1988_Linear Technology_Supplement 1988 Linear Technology Supplement

User Manual: 1988_LinearTechnology_Supplement

Open the PDF directly: View PDF PDF.
Page Count: 436

Download1988_Linear Technology_Supplement 1988 Linear Technology Supplement
Open PDF In BrowserView PDF
Linear
Databook

."..

I

•

. ~uppletnent

EXCLUSIVELY commiTTED TO LInEAR
The founding theme of Linear Technology Corporation was to create a company capable of leading
and directing linear circuit technology and design concepts of the future, and thus become the
market's linear specialist. The company believes that the totallC business has become so diverse
and so complex that a single company will have great difficulty assembling the engineering talent
necessary to lead in all areas of device technology.
Today, the customer base benefits by accessing the best product available in each functional area
of the IC market from those vendors who are at the leading edge of performance and technology as a
result of their "focused" strategy approach. The customer now has the choice of acquiring the best
linear, the best microprocessor, the best memory products, etc., by choosing the best vendor in each
area. In order to achieve the goal of becoming the market's first choice in the linear area, LTC has
assembled the leading design, test, product, assembly, quality and process engineering talent in the
industry, operating in what we feel is the most modern linear integrated circuit facility in production
today.
Linear Technology possesses a wide variety of bipolar processes including Super Beta, Bifet, low
noise, high speed, thin film resistors, sinkers, sub-surface zeners, and more. The company also has
in production a very modern silicon-gate CMOS process, LTCMOSTM, which is specifically tailored
to satisfy the special needs of linear IC functions.
Linear Technology is committed to servicing the demanding requirements of the Military/Aerospace
marketplace. Our 883 DESe Drawing and MIL Drawing programs are designed to consistently
provide off-the-shelf high performance linear integrated circuits tested to the requirements of MILSTD-883 Class B, and fully compliant to Revision C. Our documentation, designs, procedures, and
facilities have been carefully established to meet the rigid requirements of MIL-STD-38510 level
devices. The company's facility is JAN approved and numerous JAN QPL part types are currently
being supplied by Linear Technology. In addition, LTC is committed to supporting the rigorous
demands of'S' level source control drawings to service hi-reI and space applications. All militarygrade products are 100% tested at temperature extremes. Both commercial and military outgoing
quality levels are sampled over temperature with full lot traceability back to the original wafer from
which the device was derived. Presently Linear Technology can boast that its products are used by
all of the top 25 largest military contractors in the U.S.
On the commercial side of the business, the company's proprietary products are currently being
used by leading manufacturers of automobiles, computers, instruments, cameras, telecommunication systems and in many other areas. The company prides itself in doing business with the major
manufacturers and leaders in each of these market segments.
This catalog contains products that already enjoy very wide acceptance status in new and existing
end products.
In addition to the commitment to provide better technical solutions, we also commit to our
customers that we will strive to make quality and reliability a reason to buy from Linear Technology.
Our products address the instrumentation, industrial, data acquisition, peripheral, interface, and
military markets with solutions to linear systems application problems.

81

Linear Technology Corporation

Linea, Databook Supplement
1988
.---------------NOTE---------------.
The 1988 Linear Databook Supplement includes descriptions
and specifications for all new products introduced by LTC since
the 1986 Linear Databook was published. The index of this supplement lists all LTC products, with new products listed in
boldface type; data for those not boldfaced can be found in the
1986 publication. Informational sections in this supplement on
electrostatic discharge, surface mount devices, military products, packaging, etc., have been updated from the information
originally presented in the 1986 volume.

LIFE SUPPORT POLICY
LINEAR'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE
EXPRESS WRITIEN APPROVAL OFTHE PRESIDENT OF LINEAR TECHNOLOGY CORPORATION. As used herein:

a. Life support devices or systems are devices or systems which (1) are Intended for surgical implant into the body, or (2) support or sustain life and
whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result
in a significant Injury to the user.
b. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure
of the life support device or system or to affect its safety or effectiveness.
Information furnished herein by Linear Technology Corporation is believed to be accurate and reliable. However, no responsibility is assumed for its
use. Linear Technology Corporation makes no representation that the interconnection of its circuits, as described herein, will not infringe on existing
patent rights.

Linear Technology Corporation • 1630 McCarthy Blvd. • Milpitas, CA 95035 • (408) 432-1900

82

© Linear Technology Corporation 1967

Printed in USA

1988
Linear Databook
Supplement

II
II
g

GEnERAL InFORmATion
OPERATionAL AmPLIFIERS
VOL TAGE REGULATORS

a

VOL TAGE REFEREnCES

II
D
II

comPARATORS
FILTERS
PULSE-WIDTH mODULATORS

II

cmOS/DATA conVERSlon/U1lYERFACE
miLITARY PRODUCTS

a

nEW PRODUCTS

1m

m

SURFACE mounT PRODUCTS

..L7UO~

PACKAGE DimEnSions

m

APPEnDICES

IE]
83

NOTES

84

TABLE OF CONTENTS
SECTION 1-GENERAL INFORMATION
INDEX
GENERAL ORDERING INFORMATION ...
ALTERNATE SOURCE CROSS REFERENCE GUIDE ...

Sl-2
Sl-3
Sl-4

SECTION 2-0PERATIONAL AMPLIFIERS
INDEX
SELECTION GUIDE
PROPRIETARY PRODUCTS
LT1001, PrecisionOpAmp ................................................................................... .
LTl002, Precision Dual DpAmp . ............................................................................... .
LTt006, PrBcislon, SinglB Supply OpAmp .................. .
LTl007, Lowest Noise Precision OpAmp .......................................... .
LTlOOB, Low Bias Current, Low Noise OpAmp .. .
LT1010, Buffer Op Amp ............. .
LTlOI2, Low Bias Current, LowOffset, LowNoiseOpAmp ................ ......................... .
LT1013, Precision, Low Offset Dual Op Amp ......................................... .
LTlOI4, Precision, Low Offset Quad Op Amp ....................................... .
LT1022, High Speed Precision FETInput Op Amp . .............. .
LT1023, DACOutputAmplifier ..
LT1024, Dual LT10120pAmp .............................................................................. .
LTt028, Ultra-Low NoisB, High SpBBd Op Amp . .... .
. . . ..
LT1037, Low Noise, HighSpeedOpAmp ............................................................ .
LTC1052, Precision, Chopper Stabilized CMOS Op Amp . .................................................... .
LT1055, Low Offset and Drift FET Input Op Amp. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. ........... .
LT1056, Low Offset and Drift High Speed FET Input Op Amp . . . . . . . . . . . . . . . . . .
. ..................... .
LT1057, DualJFETlnputPrBcision, High SPBBd Op Amp .
LTt058, Quad, JFET Input PrBcision, High SPBBd Op Amp ...
LTt078, MicropOWBr, Oual, SinglBSupply, PrBcisionOpAmp.
. .......
LT1079, MicropowBr, Quad, SinglBSupply, PrBcisionOpAmp
..
ENHANCED AND SECOND SOURCE PRODUCTS
LF155/355, JFET InputOp Amp ....
LF155A/355A, JFET Input Op Amp ..
LF156/356JFET InputOpAmp, High Speed .................... .
LF156A/356A JFET Input Op Amp, High Speed ...
LF412A, Dual Precision JFET InputOp Amp ..
LM 10/B(L)/C(L), Op Ampand Reference ... .
LH2108A, Dual LM 108 Op Amp.
. ......... .
LM 101A/301A, Uncompensated General Purpose Op Amp .....
LM 107/307, Compensated General Purpose Op Amp
LM 108/308, Super Gain Op Amp.
LM 108A/308A, Super Gain Op Amp
. . . ..
LM 118/318, High Slew Rate Op Amp ...
LTIIBAI31BA, ImprovedLM11BOpAmp ............................. .
LTC7652, Precision, Chopper StabilizedCMOSOpAmp ..................................................... .
OP-05, OP-05A, OP-05C, OP-05E, Internally Compensated Op Amp ................ .
OP-07, OP-07A, OP-07C, OP-07E, PreCision Op Amp ........ .
OP-15A, OP-15B, OP-15C, OP-15E, OP-15F, OP-15G, PreCision, High SpeedJFET Input OpAmp
OP-16A, OP-15B, OP-16C, OP-16E, OP-16F, OP-16G, Precision, High Speed JFET InputOp Amp

S2-2
S2-3
2-7
2-19
S2-9
2-35
2-47
2-59
2-75
2-87
2-87
2-107
10-7
2-115
S2-21
2-35
2-123
2-143
2-143
S2-37
S2-37
S10-19
S10-19
2-155
2-155
2-155
2-155
S2-49
2-159
2-175
2-177
2-177
2-183
2-183
2-191
2-191
2-123
2-199
2-207
2-215
2-215

85

TABLE OF CONTENTS
OP-27A, OP-27C, OP-27E, OP-27G, Low Noise, Precision OpAmp .......... .
OP-37A, OP-37C, OP-37E, OP-37G, Low Noise, High Speed Op Amp ....... .
OP-215, Dual Precision JFET Input Op Amp ......................... .
OP-227A, OP-227C, OP-227E, OP-227G, Dual Matched, Low Noise Op Amp .. .
OP-237A, OP-237C, OP-237E, OP-237G, Dual High Speed, Low NoiseOpAmp

2-219
2-219
82-49
2-231
2-231

SECTION 3-VOLTAGE REGULATORS
INDEX .....
8ELECTION GUIOE
PROPRIETARY PRODUCTS
LT1 003, 5 Volt, 5 Amp Regulator ................................ .
LTl005, Dual Logic Controlled 5 Volt Regulator . ..................................................... .
LT1020, Micropower Regulator and Comparator . .......... .
LTl033, 3AmpNegativeAdjustableRegulator .. ............................................................. .
LTl035, Logic Controlled 5 Volt, 3 Amp Regulator . ...................................................... .
LTl036, 12V, 3A/5V, 75mA Dual Logic Controlled Regulator . .................................................... .
LTl038, 10 Amp Positive Adjustable Regulator . ...................................... .
LTt070, 5A High Efficiency Switching Regulator . . .
. ............ .
. ............. .
LTt071, 2.5A High Efficiency Switching Regulator. . . . . . .
LTt072, 1.25A High Efficiency Switching Reglllator .
..
LT1083, 7.5A Low Dropout Positive Adjustable Regulator.
LT1083-5, 7.5A Low Dropout Positive Fixed 5V Regulator . ...................... .
..
LT1083-12, 7.5A Low Dropout Positive Fixed 12V Regulator . ....... .
. ..
LT1084, 3A Low Dropout Positive Adjustable Regulator.
. ....
LTl 084-5, 3A Low Dropout Positive Fixed 5V Regulator .
·
LTl084-12, 3A Low Dropout Positive Fixed 12V Regulator.
·
LTt085, 5A Low Dropout Positive Adjustable Regulator . ........... .
. . . . ..
LT1085-5, 5A Low Dropout Positive Fixed 5V Regulator ..................... .
. ...
. ......................
LTt 085-12, 5A Low Dropout Positive Fixed 12V Regulator. . .............. .
LTl 086, 1.5A Low Dropout Positive Adjustable Regulator . . . . . . . . . . . . ........ .
LT1086-5, 1.5A Low Dropout Positive Fixed 5V Regulator . ................ .
·
LTt086-12, 1.5A Low Dropout Positive Fixed 12V Regulator . ................ .
. ..........
ENHANCED AND SECOND SOURCE PRODUCTS
LM 117/317, Positive Adjustable Regulator ...... .
LTI17A/317A, ImprovedLM117 ......... ..... .
LM 117HV /317HV, 60 Volt Positive Adjustable Regulator ........................................ .
LTI17AHV/317AHV, Improved LMI17HV. . ................. .
LM123/323, 5 Volt, 3Amp Regulator
LTI23A1323A, ImprovedLMI23 ........ .
LM 137/337, Negative Adjustable Regulator.
LT137A1337A, ImprovedLMI37 ..
LM 137HV/337HV, 50 Volt Negative Adjustable Regulator
LTI37AHVI337AHV, Improved LM137HV .................................................... .
LM 138/338, 5 Amp Positive Adjustable Regulator
.......... .. ...... ....
LTI38A/338A, Improved LM138. . .. . . . . . . ... . . . .. . . . . . . . . . . . . . . .. . . . . . ... . . .. . . . . .. . . . . .. ..... . . . . . . . . .. . .. . . . .
LM 150/350, 3 Amp Positive Adjustable Regu lator . . . . . . . . . . . . . . . . . . . . .
.. ..... ...... ....
LT150A1350A, ImprovedLMI50..
... ..................................... ..................................

86

83-2
83-3
3-5
3-13

83-5
3-25
3-33
3-45
3-53

83-21
83-21
810-15
83-33
810-20
810-20
83-33
810-20
810-20
83-33
810-20
810-20
810-23
810-20
810-20
3-65
3-65
3-73
3-73
3-77
3-77
3-85
3-85
3-93
3-93
3-97
3-97
3-105
3-105

TABLE OF CONTENTS
SECTION 4-VOLTAGE REFERENCES
rnD~

.......................................................................... .

SELECTIDN GUIDE .... .
PROPRIETARY PRODUCTS
LTl004, Precision Micropower Reference ..................................................... .
LTI009, Precision 2.5 Volt Reference . ................................... .
LTIOI9, High Accuracy Band Gap References ..................................................... .
LTI021, 5 Volt, 7 Volt, 10 Volt 5ppm/oC Trimmed Reference . .......................................... .
LTI029, 5V Reference . .............................................................................. .
LTI 031, 10 Volt, 3-Lead Trimmed Reference ....................................................................... .
LTI034, MicropowerDualReference .................................................. .
LTZ1000, Ultra Precision Reference . ................ , . . . .
. ........ .
LTZ1000A, Ultra Precision Reference . ........... .
SECOND SOURCE PRODUCTS
AD580, 2.5V Reference .................. .
AD581, 1OV Reference. . .
. ................. .
LH0070, 10 Volt, 3-Lead Trimmed Reference ........... .
. ...
LM 129/329, 6.9V Precision Voltage Reference ......... .
LM 134/234/334, Constant Current Source and Temperature Sensor .....
LM136-2.5/LM336-2.5, 2.5 Volt Voltage Reference ......... .
LM185-1.2/385-1.2, Precision Voltage Reference ....
LM185-2.5/385-2.5, Precision Voltage Reference .................. .
LM 199/399/199A/399A, Temperature Compensated Precision Reference.
REF-01 /REF-02, Precision Voltage References ..................................... .
. ...

S4-2
S4-3
4-9
4-17
4-21
4-29
4-45
4-49
4-61
S4-9
84-9
4-65
4-65
4-49
4-69
4-73
4-85
4-89
4-93
4-97
4-103

SECTION 5-COMPARATORS
INDEX ......... .
8ELECTION GUIDE . ......... .
PROPRIETARY PRODUCTS
LT685, High Speed Comparator.
. ....
LTlOII, Precision Comparator ......................................................................... .........
LTIOIB, HighSpeedComparator .................................................................................
LTIOI7, MicropowerDuaIComparators ................... .
LTIOIB, MicropowerDualComparators. .. . ... . . . . .. . .. . . . . . .. . . .. ... . ... . . . . . . . . . . ....... .. . . .. .. . . . . . . .. ... . . . . ..
LTC1040, LowPower, Low Offset Comparator ......................... ..................................... .........
LTCI041, MicropowerControlComparator ........................................................................ .
LTC1042, Window Comparator. . . .
. ........ .
. ....
LTC1045, p. Power Hex TranslatorIReceiverIOriver . ..
ENHANCED AND SECOND SOURCE PRODUCTS
LM111 /311, High Performance Voltage Comparator ............................
. . . . . . . . . . . . . .. . . . . . . . . .. . .
LT111A1311A, ImprovedLM111 ................................................................................
LM119/319, High Speed Dual Comparator. . . . . . .. . . .
. . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . .. . . . . . . . . .. .. . . . . . ..
LTl19A1319A,lmprovedLM119 ................................................................................

85-2
85-3
810-3
5-5
5-21
5-37
5-37
5-45
5-57
85-5
85-13
5-65
5-65
5-73
5-73

SECTION 6-FILTERS
INDEX .......... ................................................ .
PROPRIETARY PRODUCTS
LTC 1059, Universal Monolithic Switched-Capacitor Filter . ........................................ .
LTC10BO, Universal Monolithic Dual Switched-Capacitor Filter . .................................... .
LTC1061, High Performance Triple Universal Filter Building Block . .. .
LTC10B2, DC Accurate Low-Pass Filter ...................................................... .

86-2
6-3
6-11
86-3
6-31

87

TABLE OF CONTENTS
SECTION 7-PULSE-WIDTH MODULATORS
INDEX
LTI070, 5A High Efficiency Switching Regulator ..
LTIOlt, 2.5A High Efficiency Switching Regulator . . .
LTI072, 1.25A High Efficiency Switching Regulator . ........... .
SG1524/3524, Regulating Pulse Width Modulators ............ .
LT152413524, Regulating Pulse Width Modulators ............ .
SG1525A/3525A, Regulating Pulse Width Modulators
LT152513525A, Regulating Pulse Width Modulators ............................. .
. ..................... .
LT152613526, Regulating Pulse Width Modulators .....
SG1527A13527A, Regulating Pulse Width Modulators ............... .
LTI527A13527A, Regulating Pulse Width Modulators . ..
UC1846/1847, Current Mode PWM Controller

87-2
83-21
83-21
· .. 810-15
7-3
7-3
7-11
7-11
7-19
7-11
7-11
7-27

SECTION 8-CMOS/DATA CONVERSION/INTERFACE
INDEX

88-2

CM08
LTC1040, LowPower, Low Offset Comparator ............................. .......... ..... ...................... ....
LTC1041, Bang Bang Controller. ........ ...
...................... ...... .... ..... ......................
LTCI042, Window Comparator . ............ .
LTC 1043, Dual/nstrumentation Switched-Capacitor Building Block . ............................... .
LTC 104417660, Switched-Capacitor Voltage Converter . ........................... .
LTCI045, p. Power Hex TranslatorIReceiverIDriver . ...................... .
LTCI05217652, Precision, Chopper Stabilized CMOS OpAmp .. ... . . .. . . . . . . . . . . ... . . . . . . . .. . . . . . . . .
. .............. .
LTC 1059, Universal Monolithic Switched-Capacitor Filter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. ........... .
LTC 1060, Universal Monolithic Dual Switched-Capacitor Filter. . . . . . . . . . . . .
. ................................. .
LTCI061, Universal Monolithic Triple Switched-Capacitor Filter. . . . . . . . . . .
. ........ .
LTC 1062, DC Accurate Low-Pass Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. .................................. .
LTCI090, 10-Bit AID with Serial/IO and 8-Channel MUX.
. ........ .
LTCID91, IO-Bit AID with Serial/IO and 2-Channel MUX . ............. .
LTCI092, IO-Bit, 8-Pin AID with Serial Output . .................... .
· ..
LTCI099, High Speed 8-Bit AID Converter with Built-In Sample-and-Hold ..
..
DATA CONVERSION
LF1 98A/LF398A, Precision Sample and Hold Amplifier
......... .
LF1 98/LF398, Precision Sample and Hold Amplifier ............................. .
LTCI090, 10-BitAID with Serial/IO and 8-Channel MUX . ..... .
LTCID91, 10-BitAID with Serial/IO and 2-Channel MUX . ........... .
LTCI092, 10-Bit, 8-Pin AID with Serial Output. . .
. ........ .
· ..
LTCI099, High Speed 8-Bit AID Converter with Built-In Sample-and-Hold ..
INTERFACE

LTI030, Quad Low Power Line Driver . ......... .
LTl032, Micropower RS232 Line Driver . ................................................ .
LTl039, Triple RS232 Line Driver and Receiver . . . . . . . . . . . . . . . . . . . . . . . .
. ......... .
LTI080, 5V Powered RS232 OriverIReceiver with Shutdown ... .
LTl081, 5V Powered RS232 DriverIReceiver without Shutdown . ........... .
LTCI045, p. Power Hex TranslatorIReceiverIDriver . .
SPECIAL FUNCTION
LTt025, Micropower Thermocouple Cold Junction Compensator . ......... .
LTI026, Oual Output Switched Capacitor Voltage Generator . ........... .

88

· ..
. . . ..

5-45
5-57
85-5
8-3
8-19
85-13
2-123
6-3
6-11
86-3
6-31
88-47
88-71
810-26
810-30

8-31
8-31
88-47
88-71
810-26
810-30
88-3
8-47
88-7
88-27
88-27
85-13

810-6
. ....... 810-14

TABLE OF CONTENTS
. . . ..

S8-15
S8-35
. .. S10-25

LTt054, Switched Capacitor Voltage Converter .................. .
LT10BB, Wideband RMS-OC Converter Building Block . ... .
LT10B9, High Side Switch. . .
. ................... .
LTC1043, Dual Instrumentation Switched-Capacitor Building Block
LTC1044, Switched-Capacitor Voltage Converter.

8-3

8-19

SECTION 9-MILITARY PRODUCTS
INDEX ...
MIL/JAN Products
Standard Military Drawings.
Hi-ReI. .....
MIL-STD-883 Product.
883 Product Flow-Class B .
Military Sampling Plans ...
MIL-STD-883 Test Methods
Military Parts List ...

S9-2
S9-3
S9-4
S9-4
S9-4
S9-6
S9-7
S9-8
.............. S9-12

SECTION 10-NEW PRODUCTS
INDEX.
LT685, High Speed Comparator ................................ .
LT1 025, Micropower Thermocouple Cold Junction Compensator.
LT1 026, Dual Output Switched Capacitor Voltage Generator .
LT1 072, 1.25A High Efficiency Switching Regulator.
LT1 078, Micropower, Dual, Single Supply, Precision Op Amp.
LT1079, Micropower, Quad, Single Supply, Precision Op Amp ..
LT1 083-5, 7.5A Low Dropout Positive Fixed 5V Regulator ..
LT1083-12, 7.5A Low Dropout Positive Fixed 12V Regulator ............... .
LT1084-5, 3A Low Dropout Positive Fixed 5V Regulator .................................... .
LT1 084-12, 3A Low Dropout Positive Fixed 12V Regulator ................................... .
LT1085-5, 5A Low Dropout Positive Fixed 5V Regulator .. .
LT1085-12, 5A Low Dropout Positive Fixed 12V Regulator ..
LT1086, 1.5A Low Dropout Positive Adjustable Regulator ...
LT1 086-5, 1.5A Low Dropout Positive Fixed 5V Regulator ............ .
LT1086-12, 1.5A Low Dropout Positive Fixed 12V Regulator .................................................. .
LT1089, High Side Switch ..
LTC1 092, 10-Bit, B-Pin AID with Serial Output. .
LTC1099, High Speed 8-Bit A/D Converter with Built-In 8ample-and-Hold ..
Extended Temperature Range Linear ICs (200°C) .

S10-2
S10-3
S10-6
810-14
S10-15
S10-19
S10-19
S10-20
S10-20
S10-20
. .. S10-20
S10-20
S10-20
S10-23
S10-20
S10-20
S10-25
S10-26
S10-30
S10-31

SECTION 11-SURFACE MOUNT PRODUCTS
INDEX.
INTRODUCTION .
LF398S8, Precision Sample and Hold Amplifier .
LM31 BS8, High Speed Operational Amplifier ..
LM334S8, Constant Current Source and Temperature Sensor.
LM385S8-1.21LM385S8-2.5, Micropower Voltage Reference ...
LTt001 CSB, Precision Operational Amplifier .
LTt004CSB-1.2IL Tt004CSB-2.5, Micropower Voltage References
........... .
LTt007CSILT1037CS, Low Noise, High Speed Precision Operational Amplifiers.
. ........... .

. ....................
. ...
......
. ..
. ..

811-2
S11-3
S11-7
S11-9
811-11
S11-13
S11-15
S11-17
S11-19

89

TABLE OF CONTENTS
LT1009SB, 2.5 VoltRBierenCfl . .................................................................................
LTt012SB, PlcoamplnputCurrent, MicrovoltOffsBt, LowNoisBOpAmp ...................................................
LTt0130SB, Dual Precision Op Amp. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LT10210CSB, Precision RBfBrencB ..............................................................................
LTt02BCS, Ultra·LowNoisB Precision High SPBBd Op Amp ................................... , .........................
LT1030CS, QuadLowPowBrUnBOrlvBr .......................... , ............. " ........................... , ....
LT1034CSB·1.2ILTt034CSB·2.5, MlcropowBr Oual Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LTt055SBILTt056SB, Precision, HighSpBBd,JFETlnputOperationalAmpllfiers ............................................
LT10BOCSIL Tt081 CS, 5V Powered RS232 Drlv",IReceiv", with Shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LTC1043CS, Dual Precision Instrumentation Switched· Capacitor Building Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LTC1044CSB, Switched Capacitor Voltage Converter . ............................................................... ,
LTC1052CS, Chopp",·Stabilized Operational Ampllfl",(CSOAj. . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LTC1059S, High Perlormance Switched Capacitor Universal FiitfJr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LTC1060S, Univ",salOualFiitfJrBuildingBlock " ........................... '" ....................... , .............
LTC1061CS, High PerformancB Triple Universal FiitfJr Building Block .................................................... ,
LTC1062CS, 5th Ord", Low Pass Filt", . .. , .............................. '" ........ , " ...... , .................... ,
Op·o7C8B, Precision Operational Amplifier ........................................................................ ,
8G35248, Regulating Pulse Width Modulator .......................................................................
80/80LPackingMateriai .....................................................................................

811·22
811·24
811·27
811·30
811·33
811·36
811·38
811·40
811·43
811·46
811·48
811·50
811·52
811·55
811·58
811·61
811·63
811·66
811·69

SECTION 12-PACKAGE DIMENSIONS
INDEX ...................................................................................................... 812·2
PACKAGE CR088·REFERENCE .................................................................................... 812·3
PACKAGEDlMEN810N8 ........................................ " ....... , ....................................... 812·5

SECTION 13-APPENDICES
INDEX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Reliability Assurance Program. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Quality Assurance Program'. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
R·Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
E8D Protection Program ........................................................................................
Application Notes Index. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..

810

813·2
11·3
11·5
11-13
11-20
813·3
813·14

ALPHANUMERIC INDEX
AD580J, Precision 2.5V 3 Terminal Reference ......................................................
AD580K, Precision 2.5V 3 Terminal Reference .......... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
AD580L, Precision 2.5V 3 Terminal Reference ......................................................
AD580M, Precision 2.5V 3 Terminal Reference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
AD580S, Precision 2.5V 3 Terminal Reference .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
AD580T, Precision 2.5V 3 Terminal Reference ......................................................
AD580U, Precision 2.5V 3 Terminal Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
AD581J, Precision 1OV 3 Terminal Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
AD581 K, Precision 1OV 3 Terminal Reference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
AD581 S, Precision 1OV 3 Terminal Reference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
AD581T, Precision 10V 3 Terminal Reference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Extended Temperature Range-200°C Products .....................................................
JM38510/10104BGA, JAN QPL LM108AH Super Gain Op Amp. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
JM38510/10104BGC, JAN QPL LM108AH Super Gain OpAmp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
JM38510/10107BGA, JAN QPL LM118H Super Gain OpAmp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
JM38510/10107BGC, JAN QPL LM118H Super Gain Op Amp. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
JM38510/10107BPA, JAN QPL LM118JH Super Gain OpAmp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LF155,JFETlnputOpAmp ....................................................................
LF155A, JFET Input Op Amp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LF156, JFET InputOpAmp, High Speed . .. ... .. . .. .. .. .. . . ... .. .. ... ... . . .. .. .. . .... .. .. .. . . . . . . ..
LF156A, JFET InputOpAmp, High Speed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LF198, Precision Sample and Hold Amplifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LF198A, Precision Sample and Hold Amplifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LF355,JFETlnputOpAmp ........................ .............................. ..............
LF355A,JFETlnputOpAmp ...................................................................
LF356, JFET Input Op Amp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LF356A, JFET Input Op Amp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LF398, Precision Sample and Hold Amplifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LF398A, Precision Sample and Hold Amplifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LF412C, Dual PrecisionJFET InputOp Amp .......................................... . . . .. . . . . . .. ..
LF412M, Dual PrecisionJFET InputOp Amp . ... . .. . .. .. .. . . . . . . .. . . ... .. .. . . . . .. . . ... .. . . . . . . . .. . ..
LF412AC, Dual Precision JFET Input Op Amp .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LF412AM, DuaIPrecisionJFETlnputOpAmp .......................................................
LH0070-0, 10V, 3-Lead Trimmed Reference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LH0070-1, 10V, 3-Lead Trimmed Reference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LH0070-2, 10V, 3-Lead Trimmed Reference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LH2108, Dual Super BetaOpAmp ...............................................................
LH2108A, Dual Super Beta Op Amp. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LM10,OpAmpandReference ..................................................................
LM10B, Op Ampand Reference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LM 1OBL, Op Amp and Reference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LM10C, Op Amp and Reference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LM 1OC, Op Amp and Reference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..

.L7UD~

4-65
4-65
4-65
4-65
4-65
4-65
4-65
4-65
4-65
4-65
4-65
810-31
2-183
2-183
2-191
2-191
2-191
2-155
2-155
2-155
2-155
8-31
8-31
2-155
2-155
2-155
2-155
8-31
8-31
82-49
82-49
82-49
82-49
4-49
4-49
4-49
2-175
2-175
2-159
2-159
2-159
2-159
2-159

811

ALPHANUMERIC INDEX
LM 1OCL, Op Amp and Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LM101A, Uncompensated General Purpose OpAmp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LM 107, Compensated General Purpose Op Amp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LM108, SuperGainOpAmp ...................................................................
LM108A, SuperGainOpAmp ................ ............................ .. ....................
LM111, High Performance Voltage Comparator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LM 117, Positive Adjustable Regulator ........ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LM 117HV, 60-Volt Positive Adjustable Regulator ., . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LM 118, High Slew Rate Op Amp ................................................................
LM119, High Speed Dual Comparator ............................................................
LM123, 5-Volt, 3-Amp Regulator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LM 129A, 6.9-Volt Precision Voltage Reference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LM 129B, 6.9-Volt Precision Voltage Reference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LM 129C, 6.9-Volt Precision Voltage Reference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LM 134, Constant Current Source and Temperature Sensor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LM 136, 2.5 Volt Voltage Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LM136A, 2.5 Volt Voltage Reference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LM 137, Negative Adjustable Regulator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LM 137HV, 50-Volt Negative Adjustable Regulator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LM138, 5-Amp Positive Adjustable Regulator ........................... , ....... ......... ....... ... .
LM 150, 3-Amp Positive Adjustable Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LM 185, Precision Voltage Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LM199, Temperature Compensated Precision Reference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LM 199A, Temperature Compensated Precision Reference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LM 234, Constant Current Source and Temperature Sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LM307, Compensated General Purpose Op Amp. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LM308, SuperGainOpAmp ................. ................... . .......... ........ ............
LM308A,SuperGainOpAmp ..................................................................
LM317, Positive Adjustable Regulator .......... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LM317HV, 60-Volt Positive Adjustable Regulator ., . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LM318, High Slew RateOpAmp ................................................................
LM318A, High Slew Rate Op Amp ..... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LM319, High Speed Dual Comp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LM323, 5-Volt, 3-Amp Regulator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LM329A, 6. 9-Volt Precision Voltage Reference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LM329B, 6.9-Volt Precision Voltage Reference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LM329C, 6.9-Volt Precision Voltage Reference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LM329D, 6.9-Volt Precision Voltage Reference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LM334, Constant Current Source and Temperature Sensor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LM336, 2.5 Volt Voltage Reference ......... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LM336B, 2.5 Volt Voltage Reference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LM337, Negative Adjustable Regulator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LM337HV, 50-Volt Negative Adjustable Regulator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

812

2-159
2-177
2-177
2-183
2-183
5-65
3-65
3-73
2-191
5-73
3-77
4-69
4-69
4-69
4-73
4-85
4-85
3-85
3-93
3-97
3-105
4-89
4-97
4-97
4-73
2-177
2-183
2-183
3-65
3-73
2-191
2-191
5-73
3-77
4-69
4-69
4-69
4-69
4-73
4-85
4-85
3-85
3-93

ALPHANUMERIC INDEX
LM338, 5-Amp Positive Adjustable Regulator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LM350, 3-Amp Positive Adjustable Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LM385, Precision Voltage Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LM 385B, Precision Voltage Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LM399, Temperature Compensated Precision Reference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LM399A, Temperature Compensated Precision Reference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LT111A, High Performance Voltage Comparator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LT117A, Positive Adjustable Regulator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LT117AHV, 50-Volt Positive Adjustable Regulator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LT118A, High Slew Rate OpAmp .. ................. .. ...... .............................. ... ....
LT119A, High Speed Dual Comparator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LT123A, 5-Volt, 3-Amp Regulator. . . . . . . . . . . .. . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . .
LT137A, Negative Adjustable Regulator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LT137AHV, 50-Volt Negative Adjustable Regulator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LT138A, 5-Amp Positive Adjustable Regulator ............................................... . . . . . . .
LT150A, 3-Amp Positive Adjustable Regulator ............................................... . . . . . ..
LT311A, High Performance Voltage Comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LT317 A, Positive Adjustable Regulator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LT317 AHV, 50-Volt Positive Adjustable Regulator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LT318A, High Slew Rate Op Amp. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LT319A, High Speed Dual Comparator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LT323A, 5-Volt, 3-AmpRegulator .............................................................. ,
LT337 A, Negative Adjustable Regulator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LT337AHV, 50-Volt Negative Adjustable Regulator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LT338A, 5-Amp Positive Adjustable Regulator ......................................................
LT350A, 3-Amp Positive Adjustable Regulator ......................................................
LT685, High Speed Comparator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LT1001AC, PrecisionOpAmp .... ... .. ....... ........ . ... .. .... ............. ..... .. .... ..... ...
LT1 001 AM, Precision Op Amp. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LT1001C, PrecisionOpAmp ........................................................... ... .....
LT1 001 M, Precision Op Amp. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LT1 002AC, Dual Matched Precision Op Amp. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LT1 002AM, Dual Matched Precision Op Amp ....... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LT1 002C, Dual Matched Precision Op Amp. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LT1 002M, Dual Matched Precision Op Amp .................. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LT1 003C, 5-Volt, 5-Amp Voltage Regulator ........................................................
LT1 003M, 5-Volt, 5-Amp Voltage Regulator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... . . . . . . . . . . . . . . . . . . . .
LT1 004C, Micropower Voltage Reference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LT1004M, MicropowerVoltage Reference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LT1005C, Logic Controlled Dual5V Regulator. . . . . . . . . . . . . . . .. .. . . . . .. . . . . . . . . . . . . .. . . . . . . . . . . . . . . . .
LT1 005M, Logic Controlled Dual5V Regulator .............................................. . . . . . . . .
LT1006C, Precision, Single Supply Op Amp. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LT1006M, Precision, Single Supply Op Amp. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

.L7UO~

3-97
3-105
4-93
4-93
4-101
4-101
5-55
3-55
3-73
2-191
5-73
3-77
3-85
3-93
3-97
3-105
5-55
3-55
3-73
2-191
5-73
3-77
3-85
3-93
3-97
3-105
S10-3
2-7
2-7
2-7
2-7
2-19
2-19
2-19
2-19
3-5
3-5
4-9
4-9
3-13
3-13
S2-9
S2-9

813

ALPHANUMERIC INDEX
LT1007AC, Low Noise, High Speed Precision Op Amp. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-35
LT1007AM, Low NOise, High Speed Precision OpAmp .. , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-35
LT1 007C, Low NOise, High Speed Precision Op Amp. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-35
LT1 007M, Low NOise, High Speed Precision Op Amp .................................................
2-35
LT1 008C, Uncompensated Precision Op Amp. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-47
LT1008M, Uncompensated Precision Op Amp ........................... . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-47
LT1 009C, 2.5 Volt Reference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-17
LT1009M, 2.5 Volt Reference .. .. .. ... ........ .. .......... .... ... ... ..... ............... .. . ... . 4-17
LT1 01 ~C, Fast 150mA Power Buffer ............................................................. 2-59
LT1 01 OM, Fast 150mA Power Buffer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-59
LT1 011 AC, Voltage Comparator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5-5
LT1011AM, Voltage Comparator .. .... . ........ ..... ............ .. ... ...........................
5-5
LT1 011 C, Voltage Comparator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5-5
LT1 011 M, Voltage Comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5-5
LT1012C, Compensated Precision OpAmp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-75
LT1012M, Compensated Precision Op Amp ........................................................ 2-75
LT1013AC, Dual Precision Op Amp. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-87
LT1 013AM , Dual Precision Op Amp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-87
LT1013C, Dual Precision Op Amp. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-87
LT1013D, Dual Precision Op Amp. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-87
LT1013M, DualPrecisionOpAmp ............................................................... 2-87
LT1014AC, Quad Precision Op Amp. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-87
LT1 014AM, Quad Precision Op Amp. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-87
LT1014C, Quad Precision Op Amp. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-87
LT1014D, Quad Precision OpAmp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-87
LT1 014M, Quad Precision Op Amp. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-87
LT1 016C, Ultra Fast Precision Comparator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-21
LT1 016M, Ultra Fast Precision Comparator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-21
LT1017C, Micropower Dual Comparator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-37
LT1017M, MicropowerDualComparator .......................................................... 5-37
LT1 018C, Micropower Dual Comparator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-37
LT1 018M, Micropower Dual Comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-37
LT1019C, Precision Bandgap Reference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-21
LT1 019M, Precision Bandgap Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-21
LT1 020C, Micropower Voltage Regulator and Comparator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83-5
LT1 020M, Micropower Voltage Regulator and Comparator ............................................. 83-5
LT1 021 BC, Precision Reference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-29
LT1 021 BM, Precision Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-29
LT1 021 CC, Precision Reference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-29
LT1 021 CM, Precision Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-29
LT1 021 DC, Precision Reference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-29
LT1 021 DM, Precision Reference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-29
LT1 022AC, High Speed PrecisionJFET Input Op Amp. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 2-107

814

ALPHANUMERIC INDEX
LT1022AM, High Speed Precision JFET InputOpAmp. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LT1022C, High Speed Precision JFET InputOpAmp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LT1022M, High Speed Precision JFET Input OpAmp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LT1023C, DACAmplifier . .. ... . . . ... . . . .. . .. . ... .. . .. .. .. .. . . .. .. . . . . .. .. .. .. . ... .. . .. . .. . .. . .
LT1023M, DACAmplifier .....................................................................
LT1 024AC, Dual Compensated Precision Op Amp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LT1 024AM, Dual Compensated Precision Op Amp. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LT1024C, Dual Compensated Precision Op Amp. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LT1 024M, Dual Compensated Precision Op Amp. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LT1025, Thermocouple Cold-Junction Compensator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LT1026, Dual Output 8witched Capacitor Voltage Generator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LT1028C, Ultra Low Noise, High8peedOpAmp .....................................................
LT1028M, Ultra Low Noise, High 8peed Op Amp'. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LT1029AC, 5-Volt Bandgap Reference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LT1 029AM, 5-Volt Bandgap Reference ...........................................................
LT1 029C, 5-Volt Bandgap Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LT1 029M, 5-Volt Bandgap Reference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LTl 030C, Quad Low Power Line Driver. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LT1 030M , Quad Low Power Line Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LT1031BC, Precision 10-VoltReference.. . . .. . . . . . .. . .. . . . ... ... . .. .. .. .. .. . ... .. .. .. ... .. . ... . .. .
LT1031BM, Precision 10-VoltReference ..........................................................
LT1031CC, Precision 10-Volt Reference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LT1031CM, Precision 10-Volt Reference ..........................................................
LT1031 DC, Precision 10-VoltReference.. .. ..... .. .. . . . .. .. .. .. .. ... . .. . . .. .. ..... . .. . .. .. . . .. . .. .
LT1031DM, Precision 10-VoltReference ..........................................................
LT1032C, Quad Low Power Line Driver. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LT1032M, Quad Low Power Line Driver. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LT1033C, 3-Amp Negative Adjustable Regulator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LT1 033M, 3-Amp Negative Adjustable Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LT1034BC, Micropower Dual Reference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LT1 034BM, Micropower Dual Reference ..........................................................
LT1034C, Micropower Dual Reference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LT1 034M, Micropower Dual Reference ...........................................................
LT1035C, Logic Controlled Dual Regulator 5V, 3A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LT1 035M, Logic Controlled Dual Regulator 5V, 3A ...................................................
LT1036C, Logic Controlled Dual12V 15V Regulator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LT1 036M, Logic Controlled Dual12V 15V Regulator ..................................................
LT1 037AC, Low Noise High Speed Precision Op Amp .................................................
LT1 037AM, Low Noise High Speed Precision Op Amp. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LT1 037C, Low Noise High Speed Precision Op Amp ..................................................
LT1 037M, Low Noise High Speed Precision Op Amp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LT1038C, 1O-Amp Positive Adjustable Voltage Regulator .. , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LT1 038M, 1O-Amp Positive Adjustable Voltage Regulator .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

.L7~Jll~

2-107
2-107
2-107
10-7
10-7
2-115
2-115
2-115
2-115
810-6
810-14
82-21
82-21
4-45
4-45
4-45
4-45
88-3
88-3
4-49
4-49
4-49
4-49
4-49
4-49
8-47
8-47
3-25
3-25
4-61
4-61
4-61
4-61
3-33
3-33
3-45
3-45
2-35
2-35
2-35
2-35
3-53
3-53

815

ALPHANUMERIC INDEX
LTl 039C, Triple RS232 Line Driver and Receiver ....................................................
LTl o39M, Triple RS232 Line Driver and Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LTl 054C, Switched Capacitor Voltage Converter ....................................................
LTl o54M, Switched Capacitor Voltage Converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LT1055AC, Precision, HighSpeedJFET-lnputOpAmp ......... ..... .. .. . .. ... ..... ............ .. .....
LT1055AM, Precision, HighSpeedJFET-lnputOpAmp............... ... ... . ....... ............ .......
LT1055C, Precision, High Speed JFET-lnputOpAmp ................ ,..... ..... ... ........... . .... ...
LT1055M, Precision, High Speed JFET-Input Op Amp. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LT1056AC, Precision, HighSpeedJFET-lnputOpAmp .. .... ...... .. .... ... ... ... .......... ...... .....
LT1056AM, Precision, High Speed JFET-lnputOp Amp. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LT1056C, Precision, High SpeedJFET-lnputOpAmp ... ..... .... .. ..... ... ....... . ........... ... .. ...
LT1056M, Precision, High Speed JFET-Input Op Amp. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LT1057C, DualJFET-lnput Precision, High Speed op Amp. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LT1057M, DuaIJFET-lnputPrecision, High Speed OpAmp ........................ " ...................
LTlo58C, Quad JFET-Input Precision, High Speed Op Amp. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LTlo58M, Quad JFET-lnputPrecision, High Speed Op Amp. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LT107oC, 5A High Efficiency Switching Regulator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LT107oM, 5A High Efficiency Switching Regulator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LT1071C, 2.5A High Efficiency Switching Regulator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LTl 071 M, 2.5A High Efficiency Switching Regulator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LT1 072C, 1.25A High Efficiency Switching Regulator .................................................
LT1072M, 1.25A High Efficiency Switching Regulator .................................................
LTlo78, Micropower, Dual, Single Supply, Precision Op Amp ...........................................
LT1079, Micropower, Quad, Single Supply, PrecisionOpAmp ........................................ , ..
LT1 080C, 5V Powered RS232 DriverIReceiver with Shutdown ..........................................
LT108oM, 5V Powered RS232 Driver/Receiverwith Shutdown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LTl 081 C, 5V Powered RS232 DriverIReceiver without Shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LT1 081 M, 5V Powered RS232 DriverIReceiver without Shutdown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LT1083C, 7.5A Low Dropout Positive Adjustable Regulator ........................................... "
LT1 o83M, 7.5A Low Dropout Positive Adjustable Regulator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LT1 083-5, 7.5A Low Dropout Positive Fixed Regulators ................................................
LT1 083-12, 7.5A Low Dropout Positive Fixed Regulators ...............................................
LT1 o84M, 5A Low Dropout Positive Adjustable Regulator ..............................................
LT1 084C, 5A Low Dropout Positive Adjustable Regulator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LT1084-5, 5ALow Dropout Positive Fixed Regulator ..................................................
LT1084-12, 5A Low Dropout Positive Fixed Regulator .................................................
LT1 085C, 3A Low Dropout Positive Adjustable Regulator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LT1 o85M, 3A Low Dropout Positive Adjustable Regulator .................... . . . . . . . . . . . . . . . . . . . . . . . . ..
LT1085-5, 3A Low Dropout Positive Fixed Regulators .................................................
LT1 085-12, 3A Low Dropout Positive Fixed Regulators ................................................
LT1 086, 1.5A Low Dropout Positive Adjustable Regulator ..............................................
LT1086-5, 1.5A Low Dropout Positive Fixed Regulators ................................................
LT1086-12, 1.5A Low Dropout Positive Fixed Regulators ...............................................

816

S8-7
S8-7
S8-15
S8-15
2-143
2-143
2-143
2-143
2-143
2-143
2-143
2-143
S2-37
S2-37
S2-37
S2-37
S3-21
S3-21
S3-21
S3-21
Slo-15
SlO-15
Slo-19
Slo-19
S8-27
S8-27
S8-27
S8-27
S3-33
S3-33
Slo-2o
Slo-2o
S3-33
S3-33
Slo-2o
Slo-2o
S3-33
S3-33
SlO-2o
Slo-2o
Slo-23
Slo-2o
Slo-2o

ALPHANUMERIC INDEX
LT1088C, Wideband RMS-DC Converter Building Block. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LT1089 , High Side Switch . ...................................................................
LT1524, Regulating Pulse Width Modulator ........................................................
LT1525A, Regulating Pulse Width Modulator NOR Out. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LT1526, Regulating Pulse Width Modulator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LT1527A, Regulating Pulse Width ModulatorOR Out. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LT3524, Regulating Pulse Width Modulator ...... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LT3525A, Regulating Pulse Width Modulator NOR Out. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LT3526, Regulating Pulse Width Modulator ........................................................
LT3527A, Regulating Pulse Width Modulator OR Out. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LTC 1040C, Dual Micropower Comparator ........................... ?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LTC1040M, Dual Micropower Comparator ...........................1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LTC1041C, Bang-Bang Controller. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LTC1 041 M, Bang-Bang Controller. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LTC1042C, Window Comparator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LTC1042M, Window Comparator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LTC1 043C, Dual Instrumentation Switched-Capacitor Building Block. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LTC1 043M, Dual Instrumentation Switched-Capacitor Building Block .....................................
LTC1044C, Switched Capacitor Voltage Converter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LTC1 044M, Switched Capacitor Voltage Converter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LTC1045C, /-L Power Hex Translator/Receiver/Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LTC1 045M, /-L Power Hex TranslatorIReceiver IDriver ............................ . . . . . . . . . . . . . . . . . . ..
LTC1052C, Chopper Stabilized OpAmp (CSOA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LTC1052M, Chopper Stabilized Op Amp (CSOA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LTC1 059AC, Switched CapaCitor Filter Building Block. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LTC1 059AM, Switched Capacitor Filter Building Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LTC1 059C, Switched Capacitor Filter Building Block. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LTC1 059M, Switched CapaCitor Filter Building Block ............................. . . . . . . . . . . . . . . . . . . . .
LTC1 060AC, Dual Switched Capacitor Filter Building Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LTC1 060AM, Dual Switched Capacitor Filter Building Block. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LTC 1060C, Dual Switched Capacitor Filter Building Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LTC1 060M, Dual Switched Capacitor Filter Building Block. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LTC1061C, Triple Switched Capacitor Filter Building Block. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LTC1 061 M, Triple Switched Capacitor Filter Building Block. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LTC1062C, Precision Fifth Order Low Pass Filter .................................................'. . . .
LTC1 062M, Precision Fifth Order Low Pass Filter .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LTC1090C, 10-BitA/D with Seriali/O and 8-Channel MUX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LTC1090M, 10-BitA/D with Seriali/O and 8-Channel MUX ............................................
LTC1091C, 10-BitA/O with Seriali/O and 2-Channel MUX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LTC1091 M, 10-BitAiD with Seriali/O and 2-Channel MUX ............................................
LTC1 092, 10-Bit, 8-Pin AID with Serial Output. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LTC1099, High Speed 8-Bit AID Converter with Built-In Sample-and-Hold ..................................
LTC7652C, Chopper Stabilized Op Amp (CSOA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..

S8-35
S10-25
7-3
7-11
7-19
7-11
7-3
7-11
7-19
7-11
5-45
5-45
5-57
5-57
S5-5
S5-5
8-3
8-3
8-19
8-19
S5-13
S5-13
2-123
2-123
6-3
6-3
6-3
6-3
6-11
6-11
6-11
6-11
S6-3
S6-3
6-31
6-31
S8-47
S8-47
S8-71
S8-71
S10-26
S10-30
2-123

817

ALPHANUMERIC INDEX
LTZ1000C, Ultra Precision Reference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LTZl OOOAC, Ultra Precision Reference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
OP05, Operational Amplifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
OP05A, Operational Amplifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
OP05C, Operational Amplifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
OP05E, Operational Amplifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
OP07, Precision Op Amp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
OP07A, Precision Op Amp. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
OP07C, Precision Op Amp. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
OP07D, Precision Op Amp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
OP07E, Precision Op Amp .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
OP15A, Precision High SpeedJFET-lnputOpAmp. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
OP15B, Precision High Speed JFET-lnputOp Amp. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
OP15C, Precision High Speed JFET-Input Op Amp. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
OP15E, Precision High Speed JFET-lnputOpAmp ....................................................
OP15F, Precision High Speed JFET-lnputOpAmp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
OP15G, Precision High Speed JFET-lnputOpAmp. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
OP16A, Precision HighSpeedJFET-lnputOpAmp ....................................................
OP16B, Precision High Speed JFET-lnputOp Amp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
OP16C, Precision High SpeedJFET-lnputOpAmp. ...................................... .............
OP16E, Precision High SpeedJFET-lnputOpAmp ....................................................
OP16F, Precision High Speed JFET-Input Op Amp. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
OP16G, Precision High Speed JFET-Input Op Amp. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
OP27A, Low Noise, High Speed Precision OpAmp. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
OP27C, Low Noise, High Speed Precision Op Amp. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
OP27E, Low Noise, High Speed Precision Op Amp. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
OP27G, Low NOise, High Speed Precision OpAmp. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
OP37A, Low Noise, High Speed Precision Op Amp. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
OP37C, Low NOise, High Speed Precision OpAmp. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
OP37E, Low NOise, High Speed Precision OpAmp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
OP37G, Low Noise, High Speed Precision Op Amp. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
OP215A, Dual Precision JFETInput Op Amp .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
OP215C, DualPrecisionJFETlnputOpAmp ........................................................
OP215E, Dual PrecisionJFETlnputOpAmp ........................................................
OP215G, Dual Precision JFETInput Op Amp ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
OP227A, Dual Matched Low Noise Precision Op Amp. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
OP227C, Dual Matched Low Noise Precision Op Amp. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
OP227E, Dual Matched Low Noise Precision Op Amp. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
OP227G, Dual Matched Low Noise Precision OpAmp. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
OP237A, Dual High Speed Low Noise Precision OpAmp. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
OP237C, Dual High Speed Low NOise Precision Op Amp. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
OP237E, Dual High Speed Low NOise Precision Op Amp. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
OP237G, Dual High Speed Low NOise Precision Op Amp. . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . ..

818

84-9
84-9
2-199
2-199
2-199
2-199
2-207
2-207
2-207
2-207
2-207
2-215
2-215
2-215
2-215
2-215
2-215
2-215
2-215
2-215
2-215
2-215
2-215
2-219
2-219
2-219
2-219
2-219
2-219
2-219
2-219
82-49
82-49
82-49
82-49
2-231
2-231
2-231
2-231
2-231
2-231
2-231
2-231

ALPHANUMERIC INDEX
REF01, Precision Voltage Reference 10V ..........................................................
REF01A, Precision Voltage Reference 10V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
REF01 C, Precision Voltage Reference 10V " . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
REF01 E, Precision Voltage Reference 10V .........................................................
REF01 H, Precision Voltage Reference 10V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
REF02, Precision Voltage Reference 5V ............................... ............................
REF02A, Precision Voltage Reference 5V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
REF02C, Precision Voltage Reference5V ..........................................................
REF02D, Precision Voltage Reference 5V ..........................................................
REF02E, Precision Voltage Reference 5V ..........................................................
REF02H, Precision Voltage Reference 5V ........................................................ "
SG1524, Regulating Pulse Width Modulator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SG1525A, Regulating Pulse Width Modulator NOR Out ................................................
SG1527A, Regulating Pulse Width Modulator OR Out. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . .
SG3524, Regulating Pulse Width Modulator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SG3525A, Regulating Pulse Width Modulator NOR Out ................................................
SG3527A, Regulating Pulse Width Modulator OR Out. . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Surface Mount (Small Outline-SO) Products ..................................................... "
UC1846, Current Mode PWM Controller. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
UC1847, Current Mode PWM Controller. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
UC3846, Current Mode PWM Controller. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
UC3847, Current Mode PWM Controller. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

..L7W~

4-103
4-103
4-103
4-103
4-103
4-103
4-107
4-107
4-107
4-107
4-107
7-3
7-11
7-11
7-3
7-11
7-11
10-27
7-27
7-27
7-27
7-27

819

ALPHANUMERIC INDEX
SURFACE MOUNT PRODUCTS
LF398S8, Precision Sample and Hold Amplifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LM318S8, High Speed Operational Amplifier ................... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LM334S8, Constant Current Source and Temperature Sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LM385S8-1.2, MicropowerVoltage Reference ......................................................
LM385S8-2.5, MicropowerVoltageReference ......................................................
LT1 001 CS8, Precision Operational Amplifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LT1004CS8-1.2, MicropowerVoltageReference ....................................................
LT1004CS8-2.5, MicropowerVoltageReference ....................................................
LT1 007CS, Low Noise, High Speed Precision Operational Amplifiers ......................................
LT1009S8, 2.5 Volt Reference ..................................................................
LT1012S8, Picoamp Input Current, MicrovonOffset, Low Noise Op Amp ...................................
LT1013DS8, Dual Precision Op Amp ..............................................................
LT1 021DCS8, Precision Reference ..............................................................
LT1028CS, Ultra-Low Noise Precision High Speed Op Amp .............................................
LT1030CS, Quad Low Power Line Driver ...........................................................
LT1034CS8-1.2, MicropowerDuaIReference .......................................................
LT1034CS8-2.5, Micropower Dual Reference .......................................................
LT1037CS, Low Noise, High Speed Precision Operational Amplifiers ................................. . . . ..
LT1 055S8, Precision, High Speed, JFET Input Operational Amplifiers .....................................
LT1 056S8, Precision, High Speed, JFET Input Operational Amplifiers .....................................
LT1 080CS, 5V Powered RS232 DriverIReceiver with Shutdown .........................................
LT1081 CS, 5V Powered RS232 DriverIReceiver with Shutdown .........................................
LTC1043CS, Dual Precision Instrumentation Switched-Capacitor Building Block ..............................
LTC1 044CS8, Switched Capacitor Voltage Converter .................................................
LTC1 052CS, Chopper-Stabilized Operational Amplifier (CSOA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LTC1059S, High Performance Switched Capacitor Universal Filter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LTC1 060S, Universal Dual Filter Building Block .....................................................
LTC1061 CS, High Performance Triple Universal Finer Building Block. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LTC1062CS, 5th Order Low Pass Filter ............................................................
OP-07CS8, Precision Operational Amplifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SG3524S, Regulating Pulse Width Modulator .......................................................

820

S11-7
S11-9
S11-11
S11-13
S11-13
S11-15
S11-17
S11-17
S11-19
S11-22
S11-24
S11-27
S11-30
S11-33
S11-36
S11-38
S11-38
S11-19
S11-40
S11-40
S11-43
S11-43
S11-46
S11-48
S11-50
S11-52
S11-55
S11-58
S11-61
S11-63
S11-66

___________________________

c

o

;:::
a:::

ea:
....o

5

.J

a:::

a:
'II
c

SECTion l-GEnERAl
InFoRmATion

'II

"

--

81-1

INDEX
SECTION 1-GENERAL INFORMATION
INDEX. . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . .. S1-2
GENERAL ORDERING INFORMATION .................................................. S1-3
ALTERNATE SOURCE CROSS REFERENCE GUIDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. S1-4

51-2

GENERAL ORDERING
~~Llnll\R
INFORMATION
~, TECHNOLOGY~-----

I.

ORDER ENTRY
Orders for products contained herein should be directed to: LINEAR TECHNOLOGY CORPORATION,
1630 McCarthy Boulevard, Milpitas, California 95035. Phone: 408-432·1900.

II.

ORDERING INFORMATION
Minimum order value is $2000.00 per order; minimum value per line item is $500.00.
Each item must be ordered using the complete part number exactly as listed on the datasheet.
F.O.B.: Milpitas, California.

III.

RELIABILITY PROGRAMS
LinearTechnology Corporation currently offers the following Reliability Programs:
A.
B.
C.
D.

IV.

JAN QPL devices.
DESC drawings.
MIL-STD-883, Level B, Revision C for all military temperature range devices.
"R-Flow" Burn-In Program for commercial temperature range devices. Consult Factory regarding burn-in program.

PART NUMBER EXPLANATION

xxx

XXXX

x

X

J/883B

I

I

I

S,,~";"g '0 M"~'D-8". Lo"". "'""0" C
Package Style (see Cross Reference on Page 12-3)
Temperature Range
M for Military
C for Commercial
X for 200°C Extended Range'

' - - - - - - - - - - - Letter indicates electrical grade of part
' - - - - - - - - - - - - - - - Generic or Product Part Number
' - - - - - - - - - - - - - - - - - - - Designator
AD, LF, LM, OP, REF, SG and UC are second source devices
LT are improved or proprietary devices
LTC indicates proprietary CMOS devices
'Contact Factory for further information.

V.

PACKAGE SUFFIX EXPLANATION
Letter Designator

D
D8
H
J
J8
K
N
N8

P
S8

S
T
Z

Description
14,16,18 and 20 Pin Side Brazed Hermetic DIP
8 Pin Side Brazed Hermetic DIP
Multi Lead Metal Can
14,16,18 and 20 Pin Ceramic DIP
8 Pin Ceramic DIP
TO-3 Metal Can (Steel)
14,16,18 and 20 Pin Molded DIP
8 Pin Molded DIP
TO-247 Molded (3 lead)
8 Lead Small Outline (SO) package (Note 1)
16,18,20 Pin Small Outline (SO) package (Note 1, 2)
TO-220 Molded (3 lead, 5 lead)
TO-92 Molded (3 lead)

Nole 1: Pin-out and electrical specifications may differ from standard commercial grade NB package.
See SO datasheet for specific information.

Nole 2: These devices are delivered in either 150 MIL (SO) or 300 MIL (SO-L) wide packages depending
on device die size. See specific SO datasheet for pin counts and package dimensions.

81-3

ALTERNATE SOURCE
CROSS REFERENCE GUIDE
AMD
AMD PIN

LTC DIRECT REPL

AM686
LF155A

LT1016
LF155A
LT1055AM*
LF155
LT1055M*
LF156A
LT1056AM*
LF156
LT1056M*
LF198
LF355A
LT1055AC*
LF356A
LT1056AC*
LF398
LM108
LT1008M*
LM108A
LT1008M*
LMlll
LTlllA*
LT1011M*
LMl18
LTl18A *
LMl19
LTl19A *
LT1014*
LM308A
LT1008C*
LM311
LT311A*
LT10llC*
LM318
LT318A*
LM319
LT319A*

LF155
LF156A
LF156
LF198
LF355A
LF356A
LF398
LM108
LM108A
LMlll

LMl18
LMl19
LM148
LM308A
LM311

LM318
LM319

ANALOG DEVICES

AD PIN

LTC DIRECT REPL

AD101A
AD518

LM101A
LMl18**
LTl18A**
OP07**
LT100l**
OP07E*
LT1001C*
LT1001AC*
LT1001AC*
OP07A*
LT1001AM*
OP07
LT100l M*
OP07A
LT1001AM*
OP07C
LT1001C*

AD517
AD510J
AD510K
AD510L
AD510S
ADOP07
ADOP07A
ADOP07C

AD PIN

LTC DIRECTREPL

ADOP07D

OP07D
LT1001C*
OP07E
LT1001C*
AD580
AD581
LT1031**
LT1004t

ADOP07E
AD580
AD581
AD589

FAIRCHILD
F.SCP/N

LTC DIRECT REPL

UA101A
UA107A
UA108

LM101A
LM107
LM108
LT1008M*
LM108A
LT1008M*
LMlll
LTlllA*
LT10ll M*
LMl17
LTl17A*
LM123
LT123A*
LT1003M**
LT1014M*
LT1014M*
LT1013M*
LT1003C**
LM308A
L T1008C* *
LM311
LT311A *
L T1011C*
LM317
LT317A*
LM318
LT318A*
LM323
LT323A*
LT1003M**
OP07
LT1001M*
OP07C
LT1001C*
OP07D
LT1001C*
OP07E
LT1001C*

UA108A
UAlll

UAl17
SH123

UA124
UA148
UA1558M
UA78H05C
UA308A
UA311

UA317
UA318
SH323

UA714
UA714C
UA714L
UA714E

HARRIS

HARRIS PIN

LTC DIRECT REPL

HAOP07

OP07
LT1001M*

*LTC Improved Replacement: 100% Pin-for-pin compatible with better electrical specifications.
* 'Similar Device: Please consult the data sheet to determine the suitability of the replacement for specific applications.
tConsult factory for guaranteed TC devices.

81-4

ALTERNATE SOURCE CROSS REFERENCE GUIDE
HARRIS PIN

LTC DIRECT REPL

MOTO PIN

LTC DIRECT REPL

HAOP07

OP07
LT1001AW
OP07C
LT1001C"
OP07E
LT1001C"
OP07
LT1001W
OP07A
LT1001AW
OP07C
LT1001C"
OP07E
LT1001C"
LT118A" "
LMl18""
LT118A""
LMl18A ""
LT318A" "
LM318" "

LMlll

LMlll
LT111A"
LT10ll M"
LMl17
LT117A"
LM123
LT123A"
LT1003W"
LM137
LT137A"
LT1033W"
LM150
LT150A"
LT1013W
LM308A
LT1008C"
LM311
LT311A"
LT10llC"
LM317
LT317A"
LM323
LT323A"
LT1003C""
LM337
LT337A"
LT1033C""
LM350
LT350A"
LT1013M"
LM323T
LT323AT"
LT1039""
SG1524
LT1524"
SG1525A
LT1525A"
SG1527A
LT1527A"
SG3524
LT3524"
SG3525A
LT3525A"
SG3527A
LT3527A"
LF355A
LF356A
LT1014M"
LT1014M"
LTl019CN8-2.5"
LT1 019ACN8·2.5"
LT1019CN8-5"
LT1019ACN8-5"
LT1019CN8-10"
LT1019ACN8-10"
LF155A
LT1055AM

HAOP07C
HAOP07E
HA5135-2
HA5130·2
HA5135-5
HA5130-5
HA2510
HA2512
HA2515

INTERslL
INTERslL PIN

LTC DIRECT REPL

ICL7650 8-Pin
ICL76528-Pin
ICL7660
ICL8069C

LTC1052"
LTC7652
LTC1044"
LM385-1.2
LT1004C-l.2"
LM185-1.2
LT1004M-l.2"
LF155A
LF155
LF156A
LF156
LF355A
LF356A
LH2108A
LH2108
LM101A
LM107
LM108
LT1008M"
LM108A
LT1008M"
LMlll
LT111A"
LT10llM"
LT1014M"

ICL8069M
LF155A
LF155
LF156A
LF156
LF355A
LF356A
LH2108A
LH2108
LM101A
LM107
LM108
LM108A
LMlll

LM124

MOTOROLA
MOTO PIN

LTC DIRECT REPL

LM101A
LM107
LM108

LM101A
LM107
LM108
LT1008M"
LM108A
LT1008M"

LM108A

LMl17
LM123

LM137

LM150
LM158
LM308A
LM311

LM317
LM323

LM337

LM350
MC1558
MC78T05
MC145406
SG1524
SG1525A
SG1527A
SG3524
SG3525A
SG3527A
LF355A
LF356A
LM148
LM124
MC1400U2
MC1400AU2
MC1400U5
MC1400AU5
MC1400Ul0
MC1400AU10
LF155A

'LTC Improved Replacement: 100% Pin·for·pin compatible with better electrical specifications.
""Similar Device: Please consult the data sheet to determine the suitability of the replacement for specific applications.
tConsult factory for guaranteed TC devices.

S1-5

ALTERNATE SOURCE CROSS REFERENCE GUIDE
MOTOP/N

LTC DIRECT REPL

NSCP/N

LTC DIRECT REPL

LF155

LF155
LT1055M
LF156A
LT1056AM
LF156
LT1056M
OP27A
LT1007AM"
LT1007M"
OP27C
LT1007M
OP27E
LT1007AC"
LT1007C"
OP27G
LT1007C"
OP37A
LT1037AM"
LT1037M"
OP37C
LT1037M*
OP37E
LT1037AC"
LT1037C"
OP37G
LT1037C"

LM108
LM10C
LM101A
LM107
LM108

LM108
LM10C
LM101A
LM107
LM108
LT1008M"
LM108A
LT1008M"
LM111
LT111A"
LT1011M"
LT1012M"
LT1004M-1.2"
LM117
LT117A"
LM117HV
LT117AHV"
LM118
LT118A"
LM119
LT119A"
LM123
LT123A"
LT1003M"
LT1014M"
LM129A
LM1298
LM129C
LT1033M"
LM134
LM134-3
LM134-6
LM136A
LT1009M"
LM136-2.5
LT1009M*
LT1029M" "
LM137
LT137A
LT1 033M " "
LM137HV
LT137AHV"
LM138
LT138A"
LT1038M""
LM150
LT150A"
LT1013M"
LT1019AM-5"
LT1019AM-10"
LM185-1.2
LT1004M-1.2"
LM185-2.5
LT1 004M-2.5"
LT10348M-1.2"
LT1034M-1.2"
LT10348M·2.5"
LT1034M-2.5"

LF156A
LF156
OP27A
OP278
OP27C
OP27E
OP27F
OP27G
OP37A
OP378
OP37C
OP37E
OP37F
OP37G

NATIONAL SEMICONDUCTOR
NSCP/N

LTC DIRECT REPL

ADC032
LF155A

LTC1091
LF155A
LT1055AM"
LF155
LT1055M"
LF156A
LT1056AM"
LT1022AM"
LF156
LT1056M"
LT1022M"
LF198A
LF198
LF355A
LT1055AC"
LF356A
LT1056AC"
LT1022AC"
LF398A
LF398
LF412A
LT1010M""
LT1001M"
LHOO70
LT1031M"
LH2108
LH2108A
LM10

LF155
LF156A

LF156

LF198A
LF198
LF355A
LF356A

LF398A
LF398
LF412A
LHOOO2
LHOO44
LHOO70
LH2108
LH2108A
LM10

LM108A
LM111

LM112
LM113
LM117
LM117HV
LM118
LM119
LM123

LM124
LM129A
LM1298
LM129C
LM133
LM134
LM134-3
LM134-6
LM136A
LM136-2.5
LM136·5
LM137

LM137HV
LM138
LM148
LM150
LM158
LM1688Y-5.0
LM1688Y-10.0
LM185-1.2
LM185-2_5
LM1858X-1.2
LM1858Y-1.2
LM1858X-2.5
LM1858Y-2.5

"LTC Improved Replacement: 100% Pln-for-pin compatible with better electrical specifications.
""Similar Device: Please consult the data sheet to determine the suitability of the replacement for specific applications.
tConsult factory for guaranteed TC devices.

81·6

ALTERNATE SOURCE CROSS REFERENCE GUIDE
NSCP/N

LTC DIRECT REPL

NSCP/N

LTC DIRECT REPL

LM196
LM199
LM199A
LM199A-20
LM234-3
LM234-6
LM308A

LT1038M"
LM199
LM199A
LM199A-20
LM234-3
LM234-6
LM308A
LT1008C'
LM311
LT311A'
LT1011C'
LM317
LT317A'
LM317HV
LT317AHV'
LM318
LT318A'
LM319
LT319A'
LM323
LT323A'
LT1003C"
LM329A
LM329B
LM329C
LM329D
LT1033C'
LT1033C
LM334
LM336
LT1009C'
LM336B
LT1009C'
LT1029C'
LM337
LT337A'
LT1033C'
LM337HV
LT337AHV'
LM338
LT338A'
LM350
LT350A'
LT1019AC-5'
LT1019AC-5'
LT1019AC-10'
LT1019AC-10'
LM385-1.2
LT1 004C-1.2'
LM385-2.5
LT1004C-2.5'
LT1034BC-1.2'
LT1034C-1.2'
LT1034BC-2.5'
LT1 034C-2.5'
LT1038C"
LM399

LM399A
LM399A-20
LM399A-50
LM1524

LM399A
LM399A-20
LM399A-50
SG1524
LT1524'
SG3524
LT3524,
LT1005"
LTC1059'
LTC1060'

LM311

LM317
LM317HV
LM318
LM319
LM323

LM329A
LM329B
LM329C
LM329D
LM333
LM333A
LM334
LM336-2.5
LM336B-2.5
LM336-5
LM337

LM337HV
LM338
LM350
LM368Y-5.0
LM368-5.0
LM368Y-10.0
LM368-10.0
LM385-1.2
LM385-2.5
LM385BX-1.2
LM385BY-1.2
LM385BX-2.5
LM385BY-2.5
LM396
LM399

LM3524
LM2935
MF5
MF10

PMI
PMIP/N

LTC DIRECT REPL

CMP01
CMP02
OP04
OP05

LT1011"
LT1011 "
LT1013'
OP05
LT1001M'
OP05A
LT1001M'
OP05C
LT1001C'
OP05E
LT1001C'
OP07
LT1001M'
OP07A
LT1001AM'
OP07C
LT1001C'
OP07E
LT1001C'
LT1002M'
LT1002AM'
LT1002C'
LT1002C
LT1014'
LT1012M'
LT1012M'
LT1012M'
LT1012C'
LT1012C'
LT1012C'
OP15A
LT1055AM'
OP15B
LT1055M
OP15C
LT1055M'
OP15E
LT1055AC'
OP15F
LT1055C'
OP15G
LT1055C'
OP16A
LT1056AM'

OP05A
OP05C
OP05E
OP07
OP07A
OP07C
OP07E
OP10
OP10A
OP10C
OP10E
OP11
OP12A
OP12B
OP12C
OP12E
OP12F
OP12G
OP15A
OP15B
OP15C
OP15E
OP15F
OP15G
OP16A

'LTC Improved Replacement: 100% Pin-for-pin compatible with better electrical specifications .
• 'Similar Device: Please consult the data sheet to determine the suitability of the replacement for specific appilcations.
tConsult factory for guaranteed TC devices.

81-7

ALTERNATE SOURCE CROSS REFERENCE GUIDE
PMI PIN

LTC DIRECT REPL

PMIP/N

LTC DIRECT REPL

OP16B

OP16B
LT1056M*
OP16C
LT1056M*
OP16E
LT1056AC*
OP16F
LT1056C*
OP16G
LT1056C*
OP27A
LT1007AM*
LT1007M*
OP27C
LT1007M*
OP27E
LT1007AC*
LT1007C*
OP27G
LT1007C*
OP37A
LT1037AM*
OP37A
LT1037M*
OP37C
LT1037M*
OP37E
LT1037AC*
OP37E
LT1037C*
OP37G
LT1037C*
LT1001AM**
LT1001M**
LT1001AC**
LT1001C**
LT1001C**
LT1002M*
LT1002M*
LT1002C*
LT1002C*
OP215A
LT1057AM*
OP215A*
LT1057AM*
OP215C
LT1057M*
OP215E
LT1057C*
OP215E*
LT1057C*
OP215G
LT1057C*
LT1013*
OP227A
OP227A
OP227C
OP227E

OP227F
OP227G
OP400A
OP400E
OP400F
OP421
PM10B

OP227E
OP227G
LT1014AM**
LT1014AC**
LT1014AC**
LT1014*
LM10B
LT100BM*
LM10BA
LT100BM*
LF155A
LT1055M*
LF155
LT1055M*
LT100B
LT1013M*
LF156A
LT1056M*
LF156
LT1056M*
LH210BA
LH210B
LM30BA
LT100BC*
LF355A
LT1055C*
LF356A
LT1056C*
REF01
LT1019M·10*
LT1021·10**
REF01A
LT1021·10**
REF01C
LT1019C·10*
LT1021·10**
REF01E
LT1021·10**
REF01H
LT1019C·10*
LT1021·10**
REF02
LT1019M·5*
LT1021·5**
REF02A
LT1021·5**
REF02C
LT1019C·5*
LT1021·5**
LT1019C·5*
LT1021·5**
REF02E
LT1021·5**
REF02H
LT1019C·5*
LT1021·5**

OP16C
OP16E
OP16F
OP16G
OP27A
OP27B
OP27C
OP27E
OP27F
OP27G
OP37A
OP37B
OP37C
OP37E
OP37F
OP37G
OP77A
OP77B
OP77E
OP77F
OP77G
OP207A
OP207B
OP207E
OP207F
OP215A
OP215B
OP215C
OP215E
OP215F
OP215G
OP221
OP227A
OP227B
OP227C
OP227E

PM10BA
PM155A
PM155
PM100B
PM155B
PM156A
PM156
PM210BA
PM210B
PM30BA
PM355A
PM356A
REF01

REF01A
REF01C

REF01E
REF01H

REF02

REF02A
REF02C

REF02D
REF02E
REF02H

·LTC Improved Replacement: 100% Pln·for·pin compatible with better electrical specifications .
• 'Slmliar Device: Please consult the data sheet to determine the suitability of the replacement for specific applications.
tConsult factory for guaranteed TC devices.

S1-8

L7~

ALTERNATE SOURCE CROSS REFERENCE GUIDE
RAYTHEON

SIGNETICS

RAYTH PIN

LTC DIRECT REPL

SIGNETICS PIN

LTC DIRECT REPL

LM101A
LM107
LMlll

LM101A
LM107
LMlll
LT111A'
LT1011M'
LT1014M'
LM1014M'
LM311
LT311A'
LT10llC'
OP05
LT1001M'
OP05A
LT1001AM'
OP05C
LT1001C'
OP05E
LT1001C'
OP07
LT1001M'
OP07A
LT1001AM'
OP07C
LT1001C'
OP07E
LT1001C'
OP27A
LT1007AM'
OP27A
LT1007M
OP27C
LT1007M'
OP27E
LT1007AC'
OP27F
LT1007C'
OP27G
LT1007C'
OP37A
LT1037AM'
OP37A
LT1037M
OP37C
LT1037M'
OP37E
LT1037AC'
OP37E
LT1037C'
OP37G
LT1037C'
OP07C
LT1001C'
OP07E
LT1001C'
LT1013M'
OP07
LT1001M'

LF398
LF398A
LM101A
LMlll

LF398
LF398A
LM101A
LMlll
LTlllA'
LT10llM'
LMl19
LTl19A'
LT1014M'
LT1013M'
LM311
LT311A'
LT10llC'
LT1013M'
LT1037
OP37'
LT1037'
OP37'
LT1037'
OP37'
LT1037'
OP37'
LT1037'
SG3524
LT3524,

LM124
LM148
LM311

OP05
OP05A
OP05C
OP05E
OP07
OP07A
OP07C
OP07E
OP27A
OP27B
OP27C
OP27E
OP27F
OP27G
OP37A
OP37B
OP37C
OP37E
OP37F
OP37G
RC714CH
RC714EH
RM1558
RM714H

LMl19
LM124
LM158
LM311

MC1558
NE1037
NE5534
NE5534A
SE5534
SE5534A
SG3524

SILICON GENERAL
SILGEN PIN

LTC DIRECT REPL

SG101A
SG108

LM101A
LM108
LT1008M'
LM108A
LT1008M'
LMlll
LTlllA
LT10llM'
LMl17
LTl17A
LM123
LT123A
LT1003M"
LT1014M'
LM137
LT137A
LT1033M"
LM138
LT138A
LM150
LT150A
LT1013M'
LM311
LT311A'
LT10llC'
LM317
LT317A
LM323

SG108A
SGlll

SGl17
SGl17A
SG123
SG123A
SG124
SG137
SG137A
SG138
SG138A
SG150
SG150A
SG1558
SG311

SG317
SG317A
SG323

'LTC Improved Replacement: 100% Pin·for·pin compatible with better electrical specifications.
"Similar Device: Please consult the data sheet to determine the suitability of the replacement for specific applications.
tConsult factory for guaranteed TC devices.

81-9

ALTERNATE SOURCE CROSS REFERENCE GUIDE
SILGEN PIN

LTC DIRECT REPL

TIP/N

LTC DIRECT REPL

SG323A

LT323A
LT1003C**
LM337
LT337A
LT1033C**
LM338
LT338A
LM350
LT350A
SG1524
LT1524*
SG1525A
LT1525A*
LT1526
SG1527A
LT1527A*
SG3524
LT3524*
SG3525A
LT3525A*
LT3526
SG3527A*
LT3527A*

LM350

LM350
LT350A*
LT1009
LT1011
LT1007
LT1037
LT1070
LTC1044
LT1013M*
OP07C
LT1001C*
OP07D
LT1001C*
OP07E
LT1001C*
OP27A
LT1007AM*
LT1007M*
OP27C
LT1007M
OP27E
LT1007AC*
LT1007C*
OP27G
LT1007C*
OP37A
LT1037AM*
LT1037M*
OP37C
LT1037M*
OP37E
LT1037AC*
LT1037C*
OP37G
LT1037C*
SG1524
LT1524*
SG1525A
LT1525A*
SG3524
LT3524*
SG3525A
LT3525A*

SG337
SG337A
SG338
SG338A
SG350
SG350A
SG1524
SG1525A
SG1526
SG1527A
SG3524
SG3525A
SG3526
SG3527A

LT1009
LT1011
LT1007
LT1037
LT1070
LTC 1044
MC1558
OP071714C
OP07/714D

OP071714E
OP27A
OP278
OP27C
OP27E
OP27F
OP27G

TEXAS INSTRUMENTS
OP37A

TIP/N

LTC DIRECT REPL

LM101A
LM107
LM111

LM101A
LM107
LM111
LT111A*
LT1011M*
LT1014M*
LT1014M*
LT1013M*
LM311
LT311A*
LT1011C*
LM317T
LM317AT*
LM318
LT318A*
LM323
LT323A*

LM124
LM148
LM158
LM311

LM317KC
LM318
LM323

OP378
OP37C
OP37E
OP37F
OP37G
SG1524
SG1525A
SG3524
SG3525A

• LTC Improved Replacement: 100% Pin-for-pin compatible with better electrical specifications.
**Slmllar Device: Please consult the data sheet to determine the suitability of the replacement for specific applications.
tConsult factory for guaranteed TC devices.

81-10

ALTERNATE SOURCE CROSS REFERENCE GUIDE
UNITRODE
UNITRODE PIN

LTC DIRECT REPL

UC117

LM117
LT117A"
LM137
LT137A"
LT1033M""
LM150
LT150A"
LM317
LT317A"
LM337
LT337A"
LT1033C" "
LM350
LT350A"

UC137

UC150
UC317
UC337

UC350

UNITRODE PIN

LTC DIRECT REPL

UC1524

SG1524
LT1524"
SG1525A
LT1525A"
SG1527A
LT1527A"
UC1846
UC1847
SG3524
LT3524"
SG3525A
LT3525A"
SG3527A
LT3527A"
UC3846
UC3847

UC1525A
UC1527A
UC1846
UC1847
UC3524
UC3525A
UC3527A
UC3846
UC3847

·LTC Improved Replacement: 100% Pin-for-pin compatible with better electrical specifications.
""Similar Device: Please consult the data sheet to determine the suitability of the replacement for specific applications.
tConsult factory for guaranteed TC devices.

81-11

NOTES

81·12

In

a:
'II
;:
::;
Q.

ea:

.J

a:
c

SECTion 2-0PERATlonAl
AmPLIFIERS

o

i=

a:

a::

'II
Q.

o

Ell

82-1

INDEX
SECTION 2-0PERATIONAL AMPLIFIERS
INDEX........... ................................ ......... ..............
SELECTION GUIDE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
PROPRIETARY PRODUCTS
LT1001, PrecisionOpAmp .......................................................
LT1002, Precision Dual Op Amp ...................................................
LT1006, Precision, SingleSupplyOpAmp.. . . . . . . . . . . . . . . . . . .. . . . . .. . . . . . . . . . . . . .. . . .
LTto07, Lowest Noise Precision Op Amp. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LT100B, Low Bias Current, Low Noise Op Amp ........................................
LT1010, BufferOpAmp ...... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LT1012, Low Bias Current, Low Offset, LowNoiseOpAmp........................... .....
LTto13, Precision, LowOffsetDualOpAmp ..........................................
LTt014, Precision, Low Offset Quad OpAmp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LT1022, High Speed Precision FET Input Op Amp ......................................
LT1023, DACOutputAmplifier .... ............. ...... ........................ .....
LT1024,Dua1LT10120pAmp ....................................................
LT1028, Ultra-Low Noise, High Speed Op Amp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LTt 037, Low Noise, High Speed Op Amp. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LTC1052, Precision, Chopper Stabilized CMOS OpAmp. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LTt 055, Low Offset and Drift FET Input Op Amp. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LT1056, Low Offset and Drift High Speed FET Input Op Amp. . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LT1 057, Dual JFETInput Precision, High Speed Op Amp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LT1058, Quad, JFET Input Precision, High Speed Op Amp. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LT1078, Micropower, Dual, Single Supply, Precision OpAmp ............................
LT1079, Micropower, Quad, Single Supply, Precision OpAmp ............................
ENHANCED AND SECOND SOURCE PRODUCTS
LF155/355, JFET Input Op Amp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LF155A/355A, JFET Input Op Amp. . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . ..
LF156/356JFETlnputOpAmp, High Speed ..........................................
LF156A/356AJFET Input OpAmp, High Speed. . . . . . . . . . . . . . . . . . . . . . .. . . .. ...........
LF412A, Dual Precision JFET Input Op Amp. . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . ..
LM10/B(L)/C(L), Op Amp and Reference... ......... .................. ... ...........
LH2108A, Dual LM1080pAmp. ....... ... .......................... . ... ...... .....
LM101A/301A, Uncompensated General PurposeOpAmp ...............................
LM 107/307, Compensated General Purpose Op Amp. . . . . . . . . . . . . . . . .
LM 108/308, Super Gain Op Amp ..................... . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LM108A/308A, SuperGainOpAmp ................................................
LM118/318,HighSlewRateOpAmp ...............................................
LT11BA131BA, ImprovedLM11BOpAmp ............................................
LTC7652, Precision, Chopper Stabilized CMOS OpAmp. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
OP-05, OP-05A, OP-05C, OP-05E, Internally Compensated OpAmp . . . . . . . . . . . . . . . . . . . . . . . ..
OP-07, OP-07A, OP-07C, OP-07E, Precision Op Amp. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
OP-15A, OP-15B, OP-15C, OP-15E, OP-15F, OP-15G, Precision, High Speed JFET InputOpAmp ...
OP-16A, OP-16B, OP-16C, OP-16E, OP-16F, OP-16G, Precision, High Speed JFET Input Op Amp ...
OP-27A, OP-27C, OP-27E, OP-27G, Low Noise, Precision Op Amp ............... . . . . . . . . . ..
OP-37A, OP-37C, OP-37E, OP-37G, Low NOise, High Speed Op Amp. . . . . . . . . . . . . . . . . . . . . . . ..
OP-215, Dual Precision JFET Input Op Amp. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
OP-227A, OP-227C, OP-227E, OP-227G, Dual Matched, Low Noise Op Amp. . . . . . . . . . . . . . . . . ..
OP-237A, OP-237C, OP-237E, OP-237G, Dual High Speed, Low Noise Op Amp. . . . . . . . . . . . . . . ..

82-2

S2-2
S2-3
2-7
2-19
S2-9
2-35
2-47
2-59
2-75
2-87
2-87
2-107
10-7
2-115
52-21
2-35
2-123
2-143
2-143
52-37
52-37
510-19
510-19
2-155
2-155
2-155
2-155
52-49
2-159
2-175
2-177
2-177
2-183
2-183
2-191
2-191
2-123
2-199
2-207
2-215
2-215
2-219
2-219
52-49
2-231
2-231

.L7~

~-Y--Llnl!\Q

....A.,

OP AMP SELECTION GUIDE

TECHNOLOGyl----------------

mlLllRRY
Vos
MAX

TC
Vos

~Y}

~VI'CI

SINGLE
LT1001AM
LTi001M
LTlOO6AM
LTlOO6M
LTl007AM
LTl007M
LTlIIII8M
LTlOl0M

15
60
50
60
25
60
120
90mV

0.6
1.0

LT1012M
LTlO22AM
LTl022M
LTlO28AM
LTl028M
LTl037AM
LTl037M
LTl055AM
LTl055M
LTl056AM
LTl056M
LTC1052M
LFI55A
LFI55
LFI56A
LFI56
LM10

PART NUMBER

LM101A
LM107
LM108A
LM108
LMlll
LTlI8A
OP·05A
OP·05
OP~7A
OP~7

Op·15A
OP·15B
OP·15C
OP·16A
OP·16B
OP·16C
OP·27A
OP·27C
OP·37A
OP·37C
DUAL
LT100lAM
LT1002M
LT1013AM
LTlO13M
LTl057AM
LTl057M

I.
MAX
INA)

ELECTRICAL CHARACTERISTICS
SLEW RATE
AvoL
MIN
MIN
(V/mY)
(V/,sl

NOISE
MAXIOH.
InV/,'H"

PACKAGES
AVAILABLE

1.1
0.6
1.0
1.5
0.6mV/·Ct

3.1
15
25
35
55
0.1
150,A

450
400
1000
700
7000
5000
200
0.995

0.15
0.15
0.25
0.25
1.7
1.7
0.1
75

lB
II
24t
24t
4.5
4.5
30
90t

H,JI
H,JI
H,JI
H,JI
H,JI
H,JI
H
H,K

35
250
600

1.5
5.0
9.0

0.1
0.05
0.05

200
150
120

0.1
23
II

30
50
60

H
H
H

40

0.1
1.0
0.6
1.0
4
I
4
I
0.05
5
15
5
15
2t

90
160
35
55
0.05
0.05
0.05
0.05
0.03
0.05
0.10
0.05
0.10
20

7000
5000
7000
5000
150
120
150
120
1000
75
50
75
50
120

11
11
11
11
10
7.5
12
9
3t
5
5
10
9

1.7
1.9
4.5
4.5
50
60
50
60

H,JI
H,JI
H,JI
H,JI
H
H
H
H
H
H
H
H
H
H,JI

15
15
5
15

75
75
2
3
250
250
2
3
2
3
0.05
0.1
0.2
0.5
0.1
0.2
40
60
40
10

25
25
40
25
25
200
300
200
300
200
100
75
50
100
75
50
1000
700
1000
700

0.3
0.3
0.1
0.1
50
50
0.1
0.1
0.1
0.1
10
7.5
5
II
12
9

28t
21t
30t
30t
42t
42t
II
II
II
II
20t20t20t20t20t20t-

1.7

1.7
11
11

5.5
1.0
5.5
1.0

H,JI
H,JI
H
H
H
H,JI
H,JI
H,JI
H,JI
H,JI
H
H
H
H
H
H
H,JI
H,JI
H,JI
H,J8

400

350
1500
1200
150
100

0.15
0.15
0.2
0.2
10
8

20
20
241
24t
75
80

J
J
H,JI
H,JI
H,JI
H,JI

80

25
60
150
400
110
450
5
2000
3500
2000
3500
2000
2000
2000
500
2000
4000
1000
150
500
25
75
500
1000
3000

500
1000
3000

25
100
25
100

1.3

0.9
2.0
0.6
1.3
5

10
15
5
10
15
0.6
1.8
0.6
1.1

~O

0.5,V~p--

25t25t15t15tsot

60
100
150

0.9
1.3

300

~5

450
800

7
12

3.0
4.5
20
30
0.05
0.075

LF41lAM

1Il00

10

0.1

100

10

lOt-

H,JI

LH2108A
LH2108

500
2IlOO

5.0
15.0

2
2

40
25

0.1
0.1

30t
30t

D
D

~O

IMPORTANTFEATURES
Extremely Low Offset Voltage

low Noise, LowOrifl
Single Supply Operation, Fully
Specified/or +5VSupply

Extremely low Noise, Low

Drill
Low Bias Current, low Power

High Speed Buffer, Drives
±10Vinto75D.
low Vas Low Power
I

Ve~ High Speed JFET Inpul
Op Amp wilh Ve~ Good DC

Specs.
Lowest Noise, High Speed,
Low Dri!t

Extremely low Noise, High

Speed
Lowesl Ollsel, JFET Inpul
Cp Amp Combines High
Speed and Precision

Chopper, Stabilized Low Noise

JFET Inputs, low I Bias, No
Phase Aeversal,Guaranleed
TC Vas on all Grades

On·ChipAeferenceOperales
with +1.2VSin leBaUery
Uncompensaled Gen. Purp.
CompensatedGen.Purp.
Low Bias Current, Low
Supply Current

High Speed, 15MHz
High Speed, 15MHz
Low Noise, Low Offset Drift
with Time
Low Initial Offset, Low Noise,
Low Driit
PrecisionJFET Input, Low I
Bias, No Phase Reversal
PrecisionJFETlnput,High
Speed,NoPhaseReversal
Very Low Noise, Unity Gain

Siabl.
Very Low Noise, Stable for
Gains~5

Dual,MalchedLTl001High
CMRR, PSRR Malchlng
Precision Dual OpAmp in
8-PinPackage

Low Olfsel, JFET Inpul
MulUple Op Amps Combine
High Speed and Excellenl DC
Specs
High Periormance Dual JFET
InpulOpAmp
Dual, Low Bias Current, Side
Brazed Package

82-3

OP AMP SELECTION GUIDE
miLITARY
I
PART NUMBER

Vos
MAX
(PY)

TC
Vos
(PVI'C)

I,
MAX
INA)

ELECTRICAL CHARACTERISTICS
SLEW RATE
AVOl
MIN
MIN
(Vlmy)
(VI,,)

I
NOISE
MAX 10Hz
InVI.JHz)

PACKAGES
AVAILABLE

IMPORTANT FEATURES

OUAL
OP·215A

1000

10

0.1

150

10

20t'

H.J8

Op·215C

3000

20

0.2

50

8

20t'

H,J8

High Performance Dual JFET
InpulOpAmp

OP·227A

80

1.0

40

3000

1.7

6

J

Op·227C

180

1.8

80

2000

1.7

9

J

Op·237A

80

1.0

40

3000

10

6

J

OP·237C

180

1.8

80

2000

10

9

J

LT1014AM

180

2.0

20

1500

0.2

24t

J

LT1014M

300

2.5

30

1200

0.2

24t

J

LT1058AM

600

10

0.05

150

10

75

J

Low Ollsel JFET Inpul

LT1058M

1000

15

om

100

8

80

J

Multiple ap Amps Combine

Dual MalchedOP·27
Dual Malched OP·37

QUAD
Precision Quad Cp Amp
in 14·PinPackage

High Speed and Excellenl DC
Specs
t Typical Spec

'100 Hz Noise

"DC 101Hz Noise

commERCIAL
ELECTRICAL CHARACTERISTICS
SLEW RATE
AVOL
MIN
MIN
IVlmY)
lVI,s)

I
NOISE
MAX 10Hz
InVi/Hz)

TC
Vos
(PVI'C)

SINGLE
LT1001AC

25

0.6

2.0

450

0.15

18

H,J8,N8

LT1001C

60

1.0

3.8

400

0.15

H,J8,N8,S8

LT100SAC

50

1.3

15

1000

0.25

18
24t

lT100SC

80

1.8

25

700

0.25

24t

H,J8,N8

LT1007AC

25

0.6

35

7000

1.7

4.5

H,J8,N8

LT1007C

60

1.0

55

5000

1.7

4.5

H,J8, N8

PART NUMBER

82-4

I,
MAX
INA)

Vos
MAX
(PY)

PACKAGES
AVAILABLE

H,J8,N8

IMPORTANT FEATURES
Extremely Low Offset Voltage
Low Noise, Low Drift
Single Supply Operation, Fully
Specified for +5VSupply
Extremely Low Noise, Low
Drift

lT1008C

120

1.5

0.1

200

0.1

Low Bias Current. Low Power

100mV

0.6mVI'Ct

250,A

0.995

75

30
90t

H,N8

LT10l0C

H,K,T

High Speed Bufier. Dri'les
±10Vinto7S0.

L11012C

50

1.5

0.15

200

0.1

30

H,N8

Low Ves, Low Power

L11012S8

120

1.8

0.28

200

0.1

30

58

LT1022AC

250

5.0

0.05

150

23

50

H

LT1022CH

600

9.0

0.05

120

18

60

H

L11022CN8

1000

15.0

0.05

100

18

60

LT1028AC

40

0.8

90

7000

11

1.7

N8
H,J8,N8

LT1028C

80

1.0

180

5000

11

1.9

H,J8, N8

Low Drift

LT1037AC

25

0.6

35

7000

11

4.5

H,J8,N8

LT1037C

60

1.0

55

5000

11

4.5

H,J8,N8

Extremely Low Noise, High
Speed

LT1055AC

150

4

0.05

150

10

50

H

lT1055C

400

8

0.05

120

7.5

60

H

LT1055CN8

700

12

0.05

120

7.5

1500

15

0.1

120

7.5

60
70

N8

111055S8
L11058AC

180

4

0.05

150

12

50

H

LT1056C

450

8

0.05

120

9

60

H

LT1056CN8

800

12

0.05

120

9

60

N8

LT1056S8

1500

15

0.1

120

LTC1052C

5

0.05

0.03

1000

9.0
3t

LTC7652C

5

0.05

0.03

1000

3t

LF355A

2000

5

0.05

75

LF356A

2000

0.05

75

70

High Speed JFET Inpul
Op Amp wilh Very Good DC
Specs

Ve~

lowest Noise, High Speed.

LoweslOffset,JFETlnput
Op Amp Combines High
Speed and Precision

58

58

0.5,Vp·p"

H,N8

5

0.5,Vp·p"
25t'

H,N8
H,N8

10

1St'

H,N8

-

sot

H,J8

sot

H,J8

ChopperStabillzed,LowNoise
JFET Inputs, Low I Bias, No
Phase Reversal

LM10S

2000

5
2t

20

120

LM10SL

2000

2t

20

60

LM10C

4000

5t

30

80

H,J8,N8

4000

5t

30

40

-

50t

LM10CL

sot

H,J8,N8

LM308A

500

5

7

60

0.1

LT318A

1000

250
5{)0

200

50

30t
42t

H,J8,N8

High Speed, 15MHz
High Speed, 15MHz

H,N8

LM318

10000

25

50

42t

H,J8,N8,S8

OP·05C

1300

4.5

7

120

0.1

20

H,J8,N8

OP·05E

500

2.0

4

200

0.1

18

H,J8, N8

On-Chip Reference, Operates
with +1.2V Single Battery

Low Bias, Supply Current

Low Noise, Low Offset Drill
with Time

OP AMP SELECTION GUIDE
commERCIAL
I,
MAX
INA)

ELECTRICAL CHARACTERISTICS
SLEW RATE
AVOL
MIN
MIN
IVlmV)
lVI,s)

Vos
MAX

TC
Vos

~V)

~VI°C)

OP·07C

150

1.8

7

120

OP·07E

75

1.3

4

200

PART NUMBER

NOISE
MAX 10Hz
InVI,jffz)

PACKAGES
AVAILABLE

0.1

20

H,J8, N8,S8

0.1

H,JB,NB

IMPORTANT FEATURES

SINGLE
Low Initial Ollsel, Low Noise,
Low Drill

OP·15E

500

5

0.05

100

10

18
20t-

Op·15F

1000

10

0.1

75

7.5

20t-

H, NB

Op·15G

3000

15

0.2

50

5

20t-

H, NB

OP·16E

500

5

0.05

100

18

20t-

H, NB

Op·16F

1000

10

0.1

75

12

20t-

H, NB

Op·16G

3000

15

0.2

50

9

20t-

H,NB

OP·27E

25

0.6

40

1000

1.7

5.5

H,JB,NB

Op·27G

100

I.B

BO

700

1.7

8.0

H,NB

Very low Noise, Unity Gain
Siable

OP·37E

25

0.6

40

1000

II

5.5

H,JB, NB

Very Low Noise, Siable lor

Op·37G

100

I.B

BO

700

11

B.O

H, NB

LTlO02AC

60

0.9

3.0

400

0.15

20

J,N

LTI002C

100

1.3

4.5

350

0.15

20

J,N

LTI013AC

150

2.0

20

1500

0.2

24t

H,JB

lTI013C

300

2.5

30

1200

0.2

24t

H,JB, NB

H, N8

Precision JFET Inpul, Low I
Bias, No Phase Reversal
Precision JFET Inpul, High
Speed, No Phase Reversal

Gains~5

DUAL

lTI013D

BOO

5.0

30

1200

0.2

24t

NB,SB

LTl057AC

450

7

0.05

150

10

75

H,JB

LT1057ACNB

450

10

0.05

ISO

10

75

NB

LTl057C

BOO
BOO

12

0.075

100

B

16

0.075

100

8

BO
BO

H,JB

LTl057CNB
LF412AC

1000

10

0.1

100

10

20t-

H,JB,NB

OP·215E

1000

10

0.1

150

10

20t-

H,JB,NB

Op·215G

3000

20

0.2

50

8

20t-

H,JB, NB

OP·227E

BO
lBO
BO
lBO

1.0

40

3000

1.7

6

J,N

I.B

BO

2000

1.7

9

J,N

1.0

40

3000

10

6

J,N

I.B

BO

2000

10

9

J,N

LTI014AC

lBO

2.0

20

1500

0.2

24t

J

LTlO14C

300

2.5

30

1200

0.2

24t

J,N

LT1014D

800

5.0

30

1200

0.2

24t

N

LTl05BAC

600

10

0.05

150

10

75

J

LTl05BACN

600

15

0.05

150

10

75

N

lTI05BC

1000

15

0.075

100

8

lTI05BCN

1000

22

0.075

100

8

BO
BO

N

OP·227G
Op·237E
Op·237G

NB

Dual, Malched LTiOOI High
CMRR, PSRR Matching
Precision Dual Op Amp
in8-Pin Package
Low Olfset JFET Inpul
Multiple Op Amps Combine
High Speed and Excellent DC
Specs
High Performance Dual JFET
InpulOpAmp

Dual Malched OP·27
Dual Malched OP·37

QUAD

trypical Spec

-100 Hz Noise

J

Precision Quad Op Amp
in 14·Pin Package
Low Ollsel JFET Inpul
Multiple Op Amps Combine
High Speed and Excellent DC
Specs

- - DC 10 1Hz Noise

82-5

OP AMP SELECTION GUIDE
SELECTion BY DESIGn PARAmETER

=

Max Input Offset Voltage (TA 25°C)
<1S~V

<2S~V

<7S~V

LT1001AM
LTC7652
LTC1052

LT1001AC
LT1007A
LT1037A
OP·07A
OP·27A
OP·27E
OP·37A
OP·37E

LT1001
LT1002A
LT1006A
LT1007
LT1012
LT1012S8
LT1037
OP·07E
OP·07

<1S0~V

LT1002
LT1006
LT1008
LT1012S8
LT1013A
LT1028
LT1055AM
LT1055AC
OP·05A
OP·07C, D
OP·27C
OP·37C
Op·227A, E
Op·237A, E

s1mV
LT1013
LT1014
LT1014A
LT1022 ALL
LT1055C
LT1055M
LT1056AM
LT1056AC
LT1056M
LT1056C
LT1057 ALL
LT1058 ALL
LF412A
LH2108A
LM108A
LM308A
OP·05
OP·05E
Op·15A, E
Op·15B, F
Op·16A, E
Op·16B, F
Op·215A, E

200nA
LT118A
LT318A
LM301A
LM307
LM118
LM318

OP AMP SELECTION GUIDE
SELECTion BY DESIGn PAAAmETEA
Typ Equivalent Input Noise Voltage
per $z, f = 10Hz, Rs= lOOn
:;lnV/,JHZ
LT1028 ALL

:;5nV,JHZ
LTl007 ALL
LTl037 ALL

Typ Slew Rate
:;25nV/-JHz
LT1001 ALL
LT1002ALL
LT1006ALL
LT1008
LT1012
LT1013ALL
LTl014 ALL
LTl022 ALL
LTC1052
*LTl055 ALL
*LTl056 ALL
LTC7652
*LF155 ALL
*LF355 ALL
*LF156ALL
OP-05ALL
OP-07 ALL
*OP-15ALL
*OP-16ALL
OP-27 ALL
OP-37 ALL
OP-227 ALL
OP-237 ALL

:;1V/~s

~2V/~

LT1001 ALL
LT1002ALL
LT1006ALL
LT1OO8
LT1012
LTlO13ALL
LT1014ALL
LH2108 ALL
OP-05
OP-07
LM101AJ301A
LM107/307
LM108/308
LM 108AJ308A

LT1007 ALL
LT1056M
LT1056C
LT1057
LT1058
OP-27 ALL
OP-15ALL
OP-10C, G
OP-215B, C, F, G
OP-227 ALL
LF155ALL
LF355 ALL
LF156ALL
LF356 ALL

~10V/~s

LT1022 ALL
LT1028 ALL
LT1037 ALL
LTl055 ALL
LT1056A
OP-37 ALL
OP-16A, B
OP-16E, F
OP-237 ALL
LF412A
OP-215A, E
LT1057A
LT1058A

~50V/~s

LTl18AJ318A
LMl18/318
LT1010

*100HzNoise

Gain

Packages

:v

>151..
- mV

V
~50 mV

~200

LM301A
LM307
LM308
LM318

LTl022 ALL
LT1055 ALL
LTl056 ALL
LM101A
LM107
LM108
LMl18
LM10

LTlOO1
LTlO02
LT1006
LT1008
LT1012
LTl18A
LT318A
OP-05
OP-07

[]
WW
08
HERMETIC
DIP
BLEAD

~1000

:v

LT1006A
LT1007
LT1013
LTlO14
LTlO28
LTlO37
OP-27
OP-37
OP-227
OP-237
LTC1052
LTC7652

€CD 0
wmw

~

0
HERMETIC
DIP
14 LEAD
16 LEAD
18 LEAD

S8
PLASTIC
SO
BLEAD

l@)
\':.o~/

W
morn
H
TO-5
BLEAD
10 LEAD

c:J

~

a

WW

J8
HERMETIC
DIP
BLEAD

0

mmr
J
HERMETIC
DIP
14 LEAD
16 LEAD
18 LEAD

0 0
WW

N8
PLASTIC
DIP
8 LEAD

mmr
N
PLASTIC
DIP
14 LEAD
16 LEAD
18 LEAD

0

~DDDIJDDDD

S
PLASTIC
SO
14LEAD
16 LEAD

S
PLASTIC
SOL
16 LEAD
18 LEAD
20 LEAD

82-7

NOTES

82-8

~7UO~~---p-re-C-iS-io-n-,S-i-ng-I-e-~-~p-OP_OI_~
OpAmp
FEATURES

DESCRIPTion

• Single Supply Operation
Input Voltage Range Extends to Ground
Output Swings to Ground while Sinking Current
• Guaranteed Offset Voltage
50p.V Max.
• Guaranteed Low Drift
1.3p.V/oC Max.
• Guaranteed Offset Current
0.5nA Max.
• Guaranteed High Gain
5mA Load Current
1.5 Million Min.
17mA Load Current
0.8 Million Min.
• Guaranteed Low Supply Current
520p.A Max.
• Supply Current can be Reduced by a Factor of 4
• Low Voltage Noise, 0.1 Hz to 10Hz
0.55p.Vp·p
Low Current Noise0.07pA/~at 10Hz
Better than OP·07
250MnMin.
• High Input Impedance
2.7V Min.
• Guaranteed Minimum Supply Voltage

The LT1006 is the first precision single supply operational
amplifier. Its design has been optimized for single supply
operation with a full set of specifications at 5V. Specifica·
tions at ± 15V are also provided.
The LT1006 has low offset voltage of 20p.V, drift of
0.2p.V/oC, offset current of 120pA, gain of 2.5 million, com·
mon·mode rejection of 114dB, and power supply rejection
of 126dB.
Although supply current is only 340p.A, a novel output stage
can source or sink in excess of 20mA while retaining high
voltage gain. Common·mode input range includes ground to
accommodate low ground·referenced inputs from strain
gauges or thermocouples, and output can swing to within a
few millivolts of ground. If higher slew rate (in excess of
1V/p.s) or micropower operation (supply current down to
90p.A) is required, the operating currents can be modified by
connecting an external optional resistor to Pin 8.

APPLICATions
• Low Power Sample and Hold Circuits
• Battery Powered Precision Instrumentation
Strain Gauge Signal Conditioners
Thermocouple Amplifiers
• 4mA-20mA Current Loop Transmitters
• Active Filters

For similar single supply precision dual and quad op amps,
please see the LT1013/LT1014 data sheet.

Distribution of Input Offset Voltage

LT100S Single Supply, Micropower Sample and Hold
+9V

20

V,CD4066

360k

r--

V5=5V. OV
- l -t TA=25"C
16 l - t - t- 350 LT1 006s TESTED_ l - t FROM TWO RUNS
14 f - t---- t- J AND N PACKAGES - f - t -

18 f - t---360k

3900

_

12

0'""

10

In

II 1I, rhlr

~

U IjJ

IjJ

I

,

J
OUTPUT

....
-w

INPUT
0-5V

_':1
-~

0

~

W

INPUT OFFSET VOLTAGE I_V)

1f2CD4066

SAMPLE-HOLD COMMAND
HIGH=SAMPLE~-----'

LOW=HOLO

ACQUISITION TIME
HOLD SETTLING TIME
SoH OFFSET
HOLD SUPPLY CURRENT
SAMPLE SUPPLY CURRENT
1kHz SAMPLE RATE CURRENT

20,..
10,..
1mV
250~

5.0mA
800~

82-9

LT1006
ABSOLUTE mAXimum RATinGS

PACKAGE/ORDER InFORmATion
TOP VIEW
ISySET
(NOTE 2)

Supply Voltage ................................... ± 22V
Input Voltage ........... Equal to Positive Supply Voltage
......... 5V Below Negative Supply Voltage
Differential Input Voltage ............................ 30V
Output Short Circuit Duration .................. Indefinite
Operating Temperature Range
LT1006AM, M ........................ - 55°C to 125°C
LT1006AC, C ............................. O°C to 70°C
Storage Temperature Range
All Devices .......................... - 65°C to 150°C
Lead Temperature (Soldering, 10 sec) .............. 300°C

ORDER PART
NUMBER
LT1006AMH
LT1006MH
LT1006ACH
LT1006CH

V(CASE)
HB PACKAGE TO-5 METAL CAN
TOP VIEW

LT1006AMJ8
LT1006MJ8
LT1006ACJ8
LT1006CJ8
LT1006CN8

6 OUT
1--_~

JB PACKAGE
HERMETIC DIP

5

~~rM (NOTE 4)

NB PACKAGE
PLASTIC DIP

ELECTRICAL CHARACTERISTICS Vs=5V, VCM=OV, VOUT=1.4V, TA=25°C,unlessotherwisenoted.
PARAMETER

Vos
/l,Vos
/l,Time

Input Offset Voltage
Long Term Input Offset
Voltage Stability

20
0.4

50

los
18
en

Input Offset Current
Input Bias Current
Input Noise Voltage
Input Noise Voltage Density

0.12
9
0.55
23
22
0.07

0.5
15

in

CMRR
PSRR
AVOL

Input Noise Current Density

Is

(Note 1)

Common·Mode Rejection
Ratio
Power Supply Rejection
Ratio
Large Signal Voltage Gain

Slew Rate
Supply Current

Minimum Supply Voltage

82-10

MIN

O.lHzto 10Hz
10 = 10Hz (Note 3)
10 = 1000Hz (Note 3)
10= 10Hz

Input Resistance
Differential Mode
Common·Mode
Input Voltage Range

Maximum Output Voltage
Swing

SR

CONDITIONS

LT1006AM/AC
TYP
MAX

SYMBOL

lBO

0.15
10
0.55
23
22
O.OB

0.9
25

nA
nA

32
25

nVl0iz
nVl0iz
pA/v'Hz

~V/Mo

~Vp·p

126

103

124

dB

2.5
2.0
15
5
220
4.4
4.0
0.4
340
90

0.7
0.3

2.0
l.B
15
5
220
4.4
4.0
0.4
350
90

V/~V
V/~V

Vs= ±2Vto ±lBV, Vo=OV

106

Vo = 0.03V to 4V, RL = 10k
Vo = 0.03V to 3.5V, RL = 2k
Output Low, No Load
Output Low, 6001l toGND
Output Low, ISINK = lmA
Output High, No Load
Output High, 6001l to GND

1.0
0.5

2.7

~V

BO

3.5
0
97

VCM =OV t03.5V

100

UNITS

30
0.5

Mil
Gil
V
V
dB

3.5
0
100

Rser= '"
RSET = lBOk PinBto Pin 7
(Note 2)

32
25

LT1006M/C
TYP
MAX

300
4
3.B
-0.3
112

400
5
3.B
-0.3
114

4.0
3.4
0.25

MIN

25
10
350
4.0
3.4
0.25
520

2.7

25
10
350

mV
mV
mV
V
V
V/~s

570

~A
~A

V

LT1006

ELECTRICAL CHARACTERISTICS
Vs =5V, OV, VCM =O.1V, Vo =1.4V, - 55°C :5TA:5125°C, unless otherwise noted.
SYMBOL
Vos
6Vos
6Temp
los
Is
AVOL
CMRR
PSRR

Is

PARAMETER
Input Offset Voltage
Input Offset Voltage Drift
Input Offset Current
Input Bias Current
Large Signal Voltage Gain
Common·Mode Rejection
Ratio
Power Supply Rejection
Ratio
Maximum Output Voltage
Swing
Supply Current

CONDITIONS

MIN

•
•
•
•
•
•
•
•
•
•

Vo = 0.05V to 3.5V, RL = 2k
VCM = 0.1V to 3.2V
Vs= ±2Vto ±18V, Vo=OV
Output Low, 600n to GND
Output High, 600n to GND

LT1006AM
TYP MAX
40
180
0.2
1.3

0.25
90

0.4
13
0.8
103

100

117

3.2

6
3.8
380

MIN

2.0
25

LT1006M
TYP MAX
60
250
0.3
1.8

~V
~VloC

0.15
87

0.5
16
0.7
102

97

116
6
3.8
400

18

3.1

mV
V

680

~A

LT1006C
TYP
45
50
0.3
0.5

MAX
160
190
1.8
2.5

15
630

4.0
40

UNITS

nA
nA
V/~V

dB
dB

ELECTRICAL CHAAACTERISTICS
=
=OV, Vo =1.4V, O°C :5TA :570 oC, unless otherwise noted.

Vs 5V, OV, VCM

SYMBOL
Vos

PARAMETER
Input Offset Voltage

LT1006N8

6Vos
6Temp

Input Offset Voltage Drift

los
Is
AVOL
CMRR

Input Offset Current
Input Bias Current
Large Signal Voltage Gain
Common·Mode Rejection
Ratio
Power Supply Rejection
Ratio
Maximum Output Voltage
Swing
Supply Current

PSRR

Is

MIN

CONDITIONS

LT1006N8

Vo=0.04Vt03.5V, RL=2k
VCM = OV to 3.4V
Vs= ±2Vto ±18V, Vo=OV
Output Low, 600n to GND
Output High, 600nto GND

The. denotes the specifications which apply over the full operating tem·
perature range.
Note1: This parameter Is guaranteed by design and is not tested.
Note 2: Regular operation does not require an external resistor. In order to
program the supply current for low power or high speed operation, connect
an external resistor from Pin 8to Pin 7or from Pin 8 to Pin 4, respectively.
Supply current specifications (for RSET= 180k) do not Include current in
RSET.

•
•
•
•
•
•
•
••
•

LT1006AC
TYP MAX
30
110
0.2

0.35
96

0.25
11
1.3
109

101

120

3.3

6
3.9
350

MIN

1.3
1.2
20
0.25
92

0.3
12
1.2
108

97

118

3.2

6
3.9
360

13
570

2.5
30

UNITS
~V
~V
~VloC
~VloC

nA
nA
V/~V

dB
dB
13

mV
V

620

~A

Note 3: This parameter Is tested on asample basis only. All noise parame·
ters are tested with Vs = ± 2.5V, Vo = OV.
Note 4: Optional offset nulling Is accomplished with a potentiometer con·
nected between the trim terminals and the wiper to V-. A 10k pot (providing
a null range of ± 6mV) Is recommended for minimum drift of nulled offset
voltage with temperature. For increased trim resolution and accuracy, two
fixed resistors can be used in conjunction with a smaller potentiometer.
For example: two 4.7k resistors tied to pins 1 and 5, with a 500n pot in the
middle, will have a null range of ± 150~V.

82-11

LT1006

ELECTRICAL CHARACTERISTICS Vs= ±15V,TA=25°C, unless otherwise noted.
SYMBOL

PARAMETER
Input Offset Voltage
Input Offset Current
Input Bias Current
Input Voltage Range

CONDITIONS

AVOL

Common·Mode Rejection Ratio
Power Supply Rejection Ratio
Large Signal Voltage Gain

VOUT
SR

Maximum Output Voltage Swing
Slew Rate

VCM = +13.5V. -15V
Vs= ±2Vto ±lBV, Vo=OV
Vo= ± 10V, RL =2k
Vo = ± 10V, RL = 6000
RL=2k
RSET = co
RSET =390D Pin Bto Pin 4

Is

Supply Current

Vos
los
Ie

CMRR
PSRR

LT1006AM/AC
MIN
TYP
MAX
30
100
0.1
0.5
7.5
12.0
13.5
13.B
-15.0 -15.3
100
117
106
126
1.5
5.0
O.B
1.5
±13
±14
0.25
0.4
1.0
1.2
540
360

LT1006M/C
TYP
50
0.15
B.O
13.5
13.B
-15.0 -15.3
116
97
103
124
1.2
4.0
0.5
1.0
±12.5 ±14
0.25
0.4
1.0
1.2
360
MIN

MAX
lBO
0.9
20.0

UNITS
~V

nA
nA
V
V
dB
dB
V/~V
V/~V

V
V/~s
V/~s

600

~A

ELECTRICAL CHARACTERISTICS Vs= ±15V, -55°C STAS125°C, unless otherwise noted.
SYMBOL
Vos
/:;Vos
/:;Temp
los
Ie
AVOL
CMRR
PSRR
Is

PARAMETER.
Input Offset Voltage
Input Offset Voltage Drift
Input Offset Current
Input Bias Current
Large Signal Voltage Gain
Common·Mode Rejection Ratio
Power Supply Rejection Ratio
Maximum Output Voltage Swing
Supply Current

CONDITIONS

Vo= ±10V,RL=2k
VCM = +13V, -14.9V
Vs= ±2Vto ± 18V, Vo=OV
RL=2k

MIN

•

•
•
•
•
•
•

•
•

0.5
97
100
±12

LT1006AM
TYP
MAX
BO
320
0.5
2.2
0.2
9
1.5
114
117
±13.8
400

MIN

2.0
lB
0.25
94
97
±11.5
650

LT1006M
TYP
110
0.6
0.3
11
1.0
113
116
±13.B
400

MAX
460
2.B
3.0
27

UNITS
~V
~VfOC

nA
nA
VI~V

dB
dB
V
750

~

ELECTRICAL CHARACTERISTICS Vs= ±15V,O°C sTAs7QOC,unlessotherwisenoted.
SYMBOL
Vos

PARAMETER
Input Offset Voltage

CONDITIONS
LT1006N8

/:;Vos
/:;Temp

Input Offset Voltage Drift

los
Ie
AVOL
CMRR
PSRR

Input Offset Current
Input Bias Current
Large Signal Voltage Gain
Common·Mode Rejection Ratio
Power Supply Rejection Ratio
Maximum Output Voltage Swing
Supply Current

Is

82-12

LT1006N8

Vo= ±10V,RL=2k
VCM = 13V, -15V
Vs= ±2Vto ±18V, Vo=OV
RL=2k

MIN

•
•
•
•
•
•
•
•
•

1.0
98
101
±12.5

LT1006AC
TYP
50

MAX
200

0.5

2.2

0.15
8.0
3.0
116
120
±13.9
370

1.0
15

MIN

0.7
94
97
±11.5
600

LT1006C
TYP
75
BO
0.6
0.7
0.25
10
2.5
114
118
±13.B
380

MAX
300
330
2.B
3.5
2.0
23

UNITS
~V
~V
~V/oC
~V/oC

nA
nA
V/~V

dB
dB
V
660

~

LT1006
TYPICAL PERFORmAnCE CHARACTERISTICS
Offset Voltage Drift with
Temperature of Representative
Units

Offset Voltage vs Balanced
Source Resistor

VSI;5V, bv
VCM =0.1V

120

---...
-

90

~ 60
~

30

0

>

500

10

150

i:!
c5

f--

r-.

t:u-30

r-.

f2

~-60

........

---..:::

-90

FEv s=5V,OV, -55'C TO
~
w
«
'"

~

>

~

00

~

0

~

~

100

T
1k

1~

Vs=5V: OV, 25'C

I

@T

125'ci

Voltage Gain vs Load Resistance
with Vs= ± 15V

z

1.0

00

z
w

0.5

o

'"w'"'

(
I
o

TA

-t~J 11~5'C

:;~

~

1.4

10M

;::;:; 1.5

'"~

.1

0
0.4
O.B
1.0
COMMON-MODE INPUT VOLTAGE (V)

TA;25'C

~

25'C

@NEGATIVE Vos
-300
-0.4

3k 10k 30k 100k 300k 1M 3M 10M
BALANCED SOURCE RESISTANCE, Rs (0)

10M

Vs=~V, OV

25'C f-:;; @T

i I I(DPOSITIVE Vos

-200

Voltage Gain vs Load Resistance,
Vs=5V,OV

Warm-Up Drift
2.0

(DT

-100

TEMPERATURE ('C)

'":I€

tt a
00

0.01
-~

(DT=125'C

t:u

....,.. 'f-::::: Vs= ±15V, 25'C

-~

300

a
100
>

/

'

~

-150

:c
'-'

~

;:;:; 200

~

,

-55'C TO 125'C'-...l4

0.1

>-

400

II

W

+

f-- Vs=±15V,

VS=5V,OV

125'C~

c~

~ Rs
r1=, ,

1.0

-120

ttt:u

Vos vs Common-Mode Voltage vs
Temperature

~

1M

/

'l'

L

rUm

/'" ~

TAiT c
TA

~

25'C/

125'C

00

>

LT1006 METAL CAN (H) PACKAGE
LT1 006 CERDIP (J) PACKAGE
100k
100

1
2
3
TIME AFTER POWER ON (MIN)

VII

VI

100k

1k
LOAD RESISTANCE TO GROUND (0)

10k

100

0.5

~cM=dv

1k
LOAD RESISTANCE TO GROUND (0)

10k

Input Bias Current vs CommonMode Voltage

Input Offset Current vs
Temperature

Input Bias Current vs Temperature
1B

I

15 ~

~

VCM=OV

6
~

15

10

4

~

r--- _

Vs=5V, OV

r--

Vs-±15V

--

V

o

25
50
75
TEMPERATURE ('C)

r-

100

--- Vs=5V,OV

.............

-r

~s=±15V

o
-50 -25

>

125

o

-50 -25

'l'

~

~

25
50
75
TEMPERATURE ('C)

100

o

2

>-

>-

w

co

~

w

co

00

00

'"~
'"'"
'-'
125

~

'"z

~

-

~

'"z

00

o

~

u.i

V

~

~

II

>

VS=5V, OV, T=125'C

a
Vs
-1

I

o

±15vl'-.
Vs=5V, OV, T=25'C
T =25' C

-6

-12
-1B
INPUT BIAS CURRENT (nA)

10 '"
~
'"'"
15 '-'
00

-24

82-13

LT1006
TYPICAL PERFORmAnCE CHARACTERISTICS
10Hz Voltage Noise Distribution

Noise Spectrum

100 ,---,-,.---,-,.---,-,.---,---,

~

~

1000

60~~-~-H~~~~r--r~

'"

o"-

ffi

~
::>
z

40~~-~-H~~~-~~~

["-,.

o '-:-..L-....IW1llil
16

CURRENT NOISE

VOLTAGE NOISE

,(. ,1J:I::I'HIl

~-r-f--

20

32

20
24
28
VOLTAGE NOISE DENSITY (nVNHZ)

I/fnlrlll1i

10

~

~ 400

Vs-±15Y

~

::>

'-'

./

350

./

::>

300

10
Vs ±15V
OR Vs 5V, OV

SR

!

~

Increasing Slew Rate (RSET to V-)
10

Vs 5V,OV

450

=
&l
Ul 60

I

ISINK ImA

F=:j:;;::-T-i-i---'

~IOO~--r-~~-~--+-~

~A=1251'd

0

~::>

120

VS=5V,OV
TA'';''1'2'5'C
l"IILlJ

ISI~K 10~A

'"z

Common·Mode Rejection Ratio
vs Frequency

Maximum Output Swing vs Load
Resistor

40

0

::;
::;

100

125

o
0.01

0.1
I
LOAD RESISTOR (kll)

10

20
0
10

100

Ik
10k
FREQUENCY (Hz)

lOOk

1M

LT1006
TYPICAL PERFORmAnCE CHARACTERISTICS
Voltage Gain vs Frequency
140

.... b,

120
100

~

80

''""

60

z

w

'"~
0

,

TA=25°C
Cl = 10pF

\,
VS=5V.~ ~=±15V

r- -

40

20

~

20

1

::::::: .....

GAIN" ~15V

I--

-

r\.

-20
0.01 0.1

II

"\ ~

~

>

Power Supply Rejection Ratio vs
Frequency

Gain, Phase vs Frequency

~

fil

±15V

0.1

Large Transient Response,
Vs=5V,OV

4V

4V

2V

2V

OV

OV

0.3

140

~~
5V

120

~
e.

160 ~

.~\ \

'"



............

1
FREQUENCY (MHz)

==--.,...--,"'""'--r--,-----.---,

100
120 _

~

-10

10 100 1k 10k 100k 1M 10M
FREQUENCY (Hz)

10pS/DIV
Av=1
Rl=4.7k TO 5V
INPUT =OV TO 3.8V

5V.~

~LE
I'-...

80

TA=2 5°C
VCM=OV
Cl=1 OpF

20
0
0.1

10

100
1k
10k
FREQUENCY (Hz)

100k

Large Signal Transient Response,
Vs=5V,OV

Large Signal Transient Response,
Vs= ±15V

10pS/DIV
AV=1
Rl =4.7k TO GROUND
INPUT =OV TO 3.8V

AV=1

1M

50pS/DIV

Small Signal Transient Response,
Vs=5V,OV

Small Signal Transient Response,
Vee = ± 2.5V to ± 15V

20pS/DIV
AV=1
Cl =10pF
Rl =6000 TO GND
INPUT =OV TO 100mV. PULSE

AV=1
Cl = 10pF

100mV

OV

2pS/DIV

82-15

LT1006
APPLICATions InFoRmATion
The LT1006 is fully specified for single supply operation,
i.e., when the negative supply is OV. Input common· mode
range includes ground; the output swings within a few
millivolts of ground. Single supply operation, however, can
create special difficulties, both at the input and at the out·
put. The LT1006 has specific circuitry which addresses
these problems.
At the input, the driving Signal can fall below OV-inadver·
tently or on a transient basis. If the input is more than a
few hundred millivolts below ground, two distinct prob·
lems can occur on previous single supply designs, such as
the LM124, LM158, OP·20, OP·21, OP·220, OP·221, OP·420:
a) When the input is more than a diode drop below
ground, unlimited current will flow from the substrate (Vterminal) to the input. This can destroy the unit. On the
LT1006, the 4000 reSistors, in series with the input (see
schematic diagram), protect the devices even when the in·
put is 5V below ground.
b) When the input is more than 400mV below ground (at
25°C), the input stage saturates (transistors 03 and 04)

and phase reversal occurs at the output. This can cause
lock·up in servo systems. Due to a unique phase reversal
protection circuitry (021,022, Q27, 028), the LT1006's out·
put does not reverse, as illustrated below, even when the
inputs are at -1.5V.
At the output, the aforementioned single supply designs
either cannot swing to within 600mV of ground (OP·20) or
cannot sink more than a few microamperes while swing·
ing to ground (LM124, LM158). The LT1006's all·NPN out·
put stage maintains its low output resistance and high
gain characteristics until the output is saturated.
In dual supply operations, the output stage is crossover
distortion·free.
Since the output cannot go exactly to ground, but can only
approach ground to within a few millivolts, care should be
exercised to ensure that the output is not saturated. For
example, a 1mV input Signal will cause the amplifier to set
up in its linear region in the gain 100 configuration shown
below, but is not enough to make the amplifier function
properly in the voltage follower mode.

Voltage Follower with Input Exceeding the Negative Common· Mode Range (Vs = 5V, OV)
4V

4V

4V

2V

2V

2V

OV

OV

OV

6Vp-p INPUT, -1.5V TO 4.5V

LT1006
NO PHASE REVERSAL

LM324, LM358, OP-20, OP-21
EXH IBIT OUTPUT PHASE
REVERSAL

Gain 100 Amplifier

Voltage Follower

99R

OUTPUT
~"-SATURATED

z5mV
600n

82·16

LT1006
APPLICATions InFoRmATion
In automated production testing the output is forced to
1.4V by the test loop; offset voltage is measured with a
common-mode voltage of zero and the negative supply at
zero (Pin 4). Without the test loop, these exact conditions
cannot be achieved. The test circuit shown ensures that
the output will never saturate even with worst-case offset
voltages (- 250J!V over the - 55°C to 125°C range). The
effective common-mode input is O.3V with respect to the
negative supply. As indicated by the common-mode rejection specifications the difference is only a few microvolts
between the two methods of offset voltage measurement.

Low Supply Operation
The minimum guaranteed supply voltage for proper operation of the LT1006 is 2.7V. Typical supply current at
this voltage is 320J!A, therefore power dissipation is only
860J!W.
Noise Testing
For application information on noise testing and calculations, please see the LT1007 or LT1028 data sheet.
Supply Current Programming

Test Circuit lor Offset Voltage and
Offset Drift with Temperature
50k*

4.7V

100(l*

va

50k*

-0.3V
":'

*RESISTORS MUST HAVE LOW
THERMOELECTRIC POTENTIAL.
"THIS CIRCUIT IS ALSO USED AS THE BURN-IN
CONFIGURATION. WITH SUPPLY VOLTAGES
INCREASED TO ± 20V.
Vo=1000Vos

Connecting an optional external resistor to Pin 8 changes
the biasing of the LT1006 in order to increase its speed or
to decrease its power consumption. If higher slew rate is
required, connect the external resistor from Pin 8 to Pin 4
[see performance curves for Increasing Slew Rate (RSET to
V-)]. For lower power consumption, inject a current into
Pin 8 (which is approximately 60mV above V-) as shown
on the Reducing Power Dissipation plot. This can be accomplished by connecting RSET to the positive supply, or
to save additional power, by obtaining the injected current
from alow voltage battery.
Comparator Applications
The single supply operation of the LT1006 and its ability to
swing close to ground while sinking current lends itself to
use as a preCision comparator with TTL compatible
output.

Comparator Rise Response Time
to 10mV, 5mV, 2mV Overdrives
~
f-::J

~

4

f-::J

c..

f-::J

Comparator Fall Response Time
to 10mV, 5mV, 2mV Overdrives
4

c..

f-::J

2

a

2

:;-

i

0

f-::J

;::- 100

~

~

a

.s

::J

c..

c..

-100
VS=5V.OV

50iLS/DIV

o
VS=5V.OV

50iLS/DIV

82-17

LT1006
TYPICAL APPLICATions
Platinum RTD Signal Conditioner with Curvature Correction

Voltage Controlled Current Source with Ground
Referred Input and Output
+5V

1,=100".4

j

1N457

12k"

+5V

r--d:r--,

10k"
50k
5'C
TRIM

1k"

1k""

Rp
1k@
O'C

Rp=ROSEMOUNT 118MF

··=TRW MAR·6 0.1%
* =1% METAL FILM

OPERATES FROM A SINGLE 5V SUPPLY

Micropower 1MHz V- FConverter

REFERENCE

1000pF (POLYSTYRENE)

-<

REFERENCE
SWITCH

=2N3904
= 1% METAL FILM

=1% METAL FILM, SELECTED
{>o-=74C14

S2-18

CHARGE PUMP

0.12% LINEARITY
280".4 QUIESCENT CURRENT
680".4 AT 1MHz

LT1006
TYPICAL APPLICATions
Micropower Thermocouple Signal Conditioner with Cold Junction Compensation
4,5V
(3M CEllS)

lOOk

CATALYST
RESEARCH CORP. _
MODEL2736-

2.8V

R4
233k"

LTl034
1.2V
R2
186"

Rl
1684"

R3
AT

OVTO 3V OUT=

aOC-60oe
:l:O.75°C
5.76M"

1.8k"

TYPEJ THERMOCOUPLE

TOTAL POWER CONSUMPTION s500/lW
TRW MAR-6 0.1 '%
RT=YELLOW SPRINGS INST CO
MODEL440075k@25°C

•=

S.98kO

Linear Thermometer
5V
5V

10k5%

OV-l.000V=
O°C-l0D.aoC±O.25"C

LT1004
1.235V

T1

=YELLOW SPRINGS

#44201.

All RESISTORS=TRW MAA·6 0,1% UNLESS NOTED

± 5V Precision Instrumentation Amplifier

Your
DIFFERENTIAL
INPUT

CMRR> 120dB AT DC
CMRR> 120dB AT 60Hz
DUAL SUPPLY OR SINGLE 5V
GAIN=1+R2IRl

Vos= 150pV

~~~s

=21

0.1

0,1

10
FREOUENCY (Hz)

100

1000

82-21

LT1028
ABSOLUTE mAXimum RATinGS

PACKAGE/ORDER InFORmATion

Supply Voltage
- Ssoc to 10SoC .................................. ± 22V
10SoC to 12SoC ................................. ± 16V
Differential Input Current (Note 8) ................ ± 2SmA
Input Voltage .................... Equal to Supply Voltage
Output Short Circuit Duration ................. .Indefinite
Operating Temperature Range
LT1028AM, M......................... -SSOCto 125°C
LT1 028AC, C..............................0oC to ?OoC
Storage Temperature Range
All Devices ........................... - 6SoC to 1S0oC
Lead Temperature (Soldering, 10 sec.) .............. 300°C

ORDER PART NUMBER

TOP VIEW

LT1028AMH
LT1028MH
LT1028ACH
LT1028CH
V(CASE)
HB PACKAGE TO-5 METAL CAN

LT1028AMJ8
LT1028MJ8
LT1028ACJ8
LT1028CJ8
LT1028ACN8
LT1028CN8

JB PACKAGE HERMETIC DIP
NB PACKAGE PLASTIC DIP

ELECTRICAL CHARACTERISTICS Vs= :t15V, TA=25°C, unless otherwise noted.
SYMBOL
Vas
AVos
ATlme
los
Ie
en

PARAMETER
Input Offset Voltage
Long Term Input Offset
Voltage Stability
Input Offset Current
Input Bias Current
Input Noise Voltage
Input Noise Voltage Density

In

Input Noise Current Density

CMRR
PSRR
AVOL
VOUT
SR
GBW

Zo
Is

82-22

Input Resistance
Common·Mode
Differential Mode
Input Capacitance
Input Voltage Range
Common· Mode Rejection
Ratio
Power Supply Rejection
Ratio
Large Signal Voltage Gain

Maximum Output Voltage
Swing
Slew Rate
Gain·Bandwldth Product
Open Loop Output Impedance
Supply Current

CONDITIONS
(Note 1)
(Note 2)

LT1028AM/AC
MIN
TYP
MAX
10
40
0.3

VCM=OV
VCM=OV
O.IHz to 10Hz(Note 3)
fo = 10Hz (Note 4)
fo = 1000Hz, 100% tested
fo= 10Hz(Notes3 and 5)
fo = 1000Hz, 100% tested

12
±25
35
1.0
0.S5
4.7
1.0

VCM=±IIV

±11.0
114

300
20
5
±12.2
126

117
7.0
5.0
3.0
±12.3
±11.0
11
50

Vs= ±4Vto ±ISV
RL0!:2kO, Vo= ±12V
RLO!:lkO, Vo= ±10V
RL O!: 6000, Vo = ± 10V
RL0!:2kll
RL O!: 6000
AVCL= -1
fo = 20kHz (Note 6)
Vo=O,lo=O

MIN

50
±90
75
1.7
1.1
10.0
1.6

LT1028M/C
TYP
MAX
20
SO
0.3
lS
±30
35
1.0
0.9
4.7
1.0

100
±IS0
90
1.9
1.2
12.0
1.S

UNITS
~V
~V/Mo

nA
nA
nVp·p
nV/v'Hz
nV/v'Hz
pAlv'Hz
pAlYHz

±11.0
110

300
20
5
±12.2
126

MO
kO
pF
V
dB

133

110

132

dB

30.0
20.0
15.0
±13.0
±12.2
15
75
SO
7.4

5.0
3.5
2.0
±12.0
±10.5
11
50

30.0
20.0
15.0
±13.0
±12.2
15
75
SO
7.6

9.5

V/~V
V/~V
V/~V

V
V
V/~s

10.5

MHz
0
rnA

LT1028
ELECTRICAL CHARACTERISTICS Vs = ± 15V, - 55°C!>TA!>125°C, unless otherwise noted.
SYMBOL
Vos
IlVos
ATemp
los
IB
CMRR
PSRR
AVOL
Your
Is

PARAMETER
Input Offset Voltage
Average Input
Offset Drift

CONDITIONS
(Note 1)
(Note 7)

Input Offset Current
Input Bias Current
Input Voltage Range
Common·Mode Rejection
Ratio
Power Supply Rejection
Ratio
Large Signal Voltage Gain

VCM=OV
VCM=OV

Maximum Output Voltage
Swing
Supply Current

VCM = ± 10.3V
Vs= ±4.5Vto ±16V
RL,,2k!l, Vo = ± 10V
RL"lk!l, Vo= ±10V
RL,,2kn

MIN

•
•
•

•
•
•
•
•
•
•

Ln028AM
TYP
30
0.2

±10.3
106

25
±40
± 11.7
122

110
3.0
2.0
±10.3

MAX
120
0.8

MIN

MAX
180
1.0

~V
~V/oC

±10.3
100

130

104

130

dB

14.0
10.0
± 11.6

2.0
1.5
±10.3

14.0
10.0
±11.6

V/~V
V/~V

11.5

9.0

180
±300

UNITS

30
±50
± 11.7
120

8.7

90
±150

LT1028M
TYP
45
0.25

nA
nA
V
dB

V
13.0

mA

MAX
125
1.0

UNITS

ELECTRICAL CHARACTERISTICS Vs= ±15V,O°C!>TA!>70°C, unless otherwise noted.
SYMBOL
Vos
AVos
IlTemp
los
IB
CMRR
PSRR
AVOL
Your
Is

PARAMETER
Input Offset Voltage
Average Input
Offset Drift

CONDITIONS
(Note 1)
(Note 7)

Input Offset Current
Input Bias Current
Input Voltage Range
Common-Mode Rejection
Ratio
Power Supply Rejection
Ratio
Large Signal Voltage Gain

VCM=OV
VCM = OV

Maximum Output Voltage
Swing
Supply Current

VCM = ±10.5V
Vs= ±4.5Vto ±18V
RL,,2k!l, Vo = ± 10V
RL"lk!l, Vo= ±10V
RL,,2k!l
RL" 600n (Note 9)

The. denotes the specifications which apply over the full operating temperature range.
Nole 1: Input Offset Voltage measurements are performed by automatic
test equipment approximately 0.5 sec. after application of power. In addition, at TA= 25°C, offset voltage is measured with the chip heated to approximately 55°C to account for the chip temperature rise when the device
is fully warmed up.
Nole 2: Long Term Input Offset Voltage Stability refers to the average trend
line of Offset Voltage VS. Time over extended periods after the first 30 days
of operation. Excluding the initial hour of operation, changes in Vos during
the first 30 days are typically 2.5~V.
Nole 3: This parameter is tested on a sample basis only.
Nole 4: 10Hz noise voltage density is sample tested on every lot. Devices
100% tested at 10Hz are available on request.

MIN

•
•
•
•
•
•
•
•
•
•

LT1028AC
TYP
15
0.1

±10.5
110

15
±30
± 12.0
124

114
5.0
4.0
± 11.5
±9.5

MAX
80
0.8

MIN

65
±120

Ln028C
TYP
30
0.2

±10.5
106

22
±40
±12.0
124

132

107

132

dB

25.0
18.0
±12.7
±11.0
8.0

3.0
2.5
±11.5
±9.0

25.0
18.0
±12.7
±10.5
8.2

V/~V
V/~V

10.5

130
±240

~V
~V/oC

11.5

nA
nA
V
dB

V
V
mA

Note 5: Current noise is defined and measured with balanced source resistors. The resultant voltage noise (after subtracting the resistor noise on an
RMS basiS) is divided by the sum of the two source resistors to obtain current noise. Maximum 10Hz current noise can be inferred from 100% testing
at 1kHz.
Nole 6: Gain-bandwidth product is not tested. It is guaranteed by design
and by inference from the slew rate measurement.
Nole 7: This parameter is not 100% tested.
Nole 8: The inputs are protected by back-to-back diodes. Current limiting
resistors are not used in order to achieve low noise. If differential input voltage exceeds ± 1.8V, the input current should be limited to 25mA.
Nole 9: This parameter guaranteed by design, fully warmed up at
TA = 70°C. It includes chip temperature increase due to supply and load
currents.

82-23

LT1028
TYPICAL PERFORmAnCE CHARACTERISTICS
10Hz Voltage Noise Distribution

Wideband Voltage Noise
(0.1 Hz to Frequency Indicated)

Wideband Noise, DC to 20kHz

r--,---r-;--,-----r---:-:-~-r--.

180

10

Vs ±15V
TA 25"C

160
140 1--+---flIlt---!--I--f- MEASIJRED

:;

~120~4-~~~~-4-+--+-4
z

is

~ 80 I---hnfillt---!--I--f-+--+--I

'"
~

~

-

F

t-- t--

/

0.1

1

Vs= ±15V
TA=25"C
3
10 30 100 300 1k 3k
MATCHED SOURCE RESISTANCE. Rs. (II)

10k

0.1

lMAP!

rJ ~

11

@1kHz-

~~ P'" Rs NOISE ONLY

i

i TYf CI

Vs= ±15V
TA=25"C

V
1

0.1 Hz to 10Hz Voltage Noise

0.1

3
10 30 100 300 1k 3k 10k
UNMATCHED SOURCE RESISTANCE. Rs. (II)

0.01 Hz to 1Hz Voltage Noise

Vs= ±15V
TA=25"C

10M

/

V

i""[."lJ H

/'

1M

100

V ~

@1 kHt=
!l:iII'"
2 Rs NOISE ONLY

1k

Current Noise Spectrum

100

Rs

./

L

0.1

0.01 L
100

2.2

Total Noise vs Matched Source
Resistance

±b>-

L

w


L

,..r
o ..r

~

20

w

10

~

U

10

~

~ -10
~ -20

,

... ]..

0
25
50
75
TEMPERATURE (OC)

!

'"
z>~

16

0

>

fo.:: 10-.

I\.

100

125

-

METAL CAN (H) PACKAGE
12

/"

0

..'"
w

/

'"z
:I:

'-'

f/

o
o

tt

30

~

'"
z
'"
C5

....

20

a:>-

10

0

~~INE

PACKAGE
PLAY C (N) OJ CERDIP

r-

'"

100

o

~

>-

"...........

-50

1
2
3
4
TIME AFTER POWER ON (MINUTES)

80

50
40

Voltage Noise vs Supply Voltage

15
~

:::>

-25

ttT

0
25
50
75
TEMPERATURE (OC)

~

Vs= ±15V

...- --:- ~±5V
V

~
u;

15
o

AT 10Hz

tJj 1.0

oz

-r-

-,.....

w

'"i:!;

~ 0.75

AT 1kHz

20

---

",5

'" 10
",15
SUPPLY VOLTAGE (V)

40

'"

l~

5

30
20

g§ en

10

~

-10

~ ~-20

0;;;

~~-30
-50

0
25
50
75
TEMPERATURE (OC)

15

-

r-

-55°C
125°C

Vs= ±15V

125°C

'-'
>-

<3

-50 -25

-10
-5
0
5
10
COMMON·MODE INPUT VOLTAGE (V)

:::>

",20

V

Output Short Circuit Current vs Time
50

-40

o

-;-

INPUT CURRENT
(OVERCANCELLED) DEVICE

-80
-15

::;
~

o

I·

- ...... " . / /"
-r- ~GATIVE

-60
125

I

POSITIVE INPUT CURRENT
40 (UNDERCANCELLED) DEV

'" -40

'"~
0.5

I

C5
~ -20

:::.+-:t-~

~ 1.25

RCM= ~~300MIl Vs=±15V
TA =250C
65nA

60

Supply Current vs Temperature
10

TA=25°C

2
3
TIME (MONTHS)

~

100

-

o

'-'

............ ~NT

--

~

Bias Current Over the Common· Mode
Range

Vs= ± 15V
VCM=OV

:::>
'"
'-'

-

./
...."

-10
-25

..-

,.. I-- ,.-

60

20

1.5

,/

Input Bias and Offset Currents
Over Temperature

VS=±15V
TA=25°C

~

,........,

Vs= ± 15V
TA=25°C
1=0 AFTER 1 DAY PRE·WARM UP

-8

-50
-50

50

24

tt

~

-40

Warm·Up Drift

'"
>3

...-

- -.."c.

10

,.., ../
-'

-30

'-

_...r'
r-'

-50-40-30-20-100 10 20 30 40
OFFSET VOLTAGE (~V)

~
w

Vs= ± 15V

40

...

~ 12

Z

50

Vs= ± 15V
TA=25°C
800 UNITS TESTED
FROM FOUR RUNS

long Term Stability of Five
Representative Units

100

125

-,..,

-

125°C
125°C

I-"""

I

55°C

o
1
2
3
TIME FROM OUTPUT SHORT TO GROUND (MINUTES)

82-25

LT1028
TYPICAL PERFORmAnCE CHARACTERISTICS
Voltage Gain vs Frequency
160

I-

140

- r-...

120

70

~

~100
z
;;;: 80

'"w
'"
i3

Vs= ±15V
TA=25°C
RL =2k

"-

60

"

ttl

~40

I\.

GAIN'

20

520
>

10

20

\

0.01 0.1

1

-W

10 100 1k 10k 100k 1M 10M 100M
FREQUENCY (Hz)

Voltage Gain vs Supply Voltage
100

-

100k

Vs

TA 25°C

~

b

V-

kt"J1l

-TA=I-5~oC

~

-,...,

z
;;;:

'"
w

'"
w

'"~

'"
i3

~

0

>

/

/ 1/
1

o

±5

±10
±15
SUPPLY VOLTAGE (V)

1
0.1

±20

140

-1

~ 120

-

~

V

IIMAX 35mA AT 55°C
- 27mA AT25°C
= 16mA AT 125°C

"-

z

~ 80
~

60

:;
:;

8

+1

V-

82-26

10

10

"-l~

~ 40

Vs= ±5V TO ±15V

0
25
50
75
TEMPERATURE (OC)

:ft--t-:Jm1+tt--V s = ± 15V
TA = 25°C

1-+-l+f+H+I'-1"'""T

O~~-U~~~-ULWL-~~~

100

125

20

o

10

100

1k
10k. 100k
FREQUENCY (Hz)

100
WOO
CAPACITIVE LOAD, CL, (pF)

160

Vs= ± 15V
TA=25°C

ttl 140
~

120

15

100

a:

'1

~

B
Ul 80

"

10M

~

SUPPLY

60

:::>



70
PH1SIEII

50

I\.

60

0

Gain Error vs Frequency
Closed Loop Gain = 1000

Gain, Phase vs Frequency

40

~

f--

~
1\

20

o

0.1

\
10

100 1k 10k 100k 1M
FREQUENCY (Hz)

10M

LT1028
TYPICAL PERFORmAnCE CHARACTERISTICS
Large Signal Transient Response

Total Harmonic Distortion vs Closed
Loop Gain

Small Signal Transient Response
0.1

Vo 20Vp-p
I 1kHz
Vs ±15V
TA= 25'C - NON-INVERTING
RL = 10kl)
GAIN

~

z

z

z
in

'"on
:;

'"
'"

;;;

'"~

,

~

o

>

~

~

0.01

~

INVERTING
GAIN

S2

z

'"'"
~ 0.001
"-"

1"sl DIVISION

0.2"s/DIVISION

Av= -1, RS=R,=2k, C,=30pF

Av= -1, Rs=R,=2kO
C,=30pF, CL=80pF

§

30

10

'">f-

15

6

~

10

~

5

'"

100,000

10 ~--r-~--~--+-~

l\

20

;;:
t:o

10,000
1000
CLOSED LOOP GAIN

Closed Loop Output Impedance

w

'"§

100

100 . - - - : - - : - - - - - , - - , - - - , - - - ,

Vs= ± 15V
TA=25'C
RL= 2kO

~ 25

m~ltO~~T~

0.0001

Maximum Undistorted Output
vs Frequency

Total Harmonic Distortion vs
Frequency and Load Resistance

MEASURED

/

1\

~

o

100

10
FREQUENCY (kHz)

10k

"

100k
1M
FREQUENCY (Hz)

~

10

17

r-r-

2:-

GBW

1000

w

~

~

100

on

CDC FROM PIN 5 TO PIN 6
Vs= ± 15V
TA=25'C
1

~

t--

100k

1M

FALL

10
10
100
1000
10,000
OVER-COMPENSATION CAPACITOR (pF)

15

on

14

.......
r........../

k::

RISE

-,

13
12
- 50

- 25

o

25
50
75
TEMPERATURE ('C)

:::

"

~

60

~

'"

100

~

z

~

70

r---..

........

'i::

z
80

r-- ~ r--

16

~

~

90

Vs= ± 15V

2:-

SLEW

w

0.1

18

10,000

--

1k
10k
FREQUENCY (Hz)

Slew Rate, Gain·Bandwidth Product
Over Temperature

Slew Rate, Gain·Bandwidth·Product
vs Over·Compensation Capacitor
100

100

10M

125

50

'"
~
~

o

II

~

40

~

30

'E"
82-27

LT1028
APPLICATions INFoRmATion
-noISE
Voltage Noise vs Current Noise
The LT1028's less than 1nV/v1Hz voltage noise is three
times better than the lowest voltage noise heretofore
available (on the LT1007/1037). A necessary condition for
such low voltage noise is operating the input transistors
at nearly 1mA of collector currents, because voltage noise
is inversely proportional to the square root of the collector
current. Current noise, however, is directly proportional to
the square root of the collector current. Consequently, the
LT1028's current noise is significantly higher than on most
monolithic op amps.
.
Therefore, to realize truly low noise performance it is important to understand the interaction between voltage
noise (en), current noise (in) and resistor noise (rn).

Total Noise vs Source Resistance
The total input referred noise of an op amp is given by
et = [en 2+ rn 2 + {inReq)2]1/2
where Req is the total equivalent source resistance at the
two inputs
and rn=~4kTReq=0.13~ innV/v1Hzat25°C
As a numerical example, consider the total noise at 1kHz
of the gain 1000 amplifier shown below.

At very low source resistance (Req <40{J) voltage noise
dominates. As Req is increased resistor noise becomes
the largest term-as in the example above-and the
LT1028's voltage noise becomes negligible. As Req is further increased, current noise becomes important. At 1kHz,
when Req is in excess of 20kn, the current noise component is larger than the resistor noise. The total noise versus matched source resistance plot illustrates the above
calculations.
The plot also shows that current noise is more dominant
at low frequencies, such as 10Hz. This is because resistor
noise is flat with frequency, while the 1If corner of current
noise is typically at 250Hz. At 10Hz when Req >1k{J, the
current noise term will exceed the resistor noise.
When the source resistance is unmatched, the total noise
versus unmatched source resistance plot should be consulted. Note that total noise is lower at source resistances
below 1k{J because the resistor noise contribution is less.
When Rs>1k{J total noise is not improved, however. This
is because bias current cancellation is used to reduce input bias current. The cancellation circuitry injects two
correlated current noise components into the two inputs.
With matched source resistors the injected current noise
creates a common-mode voltage noise and gets rejected
by the amplifier. With source resistance in one input only,
the cancellation noise is added to the amplifier's inherent
noise.
In summary, the LT1028 is the optimum amplifier for noise
performance-provided that the source resistance is kept
low. The following table depicts which op amp manufactured by Linear Technology should be used to minimize
noise-as the source resistance is increased beyond the
LT1028's level of usefulness.
Best Op Amp lor Lowest Total Noise
vs Source Resistance
SOURCE RESISTANCE
(Note 1)

oto 4001l
400llt04kll
4kllto 40kll
40kll to 500kll
500kllto 5MIl
>5M

Req = 100{J +1OO{J 111 OOk '" 200{J
rn = 0.13~= 1.84nV/v1Hz
en = 0.85nV/v1Hz
in = 1.0pA/v1Hz
et = [0.852+1.842 +(1.0 X 0.2)~1/2 = 2.04nV/v1Hz
output noise = 1000 et = 2.04J!V/v1Hz

82-28

BESTOPAMP
AllOW FREQ(10Hz) WI DEBAN D(1 kHz)
LT1028
LT1007/1037
LT100l
LT1012
LT1012or LT1055
LT1055

LT1028
LT1028
LT1007/1037
LT1001
LT1012
LT1055

Note 1: Source resistance is defined as matched or unmatched, e.g.,
Rs lkll means: 1kll at each input, or lkll at one input and zero at the other.

=

LT1028
APPLICATions INFORmATion
-nOISE

Measuring the typical 35nV peak-to-peak noise performance of the LT1028 requires special test precautions:

Noise Testing-Voltage Noise

(a) The device should be warmed up for at least five minutes. As the op amp warms up, its offset voltage
changes typically 10/-tV due to its chip temperature increasing 30°C to 40°C from the moment the power
supplies are turned on. In the 10 second measurement
interval these temperature-induced effects can easily
exceed tens of nanovolts.

The LT1028's RMS voltage noise density can be accurately
measured using the Quan Tech Noise Analyzer, Model
5173 or an equivalent noise tester. Care should be taken,
however, to subtract the noise of the source resistor used.
Prefabricated test cards for the Model 5173 set the device
under test in a closed loop gain of 31 with a 600 source
resistor and a 1.8kO feedback resistor. The noise of
this resistor combination is 0.13v1s8 1.0nV/~z. An
LT1028 with 0.85nV/~z noise will read (0.85 2+1.0 2)1/2
1.31 nV/~z. For better resolution, the resistors should be
replaced with a 100 source and 3000 feedback resistor.
Even a 100 resistor will show an apparent noise which is
8-10% too high.

=

=

The 0.1Hz to 10Hz peak·to-peak noise of the LT1028 is
measured in the test circuit shown. The frequency response of this noise tester indicates that the 0.1 Hz corner
is defined by only one zero. The test time to measure 0.1 Hz
to 10Hz noise should not exceed 10 seconds, as this time
limit acts as an additional zero to eliminate noise contributions from the frequency band below 0.1 Hz.

(b) For similar reasons, the device must be well shielded
from air currents to eliminate the possibility of thermoelectric effects in excess of a few nanovolts, which
would invalidate the measurements.
(c) Sudden motion in the vicinity of the device can also
"feedthrough" to increase the observed noise.
A noise-voltage density test is recommended when measuring noise on a large number of units. A 10Hz noise-voltage density measurement will correlate well with a 0.1 Hz
to 10Hz peak-to-peak noise reading since both results are
determined by the white noise and the location of the 1/f
corner frequency.

0.1Hz to 10Hz Noise Test Circuit

0.1 Hz to 10Hz p.p Noise
Tester Frequency Response
100

.

90
100kll

i\i ,

80

~ 70
z

~

60
50

40
VOLTAGE GAIN
=50.000
'DEVICE UNDER TEST
NOTE: ALL CAPACITOR VALUES ARE FOR
NON-POLARIZED CAPACITORS ONLY.

30
0.01

0.1

1.0

10

100

FREQUENCY (Hz)

S2-29

LT1028
APPLICATions INFoRmATion
-noISE
Noise Testing-Current Noise
Current noise density (in) is defined by the following
formula, and can be measured in the circuit shown:
. [eno 2- (31 x 18.4nV/v'Hz)2J1/2
In=
20kx31
1.Bk

eno

10Hz voltage noise density is sample tested on every lot.
Devices 100% tested at 10Hz are available on request for
an additional charge.
10Hz current noise is not tested on every lot but it can be
inferred from 100% testing at 1kHz. A look at the current
noise spectrum plot will substantiate this statement. The
only way 10Hz current noise can exceed the guaranteed
limits is if its 1/f corner is higher than 800Hz and/or its
white noise is high. If that is the case then the 1kHz test
will fail.
Automated Tester Noise Filter

If the Quan Tech Model 5173 is used, the noise reading is
input-referred, therefore the result should not be divided
by 31; the resistor noise should not be multiplied by 31.

10

~~

'" -10
~

100% Noise Testing

'"g
ffi -20

The 1kHz voltage and current noise is 100% tested on the
LT1028 as part of automated testing; the approximate frequency response of the filters is shown. The limits on the
automated testing are established by extensive correlation tests on units measured with the Quan Tech Model
5173.

>:J
u:
w

~

o

-30

'"
-40

CURRENT
NOISE

/

-50
100

VOLTAGE
NOISE

l\
'\
1k
10k
FREQUENCY (Hz)

100k

APPLICATions InFoRmATion
General
The LT1028 series devices may be inserted directly into
OP-07, OP-27, OP-37, LT1007 and LT1037 sockets with or
without removal of external nulling components. In addition, the LT1028 may be fitted to 5534 sockets with the removal of external compensation components.

The adjustment range with a 1k pot is approximately
±1.1mV.

Offset Voltage Adjustment

Offset Voltage and Drift

The input offset voltage of the LT1028 and its drift with
temperature, are permanently trimmed at wafer testing to
a low level. However, if further adjustment of Vas is necessary, the use of a1knulling potentiometer will not degrade
drift with temperature. Trimming to avalue other than zero
creates a drift of (Vas/300) pV/oC, e.g., if Vas is adjusted to
300/LV, the change in drift will be 1/LV/oC.

Thermocouple effects, caused by temperature gradients
across dissimilar metals at the contacts to the input
terminals, can exceed the inherent drift of the amplifier
unless proper care is exercised. Air currents should be
minimized, package leads should be short, the two input
leads should be close together and maintained at the
same temperature.

82-30

LT1028
APPLICATions InFoRmATion
The circuit shown to measure offset voltage is also used
as the burn·in configuration for the LT1028.
Test Circuit for Offset Voltage
and Offset Voltage Drift with Temperature
10k'
15V

Vo

Another configuration which requires unity gain stability
is shown below. When Cf is large enough to effectively
short the output to the input at 15MHz, oscillations can oc·
cur. The insertion of RS2;:::500n will prevent the LT1028
from oscillating. When RS1 ;:::500n, the additional noise
contribution due to the presence of RS2 will be minimal.
When RS1::; 100n, RS2 is not necessary, because RS1 repre·
sents a heavy load on the output through the Cf short.
When 100n< RS1 <500n, RS2 should match RS1. For exam·
pie, RS1 =RS2 =300n will be stable. The noise increase due
to RS2 is 40%.
Cj

4
10k"

";:"

-15V
Vo=100Vos
'RESISTORS MUST HAVE LOW
THERMOELECTRIC POTENTIAL

Frequency Response
The LT1028's Gain, Phase vs Frequency plot indicates that
the device is stable in closed loop gains greater than +2
or -1 because phase margin is about 50° at an open loop
gain of 6dB. In the voltage follower configuration phase
margin seems inadequate. This is indeed true when the
output is shorted to the inverting input and the non·invert·
ing input is driven from a 50n source impedance. However,
when feedback is through a parallel R·C network (provided
Cf<68pF), the LT1028 will be stable because of interaction
between the input resistance and capacitance and the
feedback network. Larger source resistance at the non·in·
verting input has a similar effect. The following voltage
follower configurations are stable:

If Cf is only used to cut noise bandwidth, a similar effect
can be achieved using the over·compensation terminal.
The Gain, Phase plot also shows that phase margin is
about 45° at a gain of 10 (20dB). The following configura·
tion has a high ('" 70%) overshoot without the 10pF
capacitor because of additional phaseshift caused by the
feedback resistor-input capacitance pole. The presence
of the 10pF capacitor cancels this pole and reduces over·
shoot to 5%.
10pF
10k

33pF

2k

Over·Compensation
The LT1028 is equipped with a frequency over·compensa·
tion terminal (pin 5). A capacitor connected between pin 5
and the output will reduce noise bandwidth. Details are
shown on the Slew Rate, Gain·Bandwidth Product vs
Over·Compensation Capacitor plot. An additional benefit
is increased capacitive load handling capability.

82-31

LT1028
TYPICAL APPLICATions
Low Noise Voltage Regulator

Paralleling Amplifiers to Reduce Voltage Noise

1.5k

OUTPUT

2k

2k

1.
2.
3.
4.

ASSUME VOLTAGE NOISE OF LT1028 AND 7.50 SOURCE RESISTOR=0.9nV/$z.
GAIN WITH n lT1028's IN PARALLEL=nx200
OUTPUT NOISE=.Jn x 200 x 0.9nV/ .JHz.
INPUT REFERRED NOISE=DUTPUT NOISE= M nVNHz.
nx200
5. NOISE CURRENT AT INPUT INCREASES.Jn TIMES.

vn

6.IF n=5, GAIN=1000, BANDWIDTH=1MHz, RMS NOISE, OCTO

1MHZ,=~=0.9.v.

Strain Gauge Signal Conditioner with Bridge Excitation

3300

3500
BRIDGE

r

- -

I

- -,

REfERENCE
OUT

I

I
L

I
.J
- - -

OV TO 10V
OUTPUT
30.1k·

49.90·

3301l

-15V
THE LT102B's NOISE CONTRIBUTION IS NEGLIGIBLE COMPARED TO THE BRIDGE NOISE.

82-32

LT1028
TYPICAL APPLICATions
Phono Preamplifier

Tape Head Amplifier

10n

499n

31.6k

10k

.">=--~~--~ OUTPUT

47k
MAG PHONO
INPUT

OUTPUT

-15V
ALL RESISTORS METAL FILM
ALL RESISTORS METAL FILM

Low Noise, Wide Bandwidth Instrumentation Amplifier
300n

10k

68pF

500

68pF

OUTPUT

3000

GAIN=1000, BANOWIOTH=1MHz
INPUT REFERRED NOISE= 1.5nVUH' AT 1kHz
WIDEBAND NOISE-DC TO 1MHz=3"VRMS
IF BW LIMITED TO DC TO 100kHz=O.55"VRMS

Gyro Pick·Off Amplifier
GYRO TYPICALNORTHRUP CORP.
GR-G5AH7-.5B
SINE DRIVE

lT1tl?

...._~

OUTPUT TO SYNC.
DEMODULATOR

1k

100n

82-33

LT1028
TYPICAL APPLICATions
Super Low Distortion Variable Sine Wave Oscillator

Chopper Stabilized Amplifier

C2
0,047

C1
0,047

1VRMS OUTPUT
1.5kHz-15kHz

(f~ 2;RC)
WHERE R1C1

~

R2C2
4.7k

...--.......JV4>IY-- 15V

2.4k

LT1004-1,2V

10k
<0,0018% DISTORTION AND NOISE,
MEASUREMENT LIMITED BY RESOLUTION OF
HP339A DISTORTION ANALYZER

Low Noise Infrared Detector
5V

lOll

lk

33!1
SYNCHRONDUS
DEMODULATOR

+

100.F
"1"OPTICAL
- CHOPPER
/
WHEEL

10k'

10k'

IR-~

RADIATION ___

¥

PHOTOELECTRIC
PICK-OFF

S2-34

DC OUT

~

'"
:z:
n

tI\

~c:

~

NULL

R5
1300

a

R6
1300

R2

1

3k

R1
3k

-....n
-

:D

500"A

V

:D
Q

R11
400!!

:It

900"A

T

t900"A

5~6~

k WO

C2

OUTPUT

+ []

C3
BOpF

4.5"A

a

.J

40pF

Q22

NONINVERTING
INPUT

:D

027

R12

1

C4
35pF

~I
R13

C5
25pF

~

--'
300"A

023

RB
4BOO

R7
BOO

CJ)
I\.)

W

01

V]

,

~

~

..L 020

-,

" I ___
UVtK-

CaMP

'

,

,

-I

~

12
co

LT1028
PACKAGE DESCRIPTions

Dimensions in inches (millimeters) unless otherwise noted.

J8 Package
Ceramic DIP

'::~;'-II..J.-...QdQL
I
MIN

0.200

MAX

{5.0S01

nrr::L241
~0.015-0.060

0°-15'

~J111
~,---I ~ -

{O.J60-0.660j
0.030-0,073

(::i~'~D7MAX6:J
~t
(10.287)

RAOTYP

0220-0.310
(5588-7874)

0,055

3175
0125
MIN

iT397)

MAX

~

1

234

~

I--

Q.100±O 010

-(2540±0254,

N8 Package
Molded DIP

r:

:l

0

0.009-0,015

--~

0.325 ~~:~~~
I
0.635 ) I~ 8.255+-0.381

1

0 400
(1o:"i65i

MAX
.

765

2

r
:1

Q.250±O.Q05

0.127 )

3

"

H8 Package
TO·S Melal Can

0.165-0.185
~)

I

REFERENCE
---'----,=:-0-5-00-t:0 -75-0 PLANE

~

t

NOTE: LEAD DIAMETER IS UNCONTROLLED BETWEEN
THE REFERENCE PLANE AND SEATING PLANE.

82-36

~"""""'LlntAR

LTl05? ILT1058

~~ TECHNOLOGY~----D-u-a-Ia-n-d-Q-u-a-d-,-J-FE-T-In-p-u-t
Precision High Speed Op Amps
FEATURES
•
•
•
•
•
•
•
•

14V//lS Slew Rate
5MHz Gain-Bandwidth Product
Fast Settling Time
150/lV Offset Voltage (LT1057)
180/lV Offset Voltage (LT1058)
2/lV/oC Vas Drift
50pA Bias Current at 70°C
Low Voltage Noise

DESCRIPTion
10V//ls Min.
1.3/ls to 0.02%
450/lV Max.
600/lV Max.
7/lV/oC Max.
13nV/Y'Hz @ 1kHz
26nV/Y'Hz @ 10Hz

APPLICATions
•
•
•
•
•
•
•

Precision, High Speed Instrumentation
Fast, Precision Sample and Hold
Logarithmic Amplifiers
D/A Output Amplifiers
Photodiode Amplifiers
Voltage to Frequency Converters
Frequency to Voltage Converters

The LT1057 is a matched JFET input dual op amp in the
industry standard 8 pin configuration, featuring a combination of outstanding high speed and precision specifications. It replaces all the popular bipolar and JFET
input dual op amps. In particular, the LT1057 upgrades the
performance of systems using the LF412A and OP-215
JFET input duals.
The LT1058 is the lowest offset quad JFET input operational amplifier in the standard 14 pin configuration. It offers significant accuracy improvement over presently
available JFET input quad operational amplifiers. It can replace four single precision JFET input op amps, while saving board space, power dissipation and cost.
Both the LT1057 and LT1058 are available in all standard
packages: plastic and hermetic DIP and (LT1057 only)
metal can.

Distribution of Ollset Voltage
(All Packages, LT1057 and LT1058)

Current Output, High Speed, High Input Impedance
Instrumentation Amplifier
25

LT1057: 610 OP AMPS
LT1058: 520 OP AMPS
11300PAMPS
TESTED

VS=±15V
TA=25'C

h

20

rIJ

15

r-t
,

10

o
-1.0

- f-r"

f
w

....

,

,i.

.-

h- ......

-0.6
-0.2 0 0.2
0.6
INPUT OFFSET VOLTAGE (mV)

1.0

"GAIN ADJUST
""COMMON-MODE REJECTION ADJUST
BANDWIDTH ~2MHz

S2-37

LTl 057 /LTl 058
PACKAGE/ORDER InFORmATion

ABSOLUTE mAXimum RATinGS

TOP VIEW

Supply Voltage ................................... ± 20V
Differential Input Voltage ....................... ± 40V
Input Voltage ...................... , ..... , . " ... ± 20V
Output Short Circuit Duration ................. Indefinite
Operating Temperature Range
LT1057 AM/LT1057MI
LT1058AM/LT1058M .................. - 55°C to 125°C
LT1057AC/LT1057CI
LT1058AC/LT1058C ..................... O°C to 70°C
Storage Temperature Range
All Devices ......................... - 65°C to 150°C
Lead Temperature (Soldering, 10 sec.)............ 300°C

v+

ORDER PART NO.
LT1057AMH
LT1057MH
LT1057ACH
LT1057CH

METAL CAN H PACKAGE

LT1057AMJ8
LT1057MJ8
LT1057ACJ8
LT1057CJ8
LT1057ACN8
LT1057CN8

HERMETIC DIPJ8 PACKAGE
PLASTIC DIP N8 PACKAGE

LT1058AMJ
LT1058MJ
LT1058ACJ
LT1058CJ
LT1058ACN
LT1058CN
HERMETIC DIP J14 PACKAGE
PLASTIC DIP N14 PACKAGE

ELECTRICAL CHARACTERISTICS Vs= ±15V, TA=25°C, VCM=OVunlessolherwisenoled.(Nole1)
LT1057M/LT1058M
LT1057C/LT1058C
MIN
TYP
MAX

150
180

200
250

UNITS

SYMBOL

PARAMETER

Vas

Input Offset Voltage

los

Input Offset Current

Fully Warmed Up

3

40

4

50

pA

Ib

Input Bias Current

Fully Warmed Up

±5

±50

±7

±75

pA

Input Resistance-Differential
-Common·Mode

CONDITIONS

LT1 057AM/LT1 058AM
LT1057AC/LT1058AC
MIN
TYP
MAX
LT1057
LT1058

VCM = -11Vt08V
VCM = 8V to 11V

Input Capacitance
en

Input Noise Voltage

0.1Hzto 10Hz

en

Input Noise Voltage Density

10= 10Hz
10= 1kHz (Note 2)

in

Input Noise Current Density

10= 10Hz, 1kHz(Note 3)

AVOL

Large Signal Voltage Gain

Vo= ±10V,RL=2k
Vo= ±10V, RL=1k

LT105?
LT1058

Input Voltage Range
CMRR

Common·Mode Rejection Ratio

LT105?
LT1058

PSRR

Power Supply Rejection Ratio

Vs= ±10Vto ±18V

Your

Output Voltage Swing

RL=2k

82-38

450
600

1012
1012
10 11

10 12
10 12
1011

4

4

2.0
2.4

2.1
2.5

26
13

22

1.5

4

800
1000

~V
~V

!l
!l

0
pF
~Vp·p
~Vp·p

28
14

24

nV/VHz
nV/VHz

1.8

6

IA/VHz

150
120

350
250

100
80

300
220

V/mV
V/mV

±10.5

14.3
-11.5

±10.5

14.3
-11.5

V

86
84

100
98

82
80

98
96

dB
dB

102

dB

88
±12

103
±13

86
±12

±13

V

LT1057/LT1058

ELECTRICAL CHARACTERISTICS Vs= ±15V, TA=25°C, VCM =OV unless otherwise noted. (Note 1)
SYMBOL

PARAMETER

SR

Slew Rate

GBW

Gain·Bandwidth Product

Is

CONDITIONS
f= lMHz (Note 5)

LT1057AM/LT1058AM
LT1057AC/LT1058AC
MIN
TYP
MAX

LT1057M/LT1058M
LT1057C/LT1058C
MIN
TYP
MAX

10

14

8

13

V/~s

3.5

5

3

5

MHz

Supply Current Per Amplifier
Channel Separation

1.6

2.5

1.7

132

DC to 5kHz, VIN = ± 10V

UNITS

2.8

mA

130

dB

ELECTRICAL CHARACTERISTICS Vs= ± 15V, VCM =ov, O°C~TA~70°C, unless otherwise noted.
SYMBOL

PARAMETER

Vos

Input Offset Voltage

CONDITIONS
LT1057
m058

Average Temperature
Coefficient of Input
Offset Voltage

LT1057 HIJ8 Package
N8 Package
m058 J Package (Note 4)
N Package (Note 4)

los
Ib

Input Offset Current

Warmed Up, TA = 70°C

Input Bias Current

Warmed Up, TA = 70°C

AVOL
CMRR

Large Signal Voltage Gain
Common·Mode Rejection Ratio

Vo= ± 10V, RL = 2k
VCM = ± 10.4V

PSRR

Power Supply Rejection Ratio

Vs= ±10Vto ±18V

VOUT
Is

Output Voltage Swing

RL=2k

Supply Current Per Amplifier
TA = 70°C

••
••
••
•
•
•
•
•

LT1057AC
LT1058AC
MIN
TYP
250
300

MAX

MIN

800
1200

LT1057C
LT1058C
TYP
330
400

MAX
1400
1800

1.8
3
2.5
4

7
10
10
15

2.3
4
3
5

12
16
15
22

18

150

20

250

±50

±250

±60

±350

UNITS
~V
~V
~VloC
~V/oC

~VJOC
~V/oC

pA
pA

70

220

50

200

85

98

80

96

dB

87

102

84

100

dB

±12

± 12.8

± 12

± 12.8

2.8

VlmV

V
3.2

mA
mA

1.5

1.4

ELECTRICAL CHARACTERISTICS Vs= ±15V, VCM=OV, -55°C~TA~125°C,unlessotherwisenoted.
SYMBOL

PARAMETER

CONDITIONS

Vas

Input Offset Voltage

m057
m058

Average Temperature Coefficient
of Input Offset Voltage

m057
LT1 058 (Note 4)

los

Input Offset Current

Warmed Up, TA = 125°C

Ib

Input Bias Current

Warmed Up, TA = 125°C

AVOL
CMRR

Large Signal Voltage Gain

Vo= ±10V,RL=2k

Common·Mode Rejection Ratio

VCM = ± 10.4V

PSRR

Power Supply Rejection Ratio

Vs= ±10Vto ±17V

VOUT
Is

Output Voltage Swing

RL=2k
TA=125°C

Supply Current Per Amplifier

The. denotes the specifications which apply over the full operating tem·
perature range.
Note 1: Typical parameters are defined as the 60% yield of distributions of
individual amplifiers; Le., out of 100 LT1058s or (100 LT1057s), typically
240 op amps (or 120 for the LT1057) will be better than the indicated
specification.
Note 2: This parameter is tested on a sample basis only.

••
••

LT1057AM
LT1058AM
MIN
TYP
300
380

•
•

MIN

MAX

UNITS

400
550

2000
2500

~V
~V

2.0
2.5

7
10

2.5
3

12
15

0.15

2

0.2

3

±0.7

±6

±0.6

•
•

MAX
1100
1600

LT1057M
LT1058M
TYP

±4.5

~VloC

~VloC

nA
nA

40

120

30

110

84

97

80

95

dB

86

100

83

98

dB

± 12

±12.7

±12

1.25

1.9

VlmV

±12.6

1.3

V
2.2

mA

Note 3: Current noise is calculated from the formula:
in (2qlb)1/2
where q = 1.6 X 10- 19 coulomb. The noise of source resistors up to lGn
swamps the contribution of current noise.
Note 4: This parameter is not 100% tested.
Note 5: Gain·bandwidth product is not tested. It is guaranteed by design
and by inference from the slew rate measurement.

=

82-39

LTl 057 ILTl 058
TYPICAL PERFORmAnCE CHARACTERISTICS
Input Bias Current Over
the Common·Mode Range

Input Bias and Offset Currents
vs Temperature
1000

~

;:- 300

1.6

Vs= ± 15V
VCM=OV
WARMED UP

~ 100

ito
~

«
'"
«

BIASCURR
30

/

a;

2

10

~

3

o

/

V
L L
L / /V

V

.,/

V

/

/

OFFSET CURRENT

25
50
75
100
AMBIENT TEMPERATURE (0C)

~

VS=±15V

~ 1.4

/

~
=>

Warm·Up Drift

&:
~

125

1.0

TA=125~

en

~TA=70'C
[/

g§ 0.6

~
~

=>

-

~ 0.4
«
a;

2 0.2
0

-0.2
-15

Distribution of Offset Voltage
Drift with Temperature
(H and JPackage)

-

v .... ./

--

~

Vs=±15V
TA=25'C

§

120 ~

II

~_ 0.8

100
Z

140

Ii

1.2

.::'

~

160

100

'il

~
---<
60 ~
II

80

N

40

/

20

..,4. TA = 25'C

0

~
w

80

OJ
0
>

60

0

40

g Sl'

~

0

--<
0

~

n

~
~

w

'"
«
:to
z

'--'

20

-20~

-10
-5
0
5
10
COMMON-MODE INPUT VOLTAGE (V)

1
2
3
4
TIME AFTER POWER ON (MINUTES)

15

Distribution of Offset Voltage
Drift with Temperature
(Plastic NPackage)

Long Term Drift of
Representative Units
50

Vs= ±15V
TA=25°C

40
100 I--+--+-f-'

100

1--+--1--+

80

80

I--t--t----i-

20

w

f---t--+-t--+-

'"
~

10

:to

'--'

601--+--+-

60

0

tlj

I--i--t--

'"

~-10

401--+--+-

40

I--i--t-::-

t;; -20
~

20

fL

o

-12 -9 -6 -3
0
3
6
9
12
OFFSET VOLTAGE DRIFT WITH TEMPERATURE (MV/°C)

-12 -9 -6 -3
0
3
6
9 12
OFFSET VOLTAGE DRIFT WITH TEMPERATURE (MV/°C)

Voltage Noise vs Frequency

-50

O.1Hz to 10Hz Noise

'"

~

50

~
w

5
z

~j

1\
30

J...

V'

,

""-

~

~ ""W

I'

0:

82-40

10

~
2:-

r--.. '"

300

~~-.......

~ 100

I'" ~

OJ

§;
30

10
3

±15V
±10V

:il

1/fCOIRNEJ1~

,.'"

Vs
Vo

'"w

20

§;

-

2
3
TIME (MONTHS)

RL 2k

'[\.

w

'"~

o

Vs= ± 15V
TA=25°C

~

en
z

-

r--

1000
VS=±15V
TA=25°C

70

r-

Voltage Gain vs Temperature

100

~

-

l': -"" I--"""
\ \.

-40

o

I"-

~

~-30

20

I"""

-~

~ 30

30

100 300 1000 3000 10,000
FREQUENCY (Hz)

4

6

TIME (SECONDS)

10

10
-75

-~

~

TEMPERATURE (OC)

n

125

LTl 057 ILTl 058
TYPICAL PERFORmAnCE CHARACTERISTICS
Slew Rate, Gain·Bandwidth
Product vs Temperature

Large Signal Response

Undistorted Output Swing vs
Frequency
30

10
6

'"J>

~ 24

~

'"z

Z

~ 20b--+~~~~~r--+--4-~ 6

G
w

4

~

10

:D

r--+---r--+-~~-+--4-~

,

~

1\



0
0

1\

0

i'"E

c
~ 6
>;~

'"

E iE

AV=+1, CL=100pF, 0.5""/DlV

\

~ >-- 16
ii'
~ >-:z: :=>
~

~

Vs- ± 15V
TA=25'C

12

6

'- t-

o
-50 -25

0

25
50
75
TEMPERATURE ('C)

100

100k

125

Gain, Phase Shift vs
Frequency

Small Signal Response

100

- "H~SE ~ARGIL+~ r-r-.....

"

60

Z

:d'

'"

:z:

20 -Vs= ±15V
TA=25'C
-CL=10pF

Av=+1, CL=100pF, 0.2""/DIV

-20
1

'I

)

10

100

~ >--':i

50

:z:

40



~HASE

140

Sj
c;

Hl
~

I\-

160.m

'\.

0
0

ffi>
0

Av= -1
Av= +1
30
20

!J

10

~

160
1k 10k 100k 1M 10M 100M
FREQUENCY (Hz)

o
10

Channel Separation vs
Frequency

Settling Time

TA=25'C

60

120 ~

:z:

GAI~

40

Vs~ ~ 1~v

70

80

co

80

100

1\

-0

160 r----.,.---.,.---.,.---.,.----,---.,

100

Vs ±15V
TA 25'C

Av

Av

V

f---f---II--

L -__~__~U-~~~__~~

o

1
SETTLING TIME

2
(~s)

60 Vs=±15V
TA=25'C
VIN=20Vp-p TO 5kHz
RL =2k
60 ~--~--~--~--~--~~
1
10
100
1k
10k
100k
1M
FREQUENCY (Hz)

10,000

100

VI

~

-10

t:"

y

~

:Z:u""

~y=111

Output Impedance vs
Frequency

z
'2 120

'~"

rl

100
1000
CAPACITIVE LOAD (pF)

140 h.-£-f---t-'...--Pl.c--f---f----J

;:;j 100

10M

Capacitive Load Handling

140
120

1M
FREQUENCY (Hz)

V

V

10

V
Av

0.1

V
1k

V
10k
100k
FREQUENCY (Hz)

1

I
1M

82-41

LT1057/LT1058
TYPICAL PERFORmAnCE CHARACTERISTICS
Common·Mode Rejection Ratio
vs Frequency

Common·Mode and Power
Supply Rejections vs
Temperature

Common·Mode Range vs
Temperature

120

120

+15
VS=±15V
TA=25°C

I--.

100

" "-

_ +13
>

I'\..

80
g§ 60

VS=±10VTO ±17VFORPSRR
Vs= ± 15V, VCM= ± 10.5V FOR CMRR

+14

I'\..

'"u

~ +12
z
~ +11
w

"-

40

"-

20

"'

g

±10

'oZ"
''""

-12

8

PSRR

-11

CMRR

-13
-14

o

10

100

1k
10k
100k
FREQUENCY (Hz)

1M

10M

Vs= ± 15V
-15
-50

Power Supply Rejection Ratio
vs Frequency
140

90

o

50
TEMPERATURE (OC)

-25

100

Supply Current vs
Temperature
50

TA=25°C

~ 100

'\..""

~ 80
hl

~

-

60

NEGAT~
SUPPLY

40

POSITIVE_
""SUPPLY

20

o

10

100

:::::::::

~ ~s=±15V

Vs

" ""
~

'"

~

.......

"'........

1k
10k
100k
FREQUENCY (Hz)

""

'"

1M

10M

~

""'30
""'20

g§

10

!

o

~

I I

40

~

'"z

± 10V

13

5

-...,;;;;;:

u
'!O
u

'i'
-""'- 60~OH5z%
DISTORTION

82-44

LT1057/LT1058
APPLICATions
Fas!, Precision Bridge Amplifier

330pf

10k

10k

INPUT

SLEW RATE=14V/p
OUTPUT CURRENT TO LOAD = 150mA
LOAD CAPACITANCE: UP TO 1~f

Analog Divider
BO.6k'

20k

1"-------.,
I
I
OUTPUT=~

LT1004
1.2V

16 - - - ~

75k'
A INPUT-'W......~---------...-I

330k

2N2907
'1% FILM

-5V

f----------------t
T1~f

82-45

LT1057/LT1058
APPLICATions
Bipolar Input (AC) V- FConverter
lk

%LTC1043

-5V~LTlll0"'0"4""-~~H::J- -

I'.::r::

2.5V

.....-+-..1118 -.§ - -I15H---,
0.01
POLYSTYRENE
DATA
OUTPUT
0-lkHz

SIGN
BIT
*1% FILM
MATCH 1M RESISTORS TO 0.05%

12 Bit A- DConverter
10k
0.001

P
INTEGRATOR

.........of-.....- - - - - B O UT

FLIP-FLOP

10k

15V .......M - . - -

OATA OUTPUT~AOUT
BOUT
'VISHAY S-102 RESISTOR

82 . 46

95k'

AOUT

LT1057/LT1058
APPLICATions
Instrumentation Amplifier with Shield Driver
10k

1k
RF
9.1k
GUARD (

,

'''f:--'',
OUTPUT

INPUT *---~--+<

GUARD (

-15V

'}-~------'
RF
9.1k

10k

14
1k

GAIN = 10(1 + RF/RG) = 100
IB=5pA
RIN=10 12 11
BW=350kHz

100dB Range Logarithmic Photodiode Amplifier

1M

50k

1M
FULL-SCALE

TRIM

..---'VII'v-=-+< DARK
50k"

....""7511.0k~"--,!\ITR..IMy..., ':"
0.01

EOUT

3311

-03

9
(if

-+I- = HP-5082-4204 PIN PHOTODIODE.
01-05 = CA3096
CONNECT SUBSTRATE OF CA3096
ARRAY TO 04'S EMITTER.
"1% RESISTOR
100dB RANGE LOGARITHMIC PHOTODIODE AMPLIFIER

15V

LIGHT (9OO~M)
1MW
100"W

RESPONSE DATA
DIODE CURRENT
350~
35~

10~W

3.5~

1~W

350nA
35nA
3.5nA

100nW
lOnW

CIRCUIT OUTPUT
10.0V
7.85V
5.70V
3.55V
1.40V
-0.75V

52-47

LT1057/LT1058
PACKAGE DESCRIPTion

Dimensions in inches (millimeters) unless otherwise noted.
H Package
Metal Can

0165-0185
14191-4699)

-'---;c-=~_:f--_~~:~~ENCE
0500-0750
112.70-1905)

•

NOTE

LEADOIAMETERISU~CONTROLLEDBETWHN

THE REFERENCE

PLM~E A~D

SEATING PLANE

J8 Package
8 Lead Hermetic Dip

N8 Package
8 Lead Plastic

t

0
1

ffi11lf]

MAX

"5!
2

oo,,-oo~

nn::L'"

~Ji I L

10360-0£601

0030-0073____

IW'-I.'''' I

~-

,

0."

3"iT5
MIN

Q.1CD±O 010

"'''.0''',

J Package
14-Lead Hermetic DIP

N Package
14-Lead Plastic

~O.C;500W

V VIVI V V V [~""
~_I~
~ l--0lOO.~OOiO
1036-066)

--I

0,030-o_073
10.760-1.854)

82-48

12540,,02::4)

----t-

I

1"iO:i6oj-o.. "

3

Q.250±0005

~O'lUJ
4

~-"'''llntJ\R

~)r

LF412A/OP-215

TECHNOLOGY~-----D-u-a-I-Pr-e-c-isi-o-n-J-FE-T-In-p-u-t
Operational Amplifiers
DESCRIPTion

FEATURES
•
•
•
•
•
•
•
•

Internally Trimmed Offset Voltage
Offset Voltage Drift
High Slew Rate
Wide Bandwidth
Low Supply Current per Amplifier
Low Input Bias Current
Standard 8-Pin Configuration
All Packages Available:

1mV Max.
10p.V/oC Max.
10V/p.s Min.
3.5MHzMin.
1.8mA Typ.
10pA Typ.

Linear Technology's LF412A and OP-215 series of dual
JFET input op amps feature several improvements compared to simi lar types from other manufacturers.

Metal Can
Hermetic DIP
Plastic DIP

In addition, Linear's LF412A has lower voltage noise and
higher voltage gain. Linear's OP-215 supply currents are
nearly halved.

APPLICATions
•
•
•
•
•

Sample and Hold Amplifiers
Output Amplifier for Dual Current Output DACs
High Speed Integrators
Photocell Amplifiers
High Input Impedance Instrumentation Amplifiers

Both devices have lower input bias and offset currents
over the entire temperature range, and are available in all
standard 8-pin packages.

Please see the LT1057/LT1058 data sheet for applications
requiring higher performance. The LT1057 is a pin compatible JFET input dual, the LT1058 is a JFET input quad
op amp in the standard 14-pin DIP configuration.

Voltage Noise Density vs Frequency

Slew Rate
140

26
24

~
C

-

20

~

-........

<5
z
~

RISING
Vs=±lSV
RL=2k
Av=l
-~

60
/ ~/f CORNER

jRT~~fl~fY

o

10
-~

80

« 40
OJ
o
> 20

14
12

i
~

16

TA=25°C

~ 100

~

'" 18
~
U)

l~J I~~kv

~120

LLUJ

22

0

~

~

TEMPERATURE 1°C)

~

100

1~

II11111

1

10

100

lk

10k

FREQUENCY 1Hz)

S2-49

LF412A/OP-215
ABSOLUTE mAXimum RATinGS
Supply Voltage
LF412AM/AC, OP·215A/E ........................ ± 22V
LF412M/C,Op·215C/G .......................... ± 18V
Internal Power Dissipation ....................... 670mW
Operating Temperature Range
LF412AM/M, Op·215A/C ............... - 55°C to 125°C
LF412AC/C,OP·215E/G ................... OOC to 70°C
Differential Input Voltage
LF412AM/AC, OP·215A/E ........................ ± 40V
LF412M/C, OP·215C/G ........................... ± 30V
Input Voltage (Note A)
LF412AM/AC, OP·215A/E ........................ ± 20V
LF412M/C, Op·215C/G .......................... ± 16V
Output Short Circuit Duration .................. Indefinite
Storage Temperature Range ............. - 65°C to 150°C
Lead Temperature (Soldering, 10 sec) .............. 300°C

PACKAGE/ORDER InFORmATion
TOP VIEW

ORDER PART
NUMBER

v+

4

v- (CASE)
H PACKAGE METAL CAN

J8 PACKAGE HERMETIC DIP
N8 PACKAGE PLASTIC DIP

LF412AMH
LF412MH
LF412ACH
LF412CH

OP·215AH
OP·215CH
Op·215EH
OP·215GH

LF412AMJ8
LF412MJ8
LF412ACJ8
LF412CJ8
LF412ACN8
LF412CN8

op·215AJ8
OP·215CJ8
OP·215EJ8
OP·215GJ8
OP·215EN8
Op·215GN8

Note A: Maximum negative input voltage is equal to the negative supply
voltage.

±20VforLF412A, Vs= ± 15V!orall other grades.
ELECTRICAL CHARACTERISTICS Vs=
VCM =OV, TA = 25°C unless otherwise noted.
UNITS

10
15

CMRR

PSRR

en

S2-50

100
200

pA
pA

LF412A/OP-215
±20VlorLF412A, Vs= ±15Vloralloth~rgrades.
ELECTRICAL CHARACTERISTICS Vs=
VCM = OV, - 55°C!>TA!>125°C unless otherwise noted.
SYMBOL
Vas

los

Ie

PARAMETER
Input Offset Voltage
Average Input Offset
Voltage Drift
Input Offset Current

Input Bias Current

Input Voltage Range

CONDITIONS

TI = 125°C (Note 1)
TA = 125°C, Warmed·Up
Vs=±15V
Tj =125°C(Notel)
TA = 125°C, Warmed·Up
Vs= ±15V
OP·215
LF412

CMRR

Common·Mode Rejection
Ratio

AvoL

Supply Current
Power Supply Rejection
Ratio
Large Signal Voltage Gain

Va

Output Voltage Swing

Is
PSRR

VCM= ±16V
VCM=±I1V
VCM = ±10.3V
Vs= ±10Vto ±20V
Vs= ±10Vto ±16V
RL2:2kn, Vo= ± 10V
Vs=±15V
RL2:10kll, Vs= ± 15V

MIN

•
•
••

-

••
•

-

-

OP·215A
TYP
0.5
3
(Note 3)
O.B
1.2

± 10.3

•

-

•
•

• B2• •• BO
• 30
•

±12

MAX
2.0
10

-

B
14

-

±1.5 ±10
:t2.2 :tlB

-

+ 14.5
-11.5

-

-

-

-

±16

100
4.2

-

100
150
±13

MIN

-

LF412AM
TYP MAX
0.7
2.0
4
10
O.B

1.2

B
.14

:t 1.5 :tl0
:1:2.2 :t18

LF412M,OP·215C
MIN TYP MAX
1.0
5.0
20
5
(Note3)
1.0
12
1.5
22

-

-

-

±10.3

-

-

-

±11

BO

+ 19.5
-16.5
100

6.8

-

-

BO

4.0
100

30

-

±12

-

-

-

150
±13

-

-

70
BO

-

100
100
4.2
100
150

~VI'C

nA
nA
nA
nA

±1.B :tIS
:t2.7 :l:2B
+14.5
-11.5
+14.5
-11.5

UNITS
mV

-

V

-

V

-

-

78
25

-

-

dB
dB
dB
mA
dB
dB
Vim V

-

±12

±13

-

V

5.6

-

-

-

6.B

±20VlorLF412A, Vs= ±15Vlorall.othergrades.
ELECTRICAL CHARACTERISTICS Vs=
VCM = OV, ODC !>TA !>70 DCunless otherwise noted.
SYMBOL
Vas

los

Ie

PARAMETER
Input Offset Voltage
Average Input Offset
Voltage Drift
Input Offset Current

Input Bias Current

Input Voltage Range

CONDITIONS

~ = 70°C (Note 1)

A= 70°C, Warmed·Up
Vs= ± 15V
TI = 70°C (Note 1)
TA= 70°C, Warmed·Up
Vs=±15V
OP·215
LF4i2

CMRR

Common·Mode Rejection
Ratio

AVOL

Supply Current
Power Supply Rejection
Ratio
Large Signal Voltage Gain

Va

Output Voltage Swing

Is
PSRR

VCM= ± 16V
VCM = ±ilV
VCM = + 10.3V
Vs= ±iOVto ±20V
Vs= ±10Vto ±16V
RL2:2kll, Vo= ± iOV
Vs=±i5V
RL>iOkll, Vs= ±15V

MIN

• -•
•• •
•

-

-

Note1: Input bias and offset currents are specified for two different condi·
tions. The Tj specification is with the junction at ambient temperature; the

MAX
1.65
15
0.45
O.B

±0.12 ±0.7
±0.16 ±1.4

MIN

-

-

--

-

0.45
0.8

:l:M2 :1:0 .7'
:1:0.16 :1:1.4 ......

-

--

-

:1:0.14.:1:0.9
:1:.0.19:1:1.8

UNITS
mV
~V/oC

nA
nA
nA
nA

'.

:l:iO.3~;t; - ......•

+19.5
-11.5
100

-

±11

+ i4.5
-11.5

-

V

-

-

-

-

-

-

-

3.8
100

5.6

80

50

180':7

dB
dB
dB
mA
dB
dB
VlmV

-

±12

-

±16

-

100

-

4.0

6.8

-

-

±13

0.06
O.OB

LF412C,OP·215G
MIN TYP MAX
3.9
0.7
5
20
(Nole3)
0.08 0.65
0.10 1.2

-

-

iOO
lBO

LF412AC
TYP MAX
1.45
0.5
10
4

-

:1:103 +14.5 _
. -11&....-:-......

•
• •• -• 80• •• 80
• 50
• ±12

The. denotes the specifications which apply over the full operating tem·
perature range. The shaded electrical specifications indicate those pa·
rameters which have been improved or guaranteed test limits provided for
the first time.

Op·215E
TYP
0.4
3
(Note 3)
0.06
0.08

BO

-

-

-

-

±13

-

-

70
76

--

76

·'·35
±12

100
100

-

-

4.0

6;8

-

.-,.

100
180
±i3

"..

-

V

V

warmed·up specification is with the device operating in a warmed·up condi·
tion at the ambient temperature specilied.
Note 2: Gain·bandwidth product is not tesled.lt is guaranteed by design
and by inference from the slew rate measurement.
Note 3: The LF4i2A is 100% tested to this specification. All other grades
are sample tested.

82-51

LF412A/OP-21S
TYPICAL PERFORmAnCE CHARACTERISTICS
Common·Mode Rejection Ratio
vs Frequency

Open· Loop Frequency
Response
120
100

-

r-...

iD

:8-

z

«

'"w
'"t3

r'\.

~ 40

0-

'"
g
~

20

'"
'"
'"

:8-

r'\.

100

"- ~

40

100

10

PACKAGE DESCRIPTiOnS

lk
10k
lOOk
FREQUENCY (Hz)

100

'" 80
B

"- ~

"

o

TA=25°C
~ 120

z

20

lk 10k lOOk 1M 10M 100M
FREQUENCY (Hz)

140

'"~

'"

~
10

~

u

-20
1

"""

60

'\.

'"

Vs= ± 15V
TA=25°C

80

'\.

60

-

100

TA=25°C

'\.

80

120

I J
Vs=±15V_

Power Supply Rejection Ratio
vs Frequency

1M

~

~

60 I----



II

83-1

INDEX
SECTION 3-VOLTAGE REGULATORS
INDEX. . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . 83·2
8ELECTION GUIDE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 83·3
PROPRIETARY PRODUCTS
LTt003, 5 Volt, 5 Amp Regulator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3-5
LTt005, Dual Logic Controlled 5 Volt Regulator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-13
L11020, Mlcropower Regulator and Comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83·5
LT1033,3AmpNegativeAdjustableRegulator ............................. . . . . .. . . .. . 3-25
LTt 035, Logic Controlled 5 Volt, 3 Amp Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-33
LT1036, 12V, 3A/5V, 75mA Dual Logic Controlled Regulator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-45
LT1038, 10AmpPositiveAdjustableRegulator . . .. .. . . . . . . .. . .. . . .. . . ... ... . . . . .. . ... . 3-53
LT1070, SA High Efficiency Switching Regulator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 83·21
LT1071, 2. SA High Efficiency Switching Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 83·21
LT1072, 1.2SA High Efficiency Switching Regulator ................ .' ................... 810·15
LT1083, 7. SA Low Dropout Positive Adjustable Regulator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 83·33
L11083·S, 7. SA Low Dropout Positive Fixed SV Regulator .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . 810·20
LT1083· 12, 7.SA Low Dropout Positive Fixed 12V Regulator .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 810·20
LT1084, 3A Low Dropout Positive Adjustable Regulator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 83·33
LT1084·S, 3A Low Dropout Positive Fixed SV Regulator . ................................. 810·20
LT1084· 12, 3A Low Dropout Positive Fixed 12V Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 810·20
L1108S, SA Low Dropout Positive Adjustable Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 83·33
LT108S·S, SA Low Dropout Positive Fixed SV Regulator . ................................. 810·20
L1108S· 12, SA Low Dropout Positive Fixed 12V Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 810·20
LT1086, 1.SA Low Dropout Positive Adjustable Regulator . ................................ 810·23
LT1086·S, 1. SA Low Dropout Positive Fixed SV Regulator .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 810·20
LT1086· 12, 1. SA Low Dropout Positive Fixed 12V Regulator .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 810·20
ENHANCED AND SECOND SOURCE PRODUCTS
LM117/317, Positive Adjustable Regulator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-65
LTt17A/317A, Improved LM117 . . . .. . . .. . . . . . . . . . .. . . . . . . . . . .. . . . . . . .. .. .. . . . .. . . 3-65
LM 117HV1317HV, 60 Volt Positive Adjustable Regulator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-73
LT117AHV/317AHV, ImprovedLM117HV ........................................... 3-73
LM123/323, 5 Volt, 3 Amp Regulator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-77
LTt23A/323A, Improved LM123 . . . . . .. . . .. .. . . . . . . .. . . . . . . .. . .. . .. . .. . . . . . . . .. .. . 3-77
LM137/337, Negative Adjustable Regulator .......................................... 3-85
LTt37A/337A, ImprovedLM137 .................................................. 3-85
LM 137HV1337HV, 50 Volt Negative Adjustable Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-93
LT137AHV/337AHV,ImprovedLM137HV ........................................... 3-93
LM 138/338, 5 Amp Positive Adjustable Regulator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-97
LTt38A/338A, ImprovedLM138 .................................................. 3-97
LM150/350, 3Amp Positive Adjustable Regulator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 3-105
LT150A/350A, Improved LM150 . . . .. . . . . .. . . . . . . . .. . . . . . . . . . .. . . .. . . .. . . . . . . . . ... 3-105

83-2

~--rLlnLI\Q

....A.,

REGULATOR SELECTION GUIDE

TECHNOLOGY,------------------

miLITARY
10
o.UTPUT
CURRENT
lAMPS}'
10.0
7.5
5.0

POSITIVE
o.R
NEGATIVE
o.UTPUT'

Pes. Adj.
Pas. Adj.

Pas. Fixed
P85°C I bias max is 100nA.
Note 2: ForTAs - 40°C output sink current min is 2.5mA.

83-7

LT1020

Pin FunCTions
Pins 1, 12, 14-No internal connection.
Pin 2-Regulator Output. Main output, requires 10!!F output capacitor. Can be shorted to VIN or ground without
damaging device.
Pin 3-lnput Supply. Bypass with 10!!F cap. Must always
be more positive than ground.
Pin 4-Reference. 2.SV can source or sink current. May be
shorted to ground or up to SV. Voltages in excess of SV
can damage the device.
Pin S-Comparator PNP Output. Pull up current source for
the comparator. May be connected to any voltage from VIN
to 36V more negative than VIN (operates below ground).
Short circuit protected. For example, if VIN is 6V then pin S
will operate to - 30V.
Pin 6-Comparator NPN Output. May be connected to any
voltage from ground to 36V more positive than ground
(operates above VIN). Short circuit protected.

Pins 7, 8-Comparator Inputs. Operates from ground to
VIN -1V. Comparator inputs will withstand 36V even with
VIN ofOV.
Pin 9-Ground.
Pin 10-Current Limit. Connecting this pin to ground decreases the regulator current limit to 3mA min. Leave open
when not used.
Pin 11-Feedback. This is the feedback point of the regulator. When operating, it is nominally at 2.SV. Optimum
source resistance is 200k to SOOk. The feedback pin should
not be driven below ground or more positive than SV.
Pin 13-Dropout Detector. This pin acts like acurrent
source from VIN which turns on when the output transistor
goes into saturation. The magnitude of the current
depends on the magnitude of the output current and the
input·output voltage differential.Pin current ranges from
S!!A to about 300!!A.

TYPICAL PERFORmAnCE CHARACTERISTICS

100m::. .

Regulator Load Regulation
0.3
_

PRE-LOAD = 100JUI

0.2

Supply Current

1 1 TJI~ II'~~~j'tl
II~J=12J,b

~

w

l_1°~11111
~

0.1

~

a

~

-0.1

it

-0.2

"'0.1_"

~
o

B
~

TJ=125'C

1

300
~

~
1'5

:0
§;

Regulator Short Circuit Current
350

~

250

§

200

iE

. _

'">-

1:l150

'"(3

=>

Ii:
100
o
B5
50

0.01

-0.3

0.1

83-8

1
10
100
OUTPUT CURRENT (mA)

1000

-

L---.!..J..J.J..llJll.....l-..L.ll.lJWJ....J...L.!...!Jellll-J...U..!.UJ.U

0.1

1
10
100
REGULATOR OUTPUT CURRENT (mA)

1000

o

r-- t-CURRENT LIMIT TIED TO GROUND -

-50

-10

3D

70

TEMPERATURE ('C)

110

150

LT1020
TYPICAL PERFORmAnCE CHARACTERISTICS
Dropout Voltage
~

Dropout Voltage
~

AVOUT 100mV

;;;!

>=

iIi

~
25

V

0.1

-

~
>- 0.1

::0

::0

;!

~

~

'"

1/

1:5
::0
ffi
a:

0.01
0.1

1
10
100
REGULATOR OUTPUT CURRENT (rnA)

1000

0.01
0.1

~

ll'a:!

0.01
1
10
100
REGULATOR OUTPUT CURRENT (rnA)

1000

I/V OIFF

100mA-

lOUT

500mV

10

\

\ 1\

'"

1\

V

0.01
10

\

11

1

100
REGULATOR OUTPUT CURRENT (rnA)

1000

,...
r--

60

"'\
IOUT=10mA

11111111!!!1

Ul

45

1\

IOUT=1m~\
VIN=10VDC,

Wp·p
Vour=5V

1\

/

L

1
70

80

90

100 110 120 130 140 150
TEMPERATURE ('C)

Supply Current at Dropout
10
TJ

55'C TO 125'C

100mA

lour 100mA

§.
>-

-lOUT 10mA

I

1\

=IOUT 1mA

II

la:'!

...,JOUT

::0

'-'

~

::0

0.1

'"

~ ==1 OUT

10mA

1mA

Vour=5V
TJ=-55'CTO 125'C
0.01

0.01

30
100
1k
10k
RIPPLE FREQUENCY (Hz)

=

:<

V

COUT=10~F

10

z

:E

0.1
0.2
0.3
0.4
0.5
0.6
REGULATOR INPUT-OUTPUT DIFFERENTIAL (V)

=i OUT

a:

35

r---

::;;

IOur=100mA

1\

&l 50

40

\

::0

I

10

65

55

I\-t

.>r-

lOUT 1mA ---I

10

Supply Current

Regulator Ripple Rejection
70

o

9::;;

\
lOUT 5mA~

'"
~

~
~
BE

/

::0

~ 0.1

'">=

1/

J

la:'!
\

::0

z

~
>-

lOUT 25mA \

'-'

'"
1rl
~
'"
>VOIFi

100

Regulator Minimum Load Current

'-'
a:

:8-

1
10
REGULATOR OUTPUT CURRENT (rnA)

100

1000

::0

10

0.1

Dropout Detector Current

Dropout Detector Current
100

>-

I DROPOUT DETECTOR = 1% lOUT

1/

a:

'"
1:5
::0

r-

-

~

~

a:

ffi
a:

-

25
>-

'"
,:..

H DROPOUT DETECTOR ~'O.1 % lOUT

iIi

~

>-

::0

5~

;;;!

>=

:=

DROPOUT DETECTOR

Dropout Voltage

100k

1
5
10
15
20
25
REGULATOR INPUT-OUTPUT DIFFERENTIAL (V)

o

0.1
0.2
0.3
0.4
0.5
0.6
REGULATOR INPUT-OUTPUT DIFFERENTIAL (V)

83-9

LT1020
TYPICAL PERFORmAnCE CHARACTERISTICS
Comparator Input Bias Current

Reference Regulation

,

100

i'...
'~

I
TJI=12~'C

90
;;(

""

80

a

........... t-.,

r---

'"~

50

I--

40

~ 30

o

°

-1.0 -0.5
0,5
1.0
REFERENCE OUTPUT CURRENT (mA)

-1

1.5

tl5
~

§:
>~-O.1

"- ........ l"-

V

V

-

nI1m~l-

0,1

1
10
100
REGULATOR OUTPUT CURRENT (mA)

1000

Jo LOA

i\JV

~

lli 4.0

~

~

3.5

;;(

3.0

'"o

50

i

2,5
2,0

'-'

0

10

4,5

~

~

~

TJ=25'C

o

VOUT=5V
5,0

§!

'"o

15

LT1020 Turn·On Characteristic

'"o
~

~

5,5
VIN=15V
VOUT=5V

0

~

c::

-0,6
-0,2 GND 0,2
0,6
COMMON-MODE VOLTAGE (V)
REFERRED TO PIN 9 (GND)

0.1

~

25

'"

~ 20

-

20

-4

1>-

- TJ= -55'C

60

111111111

35

J

~ 70

z
~

Feedback Pin Current
40

o w

~

00 M 1001W1~1M1M
TIME (ms)

VI!

RL =50011

-

If!

Ii'
Iff

RLrOIl

o
012345678
INPUT VOLTAGE (V)

APPLICATion HinTS
The LT1020 is especially suited for micropower system ap·
plications. For example, the comparator section of the
LT1020 may be used as a battery checker to provide an in·
dication of low battery. The dropout detector can shut·
down the system when the battery voltage becomes too
low to regulate. Another type of system application for the
LT1020 would be to generate the equivalent of split sup·
plies off of asingle power input. The regulator section pro·
vides regulated output voltage and the reference, which
can both source and sink current is then an artificial sys·
tem ground providing asplit supply for the system.
For many applications the comparator can be frequency
compensated to operate as an amplifier. Compensation

S3-10

values for various gains are given in the datasheet. The
comparator gain is purposely low to make it easier to fre·
quency compensate as an amplifier. Two outputs are
available on the comparator, the NPN output is capable of
sinking 10mA and can drive loads connected to voltages in
excess of the positive power supply. This is useful fordriv·
ing switches or linear regulators off of a higher input volt·
age. The PNP output, which is capable of sourcing 100!lA
can drive loads below ground. It can be used to make
negative regulators with the addition of an external pass
transistor. Both outputs can be tied together to provide an
output that swings from rail·to·rail for comparator or am·
plifier applications. Although it is not specified, the gain
for the PNP output is about 500·1000.

LT1020
APPLICATion HinTS
If the PNP output is being used, to maximize the gain, a
1-SIIA load should be placed upon the NPN output collector. This is easily done by connecting a resistor between
the NPN collector and the reference output. (Providing this
operating current to the NPN side increases the internal
emitter base voltages and maximizes the gain of the PNP
stage.) Without this loading on the NPN collector, at temperatures in excess of 7SoC, the gain of the PNP collector
can decrease by afactor of 2or 3.

Reference
Internal to the LT1020 is a 2.SV trimmed class B output
reference. The reference was designed to be able to
source or sink current so it could be used in supply splitting applications as well as a general purpose reference
for external circuitry. The design of the reference allows it
to source typically 4 or SmA and sink 2mA. The available
source and sink current decreases as temperature increases. It is sometimes desirable to decrease the AC out·
put impedance by placing an output capacitor on them.
The reference in the LT1020 becomes unstable with large
capacitive loads placed directly on it. When using an output capacitor, about 200 should be used to isolate the
capacitor from the reference pin. This 200 resistor can be
placed directly in series with the capacitor or alternatively
the reference line can have 200 placed in series with it and
then a capaCitor to ground. This is shown in Figure 1.
Other than placing large capacitive loads on the
reference, no other precautions are necessary and the
reference is stable with nominal stray capacitances.

i

4

EF

~ 10~F

The main regulator in the LT1020 is current limited at approximately 2S0mA. The current limit is stable with both
input voltage and temperature. A current limit pin, when
strapped to ground, decreases the output current. This allows the output current to be set to a lower value than
2S0mA. The output current available with the current limit
pin strapped to ground is not well controlled so if precise
current limiting is desired it should be provided externally
as is shown in some of the application circuits.
If the device is overloaded for long periods of time, thermal shutdown turns the output off. In thermal shutdown,
there may be some oscillations which can disturb external
circuitry. A diode connected between the reference and
feedback terminal provides hysteresis under thermal shut·
down, so that the device turns on and off with about a S
second period and there are no higher frequency oscilla·
tions. This is shown in Figure 2. This diode is recommended for most applications. Thermal shutdown temperature is set at approximately 14SO.
Like most other IC regulators, a minimum load is required
on the output of the LT1020 to maintain regulation. For
most standard regulators this is normally specified at
SmA. Of course, for a micropower regulator this would be
a tremendously large current. The output current must be
large enough to absorb all the leakage current of the pass
transistor at the maximum operating temperature. It also
affects the transient response; low output currents have
long recovery times from load transients. At high operating temperatures the minimum load current increases and

1EF
4

OUTPUT

+20[J

Overload Protection

OR

20

+

OUTPUT

110~F
-mODE ADDS FEEDBACK

Figure 1. Bypassing Reference

Figure 2. Minimizing Oscillation In Thermal Shutdown

83-11

LT1020
APPLICATion HinTS
having too low of a load current may cause the output to
go unregulated. Devices are tested for minimum load cur·
rent at high temperature. The output voltage setting resis·
tors to the feedback terminal can usually be used to provide the minimum load current.
Frequency Compensation
The LT1020 is frequency compensated by adominant pole
on the output. An output capacitor of 10llF is usually large
enough to provide good stability. Increasing the output
capacitor above 10llF further improves stability. In order to
insure stability, a feedback capacitor is needed between
the output pin and the feedback pin. This is because stray
capaCitance can form another pole with the large value of
feedback resistors used with the LT1020. Also, afeedback
capaCitor minimizes noise pickup and improves ripple
rejection.

With the large dynamic operating range of the output current, 10000:1, frequency response changes widely. Low AC
impedance capacitors are needed to insure stability.
While solid tantalum are best, aluminum electrolytics can
be used but larger capacitor values may be needed.
The CURRENT LIMIT pin allows one of the internal nodes
to be rolled off with a0.051lF capacitor to ground. With this
capacitor, lower values of regulator output capacitance
can be used (down to 11lF) for low « 20m A) output
currents. Values of capacitance greater than 0.051lF
degrade the transient response, so are not recommended.
If the CURRENT LIMIT pin is connected to GND, the current limit is decreased and only a 11lF output capacitor is
needed.
When bypassing the reference, a200 resistor must be connected in series with the capacitor.

TYPICAL APPLICATiOnS
Regulator With Output Voltage Monitor

~p--......_

....... ~~TPUT
10pF

LOGIC OUTPUT GOES LOW WHEN
VOUT DROPS BY 100mV

Driving Logic With Dropout Detector

83-12

LT1020
TYPICAL APPLICATions
Compensating the Comparator as an Op Amp

1 Amp Low Dropout Regulator

2,2k
AT Av=100,
SLEW RATE= +0,05V/"s

""-1---""'- Your 5V

-6V/~s

R2

lTl020

Rl
C2

-:reI

10k"

100k

150n"

':'

Av
1
10
100

Rl
33n
loon
10k

Cl
O,I~F

C2
O,OOI.F

':'

R2

0,047~F
0,002~F

Regulator with Improved Transient Response

5V Regulator
t"--'---1r--..- 5V

Vour

lTl020
GNO

= 1.5A

lMUST HAVE LOW
ESR, SEVERAL 100~F
CAPACITORS CAN BE
PARALLELED.

lOOk
10k

VOUT

"FOR CURRENT LIMIT

"'2O'-....__..--,_5V

LTl020

FB 11

GND

FB 11

Dual Output Regulator

GND
8 '-INPUT

r1r--~----~5V

t - - - - - - - - - - - _ - - - - - - - 5 V REG lOrnA

83-13

LT1020
TYPICAL APPLICATions
Maintaining Lowest 10 at Dropout

Dual Output 150mA Regulator

.;;....-......-1~.....-5V

t - -....- - - - - - - + - - - - - - - - 5 REG

150mA

'TRANSISTOR USED BECAUSE OF LOW LEAKAGE CHARACTERISTICS

'FOR TEMPERATURES GREATER THAN 70°C
REDUCE 51k RESISTORS TO 15k. la WILL
INCREASE.

Dual Output Posilive Regulator

Ballery Backup Regulator

BATTERY
I

S3-14

MAIN
POWER
INPUT

LT1020
TYPICAL APPLICATions
5V Regulator with Shutdown
Your 1-'2'-_......_ . - _...__

NC

LT1020
GND

~~TPUT

FB
11

LOGIC INPUT

1M

"TRANSISTOR USED BECAUSE OF LOW LEAKAGE CHARACTERISTICS.
TO TURN OFF THE OUTPUT OF THE LT1020
FORCE FB (PIN 11) > 2.5V.

Turn Off at Dropout

OUT "'2'--_ _--1>--......_ _. - _ OUTPUT

LT1020

O.OOl~F

J'"

FB 11

-=

DROPOUT
13

5 6

REF
1M

-=

1.5M

1M

OUTPUT TURNS OFF
AT DROPOUT. OUTPUT
TURNS ON WHEN:
VIN x R2 =2.5V
Rl +R2

TO.047~F

Current Limited 1Amp Regulator
2.2k

0.50"
VIN

VIN

Your
5V@lA
0.22~F

270n

lOOk

"SETS CURRENT
LIMIT BUT INCREASES
DROPOUT VOLTAGE BY
0.5V.

t MUST HAVE LOW
ESR. SEVERAL 100~F
CAPACITORS CAN BE
PARALLELED.

83-15

LT1020
TYPICAL APPLICATions
1Amp Regulator with Current Limit

lOOk

1.2k

ISC

t MUST HAVE LOW
ESR. SEVERAL 100~F
CAPACITORS CAN BE
PARALLELEO.

Logic Output on Dropout

1

1M

'OROPOUT"

S3-16

OV

S

VIN

TTL COMPATIBLE

LT1020
TYPICAL APPLICATions
Charge·Pump Negative Voltage Generator

1M
51k

1

51k

1N5819
DR EQUIVALENT

VOUT (NL) = -(V IN -1V)
VOUT (5mA) = -(VIN -3V)

VOUT
(-)

J2D~F

10 = 3DD"A

Charge·Pump Voltage Doubler

1M

1N5819
DR EQUIVALENT

51k

r--'II'I.-......------+---ir-~_1__i.r__.-+VOUT

D.DD33~FJ

-=
51k

1M
VOUT (NL) =2VIN-1V
VOUT (5mA)=2VIN-3V

lo=3DD"A

83-17

LT1020
TYPICAL APPLICATions
SOmA Battery Charger and Regulator

10"F

~----~~~r---------~~

5V

I

T
_

6V

BATTERY

3.9\)
VIN MUST BE GREATER THAN THE
BATTERY VOLTAGE PLUS 1.3V

Switching Preregulator for Wide Input Voltage Range

r ----

SWITCHING

I

REGULATOR OUTPUT

I

-pOsT REG. -

- - - -

-,

I

",--_ _ _ Vour

II

5V@100mA

I
I

I

1"+----J<>IVIr----+1

MAINTAINS LOW I Q « 100pA)
FOR ALL INPUT VOLTAGES
SWITCHER EFFIC. =85%
POST REG. EFFIC. =82%
OVERALL EFFIC. = 70%
SWITCHING REGULATOR OUTPUT =
2.5 x(1 +RA/RB). FOR A CLEAN OUTPUT
FROM THE LINEAR REGULATOR SETTO Vour+1.2V

83-18

..-----11-----+ I
I
RB

L _____ _

1M
+

2M
30k

I
I
220k
I
I
I
220k
I
_ ____ -1

LT1020
SCHEmATIC DIAGRAm

2~ :~'----_--J)(~.r--------'''''''''''-----

ro

g?~

l:2~

~~ ~~\~+=~--Ir~o~l--------~~~
2~

I

a '-

~

'+

f?",----'W'v---+

6 1

2~

I aA,

~

~

-,

-

~g

O~~----~I8~----------~~

t----t~------~h
~~3-~~__~

B

..L7u.,~

~z

~__o~Jr~~

g

2g
~ ____~~

___-____~~
Oi:~

83-19

LT1020
BLOCK DIAGRAm
REFERENCE
OUTPUT

OUTPUT
DROPOUT
DETECTOR

2.5V

NON·
INVERTING
INVERTING

.....- - - - - - - - -....- - - - - - - - - - - 1 9 GROUND

PACKAGE DESCRIPTiOn

Dimensions in inches (millimeters) unless otherwise noted.

J14 Package
Hermetic DIP

N14 Package
Plastic DIP
t------(1~~5~)
MAX

0025

~~;~~~\~-U~~~~~~~~~,

0092

I'

0055
{1.397)MAX

0.200
(5080)

MAX

~OO'50.060

V V!VI V V V[::1

S3-20

5241

{2"337i

PI~ NO 1

DIANOM

IDENT

~-II'rllntJ\Q

......A.."

LT1070/LTl071

TECHNOLOGY~--5-A-a-n-d-2-.5-A-H-ig-h-E-ff-ic-ie-n-c-y

FEATURES

Switching Regulators
DESCRIPTion

•
•
•
•
•
•
•
•
•
•

The LT1070 and LT1071 are monolithic high power switching regulators. They can be operated in all standard
switching configurations including buck, boost, flyback,
forward, inverting and "Cuk". A high current, high efficiency switch is included on the die along with all oscillator, control, and protection circuitry. Integration of all
functions allows the LT1070/LT1071 to be built in a standard 5-pin TO-3 or TO-220 power package. This makes it extremely easy to use and provides "bust proof" operation
similar to that obtained with 3-pin linear regulators.

Wide Input Voltage Range 3V-60V
Low Quiescent Current-6mA
Internal5A Switch (2.5A for LT1071)
Very Few External Parts Required
Self·Protected Against Overloads
Operates in Nearly All Switching Topologies
Shutdown Mode Draws Only 50ltA Supply Current
Flyback-Regulated Mode has Fully Floating Outputs
Comes in Standard 5-Pin Packages
Can be Externally Synchronized (Consult Factory)

The LT1070/LT1071 operates with supply voltages from 3V
to 60V, and draws only 6mA quiescent current. It can deliver load power up to 100 watts with no external power devices. By utilizing current-mode switching techniques, it
provides excellent AC and DC load and line regulation.

APPLICATions
•
•
•
•
•
•

Logic Supply 5V @ 10A
5V Logic to ± 15V Op Amp Supply
Offline Converter up to 200W
Battery Upconverter
Power Inverter (+ to - ) or (- to +)
Fully Floating Multiple Outputs

USER NOTE:
This data sheells only inlended to provide specifications. graphs, and a general functional description of
the LT10701LT107t. Application circuits are included to show Ihe capability oflhe LT1070ILT107t. Acom·
plete design manual (AN·19) should be obtained to assist in developing new designs. This manual con·
tains acomprehensive discussion of both the LT1070 and the external components used with it, as well as
complete formulas for calculating the values of these components. The manual can also be used for the
LT1071 by factoring in the lowerswitch currenl rating.

The LT1070/LT1071 has many unique features not found
even on the vastly more difficult to use low power control
chips presently available. It uses adaptive anti-sat switch
drive to allow very wide ranging load currents with no loss
in efficiency. An externally activated shutdown mode reduces total supply current to 50ltA typical for standby
operation. Totally isolated and regulated outputs can be
generated by using the optional "flyback regulation
mode" built into the LT1070/LT1071 , without the need for
opto-couplers or extra transformer windings.

TYPICAL APPLICATiOn

Maximum Output Power'

Boost Converter (5V to 12V)

100

1

5V

V

80

BUCK'BO~ST -

I
~
12V,1A
ILn071.0.5A)

~

~

/

60
40

10.7k

/U

20

f/u.

:/
1.24k

Vo~30V,_

I
L -"'- FLYBACKBOOST/ L
J/L ISOLATED= ~

...-

-

BUCK·BOOST
Vo~5V-

-

o
o

10
20
30
40
50
INPUT VOLTAGE IV)
-ROUGH GUIDE ONLY. BUCK MODE
POUT~5AxVOUT. SPECIAL TOPOLOGIES
DELIVER MORE POWER.
-'DIVIDE VERTICAL roWER SCALE
BY 2 FOR Ln071

83-21

LT1070/LT1071
ABSOLUTE mAXimum RATinGS

PACKAGE/ORDER InFORmATion
ORDER PART NUMBER

BOTTOM VIEW

Supply Voltage
LT1070171HV (See Note 1) ......................... 60V
LT1070171 (See Note 1) ........................... 40V
Switch Output Voltage
LT1070171 HV (Note 2) ............................. 75V
LT1070171 ....................................... 65V
Feedback Pin Voltage (Transient, 1ms) ............. ± 15V
Operating Junction Temperature Range
LT1070171 HVM, LT1070171 M........ - 55°C to +150°C
LT1070171 HVC, LT1070171C (Oper.) ..... O°C to +100°C
LT1070171 HVC, LT1070171C (Sh. Ckt.) ... O°C to +125°C
Storage Temperature Range .......... - 65°C to +150°C
Lead Temperature (Soldering, 10sec) ............. 300°C

VS~VC
o

,0

4

2
03

V,N

0

LT1070/LT1071 HVMK
LT1070/LT1071 MK
LT1070/LT1071 HVCK
LT1 070/LT1 071 CK

CASE
IS GND
FB

4 LEAD TO-3
FRONT VIEW

o
LT1 070/LT1071 HVCT
LT1070/LT1071CT
Vc

5 LEAD TO-220

Note1: Minimum switch "on" time for the LT1070/LT1071 in current limit is
'" 1.0~sec. This limits the maximum input voltage during short circuit
conditions, in the buck and inverting modes only, to ",35V. Normal
(unshorted) conditions are not affected. Mask changes are being imple·
mented which will reduce minimum "on" time to :s 1~sec, increasing
maximum short circuit input voltage above 40V.lf the present LT10701
LT1071 (contact factory for package date code) is being operated in the
buck or inverting mode at high input voltages and short circuit conditions
are expected, aresistor must be placed in series with the inductor, as
follows:

The value of the resistor is given by:
R= t· f • VIN - Vf _ RL
I(LlMIT)
t = Minimum "on" time of LT1070/L T1071 in current limit, '" 1ps
f Operating frequency (40kHz)
Vf = Forward voltage of external catch diode at I(LlMIT)
I(LlMIT)= Current limit of LT1070 (",8A), LT1071 (",4A)
RL = Internal series resistance of inductor
Note 2: Consult factory for availability oILT1070HV and LT1071 HV units
rated at 90V maximum switch voltage.

=

ELECTRICAL CHARACTERISTICS

Unless otherwise specified, VIN =15V, Vc =O.5V, VFB =VREF, output pin open.
SYMBOL
VREF

PARAMETER
Reference Voltage

CONDITIONS
Measured at Feedback Pin

IB

Feedback Input Current

VFB VREF

gm

Av

10

Error Amplifier
Transconductance
Error Amplifier Source or
Sink Current
Error Amplifier Clamp
Voltage
Reference Voltage Line
Regulation
Error Amplifier Voltage
Gain
Minimum Input Voltage
Supply Current
Control Pin Threshold
NormailFlyback Threshold
on Feedback Pin

83-22

=

/llc=

±25~A

Vc= 1.5V
HI Clamp, VFB = 1V
Lo Clamp, VFB = 1.5V
3V:sVIN:sVMAX

•

TYP
1.244
1.244
350

MAX
1.264
1.274
750
1100
6000
7000
350
400
2.3
0.52
0.03

UNITS
V

800

2000

VN

2.6
6
0.9

3.0
9
1.08
1.25
0.54

V
rnA
V

0

•
•

3000
2400
150
120
1.8
0.25

4400
200

0.38

•

O.7V :s Vc:s 1.4V

3V:sV IN :sVMAX, Vc=0.6V
Duty Cycle = 0

MIN
1.224
1.214

500

•
•

0.8
0.6
0.4

0.45

nA
~mho

~A

~

V
V

'ioN

V

LT1070/LT1071

ELECTRICAL CHARACTERISTICS

Unless otherwise specified, VIN =15V, Vc =O.5V, VFB =VREF, output pin open.
SYMBOL

VFB

BV

PARAMETER
Flyback Reference Voltage

CONDITIONS
IFB= 50pA

Change in Flyback
Reference Voltage
Flyback Reference Voltage
Line Regulation
Flyback Amplifier
Transconductance (gm)
Flyback Amplifier Source
and Sink Current
Output Switch Breakdown
Voltage (Note 2)

0.05:5IFB:51mA
IfB = 50pA
3V:5VIN:5VMAX
lllc= ±10pA
Vc=1.5V Source
IfB=50pA Sink
LTl070/LT1 071
3V:5V IN :5VMAX
Isw =5mA
LT1070HV/LT1071 HV

Output Switch (Note 1)
"On" Resistance

VSAT

LT1070
Isw =5A
Isw =2.5A LT1071
LT1070
LT1071

Control Voltage to Switch
Current Transconductance
Switch Current Limit

ILiM

lliiN
llisw

Supply Current Increase
During Switch On·Time

f

Switching Frequency

•

••
•
•

MIN
15
14
4.5

TYP
16.3

UNITS
V

6.8

MAX
17.6
18
8.5

0.01

0.03

%N

150

300

500

pmho

15
25
65
75

32
40
90
90

50
70

0.15
0.3

0.24
0.5

V

pA
pA
V
V
(J
(J

8
4

Duty Cycle = 50%
Duty Cycle = 80%

LT1070

Duty Cycle = 50%
Duty Cycle = 80%

LT1071

••
•

•
•

DC (max)

Maximum Switch Duty Cycle
Flyback Sense DelayTime
Shutdown Mode
3V:5VIN:5VMAX
Supply Current
Vc=0.05V
Shutdown Mode
3V:5VIN:5V MAX
Threshold Voltage
..
The. denotes the specificatIOns which apply over the full operating temperature range.
Notel: Measured with Vc in hi clamp, VFB = 0.8V.
Note 2: Consult factory for availability of LTl070HV and LT1071 HV units rated at 90V maximum switch Voltage.

•

AN
AN

5
4

13
10

A
A

2.5
2

7
6

A
A

25

35

mAlA

40

45
47
97

kHz

35
33
90

100
50

92
1.5
100
150

250

%
ps
pA

250
300

mV
mV

TYPICAL PERFORmAnCE CHARACTERISTICS
Switch Current Limit vs Duty Cycle

Maximum Duty Cycle

16
14

k

12

>-

~

10

>-

z

Ii!

'"'"'-'
:t:
~

;;:

'"

B

----

r-

r-.

-- .z:r-- -

I4

o
o

10

~oc

olc . . . r-. r-.

r-f:

~ -~

I-

r- r-

20 30 40 50 60 70 80 90 100
DUTY CYCLE (%)
"DIVIDE CURRENT BY 2 FOR LT1071

~

2.2

95

2.0

94

w
~
'-'

b 93
i':
::0
<=>

Flyback Blanking Time

96

92

./

V

.......-

V

/'

v

/

1.8

V

/V

.,./

/

1.4

.......- ' /

91

1.2

90
-75 -50 -25 0 25 50 75 100 125 150
JUNCTION TEMPERATURE (OC)

1.0
-75 -50-25 0 25 50 75 100 125150
JUNCTION TEMPERATURE (OC)

83-23

LT1070/LT1071
TYPICAL PERFORmAnCE CHARACTERISTICS
Minimum Input Voltage
2.9
2.8

'"~ 2.7
§;
~ 2.6

t-......

SWITCH CURRENT

::;;

2.5

i'=~ i'-

" i'-

,
~ 'i

=>

!;;( 0.6

'-...

'"
:c

f"'.

Z

"

V ~
/~ ~ ~C

~

0.4

~~

3:

2.4

'" 0.2
2.3
-75 -50 -25

o
0 25 50 75 100 125 150
TEMPERATURE ('C)

line Regulation

I

'"

20

I I

I

'"
>

19

IRe FEEDBACK
I I .1 kll1

18

I

i3'"

-55'C

u
'"
«

'"

~V

~

15
-75 -50 -25

3
4
5
6
SWITCH CURRENT (AI"
·DIVIDE CURRENT BY 2 FOR LT1071

§.

3

'"
'"

«

o

1

0 -Tj=~~

as

1.248

700

~ 1.246

:[ 600

V\~

~ 1.244

:z

,

................

-2

ffi

~ -3

-4

-5

f-

':J

~

~

1.242

I

/

10

20
30
40
INPUT VOLTAGE (V)

50

15

/

;:- 100

iE
c:
c:
=>
c:

80

Tj= -55',/ /

u

!!;! 60
0:

'"

40

/. ~

20

o~
o

/

,,/

V /

V

Tj2:25'C

/

~ r--

12

~

11

I

...-

B 10
;r

1
-1J J CY~

2

3

·AVERAGE lT1070 POWER SUPPLY CURRENT IS
FOUND BY MULTIPLYING DRIVER CURRENT BY
DUTY CYCLE, THEN ADDING QUIESCENT
CURRENT.

-75 -50 -25

r-

-

I

9

;;:

'"I"

./
Vc=50m';:'"

~ 100

I
CYCL~

I--

I

-

10% DUTY CYCLE
0%

130

1 110

I SWITCH :;;10mA

50% DUTY

140

120

I

.J.......---r

0 25 50 75 100 125 150
TEMPERATURE ('C)

Supply Current vs Input Voltage
Shutdown Mode

....-

0% DUjY

-- -

c:

f-

---

o
0 25 50 75 100 125 150
TEMPERATURE ('C)

DUT~ CYCLJ

g§
:0
U

....... f -

90

/

~ 80

VC=OV _

;;: 70
60

.,./

,

/

50

--

----

--

./

40

5
SWITCH CURRENT (A)

S3-24

T=2~'C

13

!

-

.........

0;

Supply Current vs Input Voltage'
14

120

"- ........

tJ:

1.234
-75 -50 -25

140

........

'" 400
«

100

160

E

500

1.236
60

/

~

u

~ 1.238

1.240

Driver Current' vs Switch Current



'"'
-16;
_142
-12~
~

""

r.........

FEEDBACK PIN CURRENT ........
(AT THRESHOLD)

-

200

B

.........

.......

-24

-10""

125

~

120

V V

a: 100
=>

'"

SO

iii

60

~

20

-4
150

o

~
~

300
250

;,jl
:; 200

'">

g§ 150
u

>

100
50

V

(out OF J PIJ)

_~;i--

.......

.-

......

-

VOLTA~

V

V

;;-

-200 '"'
~

iii

-150 ~

l-I--

~

-100-

VO~TAGJ

;;:
§.

~

1000
500

o

10

20

30 40 50 60 70 SO
Ve PIN VOLTAGE (mV)

90 100

-75 -50 -25

i

4

'"
w

~

Ve
IS REDUCED UNTIL
RE~ULA~OR C~RRE~T DR1DPS ~EL013001A

-50

6

9

-

VSUPPLY

0 25 50 75 100 125 150
TEMPERATURE (OC)

Feedback Pin Clamp Voltage
550

...

\I

§; 300

'"

~ 250
co

3

~ 200

2

150

1 -L ]
515°C

I"'--

i'~ r- - r-

i"'-

~ 350
:;

60V

VSUPPLY - 3V

t--C~RRJNT OIUT O~ FE~DBAbK piN- t I.........

! 400

7

5

~~
I........

12~oC
r::::: ~

150,;c i"-

I

100

o

o

0
-75 -50 -25 0 25 50 75 100 125 150
TEMPERATURE (OC)

t--

'"
(52000

Ve = 0.6V

'3

~

'"~ 1500

500 t-

-250'"
z

r-

"" 2500
g

...... ~

450

-300

",V (FB PIN)

~ 3000

-350

l-

...

l3500

10

-400

Gm -

'0 4000

Idle Supply Current vs
Temperature

400
CULEJ

~t-;1~C"""",

V

_ At. (Ve PIN)

4500

r=

40

-6

Shutdown Thresholds
350 f--

~j=115;~

V

!---"

-S ]:

r- "

25
50 75 100
TEMPERATURE (OC)

e-

Error Amplifier Transconductance
5000

-75 -50 -25

J

50

o

0 25 50 75 100 125 150
TEMPERATURE (OC)

Switch "Off" Characteristics

l- t"""--

--

t; t- t"""--

0.1 0.2 0.3 0.4 0.5 0.6 0.7 O.S 0.9 1.0
FEEDBACK CURRENT (mA)

Vc Pin Characteristics

1000

300
I
I
I
I
VFB - 1.5V (CURRENT INTO Ve PIN)

900
200
BOO

~ 700

~ 600

'3
'"
i'i
t=
i;

500
400

VSUPPLY
'VSUPPLY

= ;;.::...

~P\~V7f

VSUPPLY = 55V
= 40V

1( 7.ir-

I-

~

'-

§

/

100

/
II

=>
~ -100

c::

300

;; - 200

200

o

o

-400
10

20 30 40 50 60 70
SWITCH VOLTAGE (V)

SO 90 100

I
I

I
I

T( = 25°C

I
I
I
I
I
I
I
I
VFB = O.BV (CURRENT OUT OF Ve PIN)_
:1 I I
I I ~
~
I
I
I
I
J
I
I
I
I
I
0.5
1.0
1.5
2.0
2.5
Ve PIN VOLTAGE (V)

i

-300

100

I
I

o

83-25

LT1070/LT1071
BLOCK DIAGRAm

0.021]
(0.041] LT1071)

LT1070/LT1071 OPERATion
The LT1070/LT1071 is a current mode switcher. This means
that switch duty cycle is directly controlled by switch current
rather than by output voltage. Referring to the block diagram,
the switch is turned "on" at the start of each oscillator cycle.
It is turned "off" when switch current reaches a predetermined level. Control of output voltage is obtained by using
the output of a voltage sensing error amplifier to set current
trip level. This technique has several advantages. First, it has
immediate response to input voltage variations, unlike ordinary switchers which have notoriously poor line transient
response. Second, it reduces the 90° phase shift at midfrequencies in the energy storage inductor. This greatly simplifies closed loop frequency compensation under widely
varying input voltage or output load conditions. Finally, it
allows simple pulse-by·pulse current limiting to provide maximum swit9h protection under output overload or short condi-

83-26

tions. Alow-dropout internal regulator provides a2.3V supply
for all internal circuitry on the LT1070/LT1071. This lowdropout design allows input voltage to vary from 3V to 60V
with virtually no change in device performance. A 40kHz oscillator is the basic clock for all internal timing. It turns "on"
the output switch via the logic and driver circuitry. Special
adaptive anti-sat circuitry detects onset of saturation in the
power switch and adjusts driver current instantaneously to
limit switch saturation. This minimizes driver dissipation and
provides very rapid turn-off of the switch.
A 1.2V bandgap reference biases the positive input of the error amplifier. The negative input is brought out for output
voltage sensing. This feedback pin has a second function;
when pulled low with an external resistor, it programs the
LT1070/LT1071 to disconnect the main error amplifier output

LT1070/LT1071
l Tl070/l Tl071 OPERATion
and connects the output of the fly back amplifier to the com·
parator input. The LT1070/LT1071 will then regulate the value
of the flyback pulse with respect to the supply voltage. This
flyback pulse is directly proportional to output voltage in the
traditional transformer coupled flyback topology regulator.
By regulating the amplitude of the flyback pulse, the output
voltage can be regulated with no direct connection between
input and output. The output is fully floating up to the break·
down voltage of the transformer windings. Multiple floating
outputs are easily obtained with additional windings. A spe·
cial delay network inside the LT1070/LT1071 ignores the leak·
age inductance spike at the leading edge of the flyback pulse
to improve output regulation.

The error signal developed at the comparator input is brought
out externally. This pin 01cl has four different functions. It is
used for frequency compensation, current limit adjustment,
soft starting, and total regulator shutdown. During normal
regulator operation this pin sits at a voltage between O.9V
(low output current) and 2.0V (high output current). The error
amplifiers are current output (gm) types, so this voltage can
be externally clamped for adjusting current limit. Likewise, a
capacitor coupled external clamp will provide soft start.
Switch duty cycle goes to zero if the Vc pin is pulled to ground
through a diode, placing the LT1070/LT1071 in an idle mode.
Pulling the Vc pin below O.15V causes total regulator shut·
down, with only 50JLA supply current for shutdown circuitry
biasing. See AN·19 for full application details.

TY PIC AlAP PliC ATIO ns (Note that maximum output currents are divided by 2for LT1071.)
External Current Limit

Driving High Voltage FET

v,

LT1070lLT1071

R2

10-20V-=-

External Current Limit

Negative to Positive Buck·Boost Converter

Vsw

UNO

Rl
lk

Vc

FB

R2
C2

Cl

1000pF

NOTE THAT THE LT1070/LT1071

L---4-....4--"I'~-+----+ GNO PIN IS NO LONGER COMMON

RS
"REQUIRED IF INPUT LEADS", 2'
""PULSE ENGINEERING 92113

TOVIN(-)

83-27

LT1070/LT1071
TYPICAL APPLICATions
Totally Isolated Converter
OPTIONAL
OUTPUT FILTER

V,N
5V

N~0.875~7:8

FOR VOUT= 15V

'REQUIRED IF INPUT LEADS 0;, 2"

v

'~

j:gjJ-tOFF

+V t (Vt~DIODE FORWARD VOLTAGE)

VOUT
.OV

SWITCH VOLTAGE

L-

tON

---'~ SECONDARY VOLTAGE
I

N· VIN

Flyback Converter
L2

~
2DO"FT
OPTIONAL -::FILTER

...l

I

~ ~PRIMARYFLY8ACKVOLTAGE~

V

IN ~

~

OV

VOUT

~

OV~

R2
1.24k

83-28

+ V,

mN'VIN

~Lt

AI

R1
3.14k

'REQUIRED IF INPUT LEADS 0;,2"

CLAMP TURN·ON
SPIKE

VSNUB

1O"H

VOUTN+ V,
LT1070/LT1071 SWITCH VOLTAGE
AREA "a" ~ AREA "b" TO MAINTAIN
ZERO DC VOLTS ACROSS PRIMARY
SECONDARY VOLTAGE
AREA "c" ~ AREA "d" TO MAINTAIN
ZERO DC VOLTS ACROSS SECONDARY

IpRI

D:1±ri[c
o=rcI\lw
01 nIe

o~
-II-t~ (I PAl) (LLl
VSNUB

PRIMARY CURRENT

SECONDARY CURRENT

LT1070 SWITCH CURRENT

SNU8BER DIODE CURRENT

LT1070/LT1071
TYPICAL APPLICATions
Positive to Negative Buck,Boost Converter
03 t
1N4001

'REQUIRED IF INPUT LEADS",2'
"PULSE ENGINEERING 92113

r-I~""----"""1~""'M~""'---_~6~30V

t TO AVOID START·UP PROBLEMS
FOR INPUT VOLTAGES BELOW 10V,
CONNECT ANODE OF 03 TO V,N ,
AND REMOVE R5. C1 MAY BE
REDUCED FOR LOWER OUTPUT
CURRENTS. C1 ~1500"F)(IOUTI
FOR 5V OUTPUTS, REDUCE R3
TO 1.Sk, INCREASE C2 TO 0.3"F,
AND REDUCE R6 TO 100n.

LT1Q70
02
1N914

GNO

Voltage Boosted Boost Converter

Current Boosted Boost Converter

I

01

>e-..t-t-....-

VOUT
28V
4A

R1
27k
C1

R2
1.24k

83-29

LT1070/LT1071
TYPICAL APPLICATions
Negative Buck Converter

'REQUIRED IF INPUT LEADS" 2"
"PULSE ENGINEERING 92113

Negative Current Boosted Buck Converter

R1

vOUT-O.6V
1mA

1.24k

Positive Buck Converter
V,N ......- -.....- - - - - - - - - . . . . ,

0,

R4
10n

' - - -.....--:;;--1~...:....~........:..-....- -......J"t...,..,n........4+-_+_ 5V. 4.5A

'REQUIRED IF INPUT LEADS,,2"
"PULSE ENGINEERING 92112

83-30

LT1070/LT1071
TYPICAL APPLICATions
Negative Boost Regulator

Driving High Voltage NPN
C1

02

Vsw
R1
27k

. LT1010

RO
(MINIMUM

LOAD)

R2
1.24k

_lV5~ -

C2
0.22"F

lTl07QILTl071
01

.....rt...,..,'"'-~--......--~~--4--+4-4-~~~~@lA

GND

·REOUIRED IF INPUT LEADS" 2"

·SETS I, (ON)
··SETS I, (OFF)

Negative Input·Negative Output Flyback Converter
"::'

R3
1k

VlN

VSW

R2
5k

C1

01
2N3906

-VOUT

R1~ IVOUTI-1.6V

GNO

200"A
R4
1.24k
C2
-VIN

Forward Converter
T1

L1
01

70 JLH

VOUT

5V
6A

R1
3.74k
V 1N _

20-30V-

R2
1.24k

83-31

LT1070/LT1071
TYPICAL APPLICATions
Positive Current Boosted Buck Converter
~dU-------""'-------<'-"""'---""-""'"

L..._ _-<~_-'< 0.05
z
o

~

~

~

~

)". k'"

Tj-150°C
\Tj=25°C
Tj= -55°C

--

-0.05

~
o

r--

;:: -0.10

5"
>-

5-0.15

o

o

1

234

5

6

7

OUTPUT CURRENT (A)

8

9

W

5 10 15 20 25 30
INPUT/OUTPUT DIFFERENTIAL (V)

35

-0.20
-50 -25

0

-....

25 50 75 100 125 150
TEMPERATURE (OC)

83-35

LT1083/LT1084/LT1085
TYPICAL PERFORmAnCE CHARACTERISTICS
LT1084 Short Circuit Current

LT1084 Dropout Voltage

LT1084 Load Regulation

10

0.10

-INDICATES GUARANTEED TEST POINT

All5A
0.05

-55'C"Tj,,150'C
"--olc

"TJ~ 125'C

-

~~

-s;: V

i"""""

...........,:

r- r.....

~
~

~

~
~

1'.."\ ~-55'C

Tj= -55'C

o
o

2
3
4
OUTPUT CURRENT (A)

10

20

;:: -0.10
0-0.15

25

30

-0.20
-50 -25

35

---.... --- ."

~

Tj=25'C

IFiLL

LOy

o
1

2

3

OUTPUT CURRENT (A)

Minimum Operating Current

o

5

~1=31

~w-0.05

!3'"

r-. r---.

'S'-0.10

~~

10
15
20
25
30
INPUT 10UTPUT DIFFERENTIAL (V)

125 150

~

[55'cl~ ~

TJ= -55'C

100

o

.........

5

f30-0.15

\~ ~

o

75

_ 0.05
~
z

/ : b.. 25'C
V ~ ~V150'C

::::::

'Tj=150'C

o

50

0.10

I";::.- b-~

~

25

LT108S Load Regulation

LT1 085 Short Circuit Current

-55'C "Tj,,150'C

I--::::::

0

'"

TEMPERATURE ('C)

_ INDICATES GUARANTEED TEST POINT

!,

.......

'"

5

INPUT10UTPUT DIFFERENTIAL (V)

LT108S Dropout Voltage

O'C "Tj,,125'C

r-- .........

o

-\\

15

-0.05

§

""- \\\\\\

TJ=25'C

I FULL LOAD

o

~

~ :-- 25'C

'Tj=150'C

o

z
o

/"" ~ ~150'C

35

-0.20
-50 -25

Temperature Stability

0

25 50
75 100
TEMPERATURE ('C)

..........

125 150

Adjust Pin Current
100

10

90
~ 1.260

f--t--+-+---+---+-+---t---I

w

~

~~

Tj=150'C\
Tj=25'C

.> / / '/
"\

o

o

83-36

1.250

u

as
t!i

~

.!. ~ ./

t-

'"!3
~

b.--~=*"""-I-..j...-+"""",~==+~

80
70

~

60

u

50

t-

40

=>
z
0:

.

 30

a

--

V
"./'

I-- f-""

V

20
10

Tj= -55'C

5
10
15
20
25
30
INPUT 10UTPUT DIFFERENTIAL (V)

1

35

1.230 '-----"---"-_.1---'----'_-'----'----'
-50 -25 0
25
50 75 100 125 150
TEMPERATURE ('C)

o

-50 -25

0

25 50
75 100
TEMPERATURE ('C)

125

150

LT1083/LT1084/LT1085
TYPICAL PERFORmAnCE CHARACTERISTICS
LT1083 Ripple Rejection
100

90

90

80

80

~

70

co

60

z

~
~
w

~

"-

"-

'"

LT1083 Ripple Rejection vs Current

100

co

70

Z

60

"C

co

~
UJ
'"

50
40

~

30

'"

20
10
10k
1k
FREQUENCY (Hz)

90

fR-120Hz

80

VRIPPLE ,,3Vp-p
f R=20kHz

50

-r--

70
VRIPPLE,,0.5 vp-p

i"- t--.

40

~

~

~

VOUT=5V

10

Cou,=2Y

.........

'"

40
30

20

100k

LT1083MK

60

ffi 50
;0

30

o
100

LT1083 Maximum Power Dissipation'
100

20

CADJ=25~F

10

2

r'"

LT1083CP
......

~

"

08 fCK

o

o

[\

3
4
5
6
OUTPUT CURRENT (A)

50

60 70

\

f--

1\

\

\

80 90 100 110 120 130140 150
CASE TEMPERATURE (0G)

, AS LlMITEO 8Y MAXIMUM JUNCTION TEMPERATURE

LT1084 Ripple Rejection
100

90

90

80

BO

~

70

co
i=

60

z

LT1084 Ripple Rejection vs Current

100

co

:s
~

'"

40

w

~

'"

~

""-

30

'"

20

70
60

~

10
10

100

1k
10k
FREOUENCY (Hz)

fR- 20kHz
VRIPP\E" 0.5Vp-p

40

-

........

~

"'-....

~~10RJMK

1""'-

40

ffi 30

~

"'-

20

"

" "'LT1084CK

VOUT=15V
CAOJ= 25~F
COUT= 25"F

20

'\

~084C~

10

I

o
o

100k

-

30

10

0

50

VRIPPLE < 3Vp-p

50 -

50

UJ

fR=120~Z-

~

fIl

LT1084 Maximum Power Dissipation *
60

o
2
3
OUTPUT CURRENT (A)

\

\
50 60

70

-

BO 90 100 110 120 130 140 150
CASE TEMPERATURE (OC)

'AS LIMITED BY MAXIMUM JUNCTION TEMPERATURE

LT1 085 Ripple Rejection

LT108S Ripple Rejection vs Current

100

~

90

90

80

80
co

70

:s
z
co

z

co

ti

~
~

w
~
""-

'"

LT108S Maximum Power Dissipation'

100

~
w

40

~

""-

30

'"

20
10

50

I

70
fR=20kHz
60

VRIPPLE,,0.5 vp-p

50
40

VOUT=5V
CAOJ=25"F

20

o
10k
1k
FREOUENCY (Hz)

100k

--

40
LT10B5MK

~ 30

.........

ffi

~

-

20

30

10
100

120Hz

fR

VRIPPlE" 3Vp-p

"

10

COUT=25~F

I

o

0.5

o
1.0
1.5
2.0
OUTPUT CURRENT (A)

2.5

3.0

50 60 70

I.........
~
.........

"

"

LT1085C~\

~

LT1~B5C(\

1\

BO 90 100 110120 130140 150
CASE TEMPERATURE (OC)

'AS LIMITED BY MAXIMUM JUNCTION TEMPERATURE

83-37

LT1083/LT1084/LT1085
TYPICAL PERFORmAnCE CHARACTERISTICS
LT1083 Load Transient Response
~

_

I

0.4

~~

~~

CAOJ=O -

~~

0.2
0

25 c

-0.2

~~

rT

II~tDJJ1~F t-~I

~-O.2

~

-

0

as
4

'-'
Q

't J

0

o

50
TIME (/IS)

4

13

2

~

9

0

100

~:[

1-

~~G5

o

Q

-50
-100
-150

~

1/
v

14

II

0

I

~

14

§
zo<
-~

13

~

200

COUT= lO~F TANTALUM

1 ~oUTI=10V
1 VIN=13V

\,[REfA,! 101mA
100

lT1085 Line Transient Response
60

I

12

'If
- -t-

I
CIN=1~F

50
TIME (/IS)

40

~~

11

~~

\

20

a

5~
~ -20

t- 17 cA~=d

I
I

LI'J

l\lJtADJ =1J:-

U

Ll

I

-40
VOUT=10V
IOUT=0.2A
CIN= 1~F TANTALUM
COUT= 1O~F TANTALUM

-60

~ 14

e-z

~~

1

- ~
Q

Q

100
TIME (/IS)

t--

50
TIME (~s)

-60

~

r-'I

IL

-40
VOUT=10V
IOUT=0.2A
CIN= 1~F TANTALUM
COUT= 10~FTANTALUM

.I

f

1

\[RELiADrOr

l\
I - ~"cAOJ=1~F

1\1.
IV

.A

::Oz

!

-0.3

f-- CAr O

1-/

50

-0.2

LT1084 Line Transient Response
60

CA~=1~F _ t--

I

t-- 7-;CADJ=O f-- t--

~ 0.1

VOUT 10V
\ VIN=13V

II

CADJ=1~F

CADJ=O-

z

CIN= 1~F
f-- - COUT= 1O~F TANTALUM - t-- t--

e-

iE

LT1083 Line Transient Response
150

-

n

0.2

~ 0
~-01

"' J

V

Q

100

"

''/

-0.4

I,
1
VOUT=10V
I VIN=13V
~ tRElOAO 1'1 o~mA

ClDJJ~F

;; 0.2
Q

-0.6

5:

9

lT1085 Load Transient Response
0.3

CADJ=OA

0.4

:;-

CIN=1~F
COUT=10~F TANITALiM- t--

-0.4 I - -

~

LT1084 Load Transient Response
0.6

0.6

100
TIME (/IS)

200

13
12

VOUT=10V
IOUT=0.2A
CIN =1~F TANTALUM
COUT=10~ TANTALUM

It J
I
100
TIME (/IS)

200

APPLICATion HinTS
The LT1083 family of three terminal adjustable regulators
is easy to use and has all the protection features that are
expected in high performance voltage regulators. They are
short circuit protected, have safe area protection as well
as thermal shutdown to turn off the regulator should the
temperature exceed about 165°C.
These regulators are pin compatible with older three
terminal adjustable devices, offer lower dropout voltage
and more precise reference tolerance. Further, the reference stability with temperature is improved over older
types of regulators. The only circuit difference between
using the LT1083 family and older regulators is that they
require an output capacitor for stability.

S3-38

Stability

The circuit design used in the LT1083 family requires the
use of an output capacitor as part of the device frequency
compensation. For all operating conditions, the addition
of 150~F aluminum electrolytic or a22~F solid tantalum on
the output will ensure stability. Normally, capacitors
much smaller than this can be used with the LT1083. Many
different types of capacitors with widely varying characteristics are available. These capacitors differ in capacitor
tolerance (sometimes ranging up to ± 100%), equivalent
series resistance, and capacitance temperature coefficient. The 150~F or 22~F values given will ensure stability.

LT1083/LT1084/LT1085
APPLICATion HinTS
When the adjustment terminal is bypassed to improve the
ripple rejection, the requirement for an output capacitor
increases. The values of 22/iF tantalum or 150/iF aluminum
cover all cases of bypassing the adjustment terminal.
Without bypassing the adjustment terminal, smaller
capacitors can be used with equally good results and the
table below shows approximately what size capacitors are
needed to ensure stability.
Recommended Capacitor Values
Input

Output

10~F
1O~F

1O~F Tantalum, 50~F Aluminum
22~FTantalum, 150~F Aluminum

Adjustment
None
20~F

Normally, capacitor values on the order of 100/iF are used
in the output of many regulators to ensure good transient
response with heavy load current changes. Output capacitance can be increased without limit and larger values of
output capacitor further improve stability and transient reo
sponse of the LT1083 regulators.
Another possible stability problem that can occur in
monolithic Ie regulators is current limit oscillations.
These can occur because, in current limit, the safe area
protection exhibits a negative impedance. The safe area
protection decreases the current limit as the input-to·
output voltage increases. That is the equivalent of having
a negative resistance since increasing voltage causes cur·
rent to decrease. Negative resistance during current limit
is not unique to the LT1083 series and has been present on
all power Ie regulators. The value of the negative reo
sistance is a function of how fast the current limit is
folded back as input-to·output voltage increases. This
negatiye resistance can react with capacitors or inductors
on the input to cause oscillation during current limiting.
Depending on the value of series resistance, the overall
circuitry may end up unstable. Since this is asystem problem, it is not necessarily easy to solve; however it does not
cause any problems with the Ie regulator and can usually
be ignored.

protection diodes between the adjustment pin and the out·
put and from the output to the input to prevent overstress·
ing the die. The internal current paths on the LT1083
adjustment pin are limited by internal resistors. Therefore,
even with capacitors on the adjustment pin, no protection
diode is needed to ensure device safety under short circuit
conditions.
Diodes between input and output are usually not needed.
The internal diode between the input and the output pins
of the LT1083 family can handle microsecond surge currents of 50A to 100A. Even with large output capacitances,
it is very difficult to get those values of surge currents in
normal operations. Only with high value of output capacitors, such as 1000/iF to 5000/iF and with the input pin instantaneously shorted to ground, can damage occur. A
crowbar circuit at the input of the LT1083 can generate
those kinds of currents, and adiode from output to input is
then recommended. Normal power supply cycling or even
plugging and unplugging in the system will not generate
current large enough to do any damage.
The adjustment pin can be driven on a transient basis
± 25V, with respect to the output without any device
degradation. Of course; as with any Ie regulator, exceeding the maximum input to output voltage differential
causes the internal transistors to break down and none of
the protection circuitry is functional.
01
1N4002
(OPTIONAL)

Overload Recovery
Protection Diodes
In normal operation, the LT1083 family does not need any
protection diodes. Older adjustable regulators required

Like any of the Ie power regulators, the LT1083 has safe
area protection. The safe area protection decreases the
current limit as input·to-output voltage increases and

83-39

LT1083/LT1084/LT1085
APPLICATion HinTS
keeps the power transistor inside a safe operating region
for all values of input·to·output voltage. The LT1083 protec·
tion is designed to provide some output current at all val·
ues of input·to·output voltage up to the device breakdown.
When power is first turned on, as the input voltage rises,
the output follows the input, allowing the regulator to start
up into very heavy loads. During the start·up, as the input
voltage is rising, the input·to·output voltage differential
remains small, allowing the regulator to supply large out·
put currents. With high input voltage, a problem can occur
wherein removal of an output short will not allow the out·
put voltage to recover. Older regulators, such as the 7800
series, also exhibited this phenomenon, so it is not unique
to the LT1 083.
The problem occurs with a heavy output load when the in·
put voltage is high and the output voltage is low, such as
immediately after a removal of a short. The load line for
such 'a load may intersect the output current curve at two
pOints. If this happens, there are two stable output operat·
ing points lor the regulator. With this double intersection,
the power supply may need to be cycled down to zero and
brought up again to make the output recover.
Ripple Rejection
The typical curves for ripple rejection reflect values for a
bypassed adjustment pin. This curve will be true for all val·
ues of output voltage. For proper bypassing, and ripple
rejection approaching the values shown, the impedance of
the adjust pin capacitor, at the ripple frequency should
equal the value of R1, (normally 1000-1200). The size of the
required adjust pin capacitor is a function of the input rip·
pie frequency. At 120Hz the adjust pin capacitor should be
13JLF if R1 =1000. At 10kHz onlyO.16JLF is needed.
For circuits without an adjust pin bypass capacitor, the
ripple rejection will be a function of output voltage. The
output ripple will increase directly as a ratio of the output
voltage to the reference voltage (VoUTIVREF). For example,
with the output voltage equal to 5V, and no adjust pin
capacitor, the output ripple will be higher by the ratio of
5V/1.25V or 4 times larger. Ripple rejection will be de·
graded by 12dB from the value shown on the typical curve.

83-40

Output Voltage
The LT1083 develops a 1.25V reference voltage between
the output and the adjust terminal (see Figure 1). By plac·
ing aresistor, R1, between these two terminals, aconstant
current is caused to flow through R1 and down through R2
to set the overall output voltage. Normally this current is
the specified minimum load current of 10mA. Because
IADJ is very small and constant when compared with the
current through R1, it represents a small error and can
usually be ignored.
~........-VOUT

I
.".

~~~ l':'------1.......
VOUT=VREF (1 +

*-)

+IADJ R2

Figure 1. Basic Adjustable Regulator

Load Regulation
Because the LT1083 is a three·terminal device, it is not
possible to provide true remote load sensing. Load regula·
tion will be limited by the resistance of the wire connect·
ing the regulator to the load. The data sheet specification
for load regulation is measured at the bottom of the pack·
age. Negative side sensing is a true Kelvin connection,
with the bottom of the output divider returned to the nega·
tived side of the load. Although it may not be immediately
obvious, best load regulation is obtained when the top of
the resistor divider, (R1), is connected directly to the case
not to the load. This is illustrated in Figure 2. If R1 were
connected to the load, the effective resistance between
the regulator and the load would be
Rp x

~R2 :1 R~, Rp =Parasitic Line Resistance.

Connected as shown, Rp is not multiplied by the divider ra·
tio. Rp is about 0.0040 per loot using 16 gauge wire. This
translates to 4mV/lt at 1A load current, so it is important to
keep the positive lead between regulator and load as short
as possible, and use large wire or PC board traces.

LT1083/LT l084/LT1085
APPLICATion HinTS
Rp
PARASITIC
LINE RESISTANCE

R1

CONNECT
R1 TO CASE
RL

R2

~
-JO

CONNECT R2
TO LOAD

Figure 2. Connections for Best Load Regulation

Thermal Considerations
The LT1083 series of regulators have internal power and
thermal limiting circuitry designed to protect the device
under overload conditions. For continuous normal load
conditions however, maximum junction temperature ratings must not be exceeded. It is important to give careful
consideration to all sources of thermal resistance from
junction to ambient. This includes junction to case, case
to heat sink interface, and heat sink resistance itself. New
thermal resistance specifications have been developed to
more accurately reflect device temperature and ensure
safe operating temperatures. The data section for these
new regulators provides a separate thermal resistance
and maximum junction temperature for both the Control
Section and the Power Transistor. Previous regulators,
with a single junction to case thermal resistance specification, used an average of the two values provided here
and therefore could allow excessive junction temperatures under certain conditions of ambient temperature
and heat sink resistance. To avoid this possibility, calculations should be made for both sections to ensure that both
thermal limits are met.

Junction-to-case thermal resistance is specified from the
IC junction to the bottom of the case directly below the
die. This is the lowest resistance path for heat flow. Proper
mounting is required to ensure the best possible thermal
flow from this area of the package to the heat sink. Thermal compound at the case-to-heat-sink interface is
strongly recommended. If the case of the device must be
electrically isolated, a thermally conductive spacer can be
used, as long as its added contribution to thermal resistance is considered. Note that the case of all devices in
this series is electrically connected to the output.
For example, using a LT1083CK (TO-3, Commercial) and
assuming:
VIN (max continuous) =9V, VOUT =5V, lOUT =6A,
TAMBIENT =75°C, OHEAT SINK =1°C/W,
0CASE.TQ.HEAT.SINK =O.2°C/W for Kpackage with
thermal compound.
Power dissipation under these conditions is equal to:
PD =(VIN - VOUT) (lOUT) =24W
Junction temperature will be equal to:
Tj =TAMBIENT +PD (OHEAT·SINK +
0CASE·TO·HEAT·SINK +Ojd
For the Control Section:

=

=

Tj 75°C +24W (1 °C/W +O.2°C/W +O.6°C/W) 118°C
118°C <125°C =Tjmax (Control Section
Commercial Range)
For the Power Transistor:

=

Tj 75°C +24W (1 °C/W +O.2°C/W +1.6°C/W) =142°C
142°C <150°C =Tjmax (Power Transistor
Commercial Range)
In both cases the junction temperature is below the maximum rating for the respective sections, ensuring reliable
operation.

83-41

LT1083/LT1084/LT1085
TYPICAL APPLICATions
Paralleling Regulators

Improving Ripple Rejection
VOUT=1.25 (1

.....---"""1'"""VIN"'16.5V

+~)

IOUT=OA TO 15A

'THE # 18 WIRE ACTS
AS BALLAST RESISTANCE
INSURING CURRENT SHARING
BETWEEN BOTH OEVICES.

'C1 IMPROVES RIPPLE REJECTION. Xc SHOULO
BE =R1 AT RIPPLE FREQUENCY.

7.SA Variable Regulator
T1

TRIAD
C30B
F-269U
r-1---~~~----~~~~~~------'-1N4003

C1
50,000~F

1N914

16k'

LT1004-1.2
16k'
82k

2.7k

11k'

10k

'1 % FILM RESISTOR
L-DALE TO-5 TYPE
T2-STANCOR 11Z-2003
11k'

GENERAL PURPOSE REGULATOR WITH SCR PREREGULATOR TO LOWER POWER
DISSIPATION. ABOUT 1.7V DIFFERENTIAL IS MAINTAINED ACROSS THE LT1083
INDEPENDENT OF OUTPUT VOLTAGE AND LOAD CURRENT.

83-42

LT1083/LT1084/LT1085
TYPICAL APPLICATions

High Efficiency Regulator
1mH

2BV

I -.....~~OUTPUT

INPUT

10k

Remote Sensing
Rp
(MAX OROP 300mV)

1210

3650
L--+----_~\Mr----+--RETUAN

RETURN

--<~

_________...._____---,c..;;..._ _..J

1.2V-1SV Adjustable Regulator

SV Regulator with Shutdown

·NEEOEO IF OEVICE IS FAR FROM FILTER CAPACITORS

tVOUT=1.25V (1

+~)
Protected High Current Lamp Driver

Automatic Light Control

:.......J..,u.,,l-15V
TIL OR
CMOS

83-43

LT1083/LT1084/LT1085
BLOCK DIAGRAm

PACKAGE DESCRIPTions

Dimensions in inches (millimeters) unless otherwise noted.

KPackage
TO·3 Metal Can

'¥

1177-1.197

129,90-30040)

If.---0.760-0.7751
119.30-1969)

0.320-0350
(813-8891

t--

0.420-0.480
(10.67-12.19)

'.060_0'35
(1.52-343)

~RTYP

~

(3.65-4.09)

I

j

------.j f.-- ~oO;6~-=-°1~31

(~66~:=~,~;~)+----+I

PPackage
TO·247 Plastic

TPackage
TO·220 Plastic

MOUNTING HOLE

0125
(3.175)
OIATYP

15 D TYP

1--+°.190-0,210

LI----l

(4,826-5.334)

~

0"

'L---

0860-0.880

0.780-0.820
(19812-20.828)

00400060
(1:016=1524)

H
I-- ---\I

0,150

L

(5.080)

,se

i3~~O)

\

0.250
(6.350)
MAX

J1[0032'0005

---ll--lo,a13±O 1271

x

o 070-0 090
0,070-0,090
(1.778-2286)

0.110-0.130
(2.794-3.302)

0.200

I

0570-0610

I'T'

~

"r~=-="o

83-44

0.147-0151
(3.734-3,835)

11.77B-2.286J
0,025-0035
(0.635-0,889)

O,100±Q01D

0050

~

m

(2_~O±O,254)

000J_0.025j-l

(0,330-0.635)

0090-0,123
(2.286-3.175)

SECTion 4-VOL TAGE REFEREnCES

Wi
!III
U

C

!III

ClC

!III

u.

!III

a:

!III

"a:
~

g

84-1

INDEX
SECTION 4-VOLTAGE REFERENCES
INDEX . ........................................................................
SELECTION GUIDE. . . . . . . . . . . . . . . . . . . . .. . . .. . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . ..
PROPRIETARY PRODUCTS
LTt004, Precision Micropower Reference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LTt 009, Precision 2.5 Volt Reference ................................................
LT1019, High Accuracy Band Gap References ..... .. .. . . ... ... .. .. . ... ... .. .. .. ... . .. ..
LTt021, 5 Volt,? Volt, 10 Volt5ppm/oC Trimmed Reference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LT1 029, 5V Reference ...........................................................
LT1031, 10 Volt, 3-Lead Trimmed Reference . ................... : . . . . . . . . . . . . . . . . . . . . ..
LT1034, Micropower Dual Reference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LTZ1000, Ultra Precision Reference .................................................
LTZ1000A, Ultra Precision Reference ................................................
SECOND SOURCE PRODUCTS
AD580, 2.5V Reference ......................................................... ,
AD581,10V Reference ...........................................................
LH0070, 10 Volt, 3-Lead Trimmed Reference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LM129/329, 6.9V Precision Voltage Reference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LM134/234/334, Constant Current Source and Temperature Sensor. . . . . . . . . . . . . . . . . . . . . . . ..
LM136-2.5/LM336-2.5, 2.5 Volt Voltage Reference .................................... ,
LM185-1.2/385-1.2, Precision Voltage Reference ......................................
LM185-2.5/385-2.5, Precision Voltage Reference ......................................
LM 199/399/199A/399A, Temperature Compensated Precision Reference ........ . . . . . . . . . . ..
REF-01 /REF-02, Precision Voltage References .........................................

84-2

S4-2
S4-3

4-9
4-17
4-21
4-29
4-45
4-49
4-61
S4-9
S4-9
4-65
4-65
4-49
4-69
4-73
4-85
4-89
4-93
4-97
4-103

~~Llne1\12
VOLTAGE REFERENCE SELECTION GUIDE
...6..,
TECHNOLOGY~--------------miliTARY TEmPERATURE RAnGE
-55'Cto +125'C
VOLTAGE
Vz
(VOLTS)
1.235

2.5

5.0

6.9

6.95

7.0

10.0

VOLTAGE
TOLERANCE
MAXIMUM
TA =25'C
±0.32%
±1%
±1%

OPERATING
CURRENT RANGE
(OR SUPPLY CURRENT)
10~A t020mA
lO~A t020mA
20~A t020mA

MAXIMUM
DYNAMIC
IMPEDANCE
(0)
1.5
1.5
1.5

DEVICE
LT1004M·1.2
LM18H2
LT1034BM·1.2

TEMPERATURE DRIFT,
ppm/'C OR mV CHANGE
20ppm (typ)
20ppm (typ)
20ppm(max)

±1%

LT1034M·1.2

40ppm (max)

20~A t020mA

1.5

±0.5%
±0.2%
±0.2%
±2%
±1%
±1.5%
±1%
±0.4%
±0.4%
±0.2%
±1%
±0.05%
±1
±0.2%
±1%
±0.3%
±0.5%
±3%
±3%
±3%
±2%

LT1004M·2.5
LT1009M
LT1019M·2.5
LM136·2.5
LM136A-2.5
LM185·2.5
AD580S
AD580T
AD580U
LT1019M·5
LT1021BM·5
LT1021CM·5
LT1021DM·5
LT1029AM
LT1029M
REF02A
REF02
LM129A
LM129B
LM129C
LM199A

20~A t020mA
400~A to 10mA

1.5
1.0
N/A
1.0
1.0
1.5
N/A
N/A
N/A
N/A
0.1
0.1
0.1
0.6
0.6
N/A
N/A
0.8 (typ)
0.8 (typ)
0.8 (typ)
1.0

±2%

LM199

500~to 10mA

1.0

Ultra Low Drift

±0.7%

LT1021BM·7

20ppm (typ)
18mV(max)
25ppm(max)
18mV(max)
18mV(max)
20ppm (typ)
55ppm (max)
25ppm(max)
10ppm(max)
25ppm(max)
5ppm(max)
20ppm(max)
20ppm (max)
20ppm (max)
40ppm (max)
8.5ppm (max)
25ppm(max)
10ppm (max)
20ppm (max)
50ppm(max)
0.5ppm (max) - 55'C to +85'C
10ppm(max)+85'Cto + 125'C
1ppm (max) - 55'C to + 85'C
15ppm(max)+85'Cto +125'C
5ppm(max)

MAJOR FEATURE
Micropower
Micropower
Low TC Micropower with
7V Aux. Reference
Low TC Micropower with
7V Aux. Reference
Micropower
Precision
Precision Bandgap
General Purpose
General Purpose
Micropower
3Terminal Low Drift
3Terminal Low Drift
3Terminal Low Drift
Precision Bandgap
Very Low Drift
Very Tight Inital Tolerance
Low Cost, High Performance
Precision Bandgap
Precision Bandgap
Precision Bandgap
Precision Bandgap
Low Drift
Low Drift
Low Cost
Ultra Low Drift

1.0mA

0.2

±0.7%
±0.2%
±O.5%
±O.05%
±O.5%
±O.05%
±0.1%
±O.2%
±0.3%
±0.1%
±0.05%
±0.1%
±0.1%
±0.3%
±0.5%

LT1021DM·7
LT1019M·10
LT1021BM·10
LT1021CM·10
LT021DM·10
LT1031BM
LT1031CM
LT1031DM
AD581J
AD581T
LH0070·2
LH0070-1
LH0070·0
REF01A
REF01

20ppm (max)
25ppm(max)
5ppm(max)
20ppm(max)
20ppm (max)
5ppm(max)
15ppm (max)
25ppm (max)
30ppm (max)
15ppm (max)
6.7ppm(max)
17ppm (max)
33ppm (max)
8.5ppm (max)
25ppm (max)

1.0mA
1.2mA
1.7mA
1.7mA
1.7mA
1.7mA
1.7mA
1.7mA
1.0mA
1.0mA
5.0mA
5.0mA
5.0mA
1.4mA
1.4mA

0.2
N/A
0.25
0.25
0.25
0.25
0.25
0.25
N/A
N/A
0.6
0.6
0.6
N/A
N/A

Low Drift/Noise, Exc.
Stability
Low Cost, High Performance
Precision Bandgap
Very Low Drift
Very Tight Initial Tolerance
Low Cost, High Performance
Very Low Drift
Very Tight Initial Tolerance
Low Cost, High Performance
3Terminal Low Drift
3Terminal Low Drift
Low Drift
Good Initial Tolerance
Low Cost, High Performance
Precision Bandgap
Precision Bandgap

1.2mA
400~A to 10mA
400~A to 10mA
20~A t020mA

1.5mA
1.5mA
1.5mA
1.2mA
1.2mA
1.2mA
1.2mA
600~A to 10mA
600~A to 10mA

1.4mA
1.4mA
600~A to 15mA
600~A to 15mA
600~A to 15mA
500~A to

10mA

84-3

VOLTAGE REFERENCE SELECTION GUIDE
commERCIRl TEmPERRTURE RAnGE
O·Cto HO·C
VOLTAGE
Vz
(VOLTS)
1.235

2.5

5.0

6.9

6.95
7.0

10.0

VOLTAGE
TOLERANCE
MAXIMUM
TA =2S·C
±0.32%
±1%

DEVICE
LT1004C·1.2
LT1034BC·1.2

OPERATING
CURRENT RANGE
(OR SUPPLY CURRENT)
10pA to 20mA
20pA to 20mA

±1%

LT1034C·1.2

40ppm(max)

20pA to 20mA

1.5

±2%
±1%
±0.5%
±0.2%
±0.2%
±4%
±2%
±3%
±1.5'1o
±3'1o
±1'1o
±0.4'1o
±0.4%
±0.2'1o
±1'1o
±0.05%
±1
±0.2%
±1'1o
±0.3'1o
±0.5'1o
±1%
±2'1o
±3'1o
±5'1o
±5'1o
±5'1o
±4'1o

LM385·1.2
LM385B·1.2
LT1004C-2.5
LT1009C
LT1019C·2.5
LM336-2.5
LM336B·2.5
LM385-2.5
LM385B·2.5
AD580J
AD580K
AD580L
AD580M
LT1019C-5
LT1021BC·5
LT1021CC·5
LT1021DC·5
LT1029AC
LT1029C
REF02E
REF02H
REF02C
REF02D
LM329A
LM329B
LM329C
LM329D
L1Z1000

20ppm(typ)
20ppm (typ)
20ppm (typ)
6mV(max)
20ppm (max)
6mV(max)
6mV(max)
20ppm(typ)
20ppm(typ)
65 (max)
40 (max)
25 (max)
10(max)
20ppm(max)
5ppm(max)
20ppm(max)
20ppm(max)
20ppm(max)
34ppm(max)
8.5ppm (max)
25ppm(max)
65ppm(max)
250ppm (max)
10ppm(max)
20ppm(max)
50ppm(max)
100ppm (max)
0.1ppml°C

15pA t020mA
15pA to20mA
20pAto20mA
400pA to 10mA
1.2mA
400pA to 10mA
400pA to 10mA
20pA to 20mA
20pAto 20mA
1.5mA
1.5mA
1.5mA
1.5mA
1.2mA
1.2mA
1.2mA
1.2mA
600pAto 10mA
600pA to 10mA
1.4mA
1.4mA
1.6mA
2.0mA
600pA to 15mA
600pA to 15mA
600pA to 15mA
600pAt015mA
4mA

1.5
1.5
1.5
1.4
N/A
1.4
1.4
1.5
1.5
N/A
N/A
N/A
N/A
N/A
0.1
0.1
0.1
0.6
0.6
N/A
N/A
N/A
N/A
1.0 (typ)
1.0 (typ)
1.0 (typ)
1.0 (typ)
20.0

±5'1o
±5'1o
±0.7'1o

LM399
LM399A
LT1021BC·7

2ppm(max)
1ppm(max)
5ppm(max)

500pA to 10mA
500pA to 10mA
1.0mA

1.5
1.5
0.2

±0.7'1o
±0.2%
±0.5%
±0.05'1o
±0.5'1o
±0.5%
±0.1%
±0.2'1o
±0.3%
±O.1'1o
±0.3%
±O.5%
±1%

LT1021DC-7
LT1019C-10
LT1021BC-10
LT1021CC-10
LT021DC-10
LT1031BC
LT1031CC
LT1031DC
AD581J
AD581K
REF01E
REF01H
REF01C

20ppm(max)
20ppm(max)
5ppm(max)
20ppm(max)
20ppm(max)
5ppm(max)
15ppm(max)
25ppm(max)
3Oppm(max)
15ppm(max)
8.5ppm (max)
25ppm(max)
65ppm(max)

1.0mA
1.2mA
1.7mA
1.7mA
1.7mA
1.7mA
1.7mA
1.7mA
1.0mA
1.0mA
1.4mA
1.4mA

0.2
N/A
0.25
0.25
0.25
0.25
0.25
0.25
N/A
N/A
N/A
N/A
N/A

• LTZ1000 requires external control and biasing circuits.

84·4

MAXIMUM
DYNAMIC
IMPEDANCE

TEMPERATURE DRIFT,
ppm/·C OR mV CHANGE
20ppm(typ)
20ppm(max)

l.~mA

(II)

1.5
1.5

MAJOR FEATURE
Micropower
Low TC Mlcropower with
TV Aux. Reference
Low TC Micropower with
TV Aux. Reference
Micropower
Micropower
Micropower
Precision
Precision Bandgap
General Purpose
General Purpose
Mlcropower
Mlcropower
3Terminal Low Drift
3Terminal Low Drift
3Terminal Low Drift
3Terminal Low Drift
Precision Bandgap
Very Low Drift
Very Tight Inital Tolerance
Low Cost, High Performance
Precision Bandgap
Precision Bandgap
Precision Bandgap
Precision Bandgap
Precision Bandgap
Bandgap
Low Drift
Low Drift
General Purpose
General Purpose
Ultra Low Drift,
2ppm Long Term Stability·
Ultra Low Drift
Ultra Low Drift
Low Drift/Noise, Exc.
Stability
Low Cost, High Performance
Precision Bandgap
Very Low Drift
Very Tight Initial Tolerance
Low Cost, High Performance
Very Low Drift
Very Tight Initial Tolerance
Low Cost, High Performance
3Terminal Low Drift
3Terminal Low Drift
PreciSion Bandgap
Precision Bandgap
Precision Bandgap

VOLTAGE REFERENCE SELECTION GUIDE
AD580
TO'52

0",,-,
INPUT

GROUNO

- FEATURES• 2.5V Output
• Direct Replacement for
Analog Devices
• Selected Parts with
10ppm/oCTC
• Low Quiescent Current

- mini DESCRIPTion Alternate source for industry
standard 2.5V 3terminal
reference.

- FEATURES• 10V Output
• Direct Replacement for
Analog Devices
• Low Quiescent Current

- mini DESCRIPTion Alternate source for industry
standard 10V 3·terminal
reference.

•
•
•

FEATURESLow Noise
LowCost
Max Temperature Drift
Selections 10, 20, 50 and
100ppm/oC
• Wide Operating Current
Range

- mini DESCRIPTion Subsurface zener reference with
wide operating current range
from 600pA to 15mA. Similar to
LM199/399 without stabilizing
heater on the die.

•
•
•

FEATURESUltra Low Drift
Very Low Noise
Wide Operating Current
Range
II Provided with Thermal
Shield
• Excellent Long Term
Stability
• Low Hysteresis
• Guaranteed Long Term
Stability Available

- mini DESCRIPTion An on board stabilizing heater
keeps the die at constant
temperature. Reference is alow
noise subsurface zener. Excellent long term stability.

•
•
•
•

- mini DESCRIPTion Bandgap reference with operating current range as low as
10pA. Low noise and good long
term stability.

BOnOM VI'f!II

AD581
TO·5
INPUT

OMM
GROUNO
BonOM VIEW

LM129/329
TO·46

.J~-,q)
LM199A/199
LM399A/399

'
3-:
+~4g
0
BLOCK DIAGRAM

TO·46

6.95V
_

4

LTl004
LM185/385

-

2

2

3

+

TOP VIEW

8
TO·46

SMALL OUTLINE

~:~;m:NC
~'NC3

6.

4

5NC (DO NOT

USE!

FEATURESMicropower
1.235V and 2.5V Available
Low Dynamic Impedance
Wide Operating Current
Range
• Very Tight Tolerance

BOTTOM VIEW

84-5

VOLTAGE REFERENCE SELECTION GUIDE
LT1009
LM136/336
SMALL OUTLINE

N C 1 m '7NC
NC2
NC 3

6
5AOJ PIN

4

BonOMVIEW

LTl019
TO-5

PLASTIC DIP

NC'

7

NC' 'NCO' NC'
VIN

2

7

T~~;'

3

6

NC"

VOUT

GND

4

5

TRIM

6 VOUT

5 TRIM

TOP VIEW

TOP VIEW

- FEATURES-

- mini DESCRIPTIOn -

• No Adjustment Needed on
LT1009
• Temperature Coefficient or
Voltage Easily Adjusted on
LM136
• Wide Operating Current
Range
• Low Cost
• 2.5V
• Very Tight Tolerance

General purpose reference
using bandgap circuit. Low cost,
medium performance.

- FEATURES-

- mini DESCRIPTion -

• 2.5V, 5V and 10V Versions
• Plug·ln Replacement for
Many Devices
• Series or Shunt Operation
• Low Drift -3ppm/oC Typ.
• 100% Noise Tested
• Optional Chip Heater Can
Be Used for Lower Drift
• Temperature Output

Curvature corrected bandgap
design for very low drift and
tight initial tolerance. Replaces
and upgrades REF01, REF02,
MC14XX and other popu lar
series type references.

• DO NOT CONNECT EXTERNAL CIRCUITRY TO THESE PINS

LTl021
TO-S

PLASTIC DIP

NC'

7

NC' 'NCO' NC'
V'N

2

7

oNe

3

6

NC'
VOUT

GND

4

5

TRIM"*

e VOUT

5 TRIM"

TOP VIEW

TOP VIEW

SMALL OUTLINE

U'NC'

V,~.t 21

NC'
NC"3

GND4

84-6

7 NC'

6VOUT
5TRIM··

• DO NOT CONNECT EXTERNAL CIRCUITRY TO THESE PINS
•• NO TRIM PIN ON LTl021·7, 00 NOT CONNECT
EXTERNAL CIRCUITRY TO PIN 5 ON LT1021·7

- FEATURES-

- mini DESCRIPTion -

•
•
•
•

Trimmed voltage reference with
ultra low drift. Reference is a
low noise subsurface zener.
Available in 5V, 7V and 10V
versions. The 7V and 10V ver·
sions can be used as 2·terminal
shunt regulators as well as
series references.

Ultra Low Drift
Trimmed Output Voltage
Very Low Noise
Operates in Series or Shunt
Mode
• Replaces REF01, REF02,
LM368, MC1400 and MC1404
with Improved Stability,
Noise and Drift

VOLTAGE REFERENCE SELECTION GUIDE
LTl029
TO·46

+r rU;D rtf

~~

ADJ

_

BOTTOM VIEW

LTl031/LH0070
TO·5

(3""""
GROUND

BOTTOM VIEW

LTl034

TO·46
TO·92

tJ'1 2V/25V~ l~;i5)
+

BOTTOM VIEW

REFOl/REF02
TO·S

NC'
B

NC' 1

PLASTIC DIP

'NC'.NCDBNC.
VI~

2

7

OTUET"!~

3

6

Your

GND

4

5

TRIM

NC'

6VOUT

TEMP 3
OUT"

5 TRIM

- mini DESCRIPTion -

• 0.2% Output Tolerance
• O.OSO Shunt Impedance
• 600~A to 10mA Operating
Current
• Pin Compatible with
LM136·S
• 20ppm/ oCMax. Drift Output
Voltage Trim does not Affect
Drift
• Can be Used as Positive or
Negative Reference

Precision 3terminal shunt SV
bandgap reference. Very low
drift and tight initial output
tolerance.

- FEATURES-

- mini DESCRIPTion -

•
•
•
•
•

Very low tempco is achieved
without chip heater. The LT1031
can replace the ADS81 with
better specifications.

10VOutput
Ultra Low Drift
Very Low Noise
Trimmed Output Voltage
Operates in Series or Shunt
Mode
• Pin Compatible with ADS81
• LH0070 is a Direct
Replacement for NSC
LH0070

INPUT

+

- FEATURES-

4

- FEATURES-

- mini DESCRIPTion -

• 1.2V and 2.S Versions
• Guaranteed Drift of
20ppm/ oCand 40ppm/ oC
• 1.2V and 7V Reference
• 1.2V Reference Operates
20~A t020mA
• 1%Tolerance on 1.2V
Reference
• 7V Reference Operates
1OO~A to 20mA
• Compatible with the LM38S
and LT1004

The LT1034 is a bandgap 1.2Vor
2.SV reference with low operat·
ing current and low temperature
coefficient, combined with a 7V
subsurface zener reference on
the same chip.

- FEATURES-

- mini DESCRIPTion -

• Direct Replacement for PMI
Devices
• Low Drift
• High Line Rejection
• Low Supply Current
• Temperature Output on
REF02

Industry standard SV and 10V
bandgap voltage references.

GND

TOP VIEW

TOP VIEW

"00 NOT CONNECT E'-lERNA!. CIRCUITRY TO THESE PINS

·'REF020NlY.

84-7

NOTES

84-8

~-Y-LTElcnHNet\O''OG_~~~_ _ _ _LT_Z_10_O_O/_L_TZ_10_O_O_A

~,

WIT

DESCRIPTion

FEATURES
•
•
•
•
•

The LTZ1000 and LTZ1000A are ultra stable temperature
controllable references. They are designed to provide 7V
outputs with temperature drifts of O.05ppm/oC, about
1.2J!Vp-p of noise and long term stabilities of 2J!V per
month.

1.2J!Vp-p Noise
2J!V Long Term Stability
Very Low Hysteresis
O.05ppm/oC Drift
Temperature Stabilized

Included on the chip is a subsurface zener reference,
heater resistor for temperature stabilization, and a temperature sensing transistor. External circuitry is used to
set operating currents and to temperature stabilize the
reference. This allows maximum flexibility and best long
term stability and noise.

APPLICATions
•
•
•
•
•

Ultra Precision Reference

Voltmeters
Calibrators
Standard Cells
Scales
Low Noise RF Oscillators

The LTZ1000 and LTZ1000A references can provide superior performance to older references such as the LM199 at
the expense of increased circuit complexity and thermal
layout considerations. The LTZ1000 is packaged in a
standard TO-99 package while the LTZ1000A utilizes a
proprietary high thermal resistance die attach which
eases thermally insulating the reference.

TYPICAL APPLICATiOn
Low Noise Reference
LTZ1000

VIN,,10V

r--,
I
I

Long Term Stability

r--+t----+--.........-OUTPUT
30k

I

1N414B

I
I

L_.J

-2

'------'---~-~

o

10

20

30

DAYS
LONG TERM STABILITY OF A TYPICAL DEVICE FROM TIME=O
WITH NO PRECONDITIONING OR AGING

84-9

LTZ1000/LTZ1000A
ABSOLUTE mAXimum RATinGS

PACKAGE/ORDER InFORmATion

Heater to Substrate ................................. 35V
Collector Emitter Breakdown 01 ..................... 15V
Collector Emitter Breakdown 02 ..................... 35V
Emitter Base Reverse Bias ............................ 2V
Operating Temperature Range ....... - 55°C::;TA::; 125°C
Storage Temperature Range ......... - 65°C::;TA::; 150°C
Substrate Forward Bias ............................. O.1V

ORDER
PART NUMBER

BonOM VIEW

LTZ1000
LTZ1000A
HB PACKAGE
METAL CAN

PREconDITiOninG
150°C Burn-In

ELECTRICAL CHARACTERISTICS (Note 1)
PARAMETER
Zener Voltage
Zener Change with Current
Zener Leakage Current
Zener Noise
Heater Resistance
Heater Breakdown Voltage
Transistor 01 Breakdown
Transistor 02 Breakdown
01,02 Current Gain
Thermal Resistance
Long Term Stability

CONDITIONS
Iz= 5mA, (Vz +VBE 01 ) 101 = 100~
Iz = 1mA, (Vz +VBE01 ) 101 = 100pA
1mA!>lz<5mA
Vz=5V
Iz=5mA,0.1Hz100pA
Ic=10~,LVCEO

Ic= 10pA, LVCEO
Ic=100~

LTZ1000
LTZ1000A
T=65°C

Time = 5 Minutes
Time = 5 Minutes

Note 1: All testing is done at 25°C. Pulse testing is used lor LTZ1000A to
minimize temperature rise during testing. LTZ1000 and LTZ1000A devices
are OA tested at -55°C and 125°C.

S4-10

MIN
7.0
6.9

200
35
15
35
80

TYP
7.2
7.15
80
20
1.2

MAX
7.5
7.45
240
200
2

300

420

20
50
200
80
400
2

UNITS
V
V
mV
~

pVp·p
0

V
V
V
450
°CIW
°CIW
pVIv'khr

LTZ1000/LTZ1000A
Pin FunCTions
Pin 1: Heater positive. Must be more positive than Pin 4
and less than 40V.
Pin 2: Heater negative. Must be more positive than Pin 4
and less than 40V.
Pin 3: Zener positive. Must be more positive than Pin 4.
Pin 4: Substrate and Zener negative. Must be more posi·
tive than pin 7. If Q1 is Zenered (about 7V) a permanent
degradation in beta will result.

Pin 5: Temperature compensating transistor collector.
Pin 6: Temperature sensing transistor base. If the base
emitter junction is Zenered (about 7V) the transistor will
suffer permanent beta degradation.
Pin 7: Emitter of sensing and compensating transistors.
Pin 8: Collector of sensing transistor.

TYPICAL PERFORmAnCE CHARACTERISTICS
Zener Voltage vs Current

/

~ ~~

'"~
u

50

~

40

~
o
>

ZENER ALONE/

/

ffi 30

z
~ 20

k--' I-"

10

o /'
o 0.5 1.0

~ 400
lJj 300

o

/
/

Iz=4mA

450

~ 350

/

60

w

500

/

90

Zener Noise

Zener Voltage Noise Spectrum

100

~ 250

ZENER WITH KELVINSENSED ;:!...r-"'~

--

'"tS
o

\

200

~

ZENER CURRENT -0.5mA

\

:;; 150

'N- 11111

1\

100

50

II IIIII

o
1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
ZENER CURRENT (rnA)

0.1

Die Temperature Rise vs Heater
Power

II

ZENER CURRENT =4mA

II

1
10
FREQUENCY (Hz)

10

100

Die Temperature Rise vs Time
125

0.7

'"~ 05.
~

~

0.4

'"
~

0.3

LTZ1~

./

V

/'

./

V ....

:<:

0.2

/'

0.1

o

f.-

LTZ1000A_

f.-

-rT

25 35 45 55 65 75 85 95 105 115 125
DIE TEMPERATURE ABOVE AMBIENT ("C)

f-I LN11~~~1

~
~
=>
~

~
=>

as
w

75 r-

ffi

~

50 H-ttIItltVi-

IIIIIII
IIImi.
I~lmTE, pmllit 7W

/

w

o
251--U~1IA

TY~.027 -0.034 Jf~ ~ (0.686-1.143)
0.027-0.045

(0.686-0.864)

0.110-0.160
(2.794 -4.064)
INSULATING
STANDOFF
NOTE: LEAD DIAMETER IS UNCONTROLLED BETWEEN
THE REFERENCE PLANE AND SEATING PLANE.

S4-15

NOTES

84-16

SECTion 5-comPARATORS

a::
'"

ee
a::

eQ.

eo
u

lJ

85-1

INDEX
SECTION 5-COMPARATORS
INDEX. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
SELECTION GUIDE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
PROPRIETARY PRODUCTS
LT685, High Speed Comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LT1 011, Precision Comparator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LT1016, High Speed Comparator ...................................................
LT1017, Micropower Dual Comparators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LT1018, Micropower Dual Comparators ..............................................
LTC 1040, Low Power, Low Offset Comparator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LTC 1041, Micropower Control Comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LTC1042, Window Comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LTC 1045, It Power Hex Trans/atorIReceiverIDriver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ENHANCED AND SECOND SOURCE PRODUCTS
LM 111 /311, High Performance Voltage Comparator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LT111AI311A, Improved LM111 .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LM 119/319, High Speed Dual Comparator ... . . .. . .. . .. .. .. .. . . .. .. . .. . .. .. . . . . .. .. . ..
LT119A1319A, Improved LM 119 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..

85-2

S5-2
S5-3
S10-3
5-5
5-21
5-37
5-37
5-45
5-57
S5-5
S5-13
0,

5-65
5-65
5-73
5-73

~""""LlnlJ\Q
COMPARATOR SELECTION GUIDE
...&..,
TECHNOLOOY,....---------------mlLlTAAY
RESPONSE
TIME
MAX
(ns)
250
250
12

Vas
MAX
(mV)
0.5
1.5
±2.5

Ie
MAX
(nA)
25
50
10000

DRIVE
CAPABILITY
(rnA)
50
50
10

GAIN
MIN
(V/mV)
200
200
2

ISUPPLY
POSITIVE
(rnA)
4.0
4.0
35

ISUPPLY
NEGATIVE
(rnA)
2.5
2.5
5

LT1017M
LT1018M

-

1
1

15
75

30
35

1000
1000

O.OSO
0.250

-

-

H,J8
H,J8

LT111A
LM111
LT119A
LM119
LTC1040M
LTC1042M

250

100
100
500
500
3
3

50
50
25
25

200
40
20
10

100~s

1.0
3.0
1.0
4.0
0.5
1.0

t
t

4.0
S.O
11.5
11.5
300nA· •
300nA· •

2.5
5.0
4.5
4.5
1nA
1nA

H,J8
H,J8
H,J
H,J
J
J

RESPONSE
TIME
MAX
(ns)
250
250
12

Vas
MAX
(mV)
0.5
0.5
±2.5

Ie
MAX
(nA)
25
50
10000

DRIVE
CAPABILITY
(rnA)
50
50
10

GAIN
MIN
(V/mV)
200
200
2

ISUPPLY
POSITIVE
(rnA)
4.0
4.0
35

ISUPPLY
NEGATIVE
(rnA)
2.5
2.5
5

PACKAGES
AVAILABLE
H,J8, N8
H,J8, N8
H,J8

LT1017C
LT1018C

-

1
1

15
75

30
35

1000
1000

O.OSO
0.250

-

H
H

LT311A
LM311
LT319A
LM319
LTC1040C
LTC1042C

250

1.0
7.5
1.0
8.0
0.5
1.0

100
250
500
1000
3
3

50
50
25
25

200
40
20
8

4.0
7.5
12.5
12.5
300nA· •
300nA· •

2.5
5.0
5.0
5.0
1nA
1nA

H,J8
H,J8
H,J, N
H,J, N
J,N
J, N

PART NUMBER
LT1011AM
LT1011M
LT1016M

80 (typ)
80 (typi
100~s

·

·

PACKAGES
AVAILABLE
H, J8
H,J8
H,J8

IMPORTANT FEATURES
Low Vos, Low Ie, High Output Drive,
12 Bit Acc.
Ultra High Speed, TIL Outputs, True
Output Latch, Stable in Active Region,
Pin/Pin Replacement for AM686.
LT1017 Has Lowest Supply Current,
LT1018 is Faster. Both are Dual
Comparators with Same Pin·Out as 193
Types.
Low Vos, High Gain
General Purpose
.Dual, Low Vos, Hi CMRR
Dual, General Purpose
CMOS Sampling Comparator
CMOS Window Comparator

commERCIAl.

PART NUMBER
LT1011AC
LT1011C
LT101SC

80 (typ)
80 (typ)
100~s
100~s

··

t
t

IMPORTANT FEATURES
LowVos , Low Ie, High Output Drive, 12
Bit Acc.
Ultra High Speed, TTL Outputs, True
Output Latch, Stable In Active Region,
Pin/Pin Replacement for AMS8S.
LT1017 Has Lowest Supply Current,
LT1018 is Faster. Both are Dual
Comparators with Same Pin·Out as 193
Types.
Low Vos, High Gain
General Purpose
Dual, LowV os , Hi CMRR
Dual, General Purpose
CMOS Sampling Comparator
CMOS Window Comparator

"1 Std. TTL Load ··Supply Current Depends on Clock Rate tGain errors are included In Vas spec.

85-3

NOTES

85·4

~~Llnll\Q

LTC1042

~~

TECHNOLOGY~-------W--in-d-o-w-C-o-m--p-a-ra-t-or

FEATURES

DESCRIPTion

• Micropower 1.5p.W (1 Sample/Second)
• Wide Supply Range- +2.8V to +16V
• High Accuracy
Center Error ± 1mV Max
Width Error ± 0.15% Max
• Wide Input Voltage Range
V+ to Ground
• TTL Outputs with 5V Supply
• Two Independent Ground-Referred Control Inputs
• Small Size 8-Pin MiniDIP

The LTC1042 is a monolithic CMOS window comparator
manufactured using Linear Technology's enhanced
LTCMOSTM silicon gate process. Two high impedance
voltage inputs, CENTER and WIDTH/2, define the middle
and width of the comparison window. Whenever the input
voltage, VIN, is inside the window the WITHIN WINDOW
output is high. The ABOVE WINDOW output is high
whenever VIN is above the window. By interchanging VIN
and CENTER the ABOVE WINDOW output becomes
BELOW WINDOW and is high if VIN is below the window.
Sampling techniques provide high impedance voltage in·
puts that can common-mode to both supply rails (V+ and
GND). An important feature of the inputs is their noninteraction. Also the device is effectively "chopper
stabilized", giving it extremely high accuracy over all
conditions of temperature, power supply and input voltage
range.

APPLICATions
• Fault Detectors
• Go/No-Go Testing
• Microprocessor Power Supply Monitor

Another benefit of the sampling techniques used to design the LTC1042 is the extremely low power consumption. When the device is strobed, it internally turns on the
power to the comparators, samples the inputs, stores the
outputs in CMOS latches and then turns off power to the
comparators. This all happens in about 80p.s. Average
power can be made small, almost arbitrarily, by lowering
the strobe rate. The device can be self-strobed using an
external RC network or strobed externally by driving the
OSC pin with aCMOS gate.

LTCMOS™Isa !rad,markot LlnearTe<:hnology Corp.

Total Supply Current vs Sampling
Frequency

Battery Powered Remote Freezer Alarm
·V+

...-------+--11--_ "HI"=TEMPERATURE
150k

10M ±5%

.,Ltt----t--+
..:..3V-16V

Rl"
7.5k

BElWEEN
26'F AND 31 'F
±l'F

10000
V+ =6V
~

_1000

1

/T

~

"HI"=TEMPERATURE
ABOVE 31'F
±1°F

;::: 100

10

8:
ill

1

T=YELLOW SPRINGS INSTRUMENT CO .. INC. PIN 44007.
ALL RESISTORS ±1% UNLESS OTHERWISE SPECIFIED.
"OTHER TEMPERATURE BANDS MAY BE SELECTED BY CHOOSING APPROPRIATE VALUES FOR Rl AND R2.

/

-'

oi'>
>- 0.1

0.01

~

/

ia
~

R2"
5760

~

V
0.1

V'<-LTC1042 SUPPLY
CURRENT

I

FDR THIS APPLICATION
fs .. 1Hz

-

-

1
10
100
1000
SAMPLING FREQUENCY, fs (Hz)

10000

85-5

LTC1042
PACKAGE/ORDER InFORmATion

ABSOLUTE mAXimum RATinGS
Total Supply Voltage 01 +to GND) .................... 18V
Input Voltage ........................ V+ +0.3V to - 0.3V
Operating Temperature Range
LTC1042C ............................ - 40°C to 85°C
LTC1042M ........................... - 55°C to 125°C
Storage Temperature Range ............. - 55°C to 150°C
Lead Temperature (Soldering, 10 sec) .............. 300°C
Output Short Circuit Duration ................ Continuous

ORDER
PART NUMBER

TOP VIEW

LTC1042MJ8
LTC1042CN8
J8 PACKAGE
HERMETIC

N8 PACKAGE
PLASTIC

ELECTRICAL CHARACTE RISTICS Test Conditions: TMIN ::;TA::;TMAX unless otherwise specified
SYMBOL

PARAMETER
Center Error (Note 2)

TEST CONDITIONS
V+ = 2.8V to 6V (Note 1)

V+ = 6V to 15V (Note 1)

Width Error (Note 3)

V+ =2.8V to 6V (Note 1)

V+ = 6V to 15V (Note 1)

ISlAS

Input Bias Current

RIN

VO H
VOL
REXT

Average Input Resistance
Input Voltage Range
Power Supply Range
Power Supply ON
Current (Note 5)
Power Supply OFF
Current (Note 5)
Response Time (Note 6)
Output Levels
Logic 1Output
Logical 0 Output
External Timing Resistor

Is

Sampling Frequency

PSR
ISION)
ISIOFF)
To

V+ =5V, TA = 25°C, OSC = GND
VIN, CENTER and WIDTH/21nputs
Is = 1kHz (Note 4)

85-6

•

V+ =5V LTC1042C
LTC1042M
V+ =5V

+
+

±0.05
±0.6

•

+

±0.1
±2

•

•
•

+

±0.1
±0.3
10
GND
2.8

•

V+ =4.75V,lour= -360~A
V+ =4.75V, lour= 1.6mA
Resistor Connected between V+
and OSC Pin
V+ =5V, TA=25°C
REXT = lM{l, CEXT=O.l~F

••
•

TYP
±0.3
±0.05
±1

•

•
•
•

V+ =5V

The. denotes the speclications which apply over the lull operating
temperature range.
Note 1: Applies over input voltage range limit and includes gain
uncertainty.
Note 2: Center error = [(Vu +ViJ/2 - CENTER] (where Vu = upper band limit
and VL= lower band limit).
Note3: Width error= (Vu- VL -2 x WIDTH/2)(where Vu = upper band limit
and VL = lower band limit).

MIN

2.4

MAX
±1

+

±0.15
±3

+

±0.15
±2

+

±0.3
±6

+

±0.3

15

1.2

V+
16
3

0.001
0.001
80

0.5
5.0
100

4.4
0.25

100
5

0.45
10,000

UNITS
mV
%WIDTH/2
mV
%WIDTH/2
mV

%WIDTH/2
mV
%WIDTH/2
nA
MO
V
V
mA
~A
~A
~s

V
V
kO
Hz

Note 4: RIN is guaranteed by design and is not tested. RIN = 1/(ls x 66pF).
. Note 5: Average supply current =To x ISION)x Is +(1 - To Is) ISIOFF)'
Note 6: Response time is set by an internal oscillator and is independent 01
overdrive voltage. To is guaranteed by correlation test and is not directly
measured.

LTC1042
TYPICAL PERFORmAnCE CHARACTERISTICS
Normalized Sampling Frequency
YS V+, Temperature

IS(ON)YS V+
20

J

18

J

14

, .l'/V/
25

55'C/

/

/ ./

a;

./ ~5°C- r-"I
V~ V
/

2

o

2

-~6

8
10
12
SUPPLY VOLTAGE, V+ (V)

14

1.6
1.4

1.2 TA=25°C
1.0

0.6

16

~\

"- r

0.8

o

"""'"
i--

~
2

TA= -55°C

4
6
8
10 12
SUPPLY VOLTAGE, V+ (V)

90

~

80

w

T~=25ob

...........

en

z

&
~

RIN YS Sampling Frequency
/'

120

--

~

~

90

>=
m
80

~
III

70
60
50

50
14

16

V

V

V

V

~10"~111
~
x

:10 °'11
1=

/

~100

60

6
8
10
12
SUPPLY VOLTAGE, V+ (V)

/

110

70

2

REXT (11)

V+=5V

I--

0.1 L--....L.....JlwJLl.I..L.I.ll1--..J........Lt--~ll.LlJ
10M
100k
1M

16

130

100

~

14

Response Time YS Temperature

Response Time YS Supply Voltage
110

\ 1\

~

i!:

C=O.I~F

\
VA=125°C

1.8

~

R=IM,

\

2.0

1/

16

Sampling Rate YS REXT, CEXT

2.2

1

V

r£

ui

~ 109~.1

~
en

13
a:

40
-50 -25 0
25
50
75
100
AMBIENTTEMPERATURE, TA (OC)

~108'11111
~ t=
~

125

107

'---1....L..L.U.WL-L...L..L...lJ.JJll..-..I....L.J.=U-.J..'-1.WU

10
10 2
10 3
SAMPLING FREQUENCY, Is (Hz)

10 4

APPLICATions INFORmATion
The LTC1042 uses sampled data techniques to achieve its
unique characteristics. It consists of two comparators,
each of which has two differential inputs (Figure 1). When
the sum of the voltages on a comparator's inputs is positive, the output is high; when the sum is negative, the output is low. The inputs are interconnected such that

when (CENTER - WIDTH/2) s VIN s (CENTER +WIDTH/2)
both comparator outputs are low. In this condition VIN is
within the window and the WITHIN WINDOW output is
high. When VIN>CENTER +WIDTH/2, VIN is above the window and the ABOVE WINDOW output is high.

85-7

LTC1042
APPLICATions INFoRmATion
An important feature of the LTC1042 is the non-interaction
of the inputs. This means the center and width of the window can be changed without one affecting the other. Also
note that the width of the window is set by a ground referred signal (WIDTH/2).

At low sampling rates, REXT dominates the power consumption. REXT consumes power continuously. The average voltage at the OSC pin is approximately V+/2. The
power consumed by REXT is:

Strobing

EXAMPLE: Assume REXT = 1MO and V+ = 5V. Then:
P(REXT) = (2.5)2/1 MO =6.251'W

An external oscillator allows the LTC1042 to strobe itself.
The frequency of oscillation sets the sampling rate and is
set with an external RC network (see typical curve, OSC
frequency vs REXT, CEXT). To assure oscillation, under all
conditions, REXT must be between 100kO and 10MO. There
is no limit to the size of CEXT.
A sampling cycle is initiated on the positive going transition of the voltage on the OSC pin. When this voltage is
near the positive supply, a Schmitt trigger trips and initiates the sampling cycle. Asampling cycle consists of applying power to both comparators, sampling the inputs,
storing the results in CMOS output latches and turning
power off. This whole process takes approximately 80l's.
During the 80l's "active" time, the LTC1042 draws typically
1.2mA (IS(ON)) at V+ = 5V. Because power is consumed
only during the "active" time, extremely low average
power consumption can be achieved at low sample rates.
For example at a sample rate of 1sample/second the average power consumption is:

P(REXT) = (V +/2)2/REXT

This is more than ten times the typical power consumed
by the LTC1042 at V+ =5V and 1 sample/second. Where
power is a premium, REXT should be made as large as
possible. Note that the power dissipated by REXT is not a
function of the sampling frequency or CEXT.
If high sampling rates are needed and power consumption
is of secondary importance, a convenient way to get the
maximum possible sampling rate is to make REXT = 100kO
and CEXT= O. The sampling rate, set by the LTC1042's active time, will nominally be '" 10kHz.
To synchronize the sampling of the LTC1042 to an external
frequency source, the OSC pin can be driven by a CMOS
gate. A CMOS gate is necessary because the input trip
points of the oscillator are close to the supply rails and
TTL does not have enough output swing. Externally driven,
there will be a delay from the rising edge of the OSC input
and the start of the sampling cycle of approximately 51's.

Power =(V +) (IS(AVG)) = 5V x1.2mA x80l's/1 sec
=0.48I'W
WINDOW
CENTER 2 .....---1
(VIN)

III v+
)o---f 1

VIN
(WINDOW 31-+4~-I
CENTER)

WITHIN WINDOW
ABOVE WINDOW
(BELOW WINDOW)

~

WINDOW

V+ __

~

I

~
OV

r

. - - - , - - - - POWER ON

85-8

I

-WIOTH/2 I WIDTH/2
I
I
:
I
-----I----~

Vl

Vu

INPUT VOLTAGE, VIN
POWER OFF

1--801"'--1
(A)

ABOVE

I

o

--.J

WITHIN

I:

~
5

TIMING .........----1
GENERATOR 1--_----'

I

~ENTER {WINDOW __ LWINDOW

Figure 1. LTC1042 Block Diagram

(B)

LTC1042
APPLICATions INFoRmATion
Input Impedance
The input impedance of the LTC1042 does not look like a
classic linear comparator. CMOS switches and aprecision
capacitor array form the dual differential input structure.
Input impedance characteristics can be determined from
the equivalent circuit shown in Figure 2. The input capacitance will charge with atime constant of Rs xCIN. It is critical, in determining errors caused by the input charging
current, that CIN be fully charged during the "active" time.

For Rs~10kO
For Rs less than or equal to 10kO, CIN fully charges and no
error is caused by the charging current.
For Rs>10kO
For source resistances greater than 10kO, CIN cannot fully
charge, causing voltage errors. To minimize these errors
an input bypass capacitor, Cs, should be used. Charge is
shared between CIN and Cs, causing a voltage error. The
magnitude of this error is IlV = VIN X CIN/(CIN +Cs). This
error can be made arbitrarily small by increasing Cs.
The averaging effect of the bypass capacitor Cs causes
another error term. Each time the input switches cycle between the plus and minus inputs, CIN is charged and discharged. The average input current due to this is
IAVG = VIN X CIN X fs, where fs is the sampling frequency.
8ecause the input current is directly proportional to the
differential input voltage, the LTC1 042 can be said to have
an average input resistance of RIN = VIN/IAVG = 1/(fs xCIN).

Since two comparator inputs are connected in parallel, RIN
is one half this value (see typical curve of RIN vs Sampling
Frequency). This finite input resistance causes an error
due to voltage divider between Rs and RIN.
The input error caused by both of these effects is
VERROR = VIN[2CIN/(2CIN t Cs) +Rs/(Rs +RIN)].
EXAMPLE: Assume fs = 10Hz, Rs = 1MO, Cs = 1J,tF and
VIN=1V. Then VERROR=1V(66J,tVt660J,tV)=726J,tV. If the
sampling frequency is reduced to 1Hz, the voltage error
from input impedance effects is reduced to 136J,tV.

Input Voltage Range
The input switches of the LTC1042 are capable of
switching either to the V+ supply or ground. Consequently, the input voltage range includes both supply rails.
This is a further benefit of the input sampling structure.

Error Specifications
The only measurable errors on the LTC1042 are the deviations from "ideal" of the upper and lower window limits
[Figure 1(8)]. The critical parameters for a window comparator are the width and center of the window. These errors may be expressed in terms of Vu and VL.
center error = [(Vu +VL)/2j- CENTER
width error = (Vu - VLJ- 2x(WIDTH/2)
The specified error limits (see Electrical Characteristics)
include error due to offset, power supply variation, gain,
time and temperature.

Figure 2. Equivalent Input Circuit

85-9

LTC1042
APPLICATions InFoRmATion
TTL Power Supply Monitor

TTL SUPPLY
V+

r--------+-+--+-.... "HI" ~SUPPLY IN

RANGE
(4.55.5V)

LT1004-2.5

ALL RESISTORS ±5% UNLESS OTHERWISE NOTED.
'SUPPLY TOLERANCE EQUALS R2 IN kG. I.E .. 10k ~ ± 10%.

Single 5V Thermocouple Over Temperature Alarm

r---------------,
COLO JUNCTION COMPENSATOR

1870

THERMOCOUPLE
TYPE

VCENTER
R4

WIDTH~2x 1.235xR3

232k
301k
301k
2.1M

R1+R2+R3

L. _ _ _ _ _ _ _ _ _ _ _ _ _
1k

v,

85-10

1.235 x (R2+ R3)
Rl +R2+R3

+

tYELLOW SPRINGS INST. CO. PIN 44007
'CHOOSE CF TO FILTER NOISE
"CHOOSE RF. RI- Rl. R2 AND R3 TO SET WINDOW
ALL RESISTORS ± 1% UNLESS OTHERWISE NOTED

LTC1042
APPLICATions InFoRmATion
Wind Powered Battery Charger
A simple wind powered battery charger can be con·
structed using the new LTC1042, a 12V DC permanent
magnet motor, and low cost power FET transistor.

2) If the generator voltage output is between 13.8V and
15.1V, the 12V lead acid battery is being charged at
about a 1amp/hour rate (limited by the power FET).

The DC motor is used as a generator with the voltage out·
put being proportional to its RPM. The LTC1042 monitors
the voltage output and provides the following control
functions.

3) If generator voltage exceeds 15.1 V(a condition caused
by excessive wind speed or 12V battery being fully
charged) then a fixed load is connected thus limiting
the generator RPM to prevent damage.

1) If generator voltage output is below 13.8V, the control
circuit is active and the NiCad battery is charging
through the LM334 current source. The lead acid bat·
tery is not being charged.

This charger can be used as a remote source of power
where wind energy is plentiful such as on sailboats or reo
mote radio repeater sites. Unlike solar powered panels,
this system will function in bad weather and at night.

1N4001

+

-=- 12V

LM334
6SIl

J;_O._1~F.; ;13." 'E. ;. ~ . ;. 6~;. ;. 1V~ ~:::'" ~

r-_ _ _ _ _
215k

100k
10M

4.5V'

BA~~~~l:
10k

LT1004-1.2

OVER VOLTAGE
(>15.1V)

85-11

LTC1042
PACKAGE DESCRIPTion

Dimensions in inches (millimeters) unless otherwise noted.
J8 Package
8Lead Hermetic DIP

r

0.005
(0.127) ....
MIN
_ _ 0.405 ~
(10.287)
MAX
0.025

I

(0.635) ~
RADTYP

8

7

6

'5

1
0.220-0.310
(5.588-7.874)

:-.--,-,.....,.~.~

10.290-0.320 __

I[!", ""!

MAX

I--

0.385±0.025 _ _
(9.779±0.635)

I

~

mID

0.055
1
(1.397)--.1

2

t----

0.200
(5.080)
MAX

nn::L'"

"",0-0..'---11

(0.360-0.660)~

~

0.030-0.073
(0.762 -1.854)

0.015-0.060

JL ~
3.175
MIN
0.100±0.010
(2.540± 0.254)

N8 Package
8Lead Plastic

r: (100410~0):l
MAX

8

7

6

5

1

0.250 ± 0.005
(6.350±0.127)

l::::;-;=;:;::;::;;::;:=;:::=r=;::;:;=I~

0.300 - 0.320
(7.620-8.128)

-(~~~~=~~~~)
0325 +0.025

II \ . :~:~~~)-1I
(8255

-0381

85-12

t

0.125
(3.175)
MIN

t

L7UDWlI:"iY~-pr-o-g-ra-m-m-a-b-le-M-ic-r-op-o-~-TC-e-:~-:-~

Translator / Receiver / Driver

FEATURES

DESCRIPTion

•
•
•
•
•
•

The LTC1045 is a hex level translator manufactured using
Linear Technology's enhanced LTCMOS™ silicon gate
process_ It consists of six high speed comparators with
output latches and three-state capability. Each comparator's plus input is brought out separately. The minus inputs of comparators 1-4 are tied to VTRIPl and 5-6 are tied
to VTRIP2.

Efficiently Translate Voltage Levels
Internal Hysteresis for Noise Immunity
Output Latches Included
Three-State Outputs
Programmable Power/Speed
Power can be Completely Shut Off
• ± 50Von Inputs with External100kll Limit Resistor
• 1021's Response at 1OOf,IA Supply Current

The ISET pin has several functions. When taken to V+ the
outputs are latched and power is completely shut off.
Power/speed can be programmed by connecting ISET to
V- through an external resistor.

APPLICATions
•
•
•
•
•

TTL/CMOS to ± 5V Analog Switch Drive
TTLto CMOS (3V to 15V Vecl
ECLto CMOS (3V to 15V Vee)
Ground Isolation Buffer
Low Power RS232 Line Receiver

LTCMOSTM is a trademark of Linear Technology Corp.

Flat Ribbon Cable Driver/Receiver
5V
5V

TTL IN

r)

XMTOUT

)

66 FT FLAT RIBBON CABLE

(,

RCV IN

Zo=15011
ADJACENT CONDUCTORS

(~

15011

RCV OUT

TTL OUT

XMIT IN (5V/DlV)

XMT OUT (W/DIV)
RCV IN (W/DIV)
RCV OUT (5V/DIV)
l00ns/DlV

85·13

LTC1045
PACKAGE/ORDER InFORmATiOn

A8S0LUTE mAXimum RATinGS
(Notes 1and 2)

ORDER PART
NUMBER

Total Supply Voltage (V+, VOH to V-, VoU ............ 18V
Output High Voltage (VOH) ......................... sv+
Input Voltage .......................... 18V to v- - 0.3V
Operating Temperature Range
lTC1045C ............................. -40°C to 85°C
l TC1045M ........................... - 55°C to 125°C
Storage Temperature Range ............. - 55°C to 150°C
lead Temperature (Soldering, 10 sec) .............. 300°C
Output Short Circuit Duration
(VOH - VOLS 10V) .......................... Continuous
ESD (Mll·STD·883, Method 3015.1) ................. 2000V

lTC1045MJ
lTC1045CJ
lTC1045CN

J20 PACKAGE
HERMETIC DIP

N20 PACKAGE
PLASTIC DIP

ELECTRICAL CHARACTERISTICS

(Note3)V+ =VOH=5V, v- =VOL=OV, TA= 25°C unless otherwise specified.
SYMBOL PARAMETER
Input Bias Current
18

Is

Trip Voltage Range
(Pin 8 and Pin 9)
V+to V· Supply Current

CONDITIONS
V- SVINSV+

DISABLE=V+, RSET=10k
DISABLE = ISET=V+

ROH

TTL Output High Voltage
TTL Output Low Voltage
Output Short Circuit
Sink Current
Output Short Clrcu It
Source Current
Three·State Leakage
Current
Output Resistance to VO H

lOUT = - 360pA, V+ = 4.5V
10UT= 1.6rnA, V+ = 4.5V
VIN=VTRrloornv,
VOUT=V
VIN = VTRIP +100rnV,
VOUT=VDISABLE=V+
VOLSVOUTSVOH
Ii0UTI sloopA

ROL

Output Resistance to VOL

Ii0UTI s100pA

VREF
VOH
VOL
ISINK
ISOURCE
loz

VIH
VIL

85·14

•
•

V+ to V- Supply Current
In Shutdown
Voltage on ISET(Pln 12)

10FF

MIN

RSET= 10k

ISET Voltage for Shutdown
DISABLE Input Logic
V+ = 4.5V, V- =OV
Levels
V+ = 5.5V, V- = OV
Input Supply Differential
(V+ -v-) (Note 3)
Output Supply Differential
(VOH - VOl) (Note 3)

•
•
•
•

•

•
•
•

V-

2.5

MIN

LTC1045C
TYP
±1

3.5
5.0

2.5

1
0.9

0.9

8.5
5.5
4.5
3.2

1.4
4.4
0.2
15

3.5
4.5

10
5

0.5
2.4

MAX
0.5
V+ -2

V-

10

0.6
2.4

0.4
7.5
5.5
4.0
3.2

8.0
0.005

1.25
4.4
0.2
15

0.4

8.0
0.005

1

•
•
•
••
•
•

LTC1045M
TYP
MAX
±1
1.0
V+ -2

260

400

260

100

600
150
250

100

V+ -0.5

1
475
600
180
250

V+ -0.5

2.0

2.0

4.5

0.8
15

3

15

UNITS
nA
pA
V
rnA
rnA
nA
pA
V
V
V
V
rnA
rnA
rnA
rnA
pA
pA
II
II
IJ
II
V

4.5

0.8
15

V
V
V

3

15

V

LTC1045

AC ELECTRICAL CHARACTERISTICS

v+ = VOH =5V, v- = VOL =OV, TA = 25°C unless otherwise specified.
SYMBOL
td
tsETup
tHOLD
tAcc
tlH, tOH

PARAMETER
Response Time

CONDITIONS
Test Circuit Figure 1
RSET 10k, ± 100mV Drive
Test Circuit Figure 2

MIN

•

=

Time Before Rising Edge of ISET that
Data Must be Present
Time After Rising Edge of ISET that
Data Must be Present
Falling Edge of DISABLE to Logic
Level (from Hi-Z State)
Rising Edge of DISABLE to Hi-Z
State

LTC1045M
TYP MAX
200
350
80

MIN

LTC1045C
TYP MAX
250
350
80

UNITS
ns
ns
ns

Test Circuit Figure 2

0

0

ns

Test Circuit Figure 3

165

165

ns

Test Circuit Figure 3

200

200

ns

The. denotes the specifications which apply over the full operating
temperature range.
Nole 1: Absolute Maximum Ratings are those values beyond which the life
of the device may be impaired.
Nole 2: The maximum differential voltage between any two power pins
(V+, V-, VOH and VoLl must not exceed 18V. The maximum recommended
operating differential is 15V.

Nole 3: During operation near the maximum supply voltage limit, care
should be taken to avoid or suppress power supply lurn·on and turn-off
tranSients, power supply ripple, or ground noise; any of these conditions
must not cause a supply differential to exceed the absolute maximum
rating.

TEST CIRCUITS
5V

SV

t r:510ns

5V

tlH

~
-

lDpF

DISABLE

OV

tlHj

OUTPUT

5V

10k

OISA:LE

VOL

OUTPUTS

-5V

9:~

trslOns

tOH

Figure 1. Response Time Test Circuit

VO~Ok

~r
':'

DISABLE

'OHi

OUTPUT

10PF

V+

DISABLE

OUTPUTS 5V

.~

_5V _ _ _ _..;r¥1O%

-

VIN{ 1~~:~~ _____ _
-100mV

IjstOns
tHOLD

tSETUP

5V
ISfT {

50%

Ih

OUTPUT

OV

T

l'El{5V

DISABLE

50%

OV-----J

Figure 2. Latch Test Circuit

DISABLE

":"

50PF

OUTPUTS 5V _______

~:~=1---

_5V-----:L

Figure 3. Three·State Output Test Circuit,
Condilions:V+ =5V, V- =OV, VOH=5V, VOL=OV

85-15

LTC1045
TYPICAL PERFORmAnCE CHARACTERISTICS
1+ vs Temperature

!

l+
3

........... r--...

:::>

'-'

,

>
~

+
>

~~~~~~c

V+ =Vo H=5V
4 1-HH-HffitTt-I+tlll+t-+ V- = VOL = OV

~

-r--

J

r-- _RSET=10k

1111'

V+ =VOH=5V
V- =VOL =OV
Y,N =VTRIP± 100mV
0.8 f-+Htffl1t--t-++H1tIt--t-t+tttttt--++HItItl

1.0

+
>-"

~

~
:::>
'-'
~

~
~
'"

o

ili

hi

1

1.2 "n;mTl""O"TTTI~TTTmnr--rrrrnm

I""!'"I~+--+I+tlll+t-+~~ ~IJ~oc I I I

V+=5V

~

Delay Time vs RSET

1+ vs RSET

5

21-H~~+m~~ffir~~

~

0.6 f-+Htffl1t--t-++H1tIt--t-t+tttttt--+--tIH-Httl

V

0.4 f-+Htffl1t--t-++H1tIt--t-t+tttttt--++t+ttttl

+
>

0.2 f-+t+IttIltH-++H1ttI-++t!ilflt--+-tttttttl

R1SET=1 IM

o
-~

O~UW~~~Lll~~WW

O~~~~=-~~~==

-~

0
~
~
~
100
AMBIENT TEMPERATURE, TA (0G)

1~

100

lk

10k
RSET (0)

lOOk

VREF vs Temperature
2.5

20
V+=5V

100

1M

Hysteresis vs RSET
r-.

lk

10k
RSET (0)

lOOk

1M

V+=5V

18
~

~

:z

1.5

;;; 1.0
o
w

~
>

-

:I:

J J

a:
0

--.,!!SET= 10k

F-_

to:
a:
go

-r--

:;

8
6

0

'-'

0.1
-~

10

-~

0
~
~
~
100
AMBIENT TEMPERATURE, TA (0G)

0
100

1~

lk

10k
RSET (0)

lOOk

1M

Pin DESCRIPTion
Pin
1

Name
VOH

2-7

INPUT

8

VTRIP1

9

VTRIP2

10

V-

85-16

Description
High level to which the output
switches
Six comparator inputs; voltage
range =V- to V- +18V
Trip pOint for first four comparators
(inputs 1-4); voltage range =V- to
V+ -2V
Trip point for last two comparators
(inputs 5-6); voltage range =V- to
V+ -2V
Low level to which the output switches

Pin

Description
Comparator negative supply
12
This pin has three functions
1) RSET from this pin to V- sets bias
current
2) When forced to V+ power is shut
off completely
3) When forced to V+ outputs are
latched
13
DISABLE When high outputs are Hi·Z
14-19 OUTPUT Six driver outputs
V+
20
Comparator positive supply
11

Name
VOL
ISET

LTC1045
BLOCK DIAGRAm

VBIAS

'--;--------"'''''-1

BIAS
GENERATOR

-8kD

L -_ _--' SHUT·

DOWN

LATCH
ENABLE

I
I

I
I
..J
RSET

S5-17

LTC1045
APPLICATions INFoRmATion
The LTC1045 consists of six voltage translators and associated control circuitry, see Block Diagram. Each translator has a linear comparator input stage with the positive
input brought out separately. The negative inputs of the
first four comparators are tied in common to VTRIP1 and
the negative inputs of the last two comparators are tied in
common to VTRIP2. With these inputs the switching point
of the comparators can be set anywhere within the com·
mon·mode range of V- to V+ - 2V. To improve noise
immunity each comparator has asmall built·in hysteresis.
Hysteresis varies with bias current from 7mV at low bias
current to 20mV at high bias current (see typical curve of
Hysteresis vs RSET).

Setting the Bias Current
Unlike CMOS logic, any linear CMOS circuit must draw
some quiescent current. The bias generator (Block Diagram) allows the quiescent current of the comparators to
be varied. Bias current is programmed with an external resistor (see typical curve of 1+ vs RSET). As the bias current
is decreased, the LTC1045 slows down (see typical curve
of Delay Time vs RSET).

Shutting Power Off and Latching the Outputs
In addition to setting the bias current, the ISET pin shuts
power completely off and latches the translator outputs.
To do this, the ISET pin must be forced to V+ - O.5V. As
shown in Figure 4, a CMOS gate or a TTL gate with a resistor pull-up does this quite nicely. Even though power is
V+ (4.5V TO 15V)

turned off to the linear circuitry, the CMOS output logic is
powered and maintains the output state. With no DC load
on the output, power dissipation, for all practical purposes, is zero.
Latching the output is fast-typically 80ns from the rising
edge of ISET. Going from the latched to flow through state
is much slower-typically 1.5/1s from the falling edge of
ISET. This time is set by the comparator's power up time.
During the power up time, the output can assume false
states. To avoid problems, the output should not be considered valid until2/1s to 5/1s after the falling edge of ISET-

Putting the Outputs in Hi-Z State
A DISABLE input sets the six outputs to a high impedance
state. This allows the LTC1045 to be interfaced to a data
bus. When DISABLE ="1" the outputs are high impedance
and when DISABLE "0" they are active. With TTL supplies, V+ =4.5V to 5.5V and V- =GND, the DISABLE input
is TTL compatible.

=

Power Supplies
There are four power supplies on the LTC1045: V+, V-,
VOH and VOL. They can be connected almost arbitrarily,
but there are a few restrictions. A minimum differential
must exist between V+ and V- and VOH and VOL. The V+
to V- differential must be at least 4.5V and the VOH to VOL
differential must be at least 3.0V. Another restriction is
caused by the internal parasitic diode 01 (see Figure 5).

V+ (4.5V TO 5.5V)
V+

DATA

DlSABLE--~

(A) CMOS

Figure 4. Driving the ISET Pin with Logic

S5-18

Figure 5. Output Driver

LTC1045
APPLICATions InFoRmATion
Because of this diode, VOH must not be greater than V+.
Lastly the maximum voltage between any two power supply pins must not exceed 15V operating or 18V absolute
maximum. For example, if V+ = 5V, V- or VOL should be
no more negative than -10V. Note that VOL should not be
more negative than -10V even if the VOH to VOL differen·
tial does not exceed the 15V maximum. In this case the V+
to VOL differential sets the limit.
Input Voltage
The LTC1045 has no upper clamp diodes as do convention·
al CMOS circuits. This allows the inputs to exceed the V+
supply. The inputs will break down approximately 30V
above the V- supply. If the input current is limited with
100kO, the input voltage can be driven to at least ± 50V
with no adverse effects for any combination of allowed
~4.0

~"I

+ 3.0

/
,/

2:o

z

«

power supply voltages. Output levels will be correct even
under these conditions (i.e., if the input voltage is above
the trip point, the output will be high and if it is below, the
output will be low).
Output Drive
Output drive characteristics of the LTC1045 will vary with
the power supply voltages that are chosen. Output
impedance is affected by V+, VOH and VOL. V- has no ef·
fect on output impedance. Guaranteed drive characteristics are specified in the table of electrical characteristics
for V+ =VOH=5V and V- =VOL=OV. Figures 6 and 7
show relative output impedance for other supply combinations. In general, output impedance is minimized if V+ to
VOH is minimized and VOH to VOL is maximized.
2.0

+-~

\
~"I
a 1.0

~ 2.0 ~ - -VJH-V~L=4V
~
..~
~1,O
@

~

(i

r--

10

12

14

16

SPECIFIEO POINT

i\
I

.........

-l"- I-

1

o
8

IV

;

VOH-VOL~

i'SPEClfIED POINT

~H-VOL=10V
D
a 2 4 6

\

~

I

o

2

4 5 6

8

10

12

14

16

V+-VOH (V)

Figure 6. Relative Output Sourcing
Resistance (ROH) vs V+ - VOH

Figure 7. Relative Output Sinking
Resistance (RoLlvs VOH - VOL

TYPICAL APPLICATiOnS
TTL/CMOS (Vee =5V) to High Voltage CMOS (Vee =15V)

ECl to CMOS/Tll logic
5V

15V

TTL/CMOS

ECL
IN

CMOSITIL

(Vcc=5V)

(Vcc=5V)

CMOS

(Vcc=15V)

--1.3Vt-~~-+--.....J

10k

-5.2V

S5-19

LTC1045
TYPICAL APPLICATions
High Voltage CMOS (Vee = 15V) to TTL/CMOS (Vee = 5V)
SV

CMOS
(VCC=1SV)

TIL/CMOS
(Vcc=SV)

-2.SV

TTL/CMOS (Vee =5V) to Low Voltage CMOS (Vee =3V)
5V

3V

TIL/CMOS
(Vcc=5V)

CMOS
(VCC=3V)

100k

TTUCMOS Logic Levels to :!: 5V Analog Switch Driver
5V

±5V

OUT
TIL/CMOS
INPUT
(Vcc=5V)

CMOS ANALOG
SWITCH
(CD4016 FOR
EXAMPLE)

20k
-5V

85-20

LTC1045
TYPICAL APPLICATions

TTL/CMOS (Vee = 5V) to +10V/- 5V Clock Driver
10V

TIL/CMOS
(VCC=5V)

+10VTO -5V
CLOCK ORIVER

Logic Ground Isolation when Two Grounds are within LTC1045 Common·Mode Range

,--I
.------.
SYSTEM B

SYSTEM A

I
I
I
I
II

I
TIL/CMOS LOGIC

I
I
I

I
I

2.7k

LOGIC
OUT

Vr=1.35V
SETS LOGIC
THRESHOLO REFERRED
TO GNDA

I

lk

I
I
L_

I

VCCB=5V

I
I

II

I

GNOA ':"

L _ .:!:.=::::!. _ _ _ _

""""-'-."'<""M<'''~.'~-~-'''~

I
I
I
I

~DB_ _

-1

85·21

LTC1045
TYPICAL APPLICATions

±5V Analog Switch Driver

5V
TIL
OR CMOS
LOGIC INPUTS

I
~

I

I

L ___ ...J

-5V

Coax Cable Driver/Receiver
5V
TIL IN

30 FT RG 174
XMT OUT
~ COAX CABLE ~
RCV IN
~~~~»----~------~--+-~(~~~~~

500

RCV OUT (5V/DIV)
RCV IN (lV/DlV)
XMIT OUT (1V/DIV)
XMIT IN (5V/DIV)

200ns/DIV

85-22

>"---'""-....... TIL OUT

LTC1045
TYPICAL APPLICATions
Logic Systems DC Isolation
SYSTEM A

SYSTEM B
SYSTEM B
POWER SUPPLY

V+ 20
LTC1045

TIL OR CMOS

CMOS OR TIL

SYSTEM A
POWER SUPPLY

(1) SET VT TO HALFWAY BETWEEN

VOH AND VOL OF SYSTEM A.
(2) SHUNTS COMMON-MODE SIGNAL.
(3) PROVIDES LEAKAGE PATH FOR TOTALLY

SYSTEM A GNO .".

ISOLATED SYSTEMS.

lOOk
(3)

RS232 Receiver

10",OkH1 +
30V-n>-'II
-30VOUT
0.9V

'INPUTS HAVE NO INTERNAL
PULL-DOWN.

S5-23

LTC1045
TYPICAL APPLICATions
24V Relay Supply from +12VI +15V Supply

LED Driver
V+ (5V TO 15V)

V+

LOW TURNS LEO ON

lN4148
lN4148

+24V

...-------+- - -

I

r

I

I
I
I

I

I
I

I
I
I
I
IL _ _ _ _ _ _ _ _ _ _ _ _ _ .JI
REGULATES
LED CURRENT

85-24

LTC1045
TYPICAL APPLICATions
Multi"Window Comparator and Display
V+

5V

...........2.

v+

VOH

20

LTC1045
2 IN 1
+OUT1

19

VIN>VREF

R
VH

3 IN 2
+OUT218

10k
4 IN 3
+OUT317
10k
5 IN 4
10k
6 IN 5
10k
7 IN 6

r

+

'"""i/
V
V

OUT 4 16

+

OUT5 15

+

OUT 6 14

GI MV 57164"
BAR GRAPH DISPLAY
5V

~

"';;;;

DIS 13

VT1

I SET

.......

12

...

~ V-

VOl

~ VOH

11_

...
...

V+ 20
LTC 1045

10k

...

2 IN 1
-f./0UT1

19

10k
3 IN 2
-f./0UT218
10k
4 IN 3
-f./0UT317
10k
5 IN4
-f./0UT416
10k
6 .IN 5
VOUT515
10k
7

ilN6.,.

,'.

.

-£.,;

OUT

6 14

VIN Figure 23
Vas2
Vas2
Vas3
Vas3

fClK = 2S0kHz, SO:1
fClK = SOOkHz, 100:1
fClK = 2S0kHz, 50:1
fClK = 500kHz, 100:1

Clock Feedthrough
Max. Clock Frequency
Power Supply Current

MIN

•
•
•
•
•

MAX

2
3
6
3
6

1S
20
40
20
40

mV
mV
mV
mV
mV

12
16

mV RMS
MHz
mA
mA

0.4
2.5
8

fClK<1MHz
Mode 1, 0<5, VS"- ±SV

•

TVP

6

UNITS

ElECTRICAl CHARACTERISTICS (Complete Filter) Vs = ± 2.37V, TA = 25°C unless otherwise specified
PARAMETER

CONDITIONS

Center Frequency Range, fa

fax 0~120kHz, Mode 1, 50:1
fa X ~ 120kHz, Mode 3, 50:1

MIN

TVP

a

Input Frequency Range
Clock to Center Frequency Ratio
LTC1061A
LTC1061
LTC1061A
LTC1061

SO:1, fClK = 2S0kHz, 0= 10
Sides A, B: Mode 1
Side C: Mode 3
100: 1, fClK = 500kHz, 0= 10
Sides A, B: Mode 1
Side C: Mode 3

•
•

MAX

UNITS

0.1-12k
0.1-10k

Hz
Hz

0-20k

Hz
50±0.6%

50±1%
100±0.6%
100±1%

a Accuracy
LTC1061A
LTC1061

Same as Above

±2
±3

Max. Clock Frequency
Power Supply Current

%
%

700k
4.S

Hz
mA

6

ElECTRICAl CHARACTE RISTICS (Internal Op Amps) TA = 25°C unless otherwise specified
PARAMETER

CONDITIONS

MIN

Supply Voltage Range
Voltage Swings
LTC1061A
LTC1061
LTC1061, LTC1061A

TVP

±2.37
Vs= ±5V, Rl =Sk(Pins 1, 2,13,14,19,20)
Rl = 3.Sk (Pins 3,12, 18)

•

4
3.8
3.6

MAX
±9

±4.2
±4.2

UNITS
V
V
V
V

Output Short Circuit Current
Source/Sink

Vs= ±SV

40/3

mA

DC Open Loop Gain

Vs= ±SV, Rl=Sk

80

dB

GBWProduct

Vs= ±SV

3

MHz

Slew Rate

Vs= ±SV

7

V/~s

The. denotes the specifications which apply over the full operating temperature range.

86-5

LTC1061
BLOCK DIAGRAm

INYA
(4)

elK

TO FILTER A

(8)

INYg
(17)

TO FilTER 8

INYc
(11)

ro FilTER C

LEVEL SHIFT

50/1001
HOLD

(9)

(7)

t
0

'I'

t

t

Y_
0(15)

y+
0(10)

lAGND
(6)

TYPICAL PERFORmAnCE CHARACTERISTICS
Graph 1. Mode 1, Mode 3
(felK/fol Deviation vs Q

r- .11111111 I 111111

Ys= ±5Y ""
TF25°C

0.4

1ClK = 250 kHz

0.1

\

::2 -0.4

<3

'S

""

~ -O.B

o

/

-1.6

I~~K = 50 (TEST POINT)

;s

;::

;"

~ -0.4

-2.4

-0.5

II

/

/

(8)

S6-6

100

1
2

R4

f~~K =2001

1IIIII11
1IIIlIII

-0.6
10

v*=i
VV*=

!!L H::Pf!1l11

-0.2

~ -2.0

IDEAL Q

fClK =500:1
10

0

~ -0.3

0.1

I L111111

Ys= ±5Y
TA=25°C
PIN 7 AT 100:1

VS=±5Y
TA=25°C
IClK=500k Hz_ 1~lK = 100 (TEST POI NT)

~ -0.1

~ -1.2

~

Graph 3. Mode 3: Deviation of
(felK/fol with Respect to Q= 10
Measurement

Graph 2. Mode 1, Mode 3
(felK/fol Deviation vs Q

10

0.1
IDEAL Q

100

0.1

10
IDEAL Q

100

LTC1061
TYPICAL PERFORmAnCE CHARACTERISTICS
Graph 4. Mode 1: (fClKlfo)= 50:1

Graph 5. Mode 1: (fClK/fo) = 100:1

~ 30

~ 30

;; 20

a

~ 10~~~~~~~~~

~
i1l'

~

EE

z
o

Graph 6. Mode 3: (fClKlfo) = 50:1

(ii
o

~ o~~~~~~~}-~
o

~ 30 I---+-+-+--+-

20~~-+-+~4+~~~

+-+-+-+-

-="1

z

z

o

~ 30

~ 10r-~7H~-TI~~-r

I---+--H-A-

0 1-+-"i¥--!-....,.~~~1--l

o

~ 30
(ii

TA=25°C
f elK 50 +--t-t--l-

a20~~~rr.ri-~~~

20
10

40

~

30

o

20r-~-+-r-n~~-t-t--l

~

20 I---+-+--+--::-+:-:----t-

10 I-H-t-t-fl'-b~-""F'(
oL-~~~~~~~~

8 12 16 20 24 28 32 36 40
CENTER FREQUENCY, fa (kHz)

8 12 16 20 24 28
CENTER FREQUENCY, fa (kHz)

Graph 7. Mode 3: (fClK/fo) = 100:1
I,

;; 20
10

i1l

0

EE

I/Q=5 20/1: Q=5
Jil
.IlL ~I-"Q=1-

Q=201

27

~ 1.5

24

-:!! 1.0
:5
:: 0.5

~ 18

EE

Q=fOr

20
10

o

o

YL.
4

I

J.--

8
10 12 16 20 24
CENTER FREQUENCY, fa (kHz)

28

A=25 0 C

V
k'" L iL'

n

U

TA=125°C

v: ~ V

ffi 1.0

,...Q=1-

4

~ 12

a: 1.5
0
a:

10
V7f=5

TA=-WV

~ 15

0

0

VS= ±5V

~ 30

8 12 16 20 24 28 32 36 40
CENTER FREQUENCY, fa (kHz)

21

:;

o
o

30

2.0

~
e

4

Graph 9. Power Supply Current vs
Supply Voltage

2.5

,j

z

(ii

o

Graph 8. fClKlfo vs fa

iIVS= 7'2.5V _ t - Vs= ± 7.5V_t--I
10
10
I

~ 30

~

1

32

~V

0.5
8 12 16 20 24 28 32 36 ·40
CENTER FREQUENCY, fa (kHz)

o
o

±1 ±2 ±3 ±4 ±5 ±6 ±7 ±8 ±9 ±10
POWER SUPPLY VOLTAGE (V)

Pin DESCRIPTion AnD APPLICATion HinTS
Power Supplies (Pins 10, 15)
They should be bypassed with 0.1J.1F disc ceramic. Low
nOise, non·switching, power supplies are recommended.
The device operates with a single 5V supply, Figure 1, and
with dual supplies. The absolute maximum operating
power supply voltage is ± 9V.

Clock and Level Shift (Pins 8, 9)
When the LTC1061 operates with symmetrical dual supplies the level shift Pin 9 should be tied to analog ground.

For single 5V supply operation the level shift pin should be
tied to Pin 15 which will be the system ground. The typical
logic threshold levels of the clock pin are as follows: 1.65V
above the level shift pin for ±5V supply operation, 1.75V
for ± 7.5V and above, and 1.4V for single 5V supply operation. The logic threshold levels vary ± 100mV over the full
military temperature range. The recommended duty cycle
of the input clock is 50% although for clock frequencies
below 500kHz the clock "on" time can be as low as 300ns.
The maximum clock frequency for ± 5V supplies and
above is 2.4MHz.

86-7

LTC1061
Pin DESCRIPTion AnD APPLICATion HinTS
S1A, S1B (Pins 5, 16)

These are voltage input pins. If used, they should be driven
with a source impedance below 5kO. When they are not
used, they should be tied to the analog ground Pin 6.

When Pin 7 is shorted to the negative supply pin, the filter
operation is stopped and the bandpass and lowpass output act as a sample and hold circuit holding the last sample of the input voltage. The hold step is around 2mV and
the droop rate is 150,Nlsec.

AGND(Pin6)

Table 1

When the LTC1061 operates with dual supplies, Pin 6
should be tied to system ground. When the LTC1061 operates with a single positive supply, the analog ground pin
should be tied to 1/2 supply, Figure 1. The positive input of
all the internal op amps, as well as the common reference
of all the internal switches, are internally tied to the analog ground pin. Because of this, a "clean" ground is
recommended.
50/1 OO/Hold (Pin 7)

By tying Pin 7to V+, the filter operates with aclock to center frequency internally set at 50:1. When Pin 7 is at midsupplies, the filter operates with a 100:1 clock to center
frequency ratio. Table 1 shows the allowable variation of
the potential at Pin 7 when the 100:1 mode is sought.

Voltage Range of Pin 7
for 100:1 Operation
2.SV ±O.SV
SV±1V
7.SV± l.SV

Tolal Power Supply
SV
10V
lSV

Clock Feedthrough
This is defined as the amplitude of the clock frequency appearing at the output pins of the device, Figure 2. Clock
feedthrough is measured with all three sides of the
LTC1061 connected as filters. The clock feedthrough
mainly depends on the magnitude of the power supplies
and it is independent from the input clock levels, clock frequency and modes of operation.

R1

.------+--VOUT

2.49k

5V>--+--~~
O.1~FT

T2L CLOCK

':'

IN >-------'

fCLK<1MHz

Figure 1. The 6th order LP Butterworth Filter of Figure 5
Operating with a Single 5V Supply.

86-8

R1

LTC1061
Pin DESCRIPTion AnD APPLICATion HinTS
Table 2 illustrates the typical clock feedthrough numbers
for various power supplies.
A;2V/DIV i

B;10mV/DiV

H - ~i
\I_-f

.:++ I
i;

J

4

Table 2
Power Supply
±2.5V
±5V
±8V

·-+·····...;--;--t--r-t.-+-ri

!

HORIZONTAL; lO~s/DiV

Figure 2. Typical Clock Feedthrough of the LTC1061
Operating with ± 5V Supplies. Top Trace is the Input Clock
Swinging 0-5V and Bottom Trace is One of the Lowpass
Outputs with Zero or DC Input Signals.

Clock Feedlhrough
O.2mV RMS
O.4mV RMs
O.8mV RMS

Definition of Filter Functions
Refer to LTC1 060 datasheet.

mODES OF OPERATion
Description and Applications

1. Primary Modes: There are two basic modes of operation,
Mode 1 and Mode 3. In Mode 1, the ratio of the external
clock frequency to the center frequency of each 2nd order
section is internally fixed at 50:1 or 100:1. In Mode 3, this
ratio can be adjusted above or below 50:1 or 100:1. The
side C of the LTC1061 can be connected only in Mode 3.
Figure 3illustrates Mode 1providing 2nd order notch, lowpass, and bandpass outputs (for definition of filter func-

tions refer to the LTC 1060 datasheet). Mode 1can be used
to make high order Butterworth lowpass filters; it can also
be used to make low Q notches and for cascading 2nd
order bandpass functions tuned at the same center frequency and with unity gain. Mode 3, Figure 4, is the classical state variable configuration providing highpass,
bandpass and lowpass second order filter functions.
Cc

r--------j
~------,
R4
RS

RS

LP

LP

NOTE: ADD Cc FOR 0>5
AND fCLK> 1MHz SUCH AS
Cc=O.16/(R4 x 1.2MHz)

fo;

Figure 3. Mode 1: 2nd Order Filter Providing Notch, Bandpass,
Lowpass.

1~%tgO)v'*; o;~~; HOHP; -R2/R1; HOBP; -RS/Rt HOlP; -R4/R1

Figure 4. Mode 3: 2nd Order Filter Providing Highpass,
Bandpass, Lowpass.

86-9

LTC1061
mODES OF OPERATion
Since the input amplifier is within the resonant loop, its
phase shift affects the high frequency operation of the fil·
ter and therefore, Mode 3 is slower than Mode 1. Mode 3
can be used to make high order all·pole bandpass, low·
'pass, high pass and notch filters. Mode 3as well as Mode 1
is a straightforward mode to use and the filter's dynamics
can easily be optimized. Figure 5 illustrates a 6th order
lowpass Butterworth filter operating with up to 40kHz cut·
off frequency and with up to 200kHz input frequency.
Sides A, B are connected in Mode 1 while side C is con·
nected in Mode 3. The lower 0 section was placed in side
C, Mode 3, to eliminate any early 0 enhancement. This
could happen when the clock approaches 2M Hz. The mea·
sured frequency response is shown in Figure 6. The at·
tenuation floor is limited by the crosstalk between the
three different sections operating with a clock frequency
above 1MHz. The measured wideband noise was
150/NRMS. For limited temperature range the filter of
Figure 5works up to 2.5MHz clock frequency thus yielding
a50kHz cutoff.
2. Secondary Modes: Mode 1b-lt is derived from Mode 1.
In Mode 1b, Figure 7, two additional resistors, R5 and R6,
are added to attenuate the amount of voltage fed back
from the lowpass output into the input of the SA (SB)

switched capacitor summer. This allows the filter clock to
center frequency ratio to be adjusted beyond 50:1 (or
100:1). Mode 1b still maintains the speed advantages of
Mode 1. Figure 8 shows the 3 lowpass sections of the
LTC1061 in cascade resulting in a Chebyshev lowpass fiI·
ter. The side Aof the IC is connected in Mode 1b to provide
the first resonant frequency below the cutoff frequency of
the filter. The practical ripple, obtained by using a non·A
version of the LTC1061 and 1% standard resistor values,
was 0.15dB. For this 6th order low pass, the textbook O's
and center frequencies normalized to the ripple bandwidth
are: 01 =0.55, fo 1= 0.71, 02 = 1.03, f02 = 0.969, 03 = 3.4,
f03=1.17. The design was done with speed in mind. The
higher (03, f03) section was in Mode 1 and placed in the
side Bof the LTC1061. The remaining two center frequen·
cies were then normalized with respect to the center fre·
quency of side 8; this changes the ratio of clock to cutoff
frequency from 50:1 to 50 x 1.17 =58.5:1. As shown in
Figure 9, the maximum cutoff frequency is about 33kHz.
The total wide band output noise is 220/LVRMS and the
measured output DC offset voltage is 60mV. Another
example of Mode 1b is illustrated on the front page of
the datasheet. The cascading sequence of this 6th
order bandpass filter is shown in block diagram form,
Figure 10A. The filter is geometrically centered around the

i\
\

-10
iii"

-20

~

:!!.

z -30
T2L CLOCK<2.5MHz

~

>-+--..;;.

-40

VS" ",5V
TA=25'C
VIN=1VRMS

fCLK=lMHz
f c=20kHz

-50

v+>-t----

HARMONIC DISTORTION WITH fCLK-2MHz
2ND HARMONIC
fiN
74dB
10kHz, 1VRMS
. -62dB
20kHz, 1VRMS
-62dB
30kHz, 1VRMS
-62dB
40kHz, 1VRMS

STANDARD 1% RESISTOR VALUES
R11=20k
R21=20k
R31=11k
R41=20k
R12=20k
R22=20k
R32=14k
R23=10k
R13=10k
R33=17.Bk

Figure 5. 6th Order Butterworth Lowpass Filter with
Cutoff Frequency up to 45kHz.

56·10

1\

-60

V I N > - - - - - - - - - - " ' - M......

fCLK=2MHz
f c=40kHz

V

-70
10k

20k

40k

lOOk 200k
fiN (Hz)

Figure 6. Measures Frequency
Response of the Lowpass
Butterworth Filter of Figure 3.

1M

LTC1061
mODES OF OPERATion
side Bof the LTC1061 connected in Mode 1. This dictates
a clock to center frequency ratio of 50:1 or 100:1. The side
Aof the IC operates in Mode 1bto provide the lower center
frequency of 0.95 and still share the same clock with the
rest of the filter. With this approach the bandpass filter
R6

can operate with center frequencies up to 24kHz. The
speed of the filter could be further improved by using
Mode 1 to lock the higher resonant frequency of 1.05 and
higher Q of 31.9 to the clock, Figure 10B, thus changing
the clock to center frequency ratio to 52.6:1,

R5

LP
R51
Rll

1

r

2

R21

R61

R32

3

18

R22

4

17

~
- 7

1
lCLK
~'1 I'Q R3 !R6.
0= 100(50) V R5+R6' n= 0, =R2VR5+R6'

16
LTC1061

~V-

VOUT

14-.1
13

R43

9

12

R33

~

11

R23

STANDARD 1% RESISTOR VALUES
Rll =35.7k
R31 =11.5k
R51 = 5.49k
R12= 11k
R32 = 36.5k
RI3=15.8k

Figure 7. Mode 1b: 2nd Order Filter Providing Notch, Bandpass,
Lowpass.

L'J) "

R33=13k
R21 =12.1k
R61 =2.87k
R22=11k
R23=10.5k
R43=15.8k

Figure 8. 6th Order Chebyshev, Lowpass Filter using 3 Different
Modes of Operation for Speed Optimization.

SIDE A

\

R13

8

lCLK<2MHz

V+

R12

19

5

~

VIN-!

TA =25"C
V,N=IVRMS
lCLK=I.9MHz

-10

~

'-"

1
R31

MODE 18

SIDE C

SIDE 8

H

101 =0.95
01 =31.9

MODE 1

H

MODE 3

~VOUT

103=1.05
03=31.9

102=1
02 = 15.9

~ -20
z

Figure 10A. Cascading Sequence of the Bandpass Filter Shown
on the Front Page, with (fClK/fol = 50:1 or 100:1.

~ -30

~ -40
-50
-60

10k

30k

100k
liN (Hz)

1M

Figure 9. Amplitude Response of the 6th Order Chebyshev
Lowpass Filter of Figure 8.

VIN-!

101=0.95
01 =31.9

SIDE C

SIDE 8

SIDE A
MODE 18

H

MODE 1
102=1.05
02=31.9

H

MODE 3

~VOUT

103=1
03=15.9

Figure 10B. Cascading Sequence of the Same Filter for Speed
Optimization, and with (fClK/fol = 52.6:1.

86-11

LTC1061
mODES OF OPERATion
Mode 3a-This is an extension of Mode 3 where the
highpass and lowpass outputs are summed through two
external resistors Rh and RI to create a notch, Figure 11.
Mode 3a is very versatile because the notch frequency can
be higher or lower than the center frequency of the 2nd or·
der section. The external op amp of Figure 11 is not always
required. When cascading the sections of the LTC1061 ,
the highpass and lowpass outputs can be summed di·
rectly into the inverting input of the next section. Figure 12
Cc

shows an LTC1061 providing a6th order elliptic bandpass
or notch response. Sides C and B are connected in
Mode 3a while side A is connected in Mode 1 and uses
only two resistors. The resulting filter response is then
geometrically symmetrical around either the center fre·
quency of side A (for bandpass responses) or the notch
frequency of side A(for notch responses). Figure 13 shows
the measured frequency response of the circuit Figure 12
configured to provide a notch function. The filter output is
taken out of pin 3. The resistor values are standard 1%.

r-------1
~ ------,
R4
R3

LP

NOTCH

NOTE: FOR 0>5 AND fCLK>1MHz
ADD Cc SUCH AS Cc"'0.16/(R4 x 1.2MHz)

EXTERNAL OP AMP OR
INPUT OP AMP OF THE
LTC1061, SIDE A, B, C

f = ~ @: f =~ fllt;. HOHP= -R2/R1' HOBP= -R3/R1 HOLP= -R4/R1
'
,
o 100(50) Vw;' n 100(50)V Ai'

_.&x lIT'
R4.
HON2

HON1(f-0)- RI

/.
fCLK) _ Rg R2.
_ _ (Rg
_.& \ _ R3/1i2
~-2 xlIT' HON(f-fo)-O
HOLP Rh HOHP; ,0- ll2VlM

Rh

AI

Figure 11. Mode 3a: 2nd Order Filter Providing Highpass, Bandpass, Lowpass, Notch.

NOTE: FOR NOTCH RESPONSES,
PIN 7 SHOULD BE PREFERABLY
CONNECTED TO GROUND AND
THE FILTER OUTPUT IS PIN 3.
FOR BANDPASS OR LOWPASS
RESPONSES PIN 7 CAN BE EITHER
AT GROUND OR POSITIVE SUPPLY,
AND THE FILTER OUTPUT IS PIN 2
OR PIN 1.

Figure 12. 6th Order Elliptic Bandpass, Lowpass or Notch Topology.

86-12

LTC1061
mODES OF OPERATion
fn2 =1.187, f03=1, 03 =26.2). The output of the filter is the
BP output of Side A, Pin 2.

The ratio of the OdB width, BW1, to the notch width BW2,
is 5:1 and matches the theoretical design value. The measured notch depth was - 53dB versus - 56dB theoretical
and the clock to center notch frequency ratio is 100:1.
Figure 14 shows the measured frequency response of the
circuit topology, Figure 12, but with pole/zero locations
configured to provide a high Q, 6th order elliptic bandpass
filter operating with a clock to center frequency ratio of
50:1 or 100:1. The theoretical passband ripple, stopband
attenuation and stopband to ripple bandwidth ratio are
0.5dB, 56dB, 5:1 respectively. The obtained results with
1% standard resistor values closely match the theoretical
frequency response. For this application, the normalized
center frequencies, Q's, and notch frequencies are
(fa 1=0.969, 01 =54.3, fn 1=0.84, f02 =1.031, 02 =54.3,

Lowpass filters with stopband notches can also be
realized by using Figure 12 provided that 6th order lowpass filter approximations with 2 stopband notches can
be synthesized. Literature describing elliptic double
terminated (RLC) passive ladder filters provide enough
data to synthesize the above filters. The measured amplitude response of such a lowpass is shown in Figure 15
where the filter output is taken out of side A's Pin 1,
Figure 12. The clock to center frequency ratio can be ei·
ther 50:1 or 100:1 because the last stage of the LTC1061
operates in Mode 1 with a center frequency very close to
the overall cutoff frequency of the lowpass filter.

IBWll

/
_\ 11

\

-10

~ -20

VS=±5V

Vs= ±5V

I - fCLK=260kHz

z

~ -30

Rll=165k
R31 = 143k
Rhl =10k
R22 = 20k
R42=15.4k
R12=10k
R33=169k

\

~ -40

1\
B~2-

-60

I

rf

R21 = 10k
R41 = 13k
Rll=10.5k
R32=221k
Rh2=10.5k
R23=S4.5k

-20
z

II

-60
-70

1\

\

,

>

NOTES: USE A 15pF CAPACITOR
BETWEEN PINS 17 AND lS.
PIN 7 IS GROUNDED

f-

I
I

~ -30
{: -40

5 -50

STANDARD 1% RESISTOR VALUES

\

-10

to

-50

I- f CLK = 130kHz

STANDARD 1% RESISTOR VALUES

\

-r.....

I-""

-

-so

2.6kHz
-70

Rll=576k
R31 =562k
Rhll =28.7k
R22 = 10.7k
R42 = 10k
R12=10k
R33=75k

R21 =10k
R41 = 10.7k
Rill =40.2k
R32 =562k
Rh2=14k
R23 =2.94k

NOTE: FOR CLOCK FREQUENCIES
ABOVE 500kHz CONNECT A
5pF IN PARALLEL WITH R41 AND
R42

-90
1

1.5

2
2.5
fiN (kHz)

3.5

1

Figure 13. Resistor Values and Amplitude Response
of Figure 12 Topology. The Notch is Centered at 2600Hz.

1.5

2.5
fiN (kHz)

3.0

3.5

Figure 14. Resistor Values and Amplitude Response of Figure 12
Topology. The Bandpass Filter is Centered Around
2600Hz when Operating with a130kHz Clock.
STANDARD 1% RESISTOR VALUES

-10

Rll =39.2k
R31 =13.7k
Rhl =20.5k
R22 = 10k
R42=14k
RI2 = 11.Sk
R33= lOOk

\

-20

\

~ -30

\

z

~ -40

5 -50

If

>

-60

il \.

-70

NOTES: USE A 10pF ACROSS
R42 FOR fCLK>lMHz.
THE ELLIPTIC LOWPASS FILTER
HAS ONLY TWO NOTCHES IN THE
STOPBAND. AND IT OPERATES
WITH A CLOCK TO CUTOFF
FREQUENCY RATIO OF 50:1.

/

Y

-SO
-90
o

1

2

3

4 5 6
fiN (kHz)

7

R21 = 10k
R41 =39.2k
Rll =12.4k
R32=26.7k
Rh2 =32.4k
R23=10k

8

9

10

Figure 15. Resistor Values and Amplitude Response of the Topology of Figure 12.

86-13

LTC1061
mODES OF OPERATion
In Figure 16, all three sides of the LTC1061 are connected
in Mode 3a. This topology is useful for elliptic highpass
and notch filters with clock to cutoff (or notch) frequency
ratio higher than 100:1. This is often required to extend the
allowed input signal frequency range and to avoid premature aliasing. Figure 16 is also aversatile, general purpose
architecture providing 3 notches and 3 pole pairs, and
there is no restriction on the location of the poles with respect to the notch frequencies. The drawbacks, when

T2L, CMOS
CLOCK INPUT

compared to Figure 12, are the use of an external op amp
and the increased number of the required external resistors. Figure 17 shows the measured frequency of a 6th order highpass elliptic filter operating with 250:1 clock to
cutoff frequency ratio. With a 1MHz clock, for instance,
the filter yields a 4kHz cutoff frequency, thus allowing an
input frequency range beyond 100kHz. Band limiting can
be easily added by placing a capacitor across the feedback resistor of the external op amp of Figure 16.

>--....::.

V+>--':'::'

Rg

VOUT

EXTERNAL OP AMP

Figure 16. Using an External Op Amp to Connect all 3Sides of the LTC1061 in Mode 3a.

I

-10

I

iD -20

~

I

~

" -30
>
~ -40

~ -50
-60

STANDARD 1% RESISTOR VALUES

1 [I
fCLK=250kHz-

"'\

\

-70

Irl\

V'

o

0.5

R21=10k
R41 =45.3k
Rll =1.07M
R32=28.7k
Rh2=42.2k
R23 = 10k
R43=63.4k
R,3=110k

NOTE: FOR CLOCK FREQUENCIES BELOW
500kHz, USE A CAPACITOR IN PARALLEL
WITH R21 SUCH AS (1I2nR21C)=ofCLK/3

-80

-90

Rll =105k
R31 =47.5k
Rhl =10k
R22 =32.4k
R42=52.3k
R,2 = 750k
R33 = 255k
Rh3= 10k
Rg =140k

1
1.5
fiN (kHz)

2.5

Figure 17_ Measured Amplitude Response of the Topology of Figure 16, Configured to Provide
a6th Order Elliptic Highpass Filter Operating with a Clock to Cutoff Frequency Ratio of 250:1.

86-14

LTC1061
mODES OF OPERATion
Figure 18 shows the plotted amplitude responses of a 6th
order notch filter operating again with a clock to center
notch frequency ratio of 250:1. The theoretical notch depth
is 70dB and when the notch is centered at 1kHz its width is
50Hz. Two small, noncritical capacitors were used across
the R21 and R22 resistors of Figure 16, to bandlimit the
first two highpass outputs such that the practical notch
depth will approach the theoretical value. With these two
fixed capacitors, the notch frequency can be swept within
a3:1 range.
When the circuit of Figure 16 is used to realize lowpass el·
liptic filters, a capacitor across Rg raises the order of the
filter and at the same time eliminates any small clock

feedthrough. This is shown in Figure 19 where the amplitude response of the filter is plotted for 3 different cutoff
frequencies. When the clock frequency equals or exceeds
1MHz, the stopband notches lose their depth due to the fi·
nite bandwidth of the internal op amps and to the small
crosstalk between the different sides of the LTC1061. The
lowpasss filter, however, does not lose its passband
accuracy and it maintains nearly all of its attenuation
slope. The theoretical performance of the 7th order lowpass filter of Figure 19 is 0.2dB passband ripple, 1.5:1
stopband to cutoff frequency ratiO, and 73dB stopband
attenuation. Without any tuning, the obtained results
closely approximate the textbook response.

STANOARD 1% RESISTOR VALUES
fCLK ~ 250kHz
-10
~ -20

I

z
~ -30

j

Rll
R31
Rhl

i\ I

~48.7k

R22~10k

-40

R21 ~10.2k
R41 ~63.4k
R,l ~287k
R32 ~232k

R42 ~97.6k
R,2 ~66.5k
R33 ~300k

Rh2~10.2k

Rh3~10.2k

R,3~63.4k

R23 ~ 20k
R43~80.6k

Rg~210k

-50

NOTE: CONNECT 39pF AND 100pF
ACROSS R21 AND R22 RESPECTIVELY.

-60
-70

~84.5k

~31.6k

o

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
fiN (kHz)

Figure 18. 6th Order Band Reject Filler Operating with aClock to Center
Notch Frequency Ratio of 250:1. The Ratio of OdB to the - 65dB Notch Width is 8:1.

STANDARD 1% RESISTOR VALUES

..

I

-10

1\

-20

Rll
R31
Rhl

I

fCLK

I

..

~fCLK

fCLK

~ -30 r-- 200kHz 500kHz -

R,2~15.8k

R33 ~ 28.7k
Rh3~95.3k

\

-60
-70

:~

W

r

-90

1

R21~10k

R41 ~26.7k
R,l ~ 19.6k
R32~100k

Rh2 =52.3k
R23=10k
R43=12.7k
R,3 = 10k

Rg~28k
\

-80

10.5k

R42~10k

I

5 -50

16.2k

~45.3k

R22~

,lMHz

~ -40
>

~30.9k
~

\

NOTE: ADD A CAPACITOR C ACROSS Rg
TO CREATE A 7TH ORDER LOWPASS SUCH AS
(112"R gC) =(CUTOFF FREQUENCY) xO.38

1/1>':

\/
10

100

fiN (kHz)

Figure 19. Frequency Responses of a 7th Order Lowpass
Elliptic Filler Realized with Figure 16 Topology.

86-15

LTC1061
mODES OF OPERATion
Mode 2- This is a combination of Mode 1 and Mode 3,
Figure 20. With Mode 2, the clock to center frequency
ratio, fCLK/fo, is always less than 50:1 or 100:1. When com·
pared to Mode 3 and for applications requiring 2nd order
sections with fcLK/fo slightly less than 100 or 50:1, Mode 2
provides less sensitivity to resistor tolerances. As in
Mode 1, Mode 2has a notch output which directly depends
on the clock frequency and therefore the notch frequency
is always less than the center frequency, fo, of the 2nd order section. Figure 21 shows the side A of the LTC1061
connected in Mode 2 while sides Band C are in Mode 3a.
This topology can be used to synthesize elliptic bandpass,
highpass and notch filters. The elliptic highpass of

Figure 17 is synthesized again, Figure 22, but the clock is
now locked onto the higher frequency notch provided by
the side Aof the LTC1 061. As shown in Figure 22, the highpass corner frequency is 3.93kHz and the higher notch fre·
quency is 3kHz while the filter operates with a 300kHz
clock. The center frequencies, O's, and notches of
Figure 22, when normalized to the highpass cutoff frequency, are (f01=1.17, 01=2.24, fn1=0.242, f02=1.96,
02 = 0.7, fn2 = 0.6, f03= 0.987, fn3= 0.753, 0 = 10). When
compared with the topology of Figure 16, this approach
uses lower and more restricted clock frequencies. The
obtained notch in Mode 2 is shallower; however, this
topology is more efficient.

R4
.....---....."...,----VOUT

LP

T2L, CMOS >--_...::.
CLOCK
I 0-

J1=R2.

r,-::R2-.

'CLK .
I ICLK - Q- R3
H _ -R2/R1
100(50) V .+R4' n- 100(50)' -'R2V' +R4' OLP-1 +(R2/R4)

HOBP= -R3/R1: HON,(I-O)= 1

:;:(~2f/~~)

: HON2

~- ICL;)

V+>--~':'::'

= -R2IR1

Figure 21. LTC1061 with Side Ais Connected in Mode 2while
Sides B, Care in Mode 3a. Topology is Uselullor Elliptic
Highpass, Notch and Bandpass Filters.

Figure 20. Mode 2: 2nd Order Filler Providing Notch, Bandpass,
Lowpass.

_,

-10

I

-20

,_ _ '.

ICLK= 300kHz

STANDARD 1% RESISTOR VALUES

-

R11 =54.9k
R31 =34.Bk
Rh1 =2B.7k
R22=6B.1k
R42=10k
R,2=16.2k
R33=75k

I

~ -30

I

z

:> -40
';::.

6 -50

>

-60
-70

r"'\. I' IV
'1/

R21 =24.3k
R41 = 10k
R,1 =2BOk
R32 = 1B.2k
Rh2=10.2k
R23=10k
R43=14k

NOTE: FOR CLOCK FREQUENCIES
ABOVE 300kHz ADO A CAPACITOR, C,
ACROSS R21 AND R22 SUCH AS (1 /2~R21C)=ICLK

-BO
-90

o

1

2

3

4

5

6

7

B

9

10

liN (kHz)

Figure 22. 6th Order Elliptic Highpass Filter Operating with aClock to Cutoff Frequency
Ratio 0175:1, and Using the Topology of Figure 21.

86-16

LTC1061
mODES OF OPERATion
Output Noise
The wideband RMS noise of the LTC1061 outputs is
nearly independent from the clock frequency. The
LTC1061 noise when operating with ± 2.5V supply is
lower, as Table 3 indicates. The noise at the bandpass and
lowpass outputs increases roughly as the {Q. Also the
noise increases when the clock to center frequency ratio
is altered with external resistors to exceed the internally
set 100:1 or 50:1 ratios. Under this condition, the noise in·
creases square root·wise.

ways equal to VOS3. The DC offsets at the remaining two
outputs (Notch and LP) depend on the mode of operation
and external resistor ratios. Table 4illustrates this.
It is important to know the value of the DC output offsets,
especially when the filter handles input signals with large
dynamic range. As a rule of thumb, the output DC offsets
increase when:
1. The Q's decrease
2. The ratio (fCLK/fo) increases beyond 100:1. This is
done by decreasing either the (R2/R4) or the R61
(R5 +R6) resistor ratios.

Output Offsets
The equivalent input offsets of the LTC1061 are shown in
Figure 23. The DC offset at the filter bandpass output is al·

Table 3. Wideband RMS Noise
-lelK

Notch/HP

BP

LP

I.

{jLV RMS)

{jLV RMS)

{jLV RMS)

±5V
±5V
±2.5V
±2.5V

50:1
100:1
50:1
100:1

45
65
30
40

55
65
30
40

70
85
45
60

Mode 1, R1 = R2= R3
0=1

±5V
±5V
±2.5V
±2.5V

50:1
100:1
50:1
100:1

18
20
15
17

150
200
100
140

150
200
100
140

Mode1,0=10
R1 = R3 for BP out
R1 = R2 for LP out

±5V
±5V
±2.5V
±2.5V

50:1
100:1
50:1
100:1

57
72
40
50

57
72
40
50

62
80
42
53

Mode 3, R1 = R2 = R3 = R4
0=1

±5V
±5V
±2.5V
±2.5V

50:1
100:1
50:1
100:1

135
170
100
125

120
160
88
115

140
185
100
130

Mode 3, R2= R4, 0 = 10
R3 = R1 for BP out
R4 = R1 for LP and HP out

v,

(12,18)

(13,19)

CONDITIONS

(14,20)

Figure 23. Equivalent Input Offsets of 1/3 LTC1061 Filter Building Block.

86-17

LTC1061
mODES OF OPERATion

Table 4

VOSN
Pin 3(18)

Mode

VOSBP
Pin 2(19)

VosLP
Pin 1(20)

1

Vos1 [(l/Q) +1+IIHoLP~] - VOS3/Q

VOS3

VOSN - VOS2

1b

VOS1 [(1IQ)+ 1+R2IR1]- VOS3/Q

VOS3

-(VOSN - Vosv (1 +R5/R6)

2

[Vos1 (l +R2IR1 +R2/R3 +R2IR4) - Vos3(R2/R3)] x
x [R4/(R2 +R4)] +Vos2 [R2/(R2 +R4)]

VOS3

VOSN - VOS2

3

VOS2

VOS3

R4 R4 R4]
VOS1 [ 1+-+-+R1 R2 R3

- VOS2 (R4)
-

-VOS3(~)

PACKAGE DESCRIPTiOn

Dimensions in inches (millimeters) unless otherwise noted.

J20 Package Ceramic DIP

f

0.:300

0.025

(7.620) (o.S"fs)
MAX RAO TVP

t

N20 Package Molded DIP
14------(2~~3338)--------+i·1

0.130*0.005

(:;f,i'ESMNWNW.,,......-----------·
--,

1= UIII_~
(~:~~~)

(1T~~4)

MIN
O.D1S
--(0.457)

86-18

_I

I-~

(2.540*0.254)

MAX

f
L

0.250 ± 0.005
(6.350:0.127)

OPINllDENT

R2

SECTion 7 -PULSE WIDTH
mODULATORS

II

87-1

INDEX
SECTION 7-PULSE-WIDTH MODULATORS
INDEX. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87-2
LT1070, 5A High Efficiency Switching Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 83-21
LT1 071, 2.5A High Efficiency Switching Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 83-21
LT1 072, 1.25A High Efficiency Switching Regulator ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 810-15
SG1524/3524, Regulating Pulse Width Modulators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7-3
LT152413524, Regulating Pulse Width Modulators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7-3
SG1525A13525A, Regulating Pulse Width Modulators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-11
LT152513525A, Regulating Pulse Width Modulators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-11
LT152613526, Regulating Pulse Width Modulators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-19
SG1527A13527A, Regulating Pulse Width Modulators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-11
LT1527A13527A, Regulating Pulse Width Modulators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-11
UC1846/1847, Current Mode PWM Controller. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-27

S7-2

SECTion a-cmos/
DATA conVERSlon/
InTERFACE

\II
U

CE:

u.

a:

\II
....

5.........
c

o

iii

a:
~
c

ou
CE:
....
CE:
Q

.,.
.........

o
e
u

88-1

INDEX
SECTION 8-CMOS/DATA CONVERSION/INTERFACE
INDEX. . . . . . . . . . . .. . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . .
CM08
LTCl 040, Low Power, Low Offset Comparator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LTC104l, Bang Bang Controller ...................................................
LTC1042, Window Comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LTC 1043, Duallnstrumentation SWitched-Capacitor Building Block. . . . . . . . . . . . . . . . . . . . . . . . .
LTC104417660, Switched-Capacitor Voltage Converter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LTC1045, p.PowerHexTranslatorlReceiverlDriver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LTC 105217652, Precision, Chopper Stabilized CMOS Op Amp. . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LTC1059, Universal Monolithic Switched-Capacitor Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LTC1060, Universal Monolithic Dual Switched-Capacitor Filter. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LTC1061, Universal Monolithic Triple Switched-Capacitor Filter. . . . . . . . . . . . . . . . . . . . . . . . . . . .
LTC1062, DC Accurate Low-Pass Filter .. . ... .. .. . . ... . . . . .. .. ....... .. ..... . . .. . ... .
LTC1090, 10-BitAIDwithSeriaI/IOand8-ChanneIMUX . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . ..
LTC1091, 10-Bit AID with Serial/IO and 2-Channel MUX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LTC1092, 10-Bit, 8-Pin AID with Serial Output ........................................
LTC1 099, High Speed 8-Bit AID Converter with Built-In Sample-and-Hold . . . . . . . . . . . . . . . . . . . .
DATA CONVERSION
LF198A1LF398A, Precision Sample and Hold Amplifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LF198/LF398, Precision Sample and Hold Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LTC1090, 10-Bit AID with Serial/IO and 8-Channel MUX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LTC1091, 10-BitAIDwithSeriaIlIOand2-ChanneIMUX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
INTERFACE
L11030, Quad Low Power Line Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LTt032, Micropower RS232 Line Driver. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LT1 039, Triple RS232 Line Driver and Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LT1080, 5V Powered RS232 DriverIReceiver with Shutdown. . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LT1081, 5V Powered RS232 DriverIReceiver without Shutdown ...........................
LTC 1045, p.PowerHexTranslatorlReceiverlDriver . . . . . . .. . . . .. . . . . . . ... . . . . . . . . . . . . ..
LTC1092, 10-Bit,8-PinAIDwithSeriaIOutput ........................................
LTC1099, High Speed 8-Bit AID Converter with BuiU-ln Sample-and-Hold . . . . . . . . . . . . . . . . . . . .
SPECIAL FUNCTION
L11025, Micropower Thermocouple Cold Junction Compensator . . . . . . . . . . . . . . . . . . . . . . . . . ..
LT1026, Dual Output Switched CapaCitor Voltage Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LT1054, Switched CapaCitor Vo(tage Converter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
L11088, Wideband RMS-DC Converter Building Block. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LT1089, High Side Switch .......................................................
LTC1043, Duallnstrumentation Switched-Capacitor Building Block. . . . . . . . . . . . . . . . . . . . . . . . .
LTC1044, Switched-Capacitor Voltage Converter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

88-2

88-2
5-45
5-57
85-5
8-3
8-19
85-13
2-123
6-3
6-11
86-3
6-31
88-47
88-71
810-26
810-30

8-31
8-31
88-47
88-71
88-3
8-47
88-7
88-27
88-27
85-13
810-26
810-30
810-6
810-14
88-15
88-35
810-25
8-3
8-19

~7~lO~!""---Q-U-a-d-L-O-W-p-o-w-e-r-L-in-e-LT-Dl-r~-:-~
FEATURES

DESCRIPTion

•
•
•
•
•
•
•
•

The LT1030 is an RS232 line driver that operates over a
± 5V to ± 15V range on low supply current and can be
shut down to zero supply current. Outputs are fully protected from externally applied voltages of ± 30V by current
limiting. Since the output swings to within 200mV of the
positive supply and 1Vof the negative supply, power supply
needs are minimized.

Low Operating Voltage ± 5V to ± 15V
500jtA Supply Current
Zero Supply Current when Shut Down
Outputs Can Be Driven ± 30V
Output "Open" when Off (3-State)
10mA Output Drive
Pinout Similar to 1488*
Output of Several Devices can be Paralleled

APPLICATions
• RS232 Driver
• Micropower Interface
• Level Translator

A major advantage of the LT1030 is the high impedance
output state when off or powered down, which allows
several different drivers on the same bus.
Our RS232 product line includes other high-performance
devices. The LT1039 is a triple low-power driver/
receiver with shutdown that can be powered from a 5V
supply. The LT1 080 is a 5V powered dual driver / receiver
with on-chip ± 9V power generator, and shutdown.

, Check compatibility, some pins different

TYPICAL APPLICATiOn
RS232 Line Driver
V+
-6V
INPUT

'>

+6V

;;;-0.2

STROBE'

~-0.4
c-

LJ.J

-

Output Swing vs Output Current
I

I

OUTPUT HIGH

:::J

OUTPUT
ON-OFF
(OV-5V)t
INPUT

INPUT

OUTPUT

INPUT

OUTPUT
NC

en

a
!a
LJ.J
c::
c::
LJ.J

LL

1.2

~

1.0

LJ.J

OUTPUT
'NO CONNECTION NEEDED WHEN NOT USED.
t5V=ON.

c::
LJ.J

0.8

""~«

0.6

>

0.4

a

!:::J

c-

I:::J

a

V

L" ~

OUTPUT LOW

0.2

V-

o

2

3

4

5

OUTPUT CURRENT (rnA)

88-3

LT1030
ABSOLUTE mAXimum RATinGS

PACKAGE/ORDER InFORmATiOn

Supply Voltage. . . . . . . . . . . . . . . . . . . . . . . .. ± 15V
Logic Input Pins ..................... V- to 25V
On-Off Pin ......................... GND to 12V
Output(Forced) ............. V- +30V, V+ -30V
Short Circuit Duration (to ± 30V) .......... Indefinite
Operating Temperature Range
LT1 030C ........................ O°C to 70°C
Guaranteed Functional by Design ... - 25°C to 85°C
Storage Temperature. . . . . . . . . . . .. - 65°C to 150°C
Lead Temperature (Soldering, 10sec) ........ 300°C

ELECTRICAL CHARACTERISTICS
PARAMETER
Supply Current
Power Supply Leakage Current
Output Voltage Swing

ORDER PART
NUMBER

J PACKAGE
NPACKAGE
IHIN HERMETIC 14-PIN PLASTIC
(ALSO AVAILABLE IN SO PACKAGE)

(Supply Voltage = ± 5V to

CONDITIONS
VON-OFF2:2.4V. 10UT=0. All Outputs Low
VON-OWs O.4V
VON-OFF:s0.1V
Load = 2mA I Positive
Negative
VSUPPLY ±5V to ± 15V
Operating or Shutdown
Shutdown
VOUT= ±30V
Operating or Shutdown
Low Input (VOUT = High)
High Input (Vou-r= Low)
VIN>2.0V
VIN <0.8V
0:sV IN :s5V

± 15Vj

MIN

•

•

V+ -0.3V

J

Output Current
Output Overload Voltage (Forced)
Output Current
Input Overload Voltage (Forced)
Logic Input Levels
Logic Input Current
On-Off Pin Current
Slew Rate

The. denotes specifications which apply over the operating
temperature range.

LT1030CJ
LT1030CN
FOR MILITARY
APPLICATIONS
USE LT1032MJ

•
•
••
•

5
V+ -30V

TYP
500
1
10
V+-0.1V
V +0.9V
12
2

V
1.4
1.4
2
10
30
15

2

-10
4

MAX
1000
10
150
V +1.4V
V +30V
100
15
0.8
20
20
65
30

UNITS
p.A
p.A
p.A
V
V
mA
V
p.A
V
V
V
p.A
p.A
p.A
V/p.S

Note 1: 3V applied to the strobe pin will force all outputs low. Strobe pin
input impedance is about 2k to ground. Leave open when not used.

Pin FunCTions
PIN

FUNCTION

COMMENT

1

Minus Supply

Operates - 2V to -15V

2.5.9.12

Logic Input

Operates properly on TTL or CMOS levels.
Output valid from (V- + 2V) :sVIN:s 15V.
Connect to 5V when not used.

3.6.8.11

Output

Line drive butput.

4

On-Oii'

Shuts down entire circuit. Cannot be left
open. For "normally on" operation. connect between 5V-10V.
Ground must be more positive than V-

7

Ground

13

Strobe

14

88-4

Forces all outputs low. Drive with
3V.
Positive supply 5V to 15V.

14
LT1030

I

.....

I

IN4001
Note: As with other bipolar ICs, forward biasing the substrate
diode can cause problems. The LT1030 will draw high current
from V+ to ground if the V- pin is open circuited or pulled
above ground. If this is possible. connecting adiode from Vto ground will prevent the high current state. Any low cost diode
can be used.

LT1030
TYPICAL PERFORmAnCE CHARACTERISTICS
On Supply Current vs
Temperature
5.0

5.0

4.5

4.0

/

'-'

~ 2.0

--

V

a:

§ 2.5

--

ALL bUTPJTS HlhH

r--

~ 3.0

~

100

VSUPPLY= ±12V

4.5

l35

Off Supply Current vs
Temperature

On Supply Current vs Supply
Voltage

VSUPPLY

4.0

I-

«

35

~

3.0

z

ALLOUTP~~

1-- r--

~ 2,5

-

1
>-

r--

1.0
ALL OUTPUTS LOW

0.5

r----:= ~

~

~

=>

1.5
1.0

UJ

0
25
50 75
TEMPERATURE 1°C)

100 125

1>-

VSUPPLY

±12V
1

10

~

V

1

'-'

"'
'"
;;;
::§

i

OUTPUT FORC~y
TO 25V

/

2.2
2.0

'-'

60

I~

40

z
a::

>~ 0.1

120

a

to;

/

/

~ 1.S

"'«'"
~

L

/v

20

a
>

V

V
50

25

75
TEMPERATURE

n)

-20
GND

125

100

Current Limit vs Temperature

I~

30

:;;-

Z

a

...........

«

§. 25

>-

~
!3

20

'-'
>-

~=>

=>

UJ

SOURCING

1.4

10
ON-OFF PIN VOLTAGE IV)

F'

I ~~

i'-.

15

a

~

0.8

~

0.6

~

0.4

r-.
I---

10

5
a

5
0
25 50 75
TEMPERATURE lOG)

100

125

23

IOUT-5mA

21

~

IOUT= -5mA
1

-l~A

IOUT =
-;;::':r--r-,.

2:-

--

~N

ON VOLTAGE_

---- "-

;r "'""-

~ 1\
MAX OFF VOLTAGE \

r-- ~IOUT < 2001"')

-

-

r-.....

I"125

Slew Rate vs Temperature

!

a

-75 -50 -25

15

25
_louT=lmAI

r-.... "-

0.2 R-MAi OFF VOLTAGE""'"
...........
(lOUT < 201"')
GNO
-75 -50 -25
0
25 50 75 100
TEMPERATURE 1°C)

V+

~ -0.4

~KING

"- ~

0.6
0.4

t3 -0.2

...........

......

r-.....

O.S

Output Swing vs Temperature

35
~

1.4

f

1.2
a:: 1.0

V

0.01

1.6

R~=3kb_

z

/

/

a

125

Shutdown Voltage vs
Temperature
2.4

so

50
75
100
TEMPERATURE 1°C)

25

140

1>- 100

f= =OUTPUTTOFORCED
2,..
I-- -

!3

30

On-Off Pin Current vs Voltage

100

/

0.01
15
20
25
TOTAL SUPPLY VOLTAGE IV)

10

Off Output Lea kage vs
Temperature

0.1

ALL OUTPUTS LOW

0.5

o
-75 -50 -25

L

10

a:
=>
'-'

'-' 2.0

i

1.5

±12V

/

19

17

"'
~

15

UJ

11

~

VS= ± 12V
RL=3kn
CL =51pF
VSLEW= ±SV

V

i"--FALLING

'i---.

/'

./

RISING

13

V

0.2

V-75 -50 -25

0
25
50 75
TEMPERATURE 1°C)

100 125

-75 -50 -25

0
25
50 75
TEMPERATURE 1°C)

100

125

S8-5

LT1030
TYPICAL PERFORmAnCE CHARACTERISTICS
On-Off Response Time

On-Off Response Time

OUTPUT {
(V'N=OV)

OUTPUT {
(VIN=OV)

l:~

ov
_~~

OUTPUT {
(V'N=5V) -lOY
ON-lli'F {
INPUT

6V
4V
2V
OV

OUTPUT -2V
rV
(V'N=5V) -4V
-6V
ON-iiFi' { 5V
INPUT
OV

5V
OV

H=100",/OIV

H=lOO",/OIV

Output Waveform Oriving
Capacitive Load

Output Waveform
~~

OUTPUT {
(Vs= ±6V) -5V
OUTPUT

OUTPUT { lOV
OV
(Vs=±12V) -lOY
INPUT {

5V
OV

4V
2V
OV
-2V
-4V
-6V

1"

INPUT {
H=2",/OIV

5V
OV

H=lO,s/OIV

Strobe Pin Response Time

OUTPUT

!

STROBE {
INPUT

PACKAGE DESCRIPTiOn

lOV
5V
OV
-5V
-lOY
5V
OV

Dimensions in inches (millimeters) unless otherwise noted.

J Package
14-Lead Hermetic DIP
'''''

'i01'f)
MIN

0025

~~;~~\~'~~~~~~~~~Y---T

0.098

(2M~9:)

L......L.J.-....JI\\.--O··,S·
OOOS-00l8
(O.iI03-0480 I

j

I--!~ ~~~:~ ~~~J-l

88-6

TJmax

aJA

1S0'C

8O'C/W

N Package
14-Lead Plastic

~7UO~~----RS-2-3-2-D-ri-ve-r-/-Re-~-Je-l~-~-~
with Shutdown
FEATURES

DESCRIPTion

•
•
•
•
•

The LT1039 is atriple RS232 driver/receiver which includes
SHUTDOWN. Each receiver will accept up to ± 30V input
and can drive either TTL or CMOS logic. The RS232 drivers
accept TTL logic inputs and output RS232 voltage levels.
The outputs are fully protected against overload and can
be shorted to ground or up to ± 30V without damage to the
drivers. Additionally, when the system is shut down or
power is off, the outputs are in a high impedance state al·
lowing data line sharing. Bipolar circuitry makes this
driver/receiver exceptionally rugged against overloads or
ESDdamage.

•

•
•
•
•
•

Operates from ± 5V to ± 15V Supplies
Fully Protected Against Overload
Outputs can be Driven ± 30V without Damage
Three·State Outputs; Outputs Open when Off
Bipolar Circuit-No Latch Up
± 30V Input Range
Triple Driver/Receiver
No Supply Current in Shutdown
30kO Input Impedance
Meets All RS232 Specifications
16 Pin Version

A bias pin allows one receiver to be kept on while the rest
of the part is shut down.

APPLICATions
• RS232 Interface
• Terminals
• Modems

TYPICAL APPLICATiOn
12V

1

Driver Output Swing

v+'

BIAS·--';;'~"""'.,

ON-OFF

V+
POSITIVE

RS232IN--.::..j~'"

-0.5

r-- r---

~

f--;;..r.::-LOGIC

w

~

1.5

V~

§:
f-

RS232 IN -"-I~"';!": ::>O'-~-'-'--LOGIC

~ 1.0

o'"

RS232_...::.6~~:..:.::
OUTPUT

.'"--."'"'II-"'-LOGIC
,
r

0,5

V:::>O~~LOGIC

RS232 IN

RS232
OUTPUT

V
o

'

...... NEGATIVE

4
6
OUTPUT CURRENT (rnA)

-10

8

-12V
"BIAS PIN USED TO KEEP
THE RECEIVER ON WHILE
IN SHUTDOWN,

88-7

LT1039
ABSOLUTE mAXimum RATinGS

PACKAGE/ORDER InFORmATion
ORDER PART
NUMBER

Supply Voltage
Driver (V + , V-) ................................ ± 16V
Receiver (Vee) .................................... .7V
Logic Inputs ................................. V- to 25V
Receiver Inputs .................................. ± 30V
On-Off Input. ............................... GND to 12V
Driver Outputs ................... V- +30V to V+ - 30V
Short Circuit Duration ......................... Indefinite
Operating Temperature Range
LT1039M ............................. - 55°C to 125°C
LT1039C ............................... O°C to lO°C
Guaranteed Functional by Design ..... - 25°C to 85°C
Lead Temperature (Soldering, 10 sec.) ............ 300°C

LT1039CN16
LT1039CJ16
LT1039MJ16
J PACKAGE
16 PIN HERMETIC

LT1039CN
LT1039CJ
LT1039MJ

J PACKAGE
18 PIN HERMETIC

ELECTRICAL CHARACTERISTICS
PARAMETER
I CONDITIONS
Driver V+ =12V;V- = -12V;VON.OFF=2.5V
Output Voltage Swing
Load=3k
to Ground

I

Positive
Negative

Logic Input Voltage
Levels

Input Low Level (Your = High)
Input High Level (Vour = Low)

Logic Input Current

VIN~2.0V
VIN~0.8V

Output Short Circuit
Current

Sourcing Current, VOUT=OV
Sinking Current, VOUT = OV

Output Leakage Current
Supply Leakage Current

SHUTDOWN (Notes 1 and 2); VOUT= ± 18V, VIN = 0
SHUTDOWN (Note 1)

Slew Rate

RL = 3kO; CL= 51pF

••
••

TYP

V+ -0.4
V- + 1.5

V+ -0.1
V- +1
1.4
1.4

0.8

2.0

V
V

1
5

20
20

~A
~A

5
-5

•
•

Input Resistance
Output Voltage

Output Low, lour= -1.6mA
Output High, lOUT = 160~A

Output Short Circuit
Current

Sinking Current, Your = Vce
Sourcing Current, VO UT = OV (Note 3)

Output Leakage Current

SHUTDOWN (Note 1); OV~VouT~Vee, VIN =0

Supply Current

88-8

••
•
•
•
•
••

•
•

N PACKAGE
18 PIN PLASTIC

MIN

4

Supply Current

VOUT= Low
Receiver Vcc = 5V; VON.O FF = 2.5V
Input Voltage Thresholds
Input Low (VOUT= High)
Input High (Vour= Low)
Hysteresis

N PACKAGE
16 PIN PLASTIC

0.5
0.1

MAX

V
V

15
-15

mA
mA

-10
0.5

~A

10 (25°C)

200

1 (25°C)

100

15

30

V/~s

4

8

mA

1.3
1.7

2.8

0.4

1.0

30
3.5

UNITS

0.4
4.8

~A

V
V
V
kO

0.5

V
V
mA
mA

1
1

10

~A

4

7

mA

LT1039
ELECTRICAL CHARACTERISTICS
PARAMETER

MIN

CONDITIONS
SHUTDOWN (Note I)

Supply Leakage Current
On·Off Pin Current

II-

OV~VON·OFF~5V

The _ denotes specifications which apply over the operating temperature
range.
Note 1: VON -O FF =0.4V for -55°C~TA~100°C, and VON-O FF = 0.2V for
100°C~TA~ 125°C. Does not apply to LTI039·16 part.

TYP

MAX

I (25°C)

100
80

-15

UNITS
pA
pA

Note 2: For TA2: 100°C, leakage current is 350pA max.
Note 3: ForTA~ - 25°C, output source current is 0.4 mA.

Pin FunCTions
V+, V- (Pins 1, 9): Driver supply pins. Supply current
drops to zero in SHUTDOWN mode. Driver outputs are in a
high impedance state when V+ and V- =OV.

REC IN (Pins 3, 5, 7): Receiver input pins. Accepts RS232
voltage levels (± 30V) and has O.4V of hysteresis to provide
noise immunity. Input impedance is nominally 30k{l.

Vee (Pin 18): 5V power for receivers.

REC OUT (Pins 12, 14, 16): Receiver outputs with TTL/
CMOS voltage levels. Outputs are in a high impedance
state when in the SHUTDOWN mode to allow data line
sharing. Outputs are fully short circuit protected to ground
or Vee with power on, off, or in the SHUTDOWN mode.

GND (Pin 10): Ground pin.
TR IN (Pins 11, 13, 15): RS232 driver input pins. Inputs are
TTL/CMOS compatible. Inputs should not be allowed to
float. Tie unused inputs to Vee.
TR OUT (Pins 4, 6, 8): Driver outputs with RS232 voltage
levels. Outputs are in a high impedance state when in the
SHUTDOWN mode or when power is off (V + and
V- =OV) to allow data line sharing. Outputs are fully
short circuit protected from V- +30V to V+ - 30V with
power on, off, or in the SHUTDOWN mode. Typical output
breakdowns are greater than ± 45V and higher applied
voltages will not damage the device if moderately current
limited.

ON·OFF (Pin 17): Controls the operation mode of the
LT1039 and is TTL/CMOS compatible. A logic low puts the
device in the SHUTDOWN mode which reduces input sup·
ply current to zero and places both driver and receiver outputs in ahigh impedance state.
BIAS (Pin 2): Keeps receiver 1on while the LT1039 is in the
SHUTDOWN mode. Leave BIAS pin open when not in use.
See Application Hints for proper use.

TYPICAL PERFORmAnCE CHARACTERISTICS
Driver Output Short
Circuit Current
3.00

5.0

45

2.75

4.5

40

2.50

1 35 I".....
!z 30
li!

g:;

25

'"~

20

§

On·Oll Pin Thresholds

Receiver Input Thresholds

50

...........

15

N

~

2.25

tll

2.00

4.0

~ 3.5
~ 3.0

INPUT HIGH

;'!
;5 1.75

-

:>-

51.50

..........

S~URCI~G

10

r--

~

INPUT LOW

1.25

-55 -25

0
25
50
75
TEMPERATURE (OC)

100

125

z

2.0

.......... ~INIMUM ON VOLTAGE

Z 1.5

o

1.0

1.00
0.75

o

§; 2.5

I~

0.50
-55

--t---I-.:
MAXIMUM OFF

0.5

o
-25

0

25
50
75
TEMPERATURE (OC)

100

125

-55

-25

0

-

VOLT~ t--

25
50
75
TEMPERATURE (OC)

100

125

88-9

LT1039
TYPICAL PERFORmAnCE CHARACTERISTICS
Driver Output Leakage
in SHUTDOWN

Supply Current in SHUTDOWN
1000

Receiver Output Short
Circuit Current
100

1000
SUPPLY CURRENT MEASURED
INTO Vee AND V+

,

OUTPUT SINKING

V

~ 100

«g

I

>-

iD
0:

,

0:

'"
U

~

J

8:: 10

Vour= -30V

0:

'"'-'>-

I II

'"

/

/

!/
0
25
50
75
TEMPERATURE (OC)

100

125

/

VI

1

-55

-25

0
25
50
75
TEMPERATURE (OC)

100

;;;-

35

/

30

/

~ 25

/

~ 20

/
/

~ 10

/

~

/

It

-5
-10

V+

10V
OV

INPUT{5V
OV

<>.

:=53'"

1.2

w

0.8

'"
~

0.6

i

~

>-

5~

O~TPU~
LO~
_f-"i!~

1.0

-

i,....o"

/

0.4
0.2

V-

2
3
INPUT VOLTAGE (V)

o 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
OUTPUT CURRENT (rnA)

S~UTDOWN to Driver Output

DRIVER {
OUTPUT

10V
5V
OV

DRIVER {
OUTPUT

OV
-5V
-10V

ON-OFF {5V
INPUT OV
1m,

88-10

0
25
50
75
TEMPERATURE (OC)

I

~ -0.4

-10V

RECEIVER {5V
OUTPUT OV

-25

O~TPUr HI1H

en

Output Waveforms

DRIVER {
OUTPUT

r--

f3"-Q.2

o

o

0.1
-55

125

Driver Output Swing vs Current

40

~ 15

1

Vour=30V

On·OIl Pin Current
vsVoltage

u

OUTPUT SOURCING

'"
o'"
~

en

1
-55 -25

10

~

2m,

3m,

4m,

100

125

LT1039
TYPICAL PERFORmAnCE CHARACTERISTICS
SHUTDOWN to Receiver Output

Bias Pin Response Time
~

RECEIVER{:~ l~i~~~ii;f+8

6V

2V

RECEIVER 1 { 4V
OUTPUT 2V

OV

OV

ON-OFF{5V
INPUT OV

BIAS INPUT {5V
(THRU 25kll) OV

OUTPUT

1ms

2ms

3ms

.-. -;,'

;--I~

J. ., ..

!

i. ..

±.-~: ~-_,

H-+--+-+--+--+-+--j-t-I
.~-

.,-1---- ...

li;~::-- --".
I L_": ___:I~_:_ -:--+--+-'-+--""'---1

II

4ms

0.2,..

OA,..

0.6ps

0.8,..

TYPICAL APPLICATiOn
LT1080 (Driver/Receiver with Power Supply) Driving an LT1 039
SHUTDOWN
5V
Vee

17

18 Vee

111039

LT1080
TIL INPUT

RS232 OUT

TTL INPUT

RS232 OUT

TIL INPUT

RS232 OUT

TIL INPUT

RS232 OUT

TTL INPUT

RS232 OUT

TTL OUT

RS232 IN

TIL OUT

RS232 IN

RS232 IN

TTL OUT

RS232 IN

TTL OUT

RS232 IN

5k
TIL OUT
5k

-=-

1pF

V+ 3
1pF
GND
16

V-

7
1pF

88-11

LT1039
APPLICATion HinTS
The driver output stage of the LT1039 offers significantly
improved protection over older bipolar and CMOS designs.
In addition to current limiting, the driver output can be ex·
ternally forced to ± 30V with no damage or excessive cur·
rent flow, and will not disrupt the supplies. Some drivers
have diodes connected between the outputs and the supplies, so externally applied voltages can cause excessive
supply voltage to develop.
Placing the LT1039 in the SHUTDOWN mode (Pin 17 low)
puts both the driver and receiver outputs in a high

JL

When driving CMOS logic from a receiver that will be used
in the SHUTDOWN mode and there is no other active receiver on the line, a 51 k resistor can be placed from the
logic input to Vee to force a definite logic level when the
receiver output is in ahigh impedance state.

LT1039 # 1
RECEIVER

30V
-30V

Older RS232 Drivers and Other CMOS Drivers

-vt

The SHUTDOWN mode also drops all supply currents
(Vee, V+, V-) to zero for power-conscious systems.

Sharing a Receiver Line

LT1039 Driver

CAN
BE FORCED
EXTERNALLY

impedance state. This allows data line sharing and
transceiver applications.

LT1039 #2
RECEIVER

V+

WITH SOME DRIVERS.
EXTERNALLY APPLIED
VOLTAGE CAN FORCE
THE SUPPLIES

V-

Sharing aTransmitter Line

LOGIC
INVERTER
ON-OFF
(CHANNEL -4_--1 >0---'
SELECT)
INPUT

Transceiver

LT1039 # 1
DRIVER

LT1039 # 1
DRIVER
LOGIC
RS232
TRANSMIT IRECEIVE -+--li'Cii ').o--_-TRANSMITIRECEIVE
LINE
LINE

LT1039 #2
RECEIVER

LT1039 #2
DRIVER
LOGIC
INPUT B---f'i:)t':f':i!i!><>--+-........-

LOGIC
INVERTER
ON-OFF
(CHANNEL-'-"""---I ~_....
SELECT)
INPUT

88-12

RS232
TRANSMISSION
LINE

LOGIC
INVERTER
ON-OFF
(TRANSMIT1_--4.--1
RECEIVE)
INPUT

LT1039
APPLICATion HinTS
To protect against receiver input overloads in excess of
± 30V, a voltage clamp can be placed on the data line and
still maintain RS232 compatibility.
The receiver input impedance of the LT1039 is nominally
30kO. For applications requiring a 5kO input impedance, a
5.6kO resistor can be connected from the receiver input to
ground.
Driver inputs should not be allowed to float. Any unused
inputs should be tied to Vee.

Keeping Alive One
Receiver while in
SHUTDOWN

Vee

RS232
INPUT

The bias pin is used to "keep alive" one receiver while in
the SHUTDOWN mode (all other circuitry being inactive).
This allows a system to be in SHUTDOWN and still have
one active receiver for transferring data. It can also be
used to make an RS232 compatible SHUTDOWN control
line. Driving the bias pin low through a resistance of 24kO
to 30kO keeps the receiver active. Do not drive the bias pin
directly from a logic output without the series resistor. An
unused bias pin should be left open.

LOGIC
OUTPUT

LOGIC SHUTDOWN
INPUT
25kO

'FORCES LOGIC INPUT STATE
WHEN VON-OfF IS LOW

ON-OFF
INPUT

ON-Oi'l' 17

m03S

LOGIC
OUTPUT

RS232 Compatible
SHUTDOWN Control Line
25kO

RECEIVER

e-

RS232INPUT~LOGIC

l

5. 6ko

RS232
SHUTDOWN"""""I--!
INPUT

:::>oo--r::...J

OUTPUT

88-13

LT1039
PACKAGE DESCRIPTion

Dimensions in inches (millimeters) unless otherwise noted.

J16 Package Ceramic DIP
0,005

(Q.13i
MIN

0.025

+
~
1

15

(0.635)

L

0.385±0,025

t

TYP

o.o08-0."8
(0.203-0.460)

(9,779*0.635)

lT1039MJ16

Tjmax
150'C

LT1039CJ16

15O'C

81c
3O'CIW
3O'CIW

81'
l00'CIW
l00'CIW

J1 BPackage Ceramic DIP
0,290-0,320
~
!17.366-8.128IU41

jij

I[

(~/;~4)-------I

0.200
O_030-0,073~
(0.760-1,860)

I

(5]8oj

I~

MAX

MAX
I

_=-=-=~=--,=I~I ~

r;;;::::;--;f f i m m m L

--...f~O'-15' +10.203_04601
P=0.008_0.018

8O;:p4~

~(~:;~;:~:~~~)--l

~J ~ W
(t~~)

(0.3BO-1.520)

v

fr.r-r-::-r;-::'rT:T'T':TT:-rT;'T"""'T7r

-.II.--

0.100±0 010

0.014-0.026

0.125

(0,360-0.660)

{1m)

.---i

MIN

(2.540±0.254)

LT1039MJ
LT1039CJ

0.220-0.310
(5.590-7.870)

--.l

Tjmax

9ja

Sjc

150'C

100'CIW

150'C

100'CIW

40'CIW
40'CIW

N16 Package Plastic DIP
0.130
(3.302)

1------(~9~~~);----"'1

0.065

fT6sii
t---rr---------,..1

t

14

I

10

0,250±0,005

(6.350±0.127)

J f
~~:~~~
(8.255 ~~:~~~)
0.325

t

o.oog-o.",
(0.229-0.279)

.-

N18 Package Plastic DIP

r

0.250±0.005
(6.350±0.127)

L

O.OO'-0"5j

LIr:-i=r;:Fffi""ftF'i'fF"i'rr=m=;~

(0.229-0.3811

0.325 ~~:~~~
(B.255~~:~m

0,025±0015-.
(0.635±0.381)

LT1039CN

88-14

65'C

120'CIW

50'CIW

~7UO~~-S-w-it-c-he-d-c-a-p-a-c-ito-r-v-~-~~-~-:-:
FEATURES
•
•
•
•
•
•
•
•

100mA Output Current
Low Loss -1.1 Vat 100mA
Operating Range 3.5V to 15V
Reference and Error Amplifier for Regulation
External Shutdown
External Oscillator Sync
Can be Paralleled
Pin Compatible with the LTC1044/7660

APPLICATions
•
•
•
•

Voltage Inverter
Negative Voltage Doubler
Voltage Regulator
Positive Voltage Doubler

Converter with Regulator
DESCRIPTion
The LT1054 is a monolithic, bipolar, switched capacitor
voltage converter and regulator. The LT1054 provides
higher output current than previously available converters
with significantly lower voltage losses. An adaptive switch
drive scheme optimizes efficiency over a wide range of
output currents. Total voltage loss at 100mA output current is typically 1.1V. This holds true over the full supply
voltage range of 3.5V to 15V. Quiescent current is typically
2.5mA.
The LT1054 also provides regulation, a feature not previously available in switched capacitor voltage converters.
By adding an external resistive divider, a regulated output
can be obtained. This output will be regulated against
changes in both input voltage and output current. The
LT1054 can also be shut down by grounding the feedback
pin. Supply current in shut down is less than 100ItA.
The internal oscillator of the LT1054 runs at a nominal frequency of 25kHz. The oscillator pin can be used to adjust
the switching frequency, or to externally synchronize the
LT1054.
The LT1054 is pin compatible with previous converters
such as the LTC1 044/7660.

BLOCK DIAGRAm
Voltage Loss
3.5VsV,Ns15V
C'N=COUT=100~F

...... V

Tj=125'C

....... ~

r~ :,...o

V

V / ' '"

....- t::::- .....-I

t:/ '-" -<
I--""

~

o

;> " ,

----

V ........ ........
........

Tj=25'C
I
j-

~Ti= ~55'C_

INDICATES GUARANTEED TEST POINT
10

20

30 40 50 60 70 80 90 100
OUTPUT CURRENT (rnA)

88-15

LT1054
ABSOLUTE mAXimum RATinGS

PACKAGE/ORDER InFORmATiOn

Supply Voltage (Note 1) ............................. 16V
Input Voltage (Pin 1) ...................... OV :sVPINj::SV+
Input Voltage (Pin 7) .................... OV :sVPIN7:sVREF
Operating Temperature Range
LT1054C ................................. O°C to 70°C
LT1054M ............................ - 55°C to 125°C
Junction Temperature (Note 2)
LT1054C ....................................... 125°C
LT1054M ...................................... 150°C
Storage Temperature Range ............. - 55°C to 150°C
Lead Temperature (Soldering, 10 sec.) .............. 300°C

ORDER PART
NUMBER

J8 PACKAGE
HERMETIC DIP

LT1054MJ
LT1054CJ
LT1054CN

N8 PACKAGE
PLASTIC DIP

TOP VIEW

LT1054MH
LT1054CH

V+

CASE IS VOUT

ELECTRICAL CHARACTERISTICS
PARAMETER
Supply Current

Supply Voltage Range
Voltage Loss (VIN - IVOUT I)

Output Resistance
Oscillator Frequency
Reference Voltage

CONDITIONS
ILOAD=OmA
VIN =3.5V
VIN = 15V
CIN = COUT = 100~FTantalum
(Note 3)
10UT= 10mA
lour=100mA
AloUT = 1OmA to 100mA
(Note 4)
3.5VsV IN s15V
IREF=60~A

Tj =25°C
Regulated Voltage
Line Regulation
Load Regulation

VIN = 7V, Tj = 25°C
(NoteS)
7VsVIN s12V
(Note 5)
VIN =7V
500sRLs 1000
(Note 5)

Maximum Switch Current
Supply Current In Shutdown
VPIN1 =OV
The. denotes specifications which apply over the full operating tempera·
ture range. For Cgrade parts these specifications also apply up to ajunc·
tion temperature of 100°C.
Note 1: The absolute maximum supply voltage rating of 16V is for unregu·
lated circuits. Forregulation mode circuits with VOUTs 15V at Pin 5, this rat·
ing may be increased to 20V.
Note 2: The devices are guaranteed by design to be functional up to the
absolute maximum junction temperature.
Nole 3: For voltage loss tests, the device is connected as a voltage

88-16

MIN

••
•
••
•
•
•
•

TYP

MAX

2.5
3.0

3.5
4.5
15

0.35
1.10

0.55
1.60

10
25

15
35

2.35
2.25

2.50

2.65
2.75

V
V

-4.70

-5.00
5

-5.20
25

V
mV

3.5

15

UNITS

10
50
•
300
100
150
•
inverter, with Pins 1, 6, and 7 unconnected. The voltage losses may be

mA
mA
V

V
V
f!
kHz

mV
mA
~A

higher in other configurations.
Nole 4: Output resistance is defined as the slope of the curve, (AVOUT vs
AloUT), for output currents of 10 to 100 mAo This represents the linear por·
tion of the curve. The incremental slope of the curve will be higher at cur·
rents <10mA due to the characteristics of the switch transistors.
Nole 5: All regul~tion specifications are for a device connected as aposi·
tive to negative converter/regulator with Rl = 20k, R2 = 102.5k, Cl = 0.05~F,
CIN = 10~F tantalum, COUT = 100~F tantalum.

LT1054
TYPICAL PERFORmAnCE CHARACTERISTICS
Supply Current

Shutdown Threshold

Oscillator Frequency

0.6
0.5

r-.....

IL=O

.............
Q

5

0.4

.............

VPINI

~
a:

0.3

:z

15
~

=>
en

~

.......

-- - -

'i'- I'-..

:I:

~

35

I

~

~ to....

r--....:

~=15V

VIN=3.~ :"-.

0.2

:I:

0.1

o

o
-50 -25

0
25
50
75
TEMPERATURE (OC)

100

125

o

Supply Current in Shutdown

1:
;:-

......

80

15

L..--

~

a

60

~
§

40

--

--r

VPIN1=OV

1.4

120

1.2

..IV

;:- 100

~
a:

=>

<.>

~

80

./

60

w

co

15

./

40
20

o

5
10
INPUT VOLTAGE (V)

20

0.4

INVERTER CONFIGURATION
Cour=100,.F TANTALUM
fosc=25kHz

0.2

100

40
60
80
OUTPUT CURRENT (mA)

o

o

1.0

1

\

\

TIl

I'... lour = 50mA

.....

lou~

10 20 30 40 50 60
CIN (~F)

70 80 90 100

CIN = 100~F TANTALUM
2.0 f- Cour= 100~F TANTALUM

'-J0urll~OLA

o

IOU~=10ImA

§!

~

\

louL5LA

~ 0.6

V

I-INVE~TE~ CbNIFI~LIJ.~ION

w

lour= 100mA

......

0.8

w

INVE~TE~ C~N~I~~~~ION

CIN= 10~F TANTALUM
Cour=100~F TANTALUM

~
gJ

125

1.0

Output Voltage Loss

9

~

~

V
o

100

11

..... .....

Output Voltage Loss

2.0

§!

o

15

~

V

/'

:ii:

20

V

0
25 50 75
TEMPERATURE (OC)

Output Voltage Loss

140

<"
E

~

o

15
-75 -50 -25

15

Average Input Current

120
100

5
10
INPUT VOLTAGE (V)

"'"

r--

"\

.........

...
Ir~Jj""100mt
lour- 50mA

lbmLlCour=100,.F

10
OSCILLATOR FREQUENCY (KHz)

o
100

Imj""10mAI
1

10
OSCILLATOR FREQUENCY (kHz)

100

S8-17

LT1054
TYPICAL PERFORmAnCE CHARACTERISTICS

Reference Voltage Temperature
Coefficient

Regulated Output Voltage
100

-4.7

80

-4.8

-4.9

....-

"""-

~

-5.0

~

-5.1

5

-11.6

~

Ij
~

tll

40
20

0

~-20

~ -11.8

5

60

w

~

~

~-40 /

""-

-12.0

",V'

........ ......

--

~

VREF@0-2.500V

~

~-60

-12.2
-12.4

-80

-12.6
-50 -25

0

25

50

75

100

125

TEMPERATURE ('G)

-100
-50 -25

0
25
50
75
TEMPERATURE ('G)

100

125

APPLICATions InFORmATion
Theory of Operation
To understand the theory of operation of the LT1054, a
review of a basic switched capacitor building block is
helpful.
In Figure 1, when the switch is in the left position, capacitor C1 will charge to voltage V1. The total charge on C1 will
be q1 = C1V1. The switch then moves to the right, discharging C1 to voltage V2. After this discharge time, the
charge on C1 is q2 = C1V2. Note that charge has been
transferred from the source, V1, to the output, V2. The
amount of charge transferred is:
aq = q1- q2 = C1(V1- V2).
If the switch is cycled f times per second, the charge
transfer per unit time (Le., current) is:

I =fxaq =fxC1(V1- V2).
To obtain an equivalent resistance for the switchedcapacitor network we can rewrite this equation in terms of
voltage and impedance equivalence:
1= V1 - V2 = V1 - V2
(lIfC1) REQUIV
Vl

rt l

7l[V2

Cl

c2

l""

Figure 1. Switched Capacitor Building Block

88-18

A new variable, REQUIV, is defined such that REQUIV = lIfC1.
Thus, the equivalent circuit for the switched capacitor network is as shown in Figure 2. The LT1054 has the same
switching action as the basic switched capacitor building
block. Even though this simplification doesn't include finite switch on-resistance and output voltage ripple, it provides an intuitive feel for how the device works.
These simplified circuits explain voltage loss as a function of frequency (see typical curve). As frequency is
decreased, the output impedance will eventually be dominated by the 1/fC1 term and voltage losses will rise.
Note that losses also rise as frequency increases. This is
caused by internal switching losses which occur due to
some finite charge being lost on each switching cycle.
This charge loss per-unit-cycle, when multiplied by the
switching frequency, becomes a current loss. At high frequency this loss becomes significant and voltage losses
again rise.
The oscillator of the LT1054 is designed to run in the frequency band where voltage losses are at aminimum.
Vl_Nv--t---- 100/ls) or a logic high. Diode coupling the restart
signal into Pin 1 will allow the output voltage to come up
and regulate without overshoot. The resistor divider R3/R4
in Figure 5 should be chosen to provide a signal level at
Pin 1of O.7V-1.1V.

The error amplifier of the LT1054 servoes the drive to the
PNP switch to control the voltage across the input capaci·
tor (GIN), which in turn will determine the output voltage.
Using the reference and error amplifier of the LT1054, an
external resistive divider is all that is needed to set the
regulated output voltage. Figure 5shows the basic regula·
tor configuration and the formula for calculating the ap·
propriate resistor values. The recommended value for R1
is 20k for all output voltages. Frequency compensation is
accomplished by adjusting the ratio of GIN/GOUl
For best results, this ratio should be :::::1/10. G1, required
for good load regulation, should be 0.05/lF for all output
voltages.
It can be seen from the circuit block diagram that the
maximum regulated output voltage is limited by the sup·
ply voltage. For the basic configuration, IVOUTI referred to
the ground pin of the LT1054 must be less than the total of
the supply voltage minus the voltage loss due to the
switches. The voltage loss versus output current due to
the switches can be found in the typical performance
curves. Other configurations such as the negative doubler
can provide higher output voltages at reduced output cur·
rents (see typical applications).

LT1054
APPLICATions InFoRmATion
Jl
R3

R4

JL
lOJ

10

OUTPUT HIGH

Vcc-4.5V

~

Supply Generation from Vee
or Shutdown

Supply Generator Outputs

Driver Output Voltage

LbAOED TO GROliNii

./

r--- I--RL =3kO

a:
~

-4

Q

-6

a:

VCC=4.5V

-8

Vcc 5.5V

-10

I

r- VfC

5 V

J. TL
-6 I-ILOA~ED~

n

-8
-10

0
25
50
75
TEMPERATURE (OC)

In.O

o

125

-6

--t-t'

4

-10

6 8 10 12 14 16 18 20
OUTPUT CURRENT (mA)

V- SUPPLY

o

0.2 0.4 0.6 O.B 1.0 1.2 1.4 1.6 1.B 2.0
TIME (ms)

On·OIl Pin Current vs Voltage
40

100

3.00

f-.

-8

V- OUTPUT VOLTAGE
2

~

LOADED TO GROUND

Receiver Output Short
Circuit Current

Receiver Input Thresholds
2.75

35

OUTPUT SINKING

2.50
~

RL =4.7k;V+ TO V-

\.

J 'i

OUTPUT LOW

-55 -25

Cl-C4=1~F

,

I-- Vcr 5,

25 -2

/

30

2.25

V

:J:

~ 1,75
:J:

:: 1.50
::::>

./

~ 1.25

1.00

~

0.75

L'"

......

>:z:
w
a:
a:

!--""

::::>
to

----

~UTLOW_ f - -

./

15

./
/

"'

----

-25

/

20

>- 10
~

OUTPUT SOURCING

l

-5
-10

0.1

0.50
-55

./

~ 25

INPUT HIGH ..... ~

~ 2.00

I

I

Vc6=5J

II

2

~
>-

-

V+ SUPPLY

t...--

0
25
50
75
TEMPERATURE (OC)

100

-55

125

-25

0
25
50
75
TEMPERATURE (OC)

100

125

100

1000

5.0

2
3
INPUT VOLTAGE (V)

Driver Output Leakage
in Shutdown

Supply Current in Shutdown

On·Off Pin Thresholds

o

4.5
!==Vcc- 5V

4.0

§ 3.5
'"~ 3.0
§; 2.5
z

~

~

>-

10
a: 10

1100

.........

2.0

~ 1.5

1.0

r-....

MAXIMUM OFF VOLTAGE

-55 -25

88-30

~ONVOLTAGE f - -

- r--+-.l

0.5

o

a:

~a:

-

::::>
to

~

::::>

>-

~

::::>

'"

/

1
125

VOUT=~ay ~

;jS

-'

10

r--

100

'";;!!

/

en

i"- t-.

0
25
50
75
TEMPERATURE (OC)

::::>
to
w

-55

-25

0
25
50
75
TEMPERATURE (OC)

/

/ 1/ VIOUT= i 30V

0.1
100

125

-55 -25

0

25
50
75
TEMPERATURE (OC)

100

125

LT1080/LT1081
TYPICAL PERFORmAnCE CHARACTERISTICS
Output Waveforms

DRIVER {
OUTPUT
RECEIVER {
OUTPUT
INPUT {

~~

J)lJ

L

",1 lu I I
,

-5V
5V
OV
5V
OV

k
j'.

I',
I

I

I
;

Shutdown to Receiver
Output

Shutdown to Driver Output

i

'iJ

DRIVER {
OUTPUT

10V
5V
OV

DRIVER {
OUTPUT

_~~~

ON-Ol'F (
INPUT

5V
OV

6V
RECEIVER [ 4V
OUTPUT 2V
OV

OV

ON-OFF [ 5V
INPUT OV

o

1ms 2ms 3ms 4ms

o

1ms 2ms 3ms 4ms

S8-31

LT1080/LT1081
APPLICATion HinTS
The driver output stage of the LT1080 offers significantly
improved protection over older bipolar and CMOS designs.
In addition to current limiting, the driver output can be externally forced to ±30V with no damage or excessive current flow, and will not disrupt the supplies. Some drivers
have diodes connected between the outputs and the supplies, so externally applied voltages can cause excessive
supply voltage to develop.

Placing the LT1080 in the SHUTDOWN mode (Pin 18 low)
puts both the driver and receiver outputs in a high
impedance state. This allows data line sharing and
transceiver applications.
The SHUTDOWN mode also drops input supply current
(Vee; Pin 17) to zero for power-conscious systems.

Transceiver

LT1080/LT1081 Driver

OUTPUT CAN
BE FORCED
EXTERNALLY

Jl

LT10BO #1
DRIVER

30V
-30V

LOGIC
TRANSMIT IRECEIVE
LINE

RS232
~>c_-..-- TRANSMITIRECEIVE

LINE

lT10BO # 2
RECEIVER

Older RS232 Drivers and CMOS Drivers

-vt
V+

WITH SOME DRIVERS,
EXTERNALLY APPLIED
VOLTAGE CAN FORCE
THE SUPPLIES

V-

ON-OFF
(TRANSMITI _
RECEIVE)
INPUT

Sharing a Receiver Line

......--1

Sharing aTransmitter Line

LT10BO # 1
RECEIVER

LT10BO # 1
DRIVER

IN~~~I~ _ _-

lT10BO #2
RS232
INPUT B

ON-OFF
(CHANNEL
SELECT)
INPUT

88-32

LT1080 #2
DRIVER
RS232
TRANSMISSION
LINE

LOGIC
INPUT B

LOGIC
INVERTER

ON-OFF
(CHANNEL
SELECT)
INPUT

LOGIC
INVERTER

LT1080/LT1081
APPLICATion HinTS
When driving CMOS logic from a receiver that will be used
in the SHUTDOWN mode and there is no other active reo
ceiver on the line, a 51 k resistor can be placed from the
logic input to Vee to force a definite logic level when the
receiver output is in a high impedance state.
Vee

RS232
INPUT

The generated driver supplies (V + and V-) may be used
to power external circuitry such as other RS232 drivers or
op amps. They should be loaded with care, since exces·
sive loading can cause the generated supply voltages to
drop causing the RS232 driver output voltages to fall be·
low RS232 requirements. See the graph "Supply Generator
Outputs" for a comparison of generated supply voltage
versus supply current.

LOGIC
OUTPUT

LT1080

EXTERNAL OP AMP

+

T1~F

"FORCES LOGIC INPUT STATE
WHEN VON-OFF IS LOW

ON-OFF
INPUT

V+
DRIVER

To protect against receiver input overloads in excess of
± 30V, a voltage clamp can be placed on the data line and
still maintain RS232 compatibility.

16

GND

':'

v-

RECEIVER
LOGIC
OUTPUT

"A PTC THERMISTOR WILL
ALLOW CONTINUOUS OVERLOAO
OF GREATER THAN ± 100V

30V
':'

':'

TYPICAL APPLICATiOn
RS232 Compatible 10·Bit A-O Converter
LT1080
RECEIVER

LT1080

r - - -........- - - - - -.......-v+ (PIN 3)

LT1009
2.5V

FULL-SCALE
TRIM
10kn
V,N
(O-5V)

RS232
20kHz
CLOCK
2k

LT1080
DRIVER
RS232
DATA
OUT
LT1080
RECEIVER
RS232
CONVERT
COMMAND

LI
CONVERSION TIME=50ms

15m,

"TRW MTR-5

88-33

LT1080/LT1081
PACKAGE DESCRIPTion

Dimensions in inches (millimeters) unless otherwise noted.

J16 Package Ceramic DIP

C: '~lB3~61~
15

14

13

12

11

10

(0.535)
TYP

9

'-m-~"""""""""""'''''''''''''r.r'Ll

1::::1 MAX GLASS
TYP

II

el'

el'

LT1081MJ

15O'C

100'CIW

4O'CIW

LT1081CJ

150'C

100'CIW

4O'CIW

SEALANT-

'---'----

~j
I

L j-,:::::::::1 01" Jl-.': ~I I L~jt~'::::::::~1
i

ljmax

0.200
(5.080)

{4.O64l

MAX

0.220-0.310
(5.588-7.847)

0.025

0.160

---i:::~-

MAX

(3.175)

(~:~~~:~:~~~)

MAX

(~:~~:6:~~)-

MIN

(6:~~~:6:~~~)

N16 Package Plastic DIP
)4-_ _ _ _ 0750 _ _ _ _~

t

0.250±0.005
(6.350",0,127)

j

0.130

I':::~~:::'I

(3,3{J2)

0,065

(1Ts1j

-l---rr---------.,J

l-.0.02S

(0.635)

LT1081CN

125'C

120'CIW

50'CIW

JL

--II

7,:f

II

~0.018.0003

J-L(0.457±O.076)

0.100

0.040

(2.540)

(T'OTej

J18 Package Ceramic DIP
1-------(~39~!)------,+1·1

MAX

r

0,025

0.290

(7.366)

(0.635)

RAD

.Q1£Q.

0.290-0.320

MAX

'"n--T.".,.-,-:"."."""T:T"..,....,..,..,......,-,.:rl~

liiT66T12aiU'1
I[
~j

~~

~95"S'+'020H3061
l- (~:;~~:6'~~) ~

LT1080MJ
LT1080CJ

el'

el'

100'CIW

40'CIW

100'CIW

40'CIW

N18 Package Plastic DIP
t------(:2~;~8)----~~

MAX

t

0.009-0.015
(0.229-0,3811-

1

__ 0,325
(8.255

LT1080CN

88-34

125'C

120'CIW

5O'CIW

~~:~~;

~~.~~n

~rlrl1rlrWf-"
--.J~~

~.77B)

90"'~1
Typl'~

0'060J~W

(1.524)

MAX

ljmn
150'C
150'C

0.200
(5,080)
MAX
I

~~II

(1.422",0,076)

O'.1OO±0,.010
(2 540±0 254)

(0.457±0.076)

0.125

(Im)
MIN

~7~!O~--W-id-e-b-a-n-d-R-M-S--D-C-C-O-~-~-:~-t~-~
Building Block

FEATURES

DESCRIPTion

• 300M Hz 3d BBandwidth
• 1%Accuracy DC-50MHz
.2%to100MHz
• Bandwidth Flat Over Input Voltage Range
• 50:1 Crest Factor
• 20:1 Dynamic Range
• 35V Peak Input
• Thermally Based Operation
• Fully Specified Thermal and Electrical Parameters
• Standard IC Package
• Resistive Inputs

The LT1088 is a thermally based RMS-DC converter building block. It converts the input waveform to heat. Using external circuitry, the thermal signal is expressed as a DC
output voltage.
LTC's proprietary thermal packaging process permits
accurate thermal signal processing in a standard Ie p~ck­
age. The thermal method provides far greater bandwidth
than RMS converters based on logarithmic computing
techniques. The LT1088's high voltage breakdown allows
crest factor measurements of 50:1 and operation over a
20:1 input dynamic range. Resistive inputs of 500 or 2500
accommodate drive from awide variety of sources.

APPLICATions
•
•
•
•
•

Wideband RMS Voltmeters
RF Leveling Loops
Wideband AGC
High Crest Factor Measurements
SCR Power Monitoring

Accuracy vs Frequency (501lInput)

Simplified RMS·DC Converter

THERMALLY _____ _
COUPLED
THERMAL _ _
BARRIER

~

2

~

1

~

0

~

-2

e:.co -1

-

r-- t-

- t---

-3
INPUT

-4
-5 0

20

40

60

80

100

INPUT FREQUENCY (MHz)

88·35

LT1088
ABSOLUTE mAXimum RATinGS

PACKAGE/ORDER InFORmATion

Voltage on Any Pin ...................... V- t 40V to VVoltage from Channel Ato Channel B ............... 100V
Reverse Diode Voltage .............................. 3.5V
Forward Diode Current ............................ 15mA
Input Power (25°C) ............................... 0.375W
Peak Input Power (30 sec) ........................ 0.435W
Derate Power at - 3mW/oC above 25°C
Maximum Die Temperature ........................ 150°C
Peak Die Temperature (30 sec) ..................... 175°C
Functional Temperature Range .......... - 55°C to 125°C
Operating Temperature Range ............ - 40°C to 85°C
Lead Temperature (Soldering, 10 sec) .............. 300°C

TOP VIEW

ORDER PART
NUMBER
LT1088CD

D14 PACKAGE
HERMETIC

ELECTRICAL CHARACTERISTICS TA =25°C, unless otherwise noted (See Note 1)
PARAMETER
Input Heaters
5011 Input
25011 Input
5011 Temperature Coefficient
25011 Temperature Coefficient
5011 Temperature Coefficient Match
25011 Temperature Coefficient Match
Resistance Matching
25011 to 5011 Ratio Match
25011 to 5011 Ratio Match
Temperature Coefficient
Output Diodes
Forward Voltage
Forward Voltage Match
Voltage Temperature Coefficient
Thermal CharacteristIcs
Thermal Resistance
Thermal Matching
Thermal Cross Talk

..

CONDITIONS

Input A to Input B
Input A to Input B
5011 Inputs
25011 Inputs

TYP

MAX

40
200

50
250
2000
2000
30
30
2
2
0
50

60
300

•
•
•
•
-15

•
1=5mA
Out AtoOut B; I =5mA
1=5mA
Either Die to Ambient
Channel Ato Channel B
Channel Ato Channel B

The. denotes specifications which apply over full operating temperature range.
Note 1: All electrical testing conducted at 25°C.

88-36

MIN

0.6

•
•
•
•
•

-1.6
200

0.7
5
-1.75
300
30
2500

500
500
10
10
5

0.8

-1.9
400

UNITS
II
II

ppm/oC
ppm/oC
ppm
ppm
%
%
%
ppm/oC

V
mV
mV/oC

°CIW
°CIW
°CIW

LT1088
TYPICAL PERFORmAnCE CHARACTERISTICS
Figure 4's Response vs
Frequency-2501llnput

Figure 4's Response vs
Frequency-501llnput
10

Accuracy vs Frequency lor
Figure 4-2501l1nput

2.0
1.5

-

~
~

'"",

20
15

J.

10

o
"DENOTES PARASTIC DIODE,
SEE APPLICATIONS INFORMATION

Figure 1

88-38

~
~

---_........J RELAY=CLARE

1N914

# HGWM51111POO

SET AT LT1 088 INPUT
DIODE VOLTAGE AT
MAXIMUM ALLOWABLE
DIE TEMPERATURE

":'

Discrete Input Buflerlorthe LT10aa
15V

INPUT

50D
3D
OUTPUT
3D
PNP=2N3906
NPN=2N3904
FET = U440

50D
(SELECT FOR
MINIMUM Vos)

-15V

88-42

LT1088
APPLICATions
LT1010 Buffert
15V

INPUT

OUTPUT

LT1010 Buffer with Gain of 10t
15V

331l

3301l

201l

221l

1N414B

15pF

~

• OUTPUT

INPUT--_--l

470

9k

201l

-15V

0.002

1M
1k

10k

t See Summary of Buffer Characteristics table for buffer speed.

88-43

LT1088
APPLICATions
Wide band Discrete Bulferwith Gain = 10t
EOS CONTROL

330pF
0.1

~
5.1k"

15V
1M

1000

30

INPUT

OUTPUT
-15V

9k

510

15V
1000

1k
.".

3k

-15V
10k"

PNP=2N3906
NPN =2N3904
* lOpF TRIMMER
(SEE TEXT)

"SELECT FOR A1
OUTPUT ~OV WITH
2k TRIM CENTERED AND
INPUT GROUNDED.
"SELECT FOR A2
OUTPUT ~ OV AN D
INPUT GROUNDED.

t See Summary of Buffer Characteristics table for buffer speed.

88-44

LT1088
APPLICATions
Summary of Buffer Characteristics

Type 01 Buller

Slew Rate

Discrete-A = 10
LT10l0 Based-A = 10
Discrete-A =1
LT1010Based-A=1

3000V/~s
100V/~s
2000V/~s

100Vl~s

1%Error Bandwidth
2500 Load
SOD Load
(:!:5VouTI
(:!:10VouTl
25MHz
32MHz
0.75MHz
2MHz
15MHz
25MHz
2MHz
0.75MHz

RF Leveling Loop

RF
INPUT

10MHz
0.6-l.3VRMS

0.33

. - - - - -.....'lN1r-15V
LT1034
AMPLITUDE
ADJUST

1.2V

88-45

LT1088
PACKAGE DESCRIPTion

Dimensions in inches (millimeters) unless otherwise notedo

D14Package
Hermetic DIP (Sidebrazed)

f

0.298
(7.569)

MAX

t

0.165
(4.191)

MAX

F9
t:
00OO8-0J015
(0.203-0.381)
0.300
(7.620)

REF

S8-46

0.050±0.010

..!!Jl§.. (1.270±0.254)
(3.175)
MIN

-j L "'~j,L
L

0.100±0.010
(2.540±0.254)

0.015!3
(0.381-0.584)

~~~O~OG_~~~

IT_C_10_90

Single Chip lO-Bit Data
Acquisition System
DESCRIPTiOn

FEATURES
• Software Programmable Features:
Unipolar/Bipolar Conversions
4Differentiall8 Single Ended Inputs
MSB or LSB First Data Sequence
Variable Data Word Length
• Built-In Sample and Hold
• Single Supply 5V, 10V or ± 5V Operation
• Direct 4Wire Interface to Most MPU Serial Ports and All
MPU Parallel Ports
• 30kHz Maximum Throughput Rate

KEY SPECIFICATiOnS
•
•
•
•

_________

10 Bits
Resolution
± 1/2LSB Max
Total Unadjusted Error (LTC1090A)
22/1s
Conversion Time
2.5mA Max, 1.0mA Typ
Supply Current

The LTC1090 is a data acquisition component which contains a serial 110 successive approximation AID converter.
It uses LTCMOSTM switched capacitor technology to perform either 10-bit unipolar, or 9-bit plus sign bipolar AID
conversions. The a-channel input multiplexer can be configured for either single ended or differential inputs (or
combinations thereof). An on-chip sample and hold is included for all single ended input channels.
The serial 110 is designed to be compatible with industry
standard full duplex serial interfaces. It allows either MSB
or LSB first data and automatically provides 2's complement output coding in the bipolar mode. The output data
word can be programmed for alength of a, 10, 12 or 16 bits.
This allows easy interface to shift registers and a variety
of processors.
The LTC1090A is specified with total unadjusted error (including the effects of offset, linearity and gain errors) less
than ± 0.5LSB.
The LTC1090 is specified with offset and linearity less
than ± O.5LSB but with a gain error limit of ± 2LSB for applications where gain is adjustable or less critical.
LTCMOS is a trademark of Linear Technology Corp.

TYPICAL APPLICATiOn
FOR 8051 COOE SEE
APPLICATIONS INFORMATION SECTION
MPU
{e.g., 8051)

Linearity Plot
1.0

0.5

~

AfV1lV"'I'

"",

.'

.UOOiI---tP1.1
-0.5
.:;.;;OIli~---IP1.2

SCLK!
<-

z

125

~

I'--- I--

0
-50 -25
0
25
50
75
100
AMBIENT TEMPERATURE, TA (:C)

VCC=5V
TA=25°C

...........

/""

i'--- r---.....

o
-~

0
~
~
~
100
AMBIENT TEMPERATURE, TA (~C)

1~

.---

\

V'N- +INPUT

S

J''"

10

100
lk
RSOURCC (0)

~

'".,;
'"<-

!7

w

""z

./

i=

lk

'"~

~

:;

::; 100

.,""

VIN

'"'-'
:>=

'"
0.1
10

100
1000
CYCLE TIME, lCYC ("s)

'MAXIMuM ACLK FREQUENCY REPRESENTS THE ACLK FREQUENCY AT WHICH A O.lLSB SHIFT
IN THE ERROR AT ANY CODE TRANSITION FROM ITS 2M Hz VALUE IS FIRST DETECTED.

10

VREF 5V
Vcc 5V
TA 25°C
o TO 5V INPUT STEP

~

10
10k

8

10

+

RSOURCE-

11111111/

7

Sample and Hold Acquisition
Time vs Source Resistance

""

---

6

SUPPLY VOLTAGE, Vcc (V)

=>
::;

-INPUT

VREF=4V _ f---TA=25°C

/

4

CflLTER"I"F~
10k

IE

\

.--r

//

1
2
3
4
REFERENCE VOLTAGE, VREF (V)

VIN

VREF=5V
TA=25°C

125

o

o

lOOk

LU5~1

......

./

Maximum Filter Resistor vs Cycle
Time

Maximum Conversion Clock Rate
vs Source Resistance

4

~

Maximum Conversion Clock Rate
vs Supply Voltage

L--- r---

,..,-

-

t-- t--

-50 -25
0
25
50
75
100
AMBIENTTEMPERATURE, TA (OC)

/

o
-~

o

125

Maximum Conversion Clock Rate
vs Reference Voltage

Vcc=5V
VREF=5V

i"--. ~

-

~ 0.1

Maximum Conversion Clock Rate
vs Temperature

~

;ij

20.4

::J

r--.. t-.
0

1 1

Vcc =5V
VREF=5V
ACLK=2MHz

::: 0.5
z

'-'

0.1

0.6

~

:;§ 0.3

w

z
~

2'

~

0.3

~

!::

I

10.4

'" 0.2

§

I

Vcc=5V
VREF=5V
ACLK=2MHz

E::

'"
~

G

Change in Gain Error
vs Temperature

10k

100

~

lk
RSOURCE+ (Il)

+

10k

"MAXIMUM RFILTER REPRESENTS THE FILTER RESISTOR VALUE AT WHICH A O.lLSB
CHANGE IN FULL-SCALE ERROR FROM ITS VALUE AT RFILTER =0 IS FIRST DETECTED.

88-53

LTC1090
TYPICAL PERFORmAnCE CHARACTERISTICS
Input Channel Leakage Current vs
Temperature

Digital Input Logic Threshold vs
Supply Voltage
1000

I

L

'[ 900

ffi

TA=25°C

V

GU~RANT~ED ~ r--

800

~ 700

.,/

=>
<.:>
w

~

,./'

V V

~

z

600

w

400
ON CHANNELI

'"

6
7
8
SUPPLY VOLTAGE, Vee (V)

1.5

5z 1.0
'"~075

500

=>

4

'"'""

100

10

-50

OFF CrANNEIS~

l\;

--

~

-25 0
25
50
75
100
AMBIENTTEMPERATURE, TA (OC)

6

~ 0.5
C1i
"- 0.25

125

APPLICATions InFORmATion

DIGITAL CONSIDERATIONS

The LTC1090 is a data acquisition component which contains the following functional blocks:

1. Seriallnterface

1. 10-bit successive approximation capacitive
AID converter
2. Analog multiplexer (MUX)
3. Sample and hold (StH)
4. Synchronous, full duplex serial interface
5. Control and timing logic

1\
f\

I"- ...... 1"-0.2
1
5
REFERENCE VOLTAGE, VREF (V)

The LTC1090 communicates with microprocessors and
other external circuitry via asynchronous, full duplex, four
wire serial interface (see Operating Sequence). The shift
clock (SCLK) synchronizes the data transfer with each bit
being transmitted on the falling SCLK edge and captured
on the rising SCLK edge in both transmitting and receiving
systems. The data is transmitted and received simultaneously (full duplex).

Operating Sequence
(Example: Differential Inputs (CH3-CH2), Bipolar, MSB First and 10-Bit Word Length)

88-54

lL

LTC1090 NOISE = 200l'V PEAK-TO-PEAK

ffi 1.25

~ 300

~

JlUil

_1.75

d!l

'"o

:: 200

o

Noise Error vs Reference Voltage
2.0

LTC1090
APPLICATions INFoRmATion
~ata transfer is initiate~by a falling chip select (CS)
signal. After the falling CS is recognized, an a-bit input
word is shifted into the DIN input which configures the
LTC1090 for the next conversion. Simultaneously, the result of the previous conversion is output on the DOUT line.
At the end oUbe data exchange the requested conversion
begins and CS should be brought high. After tCONV, the
conversion is complete and the results will be available on
the next data transfer cycle. As shown below, the result of
a conversion is delayed by one CS cycle from the input
word requesting it.
D'N
Dour

ID'N Word 1 I
IDour Word 0 I

ID'N Word 2 I
IDour Word 1 I

ID'N Word 3 I
IDour Word 2 I

hData~ t~~~v-h Data~ I~~v ~
Transfer

Conversion

Transfer

Conversion

2. Input Data Word
The LTC1090 a-bit input data word is clocked into the DIN
input on the first eight rising SCLK edges after chip select
is recogni.zed. Furth~nputs on the DIN pin are then ignored until the next CS cycle. The eight bits of the input
word are defined as follows:
Data Input (DIN) Word:

MUXAddress

Unipolarl
Bipolar

Word Length

Multiplexer (MUX) Address

The first four bits of the input word assign the MUX configuration for the requested conversion. For a given chan·
nel selection, the converter will measure the voltage
between the two channels indicated by the + and - signs
in the selected row of Table 1. Note that in differential
mode (SGLlDIFF =0) measurements are limited to four
adjacent input pairs with either polarity. In single ended
mode, all input channels are measured with respect to
COM. Figure 1 shows some examples of multiplexer
assignments.
Table 1. Multiplexer Channel Selection
SGLI
DIFF
0
0
0
0
0
0
0
0

MUXADDRESS
0001 SELECT
SIGN 1
0
0
0
0
1
0
0
0
1
0
0
1
1
1
0
0
1
0
1
1
1
0
1
1
1

MUXADDRESS
SGLI 0001 SELECT
DIFF SIGN 1
0
1
0
0
0
1
0
0
1
1
1
0
0
1
1
0
1
1
1
0
0
1
1
1
0
1
1
1
0
1
1
1
1

DIFFERENTIAL CHANNEL SELECTION
0

1

+

-

-

2

3

+

-

4

5

+

-

6

7

+

-

-

+

+
-

+

-

+

SINGLE ENDED CHANNEL SELECTION
0

1

2

3

4

5

6

7 COM

-

+
+

-

+
+

-

+
+
+
+

-

S8-55

LTC1090
APPLICATions INFoRmATion
4Differential

8Single Ended

Combinations of Differential and Single Ended

CHANNEL

CHANNEL

0,11

+ (-)
- (+)

2,31

+ (-)
- (+)

4,51

+ (-)
- (+)

6,7/

+ (-)
- (+)

+
+
+
+
+
+
+
+

0,11

2,31

+

+
+
+
+
+

COM (-)

COM (-)

"::'

':"

Changing the MUX Assignment "On the Fly"
4,5/

6,7/
':"

+
+
+

+
+

COM (UNUSED)

COM (-)

1ST CONVERSION

2ND CONVERSION

Figure 1. Examples of Multiplexer Options on the LTC1090
Unipolar/Bipolar (UNI)

The fifth input bit (UNI) determines whether the conversion
will be unipolar or bipolar. When UNI is a logical one, a
unipolar conversion will be performed on the selected in·

put voltage. When UNI is a logical zero, a bipolar conver·
sion will result. The input span and code assignment for
each conversion type are shown in the figures below.

Unipolar Output Code (UNI =1)
1111111111
1111111110

0000000001

o0 0 0 0 0 0 0 0 0 L..L+--+---'\r---+----l-+_- VIN
OV

lLSB

VREF-2LSB:

VREF

I

VREF-l LSB

Bipolar Output Code (UNI =0)
0111111111
01111 11110

---+--t---.l\r---+-+--+-..-"I--'-+--t-----"v---:--+---+-+---VIN

1000000001
1000000000

88-56

LTC1090
APPLICATions INFoRmATion
Unipolar Transfer Curve (UNI =1)
OUTPUT CODE
1111111111
1111111110

··
·

INPUT VOLTAGE
VREF -1LSB
VREF -2LSB

•
•

0000000001
0000000000

INPUT VOLTAGE
(VREF=5V)
4.9951V
4.9902V

•
•

·

·

1LSB
OV

control the length of the present, not the next, DOUT word.
WL 1 and WLO are never "don't cares" and must be set for
the correct DOUT word length even when a "dummy" DIN
word is sent. On any transfer cycle, the word length should
be made equal to the number of SCLK cycles sent by the
MPU.
WL1
0
0
1
1

o.o049V
OV

Bipolar Transfer Curve (UNI =0)
OUTPUT CODE
0111111111
0111111110

··
·

INPUT VOLTAGE
VREF -1LSB
VREF -2LSB

··•

INPUT VOLTAGE
(VREF=5V)
4.9902V
4.9B05V

•

··

0000000001
0000000000
1111111111
1111111110

1LSB
OV
-lLSB
-2LSB

0.009BV
OV
-0.009BV
-0.0195V

1000000001
1000000000

- (VREF) +1LSB
-(VREF)

-4.9902V
-5.000V

·••

•
•
•

··
·

MSB First/LSB First Fonnal (MSBF)

The output data of the LTC1090 is programmed for MSB
first or LSB first sequence using the MSBF bit. For MSB
first output data the input word clocked to the LTC1090
should always contain a logical one in the sixth bit location (MSBF bit). Likewise for LSB first output data, the input word clocked to the LTC 1090 should always contain a
zero in the MSBF bit location. The MSBF bit in a given DIN
word will control the order of the next DOUT word. The
MSBF bit affects only the order of the output data word.
The order of the input word is unaffected by this bit.
MSBF
0
1

OUTPUT FORMAT
LSB Firsl
MSBFirsl

Word Length (WL1, WLO)

The last two bits of the input word (WL1and WLO) program
the output data word length of the LTC1090. Word lengths
of 8, 10, 12 or 16 bits can be selected according to the following table. The WL1 and WLO bits in a given DIN word

WLO
0
1
0
1

OUTPUT WORD LENGTH
BBiis
10Bils
12 Bils
16 Bils

Figure 2 shows how the data output (DoUT) timing can be
controlled with word length selection and MSB/LSB first
format selection.
3. Deglitcher
Adeglitching circuit has been added to the Chip Select input of the LTC1090 to minimize the effects of errors
caused by noise on that input. This circuit ignores
changes in state on the CS input that are shorter in duration than 1 ACLK cycle. After a change of state on the CS
input, the LTC1090 waits for two falling edges of the ACLK
before recognizing a valid chip select. One indication of
CS low recognition is the DOUT line becoming active (leaving the Hi-Z state). Note that the deglitching applies to
both the rising and falling CS edges.
ACLK

DOUT _ _

I

....!:!H~IGH~Z_ _~II(=~~~==
'.
VALID OUTPUT
LOW CS RECOGNIZED
INTERNALLY

ACLK

I
I
I

-===J)~-+:_-2H~IGH~Z
_ ___
DOUT_
:
I
I

HIGH CS RECOGNIZED
INTERNALLY

88-57

LTC1090
APPLICATions INFoRmATion
8·Bit Word Length

cs\
SCLK _ _---I
(SB)

Dour

THE LAST TWO BITS
ARE TRUNCATED

MSB FIRST

Dour

LSB FIRST

10·Blt Word Length
cs\~

1------tsMPL---~~+--tcONV

________+-__________--J'---

SCLK _ _---I
(SB)

Dour

MSB FIRST

(SB)

Dour

LSB FIRST

12·Blt Word Length
CS\~

SCLK

r

'-----tsMPL-----bl--tcoNV

________+.________________~,___

----'

Dour

MSB FIRST

(SB)

Dour

LSB FIRST

16·Blt Word Length
cs~~

SCLK

________~__________________________~

-----I

(SB)

Dour

MSB FIRST

Dour

LSB FIRST

"IN UNIPOLAR MODE. THESE BITS ARE FILLED WITH ZEROES.
IN BIPOLAR MODE. THE SIGN BIT IS EXTENDED INTO THESE LOCATIONS.

Figure 2. Data Output (Dour) Timing with Different Word Lengths

S8-58

LTC1090
APPLICATions INFoRmATion
4. CS Low During Conversion
In the normal mode of operation, CS is brought high during
the conversion time (see Figure 3). The serial port ignores
any SCLK activity while CS is high. The LTC1090 will also
operate with CS low during the conversion. In this mode,
SCLK must remain low during the conversion as shown in
Figure 4. After the conversion is complete, the DOUT line
SHIFT

tSMPL

IN

INPUT

will become active with the first output bit. Then the data
transfer can begin as normal.
5. Microprocessor Interfaces
The LTC1090 can interface directly (without external hardware) to most popular microprocessor (MPU) synchronous

I - MUX
SAMPLE
I
ADDREss---j----ANALDG----I

1------

----.j.!
~--------------~I
f.----A~~I~~~~~DL;E~~TIN

SCLK

DOUT

Figure 3. CS High During Conversion

r- AD~~~SS---j----~~~~~~----I-40
SCLK

SHIFT

tSMPL

IN

INPUT

TO 44 ACLK

CYCLES--l----~A~~I~~~~D~E~~T,.. , - - - - - - - j

SCLK MUST REMAIN LOW

Figure 4. CS Low During Conversion

88-59

LTC1090
APPLICATions INFoRmATion
serial formats (see Table 2). If an MPU without a serial interface is used, then 4of the MPU's parallel port lines can
be programmed to form the serial link to the LTC1090. Included here are three serial interface examples and one
example showing a parallel port programmed to form the
serial interface.
Table 2. Microprocessors with Hardware Serial
Interfaces Compatible with the LTC1090"
PART NUMBER
Motorola
MC6805S2, S3
MC68HCli
MC68HC05
RCA
CDP68HC05
Hitachi
HD6305
HD63705
HD6301
HD63701
HD6303
National Semiconductor
COP400 Family
COP800 Family
NS8050U
HPC16000 Family
Texas Instruments
TMS7002
TMS7042
TMS70C02
TMS70C42
TMS32011'
TMS32020'

TYPE OF INTERFACE

The COP420 transfers data MSB first and in 4·bit increments (nibbles). This is easily accommodated by setting
the LTC1090 to MSB first format and 12-bit word length.
The data output word is then received by the COP420 in
three 4·bit blocks with the final two unused bits filled with
zeroes by the LTC1090.
Hardware and Software Interface to National Semiconductor
COP420 Processor

SPI
SPI
SPI

LTC1090

COP420

SPI
SCI Synchronous
SCI Synchronous
SCI Synchronous
SCI Synchronous
SCI Synchronous
MICROWIREt
MICROWIRE/PLUSt
MICROWIRE/PLUS
MICROWIRE/PLUS
Serial Port
Serial Port
Serial Port
Serial Port
Serial Port
Serial Port

'Requires external hardware
"Contact factory for interface information for processors not on this list
tMICROWIRE and MICROWIRE/PLUS are trademarks of National
Semiconductor Corp.

Serial Port Microprocessors

Most synchronous serial formats contain a shift clock
(SCLK) and two data lines, one for transmitting and one for
receiving. In most cases data bits are transmitted on the
falling edge of the clock (SCLK) and captured on the rising
edge. However, serial port formats vary among MPU manufacturers as to the smallest number of bits that can be
sent in one group (e.g., 4-bit, 8-bit or 16-bit transfers). They
also vary as to the order in which the bits are transmitted
(LSB or MSB first). The following examples show how the
LTC1090 accommodates these differences.

88-60

National MICROWIRE (COP420)

Dour from LTC1090 stored in COP420 RAM
Location A

MSB:j:
1B9 B8 B7 B61

Location A+1 1B5 B4 B3 B21
LSB
Location A+2 1B1 BO 0 01

first 4bits
second 4bits
third 4bits

tB9 is MSB in unipolar or sign bit in bipolar
MNEMONIC
LEI
SC
OGI
LDD
XAS
LDD
NOP
XAS
XIS
NOP
XAS
XIS
RC
NOP
XAS
XIS
OGI
LEI

DESCRIPTION
EnabieSIO
Set Carry flag
GO is set to 0(CS goes low)
Load first 4 bits of DIN to ACC
Swap ACC with SIO reg. Starts SK Clk
Load 2nd 4 bits of DIN to ACC
Timing
Swap first 4 bits from AID with ACC. SK continues.
Put first 4 bits in RAM (location A)
Timing
Swap 2nd 4 bits from AID with ACC. SK continues.
Put 2nd 4 bits in RAM (location A +1)
Clear Carry
Timing
Swap 3rd 4 bits from AID with ACC. SK off
Put 3rd 4 bits i!!BAM (location A +2)
GO is set to 1(CS goes high)
DisableSIO

LTC1090
APPLICATions INFoRmATion
Motorola SPI (MC68HC05C4)

Hitachi Synchronous SCI (H 063705)

The MC68HC05C4 transfers data MSB first and in 8·bit in·
crements. Programming the LTC1090 for MSB first format
and 16·bit word length allows the 10·bit data output to be
received by the MPU as two S·bit bytes with the final 6 un·
used bits filled with zeroes by the LTC1090.

The HD63705 transfers serial data in S·bit increments, LSB
first. To accommodate this, the LTC1090 is programmed
for 16·bit word length and LSB first format. The 10·bit out·
put data is received by the processor as two 8·bit bytes,
LSB first. The LTC1090 fills the final 6 unused bits (after
the MSB) with zeroes in unipolar mode and with the sign
bit in bipolar mode.

Hardware and Software Interlace to Motorola MC68HC05C4
Processor
LTC1090
l:S
SCLK

MC6BHC05C4

LTC1090

co

~{ .

SCK

DIN

MOSI

Dour

MISO

DOUT from LTC1090 stored in MC6SHC05C4 RAM
MSB*
BS B7 B6 B5 B4 B3 B21 byte 1
LSB
Location A+1 IB1 BO 0 0 0 0 0 0I byte 2
Location A

Hardware and Software Interlace to Hitachi HD63705 Processor

IB9

INPUTS

HD63705

'C'S"

co

' SCLK

CK

•

••

Dm

Tx

Dour

Rx

DOUT from LTC1090 stored in HD63705 RAM
LSB
B6 B5 B4 B3 B2 B1 BO I byte 1
Sign......I------Location A+1 IB9 B9 B9 B9 B9 B9 B9 Bsl byte 2
Bipolar
Location A

IB7

Location A

IB7

'B9 is MSB in unipolarorsign bit in bipolar
MNEMONIC
BCLRn
LOA
STA
t
NOP
I
LOA
LOA
STA
STA
t
NOP
I
BSETn
LOA
LOA
STA

DESCRIPTION
CO is cleared (CS goes low)
Load DIN for LTC1090 into ACC
Load DIN from ACC to SPI data reg. Start SCK

Location A+1

8 NOPs for timing
Load contents of SPI status reg. into ACC
Load LTC1090 DOUT from SPI data reg. into ACC (byte 1)
Load LTC1090 Dour into RAM (location A)
Start next SPI cycle

6 NOPs for timing
CO is set (CS goes high)
Load contents of SPI status reg. into ACC
Load LTC1090 Dour from SPI data reg. into ACC (byte 2)
Load LTC1090 Dour into RAM (location A+ 1)

MNEMONIC
LOA
BCLRn
STA
t
NOP
I
LOA
STA
NOP
BSETn
LOA
STA

LSB
B6 B5 B4 B3 B2 B1 BO I byte 1
MSB
0 0 0 0 0 0 B9 B8
byte 2
Unipolar

DESCRIPTION
Load DIN wo!!!.for LTC1090 into ACC from RAM
CO cleared (CS goes low)
Load DIN word for LTC1090 into SCI data reg from ACC
and start clocking data (LSB first)

6 NOPs for timing
Load contents of SCI data reg into ACC (byte 1)
Start next SCI cycle
Load LTC1090 Dour word into RAM (Location A)
Timlng_
CO set (CS goes high).
Load contents of SCI data reg into ACC (byte 2)
Load LTC1090 Dour word into RAM (Location A+ 1)

88-61

LTC1090
APPLICATions INFoRmATion
Parallel Port Microprocessors

8051 Code

When interfacing the LTC1090 to an MPU which has a
parallel port, the serial signals are created on the port with
software. Three MPU port lines are programmed to create
the CS, SCLK and DIN signals for the LTC1090. A fourth
port line reads the DOUT line. An example is made of the
Inte18051/8052180C252 family.
Inlel8051

MNEMONIC
MOVP1,#02H

CONTINUE:

~cedinACC.

LOOP:

To interface to the 8051, the LTC1090 is programmed for
MSB first format and 10-bit word length. The 8051 generates CS, SCLK and DIN on three port lines and reads DOUT
on the fourth.
Hardware and Software Interface 10 Inlel8051 Processor
LTC1090

8051

ANALOG
INPUTS

DELAY:

DOUT from LTC1090 stored in 8051 RAM

R2
R3

MSB*
IB9 B8 B7 B6 B5 B4 B3 B21
LSB
IB1 BO 0 0 0 0 0 01

'B9 is MSB in unipolar or sign bit In bipolar

CLR P1.3
SETB P1.4
MOVA,#ODH

DESCRIPTION
Initialize port 1(bit 1 is made
an input)
SCLK goes low
CSgoes high
DIN word for the LTC1 090 is

CLR P1.4
MOVR4,#OB
NOP
MOVC,P1.1
RLCA
MOV P1.2, C
SETB P1.3
CLR P1.3
DJNZ R4, LOOP
MOVR2,A
MOVC,P1.1
CLRA
RLCA
SETB P1.3
CLR P1.3
MOVC,P1.1
RRCA
RRCA
MOVR3,A
SETB P1.3
CLR P1.3
SETB P1.4
MOVR5,#07H
DJNZ R5, DELAY
AJMPCONTINUE

CSgoeslow
Load counter
Delay for deglitcher
Read data bit into carry
Rotate data bit into ACC
Output DIN bit to LTC1090
SCLK goes high
SCLK goes low
Next bit
Store MSBs in R2
Read data bit into carry
ClearACC
Rotate data bit into ACC
SCLK goes high
SCLK goes low
Read data bit into carry
Rotate right into ACC
Rotate right into ACC
Store LSBs In R3
SCLK goes high
§9LK goes low
CS goes high
Load counter
Delay for LTC1090 to perform
conversion
Repeat program

6. Sharing the Serial Interface
The LTC1090 can share the same 3 wire serial interface
with other peripheral components or other LTC1090s (see
Figure 5). In this case, the CS Signals decide which
LTC1090 is being addressed by the MPU.

3 WIRE SERIAL
DATAI-'I~""""""---+--......-----ir--"",,,----+""'INTERFACE TO

OTHER
PERIPHERALS OR LTC1090s

8 CHANNELS

Figure 5_ Several LTC1090s Sharing One 3Wire Seriallnlerface

88-62

LTC1090
APPLICATions INFoRmATion
Vee

ANALOG CONSIDERATIONS
1. Grounding

The LTC1090 should be used with an analog ground plane
and single pOint grounding techniques.
Pin 11 (AGN D) should be tied directly to this ground plane.
Pin 10 (DGND) can also be tied directly to this ground
plane because minimal digital noise is generated within
the chip itself.
Pin 20 (Vecl should be bypassed to the ground plane with a
4.7/lF tantalum with leads as short as possible. Pin 12 (V-)
should be bypassed with a 0.1/lF ceramic disk. For single
supply applications, V- can be tied to the ground plane.
It is also recommended that pin 13 (REF-) and pin 9(COM)
be tied directly to the ground plane. All analog inputs
should be referenced directly to the single point ground.
Digital inputs and outputs should be shielded from and/or
routed away from the reference and analog circuitry.

Figure 6. Example Ground Plane for the LTC1090

Figure 6 shows an example of an ideal ground plane de·
sign for a two sided board. Of course this much ground
plane will not always be possible, but users should strive
to get as close to this ideal as possible.
2. Bypassing
For good performance, Vee must be free of noise and rip·
pie. Any changes in the Vee voltage with respect to analog
ground during a conversion cycle can induce errors or
noise in the output code. Vee noise and ripple can be kept
below 1mV by bypassing the Vee pin directly to the analog
ground plane with a 4.7/lF tantalum with leads as short as
possible. Figures 7 and 8 show the effects of good and
poor Vee bypassing.

HORIZONTAL: 10!'5101V

Figure 7. Poor Vee Bypassing. Noise and Ripple
can Cause AID Errors

3. Analog Inputs
Because of the capacitive redistribution AID conversion
techniques used, the analog inputs of the LTC1090 have
capacitive switching input current spikes. These current
spikes settle quickly and do not cause a problem.

HORIZONTAL: 10!'5/01V

Figure 8. Good Vee Bypassing Keeps Noise and Ripple
on Vee Below 1mV

88-63

LTC1090
APPLICATions INFoRmATion
However, if large source resistances are used or if slow
settling op amps drive the inputs, care must be taken to insure that the transients caused by the current spikes settle completely before the conversion begins.
Source Resistance

The analog inputs of the LTC1090 look like a 60pF capacitor (C'N) is series with a 5000 resistor (RON) as shown in
Figure 9. C,N gets switched between the selected" +" and
"-" inputs once during each conversion cycle. Large external source resistors and capacitances will slow the settling of the inputs. It is important that the overall RC time
constants be short enough to allow the analog inputs to
completely settle within the allowed time.

"+ "Input Setlling
This input capacitor is switched onto the" +" input during
the sample phase (tSMPL, see Figure 10). The sample phase
starts at the 4th SCLK cycle and lasts until the falling edge
of the last SCLK (the 8th, 10th, 12th or 16th SCLK cycle
depending on the selected word length). The voltage on
the" +" input must settle completely within this sample
time. Minimizing RSOURCE+ and C1 will improve the input
settling time. If large" +" input source resistance must be
used, the sample time can be increased by using a slower
SCLK frequency or selecting a longer word length. With
the minimum possible sample time of 4{!s, RSOURCE+ <2k
and C1 <20pF will provide adequate settling.
"-" Input Settling

At the end of the sample phase the input capacitor
switches to the" - " input and the conversion starts (see
Figure 10). During the conversion, the" +" input voltage is
effectively "held" by the sample and hold and will not affect the conversion result. However, it is critical that the
" -" input voltage be free of noise and settle completely
during the first four ACLK cycles of the conversion time.
Minimizing RSOURCE- and C2 will improve settling time. If
large" - " input source resistance must be used, the time
allowed for settling can be extended by using a slower
ACLK frequency. At the maximum ACLK rate of 2MHz,
RSOURCE": <1kO and C2<20pF will provide adequate
settling.

Figure 9. Analog Input Equivalent Circuit

SAMPLE

"+" INPUT MUST

HOLD

~~Lt~'~~______M_~_I~_~_~_s~~~==:I==S=~=~=:"_l:~_:_TH_IS_TIM_E~I'I

_________________________

~LAST

SCLK

...

ACLK

SCLK (8TH. 10TH, 12TH OR 16TH DEPENDING ON WORD LENGTH)

1

•••

I"+"INPUT
"-"INPUT

r

l

----------------------~~~-----------------Figure 10.

88-64

1ST BIT_I
TEST
"-" INPUT MUST SEITLE
DURING THIS TIME

"+" and" - " Input Settling Windows

LTC1090
APPLICATions INFoRmATion
Input Op Amps

When driving the analog inputs with an op amp it is important that the op amp settle within the allowed time (see
Figure 10). Again, the" +" and" -" input sampling times
can be extended as described above to accommodate
slower op amps. Most op amps including the LT100B and
LT1013 single supply op amps can be made to settle well
even with the minimum settling windows of 4JLs (" +"
input) and 2JLs (" -" input) which occur at the maximum
clock rates (ACLK=2MHz and SCLK=1MHz). Figures 11
and 12 show examples of adequate and poor op amp
settling.

HORIZONTAL: 1",/DlV

Figure 11. Adequate Settling of Op Amp Driving Analog Input

inated by increasing the cycle time as shown in the typical
curve of Maximum Filter Resistor vs Cycle Time.

LTC1090

Figure 13. RC Input Filtering
Input Leakage Current

Input leakage currents can also create errors if the source
resistance gets too large. For instance, the maximum input leakage specification of 1JLA (at 125°C) flowing
through a source resistance of 1kO will cause a voltage
drop of 1mV or 0.2LSB. This error will be much reduced
at lower temperatures because leakage drops rapidly
(see typical curve of Input Channel Leakage Current vs
Temperature).
Noise Coupling into Inputs

HORIZONTAL: 20",/OIV

Figure 12. Poor Op Amp Settling can Cause AID Errors
RC Input Filtering

It is possible to filter the inputs with an RC network as
shown in Figure 13. For large values of CF (e.g., 1JLF), the
capacitive input switching currents are averaged into a
net DC current. Therefore, a filter should be chosen with a
small resistor and large capacitor to prevent DC drops
across the resistor. The magnitude of the DC current is approximately IDC = BOpF xVIN/tCYC and is roughly proportional to VIN. When running at the minimum cycle time of
33JLs, the input current equals 9JLA at VIN = 5V.ln this case,
a filter resistor of 500 will cause 0.1 LSB of full-scale error.
If a larger filter resistor must be used, errors can be elim-

High source resistance input signals (>5000) are more
sensitive to coupling from external sources. It is preferable to use channels near the center of the package (i.e.,
CH2-CH7) for signals which have the highest output resistance because they are essentially shielded by the pins
on the package ends (DGND and CHO). Grounding any unused inputs (especially the end pin, CHO) will also reduce
outside coupling into high source resistances.
4. Sample and Hold
Single Ended Inputs

The LTC1090 provides a built-in sample and hold (S&H)
function for all signals acquired in the Single ended mode
(COM pin grounded). This sample and hold allows the
LTC1090 to convert rapidly varying signals (see typical
curve of S&H Acquisition Time vs Source Resistance). The
input voltage is sampled during the tSMPL time as shown in
Figure 10. The sampling interval begins after the fourth
MUX address bit is shifted in and continues during the
remainder of the data transfer. On the falling edge of the

88-65

LTC1090
APPLICATions INFoRmATion
final SCLK, the S&H goes into hold mode and the conversion begins. The voltage will be held on either the 8th,
10th, 12th or 16th falling edge of the SCLK depending on
the word length selected.
Differenliallnputs

With differential inputs or when the COM pin is not tied to
ground, the AID no longer converts just a single voltage
but rather the difference between two voltages. In these
cases, the voltage on the selected" +" input is still sampled and held and therefore may be rapidly time varying
just as in single ended mode. However, the voltage on the
selected" -" input must remain constant and be free of
noise and ripple throughout the conversion time. Otherwise, the differencing operation may not be performed
accurately. The conversion time is 44 ACLK cycles. Therefore, a change in the" - " input voltage during this interval
can cause conversion errors. For a sinusoidal voltage on
the" -" input this error would be:
VERROR (MAX) =VPEAK X 2x 7r X f(" -") X 44/fACLK
Where f(" -") is the frequency of the" -" input voltage,
VPEAK is its peak amplitude and fACLK is the frequency of
the ACLK. In most cases VERROR will not be significant.
For a 60Hz signal on the" -" input to generate a 1/4LSB
error (1.25mV) with the converter running at ACLK =2MHz,
its peak value would have to be 150mV.

1. The source resistance (ROUT) driving the reference inputs should be low (less than 10) to prevent DC drops
caused by the 1mA maximum reference current (lREF).
2. Transients on the reference inputs caused by the
capacitive switching currents must settle completely
during each bit test (each 4 ACLK cycles). Figures 15
and 16 show examples of both adequate and poor settling. Using a slower ACLK will allow more time for the
reference to settle. However, even at the maximum
ACLK rate of 2MHz most references and op amps can
be made to settle within the 2Jls bit time.
3. It is recommended that the REF- input be tied directly
to the analog ground plane. If REF- is biased at a voltage other than ground, the voltage must not change
during a conversion cycle. This voltage must also be
free of noise and ripple with respect to analog ground.

Figure 14. Reference Input Equivalent Circuit

5. Reference Inputs
The voltage between the reference inputs of the LTC1090
defines the voltage span of the AID converter. The reference inputs look primarily like a 10kO resistor but will have
transient capacitive switching currents due to the
switched capacitor conversion technique (see Figure 14).
During each bit test of the conversion (every 4 ACLK cycles), a capacitive current spike will be generated on the
reference pins by the AID. These current spikes settle
quickly and do not cause a problem. However, if slow settling circuitry is used to drive the reference inputs, care
must be taken to insure that transients caused by these
current spikes settle completely during each bit test of the
conversion.
When driving the reference inputs, three things should be
kept in mind:

S8-66

HORIZONTAL: 1"s/DIV

Figure 15. Adequate Reference Settling

HORIZONTAL: 1"s/DlV

Figure 16. Poor Reference Settling Can Cause AID Errors

LTC1090
APPLICATions INFORmATion
6. Reduced Reference Operation
The effective resolution of the LTC1090 can be increased
by reducing the input span of the converter. The LTC1090
exhibits good linearity and gain over awide range of reference voltages (see typical curves of Linearity and Gain
Error vs Reference Voltage). However, care must be taken
when operating at low values of VREF because of the reduced LSB step size and the resulting higher accuracy requirement placed on the converter. The following factors
must be considered when operating at low VREF values.
1. Conversion speed (ACLK frequency)
2. Offset
3. Noise
Conversion Speed with Reduced VREF

With reduced reference voltages, the LSB step size is reduced and the LTC1090 internal comparator overdrive is
reduced. With less overdrive, more time is required to perform a conversion. Therefore, the maximum ACLK frequency should be reduced when low values of VREF are
used. This is shown in the typical curve of Maximum Conversion Clock Rate vs Reference Voltage.
Offset with Reduced VREF

The offset of the LTC1090 has a larger effect on the output
code when the AID is operated with reduced reference
voltage. The offset (which is typically a fixed voltage) becomes a larger fraction of an LSB as the size of the LSB is
reduced. The typical curve of Unadjusted Offset Error vs
Reference Voltage shows how offset in LSBs is related to
reference voltage for atypical value of Vas. For example, a
Vas of 0.5mV which is 0.1 LSB with a 5V reference be-

comes 0.5LSB with a1V reference and 2.5LSBs with a0.2V
reference. If this offset is unacceptable, it can be corrected digitally by the receiving system or by offsetting
the" -" input to the LTC1090.
Noise with Reduced VREF

The total input referred noise of the LTC1090 can be reduced to approximately 200lN peak-to-peak using a
ground plane, good bypassing, good layout techniques
and minimizing noise on the reference inputs. This noise
is insignificant with a 5V reference but will become a
larger fraction of an LSB as the size of the LSB is reduced.
The typical curve of Noise Error vs Reference Voltage
shows the LSB contribution of this 200lN of noise.
For operation with a 5V reference, the 200lN noise is only
0.04LSB peak-to-peak. In this case, the LTC1090 noise will
contribute virtually no uncertainty to the output code.
However, for reduced references, the noise may become a
significant fraction of an LSB and cause undesirable jitter
in the output code. For example, with a 1V reference, this
same 200llV noise is 0.2LSB peak-to-peak. This will reduce
the range of input voltages over which a stable output
code can be achieved by 0.2LSB. If the reference is further
reduced to 200mV, the 200llV noise becomes equal to one
LSB and a stable code may be difficult to achieve. In this
case averaging readings may be necessary.
This noise data was taken in avery clean setup. Any setup
induced noise (noise or ripple on Vee, VREF, VIN or V-) will
add to the internal noise. The lower the reference voltage
to be used, the more critical it becomes to have a clean,
noise-free setup.

TYPICAL APPLICATiOnS
A"Quick Look" Circuit for the LTC1090
Users can get a quick look at the function and timing of
the LTC1090 by using the following simple circuit. REF+
and DIN are tied to Vee selecting a5V input span, CH7 as a
single ended input, unipolar mode, MSB first format and
16-bit word length. ACLK and SCLK are tied together and

driven by an external clock. CS is driven at 1/64 the clock
rate by the CD4520 and Dour outputs the data. All other
pins are tied to a ground plane. The output data from the
Dour pin can be viewed on an oscilloscope which is set up
to trigger on the falling edge of CS.

88-67

LTC1090
TYPICAL APPLICATions

Scope Trace of LTC1090 "Quick Look" Circuit
Showing AID Output of 0101010101 (155HExl

A"Quick Look" Circuit for the LTC1090

(89)

ZEROES

VERTICAL: 2V/OIV
HORIZONTAL: 2pS/OIV

'-v-'

TO OSCILLOSCOPE

CLOCK IN
1MHz MAX

SNEAK·A·BltM
The LTC1090's unique ability to software select the polar·
ity of the differential inputs and the output word length is
used to achieve one more bit of resolution. Using the cir·
cuit below with two conversions and some software, a 2's
complement 10-bit +sign word is returned to memory inside the MPU. The MC68HC05C4 was chosen as an example; however, any processor could be used.

Two 10-bit unipolar conversions are performed: the first
over a 0 to 5V span and the second over a 0 to - 5V span
(by reversing the polarity of the inputs). The sign of the input is determined by which of the two spans contained it.
Then the resulting number (ranging from -1023 to +1023
decimal) is converted to 2's complement notation and
stored in RAM.

SNEAK-A·BIT Circuit
9V

2M Hz
CLOCK

MC68HC05C4

+ 1 - - - - - - - - - - - 1 SCK
+ 1 - - - - - - - - - - - 1 MOSI
H - - - - - - - - - - . I MISO
~--------~CO

-5VTO

SNEAK·A·BIT is atrademark of Linear Technology Corp.

88-68

LTC1090
TYPICAL APPLICATions
Sneak·A·Bit Code forthe LTC1D9D Using the MC68HCD5C4

SNEAK·HIT
VIN

"~")~' ·J) '''"00'00'"
1-) CH7

5V

1024 STEPS

SOFTWARE

1ST CONVERSION

"~)-)'"'

"'I) -"'

0'

2047 STEPS

2ND CONVERSION
1024 STEPS

1+) CH7
-5V

-5V

2ND CONVERSION

SNEAK·A·BIT Code
DOUT from LTC1090 in MC68HC05C4 RAM
Sign
1810 89 88 87 86 85 84 831
LS8
182 81 80
filled with Os 1

Location $77
Location $87

DIN words for LTC1090
MUXAddr.
(ODD/SIGN)

DIN 1

0

DIN2

0

DIN3

0

0

MS8F

t ~

UNI

Word
Length
1 1

0

Sneak·A·Bit Code for the LTC109D Using the MC68HC05C4
MNEMONIC
LDA #$50
STA $OA
LDA #$FF
STA $06
BSET 0, $02
JSR READ-I+

DESCRIPTION
Configuration data for SPCR
Load configuration data into $OA
Configuration data for port C DDR
Load configuration data into port C DDR
Make sure CS is high
Dummy read configures LTC1090 for next
read
JSR READ+I- Read CH6 with respect to CH7
JSR READ-I+ Read CH7 with respect to CH6
JSR CHKSIGN Determines which reading has valid data,
converts to 2's complement and stores in
RAM

MNEMONIC
READ -1+: LDA #$3F
JSR TRANSFER
LDA $60
STA $71
LDA $61
STA $72
RTS
READ +1-: LDA #$7F
JSR TRANSFER
LDA $60
STA $73
LDA $61
STA $74
RTS
TRANSFER: BCLR 0, $02
STA SOC
LOOP 1:
TST SOB
BPL LOOP1
LDA SOC
STA SOC
STA $60
LOOP 2:
TST SOB
BPL LOOP2
BSET 0,$02
LDA SOC
STA $61
RTS
CHK SIGN: LDA $73
ORA $74
BEQ MINUS
CLC
ROR $73
ROR $74
LDA $73
STA $77
LDA $74
STA $87
BRA END
MINUS:
CLC
ROR $71
ROR $72
COM $71
COM $72
LDA $72
ADD #$01
STA $72
CLRA
ADC $71
STA $71
STA $77
LDA $72
STA $87
END:
RTS

DESCRIPTION
Load DIN word for LTC1090 into ACC
Read LTC1090 routine
Load MSBs from LTC1090 into ACC
Store MSBs in $71
Load LSBs from LTC1090 into ACC
Store LSBs in $72
Return
Load DIN word for LTC1090 into ACC
Read LTC1090 routine
Load MSBs from LTC1090 into ACC
Store MSBs in $73
Load LSBs from LTC1090 into ACC
Store LSBs in $74
Return
CSgoes low
Load DIN into SPI. Start transfer
Test status of SPIF
Loop to previous instruction if not done
Load contents of SPI data reg into ACC
Start next cycle
Store MSBs in $60
Test status of SPIF
Loop to previous instruction if not done
CSgoes high
Load contents of SPI data reg into ACC
Store LSBs in $61
Return
Load MSBs of + I - read into ACC
Or ACC (MSBs) with LSBs of + I - read
If result is 0 goto minus
Clear carry
Rotate right $73 through carry
Rotate right $74 through carry
Load MSBs of + I - read into ACC
Store MSBs in RAM location $77
Load LSBs of + I - read into ACC
Store LSBs in RAM location $87
Goto end of routine
Clear carry
Shift MSBs of - I + read right
Shift LSBs of - I + read right
1's complement of MSBs
1's complement of LSBs
Load LSBs into ACC
Add 1to LSBs
Store ACC in $72
ClearACC
Add with carry to MSBs. Result in ACC
Store ACC in $71
Store MSBs in RAM location $77
Loac LSBs in ACC
Store LSBs in RAM location $87
Return

S8-69

LTC1090
PACKAGE DESCRIPTion Dimensions in inches (millimeters) unless otherwise noted.
J20 Package Ceramic DIP
--------(21i096~4)-------··1
MAX

t
i

0.220-0.310
(5.59-7.870)

0.025
(0.635)
RAD TYP
1

j

2

I 0.005
f.-- (0.130)
MIN
0.160
(4064)
MAX

GLASS
SEALANT

~

I

~-r----------------~-1

~0200

(0.380 -1 520)

L

(~~~:=~~:~T

.--g
0.125

-

(3.175)
MIN

0.385",0.025
(9.779"'0.635)

(5080)
MAX

JL

I

I-(~~:~)
jt(~~:=~~:~)W(~:~~:~~:~)
MAX
0.014-0.026
(0.360-0.660)

ajA
70'CNI

Tlma,
150'C

N20 Package Molded DIP

r

°o--------(ii
20

O
; :8)-------

MAX

T

0.250",0.005
(6.350"'0.127)

L

-I

0.300-0.320
(7.620-8.128)

1-

0

PIN llDENT

0.130:1:0.005

(3.302",0.127)

f1 "~W}MAAAfNj
I.-,:~: : :~,
'I

0.009-0.015
(0.229-0.381)- 0325

---.

88-70

~~~;;

Is 255 +0.635)
\,.

-0.381

-

(3.175)
MIN

L,::,
TYP

0.018
-(0.457)

--I

~YUD~~~~-----2-C-h-a-n-n-~-~-~O--:-i:

Serial A-to-D Converter

FEATURES

DESCRIPTion

•
•
•
•
•
•
•

The LTC1091 is a serial data acquisition component which
contains a successive approximation AID converter. It uses
LTCMOSTM switched capacitor technology to perform 10-bit
AID conversions. A2-channel input mUltiplexer can be configured for either single ended or differential inputs. An
on-chip sample and hold is included for single ended input
channels.

10-Bit Resolution
Software Controlled 2-Channel Multiplexer
Differential and Single Ended Input Capability
Built-In Sample and Hold
Analog Inputs Common-Mode to Vee and GN D
Single Supply Operation
Direct 3or 4Wire Interface to Most MPU Serial Ports
and All MPU Parallel Ports
• 8 Pin DIP Package

The reference input for the AID converter is internally connected to the power supply pin making ratiometric operation easy. If absolute reference operation is desired, the
LTC1091's low supply current allows it to be powered
directly from most popular references (e.g., LT1021).

KEY SPECIFICATiOnS
•
•
•
•

10 Bits
Resolution
Total Unadjusted Error (LTC1091A)
± 1/2LSB
Fast Conversion Time
20lls
3.5mA Max, 1.5mA Typ
Low Supply Current

The serial 1/0 is designed to be compatible with industry
standard half duplex serial interfaces. It allows either MSB
or LSB first data. It can provide output data word lengths
of 10 to 16 bits. This allows easy interface to shift registers and avariety of processors.
The LTC1091A is specified with total unadjusted error (including the effects of offset, linearity and gain errors) less
than ± 0.5LSB.
The LTC1091 is specified with offset and linearity less
than ± 0.5LSB but with a gain error limit of ± 2LSB for applications where gain is adjustable or less critical.

LTCMOS is atrademark of Linear Technology Corp.

TYPICAL APPLICATiOn
MPU
(e.g., 8051)

1...-----01,.....-----1 P1.4
ANALOG INPUT # 1, 0-5V RANGE

J...------oII-----I P1.3

ANALOG INPUT # 2, D-5V RANGE

1-+----+-_---IP1.2
SERIAL OATA LINK
LTC1091
FOR 8051 CODE SEE
APPLICATIONS INFORMATION SECTION

88-71

LTC1091
ABSOLUTE mAXimum RATinGS

PACKAGE/ORDER InFORmATion

(Noles 1and 2)

ORDER PART
NUMBER

Supply Voltage (Vec) ......•..••....••.......•....... 12V
Voltage
Analog and Digital Inputs .•..•.... - 0.3V to Vee 0.3V
Digital Outputs .....•.•.....•..... - 0.3V to Vee 0.3V
Power Dissipation ...••....•...•.....•.•.••..•.•. 500mW
Operating Temperature Range
LTC1091AC, LTC1091C ................ -40°C to 85°C
LTC1091AM, LTC1091M ..•..•.••.••... - 55°C to 125°C
Storage Temperature Range •...••....•.. - 65°C to 150°C
Lead Temperature (Soldering, 10 sec.) •..•...•••.•.• 300°C

cs

+
+

Vee (V REF)

CHO
CH1
GNO

ClK
Dour
DIN

J8 PACKAGE
HERMETIC DIP

LTC1091AMJ8
LTC1091MJ8
LTC1091 ACJ8
LTC1091CJ8
LTC1091ACN8
LTC1091CN8

N8 PACKAGE
PLASTIC DIP

REcommEnDED OPERATinG conDITions
SYMBOL
VCC(VREF)
fClK
tCYC

PARAMETER
Supply and Reference Voltage
Clock Frequency
Total Cycle Time

t hOi

Hold Time, DIN After SClK t
Setup Time cst Before Clocking in First Address Bit
Setup Time, DIN Stable Before ClKt
ClK High Time
ClKlowTime
CS High Time Between Data Transfer Cycles
CS low Time During Data Transfer

tsucs
tsuDI
tWHClK
tWlClK
tWHCS
tWlcs

lTC1091/lTC1091A
MIN
MAX
4.5
10
0.01
0.5
15 ClK Cycles

CONDITIONS
Vcc=5V
See Operating
Sequence
Vcc=5V
Vcc=5V
Vcc=5V
Vcc=5V
Vcc=5V
Vcc=5V

UNITS
V
MHz

+2~s

150
1
400
0.8

ns
~s

ns
~s

1

~s

2
15

~s

ClKCycles

conVERTER AnD mULTIPLEXER CHARACTERISTICS (Nole3)
PARAMETER
Offset Error
Linearity Error
Gain Error
Total Unadjusted Error
Analog Input Range
On Channel Leakage Current
(Note?)

Off Channel leakage Current
(Note?)

88-72

CONDITIONS
(Note 4)
Vee =5.000V
(Note 5)
(Note 6)
On Channel = 5V
Off Channel =OV
On Channel = OV
Off Channel = 5V
On Channel = 5V
Off Channel = OV
On Channel = OV
Off Channel = 5V

MIN

•
•
•
•

•
•
•
•

lTC1091A
TYP

MAX
±O.5
±O.5
±O.5
±O.5

MIN

- 0.05V to Vee + 0.05V
1

lTC1091
TYP

MAX
±0.5
+0.5
±2.0

UNITS
lSB
LSB
lSB
lSB
V

1

~A

-1

-1

~A

-1

-1

~

1

1

~A

LTC1091

AC CHARACTERISTICS (Note 3)
SYMBOL
tSMPL
tCONV
tdDO
tdis
ten
thDO
tf
t,
CIN

PARAMETER
Analog Input Sample Time
Conversion Time
Delay Time, ClKI to Dour Data Valid
DelayTime, CSt to Dour Hi·Z
DelayTime, 4th ClKI to Dour Enabled
Time Output Data Remains Valid After SCLKI

CONDITIONS
See Operating Sequence
See Operating Sequence
See Test Circuits
See Test Circuits
See Test Circuits

Dour Fall Time
Dour Rise Time
Input Capacitance

See Test Circuits
See Test Circuits
Analog Inputs On Channel
Off Channel
Digital Inputs

•

•
•
•

•

lTC1091JlTC1091A
MIN
TYP
MAX
1.5
10
400
850
180
450
160
450
150
300
90
60
300
65
5
5

UNITS
ClK Cycles
ClK Cycles
ns
ns
ns
ns
ns
ns
pF
pF
pF

DIGITAL AnD DC ELECTRICAL CHARACTERISTICS (Note 3)
SYMBOL
VIH
VIL
IIH
IlL
VOH
VOL
loz
ISOURCE
ISINK
Icc

PARAMETER
High Level Input Voltage
Low Level Input Voltage
High Level Input Current
Low level Input Current
High Level Output Voltage

CONDITIONS
Vcc= 5.25V
Vcc= 4.75V
VIN=VCC
VIN=OV
Vcc=4.75V,

•

LTC1 091JlTC1091 A
TYP
MAX

•

0.8
2.5
-2.5

•

10=10~A
10=360~A

Low level Output Voltage
Hi·Z Output Leakage

Vour=Vcc~SHigh

Output Source Current
Output Sink Current
Positive Supply Current

Vour=OV, CS High
Vour=OV
Vour = Vcc
CS High

Vcc = 4.75V, 10 = 1.6mA

Note 1: Absolute maximum ratings are those values beyond which the life
of a device may be impaired.
Note 2: All voltage values are with respect to ground (unless otherwise
noted).
Note 3: Vcc =5V, CLK= 0.5MHz unless otherwise specified. The. in·
dicates specs which apply over the full operating temperature range; all
other limits and typicals TA = 25°C.
Note 4: Linearity error is specified between the actual end points of the AID
transfer curve.

MIN
2.0

•
•
•
••
•

2.4

4.7
4.0

-10
10
1.5

UNITS
V
V
~A
~A

V
V
V

0.4
3
-3

~A
~A

3.5

mA
mA
mA

Note 5: Total unadjusted error includes offset, gain, linearity, multiplexer
and hold step errors.
Note 6: Two on·chip diodes are tied to each analog input which will con·
duct for analog input voltages one diode drop below GND or one diode drop
above Vcc. This spec allows 50mV forward bias of either diode. This means
that as long as the analog input does not exceed the supply voltage by
more than 50mV, the output code will be correct.
Note 7: Channel leakage current is measured after the channel selection.

88-73

LTC1091
TEST CIRCUITS
On and Off Channel Leakage Current

Load Circuit for tdDO, tr, and tf
1.4V

,~----,

ON CHANNEL
3kll

DOUT

,)---1 ~~~NNEL

TEST POINT

~ 100pF

/POLARITY

Voltage Waveforms for DOUT Delay Time, tdDO
CLK

Voltage Waveform for DOUT Rise and Fall Times, tr. tf

~~.;;;.O.8;.;.V-..,.._ _ __

i=tdOO-~= 2.4V

DOUT

DOUT

-r.Jt--

2
.4V
- - - O.4V

_ . . - tr

F:"'="="::;"::;'= O.4V

-tf

Voltage Waveforms forldls

Load Circuit for Idis and ten

cs
TEST
POINT

5V

tdis WAVEFORM 2. ten

DOUT

~

tdis WAVEFORM 1

DOUT
WAVEFORM 1
(SEE NOTE 1)
tdis

DOUT
WAVEFORM 2
(SEE NOTE 2)
NOTE 1: WAVEFORM 1 IS FOR AN OUTPUT WITH INTERNAL CONDITIONS SUCH THAT
THE OUTPUT IS HIGH UNLESS DISABLED BY THE OUTPUT CONTROl.
NOTE 2: WAVEFORM 2 IS FOR AN OUTPUT WITH INTERNAL CONDITIONS SUCH THAT
THE OUTPUT IS LOW UNLESS DISABLED BY THE OUTPUT CONTROl.

Voltage Waveforms for ten

~'\~---------------------------------------DIN

--.l

START

\ \ ._ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

CLK

DOUT

88-74

!

B9

LTC1091
Pin FunCTions
#
1
2,3
4

5
6
7

a

PIN
CS
CHO,CH1
GND
DIN
DOUT
ClK
VCc(V REF)

FUNCTION
Chip Select Input
Analog Inputs
Analog Ground
Digital Data Input
Digital Data Output
Shift Clock
Positive Supply and
Reference Voltage

DESCRIPTION
A logic low on this input enables the lTC1091.
These inputs must be Iree 01 noise with respect to GND.
GND should be tied directly to an analog ground plane.
The multiplexer address is shifted into this input.
The AID conversion result is shifted out of this output.
This clock synchronizes the serial data transfer.
This pin provides power and defines the span of the AID converter. It must be kept free of noise and
ripple by bypassing directly to the analog ground plane.

BLOCK DIAGRAm
~--------------------------------'---~~-----IClK

DOUT

CHO
ANALOG
INPUT
MUX

10·BIT
SAR
10·BIT
CAPACITIVE
DAC

CHl

CONTROL
AND

TIMING

TYPICAL PERFORmAnCE CHARACTERISTICS
Supply Current vs Supply Voltage

Supply Current vs Temperature
1.8

ClK= 500kHz
_CS=Vec(VREF)
TA=25°C
~

5

~

o

/'

/

:/

/

V

..........

~ 1.2

ClK' =500JHz
~~I~~EF) = 5V

""

.........

r-.........

r---

a:

::>

u

~

r---

-I"--

1.0

~

'" 0.8
0.6

4

5

6

7

8

9

SUPPLY VOLTAGE. Vee IV REF) IV)

10

-~

-~

0

~

~

~

100

1~

AMBIENTTEMPERATURE. TA 1°C)

88-75

LTC1091
TYPICAL PERFORmAnCE CHARACTERISTICS
~

~1.25

*

I

~

I

I

8

'X

~

ffi

~

o

_r-

ii' 0.25

C1i
z

0
5
7
8
9
SUPPLY VOLTAGE, Vee (V REF) (V)

~

~

~
~

0.5

~ 05

0.4

i04

-0.5

z

«
r

4

0.6

ui

~

z

z

o

~
~

-

r- ra

-~

-~

w

0
~
~
~
100
AMBIENT TEMPERATURE, TA (OC)

Vee

1~

.........
~ ~50 -25
§:
f-

~

-

r- r--

~

-50 -25
0
25
50
75
100
AMBIENT TEMPERATURE, TA (OC)

125

Minimum Clock Rate vs
Temperature
Vee l(VREF)I=5V

~ 2.5
~

1.0

~ 0.20

>-

2.0

til 1.5
ff
~

o

125

TA~25°C

lVREF)~5V

~

::>

f...--

0
25
50
75
100
AMBIENTTEMPERATURE, TA (OC)

Maximum Clock Rate vs Supply
Voltage

r

d

--

~ 0.1

~

N

55
::>

~
u.. 0.2

::J

Maximum Clock Rate vs
Temperature

>-'-'

5 0.3

0.3

~ 02

01

t:

I

'"z

'-'
~

;

I

~
.:'!. 04

'"z
~

o

10

Vee (VREF)=5V
CLK=500kHz -

::: 0.5
z

ui

0.2

5
6
7
8
9
SUPPLY VOLTAGE, Vee (VREF) (V)

'"~

~

f±

r-- r-......

Change in Gain Error vs
Temperature

z

~ 0.3
r

--

;;:

'-'

Veel(VREF)~5V
CLK = 500kHz -

~

t2

a:

Change in Linearity Error vs
Temperature

~

Vee (VREF)=5V
CLK=500kHz

10

5
6
7
8
9
SUPPLY VOLTAGE, Vee (V REF) (V)

~ 0.6

~ 0.6

I--

...:::... -0.25

~ -0.75

10

Change in Offset Error vs
Temperature

s:

t=!==+==+=1==1==,

::J

4

lco

a:
~

0.25

0.25

x

U>

...:::... 0.5 1--j--+_-+_-+_-+_---1

a:

"

>

"

co

U>

~ 0.5

CLk=500JHZ
TA=25°C

1--j--+_-+_-+_-+_---1

"

"

co

~

il!

~

TA=25°C

>" 0.75

0.5

-;;:

1.0 1 - - j - - j - - j - - j - - + _ - - - 1

~I~

~1~O.75

w

. !.
,I,
CLK = 500kHz

1.25

~

CLKJOOkHZ
TA= 25°C
Vos=0.85mV@Vee(VREF)=5V

~ 1.0 x

Change in Gain Error vs Supply
Voltage

Linearity Error vs Supply Voltage

Offset Error vs Supply Voltage

~ 2.0

r-- r-

~

~ 0.5

~

- -

a:
~

i

o

~ 1.5

,,/

'5
'-'

r-- r--

~
::>

1.0

~

x

V

/

rE

::>

-25
0
25
50
75
100
AMBIENT TEMPERATURE, TA(OC)

125

; 0.05

5
6
7
8
9
SUPPLY VOLTAGE, Vee (V REF) (V)

-MAXIMUM CLK FREQUENCY REPRESENTS THE HIGHEST FREQUENCY AT WHICH CLK CAN BE
OPERATED (WITH 50% DUTY CYCLE) WHILE STILL PROVIDING 100ns SETUP TIME FOR THE
DEVICE RECEIVING THE Dour DATA.

88-76

/

0.1

V

ill

;: 0.5

'-'

-50

0.15

is

10

~
~

:E

,.V

-50 -25
0
25
50
75
100
AMBIENT TEMPERATURE, TA (0C)

125

--AS THE CLK FREQUENCY IS DECREASED FROM 500kHz, MINIMUM CLK FREQUENCY
(.:IERROR$0.1 LSB) REPRESENTS THE FREQUENCY AT WHICH A 0.1LSB SHIFT IN ANY CODE
TRANSITION FROM ITS 500kHz VALUE IS FIRST DETECTED.

LTC1091
TYPICAL PERFORmAnCE CHARACTERISTICS
Maximum Clock Rate vs Source
Resistance

Sample and Hold Acquisition
Time vs Source Resistance

Maximum Filter Resistor vs Cycle
Time
100k

Vcc (VREFI=5V
TA=25°C

~

1.0

V1N

1-+-f-Htft1+-+l--!:IH+tIl-+++H-H1l

_ 10k

~2

6
VI

~ 0.75 r---+-H-l-ttt1t--+-H-lI-tttIt-'.:-t-t-+Htttl
c::
RSOURCE

~

10

~
+

CfILTER"l"F~

'"
6

~
w

'"

~

8

lk

is

~

V1N

Cl

~

'"

""

'"--'

'-'

~

x'"
«
'"

1

:5

::\ 100

EE 0.25

/"

i=

'"
'"'"'x"

~ 0.5

Vec (V REFI 5V
TA 25°C
o TO 5V INPUT STEP

:%

100

10

10k

lk

0.1



.........

80

TJ=25°C

60

'\.
'\

0
25
50
75
100
JUNCTION TEMPERATURE (OC)

I I

40

r'\.

TJ= -55°C

20

o

125

T1
o

5

10

PIN 4 TIED TO PIN 5

15
20 25 30
SUPPLY VOLTAGE (V)

35

40

'ERROR CURVE FACTORS IN THE NONLINEARITY
TERM BUILT IN TO THE LT1025. SEE THEORY OF
OPERATION IN APPLICATION GUIDE SECTION.

APPLICATion GUIDE
The LT1025 was designed to be extremely easy to use, but
the following ideas and suggestions should be helpful in
obtaining the best possible performance and versatility
from this new cold junction compensator.
Theory of Operation
A thermocouple consists of two dissimilar metals joined
together. Avoltage (Seebeck EMF) will be generated if the
two ends of the thermocouple are at different temperatures. In Figure 1, iron and constantan are joined at the
temperature measuring point T1. Two additional thermocouple junctions are formed where the iron and constantan connect to ordinary copper wire, For the purposes
of this discussion it is assumed that these two junctions
are at the same temperature, T2. The Seebeck voltage, Vs,
is the product of the Seebeck coefficient o!, and the temperature difference, T1- T2; Vs =O! (T1- T2). The junctions at T2 are commonly called the cold junction because
a common practice is to immerse the T2 junction in ooe

810-8

ice/water slurry to make T2 independent of room temperature variations. Thermocouple tables are based on a coldjunction temperature of oDe.
To date, Ie manufacturers efforts to make microminiature
thermos bottles have not been totally successful. Therefore, an electronically simulated cold-junction is required
for most applications. The idea is basically to add a temperature dependent voltage to Vs such that the voltage
sum is the same as if the T2 junction were at a constant
ooe instead of at room temperature. This voltage source is
called acold junction compensator. Its output is designed
to be OV at ooe and have a slope equal to the Seebeck
coefficient over the expected range of T2 temperatures.
Fe

r.,

Cu

TEMPERATURE ,
~:} Vs
TO BE MEASURED '--"""CO""'NS""TAN""'TA"""'N-;~,.,.,r---,c-u
\

Figure 1

LT1 025 MUST BE LOCATED
NEXT TO COLD JUNCTION
FOR TEMPERATURE TRACKING

LT1025
To operate properly, a cold junction compensator must be
at exactly the same temperature as the cold junction of
the thermocouple (T2). Therefore, it is important to locate
the LT1025 physically close to the cold junction with local
temperature gradients minimized. If this is not possible,
an extender made of matching thermocouple wire can be
used. This shifts the cold junction from the user termina·
tion to the end of the extender so that the LT1025 can be
located remotely from the user termination as shown in
Figure 2.

"HOT"
JUNCTION

Fe

r"

Fe

r"
I

I

I

I

\

FRONT PANEL
CONNECTOR

Cu

Operating at Negative Temperatures
The LT1025 is designed to operate with a single positive
supply. It therefore cannot deliver proper outputs for tern·
peratures below zero unless an external pull·down resistor
is added to the Vo output. This resistor can be connected
to any convenient negative supply. It should be selected to
sink at least 30p.A of current. Suggested value for a - 5V
supply is 150kO, and for a -15V supply, 470kO. Smaller resistors must be used if an external load is connected to
the 10mVfOC output. The LT1025 can source up to 1mA of
current, but there is a trade·off with internal temperature
rise.

AMPLIFIER

CU

"NEW" COLD
JUNCTION

Figure 2

The four thermocouple outputs on the LT1025 are
SO.9!'V/oC (E), 51.7!'V/oC (J), 40.Sp.V/oC (K and T), and
Sp.V/oC (R and 5). These particular coefficients are chosen
to match the room temperature (25°C) slope of the thermocouples. Over wide temperature ranges, however, the
slope of thermocouples changes, yielding a quasi·parabolic error compared to a constant slope. The LT1025
outputs have a deliberate parabolic "bow" to help compensate for this effect. The outputs can be mathematically
described as the sum of a linear term equal to room tern·
perature slope plus a quadratic term proportional to
temperature deviation from 25°C squared. The coefficient
(/3) of the quadratic term is a compromise value chosen to
offer improvement in all the outputs.
VOUT=aT +~(T _25°)2

Internal Temperature Rise
The LT1025 is specified for temperature accuracy assum·
ing no internal temperature rise. At low supply voltages
this rise is usually negligible (::: 0.05°C@5V), but at higher
supply voltages or with external loads or pull·down current, internal rise could become significant. This effect
can be calculated from a simple thermal formula,
AT=(8JA) (V+) (lo+IL), where 8JA is thermal resistance
from junction to ambient, (::: 130oC/W), V+ is the LT1025
supply voltage, 10 is the LT1025 supply current (::: BO!,A),
and IL is the total load current including actual load to
ground and any pull·down current needed to generate
negative outputs. A sample calculation with a 15V supply
and 50p.A pull·down current would yield, (130°C/W) (15V)
(BO + 50p.A) = 0.32°C. This is a significant rise in some ap·
plications. It can be reduced by lowering supply voltage (a
simple fix is to insert a 10V zener in the VIN lead) or the
system can be calibrated and specified after an initial
warm·up period of several minutes.

~",,5.5x10-4

The actual ~ term which would be required to best com·
pensate each thermocouple type in the temperature range
of OOC to 50°C is: E, S.S x 10- 4; J, 4.B x 10- 4; K, 4.3 x 10- 4;
R, 1.9 x 10- 3; 5,1.9 x 10- 3; T, 1x 10- 3.
The temperature error specification for the LT1025 (shown
as a graph) assumes a fJ of 5.5x 10- 4• For example, an
LT1025 is considered "perfect" if its 10mV/oC output fits
the equation Va= 10mV(T) +0.55x 10- 4(T -25)2.

Driving External Capacitance
The direct thermocouple drive pins on the LT1025 (J, K,
etc.) can be loaded with as much capacitance as desired,
but the 10mV/oC output should not be loaded with more
than 50pF unless external pull·down current is added, or a
compensation network is used.

810-9

LT1025
Thermocouple Effects in Leads
Thermocouple voltages are generated whenever dissimilar
materials are joined. This includes the leads of IC pack·
ages, which may be kovar in TO·5 cans, alloy 42 or copper
in dual·in·line packages, and avariety of other materials in
plating finishes and solders. The net effect of these ther·
mocouples is "zero" if all are at exactly the same temperature, but temperature gradients exist within IC packages
and across PC boards whenever power is dissipated. For
this reason, extreme care must be used to ensure that no
temperature gradients exist in the vicinity of the thermocouple terminations, the LT1025, or the thermocouple amplifier. If a gradient cannot be eliminated, leads should be
positioned isothermally, especially the LT1025 R- and
appropriate output pins, the amplifier input pins, and the
gain setting resistor leads. An effect to watch for is amplifier offset voltage warm-up drift caused by mismatched
thermocouple materials in the wire-bondllead system of
the IC package. This effect can be as high as tens of microvolts in TO-5 cans with kovar leads. It has nothing to do
with the actual offset drift specification of the amplifier
and can occur in amplifiers with measured "zero" drift.
Warm-up drift is directly proportional to amplifier power
dissipation. It can be minimized by avoiding TO-5 cans,
using low supply current amplifiers, and by using the lowest possible supply voltages. Finally, it can be accommodated by calibrating and specifying the system after a five
minute warm-up period.

Reversing the Polarity of the 10mV/oC Output
The LT1025 can be made to "stand on its head" to achieve
a minus 10mvtOC output point. This is done as shown in
Figure 3. The normal output (Vo) is grounded and feedback
is established between the ground pin and the positive
supply pin by feeding both of them with currents while
coupling them with a 6V zener. The ground pin will now be
forced by feedback to generate -10mV/oC as long as the
grounded output is supplying a net "source" current into
ground. This condition is satisfied by selecting R1 such
that the current through R1 (1-) is more than the sum of
the LT1025 supply current, the maximum load current (lL),
and the minimum zener current (=< 50IlA). R2 is then
selected to supply more current than 1-.

S10-10

For ± 15V supplies, with IL = 20llA maximum, R1 = 47k and
R2= 15k.
V+ (15V)
1+

I
t

R2
15k

Y,N
Vo
LT1025

01
Vz~6V

GNO
VOUT
-10mV/OC

1-1

R1 IL
47k

v- (-15V)

r

RL

-=

Figure 3

Amplifier Considerations
Thermocouple amplifiers need very low offset voltage and
drift, and fairly low bias current if an input filter is used. The
best precision bipolar amplifiers should be used for type J,
K, E, and Tthermocouples which have Seebeck coefficients
of 40-60IlV/oC. In particularly critical applications or for R
and S thermocouples (6-15IlV/°C), a chopper-stabilized amplifier is required. Linear Technology offers two amplifiers
specifically tailored for thermocouple applications. The
LTKA001 is a bipolar design with extremely low offset
(<301lV), low drift «1.5IlV/°C), very low bias current « 1nA),
and almost negligible warm-up drift (supply current is
:::::400IlA). It is very cost effective even when compared with
"jellybean" op amps with vastly inferior speCifications.
For the most demanding applications, the LT1052 CMOS
chopper-stabilized amplifier offers 51lV offset and O.051lvtOC
drift (even over the full military temperature range!). Input
bias current is 30pA, and gain is typically 30 million. This
amplifier should be used for Rand S thermocouples, especially if no offset adjustments can be tolerated, or a large
ambient temperature swing is expected.

LT1025
Regardless of amplifier type, it is suggested that for best
possible performance, dual-in-line (DIP) packages be used
to avoid thermocouple effects in the kovar leads of TO-5
metal can packages if amplifier supply current exceeds
500!,A. These leads can generate both DC and AC offset
terms in the presence of thermal gradients in the package
and/or external air motion.
In many situations, thermocouples are used in high noise
environments, and some sort of input filter is required.
(See discussion of input filters). To reject 60Hz pick-up
with reasonable capacitor values, input resistors in the
10k-100k range are needed. Under these conditions, bias
current for the amplifier needs to be less than 1nA to avoid
offset and drift effects.
To avoid gain error, high open loop gain is necessary for
single-stage thermocouple amplifiers with 10mV/oC or
higher outputs. A type K amplifier, for instance, with
100mV/oC output, needs a closed loop gain of ;::;2,500. An
ordinary op amp with a minimum open loop of 50,000
would have an initial gain error of (2,500)/(50,000) 5%!
Although closed loop gain is commonly trimmed, temperature drift of open loop gain will have a very deleterious effect on output accuracy. Minimum suggested open loop
gain for type E, J, K, and T thermocouples is 250,000. This
gain is adequate for type Rand S if output scaling is
10mV/oC or less.

=

high at TL and very low at TH. Adding the proper offset
term and calibrating at T1/6 or T5/6 can significantly reduce errors. The technique is as follows:
1. Calculate amplifier gain:

G= (SF) (TH- TL)
VH-VL

=
=

SF Output scale factor, e.g., 10mV/oC
VH =Thermocouple output @ TH
VL Thermocouple output @ TL
2. Use precision resistors to set gain or calibrate gain by
introducing a precision "delta" input voltage and
trimming for proper "delta" output.

2.5 ~t--+-..p...ot-+---¥'--l7'9'1-1 1

~

2

~

§i 7.5

.,.-q..-+--+-+-1f---l 3

:::

~

~ 10~~+-+-+-+--A-~~
~ 12.5 f--l\--'~
~
~

Hardware correction for nonlinearity can be as simple as
an offset term. This is shown in Figure 5. The thermocouple shown in the figure has an increasing slope (a) with
temperature. The temperature range of interest is between
TLand TH, with acalibration point at TM. If a simple amplifier is used and calibrated at TM, the output will be very

0

~
~

~

0

15~~~~~+--~~~

~ 17.5 I--t---''t---t--+---+-I'-t--t--l

A

9

20~t---t"""""

o

50

100 150 200 250 300 350
TEMPERATURE (OC)

400

Figure 4. Thermocouple
NonlinearitY,OoC-400°C

Thermocouple Nonlinearilies
Thermocouples are linear over relatively limited temperature spans if accuracies of better than 2°C are needed.
The graph in Figure 4shows thermocouple nonlinearity for
the temperature range of 0°C-400DC. Nonlinearities can
be dealt with in hardware by using offsets, breakpoints, or
power series generators. Software solutions include lookup tables, power series expansions, and piece-wise approximations. For tables and power series coefficients,
the reader is referred to the ASTM Publication 470A.

~

5

• iRROl BEloREloFFlmL

I I Ij

VH

ERROR AFTER
OFFSmlNG

~
~

OFFSET

~

'"

0

~~ V

VL

.R

p~
,

..:V

AMPLlFI~R- ......

SIMPLE AMPLIFIER"\

-.1

~

t",

~

THiRMiCOUrLE

I

TL T1/6
TM
T5/6 TH
TEMPERATURE (OC)

Figure 5. Offset Curve Fitting

S10-11

LT1025
3. Calibrate output by adding in a true offset term which
does not affect gain (by summing, etc.). Calibration
may be done at any temperature either by immersing
the thermocouple in a calibrated bath or by substituting a precision input voltage. The method which tends
to minimize worst-case error over the whole TL to TH
range is to calibrate at 1/6 or 5/6 of span. This may be
modified if best accuracy is desired at one particular
point.

Breakpoint correction for nonlinearity is more complicated than a simple offset, but a single breakpoint combined with offset will reduce errors typically by 4:1 over a
simple offset technique. An application note detailing this
breakpoint method and power series correction techniques, as well as software methods, will be available
shortly.

APPLICATion CIRCUITS
Eliminating Amplifier Feedback Resistors
(Output Goes Negative with Increasing Temperature)

Type K10mV/oC Thermometer
R2
1000
FULL-SCALE TRIM

R3"
255k
1%

R1
1k
1%

15V

Ln025

...-----IK

V+

C1

V+

0.1~F

GND

Vo
R-

300k
-15V

15V
Ln025

-r-+- ~¥Jmv/'c
R4'

V-

'R4 s

3~~

• R4 IS NOT REQUIRED (OPEN) FOR

LT1025 TEMPERATURES "O'C.
"SELECTED FOR 0'C-100'C RANGE.

Type KThermometer with Grounded Thermocouple
R2
1000
R6
9.1k
R1
1k
1%

R3
255k
1%

v+
VIN

0.1~F

VOUT
10mV/'C

Vo
Ln025

V+

R4'
470k
V-15V

TYPE K

'R4s

3~~

IF OUTPUT MUST SINK CURRENT, R4

MUST BE DECREASED APPROPRIATELY. R4 IS NOT
REQUIRED (OPEN) FOR Ln025 TEMPERATURES "O'C
WHEN SOURCING CURRENT ONLY.

810-12

LT1025
Differential Thermocouple Amplifier

Utilizing Negative LT1025 Drive to
Accommodate Grounded Thermocouple

C1"
R3
1M

15V

0.1%

R1
10k

R7
15k

V+

0.1%

VOUT
10mV/oC

R6
7.5k

R2
10k

1%

6V
R7
500
FULL-SCALE
TRIM

0.1%

R4
1M
0.1%

5V""

RB
5k

R5
3k

LT1025 Vo
R1
1k

GND

1%

'----..J..Jw.,...t-------------.....----~ ~501l
R3
141k

VOr-~____~10~m~v~/o~c~____1%
~

1%

VOUT

R9
(V-) (10k)
100k = VOUr!MAX)

LT1025

.>--....----....-10mV/oC
DO C-500°C

V-

GND

-15V
TYPE E

"C1 AND C2 FILTER RIPPLE AND NOISE, BUT WILL LIMIT AC COMMON-MODE REJECTION IF NOT
MATCHED. SUGGESTED VALUES ARE 0.001.F TO 0.1.F.
""USE LOWEST POSSIBLE SUPPLY VOLTAGE TO MINIMIZE INTERNAL TEMPERATURE RISE.
t FOR BEST ACCURACY, THERMOCOUPLE RESISTANCE SHOULD BE LESS THAN 1001l.

Type 5 Thermocouple Amplifier with Ultra· Low Offset and Driftt
R2""
1001l
FULL-SCALE
TRIM

~

Grounded Thermocouple Amplifier with Positive Output

R3
909k
1%

Q1~

R1
10k

R3
1M

1%

1%

1k
1%
TYPE J"

V+

>::-....R,S

VOUT
1OmV/oC
BOO°C-1200°C

C1
0.01.F

V+

TYPE S
R5"
10k
R7
OFFSET
.....7115110k~.....W.,............... TRIM

-=-

~~~tE

R5
2k ADJUST
R6""
8.4k

V+

VIN

LT1025

R4
10k

LT1025

R7
6.8k

VOUT
10mV/oC

C2
0.01"J

-15V

"TRIM R5 FOR VOUT= 1.669V@VIN=0.000mV (+ INPUT OF AMPLIFIER GROUNDED)
"·TRIM R2 FOR VOUT=9.99BV@T=1000°C, OR FOR VIN@+INPUT OF AMPLIFIER =9.585mV
tTHIS AMPLIFIER HAS A DELIBERATE OFFSET TO ALLOW OUTPUT SLOPE (10mV/oC) TO BE SET
INDEPENDENTLY FROM AN ARBITRARY HIGH TEMPERATURE CENTER POINT (1000°C). THIS IS
REQUIRED BECAUSE THE SLOPE OF TYPE "S" THERMOCOUPLES VARIES RAPIDLY WITH
TEMPERATURE, INCREASING FROM 6.V/oC@25°C TO 11.V/oC@1000°C. NONLINEARITY LIMITS
ACCURACY TO ~3°C OVER THE BOO°C TO 1200°C RANGE EVEN WITH OFFSET CORRECTION.

"FOR BEST ACCURACY, THERMOCOUPLE RESISTANCE
SHOULD BE LESS THAN 50n.
""SELECTED FOR DoC TO 200°C RANGE.

810-13

lrYln1~lbU lI¥tJU lm~lFdU

i7UJ~~---D-u-a-l-o-u-tp-u-t-sw-~-;~-~-~-:

Capacitor Voltage Generator

FEATURES

DESCRIPTion

•
•
•
•
•

The LT1026 power supply generator converts a single input supply to adual output of higher voltage. For example,
asingle 5V supply can be converted to ± 9V for op amps. A
9V battery can be converted to ± 18V.

4Vto 10V Input
Up to ± 18V Output
20mA Output Current
Only 1J!F Capacitors Needed
8 Pin miniDlP

APPLICATions
• ± Supply Generator
• RS232 Interface Supply
• Op Amp Supplies

Switched capacitors are used, so no inductors are needed.
Manufactured using Linear Technology's bipolar process,
the LT1026 is an easy, reliable method of generating additional power supply voltages.

TYPICAL APPLICATiOn
Load Regulation (Both Outputs Loaded)
10

1"---""VIN

4V TO 10V

-8

810-14

VIN=5V

I"---

-

-6

-10

-

o

10
15
LOAD CURRENT (mA)

20

25

~lnl~lLUWAJUlm~lniu

~YUO~!"""'-----1-.2-5-A-H-ig-h-E-ff-i~-:_1~_~_~
FEATURES

Switching Regulator
DESCRIPTion

•
•
•
•
•
•
•
•
•
•

The LT1072 is a monolithic high power switching
regulator. It can be operated in all standard switching
configurations including buck, boost, flyback, forward, inverting and "Cuk". A high current, high efficiency switch
is included on the die along with all oscillator, control, and
protection circuitry. Integration of all functions allows the
LT1072 to be built in a standard 5-pin TO-3 or TO-220 power
package. This makes it extremely easy to use and provides
"bust proof" operation similar to that obtained with 3-pin
linear regulators.

Wide Input Voltage Range 3V-60V
Low Quiescent Current-6mA
Internal1.25A Switch
Very Few External Parts Required
Self· Protected Against Overloads
Operates in Nearly All Switching Topologies
Shutdown Mode Draws Only 50JlA Supply Current
Flyback-Regulated Mode has Fully Floating Outputs
Comes in Standard 5-Pin Packages
Can be Externally Synchronized

The LT1072 operates with supply voltages from 3V
to 60V, and draws only 6mA quiescent current. It can deliver load power up to 100 watts with no external power devices. By utilizing current-mode switching techniques, it
provides excellent AC and DC load and line regulation,

APPLICATions
• Logic Supply 5V @ 2.5A
5V Logic to ± 15V Op Amp Supply
• Offline Converter up to 50W
• Battery Upconverter
• Power Inverter (+ to -) or (- to +)
• Fully Floating Multiple Outputs

II

USER NOTE:
This data sheet is onty intended to provide specifications, graphs, and ageneral functional description of
the LT1072, Application circuits are included to show the capability of the LT1072, A complete design
manual (AN·19) should be obtained to assist in developing new designs. This manual contains a compre-

hensive discussion of both the LT1070 and the external components used with it, as well as complete
formulas forealculating the values of these components, The manual can also be used for the LT1072 by
factoring in the lower switch current rating.

The LT1072 has many unique features not found even on
the vastly more difficult to use low power control chips
presently available. It uses adaptive anti-sat switch drive
to allow very wide ranging load currents with no loss in
efficiency. An externally activated shutdown mode reduces total supply current to 50JlA typical for standby
operation. Totally isolated and regulated outputs can be
generated by using the optional "flyback regulation
mode" built into the LT1072, without the need for optocouplers or extra transformer windings.

TYPICAL APPLICATiOn
Boost Converter (5V to 12V)

Maximum Output Power>
25

5V

-'-

II

20

BUCK-BO~ST-

I
V\N

Vsw
~ 15

/

~

12V,0.25A

LT1072

3
::r

/

BODST/ . /

10

.1/L

10.7k

/U ........

GND

~

1.24k

/"

o
o

Vo~30V,_

I

,/

FLYBACK'-

-

ISOLATEO~

BUCK-BOOST
Vo~5V-

J.
10

20
30
INPUT VOLTAGE (V)

~

r---

40

50

'ROUGH GUIDE ONLY, BUCK MODE
POUT~ 1A x VOUT, SPECIAL TOPOLOGIES
DELIVER MORE POWER,

810-15

LT1072
ABSOLUTE mAXimum RATinGS

PACKAGE/ORDER InFORmATion

Supply Voltage
LT1072HV (See Note 1) ......................... 60V
LT1072 (See Note 1) ........................... 40V
Switch Output Voltage
LT1072HV (Note 2) ............................. 75V
LT1072 ....................................... 65V
Feedback Pin Voltage (Transient, 1ms) ............. ± 15V
Operating Junction Temperature Range
LT1072HVM, LT1072M ........ -55°C to +150 oC
LT1072HVC, LT1072C (Oper.) ..... O°C to + 100°C
LT1072HVC, LT1072C (Sh. Ckt.) ... OOC to + 125°C
Storage Temperature Range .......... - 65°C to + 150°C
Lead Temperature (Soldering, 10sec) ............. 300°C

BonOM VIEW

ORDER PART NUMBER

'~'"
o
0
1
4

2

LT1072HVMK
LT1072MK
LT1072HVCK
LT1072CK

CASE
ISGND

0 3

VIN

FB
4 LEAD TD·3
FRDNT VIEW

0
LT1072HVCT
LT1072CT

12 345

0

VC~ ~-VIN
-vsw

FB--

'--GND

Note 1: Minimum switch "on" time forthe LT1072 in current limit is
"O.7~sec. This limits the maximum input voltage during short circuit
conditions, in the buck and inverting modes only, to ",40V. Normal
(unshorted) conditions are not affected.

5 LEAD TO·220

ELECTRICAL CHARACTERISTICS
Unless otherwise specified, VIN = 15V, Vc =O.5V, VFB = VREF, output pin open.
SYMBOL
VREF

PARAMETER
Reference Voltage

CONDITIONS
Measured at Feedback Pin

IB

Feedback Input Current

VFB = VREF

gm

Error Amplifier
Transconductance
Error Amplifier Source or
Sink Current

dle=

Error Amplifier Clamp
Voltage
Reference Voltage Line
Regulation
Error Amplifier Voltage
Gain
Minimum Input Voltage
Supply Current
Control Pin Threshold

Hi Clamp, VFB 1V
Lo Clamp, VFB 1.5V
3VSVINSVMAX

Av

10

VFB

NormaliFlyback Threshold
on Feedback Pin
Flyback Reference Voltage
Change in Flyback
Reference Voltage
Flyback Reference Voltage
Line Regulation

S10-16

±25~A

Vc= 1.5V

=
=

•
•
•
•

IFB=50~

0.05s1 FBs1mA
IFB=50~

3VSVINSVMAX

3000
2400
150
120

TYP
1.244
1.244
350
4400
200

MAX
1.264
1.274
750
1100
6000
7000
350
400

UNITS
V
nA
~mho

~
~

1.8
0.25

0.38

2.3
0.52
0.03

V
V
'ioN

500

800

2000

VN

2.6
6
0.9

3.0
9
1.08
1.25
0.54

V
rnA
V

V

6.8

17.6
18
8.5

0.01

0.03

'ioN

•

0.7VsV cs1.4V

3VSV IN SV MAX, Ve=0.6V
Duty Cycle = 0

MIN
1.224
1.214

•

•

0.8
0.6
0.4

•

15
14
4.5

0.45
16:3

V

V

LT1072
ELECTRICAL CHARACTERISTICS
Unless otherwise specified, VIN =15V, Vc =O.5V, VFB =VREF, output pin open.
SYMBOL

BV
VSAT

PARAMETER
Flyback Amplifier
Transconductance (gm)
Flyback Amplifier Source
and Sink Current
Output Switch Breakdown
Voltage (Note 2)

CONDITIONS
~Ic= ± 10pA

Output Switch (Note 1)
"On" Resistance

Isw= 1.25A

••
•
•

Vc= 1.5V Source
IFB = 50pA Sink
3VSV IN SVMAX
Isw=5mA

MIN
150

TYP
300

MAX
500

15
25
65
75

32
40
90
90

50
70

pA
pA
V
V

0.6

1

!l

Control Voltage to Switch
Current Transconductance
IUM

Switch Current Limit

~IIN
~Isw

Supply Current Increase
During Switch On·Time

f

Switching Frequency

AN

2
Duty Cycle = 50%
50% < Duty Cycle = BO%

DC (max)

Maximum Switch Duty Cycle
Flyback Sense Delay Time
Shutdown Mode
3VSV IN SVMAX
Supply Current
Vc= 0.05V
Shutdown Mode
3VSVINSVMAX
Threshold Voltage
.
.
The. denotes the specifications which apply overthe full operatmg temperature range .
Note 1: Measured with Vc in hi clamp, VFB = O.BV.

•
•
•

•

1.25
1

35
33
90

100
50

UNITS
pmho

3.5
2.5

A
A

25

35

mAlA

40

45
47
97

kHz

92
1.5
100
150

250

%
ps
pA

250
300

mV
mV

LT107! OPERATiOn
The LT1072 is a current mode switcher. This means that
switch duty cycle is directly controlled by switch current
rather than by output voltage. The switch is turned "on" at the
start of each oscillator cycle. It is turned "off" when switch
current reaches a predetermined level. Control of output voltage is obtained by using the output of avoltage senSing error
amplifier to set current trip level. This technique has several
advantages. First, it has immediate response to input voltage
variations, unlike ordinary switchers which have notoriously
poor line transient response. Second, it reduces the 90 0
phase shift at midfrequencies in the energy storage inductor.
This greatly simplifies closed loop frequency compensation
under widely varying input voltage or output load conditions.
Finally, it allows simple pulse-by-pulse current limiting to provide maximum switch protection under output overload or
short conditions. A low-dropout internal regulator provides a
2.3V supply for all internal circuitry on the LT1072. This lowdropout design allows input voltage to vary from 3V to 60V

with virtually no change in device performance. A40kHz oscillator is the basic clock for all internal timing. It turns "on"
the output switch via the logiC and driver circuitry. Special
adaptive antisat circuitry detects onset of saturation in the
power switch and adiusts driver current instantaneously to
limit switch saturation. This minimizes driver dissipation and
provides very rapid turn-off of the switch.
A1.2V bandgap reference biases the positive input of the error amplifier. The negative input is brought out for output
voltage sensing. This feedback pin has a second function;
when pulled low with an external resistor, it programs the
LT1072 to disconnect the main error amplifier output and connects the output of the flyback amplifier to the comparator input. The LT1072 will then regulate the value of the flyback
pulse with respect to the supply voltage. This flyback pulse is
directly proportional to output voltage in the traditional trans-

810-17

LT1072
l Tl072 OPERATion
former coupled flyback topology regulator. By regulating the
amplitude of the flyback pulse, the output voltage can be
regulated with no direct connection between input and out·
put. The output is fully floating up to the breakdown voltage
of the transformer windings. Multiple floating outputs are
easily obtained with additional windings. Aspecial delay net·
work inside the LT1072 ignores the leakage inductance spike
at the leading edge of the flyback pulse to improve output
regulation.
The error signal developed at the comparator input is brought
out externally. This pin IYcl has four different functions. It is
, used for frequency compensation, current limit adjustment,
soft starting, and total regulator shutdown. During normal
regulator operation this pin sits at a voltage between 0.9V
(low output current) and 2.0V (high output current). The error
amplifiers are current output (gm) types, so this voltage can
be externally clamped for adjusting current limit. Likewise, a
capacitor coupled external clamp will provide soft start.
Switch duty cycle goes to zero if the Ve pin is pulled to ground
through a diode, placing the LT1072 in an idle mode. Pulling
the Ve pin below 0.1SV causes total regulator shutdown, with
only SOJlA supply current for shutdown circuitry biasing. See
AN·19 for full application details.
LT1 072 Synchronizing
The LT1072 can be externally synchronized in the fre·
quency range of 48kHz to 70kHz. This is accomplished as

shown in the accompanying figures. Synchronizing occurs
when the Ve pin is pulled to ground with an external tran·
sistor. To avoid disturbing the DC characteristics of the in·
ternal error amplifier, the width of the synchronizing pulse
should be under 0.1Jls. C2 sets the pulse width at '" 0.3SJls.
The effect of a synchronizing pulse on the Ln072 ampli·
fier offset can be calculated from:
/).Vos=

(~T) (ts) (fs) (Ie+ ~~) /(Icl

KT =26mV@2SoC
q
ts = pulse width
fs = pulse frequency
Ie = LT1072 Ve source current( :::::200JlA)
Ve = LT1072 operating Ve voltage (1V-2V)
R3 = resistor used to set mid·frequency "zero" in LT1072
frequency compensation network.
With ts = 0.3SJls, fs = SOkHz, Ve = 1.SV, and R3 = 2KO, off·
set voltage shift is :::::2.2mV. This is not particularly bother·
some, but note that high offsets could result if R3 were
reduced to a much lower value. Also, the synchronizing
transistor must sink higher currents with low values of R3,
so larger drives may have to be used. The transistor must
be capable of pulling the Ve pin to within 200mV of ground
to ensure synchronizing.
Synchronizing with MOS Transistor

Synchronizing with Bipolar Transistor

LT1072
GNO

LT1072
GNO

Vc

rI

I
I C1

C2
68pF

R3

L_

r- -,

R1

j--!.- fir
R2
2.2k

Vc

FROM 5V
LOGIC

I
I

I

R3

I

.....-t..-.--I
C1

L_

'SILICONIX OR EQUIVALENT

810-18

C2
200pF

~

02
1N4158

ru
FROM
5V LOGIC

FA
L1n
L7 U \K

~[ru@[6D[MJD~&[ruV

I)

LT1078/LT1079

TECHNOLOGY~-M-ic-r-o-p-o-w-e-r,-D-u-a-I-a-n-d-Q-u-a-d-,

Single Supply, Precision Op Amps
FEATURES

DESCRIPTion

•
•
•
•
•
•
•
•
•

The LT1078 is a micropower dual op amp in the standard
8-pin configuration; the LT1079 is a micropower quad op
amp offered in the standard 14-pin packages.

38/lA Supply Current per Amplifier
70/lV Max Offset Voltage
0.3nA Max Offset Current
0.75/lVp,p 0.1 Hz to 10Hz Voltage Noise
7pAp·p 0.1 Hz to 10Hz Current Noise
O.4/lV/oC Offset Voltage Drift
200kHz Gain-Bandwidth-Product
0.08V//ls Slew Rate
Single Supply Operation
Input Voltage Range Includes Ground
Output Swings to Ground while Sinking Current
• Output Sources and Sinks 5mA Load Current

APPLICATions
• Battery or Solar Powered Systems
Portable Instrumentation
Remote Sensor Amplifier
Satellite Circuitry
• Micropower Sample and Hold
• Thermocouple Amplifier

Micropower performance of competing devices is
achieved at the expense of seriously degrading precision,
noise, speed, and output drive specifications.
The design effort of the LT1078/1079 was concentrated on
reducing supply current without sacrificing other parameters. The offset voltage achieved is the lowest on any dual
or quad op amp-micropower or otherwise. Offset current,
voltage and current noise, slew rate and gain-bandwidthproduct are all two to ten times better than on previous micropower op amps.
Both the LT1078 and LT1079 can be operated from asingle
supply (as low as one lithium cell or two Ni-cad batteries).
The input range goes below ground. The all-NPN output
stage swings to within a few millivolts of ground while
sinking current.

TOP VIEW
V+

TOP VIEW

4

v- (CASE)
METAL CAN H PACKAGE

HERMETIC DIP J8 PACKAGE
PLASTIC DIP N8 PACKAGE
HERMETIC DIP J14 PACKAGE
PLASTIC DIP N14 PACKAGE

810-19

lP~~[bD[}¥t]DOO&~W

L,7LlnFAr\
U \K

LT1083/4/S/6-S
LT1083/4/S/6-12

TECHNOLOGY~-1.-5A-,-3-A-,-SA-,-7-.S-A-L-o-w-D-ro-p-o-u-t

Positive Fixed Regulators

FEATURES

DESCRIPTion

•
•
•
•
•
•
•

The LT10B3 series of positive fixed regulators are designed
to provide 1.5A, 3A 5A and 7.5A with higher efficiency than
currently available devices. All internal circuitry is designed to operate down to 1V input to output differential
and the dropout voltage is fully specified as a function of
load current. Dropout is guaranteed at a maximum of 1.5V
at maximum output current, decreasing at lower load currents. On-chip trimming adjusts the reference voltage to
1%. Current limit is also trimmed, minimizing the stress
on both the regulator and power source circuitry under
overload conditions.

Three Terminal Fixed 5V and 12V
Output Current of 1.5A, 3A, 5A or 7.5A
Operates Down to 1V Dropout
Guaranteed Dropout Voltage at Multiple Current Levels
0.015% Line Regulation
0.01 % Load Regulation
100% Thermal Limit Burn-In

APPLICATions
•
•
•
•

High Efficiency Linear Regulators
Post Regulators for Switching Supplies
Constant Current Regulators
Battery Chargers
DEVICE
LT1083
LT1084
LT1085
LT1086

The LT10B3 series devices are pin compatible with older 3
terminal regulators. A lO,.F output capacitor is required on
these new devices; however, this is usually included in
most regulator designs.

OUTPUT CURRENT
7.5 Amps
5.0 Amps
3.0 Amps
1.5Amps

Unlike PNP regulators, where up to 10% of the output current is wasted as quiescent current, the LT10B3 quiescent
current flows into the load, increasing efficiency.

Dropout Voltage vs
Output Current

1.5A, 3A, SA, 7.SA Regulator
2V

LT10B3-5

5V AT 7.5A

J

+ lO~F­
TANTALUM

/
-I-"""

I-

-REQUIRED FOR STABILITY

OV

o

I FULL LOAO/2

OUTPUT CURRENT (A)

810-20

IFULL LOAO

LT10 83/4/5/6-5
LT1083/4/5/6-12
ABSOLUTE mAXimum RATinGS

PACKAGE/ORDER InFORmATion

Power Dissipation ..................... Internally Limited
Input Voltage ....................................... 30V
Operating Junction Temperature Range
"M" Grades
Control Section ................... - 55°C to 150°C
Power Transistor .................. - 55°C to 200°C
"C" Grades
Control Section ....................... OOC to 125°C
Power Transistor ...................... O°C to 150°C
Storage Temperature ................... - 65°C to 150°C
Lead Temperature (Soldering, 10 sec) .............. 300°C

PREconDITiOninG

ORDER
PART NUMBER
LT1083-5MK
LT1083-12MK
LT1083·5CK
LT1083·12CK
LT1084·5MK
LT1085·5MK
LT1086·5MK
LT1086·5CK
LT1086·12MK
LT1086·12CK

BODOM VIEW

KPACKAGE
TO·3 METAL CAN

FRONT VIEW

LT1083·5CP
LT1083·12CP
LT1084·5CP
LT1084·12CP

100% Thermal Limit Burn·ln
PPACKAGE
TO·247 PLASTIC
FRONT VIEW

LT1085·5CT
LT1085·12CT
LT1086·5CT
LT1086·12CT

TPACKAGE
TO·220 PLASTIC

ELECTRICAL CHARACTERISTICS
PARAMETER
Output Voltage
LT10S3/4/5/6·5

LT10S3/4/5/6·12
Line Regulation
LT10S3f4/5f6·5

LTt OS3f4/5/6· 12

CONDITIONS
lOUT = OmA, Tj = 25°C, VIN = SV (K Package Only)
0:$ IOUT:$ IFULLLOAD, 6,5V :$V IN :$30V
lOUT = OmA, Tj = 25°C, VIN = 15V (K Package Only)
O:$IOUT:$IFULLLOAD 13,5V:$VIN :$30V
IOUT=OmA, Ti = 25°C, 6.5V :$V IN :$20V
6,5V:$VIN:$30V
IOUT=OmA, Tj = 25°C, 13.5V:$VIN :$25V
13,5V:$VIN :$30V

•
•

••
•

•

MIN

TYP

MAX

4.950
4.900
II.SS0
11.760

5.000
5,000
12.000
12.000

5.050
5.100
12.120
12.240

0.5
1.0
2.0
1.0
2.0
4.0

10
10
25
25
25
60

UNITS
V
V
V
V
mV
mV
mV
mV
mV
mV

S10-21

LT1083/4/5/6-5
LT1083/4/5/6-12

ELECTRICAL CHARACTERISTICS
PARAMETER
Load Regulation
LTl083/4/5/6·5

LTl083/4/S/6·12

Dropout Voltage
LT1083/4/S/6·5
LTl083/4/S/6·12
Current Limit
LT1083·5
LT1083·12
LT1084·S
LT1084·12
LT1085·5
LT1085·12
LT1086·5
LTt086·12
Quiescent Current
Thermal Regulation
LTt083·5112
LT1084·S112
LT108S·5112
LTt086·5112
Ripple Rejection
LTt 083/4/5/6·S
LTl083/4/5/6·12
Temperature Stability
Long Term Stability
RMS Output Noise (% 01 Your)

810-22

CONDITIONS
VIN = 8V, Os lours IFULLLOAD,
Tj =25°C
VIN = 15V, Os 10ursiFuLL LOAD,
Tj =2SoC

Ll.Your = 50mV, lour = IFULL LOAD
Ll.Your = 120mV, lour = IFULLLOAD

MIN

•
•
•
•

VIN = 10V
VIN = 17V
VIN = 10V
VIN = 17V
VIN = 10V
VIN = 17V
VIN = 10V
VIN = 17V
VIN s30V
TA = 25°C, 30ms pulse

1= 120Hz, Cour = 2S~F Tantalum
lour= IFULLLOAD
VIN =8V
VIN = 15V
TA = 125°C, 1000 Hrs.
TA=25°C
10Hzsls 10kHz

8.0
8.0
5.5
S.5
3.2
3.2
1.6
1.6

•
•
•

TYP

MAX

5
10

20
35

mV
mV

12
24

36
72

mV
mV

6.3
13.3

6.S
13.S

9.5
9.S
6.S
6.S
4.0
4.0
1.8
1.8
5.0

10.0

0.002
0.003
0.004
0.008

0.01
0.015
0.02
0.04

63
55
0.5
0.03
0.003

UNITS

V
V

A
A

1.0

A
A
A
A
A
A
mA

%/W
%/W
%/W
%/W

dB
dB
%
%
%

!PlJli!.Sl1,U l1\YAJ UOO~Lru lJ

~7U1J~~-----1-.5-A-L-O-W-D-~-~O_o8_u~
Positive Adjustable Regulators
FEATURES

DESCRIPTion

•
•
•
•
•
•
•

The LT1086 is a positive adjustable regulator designed to
provide 1.5A with higher efficiency than currently available devices. All internal circuitry is designed to operate
down to 1V input to output differential and the dropout
voltage is fully specified as a function of load current.
Dropout is guaranteed at a maximum of 1.5V at maximum
output current, decreasing at lower load currents. On-chip
trimming adjusts the reference voltage to 1%. Current
limit is also trimmed, minimizing the stress on both the
regulator and power source circuitry under overload
conditions.

Three Terminal Adjustable
Output Current of 1.5A
Operates Down to 1V Dropout
Guaranteed Dropout Voltage at Multiple Current Levels
0.015% Line Regulation
0.01 % Load Regulation
100% Thermal Limit Burn·ln

APPLICATions
•
•
•
•

High Efficiency Linear Regulators
Post Regulators for Switching Supplies
Constant Current Regulators
Battery Chargers

The LT1086 is pin compatible with older 3 terminal regulators. A 10)lF output capacitor is required on this new device; however, this is usually included in most regulator
designs.
Unlike PNP regulators, where up to 10% of the output current is wasted as quiescent current, the LT1086 quiescent
current flows into the load, increasing efficiency.

PREconDITiOninG
100% Thermal Limit Burn-In

LT10BS Dropout Voltage vs
Output Current

1.5A Regulator

V1N",,6.5V

LT1086

5V AT 1.5A
12Hl
1%

+

10~Fr

J

+ 10~F-

TANTALUM
Tj=25'C

36511
1%
-REQUIRED FOR STABILITY

~

---

""

':'

a

o

1

OUTPUT CURRENT (AI

S10-23

LT1086
ABSOLUTE mAXimum RATinGS

PACKAGE/ORDER InFORmATiOn

Power Dissipation ..................... Internally Limited
Input to Output Voltage Differential
"M" Grades ...................................... 35V
"C" Grades ...................................... 30V
Operating Junction Temperature Range
"M" Grades
Control Section ................... - 55°C to 150°C
Power Transistor .................. - 55°C to 200°C
"C" Grades
Control Section ....................... O°C to 125°C
Power Transistor...................... OOC to 150°C
Storage Temperature ................... - 65°C to 150°C
Lead Temperature (Soldering, 10 sec) .............. 300°C

BonOM VIEW

ORDER
PART NUMBER
LT1086MK
LT1086CK

KPACKAGE
TO-3 METAL CAN
FRONT VIEW

LT1086CT

loll §
TPACKAGE
TO-220 PLASTIC

ELECTRICAL CHARACTE RISTICS (See Note 1)
PARAMETER
Reference Voltage

Line Regulation

Load Regulation

Dropout Voltage
Current Limit
Minimum Load Current
Thermal Regulation
Ripple Rejection

Adjust Pin Current
Adjust Pin Current Change
Temperature Stability
Long Term Stability
RMS Output Noise (% of VOUT)

CONDITIONS
IOUT= 10mA, lj= 25°C,
(V IN - VOUT) = 3V (K Package Only)
10mA" lOUT" IFULL LOAO,
1.5V "(VIN - VOUT),,25V (Note 3)
ILOAD = 10mA, 1.5V,,(VIN - VOUT),,15V, Ij =25°C
MGrade
15V "(YIN - VOUT),,35V
CGrade
15V ,,(VIN - VOUT),,30V
(Notes 1, 2)
(VIN - VOUT) = 3V
10mA" IOUT"IFULLLOAD
Ij = 25°C (Notes 1,2,3)
6VREF = 1%, IOUT= IFULLLOAD
(VIN - VO UT) = 5V
(VIN - VOUT) = 25V
(V IN - VO UT) = 25V
TA = 25°C, 30ms Pulse
f=120Hz
CADJ = 25~F, COUT = 25~F Tantalum
10uT= IFULL LOAD, (VIN - VOUT) = 3V
Tj=25°C
10mA" lOUT" IFULL LOAD
1.5V,,(V IN - VOUT),,25V

TA = 125°C, 1000 Hrs.
TA=25°C
10Hz= "f,,10kHz
The. denotes the speCifications which apply over the full operating
temperature range.
Note 1: See thermal regulation speCifications for changes in output volt·
age due to heating effects. Load and line regulation are measured at a con·
stant junction temperature by low duty cycle pulse testing.
Note 2: Line and load regulation are guaranteed up to the maximum power
dissipation (15W for the m086). Power dissipation is determined by the

810-24

•
•
•
•

MIN

TYP

MAX

UNITS

1.238

1.250

1.262

V

1.225

1.250
0.015
0.035

1.270
0.2
0.2

V
%
%

0.05

0.5

%

0.05

0.5

%

0.1
0.2
1.3
1.8
0.2
5
0.010

0.3
0.4

%
%

•
•
••
•
•
•
•
•

60

10
0.05

75
55

0.2
0.5
0.3
0.003

V
A
A
mA
%IW

dB
120

~A
~A

5

~A

1

%
%
%

input/output differential and the output current. Guaranteed maximum
power dissipation will not be available over the full input/output voltage
range.
Nole 3: IFULLLOAD is defined in the current limit curves.IFULL LOAD curve is
defined as the minimum value of current limit as a function of input to out·
put voltage. Note that the 15W power dissipation for the LT1086 is only
achievable over a limited range of input to output voltage.

~l}B~l1U m'AJ UIf\IJ~ln.i U

~7~ID~~-----H-ig-h-S-id-e-~~-lO-it~-~
FEATURES

DESCRIPTion

•
•
•
•
•
•
•
•

The LT1089 is a logic driven, high current, high side switch
utilizing bipolar technology. The device is capable of driv·
ing loads up to 7.5A with a low series drop of only 1.5V
max. The device has internal current limiting and thermal
overload protection. The switch output can drive loads
referenced to ground or voltages below ground. The device
will be available in both TO·3 metal can and TO·220 plastic
package.

7.5A Switch Current Capability
Low Series Drop (<1.5V @7.5A)
Logic Input
30V Breakdown
Current Limited
Thermal Overload Protection
5mA Supply Current
5/ls Rise Time

APPLICATions
Driving Ground Referred Loads

Driving Negative Referred Loads

Driving Inductive Loads
12V

V+
12V

12V

20V
LOGIC
IN

LT1089

LOGIC
IN

VOUT

LOGIC
IN

LT1089
10n

2n

Switch Voltage Drop
FRONT VIEW

o

BOTTOM VIEW

...-- r----

v

Tj =25'C

TAB ISVOUT

12 3 4 5

o
K PACKAGE
TO-3 METAL CAN

NC_
GND_

- - - LOGIC IN

~-VIN
VOUT

a
012345678
SWITCH CURRENT (A)

T PACKAGE
TO-220 5 LEAD

S10-25

[¥)~~[LDUYAJD[m&~W

~"'''llnlJ\R

~~

LTC1092

TECHNOLOGY~----------1-O--B-it-,8--P-i-n-A-/-D
with Serial Output

FEATURES

DESCRIPTion

• 10-Bit Resolution
• Differential Inputs
• Analog and Rererence Inputs Common-Mode to Vee
andGND
• Single Supply (5Vor 10V) Operation
• Direct 3Wire Interface to Most MPU Serial Ports and All
MPU Parallel Ports
• Operates Ratiometrically or with Absolute Reference

The LTC1092 is a serial output successive approximation
AID converter. It uses LTCMOSTM switched capacitor technology to perform 10-bit conversions on a differential input pair.

KEY SPECIFICATiOnS
•
•
•
•

10 Bits

Resolution
Total Unadjusted Error (LTC1092A)
Fast Conversion Time
Low Supply Current

Aseparate reference pin allows the LTC1092 to be used in
reduced span applications.
The serial output is designed to be compatible with industry standard serial interfaces. It provides both MSB or LSB
first data. This allows easy interface to shift registers and
avariety of processors.

± 1/2LSB

20JLs
2.5mAmax.
1mA typo

LTCMOS is a trademark of Linear Technology Corp.

connECTion AnD FunCTionAL DIAGRAmS
.---..--~ ClK

Dour

cs0
TOP VIEW

+IN 2

8v

ee
7 ClK

-IN 3

6 Dour

GND 4

5 VREF

+IN
-IN
10-BIT
SAR
10-BIT
CAPACITIVE
DAC

5

VREF

810-26

18 14
Vee

GND

CONTROL
AND
TIMING

cs

LTC1092
ABSOLUTE mAXimum RATinGS

PACKAGE/ORDER InFORmATion

(Noles 1and 2)

ORDER PART
NUMBER

Supply Voltage (Vee to GND) ........................ 12V
Voltage
Analog, Reference and Digital
Inputs .......................... - 0.3V to Vee +O.3V
Digital Output .................... - 0.3V to Vee +0.3V
Power Dissipation ............................... 500mW
Operating Temperature Range
LTC1092AC, LTC1092C ................ -40°C to 85°C
LTC1092AM, LTC1092M ............... -55°Cto 125°C
Storage Temperature Range ............. - 65°C to 150°C
Lead Temperature (Soldering, 10 sec.) .............. 300°C

TOP VIEW

LTC1092AMJ8
LTC1092MJ8
LTC1 092ACJ8
LTC1092CJ8

~o'"'

+ IN

2

7 ClK

-IN 3

6 DOUT

GND 4

5 VREF

J8 PACKAGE
HERMETIC DIP

N8 PACKAGE
PLASTIC DIP

LTC1 092ACN8
LTC1092CN8

conVERTER AnD mULTIPLEXER CHARACTERISTICS(Note3)
PARAMETER
Offset Error
Linearity Error
Gain Error
Total Unadjusted Error

CONDITIONS
(Note 4)
VREF = 5.000V
(Note 5)

Reference Input Resistance
Analog and REF Input Range
On Channel leakage Current
(Note?)

Off Channel leakage
Current (Note?)

MIN

lTC1092A
TYP

•
•
•
•

MAX
±0.5
±0.5
±0.5
±0.5

lTC1092
TYP

MIN

10
(Note 6)
On Channel = 5V
Off Channel =OV
On Channel = OV
Off Channel = 5V
On Channel =5V
Off Channel = OV
On Channel =OV
Off Channel = 5V

MAX
±0.5
±0.5
±2.0

10

kll
V

- 0.05V to Vcc +0.05V

•
•
•
•

UNITS
lSB
lSB
lSB
lSB

±1

±1

~A

±1

±1

~A

±1

±1

~A

±1

±1

~A

MAX
0.5

UNITS
MHz
ClK
Cycles
elK
Cycles

AC CHARACTERISTICS(Nole3)
SYMBOL

lTC1092A1
lTC1092
TYP

CONDITIONS

tACO

PARAMETER
Clock Frequency
Analog Input Sample Time

See Operating Sequence

3

tCONV

Conversion Time

See Operating Sequence

10

tCYC
tdDO

Total Cycle Time
Delay Time, ClKI to
DOUT Data Valid

See Operating Sequence
MSB First Data
lSB First Data

tdis

Dour Output Disable Time

fClK

MIN
0.01

~s

850
450

ns
ns
ns

810-27

LTC1092

AC CHARACTE RISTICS (Note 3)
CONDITIONS

twHCS
twLCS

PARAMETER
Dour Outpul Enable Time
Time Oulput Data Remains
Valid After ClK!
Dour Fall Time
Dour Rise Time
Set·up Time, CS! Before
First Rising SClK
CSHighTime
CSlowTime

CIN

Input Capacitance

Analog Inputs
Digital Inputs

SYMBOL
ten
thDO
tf
t,
tsucs

MIN

lTC1092A1
lTC1092
TYP

MAX
450

50
300
300
1

UNITS
ns
ns
ns
ns
~s

2
12

~s

ClK
Cycles
pF

60
5

DIGITAL AnD DC ELECTRICAL CHARACTERISTICS(Note3)
SYMBOL
VIH
VIL
IIH
IlL
VOH

PARAMETER
High level Input Voltage
low level Input Voltage
High level Input Current
low level Input Current
High level Output Voltage

VOL
loz

low level Output Voltage
High Z Output leakage

ISOURCE
ISINK
Icc
IREF

Output Source Current
Output Sink Current
Positive Supply Current
Reference Current

CONDITIONS

VIN=Vec
VIN=OV
Vcc=4.75V,lo= -10~A
10= -360~A
Vec = 4.75V, 10 = 1.6mA
Vour= Vec, CS High
Vour= OV, CS High
Vour=OV
Vour=Vec
CS High
VREF = 5V

Note 1: Absolute Maximum Ratings are those values beyond which the life
of a device may be impaired.
Note 2: All voltage values are with respect to ground (unless otherwise
noted).
Note 3: Vcc= 5V, VREF = 5V, ClK = 0.5MHz unless otherwise specified.
The. indicates specs which apply over the full operating temperature
range; all other limits TA = 25°C.
Note 4: Linearity error is specified between the actual end pOints of the AID
transfer curve.
Note 5: Total unadjusted error includes offset, full·scale, linearity,
multiplexer and hold step errors.

810-28

MIN
2.0

lTC1092A1
lTC1092
TYP

MAX
0.8
2.5
-2.5

4.5
2.4
0.4
3
-3
-10
10
1.0
0.5

2.5
1.0

UNITS
V
V
~A
~A

V
V
V
~A
~A

rnA
rnA
rnA
rnA

Note 6: Two on·chip diodes are tied to each reference and anlog input
which will conduct for reference or analog input voltages one diode drop
below GNDorone diode drop above Vcc. Be careful during testing at low
Vec levels (4.5V), as high level reference or analog inputs (5V) can cause this
input diode to conduct, especially at elevated temperatures, and cause
errors for inputs near full·scale. This spec allows 50mV forward bias of
either diode. This means that as long as the reference or analog input does
not exceed the supply voltage by more than 50mV, the output code will be
correct. To achieve an absolute OV to 5V input voltage range will therefore
require a minimum supply voltage of 4.950Vover initial tolerance,
temperature variations and loading.
Note 7: Channel leakage current is measured with the ClK stopped.

LTC1092
Operating Sequence
~l~

____________________________________________________

~r---

ClK

DOUT

~-----tCONv-----+---------tACQ---------

FunCTionAL DESCRIPTion
Serial Output Data Format
Data transfer is initiated in the lTC1092 by a falling CS
signal (see Operating Sequence). After CS falls, the
lTC1092 will wait for one rising and one falling ClK edge.
Then the conversion will begin (tCONV). As the conversion
runs, one data bit will be clocked out on each falling ClK
edge. These bits will be available to be captured on the ris·
ing ClK edges by the receiving system. One leading zero
will be clocked out first. Following this the MSB first data
will be transmitted. lSB first data will follow after the MSB
first data is sent.

Transfer Curve
OUTPUT CODE
1111111111
1111111110

INPUT VOLTAGE
VREF -1LSB
VREF -2LSB

0000000001
0000000000

1LSB
OV

•
•
•

•
•
•

INPUT VOLTAGE
(VREF=5V)
4.9951V
4.9902V

•
•
•
0.0049V
ov

OUTPUT CODE

AlD Input Span
The span of the lTC1092 is defined by the reference voltage applied to the VREF pin. The VREF voltage can be
operated at any value within the power supplies. The AID
will convert the difference voltage between the +input
(pin 2) and the - input (pin 3). The AID transfer curve is
shown below.

1111111111
1111111110

0000000001
0000000000

L....J...+-+-_J"y-_-+--+-+--" VIN

OV

1lSB

VREF-2lSB:

VREF

I

VREF-1lSB

810-29

~~~!O~~~~

_________

~~~[bD[MJD[m&~y?

L_TC_10_99

High Speed 8-Bit A / D Converter
with Built-In Sample-and-Hold
FEATURES

DESCRIPTion

•
•
•
•

The LTC1099 is a high speed, microprocessor compatible,
a-bit analog-to-digital converter (AID). An internal sampleand-hold (S/H) allows the AID to convert inputs up to the
full Nyquist limit. With a conversion rate of 2.5/1s, this allows 200kHz 5Vp-p input signals, or slew rates as high as
5V//ls, to be digitized without the need for an external S/H.

•
•
•
•
•
•
•

Built-In Sample-and-Hold
No Missing Codes
No User Trims Required
All Timing Inputs Edge Sensitive for Easy Processor
Interface
Fast Conversion Time: 2.5/1s Max.
Latched Three-State Outputs
Single 5V Operation
No External Clock
Overflow Output Allows Cascading
Tc Input Allows User Adjustable Conversion Time
0.3" Wide 20-Pin DIP

KEY SPECIFICATiOnS
• Resolution
• Conversion Time
• Slew Rate Limit (Internal S/H)
• Low Power
• Total Unadjusted Error

a Bits
2.5/1s (RD Mode)
2.5/1s (WR-RD Mode)
5V//ls
75mWMax
± 1/2 and ± 1LSB

Two modes of operation, READ (RD) mode and WRITEREAD (WR-RD) mode, allow easy interface with processors. All timing is internal and edge sensitive which eliminates the need for external pulse shaping circuits. The
Stand-Alone (SA) mode is convenient for those applications not involving a processor.
Digital data outputs are latched with three-state control to
allow easy interface to aprocessor data bus or 1/0 port. An
overflow output (OFL) is provided to allow cascading for
higher resolution.

Pin#
1
2-5

6
7
8
9
10
11
12
13
14-17
18
19
20

S10-30

Name
VIN
DBO-DB3
WR/RDY

Description
Analog input voltage.
Data outputs DBO = LSB.
WR starts conversion when mode = Vcc. Ready out
when mode = GND.
MODE WR-RD mode when = Vcc. RD mode when = GND.
RD
Read strobe-activates three-state outputs. Starts
conversion in RD mode.
INT
Goes low when conversion is complete. Goes high
after data is read.
GND
Ground connection.
REFLow reference potential (analog GND).
REF+
High reference potential VREF =(REF+) -(REF-).
Chip select.
DB4-DB7 Data outputs DB7 = MSB.
OFL
Overflow-goes high when VIN >VREF.
User adjustable conversion time.
Tc
Positive supply connection .
Vcc

as

.L7UD~

~~Llnet\Q

~,

NEW PRODUCTS

TECHNOLOGY,.....---------------

Extended Temperature Range
Linear ICs (200°C)
Linear Technology now offers a number of its high per·
formance products fully characterized, tested, and with
specification limits guaranteed over an extended operat·
ing temperature range of from - 55°C to +200°C.
The list of extended temperature range products being of·
fered by Linear Technology continues to grow. At the time
this catalog was printed, the company offered for sale the
following products.

LTCMOSTM and CSOATM are trademarks of Linear Technology Corporation.

OpAmps:
LT1001XH Precision Op Amp
LT1007XH Low Noise, High Speed Precision OpAmp
LM101AXH Uncompensated General Purpose Op Amp
LM118XH High Slew Rate Op Amp
Precision References:
LM129XH 6.9V Precision Voltage Reference
Comparators:
LM111XH General Purpose Comparator
LM119XH High Speed Dual Comparator
Complete specifications on Linear Technology's 200°C
product offerings can be obtained from your local LTC
sales representative or directly from the factory.

810-31

NOTES

810-32

SECTion 11- SURFACE mounT
PRODUCTS

~

u

::»
~

oa::
Q.
....
e

::»

o

e..,

u
a:
u.
a::
::»
lit

III
811-1

INDEX
SECTION 11-SURFACE MOUNT PRODUCTS
INDEX. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
INTRODUCTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LF39888, Precision 8ample and Hold Amplifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LM31888, High 8peed Operational Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LM33488, Constant Current 80urce and Temperature 8ensor .............................
LM 38588-1. 21LM 38588-2.5, Micropower Voltage Reference. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LT1001CS8, Precision Operational Amplifier ..........................................
LT1004CS8-1.2IL Tt004CS8-2.5, Micropower Voltage References . ........................
LTt 007CS ILT1 037CS, Low Noise, High Speed Precision Operational Amplifiers . . . . . . . . . . . . . . .
LT1009S8,2.5VoltReference ....................................................
LTt 012S8, Picoamp Input Current, Microvolt Offset, Low Noise Op Amp. . . . . . . . . . . . . . . . . . . . . .
LTt013DS8, DualPrecisionOpAmp ................................................
LTt021DCSB, Precision Reference . ................................................
LTt 02BCS, Ultra-Low Noise Precision High Speed Op Amp ...............................
LTt030CS, Quad Low Power Line Driver . ............................................
LTt034CS8-1.2ILT1034CSB-2. 5, Micropower Dual Reference . ...........................
LTt055SBIL Tt056SB, Precision, High Speed, JFET Input Operational Amplifiers ..............
LTtOBOCSIL TtOB1CS, 5V Powered RS232 DriverIReceiver with Shutdown . ..................
LTC1043CS, Dual Precision Instrumentation Switched-Capacitor Building Block. . . . . . . . . . . . . . . .
LTC1044CSB, Switched Capacitor Voltage Converter . ...................................
LTC1052CS, Chopper-Stabilized Operational Amplifier (CSOA) ............................
LTC1059S, High Performance Switched Capacitor Universal Filter . .........................
LTC1060S, Universal Dual Filter Building Block . .......................................
LTC 1061 CS, High Performance Triple Universal Filter Building Block . . . . . . . . . . . . . . . . . . . . . . ..
LTC1062CS, 5th Order Low Pass Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
OP-07C88, Precision Operational Amplifier ...........................................
8G35248, Regulating PulseWidth Modulator .........................................
80/80LPackingMaterial ........................................................

811-2

811-2
811-3
811-7
811-9
811-11
811-13
811-15
811-17
811-19
811-22
811-24
811-27
811-30
811-33
811-36
811-38
811-40
811-43
811-46
811-48
811-50
811-52
811-55
811-58
811-61
811-63
811-66
811-69

~~Llnl.f\Q

~,

SURFACE MOUNT PRODUCTS

TECHNOLOGY~---

Introduction
Linear Technology Corporation was founded in 1981 to address the growing demand for high performance and
superior quality linear integrated circuits.
Today, Linear Technology has successfully established a
leadership position by introducing and supplying leading
edge products in each of the industry's basic functional
groups-op amps, comparators, voltage regulators, references, switched-capacitor filters, interface, data conversion, and avariety of special function CMOS devices, in all
major package styles.

Early on, Linear Technology made the commitment to provide advanced technology, surface mount packaging. This
makes Linear Technology the first company to offer true
precision and high performance linear devices across the
full range of functional categories, plus many of the popular second-source devices in JEDEC Standard SO-8, 14, 16
and SOL-16, 18 and 20 pin packages.

accommodated by the smaller SO-8 package. Although it
is preferable for an SO-8 device to have the same pin-out
as the standard 8-pin dual-in-line version, some devices
necessitate a rotation of the die to fit in the SO-8 package.
Please refer to the applicable SO device datasheet, or
consult with the factory to verify exact pinouts for each
device.
NO OF LEADS
8

rfi1'~T
~

"A" DIM
0.1880.196

~

14

0,3360.344
(8.534-8737)
03850,394

16

0228-0.244

1

1

r-(O.254-0.~OB)

tiC
0'-8'TYP

x45"

0,.004-0_.010

0.008-0.010

(0101-0254)

~--I i:!

..

0014-0019

(OA05-1.270)

J~Wii,l"
TY?

1. PKG MATERIA.L: PLASTIC
2. LEAD MATERIAL: A-42, TIN PLATED

Figure 1

NO OF LEADS

16

"',,"0 , : (:; '

"A" DIM.

roii:"llfl

0.395-0.415
(10.033-1O.~1)

0.4500,470
(11.430-11.938)
OA95 0.515
(12.573-13.081)

18

0291-0299

t

(739'_759S1}

I

r.---

0010-0029
(0 254-0 737}

SEE NOTE

0.016-0,050
(0.406-1.270)

3

4

5

6

7

8
0037-0045

X450r

(0940-1143)

---..t

-~t~~~~j

o' 8°TY?

~t.,;==;-;u-~.-i
0.009-0013
(0.229-0.330)

2

0093-0104
(2362-2642)

-.j

In some instances, an LTC product available in an 8-pin
standard DIP package is offered in a 16-pin SOL package.
This covers the situation where the die is too large to be

4

~mTES

This section contains information summarizing Linear
Technology's capabilities and services for surface mount
packaged products, as well as specific device datasheets.

Linear Technology's SO packages conform to Standard
JEDEC SOIC outlines. Figure 1 represents the 8, 14 and
16-lead narrow (150 mil width) SO packages. The 300 mil
width large cavity SOL package is pictured in Figure 2.

3

0.053-0069
(1.346-\.752)

(0.355-0.483)

20

Package Descriptions

2

b ~~
~::l254)

0.010-0,020

Support for Linear Technology's surface mount devices includes service for tape and reel, anti-static rails, quality
and reliability data, and datasheets on each product.
Linear Technology intends to address customer demand
for surface mount devices where technology and die sizes
permit, making the combination of small package size and
high performance linear devices readily available to our
users.

0150-0157

(5791[Jg::y:~~3988)

(9,779-10,007)

nnnnnri~

n
L ~~'l-JL
Un

(\~~O)

-----::!0012
~)

0,014-0019
(0.)56-0.482)

NOTE:
PIN 1 IDENT. NOiCH ON TOP AND CA.VITIES
ON THE BonOM OF PACKAGE ARE THE
MANUFACTURING OPTIONS. THE PART
MAY BE SUPPLIED WITH OR WITHOUT
ANY Of THE OPTIONS.

Figure 2

811-3

SURFACE MOUNT PRODUCTS
Electrical Specifications

Lead Finish and Solderability

Wherever possible, electrical specifications for an SO de·
vice are the same as the plastic molded equivalent. Excep·
tions to this are identified by the omission of the standard
product electrical grade designator from the part number.
For example:

Lead finish is electroplated, matte·tin, with a low carbon
content. Solderability meets the requirements of MIL·
STO·883C, Method 2003. Recommended solder pads are
given in Figure 3.

-LT10130S8 has the same electrical specifications
as LT10130N8, since the "0" is common to both prod·
uct numbers.
-LT1012S8 has one or more different electrical specifica·
tions than LT1012CN8, as the "C" is missing from this
product designator suffix.
Please consult the appropriate SO package datasheet for
complete electrical specifications.

Marking
Because of the limited space available for part marking on
some SO packages, abbreviated marking codes are used
to identify the device. These codes, if used, are identified
in the individual SO package datasheets.

Wave and Reflow Soldering
Following are the recommended procedures for soldering
surface mount packages to PC boards.
1. Wave Soldering
•
•
•
•

Use solder plating boards.
Dispense adhesive to hold components on board.
Place components on board.
Cure adhesive per adhesive manufacturer's speci·
fication.
• Foam flux using RMA (Rosin Mildly Activating) flux
or an organic acid flux if more aggressive flux is
required.
Wave solder using a dual wave soldering system at
240°C to 260°C for 2seconds per wave.
• Clean board.

*.

• Note: LTC packages will survive temperatures of 260°C for 10 seconds.

Recommended Solder Pads

SO·8, SO·14, SO·16

SOL·16, SOL·18, SOL·20

~0-0.055

.L

19999

~~666
--f:.1
0028- 0035

O~~~+-.J

0.420
MIN

T

0.315-0.335

0.040-0.050

I

I

0.028-0.035-1

Figure 3. Wave and Reflow Soldering

S11-4

I

I. . I

0.050

~TYP

SURFACE MOUNT PRODUCTS
2. Reflow Soldering
•
•
•
•
•

Use solder plating boards.
Screen solder paste on board.
Mount components on board.
Bake for 15-20 minutes at 65°C-90°C.
Reflow solder paste. The solder paste temperature
must be 200°C for at least 30 seconds. LTC recom·
mends vapor phase or infra red reflow systems for
best performance.
• Clean boards.

58 (8 Lead Small Oulline Plastic DIP)
Reliability Data • October 1986
• Operating Life

DEVICE
TYPE
OP07
LT385·1.2
LT1012
LTC1044/7660
LT1021

SS
200
40
46
59
45
390

# DEVICE # DEVICE # DEVICE
HOURS
HOURS
HOURS
AT
AT
AT
125·Cll)
55·C (1 ) # FAILURES
150·C
211.8K
1186.1K 591.9KK
0
41.9K
117.1KK
234.7K
0
29.4K
164.6K
82.1KK
0
47.4K
265.6K 132.5KK
0
23.4K
131.0K
65.4KK
0
0(4)
353.9K
19S2.0K 9S9.0KK

• 85185 With Bias

Thermal Information
Table 1shows the range of junction-to-ambient thermal resistance of devices mounted on a PCB of FR4 material
with copper traces, in still air at 25°C. 8JA with a ceramic
substrate is about 70% of the FR4 value. Maximum power
dissipation may be calculated by the following formula:

PD MAX [TA] = TjM~X- TA
JA
where Tj MAX = Maximum operating junction temperature.
TA Desired ambient operating temperature.
8JA = Junction to ambient thermal resistance.

=

DEVICE TYPE
OP07
LTC1044C

SS
153
7S

TOTAL DEVICE
HOURS
234.3K
114.2K
348.5K

SS
304
103
85
148

TOTAL DEVICE
HOURS
260.4K
161.8K
129.6K
38.0K
589.8K

# FAILURES
0
0
0

• Autoclave
DEVICETYPE
OP07
LTC1044C
LM385B·1.2
LT1012

# FAILURES
0
1(3)
0
1
2

• Temperature Cycle (Air to Air) - 65°C to 150·C
SO·S
SO-14
SO·16

150 to 200 0 CIW
100 to 140°CIW
90 to 130°CIW

SOL·16
SOL·18
SOL·20

S5 to 100°CIW
70 to 100°CIW
70 to 90 0 CIW

DEVICETYPE
OP07
LTC1044C

SS
155
96

Conditions: PCB mount on FR4 material, still air at 25°C, copper trace.

Table 1. Typical Thermal Resistance Values

Product Reliability
Linear Technology Corporation publishes a reliability data
pak on a quarterly basis for our complete range of hermetic and plastic devices. The data generated on the SO-8
compares favorably with that generated for dual-in-line
packages. The tests that are run to assess package and
device reliability are high temperature operating life with
electrical bias, temperature and humidity under bias
(85/85), autoclave, temperature cycle, and thermal shock.
A sample of the data for the S8 (SO-8 small outline plastic
DIP) is shown below.

TOTAL DEVICE
CYCLES
465.0K
192.0K
657.0K

# FAILURES
0
0
0

• Thermal Shock (Liquid to Liquid) - 65·C to 150·C
DEVICE TYPE
OP07
LTC1044C

Nole 1:
Nole 2:
Nole 3:
Nole 4:

SS
156
96

TOTAL DEVICE
CYCLES
312.0K
91.7K
403.7K

# FAILURES
0
0
0

=

Assumes Ea 1.0eV.
1 Fit 1failure in 10 9 device hours.
Non·functional-Bonding pad corrosion.
Failure rate at 55°C 1.2 fits(2) to a 60% confidence level.

=

More current data, by device type, may be obtained by
contacting Linear Technology Corporation, Marketing
Department.

S11-5

SURFACE MOUNT PRODUCTS
Tape and Reel Packing

Plastic Tube Packing

Tape and reel packing is available for all SO and SOL packages (except 18-lead) in accordance with EIA Specification
481-A. Table 2 lists the applicable tape widths, dimensions, and quantities for all LTC small-outline products.
Consult factory for tape and reel pricing and minimum order requirements.

Linear Technology SO and SOL packaged devices are
packed in conductive plastic tubes with the dimensions indicated in Figure 4. Unit quantities per tube are as listed in
Table 3.

COMPONENT
PACKAGE TAPE SIZE
PITCH
12mm
Smm
SO·S
SO-14
16mm
Smm
50·16
16mm
Smm
50L·16
16mm
12mm
50L·1S'
50L·20
24mm
12mm
'Unavailable at this time.

PARTS PER
HOLE
REEL
PITCH DIAMETER
REEL
4mm
13"
2500
4mm
13"
2500
4mm
13"
2500
4mm
1000
13"
4mm
13"
1000

50·S
SO·14
50·16

100 ea.
60 ea.
50ea.

50L·16
50L·1S
50L·20

50 ea.
40 ea.
40 ea.

Table 3. Devices Per Tube

Table 2. Tape and Reel Packing Specilicalions

SOL Package Shipping Tube

SO Package Shipping Tube

0.060

0.030 RAD REF

r"[

0.310
REF

0.260

KEEP FLAT
00 NOT ROUND
OUT

0.580

0.010 RAD
REF
0.070 -t--I--.I

0.150

0.050-+--+~

0.030",0.005

TYP WALL
0.115 -j-oI~--.j

Figure 4

811-6

i7~O~~~~--p-re-C-iS-io-n-s-a-m-p-le-~-~!_9_H8_:-I:
Amplifier
FEATURES
•
•
•
•
•
•
•

DESCRIPTion

4/Ls Typical Acquisition Time
Guaranteed 0.01 %Max. Gain Error
2mV Typ. Offset Voltage
2.5mV Max. Hold Step
Very Low Feedthrough 80dB Min.
High Input Impedance Under All Conditions
Logic Inputs Compatible with All Logic Families

APPLICATions
•
•
•
•
•

12·Bit Data Acquisition Systems
Ramp Generators
Analog Switches
Staircase Generators
Sample and Difference Circuits

The LF398 is a precision sample and hold amplifier which
uses a combination of bipolar and junction FET transis·
tors to provide precision, high speed, and long hold times.
Atypical offset voltage of 2mV and gain error of 0.004% al·
low this sample and hold amplifier to be used in 12·bit sys·
terns. Dynamic performance can be optimized by proper
selection of the external hold capacitor. Acquisition times
can be as low as 4/Ls for small capacitors while hold step
and droop errors can be held below 0.1mV and 30/LV/sec reo
spectively when using larger capacitors.
The LF398 is fixed at unity gain with 101°0 input
impedance independent of sample/hold mode. The logic
inputs are high impedence differential to allow easy in·
terfacing to any logic family without ground loop prob·
lems. A separate offset adjust pin can be used to zero the
offset voltage in either the sample or hold mode. Addi·
tionally, the hold capacitor can be driven with an external
signal to provide precision level shifting or "differencing"
operation. The device will operate over a wide supply volt·
age range from ±5V to ± 18V with very little change in
performance, and key parameters are specified over this
full supply range.

Basic Sample and Hold

Acquisition Time
_~;~~~y~TO±10V

v+

.

~

10

.:.
w

I'.:

:E

;::

100

O.

t\..

II'.:
1000
0.001

0.01
HOLD CAPACITOR

1.0
(~F)

811-7

LF398S8
ABSOLUTE mAXimum RATinGS

PACKAGE/ORDER InFORmATion

Input Voltage .................... Equal to Supply Voltage
Logic to Logic Reference Differential
Voltage (Note 2) ......................... +30V, - 30V
Output Short Circuit Duration .................. Indefinite
Hold Capacitor Short Circuit Duration ............. 10 sec
Lead Temperature (Soldering, 10 seconds) ......... 300°C
Supply Voltage ................................. ± 18V
Power Dissipation (Package Limitation)
(Note 1) ...................................... 500mW
Operating Temperature Range ............... OOC to 70°C
Storage Temperature Range .......... ; .. - 65°C to 150°C

TOP VIEW

'>0""

OFFSET
ADJUST 2
INPUT 3

v-

ORDER
PART NUMBER
LF398S8

LOGIC
7 REFERENCE
6 Ch

4

5 OUTPUT

PART MARKING

S8 PACKAGE
PLASTIC SO

398

ELECTRICAL CHARACTERISTICS (Note 3)
PARAMETER
Input Offset Voltage (Note 6)

CONDITIONS

MIN

•

Input Bias Current (Note 6)

RL = 10k

Feedthrough Attenuation Ratio at 1kHz
Output Impedance

Ch=0.01/iF
"HOLD" Mode

"HOLD" Step (Note 4)
Supply Current (Note 6)
Logic and Logic Reference Input Current
Leakage Current Into Hold Capacitor (Note 6)
Acquisition Time to 0.1 %

Ch=0.01/1F, VOUT=O
T2:25°C

Hold Capacitor Charging Current
Supply Voltage Rejection Ratio
Differential Logic Threshold

•

1010
0.004
SO

•

"HOLD" Mode (Note 5)
tlVOUT= 10V, Ch= l000pF
Ch=O.01/iF
VIN - VOUT= 2V
VOUT=O

The • denotes the specifications which apply over the full operating
temperature range.
Note 1: Tj max for the LF3988Sis 100°C.
Note 2: The logic inputs are protected to ± 30V differential as long as the
voltage on both pins does not exceed the supply voltage. For proper opera·
tion, however, both logic and logic reference pins must be at least 2V below
the positive supply and one of these pins must be at least 3V above the
negative supply.
Note3: Unless otherwise noted, Vs= ±1SV, Tj=2SoC,
-11.SVsV IN S = +11.5V, Ch=0.01/1F, RL = 10kll and unit is in "sample"
mode. Logic reference = OV and logic voltage = 2.5V.

811-8

10

•

Input Impedance
Gain Error

LF398
TYP
2

SO
O.S

96
0.5
0.5
4.5
2
30
4
16
S
110
1.4

MAX
7
10
50
100
0.01
0.02
4
6
2.5
6.5
10
200

2.4

UNITS
mV
mV
nA
nA
II
%
%
dB
II
II
mV
rnA
~

pA
/Is
/Is
rnA
dB
V

Note 4: The hold step is sensitive to stray capacitance coupling between
input logic signals and the hold capacitor. 1pF, for instance, will create an
additional O.SmV step with aSV logic swing and aO.D1/1F hold capacitor.
Magnitude of the hold step Is Inversely proportional to hold capacitor value.
Note 5: Leakage current is measured at ajunction temperature of 2SoC.
The effects of junction temperature rise due to power dissipation or elevat·
ed ambient can be calculated by doubling the 2SoC value for each 11°C In·
crease in chip temperature. Leakage Is guaranteed over full input Signal
range.
Note 6: These parameters are guaranteed over a supply voltage range of
±SVto ±ISV.

~~~Q~~~~

_________

LM_3_18_S8

High Speed
Operational Amplifier

FEATURES

DESCRIPTion

•
•
•
•
•
•

The LM318 is a high speed, unity gain stable operational
amplifier designed for applications requiring high slew
rate and wide bandwidth. Although the device is internally
compensated for unity gain operation, external compensation can be added for increased stability in reduced bandwidth applications. With a single capacitor, the 0.1 %
settling time is reduced to under 1/Ls. Feedforward compensation can be used in inverting applications to increase slew rate to over 150V//Ls and almost double the
bandwidth.

4mV Typ.lnput Offset Voltage
Guaranteed 25,000 Min. Gain
Guaranteed 50V//Ls Slew Rate
30nA Typ. Input Offset Current
15MHz Bandwidth
Unity Gain Stable

APPLICATions
•
•
•
•

Wideband Amplifiers
High Frequency Absolute Value Circuits
D/A Converter Amplifiers
Fast Integrators

Voltage Follower Pulse Response

Voltage Follower
10pF

SV/DIV

5k

5k

6
>'--.OUTPUT

INPUT --'vv,w----f
TIME -O.S!dI/DIV.

811-9

LM318S8
ABSOLUTE mAXimum RATinGS

PACKAGE/ORDER InFORmATion

Supply Voltage ................................... ± 20V
Differential Input Current (Note 1) ............... ± 10mA
Input Voltage (Note 2) ............................. ± 20V
Output Short Circuit Duration .................. Indefinite
Operating Temperature Range ............... O°C to 70°C
Storage Temperature Range ............. - 65°C to 150°C
Lead Temperature (Soldering, 10 sec.) ........... 300°C

ORDER
PART NUMBER

TOP VIEW

LM318S8

PART MARKING

S8 PACKAGE

PLASTIC SO

318

ELECTRICAL CHARACTERISTICS (Note 3)
SYMBOL
Vos

PARAMETER
Input Offset Voltage

los

Input Offset Current

18

Input Bias Current

RIN
Av

Input Resistance
Large Signal Voltage Gain

SR
GBW

Slew Rate
Gain Bandwidth Product
Output Voltage Swing
Input Voltage Range
Supply Current
Common·Mode Rejection Ratio
Power Supply Rejection Ratio

Is
CMRR
PSRR

•
•
•
Vs= ± 15V, VOUT= ± 10V, RL~2k!l
Vs=
Vs=
Vs=
Vs=

±15V,Av=1
±15V
±15V,RL=2k!l
± 15V

The. denotes those specifications which apply over the full operating
temperature range.
Nole 1: The inputs are shunted with back·to·back zeners for overvoltage
protection. Excessive current will flow if a differential voltage greater than
5V is applied to the inputs.

811-10

MIN

CONDITIONS

•
••
•

•

LM318
TYP
4
30
150

0.5
25
20
50
±12
± 11.5
70
65

MAX
10
15
200
300
500
750

3
200

V/~s

70
15
±13
5
100
80

UNITS
mV
mV
nA
nA
nA
nA
M!l
VlmV
V/mV

10

MHz
V
V
mA
dB
dB

Nole 2: For supply voltages less than ± 15V, the maximum input voltage is
equal to the supply voltage.
Note 3: These specifications apply for ±5VsVss ±20V. The power sup·
plies must be bypassed with a 0.1~F or greater disc capacitor within 4
inches of the device.

L7~!O~!r.s>~---c-o-n-st-a-n-t-c-u-rre-~-~-s-~3_u~_~_!

and Temperature Sensor

FEATURES
•
•
•
•
•

DESCRIPTion

1JLA to 10mA Operation
O.02%IV Regulation
O.BV to 30V Operating Voltage
Can Be Used as Linear Temperature Sensor
Draws No Reverse Current

APPLICATions
•
•
•
•
•
•
•

Current Mode Temperature Sensing
Constant Current Source for Shunt References
Cold Junction Compensation
Constant-Gain Bias for Bipolar Differential Stage
Micropower Bias Networks
Buffer for Photoconductive Cell
Current Limiter

The LM334 is a three-terminal current source designed to
operate at current levels from 1JLA to 10mA, as set by an
external resistor. The device operates as a true two·
terminal current source, requiring no extra power connec·
tions or input signals. Regulation is typically O.02%IV and
terminal·to-terminal voltage can range from BOOmV to 30V.
Because the operating current is directly proportional to
absolute temperature in degrees Kelvin, the device will
also find wide applications as a temperature sensor. The
temperature dependence of the operating current is
+O.336%JoC at room temperature. For example, a device
operating at 29BJLA will have a temperature coefficient of
+1JLAJoC. The temperature dependence is extremely accu·
rate and repeatable.
If a zero temperature coefficient current source is
required, this is easily achieved by adding a diode and a
resistor.

Remote Temperature Sensor
with Voltage Output

Operating Current vs
Temperature
225

500

400
RSET=22611

;;:
;:;; 300
a:

:::>

RSET
22611

10mV/OK

~

l/
"
,, "

~ 200

~

100

o

/
o

V

l/

V

V

""
100
200
300
400
OPERATING CURRENT (IIA)

125

25

r
w
a:
:::>

~

ffi

-75 ~
to-

-175

-m

500

811-11

LM334S8
ABSOLUTE mAXimum RATinGS

PACKAGE/ORDER InFORmATion

v+ to V- Forward Voltage ........................... 30V
V+ to V- Reverse Voltage ........................... 20V
RPin to V- Voltage .................................. 5V
Set Current ....................................... 10mA
Power Dissipation ............................... 200mW
Operating Temperature Range .............. OOC to 70°C
Lead Temperature (Soldering, 10 sec.) .............. 300°C

ORDER
PART NUMBER

TOP VIEW

'-IW"'
R 2

V+

LM334S8

7 NC

3

6 NC

NC 4

5 NC

PART MARKING
334

58 PACKAGE
PLASTIC SO

ELECTRICAL CHARACTERISTICS CURRENT SOURCE (Nole1)
SYMBOL
"'ISET

PARAMETER
Set Current Error, V+ = 2.5V
(Note 2)

CONDITIONS

MIN

LM334
TYP

10~:slsET:slmA

lmA

LM385-2.5

100k W.W.
ZERO

w

'"
-<
':J

1/

<;:

45011

95011

+
TYPE K

2k

V-

METER

~

10k
ADJUST
FOR
12.17mV
AT 25°C

ACROSS
450n

t:;

0

"""
0.01

0.1

10

100

REVERSE CURRENT (rnA)

811-13

LM385S8-1.2/LM385S8-2.5

ABSOLUTE mAXimum RATinGS

PACKAGE/ORDER InFORmATion

Reverse Breakdown Current ...................... 30mA
Forward Current .................................. 10mA
Operating Temperature Range ............... ooe to 70 0 e
Storage Temperature Range ............ - 65°C to 1500 e
Lead Temperature (Soldering, 10 sec.) .............. 300°C

ORDER
PART NUMBER

TOP VIEW

LM385S8·1.2
LM385S8·2.5
NC
(DO NOT USE)

PART MARKING

S8 PACKAGE
PLASTIC SO

3851 (1.2V VERSION)
3852 (2.5V VERSION)

ELECTRICAL CHARACTERISTICS (See Nole 1)
SYMBOL
Vz

~

LM38s.1.2
MIN TYP MAX
1.205 1.235 1.260
20

PARAMETER
Reverse Breakdown Voltage
Average Temperature Coefficient

CONDITIONS
TA =25°C, 20~As1Rs20mA
1M IN s IR s 20mA (Note 2)

Minimum Operating Current
Reverse Breakdown Voltage
Change with Current

TminsTASTmax
Imin sl Rs1mA
TA=25°C
TmlnsTASTmax
1mAsIRs20mA
TA=25°C
TmlnsTASTmax
IR = 100~A
TA=25°C
TminsTASTmax
10Hzsfs10kHz, IR= 100~A
TA = 25°C ± 0.1 DC, IR = 100~A

LlTemp
Imin
LlVz
LlIR

rz

en

~

Reverse Dynamic Impedance

Wide Band Noise (RMS)
Long Term Stability

•
•

8

•
•

0.4
60
20

15

LM385·2.5
MIN TYP MAX
2.425 2.5
2.575
20
20

pA

1
1.5

2
2.5

mV
mV

20
25

20
25

mV
mV

1
1.5

8

UNITS
V
ppm/DC

0.4

120
20

1
1.5

{l
{l

~V

ppm/kHr

LlTime

The • denotes the specifications which apply over full operating tem·
perature range.
Note 1: All specifications are forTA = 25°C unless otherwise noted.
Tmin = OoC and Tmax = +70°C.

811-14

Note 2: For guaranteed TC and very low initial tolerance, consult
LT1034CS8 data sheet. The LT1034CS8 is a low cost, pin for pin substitution
device.

L7UO~

~"'Y"'llnll\Q

~~

LTlOOlCS8

TECHNOLOG~~~--------p-re-c-i-5i-o-n-O-p-e-ra-t-io-n-a-1
Amplifier

FEATURES

DESCRIPTion

•
•
•
•
•
•
•

The LT1001 significantly advances the state-of-the-art of
precision operational amplifiers. In the design, processing, and testing of the device, particular attention has
been paid to the optimization of the entire distribution of
several key parameters. Consequently, the specifications
of the lowest cost, commercial temperature device, the
LT1001C, have been dramatically improved when
compared to equivalent grades of competing precision
amplifiers.

Guaranteed Low Offset Voltage 60/LV Max.
Guaranteed Low Drift 1.0/LV/oC Max.
Guaranteed Low Bias Current 4nA Max.
GuaranteedCMRR 110dB Min.
Guaranteed PSRR 106dB Min.
Low Power Dissipation 80mW Max.
Low Noise O.3JLVp-p

APPLICATions
•
•
•
•

Essentially, the input offset voltage of all units is less than
50JLV (see distribution plot below). Input bias and offset
currents, common-mode and power supply rejection of the
LT1001C offer guaranteed performance which were previously attainable only with expensive, selected grades of
other devices. Power dissipation is nearly halved compared to the most popular precision op amps, without adversely affecting noise or speed performance. Abeneficial
by-product of lower dissipation is decreased warm-up
drift. Output drive capability of the L1001 is also enhanced
with voltage gain guaranteed at 10mA of load current.

Thermocouple Amplifiers
Strain Gauge Amplifiers
Low Level Signal Processing
High Accuracy Data Acquisition

Typical Distribution
of Offset Voltage
Vs = ± 15V, TA = 25°C

Linearized Platinum Resistance Thermometer
with ± O.D25°C Accuracy Over 0 to 100°C
1 MEG.··
+15

I

R platt
lk[l- O'C
1.2k··
CJ"J

~ 150
~

o
LINEARITY
TRIM

90k'
LM129

rfI

::0

;>+--+--20k

10k"

OFFSET TRIM

• ULTRONIX 105A WIREWOUND
"" 1% FILM
t PLATINUM RID
118MF (ROSEMOUNT. INC.)

*

OUTPUT
0 10 10V 010 100'C

c::

~ 100

rlqJ

I

I

1

I

I

I
,

50

-00

I

i
L

J

::iil

o
Trim sequence: Irim offsel (O'C -1000.0[l),
Irim linearily (35'C-1138.7[l). Irim gain
(100'C-1392.6[l). Repeat unlil ali Ihree
poinls are fixed wilh ± .025'C.

I

954 UNITS
FROM THREE RUNS

200

10k •

I

.r
-~

-m

INPUT

O~FSET

0

m

hl
~

00

VOLTAGE (MICROVOLTS)

811-15

LT1001CS8
ABSOLUTE mAXimum RATinGS

PACKAGE/ORDER InFORmATion

Supply Voltage .................................. ± 22V
Differential Input Voltage ........................ ± 30V
Input Voltage
................................. ± 22V
Output Short Circuit Duration ................. Indefinite
Operating Temperature Range ............... OOC to 70°C
Storage Temperature Range ............. - 65°C to 150°C
Lead Temperature (Soldering, 10 sec.) .............. 300°C

ORDER
PART NUMBER

TOP VIEW

LT1001CS8
PART MARKING
58 PACKAGE
PLASTIC SO

1001

ELECTRICAL CHARACTERISTICS Vs= ± 15V, TAS25°C, unless otherwise noted
SYMBOL
Vos

I::Nos
lITime
los
Ib
en
en

PARAMETER
Input Offset Voltage
Long Term Input Offset Voltage
Stability
Input Offset Current
Input Bias Current
Input Noise Voltage
Input Noise Voltage Density

AVOL

Large Signal Voltage Gain

CMRR
PSRR
Rln
Vour

Common·Mode Rejection Ratio
Power Supply Rejection Ratio
Input Resistance Differential Mode
Input Voltage Range
Maximum Output Voltage Swing

SR
GBW
Pd

Slew Rate
Galn·Bandwldth Product
Power Dissipation

CONDITIONS

MIN

Note 1and Note 2

O.IHz to 10Hz(Note 1)
fo=10Hz(Note1)
fo = 1000Hz (Note 1)
RL2:2kll, Vo= ± 12V
RL2:1kO, Vo= ±IOV
VCM= ±13V
Vs= ±3Vto ±IBV

RL2:2kll
RL2:1kll
RL2:2kll (Note 3)
(Note 3)
No Load
No Load, Vs= ±3V

400
250
110
106
15
±13
±13
±12
0.1
0.4

LT1001C
TYP
lB
0.3
0.4
±0.7
0.3
10.5
9.B
BOO
500
126
123
BO
±14
±14
±13.5
0.25
O.B
48
4

MAX

UNITS
~V

60

~V/month

1.5

3.B
±4.0
0.6
lB.O
11.0

nA
nA
~Vp·p

nV/v'Hz
VlmV

V/mV
dB
dB
MO
V
V
V
V/~s

MHz
mW
mW

BO
B

ELECTRICAL CHARACTERiStiCS Vs= ± 15V, O°CSTAS70°C, unless otherwise noted
SYMBOL
Vos

PARAMETER
Input Offset Voltage
Average Offset Voltage Drift

CONDITIONS

MIN

LT1001C
TYP
30
0.3

MAX

110
•
1.0
~
•
lITemp
Input Offset Current
0.6
5.3
los
•
Input Bias Current
±I.O
±5.5
Is
•
Large Signal Voltage Gain
750
RL2:2kO,Vo= ±IOV
AVOL
• 250
CMRR
Common·Mode Rejection RatiO
106
123
VCM= ±13V
•
PSRR
Power Supply Rejection Ratio
Vs= ±3Vto ±18V
103
120
•
Input Voltage Range
±13
±14
•
Output Voltage Swing
RL>2kO
Vour
• ±12.5 ±13.B
Pd
Power Dissipation
No Load
55
90
•...
The. denotes the specifications which apply over the full operating tem·
operation, Excluding the initial hour of operation, changes
perature range.
Note 1: This parameter is tested on Ii sample baSis only.
Note 2: Long Term Input Offset Voltage Stability refers to the averaged
trend line of Vos versus Time over extended periods after the first 30 days of

811-16

UNITS
~V
~V/oC

nA
nA

V/mV
dB
dB
V
V
mW
In Vos during the

first 30 days are typically 2.5~V.
Note 3: Parameter Is guaranteed by design.

.L7~

F AI)
Lln
L7 U \K

LT1004CS8-1.2/
LTl004CS8-2.S

TECHNOLOGY~--------M-ic-r-o-p-o-w-e-r-V-o-It-a-g-e

References
FEATURES

DESCRIPTion

•
•
•
•
•
•

The LT1004 Micropower Voltage References are two
terminal bandgap reference diodes designed to provide high accuracy and excellent temperature characteristics at very low operating currents. Optimization
of the key parameters in the design, processing and
testing of the device results in accuracy specifications
previously attainable only with selected units. Below
is a distribution plot of reference voltage for a typical
lot of LT1004-1.2. Virtually all of the units fall well
within the prescribed limits of ±4mV.

Guaranteed ±4mV initial accuracy LT1004-1.2
Guaranteed ± 20mV accuracy LT1004-2.5
Guaranteed 10ILA operating current
Guaranteed temperature performance
Operates up to 20mA
Very low dynamic impedance

APPLICATions
•
•
•
•

Portable meter references
Portable test instruments
Battery operated systems
Current loop instrumentation

The LT1004 is a pin for pin replacement for the 385
series of references with improved accuracy specifications. More important, the LT1004 is an attractive
device for use in systems where accuracy was
previously obtained at the expense of power consumption and trimming.
For a low drift micropower reference with guaranteed
temperature coefficient, see the LT1034CS8 data sheet.

Micropower Cold Junction Compensation For Thermocouples

lOOk

Typical Distribution of
Reference Voltage (LT1004-1.2)

.

200

IR t

180

±r:
-----,-rt--t-f------I

160

3V
LITHIUM

1684

-

5k AT
25°C

140

t

120

+

LT 1004-1.2

r-

i---

---1I

,
I
I

100

1200 PARTS_
T, ~ 25°C

t--

'--

-- --+--

80
186

1800
60

THERMOCOUPLE
TYPE

J
K
T
S

.L7~~

Rt
233k
299k
300k
2_1M

I

40

+

-

20

• QUIESCENT CURRENT", 15"A
t YELLOW SPRINGS INST. CO_
PART #44007

"'
N
M
N

M
M
N

"'
M
M
N

~

."'
M
N

~
<0
M
"' "'
"'M ~ "'
M
N

N

N

---'

~

M
N

"'
M
~

N

---'

COMPENSATES WITHIN
± 1°C FROM DOC TO 6DoC

811-17

LT1004CS8-1.2/
LT1004CS8-2.5
ABSOLUTE mAXimum RATinGS

PACKAGE/ORDER InFORmATiOn

Reverse Breakdown Current. . . . . . . . . . . . . . . 30mA
Forward Current. ....................... 10mA
Operating Temperature Range ........ O°C to 70°C
Storage Temperature Range .... " -65°C to 150°C
Lead Temperature (Soldering, 10 sec.) ...... 300°C

ORDER PART
NUMBER

TOP VIEW

LT1 004CS8·1.2
LT1 004CS8·2.5
NC
(DO NOT USE)

PART MARKING

S8 PACKAGE
PLASTIC SO

0412 (1.2VVERSION)
0425 (2.5V VERSION)

ELECTRICAL CHARACTERISTICS (See Note 1)
SYMBOL
Vz

PARAMETER
Reverse Breakdown Voltage

CONOITIONS
IR ~ 100~A
LT1004C O°C ,;; TA ,;; 70°C

J.V z
J. Temp

Average Temperature Coefficient

Imin ,;; IR ,;; 20m A

[min

Minimum Operating Current

J.V z

T.

Reverse Breakdown Voltage
Change with Current

rz

Reverse Dynamic Impedance

IR

en

Wide Band Noise (RMS)

IR ~ 100~A
10Hz,;; f ,;; 10kHz

J.V z
J. Time

Long Term Stability

IR ~ 100~A
TA ~ 25°C ± O.I°C

Imin ,;; IR ,;; lmA
lmA ,;; IR ,;; 20m A
~ 100~A

The. denotes the specifications which apply over the full operating
temperature range.
Note 1: All specifications are for TA = 25'C unless otherwise noted.

811-18

•
•

MIN
1.231
1.225

LTlOO4·1.2
TYP
MAX
1.235 1.239
1.235 1.245
20
8

•

•
•

0.2

LTlOO4-2.5
MIN
TYP
MAX
2.480 2.500 2.520
2.470 2.500 2.530
20

10
1
1.5
10
20
0.6
1.5

12

0.2

60

120

20

20

UNITS
V
V
ppm/oC

20

~A

1
1.5
10
20
0.6
1.5

mV
mV
mV
mV
II
II
~V

ppm/kHr

~7UJ~~~~

____

LT_l_OO_7_C_S_/L_Tl_O_37_C_S
Low Noise, High Speed
Precision Operational Amplifiers

FEATURES

DESCRIPTion

•
•
•
•
•
•
•
•
•

Next to the LT1028, the LT1007/LT1037 series features the
lowest noise performance available to date for monolithic
operational amplifiers: 2.5nV/.JHz wideband noise (less
than the noise of a 4000 resistor), 1/f corner frequency of
2Hz and 60nV peak to peak 0.1 Hz to 10Hz noise. Low noise
is combined with outstanding precision and speed speci·
fications: 20/LV offset voltage, 0.3/LV/oC drift, 126dB
common·mode and power supply rejection, and 60MHz
gain·bandwidth·product on the decompensated LT1037,
which is stable for closed loop gains of 5or greater.

Guaranteed 4.5nV/.JHz 10Hz Noise
Guaranteed3.8nV/.JHz 1kHz Noise
0.1 Hz to 10Hz Noise, 60nVp·p, Typical
Guaranteed 5 Million Min. Voltage Gain, RL= 2kO
Guaranteed 2Million Min. Voltage Gain, RL = 6000
Guaranteed60/LV Max. Offset Voltage
Guaranteed 1.0/LV/oC Max. Drift with Temperature
Guaranteed 11V//Lsec Min. Slew Rate (LT1037)
Guaranteed 110dB Min. CMRR

The voltage gain of the LT1007/LT1037 is an extremely high
20 million driving a 2kO load and 12 million driving a 6000
load to ± 10V.

APPLICATions
•
•
•
•
•
•
•

Low Noise Signal Processing
Microvolt Accuracy Threshold Detection
Strain Gauge Amplifiers
Direct Coupled Audio Gain Stages
Sine Wave Generators
Tape Head Preamplifiers
Microwave Preamplifiers

In the design, processing, and testing of the device, par·
ticular attention has been paid to the optimization of the
entire distribution of several key parameters. Consequently, the specifications have been spectacularly im·
proved compared to competing amplifiers.
The sine wave generator application shown below utilizes
the low noise and low distortion characteristics of the
LT1037.

Ultra-Pure 1kHz Sine Wave Generator
43011

>-+-OUTPUT

O.1Hz to 10Hz Noise

&~lIIj JIIA

l1AAI

!}11 /Il't ~" MJ .:2:.1

l1" I'

~r

IrI

#327 Lamp.

R

I
I ~ 2rrRC
R ~ 1591.5\! ±.I%
C ~ 0.1"1 ±.1%

Total Harmonic Distortion ~ < .0025%
Noise ~ < .0001%
Amplitude ~ ± 8 volts
Output Frequency ~ 1.000kHz lor values
given ± .4%

4

10

6

TIME (SECONDS)

811-19

LTl 007CS/LTl 037CS
ABSOLUTE mAXimum RATinGS

PACKAGE/ORDER InFORmATion

Supply Voltage ................................... ± 22V
Input Voltage ................... Equal to Supply Voltage
Output Short Circuit Duration .................. Indefinite
Differential Input Current (Note 5) ................ ± 25mA
Lead Temperature (Soldering, 10 sec.) .............. 300°C
Operating Temperature Range ............... OOC to 70°C
Storage Temperature Range
All Devices ........................... - 65°C to 150°C

TOP VIEW

ORDER PART NUMBER
LT1007CS
LT1037CS

PART MARKING
LT1007CS
LT1037CS

S16 PACKAGE
PLASTIC SOL

ELECTRICAL CHARACTE RISTICS Vs = ± 15V, TA =25°C, unless otherwise noted
SYMBOL
Vos

~
LlTime
los
IB
en

in

PARAMETER
Input Offset Voltage
Long Term Input Offset Voltage
Stability
Input Offset Current
Input Bias Current
Input Noise Voltage
Input Noise Voltage Density
Input Noise Current Density

CONDITIONS
(Note 1)
(Notes 2 and 3)

O.IHz to 10Hz(Note 3)
fo = 10Hz (Note 3)
fo= 1000Hz (Note 3)
fo = 10Hz (Note 3)
fo= 1000Hz (Note 3)

AVOL

Input Resistance-Common·Mode
Input Voltage Range
Common·Mode Rejection Ratio
Power Supply Rejection Ratio
Large Signal Voltage Gain

VOUT

Maximum Output Voltage Swing

RL~2k!l
RL~600!l

SR

Slew Rate

RL~2kO
AVCL~5

CMRR
PSRR

GBW

Za
Pd

811-20

LT1007
LT1037
Gain·Bandwidth
LT1007
Product
LT1037
Open Loop Output Resistance
Power Dissipation
LT1007
LT1037

MIN

VCM=±IIV
Vs= ±4Vto ±18V
RL~2kO, Vo= ± 12V
RL~lkO, Vo= ± 10V
RL~6000, Vo= ± 10V

to = 100kHz (Note 4)

to= 10kHz(Note4)(AvCL~5)
Vo=O,lo=O

±11.0
110
106
5.0
3.5
2.0
±12.5
±10.5
1.7
11
5.0
45

lT1007C
LT1037C
TYP
20
0.2
12
± 15
0.06
2.8
2.5
1.5
0.4
5
± 12.5
126
126
20.0
16.0
12.0
±13.5
± 12.5
2.5
15
8.0
60
70
80
85

MAX
60
1.0

UNITS

50
±55
0.13
4.5
3.8
4.0
0.6

nA
nA

~V
~V/Mo

~Vp·p

nV/vltz
nV/~
pA/V:Hz
pAlvltz
GO
V
dB
dB
V/~V
V/~V
V/~V

V
V
V/~s
V/~s

140
140

MHz
MHz
!l
mW
mW

LTl 007CS/LTl 037CS
ELECTRICAL CHARACTERISTICS Vs= ±15V,OOC~TA~700C,unlessotherwisenoted
SYMBOL
Vos
l:!.Vos
l:!.Temp

PARAMETER
Input Offset Voltage
Average Input Offset Drift

AVOL

Input Offset Current
Input Bias Current
Input Voltage Range
Common·Mode Rejection Ratio
Power Supply Rejection Ratio
Large Signal Voltage Gain

VOUT
Pd

Maximum Output Voltage Swing
Power Dissipation

los
18
CMRR
PSRR

CONDITIONS
(Note 1)
(Note 6)

•

VCM = ±10.5V
Vs= ±4.5Vto ±lBV
RL2:2kll, Vo= ± 10V
RL2:1 kll, Vo= ± 10V
RL2:2kll

The. denotes the specifications which apply over full operating tempera·
ture range.
Note 1: Input Offset Voltage measurements are performed by automatic
test equipment approximately 0.5 seconds after application of power.
Note 2: Long Term Input Offset Voltage Stability refers to the average trend
line of Offset Voltage vs. Time over extended periods after the first 30 days
of operation. Excluding the initial hour of operation,changes in Vos during
the first 30 days are typically 2.5~V.

•
•
•
•
•
•
••
•
•

LT1007C/LT1037C
MAX
MIN
TYP
35
110
0.3
1.0

±10.5
106
102
2.5
2.0
±12.0

15
±20
±l1.B
120
120
lB.O
14.0
±13.6
90

70
±75

UNITS
~V
~V/oC

nA
nA
V

dB
dB
V/~V
V/~V

160

V
mW

Note 3: This parameter is tested on a sample basis only.
Note 4: This parameter is guaranteed by design and is not tested.
Note 5: The inputs are protected by back·to·back diodes. Current limiting
resistors are not used in order to achieve low noise. If differential input volt·
age exceeds ± O.7V, the input current should be limited to 25mA.
Note 6: The Average Input Offset Drift performance is within the specifica·
tions unnulled or when nulled with apot having a range of Bkll to 20kll.

811-21

~-Y--LlntAD

~~

LTl009S8

TECHNOLdG~~~---------2-.5-V-o-lt-R-ef-e-re-n-c-e

FEATURES

DESCRIPTion

•
•
•
•
•

The LT1009 is a precision trimmed 2.500 Volt shunt regulator diode featuring a maximum initial tolerance of only
::I:: 1OmV. The low dynamic impedance and wide operating
current range enhances its versatility. The 0.4% reference tolerance is achieved by on-chip trimming which not
only minimizes the initial voltage tolerance but also minimizes the temperature drift.

0.4% Initial Tolerance Max
Guaranteed Temperature Stability
Maximum 0.60 Dynamic Impedance
Wide Operating Current Range
Directly Interchangeable with LM336 for Improved
Performance
• No Adjustments Needed for Minimum Temperature
Coefficient

APPLICATions
•
•
•
•
•

Reference for 5V Systems
8 Bit AI Dand D/ A Reference
Digital Voltmeters
Current Loop Measurement and Control Systems
Power Supply Monitor

Even though no adjustments are needed with the LT1009,
a third terminal allows the reference voltage to be adjusted ::1::5% to calibrate out system errors. In many
applications, the LT1009 can be used as a pin-to-pin
replacement of the LM336-2.5 and the external trim network eliminated.

Output Voltage

2.5 Volt Reference
2.530
5V-35V
3.6k
t----..-OUTPUT
-~
10k"
LT1009 •...t
'~r----+'< TRIM

2.520

:;;-

ii 2.510
""~

2.490

!::!

'*

811-22

TV1!CAL

~ 2.500
~

"DOES NOT AFFECT
TEMPERM'URE COEFFICIENT.
±5% TRIM RANGE

GUARANrEED MAX

~

2.480

./

~

-~

,,/'"

r

-~

-

~ ~/ r--.- "'-

GUARANTEED MINIMUM""

0
~
~
~
TEMPERATURE (OC)

~

100

1~

LT1009S8
ABSOLUTE mAXimum RATinGS

PACKAGE/ORDER inFORmATion

Reverse Current. . . . . . . . . . . . . . . . . . . . . . . . 20mA
Forward Current. . . . . . . . . . . . . . . . . . . . . . .. 10mA
Operating Temperature Range ........ O°C to 70°C
Storage Temperature Range ...... -65°C to 150°C
Lead Temperature (Soldering, 10 sec.). . . . .. 300°C

ORDER PART NUMBER
TOP VIEW

LT1009S8

"W
"" 2
NC 3i

4 •.. ·

'"'
6

PART MARKING

5ADJ

1009

S8 PACKAGE
PLASTIC SO

ELECTRICAL CHARACTERISTICS
SYMBOL
Vz
6.Vz
6.IR
rz

PARAMETER
Reverse Breakdown Voltage
Reverse Breakdown Change with Current

CONDITIONS
TA = 25°C, IR = lmA

Reverse Dynamic Impedance

IR=lmA

-.J:'!L

Temperature Stability
Average Temperature Coefficient

TMIN:;;TA:;;TMAX
0°C:;;TA:;;700C(Note 1)

-.J:'!L

Long Term Stability

TA =25°C±0.I°C, IR = lmA

6.Temp

400~A:;;IR:;;10mA

MIN
2.490

•

•
•

LT1009SB
TYP
2.500
2.6
3
0.2
0.4
1.8
15
20

MAX
2.510
10
12
1.0
1.4
4
25

UNITS
V
mV
mV

n
n
mV
ppm/oC
ppm/kHr

6.Time

The. denotes the specifications which apply over the full operating
temperature range.
Note 1: Average temperature coefficient is defined as the total voltage
change divided by the specified temperature range.

S11-23

~~Llnlt\l2

~~

LTl0l2S8

TECHNOLOGY~------P-ic-o-a-m--p-In-p-u-t-C-u-r-re-n-t
Microvolt Offset
Low Noise Op Amp

FEATURES

DESCRIPTion

• Internally Compensated
• Guaranteed Offset Voltage
120p,V Max.
• Guaranteed Bias Current
25°C
300pA Max.
OOC to 70°C
380pA Max.
• Guaranteed Drift
1.8p,V/oC Max.
• Low NOise,O.1Hzto 10Hz
O.5p,Vp-p
• Guaranteed Low Supply Current
600p,A Max.
• GuaranteedCMRR
110dB Min.
• Guaranteed PSRR
110dB Min.
• Guaranteed Voltage Gain with 5mA Load Current

The LT1012 is an internally compensated universal precision operational amplifier which can be used in practically
all precision applications. The LT1012 combines picoampere bias currents (which are maintained over the full OOC
to 70°C temperature range), microvolt offset voltage (and
low drift with time and temperature), low voltage and current noise, and low power dissipation. Extremely high
common-mode and power supply rejection ratios, practically unmeasurable warm-up drift, and the ability to deliver 5mA load current with a voltage gain of a million round
out the LT1012's superb precision specifications.
The all around excellence of the LT1012 eliminates the
necessity of the time consuming error analysis procedure
of precision system design in many applications; the
LT1012 can be stocked as the universal internally compensated precision op amp.

APPLICATions
•
•
•
•
•
•
•

Precision Instrumentation
Charge Integrators
Wide Dynamic Range Logarithmic Amplifiers
Light Meters
Low Frequency Active Filters
Standard Cell Buffers
Thermocouple Amplifiers

Kelvin-Sensed Platinum Temperature Sensor Amplifier
+ IOV

.

REFERENCE

10M

R,
OOK

.
.

392K
-15V

.

182K

5K
253K

.. -

~

ROSEMOUNT:
7BS
Rs
OR
,
EQU'VALENT ,

200K

--,
IOO!!
at
DC

4.75K

,

,

~1
1K

~ 24.3K

f}'
5K

OK

1000

/.

//

7

6

"
4 f
3
;

I

100mVI C
-50Cto-f150 C

Your

-Oto 70°C

15V

=-25°C

619K

L_ I--J

·WIRE WOUND RESISTORS

/

./

"'"
\S

±,15V

ALL OTHER RESISTORS·
1% METAL FILM
PoSitive feedback (R,) linearIZes the 10
heren! parabolic nonlinearity of the
platinum sensor and reduces errors
Irom 1.2'C to 0,004 'C over the
-50"Cto ISO"Grange.

811-24

R, •
654K

6.65M

....? .
5K

Offset Voltage vs Source Resistance
(Balanced or Unbalanced)

1.

TrlmR?al0 C for Vo = OV
RJ al 100 C for Vo = lOV
R4 a150 ClorVo = 5V
in the order mdicated

==

1
lk

3k

10k 30k lOOk 300k 1M
SOURCE RESISTANCE (0)

3M 10M

LT1012S8
ABSOLUTE mAXimum RATinGS

PACKAGE/ORDER InFORmATion

Supply Voltage ................................... ± 20V
Differential Input Current (Note 1) ................ ± 10mA
Input Voltage ..................................... ± 20V
Output Short Circuit Duration .................. Indefinite
Operating Temperature Range ............... OOC to 70°C
Storage Temperature Range ............. - 65°C to 150°C
Lead Temperature (Soldering, 10 sec.) .............. 300°C

ORDER PART
NUMBER

TOP VIEW

LT1012S8

PART MARKING

S8 PACKAGE
PLASTIC SO

1012

ELECTRICAL CHARACTERISTICS Vs = ±15V, VCM = OV, TA =25°C, unless otherwise noted.
SYMBOL
Vas

PARAMETER
Input Offset Voltage

CONDITIONS

MIN

Note 2
los

Long Term Input Offset Voltage Stability
Input Offset Current

16

Input Bias Current

en
en

Input Noise Voltage
Input Noise Voltage Density

in
AVOL

Input Noise Current Density
Large Signal Voltage Gain

CMRR
PSRR

Common·Mode Rejection Ratio
Power Supply Rejection Ratio
Input Voltage Range
Output Voltage Swing
Slew Rate
Supply Current

VOUT
Is

Note 2
Note 2
O.IHz to 10Hz
10 = 10Hz (Note 3)
10 = 1000Hz (Note 3)
fo= 10Hz
VOUT= ±12V, RL~10k!}
VOUT= ±10V, RL~2k!}
VCM= ±13.5V
Vs= ±2Vto ±20V
RL = 10k!}
Note 2

200
120
110
110
±13.5
±13
0.1

LT101258
TYP
10
25
0.3
50
60
±80
±120
0.5
17
14
20
2000
1000
132
132
±14.0
±14
0.2
380

MAX
120
180

UNITS
~V
~V
~Vlmonth

280
380
±300
±400

pA
pA
pA
pA
~Vp·p

30
22

nVIV'Hz
nVIV'Hz
IAlV'Hz
VlmV
VlmV
dB
dB
V
V
VI~s

600

~A

811-25

LT1012SB

ELECTRICAL CHARACTE RISTICS Vs = ± 15V, VCM =OV, o·c S, TA S 70·C, unless otherwise noted.
SYMBOL
Vos

PARAMETER
Input Offset Voltage

los

Average Temperature Coefficient of Input
Offset Voltage
Input Offset Current

CONDITIONS

MIN

••

Note2

Note 2

18

Average Temperature Coefficient of Input
Offset Current
Input Bias Current
Note2

AVOL
CMRR
PSRR
Your
Is

Average Temperature Coefficient of
Input Bias Current
Large Signal Voltage Gain
Common·Mode Rejection Ratio
Power Supply Rejection Ratio
Input Voltage Range
Output Voltage Swing
Supply Current

Vour= ± 12V, RL~10k!l
Vour = ±10V,RL~2k[J
VCM = ± 13.5V
Vs= ±2.5Vto ±20V
RL = 10kIJ

The. denotes the specifications which apply over the full operating tem·
perature range.
Note 1: Differential input voltages greater than 1V will cause excessive cur·
rent to flow through the input protection diodes unless limiting resistance
Is used.

811-26

•
••
•
••
•
••
•
•
•
•
•

150
100
108
108
±13.5
± 13

LT1012S8
TYP
20
30
0.2

MAX
200
270
1.8

UNITS

60
80
0.4

380
500
4

pA
pA
pAJoC

±100
±150
0.5

±420
±550
5

pA
pA
pAJoC

1500
800
130
128
±14
400

~V
~V
~V/oC

VlmV
VlmV
dB
dB
V
V
800

Note2: These specifications apply for ±2VsVss ±20V(±2.5VsVss
± 20Vover the temperature range) and -13.5V SVCM s13.5V (for
Vs= ±15V).
Note 3: This parameter is tested on a sample basis only.

~A

~"""-Llnt1\l2

LTl0l3DS8

~~

TECHNOLOGY~------D-u-a-IP-r-ec-i-si-On--O-p-A-m--p

FEATURES

DESCRIPTion

• Single Supply Operation
Input Voltage Range Extends to Ground
Output Swings to Ground while Sinking Current
a Pin Compatible to 1458 and 324 with Precision Specs
• Guaranteed Offset Voltage
800/LV Max.
• Guaranteed Low Drift
5/LVfOC Max.
• Guaranteed Offset Current
1.5nA Max.
• Guaranteed High Gain
5mA Load Current
1.2 Million Min.
17mA Load Current
0.5 Million Min.
• Guaranteed Low Supply Current
550/LA Max.
• Low Voltage Noise, 0.1 Hz to 10Hz
O.~fuNp-p
• Low Current Noise-Better than OP-07, 0.07pAlvHz

The LT1013 is the first precision dual op amp in the 8-pin
small outline (SO) package, upgrading the performance of
such popular devices as the MC1458, LM358 and OP-221.
The LT1013's low offset voltage of 200/LV, drift of 0.7/LV/oC,
offset current of 0.2nA, gain of 7 million, common-mode
rejection of 114dB, and power supply rejection of 117dB
qualify it as two truly precision operational amplifiers. Particularly important is the low offset voltage, since no offset null terminals are provided in the dual configuration.
Although supply current is only 350/LA per amplifier, a new
output stage design sources and sinks in excess of 20mA
of load current, while retaining high voltage gain.
The LT1013 can be operated off a single 5V power supply:
input common-mode range includes ground; the output
can also swing to within a few millivolts of ground.
Crossover distortion, so apparent on previous single-supply designs, is eliminated. A full set of specifications is
provided with ± 15V and single 5V supplies.

APPLICATions
• Battery-Powered Precision Instrumentation
Strain Gauge Signal Conditioners
Thermocouple Amplifiers
Instrumentation Amplifiers
• 4mA-20mA Current Loop Transmitters
• Multiple Limit Threshold Detection
• Active Filters
• Multiple Gain Blocks

3Channel Thermocouple Thermometer
4k

1M

LT1004
1.2V
OUTPUT A
10mV/'C

206!l

4k

OUTPUT B
10mV/oC
USE TYPE K THERMOCOUPLES. ALL RESISTORS = 1% FILM.
COLD JUNCTION COMPENSATION ACCURATE
TO ± 1°C FROM O°C-60°C.
USE 4TH AMPLIFIER FOR OUTPUT C.

811-27

LT1013DS8
ABSOLUTE mAXimum RATinGS

PACKAGE/ORDER InFORmATion

Supply Voltage ................................... ± 22V
Differential Input Voltage ......................... ± 30V
Input Voltage ........... Equal to Positive Supply Voltage
......... 5V Below Negative Supply Voltage
Output Short Circuit Duration .................. Indefinite
Operating Temperature Range ............... O°C to 70°C
Storage Temperature Range
All Grades ........................... - 65°C to 150°C
Lead Temperature (Soldering, 10 sec.) .............. 300°C

TOP VIEW

ORDER PART
NUMBER
LT1013DS8

S8 PACKAGE
PLASTIC SO

PART MARKING
1013

NOTE: THIS PIN CONFIGURATION OIFFERS FROM
THE STANDARD 8-PIN DUAL-IN-LiNE CONFIGURATION

ELECTRICAL CHARACTERISTICS Vs = :!: 15V, VCM = OV, TA =25°C, unless otherwise noted.
SYMBOL
Vas
los
Ie
en
en
in

AVOL

PARAMETER
Input Offset Voltage
Long Term Input Offset Voltage Stability
Input Offset Current
Input Bias Current
Input Noise Voltage
Input Noise Voltage Density
Input Noise Current Density
Input Resistance-Differential
Common-Mode
Large Signal Voltage Gain

CONDITIONS

O.lHz to 10Hz
fo= 10Hz
fa = 1000Hz
fo=10Hz
(Note 1)
Vo= ±10V, RL2:2k
Vo= ± 10V, RL =6000

Input Voltage Range
CMRR
PSRR
VOUT
Is

811-28

Common-Mode Rejection Ratio
Power Supply Rejection Ratio
Channel Separation
Output Voltage Swing
Slew Rate
Supply Current

VCM = ± 13.5V, -15.0V
Vs= ±2Vto ±lBV
Vo= ± 10V, RL =2k
RL=2k
Per Amplifier

MIN

70
1.2
0.5
+ 13.5
-15.0
97
100
120
±12.5
0.2

LT1013D
TYP
200
0.5
0.2
15
0_55
24
22
0.07
300
4
7.0
2.0
+13.B
-15.3
114
117
137
±14
0.4
0.35

MAX
BOO
1.5
30

0.55

UNITS
pV
pV/Mo_
nA
nA
pVp-p
nVl,JHz
nV/,JHz
pA/;IHz
MO
GO
V/pV
V/pV
V
V
dB
dB
dB
V
Vips
rnA

LT1013DS8
ELECTRICAL CHARACTERISTICS
Vs + =

+5V, Vs -

SYMBOL
Vas
los
Is
AVOL

VOUT

Is

=ov, VOUT = 1.4V, VCM =ov, TA = 25°C, unless otherwise noted

PARAMETER
Input Offset Voltage
Input Offset Current
Input Bias Current
Large Signal Voltage Gain
Input Voltage Range
Output Voltage Swing

Supply Current

CONDITIONS

MIN

Vo=5mVt04V, RL=5000
+3.5
0
Output Low, No Load
Output Low, 6000 to Ground
Output Low, ISINK = 1rnA
Output High, No Load
Output High, 6000 to Ground
Per Amplifier

4.0
3.4

LT10l3D
TYP
250
0.3
18
1.0
+3.8
-0.3
15
5
220
4.4
4.0
0.32

MAX
950
2.0
50

UNITS
~V

nA
nA
V/~V

V
V
mV
mV
mV
V
V
rnA

25
10
350

0.50

ELECTRICAL CHARACTERISTICS Vs= ~15V, VCM=OV,O°C~TA~700Cunlessotherwisenoted
SYMBOL
Vos

los

PARAMETER
Input Offset Voltage
Average Input Offset Voltage Drift
Input Offset Current

CONDITIONS
Vs = + 5V, OV; Vo = 1.4V
(Note 2)
Vs= +5V,OV;Vo =1.4V

Is

Input Bias Current

AVOL
CMRR
PSRR

Large Signal Voltage Gain
Common·Mode Rejection Ratio
Power Supply Rejection Ratio
Output Voltage Swing

VOUT

Is

Vs= +5V,OV;V o=1.4V
Vo= ±10V,RL=2k
VCM = ± l3.0V, -15.0V
Vs= ±2Vto ±18V
RL=2k
Vs = + 5V, OV; RL = 600ll
Output Low
Output High

Supply Current per Amplifier
Vs= +5V,OV;Vo=1.4V

MIN

•
•
•
••
••
•
•
•
•
••
••

0.7
94
97
±12.0
3.2

LT10l3D
TYP
230
280
0.7
0.3
0.5
16
24
4.0
113
116
±13.9
6
3.9
0.37
0.34

MAX
1000
1200
5.0
2.8
6.0
38

90

UNITS
~V
~V
~V/oC

nA
nA
nA
nA
V/~V

dB
dB
V
13
0.60
0.55

mV
V
rnA
rnA

The. denotes the specifications which apply over the full operating tern·
perature range.
Note 1: This parameter is guaranteed by design and is not tested. Typical
parameters are defined as the 60% yield of parameter distributions of
individual amplifiers; i.e., out of 100 LT1013s typically 120 opamps will be
beller than the indicated specification.
Note 2: This parameter is not 100% tested.

811-29

~""'llnll\l2

LTl021DCS8

~~

T8CHNOLOG~~~~--------P-r-e-c-is-io-n-R-e-fe-r-e-n-c-e

FEATURES

DESCRIPTion

•
•
•
•
•

The LT1021 is aprecision reference with ultra low drift and
noise, extremely good long term stability, and almost total
immunity to input voltage variations. The reference output
will both source and sink up to 10mA. Three voltages are
available; 5V, 7V and 10V. The 7V and 10V units can be
used as shunt regulators (two terminal zeners) with the
same precision characteristics as the three terminal connection. Special care has been taken to minimize thermal
regulation effects and temperature induced hysteresis.

Low Drift-20ppm/oC Max Slope'
Trimmed Output Voltage'
Operates in Series or Shunt Mode
Output Sinks and Sources in Series Mode
Very Low Noise <1ppm POp (0.1 Hz to 10Hz)
• >100dB Ripple Rejection
• Minimum Input-Output Differential of 1V
• 100% Noise Tested

The LT1021 references are based on a buried zener diode
structure which eliminates noise and stability problems
associated with surface breakdown devices. Further, a
subsurface zener exhibits better temperature drift and
time stability than even the best band-gap references.

APPLICATions
•
•
•
•
•
•

Ato Dand Dto AConverters
Precision Regulators
Digital Voltmeters
Inertial Navigation Systems
Precision Scales
Portable Reference Standard

Unique circuit design makes the LT1021 the first IC reference to offer ultra low drift without the use of high power
on-chip heaters.
The LT1021-7 uses no resistive divider to set output volt·
age, and therefore exhibits the best long term stability and
temperature hysteresis. The LT1021·5 and LT1021·10 are
intended for systems requiring a precise 5V or 10V refer·
ence, with an initial tolerance as low as 0.05%.'

•Units specified at 10ppm/oC maximum drift and 0.1 % output voltage toler·
ance are available on request.

Basic Positive and
Negative Connections

LT1021
VIN

IN

;,,3V
OUT

Your

Output Noise 0.1 Hz
to 10Hz-LT1021·10

LTl021
(7 AND 10 ONLY)

LT1021-5
IN

NC

OUT

IN

~ r---,Lv j,ppl)
UJ


f-

':'

R1 = Vour- (V-)
ILOAD+1.5mA

R1
(V-)

FILTERING=l ZEROATO.1Hz
2 POLES AT 10Hz

C5

OUT

'='
GND

:;;-

Vour- (V-)
R1=
IlDAD+1.5mA

i

:::>

R1

~

:::>
0

-15V
(V-)
2
3
4
TIME (MINUTES)

811·30

LT1021DCS8
ABSOLUTE mAXimum RATinGS

PACKAGE/ORDER InFORmATiOn

Input Voltage ....................................... 40V
Input·Output Voltage Differential .................... 35V
Output to Ground Voltage (Shunt Mode Current Limit)
LT1021·5 ......................................... 10V
LT1021·7 ......................................... 10V
LT1021·10 ........................................ 16V
Trim Pin to Ground Voltage
Positive ................................ Equal to VOUT
Negative ....................................... - 20V
Output Short Circuit Duration
VIN=35V ...................................... 10sec
VIN:520V ................................... Indefinite
Operating Temperature Range ............... O°C to 70°C
Storage Temperature Range
All Devices ........................... - 65°C to 150°C
Lead Temperature (Soldering, 10 sec.) .............. 300°C

TOP VIEW

ORDER PART
NUMBER

NC'Oi\
8NC'
VIN 2;
7 NC'

:~~ : f:!

LT1021DCS8·5
LT1021 DCS8·7
LT1021 DCS8·10

: ~~~~ ..
S8 PACKAGE
PLASTIC SO

PART MARKING

'CONNECTED INTERNALLY. DO
NOT CONNECT EXTERNAL CIRCUITRY
TO THESE PINS.
"NO TRIM PIN ON LT1021-7. DO NOT
CONNECT EXTERNAL CIRCUITRY TO
PIN 5 ON LT1021-7.

2105 (5V VERSION)
2107 (7V VERSION)
2110 (10V VERSION)

ELECTRICAL CHARACTERISTICS LTl021-5 VIN= 10V, (OUT=O, TA=25°C, unless otherwise noted
PARAMETER
Output Voltage (Note 1)
Output Voltage Temperature
Coefficient (Note 2)
Line Regulation (Note 3)

CONDITIONS
0°C~TJ~70°C
7.2V~VIN~10V
10V~VIN~40V

Load Regulation (Sourcing Current)

0~IOUT~10mA

(Note 3)
Load Regulation (Sinking Current)

0~IOUT~10mA

(Note 3)
Supply Current
Output Voltage Noise (Note 5)
Long Term Stability of
Output Voltage
Temperature Hysteresis of Output

MIN
4.95

0.IHz~f~10Hz
10Hz~f~lkHz

LT1021D·5
TYP
5.00
5
4

•
•
•

2
10
60

•

0.8

•

3
2.2
15



-6V
INPUT

+6V
STROBE'

OUTPUT
ON·OFF
(OV-5V)t
INPUT

INPUT

OUTPUT

INPUT

OUTPUT
NC

OUTPUT
'NO CONNECTION NEEDED WHEN NOT USED.
t5V=ON.

811-36

;;;--0.2

I

OUTPUT HIGH

UJ

~-0.4
c.

=>
en

~
cUJ

1.2

~

1.0

L.---

cr:
UJ

~

0.8

C!l

V
0.6

I-

0.4

=>
~
=>

0.2

~
§;
o

V-

o

IL

OUTPUT LOW

""""

2
3
4
OUTPUT CURRENT (rnA)

5

LT1030CS
ABSOLUTE mAXimum RATinGS
Supply Voltage. . . . . . . . . . . . . . . . . . . . . . . .. ± 15V
Logic Input Pins ..................... V- to 25V
On-Off Pin ......................... GND to 12V
Output(Forced) ............. V- +30V, V+ -30V
Short Circuit Duration (to ± 30V) .......... Indefinite
Operating Temperature Range
LT1030C ........................ 0°Ct070°C
Guaranteed Functional by Design. .. - 25°C to 85 °C
Storage Temperature. . . . . . . . . . . .. - 65°C to 150°C
Lead Temperature (Soldering, 10sec) ........ 300°C

ELECTRICAL CHARACTERISTICS
PARAMETER
Supply Current
Power Supply Leakage Current
Output Voltage Swing

PACKAGE/ORDER InFORmATiOn
TOP VIEW

LT1030CS
ON'OFF
(OV TO 5VI

PART MARKING

(Supply Voltage = ±5V to ± 15V)

VON.OFF:S O.4V
VON.OFF:S O. 1V
Load = 2mA I Positive
Negative

MIN

•
•

V+ -0.3V

I

VSUPPLY ± 5V to ± 15V
Operating or Shutdown
Shutdown
VOUT= ± 30V
Operating or Shutdown

Logic Input Levels

Low Input (V OUT = High)
High Input (V OUT = Low)

Logic Input Current
On-Off Pin Current
Slew Rate

LT1030CS

S14 PACKAGE
PLASTIC SO

CONDITIONS
VON·OFF2: 2.4V, 10UT=0. All Outputs Low

Output Current
Output Overload Voltage (Forced)
Output Current
Input Overload Voltage (Forced)

ORDER PART
NUMBER

V(-15VTO-5VI

VIN> 2.0V
VIN <0.8V
O:s VIN:s 5V

The. denotes specifications which apply over the operating
temperature range.

•

5
V+ -30V

TYP
500
1
10
V+-O.1V

MAX
1000
10
150

V +O.9V
12

V +1.4V

2

•
•
•

V

•

-10
4

1.4
1.4
2
10

2

30
15

UNITS
p.A
p.A
p.A
V
V
mA
V
p.A
V
V
V
p.A
p.A
p.A
VII'S

V +30V
100
15
0.8
20
20
65
30

Note 1: 3V applied to the strobe pin will force all outputs low. Strobe pin
input impedance is about 2k to ground. Leave open when not used.

Pin FunCTions
PIN

FUNCTION

COMMENT

Minus Supply

Operates - 2V to - 15V

2.5.9.12

Logic Input

Operates properly on TTL or CMOS levels.
Output valid from (V - + 2V) :sVIN:s 15V.
Connect to 5V when not used.

3.6,8,11

Output

Line drive output.

4

On-Off

Shuts down entire circuit. Cannot be left
open. For "normally on" operation, connect between 5V-10V.
Ground must be more positive than V-

7

Ground

13

Strobe

14

Forces all outputs low. Drive with
3V.
Positive supply 5V to 15V.

14
LT1030

I

..
~

J

1N4001
Note: As with other bipolar ICs, forward biasing the substrate
diode can cause problems. The LT1030 will draw high current
from V+ to ground if the V- pin is open circuited or pulled
above ground. If this is possible, connecting a diode from Vto ground will prevent the high current state. Any low cost diode
can be used.

811-37

L7Lln

FAI)

LT1034CS8-1.2
LT1034CS8-2.5

U \K

TECHNOLOGY~-M-iC-rO-p-o-w-e-r-D-ua-I-R-e-fe-r-e-n-c-e

FEATURES
•
•
•
•

DESCRIPTion
The LT1034 is a micropower, precision 1.2V/2.5V reference
combined with a 7V auxiliary reference. The 1.2V/2.5V
reference is a trimmed, thin-film, band-gap voltage refer·
ence with 1% initial tolerance and guaranteed 20ppm/oC
temperature drift. Operating on only 20p,A, the LT1034 offers guaranteed drift, low temperature cycling hysteresis
and good long term stability. The low dynamic impedance
makes the LT1034 easy to use from unregulated supplies.
The 7V reference is a subsurface zener device for less demanding applications_

Guaranteed 40 ppm/oC Drift
20p,A to 20mA Operation (1.2V)
10 Dynamic Impedance
7V, 100p,A Reference

APPLICATions
• Portable Meters
• Precision Regulators
• Calibrators

The LT1034 reference can be used as a high performance
upgrade of the LM385 or LT1004, where guaranteed temperature drift is desired.

TYPICAL APPLICATiOn
Temperature Drift
LT1 034CS8-1.2
2.5

15V

IZ=100pA

2.0

:>

50k
7V OUTPUT

500k

1

1.5

~
~

1.0

1.2V OR 2.5V

~

0.5

OUTPUT

'";:>

0

--J

7V

o

~ -0.5

tf)

ffi -1.0

>

V

I--'"""

~ -":1.5

V

/'

'" "

-2.0
-2.5

-50

811-38

-25

0
25
50
75
TEMPERATURE( 'C)

100

125

LT1034C~ts-I.L

LT 10 34CS8-2.5
ABSOLUTE mAXimum RATinGS

PACKAGE/ORDER InFORmATion

Operating Current. ................................ 20mA
Forward Current (Note 1) ..........................20mA
Operating Temperature Range ............... OOC to 70°C
Storage Temperature ................... - 65°C to 150°C
Lead Temperature (Soldering, 10 sec.) .......... , .. 300°C

ORDER PART
NUMBER

TOP VIEW

"'(WI''"
NC

2

7 NC

NC

3

6 2.5V

GND

4

5 7V

LT1034CS8·1.2
LT1034CS8·2.5
PART MARKING
3401 (1.2V VERSION)
3402 (2.5V VERSION)

S8 PACKAGE
PLASTIC SO

ELECTRICAL CHARACTERISTICS
PARAMETER
Reverse Breakdown Voltage

CONDITIONS
IR= 100)lA

25°C

Reverse Breakdown Change
with Current

Note 3

25°C

2mAsIRs20mA

•
•
25°C

Minimum Operating Current
Temperature Coefficient
Reverse Dynamic Impedance (Note 2)

IR= 100)lA
IR= lOOIlA

•
•
25°C

Low Frequency Noise
Long Term Stability

IR = lOOIlA, 0.1 Hzs Fs 10Hz
IR = lOOIlA, T= 25°C

LT1 034CS8·1.2
MIN
TYP
MAX
1.210 1.225 1.240
1.205 1.225 1.245
0.5
2.0
1.0
4.0
4
B.O
6.0
15.0
10
20
40
20
0.25
1.0
0.50
2.0
4
20

•

•
•
25°C

LT1034CS8·2.5
MIN TYP MAX
2.46 2.5
2.54
2.57
2.43 2.5
1
3
1.5
6
16
6
10
20
15
30
20
40
0.5
1.5
1
2.5
6
20

UNITS
V
V
mV
mV
mV
mV
)lA
ppm/oC
!l
!l

)lVp,p
ppm/v'khrS

ELECTRICAL CHARACTERISTICS 7V Reference
PARAMETER
Reverse Breakdown Voltage

CONDITIONS
IR= 100)IA

Reverse Breakdown Change
with Current

l00IlAs1 Rs1mA
lOOIlAslRslmA
lmAsIRs20mA
1mAsIRs20mA
IR= 100)IA
IR= lOOIlA

Temperature Coefficient
Long Term Stability

The • denotes specifications that apply over the operating temperature
range.
Notel: Forward biasing either diode will affect the operation of the other
diode.

25°C

•
•
25°C
25°C

•

•
25°C

MIN
6.B
6.75

TYP
7.0
7.0
90
100
160
200
40
20

MAX
7.3
7.4
140
190
250
350

UNITS
V
V
mV
mV
mV
mV
ppm/oC
ppm/v'khrS

Note 2: This parameter guaranteed by "reverse breakdown change with
current" test.
Note 3: For the LTl034CSB·1.2, 20llAs IR s2mA. For the LT1034CS8·2.5,
30IlAsIRs2mA.

811-39

.
.
,,.·tlntJ\Q
o
~~ TECHNOLOG~~~---------P-re-C-is-io-n-,-H-ig-h-s-p-e-e-d,
~

LTl 55S8/LTl 056S8

JFET Input Operational Amplifiers

FEATURES

DESCRIPTion
1.5mV Max.
2.2mVMax.
4p'v/oCTyp.

• Guaranteed Offset Voltage
O°Cto 70°C
• Low Drift
• Guaranteed Bias Current
70°C Warmed Up
• Guaranteed Slew Rate

400pAMax.
9V/p,sMin.

The LT1055/LT1056 JFET input operational amplifiers com·
bine precision specifications with high speed performance.
For the first time in an SO package, 14V/p,s slew rate and
5.5MHz gain·bandwidth product are simultaneously
achieved with offset voltage of typically 0.5mV, 4p,V/oC
drift, and bias currents of 60pA at 70°C.

APPLICATions

The 1.5mV maximum offset voltage specification is the
best available on any JFET input operational amplifier in
the plastic SO package.

•
•
•
•
•
•
•

The LT1055 and LT1056 are differentiated by their operat·
ing currents. The lower power dissipation LT1055 achieves
lower bias and offset currents and offset voltage. The
additional power dissipation of the LT1056 permits higher
slew rate, bandwidth and faster settling time with a slight
sacrifice in DC performance.

Precision, High Speed Instrumentation
Logarithmic Amplifiers
D/A Output Amplifiers
Photodiode Amplifiers
Voltage to Frequency Converters
Frequency to Voltage Converters
Fast, Precision Sample and Hold

The voltage to frequency converter shown below is one of
the many applications which utilize both the precision and
high speed of the LT1 055/LT1 056.

010 10kHz Vollage·lo·Frequency Converter
3M

~1-101.......-;..4.7,.,.k-+15V

OV TO 10V INPUT~"';""....J\I\~~t-----..!..j
5k

.....r-

1Hz TO 10kHz

1.5k

0.1

=1N4148.

'1% FILM.
.,..

811·40

....---+- OUTPUT

THE LOW OFFSET VOLTAGE OF lT1056
CONTRIBUTES ONLY 0.1 Hz OF ERROR .
WHILE ITS HIGH SLEW RATE PERMITS
10kHz OPERATION.

.,..

LTl 055S8/LTl 056S8
ABSOLUTE mAXimum RATinGS

PACKAGE/ORDER InFORmATion

Supply Voltage ................................... ± 20V
Differential Input Voltage ......................... ± 40V
Input Voltage ..................................... ± 20V
Output Short Circuit Duration .................. Indefinite
Operating Temperature Range ............... O°C to 70°C
Storage Temperature Range
All Devices ........................... -65°Cto 150°C
Lead Temperature (Soldering, 10 sec.) .............. 300°C

ORDER PART NUMBER
TOP VIEW

LT1055SB
LT1056S8

.c~~r
.

7 V+

+ IN 3 .

6 OUT

-IN 2

V-

4 •

5 BAL

PART MARKING

S8 PACKAGE
PLASTIC SO

1055
1056

ELECTRICAL CHARACTERISTICS Vs = ± 15V, TA =25°C, VCM =OVunless otherwise noted.
SYMBOL
vas
los
18

PARAMETER
Input Offset Voltage (Note 1)
Input Offset Current
Input Bias Current
Input Resistance -Differential
-Common·Mode

en

Input Capacitance
Input Noise Voltage

en

Input Noise Voltage Density

in
AVOL

Input Noise Current Density
Large Signal Voltage Gain

CMRR
PSRR
VOUT
SR

Input Voltage Range
Common·Mode Rejection Ratio
Power Supply Rejection Ratio
Output Voltage Swing
Slew Rate

GBW

Gain·Bandwidth Product

Is

Supply Current
Offset Voltage Adjustment Range

CONDITIONS

MIN

Fully Warmed Up
Fully Warmed Up
VCM= +10V
VCM= -11Vto +8V
VCM= +8Vto +11V
0.1 Hz to 10Hz

LT1055
LT1056
fa = 10Hz (Note 2)
fa = 1kHz (Note 2)
fa = 10Hz, 1kHz (Note 3)
Vo= ±10V
RL=2k
RL=1k
VCM=±11V
Vs= ±10Vto ±18V
RL=2k
LT1055
LT1056
LT1055
f=1MHz
LT1056
LT1055
LT1056
RpOT= 100k

120
100
±11
83
88
±12
7.5
9.0

LT1055S8
LT1056S8
TYP
500
5
±30
30
0.4
0.4
0.05
4
2.5
3.5
35
15
2.5
400
300
±12
98
104
±13.2
12
14
4.5
5.5
2.8
5.0
±5

MAX
1500
30
±100
150

UNITS
~V

pA
pA
pA
Til
Til
Til
pF.
~Vp·p
~Vp·p

70
22
10

nV/,fHz
nV/,fHz
fAl,fHz
V/mV
V/mV
V
dB
dB
V
V/~s
V/~s

4.0
7.0

MHz
MHz
mA
mA
mV

S11-41

LTl 055S8/LTl 056S8

ELECTRICAL CHARACTERISTICS Vs= ± 15V, VCM =ov, O°C~TA~700C, unlessolherwise noled.

los

PARAMETER
Input Offset Voltage (Note 1)
Average Temperature
Coefficient of Input Offset
Voltage
Input Offset Current

IB

Input Bias Current

AVOL
CMRR
PSRR

Large Signal Voltage Gain
Common·Mode Rejection Ratio
Power Supply Rejection Ratio
Output Voltage Swing

SYMBOL
Vos

VOUT

MAX
2200
15

~VloC

•

18

150

pA

•
•
•
•
•

±60

±400

pA

MIN

•
•
Warmed Up
TA = 70°C
Warmed Up
TA= 70°C
Vo= ± 10V, RL =2k
VCM= ± 10.5V
Vs= ±10Vto ±18V
RL=2k

The. denotes the specifications which apply overthe full operating
temperature range.
Nole 1: Offset voltage is measured under two different conditions:
(a) approximately 0.5 seconds after application of power; (b) at TA = 25°C
only, with the chip heated to approximately 38°C forthe LT1055 and to 45°C
for the LT1056, to account for chip temperature rise when the device is fully
warmed up.

811-42

LT1055SB/l056SB
TYP
800
4

CONDITIONS

60
82
87
± 12

250
98
103
± 13.1

UNITS
~V

VlmV
dB
dB
V

Nole 2: This parameter is tested on asample basis orly.
Nole 3: Current noise is calculated from the formula: in = (2qIB)Yz, where
q = 1.6 X 10- 19 coulomb. The noise of source resistors up to 1GO swamps the
contribution of current noise.
Nole 4: Offset voltage drift with temperature is practically unchanged when
the offset voltage voltage is trimmed to zero with a lOOk potentiometer be·
tween the balance terminals and the wiper tied to V+ .

~""""-LlnLAQ

.....&...,

LTl080CS/LT1081CS

TECHNOLOGY~--5-V-P-o-w-e-re-d-RS-2-3-2-D-ri-ve-r-/

Receiver with Shutdown
FEATURES

DESCRIPTiOn

•
•
•
•
•
•

The LT10BO is a dual RS232 driver/receiver which includes
a capacitive voltage generator to supply RS232 voltage
levels from a single 5V supply. Each receiver will accept
up to ± 30V input and can drive either TTL or CMOS logic.
The RS232 drivers accept logic inputs and output RS232
voltage levels. The driver outputs are fully protected
against overload and can be shorted to ground or up to
± 30V without damage. Additionally, when the system is
in the SHUTDOWN mode the driver and receiver outputs
are at a high impedance allowing data line sharing. Bipo·
lar circuitry makes this driver/receiver exceptionally
rugged against overloads or ESD damage.

•

•
•
•
•

Operates on Single 5V Power Supply
Generates ± 9V Supplies with Only 1JlF Capacitors
Fully Protected Against Output Overloads
RS232 Outputs can be Forced ± 30V without Damage
Three·state Outputs are High Impedance when Off
Bipolar Circuitry; No Latch Up
± 30V Receiver Input Range
Can Power Additional RS232 Drivers such as LT1039
No Supply Current in Shutdown
Meets All RS232 Specifications
16 Pin Version without Shutdown Available

APPLICATions
•
•
•
•
•

The power supply generator doubles the 5V input supply
to obtain 9V, and then inverts the 9V to obtain - B.5V. Up
to 15mA of external current is available to power additonal
RS232 drivers or other external circuitry. The SHUTDOWN
mode disables the supply generators and reduces input
supply current to zero. Aversion of the LT1 OBO, the LT1 OB1,
is available without shutdown for 16 pin applications.

RS232 Interface
Battery Powered Systems
Power Supply Generator
Terminals
Modems

TYPICAL APPLICATiOn
17

Supply Generator Outputs

5V INPUT

1pF
LT1080

9VOUT

+

7 r.,..

-9V OUT

~1pF

1pF

10

1pF

15

RS232 OUTPUT

2

~

0

~

-2

5

INPUTS

"""I

11

14

V+ OUTPUT

Rl TOV -

Rl TO GND'::

-

j

Vr 5

-4

RS232 OUTPUT

-6

RS232 INPUT

-10

-8
13

~

a
tll
~

12

-

rlRl Tb V+

o

2

-

I

....,...

Rl TO GND ___

-:I

~ °IUTP~T
4

6 8 10 12 14 16 18 20
OUTPUT CURRENT (rnA)

OUTPUTS

""'I
ON·Ol'I'

10

18

..L7~

RS232 INPUT
16

.,..

S11-43

LT1080CS/LT1081CS
ABSOLUTE mAXimum RATinGS

PACKAGE/ORDER InFORmATion

Supply Voltage (Vee) ................................ 6V
V+ ............................................... 12V
V- .............................................. -12V
Input Voltage
Driver...............................V- to V+
Receiver.............................. - 30V to 30V
On·Off Pin............................. GND to 12V
Output Voltage
Driver...................... V- +30V to V+ - 30V
Receiver...................... - 0.3V to Vee +0.3V
Short Circuit Duration
V+........................................30 Seconds
V- .......................................30 Seconds
Driver Output. .......................... Indefinite
Receiver Output. ......................... Indefinite
Operating Temperature Range
LT1080C............................ OOC to 70°C
Guaranteed Functional ............... - 25°C to 85°C
Lead Temperature (Soldering, 10 sec.)............300 oC

ORDER PART
NUMBER
LT1080CS
PART MARKING
LT1080CS
518 PACKAGE
PLASTIC SOL

ORDER PART
NUMBER

TOP VIEW

LT1081CS
PART MARKING
LT1081CS
S16 PACKAGE
PLASTIC SOL

ELECTRICAL CHARACTERISTICS (Note 1)
PARAMETER
Driver
Output Voltage Swing
Logic Input Voltage
Level
Logic Input Current
Output Short Circuit
Current
Output Leakage Current
Slew Rate
Receiver
Input Voltage Thresholds
Hysteresis
Input Resistance
Output Voltage
Output Short Circuit
Current
Output Leakage Current

811·44

I

MIN

CONDITIONS
Positive
Load = 3k to GND
Both Outputs.
Negative
Input Low Level (VOUT= High)
Input High Level (V our = Low)
V/N2:2.0V
VINsO.BV
Sourcing Current, Vour=OV
Sinking Current, Vour=OV
SHUTDOWN (Note 2), Vour = ±30V
RL=3klJ,CL=51pF

I

Input Low Threshold, (Vour= High)
Input High Threshold, (VOUT= Low)

Output Low, lour = -1.6mA
Output High, lour = 160~A(Vcc=5V)
Sinking Current, Vour = Vcc
Sourcing Current, VOUT = OV
SHUTDOWN (Note 2), OVsVoursVcc

••
••
••

•
••
•
••
•

5.0
-5.0
2.0

7
-7
4
0.2
0.1
3
3.5
-10
0.6

TYP
7.3
-6.5
1.4
1.4
5
5
12
-12
10
15
1.3
1.7
0.4
5
0.2
4.B
-20
1
1

MAX

O.B
20
20

UNITS
V
V
V
V
~A
~A

mA
mA
100
30

3.0
1.0
7
0.4

10

~A
V/~s

V
V
V
klJ
V
V
mA
mA
~A

LTl 080CS/LTl 081CS
ELECTRICAL CHARACTERISTICS (Note 1)
PARAMETER
Power Supply Generator (Note 3)
v+ Output Voltage

I

V- Output Voltage

Supply Current
Supply Leakage Current (Vcd
On·Off Pin Current
Supply Rise Time

MIN

CONDITIONS

8
7
6.5
-7.5
-5.5
-5

10ur=OmA
lour=10mA
lour=15mA
lour=OmA
lour= -10mA
lour= -15mA
SHUTDOWN (Note 2)
OV SVON.OFFS5V
(Note 4)

(LT1080 Only)
(LT1080 Only)

The. denotes specifications which apply over the operating temperature
range (OOC sTAS 70 0 C).The LT1 080/LT1081 is guaranteed functional by de·
sign for -25°CsTAs85°C.
Note 1: These parameters apply for 4.5V sVcc s5.5Vand VON.OFF = 3V,
unless otherwise specified.

•
•
•

TYP

9
8
7.5
-8.5
-6.5
-6
10
1

-15
1

MAX

22
100
80

UNITS
V
V
V
V
V
V
rnA
~A
~A

ms

Note 2: VON.OFF= O.4V. (LT10800nly)
Nole 3: Unless otherwise specified, Vcc = 5V, external loading of V+ and
V- equals zero and the driver outputs are low (inputs high).
Nole 4: Time from either SHUTDOWN high (LT10BO only) or poweron until
V+ "26V and V- s - 6V. All external capacitors are 1~F.

Pin FunCTions
Vee (Pin 17): Input supply pin. Supply current drops to zero
in the SHUTDOWN mode.
GND (Pin 16): Ground pin.
On·OIf (Pin 18): Controls the operation mode of the LT10BO
and is TIL fCMOS compatible. A logic low puts the device
in the SHUTDOWN mode which reduces input supply cur·
rent to zero and places both driver and receiver outputs
in a high impedance state. A logic high fully enables the
device.

V+ (Pin 3): Positive supply for RS232 drivers. V+ :::
2Vee-1.5V. Requires an external capacitor (~1/LF) for
charge storage. May be loaded (up to 15mA) for external
system use. Loading does reduce V+ voltage (see
graphs.)
V- (Pin 7): Negative supply for RS232 drivers. V- '"
- (2Vee - 2.5V). Requires an external capacitor (~1/LF) for
charge storage. May be loaded (up to -15mA) for external
system use. Loading does reduce V- voltage (see
graphs).
TR1IN; TR21N (Pins 12, 11): RS232 driver input pins. Inputs
are TIL/CMOS compatible. Inputs should not be allowed
to float. Tie unused inputs to Vee.

TR1 OUT; TR2 OUT (Pins 15, 8): Driver outputs with RS232
voltage levels. Outputs are in a high impedance state
when in the SHUTDOWN mode or when power is off
(Vee=OV) to allow data line sharing. Outputs are fully
short circuit protected from V- +30V to V+ - 30V with
power on, off, or in the SHUTDOWN mode. Typical output
breakdowns are greater than ± 45V and higher applied
voltages will not damage the device if moderately current
limited.
REC1 IN; REC2 IN (Pins 14, 9): Receiver inputs. Accepts
RS232 voltage levels (± 30V) and has O.4V of hysteresis to
provide noise immunity. Input impedance is nominally
5k!l.
REC1 OUT; REC2 OUT (Pins 13, 10): Receiver outputs with
TTL/CMOS voltage levels. Outputs are in a high
impedance state when in the SHUTDOWN mode to allow
data line sharing. Outputs are fully short circuit protected
to ground or Vee with power on, off, or in the SHUTDOWN
mode.
C1 +; C1 -; C2 +; C2 - (Pins 2, 4, 5, 6): No user applica·
tions. Requires an external capacitor (~1/LF) from C1 + to
C1 - and another from C2 + to C2 - .

811-45

--LYUJ~I!["~~-D-u-a-Ip-r-e-c-iSi-o-n-ln-s-tr-~T-~-~_~-t~-~-i~-~
Switched-Capacitor Building Block

FEATURES

DESCRIPTion

•
•
•
•
•
•
•

The LTC1043 is a monolithic, charge-balanced, dual
switched-capacitor instrumentation building block. A
pair of switches alternately connects an external capacitor to an input voltage and then connects the charged capacitor across an output port. The internal switches have
a break-before-make action. An internal clock is provided
and its frequency can be adjusted with an external capacitor. The LTC1043 can also be driven with an external
CMOS clock.

Instrumentation Front End with 120dB CMRR
Precise, Charge-Balanced Switching
Operates from 3V to 18V
Internal or External Clock
Operates up to 5MHz Clock Rate
Low Power
Two Independent Sections with One Clock

APPLICATions
• Precision Instrumentation Amplifiers
• Ultra Precision Voltage Inverters, Multipliers and
Dividers
• V-F and F-V Converters
• Sample and Hold
• SWitched-Capacitor Filters

The LTC 1043, when used with low clock frequencies,
provides ultra precision DC functions without requiring
precise external components. Such functions are differential voltage to Single-ended conversion, voltage inversion, voltage multiplication and division by 2, 3, 4, 5,
etc. The LTC1043 can also be used for precise V-F and
F-V circuits without trimming, and it is also a building
block for switched-capacitor filters, oscillators and
modulators.
The LTC1043 is manufactured using Linear Technology's
enhanced LTCMOS™ silicon gate process.

Instrumentation Amplifier

eMRR vs Frequency

+5V

.----dr--,

I

100

1-t-+HIttttt-l--+t+t+HI---h1+l+1tll

40

l-f-+t-tttttf-t-t+t+Hll-+-+-+iH-ltll

Rl
20 L......J.....J..LJ..W.LI........I....L..l.llWJ----L....L..L.WW
100
lk
10k
lOOk
FREQUENCY OF COMMON·MODE SIGNAL
CMRR> 120dB AT DC
CMRR> 120dB AT 60Hz
DUAL SUPPLY OR SINGLE 5V
GAIN=1 +R2/Rl
Vos=I50~V

8Vos =2pVloC
8T
LTCMOSTM is a trademark 01 Linear Techn~ogy CorP-

~ 160
;;;
~ 120

'3
0

SUPPLY CURRENT Is ~ 3"A

":"

z

/

r7
V

II

GUARANTEED

I--I--

raiN,

80 I-- I-40

a

811-48

RL=OO

1 320

o

....vr
1

2

I- VjYPICtL - I--

A"

3 4 5 6 7 8
SUPPLY VOLTAGE. V+ (V)

9 10

LTC1044CS8

ABSOLUTE mAXimum RATinGS

PACKAGE/ORDER inFORmATion

(Notes 1 and 2)

Supply Voltage .......................... 9.5V
Input Voltage on Pins 1, 6 and 7
(Note 2) ............. -O.3V ::;VIN ::;V+ +O.3V
Current into Pin 6 ........................ 20p.,A
Output Short Circuit Duration
(V+ ::;5.5V) ..................... Continuous
Operating Temperature Range. . .. -40°C ::;TA ::; 85°C
Storage Temperature Range. . . . .. - 65°C to + 150°C
Lead Temperature (Soldering, 10 sec.) ........ 300°C

ORDER
PART NUMBER

TOP VIEW

"OO"[]'~
CAP+

2

LTC1044CS8

7 OSC

GROUND 3

6 LV

CAP- 4

5 VOUT

PART MARKING

S8 PACKAGE
PLASTIC SO

1044

ELECTRICAL CHARACTE RISTICS V+ =5V, TA =25°C, unless otherwise specified.
See LTC1044/7660 data sheet for test circuit.
SYMBOL
Is

PARAMETER
Supply Current

ROUT

Minimum Supply Voltage
Maximum Supply Voltage
Output Resistance

lose

Oscillator Frequency

V\
V+ H

PEFF
YOUTEFF
lose

Power Efficiency
Voltage Conversion
Efficiency
Oscillator Sink or Source
Current

CONDITIONS
RL = 00, Pins 1and 7 No Connection
RL= 00, Pins 1and 7V =3V
RL=10k
RL = 10k (Note 3)
IL = 200m A, lose = 5kHz
V+ =2V, IL=3mA, lose = 1kHz
C~sc= lpF (Note 4)
Y =5V
y+ =2V
RL = 5kll, lose = 5kHz
RL = 00
Vose=OVorV+
Pin 1=OV
Pinl=V+

The. denotes the specifications which apply over the lull operating
temperature range.
Note 1: Absolute Maximum Ratings are those values beyond which the
life of the device may be impaired.
Note 2: Connecting any input terminal to voltages greater than V + or
less than ground may cause destructive latch-up. It is recommended that
no inputs from sources operating from external supplies be applied prior
to power-up of the LTC1044.

MIN

•
•
•
•
••
••

LTC1044CS8
TYP
MAX
60
200
20

1.5

9
100
130
325
5
1
95
97

UNITS
pA
pA
V
V
II
II
II
kHz
kHz
%
%

98
99.9

3
20

pA
pA

Note 3: The LTC1044 is guaranteed to operate with alkaline, mercury or
NiCad 9Y batteries, even though the initial battery voltage may be slightly
higher than 9.0V.
Note 4: fosc is tested with Case = 100pF to minimize the effects of test
lixture capacitance loading. The lpF frequency is correlated to this
100pF test point, and is intended to simulate the capacitance at pin 7
when the device is plugged into a tesl socket and no external capacitor is
used.

811-49

1'-"""llntJ\Q
~, TECHNOLOGY~C-h-o-p-p-e-r--St-a-b-iliz-e-d-O-p-er-a-ti-o-na-I

LTC1052CS

Amplifier (CSOATM)
FEATURES

DESCRIPTiOn

5p,V
Guaranteed Max. Offset
O.05p,V/oC
Guaranteed Max. Offset Drift
Typ. Offset Drift
O.~1pV/OC
100nVI Month
Excellent Long Term Stability
30pA
Guaranteed Max. Input Bias Current
Over Operating Temperature Range
Guaranteed Min. Gain
120dB
Guaranteed Min. CMRR
120dB
Guaranteed Min. PSRR
120dB
• Single Supply Operation
4.75V to 16V
(Input Voltage Range Extends to Ground)
• External Capacitors can be Returned to V- with No
Noise Degradation

The LTC1052 is a low noise chopper-stabilized op amp
(CSOA) manufactured using Linear Technology's enhanced
LTCMOS™ silicon gate process. Chopper-stabilization constantly corrects offset voltage errors. Both initial offset and
changes in the offset due to time, temperature and
common-mode voltage are corrected. This, coupled with picoampere input currents, gives this amplifier unmatched
performance.

•
•
•
•
•
•

The chopper circuitry is entirely internal and completely
transparent to the user. Only two external capacitors are
required to alternately sample and hold the offset correc·
tion voltage and the amplified input signal. Control circuitry is brought out on the 14-pin version to allow the
sampling of the LTC1052 to be synchronized with an external frequency source.

APPLICATions
•
•
•
•

Low frequency (1/f) noise is also improved by the chopping
technique. Instead of increasing continuously at a3dB/octave rate, the internal chopping causes noise to decrease
at low frequencies.

Thermocouple Amplifiers
Strain Gauge Amplifiers
Low Level Signal Processing
Medical Instrumentation

The LTC1052CS is a direct replacement for the ICL7652 in
surface mounted packages.
Ultra Low Noise, Low Drift Amplifier

LTC1052 Noise Spectrum
160
140
'ox:
<
120
;;
"" 100
0;

~ 80

~z

60

~

40

§!

20

/

-

./

w

+5V
lOOk
.......""""'"-+5V
INPUT .......+--~
OUTPUT

o

\

1\
I\.

...

'-.J

o

100

200
300
FREQUENCY (Hz)

400

500

lOOk

VoS=3"V
VOS:.T=50nV/oC
NOISE=0.06"Vp-p 0.IHz-l0Hz

811-50

lOon
CSOA™ and LTCMOS™ are trademarks of Linear Technology CorporatIOn.
Teflon™ Isa trademark 01 DuPont.

LTC1052CS
ABSOLUTE mAXimum RATinGS

PACKAGE/ORDER InFORmATion
ORDER PART
NUMBER

(Notes 1and 2)

Total Supply Voltage (V+ toV-) ...................... 18V
Input Voltage ................... (V + +0.3V) to (V - - 0.3V)
Output Short Circuit Duration .................. Indefinite
Operating Temperature Range ............ - 40°C to 85°C
Storage Temperature Range ............ , - 65°C to 150°C
Lead Temperature (Soldering, 10 sec.) .............. 300°C

LTC1052CS

PART MARKING
LTC1052CS

ELECTRICAL CHARACTERISTICS
Vs = ± 15V, TA =operating temperature range, test circuit TC1 (Note 6), unless otherwise specified.
SYMBOL
Vas

~

PARAMETER
Input Offset Voltage
Average Input Offset Drift

CONDITIONS
TA = 25°C (Note 3)
(Note 3)

llTemp

~

MIN

•

Long Term Offset Voltage Stability

LTC1052C
TYP
MAX
±0.5
±5
±0.01 ±o.os
100

UNITS
~V
~V/oC

nV/-JMonth

llTime
los

Input Offset Current

TA=25°C

Is

Input Bias Current

TA=25°C

enp.p

Input Noise Voltage

in
CMRR
PSRR

Input Noise Current
Common·Mode Rejection Ratio
Power Supply Rejection Ratio
Large Signal Voltage Gain
Maximum Output Voltage Swing
(Note 4)
Slew Rate
Gain Bandwidth Product
Supply Current

Rs = lOOn, DC to 10Hz, TC3 (Note 6)
Rs = lOOn, DC to 1Hz, TC3 (Note 6)
f = 10Hz (Note 5)
VCM = V- to + 2.7V
VSUPPLY = ± 2.375V to ± SV
RL=10k, Vour= ±4V
RL = 10k
RL = lOOk
RL = 10k, CL= 50pF

AVOL
Your
SR
GBW
Is
fs

Internal Sampling Frequency
Clamp On Current
Clamp Off Current

No Load, TA = 25°C

•
•
•
•

±1

120
120
120
±4.7

•

1.5
0.5
0.6
140
150
150
±4.S5
±4.95
4
1.2
1.7
330
100
10

±30
±350
±30
±175

pA
pA
pA
pA
~Vp·p
~Vp·p

fA/-IHz
dB
dB
dB
V
V
V/~s

2.0
3.0

MHz
mA
mA
Hz

•
100
pA
1
nA
•
testing. Vos is measured to a limit determined by test equipment capability.

RL = lOOk
-4V

~ ~ 0.6

f--- f--

CENTER FREQUENCY ERRdV -

tl';",

r!.!!--8V.,J;,.

~

=>N

~~

0.4

~~
'r5 0.2

1/
I..---' V

'-'

o

o

5

./

/

L

Y

10 15 20 25 30 35 40
IDEAL CENTER FREQUENCY (kHz)

0
45

LTC1059S
ABSOLUTE mAXimum RATinGS

PACKAGE/ORDER InFORmATion

Supply Voltage ..................................... 18V
Operating Temperature Range ........ - 40oC~TA~85°C
Storage Temperature Range ............. - 65°C to 150°C
Lead Temperature (Soldering, 10sec) .............. 300°C

ORDER PART NUMBER

TOP VIEW

LTC1059S

PART MARKING
LTC1059S
S14 PACKAGE
PLASTIC SO

ELECTRICAL CHARACTERISTICS
(Complete Filter) Vs = ± 5V, TA= 25·C, T2L clock input level unless otherwise specified.
PARAMETER
Center Frequency Range, 10

Input Frequency Range
Clock to Center Frequency Ratio
(Note 1)
oAccuracy (Note 1)
10 Temperature Coefficient
oTemperature Coefficient
DC Offset Vos 1(Note 2)
Vos2
Vos2
VOS2
VOS2
VOS3
VOS3
DC Low Pass Gain Accuracy
BP Gain Accuracy at 10
Clock Feedthrough
Max. Clock Frequency
Power Supply Current

CONDITIONS
10 x Os400kHz, Mode 1
10 x Os1.6MHz, Mode 1
10 x 0 s2S0kHz, Mode 3, Vs = ± 7.SV
loxOslMHz, Mode 3, Vs= ±7.SV
Mode 1, SO:I, ICLK = 2S0kHz, 0= 10
Mode 1, 100:1, ICLK=SOOkHz, 0= 10
Model,SO:1 orl00:l, 10=SkHz
0=10
Mode 1, ICLK < SOOkHz
Mode 1, ICLK< SOOkHz, 0= 10
ICLK = 2S0kHz, SO:I, SAiB High
ICLK=SOOkHz, 100:1,SAlB High
ICLK = 2S0kHz, SO:I, SAiB Low
ICLK= SOOkHz, 100:1, SAiB Low
ICLK = 2S0kHz, SO:1
ICLK = SOOkHz, 100:1
Mode 1, Rl = R2= SOkO
Model,0=10,lo=SkHz
ICLK S1MHz
Mode 1, 0<5, Vs'ii! ±SV

MIN

••
•

••
••
••
•
•
•

TYP
0.1-40k
0.1-18k
0.1-20k
0.1-16k
0-200k

±O.S
S
IS
2
3
6
2
4
2
4
±0.1
±0.1
10
2
3.S

MAX

SO±0.8%
100+0.8%
S

IS
40
80
30
60
30
60
2

S.S
7

UNITS
Hz
Hz
Hz
Hz
Hz

%
ppm/DC
ppm/oC
mV
mV
mV
mV
mV
mV
mV
%
%
mV
MHz
rnA
rnA

Nole 1: An LTC10S9S with improved 0 and clock to center Irequency ratio
accuracy can be made available upon special request.
Nole 2: For definition 01 the DC offset voltages, relerto the LTC10S9 data
sheet. An LTC10S9S with improved DC offset specifications can be made
available upon special request.

511-53

LTC1059S

ELECTRICAL CHARACTE RISTICS (Complete Filte~ Vs = :!: 2.37V, TA =25°C unless otherwise specified
PARAMETER
Center Frequency Range
Input Frequency Range
Clock to Center Frequency Ratio

oAccuracy

CONDITIONS
fox O:s120kHz, Mode 1, 50:1
fox Os120kHz, Mode3, 50:1

MIN

Mode 1,50:1, fCLK = 250kHz, 0 = 10
Mode 1, 100:1, fClK=250kHz, 0= 10
Mode 1, felK = 250kHz, 0 = 10
50:1 and 100:1

Max. Clock Frequency
Power Supply Current

TYP
0.1-12k
0.1-10k
60k
50±0.8%
100±0.8%
±2
700k
1.5

MAX

UNITS
Hz
Hz
Hz

%
2.5

Hz
mA

ELECTRICAL CHARACTERISTICS (Internal Op Amps) TA = 25°C unless otherwise specified
PARAMETER
Supply Voltage Range
Voltage Swings
Input Offset Voltage
Input Bias Current
Output Short Circuit Current
Source/Sink
DC Open Loop Gain
GBW
Slew Rate

CONDITIONS
Vs= ±5V, Rl =5k(Pins 1, 14)
Rl = 3.5k (Pins 2,13)

TYP

MAX
±8

±4.2

Vs= ±5V

1
3
2513

Vs= ±5V
Vs= ±5V
Vs= ±5V

80
2
7

The • denotes the specifications which apply over the full operating
temperature range.

811-54

•
•

MIN
±2.375
±3.8
±3.6

15

UNITS
V
V
V
mV
pA
mA
dB
MHz
V/~s

~""rllntI\Q

~~

LTC1060S

TECHNOLOGY~---------U-n-iv-e-rs-a-I-D-u-a-IF-il-te-r
Building Block

FEATURES

DESCRIPTion

•
•
•
•
•
•

The LTC1060 consists of two high performance, switched
capacitor filters. Each filter, together with 2 to 5 resistors,
can produce various 2nd order filter functions such as lowpass, bandpass, high pass notch and ali pass. The center
frequency of these functions can be tuned by an external
clock, or by an external clock and resistor ratio. Up to 4th
order full biquadratic functions can be achieved by cas·
cading the two filter blocks. Any of the classical filter configurations (like Butterworth, Chebyshev, Bessel, Cauer)
can be formed.

•
•
•
•

Operates from ± 2.5V supply up to ± 8V
Operates up to 30kHz
Low Power and 88dB Dynamic Range at ± 2.5V Supply
Center Frequency QProduct up to 106M Hz
Guaranteed Offset Voltages
Guaranteed Clock to Center Frequency Accuracy over
Temperature, 0.8% or Better
Guaranteed Q Accuracy over Temperature
Low Temperature Coefficient of Q and Center
Frequency
Low Crosstalk, 70dB
Clock Inputs TIL and CMOS Compatible

APPLICATions

The LTC1060 operates with either a single or dual supply
from ± 2.37V to ± 8V. When used with low supply (Le.,
single 5V supply), the filter typically consumes 12mW and
can operate with center frequencies up to 10kHz. With
± 5V supply, the frequency range extends to 30kHz and
very high Q values can also be obtained.

• Single 5V Supply Medium Frequency Filters
• Very High Q and High Dynamic Range Bandpass,
Notch Filters
• Tracking Filters
• Telecom Filters

The LTC1060 is manufactured by using Linear Technology's enhanced LTCMOSTM silicon gate process. Because of this, low offsets, high dynamic range, high center
frequency Q product and excellent temperature stability
are obtained.
LTCMOSTM Is a trademark of LlnearTechnology Corp.

Single 5V, Gain of 1000 4th Order Bandpass Filter

Amplitude Response

3.16k

I
lOOk
VIN-!
lmV(RMS)

I
1

3.16k

I
T

2k

I

20

2

19J

3

18

4

17

5

16

~+5V"d
9

CLOCK IN
17.5kHz

OUTPUT
60
lOOk
50

2k

40

+5V

r

LTC1060

lk

0 l"F
1

15

h
13
12

11

il

I
':'

lk

I~\

co

-0

6

-!-

70

1

~

Z

30

/ \



~

fo"'"

50 ~

40 ~
in

30 ~
~
20 -

\

~

~

1 .......

1"-

10
INPUT FREQUENCY (Hz)

10~

o
100

811-61

LTC1062CS
ABSOLUTE mAXimum RATinGS

PACKAGE/ORDER InFORmATiOn

TotaISupplyVoltage(V+ toV-) ..................... 18V
Input Voltage at Any Pin ...... V- -0.3V~VIN~V+ +0.3V
Operating Temperature Range ........ - 40°C~TA~85°C
Storage Temperature Range ............. - 65°C to 150°C
Lead Temperature Range (Soldering, 10 sec.) ....... 300°C

ORDER
PART NUMBER

TOP VIEW

LTC1062CS

PART MARKING
LTC1062CS
S16 PACKAGE
PLASTIC SOL

ELECTRICAL CHARACTERISTICS
Test Conditions: V+ = +5V, V- = -5V, TA =25°C unless otherwise specified, ACoutput measured at pin 7
PARAMETER
Power Supply Current
Input Frequency Range
Filter Gain at fiN = 0
fiN = 0.5fdNote 1)
flN=fc
flN= 2fc
flN= 4fc
Clock to Cutoff Frequency Ratio, fClKlfC
Filter Gain at fiN = 16kHz
fClKlfC Tempco
Filter Output (Pin 7) DC Swing
Clock Feedthrough
Internal Buller
Bias Current
Bias Current
Offset Voltage
Voltage Swing
Short Circuit Current Source/Sink
Clock (Note 3)
Internal Oscillator Frequency

CONDITIONS
Case (Pin 5to V-I = 100 pF

•

felK= 100kHz, Pin 4 at V+
C=O.D1~F, R=25.78k

Same as above
felK = 400kHz, Pin 4at V+
C=O.Ol~F, R=6.5k
Same as above
Pin 7 bufffered with an external op amp

Rl =20kO

Case (Pin 5to V-I = 100pF
Cose (Pin 5 to V-I = 100pF

Max Clock Frequency
Pin 5 Source or Sink Current
The. denotes the specifications which apply over the full operating tern·
perature range.
Note 1: fc is the frequency where the gain is - 3dB with respectto the in·
put signal.

811-62

MIN

••
•
•

-2
-28
-54

•

±3.5

•
•

•
•

-46

±3.5

25
15

TYP
4.5
0-20k
0
-0.02
-3
-30
-60
loo±l
-52

MAX
7
10

-0.3

ppm/oC
V
mVp·p

10
±3.8
10
2
170
2
±3.8
40/3
32
4
40

UNITS
rnA
rnA
Hz
dB
dB
dB
dB
dB
%
dB

50
1000
20

pA
pA
mV
V
rnA

50
65

kHz
kHz
MHz

80

~

Note 2: The LTC1062C operates from - 40°C:sTA:s85°C.
Note 3: The external or driven clock frequency is divided by either 1, 2, or 4
depending upon the voltage at pin 4. When pin 4= V+, ratio = 1; when
pin 4= GND, ratio=2; when pin 4= V-, ratio = 4.

~-"·llntM2

~~

OP-07CSB

TECHNOLOGY~-------P-r-e-c-is-io-n-O-p-e-r-a-ti-o-na-I
Amplifier

FEATURES

DESCRIPTion

• Guaranteed 150pV max. Offset Voltage
• Guaranteed 1,8pV/oC max. Offset Voltage Drift with
Temperature
• Excellent 2.0pV/Month max. Long Term Stability
• GuaranteedO.65pVp·pmax. Noise
• Guaranteed7nAmax.lnput Bias Current

The OP·07 offers excellent performance in applications requiring low offset voltage, low drift with time and temperature and very low noise. Linear's OP-07 is interchangeable
with many of the precision op amp device types. The
OP-07 also offers a wide input voltage range, high common-mode rejection and low input bias current. These features result in optimum performance for small signal level
and low frequency applications. Use of advanced design,
processing and testing techniques make Linear's OP-07 a
superior choice over similar products. A buffered reference application is shown below. For single op amp applications requiring higher performance in the SO
package, see the LT1001CS8.

APPLICATions
•
•
•
•

Thermocouple Amplifiers
Strain Gauge Amplifiers
Low Level Signal Processing
Medical Instrumentation

Precision Buffered Single Supply Reference

I

Long Term Stability of Four
Representative Units

~

~""1-30-K- - ,

10

r----r-"-T""-.-----r--,

...b..12.18V

.~

3.3K

LM129A
VaUT - 10.000V

lK

3.3K

8.2K

-10 L....----'-_-'-_"'-------'-_......

o
TIME (MONTHS)

The OP·07 contribules less lhan 5% of lhe 101al drill wilh lemperalure. noise
and long lerm drift of the reference applicaUon.

811-63

OP-07CS8
ABSOLUTE mAXimum RATinGS

PACKAGE/ORDER InFORmATion

Supply Voltage ................................... ± 22V
Differential Input Voltage ........................ ± 3DV
Input Voltage Equal to Supply Voltage
Output Short Circuit Duration .................. Indefinite
Operating Temperature Range ............... DOC to 70°C
Storage Temperature Range
All Devices ........................... - 65°C to 150°C
Lead Temperature (Soldering, 10 sec.) .............. 3DOoC

ORDER PART NUMBER
TOP VIEW

OP-07CS8

PART MARKING
58 PACKAGE
PLASTIC SO

OP07CS8

ELECTRICAL CHARACTERISTICS Vs = ± 15V, TA =25°C, unless otherwise noted.
SYMBOL
Vos
6.Vos
6.Time
los
18
en

PARAMETER
Input Offset Voltage
Long Term Input Offset Voltage Stability
Input Offset Current
Input Bias Current
Input Noise Voltage
Input Noise Voltage Density

In

Input Noise Current
Input Noise Current Density

Rin

AVOL

Input Resistance Differential Mode
Input Resistance Common-Mode
Input Voltage Range
Common-Mode Rejection Ratio
Power Supply Rejection Ratio
Large Signal Voltage Gain

Vo

Maximum Output Voltage Swing

CMRR
PSRR

CONDITIONS
(Note 1)
(Notes 2 and 3)

0.1Hz to 10Hz (Note 2)
fo= 10Hz
fo= 100Hz (Note 2)
fo= 1000Hz
0.1 Hz to 10Hz (Note 2)
fo = 10Hz
fo= 100Hz (Note 2)
fo= 1000Hz
(Note 4)

VCM= ±13V
Vs= ±3Vto ±18V
RL =2kll, Vo= ± 10V
RL =5001l, Vo= ±0.5V
Vs= ±3V(Note4)
RL = 10kll
RL~2kll
RL~1kll

SR
GBW

Zo
Pd

Slewing Rate
Closed Loop Bandwidth
Open Loop Output Impedance
Power Dissipation
Offset Adjustment Range

S11-64

RL ~2kll (Note 2)
AVOL = +1(Note 2)
Vo=O, 10 =0, f = 10Hz
Vs= ±15V
Vs= ±3V
Null Pot = 20kll

MIN

8
±13.0
100
90
120
100
±12.5
± 11.5
0.1
0.4

OP-07CS8
TYP
60
0.4
0.8
± 1.8
0.35
10.5
10.2
9.8
15
0.32
0.15
0.13
33
120
±14.0
120
104
400
400
±13.0
±12.8
± 12.0
0.25
0.6
60
80
4
±4

MAX
150
2.0
6.0
±7.0
0.65
20.0
13.5
11.5
35
0.90
0.27
0.18

UNITS
~V
~V/Month

nA
nA
~Vp·p

nV/.JHz
nV/.JHz
nV/v'fiz
pAp-p
pA/.JHz
pA/.JHz
pA/,,!Hz
Mil
Gil
V
dB
dB
V/mV
V/mV
V
V
V
V/~s

150
8

MHz
11
mW
mW
mV

OP-07CS8

ELECTRICAL CHARACTERISTICS Vs= ± 15V,OOC::;TA::;7QOC, unless otherwise noted.
SYMBOL
Vos

~
L.Temp
los

~

PARAMETER
Input Offset Voltage
Average Input Offset Voltage Drift
Without External Trim
With External Trim
Input Offset Current
Average Input Offset Current Drift

(Note2)

Input Bias Current
Average Input Bias Current Drift

(Note 2)

Input Voltage Range
Common-Mode Rejection Ratio
Power Supply Rejection Ratio
Large Signal Voltage Gain
Output Voltage Swing

VCM= ±13V
Vs= ±3Vto ±18V
RL2:2kll, Vo= ± 10V
RL 2: 2kll

CONDITIONS

Null Pot = 20kll (Note 2)

L.Temp
IB

~
L.Temp
CMRR
PSRR
AVOL
VOUT

The. denotes specifications which apply over the full operating temperature range_
Note 1: Offset voltage is measured with high speed test equipment, approximately 1 second after power is applied.
Note 2: This parameter is tested on a sample basis only.

MIN

•
•
•
•
•
•
•
•
•
•
•

±13.0
97
86
100
±11.0

OP·07CS8
TYP
85

MAX
250

UNITS

0.5
0.4
1.6
12

1.8
1.6
8.0
50

~V/oC

nA
pA/oC

±2.2
18

±9.0
50

nA
pA/oC

±13.5
120
100
400
±12.6

~V

~V/oC

V
dB
dB
V/mV
V

Note 3: Long Term Input Offset Voltage Stability refers to the averaged
trend line of Vos versus Time over extended periods after the first 30 days of
operation_ Excluding the initial hour of operation, changes in Vos during the
first 30 operating days are typically 2.5~V.
Note 4: This parameter is guaranteed by design.

811-65

1.7YJ~~F(~----Re-g-U-la-t-in-g-p-u-~S~_3_~_~_~-~
Modulator

FEATURES

DESCRIPTion

• ± 5% Typ. Oscillator Tolerance

The SG3524 PWM switching regulator control circuit con·
tains all the essential circuitry to implement single·ended
or push·pull switching regulators. Included on the circuit
are oscillator, voltage reference, a pulse width modulator,
error amplifier, overload protection circuitry and output
drivers.

• 20mV/1000 Hrs Typ. Long Term Stability
• Interchangeable with all SG3524 or LM3524 Devices
• Operates Above 100kHz

Although pin·for·pin and functionally compatible with in·
dustry standard 3524 devices, Linear Technology has in·
corporated several improvements in the design of the
3524. Asubsurface zener reference has been used to pro·
vide excellent stability with time and the reference is
trimmed at the wafer level.

APPLICATions
• Switching Power Supplies
• Motor Speed Control
• Off·Line Power Converters

Linear Technology Corporation's advanced processing,
design and passivation techniques make the SG3524 a
superior and more reliable choice over previous devices.

5V, 1Amp Regulator

Distribution of Reference Output Voltage
5k

100

VIN~8V

600,H

5V
1AMP

r-

180

r--

160
140
120

01 =1N6191
01=1N3906

600

100

r--

80
5k

5k

15
VIN
16 VREF

1 NI
10,F

0.1,F

5k
6.5k

SG3514
E1

RT

40

14

o
0.1,F
01
MR850

CL + 4

7 C,
9 COMP

CL -

f-

10

11

C1 13

1 INV
6

C1 11

E1

-

60

510

0.01,F

5

GNO

0.15

S11-66

.....

4.95

I-4.97
4.99
5.01
5.03
REFERENCE OUTPUT VOLTAGE (V)

.....
5.05

SG3524S
ABSOLUTE mAXimum RATinGS

PACKAGE/ORDER InFORmATion

Input Voltage ..................................... 40V
Reference Output Current ......................... 50mA
Output Current (Each Output) .................... 100mA
Oscillator Charging Current (Pin 6 or 7) ............. 5mA
Internal Power Dissipation (Note 1) . '" ............... 1W
Operating Temperature Range ............... O°C to 70°C
Storage Temperature Range ............. - 65°C to 150°C
Lead Temperature (Soldering, 10 sec.) .............. 300°C

ORDER PART
NUMBER

TOP VIEW

INV INPUT 1

SG3524S

NIINPUT 2
OSC OUTPUT 3
+CL SENSE 4
-CL SENSE 5
11 EMITTER 1

9 COMPENSATION

PART MARKING
SG3524S

S16 PACKAGE
PLASTIC SO

ELECTRICAL CHARACTERISTICS (Note 2)
PARAMETER
Reference Section:
Output Voltage
Line Regulation
Load Regulation
Ripple Rejection
Short Circuit Current Limit
Temperature Stability
Long Term Stability
Oscillator Section:
Maximum Frequency
Initial Accuracy
Voltage Stability
Temperature Stability
Output Amplitude
Output Pulse Width
Error Amplifier Section:
Input Ollset Voltage
Input Bias Current
Open Loop Voltage Gain
Common·Mode Voltage
Common-Mode Rejection Ratio
Small Signal Bandwidth
Output Voltage
Comparator Section:
Duty Cycle
Input Threshold
Input Threshold
Input Bias Current

MIN

CONDITIONS

VIN = BV to 40V
IL = OmA to 20mA
f= 120Hz
VREF=O

CT= 0.001~F, RT = 2kO
RT and ~ Constant
VIN = BV to 40V
Note3
Pin3
~ = 0.01~F, TA = 25°C
VO.4=2.5V
VCM=2.5V

•
•
•

4.6

•

SG3524
TYP
5.0
10
20
66
100
0.3
20

•

300
5

•

2
3.5
0.5

5.4
30
50

1

1

•
•

•

60
l.B

2
2
80

10
10
3.4

3.B

0.5

•
•
•
•

0

45
1
3.5
1

UNITS
V
mV
mV
dB
mA
%
mV/.Jkhr
kHz
%
%
%
V
~s

70
3

Av=OdB

% Each Output On
Zero Duty Cycle
Max Duty Cycle

MAX

mV
~A

dB
V
dB
MHz
V

%
V
V
~A

811-67

SG3524S
ELECTRICAL CHARACTERISTICS (Nole2)
PARAMETER
Current Limiting Section:
Sense Voltage
Sense Voltage T.C.
Common·Mode Voltage
Output Section: (Each Output)
Coliector·Emitter Voltage
Collector Leakage Current
Saturation Voltage
Emitter Output Voltage
Rise TIme
Fall TIme
Total Standby Current:

CONDITIONS

MIN

SG3524
TYP

MAX

Pin 9= 2V with Error Amplifier
Set for Max Oul

180

200

220

VCE=40V
Ic=50mA
VIN =20V
Rc=2kll
Rc=2kO
VIN = 40V (Note 4)

The • denotes specifications that apply over the full operating tempera·
ture range.
Note 1: For operating at elevated temperatures, the device in the SO pack·
age must be derated at 100·CIW to a maximum junction temperature of
115"C.

Note2: These specifications apply forV IN = 20V, f=20kHz. TA =25°C un·
less otherwise noted.

811-68

•
•
•

•
•
•

•

0.2
-1

1

40

17

0.1
1
18
0.2
0.1
8

50
2

10

UNITS
mV
mV/·C
V
V
pA
V
V
ps
ps
rnA

Note 3: Although many manufacturers specify a maximum specification of
2%, LinearTechnology's experience is that this specification is not being
presently met by other manufacturers. Linear Technology's basic design,
although improved, is essentially identical to other manufacturer's devices.
LinearTechnology is, however, unwilling to place a maximum specification
on its data sheet which cannot be met or guaranteed.
Note 4: Standby current does not include the oscillator charging current,
error and current limit dividers, and the outputs are open circuit.

~-y··tlntJ\R

~,

SO/SOL PACKING MATERIAL

TECHNOLOGY~-----

Linear Technology Corp. packs their SO and SOL products
in either conductive plastic tubes or tape and reel, depend·
ing on customer preference. Plastic tubes are manufactured to LTC specifications, while tape and reel packing

follows EIA specification 481-A, and is an extra cost item.
The following pages describe and detail these packing
methods.

PLASTIC TUBE SPECIFICATiOnS
SOL Package Shipping Tube
SO Package Shipping Tube

0.060

0.310
REF

0.260

T -r
L ~
0.250

0.32010

KEEP FLAT
DO NOT ROUND
OUT

0.010 RAD
REF
0.070 -+-1--.1

0.150

.

0.580

+1/16.

Length. 20.50 -1132 Inches
0.050-+-+---1
_0.030±0.005
TYP WALL

Length: 20.75 ~ 1~~~ inches

Nole 1: Tolerances: ± 0.010 unless otherwise specified.
Nole 2: Material: anti·static treated rigid transparent PVC or rigid black conductive.
Nole 3: Printing: "LTC logo, Linear Technology Corp., Antistatic" on top side of tube.

811-69

SO/SOL PACKING MATERIAL
TAPE AnD REEL SPECIFICATions
Embossed Carrier Dimensions (12,16, 24mm Tape Only)
10 PITCHES
CUMULATIVE
PO _ _*f--~2~~RANCE ON

TOP
COVER
TAPE

B1

1

~

Ko
SEEIME1

GCHINE REFERENCE ONLY
INCLUDING DRAFT AND RADII
CONCENTRIC AROUND Bo
CENTER LINES
OF CAVITY

USER DIRECTION OF FEED

01
FOR COMPONENTS
2.0mm x1.2mm
AND LARGER

Embossed Tape-Constant Dimensions
Tape Size
12,16,
24mm 1.5

0
E
I (Max.) Ao 80 Ko
Po
+0.10 1.75±0.10
4.0±0.10
0.400 See Note 1
-0.0 (0.069 ± 0.004) (0.157± 0.004) (0.016)

0.059 :

~:~04

Embossed Tape-Variable Dimensions
Tape Size
12mm
16mm
24mm

81
Max.
8.2
(0.323)
12.1
(0.476)
20.1
(0.791)

01
Min.

1.5
(0.059)

F
5.5±0.05
(0.217 ± 0.002)
7.5±0.10
(0.295 ± 0.004)
11.5±0.10
(0.453 ± 0.004)

K
Max.
4.5
(0.177)

P2
2.0±0.05
(0.079 ± 0.002)

6.5
(0.256)

2.0±0.10
(0.079 ± 0.004)

Nole 1: Ao 60 Ko are determined by component size. The clearance between
the component and the cavity must be within 0.05 (0.002) min. to 0.65 (0.026)
max. for 12mm tape, 0.05 (0.002) min. to 0.90 (0.035) max. for 16mm tape and
0.05 (0.002) min. to 1.00 (0.039) max. for 24mm tape and larger. The compo-

811-70

R
Min.
30
(1.181)
40
(1.575)
50
(1.969)

W
P(sO)
P(sOL)
12.0 ± 0.30
S.0±O.10
(0.472 ± 0.012) (0.315±0.04)
8.0±0.10
16±0.30
12.0±0.10
(0.630 ± 0.012) (0.315 ± 0.04) (0.472 ± 0.004)
24 ± 0.30
(0.945 ± 0.012)

nent cannot rotate more than 20° within the determined cavity, see
Component Rotation, page 65.
Nole 2: Tape and components shall pass around radius "R" without
damage.

SO/SOL PACKING MATERIAL
TAPE AnD REEL SPECIFICATions
Bending Radius

Component Rotation
20° MAXIMUM
COMPONENT ROTATION

TYPICAL
COMPONENT CAVITY
CENTER LINE
RMIN

TYPICAL
COMPONENT
CENTER LINE

BENDING RADIUS
SEE NOTE 2, PAGE 64

Tape Camber (Top View)
100mm
1-------(3.937)------.1

250mm
1-"-----------(9.843)-------------+1

Allowable camber to be 1mm/l00mm non accumulative over 250mm

Tape Leader (Slart/End) Specification
END

o o o o o o
TOP
COVER
TAPE

t

NO COMPONENTSTCOMPONENTstND COMPONENTS

START

MIN 500mm (19.685)
MAX 560mm (22.047)

40mm (1.575) MIN
----EMPTY COMPONENT
------- POCKETS SEALED
WITH COVER TYPE

~

USER DIRECTION OF FEED

811-71

SO/SOL PACKING MATERIAL
REEL DimEnSions
Direction of Feed

TOP COVER
TAPE THICKNESS (11)
O.lOmm MAX THICK
(.004)

~~"--EMBOSSMENT

Reel Dimensions

40mm (1.575) MIN.
ACCESS HOLE
AT SLOT LOCATION

A

w~\
D.I~
(,\

t \' _- /
\

-

I

......

FULL RADIUS·

TAPE SLOT IN CORE
FOR TAPE START.
2.5mm (0.09B) MIN WIDTH
10mm (0.394) MIN DEPTH

·DRIVE SPOKES OPTIONAL IF USED
ASTERISKED DIMENSIONS APPLY.

Tape

A

B

Size
12mm

Max.
330
(12.9921

Min.
1.5
(0.0591

16mm

360
(14.173)

1.5
(0.059)

G(MEASURED AT HUB)---II----

D"

13.0±0.2O
(0.512 ± 0.008)

Min.
20.2
(0.795)

N
Min.
50
(1.969)

13.0±0.2O
(0.512 ± 0.008)

20.2
(0.795)

50
(1.969)

e

G

~~:~
(0.488 ~ ~:~78)
12.4

16.4
(0.646

24mm

360
(14.173)

1.5
(0.059)

13.0±0.20
(0.512±0.008)

20.2
(0.795)

50
(1.9691

24.4
(0.961

"Metric dimensions will govern.
English measurements rounded and for reference only.

811-72

T
Max.
18.4
(0.724)

~~:~

22.4
(0.882)

~~:~

30.4
(1.197)

~ ~:~~8)
~~:~8)

SECTion 12- PACKAGE DimEnSions

c'"

o

iii

c

\II

e

.,
is

\II

a:
~

u

a:
Q.

m
812-1

INDEX
SECTION 12-PACKAGE DIMENSIONS
INDEX ......................................................................... S12-2
PACKAGE CROSS-REFERENCE ....................................................... S12-3
PACKAGE DIMENSIONS ............................................................ S12-5

812-2

~-Y-LlntJ\Q

....A..,

PACKAGE CROSS REFERENCE

TECHNOLOGY~--------LTC

NSC

SlG

FSC

MOT

TI

SG

AMD

RAYTH

PMI

N-8

N
N-8

N

T

Pl

P

M

P-8

P,NB

P

Plastic DIP
14,16,18and20Lead

N

N
N·14

N

P

P2

N
NE
NG

N

P·14
P·16

P,N

P

TO·220
3 Lead

T

T

-

U

T

KC

P

-

-

-

TO·220
5 Lead

T

T

-

U

-

-

P

-

-

-

Side Brazed Hermelic DIP
8Lead

0-8

0

I

0

L

-

-

0·8

-

-

Side Brazed Hermetic DIP
14,16,18and20Lead

0

0

I

0

L

-

-

0·14
0·16
0·18

-

YB
OB
XB

TO·92

Z

Z

-

W

P

LP

-

-

-

-

TO·5, TO·39, TO·96
TO·99, TO·l00andTO·l0l

H

H

-

H

G
H

-

T

H

T
H

H
J
K

Ceramic DIP
8 Lead

J·8

J
J·8

F

R

U

JG

Y

0·8

DE

Z

Ceramic DIP
14,16,18and20Lead

J

J
J·14

F

D

L

J

J

0·14
D·16

DB
DC
J

0
X

TO·3ISleel)

K

-

K

K

-

K

-

-

-

T 0

K
Sleel

IAluminum)

-

K

-

K

K

-

-

-

-

-

O(~;,io
=W @

TO·3
4 Lead

K

K

-

K

-

-

K

-

-

-

TO-46
2,3,4 Lead

H

H

-

-

-

-

T

-

-

H
J
K

TO·247
3Lead

P

-

-

-

-

-

-

-

-

-

Plastic SO
8Lead

5·8

M

0

-

0

0

-

-

-

-

Plaslic SO
14,16Lead

5

M

D

-

0

0

-

-

-

-

Plastic SOL
16,18,20 Lead

S

M

0

-

0

0

-

-

-

-

NE
5E

,.A

MC

TL

SG

AM

RM
RC

OP
REF
CMP

Plastic DIP
8Lead

CJ WfI
c:J

~

~~

~

;

C

WW

c:o "IW1W'I'
~~~~

g

Q ~
~:
00100

0

ffiI1

CJ

'WW\W'
e

@.

~
GGG

~
H~

01

'.'

~ ~
. r·

TO·52
3 Lead

Y

~ I:

0
~

0

=
~

~
PROPRIETARY DEVICE
PREFIXES

LT
LTC

LF
LH
LM

LP
MF

812-3

NOTES

812-4

''''''''-Llnll\Q
TECHNOLOGY~-----

PACKAGE DIMENSIONS

......,

DPackage
8Lead Sidebrazed

'. . ----I
1
---(10:i52~08)
MAX

t

0.020
(0.508)
RAD

~

0.300~

(7.620)
REF

0.125
(3.175)
MAX

0.020-0.040

(~;~~) (0.508L-1.016),.....c============::::J:::;~

A

\I

0.298
(7.569)
MAX

MIN

it

0.008-0.015

--JI-- (0.203-0.381)

t

0.015-0.023
(0.381-0.965)

~r(02

--11-

. 719140)

REF

0.100 ± 0.010
"'(2"".540:-:
0 ±=-:"0"".25"""4)--

DPackage
14 Lead Sidebrazed

(~:~~)~

MAX
_OA85
(12.32)
113

i

12

M1~X

_

10

9

I8

0.298
(7.569)
MAX

t

0.165
(4.191)

F9

-It·008-0J015
- - (0.203-0.381)
0.300
(7.620)
REF

0.020-0.040

"M("·"E~
0050±ot010 _
0125 (1 270± 0254)
(3 175)
MIN
0 100±0 010
(2.540±0.254)

J

~L t

_

(1 372)
TYP
0015-0023 _
(0.381-0.564)

812-5

PACKAGE DIMENSIONS
oPackage
16 Lead Sidebrazed

0.050
(1.272)
REF RAD

1
1 ..

0.295±0.010
(7.493±0.254)

I..

..

._
0.840
1-+-----(21.336) - - - - - + {
MAX
0.050
(1.270)
0.050
TYP
(1.270)

I

"~P1 ,:,:,~'~jLJ
L ,:rt
(5.080)
MAX

(~:~~~=~:~!~)±J
0.290-0.320
(7.366-8.128)

(0.356-0.584)

MIN

0.100 sse
(2.540) sse

0.040-0.060
(1.016-1.524)

oPackage
18 Lead Sidebrazed
0.910
t+------(23.114)-----..-.J
MAX

f

0.298
(7.569)
MAX

t

0.165
(4.191)
MAX

P9
L
0.300
(7.620)
REF

812-6

j-

0.125
(3.175)
MIN

0.008-0.015
(0.203-0.381)

0.050 ± 0.010
(1.270±0.254)

4

5
6
0.485
j-(12.319)
MAX

I

7

---J
I

PACKAGE DIMENSIONS
DPackage
20 Lead Side brazed
/-------

(2~06'504)·------~
MAX

t

0,025

(O"635i"

MAX

PIN 1 IDENT

~~~~~~~~

~

0485

0008-0.015
(0.203-0.381)

ItP9J

---II---

0.300

0.298

(7T69)

RAO

'::'~"""
TYP~

~-I
(L270±O.254)

0020-0060

-+--

Q.1DO±O.Q1O

(2540±02S4)

-.JIIJL~
~
0125
~

~

(3M',~5)

REF

(0.381-0.584)

HPackage
8 Lead TO·5 Metal Can

0.040

~

(~:;~~D~l;~~)

HPackage
10 Lead TO·5 Metal Can

----

0.305 - 0.335

1..- (7.747 -8.509)-'1

0.040

L

I

t__

~

SEATING _ _ _
PLANE

t

0.165-0.185

MAX

(4.191-4.699)

t ,
REFERENCE
---.!"--G-AU-G-E---+.--PLANE
0.500 - O. 750

- - . --t- PLANE

DO 0 O~ ______(1_2_.70--'..'905)

~

II

(0.254-1.143)

0,016-0,021

.l~~1"'00"1

I

(1.270)

(~:i:=~:~:/~

7U

"-------+-+0

6

°

3

°

[

0.305-0.335
(7.747 -8.509)1

ifOi6i ~1---o-0'~05~0----~

ifOi6i ~1---o-0''''05''0-----'MAX

~

(:;:~D~l;::)

iiT70i

MAX

~

MAX

SEATING_ _
PLANE

t

~
(0.254-1.143)

-

DO 0

--.11-

0.165-0.185
(4191-4.699)

---.!t"--G-AU-G-E---ft--~~~~ENCE
----r-PLANE

D~

0.500-0.750

I

(12701'905)
0.0,6-0-02-,-------.1.

. ~A (,i""~I""

0

ts~027-0034~

"

+

(0.686-0.864)

0.200 - 0.230

(5.080-5.842)

I
Bse
50,-:,4O*""-/-_ _-1.t_

0.110-0.160
(2.794-4.064) ----a...

INSULATING
STANDOFF
NOTE: LEAD DIAMETER IS UNCONTROLLED BETWEEN
THE REFERENCE PLANE AND SEAliNG PLANE.

NOTE:
1, LEAD DIAMETER IS UNCONTROLLED BETWEEN THE REFERENCE PLANE AND SEATING PLANE.

812-7

PACKAGE DIMENSIONS
HPackage
3Lead TO·39 Metal Can

HPackage
4Lead TO·39 Metal Can

0.350-0.370
(8.890-9.398)1
DIA
0.305-0.335

0.350 -0.370
(8.890-9.398)1
DIA
0.305 -0.335
(7.747 8.509)

r

0.165ro.185j (7.747-8.509)
(4.191-4.70)
DIA

. ~.

r

r

0.050
(1.270)
MAX

~==+

~ ~ ~ 0.016-0.019

(12.70)
MIN

t

(0.406-0.483)
DIA 3 LEADS

0.165-0.195
(4.191-4.953)

+---

(1~F

~ ~ ~

--<-----

0.500

r

0080 -0100
(2032-2540)

''''"''~~

t=::o

00

0.016-0.019/'
(0.406 - 0.483)
DIA

0.036 - 0.046
(0.914 -1.168)

812-8

I r--- 0.016-0.019
(0.406 0.483)
DIA 3 LEADS

HPackage
3·Lead TO·52 Metal Can
0209-0230
(5309-5842)

r o 178-0 195
(4521-4953)

.Q...Q!i

__

0.200
(5.080)

HPackage
3Lead TO·46 Metal Can

1
-

0.050

~)

--t

0.500

0.200
(5.080) ---+-t--~I

0209-0219
(5309-5537)

r
~
DIA

,:~:

JL2!!Q.
(12 70)

1
-

r

~

0178-0195
(4521 4953)

I

MAX

Mf-T
~

000

0.016-0~19 / '

MAX

0.115-0150

(~~O~~) +=1(2921_3810)

-:
(0.762)
MAX

(0.406-0.483)
DIA

0.050
(1.270)

0.050
(1.270)

TVP

TVP

0.036-0.046
(0.914-1.168)

0.028-0.048
(0.711-1.219)

.L7lID~

PACKAGE DIMENSIONS
J Package
8 Lead Cerdip

J Package
10 Lead Cerpac

ir

0,005

0.290

(:~ :I ~D7t
0055

iU9?i

0.003-0.005
(0. 076 - o. 152) ----.. ....--

wn

~

MAX

1
I

2

3

4

:F

0.220-0,310
(5.588-7.8741

~

r--

J
(0.762-18541~ ~

(0.360-0.6601
~-ll+0,030-0.073

~

0.250-0.370

0.200
(50801
MAX

0.240-0,260
(6.096-6.6041

-~

0.015-0.060

~I

t

f

11-- -

1

0.005

-(OT27)
MIN

f

0.280

iDi2i
MAX

i

0.250-0.370
(6.350-9.3981

II

0'-15'

0.Q10-0.019

-t

MAX 6 : J

RADTYP

"'--(7M~~6)~

II

MIN
....Q.JQ..L
i5T271--1
1(10.2871

I

TiTs
0.125

MIN
O.100±D.Ol0
-(2540±02541

(~:~;~)-----I
Bse

0.010-0.040

(0.254-1.016) ~

...- 0.030-0.085
(0.760-2.1601

1..- ______ I

0.045

-iD43i"
MAX

J Package
14 Lead Cerdip

9

1 - - - - - - ( 10 7:3591- - - - -...1
MAX

n

0.220-0.310

(5.588-7.8741

h-:-,--,r::-r-r-::-"....,.,-r-:-r-r::-~~
1234567

(~:::IMAX

0.008-0.0~1

(0.203-0.4601

1

f--

~

0.200

(50801
MAX

0.015-0.060

n I¥I n ¥ ['::1.'

1'- (~:;~~:~:~;;) ~

S12-9

PACKAGE DIMENSIONS
JPackage
16 Lead Cerdip

0.005
(0.13)
MIN

1-I-16

(20183~6)
15

------j

MAX ,
13

12

n

I

I1il ITOl f9l
11

10

9

0.220-0.310
(5.588-7.847)

0.025
(0.635)

""=--r.."........,..--.-:-r"'"1,.."...,.-,-"~..,,,......U

TYP

JPackage
18 Lead Cerdip
0.960
(24.384)

MAX

0.220-0.310
(5.590 -7.870)

0.025
(0.635)

RAD

...........,....,..........-,-...........,....,..-,--,-,-I~

...............
0.005
(0.130)
MIN

II~

-I r--

2
0.030 -0.073
(0.760-1.860)1

0.200
(5.080)

I

MAX

~".",H.~

I

(0.380 -1.520)

~

\.-- 0.385±0.025-..j
(9.779±0.635)

812-10

0.125
(3.175)
MIN

PACKAGE DIMENSIONS
JPackage
20 Lead Cerdip
---------(2'60:2~)--------·1
MAX

t

0.220-0.310
(5.588-7.874)

0.Q25
(0.635)
AAO TYP

!

j

1

2

I

0.005
1---(0.127)
MIN

0.160
GLASS
(4.064)
SEALANT MAX

0.015-0.060
(0.381 -1.524)

L

0.008-0.018j
(0.203-0.457)
-

r--r------------------~~
~

0.200
(5.080)
MAX

'l=} Jl
.QJ.12.

-

(3.175)
MIN

O.385±O.025
(9.779±0.635)

f

k-(~~:~)
jt(~~~~=~~~)w(~:::~~)
MAX
0.014-0.026
(0.356-0.660)

KPackage
2Lead TO·3 Metal Can

KPackage
4Lead TO·3 Metal Can

t

0.060-0.135
(1.52-3.43)

0.320-0.350

0.320-0.350
(8.128 -8.890)

(813f889)c:::~~;:::::::~~

--t-C==:::;;:::;:;::::::=l~

t

0.420-0.480

~

f

t

0.116

(2.946)
MAX
0.420-0.480
(10.67-12.19)

0.152-0.162

:;'~~=~~:;

R TYP

:4'~:=~~~~ R TYP

(3.860 - 4.114)
RTYP

0.167-0.177

(4.241-4.495)
R TYP

0.495-0.525

~

(~:~;=~:;;)-+-----~

812-11

PACKAGE DIMENSIONS
NPackage
8Lead Molded DIP

t (1°ci~0~0):l
MAX

8

7

6

5

r

0.250±0.005
(6.350 ± 0.127)

~~;:;:::;:;;;:::;--.-l

0.300 - 0.320
(7.620-8.128(-

0.130±0.005
(3.302±0.127) 0020

=tj

(0508)
MIN

____ 0.009-0.015
(0.229-0.381)
+0.025
0.325_ 0.015

f ~~o
TYP

0045±0015

~(8.255+0.635)""1
I,
-0.381

tJ

(1143±0381)
0 100±0 010
(2 540±0 254)

f
0018
(0457)-11TYP

~
(3.175)
MIN

NPackage
14 Lead Molded DIP
1 . . - - - - - 0.770 - - - - - - 1..0-11
(19.558)
MAX

0.092
(2.337)
DIA NOM
_

PIN NO.1
IDENT

0.300-0.320

(7'620-8'128)~
- - 0.280
(7.112)
1

1

MIN

(;1jl
L

o.009-0.015
(0.228-0.381)
0.325

~~.~~~

f8 255 +0.635)
~.
-0.381

S12-12

-

(1.905±0.381)
_

0.100±0.010
(2.540±0.254)

PACKAGE DIMENSIONS
NPackage
16 Lead Molded DIP
0.750

~----(19.05)----~

t

0.250 ± 0.005
(6.350±0.127)

t

0.310
-(7.874)-

0.130
(3.302)

0.065

iiT5ii

r---~~-----------'~

II

J

0.009-0.011

-1..- (0.229-0.279)

0325 +0.025
.
-0.015

1-

0.125
(3.175)

_

/8255 +0.635)
\ .
-0.381

0 025
(0.635)
.
0.100
(2.540)

lt
li
-.ll~

J LJ L

0018±0.003
(0.457±0.076)

0.040
(1.016)

NPackage
18 Lead Molded DIP
0.870
!.-------(22.098)------I
MAX

(~~~~)--I
t
t
MIN

II

r

0.300-0.320

I

(7620 -8128)

n

f

0.009-0.015
(0.229-0.381)
0325
.... '
(8.255

t

•
0.130±0.005
0.610 (3.302±0.127)
(0.254)
TYP

-JI-

+0.025
-0.015 ....
+ 0.635)
-0.381

0.065
(1.651)

•

.-- "

I

.----'=1:=
I

..Q;.1~
(3.175)
MIN

I

0.025±0.015 _
(0.635±0.381)

I~ (2.540±0.254)
0.100±0.0~0
TYP

L

0.Q18
(0.457)
TYP

812-13

PACKAGE DIMENSIONS
NPackage
20 Lead Molded DIP

r~f-2-------

1.033 - - - - - - - 1 ·
.. 1
(26.238)
MAX

T

0.250±0.005
(6.350±0.127)

~~~~~~~~~

-I

0.300-0.320
(7.620 8.128)

1-

rJi
J 10.009-0.015 _

(0.229-0.381)
0325 +0.025
-0.015._
.
18255 +0.635)
V·
-0.381

0.130±0.005
(3.302 ± 0.127)

(::(~

~

TYP

1=Ujt
0.125
(3.175)
MIN

I.--

(~~~~)
TYP

0 100±0 010
(2 540±0 254)

0018
(0457)

SO Package
8Lead Small Outline

r1
8

""'Q
0.228-0.244

1

0010-0020
f-(0'254 0'508) x45'

+-ft'
0' _8' TYP

I

. -

0.016-0.050
(0.406-1.270)

7

6

5

I

0.150-0.157

-=too"

b ~~'254)

0.053-0.069
(1.346-1.752)

h::r~~:

--II:!

0.189-0.197 ~
(4.801 - 5.004)

0.004-0.010

0.014-0.019

~w (~:~;~) f
TYP

(0.355-0.483)
NOTES:
1. PKG MATERIAL: PLASTIC
2. LEAD MATERIAL: A-42. TIN PLATED

812-14

PACKAGE DIMENSIONS
SO Package
14 Lead Small Outline

~
14

13

0'337-0'344~

(8.560 8.738)

12

11

10

9

8

I

"'"'0
0.228-0.244

I

}gf'
0'_8' TYP

. -

0.016-0.050
(0.406 -1.270)

-=t'""'

b
~S:~,
l6SL8JliIj)j1l-=t'"'

0010-0020
f-(0'254 0'508) x45'

I

0.150-0.157

0.053-0.069
(1.346-1.752)

0.004-0.010

---.I

r=r

0.014 -0.019
(0.355-0.483)

J~W-(~~~~)

t

TYP

NOTES:
1. PKG MATERIAL: PLASTIC
2. LEAD MATERIAL: A-42, TIN PLATED

SO Package
16 Lead Small Outline
0.386-0.394 ~
(9.804 -10.008)
14

13

12

11

10

I

"roIj_____________---1-=t.
b
0.228-0.244

I r- . -.

0010-0020
(0'254 0'508) x45'

}ft
O'-8'TYP

0.016-0.050
(0.406-1.270)

9

0.150-0.157
988

)

0.053-0.069
(1.346-1.752)

0.004-0.010
'(0.101-0.254)

0.008-0.010

~:L~'
~~
---.I
~ ~W-(~~;~)
t

r=r

0.014-0.019

TYP

(0.355-0.483)
NOTES:
1. PKG MATERIAL: PLASTIC
2. LEAD MATERIAL: A-42, TIN PLATED

812-15

PACKAGE DIMENSIONS
SOL Package
16 Lead Small Outline (Wide)

IBB'::~~F:!"~
0.394-0.419
(10.007 -10.643)

SEE NOTE

~U
o 291 _ 0 299

1

(7391_7595)}
0.005
(0.127)
RAD MIN

3

4

5

6

7

8
0.037-0045

",0""0.;.::10:---;;.0.~02,,,,9 X450i

--1I

--.l

(0940-1143)

(0 254 - 0 737)

\~~=~"""~J"/bL~TYP

0.009-0.013
(0.229-0.330)

2

0093-0104
(2362-2642)

(\~~O)

SEE NOTE

~~IDp~DJOJ~OQtlL~@'

_'.'"

0016-0050
(0.406 -1.270)

~

_.-

0.014-0.019
(0.356 - 0.482)

j

NOTE:
PIN 1 IDENT, NOTCH ON TOP AND CAVITIES
ON THE BOnOM OF PACKAGE ARE THE
MANUFACTURING OPTIONS. THE PART
MAY BE SUPPLIED WITH OR WITHOUT
ANY OF THE OPTIONS.

0.004-0.012
(0.102-0.305)

.

SOL Package
18 Lead Small Outline (Wide)

1fl

~i'~,F:,;~::~i
SEE NOTE

"

~:;: ;: ;: ;: : ;: ;: : ;: ;: : ;: ;: ;:;: :;:;: ~ ' '·' T

0291-0299

1

(7391_7595)}
0.005
(0.127)
RAD MIN

1
ir-----

SEE NOTE
0.016-0050
(0.406-1.270)

812-16

2

3 4

5

6

7

8

0093-0104
(2362-2642)
0010-0029 45°1
(0254 -0737) x

OO
'

9
0037-0045

--.l

(0.940-1143)

'f~:;;:;;~:;;;:;;;~~;;;~j

L l-JL
0°

8° TYP

.~~~~~:;~;;u"~-i
0.009-0.013
(0.229-0.330)

0.394-0.419

UiiiiiiiJiio 00 [(T

(~~~~)-I
Y

T P

(~~~:=~:~!;)

t
0.004!0.012
(0.102-0.305)

NOTE:
PIN 1 IOENT, NOTCH ON TOP AND CAVITIES
ON THE BOnOM OF PACKAGE ARE THE
MANUFACTURING OPTIONS. THE PART
MAY BE SUPPLIED WITH OR WITHOUT
ANY OF THE OPTIONS.

PACKAGE DIMENSIONS
SOL Package
20 Lead Small Outline (Wide)

SEE NOTE

1 2
0.093-0.104
(2.362- 2.642)

0.291-0.299
(7.391-7.595)
0.005
(0.127)
RAD MIN

5 6

7

8

--i

SEE NOTE
0.016-0.050
(0.406-1.270)

9 10
0.037 -0.045

-*-

0.010-0.029 X45'l
(0.254-0.737)

(0.940 1.143)

~

0' 8'TYP

0.009-0.013
(0.229 -0.330)

3 4

] L l-JL

j

UiitrOotJOODDfit.

~--J
(\~~O)

0.004!0.012
(0.102 0.305)

0.014-0.019
(0.356-0.4B2)

TPackage
3·Lead TO·220

0.110±0.010
(2.794±0.254)

r-

I

NOTE:
PIN 1 IDENT, NOTCH ON TOP AND CAVITIES
ON THE BOTTOM OF PACKAGE ARE THE
MANUFACTURING OPTIONS. THE PART
MAY BE SUPPLlEO WITH OR WITHOUT
ANY OF THE OPTIONS.

r-.-

1

0.170-0.180
(4.31B-4.572)

0.390-0.410
(9.906-10.414)

0.045-0.055
(1.143 1.397)

0.250±0.020
(6.350±0.50B)

0.147 -0.151
(3.734-3.835)
DIA
0.570-0.610

j

~

"'."1'.'"

0.150
(3.B10)
MIN

--0.050
(1.270)

J

~t (0.B13±
0.032±0.005
0.127)
0.100±0.010
(2.540±0.254)

--..I~

0.013-0.025
(0.330-0.635) ~

0.090-0.125
(2.286 -3.175)

TYP

812-17

PACKAGE DIMENSIONS

0.570-0.610

l

"'"-'''''

0.390-0.410
(9.906-10.41)

0.147-0.151

r

TPackage
5Lead TO-220
0.170-0.180

"","-00"'1

0.100-0.120
(2.540-3.048)

"~~

~

+

DnrJ

rr-ll
-'-

1

0.460-0.500
(11.68-12.70)

U

~

(22.35-23.11)

0.355-0.370
(9.017 -9.398)

~

0.030-0.040

(0.762 -1.016)

.050

0.013-0.025
(0.330 - 0 .635)

ZPackage
3-Lead TO-92

P Package
3 Lead TO-247
MOUNTING HOLE
0.125
(3.175)
OIA TYP

r

j"" ,

I

0620-0640

,,;,.-.,~-

0180-0.200

I--+~

Lt ----!

15'TYP

(4.826-5.334)

-----.-

15' TYP
0.860-0.880
(21.844 -22.352)

L

0.160-0.180
(4.064-4.572)

0060-0070
(1524-1778)

0.780-0.820
(19.812-20.828)

0.175-0.185

1~(4.445-4.699)
---

~:O:

L

~

SEATING

(4.445-4.699) I
I
1
L ___ J--I

PLANE

~

---i--i
~

~~~

(12.70)
MIN

7<> TYP

o

0.710
(18.03)

0.0"'
~

ill
~J~'L
(1.574-1.829)

0620

(15.75)

L
\

I

~
0.045-0.055
(1.143-1.397)

J

~
(1.270)
MAX
UNCONTROLLEO
LEAOOIA

~==t

5'

NOM

~
II

-lII-JCQ1!
I .. (0.457)
t--

~OM

TYP

TYP

0.250
(6.350)
MAX
0.045-0.055

0.040 -0.060

0.070-0.090
(1.778-2.286)

X

O,070-0. 090
(1.778-2.286)
0.025-0.035
(0.635-0.889)

(5.080)
BSC

S12-18

(I~'143-1'397)

p
1 2 3

10'NOM

l

0.Q15

- t 1+---(0.381)

0.135-0.145
(3.429-3.683)

SECTion 13- APPEnDICES

'"
\II
U

is
c

\II

Go
Go

a:::

m
813-1

INDEX
SECTION l3-APPENDICES
INDEX. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 813-2
INTRODUCTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-3
Reliability Assurance Program ...................................................... 11-5
Quality Assurance Program. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 11-13
R-Flow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11-20
E8D Protection Program. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 813-3
ApplicationNoteslndex ........................................................... 813-14

813-2

·tlnlJ\12
TECHNOLOGY~----

~-y,.

~,

ESD PROTECTION PROGRAM

Introduction
As integrated circuit technologies achieve higher speed,
smaller geometries, lower power and lower voltage, there
is a trend toward greater ESD (Electrostatic Discharge
Damage) susceptibility. State·of·the·art CMOS ICs can be
susceptible to as little as 50V, a static level that is way be·
low the 500V to 15,OOOV commonly found in an ESD unpro·
tected work environment. As these state·of·the·art ICs get
designed into systems, the ESD susceptibility of system
hardware also increases proportionately. Industry esti·
mates of losses due to ESD are in the range of a few billion
dollars annually.
It has now become increasingly more important for all
semiconductor manufacturers and users of semiconduc·
tor and other electronic components to fully understand
the nature of ESD, the sources of ESD, and its impact on
quality and reliability, to effectively deal with this silent
chip killer.
Linear Technology Corporation has successfully under·
taken a simple but effective ESD Protection Program as
part of an overall program designed to enhance product
quality and reliability. Described in this section are the
keypoints of this program.
The objective is to provide increased ESD awareness by
showing the sources of ESD in the work environment, and
to recommend keypoints for the successful implementa·
tion of an ESD program on acompany-wide basis.
The end result of a successful ESD program would be the
reduction of line failures, final inspection failures and
field failures, improved manufacturing yields, improved
product quality and reliability and lower warranty costs.
We hope that this will help to convince the reader that an
ESD Protection Program must be an integral part of every
electronic company's product quality and reliability
program.

Key Elements of aSuccessful ESO Protection Program
Recent improvements in failure analysis techniques to
correctly identify ESD failures together with an increase in
ESD related information from technical publications,

EOS/ESD symposiums and vendors have significantly
helped to increase ESD awareness.
The ESD Protection Program at Linear Technology
Corporation was successfully launched in 1983 when
production of ICs was first started. A constant upgrading
of the program is still underway. During the ongoing ef·
forts to improve product quality and reliability, previously
unrecognized ESD related problems have been brought to
light and corrected.
An effective ESD Protection Program must start at product
design, and encompass all manufacturing and handling
steps up to and including field service and repair.
Since the sources of static in any work environment are
similar, key elements of the program successfully imple·
mented at Linear Technology Corporation can also be ap·
plied to all users of electronic components. Where these
key elements apply, static controls generic to an elec·
tronic systems manufacturer are included.
The key elements of a successful ESD Protection Program
include:
1. Understanding static electricity.
2. Understanding ESD related failure mechanisms.
3. ESD sensitivity (ESD) testing.
4. Establishing an ESD task force to outline the require·
ments of the program, sell the program to manage·
ment, implement the program, review progress against
milestones, and follow·up to ensure the program is con·
tinuously improved and upgraded. Selecting an ESD
coordinator to interface with all departments affected.
5. Conducting a facility evaluation to help identify the
sources of ESD and establish static control measures.
6. Setting up an audit program.
7. Selection of ESD protective materials and equipment.
8. Establish a training and ESD awareness program.

813-3

ESD PROTECTION PROGRAM
What is Static Electricity?

Inductive Charging

Lightning and sparks from a metallic doorknob during a
dry month are examples of static electricity. The magni·
tude of a static charge is dependent on many variables,
among them the size, shape, material composition, surface characteristics and humidity. There are basically
three primary static generators, namely triboelectric, inductive and capacitive charging.

Static can also be caused by induction, where a charged
surface induces polarization on a nearby material. If there
is a path to ground for the induced charge, an ESD event
may take place immediately. An example of an induced
charge is when the plastic portion of amolded IC package
acquires a charge either through triboelectric charging or
other means, produces an electrostatic field and
induces a charge on the conductive leads of the device.
When the device leads are grounded, a short duration
damaging static pulse can take place.

Triboelectric Charging
The most common static generator is triboelectic charging. It is caused when two materials (one or both of which
are insulators) come in contact and are suddenly separated or rubbed together, creating an imbalance of electrons
on the materials and thus static charge.
Some materials readily give up electrons whereas others
tend to accumulate excess electrons. The Triboelectric
Series lists materials in descending order from positive to
negative charging due to this triboelectric effect. A sample triboelectric series is shown here. A material that is
higher on the list, e.g., a human body, will become positively charged when rubbed with a material, e.g., polyester,
that is lower on the list, due to the transfer of electrons
from the human body to the polyester material.

Triboelectric Series

Human Body
Glass
+
Mica
Nylon
Wool
Fur
Silk
Aluminum
Paper
Cotton
Steel
Wood
Hard Rubber
Orion
Polyester
Polyethylene
Negative
PVC (Vinyl)
Teflon
Positive

S13-4

Capacitive Charging
The capacitance of a charged body relative in position to
another body also has an effect on the static field. To
see that this is true, one need only look at the equation
Q =CV (charge equals capacitance times voltage). If the
charge is constant, voltage increases as capacitance decreases to maintain equilibrium. As capacitance decreases the voltage will increase until discharge occurs
via an arc. Alow voltage on abody with ahigh capacitance
to ground can become a damaging voltage when the body
moves away from the ground plane. For example a 100V
charge on a common plastic bag lying on a bench may increase to a few thousand volts when picked up by an
operator, due to adecrease in capacitance.
These sources of static can be found almost anywhere in
an unprotected work environment, on personnel wearing
synthetic clothing and smocks, on equipment with
painted or anodized surfaces, and on materials such as
carpets, waxed vinyl floors, and ungrounded work
surfaces.
Understanding the Failure Mechanisms
In the past, analysis of electrical failures to pinpoint ESD
as a cause was often difficult. But with a better understanding of failure mechanisms and their causes, and the
use of more sophisticated techniques like scanning electron microscopy (SEM), pinpointing ESD failures can now
be part of aroutine failure analysis.

ESD PROTECTION PROGRAM
Parametric or functional failure of bipolar and MOS ICs
can occur as aresult of ESD.
The primary ESD failure mechanisms include:
1. Dielectric Breakdown: This is a predominant failure
mechanism on MOS devices when the voltage across
the oxide exceeds the dielectric breakdown strength.
This failure mechanism is basically voltage dependent
where the voltage must be high enough to cause dielec·
tric breakdown. As such, the thinner the oxide, the
higher the susceptibility to ESD. MOS device failures
are characterized by resistive shorts from the input to
VooorVss.
MOS Transistor Structure
Showing ESD Included Pinholes at Gate Oxide
GATE

'1
~I

SOURCE

PINHOLES
DRAIN

This failure mechanism can also be found on bipolar
ICs which have metallization runs over active semi·
conductor regions separated by a thin oxide. Device
failures are characterized by resistive or high leakage
paths.
2. Thermal Runaway (Second Breakdown): This failure
mechanism results in junction melting when the melt·
ing temperature of silicon (1415°C) is reached. This is
basically a power dependent failure mechanism,
namely the ESD pulse shape, duration and energy can
produce power levels resulting in localized heating and
eventually junction melting, even though the voltage
level is below that required to cause dielectric break·
down. Second breakdown of the emitter·base junction
of a NPN transistor is a common ESD related failure
mode on bipolar ICs, since the highest current density
occurs on the smallest current carrying area which is
typically the emitter·base junction. Low current gain
(hFE) is a very sensitive indicator of emitter·base june·
tion damage on bipolar linear ICs.

3. Metallization Melting: When junction melting and a
short occurs, localized melting of the metallization can
occur if there is enough energy in the ESD pulse. This is
frequently a secondary failure mechanism, following a
short resulting from one of the other failure modes.
4. Parametric Degradation: On precision, high speed ICs
(e.g., bipolar operational amplifiers with a typical input
bias current of 10pA and low input offset voltage of typo
ically 50/LV) ESD can cause device degradation, besides
functional failures. This can impact electrical perform·
ance and adversely affect device reliability.
This degradation in device parametric performance is
far more difficult to pinpoint as an ESD related failure
mode. It is also the least understood among the failure
modes. The extent of this degradation is dependent on
the number of ESD pulses and the level of damage
sustained. The first ESD pulse may not cause an IC to
fail the electrical datasheet limits, but with each subse·
quent ESD pulse, the parametric performance can de·
grade to the point where the device no longer meets the
datasheet limits.
There is a great deal of current research focused on
ESD induced latent failures, and there now appears to
be more evidence of this type of failure mechanism.

RESISTIVE SHORT ON A
METALLIZATION STRIP OVER
A THIN OXIDE N+ REGION
ON A BIPOLAR IC

813-5

ESD PROTECTION PROGRAM
ESO Failure Analysis Program
ESD defect identification must be an integral part of afail·
ure analysis program. The key objectives are to help
identify the ESD failure mechanism, isolate the cause for
failure, and implement corrective action to prevent recur·
rence. All devices suspected of being damaged by ESD af·
ter initial electrical verification, should be failure
analyzed.
An ESD failure analysis program is outlined below.

1. Initial electrical test verification.
2. Review device history to determine if there are any simi·
lar failures in the past. Review ESD sensitivity data if
available.
3. Investigate conditions in any area that can potentially
cause ESD damage. Common potential problem areas
include:
• Proper grounding procedures not being followed
(e.g., conductive table/floor mats not grounded, per·
sonnel not wearing wrist strap, etc.)
• Improper handling (e.g., handling devices at a non·
ESD protected station)
• Transporting devices in unapproved containers (e.g.,
in common plastic bags/tubes/tote boxes)
• Changes in procedures or operation
• Changes in equipment
• Design deficiencies
4. Failure analysis sequence:
•
•
•
•
•
•
•
•
•

Bench testing and curve tracer analysis
Pin·to·pin analysis
Internal visual (10 x to 1000 x )
Liquid crystal hot spot detection
Scanning electron microscopy (SEM), secondary ion
mass spectrometry (SIMS), energy dispersive X·ray
analysis (EDX), scanning auger microprobe (SAM)
Plasma/chemical etching
Special fault decoration
Micro·sectioning
Documentation

An excellent failure analysis manual is published by
the Rome Air Development Center titled "Failure Analy·
sis Techniques-A Procedural Guide".

813·6

5. Duplication of failure by stressing identical devices.
The same or similar electrical failure mode is agood in·
dicator of an ESD induced failure mode.
6. Implement corrective action to prevent recurrence.
Corrective action may include:
• Component, board, sub·system or system level
redesign
• Improve ESD controls
• Improve part handling
• Improve ESD awareness
• Improve compliance with ESD protection procedures
• Increase audit frequencies
• Improve packaging materials and procedures
Corrective action taken by the end user should include
athorough review of electrical and mechanical packag·
ing designs. In addition the end user should consult
with the IC manufacturer on their findings, request fail·
ure analysis of suspected ESD failures if needed and
require the IC manufacturer to take appropriate correc·
tive action on any confirmed ESD failure.

ESO Sensitivity (ESOS) Testing
ESDS testing is crucial in helping the IC designer and the
end user evaluate the ESD susceptibility of aparticular de·
vice. At Linear Technology Corporation, ESDS testing is
Incorporated into the failure anaylsis program and is per·
formed on each device as part of the product characteriza·
tion program. The ESDS testing is also part of new product
qualification. Linear Technology performs this ESDS test·
ing according to MIL·STD·883C, Method 3015.
The ESDS testing provides immediate feedback to the IC
designer on any weakness found in the design and per·
mits design correction before product release. The ESDS
data collected is also used as baseline data to evaluate
the effect of any future design changes on the ESDS test·
ing performance, and to help ensure that the final packag·
ing methods meet MIL·M·38510F requirements. Devices
which are classified as Category Adevices, susceptible to
2000V or less, on this ESDS testing are top marked with an
equilateral triangle per MIL·M·38510F requirements.

ESD PROTECTION PROGRAM
Since people are considered to be a prime source of ESD,
the ESDS test circuit is based on a human ESD model. A
150012 resistor and a 1OOpF capacitor are used in the test
circuit. Human capacitance is typically 50pF to 250pF,
with the majority of people at 100pF or less, and human resistance ranges from 100012 to 500012. Five combinations
of input, output, V+ and V- pins are tested. An ESD failure is defined as a voltage level which causes sufficient
damage to the device such that it no longer meets the
electrical datasheet limits.
After initial ESDS testing, it is important that ESDS test
monitoring be performed periodically on devices from various lots to determine lot-to-Iot variation. The VZAP-1 report titled "Electrostatic Discharge (ESD) Susceptibility of
Electronic Devices" published by the Reliability Analysis
Center, Rome Air Development Center, contains a wealth
of information on ESDS testing data on devices of different process technologies from many manufacturers. The
data in this report clearly indicates a large lot-to-Iot variation relating to ESD susceptibility on the same device.

Design for ESD Protection
ESD protection designs employed on Linear Technology
Corporation devices include:
1. Input clamp diodes
2. Input series resistors to limit ESD current in conjunction with clamp diodes
3. Keeping critical junctions out of reverse breakdown, or
physically enlarging it
4. Eliminating metallization runs over thin oxide regions
when they are tied directly to external pins

ESD Task Force

2. Raise the level of ESD awareness
3. Develop atraining and certification program
4. Work with all departments on any ESD questions or
problems
5. Develop a program to educate and assist sales offices,
distributors and customers to minimize ESD
6. Review and qualify new ESD protective materials and
equipment, and keep specifications and training program updated
7. Measure the cost-to-benefit ratio of the program

Facilities Evaluation
The ESD task force should be responsible for facility
evaluation. This evaluation should be guided by the ESD
coordinator. The ESD coordinator should be chosen for
strong knowledge of ESD controls, and for the ability to
effectively interface with all affected departments. The
primary objective of the task force is to pinpoint areas that
represent sources of static electricity and potential yield
losses due to ESD.
A representative, preferably the engineering or production
manager, from each of the key manufacturing areas
should be represented on this task force. At Linear Technology Corporation this effort is headed by the Quality Assurance Manager and the Package Engineering Manager.
The balance of the ESD task force members are the
Test Engineering, Product Engineering, and Production
Managers.

An ESD task force should consist of members from each
affected department to do the foundation work, sell the
program to management, and implement the program with
the following objectives:

The only equipment needed for this survey is a field static
meter which measures static up to a level of 50kV. Both
nuclear and electronic type static meters are available
from manufacturers like 3M, Simco, Wescorp and Scientific Enterprises.

1. Develop, approve and implement an ESD control specification covering all aspects of design, ESD protected
materials and equipment, and manufacturing

Regardless of area classification, all manufacturing areas
can be broken down into the following categories for
evaluation purposes.

S13-7

ESD PROTECTION PROGRAM
1. Personnel
Personnel represents one of the largest sources of static,
from the type of clothing, smocks and shoes that they
wear (for example, polyester or nylon smocks).
2. The Environment
The environment includes the room humidity and floors.
Relative humidity plays a major part in determining the
level of static generated. For example, at 10-20% RH a
person walking across a carpeted floor can develop 35kV
versus 1.5kV when the relative humidity is increased to
70%-80%. Therefore the humidity level must be controlled and should not be allowed to fluctuate over a broad
range.
Floors also represent one of the greatest contributors of
static generation on personnel, moving carts or equipment
because of movement across its surface. Carpeted and
waxed vinyl floors are prime static generators.
3. Work Surfaces
Painted or vinyl covered table tops, vinyl covered chairs,
conveyor belts, racks, carts and shelving are also static
generators.
4. Equipment
Anodized surfaces, plexiglass covers, ungrounded solder
guns, plastic solder suckers, heat guns and blowers are
also static generators.

This ESD survey should include all direct and support
manufacturing areas where semiconductor and other electronic components are handled, and should be extended
to cover distribution and field sales offices, and field service centers. Once the facility evaluation is completed, the
results are reviewed by the ESD task force, and controls
are selected to combat each potential ESD problem area.
The ESC Protection Program
The degree of static control should be determined by the
most static sensitive device or assembly in the operation.
Top management support and implementing the same basic controls in all areas with no double standards will help
to ensure success.
The basic concept of complete static protection is the prevention of static buildup, the removal of any already existing charges, and the protection of electronic components
from induced fields. The first and foremost line of defense
is the personnel wrist strap together with grounded conductive or static dissipative table tops, and conductive
heel straps and grounded conductive or static dissipative
floor mats.
To increase ESD awareness at Linear Technology Corporation, all ESD Protection Areas are marked by an identifying
label shown below. This label alerts all personnel that ESD
protection procedures are enforced in the area.

5. Materials
Look out for common plastic work holders, foam, common
plastic tote boxes and packaging containers.
Examples of typical static levels are shown in the table
below.

Walking across a carpeted floor
Walking across a vinyl floor
Picking up acommon plastiC bag
Sliding plastic box over bench/conveyor
Ungrounded solder sucker
Plastic cabinets

813-8

RELATIVE HUMIDITY
70%-80% 10%-20%
35kV
1.5kV
12kV
O.3kV
15kV
O.5kV
15kV
2.0kV
SkV
1.0kV
SkV
1.0kV

ESC Protected Workstation
Examples of ESD Protected Workstations are shown in
Figures 1and 2.

ESD PROTECTION PROGRAM
Option 1(Figure 1): All electronic components, sub-assemblies and assemblies must be handled at an ESD Protected Workstation only. The figure illustrates an ESD Protected Workstation consisting of a static dissipative table
mat grounded to earth or electrical ground through a 1Mn
series resistor, with the requirement that the operator
wears a grounded insulated conductive wrist strap with a

1Mn series resistor. This 1Mn series resistor protects the
operator from electrical shock, should the operator come
in contact with a potentially lethal voltage. Option 1
should be used where the operator does not require a
large degree of freedom, e.g., during product inspection,
component soldering, board repair, etc.

ELECTRIC POWER EQUIPMENT ~
3. WRIST STRAP~

D

2. GROUND CORD~

N

4. INSULATION PAD

~1

. CONDUCTIVE OR STATIC
DISSIPATIVE TABLE MAT

~ TABLE TOP
C
·GROUND

-

::J
FLOOR

MATERIALS: 1. 1/16" THICK CONDUCTIVE OR STATIC DISSIPATIVE TABLE MAT WITH SURFACE
RESISTIVITY OF s 1080 PER SQUARE.
2. INSULATED CONDUCTIVE GROUND CORD WITH A SERIES RESISTOR OF 1/2W
MINIMUM. 1MO± 10%, AND 18AWG OR LARGER INSULATED WIRE.
3.

INSULATED CONDUCTIVE WRIST STRAP WITH 1/4W MINIMUM, 1MO± 10%,
AND 20AWG OR LARGER INSULATED WIRE. THE CURRENT LIMITING lMO
RESISTOR MUST BE LOCATED RIGHT NEXT TO THE WRIST TO PREVENT THE
POSSIBILITY OF SHUNTING THE RESISTOR.

4. POWER TEST EQUIPMENT MUST BE CHASSIS GROUNDED VIA A THREE-PRONG
PLUG, AND PLACED ON AN INSULATION PAD MADE OF FORMICA, FIBERGLASS
OR EQUIVALENT MATERIAL.

Figure 1

MATERIALS: 1. OPTIONAL 1/8" THICK CONDUCTIVE OR STATIC DISSIPATIVE MAT OR
CONDUCTIVE FLOORING (e.g., CONDUCTIVE FLOOR TILES) WITH A SURFACE
RESISTIVITY OF s 1080 PER SQUARE.
2. CONDUCTIVE SHOE STRAP WITH A SURFACE RESISTIVITY OF < 105{l PER
SQUARE.
3. INSULATED CONDUCTIVE GROUND CORD WITH A SERIES RESISTOR OF 1/2W
MINIMUM, lM{l± 10%, AND 18AWG OR LARGER INSULATED WIRE.

Figure 2

813-9

ESD PROTECTION PROGRAM
Option 2 (Figure 2): Shows an alternate installation meth·
od for an ESD Protected Workstation. It consists of a
conductive or static dissipative floor mat grounded to
earth or electrical ground through a 1Mil series resistor
with the operator wearing aconductive shoe strap. This in·
stallation is typically used where the operator needs free·
dom of movement over a large area, e.g., environmental
chamber loading and unloading, electrical testing, etc. To
be effective the conductive shoe strap must be attached
to the wearer's shoe to maximize contact between the
strap and the conductive floor.
Option 3: Utilizes the same conductive or static dissipa·
tive floor mat installation as Option 2 with the exception
that the operator is grounded via a wrist strap through the
equipment ground instead of aconductive shoe strap. It is
utilized where an operator is working with a piece of free·
standing equipment and does not require a great deal of
freedom of movement.
Handling
At Linear Technology Corporation all products are han·
died, transported and staged in volume conductive tote
boxes. This offers maximum protection to the compo·
nents from triboelectrically generated and inductive static
charges. The rule is under no circumstances should com·
ponents be removed from their approved containers ex·
cept at an ESD protected workstation.

Final Packaging
Only antistatic and conductive final packaging containers
(for example, antistatic or conductive dip tubes, volume
conductive carbon loaded plastiC bags or metallic film
laminate bags, foil lined boxes) are used. Filler (dunnage)
material used should be antistatic, non·corrosive, and
should not crumble, flake, powder, shred or be of fibrous
construction. Conductive packing materials are preferred
since they not only prevent buildup of triboelectric charge,
but also provide shielding from external fields.

• Ensure all electronic and electro·mechanical equip·
ment is chassis grounded, including conveyor belts, va·
por degreasers and baskets, solder pots, etc.
• Tips of hand soldering irons are to be grounded.
• All parts of hand tools (e.g., solder suckers, pliers, etc.)
which can be expected to come in contact with elec·
tronic components are to be made of conductive mate·
rial and grounded.
• Conductive shorting bars are to be installed on all
terminations for PC boards with electronic components
during assembly, loading, inspecting, repairing, solder·
ing, storing and transporting.
• All PC boards with electronic components are not to be
handled by their circuitry, connector points or connec·
tor pins.
• High velocity air movement is to be delivered through a
static neutralizer.
• Air ionizers are to be employed in neutralizing static
buildup on insulators if they have to be used or as an ex·
tra precautionary measure for extremely sensitive
assemblies.
• Do not slide electronic components over asurface.
Air ionizers come in three basic types: nuclear, AC and
pulsed DC. These ionizers can neutralize static charges on
non·conductive materials by supplying the materials with
astream of both positive and negative ions.
The advantage of the AC or pulsed DC type air ionizer is
that there is no recurring annual replacement cost. The
disadvantages are: it emits ozone which can damage rub·
ber in equipment; EMI (Electro MagnetiC Interference);
and an imbalance in the stream of ions if not properly
maintained, therefore neceSSitating frequent preventive
maintenance.

Other ESD Preventative Measures

The advantages of the nuclear type air ionizer are low
maintenance, no ozone, no EMI and no imbalance prob·
lems. The disadvantages are that it requires careful han·
dling because of the radioactive source, and the annual
recurring cost to replace the radioactive source.

• Where possible, ban all static bearing materials,
e.g., common plastics, styrofoam from the work
environment.
• Use only synthetic material smocks with 1% to 2% in·
terwoven steel.

The selection of air ionizers must be done with care with
awareness of the above limitations. The squirrel cage
ionized air blower has been proven to produce a signif·
icantly more even distribution of ion patterns than does a
conventional fan blower design.

813-10

ESD PROTECTION PROGRAM
Maintenance

• Measure the surface resistivity of conductive or static
dissipative table tops once every 6 months using
ASTM-F-150-72, ASTM-D-257 or ASTM-D-991 test methods as appropriate.

ESD protective floor and table coverings must be properly
maintained. Do not wax over them. Cleaners must not degrade their electrical properties. Vacuum to remove loose
particles, followed by a wet mop with a solution of mild
detergent and hot water.

Materials Selection and Specification
Based on the tremendous amount of ESD protective
materials available, it is important that materials are selected based on astringent qualification. Once the materials have been selected and specifications defined, a
material procurement specification needs to be initiated
that defines the materials and quality requirements to the
vendor. One of the major pitfalls is to procure material in
haste, e.g., a wrist strap, only to find out it does not perform reliably.

Periodic Audits
At Linear Technology Corporation periodic audits are conducted to check on the following at least once a month,
unless otherwise noted.
• Compliance with ESD control procedures.
• Ensure that the conductive ground cord connection is
intact by measuring the series resistance to ground
with an ohmmeter.
• Ensure that wrist straps are still functional by measuring the resistance from the person to ground. The
ground lead of the ohmmeter is connected to the
ground connection of the wrist strap, and the positive
lead is connected to a stainless steel electrode (one
inch in diameter, and three inches long #304 stainless
steel) which is held by the person. This test method not
only checks the resistance of the series resistor, but
also resistance through the ground cord and also any
contact resistance between the wrist strap and the person's skin. This test procedure is required when wrist
straps with an elastic nylon band with interwoven
metallic strands are used, since the metallic strands
breakdown with prolonged use. This monitor frequency
may be shortened depending on audit results.

The SOAR-1 report titled "ESD Protective Material and
Equipment: ACritical Review" published by the Rome Air
Development Center is an excellent reference on the various types of ESD protective materials available.
At Linear Technology Corporation a minimum of three
manufacturing lots from a potential vendor are subjected
to qualification testing per the requirements of the material procurement specification for ESD protective materials.
The vendor is considered qualified only when all three lots
are found to be acceptable. Once vendors have been qualified, all incoming ESD protective materials are subjected
to astringent incoming inspection.
The following table summarizes a sample material and
test specification for ESD protective materials.

Wrist Strap Resistance Test Set·Up
#304
STAINLESS STEEL

OHM1_ET_ER_.",

ELECrODE

/

POSITIVE
LEAD

@
v:tJ

813-11

ESD PROTECTION PROGRAM
MATERIAL
Wrist Strap

Conductive or Static
Dissipative Table and Floor
Coverings, Conductive Tote
Boxes, Conductive Shoe
Straps
Conductive Foam

Antistatic and Conductive
Dip Tubes

Antistatic and Conductive
Bags

Static Eliminatorsllonized Air
Blowers

PROPERTIESI DESCRIPTION
• Insulated coil cord with a 1M!l ± 10%, V. Wminimum
series resistor molded into snap fastener (at wrist end),
and an elastic wrist band with inner metallic filaments
and insulative exterior.
• Must not shed particles
• Must not support bacterial or fungal growth
• Conductive: surface resistivity <10 5!l/square. Static
Dissipative: surface resistivity> 10 5 and < 10 9!l/square.
• Shall not contain more than 30ppm C1, K, Na when a
quantitative chemical analysis is performed
• Must not support bacterial or fungal growth
• Must not exhibit an oily·like film

• Antistatic bags must meet MIL·B·81705 type 2
• Conductive bags must meet MIL·B·117 and sealing
requirements of MIL·B·81705
• Must not support bacterial or fungal growth
• Ozone level: 0.1 ppm maximum for 8 hour exposure
• Noise: 60dB maximum
• EM I: non·detectable when measured 6 inches away

TEST METHODS
Measure series resistance with ohmmeter. Apply normal
tug to both ends of strap and remeasure series resistance.
Resistance must be between 0.8 to 1.2M!l.
Test per ASTM.F.150.726ASTM·D·257, ASTM·D·991 (for
surface resistivity < 10 !l/square).

With devices inserted into the foam, the foam must not
cause lead corrosion after a24 hour 85°C/85% RH
temperature/humidity storage.
Must meet an Electrostatic Decay test per Federal Test
Method Standard 101 Test Method 4046. Material charged
to 5000V must be discharged to 1% of its initial value (50V)
in 2 seconds after a 24 hour conditioning at 15% relative
humidity.
Test method for antistatic bags same as for antistatic/
conductive dip tubes. Test method for conductive bags
same as for conductive tablelfloor coverings.
Voltage Decay test: A non·conductive sheet of material
charged to 5kV must be discharged to 1% of its initial value
(50V) in 2 seconds at a distance of 2 feet from the ionizer or
larger distance if application calls for a larger distance.

Training and Certification Program
The training program should be developed to increase
ESD awareness and to assist all personnel in complying
with the ESD control specification. The program should
include:
1. Adiscussion on "What is Static Electricity?"

ESD awareness, it is often a good idea to show ESD
awareness films and video tapes which are available from
a variety of sources (Reference 3 provides a list of films
and video tapes). Personnel are retrained and recertified at
aminimum frequency of once per year.

2. How ESD affects ICs

Measuring the Benefits

3. Estimated cost of ESD related losses

Where possible, the benefits of an ESD Protection Program should be tracked and quantified. The two yardsticks used at Linear Technology Corporation are final test
yields and OA electrical average outgoing quality (AOO).
Since the implementation of this program, there has been
a significant improvement in final test yields especially on
static sensitive CMOS devices. With the elimination of
ESD as a potential failure cause, the electrical AOO has
averaged well under 100ppm for all products combined.
Improvements such as this help to provide positive feedback to manufacturing and support personnel on the importance of an ESD Protection Program, and also help to
ensure its continuing success.

4. Materials and equipment for controlling static
5. The importance of wearing the wrist strap
6. The importance of an audit program
7. Encourage floor personnel to feedback any ESD potential areas to the ESD task force
ESD training should be incorporated into the personnel
training and certification program. At Linear Technology
Corporation only fully trained and certified personnel are
allowed to do actual production work. To help increase

813-12

ESD PROTECTION PROGRAM
References

1. DOD·STD·1686

Electrostatic Discharge Control
Program for Electrical and Elec·
tronic Parts, Assemblies and
Equipment.

2. DOD·HDBK·263

Electrostatic Discharge Control
Handbook for Electrical and Elec·
tronic Parts, Assemblies and
Equipment.

3. SOAR·1

4. VZAp·1

State·of·the·Art Report ESD Pro·
tective Materials and Equipment:
ACritical Review, published by
the Rome Air Development
Center.
Electrostatic Discharge (ESD)
Susceptibility of Electronic De·
vices published by the Rome Air
Development Center.

5. EOS·1, EOS·2,
etc.

Electrical Overstress/Electro·
static Discharge Symposium Pro·
ceedings 1979 to current year.

6. MIL·STD·883C

Test Methods and Procedures For
Microelectronics

7. MIL·M·38510F

Microcircuits, General Specifica·
tion for

8. MIL·M·55565A

Microcircuits, Packaging of

9. MIL·M·81705B

Barrier Materials, Flexible, Elec·
trostatic-Free, Heat Sealable

10. FED·STD·101

Preservation, Packaging and
Packing Materials Test Proce·
dures; Test Methods. 4046: Elec·
trostatic Properties of

813-13

~~~~~~_______________A_P_P_LlC_A_J_IO_N
__
N_O_TE_S
AN1

Understanding and Applying the m005 Multifunction Regulator
This application note describes the unique operating characteristics of the LT1005 and describes a number of useful applications which take advantage of the regulator's ability to control
the output with a logic control signal.

AN2

Performance Enhancement Techniques for 3-Terminal
Regulators
This application note describes a number of enhancement
circuit techniques used with existing 3-terminal regulators
which extend current capability, limit power dissipation, provide
high voltage output, operate from 110VAC or 220VAC without the
need to switch transformer windings, and many other useful
application ideas.

AN9

Application Considerations and Circuits for a New
Chopper-Stabilized Op Amp
A discussion of circuit, layout and construction considerations
for low level DC circuits includes error analysis of solder, wire
and connector junctions. Applications include sub-microvolt instrumentation and isolation amplifiers, stabilized buffers and
comparators and preciSion data converters.

AN 11

Designing Linear Circuits for 5V Operation
This note covers the considerations for
linear circuits which must operate from
Applications include various transducer
instrumentation amplifiers, controllers
converters.

deSigning precision
a single 5V supply.
signal conditioners,
and isolated data

Applications for a Switched-Capacitor Instrumentation Building
Block
This application note describes a wide range of useful
applications for the LTC1043 dual precision instrumentation
switched-capacitor building block. Some of the applications
described are ultra high performance instrumentation amplifier,
lock-in amplifier, wide range digitally controlled variable gain
amplifier, relative humidity sensor signal conditioner, LVDT
signal conditioner, charge pump F to V and V to F converters,
12-bit A to Dconverter and more.

AN 12

Circuit Techniques for Clock Sources
Circuits for clock sources are presented. Special attention is
given to crystal-based designs including TXCOs and VXCOs.

AN13

High Speed Comparator Techniques
The AN13 is an extensive discussion of the causes and cures of
problems in very high speed comparator circuits. A separate
applications section presents circuits, including a 0.025%
accurate 1Hz-30MHz V to F converter, a 200ns 0.01 % samplehold and a 10MHz fiber optic receiver. Five appendices covering
related topiCS complete this note.

AN4

Applications for a New Power Buffer
The LT1010 150pA power buffer is described in a number of useful applications such as boosted op amp, a feed-forward, wideband DC stabilized buffer, a video line driver amplifier, a fast
sample-hold with hold step compensation, an overload protected motor speed controller, and a piezoelectric fan servo.

AN 14

AN5

Thermal Techniques in Measurement and Control Circuitry
6 applications utilizing thermally based circuits are detailed.
Included are a 50MHz RMS to DC converter, an anemometer, a
liquid flowmeter and others. A general discussion of thermodynamic considerations involved in circuitry is also presented.

Designs for High Frequency Voltage-To· Frequency Converters
A variety of high performance V to F circuits is presented.
Included are a 1Hz to 100MHz deSign, a quartz stabilized type
and a 0.0007% linear unit. Other circuits feature 1.5V operation,
sine wave output and non-linear transfer functions. A separate
section examines the trade-offs and advantages of various
approaches to Vto F conversion.

AN 15

Circuitry for Single Cell Operation
1.5V powered circuits for complex linear functions are detailed.
Designs include a V to F converter, a 10 bit A- D, sample-hold
amplifiers, a switching regulator and other circuits. Also
included is a section on component considerations for 1.5V
powered linear circuits.

AN16

Unique IC Buffer Enhances Op Amp Designs, Tames Fast
Amplifiers
This note describes some of the unique IC design techniques
incorporated into a fast, monolithic power buffer, the LT1010.
Also, some application ideas are described such as capacitive
load driving, boosting fast op amp output current and power
supply circuits.

AN 17

Considerations for Successive Approximation A- DConverters
A tutorial on SAR type A-D converters, this note contains
detailed information on several 12-bit circuits. Comparator,
clocking, and pre-amplifier designs are discussed. A final circuit
gives a 12-bit conversion in 1.8ps. Appended sections explain the
basic SAR technique and explore DAC considerations.

AN3

AN6

AN7

AN8

813-14

Applications of New Precision Op Amps
Application considerations and circuits for the LT1001 and
LT1002 single and dual preCision amplifiers are illustrated in a
number of circuits, including strain gauge signal conditioners,
linearized platinum RTD circuits, an ultra precision dead zone
circuit for motor servos and other examples.
Some Techniques for Direct Digitization of Transducer Outputs
Analog-to-digital conversion circuits which directly digitize low
level transducer outputs, without DC preamplification, are
presented. Covered are circuits which operate with thermo·
couples, strain gauges, humidity sensors, level transducers and
other sensors.
Power Conditioning Techniques for Batteries
A variety of approaches for power conditioning batteries is
given. Switching and linear regulators and converters are shown,
with attention to efficiency and low power operation. 14 circuits
are presented with performance data.

APPLICATION NOTES
AN 18

Power Gain Stages for Monolithic Amplifiers
This note presents output stage circuits which provide power
gain for monolithic amplifiers. The circuits feature voltage gain,
current gain, or both. Eleven designs are shown, and perform·
ance is summarized. A generalized method for frequency
compensation appears in a separate section.

AN22

A Monolithic IC for 100MHz RMS·DC Conversion
AN22 details the theoretical and application aspects of the
LT1088 thermal RMS·DC converter. The basic theory behind
thermal RMS·DC conversion is discussed and design details of
the LT1088 are presented. Circuitry for RMS·DC converters,
wideband input buffers and heater protection is shown.

AN19

m070 Design Manual
This design manual is an extensive discussion of all standard
switching configurations for the LT1070; including buck, boost,
flyback, forward, inverting and "Cuk". The manual includes
comprehensive information on the LT1070, the external compo·
nents used with it, and complete formulas for calculating
component values.

AN23

AN20

Applications for a DC Accurate Low·Pass Switched· Capacitor
Filter
Discusses the principles of operation of the LTC1062 and helpful
hints for its application. Various application circuits are ex·
plained in detail with focus on how to cascade two LTC1062's
and how to obtain notches. Noise and distortion performance
are fully illustrated.

Micropower Circuits for Signal Conditioning
Low power operation of electronic apparatus has become
increasingly desirable. AN23 describes a variety of low power
circuits for transducer Signal conditioning. Also included are
designs for data converters and switching regulators. Three
appended sections discuss guidelines for micropower design,
strobed power operation and effects of test equipment on
micropower circuits.

AN24

Unique Applications for the LTC1 062 Lowpass Filter
Highlights the LTC1062 as a lowpass filter in a phase lock loop.
Describes how the loop's bandwidth can be increased and the
VCO output jitter reduced when the LTC1062 is the loop filter.
Compares it with a passive RC loop filter.

AN21

Composite Amplifiers
Applications often require an amplifier that has extremely high
performance in several areas. For example, high speed and DC
precision are often needed. If a single device cannot simultane·
ously achieve the desired characteristics, a composite amplifier
made up of two (or more) devices can be configured to do the
job. AN21 shows examples of composite approaches in designs
combining speed, precision, low noise and high power.

Also discussed is the use of LTC1062 as simple bandpass and
bandstop filter.

AN25

Switching Regulators for Poets
Subtitled "A Gentle Guide for the Trepidatious", this is a tutorial
on switching regulator design. The text assumes no switching
regulator design experience, contains no equations, and reo
quires no inductor construction to build the circuits described.
Designs detailed include flyback, isolated telecom, off·line, and
others. Appended sections cover component considerations,
measurement techniques and steps involved in developing a
working circuit.

S13-15

NOTES

LINEAR TECHNOLOGY CORPORATION
1630 McCarthy Blvd., Milpitas, CA 95035
Phone: (408) 432·1900
FAX: (408) 434-0507
Telex: 499·3977

© L1NEAR TECHNOLOGY CORPORATION 1988

IMIGPIBC 1187 50M



Source Exif Data:
File Type                       : PDF
File Type Extension             : pdf
MIME Type                       : application/pdf
PDF Version                     : 1.3
Linearized                      : No
XMP Toolkit                     : Adobe XMP Core 4.2.1-c041 52.342996, 2008/05/07-21:37:19
Create Date                     : 2016:04:03 17:32:13-08:00
Modify Date                     : 2016:04:03 18:24:32-07:00
Metadata Date                   : 2016:04:03 18:24:32-07:00
Producer                        : Adobe Acrobat 9.0 Paper Capture Plug-in
Format                          : application/pdf
Document ID                     : uuid:244628c4-79ae-d24a-a2b1-554672cd7cf3
Instance ID                     : uuid:af6c82c2-a623-b248-9baa-72e8db6a6011
Page Layout                     : SinglePage
Page Mode                       : UseNone
Page Count                      : 436
EXIF Metadata provided by EXIF.tools

Navigation menu