 ALE P1s ViR i>SEN NC RD P14 pPD50HG P16 EA P17 iNT 55 P24 13 0 z 19 16 ~ '" ~ ... «...'" « ~ ~ >< >< 22 0 Z Ii 83-002790A 4-271 NEe pPD80C40H/50H,pPD50H Pin Functions Pin Identification Symbol Function TO Test 0 input / clock output XTAL1 Crystal 1input XTAL2 Crystal 2 input RESET Reset input SS Single step input INT Interrupt input EA External access input RD Read output PSEN Program store enable output WR Write output ALE Address latch enable output DBO-DB? Bidirectional data bus Vss Ground P20-P2? Quasi-bidirectional port 2 XTAL1, XTAL2 (Crystals 1, 2) XTAl1 and XTAl2 are the crystal inputs for the internal clock oscillator. XTAl1 is also used as an input for external clock signals. TO (Test 0) The JTO and JNTO instructions test the levelof TO and, as a result, the program address jumps to the specified address. TO becomes a clock output when the ENTO ClK instruction is executed. T1 (Test 1) The JT1 and J NT1 instructions test the level of T1 and, as a result, the program address jumps to the specified address. T1 becomes an internal counter input when the STRT CNT instruction is executed. PROG Program output RESET (Reset) STOP Stop input P10-P1? Quasi-bidirectional port 1 T1 Test 1input Voo Power supply RESET initializes the processor and is also used to verify the internal ROM. RESET determines the oscillation stabilizing time during the release of STOP mode. The RESET pulse width requires at least 5 machine cycles when the supply voltage is within specifications and the oscillation frequency is stable. (Active low). 4-272 NEe pPD80C40H/50H,pPD50H SS (Single Step) DBO-DB7 (Data Bus) SS causes the processor to execute the program one step at a time. SS also determines the oscillation stabilizing time during the release of the software STOP mode. DBa-DB? is a bidirectional port. DBa-DB? reads and writes data using RD and WR for latching. During an external program memory fetch, DBa-DB? output the loworder eight bits of the memory address. PSEN fetches the instruction. DBa-DB? also output the address of an external data memory fetch. The addressed data is read and written by RD and WR. INT (Interrupt) INT starts an interrupt if interrupts are enabled. A reset disables an interrupt. INT can be tested with the JNI instruction and, depending on the results, a jump to the specified address can occur. P10-P17 (Port 1) P10-P1? is an 8-bit quasi-bidirectional port. EA (External Access) P20-P27 (Port 2) EA disables internal program memory and fetches and accesses external program memory. EA is used for system testing and debugging. (Active high). P20-P2? is an 8-bit quasi-bidirectional port. P20-P23 output the high-order four bits of the address during an external program memory fetch. P20-P23 also function as a 4-bit 110 bus for the f.tPD82C43 110 port expander. RD(Read) RD enables a data read from external memory. (Active low). PROG (Program Pulse) PROG is used as an output pulse during a fetch when interfacing with the J.lPD82C43 1/0 port expander. WR(Write) WR enables a data write to external memory. PSEN (Program Store Enable) PSEN fetches instructions only from external program memory. (Active low). STOP (Stop) STOP controls the hardware STOP mode. STOP stops the oscillator when active low. Voo (Power Supply) VDD is the positive power supply ( +2.5 V to +6.0 V). ALE (Address Latch Enable) ALE occurs at each cycle. The falling edge of ALE addresses external data memory or external program memory. ALE can also be used as a clock output. Vss (Ground) Vss is ground potential. 4-273 NEe pPD80C40H/50H,pPD50H Block Diagram Data Memory 256 x 8 RAM XTALI Register 0-7 8 - Level Stack (Variable Length) XTAL2 Optional Second Register Bank Data Store ALE EA PROG 1-----T1 Power Supply { Vee - +2.5-+6.0V Vss - GND 49·0004796 Absolute Maximum Ratings DC Characteristics TA=25°C Power supply voltage, lJoo Vss -0.3Vto +7V Input voltage, VI Vss -0.3VtoVoo +0.3V Output voltage, Vo Vss - 0.3 V to Voo +0.3 V Operating temperature, TOPT Storage temperature, TSTG Comment: Exposing the device to stresses above those listed in Absolute Maximum Ratings could cause permanent damage. The device is not meant to be operated under conditions outside the limits. described in the operational sections of the specification. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. 4-274 Standard Voltage Range TA= -400Cto +85°C, VOD= +5V±10%, VSS=OV Limits Parameter Symbol Min Typ Max Unit Test Conditions Input voltage low VIL -0.3 +0.8 V Input voltage high VIH Voo-2 Voo V Except XTAL1, XTAL2, RESET, SS VIH1 Voo-1 Voo V RESET, XTAL1, XTAL2, SS +0.45 V 10L =2.0 mA Output voltage low VOL Output voltage high VOH 2.4 V Bus, RD, WR, PSEN, ALE, PROG, TO; 10H= -400/AA VOH1(1) 2.4 V 10H = - 5 /AA (type 0) port 1, port 2 2.4 V 10H= -50/AA (type 1) port 1, port 2 NEe pPD80C40H/SOH,pPD50H DC Characteristics (cont) Extended Voltage Range (cant) TA= -40°cto +85°c,Voo= +2.5Vto +6.0V,Vss=ov Standard Voltage Range (cant) Limits TA= -40°cto +85°c, Voo= +5V±10%, Vss=OV Parameter Limits Parameter Input current Symbol Min IILP(1) Typ Max Unit -15 -40 /1 A IILC -500 J.lA -40 /1 A Test Conditions Port 1, port 2; VIL (type 0) VI~ Port 1, port 2; VIL (type 1) VI~ SS, RESET; Output leakage current ±1 IU1 ±3 J.lA EA; VSS~VI~VOO ILO ±1 J.lA VSs~Vo~VOO High impedance, bus, TO(3) Unit IU1 ±1 J.lA 1U2 ±5 J.lA EA; VSS~VI~VOO ILO ±1 J.lA VSs~Vo~VOO 1.5 6 100 VOOOR 3.0 mA tCy=1.25J.ls 20 J.lA (2) 18 mA tCy=1.25/1s 2.0 V T1, INT, STOP; VSS~VI~VOO High impedance, bus, TO (3) 0.3 0.6 mA Voo=3V; tCY= 5 J.ls 2.0 4.0 mA Voo=6V tCy=1.25J.ls 20 J.lA (2);Voo=3V 50 J.lA Voo=6V 2.0 5.0 mA Voo=3V; tCY= 5/1s 10 20 mA Voo=6V; tCy=1.25J.ls 1002(5) Supply current Test Conditions Max T1, INT, STOP; 1U2 1002(5) Data retention voltage Typ VSS~VI~VOO Standby current 1001(4) Supply current (total) J.lA Output leakage current Min Standby current 1001(4) VI~VIL Input leakage current Input leakage current Symbol 100 Note: At hardware STOP mode (STOP, RESET ~ 0.4 V) or RESET (RESET~O.4 V) (1) Types 0, 1, and 2 options can be specified for IJPD80C50H. Type 0 for IJPD80C40H only. E (2) Input pin voltage is VI~VIL orVI~VIH' (3) Includes port 1and port 2 pins optionally specified with type 2. (4) HALT mode. (5) STOP mode. Extended Voltage Range AC Characteristics TA = -400cto +85°c, Voo = +2.5Vto +6.0 V, Vss=OV Limits Parameter Symbol Input voltage low VIL Input voltage high VIH VIH1 Output voltage low VOL Output voltage high VOH Input current Min Typ -0.3 Max Unit TA= -40°C to +85°c, Vss=OV Limits Test Conditions +0.18Voo V 0. 7V OO VOO 0. 8V OO V VOO V +0.45 V 0. 75V oo V Except XTAL1, XTAL2, RESET, SS RESET, XTAL1, XTAL2, SS IOL=1.0mA Bus, RD, WR, PSEN, ALE, PROG, TO; 10H= -100J.lA VDD= t5V±100f0 VDD= 2.5Vto&.OV Min Parameter Symbol Min Max Cycle time 150 Max Test Unit Conditions tCY 1.25 ALE pulse width tLL 125 995 J.ls (1) Address setup before ALE tAL 140 890 ns (1) Address hold from ALE tLA 45 295 ns (1) Control pulse width (RD, WR) tCC1 425 2300 ns (1) 150 J.ls VOH1(1) O.7VOO V 10H = -1 J.lA (type 0) port 1, port 2 Control pulse width (PSEN) tCC2 300 1800 ns (1) 0. 7V OO V 10H = -10 J.lA (type 1) port 1, port 2 Data setup beforeWR tow 340 1965 ns (1) -40 J.lA Port 1, port 2; VIL (type 0) VI~ Data hold after WR two 45 295 ns (2) -500 J.lA Port 1, port 2; VIL (type 1) VI~ Data hold after RD, PSEN tOR 95 470 ns (1) -40 /1 A SS, RESET; RD to data in tR01 300 1800 ns (1) IILP(1) IILC -15 VI~ VIL 4-275 t\'EC pPD80C40H/SOH, pPDSOH AC Characteristics (cont) Note: TA = - 40°C to +85°C, VSS =OV Limits VDD= +5V:!:10% Parameter Symbol PSEN to data in tRD2 Address setup beforeWR tAW Address setup before data in (RD) tAD1 Address setup before data in (PSEN) tAD2 Address float to RD, WR tAFC1 Address float to PSEN tAFC2 Min Max VDD= 2.5Vto6.0V Min 175 Max 1300 1850 350 Test Unit Conditions ns (1) ns (1) (1) (2) (3) (4) (5) Control output: CL = 80 pF, bus output: CL = 150 pF CL=20pF Control output: CL = 80 pF At execution of MOVD A, Ppinstruction At execution of MOVO Pp, A; ANlO Pp, A; ORlO Pp, A instructions AC Timing Test Points (Except RESET, XTAL 1, XTAL2, SS) (a) Voo= +S,OV±10% ==x:::::=V oo -2 700 (1) 3585 0,8 2750 500 ns (1) 600 ns O,7V oo Test Points O,18V oo (1) -c:::::::X== O,18V oo 49,OOO492A 125 ns (1) Timing Waveforms 175 925 ns (1) ALE to control signal (PSEN) 50 425 ns (1) Control signal tCA1 (RD, WR, PROG) toALE 35 285 ns (1) ALE Control signal (PSEN) to ALE tCA2 280 1285 ns (1) PSEN Port control setup before falling edge of PROG tcp 85 460 ns (3) ns (3,4) ns (3,5) ns (3) tLAFC2 0,8 O,7V oo ===x: ::::::=105 ~x== (b) voo= +2,Sto6,OV ALE to control tLAFC1 signal (RD, WR) Port control hold tpC1 0 Port control hold tpC2 after falling edge of PROG 135 80 0 200 1135 PROG to time P2 tpR input mustbe valid 585 Input data hold time tpF 125 Output data setup time tDP 350 Output data hold tpD time PROG pulse width 2715 Instruction Fetch (External Program Memory) Read (External Data Memory) ALE ns (3) 1850 ns (3) 75 450 ns (3) tpp 625 3250 ns (3) Port 2 I /0 data setup time tpL 135 1135 ns (3) Port 2 I / 0 data hold time tLP 125 ns (3) ALE to port output tpv ns (3) TO clock period tOPRR ns (3) 4-276 Voo -2 Test Points 500 AD tOR 475 250 1600 1000 Bus Floating NEe pPD80C40H/50H,pPD50H Bus Timing Requirements Timing Waveforms (cont) Symbol Write (External Data Memory) Timing Formula MiniMax Unit (7/30) tCY -170 Min ns (1/5) tCy-110 Min ns (1/15) tCy-40 Min ns (1/2) tCY- 200 Min ns (2/5) tCY- 200 Min ns (13/30) tCY - 200 Min ns (1/15)tCy-40 Min ns ALE tow two (1/10)tCy-30 Max ns (2/5)tCy-200 Max ns (3/10) tCy-200 Max ns (2/5)tCy-150 Min ns (23/30) tCY - 250 Max ns (3/5) tCy-250 Max ns (2/15) tCy-55 Min ns (1/30)tCy-40 Min ns tLAFC1 (1/5) tCy-75 Min ns tLAFC2 (1/10) tCy-75 Min ns tCA1 (1/15) tCY- 50 Min ns tCA2 (4/15) tCY- 50 Min ns tcp (1/10) tCy-40 Min ns (4/15) tCY- 200 Min ns (17/30) tCy-120 Max ns (1/10) tCY Max ns (2/ 5) tCy-150 Min ns tpo (1/10)tCy-50 Min ns tpp (7/10) tCY - 250 Min ns (4/15) tCY- 200 Min ns (1/30)tCy-40 Min ns (3/10) tCy+100 Max ns tOPRR (1/5) tCY Min ns tCY (11 fXTAL) x 15 tOR 49-000493A Port 2 Expansion Timing ALE Expander Port Output Expander Port Input PROG I/O Port Timing 2nd Cycle P24- P27-------------..I,...._____ P1g;rt~l Port 24-Port 27 Data, Port 10-Port 17 Data NewPort Data JAS 49-000494A 4-277 NEe pPD80C40H/SOH, pPDSOH Operating Characteristics IOH vs VOH IOHVS VOH -150 -800 -15,...----,------,-----,-----,...----, TA= 25°C Voo = 4.5V TA = 25°C Voo =4.5V ~ ;c i l: ~ .= JP :z: - 1 0 1 - - - - - 1 - - - - - - 1 - -....-------1-----+----1 -50 -51-----1------1--"'00.,.---1----'\.-------+----1 JP :z: -400 ~ -100 ~ .= ~ :::I 0 o 1 :; 1 :; 0 o C> ~ ~~o---~---~---~---~~L-~ Output Voltage High VOH1 IV] Output Voltage High VOH IV] IOH VS VOO -200 IOH vs VOO -20 / TA=25°C VOHI =2.4V ~ -150 -15 l: ~ 'i X - ~ -100 -10 o 1 :; o -50 -5 / / V -0.4 TA = 25°C VOH2 = Voo -0.5 V ~ l: ~ .= 01 X C -0.2 ~ 0 ! 5 0 2 Supply Voltage Voo IV] Supply Voltage Voo IV] IOL vs VOL IOL vs Voo TA = 25°C VOL = 0.45 V ;C ;C !. ... !. ... ~ ~ ! ~ .3 2 c ~ 2 § ,;" ,;" 0 :::I ", :; 0 I // ~ ./ 0 0 .. ~ ~ 0 1 0 2 Supply Voltage Voo IV] 4-278 0.5 Output Voltage Low VOL IV] 1.0 NEe pPD80C40H/50H,pPD50H Operating Characteristics (cont) IDD/IDD1 vs f 20 c TA=25°C Voo =5.5V IO~~ !. -- Q 5 c '2. E ... '"""" o 15. Co IOOTyp ... .-- ---- 1---- --- .... IO~ ... 1-- 1- .... 1 .-.-:::: ::::: ~ 1- - I... ci! j.. """ 10 0.5 t- IOO1Typ ~I-- j..i- 0.2~ 0.1 L-_ _ _...l-_--l._...l...---l.--L--L..l...-LL_ _ _--l._ _L---....J 0.5 0.1 0.2 0.2 0.1 0.2 0.5 10 ____--;;; __ 15 Oscillation Frequency I [MHz] [I = 15tCY] Supply Voltage Voo [V] Curves below 1 MHz show characteristics for external oscillation. Curves below 1 MHz show charecterlstlcs for external oscillation tPC1 Max [80C49H] and tACC Min [82C43] vs VDD tCY vs VDD 200 .. ! . 250 c 100 U 50 ~ >- .. . ~ J:} Operation Secured Area 20 E i= 10 E "::t:o g "il 0 Co ...... "" Supply Voltage Voo [V] . ~ i= i= 150 1: """~ TA = -40 10 +85°C 200 !- $ Ii 0 0 0 0 t;c '[ 100 ~ ~CMln IlPD.80C49H tPC1 Max ~ IlPD82C43 ~ r----.... .......... "S 0 ! i ...c:s ~ TA= 25°C \ c i i Q ~ 50 !CI o 1 " Supply Voltage Voo [V] Note: Curves without "operation secured area" show reference data. 4-279 IE NEe pPD80C40H/SOH,pPDSOH Functional Description Data Memory The ~PD80C40Hh1P080C50H has the following functional blocks: The ~P080C40H I ~P080C50H has 256 words x 8 bits of internal RAM for data memory. Data memory can be externally expanded 256 words maximum when needed. Instruction Decoder The instruction decoder stores the operation code of each instruction and converts it into outputs that control the functions of each blo.ck. These outputs control the functions executed by the ALU, data source, and specified registe"rs". RAM Address Register The RAM address register specifies the next address to be accessed in data memory. ' Program Status Word Arithmetic Logic Unit (ALU) . The PSW (figure 1) is an 8-bit status word containing the information shown in table 1. The ALU receives 8-bit data from the accumulator or temporary register and computes an 8-bit result under control of the instruction decoder. Figure 1. 7654 The ALU executes the following functions: • • • • • • • Add with carry or add without carry Logical AND, OR, XOR Increment and decrement Bit complement Rotate left and right Swap nibbles BCD decimal correction When a carry resu Its from ALU overflows, the carry bit of the program word is set. Accumulator The accumulator is an 8-bit register that stores ALU input data and arithmetic results. It can also be used for transferring data between I/O ports and memory. Temporary Register The temporary register is an 8-bit register used for the internal processing necessary with operations such as multiply or divide. The contents of the temporary register are input to the ALU. Program Status Word 210 I~I~I~I~I I I I Stack save possible CYCarry AC Auxiliary Carry FO Flag 0 BS Register Bank Select 1 I~I~I~I 1 I I Stack Pointer 49-000483A Table 1. Bits 0-2 PSW Bit Functions Stack pointer bits (SO-S2) A RESET clears th~ stack pointer to O. Bit3 Not used (1). Bit4 Working register bank switch bit (BS) 0= Bank 0 1=Bank 1 Bit5 Flag bit (FO). User-controlled bit that can be complemented, cleared, or tested by conditional jump instruction JFO. Bit6 Auxiliary Carry (AC) Generated by an auxiliary carry, ADD instruction. Can by used by decimal adjust instruction DA A. Bit 7 Carry flag (CY) Indicates that an accumulator overflow has taken place with the previously executed instruction. Program Counter The program counter is a 12-bit register that addresses on-chip program memory by specifying the address of the next instruction to be executed. Program Memory The ~PD80C50H contains a mask-programmable ROM of 4096 x 8 bits. Program memory can be addressed by a program counter. The ~PD80C40H has no internal ROM, so it uses external program memory. External program memory is accessed by OBo-OB7, P20-P23, and PSEN. 4-280 Conditional Branch Logic The conditional branch logic is used to test processor conditions. Use a conditional jump instruction to test the conditions shown in table 2. NEe Table 2. pPD80C40H/50H,pPD50H Branching Conditions Test Device Accumulator Figure 2. Timer/Event Counter Conditional Jump All a Not all a XTAL-c15 Accumulator bit Carry flag User flags (Fa, F1) Timer overflow flag Test inputs (TO, T1) a Interrupt input (INT) a Control Logic The control logic generates or receives the signals that control various functions including memory reads and writes, interrupts, software STOP mode, resets, and external memory fetches. Reset Functions A reset performs the following functions: • Clears the program counter and the stack pointer toO • Selects register bank and memory bank 0 • Sets the data bus in a high impedance state (except when EA is high) • Sets ports 1, 2 in input mode • Disables interrupts (timer and external) • Stops the timer • Clears the timer flag, FO, and F1 • Disables the clock output from TO • Releases HALT and STOP modes Timer I Event Counter The timer/event counter can count external events in order to generate a precise time delay. The counter operation is the same in both modes, the only difference is the input source. The counter is an 8-bit binary up counter (figure 2) that can be reset. It is possible to transfer the contents of the timer to the accumulator and vice-versa by using the MOV A, T and MOV T, A instructions, respectively. The contents of the counter can be independently initialized by the MOV T, A instruction. Use the STRT T instruction to use the counter as a timer and the STRT CNT instruction to use the counter as an event counter. Once the counter starts, it continues counting until the program executes a STOP TCNT instruction or RESET becomes active. The counter is incremented up to the maximum count (FFH) and overflows when the count goes from FFH to OOH. Event" Counter. When the T1 pin and counter input are connected by the execution of a STRT CNT instruction, the counter starts counting as an event counter. A change in T1 from high to low causes a count signal which increments the counter by +1. The maximum speed of a count increment is one count per 3 machine cycles. When a 12 MHz crystal is used, the maximum speed is 1 count per 3.75/As. There is no mimimum speed. After a count signal the T1 input must be held low at least 250 ns (at 12 MHz). Timer. When an internal clock is connected with the counter input by the execution of the STRT T instruction, the counter starts counting as a timer. When used as a machine cycle clock, ALE is passed through a prescaler which generates an internal clock that increments the timer every 32 machine cycles. The prescaler is reset during the execution of a STRT T instruction. With a 12 MHz crystal, the counter is incremented by +1 at each 25 kHz clock every 40 /As. You can obtain a delay from 40/As to 10 ms (256 counts) by presetting the counter and detecting the overflow. To obtain time, through software control, in excess of 10 ms, count overflows in a separate register. To count in steps of 40/As or less, an external clock can be supplied to the T1 input which causes the counter to operate in the event counter mode. Use the ALE frequency divided by 3 or more for the external clock. Use a software delay loop for fine adjustment of an extremely small or large delay. Ports 1 and 2 Latch and Buffer Ports 1 and 2 are 8"bit input/output ports. The data written to the port by an output instruction is latched and output and the data is maintained unless a new output instruction is executed. Input data is not latched, so it is necessary to stabilize input data when reading data by an input instruction. Several port-loading options are available. At the time you order a mask ROM, (JAPD80C50H), you can designate the pullup resistors for port lines P10-P17, P20-P23, and P24-P27. 4-281 I :.4 ttiEC pPD80C40H/50H, pPD50H Three types of pullup resistors are available: Type 0 (IOH= -5J.1A: VDD= +5V +10%) Type 1 Type 2 Nopullup resistor Only type 0 pullup resistors are available with the J.lPD80C40H. Timing Logic The oscillator generates a clock signal that controls all system timing operations. Oscillation is generated by either an external self-oscillating element or external clock input. The oscillator acts as an internal high-gain amplifier for serial resonance. To obtain the oscillation frequency, an external LC network or a crystal or ceramic external resonator may be connected. As the crystal frequency is lowered, there is an equivalent reduction in series resistance (R). As the temperature of the crystal is lowered, R is increased. Due to this relationship, it becomes difficult to stabilize oscillation where there is low power supply voltage. When Vee is less than 2.7 V and the oscillator frequency is 3 MHz or less, TA (ambient temperature) should not be less than -10°C. Standby Control The standby control circuitry allows low power consumption operation. The standby function operates in 2 modes: HALT and STOP. HALT Mode In HALT mode, the oscillation circuit continues to operate but the internal clock stops. The CPU holds all the status of the internal circuits just prior to execution of the HALT instruction. In HALT mode, power consumption is much less than normal. Setting HALT Mode. HALT mode is set by execution of the HALT instruction and released by either INT or RESET. If interrupts are disabled and INT becomes low at a machine cycle right before the HALT instruction and remains low during 2 machine cycles, the HALT instruction byte will be fetched. and decoded, but the HALT mode will not be set. Program operation resumes from the instruction following the HALT instruction. If interrupts are enabled under the same conditions as above, the HALT instruction byte will be fetched and decoded but the HALT mode will not be set and the program will jump to the interrupt start address. After returning from the interrupt routine, the program will continue from the instruction following the HALT instruction. 4-282 Releasing HALT Mode. Release HALT mode by activating INT or RESET. When using INT to release HALT mode, a low level is present at the INT pin and the internal clock is restarted. If interrupts are enabled, the interrupt is executed after the first instruction following the HALT instruction. In the interrupt enable state, hold the INT pin low until the interrupt procedure is started to ensure the interrupt. When using RESET to release HALT mode, a low level is present at the RESET pin and the HALT mode is reset and a normal reset operation is executed. When RESET goes to a high level, the program starts from address O. STOP Mode In STOP mode, the oscillator stops and only the contents of RAM are maintained. Power consumption is lower than that of the HALT mode. You can set the STOP mode with hardware, by controlling the RESET and STOP pins; and by software, by executing the corresponding instruction. Hardware STOP Mode In hardware STOP mode, the contents of RAM can be held at a voltage as low as +2.0 V. To set hardware STOP mode, set the RESET pin to alow level to protect the contents of RAM. Set the STOP pin to a low level to stop operation of the oscillation circuit. To release hardware STOP mode, apply the normal operating level ( +2.5 V to +6.0 V) to the power supply at the VDD pin. As figure 3 shows, set the STOP pin to a high level while holding the RESET pin at a low level. This will restart the oscillation circuit. When RESET is set high after oscillation circuit operation is stabilized, the program is started from addressOOOH. Because the STOP pin controls oscillator operation, be careful to protect the STOP pin from noise. When power is turned on, or when STOP mode is released, the oscillation circuit restarts. Because the crystal or ceramic resonator utilizes mechanical vibration, a certain time is reqUired for the oscillation to stabilize. The "t" represents the oscillation stabilizing wait time in the timing waveform. During this wait time, it is necessary to stop instruction execution in order to prevent CPU errors, Therefore, "t" must be longer than the oscillator's stabilizing time. Oscillation stabilizing time differs somewhat by the type of oscillator used. With a 6 MHz oscillation frequency, a crystal resonator needs several milliseconds to stabilize, while a ceramic resonator needs several hundred microseconds. Figure 4 shows how to easily NEe Figure 3. pPD80C40H/SOH,pPD5QH Oscillator Stop and Start A and B on and off, respectively. Then the oscillator restarts, but since SS is still low, program execution remains stopped. With transistor A on, Css charges and causes SS to go to a high level. Then, program execution restarts. The time it takes for SS to reach the threshold of a logic 1 determines the oscillation stabilizing wait time. Oscillation Start ""';~--------~,r tr STOP 49-000488A Figure 4. Hardware STOP Mode Control Circuit + External - Capacitor _ - -_ _---4_~ ~------Q STOP 49-000489A control the hardware STOP mode by externally connecting a capacitor to the RESET pin. This allows control of the oscillation stabilizing time. Software STOP Mode After software STOP mode is released, if interrupts are disabled as in the HALT mode, program execution is resumed from the instruction following the STOP instruction. If interrupts are enabled, the interrupt procedure is initiated (address 003H) after the execution of 1 instruction following the STOP instruction. To assure the interrupt, hold INT at a low level until the interrupt procedure is initiated. Even with short low level timing, the interrupt procedure will be assured if you place a 1-machine cycle instruction after the STOP instruction. However, it is recommended that you hold INT low for at least 2 machine cycles. When using the RESET input, a low level at the RESET pin resets the software STOP flip-flop. The oscillator starts and the SS pin goes to a high level as Css is charged. The program starts from address OOOH when RESET goes high. Also, since the oscillation stabilizing wait time is generated when SS is low, the RESET pin should be held low longer than the SS pin. When the oscillation stabilizing wait time is obtained by the externally connected capacitor, the value of the capacitor (CRST) connected to the RESET pin (figure 4) should be set at least 3 times larger than that of capacitor Css connected to the SS pin. For example, if Css is set to 0.33 J.AF, CRST should be 1J.AF. In software STOP mode, the oscillation circuits stop, but the CPU maintains all status of internal circuits and data existing just before the STOP instruction. Software STOP mode is the same as when the oscillation circuit stops in HALT mode. In software STOP mode, if a capacitor (Css) is connected to the SS pin as shown in figure 5, you can obtain the oscillation stabilizing wait time when releasing STOP mode. Setting Software STOP Mode. To set software STOP mode, execute the STOP instruction. This sets the internal software STOP mode flip-flop which stops the oscillator and turns transistors A and B off and on, respectively. Capacitor Css discharges through transistor B causing the SS pin to go low. Releasing Software STOP Mode. To release software STOP mode, apply an INT or RESET input. When using the INT input (figure 6), a low at the INT pin resets the software STOP flip-flop and turns transistors 4-283 IE ~ NEe pPD80C40H/50H, pPD50H Figure 5. Software STOP Mode Control Circuit Figure 6. Software STOP Mode Timing ~~ Software STOPF/F RESET INT .. ~~----~ ~---+---------­ Execution of STOP Instruction Oscillation Stabilizing Wait Time 49-000491 A 'Execution of Instruction 49-000490A 4-284 Instruction Set Operation Description ADDA, # data (A) - Add immediate the specified data to the accumulator. (2) ADDA, Rr (A) - (A) + (Rr) for r = 0-7 ADDA,@Rr Mnemonic Hex Code Operation Code D7 D6 Ds D4 D3 D2 D1 Do 03 0 d7 0 d6 0 d5 0 d4 0 d3 0 d2 1 d1 1 do Add contents of designated register to the accumulator.(2) 6n(4) 0 1 1 0 1 (A) - (A) + ((Rr)) for r = 0-1 Add indirect the contents the data memory location to the accumulator. (2) 6n(4) 0 0 0 0 0 ADDC A, # data (A) - Add immediate with carry the specified data to the accumulator. (2) 13 0 d7 0 d6 0 d5 1 d4 0 d3 0 d2 1 d1 ADDC A, Rr (A) -- (A) + (C) + (Rr) forr = 0-7 Add with carry the contents of the designated register to the accumulator.(2) 7n(4) 0 1 1 1 1 ADDCA,@Rr (A) -- (A) + (C) + ((Rr)) forr = 0-1 Add indirect with carry the contents of data memory location to the accumulator. (2) 7n(4) 0 0 0 0 ANLA, # data (A) - Logical AND specified immediate data with accumulator. 53 0 d7 1 d6 0 d5 1 d4 0 d3 0 d2 1 d1 ANLA, Rr (A) - (A) AND (Rr) for r = 0-7 Logical AND contents of designated register with accumulator. 5n(4) 0 1 0 1 1 ANLA, @Rr (A) - (A) AND ((Rr)) forr = 0-1 Logical AND indirect the contents of data memory with accumulator. 5n(4) 0 0 0 CPLA (A) -NOT(A) Complement the contents of the accumulator. 37 0 0 CLRA (A)-O Clear the contents of the accumulator. 27 0 0 Accumulator (A) + data (A) + (C) + data (A) AND data ~ I (» c.n 0 ~ t) 1 do 1 do Decimal adjust the contents of the accumulator. (2) 57 0 1 0 1 0 Decrement by 1the accumulator's contents. 07 0 0 0 0 0 1::: INCA (A)-(A)+1 Increment by 1the accumulator's contents. 17 0 0 1 0 1 ORLA, # data (A) - (A) OR data Logical OR specified immediate data with accumulator. 43 0 d7 1 d6 0 d5 0 d4 0 d3 0 d2 ORLA, Rr (A) - (A) OR (Rr) for r = 0-7 Logical OR contents of designated register with accumulator. 4n(4) 0 1 0 0 1 ORLA, @Rr (A) - (A) OR ((Rr)) for r = 0-1 Logical OR indirect the contents of data memory location with accumulator. 4n(4) 0 1 0 RLA (AN +1) - (AN) (Ao) - (A7) for N = 0-6 Rotate accumulator left by 1bit without carry. E7 RLCA (AN + 1) - (AN); N = 0-6 (Ao)-(C) (C)-(A7) Rotate accumulator left by 1bit through carry. F7 RRA (AN) -- (AN + 1); N = 0-6 (A7) -(Ao) Rotate accumulator right by 1bit without carry. 77 0 0 ,.a 0 (A)-(A)-1 0 Bytes 0 0 DECA DAA I\,) 0 Cycles 0 CD 1 d1 1 do 0 n ... 0 0 0 :z: "0 ell 0 ..:z: 0 (II ,.a 1::: 0 :z: ~ I I\J Instruction Set (cont) 1::: 00 0> Mnemonic Operation Description Hex Code Operation Code D7 De Ds D4 D3 D2 D1 Do Cycles Bytes (AN) - (AN + 1); N = 0-6 (A?)-(C) (C)-(Ao) Rotate accumulator right by 1bit through carry. SWAP A (A4-A? ) - (Ao-A3) Swap the 2 4-bit nibbles in the accumulator. 47 0 XRLA. # data (A) - Logical XOR specified immediate data with accumulator. D3 1 d? XRLA. Rr (A) - (A) XOR (Rr) for r = 0-7 Logical XOR contents of designated register with accumulator. Dn(4) 0 XRLA. @Rr (A) - (A) XOR ({Rr)) for r = 0-1 Logical XOR indirect the contents of data memory location with accumulator. Dn(4) 0 (Rr) - (Rr) - 1; r = 0-7 If{Rr)'"0; (PCo-PC?) - addr Decrement the specified register and test contents. (PCo-PC?) -: addr if 6b = 1 (PC) - (PC) + 2 if 6b = 0 Jump to specified address if accumulator bit is set. (peo-pc?) - addr if C = 1 (PC) - (PC) + 2 if C = 0 Jump to specified address if carry flag is set. (PCo-PC?) - addr if FO = 1 (PC) - (PC) + 2 if FO = 0 Jump to specified address if flag FO is set. (PCo-PC?) - addr if F1 = 1 (PC) - (PC) + 2 if F1 = 0 Jump to specified address if flag F1 is set. (A) XOR data 67 0 0 0 J6baddr JC addr JFOaddr JF1 addr JMP addr 1 d6 :z: 0 0 0 1 0 d5 1 d4 0 d3 0 d2 1 d1 0 0 0 a3 r a2 r a1 r aO 0 a3 0 a2 a1 0 ao "en 1 do 0 ..:z: 1::: "en" 0 (PCS-PC10) - (addrs-addr10) Direct jump to specified address within the 2K address block. (PCo-PC?) - (addro-addr?) (PCl1) -D6F En x2(6) 66 76 x4(6) (PCo-PC?) - Jump indirect to specified address with address page. 63 JNC addr (PCo-PC?) - addr if C = 0 (PC) - (PC) + 2 if C = 1 Jump to specified address if carry flag is low. E6 (PCo-PC?) - addr if I = 0 (PC) - (PC) + 2 if I = 1 Jump to specified address if interrupt is low. (PCo:"PC?) - addr if TO = 0 (PC) - (PC) + 2 if TO = 1 Jump to specified address if test 0 is low. (PCo-PC?) - addrifT1 = 0 (PC) - (PC) + 2 ifT1 = 1 Jump to specified address if test 1is low. (PCo-'PC?) - addr if A '" 0 (PC) - (PC) + 2 if A = 0 Jump to specified address if accumulator is non-zero. JNTOaddr JNT1 addr JNZaddr ({A)) a? a6 a5 0 a4 b2 a? b1 a6 bo a5 a4 a? a6 a5 ~ 0 a3 a2 a1 0 ao 1 a? 0 a6 a5 a4 0 a3 1 a2 1 a1 0 ao 0 a? 1 as a5 a4 0 a3 1 a2 a1 0 ao a10 a? ag a6 as a5 ~ 0 a3 a2 0 a1 0 aO 0 1 0 0 a? a6 a5 0 a4 0 a3 a2 a1 0 ao a? 0 a6 0 a5 0 a4 0 a3 a2 a1 0 ao 0 a? 0 a6 0 a5 ~ 0 a3 1 a2 a1 0 ao 0 a? 1 a6 0 a5 0 a4 0 a3 a2 a1 0 ao a? 0 a6 0 a5 a4 0 a3 a2 a1 0 ao F6 JMPP@A JNI addr .. 0 Branch DJNZ Rr. addr CD 0 Accumulator (cont) RRCA ""n 1 86 26 46 96 0 :z: 2 2 2 ~ ~ Instruction Set (cont) Mnemonic Hex Code Operation Description JTF addr (PCO-PC7) - addr if TF = 1 (PC) - (PC) + 2 if TF = 0 Jump to specified address if timer flag is set to 1. 16 JTO addr (PCO-PC7) - addr if TO = 1 (PC) - (PC) + 2 if TO = 0 Jump to specified address if test 0 is a 1. 36 JT1 addr (PCO-PC7) - addr ifT1 = 1 (PC) - (PC) + 2 ifT1 = 0 Jump to specified address if test 1 is a 1. 56 JZaddr (PCO-PC7) - addr if A = 0 (PC) - (PC) + 2 if A = 1 Jump to specified address if accumulator is O. C6 Operation Code D7 D6 Ds D4 D3 D2 D1 Do a7 0 a6 0 a5 a4 0 a3 0 a7 0 a6 a2 a1 ao a4 0 a3 a5 a7 1 a6 0 a5 a2 a1 ao a4 0 a3 1 a2 1 a7 1 a6 0 a5 a1 ao 0 a4 0 a3 1 a2 a1 0 ao 0 Branch (cont) Cycles Bytes ~ ~ Control EN I Enable the external interrput input. 05 0 0 0 DIS I Disable the external interrupt input. 15 0 0 0 ENTO ClK Enable the clock output pin TO. 75 0 0 0 0 0 0 0 0 SEl MBO (DBF) -0 Select bank 0 (locations 0-2047) of program memory. E5 0 0 SEl MB1 (DBF)-1 Select bank 1(locations 2048-4095) of program memory. F5 1 0 SEl RBO (BS)-O Select bank 0 (locations 0-7) of data memory. C5 SEl RB1 (BS)-1 Select bank 1(locations 24-31) of data memory. D5 HALT Initiates halt mode. 01 STOP Sets CPU to software stop mode. 82 Move immediate the specified data into the accumulator. 23 Move the contents of the designated registers into the accumulator. Fn(4) Move indirect the contents of data memory location into the accumulator. Fn(4) 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 d7 0 d6 1 d5 0 d4 0 d3 0 d2 1 1 1 1 1 0 0 1 0 0 0 Data Moves ~ I I\.) - Test Points -< 2.0VC 0.8V 83·002896A 4-297 NEe ~PD8041AH,~PD8741A Timing Waveforms Read Operation (DBBOUT Register) Write Operation (DBBtH Register) (System's Address Bus) CSorAo (System's Address Bus) CSorAo (Read Control) (Write Control) Data Bus Data Data e_ (Input) _ _ M_aY;..C_h_an..;9;..e--, ~----"1 ,-_M_ay_C_h_an..;9_ ~~~t:~~ ---1----< ,....----~ 83-002898A 83-OO2897A DMA PORT 2 Expander Port SYNC Output Expander Port Input ~rtCRQ PROG ORO 83-002899A PORT(EA=1) SYNC Port t::ontrol v-;;;-v-;:;:;A...______ ~ P10-P17 - ; ; ; ; - - ' \ / P20- P21 ~ 83-002900A 4-298 ~ ~r tCRQ '--83-002901A t-{EC ~PD8041AH,~PD8741A Functional Description Two data bus buffers, an 8-bit status register, the RD and WR inputs, and expandable I/O lines enhance the J..IPD8041AH /8741A. These features enable easier master/slave interface and increased functionality. Data Bus Buffers Figure 1 shows how the input and output data bus buffers enable a smooth data flow to and from the master processors. Figure 1. Data Bus Buffers Port 24-Port 27 P24 and P2S can be used as either port lines or buffer status flag lines. This allows you to make OBF and IBF status available externally to interrupt the master processor. Upon execution of the EN FLAGS instruction (F5H), P24 becomes the OBF pin. When a 1 is written to P24, the OBF pin is enabled and the status of OBF is output. Ao to P24 disables the OBF pinAND the pin remains low. This pin indicates valid data is available from the J..IPD8041AH/8741A. An EN FLAGS instruction execution also enables P2s to indicate that the J..IPD8041AH/8741A is ready to accept data. A1 written to P2s enables the IBF pin and the status of IBF is available on P2S. Ao written to P2s disables the IBF pin. If OBF is not true, the data at the data bus is invalid. 83.(JQ2902A Status Register The 8-bit status register includes four user-definable bits, ST4-ST7. Use the MOV STS, A instruction (90H) to define bits ST4-ST7 by moving accumulator bits 4-7 to bits 4-7 of the status register. Bits STO-ST3 are not affected. Figure 2 shows the format of the status register. P26 and P27 can be used as either port lines or DMA handshake lines to allow DMA interface. The EN DMA instruction (E5H) enables P26 and P27 to be used as DRO (DMA request) and DACK (DMA acknowledge), respectively. When a 1 is written to P26, DRO is activated and a DMA request is issued. The EN DMA instruction deactivates DRO. You can also deactivate DRO by adding DACK with RD or WR. Execution of the EN DMA instruction enables P27 (DACK) to function as a chip select input for the data bus buffer registers during DMA transfers. Figure 2. Status Register Format DO IBF OBF RDandWR The RD and WR inputs are edge-sensitive. Figure 3 shows that status bits IBF, OBF, F1, and FO are affected on the trailing edge at RD orWR. Figure 3. RD and WR Inputs Flags Aflected~ RD,WR Jl...J \ ' -_ _ _ _ _ 83.(JQ2903A 4-299 IJ ~ I W 0 0 1::.. Instruction Set Operation Code Mnemonic Operand Operation D7 De D5 D4 Da D2 D1 Do ADD A, # data (A) - 0 d6 0 0 d5' d4 0 d3 0 d2 1 d1 1 do ADD A, Rr (A) - (A) + (Rr) r = 0-7 0 d7 0 1 1 1 Cycle. Iytes C Accumulator (A) + data 0 • ! AC FO Flags F1 IIF OIF 514-51 7 " tJ . Q) 0 ... ~ :z w' 0 0 0 0 1 d4 0 d3 0 d2 1 d1 1 1 ADD A,@Rr (A) - (A) + ((Rr)) r = 0-1 0 ADDC A, # data (A) - (A) + (C) + data 0 d7 0 d6 ADDC A, Rr (A) - (A) + (C) + (Rr) r = 0-7 0 1 ADDC A,@Rr (A) - (A) + (C) + ((Rr)) r = 0-1 0 ANL A, # data (A) - (A) AND data 0 d7 1 d6 0 d5 1 d4 0 d3 ANL A, Rr (A) - (A) AND (Rr) r = 0-7 0 1 0 1 1 ANL A,@Rr (A) - (A) AND ((Rr)) r = 0-1 0 CPL A (A) -NOT(A) 0 0 1 0 CLR A (A)-O 0 0 0 0 DA A DEC A 0 d5 0 • 1 do • • 0 0 0 d2 1 d1 0 0 • 1:: " 0 Q) ...~ ~ 1 do • 0 (A)-(A)-1 0 0 0 0 1 INC A (A)-(A)+1 0 0 0 1 ORL A, # data (A) - (A) OR data 0 d7 1 d6 0 d5 0 d4 0 d3 ORL A, Rr (A) -4,-- (A) OR (Rr) r = 0-7 0 1 0 0 1 ORL A,@Rr (A) - (A) OR ((Rr)) r = 0-1 0 0 0 0 RL A (AN + 1) - (AN); N = 0-6 (Ao) -(A7) 0 0 0 d2 1 d1 0 0 1 do ~ ~ Instruction Set (cont) Operation Code Operand Operation RLC A (AN + 1) - (AN); N = 0-6 (Ao)-(C) (C)-(A7) RR A (AN) - (AN + 1); N = 0-6 (A7)-(Ao) 0 RRC A (AN) - (AN + 1); N = 0-6 (A7)-(C) (C)-(Ao) 0 Mnemonic D7 Da Ds D4 D3 D2 D1 Do Cycles Bytes C Accumulator (cont) SWAP A (A4-A7) ++ (Ao-A3) XRL A, # data (A) - XRL A, Rr (A) - (A) XOR (Rr) r = 0-7 XRL A,@Rr (A) - (A) XOR ((Rr)) r = 0-1 (A) XOR data • 0 AC FO Flags F1 IBF OBF ST4-ST7 ~~ 0 0 0 • 1 0 0 0 1 1 1 0 1 0 0 1 1 d7 d6 d5 d4 d3 d2 d1 do 1 1 0 1 1 0 0 0 0 ,.a 'l: Q) ...... o J;. ..:z ,.a 'l: Q) .... ~ ~ I VJ ~ ~ ~ I U) Instruction Set (cont) Operation Code N Mnemonic Operand Operation D7 De D5 D4 Branch DJNZ Rr, addr (Rr) - (Rr) - 1; r = 0-7 If (Rr) =F 0; (PCO-PC7) - addr a7 a6 a5 (PCO-PC7) - addr if Bb = 1 (PC) - (PC) + 2 if Bb = 0 b2 a7 b1 a6 bo a5 1 JBb addr Da D2 D1 Do '4 a3 r a2 r a1 r ao a4 0 a3 0 a2 a1 0 ao 1 a2 0 JC addr (PCO-PC7) - addr if C = 1 (PC) - (PC) + 2 if C = 0 a7 as 1 a5 '4 0 a3 JFO addr (PCO-PC7) - addr if FO = 1 (PC) - (PC) + 2 if FO = 0 a7 0 a6 1 a5 a4 0 a3 (PCO-PC7) - addr if F1 = 1 (PC) - (PC) + 2 if F1 = 0 0 a7 1 a6 a5 a4 a10 a7 a9 a6 aa a5 JF1 addr 1 0 a1 ao a2 a1 0 ao 0 a3 a2 a1 0 ao 0 a4 0 a3 1 a2 0 a1 0 ao 0 1 0 0 0 a3 a2 a1 0 ao JMP addr (PCa-PC10) - (addra-addr10) (PCO-PC7) - (addro-addr7) (PC11)-DBF JMPP @A (PCO-PC7) - JNC addr (PCO-PC7) - addr if C = 0 (PC) - (PC) + 2 if C = 1 a7 a6 a5 0 a4 (PCO-PC7) - addr if IBF = 0 (PC) - (PC) + 2 if IBF = 1 1 a7 a6 0 a5 a4 0 a3 1 a2 a1 0 ao (PCo-PC]) - addr if OBF = 1 (PC) - (PC) + 2 if OBF = 0 1 a7 0 a6 0 a5 0 a4 0 a3 a2 a1 0 ao (PCO-PC7) - addr if TO = 0 (PC) - (PC) + 2 if TO = 1 0 a7 0 a6 0 a5 '4 0 a3 a2 a1 0 ao (PCO-PC7) - addr ifT1 = 0 (PC) - (PC) + 2 ifT1 = 1 0 a7 1 a6 0 a5 '4 0 a3 1 a2 1 a1 0 ao (PCO-PC7) - addr if A = 0 (PC) - (PC) + 2 if A = 1 1 a7 0 a6 0 a5 '4 0 a3 a2 a1 0 ao (PCO-PC7) - addr if TF = 1 (PC) - (PC) + 2 ifTF = 0 0 a7 0 a6 a5 '4 0 a3 a2 a1 0 ao (PCO-PC7) - addr ifTO = 1 (PC) - (PC) + 2 if TO = 0 0 a7 0 a6 a5 a4 a3 a2 a1 0 ao (PCO-PC7) - addr ifT1 = 1 (PC) - (PC) + 2 ifT1 = 0 0 a7 1 a6 0 a5 a4 a3 a2 a1 0 ao (PCO-:PC7) - addr if A = 0 (PC) - (PC) + 2 if A = 1 1 a7 a6 0 a5 0 a4 0 a3 a2 a1 0 ao JNIBF addr JOBF JNTO JNT1 JNZ JTF JTO JT1 JZ addr addr addr addr addr addr addr ,.a 1: 0 ((A)) 0 1 1 Cycl•• Iytes C AC FO Flags F1 .IF OIF ST4-ST7 CD 0 ...... ~ ..Z ,.a 1: 2 CD 2 ...~ ~ 2 ~ ~ Instruction Set (cont) Operation Code Mnemonic Operand Operation D7 De Ds D4 0 D3 D2 D1 Do Control EN I Enable the external interrupt input 0 0 0 DIS I Disable the external interrupt input 0 0 0 SEL RBO (BS)-O 0 SELRB (BS)-1 0 EN DMA Enable DMA handshake EN FLAGS Enable interrupt to master device 0 0 Cycles Bytes C AC FO Flags F1 IBF OBF ST4-ST7 ~ ~ 0 0 0 1 0 0 0 0 0 0 d3 Data Moves MOV A, # data (A) -data = 0-7 = 0-1 MOV A, Rr (A) - (Rr); r MOV A,@Rr (A) - ((Rr)); r MOV A, PSW (A)-(PSW) MOV Rr, # data (Rr) - data; r MOV Rr, A (Rr) - (A); r MOV @Rr,A ((Rr)) - MOV @Rr,#data ((Rr)) - MOV PSW, A (PSW)-(A) MOVP A,@A (PCo-PC?) - (A) (A)-((PC)) MOVP3 A,@A (PCo-PC?) - (A) (PCa-PC1o) - 011 (A)-((PC)) XCH A, Rr (A) - XCH A,@Rr (A) - XCHD A,@Rr (Ao-A3) r = 0-1 0 d? 0 d6 1 ds 0 d4 1 1 1 1 = 0-7 = 0-7 (A); r = 0-1 data; r = 0-1 = 0-7 ((Rr)); r = 0-1 (Rr); r ((Rr))o-((Rr)}J; 0 0 0 1 d? 0 d6 1 ds 1 d4 1 d3 1 0 1 0 1 0 1 d? 0 d6 1 ds 1 1 0 1 0 1 d1 0 0 r d2 r d1 1 do 1 0 1 0 d2 r do 0 0 0 0 1 d4 0 d3 0 d2 0 d1 r do 1 1 1 0 1 0 0 0 1: 0 0 0 D 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ,. .CD 0 ..•Z ,. 1: D CD ~ ~ I W 0 w I!I • ,J:O.. I W ~ Instruction Set (cont) 0 .flo. Operation Code IInemonlc Flags CPlC Operand Operation D7 D8 D5 D4 Da (C)-NOT(C) 0 1 0 0 1 CPlFO (FO) -: NOT (FO) 0 0 0 0 CPlF1 (F1) - 0 0 0 NOT (F1) Dz D1 Do 0 1 0 1 0 0 0 0 0 ClR F1 (F1)-0 0 0 0 1 0 MOVSTS, A ST4-ST'l - cccc STOP P10 Pl, P12 P13 P14 P1s NC P16 P17 Ordering Information P24/0BF Part Number Package Type Max Frequency of Operation JlPD80C42C 40-pin plastic DIP 8 MHz 44-pin plastic miniflat 8 MHz JlPD80C42G-22 49-001145A 4-307 NEe J.lPD80C42 Pin Identification Plastic DIP No. Plastic Mlnlflat Symbol Function No. Symbol Function TESTO Test 0 input 18 TESTO Test 0 input 2,3 XTAL1, XTAL2 Crystal input 19,20 XTAL1, XTAL2 Crystal input 4 RESET Reset input 22 RESET Reset input 5 SS Single-step input 23 SS Single-step input 6 CS Chip select input 24 CS Chip select input EA External access input 25 EA External access input RO Read input 26 RO Read input 9 Ao Address input 27 Ao Address input 10 WR Write input 28 WR Write input 11 SYNC Synchronize output 29 SYNC Synchronize output 12-19 00- 07 Bidirectional port 30-37 00- 07 Bidirectional port 20 Vss Ground 38 Vss Ground 21-24 P20-P23 Quasi-bidirectional port 2 39-42 P20-P23 Quasi-bidirectional port 2 35-38 P24/0BF, P25/IBF, P26/0RQ, P27/0ACK Output buffer full, input buffer full, OMA request, OMA acknowledge 11,13-15 P24/0BF, P25/IBF, Output buffer full, input buffer full, OMA request, OMA acknowledge P26/~ P27/0ACK 25 PROG PROG output strobe 26 STOP STOP input 43 PROG PROG output strobe STOP STOP input 27-34 P10-P17 Quasi-bidirectional port 1 2-7,9-10 P10-P17 Quasi-bidirectional port 1 39 TEST1 Test 1input 16 TEST1 Test 1input 40 VDD Positive power supply 17 VDD Positive power supply NC No connection 8,12,21,44 NC No connection Pin Functions SS (Single·Step) XTAL1, XTAL2 (Crystal) SS is an input used with SYNC to step the program through each instruction. XTAL1 and XTAL2 are the inputs forthe crystal oscillator for the LC circuit generating internal clock signals. Use XTAL1 as the external clock input. TESTO (Test 0) TESTO is a testable input using conditional jump instructions JTO and J NTO. TESTO also resets the HALT mode. TEST1 (Test 1) TEST1is a testable input using conditional jump instructions JTO and JNTO. TEST1 is also an input to the event counter. CS (Chip Select) CS inputs the chip select signal. An active low enables the data bus. EA (External Access) EA is an input that inhibits internal program memory fetches. Use EA to check the ROM contents when debugging programs. WR(Write) WR is an input used by the master CPU to write data and commands into the data bus buffer in (DBBIN) register. RESET (Reset) RESET inputs a system reset, resets the HALT mode, and controls the STOP mode. 4-308 RD(Read) RD is the input used by the master CPU to read data or NEe /JPD80C42 status words from the data bus buffer out (DBBOUl) or status registers. Ao (Address 0) Ao is an address input that the master CPU uses to determine the bus operation as follows: Ao Cycle Operation Read 00- 07 (Port) DO-D7 is a bidirectional port that transfers data between the data bus buffer (DBBOUT, DBBIN) registers and the 8-bit master CPU data bus. P10-P17 (Port 1) P10-P17 is a quasi-bidirectional, 8-bit port. Data Status o Write Data Command SYNC (Synchronization) SYNC is an output that occurs once per instruction cycle. SYNC is used as a strobe for external circuitry or to synchronize the single-step operation. PROG (PROG output) P20-P27 (Port 2) P20-P27 is a quasi-bidirectional, programmable 8-bit port. P24-P27 (high-order bits) are alternative pins for the following interrupt request and DMA handshaking functions: P24 = OBF (Output buffer full) P2s IBF (Input buffer full) P26 = DRQ (DMA request) P27 DACK (DMA acknowledge) = = VOO (Power Supply) When using the I/O expansion port (J,tPD82C43), PROG outputs a strobe that outputs data/ addresses P20-P23. Voo is the positive power supply (+2.5 V to +6.0 V) VSS (Ground) STOP (Stop) The STOP input controls the hardware STOP mode. Vss is the ground potential. Block Diagram 128x8RAM OataMemory ~ ~ 00- 0 7 Reg Bank 1 Stack 96x8 8x8 16x8 8x8 Master System Interface cs Ao EA Control Logic SYNC 55 PROG RESET I.C.or Clock C,,"," Peripheral Interface f"" XTAL2 VOO_+2.5V-+6.0V Power { VSS_Ground 49·0011468 NEe J.(PD80C42 Absolute Maximum Ratings Extended Voltage Range TA =:= 25°C TA= -40°C to +85°C, Voo= +2.5Vto +6.0 V, Vss=OV Limits -0.3Vto +7V Power supply voltage, Voo Input voltage, VI - 0.3 V to Voo +0.3V Parameter Output voltage, Vo -0.3 Vto Voo +0.3 V Input voltage low Comment: Exposing the device to stresses above those listed in Absolute Maximum Ratings could cause permanent damage. The device is not meant to be operated under conditions outside the limits de· scribed in the operational sections of the specification. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. DC Characteristics Standard Voltage Range. Input voltage high Min Typ Test Conditions Max Unit Input voltage low VIL -0.3 +0.8 V Input voltage high VIH 2.2 Voo V Except RESET, XTAL1, XTAL2 VIH1 Voo-1 Voo V RESET, XTAL1, XTAL2 +0.45 V 10L =2.0 mA Output voltage low VOL Output voltage high VOH 2.4 V 00-07, SYNC, PROG; 10H= -400 fAA VOH1 2.4 V Port 1, port 2; 10H= -50fAA V All outputs; 10H= -0.2fAA Port 1, port 2; VI'" VIL SS, RESET; VI",VIL VOH2 Input current Input leakage current Output leakage current Voo-0.5 IILP -500 fAA IILC -40 fAA ±1 IU1 fAA EA; VSS",VI"'VOO ILO ±1 fAA VSS'" Vo'" Voo High impedance, 00-07, port 3.0 mA HALT mode; tCy=1. 25 fAs 20 fAA STOP mode (1) 20 mA tCy=1. 25 fA s 1.5 10 100 VOOOR +0.6 V 2.5 V'" Voo'" 4.5V -0.3 +0.8 V 4.5 V'" Voo'" 6.0V VIH 0. 7V oo Voo V Except RESET, XTAL1, XTAL2 VIH1 0. 8V oo VOO V RESET, XTAL1, XTAL2 +0.45 V 10L =1.0 mA VOL Output voltage high VOH 0. 75V oo V 00-07, SYNC, PROG; 10H= -100 fAA VOH1 0. 7V oo V Port1, port 2; 10H= -10fAA 2.0 V Note: (1) The input voltage pin is VI';; VIL or VI;?; VIH. Input current Input leakage current Output leakage current IILP -500 fAA Port 1, port 2; VI'" VIL IILC -40 fAA SS, RESET; VI'" VIL IU1 ±1 fAA TO, T1, STOP, CS, Ao, RD, WR; VSS'" VI"'VOO 1L12 ±5 fAA EA; VSS",VI"'VOO ILO ±1 fAA VSS'" VO'" Voo High impedance, 00-07, port 300 600 fAA HALT mode; Voo=3V; tCy=5fAs 2.0 4.0 mA Voo=6V tCy=1. 25 fA s 20 fAA STOP mode (1) ; Voo=3V Standby current 1001 1002 Supply current 100 TO, T1, STOP, CS, Ao, RD, WR; VSS'" VI"'VOO ±3 1002 Data retention voltage fAA IU2 Standby current 1001 Supply current -0.3 VIL Output voltage low TA= -40°Cto +85°C, Voo= +5V±10%, Vss=OV Limits STOP mode (STOP, RESET"'0.4 V) or RESET (RESET",O.4 V) Test Conditions Unit Min - 65°C to + 150°C Storage temperature, TSTG Symbol Typ Max -40°C to. +85°C Operating temperature, TOPT Parameter Symbol Data retention voltage VOOOR 2 50 mA Voo=6V 2.0 5.5 mA Voo=3V; tCy=5fAs 16 30 mA Voo=6V; tCy=1. 25 fA s 2.0 Note: (1) The input voltage pin is VI';;VIL OrVI;?;VIH' V STOP mode (STOP, RESET", 0.4 V) or RESET (RESET"'0.4 V) NEe J.lPD80C42 AC Characteristics Standard Voltage Range - DBB Read Extended Voltage Range - DBB Write TA= -O°Cto +70°C, voo= +5V±10%, vss=ov TA = - O°C to + 70°C, Voo = +2.5 Vto 6.0 V, Vss = 0 V Limits Parameter Symbol Min Typ Max ~, AD setup to tAR RD low CS, AD hold from RTI high tRA 0 200 Unit Test Conditions Min Typ Max Unit CS, Ao setup to tAW WRlow 300 ns ns CS, ~old from WR high tWA 200 ns WR pulse width tww data setup to tow WR high 2000 ns 1500 ns Data hold from WR high 200 ns RD pulse width tRR tAO 150 ns CL =100 pF RD low to data output delay tRO 140 ns CL =100 pF RD high to data float delay tOF 85 ns 15 J.l.s tCY Symbol ns CS, AD to data output delay Cycle time Limits Parameter ns two Standard Voltage Range - Port 2 1.25 Voo= +5V±10% Limits Standard Voltage Range - DBB Write Parameter TA= -OOCto +70°C, Voo= +5V±10%, VSS=OV Port control setup to PROG low Limits Parameter Symbol Min Typ Max Unit CS, AD setup to tAW WRlow ns CS, ~old from WR high ns tWA WR pulse width tww data setup to tow WR high Data hold from WR high Test Conditions ns ns Input data setup tpR to PROG low ns Input data hold tpF from PROG high Limits Min Typ Max Unit AD setup to tAR RDlow 300 ns CS, A..Q..hold from RD high tRA 200 ns RD pulse width tRR 2000 RD low to data output delay tRO 1500 ns RD high to data float delay tOF 400 ns Cycle time tCY 15 J.l.s Typ Unit Test Conditions ns CL=80pF ns CL=20pF ns CL =20 pF 650 ns CL=80pF 150 ns CL=20pF Max 100 80 135 0 top 200 ns CL =80 pF Output data hold tpo from PROG high 60 ns CL =20 pF PROG pulse width 700 ns Output data setup to PROG high Test Conditions Min Input port tpC1 control hold from PROG low 130 TA= -O°Cto +70°C, voo= +2.5Vto +6.0 V, Vss=OV Symbol tcp Output port tpC2 control hold from PROG low Extended Voltage Range - DBB Read Parameter Symbol 200 two ~, Test Conditions tpp ns CL =100 pF 4-311 E NEe ",PD80C42 AC Characteristics (cont) Extended Voltage Range- Port 2 Extended Voltage Range-DMA voo= +2.5Vto +6.0V voo= +2.5Vto +6.0V Limits Parameter Port control setup to PROG low Symbol tcp Min Typ 460 Input port tpC1 control hold from PROG low 0 Output port tpC2 control hold from PROG low 1135 200 Input data setup tpR to PROG low Input data hold tpF from PROG high Output data setup to PROG high Max Unit Test Conditions ns CL =80 pF ns CL =20 pF ns CL =20 pF 2715 ns CL =80 pF 500 ns CL =20 pF Limits Typ Symbol Min tACC 200 ns DACK hold from tCAC Ri),WR 200 ns Parameter Q8CK1etup to RD, WR Max Unit DACK to data output delay tACO 1500 ns RD, WRto DRQ clear delay tCRQ 700 ns CL =150 pF Unit Test Conditions Standby Flag Retention Conditions 0 Limits Parameter Symbol Min Typ Max top 1850 ns CL =80 pF Preservation of tf standby flag voltage fall time 100 /As Output data hold tpo from PROG high 450 ns CL =20 pF 100 /As PROG pulse width 3250 ns Preservation of tr standby flag voltage rise time Standby flag VSTF retention voltage 2.0 V tpp Test Conditions Standard Voltage Range - DMA Voo= +5V±10% Input Waveforms for AC Test Limits Parameter ~C~etupto Symbol Min Typ Max Unit Test Conditions A) Voo= +5.0V±10% ns tACC 2.4V~2.2V_ RD, WR 0.45 v DACK hold from tCAC Ro, WR 0.8 V ns 0 DACK to data output delay tACO 140 ns RD, WRto DRQ clear delay tCRQ 130 ns 4-312 T,:st _ 2 . 2 V X = = 0.8 V -POints - B) voo= +2.5 V +6.0 V 0. 8V oo CL =150 pF 0.45 V _ _ Test _ _ 0. 7V oo 0. 7V oo 0.6 or 0.8 V _ _ Points 0.6 or 0.8 V 49·0011S2A NEe J.lPD80C42 Standby Flag Retention Timing Bus Timing Requirements Voo SysGND 49-001151A Symbol Timing Formula MiniMax Unit tcp (1/10) tCy-40 Min ns tpC2 (4/15) tCy-200 Min ns tpR (17/30) tCy-120 Max ns tpF (1/10) tCY Max ns top (2/5)tCy-150 Min ns tpo (1/10) tCy-50 Min ns tpp (7/10) tCy-250 Min ns tCY (11 fXTALl x 15 /-Is Timing Waveforms Read Operation (DBBOUT Register) System Address Bus CSorAo 1----tRR---+J Read Control ~J 49-0011536 Write Operation (DBBIN Register) CSor Ao =x:_____________ " '-___________ ~ system Address Bus !.-tAW Write Control Data Bus Input Data May Change Data May Change 49-0011546 NEe ,iPD80C42 Timing Waveforms (cont) PORT2 SYNC J r---\\ _ _ _ / ~ Expander Port Output P20-P23 Expander Port Input P20-P23 Data PROG PORT(EA =1) SYNC / _---J \--------'/ P10-P17 - - - - - - - - , . Port Data Port Control P20-P22-------------J , __________________________J Port Data \~-Port Control 49-0011568 DMA Data Bus -------t--{I ORO 49-0011578 ttrEC J.lPD80C42 Functional Description Data Bus Buffer In (DBBIN) and Data Bus Buffer Out (DB BOUT) Registers As figure 1 shows, the DBBIN and DBBOUT registers transfer data to and from the master processors by way of the 8-bit external data bus (Do-D7) and the 8-bit internal data bus. Figure 1. You can make STo (OBF) and ST1 (IBF) externally available in order to interrupt the master processor by executing the EN FLAGS instruction. When the EN FLAGS instruction is executed, P24 becomes the OBF pin. A 1 written to P24 enables OBF and outputs its status. A 0 written to P24 disables OBF by holding it low. Use OBF to indicate that valid data is available from the output data bus buffer register. You can also use the EN FLAGS instruction to use P25 as theN pin. A 1 written to P25 enables TBF to output the inverse of the IBF status bit. A 0 written to P25 disables IBF by holding it low, making data at the data bus invalid. I-lPDBOC42 Data Flow Input Data Bus Buffer (8) The EN FLAGS instruction is coded as follows: 11110101 OutpulData Bus Buffer (8) 49-001147A Data Bus Buffer (DBB) Status Register The I-lPD80C42 has an 8-bit status register (STo-ST7) that contains information about the current status of the master or slave processor. The MOV STS, A instruction makes status bits ST4-ST7 user-definable by moving accumulator bits 4-1 to bits ST4-ST7 of the status register (STo-ST3 are not affected). Bits STo-ST3 give the status of the Output Buffer Full (OBF) and Input Buffer Full (IBF) bits, and flag bits (FO, F1). Figure 2 shows the status register format. Figure 2. ST7 Status Register Format ST6 ST5 ST4 ST3 ST2 F5H P26 and P27 are port pins or DMA handshake pins that allow a DMA interface. Use the EN DMA instruction to enable P26 and P27 as DRO (DMA Request) and DACK (DMA Acknowledge), respectively. A 1 written to P26 activates DRO, thus issuing a DMA request. Deactivate DRO with the EN DMA instruction, DACK ANDed with RD, or DACK ANDed with WR. When EN DMA is executed, P27 (DACK) functions as a chip select input for the data bus buffer registers during DMA transfers. The EN DMA instruction is coded as follows: 1 1 1 0 0 1 0 1 E5H HALT Mode The HALT mode allows the I-lPD80C42 to conserve power during periods of inactivity. In the HALT mode, the oscillator remains active but the internal system clock stops. The HALT instruction allows the processor to enter the HALT mode. STO STOP Mode IBF OBF The MOV STS, A instruction is coded as follows: 1 0 0 1 0 0 0 0 90H Figure 3 shows how STo-ST3 change internally on the trailing-edge of RD or WR (RD and WR are edgesensitive). Figure 3. AD orWR RD or WR Inputs The STOP mode disables the oscillator but maintains the contents of RAM. STOP mode conserves even more power than HALT mode. Enter STOP mode through software with the STOP instruction or through hardware with the STOP pin. In hardware STOP mode, the power supply voltage can drop as low as 2.0 V. In software STOP mode, it can drop as low as 2.5 V while still maintaining the RAM contents. Control the STOP mode with hardware, with the RESET and STOP pins, as follows: f ~'--~ _ _ _ _ _- - J Flags Affected 49-00114BA • Bring RESET low for at least six machine cycles, then bring STOP low. This assures proper termination of CPU operations. Figure 4 shows the timing for controlling STOP mode with hardware. NEe /JPD80C42 Figure 4. STOP Mode Control Timing Oscillator starts operation. Oscillation stabilizing time OSC State count clock CPU AORSOOOH 49-0011498 • Release hardware STOP mode by returning Vee to +5V±10%. After STOP goes high, hold RESET low long enough to allow the oscillator to stabilize. Figure 5 shows how to control oscillator settling time with the STOP pin by adding an external capacitor to the RESET line. • Release the software STOP modes by applying a low level to the RESET pin to initiate oscillator operation. After sufficient oscillator stabilization time has passed, return RESET to a high level. Program execution will then begin at address O. Figure 5. STOP Mode Control Circuit Voo 4-316 The following table shows the states of the output pins during both hardware and software STOP mode. Table 1. Output Pins During STOP Mode State Output Pin STOPZ Instruction STOPH Instruction Hardware STOP High level High level Do-D7 P10-P17, P20-P27 High-Z High-Z High-Z High-Z PROG High level High .Ievel High level SYNC Low level Low level Low level Instruction Set Operation Code Mnemonic Operation Description D7 D6 Ds D4 D3 D2 D1 Do ADD A, # data (A), (C) -- (A) + data Add immediate the specified data to the accumulator. (2) 0 dl 0 d6 0 d5 0 d4 0 d3 0 d2 1 d1 1 do ADDA, Rr (A), (C) r = 0-7 (A) + (Rr) Add contents of designated register to the accumulator.(2) 0 1 1 0 1 r2 r1 ro ADDA,@Rr (A), (C) r = 0-1 (A) + ((Rr)) Add indirect the contents the data memory location to the accumulator. (2) 0 0 ro AD DC A, # data (A), (C) - (A) + (C) + data Add immediate with carry the specified data to the accumulator. (2) 0 dl 0 d6 0 d5 1 d4 0 d3 0 d2 1 d1 1 do ADDC A, Rr (A), (C) r = 0-7 (A) + (C) + (Rr) Add with carry the contents of the designated register to the accumulator.(2) 0 1 1 1 1 r2 r1 rO ADDCA,@Rr (A), (C) r = 0-1 (A) + (C) + ((Rr)) Add indirect with carry the contents of data memory location to the accumulator.(2) 0 0 0 ro ANLA, # data (A) - ANLA, Rr Accumulator 0 Logical AND specified immediate data with accumulator. 0 dl 1 d6 0 d5 1 d4 0 d3 0 d2 1 d1 1 do (A) - (A) AND (Rr) r = 0-7 Logical AND contents of deSignated register with accumulator. 0 1 0 1 1 r2 r1 ro ANLA, @Rr (A) - (A) AND ((Rr)) r = 0-1 Logical AND indirect the contents of data memory with accumulator. 0 0 0 ro CPLA (A) - Complement the contents of the accumulator. 0 0 CLRA (A)-O Clear the contents of the accumulator. 0 0 Decimal adjust the contents of the accumulator. (2) 0 (A) AND data NOT (A) DAA 0 Bytes ~~ 0 0 DECA (A)-(A)-1 Decrement by 1the accumulator's contents. 0 0 INCA (A)-(A)+1 Increment by 1the accumulator's contents. 0 0 ORLA, # data (A) - (A) OR data Logical OR specified immediate data with accumulator. 0 dl 1 d6 0 d5 0 d4 0 d3 0 d2 1 d1 1 do ORLA, Rr (A) - (A) OR (Rr); r = 0-7 Logical OR contents of designated register with accumulator. 0 0 0 1 r2 r1 ro ORLA, @Rr (A) - (A) OR ((Rr)) r = 0-1 Logical OR indirect the contents of data memory location with accumulator. 0 RLA (An + 1) - (An), (Ao) - (Al) n = 0-6 Rotate accumulator left by 1 bit without carry. RLC A (An + 1) - (An), (Ao)-(C) (C) - (Al) n = 0-6 Rotate accumulator left by 1 bit through carry. RRA (An) (Al) - Rotate accumulator right by 1 bit without carry. (An + 1), (AO) n = 0-6 Cycles 0 0 0 0 0 0 ro ,.a 1: CD 0 0 ... n N III ~ I ~ 1:: Instruction Set (cont) Operation Code :x> Mnemonic Operation Description D7 D6 Ds D4 D3 D2 D1 Do (An) - (An + 1), (A7)-(C) (C) - (AO) n = 0-6 Rotate accumulator right by 1 bit through carry. 0 "a C» . 0 N SWAP A (Ar A4 ) - (A3-AO) Swap the 2 4-bit nibbles in the accumulator. XRL A, # data (A) - Logical XOR specified immediate data with accumulator. 1 d7 XRLA, Rr (A) - (A) XOR (Rr) r = 0-7 Logical XOR contents of designated register with accumulator. 1 XRLA, @Rr (A) - (A) XOR((Rr)) r = 0-1 Logical XOR indirect the contents of data memory location with accumulator. (Rr)-(Rr)-1; IfRr* 0; (PCrPCo) - arao r = 0-7 Decrement the specified register and test contents. (PCrPCo) - arao if Bb = 1 (PC) - (PC) + 2 if Bb = 0 Jump to specified address if accumulator bit is set. (PCrPCo) - arao if C = 1 (PC) - (PC) + 2 if C = 0 Jump to specified address if carry flag is set. (PCrPCo) - arao if FO = 1 (PC) - (PC) + 2 if FO = 0 Jump to specified address if flag FOis set. (PCrPCo) - arao if F1 = 1 (PC) - (PC) + 2 if F1 = 0 Jump to specified address if flag F1 is set. (A) XOR data Bytes n Accumulator (cont) RRCA CYGles 0 1 d6 0 d5 1 d4 0 d3 0 d2 1 d1 1 do 0 1 1 r2 r1 ro 0 ro Branch DJNZ Rr, addr JBb addr JC addr JFO addr JF1 addr JMP addr (PC 10-PC S) - (arao) Direct jump to specified address within the 2K address block. JMPP@A (PCrPCo) - JNC addr (PCrPCo) - arao if C = 0 (PC) - (PC) + 2 if C = 1 Jump to specified address if carry flag is low. (PCrPCo) - arao if IBF = 0 (PC) - (PC) + 2 if IBF = 1 Jump to specified address if interrupt is low. JNTO addr (PCrPCo) - arao if TO = 0 (PC) - (PC) + 2 if TO = 1 Jump to specified address if test 0 is low. JNT1 addr (PCrPCo) - arao if T1 = 0 (PC) -(PC) + 2 if T1 = 1 Jump to specified address if test 1 is low. (PCrPCo) - arao if A * 0 (PC) - (PC) + 2 if A = 0 Jump to specified address if accumulator is non-zero. JNIBF addr JNZ addr ((A)) a7 a6 a5 a4 a3 r2 a2 r1 a1 ro ao b2 a7 b1 a6 bo a5 a4 a3 0 a2 a1 ao a7 a6 a5 a4 a3 a2 a1 0 ao a7 a6 1 a5 a4 0 a3 a2 1 a1 ao a2 a1 0 ao a2 a1 0 ao a7 a6 a5 a4 0 a3 a10 a7 ag a6 as a5 a4 a3 0 a3 a2 a1 0 ao Jump indirect to specified address with address page. 0 0 a7 a6 a5 0 a4 a7 a6 0 a5 a4 a3 a2 a1 aO a7 0 a6 a5 a4 0 a3 1 a2 a1 ao a6 0 a5 0 a4 0 a3 1 a2 1 a1 0 ao a6 0 a5 a1 0 ao 0 a7 a7 a4 a3 a2 .~ ~ Instruction Set (cont) Operation Code Mnemonic Operation Description D7 D6 Ds D4 D3 D2 D1 Do a7 a6 a5 0 a4 a3 a2 a1 ao a7 a6 a5 a4 a3 a2 a1 0 ao 0 a7 a6 a5 a4 a3 a2 a1 ao a7 a6 0 a5 a4 a3 a2 a1 ao a7 a6 a5 a4 a3 a2 a1 aO Branch (cont) JOBF addr (PCrPCo) + - arao if OBF = 1 Jump to specified address if output is low. (PC) + - (PC) + 2 if OBF = 0 (PCrPCo) + - arao if TF = 1 then reset TF (PC) + - (PC) + 2 if TF = 0 Jump to specified address if timer flag is set to 1. JTO addr (PCrPCo) + - arao if TO = 1 (PC) + - (PC) + 2 if TO = 0 Jump to specified address if test 0 is a 1. JT1 addr (PCrPCo) + - arao if T1 = 1 (PC) + - (PC) + 2 ifT1 = 0 Jump to specified address if test 1 is a 1. JZ addr (PCrPCo) + - arao if A = 0 (PC) - (PC) + 2 if A = 1 Jump to specified address if accumulator is O. JTF addr Cycles Bytes ~ ~ Control EN I Enable the interrupt. DIS I Disable the external interrupt input. 1 EN DMA Enables DMA handshake lines. 0 EN Flags Enables master interrupts. SEL RBO (BS)-O Select bank 0 (locations 0-7) of data memory. SEL RB1 (BS)-1 Select bank 1 (locations 24-31) of data memory. 0 0 1 1 0 0 0 0 HALT Initiates halt mode. STOPZ Sets CPU to software stop mode. (Port output high impedance) 0 0 STOP H Sets CPU to software stop mode. (Port output high level) 0 0 0 Data Moves MOV A, # data .j::Io. ~ co (A) -data Move immediate the specified data into the accumulator. = 0-7 = 0-1 MOV A, Rr (A) - (Rr); r MOVA,@Rr (A) - ((Rr)); r (PSW) MOVA, PSW (A) - MOV Rr, # data (Rr) - data;r MOV Rr, A (Rr) - (A); r "" 0-7 MOV@Rr,A ((Rr)) - (A); r MOV @ Rr, # data ((Rr)) - data; r MOV PSW, A (PSW)-(A) Move the contents of the deSignated registers into the accumulator. 0 0 d7 d6 1 d5 0 d4 0 d3 0 d2 1 d1 1 do 1 1 1 1 1 r2 r1 ro 0 ro Move indirect the contents of data memory location into the accumulator. Move contents of the program status word into the accumulator. = 0-7 = 0-1 = 0-1 Move immediate the specified data into the deSignated register. 0 1 d7 Move accumulator contents into the designated register. 0 d6 1 d5 0 Move indirect accumulator contents into data memory location. 1 d3 r2 d2 r1 d1 ro dO 0 1 r2 r1 rO 0 0 0 rO 1 d4 0 d3 0 d2 0 d1 ro do n 1 0 1 1 1 N 0 Move immediate the specified data into data memory. 1 d7 d6 1 d5 Move contents of accumulator into the program status word. 1 1 0 ~ 1 d4 0 ,.a 1:: CD 0 ~ ~ I U) Operation Code Mnemonic Description Operation D7 D6 D5 D4 D3 D2 D1 Do Move data in the current page into the accumulator. 0 0 0 Move program data in page 3 into the accumulator. 0 0 0 MOVPA,@A A- MOVP3A, @A (A)-((011,A)) XCH A, Rr (A)"""'--' (Rr); r Exchange the accumulator and designated register's contents. 0 0 0 XCH A, @Rr (A)"""'--' ((Rr)); r = 0-1 Exchange indirect contents of accumulator and location in data memory. 0 0 0 XCHDA, @Rr (A3-AO)"""'--' ((Rr}J-(Rr)o); r = 0-1 Exchange indirect 4-bit contents of accumulator and data memory. 0 0 CPLC (C) - Complement contents of carry bit. CPL FO (FO) - NOT (FO) Complement contents of flag FO. 0 CPL F1 (F1) -- NOT (F1) Complement contents of flag F1. 0 CLRC (C)-O Clear contents of carry bit to O. 0 CLR FO (FO)--O Clear contents of flag 0 to O. 0 CLR F1 (F1)--0 Clear contents of flag 1to O. 0 ANL Pp, # data (Pp) -- (Pp) AND data p = 1-2 Logical AND immediate specified data with designated port (1 or 2). 1 d7 0 d6 0 d5 1 d4 1 d3 0 d2 P1 d1 PO do ANLD Pp, A (Pp) - (Pp) AND (ATAO); p = 4-7 Logical AND contents of accumulator with designated port (4-7). 1 0 0 1 1 1 P1 Po IN A, DBB (A) -- (DBBIN); IBF -- 0 0 0 0 0 0 IN A, Pp (A) -- (Pp); p = 1-2 Input data from designated port (1-2) into accumulator. 0 MOVDA, Pp (A3-AO) -+'- (Pp); (ArA4) - 0 P = 4-7 Move contents of designated port (4-7) into accumulator. 0 = 0-7 r2 0 Cycles Bytes CD 0 ...n Data Moves (cont) ((PC10-PCS), (A)) ,.a 1:: Instruction Set (cont) I\) e N r1 rO 0 ro 0 ro Flags NOT (C) 0 0 0 0 0 0 0 0 0 Input I Output 0 0 0 0 0 0 MOVD Pp, A (Pp) -- (ATAO); P = 4-7 Move contents of accumulator to designated port (4-7). 0 MOV STS, A (STrST 4) -- (ArA4) Move contents of accumulator to designated port (4-7). 0 0 0 0 0 P1 P2 P1 Po P1 Po 0 0 ~ ~ Instruction Set (cont) Operation Code Mnemonic Operation Description ORLD Pp, A (Pp) - (Pp) OR (ATAO): P = 4-7 Logical OR contents of accumulator with designated port (4-7). ORL Pp, (Pp) - (Pp) OR data p = 1-2 Logical OR immediate specified data with designated port (1-2). # data OUT DBB, A (DBBOUT) - OUTL Pp, A (Pp) - D6 D5 D4 0 0 0 1 d7 0 d6 0 ds 0 d4 1 d3 0 0 0 0 0 D7 D3 D1 Do P1 Po 0 d2 P1 d1 Po do 0 1 0 0 P1 Po D2 Input! Output (cont) (A), OBF -1 (A); P = 1-2 Output contents of accumulator to designated port (1-2). 0 Cycles Bytes ~ ~ Registers = a-7 = 0-7 a DEC Rr (Rr) -- (Rr) - 1; r INC Rr (Rr) - INC@Rr ((Rr))-((Rr)) +1; r = 0-1 Increment indirect by 1the contents of data memory location. ((SP)) - (PC), (PSWrPSW4) (SP) - (SP) + 1 (PC10-PCO) -- a10-aO Call designated subroutine. RET (SP) (PC) - Return from subroutine without restoring program status word. RETR (SP) - (SP) - 1 (PC) - ((SP)) (PSWrPSW4) -- ((SP)) (Rr) + 1; r Decrement by 1 contents of designated register. 0 Increment by 1contents of designated register. r2 r1 ro 1 r2 r1 ro a a a 0 a a1Q a7 ag a6 as as a4 a3 a2 a a a a ro Subroutine CALLaddr (SP) - 1 ((SP)) a Return from subroutine restoring program status word. a a1 aO a Timer I Counter EN TCNTI Enable internal interrupt flag for timer / counter output. a 0 0 a DIS TCNTI Disable internal interrupt flag for timer / counter output. a a 1 0 1 Move contents of timer / counter into accumulator. a a 0 a 0 MOVA, T (A)-(T) MOVT, A (T)-(A) Move contents of accumulator into timer I counter. a 0 STOP TCNT Stop count for event counter. a a STRTCNT Start count for event counter. a 0 0 STRTT Start count for timer. 0 a a No operation performed. a a a 1:: Miscellaneous NOP a a 0 a a "a CD . 0 n ~ I (,.) N ~ I!!I t¥EC J..lPD80C42 Symbol Definitions Symbol Description A Accumulator AC addr Symbol Description SP Stack pointer Auxiliary carry flag T Timer Program memory address TF Timer flag Accumulator bit (b = 0-7) TO, T1 TESTO, TEST1 pin C Carry flag # Immediate data CNT Counter @ Indirect address data 8-bit data (x) Contents of register X DBB Data bus buffer FO, F1 ((x)) Flags 0, 1(C /0 flag) Contents of memory addressed by X Transfer direction, result Interrupt AND Logical product (logical AND) IBF Input buffer full flag OR Logical sum (logical OR) OBF Output buffer full flag XOR Exclusive OR PC Program counter Pp Port (p=1-20r4-7) PSW Program status word Rr Complement Register (r=0-1 or r=O-7) Operating Characteristics VOH1 vsI OH -150 .--------,-------,--------,,--------,--------, VOHVS IOH -800r---~~~----~--~r-~------~-------' l :I: 9 -100 ~------~------I--.....----I----------1I__----__t ~ <3 .:: .2' J: 1 -50~------1__------1__~~--1__~--~~----__t 'S o O~----~~----~------~------~--~--~ o Output High Voltage VOH (V) 4-322 0~----~------~----~------~-3--~1 o Output High Voltage VOHl (V) NEe JlPD80C42 Operating Characteristics (cont) IOH vs VOO (VOH1 = 2.4 V) -100 / / ~ J: ::I ~ -50 0 o J: 9 8~ -0.2 I-----+-----I---::;~~-+------l .c .2' J: ::I Co 'S o OL-________ _ _ _ _ _ _L __ _ _ _ _ _ Supply Voltage Voo (V) IOL vs VOO (VOL = 0.45 V) IOL vsVoo{Voo=4.5V) e- I] e- §. §. ...J 9 u ...J 9 C § 2 2 U ~ i .9 ! ...................... ! 0 0 0 1 2 0.5 0 IOO/lOD1 vs f{VOO = 5.5 V) 20 -- IOO/IOD1 vs f{VOO = 3 V) 10 1-1--1- H1- 10 §. --- 5 E "0 E f==Voo VOOJ5.5V L----F-r ~ .1 I ~ ~ f I--~ I-~ 1 10D1Typ. i..---- I E ,I 100 Max. _ .----r §. 5 I .1 3V e- 100TY~ ~ ~ 1001 Max. 1----+--.--- ~ Jl 10 1 Oscillation Frequency, f (MHz) (f=1S/tCY) - u 0.5 I-- 0.2 0.5 1.0 Output Low Voltage VOL (V) Supply Voltage Voo (V) e- I 2 2 Supply Voltage Voo (V) I ________ ~ ~ U l ~ 9 / V ~ -150 J: .--------..,---------r-------r--------, _ e- .ilo IOH vs VOO (VOH2 = VOO - 0.5 V) -0.4 L -200 15 0.1 0.5 r--- 1001 Max • ..i.--10D1Typ. I I Oscillation Frequency, f (MHz) (f=1S/tCY) 4-323 NEe J.lPD80C42 Operating Characteristics (cont) tpCI Max {j.IPD80C42)1 tACC Min (,lPD82C42) vs Voo tCyvsVOO 2~r-------~---------r--------.---------' 20 Operating Range 200 10 ~ ~ 100 I - - - - - - t - - - - - + - - - - - - "......=--+---=__o----I "", ~~------~--------~--------~------~ 2 1 2 Supply Voltage, Voo (V) 4-324 t--~T--+------+-----I------I Supply Voltage Voo (V) NEe NEe Electronics Inc. pPD8748H HIGH-SPEED, a-BIT, SINGLE-CHIP NMOS MICROCOMPUTER WITH UV EPROM Description Pin Configuration The J..tPD8748H is one of the J..tPD8048 family of singlechip 8-bit microcomputers. It is a high-speed NMOS processor that functions efficiently in control and arithmetic applications. The flexible instruction set allows you to directly set and reset individual data bits within the accumulator and the I/O ports. The variety of branch and table look-up instructions simplifies the implementation of standard logic functions. TO XTAL2 o o o o o o o o o o o o o o Low programming voltage Fully compatible with 8048/8748/8035 NMOS silicon gate technology Single +5V supply 2.5J..ts cycle time 96 instructions; 70% single byte Internal timer/event counter 64 x 8 byte RAM data memory Single interrupt level 271/0 lines Internal clock generator 8-level stack Compatible with 8080A/8085A peripherals Available in one-time-programmable plastic package Ordering Information Part Number Package Type pPD8748HC 40-Pin plastic DIP 11 MHz pPD8748HD 40-Pin cerdip with quartz window 11 MHz P2s EA P17 Ro P1s PSEN P1s ALE P13 DBo P12 DB1 P11 DB2 P10 DB3 VDO DB4 PROG' DBs P2a DBs P22 DB7 Vss -,.;;.~_ _.....,49·000468A Pin Identification No. Symbol Function 1,39 TO, T1 Testable inputs 0 and 1 2,3 XTAL1, XTAL2 Crystal inputs 4 RESET System reset input 5 SS Single step input 7 8 INT Interrupt input EA External access input RD Read strobe output PSEN Program store enable output 10 WR Write strobe output 11 ALE Address latch enable output 12-19 Do-D7 8-bit bidirectional port Vss Ground P20-P27 8-bit quasi bidirectional port 2 25 PROG Program pulse input 26 Voo Programming power supply P10-P17 8-bit quasibidirectional port 1 Vee Primary power supply 20 21-24, 35-38 27-34 Max Freq. of Operation P2s 55 WR The J..tPD8748H functions as a stand-alone microcomputer. You can expand its functions with standard 8080A/8085A peripherals and memories. It contains 1024 x 8 bits of ROM program memory, 64 x 8 bits of RAM data memory, 27 I/O lines, an 8-bit internal timer/event counter, oscillator, and clock circuitry. Features P27 RESET P24 The instruction set is made up of one- and two-byte instructions. Over 70% are single-byte instructions that require only one or two cycles. Over 50% require a single cycle. The J..tPD8748H differs from the J..tPD8048 in that it has 1K of on-board EPROM. This is useful in preproduction or prototype applications where the software is not complete or in system designs in quantities that do not require a mask ROM. See the J..tPD8048H/8035HL data sheet for more information. Vcc(+S) XTAL1 40 4-325 NEe JlPD8748H Pin Functions WR TO, T1 Acitve low write strobe output. WR pulses low when the processor performs a bus write. WR also functions as a write strobe for external data memory. (Testable inputs 0 and 1) TO uses the conditional transfer ·functionsJTO and JNTO; T1 uses JT1 and JNTt The ENTO CLK instruction allows TO to use the internal state clock (CLK). Use the STRT CNT instruction to use T1 as the timer/counter. During programming, you can use TO as a testable flag. XTAL1, XTAL2 (Crystal inputs) XTAL1 and XTAL2 are two sides of the crystal input for an external oscillator or frequency (non-TTL compatible VIH)· RESET (Reset) Active low input for processor initialization. RESET is also used for PROM programming verification and power down (non-TTL compatible VIH). SS (Single step) Active low single step input. SS and ALE allow the processor to single step through each instruction in program memory. INT (Interrupt) Active low interrupt input. INT starts an interrupt if an enable interrupt instruction has been executed. RESET disables the interrupt. You can test INT with a conditional jump instruction. EA (External access) A logic 1 at the EA input tells the processor to perform all program memory fetches from external memory. RO (Read strobe) Active low read strobe output. RO pulses low when the processor performs a bus read. RO also enables data onto the processor bus from a peripheral device and functions as a read strobe for external data memory. PSEN (Program store enable) Active low program store enable output. PSEN becomes active only during external memory fetches. (Write strobe) ALE (Address latch enable) Once each cycle, the falling edge of ALE latches the address for external memory or peripherals. You can also use ALE as a clock output. 00-07 (a-bit bidirectional bus) The RO and WR strobes allow you to perform synchronous reads and writes on this port. The contents of 00-07 can be latched in static mode. During an external memory fetch, 00-07 holds the LSBs of the program counter. PSEN controls the incoming addressed instruction. 00-07 also holds address and data information for external RAM data store instruction (controlled by ALE, RO, and WR). Vss (Ground) Ground. P20-P27 (Port 2) Port 2 is one of two 8-bit quasibidirectional ports. P20-P23 hold the four MSBs of the program counter for external data memory fetches; P24-P27 hold data. P20-P23 are also used as a 4-bit I/O bus for the /APD8243 I/O expander. PROG (Program pulse) Apply a + 18 V pulse to the PROG input to program the /AP08748H. You can also use PROG as an output strobe for the /AP08243. Voo (Programming power supply) VDD must be +21 V to program the /AP08748H or +5 V for the ROM and PROM versions for normal operation. P10-P17 (Port 1) Port 1 is one of two 8-bit quasibidirectional ports used for external data memory fetches. Vee (Power supply) Vee must be +5 V to program and operate the /APD8748H. 4-326 NEe JAPD8748H Block Diagram Power Supply I I t ! V DD Program Supply I t Vee Vss +5V Ground (Low Power Standby) Resident Program Memory ROM EPROM 1024x8 Register 2 Register 3 Register 4 RegisterS Register 6 Register 7 8-Level Stack (variable word length) IJ Optional Second Register Bank Data Store Resident Data Memory RAM (64x8) PROM/Expander Strobe 49-()()()469B Absolute Maximum Ratings DC Characteristics TA=25°C TA=OOCto +70°C, VCC=VDD= +5V±10%, VSS=OV Limits Operating temperature, Top Parameter Storage temperature, TST Output voltage, Vo -0.5Vto +7.0V -0.5Vto +7.0V Input voltage, VI Power supply voltages, Vee, voo -0.5Vto +7.0V Comment: Exposing the device to stresses above those listed in Absolute Maximum Ratings could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational sections of the specification. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Symbol Min Typ Max Unit Test Conditions Input low voltage VIL (except XTAL1, XTAL2, RESET) -0.5 0.8 V Inputlow voltage VIL1 (XTAL1, XTAL2, RESET) -0.5 0.6 V Input high voltage VIH (except XTAL1, XTAL2, RESET) 2.0 Vee V Input high voltage VIH1 (XTAL1, XTAL2, RESET) 3.8 Vee V VOL 0.45 V IOL =2.0mA Output low VOL1 voltage (RD, WR, PSEN, ALE) 0.45 V IOL =1.8mA Output low voltage (Bus) 4-327 NEe J.lPD8748H DC Characteristics (cont) AC Characteristics TA=OOCto +70 0 C, vec=voo= +5V±10%, vss=ov TA=OOCto +70°C, vce=Voo=+5V±10%, vss=ov Umlts Parameter Symbol Typ Test Conditions Limits Parameter Symbol Unit Test Conditions 150 ns (1,3) 70 ns (1,3) Min Max Unit VOl2 0.45 V 10l =1.0mA Read, Write, and Instruction FetchExternal Data and Program Memory Output low VOL3 voltage (all other outputs) 0.45 V 10L =1.6 mA ALE pulse width tll Address setup before ALE tAL Output low voltage (PROG) Output high voltage (Bus) Min l'yp Max 2.4 V 10H= -400/AA Address hold after ALE tLA 50 ns (1,3) Output hl9!! _ VOHl voltage (RD, WR, PSEN, ALE) 2.4 V 10H= -100MA Control pulse width (RD, WR) tCC1 480 ns (1,3) Output high VOH2 voltage (all other outputs) 2.4 V 10H= -40MA Control pulse width (PSEN) tCC2 350 ns (1,3) Data setup before tow WR 390 ns (1,3) Data hold after WR two 40 ns (1,2,3) Cycle time tCY 1.36 15.0 lAS Data hold after RD, PSEN tOR 0 110 ns VOH Input leakage III current (T1, INT) ±10 Input leakage ILil current (P10-P17, P20-P27, EA, 88) -500 Output leakage IlO current (Bus, TO, high impedance) ±10 Supply current (VOO) 100 Total supply current 100+ ICC MA Vss~ VI ~ VCC MA Vss+ 0.45 V ~VI~VCC MA Vss+ 0.45 V ~VI~VCC mA 85 110 mA Programming DC Characteristics TA = 25°C ±5°C, Vee = +5 V ±5%, Voo = +21 V ±O.5 V Limits Te.t Conditions (1,3) RD to data in tROl 330 ns (1,3) PSEN to data in tR02 190 ns (1,3) Address setup beforeWR tAW ns (1,3) Address setup before data in (RD) tAOl 730 ns (1,3) Address setup before data in (PSEN) tA02 460 ns (1,3) 300 Max Unit 140 ns (1,3) 21.5 V Address float to RD, WR tAFCl 20.5 10 ns (1,3) 4.75 5.25 V Address float to PSEN tAFC2 VOOl 200 ns (1,3) VPH 17.5 18.5 V ALE to RD, WR delay time tLAFCl PROG voltage high level 60 ns (1,3) VPl 4.0 VCC V ALE to PSEN delay time tLAFC2 PROG voltage low level ns (1,3) VEAH 17.5 18.5 V RD, WR, PROG to tCAl ALE delay time 50 EA program/ verify voltage high level PSEN to ALE delay time 320 ns (1,3) Parameter Symbol Min VOO voltage high level VOOH VOO voltage low level l'yp VOO high voltage 100 supply current 20.0 mA PROG high voltage supply current IpROG 1.0 mA EA high voltage supply current lEA 1.0 mA 4-328 tCA2 Note: (1) Control Output: CL = 80 pF, Bus Output: CL = 150 pF (2) Bus high impedance, load = 20 pF (3) Clock oscillation frequency, fosc = 11 MHz NEe ""PD8748H AC Characteristics {cont} Programming AC Characteristics {cont} TA=OOCto +70°C,Vcc=Voo= +5V±10%,Vss=OV TA = 25°C ± 5°, Voo = +21 V ± 0.5 V Parameter Symbol Min Limits Typ Max Unit Test Conditions Port 2 Timing Limits Parameter Symbol Min Typ Max Unit Port control setup tcp before PROG 100 ns (1,3) TESTO to data output delay(1) tDO 160 ns RESET pulse width to latch address 4tCY tpc (1,3) tww Port control hold after PROG Input data setup before PROG tpR 650 ns (1,3) VDD and PROG tr,tf rise and fall times 0.5 100 /is Input data hold after PROG tpF 140 ns (1,3) CPU cycle time tCY 4.0 15 /is tRE 4tCY 4tCY Output data setup tDP before PROG 400 ns (1,3) RESET setup before EA t Output data hold after PROG tpD 90 ns (1,3) Note: (1) If TESTO is high, too is triggered by RESETt. PROG pulse width tpp 700 ns (1,3) Port 2 I 1 0 data tpL setup before ALE 160 ns (1,3) Port 2 I 1 0 data setup after ALE 15 tLP 510 ALE to port output tpv time TO output cycle time tOPRR 270 ns (1,3) ns (1,3) ns (1,3) Note: (1) Control output: CL = 80 pF, bus output: CL = 150 pF (2) Bus high impedance, load = 20 pF (3) Clock oscillation frequency, fosc = 11 MHz Programming AC Characteristics TA = 25°C ± 5°, Voo = +21 V ± 0.5 V Limits Parameter Address setup before RESETt Symbol tAW Min Typ Max Unit 4tCY Test Conditions Test Conditions 4.0 /is 1 3.7 MHz Bus Timing Requirements Unit Symbol Timing Formula MinIMax tLL (7/30) tCY -170 Min ns tAL (2115) tCy-110 Min ns tLA (1/15) tCy-40 Min ns tCC1 (1/2) tCY- 200 Min ns tCC2 (2/5) tCY- 200 Min ns tDW (13/30) tCY - 200 Min ns tWD (1/15) tCY- 50 Min ns tDR (1/10)tCy-30 Max ns tRD1 (11113) tCy-170 Max ns tRD2 (4/15)tCy-170 Max ns tAW (1/3)tCy-150 Min ns tAD1 (7/10) tCY- 220 Max ns tAD2 (1/2)tCy-220 Max ns tAFC1 (2115) tCy-40 Min ns tAFC2 (1/30) tCy-40 Min ns tLAFC1 (1/5)tCy-75 Min ns tLAFC2 (1/10)tCy-75 Min ns Address hold after RESETt tWA Data Input setup before PROG-I- tDW 4tCY tCA1 (1/15)tCy-40 Min ns tCA2 (4/15) tCY- 40 Min ns Data input hold after PROG-I- tWD 4tCY tcp (2115) tCy-BO Min ns tpc (4/15) tCY- 200 Min ns tpR (17/30) tCY -120 Max ns tpF (1/10) tCY Max ns tDP (2/5) tCy-150 Min ns tpD (1/10)tCy-50 Min ns tpp (7/10) tCY- 250 Min ns tpL (4/ 15)tCY- 200 Min ns tLP (11 30)tCY- 30 Min ns tpv (3/10) tCy+100 Max ns tOPRR (1/5)tCY Min tCY (11 fosc) x 15 RESET hold after tpH verify 4tCY 4tCY VDD setup before tVDDW PROGt 1.0 VDD hold after PROG')' 1.0 tVDDH PROG pulse width tpw TESTO setup before program mode tTW TESTO hold after tWT program mode 50 4tCY 4tCY 60 ms ms ms ns /is 4-'329 Il NEe J.lPD8748H Timing Waveforms Read (External Data Memory) Instruction Fetch (External Program Memory) 49-000470A Write (External Data Memory) AC Test I/O Waveform £. 2.0 2_0 ~ 2.4V 0.45V ----"")(> 0.8 Test Points i' :::::::::x---'\ 0.8 49-000473A 49-000472A Port 11Port 2 2nd Cycle 1st Cycle ALE PSEN P2Q-P23 Output P24-P27 P1O-P17 Output Port ,2 Data (0-3) Port 2 (4-7), Port 0 (0-7) Data Expander Port Output Expander Port Input PROG 49·0004748 4-330 NEe J.lPD8748H Timing Waveforms (coni) Program/Verify EA VEAH Vee To Vll1 Vee RESET VIl1 Next Address P2Q-P21 49-0004756 Verify Next Data Out Valid TO, RESET Address (8-9) Valid X________N_~_t_A_dd_re_s_s_~_n_~ _______ Note: 1. When EA Is "low" or TO = 5 V, PROG should be In floating condlton [".18 V]. 2. tCY 41-15 can be achieved using 3.7 MHz frequency at the XAL 1 and XTAL2. 49-0004769 4-331 ~ I C".) C".) ,. Instruction Set 1: Operation Code I\) Mnemonic Operation Description D7 De Ds D4 D3 D2 D1 Do Accumulator ADD A, # data (A) - Add immediate the specified data to the accumulator. 0 d7 0 d6 0 d4 0 d3 0 d2 1 d1 1 do 1 0 d5 1 0 1 0 0 0 0 d2 (A) + data ADDA, Rr (A) - (A) + (Rr) for r = 0-7 Add contents of designated register to the accumulator. 0 ADDA,@Rr (A) - (A) + ((Rr)) for r = 0-1 Add indirect the contents of the data memory location to the accumulator. 0 ADDC A, # data (A) - Add immediate with carry the specified data to the accumulator. 0 d7 0 d6 0 d5 1 d4 0 d3 ADDC A, Rr (A) - (A) + (C) + (Rr) for r = 0-7 Add with carry the contents of the designated register to the accumulator. 0 1 1 1 1 ADDCA, @Rr (A) - (A) + (C) + ((Rr)) forr = 0-1 Add indirect with carry the contents of data memory location to the accumulator. 0 ANLA, # data (A) - Logical AND specified immediate data with accumulator. ANLA, Rr (A) - (A) AND (Rr) for r = 0-7 Logical AND contents of designated register with accumulator. 0 d7 0 ANLA, @Rr (A) - (A) AND ((Rr)) for r = 0-1 Logical AND indirect the contents of data memory with accumulator. 0 CPLA (A) -NOT (A) Complement the contents of the accumulator. 0 0 CLRA (A)-O Clear the contents of the accumulator. 0 0 1 0 0 Decimal adjust the contents of the accumulator. 0 1 0 1 0 0 0 (A) + (C) + data (A) AND data DAA 1 d6 0 d5 0 0 1 d4 0 d3 0 d2 1 1 0 C • F1 0 CD ~ CD :z: • 1 d1 1 do • • 1 d1 1 do 0 0 DECA (A)-(A)-1 Decrement by 1the accumulator's contents. 0 0 0 INCA (A)-(A)+1 Increment by 1the accumulator's contents. 0 0 0 1 0 ORLA, # data (A) - Logical OR specified immediate data with accumulator. 0 d7 1 d6 0 d5 0 d4 0 d3 ORLA, Rr (A) - (A) OR (Rr) for r = 0-7 Logical OR contents of designated register with accumulator. 0 1 0 0 1 ORLA, @Rr (A) - (A) OR ((Rr)) for r = 0-1 Logical OR indirect the contents of data memory location with accumulator. 0 0 0 0 RLA (AN + 1) - (AN); N = 0-6 (Ao) -(A7) Rotate accumulator left by 1 bit without carry. 0 0 RLCA (AN + 1) - (AN); N = 0-6 (Ao)-(C) (C)-(Al) Rotate accumulator left by 1bit through carry. RRA (AN) - (AN + 1); N = 0-6 (Al) -(Ao) Rotate accumulator right by 1bit without carry. 0 RRCA (AN) - (AN + 1); N = 0-6 (Al)-(C) (C)-(Ao) Rotate accumulator right by 1bit through carry. 0 (A) OR data Byte. • 0 0 Cycl•• Flag. AC FO 0 • 1 0 d2 1 d1 1 do 0 • 0 0 0 • ~ ~ Instruction Set (cont) Operation Code Mnemonic Operation Description D7 Swap the 2 4-bit nibbles in the accumulator. 0 Logical XOR specified immediate data with accumulator. 1 d7 1 Ds D4 D3 D2 D1 Do 0 0 0 1 1 1 1 d6 0 d5 1 d4 0 d3 0 d2 1 d1 1 do 1 0 1 0 0 a3 r a2 r a1 r aO a2 1 a2 a1 1 a1 0 a3 0 a3 1 a2 1 a2 1 a2 1 a1 1 a1 0 0 De Accumulator (cont) SWAP A (A4-A7) XRLA, # data (A) - XRLA, Rr (A) - (A) XOR (Rr) for r = 0-7 Logical XOR contents of designated register with accumulator. XRLA,@Rr (A) - (A) XOR ((Rr)) for r = 0-1 Logical XOR Indirect the contents of data memory location with accumulator. (Rr) - (Rr) - 1; r = 0-7 If (Rr) "* 0; (PCO-PC7) - addr Decrement the specified register and test contents. (PCO-PC7) - addr if Bb = 1 (PC) - (PC) + 2 if Bb = 0 Jump to specified address if accumulator bit is set. JC addr (PCO-PC7) - addr if C = 1 (PC) - (PC) + 2 if C = 0 Jump to specified address if carry flag is set. JFO addr (PCO-PC7) - addr if FO = 1 (PC) - (PC) + 2 if FO = 0 Jump to specified address if flag FO is set. JF1 addr (PCO-PC7) - addr if F1 = 1 (PC) - (PC) + 2 if F1 = 0 JMP addr ++ (Ao-A3) (A) XOR data Cycles Bytes C Flags AC FO F1 ~~ Branch DJNZ Rr, addr a6 a5 b2 a7 bO a5 1 a7 b1 a6 1 a6 1 a5 a4 1 a4 a7 0 a6 Jump to specified address if flag F1 is set. 0 a7 1 a6 1 a5 1 a5 1 a4 1 a4 (PCS-PC10) - (addrs-addr10) (PCO-PC7) - (addro-addr7) (PC11) -DBF Direct jump to specified address within the 2K address block. a10 a7 ag a6 as a5 0 a4 JMPP@A (PCO-PC7) - Jump indirect to specified address with address page. JNC addr (PCO-PC7) - addr if C = 0 (PC) - (PC) + 2 if C = 1 Jump to specified address if carry flag is low. 0 a3 JNI addr (PCO-PC7) - addr if I = 0 (PC) - (PC) + 2 if I = 1 JNTO addr JBbaddr ~ I w w w 0 a4 a7 ((A)) 0 a3 0 a3 0 a3 a7 a6 a5 0 a4 Jump to specified address if interrupt is low. 1 a7 0 a6 0 a5 0 a4 0 a3 (PCO-PC7) - addr if TO = 0 (PC) - (PC) + 2 if TO = 1 Jump to specified address if test 0 is low. 0 a7 0 a6 1 a5 0 a4 0 a3 JNT1 addr (PCO-PC?) - addr ifT1 = 0 (PC) - (PC) + 2 ifT1 = 1 Jump to specified address if test 1is low. (PCO-PC7) - addr if A = 0 (PC) - (PC) + 2 if A = 1 Jump to specified address if accumulator is non-zero. 1 a6 0 a6 0 as JNZaddr 0 a7 1 a? 0 a5 0 a4 1 a4 0 a3 0 a3 JTF addr (PCO-PC7) - addr if TF = 1 (PC) - (PC) + 2 if TF = 0 Jump to specified address if timer flag is set to 1. 0 a? 0 a6 0 a5 1 a4 0 a3 JTO addr (PCo-PC?) - addr if TO = 1 (PC) - (PC) + 2 if TO = 0 Jump to specified address if test 0 is a 1. 0 a7 0 a6 1 a5 1 ~ 0 a3 (PCo-PC?) - addr ifT1 = 1 (PC) - (PC) + 2 ifT1 = 0 Jump to specified address if test 1 is a 1. 0 a7 1 a6 0 a5 ~ JT1 addr II 1 0 a3 0 a1 0 ao 0 ao 0 ao 0 ao 0 ao 0 aO a2 1 a2 1 a2 a1 1 a1 1 a1 0 aO 1 a2 1 a2 1 a2 1 a1 1 a1 0 ao 0 ao 1 a1 0 ao 1 a2 1 a2 1 a1 0 ao 1 a1 0 ao 0 aO 1:: 11 D CD ~ CD :.:: .J:>. I (.) (.) 1: Instruction Set (cont) Operation Code .J:>. Mnemonic Operation Description (PCO-PC7) - addr if A = 0 (PC) - (PC) + 2 if A = 1 Jump to specified address if accumulator is O. D7 De Ds D4 D3 D2 D1 Do a7 a6 0 a5 0 a4 0 a3 a2 a1 0 aO 0 0 Cycles Bytes Branch (cont) JZ addr EN I Enable the external interrupt input. 0 Disable the external interrupt input. 0 ENTO ClK Enable the clock output pin TO. 0 SEl MBO 0 0 F1 "a CD ;: CD Z Control DIS I C Flags AC FO 0 0 (DBF) -0 Select bank 0 (locations 0-2047) of program memory. SEl MB1 (DBF)-1 Select bank 1(locations 2048-4095) of program memory. SELRBO (BS)-O Select bank 0 (locations 0-7) of data memory. SEl RB1 (BS)-1 Select bank 1(locations 24-31) of data memory. 0 MOV A,.# data (A) -data Move immediate the specified data into the accumulator. MOVA, Rr (A) - (Rr); r = 0-7 Move the contents of the designated registers into the accumulator. MOVA,@Rr (A) - ((Rr)); r = 0-1 Move indirect the contents of data memory location into the accumulator. MOVA, PSW (A)-(PSW) Move contents of the program status word into the accumulator. MOV Rr, # data (Rr) - data; r = 0-7 Move immediate the specified data into the deSignated register. 1 d7 0 d6 MOV Rr, A (Rr) - (A); r = 0-7 Move accumulator contents into the deSignated register. 1 0 MOV@Rr,A ({Rr)) - (A); r = 0-1 Move indirect accumulator contents into data memory location. MOV@Rr, # data ({Rr)) - data; r = 0-1 Move immediate the specified data into data memory. 0 0 1 1 0 0 0 0 0 0 11 0 Data Moves 0 d7 1 0 d6 1 1 d5 1 0 d3 1 1 0 1 d7 0 0 0 1 d5 1 1 d4 1 d3 r d2 0 1 0 0 1 d4 1 0 d3 0 d2 0 1 0 0 0 0 0 0 0 0 0 0 0 (PSW)-{A) Move contents of accumulator into the program status word. MOVPA,@A (PCO-PC7) - (A) (A)-{{PC)) Move data in the current page into the accumulator. 0 MOVP3A,@A (PCO-PC7) - (A) (PCS-PC10) - 011 (A)-((PC)) Move program data in page 3 into the accumulator. MOVXA,@R (A) - ({Rr)); r = 0-1 Move indirect the contents of external data memory into the accumulator. 0 0 MOVX@R,A ({Rr)) - (A); r = 0-1 Move indirect the contents of the accumulator into external data memory. 0 0 XCH A, Rr (A) ++ (Rr); r = 0-7 0 d5 0 0 1 d1 1 do r d1 r do 0 d1 1 1 do 0 0 MOVPSW, A 0 0 d2 0 0 d6 1 Exchange the accumulator and deSignated register's contents. 0 d4 ~ 0 Instruction Set (cont) Operation Code Mnemonic Operation Data Moves (cont) XCHA, @Rr (A) XCHDA,@Rr ++ Description ((Rr)); r (Ao-A3) r = 0-1 ++ = 0-1 ((Rr))o-((Rr))s; D7 D6 Exchange indirect contents of accumulator and location in data memory. Exchange indirect 4-bit contents of accumulator and data memory. Ds 0 0 D4 D3 D2 0 0 0 0 Dl DO Cycles Bytes C Flags AC FO F1 0 ~ ~ Flags CPLC (C) -NOT(C) Complement contents of carry bit. CPL FO (FO) - NOT (FO) Complement contents of flag Fa. CPL F1 (F1) - NOT (F1) Complement contents of flag F1. CLRC (C)-O Clear contents of carry bit to O. 0 1 0 CLR Fa (FO)-a Clear contents of flag 0 to O. 0 0 0 CLR F1 (F1)-0 Clear contents of flag 1to O. 0 0 Input I Output ANL BUS, # data (bus) - I 0 • • 1 d7 a d6 0 d5 1 d4 1 d3 0 d2 a dl 0 do (Pp) - (Pp) AND data p = 1-2 logical AND immediate specified data with designated port (1 or 2). 1 d7 0 d6 0 d5 1 d4 1 d3 0 d2 P dl P do ANLD Pp, A (Pp) - (Pp) AND (Ao-A3); p = 4-7 logical AND contents of accumulator with designated port (4-7). 1 a 0 1 1 P P INA, Pp (A) - Input data from designated port (1-2) into accumulator. 0 0 0 0 0 INS A, BUS (A) -(bus) Input strobed bus data into accumulator. a 0 0 0 MOVDA, Pp (Ao-A3) - (Pp); P = 4-7 (A4-A7) - 0 Move contents of designated port (4-7) into accumulator. 0 0 0 ANL Pp, ~ 0 Logical AND immediate specified data with contents of bus. # data MOVD Pp, A (Pp) - ORLBUS, # data (bus) - ORlD Pp, A ORL Pp, (bus) AND data • 0 0 (Pp); p = 1-2 (Ao-A3); P = 4-7 Move contents of accumulator to designated port (4-7). 0 1 1 1 1 Logical OR immediate specified data with contents of bus. 1 d7 0 d6 0 d5 0 d4 1 d3 0 d2 (Pp) - (Pp) OR (Ao-A3); P = 4-7 logical OR contents of accumulator with designated port (4-7). 1 0 0 a 1 # data (Pp) - (Pp) OR data p = 1-2 Logical OR immediate specified data with designated port (1-2). 1 d7 0 d6 0 d5 a d4 1 d3 0 d2 OUTL BUS, A (bus) -(A) Output contents of accumulator onto bus. 0 0 0 0 0 0 OUTL Pp,A (Pp) - Output contents of accumulator to designated port (1-2). a 0 1 1 1 0 (bus) OR data (A); P = 1-2 0 0 dl 0 do p P P dl P do 0 1:: Registers DEC Rr (Rr) (Rr) - (Rr) + 1; r INC Rr (Rr) - (Rr) INC@Rr ((Rr))-((Rr)) r = 0-1 = = 0-7 = 0-7 Decrement by 1contents of designated register. 1 1 0 Increment by 1 contents of designated register. 0 0 0 1 1; Increment indirect by 1the contents of data memory location. 0 0 0 0 1; r = "a 0 CD 0 ~ CD VJ VJ ::z: 01 II ~ I (J.) (J.) 0) 1:: Instruction Set (cont) Operation Code Mnemonic Operation Description Dr De Ds D4 D3 ((SP)) -- (PC) (PSW4-PSW7), (SP) -- (SP) + 1 (PCs-PC1Q) -- (addrS-addr1Q) (PCO-PC7) -- (addro-addr7) (PC11) -- DBF Call designated subroutine. a10 a7 a9 a6 as a5 a4 RET (SP) -- (SP) = 1 (PC) -- ((SP)) Return from subroutine without restoring program status word. a a a RETR (SP) -- (SP) = 1 (PC) -- ((SP)) (PSW4-PSW7) -- ((SP)) Return from subroutine restoring program status word. a D2 D1 Do a3 a2 a1 aO a a a a Bytes C F1 "a CD ~ Subroutine CALLaddr Cycles Flags AC FO a CD :z Timer I Counter EN TCNTI Enable internal interrupt flag for timer I counter output. DIS TCNTI Disable internal interrupt flag for timer I counter output. a Move contents of timer I counter into accumulator. 0 MOVA, T (A)--(T) MOVT, A (T)-(A) a a a 1 1 a 1 1 0 0 0 0 0 0 0 0 Move contents of accumulator into timer I counter. 0 STOP TCNT Stop count for event counter. 0 1 a STRT CNT Start count for event counter. 0 0 0 STRTT Start count for timer. 0 0 0 No operation performed. 0 0 Miscellaneous NOP 0 0 0 0 0 0 0 Note: (1) Instruction code designations rand p form the binary representation of the registers and ports involved. (2) The dot under the appropriate flag bit indicates that its content is subject to change by the instruction it appears in. (3) References to the address and data are specified in bytes 2 and/or 1 of the instruction. (4) Numerical subscripts appearing in the function column reference the specific bits affected. ~ ~ NEe J.lPD8748H Instruction Set Symbol Definitions Symbol Description A Accumulator AC Auxiliary carry flag Symbol Pp PSW Description Port designator (p=1, 2 or 4-7) Program status word Program memory address (12 bits) Rr Bb Bit designator (b = 0-7) SP Stack pointer BS Bank switch T Timer Timer flag addr BUS Bus port TF C Carry flag TO, T1 Register designator (r=O, 1or 0-7) Testable flags 0, 1 ClK Clock signal x External RAM CNT Event counter # Prefix for immediate data Nibble designator (4 bits) @ Prefix for indirect address data Number or expression (8 bits) $ Program counter's current value DBF Memory bank flip-flop (x) Contents of external RAM location 0 FO, F1 Flags 0, 1 I Interrupt "I n-page" operation designator ((x)) Contents of memory location addressed by the contents of external RAM location Replaced by 4-337 J.lPD8748H 4-338 NEe NEe 16.BIT, SINGLE·CHIP MICROCOMPUTERS 5-1 D 16-BIT, SINGLE-CHIP MICROCOMPUTERS NEe Section 5 - is-Bit, Single-Chip Microcomputers pPD70320/322 CMOS Microcomputers (V25™) .... . . . . . . . . . . . . . . . . • . . . . . . . .. 5-3 V25 is a trademark of NEC Corporation. 5-2 NEe NEe Electronics Inc. pPD70320/322 (V25™) 16·BIT,SINGLE·CHIP CMOS MICROCOMPUTERS PRELIMINARY INFORMATION Description The pPD70320 and pPD70322 (V25™) are high-performance, 16-bit, single-chip microcomputers with an 8-bit external data bus. They combine the instruction set of the pPD70108 (V20TM) with many of the on-chip peripherals in NEC's 78000 series. The pPD70320/322 processor has software compatibility with the V20 (and subsequently the 8086/8088), faster memory accessing, superior interrupt processing ability, and enhanced control of internal peripherals. A variety of on-chip components, including 16K bytes of mask programmable ROM (pPD70322 only), 256 bytes of RAM, serial and parallel I/O, comparator port lines, timers, and a DMA controller make the pPD70320/ 322 a sophisticated microsystem. Eight banks of registers are mapped into internal RAM below an additional 256-byte special function register (SFR) area that is used to control on-chip peripherals. I nternal RAM and the SFR area are together relocatable to anywhere in the 1M-byte address space. This maintains compatibility with existing system memory maps. D DRAM refresh pulse output D Two standby modes -HALT -STOP D I nternal clock generator - 5-MHz maximum frequency (O.4-ps instruction cycle time) (target specification: 8 MHz) D Programmable wait state generation D Separate address/data bus interface D CMOS technology Ordering Information Part Number Package Type pPD70320G-12 80-pin plastic miniflat pPD70322G-12 80-pin plastic miniflat pPD70320L 84-pin PLCC (plastic lead led chip carrier) pPD70322L B4-pin PLCC (plastic lead led chip carrier) Pin Configurations 80-Pin Plastic Minlflat The pPD70322 is the mask ROM version and the pPD70320 is the ROM-less version. Features D Complete single-chip microcomputer -16-bit ALU - 16K bytes of ROM (pPD70322) - 256 bytes of RAM D Four-byte instruction prefetch queue D 24 parallel 1/0 lines D Eight analog comparator inputs with programmable threshold level D Two independent DMA channels D Two 16-bit timers D Programmable time base counter D Two full-duplex UARTs D Programmable interrupt controller - Eight priority levels - Five external, 12 internal sources - Register bank (eight) context switching - Eight macro service function channels POs PO,fCLKOUT PT2 P17/REAOY P14/1NT/POLL P13/1NTP2/1NTAK P1,/iN"FPO AS P10/NMI AS P26/ HI:"i5AK AS P2s/TC1 Ag P23/DMARQl V20 and V25 are trademarks of NEC Corporation. 83-003943A 5-3 NEe pPD70320/322 (V25) Pin Configurations (cont) Pin Identification Symbol B4-Pin PLCC P07/ClKOUT Address bus outputs 00- 07 Bidirectional data bus X1, X2 Crystal connection terminals RESET Reset input VDD Positive power supply voltage Vss Ground VTH Threshold voltage input P16/ SCKO PTO-PT7 .Comparator port input lines. P14 /INT/POLl. EA External access P17/REAOY P13/1NTP2/1NTAK P23/0 MAR01 :::::::II~~I~~~IIY!II~Y MREQ Memory request output POO-P07 I/O port 0 CLKOUT System clock output NMI Nonmaskable interrupt input P11-P1~ Parallel input port lines/ External interrupt input lines P1311NTP211NTAK Parallel input port line/ External interrupt input line/ Interrupt acknowledge output P14"NT/POLL I/O port 111nterrupt request input! I/O poll input P151T0UT I/O port 1 bit/Timer out P16/SCKO I/O port 1 bit/Serial clock out P17/REAOY I/O port 1 bit/Ready input P20/OMARQO I/O port 2 bit/OMA request 0 P21/DMAARO I/O port 2 bit/DMA acknowledge 0 P22ITCO I/O port 2 bitlDMA terminal count 0 P23/DMARQ1 I/O port 2/DMA request 1 P24IDMAAK1 I/O port 2/DMA acknowledge 1 P25/TC1 I/O port2IDMAterminai count 1 iNml-1 ceQ. ~ f 83-003960A 5-4 Function Ao-A19 P26/HLDAK I/O port 2/Hold acknowledge output P27/HLDRQ I/O port 2/Hold request input 10STB I/O strobe output MSTB Memory strobe output R/W Read/Write output REFRQ Refresh pulse output RxDO Serial receive data 0 input CTSO Clear to send 0 input TxDO Serial transmit data 0 output RxD1 Serial receive data 1 input CTS1 Clear to send 1 input Tx01 Serial transmit data 1 output NEe pPD70320/322 (V25) Pin Functions P10-P17 [Port 1 ] Ao-A19 [Address Bus] P1 rP13 are the input only lines of parallel port 1. P10 and P14-P17 are the remaining lines of parallel port 1, each line individually programmable as either an input or output. Ao-A19 is the 20-bit address bus used to access all external devices. 00-07 [Data Bus] 0 0-0 7 is the a-bit external data bus. RESET [Reset] A low on RESET resets the CPU and all on-chip peripherals. RESET can also release the standby modes. After RESET returns high, program execution begins from address FFFFOH. X1, X2 [Crystal Connections] The internal clock generator requires an external crystal across these terminals. P20-P27 [Port 2] P20-P27 are the lines of port 2, an a-bit bidirectional 1/0 port. The lines can also be used as control signals for theon-chip OMA controller. CLKOUT [System Clock] This is the internal system clock. It can be used to synchronize external devices to the CPU. NMI [Nonmaskable Interrupt] Two positive power supply pins (VDD) reduce internal noise. NMI cannot be masked through software and is typically used for emergency processing. Upon execution, the interrupt starting address is obtained from interrupt . vector number 2. NMI can release the standby modes and can be programmed to be either rising or falling edge triggered. Vss [Ground] INTPO-INTP2 [External Interrupt] Two ground connections (Vss) reduce internal noise. INTPO-INTP2 allow external devices to generate 1/0 requests (interrupts). Each can be programmed to be rising or falling edge triggered. Voo [Power Supply] VTH [Threshold Voltage] The comparator port uses this pin to determine the analog reference point. The actual threshold to each comparator line can be VTH or VTH x n/16, where n = 1 to 15. INTAK [Interrupt Acknowledge] After INT is asserted, the CPU will respond with INTAK (active low) to inform external devices thatthe interrupt request has been granted. EA [External Access] If this pin is low on reset, the pP070322 will execute program code from external memory instead of from internal ROM. INT [Interrupt Request] INT is a maskable, active-low, vectored interrupt request input. After assertion, external hardware must provide the interrupt vector number. MREQ [Memory Request] MREQ (active low) informs external memory that the current bus cycle is a memory access bus cycle. PTO-PT7 [Comparator Port] PTO-PT7 are inputs to the analog comparator port. POO·P07 [Port 0] POO-P07 are the lines of port 0, an a-bit bidirectional parallel 1/0 port. POLL [Poll] Upon execution of the POLL intruction, the CPU checks the status of this pin and, if low, program execution continues. If high, the CPU will check the level of the line every five clock cycles until it is low. POLL can be used to synchronize program execution to external conditions. TOUT [Timer Out] TOUT is the square-wave output signal from the internal timer. D NEe pPD70320/322 (V25) SCKO, TxOn, CTSn, RxDn [Serial Clock Out, Serial Transmit Data, Clear to Send, Serial R.ceive Data] An HLOAK output (active low) informs external devices that the CPU has released the system bus. The two on-chip serial ports use these lines for data transmission, receiving, and handshaking. 10STB [I/O Strobe] READY [Ready] 10STB is asserted during read and write operations to external 1/0. After READY is asserted (active low), the CPU will synchronize and insert at least two wait states into a read or write cycle to memory or 1/0. This allows the processor to accommodate devices whose access times are longer than normal' execution allows. OMARan, OMAAKn, TCn [OMA Request, DMA Acknowledge, Terminal Count] These are the control signals to and from the on-chip DMA controller. HLDRQ [Hold Request] . The HLDRQ input (active low) is used by external devices to request the CPU to release the system bus to an external bus master. The following lines go into a high-impedance state ~ternal 4.7-kO pull-up resistors: Ao-A19, 00-07, MREQ; R/W, and MSTB. HLDAK [Hold Acknowledge] MSTB [Memory Strobe] MSTB (active low) is asserted during read and write operations to external memory. R/W [Read/Write] An R/W output allows external hardware to determine if the current operation is a read or write cycle. It can also control the direction of bidirectional buffers. REFRQ [Refresh] This active-low output pulse can refresh nonstatic RAM. It can be programmed to meet system specifications and is internally synchronized so that refresh cycles do not interfere with normal CPU operation. NEe pPD70320/322 (V25) Block Diagram .---,,---.../1 P20/DMARQO Staging Staging Latch Latch Ao-AI9 P2,/!mAAirn P2:Vm P2a1DMARQI P24/DMAAKI p2siTC1 TxDO RxDO CTSO TxD' RxDl RESET HLDAK/P26 PloiNMI HLDRQ/P27 Pl,/INTPO READY/PI7 P12/1NTPI MSTB PlaiINTP2/1NTAK P14/1NT/POLI Instruction Decoder Micro Sequencer Xl- Micro ROM POLLIINT/P1 4 Clock Generator X2 - 00-07 TOUT/PIS iiEFRO CLKOUTIP07 ~-7 NEe pPD70320/322 (V25) Fu nctiona. Description AW Word multiplication/division, word I/O, data conversion AL Byte multiplication/division, byte I/O, BCD rotation, data conversion, translation AH Byte multiplication/division BW Translation Architectural Enhancements The following features enable the pPD70320/322 to perform high-speed execution of instructions: • Dual data bus • 16-/32-bit temporary registers/shifters (TA, TB, TA +TB) • 16-bit loop counter (LC) • Program counter (PC) and prefetch pointer (PFP) Dual Data Bus. The pPD70320/322 has two internal 16-bit data buses: the main data bus and a subdata bus. This reduces the processing time required for addition/ subtraction, and logical comparison instructions by one third over single bus systems. The dual data bus method allows two operands to be fetched simultaneously from the general purpose registers and transferred to the ALU. 16-/32-Bit Temporary Registers/Shifters. The 16-bit temporary registers/shifters (TA, TB) allow high-speed execution of multiplication/ division and shift/rotation instructions. By using the temporary registers/shifters, the pPD70320/322 can execute multiplication/division instructions about four times faster than with the microprogramming method. Loop Counter [LC]. The dedicated hardware loop counter counts the number of loops for string operations and the number of shifts performed for multiple bit shift/rotation instructions. The loop counter works with internal dedicated shifters to speed the processing of multiplication/division instructions. Program Counter and Prefetch Pointer [PC and PFP]. The hardware PC addresses the memory location of the instruction to be executed next. The hardware PFP addresses the program memory location to be accessed next. Several clocks are saved for branch, call, return, and break instructions compared with processors having only one instruction pointer. Register Set Figure 1 shows the pPD70320/322 has eight banks of registers functionally mapped into internal RAM. Each bank contains general purpose registers, pOinter and index registers, segment registers, and save areas. General Purpose Registers [AW, BW, CW, OW]. There are four 16-bit general purpose registers that can each serve as individual 16-bit registers or two independent 8-bit registers (AH, AL, BH, BL, CH, CL, DH, DL). The following instructions usethegeneral purpose registers for default: CW Loop control branch, repeat prefix CL Shift instructions, rotation instructions, BCD operations OW Word multiplication/division, indirect addressing I/O Pointers [SP, BP] and Index Registers [IX, IV]. These registers are used as 16-bit base pointers or index registers in based addressing, indexed addressing, and based indexed addressing. The registers are used as default registers under the following conditions: SP Stack operations IX Block transfer (source), BCD string operations IY Block transfer (destination), BCD string operations Segment Registers. The segment registers divide the 1M-byte address space into 64K-byte blocks. Each segment register functions as a base address to a block; the effective address is an offset from that base. Physical addresses are generated by shifting the associatedsegment register left four binary digits and then adding the effective address. The segment registers are: Segment Register Defau It Offset PS (Program segment) SS (Stack segment) DSO (Data segment-O) DS1 (Data segment-1) PC SP, Effective address IX, Effective address IY, Effective address Save Registers. SAVE PC and SAVE PSW are used as save areas during register bank context switching. The VECTOR PC save location contains the effective address of the interrupt service routine when register bank switching is used to ~ervice interrupts. Program Counter [PC]. The PC is a 16-bit binary counter that contains the offset address from the program segment ofthe next instruction to be executed. It is incremented every time an instruction is received from the queue. It is loaded with a new location whenever a branch, call, return, break, or interrupt is executed. NEe pPD70320/322 (V25) Processor Status Word [PSW]. The PSW contains the following status and control flags. 15 PSW I 1 I RB2 I RB1 RBO s I AC I 8 I DIR V 7 I I z F1 Status Flags V Overflow bit S Sign Z Zero AC Auxiliary carry P Parity CY Carry FO P IE BRK I BRKI I CY I o I Control Flags DIR Direction of string processing IE Interrupt enable BRK Break (after every instruction) RBn Register bank select BRKI I/O trap enable (see software interrupts) FO, F1 General-purpose user flags (accessed through the flag special function register) Memory Map The pPD70320/322 has a 20-bit address bus that can directly access 1M bytes of memory. Figure 2 shows that the 16K bytes of internal ROM (pPD70322 only) are located at the top of the address space from FCOOOH to FFFFFH. Figure 1. Internal Data Area. Figure 2 shows the internal data area (IDA) is a 256-byte internal RAM area followed consecutively by a 256-byte special function register (SFR) area. All the data and control registers for onchip peripherals and 110 are mapped into the SFR area and accessed as RAM. The IDA is dynamically relocatable in 4K-byte increments by changing the value in the internal data base (lOB) register. Whatever value is in this register will be assigned as the uppermost eight bits of the IDA address. On reset, the internal data base register is set to FFH which maps the IDA into the internal ROM space. However, since the pPD70322 has a separate bus to internal ROM, this does not present a problem. When these address spaces overlap, program code cannot be executed from the IDA and internal ROM locations cannot be accessed as data. You can select any of the eight possible register banks which occupy the entire internal RAM space. Multiple register bank selection allows faster interrupt processing and facilitates mUltitasking. In larger-scale systems where internal RAM is not required for data memory, the internal RAM can be removed completely from the address space and dedicated entirely to registers and. control functions such as macro service and DMA channels. Clearing the RAMEN bit in the processor control register achieves this. When the RAMEN bit iscleared, internal RAM can only be accessed by register addressing or internal control processes. Register Banks in Internal RAM AW XXEFEH XXFOOH Bank 7 CW CH 32 bytes ow Data Register AH XXEEOH BW XXEF8H Bank 6 SP 6H BP XXECOH Index Register 4H IX 2H IV XXEFOH DS1 ~ EH PS Segment Register CH SS XXE40H AH DSO Bank1 XXEE8H Save PC 6H XXE20H SavePSW 4H BankO XXEOOH Vector PC 2H XXEEOH Reserved Internal RAM 49-0013428 5-9 5 NEe JiPD70320/322 (V25) Figure 2. Memory Map FFFFFH FFFFFH Internal ROM XXFFFH - FCOOOH / ------, XXEOOH XXDFFH Moves a string from port PREPARE Allocates an area for a stack frame and copies previous frame pointers DISPOSE Frees the current stack frame on a procedure exit /" Special Function Registers (256 Bytes) Internal RAM (256 Bytes) 1--; m~mory OUTM " to an I/O -; 1// External Area Unique Instructions The pPD70320/322 has the following unique instructions. Instruction Function OOOOOH OOOOOH 1 Mbyte Memory Space 49-001343A Instruction Set The pPD70320/322 instruction set is fully compatible with the V20 native mode instruction set. The V20 instruction set is a superset of the pPDBOB6/BOBB instruction set with different execution times and mnemonics. The pPD70320/322 does not support the V20 BOBO emulation mode. All of the instructions pertaining to this have been deleted from the pPD70320/322 instruction set. INS I nserts bit field EXT Extracts bit field ADD4S Performs packed BCD string addition SUB4S Performs packed BCD string subtraction CMP4S Performs packed BCD string comparison ROL4 Rotates BCD digit left ROR4 Rotates BCD digit right TEST1 Tests bit SET1 Sets bit CLR1 Clears bit Enhanced Instructions NOT1 Complements bit In addition to the pPDBOB6/BB instructions, the pPD70320/322 has the following enhanced instructions. BTCLR Tests bit; if true, clear and branch REPC Repeat while carry set REPNC Repeat while carry cleared Instruction Function PUSH imm Pushes immediate data onto stack PUSH R Pushes eight general registers onto stack POPR Pops eight general registers from stack MUL imm Executes 16-bit multiply of register or memory contents by immediate data Shifts/rotates register or memory by SHL immB SHR immB immediate value SHRA immB ROL immB ROR immB ROLC immB RORC immB CHKIND Checks array index against designated boundaries INM Moves a string from an I/O port to memory 5-10 Variable Length Bit Field Operation Instructions Bit fields are a variable length data structure that can range in length from 1 to 16 bits. The pPD70320/322 supports two separate operations on bit fields: insertion (INS) and extraction (EXT). There are no restrictions on the position of the bit field in memory. Separate segment, byte offset, and bit offset registers are used for insertion and extraction. Following the execution of these instructions, both the byte offset and bit offset are left pointing to the start of the next bit field, ready for the next operation. Bit field operation instructions are powerful and flexible and are therefore highly effective for graphics, high level languages, and packing/ unpacking applications. Insert bit field copies the bit field of specified length from the AW register to the bit field addressed by DS1 :IY:regB (B-bit general purpose register). The bit field length can be located in any byte register or ttiEC pPD70320/322 (V25) supplied as immediate data. Following execution, both the IY and reg8 are updated to point to the start of the next bit field. rotation instructions perform rotation of a single BCD digit in the lower half of the AL register through the register or the memory operand. Bit field extraction copies· the bit field of specified length from the bit field addressed by DSO:IX:reg8 to the AW register. If the length of the bit field is less than 16 bits, the bit field is right justified with a zero fill. The bit field length can be located in any byte register or supplied as immediate data. Following execution; both IX and reg8 are updated to point to the start of the next bit field. Figures 3 and 4 show bit field insertion and bit field extraction. Repeat Prefixes Packed BCD Two new repeat prefixes (REPC, REPNC) allow conditional block transfer instructions to use the state of the CY flag as the termination condition. This allows inequalities to be used when working on ordered data, thus increasing performance when searching and sorting algorithms. Packed BCD instructions process packed BCD data either as strings (ADD4S, SUB4S, CMP4S) or byte format operands (ROR4, ROL4). Packed BCD strings may be one to 254 digits in length. The two BCD Figure 3. Bit Manipulation Instructions The J.lPD70320/322 has five unique bit manipulation instructions. The ability to test, set, clear, or complement a single bit in a register or memory operand increases code readability as well as performance over the logical operations traditionally used to manipulate bit data. This feature further enhances control over on-chip peripherals. Bit Field Insertion Bit length 15 o AW Bit offset Memory Byte boundary Segment base (OS1) 83-000106B Figure 4. Bit Field Extraction Bit length Bit offset Byte boundary Segment base (OSO) 83-000107B ii-11 tttfEC pPD70320/322 (V25) Besides the V20 instruction set; the pPD70320/322 has the 'four additional instructions described in table 1. Table 1. Additionallnstructlons Instruction Function BTCLR Var,imm3, short label Bit test and if true, clear and branch; otherwise, no operation STOP (no operand) Power down instruction, stops oscillator RETRBI (no operand) Return from register bank context switch interrupt FINT (no operand) Finished interrupt. After completion of a hardware interrupt or I/O request, this instruction must be used to reset the current priority bit in the in-service priority register (ISPR). The ISPR is an 8-bit register; each·of its bits, PRo-PR7, correspond to each of the eight possible 110 request priorities, respectively. The ISPR keeps track of the priority of the interrupt currently being serviced by setting the appropriate bit. The ISPR format is shown below. When executing software written for another system, it is better to implementliO with on-chip peripherals to reduce external hardware requirements. However, since pPD70320/322 internal peripherals are memory mapped, software conversion could be difficult. The I/O trap feature 'allows easy conversion from external peripheralsto on-chip peripherals. Interrupt Vector Table. Table 3 shows the starting addresses of interrupt processing routines. The table begins at physical address OH, which is outside the internal ROM space. Therefore, if utilizing an interrupt processing routine within the interrupt vector table, external memory will be required. By servicing interrupts via the macro service function or context switching, you can avoid the addition of external memory. Each interrupt vector is four bytes. Upon execution of a vectored interrupt, the lower addressed word is transferred to the PC, and the upper word to the PS. However, the byte order within each word is reversed so that the low-order bytes of the vector address become the most significant bytes in the PC and PS. Hardware Interrupt Configuration. There are two types of hardware interrupt requests: standard vectored interrupts and I/O requests. Interrupt Structure The pPD70320/322 can service interrupts generated through hardware and software. Table 2 shows the various software interrupts. Table 2. Software Interrupts Interrupt Description Divide error The CPU will trap if a divide error occurs as the result of a DlV or DlVU instruction, Single step The interrupt is generated after every instruction if the BRK bit in the PSW is set. Overflow By using the BRKV instruction, an interrupt can be generated as the result of an overflow. Interrupt instructions The BRK 3 and BRK imm8 instructions can generate interrupts. Array bounds The CHKIND instruction will generate an interrupt if specified array bounds have been exceeded. Escape trap The CPU will trap on an FP01,2 instruction to allow software to emulate the floating point processor. 1/0 trap 5-12 If the 1/0 trap bit in the PSW is set, a trap will be generated on every IN or OUT instruction. Software can then provide an updated peripheral address. This feature allows software interchangeabilty between different systems. After a vectored interrupt, the PC and PSW are saved , on the stack and the program transfers to the location indicated by the interrupt vector contents. When an interrupt is triggered by NMI, the CPU automatically traps to vector number two. When an interrupt is triggered by INTR, external devices must provide the interrupt vector number. I/O requests are a group of interrupts, generated externally or from on-chip peripherals. The internal interrupt controller controls I/O requests. I/O requests can be serviced (by the macro service function) without transferring program control to an interrupt routine. The following are the 14 possible I/O requests. Group Source External interrupt request INTPO, INTP1, INTP2 DMA controller INTDO,INTD1 Timer INTTUO, INTTU1, INTTU2 Serial interface INTSERO,INTSRO, INTSTO,INTSER1, INTSR1,INTST1 NEe Table 3. Address (HexJ 00 pPD70320/322 (V25) Interrupt Vectors Vector No. 0 Assigned Use Divide error 04 1 Break flag 04 Break flag 08 NMI BRK3 instruction OC 3 10 4 BRKV instruction 14 5 CHKIND instruction 18 6 General purpose 1C 7 Escape trap General purpose 20 24-3C 9-15 Reserved 40-4C 15-19 General purpose 50 20 110 trap 54-5C 21-23 General purpose 60 24 Reserved 64-6C 25-27 General purpose 70 28 INTSERO 74 29 INTSRO 78 30 INTSTO 7C 31 General purpose 80 32 INTSER1 84 33 INTSR1 88 34 INTST1 General purpose 8C 35 90 36 INTDO 94 37 INTD1 98-9C 38,39 General purpose AO 40 INTPO A4 41 INTP1 A8 42 INTP2 AC 43 General purpose BO 44 INTTUO B4 45 INTTU1 B8 46 INTTU2 BC 47 INTTB OCO-3FF 48-255 General purpose Arbitration of I/O requests is resolved internally by the interrupt controller. The priority of each I/O request is individually programmable from 0 to 7 (0 is the highest priority). You can process these interrupts in one of three modes: standard vectored interrupt, register bank context switching, or macro service function. When standard vectored interrupt mode is selected, I/O requests are serviced as previously described vectored interrupts. The CPU automatically traps to the vector location shown in the interrupt vector table. Register bank context switching allows I/O requests to be processed rapidly by switching register banks. After an interrupt, the new register bank selected is that which has the same register banknumber (0-7) as the priority of the interrupt to be serviced. The PC and PSW are automatically stored in the save areas of the new register bank and the address of the interrupt routine is loaded from the vector PC storage location in the new register bank. After interrupt processing, execution of the RETRBI (return from register bank interrupt) returns control to the former register bank and restores the former PC and PSW. Figures 5 and 6 show register bank context switching and registerbank return. The macro service function (MSF) acts as an internal DMA controller between on-chip peripherals (special function registers) and memory. The MSF greatly reduces the software overhead and CPU time that other processors would require for register save processing, register returns, and other handling associated with interrupt processing. If the MSF is selected for a particular I/O request, each time the request is received, a byte or word of data will be transferred between the SFR and memory without interrupting the CPU. Each time a request occurs, the macro service counter is decremented. When the counter reaches zero, an interrupt is generated. The MSF also has a character search option. When selected, every byte transferred will be compared to an 8-bit search character and an interrupt will be generated if a match occu rs or if the macro service cou nter cou nts out. There are eight eight-byte macro service channels mapped into internal RAM from XXEOOH to XXE3FH. Figure 7 shows the components of each channel. I) ttlEC pPD70320/322 (V25) Figure 5. Register Sank Context Switching RB Figure 7. Macro Service Channels RB' AW AW CW CW ow DW BW BW SP SP c> BP f Upto3FH XXE08H MSS M.S_ Channel 0 MSP BP IIIII SCHR IV OS1 DS1 SFRP MSC PS P5 IX IV IX SS SS OSO OSO r- Save PC SaveP ~~ Lr MSS = Macro service segment MSP = Macro service pointer SCHR = Search character 5avePC SFRP = Special function,register pointer 5avePSW Vector PC Vector PC Reserved Reserved XXEOOH MSC '" Macro service counter r- 49-001345A On-Chip Peripherals PC Timer Unit PSW 49-001344A Figure 6. Register Sank Return RB RB' AW AW. , CW CW ow ow BW BW SP 5P BP BP V IX IV IY DS1 P5 PS 5S 55 DSO D50 -'ruSave PC Vector PC .-- Save PC f-- 5avePSW . Reserved 4 L..L Interval Timer Mode. In this mode, TMO/TM1 are decremented. by the selected input clock and, after counting out, the registers are automatically reloaded from the modulus registers and counting continues. Each time TM1 counts out, 1/0 requests are generated through TF1 and TF2 (Timer Flags 1,2). When TMO counts out, an 1/0 request is generated through TFO. The timer out signal can be used as a square wave output whose half-cycle is equal to the count time. There are two selectable input clocks (SCLK: system clock = fosc/2, fosc = 10 MHz). IX OS1 Vector PC Reserved PC PSW 49-001346A 5-14 The jlP070320/322 (figure 8) has two programmable 16-bit interval timers (TMO, TM1) with variable input clock frequencies on-chip. Each of the two 16-bit timer registers has an associated 16-bit modulus register (MOO, M01). The timer operates in interval timer mode or one-shot mode. Clock Timer Resolution Full Count SCLK/6 SCLK/128 1.2 jlS 25.6 jlS 78.643 ms 1.678 s One-Shot Mode. In the one-shot mode, TMO and MOO operate as independent one-shot timers. Starting with a preset value, each is decremented to zero. At zero, counting ceases and an 1/0 request is generated by TFO orTF1. One-shot mode allows two selectable input clocks (fosc = 10 MHz). Clock Timer Resolution Full Count SCLK/12 SCLK/128 2.4 jlS 25.6 jlS 157.283 ms 1.678 s t-IEC pPD70320/322 (V25) Time Base Counter The pPD70320/70322 has a free-running long base cou nter that can be used to generate period ic interrupts at lengthy intervals. The counter has three selectable input clocks: SCLK, SCLK/2, and SCLK/4. You can select one of the following four taps (outputs) from the counter as an interrupt source: i/1024, i/8192, i/64K, or i/1 M ("i" is the selected input clock). The TBC interrupt is unlike the other on-chip peripheral I/O requests in that it is preset as a level seven vectored interrupt. Macro service and register bank switching cannot be used to service this interrupt. Figure 9 is the time base counter block diagram. modes. Refresh cycles are automatically timed to REFRQ following read/write cycles to minimize the effect on system throughput. The following shows the REFRQ pin level in relation to bits 4 (RFEN) and 7 (RELV) of the refresh mode register. -- -- RELV REFRQ Level 0 0 1 1 RFEN 0 1 0 1 0 1 0 Refresh pulse output Figure 9. Time Base Counter Block Diagram Refresh Controller The pPD70320/322 has an on-chip refresh controller for dynamic and pseudostatic RAM mass storage memories; The refresh controller generates refresh addresses and refresh pulses. It inserts refresh cycles between the normal CPU bus cycles according to refresh specifications. i i i 1024 8192 64K i 1M 49-00134BA The refresh controller outputs a 9-bit refresh address on address bits Ao-As during the refresh bus cycle. Address bits As-A19 are all 1'so The 9-:bit refresh address is automatically incremented at every refresh timing for 512 row addresses. The 8-bit refresh mode (RFM) register specifies the refresh operation and allows refresh during both CPU HALT and HOLD Figure 8. Timer Unit Block Diagram ,--------------------- "I I I I I I lose/ 6 fose/ 128 I I I fose/ 12 fose/ 128 I I lose/ 6 fose/ 12 fose/ 128 L -- -- - o Output Control - r---~TO TI ------------ __ Internal Bus I -.J ~ 49-0013478 ttiEC pPD70320/322 (V25) Serial Interface ThepPD70320/322 has two full-duplex UARTs, channel o and channel 1. Each serial port channel has a transmit line (TxDn), a receive line (RxDn), and a clear to send (CTSn). input line for handshaking. Communication is synchronized by a start bit, and you can program the ports for even, odd, or no parity, character lengths of seven or eight bits, and one or two stop bits. The pPD70320/322 has dedicated baud rate generators for each serial channel. This eliminates the need to obligate the on-chip timers. The baud rate generator allows a wide range of data transfer rates (up to 1 Mbps). This includes all of the standard baud rates without being restricted by the value of the particular external crystal. Each baud rate generator has an 8-bit baud rate generator (BRGn) data register which functions as a prescaler to a programmable input clock selected by the serial communication control (SCCn) register. Together these must be set to generate a frequency that is equivalent to the desired baud rate. In addition to the asynchronous mode, channel 0 has a synchronous I/O interface mode. In this mode, each bit of data transferred is synchronized to a serial clock (SCKO). This is the same as the NEG pCOM75 and pCOM87 series, and allows easy interfacing to these devices. Figure 10 shows the serial interface block diagram. DMA Controller The pPD70320/322 has a two-channel, on-chip DMA controller. This allows rapid data transfer between memory and auxiliary storage devices. The DMA controller supports four modes of operation, two for memory-to-memory transfers and two for transfers between I/O and memory. Memory-to-Memory Transfers. In single-step mode, the falling edge of DMARQ causes DMA transfer cycles and CPU bus cycles to alternate as long as DMARQ is low or until the prescribed number of DMA transfers has occurred. Interrupts can be accepted while in this mode. In burst mode, DMA transfer cycles continue until the DMA terminal counter decrements to zero. Software can also initiate memory-to-memory transfers. Transfers Between I/O and Memory. In single-transfer mode, one DMA transfer occurs after each falling edge of DMARQ. After the transfer, the bus is returned to the CPU. In demand release mode, the falling edge of i5fViARQ enables DMA cycles, which continue as long as DMARQ is low. 5-16 In all modes, the TC (terminal count) output pin will pulse low and a DMA completion I/O request will be generated after the predetermined number of DMA cycles has been completed. Figure 11 shows the DMA channel area in memory. The bottom of internal RAM contains all of the necessary address information for the designated DMA channels. The DMA channel mnemonics are as follows: TC SAR. SARH DAR DARH Terminal counter Source address register Source address register high Destination address register Destination address register high The DMA controller generates physical source addresses by offsetting SARH 12 bits to the left and then adding the SAR The same procedure is also used to generate physical destination addresses. You can program the controller to increment or decrement source and/or destination addresses independently during DMA transfers. Parallel Ports The pPD70320/322 has three 8-bit parallel I/O ports: PO, P1, and P2. SFR locations·can access these ports. The port lines are individually programmable as inputs or outputs. Many of the port lines have dual functions as port or control lines. The analog comparator port (PT) compares each input line to a reference voltage. The reference voltage is programmable to be the VREF input or VREF x n/16, where n 1 to 15. = Programmable Wait State Generation You can generate wait states internally to further reduce the necessity for external hardware. Insertion of these wait states allows direct interface to devices whose access times cannot meet the CPU read/write timing requirements. When using this function, the entire 1M-byte memory address space is divided into 128K-blocks. Each block, with the exception of the uppermost block, can be programmed for zero, one, or two wait states, or for external control (READY signal). The appropriate bits in the wait control word (WTC) control wait state generation. Programming the bits corresponding to the top 128K-byte block of memory, will actually set the wait state conditions for the entire I/O address space. Figure 12 shows the memory map for programmable wait state generation. NEe Figure 10. pPD70320/322 (V25) Serial Interface Block Diagram CHO TxDO Baud Rate Generator RxDO SCKO CTSO CH1 TxD1 Baud Rate Generator RxD1 CTS1 49-0013498 Figure 11. Figure 12. DMA Channels TC1 SARH1 I DARH1 Programmable Wait State Generation FFFFFH Cannot set EOOOOH 128K DAR1 COOOOH SARHO SAR1 Channel 1 TCO Channel 0 I l.. I" 40000H~ DARHO 20000H 128K OH 128K DARO SARO XXEOOH 1--16 B i t S - l 49-001351A 49-001350A 5-17 NEe pPD70320/322 (V25 ) Low-Power Standby Special Function Registers There are two low-power standby modes: HALT and STOP. Software causes the processor to enter either mode. Table 4 shows the special function register mnemonic, type, address, reset value, and function. Figures 13 through 32 show the register formats. HALT Mode. In the HALT mode, the processor is inactive and the chip consumes much less power than when operational. The external oscillator remains functional and all peripherals are active. Internal status and output port line conditions are maintained. Any unmasked interrupt or 1/0 request can release this mode. In the EI state, I/O requests subsequently will be processed as vectored interrupts. In the DI state, program execution is restarted with the instruction following the HALT instruction. STOP Mode. The STOP mode allows the largest power reduction while maintaining RAM. The oscillator is stopped, halting all internal peripherals. All internal status is maintained. Only a reset or NMI can release this mode. A standby flag in the SFR area is set by rises in the supply voltage. The flag is reset when its status is read. Its status is maintained during normal operation and standby. Use the standby flag to determine whether program execution is returning from standby orfrom a cold start. 5-18 Table 4. Special Function Registers Name Byte/ Word Address PO B xxFOOH PMO B xxF01H FFH Port mode 0 PMCO B xxF02H OOH Port mode control 0 P1 B xx F08H PM1 B xxF09H FFH Port mode 1 PMC1 B xxFOAH OOH Port mode control 1 P2 B xxF10H PM2 B xxF11H FFH PMC2 B xxF12H OOH PT B xxF38H PMT Reset Value Function Port 0 Port 1 Port 2 Port mode 2 Port mode control 2 Port T B xxF3BH OOH Port mode T INTM B xxF40H OOH Interrupt mode EMSO B xxF44H External interrupt macro service 0 EMS1 B xxF45H External interrupt macro service 1 EMS2 B xxF46H External interrupt macro service 2 EXICO B xxF4CH 47H External 110 request control 0 EXIC1 B xxF4DH 47H External 1/0 request control 1 EXIC2 B xxF4EH 47H External 1/0 request control 2 NEe Table 4. Special Function Registers (cont) Function Name Byte/ Word Address xxF60H Receive buffer 0 MDOL B xxF82H Modulo register 0 low B xxF62H Transfer buffer 0 MDOH B xxF83H Modulo register 0 high B xxF65H Serial receive macro service 0 TM1 W xxF88H Timer register 1 TM1L B xxF88H Timer register 1 low Serial transmit macro service 1 TM1H B xxF89H Timer register 1 high MD1 W xxF8AH Modulo register 1 MD1L B xxF8AH Modulo register 1 low MD1H B xxF8BH TMCO B xxF90H OOH OOH Name Byte/ Word Mdress RXBO B TXBO SRMSO STMS1 pPD70320/322 (V25) B Reset Value xxF66H SCMO B xxF68H OOH Serial communication mode 0 SCCO B xxF69H OOH Serial communication control 0 Reset Value Function Modulo register 1 high Timer control 0 BRGO B xxF6AH OOH Baud rate generator 0 TMC1 B xxF91H SCEO B xxF6BH OOH Serial communication error 0 TMMSO B xxF94H Timer macro service 0 SEICO B xxF6CH 47H Serial error 1/0 request control 0 TMMS1 B xxF95H Timer macro service 1 TMMS2 B xxF96H SRICO B xxF6DH 47H Serial receive 110 request control 0 TMICO B xxF9CH 47H Timer 110 request control 0 TMIC1 B xxF9DH 47H Timer 1/0 request control 1 STICO B xxF6EH 47H Serial transmit 110 request control 0 TMIC2 B xxF9EH 47H Timer 1/0 request control 2 DMACO B xxFAOH DMAMO B xxFA1H OOH DMA mode 0 OMAC1 B xxFA2H OMAM1 B xxFA3H OOH OMA mode 1 RXB1 B xxF70H Receive buffer 1 Timer control 1 Timer macro service 2 DMA control 0 TXB1 B xxF72H Transmit buffer 1 SRMS1 B xxF75H Serial receive macro service 1 STMS1 B xxF76H Serial transmit macro service 1 DlCO B xxFACH 47H DMA 110 request control 0 SCM1 B xxF78H OOH Serial communication mode 1 DlCI B xxFADH 47H OMA 110 request control 1 RFM B xxFE1H 10H Refresh mode SCC1 B xxF79H OOH Serial communication control 1 TBIC B xxFECH 47H Time base 1/0 request control BRG1 B xxF7AH OOH Baud rate generator register 1 WTC W xxFE8H FFH Wait control WTCL B xxFE8H FFH Wait control low WTCH B xxFE9H FFH Wait control high Flag register DMA control 1 SCE1 B xxF7BH OOH Serial communication error 0 SEIC1 B xxF7CH 47H Serial error 1/0 request control 1 PSWL B xxFEAH OOH PRC B xxFEBH 4EH SB B xxFEOH IDB B FFFFFH SRIC1 B xxF70H 47H Serial receive 110 request control 1 STlC1 B xxF7EH 47H Serial transmit 110 request control 1 TMO W xxF80H Timer register 0 TMOL B xxF80H Timer register 0 low TMOH B xxF81H Timer register 0 high MOO W xxF82H Modulo register 0 Processor control Standby control FFH Internal data area base 5-19 IJ NEe pPD70320/322 (V25) Figure 13. Port Mode Registers 0, 1, and 2. Output Port Mode Input ,Port Mode 49·0013778 Figure 14. Port Mode Control 0 Register Port Mode c!>Out 49·0013788 Figure 15. Port Mode Control 1 Register I CP17 1 CP16 I CP1s 1 CP14 I CP13 I CP12 I CP11 I CP10 L X NMllnput X INTEO/P11 Input X INTElIP12 Input 0 INTE2/P13 Input 1 INTA Port/Control Bit Selection 0 P141/0/Polllnput 1 INTRlnpU1 0 P1sl/O 1 TO Output 0 P161/O 1 SCKOOutput 0 P17110 1 Ready InpU1 49·0013798 5-20 NEe Figure 16. pPD70320/322 (V25) Port Mode Control 2 Register I CP27 I CP26 I CP2s I CP24 1 CP23 1 CP22 1 CP21 I CP20 I Port/Control Bit Selection 0 110 Port 1 DRQOlnput 0 1/0 Port 1 DACKO Output 0 1/0 Port 1 TCOOutput 0 1/0 Port 1 DRQllnput 0 1/0 Port 1 DACKl Output 0 1/0 Port 1 TCOOutput 0 1/0 Port 1 Hold Input 0 1/0 Port 1 HLDAOutput 49-0013808 Figure 17. Port Mode T Register I 0 I 0 I 0 I 0 1 MPT3 I 1 MPT2 1 MPTl 1 MPTo I Comparator Port Threshold Selection '0/,. 0 0 0 0 VTHX 0 0 0 1 VTHxV,. VTHxo/,. 0 0 1 0 0 0 1 1 VTHX'lI,. 0 1 0 0 VTHXo/,. VTHXo/'. 0 1 0 1 0 1 1 0 VTHX'V'. 0 1 1 1 VTH X 7/,. 1 0 0 0 VTHX'V'. 1 0 0 1 VTHlIo/'· 1 0 1 0 VTH X '0/,. 1 0 1 1 VTH X 1 1 0 0 VTHX''II,. 1 1 0 1 VTHX ''Y,. 1 1 1 0 VTHx'o/,. 1 1 1 1 VTHx''1,. 'V,. 49-0013818 5-21 NEe pPD70320/322 (V25) Figure 18. Interrupt Mode Register INTM: I I I I I I I 1 0 0 ES2 0 ESl ES NMI 0 ESO I Trigger Mode 0 Failing Edge 1 Rising Edge 0 Failing Edge 1 Rising or Falling Edge 0 Falling Edge 1 Rising or Falling Edge 0 Falling Edge 1 Rising Edge 49·00'3828 Figure 19. I/O Request Control Registers I I I I I I I I MSI xxlCn: FLAG iNT MASK 0 ENCS PR2 PRl PRo PR 2 1 0 Priority o 0 0 Highest 111 Lowest ENCS Context Switch 0 Disable 1 Enable MS/INT Macro Service or Interrupt Interrupt 0 1 Macro Service xxMKn Interrupt Mask 0 Mask Open: Interrupts Enabled 1 Mask Closed: Interrupts Disabled xxFn Interrupt Request Flag 0 No Request 1 Interrupt Requested 49·00'3838 Figure 20. Macro Service Control Registers xxMSn: I MSM2 I MSMl I MSMO I DIR I 0 I CH2 I CHl I CHo 2 1 0 Macro Service Channel o 0 0 Channel 0 1 1 1 Channel 7 Transfer Direction 0 From Memory to SFR 1 From SFR to Memory Transfer Mode 0 0 0 0 0 1 1 00[1] 8·bit Transfer 16·bit Transfer 8-blt Transfer with Character Search Note: (1] All other combinations are reserved 49·00'3848 5-22 NEe Figure 21. pPD70320/322 (V25) Serial Communication Mode Register SCM: I I TxRDY RxE I PEN EP L-,..---I I I CL I SL I MOl MOO L·~·oo Mode o o 0 1 Asynchronous 1 X Reserved 1 1 Stop Bit 2 2 Stop Bits 0 7 Bits 1 BBlts 1/0 Interface Stop Bit Control Character Length PEN EP Parity Control 0 X 1 0 Even Parity 1 1 Odd Parity 0 Disable 1 Enable 0 Disable 1 Enable Disable Parity Receiver Control Transmitter Control Figure 22. Serial Communication Error Registers l RXD I 0 I 0 I 0 I 0 I ERP I ERF I ERO L Overrun Error Flag 1 1 Overrun has occurred o1 Overrun has not occurred Framing Error 1 1 Framing error has occurred o1 Framing error has not occurred Parity Error 1 I o1 Parity error has occurred No parity error has occurred RxD Line Status 11 RxDLine=l o1 RxDLine = 0 49-001386A 5-23 NEe pPD70320/322 (V25) Figure 23. I Timer Control 0 Register TSO I TCKLO I MSO 1 MCCK 1 ENTO I ALV I MOD1 I MODO L·:~ MODO 1 Timer Mode 0 Interval Timer Mode 1 One-shot Timer Mode X Reserved Active Level of TOUT 0 1 TOUT inltiallellel I TOUT Initial level =0 =1 Enable Timer Out 1 I I 0 I SCLK/12 1 f SCLK/128 0 Disable Timer Out Enable Timer Out One-shot Mode Modulus Register Clock Modulus Start (One-shot Mode) Stop Modulus Register Count 0 1 I Start Modulus Register Count TM Register Clock Select MOD1 MODO TCLK 0 0 0 SCLK/61ntervai Timer Mode 0 0 1 SCLK/128 0 1 0 SCLK/12 One-shot Mode 0 1 1 SCLK/128 Timer Start Bit 0 1 I StopTimer Start Timer 49-0013878 Figure 24. Serial Communication Control Register SCC: 1 0 J 0 J 0 1 0 .1 PRS3 1 PRS2 PRS1 I PRSo PRS 321 0 Note: [1] All other combinations after 1000 are illegal Input clock for baud rate generator 0000 SCLK 0001 SCLK/2 0010 SCLK/4 001 1 SCLK/8 01 00 SCLK/16 0101 SCLK/32 01 1 0 SCLK/64 01 1 1 SCLK/128 1 000 SCLK/256[1] 49-0013888 5-24 NEe Figure 25. pPD70320/322 (V25) Timer Control 1 Register I TSI I TCLKI I I 0 I 0 I 0 I 0 I 0 0 1 TMI Clock Select oI SCLK/6 1 SCLK/128 I Timer Start Bit oI Stop TMI counting I Start TMI counting 1 49-001389B Figure 26. I DMA Mode Registers MD2 I I MOl I MOo I I W lEOMA I TDMA I I 0 0 I TriggerDMA oI 1 No Effect I Trigger DMA EnabieDMA oI Disable DMA 1 I Enable DMA X I Word/byte No Effect DMAMode MD2 MOl MOo 0 0 0 Single Step (Mem to Mem) 0 0' 1 Demand Release (I/O to Mem) 0 1 0 Demand Release (Mem to I/O) 0 1 1 Reserved 1 0 0 Burst Mode (Mem to Mem) 1 0 1 Single Transfer (I/O to Mem) 1 1 0 Single Transfer (Mem to I/O) 1 1 1 Reserved 49-001390B Figure 27. DMA Control Register I 0 I 0 I POI PDO L,-J I 0 I 0 I PSI I L PSO PSI "'"=""""~,,,~,,""".,_'Co""'" PSO 0 0 Source Address not Incremented/Decremented 0 1 Increment Source Address ( + 1) 1 0 Decrement Source Address ( -1) 1 1 Source Address not Incremented/Decremented ! i i I Destination Address Increment/Decrement Control POI PD~ 0 0 Destination Address not Incremented/Decremented 0 1 Increment Destination Address ( + 1) 1 0 Decrement Destination Address (-1) 1 1 Destination Address not Incremented/Decremented 49-0013918 5-25 NEe pPD70320/322 (V25) Figure 28. Refresh Mode Register I RELV I HLDRF I HLTRF L RFEN J RWl RWO L-r--1 I RFTl RFTO Refresh Cycle Speed RFTl RFTO Refresh 0 0 16/SCLK ~ 0 1 32/SCLK 1 0 64/SCLK 1 128/SCLK 1 Refresh Cycle Wait States RWl RWO 0 0 Number Of Walt States 0 0 1 1 1 0 2 1 1 2 Refresh Enable -- 0 Refresh Pin - RFLV 1 Refresh Enabled Halt Refresh Enable 0 1 1 No Effect .1 Refresh During CPU HALT Hold Refresh Enable 1 Hold Refresh Disabled 1 Refresh During Hold 0 1 Refresh level output to RFSH pin when RFEN = 0 49-001392B Figure 29. Time Base 110 Request Control Register I TBF 1 TBMK J 0 I 1 0 1 0 1 1 I 1 I 1 Time Base Interrupt Mask Bit o 1 Unmasked 1 1 Masked Time Base Interrupt Flag o 1 No Interrupt Generated 1 I Interrupt Generated 49-001393B Figure 30. Walt Control Register Walt Control low 100 101 BLK61 I 4 BLK60 I BLK51 BLK50 BLK40 BLK41 Wait Control High I BlK31 I BlK30 1 BLK21 I BlK20 I I BlKll 1 BLK10 1 BlKOl .I BlKOO BlKnl BlKnO 0 0 Mode 0 1 1 Wait 1 0 2 Wait 1 1 External Ready Control No Walts 49-001394B 5-26 NEe Figure 31. pPD70320/322 (V25) Processor Control Register I 0 I RAMEN I 0 I 0 I TB1 TBO L-....--J I PLK1 I PLKO L-- System Clock Select PLK1 PLKO 0 0 losc 0 1 losc/2 1 0 losc/4 1 1 Reserved Time Base Interrupt Period TB1 TBO 0 0 SCLK/2'O 0 1 SCLK/2" 1 0 SCLK/2 '6 1 1 SCLK/2 20 Internal RAM Enable 0 Disabled 1 Enabled 49-0013958 Figure 32. Standby Register Standby Flag No changes in supply voltage (standby) Rising edge on supply voltage (cold start) 49-0013968 5-27 t-IEC pPD70320/322 (V25) Timing Waveforms Memory Read Cycle Memory Write Cycle RD/iNA RD/WR 00- 0 7 -~~--+---+---+---~- Do-Dr --44-49-001353A 49-001352A 5-28 NEe LCD PERIPHERALS 6-1 E NEe LCD PERIPHERALS Section 6 - LCD Peripherals J,lPD6307 J,lPD6308 J,lPD7225 J,lPD7227 J,lPD7228 J,lPD72030 6-2 LCD Row Driver. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 6-3 LCD Column Driver ........................................ 6-7 CMOS, Intelligent, Alphanumeric LCD Controller/Driver ..... 6-11 CMOS, Intelligent, Dot-Matrix LCD Controller/Driver ........ 6-21 CMOS, Intelligent, Dot-Matrix LCD Controller/Driver ........ 6-29 CMOS, Intelligent, LCD Controller ......................... 6-39 NEe NEe Electronics Inc. ",PD6307 LCD ROW DRIVER Description Pin Configuration The I-lPD6307 can directly drive any multiplexed LCD organized with up to 32 rows. It is easily cascaded to 128 rows. Features D High voltage output 21 V maximum D Directly controllable by the I-lPD72030 D CMOS technology D Single 5 V ± 10% power supply Ordering Information Part Number Package Type pPD6307G-F 54-pin plastic miniflat pPD6307G-R 54-pin plastic miniflat (inverted leads) ('1'). titE U')U)"'"OOQc:nO .... NM .... U') rirEri«~ri,;~2rr~cr 83·003161A Pin Identification No. Symbol Function 1-19, 21-23 Ro-R31 Row drive output 20 Vcc SBY Positive power supply 34 35 FRM Frame input 36 STB Strobe input 37 RST Reset input 38 EDT End of transfer input 39 lOW lID write input Standby input 40, 41 RSo, RS1 Row select input 42-44 VLC1, VLC4, VLC5 LCD drive supply 45 Vss Ground 46 VCC (= VLCO) Positive power supply and LCD drive supply 47-54 CSrCSo Chip select output I 6-3 NEe J.lPD6307 Pin Functions lOW (1/0 Write) Ro·R31 (Row Drive Output) This input increments the CScounter signal following 10 low level lOW pulses. LCD row drive output. EOT (End of Transfer) CSO·CS7 (Chip Select) Column driver chip select. These outputs are generated by the CS counter and RSo-RS1. This input clears the CS counter when it goes active low. RST (Reset) VLC1, VLC4, VLC5 (LCD Drive Supply) This is the row driver reset input. A low input clears the internal counter and row outputs Ro-R31, and sets the CSO-CS7 outputs to a high level. Reference voltages used to drive Ro-R31. RSO, RS1 (Row Select) This input selects the row driver cascade connection. It enables expansion to 128 row drive outputs and 32 CS outputs, as shown in table 1. FRM (Frame) A high level input to this pin displays a positive frame and a low level input displays a negative frame. At the falling or rising edge of the signal, the row counter is cleared and the row driver is started· from Ro. STB (Strobe) Row drive strobe input. One STB pulse input at the timing interval causes the display of the next row. SBY (Standby) This is the standby input. A low level input to this pin sets the row outputs Ro-R31 to VLCO. Before entering standby mode, set all column driver display data to high level. VCC (= VLCO) (Power Supply and LCD Drive Supply) Connect the 5 V power supply between Vcc and Vss for logic circuit operation. This pin is also used for the row drive voltage output. Vss (Ground) Ground. Block Diagram VCC(=VLCO) VI" v,,, ,-V_LC_5_ _- . Voltage Control and Output Driver To Logic Circuit Row Clear + /- 83-003162B 6-4 NEe J.tPD6307 Table 1. RSo and RS1 Row Cascading Functional Description RSo HSl How Signal Chip Select 0 0 Ro-R31 CSO-CS7 This circuit controls the timing for each internal block. FRM, RSo, RS 1, RST, and SBY are sampled at the leading edge of STB, and then supplied to other internal circuits. 0 1 R32- R63 R64- R95 CSa-CS15 R96- R127 CS24-CS31 Row Counter Decoder/Select Circuit Table 2. Row Select Logic Timing Control Circuit As shown in figure 1, this circuit consists of a 7-bit counter, a comparator, and a 5 to 32 decoder. The 7-bit counter can accommodate 128 rows. The comparator acts to clear Ro-R31 if the upper two bits of the counter do not match RSo and RS1. If they match, one of Ro-R31, indicated by the lower five bits of the row counter, is selected and the rest are cleared. RSo and RS1 allow for cascading as shown in table 1. Table 2 shows the row select logic. Figure 1. Row Counter Decoder/Select Circuit To Voltage Control, Driver Circuit 0 EN 0 C 0 0 0 0 0 B CS16-CS23 Selected Row Signal A 0 Ro 0 R1 + Rn R30 1 X X X 1 1 X X R31 None Voltage Control Driver Circuit This circuit generates the row signals for AC drive of the LCD panel. A low level RST clears the output. A low level SBY sets the output VLCO. Table 2 shows the Ro-R31 output levels. Table 2. Ro·R31 Outputs Levels Function + (FRM = 1) - (FRM = 0) Select RST--------,r~+-~--~ Clear Chip Select Counter/Decoder Circuit Row Counter Count·Up-------t>· Row Counter Clear-------J RSo' . - - - - - - - - - - - - - - - - - - - - - - - - ' RS1' . - - - - - - - - - - - - - - - - - - - - - - - - - ' • RSo', RS1', and RST are obtained by synchronizing RSo, RSh RST with STB. 83-003163A This circuit, shown in figure 2, generates the column driver CS signal. This circuit has a 5-bit counter to generate up to 32 CS signals. The 5-bit counter is incremented once for every 10 lOW (active low) pulses. If the upper two bits of the chip select counter do not match RSo and RS1, all the CSO-CS7 outputs are set to high level. If they match, one of CSO-CS7 (indicated by the lower three bits of the chip select counter) goes low. If RST is low, CSO-CS7 become high level. Table 3 shows the chip select logic. 6-5 NEe ~PD6307 Figure 2. Chip Select Counter/Decoder Circuit Table 3. Chip Select Logic EN c b 8 Chip Select 0 0 0 0 0 0 0 1 0 1 CSa CS1 CS2 CS3 CS4 CS5 CSs CS7 X Disabled 0 0 0 RST' 0 lOW' EOT' RSo' RS1' 83·003164A 6-6 X X 0 NEe NEe Electronics Inc. J.lPD6308 LCD COLUMN DRIVER PRELIMINARY INFORMATION Description Pin Configuration The J,lPD6308 can directly drive any multiplexed dotmatrix LCD organized with up to 40 columns. It is easily cascaded to fit the user's system. 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 Features o o o o C3B o High voltage output 21 V maximum Directly controllable by the J,lPD72030 CMOS technology Single 5 V ± 10% power supply I'PD6308 Ordering Information Part Number Package Type J.lPD6308G-F 54-pin plastic miniflat J.lPD6308G-R 54-pin plastic miniflat (inverted leads) 83·003165A Pin Identification Symbol Function 1-19. 21-41 CO-C39 Column drive output No. 20 Vcc Positive power supply 42-44 VLC2. VLC3. VLC5 LCD drive supply 45 Vss Ground 46 Positive power supply and LCD drive supply 47 VCC (=VLCO CS Chip select output 48 STB Strobe input 49 FRM Frame input 50 lOW 1/0 write input 51-54 D3- DO Data input ~ 6-7 NEe J.lPD6308 Pin Functions CO·C39 (Column Drive Output) LCD column drive output. VLC2, VLC3, VLC5 (LCD Drive Supply) Reference voltages used to drive CO-C39' 00.03 (Data Input) This is the display data bus. Data in the 40-bit input latch is written via this bus four bits at a time, a total of 10 times. Block Diagram Vcc = (VLCO) Vss VLc2 VLC5 40 I Voltage Control and Output Driver FRM (Frame) A high level input to this pin displays the positive frame and a low level input displays the negative frame. STB (Strobe) This is the column driver strobe input. At the leading edge of the STS input, the 40-bit display data in the input latch is transferred to the output latch to appear in the column drive output. 83·0031668 lOW (I/O Write) Functional Deacription This is the data write input. If CS is active and lOW goes low, data on 00-03 is written to the input latch. Timing Control Circuit CS (Chip Select) This circuit controls the timing that operates each IlPD6308 internal block. This input pin is connected to the chip select output of the row driver as the lOW enable. CS is active low. Voltage Control Driver Circuit VCC (= VLCO) (Power Supply and LCD Drive Supply) This circuit generates the column signals for AC drive of the LCD panel. Table 1 lists CO-C39 output levels. FRM' is obtained by internally synchronizing the FRM signal with the leading edge of the STS signal. Connect the 5 V power supply between Vee and Vss. Vee is also used for the column drive voltage. Table 1. Co' C39 Output Levels Vss (Ground) Function Ground. Select (Data = 1) + (FRM' = 1) - (FRM' =0) Clears (Data = 0) Column Data Counter/Decoder Circuit The column data counter/decoder circuit is shown in figure 1. This decimal circuit generates latch enable pulses to the input latches, which latch 40 bits of data (four bits at a time, a total of 10 times). The number of decoder outputs can be increased by cascading IlPD6308s under the control of CS. The counter value increments at the leading edge of lOW, and clears when CS goes high. 6-8 NEe Figure 1. J..tPD6308 Internal Block Diagram C4 Cs Cs C7 • • • • • • C3S C37 C3B C39 STB '---+--+--+-+----4>-- '-------+--+-~--- '--------+~---- '-----+--+--+-~-- - - - - - - - - - - - 4-- Output Latch 4-- Input Latch -+--1.--11--+---4---- Do -+--I.--1I--~--D1 -+--1----<>----- 02 -+----4-----03 To To To Latch 3 Latch 5 Latch 7 cs - __-+-----'-'-'-"'--+1 lOW -------+1 _ Column Data Decoder _ Column Data Counter 83·0031678 Input Latch Circuit Output Latch Circuit The input latch circuit is shown in figure 1. The input latches display data four bits at a time until 40 bits are latched and displayed. When CS is active low, each lOW active low pulse input to the decimal counter causes 1 of 10 latch enable signals to be generated from the column data decoder. Latches 0 to 9 are enabled consecutively to load data 00-03 until 40 bits are latched. The output latch circuit is shown in figure 1. The 40 bits output from the input latch circuit are transferred to the output latch circuit at the leading edge of the STB signal and appear on the column drive outputs. Note that Do is output to C3, D1 to C2, 02, to C1, and D3 to Co. 6-9 ",PD8308 6-10 NEe NEe NEe Electronics Inc. pPD7225 CMOS, INTELLIGENT, ALPHANUMERIC LCD CONTROLLER/DRIVER Description Pin Configuration The !-,PD7225 is an intelligent peripheral device designed to interface most microprocessors with a wide variety of alphanumeric LCDs. It can directly drive any static or multiplexed LCD containing up to 4 backplanes and up to 32 segments and is easily cascaded for larger LCD applications. The !-,PD7225 communicates with a host microprocessor through an 8-bit serial interface. It includes a 7-segment numeric and a 14-segmentalphanumeric segment decoder to reduce system software requirements. The !-,PD7225 is manufactured with a low power consumption CMOS process allowing use of a single power supply between 2.7 V and 5.5 V. Itis available in a space-saving 52-pin plastic flat package. Features o o o o o o o o o o o Single chip LCD controller with direct LCD drive Low cost serial interface to most microprocessors Compatible with - 7-segment numeric LCD configurations up to 16 digits - 14-segment alphanumeric LCD configurations up to 8 characters Selectable LCD drive configuration: - Static, biplexed, triplexed, or quadruplexed 32-segment drivers Cascadable for larger LCD applications Selectable LCD bias voltage configuration: - Static, 1/2 or 1/3 Hardware logic blocks reduce system software requirements - 8-bit serial interface - Two 32 x 4-bit static RAMs for display data and blinking data storage - Programmable segment decoding capability: -16-character, 7-segment numeric decoder - 64-character, 14-segment USASCII alphanumeric decoder - Programmable segment blinking capability - Automatic synchronization of segment drivers with sequentially multiplexed backplane drivers Single power supply, variable from 2.7 V to 5.5 V Low power consumption CMOS technology Extended - 40°C to +85°C temperature range available 83·002798A Pin Identification No. Symbol Function 1 CL2 System clock output 2 SYNC Synchronization port 3-5 VLCD1VLCD3 LCD bias voltage supply inputs Vss Ground 7,33 VDD Power 8 SCK Serial clock input 9 SI Serial input 10 CS Chip select 11 BUSY Busy output 12 C/O Command or data select input 13 RESET Reset input 14 NC No connection 15-18 COMo-COM3 LCD backplane driver outputs 19-32, 34-51 SO-S31 LCD segment driver outputs 52 CL1 System clock input Ordering Information Part Number Package Type Max Frequency of Operation pP07225G-00 52-pin plastic miniflat 1 MHz 6-11 NEe J..tPD7225 Pin Functions CS COMO-COM3 Chip select input. Enables the JAPD7225 for data input from the microprocessor. When CS is deselected, the display can be updated. . LCD backplane driver outputs. SO-S31 SYNC LCD segment driver outputs. Synchronization port. For multichip operation, tie all SYNC lines together. VLCD1- V LCD3 LCD bias voltage supply inputs to the LCD voltage controller. Apply appropriate voltages from a voltage ladder connected across Voo. CL1 SI CL2 Serial input from the microprocessor. System clock output. Connect CL2 to CL1 with a 180 kQ resistor, or leave open. SCK Serial clock input. Synchronizes 8-bit serial data transfer from the microprocessor to the JAPD7225. BUSY Handshake output indicates the JAPD7225 is ready to receive the next data byte. c/o Command/data select input. Distinguishes serially input data byte as a command or as display data. 6-12 System cJock input. Connect CL1 either to CL2 with a 180 kQ resistor, or to an e.xternal clock source. RESET Reset input. R/C circuit or pulse initializes theJAPD7225 after power-up. VDD Power supply positive. Apply single voltage ranging from 2.7 to 5.5 V for proper operation. Vss Ground. NEe J-lPD7225 Block Diagram COMo-COM3 LCD Driver 32 Display Latch 32 VDD VLCD1 VLCD2 VLCD3 LCD Voltage Controller 32x4Bit Display RAM Segment Decoder Data Pointer 32x4Bit Blinking RAM VSS CL1 CL2 ~L - - _ Clock Oscillator RESET Buffer Interface Controller Command Decoder Serial Interface SI SCK 83-003379B 6-13 NEe J.lPD7225 DC Characteristics (cont) Absolute Maximum Ratings TA = - ooe to + 7o oe, Voo = +2.7V to 5:5 V TA=25°e Limits -0.3Vto +7V Power supply voltage, Voo Input voltage, VI -0.3VtoVoo +0.3V Parameter Output voltage, Vo -0.3VtoVoo +0.3V Input voltage low -10°C to +70°C Operating temperature, TOPT - 65°6 to +150°C Storage temperature, TSTG Comment: Exposing the device to stresses above those listed in Abso· lute Maximum Ratings could cause permanent damage. The device is not meant to be operated under conditions outside the limits de· scribed in the operational sections of the specification. Exposure to absolute maximum rating conditions for extended periods may affect gevice reliability. DC Characteristics TA= -10 0 eto +70 0 e,Voo= +5V±10% Limits Parameter Symbol Input voltage low VIL Input voltage high VIH Output voltage low Typ 0 0.7 Voo Max Unit 0. 3V oo V Voo Test Conditions V VOL1 0.5 V BUSY, 10L =100J.lA VOL2 1.0 V 10L =900J.lA, Output voltage high VOH Input leakage current low ILiL Input leakage current high ILiH Output leakage current ILOL Output short circuit current los Backplane driver output impedance ReOM Segment driver output impedance RSEG Supply current Min ~ Voo -0.5 -2 -2 ILOH -300 V BUSY, SYNC, 10H= -1OJ.lA J.lA VIL =OV J.lA VIH=VOO J.lA VOL =OV J.lA VOH=VOO J.lA SYNC, VOs=1.0V kQ COMO-COM3, Voo~VLeo (Note 1) 14 kQ SO-S31, Voo~VLeo (Note 1) 100 100 250 J.lA CL1external clock, f+=200kHz Note: (1) Applies to static-, 1/2-, and 1/3-LCO bias voltage schemes. Input voltage high Symbol Min Typ Unit Test Conditions VIL1 0 0. 3V oo V Except SCK VIL2 0 0. 2V oo V SCK VIH1 O.7Voo Voo V Except SCK VIH2 0. 8V oo Voo V SCK BUSY, 10L =100J.lA Output voltage low VOL1 0.5 V VOL2 0.5 .V 10L =400 ptA, SYNC Output voltage high VOH V BUSY, SYNC, 10H= -7J.1A Input leakage current low ILiL J.lA VIL =OV Input leakage current high ILiH J.lA VIH=VOO Output leakage current ILOL J.lA VOL=OV J.lA VOH=VOO Output short circuit current los J.lA SYNC, Vos=0.5V Backplane driver output impedance ReOM Segment driver output impedance RSEG Supply current 100 Voo -0.75 -2 -2 ILOH -200 kQ COMo-COM3, Voo~VLeo (Note 1) kQ 12 SO-S31, Voo~VLeo (Note 1) 30 100 ~ CL1external clock, Voo=3.0V ±10%, fcp=140 kHz Note: (1) Applies to static·, 1/2-, and 1/3-LCO bias voltage schemes. Capacitance TA=25°C, f,=1MHz Limits Parameter Symbol Min Typ Max Unit Test Conditions(1) Input capacitance CI 10 pF Output capacitance C01 20 pF CO2 15 pF BUSY 1/0 capacitance CIO 15 pF SYNC Clock capacitance Ccp 30 pF CL1 input Note: (1) All unmeasured pins returned to 0 V. 6-14 Max Except BUSY NEe J..tPD7225 AC Characteristics TA= -100Cto +70°C,VDD= +5V±10% Limits Symbol Parameter Clock Irequency I. lose Min Typ 50 85 130 rest Conditions Mal Unit 200 kHz 175 kHz R=180kQ+5% 16 J.ls CU, external clock Clock pulse width low t'Wl Clock pulse width high· t'WH SCK cycle teYK 900 ns SCK pulse width tKWl low 400 ns SCK pulse width tKWH high 400 ns BUSY tto SCK t tBHK hold time 0 ns 51 setup time to tlSK 100 ns 200 ns 16 J.lS tlHK 8th SCK t to BUSY.J. delay time tKOB 3 1.5 CS -I-to BUSY.J. teoB delay time C/Ds~time tOSK 9 J.lS J.ls CU, external clock CL =50pF CL =50 pF J.ls tOHK J.ls CS hold time after 8th SCK teHK J.lS t CS pulse width low tewL CS pulse width high tewH 8/1. 8/f. Min Typ 50 lose 50 Clock pulse width low t+Wl 3 Clock pulse width high t'WH SCK cycle 100 rest Conditions Max Unit 140 kHz 140 kHz R=180 kQ+5%, Voo=3.0V ±10% 16 J.lS CU, external clock 16 J.ls CL1, external clock teYK 4 J.ls SCK pulse width tKWL low 1.8 J.ls SCK pulse width tKWH high 1.8 J.lS BUSY tto SCK.J. tBHK hold time 0 ns SI setup time to tlSK SCK t J.lS SI hold time after SCK t tlHK J.ls 8th SCK t to BUSY .J. delay time tKOB 5 J.ls Cl=50pF CS .J. to BUSY .J. teoB delay time 5 J.ls CL =50 pF C/Ds~time to 8th SCK t C/i) hold time after 8th SCK t Symbol Clock Irequency I! SCK t SI hold time after SCK t Limits Parameter tOSK 18 J.ls to 8th SCK t J.ls J.ls C/ D hold time . tOHK after 8th SCK t J.ls CS hold time after 8th SCK t teHK J.ls CS pulse width low tewL 8/f. J.ls CS pulse width high tewH 8/f. J.ls SYNC load capacitance Cl 50 pF I f.=200kHz AC Timing Characteristics All Inputs All Outputs \-__________ # ____________ ---------- ~IH ------------~ "\=======:.===t-=.=-..:::--=-------=--=--=--=--=---~~~L 83-0027998 6-15 NEe Timing Waveforms Clock Cll----------------------- ~ 1 11f¢ toWl ~~ t,WH 83-OO2800B Serial Interface ~--------~~--~-----------tCWL--------------------------~~ tCHK tCDB 1-+------------------------------------- --------~------~ ~--------------------------- - -----J ,- - --, ,---- -'- ~'B", ~I~ ,- --, ,_ - - -'-----.II tlHK Sl----~---------------+_( I I 1"""·~-----------tDSK-------------. . .~---tDHK~ c/o ---------..;..,--------....:«"'______________________ ---------- >....--_____ 83-OO2801B 6-16 NEe f..lPD7225 Instruction Set (Note 1) Command Description Mode Set Initialize the J.lPD7225, including selection of: 1) LCD drive configuration 2) LCD bias voltage configuration 3) LCD frame frequency Operation Code Hex Code D7 D6 Ds D4 D3 D2 DI Do 40-5F a 1 a d4 d3 d2 d1 do a a a a d4 d3 d2 d1 a a a a a d3 d2 d1 do Unsynchronous Data Transfer Synchronize display RAM data transfer to display latch with CS 30 Synchronous Data Transfer Synchronize display RAM data transfer to display latch with LCD drive cycle 31 a Interrupt Data Transfer Interrupt display RAM data transfer to display latch Load Data Pointer Load data pointer with 5 bits of immediate data EO-FF 38 Clear Display RAM Clear the display RAM and reset the data painter 20 a Write Display RAM Write 4 bits of immediate data to the display RAM location addressed by the data pointer; increment data pointer DO-OF 1 AND Display RAM Perform a logical AND between the display RAM data addressed by 90-9F the data pointer and 4 bits of immediate data; write result to same display RAM location. Increment data pointer d3 d2 d1 do OR Display RAM Perform a logical OR between the display RAM data addressed by the data pointer and 4 bits of immediate data; write result to same display RAM location; increment data painter BO-BF d3 d2 d1 do Enable Segment Decoder Start use of the segment decoder 15 Disable Segment Decoder Stop use of the segment decoder 14 Enable Display Turn on the LCD 11 a a a a a Disable Display Turn off the LCD 10 Clear Blinking RAM Clear the blinking RAM and reset the data painter 00 Write Blinking RAM Write 4 bits of immediate data to the blinking RAM location addressed by the data pointer; increment data pointer CO-CF AND Blinking RAM Perform a logical AND between blinking RAM data addressed by the data painter and 4 bits of immediate data; write result to same blinking location; increment data pointer 80-8F OR Blinking RAM Perform a logical OR between blinking RAM data addressed by the data pointer and 4 bits of immediate data; write result to same blinking location; increment data painter AO-AF Enable Blinking Start segment blinking at the frequency specified by 1 bit of immediate data 1A-1B Disable Blinking Stop segment blinking a a a a a a a do a a a a a a a d3 d2 d1 do a d3 d2 d1 do d3 d2 d1 do do 18 Note: (1) Details of operation and application examples can be found in the IJPD7225 Intelligent Alphanumeric LCD ControlierlDriver Technical Manual. 6-17 If NEe f..lPD7225 Operating Characteristics TA =25°C External Resistance vs Oscillation Frequency Supply Voltage vs Oscillation Frequency +-~~-------+----------I~I ~200 CL2R ____._ ••• •••• I- 140 R=l C CLL11 ..: f I~ ~ o 50 't..tl----+-----+----~::-------po...,...-...-.---j 100 200 I 500 External Resistance R (kQ) Supply Voltage vs Supply Current 100 j c E I / /' 100 501------1------------~~~------+_--------~ U ici! ~~~~------~------~----~I Supply Voltage VOO (V) 6-18 80 V" ~ V Y R ~ I Supply Voltage Voo (V) I I NEe JAPD7225 7·Segment Numeric Data Decoder Character Set Decoded Display RAM Data Display Byte (HEX) 00 01 02 03 Character a 05 Ii 06 a 07 H 08 a 09 Ii OC 00 n+1 n n+1 n 0 a a B 8 a OB Quadruplexed Display RAM Address B 04 OA n+2 Triplexed Display RAM Address A B a a B a B B Sa OE 8, OF B ~ 3 0 a a a A a 6-19 Cf> 14·Segment Alphanumeric Data Decoder Character Set o Display Byte (HEX) Char. f\) AO Display RAM Address n+3 10 n+2 n+1 n 0 0 0 Display Byte (HEX) Char. BO A1 Invalid B1 A2 Invalid B2 A3 Invalid B3 A4 Invalid B4 A5 Invalid B5 A6 Invalid B6 A7 A8 A9 AA AB ~ ~o 10 10 Ie I 0 0 A 0 B7 A B8 0 B9 0 Invalid 10 AE AF 0 IJ [f4[t n+3 n+2 4 7 0 6 0 0 C1 3 C 4 C2 7 8 4 C3 4 C4 4 C5 4 C6 0 C7 4 C8 4 C9 10 10 10 10 10 rm lmIo n+1 CO 6 A 5 0 7 0 10 10 n A BA Invalid CA BB Invalid CB 0 Invalid 10 BC 4 BO BE BF 10 ~ [Do 4 0 0 It Invalid ,.a 1:: Display Byte (HEX) Char. v(.; AC AD 0 00 Display RAM Address 10 10 10 10 10 10 10 10 10 10 10 10 ~ CC lEL ~c 8 4 CO 8 8 CE CF Display-RAM Address n+3 A 8 n+2 n+1 n C 0 DO 6 D1 8 D2 D3 0 8 Display Byte (HEX) Char. 8 6 0 6 D4 4 05 4 06 4 07 4 08 09 8 8 0 C 0 OA 6 A DB 0 DC 0 I, I, Display RAM Address n+3 0 10 10 m lmL 10 11 10 10 10 10 n+2 n+1 n 3 6 4 7 3 8 C 8 4 4 0 4 6 6 8 5 0 0 A 0 0 0 4 Invalid 10 8 0 6 8 DE Invalid E 0 OF Invalid I, 6 6 lm 0 8 0 6 mt 01 0 g 00 N --N [OOJ WO Invalid ~ ~ N'EC pPD7227 CMOS, INTELLIGENT, DOT-MATRIX LCD CONTROLLER/DRIVER NEe Electronics Inc. Descri ption Pin Configuration The IlPD7227 intelligent dot-matrix LCD controllerl driver is a peripheral device designed to interface most microprocessors with a wide variety of dot matrix LCDs. It can directly drive any multiplexed LCD organized as 8 rows by 40 columns, and is easily cascaded up to 16 rows and 280 columns. The IlPD7227 is equipped with several hardware logic blocks, such as an 8-bit serial interface,ASCII character generator, 40 x 16 static RAM with full read/write capability, and an LCD timing controller; all of which reduce microprocessor system software requirements. The IlPD7227 is manufactured with a single 5 V CMOS process, and is available in a space-saving 64-pin plastic flat package. C4 C3 C2 Cl o o o Ordering Information Part Number Package Type Max Frequency of Operation pPD7227G-12 64-pin plastic miniflat 1000 kHz C2l R7 /R 15 RslR14 RslR13 C23 R4f R12 C25 10 C26 11 C27 12 Rl/ R9 C2S 13 Ro/Rs C29 14 VLCDl C30 15 VLCD2 C32 17 VLCD4 C34 19 cs R3iRll VLCD3 o Single-chip LCD controller with direct LCD drive o Compatible with most microprocessors o Eight row drives o Co C22 Features - Designed for dot-matrix LCD configurations up to 280 dots - Designed for 5 x 7 dot-matrix character LCD configuration up to 8 characters - Cascadable to 16 row drives 40 column drives - Cascadable to 280 column drives Hardware logic blocks reduce system software requirements - 8-bit serial interface for communication - ASCII 5 x 7 dot-matrix character generator with 64-character vocabulary - 40 x 16-bit static RAM for data storage, retrieval, and complete back-up memory capability. - Voltage controller generates LCD bias voltages - Timing controller synchronizes column drives with sequentially-multiplexed row drives Single + 5 V power supply CMOS technology C20 SYNC Pin Identification Symbol Function NC No connection 2-24, 47-57, 59-64 CO-C39 LCD column driver outputs 25 Vss Ground 26, 58 VDD Power 27 CLOCK System clock input No. 28 RESET Reset input 29 SI Serial input 30 C/O Command or data select input 31 SO/BUSY Serial output or busy output 32 SCK Serial clock input 33 CS Chip select input 34 SYNC Synchronization port 35-38 VLCD1- VLCD4 LCD bias voltage supply inputs 39-46 Ro/Ra- R7/ R15 LCD row driver outputs 6-21 NEe IlPD7.227 Pin Functions c/o CO·C39 Command/data select input. Distinguishes serially input data byte as a command or as display data. LCD column driver outputs. CS RO/8·R7/15 LCD row driver outputs. Chip select input Enables th~ j.lPD7227 for communication with the microprocessor. VLCD1· VLCD4 SYNC LCD bias voltage supply inputs to the LCD voltage . controller. Apply appropriate voltages from a voltage ladder connected across VDD. Synchronization port. For multichip operation, tie all SYNC lines together and configure with the MODE SET command. SI CLOCK Serial input from the microprocessor. System clock input. Connect to external clock source. SO/BUSY RESET Serial output from the j.lPD7227 to the microprocessor when in read mode and C/D is low. When BUSY (active low), handshake output indicates the j.lPD7227 is ready to receive/send the next data byte. Reset input. RC circuit or pulse initializes the j.lPD7227 after power-up. VDD Power supply positive. Apply single voltage 5 V±10% for proper operation. SCK Serial clock input. Synchronizes 8-bit serial data transfer between the microprocessor and j.lPD7227. Vss Ground. Block Diagram Ro-R7 OR Rs-R15 SYNC Voo Vss RESET- Clock cs C/O SO/BUSY SCK 51 83-0037958 6-22 NEe J.tPD7227 Absolute Maximum Ratings DC Characteristics TA ::: 25°e T A ::: -10 o e to + 70 o e, Voo ::: +5.0V ± 10% - 0.3 V to + 7.0 V Power supply, VDD All inputs and outputs with respect to Vee -0.3 V to VDD +0.3 V Limits Parameter Symbol Min l'yp Test Max Unit Conditions V Storage temperature, TSTG Input voltage, high VIH 0.7 VDD Operating temperature, TOPT Input voltage, low Vil 0 Comment: Exposing the device to stresses above those listed in Absolute Maximum Ratings could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational sections of this specification. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Input leakage current, high ILiH +10 /lAVIH = VDD Input leakage current, low ILil -10 /lAVIH = OV Output voltage, high Capacitance TA ::: VDD 0.3 VDD V VOH1 VDD-0.5 V SO/BUSY, IOH = -400 /lA VOH2 VDD-0.5 V SYNC, IOH = -100 /lA 25°e, Voo ::: OV Output voltage, low Limits Parameter Symbol Input capacitance CI Output capaCitance Co Input/output CIO capacitance Min Max Unit 10 pF 25 15 0.45 V SO/BUSY, IOl = +1.7 mA 0.45 V SYNC, IOl = +100!lA f+ = 1 MHz Unmeasured pins returned to pF SYNC ground. pF VOL1 Test Conditions Output leakage current, high IlOH +10 !lAVOH = VDD Output leakage current, low IlOl -10 /lAVOl = OV LCD operating voltage VlCD 3.0 VDD V 16-row multiplexed LCD drive configuration VDD Row drive output impedance RROW Column drive output impedance RCOLUMN IDD Supply current V 8-row multiplexed LCD drive configuration 8 kO 10 15 kO 200 400 /lAfO = 400 KHz 6-23 m ~EC JAPD7227 AC Characteristics TA = -1O o e to + 70 o e, Voo = +5.0V ± 10% limits Symbol Min Max Unit Clock frequency f+ 100 1000 KHz Clock pulse width high t+WH 400 ns Clock pulse width low t+WL 400 ns SCK cycle tCYK 0.9 /As SCK pulse width high tKWH 400 ns SCK pulse width low tKWL 400 ns SCK hold time after BUSyt tKHB 0 ns SI setup time to SCKt tlSK 100 ns SI hold time after SCKt tlHK 250 ns SO delay time after SCK~ tOOK SO delay time after C/D~ tO~~ SCK hold time after C/D~ tKHO BUSY delay time after 8th SCKt tBOK BUSY delay time after Clot tBOO BUSY delay time after CS~ tBOC C/O setup time to 8th SCKt tOSK lis C/O hold time after 8th SCKt tOHK /As CS hold time after 8th SCKt tCHK /As CS pulse width high tCWH Parameter 320 CLOAOS BUSY low level width tWLB CLOAO = 50 pF /As 2 /As 3 /As CLOAO = 50 pF /As 2 2/f+ /As /As CSt delay time tCOB to BUSY floating SYNC load capacitance ns Test Conditions /As 18 100 pF 64 1/f+ CLOAO = 50 pF CLOAO = 50 pF NEe J.tPD7227 Timing Waveforms Clock Waveform 1+-----------111,1'-----------.1 Clock 83-003837B Serial Interface ~ ___- - - - - - - - - - - - - - - - - - - - - - - ___ ----+-_-1 C/O (SO) --a--++------------------ - -- -------++_~ 8th SI ========================~======== 83-0038388 NEe IAPDl227 Command Summary Instruction Code Binary Description D7 D6 D5 Initialize the jAPD7227, including selection of 1. LCD drive configuration 2. Row driver port function 3. RAM bank 4. SYNC port function 0 0 0 Frame Frequency Set Set LCD frame frequency 0 0 Load Data Pointer Load data pOinter with 7 bits of immediate data Write Mode Write display byte in serial register to RAM location addressed by data pointer; modify data pointer Read Mode Command D_ D3 D2 D1 Do HEX D2 D1 Do 18-1F 0 D2 D1 Do 10-14 D4 D3 D2 D1 Do 80-E7 0 0 0 D1 Do 64-67 Load RAM contents addressed by data pointer into serial register for output; modify data pointer 0 0 0 D1 Do 60-63 AND Mode Perform a logical AND between the display byte in the serial register and the RAM contents addressed by data pointer; write result to same RAM location; modify data pOinter 0 0 D1 Do 6C-6F OR Mode Perform a logical OR between the display byte in the serial register and the RAM contents addressed by data pointer; write result to same RAM location; modify data pOinter 0 0 D1 Do 68-6B Character Mode Decode display byte in serial register into 5 x 7 character with character generator; write character to RAM location addressed by data pointer; increment data pointer by 5 0 0 72 Set Bit Set single bit of RAM location addressed by data pointer; modify data pointer 0 Reset Bit 0 0 Enable Display Reset single bit of RAM location addressed by data pointer; modify data pointer Turn on the LCD 0 0 0 0 Disable Display Turn off the ICD 0 0 0 0 0 Mode Set D6 D5 0 0 0 D4 D3 D2 D1 Do 40-5F D4 D3 D2 01 Do 20-3F 0 1 09 0 0 08 Further details of operation can be found in the IlPD7227 intelligent dot-matrix LCD controller/driver technical manual. NEe JiPD7227 5)( 7 Character Set as Generated in ",PD7227 Display Byte Display Byte ° ° ° ° ro;- -,,;- -,;;-/0.---0---10 lo-d""-o-o.;.-0-+_-+-0--+----1 ro;- --- -o~-I-o~3 -2""- 06 03 I 02 I 0 1 I Do ° ° ° ° ° ° ( ~ 0 • -:; 0 • • • 0 • 0 0 D • • 0 0 0 . ( ' . , " . 0 0 0 • • 000 • • 0 0 0 e o o o o o o e c-",:e000 • • 000eoeoeo • • e-, • o o o o 0.0.00 ••• 0 o o. 0 ••• 0 ••••• 00.00 • ~, " ') • • ') 0 0.0.0 .')0,) • • ,00 • • 000 • , 0 • • • oeoOO • • 000e o •••• 0 oeoeoeooo • • ooo. oeo.ooooo • • ooo. o o mnmgmg 0.0.0 ••••• o 0 ••• 0 oeo.ooooeoeooo. o o 1 m:~Hm:~m oeo.oeooo.eooo. oeo.oo ••• oo ••• o o u".ooooo.o ••• oo ••••• 0 •••• o o 0 mnmHmHHm HmHmHmHm ~m~ gm gm m~; • • 000 ooooooooeoeooooooooo 00 • • 0 . 0 0 . 0 0 0 . 0 0 oooooooeooeooooeoooo o 0 • • • • • • • • • • • 000. ooooooooooeoooeo ••• o • • 00 • • 0 0 0 0 . 0 0 0 0 . 0 0 0 . o o 1 IHHHmHwnm OOOOOQOOOO • • O • • OOO.O o 1 HHHHH HHHHH O • • OODO • • O · • • • • • O O " . o o o .oo.oeooo • • ooooo.o.o o •• oeo ••• o·oooooo.oo 000000 ••• 00 ••• 000000 0 0 0 0 • • 000 • • 0 0 0 . 0 0 0 0 0 000.00000 • • 000.00000 00.00000.0.000.00000 0.00000.00.000.00000 .000000000.000.00000 0000000.000 ••• 0 ••••• 6-27 JlPD7227 6-28 NEe NEe NEe Electronics Inc. pPD7228 CMOS, INTELLIGENT, DOT-MATRIX LCD CONTROLLER/DRIVER Description Ordering Information The I-/PD7228 intelligent dot-matrix LCD controllerl driver is a peripheral device designed to interface most microprocessors with a wide variety of dot-matrix LCDs. It can directly drive any multiplexed LCD organized as 8 rows by 50 columns or 16 rows by 42 columns. The I-/PD7228 has a standby function to conserve power. It is equipped with several logic blocks, such as an 8-bit serial interface, a 4-bit parallel interface, an ASCII upperl lower case, a Kana character generator, a 50 x 16 static RAM with full read/write capability, and an LCD timing controller, all of which reduce microprocessor system software requirements. Part Number Package Type jlPD7228G-12 80-pin plastic miniflat Pin Configuration The pPD7228 is manufactured with a single 5 V CMOS process, and is available in an 80-pin space saving miniflat plastic package. Features o o LCD direct drive 8- or 16-line multiplexing drive possible with singlechip - 8-line multiplexing: 400 (50 x 8) dots - 16-line multiplexing: 672 (42 x 16) dots 8-line or 16-line multiplexing drive with n chip configuration - 8-line multiplexing: n x 400 (n x 50 x 8) dots -16-line multiplexing: n x 800 (n x 50 x 16) dots DRAM: 2 x 50 x 8 bits for display data storage o Programmer designated dot (graphics) display o 5 x 7 dot-matrix display by on-chip character generator ASCII characters (alphanumerics, others): 64 characters; J IS characters (Kana and others): 96 characters o Cursor operating command o 8-bit serial interface compatible with I-/PD7500, I-/COM-43N,I-/COM-87/87LC o 4-bit parallel interface compatible with I-/PD7500, I-/COM-84/84C o Standby function o CMOS technology o Single +5 V power supply o Extended - 40°C to +85°C temperature range. available' o 83-002904A 6-29 NEe ""PD7228 Pin Identification SO Serial Data·Out (Output Common to D3) No. Symbol Function 1-4,43-80 CO-C41 LCD column drive outputs 5-12 C42 I R15C49 /R a LCD row I column drive outputs 13-20 RO I Ra-R7 I R15 LCD row drive outputs In serial interface mode, SO is an output pin for serial data. The contents of the serial I parallel register are output to the SO pin, beginning with the most significant bit, on the falling edge of SCK. PIS ParaliellSerial Select (Input Common to D1) 21, 22, 24-26 VLC1-VLC5 23,42 NC No connection 27 Do/SI Data bus 0I serial input 28 D1(P/S) Data bus 1(parallel I serial select) 29 D2(CAE) Data bus 2 (chip address enable) 30 D3 /SO Data bus 31 serial output CAE Chip Address Enable (Input Common to D2> 31 SYNC Synchronization signal input loutput 32 BUSY Busy signal output 33 Voo Power supply Ground This pin is only used during serial interface mode, that is, when PIS is low at the falling edge of RESET. To enable chip addressing, the CAE line must be high at the falling edge of RESET. In parallel interface mode (when PIS is high at the falling edge of RESET), the chip addressing function is enabled regardless of the logic state of CAE at the falling edge of RESET. The Schmitttrigger input prevents noise errors. LCD power supply 34 Vss 35 STB/SCK Strobe I serial clock input 36 C/D Command I data select input 37,38 CAo, CA1 Chip address select inputs 39 CS Chip select input 40 RESET Reset signal input 41 CLOCK System clock input Pin Functions DO- D3 (Data Bus) In parallel interface mode, 00-03 are inputloutput pins for 4-bit parallel data. Data on these lines is read at the rising edge of STB. The four bits read on the first STB are loaded into the highest four bits of the serial/parallel register. The four bits read on the second STB are loaded into the lowest four bits of the register. The contents of the serial/parallel register are output to these pins on the falling edge of STB. As in the above case, the high-order four bits correspond to the first STB, and the low-order four bits to the second STB. In serial interface mode, Do is a serial data input pin and 03 is a serial data output pin. 01 selects serial or parallel interface mode (PIS), and 02 is the chip address enable pin (CAE). SI Serial Data·ln (Input Common to DO) In serial interface mode, SI inputs serial data. Data on SI is loaded into the serial/parallel register at the rising edge of SCK. The first data loaded is the most significant bit. To eliminate noise errors, SI uses the Schmitt-trigger input. 6-30 This pin sets parallel interface mode if it is high at the hilling edge of RESET (at reset release). If it is low at the falling edge of RESET, it selects serial interface mode. The Schmitt-trigger prevents noise errors. CAO-CA1 (Chip Address) These input pins allow you to address the ",PD7228 in a multi-chip configuration used for driving logic displays. During parallel interface mode, CAo and CA1 are compared to chip address data sent from the CPU regardless of CAE status during a reset. However, during serial interface mode, CAo and CA1 are compared with chip address data from the CPU only when CAE enables chip addressing. In multi-chip configurations, the device is selected if CS 0 and CAo and CA1 match the chip address generated by the CPU. This address is the low two bits of the first 8-bit data input after CS O. = = In serial interface mode, if chip address selection is not used, connect CAo and CA1 to ground. CS (Chip Select) CS is an active-low chip select input pin. When you are not using the chip address selection function, the STBI SCK and C/D inputs are enabled if a low input is sent to CS. When you are using the chip address select function, if CS is brought low and the chip address data matches CAo-CA1, then STB/SCK and C/O are enabled. When CS is made high, 03-00 and BUSY are placed in a high impedance state. The Schmitt-trigger input prevents noise errors. NEe J.lPD7228 STB/SCK (Strobe/Serial Clock) In parallel interface mode, this is the strobe signal input pin (STB) for 4-bit parallel input and output data. In serial interface mode, this is the serial clock input pin (SCK) for serial input and output data. C/O (Command/Data) This pin specifies whetherthe parallel or serial input is a command or data. Bring C/O high to input a command, and low to input data. In parallel interface mode, the contents of C/O are latched at the rising edge of the second STB. Perform any changes to the C/O input before the falling edge of the first STB. When outputting data, hold C/O low, whether serial or parallel. In serial interface mode, the contents of C/O are latched at the rising edge of the eighth SCK. The Schmitt-trigger input prevents noise errors. BUSY (Busy) This pin outputs a busy signal to the CPU to warn that the IJPD7228 is internally busy. When this signal is low, the CPU cannot read/write the IJPD7228. = If a chip is deselected (CS high or chip address data does not match), the busy output is placed in the high impedance state. SYNC (Synchronous) In a multichip configuration, the SYNC signal synchronizes the phases of the LCD drive AC signals (row/ column signals) among all the f,lPD7228's within the frame period. It uses the row drive signal as a common signal. If one chip is designated master, its SYNC pin is in output mode and the remaining chips are made slaves. Their SYNC pins are put in input mode. The SMM command selects input or output mode. The master chip outputs a SYNC pulse in the last cycle of each frame. The slave chip reads the SYNC pulse from its own SYNC input for synchronization with the master chip. In a single chip configuration, set the SYNC pin in the input or output mode. If you choose input mode, connect the SYNC pin to VSS; conversely, if you choose output mode, the SYNC pin must be open. Figures 1 and 2 show the output timing for the SYNC pulse in 8- and 16-line multiplexing. In the parallel interface mode, BUSY is forced low at the rising edge of the second STB. In the serial interface mode, BUSY is forced low at the rising edge of the eighth SCK. Figure 1. SYNC Signal in B-line Multiplexing 1+1·---------1frame---------I Row 0 ~~ ~ _ _ _ __..__In_____ 83-0029058 6-31 NEe J.(PD7228 Figure 2. SYNC Signal in 16-line Multiplexing 1----------1Irame-----------t., Row 0 83-OO2906B CO-C41 (Columns) RESET (Reset) These pins output the column drive signal for the LCD. This is the active-high reset signal input pin. It has priority over all operations. You can also use it to release standby mode and begin low power data retention. Ral C49-R151 C42 (Row I Column) These pins are row drive outputs (RS-R1S) or column drive outputs (C49-C42), depending on the SMM command. This is apositive power supply pin. RO/RS-R7/R15 (Rows) Vss (Ground) These pins are row drive outputs for rows Ro-R7 or rows Rs-R15, depending on the SMM command. This is ground (GND). Voo (Power Supply) Commands for ",PD7228 VLC1-VLC5 (LCD Drive Voltage Supply) These are reference voltage input pins for determining the voltage level of the LCD row I column drive signals. CLOCK (Clock) This is the external clock input pin. 6-32 The ",PD7228 is provided with sixteen types of commands, each command consisting of one byte (8 bits). Figure 3 shows the character codes and display patterns. NEe Figure 3. J-tPD7228 Character Codes and Display Patterns 7 4 3 0 I I I I 0 0 0 0 0 0 0 0 0 0 0 o o o o 0 1 0 0 0 0 0 0 0 0 0 .. 0 0 0 0 0 0 0 0 0 0 0 .. .. 0 0 0 0 ..... .. .. : .. .... : .. .. 0 1 1 .. ... : .. : : : · . ... ..... .. . ... .... .. ... ..... ....... ...... ..... .. .. .... .... .. ......... ..... ... ·.... .. .. ........ . .................. ... · . . .. ...' ...... ....... ..... .. ...... .. ... . . . . . o 0 ... ... .. .. .. . .... .... ... .... . .... .... .... ... ...... ... ...... ....... .. .... . .... .. .. .. .. · ... .. ........ ..... . . ....... .. . .. .. ... . ...... .. .. .. .... .. o 1 ···.... ...... .... .. .. . ... .. ....... . .......' . ..... ....... . . . . . . ... ... ... .... .. . ··· . ... .. . ... .... 1 0 .. ..... ...... .... .. .......... . .... .... ...... . ···· ....... . ...... .. ...... . ·· .. .......... . .. ... . .. .... ........ ..... . ...................... o .. ...... ...... .. ...... o .. . ...... . .. .. . ..... ........... .. .. .. ..... ..... .... ..... ..... ........ ........... . o 1 1 ..... .: ... ':. .: .: .: .. .': : : .. : ... ' : ' : : : : , , : .. ' : .' '. : . ...... ... . . . . ... . .. ... . ......... .... ... ... ..... .... . 1 0 0 .... : .. :" : : : ":" . .. .. .. . · .. ...... . .. .... ...·· ..... .. · ........... . . .. . . ... .. .. ..... o 1 .. .. .. .. · ............ . .. ... ..... ......... ... ... . . .. .. : •• •• e.. ••• • • • •• "' • •••••••• eo •••••• " ' ' . 83-0029138 6-33 NEe ",PD7228 Block Diagram c·s R-S R·NS C·NS Clock 1 t:i 1/1 w I~ ~ ~ 10 0 a: I~ I~ ~ ~ 8 riI I~ 8 6- ~ iii 8 83-0029076 Absolute Maximum Ratings Capacitance TA=25°C TA=25°C; Voo=OV Supply voltage, Voo -0.3Vto +7V 10 pF (Note 1) Co 25 pF (Note 1) I / 0 capacitance CIO 15 pF (Note 1) Parameter Output voltage, Vo -0.3VtoVoo +0.3V Input capacitance CI Storage temperature, TSTG Output capacitance Comment: exposing the device to stresses above those listed in Absolute Maximum Ratings could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational sections of the specification. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. 6-34 Te,t Condition, - 0.3 V to Voo +0.3 V Operating temperature, TOPT Umltl Typ Mal Unit Symbol Input voltage, VI Min Note: (1) f 1 MHz. Return unmeasured pins to 0 v. = NEe j-tPD7228 DC Characteristics TA= -10 0 Cto +70 o C, voo= +5V±10% Common Operation (cont) Umlts Parameter Symbol Typ Min Max Unit Test Conditions Umlts Parameter Symbol Input voltage high VIH1 0. 7VOO VOO V Except SCK VIH2 0. 8VOO VOO V SCK Input voltage low VIL 0 0. 3VOO V Output voltage high VOH1 Voo-0.5 V BUSY, 00-03, 10H= -400~ CS high level time tWHCS VOH2 Voo-0.5 V SYNC, 10H= -100,..A SYNC load capacitance CLSY Output voltage low Min Typ BUSYJ!elay time tOCSB from CS + CS~aytime 4 tOCSBF Unit Test Conditions }AS CL =50 pF }As CL =50 pF to BUSY floating VOL1 0.45 V BUSY, 00-03, 10L =1.7mA Data set-up time tSOR to RESET + SYNC, 10L =100~ Data hold time from RESET + 4 }As 100 4 J.ls VOL2 0.45 V IUH 10 ~ VI=VOO Input leakage current low IUL -10 ~ VI=OV Serial Interface Operation Output leakage current high ILDH 10 ~ VO=VOO Parameter Symbol Output leakage current low -10 ~ VI=OV SCK cycle ILDL tHRO pF }As Input leakage current high Limits LCD operating voltage VLCO Row output impedance RROW Row/column output impedance RROW/ COL Column output impedance RCOL Supply current 1001 3.0 4 VOO V 8 kQ 0.9 J.ls ns SCK pulse width tWLK low 400 ns SCK hold time from BUSY t tHBK 0 ns tSIK 100 ns 250 ns 10 15 kQ SI hold time from SCK t tHKI 200 400 ~ Operating mode fc=400 kHz SOd~time from SCK + tOKO 20 ~ Stop mode CLK=OV BUSY delay time tOKB from eighth SCK t Max Unit 1100 kHz Clock frequency fC 100 Clock pulse width high tWHC 350 ns Clock pulse width low tWLC 350 ns RESET pulse width high tHRS J.lS Test Conditions 320 tWLB 18 C/5 s~ time tSOK to firstSCK + 0 BUSY low-level time Common Operation Typ Unit Test Conditions SCK t TA= -10°C to +70°C, Voo= +5V±10% Min Max 400 ~et-up time to AC Characteristics Symbol Typ tCYK kQ Limits Min SCK pulse width tWHK high 10 1002 Parameter Max 64 ns CL =50 pF J.ls CL =50 pF 1/fc CL=50pF J.ls C/5 hold time from eighth SCK t tHKO J.ls CS holdfime from eighth SCK t tHKCS J.lS D NEe fAPD7228 AC Characteristics (cont) TA= -10°C to + 70°C, Voo= +5V±10% Parallellntertace Operation Parallel Interface Operation (cont) Limits Symbol Parameter Min Typ Max Unit Test Conditions Limits Parameter Symbol Input command tA set-up time to STB + 100 ns CL =80 pF BUSY delay time tOSB from second STB t Input command tB hold time from STB + 90 ns CL =20 pF C/ Dset-up time tsos to first STB + Input data setup time to STB tc 230 ns CL=80pF Input data~d to time from STB t 50 ns CL =20 pF Output data delay time 90 650 ns 150 ns Output data hold tH time 700 STB pulse width tSL low 0 Typ Max Unit 3 jAs tHSO Ils tHSCS jAs CL =80pF CS hold time from second STB t CL =20 pF AC Timing Test Points ns J O . 7 V D D > Test ___ O. 7VO D L O.3VDO Points - - - O.3VOO jAs STB high level time tSH STB hold time from BUSY t tHBS 0 Test Conditions Ils C/ D hold time froms econd STB t t tACC Min 83-002909A jAs Timing Waveforms Seriallntertace c/o BUSV-------------- 83-0029086 NEe /JPD7228 Timing Waveforms (cont) Clock Waveform Interface RESET ~.~ . t.,nD~ =3E~"3----- CL 83-002910A 83-002912A Parallel Interface C/O BUSy----(I &B--------------~ 00-03 00-D3------------------------~ 83-0029118 Reset Signal F '"~\'------ RESET______- - J 83·003856A NEe /JPD7228 Command Summary Command Summary 1. Set frame frequency 2. Set multiplexing mode 0 0 0 0 0 0 F2 F1 FO M2 M1 MO 0 Mnemonic Operation 4. Display on 5. Set read mode 0 0 0 0 0 0 0 0 0 0 0 11 10 6. Set write mode 0 0 11 10 7. Set AND mode 0 0 11 10 8. Set OR mode 0 0 11 10 9. Set character mode with right entry 0 0 0 0 10. ·Set character mode with left entry 0 11. Bitset 0 12. Bit reset 0 13. ·Write cursor 0 0 14. ·Clear cursor 0 0 0 DO 15. Load immediate to data pointer 16. ·Set stop mode 0 0 0 0 0 0 B2 B1 BO J1 JO B2 B1 BO J1 JO 06 D5 D4 D3 D2 D1 0 0 0 0 0 Note: • Newly added (compared to ",PD7227). 0 o 0 0 b 0 0 Set frame frequency 0 0 0 SMM Set multiplexing mode 0 0 0 0 0 D2 D1 Do 10-14 D2 D1 Do 18-1F 0 0 0 0 0 08 DlSPON Display on 0 LDPI Load data pOinter with immediate . D6 D5 D4 D3 D2 D1 Do 80-B1, CO-F1 SRM Set read mode 0 1 0 0 SWM Set write mode 0 0 0 SORM Set OR mode 0 0 SANDM Set AND mode 0 0 SCML Set character mode with left entry 0 0 0 SCMR Set character mode with right entry 0 0 0 BSET Bit set 0 1 0 D4 D3 D2 D1 Do 40-5F BRESET Bit reset 0 0 D4 D3 D2 D1 Do 20-3F 1 1 1 0 1 70 1 1 1 0 0 7C 0 0 0 0 0 0 0 1 SFF DlSPOFF Display off 3. Display off Instruction Code Binary D7 De Ds D4 D3 D2 D1 Do HEX 1 WRCURS Write cursor 0 CLCURS Clear cursor 0 1 STOP Set stop mode 0 0 0 09 0 D1 Do 60-63 01 Do 64-67 0 D1 Do 68-6B 1 1 D1 Do 6C-6F 71 0 0 0 72 01 NEe NEe Electronics Inc. pPD72030 CMOS, INTELLIGENT LCD CONTROLLER Pin Configuration Description The ",PD72030 intelligent LCD controller manipulates dot-matrix characters and graphics by host CPU commands that are provided through an 8085-compatible bus interface. This frees the host to perform other tasks, and so increases overall system efficiency. The ",PD72030 utilizes an 8-bit parallel bus that connects, without an additional interface, to such generalpurpose microcomputers as the ",PD8085AH or ",PD8086. This bus permits high-speed data transfer to the LCD driver. A font character generator of up to 16 x 16 dots can be externally attached, permitting the generation of Kanji (Sino-Japanese) and other characters. A 5 x 7 dot character generator for alphanumeric characters and symbols totalling 64 characters is internally supported. NC LAS SPLT LA7 DRAM CKOUT LA6 LAs LA4 LA3 LA2 LA1 LAo LD7 LD6 LDS LD4 LD3 LD2 Features LD1 D Display duty: 1/32 to 1/128 D Display control - Cursor manipulation - Vertical and horizontal movement - Direct addressing - Shift to home position - Editing - Scrolling - Attribute functions - Reverse display - Underline - Blinking display D Directly connectable to LCD driver MEMR MEMW LDO 49-000979A ",PD6307/6308 D CMOS technology D Single +5 V power supply Ordering Information Part Number J.lPD72030G-12 Package Type Max Frequency of Operation 64-pin plastic miniflat 6 MHz 6-39 NEe I-'Pl),.72030 Pin Identification Pin Functions No. Symbol 1-6,8-11, 56-64 LAo-LA18 Local address bus output 7,39 VDD Power supply input 12 INT Interrupt request output 13 CGEN Character generator enable output 14 NC No connection Function Data Bus [00.07] This 1/0 data bus interfaces with the host CPU. Writing of commands, parameters, and data, or reading of status and data are performed through this bus. Address 0 [AO] When input AO is low, the data bus contains data or a parameter. When AO is high, the data bus contains a command or status. AO connects to the host CPU address bus. 15 SPLT Split screen select output 16 DRAM DRAM reset enable output 17 CKOUT Clock output 18 EOT End of transfer output 19 DREQ DMA request output Chip Select [eS] 20 DACK DMA acknowledge input 21 TC Terminal count input A low input to this pin enables the host CPU to read from or write to the data bus. CS connects to the host CPU address decode signal. 22-29 Do-D7 Data bus liD 30 WR Write strobe input 31 RD Read strobe input 32 CS Chip select input 33 AO Address 0; command and signal input for data .bus function 34 TEST Sets test mode input 35 RESET Reset input 36,37 X2,X1 Clock pins 38 VSS Ground 40 STB Strobe output 41 FRM Frame; AC converted signal output . that drives the LCD 42 RST LCD driver reset output 43 SBY LCD standby mode output 44,45 IOW2,IOW1 LCD driver write strobe output 46 MEMW Local memory write output 47 MEMR Local memory read output 48-55 LDo-LD7 Data bus input to local memory Read Strobe [RO] A low input to this pin while CS is active enables the JlPD72030 to send status or data to the data bus. RD connects to the host CPU read strobe. Write Strobe [WR] A low input to this pin while CS is active enables the JlPD72030 to receive a command or parameter. WR connects to the host CPU write strobe. OMA Request [OREQ] This pin outputs a DMA service request for data block transfer. When a data block transfer is required between host CPU memory and JlPD72030 local memory, if the transfer is possible, DREQ will be set high to request DMA service. DREQ connects to the service request input of the DMA controller. If the block transfer function is not used, this pin should be left open. OMA Acknowledge [OACK] A low input to this pin acknowledges a DMA service request and internally sets CS and AO low. DACK connects to the service acknowledge output of the DMA controller. If the block transfer function is not used, this pin should be pulled high. Terminal Count [TC] A low input to this pin indicates data block transfer has terminated. TC connects to the DMA transfer termination output of the DMA controller. If the block transfer function is not used, TC should be pulled high. 6-40 NEe J,lPD72030 Local Data Bus [LDo-LD7] Strobe [STB] This data bus input provides communication between the J.lPD72030 and local memory, which consists of display memory and the character generator. This is the row driver strobe. One STB pulse output at the timing interval causes the display of one row. The number of STB outputs during each frame interval determines the display duty. Local Address Bus [LAo-LA1S] This address bus output accesses local memory. LAo-LA15 address display memory. LA16-LA18 address the external character generator. Character Generator Enable [CG EN] This output enables the external character generator. When CGEN is high, the character address and scan address are output on LAO-LA18. When CGEN = 0, the address to display memory is output on LAo-LA15; LA16-LA18 become don't care. When the external generator is not used, CGEN should be left open. Frame [FRM] This output is an AC-converted signal that drives the LCD. A high-level output displays a positive frame (one screenful) and a low-level output displays a negative frame. End of Transfer [EOT] When low, this output indicates one row of display data has transferred. EOT is a clear signal for the CS Signal generator counter of the row driver. LCD Driver Reset [RST] Split Screen Select [SPLT] When the partitioned matrix display is used, this output pin selects which of two refresh memories will be available for access. When SPLT is low, refresh memory for the upper portion of the screen is accessed. When SPLT is high, refresh memory for the low portion of the screen is accessed. DRAM Reset Enable [DRAM] When dynamiC RAM (DRAM) is connected to local memory, the logical AND of this output signal and the J.lPD72030 RST signal is input to the RST pin of the column driver. This prevents a loss of display memory contents while the display is off, without refreshing DRAM. Local Memory Read [M EM R] This is the read strobe output to local memory. When MEMR goes low, the J.lPD72030 reads the contents of local memory. If IOW1 and IOW2 are also low level, the contents of display memory are directly written to the LCD driver. This output goes low when the LCD driver is being reset For normal display, RST is high level. LCD Standby [SBy] This output goes low when the LCD display stops and the LCD driver enters standby mode. For normal display, set SBY high level. Clock Out [CKOUT] This pin outputs a clock whose frequency is 1/15 that of the original oscillator. XTAL1, XTAL2 [X1, X2] These pins are used to connect an external crystal. Because the J.lPD72030 has a built-in high-gain amplifier, a functional clock can be generated by connecting a crystal or ceramic resonator and two capacitors to X1 and X2. When an external clock is used, X1 inputs the clock and X2 is left open. Reset [RESET] Local Memory Write [MEMW] This is the write strobe output to local memory. When MEMW goes low, data is written to local memory. LCD Driver Write Strobe [lOW1, IOW2] These are the data write strobe outputs to the column driver. For each MEMR pulse, IOW1 generates one pulse and IOW2 generates two pulses. IOW1 and IOW2 are selected according to how the column driver is used. A low-level input to this pin initializes the J.lPD72030. Interrupt Request [INT] This pin outputs an interrupt service request to the host CPU. If INT = 1, a command is being processed. If INT = 0, a command process is complete and the J.lPD72030 is ready to request a new command from the host Cpu. 6-41 NEe ""PD72030 Test [TEST] Functional Description A high-level input to this pin sets the ",PD72030 to test An LCD display system can be configured by connecting a row and column driver (a ",PD6307 and ",PD6308) and a general-purpose RAM as display memory to the ",PD72030. An external character generator may be connected. mode. For normal use, the input to the TEST pin should be fixed low by connecting TEST directly to Vss. Vss Ground. Voo Positive power supply. Block Diagram iNf SPLT AD cs CGEN AD WR Local Memory Access Controller DO-07 LAD-LA18 LDO-L07 OREQ OACK MEMR fC The ",PD72030 performs both the display and command process. In the display process, the ",PD72030 drives an LCD panel by sending display memory data to the column driver, and timing signals to the row and column drivers. At fixed intervals generated by the ",PD72030, the display memory contents are transferred directly to the column driver via the I()cal bus. When two or more' column drivers are connected to the system, the row driver CS signal determines the column driver to which the data is to be written~ After display data is stored in each column driver, the STB signal is output. One line of display data is then output to the LCD panel. The row signals are scanned, and the above sequence is repeated to drive the LCD panel using this time-division method. MEMW RESET TEST RST SBV ORAM LCOTlming Generator IOWl IOW2 EOT STB FRM CKOUT Clock Generator Xl X2 V __ oo Vss _ _ Power Supply 49-000963A 6-42 In the command process, the ",PD72030 manipulates the contents of display memory with host CPU commands. In order for the ",PD72030 to process a command, the host CPU must read and check the status of the ",PD72030.1f the ",PD72030 is processing a command, the host continues to read and check status until the ",PD72030 is in the command wait state (no command is executing). When the ",PD72030 is in the command wait state, the host sends a command to the ",PD72030. (An interrupt may also be used.) The ",PD72030 interprets the given command and executes it. NEe J.(PD72030 Absolute Maximum Ratings DC Characteristics TA TA TA = 25°C Supply voltage, Voo Vss - 0.3 to + 7 V Input voltage, VI VSS - 0.3 V to Voo + 0.3 V Output voltage, Va Vss - 0.3 V to Voo + 0.3 V Operating temperature, TOPT -10 to +70°C Storage temperature, TSTG -65 to +125°C Comment: Exposing the device to stresses above those listed in Absolute Maximum Ratings could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational sections of this specification. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Recommended Operating Conditions Limits Parameter Symbol Supply voltage VOO1 Operating frequency fOPT1 Supply voltage VOO2 Operating frequency fOPT2 Min Typ Max Unit 4.75 5.0 5.25 6 4.5 5.0 5.5 V 6 MHz +70 o C, Voo +50 o C, Voo TA= -10 to + 70°C =5V =5V ±5% ±10% Limits Symbol Min Input voltage low VIL Input voltage high VIH1 VIH2 Parameter lYP Test Conditions Max Unit -0.3 0.7 V 2.2 Voo + 0.3 V Voo - 1 VOO + 0.3 V 0.45 V (1) V (2) Output voltage low VOL 0 Output voltage high VOH 4.0 Input current 111 -25 112 Test Conditions V MHz = -10 to = -10 to Other than RESET, Xl RESET, Xl -3 !JA. RESET VI:sVIL 7.5 JAA Xl: VI>VIH -7.5 JAA X1: VI o V Test <2.2VC Points 0.7 V 49·001311A 1+----tOACK-----+I AC Output Test Points WR,RD 49·001312A Clock Timing 1 too DREQ/r---~ 49-001314A 49·001313A Read Timing 49-00131SA Write Timing DACK, (;S,AO 00- 0 7 -------(1 49-001316A 6-46 NEe ",PD72030 Timing Waveforms (cont) Local Bus Timing Display Timing SPLT,CGEN, LAo-LA18 MEMW------------~----~------------~----------+_--- LDO-LD7 ------------------+--< CKOUT 49-0013178 Display Timing STB FRM -------------'"'\. RST SBY - - - - - - - - ' .J.:--------------11=--------49-001318A 6-47 ttiEC JAPD72030 Commands Timing Waveforms (cont) Paragraphs that follow explain the four initialization commands, nine function specifying commands, 21 display control commands, and 20 display data manipulation commands. Local Bus Timing (cant) Read Timing SPLT,CGEN, Initialization Commands LAo-LA18 SYNC I I o MEMW--~~~----------~------ Parameters IOW1--~~~----------~------ • Column direction (bytes) (L) (H) • Time division • 0 0 0 0 0 it STB cycle 49-001319A Write Timing SPLT,CGEN, LAO-LA18 MEMR --t--------------------t-- 0 B1 BO Function. This command specifies the LCD panel size and the timing to generate control signals (FRM and STB) to the LCD driver. The total number of pixels in a row can be up to twice the number of time divisions. BO specifies whether the connection for expansion is used. BO = 0 Single matrix 1 Partitioned matrix B1 o DRAM not used 1 DRAM used DSPDEF IOW1 --t---~~----rr---------- I I 0 o o Parameters IOW2 ~~~--------~---------- 49-001320A 6-48 • • • • • • • Characters/line Character rows/screen Font size in column direction Font size in row direction Cell size in column direction Cell size in row direction 0 0 0 0 B3 B2 B1 BO t-iEC J,tPD72030 Function. Font and cell size are specified by a number of pixels. Cell size equals the character font size plus the size of the gap between each character, with the following limitations: Cell column = 5 to 10, 12, or 16 pixels Cell row = 7 to 17 pixels B3 specifies the use of character code for the scan address. When B3 = 0, SA4 of the character code is used for the scan address. When B3 = 1, SA4 of the character code is used for the CS of the external character generator, in which case the following fonts are allowed: Column Size Row Size 1 to 8 9 to 16 1 to 16 1 to 8 B2 and B1 specify whether the external character generator is used. BO specifies whether 2-byte codes are used. B2 B1 o 0 1 0 o 1 Function Internal character generator is used External character generator is used Internal and external character generators are used; if a code is given corresponding to characters in both, the internal character generator has priority. BO = 0 2-byte codes not used = 1 2-byte codes used MEMSIZ I I o o o Parameters • Character code memory (lines) • Character code memory (bytes) (L) (H) • Character attribute memory (bytes) (L) (H) • Graphics memory (bytes) (L) (H) Function. This command specifies the size of each display memory. If a memory is not required, set O. To determine the required memory size for 1-byte codes, use the following formula: MR MB/R = where MR is the number of character code memory rows MB is the number of character code memory bytes R is the number of characters per row. For 2-byte codes, multiply the right side of the equation by 2. MEMADR I I o o Parameters • Refresh memory starting address (L) (H) • Character code memory starting address (L) (H) • Character attribute memory starting address (L) (H) • Graphics memory starting address (L) (H) Function. This command specifies the start address of each display memory. If a memory is not required, set FFFFH. 6-49 NEe IJPD72030 Function Specification Commands START DISPLY4 This command releases the STOP mode when the display is OFF, interrupts command input, and clears the data bus. This command modifies the fixed row of refresh memory according to the contents of display memory. The fixed row is specified by the DIVIDU, DIVIDD, and DIVIDB commands. If DIVIDN is executed or the fixed row is modified to a different portion of display memory, DISPLY4 cannot be used. (Use DISPLY1.) STOP This command turns the ",PD72030 oscillator off. While the oscillator is off, data is retained with low power consumption. When a DRAM is used, STOP will destroy data in display memory. The START command releases the STOP state. Once released, the oscillator requires an oscillation stabilizing time that has the same length as the blinking interval. . BLANK This command stops display operation and turns the display off. DISPL o STOP2 This command functions like the STOP command except that the external clock is input. DISPLY1 I 1 I 0 I 0 I 0 I 0 I 0 I 0 If the display is OFF, this command modifies refresh memory according to the contents of display memory and turns the display ON. If the display is ON, refresh memory is modified without turning the display off. DISPLY2 Use this command after execution of BLANK, STOp, or STOP2 to return the display screen to the condition that existed before BLANK, STOp, or STOP2 was executed. DISPLY2 modifies refresh memory according to the contents of display memory and starts the display function. DISPLY3 This command displays the contents of display memory unchanged. 6-50 I 0 This command updates the row where the cursor exists and moves the cursor to the leftmost position of the next row. If in graphics mode, the internal cursor position is moved. NEe I-lPD72030 Display Control Commands CURSOR MODEC,MODEG,MODEM I These commands specify the display mode, as follows: Command Mode _D_i_sp_l_a_y_M_o_d_e_ _ _ _ _ __ MODEC 01 Character display mode (default) MODEG 10 Graphics display mode MODEM 11 Mixed (character/graphics) mode If the display is ON, the display screen is changed to the specified mode. If MODEC is selected, refresh memory is cleared to 0 before refresh memory is updated. When the display mode is specified and display memory has not been specified, the contents of the addresses starting from FFFFH are displayed. (This proceeds from address FFFFH, to address 0, address 1, ...) BLlNKO·3 TS1 TSO These commands specify four different blinking intervals, as follows: Command BUNKO BLlNK1 BLlNK2 BLlNK3 TS1 - 0 0 1 1 TSO Interval Time 0 218 X 15/fosc (default) 1 217 X 15/fosc 0 216 X 15/fosc 1 215 X 15/fosc DSPPOS I 1 I 1 I I 0 I 0 0 I 0 I I 0 I 0 Parameter I 0 I 0 I 0 I P 0 B I Function. This command specifies the cursor type and whether blinking is to be used. These are specified as follows: P= 0 = 1 B 0 = 1 = Underline cursor Block cursor Blinking off Blinking on The default is the underline cursor with blinking off. This cursor is one pixel thick, immediately below the character or space, its length that of the character plus the gap between the characters. The block cursor is the size of the character plus the gap. When the block cursor overlaps a character, the light and dark areas of the character are reversed. CURON o I 1 I 0 I 0 I 0 I 0 This command sets the mode for cursor display on the screen. In display-ON character mode or displayON mixed mode, CURON displays the cursor by writing to refresh memory. The default setting is for the cursor to be displayed. CUROFF I 0 I 0 I 0 I 0 Parameter Display start position (row) Function. This command specifies the row in character code memory where the display starts. The default is O. o o I 0 I 0 This command sets the mode for no display of the cursor. In display-ON character mode or display-ON mixed mode, CUROFF turns the cursor off by modifying refresh memory. 6-51 NEe J.(PD72030 CURHM CURUp, CURDN, CURRT, CURLT I I I I I I 0 0 B1 0 BO This command shifts the cursor up, down, left, or right. The commands and their respective shift direc· tions are as follows: Command - B1 Direction BO -Up 0 0 0 CURUP CURDN CURRT CURLT Down Right Left 1 0 1 1 1 o o o o This command moves the cursor to leftmost edge. LF I 0 o o I o 0 When the cursor is displayed, this command moves the cursor to the home position (upper left corner of the screen). If the fixed ro':N is set, the cursor will be at the upper left corner in the manipulating region, not on the fixed row. When the cursor is not displayed, it will be moved and displayed in the next display mode. o I 1 I 0 o 0 '1 o Parameters • Column position (X) • Row position (Y) Function. When the cursor is displayed, this com· mand moves the cursor to a specified location (col· umn X in row V). When the cursor is not displayed, it will be moved and displayed in the next display mode. CR 0 o 0 CURDR When the cursor is displayed, these commands shift the cursor as specified. When the cursor is not displayed, it will be shifted and displayed in the next display mode. Table 1 describes what happens when the cursor is at the screen edge and one of these com· mands instructs the cursor to move outward. I I I ,...... ' o When parameters exceeding the number of rows or columns are input, the address will be calculated assuming the specified location exists. The cursor will then be moved. The default is home position (0, 0). This command moves the cursor down one line. DIVIDU, DIVIDD BS I 0 o o o o o 0 o 0 B1 BO Parameters This command moves the cursor left one character. Table 1. I I I Cursor Movement at Screen Edge Instruction Function CURUP at the highest row Cursor does not move. CURDN/LF at the lowest row Screen scrolls and cursor moves down one row, remaining in the same column. CURRT at rightmost edge in the highest row Cursor moves to the leftmost edge in the next lower row. CURRT at rightmost edge in the lowest line Screen scrolls and cursor shifts to the leftmost edge of the next row. CURLT/BS at the leftmost edge Cursor moves to the rightmost edge in the preceding row. CURLT/BS at leftmost edge in the highest row Cursor does not move. • Character code memory fixed row (L) (H) • Character attribute memory fixed row (L) (H) Function. These commands specify the fixed row, which is a portion of refresh memory the user can allocate in order to modify parts of refresh memory without the whole display being updated. A fixed row corresponds to one line on the display screen. B1 and BO are specified as follows: Command B1 BO DIVIDU 0 1 DIVIDD o Function Use upper fixed row (see DIVIDB) Use lower fixed row If character attribute memory is not used, set FFFFH for the character attribute fixed row (L, H). 6-52 t\'EC !-,PD72030 Display Data Manipulation Commands DIVIDe o o o CHRDSP Parameters Parameter • Character code' • Character code memory upper fixed row (L) (H) (L) • Character code (when in 2-byte code mode) • Character code memory lower fixed row (H) (L) (H) Function. This command simultaneously displays a character (at the cursor location) and stores its display code in memory. The character code is input as a command, thus AO = 1. • Character attribute memory upper fixed row (L) (H) • Character attribute memory lower fixed row (L) (H) Function. This command is used when both upper and lower fixed rows are used, for the purpose of partitioning the screen. If character attribute memory is not used, set FFFFH for the character attribute memory upper and lower fixed rows (L, H). The default is that upper and lower fixed rows are not set. DIVIDN I I o o o o This command invalidates t.he upper and lower fixed rows. In 2-byte code mode, AO must be 1 so that the lower byte of the character code will be sent to the command buffer and AO = 0, when the higher byte of the character code is sent to the data buffer. In display-ON graphics mode or display-OFF mode, only the code will be written to character code memory. When in display-ON character mode or mixed mode, the cursor will shift one character to the right when the display and writing are done. When the cursor is at the rightmost edge of a row, it will move to the leftmost edge of the next row. If the cursor is at the rightmost edge in the lowest row, the screen will scroll. ESC o o This command selects whether the input to the command buffer will be the command code or the external character generator code. The default is the command code, and the code selected toggles each time ESC is executed. Codes 1B, 08, OA and 00 will not be accepted as character codes. 6-53 NEe J..'PD72030 ATTR I 1 BLKTOT I 0 0 I 0 0 I 1 Parameters Parameter I S C U R B I s I c 0 0 I 0 I u R I B I Space (when the character does not exist) Carriage return (logical row end) Underline Reverse Blink • Display memory address (L) (H) Function. This command performs data block transfer from display memory to the data bus buffer. The address will increment each time a byte transfers. The DMA controller is used. Function. When a display character appears at the cursor location, ATTR specifies an attribute for the character and writes the attribute to attribute memory. Once specified, the attribute will apply to every subsequent character that is input, until another attribute is specified, or the ATTROF command is executed. The ",PD72030 enters the command wait state after the block transfer finishes. Any attribute can be specified by setting its bit to 1. Two or more attributes can be specified simultaneously. Parameters I 0 o o I 1 I 0 o This command releases any attributes specified for the character at the cursor location. BLKTIN o o Parameter • Display memory address (L) (H) Function. This command performs data block transfer from the data bus buffer to display memory. The address will increment each time a byte transfers. The DMA controller is used. If the display is ON, executing BLKTIN to other than refresh memory causes no change in the display. To display the written contents of display memory, execute DISPLY1. The ",PD72030 does not enter the command wait state after the block transfer finishes. 6-54 • Display memory address • Number of transfer bytes ATTROF 1 o (L) (H) The default is that all attributes are off. I READ Function. This commands reads data from display memory and transfers the specified number of bytes via the data FIFO to the data bus buffer. The address increments each time a byte transfers. If the host CPU does not accept all transfer data bytes, the ",PD72030 cannot enter the command wait state. NEe JAPD72030 WRITE CLRCHR o o o Parameters Parameters • Display memory address • Data • Data (for 2-byte code mode only) (L) (H) Function. This command replaces character code memory with the specified data. If character attribute memory exists it is simultaneously cleared by O. • Number of transfer bytes • Write data • Write data • • • In display-ON character mode or mixed mode, the display turns off, refresh memory is modified, and the display turns on again. The character display start position is initialized. • Write data (max 256) Function. This command writes data for the number of transfer bytes from the data bus buffer to display memory. The address increments each time a byte transfers. If 0 is input c;lS the number of transfer bytes, 256 is assumed. If the display is ON, executing WRITE to other than refresh memory causes no change in the display. Execute DISPLY1 to display the written contents. In display-ON graphics or display-OFF modes, only character code memory is altered. The boundaries of character code memory are initialized. If character code memory is cleared by 20H or 2121H and attribute memory exists, attribute memory will be cleared by 40H (the space attribute is attached). The cursor will move to home position. If character code memory is not specified, CLRCHR will not execute and the WARNING bit will be set. If during WRITE execution the host CPU does not send the full number of transfer data bytes, the IiPD72030 cannot enter the command wait state. CLRGRP SELCTO, SELCT1 I I I I o 0 o BO When using a partitioned matrix, two refresh memories are required. When refresh memory is to be accessed, these commands specify refresh memory oor 1. The default is refresh memory O. Once a refresh memory is specified, it remains valid until the next specification. Command BO SELCTO SELCT1 0 1 o Selects 1 I o Parameter • Data Function. This command replaces graphics memory with the specified data. In display-ON graphics mode or mixed mode, the display turns off, refresh memory is modified, and the display turns on. In character display-ON and -OFF modes, only graphics memory is modified. If graphics memory is not specified, CLRGRP will not execute and the WARNING bit will be set. Refresh memory 0 Refresh memory 1 SELCTCG I 0 I Parameters I 0 0 LA18 LA17 LA16 Function. This command will permit access to the external character generator memory. When a READ, WRITE, BLKTIN, or BLKTOT is executed, CGEN output goes high and the upper 3-bit address specified by the parameter is used. 6-55 NEe I-lPD'7203·0 TRANS CLRLN o o o Parameters Number of transfer characters Function. This command sends the character code of each of the specified number of characters to the data bus buffer, beginning with the character at the cursor location. For each character, the character code and then' the attribute code, ifit exists, is sent. For 2-byte codes, the charactercode is sent from the lower to the higher bits. The number of characters to be transferred is specified as follows: otransfers up to the logical row end (up to the location wh,ere the CR attribute is set); 0 cannot be specified if attribute memory has not been specified o o o o This command clears character code memory from the cursor position to the right edge of the row. When character attribute memory exists, attribute memory will be cleared by 40H. The cursor does not move. When 1-byte code is used, character code memory will be cleared by 20H. For 2-byte code, character code memory will be cleared by 2121H. Attribute memory should be set to the space attribute state (cleared by 40H). In display-ON graphics and display-OFF mode, only character code memory is cleared depending on the cursor position and character code display start position stored in the controller. FFH transfers up to the physical row end (up to the right edge of the screen.) When character code memory is omitted, the calculation of the character code memory address will be made assuming character code memory starts from address FFFFH. 1 to FEH transfers up to the specified number of characters. CLRFRM' In display-ON graphics or character display-OFF mode, the character code is transferred to the data bus buffer with an address that is calculated based on the cursor location and the character code start position stored in the controller. If character code memory has not been specified, TRANS will not execute and the WARNING bit will be set. o o o This command clears character code memory from the cursor location to the right edge of the last row. In display-ON mode, refresh memory is also cleared. If character attribute memory exists, it is cleared by 40H. The cursor does not move. When 1-byte code is used, character code memory is cleared by 20H. For 2-byte code, character code memory is cleared by 2121H. Attribute memory should be set to the space attribute state, cleared by 40H. In display-ON graphics and display-OFF mode, only character code memory is cleared, depending on the cursor position and character code display startposition stored in the controller. If character code memory has not been specified, character code memory will be cleared beginning from address FFFFH. 6-56 NEe J-lPD72030 COMP DRESET, DSET I o 0 I 80 0 Parameter Parameters • Pixel position in column direction • Pixel position in column direction o (L) (H) (L) (H) • Pixel position in row direction • Pixel position in row direction (L) (H) (L) (H) Function. These commands reset or set a pixel at a specified coordinate on the screen. These commands manipulate only graphics memory. Command 80 DRESET DSET 0 1 Operation Reset Set The coordinate location is specified according to the number of pixels in the column and row positions. If the specified location is outside the screen, data in an unexpected location will be reset or set. DISPLY1 will display the updated contents of graphics memory. Function. This command reverses a pixel at a specified coordinate on the screen. COMP manipulates only graphics memory. If the specified location is outside the screen, data in an unexpected location will be reversed. DISPLY1 will display the updated contents of graphics memory. If graphics memory has not been specified, COMP will execute assuming graphics memory starts from address FFFFH. If graphics memory has not been specified, DRESET or DSET will execute assuming graphics memory starts from address FFFFH. GET o o Parameters • Pixel position in column direction (L) (H) • Pixel position in row direction (L) (H) Function. This command sends data that tells whether the pixel at the specified coordinate on the screen is set or reset in graphics memory. If the pixel is set, FFH is sent to the data bus buffer. If reset, 0 is sent to the data bus buffer. If graphics memory has not been specified, GET will execute assuming graphics memory starts from address FFFFH. 6-57 ",PD72030 6-58 NEe NEe DEVELOPMENT TOOLS 7-1 IE DEVELOPMENT TOOLS NEe Section 7 - Development Tools pPD7500 Series Hardware Development Tools .................................. 7-3 pPD7500 Series Hardware Development Tool Selection Guide ................. 7-3 EVAKIT-7500B ............................................................. 7-4 pPD75000 Series Hardware Development Tools ................................. 7-7 EVAKIT-75X ............................................................... 7-7 pPD7800 Series Hardware Development Tools .................................. 7-9 pPD7800 Series Hardware Development Tool Selection Guide ................. 7-9 EVAKIT-87AD .............................................................. 7-9 EVAKIT-87LC ............................................................. 7-10 IE-7809-M ................................................................ 7-11 IE-87AD-M ................................................................ 7-11 IE-7811H-M ............................................................... 7-12 IE-78C11-M ............................................................... 7-12 pPD78000 Series Hardware Development Tools ..... '" '" ..................... 7-15 IE-78310-R ................................................................ 7-15 pPD70320/322 Hardware Development Tools .................................. 7-17 IE-70322 .................................................................. 7-17 pPD8048 Series Hardware Development Tools ....................... '" ., .... , 7-19 EVAKIT-84C-1 ............................................................ 7-19 EVAKIT-80C42 ............................................................ 7-19 EV-9001/EV-9002 .......................................................... 7-20 SE-80C50H System Evaluation Board. '" ................. , ................. 7-20 V-Series Hardware Development Tools ...................................... ,. 7-21 IE-70108/70116 ............................................................. 7-21 pPD7500 Series Software Absolute Assembler Development Tools .............. 7-23 ASM75 ................................................................... 7-23 pPD75000 Series Software Relocatable Assembler Development Tools .......... 7-25 RA75X .................................................................... 7-25 pPD7800 Series Software Absolute Assembler Development Tools .............. 7-27 ASM87 ................................................................... 7-27 pPD7800Series Software Relocatable Assembler Development Tools ........... 7-29 RA87 ..................................................................... 7-29 pPD78000 Series Software Relocatable Assembler Development Tools .......... 7-31 RA310 .................................................................... 7-31 pPD70320/322 Software Relocatable Assembler Development Tools ............ 7-33 Evakit Communication Program ......... " ........... , .... , .... " ... , .... , ... 7-35 MD-086 Series Microcomputer Development Systems ......................... 7-37 MD-086 Floppy and Hard Disk Drive System ................................ 7-37 MD-910TM Character Display Terminal Development Tool ...................... 7-43 PG1000 PROM Programmer ............. " ............................. , ..... 7-45 7-2 NEe NEe Electronics Inc. pPD7500 SERIES HARDWARE DEVELOPMENT TOOLS Introduction NEC has a comprehensive line of development hardware and software supporting our many families of single-chip microcomputers. NEC's software operates under CPM-86™ or MS-DOSTM, and will run on a variety of hardware including IBM-PCTM, NEC-APC, and the NEC MD-086 multiuser development system. Generally, an NEC cross-assembler will assemble all members of a series. NEC hardware is divided into two types: Evakits and IE boards. Evakits are mother boards. They accept plugin daughter boards that emulate speci.fic microcomputers. IE boards are in-circuit emulators. They generally have more memory and more functionality than the specific device they emulate. Both types of hardware come with up/down load software that allows communication with the host computer over a serial line. Following is an example of configuring a system for developing the pPD7533 single-chip microcomputer. The selection guide below shows that the pPD7533 requires a mother board, the EVAKIT-7500B, and a daughter board, the EV7533, which personalizes the mother board for the pPD7533. For software development, you first select the host computer and operating system. USing the most popular module, the IBM-PC type running under MS-DOS, as an example, you would need ASM75:-D52. This assembler works for all 7500 series members, and includes up/down loading software. In addition to these development tools, you would need somepPD75CG33E piggyback prototyping chips. And voila, you have a low-cost development system that can be configured by adding daughter boards for other members of the family as new applications emerge. pPD7500 Series Hardware Development Tool Selection Guide Part Number Emulator Add-On Board (Required) System Evaluation Board JlPD7501 JlPD7502 EVAKIT-7500B EV7514 SE-7514A EVAKIT-7500B EV7514 SE-7514A JlPD7503 EVAKIT-7500B EV7514 JlPD7506 EVAKIT-7500B JlPD7507 EVAKIT-7500B JlPD7507H EVAKIT -7500B JlPD7507S EVAKIT-7500B JlPD7508 EVAKIT-7500B JlPD7508A EVAKIT-7500B JlPD7508H EVAKIT-7500B EV7508H JlPD7514 EVAKIT-7500B EV7514 EPROM Device SE-7514A SE-7508 JlPD75CG08E EV7508H JlPD75CG08HE SE-7508 JlPD75CG08E SE-7508 JlPD75CG08H E SE-7514A JlPD7516H EVAKIT-7500B EV7500FIP JlPD75CG16HE JlPD7519 EVAKIT-7500B EV7500FIP JlPD75CG19E JlPD7519H EVAKIT-7500B EV7500FIP JlPD75CG19HE JlPD7527 EVAKIT-7500B EV7528 JlPD75CG28E JlPD7528 EVAKIT-7500B EV7528 JlPD75CG28E JlPD7533 EVAKIT-7500B EV7533 JlPD75CG33E JlPD7537 EVAKIT-7500B EV7528 JlPD75CG38E JlPD7538 EVAKIT-7500B EV7528 JlPD7554 EVAKIT-7500B EV7554A SE-7554A JlPD7556 EVAKIT-7500B EV7554A SE-7554A JlPD7564 EVAKIT-7500B EV7554A SE-7554A JlPD7566 EVAKIT-7500B EV7554A CP/M-86 is a trademark of Digital Research Corporation. JlPD75CG38E SE-7554A MS-DOS is a trademark of Microsoft Corporation. IBM-PC is a trademark of International Business Machines Corporation. 7-3 E ttfEC pPD7500 SERIES EVAKIT-7500B o Supports three operating modes - On-board hexadecimal keypad controlled - External terminal controlled - Host computer system controlled o Serial interface: RS-232C or TTL D EPROM programming capability (2764 and 27128) EV7500 Add-On Boards EV7500FIP Description The EVAKIT-7500B is a stand-alone Evakit for NEC's pPD7500 series of 4-bit, single-chip microcomputers. The EVAKIT-7500B provides complete hardware emulation and software debug capabilities for the pPD7506, pPD750717507S and the pPD750817508A microcomputers. With the addition of device specific add-on boards, the EVAKIT -7500B is easily tailored to support the remaining members of the family. Real-time and single-step emulation capability, coupled with a powerful on-board system monitor and real-time trace capability create a powerful debug environment. The EVAKIT-7500B is controlled either from an onboard keypad or over a serial line from a terminal or host computer. User programs are downloaded through a serial line or read from a PROM. Existing programs may be modified or small programs may be created using the on-board hexadecimal keypad. The EV7500FIP is an add-on board for the EVAKIT7500B which is required for emulating the pPD7516H and the pPD751917519H microcomputers. This board is mounted under the EVAKIT-7500B, adding vacuum fluorescent display control and high voltage driver capability to the Evakit. EV7508H Features D Real-time and single-step emulation capability o 8K bytes of user program memory D Powerful system monitor - Display/modify/move program memory - Display/modify data memory - Load/verify/display PROM - Examine/modify internal registers - Full disassembler o User-specified breakpoint conditions - Program counter and number of passes - Stack pOinter - Data address and value D Real-time trace capability - 2048 instruction cycle trace - External trace probes 7-4 The EV7508H is an add-on board for the EVAKIT7500B which is required for emulating the pPD7507H and the pPD7508H microcomputers. This board plugs directly into the pPD7500 socket on the EVAKIT7500B, allowing the system to support these high speed versions of the pPD7500 series. NEe EV7514 pPD7500 SERIES EV7554A The EV7554A is an add-on board for the EVAKIT7500B which is required for emulating the pPD7554, pPD7556, pPD7564, and pPD7566 microcomputers. This board mounts on top of EVAKIT-7500B, allowing the Evakit to emulate the additional features of these parts: optional pull-up/pull-down resistors for ports 0, 1,10, and 11; comparator/CMOS inputs for port 1; high current/CMOS outputs for ports 8, 9, 10, and 11. pPD7500 Series System Evaluation Boards The EV7514 is an add-on board for the EVAKIT -7500B which is required for emulating thepPD7501 ,pPD7502, pPD7503, and pPD7514 microcomputers. This board is mounted under the EVAKIT-7500B, adding LCD controller/driver capability to the Evakit. EV7528 SE-7S08 The SE-7508 is the system evaluation board for the pPD7506, pPD7507S, and pPD7508A microcomputers. The SE-7508 is functionally equivalent to the ROMbased microcomputers. With the user's program residing in either a pPD2716 or pPD2732 on board, the SE-7508 can be connected to the user's prototype allowing total system performance to be evaluated. SE-7514A The EV7528 is an add-on board forthe EVAKIT-7500B which isrequired for emulating thepPD7527,pPD7528, pPD7537, andpPD7538 microcomputers. This board is mounted under the EVAKIT-7500B, allowing the Evakit to support the additional features of these parts: I/O ports with high dielectric strength, optional pull-down resistors, and zero voltage detection circuits. EV7533 The EV7533 is an add-on board for the EVAKIT-7500B which is required for emulating the pPD7533 microcomputer. This board plugs directly into the pPD7500 socket, allowing the Evakit to emulate the pPD7533's four analog inputs and its 8-bit A/D converter. The SE-7514A is the system evaluation board for the pPD7500 series microcomputers with LCD direct drive capabilities: pPD7501, pPD7502, pPD7503 and pPD7514. The SE-7514A is functionally equivalent to the ROM-based microcomputers. With the user's program residing in either an on-board pPD2764 or pPD27128, you can connect the SE-7514A to your prototype and evaluate total system performance. SE-7554A The SE-7554A is the system evaluation board for the pPD7500 series mini/microcomputers: pPD7554, pPD7556, pPD7564, and pPD7566. The SE-7554A is functionally equivalent to the ROM-based mini/microcomputer. With your program residing in the lower 4K bytes of an on-board pPD2764, you can connect the SE-7554A to your prototype and evaluate total system performance. 7-5 E pPD7500 7-6 NEe NEe NEe Electronics Inc. pPD75000 SERIES HARDWARE DEVELOPMENT TOOLS EVAKIT·75X EVAKIT-75X Add-On Boards Description EV75108 The EVAKIT-75X is a stand-alone Evakit for NEC's pPD75000 series of 4-bit, single-chip microcomputers. With the addition of a device specific add-on board, the EVAKIT-75X is easily tailored to provide complete hardware emulation and software debug capabilities for the individual members of the family. Real-time and single step emulation capability, coupled with an onboard system monitor, create a powerful debug envi ron ment. The EV75108 is an add-on board for the EVAKIT-75X required for emulating the pPD75104, pPD75106, and pPD75108 microcomputers. This board mounts on top of the EVAKIT-75X, allowing the Evakit to support the features specific to these parts. This includes switch selectable pull-up resistors on ports 12,13, and 14. The EVAKIT-75X is controlled over a serial line from either a terminal or host computer. User programs can be downloaded through this serial line or read from PROM. The NEC PG1000 series PROM programmer with the PG1005 personality module can be connected for easy programming of the pPD75P105. Features o Real-time, real-time step, and Single step emulation o 16K bytes of program memory (72 hour backup) o Powerful on-board system monitor - o o \ o o o o o o Display/modify/move/exchange/search/verify program memory - Display/modify/move/exchange/verify data memory - Display/modify general and special registers - Upload/download data - Line-assembler and full disassembler - Load/verify/display PROM User-specified breakpoints - Logical OR of up to four break conditions - Break loop counter - Delayed break by machine cycle or instruction count Real-time trace capability - 512 machine cycle or2048 instruction cycle trace - User-specified trace range - Trace data search function Automatic command string execution Eight external sense probes Controlled from external terminal or host computer Two RS-232C serial ports On-board EPROM programmer (2764 and 27128) Upload/download program for PG1 000/PG1 005 PROM programmer EV75208 The EV75208 is an add-on board for the EVAKIT-75X which is required for emulating the pPD75204, pPD75206, andpPD75208 microcomputers. This board mounts on top of the EVAKIT-75X, allowing the Evakit to support the features specific to these parts including the FIP Controller/Driver. PG1000 Personality Module PG1005 The PG1005 is a plug-in personality module for the PG1000 PROM Programmer. This module is required to program thepPD75P108, the EPROM version forthe pPD75104, pPD75106, and pPD75108 4-bit, single-chip microcomputers. Interchangeable socket adapters are provided with the PG1005 to allow programming both shrink dip and flat packages. 7-7 pPD75000 7-8 NEe t-{EC pPD7800 SERIES HARDWARE DEVELOPMENT TOOLS NEe Electronics Inc. pPD7800 Series Hardware Development Tool Selection Guide Part Number Emulator Real-time Trace Board Add-on Board System Evaluation Board EPROM Device IlPD78C05A EVAKIT-87LC [Note 1] EV87LCRTT EV78C06A SE-78C06 IlPD78C06A EVAKIT-87LC EV87LCRTT EV78C06A SE-78C06 IlPD7807 IE-7809-M IlPD78P09R IlPD7808 IE-7809-M IlPD78P09R IlPD7809 IE-7809-M IlPD7810 EVAKIT-87AD [Note 1] IE-87AD-M IlPD7810H IE-7811H IlPD78C10 IE-78C11-M IlPD7811 EVAKIT-87AD [Note 1] IE-87AD-M IlPD7811H IE-7811H IlPD78C11 IE-78C11-M IlPD78 C14 IE-78C11-M IlPD78P09R EV87ADRTT EV87ADRTT IlPD78PG11E IlPD78PG11E IlPD78PG11E [Note 2] Notes: (1) Addresses O-OFFFH access memory on the Evakit only. (2) Special selected parts. EVAKIT·87AD Description The EVAKIT-87 AD is one of the stand-alone Evakits for NEC's pPD7800 series of 8-bit, single-chip microcomputers. The EVAKIT-87AD provides complete hardware emulation and software debug capabilities forthepPD7811 microcomputer. Real-time and singlestep emulation capability, coupled with an on-board system monitor, creates a powerful debug environment. An optional real-time trace board is also available to greatly increase your debugging capabilities. An auxiliary hexadecimal keypad or a serial line from a terminal or host computer controls the EVAKIT-87AD. User programs are downloaded through a serial line or read from a PROM. Use the keyboard to modify existing programs or create small programs. An onboard programmer for 2716, 2732, 2732A, or 2764 EPROMs provides an easy means for submitting your final code for production. Features D Real-time and single-step emulation capability o 8K bytes of on-board user program memory - Expandable to 64K bytes using IEEE-796 bus o Powerful system monitor - Display/modify/move/search/verify/test Memory - Display/modify internal registers - Display input ports; write to output ports - Load/verify/display PROM - Full disassembler D User-specified breakpoint - One serial (logical AND of up to 4 conditions) or - One parallel (logical OR of up to 15 conditions) - Break delay and loop counter - Break on: address and data values and CPU controls o Supports three operating modes - Auxiliary hexadecimal keypad controlled - External terminal controlled - Host computer system controlled D Serial interface: RS-232C, TTL, or 20 rnA current loop o EPROM programming capability (2716, 2732, 2732A, 2764) 7-9 7 NEe pPD7800 SERIES EVAKIT·87AD Add·On Board Features EV87ADRTT D Real-time and single-step emulation capability o 4K bytes of on-board user program memory - Expandable to 64K bytes using the IEEE-796 bus o Powerful system monitor - Display/modify/move/exchange/search/verify/ test memory - Display/modify internal registers - Display input ports; write to output ports - Load/verify/display PROM - Full disassembler D User-specified breakpoint - One serial (logical AND of up to 4 conditions) or - One parallel (logical OR of up to 15 conditions) - Break delay and loop counter - Break on: address, memory read/write, opcode fetch o Three modes of operation - Auxiliary hexadecimal keypad controlled - External terminal controlled - Host computer system controlled D Serial interface: RS-232C, TTL, or 20 mA current loop o EPROM programming capability (2716, 2732) The EV87ADRTT is the real-time trace board for use with NEC's EVAKIT-87AD stand-alone Evakit. The EV87ADRTT communicates with the EVAKIT-87AD via the IEEE-796 bus, adding real-time trace and additional breakpoint capabilities to the Evakit. A 1K X 62-bit trace RAM is available for storing the status of the address bus, the data bus, the control signals, and the I/O ports as your program is executed in real-time. The trace data may be displayed in either the machine cycles or the instruction mode with the user control Iing the content of the display. The addition of another address breakpoint, a timer breakpoint, and a trace step breakpoint greatly increase the power of the EVAKIT -87 AD. EVAKIT·87LC Description The EVAKIT-87LC is one of the stand-alone Evakits for NEC's J.lPD7800 series of 8-bit, single-chip microcomputers. The EVAKIT -87LC provides complete hardware emulation'and software debug capabilities for theJ.lPD78C06 microcomputer. With the addition of the EV78C06A add-on board, the EVAKIT -87LC supports the J.lPD78C06A. Real-time and single-step emulation capability, coupled with an on-board system monitor, create a powerful debug environment. An auxiliary hexadecimal keypad or a serial line from a terminal or host computer controls the EVAKIT -87LC. User programs are downloaded through a serial line or read from a PROM. Existing programs may be modified or small programs may be created using the keypad. An on-board programmer for 2716 or 2732 EPROMs provides an easy means for submitting the user's final code for production. An optional real-time trace board is available to greatly increase your debugging capabilities. EVAKIT·87LC Add·On Boards EV87LCRTT The EV87LCRTT is the real-time trace board for use with NEC's EVAKIT-87LC stand-alone Evakit. The EV87LCRTT communicates with the EVAKIT-87LC via the I EEE-796 bus, adding real-time trace and additional breakpoint capabilities to the Evakit. A 1K X 59 bit trace RAM is available for storing the status of the address bus, data bus, control signals, I/O ports and ten external sense lines, as the user's program is executed in real-time. The trace data may be displayed in machine cycles or instruction mode with the user controlling the content of the display. The addition of another address breakpoint, a timer breakpoint, and a trace step breakpoint greatly increases the power of the EVAKIT-87LC. EV78C06A The EV78C06A is an add-on board for the EVAKIT87LC which is required for emulating the J.lPD78C06A microcomputer. This board is connected between the Evakit and the target system, dividing the clock output of the Evakit by two. An emulation probe with a 64-pin QUIP header for plugging directly into the microcomputer socket of the target system is included with the EV76C06A. 7-10 NEC IE-7809-M pPD7800 SERIES o MD-086 series development system bus-coupled config u ration - Symbolic debugging - Macro command file capability - Multiple IE-7809 operation - Improved upload/download times IE-87AD-M Description The IE-7809-M is one of the in-circuit emulators for NEC's pPD7800 series of 8-bit, single-chip microcomputers. The IE-7809-M provides complete hardware emulation and software debug capabilities for the pPD7807, pPD7808, and pPD7809 single-chip microcomputers. Real-time and single-step emulation capability, coupled with sophisticated memory mapping features, breakpoints and trace capabilities, create a powerful debug environment. A single-line assembler and disassembler, full register and memory control, and complete upload/download capabilities further simplify the task of debugging your hardware and software. The IE-7809 can operate in two modes: as a standalone in-:-circuit emulator, controlled from either a user terminal orfrom a wide variety of host systems; or as an integral part of the MD-086 series microcomputer development system. Description The IE-87AD-M is one of the in-circuit emulators for NEC's pPD7800 series of 8-bit, single-chip microcomputers. The I E-87 AD-M provides complete hardware emulation and software debug capabilities forthe pPD7810, and pPD7811 single-chip microcomputers. Real-time and single-step emulation capability, coupled with sophisticated memory mapping features, breakpoints, and trace capabilities create a powerful debug environment. A single-line assembler and disassembler, full register and memory control, and complete upload/ download capabilities further simplify the task of debugging your hardware and software. The I E-87AD-M can operate in two modes: as a standalone in-circuit emulator, controlled from either a user terminal or from a wide variety of host systems; or as an integral part of the MD-086 series microcomputer development system. Features o Real-time and single-step emulation o User-designated breakpoints o Sophisticated trace capabilities - 1024 X 56-bit trace buffer - Trace conditioning registers - Instruction or machine cycle display D Powerful memory mapping capability - 64K bytes of RAM mappable in 256-byte blocks o Line assembler/disassembler o Eight external sense probes D Self-diagnostic command o Stand-alone configuration - User terminal controlled - Host computer system controlled 7-11 NEe pPD7800 SER'IES Features o o o o o o o o o Real-time and single-step emulation User-designated breakpoints Sophisticated trace capabilities - 1024 X 56-bit trace buffer - Trace conditioning registers - Instruction or machine cycle display Powerful memory mapping capability - 64K bytes of RAM mappable in 256 byte blocks Line assembler/disassembler Eight external sense probes Self-diagnostic command Stand-alone configuration - User terminal controlled - Host computer system controlled MD-086 series development system bus-coupled configuration - Symbolic debugging - Macro command file capability - Multiple IE-87AD,.M Operation - Improved upload/download times IE-7811H-M De~eriptiC)n The IE,.7811 H-M is one of the in-circuit emulators for NEG's pPD7800 series of 8-bit, single-chip microcomputers. The I E-7811 H-M provides complete hardware emulation and software debug capabilities for the pPD7810H andpPD7811 H single-chip microcomputers. Real-time and single-:-step emulation capability, coupled with sophisticated memory mapping features, breakpoints, and trace capabilities create a powerful debug environment. A single-line assembler, disassembler, full register, memory control, and complete upload/ download capabilities further simplify the task of debugging your hardware and software. o Self-diagnostic command o Stand-alone configuration o IE-78C11-M Descri ption The IE-78C11-M is one of the in-circuit emulators for NEG's pPD7800 series of 8-bit, single':'chip microcomputers. The IE-78G11-M provides complete hardware emulation and software debug capabilities forthe pPD78C10, pPD78C11 and pPD78C14 single-chip microcomputers. Real-time and single-step emulation capability, coupled with sophisticated memory mapping features, breakpoints and trace capabilities create apowerful debug environment. A single-line assembler, disassembler, full register, memory control, and complete upload/download capabilities further simplify the task of debugging your hardware and software. The IE-78C11-M can operate in two modes: asa standalone in-circuit emulator, controlled from either a user term inal or from a wide variety of host systems; or as an integral part of the MD-086 series microcomputer development system. Features o o o The I E-7811 H-M can operate in two modes: as a standalone in-circuit emulator, controlled from either a user terminal or from a wide variety of host systems; or as an integral part of the MD-086 series microcomputer development system. o Features o o Real-time and single-step emulation o o o o o User-designated breakpoints Sophisticated trace capabilities - 1024 X 56-bit trace buffer - Trace conditioning registers - Instruction or machine cycle display Powerful memory mapping capability - 64K bytes of RAM mappable in 256-byte blocks Line assembler/disassembler Eight external sense probes 7-12 - User terminal controlled - Host computer system controlled MD-086 series development system bus-coupled configuration - Symbolic debugging - Macro command file capability - Multiple IE-87AD-M operation - Improved upload/download times o o o o Real-time and single-step emulation User-designated breakpoints Sophisticated trace capabilities - 1024 X 56-bit trace buffer - Trace conditioning registers - Instruction or machine cycle display Powerful memory mapping capability - 64K bytes of RAM mappable in 256 byte blocks Line assembler/disassembler Eight external sense probes Self-diagnostic command Stand-alone configuration - User terminal controlled - Host computer system controlled MD-086 series development system bus-coupled configuration - Symbolic debugging - Macro command file capability - Multiple IE-78C11-M operation - Improved upload/download times NEe pPD7800 SERIES pPD7 800 Series System Evaluation Board PG1000 Personality Module SE-78C06 PG1003 The SE-78C06 is the system evaluation board for the pPD78C06 microcomputer. The SE-78C06 is functionally· equivalent to the ROM-based microcomputer. With the user's program residing in a pPD2732 onboard, you can connect the SE-78C06 to your prototype, allowing total system performance evaluation. The PG1003 is a plug-in personality module for the PG1000 PROM Programmer. This module is required to program thepPD78P09R, the EPROM version forthe pPD7808 and pPD7809 8-bit, single-chip microcomputers. The PG1003 supports two programming modes: high-speed writing mode and normal writing mode. 7-13 .,;..:0 pPD7800·· . 7-14 NEe NEe NEe Electronics Inc. pPD78000 SERIES HARDWARE DEVELOPMENT TOOLS IE·78310·R Description The IE-78310-R is the stand-alone in-circuit emulator for NEC's pPD78000 series of 8-bit, single-chip microcomputers. The IE-78310-R provides complete hardware emulation and software debug capabilities forthe pPD78310 and pPD78312 single-chip microcomputers. Real-time and single-step emulation capability, coupled with sophisticated memory mapping features, breakpoints, and trace capabilities create a powerful debug environment. A serial line from either a terminal or a host computer system controls the IE-78310-R. User programs can be uploaded or downloaded from the host system or from a PROM programmer connected to a second serial line. Features o o o Real-time and single-step emulation - Up to 12 MHz external clock - Software selectable internal or external clock Emulation memory - 16K bytes of high-speed emulation memory for on-chip ROM - 64K bytes of emulation memory for external memory mappable in 256-byte blocks Powerful system monitor - Display/modify/move/exchange/search/verify/ test memory - Display/modify internal registers - Upload/download capability - Symbolic line assembler and disassembler o User-specified breakpoints - o o o o Logical OR of up to 4 conditions Logical AND of address, data, CPU status, loop count - 8-bit external sense probe (bit-maskable) - Emulation timer - 1 to 65,535 ms - Program fetch count - 1 to 65,535 steps Real-time trace capability - 2048 X 44-bit trace memory - Traces: address, data, CPU status, ports 0-5, instruction queue status, macro service status, external sense probes - User-specified trace qualifiers: address, data, CPU status, external sense probes - Instruction/macro service/frame mode display Eight external sense probes for tracing user system signals Two RS-232C serial ports On-board self diagnostics pPQ7800Q NEe NEe NEe Electronics Inc. pPD70320/322 HARDWARE DEVELOPMENT TOOLS PRELIMINARY INFORMATION IE·70322 o Description The IE-70322 is a portable stand-alone in-circuit emulator providing both hardware emulation and software debug capabilities for the NEC V25 (pPD703201 70322) 16-bit single-chip microcomputers. The standard IE-700K chassis integrates a 9.5 inch CRT display, two 5-1/4 inch 640 kilobyte floppy disk drives and an ASCII keyboard. Real-time and single-step emulation capability, coupled with sophisticated memory mapping features, breakpoints, and trace capabilities create a powerful debug environment. User programs can be uploaded and downloaded from a variety of host systems. o o o Powerful communication software supporting: - Digital Equipment Corporation VAX™ computers - I ntel Series 111111 Development Systems - IBM Personal Computers - NEC MD-086 Series Development Systems Macro command file capability Full on-line help facility and screen editor EPROM programmer - 2732, 2764, 27128, 27256, 27512 VAX is a trademark of Digital Equipment Corporation. Features o o o o o o o o Portable stand-alone in-circuit emulator - Integrated CRT, floppy disks, keyboard - Can be upgraded to support V20IV30, V35, V40IV50, V60 Precise real-time and single-step emulation - Up to 8 MHz external clock User-specified mask ROM area of 0 KB, 8 KB, 16 KB or 32 KB 124 KB of high-speed emulation memory (expandable to 636 KB) - Mappable in 4K blocks as user, internal or inhibited Seven user-specified breakpoints - Selectable as execution or bus access cycle break - Break loop counter Sophisticated real-time trace capability - 2K trace buffer (sampling every machine cycle) - Traces: IROM/memory address and data, CPU status, 16 external sense probes - User-specified trace qualifiers Full symbolic debug capabilities Symbolic line assembler and disassembler 7-17 pPD70320/322 7-18 NEe t-rEC pPD8048 SERIES HARDWARE NEe Electronics Inc. EVAKIT-84C-1 DEVELOPMENT TOOLS EVAKIT-80C42 Description The EVAKIT-84C-1 is a stand-alone Evakit forNEC's pPD8048 series of 8-bit, single-chip microcomputers. The EVAKIT-84C-1 provides complete hardware emulation and software debug capabilities for the pPD8048H,pPD8049H,pPD80C48,pPD80C49H, and pPD80C50H microcomputers. Real-time and singlestep emulation capability, coupled with a powerful onboard system monitor, and real-time trace capability create a powerful debug environment. An on-board hexadecimal keypad or a serial line from a terminal or host computer controls the EVAKIT-84C-1. User programs are downloaded through the serial line or read from a PROM. Use the keypad to modify existing programs or create small programs. An onboard programmer for pPD2716, pPD8748, and pPD8749H EPROM devices provides an easy means for submitting your final code for production. Description Features o Real-time and single-step emulation capability o 4K bytes on-board user program memory o Powerful on-board system monitor o o o o o Display/modify program memory Display/modify data memory Display/modify internal registers Display input ports; write to output ports Load/verify PROM Full disassembler Real-time trace capability - 256 steps - Program counter; port 1, 2, or address/data on data bus User-specified breakpoints - One serial (logical AND of up to 15 sequential addresses) - Breakpoint loop counter: up to 16 counts Supports three operating modes - On-board hexadecimal keypad controlled - External terminal controlled - Host computer system controlled Serial interface: RS-232C, TTL, 20 rnA current loop EPROM programming capability (2716, 8748, 8749H) The EVAKIT -80C42 is a stand-alone Evakit for NEC's pPD80C42 8-bit single-chip microcomputer that provides both complete hardware emulation and software debug capabilities. Real-time and single-step emulation capability, coupled with an on-board monitor create a powerful debug environment. An auxi'liary hexadecimal keypad or a serial line from a terminal or host computer controls the EVAKIT-80C42. User programs are downloaded through the serial line or read from a PROM. Use the keyboard to modify existing programs or create small programs. An onboard programmer for the pPD8741A EPROM device provides an easy means for submitting your final code for production. Features o Real-time and single-step emulation capability o 2K bytes on-board user program memory o Powerful on-board system monitor - Display/modify/move/search/verify program memory Display/modify/move/search/verify data memory Display/modify internal registers Read/write to data bus buffer Display input ports; write to output ports Load/verify/display PROM Full disassembler 7-1Q 7 ttiEC pPD8Q48 SERIES o o o o o Real-time trace capability - 256 steps - Program counter; DBBIN, DBBOUT, and DBB status; OBF pin status User-specified breakpoints - One serial (logical AND of up to 4 sequential addresses) - One parallel (logical OR of up to B addresses) - Breakpoint loop counter: up to 256 counts Supports three operating modes - Auxiliary hexadecimal keypad controlled - External terminal controlled - Host computer system controlled Serial interface: RS-232C and TTL EPROM programming capability (pPDB741A) pPD8048 Series Development Tool Selection Guide Part Number Emulator pPDB035H EVAKIT-B4C-1 pPDB04BH EVAKIT-B4C-1 pPDB039H EVAKIT-B4C-1 pPDB049H EVAKIT-B4C-1 pPDBOC39H EVAKIT-B4C-1 pPDBOC4B EVAKIT-B4C-1 pPDBOC35 EVAKIT-B4C-1 pPDBOC49H EVAKIT-S4C-1 pPDBOC40H EVAKIT-B4C-1 pPDSOC50H EVAKIT-B4C-1 pPDBOC42 EVAKIT-BOC42 System Evaluation Board EPROM Device pPDB74BH* pPDB749H* SE-BOC50H SE-SOC50H SE-BOC50H pPDB741A *pPD8748H and pPD8749H are both available in erasable windowed packages or in the economical one time programmable plastiC package. EV-9001/EV-9002 Description The EV-9001 and EV-9002 shrink DIP conversion boards allow the standard in-circuit emulator and Evakit emulation cables to connect to shrink DIP sockets. The EV-9001:-64 converts the emulation probe from a 64-pin QUIP to a 64-pin shrink DIP. The EV9002-42/40/2B convert the emulation cables from 42/40-/2B-pin standard DIP to 42-/40-/2B-pin shrink DIP respectively. 7-20 Ordering Information Conversion Board Function EV-9001-64 64-pin QUIP to 64-pin shrink DIP EV-9002-42 42-pin standard DIP to 42-pin shrink DIP EV-9002-40 40-pin standard DIP to 40-pin shrink DIP EV-9002-2B 2B-pin standard DIP to 2S-pin shrink DIP SE-80C50H System Evaluation Board The SE-BOC50H isthe system evaluation board for the following CMOS members of the J.lPDB04B series: J.lPDBOC4BH,J.lPDBOC49H, and theJ.lPDBOC50H. The SE-BOC50H is functionally equivalent to the ROMbased microcomputers. You can connect the SEBOC50H to your prototype with up to 4K of your program residing in an on-board J.lPD2716, J.lPD2732, J.lPD2732A, J.lPD2764, or a J.lPD27C64. Th is allows total system performance evaluation. NEe NEe Electronics Inc. V-SERIES HARDWARE DEVELOPMENT TOOLS PRELIMINARY INFORMATION IE-7010S/70116 Ordering Information Part Number Description IE-70108-S In-circuit emulator for pPD70108 (with V20 pod) IE-70116-S In-circuit emulator for pPD70ll6 (with V30 pod) IE-70l08-00l Optional pod unit for jlPD70l08 emulation IE-70ll6-00l Optional pod unit for jlPD70ll6 emulation IE-70ll6-l508 Converts IE-70208/2l6-S008 to IE-70l08/70ll6-S ®CP/M-86 is a registered trademark for Digital Research Corporation. V25/35 Series Selection Guide Description The IE-70108 and IE-70116 are stand-alone in-circuit emulators that provide both hardware emulation and software debug capabilities for the NEC jlPD70108 (V20) and jlPD70116 (V30) respectively. Each system consists of a standard I E-70K chassis with interchangeable emulator pods for either the V20 or V30 microprocessor. The IE-70108170116 provides real-time and single-step emulation in both native and 8080 emulation mode. User programs can be uploaded and downloaded from a variety of host systems via a serial link, or loaded directly from a CP/M-86® format 8" disk. Part Number Emulator jlPD70l08 (V20) IE-70l08-S jlPD70ll6 (V30) IE-70ll6-S jlPD70208 (V40) IE-70208-S jlPD702l6 (V50) IE-702l6-S jlPD70320 (V25) IE-70322 jlPD70322 (V25) IE-70322 EPROM Device jlPD70P322 Features D Stand-alone in-circuit emulator - Interchangeable emulator pods for V20/V30 - Conversion kit avai lable for I E-70208/70216-S008 Precise real-time and single-step emulation - 5/8 MHz internal clock - Up to 8 MHz external clock D Sophisticated memory mapping in 1K blocks of: - 64K bytes of no wait state internal RAM - 127K bytes of one wait state internal RAM (expandable to 610K bytes) - Up to 1M byte of user system memory D User programmable breakpoints and trace control D 1K trace buffer - mnemonic and cyclic display o Full symbolic debug capabilities - 128K memory disk for rapid symbol search o Symbolic line assembler and disassembler o Full on-line help facility o Macro command file capability o External probes for tracing user system signals o 1M byte 8" floppy disk drive o 7-?1 V-SERIES 7-22 NEe NEe NEe Electronics Inc. ASM75 Description The 7500 series absolute assembler (ASM75) converts symbolic source code for the entire 7500 series microcomputer family into executable absolute address object code. The assembler verifies that each instruction assembled is valid for the target microcomputer specified at assembly time. An object code file is produced in ASCII hexadecimal format and may be downloaded to a PROM programmer or hardware debugger. pPD7500 SERIES SOFTWARE ABSOLUTE ASSEMBLER DEVELOPMENT TOOLS Ordering Information ParI Number ASM75-C81 Description CP/M-80, 8" single-density floppy diskette ASM75-D52 MS-DOS, 5-1/4" double-density floppy diskette ASM75-181 ISIS-/l, 8" single-density floppy diskette ASM75-182 ISIS-/l, 8" double-density floppy diskette ASM75-M52 CP / M-86, 5-1/4" double-density floppy diskette ASM75-M81 CP/M-86, 8" single-density floppy diskette ASM75-F9T1 Fortran IV ANSI X3.9-1966 source program 9-track 1600 BPI magnetic tape The NEC ASM75 is available for use on all NEC development systems and many other manufacturers' microcomputer development systems, personal computers, minicomputers, and mainframes. Features D D D D o o Absolute address object code output Macro definition capability Generic jump with optimization capability Conditional assembly options - Up to eight levels of nesting User-selectable and directable output files Runs under a variety of operating systems - CP/M-80® - o CP/M-86® - MS-DOS® - ISIS-II Fortran IV ANSI X3.9-1966 source program available CP/M-80 and CP/M-86 are registered trademarks of Digital Research Corporation. MS-DOS is a registered trademark of Microsoft Corporation. 7-?~ pPD7500 7-24 NEe NEe NEe Electronics Inc. pPD75000 SERIES SOFTWARE RELOCATABLE ASSEMBLER DEVELOPMENT TOOLS RA75X Features Description o Absolute address object code output o User-selectable and directable output files o Extensive error reporting o Jump optimization o Runs under a variety of operating systems The RA75X relocatable assembler package converts symbolic source codeforthepPD75104,pPD75106, and pPD75108 4-bit, single-chip microcomputers into an executable absolute address object code. This package consists of three separate programs: a relocatable assembler (RA75X), a linker (LK75X), and an object code converter (OC75X). The RA75X translates a symbolic source module into a relocatable object module. The assembler verifies that each instruction assembled is valid for the target microcomputer specified at assembly time. LK75X combines multiple relocatable object modules into one absolute object module. OC75X produces an ASCII hexadecimal format object file. - CP/M-86® MS-DOS® CP/M-86 is a registered trademark of Digital Research Corporation. MS-DOS is a registered trademark of Microsoft Corporation. Ordering Information Part Number Description RA75X-D52 MS-DOS, 5-1/4" double-density floppy diskette RA75X-M52 CP/M-86, 5-1/4" double-density floppy diskette RA75X-M81 CP/M-86, 8" single-density floppy diskette The RA75X relocatable assembler package is available for use on all NEC development systems and many other manufacturers' development systems and personal computers. IJ pPD75000 "7 I)~ t-iEC pPD7800 SERIES SOFTWARE ABSOLUTE ASSEMBLER NEe NEe Electronics Inc. DEVELOPMENT TOOLS ASM87 Ordering Information Description Part Number The 7800 series absolute assembler (ASM87) converts symbolic source code for the J.lPD7800, J.lPD7801, J.lPD7802, J.lPD78C05, J.lPD78C06, J.lPD7810, J.lPD7811, and J.lPD7816 microcomputers into executable absolute address object code. The assembler verifies that each instruction assembled is valid for the target microcomputer specified at assembly time. An object code file is produced in ASCII hexadecimal format and may be downloaded to a PROM programmer or hardware debugger. ASM87-C81 Description CP/M-80, 8" single-density floppy diskette ASM87-D52 MS-DOS, 5-1/4" double-density floppy diskette ASM87-181 ISIS-II, 8" single-density floppy diskette ASM87-182 ISIS-II, 8" double-density floppy diskette ASM87-M52 CP/M-86, 5-1/4" double-density floppy diskette ASM87-M81 CP/M-86, 8" single-density floppy diskette ASM87-F9T1 Fortran IV ANSI X3.9-1966 source program 9-track 1600 BPI magnetic tape The NEC ASM87 is available for use on all NEC development systems and many other manufacturers' microcomputer development systems, personal computers, minicomputers and mainframes. Features D Absolute address object code output D Macro definition capability o Generic jump with optimization capability o Conditional assembly options - Up to eight levels of nesting o User-selectable and directable output files o Runs under a variety of operating systems - CP/M-80® - CP/M-86® - MS-DOS® - ISIS-II o Fortran IV ANSI X3.9-1966 source program available CP/M-80 and CP/M-86 are registered trademarks of Digital Research Corporation. MS-DOS is a registered trademark of Microsoft Corporation. 7-27 pPD7800 7-28 N'EC NEe NEe Electronics Inc. pPD7800 SERIES SOFTWARE RELOCATABLE ASSEMBLER DEVELOPMENT TOOLS RA87 Ordering Information Description Part Number The RA87 relocatable assembler package converts symbolic source code for the entire 7800 family of 8-bit, single-chip microcomputers into executable absolute address object code. This package consists of three separate programs: a relocatable assembler (RA87), ,,~inker (LK87), and an object converter (OC87). Description RA87-D52 MS-DOS, 5-1/4" double-density floppy diskette RA87-M52 CP/M-86, 5-1/4" double-density floppy diskette RA87-M81 CP/M-86, 8" single-density floppy diskette The RA87 translates a symbolic source module into a relocatable object module. The assembler verifies that each instruction assembled is valid for the specified target microcomputer. LK87 combines multiple relocatable object modules into one absolute object module. OC87 produces an ASCII hexadecimal format object file. The RA87 relocatable assembler package is available for use on all NEC development systems and many other manufacturers' microcomputer development systems and personal computers. Features o Absolute address object code output o User-selectable and directable output files o Extensive error reporting o JMP/JRE optimization o Runs under a variety of operating systems - CP/M-86® MS-DOS® CP/M-86 is a registered trademark of Digital Research Corporation. MS-DOS is a registered trademark of Microsoft Corporation. 7-29 pPD7800 7-30 NEe pPD78000 SERIES SOFTWARE RELOCATABLE ASSEMBLER DEVELOPMENT TOOLS NEe NEe Electronics Inc. RA310 Features Description o Macro definition capability The RA310 relocatable assembler package converts symbolic source code for the pPD78310 and pPD78312 8-bit, single-chip microcomputers into executable absolute address object code. This package consists of four separate programs: a relocatable assembler (RA310), a linker (LK310), a locator (LC310), and a librarian (LB310). RA310 translates a symbolic source module into a relocatable object module. The assembler verifies that each instruction assembled is valid for the target microcomputer specified at assembly time. LK310 combines multiple relocatable object modules into one relocatable object module. LC310 assigns addresses to the relocatable object module and produces both an ASCII hexadecimal format object file and a symbol file for use by the 78000 series hardware emulators. LB310 creates and maintains files containing relocatable object modules. When the library file is included in the input to LK310, the linker only extracts those modules required to resolve external references and links them into the relocatable object module. o o o Conditional assembly options Jump optimization Runs under a variety of operating systems - CP/M-86® - MS-DOS® - VAXIVMS® and VAX/UNIX® CP/M-86 is a registered trademark of Digital Research Corporation. MS-DOS is a registered trademark of Microsoft Corporation. VAX and VMS are registered trademarks of Digital Equipment Corporation. UNIX is a trademark of AT&T. Ordering Information Part Number Description RA310-D52 MS-DOS, 5-1/4" double-density floppy diskette RA310-M52 CP / M-86, 5-1/4" double-density floppy diskette RA310-M81 CP/M-86, 8" single-density floppy diskette RA310-VVT1 VAXIVMS, 9-track 1600 BPI magnetic tape RA310-VXT1 VAX/UNIX, 9-track 1600 BPI magnetic tape The RA310 relocatable assembler package is available for use on all NEC development systems and many other manufacturers' development systems, personal computers and minicomputers. 7-31 pPD78000 7-32 NEe NEe NEe Electronics Inc. Description The RA70320 Relocatable Assembler Package converts symbolic source code for the V25 (pPD703201 pPD70322) single-chip microcomputers into executable absolute address object code. The package consists of fou r separate prog rams: a relocatable assembler (RA70320), a linker (LK70320), a hexadecimal format object code converter (OC70320), and a librarian (LB70320). RA70320 translates a symbolic source module into a relocatable object module. LK70320 combines relocatable object modules and absolute load modules and converts them into an absolute load module. OC70320 produces an ASCII hexadecimal format object fi Ie from either an absolute load or object module. LB70320 creates and maintains files containing relocatable object modules. When the library file is included as input to the LK70320, only those modules required to resolve external references are extracted from the library, relocated and linked into the absolute load module. pPD70320/322 SOFTWARE RELOCATABLE ASSEMBLER DEVELOPMENT TOOLS Ordering Information Part Number Description RA70320-D52 MS-DOS, 5-1/4" double-density floppy diskette RA70320-181 ISIS-Ii, 8" single-density floppy diskette RA70320-182 ISIS-Ii, 8" double-density floppy diskette RA70320-M52 CP/M-86, 5-1/4" double-density floppy diskette RA70320-M81 CP/M-86, 8" single-density floppy diskette RA 70320-VVT1 VAXIVMS, 9 track 1600 BPI magnetic tape RA 70320-VXT1 VAX/UNIX, 9 track 1600 BPI magnetic tape CP/M-86 is a trademark of Digital Research Corporation. MS-DOS is a trademark of Microsoft Corporation. VAX and VMS are trademarks of Digital Equipment Corporation. UNIX is a trademark of AT&T. Features D D D D D Absolute address object code output User-selectable and directable output files Extensive error reporting Powerful librarian Runs under a variety of operating systems - CP/M-86® - MS-DOS® - ISIS/UDI - VAX/VMS® and VAX/UNIX® 7-33 pPD70320/322 7-34 t\'EC NEe NEe Electronics Inc. Descri plion The Evakit communication program (EVA) allows a variety of microcomputer development systems and personal computers to control NEC's Evakits and incircuit emulators directly from the console of the host system. Once a particular emulator is selected from the EVA program's menu, EVA recognizes all legal commands for that emulator. In addition to the emulator standard commands, the EVA program provides commands to upload, download, and display disk files and directories, to save debug session on disk, to display command help files, and to exit from the program to the operating system. You can download to the emulator object code program files produced by a cross assembler on the host system and upload patched copies of the program from the emulatorto the disk for use in later debugging sessions. The disk display commands allow you to examine directories and files on the screen without having to exit the EVA program. This is extremely useful for checking a file before it is downloaded to the emulator or erased during an upload. The help command displays a complete list of all legal commands for the chosen emulator with their proper syntax. There is a command to exit from the EVA program and to return to the operating system. The emulator is not affected, and emulation can be continued by invoking the EVA program again. EVAKIT COMMUNICATION PROGRAM The EVA program is supplied in executable format and is included with each NEC assembler. Executable versions are available for the following host systems: Intel MDS-220/330 under ISIS-II NEC APC under CP/M-86® IBM PC or PC/XT® under CP/M-86 or PC-DOS® IBM PC/AT® under PC-DOS Source code is available and may be modified to support other CP/M-80®, CP/M-86, MS-DOS®, and ISIS-II based systems. The EVA program supports all current Evakits and incircuit emulators and is periodically updated as new emulators are introduced. CP/M-80 and CP/M-86 are registered trademarks of Digital Research Corporation. PC/XT, PC-DOS, and PC/AT are registered trademarks of International Business Machines Corporation. MS-DOS is a trademark of Microsoft Corporation. 7-35 EVA KIT COMMUNICATION PROGRAM 7-36 tt¥EC NEe NEe Electronics Inc. MD·086 SERIES MICROCOMPUTER DEVELOPMENT SYSTEMS MD-086 FLOPPY AND HARD DISK DRIVE SYSTEM Description The MD-086 series microcomputer development systems are a series of disk based, multi-user, multitasking systems supporting the development of products using NEG's microcomputers and microprocessors. Available in either a floppy disk-based or floppy/hard disk-based configuration, the MD-086 may be coupled with NEG's stand-alone evaluation kits (Evakits) or in-circuit emulators (IEs) to provide a complete integrated software and hardware development system. Based on NEG'stJPD808616-bit microprocessor, running Digital Research's MP/M-86® operating system, the MD-086 gives you access to all NEG's assemblers, simulators, high level language compilers, and all other GP/M-86® application software. The MD-086FD-10 (floppy disk-based) consists of two units: the system chassis (housing all the electronics) and the system console (an ANSI standard X3.64 terminal.) The MD-086HD-10 (floppy/hard disk based) consists of three units: the system chassis, the hard disk chassis and the system console, and an ANSI standard terminal. Additional terminals may be added to the system as required, thereby lowering the system cost per user. MP/M-86 and CP/M-86 are registered trademarks of Digital Research Corporation. 7-37 NEe MD-086 SERIES Features D MP/M-86 multi-user/multi-tasking operating system - Supports up to three users - Supports multi-tasking at each user terminal D 512K bytes of system memory - Optional expansion to 1M byte total D Two 1M byte 8" double-sided floppy disk drives D Optional 35M byte hard disk D 64K byte memory disk D Two parallel printer ports D IEEE-796 bus-based with 5 vacant slots for future expansion D Separate ANSI standard X3.64 system console Ordering Information Part Number Description MD-086FD-10 MD-086 series, floppy disk-based system MD-086HD-10 MD-086 series, floppy/hard disk-based system MD-086DK Har~disk MD-910TM Character display terminal upgrade for MD-086FD-10 Hardware Description System Chassis The system chassis of the MD-086 series houses a multiprocessor system, two 8" doubled-sided floppy disk drives, an IEEE:-796 cardcage, power supply, and fans. Utilizing the industry standard IEEE-796 bus as its internal system bus, NEC's MD-086 series with severa.l vacant slots, can easily be expanded to meet tommorrow's technological advances. The multiprocessor architecture of the MD-086 series permits the master CPU to offload the time consuming tasks of data storage/retrieval and system I/O processing to its intelligent peripheral boards, significantly increasing the multi-user/ multi-tasking capabilities of the operating system. This multiprocessor system is composed of a pPD8086 master CPU board, a 512Kbyte memory board, apPD780-based intelligent floppy disk controller (FDC) board, a pPD8088-based intelligent system controller board (SCB), and an optional pPD780-based intelligent hard disk controller (HDC) board. System Boards The master CPU board is the heart of the system. Utilizing apPD8086 microprocessor running at 5 MHz, it controls the operation of the multi-user/multi-pro- 7-38 gramming operating system. The CPU board also contains the bootstrap loader PROM and the system work RAM, interrupt controller, and timer. A single 512K-byte memory board provides the system memory and is accessed by either the master CPU board, the floppy disk controller board, or the optional hard disk controller board. System memory can be expanded to 1M byte by adding additional IEEE-796 bus memory boards. The FDC board is an intelligent floppy disk controller board using NEC's pPD765A floppy disk controller chip to control up to four 8" double-sided floppy disk drives in either single or double-density format. Containing an NEC pPD780-1 microprocessor with 8K of PROM, 64K of RAM, and a DMA controller, the FDC board controls the transfer of data between the system memory and the floppy disk. The HDC board is an intelligent hard disk controller board using N EC's pPD7261 A hard disk controller ch ip to control up to two SMD interface hard disk drives. Containing an NEC j.lPD780-1 microprocessor with 8K PROM, 18K of RAM, and a DMA controller, the HDC board controls the transfer of data between the system memory and the hard disk. The SCB isan intelligent I/O controller board using an NEC pPD8088 microprocessor with up to 16K bytes of PROM and 64K bytes of RAM to control the system console, the serial communication channels, the printer ports, and the paper tape interfaces. The master CPU writes commands into· the dualported memories on the FDC, HDC, and SCB boards. Each board executes its command with no further intervention by the master CPU. This increases the system performance of the MD-086 series. The two 8" doubled-sided floppy disk drives provide approximately 2M bytes of data storage capacity. Single-sided diskettes are recorded in single-density to provide compatibility with other CP/M-86 and MP/M-86 systems. Double-sided diskettes are recorded in double-density providing a maximum storage capacity of 972K bytes per diskette. Hard Disk Chassis The optional hard disk chassis houses one 8" SMD interface hard disk drive capable of storing 32M bytes of formatted data, the power supply, and fans. A ready indicator, along with a write protect switch/indicator, and a fault switch/indicator are also provided. NEe System Console MD·086 SERIES D Display and modify user registers. o Read and write to the floppy disks and paper tape. D Set breakpoints and execute user's program. D Single-step and trace executing user's program. The MD-91 OTM, an ANSI standard X3.64 CRT terminal, is provided as the system console for the MD-086 series microcomputer development systems. To take advantage of the mUlti-user features of the MD-086 series, additional ANSI standard terminals may be purchased separately from NEC Electronics Inc. or other manufacturers. MD-086 Series Utilities Software Description The following utility programs are supplied with the M D-086 series: The MD-086 series incorporates Digital Research's MP/M-86 operating system providing you a compact multi-user, multitasking operating system. Each user has complete access to all of the MP/M-86 facilities and may execute multiple programs simultaneously. ABORT ASM86 ATTACH BACKUP The powerful MP/M-86 file system manages all files and file directories, dynamically allocating, and releasing disk space as required. Designed for the multiuser environment, it enhances file integrity by permitting files to be opened in one of three modes: locked, unlocked, and read only modes. In locked mode, only one user may open a specific file at a given time, while in unlocked mode multiple users/programs may open the same file. Read only mode, permits a file to be opened by more than one process but it cannot be changed. Optional password protection is available at both the file and disk level, providing protection for a particular user's files. MP/M-86's extended directories allow files to be dated and time stamped. Each file may have up to two date and time stamps: one reflects the date and ti me of the last update and the other the date of the last access or file creation. All files generated on CP/M® 8" diskette systems may be read under M P/M-86, allowi ng you to easily transport existing software routines to the MD-086 series. Hardware-independent CP/M-86 application programs can be ru n, g ivi ng you access to a wide variety of th i rd party software. A 64K-byte memory disk residing in system memory is available for high speed file processing, significantly improving the overall performance of the MD-086 series microcomputer development systems. The MD-086 series contains a PROM-resident monitor program which may be used for pPD8086 program development/debugging. This monitor program is entered automatically if there is no MP/M-86 system disk in drive A when the reset switch is pressed. Some of the main features of the MD-086 monitor are: D Display, fill, substitute, compare, transmit, ortestthe contents of memory. Note: CP/M is a registered trademark of Digital Research Corporation. CLEAR CONSOLE DDT86 DIR DSKRESET ED ERA ERAQ FORMAT GENCMD GENSYS HDBACKUP HDDUMP HDFORMAT MPMSTAT PHFORMAT PIP PRINTER REN SDIR SET SHOW SPOOL STAT STOPSPLR SUBMIT SYSCPY TOD TYPE USER YEAR Stops the specified process Absolute assembler for pPD8086/8088 Attaches program to its console Makes a complete backup copy of a disk Clears the system console screen Displays console number Dynamic debugging tool for pP D8086/8088 Displays disk directory of filenames Resets drives Line-oriented editor Erases a file Erases <;l file only after confirmation Formats floppy disks Converts H86 file to CMD file Generates MP/M-86 operating system Makes backup of hard disk logical drive Displays and changes contents of hard disk Initializes hard disk logical drives Displays MP/M-86 internal status Physically formats hard disk Copies fi les Displays and sets the printer number Renames files Displays disk directory with options Sets disk and file protection levels, file attributes, and file time stamping Displays disk status and protection levels Spools files to the list device Displays, set files, and disk status Stops the spooler Executes batch processing Copies system loader and MPM.SYS Displays and sets time of day Displays ASCII file contents at console Displays and sets user number Sets the year 7-39 ID NEe MD·086 SERIES Five of these utilities have been incorporated into the operating system as resident system processes (RSPs) and reside in system memory. They can be executed without disk accesses, increasing the performance of the system. The RSPs in the MD-086 series include: ABORT, DSKRESET, MPMSTAT, PRINTER, and USER. MD·086 Series Development Environment The MD-086 series microcomputer development systems have been designed to provide a integrated software and hardware development environment for all NEC proprietary microcomputers, microprocessors, and digital signal and image processing components. For software development, a complete family of absolute and relocatable assemblers, high level languagecompilers, and digital signal and image processor simulators are available for the MD-086 Series. For software and hardware debug, N EC in-circuit emulators and Evakits can be controlled directly from the MD-086 series consoles. Evakit communication programs are available for controlling all stand-alone Evakits via a serial link directly from any console of the development system. These programs provide program upload and download capability plus a full line assembler and disassembler. Up tothree in-circuit emulators can be plugged directly in the IEEE-796 backplane of the MD-086 series and controlled by the appropriate IE control program. In this bus-coupled configuration, your program debugging capabilities are greatly enhanced with the addition of symbolic debug, macro command file capability, and improved file upload/download times. With the MD-086 series microcomputer development systems, you will always have access to development tools for NEC's newest components at the earliest possible time. Documentation The following documentation is supplied with the system. Additional copies may be obtained from NEC Electronics Inc. • • • • • • MD-086FD-10 Installation Manual MD-086FD-10 MP/M-86 Implementation Manual MD-910TM Terminal User Manual MP/M-86 Multi-Process Monitor User's Guide* MP/M-86 Operating System Guide* MP/M-86 Multi-Process Monitor Programmer's Guide* 'Additional copies may be obtained from Digital Research. Equipment The following equipment is supplied with the system: MD-086FD-10 • • • • • • • • • 1 2 1 1 1 2 2 1 2 • 1 • 1 System chassis RS-232C serial cables Centronics printer cable Line cord and ground adapter Spare fuse On-off keys Male DB-25 solder type connectors/shells Set of disk drive labels 8" floppy diskettes MP/M-86 system disk MP/M-86 gensys disk MD-910TM system console 1 RS-232C cable 1 TTL level cable 1 Line cord and ground adapter Set of documentation MD-086HD-10 • 1 MD-086FD-10 system • 1 MD-086DK MD-086DK hard disk upgrade • • • • 1 Hard disk chassis 1 HDC board 1 Set of interconnecting cables 1 Line cord and ground adapter Specifications Processors Main Slave pPD8086C, 5 MHz, CPU Board pPD780C-1, 4 MHz, FDC Board pPD8088C-2, 6.5536 MHz, SCB Board pPD780C-1, 4 MHz, HDC Board System Memory 512K-bytes of dynamic RAM (1 M byte total- optional) Operating system area Memory Disk User's Area 64K bytes 64K bytes 384K byte (896K bytes optional) External Memory Two double-sided 8" floppy disk drives - 2M-byte maximum capacity Optional SMD Interface 8" hard disk drive - 32M-byte formatted capacity 7-40 NEe MD·086 SERIES Bus Structure Environmental Specifications IEEE-796 Bus - 5 spare slots in MO-086FO-10 - 4 spare slots in MO-086HO-10 Temperature: Humidity: Serial Interfaces System console Serial interfaces RS-232C/TTL RS-232C RS-232C/TTL 1 channel 1 channel 4 channel -20 to +40°C, non-operating +10 to +40°C, operating 10 to 90% relative humidity, non-operati ng 30 to 80% relative humidity, operating (without condensation) Electrical Characteristics FCC: Class A Parallel Interfaces AC Requirements: Centronics printer interface 2 channel Operating System System chassis: 90-132 V, 50/60 Hz ±2%, SA System console: 90-132 V, 50/60 Hz ±2%, 2A MP/M-86, version 2.0 with NEC proprietary enhancements. Physical Characteristics System Console Width System Chassis CRT Keyboard 16.75 in (425 mm) 14.25 in (362 mm) 18.5 in (470 mm) Height 11.77 in (299 mm) 14.29 in (363 mm) 1.50 in (38 mm) Depth 24.21 in (615 mm) 13.46 in (342 mm) 7.44 in (189 mm) Weight 59.40 Ib (27 kg) 19.95 Ib (9 kg) 4.41 Ib (2 kg) 7-41 MD·086 SERIES 7-42 NEe NEe NEe Electronics Inc. Description The MD-910TM character display terminal is an ANSI standard CRT terminal used as the system console of the MD-086 series microcomputer development system. The MD-910TM can also be used as an additional console for this system, or as an external terminal for any stand-alone Evakit or in-circuit emulator. Features o o o o o o o o o o o o o o Multiple emulation modes - ANSI standard X3.64 (VT100 compatible) - VT52 (Digital Equipment Corporation) Amber 12" nonglare screen Tilt/swivel display Detached low-profile keyboard conforming to DIN standard - ASCII keys, numeric keypad, four function keys Total software set-up feature Smooth, jump, or partial scrolling 80/132 columns by 24-line display Standard, double width, or double height/width characters Blinking block, blinking underline, or invisible cursor Display attributes - Normal, bold, blinking, reverse, underscore, overline, and vertical line Display status LEDs on keyboard Software selectable serial interface - RS-232C, TTL, 20 mA current loop - 7- or 8-bit character with odd, even, or no parity - Full or half-duplex operation - Transfer rate: 50 to 19200 BPS Power-on, self-diagnostic function and data analyzer mode Centronics printer port MD-910TM CHARACTER DISPLAY TERMINAL DEVELOPMENT TOOL Physical Characteristics Dimension Width Display Keyboard 14.25 in (362 mm) 18.05 in (470 mm) Height 14.49 in (363 mm) 1.50 in (38 mm) Depth 13.46 in (342 mm) 7.44 in (189 mm) Weight 19.951b (9 Kg) 4.41 Ib (2 Kg) Environmental Specifications Temperature: 0 to 40°C Relative Humidity: 30 to 80% , non-condensing Electrical Characteristics FCC: Class A Power: 90-132 V AC, 50/60 Hz ±2%, 2A Ordering Information Part Number Description MD-910TM Character display terminal Equipment The following equipment is supplied with the MD-910TM terminal: • • • • • • • 1 Display terminal 1 Keyboard with attached cable 1 RS-232C serial interface cable 1 TTL serial interface cable 1 AC power cord and ground adapter 1 Spare fuse 1 MD-910TM user's manual 7-43 MD·910TM. 7-44 NEe NEe NEe Electronics Inc. PG1000PROM PROGRAMMER Description PG 1 000 Personality Modules The PG1000 is NEC's PROM Programmer for use with the MD-086 Series Development Systems and certain NEC Emulators. With the use of interchangeable personality modules, the user can tailor the PG1000 to support various NEC single-chip microcomputers. The user controls the PG1000 via the serial interface from either a host computer or an external terminal, or directly from the on-board keypad in stand-alone mode. The PG1003 is a plug-in personality module for the PG1000 PROM Programmer. This module is required to program theJ,lPD78P09R, the EPROM version forthe J,lPD7808 and J,lPD7809 8-bit, single-chip microcomputers. The PG1003 supports two programming modes: high-speed writing mode and normal writing mode. Features o o o o o o o Interchangeable personality modules 16K of data RAM Address/data display and mode specification LEDs Flexible membrane keypad Three modes of operation - Host computer controlled - External terminal controlled - Stand-alone operation Serial interface: RS-232C, TTL, or 20-mA current loop Parallel interface: TTL (two-wire handshake) PG1003 PG1005 The PG1005 is a plug-in personality module for the PG1000 PROM Programmer. This module is required to program theJ,lPD75P108, the EPROM version forthe J,I~D75104, J,lPD75106, and J,lPD75108 4-bit, single-chip mIcrocomputers. Interchangeable socket adapters are provided with the PG1005 to allow programming both shrink dip and flat packages. 7-45 PG1000 7-46 NEe NEe PACKAGING INFORMATION 8-1 E PACKAGING INFORMATION NEe Section 8 - Packaging Information Package/Device Cross Reference ............................................. 8-3 20-Pin Plastic Shrink DIP (300 mil) ............................................ 8-5 20-Pin Plastic SO (Small Outline) (300 mil) ..................................... 8-5 24-Pin Plastic Shrink DIP (300 mil) ............................................ 8-6 24-Pin Plastic SO (Small Outline) (300 mil) ..................................... 8-6 28-Pin Plastic DIP (600 mil) ................................................... 8-7 28-Pin Plastic Shrink DIP (400 mil) ............................................ 8-7 40-Pin Plastic DIP (600 mil) ................................................... 8-8 40-Pin Plastic Shrink DIP (600 mil) ............................................ 8-8 40-Pin Ceramic Piggyback DIP (600 mil) ....................................... 8-9 40-Pin Cerdip with Window (600 mil) .......................................... 8-9 42-Pin Plastic DIP (600 mil) .................................................. 8-10 42-Pin Plastic Shrink DIP (600 mil) ........................................... 8-10 42-Pin Ceramic Piggyback DIP ............................................... 8-11 44-Pin Plastic Miniflat ....................................................... 8-11 52-Pin Plastic Miniflat ....................................................... 8-12 54-Pin Plastic Miniflat ....................................................... 8-12 54-Pin Plastic Miniflat (Inverted leads) ........................................ 8-13 64-Pin Plastic Shrink DIP (750 mil) ........................................... 8-13 64-Pin Plastic Miniflat ....................................................... 8-14 64-Pin Plastic QUIP ......................................................... 8-14 64-Pin Shrink Cerdip with Window ........................................... 8-15 64-Pin Ceramic QUIP with Window ........................................... 8-15 64-Pin Ceramic Piggyback QUIP ............................................. 8-16 68-Pin Plastic Leaded Chip Carrier (PLCC) ................................... 8-16 80-Pin Plastic Miniflat ....................................................... 8-17 84-Pin Plastic Leaded Chip Carrier (PLCC) ................................... 8-17 8-2 NEe PACKAGING INFORMATION· Package/Device Cross Reference Device Package Device Package 20-Pin Plastic Shrink DIP (300 mil) pPD7554CS pPD7564CS 20-Pin Plastic SO (Small Outline) (300 mil) pPD7554G pPD7564G 42-Pin Plastic Shrink DIP (600 mil) pPD7527ACU pPD7528ACU pPD7533CU pPD7537ACU pPD7538ACU 24-Pin Plastic Shrink DIP (300 mil) pPD7556CS pPD7566CS 24-Pin Plastic SO (Small Outline) (300mil) pPD7556G pPD7566G 28-Pin Plastic DIP (600 mil) pPD7506C pPD7507SC 28-Pin Plastic Shrink DIP (400 mil) pPD7506CT pPD7507SCT 40-Pin Plastic DIP (600 mil) pPD7507C pPD7507HC pPD7508C pPD7508HC pPD7508AC pPD8035HLC pPD80C35C pPD8039HLC pPD80C39HC pPD80C40HC pPD8041AHC pPD80C42C pPD8048HC pPD8QC48C pPD8049HC pPD80C49HC pPD80C50HC pPD8748HC pPD8749HC 40-Pin Plastic Shrink DIP (600 mil) pPD7507CU pPD7507HCU pPD7508CU pPD7508HCU 40-Pin Ceramic Piggyback DIP (600 mil) pPD75CG08E pPD75CG08HE 40-Pin Cerdip with Window (600 mil) pPD8741AD pPD8748HD pPD8749HD 42-Pin Plastic DIP (600 mil) pPD7527AC pPD7528AC pPD7533C pPD7537AC pPD7538AC 42-Pin Ceramic Piggyback DIP pPD75CG28E pPD75CG33E pPD75CG38E 44-Pin Plastic Miniflat pPD48G-22 pPD49HG-22 pPD50HG-22 pPD7507HG-22 pPD7508HG-22 pPD7533G-22 pPD80C42G-22 52-Pin Plastic Miniflat pPD7225G-00 pPD7506G-00 pPD7507G-00 pPD7508G-00 pPD80C48G-00 pPD80C49HG-00 54-Pin Plastic Miniflat pPD6307G-F pPD6308G-F 54-Pin Plastic Miniflat (inverted leads) pPD6307G-R pPD6308G-R 64-Pin Plastic Shrink DIP (750 mil) pPD7516HCW pPD7519CW pPD7519HCW pPD7807CW pPD7808CW pPD7809CW pPD7810CW pPD78C10CW pPD7810HCW pPD7811CW I] pPD78C11CW pPD7811HCW pPD78C14CW pPD75104CW pPD75106CW pPD75108CW pPD75P108CW pPD78310CW pPD78312CW 8-3 NEe PACKAGING INFORMATION PackagelDevice Cross Reference Package Device Package Device 64-Pin Plastic Miniflat 64-Pin Plastic QUIP (cont) pPD78C10G-36 pPD7810HG-36 pPD7811 G-36 pPD78C11 G-36 pPD7811 HG-36 pPD7227G-12 pPD7501 G-12 pPD7502G-12 pPD7503G-12 pPD7516HG-12 pPD7519G-12 pPD7519H G-12 pPD78C06AG-12 pPD78C10G-1 B . pPD78C 11 G-1 B 64-Pin Plastic QUIP 64-Pin Shrink Cerdip with Window pPD75P108DW pPD78C14G-1 B pPD72030G-12 pPD75104G-1 B pPD75106G-1 B pPD75108G-1 B 64-Pin Ceramic Piggyback QUIP pPD75P108G-1 B pPD78310G-1 B pPD78312G-1 B pPD75CG16HE pPD78PG11 E pPD75CG19E pPD75CG19HE 68-Pin Plastic Leaded Chip Carrier (PLCC) pPD78C10L pPD78C11 L pPD78C14L pPD78310L pPD78312L 80-Pin Plastic.Miniflat pPD7228G-12 pPD7514G-12 pPD70320G-12 pPD70322G-12 84-Pin Plastic Leaded Chip Carrier (PLCC) pPD70320L pPD70322L pPD7500HG-36 pPD7500HG-E-36 pPD7516HG-36 pPD7519G-36 pPD7519HG-36 pPD78C05AG-36 pPD7807G-36 pPD7808G-36 . pPD7809G-36 pPD7810G-36 8-4 pPD78C14G-36 pPD78310G-36 pPD78312G-36 pPD78P312G-36 64-Pin Ceramic QUIP with Window pPD78P09R ttiEC PACKAGING INFORMATION 20-Pln Plastic Shrink DIP (300 mil) 20 MIllimeters Inches A 19.57 max .771 max B 1.78 max .070 max C 1.778 [TPJ .070 [TPJ Item 0 .50±.10 .020 16.0 .630 ~:~~: .85 min .033 min G 3.2±.3 .126 ±.012 H .51 min .020 min 4.31 max .170 max 5.08 max .200 max 7.62 [TPJ .300 [TPJ K 6.5 M .25 11 .256 ~:~~ .010 ~:~~~ Note: [1 J Each lead centerline is located within .17 mm [.007 inchJ of its true position [TPJ at maximum material condition. M [2J Item uK" to center of leads when formed parallel. 0-15° 83-0036098 20-Pln Plastic SO (Small Outline) (300 mil) 20 Millimeters Inches A 13.00 max .512 max B .78 max .031 max C 1.27 [TPJ .050 [TPJ 0 .40 Item ~:~~ .016 ~:~~~ .1 ±.1 .004 ±.004 1.8 max .071 max G 1.55 .061 H 7.7±.3 .303 ±.012 5.6 .220 .043 1.1 K .20 ~:~~ .6 ±.2 11 .008 ~:~~~ .024 ~:~~: Note: [1 JEach lead centerline is located wilhin .12 mm [.005 inchJ of its true position [TPJ at maximum material condition. I. ' A " .1 H t~1RJ-.l fK 83-0038478 8-5 0 t-rEC PACKAGING INFORMATION 24-Pln Plastic Shrink DIP (300 mil) 24 Item MIllimeters Inches A 23.12 max .911 max 1.78 max .070 max c 1.178 [TP) .070 [TP) .50 ±.10 .020 :::~~: 19.558 .170 .85 min .033 min G 3.2 ±.3 .126 ±.012 H .51 min .020 min 4.31 max .170 max 5.08 max .200 max 7.62 [TP) .300 [TP) 6.5 .256 .25 :::~~ .010 :::~~: M 13 I. ' ".I A Note: (1) Each lead centerline Is located within .17 mm [.007 Inch) of Its true position [TP) at maximum material condition. (2) Item UK" to center of leads when formed parallel. c B -IIM \-0-15 0 83-0037838 24-Pln Plastic SO (Small Outline) (300 mil) 24 Item Millimeters Inches A 15.54 max .612 max B .78 max .031 max C 1.27 [TP) .050 [TP) .40:::~~ .016 :::~~: D .1±.1 .004 ±.004 1.8 max .071 max G 1.55 .061 H 7.7±.3 .303±.012 K 5.6 .220 1.1 .043 .20 :::~~ .008 :::~~: .6±.2 .024 :::~~: 13 " .1 Note: (1) Each lead centerline Is located within .12 mm [.005 Inch) of Its true position [TP) at maximum material condition. 83-0038578 8-6 NEe PACKAGING INFORMATION 28-Pln Plastic DIP (600 mil) 15 28 Item A Millimeters 1nches 38.1 max 1.5 max ---------~-~----- a 2.54 max .10 max C 2.54 [TP) .10 [TP) 0 .5 ± .10 .02 + .004 - .005 -----------~-------.-- 33.02 G H K M Notes: 1.3 1.2 min .047 min 3.6 ±.3 .142 ± .012 .51 min .02 min 4.31 max .17 max 5.72 max .226 max 15,.24 [TP) .60 [TP) 13.2 .52 .25 +.10 -.05 .01 " .1 A K +.004 - .003 1. Each lead centerline Is located within .25 mm [.01 Inch) of Its true position [TP) at maximum material condition. 2. Item "K" to center of leads when formed parallel. -~ 0-15' E 83·0014078 28-Pln Plastic Shrink DIP (400 mil) 15 28 Item Millimeters Inches A 28.46 max 1.121 max .106 max a 2.67 max C 1.778 [TP) .070 [TP) 0 .50±.10 .02 23.114 .91 F .9 min .035 min G 3.2±0.3 .126 ±.012 H .51 min .020 min 4.31 max .170 max 5.08 max .200 max 10.16 [TP) .400 [TP) K 8.6 M .25 + .004 - .005 .339 +.10 - .05 .01 + .004 - .003 Notes: 1. Each lead centerline Is located within .17 mm [.007 Inch) of Its true position [TP) at maximum material condition. 2. Item "K" to center of leads when formed parallel. E 83-0015198 8-7 NEe PACKAGING INFORMATION 40-Pln Plastic DIP (600 mil) 40 Item Mlilimetera Inches A 53.34 mex 2.100 max B 2.54 max .100 max C 2.54 [TP] .100 [TP] D .50±.10 .020 48.26 1.900 ~:~~: F 1.2 min .047 min G 3.6±.3 .142 ± .012 H .51 min .020 min 4.31 max .170 max K 5.72 max .226 max 15.24 [TP] .600 [TP] 13.2 M .25 21 .520 ~:~~ .010 ~:~~~ Notes: [1] Each lead centerline Is located within .25 mm [.010 Inch] of Its true position [TP] at maximum material condition. [2] Item "K" to center of leads when formed parallel. 83-0013998 40-Pln Plastic Shrink DIP (600 mil) 40 Item Millimeters Inches A 39.13 max 1.541 max B 2.67 max .106 max C 1.778 [TP] .070 [TP] D .50 ± .10 .020 ± .004 33.78 1.330 F .9 min .035 min G 3.2±.3 .126 ± .012 H K M .51 min .020 min 4.31 max .170 max 5.08 max .200 max 15.24 [TP] .600 [TP] 13.2 .520 .25 ~:~~ .010 21 ~:~~~ Note: [1] Each lead centerline is located within .17 mm [.007 Inch] of Its true position [TP] at maximum material condition. [2] Item "K" to center of leads when formed parallel. 83-0037658 8-8 NEe PACKAGING INFORMATION 40-Pln Ceramic Piggyback DIP (600 mil) A Item Millimeters Inches A 53.34 max 2.1 max .8 B 20.32 C 2.54 ± .25 .1 ±.01 D 0.46 ± .05 .018 ± .002 E 48.26 1.9 1.02 .04 G 3.2 min .126 min H 1.02 min .04 min 3.0 max .118 max K 4.32 max .17 max 15.24 .6 15.24 .6 M .25 ± .05 .01 ± .002 N 33.02 1.3 0 2.54 ± .25 .1 ±.01 'I 00000000000000 ~ D 00000000000000 N M 83·0039218 40-Pin Cerdlp with Window (600 mil) Item Millimeters Inches A 53.34 max 2.100 max B 2.54 max .100 max C 2.54 [TPJ .100 [TPJ D .50 ±.10 .020 E 48.26 1.900 1.2 min .047 min G 3.5±.3 .138 ±.012 H .51 min .020 min K 1:~~: 3.80 .150 5.08 max .200 max 15.24 [TPJ .600 [TPJ 13.21 .520 ~:~~~ M .25 ±.05 .010 N r/J 7.62 r/J .300 Note: [1 J Each lead centerline is located within .25 mm [.01 inchJ of its true position [TPJ at maximum material condition. [2J Item "K" to center of leads when formed parallel. 83-0037858 8-9 NEe PACKAGING INFORMATION 42-Pln Plastic DIP (600 mil) 42 Item MIllimeters Inches A 55.88 max 2.200 max 2.54 max .100 max C 2.54 [TP] .100 [TP] 0 .5±.1 .020 50.8 2.000 1.2 min .047 min =:~~: G 3.6± .3 .142 ± .012 H .51 min .020 min 4.31 max .170 max 5.72 max .226 max K 15.24 [TP] .600 [TP]· 1;1.2 .520 M .25 =:~~ .010 22 =:~g: Note: [1] Each lead centerline Is located within .25 mm [.01 Inch] 01 Its true position [TP] at maximum material condition. [2] Item "K" to center 01 leads when formed parallel. 83-0035726 42-Pln Plastic Shrink DIP (600 mil) 42 Item MIllimeters Inches A 39.13 max 1.541 max B 1.78 max .070 max C 1.778 [TP] .070 [TP] 0 .50±.10 .020 E 35.57 1.400 =:~~: F .9 min .035 min G 3.2±.3 .126 ± .012 H .51 min .020 min 4.31 max .170 max 5.08 max .200 max 15.24 [TP] .600 [TP) L 13.2 .520 M .25 K =:~~ .10 22 =:gg: Note: [1] Each lead centerline Is located within .17 mm [.007 Inch] 01 Its true position [TP] at maximum material condition. [2]lIem "K" to center 01 leads when lormed parallel. J M 0·15° 83-0035736 8-10 NEe PACKAGING INFORMATION 42-Pln Ceramic Piggyback DIP A Item Millimeters A 55.88 max 2.200 max B 20.32 .800 C 2.5 ± .25 .100 ± .010 0 0.46± .05 .018 ± .002 5D.80 2.000 1.02 .040 G 3.2 min .126 min H 1.02 min .040 min 3.0 max .118 max Inches 4.32 max .170 max K 15.24 .600 15.24 .600 M .25 ± .05 .001 ± .010 N 33.02 1.300 0 2.54± .25 .100 ± .010 l 00000000000000 r 00000000000000 21 83-0035746 44-Pln Plastic Mlnlflat A Item A Millimeters Inches 13.6 ±.4 .535 ~:~~! ~:~~: 10 ±.2 .394 c 10±.2 .394 ~:~~: 0 13.6 ±.4 .535 ~:~~~ F G H M 8.0 .315 1.0 1.0 .039 .039 .35 ~:~~ B .014 ~:~~: .8 [TPJ Note 1 .031 [TPJ 1.8 ±.2 .071 1.0 ±.2 .039 ~:~~: E C 0 ~:~~: .15~:~~ .006 ~:~~~ .15 .006 Note 2 o ---~---- N 1.45±.1 .057 ~:~~: 0 0.0±.1 1.65 max 0.000 ±.004 .065 max G H Note: [1 J Each lead centerline is located within .15 mm [.006 inchJ of its true position [TPJ at maximum material condition. [2J Flat within .15 mm [.006 inchJ total. 83-0012328 8-11 ~EC PACKAGING INFORMATION 52-Pin Plastic Mlnillat A B Item Millimeters Inches A 21.0±.4 .B27±.016 B 14±.2 .551 c 1.0 [TP] Note 1 .039 [TP] o ~:~~: ~:~~: .40±.10 .016 1.0 .039 3.5±.2 .13B ~:~~: A ~:~~: G 2.2±.2 .OB7 H .15~:~~ .006 ~:~~: .15 Note 2 .006 K 2.6~:~~ .102 .1±.1 .004 ±.004 ~:~~: Note: E [1] Each lead centerline Is located within .20 mm [.OOBlnch] of Its true position [TP] at maximum material condition. [2] Flat within .15 mm [.006 Inch] total. o c 83-0009328 54-Pin Plastic Mlnlflat Item Millimeters Inches A 13.5±.4 .531 B 9.5±.2 .374 ±.OOB C 9.5±.2 .374 ±.OOB 0 13.5±.4 .531 E B.45 .333 ~:~~ ~:~~~ .5 .020 G .B5 .033 H .30±.10 .012 .65 [TP] Note 1 .026 [TP] 2.0±.2 .079 K M A -+I :'::~~: ~:~~: 1.2±.2 .047~:~~ .15~:~~ .006 ~:~~: .15 Note 2 .006 N 1.5±.1 .059 ±.004 0 0.1 ±.1 0.004 ±.004 P 0.1 ±.1 0.004±.OO4 Q 1.Bmax .071 max F J E C 0 lQ}S ~=} 0 G H Note: [1] Each lead centerline Is located within .15 mm [.006 Inch] of Its true position [TP] at maximum material condition. [2] Flat within .15 mm [.006 Inch] total. 83-0038548 8-12 NEe PACKAGING INFORMATION 54-Pin Plastic Mlnlflat (inverted leads) 1~'~ A Millimeters Inches' A 13.9±.4 547 B 9.5±.2 c 9.5±.2 .374 ±.008 o 13.9±.4 .547 ±.016 Item . 1 .374~?b8 8.45 .333 .5 .020 G .85 .033 H .30±.10 .012 .65 [TP] Note 1 .026 [TP] K B 6 ~:~~: 2.2±.2 .079 ~:~~: .9 ±.2 .047 ~:~~: .15~:~~ .006 ~:~~: M .15 Note 2 .006 N 1.5±.1 .059 ±.004 o 0.1 ±.1 0.004 ±.004 P 0.1 ±.1 0.004 ±.004 Q 1.8 max .071 max Note: [1] Each lead centerline Is located within .15 mm [.006 inch] of its true position [TP] at maximum material condition. [2] Flat within .15 mm [.006 inch] total. E C o 0 P lA-Or J H G '~ INi==~ J 83-003855B 64-Pin Plastic Shrink DIP (750 mil) Item Millimeters Inches A 58.68 max 2.311 max B 1.78 max .07 max C 1.778 [TP] .07 [TP] 0 .5 ±.10 .02 2.17 .9 min .035 min G 3.2±.3 .126 ±.012 H .51 min .02 min 4.31 max .17 max 5.08 max .2 max 19.05 [TP] .75 [TP] 17 M .25 33 + .004 - .005 55.12 K 64 S .669 +.10 - .05 .01 + .004 - .003 Notes: 1. Each lead centerline is located within .17 mm [.0007 inch] of its true position [TP] at max!mum material condition. 2. Item "K" to center of leads when formed parallel. ~:It F O e M 0-15' E 83-001494B 8-13 NEe PACKAGING INFORMATION 64-Pln Plastic M'n"'at Item MIllimeters Inches A 24.7 ±.4 .972 ::~~~ B 20±.2 .795 ::~~: c 14±.2 .551 o 1B.7±.4 0.736±.016 12.0 .472 1.0 .039 G 1.0 .039 H .40±.10 1.0 [TP] Note 1 K ::~~: .016 ::~~: .039 [TP] .093 ::~~: 1.2±.2 .047 ::~~: ::~: -+I 2.35 ±.2 .15 A 0 1J .006 ::~~: Note 2 2.05 ::~ .OB1 o 0.1 ±.1 0.004 ±.004 ::~~: Note: [1] Each lead centerline Is located within .20 mm [.OOB Inch] of Its true position [TP] at maximum material condition. [2] Flat within .15 mm [.006 Inch] total. 0 I 19 20 ------------------M .15 .006 N c ! o G H ~+ K 63·0009338 64-Pln Plastic QUIP Item Millimeters Inches A 41.B max 1.65 max C 2.54 .100 0 .5±.1 .020±.004 E 39.37 1.55 F 1.27 min .050 min G 3.6 .142 H 3.2 min .126 min 24.13 ±1.05 .950 ±.041 19.05 ±1.05 .750 ±.041 K 16.5 N .25 .650 ::~: tri-----------;'ll" ,. II' I·I-------t .. K -----------~~- .010 ::~~~ ~~ F O e p: ~B 11 !}I+--. N _ _---+I M .1.1 63-0015068 8-14 NEe PACKAGING INFORMATION 64-Pln Shrink Cerdlp with Window Item Millimeters Inches A 58.68 max 2.311 max B 1.78 max .070 max C 1.778 [TP] .070 [TP] 0 .46 ±.05 .018 ±.002 E 55.11 2.17 F .08 min .003 min G 3.5 ±.3 .138 ±.012 H 1.0 min .093 min I 3.0 .118 J 5.08 max .200 max K 19.05 [TP] .750 [TP] L 18.8 .740 M .25 ±.05 .010 ±.002 7.62 dla N ~::::::::::i;I::::::::::J A K L ~+ .300 dla Note: [1] Each lead centerline Is located within .25 mm [.01 Inch] of Its true position [TP] at maximum material condition. [2] Item uK" to center of leads when formed parallel. I E I I ~~ 83-0039338 64-Pln Ceramic QUIP with Window I' Item A Millimeters Inches 42.0 max 1.65 max B 26.67 1.05 C 2.54±.25 .1 ±.01 0 .46 ±.05 .018 ±.002 E 38.10 1.5 .04 F 1.02 G 1.27 ±.25 .05±.01 H 1.02 min .04 min .194 max I 4.95 max J 3.2 min .126 min K 24.13 .95 L 19.05 .75 M .25 ±.05 .01 ±.002 N 8.89 dla .350 dla D A -I,- ~ B H l~~~~~~~~~r§J, E I r I ...,1..., :rJ I I ~~M I L K 83-0039298 8-15 NEe PACKAGING INFORMATION 64-Pln Ceramic Piggyback QUIP A Item Millimeters Inches A 42.0 max 1.65 max B 26.67 1.050 C 2.54 ±.25 .100 ±.010 0 .46 ±.05 .018 ±.002 38.10 1.500 F 1.02 .040 G 1.27±.25 .050 ±.010 H 1.02 min .040 min 3.9 max .154 max 4.45 max .175 max 3.2 min .126 min 33.02 1.300 M 2.54 ±.25 .100±.010 N .25 ±.05 .010 ±.002 0 15.24 .600 P 19.05 .750 Q 24.13 .950 K 00000000000000 D D B 00000000000000 o 83-0038448 68-Pln Plastic Leaded Chip Carrier (PL CCJ Item Millimeters Inches 25.2 ±.2 .992 ±.008 24.20 .953 C 24.20 .953 0 25.2 ±.2 .992 ±.008 A B 60 61 44 43 ~:~~~ 1.94±.15 _076 .6 .024 G 4.4±.2 .173 ~:~~: H 2.8±.2 .110 ~:~~: .7mln .028 min 3.6 .142 1.27 [TP] Note 1 .050 [TP] .7 .028 M .40±.10 .016 ~:~~: N 23_12 ±.20 .910 ~:~~: 0 .15 Note 2 .006 P 1.0 .040 K A Q R .8 R .031 R .20 ~:~~ .008 ~:~~~ Note: [1] Each lead centerline is located within .12 mm [.005 Inch] of its true position [TP] at maximum material condition. [2] Flat within .15 mm [.006 inch] total. 68 -B-++-+-----+--------f:1- C 0 F GIH4~j_ L--:--oU--L--~:+·Q I.. K M L P ., I N 83-0037928 8-16 NEe PACKAGING INFORMATION 80-Pin Plastic Mlnlflat Item A Millimeters Inches A 24.7 ±.4 .972 ~:~~~ B B 20±.3 .795 ~:~~: C 14 ±.2 .551 o 18.7±.4 .736 ±.016 12 .472 ~:~~: I 1.0 .039 G .8 .031 H .35 ±.1 .014 .8 [TPJ Note 1 .031 [TPJ ~-+-~ ~:~~~ 2.35 ±.3 .093 ~:~~: 1.2±.2 .047 ~:~~: o E C 0 I .006 ~:~~~ M .15 Note 2 .006 ~:~ N 2.05 o .1±.1 G H .004 ±.004 EF Note: [1J Each lead centerline is located within .15 mm [.006 inchJ 01 its true position [TPJ at maximum material condition. [2J Flat within .15 mm [.006 inchJ total. ' o 83·0012308 84-Pin Plastic Leaded Chip Carrier (PLCC) A Item Millimeters Inches 1.197 ±.008 1.154 A 30.4 ±.2 B C 29.30 29.30 0 30.4 ±.2 1.197 ±.008 1.95±.15 .077 ~:~~~ .6 .024 G 4.4±.2 .173 ~:~~: H 2.5±.2 .098 ~:~~: 1.154 .6 min .024 min 3.7 .146 1.27 [TPJ Note 1 .050 [TPJ .7 .028 M .40±.10 .016 ~:~~: N 28.51 ±.20 0 .15 Note 2 .006 P 1.0 R .8 .040 R .031 .20 ~:~~~ .008 ~:~~: K Q R 1.122 ~:~~: Note: [1 J Each lead centerline is located within .12 mm [.005InchJ 01 Its true position [TPJ at maximum material condition. [2] Flat within .15 mm [.006InchJ total. Q 8-17 NEe Notes: t-IEC Notes: NEe Notes:


Source Exif Data:
File Type                       : PDF
File Type Extension             : pdf
MIME Type                       : application/pdf
PDF Version                     : 1.3
Linearized                      : No
XMP Toolkit                     : Adobe XMP Core 4.2.1-c043 52.372728, 2009/01/18-15:56:37
Create Date                     : 2012:12:02 07:47:08-08:00
Modify Date                     : 2012:12:02 09:28:37-08:00
Metadata Date                   : 2012:12:02 09:28:37-08:00
Producer                        : Adobe Acrobat 9.52 Paper Capture Plug-in
Format                          : application/pdf
Document ID                     : uuid:4dbdbcf6-fd7f-4fad-b305-6dd5e8f5137a
Instance ID                     : uuid:5225d02d-36c2-4a10-a9f3-6c6ada626e26
Page Layout                     : SinglePage
Page Mode                       : UseNone
Page Count                      : 858
EXIF Metadata provided by EXIF.tools

Navigation menu